
Information in this document is provided solely to enable use of Intel products. Intel assumes no liability whatsoever, including infringement of
any patent or copyright, for sale and use of Intel products except as provided in Intel’s Terms and Conditions of Sale for such products.
Information contained herein supersedes previously published specifications on these devices from Intel.

July 1995

© INTEL CORPORATION, 1995

Order Number: 271329-002

MILITARY Intel486TM PROCESSOR FAMILY

Y IntelDX4TM Processor
Ð Up to 100-MHz Operation
Ð Speed-Multiplying Technology
Ð 32-Bit Architecture
Ð 16K-Byte On-Chip Cache
Ð Integrated Floating-Point Unit
Ð 3.3V Core Operation with 5V Tolerant

I/O Buffers
Ð SL Technology
Ð Static Design
Ð IEEE 1149.1 Boundary Scan

Compatibility
Ð Binary Compatible with Large

Software Base

Y IntelDX2TM Processor
Ð Speed-Multiplying Technology
Ð 32-Bit Architecture
Ð 8K-Byte On-Chip Cache
Ð Integrated Floating-Point Unit
Ð SL Technology
Ð Static Design
Ð IEEE 1149.1 Boundary Scan

Compatibility
Ð Binary Compatible with Large

Software Base

Y Military Intel486TM DX Processor
Ð 32-Bit Architecture
Ð 8K-Byte On-Chip Cache
Ð Integrated Floating-Point Unit
Ð SL Technology
Ð Static Design
Ð IEEE 1149.1 Boundary Scan

Compatibility
Ð Binary Compatible with Large

Software Base

Y All Devices Available in 168-Lead PGA
Package and 196-Lead Ceramic Quad
Flatpack

Y Supported in Multiple Product Grades

NOTE:
References to devices within this document refer to Military versions.

Military Intel486TM

Processor

Product Grade

/B SE1 SE2 SE3

Military Intel486TM DX Processor & & &

IntelDX2TM Processor Q &

IntelDX4TM Processor Q Q Q

Definitions:
/B e MIL-STD-883, b55§C to a125§C
SE1 e Special Environment Temperature, b55§C to a125§C
SE2 e Special Environment Temperature, b40§C to a125§C
SE3 e Special Environment Temperature, b40§C to a110§C
Q e QML qualified to MIL-STD-38535

*Other brands and names are the property of their respective owners.

1



MILITARY Intel486TM PROCESSOR FAMILY

DATA SHEET DESIGNATIONS

Intel uses various data sheet markings to designate each phase of the document as it relates to the product.
The marking appears in the lower, inside corner of the data sheet. The following is the definition of these
markings:

Data Sheet Marking Description

Product Preview Contains information on products in the design phase of development. Do not
finalize a design with this information. Revised information will be published when
the product becomes available.

Advance Information Contains information on products being sampled or in the initial production phase of
development.²

Preliminary Contains preliminary information on new products in production.²

No Marking Contains information on products in full production.²

² Specifications within these data sheets are subject to change without notice. Verify with your local Intel sales office that
you have the latest datasheet before finalizing a design.
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MILITARY Intel486TM PROCESSOR FAMILY

1.0 INTRODUCTION

The Military Intel486 processor family enables a
range of low-cost, high-performance system designs
for Military embedded ground, missile and Avionics
applications. This family includes the IntelDX4 proc-
essor, the fastest Military Intel486 processor (up to
50% faster than an IntelDX2 processor). The In-
telDX4 processor integrates a 16K unified cache
and floating point hardware on-chip for improved
performance. The IntelDX2 processor integrates an
8K unified cache and floating point hardware on
chip. The IntelDX4 and IntelDX2 processors use
Intel’s speed-multiplying technology, allowing the
processor to operate at frequencies higher than the
external memory bus. The Military Intel486 DX proc-
essor offers the features of the IntelDX2 processors
without speed-multiplying. The entire Military
Intel486 processor family incorporates energy effi-
cient ‘‘SL Technology’’ for low power computing.

SL Technology enables system designs that exceed
the Environment Protection Agency’s (EPA) Energy
Star program guidelines, without compromising per-
formance. It also increases system design flexibility
and improves battery life in mobile applications.
SLTechnology allows system designers to differenti-
ate their power management schemes with a variety
of energy-efficient or battery-life preserving features.
Military Intel486 processors provide power manage-
ment features that are transparent to application and
operating system software. Stop Clock, Auto HALT
Power Down, and Auto Idle power down allow soft-
ware transparent control over processor power man-
agement. Equally important is the capability of the
processor to manage system power consumption.
Military Intel486 processor System Management
Mode (SMM) incorporates a non-maskable System
Management Interrupt (SMIÝ), a corresponding Re-
sume (RSM) instruction and a new memory space
for system management code. Intel’s SMM ensures
seamless power control of the processor core, sys-
tem logic, main memory, and one or more peripheral
devices, that is transparent to any application or op-
erating system.

Military Intel486 processors are available in a full
range of speeds (25 MHz to 100 MHz), packages
(PGA, CQFP), and voltages (5V, 3.3V) to meet any
system design requirements.

1.1 Processor Features

All of the Military Intel486 processors consist of a
32-bit integer processing unit, an on-chip cache, and
a memory management unit. This ensures full binary
compatibility with the 8086, 8088, 80186, 80286,
Intel386TM SX, Intel386 DX, and all versions of Mili-
tary Intel486 processors. All of the Military Intel486
processors offer the following features:

# 32-bit RISC integer coreÐThe Military Intel486
processor performs a complete set of arithmetic
and logical operations on 8-, 16-, and 32-bit data
types using a full-width ALU and eight general
purpose registers.

# Single Cycle ExecutionÐMany instructions exe-
cute in a single clock cycle.

# Instruction PipeliningÐThe fetching, decoding,
address translation and execution of instructions
are overlapped within the Military Intel486 proc-
essor.

# On-Chip Floating Point UnitÐMilitary Intel486
processors support the 32-, 64-, and 80-bit for-
mats specified in IEEE standard 754. The unit is
binary compatible with the 8087, Intel287TM, In-
tel387TM coprocessors.

# On-Chip Cache with Cache Consistency Sup-
portÐAn 8-Kbyte (16 Kbyte on the IntelDX4 proc-
essor) internal cache is used for both data and
instructions. Cache hits provide zero wait-state
access times for data within the cache. Bus activ-
ity is tracked to detect alterations in the memory
represented by the internal cache. The internal
cache can be invalidated or flushed so that an
external cache controller can maintain cache
consistency.

# External Cache ControlÐWrite-back and flush
controls for an external cache are provided so
the processor can maintain cache consistency.

# On-Chip Memory Management UnitÐAddress
management and memory space protection
mechanisms maintain the integrity of memory in a
multitasking and virtual memory environment.
Both segmentation and paging are supported.

# Burst CyclesÐBurst transfers allow a new double
word to be read from memory on each bus clock
cycle. This capability is especially useful for in-
struction prefetch and for filling the internal
cache.
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# Write BuffersÐThe processor contains four write
buffers to enhance the performance of consecu-
tive writes to memory. The processor can contin-
ue internal operations after a write to these buff-
ers, without waiting for the write to be completed
on the external bus.

# Bus BackoffÐIf another bus master needs con-
trol of the bus during a processor initiated bus
cycle, the Military Intel486 processor will float its
bus signals, then restart the cycle when the bus
becomes available again.

# Instruction RestartÐPrograms can continue exe-
cution following an exception generated by an
unsuccessful attempt to access memory. This
feature is important for supporting demand-paged
virtual memory applications.

# Dynamic Bus SizingÐExternal controllers can dy-
namically alter the effective width of the data bus.
Bus widths of 8, 16, or 32 bits can be used.

# Boundary Scan (JTAG)ÐBoundary Scan pro-
vides in-circuit testing of components on printed
circuit boards. The Intel Boundary Scan imple-
mentation conforms with the IEEE Standard Test
Access Port and Boundary Scan Architecture.

SL Technology provides the following features:

# Intel System Management ModeÐA unique Intel
architecture operating mode provides a dedicat-
ed special purpose interrupt and address space
that can be used to implement intelligent power
management and other enhanced functions in a
manner that is completely transparent to the op-
erating system and applications software.

# I/O RestartÐAn I/O instruction interrupted by a
System Management Interrupt (SMIÝ) can auto-
matically be restarted following the execution of
the RSM instruction.

# Stop ClockÐThe Military Intel486 processor has
a stop clock control mechanism that provides two
low-power states: a ‘‘fast wake-up’’ Stop Grant
state (E20 mA–100 mA) and a ‘‘slow wake-up’’
Stop Clock state with CLK frequency at 0 MHz
(100 mA–1000 mA).

# Auto HALT Power DownÐAfter the execution of
a HALT instruction, the Military Intel486 proces-
sor issues a normal Halt bus cycle and the clock
input to the Military Intel486 processor core is au-
tomatically stopped, causing the processor to en-
ter the Auto HALT Power Down state (E20 mA–
100 mA).

# Auto Idle Power Down ÐThis function allows the
processor to reduce the core frequency to the
bus frequency when both the core and bus are
idle. Auto Idle Power Down is software transpar-
ent and does not affect processor performance.
Auto Idle Power Down provides an average pow-
er savings of 10% and is only applicable to clock
multiplied processors.

1.2 Military Intel486TM Processor
Product Family

Table 1-1 shows the Military Intel486 processors
available by Maximum Frequency and Package.

Table 1-1. Product Options

Military Intel486TM

Processor

Processor Frequency (MHz) Package Type

25 33 50 66 75 100
168-Pin 196-Lead

PGA CQFP

Military Intel486TM DX & & & &

Processor

IntelDX2TM & & & &

Processor

IntelDX4TM & & & &

Processor
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2.0 HOW TO USE THIS DOCUMENT

2.1 Introduction

This data sheet is a compilation of previously pub-
lished individual data sheets for the Military Intel486
DX, IntelDX2 and IntelDX4 processors. This data
sheet encompasses the entire current Military
Intel486 processor family.

This data sheet describes the Military Intel486 proc-
essor architecture, features and technical details.
Unless otherwise stated, any description for the Mili-
tary Intel486 processor listed in this data sheet ap-
plies to all Military Intel486 processors. Where archi-
tectural or other differences do occur (for example,
the IntelDX4 processor has a 16-Kbyte on-chip
cache, all other Military Intel486 processors have an
8-Kbyte on-chip cache), these differences are de-
scribed in separate sections. Section 2.2 provides a
brief section description, highlighting the specific
sections that contain processor-unique information.

It is important to note that all Military Intel486 DX,
IntelDX2, and IntelDX4 processors have an on-chip
floating point unit.

Boundary Scan (JTAG) testability features, capability
and associated test signals (TCK, TMS, TDI, and
TDO) are standard on all Military Intel486 proces-
sors.

2.2 Section Contents and Processor
Specific Information

The following is a brief description of the contents of
each section:

Section 1: ‘‘Introduction.’’ This section is an
overview of the current Military
Intel486 processor family, product
features and highlights. This section
also lists product frequency, voltage
and package offerings.

Section 2: ‘‘How to Use This Document.’’ This
section presents information to aid in
the use of this data sheet.

Section 3: ‘‘Pin Description.’’ This section con-
tains all of the pin configurations for
the various package options (168-
Pin PGA and 196-Lead CQFP), pack-
age diagrams, pin assignment tables
and pin assignment differences for
the various processors within a
package class.

This section also provides a quick
pin reference table that lists pin sig-
nals for the Military Intel486 proces-
sor family. The table, whenever nec-
essary, has sections applicable to
each current Military Intel486 proc-
essor family member.

Section 4: ‘‘Architectural Overview.’’ This sec-
tion describes the Military Intel486
processor architecture, including the
register and instruction sets, memory
organization, data types and formats,
and interrupts for all Military Intel486
processors.

The architectural overview describes
the 32-bit RISC integer core of the
Military Intel486 processor. The on-
chip floating point unit for the Military
Intel486 DX IntelDX2 and IntelDX4
processors is included in this sec-
tion.

Section 5: ‘‘Real Mode Architecture.’’ This sec-
tion describes the Military Intel486
processor real-mode architecture, in-
cluding memory addressing, re-
served locations, interrupts, and
Shutdown and HALT. This section
applies to all Military Intel486 proc-
essors.

Section 6: ‘‘Protected Mode Architecture.’’ This
section describes the Military
Intel486 protected-mode architec-
ture, including addressing mecha-
nism, segmentation, protection, pag-
ing and virtual 8086 environment.
This section applies to all Military
Intel486 processors.
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Section 7: ‘‘On-Chip Cache.’’ This section de-
scribes the on-chip cache of the
Military Intel486 processors. Specific
information on size, features, modes,
and configurations is described. The
differences between the IntelDX4
processor on-chip cache (16-KByte)
and other members of the Military
Intel486 processor family on chip
cache (8-KByte) are detailed.

Section 8: ‘‘System Management Mode (SMM)
Architectures.’’ This section de-
scribes the System Management
Mode architecture of the Military
Intel486 processors, including sys-
tem management mode interrupt
processing and programming mode.

Section 9: ‘‘Hardware Interface.’’ This section
describes the hardware interface of
the current Military Intel486 proces-
sor family, including signal descrip-
tions, interrupt interfaces, write buff-
ers, reset and initialization, and clock
control.

The IntelDX4 processor speed multi-
plying options are detailed in this
section. Reset and initialization, as it
applies to all of the Military Intel486
processor family, is also document-
ed here.

Use and operation of the Stop Clock,
Auto HALT Power Down and other
power-saving SL Technology fea-
tures are described.

Section 10: ‘‘Bus Operation.’’ This section de-
scribes the Military Intel486 proces-
sor bus operation, including the data
transfer mechanism and bus func-
tional description.

Section 11: ‘‘Testability.’’ This section describes
the testability of the Military Intel486
processors, including the built-in self
test (BIST), on-chip cache testing,
translation lookaside buffer (TLB)
testing, tri-state output test mode,
and boundary scan (JTAG).

Section 12: ‘‘Debugging Support.’’ This section
describes the Military Intel486 proc-
essor debugging support, including
the breakpoint instruction, single-
step trap and debug registers. This
section applies to all Military Intel486
processors.

Section 13: ‘‘Instruction Set Summary.’’ This
section provides clock count and in-
struction encoding summaries for all
the Military Intel486 processors.

Section 14: ‘‘Differences between Military
Intel486 Processors and Intel386TM

Processors.’’ This section lists the
differences between the Military In-
tel486 processor family and the In-
tel386 processor family. Also de-
scribed and documented are differ-
ences between the Intel386 with an
Intel387TM math coprocessors and
the Military Intel486 processors with
on-chip floating point units. This sec-
tion applies to all Military Intel486
processors.

Section 15: ‘‘Electrical Data.’’ This section lists
the AC and DC specifications for all
Military Intel486 processors. Proces-
sor specific information is listed in
both common and separate tables
and sections as appropriate.

Section 16: ‘‘Mechanical Data.’’ This section lists
the mechanical and thermal data, in-
cluding the package specifications
(PGA and CQFP) for all Military
Intel486 processors. Processor spe-
cific information is listed in both com-
mon and separate tables and sec-
tions as appropriate.

Appendix A: ‘‘Features Determination.’’ This sec-
tion documents the CPUID function
to determine the Military Intel486
processor family identification and
processor specific information. This
section applies to all Military Intel486
processors.

Appendix B: ‘‘IBIS Models.’’ This section provides
a detailed sample listing of the types
of I/O buffer modeling information
available for the Military Intel486
processor family. This section ap-
plies to all Military Intel486 proces-
sors.

Appendix C: ‘‘BSDL Listing.’’ This section pro-
vides a sample listing of a BSDL file
for the Military Intel486 processor
family. This section applies to all Mili-
tary Intel486 processors.

Appendix D: ‘‘System Design Notes.’’ This sec-
tion provides design notes applica-
ble to the use of System Manage-
ment Mode and SMM routines with
the Military Intel486 processor.
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MILITARY Intel486TM PROCESSOR FAMILY

2.3 Documents Replaced by This Data
Sheet

This Data Sheet contains all of the latest information
for the Military Intel486 processor family and re-
places the following documentation:

Military i486 TM DX Microprocessor Datasheet , Or-
der Number 271136

Military Intel486 TM DX2 Microprocessor Datasheet ,
Order Number 271280

3.0 PIN DESCRIPTION

3.1 Pin Assignments

The following figures show the pin assignments of
each package type for the Military Intel486 proces-
sor product family. Tables are provided showing the
pin differences between the existing Military Intel486
processor products and the Military Intel486 proces-
sor products.

168-Pin PGAÐPin Grid Array

# Package Diagram

# Pin Assignment Difference Table

# Pin Cross Reference by Pin Name

196-Lead CQFPÐQuad Flat Pack

# Package Diagram

# Pin Assignment Difference Table

# Pin Assignment Table in numerical order
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271329–1

Figure 3-1. Package Diagram for 168-Pin PGA Package of the Military IntelDX2TM Processor

and the Military Intel486TM DX Processor
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271329–2

Figure 3-2. 168-Pin PGA Pinout Diagram (Pin Side) for the Military IntelDX4TM Processor
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Table 3-1. Pinout Differences for 168-Pin PGA Package

Previous
Military Intel486 DX

Previous
IntelDX2 IntelDX4TM

Pin Military Intel486 DX
Processor

IntelDX2TM
Processor Processor

Processor(4) Processor(4)

A3(3) NC TCK TCK TCK TCK

A14(3) NC TDI TDI TDI TDI

B10(3) NC SMIÝ NC SMIÝ SMIÝ

B14(3) NC TMS TMS TMS TMS

B16(3) NC TDO TDO TDO TDO

C10(3) NC SRESET NC SRESET SRESET

C12 NC SMIACTÝ NC SMIACTÝ SMIACTÝ

G15(3) NC STPCLKÝ NC STPCLKÝ STPCLKÝ

J1 VCC VCC VCC VCC VCC5
(2)

R17 NC NC NC NC CLKMUL

S4 NC NC NC NC VOLDET

A10 NC NC NC NC INV

A12 NC NC NC NC HITMÝ

B12 NC NC NC NC CACHEÝ

B13 NC NC NC NC WB/WTÝ

NOTES:
1. NC. Do Not Connect. These pins should always remain unconnected. Connection of NC pins to VCC or VSS or to any

other signal can result in component malfunction or incompatibility with future steppings of the Military Intel486 proces-
sors.

2. This pin location is for the VCC5 pin on the IntelDX4 processor. For compatibility with 3.3V processors that have 5V safe
input buffers (i.e., IntelDX4 processors), this pin should be connected to a VCC trace, not to the VCC plane. See section
3.2, ‘‘Quick Pin Reference,’’ for a description of the VCC5 pin on the IntelDX4 processor.

3. These pins were No Connects on previous Military Intel486 DX and IntelDX2 processors. For compatibility with old
designs, they can still be left unconnected.

4. Previous versions of the Military Intel486 processor family do not implement SL Technology and are not described in this
data sheet.
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Table 3-2. Pin Cross Reference for 168-Pin PGA Package of the IntelDX2TM Processor,

Intel486TM DX Processor and IntelDX4TM Processor

Address Data Control NC (2) VCC VSS

A2 ÀÀÀÀÀQ14 D0ÀÀÀÀÀÀÀP1 A20MÝ ÀÀÀÀÀD15 A10 B7 A7
A3 ÀÀÀÀÀR15 D1 ÀÀÀÀÀÀN2 ADSÝ ÀÀÀÀÀÀS17 A12 B9 A9
A4ÀÀÀÀÀÀS16 D2 ÀÀÀÀÀÀN1 AHOLD ÀÀÀÀÀA17 A13 B11 A11
A5 ÀÀÀÀÀQ12 D3 ÀÀÀÀÀÀH2 BE0Ý ÀÀÀÀÀÀK15 B12 C4 B3
A6ÀÀÀÀÀÀS15 D4 ÀÀÀÀÀÀM3 BE1ÝÀÀÀÀÀÀÀJ16 B13 C5 B4
A7 ÀÀÀÀÀQ13 D5 ÀÀÀÀÀÀÀJ2 BE2ÝÀÀÀÀÀÀÀJ15 C11 E2 B5
A8 ÀÀÀÀÀR13 D6ÀÀÀÀÀÀÀL2 BE3ÝÀÀÀÀÀÀÀF17 C13 E16 E1
A9 ÀÀÀÀÀQ11 D7ÀÀÀÀÀÀÀL3 BLASTÝÀÀÀÀR16 R17 G2 E17
A10 ÀÀÀÀS13 D8ÀÀÀÀÀÀÀF2 BOFFÝ ÀÀÀÀÀD17 S4 G16 G1
A11 ÀÀÀÀR12 D9 ÀÀÀÀÀÀD1 BRDYÝÀÀÀÀÀH15 H16 G17
A12ÀÀÀÀÀÀS7 D10 ÀÀÀÀÀE3 BREQ ÀÀÀÀÀÀQ15 J1 H17
A13 ÀÀÀÀQ10 D11 ÀÀÀÀÀC1 BS8Ý ÀÀÀÀÀÀD16 K2 H1
A14ÀÀÀÀÀÀS5 D12 ÀÀÀÀÀG3 BS16Ý ÀÀÀÀÀC17 K16 K1
A15 ÀÀÀÀÀR7 D13 ÀÀÀÀÀD2 CLK ÀÀÀÀÀÀÀÀÀC3 L16 K17
A16 ÀÀÀÀÀQ9 D14 ÀÀÀÀÀK3 D/CÝ ÀÀÀÀÀÀM15 M2 L1
A17 ÀÀÀÀÀQ3 D15ÀÀÀÀÀÀF3 DP0 ÀÀÀÀÀÀÀÀÀN3 M16 L17
A18 ÀÀÀÀÀR5 D16ÀÀÀÀÀÀJ3 DP1 ÀÀÀÀÀÀÀÀÀF1 P16 M1
A19 ÀÀÀÀÀQ4 D17 ÀÀÀÀÀD3 DP2 ÀÀÀÀÀÀÀÀÀH3 R3 M17
A20 ÀÀÀÀÀQ8 D18 ÀÀÀÀÀC2 DP3 ÀÀÀÀÀÀÀÀÀA5 R6 P17
A21 ÀÀÀÀÀQ5 D19 ÀÀÀÀÀB1 EADSÝ ÀÀÀÀÀB17 R8 Q2
A22 ÀÀÀÀÀQ7 D20 ÀÀÀÀÀA1 FERRÝÀÀÀÀÀC14 R9 R4
A23ÀÀÀÀÀÀS3 D21 ÀÀÀÀÀB2 FLUSHÝÀÀÀÀC15 R10 S6
A24 ÀÀÀÀÀQ6 D22 ÀÀÀÀÀA2 HLDAÀÀÀÀÀÀÀP15 R11 S8
A25 ÀÀÀÀÀR2 D23 ÀÀÀÀÀA4 HOLD ÀÀÀÀÀÀE15 R14 S9
A26ÀÀÀÀÀÀS2 D24 ÀÀÀÀÀA6 IGNNEÝ ÀÀÀÀA15 S10VCC5

(1)
A27ÀÀÀÀÀÀS1 D25 ÀÀÀÀÀB6 INTR ÀÀÀÀÀÀÀA16 S11
A28 ÀÀÀÀÀR1 D26 ÀÀÀÀÀC7 KENÝ ÀÀÀÀÀÀF15 J1 S12
A29ÀÀÀÀÀÀP2 D27 ÀÀÀÀÀC6 LOCKÝÀÀÀÀÀN15 S14
A30ÀÀÀÀÀÀP3 D28 ÀÀÀÀÀC8 M/IOÝ ÀÀÀÀÀN16
A31 ÀÀÀÀÀQ1 D29 ÀÀÀÀÀA8 NMI ÀÀÀÀÀÀÀÀB15

D30 ÀÀÀÀÀC9 PCD ÀÀÀÀÀÀÀÀJ17
D31 ÀÀÀÀÀB8 PCHKÝÀÀÀÀÀQ17

PWTÀÀÀÀÀÀÀÀL15
PLOCK ÀÀÀÀÀQ16
RDYÝ ÀÀÀÀÀÀF16
RESET ÀÀÀÀÀC16
SMIÝÀÀÀÀÀÀÀB10
SMIACTÝÀÀÀC12
W/RÝÀÀÀÀÀÀN17
STPCLKÝ ÀÀG15
SRESET ÀÀÀÀC10
TCK ÀÀÀÀÀÀÀÀÀA3
TDIÀÀÀÀÀÀÀÀÀA14
TDOÀÀÀÀÀÀÀÀB16
TMSÀÀÀÀÀÀÀÀB14
VOLDET(3) ÀÀÀS4
CLKMUL(3)ÀÀR17
CACHEÝ ÀÀÀB12
HITMÝ ÀÀÀÀÀA12
INVÀÀÀÀÀÀÀÀÀA10
WB/WTÝ ÀÀÀB13

NOTES:
1. VCC5 is for the IntelDX4 processor only.
2. NC. Do Not Connect. These pins should always remain unconnected. Connection of NC pins to VCC or VSS or to any

other signal can result in component malfunction or incompatibility with future steppings of the Military Intel486 proces-
sors.

3. Present only on the IntelDX4 processor.
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271329–3

NOTE:
SL Enhanced features not available on MQ80486DX. Pins 22, 30, 34, and 36 are ‘‘No Connects’’ on MQ80486DX.

Figure 3-3. 196-Pin Ceramic Quad Flatpack (CQFP) Pin ConfigurationÐView from Lid Side
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Military Intel486TM DX and Intel DX2TM CQFP Pin Cross Reference

Pin Signal Pin Signal Pin Signal Pin Signal Pin Signal Pin Signal

1 D21 35 VSS 69 HLDA 103 A3 137 VSS 171 D7

2 D22 36 SRESET 70 VCC 104 A4 138 A18 172 VCC

3 D23 37 VCC 71 CLK 105 VSS 139 VCC 173 DP1

4 DP3 38 N/C 72 VSS 106 A5 140 A19 174 VSS

5 D24 39 VSS 73 VSS 107 VCC 141 VSS 175 D8

6 D25 40 N/C 74 VCC 108 N/C 142 A20 176 VCC

7 VSS 41 VCC 75 VCC 109 VSS 143 A21 177 D9

8 D26 42 N/C 76 VSS 110 A6 144 A22 178 VSS

9 VCC 43 VSS 77 N/C 111 VCC 145 A23 179 D10

10 D27 44 N/C 78 VCC 112 A7 146 A24 180 VCC

11 VSS 45 N/C 79 TCK 113 VSS 147 A25 181 D11

12 D28 46 NMI 80 VSS 114 A8 148 A26 182 VSS

13 VCC 47 INTR 81 AHOLD 115 VCC 149 A27 183 D12

14 D29 48 FLUSH 82 VCC 116 A9 150 A28 184 VCC

15 VSS 49 RESET 83 HOLD 117 VSS 151 A29 185 D13

16 D30 50 A20M 84 VSS 118 A10 152 A30 186 VSS

17 VCC 51 EADS 85 KEN 119 VCC 153 A31 187 D14

18 D31 52 PCD 86 VCC 120 A11 154 VSS 188 VCC

19 VSS 53 PWT 87 RDY 121 VSS 155 DP0 189 D15

20 IGNNE 54 D/C 88 VSS 122 A12 156 VCC 190 VSS

21 VCC 55 M/IO 89 N/C 123 VCC 157 D0 191 DP2

22 STPCLK 56 VSS 90 VCC 124 A13 158 VSS 192 D16

23 VSS 57 BE3 91 BS8 125 VSS 159 D1 193 D17

24 TDO 58 VCC 92 VSS 126 A14 160 VCC 194 D18

25 VCC 59 BE2 93 BS16 127 VCC 161 D2 195 D19

26 FERR 60 VSS 94 BOFF 128 A15 162 VSS 196 D20

27 VSS 61 BE1 95 BRDY 129 VSS 163 D3

28 N/C 62 VCC 96 PCHK 130 A16 164 VCC

29 VCC 63 BE0 97 N/C 131 VCC 165 D4

30 SMI 64 VSS 98 LOCK 132 A17 166 VSS

31 VSS 65 BREQ 99 PLOCK 133 VSS 167 D5

32 N/C 66 VCC 100 BLAST 134 TDI 168 VCC

33 VCC 67 W/R 101 ADS 135 VCC 169 D6

34 SMIACT 68 VSS 102 A2 136 TMS 170 VSS

NOTES:
No Connect (N/C) pins must not be connected.
SL Enhanced features not available on MQ80486DX. Pins 22, 30, 34, and 36 are ‘‘No Connects’’ on MQ80486DX.
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271329–4

Figure 3-4. 196-Pin Ceramic Quad Flatpack (CQFP) Pin ConfigurationÐView from Lid Side
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Military IntelDX4TM CQFP Pin Cross Reference

Pin Signal Pin Signal Pin Signal Pin Signal Pin Signal Pin Signal

1 D21 35 VSS 69 HLDA 103 A3 137 VSS 171 D7

2 D22 36 SRESET 70 VCC 104 A4 138 A18 172 VCC

3 D23 37 VCC 71 CLK 105 VSS 139 VCC 173 DP1

4 DP3 38 WB/WTÝ 72 VSS 106 A5 140 A19 174 VSS

5 D24 39 VSS 73 VSS 107 VCC 141 VSS 175 D8

6 D25 40 HITMÝ 74 VCC 108 N/C 142 A20 176 VCC

7 VSS 41 VCC 75 VCC 109 VSS 143 A21 177 D9

8 D26 42 N/C 76 VSS 110 A6 144 A22 178 VSS

9 VCC 43 VSS 77 N/C 111 VCC 145 A23 179 D10

10 D27 44 N/C 78 VCC 112 A7 146 A24 180 VCC

11 VSS 45 N/C 79 TCK 113 VSS 147 A25 181 D11

12 D28 46 NMI 80 VSS 114 A8 148 A26 182 VSS

13 VCC 47 INTR 81 AHOLD 115 VCC 149 A27 183 D12

14 D29 48 FLUSH 82 VCC 116 A9 150 A28 184 VCC

15 VSS 49 RESET 83 HOLD 117 VSS 151 A29 185 D13

16 D30 50 A20M 84 VSS 118 A10 152 A30 186 VSS

17 VCC 51 EADS 85 KEN 119 VCC 153 A31 187 D14

18 D31 52 PCD 86 VCC 120 A11 154 VSS 188 VCC

19 VSS 53 PWT 87 RDY 121 VSS 155 DP0 189 D15

20 IGNNE 54 D/C 88 VSS 122 A12 156 VCC 190 VSS

21 VCC 55 M/IO 89 CLKMUL 123 VCC 157 D0 191 DP2

22 STPCLK 56 VSS 90 VCC 124 A13 158 VSS 192 D16

23 VSS 57 BE3 91 BS8 125 VSS 159 D1 193 D17

24 TDO 58 VCC 92 VSS 126 A14 160 VCC 194 D18

25 VCC 59 BE2 93 BS16 127 VCC 161 D2 195 D19

26 FERR 60 VSS 94 BOFF 128 A15 162 VSS 196 D20

27 VSS 61 BE1 95 BRDY 129 VSS 163 D3

28 INV 62 VCC 96 PCHK 130 A16 164 VCC

29 VCC 63 BE0 97 VCC5 131 VCC 165 D4

30 SMI 64 VSS 98 LOCK 132 A17 166 VSS

31 VSS 65 BREQ 99 PLOCK 133 VSS 167 D5

32 CACHEÝ 66 VCC 100 BLAST 134 TDI 168 VCC

33 VCC 67 W/R 101 ADS 135 VCC 169 D6

34 SMIACT 68 VSS 102 A2 136 TMS 170 VSS

NOTE:
No Connect (N/C) pins must not be connected.
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3.2 Quick Pin Reference

The following is a brief pin description. For detailed signal descriptions refer to section 9.2, ‘‘Signal Descrip-
tion.’’

Table 3-3. Military Intel486TM Processor Pin Descriptions

Symbol Type Name and Function

CLK I CLocK provides the fundamental timing and the internal operating frequency for the
Military Intel486 processor. All external timing parameters are specified with respect
to the rising edge of CLK.

ADDRESS BUS

A31–A4 I/O The Address Lines. A31–A2, together with the byte enables signals.
BE0Ý–BE3Ý, define the physical area of memory or input/output space accessed.A2–A3 O
Address lines A31–A4 are used to drive addresses into the processor to perform
cache line invalidations. Input signals must meet setup and hold times t22 and t23.
A31–A2 are not driven during bus or address hold.

BE0–3Ý O The Byte Enable signals indicate active bytes during read and write cycles. During
the first cycle of a cache fill, the external system should assume that all byte enables
are active. BE3Ý applies to D24–D31, BE2Ý applies to D16–D23, BE1Ý applies to
D8–D15 and BE0Ý applies to D0–D7. BE0Ý–BE3Ý are active LOW and are not
driven during bus hold.

DATA BUS

D31–D0 I/O The Data Lines, D0–D7, define the least significant byte of the data bus while lines
D24–D31 define the most significant byte of the data bus. These signals must meet
setup and hold times t22 and t23 for proper operation on reads. These pins are
driven during the second and subsequent clocks of write cycles.

DATA PARITY

DP0–DP3 I/O There is one Data Parity pin for each byte of the data bus. Data parity is generated
on all write data cycles with the same timing as the data driven by the Military
Intel486 processor. Even parity information must be driven back into the processor
on the data parity pins with the same timing as read information to insure that the
correct parity check status is indicated by the Military Intel486 processor. The
signals read on these pins do not affect program execution.

Input signals must meet setup and hold times t22 and t23. DP0–DP3 should be
connected to VCC through a pull-up resistor in systems that do not use parity.
DP0–DP3 are active HIGH and are driven during the second and subsequent clocks
of write cycles.

PCHKÝ O Parity Status is driven on the PCHKÝ pin the clock after ready for read operations.
The parity status is for data sampled at the end of the previous clock. A parity error
is indicated by PCHKÝ being LOW. Parity status is only checked for enabled bytes
as indicated by the byte enable and bus size signals. PCHKÝ is valid only in the
clock immediately after read data is returned to the processor. At all other times
PCHKÝ is inactive (HIGH). PCHKÝ is never floated.
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Table 3-3. Military Intel486TM Processor Pin Descriptions (Continued)

Symbol Type Name and Function

BUS CYCLE DEFINITION

M/IOÝ O The memory/input-output, data/control and write/read lines are the primary bus
definition signals. These signals are driven valid as the ADSÝ signal is asserted.D/CÝ O

W/RÝ O
M/IOÝ D/CÝ W/RÝ Bus Cycle Initiated

0 0 0 Interrupt Acknowledge

0 0 1 Halt/Special Cycle

0 1 0 I/O Read

0 1 1 I/O Write

1 0 0 Code Read

1 0 1 Reserved

1 1 0 Memory Read

1 1 1 Memory Write

The bus definition signals are not driven during bus hold and follow the timing of the
address bus. Refer to section 10.2.11, ‘‘Special Bus Cycles,’’ for a description of the
special bus cycles.

LOCKÝ O The Bus Lock pin indicates that the current bus cycle is locked. The Military
Intel486 processor will not allow a bus hold when LOCKÝ is asserted (but address
holds are allowed). LOCKÝ goes active in the first clock of the first locked bus cycle
and goes inactive after the last clock of the last locked bus cycle. The last locked
cycle ends when ready is returned. LOCKÝ is active LOW and is not driven during
bus hold. Locked read cycles will not be transformed into cache fill cycles if KENÝ is
returned active.

PLOCKÝ O The Pseudo-Lock pin indicates that the current bus transaction requires more than
one bus cycle to complete. For the Military Intel486 processor, examples of such
operations are segment table descriptor reads (64 bits), in addition to cache line fills
(128 bits).

The Military Intel486 processor will drive PLOCKÝ active until the addresses for the
last bus cycle of the transaction have been driven regardless of whether RDYÝ or
BRDYÝ have been returned. Normally PLOCKÝ and BLASTÝ are inverse of each
other. However during the first bus cycle of a 64-bit floating point write (for Military
Intel486 processors with on-chip FPU), both PLOCKÝ and BLASTÝ will be
asserted.

PLOCKÝ is a function of the BS8Ý, BS16Ý and KENÝ inputs. PLOCKÝ should be
sampled only in the clock RDYÝ is returned. PLOCKÝ is active LOW and is not
driven during bus hold.
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Table 3-3. Military Intel486TM Processor Pin Descriptions (Continued)

Symbol Type Name and Function

BUS CONTROL

ADSÝ O The Address Status output indicates that a valid bus cycle definition and address
are available on the cycle definition lines and address bus. ADSÝ is driven active in
the same clock as the addresses are driven. ADSÝ is active LOW and is not driven
during bus hold.

RDYÝ I The Non-burst Ready input indicates that the current bus cycle is complete. RDYÝ
indicates that the external system has presented valid data on the data pins in
response to a read or that the external system has accepted data from the Military
Intel486 processor in response to a write. RDYÝ is ignored when the bus is idle and
at the end of the first clock of the bus cycle.

RDYÝ is active during address hold. Data can be returned to the processor while
AHOLD is active.

RDYÝ is active LOW, and is not provided with an internal pull-up resistor. RDYÝ
must satisfy setup and hold times t16 and t17 for proper chip operation.

BURST CONTROL

BRDYÝ I The Burst Ready input performs the same function during a burst cycle that RDYÝ
performs during a non-burst cycle. BRDYÝ indicates that the external system has
presented valid data in response to a read or that the external system has accepted
data in response to a write. BRDYÝ is ignored when the bus is idle and at the end of
the first clock in a bus cycle.

BRDYÝ is sampled in the second and subsequent clocks of a burst cycle. The data
presented on the data bus will be strobed into the processor when BRDYÝ is
sampled active. If RDYÝ is returned simultaneously with BRDYÝ, BRDYÝ is
ignored and the burst cycle is prematurely aborted.

BRDYÝ is active LOW and is provided with a small pull-up resistor. BRDYÝ must
satisfy the setup and hold times t16 and t17.

BLASTÝ O The Burst Last signal indicates that the next time BRDYÝ is returned the burst bus
cycle is complete. BLASTÝ is active for both burst and non-burst bus cycles.
BLASTÝ is active LOW and is not driven during bus hold.

INTERRUPTS

RESET I The Reset input forces the Military Intel486 processor to begin execution at a known
state. The processor cannot begin execution of instructions until at least 1 ms after
VCC and CLK have reached their proper DC and AC specifications. The RESET pin
should remain active during this time to insure proper processor operation. RESET is
active HIGH. RESET is asynchronous but must meet setup and hold times t20 and
t21 for recognition in any specific clock.
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Table 3-3. Military Intel486TM Processor Pin Descriptions (Continued)

Symbol Type Name and Function

INTERRUPTS (Continued)

INTR I The Maskable Interrupt indicates that an external interrupt has been generated. If
the internal interrupt flag is set in EFLAGS, active interrupt processing will be
initiated. The Military Intel486 processor will generate two locked interrupt
acknowledge bus cycles in response to the INTR pin going active. INTR must
remain active until the interrupt acknowledges have been performed to assure that
the interrupt is recognized.

INTR is active HIGH and is not provided with an internal pull-down resistor. INTR is
asynchronous, but must meet setup and hold times t20 and t21 for recognition in any
specific clock.

NMI I The Non-Maskable Interrupt request signal indicates that an external non-
maskable interrupt has been generated. NMI is rising edge sensitive. NMI must be
held LOW for at least four CLK periods before this rising edge. NMI is not provided
with an internal pull-down resistor. NMI is asynchronous, but must meet setup and
hold times t20 and t21 for recognition in any specific clock.

SRESET I The Soft Reset pin duplicates all the functionality of the RESET pin with the
following exception:

1. The SMBASE register will retain its previous value.

For soft resets, SRESET should remain active for at least 15 CLK periods. SRESET
is active HIGH. SRESET is asynchronous but must meet setup and hold times t20
and t21 for recognition in any specific clock.

SMIÝ I The System Management Interrupt input is used to invoke the System
Management Mode (SMM). SMIÝ is a falling edge triggered signal which forces the
processor into SMM at the completion of the current instruction. SMIÝ is recognized
on an instruction boundary and at each iteration for repeat string instructions. SMIÝ
does not break LOCKed bus cycles and cannot interrupt a currently executing SMM.
The processor will latch the falling edge of one pending SMIÝ signal while the
processor is executing an existing SMIÝ. The nested SMIÝ will not be recognized
until after the execution of a Resume (RSM) instruction.

SMIACTÝ O The System Management Interrupt ACTive is an active low output, indicating that
the processor is operating in SMM. It is asserted when the processor begins to
execute the SMIÝ state save sequence and will remain active LOW until the
processor executes the last state restore cycle out of SMRAM.

STPCLKÝ I The SToP CLocK request input signal indicates a request has been made to turn
off the CLK input. When the processor recognizes a STPCLKÝ, the processor will
stop execution on the next instruction boundary, unless superseded by a higher
priority interrupt, empty all internal pipelines and the write buffers and generate a
Stop Grant acknowledge bus cycle. STPCLKÝ is active LOW and is provided with
an internal pull-up resistor. STPCLKÝ is an asynchronous signal, but must
remain active until the processor issues the Stop Grant bus cycle. STPCLKÝ
may be de-asserted at any time after the processor has issued the Stop Grant
bus cycle.
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Table 3-3. Military Intel486TM Processor Pin Descriptions (Continued)

Symbol Type Name and Function

BUS ARBITRATION

BREQ O The Bus Request signal indicates that the Military Intel486 processor has internally
generated a bus request. BREQ is generated whether or not the Military Intel486
processor is driving the bus. BREQ is active HIGH and is never floated.

HOLD I The Bus Hold request allows another bus master complete control of the processor
bus. In response to HOLD going active the Military Intel486 processor will float most
of its output and input/output pins. HLDA will be asserted after completing the
current bus cycle, burst cycle or sequence of locked cycles. The Military Intel486
processor will remain in this state until HOLD is de-asserted. HOLD is active high
and is not provided with an internal pull-down resistor. HOLD must satisfy setup and
hold times t18 and t19 for proper operation.

HLDA O Hold Acknowledge goes active in response to a hold request presented on the
HOLD pin. HLDA indicates that the Military Intel486 processor has given the bus to
another local bus master. HLDA is driven active in the same clock that the Military
Intel486 processor floats its bus. HLDA is driven inactive when leaving bus hold.
HLDA is active HIGH and remains driven during bus hold.

BOFFÝ I The Backoff input forces the Military Intel486 processor to float its bus in the next
clock. The processor will float all pins normally floated during bus hold but HLDA will
not be asserted in response to BOFFÝ. BOFFÝ has higher priority than RDYÝ or
BRDYÝ; if both are returned in the same clock, BOFFÝ takes effect. The processor
remains in bus hold until BOFFÝ is negated. If a bus cycle was in progress when
BOFFÝ was asserted the cycle will be restarted. BOFFÝ is active LOW and must
meet setup and hold times t18 and t19 for proper operation.

CACHE INVALIDATION

AHOLD I The Address Hold request allows another bus master access to the processor’s
address bus for a cache invalidation cycle. The Military Intel486 processor will stop
driving its address bus in the clock following AHOLD going active. Only the address
bus will be floated during address hold, the remainder of the bus will remain active.
AHOLD is active HIGH and is provided with a small internal pull-down resistor. For
proper operation AHOLD must meet setup and hold times t18 and t19.

EADSÝ I This signal indicates that avalid External Address has been driven onto the Military
Intel486 processor address pins. This address will be used to perform an internal
cache invalidation cycle. EADSÝ is active LOW and is provided with an internal pull-
up resistor. EADSÝ must satisfy setup and hold times t12 and t13 for proper
operation.

CACHE CONTROL

KENÝ I The Cache Enable pin is used to determine whether the current cycle is cacheable.
When the Military Intel486 processor generates a cycle that can be cached and
KENÝ is active one clock before RDYÝ or BRDYÝ during the first transfer of the
cycle, the cycle will become a cache line fill cycle. Returning KENÝ active one clock
before RDYÝ during the last read in the cache line fill will cause the line to be
placed in the on-chip cache. KENÝ is active LOW and is provided with a small
internal pull-up resistor. KENÝ must satisfy setup and hold times t14 and t15 for
proper operation.

FLUSHÝ I The Cache Flush input forces the Military Intel486 processor to flush its entire
internal cache. FLUSHÝ is active low and need only be asserted for one clock.
FLUSHÝ is asynchronous but setup and hold times t20 and t21 must be met for
recognition in any specific clock.
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Table 3-3. Military Intel486TM Processor Pin Descriptions (Continued)

Symbol Type Name and Function

PAGE CACHEABILITY

PWT O The Page Write-Through and Page Cache Disable pins reflect the state of the
page attribute bits, PWT and PCD, in the page table entry, page directory entry orPCD O
control register 3 (CR3) when paging is enabled. If paging is disabled, the processor
ignores the PCD and PWT bits and assumes they are zero for the purpose of
caching and driving PCD and PWT pins. PWT and PCD have the same timing as the
cycle definition pins (M/IOÝ, D/CÝ, and W/RÝ). PWT and PCD are active HIGH
and are not driven during bus hold. PCD is masked by the cache disable bit (CD) in
Control Register 0.

BUS SIZE CONTROL

BS16Ý I The Bus Size 16 and Bus Size 8 pins (bus sizing pins) cause the Military Intel486
processor to run multiple bus cycles to complete a request from devices that cannotBS8Ý I
provide or accept 32 bits of data in a single cycle. The bus sizing pins are sampled
every clock. The state of these pins in the clock before ready is used by the Military
Intel486 processor to determine the bus size. These signals are active LOW and are
provided with internal pull-up resistors. These inputs must satisfy setup and hold
times t14 and t15 for proper operation.

ADDRESS MASK

A20MÝ I When the Address Bit 20 Mask pin is asserted, the Military Intel486 processor
masks physical address bit 20 (A20) before performing a lookup to the internal
cache or driving a memory cycle on the bus. A20MÝ emulates the address
wraparound at one Mbyte, which occurs on the 8086 processor. A20MÝ is active
LOW and should be asserted only when the processor is in real mode. This pin is
asynchronous but should meet setup and hold times t20 and t21 for recognition in
any specific clock. For proper operation, A20MÝ should be sampled high at the
falling edge of RESET.

TEST ACCESS PORT

TCK I Test ClocK is an input to the Military Intel486 processor and provides the clocking
function required by the JTAG Boundary scan feature. TCK is used to clock state
information and data into component on the rising edge of TCK on TMS and TDI,
respectively. Data is clocked out of the part on the falling edge of TCK and TDO.
TCK is provided with an internal pull-up resistor.

TDI I Test Data Input is the serial input used to shift JTAG instructions and data into
component. TDI is sampled on the rising edge of TCK, during the SHIFT-IR and
SHIFT-DR TAP controller states. During all other tap controller states, TDI is a
‘‘don’t care.’’ TDI is provided with an internal pull-up resistor.

TDO O Test Data Output is the serial output used to shift JTAG instructions and data out of
the component. TDO is driven on the falling edge of TCK during the SHIFT-IR and
SHIFT-DR TAP controller states. At all other times TDO is driven to the high
impedance state.

TMS I Test Mode Select is decoded by the JTAG TAP (Tap Access Port) to select the
operation of the test logic. TMS is sampled on the rising edge of TCK. To guarantee
deterministic behavior of the TAP controller TMS is provided with an internal pull-up
resistor.
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Table 3-3. Military Intel486TM Processor Pin Descriptions (Continued)

Symbol Type Name and Function

NUMERIC ERROR REPORTING FOR MILITARY INTEL486 DX,

INTELDX2TM, AND INTELDX4TM PROCESSORS

FERRÝ O The Floating point ERRor pin is driven active when a floating point error occurs.
FERRÝ is similar to the ERRORÝ pin on the Intel387TM Math CoProcessor.
FERRÝ is included for compatibility with systems using DOS type floating point error
reporting. FERRÝ will not go active if FP errors are masked in FPU register. FERRÝ
is active LOW, and is not floated during bus hold.

IGNNEÝ I When the IGNore Numeric Error pin is asserted the processor will ignore a numeric
error and continue executing non-control floating point instructions, but FERRÝ will
still be activated by the processor. When IGNNEÝ is de-asserted the processor will
freeze on a non-control floating point instruction, if a previous floating point
instruction caused an error. IGNNEÝ has no effect when the NE bit in control
register 0 is set. IGNNEÝ is active LOW and is provided with a small internal pull-up
resistor. IGNNEÝ is asynchronous but setup and hold times t20 and t21 must be met
to insure recognition on any specific clock.

INTELDX4 PROCESSOR CLKMUL, VCC5, AND VOLDET

CLKMUL I The CLocK MULtiplier input, defined during device RESET, defines the ratio of
internal core frequency to external bus frequency. If sampled low, the core
frequency operates at twice the external bus frequency (speed doubled mode). If
driven high or left floating, speed triple mode is selected. CLKMUL has an internal
pull-up speed to VCC and may be left floating in designs that select speed tripled
clock mode.

VCC5 I The 5V reference voltage input is the reference voltage for the 5V-tolerant I/O
buffers. This signal should be connected to a5V g5% for use with 5V logic. If all
inputs are from 3V logic, this pin should be connected to 3.3V.

VOLDET O A VOLtage DETect signal allows external system logic to distinguish between a 5V
Military Intel486 processor and the 3.3V IntelDX4 processor. This signal is active low
for a 3.3V IntelDX4 processor.
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Table 3-4. Output Pins

Name Active Level When Floated

BREQ HIGH

HLDA HIGH

BE3Ý–BE0Ý LOW Bus Hold

PWT, PCD HIGH/LOW Bus Hold

W/RÝ, HIGH/LOW Bus Hold

M/IOÝ, D/CÝ

LOCKÝ LOW Bus Hold

PLOCKÝ LOW Bus Hold

ADSÝ LOW Bus Hold

BLASTÝ LOW Bus Hold

PCHKÝ LOW

FERRÝ LOW

A3–A2 N/A Bus, Address Hold

SMIACTÝ LOW

VOLDET(1) LOW

NOTE:
1. Present on the IntelDX4 processor only.

Table 3-5. Input/Output Pins

Name Active Level When Floated

D31–D0 HIGH/LOW Bus Hold

DP3–DP0 HIGH Bus Hold

A31–A4 HIGH/LOW Bus, Address Hold

Table 3-6. Test Pins

Name
Input or

Sampled/Driven On
Output

TCK Input N/A

TDI Input Rising Edge of TCK

TDO Output Falling Edge of TCK

TMS Input Rising Edge of TCK

Table 3-7. Input Pins

Name
Active

Level Asynchronous

Synchronous/
Internal

Pull-Up/

Pull-Down

CLK

RESET HIGH Asynchronous

SRESET HIGH Asynchronous Pull-Down

HOLD HIGH Synchronous

AHOLD HIGH Synchronous Pull-Down

EADSÝ LOW Synchronous Pull-Up

BOFFÝ LOW Synchronous Pull-Up

FLUSHÝ LOW Asynchronous Pull-Up

A20MÝ LOW Asynchronous Pull-Up

BS16Ý, LOW Synchronous Pull-Up

BS8Ý

KENÝ LOW Synchronous Pull-Up

RDYÝ LOW Synchronous

BRDYÝ LOW Synchronous Pull-Up

INTR HIGH Asynchronous

NMI HIGH Asynchronous

IGNNEÝ LOW Asynchronous Pull-Up

SMIÝ LOW Asynchronous Pull-Up

STPCLKÝ LOW Asynchronous Pull-Up

TCK HIGH Pull-Up

TDI HIGH Pull-Up

TMS HIGH Pull-Up

CLKMULÝ (1) N/A Pull-Up

NOTE:
1. Present on the IntelDX4 processor only.
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4.0 ARCHITECTURAL OVERVIEW

4.1 Introduction

The Military Intel486 processor family is a 32-bit ar-
chitecture with on-chip memory management, float-
ing point, and cache memory units. Figure 4-1 is a
block diagram of the Military Intel486 processor fam-
ily. The Military Intel486 processor contains all the
features of the Intel386TM processor with enhance-
ments to increase performance.

The Military Intel486 processor instruction set in-
cludes the complete Intel386 processor instruction
set along with extensions to serve new applications
and increase performance. The on-chip memory
management unit (MMU) is completely compatible
with the Intel386 processor MMU. Software written
for previous members of the Intel architecture family
will run on the Military Intel486 processor without
any modifications.

On-chip cache memory allows frequently used data
and code to be stored on-chip reducing accesses to
the external bus. RISC design techniques reduce in-
struction cycle times. A burst bus feature enables
fast cache fills.

The memory management unit (MMU) consists of a
segmentation unit and a paging unit. Segmentation
allows management of the logical address space by
providing easy data and code relocatibility and effi-
cient sharing of global resources. The paging mech-
anism operates beneath segmentation and is trans-
parent to the segmentation process. Paging is op-
tional and can be disabled by system software. Each
segment can be divided into one or more 4-Kbyte
segments. To implement a virtual memory system,
full restartability for all page and segment faults is
supported.

Memory is organized into one or more variable
length segments, each up to four Gbytes (232 bytes)
in size. A segment can have attributes associated
with it which include its location, size, type (i.e.,
stack, code or data), and protection characteristics.
Each task on a Military Intel486 processor can have
a maximum of 16,381 segments and each are up to
four Gbytes in size. Thus, each task has a maximum
of 64 terabytes (trillion bytes) of virtual memory.

The segmentation unit provides four levels of pro-
tection for isolating and protecting applications and
the operating system from each other. The hardware
enforced protection allows the design of systems
with a high degree of software integrity.

The Military Intel486 processor has two modes of
operation: Real Address Mode (Real Mode) and Pro-
tected Mode Virtual Address Mode (Protected
Mode). In Real Mode the Military Intel486 processor
operates as a very fast 8086. Real Mode is required
primarily to set up the Military Intel486 processor for
Protected Mode operation. Protected Mode provides
access to the sophisticated memory management
paging and privilege capabilities of the processor.

Within Protected Mode, software can perform a task
switch to enter into tasks designated as Virtual 8086
Mode tasks. Each Virtual 8086 task behaves with
8086 semantics, allowing 8086 processor software
(an application program or an entire operating sys-
tem) to execute.

System Management Mode (SMM) provides the sys-
tem designer with a means of adding new software
controlled features to their computer products that
always operate transparently to the Operating Sys-
tem (OS) and software applications. SMM is intend-
ed for use only by system firmware, not by applica-
tions software or general purpose systems software.

The on-chip cache is 16 Kbytes in size for the
IntelDX4 processor and 8 Kbytes in size for all other
members of the Military Intel486 processor family. It
is 4-way set associative and follows a write-through
policy. The on-chip cache includes features to pro-
vide flexibility in external memory system design. In-
dividual pages can be designated as cacheable or
non-cacheable by software or hardware. The cache
can also be enabled and disabled by software or
hardware.

The Military Intel486 processor also has features
that facilitate high-performance hardware designs.
The 1X bus clock input eases high-frequency board-
level designs. The clock multiplier on IntelDX2 and
IntelDX4 processors improves execution perform-
ance without increasing board design complexity.
The clock multiplier enhances all operations operat-
ing out of the cache and/or not blocked by external
bus accesses. The burst bus feature enables fast
cache fills.
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271329–5

Figure 4-1. Military Intel486TM Processor Block Diagram

4.1.1 MILITARY INTEL486 DX, INTELDX2TM,
AND INTELDX4TM PROCESSOR ON-CHIP
FLOATING POINT UNIT

The Military Intel486 DX, IntelDX2, and IntelDX4
processors incorporate the basic Military Intel486
processor 32-bit architecture with on-chip memory
management and cache memory units. They also
have an on-chip floating point unit (FPU) that oper-
ates in parallel with the arithmetic and logic unit. The
FPU provides arithmetic instructions for a variety of
numeric data types and executes numerous built-in
transcendental functions (e.g., tangent, sine, cosine,
and log functions). The floating point unit fully con-
forms to the ANSI/IEEE standard 754-1985 for float-
ing point arithmetic.

All software written for the Intel386 processor,
Intel387 math coprocessor and previous members
of the 86/87 architectural family will run on these
processors without any modifications.

4.2 Register Set

The Military Intel486 processor register set can be
split into the following categories:

# Base Architecture Registers

Ð General Purpose Registers

Ð Instruction Pointer

Ð Flags Register

Ð Segment Registers
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# Systems Level Registers

Ð Control Registers

Ð System Address Registers

# Debug and Test Registers

The base architecture and floating point registers
(see below) are accessible by the applications pro-
gram. The system level registers can only be ac-
cessed at privilege level 0 and used by system level
programs. The debug and test registers also can
only be accessed at privilege level 0.

4.2.1 FLOATING POINT REGISTERS

In addition to the registers listed above, the Military
Intel486 DX, IntelDX2, and IntelDX4 processors also
have the following:

# Floating Point Registers

Ð Data Registers

Ð Tag Word

Ð Status Word

Ð Instruction and Data Pointers

Ð Control Word

4.2.2 BASE ARCHITECTURE REGISTERS

Figure 4-2 shows the Military Intel486 processor
base architecture registers. The contents of these
registers are task-specific and are automatically
loaded with a new context upon a task switch opera-
tion.

The base architecture includes six directly accessi-
ble descriptors, each specifying a segment up to
4 Gbytes in size. The descriptors are indicated by
the selector values placed in the Military Intel486
processor segment registers. Various selector val-
ues can be loaded as a program executes.

The selectors are also task-specific, so the segment
registers are automatically loaded with new context
upon a task switch operation.

NOTE:
In register descriptions, ‘‘set’’ means ‘‘set to
1,’’ and ‘‘reset’’ means ‘‘reset to 0.’’

271329–6

Figure 4-2. Base Architecture Registers

4.2.2.1 General Purpose Registers

The eight 32-bit general purpose registers are
shown in Figure 4-2. These registers hold data or
address quantities. The general purpose registers
can support data operands of 1, 8, 16 and 32 bits,
and bit fields of 1 to 32 bits. Address operands of 16
and 32 bits are supported. The 32-bit registers are
named EAX, EBX, ECX, EDX, ESI, EDI, EBP and
ESP.

The least significant 16 bits of the general purpose
registers can be accessed separately by using the
16-bit names of the registers AX, BX, CX, DX, SI, DI,
BP and SP. The upper 16 bits of the register are not
changed when the lower 16 bits are accessed sepa-
rately.
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Finally, 8-bit operations can individually access the
lower byte (bits 0–7) and the highest byte (bits 8–
15) of the general purpose registers AX, BX, CX and
DX. The lowest bytes are named AL, BL, CL and DL
respectively. The higher bytes are named AH, BH,
CH and DH respectively. The individual byte acces-
sibility offers additional flexibility for data operations,
but is not used for effective address calculation.

4.2.2.2 Instruction Pointer

The instruction pointer shown in Figure 4-2 is a
32-bit register named EIP. EIP holds the offset of the
next instruction to be executed. The offset is always
relative to the base of the code segment (CS). The
lower 16 bits (bits 0–15) of the EIP contain the 16-bit
instruction pointer named IP, which is used for 16-bit
addressing.

4.2.2.3 Flags Register

The flags register is a 32-bit register named
EFLAGS. The defined bits and bit fields within
EFLAGS control certain operations and indicate
status of the Military Intel486 processor. The lower
16 bits (bit 0–15) of EFLAGS contain the 16-bit reg-
ister named FLAGS, which is most useful when exe-
cuting 8086 and 80286 processor code. EFLAGS is
shown in Figure 4-3.

EFLAGS bits 1, 3, 5, 15 and 22–31 are defined as
‘‘Intel Reserved.’’ When these bits are stored during
interrupt processing or with a PUSHF instruction
(push flags onto stack), a one is stored in bit 1 and
zeros in bits 3, 5, 15 and 22–31.

271329–7

NOTE:
See section 4.2.7 ‘‘Compatibility.’’

Figure 4-3. Flag Registers
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ID (Identification Flag, bit 21)

The ability of a program to set and clear the ID
flag indicates that the processor supports the
CPUID instruction. (Refer to section 13, ‘‘In-
struction Set Summary,’’ and Appendix A,
‘‘Feature Determination: CPUID Instruction.’’)

VIP (Virtual Interrupt Pending Flag, bit 20)

The VIP flag together with the VIF enable
each applications program in a multitasking
environment to have virtualized versions of
the system’s IF flag.

VIF (Virtual Interrupt Flag, bit 19)

The VIF is a virtual image of IF (the interrupt
flag) used with VIP.

AC (Alignment Check, bit 18)

The AC bit is defined in the upper 16 bits of
the register. It enables the generation of faults
if a memory reference is to a misaligned ad-
dress. Alignment faults are enabled when AC
is set to 1. A misaligned address is a word
access an odd address, a dword access to an
address that is not on a dword boundary, or
an 8-byte reference to an address that is not
on a 64-bit word boundary. (See section
10.1.5, ‘‘Operand Alignment.’’)

Alignment faults are only generated by pro-
grams running at privilege level 3. The AC bit
setting is ignored at privilege levels 0, 1 and 2.
Note that references to the descriptor tables
(for selector loads), or the task state segment
(TSS), are implicitly level 0 references even if
the instructions causing the references are
executed at level 3. Alignment faults are re-
ported through interrupt 17, with an error code
of 0. Table 4-1 gives the alignment required
for the Military Intel486 processor data types.

Table 4-1. Data Type Alignment Requirements

Memory Access
Alignment

(Byte Boundary)

Word 2

Dword 4

Single Precision 4

Real

Double Precision 8

Real

Extended Precision 8

Real

Selector 2

48-Bit Segmented 4

Pointer

32-Bit Flat Pointer 4

32-Bit Segmented 2

Pointer

48-Bit ‘‘Pseudo- 4

Descriptor’’

FSTENV/FLDENV 4/2 (On Operand Size)

Save Area

FSAVE/FRSTOR 4/2 (On Operand Size)

Save Area

Bit String 4

IMPLEMENTATION NOTE:
Several instructions on the Military Intel486
processor generate misaligned references,
even if their memory address is aligned. For
example, on the Military Intel486 processor,
the SGDT/SIDT (store global/interrupt de-
scriptor table) instruction reads/writes two
bytes, and then reads/writes four bytes from
a ‘‘pseudo-descriptor’’ at the given address.
The Military Intel486 processor will generate
misaligned references unless the address is
on a 2 mod 4 boundary. The FSAVE and
FRSTOR instructions (floating point save
and restore state) will generate misaligned
references for one-half of the register save/
restore cycles. The Military Intel486 proces-
sor will not cause any AC faults if the effec-
tive address given in the instruction has the
proper alignment.
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VM (Virtual 8086 Mode, bit 17)

The VM bit provides Virtual 8086 Mode with-
in Protected Mode. If set while the Military
Intel486 processor is in Protected Mode, the
Military Intel486 processor will switch to Vir-
tual 8086 operation, handling segment loads
as the 8086 processor does, but generating
exception 13 faults on privileged opcodes.
The VM bit can be set only in Protected
Mode, by the IRET instruction (if current
privilege level e 0) and by task switches at
any privilege level. The VM bit is unaffected
by POPF. PUSHF always pushes a 0 in this
bit, even if executing in Virtual 8086 Mode.
The EFLAGS image pushed during interrupt
processing or saved during task switches
will contain a 1 in this bit if the interrupted
code was executing as a Virtual 8086 Task.

RF (Resume Flag, bit 16)

The RF flag is used in conjunction with the
debug register breakpoints. It is checked at
instruction boundaries before breakpoint
processing. When RF is set, it causes any
debug fault to be ignored on the next in-
struction. RF is then automatically reset at
the successful completion of every instruc-
tion (no faults are signaled) except the IRET
instruction, the POPF instruction, (and JMP,
CALL, and INT instructions causing a task
switch). These instructions set RF to the val-
ue specified by the memory image. For ex-
ample, at the end of the breakpoint service
routine, the IRET instruction can pop an
EFLAG image having the RF bit set and re-
sume the program’s execution at the break-
point address without generating another
breakpoint fault on the same location.

NT (Nested Task, bit 14)

The flag applies to Protected Mode. NT is
set to indicate that the execution of this task
is within another task. If set, it indicates that
the current nested task’s Task State Seg-
ment (TSS) has a valid back link to the previ-
ous task’s TSS. This bit is set or reset by
control transfers to other tasks. The value of
NT in EFLAGS is tested by the IRET instruc-
tion to determine whether to do an inter-task
return or an intra-task return. A POPF or an
IRET instruction will affect the setting of this
bit according to the image popped, at any
privilege level.

IOPL (Input/Output Privilege Level, bits 12–13)

This two-bit field applies to Protected Mode.
IOPL indicates the numerically maximum
CPL (current privilege level) value permitted
to execute I/O instructions without generat-
ing an exception 13 fault or consulting the
I/O Permission Bitmap. It also indicates the
maximum CPL value allowing alteration of
the IF (INTR Enable Flag) bit when new val-
ues are popped into the EFLAG register.
POPF and IRET instruction can alter the
IOPL field when executed at CPL e 0. Task
switches can always alter the IOPL field,
when the new flag image is loaded from the
incoming task’s TSS.

OF (Overflow Flag, bit 11)

is set if the operation resulted in a signed
overflow. Signed overflow occurs when the
operation resulted in carry/borrow into the
sign bit (high-order bit) of the result but did
not result in a carry/borrow out of the high-
order bit, or vice-versa. For 8-, 16-, 32-bit
operations, OF is set according to overflow
at bit 7, 15, 31, respectively.

DF (Direction Flag, bit 10)

DF defines whether ESI and/or EDI regis-
ters post decrement or post increment dur-
ing the string instructions. Post increment
occurs if DF is reset. Post decrement occurs
if DF is set.

IF (INTR Enable Flag, bit 9)

IF flag, when set, allows recognition of ex-
ternal interrupts signaled on the INTR pin.
When IF is reset, external interrupts signaled
on the INTR are not recognized. IOPL indi-
cates the maximum CPL value allowing al-
teration of the IF bit when new values are
popped into EFLAGS or FLAGS.

TF (Trap Enable Flag, bit 8)

TF controls the generation of exception 1
trap when single-stepping through code.
When TF is set, the Military Intel486 proces-
sor generates an exception 1 trap after the
next instruction is executed. When TF is re-
set, exception 1 traps occur only as a func-
tion of the breakpoint addresses loaded into
debug registers DR0–DR3.
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SF (Sign Flag, bit 7)

SF is set if the high-order bit of the result is
set, it is reset otherwise. For 8-, 16-, 32-bit
operations, SF reflects the state of bit 7, 15,
31 respectively.

ZF (Zero Flag, bit 6)

ZF is set if all bits of the result are 0. Other-
wise, it is reset.

AF (Auxiliary Carry Flag, bit 4)

The Auxiliary Flag is used to simplify the ad-
dition and subtraction of packed BCD quan-
tities. AF is set if the operation resulted in a
carry out of bit 3 (addition) or a borrow into
bit 3 (subtraction). Otherwise, AF is reset.
AF is affected by carry out of, or borrow into
bit 3 only, regardless of overall operand
length: 8, 16 or 32 bits.

PF (Parity Flags, bit 2)

PF is set if the low-order eight bits of the
operation contains an even number of ‘‘1’s’’
(even parity). PF is reset if the low-order
eight bits have odd parity. PF is a function of
only the low-order eight bits, regardless of
operand size.

CF (Carry Flag, bit 0)

CF is set if the operation resulted in a carry
out of (addition), or a borrow into (subtrac-
tion) the high-order bit. Otherwise, CF is re-
set. For 8-, 16- or 32-bit operations, CF is
set according to carry/borrow at bit 7, 15 or
31, respectively.

4.2.2.4 Segment Registers

Six 16-bit segment registers hold segment selector
values identifying the currently addressable memory
segments. In protected mode, each segment may
range in size from one byte up to the entire linear
and physical address space of the machine,
4 Gbytes (232 bytes). In real address mode, the max-
imum segment size is fixed at 64 Kbytes (216 bytes).

The six addressable segments are defined by the
segment registers CS, SS, DS, ES, FS and GS. The
selector in CS indicates the current code segment;
the selector in SS indicates the current stack seg-
ment; the selectors in DS, ES, FS and GS indicate
the current data segments.

4.2.2.5 Segment Descriptor Cache Registers

The segment descriptor cache registers are not pro-
grammer visible, yet it is very useful to understand
their content. A programmer invisible descriptor
cache register is associated with each programmer-
visible segment register, as shown by Figure 4-4.
Each descriptor cache register holds a 32-bit base
address, a 32-bit segment limit, and the other neces-
sary segment attributes.

271329–8

Figure 4-4. Military Intel486TM Processor Segment Registers

and Associated Descriptor Cache Registers
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When a selector value is loaded into a segment reg-
ister, the associated descriptor cache register is au-
tomatically updated with the correct information. In
Real Mode, only the base address is updated direct-
ly (by shifting the selector value four bits to the left),
because the segment maximum limit and attributes
are fixed in Real Mode. In Protected Mode, the base
address, the limit, and the attributes are all updated
per the contents of the segment descriptor indexed
by the selector.

Whenever a memory reference occurs, the segment
descriptor cache register associated with the seg-
ment being used is automatically involved with the
memory reference. The 32-bit segment base ad-
dress becomes a component of the linear address
calculation, the 32-bit limit is used for the limit-check
operation, and the attributes are checked against
the type of memory reference requested.

4.2.3 SYSTEM LEVEL REGISTERS

Figure 4-5 illustrates the system level registers,
which are the control operation of the on-chip
cache, the on-chip floating point unit (on the Military
Intel486 DX, IntelDX2, and IntelDX4 processors) and
the segmentation and paging mechanisms. These
registers are only accessible to programs running at
privilege level 0, the highest privilege level.

The system level registers include three control reg-
isters and four segmentation base registers. The
three control registers are CR0, CR2 and CR3. CR1
is reserved for future Intel processors. The four seg-
mentation base registers are the Global Descriptor
Table Register (GDTR), the Interrupt Descriptor Ta-
ble Register (IDTR), the Local Descriptor Table Reg-
ister (LDTR) and the Task State Segment Register
(TR).

271329–9

Figure 4-5. System Level Registers
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NOTE:
See Section 4.2.7 ‘‘Compatibility’’.

Figure 4-6. Control Register 0

4.2.3.1 Control Registers

Control Register 0 (CR0)

CR0, shown in Figure 4-6, contains 10 bits for con-
trol and status purposes. The function of the bits in
CR0 can be categorized as follows:

# Military Intel486 Processor Operating Modes: PG,
PE (Table 4-2)

# On-Chip Cache Control Modes: CD, NW
(Table 4-3)

# On-Chip Floating Point Unit: NE, TS, EM, TS (Ta-
bles 4-4 and 4-5).

# Alignment Check Control: AM

# Supervisor Write Protect: WP

Table 4-2. Military Intel486TM Processor Operating Modes

PG PE Mode

0 0 REAL Mode. Exact 8086 processor semantics, with 32-bit extensions available with prefixes.

0 1 Protected Mode. Exact 80286 processor semantics, plus 32-bit extensions through both prefixes
and ‘‘default’’ prefix setting associated with code segment descriptors. Also, a sub-mode is
defined to support a virtual 8086 processor within the context of the extended 80286 processor
protection model.

1 0 UNDEFINED. Loading CR0 with this combination of PG and PE bits will raise a GP fault with error
code 0.

1 1 Paged Protected Mode. All the facilities of Protected mode, with paging enabled underneath
segmentation.

Table 4-3. On-Chip Cache Control Modes

CD NW Operating Mode

1 1 Cache fills disabled, write-through and invalidates disabled.

1 0 Cache fills disabled, write-through and invalidates enabled.

0 1 INVALID. If CR0 is loaded with this configuration of bits, a GP fault with error code is raised.

0 0 Cache fills enabled, write-through and invalidates enabled.
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The low-order 16 bits of CR0 are also known as the
Machine Status Word (MSW), for compatibility with
the 80286 processor protected mode. LMSW and
SMSW (load and store MSW) instructions are taken
as special aliases of the load and store CR0 opera-
tions, where only the low-order 16 bits of CR0 are
involved. The LMSW and SMSW instructions in the
Military Intel486 processor work in an identical fash-
ion to the LMSW and SMSW instructions in the
80286 processor (i.e., they only operate on the low-
order 16 bits of CR0 and ignores the new bits). New
Military Intel486 processor operating systems
should use the MOV CR0, Reg instruction.

NOTE:
All Intel386 and Military Intel486 processor
CR0 bits, except for ET and NE, are upward-
ly compatible with the 80286 processor, be-
cause they are in register bits not defined in
the 80286 processor. For strict compatibility
with the 80286 processor, the load machine
status word (LMSW) instruction is defined to
not change the ET or NE bits.

The defined CR0 bits are described below.

PG (Paging Enable, bit 31)

PG bit is used to indicate whether paging is
enabled (PGe1) or disabled (PGe0). (See
Table 4-2.)

CD (Cache Disable, bit 30)

The CD bit is used to enable the on-chip
cache. When CDe1, the cache will not be
filled on cache misses. When CDe0, cache
fills may be performed on misses. (See Ta-
ble 4-3.)

The state of the CD bit, the cache enable
input pin (KENÝ), and the relevant page
cache disable (PCD) bit determine if a line
read in response to a cache miss will be
installed in the cache. A line is installed in
the cache only if CDe0 and KENÝ and
PCD are both zero. The relevant PCD bit
comes from either the page table entry,
page directory entry or control register 3.
(Refer to section 7.6, ‘‘Page Cacheability.’’)

CD is set to one after RESET.

NW (Not Write-Through, bit 29)

The NW bit enables on-chip cache write-
throughs and write-invalidate cycles
(NWe0).

When NWe0, all writes, including cache
hits, are sent out to the pins. Invalidate cy-
cles are enabled when NWe0. During an
invalidate cycle a line will be removed from
the cache if the invalidate address hits in
the cache. (See Table 4-3.)

When NWe1, write-throughs and write-in-
validate cycles are disabled. A write will not
be sent to the pins if the write hits in the
cache. With NWe1 the only write cycles
that reach the external bus are cache miss-
es. Write hits with NWe1 will never update
main memory. Invalidate cycles are ignored
when NWe1.

AM (Alignment Mask, bit 18)

The AM bit controls whether the alignment
check (AC) bit in the flag register (EFLAGS)
can allow an alignment fault. AMe0 dis-
ables the AC bit. AMe1 enables the AC bit.
AMe0 is the Intel386 processor compatible
mode.

Intel386 processor software may load incor-
rect data into the AC bit in the EFLAGS reg-
ister. Setting AMe0 will prevent AC faults
from occurring before the Military Intel486
processor has created the AC interrupt
service routine.

