

intel.

80C186EA/B80C188EA
Microprocessor
User’'s Manual

1995

Information in this document is provided solely to enable use of Intel products. Intel assumes no liability whatsoever, including
infringement of any patent or copyright, for sale and use of Intel products except as provided in Intel's Terms and Conditions
of Sale for such products.

Intel Corporation makes no warranty for the use of its products and assumes no responsibility for any errors which may appear
in this document nor does it make a commitment to update the information contained herein.

Intel retains the right to make changes to these specifications at any time, without notice.
Contact your local Intel sales office or your distributor to obtain the latest specifications before placing your product order.
MDS is an ordering code only and is not used as a product name or trademark of Intel Corporation.

Intel Corporation and Intel's FASTPATH are not affiliated with Kinetics, a division of Excelan, Inc. or its FASTPATH trademark
or products.

*Other brands and names are the property of their respective owners.
Additional copies of this document or other Intel literature may be obtained from:

Intel Corporation

Literature Sales

P.O. Box 7641

Mt. Prospect, IL 60056-7641

or call 1-800-879-4683

© INTEL CORPORATION, 1995

intgl.
CONTENTS

CHAPTER 1
INTRODUCTION
11 HOW TO USE THIS MANUAL......ctiiiiiiitt ettt 1-2
12 RELATED DOCUMENTS ...ttt sttt sttt et 1-3
1.3 ELECTRONIC SUPPORT SYSTEMS ...ttt 1-4
13.1 FAXBACK SEIVICE ...coiiiiiiiiiiie ettt et 1-4
1.3.2 Bulletin Board SysStem (BBS)ooiiiiiiiiiiie ittt 1-5
1321 How to Find ApBUILDER Software and Hypertext Documents
ONthE BBS ..o 1-5
1.3.3 COMPUSEIVE FOIUMS ..iiiiiitiiiiiiitieee et aee s e e aae e e e e s s e s s asssss s bbb brebebeeeeeeeeaeaeeaaaaneeas 1-6
1.3.4 WOrld WIde WED ..ot 1-6
14 TECHNICAL SUPPORT ...ttt ittt ettt ettt ettt e s nnnee s 1-6
15 PRODUCT LITERATUREottt sttt et st 1-6

CHAPTER 2
OVERVIEW OF THE 80C186 FAMILY ARCHITECTURE
2.1 ARCHITECTURAL OVERVIEW ..ottt ettt
21.1 Execution Unitccoeeevienen.
2.1.2 Bus Interface Unit
2.1.3 General Registersccceo......
2.1.4 Segment Registers
2.1.5 Instruction Pointer
2.1.6 FIags .oooooeiiieeiiiieee e
2.1.7 Memory Segmentation
2.1.8 Logical AddreSSesccccveveeeviciveneeesiiinnnn.
2.1.9 Dynamically Relocatable Code
P22 0 O TS - Vot [101 o] (T g 1= 01 = U1 T o ISP
2.1.11 Reserved Memory and I/O Space
2.2 SOFTWARE OVERVIEW ..ottt ettt e e e e e e e n e e e e e aeaees
221 INSIIUCTION S ...eiiiiiiiiiieee e erere e e e eeeeeeaeeeeeeseeeeaan
2211 Data Transfer Instructions
22.1.2 Arithmetic Instructions
2.2.1.3 Bit Manipulation Instructions
2214 SrNG INSIIUCHIONS ... e e
2.2.15 Program Transfer INSIIUCHIONSooiuiiiiiiiiiiii e
2.2.1.6 Processor Control INStrUCHIONScoiicviiiieiiiiiiee e
2.2.2 AdAresSiNg MOUESooiiiiiiiiiiee ittt e et e e
2221 Register and Immediate Operand Addressing Modes
2222 Memory Addressing MOUEScouviiiiiiiiiiie e
2223 1/O POIt AArESSING .oeeiiiiiieiiiei ittt e e e e e ieeee e an
2224 Data Types Used in the 80C186 Modular Core Familycccccceevviiinneen. 2-37

CONTENTS Inte|®

2.3 INTERRUPTS AND EXCEPTION HANDLINGccceiiiiiiiiiicceeeecce e 2-39
23.1 Interrupt/Exception Processing
23.11 Non-Maskable Interrupts
23.1.2 Maskable Interrupts
23.1.3 Exceptionsccccceeeee.
2.3.2 SOfWAIE INTEITUPLS ...eeiii ettt ee e e et e e e e s e e e e e e e s annneeas
2.33 INEEITUPE LAEENCY ...ttt e et e e e e e e e e e e e e a e e e e
234 INterrupt RESPONSE TIME ...ooiiiiiiiiiie ettt ettt e e e e e e e e e e e s e aeeeee s
235 Interrupt and EXCEPLION PrIOKILYooiuiiiiiiaiiie et 2-46

CHAPTER 3
BUS INTERFACE UNIT

3.1 MULTIPLEXED ADDRESS AND DATA BUSuutiiiiiiiieeee e 3-1
3.2 ADDRESS AND DATA BUS CONCEPTS
3.2.1 16-Bit Data Bus

3.2.2 8-BitDataBuscccccoiiiiiie e
3.3 MEMORY AND I/O INTERFACES
331 16-Bit Bus Memory and 1/O ReqUIrEMENESueeieiiiiiiiiiee e 3-7
3.3.2 8-Bit Bus Memory and I/O ReqUIFEMENLScccuuiiiieiiiiiiiee e 3-7
34 BUS CYCLE OPERATION ..ottt e e e e e e e e e s e annanes
3.4.1 AJAreSS/Status PRASEcceiiiiiiiiiiie et
3.4.2 DAt PRESEoieiiiiii et
343 WA SEALES ..ottt ettt n
344 [AIE STALES ...iiie it
35 BUS CYCLES................
35.1 Read Bus Cycles
3511 Refresh Bus Cycles
352 Write BUS CyCIES ...evveiiiiiiiieeeeecc
3.5.3 Interrupt Acknowledge Bus Cycle
3531 System Design Considerations
354 HALT BUS CVYCIE ittt ettt et e e e bee e e
3.5.5 Temporarily Exiting the HALT Bus State
356 EXIING HALT oottt ettt nie e
3.6 SYSTEM DESIGN ALTERNATIVESootiiiiiiite ettt
3.6.1 Buffering the Data BUSccueiiiiiiiiiieee e
3.6.2 Synchronizing Software and Hardware EVENLScccvveiiieiiiiie e 3-38
3.6.3 USING @ LOCKED BUSeooiiiiiiiiiii ittt 3-39
3.6.4 Using the Queue Status SigNalScccocviieririiiiiiee e 3-40
3.7 MULTI-MASTER BUS SYSTEM DESIGNS.......cccoiiiiiiii e 3-41
3.7.1 ENtering BUS HOLDooiiiiiiieie ettt 3-41
3.7.11 HOLD BUS LAENCY ...evviiiiiiiiiei ettt e e 3-42
3.7.1.2 Refresh Operation During @ BusS HOLDccoociiiiiiiiiiiiecciicceece e 3-43
3.7.2 EXIING HOLD ...oiiiiiiiitit ettt e et sae e ne s 3-45
3.8 BUS CYCLE PRIORITIES ...ttt 3-46

Inte|® CONTENTS

CHAPTER 4
PERIPHERAL CONTROL BLOCK
4.1 PERIPHERAL CONTROL REGISTERS......ccoitiiiiieiiiee ettt 4-1
4.2 PCB RELOCATION REGISTER
4.3 RESERVED LOCATIONSooiiiiiieeiieeeeeeeee e
4.4 ACCESSING THE PERIPHERAL CONTROL BLOCK
441 BUS CYCIES ..ttt ettt e e e e ea et e e e e ettt e e e e e etneseee e e e anneeeaee s
442 READY Signals and Wait StateScoiiiiiiiiiiieeiiiee e ee e e e
443 [S U S @] o 1= = T ISP
4431 Writing the PCB Relocation Register
4.4.3.2 Accessing the Peripheral Control Registers
4.4.3.3 Accessing Reserved Locations
4.5 SETTING THE PCB BASE LOCATIONcociiiiiiieitieeniice e
45.1 Considerations for the 80C187 Math Coprocessor Interface

CHAPTER 5
CLOCK GENERATION AND POWER MANAGEMENT
51 CLOCK GENERATION. ...ttt
51.1 Crystal Oscillator
5.1.11 Oscillator Operation
5.1.1.2 SeleCtiNg CrYStAlSeeiiiiiiiiiiie et
5.1.2 Using an External OSCIllAtorcooiuiiiiioiee e e e
5.1.3 Output from the Clock Generator
5.14 Reset and Clock Synchronization

5.2 POWER MANAGEMENToiiiiiiiii ittt e e e e e e e e e e e
521 [AIE MOOE .. ettt nae e e et
5.2.11 Entering [d1e MOE ...
5.2.1.2 Bus Operation During Idle Mode
5.2.1.3 Leaving ldle MOdeocceeieiiiiiiiiiie i,
5.2.1.4 Example Idle Mode Initialization Code
5.2.2 Powerdown Modeocoueveiiiiiniieeee e
5221 Entering POWwerdown MOOEcccviiiiiiieiiiieeieee e
5222 Leaving POWErdown MOAEccceeiiiiieiiiieiiieee it
5.2.3 POWET-SAVE MOUEooiiiiiiieieie et
5.2.31 Entering POWer-Save MOOEoeiiiiiiiiiiiee et
5.2.3.2 Leaving Power-Save Modecccccceiiiiiiieeenne
5.2.33 Example Power-Save Initialization Code

5.2.4 Implementing a Power Management Scheme

CONTENTS Inte|®

CHAPTER 6
CHIP-SELECT UNIT

6.1 COMMON METHODS FOR GENERATING CHIP-SELECTS.........cccocvniiniiiiicieene 6-1

6.2 CHIP-SELECT UNIT FEATURES AND BENEFITS

6.3 CHIP-SELECT UNIT FUNCTIONAL OVERVIEW

6.4 PROGRAMMING ...ttt ettt ettt ettt sttt e e bbbttt et e e s re e nbeennnensns
6.4.1 INItIAlIZAtION SEOUENCEoiiiiiiiiei ettt ee e e et e e e e e ennaeeee e e e snneees
6.4.2 Programming the ACLIVE RANGEScocueiiiiiiiiiii et ee e

6.4.2.17 UCS ACHVE RANGE ...ocvieieeeeeeeeeeeeeeeeee e ee ettt eae e eaenas
6.4.2.2° LCS Active Range
6.4.2.3° MCS Active Range

6.4.2.47 PCS ACHVE RANGE ...vvcevieeietectieeteete ettt ettt te et sae st beeteeraesteenae s
6.4.3 Bus Wait State and Ready CONtrolccccocciviiieiiiiiiiiiee e e e
6.4.4 Overlapping Chip-SEIECSccuiiiiiiiiiieiiee et
6.4.5 Memory or I/O Bus Cycle DECOUINGcccoviiiiieeiiiiiiiee et
6.4.6 Programming CONSIAErationscooiiviiiieiiiiiiieeeesciiie e e e s esreee e e e e e e e e e e s esvaeeee s

6.5 CHIP-SELECTS AND BUS HOLD...
6.6 EXAMPLES ...ttt ettt e e e e et e e e e e e e e e e aean s naane
6.6.1 Example 1: Typical System Configurationccccccvveeeiiiiiiiee e ciiiie e e

CHAPTER 7
REFRESH CONTROL UNIT

7.1 THE ROLE OF THE REFRESH CONTROL UNIT

7.2 REFRESH CONTROL UNIT CAPABILITIES.......ccotiiieiiieiieeceee e
7.3 REFRESH CONTROL UNIT OPERATION.....cccttiiieiiiaieeiit ettt
7.4 REFRESH ADDRESSES...........cccooiviiiiciecen
7.5 REFRESH BUS CYCLES
7.6 GUIDELINES FOR DESIGNING DRAM CONTROLLERS......ccccoviiiiiiiiiiiiiiiiicecee 7-5
7.7 PROGRAMMING THE REFRESH CONTROL UNIT...ccccoiiiiiiiiiiiiiiiicieee e 7-7
7.7.1 Calculating the Refresh INterval ..o 7-7
7.7.2 Refresh Control Unit REGISLEISoiiiiiiiiieeiiie e 7-7
7.7.21 Refresh Base Address REQISIETcovueeiiiiieiiiiie et 7-8
7.7.22 Refresh Clock Interval REQISLENcooiiiiiiiiiiiiiiiiiie e 7-8
7.7.23 Refresh Control REJISTENoooiiiiiieie e 7-9
7.7.3 Programming EXAmMPIEcoooiiiiii e 7-10
7.8 REFRESH OPERATION AND BUS HOLD........c.cciiiiiiiiiiiiitesiee e 7-12

Vi

Inte|® CONTENTS

CHAPTER 8
INTERRUPT CONTROL UNIT
8.1 FUNCTIONAL OVERVIEW.......coiiiiiiiiiiiiii it 8-1
8.2 MASTER MODE ..ottt et 8-2
8.2.1 Generic FUNCtions in Master MOGAEcc.ceiiiiiiiiiiiiiie e 8-2
8.2.1.1 Interrupt Masking
8.2.1.2 Interrupt Priority
8.2.1.3 Interrupt Nesting
8.3 FUNCTIONAL OPERATION IN MASTER MODE
8.3.1 Typical INtErruUPt SEUUENCE ...ccceeiiiiiiie ettt et a e e e ananee s
8.3.2 Priority RESOIULIONcc.iiiiiiie ittt a e e et e e e e e s naaeaeeaaan
8.3.21 Priority Resolution EXample ...t
8.3.2.2 Interrupts That Share a Single Source
8.3.3 Cascading with External 8259As
8.3.3.1 Special Fully Nested Mode
8.3.4 Interrupt ACKNOWIEdge SEQUENCEuiiiiiiiiiie e a e
8.3.5 (0] 11 o TP
8.3.6 Edge and Level Triggering
8.3.7 Additional Latency and Response Time

8.4 PROGRAMMING THE INTERRUPT CONTROL UNITccoviiiiiiiinieeiieeniecenree e 8-11
84.1 Interrupt CoNtrol REQISIETSueiiiiiiie et
8.4.2 INterrupt REQUESE REGISTET ...ttt
8.4.3 INterrupt Mask REQISLEccoiiiiiiiieiieeie ettt
8.4.4 Priority Mask REQISIETooiiiiiiiiiie e
8.45 IN-SEIrVICE REGISIEI ...ttt e e e re e e s
8.4.6 Poll and Poll Status REQISIENScooiiieiiiiii it e e
8.4.7 End-of-Interrupt (EOI) REGISIENcoiuiiiiieiiiiiiiie et
8.4.8 INterrupt StAtUS REGISIETcooiiiiiiiiiee et

8.5 SLAVE MODE ..ottt
8.5.1 Slave Mode ProgramMiNgcoooeeeeee oo ee e e e e e ssibee e e e anbneeeaeesaees

8.5.1.1 INterrupt VeCtor REQISIETcoiuiiiiiieiie e
8.5.1.2 ENd-Of-INterrupt REGISIENcoiiiiiiiieiieee e
8.5.1.3 Other RegiStersccccvvvvveviieeiniiienns

8.5.2 Interrupt Vectoring in Slave Mode
8.5.3 Initializing the Interrupt Control Unit for Master Mode

CHAPTER 9
TIMER/COUNTER UNIT
9.1 FUNCTIONAL OVERVIEW.cciiiiiiiiiiiiitee ettt snre e e 9-1
9.2 PROGRAMMING THE TIMER/COUNTER UNITcoiiiiiiiiiiiieciiee e 9-6
9.2.1 INItIAliZAtION SEQUENCEooiiiiiiiie e e 9-11
9.2.2 CIOCK SOUICES ..ottt ettt eat e e st e e et e s s s 9-12
9.2.3 COUNLING MOAESeeiiiiiiiiieeie ettt ettt ettt e e s et e e e st e e e e e e enneeeee s 9-12
9.2.3.1 REHGGEIING .ttt et s 9-13

vii

CONTENTS Inte|®

9.2.4 Pulsed and Variable Duty Cycle OULPULcceeiiiiiieiiiiiiiiee e 9-14
9.2.5 Enabling/Disabling COUNLEISuuiiiiiiiiiiiie it 9-15
9.2.6 TIMEN INEEITUPLS ..oviieiiiie ettt ettt s et e e nb e e sate e e enbeeeenbneennes 9-16
9.2.7 Programming CONSIAEIatiONScoiiuiiiiieieiiiee e 9-16
9.3 TIMING L.t h e et s bt e e e bt e e sat e e sb b e e e s nbe e e s bt e e nbnee s 9-16
9.3.1 Input Setup and HOld TiIMINGSovviiiiiiiiiiees e e e 9-16
9.3.2 Synchronization and Maximum FrEQUENCYeceiiiuuiiieeeiiiiieieeeiiieeeeeessiieeeeenns 9-17
9.3.21 Timer/Counter Unit Application EXamplescccccovveeiiiiiiieec e 9-17
9.3.3 REAIFTIME CIOCK .viiiiiiiiiiiiieitieie ettt e e b e e ssbe e 9-17
9.3.4 SQUArE-Wave GENEIALOLccocureeiieiieieeieee ettt e et s e e s e e ee e e 9-17
9.35 DiIgital ONE-SNOLcciiiiiiiiiit e 9-17
CHAPTER 10
DIRECT MEMORY ACCESS UNIT
10.1 FUNCTIONAL OVERVIEW.... ..ottt e e et an e e e e e e e e aaeaeaanen
10.1.1 The DMA TIaNSTEI ooiiiiiiiie ettt ettt e e a e e e ere e e e e enanaae s
10.1.1.1 DMA Transfer DIFECHONScoiiiiiiiiiei ittt
10.1.1.2 Byte and Word TranSfers ...
10.1.2 Source and Destination POINLEISccooiiiiiiiiiiiiiiiiiee et
10.1.3 DIMA REUUESLSuieieiiiiieiiiiiiieeeeee e e e e ea s st e et ee e e et aeaeeaas s s s aa s sbe b nrrsereneeaeaaaeaeas
10.1.4 External ReqUESLScccceveveeiiiiieiieiiiien,
10.1.4.1 Source Synchronization
10.1.4.2 Destination Synchronization
10.1.5 INErNal REQUESES ..ociiiiiiiiiiiie ittt sttt e e nne e
10.151 Timer 2-Initiated TranSfErsc.vviiii e
10.1.5.2 Unsynchronized TransSfers ...
10.1.6 DMA Transfer COUNLSciiiiiuiiiiiieiiiiiie ettt e e sttt e e e s e e e e e snbeae e e e e ssnnaeeeas
10.1.7 Termination and Suspension of DMA Transfersccccoviniiiiiiiiinieiee e 10-7
10.1.7.1 Termination at Terminal Count
10.1.7.2 Software Terminationcc.......
10.1.7.3 Suspension of DMA DUring NMI ... 10-7
10.1.7.4 SOftWAre SUSPENSION ...eeiiiiiieiiiie et 10-7
10.1.8 DMA UNItINEEITUPES .viiiiiieeiiieeeiiie ettt e s sir e e ann e e nnes 10-8
10.1.9 DMA Cycles and the BIUcoociiiiiiiiiiiiieiei et 10-8
10.1.10 The Two-Channel DMA UNItooiiiiiiiiiie et e e saaeeee s 10-8
10.1.10.1 DMA Channel Arbitrationooceeieeeiiiiiiiie e reeeee s 10-8
10.2 PROGRAMMING THE DMA UNIT ..iiiiiiie e cttee et e et e s e snae e snaa e nnaeeenns 10-10
10.2.1 DMA Channel PArameterscociiiueiiieiiiieieeeieeieie e e siie e e s sneeee e e s siaeeeee s e aneeeeens 10-10
10.2.1.1 Programming the Source and Destination Pointersccccceeeevviiiieneen. 10-10

10.2.1.2 Selecting Byte or Word Size Transfers
10.2.1.3 Selecting the Source of DMA Requests

10.2.1.4 Arming the DMA Channeloooiii e
10.2.15 Selecting Channel Synchronizationccccoooiiieiiiiiiiiiee e
10.2.1.6 Programming the Transfer Count OPtioNSc..eeeeriiiiiieiiniiniiieeee e 10-18
10.2.1.7 Generating Interrupts on Terminal Countccccooiieeiiiiienieee e 10-19

viii

Inte|® CONTENTS

10.2.1.8 Setting the Relative Priority of a Channelcccccceeiiiiiiiie e, 10-19
10.2.2 Suspension of DMA TranSferscocciiiiie it a e eirvaa e 10-20
10.2.3 Initializing the DMA UNItccoiiiieec e a e e e aarbae e 10-20

10.3 HARDWARE CONSIDERATIONS AND THE DMA UNIT ...ooiiiiiiiiieiiieeiceieeeein 10-20
10.3.1 DRQ Pin Timing REQUIFEMENESccoiiiiiiiieiiiiiiie et e e a e ea s 10-20
O B B 1Y N - 1= o o3 PP PPPPPTPT 10-21
10.3.3 DMA Transfer RAESccceiiiiiiiiiiiieiiie ettt et e e sere e 10-21
10.3.4 Generating a DMA ACKNOWIEAQEcccvviiiiiiieiiiie e 10-22

10.4 DMA UNIT EXAMPLES ...ttt e s see e see e anee e e snneeeanneean 10-22

CHAPTER 11
MATH COPROCESSING
11.1 OVERVIEW OF MATH COPROCESSING.............
11.2 AVAILABILITY OF MATH COPROCESSING
11.3 THE 80C187 MATH COPROCESSOR......cciiiiiiieiei ittt
11.3.1 80C187 INSLIUCLION SEL ...cceeeeiiiiiii et e e e e e e e e e e e s e s e s e s e nenreranarees
11.3.1.1 Data Transfer INStrUCLIONSoovvviiiiii e
11.3.1.2 Arithmetic Instructionscccceeveees
11.3.1.3 Comparison Instructions
11.3.1.4 Transcendental Instructions
11.3.1.5 (070 g 1Sy =T o1 [51 (1 1o 10
11.3.1.6 Processor Control INStrUCHIONScooveeeieiiii e
11.3.2 80CIL87 DALA TYPES .eeeeeeeririiiaeaaiaeeeeaae e e et eeeeeeeataaaaaasaaaessas s e nnennnnnes
11.4 MICROPROCESSOR AND COPROCESSOR OPERATION......cccccciiiiiiereeee e 11-7
11.4.1 ClocKing the BOCILB7cooeiiiiiiiieeee ettt e e e e e eibbbe e e e e e nnntaeeeeeens
11.4.2 Processor Bus Cycles Accessing the 80C187
11.4.3 SyStem DESION TIPS ..ueetiieeiaiiieeeee ettt e e e e e e e e st e e e e e s bbe e e e e e s snbe e e e e e s anbbeeaaeas
11.4.4 EXCEPLON TrAPPING ...ueveeeeeeiiiiiiiaeaaaiitiie e e e aitieee e e e sibbbee e e e e sabbbaeeaessabbeeeaaeeannenneeeaeaas
11.5 EXAMPLE MATH COPROCESSOR ROUTINES

CHAPTER 12
ONCE MODE

12.1 ENTERING/LEAVING ONCE MODE........ccccciitiieiiiieeeteee et 12-1

APPENDIX A
80C186 INSTRUCTION SET ADDITIONS AND EXTENSIONS

Al 80C186 INSTRUCTION SET ADDITIONS ...ttt
Al.l Data Transfer INSIIUCLIONSuuiiiiiiiiieiiiie e eer e e e aeeeas
Al2 SHING INSLIUCHIONS ...t e e e e et bee e e e enees
Al13 High-LeVel INSIIUCLIONSeiiiiei e

A2 80C186 INSTRUCTION SET ENHANCEMENTS
A2.1 Data Transfer INSIIUCHIONSuuiiiiiiiiiiiiiie e rereeeaeeeas
A.2.2 ArthMEtiC INSIIUCHIONS ...viiiiiiiiiiiiieeeeeeeeee e e e e e e

CONTENTS Inte|®

A2.3 Bit Manipulation INSIUCLIONSuvviiiiiiiiiiee e A-9
A.2.3.1 Shift INSITUCLIONS ..o e e e e e rabarraees A-9
A.2.3.2 ROtate INSIIUCLIONSeviiiiiee et e e e e e e e eeeeeaaean A-10

APPENDIX B
INPUT SYNCHRONIZATION

B.1 WHY SYNCHRONIZERS ARE REQUIRED
B.2 ASYNCHRONOUS PINS

APPENDIX C
INSTRUCTION SET DESCRIPTIONS

APPENDIX D
INSTRUCTION SET OPCODES AND CLOCK CYCLES

INDEX

Inte|® CONTENTS

Figure

2-1
2-2
2-3
2-4
2-5
2-6
2-7
2-8
2-9
2-10
2-11
2-12
2-13
2-14
2-15
2-16
2-17
2-18
2-19
2-20
2-21
2-22
2-23
2-24
2-25
2-26
2-27
2-28
2-29
2-30
3-1
3-2
3-3
3-4
3-5
3-6
3-7
3-8
3-9
3-10
3-11
3-12
3-13
3-14

FIGURES

Simplified Functional Block Diagram of the 80C186 Family CPUccccccvvveeeinnns 2-2
Physical Address GENEIAtiONccccuviieeiiiiiiiee e eeiieee e ee e e e e e s a e e e saabaaeaeeas 2-3
GENEIAl REQISIEIS .. .iiiiiii ettt e e e et e e e e e sat e e e e s stbae e e e s enaraees
Segment Registers
Processor StAtUS WOIcooiiiiiiiiee ittt e e e e ennaeeaeeas
Segment Locations in Physical Memory
Currently Addressable Segments..................
Logical and Physical Address
Dynamic Code Relocation..........
SEACK OPEIALION ...ttt e et ee e e e e et ee e e e et e e e e s e aneeeeeeeannaeeas
Flag StOrage FOMMALuiiiieeiiiee ettt e et e e e e e e e e e aneeee s
Memory Address Computation...
Direct Addressingcccccveeeenn.
Register Indirect Addressing
2 F Y =To AN [0 [T] gV PP EPPROPPIP
Accessing a Structure with Based AddreSSiNgoccuuveeiaaiiiiiiieeeeeiiiiee e
Indexed AAreSSINgG......ccocveeiiieiiiieiee e

Accessing an Array with Indexed Addressing
Based INdeX AdAreSSINgccoeeiiiiiiieeiiiiieee e
Accessing a Stacked Array with Based Index Addressing
Y 111 aTe @] o= = 1o o PP
I/O Port Addressing .
80C186 Modular Core Family Supported Data TYPES.......c.evervreeirireerieee e
INterrupt CoNTrOl UNIT........ooueieiiiieece ettt
INtErruUPt VECtOr TaBIE........oveiiiiiceee e
INEEITUPTE SEOUENCE ...ttt ettt e e e bbb r e et e aeaaaaaeaaeeeeeaenans
Interrupt Response Factors.............cccccveenee.

