intal AP-731

APPLICATION
NOTE

Understanding the Interrupt
Control Unit of the
80C186EC/80C188EC

Processor
Sean Kohler Intel Corporation
Application Engineer 5000 West Chandler Boulevard

Chandler, AZ 85226

March 13, 1996

I Order Number: 272823-001

Information in this document is provided in connection with Intel products. Intel assumes no liability whatsoever, including in-
fringement of any patent or copyright, for sale and use of Intel products except as provided in Intel's Terms and Conditions of
Sale for such products.

Intel retains the right to make changes to these specifications at any time, without notice. Microprocessor products may have
minor variations to this specification known as errata.

*QOther brands and names are the property of their respective owners.
Contact your local Intel sales office or your distributor to obtain the latest specifications before placing your product order.

Copies of documents which have an ordering number and are referenced in this document, or other Intel literature, may be ob-
tained from:

Intel Corporation

Literature Sales

P.O. Box 7641

Mt. Prospect, IL 60056-7641

or call 1-800-548-4725

COPYRIGHT © INTEL CORPORATION, 1996

u
I nu® Contents

Understanding the Interrupt Control Unit of the
80C186EC/80C188EC Processor

1.0 INTRODUCTION .o e e e e s h e s s hs e sha e £ s sha s e b e e s bsaeshsbeaeshbe s s eba e eas 1
2.0 OVERVIEW ... e e e b e h b s e bbb s e bbb e shb e s e sb b s sb e e s sbs e e 2
3.0 INTERRUPT PROCESSING ...t st e e s s n e s s as e 2
4.0 82C59A PROGRAMMINGoiiiiiiiii i s s e s e e s bbb e

4.1 ICW Initialization Sequence ...
4.2 Initialization Command Words

4.2.1 ICW1 Beginning of INitialization REGISTENcoiiiii ittt e e 5
A | O R oo T = TP 6
4.2.3 ICW2 Base Interrupt TYPE REGISIEciuiiiiiie ittt ettt e eie e e e eneaes 6
A L O D oo T = TP 6
4.2.5 ICW3 Cascaded Input Selection/SIAVE IDcccoceiiieiiiiie et 7
L I (OB B o o7 T = TP 7
4.2.7 ICW4 Special Fully Nested Mode/ Automatic End of Interrupt Mode Registerccccccueeeene 7
4.2.8 ICWA ACCESSooiiiii ittt e e e e s e she s e b e bbb s e 7
4.3 Operational ComMMANT WOIAScc.uuiiiiiiii ettt et ee skt ste e e ste e e sbe e e et e e s e abbe e ere e e sbeeeas 7
4.3.1 OCW1 Interrupt Mask Register ... T
L © L @A T Y Tt PP 7
4.3.3 OCW?2 Priority and EOI REQISTENcci ittt ettt ittt et s ee e nee e 7
4.3.4 OCWZ2 ACCESS ...ctiiuiii ittt e e e eh b s shas e she s e bbb s be e shbe e b be s s ebs e e 8
4.3.5 OCWB3 Special Mask Mode and Read Register Selectionccoocceeeiiiriiiiiin i 8
4.3.6 OCWS ACCESS ...oviiuiiiiiiitiie ittt e b s sh e s b e sha s oo sha s e b e e s be e shbeaesbbe s s ebs e e 8
5.0 RELATED INFORMATIONoiiitiiiittiiietiiet et ettt ettt sttt et sh et es s e et e e ettt ane st she e ebe e s e enbenn s 8
APPENDIX A SOftWare EXAMPIESco.uuiiiiiie ettt ettt sttt et et e s sae e s e e st be e s eae e e e eanbee e snneeas A-1
A.1 Initialization Sequence and ISR EXaMPIEScccoiiiiiiiiiiiiier e et A-1
A.2 ISR for Unexpected or Uninitialized INTEITUPLScooiviiiiiiiiir i e e A-9
FIGURES
Figure 1. Interrupt Control Unit BIOCK DIGGIAIMcooiuiiiiiie ettt ettt i enn e e
Figure 2. Initialization Sequence of the ICW Registers
TABLES
Table 1. AL AdAress LiNe CONNECHONSc.uuiiiiiiit ittt e st e e e s 5
Table 2. Related INFOrMatioN ..o e e s e 8
EXAMPLES
Example A-1. Initialization Sequence and ISR Examples .
Example A-2. ISR for Unexpected or Uninitialized INterruptS.........cooovviei e et e A-9

u
InbL AP-731

1.0 INTRODUCTION Unlike other memlers of the 186 family ofembedded

) microprocessors, theD8186EC/80C&88EC processor uses
The Intel 186 processor core has two external interrupt gocsga compéile interrupt control unit instead of a
sources; the Non-Maskable Interrupt (NMI) and a maskalg, yrietaryinterrupt controller. (The BC59A is an industry
interrupt source (INR). The NMI iput of the core iS giandard interrupt controller foembedded and PC-
brought directly out to the NMI pin. For most embeddeghmpatiple solutins.) Two 82C59A compatiblprogram-
designs, a single maskable interrupt input is not sufficieg{gpe interrupt controllers (PIC) are located on the
In order to expand the caplities of the single maskable gnc1gEC/9C188EC processordie. One PIC is
interrupt an interrupt controller isseded. Most of the 186 ;hfigyred as the master while the other is configured as a

embedded processor proliferations use a proprietafyve The slave is connected to IR7 of the master. See
interrupt controller toexpand the rumber of available Figure 1.

maskable interrupts.