WP (Write Protect, bit 16)

WP protects read-only pages from supervi-
sor write access. The Intel386 processor al-
lows a read-only page to be written from
privilege levels 0–2. The Military Intel486
processor are compatible with the Intel386
processor when WPe0. WPe1 forces a
fault on a write to a read-only page from any
privilege level. Operating systems with
Copy-on-Write features can be supported
with the WP bit. (Refer to section 6.4.3
‘‘Page Level Protection (R/W, U/S Bits).’’)

NOTE:
Refer to Tables 4-4 and 4-5 for values and
interpolation of NE, EM, TS, and MP bits, in
addition to the sections below.
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NE (Numerics Exception, bit 5)

Military Intel486 DX, IntelDX2
and IntelDX4 Processor NE Bit

For Military Intel486 DX, IntelDX2, and
IntelDX4 processors, the NE bit controls
whether unmasked floating point excep-
tions (UFPE) are handled through interrupt
vector 16 (NEe1) or through an external
interrupt (NEe0). NEe0 (default at reset)
supports the DOS operating system error
reporting scheme from the 8087, Intel287
and Intel387 math coprocessors. In DOS
systems, math coprocessor errors are re-
ported via external interrupt vector 13. DOS
uses interrupt vector 16 for an operating
system call. (Refer to sections 9.2.14, ‘‘Nu-
meric Error Reporting (FERRÝ, IGNNEÝ),’’
and 10.2.14 ‘‘Floating Point Error Han-
dling.’’)

For any UFPE, the floating point error out-
put pin (FERRÝ) will be driven active.

For NEe0, the Military Intel486 DX,
IntelDX2 and IntelDX4 processors work in
conjunction with the ignore numeric error in-
put (IGNNEÝ) and the FERRÝ output pins.
When a UFPE occurs and the IGNNEÝ in-
put is inactive, the Military Intel486 DX,
IntelDX2, and IntelDX4 processors freeze
immediately before executing the next float-
ing point instruction. An external interrupt
controller will supply an interrupt vector
when FERRÝ is driven active. The UFPE is
ignored if IGNNEÝ is active and floating
point execution continues.

NOTE:
The freeze does not take place if the next
instruction is one of the control instructions
FNCLEX, FNINIT, FNSAVE, FNSTENV,
FNSTCW, FNSTSW, FNSTSW AX, FNENI,
FNDISI and FNSETPM. The freeze does oc-
cur if the next instruction is WAIT.

For NEe1, any UFPE will result in a soft-
ware interrupt 16, immediately before exe-
cuting the next non-control floating point or
WAIT instruction. The ignore numeric error
input (IGNNEÝ) signal will be ignored.

TS (Task Switch, bit 3)

Military Intel486 DX, IntelDX2,
and IntelDX4 Processor TS Bit

For Military Intel486 DX, IntelDX2, and
IntelDX4 processors, the TS bit is set when-
ever a task switch operation is performed.
Execution of floating point instructions with
TSe1 will cause a Device Not Available
(DNA) fault (trap vector 7). If TSe1 and
MPe1 (monitor coprocessor in CR0), a
WAIT instruction will cause a DNA fault.

EM (Emulate Coprocessor, bit 2)

Military Intel486 DX, IntelDX2,
and IntelDX4 Processor EM Bit

For the Military Intel486 DX, IntelDX2, and
IntelDX4 processors, the EM bit determines
whether floating point instructions are
trapped (EMe1) or executed. If EMe1, all
floating point instructions will cause fault 7.

If EMe0, the on-chip floating point will be
used.

NOTE:
WAIT instructions are not affected by the
state of EM. (See Table 4-5.)

MP (Monitor Coprocessor, bit 1)

Military Intel486 DX, IntelDX2,
and IntelDX4 Processor MP Bit

For the Military Intel486 DX, IntelDX2, and
IntelDX4 processors, the MP is used in con-
junction with the TS bit to determine if WAIT
instructions cause fault 7. (See Table 4-5.)
The TS bit is set to 1 on task switches by
the Military Intel486 DX, IntelDX2, and
IntelDX4 processors. Floating point instruc-
tions are not affected by the state of the MP
bit. It is recommended that the MP bit be
set to one for normal processor operation.

PE (Protection Enable, bit 0)

The PE bit enables the segment based pro-
tection mechanism if PEe1 protection is
enabled. When PEe0 the Military Intel486
processor operates in REAL mode, with
segment based protection disabled, and ad-
dresses formed as in an 8086 processor.
(Refer to Table 4-2.)
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Table 4-4. Recommended Values of the Floating Point Related Bits

for All Military Intel486TM Processors

CR0 Bit Military Intel486 DX, IntelDX2TM, and IntelDX4TM Processors

EM 0

MP 1

NE 0, for DOS Systems

1, for User-Defined Exception Handler

Table 4-5. Interpretation of Different Combinations of the

EM, TS and MP Bits for All Military Intel486TM Processors

CR0 Bit Instruction Type

EM TS MP Floating Point Wait

0 0 0 Execute Execute

0 0 1 Execute Execute

0 1 0 Exception 7 Execute

0 1 1 Exception 7 Exception 7

1 0 0 Exception 7 Execute

1 0 1 Exception 7 Execute

1 1 0 Exception 7 Execute

1 1 1 Exception 7 Exception 7

NOTE:
For Military Intel486 DX, IntelDX2TM and IntelDX4TM processors, if MPe1 and TSe1, the processor will generate a trap 7
so that the system software can save the floating point status of the old task.
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NOTE:
See section 4.2.7, ‘‘Compatibility.’’

Figure 4-7. Control Registers 2, 3 and 4

Control Register 1 (CR1)

CR1 is reserved for use in future Intel processors.

Control Register 2 (CR2)

CR2, shown in Figure 4-7, holds the 32-bit linear ad-
dress that caused the last page fault detected. The
error code pushed onto the page fault handler’s
stack when it is invoked provides additional status
information on this page fault.

Control Register 3 (CR3)

CR3, shown in Figure 4-7, contains the physical
base address of the page directory table. The page
directory is always page aligned (4 Kbyte-aligned).
This alignment is enforced by only storing bits
12–31 in CR3.

In the Military Intel486 processor, CR3 contains two
bits, page write-through (PWT) (bit 3) and page
cache disable (PCD) (bit 4). The page table entry
(PTE) and page directory entry (PDE) also contain
PWT and PCD bits. PWT and PCD control page
cacheability. When a page is accessed in external

memory, the state of PWT and PCD are driven out
on the PWT and PCD pins. The source of PWT and
PCD can be CR3, the PTE or the PDE. PWT and
PCD are sourced from CR3 when the PDE is being
updated. When paging is disabled (PG e 0 in CR0),
PCD and PWT are assumed to be 0, regardless of
their state in CR3.

A task switch through a task state segment (TSS)
which changes the values in CR3, or an explicit load
into CR3 with any value, will invalidate all cached
page table entries in the translation lookaside buffer
(TLB).

The page directory base address in CR3 is a physi-
cal address. The page directory can be paged out
while its associated task is suspended, but the oper-
ating system must ensure that the page directory is
resident in physical memory before the task is dis-
patched. The entry in the TSS for CR3 has a physi-
cal address, with no provision for a present bit. This
means that the page directory for a task must be
resident in physical memory. The CR3 image in a
TSS must point to this area, before the task can be
dispatched through its TSS.
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Control Register 4 (CR4)

CR4, shown in Figure 4-7, contains bits that enable
virtual mode extensions and protected mode virtual
interrupts.

VME (Virtual-8086 Mode Extensions, bit 0 of CR4)

Setting this bit to 1 enables support for a virtual in-
terrupt flag in virtual-8086 mode. This feature can
improve the performance of virtual-8086 applica-
tions by eliminating the overhead of faulting to a vir-
tual-8086 monitor for emulation of certain opera-
tions.

PVI (Protected-Mode Virtual Interrupts, bit 1 of CR4)

Setting this bit to 1 enables support for a virtual in-
terrupt flag in protected mode. This feature can en-
able some programs designed for execution at privi-
lege level 0 to execute at privilege level 3.

4.2.3.2 System Address Registers

Four special registers are defined to reference the
tables or segments supported by the 80286,
Intel386, and Military Intel486 processors’ protection
model. These tables or segments are: GDT (Global
Descriptor Table), IDT (Interrupt Descriptor Table),
LDT (Local Descriptor Table), TSS (Task State Seg-
ment).

The addresses of these tables and segments are
stored in special registers, the System Address and
System Segment Registers, illustrated in Figure 4-5.
These registers are named GDTR, IDTR, LDTR and
TR respectively. Section 6, ‘‘Protected Mode Archi-
tecture,’’ describes how to use these registers.

System Address Registers: GDTR and IDTR

The GDTR and IDTR hold the 32-bit linear-base ad-
dress and 16-bit limit of the GDT and IDT, respec-
tively.

Because the GDT and IDT segments are global to
all tasks in the system, the GDT and IDT are defined
by 32-bit linear addresses (subject to page transla-
tion if paging is enabled) and 16-bit limit values.

System Segment Registers: LDTR and TR

The LDTR and TR hold the 16-bit selector for the
LDT descriptor and the TSS descriptor, respectively.

Because the LDT and TSS segments are task spe-
cific segments, the LDT and TSS are defined by se-
lector values stored in the system segment regis-
ters.

NOTE:
A programmer-invisible segment descriptor
register is associated with each system seg-
ment register.

4.2.4 FLOATING POINT REGISTERS

Figure 4-8 shows the floating point register set. The
on-chip FPU contains eight data registers, a tag
word, a control register, a status register, an instruc-
tion pointer and a data pointer.

The operation of the Military Intel486 DX, IntelDX2,
and IntelDX4 processor on-chip floating point unit is
exactly the same as the Intel387 math coprocessor.
Software written for the Intel387 math coprocessor
will run on the on-chip floating point unit (FPU) with-
out any modifications.

4.2.4.1 Floating Point Data Registers

Floating point computations use the Military Intel486
DX, IntelDX2, and IntelDX4 processor FPU data reg-
isters. These eight 80-bit registers provide the equiv-
alent capacity of twenty 32-bit registers. Each of the
eight data registers is divided into ‘‘fields’’ corre-
sponding to the FPU’s extended-precision data type.
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Figure 4-8. Floating Point Registers

The FPU’s register set can be accessed either as a
stack, with instructions operating on the top one or
two stack elements, or as a fixed register set, with
instructions operating on explicitly designated regis-
ters. The TOP field in the status word identifies the
current top-of-stack register. A ‘‘push’’ operation
decrements TOP by one and loads a value into the
new top register. A ‘‘pop’’ operation stores the value
from the current top register and then increments

TOP by one. Like other Military Intel486 DX, In-
telDX2, and IntelDX4 processor stacks in memory,
the FPU register stack grows ‘‘down’’ toward lower-
addressed registers.

Instructions may address the data registers either
implicitly or explicitly. Many instructions operate on
the register at the TOP of the stack. These instruc-
tions implicitly address the register at which TOP
points. Other instructions allow the programmer to
explicitly specify which register to use. This explicit
register addressing is also relative to TOP.

4.2.4.2 Floating Point Tag Word

The tag word marks the content of each numeric
data register, as shown in Figure 4-9. Each two-bit
tag represents one of the eight data registers. The
principal function of the tag word is to optimize the
FPU’s performance and stack handling by making it
possible to distinguish between empty and non-
empty register locations. It also enables exception
handlers to check the contents of a stack location
without the need to perform complex decoding of
the actual data.

4.2.4.3 Floating Point Status Word

The 16-bit status word reflects the overall state of
the FPU. The status word is shown in Figure 4-10
and is located in the status register.

271329–13

NOTE:
The index i of tag(i) is not top-relative. A program typically uses the ‘‘top’’ field of Status Word to determine which tag(i)
field refers to logical top of stack.

TAG VALUES:
00 e Valid
01 e Zero
10 e QNaN, SNaN, Infinity, Denormal and Unsupported Formats
11 e Empty

Figure 4-9. Floating Point Tag Word
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ES is set if any unmasked exception bit is set; cleared otherwise.
See Table 4-7 for interpretation of condition code.
TOP values:

000 e Register 0 is Top of Stack
001 e Register 1 is Top of Stack

#
#
#

111 e Register 7 is Top of Stack
For definitions of exceptions, refer to the section entitled ‘‘Exception Handling’’.

NOTES:
The B bit (Busy, bit 15) is included for 8087 compatibility. The B bit reflects the contents of the ES bit (bit 7 of the status
word).
Bits 13–11 (TOP) point to the FPU register that is the current top-of-stack.
The four numeric condition code bits, C0–C3, are similar to the flags in EFLAGS. Instructions that perform arithmetic
operations update C0–C3 to reflect the outcome. The effects of these instructions on the condition codes are summa-
rized in Table 4-6 through Table 4-9.

Figure 4-10. Floating Point Status Word
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Table 4-6. Floating Point Condition Code Interpretation

Instruction C0 (S) C3 (Z) C1 (A) C2 (C)

FPREM, FPREM1 Three least significant bits of quotient (See Table 4-8.) Reduction

0 e complete

Q2 Q0 Q1 or O/UÝ 1 e incomplete

FCOM, FCOMP, Result of comparison (see Zero or O/UÝ Operand is not
Table 4-9)FCOMPP, FTST, FUCOM, comparable

FUCOMP, FUCOMPP,

FICOM, FICOMP

FXAM Operand class (see Sign or O/UÝ Operand class
Table 4-10)

FCHS, FABS, FXCH, UNDEFINED Zero or O/UÝ UNDEFINED

FINCTOP, FDECTOP,

Constant loads, FXTRACT,

FLD, FILD, FBLD, FSTP

(ext real)

FIST, FBSTP, FRNDINT, UNDEFINED Roundup or O/UÝ UNDEFINED

FST, FSTP, FADD, FMUL,

FDIV, FDIVR, FSUB,

FSUBR, FSCALE, FSQRT,

FPATAN, F2XM1, FYL2X,

FYL2XP1

FPTAN, FSIN, FCOS, UNDEFINED Roundup or O/UÝ, Reduction

FSINCOS if C2 e 1 0 e complete

1 e incomplete

FLDENV, FRSTOR Each bit loaded from memory

FINIT Clears these bits

FLDCW, FSTENV, UNDEFINED

FSTCW, FSTSW, FCLEX,

FSAVE

NOTES:
O/UÝ When both IE and SF bits of status word are set, indicating a stack exception, this bit distinguishes between

stack overflow (C1 e 1) and underflow (C1 e 0).
Reduction If FPREM or FPREM1 produces a remainder that is less than the modulus, reduction is complete. When

reduction is incomplete the value at the top of the stack is a partial remainder, which can be used as input to
further reduction. For FPTAN, FSIN, FCOS, and FSINCOS, the reduction bit is set if the operand at the top of
the stack is too large. In this case the original operand remains at the top of the stack.

Roundup When the PE bit of the status word is set, this bit indicates whether the last rounding in the instruction was
upward.

UNDEFINED Do not rely on finding any specific value in these bits. (See Section 4.2.7, ‘‘Compatibility.’’)
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Table 4-7. Condition Code Interpretation after FPREM and FPREM1 Instructions

Condition Code
Interpretation after FPREM and FPREM1

C2 C3 C1 C0

1 X X X Incomplete Reduction:

further interaction required for complete reduction

0

Q1 Q0 Q2 Q MOD8

least-significant bits of the quotient

C0, C3, and C1 contain the three

Complete Reduction:

0 0 0 0

0 1 0 1

1 0 0 2

1 1 0 3

0 0 1 4

0 1 1 5

1 0 1 6

1 1 1 7

Table 4-8. Condition Code Resulting from Comparison

Order C3 C2 C0

TOP l Operand 0 0 0

TOP k Operand 0 0 1

TOP e Operand 1 0 0

Unordered 1 1 1

Table 4-9. Condition Code Defining Operand Class

C3 C2 C1 C0 Value at TOP

0 0 0 0 a Unsupported

0 0 0 1 a NaN

0 0 1 0 b Unsupported

0 0 1 1 b NaN

0 1 0 0 a Normal

0 1 0 1 a Infinity

0 1 1 0 b Normal

0 1 1 1 b Infinity

1 0 0 0 a 0

1 0 0 1 a Empty

1 0 1 0 b 0

1 0 1 1 b Empty

1 1 0 0 a Denormal

1 1 1 0 b Denormal
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Bit 7 is the error summary (ES) status bit. The ES bit
is set if any unmasked exception bit (bits 0–5 in the
status word) is set; ES is clear otherwise. The
FERRÝ (floating point error) signal is asserted when
ES is set.

Bit 6 is the stack flag (SF). This bit is used to distin-
guish invalid operations due to stack overflow or un-
derflow. When SF is set, bit 9 (C1) distinguishes be-
tween stack overflow (C1e1) and underflow
(C1e0).

Table 4-10 shows the six exception flags in bits 0–5
of the status word. Bits 0–5 are set to indicate that
the FPU has detected an exception while executing
an instruction.

The six exception flags in the status word can be
individually masked by mask bits in the FPU control
word. Table 4-10 lists the exception conditions, and
their causes in order of precedence. Table 4-10 also
shows the action taken by the FPU if the corre-
sponding exception flag is masked.

An exception that is not masked by the control word
will cause three things to happen: the corresponding

exception flag in the status word will be set, the ES
bit in the status word will be set and the FERRÝ
output signal will be asserted. When the Military
Intel486 DX, IntelDX2, or IntelDX4 processor at-
tempts to execute another floating point or WAIT in-
struction, exception 16 occurs or an external inter-
rupt happens if the NEe1 in control register 0. The
exception condition must be resolved via an inter-
rupt service routine. The FPU saves the address of
the floating point instruction that caused the excep-
tion and the address of any memory operand re-
quired by that instruction in the instruction and data
pointers. (See section 4.2.4.4, ‘‘Instruction and Data
Pointers.’’)

Note that when a new value is loaded into the status
word by the FLDENV (load environment) or
FRSTOR (restore state) instruction, the value of ES
(bit 7) and its reflection in the B bit (bit 15) are not
derived from the values loaded from memory. The
values of ES and B are dependent upon the values
of the exception flags in the status word and their
corresponding masks in the control word. If ES is set
in such a case, the FERRÝ output of the Military
Intel486 DX, IntelDX2, or IntelDX4 processor is acti-
vated immediately.

Table 4-10. FPU Exceptions

Exception Cause
Default Action

(if exception is masked)

Invalid Operation on a signaling NaN, unsupported format, Result is a quiet NaN,
indeterminate form (0*%, 0/0, (a%) a (b%), etc.), or stackOperation integer indefinite, or BCD
overflow/underflow (SF is also set). indefinite

Denormalized At least one of the operands is denormalized, i.e., it has the Normal processing
smallest exponent but a non-zero significand.Operand continues

Zero Divisor The divisor is zero while the dividend is a non-infinite, non-zero Result is %

number.

Overflow The result is too large in magnitude to fit in the specified Result is largest finite
format. value or %

Underflow The true result is non-zero but too small to be represented in Result is denormalized or
the specified format, and, if underflow exception is masked, zero
denormalization causes loss of accuracy.

Inexact Result The true result is not exactly representable in the specified Normal processing
format (e.g., 1/3); the result is rounded according to the(Precision) continues
rounding mode.
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4.2.4.4 Instruction and Data Pointers

Because the FPU operates in parallel with the ALU
(in the Military Intel486 DX, IntelDX2 and IntelDX4
processors the arithmetic and logic unit (ALU) con-
sists of the base architecture registers), any errors
detected by the FPU may be reported after the ALU
has executed the floating point instruction that
caused it. To allow identification of the failing numer-
ic instruction, the Military Intel486 DX, IntelDX2, and
IntelDX4 processors contain two pointer registers
that supply the address of the failing numeric in-
struction and the address of its numeric memory op-
erand (if appropriate).

The instruction and data pointers are provided for
user-written error handlers. These registers are ac-
cessed by the FLDENV (load environment),
FSTENV (store environment), FSAVE (save state)
and FRSTOR (restore state) instructions. Whenever
the Military Intel486 DX, IntelDX2, and IntelDX4
processors decode a new floating point instruction, it
saves the instruction (including any prefixes that

may be present), the address of the operand (if pres-
ent) and the opcode.

The instruction and data pointers appear in one of
four formats depending on the operating mode of
the Military Intel486 DX, IntelDX2, and IntelDX4
processors (protected mode or real-address mode)
and depending on the operand-size attribute in ef-
fect (32-bit operand or 16-bit operand). When the
Military Intel486 DX, IntelDX2, or IntelDX4 processor
is in the virtual-86 mode, the real address mode for-
mats are used. The four formats are shown in Figure
4-11 through Figure 4-14. The floating point instruc-
tions FLDENV, FSTENV, FSAVE and FRSTOR are
used to transfer these values to and from memory.
Note that the value of the data pointer is undefined if
the prior floating point instruction did not have a
memory operand.

NOTE:
The operand size attribute is the D bit in a
segment descriptor.
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271329–15

Figure 4-11. Protected Mode FPU Instructions and Data Pointer Image in Memory, 32-Bit Format

271329–16

Figure 4-12. Real Mode FPU Instruction and Data Pointer Image in Memory, 32-Bit Format
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16-Bit Protected Mode Format

271329–17

Figure 4-13. Protected Mode FPU Instruction and

Data Pointer Image in Memory, 16-Bit Format

16-Bit Real Address Mode and

Virtual-8086 Mode Format

271329–18

Figure 4-14. Real Mode FPU Instruction and Data

Pointer Image in Memory, 16-Bit Format

271329–19

Precision Control Rounding Control
00-24 bits (single precision) 00-Round to nearest or even
01-(reserved) 01-Round down (toward -%)
10-53 bits (double precision) 10-Round up (toward a%)
11-64 bits (extended precision) 11-Chop (truncate toward zero)

NOTE:
See section 4.2.7 ‘‘Compatibility,’’ for RESERVED bits.

Figure 4-15. FPU Control Word
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4.2.4.5 FPU Control Word

The FPU provides several processing options that
are selected by loading a control word from memory
into the control register. Figure 4-15 shows the for-
mat and encoding of fields in the control word.

The low-order byte of the FPU control word config-
ures the FPU error and exception masking. Bits 0–5
of the control word contain individual masks for each
of the six exceptions that the FPU recognizes.

The high-order byte of the control word configures
the FPU operating mode, including precision and
rounding.

RC (Rounding Control, bits 10–11)

RC bits provide for directed rounding and true
chop, as well as the unbiased round to nearest
even mode specified in the IEEE standard.
Rounding control affects only those instructions
that perform rounding at the end of the opera-
tion (and thus can generate a precision excep-
tion); namely, FST, FSTP, FIST, all arithmetic
instructions (except FPREM, FPREM1,
FXTRACT, FABS and FCHS), and all transcen-
dental instructions.

PC (Precision Control, bits 8–9)

PC bits can be used to set the FPU internal op-
erating precision of the significand at less than
the default of 64 bits (extended precision). This
can be useful in providing compatibility with ear-
ly generation arithmetic processors of smaller
precision. PC affects only the instructions ADD,
SUB, DIV, MUL, and SQRT. For all other instruc-
tions, either the precision is determined by the
opcode or extended precision is used.

4.2.5 DEBUG AND TEST REGISTERS

4.2.5.1 Debug Registers

The six programmer accessible debug registers (Fig-
ure 4-16) provide on-chip support for debugging. De-
bug registers DR0–3 specify the four linear break-
points. The Debug control register DR7, is used to
set the breakpoints and the Debug Status Register,
DR6, displays the current state of the breakpoints.
The use of the Debug registers is described in sec-
tion 12, ‘‘Debugging Support.’’

271329–20

Figure 4-16. Debug and Test Registers

4.2.5.2 Test Registers

The Military Intel486 processor contains five test
registers. The test registers are shown in Figure
4-16. TR6 and TR7 are used to control the testing of
the translation look- aside buffer. TR3, TR4 and TR5
are used for testing the on-chip cache. The use of
the test registers is discussed in section 11, ‘‘Testa-
bility.’’

4.2.6 REGISTER ACCESSIBILITY

There are a few differences regarding the accessibil-
ity of the registers in Real and Protected Mode.
Table 4-11 summarizes these differences. (See sec-
tion 6, ‘‘Protected Mode Architecture.’’)

4.2.6.1 FPU Register Usage

In addition to the differences listed in Table 4-11,
Table 4-12 summarizes the differences for the on-
chip FPU.
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Table 4-11. Register Usage

Use in Use in Use in

Register Real Mode Protected Mode Virtual 8086 Mode

Load Store Load Store Load Store

General Registers Yes Yes Yes Yes Yes Yes

Segment Register Yes Yes Yes Yes Yes Yes

Flag Register Yes Yes Yes Yes IOPL(1) IOPL

Control Registers Yes Yes PL e 0(2) PL e 0 No Yes

GDTR Yes Yes PL e 0 Yes No Yes

IDTR Yes Yes PL e 0 Yes No Yes

LDTR No No PL e 0 Yes No No

TR No No PL e 0 Yes No No

Debug Registers Yes Yes PL e 0 PL e 0 No No

Test Registers Yes Yes PL e 0 PL e 0 No No

NOTES:
1. IOPL: The PUSHF and POPF instructions are made I/O Privilege Level sensitive in Virtual 8086 Mode.
2. PL e 0: The registers can be accessed only when the current privilege level is zero.

Table 4-12. FPU Register Usage Differences

Use in Use in Use in

Register Real Mode Protected Mode Virtual 8086 Mode

Load Store Load Store Load Store

FPU Data Registers Yes Yes Yes Yes Yes Yes

FPU Control Registers Yes Yes Yes Yes Yes Yes

FPU Status Registers Yes Yes Yes Yes Yes Yes

FPU Instruction Pointer Yes Yes Yes Yes Yes Yes

FPU Data Pointer Yes Yes Yes Yes Yes Yes

4.2.7 COMPATIBILITY

VERY IMPORTANT NOTE:
COMPATIBILITY WITH FUTURE PROCESSORS

In the preceding register descriptions,
note certain Military Intel486 processor
register bits are Intel reserved. When re-
served bits are called out, treat them as
fully undefined. This is essential for your
software compatibility with future proces-
sors! Follow the guidelines below:

1. Do not depend on the states of any un-
defined bits when testing the values of
defined register bits. Mask them out
when testing.

2. Do not depend on the states of any un-
defined bits when storing them to mem-
ory or another register.

3. Do not depend on the ability to retain
information written into any undefined
bits.

4. When loading registers, always load the
undefined bits as zeros.

5. However, registers that have been pre-
viously stored may be reloaded without
masking.
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Depending upon the values of undefined regis-
ter bits will make your software dependent upon
the unspecified Military Intel486 processor han-
dling of these bits. Depending on undefined val-
ues risks making your software incompatible
with future processors that define usages for
the Military Intel486 processor-undefined bits.
AVOID ANY SOFTWARE DEPENDENCE UPON
THE STATE OF UNDEFINED MILITARY INTEL486
PROCESSOR REGISTER BITS.

4.3 Instruction Set

The Military Intel486 processor instruction set can
be divided into the following categories of opera-
tions:

# Data Transfer

# Arithmetic

# Shift/Rotate

# String Manipulation

# Bit Manipulation

# Control Transfer

# High Level Language Support

# Operating System Support

# Processor Control

The Military Intel486 processor instructions are list-
ed in section 13, ‘‘Instruction Set Summary.’’

All Military Intel486 processor instructions operate
on either 0, 1, 2 or 3 operands; where an operand
resides in a register, in the instruction itself or in
memory. Most zero operand instructions (e.g., CLI,
STI) take only one byte. One operand instructions
generally are two bytes long. The average instruc-
tion is 3.2-bytes long. Because the Military Intel486
processor has a 32-byte instruction queue, an aver-
age of 10 instructions will be prefetched. The use of
two operands permits the following types of com-
mon instructions:

# Register to Register

# Memory to Register

# Memory to Memory

# Immediate to Register

# Register to Memory

# Immediate to Memory

The operands can be either 8-, 16-, or 32-bits long.
As a general rule, when executing 32-bit code, oper-
ands are 8 or 32 bits; when executing existing 80286
or 8086 processor code (16-bit code), operands are
8 or 16 bits. Prefixes can be added to all instructions
that override the default length of the operands (i.e.,
use 32-bit operands for 16-bit code, or 16-bit oper-
ands for 32-bit code).

4.3.1 FLOATING POINT INSTRUCTIONS

In addition to the instructions listed above, the
Military Intel486, IntelDX2, and IntelDX4 processors
have the following floating point instructions. Note
that all floating point unit instruction mnemonics be-
gin with an F.

# Floating Point

# Floating Point Control

4.4 Memory Organization

Memory on the Military Intel486 processor is divided
up into 8-bit quantities (bytes), 16-bit quantities
(words), and 32-bit quantities (dwords). Words are
stored in two consecutive bytes in memory with the
low-order byte at the lowest address, the high order
byte at the high address. Dwords are stored in four
consecutive bytes in memory with the low-order byte
at the lowest address, the high-order byte at the
highest address. The address of a word or dword is
the byte address of the low-order byte.

In addition to these basic data types, the Military In-
tel486 processor supports two larger units of memo-
ry: pages and segments. Memory can be divided up
into one or more variable-length segments, which
can be swapped to disk or shared between pro-
grams. Memory can also be organized into one or
more 4-Kbyte pages. Both segmentation and paging
can be combined, gaining the advantages of both
systems. The Military Intel486 processor supports
both pages and segments in order to provide maxi-
mum flexibility to the system designer. Segmentation
and paging are complementary. Segmentation is
useful for organizing memory in logical modules, and
as such is a tool for the application programmer,
while pages are useful for the system programmer
for managing the physical memory of a system.
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4.4.1 ADDRESS SPACES

The Military Intel486 processor has three distinct ad-
dress spaces: logical, linear, and physical. A logi-
cal address (also known as a virtual address) con-
sists of a selector and an offset. A selector is the
contents of a segment register. An offset is formed
by summing all of the addressing components
(BASE, INDEX, DISPLACEMENT) discussed in sec-
tion 4.6.3 ‘‘32-Bit Memory Addressing Modes,’’ into
an effective address. Because each task on the Mili-
tary Intel486 processor has a maximum of 16K
(214b1) selectors, and offsets can be 4 Gbytes
(232 bits), this gives a total of 246 bits or 64 terabytes
of logical address space per task. The programmer
sees this virtual address space.

The segmentation unit translates the logical ad-
dress space into a 32-bit linear address space. If the
paging unit is not enabled then the 32-bit linear ad-
dress corresponds to the physical address. The

paging unit translates the linear address space into
the physical address space. The physical address
is what appears on the address pins.

The primary difference between Real Mode and Pro-
tected Mode is how the segmentation unit performs
the translation of the logical address into the linear
address. In Real Mode, the segmentation unit shifts
the selector left four bits and adds the result to the
offset to form the linear address. While in Protected
Mode every selector has a linear base address as-
sociated with it. The linear base address is stored in
one of two operating system tables (i.e., the Local
Descriptor Table or Global Descriptor Table). The
selector’s linear base address is added to the offset
to form the final linear address.

Figure 4-17 shows the relationship between the vari-
ous address spaces.

271329–21

Figure 4-17. Address Translation
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4.4.2 SEGMENT REGISTER USAGE

The main data structure used to organize memory is
the segment. On the Military Intel486 processor,
segments are variable sized blocks of linear ad-
dresses which have certain attributes associated
with them. There are two main types of segments:
code and data. The segments are of variable size
and can be as small as 1 byte or as large as
4 Gbytes (232 bytes).

In order to provide compact instruction encoding,
and increase Military Intel486 processor perform-
ance, instructions do not need to explicitly specify
which segment register is used. A default segment
register is automatically chosen according to the
rules of Table 4-13. In general, data references use
the selector contained in the DS register; Stack ref-
erences use the SS register and Instruction fetches
use the CS register. The contents of the Instruction
Pointer provide the offset. Special segment override
prefixes allow the explicit use of a given segment
register, and override the implicit rules listed in Table
4-13. The override prefixes also allow the use of the
ES, FS and GS segment registers.

There are no restrictions regarding the overlapping
of the base addresses of any segments. Thus, all 6
segments could have the base address set to zero
and create a system with a 4-Gbyte linear address
space. This creates a system where the virtual ad-
dress space is the same as the linear address
space. Further details of segmentation are dis-
cussed in section 6.0, ‘‘Protected Mode Architec-
ture.’’

4.5 I/O Space

The Military Intel486 processor has two distinct
physical address spaces: Memory and I/O. General-
ly, peripherals are placed in I/O space although the
Military Intel486 processor also supports memory-
mapped peripherals. The I/O space consists of
64 Kbytes, it can be divided into 64K 8-bit ports, 32K
16-bit ports, or 16K 32-bit ports, or any combination
of ports which add up to less than 64 Kbytes. The
64K I/O address space refers to physical memory
rather than linear address, because I/O instructions
do not go through the segmentation or paging hard-
ware. The M/IOÝ pin acts as an additional address
line thus allowing the system designer to easily de-
termine which address space the processor is ac-
cessing.

Table 4-13. Segment Register Selection Rules

Type of Memory

Reference

Implied Segment

(Default) Override

Segment Prefixes

Use Possible

Code Fetch CS None

Destination of PUSH, SS None

PUSHF, INT, CALL,

PUSHA Instructions

Source of POP, POPA, SS None

POPF, IRET, RET

instructions

Destination of STOS, ES None

MOVS, REP STOS, REP

MOVS Instructions (DI is

Base Register)

Other Data References,

with Effective Address

using Base Register of:
[EAX] DS

All

[EBX] DS
[ECX] DS
[EDX] DS
[ESI] DS
[EDI] DS
[EBP] SS
[ESP] SS

The I/O ports are accessed via the IN and OUT I/O
instructions, with the port address supplied as an
immediate 8-bit constant in the instruction or in the
DX register. All 8- and 16-bit port addresses are zero
extended on the upper address lines. The I/O in-
structions cause the M/IOÝ pin to be driven low.

I/O port addresses 00F8H through 00FFH are re-
served for use by Intel.

I/O instruction code is cacheable.

I/O data is not cacheable.

I/O transfers (data or code) can be bursted.
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4.6 Addressing Modes

4.6.1 ADDRESSING MODES OVERVIEW

The Military Intel486 processor provides a total of 11
addressing modes for instructions to specify oper-
ands. The addressing modes are optimized to allow
the efficient execution of high-level languages such
as C and FORTRAN, and they cover the vast majori-
ty of data references needed by high-level lan-
guages.

4.6.2 REGISTER AND IMMEDIATE MODES

The following two addressing modes provide for in-
structions that operate on register or immediate op-
erands:

# Register Operand Mode: The operand is locat-
ed in one of the 8-, 16- or 32-bit general registers.

# Immediate Operand Mode: The operand is in-
cluded in the instruction as part of the opcode.

4.6.3 32-BIT MEMORY ADDRESSING MODES

The remaining modes provide a mechanism for
specifying the effective address of an operand. The
linear address consists of two components: the seg-
ment base address and an effective address. The
effective address is calculated by using combina-
tions of the following four address elements:

# DISPLACEMENT: An 8-, or 32-bit immediate val-
ue, following the instruction.

# BASE: The contents of any general purpose reg-
ister. The base registers are generally used by
compilers to point to the start of the local variable
area.

# INDEX: The contents of any general purpose reg-
ister except for ESP. The index registers are used
to access the elements of an array, or a string of
characters.

# SCALE: The index register’s value can be multi-
plied by a scale factor, either 1, 2, 4 or 8. Scaled
index mode is especially useful for accessing ar-
rays or structures.

Combinations of these 4 components make up the 9
additional addressing modes. There is no perform-
ance penalty for using any of these addressing

combinations, because the effective address calcu-
lation is pipelined with the execution of other instruc-
tions. The one exception is the simultaneous use of
Base and Index components, which requires one ad-
ditional clock.

As shown in Figure 4-18, the effective address (EA)
of an operand is calculated according to the follow-
ing formula:

EA e Base Reg a (Index Reg * Scaling) a

Displacement

Direct Mode: The operand’s offset is contained as
part of the instruction as an 8-, 16- or 32-bit dis-
placement.

Example: INC Word PTR [500]

Register Indirect Mode: A BASE register contains
the address of the operand.

Example: MOV [ECX], EDX

Based Mode: A BASE register’s contents is added
to a DISPLACEMENT to form the operand’s offset.

Example: MOV ECX, [EAXa24]

Index Mode: An INDEX register’s contents is added
to a DISPLACEMENT to form the operand’s offset.

Example: ADD EAX, TABLE[ESI]

Scaled Index Mode: An INDEX register’s contents
is multiplied by a scaling factor which is added to a
DISPLACEMENT to form the operand’s offset.

Example: IMUL EBX, TABLE[ESI*4],7

Based Index Mode: The contents of a BASE
register is added to the contents of an INDEX regis-
ter to form the effective address of an operand.

Example: MOV EAX, [ESI] [EBX]

Based Scaled Index Mode: The contents of an
INDEX register is multiplied by a SCALING factor
and the result is added to the contents of a BASE
register to obtain the operand’s offset.

Example: MOV ECX, [EDX*8] [EAX]
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271329–22

Figure 4-18. Addressing Mode Calculations

Based Index Mode with Displacement: The con-
tents of an INDEX Register and a BASE register’s
contents and a DISPLACEMENT are all summed to-
gether to form the operand offset.

Example: ADD EDX, [ESI] [EBPa00FFFFF0H]

Based Scaled Index Mode with Displacement:
The contents of an INDEX register are multiplied by
a SCALING factor, the result is added to the con-
tents of a BASE register and a DISPLACEMENT to
form the operand’s offset.

Example: MOV EAX, LOCALTABLE[EDI*4]
[EBPa80]

4.6.4 DIFFERENCES BETWEEN 16- AND 32-BIT
ADDRESSES

In order to provide software compatibility with 80286
and 8086 processors, the Military Intel486 processor
can execute 16-bit instructions in Real and Protect-
ed Modes. The processor determines the size of the
instructions it is executing by examining the D bit in
the CS segment Descriptor. If the D bit is 0 then all
operand lengths and effective addresses are as-
sumed to be 16 bits long. If the D bit is 1 then the
default length for operands and addresses is 32 bits.
In Real Mode the default size for operands and ad-
dresses is 16-bits.

Regardless of the default precision of the operands
or addresses, the Military Intel486 processor is able
to execute either 16- or 32-bit instructions. This is
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specified via the use of override prefixes. Two prefix-
es, the Operand Size Prefix and the Address
Length Prefix, override the value of the D bit on an
individual instruction basis. These prefixes are auto-
matically added by Intel assemblers.

Example: The Military Intel486 processor is execut-
ing in Real Mode and the programmer needs to ac-
cess the EAX registers. The assembler code for this
might be MOV EAX, 32-bit MEMORYOP, ASM486
Macro Assembler automatically determines that an
Operand Size Prefix is needed and generates it.

Example: The D bit is 0, and the programmer wishes
to use Scaled Index addressing mode to access an
array. The Address Length Prefix allows the use of
MOV DX, TABLE[ESI*2]. The assembler uses an
Address Length Prefix because, with De0, the de-
fault addressing mode is 16-bits.

Example: The D bit is 1, and the program wants to
store a 16-bit quantity. The Operand Length Prefix is
used to specify only a 16-bit value; MOV MEM16,
DX.

The OPERAND LENGTH and Address Length Pre-
fixes can be applied separately or in combination to
any instruction. The Address Length Prefix does not
allow addresses over 64 Kbytes to be accessed in
Real Mode. A memory address which exceeds
FFFFH will result in a General Protection Fault. An
Address Length Prefix only allows the use of the ad-
ditional Military Intel486 processor addressing
modes.

When executing 32-bit code, the Military Intel486
processor uses either 8-, or 32-bit displacements,
and any register can be used as base or index regis-
ters. When executing 16-bit code, the displacements
are either 8, or 16 bits, and the base and index regis-
ter conform to the 80286 processor model. Table
4-14 illustrates the differences.

Table 4-14. BASE and INDEX Registers for

16- and 32-Bit Addresses

16-Bit 32-Bit

Addressing Addressing

BASE REGISTER BX,BP Any 32-bit GP

Register

INDEX REGISTER SI,DI Any 32-bit GP

Register Except

ESP

SCALE FACTOR none 1, 2, 4, 8

DISPLACEMENT 0, 8, 16 bits 0, 8, 32 bits

4.7 Data Formats

4.7.1 DATA TYPES

The Military Intel486 processor can support a wide-
variety of data types. In the following descriptions,
the processor consists of the base architecture reg-
isters.

4.7.1.1 Unsigned Data Types

Byte: Unsigned 8-bit quantity

Word: Unsigned 16-bit quantity

Dword: Unsigned 32-bit quantity

The least significant bit (LSB) in a byte is bit 0, and
the most significant bit is 7.

4.7.1.2 Signed Data Types

All signed data types assume 2’s complement nota-
tion. The signed data types contain two fields, a sign
bit and a magnitude. The sign bit is the most signifi-
cant bit (MSB). The number is negative if the sign bit
is 1. If the sign bit is 0, the number is positive. The
magnitude field consists of the remaining bits in the
number. (Refer to Figure 4-19.)

8-bit Integer: Signed 8-bit quantity

16-bit Integer: Signed 16-bit quantity

32-bit Integer: Signed 32-bit quantity

64-bit Integer: Signed 64-bit quantity

The integer core of the Military Intel486 processors
only support 8-, 16- and 32-bit integers. (See section
4.7.1.4, ‘‘Floating Point Data Types.’’)

4.7.1.3 BCD Data Types

The Military Intel486 processor supports packed and
unpacked binary coded decimal (BCD) data types. A
packed BCD data type contains two digits per byte,
the lower digit is in bits 0–3 and the upper digit in
bits 4–7. An unpacked BCD data type contains
1 digit per byte stored in bits 0–3.

The Military Intel486 processor supports 8-bit
packed and unpacked BCD data types. (Refer to
Figure 4-19.)
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4.7.1.4 Floating Point Data Types

In addition to the base registers, the Military Intel486
DX, IntelDX2, and IntelDX4 processors’ on-chip
floating point unit consists of the floating point regis-
ters. The floating point unit data type contain three
fields: sign, significand and exponent. The sign field
is one bit and is the MSB of the floating point num-
ber. The number is negative if the sign bit is 1. If the
sign bit is 0, the number is positive. The significand
gives the significant bits of the number. The expo-
nent field contains the power of 2 needed to scale
the significand. (Refer to Figure 4-19.)

Only the FPU supports floating point data types.

Single Precision Real: 23-bit significand and
8-bit exponent. 32 bits
total.

Double Precision Real: 52-bit significand and
11-bit exponent. 64 bits
total.

Extended Precision Real: 64-bit significand and
15-bit exponent. 80 bits
total.

Floating Point Unsigned Data Types

The on-chip FPU does not support unsigned data
types. (Refer to Figure 4-19.)

Floating Point Signed Data Types

The on-chip FPU only supports 16-, 32- and 64-bit
integers.

Floating Point BCD Data Types

The on-chip FPU only supports 80-bit packed BCD
data types.

4.7.1.5 String Data Types

A string data type is a contiguous sequence of bits,
bytes, words or dwords. A string may contain be-
tween 1 byte and 4 Gbytes. (Refer to Figure 4-20.)

String data types are only supported by the CPU
section of the Military Intel486 processor.

Byte String: Contiguous sequence of bytes.

Word String: Contiguous sequence of words.

Dword String: Contiguous sequence of dwords.

Bit String: A set of contiguous bits. In the Mili-
tary Intel486 processor bit strings
can be up to 4-gigabits long.

4.7.1.6 ASCII Data Types

The Military Intel486 processor supports ASCII
(American Standard Code for Information Inter-
change) strings and can perform arithmetic opera-
tions (such as addition and division) on ASCII data.
The Military Intel486 processor can only operate on
ASCII data. (Refer to Figure 4-20.)
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271329–23

Figure 4-19. Military Intel486TM Processor Data Types
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271329–24

Figure 4-20. String and ASCII Data Types

271329–25

Figure 4-21. Pointer Data Types

4.7.1.7 Pointer Data Types

A pointer data type contains a value that gives the
address of a piece of data. Military Intel486 proces-

sors support the following two types of pointers (see
Figure 4-21):

# 48-bit Pointer: 16-bit selector and 32-bit offset

# 32-bit Pointer: 32-bit offset
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4.7.2 LITTLE ENDIAN vs. BIG ENDIAN DATA
FORMATS

The Military Intel486 processors, as well as all other
members of the Intel architecture, use the ‘‘little-en-
dian’’ method for storing data types that are larger
than one byte. Words are stored in two consecutive
bytes in memory with the low-order byte at the low-
est address and the high order byte at the high ad-
dress. Dwords are stored in four consecutive bytes
in memory with the low-order byte at the lowest ad-
dress and the high order byte at the highest address.
The address of a word or dword data item is the byte
address of the low-order byte.

Figure 4-22 illustrates the differences between the
big-endian and little-endian formats for dwords. The
32 bits of data are shown with the low order bit num-
bered bit 0 and the high order bit numbered 32. Big-
endian data is stored with the high-order bits at the
lowest addressed byte. Little-endian data is stored
with the high-order bits in the highest addressed
byte.

The Military Intel486 processor has the following two
instructions that can convert 16- or 32-bit data be-
tween the two byte orderings:

# BSWAP (byte swap) handles 4-byte values

# XCHG (exchange) handles 2-byte values

271329–26

Figure 4-22. Big vs. Little Endian Memory Format

4.8 Interrupts

4.8.1 INTERRUPTS AND EXCEPTIONS

Interrupts and exceptions alter the normal program
flow, in order to handle external events, to report
errors or exceptional conditions. The difference be-
tween interrupts and exceptions is that interrupts are
used to handle asynchronous external events while
exceptions handle instruction faults. Although a pro-
gram can generate a software interrupt via an INT N
instruction, the Military Intel486 processors treat
software interrupts as exceptions.

Hardware interrupts occur as the result of an exter-
nal event and are classified into two types: maskable
or non-maskable. Interrupts are serviced after the
execution of the current instruction. After the inter-
rupt handler is finished servicing the interrupt, exe-
cution proceeds with the instruction immediately af-
ter the interrupted instruction. Sections 4.8.3,
‘‘Maskable Interrupt,’’ and 4.8.4, ‘‘Non-Maskable In-
terrupt,’’ discuss the differences between Maskable
and Non-Maskable interrupts.

Exceptions are classified as faults, traps, or aborts,
depending on the way they are reported, and wheth-
er or not restart of the instruction causing the excep-
tion is supported. Faults are exceptions that are de-
tected and serviced before the execution of the
faulting instruction. A fault would occur in a virtual
memory system when the processor referenced a
page or a segment that was not present. The operat-
ing system would fetch the page or segment from
disk, and then the Military Intel486 processor would
restart the instruction. Traps are exceptions that are
reported immediately after the execution of the in-
struction that caused the problem. User defined in-
terrupts are examples of traps. Aborts are excep-
tions that do not permit the precise location of the
instruction causing the exception to be determined.
Aborts are used to report severe errors, such as a
hardware error or illegal values in system tables.

Thus, when an interrupt service routine has been
completed, execution proceeds from the instruction
immediately following the interrupted instruction. On
the other hand, the return address from an excep-
tion fault routine will always point at the instruction
causing the exception and include any leading in-
struction prefixes. Tables 4-15 and 4-16 summarize
the possible interrupts for Military Intel486 proces-
sors and shows where the return address points.
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Military Intel486 processors can handle up to 256
different interrupts and/or exceptions. In order to
service the interrupts, a table with up to 256 interrupt
vectors must be defined. The interrupt vectors are
simply pointers to the appropriate interrupt service
routine. In Real Mode (see section 5.0, ‘‘Real Mode
Architecture’’), the vectors are 4-byte quantities, a
Code Segment plus a 16-bit offset; in Protected
Mode, the interrupt vectors are 8-byte quantities,
which are put in an Interrupt Descriptor Table. (See
section 6.2.3.4, ‘‘Interrupt Descriptor Table.’’) Of the
256 possible interrupts, 32 are reserved for use by
Intel, the remaining 224 are free to be used by the
system designer.

4.8.2 INTERRUPT PROCESSING

When an interrupt occurs, the following actions hap-
pen. First, the current program address and the
Flags are saved on the stack to allow resumption of
the interrupted program. Next, an 8-bit vector is sup-
plied to the Military Intel486 processor which identi-
fies the appropriate entry in the interrupt table. The
table contains the starting address of the interrupt
service routine. Then, the user supplied interrupt
service routine is executed. Finally, when an IRET
instruction is executed the old Military Intel486 proc-
essor state is restored and program execution re-
sumes at the appropriate instruction.

The 8-bit interrupt vector is supplied to the Military
Intel486 processor in several different ways: excep-
tions supply the interrupt vector internally; software

INT instructions contain or imply the vector; maska-
ble hardware interrupts supply the 8-bit vector via
the interrupt acknowledge bus sequence. Non-
Maskable hardware interrupts are assigned to inter-
rupt vector 2.

4.8.3 MASKABLE INTERRUPT

Maskable interrupts are the most common way used
by the Military Intel486 processor to respond to
asynchronous external hardware events. A hard-
ware interrupt occurs when the INTR is pulled high
and the Interrupt Flag bit (IF) is enabled. The Military
Intel486 processor only responds to interrupts be-
tween instructions, (REPeat String instructions, have
an ‘‘interrupt window,’’ between memory moves,
which allows interrupts during long string moves).
When an interrupt occurs, the Military Intel486 proc-
essor reads an 8-bit vector supplied by the hardware
which identifies the source of the interrupt, (one of
224 user defined interrupts). The exact nature of the
interrupt sequence is discussed in section 10.2.10,
‘‘Interrupt Acknowledge.’’

The IF bit in the EFLAG registers is reset when an
interrupt is being serviced. This effectively disables
servicing additional interrupts during an interrupt
service routine. However, the IF may be set explicitly
by the interrupt handler, to allow the nesting of inter-
rupts. When an IRET instruction is executed, the
original state of the IF is restored.
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Table 4-15. Interrupt Vector Assignments

Interrupt

Number

Instruction that Can Cause

Exception

Return Address

Function Points to Faulting Type

Instruction

Divide Error 0 DIV, IDIV YES FAULT

Debug Exception 1 Any instruction YES TRAP*

NMI Interrupt 2 INT 2 or NMI NO NMI

One Byte Interrupt 3 INT NO TRAP

Interrupt on Overflow 4 INTO NO TRAP

Array Bounds Check 5 BOUND YES FAULT

Invalid OP-Code 6 Any illegal instruction YES FAULT

Device Not Available 7 ESC, WAIT YES FAULT

Double Fault 8 Any instruction that can ABORT

generate an exception

Intel Reserved 9

Invalid TSS 10 JMP, CALL, IRET, INT YES FAULT

Segment Not Present 1 Segment Register Instructions YES FAULT

Stack Fault 12 Stack References YES FAULT

General Protection Fault 13 Any Memory Reference YES FAULT

Page Fault 14 Any Memory Access or Code YES FAULT

Fetch

Intel Reserved 15

Alignment Check Interrupt 17 Unaligned Memory Access YES FAULT

Intel Reserved 18–31

Two Byte Interrupt 0–255 INT n NO TRAP

*Some debug exceptions may report both traps on the previous instruction, and faults on the next instruction.

Table 4-16. FPU Interrupt Vector Assignments

Interrupt

Number

Instruction Which Can

Cause Exception

Return Address

Function Points to Faulting Type

Instruction

Floating Point Error 16 Floating Point, WAIT YES FAULT
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4.8.4 NON-MASKABLE INTERRUPT

Non-maskable interrupts provide a method of servic-
ing very high priority interrupts. A common example
of the use of a non-maskable interrupt (NMI) would
be to activate a power failure routine or SMIÝ to
activate a power saving mode. When the NMI input
is pulled high, it causes an interrupt with an internally
supplied vector value of 2. Unlike a normal hardware
interrupt, no interrupt acknowledgment sequence is
performed for an NMI.

While executing the NMI servicing procedure, the
Military Intel486 processor will not service further
NMI requests until an interrupt return (IRET) instruc-
tion is executed or the processor is reset (RSM in
the case of SMIÝ). If NMI occurs while currently
servicing an NMI, its presence will be saved for serv-
icing after executing the first IRET instruction. The IF
bit is cleared at the beginning of an NMI interrupt to
inhibit further INTR interrupts.

4.8.5 SOFTWARE INTERRUPTS

A third type of interrupt/exception for the Military
Intel486 processor is the software interrupt. An INT
n instruction causes the processor to execute the
interrupt service routine pointed to by the nth vector
in the interrupt table.

A special case of the two byte software interrupt INT
n is the one byte INT 3, or breakpoint interrupt. By
inserting this one byte instruction in a program, the
user can set breakpoints in his program as a debug-
ging tool.

A final type of software interrupt is the single step
interrupt. It is discussed in section 12.2, ‘‘Single-
Step Trap.’’

4.8.6 INTERRUPT AND EXCEPTION PRIORITIES

Interrupts are externally-generated events. Maska-
ble Interrupts (on the INTR input) and Non-Maskable
Interrupts (on the NMI input or SMIÝ input) are rec-
ognized at instruction boundaries. When more than
one interrupt or external event are both recognized
at the same instruction boundary, the Military In-
tel486 processor invokes the highest priority routine
first. (See list below.) If, after the NMI service routine
has been invoked, maskable interrupts are still en-
abled, then the Military Intel486 processor will in-
voke the appropriate interrupt service routine.

Priority for Servicing External Events for All
Military Intel486 Processors

1. RESET/SRESET

2. FLUSHÝ

3. SMIÝ

4. NMI

5. INTR

6. STPCLKÝ

NOTE:
STPCLKÝ will be recognized while in an in-
terrupt service routine or an SMM handler.

Exceptions are internally-generated events. Excep-
tions are detected by the Military Intel486 processor
if, in the course of executing an instruction, the Mili-
tary Intel486 processor detects a problematic condi-
tion. The IntelDX4 processor then immediately in-
vokes the appropriate exception service routine. The
state of the Military Intel486 processor is such that
the instruction causing the exception can be restart-
ed. If the exception service routine has taken care of
the problematic condition, the instruction will exe-
cute without causing the same exception.

It is possible for a single instruction to generate sev-
eral exceptions (for example, transferring a single
operand could generate two page faults if the oper-
and location spans two ‘‘not present’’ pages). How-
ever, only one exception is generated upon each at-
tempt to execute the instruction. Each exception
service routine should correct its corresponding ex-
ception, and restart the instruction. In this manner,
exceptions are serviced until the instruction exe-
cutes successfully.
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As the Military Intel486 processor executes instruc-
tions, it follows a consistent cycle in checking for
exceptions. Consider the case of the Military In-
tel486 processor having just completed an instruc-
tion. It then performs the checks listed in Table 4-17
before reaching the point where the next instruction

is completed. This cycle is repeated as each instruc-
tion is executed, and occurs in parallel with instruc-
tion decoding and execution. Checking for EM, TS,
or FPU error status only occurs for processors with
on-chip floating point units.

Table 4-17. Sequence of Exception Checking

Sequence Description

1 Check for Exception 1 Traps from the instruction just completed (single-step via Trap Flag, or
Data Breakpoints set in the Debug Registers).

2 Check for Exception 1 Faults in the next instruction (Instruction Execution Breakpoint set in the
Debug Registers for the next instruction).

3 Check for external NMI and INTR.

4 Check for Segmentation Faults that prevented fetching the entire next instruction (exceptions
11 or 13).

5 Check for Page Faults that prevented fetching the entire next instruction (exception 14).

6 Check for Faults decoding the next instruction (exception 6 if illegal opcode; exception 6 if in
Real Mode or in Virtual 8086 Mode and attempting to execute an instruction for Protected
Mode only (see section 6.5.4, ‘‘Protection and I/O Permission Bitmap’’); or exception 13 if
instruction is longer than 15 bytes, or privilege violation in Protected Mode (i.e., not at IOPL or
at CPLe0).

7 If WAIT opcode, check if TSe1 and MPe1 (exception 7 if both are 1).

8 If opcode for Floating Point Unit, check if EMe1 or TSe1 (exception 7 if either are 1).

9 If opcode for Floating Point Unit (FPU), check FPU error status (exception 16 if error status is
asserted).

10 Check in the following order for each memory reference required by the instruction:

a. Check for Segmentation Faults that prevent transferring the entire memory quantity
(exceptions 11, 12, 13).

b. Check for Page Faults that prevent transferring the entire memory quantity (exception 14).

NOTE:
The order stated supports the concept of the paging mechanism being ‘‘underneath’’ the segmentation mechanism. There-
fore, for any given code or data reference in memory, segmentation exceptions are generated before paging exceptions are
generated.
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4.8.7 INSTRUCTION RESTART

The Military Intel486 processor fully supports restart-
ing all instructions after faults. If an exception is de-
tected in the instruction to be executed (exception
categories 4 through 10 in Table 4-17), the Military
Intel486 processor invokes the appropriate excep-
tion service routine.

The Military Intel486 processor is in a state that per-
mits restart of the instruction, for all cases except
the following. An instruction causes a task switch to
a task whose Task State Segment is partially ‘‘not
present.’’ (An entirely ‘‘not present’’ TSS is restarta-
ble.) Partially present TSSs can be avoided either by
keeping the TSSs of such tasks present in memory,
or by aligning TSS segments to reside entirely within
a single 4K page (for TSS segments of 4 Kbytes or
less).

NOTE:
Such cases are easily avoided by proper de-
sign of the operating system.

4.8.8 DOUBLE FAULT

A Double Fault (exception 8) results when the
Military Intel486 processor attempts to invoke an ex-
ception service routine for the segment exceptions
(10, 11, 12 or 13), but in the process of doing so,
detects an exception other than a Page Fault (ex-
ception 14).

A Double Fault (exception 8) will also be generated
when the Military Intel486 processor attempts to in-
voke the Page Fault (exception 14) service routine,
and detects an exception other than a second Page
Fault. In any functional system, the entire Page Fault
service routine must remain ‘‘present’’ in memory.

When a Double Fault occurs, the Military Intel486
processor invokes the exception service routine for
exception 8.

4.8.9 FLOATING POINT INTERRUPT VECTORS

Several interrupt vectors of the Military Intel486 DX,
IntelDX2, and IntelDX4 processors are used to re-
port exceptional conditions while executing numeric
programs in either real or protected mode. Table
4-18 shows these interrupts and their causes.

Table 4-18. Interrupt Vectors Used by FPU

Interrupt Number Cause of Interrupt

7 A Floating Point instruction was encountered when EM or TS of the Military Intel486
DX, IntelDX2, and IntelDX4 processor control register zero (CR0) was set. EM e 1
indicates that software emulation of the instruction is required. When TS is set, either a
Floating Point or WAIT instruction causes interrupt 7. This indicates that the current
FPU context may not belong to the current task.

13 The first word or doubleword of a numeric operand is not entirely within the limit of its
segment. The return address pushed onto the stack of the exception handler points at
the Floating Point instruction that caused the exception, including any prefixes. The
FPU has not executed this instruction; the instruction pointer and data pointer register
refer to a previous, correctly executed instruction.

16 The previous numerics instruction caused an unmasked exception. The address of the
faulty instruction and the address of its operand are stored in the instruction pointer
and data pointer registers. Only Floating Point and WAIT instructions can cause this
interrupt. The Military Intel486 DX, IntelDX2, and IntelDX4 processors return address
pushed onto the stack of the exception handler points to a WAIT or Floating Point
instruction (including prefixes). This instruction can be restarted after clearing the
exception condition in the FPU. The FNINIT, FNCLEX, FNSTSW, FNSTENV, and
FNSAVE instructions can not cause this interrupt.

67

67



MILITARY Intel486TM PROCESSOR FAMILY

5.0 REAL MODE ARCHITECTURE

5.1 Introduction

When the Military Intel486 processor is reset or pow-
ered up, it is initialized in Real Mode. Real Mode has
the same base architecture as the 8086 processor,
except that it allows access to the 32-bit register set
of the Military Intel486 processor. The Military
Intel486 processor addressing mechanism, memory
size and interrupt handling are identical to those of
Real Mode on the 80286 processor.

All of the Military Intel486 processor instructions are
available in Real Mode (except those instructions
listed in section 6.5.4, ‘‘Protection and I/O Permis-
sion Bitmap’’). The default operand size in Real
Mode is 16 bits, as in the 8086 processor. In order to
use the 32-bit registers and addressing modes, over-
ride prefixes must be used. Also, the segment size
on the Military Intel486 processor in Real Mode is
64 Kbytes, forcing 32-bit effective addresses to have
a value less than 0000FFFFH. The primary purpose
of Real Mode is to enable Protected Mode Opera-
tion.

The LOCK prefix on the Military Intel486 processor,
even in Real Mode, is more restrictive than on the
80286 processor. This is due to the addition of pag-
ing on the Military Intel486 processor in Protected
Mode and Virtual 8086 Mode. Paging makes it im-
possible to guarantee that repeated string instruc-
tions can be LOCKed. The Military Intel486 proces-
sor can not require that all pages holding the string
be physically present in memory. Hence, a Page
Fault (exception 14) might have to be taken during
the repeated string instruction. Therefore, the LOCK
prefix can not be supported during repeated string
instructions.

Table 5-1 lists the only instruction forms where the
LOCK prefix is legal on the Military Intel486 proces-
sor.

An exception 6 will be generated if a LOCK prefix is
placed before any instruction form or opcode not
listed above. The LOCK prefix allows indivisible
read/modify/write operations on memory operands
using the instructions above. For example, even the
ADD Reg, Mem is not LOCKable, because the Mem
operand is not the destination (and therefore no
memory read/modify/operation is being performed).

Because, on the Military Intel486 processor, repeat-
ed string instructions are not LOCKable, it is not pos-
sible to LOCK the bus for a long period of time.
Therefore, the LOCK prefix is not IOPL-sensitive on

the Military Intel486 processor. The LOCK prefix can
be used at any privilege level, but only on the in-
struction forms listed above.

Table 5-1. Instruction Forms Where LOCK

Prefix Is Legal

Opcode
Operands

(Dest, Source)

BIT Test and Mem, Reg/immed

SET/RESET/COMPLEMENT

XCHG Reg, Mem

CHG Mem, Reg

ADD, OR, ADC, SBB, AND, Mem, Reg/immed

SUB, XOR

NOT, NEG, INC, DEC Mem

CMPXCHG, XADD Mem, Reg

5.2 Memory Addressing

In Real Mode the maximum memory size is limited to
1 megabyte. (See Figure 5-1.) Thus, only address
lines A2–A19 are active. (Exception, after RESET
address lines A20–A31 are high during CS-relative
memory cycles until an intersegment jump or call is
executed. See section 9.5, ‘‘Reset and Initializa-
tion’’.)

271329–27

Figure 5-1. Real Address Mode Addressing

Because paging is not allowed in Real Mode, the
linear addresses are the same as the physical ad-
dresses. Physical addresses are formed in Real
Mode by adding the contents of the appropriate seg-
ment register, which is shifted left by four bits to an
effective address. This addition results in a physi-
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cal address from 00000000H to 0010FFEFH. This is
compatible with 80286 Real Mode. Because seg-
ment registers are shifted left by 4 bits, Real Mode
segments always start on 16-byte boundaries.

All segments in Real Mode are exactly 64-Kbytes
long, and may be read, written, or executed. The
Military Intel486 processor will generate an excep-
tion 13 if a data operand or instruction fetch occurs
past the end of a segment (i.e., if an operand has an
offset greater than FFFFH, for example, a word with
a low byte at FFFFH and the high byte at 0000H).

Segments may be overlapped in Real Mode. Thus, if
a particular segment does not use all 64 Kbytes, an-
other segment can be overlaid on top of the unused
portion of the previous segment. This allows the pro-
grammer to minimize the amount of physical memo-
ry needed for a program.

5.3 Reserved Locations

There are two fixed areas in memory which are re-
served in Real address mode: system initialization
area and the interrupt table area. Locations 00000H
through 003FFH are reserved for interrupt vectors.
Each one of the 256 possible interrupts has a 4-byte
jump vector reserved for it. Locations FFFFFFF0H
through FFFFFFFFH are reserved for system initiali-
zation.

5.4 Interrupts

Many of the exceptions shown in Table 4-16 and
discussed in section 4.8.3, ‘‘Maskable Interrupt,’’ are
not applicable to Real Mode operation, in particular
exceptions 10, 11, 14, 17, which do not happen in

Real Mode. Other exceptions have slightly different
meanings in Real Mode; Table 5-2 identifies these
exceptions.

5.5 Shutdown and Halt

The HALT instruction stops program execution and
prevents the Military Intel486 processor from using
the local bus until restarted. Either NMI, INTR with
interrupts enabled (IFe1), or RESET will force the
Military Intel486 processor out of halt. If interrupted,
the saved CS:IP will point to the next instruction af-
ter the HLT.

As in the case of protected mode, the shutdown will
occur when a severe error is detected that prevents
further processing. In Real Mode, shutdown can oc-
cur under two conditions, as follows:

# An interrupt or an exception occurs (exceptions 8
or 13) and the interrupt vector is larger than the
Interrupt Descriptor Table (i.e., there is not an in-
terrupt handler for the interrupt).

# A CALL, INT or PUSH instruction attempts to
wrap around the stack segment when SP is not
even (i.e., pushing a value on the stack when SP
e 0001 resulting in a stack segment greater than
FFFFH).

An NMI input can bring the processor out of shut-
down if the Interrupt Descriptor Table limit is large
enough to contain the NMI interrupt vector (at least
0017H) and the stack has enough room to contain
the vector and flag information (i.e., SP is greater
than 0005H). If these conditions are not met, the
Military Intel486 processor is unable to execute the
NMI and executes another shutdown cycle. In this
case, the Military Intel486 processor remains in the
shutdown and can only exit via the RESET input.

Table 5-2. Exceptions with Different Meanings in Real Mode (see Table 4-17)

Function
Interrupt

Related Instructions
Return Address

Number Location

Interrupt table limit too small 8 INT Vector is not within table limit Before Instruction

CS, DS, ES, FS, GS Segment 13 Word memory reference beyond offset e Before Instruction

overrun exception FFFFH.

An attempt to execute past the end of CS

segment.

SS Segment overrun exception 12 Stack Reference beyond offset e FFFFH Before Instruction
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5.0 REAL MODE ARCHITECTURE
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An exception 6 will be generated if a LOCK prefix is
placed before any instruction form or opcode not
listed above. The LOCK prefix allows indivisible
read/modify/write operations on memory operands
using the instructions above. For example, even the
ADD Reg, Mem is not LOCKable, because the Mem
operand is not the destination (and therefore no
memory read/modify/operation is being performed).

Because, on the Military Intel486 processor, repeat-
ed string instructions are not LOCKable, it is not pos-
sible to LOCK the bus for a long period of time.
Therefore, the LOCK prefix is not IOPL-sensitive on

the Military Intel486 processor. The LOCK prefix can
be used at any privilege level, but only on the in-
struction forms listed above.
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BIT Test and Mem, Reg/immed
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XCHG Reg, Mem

CHG Mem, Reg

ADD, OR, ADC, SBB, AND, Mem, Reg/immed

SUB, XOR

NOT, NEG, INC, DEC Mem

CMPXCHG, XADD Mem, Reg

5.2 Memory Addressing

In Real Mode the maximum memory size is limited to
1 megabyte. (See Figure 5-1.) Thus, only address
lines A2–A19 are active. (Exception, after RESET
address lines A20–A31 are high during CS-relative
memory cycles until an intersegment jump or call is
executed. See section 9.5, ‘‘Reset and Initializa-
tion’’.)
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Figure 5-1. Real Address Mode Addressing

Because paging is not allowed in Real Mode, the
linear addresses are the same as the physical ad-
dresses. Physical addresses are formed in Real
Mode by adding the contents of the appropriate seg-
ment register, which is shifted left by four bits to an
effective address. This addition results in a physi-
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cal address from 00000000H to 0010FFEFH. This is
compatible with 80286 Real Mode. Because seg-
ment registers are shifted left by 4 bits, Real Mode
segments always start on 16-byte boundaries.

All segments in Real Mode are exactly 64-Kbytes
long, and may be read, written, or executed. The
Military Intel486 processor will generate an excep-
tion 13 if a data operand or instruction fetch occurs
past the end of a segment (i.e., if an operand has an
offset greater than FFFFH, for example, a word with
a low byte at FFFFH and the high byte at 0000H).

Segments may be overlapped in Real Mode. Thus, if
a particular segment does not use all 64 Kbytes, an-
other segment can be overlaid on top of the unused
portion of the previous segment. This allows the pro-
grammer to minimize the amount of physical memo-
ry needed for a program.

5.3 Reserved Locations

There are two fixed areas in memory which are re-
served in Real address mode: system initialization
area and the interrupt table area. Locations 00000H
through 003FFH are reserved for interrupt vectors.
Each one of the 256 possible interrupts has a 4-byte
jump vector reserved for it. Locations FFFFFFF0H
through FFFFFFFFH are reserved for system initiali-
zation.

5.4 Interrupts

Many of the exceptions shown in Table 4-16 and
discussed in section 4.8.3, ‘‘Maskable Interrupt,’’ are
not applicable to Real Mode operation, in particular
exceptions 10, 11, 14, 17, which do not happen in

Real Mode. Other exceptions have slightly different
meanings in Real Mode; Table 5-2 identifies these
exceptions.

5.5 Shutdown and Halt

The HALT instruction stops program execution and
prevents the Military Intel486 processor from using
the local bus until restarted. Either NMI, INTR with
interrupts enabled (IFe1), or RESET will force the
Military Intel486 processor out of halt. If interrupted,
the saved CS:IP will point to the next instruction af-
ter the HLT.

As in the case of protected mode, the shutdown will
occur when a severe error is detected that prevents
further processing. In Real Mode, shutdown can oc-
cur under two conditions, as follows:

# An interrupt or an exception occurs (exceptions 8
or 13) and the interrupt vector is larger than the
Interrupt Descriptor Table (i.e., there is not an in-
terrupt handler for the interrupt).

# A CALL, INT or PUSH instruction attempts to
wrap around the stack segment when SP is not
even (i.e., pushing a value on the stack when SP
e 0001 resulting in a stack segment greater than
FFFFH).

An NMI input can bring the processor out of shut-
down if the Interrupt Descriptor Table limit is large
enough to contain the NMI interrupt vector (at least
0017H) and the stack has enough room to contain
the vector and flag information (i.e., SP is greater
than 0005H). If these conditions are not met, the
Military Intel486 processor is unable to execute the
NMI and executes another shutdown cycle. In this
case, the Military Intel486 processor remains in the
shutdown and can only exit via the RESET input.

Table 5-2. Exceptions with Different Meanings in Real Mode (see Table 4-17)

Function
Interrupt

Related Instructions
Return Address

Number Location

Interrupt table limit too small 8 INT Vector is not within table limit Before Instruction

CS, DS, ES, FS, GS Segment 13 Word memory reference beyond offset e Before Instruction

overrun exception FFFFH.

An attempt to execute past the end of CS

segment.

SS Segment overrun exception 12 Stack Reference beyond offset e FFFFH Before Instruction
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6.0 PROTECTED MODE
ARCHITECTURE

The complete capabilities of the Military Intel486
processor are unlocked when the Military Intel486
processor operates in Protected Virtual Address
Mode (Protected Mode). Protected Mode vastly in-
creases the linear address space to four Gbytes
(232 bytes) and allows the running of virtual memory
programs of almost unlimited size (64 terabytes or
246 bytes). In addition Protected Mode allows the
Military Intel486 processor to run all of the existing
8086, 80286 and Intel386 processor software, while
providing a sophisticated memory management and
a hardware-assisted protection mechanism. Protect-
ed Mode allows the use of additional instructions es-
pecially optimized for supporting multitasking operat-
ing systems. The base architecture of the Military
Intel486 processor remains the same, the registers,
instructions, and addressing modes described in the
previous sections are retained. The main difference
between Protected Mode and Real Mode from a
programmer’s view is the increased address space
and a different addressing mechanism.

6.1 Addressing Mechanism

Like Real Mode, Protected Mode uses two compo-
nents to form the logical address, a 16-bit selector is
used to determine the linear base address of a seg-
ment, the base address is added to a 32-bit effective
address to form a 32-bit linear address. The linear
address is then either used as the 32-bit physical
address, or if paging is enabled the paging mecha-
nism maps the 32-bit linear address into a 32-bit
physical address.

The difference between the two modes lies in calcu-
lating the base address. In Protected Mode the se-
lector is used to specify an index into an operating
system defined table. (See Figure 6-1.) The table
contains the 32-bit base address of a given seg-
ment. The physical address is formed by adding the
base address obtained from the table to the offset.

Paging provides an additional memory management
mechanism which operates only in Protected Mode.
Paging provides a means of managing the very large
segments of the Military Intel486 processor. As
such, paging operates beneath segmentation. The
paging mechanism translates the protected linear
address which comes from the segmentation unit
into a physical address. Figure 6-2 shows the com-
plete Military Intel486 processor addressing mecha-
nism with paging enabled.

271329–28

Figure 6-1. Protected Mode Addressing
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271329–29

Figure 6-2. Paging and Segmentation

6.2 Segmentation

6.2.1 SEGMENTATION INTRODUCTION

Segmentation is one method of memory manage-
ment. Segmentation provides the basis for protec-
tion. Segments are used to encapsulate regions of
memory which have common attributes. For exam-
ple, all of the code of a given program could be con-
tained in a segment, or an operating system table
may reside in a segment. All information about a
segment is stored in an 8-byte data structure called
a descriptor. All of the descriptors in a system are
contained in tables recognized by hardware.

6.2.2 TERMINOLOGY

The following terms are used throughout the discus-
sion of descriptors, privilege levels and protection:

PL: Privilege LevelÐOne of the four hierarchical
privilege levels. Level 0 is the most privileged level
and level 3 is the least privileged. More privileged
levels are numerically smaller than less privileged
levels.

RPL: Requester Privilege LevelÐThe privilege level
of the original supplier of the selector. RPL is deter-
mined by the least two significant bits of a selector.

DPL: Descriptor Privilege LevelÐThis is the least
privileged level at which a task may access that de-
scriptor (and the segment associated with that de-
scriptor). Descriptor Privilege Level is determined by
bits 6:5 in the Access Right Byte of a descriptor.

CPL: Current Privilege LevelÐThe privilege level at
which a task is currently executing, which equals the
privilege level of the code segment being executed.
CPL can also be determined by examining the low-
est 2 bits of the CS register, except for conforming
code segments.