Simultaneous NMI and Exception
Simultaneous NMI and Single Step INTEITUPES........coccvvieiieeeiiiiine e
Simultaneous NMI, Single Step and Maskable Interrupt..
Physical Data Bus Models..........
16-Bit Data Bus Byte Transfers
16-Bit Data Bus Even Word TranSTerscooiiuieiiieiiiiee et
16-Bit Data Bus Odd WOrd TranSfers..........ouo ot
8-Bit Data Bus Word Transfers
Typical Bus Cycle.........c.ccceeneen.
T-State Relation to CLKOUT
] (WS =) (R B =T | = o SRR
T-State and BUS PhaSESc.eeiiiiiiiiiiiiiie e
Address/Status Phase Signal Relationships
Demultiplexing Address INfOrMation............ceeoiiieiiieeie e
Data Phase Signal RelationShipsc.evviiiiiiiiieiie e
Typical Bus Cycle with Walit StAteScceiiiiiiiiiiiiiee e
ARDY and SRDY Pin BIOCK Dialgramccoocueiiiiiieiiiieniiee et

Xi

CONTENTS Inte|®

Figure

3-15
3-16
3-17
3-18
3-19
3-20
3-21
3-22
3-23
3-24
3-25
3-26
3-27
3-28
3-29
3-30
3-31
3-32
3-33
3-34
3-35
3-36
3-37
3-38
4-1
5-1
5-2
5-3
5-4
5-5
5-6
5-7
5-8
5-9
5-10
5-11
5-12
5-13
5-14
5-15
6-1
6-2
6-3
6-4

Xii

FIGURES

Generating a Normally Not-Ready Bus Signal..........cccccccciviiiiiiiiiiiiecccciiec e 3-16
Generating a Normally Ready BUS Signal...........cccveeeiiiiiiiiie e 3-17
Normally Not-Ready System TimMiNguveeeeiiiiiiee e e 3-18
Normally Ready System Timings
Typical REAA BUS CYCIE ..ottt e e e e
Read-Only Device INErfacCecoooiiuiiiiieeiiie e
Typical Write Bus CycCle.........cccccveevviiviieeecene,

16-Bit Bus Read/Write Device Interface
Interrupt Acknowledge Bus Cycle..................

Typical 82C59A INTEITACE ... e
HALT BUS CYCIO ...ttt ettt e ettt e e e et e e e et e e e e ennneee s
Returning to HALT After a HOLD/HLDA Bus Exchange
Returning to HALT After a Refresh Bus Cycle
Returning to HALT After a DMA Bus Cycle.........cccccccouu.
Exiting HALT (POWerdown MOE)uuvieeiiiiiiie ettt
Exiting HALT (ACtive/ldle MOE).......coooiiiiee ettt
DEN and DT/R Timing Relationships.............
Buffered AD Bus System........ccccceeeeeeniinnnen.
Qualifying DEN with Chip-Selects.................
QUEUE SEALUS TIMING . .utiiiieiiiiiiieeeeeiiee e e e e e s e e e s s e e e s s s e e e e e e s staeaeaesensnnees
Timing Sequence Entering HOLDcccoiiiiiiiii ittt a e
Refresh Request During HOLD
LatChiNG HLDA ...ttt e ettt e e et e e e e eat e e e e e e aneneeaeaan
EXItING HOLD ...ttt ettt e ettt e e ettt e e e e eanbbe e e e e e enneeee s
PCB Relocation Register............
Clock GENEratorcoceveiiieeiiiiieniieesiieens
Ideal Operation of Pierce Oscillator
Crystal ConNections t0 MIiCIOPIOCESSOeiiaiiiiiiiiaeeeaitiieeae e e eeiieeee e e e steeeeee e e e aeeeeeeaaean
Equations for Crystal CalCulations.............cooi i
Simple RC Circuit for Powerup Reset
Cold Reset Waveform
Warm Reset Waveform
Clock Synchronization at RESEL...........ciiiiiiiiiiie e
Power CoNtrol REGISTETooiiiiiiii et et e e e e e eas
Entering Idle Modeccccceeen.

HOLD/HLDA During Idle Mode
Entering Powerdown Mode

PoWerdown TIMEr CIFCUILcoueiiiiiieiiiiee sttt snae e
POWET-SAVE REQISIETviiieee et e e et e e s e eraaeee s
Power-Save Clock Transition
Common Chip-Select Generation Methods............coccvviiiiiiiiiiie e
Chip-Select BIOCK DIBGIAM.ccuviiiiiieiiiie et snne e nnree e
Chip-Select Relative Timings
UCS ReSEt CONfIGUIALIONeovveveeeieceiecie ettt ettt et ete et ste et et nte e e ereeaeeaae e

Inte|® CONTENTS

FIGURES
Figure Page
6-5 UMCS Register DefinitioN..........ccouiiiiiiiiiiii ettt e e e snreee s 6-7
6-6 LMCS Register Definitioncccuuiiiii it e e e 6-8
6-7 MMCS Register DefiNitioNc.vuiiiiiiiiiie e e earraaea e 6-9
6-8 PACS Register Definition .
6-9 MPCS Register DefinitioN ...t
6-10 MCS3:0 ACHVE RANGESooveeeeee ettt e et eeeen e en e en e eanas
6-11 Wait State and Ready Control Functions
6-12 Using Chip-Selects During HOLD
6-13 Typical SYSteMocvveiiiiiiiiee e
7-1 Refresh Control Unit BIOCK DIiagram............ccoiiuuiiiiiaiiieiee et
7-2 Refresh Control Unit Operation FIOw Chart.............oooiiiiiii e
7-3 Refresh Address Formation............cccoecueeeeeiiiiiiieeeesnieeenn.
7-4 Suggested DRAM Control Signal Timing Relationships
7-5 Formula for Calculating Refresh Interval for RFTIME Register
7-6 Refresh Base AdAreSS REQISIENcoiiiuiiiie ittt e e e sebae e e
7-7 Refresh Clock INterval REGISTENcouuieiieiiiiiiee et
7-8 Refresh Control REGISIEToii e
7-9 Regaining Bus Control to Run a DRAM Refresh Bus Cycle
8-1 Interrupt Control Unit in Master Modeccccooeevvvieiiiiiiieec s
8-2 Using External 8259A Modules in Cascade Modeccooviiiiieeiiiiiiiiee e
8-3 Interrupt Control Unit Latency and Response TiMecccccoovvvieiieeiiiiieeeeecciiiieee e
8-4 Interrupt Control Register for Internal Sources
8-5 Interrupt Control Register for Noncascadable External Pins............ccccceeviiiiieieennnns
8-6 Interrupt Control Register for Cascadable Interrupt PinS..........cccceiiiiiiiienieiiiiieeenn
8-7 INterrupt REQUESE REGISTENcciuviiiiiiiieiiie e
8-8 INtErruUPt MASK REQISTENvvviiieiiiiiiiei et et e e et e e e s e aaaaea s
8-9 Priority Mask Register
8-10 IN-SEIVICE REGISTENei ittt e et e e et e e e e aneeee s
8-11 POI REGISTEN ...t ettt e e e e e e nnnes

8-12 Poll Status Register..........ccceeeunee.
8-13 End-of-Interrupt Register
8-14 Interrupt Status Register
8-15 Interrupt Control Unit in Slave MOGEcoviiiiiiiiiiei e
8-16 Interrupt SOUrces iN SIAVE MOUEocviiiiiiee e
8-17 Interrupt Vector Register (Slave Mode Only)

8-18 End-of-Interrupt Register in Slave Mode............

8-19 Request, Mask, and In-Service Registers.........

8-20 Interrupt Vectoring in SIave MOGEcouvveiiii it
8-21 Interrupt Response Time in Slave MOGEcccueviiiiiiiiiee e

9-1 Timer/Counter Unit Block Diagram

9-2 Counter Element Multiplexing and Timer Input Synchronization...............ccccevveveenineen. 9-3
9-3 TiMers 0 and 1 FIOW Chartooooiiiiiie et ee e e e 9-4
9-4 Timer/Counter Unit OQUIPUL MOOES........coiiiiiiiiiei et e e 9-6
9-5 Timer 0 and Timer 1 Control REQISIEISccuuviiieiicceieee et 9-7

xiii

CONTENTS Inte|®

Figure

9-6
9-7
9-8
9-9
10-1
10-2
10-3
10-4
10-5
10-6
10-7
10-8
10-9
10-10
10-11
10-12
11-1
11-2
11-3
11-4
12-1
A-1
A-2
A-3
A-4
A-5
A-6
B-1

Xiv

FIGURES

Timer 2 CONIOl REQISIET ...coiiieiieei et e e e e e e e e e e st ae e e e anraes 9-9
TimMEr COUNE REGISIEIS. ...eiiiiiiiiiie ettt e s et e e e s e nae e e e e s s snreeaeeaaes 9-10
Timer Maxcount Compare REQISIEIS........ciicuiiiieiiiiee e eciiee e e ereae e 9-11
TxOUT Signal Timing
Typical DMA TIanSIert e e e e 10-2
DMA Request Minimum ReSPONSE TIMEc.ooiiiiiiiiaiiiiiie et eiieeee e 10-4
Source-Synchronized Transfers....................

Destination-Synchronized Transfers
Two-Channel DMA Moduleccccoveveenee.

EXamples Of DIMA PrIOFIYooiitiiiia ittt e e e e e
DMA Source Pointer (High-Order BitS)..........ciiuuiiiaaiiiiiieae et
DMA Source Pointer (Low-Order Bits)
DMA Destination Pointer (High-Order Bits)........
DMA Destination Pointer (Low-Order Bits)....
DIMA CONIrOl REGISTEN....cciiiveiiiie et et e e et e e e s e s rra e e e s s s rre e e e e s snnes
Transfer COUNt REQISIENcou ettt e e a e
80C187-SUPPOItEd DAta TYPES...eeeeiiiiuurieeeeeiiitieieeeeeitteeeae e e s eatieeeeeeessneseeaeeeanereeeeeeannes
80C186 Modular Core Family/80C187 System Configuration
80C187 Configuration with a Partially Buffered Bus..................ccu...

80C187 Exception Trapping via Processor Interrupt Pin...........ccccveieiiiiiiieee e,
Entering/Leaving ONCE MOGEccoiiiiiieiiiiiiiie ettt
Formal Definition of ENTER
Variable Access in Nested ProCeAUIEScuuuuiiii it e e
Stack Frame for Main at Level L..........oooi i
Stack Frame for Procedure A at LeVel 2cooviiiiiiiiiiiiieie e
Stack Frame for Procedure B at Level 3 Called from A........cccoeviiiiiiiiieniiee e
Stack Frame for Procedure C at Level 3 Called from B ...
INput SYNChroNization CIFCUIT.........c.evviiiiieiiiie e e

Inte|® CONTENTS

TABLES
Table Page
1-1 Comparison of 80C186 Modular Core Family ProductS............cceveeiiiieniiiniiiieeeee e 1-2
1-2 Related Documents and Software

2-1 Implicit Use of General Registers......................

2-2 LOQICAl AUrESS SOUICES.....ceiiiiieiiiieeie e ettt s ettt e e e e et e e e st e e e e s sta e e e e e s saraeeee s
2-3 Data Transfer INSIIUCHIONSeiiiiiiiiiii e
2-4 Arithmetic InStructionsccccovvveeviee e,

2-5 Arithmetic Interpretation of 8-Bit Numbers

2-6 Bit Manipulation Instructionsccccccceeeeennn.

2-7 SING INSIIUCHIONS ...ttt e e e e et e e e e ennbe e e e e e eanebeeeas
2-8 String Instruction Register and Flag USE..........ccccuvieiiiiiiiiiiiic et
2-9 Program Transfer Instructions.......................

2-10 Interpretation of Conditional Transfers

2-11 Processor Control Instructionscc.cceeuveeee.

2-12 YU o] oJo] g (=To B F- 1= Y/ o 1T PR
3-1 BUS CYCIE TYPES ...ttt ettt e e nne e e nne e
3-2 Read Bus Cycle TYpesS......ccccccevvvreeeeeeiirnnnen.

3-3 Read Cycle Critical Timing Parameters

3-4 Write Bus Cycle TYpeScccceeevvvvveeeeeciiiinnen.

3-5 Write Cycle Critical Timing Parameters

3-6 HALT BUS CYClE PiN STAES......ciiiiieieiiiieeeeiiie et
3-7 Queue Status Signal Decodingccoecvveennee

3-8 Signal Condition Entering HOLD

4-1 Peripheral Control BIOCK...........cuuuiiiiiiiiiiie et eatvaee e
5-1 Suggested Values for Inductor L1 in Third Overtone Oscillator Circuit........................ 5-4
5-2 Summary of Power Management Modes

6-1 Chip-Select Unit Registersccocvvviiveenns

6-2 UCS Block Size and Starting AdAreSs.........eiviereeveriereieeseesreeseseeseseesessesessesessesens
6-3 LCS ACHVE RANGEveiveeeieteeteete ettt ettt et ete et te et eeteeetesteetaesteesteereensennas
6-4 MCS ACHVE RANGEcveivviieeiecteete et

6-5 MCS Block Size and Start Address Restrictions

6-6 PCS ACHVE RANGE......ccviivictiiciieiie ettt

7-1 Identification of Refresh BUS CYCIES.........uiii it
8-1 Default INterrupt PriOrti©S......coi ettt e ee e
8-2 Fixed INterrupt TYPES ...covvvieiieeicieeeee e

8-3 Interrupt Control Unit Registers in Master Mode

8-4 Interrupt Control Unit Register Comparisoncc...o....

8-5 Slave Mode Fixed Interrupt TYPe BitSoouiiiiiiiiiiiiee e
9-1 Timer 0 and 1 CIOCK SOUICESceieiiiiiiiiie e eitieie e et ee et ete e e e et ee e e e e sanebeeeeeeeanes
9-2 Timer Retriggering.......ooveeeeerieieeies e

11-1 80C187 Data Transfer INSIIUCHIONS.oiviiiiiiieiiieeeiee e
11-2 80C187 ArithmetiC INSITUCHIONS.......cciiiiieiiiee ettt
11-3 80C187 Comparison Instructions...................

11-4 80C187 Transcendental Instructions

11-5 80C187 CoNStANt INSIIUCTIONSceeeiiieiiiiee ettt e e e e s e aeee e e e e eeees

XV

CONTENTS Inte|®

Table

11-6
11-7
C-1
C-2
C-3
C-4
D-1
D-2
D-3
D-4
D-5

Xvi

TABLES

80C187 Processor Control INSTIUCHIONS...........eeeiieiiiiieee et 11-6
80C187 1/O POrt ASSIGNMENTSeiiiiiiiiiee ettt ettt e e e e e e e e e s e e e e enneeeeeaeaes 11-10
Instruction Format Variables
INSTrUCEION OPEIANASvviiiie ettt e e e e st e e et ae e e e e entaaaeae s
Flag Bit FUNCHONS......cciiiiiiiii ettt e e e e e e s te e e e e e s nntaaeeeeennes
Instruction Set
Operand Variables

Instruction Set Summarycccoccoeeeriiineen.

Machine Instruction Decoding GUIAE..........cccoiiuiiiiiiaiiiii e D-9
MNemMOoNiC ENCOAING MALTIXccciiviiiieiiiiiiie e eeiiie e e e st a e e s e e e s eie e e e e e ennees D-20
Abbreviations for Mnemonic ENcoding MatriXccccuveeeiiiiiiieeeesiiiiese e ciiieee e D-22

Inte|® CONTENTS

EXAMPLES
Example Page
5-1 Initializing the Power Management Unit for Idle or Powerdown Modecc........ 5-16
5-2 Initializing the Power Management Unit for Power-Save Modecccccceeeiivveneennn. 5-22
6-1 Initializing the Chip-Select UNit...........oo e 6-20

7-1 Initializing the Refresh Control UNit ... 7-11
8-1 Initializing the Interrupt Control Unit for Master Modecc.eeeeeiiiiiiiini i 8-31
9-1 Configuring a Real-Time ClOCK............ciiiiiiiiiiie et 9-18
9-2 Configuring a Square-Wave GENEIALOr...........ccuiiiiriieeiiiiiiiieeeeeeiireee e e sirraree e e e ssereeens 9-21

9-3 Configuring a Digital ONE-Shot............coiiiiiiiiiie e e 9-22
10-1 INitializing the DIMA ULooiiii e e e e e e e 10-23
10-2 Timed DMA TFaNSFEIS ...ttt e e e e e e ann 10-26
11-1 Initialization Sequence for 80C187 Math COProCESSONuveeeeeeiiiiiieeeeaeiieieae e 11-15
11-2 Floating Point Math Routine Using FSINCOS..........cccciiiiie it 11-16

XVii

intel.

Introduction

intel.

CHAPTER 1
INTRODUCTION

The 8086 microprocessor was first introduced in 1978 and gained rapid support as the microcom-
puter engine of choice. There are literally millions of 8086/8088-based systems in the world to-
day. The amount of software written for the 8086/8088 is rivaled by no other architecture.

By the early 1980’s, however, it was clear that a replacement for the 8086/8088 was necessary.
An 8086/8088 system required dozens of support chips to implement even a moderately complex
design. Intel recognized the need to integrate commonly used system peripherals onto the same
silicon die as the CPU. In 1982 Intel addressed this need by introducing the 80186/80188 family
of embedded microprocessors. The original 80186/80188 integrated an enhanced 8086/8088
CPU with six commonly used system peripherals. A parallel effort within Intel also gave rise to
the 80286 microprocessor in 1982. The 80286 began the trend toward the very high performance
Intel architecture that today includes the Intel38@ntel486]1 and Pentiul microprocessors.

As technology advanced and turned toward small geometry CMOS processes, it became clear
that a new 80186 was needed. In 1987 Intel announced the second generation of the 80186 family:
the 80C186/C188. The 80C186 family is pin compatible with the 80186 family, while adding an
enhanced feature set. The high-performance CHMOS llI process allowed the 80C186 to run at
twice the clock rate of the NMOS 80186, while consuming less than one-fourth the power.

The 80186 family took another major step in 1990 with the introduction of the 80C186EB family.
The 80C186EB heralded many changes for the 80186 family. First, the enhanced 8086/8088 CPU
was redesigned as a static, stand-alone module known as the 80C186 Modular Core. Second, the
80186 family peripherals were also redesigned as static modules with standard interfaces. The
goal behind this redesign effort was to give Intel the capability to proliferate the 80186 family
rapidly, in order to provide solutions for an even wider range of customer applications.

The 80C186EB/C188EB was the first product to use the new modular capability. The
80C186EB/C188EB includes a different peripheral set than the original 80186 family. Power
consumption was dramatically reduced as a direct result of the static design, power management
features and advanced CHMOS IV process. The 80C186EB/C188EB has found acceptance in a
wide array of portable equipment ranging from cellular phones to personal organizers.

In 1991 the 80C186 Modular Core family was again extended with the introduction of three new
products: the 80C186XL, the B0C186EA and the 80C186EC. The 80C186XL/C188XL is a high-
er performance, lower power replacement for the 80C186/C188. The 80C186EA/C188EA com-
bines the feature set of the 80C186 with new power management features for power-critical
applications. The 80C186EC/C188EC offers the highest level of integration of any of the 80C186
Modular Core family products, with 14 on-chip peripherals (see Table 1-1).

I 1-1

INTRODUCTION Intel®

The 80C186 Modular Core family is the direct result of ten years of Intel development. It offers
the designer the peace of mind of a well-established architecture with the benefits of state-of-the-
art technology.

Table 1-1. Comparison of 80C186 Modular Core Family Products

Feature 80C186XL 80C186EA 80C186EB 80C186EC

Enhanced 8086 Instruction Set

Low-Power Static Modular CPU

Power-Save (Clock Divide) Mode

Powerdown and Idle Modes
80C187 Interface

ONCE Mode

Interrupt Control Unit 8259
Compatible

Timer/Counter Unit

Chip-Select Unit Enhanced Enhanced

DMA Unit 2 Channel 2 Channel 4 Channel

Serial Communications Unit

Refresh Control Unit Enhanced Enhanced

Watchdog Timer Unit

I/0 Ports 16 Total 22 Total

1.1 HOW TO USE THIS MANUAL

This manual uses phrases sucl8@€186 Modular Core Familgr 80C188 Modular Corgas
well as references to specific products sucBM3188EAEach phrase refers to a specific set of
80C186 family products. The phrases and the products they refer to are as follows:

80C186 Modular Core Family:This phrase refers to any device that uses the modular
80C186/C188 CPU core architecture. At this time these include the 80C186EA/C188EA,
80C186EB/C188EB, 80C186EC/C188EC and 80C186XL/C188XL.