Master 8259A
INTO (3 > RO INT >
INT1 O3 > |[R1
INT2 (O > |R2 INTA ==
INT3 3 >IR3 _
INT4 (3 > IR4 D70 <:> Al
INT5 (3 > IR5 AQ ==
INT6 (3 > |IR6
N O 0
222 2l |
000 N é
Internal Interrupt L 4 ﬁ IS
M et =1
Request Latch < ke S
Registers § <| |©
= ©
> Slave 8250A HRE E
£ Q o
> TMIO o f\ 20 INT gl || [E
Cam TMIlE IR1 = -
DMAL2 | oo INTA |
J DMA13 _| oo
| J ™2 na D7:0<Zj‘>
~ RXIO; IR5 Aol _ Al
TXIO. <
> |IR6
INT7
> |R7 (— p—
N - O
Ea 0 n oy
<<
Cam [ONONG)
AAA
CAS Bus
Interrupt Requests From Integrated Peripherals

Figure 1. Interrupt Control Unit Block Diagram

u
AP-731 InbL

The 82C59A has eight interrupt request lines. By cascadBi@ INTERRUPT PROCESSING

additional 82C59As, up to 64 interrupt vest lines can be)

supprted. Each cascaded 82C59A is called a slave; th¥YB€n an interrupt occurs, several steps are taken by the
can be only one master. The master PIC of tREPCESsOr

80C186EC/80C188EC processoprioritizes interrupt
requests from attached slaves and IR lines and presénts
requests, one at a time, to the singlaskable interrupt line

of the processor core. 2. The Trap Flag (TF) bit and the Interrupt Enable Flag
(IF) bit are cleared in the PSW.

A partial machine status is saved/copied by pushing the
Program Status Word (PSW) onto the stack.

This application note contains:

« A step-by-step description of the interrupt processing This prevents maskable interrupts or single step
sequence. exceptionsfrom interrupting the processor during the

e A description of subtleties associated with ISR. While in the ISR:

programming 82C59A registers. « To nest interrupts, set the IF bit in the PSW by
issuing an STI instruction.
This application note is meant to be used in conjunction
with the 80C186EC/80C188EC Migmcessor User's
Manual. Refer to the User's Manual for aomplete
explanation of the operation of 82C59A =grs.

« To use single stepping inside an ISR, push/copy
the PSW onto the stack using the PUSHF
instruction, modify the copy of the PSW on the
stack to set the TF bit and then restore the PSW
by popping the altered copy off of the stack

2.0 OVERVIEW using POPF.

The 80C186EC/80C188EC processor can detect up to 356 The current CS and IP areghed onto the stack.
different interrupts. Each interrupt is specified by its

interrupt type ranginfrom 0 to 255. Each interrupt type had- The interrupt controller passes the interrupt type to the
a corresponding interrupt vector, which is the interrupt type Processor. The processor fiplies the interrupt type
multiplied by 4. A vector is a double word pointer that by 4 to yield thébase address of the associated interrupt

points to the associated Interrupt Service RoutinR)IBn vector. The processor reads a word from that address
interrupt vector table imemorystores up to 256 interrupt ~ @nd loads it into the IP register. It then reads the next
vectors. The first word of theector contains the fsfet of word at the interrupt vector address plus 2 and loads the

the associated ISR while the second word contains the Value into the CS register. The processor begins
segment This makes each vector tatal of 4 bytes. The €xecuting code at the new locationdified by CS and
interrupt vector table is located at the base of the IP- This location is the ISRassociatedwith the
processor’s memory map, at 0000:0000. The interrupt Particular interrupt.

vector table is 1 Kbyte in length (4 bytes multiplied by 256

types) and therefore goes up to 0000:03FF. Because of the

location of the interrupt vectors, the lower 1 Kbyte of

memory space should be reserved for interrupt vectors.

u
InbL AP-731

Upon completion of the ISR, therogrammermust take 4.0 82C59A PROGRAMMING
several steps:

1. When the interrupt comes from one of the request lirfed ICW Initialization Sequence

of the P.IC (ot an exceptlon), c.Iear the In-Se.rV|ce lgtefore normal operation can begeggach 82C59Anust be
for that interrupt source by issuing an end of interru

R\titializedb a sequence of two to four programming bytes
commandEQl). called Initia)I/izatior?Command Words (I(Zl;/s).gAfter reget,y
When the interrupt source is a slaviEPclear the the states of all th82C59A regsters are undefinedlhe
master's In-Service bit, then clear the slave's IKCWS are used teet up the necessary conditions and
modes for proper 82C59A operation. Minimum 82C59A
initialization requires at least ICW1 and ICW2 to be
2. lIssue afRET instruction. configured.ICW3 and ICW4 areised only if designated in

ICW1. The details of the function of each register are
When an IRET instruction isxeaited, theprocessortakes described in the80C186EC/80C188EC Microprocessor

Service bit.

the following steps: Users Manual
1. Restores the CS and IP by popping the copies off the NOTE:
stack.

The ICW initialization sequee is started (or
restarted) at ICW1 by writing data to master port
MPICPO or slave port SPICPO with the data bit
3. Executes instructions at the address that the CS and Iposition 4 setto a 1.
point to (where the processdeft off before the
interrupt occurred).

2. Restores the PSW by popping its copy off the stack.

Figure 2 illustrates the initialization seence ofthe ICW
registers. The sequence in which thesegisters are

The stack is used to store the pre-interrupt flag status ghsgrammed is critical.

pre-interrupt programxecution location. It is important to

locate and allocate the stack such that data/code corrup@oiee the 82C59A is itialized, any changes to the ICWs
does not occur during execution of single and neste made by restarting the sequence. If the sequence is
interrupts. interrupted, the state machine can be reinitialized by
writing to ICW1.

AP-731

In

Cascade

Mode
?