EPL: Effective Privilege LevelÐThe effective privi-
lege level is the least privileged of the RPL and DPL.
Because smaller privilege level values indicate
greater privilege, EPL is the numerical maximum of
RPL and DPL.

Task: One instance of the execution of a program.
Tasks are also referred to as processes.
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6.2.3 DESCRIPTOR TABLES

6.2.3.1 Descriptor Tables Introduction

The descriptor tables define all of the segments
which are used in a Military Intel486 processor sys-
tem. (See Figure 6-3.) There are three types of ta-
bles on the Military Intel486 processor which hold
descriptors: the Global Descriptor Table, Local De-
scriptor Table, and the Interrupt Descriptor Table. All
of the tables are variable length memory arrays.
They can range in size between 8 bytes and
64 Kbytes. Each table can hold up to 8192 8-byte
descriptors. The upper 13 bits of a selector are used
as an index into the descriptor table. The tables
have registers associated with them which hold the
32-bit linear base address, and the 16-bit limit of
each table.

Each of the tables has a register associated with it,
the GDTR, LDTR, and the IDTR (see Figure 6-3).
The LGDT, LLDT, and LIDT instructions, load the
base and limit of the Global, Local, and Interrupt De-
scriptor Tables, respectively, into the appropriate
register. The SGDT, SLDT, and SIDT store the base
and limit values. These tables are manipulated by
the operating system. Therefore, the load descriptor
table instructions are privileged instructions.

271329–30

Figure 6-3. Descriptor Table Registers

6.2.3.2 Global Descriptor Table

The Global Descriptor Table (GDT) contains de-
scriptors which are possibly available to all of the
tasks in a system. The GDT can contain any type of
segment descriptor except for descriptors which are
used for servicing interrupts (i.e., interrupt and trap
descriptors). Every Military Intel486 processor sys-
tem contains a GDT. Generally the GDT contains
code and data segments used by the operating sys-
tems and task state segments, and descriptors for
the LDTs in a system.

The first slot of the Global Descriptor Table corre-
sponds to the null selector and is not used. The null
selector defines a null pointer value.

6.2.3.3 Local Descriptor Table

LDTs contain descriptors which are associated with
a given task. Generally, operating systems are de-
signed so that each task has a separate LDT. The
LDT may contain only code, data, stack, task gate,
and call gate descriptors. LDTs provide a mecha-
nism for isolating a given task’s code and data seg-
ments from the rest of the operating system, while
the GDT contains descriptors for segments which
are common to all tasks. A segment cannot be ac-
cessed by a task if its segment descriptor does not
exist in either the current LDT or the GDT. This pro-
vides both isolation and protection for a task’s seg-
ments, while still allowing global data to be shared
among tasks.

Unlike the 6-byte GDT or IDT registers which contain
a base address and limit, the visible portion of the
LDT register contains only a 16-bit selector. This se-
lector refers to a Local Descriptor Table descriptor in
the GDT.

6.2.3.4 Interrupt Descriptor Table

The third table needed for Military Intel486 proces-
sor systems is the Interrupt Descriptor Table. (See
Figure 6-4.) The IDT contains the descriptors which
point to the location of up to 256 interrupt service
routines. The IDT may contain only task gates, inter-
rupt gates, and trap gates. The IDT should be at
least 256 bytes in size in order to hold the descrip-
tors for the 32 Intel Reserved Interrupts. Every inter-
rupt used by a system must have an entry in the IDT.
The IDT entries are referenced via INT instructions,
external interrupt vectors, and exceptions. (See sec-
tion 4.8, ‘‘Interrupts.’’)
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Figure 6-4. Interrupt Descriptor Table

Register Use

6.2.4 DESCRIPTORS

6.2.4.1 Descriptor Attribute Bits

The object to which the segment selector points to
is called a descriptor. Descriptors are eight-byte
quantities that contain attributes about a given re-
gion of linear address space (i.e., a segment). These
attributes include the 32-bit base linear address of
the segment, the 20-bit length and granularity of the
segment, the protection level, read, write or execute
privileges, the default size of the operands (16-bit or
32-bit), and the type of segment. All of the attribute
information about a segment is contained in 12 bits
in the segment descriptor. All segments on the
Military Intel486 processor have three attribute fields
in common: the P bit, the DPL bit, and the S bit. The
Present P bit is 1 if the segment is loaded in physical
memory. If Pe0, any attempt to access this seg-
ment will cause a not present exception (exception
11). The Descriptor Privilege Level DPL is a two-bit
field that specifies the protection level 0–3 associat-
ed with a segment.

The Military Intel486 processor has two main cate-
gories of segments: system segments and non-sys-
tem segments (for code and data). The segment S
bit in the segment descriptor determines if a given
segment is a system segment or a code or data seg-
ment. If the S bit is 1, the segment is either a code or
data segment. If it is 0, the segment is a system
segment.

6.2.4.2 Military Intel486 Processor Code, Data
Descriptors (Se1)

Figure 6-5 shows the general format of a code and
data descriptor and Table 6-1 illustrates how the bits
in the Access Rights Byte are interpreted. The Ac-
cess Rights Bytes is bits 24–31 associated with the
segment limit.

Code and data segments have several descriptor
fields in common. The accessed A bit is set whenev-
er the processor accesses a descriptor. The A bit is
used by operating systems to keep usage statistics
on a given segment. The G bit, or granularity bit,
specifies if a segment length is byte-granular or
page-granular. Military Intel486 processor segments
can be one megabyte long with byte granularity
(Ge0) or four gigabytes with page granularity
(Ge1), (i.e., 220 pages each page is 4 Kbytes in
length). The granularity is totally unrelated to paging.
A Military Intel486 processor system can consist of
segments with byte granularity, and page granularity,
whether or not paging is enabled.

The executable E bit tells if a segment is a code or
data segment. A code segment (Ee1, Se1) may be
execute-only or execute/read as determined by the
Read R bit. Code segments are execute only if
Re0, and execute/read if Re1. Code segments
may never be written into.

NOTE:
Code segments may be modified via aliases.
Aliases are writeable data segments which
occupy the same range of linear address
space as the code segment.

The D bit indicates the default length for operands
and effective addresses. If De1 then 32-bit oper-
ands and 32-bit addressing modes are assumed. If
De0 then 16-bit operands and 16-bit addressing
modes are assumed. Therefore all existing 80286
code segments will execute on the Military Intel486
processor assuming the D bit is set 0.

Another attribute of code segments is determined by
the conforming C bit. Conforming segments, Ce1,
can be executed and shared by programs at differ-
ent privilege levels. (See section 6.3, ‘‘Protection.’’)
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BASE Base Address of the segment
LIMIT The length of the segment
P Present Bit 1ePresent, 0eNot Present
DPL Descriptor Privilege Level 0–3
S Segment Descriptor 0eSystem Descriptor, 1eCode or Data Segment Descriptor
TYPE Type of Segment
A Accessed Bit
G Granularity Bit 1eSegment length is page granular, 0eSegment length is byte granular
D Default Operation Size (recognized in code segment descriptors only)

1e32-bit segment, 0e16-bit segment
0 Bit must be zero (0) for compatibility with future processors
AVL Available field for user or OS

NOTE:
In a maximum-size segment (i.e., a segment with Ge1 and segment limit 19. . .0eFFFFFH), the lowest 12 bits of the
segment base should be zero (i.e., segment base 11. . .000e000H).

Figure 6-5. Segment Descriptors

Table 6-1. Access Rights Byte Definition for Code and Data Descriptions

Bit
Name Function

Position

7 Present (P) P e 1 Segment is mapped into physical memory.

P e 0 No mapping to physical memory exits, base and

limit are not used.

6–5 Descriptor Privilege Segment privilege attribute used in privilege tests.

Level (DPL)

4 Segment S e 1 Code or Data (includes stacks) segment descriptor.

Descriptor (S) S e 0 System Segment Descriptor or Gate Descriptor.

If Data Segment (S e 1, E e 0)

3 Executable (E) E e 0 Descriptor type is data segment:

2 Expansion ED e 0 Expand up segment, offsets must be s limit.

Direction (ED) ED e 1 Expand down segment, offsets must be l limit.

1 Writeable (W) W e 0 Data segment may not be written into.

W e 1 Data segment may be written into.

If Code Segment (S e 1, E e 1)

3 Executable (E) E e 1 Descriptor type is code segment:

2 Conforming (C) C e 1 Code segment may only be executed when CPL t

DPL and CPL remains unchanged.

1 Readable (R) R e 0 Code segment may not be read.

R e 1 Code segment may be read.

0 Accessed (A) A e 0 Segment has not been accessed.

A e 1 Segment selector has been loaded into segment

register or used by selector test instructions.
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Segments identified as data segments (Ee0, Se1)
are used for two types of Military Intel486 processor
segments: stack and data segments. The expansion
direction (ED) bit specifies if a segment expands
downward (stack) or upward (data). If a segment is a
stack segment all offsets must be greater than the
segment limit. On a data segment all offsets must be
less than or equal to the limit. In other words, stack
segments start at the base linear address plus the
maximum segment limit and grow down to the base
linear address plus the limit. On the other hand, data
segments start at the base linear address and ex-
pand to the base linear address plus limit.

The write W bit controls the ability to write into a
segment. Data segments are read-only if We0. The
stack segment must have We1.

The B bit controls the size of the stack pointer regis-
ter. If Be1, then PUSHes, POPs, and CALLs all use
the 32-bit ESP register for stack references and as-
sume an upper limit of FFFFFFFFH. If Be0, stack
instructions all use the 16-bit SP register and as-
sume an upper limit of FFFFH.

6.2.4.3 System Descriptor Formats

System segments describe information about oper-
ating system tables, tasks, and gates. Figure 6-6
shows the general format of system segment de-
scriptors, and the various types of system segments.
Military Intel486 processor system descriptors con-
tain a 32-bit base linear address and a 20-bit seg-
ment limit. 80286 system descriptors have a 24-bit
base address and a 16-bit segment limit. 80286 sys-
tem descriptors are identified by the upper 16 bits
being all zero.

6.2.4.4 LDT Descriptors (Se0, TYPEe2)

LDT descriptors (Se0, TYPEe2) contain informa-
tion about Local Descriptor Tables. LDTs contain a
table of segment descriptors, unique to a particular
task. Because the instruction to load the LDTR is
only available at privilege level 0, the DPL field is
ignored. LDT descriptors are only allowed in the
Global Descriptor Table (GDT).
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Type Defines
0 Invalid
1 Available 80286 TSS
2 LDT
3 Busy 80286 TSS
4 80286 call gate
5 Task Gate (for 80286, Military Intel486TM

processor task)
6 80286 interrupt gate
7 80286 trap gate

8 Invalid
9 Available Military Intel486 processor TSS
A Undefined (Intel Reserved)
B Busy Military Intel486 processor TSS
C Military Intel486 processor call gate
D Undefined (Intel Reserved)
E Military Intel486 processor
F Military Intel486 processor

Figure 6-6. System Segment Descriptors
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6.2.4.5 TSS Descriptors
(Se0, TYPEe1, 3, 9, B)

A Task State Segment (TSS) descriptor contains in-
formation about the location, size, and privilege level
of a Task State Segment (TSS). A TSS in turn is a
special fixed format segment which contains all the
state information for a task and a linkage field to
permit nesting tasks. The TYPE field is used to indi-
cate whether the task is currently BUSY (i.e., on a
chain of active tasks) or the TSS is available. The
TYPE field also indicates if the segment contains an
80286 processor TSS or a Military Intel486 proces-
sor TSS. The Task Register (TR) contains the selec-
tor which points to the current Task State Segment.

6.2.4.6 Gate Descriptors
(Se0, TYPEe4–7, C, F)

Gates are used to control access to entry points
within the target code segment. The various types of
gate descriptors are call gates, task gates, inter-
rupt gates, and trap gates. Gates provide a level

of indirection between the source and destination of
the control transfer. This indirection allows the proc-
essor to automatically perform protection checks. It
also allows system designers to control entry points
to the operating system. Call gates are used to
change privilege levels (see section 6.3, ‘‘Protec-
tion’’), task gates are used to perform a task switch,
and interrupt and trap gates are used to specify in-
terrupt service routines.

Figure 6-7 shows the format of the four types of gate
descriptors. Call gates are primarily used to transfer
program control to a more privileged level. The call
gate descriptor consists of three fields: the access
byte, a long pointer (selector and offset) which
points to the start of a routine and a word count
which specifies how many parameters are to be cop-
ied from the caller’s stack to the stack of the called
routine. The word count field is only used by call
gates when there is a change in the privilege level,
other types of gates ignore the word count field.
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Gate Descriptor Fields

Name Value Description
Type 4 80286 call gate

5 Task gate (for 80286 or Military Intel486 processor task)
6 80286 interrupt gate
7 80286 trap gate
C Military Intel486TM processor call gate
E Military Intel486 processor interrupt gate
F Military Intel486 processor trap gate

P 0 Descriptor contents are not valid
1 Descriptor contents are valid

DPLÐleast privileged level at which a task may access the gate. WORD COUNT 0–31Ðthe number of parameters to
copy from caller’s stack to the called procedure’s stack. The parameters are 32-bit quantities for Military Intel486 proc-
essor gates, and 16-bit quantities for 80286 gates.
DESTINATION 16-bit Selector to the target code segment
SELECTOR selector or

Selector to the target task state segment for task gate
DESTINATION offset Entry point within the target code segment
OFFSET 16-bit 80286

32-bit Military Intel486 processor

Figure 6-7. Gate Descriptor Formats
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Interrupt and trap gates use the destination selector
and destination offset fields of the gate descriptor as
a pointer to the start of the interrupt or trap handler
routines. The difference between interrupt gates and
trap gates is that the interrupt gate disables inter-
rupts (resets the IF bit), while the trap gate does not.

Task gates are used to switch tasks. Task gates
may only refer to a task state segment. (See section
6.3.6, ‘‘Task Switching.’’) Therefore, only the desti-
nation selector portion of a task gate descriptor is
used, and the destination offset is ignored.

Exception 13 is generated when a destination selec-
tor does not refer to a correct descriptor type, i.e., a
code segment for an interrupt, trap or call gate, a
TSS for a task gate.

The access byte format is the same for all gate de-
scriptors. Pe1 indicates that the gate contents are
valid. Pe0 indicates the contents are not valid and
causes exception 11 if referenced. DPL is the de-
scriptor privilege level and specifies when this de-
scriptor may be used by a task. (See section 6.3,
‘‘Protection.’’) The S field, bit 4 of the access rights
byte, must be 0 to indicate a system control descrip-
tor. The type field specifies the descriptor type as
indicated in Figure 6-7.

6.2.4.7 Differences Between Military Intel486
Processor and 80286 Descriptors

In order to provide operating system compatibility
between 80286 and Military Intel486 processors, the

Military Intel486 processor supports all of the 80286
segment descriptors. Figure 6-8 shows the general
format of an 80286 system segment descriptor. The
only differences between 80286 and Military
Intel486 processor descriptor formats are that the
values of the type fields, and the limit and base ad-
dress fields have been expanded for the Military
Intel486 processor. The 80286 system segment de-
scriptors contained a 24-bit base address and 16-bit
limit, while the Military Intel486 processor system
segment descriptors have a 32-bit base address, a
20-bit limit field, and a granularity bit.

By supporting 80286 system segments the Military
Intel486 processor is able to execute 80286 applica-
tion programs on a Military Intel486 processor oper-
ating system. This is possible because the Military
Intel486 processor automatically understands which
descriptors are 80286-style descriptors and which
descriptors are Military Intel486 processor-style de-
scriptors. In particular, if the upper word of a descrip-
tor is zero, then that descriptor is an 80286-style
descriptor.

The only other differences between 80286-style de-
scriptors and Military Intel486 processor descriptors
is the interpretation of the word count field of call
gates and the B bit. The word count field specifies
the number of 16-bit quantities to copy for 80286 call
gates and 32-bit quantities for Military Intel486 proc-
essor call gates. The B bit controls the size of
PUSHes when using a call gate; if Be0 PUSHes are
16 bits, if Be1 PUSHes are 32 bits.
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BASE Base Address of the segment
LIMIT The length of the segment
P Present Bit: 1ePresent, 0eNot Present
DPL Descriptor Privilege Level 0–3
S System Descriptor: 0eSystem, 1eUser
TYPE Type of Segment

Figure 6-8. 80286 Code and Data Segment Descriptors
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6.2.4.8 Selector Fields

A selector in Protected Mode has three fields: Local
or Global Descriptor Table Indicator (TI), Descriptor
Entry Index (Index), and Requester (the selector’s)
Privilege Level (RPL) as shown in Figure 6-9. The TI
bits select one of two memory-based tables of de-
scriptors (the Global Descriptor Table or the Local
Descriptor Table). The Index selects one of 8K de-
scriptors in the appropriate descriptor table. The
RPL bits allow high speed testing of the selector’s
privilege attributes.

6.2.4.9 Segment Descriptor Cache

In addition to the selector value, every segment reg-
ister has a segment descriptor cache register asso-
ciated with it. Whenever a segment register’s con-
tents are changed, the 8-byte descriptor associated
with that selector is automatically loaded (cached)
on the chip. Once loaded, all references to that seg-
ment use the cached descriptor information instead
of reaccessing the descriptor. The contents of the

descriptor cache are not visible to the programmer.
Because descriptor caches only change when a
segment register is changed, programs that modify
the descriptor tables must reload the appropriate
segment registers after changing a descriptor’s val-
ue.

6.2.4.10 Segment Descriptor Register Settings

The contents of the segment descriptor cache vary
depending on the mode the Military Intel486 proces-
sor is operating in. When operating in Real Address
Mode, the segment base, limit, and other attributes
within the segment cache registers are defined as
shown in Figure 6-10. For compatibility with the 8086
architecture, the base is set to sixteen times the cur-
rent selector value, the limit is fixed at 0000FFFFH,
and the attributes are fixed so as to indicate the seg-
ment is present and fully usable. In Real Address
Mode, the internal ‘‘privilege level’’ is always fixed to
the highest level, level 0, so I/O and other privileged
opcodes may be executed.
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Figure 6-9. Example Descriptor Selection
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*Except the 32-bit CS base is initialized to FFFFF000H after reset until first intersegment control transfer (i.e., interseg-
ment CALL, or intersegment JMP, or INT). (See Figure 6-12 for an example.)

Key:
Y e yes D e expand down
N e no B e byte granularity
0 e privilege level 0 P e page granularity
1 e privilege level 1 W e push/pop 16-bit words
2 e privilege level 2 F e push/pop 32-bit dwords
3 e privilege level 3 Ð e does not apply to that segment cache register
U e expand up

Figure 6-10. Segment Descriptor Caches for Real Address Mode

(Segment Limit and Attributes Are Fixed)

When operating in Protected Mode, the segment
base, limit, and other attributes within the segment
cache registers are defined as shown in Figure 6-11.
In Protected Mode, each of these fields are defined
according to the contents of the segment descriptor
indexed by the selector value loaded into the seg-
ment register.

When operating in a Virtual 8086 Mode within the
Protected Mode, the segment base, limit, and other

attributes within the segment cache registers are de-
fined as shown in Figure 6-12. For compatibility with
the 8086 architecture, the base is set to sixteen
times the current selector value, the limit is fixed at
0000FFFFH, and the attributes are fixed so as to
indicate the segment is present and fully usable. The
virtual program executes at lowest privilege level,
level 3, to allow trapping of all IOPL-sensitive in-
structions and level-0-only instructions.
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Key:
Y e fixed yes
N e fixed no
d e per segment descriptor
p e per segment descriptor; descriptor must indicate ‘‘present’’ to avoid exception 11

(exception 12 in case of SS)
r e per segment descriptor, but descriptor must indicate ‘‘readable’’ to avoid exception 13

(special case for SS)
w e per segment descriptor, but descriptor must indicate ‘‘writeable’’ to avoid exception 13

(special case for SS)
Ð e does not apply to that segment cache register

Figure 6-11. Segment Descriptor Caches for Protected Mode (Loaded per Descriptor)
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Key:
Y e yes D e expand down
N e no B ebyte granularity
0 e privilege level 0 P e page granularity
1 e privilege level 1 W e push/pop 16-bit words
2 e privilege level 2 F e push/pop 32-bit dwords
3 e privilege level 3 Ð e does not apply to that segment cache register
U e expand up

Figure 6-12. Segment Descriptor Caches for Virtual 8086 Mode within Protected Mode

(Segment Limit and Attributes are Fixed)

6.3 Protection

6.3.1 PROTECTION CONCEPTS

The Military Intel486 processor has four levels of
protection which are optimized to support the needs
of a multitasking operating system to isolate and
protect user programs from each other and the op-
erating system. The privilege levels control the use
of privileged instructions, I/O instructions, and ac-
cess to segments and segment descriptors. Unlike
traditional processor-based systems where this pro-
tection is achieved only through the use of complex
external hardware and software the Military Intel486

processor provides the protection as part of its inte-
grated Memory Management Unit. The Military
Intel486 processor offers an additional type of pro-
tection on a page basis, when paging is enabled
(See section 6.4.3, ‘‘Page Level Protection.’’)

The four-level hierarchical privilege system is illus-
trated in Figure 6-13. It is an extension of the user/
supervisor privilege mode commonly used by mini-
computers and, in fact, the user/supervisor mode is
fully supported by the Military Intel486 processor
paging mechanism. The privilege levels (PL) are
numbered 0 through 3. Level 0 is the most privileged
or trusted level.
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Figure 6-13. Four-Level Hierarchical Protection

6.3.2 RULES OF PRIVILEGE

The Military Intel486 processor controls access to
both data and procedures between levels of a task,
according to the following rules.

# Data stored in a segment with privilege level p
can be accessed only by code executing at a
privilege level at least as privileged as p.

# A code segment/procedure with privilege level p
can only be called by a task executing at the
same or a lesser privilege level than p.

6.3.3 PRIVILEGE LEVELS

6.3.3.1 Task Privilege

At any point in time, a task on the Military Intel486
processor always executes at one of the four privi-
lege levels. The Current Privilege Level (CPL) speci-
fies the task’s privilege level. A task’s CPL may only
be changed by control transfers through gate de-
scriptors to a code segment with a different privilege
level. (See section 6.3.4, ‘‘Privilege Level Trans-
fers.’’) Thus, an application program running at PL e

3 may call an operating system routine at PL e 1
(via a gate) which would cause the task’s CPL to be
set to 1 until the operating system routine was fin-
ished.

6.3.3.2 Selector Privilege (RPL)

The privilege level of a selector is specified by the
RPL field. The RPL is the two least significant bits of
the selector. The selector’s RPL is only used to es-
tablish a less trusted privilege level than the current
privilege level for the use of a segment. This level is
called the task’s effective privilege level (EPL). The
EPL is defined as being the least privileged (i.e., nu-
merically larger) level of a task’s CPL and a selec-
tor’s RPL. Thus, if selector’s RPL e 0 then the CPL
always specifies the privilege level for making an ac-
cess using the selector. On the other hand if RPL e

3 then a selector can only access segments at level
3 regardless of the task’s CPL. The RPL is most
commonly used to verify that pointers passed to an
operating system procedure do not access data that
is of higher privilege than the procedure that origi-
nated the pointer. Because the originator of a selec-
tor can specify any RPL value, the Adjust RPL
(ARPL) instruction is provided to force the RPL bits
to the originator’s CPL.

6.3.3.3 I/O Privilege and I/O Permission Bitmap

The I/O privilege level (IOPL, a 2-bit field in the
EFLAG register) defines the least privileged level at
which I/O instructions can be unconditionally per-
formed. I/O instructions can be unconditionally per-
formed when CPL t IOPL. (The I/O instructions are
IN, OUT, INS, OUTS, REP INS, and REP OUTS.)
When CPL l IOPL, and the current task is associat-
ed with a 286 TSS, attempted I/O instructions cause
an exception 13 fault. When CPL l IOPL, and the
current task is associated with a Military Intel486
processor TSS, the I/O Permission Bitmap (part of a
Military Intel486 processor TSS) is consulted on
whether I/O to the port is allowed, or an exception
13 fault is to be generated instead. For diagrams of
the I/O Permission Bitmap, refer to Figure 6-14 and
Figure 6-15. For further information on how the I/O
Permission Bitmap is used in Protected Mode or in
Virtual 8086 Mode, refer to section 6.5.4, ‘‘Protec-
tion and I/O Permission Bitmap.’’

The I/O privilege level (IOPL) also affects whether
several other instructions can be executed or cause
an exception 13 fault instead. These instructions are
called ‘‘IOPL-sensitive’’ instructions and they are
CLI and STI. (Note that the LOCK prefix is not IOPL-
sensitive on the Military Intel486 processor.)
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Figure 6-14. Military Intel486TM Processor TSS and TSS Registers
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I/O Ports Accessible: 2x9, 12, 13, 15, 20x24, 27, 33, 34, 40, 41, 48, 50, 52, 53, 58x60, 62, 63, 96x127

Figure 6-15. Sample I/O Permission Bit Map

The IOPL also affects whether the IF (interrupts en-
able flag) bit can be changed by loading a value into
the EFLAGS register. When CPL t IOPL, then the
IF bit can be changed by loading a new value into
the EFLAGS register. When CPL l IOPL, the IF bit
cannot be changed by a new value POPed into (or
otherwise loaded into) the EFLAGS register; the IF
bit merely remains unchanged and no exception is
generated.

6.3.3.4 Privilege Validation

The Military Intel486 processor provides several in-
structions to speed pointer testing and help maintain
system integrity by verifying that the selector value
refers to an appropriate segment. Table 6-2 summa-
rizes the selector validation procedures available for
the Military Intel486 processor.

This pointer verification prevents the common prob-
lem of an application at PL e 3 calling a operating
systems routine at PL e 0 and passing the operat-
ing system routine a ‘‘bad’’ pointer which corrupts a
data structure belonging to the operating system. If
the operating system routine uses the ARPL instruc-
tion to ensure that the RPL of the selector has no
greater privilege than that of the caller, then this
problem can be avoided.

6.3.3.5 Descriptor Access

There are basically two types of segment accesses:
those involving code segments such as control
transfers, and those involving data accesses. Deter-
mining the ability of a task to access a segment in-
volves the type of segment to be accessed, the in-
struction used, the type of descriptor used and CPL,
RPL, and DPL as described above.

Table 6-2. Pointer Test Instructions

Instruction Operands Function

ARPL Selector, Adjust Requested Privilege Level: adjusts the RPL of the selector to the numeric
maximum of current selector RPL value and the RPL value in the register. SetRegister
zero flag if selector RPL was changed.

VERR Selector VERify for Read: sets the zero flag if the segment referred to by the selector can
be read.

VERW Selector VERify for Write: sets the zero flag if the segment referred to by the selector can
be written.

LSL Register, Load Segment Limit: reads the segment limit into the register if privilege rules
and descriptor type allow. Set zero flag if successful.Selector

LAR Register, Load Access Rights: reads the descriptor access rights byte into the register if
privilege rules allow. Set zero flag if successful.Selector
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Any time an instruction loads data segment registers
(DS, ES, FS, GS) the Military Intel486 processor
makes protection validation checks. Selectors load-
ed in the DS, ES, FS, GS registers must refer only to
data segments or readable code segments. The
data access rules are specified in section 6.3.2,
‘‘Rules of Privilege.’’ The only exception to those
rules is readable conforming code segments which
can be accessed at any privilege level.

Finally the privilege validation checks are performed.
The CPL is compared to the EPL and if the EPL is
more privileged than the CPL an exception 13 (gen-
eral protection fault) is generated.

The rules regarding the stack segment are slightly
different than those involving data segments. In-
structions that load selectors into SS must refer to
data segment descriptors for writeable data seg-
ments. The DPL and RPL must equal the CPL. All
other descriptor types or a privilege level violation
will cause exception 13. A stack not present fault
causes exception 12. Note that an exception 11 is
used for a not-present code or data segment.

6.3.4 PRIVILEGE LEVEL TRANSFERS

Inter-segment control transfers occur when a selec-
tor is loaded in the CS register. For a typical system
most of these transfers are simply the result of a call
or a jump to another routine. There are five types of
control transfers which are summarized in Table 6-3.
Many of these transfers result in a privilege level
transfer. Changing privilege levels is done only via
control transfers, by using gates, task switches, and
interrupt or trap gates.

Control transfers can only occur if the operation
which loaded the selector references the correct de-
scriptor type. Any violation of these descriptor usage
rules will cause an exception 13 (e.g., JMP through a
call gate, or IRET from a normal subroutine call).

In order to provide further system security, all control
transfers are also subject to the privilege rules.

Table 6-3. Descriptor Types Used for Control Transfer

Control Transfer Types Operation Types
Descriptor Descriptor

Referenced Table

Intersegment within the same privilege level JMP, CALL, RET, IRET* Code Segment GDT/LDT

Intersegment to the same or higher privilege CALL Call Gate GDT/LDT
level

Interrupt within task may change CPL Interrupt Instruction, Trap or Interrupt IDT

Exception, External Gate

Interrupt

Intersegment to a lower privilege level (changes RET, IRET(1) Code Segment GDT/LDT
task CPL)

CALL, JMP Task State GDT

Segment

Task Switch CALL, JMP Task Gate GDT/LDT

IRET(2) Task Gate IDT

Interrupt Instruction,

Exception, External

Interrupt

NOTES:
1. NT (Nested Task bit of flag register) e 0
2. NT (Nested Task bit of flag register) e 1
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The privilege rules require that:

# Privilege level transitions can only occur via
gates.

# JMPs can be made to a non-conforming code
segment with the same privilege or to a conform-
ing code segment with greater or equal privilege.

# CALLs can be made to a non-conforming code
segment with the same privilege or via a gate to a
more privileged level.

# Interrupts handled within the task obey the same
privilege rules as CALLs.

# Conforming Code segments are accessible by
privilege levels which are the same or less privi-
leged than the conforming-code segment’s DPL.

# Both the requested privilege level (RPL) in the
selector pointing to the gate and the task’s CPL
must be of equal or greater privilege than the
gate’s DPL.

# The code segment selected in the gate must be
the same or more privileged than the task’s CPL.

# Return instructions that do not switch tasks can
only return control to a code segment with same
or less privilege.

# Task switches can be performed by a CALL,
JMP, or INT which references either a task gate
or task state segment who’s DPL is less privi-
leged or the same privilege as the old task’s CPL.

Any control transfer that changes CPL within a task
causes a change of stacks as a result of the privi-
lege level change. The initial values of SS:ESP for
privilege levels 0, 1, and 2 are retained in the task
state segment. (See section 6.3.6, ‘‘Task Switch-
ing.’’) During a JMP or CALL control transfer, the
new stack pointer is loaded into the SS and ESP
registers and the previous stack pointer is pushed
onto the new stack.

When RETurning to the original privilege level, use
of the lower-privileged stack is restored as part of
the RET or IRET instruction operation. For subrou-
tine calls that pass parameters on the stack and
cross privilege levels, a fixed number of words (as
specified in the gate’s word count field) are copied
from the previous stack to the current stack. The
inter-segment RET instruction with a stack adjust-
ment value will correctly restore the previous stack
pointer upon return.

6.3.5 CALL GATES

Gates provide protected, indirect CALLs. One of the
major uses of gates is to provide a secure method of
privilege transfers within a task. Because the operat-
ing system defines all of the gates in a system, it can
ensure that all gates only allow entry into a few trust-
ed procedures (such as those which allocate memo-
ry, or perform I/O).

Gate descriptors follow the data access rules of priv-
ilege; that is, gates can be accessed by a task if the
EPL, is equal to or more privileged than the gate
descriptor’s DPL. Gates follow the control transfer
rules of privilege and therefore may only transfer
control to a more privileged level.

Call Gates are accessed via a CALL instruction and
are syntactically identical to calling a normal subrou-
tine. When an inter-level Military Intel486 processor
call gate is activated, the following actions occur.

1. Load CS:EIP from gate check for validity

2. SS is pushed zero-extended to 32 bits

3. ESP is pushed

4. Copy Word Count 32-bit parameters from the old
stack to the new stack

5. Push Return address on stack

The procedure is identical for 80286 Call gates, ex-
cept that 16-bit parameters are copied and 16-bit
registers are pushed.

Interrupt Gates and Trap gates work in a similar
fashion as the call gates, except there is no copying
of parameters. The only difference between Trap
and Interrupt gates is that control transfers through
an Interrupt gate disable further interrupts (i.e., the
IF bit is set to 0), and Trap gates leave the interrupt
status unchanged.

6.3.6 TASK SWITCHING

A very important attribute of any multitasking/multi-
user operating system is its ability to rapidly switch
between tasks or processes. The Military Intel486
processor directly supports this operation by provid-
ing a task switch instruction in hardware. The Military
Intel486 processor task switch operation saves the
entire state of the machine (all of the registers, ad-
dress space, and a link to the previous task), loads a
new execution state, performs protection checks,
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and commences execution in the new task, in about
10 microseconds. Like transfer of control via gates,
the task switch operation is invoked by executing an
inter-segment JMP or CALL instruction which refers
to a Task State Segment (TSS), or a task gate de-
scriptor in the GDT or LDT. An INT n instruction,
exception, trap, or external interrupt may also invoke
the task switch operation if there is a task gate de-
scriptor in the associated IDT descriptor slot.

The TSS descriptor points to a segment (see Figure
6-14) containing the entire Military Intel486 proces-
sor execution state while a task gate descriptor con-
tains a TSS selector. The Military Intel486 processor
supports both 80286 and Military Intel486 processor
style TSSs. Figure 6-16 shows an 80286 TSS. The
limit of a Military Intel486 processor TSS must be
greater than 0064H (002BH for an 80286 TSS), and
can be as large as 4 Gbytes. In the additional TSS
space, the operating system is free to store addition-
al information such as the reason the task is inac-
tive, time the task has spent running, and open files
belong to the task.

271329–43

Figure 6-16. 80286 TSS

Each task must have a TSS associated with it. The
current TSS is identified by a special register in the
Military Intel486 processor called the Task State
Segment Register (TR). This register contains a se-
lector referring to the task state segment descriptor
that defines the current TSS. A hidden base and limit
register associated with TR are loaded whenever TR
is loaded with a new selector. Returning from a task
is accomplished by the IRET instruction. When IRET
is executed, control is returned to the task which
was interrupted. The current executing task’s state
is saved in the TSS and the old task state is restored
from its TSS.

Several bits in the flag register and machine status
word (CR0) give information about the state of a
task which are useful to the operating system. The
Nested Task (NT) (bit 14 in EFLAGS) controls the
function of the IRET instruction. If NT e 0, the IRET
instruction performs the regular return; when
NT e 1, IRET performs a task switch operation
back to the previous task. The NT bit is set or reset
in the following fashion:

When a CALL or INT instruction initiates a task
switch, the new TSS will be marked busy and the
back link field of the new TSS set to the old TSS
selector. The NT bit of the new task is set by CALL
or INT initiated task switches. An interrupt that does
not cause a task switch will clear NT. (The NT bit will
be restored after execution of the interrupt handler)
NT may also be set or cleared by POPF or IRET
instructions.

The Military Intel486 processor task state segment
is marked busy by changing the descriptor type field
from TYPE 9H to TYPE BH. An 80286 TSS is
marked busy by changing the descriptor type field
from TYPE 1 to TYPE 3. Use of a selector that refer-
ences a busy task state segment causes an excep-
tion 13.

The Virtual Mode (VM) bit 17 is used to indicate if a
task, is a virtual 8086 task. If VM e 1, then the tasks
will use the Real Mode addressing mechanism. The
virtual 8086 environment is only entered and exited
via a task switch. (See section 6.5, ‘‘Virtual 8086
Environment.’’)

The T bit in the Military Intel486 processor TSS indi-
cates that the processor should generate a debug
exception when switching to a task. If T e 1, upon
entry to a new task, a debug exception 1 will be
generated.
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6.3.6.1 Floating Point Task Switching

The FPU’s state is not automatically saved when a
task switch occurs, because the incoming task may
not use the FPU. The Task Switched (TS) Bit (bit 3 in
the CR0) helps deal with the FPU’s state in a multi-
tasking environment. Whenever the Intel OverDrive
processors switch tasks, they set the TS bit. The
Intel OverDrive processors detect the first use of a
processor extension instruction after a task switch
and causes the processor extension not available
exception 7. The exception handler for exception 7
may then decide whether to save the state of the
FPU. A processor extension not present exception
(7) will occur when attempting to execute a Floating
Point or WAIT instruction if the Task Switched and
Monitor coprocessor extension bits are both set (i.e.,
TS e 1 and MP e 1).

6.3.7 INITIALIZATION AND TRANSITION TO
PROTECTED MODE

Because the Military Intel486 processor begins exe-
cuting in Real Mode immediately after RESET it is
necessary to initialize the system tables and regis-
ters with the appropriate values.

The GDT and IDT registers must refer to a valid GDT
and IDT. The IDT should be at least 256-bytes long,
and GDT must contain descriptors for the initial
code, and data segments. Figure 6-17 shows the
tables and Figure 6-18 the descriptors needed for a
simple Protected Mode Military Intel486 processor
system. It has a single code and single data/stack
segment each four-Gbytes long and a single privi-
lege level PL e 0.

The actual method of enabling Protected Mode is to
load CR0 with the PE bit set, via the MOV CR0, R/M
instruction. This puts the Military Intel486 processor
in Protected Mode.

After enabling Protected Mode, the next instruction
should execute an intersegment JMP to load the CS
register and flush the instruction decode queue. The
final step is to load all of the data segment registers
with the initial selector values.

271329–44

Figure 6-17. Simple Protected System

An alternate approach to entering Protected Mode
which is especially appropriate for multitasking oper-
ating systems, is to use the built in task-switch to
load all of the registers. In this case the GDT would
contain two TSS descriptors in addition to the code
and data descriptors needed for the first task. The
first JMP instruction in Protected Mode would jump
to the TSS causing a task switch and loading all of
the registers with the values stored in the TSS. Be-
cause a task switch saves the state of the current
task in a task state segment, the Task State Seg-
ment Register should be initialized to point to a valid
TSS descriptor.

6.4 Paging

6.4.1 PAGING CONCEPTS

Paging is another type of memory management use-
ful for virtual memory multitasking operating
systems. Unlike segmentation which modularizes
programs and data into variable length segments,
paging divides programs into multiple uniform size
pages. Pages bear no direct relation to the logical
structure of a program. While segment selectors can
be considered the logical ‘‘name’’ of a program
module or data structure, a page most likely corre-
sponds to only a portion of a module or data struc-
ture.
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271329–45

Figure 6-18. GDT Descriptors for Simple System

By taking advantage of the locality of reference dis-
played by most programs, only a small number of
pages from each active task need be in memory at
any one moment.

6.4.2 PAGING ORGANIZATION

6.4.2.1 Page Mechanism

The Military Intel486 processor uses two levels of
tables to translate the linear address (from the seg-
mentation unit) into a physical address. There are
three components to the paging mechanism of the
Military Intel486 processor: the page directory, the
page tables, and the page itself (page frame). All
memory-resident elements of the Military Intel486
processor paging mechanism are the same size,
namely, 4 Kbytes. A uniform size for all of the ele-
ments simplifies memory allocation and reallocation
schemes, because there is no problem with memory
fragmentation. Figure 6-19 shows how the paging
mechanism works.

6.4.2.2 Page Descriptor Base Register

CR2 is the Page Fault Linear Address register. It
holds the 32-bit linear address which caused the last
page fault detected.

CR3 is the Page Directory Physical Base Address
Register. It contains the physical starting address of
the Page Directory. The lower 12 bits of CR3 are

always zero to ensure that the Page Directory is al-
ways page aligned. Loading it via a MOV CR3 reg
instruction causes the Page Table Entry cache to be
flushed, as will a task switch through a TSS that
changes the value of CR0. (See section 6.4.5,
‘‘Translation Lookaside Buffer.’’)

6.4.2.3 Page Directory

The Page Directory is 4-Kbytes long and allows up
to 1024 Page Directory Entries. Each Page Directory
Entry contains the address of the next level of ta-
bles, the Page Tables and information about the
page table. The contents of a Page Directory Entry
are shown in Figure 6-20. The upper 10 bits of the
linear address (A22–A31) are used as an index to
select the correct Page Directory Entry.

6.4.2.4 Page Tables

Each Page Table is 4 Kbytes and holds up to 1024
Page Table Entries. Page Table Entries contain the
starting address of the page frame and statistical
information about the page. (See Figure 6-21.) Ad-
dress bits A12–A21 are used as an index to select
one of the 1024 Page Table Entries. The 20 upper-
bit page frame address is concatenated with the
lower 12 bits of the linear address to form the physi-
cal address. Page tables can be shared between
tasks and swapped to disks.
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271329–46

Figure 6-19. Paging Mechanism

31 12 11 10 9 8 7 6 5 4 3 2 1 0

OS P P U R

PAGE TABLE ADDRESS RESERVED 0 0 D A C W Ð Ð P

31 . . . 12 D T S W

Figure 6-20. Page Directory Entry (Points to Page Table)

31 12 11 10 9 8 7 6 5 4 3 2 1 0

OS P P U R

PAGE FRAME ADDRESS RESERVED 0 0 D A C W Ð Ð P

31 . . . 12 D T S W

Figure 6-21. Page Table Entry (Points to Page)
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6.4.2.5 Page Directory/Table Entries

The lower 12 bits of the Page Table Entries and
Page Directory Entries contain statistical information
about pages and page tables respectively. The P
(Present) bit 0 indicates if a Page Directory or Page
Table entry can be used in address translation. If
P e 1 the entry can be used for address translation,
if P e 0 the entry cannot be used for translation,
and all of the other bits are available for use by the
software. For example the remaining 31 bits could
be used to indicate where on the disk the page is
stored.

The A (Accessed) bit 5, is set by the Military Intel486
processor for both types of entries before a read or
write access occurs to an address covered by the
entry. The D (Dirty) bit 6 is set to 1 before a write to
an address covered by that page table entry occurs.
The D bit is undefined for Page Directory Entries.
When the P, A and D bits are updated by the Military
Intel486 processor, a Read-Modify-Write cycle is
generated which locks the bus and prevents con-
flicts with other processors or peripherals. Software
which modifies these bits should use the LOCK pre-
fix to ensure the integrity of the page tables in multi-
master systems.

The 3 bits marked OS Reserved in Figure 6-20 and
Figure 6-21 (bits 9–11) are software definable. OSs
are free to use these bits for whatever purpose they
wish. An example use of the OS Reserved bits
would be to store information about page aging. By
keeping track of how long a page has been in mem-
ory since being accessed, an operating system can
implement a page replacement algorithm such as
Least Recently Used.

The (User/Supervisor) U/S bit 2 and the (Read/
Write) R/W bit 1 are used to provide protection attri-
butes for individual pages.

6.4.3 PAGE LEVEL PROTECTION
(R/W, U/S BITS)

The Military Intel486 processor provides a set of
protection attributes for paging systems. The paging
mechanism distinguishes between two levels of pro-
tection: User which corresponds to level 3 of the
segmentation based protection, and supervisor
which encompasses all of the other protection levels
(0, 1, 2).

The R/W and U/S bits are used in conjunction with
the WP bit in the flags register (EFLAGS). The
Intel386 processor does not contain the WP bit. The
WP bit has been added to the Military Intel486 proc-
essor to protect read-only pages from supervisor
write accesses. The Intel386 processor allows a
read-only page to be written from protection levels
0, 1 or 2. WPe0 is the Intel386 processor compati-
ble mode. When WPe0, the supervisor can write to
a read-only page as defined by the U/S and R/W
bits. When WPe1, supervisor access to a read-only
page (R/We0) will cause a page fault (exception
14).

Table 6-4 shows the affect of the WP, U/S and R/W
bits on accessing memory. When WPe0, the super-
visor can write to pages regardless of the state of
the R/W bit. When WPe1 and R/We0, the super-
visor cannot write to a read-only page. A user at-
tempt to access a supervisor only page (U/Se0) or
to write to a read-only page will cause a page fault
(exception 14).

Table 6-4. Page Level Protection Attributes

U/S R/W WP User Access Supervisor Access

0 0 0 None Read/Write/Execute

0 1 0 None Read/Write/Execute

1 0 0 Read/Execute Read/Write/Execute

1 1 0 Read/Write/Execute Read/Write/Execute

0 0 1 None Read/Execute

0 1 1 None Read/Write/Execute

1 0 1 Read/Execute Read/Execute

1 1 1 Read/Write/Execute Read/Write/Execute
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The R/W and U/S bits provide protection from user
access on a page by page basis because the bits
are contained in the Page Table Entry and the Page
Directory Table. The U/S and R/W bits in the first-
level Page Directory Table apply to all entries in the
page table pointed to by that directory entry. The
U/S and R/W bits in the second-level Page Table
Entry apply only to the page described by that entry.
The most restrictive of the U/S and R/W bits from
the Page Directory Table and the Page Table Entry
are used to address a page.

Example: If the U/S and R/W bits for the Page Di-
rectory entry were 10 (user read/execute) and the
U/S and R/W bits for the Page Table Entry were 01
(no user access at all), the access rights for the
page would be 01, the numerically smaller of the
two.

Note that a given segment can be easily made read-
only for level 0, 1 or 2 via use of segmented protec-
tion mechanisms. (Section 6.3, ‘‘Protection’’.)

6.4.4 PAGE CACHEABILITY
(PWT AND PCD BITS)

See section 7.6, ‘‘Page Cacheability,’’ for a detailed
description of page cacheability and the PWT and
PCD bits.

6.4.5 TRANSLATION LOOKASIDE BUFFER

The Military Intel486 processor paging hardware is
designed to support demand paged virtual memory
systems. However, performance would degrade
substantially if the Military Intel486 processor was
required to access two levels of tables for every
memory reference. To solve this problem, the Mili-
tary Intel486 processor keeps a cache of the most
recently accessed pages. This cache is called the
Translation Lookaside Buffer (TLB). The TLB is a
four-way set associative 32-entry page table cache.
It automatically keeps the most commonly used
Page Table Entries in the Military Intel486 proces-
sor. The 32-entry TLB coupled with a 4K page size,
results in coverage of 128 Kbytes of memory ad-
dresses. For many common multitasking systems,
the TLB will have a hit rate of about 98%. This
means that the Military Intel486 processor will only
have to access the two-level page structure on 2%
of all memory references. Figure 6-22 illustrates how
the TLB complements the Military Intel486 proces-
sor’s paging mechanism.

271329–47

Figure 6-22. Translation Lookaside Buffer

Reading a new entry into the TLB (TLB refresh) is a
two step process handled by the Military Intel486
processor hardware. The sequence of data cycles to
perform a TLB refresh are the following:

1. Read the correct Page Directory Entry, as pointed
to by the page base register and the upper 10 bits
of the linear address. The page base register is in
control register 3.

a. Optionally perform a locked read/write to set
the accessed bit in the directory entry. The di-
rectory entry will actually get read twice if the
Military Intel486 processor needs to set any of
the bits in the entry. If the page directory entry
changes between the first and second reads,
the data returned for the second read will be
used.

2. Read the correct entry in the Page Table and
place the entry in the TLB.

a. Optionally perform a locked read/write to set
the accessed and/or dirty bit in the page table
entry. Again, note that the page table entry will
actually get read twice if the Military Intel486
processor needs to set any of the bits in the
entry. Like the directory entry, if the data
changes between the first and second read the
data returned for the second read will be used.

Note that the directory entry must always be read
into the Military Intel486 processor, because directo-
ry entries are never placed in the paging TLB. Page
faults can be signaled from either the page directory
read or the page table read. Page directory and
page table entries may be placed in the Military In-
tel486 processor on-chip cache just like normal
data.
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6.4.6 PAGING OPERATION

The paging hardware operates in the following fash-
ion. The paging unit hardware receives a 32-bit lin-
ear address from the segmentation unit. The upper
20 linear address bits are compared with all 32 en-
tries in the TLB to determine if there is a match. If
there is a match (i.e., a TLB hit), then the 32-bit
physical address is calculated and will be placed on
the address bus.

However, if the page table entry is not in the TLB,
the Military Intel486 processor will read the appropri-
ate Page Directory Entry. If P e 1 on the Page Di-
rectory Entry indicating that the page table is in
memory, then the Military Intel486 processor will
read the appropriate Page Table Entry and set the
Access bit. If P e 1 on the Page Table Entry indicat-
ing that the page is in memory, the Military Intel486
processor will update the Access and Dirty bits as
needed and fetch the operand. The upper 20 bits of
the linear address, read from the page table, will be
stored in the TLB for future accesses. However, if P
e 0 for either the Page Directory Entry or the Page
Table Entry, then the Military Intel486 processor will
generate a page fault, an Exception 14.

The Military Intel486 processor will also generate an
exception 14 page fault if the memory reference vio-
lated the page protection attributes (i.e., U/S or
R/W) (e.g., trying to write to a read-only page). CR2
will hold the linear address which caused the page
fault. If a second page fault occurs, while the Military
Intel486 processor is attempting to enter the service
routine for the first, then the Military Intel486 proces-
sor will invoke the page fault (exception 14) handler
a second time, rather than the double fault (excep-
tion 8) handler. Because Exception 14 is classified
as a fault, CS: EIP will point to the instruction caus-
ing the page fault. The 16-bit error code pushed as
part of the page fault handler will contain status bits
which indicate the cause of the page fault.

The 16-bit error code is used by the operating sys-
tem to determine how to handle the page fault. The
upper portion of Figure 6-23 shows the format of the
page-fault error code and the interpretation of the
bits.

15 3 2 1 0

U

U U U U U U U U U U U U U U W P

S R

U/S W/R Access Type

0 0 Supervisor* Read

0 1 Supervisor Write

1 0 User Read

1 1 User Write

NOTES:
*Descriptor table access will fault with U/S e

0, even if the program is executing at level 3.

U: UNDEFINED

U/S: The U/S bit indicates whether the access
causing the fault occurred when the Military
Intel486 processor was executing in User Mode
(U/S e 1) or in Supervisor mode (U/S e 0).

W/R: The W/R bit indicates whether the ac-
cess causing the fault was a Read (W/R e 0)
or a Write (W/R e 1).

P: The P bit indicates whether a page fault was
caused by a not-present page (P e 0), or by a
page level protection violation (P e 1).

Figure 6-23. Page Fault System Information

NOTE:
Even though the bits in the error code (U/S,
W/R, and P) have similar names as the bits
in the Page Directory/Table Entries, the in-
terpretation of the error code bits is different.
Figure 6-23 indicates what type of access
caused the page fault.

6.4.7 OPERATING SYSTEM RESPONSIBILITIES

The Military Intel486 processor takes care of the
page address translation process, relieving the bur-
den from an operating system in a demand-paged
system. The operating system is responsible for
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setting up the initial page tables, and handling any
page faults. The operating system also is required to
invalidate (i.e., flush) the TLB when any changes are
made to any of the page table entries. The operating
system must reload CR3 to cause the TLB to be
flushed.

Setting up the tables is simply a matter of loading
CR3 with the address of the Page Directory, and
allocating space for the Page Directory and the
Page Tables. The primary responsibility of the oper-
ating system is to implement a swapping policy and
handle all of the page faults.

A final concern of the operating system is to ensure
that the TLB cache matches the information in the
paging tables. In particular, any time the operating
system sets the P present bit of page table entry to
zero, the TLB must be flushed. Operating systems
may want to take advantage of the fact that CR3 is
stored as part of a TSS, to give every task or group
of tasks its own set of page tables.

6.5 Virtual 8086 Environment

6.5.1 EXECUTING 8086 PROGRAMS

The Military Intel486 processor allows the execution
of 8086 application programs in both Real Mode and
in the Virtual 8086 Mode (Virtual Mode). Of the two
methods, Virtual 8086 Mode offers the system de-
signer the most flexibility. The Virtual 8086 Mode al-
lows the execution of 8086 applications, while still
allowing the system designer to take full advantage
of the Military Intel486 processor protection mecha-
nism. In particular, the Military Intel486 processor al-
lows the simultaneous execution of 8086 operating
systems and its applications, and a Military Intel486
processor operating system and both 80286 and
Military Intel486 processor applications. Thus, in a
multi-user Military Intel486 processor computer, one
person could be running an MS-DOS* spreadsheet,
another person using MS-DOS*, and a third person
could be running multiple UNIX utilities and applica-
tions. Each person in this scenario would believe
that he had the computer completely to himself. Fig-
ure 6-24 illustrates this concept.

6.5.2 VIRTUAL 8086 MODE ADDRESSING
MECHANISM

One of the major differences between Military
Intel486 processor Real and Protected modes is
how the segment selectors are interpreted. When
the Military Intel486 processor is executing in Virtual
8086 Mode the segment registers are used in an
identical fashion to Real Mode. The contents of the
segment register is shifted left 4 bits and added to
the offset to form the segment base linear address.

The Military Intel486 processor allows the operating
system to specify which programs use the 8086
style address mechanism, and which programs use
Protected Mode addressing, on a per task basis.
Through the use of paging, the one megabyte ad-
dress space of the Virtual Mode task can be mapped
to anywhere in the 4-Gbyte linear address space of
the Military Intel486 processor. Like Real Mode, Vir-
tual Mode effective addresses (i.e., segment offsets)
that exceed 64 Kbyte will cause an exception 13.
However, these restrictions should not prove to be
important, because most tasks running in Virtual
8086 Mode will simply be existing 8086 application
programs.

6.5.3 PAGING IN VIRTUAL MODE

The paging hardware allows the concurrent running
of multiple Virtual Mode tasks, and provides protec-
tion and operating system isolation. Although it is
not strictly necessary to have the paging hardware
enabled to run Virtual Mode tasks, it is needed in
order to run multiple Virtual Mode tasks or to relo-
cate the address space of a Virtual Mode task to
physical address space greater than one Mbyte.

The paging hardware allows the 20-bit linear ad-
dress produced by a Virtual Mode program to be
divided into up to 256 pages. Each one of the pages
can be located anywhere within the maximum
4-Gbyte physical address space of the Military In-
tel486 processor. In addition, because CR3 (the
Page Directory Base Register) is loaded by a task
switch, each Virtual Mode task can use a different
mapping scheme to map pages to different physical
locations. Finally, the paging hardware allows the
sharing of the 8086 operating system code between
multiple 8086 applications. Figure 6-24 shows how
the Military Intel486 processor paging hardware en-
ables multiple 8086 programs to run under a virtual
memory demand paged system.
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Figure 6-24. Virtual 8086 Environment Memory Management

6.5.4 PROTECTION AND I/O PERMISSION
BITMAP

All Virtual 8086 Mode programs execute at privilege
level 3, the level of least privilege. As such, Virtual
8086 Mode programs are subject to all of the protec-
tion checks defined in Protected Mode. (This is dif-
ferent from Real Mode which implicitly is executing
at privilege level 0, the level of greatest privilege.)
Thus, an attempt to execute a privileged instruction
when in Virtual 8086 Mode will cause an exception
13 fault.

The following are privileged instructions, which may
be executed only at Privilege Level 0. Therefore, at-
tempting to execute these instructions in Virtual
8086 Mode (or anytime CPL l 0) causes an excep-
tion 13 fault:

LIDT; MOV DRn,reg; MOV reg,DRn;
LGDT; MOV TRn,reg; MOV reg,TRn;
LMSW; MOV CRn,reg; MOV reg,CRn.
CLTS;
HLT;
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Several instructions, particularly those applying to
the multitasking model and protection model, are
available only in Protected Mode. Therefore, at-
tempting to execute the following instructions in
Real Mode or in Virtual 8086 Mode generates an
exception 6 fault:

LTR; STR;
LLDT; SLDT;
LAR; VERR;
LSL; VERW;
ARPL.

The instructions that are IOPL-sensitive in Protected
Mode are:

IN; STI;
OUT; CLI
INS;
OUTS;
REP INS;
REP OUTS;

In Virtual 8086 Mode, a slightly different set of in-
structions are made IOPL-sensitive. The following in-
structions are IOPL-sensitive in Virtual 8086 Mode:

INT n; STI;
PUSHF; CLI;
POPF; IRET

The PUSHF, POPF, and IRET instructions are IOPL-
sensitive in Virtual 8086 Mode only. This provision
allows the IF flag (interrupt enable flag) to be virtual-
ized to the Virtual 8086 Mode program. The INT n
software interrupt instruction is also IOPL-sensitive
in Virtual 8086 Mode. Note, however, that the INT 3
(opcode 0CCH), INTO, and BOUND instructions are
not IOPL-sensitive in Virtual 8086 mode (they aren’t
IOPL sensitive in Protected Mode either).

Note that the I/O instructions (IN, OUT, INS, OUTS,
REP INS, and REP OUTS) are not IOPL-sensitive in
Virtual 8086 mode. Rather, the I/O instructions be-
come automatically sensitive to the I/O Permission
Bitmap contained in the Military Intel486 proces-
sor Task State Segment. The I/O Permission Bit-
map, automatically used by the Military Intel486
processor in Virtual 8086 Mode, is illustrated by Fig-
ure 6-14 and Figure 6-15.

The I/O Permission Bitmap can be viewed as a
0–64 Kbit string, which begins in memory at offset
BitÐMapÐOffset in the current TSS. BitÐMapÐ
Offset must be s DFFFH so the entire bit map and
the byte FFH which follows the bit map are all at

offsets s FFFFH from the TSS base. The 16-bit
pointer BitÐMapÐOffset (15:0) is found in the word
beginning at offset 66H (102 decimal) from the TSS
base, as shown in Figure 6-14.

Each bit in the I/O Permission Bitmap corresponds
to a single byte-wide I/O port, as illustrated in Figure
6-14. If a bit is 0, I/O to the corresponding byte-wide
port can occur without generating an exception. Oth-
erwise the I/O instruction causes an exception 13
fault. Because every byte-wide I/O port must be pro-
tectable, all bits corresponding to a word-wide or
dword-wide port must be 0 for the word-wide or
dword-wide I/O to be permitted. If all the referenced
bits are 0, the I/O will be allowed. If any referenced
bits are 1, the attempted I/O will cause an exception
13 fault.

Due to the use of a pointer to the base of the I/O
Permission Bitmap, the bitmap may be located any-
where within the TSS, or may be ignored completely
by pointing the BitÐMapÐOffset (15:0) beyond the
limit of the TSS segment. In the same manner, only
a small portion of the 64K I/O space need have an
associated map bit, by adjusting the TSS limit to
truncate the bitmap. This eliminates the commitment
of 8K of memory when a complete bitmap is not
required, while allowing the fully general case if de-
sired.

Example of Bitmap for I/O Ports 0–255: Setting
the TSS limit to ÀbitÐMapÐOffset a 31 a 1**Ó

[** see note below] will allow a 32-byte bitmap for
the I/O ports Ý0–255, plus a terminator byte of all
1’s [** see note below]. This allows the I/O bitmap
to control I/O Permission to I/O port 0–255 while
causing an exception 13 fault on attempted I/O to
any I/O port 80256 through 65,565.

**IMPORTANT IMPLEMENTATION NOTE:
Beyond the last byte of I/O mapping infor-
mation in the I/O Permission Bitmap must
be a byte containing all 1’s. The byte of all
1’s must be within the limit of the Military In-
tel486 processor TSS segment (see Figure
6-14).

6.5.5 INTERRUPT HANDLING

In order to fully support the emulation of an 8086
machine, interrupts in Virtual 8086 Mode are han-
dled in a unique fashion. When running in Virtual
Mode all interrupts and exceptions involve a privi-
lege change back to the host Military Intel486 proc-
essor operating system. The Military Intel486 proc-
essor operating system determines if the interrupt
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comes from a Protected Mode application or from a
Virtual Mode program by examining the VM bit in the
EFLAGS image stored on the stack.

When a Virtual Mode program is interrupted and ex-
ecution passes to the interrupt routine at level 0, the
VM bit is cleared. However, the VM bit is still set in
the EFLAG image on the stack.

The Military Intel486 processor operating system in
turn handles the exception or interrupt and then re-
turns control to the 8086 program. The Military
Intel486 processor operating system may choose to
let the 8086 operating system handle the interrupt or
it may emulate the function of the interrupt handler.
For example, many 8086 operating system calls are
accessed by PUSHing parameters on the stack, and
then executing an INT n instruction. If the IOPL is set
to 0 then all INT n instructions will be intercepted by
the Military Intel486 processor operating system.
The Military Intel486 processor operating system
could emulate the 8086 operating system’s call. Fig-
ure 6-25 shows how the Military Intel486 processor
operating system could intercept an 8086 operating
system’s call to ‘‘Open a File.’’

A Military Intel486 processor operating system can
provide a Virtual 8086 Environment which is totally
transparent to the application software via intercept-
ing and then emulating 8086 operating system’s
calls, and intercepting IN and OUT instructions.

6.5.6 ENTERING AND LEAVING VIRTUAL 8086
MODE

Virtual 8086 mode is entered by executing an IRET
instruction (at CPLe0), or Task Switch (at any CPL)
to a Military Intel486 processor task whose Military
Intel486 processor TSS has a FLAGS image con-
taining a 1 in the VM bit position while the Military
Intel486 processor is executing in Protected Mode.
That is, one way to enter Virtual 8086 mode is to
switch to a task with a Military Intel486 processor
TSS that has a 1 in the VM bit in the EFLAGS image.
The other way is to execute a 32-bit IRET instruction
at privilege level 0, where the stack has a 1 in the
VM bit in the EFLAGS image. POPF does not affect
the VM bit, even if the Military Intel486 processor is

in Protected Mode or level 0, and so cannot be used
to enter Virtual 8086 Mode. PUSHF always pushes a
0 in the VM bit, even if the Military Intel486 proces-
sor is in Virtual 8086 Mode, so that a program can-
not tell if it is executing in REAL mode, or in Virtual
8086 mode.

The VM bit can be set by executing an IRET instruc-
tion only at privilege level 0, or by any instruction or
Interrupt which causes a task switch in Protected
Mode (with VMe1 in the new FLAGS image), and
can be cleared only by an interrupt or exception in
Virtual 8086 Mode. IRET and POPF instructions exe-
cuted in REAL mode or Virtual 8086 mode will not
change the value in the VM bit.

The transition out of virtual 8086 mode to Military
Intel486 processor protected mode occurs only on
receipt of an interrupt or exception (such as due to a
sensitive instruction). In Virtual 8086 mode, all inter-
rupts and exceptions vector through the protected
mode IDT, and enter an interrupt handler in protect-
ed Military Intel486 processor mode. That is, as part
of interrupt processing, the VM bit is cleared.

Because the matching IRET must occur from level 0,
if an Interrupt or Trap Gate is used to field an inter-
rupt or exception out of Virtual 8086 mode, the Gate
must perform an inter-level interrupt only to level 0.
Interrupt or Trap Gates through conforming seg-
ments, or through segments with DPLl0, will raise a
GP fault with the CS selector as the error code.

6.5.6.1 Task Switches To and From Virtual 8086
Mode

Tasks which can execute in virtual 8086 mode must
be described by a TSS with the new Military Intel486
processor format (TYPE 9 or 11 descriptor).

A task switch out of virtual 8086 mode will operate
exactly the same as any other task switch out of a
task with a Military Intel486 processor TSS. All of the
programmer visible state, including the FLAGS reg-
ister with the VM bit set to 1, is stored in the TSS.

The segment registers in the TSS will contain 8086
segment base values rather than selectors.
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Figure 6-25. Virtual 8086 Environment Interrupt and Call Handling

A task switch into a task described by a Military
Intel486 processor TSS will have an additional
check to determine if the incoming task should be
resumed in virtual 8086 mode. Tasks described by
80286 format TSSs cannot be resumed in virtual
8086 mode, so no check is required there (the
FLAGS image in 80286 format TSS has only the low
order 16 FLAGS bits). Before loading the segment
register images from a Military Intel486 processor
TSS, the FLAGS image is loaded, so that the seg-
ment registers are loaded from the TSS image as
8086 segment base values. The task is now ready to
resume in virtual 8086 execution mode.

6.5.6.2 Transitions Through Trap and Interrupt
Gates, and IRET

A task switch is one way to enter or exit virtual 8086
mode. The other method is to exit through a Trap or
Interrupt gate, as part of handling an interrupt, and

to enter as part of executing an IRET instruction.
The transition out must use a Military Intel486 proc-
essor Trap Gate (Type 14), or Military Intel486 proc-
essor Interrupt Gate (Type 15), which must point to a
non-conforming level 0 segment (DPLe0) in order
to permit the trap handler to IRET back to the Virtual
8086 program. The Gate must point to a non-con-
forming level 0 segment to perform a level switch to
level 0 so that the matching IRET can change the
VM bit. Military Intel486 processor gates must be
used, because 80286 gates save only the low 16
bits of the FLAGS register, so that the VM bit will not
be saved on transitions through the 80286 gates.
Also, the 16-bit IRET (presumably) used to terminate
the 80286 interrupt handler will pop only the lower
16 bits from FLAGS, and will not affect the VM bit.
The action taken for a Military Intel486 processor
Trap or Interrupt gate if an interrupt occurs while the
task is executing in virtual 8086 mode is given by the
following sequence.
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1. Save the FLAGS register in a temp to push later.
Turn off the VM and TF bits, and if the interrupt is
serviced by an Interrupt Gate, turn off IF also.

2. Interrupt and Trap gates must perform a level
switch from 3 (where the VM86 program exe-
cutes) to level 0 (so IRET can return). This pro-
cess involves a stack switch to the stack given in
the TSS for privilege level 0. Save the Virtual
8086 Mode SS and ESP registers to push in a
later step. The segment register load of SS will be
done as a Protected Mode segment load, be-
cause the VM bit was turned off above.

3. Push the 8086 segment register values onto the
new stack, in the order: GS, FS, DS, ES. These
are pushed as 32-bit quantities, with undefined
values in the upper 16 bits. Then load these 4
registers with null selectors (0).

4. Push the old 8086 stack pointer onto the new
stack by pushing the SS register (as 32-bits, high
bits undefined), then pushing the 32-bit ESP regis-
ter saved above.

5. Push the 32-bit FLAGS register saved in step 1.

6. Push the old 8086 instruction pointer onto the
new stack by pushing the CS register (as 32-bits,
high bits undefined), then pushing the 32-bit EIP
register.

7. Load up the new CS:EIP value from the interrupt
gate, and begin execution of the interrupt routine
in protected Military Intel486 processor mode.

The transition out of virtual 8086 mode performs a
level change and stack switch, in addition to chang-
ing back to protected mode. In addition, all of the
8086 segment register images are stored on the
stack (behind the SS:ESP image), and then loaded
with null (0) selectors before entering the interrupt
handler. This will permit the handler to safely save
and restore the DS, ES, FS, and GS registers as
80286 selectors. This is needed so that interrupt
handlers which don’t care about the mode of the
interrupted program can use the same prolog and
epilog code for state saving (i.e., push all registers in
prolog, pop all in epilog) regardless of whether or not
a ‘native‘ mode or Virtual 8086 mode program was
interrupted. Restoring null selectors to these regis-
ters before executing the IRET will not cause a trap
in the interrupt handler. Interrupt routines which ex-
pect values in the segment registers, or return val-
ues in segment registers will have to obtain/return
values from the 8086 register images pushed onto
the new stack. They will need to know the mode of
the interrupted program in order to know where to
find/return segment registers, and also to know how
to interpret segment register values.

The IRET instruction will perform the inverse of the
above sequence. Only the extended Military Intel486
processor IRET instruction (operand sizee32) can
be used, and must be executed at level 0 to change
the VM bit to 1.

1. If the NT bit in the FLAGs register is on, an inter-
task return is performed. The current state is
stored in the current TSS, and the link field in the
current TSS is used to locate the TSS for the in-
terrupted task which is to be resumed. Otherwise,
continue with the following sequence.

2. Read the FLAGS image from SS:8[ESP] into the
FLAGS register. This will set VM to the value ac-
tive in the interrupted routine.

3. Pop off the instruction pointer CS:EIP. EIP is
popped first, then a 32-bit word is popped which
contains the CS value in the lower 16 bits. If
VMe0, this CS load is done as a protected mode
segment load. If VMe1, this will be done as an
8086 segment load.

4. ESP register by 4 to bypass the FLAGS image
which was ‘‘popped’’ in step 1.

5. If VMe1, load segment registers ES, DS, FS, and
GS from memory locations SS:[ESPa8],
SS:[ESPa12], SS:[ESPa16], and
SS:[ESPa20], respectively, where the new value
of ESP stored in step 4 is used. Because VMe1,
these are done as 8086 segment register loads.
Else if VMe0, check that the selectors in ES, DS,
FS, and GS are valid in the interrupted routine.
Null out invalid selectors to trap if an attempt is
made to access through them.

6. If (RPL(CS) l CPL), pop the stack pointer
SS:ESP from the stack. The ESP register is
popped first, followed by 32-bits containing SS in
the lower 16 bits. If VMe0, SS is loaded as a
protected mode segment register load. If VMe1,
an 8086 segment register load is used.

7. Resume execution of the interrupted routine. The
VM bit in the FLAGS register (restored from the
interrupt routine’s stack image in step 1) deter-
mines whether the Military Intel486 processor re-
sumes the interrupted routine in Protected mode
of Virtual 8086 mode.
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7.0 ON-CHIP CACHE

All members of the Military Intel486 processor fami-
ly, except the IntelDX4 processor, contain an on-
chip 8-Kbyte cache. (See section 7.1.1, ‘‘IntelDX4
Processor Cache,’’ for the IntelDX4 processor
cache organization.) The cache is software transpar-
ent to maintain binary compatibility with previous
generations of the Intel Architecture.

The on-chip cache has been designed for maximum
flexibility and performance. The cache has several
operating modes offering flexibility during program
execution and debugging. Memory areas can be de-
fined as non-cacheable by software and external
hardware. Protocols for cache line invalidations and
replacement are implemented in hardware, easing
system design.

7.1 Cache Organization

The on-chip cache is a unified code and data cache.
The cache is used for both instruction and data ac-
cesses and acts on physical addresses.

The cache organization is 4-way set associative and
each line is 16-bytes wide. The eight Kbytes of
cache memory are logically organized as 128 sets,
each containing four lines.

The cache memory is physically split into four
2-Kbyte blocks, each containing 128 lines. (See Fig-
ure 7-1.) There are 128 21-bit tags associated with
each 2-Kbyte block. There is a valid bit for each line
in the cache. Each line in the cache is either valid or
not valid. There are no provisions for partially valid
lines.

271329–50

Figure 7-1. On-Chip Cache Physical Organization
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For all Military Intel486 processors the on-chip
cache is write-through only. All writes will drive an
external write bus cycle in addition to writing the in-
formation to the internal cache if the write was a
cache hit. A write to an address not contained in the
internal cache will only be written to external memo-
ry. Cache allocations are not made on write misses.

7.1.1 INTELDX4 PROCESSOR CACHE

The IntelDX4 processor contains a 16-Kbyte write-
through cache. The 16 Kbytes of cache memory are
logically organized as 256 sets, each containing four
lines.

The cache memory is physically split into four
4-Kbyte blocks, each containing 256 lines. (See Fig-
ure 7-1.) There are 256 20-bit tags associated with
each 2-Kbyte block.

All other details listed in section 7.1 for the 8-Kbyte
on-chip cache also apply to the IntelDX4 on-chip
cache.

7.2 Cache Control

Control of the cache is provided by the CD and NW
bits in CR0. CD enables and disables the cache. NW
controls memory write-through and invalidates.

The CD and NW bits define four operating modes of
the on-chip cache as given in Table 7-1. These
modes provide flexibility in how the on-chip cache is
used.

CDe1, NWe1

The cache is completely disabled by setting
CDe1 and NWe1 and then flushing the
cache. This mode may be useful for debug-
ging programs where it is important to see
all memory cycles at the pins. Writes that hit
in the cache will not appear on the external
bus.

It is possible to use the on-chip cache as
fast static RAM by ‘‘pre-loading’’ certain
memory areas into the cache and then set-
ting CDe1 and NWe1. Pre-loading can be
done by careful choice of memory refer-
ences with the cache turned on or by use of
the testability functions. (See section 11.2,
‘‘On-Chip Cache Testing.’’) When the cache
is turned off, the memory mapped by the
cache is ‘‘frozen’’ into the cache because
fills and invalidates are disabled.

Table 7-1. Cache Operating Modes

CD NW Operating Mode

1 1 Cache fills disabled, write-

through and invalidates

disabled

1 0 Cache fills disabled, write-

through and invalidates

enabled

0 1 INVALID. If CR0 is loaded

with this configuration of bits,

a GP fault with error code of 0

is raised.

0 0 Cache fills enabled, write-

through and invalidates

enabled

CDe1, NWe0

Cache fills are disabled but write-throughs
and invalidates are enabled. This mode is
the same as if the KENÝ pin was
strapped HIGH disabling cache fills.
Write-throughs and invalidates may still
occur to keep the cache valid. This mode
is useful if the software must disable the
cache for a short period of time, and then
re-enable it without flushing the original
contents.

CDe0, NWe1

Invalid. If CR0 is loaded with this bit con-
figuration, a General Protection fault with
error code of 0 will occur.

CDe0, NWe0

This is the normal operating mode.

Completely disabling the cache is a two-step pro-
cess. First, CD and NW must be set to 1, and then
the cache must be flushed. If the cache is not
flushed, cache hits on reads will still occur and data
will be read from the cache.
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7.3 Cache Line Fills

Any area of memory can be cached in the Military
Intel486 processor. Non-cacheable portions of
memory can be defined by the external system or by
software. The external system can inform the Mili-
tary Intel486 processor that a memory address is
non-cacheable by returning the KENÝ pin inactive
during a memory access. (Refer to section 10.2.3,
‘‘Cacheable Cycles.’’) Software can prevent certain
pages from being cached by setting the PCD bit in
the page table entry.

A read request can be generated from program op-
eration or by an instruction pre-fetch. The data will
be supplied from the on-chip cache if a cache hit
occurs on the read address. If the address is not in
the cache, a read request for the data is generated
on the external bus.

If the read request is to a cacheable portion of mem-
ory, the Military Intel486 processor initiates a cache
line fill. During a line fill a 16-byte line is read into the
Military Intel486 processor. Cache line fills will only
be generated for read misses. Write misses will nev-
er cause a line in the internal cache to be allocated.
If a cache hit occurs on a write, the line will be up-
dated. Cache line fills can be performed over 8- and
16-bit buses using the dynamic bus sizing feature.
Refer to section 10.1.2, ‘‘Dynamic Data Bus Sizing’’
for a description of dynamic bus sizing and section
10.2.3, ‘‘Cacheable Cycles’’ for further information
on cacheable cycles.