80C186 Modular CoreWithout the wordamily, this phrase refers only to the 16-bit bus mem-
bers of the 80C186 Modular Core Family.

80C188 Modular CoreThis phrase refers to the 8-bit bus products.

80C188EC:A specific product reference refers only to the named device. For ex@mpilee
80C188EC..refers strictly to the 80C188EC and not to any other device.

1-2 I

Intel® INTRODUCTION

Each chapter covers a specific section of the device, beginning with the CPU core. Each periph-
eral chapter includes programming examples intended to aid in your understanding of device op-
eration. Please read the comments carefully, as not all of the examples include all the code
necessary for a specific application.

This user’s guide is a supplement to the device data sheet. Specific timing values are not dis-
cussed in this guide. When designing a system, always consult the most recent version of the de-
vice data sheet for up-to-date specifications.

1.2 RELATED DOCUMENTS

The following table lists documents and software that are useful in designing systems that incor-
porate the 80C186 Modular Core Family. These documents are available through Intel Literature.
In the U.S. and Canada, call 1-800-548-4725 to order. In Europe and other international locations,
please contact your local Intel sales office or distributor.

NOTE

If you will be transferring a design from the 80186/80188 or 80C186/80C188
to the 80C186XL/80C188XL, refer to FaxBack Document No. 2132,

Table 1-2. Related Documents and Software

Document/Software Title %?g:mggt

Embedded Microprocessors (includes 186 family data sheets) 272396
186 Embedded Microprocessor Line Card 272079
80186/80188 High-Integration 16-Bit Microprocessor Data Sheet 272430
80C186XL/C188XL-20, -12 16-Bit High-Integration Embedded Microprocessor 272431
Data Sheet

80C186EA/80C188EA-20, -12 and 80L186EA/80L188EA-13, -8 (low power 272432
versions) 16-Bit High-Integration Embedded Microprocessor Data Sheet
80C186EB/80C188EB-20, -13 and 80L186EB/80L188EB-13, -8 (low power 272433
versions) 16-Bit High-Integration Embedded Microprocessor Data Sheet
80C186EC/80C188EC-20, -13 and 80L186EC/80L188EC-13, -8 (low power 272434
versions) 16-Bit High-Integration Embedded Microprocessor Data Sheet

80C187 80-Bit Math Coprocessor Data Sheet 270640
Low Voltage Embedded Design 272324
80C186/C188, 80C186XL/C188XL Microprocessor User's Manual 272164
80C186EA/80C188EA Microprocessor User's Manual 270950
80C186EB/B0C188EB Microprocessor User's Manual 270830
80C186EC/80C188EC Microprocessor User's Manual 272047
8086/8088/8087/80186/80188 Programmer’s Pocket Reference Guide 231017

INTRODUCTION Intel®

Table 1-2. Related Documents and Software (Continued)

Document/Software Title %?g:mggt
8086/8088 User's Manual Programmer’s and Hardware Reference Manual 240487
ApPBUILDER Software 272216
80C186EA Hypertext Manual 272275
80C186EB Hypertext Manual 272296
80C186EC Hypertext Manual 272298
80C186XL Hypertext Manual 272630
ZCON - Z80 Code Converter Available on BBS

1.3 ELECTRONIC SUPPORT SYSTEMS

Intel's FaxBack* service and application BBS provide up-to-date technical information. Intel
also maintains several forums on CompuServe and offers a variety of information on the World
Wide Web. These systems are available 24 hours a day, 7 days a week, providing technical infor-
mation whenever you need it.

1.3.1 FaxBack Service

FaxBack is an on-demand publishing system that sends documents to your fax machine. You can
get product announcements, change notifications, product literature, device characteristics, de-
sign recommendations, and quality and reliability information from FaxBack 24 hours a day, 7
days a week.

1-800-628-2283 U.S. and Canada
916-356-3105 U.S., Canada, Japan, Asia Pacific
44(0)1793-496646 Europe

Think of the FaxBack service as a library of technical documents that you can access with your
phone. Just dial the telephone number and respond to the system prompts. After you select a doc-
ument, the system sends a copy to your fax machine.

Each document has an order number and is listed in a subject catalog. The first time you use Fax-
Back, you should order the appropriate subject catalogs to get a complete list of document order
numbers. Catalogs are updated twice monthly. In addition, daily update catalogs list the title, sta-
tus, and order number of each document that has been added, revised, or deleted during the pas
eight weeks. To receive the update for a subject catalog, enter the subject catalog number fol-
lowed by a zero. For example, for the complete microcontroller and flash catalog, request docu-
ment number 2; for the daily update to the microcontroller and flash catalog, request document
number 20.

The following catalogs and information are available at the time of publication:
1. Solutions OEMsubscription form

2. Microcontroller and flash catalog

1-4

Intel® INTRODUCTION

Development tools catalog

Systems catalog

Multimedia catalog

Multibus and iRMX® software catalog and BBS file listings
Microprocessor, PCI, and peripheral catalog

Quality and reliability and change notification catalog

© © N o g w

IAL (Intel Architecture Labs) technology catalog

1.3.2 Bulletin Board System (BBS)

The bulletin board system (BBS) lets you download files to your computer. The application BBS
has the latesApBUILDER software, hypertext manuals and datasheets, software drivers, firm-
ware upgrades, application notes and utilities, and quality and reliability data.

916-356-3600 U.S., Canada, Japan, Asia Pacific (up to 19.2 Kbaud)
916-356-7209 U.S., Canada, Japan, Asia Pacific (2400 baud only)
44(0)1793-496340 Europe

The toll-free BBS (available in the U.S. and Canada) offers lists of documents available from
FaxBack, a master list of files available from the application BBS, and a BBS user’s guide. The
BBS file listing is also available from FaxBack (catalog number 6; see page 1-4 for phone num-
bers and a description of the FaxBack service).

1-800-897-2536 U.S. and Canada only

Any customer with a modem and computer can access the BBS. The system provides automatic
configuration support for 1200- through 19200-baud modems. Typical modem settings are 14400
baud, no parity, 8 data bits, and 1 stop bit (14400, N, 8, 1).

To access the BBS, just dial the telephone number and respond to the system prompts. During
your first session, the system asks you to register with the system operator by entering your name
and location. The system operator will set up your access account within 24 hours. At that time,
you can access the files on the BBS.

NOTE

If you encounter any difficulty accessing the high-speed modem, try the
dedicated 2400-baud modem. Use these modem settings: 2400, N, 8, 1.

1.3.2.1 How to Find ApBUILDER Software and Hypertext Documents
on the BBS

The latestApBUILDER files and hypertext manuals and datasheets are available first from the
BBS. To access the files, complete these steps:

1. TypeF from the BBS Main menu. The BBS displays the Intel Apps Files menu.

I 1-5

INTRODUCTION Intel®

2. TypeL and press <Enter>. The BBS displays the list of areas and prompts for the area
number.

3. Type25 and press <Enter> to selegpBUILDER/Hypertext. The BBS displays several
options: one forApBUILDER software and the others for hypertext documents for
specific product families.

4. Typel and press <Enter>to list the latesApBUILDER files.

5. Type the file numbers to select the files you wish to download (for exalyler, files 1
and 6 or3-7 for files 3, 4, 5, 6, and 7) and press <Enter>. The BBS displays the approx-
imate time required to download the selected files and gives you the option to download
them.

1.3.3 CompuServe Forums

The CompuServe forums provide a means for you to gather information, share discoveries, and
debate issues. Type “go intel” for access. For information about CompuServe access and service
fees, call CompuServe at 1-800-848-8199 (U.S.) or 614-529-1340 (outside the U.S.).

1.3.4 World Wide Web
We offer a variety of information through the World Wide Web (http://www.intel.com/). Select
“Embedded Design Products” from the Intel home page.

1.4 TECHNICAL SUPPORT

In the U.S. and Canada, technical support representatives are available to answer your questions
between 5a.m. and 5 p.m. PST. You can also fax your questions to us. (Please include your voice
telephone number and indicate whether you prefer a response by phone or by fax). Outside the
U.S. and Canada, please contact your local distributor.

1-800-628-8686 U.S. and Canada
916-356-7599 U.S. and Canada
916-356-6100 (fax) U.S. and Canada

1.5 PRODUCT LITERATURE

You can order product literature from the following Intel literature centers.

1-800-548-4725 U.S. and Canada
708-296-9333 U.S. (from overseas)
44(0)1793-431155 Europe (U.K.)
44(0)1793-421333 Germany
44(0)1793-421777 France
81(0)120-47-88-32 Japan (fax only)

1-6 I

intel.

Overview of the
80C186 Family
Architecture

CHAPTER 2
OVERVIEW OF THE 80C186 FAMILY
ARCHITECTURE

The 80C186 Modular Microprocessor Core shares a common base architecture with the 8086,
8088, 80186, 80188, 80286, Intel386™ and Intel486™ processors. The 80C186 Modular Core
maintains full object-code compatibility with the 8086/8088 family of 16-bit microprocessors,
while adding hardware and software performance enhancements. Most instructions require fewer
clocks to execute on the 80C186 Modular Core because of hardware enhancements in the Bus
Interface Unit and the Execution Unit. Several additional instructions simplify programming and
reduce code size (see Appendix A, “80C186 Instruction Set Additions and Extensions”).

2.1 ARCHITECTURAL OVERVIEW

The 80C186 Modular Microprocessor Core incorporates two separate processing units: an Exe-
cution Unit (EU) and a Bus Interface Unit (BIU). The Execution Unit is functionally identical
among all family members. The Bus Interface Unit is configured for a 16-bit external data bus
for the 80C186 core and an 8-bit external data bus for the 80C188 core. The two units interface
via an instruction prefetch queue.

The Execution Unit executes instructions; the Bus Interface Unit fetches instructions, reads op-
erands and writes results. Whenever the Execution Unit requires another opcode byte, it takes the
byte out of the prefetch queue. The two units can operate independently of one another and are
able, under most circumstances, to overlap instruction fetches and execution.

The 80C186 Modular Core family has a 16-bit Arithmetic Logic Unit (ALU). The Arithmetic
Logic Unit performs 8-bit or 16-bit arithmetic and logical operations. It provides for data move-
ment between registers, memory and I/O space.

The 80C186 Modular Core family CPU allows for high-speed data transfer from one area of
memory to another using string move instructions and between an I/O port and memory using
block I/O instructions. The CPU also provides many conditional branch and control instructions.

The 80C186 Modular Core architecture features 14 basic registers grouped as general registers,
segment registers, pointer registers and status and control registers. The four 16-bit general-pur-
pose registers (AX, BX, CX and DX) can be used as operands for most arithmetic operations as
either 8- or 16-bit units. The four 16-bit pointer registers (Sl, DI, BP and SP) can be used in arith-
metic operations and in accessing memory-based variables. Four 16-bit segment registers (CS,
DS, SS and ES) allow simple memory partitioning to aid modular programming. The status and
control registers consist of an Instruction Pointer (IP) and the Processor Status Word (PSW) reg-
ister, which contains flag bits. Figure 2-1 is a simplified CPU block diagram.

I 2-1

OVERVIEW OF THE 80C186 FAMILY ARCHITECTURE

General
Registers

AH

AL

BH

BL

CH

CL

DH

DL

SP

BP

Sl

A

ALU Data Bus

Address Bus (20 Bits)

CS

DS
SS

ES
1P

Internal

AA¢

¢

Temporary
Registers

s d

(16 Bits)

EU
Control

System

A Communications
Registers

Bus

Control
Bus

Instruction Queue

Execution Unit

(EV)

1
k Q Bus

(8 Bits)

Bus Interface Unit
(BIU)

External
Logic [E=————>

A1012-0A

Figure 2-1. Simplified Functional Block Diagram of the 80C186 Family CPU

2.1.1 Execution Unit

The Execution Unit executes all instructions, provides data and addresses to the Bus Interface
Unit and manipulates the general registers and the Processor Status Word. The 16-bit ALU within
the Execution Unit maintains the CPU status and control flags and manipulates the general reg-
isters and instruction operands. All registers and data paths in the Execution Unit are 16 bits wide
for fast internal transfers.

2-2

Intel® OVERVIEW OF THE 80C186 FAMILY ARCHITECTURE

The Execution Unit does not connect directly to the system bus. It obtains instructions from a

gueue maintained by the Bus Interface Unit. When an instruction requires access to memory or a
peripheral device, the Execution Unit requests the Bus Interface Unit to read and write data. Ad-

dresses manipulated by the Execution Unit are 16 bits wide. The Bus Interface Unit, however,

performs an address calculation that allows the Execution Unit to access the full megabyte of

memory space.

To execute an instruction, the Execution Unit must first fetch the object code byte from the in-
struction queue and then execute the instruction. If the queue is empty when the Execution Unit
is ready to fetch an instruction byte, the Execution Unit waits for the Bus Interface Unit to fetch
the instruction byte.

2.1.2 Bus Interface Unit

The 80C186 Modular Core and 80C188 Modular Core Bus Interface Units are functionally iden-
tical. They are implemented differently to match the structure and performance characteristics of
their respective system buses. The Bus Interface Unit executes all external bus cycles. This unit
consists of the segment registers, the Instruction Pointer, the instruction code queue and several
miscellaneous registers. The Bus Interface Unit transfers data to and from the Execution Unit on
the ALU data bus.

The Bus Interface Unit generates a 20-bit physical address in a dedicated adder. The adder shifts
a 16-bit segment value left 4 bits and then adds a 16-bit offset. This offset is derived from com-
binations of the pointer registers, the Instruction Pointer and immediate values (see Figure 2-2).
Any carry from this addition is ignored.

Shift left 4 bits 1 2 3 4 Segment Base

15 0 Logical
T Address
1 2 3 4,0 0 0 2 2| Offset
19 + 0 15
+ 0 0 2 2 fje——
15 + 0
=1 2 3 6 2| Physical Address
19 + 0
To Memory

A1500-0A

Figure 2-2. Physical Address Generation

I 2-3

OVERVIEW OF THE 80C186 FAMILY ARCHITECTURE Intel®

During periods when the Execution Unit is busy executing instructions, the Bus Interface Unit
sequentially prefetches instructions from memory. As long as the prefetch queue is partially full,
the Execution Unit fetches instructions.

2.1.3 General Registers

The 80C186 Modular Core family CPU has eight 16-bit general registers (see Figure 2-3). The
general registers are subdivided into two sets of four registers. These sets are the data registers
(also called the H & L group for high and low) and the pointer and index registers (also called the

P & I group).

H ; L
15 8i7 0
AX
poeeee Accumulator
AH AL
BX
R Base
Data < BH BL
Group CcX
CH cL Count
DX
g Data
DH DL
SP Stack Pointer
Pointer BP Base Pointer
and
Index
Group Sl Source Index
DI Destination Index
A1033-0A

Figure 2-3. General Registers

2-4

Intel® OVERVIEW OF THE 80C186 FAMILY ARCHITECTURE

The data registers can be addressed by their upper or lower halves. Each data register can be use
interchangeably as a 16-bit register or two 8-bit registers. The pointer registers are always access-
ed as 16-bit values. The CPU can use data registers without constraint in most arithmetic and log-

ic operations. Arithmetic and logic operations can also use the pointer and index registers. Some

instructions use certain registers implicitly (see Table 2-1), allowing compact encoding.

Table 2-1. Implicit Use of General Registers

Register Operations
AX Word Multiply, Word Divide, Word I/O
AL Byte Multiply, Byte Divide, Byte 1/O, Translate, Decimal Arithmetic
AH Byte Multiply, Byte Divide
BX Translate
CX String Operations, Loops
CL Variable Shift and Rotate
DX Word Multiply, Word Divide, Indirect I/O
SP Stack Operations
Sl String Operations
DI String Operations

The contents of the general-purpose registers are undefined following a processor reset.

2.1.4 Segment Registers

The 80C186 Modular Core family memory space is 1 Mbyte in size and divided into logical seg-
ments of up to 64 Kbytes each. The CPU has direct access to four segments at a time. The segmen
registers contain the base addresses (starting locations) of these memory segments (see Figure
2-4). The CS register points to the current code segment, which contains instructions to be
fetched. The SS register points to the current stack segment, which is used for all stack operations.
The DS register points to the current data segment, which generally contains program variables.
The ES register points to the current extra segment, which is typically used for data storage. The
CS register initializes to OFFFFH, and the SS, DS and ES registers initialize to 0000H. Programs
can access and manipulate the segment registers with several instructions.

2-5

OVERVIEW OF THE 80C186 FAMILY ARCHITECTURE Intel®

15 0
CS Code Segment
DS Data Segment
SS Stack Segment
ES Extra Segment

Figure 2-4. Segment Registers

2.1.5 Instruction Pointer

The Bus Interface Unit updates the 16-hbit Instruction Pointer (IP) register so it contains the offset
of the next instruction to be fetched. Programs do not have direct access to the Instruction Pointer,
but it can change, be saved or be restored as a result of program execution. For example, if the
Instruction Pointer is saved on the stack, it is first automatically adjusted to point to the next in-
struction to be executed.

Reset initializes the Instruction Pointer to 0000H. The CS and IP values comprise a starting exe-

cution address of OFFFFOH (see “Logical Addresses” on page 2-10 for a description of address
formation).

2-6

Intel® OVERVIEW OF THE 80C186 FAMILY ARCHITECTURE

2.1.6 Flags

The 80C186 Modular Core family has six status flags (see Figure 2-5) that the Execution Unit
posts as the result of arithmetic or logical operations. Program branch instructions allow a pro-
gram to alter its execution depending on conditions flagged by a prior operation. Different in-
structions affect the status flags differently, generally reflecting the following states:

¢ If the Auxiliary Flag (AF) is set, there has been a carry out from the low nibble into the high
nibble or a borrow from the high nibble into the low nibble of an 8-bit quantity (low-order
byte of a 16-bit quantity). This flag is used by decimal arithmetic instructions.

¢ |If the Carry Flag (CF) is set, there has been a carry out of or a borrow into the high-order bit
of the instruction result (8- or 16-bit). This flag is used by instructions that add or subtract
multibyte numbers. Rotate instructions can also isolate a bit in memory or a register by
placing it in the Carry Flag.

* |f the Overflow Flag (OF) is set, an arithmetic overflow has occurred. A significant digit
has been lost because the size of the result exceeded the capacity of its destination location.
An Interrupt On Overflow instruction is available that will generate an interrupt in this
situation.

* |If the Sign Flag (SF) is set, the high-order bit of the result is a 1. Since negative binary
numbers are represented in standard two’'s complement notation, SF indicates the sign of
the result (0 = positive, 1 = negative).

* |[f the Parity Flag (PF) is set, the result has even parity, an even number of 1 bits. This flag
can be used to check for data transmission errors.

¢ |If the Zero Flag (ZF) is set, the result of the operation is zero.

Additional control flags (see Figure 2-5) can be set or cleared by programs to alter processor op-
erations:

¢ Setting the Direction Flag (DF) causes string operations to auto-decrement. Strings are
processed from high address to low address (or “right to left”). Clearing DF causes string
operations to auto-increment. Strings are processed from low address to high address (or
“left to right”).

¢ Setting the Interrupt Enable Flag (IF) allows the CPU to recognize maskable external or
internal interrupt requests. Clearing IF disables these interrupts. The Interrupt Enable Flag
has no effect on software interrupts or non-maskable interrupts.

¢ Setting the Trap Flag (TF) bit puts the processor into single-step mode for debugging. In
this mode, the CPU automatically generates an interrupt after each instruction. This allows
a program to be inspected instruction by instruction during execution.

The status and control flags are contained in a 16-bit Processor Status Word (see Figure 2-5). Re-
set initializes the Processor Status Word to OFO00H.

I 2-7

OVERVIEW OF THE 80C186 FAMILY ARCHITECTURE Intel®

2.1.7 Memory Segmentation

Programs for the 80C186 Modular Core family view the 1 Mbyte memory space as a group of
user-defined segments. A segment is a logical unit of memory that can be up to 64 Kbytes long.
Each segment is composed of contiguous memory locations. Segments are independent and sep
arately addressable. Software assigns every segment a base address (starting location) in memon
space. All segments begin on 16-byte memory boundaries. There are no other restrictions on seg-
ment locations. Segments can be adjacent, disjoint, partially overlapped or fully overlapped (see
Figure 2-6). A physical memory location can be mapped into (covered by) one or more logical
segments.

2-8 I

intel.

OVERVIEW OF THE 80C186 FAMILY ARCHITECTURE

Register Name:
Register Mnemonic:

Register Function:

Processor Status Word
PSW (FLAGS)

Posts CPU status information.

15 0
O|IDI|I]|T S|1Z A P C
FIF|F]|F F|F F F F
A1035-0A
Bit . Reset .
Mnemonic Bit Name State Function

OF Overflow Flag 0 If OF is set, an arithmetic overflow has occurred.
If DF is set, string instructions are processed high

DF Direction Flag 0 address to low address. If DF is clear, strings are
processed low address to high address.
If IF is set, the CPU recognizes maskable interrupt

Interrupt . .
IF 0 requests. If IF is clear, maskable interrupts are
Enable Flag .

ignored.

TF Trap Flag 0 If TF is set, the processor enters single-step mode.

SE Sign Flag 0 If SF is se_t, the_h|gh-qrde'r p|t of thg result of an
operation is 1, indicating it is negative.

ZF Zero Flag 0 If ZF is set, the result of an operation is zero.
If AF is set, there has been a carry from the low

- nibble to the high or a borrow from the high nibble

AR Auxiliary Flag 0 to the low nibble of an 8-bit quantity. Used in BCD
operations.

PE Parity Flag 0 If P'F is set, the result of an operation has even
parity.
If CF is set, there has been a carry out of, or a

CF Carry Flag 0 borrow into, the high-order bit of the result of an
instruction.

NOTE: Reserved register bits are shown with gray shading. Reserved bits must be written to a
logic zero to ensure compatibility with future Intel products.

Figure 2-5. Processor Status Word

OVERVIEW OF THE 80C186 FAMILY ARCHITECTURE Intel®

Fully
Overlapped -
Partly Segment D e
Overlapped Disjoint
. Logical
Contiguous Segment C Segments
Segment A | Segment B Segment E

('} Nemor

? ? ? ?

OH 10000H 20000H 30000H

A1036-0A

Figure 2-6. Segment Locations in Physical Memory

The four segment registers point to four “currently addressable” segments (see Figure 2-7). The
currently addressable segments provide a work space consisting of 64 Kbytes for code, a 64
Kbytes for stack and 128 Kbytes for data storage. Programs access code and data in another seg
ment by updating the segment register to point to the new segment.

2.1.8 Logical Addresses

It is useful to think of every memory location as having two kinds of addresses, physical and log-
ical. A physical address is a 20-bit value that identifies a unique byte location in the memory
space. Physical addresses range from OH to OFFFFFH. All exchanges between the CPU and
memory use physical addresses.

Programs deal with logical rather than physical addresses. Program code can be developed with-
out prior knowledge of where the code will be located in memory. A logical address consists of

a segment base value and an offset value. For any given memory location, the segment base value
locates the first byte of the segment. The offset value represents the distance, in bytes, of the tar-
get location from the beginning of the segment. Segment base and offset values are unsigned 16-
bit quantities. Many different logical addresses can map to the same physical location. In Figure
2-8, physical memory location 2C3H is contained in two different overlapping segments, one be-
ginning at 2BOH and the other at 2COH.