SNGL=1 Yes

ICW3

Ready to Accept
Interrupt Requests

A4327-01

Figure 2. Initialization Sequence of the ICW Registers

u
InbL AP-731

Once the initializatiorsequence begindCW1 has been Table 1. Al Address Line Connections
accessed), the 82C59A automatically performs the

i : A1l of Processor
following events: Port Name PCB Offset

« The edge sense circuit isset, whichmakes low to AD 0f 82C59A

high transitions on the interrupt reque@R) line MPICPO 00 0
necessary for a valid interrupt. MPICP1 02 1
« The interrupt maskregister is cleared to allow| SPICPO 04 0
interrupts on all IR lines to bherocessed. Sindaitial- SPICP1 06 1

ization is not yet completed, it is strongly
recommended that all maskalifgerrupts be meked The first character of the port name indicates which internal
during initialization by issuing a CLI instruction. ThéB2C59A port is refienced:*M” indicates the Master PIC
CLI instruction masks off the single maskable interrupnd “S” indicates the Slave.

source on the 8086 enhanced core. Since 2B58A
presents interrupt requests via the singleskahle
interrupt input, any iguest coming through any of th

PICs will be masked when theCLl instruction is Tne |nitialization Command Words (I0/s) are
executed. Once italization is complete, an STI programmed in a sequéaitformatand are used to set up
instruction can be used to enable interrupts. the integrated interrupt controller to an tiai state of
« IR7 input is assigned the highest priority. operation. Typically, the ICW registers are grammed
only once and are left untouched for the duration of the
application. This section highlights some of the subtleties
» Special Mask Mode is cleared and StdRemd isset to associated with the functionality of each register and with
IRR. accessing each register.

e4.2 Initialization Command Words

¢ The slave mode address is setto 7.

NOTE:

For the 80C186EC processor, the SNGL bitudth
always be cleared (leading to initialization of ICW3)
and the IC4 bit should always be set (leading to
initialization of ICW4).

4.2.1 ICW1 Beginning of Initialization
Register

ICWL1 is used to select level or edge sensitive triggering on
the IRQ lines, theumber of 82C59As in the system and to

The complex irialization sequence exists because tH%dlcate whether or not the ICWA register is used in the

original 8259 was designed with only one address “H'Q!tialization sequence.

Without the use of an initialization geence (state
machine), a device with only one address line would be
able to access only two registers (ports). By implementing Mixed mode triggering is not possible. Either all of
an initialization sequence, designers could keepctiip IRO throughlIR?7 is level triggered or edge triggered,
small and still acess more than two registers (using only but not both.

one address line).

NOTE:

There are some subtle differences between edge and level
Write accesses to the Initialization Caomand Wads of the sensitive interrupts. If an IRQ line is configured as level
82C59A are controlled by the following: sensitive and is left asserted while it is serviced, the
e The state of the AO line of th82C59A (which port processor immediately vec_tors b‘?‘Ck into the ISR once the

being accessed) EOI is |§sued. Therefore, if configured as.levgl sensitive,

the IR line must be deasserted before issuing the EOI
* The data written to the register command inside the ISR. the IR line is configured as
edge sensitive, thprocessomill not vectorbackinto the
ISR if the IR line is kept assertedhce the EOI has been
The AO line of the 8C59A is connected tihe Al address issued. In order for another interrupt to occur on a edge
line of the 80C186EC/80C188EC passor. See Table 1. sensitive IR line, the line must be brought to its inactive

state for 100 ns to reset the edge detection circuitry.

* The sequence in which thatd is written

u
AP-731 InbL

4.2.2 ICW1 Access mode and a spurious interrupt does occur, a typRaISR
(spurious interrupt ISR) simply returns control back to the
ICW1 is a write-only register that is accessed throughain progam by issuing an IRET instruction. See
MPICPO or SPICPO witklata bit position 4 set. See “ICWAppendix A for details
Initialization Sguence” on page f&r more details.
If IR7 is being used and it is not configured in Cascade

) Mode, then there are two possitidi for an interrupt of
4.2.3 ICW2 Base Interrupt Type Register type IR7 to occur:

The data written to this registeorresponds to the bas¢ A valid IR7 interrupt occurred
interrupt type. The base interrupt typesiionymous with « A spurious interrupt was detected on one of the IR
the interrupt type for IROOnce the base type has been |ines of the PIC
defined each subsequentniRine will have a TYPE =
BASE +n. The interrupt vectors for each IR liméll be at If not configured for Cascade mode, once inside the IR7
the location TYPE*4 in memory. ISR, software must examine the In-Service register to
determine what event caused the processor to enter the ISR.

When an IR line is configured as a cascaded input, it sfilthe In-Service bit for IR7 is set, then a valid IR7 interrupt
has an associated type (interrupt vector), but in most cagggurred. If the In-Service bit is not set, then a spurious
itis not used. interrupt must have ocoed on one of the eight IR lines of

.)))) the PIC. Once the software has determined that it is inside
There is a case in which an IR line configured a<c@ds o |R7 |SR peause of a spuriousterrupt, most ISR just
Mode still ses its corresponding interrupt vector. Thigg e an |RET instruction to return control back to the main
special case exists when IR7 is configured foro@de oam f the processor is inside the IBR beause of a
mode aqd 't_ isalso used for s.punous interrupt detection. Galid interrupt, the interrupt is serviced, its In-Service bit is
any IR line |§ qsserted and is deasserted before the f‘?"lﬁ%red by issuing a End of Interrupt (EOI) then finally the
edge of the fist interrupt achowledge pulse, then a specigfsg s completed and control returned back to the main

interrupt called a “spurious interrupt” is generated. T ogram by issuing a IRET instruction. See Appendix A for
B82C59A eetects these spurious interrupts when an IR linejg example.

asserted in this nmaer, and generates an interrupt of type

IR7. The only difference between a true IR7 interrupt and

an interrupt caused by a spurious interrupt detection is the.4 ICW2 Access

fact that when a spurious interrupt is acknowledged, the In-

Service bit for IR7 is never set. Spurious interrupt detectifgW?2 is a write-only register which is accessed by a write

is useful in noisy environments where unwanted glitchtgss MPICP1 or SPICPImmediately after ICW1 has been

might be interpreted as valid interrupt assertions. configured. See “ICW Initialization Segace” for more
details.