7.4 Cache Line Invalidations

The Military Intel486 processor contain both a hard-
ware and software mechanism for invalidating lines
in its internal cache. Cache line invalidations are
needed to keep the Military Intel486 processor
cache contents consistent with external memory.

Refer to section 10.2.8, ‘‘Invalidate Cycles’’ for fur-
ther information on cache line invalidations.

7.5 Cache Replacement

When a line needs to be placed in its internal cache
the Military Intel486 processor first checks to see if
there is a non-valid line in the set that can be re-
placed. If all four lines in the set are valid, a pseudo
least-recently-used mechanism is used to determine
which line should be replaced.

A valid bit is associated with each line in the cache.
When a line needs to be placed in a set, the four
valid bits are checked to see if there is a non-valid
line that can be replaced. If a non-valid line is found,
that line is marked for replacement.

The four lines in the set are labeled l0, l1, l2, and l3.
The order in which the valid bits are checked during
an invalidation is l0, l1, l2 and l3. All valid bits are
cleared when the processor is reset or when the
cache is flushed.

Replacement in the cache is handled by a pseudo
least recently used (LRU) mechanism when all four
lines in a set are valid. Three bits, B0, B1 and B2,
are defined for each of the 128 sets in the cache.
These bits are called the LRU bits. The LRU bits are
updated for every hit or replace in the cache.
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If the most recent access to the set was to l0 or l1,
B0 is set to 1. B0 is set to 0 if the most recent ac-
cess was to l2 or l3. If the most recent access to
l0:l1 was to l0, B1 is set to 1, else B1 is set to 0. If
the most recent access to l2:l3 was to l2, B2 is set to
1, else B2 is set to 0.

The pseudo LRU mechanism works in the following
manner. When a line must be replaced, the cache
will first select which of l0:l1 and l2:l3 was least re-
cently used. Then the cache will determine which of
the two lines was least recently used and mark it for
replacement. This decision tree is shown in Figure
7-2.

271329–51

Figure 7-2. On-Chip Cache

Replacement Strategy

7.6 Page Cacheability

Two bits for cache control, PWT and PCD, are de-
fined in the page table and page directory entries.
The state of these bits are driven out on the PWT
and PCD pins during memory access cycles.

The PWT bit controls the write policy for second lev-
el caches used with the Military Intel486 processor.
Setting PWTe1 defines a write-through policy for
the current page while PWTe0 defines the possibili-
ty of write-back. The state of PWT is ignored inter-
nally by the Military Intel486 processor for on-chip
cache in write through mode.

The PCD bit controls cacheability on a page by page
basis. The PCD bit is internally AND’ed with the
KENÝ signal to control cacheability on a cycle by
cycle basis (see Figure 7-3). PCDe0 enables cach-
ing while PCDe1 forbids it. Note that cache fills are
enabled when PCDe0 AND KENÝe0. This logical
AND is implemented physically with a NOR gate.

The state of the PCD bit in the page table entry is
driven on the PCD pin when a page in external mem-
ory is accessed. The state of the PCD pin informs
the external system of the cacheability of the re-
quested information. The external system then re-
turns KENÝ telling the Military Intel486 processor if
the area is cacheable. The Military Intel486 proces-
sor initiates a cache line fill if PCD and KENÝ indi-
cate that the requested information is cacheable.

The PCD bit is OR’ed with the CD (cache disable) bit
in control register 0 to determine the state of the
PCD pin. If CDe1, the Military Intel486 processor
forces the PCD pin HIGH. If CDe0, the PCD pin is
driven with the value for the page table entry/direc-
tory. (See Figure 7-3.)

The PWT and PCD bits for a bus cycle are obtained
from either CR3, the page directory or page table
entry. These bits are assumed to be zero during real
mode, whenever paging is disabled, or for cycles
that bypass paging, (I/O references, interrupt ac-
knowledge and HALT cycles).

When paging is enabled, the bits from the page table
entry are cached in the TLB, and are driven any time
the page mapped by the TLB entry is referenced.
For normal memory cycles, PWT and PCD are taken
from the page table entry. During TLB refresh cycles
where the page table and directory entries are read,
the PWT and PCD bits must be obtained elsewhere.
During page table updates the bits are obtained from
the page directory. When the page directory is up-
dated the bits are obtained from CR3. PCD and PWT
bits are initialized to zero at reset, but can be modi-
fied by level 0 software.
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271329–52

Figure 7-3. Page Cacheability
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7.7 Cache Flushing

The on-chip cache can be flushed by external hard-
ware or by software instructions. Flushing the cache
clears all valid bits for all lines in the cache. The
cache is flushed when external hardware asserts the
FLUSHÝ pin.

The FLUSHÝ pin needs to be asserted for one
clock if driven synchronously or for two clocks if driv-
en asynchronously. FLUSHÝ is asynchronous, but
setup and hold times must be met for recognition in
a particular cycle. FLUSHÝ should be de-asserted
before the cache flush is complete. Failure to de-as-
sert the pin will cause execution to stop as the proc-
essor will be repeatedly flushing the cache. If exter-
nal hardware activates flush in response to an I/O
write, FLUSHÝ must be asserted for at least two
clocks prior to ready being returned for the I/O write.
This ensures that the flush completes before the
processor begins execution of the instruction follow-
ing the OUT instruction.

The instructions INVD and WBINVD cause the on-
chip cache to be flushed. External caches connect-
ed to the Military Intel486 processor are signaled to
flush their contents when these instructions are exe-
cuted.

WBINVD will also cause an external write-back
cache to write back dirty lines before flushing its
contents. The external cache is signaled using the
bus cycle definition pins and the byte enables (refer
to section 9.2.6 ‘‘Bus Cycle Definition’’ for the bus
cycle definition pins and section 10.2.11 ‘‘Special
Bus Cycles’’ for special bus cycles). Refer to the
Military Intel486 TM Processor Programmers Refer-
ence Manual for detailed instruction definitions.

The results of the INVD and WBINVD instructions
are identical for the operation of the non-write-back
enhanced Military Intel486 processor on-chip cache
because the cache is write-through.

8.0 SYSTEM MANAGEMENT MODE
(SMM) ARCHITECTURES

8.1 SMM Overview

The Military Intel486 processor supports four
modes: Real, Virtual-86, Protected, and System
Management Mode (SMM). As an operating mode,
SMM has a distinct processor environment, inter-
face and hardware/software features.

SMM provides system designers with a means of
adding new software-controlled features to comput-
er products that operate transparently to the operat-
ing system and software applications. SMM is
intended for use only by system firmware, not by
applications software or general purpose systems
software.

The SMM architectural extension consists of the fol-
lowing elements:

1. System Management Interrupt (SMIÝ) hardware
interface.

2. Dedicated and secure memory space (SMRAM)
for SMIÝ handler code and processor state (con-
text) data with a status signal for the system to
decode access to that memory space, SMIACTÝ.
(The SMBASE address is relocatable and could
also be relocated to non-cacheable address
space.)

3. Resume (RSM) instruction, for exiting the System
Management Mode.

4. Special Features such as I/O-Restart, for trans-
parent power management of I/O peripherals,
and Auto HALT Restart.
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8.2 Terminology

The following terms are used throughout the discus-
sion of System Management Mode.

SMM: System Management Mode. This is the oper-
ating environment that the processor (system) en-
ters when the System Management Interrupt is be-
ing serviced.

SMIÝ: System Management Interrupt. This is part of
the SMM interface. When SMIÝ is asserted (SMIÝ
pin asserted low) it causes the processor to invoke
SMM. The SMIÝ pin is the only means of enter-
ing SMM.

SMM handler: System Management Mode handler.
This is the code that will be executed when the proc-
essor is in SMM. An example application that this
code might implement is a power management con-
trol or a system control function.

RSM: Resume instruction. This instruction is used by
the SMM handler to exit the SMM and return to the
interrupted operating system or application process.

SMRAM: This is the physical memory dedicated to
SMM. The SMM handler code and related data re-
side in this memory. This memory is also used by the
processor to store its context before executing the
SMM handler. The operating system and applica-
tions do not have access to this memory space.

SMBASE: Control register that contains the address
of the SMRAM space.

Context: This term refers to the processor state.
The SMM discussion refers to the context, or proc-
essor state, just before the processor invokes SMM.
The context normally consists of the processor reg-
isters that fully represent the processor state.

Context Switch: A context switch is the process of
either saving or restoring the context. The SMM dis-
cussion refers to the context switch as the process
of saving/restoring the context while invoking/
exiting SMM, respectively.

8.3 System Management Interrupt
Processing

The system interrupts the normal program execution
and invokes SMM by generating a System Manage-
ment Interrupt (SMIÝ) to the processor. The proces-
sor will service the SMIÝ by executing the following
sequence (see Figure 8-1):

1. The processor asserts the SMIACTÝ signal, indi-
cating to the system that it should enable the
SMRAM.

2. The processor saves its state (context) to
SMRAM, starting at default address location
3FFFFH, proceeding downward in a stack-like
fashion.

3. The processor switches to the System Manage-
ment Mode processor environment (a pseudo-
real mode).

4. The processor will then jump to the default abso-
lute address of 38000H in SMRAM to execute the
SMIÝ handler. This SMIÝ handler performs the
system management activities.

5. The SMIÝ handler will then execute the RSM in-
struction which restores the processors context
from SMRAM, de-asserts the SMIACTÝ signal,
and then returns control to the previously inter-
rupted program execution.

NOTE:
The above sequence is valid for the default
SMBASE value only. See the following sec-
tions for a description of the SMBASE regis-
ter and SMBASE relocation.

The System Management Interrupt hardware inter-
face consists of the SMIÝ interrupt request input
and the SMIACTÝ output used by the system to de-
code the SMRAM.
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271329–53

Figure 8-1. Basic SMIÝ Interrupt Service

271329–54

Figure 8-2. Basic SMIÝ Hardware Interface
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8.3.1 SYSTEM MANAGEMENT INTERRUPT
(SMIÝ)

SMIÝ is a falling-edge triggered, non-maskable in-
terrupt request signal. SMIÝ is an asynchronous sig-
nal, but setup and hold times, t20 and t21, must be
met in order to guarantee recognition on a specific
clock. The SMIÝ input need not remain active until
the interrupt is actually serviced. The SMIÝ input
only needs to remain active for a single clock if the
required setup and hold times are met. SMIÝ will
also work correctly if it is held active for an arbitrary
number of clocks.

The SMIÝ input must be held inactive for at least
four external clocks after it is asserted to reset the
edge triggered logic. A subsequent SMIÝ might not
be recognized if the SMIÝ input is not held inactive
for at least four clocks after being asserted.

SMIÝ, like NMI, is not affected by the IF bit in the
EFLAGS register and is recognized on an instruction
boundary. An SMIÝ will not break locked bus cycles.
The SMIÝ has a higher priority than NMI and is not
masked during an NMI. In order for SMIÝ to be rec-
ognized with respect to SRESET, SMIÝ should not
be asserted until two (2) clocks after SRESET be-
comes inactive.

After the SMIÝ interrupt is recognized, the SMIÝ
signal will be masked internally until the RSM in-
struction is executed and the interrupt service rou-
tine is complete. Masking the SMIÝ prevents recur-
sive SMIÝ calls. SMIÝ must be de-asserted for at
least 4 clocks to reset the edge triggered logic. If

another SMIÝ occurs while the SMIÝ is masked,
the pending SMIÝ will be recognized and executed
on the next instruction boundary after the current
SMIÝ completes. This instruction boundary occurs
before execution of the next instruction in the inter-
rupted application code, resulting in back to back
SMM handlers. Only one SMIÝ can be pending
while SMIÝ is masked.

The SMIÝ signal is synchronized internally and must
be asserted at least three (3) CLK periods prior to
asserting the RDYÝ signal in order to guarantee
recognition on a specific instruction boundary. This
is important for servicing an I/O trap with an SMIÝ
handler. (See Figure 8-3.)

8.3.2 SMIÝ ACTIVE (SMIACTÝ)

SMIACTÝ indicates that the processor is operating
in System Management Mode. The processor as-
serts SMIACTÝ in response to an SMIÝ interrupt
request on the SMIÝ pin. SMIACTÝ is driven active
after the processor has completed all pending write
cycles (including emptying the write buffers), and be-
fore the first access to SMRAM when the processor
saves (writes) its state (or context) to SMRAM.
SMIACTÝ remains active until the last access to
SMRAM when the processor restores (reads) its
state from SMRAM. The SMIACTÝ signal does not
float in response to HOLD. The SMIACTÝ signal is
used by the system logic to decode SMRAM (See
Figure 8-2).

271329–55

Figure 8-3. SMIÝ Timing for Servicing an I/O Trap
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The number of CLKs required to complete the SMM
state save and restore is very dependent on-system
memory performance. The values listed in Table 8-1
assume 0 wait-state memory writes (2 CLK cycles),
2-1-1-1 burst read cycles, and 0 wait-state non-burst
reads (2 CLK cycles). Additionally, it is assumed that
the data read during the SMM state restore se-
quence is not cacheable.

Figure 8-4 and Table 8-1 can be used for latency
calculations. As shown, the minimum time required
to enter an SMIÝ handler routine for the Military In-
tel486 DX processor (from the completion of the in-
terrupted instruction) is given by:

Latency to beginning of SMIÝ handler e

A a B a C e 153 CLKs

and the minimum time required to return to the inter-
rupted application (following the final SMM instruc-
tion before RSM) is given by:

Latency to continue interrupted application e

E a F a G e 243 CLKs

271329–56

Figure 8-4. Military Intel486TM Processor SMIACTÝ Timing
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Table 8-1. Military Intel486TM Processor SMIACTÝ Timing

Military Intel486 DX IntelDX2TM IntelDX4TM IntelDX4

Processor Processor Processor 3X Processor 2X

A:Last RDYÝ from non- 2 CLK 1 CLK 1 CLK 1 CLK
SMM transfer to minimum minimum minimum minimum
SMIACTÝ assertion

B:SMIACTÝ assertion to 40 CLK 20 CLK 13 CLK 20 CLK
first ADSÝ for SMM minimum minimum minimum minimum
state save

C:SMM state save Approx. Approx. Approx. Approx.
(dependent on 139 CLKs 139 CLKs 139 CLKs 139 CLKs
memory performance)

D:SMM handler User User User User
determined determined determined determined

E:SMM state restore Approx. Approx. Approx. Approx.
(dependent on 236 CLKs 236 CLKs 236 CLKs 236 CLKs
memory performance)

F:Last RDYÝ from SMM 4 CLK 2 CLK 1 CLK 1 CLK
transfer to de- minimum minimum minimum minimum
assertion of SMIACTÝ

G: SMIACTÝ de- 20 CLK 10 CLK 6 CLK 10 CLK
assertion to first non- minimum minimum minimum minimum
SMM ADSÝ

8.3.3 SMRAM

The Military Intel486 processor uses the SMRAM
space for state save and state restore operations
during an SMIÝ and RSM. The SMIÝ handler, which
also resides in SMRAM, uses the SMRAM space to
store code, data and stacks. In addition, the SMIÝ
handler can use the SMRAM for system manage-
ment information such as the system configuration,
configuration of a powered-down device, and sys-
tem designer-specific information.

The processor asserts the SMIACTÝ output to indi-
cate to the memory controller that it is operating in
System Management Mode. The system logic
should ensure that only the processor has access to
this area. Alternate bus masters or DMA devices try-
ing to access the SMRAM space when SMIACTÝ is
active should be directed to system RAM in the re-
spective area.

The system logic is minimally required to decode the
physical memory address range from 38000H–
3FFFFH as SMRAM area. The processor will save
its state to the state save area from 3FFFFH down-
ward to 3FE00H. After saving its state the processor

will jump to the address location 38000H to begin
executing the SMIÝ handler. The system logic can
choose to decode a larger area of SMRAM as need-
ed. The size of this SMRAM can be between
32 Kbytes and 4 Gbytes.

The system logic should provide a manual method
for switching the SMRAM into system memory
space when the processor is not in SMM. This will
enable initialization of the SMRAM space (i.e., load-
ing SMIÝ handler) before executing the SMIÝ han-
dler during SMM. (See Figure 8-5.)

8.3.3.1 SMRAM State Save Map

When the SMIÝ is recognized on an instruction
boundary, the processor core first sets the
SMIACTÝ signal LOW indicating to the system logic
that accesses are now being made to the system-
defined SMRAM areas. The processor then writes
its state to the state save area in the SMRAM. The
state save area starts at CS Base a [8000H a

7FFFH]. The default CS Base is 30000H, therefore
the default state save area is at 3FFFFH. In this
case, the CS Base can also be referred to as the
SMBASE.
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If SMBASE Relocation is enabled, then the SMRAM
addresses can change. The following formula is
used to determine the relocated addresses where
the context is saved. The context will reside at CS
Base a [8000H a Register Offset], where the de-
fault initial CS Base is 30000H and the Register Off-
set is listed in the SMRAM state save map (Table
8-2). Reserved spaces will be used to accommodate
new registers in future processors. The state save
area starts at 7FFFH and continues downward in a
stack-like fashion.

Some of the registers in the SMRAM state save area
may be read and changed by the SMIÝ handler,
with the changed values restored to the processor
registers by the RSM instruction. Some register im-
ages are read-only, and must not be modified (modi-
fying these registers will result in unpredictable be-
havior). The values stored in the areas marked re-
served may change in future processors. An SMM
handler should not rely on any values stored in an
area that is marked as reserved.

271329–57

Figure 8-5. Redirecting System Memory

Addresses to SMRAM

Table 8-2. SMRAM State Save Map

Register
Register Writeable?

Offset

7FFC CR0 NO

7FF8 CR3 NO

7FF4 EFLAGS YES

7FF0 EIP YES

7FEC EDI YES

7FE8 ESI YES

7FE4 EBP YES

7FE0 ESP YES

7FDC EBX YES

7FD8 EDX YES

7FD4 ECX YES

7FD0 EAX YES

7FCC DR6 NO

7FC8 DR7 NO

7FC4 TR* NO

7FC0 LDTR* NO

7FBC GS* NO

7FB8 FS* NO

7FB4 DS* NO

7FB0 SS* NO

7FAC CS* NO

7FA8 ES* NO

7FA7–7F98 Reserved NO

7F94 IDT Base NO

7F93–7F8C Reserved NO

7F88 GDT Base NO

7F87–7F04 Reserved NO

7F02 Auto HALT Restart YES

Slot (Word)

7F00 I/O Trap Restart YES

Slot (Word)

7EFC SMM Revision NO

Identifier (Dword)

7EF8 SMBASE Slot (Dword) YES

7EF7–7E00 Reserved NO

NOTES:
*Upper two bytes are reserved.
Modifying a value that is marked as not writeable will result
in unpredictable behavior.
Words are stored in two consecutive bytes in memory with
the low-order byte at the lowest address and the high-order
byte in the high address.

111

111



MILITARY Intel486TM PROCESSOR FAMILY

The following registers are saved and restored (in
areas of the state save that are marked reserved),
but are not visible to the system software program-
mer:

CR1, CR2 and CR4, hidden descriptor registers for
CS, DS, ES, FS, GS, and SS.

If an SMIÝ request is issued for the purpose of pow-
ering down the processor, the values of all reserved
locations in the SMM state save must be saved to
non-volatile memory.

The following registers are not automatically saved
and restored by SMIÝ and RSM:

DR5–DR0, TR7–TR3, FPU registers: STn, FCS,
FSW, tag word, FP instruction pointer, FP opcode,
and operand pointer.

For all SMIÝ requests except for suspend/resume,
these registers do not have to be saved because
their contents will not change. However, during a
power down suspend/resume, a resume reset will
clear these registers back to their default values. In
this case, the suspend SMIÝ handler should read
these registers directly to save them and restore
them during the power up resume. Anytime the
SMIÝ handler changes these registers in the proc-
essor, it must also save and restore them.

8.3.4 EXIT FROM SMM

The RSM instruction is only available to the SMIÝ
handler. The opcode of the instruction is 0FAAH.
Execution of this instruction while the processor is
executing outside of SMM will cause an invalid op-
code error. The last instruction of the SMIÝ handler
will be the RSM instruction.

The RSM instruction restores the state save image
from SMRAM back to the processor, then returns
control back to the interrupted program execution.
There are three SMM features that can be enabled
by writing to control ‘‘slots’’ in the SMRAM state
save area.

Auto HALT Restart. It is possible for the SMIÝ re-
quest to interrupt the HALT state. The SMIÝ handler
can tell the RSM instruction to return control to the
HALT instruction or to return control to the instruc-
tion following the HALT instruction by appropriately
setting the Auto HALT Restart slot. The default op-
eration is to restart the HALT instruction.

I/O Trap Restart. If the SMIÝ interrupt was gener-
ated on an I/O access to a powered-down device,
the SMIÝ handler can tell the RSM instruction to re-
execute that I/O instruction by setting the I/O Trap
Restart slot.

SMBASE Relocation. The system can relocate the
SMRAM by setting the SMBASE Relocation slot in
the state save area. The RSM instruction will set the
SMBASE in the processor based on the value in the
SMBASE relocation slot. The SMBASE must be 32K
aligned.

For further details on these SMM features, see sec-
tion 8.5.

If the processor detects invalid state information, it
enters the shutdown state. This happens only in the
following situations:

# The value stored in the SMBASE slot is not a
32-Kbyte-aligned address.

# A reserved bit of CR4 is set to 1.

# A combination of bits in CR0 is illegal; namely,
(PGe1 and PEe0) or (NWe1 and CDe0).

In shutdown mode, the processor stops executing
instructions until an NMI interrupt is received or reset
initialization is invoked. The processor generates a
special bus cycle to indicate it has entered shutdown
mode.

NOTE:
INTR and SMIÝ will also bring the processor
out of a shutdown that is encountered due to
invalid state information from SMM execu-
tion. Make sure that INTR and SMIÝ are not
asserted if SMM routines are written such
that a shutdown occurs.

8.4 System Management Mode
Programming Model

8.4.1 ENTERING SYSTEM MANAGEMENT MODE

SMM is one of the major operating modes, on a level
with Protected mode, Real address mode or virtual-
86 mode. Figure 8-6 shows how the processor can
enter SMM from any of the three modes and then
return.
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271329–58

NOTE:
Reset could occur by asserting the RESET or SRESET
pin.

Figure 8-6. Transition to and from System

Management Mode

The external signal SMIÝ causes the processor to
switch to SMM. The RSM instruction exits SMM.
SMM is transparent to applications programs and
operating systems because of the following:

# The only way to enter SMM is via a type of non-
maskable interrupt triggered by an external sig-
nal.

# The processor begins executing SMM code from
a separate address space, referred to earlier as
system management RAM (SMRAM).

# Upon entry into SMM, the processor saves the
register state of the interrupted program in a part
of SMRAM called the SMM context save space.

# All interrupts normally handled by the operating
system or by applications are disabled upon entry
into SMM

# A special instruction, RSM, restores processor
registers from the SMM context save space and
returns control to the interrupted program.

SMM is similar to Real address mode in that there
are no privilege levels or address mapping. An SMM
program can execute all I/O and other system in-
structions and can address up to four Gbytes of
memory.

8.4.2 PROCESSOR ENVIRONMENT

When an SMIÝ signal is recognized on an instruc-
tion execution boundary, the processor waits for all
stores to complete, including emptying of the write

buffers. The final write cycle is complete when the
system returns RDYÝ or BRDYÝ. The processor
then drives SMIACTÝ active, saves its register state
to SMRAM space, and begins to execute the SMM
handler.

SMIÝ has greater priority than debug exceptions
and external interrupts. This means that if more than
one of these conditions occur at an instruction
boundary, only the SMIÝ processing occurs, not a
debug exception or external interrupt. Subsequent
SMIÝ requests are not acknowledged while the
processor is in SMM. The first SMIÝ interrupt re-
quest that occurs while the processor is in SMM is
latched, and serviced when the processor exits
SMM with the RSM instruction. Only one SMIÝ will
be latched by the processor while it is in SMM.

When the processor invokes SMM, the processor
core registers are initialized as shown in Table 8-3.

Table 8-3. SMM Initial Processor

Core Register Settings

Register Contents

General Purpose Registers Unpredictable

EFLAGS 00000002H

EIP 00008000H

CS Selector 3000H

CS Base SMM Base

(default 30000H)

DS, ES, FS, GS, 0000H

SS Selectors

DS, ES, FS, GS, 000000000H

SS Bases

DS, ES, FS, GS, 0FFFFFFFFH

SS Limits

CR0 Bits 0,2,3 & 31 cleared

(PE, EM, TS & PG);

others are unmodified

DR6 Unpredictable

DR7 00000000H
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The following is a summary of the key features in the
SMM environment:

1. Real mode style address calculation

2. 4-Gbyte limit checking

3. IF flag is cleared

4. NMI is disabled

5. TF flag in EFLAGS is cleared; single step traps
are disabled

6. DR7 is cleared, except for bits 12 and 13; debug
traps are disabled.

7. The RSM instruction no longer generates an in-
valid opcode error

8. Default 16-bit opcode, register and stack use.

All bus arbitration (HOLD, AHOLD, BOFFÝ) inputs
and bus sizing (BS8Ý, BS16Ý) inputs operate nor-
mally while the processor is in SMM.

8.4.3 EXECUTING SYSTEM MANAGEMENT
MODE HANDLER

The processor begins execution of the SMM handler
at offset 8000H in the CS segment. The CS Base is
initially 30000H. However, the CS Base can be
changed by using the SMM Base relocation feature.

When the SMM handler is invoked, the processors
PE and PG bits in CR0 are reset to 0. The processor
is in an environment similar to Real mode, but with-
out the 64-Kbyte limit checking. However, the de-
fault operand size and the default address size are
set to 16 bits.

The EM bit is cleared so that no exceptions are gen-
erated. (If the SMM was entered from Protected
mode, the Real mode interrupt and exception sup-
port is not available.) The SMIÝ handler should not
use floating point unit instructions until the FPU is
properly detected (within the SMIÝ handler) and the
exception support is initialized.

Because the segment bases (other than CS) are
cleared to 0 and the segment limits are set to 4
Gbytes, the address space may be treated as a sin-
gle flat 4-Gbyte linear space that is unsegmented.
The processor is still in Real mode and when a seg-
ment selector is loaded with a 16-bit value, that val-
ue is then shifted left by 4 bits and loaded into the
segment base cache. The limits and attributes are
not modified.

In SMM, the processor can access or jump any-
where within the 4-Gbyte logical address space. The
processor can also indirectly access or perform a
near jump anywhere within the 4-Gbyte logical ad-
dress space.

8.4.3.1 Exceptions and Interrupts within System
Management Mode

When the processor enters SMM, it disables INTR
interrupts, debug and single-step traps by clearing
the EFLAGS, DR6 and DR7 registers. This is done
to prevent a debug application from accidentally
breaking into an SMM handler. This is necessary be-
cause the SMM handler operates from a distinct ad-
dress space (SMRAM), and hence, the debug trap
will not represent the normal system memory space.

If an SMM handler wishes to use the debug trap
feature of the processor to debug SMM handler
code, it must first ensure that an SMM compliant
debug handler is available. The SMM handler must
also ensure DR0–DR3 is saved to be restored later.
The debug registers DR0–DR3 and DR7 must then
be initialized with the appropriate values.

If the processor wishes to use the single step fea-
ture of the processor, it must ensure that an SMM
compliant single step handler is available and then
set the trap flag in the EFLAGS register.

If the system design requires the processor to re-
spond to hardware INTR requests while in SMM, it
must ensure that an SMM compliant interrupt han-
dler is available and then set the interrupt flag in the
EFLAGS register (using the STI instruction). Soft-
ware interrupts are not blocked upon entry to SMM,
and the system software designer must provide an
SMM compliant interrupt handler before attempting
to execute any software interrupt instructions. Note
that in SMM mode, the interrupt vector table has the
same properties and location as the Real mode vec-
tor table.

NMI interrupts are blocked upon entry to the SMM
handler. If an NMI request occurs during the SMM
handler, it is latched and serviced after the proces-
sor exits SMM. Only one NMI request will be latched
during the SMM handler. If an NMI request is pend-
ing when the processor executes the RSM instruc-
tion, the NMI is serviced before the next instruction
of the interrupted code sequence.
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Although NMI requests are blocked when the proc-
essor enters SMM, they may be enabled through
software by executing an IRET instruction. If the
SMM handler requires the use of NMI interrupts, it
should invoke a dummy interrupt service routine for
the purpose of executing an IRET instruction. Once
an IRET instruction is executed, NMI interrupt re-
quests are serviced in the same ‘‘real mod’’ manner
in which they are handled outside of SMM.

8.5 SMM Features

8.5.1 SMM REVISION IDENTIFIER

The SMM revision identifier is used to indicate the
version of SMM and the SMM extensions that are
supported by the processor. The SMM revision iden-
tifier is written during SMM entry and can be exam-
ined in SMRAM space at Register Offset 7EFCH.
The lower word of the SMM revision identifier refers
to the version of the base SMM architecture. The
upper word of the SMM revision identifier refers to
the extensions available. (See Figure 8-7.)

271329–59

Figure 8-7. SMM Revision Identifier

Table 8-4. Bit Values for SMM Revision Identifier

Bits Value Comments

16 0 Processor does not support I/O

Trap Restart

16 1 Processor supports I/O Trap

Restart

17 0 Processor does not support

SMBASE relocation

17 1 Processor supports SMBASE

relocation

Bit 16 of the SMM revision identifier is used to indi-
cate to the SMM handler that this processor sup-
ports the SMM I/O trap extension. If this bit is high,
then this processor supports the SMM I/O trap ex-
tension. If this bit is low, then this processor does
not support I/O trapping using the I/O trap slot
mechanism. (See Table 8-4.)

Bit 17 of this slot indicates whether the processor
supports relocation of the SMM jump vector and the
SMRAM base address. (See Table 8-4.)

The Military Intel486 processor supports both the
I/O Trap Restart and the SMBASE relocation fea-
tures.

8.5.2 AUTO HALT RESTART

The Auto HALT Restart slot at register offset (word
location) 7F02H in SMRAM indicates to the SMM
handler that the SMIÝ interrupted the processor
during a HALT state (bit 0 of slot 7F02H is set to 1 if
the previous instruction was a HALT). If the SMIÝ
did not interrupt the processor in a HALT state, then
the SMIÝ microcode will set bit 0 of the Auto HALT
Restart slot to a value of 0. If the previous instruction
was a HALT, the SMM handler can choose to either
set or reset bit 0. If this bit is set to 1, the RSM micro
code execution will force the processor to re-enter
the HALT state. If this bit is set to 0 when the RSM
instruction is executed, the processor will continue
execution with the instruction just after the interrupt-
ed HALT instruction. Note that if the interrupted in-
struction was not a HALT instruction (bit 0 is set to 0
in the Auto HALT Restart slot upon SMM entry), set-
ting bit 0 to 1 will cause unpredictable behavior
when the RSM instruction is executed. (See Figure
8-8 and Table 8-5.)

271329–60

Figure 8-8. Auto HALT Restart
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Table 8-5. Bit Values for Auto HALT Restart

Value of Value of

Bit 0 at Bit 0 at Comments

Entry Exit

0 0 Returns to next instruction

in interrupted program.

0 1 Unpredictable

1 0 Returns to next instruction

after HALT

1 1 Returns to HALT state

If the HALT instruction is restarted, the processor
will generate a memory access to fetch the HALT
instruction (if it is not in the internal cache), and exe-
cute a HALT bus cycle.

8.5.3 I/O INSTRUCTION RESTART

The I/O instruction restart slot (register offset
7F00H in SMRAM) gives the SMM handler the op-
tion of causing the RSM instruction to automatically
re-execute the interrupted I/O instruction. When the
RSM instruction is executed, if the I/O instruction
restart slot contains the value 0FFH, then the proc-
essor will automatically re-execute the I/O instruc-
tion that the SMIÝ trapped. If the I/O instruction re-
start slot contains the value 00H when the RSM in-
struction is executed, then the processor will not re-
execute the I/O instruction. The processor automati-
cally initializes the I/O instruction restart slot to 00H
during SMM entry. The I/O instruction restart slot
should be written only when the processor has gen-
erated an SMIÝ on an I/O instruction boundary.
Processor operation is unpredictable when the I/O
instruction restart slot is set when the processor is
servicing an SMIÝ that originated on a non-I/O in-
struction boundary. (See Figure 8-9 and Table 8-6.)
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Figure 8-9. I/O Instruction Restart

Table 8-6 I/O Instruction Restart Value

Value at Value
Comments

Entry at Exit

00H 00H Do not restart trapped I/O

instruction

00H 0FFH Restart trapped I/O

instruction

If the system executes back-to-back SMIÝ re-
quests, the second SMM handler must not set
the I/O instruction restart slot (see section 8.6.6
‘‘Nested SMIÝs and I/O Restart’’).

8.5.4 SMM BASE RELOCATION

The Military Intel486 processor provides a control
register, SMBASE. The address space used as
SMRAM can be modified by changing the SMBASE
register before exiting an SMIÝ handler routine.
SMBASE can be changed to any 32K aligned value
(values that are not 32K aligned will cause the proc-
essor to enter the shutdown state when executing
the RSM instruction). SMBASE is set to the default
value of 30000H on RESET, but is not changed on
SRESET. If the SMBASE register is changed during
an SMM handler, all subsequent SMIÝ requests will
initiate a state save at the new SMBASE. (See Fig-
ure 8-10.)
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271329–62

Figure 8-10. SMM Base Location

The SMBASE slot in the SMM state save area is a
feature used to indicate and change the SMIÝ jump
vector location and the SMRAM save area. When bit
17 of the SMM Revision Identifier is set then this
feature exists and the SMRAM base and conse-
quently the jump vector are as indicated by the SMM
Base slot. During the execution of the RSM instruc-
tion, the processor will read this slot and initialize the
processor to use the new SMBASE during the next
SMIÝ. During an SMIÝ, the processor will do its
context save to the new SMRAM area pointed to by
the SMBASE, store the current SMBASE in the
SMM Base slot (offset 7EF8H), and then start exe-
cution of the new jump vector based on the current
SMBASE.

The SMBASE must be a 32-Kbyte aligned, 32-bit in-
teger that indicates a base address for the SMRAM
context save area and the SMIÝ jump vector. For
example when the processor first powers up, the
minimum SMRAM area is from 38000H–3FFFFH.
The default SMBASE is 30000H. Hence the starting
address of the jump vector is calculated by:

SMBASE a 8000H

While the starting address for the SMRAM state
save area is calculated by:

SMM Base a [8000H a 7FFFH]

Hence, when this feature is enabled, the SMRAM
register map is addressed according to the above
formulas. (See Figure 8-11.)

To change the SMRAM base address and SMM
jump vector location, the SMM handler should modi-
fy the SMBASE slot. Upon executing an RSM in-
struction, the processor will read the SMBASE slot
and store it internally. Upon recognition of the next
SMIÝ request, the processor will use the new
SMBASE slot for the SMRAM dump and SMIÝ jump
vector.

If the modified SMBASE slot does not contain a
32-Kbyte aligned value, the RSM microcode will
cause the processor to enter the shutdown state.
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Figure 8-11. SMRAM Usage

8.6 SMM System Design
Considerations

8.6.1 SMRAM INTERFACE

The hardware designed to control the SMRAM
space must follow these guidelines:

1. A provision should be made to allow for initializa-
tion of SMRAM space during system boot up. This
initialization of SMRAM space must happen
before the first occurrence of an SMIÝ interrupt.
Initializing the SMRAM space must include instal-
lation of an SMM handler, and may include instal-
lation of related data structures necessary for par-
ticular SMM applications. The memory controller
providing the interface to the SMRAM should pro-
vide a means for the initialization code to manual-
ly open the SMRAM space.

2. A minimum initial SMRAM address space of
38000H-3FFFFH should be decoded by the mem-
ory controller.

3. Alternate bus masters (such as DMA controllers)
should not be allowed to access SMRAM space.
Only the processor, either through SMIÝ or dur-
ing initialization, should be allowed access to
SMRAM.

4. In order to implement a zero-volt suspend func-
tion, the system must have access to all of normal
system memory from within an SMM handler
routine. If the SMRAM is going to overlay normal
system memory, there must be a method of ac-
cessing any system memory that is located under-
neath SMRAM.
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There are two potential schemes for locating the
SMRAM, either overlaid to an address space on top
of normal system memory, or placed in a distinct
address space. (See Figure 8-12.) When SMRAM is
overlaid on the top of normal system memory, the
processor output signal SMIACTÝ must be used to
distinguish SMRAM from main system memory. Ad-
ditionally, if the overlaid normal memory is cache-
able, both the processor internal cache and any sec-
ond level caches must be empty before the first read
of an SMM handler routine. If the SMM memory is
cacheable, the caches must be empty before the
first read of normal memory following an SMM han-
dler routine. This is done by flushing the caches, and
is required to maintain cache coherency. When the
default SMRAM location is used, SMRAM is overlaid
on top of system main memory (at 38000H through
3FFFFH).

If SMRAM is located in its own distinct memory
space, which can be completely decoded with only
the processor address signals, it is said to be non-
overlaid. In this case, there are no new requirements
for maintaining cache coherency.
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Figure 8-12. SMRAM Location

8.6.2 CACHE FLUSHES

The processor does not unconditionally flush its
cache before entering SMM (this option is left to the
system designer). If SMRAM is shadowed in a
cacheable memory area that is visible to the applica-
tion or operating system, it is necessary for the sys-
tem to empty both the processor cache and any
second level cache before entering SMM. That is, if
SMRAM is in the same physical address location as
the normal cacheable memory space, then an SMM
read may hit the cache which would contain normal
memory space code/data. If the SMM memory is
cacheable, the normal read cycles after SMM may
hit the cache, which may contain SMM code/data. In
this case the cache should be empty before the first
memory read cycle during SMM and before the first
normal cycle after exiting SMM. (See Figure 8-13.)

The FLUSHÝ and KENÝ signals can be used to
ensure cache coherency when switching between
normal and SMM modes. Cache flushing during
SMM entry is accomplished by asserting the
FLUSHÝ pin when SMIÝ is driven active. Cache
flushing during SMM exit is accomplished by assert-
ing the FLUSHÝ pin after the SMIACTÝ pin is de-
asserted (within 1 CLK). To guarantee this behavior,
the constraints on setup and hold timings on the in-
teraction of FLUSHÝ and SMIACTÝ as specified for
a processor should be followed.

If the SMRAM area is overlaid over normal memory
and if the system designer does not want to flush
the caches upon leaving SMM then references to
the SMRAM area should not be cached. It is the
obligation of the system designer to ensure that the
KENÝ pin is sampled inactive during all references
to the SMRAM area. Figures 8-14 and 8-15 illustrate
a cached and non-cached SMM using FLUSHÝ and
KENÝ.
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271329–65

Figure 8-13. FLUSHÝ Mechanism during SMM
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Figure 8-14. Cached SMM
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Figure 8-15. Non-Cached SMM
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8.6.3 A20MÝ PIN AND SMBASE RELOCATION

Systems based on a PC-compatible architecture
contain a feature that enables the processor ad-
dress bit A20 to be forced to 0. This limits physical
memory to a maximum of 1 Mbyte, and is provided
to ensure compatibility with those programs that re-
lied on the physical address wrap around functionali-
ty of the 8088 processor. The A20MÝ pin on Military
Intel486 processors provides this function. When
A20MÝ is active, all external bus cycles will drive
A20MÝ low, and all internal cache accesses will be
performed with A20MÝ low.

The A20MÝ pin is recognized while the processor is
in SMM. The functionality of the A20MÝ input must
be recognized in the following two instances:

1. If the SMM handler needs to access system
memory space above 1 Mbyte (for example, when
saving memory to disk for a zero-volt suspend),
the A20MÝ pin must be de-asserted before the
memory above 1 Mbyte is addressed.

2. If SMRAM has been relocated to address space
above 1 Mbyte, and A20MÝ is active upon enter-
ing SMM, the processor will attempt to access
SMRAM at the relocated address, but with A20
low. This could cause the system to crash, be-
cause there would be no valid SMM interrupt han-
dler at the accessed location.

In order to account for the above two situations, the
system designer must ensure that A20MÝ is de-as-
serted on entry to SMM. A20MÝ must be driven in-
active before the first cycle of the SMM state save,
and must be returned to its original level after the
last cycle of the SMM state restore. This can be
done by blocking the assertion of A20MÝ whenever
SMIACTÝ is active.

8.6.4 PROCESSOR RESET DURING SMM

The system designer should take into account the
following restrictions while implementing the proces-
sor RESET logic.

1. When running software written for the 80286
processor a processor SRESET is used to switch
the processor from Protected mode to Real
mode. Note that SRESET has a higher interrupt
priority than SMIACTÝ. When the processor is in
SMM, the SRESET to the processor during SMM
should be blocked until the processor exits SMM.
SRESET must be blocked beginning from the

time when SMIÝ is driven active and ending at
least 20 CLK cycles after SMIACTÝ is de-assert-
ed. Be careful not to block the global system
RESET, which may be necessary to recover from
a system crash.

2. During execution of the RSM instruction to exit
SMM, there is a small time window between the
de-assertion of SMIACTÝ and the completion of
the RSM microcode. If SRESET is asserted dur-
ing this window, it is possible that the SMRAM
space will be violated. The system designer must
guarantee that SRESET is blocked until at least
20 processor clock cycles after SMIACTÝ has
been driven inactive.

3. Any request for a processor SRESET for the pur-
pose of switching the processor from Protected
mode to Real mode must be acknowledged after
the processor has exited SMM. In order to main-
tain software transparency, the system logic must
latch any SRESET signals that are blocked during
SMM.

8.6.5 SMM AND SECOND LEVEL WRITE
BUFFERS

Before a Military Intel486 processor enters SMM, it
empties its internal write buffers. This is necessary
so that the data in the write buffers is written to nor-
mal memory space, not SMM space. Once the proc-
essor is ready to begin writing an SMM state save to
SMRAM, it asserts the SMIACTÝ signal. SMIACTÝ
may be driven active by the processor before the
system memory controller has had an opportunity to
empty the second level write buffers.

To prevent the data from these second level write
buffers from being written to the wrong location, the
system memory controller needs to direct the mem-
ory write cycles to either SMM space or normal
memory space. This can be accomplished by saving
the status of SMIACTÝ along with the address for
each word in the write buffers.

8.6.6 NESTED SMIÝs AND I/O RESTART

Special care must be taken when executing an SMM
handler for the purpose of restarting an I/O instruc-
tion. When the processor executes a RSM instruc-
tion with the I/O restart slot set, the restored EIP is
modified to point to the instruction immediately pre-
ceding the SMIÝ request, so that the I/O instruction
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can be re-executed. If a new SMIÝ request is re-
ceived while the processor is executing an SMM
handler, the processor will service this SMIÝ re-
quest before restarting the original I/O instruction. If
the I/O restart slot is set when the processor exe-
cutes the RSM instruction for the second SMM han-
dler, the RSM microcode will decrement the
restored EIP again. EIP now points to an address
different from the originally interrupted instruction,
and the processor will begin execution of the inter-
rupted application code at an incorrect entry point.

To prevent this from occurring, the SMM handler
routine must not set the I/O restart slot during
the second of two consecutive SMM handlers.

8.7 SMM Software Considerations

8.7.1 SMM CODE CONSIDERATIONS

The default operand size and the default address
size are 16 bits; however, operand-size override and
address-size override prefixes can be used as need-
ed to directly access data anywhere within the
4-Gbyte logical address space.

With operand-size override prefixes, the SMM han-
dler can use jumps, calls, and returns, to transfer
control to any location within the 4-Gbyte space.
Note, however, the following restrictions:

# Any control transfer that does not have an oper-
and-size override prefix truncates EIP to 16 low-
order bits.

# Due to the Real mode style of base-address for-
mation, a far jump or call cannot transfer control
to a segment with a base address of more than
20 bits (one megabyte).

8.7.2 EXCEPTION HANDLING

Upon entry into SMM, external interrupts that require
handlers are disabled (the IF bit in the EFLAGS is
cleared). This is necessary because, while the proc-
essor is in SMM, it is running in a separate memory
space. Consequently the vectors stored in the inter-
rupt descriptor table (IDT) for the prior mode are not
applicable. Before allowing exception handling (or
software interrupts), the SMM program must initial-
ize new interrupt and exception vectors. The inter-
rupt vector table for SMM has the same format as
for Real mode. Until the interrupt vector table is cor-
rectly initialized, the SMM handler must not generate

an exception (or software interrupt). Even though
hardware interrupts are disabled, exceptions and
software interrupts can still occur. Only a correctly
written SMM handler can prevent internal excep-
tions. When new exception vectors are initialized, in-
ternal exceptions can be serviced. The following are
the restrictions:

1. Due to the Real mode style of base address for-
mation, an interrupt or exception cannot transfer
control to a segment with a base address of more
that 20 bits.

2. An interrupt or exception cannot transfer control
to a segment offset of more than 16 bits
(64 Kbytes).

3. If exceptions or interrupts are allowed to occur,
only the low order 16 bits of the return address
(EIP) are pushed onto the stack. If the offset of
the interrupted procedure is greater than
64 Kbytes, it is not possible for the interrupt/
exception handler to return control to that proce-
dure. (One work-around could be to perform soft-
ware adjustment of the return address on the
stack.)

4. The SMBASE Relocation feature affects the way
the processor will return from an interrupt or ex-
ception during an SMIÝ handler.

8.7.3 HALT DURING SMM

HALT should not be executed during SMM, unless
interrupts have been enabled (see section 8.7.2.
‘‘Exception Handling’’). Interrupts are disabled in
SMM and INTR, NMI, and SMIÝ are the only events
that take the processor out of HALT.

8.7.4 RELOCATING SMRAM TO AN ADDRESS
ABOVE ONE MEGABYTE

Within SMM (or Real mode), the segment base reg-
isters can only be updated by changing the segment
register. The segment registers contain only 16 bits,
which allows only 20 bits to be used for a segment
base address (the segment register is shifted left
four bits to determine the segment base address). If
SMRAM is relocated to an address above one
megabyte, the segment registers can no longer be
initialized to point to SMRAM.
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These areas can still be accessed by using address
override prefixes to generate an offset to the correct
address. For example, if the SMBASE has been re-
located immediately below 16M, the DS and ES reg-
isters are still initialized to 0000 0000H. We can still
access data in SMRAM by using 32-bit displacement
registers:

mov esi, 00FFxxxxH ;64K segment
;immediately
;below 16M

mov ax,ds:[esi]

9.0 HARDWARE INTERFACE

9.1 Introduction

The Military Intel486 processor has separate parallel
buses for data and addresses. The bidirectional data
bus is 32 bits in width. The address bus consists of
two components: 30 address lines (A2–A31) and
4-byte enable lines (BE0Ý–BE3Ý). The address
lines form the upper 30 bits of the address and the
byte enables select individual bytes within a 4-byte
location. The address lines are bidirectional for use
in cache line invalidations. (See Figure 9-1.)

The Military Intel486 processor’s burst bus mecha-
nism enables high-speed cache fills from external
memory. Burst cycles can strobe data into the proc-
essor at a rate of one item every clock. Non-burst
cycles have a maximum rate of one item every two
clocks. Burst cycles are not limited to cache fills: all
read bus cycles requiring more than a single data
cycle can be bursted.

During bus hold, the Military Intel486 processor relin-
quishes control of the local bus by floating its ad-
dress, data and control buses. The Military Intel486
processor has an address hold feature in addition to
bus hold. During address hold, only the address bus
is floated, the data and control buses can remain
active. Address hold is used for cache line invalida-
tions.

The Military Intel486 supports the IEEE 1149.1
boundary scan.

This section provides a brief description of the Mili-
tary Intel486 processor input and output signals ar-
ranged by functional groups. The Ý symbol at the
end of a signal name indicates that the active or

asserted state occurs when the signal is at a low
voltage. When a Ý is not present after the signal
name, the signal is active at high voltage level. The
term ‘‘ready’’ is used to indicate that the cycle is
terminated with RDYÝ or BRDYÝ.

This section and section 10, ‘‘Bus Operation,’’ de-
scribe bus cycles and data cycles. A bus cycle is at
least two-clocks long and begins with ADSÝ active
in the first clock and RDYÝ and/or BRDYÝ active in
the last clock. Data is transferred to or from the Mili-
tary Intel486 processor during a data cycle. A bus
cycle contains one or more data cycles.

9.2 Signal Descriptions

9.2.1 CLOCK (CLK)

CLK provides the fundamental timing and the inter-
nal operating frequency for the Military Intel486
processor. All external timing parameters are speci-
fied with respect to the rising edge of CLK.

The Military Intel486 processor can operate over a
wide frequency range, however the CLK frequency
cannot change rapidly while RESET is inactive. The
CLK frequency must be stable for proper chip opera-
tion because a single edge of CLK is used internally
to generate two phases. CLK only needs TTL levels
for proper operation. Figure 9-2 illustrates the CLK
waveform.

9.2.2 INTELDX4 PROCESSOR CLOCK
MULTIPLIER SELECTABLE INPUT
(CLKMUL)

The IntelDX4 processor differs from the IntelDX2
processor in that it provides for two internal clock
multiplier ratios: speed doubled mode and speed tri-
pled mode. Speed doubled mode is identical to the
IntelDX2 processor mode of operation where the in-
ternal core is operating at twice the external bus fre-
quency. Selecting speed tripled mode causes the in-
ternal core frequency to operate at three times the
external bus frequency. The IntelDX4 processor de-
termines the desired clock multiplier ratio by sam-
pling the status of the CLKMUL input during cold
(power on) processor resets. The clock multiplier
ratio cannot be changed during warm resets.
Also, SRESET cannot be used to select the clock
multiplier ratio.
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Figure 9-1. Functional Signal Groupings
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Figure 9-2. CLK Waveform

To determine which clock multiplier is desired, the
IntelDX4 processor samples the status of CLKMUL
while RESET is active. If the CLKMUL input is driven
low during RESET, the frequency of the core will be
twice the external bus frequency (speed doubled
mode). If driven high or left floating, speed tripled
mode is selected. (See Table 9-1.) In order to allow
maximum flexibility, CLKMUL can be jumper-config-
urable to either VCC (speed tripled mode) or VSS
(speed doubled mode). (See Figure 9-3.)

Table 9-1. Clock Multiplier Selection

CLKMUL

RESET

at
Multiplier

Clock

External Internal

Clock Clock

Freq. Freq.

(MHz) (MHz)

VCC or 3 25 75

Not Driven 33 100

VSS 2 25 50

33 66

271329–70

Figure 9-3. Voltage Detect (VOLDET) Sense Pin

The clock multiplier selection method is fully back-
ward compatible with Military Intel486 processor-
based system designs. The CLKMUL signal occu-
pies a pin which is labeled as an ‘INC‘ on other Mili-
tary Intel486 processors. Therefore, this pin is not
driven in other Military Intel486 processor system
designs. The IntelDX4 processor contains an inter-
nal pull-up resistor on the CLKMUL signal. As shown
in Table 9-1, when CLKMUL is not driven, the inter-
nal core frequency defaults to speed tripled mode.

The internal pull-up resistor on the CLKMUL pin is
disabled while the IntelDX4 processor is in the Stop
Grant or Stop Clock modes. This prevents a low lev-
el DC current path from drawing current while in the
Stop Grant or Stop Clock states on a system with
CLKMUL connected to VSS.

9.2.3 ADDRESS BUS (A31–A2, BE0Ý–BE3Ý)

A31–A2 and BE0Ý–BE3Ý form the address bus
and provide physical memory and I/O port address-
es. The Military Intel486 processor is capable of ad-
dressing 4 gigabytes of physical memory space
(00000000H through FFFFFFFFH), and 64 Kbytes
of I/O address space (00000000H through
0000FFFFH). A31–A2 identify addresses to a 4-byte
location. BE0Ý–BE3Ý identify which bytes within
the 4-byte location are involved in the current trans-
fer.
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Addresses are driven back into the Military Intel486
processor over A31–A4 during cache line invalida-
tions. The address lines are active HIGH. When
used as inputs into the processor, A31–A4 must
meet the setup and hold times, t22 and t23. A31–A2
are not driven during bus or address hold.

The byte enable outputs, BE0Ý–BE3Ý, determine
which bytes must be driven valid for read and write
cycles to external memory.

# BE3Ý applies to D24–D31

# BE2Ý applies to D16–D23

# BE1Ý applies to D8–D15

# BE0Ý applies to D0–D7

BE0Ý–BE3Ý can be decoded to generate A0, A1
and BHEÝ signals used in 8- and 16-bit systems
(see Table 10-5). BE0Ý–BE3Ý are active LOW and
are not driven during bus hold.

9.2.4 DATA LINES (D31–D0)

The bidirectional lines, D31–D0, form the data bus
for the Military Intel486 processor D0–D7 define the
least significant byte and D24–D31 the most signifi-
cant byte. Data transfers to 8- or 16-bit devices are
possible using the data bus sizing feature controlled
by the BS8Ý or BS16Ý input pins. D31–D0 are ac-
tive HIGH. For reads, D31–D0 must meet the setup
and hold times, t22 and t23. D31–D0 are not driven
during read cycles and bus hold.

9.2.5 PARITY

Data Parity Input/Outputs (DP0–DP3)

DP0–DP3 are the data parity pins for the processor.
There is one pin for each byte of the data bus. Even
parity is generated or checked by the parity genera-
tors/checkers. Even parity means that there are an
even number of HIGH inputs on the eight corre-
sponding data bus pins and parity pin.

Data parity is generated on all write data cycles with
the same timing as the data driven by the Military
Intel486 processor. Even parity information must be
driven back to the Military Intel486 processor on
these pins with the same timing as read information
to insure that the correct parity check status is indi-
cated by the Military Intel486 processor.

The values read on these pins do not affect program
execution. It is the responsibility of the system to
take appropriate actions if a parity error occurs.

Input signals on DP0–DP3 must meet setup and
hold times t22 and t23 for proper operation.

Parity Status Output (PCHKÝ)

Parity status is driven on the PCHKÝ pin, and a pari-
ty error is indicated by this pin being LOW. PCHKÝ
is driven the clock after ready for read operations to
indicate the parity status for the data sampled at the
end of the previous clock. Parity is checked during
code reads, memory reads and I/O reads. Parity is
not checked during interrupt acknowledge cycles.
PCHKÝ only checks the parity status for enabled
bytes as indicated by the byte enable and bus size
signals. It is valid only in the clock immediately after
read data is returned to the Military Intel486 proces-
sor. At all other times it is inactive (HIGH). PCHKÝ is
never floated.

Driving PCHKÝ is the only effect that bad input pari-
ty has on the Military Intel486 processor. The Mili-
tary Intel486 processor will not vector to a bus error
interrupt when bad data parity is returned. In sys-
tems that will not employ parity, PCHKÝ can be ig-
nored. In systems not using parity, DP0–DP3 should
be connected to VCC through a pull-up resistor.

9.2.6 BUS CYCLE DEFINITION

M/IOÝ, D/CÝ, W/RÝ Outputs

M/IOÝ, D/CÝ and W/RÝ are the primary bus cycle
definition signals. They are driven valid as the ADSÝ
signal is asserted. M/IOÝ distinguishes between
memory and I/O cycles, D/CÝ distinguishes be-
tween data and control cycles and W/RÝ distin-
guishes between write and read cycles.

Bus cycle definitions as a function of M/IOÝ, D/CÝ
and W/RÝ are given in Table 9-2. Note there is a
difference between the Military Intel486 processor
and Intel386TM processor bus cycle definitions. The
halt bus cycle type has been moved to location 001
in the Military Intel486 processor from location 101
in the Intel386 processor. Location 101 is now re-
served and will never be generated by the Military
Intel486 processor.

Special bus cycles are discussed in section 10.2.11,
‘‘Special Bus Cycles’’.
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Table 9-2. ADSÝ Initiated Bus Cycle Definitions

M/IOÝ D/CÝ W/RÝ Bus Cycle Initiated

0 0 0 Interrupt Acknowledge

0 0 1 Halt/Special Cycle

0 1 0 I/O Read

0 1 1 I/O Write

1 0 0 Code Read

1 0 1 Reserved

1 1 0 Memory Read

1 1 1 Memory Write

Bus Lock Output (LOCKÝ)

LOCKÝ indicates that the Military Intel486 proces-
sor is running a read-modify-write cycle where the
external bus must not be relinquished between the
read and write cycles. Read-modify-write cycles are
used to implement memory-based semaphores.
Multiple reads or writes can be locked.

When LOCKÝ is asserted, the current bus cycle is
locked and the Military Intel486 processor should be
allowed exclusive access to the system bus.
LOCKÝ goes active in the first clock of the first
locked bus cycle and goes inactive after ready is
returned indicating the last locked bus cycle.

The Military Intel486 processor will not acknowledge
bus hold when LOCKÝ is asserted (though it will
allow an address hold). LOCKÝ is active LOW and
is floated during bus hold. Locked read cycles will
not be transformed into cache fill cycles if KENÝ is
returned active. Refer to section 10.2.6, ‘‘Locked
Cycles,’’ for a detailed discussion of Locked bus cy-
cles.

Pseudo-Lock Output (PLOCKÝ)

The pseudo-lock feature allows atomic reads and
writes of memory operands greater than 32 bits.
These operands require more than one cycle to
transfer. The Military Intel486 processor asserts
PLOCKÝ during segment table descriptor reads (64
bits) and cache line fills (128 bits).

When PLOCKÝ is asserted no other master will be
given control of the bus between cycles. A bus hold
request (HOLD) is not acknowledged during pseudo-
locked reads and writes, with one exception. During
non-cacheable non-bursted code prefetches, HOLD

is recognized on memory cycle boundaries even
though PLOCKÝ is asserted. The Military Intel486
processor will drive PLOCKÝ active until the ad-
dresses for the last bus cycle of the transaction
have been driven regardless of whether BRDYÝ or
RDYÝ are returned.

A pseudo-locked transfer is meaningful only if the
memory operand is aligned and if its completely con-
tained within a single cache line.

Because PLOCKÝ is a function of the bus size and
KENÝ inputs, PLOCKÝ should be sampled only in
the clock ready is returned. This pin is active LOW
and is not driven during bus hold. Refer to section
10.2.7, ‘‘Pseudo-Locked Cycles.’’

9.2.6.1 PLOCKÝ Floating Point Considerations

For processors with an on-chip FPU, the following
must be noted for PLOCKÝ operation. A 64-bit float-
ing point number must be aligned to an 8-byte
boundary to guarantee an atomic access. Normally
PLOCKÝ and BLASTÝ are inverse of each other.
However, during the first cycle of a 64-bit floating
point write, both PLOCKÝ and BLASTÝ will be as-
serted. Military Intel486 processors with on-chip
FPUs also assert PLOCKÝ during floating point long
reads and writes (64 bits), segmentable description
reads (64 bits) and code line fills (128 bits).

9.2.7 BUS CONTROL

The bus control signals allow the Military Intel486
processor to indicate when a bus cycle has begun,
and allow other system hardware to control burst
cycles, data bus width and bus cycle termination.

Address Status Output (ADSÝ)

The ADSÝ output indicates that the address and
bus cycle definition signals are valid. This signal will
go active in the first clock of a bus cycle and go
inactive in the second and subsequent clocks of the
cycle. ADSÝ is also inactive when the bus is idle.

ADSÝ is used by the external bus circuitry as the
indication that the Military Intel486 processor has
started a bus cycle. The external circuit must sample
the bus cycle definition pins on the next rising edge
of the clock after ADSÝ is driven active.

ADSÝ is active LOW and is not driven during bus
hold.
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Non-burst Ready Input (RDYÝ)

RDYÝ indicates that the current bus cycle is com-
plete. In response to a read, RDYÝ indicates that
the external system has presented valid data on the
data pins. In response to a write request, RDYÝ indi-
cates that the external system has accepted the Mil-
itary Intel486 processor data. RDYÝ is ignored
when the bus is idle and at the end of the first clock
of the bus cycle. Because RDYÝ is sampled during
address hold, data can be returned to the processor
when AHOLD is active.

RDYÝ is active LOW, and is not provided with an
internal pull-up resistor. This input must satisfy setup
and hold times t16 and t17 for proper chip operation.

9.2.8 BURST CONTROL

Burst Ready Input (BRDYÝ)

BRDYÝ performs the same function during a burst
cycle that RDYÝ performs during a non-burst cycle.
BRDYÝ indicates that the external system has pre-
sented valid data on the data pins in response to a
read or that the external system has accepted the
Military Intel486 processor data in response to a
write. BRDYÝ is ignored when the bus is idle and at
the end of the first clock in a bus cycle.

During a burst cycle, BRDYÝ will be sampled each
clock, and if active, the data presented on the data
bus pins will be strobed into the Military Intel486
processor. ADSÝ is negated during the second
through last data cycles in the burst, but address
lines A2–A3 and byte enables will change to reflect
the next data item expected by the Military Intel486
processor.

If RDYÝ is returned simultaneously with BRDYÝ,
BRDYÝ is ignored and the burst cycle is premature-
ly aborted. An additional complete bus cycle will be
initiated after an aborted burst cycle if the cache line
fill was not complete. BRDYÝ is treated as a normal
ready for the last data cycle in a burst transfer or for
non-burstable cycles. Refer to section 10.2.2, ‘‘Multi-
ple and Burst Cycle Bus Transfers,’’ for burst cycle
timing.

BRDYÝ is active LOW and is provided with a small
internal pull-up resistor. BRDYÝ must satisfy the
setup and hold times t16 and t17.

Burst Last Output (BLASTÝ)

BLASTÝ indicates that the next time BRDYÝ is re-
turned it will be treated as a normal RDYÝ, terminat-
ing the line fill or other multiple-data-cycle transfer.
BLASTÝ is active for all bus cycles regardless of
whether they are cacheable or not. This pin is active
LOW and is not driven during bus hold.

9.2.9 INTERRUPT SIGNALS

The interrupt signals can interrupt or suspend exe-
cution of the processor’s current instruction stream.

Reset Input (RESET)

The RESET input must be used at power-up to ini-
tialize the processor. The Reset input forces the
processor to begin execution at a known state. The
processor cannot begin execution of instructions un-
til at least 1 ms after VCC and CLK have reached
their proper DC and AC specifications. The RESET
pin should remain active during this time to ensure
proper processor operation. However, for warm
boot-ups RESET should remain active for at least 15
CLK periods. RESET is active HIGH. RESET is asyn-
chronous but must meet setup and hold times t20
and t21 for recognition in any specific clock.

RESET will reset SMBASE to the default value of
30000H. If SMBASE relocation is not used, the RE-
SET signal can be used as the only reset. (See sec-
tion 8, ‘‘System Management Mode Architecture.’’)

The Military Intel486 processor will be placed in the
Power Down Mode if UPÝ is sampled active at the
falling edge of RESET.

Soft Reset Input (SRESET)

The SRESET (Soft RESET) input, has the same
functions as RESET, but does not change the
SMBASE, and UPÝ is not sampled on the falling
edge of SRESET. If SMBASE relocation is used by
the system, the soft resets should be handled using
the SRESET input. The SRESET signal should not
be used for the cold boot-up power-on reset.

The SRESET input pin is provided to save the status
of SMBASE during Intel 286 processor-compatible
mode change. SRESET leaves the location of
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SMBASE intact while resetting other units, including
the on-chip cache. For compatibility, the system
should use SRESET to flush the on-chip cache. The
FLUSHÝ input pin should be used to flush the on-
chip cache. SRESET should not be used to initiate
test modes.

System Management Interrupt Request Input
(SMIÝ)

SMIÝ is the system management mode interrupt re-
quest signal. The SMIÝ request is acknowledged by
the SMIACTÝ signal. After the SMIÝ interrupt is rec-
ognized, the SMIÝ signal will be masked internally
until the RSM instruction is executed and the inter-
rupt service routine is complete. SMIÝ is falling-
edge sensitive after internal synchronization.

The SMIÝ input must be held inactive for at least
four clocks after it is asserted to reset the edge trig-
gered logic. SMIÝ is provided with a pull-up resistor
to maintain compatibility with designs which do not
use this feature. SMIÝ is an asynchronous signal,
but setup and hold times, t20 and t21, must be met in
order to guarantee recognition on a specific clock.

System Management Mode Active Output
(SMIACTÝ)

SMIACTÝ indicates that the processor is operating
in System Management Mode. The processor as-
serts SMIACTÝ in response to an SMI interrupt re-
quest on the SMIÝ pin. SMIACTÝ is driven active
after the processor has completed all pending write
cycles (including emptying the write buffers), and be-
fore the first access to SMRAM when the processor
saves (writes) its state (or context) to SMRAM.
SMIACTÝ remains active until the last access to
SMRAM when the processor restores (reads) its
state from SMRAM. The SMIACTÝ signal does not
float in response to HOLD. The SMIACTÝ signal is
used by the system logic to decode SMRAM.

Maskable Interrupt Request Input (INTR)

INTR indicates that an external interrupt has been
generated. Interrupt processing is initiated if the IF
flag is active in the EFLAGS register.

The Military Intel486 processor will generate two
locked interrupt acknowledge bus cycles in re-
sponse to asserting the INTR pin. An 8-bit interrupt
number will be latched from an external interrupt
controller at the end of the second interrupt

acknowledge cycle. INTR must remain active until
the interrupt acknowledges have been performed to
assure program interruption. Refer to section
10.2.10, ‘‘Interrupt Acknowledge,’’ for a detailed dis-
cussion of interrupt acknowledge cycles.

The INTR pin is active HIGH and is not provided with
an internal pull-down resistor. INTR is asynchro-
nous, but the INTR setup and hold times, t20 and t21,
must be met to assure recognition on any specific
clock.

Non-maskable Interrupt Request Input (NMI)

NMI is the non-maskable interrupt request signal.
Asserting NMI causes an interrupt with an internally
supplied vector value of 2. External interrupt ac-
knowledge cycles are not generated because the
NMI interrupt vector is internally generated. When
NMI processing begins, the NMI signal will be
masked internally until the IRET instruction is exe-
cuted.

NMI is rising edge sensitive after internal synchroni-
zation. NMI must be held LOW for at least four CLK
periods before this rising edge for proper operation.
NMI is not provided with an internal pull-down resis-
tor. NMI is asynchronous but setup and hold times,
t20 and t21 must be met to assure recognition on any
specific clock.

Stop Clock Interrupt Request Input (STPCLKÝ)

The Military Intel486 processor provides an interrupt
mechanism, STPCLKÝ, that allows system hard-
ware to control the power consumption of the proc-
essor by stopping the internal clock (output of the
PLL) to the processor core in a controlled manner.
This low-power state is called the Stop Grant state.
In addition, the STPCLKÝ interrupt allows the sys-
tem to change the input frequency within the speci-
fied range or completely stop the CLK input frequen-
cy (input to the PLL). If the CLK input is completely
stopped, the processor enters into the Stop Clock
state–the lowest power state. If the frequency is
changed or stopped, the Military Intel486 processor
will not return to the Stop Grant state until the CLK
input has been running at a constant frequency for
the time period necessary to stabilize the PLL (mini-
mum of 1 ms).

The Military Intel486 processor will generate a Stop
Grant bus cycle in response to the STPCLKÝ
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interrupt request. STPCLKÝ is active LOW and is
provided with an internal pull-up resistor. STPCLKÝ
is an asynchronous signal, but must remain active
until the processor issues the Stop Grant bus cycle.
(Refer to section 10.2.11.3, ‘‘Stop Grant Indication
Cycle.’’)

9.2.10 BUS ARBITRATION SIGNALS

This section describes the mechanism by which the
processor relinquishes control of its local bus when
requested by another bus master.

Bus Request Output (BREQ)

The Military Intel486 processor asserts BREQ when-
ever a bus cycle is pending internally. Thus, BREQ is
always asserted in the first clock of a bus cycle,
along with ADSÝ. Furthermore, if the Military In-
tel486 processor is currently not driving the bus (due
to HOLD, AHOLD, or BOFFÝ), BREQ is asserted in
the same clock that ADSÝ would have been assert-
ed if the Military Intel486 processor were driving the
bus. After the first clock of the bus cycle, BREQ may
change state. It will be asserted if additional cycles
are necessary to complete a transfer (via BS8Ý,
BS16Ý, KENÝ), or if more cycles are pending inter-
nally. However, if no additional cycles are necessary
to complete the current transfer, BREQ can be neg-
ated before ready comes back for the current cycle.
External logic can use the BREQ signal to arbitrate
among multiple processors. This pin is driven re-
gardless of the state of bus hold or address hold.
BREQ is active HIGH and is never floated. During a
hold state, internal events may cause BREQ to be
de-asserted prior to any bus cycles.

Bus Hold Request Input (HOLD)

HOLD allows another bus master complete control
of the Military Intel486 processor bus. The Military
Intel486 processor will respond to an active HOLD
signal by asserting HLDA and placing most of its
output and input/output pins in a high impedance
state (floated) after completing its current bus cycle,
burst cycle, or sequence of locked cycles. In addi-
tion, if the Military Intel486 processor receives a
HOLD request while performing a code fetch, and
that cycle is backed off (BOFFÝ), the Military
Intel486 processor will recognize HOLD before re-
starting the cycle. The code fetch can be non-
cacheable or cacheable and non-bursted or bursted.
The BREQ, HLDA, PCHKÝ and FERRÝ pins are not
floated during bus hold. The Military Intel486 proces-
sor will maintain its bus in this state until the HOLD is
de-asserted. Refer to section 10.2.9, ‘‘Bus Hold,’’ for
timing diagrams for bus hold cycles and HOLD re-
quest acknowledge during BOFFÝ.

Unlike the Intel386 processor, the Military Intel486
processor will recognize HOLD during reset. Pull-up
resistors are not provided for the outputs that are
floated in response to HOLD. HOLD is active HIGH
and is not provided with an internal pull-down resis-
tor. HOLD must satisfy setup and hold times t18 and
t19 for proper chip operation.

Bus Hold Acknowledge Output (HLDA)

HLDA indicates that the Military Intel486 processor
has given the bus to another local bus master. HLDA
goes active in response to a hold request presented
on the HOLD pin. HLDA is driven active in the same
clock that the Military Intel486 processor floats its
bus.

HLDA will be driven inactive when leaving bus hold
and the Military Intel486 processor will resume driv-
ing the bus. The Military Intel486 processor will not
cease internal activity during bus hold because the
internal cache will satisfy the majority of bus re-
quests. HLDA is active HIGH and remains driven
during bus hold.

Backoff Input (BOFFÝ)

Asserting the BOFFÝ input forces the Military In-
tel486 processor to release control of its bus in the
next clock. The pins floated are exactly the same as
in response to HOLD. The response to BOFFÝ dif-
fers from the response to HOLD in two ways: First,
the bus is floated immediately in response to
BOFFÝ while the Military Intel486 processor com-
pletes the current bus cycle before floating its bus in
response to HOLD. Second the Military Intel486
processor does not assert HLDA in response to
BOFFÝ.

The Military Intel486 processor remains in bus hold
until BOFFÝ is negated. Upon negation, the Military
Intel486 processor restarts the bus cycle aborted
when BOFFÝ was asserted. To the internal execu-
tion engine the effect of BOFFÝ is the same as in-
serting a few wait states to the original cycle. Refer
to section 10.2.12, ‘‘Bus Cycle Restart,’’ for a de-
scription of bus cycle restart.

Any data returned to the Military Intel486 processor
while BOFFÝ is asserted is ignored. BOFFÝ has
higher priority than RDYÝ or BRDYÝ. If both
BOFFÝ and ready are returned in the same clock,
BOFFÝ takes effect. If BOFFÝ is asserted while the
bus is idle, the Military Intel486 processor will float
its bus in the next clock. BOFFÝ is active LOW and
must meet setup and hold times t18 and t19 for prop-
er chip operation.
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9.2.11 CACHE INVALIDATION

The AHOLD and EADSÝ inputs are used during
cache invalidation cycles. AHOLD conditions the
Military Intel486 processor address lines, A4–A31,
to accept an address input. EADSÝ indicates that
an external address is actually valid on the address
inputs. Activating EADSÝ will cause the Military In-
tel486 processor to read the external address bus
and perform an internal cache invalidation cycle to
the address indicated. Refer to section 10.2.8, ‘‘In-
validate Cycle,’’ or cache invalidation cycle timing.

Address Hold Request Input (AHOLD)

AHOLD is the address hold request. It allows anoth-
er bus master access to the Military Intel486 proces-
sor address bus for performing an internal cache in-
validation cycle. Asserting AHOLD will force the Mili-
tary Intel486 processor to stop driving its address
bus in the next clock. While AHOLD is active only
the address bus will be floated, the remainder of the
bus can remain active. For example, data can be
returned for a previously specified bus cycle when
AHOLD is active. The Military Intel486 processor will
not initiate another bus cycle during address hold.
Because the Military Intel486 processor floats its
bus immediately in response to AHOLD, an address
hold acknowledge is not required. If AHOLD is as-
serted while a bus cycle is in progress, and no read-
ies are returned during the time AHOLD is asserted,
the Military Intel486 processor will redrive the same
address (that it originally sent out) once AHOLD is
negated.

AHOLD is recognized during reset. Because the en-
tire cache is invalidated by reset, any invalidation
cycles run during reset will be unnecessary. AHOLD
is active HIGH and is provided with a small internal
pull-down resistor. It must satisfy the setup and hold
times t18 and t19 for proper chip operation. AHOLD
also determines whether or not the built in self test
features of the Military Intel486 processor will be ex-
ercised on assertion of RESET. (See section 11.1,
‘‘Built-In Self Test.’’)

External Address Valid Input (EADSÝ)

EADSÝ indicates that a valid external address has
been driven onto the Military Intel486 processor ad-
dress pins. This address will be used to perform an
internal cache invalidation cycle. The external ad-

dress will be checked with the current cache con-
tents. If the address specified matches any areas in
the cache, that area will immediately be invalidated.

An invalidation cycle may be run by asserting
EADSÝ regardless of the state of AHOLD, HOLD
and BOFFÝ. EADSÝ is active LOW and is provided
with an internal pull-up resistor. EADSÝ must satisfy
the setup and hold times t12 and t13 for proper chip
operation.

9.2.12 CACHE CONTROL

Cache Enable Input (KENÝ)

KENÝ is the cache enable pin. KENÝ is used to
determine whether the data being returned by the
current cycle is cacheable. When KENÝ is active
and the Military Intel486 processor generates a cy-
cle that can be cached (most any memory read cy-
cle), the cycle will be transformed into a cache line
fill cycle.