2-10 I

Intel® OVERVIEW OF THE 80C186 FAMILY ARCHITECTURE

FFFFFH
A
B
Data: DS: B
> c
Code: CS: E F--eeo]
i D
Stack: SS: H -
1 1
1 1
Extra: ES: J ka1 E
1 I Ll F
1 1
P G
P H
1 1
A >
| [
1 J
1
O >
K
OH
A1037-0A

Figure 2-7. Currently Addressable Segments

The segment register is automatically selected according to the rules in Table 2-2. All information
in one segment type generally shares the same logical attributes (e.g., code or data). This leads tc
programs that are shorter, faster and better structured.

The Bus Interface Unit must obtain the logical address before generating the physical address.
The logical address of a memory location can come from different sources, depending on the type
of reference that is being made (see Table 2-2).

Segment registers always hold the segment base addresses. The Bus Interface Unit determines
which segment register contains the base address according to the type of memory reference
made. However, the programmer can explicitly direct the Bus Interface Unit to use any currently
addressable segment (except for the destination operand of a string instruction). In assembly lan-
guage, this is done by preceding an instruction with a segment override prefix.

2-11

OVERVIEW OF THE 80C186 FAMILY ARCHITECTURE Intel®

B B

2C4H

Physical
Address

= * \ > 2C3H

Offset 2C2H
(3H) 2C1H

S?;ng—* 2COH
2BFH
2BEH
2BDH
2BCH

2BBH

Logical Offset 2BAH
Addresses (13H)
2B9H

2B8H
2B7H
2B6H
2B5H
2B4H
2B3H
2B2H
2B1H
2BOH

Segment
L Base

~ ~

A1038-0A

Figure 2-8. Logical and Physical Address

2-12 I

Intel® OVERVIEW OF THE 80C186 FAMILY ARCHITECTURE

Table 2-2. Logical Address Sources

Type of Memory Reference Se gEﬁeefr?tug ase s eg\rlemir:taéea se Offset
Instruction Fetch Cs NONE P
Stack Operation SS NONE SP
Variable (except following) DS CS, ES, SS Effective Address
String Source DS CS,ES, SS Sl
String Destination ES NONE DI
BP Used as Base Register SS CS, DS, ES Effective Address

Instructions are always fetched from the current code segment. The IP register contains the in-
struction’s offset from the beginning of the segment. Stack instructions always operate on the cur-
rent stack segment. The Stack Pointer (SP) register contains the offset of the top of the stack from
the base of the stack. Most variables (memory operands) are assumed to reside in the current date
segment, but a program can instruct the Bus Interface Unit to override this assumption. Often, the
offset of a memory variable is not directly available and must be calculated at execution time. The
addressing mode specified in the instruction determines how this offset is calculated (see “Ad-
dressing Modes” on page 2-27). The result is called the operand’s Effective Address (EA).

Strings are addressed differently than other variables. The source operand of a string instruction
is assumed to lie in the current data segment. However, the program can use another currently
addressable segment. The operand’s offset is taken from the Source Index (SI) register. The des-
tination operand of a string instruction always resides in the current extra segment. The destina-
tion's offset is taken from the Destination Index (DI) register. The string instructions
automatically adjust the Sl and DI registers as they process the strings one byte or word at a time.

When an instruction designates the Base Pointer (BP) register as a base register, the variable is
assumed to reside in the current stack segment. The BP register provides a convenient way to ac-
cess data on the stack. The BP register can also be used to access data in any other currently ac
dressable segment.

2.1.9 Dynamically Relocatable Code

The segmented memory structure of the 80C186 Modular Core family allows creation of dynam-
ically relocatable (position-independent) programs. Dynamic relocation allows a multiprogram-
ming or multitasking system to make effective use of available memory. The processor can write
inactive programs to a disk and reallocate the space they occupied to other programs. A disk-res-
ident program can then be read back into available memory locations and restarted whenever it
is needed. If a program needs a large contiguous block of storage and the total amount is available
only in non-adjacent fragments, other program segments can be compacted to free enough con-
tinuous space. This process is illustrated in Figure 2-9.

2-13

OVERVIEW OF THE 80C186 FAMILY ARCHITECTURE

intel.

Before
Relocation
Code
Segment
L CS CS
SS SS
Stack DS DS
Segment — ES ES
Data
Segment
-
Extra
Segment |
|:| Free Space

After
Relocation

Code
Segment

Stack
Segment

Y

Data
Segment

Y

Y

Extra
Segment

A1039-0A

Figure 2-9. Dynamic Code Relocation

To be dynamically relocatable, a program must not load or alter its segment registers and must
not transfer directly to a location outside the current code segment. All program offsets must be
relative to the segment registers. This allows the program to be moved anywhere in memory, pro-
vided that the segment registers are updated to point to the new base addresses.

2-14

Intel® OVERVIEW OF THE 80C186 FAMILY ARCHITECTURE

2.1.10 Stack Implementation

Stacks in the 80C186 Modular Core family reside in memory space. They are located by the Stack
Segment register (SS) and the Stack Pointer (SP). A system can have multiple stacks, but only
one stack is directly addressable at a time. A stack can be up to 64 Kbytes long, the maximum
length of a segment. Growing a stack segment beyond 64 Kbytes overwrites the beginning of the
segment. The SS register contains the base address of the current stack. The top of the stack, no
the base address, is the origination point of the stack. The SP register contains an offset that points
to the Top of Stack (TOS).

Stacks are 16 bits wide. Instructions operating on a stack add and remove stack elements one
word at a time. An element is pushed onto the stack (see Figure 2-10) by first decrementing the
SP register by 2 and then writing the data word. An element is popped off the stack by copying

it from the top of the stack and then incrementing the SP register by 2. The stack grows down in
memory toward its base address. Stack operations never move or erase elements on the stack. Th
top of the stack changes only as a result of updating the stack pointer.

2.1.11 Reserved Memory and I/O Space

Two specific areas in memory and one area in /0O space are reserved in the 80C186 Core family.

¢ Locations OH through 3FFH in low memory are used for the Interrupt Vector Table.
Programs should not be loaded here.

¢ Locations OFFFFOH through OFFFFFH in high memory are used for system reset code
because the processor begins execution at OFFFFOH.

¢ Locations OF8H through OFFH in I/O space are reserved for communication with other Intel
hardware products and must not be used. On the 80C186 core, these addresses are used a
I/O ports for the 80C187 numerics processor extension.

I 2-15

OVERVIEW OF THE 80C186 FAMILY ARCHITECTURE Intel®

- TOS
> 1056 | 34 | 12 |=<

POP AX

POP BX
1 -~
PUSH AX 0]%0 '
1
Existing 12 | 34 F--, BB | AA |1
Stack : T
n
: T
1062 | 00 | 11 1062 | 00 | 11 | i 1062 | 00 | 11 |
! 1
1060 | 22 | 33 x 1060 | 22 | 33 | 1060 | 22 | 33 | 1
(o] ! K
105E | 44 | 55 ° 105E | 44 | 55 | 1 105E | 44 | 55 [1!}
S]] "
105B | 66 | 77 £ 105B | 66 | 77 | | 105B | 66 | 77 | 1
= 1 TOS "
105A | 88 | 99 2 105A | 88 | 99 [! >105A | 88 | 99 | 1
TOS ' o
1058 | AA | BB 1058 | AA [BB | 1058 | AA | BB f--it
1
, 1

1056 | 01 | 23 1056 | 34 | 12 |----

1054 | 45 | 67 1054 | 45 | 67 1054 | 45 | 67

1052 | 89 | AB

[1050 CcD | EF [1050 CcD | EF I—:loso co | EF
10 | 50 |SS 10 | 50 |SS 10 | 50 |SS

1052 | 89 | AB 1052 | 89 | AB

Not presently
on stack

00 | os |SP 00 | o | SP 00 | 0A [SP
Stack operation for code sequence
PUSH AX
POP AX
POP BX

A1013-0A

Figure 2-10. Stack Operation

2-16

Intel® OVERVIEW OF THE 80C186 FAMILY ARCHITECTURE

2.2 SOFTWARE OVERVIEW

All 80C186 Modular Core family members execute the same instructions. This includes all the

8086/8088 instructions plus several additions and enhancements (see Appendix A, “80C186 In-
struction Set Additions and Extensions”). The following sections describe the instructions by cat-

egory and provide a detailed discussion of the operand addressing modes.

Software for 80C186 core family systems need not be written in assembly language. The proces-
sor provides direct hardware support for programs written in the many high-level languages
available. The hardware addressing modes provide straightforward implementations of based
variables, arrays, arrays of structures and other high-level language data constructs. A powerful
set of memory-to-memory string operations allow efficient character data manipulation. Finally,
routines with critical performance requirements can be written in assembly language and linked
with high-level code.

2.2.1 Instruction Set

The 80C186 Modular Core family instructions treat different types of operands uniformly. Nearly
every instruction can operate on either byte or word data. Register, memory and immediate op-
erands can be specified interchangeably in most instructions. Immediate values are exceptions:
they must serve as source operands and not destination operands. Memory variables can be ma
nipulated (added to, subtracted from, shifted, compared) without being moved into and out of reg-
isters. This saves instructions, registers and execution time in assembly language programs. In
high-level languages, where most variables are memory-based, compilers can produce faster and
shorter object programs.

The 80C186 Modular Core family instruction set can be viewed as existing on two levels. One is
the assembly level and the other is the machine level. To the assembly language programmer, the
80C186 Modular Core family appears to have about 100 instructions. One MOV (data move) in-
struction, for example, transfers a byte or a word from a register, a memory location or an imme-
diate value to either a register or a memory location. The 80C186 Modular Core family CPUs,
however, recognize 28 different machine versions of the MOV instruction.

The two levels of instruction sets address two requirements: efficiency and simplicity. Approxi-
mately 300 forms of machine-level instructions make very efficient use of storage. For example,
the machine instruction that increments a memory operand is three or four bytes long because the
address of the operand must be encoded in the instruction. Incrementing a register, however, re-
quires less information, so the instruction can be shorter. The 80C186 Core family has eight sin-
gle-byte machine-level instructions that increment different 16-bit registers.

The assembly level instructions simplify the programmer’s view of the instruction set. The pro-
grammer writes one form of an INC (increment) instruction and the assembler examines the op-
erand to determine which machine level instruction to generate. The following paragraphs
provide a functional description of the assembly-level instructions.

2-17

OVERVIEW OF THE 80C186 FAMILY ARCHITECTURE Intel®

22.1.1 Data Transfer Instructions

The instruction set contains 14 data transfer instructions. These instructions move single bytes
and words between memory and registers. They also move single bytes and words between the
AL or AX register and 1/O ports. Table 2-3 lists the four types of data transfer instructions and
their functions.

Table 2-3. Data Transfer Instructions

General-Purpose

MOV Move byte or word

PUSH Push word onto stack

POP Pop word off stack

PUSHA Push registers onto stack

POPA Pop registers off stack

XCHG Exchange byte or word

XLAT Translate byte
Input/Output

IN Input byte or word

ouT Output byte or word

Address Object and Stack Frame

LEA Load effective address
LDS Load pointer using DS
LES Load pointer using ES
ENTER Build stack frame

LEAVE Tear down stack frame

Flag Transfer

LAHF Load AH register from flags
SAHF Store AH register in flags
PUSHF Push flags from stack
POPF Pop flags off stack

Data transfer instructions are categorized as general purpose, input/output, address object and
flag transfer. The stack manipulation instructions, used for transferring flag contents and instruc-
tions used for loading segment registers are also included in this group. Figure 2-11 shows the
flag storage formats. The address object instructions manipulate the addresses of variables in-
stead of the values of the variables.

2-18

Intel® OVERVIEW OF THE 80C186 FAMILY ARCHITECTURE

gg;S:EF U u,uUuUoD, I, T,S,Z,UAUP,UC
1514131211109 8 7 6 5 4 3 2 1 O

U = Undefined; Value is indeterminate
O = Overflow Flag

D = Direction Flag

| = Interrupt Enable Flag

T = Trap Flag

S = Sign Flag

Z = Zero Flag

A = Auxiliary Carry Flag

P = Parity Flag

C = Carry Flag

A1014-0A

Figure 2-11. Flag Storage Format

22.1.2 Arithmetic Instructions

The arithmetic instructions (see Table 2-4) operate on four types of numbers:
¢ Unsigned binary
* Signed binary (integers)
¢ Unsigned packed decimal

¢ Unsigned unpacked decimal

2-19

OVERVIEW OF THE 80C186 FAMILY ARCHITECTURE Intel®

Table 2-5 shows the interpretations of various bit patterns according to number type. Binary num-
bers can be 8 or 16 bits long. Decimal numbers are stored in bytes, two digits per byte for packed
decimal and one digit per byte for unpacked decimal. The processor assumes that the operands in
arithmetic instructions contain data that represents valid numbers for that instruction. Invalid data
may produce unpredictable results. The Execution Unit analyzes the results of arithmetic instruc-
tions and adjusts status flags accordingly.

Table 2-4. Arithmetic Instructions

Addition
ADD Add byte or word
ADC Add byte or word with carry
INC Increment byte or word by 1
AAA ASCII adjust for addition
DAA Decimal adjust for addition
Subtraction

SUB Subtract byte or word
SBB Subtract byte or word with borrow
DEC Decrement byte or word by 1
NEG Negate byte or word
CMP Compare byte or word
AAS ASCII adjust for subtraction
DAS Decimal adjust for subtraction

Multiplication
MUL Multiply byte or word unsigned
IMUL Integer multiply byte or word
AAM ASCII adjust for multiplication

Division

DIV Divide byte or word unsigned
IDIV Integer divide byte or word
AAD ASCII adjust for division
cBwW Convert byte to word
CWD Convert word to double-word

2-20

Intel® OVERVIEW OF THE 80C186 FAMILY ARCHITECTURE

Table 2-5. Arithmetic Interpretation of 8-Bit Numbers

ex | mpanem | Vgsned | Soned | Utpaed | packed

07 00000111 7 +7 7 7

89 10001001 137 -119 invalid 89

C5 11000101 197 -59 invalid invalid
2.2.1.3 Bit Manipulation Instructions

There are three groups of instructions for manipulating bits within bytes and words. These three
groups are logical, shifts and rotates. Table 2-6 lists the bit manipulation instructions and their
functions.

Table 2-6. Bit Manipulation Instructions

Logicals
NOT “Not” byte or word
AND “And” byte or word
OR “Inclusive or” byte or word
XOR “Exclusive or” byte or word
TEST “Test” byte or word
Shifts
SHL/SAL Shift logical/arithmetic left byte or word
SHR Shift logical right byte or word
SAR Shift arithmetic right byte or word
Rotates
ROL Rotate left byte or word
ROR Rotate right byte or word
RCL Rotate through carry left byte or word
RCR Rotate through carry right byte or word

Logical instructions include the Boolean operators NOT, AND, OR and exclusive OR (XOR), as
well as a TEST instruction. The TEST instruction sets the flags as a result of a Boolean AND op-
eration but does not alter either of its operands.

Individual bits in bytes and words can be shifted either arithmetically or logically. Up to 32 shifts
can be performed, according to the value of the count operand coded in the instruction. The count
can be specified as an immediate value or as a variable in the CL register. This allows the shift
count to be a supplied at execution time. Arithmetic shifts can be used to multiply and divide bi-
nary numbers by powers of two. Logical shifts can be used to isolate bits in bytes or words.

2-21

OVERVIEW OF THE 80C186 FAMILY ARCHITECTURE Intel®

Individual bits in bytes and words can also be rotated. The processor does not discard the bits ro-
tated out of an operand. The bits circle back to the other end of the operand. The number of bits
to be rotated is taken from the count operand, which can specify either an immediate value or the
CL register. The carry flag can act as an extension of the operand in two of the rotate instructions.
This allows a bit to be isolated in the Carry Flag (CF) and then tested by a JC (jump if carry) or
JNC (jump if not carry) instruction.

2214 String Instructions

Five basic string operations process strings of bytes or words, one element (byte or word) at a
time. Strings of up to 64 Kbytes can be manipulated with these instructions. Instructions are avail-
able to move, compare or scan for a value, as well as to move string elements to and from the
accumulator. Table 2-7 lists the string instructions. These basic operations can be preceded by a
one-byte prefix that causes the instruction to be repeated by the hardware, allowing long strings
to be processed much faster than is possible with a software loop. The repetitions can be termi-
nated by a variety of conditions. Repeated operations can be interrupted and resumed.

Table 2-7. String Instructions

REP Repeat

REPE/REPZ Repeat while equal/zero
REPNE/REPNZ Repeat while not equal/not zero
MOVSB/MOVSW Move byte string/word string
MOVS Move byte or word string
INS Input byte or word string
OUTS Output byte or word string
CMPS Compare byte or word string
SCAS Scan byte or word string
LODS Load byte or word string
STOS Store byte or word string

String instructions operate similarly in many respects (see Table 2-8). A string instruction can
have a source operand, a destination operand, or both. The hardware assumes that a source strin
resides in the current data segment. A segment prefix can override this assumption. A destination
string must be in the current extra segment. The assembler does not use the operand names to ac
dress strings. Instead, the contents of the Source Index (Sl) register are used as an offset to addres
the current element of the source string. The contents of the Destination Index (DI) register are
taken as the offset of the current destination string element. These registers must be initialized to
point to the source and destination strings before executing the string instructions. The LDS, LES
and LEA instructions are useful in performing this function.

2-22

Intel® OVERVIEW OF THE 80C186 FAMILY ARCHITECTURE

String instructions automatically update the Sl register, the DI register, or both, before processing
the next string element. The Direction Flag (DF) determines whether the index registers are auto-
incremented (DF = 0) or auto-decremented (DF = 1). The processor adjusts the DI, Sl, or both
registers by one for byte strings or by two for word strings.

If a repeat prefix is used, the count register (CX) is decremented by one after each repetition of
the string instruction. The CX register must be initialized to the number of repetitions before the
string instruction is executed. If the CX register is 0, the string instruction is not executed and
control goes to the following instruction.

Table 2-8. String Instruction Register and Flag Use

Sl Index (offset) for source string
DI Index (offset) for destination string
CX Repetition counter
AL/AX Scan value
Destination for LODS
Source for STOS
DF Direction Flag
0 = auto-increment Sl, DI
1 = auto-decrement Sl, DI
ZF Scan/compare terminator
2215 Program Transfer Instructions

The contents of the Code Segment (CS) and Instruction Pointer (IP) registers determine the in-
struction execution sequence in the 80C186 Modular Core family. The CS register contains the
base address of the current code segment. The Instruction Pointer register points to the memory
location of the next instruction to be fetched. In most operating conditions, the next instruction
will already have been fetched and will be waiting in the CPU instruction queue. Program transfer
instructions operate on the IP and CS registers. Changing the contents of these registers cause:
normal sequential operation to be altered. When a program transfer occurs, the queue no longer
contains the correct instruction. The Bus Interface Unit obtains the next instruction from memory
using the new IP and CS values. It then passes the instruction directly to the Execution Unit and
begins refilling the queue from the new location.

The 80C186 Modular Core family offers four groups of program transfer instructions (see Table

2-9). These are unconditional transfers, conditional transfers, iteration control instructions and in-
terrupt-related instructions.

2-23

OVERVIEW OF THE 80C186 FAMILY ARCHITECTURE Intel®

Unconditional transfer instructions can transfer control either to a target instruction within the
current code segment (intrasegment transfer) or to a different code segment (intersegment trans-
fer). The assembler terms an intrasegment transfer SHORT or NEAR and an intersegment trans-
fer FAR. The transfer is made unconditionally when the instruction is executed. CALL, RET and
JMP are all unconditional transfers.

CALL is used to transfer the program to a procedure. A CALL can be NEAR or FAR. A NEAR
CALL stacks only the Instruction Pointer, while a FAR CALL stacks both the Instruction Pointer
and the Code Segment register. The RET instruction uses the information pushed onto the stack
to determine where to return when the procedure finishes. Note that the RET and CALL instruc-
tions must be the same type. This can be a problem when the CALL and RET instructions are in
separately assembled programs. The JMP instruction does not push any information onto the
stack. A JMP instruction can be NEAR or FAR.

Conditional transfer instructions are jumps that may or may not transfer control, depending on
the state of the CPU flags when the instruction is executed. Each conditional transfer instruction
tests a different combination of flags for a condition (see Table 2-10). If the condition is logically
TRUE, control is transferred to the target specified in the instruction. If the condition is FALSE,
control passes to the instruction following the conditional jump. All conditional jumps are
SHORT. The target must be in the current code segment within —128 to +127 bytes of the next
instruction’s first byte. For example, IMP O0H causes a jump to the first byte of the next instruc-
tion. Jumps are made by adding the relative displacement of the target to the Instruction Pointer.
All conditional jumps are self-relative and are appropriate for position-independent routines.

2-24

Table 2-9. Program Transfer Instructions

Conditional Transfers

JA/INBE Jump if above/not below nor equal
JAE/INB Jump if above or equal/not below
JB/INAE Jump if below/not above nor equal
JBE/JNA Jump if below or equal/not above
JC Jump if carry
JENJZ Jump if equal/zero
JG/INLE Jump if greater/not less nor equal
JGE/JNL Jump if greater or equal/not less
JL/INGE Jump if less/not greater nor equal
JLE/ING Jump if less or equal/not greater
JNC Jump if not carry
JNE/INZ Jump if not equal/not zero
JNO Jump if not overflow
JNP/JPO Jump if not parity/parity odd
JINS Jump if not sign
JO Jump if overflow
JP/IPE Jump if parity/parity even
JS Jump if sign

Unconditional Transfers
CALL Call procedure
RET Return from procedure
JMP Jump

Iteration Control
LOOP Loop
LOOPE/LOOPZ Loop if equal/zero
LOOPNE/LOOPNZ Loop if not equal/not zero
JCXZ Jump if register CX=0
Interrupts

INT Interrupt
INTO Interrupt if overflow
BOUND Interrupt if out of array bounds
IRET Interrupt return

OVERVIEW OF THE 80C186 FAMILY ARCHITECTURE

2-25

OVERVIEW OF THE 80C186 FAMILY ARCHITECTURE

Iteration control instructions can be used to regulate the repetition of software loops. These in-
structions use the CX register as a counter. Like the conditional transfers, the iteration control in-
structions are self-relative and can transfer only to targets that are within —128 to +127 bytes of

themselves. They are SHORT transfers.

The interrupt instructions allow programs and external hardware devices to activate interrupt ser-
vice routines. The effect of a software interrupt is similar to that of a hardware-initiated interrupt.
The processor cannot execute an interrupt acknowledge bus cycle if the interrupt originates in

software or with an NMI (Non-Maskable Interrupt).

Table 2-10. Interpretation of Conditional Transfers

Mnemonic Condition Tested “Jump if...”
JA/IJNBE (CF or ZF)=0 above/not below nor equal
JAE/INB CF=0 above or equal/not below
JB/INAE CF=1 below/not above nor equal
JBE/INA (CFor ZzF)=1 below or equal/not above
JC CF=1 carry
JENZ ZF=1 equal/zero
JG/INLE ((SF xor OF) or ZF)=0 greater/not less nor equal
JGE/JNL (SF xor OF)=0 greater or equal/not less
JL/INGE (SF xor OF)=1 less/not greater nor equal
JLE/ING ((SF xor OF) or ZF)=1 less or equal/not greater
JNC CF=0 not carry
JNE/INZ ZF=0 not equal/not zero
JNO OF=0 not overflow
JINP/IPO PF=0 not parity/parity odd
JINS SF=0 not sign
JO OF=1 overflow
JP/IPE PF=1 parity/parity equal
JS SF=1 sign

NOTE: The terms above and below refer to the relationship of two unsigned values;

greater and less refer to the relationship of two signed values.