If IR7 is configuredfor Cascade mode then an interrupt of

type IR7 can occur if a spurious interrupt was detected on

one of the IR lines of the PIC. If cofigured for Cascade

u
InbL AP-731

425 ICW3 Cascaded Input 4.3 Operational Command Words

Selection/Slave ID
Once the 82C59A has beanitialized using the I@Vs, the

ICW3 of the master is used to select whether or not a si&gRerational Command Word@OCWs) can be used to
will be conrected to the associated IR line. modify priority schemes, End of Interrupt (EOI) configura-
tions and interrupt masking.

ICW3 of a slave is used to set the associated $kavéhe

slave ID should match the IR line number of the master tH4i'é& OCWs are available for programming but, unlike the
it is connected to. ICWs, the OCW registers can be accessed in any order.

These registers can be accessed whenevgrdgeammer
NOTE: desires, preided that the ICWs havéeen previously
initialized. Although there is nocaessing sequence to the
OCWs, accessing each OCW and accompanyéuister
(described later) is not intuitive. A detailed description of
the OCW registers is given in tf80C186EC/80C188EC
Microprocessor Users ManualThis section highlights
some of the subtlets associated with the function of each
register and with accessing each register.

Special precautions must be takenen connecting

a slave to IR0 of a master 82C59A module. A slave
programmed for an ID of zeswill be active for both
interrupts that it hasreqested, as well as for
uncascaded master interruptsicascaded interrupts
leave the cascade b@€AS2:0) lines low. If this
situation occurs thereill be contention on the data
bus, since both the master and the slave attempt to

drive the interrupt type on the data budever 4.3.1 OCW1 Interrupt Mask Register

cascade a slave 82C59A moduldR® of a master

module unless IR0 is the last available uncascadedOCWT1 is the interrupt mask registeretfing a bit in the
input (i.e., the system is fully cascadeith eight mask regster disables the correspting interrupt request
slave 82C59A modek). on the associated IR line.

It is important to note that if the IR line is asserted while it
426 ICW3 Access is masked, the associated interrupt request bit will be set,

but the interrupt will never be presented to the processor
ICW3is a Write-only register. If the SNGL bit of ICW1 Wagore because it is masked. If an IR line is unmasWaite
cleared during the initialization sequence, ICW3 can B interrupt request bit is set, the interrupt request will be
accessed by a write to MPCIP1 or SPCIP1 immediateliesented to the processor core. Theeefibis important to
after ICW2 hasbeeninitialized. See “ICW Initialization clear the associated interrupt request bit when masking and
Sequence” for more details. unmasking interrupts. The interrupt requdst can be
cleared by reading the interrupt request register (see
“OCW3 Special Mask Mode and Read Register

4.2.7 ICW4 Special Fully Nested Mode/ Selection”).

Automatic End of Interrupt Mode
Register

4.3.2 OCWL1 Access
ICW4 is a write-only register. Special Fully Nested (SFN)

Mode and Automatic End of Interrupt (&E) Mode are OCW1 is accessed by readwarites to SPICP1 or MPICP1
selected using ICW4. provided that the ICW initialization spuencehas been
completed.

4.2.8 ICW4 Access

4.3.3 OCW?2 Priority and EOI Register
ICW4 is accessed by a write to MER1 or SPICP1

provided that the 1C4 bit was set in ICW1 during the initia@CW?2 is used to set interrupt priorgghemes and various

ization sequence. See “ICW Initialization Seqoe”for End of Interrupt (EOI) configurations. A detailed

more details. description of its operation is in tlB®C186EC/80C188EC
Microprocessor User's Manual

u
AP-731 InbL

4.3.4 OCW?2 Access The In-Service register is an 8-bit register containing the

priority levels that are being serviced. The In-Service
OCW?2 is a writeonly register that is accessed bytesito register is updatedvhen an End of Interrupt (EOI)
MPICPO or SPICPO with data bit position 3 and 4 clearegmmand isssuedOncethe In-Service bit is set, assertions
provided that thelCW initialization segence has beento the corresponding IRine will be ignored until it is
completed. cleared (by issuing aBOl).

) The Interrupt Request register is an 8-bit register containing
4.3.5 OCWS3 Special Mask Mode and Read the priority of the interrupts waiting to Ecknowledged.
Register Selection The highest request level is reset from the Interrupt Request

register when an interrupt is acknowledged.
OCWa3 is used to control Special Mask Mo&all Mode

and read register selection. &tdiled &planation is given
in the 80C186EC/80C188EC Microprocessor User4.3.6 ~OCW3 Access
Manual

OCWa3 is a write only register that is accessed by writing to
Setting the ERR bit in conjunction with either clearing dMPICPO or SPICPO with data bit position 3 set dath bit
setting the RSEL bit determines which register is accesgaditions 4 and 7 cleared.
through a read cycle the MPICPO or SPICPO port.

* If the OCW3 register is written to and the RSEL bit i§ RELATED INFORMATION
set in conjunction with the ERR bit, then a read to
either MPICPO or SPICPO will be mad to the In- Intel offers a variety of information tughthe World Wide
Service register. Web at http://www.intel.com.