A cache line is 16 bytes long. During the first cycle of
a cache line fill the byte-enable pins should be ig-
nored and data should be returned as if all four byte
enables were asserted. The Military Intel486 proces-
sor will run between 4 and 16 contiguous bus cycles
to fill the line depending on the bus data width se-
lected by BS8Ý and BS16Ý. Refer to section
10.2.3, ‘‘Cacheable Cycles,’’ for a description of
cache line fill cycles.

The KENÝ input is active LOW and is provided with
a small internal pull-up resistor. It must satisfy the
setup and hold times t14 and t15 for proper chip op-
eration.

Cache Flush Input (FLUSHÝ)

The FLUSHÝ input forces the Military Intel486 proc-
essor to flush its entire internal cache. FLUSHÝ is
active LOW and need only be asserted for one
clock. FLUSHÝ is asynchronous but setup and hold
times t20 and t21 must be met for recognition on any
specific clock.

FLUSHÝ also determines whether or not the tri-
state test mode of the Military Intel486 processor
will be invoked on assertion of RESET. (See section
11.4, ‘‘Tri-State Output Test Mode.’’)
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9.2.13 PAGE CACHEABILITY (PWT, PCD)

The PWT and PCD output signals correspond to two
user attribute bits in the page table entry. When pag-
ing is enabled, PWT and PCD correspond to bits 3
and 4 of the page table entry respectively. For cy-
cles that are not paged when paging is enabled (for
example I/O cycles) PWT and PCD correspond to
bits 3 and 4 in control register 3. When paging is
disabled, the Military Intel486 processor ignores the
PCD and PWT bits and assumes they are zero for
the purpose of caching and driving PCD and PWT.

PCD is masked by the CD (cache disable) bit in con-
trol register 0 (CR0). When CDe1 (cache line fills
disabled) the Military Intel486 processor forces PCD
HIGH. When CDe0, PCD is driven with the value of
the page table entry/directory.

The purpose of PCD is to provide a cacheable/non-
cacheable indication on a page by page basis. The
Military Intel486 processor will not perform a cache
fill to any page in which bit 4 of the page table entry
is set. PWT corresponds to the write-back bit and
can be used by an external cache to provide this
functionality. PCD and PWT bits are assigned to be
zero during real mode or whenever paging is dis-
abled. Refer to section 7.6, ‘‘Page Cacheability,’’ for
a discussion of non-cacheable pages.

PCD and PWT have the same timing as the cycle
definition pins (M/IOÝ, D/CÝ, W/RÝ). PCD and
PWT are active HIGH and are not driven during bus
hold.

9.2.14 NUMERIC ERROR REPORTING
(FERRÝ, IGNNEÝ)

To allow PC-type floating point error reporting, Mili-
tary Intel486 DX, IntelDX2, and IntelDX4 processors
provide two pins, FERRÝ and IGNNEÝ.

Floating Point Error Output (FERRÝ)

The processor asserts FERRÝ whenever an un-
masked floating point error is encountered. FERRÝ
is similar to the ERRORÝ pin on the Intel387 math
coprocessor. FERRÝ can be used by external logic
for PC-type floating point error reporting in systems
with a Military Intel486 DX, IntelDX2, or IntelDX4
processor. FERRÝ is active LOW and is not floated
during bus hold.

In some cases, FERRÝ is asserted when the next
floating point instruction is encountered. In other
cases, it is asserted before the next floating point
instruction is encountered, depending on the execu-
tion state of the instruction that caused the excep-
tion.

The following class of floating point exceptions drive
FERRÝ at the time the exception occurs (i.e., before
encountering the next floating point instruction):

1. The stack fault, invalid operation, and denormal
exceptions on all transcendental instructions, in-
teger arithmetic instructions, FSQRT, FSCALE,
FPREM(1), FXTRACT, FBLD, and FBSTP.

2. Any exceptions on store instructions (including in-
teger store instructions).

The following class of floating point exceptions drive
FERRÝ only after encountering the next floating
point instruction:

1. Exceptions other than on all transcendental in-
structions, integer arithmetic instructions, FSQRT,
FSCALE, FPREM(1), FXTRACT, FBLD, and
FBSTP.

2. Any exception on all basic arithmetic, load, com-
pare, and control instructions (i.e., all other in-
structions).

Ignore Numeric Error Input (IGNNEÝ)

Military Intel486 DX, IntelDX2, and IntelDX4 proces-
sors will ignore a numeric error and continue execut-
ing non-control floating point instructions when
IGNNEÝ is asserted, and FERRÝ is still activated.
When de-asserted, the processor will freeze on a
non-control floating point instruction if a previous in-
struction caused an error. IGNNEÝ has no effect
when the NE bit in control register 0 is set.

The IGNNEÝ input is active LOW and provided with
a small internal pull-up resistor. This input is asyn-
chronous, but must meet setup and hold times t20
and t21 to insure recognition on any specific clock.
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9.2.15 BUS SIZE CONTROL (BS16Ý, BS8Ý)

The BS16Ý and BS8Ý inputs allow external 16- and
8-bit buses to be supported with a small number of
external components. The Military Intel486 proces-
sor samples these pins every clock. The value sam-
pled in the clock before ready determines the bus
size. When asserting BS16Ý or BS8Ý only 16 or 8
bits of the data bus need be valid. If both BS16Ý
and BS8Ý are asserted, an 8-bit bus width is select-
ed.

When BS16Ý or BS8Ý are asserted, the Military
Intel486 processor will convert a larger data request
to the appropriate number of smaller transfers. The
byte enables will also be modified appropriately for
the bus size selected.

BS16Ý and BS8Ý are active LOW and are provided
with small internal pull-up resistors. BS16Ý and
BS8Ý must satisfy the setup and hold times t14 and
t15 for proper chip operation.

9.2.16 ADDRESS BIT 20 MASK (A20MÝ)

Asserting the A20MÝ input causes the Military
Intel486 processor to mask physical address bit 20
before performing a lookup in the internal cache and
before driving a memory cycle to the outside world.
When A20MÝ is asserted, the Military Intel486 proc-
essor emulates the 1-Mbyte address wraparound
that occurs on the 8086. A20MÝ is active LOW and
must be asserted only when the processor is in real
mode. The A20MÝ is not defined in Protected
Mode. A20MÝ is asynchronous but should meet
setup and hold times t20 and t21 for recognition in
any specific clock. For correct operation of the chip,
A20MÝ should not be active at the falling edge of
RESET.

A20MÝ exhibits a minimum 4 clock latency, from
time of assertion to masking of the A20 bit. A20MÝ
is ignored during cache invalidation cycles. I/O
writes require A20MÝ to be asserted a minimum of
2 clocks prior to RDY being returned for the I/O
write. This insures recognition of the address mask
before the Military Intel486 processor begins execu-
tion of the instruction following OUT. If A20MÝ is
asserted after the ADSÝ of a data cycle, the A20
address signal is not masked during this cycle but is
masked in the next cycle. During a prefetch (cache-
able or not), if A20MÝ is asserted after the first
ADSÝ, A20 is not masked for the duration of the
prefetch; even if BS16Ý or BS8Ý is asserted.

9.2.17 INTELDX4 PROCESSOR VOLTAGE
DETECT SENSE OUTPUT (VOLDET)

A voltage detect sense pin (VOLDET) has been add-
ed to the IntelDX4 processor PGA package. This pin
allows external system logic to distinguish between
a 5V Military Intel486 DX or IntelDX2 processor and
the 3.3V IntelDX4 processor. The pin passively indi-
cates to external logic whether the installed PGA
processor requires 5V (in the case of the Military
Intel486 DX or IntelDX2 processor) or 3.3V (in the
case of the IntelDX4 processor). Pin S4 has been
defined as the VOLDET pin because this pin is de-
fined as an NC pin on the Military Intel486 DX and
IntelDX2 processor.

To utilize this feature, a weak, external pull-up resis-
tor should be connected to the VOLDET pin. This
pin samples high (logic 1) if the installed processor is
a 5V Military Intel486 DX or IntelDX2 processor. This
pin samples low (logic 0) if a IntelDX4 processor is
installed. Upon sampling the logic level of this pin,
external logic can then enable the proper VCC level
to the processor. In power sensitive applications, an
active element is preferred for the pull-up device be-
cause it could be disabled after sampling, thereby
eliminating the resulting DC current path when the
installed processor is the IntelDX4 processor.

Figure 9-4 shows a logical representation of the
Voltage Detect sense mechanism.

This pin can remain not connected for those system
designs that do not wish to utilize this voltage detect
feature.

271329–71

Figure 9-4. Voltage Detect (VOLDET) Sense Pin
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9.2.18 BOUNDARY SCAN TEST SIGNALS

Test Clock (TCK)

TCK is an input to the Military Intel486 processor
and provides the clocking function required by the
JTAG boundary scan feature. TCK is used to clock
state information and data into and out of the com-
ponent. State select information and data are
clocked into the component on the rising edge of
TCK on TMS and TDI, respectively. Data is clocked
out of the part on the falling edge of TCK on TDO.

In addition to using TCK as a free running clock, it
may be stopped in a low, O, state, indefinitely as
described in IEEE 1149.1. While TCK is stopped in
the low state, the boundary scan latches retain their
state.

When boundary scan is not used, TCK should be
tied high or left as a NC. (This is important during
power up to avoid the possibility of glitches on the
TCK which could prematurely initiate boundary scan
operations.) TCK is supplied with an internal pull-up
resistor.

TCK is a clock signal and is used as a reference for
sampling other JTAG signals. On the rising edge of
TCK, TMS and TDI are sampled. On the falling edge
of TCK, TDO is driven.

Test Mode Select (TMS)

TMS is decoded by the JTAG TAP (Tap Access
Port) to select the operation of the test logic, as de-
scribed in section 11.5.4, ‘‘Test Access Port Control-
ler.’’

To guarantee deterministic behavior of the TAP con-
troller TMS is provided with an internal pull-up resis-
tor. If boundary scan is not used, TMS may be tied
high or left unconnected. TMS is sampled on the
rising edge of TCK. TMS is used to select the inter-
nal TAP states required to load boundary scan in-
structions to data on TDI. For proper initialization of
the JTAG logic, TMS should be driven high, ‘‘1,’’ for
at least four TCK cycles following the rising edge of
RESET.

Test Data Input (TDI)

TDI is the serial input used to shift JTAG instructions
and data into the component. The shifting of instruc-
tions and data occurs during the SHIFT-IR and
SHIFT-DR TAP controller states, respectively.
These states are selected using the TMS signal as
described in section 11.5.4, ‘‘Test Access Port Con-
troller.’’

An internal pull-up resistor is provided on TDI to en-
sure a known logic state if an open circuit occurs on
the TDI path. Note that when ‘‘1’’ is continuously
shifted into the instruction register, the BYPASS in-
struction is selected. TDI is sampled on the rising
edge of TCK, during the SHIFT-IR and the
SHIFT-DR states. During all other TAP controller
states, TDI is a ‘‘don’t care.’’ TDI is only sampled
when TMS and TCK have been used to select the
SHIFT-IR or SHIFT-DR states in the TAP controller.
For proper initialization of JTAG logic, TDI should be
driven high, ‘‘1,’’ for at least four TCK cycles follow-
ing the rising edge of RESET.

Test Data Output (TDO)

TDO is the serial output used to shift JTAG instruc-
tions and data out of the component. The shifting of
instructions and data occurs during the SHIFT-IR
and SHIFT-DR TAP controller states, respectively.
These states are selected using the TMS signal as
described in section 11.5.4, ‘‘Test Access Port Con-
troller’’. When not in SHIFT-IR or SHIFT-DR state,
TDO is driven to a high impedance state to allow
connecting TDO of different devices in parallel. TDO
is driven on the falling edge of TCK during the
SHIFT-IR and SHIFT-DR TAP controller states. At
all other times TDO is driven to the high impedance
state. TDO is only driven when TMS and TCK have
been used to select the SHIFT-IR or SHIFT-DR
states in the TAP controller.
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9.3 Interrupt and Non-Maskable
Interrupt Interface

The Military Intel486 processor provides four asyn-
chronous interrupt inputs: INTR (interrupt request),
NMI (non-maskable interrupt input), SMIÝ (system
management interrupt) and STPCLKÝ (stop clock
interrupt). This section describes the hardware inter-
face between the instruction execution unit and the
pins. For a description of the algorithmic response to
interrupts refer to section 4.8, ‘‘Interrupts’’. For inter-
rupt timings refer to section 10.2.10, ‘‘Interrupt Ac-
knowledge’’.

9.3.1 INTERRUPT LOGIC

The Military Intel486 processor contains a two-clock
synchronizer on the interrupt line. An interrupt re-
quest will reach the internal instruction execution
unit two clocks after the INTR pin is asserted, if
proper setup is provided to the first stage of the syn-
chronizer.

There is no special logic in the interrupt path other
than the synchronizer. The INTR signal is level sen-
sitive and must remain active for the instruction exe-
cution unit to recognize it. The interrupt will not be
serviced by the Military Intel486 processor if the
INTR signal does not remain active.

The instruction execution unit will look at the state of
the synchronized interrupt signal at specific clocks
during the execution of instructions (if interrupts are
enabled). These specific clocks are at instruction
boundaries, or iteration boundaries in the case of
string move instructions. Interrupts will only be ac-
cepted at these boundaries.

An interrupt must be presented to the Military In-
tel486 processor INTR pin three clocks before the
end of an instruction for the interrupt to be acknowl-
edged. Presenting the interrupt 3 clocks before the
end of an instruction allows the interrupt to pass
through the two clock synchronizer leaving one
clock to prevent the initiation of the next sequential
instruction and to begin interrupt service. If the inter-
rupt is not received in time to prevent the next in-
struction, it will be accepted at the end of next in-
struction, assuming INTR is still held active.

The longest latency between when an interrupt re-
quest is presented on the INTR pin and when the
interrupt service begins is: longest instruction used
a the two clocks for synchronization a one clock
required to vector into the interrupt service micro-
code.

9.3.2 NMI LOGIC

The NMI pin has a synchronizer like that used on the
INTR line. Other than the synchronizer, the NMI log-
ic is different from that of the maskable interrupt.

NMI is edge triggered as opposed to the level trig-
gered INTR signal. The rising edge of the NMI signal
is used to generate the interrupt request. The NMI
input need not remain active until the interrupt is ac-
tually serviced. The NMI pin only needs to remain
active for a single clock if the required setup and
hold times are met. NMI will operate properly if it is
held active for an arbitrary number of clocks.

The NMI input must be held inactive for at least four
clocks after it is asserted to reset the edge triggered
logic. A subsequent NMI may not be generated if the
NMI is not held inactive for at least four clocks after
being asserted.

The NMI input is internally masked whenever the
NMI routine is entered. The NMI input will remain
masked until an IRET (return from interrupt) instruc-
tion is executed. Masking the NMI signal prevents
recursive NMI calls. If another NMI occurs while the
NMI is masked off, the pending NMI will be executed
after the current NMI is done. Only one NMI can be
pending while NMI is masked.

9.3.3 SMIÝ LOGIC

SMIÝ is edge triggered like NMI, but the interrupt
request is generated on the falling-edge. SMIÝ is an
asynchronous signal, but setup and hold times, t20
and t21, must be met in order to guarantee recogni-
tion on a specific clock. The SMIÝ input need not
remain active until the interrupt is actually serviced.
The SMIÝ input only needs to remain active for a
single clock if the required setup and hold times are
met. SMIÝ will also work correctly if it is held active
for an arbitrary number of clocks.

The SMIÝ input must be held inactive for at least
four clocks after it is asserted to reset the edge trig-
gered logic. A subsequent SMIÝ might not be recog-
nized if the SMIÝ input is not held inactive for at
least four clocks after being asserted.

SMIÝ, like NMI, is not affected by the IF bit in the
EFLAGS register and is recognized on an instruction
boundary. An SMIÝ will not break locked bus cycles.
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The SMIÝ has a higher priority than NMI and is not
masked during an NMI.

After the SMIÝ interrupt is recognized, the SMIÝ
signal will be masked internally until the RSM
instruction is executed and the interrupt service rou-
tine is complete. Masking the SMIÝ prevents recur-
sive SMIÝ calls. The SMIÝ input must be de-assert-
ed for at least 4 clocks to reset the edge triggered
logic. If another SMIÝ occurs while the SMIÝ is
masked, the pending SMIÝ will be recognized and
executed on the next instruction boundary after the
current SMIÝ completes. This instruction boundary
occurs before execution of the next instruction in the
interrupted application code, resulting in back to
back SMM handlers. Only one SMIÝ can be pend-
ing while SMIÝ is masked.

The SMIÝ signal is synchronized internally and
should be asserted at least three (3) CLK periods
prior to asserting the RDYÝ signal in order to guar-
antee recognition on a specific instruction boundary.
This is important for servicing an I/O trap with an
SMIÝ handler.

9.3.4 STPCLKÝ LOGIC

STPCLKÝ is level triggered and active LOW.
STPCLKÝ is an asynchronous signal, but must re-
main active until the processor issues the Stop
Grant bus cycle. STPCLKÝ may be de-asserted at
any time after the processor has issued the Stop
Grant bus cycle. When the processor enters the
Stop Grant state, the internal pull-up resistor of
STPCLKÝ, CLKMUL (for IntelDX4 processor), and
UPÝ are disabled so that the processor power con-
sumption is reduced. The STPCLKÝ input must be
driven high (not floated) in order to exit the Stop
Grant state. STPCLKÝ must be de-asserted for a
minimum of 5 clocks after RDYÝ or BRDYÝ is
returned active for the Stop Grant Bus Cycle be-
fore being asserted again.

When the processor recognizes a STPCLKÝ inter-
rupt, the processor will stop execution on the next
instruction boundary (unless superseded by a higher
priority interrupt), stop the pre-fetch unit, empty all
internal pipelines and the write buffers, generate a
Stop Grant bus cycle, and then stop the internal
clock. At this point the processor is in the Stop Grant
state.

The processor cannot respond to a STPCLKÝ re-
quest from an HLDA state because it cannot empty
the write buffers and, therefore, cannot generate a
Stop Grant cycle.

The rising edge of STPCLKÝ will tell the processor
that it can return to program execution at the instruc-
tion following the interrupted instruction.

Unlike the normal interrupts, INTR and NMI, the
STPCLKÝ interrupt does not initiate acknowledge
cycles or interrupt table reads. Among external inter-
rupts, the STPCLKÝ order of priority is shown in
section 4.8.

9.4 Write Buffers

The Military Intel486 processor contains four write
buffers to enhance the performance of consecutive
writes to memory. The buffers can be filled at a rate
of one write per clock until all four buffers are filled.

When all four buffers are empty and the bus is idle, a
write request will propagate directly to the external
bus bypassing the write buffers. If the bus is not
available at the time the write is generated internally,
the write will be placed in the write buffers and prop-
agate to the bus as soon as the bus becomes avail-
able. The write is stored in the on-chip cache imme-
diately if the write is a cache hit.

Writes will be driven onto the external bus in the
same order in which they are received by the write
buffers. Under certain conditions a memory read will
go onto the external bus before the memory writes
pending in the buffer even though the writes oc-
curred earlier in the program execution.

A memory read will only be reordered in front of all
writes in the buffers under the following conditions: If
all writes pending in the buffers are cache hits and
the read is a cache miss. Under these conditions the
Military Intel486 processor will not read from an ex-
ternal memory location that needs to be updated by
one of the pending writes.

Reordering of a read with the writes pending in the
buffers can only occur once before all the buffers
are emptied. Reordering read once only maintains
cache consistency. Consider the following example:
The processor writes to location X. Location X is in
the internal cache, so it is updated there immediate-
ly. However, the bus is busy so the write out to main
memory is buffered (see Figure 9-5). At this point,
any reads to location X would be cache hits and
most up-to-date data would be read.
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271329–72

Figure 9-5. Reordering of a Reads

with Write Buffers

The next instruction causes a read to location Y.
Location Y is not in the cache (a cache miss). Be-
cause the write in the write buffer is a cache hit, the
read is reordered. When location Y is read, it is put
into the cache. The possibility exists that location Y
will replace location X in the cache. If this is true,
location X would no longer be cached (see Figure
9-6).

271329–73

Figure 9-6. Reordering of a Reads

with Write Buffers

Cache consistency has been maintained up to this
point. If a subsequent read is to location X (now a
cache miss) and it was reordered in front of the buff-
ered write to location X, stale data would be read.
This is why only 1 read is allowed to be reordered.
Once a read is reordered, all the writes in the write
buffer are flagged as cache misses to ensure that no
more reads are reordered. Because one of the con-
ditions to reorder a read is that all writes in the write
buffer must be cache hits, no more reordering is al-
lowed until all of those flagged writes propagate to
the bus. Similarly, if an invalidation cycle is run all
entries in the write buffer are flagged as cache miss-
es.

For multiple processor systems and/or systems us-
ing DMA techniques, such as bus snooping, locked
semaphores should be used to maintain cache con-
sistency.

9.4.1 WRITE BUFFERS AND I/O CYCLES

Input/Output (I/O) cycles must be handled in a dif-
ferent manner by the write buffers.

I/O reads are never reordered in front of buffered
memory writes. This insures that the Military Intel486
processor will update all memory locations before
reading status from an I/O device.

The Military Intel486 processor never buffers single
I/O writes. When processing an OUT instruction, in-
ternal execution stops until the I/O write actually
completes on the external bus. This allows time for
the external system to drive an invalidate into the
Military Intel486 processor or to mask interrupts be-
fore the processor progresses to the instruction fol-
lowing OUT. REP OUTS instructions will be buff-
ered.

A read cycle must be explicitly generated to a non-
cacheable location in memory to guarantee that a
read bus cycle is performed. This read will not be
allowed to proceed to the bus until after the I/O
write has completed because I/O writes are not
buffered. The I/O device will have time to recover to
accept another write during the read cycle.

9.4.2 WRITE BUFFERS IMPLICATIONS ON
LOCKED BUS CYCLES

Locked bus cycles are used for read-modify-write
accesses to memory. During a read-modify-write ac-
cess, a memory base variable is read, modified and
then written back to the same memory location. It is
important that no other bus cycles, generated by
other bus masters or by the Military Intel486 proces-
sor itself, be allowed on the external bus between
the read and write portion of the locked sequence.

During a locked read cycle, the Military Intel486
processor will always access external memory, it will
never look for the location in the on-chip cache, but
for write cycles, data is written in the internal cache
(if cache hit) and in the external memory. All data
pending in the Military Intel486 processor’s write
buffers will be written to memory before a locked
cycle is allowed to proceed to the external bus.

The Military Intel486 processor will assert the
LOCKÝ pin after the write buffers are emptied dur-
ing a locked bus cycle. With the LOCKÝ pin assert-
ed, the processor will read the data, operate on the
data and place the results in a write buffer. The con-
tents of the write buffer will then be written to exter-
nal memory. LOCKÝ will become inactive after the
write part of the locked cycle.
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9.5 Reset and Initialization

The Military Intel486 processor has a built in self test
(BIST) that can be run during reset. BIST is invoked
if the AHOLD pin is asserted for 1 clock before and 1
clock after RESET is de-asserted. RESET must be
active for 15 clocks with or without BIST being en-
abled. To ensure proper results, neither FLUSHÝ
nor SRESET can be asserted while BIST is execut-
ing. Refer to section 11.0, ‘‘Testability,’’ for informa-
tion on Military Intel486 processor testability.

The Military Intel486 processor registers have the
values shown in Table 9-3 after RESET is per-
formed. The EAX register contains information on
the success or failure of the BIST if the self test is
executed. The DX register always contains a compo-
nent identifier at the conclusion of RESET. The up-
per byte of DX (DH) will contain 04 and the lower
byte (DL) will contain the revision identifier. (See Ta-
ble 9-4.)

RESET forces the Military Intel486 processor to ter-
minate all execution and local bus activity. No in-
struction or bus activity will occur as long as RESET
is active.

All entries in the cache are invalidated by RESET.

9.5.1 FLOATING POINT REGISTER VALUES

In addition to the register values listed above, Mili-
tary Intel486 DX, IntelDX2, and IntelDX4 processors
have the floating point register values shown in Ta-
ble 9-5.

The floating point registers are initialized as if the
FINIT/FNINIT (initialize processor) instruction was
executed if the BIST was performed. If the BIST is
not executed, the floating point registers are un-
changed.

The Military Intel486 processor will start executing
instructions at location FFFFFFF0H after RESET.
When the first Inter Segment Jump or Call is execut-
ed, address lines A20–A31 will drop LOW for CS-rel-
ative memory cycles, and the Military Intel486 proc-
essor will only execute instructions in the lower one
Mbyte of physical memory. This allows the system
designer to use a ROM at the top of physical memo-
ry to initialize the system and take care of RESETs.

Table 9-3. Register Values after Reset

Register
Initial Value Initial Value

(BIST) (No BIST)

EAX Zero (Pass) Undefined

ECX Undefined Undefined

EDX 0400 a 0400 a

Revision ID Revision ID

EBX Undefined Undefined

ESP Undefined Undefined

EBP Undefined Undefined

ESI Undefined Undefined

EDI Undefined Undefined

EFLAGS 00000002h 00000002h

EIP 0FFF0h 0FFF0h

ES 0000h 0000h

CS F000h* F000h*

SS 0000h 0000h

DS 0000h 0000h

FS 0000h 0000h

GS 0000h 0000h

IDTR Base e 0, Base e 0,

Limit e 3FFh Limit e 3FFh

CR0 60000010h 60000010h

DR7 00000000h 00000000h
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Table 9-4. Military Intel486TM Processor

Revision ID

Product
Component ID Revision

(DH) ID (DL)

Military Intel486TM DX 04 0x

Processor 1x

IntelDX2TM Processor 04 3x

IntelDX4TM Processor 04 8x

Table 9-5. Floating Point Values after Reset

Register
Initial Value Initial Value

(BIST) (No BIST)

CW 037Fh Unchanged

SW 0000h Unchanged

TW FFFFh Unchanged

FIP 00000000h Unchanged

FEA 00000000h Unchanged

FCS 0000h Unchanged

FDS 0000h Unchanged

FOP 000h Unchanged

FSTACK Undefined Unchanged

9.5.2 PIN STATE DURING RESET

The Military Intel486 processor recognizes and can
respond to HOLD, AHOLD, and BOFFÝ requests
regardless of the state of RESET. Thus, even
though the processor is in reset, it can still float its
bus in response to any of these requests.

While in reset, the Military Intel486 processor bus is
in the state shown in Figure 9-7 if the HOLD, AHOLD
and BOFFÝ requests are inactive. The figure shows
the bus state for the Military Intel486 processor.
Note that the address (A31–A2, BE3Ý–BE0Ý) and
cycle definition (M/IOÝ, D/CÝ, W/RÝ) pins are un-
defined from the time reset is asserted up to the
start of the first bus cycle. All undefined pins (ex-
cept FERRÝ) assume known values at the begin-
ning of the first bus cycle. The first bus cycle is al-
ways a code fetch to address FFFFFFF0H.
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271329–74

Figure 9-7. Pin States during RESET
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9.5.2.1 Controlling the CLK Signal in the
Processor during Power On

The power on requirements of the Military Intel486
processor with regards to allowable CLK input dur-
ing the power on sequence have never been speci-
fied. Clocking the processor before Vcc has reached
its normal operating level can cause unpredictable
results on Military Intel486 processors. While Intel
will maintain original clock and power specifications
(none), this section reflects what Intel considers to
be a good clock design.

Intel strongly recommends that system designers
ensure that a clock signal is not presented to the
Military Intel486 processor until Vcc has stabilized at
its normal operating level. This design recommenda-
tion can easily be met by gating the clock signal with
a POWERGOOD signal. The POWERGOOD signal
should reflect the status of Vcc at the Military In-
tel486 processor (which may be different from the
power supply status in designs that provide power to
the processor through the use of a voltage regulator
or converter).

Most clock synthesizers and some clock oscillators
contain on-board gating logic. If external gating logic
is implemented, it should be done on the original
clock signal output from the clock oscillator/synthe-
sizer. Gating the clock to the processor indepen-
dently of the clock to the rest of the motherboard will
cause clock skew, which may violate processor or
chipset timing requirements. If the clock signal to the
motherboard is enabled with a POWERGOOD sig-
nal, it is also important to verify that the motherboard
logic does not require a clock input prior to this
POWERGOOD signal. Some chipsets also gate the
clock to the processor only after a POWERGOOD
signal, which inherently meets the requirements of
this design note. Designs should implement this de-
sign note, so as to maintain maximum flexibility with
all Military Intel486 processor steppings.

9.5.2.2 FERRÝ Pin State During Reset for
Military Intel486 DX, IntelDX2, and
IntelDX4 Processors

FERRÝ reflects the state of the ES (error summary
status) bit in the floating point unit status word. The
ES bit is initialized whenever the floating point unit
state is initialized. The floating point unit’s

status word register can be initialized by BIST or by
executing FINIT/FNINIT instruction. Thus, after re-
set and before executing the first FINIT or FNINIT
instruction, the values of the FERRÝ and the nu-
meric status word register bits 0–7 depends on
whether or not BIST is performed. Table 9-6 shows
the state of FERRÝ signal after reset and before the
execution of the FINIT/FNINIT instruction.

Table 9-6. FERRÝ Pin State after Reset and

before FP Instructions

BIST
FERRÝ Pin

FPU Status Word

Performed Register Bits 0–7

YES Inactive (High) Inactive (Low)

NO Undefined Undefined

(Low or High) (Low or High)

After the first FINIT or FNINIT instruction, FERRÝ
pin and the FPU status word register bits (07) will be
inactive irrespective of the Built-In Self-Test (BIST).

9.6 Clock Control

The Military Intel486 processor provides an interrupt
mechanism (STPCLKÝ) that allows system hard-
ware to control the power consumption of the proc-
essor by stopping the internal clock (output of the
PLL) to the processor core in a controlled manner.
This low-power state is called the Stop Grant state.
In addition, the STPCLKÝ interrupt allows the sys-
tem to change the input frequency within the speci-
fied range or completely stop the CLK input frequen-
cy (input to the PLL). If the CLK input is completely
stopped, the processor enters into the Stop Clock
statethe lowest power state.

There are two targets for the low-power mode sup-
ply current:

# E20–100 mA in the Stop Grant state (fast
wake-up, frequency-and voltage-dependent), and

# E100–1000 mA in the full Stop Clock state
(slow wake-up, voltage-dependent).

See section 9.6.3.2 and 9.6.3.3, for a detailed de-
scription of the Stop Grant and Stop Clock states.
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9.6.1 STOP GRANT BUS CYCLE

A special Stop Grant bus cycle will be driven to the
bus after the processor recognizes the STPCLKÝ
interrupt. The definition of this bus cycle is the same
as the HALT cycle definition for the standard
Military Intel486 processor, with the exception that
the Stop Grant bus cycle drives the value 0000
0010H on the address pins. The system hardware
must acknowledge this cycle by returning RDYÝ or
BRDYÝ. The processor will not enter the Stop
Grant state until either RDYÝ or BRDYÝ has
been returned.

The Stop Grant bus cycle is defined as follows:

M/IOÝ e 0, D/CÝ e 0, W/RÝ e 1, Address Bus
e 0000 0010H (A4 e 1), BE3Ý–BE0Ý e 1011,
Data bus e undefined

The latency between a STPCLKÝ request and the
Stop Grant bus cycle is dependent on the current
instruction, the amount of data in the processor write
buffers, and the system memory performance. (See
Figure 9-8.)

9.6.2 PIN STATE DURING STOP GRANT

During the Stop Grant state, most output and input/
output signals of the processor will maintain their
previous condition (the level they held when entering
the Stop Grant state). The data and data parity sig-
nals will be tri-stated. In response to HOLD being
driven active during the Stop Grant state (when the
CLK input is running), the processor will generate
HLDA and tri-state all output and input/output sig-
nals that are tri-stated during the HOLD/HLDA state.
After HOLD is de-asserted all signals will return to
their prior state before the HOLD/HLDA sequence.

In order to achieve the lowest possible power con-
sumption during the Stop Grant state, the system
designer must ensure the input signals with pull-up
resistors are not driven LOW and the input signals
with pull-down resistors are not driven HIGH. (See
Table 3-11 in the Quick Pin Reference section for
signals with internal pull-up and pull-down resistors.)

271329–75

Figure 9-8. Stop Clock Protocol
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All inputs, except the data bus pins must be driven to
the power supply rails to ensure the lowest possible
current consumption during Stop Grant or Stop
Clock modes. For compatibility with future proces-
sors, data pins should be driven low to achieve the
lowest possible power consumption. Pull-down re-
sistors/bus keepers are needed to minimize leakage
current.

If HOLD is asserted during the Stop Grant state, all
pins that are normally floated during HLDA will still
be floated by the processor. The floated pins should
be driven to a low level. (See Table 9-7.)

Table 9-7. Pin State during Stop

Grant Bus State

Signal Type State

A3-A2 O Previous state

A31–A4 I/O Previous state

D31–D0 I/O Floated

BE3Ý–BE0Ý O Previous state

DP3–DP0 I/O Floated

W/RÝ, D/CÝ, M/IOÝ O Previous state

ADSÝ O Inactive

LOCKÝ, PLOCKÝ O Inactive

BREQ O Previous state

HLDA O As per HOLD

BLASTÝ O Previous state

FERRÝ O Previous state

PCD, PWT O Previous state

PCHKÝ O Previous state

PWT, PCD O Previous state

SMIACTÝ O Previous state

9.6.3 CLOCK CONTROL STATE DIAGRAM

The following state descriptions and diagram show
the state transitions during a Stop Clock cycle for
the Military Intel486 processor. (Refer to Figure 9-9
for a Stop Clock state diagram.)

9.6.3.1 Normal State

This is the normal operating state of the processor.

9.6.3.2 Stop Grant State

The Stop Grant state provides a fast wake-up state
that can be entered by simply asserting the external
STPCLKÝ interrupt pin. Once the Stop Grant bus
cycle has been placed on the bus, and either RDYÝ
or BRDYÝ is returned, the processor is in this state
(depending on the CLK input frequency). The proc-
essor returns to the normal execution state 10–20
clock periods after STPCLKÝ has been de-assert-
ed.

While in the Stop Grant state, the pull-up resistors
on STPCLKÝ, CLKMUL (for the IntelDX4 processor)
and UPÝ are disabled internally. The system must
continue to drive these inputs to the state they were
in immediately before the processor entered the
Stop Grant state. For minimum processor power
consumption, all other input pins should be driven to
their inactive level while the processor is in the Stop
Grant state.

A RESET or SRESET will bring the processor from
the Stop Grant state to the Normal state. The proc-
essor will recognize the inputs required for cache
invalidation’s (HOLD, AHOLD, BOFFÝ and EADSÝ)
as explained later in this section. The processor will
not recognize any other inputs while in the Stop
Grant state. Input signals to the processor will not be
recognized until 1 CLK after STPCLKÝ is de-assert-
ed (see Figure 9-10).
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While in the Stop Grant state, the processor will not
recognize transitions on the interrupt signals (SMIÝ,
NMI, and INTR). Driving an active edge on either
SMIÝ or NMI will not guarantee recognition and
service of the interrupt request following exit from
the Stop Grant state. However, if one of the interrupt
signals (SMIÝ, NMI, or INTR) is driven active while
the processor is in the Stop Grant state, and held
active for at least one CLK after STPCLKÝ is de-as-
serted, the corresponding interrupt will be serviced.
The Military Intel486 processor requires INTR to be
held active until the processor issues an interrupt

acknowledge cycle in order to guarantee recogni-
tion. (See Figure 9-10).

When the processor is in the Stop Grant state, the
system is allowed to stop or change the CLK input.
When the CLK input to the processor is stopped (or
changed), the Military Intel486 processor requires
the CLK input to be held at a constant frequency for
a minimum of 1 ms before de-asserting STPCLKÝ.
This 1-ms time period is necessary so that the PLL
can stabilize, and it must be met before the proces-
sor will return to the Stop Grant state.

271329–76

* The system can change the input frequency within the specified range or completely stop the CLK input frequency
(input to PLL)

Figure 9-9. Military Intel486TM Processor Family Stop Clock State Machine
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The processor will generate a Stop Grant bus cycle
only when entering that state from the Normal or the
Auto HALT Power Down state. When the processor
enters the Stop Grant state from the Stop Clock
state or the Stop Clock Snoop state, the processor
will not generate a Stop Grant bus cycle.

9.6.3.3 Stop Clock State

Stop Clock state is entered from the Stop Grant
state by stopping the CLK input (either logic high or
logic low). None of the processor input signals
should change state while the CLK input is stopped.
Any transition on an input signal (with the exception
of INTR, NMI and SMIÝ) before the processor has
returned to the Stop Grant state will result in unpre-
dictable behavior. If INTR is driven active while the
CLK input is stopped, and held active until the proc-
essor issues an interrupt acknowledge bus cycle, it
will be serviced in the normal manner. The system
design must ensure the processor is in the correct
state prior to asserting cache invalidation or interrupt
signals to the processor.

The processor will return to the Stop Grant state
after the CLK input has been running at a constant
frequency for a period of time equal to the PLL start-
up latency (see section 9.6.3.2). The CLK input can
be restarted to any frequency between the minimum
and maximum frequency listed in the AC timing
specifications.

9.6.3.4 Auto HALT Power Down State

The execution of a HALT instruction will also cause
the processor to automatically enter the Auto HALT
Power Down state. The processor will issue a nor-
mal HALT bus cycle before entering this state. The
processor will transition to the Normal state on the
occurrence of INTR, NMI, SMIÝ, RESET, or
SRESET.

The system can generate a STPCLKÝ while the
processor is in the Auto HALT Power Down state.
The processor will generate a Stop Grant bus cycle
when it enters the Stop Grant state from the HALT
state.

When the system de-asserts the STPCLKÝ inter-
rupt, the processor will return execution to the HALT
state. The processor will generate a new HALT bus
cycle when it re-enters the HALT state from the Stop
Grant state.

9.6.3.5 Stop Clock Snoop State (Cache
Invalidations)

When the processor is in the Stop Grant state or the
Auto HALT Power Down state, the processor will
recognize HOLD, AHOLD, BOFFÝ and EADSÝ for
cache invalidation. When the system asserts HOLD,
AHOLD, or BOFFÝ, the processor will float the bus
accordingly. When the system then asserts EADSÝ,
the processor will transparently enter the Stop
Clock Snoop state and will power up for 1 full core

271329–77

A. Earliest time at which NMI or SMIÝ will be recognized.

Figure 9-10. Recognition of Inputs when Exiting Stop Grant State
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clock in order to perform the required cache snoop
cycle. It will then re-freeze the clock to the proces-
sor core and return to the previous state. The proc-
essor does not generate a bus cycle when it returns
to the previous state.

A FLUSHÝ event during the Stop Grant state or the
Auto HALT Power Down state will be latched and
acted upon by asserting the internal FLUSHÝ signal
for one clock upon re-entering the Normal state.

9.6.3.6 Auto Idle Power Down State

When the chip is known to be truly idle and waiting
for a RDYÝ or BRDYÝ from a memory or I/O bus
cycle read, the Military Intel486 processor will re-
duce its core clock rate to be equal to the external
CLK frequency without affecting performance. When
any RDYÝ or BRDYÝ is asserted, the part will re-
turn to clocking the core at the specified multiplier of
the external CLK frequency. This functionality is
transparent to software and external hardware.

9.6.4 STOP CLOCK SNOOP STATE (CACHE
INVALIDATIONS)

When the processor is in the Stop Grant state or the
Auto HALT Power Down state, the processor will
recognize HOLD, AHOLD, BOFFÝ, and EADSÝ for
cache invalidation. When the system asserts HOLD,
AHOLD, or BOFFÝ, the processor will float the bus
accordingly. When the system asserts EADSÝ, the
processor will transparently enter the Stop Clock
Snoop state and will power up in order to perform
the required cache snoop cycle and write-back cy-
cles. It will then refreeze the CLK to the processor
core and return to the previous state (i.e., either the
Stop Grant state or the Auto HALT Power Down
state). The processor does not generate a bus cycle
when it returns to the previous state.

9.6.5 SUPPLY CURRENT MODEL FOR STOP
CLOCK MODES AND TRANSITIONS

Figures 9-11 and 9-12 illustrate the effect of different
Stop Clock state transitions on the supply current of
the Military Intel486 processor.

271329–78

Figure 9-11. Supply Current Model for Stop Clock Modes

and Transitions for the Military Intel486TM Processor
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271329–79

Figure 9-12. Supply Current Model for Stop Clock Modes

and Transitions for the IntelDX4TM Processor
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10.0 BUS OPERATION

10.1 Data Transfer Mechanism

All data transfers occur as a result of one or more
bus cycles. Logical data operands of byte, word and
doubleword lengths may be transferred without re-
strictions on physical address alignment. Data may
be accessed at any byte boundary but two or three
cycles may be required for unaligned data transfers.
(See section 10.1.2, ‘‘Dynamic Data Bus Sizing,’’
and section 10.1.5, ‘‘Operand Alignment.’’)

The Military Intel486 processor address signals are
split into two components. High-order address bits
are provided by the address lines, A2–A31. The byte
enables, BE0Ý–BE3Ý, form the low-order address
and provide linear selects for the four bytes of the
32-bit address bus.

The byte enable outputs are asserted when their as-
sociated data bus bytes are involved with the pres-
ent bus cycle, as listed in Table 10-1. Byte enable
patterns that have a negated byte enable separating
two or three asserted byte enables will never occur
(see Table 10-5). All other byte enable patterns are
possible.

Table 10-1. Byte Enables and Associated Data

and Operand Bytes

Byte

Enable Associated Data Bus Signals

Signal

BE0Ý D0–D7 (byte 0–least significant)

BE1Ý D8–D15 (byte 1)

BE2Ý D16–D23 (byte 2)

BE3Ý D24–D31 (byte 3–most significant)

Address bits A0 and A1 of the physical operand’s
base address can be created when necessary. Use
of the byte enables to create A0 and A1 is shown in
Table 10-2. The byte enables can also be decoded
to generate BLEÝ (byte low enable) and BHEÝ
(byte high enable). These signals are needed to ad-
dress 16-bit memory systems. (See section 10.1.3,
‘‘Interfacing with 8-, 16-, and 32-Bit Memories.’’)

10.1.1 MEMORY AND I/O SPACES

Bus cycles may access physical memory space or I/
O space. Peripheral devices in the system may ei-
ther be memory-mapped, or I/O-mapped, or both.
Physical memory addresses range from 00000000H
to FFFFFFFFH (4 gigabytes). I/O addresses range
from 00000000H to 0000FFFFH (64 Kbytes) for pro-
grammed I/O. (See Figure 10-1.)

Table 10-2. Generating A0–A31 from BE0Ý–BE3Ý and A2–A31

Military Intel486TM Processor Address Signals

A31 . . . A2 BE3Ý BE2Ý BE1Ý BE0Ý

Physical Base Address

A31 . . . A2 A1 A0

A31 . . . A2 0 0 X X X Low

A31 . . . A2 0 1 X X Low High

A31 . . . A2 1 0 X Low High High

A31 . . . A2 1 1 Low High High High
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271329–80

Figure 10-1. Physical Memory and I/O Spaces

10.1.1.1 Memory and I/O Space Organization

The Military Intel486 processor datapath to memory
and input/output (I/O) spaces can be 32-, 16- or 8-
bits wide. The byte enable signals, BE0Ý–BE3Ý,
allow byte granularity when addressing any memory
or I/O structure whether 8, 16 or 32 bits wide.

The Military Intel486 processor includes bus control
pins, BS16Ý and BS8Ý, which allow direct connec-
tion to 16- and 8-bit memories and I/O devices. Cy-
cles to 32-, 16- and 8-bit may occur in any se-
quence, since the BS8Ý and BS16Ý signals are
sampled during each bus cycle.

32-bit wide memory and I/O spaces are organized
as arrays of physical 4-byte words. Each memory or
I/O 4-byte word has four individually addressable
bytes at consecutive byte addresses (see Figure
10-2). The lowest addressed byte is associated with
data signals D0–D7; the highest-addressed byte
with D24–D31. Physical 4-byte words begin at ad-
dresses divisible by four.

271329–81

Figure 10-2. Physical Memory and

I/O Space Organization

16-bit memories are organized as arrays of physical
2-byte words. Physical 2-byte words begin at ad-
dresses divisible by two. The byte enables BE0Ý–
BE3Ý, must be decoded to A1, BLEÝ and BHEÝ to
address 16-bit memories. (See section 10.1.3, ‘‘In-
terfacing with 8-, 16- and 32-Bit Memories.’’)

To address 8-bit memories, the two low order ad-
dress bits A0 and A1, must be decoded from BE0Ý–
BE3Ý. The same logic can be used for 8- and 16-bit
memories, because the decoding logic for BLEÝ
and A0 are the same. (See section 10.1.3, ‘‘Interfac-
ing with 8-, 16-, and 32-Bit Memories.’’)

10.1.2 DYNAMIC DATA BUS SIZING

Dynamic data bus sizing is a feature allowing proc-
essor connection to 32-, 16- or 8-bit buses for mem-
ory or I/O. The Military Intel486 processor may con-
nect to all three bus sizes. Transfers to or from 32-,
16- or 8-bit devices are supported by dynamically
determining the bus width during each bus cycle.
Address decoding circuitry may assert BS16Ý for
16-bit devices, or BS8Ý for 8-bit devices during
each bus cycle. BS8Ý and BS16Ý must be negated
when addressing 32-bit devices. An 8-bit bus width
is selected if both BS16Ý and BS8Ý are asserted.
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BS16Ý and BS8Ý force the Military Intel486 proc-
essor to run additional bus cycles to complete re-
quests larger than 16- or 8 bits. A 32-bit transfer will
be converted into two 16-bit transfers (or 3 transfers
if the data is misaligned) when BS16Ý is asserted.
Asserting BS8Ý will convert a 32-bit transfer into
four 8-bit transfers.

Extra cycles forced by BS16Ý or BS8Ý should be
viewed as independent bus cycles. BS16Ý or BS8Ý
must be driven active during each of the extra cycles
unless the addressed device has the ability to
change the number of bytes it can return between
cycles.

The Military Intel486 processor will drive the byte
enables appropriately during extra cycles forced by
BS8Ý and BS16Ý. A2–A31 will not change if ac-
cesses are to a 32-bit aligned area. Table 10-3
shows the set of byte enables that will be generated
on the next cycle for each of the valid possibilities of
the byte enables on the current cycle.

The dynamic bus sizing feature of the Military
Intel486 processor is significantly different than that
of the Intel386 processor. Unlike the Intel386 proc-
essor, the Military Intel486 processor requires that
data bytes be driven on the addressed data pins.
The simplest example of this function is a 32-bit
aligned, BS16Ý read. When the Military Intel486
processor reads the two high order bytes, they must
be driven on the data bus pins D16–D31. The Mili-
tary Intel486 processor expects the two low order
bytes on D0–D15. The Intel386 processor expects
both the high and low order bytes on D0–D15. The
Intel386 processor always reads or writes data on
the lower 16 bits of the data bus when BS16Ý is
asserted.

The external system must contain buffers to enable
the Military Intel486 processor to read and write data
on the appropriate data bus pins. Table 10-4 shows
the data bus lines to which the Military Intel486 proc-
essor expects data to be returned for each valid
combination of byte enables and bus sizing options.

Table 10-3. Next Byte Enable Values for BSnÝ Cycles

Current Next with BS8Ý Next with BS16Ý

BE3Ý BE2Ý BE1Ý BE0Ý BE3Ý BE2Ý BE1Ý BE0Ý BE3Ý BE2Ý BE1Ý BE0Ý

1 1 1 0 n n n n n n n n

1 1 0 0 1 1 0 1 n n n n

1 0 0 0 1 0 0 1 1 0 1 1

0 0 0 0 0 0 0 1 0 0 1 1

1 1 0 1 n n n n n n n n

1 0 0 1 1 0 1 1 1 0 1 1

0 0 0 1 0 0 1 1 0 0 1 1

1 0 1 1 n n n n n n n n

0 0 1 1 0 1 1 1 n n n n

0 1 1 1 n n n n n n n n

NOTE:
‘‘n’’ means that another bus cycle will not be required to satisfy the request.

Table 10-4. Data Pins Read with Different Bus Sizes

BE3Ý BE2Ý BE1Ý BE0Ý w/o BS8Ý/BS16Ý w BS8Ý w BS16Ý

1 1 1 0 D7–D0 D7–D0 D7–D0

1 1 0 0 D15–D0 D7–D0 D15–D0

1 0 0 0 D23–D0 D7–D0 D15–D0

0 0 0 0 D31–D0 D7–D0 D15–D0

1 1 0 1 D15–D8 D15–D8 D15–D8

1 0 0 1 D23–D8 D15–D8 D15–D8

0 0 0 1 D31–D8 D15–D8 D15–D8

1 0 1 1 D23–D16 D23–D16 D23–D16

0 0 1 1 D31–D16 D23–D16 D31–D16

0 1 1 1 D31–D24 D31–D24 D31–D24
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Valid data will only be driven onto data bus pins cor-
responding to active byte enables during write cy-
cles. Other pins in the data bus will be driven but
they will not contain valid data. Unlike the Intel386
processor, the Military Intel486 processor will not
duplicate write data onto parts of the data bus for
which the corresponding byte enable is negated.

10.1.3 INTERFACING WITH 8-, 16- AND 32-BIT
MEMORIES

In 32-bit physical memories, such as the one shown
in Figure 10-3, each 4-byte word begins at a byte
address that is a multiple of four. A2–A31 are used
as a 4-byte word select. BE0Ý–BE3Ý select individ-
ual bytes within the 4-byte word. BS8Ý and BS16Ý
are negated for all bus cycles involving the 32-bit
array.

16- and 8-bit memories require external byte swap-
ping logic for routing data to the appropriate data
lines and logic for generating BHEÝ, BLEÝ and A1.
In systems where mixed memory widths are used,
extra address decoding logic is necessary to assert
BS16Ý or BS8Ý.

271329–82

Figure 10-3. Military Intel486TM Processor

with 32-Bit Memory

Figure 10-4 shows the Military Intel486 processor
address bus interface to 32-, 16- and 8-bit memo-
ries. To address 16-bit memories the byte enables
must be decoded to produce A1, BHEÝ and BLEÝ
(A0). For 8-bit wide memories the byte enables must
be decoded to produce A0 and A1. The same byte
select logic can be used in 16- and 8-bit systems,
because BLEÝ is exactly the same as A0. (See Ta-
ble 10-5.)

BE0Ý–BE3Ý can be decoded as shown in Table
10-5 to generate A1, BHEÝ and BLEÝ. The byte
select logic necessary to generate BHEÝ and BLEÝ
is shown in Figure 10-5.

271329–83

Figure 10-4. Addressing 16- and 8-Bit Memories
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Table 10-5. Generating A1, BHEÝ and BLEÝ for Addressing 16-Bit Devices

Military Intel486TM Processor 8-, 16-Bit Bus Signals Comments

BE3Ý BE2Ý BE1Ý BE0Ý A1 BHEÝ BLEÝ (A0)

H* H* H* H* x x x x–no active bytes

H H H L L H L

H H L H L L H

H H L L L L L

H L H H H H L

H* L* H* L* x x x x–not contiguous bytes

H L L H L L H

H L L L L L L

L H H H H L H

L* H* H* L* x x x x–not contiguous bytes

L* H* L* H* x x x x–not contiguous bytes

L* H* L* L* x x x x–not contiguous bytes

L H H H L L

L* L* H* L* x x x x–not contiguous bytes

L L L H L L H

L L L L L L L

BLEÝ asserted when D0–D7 of 16-bit bus is active.

BHEÝ asserted when D8–D15 of 16-bit bus is active.

A1 low for all even words; A1 high for all odd words.

Key:

x e don’t care H e high voltage level L e low voltage level

* e a non-occurring pattern of Byte Enables; either none are asserted or the pattern has Byte Enables

asserted for non-contiguous bytes

271329–H4

271329–H5

271329–84

Figure 10-5. Logic to Generate A1, BHEÝ
and BLEÝ for 16-Bit Buses

Combinations of BE0Ý–BE3Ý that never occur are
those in which two or three asserted byte enables
are separated by one or more negated byte enables.
These combinations are ‘‘don’t care’’ conditions in
the decoder. A decoder can use the non-occurring
BE0Ý–BE3Ý combinations to its best advantage.

Figure 10-6 shows a Military Intel486 processor data
bus interface to 16- and 8-bit wide memories. Exter-
nal byte swapping logic is needed on the data lines
so that data is supplied to and received from the
Military Intel486 processor on the correct data pins
(see Table 10-4).
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271329–85

Figure 10-6. Data Bus Interface to 16- and 8-Bit Memories

10.1.4 DYNAMIC BUS SIZING DURING CACHE
LINE FILLS

BS8Ý and BS16Ý can be driven during cache line
fills. The Military Intel486 processor will generate
enough 8- or 16-bit cycles to fill the cache line. This
can be up to sixteen 8-bit cycles.

The external system should assume that all byte en-
ables are active for the first cycle of a cache line fill.
The Military Intel486 processor will generate proper
byte enables for subsequent cycles in the line fill.
Table 10-6 shows the appropriate A0 (BLEÝ), A1
and BHEÝ for the various combinations of the Mili-
tary Intel486 processor byte enables on both the
first and subsequent cycles of the cache line fill. The
‘‘*’’ marks all combinations of byte enables that will
be generated by the Military Intel486 processor dur-
ing a cache line fill.

10.1.5 OPERAND ALIGNMENT

Physical 4-byte words begin at addresses that are
multiples of four. It is possible to transfer a logical

operand that spans more than one physical 4-byte
word of memory or I/O at the expense of extra cy-
cles. Examples are 4-byte operands beginning at ad-
dresses that are not evenly divisible by 4, or 2-byte
words split between two physical 4-byte words.
These are referred to as unaligned transfers.

Operand alignment and data bus size dictate when
multiple bus cycles are required. Table 10-7 de-
scribes the transfer cycles generated for all combi-
nations of logical operand lengths, alignment, and
data bus sizing. When multiple cycles are required to
transfer a multibyte logical operand, the highest-or-
der bytes are transferred first. For example, when
the processor does a 4-byte unaligned read begin-
ning at location x11 in the 4-byte aligned space, the
three high order bytes are read in the first bus cycle.
The low byte is read in a subsequent bus cycle.
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Table 10-6. Generating A0, A1 and BHEÝ from the Military Intel486TM Processor Byte Enables

First Cache Fill Cycle Any Other Cycle

BE3Ý BE2Ý BE1Ý BE0Ý A0 A1 BHEÝ A0 A1 BHEÝ

1 1 1 0 0 0 0 0 0 1

1 1 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0

*0 0 0 0 0 0 0 0 0 0

1 1 0 1 0 0 0 1 0 0

1 0 0 1 0 0 0 1 0 0

*0 0 0 1 0 0 0 1 0 0

1 0 1 1 0 0 0 0 1 1

*0 0 1 1 0 0 0 0 1 0

*0 1 1 1 0 0 0 1 1 0

Table 10-7. Transfer Bus Cycles for Bytes, Words and Dwords

Byte-Length of Logical Operand

1 2 4

Physical Byte Address in xx 00 01 10 11 00 01 10 11

Memory (Low Order Bits)

Transfer Cycles over 32-Bit b w w w hb d hb hw h3

Bus lb l3 lw lb

Transfer Cycles over 16-Bit b w lb ² w hb lw ² hb hw mw²

Bus hb² lb hw² lb² lw hb²

(² e BSÝ16 asserted) mw² lb

Transfer Cycles over 8-Bit b lb ³ lb ³ lb ³ hb lb ³ hb mhb ³ mlb ³

Bus hb ³ hb³ hb ³ lb mlb ³ lb ³ hb ³ mhb ³

(³ e BS8Ý Asserted) mhb ³ mlb ³ lb ³ hb ³

hb ³ mhb ³ mlb ³ kb

KEY:
b e byte transfer h e high-order portion
w e 2-byte transfer l e low-order portion
3 e 3-byte transfer m e mid-order portion
d e 4-byte transfer

4-Byte Operand lb mlb mhb hb

u u
byte with byte with

lowest address highest

address

The function of unaligned transfers with dynamic
bus sizing is not obvious. When the external systems
asserts BS16Ý or BS8Ý forcing extra cycles, low-
order bytes or words are transferred first (opposite
to the example above). When the Military Intel486
processor requests a 4-byte read and the external
system asserts BS16Ý, the lower 2 bytes are read
first followed by the upper 2 bytes.

In the unaligned transfer described above, the proc-
essor requested three bytes on the first cycle. If the
external system asserted BS16Ý during this 3-byte
transfer, the lower word is transferred first

followed by the upper byte. In the final cycle the low-
er byte of the 4-byte operand is transferred as in the
32-bit example above.

10.2 Bus Functional Description

The Military Intel486 processor supports a wide vari-
ety of bus transfers to meet the needs of high per-
formance systems. Bus transfers can be single cycle
or multiple cycle, burst or non-burst, cacheable or
non-cacheable, 8-, 16- or 32-bit, and pseudo-locked.
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To support multiprocessing systems there are cache
invalidation cycles and locked cycles.

This section begins with basic non-cacheable non-
burst single cycle transfers. It moves on to multiple
cycle transfers and introduces the burst mode.
Cacheability is introduced in section 10.2.3, ‘‘Cache-
able Cycles.’’ The remaining sections describe
locked, pseudo-locked, invalidate, bus hold and in-
terrupt cycles.

Bus cycles and data cycles are discussed in this
section. A bus cycle is at least two clocks long and
begins with ADSÝ active in the first clock and ready
active in the last clock. Data is transferred to or from
the Military Intel486 processor during a data cycle. A
bus cycle contains one or more data cycles.

Refer to section 10.2.13, ‘‘Bus States,’’ for a de-
scription of the bus states shown in the timing dia-
grams.

10.2.1 NON-CACHEABLE NON-BURST SINGLE
CYCLE

10.2.1.1 No Wait States

The fastest non-burst bus cycle that the Military
Intel486 processor supports is two clocks long.
These cycles are called 2-2 cycles because reads
and writes take two cycles each. The first ‘‘2’’ refers
to reads and the second to writes.

For example, if a wait state needs to be added to the
write, the cycle would be called 2-3.

Basic two clock read and write cycles are shown in
Figure 10-7. The Military Intel486 processor initiates
a cycle by asserting the address status signal
(ADSÝ) at the rising edge of the first clock. The
ADSÝ output indicates that a valid bus cycle defini-
tion and address is available on the cycle definition
lines and address bus.

271329–86

* To Processor
** From Processor

Figure 10-7. Basic 2-2 Bus Cycle
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The non-burst ready input (RDYÝ) is returned by the
external system in the second clock. RDYÝ indi-
cates that the external system has presented valid
data on the data pins in response to a read or the
external system has accepted data in response to a
write.

The Military Intel486 processor samples RDYÝ at
the end of the second clock. The cycle is complete if
RDYÝ is active (LOW) when sampled. Note that
RDYÝ is ignored at the end of the first clock of the
bus cycle.

The burst last signal (BLASTÝ) is asserted (LOW)
by the Military Intel486 processor during the second
clock of the first cycle in all bus transfers illustrated
in Figure 10-7. This indicates that each transfer is
complete after a single cycle. The Military Intel486
processor asserts BLASTÝ in the last cycle of a bus
transfer.

The timing of the parity check output (PCHKÝ) is
shown in Figure 10-7. The Military Intel486 proces-
sor drives the PCHKÝ output one clock after ready
terminates a read cycle. PCHKÝ indicates the parity
status for the data sampled at the end of the previ-
ous clock. The PCHKÝ signal can be used by the
external system. The Military Intel486 processor
does nothing in response to the PCHKÝ output.

10.2.1.2 Inserting Wait States

The external system can insert wait states into the
basic 2-2 cycle by driving RDYÝ inactive at the end
of the second clock. RDYÝ must be driven inactive
to insert a wait state. Figure 10-8 illustrates a simple
non-burst, non-cacheable signal with one wait state
added. Any number of wait states can be added to a
Military Intel486 processor bus cycle by maintaining
RDYÝ inactive.

271329–87

* To Processor
** From Processor

Figure 10-8. Basic 3-3 Bus Cycle
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The burst ready input (BRDYÝ) must be driven inac-
tive on all clock edges where RDYÝ is driven inac-
tive for proper operation of these simple non-burst
cycles.

10.2.2 MULTIPLE AND BURST CYCLE BUS
TRANSFERS

Multiple cycle bus transfers can be caused by inter-
nal requests from the Military Intel486 processor or
by the external memory system. An internal request
for a 128-bit pre-fetch must take more than one cy-
cle. Internal requests for unaligned data may also
require multiple bus cycles. A cache line fill requires
multiple cycles to complete.

The external system can cause a multiple cycle
transfer when it can only supply 8- or 16-bits per
cycle.

Only multiple cycle transfers caused by internal re-
quests are considered in this section. Cacheable cy-
cles and 8- and 16-bit transfers are covered in sec-
tion 10.2.3, ‘‘Cacheable Cycles’’ and section 10.2.5,
‘‘8- and 16-Bit Cycles.’’

Internal Requests from Military Intel486 DX,
IntelDX2, and IntelDX4 Processors

An internal request by a Military Intel486 DX,
IntelDX2, or IntelDX4 processor for a 64-bit floating
point load must take more than one internal cycle.

10.2.2.1 Burst Cycles

The Military Intel486 processor can accept burst cy-
cles for any bus requests that require more than a
single data cycle. During burst cycles, a new data
item is strobed into the Military Intel486 processor
every clock rather than every other clock as in non-
burst cycles. The fastest burst cycle requires 2
clocks for the first data item with subsequent data
items returned every clock.

The Military Intel486 processor is capable of burst-
ing a maximum of 32 bits during a write. Burst writes
can only occur if BS8Ý or BS16Ý is asserted. For
example, the Military Intel486 processor can burst
write four 8-bit operands or two 16-bit operands in a
single burst cycle. But the Military Intel486 proces-
sor cannot burst multiple 32-bit writes in a single
burst cycle.

Burst cycles begin with the Military Intel486 proces-
sor driving out an address and asserting ADSÝ in
the same manner as non-burst cycles. The Military
Intel486 processor indicates that it is willing to

perform a burst cycle by holding the burst last signal
(BLASTÝ) inactive in the second clock of the cycle.
The external system indicates its willingness to do a
burst cycle by returning the burst ready signal
(BRDYÝ) active.

The addresses of the data items in a burst cycle will
all fall within the same 16-byte aligned area (corre-
sponding to an internal Military Intel486 processor
cache line). A 16-byte aligned area begins at loca-
tion XXXXXXX0 and ends at location XXXXXXXF.
During a burst cycle, only BE0–3Ý, A2, and A3 may
change. A4–A31, M/IOÝ, D/CÝ, and W/RÝ will re-
main stable throughout a burst. Given the first ad-
dress in a burst, external hardware can easily calcu-
late the address of subsequent transfers in advance.
An external memory system can be designed to
quickly fill the Military Intel486 processor internal
cache lines.

Burst cycles are not limited to cache line fills. Any
multiple cycle read request by the Military Intel486
processor can be converted into a burst cycle. The
Military Intel486 processor will only burst the number
of bytes needed to complete a transfer.

For example, the Military Intel486 DX, IntelDX2,
Write-Back Enhanced IntelDX2 or IntelDX4 proces-
sor will burst eight bytes for a 64-bit floating point
non-cacheable read.

The external system converts a multiple cycle re-
quest into a burst cycle by returning BRDYÝ active
rather than RDYÝ (non-burst ready) in the first cycle
of a transfer. For cycles that cannot be burst, such
as interrupt acknowledge and halt, BRDYÝ has the
same effect as RDYÝ. BRDYÝ is ignored if both
BRDYÝ and RDYÝ are returned in the same clock.
Memory areas and peripheral devices that cannot
perform bursting must terminate cycles with RDYÝ.

10.2.2.2 Terminating Multiple and Burst Cycle
Transfers

The Military Intel486 processor drives BLASTÝ in-
active for all but the last cycle in a multiple cycle
transfer. BLASTÝ is driven inactive in the first cycle
to inform the external system that the transfer could
take additional cycles. BLASTÝ is driven active in
the last cycle of the transfer indicating that the next
time BRDYÝ or RDYÝ is returned the transfer is
complete.

BLASTÝ is not valid in the first clock of a bus cycle.
It should be sampled only in the second and subse-
quent clocks when RDYÝ or BRDYÝ is returned.
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The number of cycles in a transfer is a function of
several factors including the number of bytes the
Military Intel486 processor needs to complete an in-
ternal request (1, 2, 4, 8, or 16), the state of the bus
size inputs (BS8Ý and BS16Ý), the state of the
cache enable input (KENÝ) and alignment of the
data to be transferred.

When the Military Intel486 processor initiates a re-
quest it knows how many bytes will be transferred
and if the data is aligned. The external system must
indicate whether the data is cacheable (if the trans-
fer is a read) and the width of the bus by returning
the state of the KENÝ, BS8Ý and BS16Ý inputs
one clock before RDYÝ or BRDYÝ is returned. The
Military Intel486 processor determines how many cy-
cles a transfer will take based on its internal informa-
tion and inputs from the external system.

BLASTÝ is not valid in the first clock of a bus cycle
because the Military Intel486 processor cannot de-
termine the number of cycles a transfer will take until
the external system returns KENÝ, BS8Ý and
BS16Ý. BLASTÝ should only be sampled in the
second and subsequent clocks of a cycle when the
external system returns RDYÝ or BRDYÝ.

The system may terminate a burst cycle by returning
RDYÝ instead of BRDYÝ. BLASTÝ will remain de-
asserted until the last transfer. However, any trans-
fers required to complete a cache line fill will follow
the burst order, e.g., if burst order was 4, 0, C, 8 and
RDYÝ was returned at after 0, the next transfers will
be from C and 8.

10.2.2.3 Non-Cacheable, Non-Burst, Multiple
Cycle Transfers

Figure 10-9 illustrates a 2 cycle non-burst, non-
cacheable multiple cycle read. This transfer is simply

a sequence of two single cycle transfers. The
Military Intel486 processor indicates to the external
system that this is a multiple cycle transfer by driving
BLASTÝ inactive during the second clock of the first
cycle. The external system returns RDYÝ active in-
dicating that it will not burst the data. The external
system also indicates that the data is not cacheable
by returning KENÝ inactive one clock before it re-
turns RDYÝ active. When the Military Intel486 proc-
essor samples RDYÝ active it ignores BRDYÝ.

Each cycle in the transfer begins when ADSÝ is
driven active and the cycle is complete when the
external system returns RDYÝ active.

The Military Intel486 processor indicates the last cy-
cle of the transfer by driving BLASTÝ active. The
next RDYÝ returned by the external system termi-
nates the transfer.

10.2.2.4 Non-Cacheable Burst Cycles

The external system converts a multiple cycle re-
quest into a burst cycle by returning BRDYÝ active
rather than RDYÝ in the first cycle of the transfer.
This is illustrated in Figure 10-10.

There are several features to note in the burst read.
ADSÝ is only driven active during the first cycle of
the transfer. RDYÝ must be driven inactive when
BRDYÝ is returned active.

BLASTÝ behaves exactly as it does in the non-burst
read. BLASTÝ is driven inactive in the second clock
of the first cycle of the transfer indicating more cy-
cles to follow. In the last cycle, BLASTÝ is driven
active telling the external memory system to end the
burst after returning the next BRDYÝ.
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271329–88

* To Processor

Figure 10-9. Non-Cacheable, Non-Burst, Multiple-Cycle Transfers

271329–89

* To Processor

Figure 10-10. Non-Cacheable Burst Cycle
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10.2.3 CACHEABLE CYCLES

Any memory read can become a cache fill operation.
The external memory system can allow a read re-
quest to fill a cache line by returning KENÝ active
one clock before RDYÝ or BRDYÝ during the first
cycle of the transfer on the external bus. Once
KENÝ is asserted and the remaining three require-
ments described below are met, the Military Intel486
processor will fetch an entire cache line regardless
of the state of KENÝ. KENÝ must be returned ac-
tive in the last cycle of the transfer for the data to be
written into the internal cache. The Military Intel486
processor will only convert memory reads or pre-
fetches into a cache fill.

KENÝ is ignored during write or I/O cycles. Memory
writes will only be stored in the on-chip cache if
there is a cache hit. I/O space is never cached in
the internal cache.

To transform a read or a prefetch into a cache line
fill the following conditions must be met:

1. The KENÝ pin must be asserted one clock prior
to RDYÝ or BRDYÝ being returned for the first
data cycle.

2. The cycle must be of the type that can be internal-
ly cached. (Locked reads, I/O reads, and interrupt
acknowledge cycles are never cached).

3. The page table entry must have the page cache
disable bit (PCD) set to 0. To cache a page table
entry, the page directory must have PCDe0. To
cache reads or prefetches when paging is dis-
abled, or to cache the page directory entry, con-
trol register 3 (CR3) must have PCDe0.

4. The cache disable (CD) bit in control register 0
(CR0) must be clear.

External hardware can determine when the Military
Intel486 processor has transformed a read or pre-
fetch into a cache fill by examining the KENÝ,
M/IOÝ, D/CÝ, W/RÝ, LOCKÝ, and PCD pins.
These pins convey to the system the outcome of
conditions 1–3 in the above list. In addition, the Mili-
tary Intel486 processor drives PCD high whenever
the CD bit in CR0 is set, so that external hardware
can evaluate condition 4.

Cacheable cycles can be burst or non-burst.

10.2.3.1 Byte Enables during a Cache Line Fill

For the first cycle in the line fill, the state of the byte
enables should be ignored. In a non-cacheable
memory read, the byte enables indicate the bytes
actually required by the memory or code fetch.

The Military Intel486 processor expects to receive
valid data on its entire bus (32 bits) in the first cycle
of a cache line fill. Data should be returned with the
assumption that all the byte enable pins are driven
active. However if BS8Ý is asserted only one byte
need be returned on data lines D0–D7. Similarly if
BS16Ý is asserted two bytes should be returned on
D0–D15.

The Military Intel486 processor will generate the ad-
dresses and byte enables for all subsequent cycles
in the line fill. The order in which data is read during
a line fill depends on the address of the first item
read. Byte ordering is discussed in section 10.2.4,
‘‘Burst Mode Details.’’
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10.2.3.2 Non-Burst Cacheable Cycles

Figure 10-11 shows a non-burst cacheable cycle.
The cycle becomes a cache fill when the Military
Intel486 processor samples KENÝ active at the end
of the first clock. The Military Intel486 processor
drives BLASTÝ inactive in the second clock in re-
sponse to KENÝ. BLASTÝ is driven inactive be-
cause a cache fill requires 3 additional cycles to
complete. BLASTÝ remains inactive until the last
transfer in the cache line fill. KENÝ must be re-
turned active in the last cycle of the transfer for the
data to be written into the internal cache.

Note that this cycle would be a single bus cycle if
KENÝ was not sampled active at the end of the first

clock. The subsequent three reads would not have
happened since a cache fill was not requested.

The BLASTÝ output is invalid in the first clock of a
cycle. BLASTÝ may be active during the first clock
due to earlier inputs. Ignore BLASTÝ until the sec-
ond clock.

During the first cycle of the cache line fill the exter-
nal system should treat the byte enables as if they
are all active. In subsequent cycles in the burst, the
Military Intel486 processor drives the address lines
and byte enables. (See section 10.2.4.2, ‘‘Burst and
Cache Line Fill Order’’) .

271329–90

* To Processor

Figure 10-11. Non-Burst, Cacheable Cycles
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10.2.3.3 Burst Cacheable Cycles

Figure 10-12 illustrates a burst mode cache fill. As in
Figure 10-11, the transfer becomes a cache line fill
when the external system returns KENÝ active at
the end of the first clock in the cycle.

The external system informs the Military Intel486
processor that it will burst the line in by driving
BRDYÝ active at the end of the first cycle in the
transfer.

Note that during a burst cycle, ADSÝ is only driven
with the first address.

271329–91

* To Processor

Figure 10-12. Burst Cacheable Cycle
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10.2.3.4 Effect of Changing KENÝ during a
Cache Line Fill

KENÝ can change multiple times as long as it ar-
rives at its final value in the clock before RDYÝ or
BRDYÝ is returned. This is illustrated in Figure
10-13. Note that the timing of BLASTÝ follows that
of KENÝ by one clock. The Military Intel486 proces-
sor samples KENÝ every clock and uses the value
returned in the clock before ready to determine if

a bus cycle would be a cache line fill. Similarly, it
uses the value of KENÝ in the last cycle before ear-
ly RDYÝ to load the line just retrieved from memory
into the cache. KENÝ is sampled every clock and it
must satisfy setup and hold time.

KENÝ can also change multiple times before a burst
cycle, as long as it arrives at its final value one clock
before ready is returned active.

271329–92

* To Processor

Figure 10-13. Effect of Changing KENÝ
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10.2.4 BURST MODE DETAILS

10.2.4.1 Adding Wait States to Burst Cycles

Burst cycles need not return data on every clock.
The Military Intel486 processor will only strobe data

into the chip when either RDYÝ or BRDYÝ are ac-
tive. Driving BRDYÝ and RDYÝ inactive adds a wait
state to the transfer. A burst cycle where two clocks
are required for every burst item is shown in Figure
10-14.

271329–93

* To Processor

Figure 10-14. Slow Burst Cycle
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10.2.4.2 Burst and Cache Line Fill Order

The burst order used by the Military Intel486 proces-
sor is shown in Table 10-8. This burst order is fol-
lowed by any burst cycle (cache or not), cache line
fill (burst or not) or code prefetch.

The Military Intel486 processor presents each re-
quest for data in an order determined by the first
address in the transfer. For example, if the first ad-
dress was 104 the next three addresses in the burst
will be 100, 10C and 108. An example of burst ad-
dress sequencing is shown in Figure 10-15.

Table 10-8. Burst Order

(Both Read and Write Bursts)

First Second Third Fourth

Addr. Addr. Addr. Addr.