2-26

Intel® OVERVIEW OF THE 80C186 FAMILY ARCHITECTURE

2.2.1.6 Processor Control Instructions

Processor control instructions (see Table 2-11) allow programs to control various CPU functions.
Seven of these instructions update flags, four of them are used to synchronize the microprocessor
with external events, and the remaining instruction causes the CPU to do nothing. Except for flag
operations, processor control instructions do not affect the flags.

Table 2-11. Processor Control Instructions

Flag Operations

STC Set Carry flag

CLC Clear Carry flag

CMC Complement Carry flag
STD Set Direction flag

CLD Clear Direction flag

STI Set Interrupt Enable flag
CLI Clear Interrupt Enable flag

External Synchronization

HLT Halt until interrupt or reset
WAIT Wait for TEST pin active

ESC Escape to external processor
LOCK Lock bus during next instruction

No Operation

NOP No operation

2.2.2 Addressing Modes

The 80C186 Modular Core family members access instruction operands in several ways. Oper-
ands can be contained either in registers, in the instruction itself, in memory or at I/O ports. Ad-
dresses of memory and 1/O port operands can be calculated in many ways. These addressing
modes greatly extend the flexibility and convenience of the instruction set. The following para-
graphs briefly describe register and immediate modes of operand addressing. A detailed descrip-
tion of the memory and 1/0O addressing modes is also provided.

2221 Register and Immediate Operand Addressing Modes

Usually, the fastest, most compact operand addressing forms specify only register operands. This
is because the register operand addresses are encoded in instructions in just a few bits and no bu
cycles are run (the operation occurs within the CPU). Registers can serve as source operands, des
tination operands, or both.

2-27

OVERVIEW OF THE 80C186 FAMILY ARCHITECTURE Intel®

Immediate operands are constant data contained in an instruction. Immediate data can be either
8 or 16 bits in length. Immediate operands are available directly from the instruction queue and

can be accessed quickly. As with a register operand, no bus cycles need to be run to get an imme-
diate operand. Immediate operands can be only source operands and must have a constant value

2222 Memory Addressing Modes

Although the Execution Unit has direct access to register and immediate operands, memory op-
erands must be transferred to and from the CPU over the bus. When the Execution Unit needs to
read or write a memory operand, it must pass an offset value to the Bus Interface Unit. The Bus
Interface Unit adds the offset to the shifted contents of a segment register, producing a 20-bit
physical address. One or more bus cycles are then run to access the operand.

The offset that the Execution Unit calculates for memory operand is called the operand’s Effec-
tive Address (EA). This address is an unsigned 16-bit number that expresses the operand’s dis-
tance, in bytes, from the beginning of the segment in which it resides. The Execution Unit can
calculate the effective address in several ways. Information encoded in the second byte of the in-
struction tells the Execution Unit how to calculate the effective address of each memory operand.
A compiler or assembler derives this information from the instruction written by the programmer.
Assembly language programmers have access to all addressing modes.

The Execution Unit calculates the Effective Address by summing a displacement, the contents of

a base register and the contents of an index register (see Figure 2-12). Any combination of these
can be present in a given instruction. This allows a variety of memory addressing modes.

2-28

Intel® OVERVIEW OF THE 80C186 FAMILY ARCHITECTURE

Single Index Double Index
or or or
BP [
Encoded BP DI
in the 4 or
Instruction)
S| M EU
or
DI |
Explicit vy _
in the G')«-: Displacement H-») Effective
Instruction bemmmmm o Address]
[— CS 0000 |+
or
Assumed Unless — SS [0000—
Overridden] or
by Prefix | D5s Toooo BIU
or
®H=<« ES [0000 —->(!)
—> Physical Addr [«
A1015-0A

Figure 2-12. Memory Address Computation

The displacement is an 8- or 16-bit number contained in the instruction. The displacement gen-
erally is derived from the position of the operand’s name (a variable or label) in the program. The
programmer can modify this value or explicitly specify the displacement.

I 2-29

OVERVIEW OF THE 80C186 FAMILY ARCHITECTURE Intel®

The BX or BP register can be specified as the base register for an effective address calculation.
Similarly, either the Sl or the DI register can be specified as the index register. The displacement
value is a constant. The contents of the base and index registers can change during execution. This
allows one instruction to access different memory locations depending upon the current values in
the base or base and index registers. The default base register for effective address calculations
with the BP register is SS, although DS or ES can be specified.

Direct addressing is the simplest memory addressing mode (see Figure 2-13). No registers are in-
volved, and the effective address is taken directly from the displacement of the instruction. Pro-
grammers typically use direct addressing to access scalar variables.

With register indirect addressing, the effective address of a memory operand can be taken directly
from one of the base or index registers (see Figure 2-14). One instruction can operate on various
memory locations if the base or index register is updated accordingly. Any 16-bit general register
can be used for register indirect addressing with the JMP or CALL instructions.

In based addressing, the effective address is the sum of a displacement value and the contents o
the BX or BP register (see Figure 2-15). Specifying the BP register as a base register directs the

Bus Interface Unit to obtain the operand from the current stack segment (unless a segment over-

ride prefix is present). This makes based addressing with the BP register a convenient way to ac-

cess stack data.

Opcode Mod R/M Displa{:ement H

A1016-0A

Figure 2-13. Direct Addressing

2-30

Intel® OVERVIEW OF THE 80C186 FAMILY ARCHITECTURE

Opcode Mod R/M

Y

BX
or
BP
or
S
or
DI > EA

A1017-0A

Figure 2-14. Register Indirect Addressing

Opcode Mod R/M Displacement |
U 1
BX
or
BP
EA
A1018-0A

Figure 2-15. Based Addressing

Based addressing provides a simple way to address data structures that may be located in different
places in memory (see Figure 2-16). A base register can be pointed at the structure. Elements of
the structure can then be addressed by their displacements. Different copies of the same structure
can be accessed by simply changing the base register.

2-31

OVERVIEW OF THE 80C186 FAMILY ARCHITECTURE

Displacement

(Rate)

High Address

{

Age Status

Rate

Base
Register

Vac Sick

Dept Div

Employee

2

Age Status

Rate

Displacement

(Rate)

§

Base Register

Y

EA

A

Vac Sick

Dept Div

Employee

Low Address

A1019-0A

With indexed addressing, the effective address is calculated by summing a displacement and the
contents of an index register (Sl or DI, see Figure 2-17). Indexed addressing is often used to ac-
cess elements in an array (see Figure 2-18). The displacement locates the beginning of the array,
and the value of the index register selects one element. If the index register contains 0000H, the
processor selects the first element. Since all array elements are the same length, simple arithmetic

Figure 2-16. Accessing a Structure with Based Addressing

on the register can select any element.

2-32

OVERVIEW OF THE 80C186 FAMILY ARCHITECTURE

Opcode Mod R/M Displacement |
i 1
Sl
> or
DI
EA

A1020-0A

Figure 2-17. Indexed Addressing

High Address

Low Address

o~ o~
Array (8)
---|Displacement| —> Array (7) Displacement [F--=
Array (6) i
Array (5) i
Index Register Array (4) Index Register i
14 Array (3) 2 i
¢ Array (2) Y i
EA Array (1) - EA |
------------------ > Array (0) S
d~ I~
1 Word

A1021-0A

Figure 2-18. Accessing an Array with Indexed Addressing

2-33

OVERVIEW OF THE 80C186 FAMILY ARCHITECTURE Intel®

Based index addressing generates an effective address that is the sum of a base register, an inde
register and a displacement (see Figure 2-19). The two address components can be determined a
execution time, making this a very flexible addressing mode.

Opcode Mod R/M Displagement i

BX

> or —)5)
BP
Sl

—- or >é
DI

Y

EA

A1022-0A

Figure 2-19. Based Index Addressing

Based index addressing provides a convenient way for a procedure to address an array located or
a stack (see Figure 2-20). The BP register can contain the offset of a reference point on the stack.
This is typically the top of the stack after the procedure has saved registers and allocated local
storage. The offset of the beginning of the array from the reference point can be expressed by a
displacement value. The index register can be used to access individual array elements. Arrays
contained in structures and matrices (two-dimensional arrays) can also be accessed with based
indexed addressing.

String instructions do not use normal memory addressing modes to access operands. Instead, the
index registers are used implicitly (see Figure 2-21). When a string instruction executes, the Si
register must point to the first byte or word of the source string, and the DI register must point to
the first byte or word of the destination string. In a repeated string operation, the CPU will auto-
matically adjust the S| and DI registers to obtain subsequent bytes or words. For string instruc-
tions, the DS register is the default segment register for the Sl register and the ES register is the
default segment register for the DI register. This allows string instructions to operate on data lo-
cated anywhere within the 1 Mbyte address space.

2-34

OVERVIEW OF THE 80C186 FAMILY ARCHITECTURE

Displacement

-- 6

{

- Base Register

Index Register

12

EA

High Address

Low Address

Parm 2 Displacement
Parm 1 6 --1
P % i
Old BP i
(BP) old BX (BP)|Base Register [+ i
1
Old AX ! i
1
—> Array (6) L
Array (5) Index Register 1 |
rra !
’ 12 Pl
Array (4) ! :
1
Array (3) l ! i
]
Array (2) -< EA ! i
]
Array (1) ! E
U
A Array (0) 5 [
! 1 i H
! Count] Ly
- S G L
! Temp] :
U
Y I
Status B P J
1 Word

A1024-0A

Figure 2-20. Accessing a Stacked Array with Based Index Addressing

2-35

OVERVIEW OF THE 80C186 FAMILY ARCHITECTURE

Opcode

Source EA
Destination EA |

A1025-0A

Figure 2-21. String Operand

2223 1/0 Port Addressing

Any memory operand addressing modes can be used to access an 1/O port if the port is memory-
mapped. String instructions can also be used to transfer data to memory-mapped ports with an
appropriate hardware interface.

Two addressing modes can be used to access ports located in the I/O space (see Figure 2-22). Fo
direct 1/0 port addressing, the port number is an 8-bit immediate operand. This allows fixed ac-
cess to ports numbered 0 to 255. Indirect I/O port addressing is similar to register indirect address-
ing of memory operands. The DX register contains the port number, which can range from 0 to
65,535. Adjusting the contents of the DX register allows one instruction to access any port in the
I/O space. A group of adjacent ports can be accessed using a simple software loop that adjusts the
value of the DX register.

Opcode

Data

Opcode

l

l

Port Address

DX ——-

Port Address

Direct

Port

Addressing

Indirect Port
Addressing

A1026-0A

2-36

Figure 2-22. 1/O Port Addressing

Intel® OVERVIEW OF THE 80C186 FAMILY ARCHITECTURE

2224 Data Types Used in the 80C186 Modular Core Family

The 80C186 Modular Core family supports the data types described in Table 2-12 and illustrated
in Figure 2-23. In general, individual data elements must fit within defined segment limits.

Table 2-12. Supported Data Types

Type Description

Integer A signed 8- or 16-bit binary numeric value (signed byte or word). All operations assume
a 2's complement representation.

The 80C187 numerics processor extension, when added to an 80C186 Modular Core
system, directly supports signed 32- and 64-bit integers (signed double-words and
quad-words). The 80C188 Modular Core does not support the 80C187.

Ordinal An unsigned 8- or 16-bit binary numeric value (unsigned byte or word).

BCD A byte (unpacked) representation of a single decimal digit (0-9).

ASCII A byte representation of alphanumeric and control characters using the ASCII
standard.

Packed BCD A byte (packed) representation of two decimal digits (0-9).One digit is stored in each
nibble (4 bits) of the byte.

String A contiguous sequence of bytes or words. A string can contain from 1 byte to 64
Kbytes.
Pointer A 16- or 32-bit quantity. A 16-bit pointer consists of a 16-bit offset component; a 32-bit

pointer consists of the combination of a 16-bit base component (selector) plus a 16-bit
offset component.

Floating Point A signed 32-, 64-, or 80-bit real number representation.

The 80C187 numerics processor extension, when added to an 80C186 Modular Core
system, directly supports floating point operands. The 80C188 Modular Core does not
support the 80C187.

2-37

OVERVIEW OF THE 80C186 FAMILY ARCHITECTURE Intel®

7 0 7 0
Signed eyie [T | Unsigned Byte [T]
LMSB
Sign Bit 1L Magnitude—! L— Magnitude—!
1514 1 g4 0 0 Unsigned 13 1 g7 0 0
) — ——
Sined vioa] | | U | | |
ign Bit 1 LMSB LMSB
g L Magnitude | L= Magnitude——!
_ 31 "3 2423 "2 1615 *1 g7 O 0
Slgned Double | I LI I B LI B R LI B I L B LN B B
Word*
Sign Bit 1 (MSB Magnitude |
_ 6377 *Ougar?® Mhgpp;t3 +245057 %o
SonedSved T T T T T T T]
Word*
Sign Bit ([LMSB Magnitude !
, 7 g 7 1 o7 0 0
Gy Coded [T] 4. [T [T
Decimal (BCD —
BCD Digitn BCD Digit 1 BCD Digit 0
7 ¢ 7 Y o7 0 0
pson L] e [T T
ASCII Character n ASCII Character 1 ASCII Character 0
7 M g 7 1 o7 0 0
Packed BCD I_'_'_'_—l_'_'_'—l e o o | L | L |
L
Most east
Significant Digit Significant Digit
7 Mo 7 1 o7 0 0
Strlng m . . ° | T T T I T T T | T T T I T T T |
Byte Word n Byte Word 1 Byte Word 0
31 *3 2423 *?2 1515 *L 0
Pomter | T 1 1 I LI | L I L | T 1 1 I L | T 1 1 I L |
L Selector 1 Offset 1
79 +9 +8 +7 +6 +5 +4 +3 +2 +1 0 9
Floating
points LL___1 [[[[[[[[|
Sign Bit 1L Exponent ! Magnitude I

NOTE: *Directly supported if the system contains an 80C187.

A1027-0B

Figure 2-23. 80C186 Modular Core Family Supported Data Types

2-38

Intel® OVERVIEW OF THE 80C186 FAMILY ARCHITECTURE

2.3 INTERRUPTS AND EXCEPTION HANDLING

Interrupts and exceptions alter program execution in response to an external event or an error
condition. An interrupt handles asynchronous external events, for example an NMI. Exceptions
result directly from the execution of an instruction, usually an instruction fault. The user can
cause a software interrupt by executing an ‘tiNifistruction. The CPU processes software in-
terrupts in the same way that it handles exceptions.

The 80C186 Modular Core responds to interrupts and exceptions in the same way for all devices
within the 80C186 Modular Core family. However, devices within the family may have different
Interrupt Control Units. The Interrupt Control Unit handles all external interrupt sources and pre-
sents them to the 80C186 Modular Core via one maskable interrupt request (see Figure 2-24).
This discussion covers only those areas of interrupts and exceptions that are common to the
80C186 Modular Core family. The Interrupt Control Unit is proliferation-dependent; see Chapter
8, “Interrupt Control Unit,” for additional information.

NMI
Maskable
Interrupt
Request
-
—
: Interrupt External
CPU : Control — [nterrupt
> Unit Sources
Interrupt
Acknowledge®
A1028-0A

Figure 2-24. Interrupt Control Unit

2.3.1 Interrupt/Exception Processing

The 80C186 Modular Core can service up to 256 different interrupts and exceptions. A 256-entry
Interrupt Vector Table (Figure 2-25) contains the pointers to interrupt service routines. Each en-
try consists of four bytes, which contain the Code Segment (CS) and Instruction Pointer (IP) of
the first instruction in the interrupt service routine. Each interrupt or exception is given a type

number, 0 through 255, corresponding to its position in the Interrupt Vector Table. Note that in-

terrupt types 0-31 are reserved for Intel and shootde used by an application program.

I 2-39

OVERVIEW OF THE 80C186 FAMILY ARCHITECTURE Intel®

Memory rapie Vector Memory Table Vector
Address Entry Definition Address Entry Definition
3FE CS 2E CS
Type 255 Type 11 - DMA1
3FC P } yP 2c E } yP
User 2A [
[Available » Type 10 - DMAO
28 IP o
82 CS 26 CS
T 2 e T 9-R d
80 P ype 3 24 P J ype eserve
7E CS 22 CS
Type 31 b T - Ti
7c P ype 3 20 P) ype 8 - Timer O
1E CS
 Reserved * Type 7 - ESC Opcode
1C IP o
52 S Type 20 1A S ¢ Type 6 - Unused
50 P P 18 P J o)g?:ode
4E CS 16 CS
4C 5 > Type 19 - Timer 2 14 ™ ¢ Type 5 - Array
s ® Bounds
4A CS) 12 CS
> Type 18 - Timer 1 4 -
48 P J yp 10 5 J Type 4 - Overflow
46 CS OE CS
* Type 17 - Reserved > - i
44 P J yp oc s J Type 3 - Breakpoint
42 CS . 0A CS
$ Type 16 - Numerics 4 -
40 IP o yp 08 P] Type 2 - NMI
3E CS 06 CS
> Type 15 - INT3 > - Single-
3C P J yp 04 P Type 1 - Single-Step
3A CS 02 CS
$ Type 14 - INT2 - Divi
38 P J yp 00 P } Type O - Divide Error
36 cs je————>
34 5 ¢ Type 13 - INT1 2 Bytes
32 CS
} Type 12 - INTO
30 1P CS =Code Segment Value
| Ee————> IP = Instruction Pointer Value
2 Bytes
A1009-02

Figure 2-25. Interrupt Vector Table

When an interrupt is acknowledged, a common event sequence (Figure 2-26) allows the proces-
sor to execute the interrupt service routine.

1. The processor saves a partial machine status by pushing the Processor Status Word onto
the stack.

2-40

Intel® OVERVIEW OF THE 80C186 FAMILY ARCHITECTURE

2. The Trap Flag bit and Interrupt Enable bit are cleared in the Processor Status Word. This
prevents maskable interrupts or single step exceptions from interrupting the processor
during the interrupt service routine.

The current CS and IP are pushed onto the stack.
4. The CPU fetches the new CS and IP for the interrupt vector routine from the Interrupt
Vector Table and begins executing from that point.

The CPU is now executing the interrupt service routine. The programmer must save (usually by
pushing onto the stack) all registers used in the interrupt service routine; otherwise, their contents
will be lost. To allow nesting of maskable interrupts, the programmer must set the Interrupt En-
able bit in the Processor Status Word.

When exiting an interrupt service routine, the programmer must restore (usually by popping off
the stack) the saved registers and execute an IRET instruction, which performs the following
steps.

1. Loads the return CS and IP by popping them off the stack.

2. Pops and restores the old Processor Status Word from the stack.

The CPU now executes from the point at which the interrupt or exception occurred.

2-41

OVERVIEW OF THE 80C186 FAMILY ARCHITECTURE Intel®

Trap Flag

PSW @) ®
CS \' | | | Processor Status Word

sp—»{ P
J4 N @

Stack lf Interrupt Enable Bit

-

Code Segment Register

Instruction Pointer

4
-

CS
IP

e

Interrupt
Vector
Table

A1029-0A

Figure 2-26. Interrupt Sequence

23.11 Non-Maskable Interrupts

The Non-Maskable Interrupt (NMI) is the highest priority interrupt. It is usually reserved for a
catastrophic event such as impending power failure. An NMI cannot be prevented (or masked)
by software. When the NMI input is asserted, the interrupt processing sequence begins after ex-
ecution of the current instruction completes (see “Interrupt Latency” on page 2-45). The CPU au-
tomatically generates a type 2 interrupt vector.

The NMI input is asynchronous. Setup and hold times are given only to guarantee recognition on
a specific clock edge. To be recognized, NMI must be asserted for at least one CLKOUT period
and meet the correct setup and hold times. NMI is edge-triggered and level-latched. Multiple
NMI requests cause multiple NMI service routines to be executed. NMI can be nested in this man-
ner an infinite number of times.

2-42

Intel® OVERVIEW OF THE 80C186 FAMILY ARCHITECTURE

2.3.1.2 Maskable Interrupts

Maskable interrupts are the most common way to service external hardware interrupts. Software
can globally enable or disable maskable interrupts. This is done by setting or clearing the Inter-
rupt Enable bit in the Processor Status Word.

The Interrupt Control Unit processes the multiple sources of maskable interrupts and presents
them to the core via a single maskable interrupt input. The Interrupt Control Unit provides the
interrupt vector type to the 80C186 Modular Core. The Interrupt Control Unit differs among
members of the 80C186 Modular Core family; see Chapter 8, “Interrupt Control Unit,” for infor-
mation.

23.1.3 Exceptions

Exceptions occur when an unusual condition prevents further instruction processing until the ex-
ception is corrected. The CPU handles software interrupts and exceptions in the same way. The
interrupt type for an exception is either predefined or supplied by the instruction.

Exceptions are classified as either faults or traps, depending on when the exception is detected
and whether the instruction that caused the exception can be restarted. Faults are detected and sel
viced before the faulting instruction can be executed. The return address pushed onto the stack
in the interrupt processing instruction points to the beginning of the faulting instruction. This al-
lows the instruction to be restarted. Traps are detected and serviced immattiatéhe instruc-

tion that caused the trap. The return address pushed onto the stack during the interrupt processing
points to the instruction following the trapping instruction.

Divide Error — Type O

A Divide Error trap is invoked when the quotient of an attempted division exceeds the maximum
value of the destination. A divide-by-zero is a common example.

Single Step — Type 1

The Single Step trap occurs after the CPU executes one instruction with the Trap Flag (TF) bit set
in the Processor Status Word. This allows programs to execute one instruction at a time. Inter-
rupts are not generated after prefix instructions (e.g., REP), after instructions that modify segment
registers (e.g., POP DS) or after the WAIT instruction. Vectoring to the single-step interrupt ser-
vice routine clears the Trap Flag bit. An IRET instruction in the interrupt service routine restores
the Trap Flag bit to logic “1” and transfers control to the next instruction to be single-stepped.

2-43

OVERVIEW OF THE 80C186 FAMILY ARCHITECTURE Intel®

Breakpoint Interrupt — Type 3

The Breakpoint Interrupt is a single-byte version of the INT instruction. It is commonly used by
software debuggers to set breakpoints in RAM. Because the instruction is only one byte long, it
can substitute for any instruction.

Interrupt on Overflow — Type 4

The Interrupt on Overflow trap occurs if the Overflow Flag (OF) bit is set in the Processor Status
Word and the INTO instruction is executed. Interrupt on Overflow is a common method for han-
dling arithmetic overflows conditionally.

Array Bounds Check — Type 5

An Array Bounds trap occurs when the array index is outside the array bounds during execution
of the BOUND instruction (see Appendix A, “80C186 Instruction Set Additions and Exten-
sions”).

Invalid Opcode — Type 6
Execution of an undefined opcode causes an Invalid Opcode trap.
Escape Opcode — Type 7

The Escape Opcode fault is used for floating point emulation. With 80C186 Modular Core family
members, this fault is enabled by setting the Escape Trap (ET) bit in the Relocation Register (see
Chapter 4, “Peripheral Control Block”). When a floating point instruction is executed with the
Escape Trap bit set, the Escape Opcode fault occurs, and the Escape Opcode service routine em
ulates the floating point instruction. If the Escape Trap bit is cleared, the CPU sends the floating
point instruction to an external 80C187.

80C188 Modular Core Family members do not support the 80C187 interface and always generate
the Escape Opcode Fault. The 80C186EA will generate the Escape Opcode Fault regardless of
the state of the Escape Trap bit unless it is in Numerics Mode.