« If the OCW3 register is written to and the RSEL bit i'?o order printed Intel literature, contact:
cleared in conjunction with thERR bit,then a read to
either MPICPO or SPICPO will be a read tolthi@rrupt |ntel Corporation
Request register. Literature Fulfilment
. . . P.O.Box 7641
The RSEL bit can only be modified when the ERR bit is SQht. Prospect, IL 60057641

1-800-548-4725

Table 2. Related Information

Document Name Order #
80C186EC/80C188EC Microprocessor User’s Manual 272047
Embedded Microprocessors Databook 272396

see the 80C186EC/80C188EC and 80L186EC/80L188EC 16-Bit High-Integration
Embedded Processors datasheet

Peripheral Components Databook 296467
see the 82C59A-2 CHMOS Programmable Interrupt Controller datasheet

u
InbL AP-731

APPENDIX A
Software Examples

A.1 Initialization Sequence and ISR Examples

This software example illustrates interrupt vector initialization, basic interrupt controller initializatiomnsecaed
simple interrupt service routines. This software veaasembled using Intel ASM86 and was tested using the Intel
EV80C186EC evaluation boaREV 1.1.

Example A-1. Initialization Sequence and ISR Examples (Sheet 1 of 8)

$ TITLE (82C59 Programming Example)
$ MOD186

NAME ICU_DEMO

$INCLUDE (C:\EV186EC\ECPCB.INC)
;INCLUDE PERIPHERAL CONTROL BLOCK REGISTER MAP

_7SEG1 EQU 1000H ;7 SEGMENT #1 I/O ADDRESS

_7SEG2 EQU 1010H ;7 SEGMENT #2 1/0 ADDRESS

ZERO EQU O03FH ;BIT MAPS FOR 7 SEG DISPLAY

ONE EQU 06H

TWO EQU 05BH

THREE EQU 04FH

FOUR EQU 066H

FIVE EQU 06DH

SIX EQU 07CH

SEVEN EQU O07H

PATTERNL1 EQU 064H ;IDENTIFIES SPURIOUS INTERRUPT ON MASTER
PATTERN2 EQU 052H ;IDENTIFIES SPURIOUS INTERRUPT ON SLAVE

MASTER_BASE_TYPE EQU 96 ;TYPE*4 =BASE ADDR OF MASTER
SLAVE_BASE_TYPE EQU 104 ;TYPE*4 =BASE ADDR OF SLAVE

;SEE FIGURE 8-1 OF THE 80C186EC/80C188EC USER'S MANUAL

INTO_TYPE EQU MASTER_BASE_TYPE
INT1_TYPE EQU MASTER_BASE_TYPE +1
INT2_TYPE EQU MASTER_BASE_TYPE + 2
INT3_TYPE EQU MASTER_BASE_TYPE +3
INT4_TYPE EQU MASTER_BASE_TYPE + 4
INT5_TYPE EQU MASTER_BASE_TYPE +5
INT6_TYPE EQU MASTER_BASE_TYPE + 6
INT7_TYPE EQU SLAVE_BASE_TYPE +7
SPM_TYPE EQU MASTER_BASE_TYPE +7

I A-1

u
AP-731 InbL

Example A-1. Initialization Sequence and ISR Examples (Sheet 2 of 8)
T B B S B I IS e o
;CODE SEGMENT AT LOCATION 1000H WHICH IS IN THE SRAM OF THE EV80C186EC EVALUATION

;BOARD
T L

EC_CODE SEGMENT AT 0100H ;PUT CODE IN SRAM OF EVALBOARD
ASSUME CS:EC_CODE

MAIN: CLI ;DISABLE INTERRUPTS

CALL CLR_LEDS ;CLEAR 7SEG DISPLAYS

CALL SETVECT ;INITIALIZE INTERRUPT VECTORS
CALL INIT_ICU ;INITIALIZE INTERRUPT CONTROL UNIT
STI ;ENABLE INTERRUPTS

JMP $;WAIT FOR INTERRUPTS

T T T L L 2
;PROCEDURE: SETVECT

;THIS PROCEDURE INITIALIZES THE INTERRUPT VECTOR TABLE FOR EXTERNAL

;INTERRUPTS INTO-7 AND ALSO INTITIALIZES THE INTERRUPT VECTORS FOR SPURIOUS
;INTERRUPT DETECTION

T T T o L
SETVECT PROC

XOR AX, AX ;CLEAR ACCUMULATOR
MOV DS, AX ;CLEAR DATA SEGMENT

;SETUP INTO INTERRUPT VECTOR

MOV DI, INTO_TYPE*4 ;MOVE BASE ADDRESS OF INTO VECTOR IN TO DI
MOV WORD PTR DS:[DI], OFFSET INTO_ISR

MOV WORD PTR DS:[DI+2], SEG INTO_ISR

;SETUP INT1 INTERRUPT VECTOR

MOV DI, INT1_TYPE*4 ;MOVE BASE ADDRESS OF INT1 VECTOR IN TO DI
MOV WORD PTR DS:[DI], OFFSET INT1_ISR

MOV WORD PTR DS:[DI+2], SEG INT1_ISR

;SETUP INT2 INTERRUPT VECTOR

MOV DI, INT2_TYPE*4 ;MOVE BASE ADDRESS OF INT2 VECTOR IN TO DI
MOV WORD PTR DS:[DI], OFFSET INT2_ISR

MOV WORD PTR DS:[DI+2], SEG INT2_ISR

;SETUP INT3 INTERRUPT VECTOR

MOV DI, INT3_TYPE*4 ;MOVE BASE ADDRESS OF INT3 VECTOR IN TO DI
MOV WORD PTR DS:[DI], OFFSET INT3_ISR

MOV WORD PTR DS:[DI+2], SEG INT3_ISR

;SETUP INT4 INTERRUPT VECTOR

A-2

u
InbL AP-731

Example A-1. Initialization Sequence and ISR Examples (Sheet 3 of 8)

MOV DI, INT4_TYPE*4 ;MOVE BASE ADDRESS OF INT4 VECTOR IN TO DI
MOV WORD PTR DS:[DI], OFFSET INT4_ISR
MOV WORD PTR DS:[DI+2], SEG INT4_ISR