0 4 8 C

4 0 C 8

8 C 0 4

C 8 4 0

271329–94

* To Processor

Figure 10-15. Burst Cycle Showing Order of Addresses
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The sequences shown in Table 10-8 accommodate
systems with 64-bit buses as well as systems with
32-bit data buses. The sequence applies to all
bursts, regardless of whether the purpose of the
burst is to fill a cache line, do a 64-bit read, or do a
pre-fetch. If either BS8Ý or BS16Ý is returned ac-
tive, the Military Intel486 processor completes the
transfer of the current 32-bit word before progress-
ing to the next 32-bit word. For example, a BS16Ý
burst to address 4 has the following order: 4-6-0-2-
C-E-8-A.

10.2.4.3 Interrupted Burst Cycles

Some memory systems may not be able to respond
with burst cycles in the order defined in Table 10-8.
To support these systems the Military Intel486 proc-
essor allows a burst cycle to be interrupted at any
time. The Military Intel486 processor will automati-

cally generate another normal bus cycle after being
interrupted to complete the data transfer. This is
called an interrupted burst cycle. The external sys-
tem can respond to an interrupted burst cycle with
another burst cycle.

The external system can interrupt a burst cycle by
returning RDYÝ instead of BRDYÝ. RDYÝ can be
returned after any number of data cycles terminated
with BRDYÝ.

An example of an interrupted burst cycle is shown in
Figure 10-16. The Military Intel486 processor imme-
diately drives ADSÝ active to initiate a new bus cy-
cle after RDYÝ is returned active. BLASTÝ driven
inactive one clock after ADSÝ begins the second
bus cycle indicating that the transfer is not complete.

271329–95

* To Processor

Figure 10-16. Interrupted Burst Cycle
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KENÝ need not be returned active in the first data
cycle of the second part of the transfer in Figure
10-16. The cycle had been converted to a cache fill
in the first part of the transfer and the Military
Intel486 processor expects the cache fill to be com-
pleted. Note that the first half and second half of the
transfer in Figure 10-16 are each two cycle burst
transfers.

The order in which the Military Intel486 processor
requests operands during an interrupted burst trans-
fer is determined by Table 10-7. Mixing RDYÝ and
BRDYÝ does not change the order in which oper-
and addresses are requested by the Military Intel486
processor.

An example of the order in which the Military In-
tel486 processor requests operands during a cycle

in which the external system mixes RDYÝ and
BRDYÝ is shown in Figure 10-17. The Military In-
tel486 processor initially requests a transfer begin-
ning at location 104. The transfer becomes a cache
line fill when the external system returns KENÝ ac-
tive. The first cycle of the cache fill transfers the
contents of location 104 and is terminated with
RDYÝ. The Military Intel486 processor drives out a
new request (by asserting ADSÝ) to address 100. If
the external system terminates the second cycle
with BRDYÝ, the Military Intel486 processor will
next request/expect address 10C. The correct order
is determined by the first cycle in the transfer, which
may not be the first cycle in the burst if the system
mixes RDYÝ with BRDYÝ.

271329–96

* To Processor

Figure 10-17. Interrupted Burst Cycle with Unobvious Order of Addresses
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10.2.5 8- AND 16-BIT CYCLES

The Military Intel486 processor supports both 16-
and 8-bit external buses through the BS16Ý and
BS8Ý inputs. BS16Ý and BS8Ý allow the external
system to specify, on a cycle by cycle basis, whether
the addressed component can supply 8, 16 or
32 bits. BS16Ý and BS8Ý can be used in burst cy-
cles as well as non-burst cycles. If both BS16Ý and
BS8Ý are returned active for any bus cycle, the Mili-
tary Intel486 processor will respond as if only BS8Ý
were active.

The timing of BS16Ý and BS8Ý is the same as that
of KENÝ. BS16Ý and BS8Ý must be driven active
before the first RDYÝ or BRDYÝ is driven active.
Driving the BS16Ý and BS8Ý active can force the

Military Intel486 processor to run additional cycles to
complete what would have been only a single 32-bit
cycle. BS8Ý and BS16Ý may change the state of
BLASTÝ when they force subsequent cycles from
the transfer.

Figure 10-18. shows an example in which BS8Ý
forces the Military Intel486 processor to run two ex-
tra cycles to complete a transfer. The Military In-
tel486 processor issues a request for 24 bits of infor-
mation. The external system drives BS8Ý active in-
dicating that only eight bits of data can be supplied
per cycle. The Military Intel486 processor issues two
extra cycles to complete the transfer.

271329–97

* To Processor

Figure 10-18. 8-Bit Bus Size Cycle
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Extra cycles forced by the BS16Ý and BS8Ý should
be viewed as independent bus cycles. BS16Ý and
BS8Ý should be driven active for each additional
cycle unless the addressed device has the ability to
change the number of bytes it can return between
cycles. The Military Intel486 processor will drive
BLASTÝ inactive until the last cycle before the
transfer is complete.

Refer to section 10.1.2, ‘‘Dynamic Data Bus Sizing,’’
for the sequencing of addresses while BS8Ý or
BS16Ý are active.

BS8Ý and BS16Ý operate during burst cycles in ex-
actly the same manner as non-burst cycles. For ex-
ample, a single non-cacheable read could be trans-
ferred by the Military Intel486 processor as four 8-bit
burst data cycles. Similarly, a single 32-bit write
could be written as four 8-bit burst data cycles. An
example of a burst write is shown in Figure 10-19.
Burst writes can only occur if BS8Ý or BS16Ý is
asserted.

271329–98

Figure 10-19. Burst Write as a Result of BS8Ý or BS16Ý
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10.2.6 LOCKED CYCLES

Locked cycles are generated in software for any in-
struction that performs a read-modify-write opera-
tion. During a read-modify-write operation the Mili-
tary Intel486 processor can read and modify a vari-
able in external memory and be assured that the
variable is not accessed between the read and write.

Locked cycles are automatically generated during
certain bus transfers. The XCHG (exchange) instruc-
tion generates a locked cycle when one of its oper-
ands is memory based. Locked cycles are generat-
ed when a segment or page table entry is updated
and during interrupt acknowledge cycles. Locked cy-
cles are also generated when the LOCK instruction
prefix is used with selected instructions.

Locked cycles are implemented in hardware with the
LOCKÝ pin. When LOCKÝ is active, the Military

Intel486 processor is performing a read-modify-write
operation and the external bus should not be relin-
quished until the cycle is complete. Multiple reads or
writes can be locked. A locked cycle is shown in
Figure 10-20. LOCKÝ goes active with the address
and bus definition pins at the beginning of the first
read cycle and remains active until RDYÝ is re-
turned for the last write cycle. For unaligned 32 bits
read-modify-write operation, the LOCKÝ remains
active for the entire duration of the multiple cycle. It
will go inactive when RDYÝ is returned for the last
write cycle.

When LOCKÝ is active, the Military Intel486 proces-
sor will recognize address hold and backoff but will
not recognize bus hold. It is left to the external sys-
tem to properly arbitrate a central bus when the Mili-
tary Intel486 processor generates LOCKÝ.

271329–99

* To Processor
** From Processor

Figure 10-20. Locked Bus Cycle
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10.2.7 PSEUDO-LOCKED CYCLES

Pseudo-locked cycles assure that no other master
will be given control of the bus during operand trans-
fers which take more than one bus cycle.

For the Military Intel486 processor, examples in-
clude 64-bit description loads and cache line fills.

Pseudo-locked transfers are indicated by the
PLOCKÝ pin. The memory operands must be
aligned for correct operation of a pseudo-locked cy-
cle.

PLOCKÝ need not be examined during burst reads.
A 64-bit aligned operand can be retrieved in one
burst (note: this is only valid in systems that do not
interrupt bursts).

The system must examine PLOCKÝ during 64-bit
writes since the Military Intel486 processor cannot
burst write more than 32 bits. However, burst can be
used within each 32-bit write cycle if BS8Ý or
BS16Ý is asserted. BLAST will be de-asserted in
response to BS8Ý or BS16Ý. A 64-bit write will be
driven out as two non-burst bus cycles. BLASTÝ is
asserted during both writes since a burst is not pos-
sible. PLOCKÝ is asserted during the first write to
indicate that another write follows. This behavior is
shown in Figure 10-21.

The first cycle of a 64-bit floating point write is the
only case in which both PLOCKÝ and BLASTÝ are
asserted. Normally PLOCKÝ and BLASTÝ are the
inverse of each other.

During all of the cycles where PLOCKÝ is asserted,
HOLD is not acknowledged until the cycle com-
pletes. This results in a large HOLD latency, espe-
cially when BS8Ý or BS16Ý is asserted. To reduce
the HOLD latency during these cycles, windows are
available between transfers to allow HOLD to be ac-
knowledged during non-cacheable code prefetches.
PLOCKÝ will be asserted since BLASTÝ is negat-
ed, but it is ignored and HOLD is recognized during
the prefetch.

PLOCKÝ can change several times during a cycle
settling to its final value in the clock ready is re-
turned.

10.2.7.1 Floating Point Read and Write Cycles

For Military Intel486 DX, IntelDX2, Write-Back En-
hanced IntelDX2, and IntelDX4 processors, 64-bit
floating point read and write cycles are also exam-
ples of operand transfers that take more than one
bus cycle.

271329–A0

** From Processor

Figure 10-21. Pseudo Lock Timing
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10.2.8 INVALIDATE CYCLES

Invalidate cycles are needed to keep the Military
Intel486 processor internal cache contents consist-
ent with external memory. The Military Intel486 proc-
essor contains a mechanism for listening to writes
by other devices to external memory. When the Mili-
tary Intel486 processor finds a write to a section of
external memory contained in its internal cache, the
Military Intel486 processor’s internal copy is invali-
dated.

Invalidations use two pins, address hold request
(AHOLD) and valid external address (EADSÝ).
There are two steps in an invalidation cycle. First,
the external system asserts the AHOLD input forcing
the Military Intel486 processor to immediately relin-
quish its address bus. Next, the external system as-
serts EADSÝ indicating that a valid address is on
the Military Intel486 processor address bus. Figure
10-22 shows the fastest possible invalidation cycle.
The Military Intel486 processor recognizes AHOLD
on one CLK edge and floats the address bus in re-
sponse. To allow the address bus to float and avoid
contention, EADSÝ and the invalidation address
should not be driven until the following CLK edge.
The Military Intel486 processor reads the address
over its address lines. If the Military Intel486 proces-
sor finds this address in its internal cache, the cache
entry is invalidated. Note that the Military Intel486
processor address bus is input/output, unlike the In-
tel386 processor’s bus, which is output only.

The Military Intel486 processor immediately relin-
quishes its address bus in the next clock upon as-
sertion of AHOLD. For example, the bus could be 3
wait states into a read cycle. If AHOLD is activated,
the Military Intel486 processor will immediately float
its address bus before ready is returned terminating
the bus cycle.

When AHOLD is asserted only the address bus is
floated, the data bus can remain active. Data can be
returned for a previously specified bus cycle during
address hold. (See Figure 10-22 and Figure 10-23.)

EADSÝ is normally asserted when an external mas-
ter drives an address onto the bus. AHOLD need not
be driven for EADSÝ to generate an internal invali-
date. If EADSÝ alone is asserted while the Military
Intel486 processor is driving the address bus, it is
possible that the invalidation address will come from
the Military Intel486 processor itself.

Note that it is also possible to run an invalidation
cycle by asserting EADSÝ when BOFFÝ is asserted
or after HLDA has been returned, following the as-
sertion of HOLD.

Running an invalidate cycle prevents the Military
Intel486 processor cache from satisfying other inter-
nal requests, so invalidations should be run only
when necessary. The fastest possible invalidate cy-
cle is shown in Figure 10-22, while a more realistic
invalidation cycle is shown in Figure 10-23. Both of
the examples take one clock of cache access from
the Military Intel486 processor.
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271329–A1

Figure 10-22. Fast Internal Cache Invalidation Cycle

271329–A2

Figure 10-23. Typical Internal Cache Invalidation Cycle
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10.2.8.1 Rate of Invalidate Cycles

The Military Intel486 processor can accept one in-
validate per clock except in the last clock of a line
fill. One invalidate per clock is possible as long as
EADSÝ is negated in ONE or BOTH of the following
cases:

1. In the clock RDYÝ or BRDYÝ is returned for the
last time.

2. In the clock following RDYÝ or BRDYÝ being re-
turned for the last time.

This definition allows two system designs. Simple
designs can restrict invalidates to one every other
clock. The simple design need not track bus activity.
Alternatively, systems can request one invalidate
per clock provided that the bus is monitored.

10.2.8.2 Running Invalidate Cycles Concurrently
with Line Fills

Precautions are necessary to avoid caching stale
data in the Military Intel486 processor cache in a
system with a second level cache. An example of a
system with a second level cache is shown in Figure
10-24.

An external device can be writing to main memory
over the system bus while the Military Intel486 proc-
essor is retrieving data from the second level cache.

271329–A3

Figure 10-24. System with Second Level Cache

The Military Intel486 processor will need to invali-
date a line in its internal cache if the external device
is writing to a main memory address also contained
in the Military Intel486 processor cache.

A potential problem exists if the external device is
writing to an address in external memory, and at the
same time the Military Intel486 processor is reading
data from the same address in the second level
cache. The system must force an invalidation cycle
to invalidate the data that the Military Intel486 proc-
essor has requested during the line fill.

If the system asserts EADSÝ before the first data in
the line fill is returned to the Military Intel486 proces-
sor, the system must return data consistent with the
new data in the external memory upon resumption of
the line fill after the invalidation cycle. This is illus-
trated by the asserted EADSÝ signal labeled 1 in
Figure 10-25.

If the system asserts EADSÝ at the same time or
after the first data in the line fill is returned (in the
same clock that the first RDYÝ or BRDYÝ is re-
turned or any subsequent clock in the line fill) the
data will be read into the Military Intel486 processor
input buffers but it will not be stored in the on-chip
cache. This is illustrated by asserted EADSÝ signal
labeled 2 in Figure 10-25. The stale data will be used
to satisfy the request that initiated the cache fill cy-
cle.

10.2.9 BUS HOLD

The Military Intel486 processor provides a bus hold,
hold acknowledge protocol using the bus hold re-
quest (HOLD) and bus hold acknowledge (HLDA)
pins. Asserting the HOLD input indicates that anoth-
er bus master desires control of the Military Intel486
processor bus. The Military Intel486 processor will
respond by floating its bus and driving HLDA active
when the current bus cycle, or sequence of locked
cycles is complete. An example of a HOLD/HLDA
transaction is shown in Figure 10-26. Unlike the In-
tel386 processor, the Military Intel486 processor can
respond to HOLD by floating its bus and asserting
HLDA while RESET is asserted.

Note that HOLD will be recognized during un-aligned
writes (less than or equal to 32-bits) with BLASTÝ
being active for each write. For greater than 32-bit or
un-aligned write, HOLDÝ recognition is prevented
by PLOCKÝ getting asserted. However, HOLD is
recognized during non-cacheable, non-burstable
code prefetches even though PLOCKÝ is active.
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271329–A4

NOTES:
1. Data returned must be consistent if its address equals the invalidation address in this clock
2. Data returned will not be cached if its address equals the invalidation address in this clock

Figure 10-25. Cache Invalidation Cycle Concurrent with Line Fill

For cacheable and non-bursted or bursted cycles,
HOLD is acknowledged during backoff only if HOLD
and BOFFÝ are asserted during an active bus cycle
(after ADSÝ asserted) and before the first RDYÝ or
BRDYÝ has been returned (see Figure 10-27). The
order in which HOLD and BOFFÝ go active is unim-
portant (so long as both are active prior to the first
RDYÝ/BRDYÝ returned by the system). Figure

10-27 shows the case where HOLD is asserted first;
HOLD could be asserted simultaneously or after
BOFFÝ and still be acknowledged.

The pins floated during bus hold are: BE0Ý–BE3Ý,
PCD, PWT, W/RÝ, D/CÝ, M/IOÝ, LOCKÝ,
PLOCKÝ, ADSÝ, BLASTÝ, D0–D31, A2–A31,
DP0–DP3.
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271329–A5

** From Processor

Figure 10-26. HOLD/HLDA Cycles

271329–A6

Figure 10-27. HOLD Request Acknowledged during BOFFÝ

175

175



MILITARY Intel486TM PROCESSOR FAMILY

10.2.10 INTERRUPT ACKNOWLEDGE

The Military Intel486 processor generates interrupt
acknowledge cycles in response to maskable inter-
rupt requests generated on the interrupt request in-
put (INTR) pin. Interrupt acknowledge cycles have a
unique cycle type generated on the cycle type pins.

An example of an interrupt acknowledge transaction
is shown in Figure 10-28. Interrupt acknowledge cy-
cles are generated in locked pairs. Data returned
during the first cycle is ignored. The interrupt vector
is returned during the second cycle on the lower 8
bits of the data bus. The Military Intel486 processor
has 256 possible interrupt vectors.

The state of A2 distinguishes the first and second
interrupt acknowledge cycles. The byte address
driven during the first interrupt acknowledge cycle is
4 (A31–A3 low, A2 high, BE3Ý–BE1Ý high, and
BE0Ý low). The address driven during the second
interrupt acknowledge cycle is 0 (A31–A2 low,
BE3Ý–BE1Ý high, BE0Ý low).

Each of the interrupt acknowledge cycles are termi-
nated when the external system returns RDYÝ or
BRDYÝ. Wait states can be added by withholding
RDYÝ or BRDYÝ. The Military Intel486 processor
automatically generates four idle clocks between the
first and second cycles to allow for 8259A recovery
time.

271329–A7

Figure 10-28. Interrupt Acknowledge Cycles
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10.2.11 SPECIAL BUS CYCLES

The Military Intel486 processor provides special bus
cycles to indicate that certain instructions have been
executed, or certain conditions have occurred inter-
nally. The special bus cycles in Table 10-9 are
defined when the bus cycle definition pins are in
the following state: M/IOÝe0, D/CÝe0 and
W/RÝe1.

During these cycles the address bus is driven low
while the data bus is undefined.

Two of the special cycles indicate halt or shutdown.
Another special cycle is generated when the
Military Intel486 processor executes an INVD (invali-
date data cache) instruction and could be used to
flush an external cache. The Write Back cycle is
generated when the Military Intel486 processor exe-
cutes the WBINVD (write-back invalidate data
cache) instruction and could be used to synchronize
an external write-back cache.

The external hardware must acknowledge these
special bus cycles by returning RDYÝ or BRDYÝ.

Table 10-9. Special Bus Cycle Encoding

Cycle Name M/IOÝ D/CÝ W/RÝ BE3Ý–BE0Ý A4–A2

Write-Back 0 0 1 0111 000

Flush 0 0 1 1101 000

Shutdown 0 0 1 1110 000

HALT 0 0 1 1011 000

Stop Grant Ack Cycle 0 0 1 1011 001

NOTE:
1. See section 9.6.1, ‘‘Stop Grant Bus Cycle,’’ for details.

271329–A8

Figure 10-29. Restarted Read Cycle
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10.2.11.1 HALT Indication Cycle

The Military Intel486 processor halts as a result of
executing a HALT instruction. Signaling its entrance
into the HALT state, a HALT indication cycle is per-
formed. The HALT indication cycle is identified by
the bus definition signals in special bus cycle state
and a byte address of 2. BE0Ý and BE2Ý are the
only signals distinguishing HALT indication from
shutdown indication, which drives an address of 0.
During the HALT cycle, undefined data is driven on
D0–D31. The HALT indication cycle must be ac-
knowledged by RDYÝ asserted.

A halted Military Intel486 processor resumes execu-
tion when INTR (if interrupts are enabled) or NMI or
RESET is asserted.

10.2.11.2 Shutdown Indication Cycle

The Military Intel486 processor shuts down as a re-
sult of a protection fault while attempting to process
a double fault. Signaling its entrance into the shut-
down state, a shutdown indication cycle is per-
formed. The shutdown indication cycle is identified
by the bus definition signals in special bus cycle
state and a byte address of 0.

10.2.11.3 Stop Grant Indication Cycle

A special Stop Grant bus cycle will be driven to the
bus after the processor recognizes the STPCLKÝ
interrupt. The definition of this bus cycle is the same
as the HALT cycle definition for the Military Intel486
processor, with the exception that the Stop Grant
bus cycle drives the value 0000 0010H on the ad-
dress pins. The system hardware must acknowledge
this cycle by returning RDYÝ or BRDYÝ. The proc-
essor will not enter the Stop Grant state until either
RDYÝ or BRDYÝ has been returned. (See Figure
10-31.)

The Stop Grant Bus Cycle is defined as follows:

M/IOÝ e 0, D/CÝ e 0, W/RÝ e 1, Address Bus
e 0000 0010H (A4 e 1), BE3Ý–BE0Ý e 1011,
Data bus e undefined.

The latency between a STPCLKÝ request and the
Stop Grant bus cycle is dependent on the current
instruction, the amount of data in the processor write
buffers, and the system memory performance.

271329–A9

** From Processor

Figure 10-30. Restarted Write Cycle
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271329–B0

Figure 10-31. Stop Grant Bus Cycle

10.2.12 BUS CYCLE RESTART

In a multi-master system another bus master may
require the use of the bus to enable the Military
Intel486 processor to complete its current bus re-
quest. In this situation the Military Intel486 processor
will need to restart its bus cycle after the other bus
master has completed its bus transaction.

A bus cycle may be restarted if the external system
asserts the backoff (BOFFÝ) input. The Military
Intel486 processor samples the BOFFÝ pin every
clock. The Military Intel486 processor will immedi-
ately (in the next clock) float its address, data and
status pins when BOFFÝ is asserted (see Figures
10-29 and 10-34). Any bus cycle in progress when
BOFFÝ is asserted is aborted and any data returned
to the processor is ignored. The same pins are float-
ed in response to BOFFÝ as are floated in response
to HOLD. HLDA is not generated in response to
BOFFÝ. BOFFÝ has higher priority than RDYÝ or
BRDYÝ. If either RDYÝ or BRDYÝ are returned in
the same clock as BOFFÝ, BOFFÝ takes effect.

The device asserting BOFFÝ is free to run any cy-
cles it wants while the Military Intel486 processor
bus is in its high impedance state. If backoff is re-
quested after the Military Intel486 processor has
started a cycle, the new master should wait for

memory to return RDYÝ or BRDYÝ before assum-
ing control of the bus. Waiting for ready provides a
handshake to insure that the memory system is
ready to accept a new cycle. If the bus is idle when
BOFFÝ is asserted, the new master can start its
cycle two clocks after issuing BOFFÝ.

The external memory can view BOFFÝ in the same
manner as BLASTÝ. Asserting BOFFÝ tells the ex-
ternal memory system that the current cycle is the
last cycle in a transfer.

The bus remains in the high impedance state until
BOFFÝ is negated. Upon negation, the Military
Intel486 processor restarts its bus cycle by driving
out the address and status and asserting ADSÝ.
The bus cycle then continues as usual.

Asserting BOFFÝ during a burst, BS8Ý or BS16Ý
cycle will force the Military Intel486 processor to ig-
nore data returned for that cycle only. Data from pre-
vious cycles will still be valid. For example, if
BOFFÝ is asserted on the third BRDYÝ of a burst,
the Military Intel486 processor assumes the data re-
turned with the first and second BRDYÝ is correct
and restarts the burst beginning with the third item.
The same rule applies to transfers broken into multi-
ple cycle by BS8Ý or BS16Ý.
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Asserting BOFFÝ in the same clock as ADSÝ will
cause the Military Intel486 processor to float its bus
in the next clock and leave ADSÝ floating low. Be-
cause ADSÝ is floating low, a peripheral may think
that a new bus cycle has begun even-though the
cycle was aborted. There are two possible solutions
to this problem. The first is to have all devices recog-
nize this condition and ignore ADSÝ until ready
comes back. The second approach is to use a ‘‘two
clock’’ backoff: in the first clock AHOLD is asserted,
and in the second clock BOFFÝ is asserted. This

guarantees that ADSÝ will not be floating low. This
is only necessary in systems where BOFFÝ may be
asserted in the same clock as ADSÝ.

10.2.13 BUS STATES

A bus state diagram is shown in Figure 10-32. A de-
scription of the signals used in the diagram is given
in Table 10-10.

271329–B1

Figure 10-32. Bus State Diagram

Table 10-10. Bus State Description

State Means

Ti Bus is idle. Address and status signals may be driven to undefined values, or the bus may be floated
to a high impedance state.

T1 First clock cycle of a bus cycle. Valid address and status are driven and ADSÝ is asserted.

T2 Second and subsequent clock cycles of a bus cycle. Data is driven if the cycle is a write, or data is
expected if the cycle is a read. RDYÝ and BRDYÝ are sampled.

T1b First clock cycle of a restarted bus cycle. Valid address and status are driven and ADSÝ is asserted.

Tb Second and subsequent clock cycles of an aborted bus cycle.
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10.2.14 FLOATING POINT ERROR HANDLING
FOR THE MILITARY INTEL486 DX,
INTELDX2, AND INTELDX4
PROCESSORS

The Military Intel486 DX, IntelDX2, and IntelDX4
processors provide two options for reporting floating
point errors. The simplest method is to raise inter-
rupt 16 whenever an unmasked floating point error
occurs. This option may be enabled by setting the
NE bit in control register 0 (CR0).

The Military Intel486 DX, IntelDX2, and IntelDX4
processors also provide the option of allowing exter-
nal hardware to determine how floating point errors
are reported. This option is necessary for compatibil-
ity with the error reporting scheme used in DOS
based systems. The NE bit must be cleared in CR0
to enable user-defined error reporting. User-defined
error reporting is the default condition because the
NE bit is cleared on reset.

Two pins, floating point error (FERRÝ) and ignore
numeric error (IGNNEÝ), are provided to direct the
actions of hardware if user-defined error reporting is
used. The Military Intel486 DX, IntelDX2, and In-
telDX4 processors assert the FERRÝ output to indi-
cate that a floating point error has occurred. FERRÝ
corresponds to the ERRORÝ pin on the Intel387TM

math coprocessor. However, there is a difference in
the behavior of the two.

In some cases FERRÝ is asserted when the next
floating point instruction is encountered, and in other
cases it is asserted before the next floating point
instruction is encountered depending upon the exe-
cution state of the instruction causing the exception.

The following class of floating point exceptions drive
FERRÝ at the time the exception occurs (i.e., before
encountering the next floating point instruction).

1. The stack fault, invalid operation, and denormal
exceptions on all transcendental instructions, in-
teger arithmetic instructions, FSQRT, FSEALE,
FPREM(1), FXTRACT, FBLD, and FBSTP.

2. Any exceptions on store instructions (including in-
teger store instructions).

The following class of floating point exceptions drive
FERRÝ only after encountering the next floating
point instruction.

1. Exceptions other than on all transcendental in-
structions, integer arithmetic instructions, FSQRT,
FSCALE, FPREM(1), FXTRACT, FBLD, and
FBSTP.

2. Any exception on all basic arithmetic, load, com-
pare, and control instructions (i.e., all other in-
structions).

For both sets of exceptions above, the Intel387
math coprocessor asserts ERRORÝ when the error
occurs and does not wait for the next floating point
instruction to be encountered.

IGNNEÝ is an input to the Military Intel486 DX,
IntelDX2, and IntelDX4 processors. When the NE bit
in CR0 is cleared, and IGNNEÝ is asserted, the Mili-
tary Intel486 DX, IntelDX2, and IntelDX4 processors
will ignore a user floating point error and continue
executing floating point instructions. When IGNNEÝ
is negated, the IGNNEÝ is an input to these proces-
sors that will freeze on floating point instructions
which get errors (except for the control instructions
FNCLEX, FNINIT, FNSAVE, FNSTENV, FNSTCW,
FNSTSW, FNSTSW AX, FNENI, FNDISI and
FNSETPM). IGNNEÝ may be asynchronous to the
Military Intel486 DX, IntelDX2, and IntelDX4 proces-
sor clock.

In systems with user-defined error reporting, the
FERRÝ pin is connected to the interrupt controller.
When an unmasked floating point error occurs, an
interrupt is raised. If IGNNEÝ is high at the time of
this interrupt, the Military Intel486 DX, IntelDX2, and
IntelDX4 processors will freeze (disallowing execu-
tion of a subsequent floating point instruction) until
the interrupt handler is invoked. By driving the
IGNNEÝ pin low (when clearing the interrupt re-
quest), the interrupt handler can allow execution of a
floating point instruction, within the interrupt handler,
before the error condition is cleared (by FNCLEX,
FNINIT, FNSAVE or FNSTENV). If execution of a
non-control floating point instruction, within the float-
ing point interrupt handler, is not needed, the
IGNNEÝ pin can be tied HIGH.
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10.2.15 MILITARY INTEL486 DX, INTELDX2,
AND INTELDX4 PROCESSORS
FLOATING POINT ERROR HANDLING
IN AT-COMPATIBLE SYSTEMS

The Military Intel486 DX, IntelDX2, and IntelDX4
processors provide special features to allow the im-
plementation of an AT-compatible numerics error re-
porting scheme. These features DO NOT replace
the external circuit. Logic is still required that de-
codes the OUT F0 instruction and latches the
FERRÝ signal. What follows is a description of the
use of these Intel Processor features.

The features provided by the Military Intel486 DX,
IntelDX2, and IntelDX4 processors are the NE bit in
the Machine Status Register, the IGNNEÝ pin, and
the FERRÝ pin.

The NE bit determines the action taken by the Mili-
tary Intel486 DX, IntelDX2, and IntelDX4 processors
when a numerics error is detected. When set this bit
signals that non-DOS compatible error handling will
be implemented. In this mode the Military Intel486
DX, IntelDX2, and IntelDX4 processors take a soft-
ware exception (16) if a numerics error is detected.

If the NE bit is reset, the Military Intel486 DX, In-
telDX2, and IntelDX4 processors use the IGNNEÝ
pin to allow an external circuit to control the time at
which non-control numerics instructions are allowed
to execute. Note that floating point control instruc-
tions such as FNINIT and FNSAVE can be executed
during a floating point error condition regardless of
the state of IGNNEÝ.

To process a floating point error in the DOS environ-
ment the following sequence must take place:

1. The error is detected by the Military Intel486 DX,
IntelDX2, and IntelDX4 processor that activates
the FERRÝ pin.

2. FERRÝ is latched so that it can be cleared by the
OUT F0 instruction.

3. The latched FERRÝ signal activates an interrupt
at the interrupt controller. This interrupt is usually
handled on IRQ13.

4. The Interrupt Service Routine (ISR) handles the
error and then clears the interrupt by executing an
OUT instruction to port F0. The address F0 is de-
coded externally to clear the FERRÝ latch. The
IGNNEÝ signal is also activated by the decoder
output.

5. Usually the ISR then executes an FNINIT instruc-
tion or other control instruction before restarting
the program. FNINIT clears the FERRÝ output.

Figure 10-33 illustrates a sample circuit that will per-
form the function described above. Note that this
circuit has not been tested and is included as an
example of required error handling logic.

Note that the IGNNEÝ input allows non-control in-
structions to be executed prior to the time the
FERRÝ signal is reset by the Military Intel486 DX,
IntelDX2, and IntelDX4 processors. This function is
implemented to allow exact compatibility with the AT
implementation. Most programs reinitialize the float-
ing point unit before continuing after an error is de-
tected. The floating point unit can be reinitialized us-
ing one of the following four instructions: FCLEX,
FINIT, FSAVE and FSTENV.
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271329–B2

Figure 10-33. DOS-Compatible Numerics Error Circuit
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11.0 TESTABILITY

Testing in the Military Intel486 processor can be di-
vided into two categories: Built-in Self Test (BIST)
and external testing. The BIST tests the non-random
logic, control ROM (CROM), translation lookaside
buffer (TLB) and on-chip cache memory. External
tests can be run on the TLB and the on-chip cache.
The Military Intel486 processor also has a test mode
in which all outputs are tri-stated.

11.1 Built-In Self Test (BIST)

The BIST is initiated by holding the AHOLD (address
hold) HIGH for 1 CLK after RESET goes from HIGH
to LOW, as shown in Figure 9.6. No bus cycles will
be run by the Military Intel486 processor until the
BIST is concluded. Note that for the Military Intel486
processor, the RESET must be active for 15 clocks
with or without BIST enabled for warm resets.
SRESET should not be driven active (i.e., high)
when entering or during BIST. See Table 11-1 for
approximate clocks and maximum completion times
for different Military Intel486 processors.

The results of BIST is stored in the EAX register.
The Military Intel486 processor has successfully
passed the BIST if the contents of the EAX register
are zero. If the results in EAX are not zero, then the
BIST has detected a flaw in the Military Intel486
processor. The Military Intel486 processor performs
reset and begins normal operation at the completion
of the BIST.

The non-random logic, control ROM, on-chip cache
and translation lookaside buffer (TLB) are tested
during the BIST.

The cache portion of the BIST verifies that the
cache is functional and that it is possible to read and
write to the cache. The BIST manipulates test regis-
ters TR3, TR4 and TR5 while testing the cache.
These test registers are described in section 11.2,
‘‘On-Chip Cache Testing.’’

The cache testing algorithm writes a value to each
cache entry, reads the value back, and checks that
the correct value was read back. The algorithm may
be repeated more than once for each of the 512
cache entries using different constants. The In-
telDX4 processor has 1024 cache entries. All other
Military Intel486 processors have 512 cache entries.

The TLB portion of the BIST verifies that the TLB is
functional and that it is possible to read and write to
the TLB. The BIST manipulates test registers TR6
and TR7 while testing the TLB. TR6 and TR7 are
described in section 11.3.2, ‘‘TLB Test Registers
TR6 and TR7.’’

11.2 On-Chip Cache Testing

The on-chip cache testability hooks are designed to
be accessible during the BIST and for assembly lan-
guage testing of the cache.

The Military Intel486 processor contains a cache fill
buffer and a cache read buffer. For testability writes,
data must be written to the cache fill buffer before it
can be written to a location in the cache. Data must
be read from a cache location into the cache read
buffer before the processor can access the data.
The cache fill and cache read buffer are both 128
bits wide.

11.2.1 CACHE TESTING REGISTERS TR3, TR4
AND TR5

Figure 11-1 shows the three cache testing registers:
the Cache Data Test Register (TR3), the Cache
Status Test Register (TR4) and the Cache Control
Test Register (TR5). External access to these regis-
ters is provided through MOV reg, TREG and MOV
TREG, reg instructions.

Table 11-1. Maximum BIST Completion Time

Processor Core Clock Approximate Approximate Time for

Type Freq. Clocks Completions

Military Intel486 DX 33 MHz 1.05 million 32 milliseconds

IntelDX2TM 50 MHz 0.6 million 24 milliseconds

IntelDX4TM 75 MHz 1.6 million 22 milliseconds
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271329–B3

Figure 11-1. Cache Test Registers

(All Military Intel486TM Processors Except the IntelDX4TM Processor)

271329–B4

Figure 11-2. IntelDX4TM Processor Cache Test Registers

Cache Data Test Register: TR3

The cache fill buffer and the cache read buffer can
only be accessed through TR3. Data to be written to
the cache fill buffer must first be written to TR3. Data
read from the cache read buffer must be loaded into
TR3.

TR3 is 32 bits wide while the cache fill and read
buffers are 128 bits wide. 32 bits of data must be
written to TR3 four times to fill the cache fill buffer.
32 bits of data must be read from TR3 four times to
empty the cache read buffer. The entry select bits in
TR5 determine which 32 bits of data TR3 will access
in the buffers.
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Cache Status Test Register: TR4

TR4 handles tag, LRU and valid bit information dur-
ing cache tests. TR4 must be loaded with a tag and
a valid bit before a write to the cache. After a read
from a cache entry, TR4 contains the tag and valid
bit from that entry, and the LRU bits and four valid
bits from the accessed set. Note that the IntelDX4
processor has one less bit in the TR4 TAG field.
(See Figure 11-1.)

Cache Control Test Register: TR5

TR5 specifies which testability operation will be per-
formed and the set and entry within the set which
will be accessed. The set select field determines
which will be accessed. Note that the IntelDX4 proc-
essor has an 8-bit set select field and 256 sets. All
other Military Intel486 processors have a 7-bit set
select field and 128 sets. (See Figure 11-1.)

The function of the two entry select bits depends on
the state of the control bits. When the fill or read
buffers are being accessed, the entry select bits
point to the 32-bit location in the buffer being ac-
cessed. When a cache location is specified, the en-
try select bits point to one of the four entries in a set.
(Refer to Table 11-2.)

Five testability functions can be performed on the
cache. The two control bits in TR5 specify the oper-
ation to be executed. The five operations are:

1. Write cache fill buffer

2. Perform a cache testability write

3. Perform a cache testability read

4. Read the cache read buffer

5. Perform a cache flush

Table 11-2 shows the encoding of the two control
bits in TR5 for the cache testability functions. Table
11-2 also shows the functionality of the entry and set
select bits for each control operation.

The cache tests attempt to use as much of the nor-
mal operating circuitry as possible. Therefore, when
cache tests are being performed, the cache must be
disabled (the CD and NW bits in control register 0
(CR0) must be set to 1 to disable the cache. (See
section 7.0, ‘‘On-Chip Cache.’’)

11.2.2 CACHE TESTING REGISTERS FOR THE
INTELDX4 PROCESSOR

The cache testing registers for the IntelDX4 proces-
sor differ slightly from the other Military Intel486
processors. TR3 in the IntelDX4 processor is identi-
cal to other Military Intel486 processors. TR4 in the
IntelDX4 processor uses bits 31 to 12 for the Tag
field, and bit 11 is unused. TR5 uses bits 11 to 4 for
the Set Select field. The Test Registers for the In-
telDX4 processor are shown in Figure 11-2.

NOTE:
Software written for the Military Intel486
processor for testing the cache using the
Test Register will produce failures due to the
changes in the TAG bits and Set Select bits
for the IntelDX4 processor.

Rewrite the code to take into account the 20
TAG bits and 8 Set Select bits to address
the larger cache.

11.2.3 CACHE TESTABILITY WRITE

A testability write to the cache is a two step process.
First the cache fill buffer must be loaded with 128
bits of data and TR4 loaded with the tag and valid
bit. Next the contents of the fill buffer are written to a
cache location.

Loading the fill buffer is accomplished by first writing
to the entry select bits in TR5 and setting the control
bits in TR5 to 00. The entry select bits identify one of
four 32-bit locations in the cache fill buffer to put 32
bits of data. Following the write to TR5, TR3 is writ-
ten with 32 bits of data which are immediately
placed in the cache fill buffer. Writing to TR3 initiates
the write to the cache fill buffer. The cache fill buffer
is loaded with 128 bits of data by writing to TR5 and
TR3 four times using a different entry select location
each time.

TR4 must be loaded with the tag and valid bit (bit 10
in TR4) before the contents of the fill buffer are writ-
ten to a cache location. The IntelDX4 processor
has a 20-bit tag in TR4. All other Military Intel486
processors use a 21-bit tag in TR4.

The contents of the cache fill buffer are written to a
cache location by writing TR5 with a control field of
01 along with the set select and entry select fields.
The set select and entry select field indicate the lo-
cation in the cache to be written. The normal cache
LRU update circuitry updates the internal LRU bits
for the selected set.
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Table 11-2. Cache Control Bit Encoding and Effect of Control Bits on

Entry Select and Set Select Functionality

Control Bits
Operation Entry Select Bits Function Set Select Bits

Bit 1 Bit 0

0 0 Enable: Fill Buffer Write Select 32-bit location in Ð

Read Buffer Read fill/read buffer

0 1 Perform Cache Write Select an entry in set Select a set to write to

1 0 Perform Cache Read Select an entry in set Select a set to read from

1 1 Perform Cache Flush Ð Ð

Note that a cache testability write can only be done
when the cache is disabled for replaces (the CD bit
is control register 0 is reset to 1). Care must be tak-
en when directly writing to entries in the cache. If the
entry is set to overlap an area of memory that is
being used in external memory, that cache entry
could inadvertently be used instead of the external
memory. This is exactly the type of operation that
one would desire if the cache were to be used as a
high speed RAM. Also, a memory reference (or any
external bus cycle) should not occur in between the
move to TR4 and the move to TR5, in order to avoid
having the value in TR4 change due to the memory
reference.

11.2.4 CACHE TESTABILITY READ

A cache testability read is a two step process. First
the contents of the cache location are read into the
cache read buffer. Next the data is examined by
reading it out of the read buffer.

Reading the contents of a cache location into the
cache read buffer is initiated by writing TR5 with the
control bits set to 10 and the desired set select and
two-bit entry select. The IntelDX4 processor has a
seven-bit select field. All other Military Intel486
processors have an eight-bit select field. In re-
sponse to the write to TR5, TR4 is loaded with the
21-bit tag field and the single valid bit from the cache
entry read. TR4 is also loaded with the three LRU
bits and four valid bits corresponding to the cache
set that was accessed. The cache read buffer is
filled with the 128-bit value which was found in the
data array at the specified location.

The contents of the read buffer are examined by
performing four reads of TR3. Before reading TR3
the entry select bits in TR5 must loaded to indicate
which of the four 32-bit words in the read buffer to
transfer into TR3 and the control bits in TR5 must be
loaded with 00. The register read of TR3 will initiate
the transfer of the 32-bit value from the read buffer
to the specified general purpose register.

Note that it is very important that the entire 128-bit
quantity from the read buffer and also the informa-
tion from TR4 be read before any memory refer-
ences are allowed to occur. If memory operations
are allowed to happen, the contents of the read buff-
er will be corrupted. This is because the testability
operations use hardware that is used in normal
memory accesses for the Military Intel486 processor
whether the cache is enabled or not.

11.2.5 FLUSH CACHE

The control bits in TR5 must be written with 11 to
flush the cache. None of the other bits in TR5 have
any meaning when 11 is written to the control bits.
Flushing the cache will reset the LRU bits and the
valid bits to 0, but will not change the cache tag or
data arrays.

When the cache is flushed by writing to TR5 the
special bus cycle indicating a cache flush to the ex-
ternal system is not run. (See section 10.2.11, ‘‘Spe-
cial Bus Cycles.’’) For normal operation, the cache
should be flushed with the instruction INVD (Invali-
date Data Cache) instruction or the WBINVD (Write-
back and Invalidate Data Cache) instruction.
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271329–B5

Figure 11-3. TR4 Definition for Standard and Enhanced Bus Modes for the

Write-Back Enhanced IntelDX2TMProcessor

271329–B6

Figure 11-4. TR5 Definition for Standard and Enhanced Bus Modes for the

Write-Back Enhanced IntelDX2TM Processor

11.3 Translation Lookaside Buffer
(TLB) Testing

The Military Intel486 processor TLB testability hooks
are similar to those in the Intel386 processor. The
testability hooks have been enhanced to provide
added test features and to include new features in
the Military Intel486 processor. The TLB testability
hooks are designed to be accessible during the
BIST and for assembly language testing of the TLB.

11.3.1 TRANSLATION LOOKASIDE BUFFER
ORGANIZATION

The Military Intel486 processor TLB is 4-way set as-
sociative and has space for 32 entries. The TLB is
logically split into three blocks shown in Figure 11-5.

The data block is physically split into four arrays,
each with space for eight entries. An entry in the
data block is 22 bits wide containing a 20-bit physi-
cal address and two bits for the page attributes. The
page attributes are the PCD (page cache disable) bit
and the PWT (page write-through) bit. Refer to sec-
tion 7.6, ‘‘Page Cacheability,’’ for a discussion of the
PCD and PWT bits.

The tag block is also split into four arrays, one for
each of the data arrays. A tag entry is 21 bits wide
containing a 17-bit linear address and four protec-
tion bits. The protection bits are valid (V), user/su-
pervisor (U/S), read/write (R/W) and dirty (D).

The third block contains eight three bit quantities
used in the pseudo least recently used (LRU) re-
placement algorithm. These bits are called the LRU
bits. Unlike the on-chip cache, the TLB will replace a
valid line even when there is an invalid line in a set.
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271329–B7

Figure 11-5. TLB Organization

11.3.2 TLB TEST REGISTERS TR6 AND TR7

The two TLB test registers are shown in Figure 11-6.
TR6 is the command test register and TR7 is the
data test register. External access to these registers
is provided through MOV reg,TREG and MOV
TREG,reg instructions.

Command Test Register: TR6

TR6 contains the tag information and control infor-
mation used in a TLB test. Loading TR6 with tag and
control information initiates a TLB write or lookup
test.

TR6 contains three bit fields, a 20-bit linear address
(bits 12–31), seven bits for the TLB tag protection
bits (bits 5-11) and one bit (bit 0) to define the type
of operation to be performed on the TLB.

The 20-bit linear address forms the tag information
used in the TLB access. The lower three bits of the
linear address select which of the eight sets are ac-
cessed. The upper 17 bits of the linear address form
the tag stored in the tag array.
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271329–B8

Figure 11-6. TLB Test Registers

The seven TLB tag protection bits are described be-
low.

V: The valid bit for this TLB entry

D,DÝ: The dirty bit for/from the TLB entry

U,UÝ: The user/supervisor bit for/from the TLB
entry

W,WÝ: The read/write bit for/from the TLB entry

Two bits are used to represent the D, U/S and R/W
bits in the TLB tag to permit the option of a forced

miss or hit during a TLB lookup operation. The
forced miss or hit will occur regardless of the state
of the actual bit in the TLB. The meaning of these
pairs of bits is given in Table 11-3.

The operation bit in TR6 determines if the TLB test
operation will be a write or a lookup. The function of
the operation bit is given in Table 11-4.

Table 11-3. Meaning of a Pair of TR6 Protection Bits

TR6 Protection Bit TR6 Protection BitÝ Meaning on Meaning on

(B) (BÝ) TLB Write Operation TLB Lookup Operation

0 0 Undefined Miss any TLB TAG Bit B

0 1 Write 0 to TLB TAG Bit B Match TLB TAG Bit B if 0

1 0 Write 1 to TLB TAG Bit B Match TLB TAG Bit B if 1

1 1 Undefined Match any TLB TAG Bit B
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Table 11-4. TR6 Operation Bit Encoding

TR6
TLB Operation to Be Performed

Bit 0

0 TLB Write

1 TLB Lookup

Data Test Register: TR7

TR7 contains the information stored or read from the
data block during a TLB test operation. Before a TLB
test write, TR7 contains the physical address and
the page attribute bits to be stored in the entry. After
a TLB test lookup hit, TR7 contains the physical ad-
dress, page attributes, LRU bits and entry location
from the access.

TR7 contains a 20-bit physical address (bits 12–31),
PLD bit (bit 11), PWT bit (bit 10), and three bits for
the LRU bits (bits 7–9). The LRU bits in TR7 are only
used during a TLB lookup test. The functionality of
TR7 bit 4 differs for TLB writes and lookups. The
encoding of bit 4 is defined in Table 11-5 and Table
11-6. Finally, TR7 contains two bits (bits 2–3) to
specify a TLB replacement pointer or the location of
a TLB hit.

Table 11-5. Encoding of Bit 4 of TR7 on Writes

TR7 Replacement Pointer Used on TLB

Bit 4 Write

0 Pseudo-LRU Replacement Pointer

1 Data Test Register Bits 3:2

A replacement pointer is used during a TLB write.
The pointer indicates which of the four entries in an
accessed set is to be written. The replacement
pointer can be specified to be the internal LRU bits
or bits 2–3 in TR7. The source of the replacement
pointer is specified by TR7 bit 4. The encoding of bit
4 during a write is given by Table 11-5.

Note that both testability writes and lookups affect
the state of the internal LRU bits regardless of the
replacement pointer used. All TLB write operations
(testability or normal operation) cause the written
entry to become the most recently used. For exam-
ple, during a testability write with the replacement
pointer specified by TR7 bits 2–3, the indicated en-
try is written and that entry becomes the most re-
cently used as specified by the internal LRU bits.

There are two TLB testing operations: write entries
into the TLB, and perform TLB lookups. One major

enhancement over TLB testing in the Intel386 proc-
essor is that paging need not be disabled while exe-
cuting testability writes or lookups.

Note that any time one TLB set contains the same
linear address in more than one of its entries, look-
ing up that linear address will give unpredictable re-
sults. Therefore a single linear address should not
be written to one TLB set more than once.

Table 11-6. Encoding of Bit 4 of TR7 on Lookups

TR7
Meaning after TLB Lookup Operation

Bit 4

0 TLB Lookup Resulted in a Miss

1 TLB Lookup Resulted in a Hit

11.3.3 TLB WRITE TEST

To perform a TLB write TR7 must be loaded fol-
lowed by a TR6 load. The register operations must
be performed in this order because the TLB opera-
tion is triggered by the write to TR6.

TR7 is loaded with a 20-bit physical address and
values for PCD and PWT to be written to the data
portion of the TLB. In addition, bit 4 of TR7 must be
loaded to indicate whether to use TR7 bits 3-2 or the
internal LRU bits as the replacement pointer on the
TLB write operation. Note that the LRU bits in TR7
are not used in a write test.

TR6 must be written to initiate the TLB write opera-
tion. Bit 0 in TR6 must be reset to zero to indicate a
TLB write. The 20-bit linear address and the seven
page protection bits must also be written in TR6 to
specify the tag portion of the TLB entry. Note that
the three least significant bits of the linear address
specify which of the eight sets in the data block will
be loaded with the physical address data. Thus only
17 of the linear address bits are stored in the tag
array.

11.3.4 TLB LOOKUP TEST

To perform a TLB lookup it is only necessary to write
the proper tags and control information into TR6. Bit
0 in TR6 must be set to 1 to indicate a TLB lookup.
TR6 must be loaded with a 20-bit linear address and
the seven protection bits. To force misses and
matches of the individual protection bits on TLB
lookups, set the seven protection bits as specified in
Table 11-3.
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A TLB lookup operation is initiated by the write to
TR6. TR7 will indicate the result of the lookup opera-
tion following the write to TR6. The hit/miss indica-
tion can be found in TR7 bit 4 (see Table 11-6).

TR7 will contain the following information if bit 4 indi-
cated that the lookup test resulted in a hit. Bits 2–3
will indicate in which set the match occurred. The 22
most significant bits in TR7 will contain the physical
address and page attributes contained in the entry.
Bits 9–7 will contain the LRU bits associated with
the accessed set. The state of the LRU bits is previ-
ous to their being updated for the current lookup.

If bit 4 in TR7 indicated that the lookup test resulted
in a miss the remaining bits in TR7 are undefined.

Again it should be noted that a TLB testability lookup
operation affects the state of the LRU bits. The LRU
bits will be updated if a hit occurred. The entry which
was hit will become the most recently used.

11.4 Tri-State Output Test Mode

The Military Intel486 processor provides the ability
to float all its outputs and bidirectional pins, except
for the VOLDET pin in the IntelDX4 processor. This
includes all pins floated during bus hold as well as
pins which are never floated in normal operation of
the chip (HLDA, BREQ, FERRÝ and PCHKÝ).
When the Military Intel486 processor is in the tri-
state output test mode external testing can be used
to test board connections.

The tri-state test mode is invoked if FLUSHÝ is
sampled active at the falling edge of RESET.
FLUSHÝ is an asynchronous signal. When driven,
FLUSHÝ should be asserted for 2 clocks before and
2 clocks after RESET is de-asserted. If FLUSHÝ is
driven synchronously, the tri-state output test mode
is initiated by driving FLUSHÝ so that it is sampled
active in the clock prior to RESET going low and
ensuring that specified setup and hold times are
met. The outputs are guaranteed to tri-state no later
than 10 clocks after RESET goes low (see Figure
9.6). The Military Intel486 processor remains in the
tri-state test mode until the next RESET.

11.5 Military Intel486 Processor
Boundary Scan (JTAG)

The Military Intel486 processor provides additional
testability features compatible with the IEEE Stan-
dard Test Access Port and Boundary Scan Archi-

tecture (IEEE Std. 1149.1). (Note that the Military
Intel486 SX processor in PGA package does not
have JTAG capability.) The test logic provided al-
lows for testing to insure that components function
correctly, that interconnections between various
components are correct, and that various compo-
nents interact correctly on the printed circuit board.

The boundary scan test logic consists of a boundary
scan register and support logic that are accessed
through a test access port (TAP). The TAP provides
a simple serial interface that makes it possible to
test all signal traces with only a few probes.

The TAP can be controlled via a bus master. The
bus master can be either automatic test equipment
or a component (PLD) that interfaces to the four-pin
test bus.

11.5.1 BOUNDARY SCAN ARCHITECTURE

The boundary scan test logic contains the following
elements:

# Test access port (TAP), consisting of input pins
TMS, TCK, and TDI; and output pin TDO.

# TAP controller, which interprets the inputs on the
test mode select (TMS) line and performs the
corresponding operation. The operations per-
formed by the TAP include controlling the instruc-
tion and data registers within the component.

# Instruction register (IR), which accepts instruction
codes shifted into the test logic on the test data
input (TDI) pin. The instruction codes are used to
select the specific test operation to be performed
or the test data register to be accessed.

# Test data registers: The Military Intel486 proces-
sor contains three test data registers: Bypass
register (BPR), Device Identification register
(DID), and Boundary Scan register (BSR).

The instruction and test data registers are separate
shift-register paths connected in parallel and have a
common serial data input and a common serial data
output connected to the TAP signals, TDI and TDO,
respectively.

11.5.2 DATA REGISTERS

The Military Intel486 processor contains the two re-
quired test data registers; bypass register and
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boundary scan register. In addition, they also have a
device identification register.

Each test data register is serially connected to TDI
and TDO, with TDI connected to the most significant
bit and TDO connected to the least significant bit of
the test data register.

Data is shifted one stage (bit position within the reg-
ister) on each rising edge of the test clock (TCK). In
addition the Military Intel486 processor contains a
runbist register to support the RUNBIST boundary
scan instruction.

11.5.2.1 Bypass Register

The Bypass Register is a one-bit shift register that
provides the minimal length path between TDI and
TDO. This path can be selected when no test opera-
tion is being performed by the component to allow
rapid movement of test data to and from other

components on the board. While the bypass register
is selected data is transferred from TDI to TDO with-
out inversion.

11.5.2.2 Boundary Scan Register

The Boundary Scan Register is a single shift register
path containing the boundary scan cells that are
connected to all input and output pins of the Military
Intel486 processor. Figure 11-7 shows the logical
structure of the boundary scan register. While output
cells determine the value of the signal driven on the
corresponding pin, input cells only capture data; they
do not affect the normal operation of the device.
Data is transferred without inversion from TDI to
TDO through the boundary scan register during
scanning. The boundary scan register can be oper-
ated by the EXTEST and SAMPLE instructions. The
boundary scan register order is described in section
11.5.5 ‘‘Boundary Scan Register Bits and Bit Or-
ders.’’

271329–B9

Figure 11-7. Logical Structure of Boundary Scan Register
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11.5.2.3 Device Identification Register

The Device Identification Register contains the man-
ufacturer’s identification code, part number code,
and version code. Table 11-7 lists the codes corre-
sponding to the Military Intel486 processor.

11.5.2.4 Runbist Register

The Runbist Register is a one bit register used to
report the results of the Military Intel486 processor
BIST when it is initiated by the RUNBIST instruction.
This register is loaded with a ‘‘1’’ prior to invoking
the BIST and is loaded with ‘‘0’’ upon successful
completion.

11.5.3 INSTRUCTION REGISTER

The Instruction Register (IR) allows instructions to
be serially shifted into the device. The instruction
selects the particular test to be performed, the test
data register to be accessed, or both. The instruc-
tion register is four (4) bits wide. The most significant
bit is connected to TDI and the least significant bit is
connected to TDO. There are no parity bits associat-
ed with the Instruction register. Upon entering the
Capture-IR TAP controller state, the Instruction reg-
ister is loaded with the default instruction ‘‘0001,’’
SAMPLE/PRELOAD. Instructions are shifted into
the instruction register on the rising edge of TCK
while the TAP controller is in the SHIFT-IR state.

11.5.3.1 Boundary Scan Instruction Set

The Military Intel486 processor supports all three
mandatory boundary scan instructions (BYPASS,
SAMPLE/PRELOAD, and EXTEST) along with two
optional instructions (IDCODE and RUNBIST). Table
11-8 lists the Military Intel486 processor boundary
scan instruction codes. The instructions listed as
PRIVATE cause TDO to become enabled in the
Shift-DR state and cause ‘0‘ to be shifted out of TDO
on the rising edge of TCK. Execution of the PRI-
VATE instructions will not cause hazardous opera-
tion of the Military Intel486 processor.

EXTEST The instruction code is ‘‘0000.’’ The
EXTEST instruction allows testing of cir-
cuitry external to the component package,
typically board interconnects. It does so by
driving the values loaded into the Military
Intel486 processor’s boundary scan regis-
ter out on the output pins corresponding to
each boundary scan cell and capturing the
values on Military Intel486 processor input
pins to be loaded into their corresponding
boundary scan register locations. I/O pins
are selected as input or output, depending
on the value loaded into their control set-
ting locations in the boundary scan regis-
ter. Values shifted into input latches in the
boundary scan register are never used by
the internal logic of the Military Intel486
processor.

Table 11-7. Boundary Scan Component Identification Codes

Processor
VCC Intel

MFG ID 1st Boundary

Type
Version 1e3.3V Architecture Family Model

Intele009H Bit Scan ID (Hex)
0e5V Type

Military Intel486 DX xxxx* 0 000001 0100 00001 00000001001 1 x0281013H

processor (5V)

IntelDX2 processor xxxx* 0 000001 0100 00101 00000001001 1 x0285013H

(5V)

IntelDX4TM xxxx* 1 000001 0100 01000 00000001001 1 x8288013H

processor (3.3V)

NOTE:
*Contact Intel for details
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Table 11-8. Boundary Scan Instruction Codes

Instruction Code Instruction Name

0000 EXTEST

0001 SAMPLE

0010 IDCODE

0011 PRIVATE

0100 PRIVATE

0101 PRIVATE

0110 PRIVATE

0111 PRIVATE

1000 RUNBIST

1001 PRIVATE

1010 PRIVATE

1011 PRIVATE

1100 PRIVATE

1101 PRIVATE

1110 PRIVATE

1111 BYPASS

NOTE:
After using the EXTEST instruction, the Mili-
tary Intel486 processor must be reset before
normal (non-boundary scan) use.

SAMPLE/ The instruction code is ‘‘0001.’’ The
PRELOAD SAMPLE/PRELOAD has two functions

that it performs. When the TAP control-
ler is in the Capture-DR state, the
SAMPLE/PRELOAD instruction allows
a ‘‘snap-shot’’ of the normal operation
of the component without interfering
with that normal operation. The instruc-
tion causes boundary scan register
cells associated with outputs to sample
the value being driven by the Military In-
tel486 processor. It causes the cells as-
sociated with inputs to sample the val-
ue being driven into the Military Intel486
processor. On both outputs and inputs
the sampling occurs on the rising edge
of TCK. When the TAP controller is in
the Update-DR state, the SAMPLE/
PRELOAD instruction preloads data to
the device pins to be driven to the
board by executing the EXTEST in-
struction.

Data is preloaded to the pins from the
boundary scan register on the falling
edge of TCK.

IDODE The instruction code is ‘‘0010.’’ The
IDCODE instruction selects the device
identification register to be connected
to TDI and TDO, allowing the device
identification code to be shifted out of
the device on TDO. Note that the de-
vice identification register is not altered
by data being shifted in on TDI.

BYPASS The instruction code is ‘‘1111.’’ The
BYPASS instruction selects the bypass
register to be connected to TDI and
TDO, effectively bypassing the test log-
ic on the Military Intel486 processor by
reducing the shift length of the device
to one bit. Note that an open circuit
fault in the board level test data path
will cause the bypass register to be se-
lected following an instruction scan cy-
cle due to the pull-up resistor on the
TDI input. This has been done to pre-
vent any unwanted interference with
the proper operation of the system log-
ic.

RUNBIST The instruction code is ‘‘1000.’’ The
RUNBIST instruction selects the one
(1) bit runbist register, loads a value of
‘‘1’’ into the runbist register, and con-
nects it to TDO. It also initiates the built-
in self test (BIST) feature of the
Military Intel486 processor, which is
able to detect approximately 60% of
the stuck-at faults on the Military In-
tel486 processor. The Military Intel486
processor ac/dc specifications for VCC
and CLK must be met and
RESET must have been asserted at
least once prior to executing the
RUNBIST boundary scan instruction.
After loading the RUNBIST instruction
code in the instruction register, the TAP
controller must be placed in the Run-
Test/Idle state. BIST begins on the first
rising edge of TCK after entering the
Run-Test/Idle state. The TAP controller
must remain in the Run-Test/Idle state
until BIST is completed. It requires 1.2
million clock (CLK) cycles to complete
BIST and report the result to the runbist
register. After completing the 1.2 million
clock (CLK) cycles, the value in the run-
bist register should be shifted out on
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TDO during the Shift-DR state. A value
of ‘‘0’’ being shifted out on TDO indi-
cates BIST successfully completed. A
value of ‘‘1’’ indicates a failure oc-
curred. After executing the RUNBIST
instruction, the Military Intel486 proces-
sor must be reset prior to normal opera-
tion.

11.5.4 TEST ACCESS PORT (TAP)
CONTROLLER

The TAP controller is a synchronous, finite state ma-
chine. It controls the sequence of operations of

the test logic. The TAP controller changes state only
in response to the following events:

1. a rising edge of TCK

2. power-up.

The value of the test mode state (TMS) input signal
at a rising edge of TCK controls the sequence of the
state changes. The state diagram for the TAP con-
troller is shown in Figure 11-8. Test designers must
consider the operation of the state machine in order
to design the correct sequence of values to drive on
TMS.

271329–C0

Figure 11-8. TAP Controller State Diagram
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11.5.4.1 Test-Logic-Reset State

In this state, the test logic is disabled so that normal
operation of the device can continue unhindered.
This is achieved by initializing the instruction register
such that the IDCODE instruction is loaded. No mat-
ter what the original state of the controller, the con-
troller enters Test-Logic-Reset state when the TMS
input is held high (1) for at least five rising edges of
TCK. The controller remains in this state while TMS
is high. The TAP controller is also forced to enter
this state at power-up.

11.5.4.2 Run-Test/Idle State

A controller state between scan operations. Once
in this state, the controller remains in this state as
long as TMS is held low. In devices supporting the
RUNBIST instruction, the BIST is performed during
this state and the result is reported in the runbist
register. For instruction not causing functions to exe-
cute during this state, no activity occurs in the test
logic. The instruction register and all test data regis-
ters retain their previous state. When TMS is high
and a rising edge is applied to TCK, the controller
moves to the Select-DR state.

11.5.4.3 Select-DR-Scan State

This is a temporary controller state. The test data
register selected by the current instruction retains its
previous state. If TMS is held low and a rising edge
is applied to TCK when in this state, the controller
moves into the Capture-DR state, and a scan se-
quence for the selected test data register is initiated.
If TMS is held high and a rising edge is applied to
TCK, the controller moves to the Select-IR-Scan
state.

The instruction does not change in this state.

11.5.4.4 Capture-DR State

In this state, the boundary scan register captures
input pin data if the current instruction is EXTEST or
SAMPLE/PRELOAD. The other test data registers,
which do not have parallel input, are not changed.

The instruction does not change in this state.

When the TAP controller is in this state and a rising
edge is applied to TCK, the controller enters the
Exit1-DR state if TMS is high or the Shift-DR state if
TMS is low.

11.5.4.5 Shift-DR State

In this controller state, the test data register con-
nected between TDI and TDO as a result of the cur-
rent instruction shifts data one stage toward its serial
output on each rising edge of TCK.

The instruction does not change in this state.

When the TAP controller is in this state and a rising
edge is applied to TCK, the controller enters the
Exit1-DR state if TMS is high or remains in the Shift-
DR state if TMS is low.

11.5.4.6 Exit1-DR State

This is a temporary state. While in this state, if TMS
is held high, a rising edge applied to TCK causes the
controller to enter the Update-DR state, which termi-
nates the scanning process. If TMS is held low and a
rising edge is applied to TCK, the controller enters
the Pause-DR state.

The test data register selected by the current in-
struction retains its previous value during this state.
The instruction does not change in this state.

11.5.4.7 Pause-DR State

The pause state allows the test controller to tempo-
rarily halt the shifting of data through the test data
register in the serial path between TDI and TDO. An
example of using this state could be to allow a tester
to reload its pin memory from disk during application
of a long test sequence.

The test data register selected by the current in-
struction retains its previous value during this state.
The instruction does not change in this state.

The controller remains in this state as long as TMS
is low. When TMS goes high and a rising edge is
applied to TCK, the controller moves to the Exit2-DR
state.

11.5.4.8 Exit2-DR State

This is a temporary state. While in this state, if TMS
is held high, a rising edge applied to TCK causes the
controller to enter the Update-DR state, which termi-
nates the scanning process. If TMS is held low and a
rising edge is applied to TCK, the controller enters
the Shift-DR state.
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The test data register selected by the current in-
struction retains its previous value during this state.
The instruction does not change in this state.

11.5.4.9 Update-DR State

The boundary scan register is provided with a
latched parallel output to prevent changes at the
parallel output while data is shifted in response to
the EXTEST and SAMPLE/PRELOAD instructions.
When the TAP controller is in this state and the
boundary scan register is selected, data is latched
onto the parallel output of this register from the shift-
register path on the falling edge of TCK. The data
held at the latched parallel output does not change
other than in this state.

All test data registers selected by the current in-
struction retains its previous value during this state.
The instruction does not change in this state.

11.5.4.10 Select-IR-Scan State

This is a temporary controller state. The test data
register selected by the current instruction retains its
previous value. If TMS is held low and a rising edge
is applied to TCK when in this state, the controller
moves into the Capture-IR state, and a scan se-
quence for the instruction register is initiated. If TMS
is held high and a rising edge is applied to TCK, the
controller moves to the Test-Logic-Reset state.

The instruction does not change in this state.

11.5.4.11 Capture-IR State

In this controller state the shift register contained in
the instruction register loads the fixed value ‘‘0001’’
on the rising edge of TCK.

The test data register selected by the current in-
struction retains its previous value during this state.
The instruction does not change in this state. When
the controller is in this state and a rising edge is
applied to TCK, the controller enters the Exit1-IR
state if TMS is held high, or the Shift-IR state if TMS
is held low.

11.5.4.12 Shift-IR State

In this state the shift register contained in the in-
struction register is connected between TDI and
TDO and shifts data one stage towards its serial out-
put on each rising edge of TCK.

The test data register selected by the current in-
struction retains its previous value during this state.
The instruction does not change in this state.

When the controller is in this state and a rising edge
is applied to TCK, the controller enters the Exit1-IR
state if TMS is held high, or remains in the Shift-IR
state if TMS is held low.

11.5.4.13 Exit1-IR State

This is a temporary state. While in this state, if TMS
is held high, a rising edge applied to TCK causes the
controller to enter the Update-IR state, which termi-
nates the scanning process. If TMS is held low and a
rising edge is applied to TCK, the controller enters
the Pause-IR state.

The test data register selected by the current in-
struction retains its previous value during this state.
The instruction does not change in this state.

11.5.4.14 Pause-IR State

The pause state allows the test controller to tempo-
rarily halt the shifting of data through the instruction
register.

The test data register selected by the current in-
struction retains its previous value during this state.
The instruction does not change in this state.

The controller remains in this state as long as TMS
is low. When TMS goes high and a rising edge is
applied to TCK, the controller moves to the Exit2-IR
state.

11.5.4.15 Exit2-IR State

This is a temporary state. While in this state, if TMS
is held high, a rising edge applied to TCK causes the
controller to enter the Update-IR state, which termi-
nates the scanning process. If TMS is held low and a
rising edge is applied to TCK, the controller enters
the Shift-IR state.

The test data register selected by the current in-
struction retains its previous value during this state.
The instruction does not change in this state.
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11.5.4.16 Update-IR State

The instruction shifted into the instruction register is
latched onto the parallel output from the shift-regis-
ter path on the falling edge of TCK. Once the new
instruction has been latched, it becomes the current
instruction.

Test data registers selected by the new current in-
struction retain the previous value.

11.5.5 BOUNDARY SCAN REGISTER BITS AND
BIT ORDERS

The boundary scan register contains a cell for each
pin, as well as cells for control of I/O and tri-state
pins.

Military Intel486 DX and IntelDX2 Processor
Boundary Scan Register Bits

The following is the bit order of the Military Intel486
DX and IntelDX2 processor boundary scan register
(from left to right and top to bottom. See notes be-
low):

TDO w A2, A3, A4, A5, UPÝ, A6, A7, A8, A9,
A10, A11, A12, A13, A14, A15, A16, A17, A18,
A19, A20, A21, A22, A23, A24, A25, A26, A27,
A28, A29, A30, A31, DP0, D0, D1, D2, D3, D4,
D5, D6, D7, DP1, D8, D9, D10, D11, D12, D13,
D14, D15, DP2, D16, D17, D18, D19, D20,
D21, D22, D23, DP3, D24, D25, D26, D27,
D28, D29, D30, D31, STPCLKÝ, IGNNEÝ,
FERRÝ, SMIÝ, SMIACTÝ, SRESET, NMI,
INTR, FLUSHÝ, RESET, A20MÝ, EADSÝ,
PCD, PWT, D/CÝ, M/IOÝ, BE3Ý, BE2Ý,
BE1Ý, BE0Ý, BREQ, W/RÝ, HLDA, CLK, Re-
served, AHOLD, HOLD, KENÝ, RDYÝ, BS8Ý,
BS16Ý, BOFFÝ, BRDYÝ, PCHKÝ, LOCKÝ,
PLOCKÝ, BLASTÝ, ADSÝ, MISCCTL,
BUSCTL, ABUSCTL, WRTL w TDI

IntelDX4 Processor Boundary Scan Register Bits

The following is the bit order of the IntelDX4 proces-
sor boundary scan register (from left to right and top
to bottom. See notes below):

TDO w A2, A3, A4, A5, UPÝ, A6, A7, A8, A9,
A10, A11, A12, A13, A14, A15, A16, A17, A18,
A19, A20, A21, A22, A23, A24, A25, A26, A27,
A28, A29, A30, A31, DP0, D0, D1, D2, D3, D4,
D5, D6, D7, DP1, D8, D9, D10, D11, D12, D13,
D14, D15, DP2, D16, D17, D18, D19, D20,
D21, D22, D23, DP3, D24, D25, D26, D27,
D28, D29, D30, D31, STPCLKÝ, IGNNEÝ,
FERRÝ, SMIÝ, SMIACTÝ, SRESET, NMI,
INTR, FLUSHÝ, RESET, A20MÝ, EADSÝ,
PCD, PWT, D/CÝ, M/IOÝ, BE3Ý, BE2Ý,
BE1Ý, BE0Ý, BREQ, W/RÝ, HLDA, CLK,
AHOLD, HOLD, KENÝ, RDYÝ, CLKMUL,
BS8Ý, BS16Ý, BOFFÝ, BRDYÝ, PCHKÝ,
LOCKÝ, PLOCKÝ, BLASTÝ, ADSÝ,
MISCCTL, BUSCTL, ABUSCTL, WRTL w
TDI

NOTES:
‘‘Reserved’’ corresponds to no connect
‘‘NC’’ or ‘‘INC’’ signals on the Military
Intel486 processor.

All the *CTL cells are control cells that are
used to select the direction of bidirectional
pins or tri-state output pins. If ‘1‘ is loaded
into the control cell (*CTL), the associated
pin(s) are tri-stated or selected as input. The
following lists the control cells and their cor-
responding pins.

1. WRCTL controls the D31–D0 and DP3–
DP0 pins.

2. ABUSCTL controls the A31–A2 pins.

3. BUSCTL controls the ADSÝ, BLASTÝ,
PLOCKÝ, LOCKÝ, WRÝ, BE0Ý, BE1Ý,
BE2Ý, BE3Ý, MIOÝ, DCÝ, PWT, and
PCD pins.

4. MISCCTL controls the PCHKÝ, HLDA, and
BREQ pins.

11.5.6 TAP CONTROLLER INITIALIZATION

The TAP controller is automatically initialized when a
device is powered up. In addition, the TAP controller
can be initialized by applying a high signal level on
the TMS input for five TCK periods.

11.5.7 BOUNDARY SCAN DESCRIPTION
LANGUAGE (BSDL) FILES

See Appendix C for an example of a BSDL file for
Military Intel486 processors.
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12.0 DEBUGGING SUPPORT

The Military Intel486 processor provides several fea-
tures that simplify the debugging process. The three
categories of on-chip debugging aids are:

1. Code execution breakpoint opcode (0CCH),

2. Single-step capability provided by the TF bit in the
flag register, and

3. Code and data breakpoint capability provided by
the Debug Registers DR0–3, DR6, and DR7.

12.1 Breakpoint Instruction

A single-byte-opcode breakpoint instruction is avail-
able for use by software debuggers. The breakpoint
opcode is 0CCH, and generates an exception 3 trap
when executed. In typical use, a debugger program
can ‘‘plant’’ the breakpoint instruction at all desired
code execution breakpoints. The single-byte break-
point opcode is an alias for the two-byte general
software interrupt instruction, INT n, where ne3.
The only difference between INT 3 (0CCh) and INT n
is that INT 3 is never IOPL-sensitive, while INT n is
IOPL-sensitive in Protected Mode and Virtual 8086
Mode.

12.2 Single-Step Trap

If the single-step flag (TF, bit 8) in the EFLAG regis-
ter is found to be set at the end of an instruction, a
single-step exception occurs. The single-step ex-
ception is auto vectored to exception number 1. Pre-
cisely, exception 1 occurs as a trap after the instruc-
tion following the instruction which set TF. In typical
practice, a debugger sets the TF bit of a flag register
image on the debugger’s stack. It then typically
transfers control to the user program and loads the
flag image with a signal instruction, the IRET instruc-
tion. The single-step trap occurs after executing one
instruction of the user program.

Because exception 1 occurs as a trap (that is, it oc-
curs after the instruction has already executed), the
CS:EIP pushed onto the debugger’s stack points to
the next unexecuted instruction of the program be-
ing debugged. An exception 1 handler, merely by
ending with an IRET instruction, can therefore effi-
ciently support single-stepping through a user pro-
gram.

12.3 Debug Registers

The Debug Registers are an advanced debugging
feature of the Military Intel486 processor. They allow
data access breakpoints as well as code execution
breakpoints. Because the breakpoints are indicated
by on-chip registers, an instruction execution break-
point can be placed in ROM code or in code shared
by several tasks, neither of which can be supported
by the INT3 breakpoint opcode.

The Military Intel486 processor contains six Debug
Registers, providing the ability to specify up to four
distinct breakpoints addresses, breakpoint control
options, and read breakpoint status. Initially after re-
set, breakpoints are in the disabled state. Therefore,
no breakpoints will occur unless the debug registers
are programmed. Breakpoints set up in the Debug
Registers are auto vectored to exception number 1.