Numerics Coprocessor Fault — Type 16

The Numerics Coprocessor fault is caused by an external 80C187 numerics coprocessor. The
80C187 reports the exception by asserting the ERRi@RThe 80C186 Modular Core checks

the ERRORpin only when executing a numerics instruction. A Numerics Coprocessor Fault in-
dicates that therevious numerics instruction caused the exception. The 80C187 saves the ad-
dress of the floating point instruction that caused the exception. The return address pushed onto
the stack during the interrupt processing points to the numerics instruction that detected the ex-
ception. This way, the last numerics instruction can be restarted.

2-44 I

Intel® OVERVIEW OF THE 80C186 FAMILY ARCHITECTURE

2.3.2 Software Interrupts

A Software Interrupt is caused by executing an ‘fiNifistruction. Then parameter corresponds

to the specific interrupt type to be executed. The interrupt type can be any number between 0 and
255. If then parameter corresponds to an interrupt type associated with a hardware interrupt
(NMI, Timers), the vectors are fetched and the routine is executed, but the corresponding bits in
the Interrupt Status registare not altered

The CPU processes software interrupts and exceptions in the same way. Software interrupts, ex-
ceptions and traps cannot be masked.

2.3.3 Interrupt Latency

Interrupt latency is the amount of time it takes for the CPU to recognize the existence of an inter-
rupt. The CPU generally recognizes interrupts only between instructions or on instruction bound-
aries. Therefore, the current instruction must finish executing before an interrupt can be
recognized.

The worst-case 80C186 instruction execution time is an integer divide instruction with segment
override prefix. The instruction takes 69 clocks, assuming an 80C186 Modular Core family mem-
ber and a zero wait-state external bus. The execution time for an 80C188 Modular Core family
member may be longer, depending on the queue.

This is one factor in determining interrupt latency. In addition, the following are also factors in
determining maximum latency:
1. The CPU does not recognize the Maskable Interrupt unless the Interrupt Enable bit is set.
2. The CPU does not recognize interrupts during HOLD.
3. Once communication is completely established with an 80C187, the CPU does not
recognize interrupts until the numerics instruction is finished.

The CPU can recognize interrupts only on valid instruction boundaries. A valid instruction
boundary usually occurs when the current instruction finishes. The following is a list of excep-
tions:

1. MOVs and POPs referencing a segment register delay the servicing of interrupts until
after the following instruction. The delay allows a 32-bit load to the SS and SP without an
interrupt occurring between the two loads.

2. The CPU allows interrupts between repeated string instructions. If multiple prefixes
precede a string instruction and the instruction is interrupted, only the one prefix
preceding the string primitive is restored.

3. The CPU can be interrupted during a WAIT instruction. The CPU will return to the WAIT
instruction.

2-45

OVERVIEW OF THE 80C186 FAMILY ARCHITECTURE Intel®

2.3.4 Interrupt Response Time

Interrupt response time is the time from the CPU recognizing an interrupt until the first instruction
in the service routine is executed. Interrupt response time is less for interrupts or exceptions
which supply their own vector type. The maskable interrupt has a longer response time because
the vector type must be supplied by the Interrupt Control Unit (see Chapter 8, “Interrupt Control
Unit”).

Figure 2-27 shows the events that dictate interrupt response time for the interrupts that supply
their type. Note that an on-chip bus master, such as the DRAM Refresh Unit, can make use of
idle bus cycles. This can increase interrupt response time.

Clocks

Idle 5

Read IP 4

Idle 5

Read CS 4

Idle 4

Push Flags 4

Idle 3

Push CS 4

Push IP 4

Idle 5

FIrSt lnStrUCtlon FetCh)
From Interrupt Routine

Total 42

A1030-0A

Figure 2-27. Interrupt Response Factors

2.3.5 Interrupt and Exception Priority

Interrupts can be recognized only on valid instruction boundaries. If an NMI and a maskable in-
terrupt are both recognized on the same instruction boundary, NMI has precedence. The
maskable interrupt will not be recognized until the Interrupt Enable bit is set and it is the highest
priority.

2-46

Intel® OVERVIEW OF THE 80C186 FAMILY ARCHITECTURE

Only the single step exception can occur concurrently with another exception. At most, two ex-
ceptions can occur at the same instruction boundary and one of those exceptions must be the sin-
gle step. Single step is a special case; itis discussed on page 2-48. Ignoring single step (for now),
only one exception can occur at any given instruction boundary.

An exception has priority over both NMI and the maskable interrupt. However, a pending NMI
can interrupt the CPU at any valid instruction boundary. Therefore, NMI can interrupt an excep-
tion service routine. If an exception and NMI occur simultaneously, the exception vector is taken,
then is followed immediately by the NMI vector (see Figure 2-28). While the exception has high-
er priority at the instruction boundary, the NMI interrupt service routine is executed first.

F=1
NMI|—> Divide «—Divide Error
I
Push PSW, CS, IP
Fetch Divide Error Vector

Y

Push PSW, CS, IP
Fetch NMI Vector

Y

Execute NMI
Service Routine

* IRET

Execute Divide
Service Routine

¢ IRET

Figure 2-28. Simultaneous NMI and Exception

A1031-0A

2-47

OVERVIEW OF THE 80C186 FAMILY ARCHITECTURE Intel®

Single step priority is a special case. If an interrupt (NMI or maskable) occurs at the same instruc-
tion boundary as a single step, the interrupt vector is taken first, then is followed immediately by
the single step vector. However, the single step service routine is executed before the interrupt
service routine (see Figure 2-29). If the single step service routine re-enables single step by exe-
cuting the IRET, the interrupt service routine will also be single stepped. This can severely limit
the real-time response of the CPU to an interrupt.

To prevent the single-step routine from executing before a maskable interrupt, disable interrupts
while single stepping an instruction, then enable interrupts in the single step service routine. The
maskable interrupt is serviced from within the single step service routine and that interrupt ser-

vice routine is not single-stepped. To prevent single stepping before an NMI, the single-step ser-
vice routine must compare the return address on the stack to the NMI vector. If they are the same,
return to the NMI service routine immediately without executing the single step service routine.

NMI—> Instruction [<—— Trap Flag=1

Y

Push PSW, CS, IP
Fetch Divide Error Vector

L
Y

Push PSW, CS, IP
Fetch Single Step Vector

Y

Execute Single Step
Service Routine

Trap Flag =0

000000 <

IRET

Trap Flag = ??? -

Figure 2-29. Simultaneous NMI and Single Step Interrupts

The most complicated case is when an NMI, a maskable interrupt, a single step and another ex-
ception are pending on the same instruction boundary. Figure 2-30 shows how this case is prior-
itized by the CPU. Note that if the single-step routine sets the Trap Flag (TF) bit before executing
the IRET instruction, the NMI routine will also be single stepped.

2-48

Intel® OVERVIEW OF THE 80C186 FAMILY ARCHITECTURE

Interrupt Enable Bit (IE) = 1
Trap Flag (TF) =1

NMI—» Divide [-«—Timer Interrupt

I_*

Push PSW, CS, IP Interrupt Enable Bit (IE) = 0
Fetch Divide Error Vector | Trap Flag (TF) =0

I_*

Push PSW, CS, IP | Interrupt Enable Bit (IE) =0
Fetch NMI Vector | Trap Flag (TF) =0

I_*

Push PSW, CS, IP Interrupt Enable Bit (IE) = 0
Fetch Single Step Vector | Trap Flag (TF) =0

[

Execute Single Step
Service Routine

000000 < |

IRET

Interrupt Enable Bit (IE) =0
Trap Flag (TF) = ???

Interrupt Enable Bit (IE) = 1
Trap Flag (TF) = X

Push PSW, CS, IP Interrupt Enable Bit (IE) =1
Fetch Single Step Vector | Trap Flag (TF) = X

Y

Execute Single Step Service Routine

; IRET

A1034-0A

Figure 2-30. Simultaneous NMI, Single Step and Maskable Interrupt

2-49

intel.

Bus Interface Unit

intel.

CHAPTER 3
BUS INTERFACE UNIT

The Bus Interface Unit (BIU) generates bus cycles that prefetch instructions from memory, pass
data to and from the execution unit, and pass data to and from the integrated peripheral units.

The BIU drives address, data, status and control information to define a bus cycle. The start of a
bus cycle presents the address of a memory or 1/O location and status information defining the
type of bus cycle. Read or write control signals follow the address and define the direction of data
flow. A read cycle requires data to flow from the selected memory or I/O device to the BIU. In a
write cycle, the data flows from the BIU to the selected memory or I/O device. Upon termination
of the bus cycle, the BIU latches read data or removes write data.

3.1 MULTIPLEXED ADDRESS AND DATA BUS

The BIU has a combined address and data bus, commonly referred to as a time-multiplexed bus.
Time multiplexing address and data information makes the most efficient use of device package
pins. A system with address latching provided within the memory and 1/O devices can directly
connect to the address/data buslgoal bug. The local bus can be demultiplexed with a single

set of address latches to provide non-multiplexed address and data information to the system.

3.2 ADDRESS AND DATA BUS CONCEPTS

The programmer views the memory or I/O address space as a sequence of bytes. Memory space
consists of 1 Mbyte, while I/O space consists of 64 Kbytes. Any byte can contain an 8-bit data
element, and any two consecutive bytes can contain a 16-bit data element (identified as a word).
The discussions in this section apply to both memory and 1/O bus cycles. For brevity, memory
bus cycles are used for examples and illustration.

3.2.1 16-Bit Data Bus

The memory address space on a 16-bit data bus is physically implemented by dividing the address
space into two banks of up to 512 Kbytes each (see Figure 3-1). One bank connects to the lower
half of the data bus and contains even-addressed bytes (A0=0). The other bank connects to the
upper half of the data bus and contains odd-addressed bytes (AO=1). Address lines A19:1 select
a specific byte within each bank. A0 and Byte High Enable (BitfEermine whether one bank

or both banks participate in the data transfer.

I 3-1

BUS INTERFACE UNIT Intel®

Physical Implementation Physical Implementation
of the Address Space for of the Address Space for
8-Bit Systems 16-Bit Systems
1 MByte 512 KBytes 512 KBytes
FFFFF FFFFF FFFFE
FFFFE FFFFD FFFFC
::> ::> O) -
2 5 4
1 3 2
0 1 0
PN
~ s
A19:0 D7:0 A19:1 D15:8 BHE D7:0 A0
A1100-0A

Figure 3-1. Physical Data Bus Models

Byte transfers to even addresses transfer information over the lower half of the data bus (see Fig-
ure 3-2). A0 low enables the lower bank, while Bigh disables the upper bank. The data value
from the upper bank is ignored during a bus read cycle. lBgtEprevents a write operation from
destroying data in the upper bank.

Byte transfers to odd addresses transfer information over the upper half of the data bus (see Figure
3-2). BHElow enables the upper bank, while A0 high disables the lower bank. The data value
from the lower bank is ignored during a bus read cycle. A0 high prevents a write operation from
destroying data in the lower bank.

To access even-addressed 16-bit words (two consecutive bytes with the least-significant byte at
an even address), information is transferred over both halves of the data bus (see Figure 3-3).
A19:1 select the appropriate byte within each bank. A0 and @#E low to enable both banks
simultaneously.

Odd-addressed word accesses require the BIU to split the transfer into two byte operations (see
Figure 3-4). The first operation transfers data over the upper half of the bus, while the second op-

eration transfers data over the lower half of the bus. The BIU automatically executes the two-byte

sequence whenever an odd-addressed word access is performed.

3-2 I

BUS INTERFACE UNIT

Even Byte Transfer
Y+1 Y
X+1) (X)
PN
~ |
A19:1 D15:8 BHE D7:0 A0
(High) (Low)
Odd Byte Transfer
Y+1 Y
X +1)) X
PN
~ e
A19:1 D158 BHE D7:0 A0
(Low) (High)

A1104-0A

Figure 3-2. 16-Bit Data Bus Byte Transfers

3-3

BUS INTERFACE UNIT Intel®

e W
00—
PaN
~ |
Al19:1 D158 BHE D7:0 AO
(Low) (Low)

A1107-0A

Figure 3-3. 16-Bit Data Bus Even Word Transfers

During a byte read operation, the BIU floats the entire 16-bit data bus, even though the transfer
occurs on only one half of the bus. This action simplifies the decoding requirements for read-only
devices (e.g., ROM, EPROM, Flash). During the byte read, an external device cdpothive
halvesof the bus, and the BIU automatically accesses the correct half. During the byte write op-
eration, the BIU drives both halves of the bus. Information on the half of the bus not involved in
the transfer is indeterminate. This action requires that the appropriate bank (defined by BHE
A0 high) be disabled to prevent destroying data.

3-4 I

Intel® BUS INTERFACE UNIT

First Bus Cycle
Y
(X + 1) X
00—
PN
~ e
A19:1 D158 BHE D7:0 A0
(Low) (High)
Second Bus Cycle
Y+1 (Y)
X+1 X
0—
PN
~ e
A19:1 D158 BHE D7:0 A0
(High) (Low)
A1108-0A

Figure 3-4. 16-Bit Data Bus Odd Word Transfers

3.2.2 8-Bit Data Bus

The memory address space on an 8-bit data bus is physically implemented as one bank of 1 Mbyte
(see Figure 3-1 on page 3-2). Address lines A19:0 select a specific byte within the bank. Unlike
transfers with a 16-bit bus, byte and word transfers (to even or odd addresses) all transfer data
over the same 8-bit bus.

Byte transfers to even or odd addresses transfer information in one bus cycle. Word transfers to
even or odd addresses transfer information in two bus cycles. The BIU automatically converts the
word access into two consecutive byte accesses, making the operation transparent to the program-
mer.

I 3-5

BUS INTERFACE UNIT Intel®

For word transfers, the word address defines the first byte transferred. The second byte transfer
occurs from the word address plus one. Figure 3-5 illustrates a word transfer on an 8-bit bus in-
terface.

First Bus Cycle Second Bus Cycle

) 4—} —
g g

A19:0 D7:0 Al19:0 D7:0

A1109-0A

Figure 3-5. 8-Bit Data Bus Word Transfers

3.3 MEMORY AND I/O INTERFACES

The CPU can interface with 8- and 16-bit memory and 1/0O devices. Memory devices exchange
information with the CPU during memory read, memory write and instruction fetch bus cycles.

I/O (peripheral) devices exchange information with the CPU during memory read, memory write,

I/O read, I/O write and interrupt acknowledge bus cycles. Memory-mapped I/O refers to periph-
eral devices that exchange information during memory cycles. Memory-mapped I/O allows the
full power of the instruction set to be used when communicating with peripheral devices.

I/0O read and I/0O write bus cycles use a separate 1/0 address space. Only IN and OUT instructions
can access I/O address space, and information must be transferred between the peripheral device
and the AX register. The first 256 bytes (0—255) of I/O space can be accessed directly by the 1/0
instructions. The entire 64 Kbyte 1/0O address space can be accessed only indirectly, through the
DX register. I/0O instructions always force address bits A19:16 to zero.

Interrupt acknowledge, or INTAus cycles access an I/O device intended to increase interrupt

input capability. Valid address informationrist generated as part of the INTAus cycle, and
data is transferred only over the lower bank (16-bit device).

3-6 I

Intel® BUS INTERFACE UNIT

3.3.1 16-Bit Bus Memory and I/O Requirements

A 16-bit bus has certain assumptions that must be met to operate properly. Memory used to store
instruction operands (i.e., the program) and immediate data must be 16 bits wide. Instruction
prefetch bus cycles require thaith banks be used. The lower bank contains the even bytes of
code and the upper bank contains the odd bytes of code.

Memory used to store interrupt vectors and stack data must be 16 bits wide. Memory address
space between OH and 3FFH (1 Kbyte) holds the starting location of an interrupt routine. In re-
sponse to an interrupt, the BIU fetches two consecutive, even-addressed words from this 1 Kbyte
address space. Stack pushes and pops always write or read even-addressed word data.

3.3.2 8-Bit Bus Memory and I/O Requirements

An 8-bit bus interface has no restrictions on implementing the memory or 1/O interfaces. All
transfers, bytes and words, occur over the single 8-bit bus. Operations requiring word transfers
automatically execute two consecutive byte transfers.

3.4 BUS CYCLE OPERATION

The BIU executes a bus cycle to transfer data between any of the integrated units and any external
memory or I/O devices (see Figure 3-6). A bus cycle consists of a minimum of four CPU clocks
known as “T-states.” A T-state is bounded by one falling edge of CLKOUT to the next falling
edge of CLKOUT (see Figure 3-7). Phase 1 represents the low time of the T-state and starts at the
high-to-low transition of CLKOUT. Phase 2 represents the high time of the T-state and starts at
the low-to-high transition of CLKOUT. Address, data and control signals generated by the BIU
go active and inactive at different phases within a T-state.

I 3-7

BUS INTERFACE UNIT Intel®

P T1 P T2 ' T3

AN
R\ /EVaIid (Sitatus\ \/

éAddresE? // I;Data /)__

RD / WR
A1507-0A
Figure 3-6. Typical Bus Cycle
TN
Falling Rising
CLKOUT Edge Edge

Phase 1 Phase 2

(Low Phase) ! (High Phase)

Al1111-0A

Figure 3-7. T-State Relation to CLKOUT

Figure 3-8 shows the BIU state diagram. Typically a bus cycle consists of four consecutive T-
states labeled T1, T2, T3 and T4. A Tl (idle) state occurs when no bus cycle is pending. Multiple

T3 states occur to generate wait states. The TW symbol represents a wait state.

The operation of a bus cycle can be separated into two phases:
* Address/Status Phase

¢ Data Phase

3-8

Intel® BUS INTERFACE UNIT

The address/status phase starts just before T1 and continues through T1. The data phase starts ¢
T2 and continues through T4. Figure 3-9 illustrates the T-state relationship of the two phases.

Bus Ready
Request Pending
HOLD Deasserted

Halt Bus Cycle

Bus Not
Ready

Bus Ready
No Request Pending
HOLD Deasserted

Request Pending
HOLD Deasserted

RESIN
Asserted

HOLD Asserted
A1538-01

Figure 3-8. BIU State Diagram

3-9

BUS INTERFACE UNIT Intel®

T4 T3 iy
o : T T2 i or TW foorTI
CLKOUT
Address/
Status Phase Data Phase
Al1113-0A

Figure 3-9. T-State and Bus Phases

3.4.1 Address/Status Phase

Figure 3-10 shows signal timing relationships for the address/status phase of a bus cycle. A bus
cycle begins with the transition of ALE and SZIhese signals transition during phase 2 of the
T-state just prior to T1. Either T4 or Tl precedes T1, depending on the operation of the previous
bus cycle (see Figure 3-8 on page 3-9).

ALE provides a strobe to latch physical address information. Address is presented on the multi-
plexed address/data bus during T1 (see Figure 3-10). The falling edge of ALE occurs during the
middle of T1 and provides a strobe to latch the address. Figure 3-11 presents a typical circuit for
latching addresses.

The status signals (S2:6efine the type of bus cycle (Table 3-1). S&Main valid until phase

1 of T3 (or the last TW, when wait states occur). The circuit shown in Figure 3-11 can also be
used to extend S2ifeyond the T3 (or TW) state.

3-10 I

BUS INTERFACE UNIT

CLKOUT

T4
orTl | T1 : T2

ALE
AD15:0
Al19:16
S2:0
BHE %(Valid
NOTES:
1. Teyoy : Clock high to ALE high, S2:0 valid.
2. TcLov - Clock low to address valid, BHE valid.
3. TayLL Addressvalid to ALE low (address setup to ALE).
4. TCHOV * Clock high to ALE low.
5. TeLop : Clock low to address invalid (address hold from clock low).
6. T LAx ‘ALE low to address invalid (address hold from ALE).
A1101-0A
Figure 3-10. Address/Status Phase Signal Relationships

3-11

BUS INTERFACE UNIT Intel®

Latched

Signals From CPU Address Signals

A19:16 %;» I 4 _
S20 —S—~ 3] O —#4> LA19:16

>STE 0> (520

OE
. 8 ,
AD15:8 —~ > |

> STB 0] ﬁ84> LA15:8

OE
AD7:0 8/ > |
ALE >{STB o] % LA7:0
OE

A1102-0A

Figure 3-11. Demultiplexing Address Information

Table 3-1. Bus Cycle Types

Status Bit

Operation

wn
N
(92}
=N
(92}
o

Interrupt Acknowledge
1/0 Read

1/0 Write

Halt

Instruction Prefetch

Memory Read

Memory Write

Rl [FRP[O|O|O|O
PRI O|O|(FR|[FR|O|O
ROl FRP|[O|(FR|O|F|O

Idle (passive)

3-12 I

Intel® BUS INTERFACE UNIT

3.4.2 DataPhase

Figure 3-12 shows the timing relationships for the data phase of a bus cycle. The only bus cycle
type that does not have a data phase is a bus halt. During the data phase, the bus transfers infor
mation between the internal units and the memory or peripheral device selected during the ad-
dress/status phase. Appropriate control signhals become active to coordinate the transfer of data.

The data phase begins at phase 1 of T2 and continues until phase 2 of T4 or Tl. The length of the
data phase varies depending on the number of wait states. Wait states occur after T3 and before
T4 or Tl.

3.4.3 Wait States

Wait states extend the data phase of the bus cycle. Memory and I/O devices that cannot provide
or accept data in the minimum four CPU clocks require wait states. Figure 3-13 shows a typical
bus cycle with wait states inserted.

The bus ready inputs (ARDY and SRDY) and the Chip-Select Unit control bus cycle wait states.
Only the bus ready inputs are described in this chapter. (See Chapter 6, “Chip-Select Unit,” for
additional information.)

Figure 3-14 shows a simplified block diagram of the ARDY and SRDY inputs. Either ARDY or
SRDY active signals a bus ready condition; therefore, both pins must be inactive to signal a not-
ready condition. Depending on the size and characteristics of the system, ready implementation
can take one of two approaches: normally not-ready or normally ready.

I 3-13

BUS INTERFACE UNIT Intel®

T3 T4
T2 orTW or Tl
CLKOUT ‘S 0\ |
©) @) @
RD/ WR

®
\\@

/ / /
. /<$< Valid)N?ite Dlalta @\\ \%
AD150) / ©
_/

Read Read Data

: Clock low to valid RD/ WR active; Write data valid
: Clock low to status inactive

: Data input valid to clock low

: Clock valid to RD/ WR inactive

: Data input HOLD from clock low

: Output data HOLD from WR high

: Bus no longer floating from RD high

A1103-0A

Figure 3-12. Data Phase Signal Relationships

3-14

Intel® BUS INTERFACE UNIT

cLkouT __| | | | | | | | | | | | |
IS/ N S R N
o U T vaid | 7
A19:16 / Address \
AD15:0 X ;Address; X i Valifj Write Data i
W Ny
o L

A1040-0A

Figure 3-13. Typical Bus Cycle with Wait States

ARDY)
L D QJ j:>—D QI— BUS READY
CLKOUT > Rising > Falling

Edge Edge
SRDY

A1041-0A

Figure 3-14. ARDY and SRDY Pin Block Diagram

I 3-15

BUS INTERFACE UNIT Intel®

A normally not-ready system is one in which ARDY and SRDY remain low at all times except
to signal a ready condition. For any bus cycle, only the selected device drives either ready input
high to complete the bus cycle. The circuit shown in Figure 3-15 illustrates a simple circuit to
generate a normally not-ready sigridbte that if no device is selected the bus remains not-
ready indefinitely. Systems with many slow devices that cannot operate at the maximum bus
bandwidth usually implement a normally not-ready signal.

The start of a bus cycle clears the wait state module and forces ARDY low. After every rising
edge of CLKOUT, INPUT1 and INPUT2 are shifted through the module and eventually drive
ARDY high. Assuming INPUT1 and INPUT?2 are valid prior to phase 2 of T2, no delay through
the module causes one wait state. Each additional clock delay through the module generates one
additional wait state. Two inputs are used to establish different wait state conditions. The same
circuit works for SRDY, but no delay through the module results in no wait states.