;SETUP INT5 INTERRUPT VECTOR

MOV DI, INTS_TYPE*4 ;MOVE BASE ADDRESS OF INT5 VECTOR IN TO DI
MOV WORD PTR DS:[DI], OFFSET INT5_ISR
MOV WORD PTR DS:[DI+2], SEG INT5_ISR

;SETUP INT6 INTERRUPT VECTOR

MOV DI, INT6_TYPE*4 ;MOVE BASE ADDRESS OF INT6 VECTOR IN TO DI
MOV WORD PTR DS:[DI], OFFSET INT6_ISR
MOV WORD PTR DS:[DI+2], SEG INT6_ISR

;SETUP INT7 INTERRUPT VECTOR (ALSO THE INTERRUPT VECTOR FOR SPURIOUS
;INTERRUPT DETECTION FOR THE SLAVE)

MOV DI, INT7_TYPE*4 ;MOVE BASE ADDRESS OF INT7 VECTOR IN TO DI
MOV WORD PTR DS:[DI], OFFSET INT7_ISR
MOV WORD PTR DS:[DI+2], SEG INT7_ISR

;SETUP SPURIOUS INTERRUPT VECTOR FOR MASTER

MOV DI, SPM_TYPE*4 ;MOVE BASE ADDRESS OF IR7 OF MASTER VECTOR TO DI
MOV WORD PTR DS:[DI], OFFSET SPM_ISR
MOV WORD PTR DS:[DI+2], SEG SPM_ISR

RET
SETVECT ENDP

3
INTERRUPT SERVICE ROUTINE: INTO_ISR

;THIS PROCEDURE WILL DISPLAY A ‘O’ ON THE 7 SEGMENT DISPLAY IF INTO WAS ASSERTED
o 3
INTO_ISR PROC

MOV DX, _7SEG1 ;DISPLAY ‘O’ ON 7 SEGMENT DISPLAY
MOV AL, ZERO
OUT DX, AL

MOV DX, MPICPO ;CLEAR IN-SERVICE BIT BY ISSUING EOI
MOV AL, 20H
OUT DX, AL

IRET
INTO_ISR ENDP

A-3

u
AP-731 InbL

Example A-1. Initialization Sequence and ISR Examples (Sheet 4 of 8)

T e e T T o T o e
;INTERRUPT SERVICE ROUTINE: INT1_ISR

;THIS PROCEDURE WILL DISPLAY A ‘1’ ON THE 7 SEGMENT DISPLAY IF INT1 WAS ASSERTED
e T 2 L
INT1_ISR PROC

MOV DX, _7SEG1 ;DISPLAY ‘1' ON 7 SEGMENT DISPLAY
MOV AL, ONE
OUT DX, AL

MOV DX, MPICPO ;CLEAR IN-SERVICE BIT BY ISSUING EOI
MOV AL, 20H
OUT DX, AL

IRET
INT1_ISR ENDP

T T o T L s
;INTERRUPT SERVICE ROUTINE: INT2_ISR

;THIS PROCEDURE WILL DISPLAY A ‘2’ ON THE 7 SEGMENT DISPLAY IF INT2 WAS ASSERTED
i
INT2_ISR PROC

MOV DX, _7SEG1 ;DISPLAY ‘2" ON 7 SEGMENT DISPLAY
MOV AL, TWO
OUT DX, AL

MOV DX, MPICPO ;CLEAR IN-SERVICE BIT BY ISSUING EOI
MOV AL, 20H
OUT DX, AL

IRET
INT2_ISR ENDP

o o
INTERRUPT SERVICE ROUTINE: INT3_ISR

;THIS PROCEDURE WILL DISPLAY A ‘3’ ON THE 7 SEGMENT DISPLAY IF INT3 WAS ASSERTED
o
INT3_ISR PROC

MOV DX, _7SEG1 ;DISPLAY ‘3’ ON 7 SEGMENT DISPLAY
MOV AL, THREE
OUT DX, AL

MOV DX, MPICPO ;CLEAR IN-SERVICE BIT BY ISSUING EOI
MOV AL, 20H
OUT DX, AL

IRET
INT3_ISR ENDP

A4

u
InbL AP-731

Example A-1. Initialization Sequence and ISR Examples (Sheet 5 of 8)

T L T T R T T B
;INTERRUPT SERVICE ROUTINE: INT4_ISR

;THIS PROCEDURE WILL DISPLAY A ‘4’ ON THE 7 SEGMENT DISPLAY IF INT4 WAS ASSERTED
T e o S
INT4_ISR PROC

MOV DX, _7SEG1 ;DISPLAY ‘4’ ON 7 SEGMENT DISPLAY
MOV AL, FOUR
OUT DX, AL

MOV DX, MPICPO ;CLEAR IN-SERVICE BIT BY ISSUING EOI
MOV AL, 20H
OUT DX, AL

IRET
INT4_ISR ENDP

T T o T L s
;INTERRUPT SERVICE ROUTINE: INT5_ISR

;THIS PROCEDURE WILL DISPLAY A ‘5’ ON THE 7 SEGMENT DISPLAY IF INT5 WAS ASSERTED
i
INT5_ISR PROC

MOV DX, _7SEG1 ;DISPLAY ‘5" ON 7 SEGMENT DISPLAY
MOV AL, FIVE
OUT DX, AL

MOV DX, MPICPO ;CLEAR IN-SERVICE BIT BY ISSUING EOI
MOV AL, 20H
OUT DX, AL

IRET
INTS5_ISR ENDP

o o o
INTERRUPT SERVICE ROUTINE: INT6_ISR

;THIS PROCEDURE WILL DISPLAY A ‘6’ ON THE 7 SEGMENT DISPLAY IF INT6 WAS ASSERTED
o
INT6_ISR PROC

MOV DX, _7SEG1 ;DISPLAY ‘6’ ON 7 SEGMENT DISPLAY
MOV AL, SIX

OUT DX, AL

MOV DX, MPICPO ;CLEAR IN-SERVICE BIT BY ISSUING EOI
MOV AL, 20H
OUT DX, AL

IRET
INT6_ISR ENDP

A-5

u
AP-731 InbL

Example A-1. Initialization Sequence and ISR Examples (Sheet 6 of 8)