12.3.1 LINEAR ADDRESS BREAKPOINT
REGISTERS (DR0–DR3)

Up to four breakpoint addresses can be specified by
writing into Debug Registers DR0–DR3, shown in
Figure 12-1. The breakpoint addresses specified are
32-bit linear addresses. Military Intel486 processor
hardware continuously compares the linear break-
point addresses in DR0–DR3 with the linear ad-
dresses generated by executing software (a linear
address is the result of computing the effective ad-
dress and adding the 32-bit segment base address).
Note that if paging is not enabled the linear address
equals the physical address. If paging is enabled,
the linear address is translated to a physical 32-bit
address by the on-chip paging unit. Regardless of
whether paging is enabled or not, however, the
breakpoint registers hold linear addresses.

12.3.2 DEBUG CONTROL REGISTER (DR7)

A Debug Control Register, DR7 shown in Figure
12-1, allows several debug control functions such as
enabling the breakpoints and setting up other con-
trol options for the breakpoints. The fields within the
Debug Control Register, DR7, are as follows:
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271329–C1

NOTE:
See section 4.2.7

Figure 12-1. Debug Registers

LENi (breakpoint length specification bits)

A 2-bit LEN field exists for each of the four break-
points. LEN specifies the length of the associated
breakpoint field. The choices for data breakpoints
are: 1 byte, 2 bytes, and 4 bytes. Instruction execu-
tion breakpoints must have a length of 1 (LENi e

00). Encoding of the LENi field is as described in
Table 12-1.

The LENi field controls the size of breakpoint field i
by controlling whether all low-order linear address
bits in the breakpoint address register are used to
detect the breakpoint event. Therefore, all break-
point fields are aligned; 2-byte breakpoint fields be-
gin on Word boundaries, and 4-byte breakpoint
fields begin on Dword boundaries.

Figure 12-2 is an example of various size breakpoint
fields. Assume the breakpoint linear address in DR2
is 00000005H. In that situation, the Figure 12-2 indi-
cates the region of the breakpoint field for lengths of
1, 2, or 4 bytes.

RWi (memory access qualifier bits)

A 2-bit RW field exists for each of the four break-
points. The 2-bit RW field specifies the type of usage
which must occur in order to activate the associated
breakpoint.

Table 12-1. LENi Encoding

Usage of Least

LENi Breakpoint Significant Bits in

Encoding Field Width Breakpoint Address

Register i, (ie0-3)

00 1 byte All 32-bits used to
specify a single-byte
breakpoint field.

01 2 bytes A1–A31 used to
specify a two-byte,
word-aligned
breakpoint field. A0
in Breakpoint
Address Register is
not used.

10 UndefinedÐdo not

use this encoding

11 4 bytes A2–A31 used to
specify a four-byte,
dword-aligned
breakpoint field. A0
and A1 in Breakpoint
Address Register are
not used.
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271329–C2

Figure 12-2. Size Breakpoint Fields

Table 12-2. RW Encoding

RW
Usage Causing Breakpoint

Encoding

00 Instruction execution only

01 Data writes only

10 Undefined-do not use this encoding

11 Data reads and writes only

RW encoding 00 is used to set up an instruction
execution breakpoint. RW encodings 01 or 11 are
used to set up write-only or read/write data break-
points.

Note that instruction execution breakpoints are
taken as faults (i.e., before the instruction exe-
cutes), but data breakpoints are taken as traps
(i.e., after the data transfer takes place).

Using LENi and RWi to Set Data Breakpoint i

A data breakpoint can be set up by writing the linear
address into DRi (i e 0–3). For data breakpoints,
RWi can e 01 (write-only) or 11 (write/read). LEN
can e 00, 01, or 11.

If a data access entirely or partly falls within the data
breakpoint field, the data breakpoint condition has
occurred, and if the breakpoint is enabled, an excep-
tion 1 trap will occur.

Using LENi and RWi to Set Instruction Execution
Breakpoint i

An instruction execution breakpoint can be set up by
writing address of the beginning of the instruction
(including prefixes if any) into DRi (i e 0–3). RWi
must e 00 and LEN must e 00 for instruction exe-
cution breakpoints.

If the instruction beginning at the breakpoint address
is about to be executed, the instruction execution
breakpoint condition has occurred, and if the break-
point is enabled, an exception 1 fault will occur be-
fore the instruction is executed.

Note that an instruction execution breakpoint ad-
dress must be equal to the beginning byte address
of an instruction (including prefixes) in order for the
instruction execution breakpoint to occur.

GD (Global Debug Register access detect)

The Debug Registers can only be accessed in Real
Mode or at privilege level 0 in Protected Mode. The
GD bit, when set, provides extra protection against
any Debug Register access even in Real Mode or at
privilege level 0 in Protected Mode. This additional
protection feature is provided to guarantee that a
software debugger can have full control over the De-
bug Register resources when required. The GD bit,
when set, causes an exception 1 fault if an instruc-
tion attempts to read or write any Debug Register.
The GD bit is then automatically cleared when the
exception 1 handler is invoked, allowing the excep-
tion 1 handler free access to the debug registers.
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GE and LE (Exact data breakpoint match, global
and local)

The breakpoint mechanism of the Military Intel486
processor differs from that of the Intel386 proces-
sor. The Military Intel486 processor always does ex-
act data breakpoint matching, regardless of GE/LE
bit settings. Any data breakpoint trap will be reported
exactly after completion of the instruction that
caused the operand transfer. Exact reporting is pro-
vided by forcing the Military Intel486 processor exe-
cution unit to wait for completion of data operand
transfers before beginning execution of the next in-
struction.

When the Military Intel486 processor performs a
task switch, the LE bit is cleared. Thus, the LE bit
supports fast task switching out of tasks, that have
enabled the exact data breakpoint match for their
task-local breakpoints. The LE bit is cleared by the
Military Intel486 processor during a task switch, to
avoid having exact data breakpoint match enabled
in the new task. Note that exact data breakpoint
match must be re-enabled under software control.

The Military Intel486 processor GE bit is unaffected
during a task switch. The GE bit supports exact data
breakpoint match that is to remain enabled during all
tasks executing in the system.

Note that instruction execution breakpoints are al-
ways reported exactly.

Gi and Li (breakpoint enable, global and local)

If either Gi or Li is set then the associated breakpoint
(as defined by the linear address in DRi, the length
in LENi and the usage criteria in RWi) is enabled. If
either Gi or Li is set, and the Military Intel486 proces-
sor detects the ith breakpoint condition, then the ex-
ception 1 handler is invoked.

When the Military Intel486 processor performs a
task switch to a new Task State Segment (TSS), all
Li bits are cleared. Thus, the Li bits support fast task
switching out of tasks that use some task-local
breakpoint registers. The Li bits are cleared by the
Military Intel486 processor during a task switch, to
avoid spurious exceptions in the new task. Note that
the breakpoints must be re-enabled under software
control.

All Military Intel486 processor Gi bits are unaffected
during a task switch. The Gi bits support breakpoints
that are active in all tasks executing in the system.

12.3.3 DEBUG STATUS REGISTER (DR6)

A Debug Status Register, DR6 shown in Figure 12-1,
allows the exception 1 handler to easily determine
why it was invoked. Note the exception 1 handler
can be invoked as a result of one of several events:

1. DR0 Breakpoint fault/trap.

2. DR1 Breakpoint fault/trap.

3. XDR2 Breakpoint fault/trap.

4. XDR3 Breakpoint fault/trap.

5. XSingle-step (TF) trap.

6. XTask switch trap.

7. XFault due to attempted debug register access
when GDe1.

The Debug Status Register contains single-bit flags
for each of the possible events invoking exception 1.
Note below that some of these events are faults (ex-
ception taken before the instruction is executed),
while other events are traps (exception taken after
the debug events occurred).

The flags in DR6 are set by the hardware but never
cleared by hardware. Exception 1 handler software
should clear DR6 before returning to the user pro-
gram to avoid future confusion in identifying the
source of exception 1.

The fields within the Debug Status Register, DR6,
are as follows:

Bi (debug fault/trap due to breakpoint 0–3)

Four breakpoint indicator flags, B0–B3, correspond
one-to-one with the breakpoint registers in DR0–
DR3. A flag Bi is set when the condition described
by DRi, LENi, and RWi occurs.

If Gi or Li is set, and if the ith breakpoint is detected,
the Military Intel486 processor will invoke the excep-
tion 1 handler. The exception is handled as a fault if
an instruction execution breakpoint occurred, or as a
trap if a data breakpoint occurred.
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IMPORTANT NOTE:
A flag Bi is set whenever the hardware de-
tects a match condition on enabled break-
point i. Whenever a match is detected on at
least one enabled breakpoint i, the hard-
ware immediately sets all Bi bits correspond-
ing to breakpoint conditions matching at that
instant, whether enabled or not. Therefore,
the exception 1 handler may see that multi-
ple Bi bits are set, but only set Bi bits corre-
sponding to enabled breakpoints (Li or Gi
set) are true indications of why the excep-
tion 1 handler was invoked.

BD (debug fault due to attempted register ac-
cess when GD bit set)

This bit is set if the exception 1 handler was invoked
due to an instruction attempting to read or write to
the debug registers when GD bit was set. If such an
event occurs, then the GD bit is automatically
cleared when the exception 1 handler is invoked,
allowing handler access to the debug registers.

BS (debug trap due to single-step)

This bit is set if the exception 1 handler was invoked
due to the TF bit in the flag register being set (for
single-stepping).

BT (debug trap due to task switch)

This bit is set if the exception 1 handler was invoked
due to a task switch occurring to a task having a
Military Intel486 processor TSS with the T bit set.
Note the task switch into the new task occurs nor-
mally, but before the first instruction of the task is
executed, the exception 1 handler is invoked. With
respect to the task switch operation, the operation is
considered to be a trap.

12.3.4 USE OF RESUME FLAG (RF) IN FLAG
REGISTER

The Resume Flag (RF) in the flag word can sup-
press an instruction execution breakpoint when the
exception 1 handler returns to a user program at a
user address which is also an instruction execution
breakpoint.
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13.0 INSTRUCTION SET SUMMARY

This section describes the Military Intel486 proces-
sor instruction set. Detailed information on the
CPUID instruction can be found in Appendix A: Fea-
ture Determination. Further details of the instruction
encoding are then provided in section 13.1, which
describes the entire encoding structure and the defi-
nition of all fields occurring within the Military In-
tel486 processor instructions.

13.1 Instruction Encoding

13.1.1 OVERVIEW

All instruction encodings are subsets of the general
instruction format shown in Figure 13-1. Instructions
consist of one or two primary opcode bytes, possibly
an address specifier consisting of the ‘‘mod r/m’’
byte and ‘‘scaled index’’ byte, a displacement if re-
quired, and an immediate data field if required.

Within the primary opcode or opcodes, smaller en-
coding fields may be defined. These fields vary ac-
cording to the class of operation. The fields define
such information as direction of the operation, size
of the displacements, register encoding, or sign ex-
tension.

Almost all instructions referring to an operand in
memory have an addressing mode byte following
the primary opcode byte(s). This byte, the mod r/m
byte, specifies the address mode to be used. Certain
encodings of the mod r/m byte indicate a second
addressing byte, the scale-index-base byte, follows
the mod r/m byte to fully specify the addressing
mode.

Addressing modes can include a displacement im-
mediately following the mod r/m byte, or scaled in-
dex byte. If a displacement is present, the possible
sizes are 8, 16 or 32 bits.

If the instruction specifies an immediate operand,
the immediate operand follows any displacement
bytes. The immediate operand, if specified, is always
the last field of the instruction.

Figure 13-1 illustrates several of the fields that can
appear in an instruction, such as the mod field and
the r/m field, but the figure does not show all fields.
Several smaller fields also appear in certain instruc-
tions, sometimes within the opcode bytes them-
selves. Table 13-1 is a complete list of all fields ap-
pearing in the Military Intel486 processor instruction
set. Following Table 13-1 are detailed tables for
each field.

271329–C3

Figure 13-1. General Instruction Format
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Table 13-1. Fields within Military Intel486TM Processor Instructions

Field
Description

Number of

Name Bits

w Specifies if Data is Byte or Full Size (Full Size is either 16 or 32 Bits) 1

d Specifies Direction of Data Operation 1

s Specifies if an Immediate Data Field Must be Sign-Extended 1

reg General Register Specifier 3

mod r/m Address Mode Specifier (Effective Address can be a General Register) 2 for mod;

3 for r/m

ss Scale Factor for Scaled Index Address Mode 2

index General Register to be used as Index Register 3

base General Register to be used as Base Register 3

sreg2 Segment Register Specifier for CS, SS, DS, ES 2

sreg3 Segment Register Specifier for CS, SS, DS, ES, FS, GS 3

tttn For Conditional Instructions, Specifies a Condition Asserted or a Condition 4
Negated

NOTE:
Table 13-15 through Table 13-19 show encoding of individual instructions.

13.1.2 32-BIT EXTENSIONS OF THE
INSTRUCTION SET

With the Military Intel486 processor, the 8086/
80186/80286 instruction set is extended in two or-
thogonal directions: 32-bit forms of all 16-bit instruc-
tions are added to support the 32-bit data types, and
32-bit addressing modes are made available for all
instructions referencing memory. This orthogonal in-
struction set extension is accomplished having a De-
fault (D) bit in the code segment descriptor, and by
having 2 prefixes to the instruction set.

Whether the instruction defaults to operations of 16
bits or 32 bits depends on the setting of the D bit in
the code segment descriptor, which gives the de-
fault length (either 32 bits or 16 bits) for both oper-
ands and effective addresses when executing that
code segment. In the Real Address Mode or Virtual
8086 Mode, no code segment descriptors are used,
but a D value of 0 is assumed internally by the Mili-
tary Intel486 processor when operating in those
modes (for 16-bit default sizes compatible with the
8086/80186/80286).

Two prefixes, the Operand Size Prefix and the Effec-
tive Address Size Prefix, allow overriding individually
the Default selection of operand size and

effective address size. These prefixes may precede
any opcode bytes and affect only the instruction
they precede. If necessary, one or both of the prefix-
es may be placed before the opcode bytes. The
presence of the Operand Size Prefix and the Effec-
tive Address Prefix will toggle the operand size or
the effective address size, respectively, to the value
‘‘opposite’’ from the Default setting. For example, if
the default operand size is for 32-bit data operations,
then presence of the Operand Size Prefix toggles
the instruction to 16-bit data operation. As another
example, if the default effective address size is 16
bits, presence of the Effective Address Size prefix
toggles the instruction to use 32-bit effective ad-
dress computations.

These 32-bit extensions are available in all Military
Intel486 processor modes, including the Real Ad-
dress Mode or the Virtual 8086 Mode. In these
modes the default is always 16 bits, so prefixes are
needed to specify 32-bit operands or addresses. For
instructions with more than one prefix, the order of
prefixes is unimportant.

Unless specified otherwise, instructions with 8-bit
and 16-bit operands do not affect the contents of
the high-order bits of the extended registers.
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13.1.3 ENCODING OF INTEGER INSTRUCTION
FIELDS

Within the instruction are several fields indicating
register selection, addressing mode and so on. The
exact encodings of these fields are defined immedi-
ately ahead.

13.1.3.1 Encoding of Operand Length (w) Field

For any given instruction performing a data opera-
tion, the instruction is executing as a 32-bit operation
or a 16-bit operation. Within the constraints of the
operation size, the w field encodes the operand size
as either one byte or the full operation size, as
shown in the table below.

Table 13-2. Encoding of Operand Length

(w) Field

Operand Size Operand Size

w Field during 16-Bit during 32-Bit

Data Operations Data Operations

0 8 Bits 8 Bits

1 16 Bits 32 Bits

13.1.3.2 Encoding of the General Register (reg)
Field

The general register is specified by the reg field,
which may appear in the primary opcode bytes, or as
the reg field of the ‘‘mod r/m’’ byte, or as the r/m
field of the ‘‘mod r/m’’ byte.

Table 13-3. Encoding of reg Field when the w

Field Is Not Present in Instruction

Register Register

reg Field
Selected during Selected during

16-Bit Data 32-Bit Data

Operations Operations

000 AX EAX

001 CX ECX

010 DX EDX

011 BX EBX

100 SP ESP

101 BP EBP

110 SI ESI

111 DI EDI

Table 13-4. Encoding of reg Field when the w

Field Is Present in Instruction

Register Specified by reg Field

during 16-Bit Data Operations:

reg
Function of w Field

(when w e 0) (when w e 1)

000 AL AX

001 CL CX

010 DL DX

011 BL BX

100 AH SP

101 CH BP

110 DH SI

111 BH DI

Register Specified by reg Field

during 32-Bit Data Operations

reg
Function of w Field

(when w e 0) (when w e 1)

000 AL EAX

001 CL ECX

010 DL EDX

011 BL EBX

100 AH ESP

101 CH EBP

110 DH ESI

111 BH EDI

13.1.3.3 Encoding of the Segment Register
(sreg) Field

The sreg field in certain instructions is a 2-bit field
allowing one of the four 80286 segment registers to
be specified. The sreg field in other instructions is a
3-bit field, allowing the Military Intel486 processor
FS and GS segment registers to be specified.
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Table 13-5. 2-Bit sreg2 Field

2-bit sreg2 Field Segment Register Selected

00 ES

01 CS

10 SS

11 DS

Table 13-6. 3-Bit sreg3 Field

3-bit sreg3 Field Segment Register Selected

000 ES

001 CS

010 SS

011 DS

100 FS

101 GS

110 do not use

111 do not use

13.1.3.4 Encoding of Address Mode

Except for special instructions, such as PUSH or
POP, where the addressing mode is pre-determined,
the addressing mode for the current instruction is
specified by addressing bytes following the primary
opcode. The primary addressing byte is the ‘‘mod
r/m’’ byte, and a second byte of addressing informa-
tion, the ‘‘s-i-b’’ (scale-index-base) byte, can be
specified.

The s-i-b byte (scale-index-base byte) is specified
when using 32-bit addressing mode and the ‘‘mod
r/m’’ byte has r/m e 100 and mod e 00, 01 or 10.
When the sib byte is present, the 32-bit addressing
mode is a function of the mod, ss, index, and base
fields.

The primary addressing byte, the ‘‘mod r/m’’ byte,
also contains three bits (shown as TTT in Figure
13-1) sometimes used as an extension of the pri-
mary opcode. The three bits, however, may also be
used as a register field (reg).

When calculating an effective address, either 16-bit
addressing or 32-bit addressing is used. 16-bit ad-
dressing uses 16-bit address components to calcu-
late the effective address while 32-bit addressing
uses 32-bit address components to calculate the ef-
fective address. When 16-bit addressing is used, the
‘‘mod r/m’’ byte is interpreted as a 16-bit addressing
mode specifier. When 32-bit addressing is used, the
‘‘mod r/m’’ byte is interpreted as a 32-bit addressing
mode specifier.

Tables 13-7, 13-8, and 13-9 define all encodings of
all 16-bit addressing modes and 32-bit addressing
modes.
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Table 13-7. Encoding of 16-Bit Address Mode with ‘‘mod r/m’’ Byte

mod r/m Effective Address

00 000 DS:[BXaSI]

00 001 DS:[BXaDI]

00 010 SS:[BPaSI]

00 011 SS:[BPaDI]

00 100 DS:[SI]

00 101 DS:[DI]

00 110 DS:d16

00 111 DS:[BX]

01 000 DS:[BXaSIad8]

01 001 DS:[BXaDIad8]

01 010 SS:[BPaSIad8]

01 011 SS:[BPaDIad8]

01 100 DS:[SIad8]

01 101 DS:[DIad8]

01 110 SS:[BPad8]

01 111 DS:[BXad8]

Register Specified by r/m during
16-Bit Data Operations

mod r/m
Function of w Field

(when we0) (when we1)

11 000 AL AX

11 001 CL CX

11 010 DL DX

11 011 BL BX

11 100 AH SP

11 101 CH BP

11 110 DH SI

11 111 BH DI

mod r/m Effective Address

10 000 DS:[BXaSIad16]

10 001 DS:[BXaDIad16]

10 010 SS:[BPaSIad16]

10 011 SS:[BPaDIad16]

10 100 DS:[SIad16]

10 101 DS:[DIad16]

10 110 SS:[BPad16]

10 111 DS:[BXad16]

11 000 registerÐsee below

11 001 registerÐsee below

11 010 registerÐsee below

11 011 registerÐsee below

11 100 registerÐsee below

11 101 registerÐsee below

11 110 registerÐsee below

11 111 registerÐsee below

Register Specified by r/m during
32-Bit Data Operations

mod r/m
Function of w Field

(when we0) (when we1)

11 000 AL EAX

11 001 CL ECX

11 010 DL EDX

11 011 BL EBX

11 100 AH ESP

11 101 CH EBP

11 110 DH ESI

11 111 BH EDI
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Table 13-8. Encoding of 32-Bit Address Mode with ‘‘mod r/m’’ Byte (No ‘‘s-i-b’’ Byte Present)

mod r/m Effective Address

00 000 DS:[EAX]

00 001 DS:[ECX]

00 010 DS:[EDX]

00 011 DS:[EBX]

00 100 s-i-b is present

00 101 DS:d32

00 110 DS:[ESI]

00 111 DS:[EDI]

01 000 DS:[EAXad8]

01 001 DS:[ECXad8]

01 010 DS:[EDXad8]

01 011 DS:[EBXad8]

01 100 s-i-b is present

01 101 SS:[EBPad8]

01 110 DS:[ESIad8]

01 111 DS:[EDIad8]

Register Specified by reg or r/m
during 16-Bit Data Operations:

mod r/m
Function of w Field

(when we0) (when we1)

11 000 AL AX

11 001 CL CX

11 010 DL DX

11 011 BL BX

11 100 AH SP

11 101 CH BP

11 110 DH SI

11 111 BH DI

mod r/m Effective Address

10 000 DS:[EAXad32]

10 001 DS:[ECXad32]

10 010 DS:[EDXad32]

10 011 DS:[EBXad32]

10 100 s-i-b is present

10 101 SS:[EBPad32]

10 110 DS:[ESIad32]

10 111 DS:[EDIad32]

11 000 registerÐsee below

11 001 registerÐsee below

11 010 registerÐsee below

11 011 registerÐsee below

11 100 registerÐsee below

11 101 registerÐsee below

11 110 registerÐsee below

11 111 registerÐsee below

Register Specified by reg or r/m
during 32-Bit Data Operations:

mod r/m
Function of w Field

(when we0) (when w e1)

11 000 AL EAX

11 001 CL ECX

11 010 DL EDX

11 011 BL EBX

11 100 AH ESP

11 101 CH EBP

11 110 DH ESI

11 111 BH EDI
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Table 13-9. Encoding of 32-Bit Address Mode (‘‘mod r/m’’ Byte and ‘‘s-i-b’’ Byte Present)

mod base Effective Address

00 000 DS:[EAXa(scaled index)]

00 001 DS:[ECXa(scaled index)]

00 010 DS:[EDXa(scaled index)]

00 011 DS:[EBXa(scaled index)]

00 100 SS:[ESPa(scaled index)]

00 101 DS:[d32a(scaled index)]

00 110 DS:[ESIa(scaled index)]

00 111 DS:[EDIa(scaled index)]

01 000 DS:[EAXa(scaled index)ad8]

01 001 DS:[ECXa(scaled index)ad8]

01 010 DS:[EDXa(scaled index)ad8]

01 011 DS:[EBXa(scaled index)ad8]

01 100 SS:[ESPa(scaled index)ad8]

01 101 SS:[EBPa(scaled index)ad8]

01 110 DS:[ESIa(scaled index)ad8]

01 111 DS:[EDIa(scaled index)ad8]

10 000 DS:[EAXa(scaled index)ad32]

10 001 DS:[ECXa(scaled index)ad32]

10 010 DS:[EDXa(scaled index)ad32]

10 011 DS:[EBXa(scaled index)ad32]

10 100 SS:[ESPa(scaled index)ad32]

10 101 SS:[EBPa(scaled index)ad32]

10 110 DS:[ESIa(scaled index)ad32]

10 111 DS:[EDIa(scaled index)ad32]

NOTE:
Mod field in ‘‘mod r/m’’ byte; ss, index, base fields in
‘‘s-i-b’’ byte.

ss Scale Factor

00 x1

01 x2

10 x4

11 x8

Index Index Register

000 EAX

001 ECX

010 EDX

011 EBX

100 no index reg**

101 EBP

110 ESI

111 EDI

**IMPORTANT NOTE:
When index field is 100, indicating ‘‘no index register,’’ then
ss field MUST equal 00. If index is 100 and ss does not
equal 00, the effective address is undefined.
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13.1.3.5 Encoding of Operation Direction (d)
Field

In many two-operand instructions the d field is pres-
ent to indicate which operand is considered the
source and which is the destination.

Table 13-10. Encoding of Operation

Direction (d) Field

d Direction of Operation

0 Register/MemorywRegister ‘‘reg’’ Field
Indicates Source Operand; ‘‘mod r/m’’ or
‘‘mod ss index base’’ Indicates Destination
Operand

1 RegisterwRegister/Memory ‘‘reg’’ Field
Indicates Destination Operand; ‘‘mod r/m’’
or ‘‘mod ss index base’’ Indicates Source
Operand

13.1.3.6 Encoding of Sign-Extend (s) Field

The s field occurs primarily to instructions with im-
mediate data fields. The s field has an effect only if
the size of the immediate data is 8 bits and is being
placed in a 16-bit or 32-bit destination.

Table 13-11. Encoding of Sign-Extend (s) Field

Effect on Effect on

S Immediate Immediate

Data 8 Data 16l32

0 None None

1 Sign-Extend Data 8 to Fill 16-bit None
or 32-bit Destination

13.1.3.7 Encoding of Conditional Test (tttn)
Field

For the conditional instructions (conditional jumps
and set on condition), tttn is encoded with n indicat-
ing to use the condition (ne0) or its negation (ne1),
and ttt giving the condition to test.

Table 13-12. Encoding of Conditional Test (tttn)

Field

Mnemonic Condition tttn

O Overflow 0000

NO No Overflow 0001

B/NAE Below/Not Above or Equal 0010

NB/AE Not Below/Above or Equal 0011

E/Z Equal/Zero 0100

NE/NZ Not Equal/Not Zero 0101

BE/NA Below or Equal/Not Above 0110

NBE/A Not Below or Equal/Above 0111

S Sign 1000

NS Not Sign 1001

P/PE Parity/Parity Even 1010

NP/PO Not Parity/Parity Odd 1011

L/NGE Less Than/Not Greater or Equal 1100

NL/GE Not Less Than/Greater or Equal 1101

LE/NG Less Than or Equal/Greater Than 1110

NLE/G Not Less or Equal/Greater Than 1111

13.1.3.8 Encoding of Control or Debug or Test
Register (eee) Field

For the loading and storing of the Control, Debug
and Test registers.

Table 13-13. Encoding of Control or Debug or

Test Register (eee) Field

eee Code Reg Name

When Interpreted as Control Register Field:

000 CR0

010 CR2

011 CR3

When Interpreted as Debug Register Field:

000 DR0

001 DR1

010 DR2

011 DR3

110 DR6

111 DR7

When Interpreted as Test Register Field:

011 TR3

100 TR4

101 TR5

110 TR6

111 TR7

Do not use any other encoding
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Table 13-14. Encoding of Floating-Point Instruction Fields

Instruction Optional

First Byte Second Byte Fields

1 11011 OPA 1 mod 1 OPB r/m s-i-b disp

2 11011 MF OPA mod OPB r/m s-i-b disp

3 11011 d P OPA 1 1 OPB ST(i)

4 11011 0 0 1 1 1 1 OP

5 11011 0 1 1 1 1 1 OP

15–11 10 9 8 7 6 5 4 3 2 1 0

13.1.4 ENCODING OF FLOATING POINT
INSTRUCTION FIELDS

Instructions for the FPU assume one of the five
forms shown in the following table. In all cases, in-
structions are at least two bytes long and begin with
the bit pattern 11011B.

OP e Instruction opcode, possible split into
two fields OPA and OPB

MF e Memory Format
00–32-bit real
01–32-bit integer
10–64-bit real
11–16-bit integer

P e Pop
0–Do not pop stack
1–Pop stack after operation

d e Destination
0–Destination is ST(0)
1–Destination is ST(i)

R XOR d e 0–Destination (op) Source

R XOR d e 1–Source (op) Destination

ST(i) e Register stack element i
000 e Stack top
001 e Second stack element
111 e Eighth stack element

mod (Mode field) and r/m (Register/Memory specifi-
er) have the same interpretation as the correspond-
ing fields of the integer instructions.

s-i-b (Scale Index Base) byte and disp (displace-
ment) are optionally present in instructions that have
mod and r/m fields. Their presence depends on the
values of mod and r/m, as for integer instructions.

13.2 Clock Count Summary

To calculate elapsed time for an instruction, multiply
the instruction clock count, as listed in Table 13-15
through Table 13-19 by the processor core clock pe-
riod (e.g., 10 ns for a 100-MHz IntelDX4 processor).

13.2.1 INSTRUCTION CLOCK COUNT
ASSUMPTIONS

The Military Intel486 processor instruction core
clock count tables give clock counts assuming data
and instruction accesses hit in the cache. The com-
bined instruction and data cache hit rate is over
90%.

A cache miss will force the Military Intel486 proces-
sor to run an external bus cycle. The Military
Intel486 processor 32-bit burst bus is defined as
r-b-w.

Where:

r e The number of bus clocks in the first cycle of a
burst read or the number of clocks per data
cycle in a non-burst read.

b e The number of bus clocks for the second and
subsequent cycles in a burst read.

w e The number of bus clocks for a write.

The clock counts in the cache miss penalty column
assume a 2-1-2 bus. For slower buses add r-2
clocks to the cache miss penalty for the first dword
accessed. Other factors also affect instruction clock
counts.

213

213



MILITARY Intel486TM PROCESSOR FAMILY

Instruction Clock Count Assumptions

1. The external bus is available for reads or writes
at all times. Else add bus clocks to reads until the
bus is available.

2. Accesses are aligned. Add three core clocks to
each misaligned access.

3. Cache fills complete before subsequent access-
es to the same line. If a read misses the cache
during a cache fill due to a previous read or pre-
fetch, the read must wait for the cache fill to com-
plete. If a read or write accesses a cache line still
being filled, it must wait for the fill to complete.

4. If an effective address is calculated, the base
register is not the destination register of the pre-
ceding instruction. If the base register is the des-
tination register of the preceding instruction add
1 to the core clock counts shown. Back-to-back
PUSH and POP instructions are not affected by
this rule.

5. An effective address calculation uses one base
register and does not use an index register. How-
ever, if the effective address calculation uses an
index register, 1 core clock may be added to the
clock count shown.

6. The target of a jump is in the cache. If not, add r
clocks for accessing the destination instruction of
a jump. If the destination instruction is not com-
pletely contained in the first dword read, add a
maximum of 3b bus clocks. If the destination in-
struction is not completely contained in the first
16 byte burst, add a maximum of another ra3b
bus clocks.

7. If no write buffer delay, w bus clocks are added
only in the case in which all write buffers are full.

8. Displacement and immediate not used together.
If displacement and immediate used together, 1
core clock may be added to the core clock
count shown.

9. No invalidate cycles. Add a delay of 1 bus clock
for each invalidate cycle if the invalidate cycle
contends for the internal cache/external bus
when the Military Intel486 processor needs to
use it.

10. Page translation hits in TLB. A TLB miss will add
13, 21 or 28 bus clocks a 1 possible core clock
to the instruction depending on whether the Ac-
cessed and/or Dirty bit in neither, one or both of
the page entries needs to be set in memory.
This assumes that neither page entry is in the
data cache and a page fault does not occur on
the address translation.

11. No exceptions are detected during instruction
execution. Refer to Interrupt core Clock Counts
Table for extra clocks if an interrupt is detected.

12. Instructions that read multiple consecutive data
items (i.e. task switch, POPA, etc.) and miss the
cache are assumed to start the first access on a
16-byte boundary. If not, an extra cache line fill
may be necessary which may add up to (ra3b)
bus clocks to the cache miss penalty.
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Table 13-15. Clock Count Summary

Penalty
Instruction Format Cache if Cache Notes

Hit Miss

INTEGER OPERATIONS

MOV e Move:

reg1 to reg2 1000 100w : 11 reg1 reg2 1

reg2 to reg1 1000 101w : 11 reg1 reg2 1

memory to reg 1000 100w : mod reg r/m 1 2

Immediate to reg 1100 011w : 11000 reg : immediate data 1

or 1011W reg : immediate data 1

Immediate to Memory 1100 01w : mod 000 r/m : displacement 1
immediate

Memory to Accumulator 1010 000w : full displacement 1 2

Accumulator to Memory 1010 001w : full displacement 1

MOVSX/MOVZX e Move with Sign/Zero Extension

reg2 to reg1 0000 1111 : 1011 z11w : 11 reg1 reg2 3

memory to reg 0000 1111 : 1011 z11w : mod reg r/m 3 2

z instruction

0 MOVZX
1 MOVSX

PUSH e Push

reg 1111 1111 : 11 110 reg 4

or 01010 reg 1

memory 1111 1111 : mod 110 r/m 4 1 1

immediate 0110 10s0 : immediate data 1

PUSHA e Push All 0110 0000 11

POP e Pop

reg 1000 1111 : 11 000 reg 4 1

or 01011 reg 1 2

memory 1000 1111 : mod 000 r/m 5 2 1

POPA e Pop All 0110 0001 9 7/15 16/32

XCHG e Exchange

reg1 with reg2 1000 011w : 11 reg1 reg2 3 2

Accumulator with reg 10010 reg 3 2

Memory with reg 1000 011w : mod reg r/m 5 2
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Table 13-15. Clock Count Summary (Continued)

Penalty
Instruction Format Cache if Cache Notes

Hit Miss

INTEGER OPERATIONS (Continued)

NOP e No Operation 1001 0000 1

LEA e Load EA to Register 1000 1101 : mod reg r/m

no index register 1

with index register 2

Instruction TTT

ADD e Add 000
ADC e Add with Carry 010
AND e Logical AND 100
OR e Logical OR 001
SUB e Subtract 101
SBB e Subtract with Borrow 011
XOR e Logical Exclusive OR 110

reg1 to reg2 00TT T00w : 11 reg1 reg2 1

reg2 to reg1 00TT T01w : 11 reg1 reg2 1

memory to register 00TT T01w : mod reg r/m 2 2

register to memory 00TT T00w : mod reg r/m 3 6/2 U/L

immediate to register 1000 00sw : 11 TTT reg : immediate register 1

immediate to Accumulator 00TT T10w : immediate data 1

immediate to memory 1000 00sw : mod TTT r/m : immediate data 3 6/2 U/L

Instruction TTT

INC e Increment 000
DEC e Decrement 001

reg 1111 111w : 11 TTT reg 1

or 01TTT reg 1

memory 1111 111w : mod TTT r/m 3 6/2 U/L

Instruction TTT

NOT e Logical Complement 010
NEG e Negate 011

reg 1111 011w : 11 TTT reg 1

memory 1111 011w : mod TTT r/m 3 6/2 U/L
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Table 13-15. Clock Count Summary (Continued)

Penalty

Instruction Format Cache if Cache Notes

Hit Miss

INTEGER OPERATIONS (Continued)

CMP e Compare

reg1 with reg2 0011 100w : 11 reg1 reg2 1

reg2 with reg1 0011 101w : 11 reg1 reg2 1

memory with register 0011 100w : mod reg r/m 2 2

register with memory 0011 101w : mod reg r/m 2 2

immediate with register 1000 00sw : 11 111 reg : immediate data 1

immediate with acc. 0011 110w : immediate data 1

immediate with memory 1000 00sw : mod 111 r/m : immediate data 2 2

TEST e Logical Compare

reg1 and reg2 1000 010w : 11 reg1 reg2 1

memory and register 1000 010w : mod reg r/m 2 2

immediate and register 1111 011w : 11 000 reg : immediate data 1

immediate and acc. 1010100w : immediate data 1

immediate and memory 1111 011w : mod 000 r/m : immediate data 2 2

MUL e Multiply (unsigned)

acc. with register 1111 011w : 11 100 reg
Multiplier-Byte 13/18 MN/MX,3

Word 13/26 MN/MX,3
Dword 13/42 MN/MX,3

acc. with memory 1111 011w : mod 100 r/m
Multiplier-Byte 13/18 1 MN/MX,3

Word 13/26 1 MN/MX,3
Dword 13/42 1 MN/MX,3

IMUL e Integer Multiply (unsigned)

acc. with register 1111 011w : 11 101 reg
Multiplier-Byte 13/18 MN/MX,3

Word 13/26 MN/MX,3
Dword 13/42 MN/MX,3

acc. with memory 1111 011w : mod 101 r/m
Multiplier-Byte 13/18 MN/MX,3

Word 13/26 MN/MX,3
Dword 13/42 MN/MX,3

reg1 with reg2 0000 1111 : 10101111 : 11 reg1 reg2
Multiplier-Byte 13/18 MN/MX,3

Word 13/26 MN/MX,3
Dword 13/42 MN/MX,3
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Table 13-15. Clock Count Summary (Continued)

Penalty

Instruction Format Cache if Cache Notes

Hit Miss

INTEGER OPERATIONS (Continued)

IMUL e Integer Multiply (unsigned), (Continued)

register with memory 0000 1111 : 10101111 : mod reg r/m

Multiplier-Byte 13/18 1 MN/MX,3
Word 13/26 1 MN/MX,3

Dword 13/42 1 MN/MX,3

reg1 with imm. to reg2 0110 10s1 : 11 reg1 reg2 : immediate data

Multiplier-Byte 13/18 MN/MX,3
Word 13/26 MN/MX,3

Dword 13/42 MN/MX,3

mem. with imm. to reg. 0110 10s1 : mod reg r/m : immediate data

Multiplier-Byte 13/18 MN/MX,3
Word 13/26 MN/MX,3

Dword 13/42 MN/MX,3

For the IntelDX4TM Processor Only:

IMUL e Integer Multiply (signed)

acc. with register 1111 011w : 11101 reg

Multiplier-Byte 5/5 MN/MX,3
Word 5/6 MN/MX,3

Dword 6/12 MN/MX,3

acc. with memory 1111 011w : mod 101 r/m

Multiplier-Byte 5/5 MN/MX,3
Word 5/6 MN/MX,3

Dword 6/12 MN/MX,3

reg1 with reg2 0000 1111 : 1010 1111 : 11 reg1 reg2

Multiplier-Byte 5/5 MN/MX,3
Word 5/6 MN/MX,3

Dword 6/12 MN/MX,

register with memory 0000 1111 : 1010 1111 : mod reg r/m

Multiplier-Byte 5/5 MN/MX,3
Word 5/6 MN/MX,3

Dword 6/12 MN/MX,

reg1 with imm. to reg2 0110 10s1 : 11 reg1 reg2 : immediate data

Multiplier-Byte 5/5 MN/MX,3
Word 5/6 MN/MX,3

Dword 6/12 MN/MX,

mem. with imm. to reg. 0110 10s1 : mod reg r/m : immediate data

Multiplier-Byte 5/5 MN/MX,3
Word 5/6 MN/MX,3

Dword 6/12 MN/MX,3
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Table 13-15. Clock Count Summary (Continued)

Penalty

Instruction Format Cache if Cache Notes

Hit Miss

INTEGER OPERATIONS (Continued)

DIV e Divide (unsigned)

acc. by register 1111 011w : 11110 reg

Divisor-Byte 16
Word 24

Dword 40

acc. by memory 1111 011w : mod 110 r/m

Divisor-Byte 16
Word 24

Dword 40

IDIV e Integer Divide (signed)

acc. by register 1111 011w : 11111 reg

Divisor-Byte 19
Word 27

Dword 43

acc. by memory 1111 011w : mod 111 r/m

Divisor-Byte 20
Word 28

Dword 44

CBW e Convert Byte to Word 1001 1000 3

CWD e Convert Word to Dword 1001 1001 3

Instruction TTT

ROL e Rotate Left 000
ROR e Rotate Right 001
RCL e Rotate Through Carry Left 010
RDR e Rotate Through Carry Right 011
SHL/SAL e Shift Logical/ Arithmetic Left 100
SHR e Shift Logical Right 101
SAR e Shift Arithmetic Right 111

Not Through Carry (ROL, ROR, SAR, SHL, and SHR)

reg by 1 1101 000w : 11 TTT reg 3

memory by 1 1101 000w : mod TTT r/m 4 6

reg by CL 1101 001w : 11 TTT reg 3

memory by CL 1101 001w : mod TTT r/m 4 6

reg by immediate count 1100 000w : 11 TTT reg : imm. 8-bit data 2

mem by immediate count 1100 000w : mod TTT r/m : imm. 8-bit data 4 6
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Table 13-15. Clock Count Summary (Continued)

Penalty

Instruction Format Cache if Cache Notes

Hit Miss

INTEGER OPERATIONS (Continued)

Through Carry (RCL and RCR)

reg by 1 1101 000w : 11 TTT reg 3

memory by 1 1101 000w : mod TTT r/m 4 6

reg by CL 1101 001w : 11 TTT reg 8/30 MN/MX,4

memory by CL 1101 001w : mod TTT r/m 9/31 MN/MX,5

reg by immediate count 1100 000w : 11 TTT reg : imm. 8-bit data 8/30 MN/MX,4

mem by immediate count 1100 000w : mod TTT r/m : imm. 8-bit data 9/31 MN/MX,5

Instruction TTT

SHLD e Shift Left Double 100
SHRD e Shift Right Double 101

register with immediate 0000 1111 : 10TT T100 : 11 reg2 reg1 2

: imm. 8-bit data

memory with immediate 0000 1111 : 10TT T100 : mod reg r/m 3 6

: imm. 8-bit data

register by CL 0000 1111 : 10TT T101 : 11 reg2 reg1 3

memory by CL 0000 1111 : 10TT T101 : mod reg r/m 4 5

BSWAP e Byte Swap 0000 1111 : 11001 reg 1

XADD e Exchange and Add

reg1, reg2 0000 1111 : 1100 000w : 11 reg2 reg1 3

memory, reg 0000 1111 : 1100 000w : mod reg r/m 4 6/2 U/L

CMPXCHG e Compare and Exchange

reg1, reg2 0000 1111 : 1011 000w : 11 reg2 reg1 6

memory, reg 0000 1111 : 1011 000w : mod reg r/m 7/10 2 6

CONTROL TRANSFER (within segment)

Note: Times are jump taken/not taken

JCCCC e Jump on cccc

8-bit displacement 0111 tttn : 8-bit disp. 3/1 T/NT,23

full displacement 0000 1111 : 1000 tttn : full displacement 3/1 T/NT,23

Note: Times are jump taken/not taken

SETCCCC e Set Byte on cccc (Times are cccc true/false)

reg 0000 1111 : 1001 tttn : 11 000 reg 4/3

memory 0000 1111 : 1001 tttn : mod 0000 r/m 3/4
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Table 13-15. Clock Count Summary (Continued)

Penalty

Instruction Format Cache if Cache Notes

Hit Miss

CONTROL TRANSFER (within segment) (Continued)

Mnemonic cccc Condition tttn

O Overflow 0000
NO No Overflow 0001
B/NAE Below/Not Above or Equal 0010
NB/AE Not Below/Above or Equal 0011
E/Z Equal Zero 0100
NE/NZ Not Equal/Not Zero 0101
BE/NA Below or Equal/Not Above 0110
NBE/A Not Below or Equal/Above 0111
S Sign 1000
NS Not Sign 1001
P/PE Parity/Parity Even 1010
NP/PO Not Parity/Parity Odd 1011
L/NGE Less Than/Not Greater or Equal 1100
NL/GE Not Less Than/Greater or Equal 1101
LE/NG Less Than or Equal/Greater Than 1110
NLE/G Not Less Than or Equal/Greater Than 1111

LOOP e LOOP CX Times 1110 0010 : 8-bit disp. 7/6 L/NL,23

LOOPZ/LOOPE e Loop with Zero/Equal
1110 0001 : 8-bit disp. 9/6 L/NL,23

LOOPNZ/LOOPNE e Loop While Not Zero
1110 0000 : 8-bit disp. 9/6 L/NL,23

JCXZ e Jump on CX Zero 1110 0011 : 8-bit disp. 8/5 T/NT,23

JECXZ e Jump on ECX Zero 1110 0011 : 8-bit disp. 8/5 T/NT,23
(Address Size Prefix Differentiates JCXZ for JECXZ)

JMP e Unconditional Jump (within segment)

Short 1110 1011 : 8-bit disp. 3 7,23

Direct 1110 1001 : full displacement 3 7,23

Register Indirect 1111 1111 : 11 100 reg 5 7,23

Memory Indirect 1111 1111 : mod 100 r/m 5 5 7

CALL e Call (within segment)

Direct 1110 1000 : full displacement 3 7,23

Register Indirect 1111 1111 : 11 010 reg 5 7,23

Memory Indirect 1111 1111 : mod 010 reg 5 5 7

RET e Return from CALL (within segment)
1100 0011 5 5

Adding Immediate to SP 1100 0010 : 16-bit disp. 5 5

ENTER e Enter Procedure 1100 1000 : 16-bit disp., 8-bit level

Level e 0 14
Level e 1 17

Level (L) l 1 17a3L 8

LEAVE e Leave Procedure 1100 1001 5 1
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Table 13-15. Clock Count Summary (Continued)

Penalty

Instruction Format Cache if Cache Notes

Hit Miss

MULTIPLE-SEGMENT INSTRUCTIONS

MOV e Move

reg. to segment reg. 1000 1110 : 11 sreg3 reg 3/9 0/3 RV/P,9

memory to segment reg. 1000 1110 : mod sreg3 r/m 3/9 2/5 RV/P,9

segment reg. to reg. 1000 1100 : 11 sreg3 reg 3

segment reg. to memory 1000 1100 : mod sreg3 r/m 3

PUSH e Push

segment reg. 000sreg 2110 3
(ES, CS, SS, or DS)

segment reg. (FS or GS) 0000 1111 : 10 sreg3001 3

POP e Pop

segment reg. 000sreg 2111 3/0 2/5 RV/P,9
(ES, CS, SS, or DS)

segment reg. (FS or GS) 0000 1111 : 10 sreg3001 3/9 2/5 RV/P,9

LDS e Load Pointer to DS 1100 0101 : mod reg r/m 6/12 7/10 RV/P,9

LES e Load Pointer to ES 1100 0100 : mod reg r/m 6/12 7/10 RV/P,9

LFS e Load Pointer to FS 0000 1111 : 1011 0100 : mod reg r/m 6/12 7/10 RV/P,9

LGS e Load Pointer to GS 0000 1111 : 1011 0101 : mod reg r/m 6/12 7/10 RV/P,9

LSS e Load Pointer to SS 0000 1111 : 1011 0010 : mod reg r/m 6/12 7/10 RV/P,9

CALL e Call

Direct intersegment 1001 1010 : unsigned full offset, selector 18 2 R,7,22

to same level 20 3 P,9
thru Gate to same level 35 6 P,9
to inner level, no parameters 69 17 P,9
to inner level, x parameters (d) words 77a4X 17an P,11,9
to TSS 37aTS 3 P,10,9
thru Task Gate 38aTS 3 P,10,9

Indirect intersegment 1111 1111 : mod 011 r/m 17 8 R,7

to same level 20 10 P,9
thru Gate to same level 35 13 P,9
to inner level, no parameters 69 24 P,9
to inner level, x parameters (d) words 77a4X 24an P,11,9
to TSS 37aTS 10 P,10,9
thru Task Gate 38aTS 10 P,10,9

RET e Return from CALL

intersegment 1100 1010 13 8 R,7

to same level 17 9 P,9
to outet lever 35 12 P,9

intersegment adding 1100 1010 : 16-bit disp. 14 8 R,7
imm. to SP

to same level 18 9 P,9
to outer level 36 12 P,9
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Table 13-15. Clock Count Summary (Continued)

Penalty

Instruction Format Cache if Cache Notes

Hit Miss

MULTIPLE-SEGMENT INSTRUCTIONS (Continued)

JMP e Unconditional Jump

Direct intersegment 1110 1010 : unsigned full offset, selector 17 2 R,7,22

to same level 19 3 P,9
thru Call Gate to same level 32 6 P,9
thru TSS 42aTS 3 P,10,9
thru Task Gate 43aTS 3 P,10,9

Indirect intersegment 1111 1111 : mod 011 r/m 13 9 R,7,9
to same level 18 10 P,9
thru Call Gate to same level 31 13 P,9
thru TSS 41aTS 10 P,10,9
thru Task Gate 42aTS 10 P,10,9

BIT MANIPULATION

BT e Test Bit

register, immediate 0000 1111 : 1011 1010 : 11 100 reg : 3
imm. 8-bit data

memory, immediate 0000 1111 : 1011 1010 : mod 100 r/m : 3 1
imm. 8-bit data

reg1, reg2 0000 1111 : 1010 0011 : 11 reg2 reg1 3

memory, reg 0000 1111 : 1010 0011 : mod reg r/m 8 2

Instruction TTT

BTS e Test Bit and Set 101
BTR e Test Bit and Reset 110
BTC e Test Bit and Compliment 111

register, immediate 0000 1111 : 1011 1010 : 11 TTT reg 6
imm. 8-bit data

memory, immediate 0000 1111 : 1011 1010 : mod TTT r/m 8 U/L
imm. 8-bit data

reg1, reg2 0000 1111 : 10TT T011 : 1 1 reg2 reg1 6

memory, reg 0000 1111 : 10TT T011 : mod reg r/m 13 U/L

BSF e Scan Bit Forward

reg1, reg2 0000 1111 : 1011 1100 : 11 reg2 reg1 6/42 MN/MX,
12

memory, reg 0000 1111 : 1011 1100 : mod reg r/m 7/43 2 MN/MX,
15

BSR e Scan Bit Reverse

reg1, reg2 0000 1111 : 1011 1101 : 11 reg2 reg1 6/103 MN/MX,
14

memory, reg 0000 1111 : 1011 1101 : mod reg r/m 7/104 1 MN/MX,
15
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Table 13-15. Clock Count Summary (Continued)

Penalty

Instruction Format Cache if Cache Notes

Hit Miss

STRING INSTRUCTIONS

CMPS e Compare Byte Word 1010 011w 8 6 16

LODS e Load Byte/Word to AL/AX/EAX
1010 111w 5 2

MOVS e Move Byte/Word 1010 010w 7 2 16

SCAS e Scan Byte/Word 1010 111w 6 2

STOS e Store Byte/Word from AL/AX/EX
1010 101w 5

XLAT e Translate String 1101 0111 4 2

REPEATED STRING INSTRUCTIONS
Repeated by Count in CX or ECX (CeCount in CX or ECX)

REPE CMPS e Compare String 1111 0011 : 1010 011w
(Find Non-match)

C e 0 5 16, 17
C l 0 7a7c

REPNE CMPS e Compare String 1111 0010 : 1010 011w
(Find Match)

C e 0 5 16, 17
C l 0 7a7c

REP LODS e Load String 1111 0010 : 1010 110w

C e 0 5 16, 18
C l 0 7a4c

REP MOVS e Move String 1111 0010 : 1010 010w

C e 0 5 1 16
C e 1 13 16, 19
C l 1 12a3c

REPE SCAS e Scan String 1111 0011 : 1010 111w
(Find Non-AL/AX/EAX)

C e 0 5
C l 0 7a5c 20

REPNE SCAS e Scan String 1111 0010 : 1010 111w
(Find AL/AX/EAX)

C e 0 5
C l 0 7a5c 20

REP STOS e Store String 1111 0010 : 1010 101w

C e 0 5
C l 0 7a4c
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Table 13-15. Clock Count Summary (Continued)

Penalty

Instruction Format Cache if Cache Notes

Hit Miss

FLAG CONTROL

CLC e Clear Carry Flag 1111 1000 2

STC e Set Carry Flag 1111 1001 2

CMC e Complement Carry Flag 1111 0101 2

CLD e Clear Direction Flag 1111 1100 2

STD e Set Direction Flag 1111 1101 2

CLI e Clear Interrupt Enable Flag 1111 1010 5

STI e Set Interrupt Enable Flag 1111 1011 5

LAHF e Load AH into Flag 1001 1111 3

SAHF e Store AH into Flag 1001 1110 2

PUSHF e Push Flags 1001 1100 4/3 RV/P

POFF e Pop Flags 1001 1101 9/6 RV/P

DECIMAL ARITHMETIC

AAA e ASCII Adjust to Add 0011 0111 3

AAS e ASCII Adjust for Subtract 0011 1111 3

AAM e ASCII Adjust for Multiply 1101 0100 : 0000 1010 15

AAD e ASCII Adjust for Divide 1101 0101 : 0000 1010 14

DAA e Decimal Adjust for Add 0010 0111 2

DAS e Decimal Adjust for Subtract
0010 1111 2

PROCESSOR CONTROL INSTRUCTIONS

HLT e Halt 1111 0100 4

MOV e Move To and From Control/Debug/Test Registers

CR0 from register 0000 1111 : 0010 0010 : 11 000 reg 17 2

CR2/CR3 from register 0000 1111 : 0010 0010 : 11 eee reg 4

Reg from CR0-3 0000 1111 : 0010 0000 : 11 eee reg 4

DR0-3 from register 0000 1111 : 0010 0011 : 11 eee reg 10

DR6-7 from register 0000 1111 : 0010 0011 : 11 eee reg 10

Register from DR6-7 0000 1111 : 0010 0001 : 11 eee reg 9

Register from DR0-3 0000 1111 : 0010 0001 : 11 eee reg 9

TR3 from register 0000 1111 : 0010 0110 : 11 011 reg 4

TR4-7 from register 0000 1111 : 0010 0110 : 11 eee reg 4

Register from TR3 0000 1111 : 0010 0100 : 11 011 reg 3

Register from TR4-7 0000 1111 : 0010 0100 : 11 eee reg 4
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Table 13-15. Clock Count Summary (Continued)

Penalty

Instruction Format Cache if Cache Notes

Hit Miss

PROCESSOR CONTROL INSTRUCTIONS (Continued)

CPUID e CPU Identification 0000 1111 : 1010 0010

EAX e 1 14
EAX e 0, l1 9

CLTS e Clear Task Switched Flag 0000 1111 : 0000 0110 7 2

INVD e Invalidate Data Cache 0000 1111 : 0000 1000 4

WBINVD e Write-Back and Invalidate Data Cache
0000 1111 : 0000 1001 5

INVLPG e Invalidate TLB Entry

INVLPG memory 0000 1111 : 0000 0001 : mod 111 r/m 12/11 H/NH

PREFIX BYTES

Address Size Prefix 0110 0111 1

LOCK e Bus Lock Prefix 1111 0000 1

Operand Size Prefix 0110 0110 1

Segment Override Prefix

CS: 0010 1110 1

DS: 0011 1110 1

ES: 0010 0110 1

FS: 0110 0100 1

GS: 0110 0101 1

SS: 0011 0110 1

PROTECTION CONTROL

ARPL e Adjust Requested Privilege Level

From register 0110 0011 : 11 reg1 reg2 9

From memory 0110 0011 : mod reg r/m 9

LAR e Load Access Rights

From register 0000 1111 : 0000 0010 : 11 reg1 reg2 11 3

From memory 0000 1111 : 0000 0010 : mod reg r/m 11 5

LGDT e Load Global Descriptor

Table register 0000 1111 : 0000 0001 : mod 010 r/m 12 5

LIDT e Load Interrupt Descriptor

Table register 0000 1111 : 0000 0001 : mod 011 r/m 12 5

LLDT e Load Local Descriptor

Table register from reg. 0000 1111 : 0000 0000 : 11 010 reg 11 3

Table register from mem. 0000 1111 : 0000 0000 : mod 010 r/m 11 6
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Table 13-15. Clock Count Summary (Continued)

Penalty

Instruction Format Cache if Cache Notes

Hit Miss

PROTECTION CONTROL (Continued)

LMSW e Load Machine Status Word

From register 0000 1111 : 0000 0001 : 11 110 reg 13

From memory 0000 1111 : 0000 0001 : mod 110 r/m 13 1

LSL e Load Segment Limit

From register 0000 1111 : 0000 0011 : 11 reg1 reg2 10 3

From memory 0000 1111 : 0000 0011 : mod reg r/m 10 6

LTR e Load Task Register

From register 0000 1111 : 0000 0000 : 11 011 reg 20

From memory 0000 1111 : 0000 0000 : mod 011 r/m 20

SGDT e Store Global Descriptor Table
0000 1111 : 0000 0001 : mod 000 r/m 10

SIDT e Store Interrupt Descriptor Table
0000 1111 : 0000 0001 : mod 001 r/m 2

SLDT e Store Local Descriptor Table

To register 0000 1111 : 0000 0000 : 11 000 reg 2

To memory 0000 1111 : 0000 0001 : mod 000 r/m 3

SMSW e Store Machine Status Word

To register 0000 1111 : 0000 0001 : 11 000 reg 2

To memory 0000 1111 : 0000 0001 : mod 100 r/m 3

STR e Store Task Register

To register 0000 1111 : 0000 0000 : 11 001 r/m 2

To memory 0000 1111 : 0000 0000 : mod 001 r/m 3

VERR e Verify Read Access

Register 0000 1111 : 0000 0000 : 11 100 r/m 11 3

Memory 0000 1111 : 0000 0000 : mod 100 r/m 11 7

VERW e Verify Write Access

To register 0000 1111 : 0000 0000 : 11 101 r/m 11 3

To memory 0000 1111 : 0000 0000 : mod 101 r/m 11 7

INTERRUPT INSTRUCTIONS

INTn e Interrupt Type n 1100 1101 : type INTa RV/P, 21
4/0

INT3 e Interrupt Type 3 1100 1100 INTa0 21
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Table 13-15. Clock Count Summary (Continued)

Penalty

Instruction Format Cache if Cache Notes

Hit Miss

INTERRUPT INSTRUCTIONS (Continued)

INTO e Interrupt 4 if Overflow Flag Set
1100 1110

Taken INTa2 21
Not Taken 3 21

BOUND e Interrupt 5 if Detect Value Out Range
0110 0010 : mod reg r/m

If in range 7 7 21
If out of range INTa 7 21

24

IRET e Interrupt Return 1100 1111

Real Mode/Virtual Mode 15
Protected Mode

To same level 20 11 9
To outer level 36 19 9
To nested task TSa32 4 9,10
(EFLAGS.NTe1)

RSM e Exit System Management Mode
0000 1111 : 1010 1010

SMBASE Relocation 452
Auto HALT Restart 456
I/O Trap Restart 465

External Interrupt INTa 21
11

NMI e Non-Maskable Interrupt INTa3 21

Page Fault INTa 21
24

VM86 Exceptions

CLI INTa8 21
STI INTa8 21
INTn INTa9
PUSHF INTa9 21
POPF INTa8 21
IRET INTa9
IN

Fixed Port INTa50 21
Variable Port INTa51 21

OUT
Fixed Port INTa50 21
Variable Port INTa51 21

INS INTa50 21
OUTS INTa50 21
REP INS INTa51 21
REP OUTS INTa51 21
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Table 13-16. Task Switch Clock Counts

Method
Value for TS

Cache Hit Miss Penalty

VM/Military Intel486 Processor/286 TSS to Military Intel486 Processor TSS 162 55

VM/Military Intel486 Processor/286 TSS to 286 TSS 144 31

VM/Military Intel486 Processor/286 TSS to VM TSS 140 37

Table 13-17. Interrupt Clock Counts

Method
Value for INT

Cache Hit Miss Penalty Notes

Real Mode 26 2

Protected Mode

Interrupt/Trap gate, same level 44 6 9

Interrupt/Trap gate, different level 71 17 9

Task Gate 37 a TS 3 9, 10

Virtual Mode

Interrupt/Trap gate, different level 82 17

Task Gate 37 a TS 3 10

Abbreviations Definition

16/32 16/32 bit modes

U/L unlocked/locked

MN/MX minimum/maximum

L/NL loop/no loop

RV/P real and virtual mode/protected mode

R real mode

P protected mode

T/NT taken/not taken

H/NH hit/no hit

NOTES (for Tables 13-17 through 13-19):

1. Assuming that the operand address and stack address fall in different cache sets.

2. Always locked, no cache hit case.

3. Clocks e 10 a max(log2(lml),n)

4. Clocks e Àqoutient(couint/operand length)Ó*7a9
e 8 if count s operand length (8/16/32)

5. Clocks e Àqoutient(couint/operand length)Ó*7a9
e 9 if count s operand length (8/16/32)

6. Equal/not equal cases (penalty is the same regardless of lock)

7. Assuming that addresses for memory read (for indirection), stack puch/pop and branch fall in different cache sets.

8. Penalty for cache miss: add 6 clocks for every 16 bytes copied to new stack frame.

9. Add 11 clocks for each unaccessed descriptor load.

10. Refer to task switch clock counts table for value of TS.

11. Add 4 extra clocks to the cache miss penalty for each 16 bytes.
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For notes 12-13: (be0-3, non-zero byte number);
(ie0-1, non-zero nibble number);
(ne0-3, non-bit number in nibble);

12. Clocks e 8 a 4 (ba1) a 3(ia1) a 3(na1)
e 6 if second operand e 0

13. Clocks e 9 a 4 (ba1) a 3(ia1) a 3(na1)
e 7 if second operand e 0

For notes 14-15: (nebit position 0-31)
14. Clocks e 7 a 3(32-n)

e 6 if second operand e 0
15. Clocks e 8 a 3(32-n)

e 7 if second operand e 0
16. Assuming that the two string addresses fall in different cache sets.
17. Cache miss penalty: add 6 clocks for every 16 bytes compared. Entire penalty on first compare.
18. Cache miss penalty: add 2 clocks for every 16 bytes of data. Entire penalty on first load.
19. Cache miss penalty: add 4 clocks for every 16 bytes moved. (1 clock for the first operation and 3 for the second)
20. Cache miss penalty: add 4 clocks for every 16 bytes scanned. (2 clocks each for first and second operations)
21. Refer to interrupt clock counts table for value of INT.
22. Clock count includes one clock for using both displacement and immediate.
23. Refer to assumption 6 in the case of a cache miss.
24. Virtual Mode Extensions are disabled.
25. Protected Virtual Interrupts are disabled.

Table 13-18. I/O Instructions Clock Count Summary

Real
Protected Protected Virtual

Instruction Format
Mode

Mode Mode 86 Notes

(CPLsIOPL) (CPLlIOPL) Mode

IN e Input from:

Fixed Port 1110 010w : port number 14 9 29 27

Variable Port 1110 110w 14 8 28 27

OUT e Output to:

Fixed Port 1110 011w : port number 16 11 31 29

Variable Port 1110 110w 16 10 30 29

INS e Input Byte/Word from DX Port

0110 110w 17 10 32 30

OUTS e Output Byte/Word to DX Port

0110 111w 17 10 32 30 1

REP INS e Input String

1111 0010 : 0110 110w 16a8c 10a8c 30a8c 29a8c 2

REP OUTS e Output String

1111 0010 : 0110 111w 17a5c 11a5c 31a5c 30a5c 3

NOTES:
1. Two clock cache miss penalty in all cases.
2. c e count in CX or ECX.
3. Cache miss penalty in all modes: Add 2 clocks for every 16 bytes. Entire penalty on second operation.
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Table 13-19. Floating Point Clock Count Summary

Instruction Format

Cache Hit

Penalty if

Cache

Miss

Concurrent

Notes

Execution

Avg (Lower Avg (Lower
Range . . . Range . . .

Upper Upper
Range) Range)

DATA TRANSFER

FLD e Real Load to ST(0)

32-bit memory 11011 001 : mod 000 r/m : s-i-b/disp. 3 2

64-bit memory 11011 101 : mod 000 r/m : s-i-b/disp. 3 3

80-bit memory 11011 011 : mod 101 r/m : s-i-b/disp. 6 4

ST(i) 11011 001 : 11000 ST(i) 4

FILD e Integer Load to ST(0)

16-bit memory 11011 111 : mod 000 r/m : s-i-b/disp. 14.5(13-16) 2 4

32-bit memory 11011 011 : mod 000 r/m : s-i-b/disp. 11.5(9-12) 2 4(2-4)

64-bit memory 11011 111 : mod 101 r/m : s-i-b/disp. 16.8(10-18) 3 7.8(2-8)

FBLD e BCD Load to ST(0)

11011 111 : mod 100 r/m : s-i-b/disp. 75(70-103) 4 7.7(2-8)

FST e Store Real from ST(0)

32-bit memory 11011 011 : mod 010 r/m : s-i-b/disp. 7 1

64-bit memory 11011 101 : mod 010 r/m : s-i-b/disp. 8 2

ST(i) 11011 101 : 11001 ST(i) 3

FSTP e Store Real from ST(0) and Pop

32-bit memory 11011 011 : mod 011 r/m : s-i-b/disp. 7 1

64-bit memory 11011 101 : mod 011 r/m : s-i-b/disp. 8 2

80-bit memory 11011 011 : mod 111 r/m : s-i-b/disp. 6

ST(i) 11011 101 : 11001 ST(i) 3

FIST e Store Integer from ST(0)

16-bit memory 11011 111 : mod 010 r/m : s-i-b/disp. 33.4(29-34)

32-bit memory 11011 011 : mod 010 r/m : s-i-b/disp. 32.4(28-34)

FISTP e Store Integer from ST(0) and Pop

16-bit memory 11011 111 : mod 011 r/m : s-i-b/disp. 33.4(29-34)

32-bit memory 11011 011 : mod 011 r/m : s-i-b/disp. 33.4(29-34)

64-bit memory 11011 111 : mod 111 r/m : s-i-b/disp. 33.4(29-34)

FBSTP e Store BCD from ST(0) and Pop

11011 111 : mod 110 r/m : s-i-b/disp. 175(172-176)

FXCH e Exchange ST(0) and ST(i)

11011 001 : 11001 ST(i) 4
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Table 13-19. Floating Point Clock Count Summary (Continued)

Instruction Format

Cache Hit

Penalty if

Cache

Miss

Concurrent

Notes

Execution

Avg (Lower Avg (Lower
Range . . . Range . . .

Upper Upper
Range) Range)

COMPARISON INSTRUCTIONS

FCOM e Compare ST(0) with Real

32-bit memory 11011 000 : mod 010 r/m : s-i-b/disp. 4 2 1

64-bit memory 11011 100 : mod 010 r/m : s-i-b/disp. 4 3 1

ST(i) 11011 000 : 11010 ST(i) 4

FCOMP e Compare ST(0) with Real and Pop

32-bit memory 11011 000 : mod 011 r/m : s-i-b/disp. 4 2 1

64-bit memory 11011 100 : mod 011 r/m : s-i-b/disp. 4 3 1

ST(i) 11011 000 : 11011 ST(i) 4 1

FCOMPP e Compare ST(0) with ST(1) and Pop Twice

11011 110 : 1101 1001 5 1

FICOM e Compare ST(0) with Integer

16-bit memory 11011 110 : mod 010 r/m : s-i-b/disp. 18(16-20) 2 1

32-bit memory 11011 010 : mod 010 r/m : s-i-b/disp. 16.5(15-17) 2 1

FICOMP e Compare ST(0) with Integer

16-bit memory 11011 110 : mod 011 r/m : s-i-b/disp. 18(16-20) 2 1

32-bit memory 11011 010 : mod 011 r/m : s-i-b/disp. 16.5(15-17) 2 1

FTST e Compare ST(0) with 0.0

11011 011 : 1110 0100 4 1

FUCOM e Unordered compare ST(0) with ST(i)

11011 101 : 11100 ST(i) 4 1

FUCOMP e Unordered compare ST(0) with ST(i) and Pop

11011 101 : 11101 ST(i) 4 1

FUCOMPP e Unordered compare ST(0) with ST(1) and Pop Twice

11011 101 : 11101 1001 5 1

FXAM e Examine ST(0)

11011 001 : 1110 0101 8
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Table 13-19. Floating Point Clock Count Summary (Continued)

Instruction Format

Cache Hit

Penalty if

Cache

Miss

Concurrent

Notes

Execution

Avg (Lower Avg (Lower
Range . . . Range . . .

Upper Upper
Range) Range)

CONSTANTS

FLDZ e Load a0.0 Into ST(0)

11011 001 : 1110 1110 : 4

FLD1 e Load a1.0 Into ST(0)

11011 001 : 1110 1000 : 4

FLDP1 e Load q Into ST(0)

11011 001 : 1110 1011 : 8 2

FLDL2T e Load log2(10) Into ST(0)

11011 001 : 1110 1001 : 8 2

FLDL2E e Load log2(e) Into ST(0)

11011 001 : 1110 1010 : 8 2

FLDLG2 e Load log10(2) Into ST(0)

11011 001 : 1110 1100 : 8 2

FLDLN2 e Load loge(2) Into ST(0)

11011 001 : 1110 1101 : 8 2

ARITHMETIC

FADD e Add Real with ST(0)

ST(0)wST(0) a 32-bit memory

11011 000 : mod 000 r/m : s-i-b/disp. 10(8-20) 2 7(5-17)

ST(0)wST(0) a 64-bit memory

11011 100 : mod 000 r/m : s-i-b/disp. 10(8-20) 3 7(5-17)

ST(d)wST(0) a ST(i)

11011 d00 : 11000 ST(i) 10(8-20) 7(5-17)

FADDP e Add real with ST(0) and Pop (ST(i)w ST(0) aST(i))

11011 110 : 11000 ST(i) : 10(8-20) 7(5-17)
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Table 13-19. Floating Point Clock Count Summary (Continued)

Instruction Format

Cache Hit

Penalty if

Cache

Miss

Concurrent

Notes

Execution

Avg (Lower Avg (Lower
Range . . . Range . . .

Upper Upper
Range) Range)

ARITHMETIC (Continued)

FSUB e Subtract Real from ST(0)

ST(0)wST(0) b 32-bit memory

11011 000 : mod 100 r/m : s-i-b/disp. 10(8-20) 2 7(5-17)

ST(0)wST(0) b 64-bit memory

11011 100 : mod 100 r/m : s-i-b/disp. 10(8-20) 3 7(5-17)

ST(d)wST(0) b ST(i)

11011 d00 : 11001 ST(i) 10(8-20) 7(5-17)

FSUBP e Subtract real from ST(0) and Pop (ST(i)w ST(0) b ST(i))

11011 110 : 11001 ST(i) 10(8-20) 7(5-17)

FSUBR e Subtract Real reversed (Subtract ST(0) from Real)

ST(0)w32-bit memory b ST(0)

11011 000 : mod 101 r/m : s-i-b/disp. 10(8-20) 2 7(5-17)

ST(0)w64-bit memory b ST(0)

11011 100 : mod 101 r/m : s-i-b/disp. 10(8-20) 3 7(5-17)

ST(d)wST(i) b ST(0)

11011 d00 : 11001 ST(i) 10(8-20) 7(5-17)

FSUBRP e Subtract Real reversed and Pop (ST(i)w ST(i) b ST(0))

11011 110 : 11100 ST(i) 10(8-20) 7(5-17)

FMUL e Multiply Real with ST(0)

ST(0)wST(0) X 32-bit memory

11011 000 : mod 001 r/m : s-i-b/disp. 11 2 8

ST(0)wST(0) X 64-bit memory

11011 100 : mod 001 r/m : s-i-b/disp. 14 3 11

ST(d)wST(0) X ST(i)

11011 d00 : 11001 ST(i) 16 13

FMULP e Multiply ST(0) with ST(i) and Pop (ST(i)w ST(0) XST(i))

11011 110 : 11001 ST(i) 16 13

FDIV e Divide ST(0) by Real

ST(0)wST(0)/ 32-bit memory

11011 000 : mod 110 r/m : s-i-b/disp. 73 2 70 3

ST(0)wST(0)/ 64-bit memory

11011 100 : mod 110 r/m : s-i-b/disp. 73 3 70 3

ST(d)wST(0)/ ST(i)

11011 d00 : 11111 ST(i) 73 70 3

FDIVP e Divide ST(0) by ST(i) and Pop (ST(i)w ST(0)/ ST(i))

11011 110 : 11111 ST(i) 73 70 3
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Table 13-19. Floating Point Clock Count Summary (Continued)

Instruction Format

Cache Hit

Penalty if

Cache

Miss

Concurrent

Notes

Execution

Avg (Lower Avg (Lower
Range . . . Range . . .

Upper Upper
Range) Range)

ARITHMETIC (Continued)

FDIVR e Divide real reversed (Real/ST(0))

ST(0)w 32-bit memory/ ST(0)

11011 000 : mod 111 r/m : s-i-b/disp. 73 2 70 3

ST(0)w 64-bit memory/ ST(0)

ST(d)w ST(i)/ ST(0)11011 100 : mod 111 r/m : s-i-b/disp. 73 3 70 3

11011 d00 : 11110 ST(i) 73 70 3

FDIVRP e Divide real reversed and Pop (ST(i)w ST(i)/ ST(0))

11011 110 : 11110 ST(i) 73 70 3

FIADD e Add Integer to ST(0)

ST(0)wST(0) a 16-bit memory

11011 110 : mod 000 r/m : s-i-b/disp. 24(20-35) 2 7(5-17)

ST(0)wST(0) a 32-bit memory

11011 010 : mod 000 r/m : s-i-b/disp. 22.5(19-32) 2 7(5-17)

FISUB e Subtract Integer from ST(0)

ST(0)wST(0) b 16-bit memory

11011 110 : mod 100 r/m : s-i-b/disp. 24(20-35) 2 7(5-17)

ST(0)wST(0) b 32-bit memory

11011 010 : mod 100 r/m : s-i-b/disp. 22.5(19-32) 2 7(5-17)

FISUBR e Integer Subtract Reversed

ST(0)w16-bit memory b ST(0)

11011 110 : mod 101 r/m : s-i-b/disp. 24(20-35) 2 7(5-17)

ST(0)w32-bit memory b ST(0)

11011 010 : mod 101 r/m : s-i-b/disp. 22.5(19-32) 2 7(5-17)

FIMUL e Multiply Integer with ST(0)

ST(0)wST(0) X 16-bit memory

11011 110 : mod 101 r/m : s-i-b/disp. 25(23-27) 2 8

ST(0)wST(0) X 32-bit memory

11011 010 : mod 001 r/m : s-i-b/disp. 23.5(19-32) 2 8
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Table 13-19. Floating Point Clock Count Summary (Continued)

Instruction Format

Cache Hit

Penalty if

Cache

Miss

Concurrent

Notes

Execution

Avg (Lower Avg (Lower
Range . . . Range . . .