CS1 Wait State Module
CS2

Input 1
- Input 2
CS3
Csa Out READY
ALE Clear
CLKOUT Clock

A1080-0A

Figure 3-15. Generating a Normally Not-Ready Bus Signal

A normally ready signal remains high at all times except when the selected device needs to signal
a not-ready condition. For any bus cycle, only the selected device drives the ready input (or in-
puts) low to delay the completion of the bus cycle. The circuit shown in Figure 3-16 illustrates a
simple circuit to generate a normally ready sigNale that if no device is selected the bus re-

mains ready.Systems that have few or no devices requiring wait states usually implement a nor-
mally ready signal.

The start of a bus cycle preloads a zero shifter and forces SRDY active (high). SRDY remains
active if neither CSbr CS2goes low. Should either C®t CS2go low, zeros are shifted out on

every rising edge of CLKOUT, causing SRDY to go inactive. At the end of the shift pattern,
SRDY is forced active again. Assuming C81d CS2are active just prior to phase 2 of T2, shift-

ing one zero through the module causes one wait state. Each additional zero shifted through the
module generates one wait state. The same circuit works for ARDY, but shifting one zero through
the module generates two wait states.

3-16 I

Intel® BUS INTERFACE UNIT

Wait State Module
Cs1
_ Enable
CS2

ALE
CLKOUT

Out READY

Load
Clock

A1081-0A

Figure 3-16. Generating a Normally Ready Bus Signal

The ARDY input has two major timing concerns that can affect whether a normally ready or nor-
mally not-ready signal may be required. Two latches capture the state of the ARDY input (see
Figure 3-14 on page 3-15). The first latch captures ARDY on the phase 2 clock edge. The second
latch captures ARDYANnd the result of first latch on the phase 1 clock edge. The following items
define the requirements of the ARDY input to meet ready or not-ready bus conditions.
* The bus iseady if both of these two conditions are true:
— ARDY is active prior to the phase 2 clock edayed

— ARDY remains active after the phase 1 clock edge.

* The bus isot-ready if either of these two conditions is true:
— ARDY is inactive prior to the phase 2 clock edge,
— ARDY is inactive prior to the phase 1 clock edge.

A single latch captures the state of the SRDY input (see Figure 3-14 on page 3-15). SRDY must
be valid by the phase 1 clock edge. The following items define the requirements of the SRDY
input to meet ready or not-ready bus conditions.

* The bus iseady if SRDY is active prior to the phase 1 clock edge.

* The bus isiot-ready if SRDY is inactive prior to the phase 1 clock edge.
A normally not-ready system must generate a valid ARDY input at phase 2 of T2 or a valid SRDY
input at phase 1 of T3 to prevent wait states. If it cannot, then running without wait states requires
a normally ready system. Figure 3-17 illustrates the timing necessary to prevent wait states in a

normally not-ready system. Figure 3-17 also shows how to terminate a bus cycle with wait states
in a normally not-ready system.

I 3-17

BUS INTERFACE UNIT Intel®

T2 T3
orT3 or TW
I or TW | | T4

CLKOUT 7 a |_
@\ /O/@

ARDY

SRDY

In a Normally-Not-Ready system, wait states are inserted until (1 or 2) and 3 are met.
1. Tcyis: ARDY active to clock high (assumes ARDY remains active until 3).

2. TcLs: SRDY active to clock low.

3. TcLH: ARDY + SRDY hold from clock low.

A Failure to meet SRDY setup and hold can cause a device failure
(i.e., the bus hangs or operates inappropriately).

A1044-0A

Figure 3-17. Normally Not-Ready System Timing

A valid not-ready input can be generated as late as phase 1 of T3 to insert wait states in a normally
ready system. A normally not-ready system must run wait states if the not-ready condition cannot
be met in time. Figure 3-18 illustrates the minimum and maximum timing necessary to insert wait
states in a normally ready system. Figure 3-18 also shows how to terminate a bus cycle with wait
states in a normally ready system.

The BIU can execute an indefinite number of wait states. However, bus cycles with large numbers
of wait states limit the performance of the CPU and the integrated peripherals. CPU performance
suffers because the instruction prefetch queue cannot be kept full. Integrated peripheral perfor-
mance suffers because the maximum bus bandwidth decreases.

3.4.4 |dle States

Under most operating conditions, the BIU executes consecutive (back-to-back) bus cycles. How-
ever, several conditions cause the BIU to become idle. An idle condition occurs between bus cy-
cles (see Figure 3-8 on page 3-9) and may last an indefinite period of time, depending on the
instruction sequence.

3-18

Intel® BUS INTERFACE UNIT

| T2 | T3 | TW | T4

CLKOUT v. A _I

ARDY

In a Normally-Ready system, a wait state will be inserted when 1 & 2 are met.
(Assumes SRDY is low.)

1. Tcps: ARDY low to clock high
2. T Clock high to ARDY high (ARDY inactive hold time)

T2 T3 L TW T4
CLKOUT N _I_
Q)@

ARDY

SRDY

Alternatively, in a Normally-Ready system, a wait state will be inserted
whenl & 2 are met for SRDY and ARDY.

1. Tcpis: ARDY and SRDY low to clock low

2. TcHiH: ARDY and SRDY low from clock low

A Failure to meet READY setup and hold can cause a device failure
(i.e., the bus hangs or operates inappropriately).

A1045-0A

Figure 3-18. Normally Ready System Timings

Conditions causing the BIU to become idle include the following.
* The instruction prefetch queue is full.
* An effective address calculation is in progress.

* The bus cycle inherently requires idle states (e.g., interrupt acknowledge, locked opera-
tions).
* Instruction execution forces idle states (e.g., HLT, WAIT).

3-19

BUS INTERFACE UNIT Intel®

An idle bus state may or may not drive the bus. An idle bus state following a bus read cycle con-
tinues to float the bus. An idle bus state following a bus write cycle continues to drive the bus.
The BIU drives no control strobes active in an idle state except to indicate the start of another bus
cycle.

3.5 BUSCYCLES

There are four basic types of bus cycles: read, write, interrupt acknowledge and halt. Interrupt
acknowledge and halt bus cycles define special bus operations and require separate discussions
Read bus cycles include memory, 1/0O and instruction prefetch bus operations. Write bus cycles
include memory and I/O bus operations. All read and write bus cycles have the same basic format.

The following sections present timing equations containing symbols found in the data sheet. The
timing equations provide information necessary to start a worst-case design analysis.

3.5.1 Read Bus Cycles

Figure 3-19 illustrates a typical read cycle. Table 3-2 lists the three types of read bus cycles.

Table 3-2. Read Bus Cycle Types

Status Bit

Bus Cycle Type
S2 S1 SO

0 0 1 Read 1/0 — Initiated by the Execution Unit for IN, OUT, INS, OUTS instructions
or by the DMA Unit. A19:16 are driven to zero (see Chapter 10, “Direct Memory
Access Unit”).

1 0 0 Instruction Prefetch — Initiated by the BIU. Data read from the bus fills the
prefetch queue.

1 0 1 Read Memory — A19:0 select the desired byte or word memory location.

Figure 3-20 illustrates a typical 16-bit interface connection to a read-only device interface. The
same example applies to an 8-bit bus system, except that no devices connect to an upper bus. Fou
parameters (Table 3-3) must be evaluated when determining the compatibility of a memory (or
I/0O) device. T 1cy defines the delay through the address latch.

Table 3-3. Read Cycle Critical Timing Parameters

Melgna(?raymDefg/:ce Description Equation
Toe Output enable (RD low) to data valid 2T = Teiove— Teus
Tace Address valid to data valid 3T — Terove —Taoiten — Teus
Tee Chip enable (UCS) to data valid 3T — Teiove— Teus
Tor Output disable (RD high) to output float | Truax

3-20

Intel® BUS INTERFACE UNIT

Tom Tace and Tee define the maximum data access requirements for the memory device. These
device parameters must less$than the value calculated in the equation column. An equal to or
greater than result indicates that wait states must be inserted into the bus cycle.

Toe determines the maximum time the memory device can float its outputs before the next bus
cycle begins. A J-value greater than the equation result indicates a buffer fight. A buffer fight
means two (or more) devices are driving thediube same time This can lead to short circuit
conditions, resulting in large current spikes and possible device damage.

Truax Cannot be lengthened (other than by slowing the clock rate). To resolve a buffer fight con-
dition, choose a faster device or buffer the AD bus (see “Buffering the Data Bus” on page 3-36).

1
1
1
|
T T
/ Address Valid

A19:16 : . : ' Als:a 16=0, A19I:Valid Status IX

AlSE] — Ty T T
BHE [RFSH] ! X L L :Va"d R X_

A15:0 i i Alddress \ i i i Data : '
[AD7:0] ! . valid _/ ! | ! <Va|id> ! ! <

R B -

orR N\ p L L L b
o 7

A1046-0A

Figure 3-19. Typical Read Bus Cycle

I 3-21

BUS INTERFACE UNIT Intel®

35.1.1 Refresh Bus Cycles

A refresh bus cycle operates similarly to a normal read bus cycle except for the following:

* For a 16-bit data bus, address bit A0 and Rlike to a 1 (high) and the data value on the
bus is ignored.

* For an 8-bit data bus, address bit A0 drives to a 1 (high) and RF&#ven active (low).
The data value on the bus is ignored. RH®&id the same bus timing as BHE

ucCs T o| CE
AD7:0 < 00-7
| 27C256

LA15:1 > AO-14
OE

> A0-14

27C256
o CE
Note: Agand BHE are not used.
A1105-0A

Figure 3-20. Read-Only Device Interface

3.5.2 Write Bus Cycles

Figure 3-21 illustrates a typical write bus cycle. The bus cycle starts with the transition of ALE
high and the generation of valid status bits SPHe bus cycle ends when WRnsitions high
(inactive), although data remains valid for one additional clock. Table 3-4 lists the two types of
write bus cycles.

3-22 I

BUS INTERFACE UNIT

, T1 . T2 . T3 . T4 .
1 1 1 ! 1 1 1 1 | 1
CLKOUT
1 1 1 ! 1 ! 1 ! 1 !
1 ! 1 ! 1 ! | 1 | |
[] . 1 T 1 T
S2:0 ! \ , Status Valid / ! i ! \ !
1 1 ! 1 ! 1 1
1 ! ! 1 1 1 1 | 1
ALE /b N b
i i : i : | i : : |
| 1 T T T T T T
' / Address Valid | X A18:16 = 0, A19=Valid Status ><
. 1 I 1 .) 1
Al19:16 ; . : : . : : L : :
R 1 1 1 | 1 1] | 1 1
T T T T T T T T T T
BHE | lX : | Vo valid | | : lX
[A15:8] —
ALS0 —\/Adies VY o
- | Address :
[AD7:0] : : valid X Data Valid ><:
1 ! 1 ! 1 ! 1 ! 1 !
e
WR L 4o\t S
1 ! 1 ! 1 T | T | 1
1 ! 1 I] !] 1 I 1
pR __/ 4 b bbb N\
1 1 1 1 1 1 ! 1
1 1 1 ! 1 1 1 1 | 1
_ , | . | ! | ! | : i
DEN ! ' ! ! ! 1 ! 1 : !
1 1 1 ! 1 ! 1 ! 1 !
1 1 1 1 1
A1047-0A
Figure 3-21. Typical Write Bus Cycle
Table 3-4. Write Bus Cycle Types
Status Bits
Bus Cycle Type
S2 S1 SO
0 1 0 Write 1/0 — Initiated by executing IN, OUT, INS, OUTS instructions or by the
DMA Unit. A15:0 select the desired I/O port. A19:16 are driven to zero (see
Chapter 10, “Direct Memory Access Unit”).
1 1 0 Write Memory —Initiated by any of the Byte/ Word memory instructions or the
DMA Unit. A19:0 selects the desired byte or word memory location.

Figure 3-22 illustrates a typical 16-bit interface connection to a read/write device. Write bus cy-
cles have many parameters that must be evaluated in determining the compatibility of a memory
(or 1/0O) device. Table 3-5 lists some critical write bus cycle parameters.

3-23

BUS INTERFACE UNIT Intel®

Most memory and peripheral devices latch data on the rising edge of the write strobe. Address,
chip-select and data must be valid (set up) prior to the rising edge .of \WRTcw and T, de-

fine the minimum data setup requirements. The value calculated by their respective equations
must be greater than the device requirements. To increase the calculated value, insert wait states

LA15:1 >AO:14
RD —e—O OE
1/01:8 <:> AD7:0
O WE
— OCS1
LAO
WR
AO:14
BHE
-G

OE
1/01:8 <:> AD15:8

LCS ® OCS1

A1106-0A

Figure 3-22. 16-Bit Bus Read/Write Device Interface

3-24 I

Intel® BUS INTERFACE UNIT

The minimum device data hold time (from Wigh) is defined by J,. The calculated value
must be greater than the minimum device requirements; however, the value can be changed only
by decreasing the clock rate.

Table 3-5. Write Cycle Critical Timing Parameters

Megl a(;;ymDefgice Description Equation

Twe Write cycle time 47

Taw Address valid to end of write strobe (WR high) 3T — TapLren
Tew Chip enable (LCS) to end of write strobe (WR high) | 3T

Twr Write recover time Twhin

Tow Data valid to write strobe (WR high) 2T

Tou Data hold from write strobe (WR high) Twhox

Twe Write pulse width Twiwn

Twe and Typ define the minimum time (maximum frequency) a device can process write bus cy-
cles. Tg determines the minimum time from the end of the current write cycle to the start of the
next write cycle. All three parameters require that calculated values be greater than device re-
quirements. The calculateg,d and Ty, values increase with the insertion of wait states. The cal-
culated Ty value, however, can be changed only by decreasing the clock rate.

3.5.3 Interrupt Acknowledge Bus Cycle

Interrupt expansion is accomplished by interfacing the Interrupt Control Unit with a peripheral
device such as the 82C59A Programmable Interrupt Controller. (See Chapter 8, “Interrupt Con-
trol Unit,” for more information.) The BIU controls the bus cycles required to fetch vector infor-
mation from the peripheral device, then passes the information to the CPU. These bus cycles,
collectively known as Interrupt Acknowledge bus cycles, operate similarly to read bus cycles.
However, instead of generating Renable the peripheral, the INBgnal is used. Figure 3-23
illustrates a typical Interrupt Acknowledge (or INYBus cycle.

An Interrupt Acknowledge bus cycle consists of two consecutive bus cycles. [SQféKerated

to indicate the sequential bus operation. The second bus cycle strobes vector information only
from the lower half of the bus (D7:0). In a 16-bit bus system, the upper half of the bus (D15:8)
floats.

3-25

BUS INTERFACE UNIT

intel.

T1 1 T2 T3

T4 TI TI

T1

T2

T3 | T4

INTAO
— Note
INTAL \ \
AD15:0 \
[AD7:0] —./
]
LOCK \

T ST
PSS

DEN \

/

A19:16 A15:8 are unknown
[A15:8] / \ A19:16 are driven low

e]

RD, WR

NOTE: Vector Type is read from AD7:0 only.

INTA occurs during T2

in slave mode.

A1048-0A

Figure 3-23. Interrupt Acknowledge Bus Cycle

3-26

Intel® BUS INTERFACE UNIT

Figure 3-24 shows a typical 82C59A interface example. Bus ready must be provided to terminate
both bus cycles in the interrupt acknowledge sequence.

NOTE
Due to an internal condition, external ready is ignored if the device is
configured in Cascade mode and the Peripheral Control Block (PCB) is
located at 0000H in I/O space. In this case, wait statesot be added to
interrupt acknowledge bus cycles. However, gan add wait states to
interrupt acknowledge cycles if the PCB is located at any other address.

3531 System Design Considerations

Although ALE is generated for both bus cycles, the BIU does not drive valid address information.
Actually, all address bits except A19:16 float during the time ALE becomes active (on both 8-
and 16-bit bus devices). Address-decoding circuitry must be disabled for Interrupt Acknowledge
bus cycles to prevent erroneous operation.

Processor 82C59A
INTAO > INTA
INTO [&———— INT IRO
3 —
[]
—_— R [)
RD ——>{ RD IR7
WR > WR
PCS0 b———>{ CS
LA1l— AO
D7:0
AD7:0 < >
A1065-0B

Figure 3-24. Typical 82C59A Interface

I 3-27

BUS INTERFACE UNIT Intel®

3.5.4 HALT Bus Cycle

Suspending the CPU reduces device power consumption and potentially reduces interrupt latency
time. The HLT instruction initiates two events:

1. Suspends the Execution Unit.

2. Instructs the BIU to execute a HALT bus cycle.

The Idle or Powerdown power management mode (or the absence of both of them, known as Ac-
tive Mode) affects the operation of the bus HALT cycle. The effects relating to BIU operation
and the HALT bus cycle are described in this chapter. Chapter 5, “Clock Generation and Power
Management,” discusses the concepts of Active, Idle and Powerdown power management modes.

After executing a HALT bus cycle, the BIU suspends operation until one of the following events
occurs:

* Aninterrupt is generated.
* A bus HOLD is generated (except when Powerdown mode is enabled).
* A DMA request is generated (except when Powerdown mode is enabled).

* A refresh request is generated (except when Powerdown mode is enabled).

Figure 3-25 shows the operation of a HALT bus cycle. The address/data bus either floats or drives
during T1, depending on the next bus cycle to be executed by the BIU. Under most instruction
sequences, the BIU floats the address/data bus because the next operation would most likely be
an instruction prefetch. However, if the HALT occurs just after a bus write operation, the ad-
dress/data bus drives either data or address information during T1. A19:16 continue to drive the
previous bus cycle information under most instruction sequences (otherwise, they drive the next
prefetch address). The BIU always operates in the same way for any given instruction sequence.

The Chip-Select Unit prevents a programmed chip-select from going active during a HALT bus

cycle. However, chip-selects generated by external decoder circuits must be disabled for HALT
bus cycles.

3-28 I

intel.

After several Tl bus states, all address/data, address/status and bus control pins drive to a known
state when Powerdown or Idle Mode is enabled. The address/data and address/status bus pins
force a low (0) state. Bus control pins force their inactive state. Figure 3-3 lists the state of each

pin after entering the HALT bus state.

Table 3-6. HALT Bus Cycle Pin States

BUS INTERFACE UNIT

Pin State

Pin(s) No Powerdown Powerdown

or Idle Mode or Idle Mode
AD15:0 (AD7:0 for 8-bit) Float Drive Zero
A15:8 (8-bit) Drive Address Drive Zero
A19:16 Drive 8H or Zero Drive Zero
BHE (16-bit) Drive Last Value Drive One
RD, WR, DEN, DT/R, RFSH (8-bit), S2:0 | Drive One Drive One

3-29

BUS INTERFACE UNIT

Tl Tl Tl

cikout | L | L L1 |

ALE / \

S2:0 \ on /
AD15:0 TS N T e
[AD7:0] Note 1 \ Note 2 \ Note 3
[A15:8] Note 2 \Note2 \ Note3
A19:16 \ " Notea
BHE 7
[RFSH = 1]
NOTES:

1. The AD15:0 [AD7:0] bus can be floating, driving a previous write data value,
or driving the next instruction prefetch address value. For an 8-bit device,
A15:8 either drives the previous bus address value or the next instruction
prefetch address value.

2. The AD15:0 bus, or AD7:0 and A15:8 buses for an 8-bit device, drive to a
zero (all low) at this time if Powerdown Mode is enabled. When Powerdown
Mode is not enabled, the AD15:0 [AD7:0] bus either floats or drives previous
write data, and A15:8 (8-bit device) continues to drive its previous value.

3. The AD15:0 bus, or AD7:0 and A15:8 buses for an 8-bit device, drive to a
zero (all low) at this time if Idle Mode is enabled. When Idle Mode is not
enabled, the AD15:0 [AD7:0] bus either floats or drives previous write data,
and A15:8 (8-bit device) continues to drive its previous value.

4. The A19:16 bus either drives zero (all low) or 8H (all low except A19/S6,

which can be high if the previous bus cycle was a DMA or refresh operation).
If either Idle or Powerdown Mode is enabled, the A19:16 bus drives zeros
(all low) at phase 1 of TI. Otherwise, the previous value remains active.

A1088-0A

3-30

Figure 3-25. HALT Bus Cycle

Intel® BUS INTERFACE UNIT

3.5.5 Temporarily Exiting the HALT Bus State

A DMA request, refresh request or bus hold request causes the BIU to exit the HALT bus state
temporarily. This can occur only when in the Active or Idle power management mode. The BIU
returns to the HALT bustate after it completes the desired bus operation. However, the BIU
does notexecute another bus HALdycle (i.e., ALE and bus cycle status are not regenerated).
Figures 3-26, 3-27 and 3-28 illustrate how the BIU temporarily exits and then returns to the
HALT bus state.

ckout [MMM
HOLD | "

HLDA 1

AD15:0
[AD?:O] it
Al15:8
Al19:16 Previous Value > i <
CONTROL Valid >— < Valid

A1053-0A

Figure 3-26. Returning to HALT After a HOLD/HLDA Bus Exchange

I 3-31

BUS INTERFACE UNIT Intel®

CLKOUT_L|||||||||||||||||

ALE . []
S2:0 ; \ /

AD15:0 i —\

[AD?O] 1r \ Addr /

[A15:8] :: Note 1 X Address

A19:16 = Notel XAddr A19=1 A18:16=0
BHE —H—-—p-—-"—-—-— - — - —~

RESH Note 2; \ Note 3 /
NOTES:

1. Previous bus cycle value.
2. Only occurs for BHE on the first refresh bus cycle after entering HALT.
3. BHE =1 for 16-bit device, RFSH = 0 for 8-bit device.

A1051-0A

Figure 3-27. Returning to HALT After a Refresh Bus Cycle

3-32

Intel® BUS INTERFACE UNIT

T4 T1 T2 T3 T4 T1 T2 T3 TI TI TI TI

ALE || ||

S2:0 \Valid Status [\Valid Status [
[AA[E)175:£ @ {Addr) Valid Data
[A15:8] / NoteX Address X Address \
A19:16 Note Addr{ 8H XAddy 8H
[FSI:EE] Note) Valid X Valid /

NOTE: Drives previous bus cycle value

A1052-0A

Figure 3-28. Returning to HALT After a DMA Bus Cycle

3.5.6 Exiting HALT

In Powerdown mode, only an NMI forces the BIU to exit the HALT bus state. In any other power
management mode, either an NMI or any unmasked INfErrupt causes the BIU to exit HALT.

The first bus operations to occur after exiting HALT are read cycles to reload the CS:IP registers.
Figure 3-29 and Figure 3-30 show how the HALT bus state is exited when an NMIroo&NT

curs.

I 3-33

BUS INTERFACE UNIT Intel®

cikour L L 1 | L

8

1/2 clocks to first vector fetch

S2.0
\
AD15:0 0
[AD7:0] " / N :>_
[A15:8] . / Note X

BHE ___,, |
[RFSH = 1] \

Al19:16

! Time is determlned by PDTMR
NMI /—"—\ (4 1/2 clocks min.)

NOTE: Previous bus cycle address value.