T e e T T o T o e
;INTERRUPT SERVICE ROUTINE: INT7_ISR

;THIS PROCEDURE WILL DISPLAY A ‘7’ ON THE 7 SEGMENT DISPLAY IF INT7 WAS ASSERTED
;OR WILL DISPLAY PATTERN2 IF A SPURIOUS INTERRUPT WAS DETECTED ON THE SLAVE
e T T s L
INT7_ISR PROC

MOV DX, SPICPO ;PREPARE TO READ IN-SERVICE REGISTER
MOV AL, 0BH
OUT DX, AL
IN AL, DX ;READ FROM IN-SERVICE REGISTER TO DETERMINE
;IF VALID INTERRUPT OR SPURIOUS INTERRUPT
CMP AL, 80H ;CHECK TO SEE IF SPURIOUS OR NOT (10000000)=IR7
JZ IR7 ;JUMP IF INTERRUPT WAS IR7 ASSERTION
MOV DX, _7SEG1 ;DISPLAY PATTERN2 ON 7 SEGMENT DISPLAY
MOV AL, PATTERN2 ;TO ILLUSTRATE SPURIOUS INTERRUPT HAS
OUT DX, AL ;OCCURED ON SLAVE
JMP DONE
IR7: MOV DX, _7SEG1 ;DISPLAY ‘7" ON 7 SEGMENT DISPLAY
MOV AL, SEVEN
OUT DX, AL
MOV DX, SPICPO ;CLEAR IN-SERVICE BIT OF SLAVE BY ISSUING EOI
MOV AL, 20H
OUT DX, AL
DONE: MOV DX, MPICPO ;CLEAR IN-SERVICE BIT OF MASTER BY ISSUING EOI
MOV AL, 20H
OUT DX, AL
IRET
INT7_ISR ENDP

o o o
INTERRUPT SERVICE ROUTINE: SPM_ISR

;THIS PROCEDURE WILL DISPLAY PATTERN1 ON THE 7 SEGMENT DISPLAY IF SPURIOUS
INTERRUPT WAS DETECTED ON THE MASTER
o o o
SPM_ISR PROC

MOV DX, _7SEG1 ;DISPLAY PATTERN1 ON 7 SEGMENT DISPLAY
MOV AL, PATTERN1 ;TO ILLUSTRATE SPURIOUS INTERRUPT HAS
OUT DX, AL ;OCCURRED ON MASTER PIC

IRET

SPM_ISR ENDP

A-6

u
InbL AP-731

Example A-1. Initialization Sequence and ISR Examples (Sheet 7 of 8)

e T T o o
;PROCEDURE: CLR_LEDS
;THIS PROCEDURE SIMPLY TURNS OFF ALL OF THE SEGMENTS THE 7 SEGMENT DISPLAY
e L
CLR_LEDS PROC

MOV DX, _7SEG1

XOR AL, AL

OUT DX, AL

MOV DX, _7SEG2
OUT DX, AL

RET
CLR_LEDS ENDP

T T o T L s
;PROCEDURE: INIT_ICU
;THIS PROCEDURE INITIALIZES THE INTERNAL MASTER AND SLAVE 82C59 OF THE

;80C186EC PROCESSOR
i

INIT_ICU PROC

JALL OF THE INTERNAL PERIPHERAL INTERRUPT REQUEST LATCHES SHOULD
;BE CLEARED FOR SAFE MEASURE

MOV DX, SCUIRL
MOV AX, OFOOH
OUT DX, AX

MOV DX, TIMIRL
OUT DX, AX
MOV DX, DMAIRL
OUT DX, AX

;INITIALIZE SLAVE 82C59 MODULE

MOV DX, SPICPO ;ICW1 ->SPICPO
XOR AH, AH ;CLEAR RESERVED BITS
MOV AL, 11H ;EDGE TRIG, CASCADE, IC4 REQRD
OUT DX, AL
;SET BASE INTERRUPT TYPE AT 104 FOR SLAVE
MOV DX, SPICP1 ;ICW2 ->SPICP1
MOV AL, SLAVE_BASE_TYPE ;BASE ADDRESS AT 01AQH
OUT DX, AL
;SLAVE ID
MOV DX, SPICP1 ;ICW3 ->SPICP1
MOV AL, 7 ;ID=7 ALLWAYS FOR INTERNAL SLAVE
OUT DX, AL
MOV DX, SPICP1 ;ICW4 ->SPICP1
MOV AL, 1 ;NO SFNM, NO AEOI, FACTORY TEST CODES SET
OUT DX, AL
MOV DX, SPICP1 ;OCW1 ->SPICP1

I A-7

u
AP-731 InbL

Example A-1. Initialization Sequence and ISR Examples (Sheet 8 of 8)