Upper Upper
Range) Range)

ARITHMETIC (Continued)

FIDIV e Integer Divide

ST(0)wST(0)/ 16-bit memory

11011 110 : mod 110 r/m : s-i-b/disp. 87(85-89) 2 70 3

ST(0)wST(0)/ 32-bit memory

11011 010 : mod 110 r/m : s-i-b/disp. 85.5(84-86) 2 70 3

FIDVR e Integer Divide Reversed

ST(0)w16-bit memory/ST(0)

11011 110 : mod 111 r/m : s-i-b/disp. 87(85-89) 2 70 3

ST(0)w32-bit memory/ST(0)

11011 010 : mod 111 r/m : s-i-b/disp. 85.5(84-86) 2 70 3

FSQRT e Square Root

11011 001 : 1111 1010 85.5(83-87) 70

FSCALE e Scale ST(0) by ST(1)

11011 001 : 1111 1101 31(30-32) 2

FXTRACT e Extract Components of ST(0)

11011 001 : 1111 0100 19(16-20) 4(2-4)

FPREM e Partial Reminder

11011 001 : 1111 1000 84(70-138) 2(2-8)

FPREM1 e Partial Reminder (IEEE)

11011 001 : 1111 0101 94.5(72-167) 5.5(2-18)

FRNDINT e Round ST(0) to Integer

11011 001 : 1111 1100 29.1(21-30) 7.4(2-8)

FABS e Absolute value of ST(0)

11011 001 : 1110 0001 3

FCHS e Change Sign of ST(0)

11011 001 : 1110 0000 6

TRANSCENDENTAL

FCOS e Cosine of ST(0)

11011 001 : 1111 1111 241(193-279) 2 6,7

FPTAN e Partial Tangent of ST(0)

11011 001 : 1111 0010 244(200-273) 70 6,7

FPATAN e Partial Arctangent

11011 001 : 1111 0011 289(218-303) 5(2-17) 6
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Table 13-19. Floating Point Clock Count Summary (Continued)

Instruction Format

Cache Hit

Penalty if

Cache

Miss

Concurrent

Notes

Execution

Avg (Lower Avg (Lower
Range . . . Range . . .

Upper Upper
Range) Range)

TRANSCENDENTAL (Continued)

FSIN e Sine of ST(0)

11011 001 : 1111 1110 241(193-279) 2 6,7

FSINCOS e Sine and Cosine of ST(0)

11011 001 : 1111 1011 291(243-329) 2 6,7

F2XM1 e 2ST(0)-1

11011 001 : 1111 0000 242(140-279) 2 6

FYL2X e ST(1) x log2(ST(0))

11011 001 : 1111 0001 311(196-329) 13 6

FYL2XP1 e ST(1) x log2(ST(0) a 1.0)

11011 001 : 1111 1001 313(171-326) 13 6

PROCESSOR CONTROL

FINIT e Initialize FPU

11011 001 : 1110 0011 17 4

FSTSW AX e Store status word into AX

11011 111 : 1110 0000 3 5

FSTSW e Store status word into memory

11011 101 : mod 111 r/m : s-i-b/disp. 3 5

FLDCW e Load control word

11011 001 : mod 101 r/m : s-i-b/disp. 4 2

FSTCW e Store control word

11011 001 : mod 111 r/m : s-i-b/disp. 3 5

FCLEX e Clear exceptions

11011 011 : 1110 0010 7 4

FSTENV e Store environment

11011 011 : mod 110 r/m : s-i-b/disp.

Real and Virtual Modes 16-bit address 67 4
Real and Virtual Modes 32-bit address 67 4
Protected Mode 16-bit address 56 4
Protected Mode 32-bit address 56 4

FLDENV e Load Environment

11011 011 : mod 100 r/m : s-i-b/disp.

Real and Virtual Modes 16-bit address 44 2
Real and Virtual Modes 32-bit address 44 2
Protected Mode 16-bit address 34 2
Protected Mode 32-bit address 34 2
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Table 13-19. Floating Point Clock Count Summary (Continued)

Instruction Format

Cache Hit

Penalty if

Cache

Miss

Concurrent

Notes

Execution

Avg (Lower Avg (Lower
Range . . . Range . . .

Upper Upper
Range) Range)

PROCESSOR CONTROL (Continued)

FSAVE e Save State

11011 101 : mod 110 r/m : s-i-b/disp.

Real and Virtual Modes 16-bit address 154 4
Real and Virtual Modes 32-bit address 154 4
Protected Mode 16-bit address 143 4
Protected Mode 32-bit address 143 4

FRSTOR e Restore State

11011 101 : mod 100 r/m : s-i-b/

Real and Virtual Modes 16-bit address 131 23
Real and Virtual Modes 32-bit address 131 27
Protected Mode 16-bit address 120 23
Protected Mode 32-bit address 120 27

FINCSTP e Increment Stack Pointer

11011 001 : 1111 0111 3

FDECSTP e Decrement Stack Pointer

11011 001 : 1111 0110 3

FFREE e Free ST(i)

11011 101 : 11000 ST(i) 3

FNOP e No Operations

11011 101 : 1101 0000 3

WAIT e Wait until FPU ready (min/max)

10011011 (/3

NOTES:
1. If operand is 0 clock counts e 27.
2. If operand is 0 clock counts e 28.
3. If CW.PC indicates 24-bit precision then subtract 38 clocks.

If CW.PC indicates 53-bit precision then subtract 11 clocks.
4. If there is a numeric error pending from a previous instruction add 17 clocks.
5. If there is a numeric error pending from a previous instruction add 18 clocks.
6. The INT pin is polled several times while this function is executing to assure short interrupt latency.
7. If ABS(operand) is greater than q/4 then add n clocks, where ne(operand/(q/4)).
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14.0 DIFFERENCES BETWEEN
MILITARY INTEL486
PROCESSORS AND INTEL386
PROCESSORS

The differences between Military Intel486 proces-
sors and Intel386 processors are due to perform-
ance enhancements. The differences are listed be-
low.

1. Instruction clock counts have been reduced to
achieve higher performance. (See section 13.0,
‘‘Instruction Set Summary.’’)

2. The Military Intel486 processor bus is significant-
ly faster than the Intel386 processor bus. Differ-
ences include a 1X clock, parity support, burst
cycles, cacheable cycles, cache invalidate cycles
and 8-bit bus support. The Hardware Interface
and Bus Operation sections (sections 9.0 and
10.0) of the data sheet should be carefully read
to understand the Military Intel486 processor bus
functionality.

3. To support the on-chip cache bits have been
added to control register 0 (CD and NW) (see
section 4.2.3.1, ‘‘Control Registers’’), new pins
have been added to the bus (see section 9.0,
‘‘Hardware Interface’’) and new bus cycle types
have been added (see section 10.0, ‘‘Bus Opera-
tion’’). The on-chip cache needs to be enabled
after reset by clearing the CD and NW bit in CR0.

4. Eight new instructions have been added:

# Byte Swap (BSWAP)

# Exchange-and-Add (XADD)

# Compare and Exchange (CMPXCHG)

# Invalidate Data Cache (INVD)

# Write-back and Invalidate Data Cache
(WBINVD)

# Invalidate TLB Entry (INVLPG)

# Processor Identification (CPUID)

# Resume (RSM)

5. Two bits defined in control register 3, the page
table entries and page directory entries (PCD and
PWT). (See section 6.4.2.5, ‘‘Page Directory/Ta-
ble Entries.’’)

6. A page protection feature has been added. This
feature required a new bit in control register 0
(WP) (See sections 4.2.3.1 ‘‘Control Registers’’
and 6.4.3 ‘‘Page Level Protection.’’)

7. An Alignment Check feature has been added.
This feature required a bit in the flags register
(AC) (section 4.2.2.3 ‘‘Flags Register’’) and a bit
in control register 0 (AM) (section 4.2.3.1 ‘‘Con-
trol Registers’’).

8. The replacement algorithm for the translation
lookaside buffer has been changed from a ran-
dom algorithm to a pseudo least recently used
algorithm like that used by the on-chip cache.
(See section 7.5 ‘‘Cache Replacement’’ for a
description of the algorithm.)

9. Three testability registers, TR3, TR4 and TR5,
have been added for testing the on-chip cache.
TLB testability has been enhanced. (See sec-
tion 11.0, ‘‘Testability.’’)

10. The prefetch queue has been increased from 16
bytes to 32 bytes. A jump always needs to exe-
cute after modifying code to guarantee correct
execution of the new instruction.

11. After reset, the ID in the upper byte of the DX
register is 04.

14.1 Differences between the Intel386
Processor with an Intel387TM

Math CoProcessor and
Military Intel486 DX, IntelDX2
and IntelDX4 Processors

In addition to the previously mentioned enhance-
ments, the Military Intel486 DX, IntelDX2 and In-
telDX4 processors offer the following features:

1. The complete Intel387 math coprocessor instruc-
tion set and register set have been added. No
I/O cycles are performed during Floating Point
instructions. The instruction and data pointers are
set to 0 after FINIT/FSAVE. Interrupt 9 can no
longer occur, interrupt 13 occurs instead.

2. Support for floating point error reporting modes
to guarantee DOS compatibility. These modes re-
quire a bit in control register 0 (NE) (see section
4.2.3.1, ‘‘Control Registers’’) and pins (FERRÝ
and IGNNEÝ). (See sections 9.2.15, ‘‘Numeric
Error Reporting’’ and 10.2.14 ‘‘Floating Point Er-
ror Handling.’’)

3. In some cases FERRÝ is asserted when the next
floating point instruction is encountered and in
other cases it is asserted before the next floating
point instruction is encountered, depending upon
the execution state the instruction causing ex-
ception. (See sections 9.2.15, ‘‘Numeric Error
Reporting’’ and 10.2.14, ‘‘Floating Point Error
Handling.’’) For both of these cases, the Intel387
math coprocessor asserts ERRORÝ when the
error occurs and does not wait for the next float-
ing point instruction to be encountered.

4. The contents of the base registers including the
floating point registers may be different after
reset.
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15.0 ELECTRICAL DATA

The following sections describe recommended elec-
trical connections and electrical specifications for
the Military Intel486 processor.

15.1 Power and Grounding

15.1.1 POWER CONNECTIONS

The Military Intel486 processor is implemented in
CHMOS technology and has modest power require-
ments. However, the high clock frequency output
buffers can cause power surges as multiple output
buffers drive new signal levels simultaneously. For
clean on-chip power distribution at high frequency,
multiple VCC and VSS pins feed the Military Intel486
processor.

Power and ground connections must be made to all
external VCC and GND pins of the Military Intel486
processor. On the circuit board, all VCC pins must be
connected on a VCC plane. All VSS pins must be
likewise connected on a GND plane.

15.1.2 MILITARY INTEL486 PROCESSOR
POWER DECOUPLING
RECOMMENDATIONS

Liberal decoupling capacitance should be placed
near the Military Intel486 processor. The Military
Intel486 processor, driving its 32-bit parallel address
and data buses at high frequencies, can cause tran-
sient power surges, particularly when driving large
capacitive loads. Low inductance capacitors (i.e.,
surface-mount capacitors) and interconnects are
recommended for the best high-frequency electrical
performance. Inductance can be reduced by con-
necting capacitors directly to the VCC and VSS
planes, with minimal trace length between the com-
ponent pads and vias to the plane. These capacitors
should be evenly distributed around each compo-
nent on the VCC power plane.

Capacitor values should be chosen to ensure they
eliminate both low and high frequency noise compo-
nents.

The recommendation for the Military Intel486
processor is 9 x 0.01 mF and 9 x 0.1 mF capaci-
tors.

The power consumption can transition from a low
level of power to a much higher level (or high to low
power) very rapidly. A typical example would be en-
tering or exiting the Stop Grant state. Another exam-
ple would be executing a HALT instruction, causing
the Military Intel486 processor to enter the Auto
HALT Power Down state, or transitioning from HALT
to the Normal state. All of these examples may
cause abrupt changes in the power being consumed
by the Military Intel486 processor. Bulk storage ca-
pacitors with a low ESR (Effective Series Resist-
ance) in the 10 to 100 microfarad range are required
to maintain a regulated supply voltage during the in-
terval between the time the current load changes
and the point that the regulated power supply output
can react to the change in load. In order to reduce
the ESR, it may be necessary to place several bulk
storage capacitors in parallel. These capacitors
should be placed near the Military Intel486 proces-
sor (on the processor power plane) to ensure that
the supply voltage stays within specified limits during
changes in the supply current while in operation.

15.1.3 VCC5 AND VCC POWER SUPPLY
REQUIREMENTS FOR THE INTELDX4
PROCESSOR

In mixed voltage systems that will be driving
IntelDX4 processor inputs in excess of 3.3V, the
VCC5 pin must be connected to the system 5V sup-
ply. In order to limit current flow into the VCC5 pin,
there is a limit to the voltage differential between the
VCC5 pin and the other VCC pins. The voltage differ-
ential between the VCC5 pin of the IntelDX4 proces-
sor and its 3.3V VCC pins should never exceed
2.25V. The 2.25V limit applies to power up, power
down and steady state operation. Table 15-1 out-
lines this requirement.

Table 15-1. Dual Power Supply Requirements for the IntelDX4TM Processor

Symbol Parameter Min Max Unit Notes

VDIFF VCC5–VCC 2.25 V VCC5 input should not exceed VCC by more than 2.25V during
power-up, power-down or during operation.Difference
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Meeting this requirement ensures proper operation
of the IntelDX4 processor and guarantees that the
current draw into the VCC5 pin will not exceed the
ICC5 specification (see section 15.3, ‘‘DC Specifica-
tions’’). If the voltage difference requirement cannot
be met due to system design limitations, then an
alternate solution may be employed. A minimum of a
100X series resistor may be used to limit the current
into the VCC5 pin. This resistor will ensure that cur-
rent drawn by the VCC5 pin will not exceed the maxi-
mum rating of 55 mA for this pin (see section 15.2,
‘‘Maximum Ratings’’).

271329–C4

Figure 15-1. IntelDX4TM Processor VCC5

Current Limiting Resistor

Note that this resistor is not necessary if the system
can guarantee that the voltage difference between
VCC5 and VCC is always limited to 2.25V, even dur-
ing power up and power down.

In 3.3V-only systems and systems that will be driving
all IntelDX4 processor inputs and I/Os from 3.3V
logic, the VCC5 pin should be connected directly to
the 3.3V VCC plane. This will guarantee the voltage
difference specification is met and will eliminate the
current draw into the VCC5 pin. In a 3.3V-only sys-
tem, the VCC5 may be connected to the 5V supply
as described previously, as long as the voltage dif-
ferential in Table 15-1 is met, and assuming the cur-
rent drawn by the VCC5 pin is of little consequence
to the system design.

15.1.4 SYSTEM CLOCK RECOMMENDATIONS

It is recommended that the CLK input to the Military
Intel486 processor should not be driven until VCC
has reached its normal operating level (either 3.3V
or 5V). The CLK input may be grounded or allowed
to ramp with VCC during this period. Once VCC has
reached its normal operating level, the Military
Intel486 processor can handle the clock frequency
for which it is specified and the oscillator/clock driv-
er should have locked onto its desired frequency.

15.1.5 OTHER CONNECTION
RECOMMENDATIONS

NC pins should always remain unconnected. Con-
nection of NC pins to VCC or VSS or to any other
signal can result in component malfunction or in-
compatibility with other steppings of the Military
Intel486 processor family.

For reliable operation, always connect unused in-
puts to an appropriate signal level. Active LOW in-
puts should be connected to VCC through a pull-up
resistor. Pull-ups in the range of 20 KX are recom-
mended. Active HIGH inputs should be connected to
GND.

15.2 Maximum Ratings

Table 15-2 is a stress rating only. Functional opera-
tion at the maximums is not guaranteed. Function
operating conditions are given in Table 15-3 for 3.3V
processor DC Specifications, Table 15-5 for 5V DC
Specifications, Tables 15-8 and 15-9 for 3.3V proc-
essor AC specifications, and Table 15-11 for 5V
processor AC specifications.

Extended exposure to the Maximum Ratings may af-
fect device reliability. Furthermore, although the Mili-
tary Intel486 processor contains protective circuitry
to resist damage from static electric discharge, al-
ways take precautions to avoid high static voltages
or electric fields.
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Table 15-2. Absolute Maximum Ratings

Case Temperature b65§C to a125§C
under Bias

Storage Temperature b65§C to a150§C
DC Voltage on Any Pin b0.5 to VCC a 0.5V
with Respect to Ground b0.5 to VCC5 a 0.5V(1)

Supply Voltage with VCC b0.5V to a6.5V(2)

Respect to VSS VCC b0.5V to a4.6V(1)

VCC5
(1) b0.5V to a6.5V(1)

Transient Voltage on b1.6V to VCC5 a1.6V(1,3)

Any Input

Maximum Allowable 55 mA
Current Sink on VCC5

(1)

NOTES:
1. For IntelDX4TM processor only.
2. All Military Intel486TM processors except IntelDX4 processor.
3. Maximum voltage on any pin with respect to ground is the lesser

of Vcc5 a 1.6V or 6.5V for the IntelDX4 processor.
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15.3 DC Specifications

15.3.1 3.3V DC CHARACTERISTICS

Table 15-3 is for IntelDX4 processors.

NOTICE: This document contains information on
products in the design phase of development. Do
not finalize a design with this information. Revised
information will be published when the product is
available. Verify with your local Intel Sales office that
you have the latest data sheet before finalizing a
design.

*WARNING: Stressing the device beyond the ‘‘Absolute
Maximum Ratings’’ may cause permanent damage.
These are stress ratings only. Operation beyond the
‘‘Operating Conditions’’ is not recommended and ex-
tended exposure beyond the ‘‘Operating Conditions’’
may affect device reliability.

Table 15-3. 3.3V DC Specifications
Functional operating range: VCC e 3.3V g5%; VCC5 e 5V g0.25V (Note 7); TCASE e b55§C to a125§C

Symbol Parameter Min Typ Max Unit Notes

VIL Input LOW Voltage b0.3 a0.8 V

VIH Input HIGH Voltage 2.0 VCC5a0.3 V

VIHC Input HIGH Voltage of CLK VCCb0.6 VCCa0.3 V

VOL Output LOW Voltage
IOL e 2.0 mA 0.40 V
IOL e 100 mA 0.20 V

0.45 V

VOH Output HIGH Voltage
IOH e b2.0 mA 2.4 V

ICC5 VCC5 Leakage Current 15 300 mA

ILI Input Leakage Current g15 mA

IIH Input Leakage Current 200 mA

IIL Input Leakage Current b400 mA

ILO Output Leakage Current g15 mA

CIN Input Capacitance 10 pF

COUT Output or I/O Capacitance 14 pF 6

CCLK CLK Capacitance 12 pF
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NOTICE: This document contains information on products in the design phase of development. Do not finalize a
design with this information. Revised information will be published when the product is available. Verify with your
local Intel Sales office that you have the latest data sheet before finalizing a design.

*WARNING: Stressing the device beyond the ‘‘Absolute Maximum Ratings’’ may cause permanent damage. These
are stress ratings only. Operation beyond the ‘‘Operating Conditions’’ is not recommended and extended exposure
beyond the ‘‘Operating Conditions’’ may affect device reliability.

Table 15-4. 3.3V ICC Values for IntelDX4TM Processor
Functional Operating Range: VCC e 3.3V g5%; VCC5 e 5V g0.25V (Note 7); TCASE e b55§C to a125§C

Parameter
Operating

Typ Maximum Notes
Frequency

ICC Active 100 MHz 1450 mA 1

(Power Supply) 75 MHz 1100 mA

ICC Active 100 MHz 1075 mA 1300 mA 2, 3, 4

(Thermal Design) 75 MHz 825 mA 975 mA

ICC Stop Grant 100 MHz 50 mA 100 mA 5

75 MHz 20 mA 75 mA

ICC Stop Clock 0 MHz 600 mA 1 mA 6

NOTES:
1. This parameter is for proper power supply selection. It is measured using the worst case instruction mix at VCC e

3.465V.
2. The maximum current column is for thermal design power dissipation. It is measured using the worst case instruction mix

at VCC e 3.3V.
3. The typical current column is the typical operating current in a system. This value is measured in a system using a typical

device at VCC e 3.3V, running Microsoft Windows 3.1 at an idle condition. This typical value is dependent upon the
specific system configuration.

4. Typical values are not 100% tested.
5. The ICC Stop Grant specification refers to the ICC value once the Military Intel486 processor enters the Stop Grant or

Auto HALT Power Down state.
6. The ICC Stop Clock specification refers to the ICC value once the processor enters the Stop Clock state. The VIH and VIL

levels must be equal to VCC and 0V, respectively, in order to meet the ICC Stop Clock specifications.
7. VCC5 should be connected to 3.3V g5% in 3.3V-only systems.
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15.3.2 5V DC CHARACTERISTICS

Table 15-5 is for Military Intel486TM DX and IntelDX2 Processors.

Table 15-5. 5V DC Specifications
Functional operating range: VCC e 5V g 0.25V; TCASE e b55§C to a125§C

Symbol Parameter Min Typ Max Unit Notes

VIL Input LOW Voltage b0.3 a0.8 V 7

VIH Input HIGH Voltage 2.0 VCCa0.3 V 8

VOL Output LOW Voltage 0.45 V 1

VOH Output HIGH Voltage 2.4 V 2

ILI Input Leakage Current g15 mA 3

IIH Input Leakage Current 200 mA 4

IIL Input Leakage Current b400 mA 5

ILO Output Leakage Current g15 mA

CIN Input Capacitance

PGA 20 pF 6

COUT Output or I/O Capacitance

PGA 20 pF 6

CCLK CLK Capacitance

PGA 20 pF 6

NOTES:
1. This parameter is measured at: Address, Data, BEn 4.0 mA

Definition, Control 5.0 mA
2. This parameter is measured at: Address, Data, BEn b1.0 mA

Definition, Control b0.9 mA
3. This parameter is for inputs without pull-ups or pull-downs and 0V s VIN s VCC.
4. This parameter is for inputs with pull-downs and VIH e 2.4V.
5. This parameter is for inputs with pull-ups and VIL e 0.45V.
6. FCe1 MHz; Not 100% tested.
7. Minimum value guaranteed by design characterization but not tested.
8. Maximum value guaranteed by design characterization but not tested.
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Table 15-6. 5V ICC Values for Military Intel486TM DX Processor
Functional Operating Range: VCC e 5V g0.25V; TCASE e b55§C to a125§C

Parameter
Operating

Typ Maximum Notes
Frequency

ICC Active 33 MHz 900 mA 1

(Power Supply) 25 MHz 700 mA

ICC Active 33 MHz 700 mA 857 mA 2, 3, 4

(Thermal Supply) 25 MHz 550 mA 666 mA

ICC Stop Grant 33 MHz 40 mA 80 mA 5

25 MHz 40 mA 80 mA

ICC Stop Clock 0 MHz 200 mA 2 mA 6

Table 15-7. 5V ICC Values for IntelDX2TM Processor
Functional Operating Range: VCC e 5V g0.25V; TCASE e b55§C to a125§C

Parameter
Operating

Typ Maximum Notes
Frequency

ICC Active 50 MHz 950 mA 1

(Power Supply) 66 MHz 1200 mA

ICC Active 50 MHz 775 mA 906 mA 2, 3, 4

(Thermal Supply) 66 MHz 975 mA 1145 mA

ICC Stop Grant 50 MHz 35 mA 70 mA 5

66 MHz 45 mA 90 mA

ICC Stop Clock 0 MHz 200 mA 2 mA 6

NOTES:
1. This parameter is for proper power supply selection. It is measured using the worst case instruction mix at VCC e 5.25V.
2. The maximum current column is for thermal design power dissipation. It is measured using the worst case instruction mix

at VCC e 5V.
3. The typical current column is the typical operating current in a system. This value is measured in a system using a typical

device at VCC e 5V, running Microsoft Windows 3.1 at an idle condition at room temperature. This typical value is
dependent upon the specific system configuration.

4. Typical values are not 100% tested.
5. The ICC Stop Grant specification refers to the ICC value once the Military Intel486 processor enters the Stop Grant or

Auto HALT Power Down state.
6. The ICC Stop Clock specification refers to the ICC value once the processor enters the Stop Clock state. The VIH and VIL

levels must be equal to VCC and 0V, respectively, in order to meet the ICC Stop Clock specifications.
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15.4 AC Specifications

The AC specifications given in the tables in this section consist of output delays, input setup requirements and
input hold requirements. All AC specifications are relative to the rising edge of the input system clock (CLK)
unless otherwise specified.

NOTICE: This document contains information on products in the design phase of development. Do not finalize a
design with this information. Revised information will be published when the product is available. Verify with your
local Intel Sales office that you have the latest data sheet before finalizing a design.

*WARNING: Stressing the device beyond the ‘‘Absolute Maximum Ratings’’ may cause permanent damage. These
are stress ratings only. Operation beyond the ‘‘Operating Conditions’’ is not recommended and extended exposure
beyond the ‘‘Operating Conditions’’ may affect device reliability.

15.4.1 3.3V AC CHARACTERISTICS

Table 15-8. 3.3V AC Characteristics for the 75/25-MHz IntelDX4TM Processor
VCC e 3.3V g5%; VCC5 e 5V g0.25V (Note 1); TCASE e b55§C to a125§C; CL e 50 pF

Symbol Parameter Min Max Unit Figure Notes

CLK Frequency 8 25 MHz 2

t1 CLK Period 40 125 ns 15-2

t1a CLK Period Stability g250 ps 3, 6

t2 CLK High Time 14 ns 15-2 at 2V

t3 CLK Low Time 14 ns 15-2 at 0.8V

t4 CLK Fall Time 4 ns 15-2 2V to 0.8V

t5 CLK Rise Time 4 ns 15-2 0.8V to 2V

t6 A2–A31, PWT, PCD, BE0–3Ý, M/IOÝ, D/CÝ, W/RÝ, 2 19 ns 15-6
ADSÝ, LOCKÝ, FERRÝ, BREQ, HLDA Valid Delay

t7 A2–A31, PWT, PCD, BE0–3Ý, M/IOÝ, D/CÝ, W/RÝ, 28 ns 15-7 3
ADSÝ, LOCKÝ Float Delay

t8 PCHKÝ Valid Delay 2 24 ns 15-5

t8a BLASTÝ, PLOCKÝ SMIACTÝ Valid Delay 2 24 ns 15-6

t9 BLASTÝ, PLOCKÝ Float Delay 28 ns 15-7 3

t10 D0–D31, DP0–3 Write Data Valid Delay 2 20 ns 15-6

t11 D0–D31, DP0–3 Write Data Float Delay 28 ns 15-7 3

t12 EADSÝ Setup Time 8 ns 15-3

t13 EADSÝ Hold Time 3 ns 15-3

t14 KENÝ, BS16Ý, BS8Ý Setup Time 8 ns 15-3

t15 KENÝ, BS16Ý, BS8Ý Hold Time 3 ns 15-3

t16 RDYÝ, BRDYÝ Setup Time 8 ns 15-4

t17 RDYÝ, BRDYÝ Hold Time 3 ns 15-4

t18 HOLD, AHOLD Setup Time 8 ns 15-3

t18a BOFFÝ Setup Time 8 ns 15-3

t19 HOLD, AHOLD, BOFFÝ Hold Time 3 ns 15-3

t20 RESET, FLUSHÝ, A20MÝ, NMI, INTR, IGNNEÝ 8 ns 15-3 5
SRESET, STPCLKÝ, SMIÝ Setup Time

t21 RESET, FLUSHÝ, A20MÝ, NMI, INTR, IGNNEÝ 3 ns 15-3 5
SRESET, STPCLKÝ, SMIÝ Hold Time

t22 D0–D31, DP0–3, A4–A31 Read Setup Time 5 ns 15-3, 15-4

t23 D0–D31, DP0–3, A4–A31 Read Hold Time 3 ns 15-3, 15-4

NOTES:
1. VCC5 should be connected to 3.3V g5% in 3.3V-only systems.
2. 0-MHz operation is guaranteed when the STPCLKÝ and Stop Grant Acknowledge protocol is used.
3. Not 100% tested. Guaranteed by design characterization.
4. All timing specifications assume CL e 50 pF. See capacitive derating charts for additional timing delays due to loading.
5. A reset pulse width of 15 CLK cycles is required for warm resets (RESET or SRESET). Power-up resets (cold resets)

require RESET to be asserted for at least 1 ms after VCC and CLK are stable.
6. For adjacent clocks, assumes frequency of operation is constant. STPCLKÝ input should be used to change frequency

of operation.
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NOTICE: This document contains information on products in the design phase of development. Do not finalize a
design with this information. Revised information will be published when the product is available. Verify with your
local Intel Sales office that you have the latest data sheet before finalizing a design.

*WARNING: Stressing the device beyond the ‘‘Absolute Maximum Ratings’’ may cause permanent damage. These
are stress ratings only. Operation beyond the ‘‘Operating Conditions’’ is not recommended and extended exposure
beyond the ‘‘Operating Conditions’’ may affect device reliability.

Table 15-9. 3.3V AC Characteristics for the 100/33-MHz IntelDX4TM Processors
VCC e 3.3V g5%; VCC5 e 5V g0.25V (Note 1); TCASE e b55§C to a125§C; CL e 50 pF

Symbol Parameter Min Max Unit Figure Notes

CLK Frequency 8 33 MHz 2

t1 CLK Period 30 125 ns 15-2

t1a CLK Period Stability g250 ps 3, 6

t2 CLK High Time 11 ns 15-2 at 2V

t3 CLK Low Time 11 ns 15-2 at 0.8V

t4 CLK Fall Time 3 ns 15-2 2V to 0.8V

t5 CLK Rise Time 3 ns 15-2 0.8V to 2V

t6 A2–A31, PWT, PCD, BE0–3Ý, M/IOÝ, D/CÝ, 2 14 ns 15-6
W/RÝ, ADSÝ, LOCKÝ, FERRÝ, BREQ, HLDA
Valid Delay

t7 A2–A31, PWT, PCD, BE0–3Ý, M/IOÝ, D/CÝ, 20 ns 15-7 3
W/RÝ, ADSÝ, LOCKÝ Float Delay

t8 PCHKÝ Valid Delay 2 14 ns 15-5

t8a BLASTÝ, PLOCKÝ, SMIACTÝ Valid Delay 2 14 ns 15-6

t9 BLASTÝ, PLOCKÝ Float Delay 20 ns 15-7 3

t10 D0–D31, DP0–3 Write Data Valid Delay 2 14 ns 15-6

t11 D0–D31, DP0–3 Write Data Float Delay 20 ns 15-7 3

t12 EADSÝ Setup Time 5 ns 15-3

t13 EADSÝ Hold Time 3 ns 15-3

t14 KENÝ, BS16Ý, BS8Ý Setup Time 5 ns 15-3

t15 KENÝ, BS16Ý, BS8Ý Hold Time 3 ns 15-3

t16 RDYÝ, BRDYÝ Setup Time 5 ns 15-4

t17 RDYÝ, BRDYÝ Hold Time 3 ns 15-4

t18 HOLD, AHOLD Setup Time 6 ns 15-3

t18a BOFFÝ Setup Time 7 ns 15-3

t19 HOLD, AHOLD, BOFFÝ Hold Time 3 ns 15-3
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NOTICE: This document contains information on products in the design phase of development. Do not finalize a
design with this information. Revised information will be published when the product is available. Verify with your
local Intel Sales office that you have the latest data sheet before finalizing a design.

*WARNING: Stressing the device beyond the ‘‘Absolute Maximum Ratings’’ may cause permanent damage. These
are stress ratings only. Operation beyond the ‘‘Operating Conditions’’ is not recommended and extended exposure
beyond the ‘‘Operating Conditions’’ may affect device reliability.

Table 15-9. 3.3V AC Characteristics for the 100/33-MHz IntelDX4TM Processors (Continued)
VCC e 3.3V g5%; VCC5 e 5V g0.25V (Note 1); TCASE e b55§C to a125§C; CL e 50 pF

Symbol Parameter Min Max Unit Figure Notes

t20 RESET, FLUSHÝ, A20MÝ, NMI, INTR, IGNNEÝ, 5 ns 15-3 5
SRESET, STPCLKÝ, SMIÝ Setup Time

t21 RESET, FLUSHÝ, A20MÝ, NMI, INTR, IGNNEÝ, 3 ns 15-3 5
SRESET, STPCLKÝ, SMIÝ Hold Time

t22 D0–D31, DP0–3, A4–A31 Read Setup Time 5 ns 15-3, 15-4

t23 D0–D31, DP0–3, A4–A31 Read Hold Time 3 ns 15-3, 15-4

NOTES:
1. VCC5 should be connected to 3.3V g5% in 3.3V-only systems.
2. 0-MHz operation is guaranteed when the STPCLKÝ and Stop Grant Acknowledge protocol is used.
3. Not 100% tested. Guaranteed by design characterization.
4. All timing specifications assume CL e 50 pF. See capacitive derating charts for additional timing delays due to loading.
5. A reset pulse width of 15 CLK cycles is required for warm resets (RESET or SRESET). Power-up resets (cold resets)

require RESET to be asserted for at least 1 ms after VCC and CLK are stable.
6. For adjacent clocks, assumes frequency of operation is constant. STPCLKÝ input should be used to change frequency

of operation.

Table 15-10. 3.3V IntelDX4TM Processor AC Specifications for the Test Access Port

(All IntelDX4 Processor Frequencies)
VCC e 3.3V g5%; VCC5 e5V g0.25V (Note 1); TCASE e b55§C to a125§C; CL e 0 pF

Symbol Parameter Min Max Unit Figure

t24 TCK Frequency 25 MHz

t25 TCK Period 40 ns

t26 TCK High Time 10 ns

t27 TCK Low Time 10 ns

t28 TCK Rise Time 4 ns

t29 TCK Fall Time 4 ns

t30 TDI, TMS Setup Time 8 ns 15-8

t31 TDI, TMS Hold Time 7 ns 15-8

t32 TDO Valid Delay 3 25 ns 15-8

t33 TDO Float Delay 30 ns

t34 All Outputs (Non-Test) Valid Delay 3 25 ns 15-8

t35 All Outputs (Non-Test) Float Delay 36 ns 15-8

t36 All Inputs (Non-Test) Setup Time 8 ns 15-8

t37 All Inputs (Non-Test) Hold Time 7 ns 15-8

NOTES:
1. VCC5 should be connected to 3.3V g5% in 3.3V-only systems.
2. All inputs and outputs are TTL Level.
3. Rise/Fall times are measured between 0.8V and 2.0V. Rise/Fall times can be relaxed by 1 ns per 10-ns increase in TCK

period.
4. TCK period s CLK period.
5. Parameters t30–t37 are measured from TCK.
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15.4.2 5V AC CHARACTERISTICS

Table 15-11 is for 25- and 33-MHz Military Intel486 DX, 50-MHz IntelDX2TM (25-MHz Max.) and 66-MHz
IntelDX2 (33-MHz Max.) processors.

Table 15-11. 5V AC Characteristics
Functional operating range: VCC e 5V g0.25V; TCASE e b55§C to a125§C; CL e 50 pF unless otherwise
specified. (See also Table 15-12).

Bus Speed

Symbol Parameter 25 MHz 33 MHz Unit Figure Notes

Min Max Min Max

Frequency 8 25 8 33 MHz 1

t1 CLK Period 40 125 30 125 ns 15-2

t1a CLK Period Stability g250 g250 ps 15-2 Adjacent clocks(2)

t2 CLK High Time 14 11 ns 15-2 at 2V

t3 CLK Low Time 14 11 ns 15-2 at 0.8V(2)

t4 CLK Fall Time 4 3 ns 15-2 2V to 0.8V(2)

t5 CLK Rise Time 4 3 ns 15-2 0.8V to 2V(2)

t6 A2–A31, PWT, PCD, BE0–3Ý, 2 19 2 16 ns 15-6

M/IOÝ, D/CÝ, W/RÝ, ADSÝ,

LOCKÝ, BREQ, HLDA,

SMIACTÝ, FERRÝ
Valid Delay

t7 A2–A31, PWT, PCD, BE0–3Ý, 28 20 ns 15-7 2

M/IOÝ, D/CÝ, W/RÝ, ADSÝ,

LOCKÝ, BREQ, HLDA

Float Delay

t8 PCHKÝ Valid Delay 2 24 2 22 ns 15-5

t8a BLASTÝ, PLOCKÝ Valid Delay 2 24 2 20 ns 15-6

t9 BLASTÝ, PLOCKÝ Float Delay 28 20 ns 15-7 2

t10 D0–D31, DP0–DP3 Write Data 2 20 2 18 ns 15-6

Valid Delay

t11 D0–D31, DP0–DP3 Write Data 28 20 ns 15-7 2

Float Delay

t12 EADSÝ Setup Time 8 5 ns 15-3

t13 EADSÝ Hold Time 3 3 ns 15-3

t14 KENÝ, BS16Ý, BS8Ý 8 5 ns 15-3

Setup Time
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Table 15-11. 5V AC Characteristics (Continued)
Functional operating range: VCC e 5V g0.25V; TCASE e b55§C to a125§C; CL e 50 pF unless otherwise
specified.

Bus Speed

Symbol Parameter 25 MHz 33 MHz Unit Figure Notes

Min Max Min Max

t15 KENÝ, BS16Ý, BS8Ý 3 3 ns 15-3

Hold Time

t16 RDYÝ, BRDYÝ Setup Time 8 5 ns 15-4

t17 RDYÝ, BRDYÝ Hold Time 3 3 ns 15-4

t18 HOLD, AHOLD Setup Time 10 6 ns 15-3

t18a BOFFÝ Setup Time 10 8 ns 15-3

t19 HOLD, AHOLD, BOFFÝ 3 3 ns 15-3

Hold Time

t20 FLUSHÝ, A20MÝ, NMI, INTR, 10 5 ns 15-3

SMIÝ, STPCLKÝ, SRESET,

RESET, IGNNEÝ Setup Time

t21 FLUSHÝ, A20MÝ, NMI, INTR, 3 3 ns 15-3

SMIÝ, STPCLKÝ, SRESET,

RESET, IGNNEÝ Hold Time

t22 D0–D31, DP0–DP3, A4–A31 5 5 ns 15-3

Read Setup Time 15-4

t23 D0–D31, DP0–DP3, A4–A31 3 3 ns 15-3

Read Hold Time 15-4

NOTES:
1. 0-MHz operation is guaranteed when the STPCLKÝ and Stop Grant bus cycle protocol is used.
2. Not 100% tested, guaranteed by design characterization.
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Table 15-12. 5V Military Intel486 Processor AC Specifications for the Test Access Port

(All Processors and Frequencies)
VCC e5V g0.25V; TCASE e b55§C to a125§C; CL e 50 pF

Symbol Parameter Min Max Unit Notes

t24 TCK Frequency 8 MHz 1

t25 TCK Period 125 ns

t26 TCK High Time 40 ns @ 2.0V

t27 TCK Low Time 40 ns @ 0.8V

t28 TCK Rise Time 8 ns 2

t29 TCK Fall Time 8 ns 2

t30 TDI, TMS Setup Time 8 ns 3

t31 TDI, TMS Hold Time 10 ns 3

t32 TDO Valid Delay 3 30 ns 3

t33 TDO Float Delay 36 ns 3

t34 All Outputs (Non-Test) Valid Delay 3 30 ns 3

t35 All Outputs (Non-Test) Float Delay 36 ns 3

t36 All Inputs (Non-Test) Setup Time 8 ns 3

t37 All Inputs (Non-Test) Hold Time 10 ns 3

NOTES:
1. TCK period s CLK period.
2. Rise/Fall times are measured between 0.8V and 2.0V. Rise/Fall times can be relaxed by 1 ns per 10-ns increase in TCK

period.
3. Parameters t30–t37 are measured from TCK.
4. Refer to Figure 15-18 for signal waveforms.
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271329–C5

Figure 15-2. CLK Waveforms

271329–C6

Figure 15-3. Input Setup and Hold Timing

253

253



MILITARY Intel486TM PROCESSOR FAMILY

271329–C7

Figure 15-4. Input Setup and Hold Timing

271329–C8

Figure 15-5. PCHKÝ Valid Delay Timing
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271329–C9

Figure 15-6. Output Valid Delay Timing

271329–D0

Figure 15-7. Maximum Float Delay Timing
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271329–D1

Figure 15-8. Test Signal Timing Diagram

15.5 Capacitive Derating Curves

The capacitive derating curves illustrate output delay
versus capacitive load for 5V Military Intel486 proc-
essors. The derating curves show the delays for the
rising and falling edges under worst-case conditions.
Figure 15-9 and Figure 15-10 apply to 5V Military

Intel486 DX and IntelDX2 processors. Figures
15-11, 15-12 and 15-13 apply to the IntelDX4 proc-
essor. The figures apply to all frequencies specified
for each corresponding product. Refer to Appendix
B for bus frequencies above 33 MHz for Military
Intel486 processors.

271329–D2

NOTE:
This graph will not be linear outside of the capacitive range shown.
nom e nominal value from the AC Characteristics table.

Figure 15-9. Typical Loading Delay versus Load Capacitance under

Worst-Case Conditions for a Low-to-High Transition
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271329–D3

NOTE:
This graph will not be linear outside of the capacitive range shown.
nom e nominal value from the AC Characteristics table.

Figure 15-10. Typical Loading Delay versus Load Capacitance under

Worst-Case Conditions for a High-to-Low Transition

271329–D4

Figure 15-11. IntelDX4TM Processor Capacitive Derating Curve for

High-to-Low Transitions (3V Signals)
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271329–D5

Figure 15-12. IntelDX4TM Processor Capacitive Derating Curve

for Low-to-High Transitions (5V Signals)

271329–D6

Figure 15-13. IntelDX4TM Processor Capacitive Derating Curve

for Low-to-High Transitions (3V/5V Signals)
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16.0 MECHANICAL DATA

This section describes the package dimensions and thermal specifications for all processors in the Military
Intel486 processor family.

NOTE:
For further details about thermal and mechanical package specifications and methodologies, refer to
the 1994 Packaging Handbook (order number 240800).

16.1 Military Intel486 Processor Package Dimensions

The processor dimensions are listed in the following order:

# 168-pin PGA package;

# 196-lead PQFP package.

16.1.1 168-PIN PGA PACKAGE

271329–D7

Figure 16-1. 168-Pin Ceramic PGA Package Dimensions
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Table 16-1. 168-Pin Ceramic PGA Package Dimensions

Family: Ceramic Pin Grid Array Package

Symbol
Millimeters Inches

Min Max Notes Min Max Notes

A 3.56 4.57 0.140 0.180

A1 0.64 1.14 SOLID LID 0.025 0.045 SOLID LID

A2 2.8 3.5 SOLID LID 0.110 0.140 SOLID LID

A3 1.14 1.40 0.045 0.055

B 0.43 0.51 0.017 0.020

D 44.07 44.83 1.735 1.765

D1 40.51 40.77 1.595 1.605

e1 2.29 2.79 0.090 0.110

L 2.54 3.30 0.100 0.130

N 168 168

S1 1.52 2.54 0.060 0.100

ISSUE IWS REV X 7/15/88

Table 16-2. Ceramic PGA Package Dimension Symbols

Letter or Symbol Description of Dimensions

A Distance from seating plane to highest point of body

A1 Distance between seating plane and base plane (lid)

A2 Distance from base plane to highest point of body

A3 Distance from seating plane to bottom of body

B Diameter of terminal lead pin

D Largest overall package dimension of length

D1 A body length dimension, outer lead center to outer lead center

e1 Linear spacing between true lead position centerlines

L Distance from seating plane to end of lead

S1 Other body dimension, outer lead center to edge of body

NOTES:
1. Controlling dimension: millimeter.
2. Dimension ‘‘e1’’ (‘‘e’’) is non-cumulative.
3. Seating plane (standoff) is defined by P.C. board hole size: 0.0415–0.0430 inch.
4. Dimensions ‘‘B’’, ‘‘B1’’ and ‘‘C’’ are nominal.
5. Details of Pin 1 identifier are optional.
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196L CERAMIC QUADPACK PACKAGE INTEL TYPE Q
CAVITY UP, WITH N/C TIE BAR

271329–H6

271329–H7
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196L CERAMIC QUADPACK PACKAGE INTEL TYPE Q
CAVITY UP, WITH N/C TIE BAR (Continued)

Symbol
Millimeters Inches

Min Max Notes Min Max Notes

A 2.23 2.92 Solid Lid 0.088 0.115 Solid Lid

A 2.92 3.56 EPROM Lid 0.115 0.140 EPROM Lid

A1 1.96 2.39 0.077 0.094

A2 0.15 0.30 0.006 0.012

B 0.20 0.25 0.008 0.010

C 0.10 0.20 0.004 0.008

D 62.99 64.01 2.480 2.520

D1 33.65 34.16 1.325 1.345

D2 30.48 Basic 1.200 Basic

e1 0.58 0.69 0.023 0.027

H 29.21 Basic 1.150 Basic

H1 58.42 Basic 2.30 Basic

H2 13.97 Basic 0.550 Basic

L 9.27 10.03 0.365 0.395

N 196 196

S 1.27 2.03 Reference 0.050 0.080 Reference

S1 1.14 1.93 Reference 0.045 0.076 Reference

ISSUE IWS 7/90
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16.2 Package Thermal Specifications

The Military Intel486 processors are specified for op-
eration when TC (the case temperature) is within the
range of 0§C–85§C. TC may be measured in any en-
vironment to determine whether the Military Intel486
processor is within the specified operating range.
The case temperature, with and without heat sink
should be measured using a 0.005× diameter
(AWGÝ36) thermocouple with a 90§ angle adhesive
bond at the center of the package top surface, op-
posite the pins. Figure 16-2 and Figure 16-3 illustrate
this methodology.

The ambient temperature (TA) is guaranteed as long
as TC is not violated. The ambient temperature can
be calculated from iJC and iJA from the following
equations.

TJ e TC a P * iJC

TA e TJ b P * iJA

TC e TA a P * [iJA–iJC]

Where:

TJ, TA, TC e Junction, Ambient and Case Temper-
ature, respectively.

iJC, iJA e Junction-to-Case and Junction-to-Am-
bient thermal Resistance, respective-
ly.

P e Maximum Power Consumption

The values for iJA and iJC are given below for the
packaging and operating frequencies.

Note that TA is greatly improved by attaching ‘‘fins’’
or a ‘‘heat sink’’ to the package. P (the maximum
power consumption) is calculated by using the maxi-
mum ICC at nominal VCC (either 3.3V or 5V) as tabu-
lated in the DC Charisteristics in section 15.

271329–D8

0.005× diam. thermocouple on the center of the pack-
age top surface with a 90§ angle adhesive bond

Figure 16-2. Case Temperature Measurement

without Heat Sink

271329–D9

0.005× diam. thermocouple on the center of the pack-
age top surface with a 90§ angle adhesive bond
through a hole drilled at the heat sink base

Figure 16-3. Case Temperature Measurement

with Heat Sink

16.2.1 168-PIN PGA PACKAGE THERMAL
CHARACTERISTICS FOR 3.3V IntelDX4
PROCESSOR

271329–E0

Figure 16-4. Sample IntelDX4TM Processor

PGA Heat Sink
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Table 16-3. PGA Package Thermal Resistance (§C/W)–iJC and iJA for IntelDX4TM Processor

iJA vs AirflowÐft/min (m/sec)

0 200 400 600 800 1000

iJC (0) (1.01) (2.03) (3.04) (4.06) (5.07)

With Heat Sink* 2 13.5 8.5 6.5 5.5 4.5 4.25

Without Heat Sink 2 17.5 15 13 11.5 10.0 9.5

*0.350× high omnidirectional heat sink.

Table 16-4. PGA Package Maximum Ambient Temperature for IntelDX4TM Processor

AirflowÐft/min (m/sec)

Freq. 0 200 400 600

(MHz) (0) (1.01) (2.03) (3.04)

Tambient §C with Heat Sink* 100 35.5 57 65.5 70

Tambient §C without Heat Sink 100 18.5 29 37.5 44

*0.350× high omnidirectional heat sink.
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16.2.2 168-Pin PGA Package Thermal Characteristics for 5V Military Intel486 Processors

Table 16-5. Thermal Resistance (§C/W) iJC and iJA for the 168-Pin PGA Package of the

Military Intel486TM Processor

iJA vs. AirflowÐft/min. (m/sec)

0 200 400 600 800 1000

iJC (0) (1.01) (2.03) (3.04) (4.06) (5.07)

With Heat Sink* 1.5 13 8.0 6.0 5.0 4.5 4.25

Without Heat Sink 1.5 17 14.5 12.5 11.0 10.0 9.5

*0.350× high omnidirectional heat sink.

16.2.3 Thermal Specifications for 196-Lead CQFP Package

Table 16-6. Thermal Resistance (§C/W) §JC and §JA

iJA vs AirflowÐft/min (m/sec)

0 200 400 600

iJC (0) (1.01) (2.03) (3.04)

With Heat Sink* 2.5 17.0 10.5 8.5 8.0

Without Heat Sink 2.5 20.5 16.5 14.0 12.5

*0.350× high omnidirectional heat sink.
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APPENDIX A
FEATURE DETERMINATION

CPUID Instruction

The Military Intel486 processor implements the
CPUID instruction that makes information available
to the system software about the family, model, and
stepping of the processor on which it is executing.
Support of this instruction is indicated by the ability
of system software to write and read the bit in posi-
tion EFLAGS.21, referred to as the EFLAGS.ID bit.
The actual state of the EFLAGS.ID bit is irrelevant
and provides no significance to the hardware. This
bit is reset to zero upon device reset (RESET and
SRESET) for compatibility with older Military
Intel486 processor designs.

Operation

The CPUID instruction requires the software devel-
oper to pass an input parameter to the processor in
the EAX register. The processor response is re-
turned in registers EAX, EBX, ECX, and EDX.

1. When the parameter passed to EAX is zero, the
register values returned upon instruction execu-
tion are:

EAX[31:0]w 1

EBX[31:0]w 756E6547Ð‘‘Genu’’, with ‘‘G’’ in
the low nibble of BL

EDX[31:0]w 49656E69Ð‘‘inel’’, with ‘‘i’ in the
low nibble of DL

ECX[31:0]w 6C65746EÐ‘‘ntel’’, with ‘‘n’’ in
the low nibble of CL

The values in EBX, ECX, and EDX indicate an
Intel processor. When taken in the proper order,
they decode to the string ‘‘GenuineIntel.’’

2. When the parameter passed to EAX is one, the
register values returned upon instruction execu-
tion are:

EAX[3:0]w xxxxÐStepping ID

EAX[7:4]w xxxxÐModel

EAX[11:8]w 0100ÐFamily

EAX[15:12]w 0000

EAX[31:16]w Intel Reserved

EBX[31:0]w 00000000

ECX[31:0]w 00000000

EDX[0:0]w 1ÐFPU on-chip

EDX[3:1]w 1

EDX[31:4]w Intel Reserved

The value returned in EAX after CPUID instruc-
tion execution is identical to the value loaded into
EDX upon device reset. Software must avoid any
dependency upon the state of reserved proces-
sor bits.

3. When the parameter in EAX is greater than one,
the register values returned upon instruction exe-
cution are:

EAX[31:0]w 00000000

EBX[31:0]w 00000000

EDX[31:0]w 00000000

ECX[31:0]w 00000000

Flags Affected

No flags are affected.

Exceptions

None.

For More Information

Refer to the Intel application note AP-485, Intel
Processor Identification with the CPUID Instruction
for more details.

Table A-1. CPUID Instruction Description

OPCODE Instruction
Processor Core

EAX Input Value Description
Clocks

0F A2 CPUID 14 1 Processor Identification

9 0 or greater than 1 Intel String/Null Registers

A-1
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APPENDIX B
I/O BUFFER MODELS

For processor bus speeds above 33 MHz (e.g.,
50 MHz), the capacitive derating curves are not
guaranteed. For bus speeds of 50 MHz, I/O buffer
modeling techniques should be used to accurately
simulate (and predict) the behavior of processor sig-
nals in a particular environment.

This appendix presents a sample I/O buffer model
parameters for the IntelDX4 processor. The first sec-
tion presents an overview of signal buffer type cata-
gorization. The second section presents a graphical
representation of IBIS (I/O Buffer Information Sheet)
data for each of the input, input/output, and output
buffers types on the processor. The third section
provides a text listing of the data presented in the
IBIS format.

I/O buffer model information is available for all Mili-
tary Intel486 processors described in this datasheet.
Contact your Intel representative for the latest I/O
buffer models for the IntelDX4 and other members
of the Military Intel486 processor family.

I/O Buffer Models for IntelDX4
Processor

Each valid delay for the 50-MHz bus is specified for
a 0 pF load. The system designer should use I/O
buffer modeling to account for signal delays due to
loading. Table B-1 lists the buffer type to be used for
each signal in the external interface.

Table B-1. External Interface Signal Buffer Assignment

Device Signals Type
Drive Buffer Receiver Buffer

TYPE Type

IntelDX4TM A20MÝ, AHOLD, BOFFÝ, BRDYÝ, BS8Ý I N/A IN1

Processor BS16Ý, FLUSHÝ, HOLD, IGNNEÝ, INTR,

KENÝ, NMI, RDYÝ, RESETÝ, EADSÝ, SMIÝ,

STPCLKÝ, SRESET, CLKMUL

CLK I N/A CLK

D16–D0, DP2–DP0 I/O I/O1 IN1

D31–D17, DP3 I/O I/O2 IN1

A31–A4 I/O I/O3 IN1

ADSÝ, BLASTÝ, LOCKÝ, PLOCKÝ, SMIACTÝ, O O1 N/A

A3–A2, FERRÝ, HLDA

BE3Ý–BE0Ý, BREQÝ, D/CÝ, M/IOÝ, PCD, O O2 N/A

PWT, PCHKÝ, W/RÝ

Sample IBIS Files for IntelDX4 Processor

The following pages present sample IBIS file outputs for the IntelDX4 processor.
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271329–E2
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Sample Text Listing of IBIS Files for IntelDX4 Processor
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271329–E9
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271329–F0
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271329–F2
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271329–F3
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271329–F4
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271329–F5
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271329–G0
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APPENDIX C
BSDL LISTINGS

Below is a listing of a boundary scan description lan-
guage (BSDL) file for the IntelDX4 processor.

This file is provided as an example. Contact Intel for
design information for this and other Military Intel486

processors. See section 11.5, ‘‘Military Intel486
Processor Boundary Scan,’’ for a complete descrip-
tion of BSDL instructions and usage.

IntelDX4 Processor Listing

271329–G2
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APPENDIX D
SYSTEM DESIGN NOTES

SMM Environment Initialization

When the Military Intel486 processors are operating
in Real Mode, the physical address at which instruc-
tions and data are fetched is determined by the seg-
ment register and an offset (i.e., CS and IP for in-
structions). When a new value is loaded into a seg-
ment register, the new value is shifted to the left by
four bits and stored in a segment base register that
corresponds to that particular segment (CSBASE,
DSBASE, ESBASE, etc.). It is the value stored in the
segment base register that is actually used to gener-
ate a physical address. For example, the linear ad-
dress to be used for fetching instructions is deter-
mined by adding the value contained in the CS seg-
ment base register with the value in the IP register.

When the processor is in Protected Mode, the seg-
ment registers are used as selectors to a descriptor
table. Each descriptor in a descriptor table contains
information about the segment in use, including the
segments BASE address (i.e., CSBASE), the limit (or
size of the segment), as well as protection level,
privileges, operand sizes, and the segment type. In
Protected Mode, the linear address is determined by
adding the base portion of the descriptor to the ap-
propriate offset.

When in System Management Mode, the processor
operates in a pseudo-Real Mode, with address cal-
culation performed in the Real Mode manner. How-
ever, the processor adds the value in the segment
base register with the value in the EIP register, rath-
er than the IP register, so there are no limits as to
the segment size. The physical address of an in-
struction is obtained by adding the value in CSBASE
to the value in EIP.

When entering SMM, it may be necessary to initial-
ize the segment registers to point to SMRAM (see
section 8.4.2, ‘‘Processor Environment,’’ for their
value on SMM entry). If SMBASE has not been relo-
cated, then the necessary segment registers can be
initialized to point to SMRAM by using the value in
the CS register, 3000H, which points to the SMRAM
address space.

When an SMIÝ occurs after SMBASE has been
modified, CSBASE is loaded with the new value of
SMBASE. However, the CS selector register still
contains the value 3000H, not the value corre-
sponding to the new SMBASE.

To initialize segment registers to point to the new
SMRAM area, read the SMBASE value from the
SMM state that was saved in memory. Because the
data segment registers are initialized to 0, do not
use them to access the SMM state save area. In-
stead, perform a read relative to the CS register by
using a CS override prefix to a normal memory read.
Although CS still contains 3000H, CSBASE contains
the value of SMBASE, and CSBASE is used for the
address generation.

Once the value of SMBASE is obtained, it must be
shifted to the right by four bits to get the appropriate
value to be placed in the segment registers. The CS
register itself can be initialized by executing a far
jump instruction to an address within SMBASE,
which causes CS to be reloaded with a value corre-
sponding to SMBASE.

Example D-1 describes one method of initializing the
segment registers when SMBASE has been relocat-
ed. This method works if SMBASE is less than
1 Megabyte.
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Example D-1. Initialization of Segment Registers within SMM

271329–G9

Accessing SMRAM

LOADING SMRAM WITH AN INITIAL SMI
HANDLER

Under normal conditions, the SMRAM address
space should only be accessible by the processor
while it is in SMM mode. However, some provision
must be made for providing the initial SMM interrupt
handler routine.

Because System Management Mode must be trans-
parent to all operating systems, the initial SMM han-
dler must be loaded by the system BIOS. At some
time during the power on sequence, the system
BIOS will need to move the SMM handler routine
from the BIOS ROM to the SMRAM. The system
designer must provide a hardware mechanism that
allows access to SMRAM while SMIACTÝ from the
processor is inactive. One method would be to pro-
vide an I/O port in the memory controller that forces
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memory cycles at a given address to be relocated to
the SMRAM. Once the initial SMM handler has been
loaded to SMRAM, the I/O port would be disabled to
protect against accidental accesses to SMRAM.

The system BIOS must provide an SMM handler at
the address 38000H. If the system designer has
chosen to take advantage of the SMRAM relocation
feature of the processor, this handler must change
the SMBASE register in the SMM state save. Next,
the BIOS must move the full featured SMM handler
to the new address. An SMIÝ must be generated in
order to change the SMBASE register before the
BIOS passes control to the operating system.

SMRAM HIDDEN FROM DMA AND BUS
MASTERS

In a system that allows DMA or other devices to take
control of the system bus, care must be taken to
ensure that only the master processor can access
SMRAM. If an external bus master requests use of
the system bus (by asserting HOLD or BOFFÝ)
while the processor is executing an SMM handler
routine, the processor would respond by passing
control of the bus to the requesting device. The sys-
tem memory controller must redirect any memory
accesses that are not generated by the processor to
normal system memory as if SMIACTÝ was inactive.

DMA accesses to the SMRAM area must be redi-
rected to the correct address space when the initiali-
zation routine is loading SMRAM, as well as when
the processor is in SMM.

It is not recommended to block bus control requests
when in SMM, because the increased bus access
latency could cause compatibility issues with some
software or expansion hardware.

ACCESSING SYSTEM MEMORY FROM WITHIN
SMM

In order to enter a suspend state where power is
removed from some or all of system memory, it is
necessary for the processor to have access to the
entire system address space from within SMM. Ac-
cess to system memory from within SMM requires
that the memory controller decode both SMIACTÝ
and the processor address to determine accesses
to SMRAM. Only those memory addresses that are
defined as being SMRAM space would be directed
to SMRAM. If SMRAM is located at an address that
overlays normal system memory address space (see
section 8.6.1, ‘‘SMRAM Interface,’’.), the processor
must have a method of accessing both SMRAM (for
code reads) and system memory simultaneously.

271329–H0

Figure D-1. Blocking Other Bus Masters from Accessing SMRAM
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Ideally, a method of accessing system memory that
is mapped underneath SMRAM would be provided
by the system memory controller. The memory con-
troller would provide a register that allows system
memory at a given address to be remapped to a
different address, which is not overlaid by SMRAM.
When the SMM handler implements a suspend, it
would first move all of system memory that is not
underneath SMRAM to a non-volatile medium (such
as a hard disk drive). Next, the SMRAM image would
be transferred to the non-volatile medium. Finally,
the memory underneath SMRAM would be ac-
cessed and copied to the non-volatile medium with a
processor read to the remap address space, which
is redirected to the overlaid system memory (see
Figure D-2).

If the memory controller does not provide a method
of accessing overlaid system memory, it is possible
to implement a software procedure to accomplish
the same goal. However, the software method is
quite complex, and a hardware method is preferred.
A description of the software method follows.

The ability to access the system memory that is lo-
cated in the address space under SMRAM requires
a method of resuming from SMM to a predetermined
address space. This can be accomplished with the
following procedure.

When resuming from SMM, the processor continues
execution at the address contained in the CS and
EIP slots within the SMM state save. However, the
resume address cannot be changed by simply modi-
fying the CS and EIP slots, because the processor
will use the CS descriptor to determine the actual
resume address. The descriptor registers are stored
in reserved slots in the SMM state save, and they
cannot be directly modified.

By replacing the suspend state save with a previous-
ly obtained image of a state save that returns to a
known location, the SMM suspend handler can force
a return to a given address:

1. During initial system power up, execute an SMIÝ
from a predetermined address (the address im-
mediately preceding the address to which you lat-
er wish to resume). This can be accomplished by
generating an SMIÝ in response to an I/O in-
struction or executing a halt instruction and using
an SMIÝ to exit the halt state.

2. Save the state save from this SMM to a safe lo-
cation (SMRAM).

3. When the system needs to resume to a given
address from some other SMIÝ, the stored state
save can be substituted for the state save gener-
ated from that particular SMM.

271329–H1

Figure D-2. Remapping Memory That Is Overlaid by SMRAM
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Now that SMM can be resumed at a predetermined
address, access the entire system memory space
from within SMM before executing a suspend:

1. During a suspend SMM, save all system memory
except that which is located underneath SMRAM
to a specified (and reserved) section of the hard
disk. The ability to access system memory re-
quires the memory controller to decode both
SMIACTÝ and the processor address, and direct
a limited section (maybe 64 or 128K) of the proc-
essor address space to SMRAM. All other proc-
essor memory accesses should go to normal sys-
tem memory.

2. Save the contents of the SMM state save to the
hard disk.

3. Modify the SMM state save so that the RSM in-
struction will return to a predefined address,
which is not in the application that was interrupt-
ed. The code at this address must contain the
remainder of the suspend SMM handler. The pre-
defined address can be anywhere in the proces-
sor address space, because the contents of sys-
tem memory have already been saved to disk.

4. Execute an RSM instruction, which exits SMM
and returns control to a predetermined address
(which must contain the rest of the SMM suspend
handler).

5. Save the rest of system memory (that which is
located underneath SMRAM) to the hard disk.
This address space can now be accessed with
normal move instructions, because we are no
longer in SMM.

6. Save a flag (in CMOS memory) indicating that the
next reset should cause a resume from suspend.

7. Powerdown the memory (and possibly the proc-
essor).

8. When power is restored, the processor is reset
and begins execution of the POST in BIOS. Early
in the POST, the system should check the status
of the suspend flag.

9. Load a preliminary SMM handler to location
38000H and generate an SMIÝ. The SMM han-
dler should read the SMBASE slot from the SMM
state save that was stored to hard disk. SMBASE
is then modified to point to the final SMRAM loca-
tion and the system resumes from SMM back to
the system BIOS.

10. Restore the contents of system memory located
underneath SMRAM from the hard disk.

11. Generate a second SMIÝ, which executes an
SMM handler at the original value of SMBASE
(before the suspend SMM). The SMM handler
restores the contents of the rest of system
memory from the hard disk, and then restores
the original SMM state save to the SMM state
save area in SMRAM, discarding the most re-
cent SMM state save.

12. Execute an RSM instruction, which returns exe-
cution to the application that was interrupted by
the suspend request.

Interrupts and Exceptions During SMM
Handler Routines

To ensure transparency to existing system software,
the SMM handler should not depend on interrupt or
exception handlers provided by the operating sys-
tem. However, in some cases it may be necessary to
service interrupts or exceptions while in System
Management Mode. In these cases, SMM compliant
interrupt and exception handlers, as well as an SMM
compliant interrupt vector table, should be provided.

SMM COMPLIANT VECTOR TABLES

An SMIÝ interrupt request can be generated while
code is running under any of the other three proces-
sor operating modes (Real, Virtual-86, or Protected).
When entering the SMM handler, the processor en-
ters a pseudo-real mode, and the beginning of the
interrupt vector table must be located at the address
00000000H. Before allowing any interrupts or ex-
ceptions to occur, the SMM handler routine must
provide a valid interrupt vector table. Any code that
is executed before setting up an SMM compliant in-
terrupt vector table must be written carefully to en-
sure that no exceptions are generated.

The system memory controller could relocate ac-
cesses to the SMM interrupt vector table to a loca-
tion within SMRAM. In this case, when SMIACTÝ is
active, all accesses to the lowest 1 Kbyte of the
processor address space would be redirected to
SMRAM, which would contain an SMM compliant
vector table that has already been initialized.

If the system memory controller does not redirect
interrupt vector table reads to an address within
SMRAM, there are three steps required to provide
an SMM compliant interrupt vector table:

1. Save the contents of memory at address
00000000H to SMRAM
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2. Provide vectors for any possible interrupts or ex-
ceptions at the appropriate location in the vector
table

3. Restore the original memory contents from
SMRAM before exiting the SMM handler routine

INTERRUPTS AND SUBROUTINES WITH
SMRAM RELOCATION

There is an additional issue that must be considered
if interrupts or exceptions are to be executed within
SMM and SMRAM has been relocated. Interrupt or
subroutine calls from within SMM operate in a man-
ner similar to Real Mode. When a subroutine is
called or an interrupt is recognized, the 16-bit CS
and IP registers are pushed onto the stack to pro-
vide a return address.

When SMRAM is relocated to an address space
above 1M and an interrupt or subroutine call occurs,
only 16 bits of the EIP register are pushed onto the
stack. When returning from the subroutine or inter-
rupt, the processor will vector to a location where
the upper 16 bits of EIP are zero. This can be avoid-
ed for subroutines by using an address size override
before calling the subroutine. However, the issue re-
mains for interrupts.

Military Intel486 DX, IntelDX2, and
IntelDX4 Processor Floating Point
Operation and SMM

THE NEED TO SAVE THE FPU ENVIRONMENT

When the processor enters System Management
Mode, the context information for the interrupted ap-
plication is automatically saved to a specific state
save address. When the SMM handler returns con-
trol to the interrupted application by executing the
RSM instruction, the context information from the in-
terrupted application is restored to the processor by
reading from the state save location. This mecha-
nism allows the SMM handler routine to modify most
of the processor registers without the need to explic-
itly save them to memory. However, the registers in
the processor’s Floating Point Unit (FPU) are not au-
tomatically saved when the processor enters SMM.
If the SMM handler needs to modify any of the regis-
ters in the FPU, or if the register data will be lost due
to entering a power down state, the SMM handler
must first explicitly save the FPU state as it existed
in the interrupted application.

There are two instances in which an SMM handler
routine must be aware of the Floating Point Unit
(FPU):

1. When removing power from the processor / FPU
for the purpose of executing a suspend se-
quence.

2. When the SMM handler uses FPU instructions.

In both of these cases, the SMM handler must save
the state of the FPU as it was left by the interrupted
application.

The information stored by the FPU state save in-
structions (FSAVE, FNSAVE, FSTENV, and
FNSTENV) is dependent on the operating mode of
the processor. The FPU state save instructions store
the FPU state information in one of four formats: 16-
bit Real Mode, 32-bit Real Mode, 16-bit Protected
Mode, or 32-bit Protected Mode, depending on the
processor operating mode. The content of the infor-
mation saved also varies slightly, depending on the
processor operating mode in which the save instruc-
tion was executed. For example, the 32-bit Protect-
ed Mode FNSAVE instruction saves the address of
the last executed FPU instruction and its operands
in the form of a segment selector and a 32-bit offset.
In contrast, the 16-bit Real Mode FNSAVE instruc-
tion saves the address information in the form of a
20 bit physical address. Because the format with
which the FPU state restore instructions (FRSTOR
and FLDENV) recall the information is also depen-
dent on the operating mode of the processor, the
save and restore instructions must be executed from
the same processor operating mode.

SAVING THE STATE OF THE FLOATING POINT
UNIT

When an SMM handler routine needs to save the
state of the Floating Point Unit, it must save all FPU
state information necessary for the interrupted appli-
cation to continue processing. This state information
includes the contents of the Floating Point Unit
stack, which requires use of the FNSAVE or FSAVE
instruction (FSTENV does not save the contents of
the FPU stack). If the last executed non-control
Floating Point instruction caused an error (such as a
divide by 0), the saved information must also include
the address of the failing instruction and the ad-
dresses of any operands for that instruction. Without
these addresses, it would be impossible for the FPU
exception handler of the interrupted application to
correct the error and restart the instruction.
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The FNSAVE and FSAVE instructions differ in that
FNSAVE does not wait for the FPU to check for an
existing error condition before storing the FPU envi-
ronment information. If there is an unmasked FPU
exception condition pending, execution of the
FSAVE instruction will force the processor to wait
until the error condition is cleared by the software
exception handler. Because the processor is in Sys-
tem Management Mode, the appropriate exception
handler will not be available, and the FPU error
would not be corrected in the manner expected by
the interrupted application program. For this reason,
the FNSAVE instruction should be used when saving
the environment of the FPU within SMM.

Because the SMM handler does not know the proc-
essor mode in which the interrupted application was
executing (16 or 32 bit, Real or Protected), the SMM
handler must execute the FNSAVE instruction in a
mode in which all FPU state information is stored.
The 32-bit Protected Mode format of the FNSAVE
instruction is a super set of all other formats of the
FNSAVE instruction. Therefore, executing the 32-bit
Protected Mode FNSAVE instruction ensures that all
FPU state information will be saved.

Executing the FNSAVE instruction in 32-bit Protect-
ed Mode requires that the processor be temporarily
placed in Protected Mode. Rather than perform all of
the setup details and overhead necessary to place
the processor into Protected Mode, including the ini-
tialization of all descriptors and descriptor tables, it
is possible to temporarily place the processor into
Protected Mode for the purpose of executing only a
few carefully written instructions. This can be ac-
complished by setting the PE bit in the CR0 register,
and then executing a short jump to clear the instruc-
tion pipelines.

It is important to note that any instruction that modi-
fies a segment register will cause the processor to
attempt to load a new descriptor from the descriptor
table. (The occurrence of an interrupt or an excep-
tion would cause the processor to load a new de-
scriptor, so interrupts must be disabled during this
sequence.) Because neither the descriptors nor the
descriptor table have been initialized, this would
cause the system to crash. Therefore, all segment
registers that are to be used in the FPU state save
instructions must be initialized before entering Pro-
tected Mode.

Example D-2 gives an example of the code that can
be used to place the processor in Protected Mode
and save the FPU state.

Note that the no wait form (FNSAVE) of the save
instruction must be used. In the event that the previ-
ous FPU instruction caused a floating point error, we
do not want to wait for this error to be serviced be-
fore executing the save instruction. Additionally, if
the FSAVE instruction were used, the operand size
override prefix would be incorrectly applied to the
implicit WAIT instruction which precedes FSAVE,
rather than to the save instruction itself.

Before exiting the SMM handler and returning to the
interrupted application, the register contents of the
Floating Point Unit must be returned to their previ-
ous values. This can be accomplished by executing
the 32-bit Protected Mode format of the FRSTOR
instruction. Example D-3 gives an example code
segment that can be used to restore the FPU to the
state in which it was interrupted by the SMI request.

Note that the no wait form (FNRSTOR) of the re-
store instruction must be used. If the FRSTOR in-
struction were used, the operand size override prefix
would be incorrectly applied to the implicit WAIT in-
struction which precedes FRSTOR, rather than to
the save instruction itself.

Support for Power Managed
Peripherals

SHADOW REGISTERS

Before power is removed from any device, the state
of that device must be saved in a protected memory
space so that the device can be reinitialized to its
previous state. If a peripheral contains a write only
register, the value in that register can be recovered
by providing shadow registers that are both readable
and writeable.

These shadow registers should be updated every
time the peripheral registers are written, but they
have no function other than tracking the data written
to a particular register.
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Example D-2. Saving the FPU State in 32-Bit Protected Mode

271329–H2

In addition to the write only registers in a system,
there are several other registers that must be shad-
owed. Any device that requires registers to be pro-
grammed in a particular sequence must also have its
registers shadowed. Examples in a typical personal
computer include the programmable interrupt con-
troller, the DMA controller, and the programmable
timer/counter.

It is also possible to perform shadowing of some
write only registers using SMM. Any time a write cy-
cle is generated to a write only register, the system
can generate an SMIÝ. The SMM handler can use
the processor state information saved in the SMM
state save to save the data from the interrupted I/O
cycle to a predetermined location in the SMRAM
space.
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Example D-3. Restoring the FPU State from a 32-Bit Protected Mode Save

271329–H3

The information contained in the SMM state save
can be used (with the knowledge that the SMIÝ was
in response to an I/O write instruction) to determine
both the address and the data of the interrupted
write instruction. The SMM handler can examine the
OPCODEs of previous instructions by decrementing
the IP (or EIP) register. Once the correct OPCODE is
determined, it can be used with the values in the
EAX and DX slots of the SMM state save to update
the information in the memory used to shadow the
I/O register. I/O write instructions occur in one of
three forms: 1) a write to an address that is specified
in the OPCODE; 2) a write to an address contained
in the DX register; or 3) a string write to an address
contained in the DX register.

The I/O write instructions have the following
OPCODEs:

Table D-1. I/O Write Instruction OPCODEs

Instruction OPCODE Notes

OUT x,al E6x x is the address of

the I/O port

OUT x,ax E7x x is the address of

the I/O port

OUT x,eax E7x x is the address of

the I/O port

OUT dx,al EE

OUT dx,ax EF

OUT dx,eax EF

OUTSB 6E

OUTSW 6F

OUTSD 6F
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