MOV AL, 07FH ;UNMASK INT7 (IR7 OF SLAVE)
OUT DX, AL

;INITIALIZE MASTER MODULE

MOV DX, MPICPO ;ICW1 ->MPICPO

XOR AH, AH

MOV AL, 11H ;EDGE TRIG, CASCADE, IC4 REQRD
OUT DX, AL

MOV DX, MPICP1 :ICW2 ->MPICP1

MOV AL, MASTER_BASE_TYPE ;BASE TYPE FOR MASTER
OUT DX, AL ;BASE ADDRESS AT 0180H

;SET BASE INTERRUPT TYPE FOR THE MASTER AT TYPE 96

JWHICH IS EQUAVALENT TO A BASE ADDRESS OF 180H. BETWEEN

;THE BASE TYPES OF THE MASTER AND THE SLAVE, THERE IS A
;CONTIGUOUS BLOCK FROM 180H TO 1BCH FOR THE INTERRUPT VECTORS

;ADDRESS IR LINE TYPE FUNCTION 82C59

;1BC 7 111 INT7Y SLAVE
;1B8 6 110 TXIO SLAVE
;1B4 5 109 RXIO SLAVE
;1BO 4 108 TMI2 SLAVE
;1AC 3 107 DMAI3 SLAVE
;1A8 2 106 DMAI2 SLAVE
;1A4 1 105 TMI1 SLAVE
;1A0 0 104 TMIO SLAVE
;19C 7 103 SLAVE MASTER
;198 6 102 INT6 MASTER
;194 5 101 INTS MASTER
;190 4 100 INT4 MASTER
;18C 3 99 INT3 MASTER
;188 2 98 INT2 MASTER
;184 1 97 INT1 MASTER
;180 0 96 INTO MASTER
MOV DX, MPICP1 ;ICW3 ->MPICP1
MOV AL, 80H ;SLAVE MODULE IS ALWAYS ON IR7
OUT DX, AL
MOV DX, MPICP1 ;ICW4 ->MPICP1
MOV AL, 1 ;NO SFNM, NO AEOI, FACTORY TEST CODES
OUT DX, AL
MOV DX, MPICP1 ;OCW1 ->MPICP1
MOV AL, OH JUNMASK ALL MASTER IR LINES
OUT DX, AL
RET
INIT_ICU ENDP
EC_CODE ENDS
END MAIN

A-8

u
InbL AP-731

A.2 ISR for Unexpected or Uninitialized Interrupts

When programming the interrupt control unit, it is important to talexp@&tedeventsnto consiceration. It is possible for

an interrupt to occur that was unintentional or unwanted and therefore software should exist to prevent system failure.

The following two sbroutines can be used d@rect unused interrupts to aramoninterrupt service routine where they

can be handled appropriately to return corieatk tothe main program. Theselsoutines were not added in Example #1

because the evaluation bodircdhware already ampensates for unwanted interrupts.

Example A-2. ISR for Unexpected or Uninitialized Interrupts (Sheet 1 of 2)

;PROCEDURE: FILL_UNWANTED_INTS

;WHENEVER AN UNEXPECTED/UNINITIALIZED INTERRUPT OCCURS, THE PROCESSOR WILL
;VECTOR TO THE UNWANTED_INT INTERRUPT SERVICE ROUTINE TO PREVENT SYSTEM
;HANG-UPS

FILL_UNWANTED_INTS PROC

;FILL ENTIRE INTERRUPT VECTOR TABLE WITH UNWANTED_INT VECTORS

XOR AX, AX ;CLEAR ACCUMULATOR
MOV DS, AX ;CLEAR DATA SEGMENT
MOV DI, 0 ;START AT O

MOV CX, 256 ;DO 256 TIMES

FILL_OFFSETS:
MOV WORD PTR DS:[DI], OFFSET UNWANTED_ISR
ADD DI, 4 ;FILL OFFSETS
LOOP FILL_OFFSETS

MOV DI, 2 ;START AT 2
MOV CX, 256 ;DO 256 TIMES

FILL_SEGMENTS:
MOV WORD PTR DS:[DI], SEG UNWANTED_ISR
ADD DI, 4 ;FILL SEGMENTS
LOOP FILL_SEGMENTS

FILL_UNWANTED_INTS ENDP

;INTERRUPT SERVICE ROUTINE: UNWANTED_ISR

;WHENEVER AN UNEXPECTED/UNINITIALIZED INTERRUPT OCCURS, THE PROCESSOR WILL
;VECTOR TO THIS INTERRUPT SERVICE ROUTINE AND DISPLAY PATTERN1 ON 7SEG1
;AND PATTERN2 ON 7SEG2 THEN RETURN TO NORMAL PROGRAM EXECUTION

UNWANTED_ISR PROC
MOV DX, _7SEG1
MOV AL, PATTERN1
OUT DX, AL

A-9

AP-731

Example A-2. ISR for Unexpected or Uninitialized Interrupts

intal

(Sheet 2 of 2)

MOV DX, _7SEG2
MOV AL, PATTERN2
OUT DX, AL

IRET

UNWANTED_ISR ENDP

;RETURN TO NORMAL PROGRAM EXECUTION

A-10

	Understanding the Interrupt Control Unit of the 80C186EC/80C188EC Processor
	1.0 INTRODUCTION
	2.0 OVERVIEW
	3.0 INTERRUPT PROCESSING
	4.0 82C59A PROGRAMMING
	4.1 ICW Initialization Sequence
	4.2 Initialization Command Words
	4.2.1 ICW1 Beginning of Initialization Register
	4.2.2 ICW1 Access
	4.2.3 ICW2 Base Interrupt Type Register
	4.2.4 ICW2 Access
	4.2.5 ICW3 Cascaded Input Selection/Slave ID
	4.2.6 ICW3 Access
	4.2.7 ICW4 Special Fully Nested Mode/ Automatic En...
	4.2.8 ICW4 Access

	4.3 Operational Command Words
	4.3.1 OCW1 Interrupt Mask Register
	4.3.2 OCW1 Access
	4.3.3 OCW2 Priority and EOI Register
	4.3.4 OCW2 Access
	4.3.5 OCW3 Special Mask Mode and Read Register Sel...
	4.3.6 OCW3 Access

	5.0 RELATED INFORMATION
	APPENDIX A Software Examples
	A.1 Initialization Sequence and ISR Examples
	A.2 ISR for Unexpected or Uninitialized Interrupts...

	FIGURES
	Figure 1. Interrupt Control Unit Block Diagram
	Figure 2. Initialization Sequence of the ICW Regis...

	TABLES
	Table 1. A1 Address Line Connections
	Table 2. Related Information