A1054-0A

Figure 3-29. Exiting HALT (Powerdown Mode)

3-34 I

Intel® BUS INTERFACE UNIT

r>{Note 1

NMI/INTx :/ —
ALE . | |

S2:0 N | Valid

e E——— L R (X o
[A15:8] :: Note 3 X Address
A19:16 Note 4 \
_BHE :: Note 3 \
RFSH il
NOTES:

1. For NMI, delay = 4 1/2 clocks. For INTX, delay = 7 1/2 clocks (min).

2. If previous bus cycle was a read, bus will float. If previous bus cycle was
a write, bus will drive data value.

3. Previous bus cycle value.

4. If previous bus cycle was a refresh or DMA bus cycle, value will be
8H (A19 = 1); otherwise, value will be 0.

A1055-0A

Figure 3-30. Exiting HALT (Active/ldle Mode)

3.6 SYSTEM DESIGN ALTERNATIVES

Most system designs require no signals other than those already provided by the BIU. However,
heavily loaded bus conditions, slow memory or peripheral device performance and off-board de-
vice interfaces may not be supported directly without modifying the BIU interface. The following
sections deal with topics to enhance or modify the operation of the BIU.

3-35

BUS INTERFACE UNIT Intel®

3.6.1 Buffering the Data Bus

The BIU generates two control signals, D&EhJ DT/R to control bidirectional buffers or trans-
ceivers. The timing relationship of DEMd DT/Ris shown in Figure 3-31. The following con-
ditions require transceivers:

* The capacitive load on the address/data bus gets too large.
* The current load on the address/data bus exceeds device specifications.
¢ Additional Vg and V drive is required.

* A memory or I/O device cannot float its outputs in time to prevent bus contention, even at
reset.

ckout | L1 L L LI |
RD,WR ./
ot —/ 7
bEN . .\ [T

— — — Write Cycle Operation
Read Cycle Operation

A1094-A0

Figure 3-31. DEN and DT/R Timing Relationships

The circuit shown in Figure 3-32 illustrates how to use transceivers to buffer the address/data bus.
The connection between the processor and the transceiver is knowloaalthes A connection
between the transceiver and other memory or 1/O devices is known lasfféned busA fully
bufferedsystem haso devices attached to the local bugaktially bufferedsystem has devices

on both the local and buffered buses.

3-36 I

BUS INTERFACE UNIT

ALE

Y

A19:16
Processor

AD15:0

g8

Latch

Address Bus

$

DEN

DT/R

Transceiver

N/

Data

Address

Memory
or
I/0

Device

CS

A

i

CPU Local Bus

—_—
Buffered Bus

A1095-0A

Figure 3-32. Buffered AD Bus System

In a fully buffered system, DEMNirectly drives the transceiver output enable. A partially buffered
system requires that DEbe qualified with another signal to prevent the transceiver from going
active for local bus accesses. Figure 3-33 illustrates how to use chip-selects to qualify DEN

DT/R always connects directly to the transceiver. However, an inverter may be required if the po-
larity of DT/R does not match the transceiver. DGées low (0) only for memory and 1/O read,
instruction prefetch and interrupt acknowledge bus cycles.

3-37

BUS INTERFACE UNIT Intel®

AD15:8 8/ ® > A
DEN _ 8 -
— —@—> OE B 7L> D15:8
MCSO
—> T
Buff
L Buffered
> Data
Bus
ADT:0 8/ ® > A
>| OE B % D7:0
DT/R *—>|T
Buffer
8,/ > Local
8 Data
A > Bus
A1058-0B

Figure 3-33. Qualifying DEN with Chip-Selects

3.6.2 Synchronizing Software and Hardware Events

The execution sequence of a program and hardware events occurring within a system are often
asynchronous to each other. In some systems there may be a requirement to suspend program ex
ecution until an event (or events) occurs, then continue program execution.

One way to synchronize software execution with hardware events requires the use of interrupts.
Executing a HALT instruction suspends program execution until an unmasked interrupt occurs.

However, there is a delay associated with servicing the interrupt before program execution can
proceed. Using the WAIT instruction removes the delay associated with servicing interrupts.

3-38

Intel® BUS INTERFACE UNIT

The WAIT instruction suspends program execution until one of two events occurs: an interrupt
is generated, or the TESAput pin is sampled low. Unlike interrupts, the TE8&put pin does

not require that program execution be transferred to a new location (i.e., an interrupt routine is
not executed). In processing the WAIT instruction, program execution remains suspended as long
as TESTremains high (at least until an interrupt occurs). When TieSampled low, program
execution resumes.

The TESTinput and WAIT instruction provide a mechanism to delay program execution until a
hardware event occurs, without having to absorb the delay associated with servicing an interrupt.

3.6.3 Using a Locked Bus

To address the problems of controlling accesses to shared resources, the BIU provides a hardware
LOCK output. The execution of a LOCK prefix instruction activates the L@Qdut.

LOCK goes active in phase 1 of T1 of the first bus cycle following execution of the LOCK prefix
instruction. It remains active until phase 1 of T1 of the first bus cycle following the execution of
the instruction following the LOCK prefix. To provide bus access control in multiprocessor sys-
tems, the LOCKsignal should be incorporated into the system bus arbitration logic residing in
the CPU.

During normal multiprocessor system operation, priority of the shared system bus is determined
by the arbitration circuits on a cycle by cycle basis. As each CPU requires a transfer over the sys-
tem bus, it requests access to the bus via its resident bus arbitration logic. When the CPU gains
priority (determined by the system bus arbitration scheme and any associated logic), it takes con-
trol of the bus, performs its bus cycle and either maintains bus control, voluntarily releases the
bus or is forced off the bus by the loss of priority.

The lock mechanism prevents the CPU from losing bus control (either voluntarily or by force)
and guarantees that the CPU can execute multiple bus cycles without intervention and possible
corruption of the data by another CPU. A classic use of the mechanism is the “TEST and SET
semaphore,” during which a CPU must read from a shared memory location and return data to
the location without allowing another CPU to reference the same location during the test and set
operations.

Another application of LOCHKor multiprocessor systems consists of a locked block move, which
allows high speed message transfer from one CPU’s message buffer to another. During the locked
instruction (i.e., while LOCHKs active), a bus hold, DMA or refresh request is recorded, but is

not acknowledged until completion of the locked instruction. However, LBG&Kno effect on
interrupts. As an example, a locked HALT instruction causes bus hold, DMA or refresh bus re-
guests to be ignored, but still allows the CPU to exit the HALT state on an interrupt.

3-39

BUS INTERFACE UNIT Intel®

In general, prefix bytes (such as LOCK) are considered extensions of the instructions they pre-
cede. Interrupts, DMA requests and refresh requests that occur during execution of the prefix are
not acknowledged until the instruction following the prefix completes (except for instructions
that are servicing interrupts during their execution, such as HALT, WAIT and repeated string
primitives).Note that multiple prefix bytes can precede an instruction.

Another example is a string primitive preceded by the repetition prefix (REP), which can be in-
terrupted after each execution of the string primitive, even if the REP prefix is combined with the
LOCK prefix. This prevents interrupts from being locked out during a block move or other re-
peated string operations. However, bus hold, DMA and refresh requests remain locked out until
LOCK is removed (either when the block operation completes or after an interrupt occurs.

3.6.4 Using the Queue Status Signals

Older-generation devices require the queue status signals to interface with an 8087 math copro-
cessor. Newer devices do not require these signals because they use the 80187 math coprocesso
which has an I/O port interface similar to that of a peripheral device.

The queue status signals, QS0 and QS1, indicate the state of the internal queue (Table 3-7). Since
the Execution Unit can remove information from the queue on any clock boundary, the queue sta-
tus pins may change state on every phase 1 clock edge (Figure 3-34). Although these signals can-
not be related to any specific T-state, the relationship between the queue status signals and BIU
operation always remains the same for a given instruction sequence.

QSO0 and QS1 are alternate functions of ALE and Ye¢Rpectively. To enable QS0 and QS1, you

must connect the Rpin directly to ground. In this case, RWR and ALE are no longer avail-

able and must be generated by external hardware such as an 82C88 or a programmable logic de-
vice.

Table 3-7. Queue Status Signal Decoding

QSs1 QSO0 Queue Status

0 No queue operation occurred.

The first byte of a new instruction was removed from the queue.

1 0 The queue was reinitialized. All prefetch information was flushed; the BIU must begin
prefetching new queue information.

1 1 A subsequent byte of an instruction was removed from the queue. The current instruction
contains multiple opcode bytes or immediate data.

3-40

Intel® BUS INTERFACE UNIT

CLKOUT

SSRGS

Figure 3-34. Queue Status Timing

A1059-0A

3.7 MULTI-MASTER BUS SYSTEM DESIGNS

The BIU supports protocols for transferring control of the local bus between itself and other de-
vices capable of acting as bus masters. To support such a protocol, the BIU uses a hold request
input (HOLD) and a hold acknowledge output (HLDA) as bus transfer handshake signals. To
gain control of the bus, a device asserts the HOLD input, then waits until the HLDA output goes
active before driving the bus. After HLDA goes active, the requesting device can take control of
the local bus and remains in control of the bus until HOLD is removed.

3.7.1 Entering Bus HOLD

In responding to the hold request input, the BIU floats the entire address and data bus, and many
of the control signals. Figure 3-35 illustrates the timing sequence when acknowledging the hold
request. Table 3-8 lists the states of the BIU pins when HLDA is asserted. All device pins not
mentioned in Table 3-8 or shown in Figure 3-35 remain either active (e.g., CLKOUT and
T10UT) or inactive (e.g., UC&81d INTA). Refer to the data sheet for specific details of pin func-
tions during a bus hold.

I 3-41

BUS INTERFACE UNIT Intel®

CLKOUT g "\
HLDA /
AD15:0 // k \ Float
DEN N
Al9:16
RD,WR
VIR \ Float
DT/R \/
S2:0,BHE
LOCK
NOTES:
1. T g HOLD input to clock low
2. TeHor - Clock high to output float
3. ToLok : Clock low to output float
4. Te oy : Clock low to HLDA high
A1097-0A
Figure 3-35. Timing Sequence Entering HOLD
Table 3-8. Signal Condition Entering HOLD
Signal HOLD Condition
A19:16, S2:0, RD, WR, DT/R, BHE (RFSH), LOCK These signals float one-half clock before HLDA
is generated (i.e., phase 2).
AD15:0 (16-bit), AD7:0 (8-bit), A15:8 (8-bit), DEN These signals float during the same clock in
which HLDA is generated (i.e., phase 1).

3.71.1 HOLD Bus Latency

The duration between the time that the external device asserts HOLD and the time that the BIU
asserts HLDA is known asus latencyln Figure 3-35, the two-clock delay between HOLD and
HLDA represents the shortest bus latency. Normally this occurs only if the bus is idle or halted
or if the bus hold request occurs just before the BIU begins another bus cycle.

3-42

Intel® BUS INTERFACE UNIT

The major factors that influence bus latency are listed below (in order from longest delay to short-
est delay).

1. Bus Not Ready — As long as the bus remains not ready, a bus hold request cannot be
serviced.

2. Locked Bus Cycle — As long as LOGEmains asserted, a bus hold request cannot be
serviced. Performing a locked move string operation can take several thousands of clocks.

3. Completion of Current Bus Cycle — A bus hold request cannot be serviced until the
current bus cycle completes. A bus hold request will not separate bus cycles required to
move odd-aligned word data. Also, bus cycles with long wait states will delay the
servicing of a bus hold request.

4. Interrupt Acknowledge Bus Cycle — A bus hold request is not serviced until after an
INTA bus cycle has completed. An TNTus cycle drives LOClactive.

5. DMA and Refresh Bus Cycles — A bus hold request is not serviced until after the DMA
request or refresh bus cycle has completed. Refresh bus cycles have a higher priority than
hold bus requests. A bus hold request cannot separate the bus cycles associated with a
DMA transfer (worst case is an odd-aligned transfer, which takes four bus cycles to
complete).

3.7.1.2 Refresh Operation During a Bus HOLD

Under normal operating conditions, once HLDA has been asserted it remains asserted until
HOLD is removed. However, when a refresh bus request is generated, the HLDA output is re-
moved (driven low) to signal the need for the BIU to regain control of the local bus. The BIU does
not gain control of the bus until HOLD is removed. This procedure prevents the BIU from just
arbitrarily regaining control of the bus.

Figure 3-36 shows the timing associated with the occurrence of a refresh request while HLDA is
active. Note that HLDA can be as short as one clock in duration. This happens when a refresh
request occurs just after HLDA is granted. A refresh request has higher priority than a bus hold
request; therefore, when the two occur simultaneously, the refresh request occurs before HLDA
becomes active.

I 3-43

BUS INTERFACE UNIT Intel®

CLKOUT J <>\ L J 0\ d I_
@ Yo \o |
HOLD | /
HLDA ;
AD15:0 .
DEN i |
Al19:16
RD, WR, ®
BHE, S2:0 { | \
DT/R,
LOCK
NOTES:
1. HLDA is deasserted, signaling need to run refresh bus cycle.
2. External bus master terminates use of the bus.
3. HOLD deasserted.
4. Hold may be reasserted after one clock.
5. BIU runs refresh cycle.
A1061-0A

Figure 3-36. Refresh Request During HOLD

The device requesting a bus hold must be able to detect a HLDA pulse that is one clock in dura-
tion. A bus lockup (hang) condition can result if the requesting device fails to detect the short
HLDA pulse and continues to wait for HLDA to be asserted while the BIU waits for HOLD to be
deasserted. The circuit shown in Figure 3-37 can be used to latch HLDA.

3-44 I

Intel® BUS INTERFACE UNIT

i) PRE

Latched HLDA

HLDA >

CLR

RESOUT —|>o—

HOLD

A1062-0A

Figure 3-37. Latching HLDA

The removal of HOLD must be detected for at least one clock cycle to allow the BIU to regain
the bus and execute a refresh bus cycle. Should HOLD go active before the refresh bus cycle is
complete, the BIU will release the bus and generate HLDA.

3.7.2 Exiting HOLD

Figure 3-38 shows the timing associated with exiting the bus hold state. Normally a bus operation
(e.g., an instruction prefetch) occurs just after HOLD is released. However, if no bus cycle is
pending when leaving a bus hold state, the bus and associated control signals remain floating, if
the system is in normal operating mode. (For signal states associated with Idle and Powerdown
modes, see “Temporarily Exiting the HALT Bus State” on page 3-31).

I 3-45

BUS INTERFACE UNIT Intel®

o

]

CLKOUT J ‘\ "\

®

)
HOLD =\ @

\o oo
7]
.

DEN
RD, WR, BHE, —
DT /R, S2:0, {

A19:16
NOTES:
1. T g HOLD recognition setup to clock low
2. : HOLD internally synchronized
3. Te oy : Clock low to HLDA low
4 TehHov Clock high to signal active (high or low)
5 Tolov Clock low to signal active (high or low)

A1099-0A

3.8

Figure 3-38. Exiting HOLD

BUS CYCLE PRIORITIES

The BIU arbitrates requests for bus cycles from the Execution Unit, the integrated peripherals

(e.q.,

Interrupt Control Unit) and external bus masters (i.e., bus hold requests). The list below

summarizes the priorities for all bus cycle requests (from highest to lowest).

1.

o~ N

Instruction execution read/write following a non-pipelined effective address calculation.
Refresh bus cycles.

Bus hold request.

Single step interrupt vectoring sequence.

Non-Maskable interrupt vectoring sequence.

Intel® BUS INTERFACE UNIT

© © N o

Internal error (e.g., divide error, overflow) interrupt vectoring sequence.
Hardware (e.g., INTO, DMA) interrupt vectoring sequence.
80C187 Math Coprocessor error interrupt vectoring sequence.

DMA bus cycles.

General instruction execution. This category includes read/write operations following a

pipelined effective address calculation, vectoring sequences for software interrupts and

numerics code execution. The following points apply to sequences of related execution

cycles.

— The second read/write cycle of an odd-addressed word operation is inseparable from
the first bus cycle.

— The second read/write cycle of an instruction with both load and store accesses (e.qg.,
XCHG) can be separated from the first cycle by other bus cycles.

— Successive bus cycles of string instructions (e.g., MOVS) can be separated by other bus
cycles.

— When a locked instruction begins, its associated bus cycles become the highest priority
and cannot be separated (or preempted) until completed.

11. Bus cycles necessary to fill the prefetch queue.

3-47

intel.

Peripheral Control
Block

intel.

CHAPTER 4
PERIPHERAL CONTROL BLOCK

All integrated peripherals in the 80C186 Modular Core family are controlled by sets of registers
within an integrated Peripheral Control Block (PCB). The peripheral control registers are physi-
cally located in the peripheral devices they control, but they are addressed as a single block of
registers. The Peripheral Control Block encompasses 256 contiguous bytes and can be located on
any 256-byte boundary of memory or I/O space. The PCB Relocation Register, which is also lo-
cated within the Peripheral Control Block, controls the location of the PCB.

4.1 PERIPHERAL CONTROL REGISTERS

Each of the integrated peripherals’ control and status registers is located at a fixed offset above
the programmed base location of the Peripheral Control Block (see Table 4-1). These registers
are described in the chapters that cover the associated peripheral. “Accessing the Peripheral Con-
trol Block” on page 4-4 discusses how the registers are accessed and outlines considerations for
reading and writing them.

4.2 PCB RELOCATION REGISTER

In addition to control registers for the integrated peripherals, the Peripheral Control Block con-
tains the PCB Relocation Register (Figure 4-1). The Relocation Register is located at a fixed off-
set within the Peripheral Control Block (Table 4-1). If the Peripheral Control Block is moved, the
Relocation Register also moves.

The PCB Relocation Register allows the Peripheral Control Block to be relocated to any 256-byte
boundary within memory or 1/0O space. The Memory I/O bit (MEM) selects either memory space
or I/0 space, and the R19:8 bits specify the starting (base) address of the PCB. The remaining bit,
Escape Trap (ET), controls access to the math coprocessor interface.

“Setting the PCB Base Location” on page 4-6 describes how to set the base location and outlines
some restrictions on the Peripheral Control Block location.

I 4-1

PERIPHERAL CONTROL BLOCK Intel®

Register Name: PCB Relocation Register
Register Mnemonic: RELREG
Register Function: Relocates the PCB within memory or I/O space.
15 0
E|S M RIR|IR|R RIR|IR|R RIR]|R|R
T]|L E 1 1 1 1 1 1 1 1 1 1 9 8
M 918 1|71]6 514|312 11]0
A1262-0A
Bit . Reset .
Mnemonic Bit Name State Function

ET Escape Trap | O If ET is set, the CPU will trap when an ESC
instruction is executed.

SL Slave/Master | 0 If SL is set, the Interrupt Control Unit operates in
slave mode. If SL is clear, it operates in master
mode.

MEM Memory /0 0 If MEM is set, the PCB is located in memory
space. If MEM is clear, the PCB is located in I/O
space.

R19:8 PCB Base OFFH R19:8 define the upper address bits of the PCB

Address base address. All lower bits are zero. R19:16 are
Upper Bits ignored when the PCB is mapped to 1/O space.

NOTE: Reserved register bits are shown with gray shading. Reserved bits must be written
to a logic zero to ensure compatibility with future Intel products.

Figure 4-1. PCB Relocation Register

4-2

intel.

PERIPHERAL CONTROL BLOCK

Table 4-1. Peripheral Control Block

PCB

PCB

PCB

PCB

Offset Function Offset Function Offset Function Offset Function
00H Reserved 40H Reserved 80H Reserved COH DOSRCL
02H Reserved 42H Reserved 82H Reserved C2H DOSRCH
04H Reserved 44H Reserved 84H Reserved C4H DODSTL
06H Reserved 46H Reserved 86H Reserved C6H DODSTH
08H Reserved 48H Reserved 88H Reserved C8H DOTC
0AH Reserved 4AH Reserved 8AH Reserved CAH DOCON
0CH Reserved 4CH Reserved 8CH Reserved CCH Reserved
OEH Reserved 4EH Reserved 8EH Reserved CEH Reserved
10H Reserved 50H TOCNT 90H Reserved DOH D1SRCL
12H Reserved 52H TOCMPA 92H Reserved D2H D1SRCH
14H Reserved 54H TOCMPB 94H Reserved D4H D1DSTL
16H Reserved 56H TOCON 96H Reserved D6H D1DSTH
18H Reserved 58H T1CNT 98H Reserved D8H D1TC
1AH Reserved 5AH T1CMPA 9AH Reserved DAH D1CON
1CH Reserved 5CH T1CMPB 9CH Reserved DCH Reserved
1EH Reserved 5EH T1CON 9EH Reserved DEH Reserved
20H Reserved 60H T2CNT AOH UMCS EOH RFBASE
22H EOI 62H T2CMPA A2H LMCS E2H RFTIME
24H POLL 64H Reserved A4H PACS E4H RFCON
26H POLLSTS 66H T2CON A6H MMCS E6H Reserved
28H IMASK 68H Reserved A8H MPCS E8H Reserved
2AH PRIMSK 6AH Reserved AAH Reserved EAH Reserved
2CH INSERV 6CH Reserved ACH Reserved ECH Reserved
2EH REQST 6EH Reserved AEH Reserved EEH Reserved
30H INSTS 70H Reserved BOH Reserved FOH PWRSAV
32H TCUCON 72H Reserved B2H Reserved F2H PWRCON
34H DMAOCON 74H Reserved B4H Reserved F4H Reserved
36H DMA1CON 76H Reserved B6H Reserved F6H STEPID
38H I0CON 78H Reserved B8H Reserved F8H Reserved
3AH 11CON 7AH Reserved BAH Reserved FAH Reserved
3CH I2CON 7CH Reserved BCH Reserved FCH Reserved
3EH I3CON 7EH Reserved BEH Reserved FEH RELREG

4-3

PERIPHERAL CONTROL BLOCK Intel®

4.3 RESERVED LOCATIONS

Many locations within the Peripheral Control Block are not assigned to any peripheral. Unused
locations are reserved. Reading from these locations yields an undefined result. If reserved reg-
isters are written (for example, during a block MOV instruction) they must be set to OH.

NOTE

Failure to follow this guideline could result in incompatibilities with future
80C186 Modular Core family products.

4.4 ACCESSING THE PERIPHERAL CONTROL BLOCK

All communication between integrated peripherals and the Modular CPU Core occurs over a spe-
cial bus, called th&-Bus which always carries 16-bit data. The Peripheral Control Block, like
all integrated peripherals, is always accessed 16 bits at a time.

4.4.1 Bus Cycles

The processor runs an external bus cycle for any memory or I/O cycle accessing a location within
the Peripheral Control Block. Address, data and control information is driven on the external pins
as with an ordinary bus cycle. Information returned by an external device is ignored, even if the
access does not correspond to the location of an integrated peripheral control register. This is also
true for the 80C188 Modular Core family, except that word accesses made to integrated registers
are performed in two bus cycles.

4.4.2 READY Signals and Wait States

The processor generates an internal READY signal whenever an integrated peripheral is access-
ed. External READY is ignored. READY is also generated if an access is made to a location with-
in the Peripheral Control Block that does not correspond to an integrated peripheral control
register. For accesses to timer control and counting registers, the processor inserts one wait state
This is required to properly multiplex processor and counter element accesses to the timer control
registers. For accesses to the remaining locations in the Peripheral Control Block, the processor
does not insert wait states.

4-4 I

Inte|® PERIPHERAL CONTROL BLOCK

4.4.3 F-Bus Operation

The F-Bus functions differently than the external data bus for byte and word accesses. All write
transfers on the F-Bus occur as words, regardless of how they are encoded. For example, the in-
struction OUT DX, AL (DX is even) will write the entire AX register to the Peripheral Control
Block register at location [DX]. If DX were an odd location, AL would be placed in [DX] and

AH would be placed at [DX-1]. A word operation to an odd address would write [DX] and [DX—

1] with AL and AH, respectively. This differs from normal external bus operation where un-
aligned word writes modify [DX] and [DX+1]. In summary, do not use odd-aligned byte or word
writes to the PCB.

Aligned word reads work normally. Unaligned word reads work differently. For example, IN AX,
DX (DX is odd) will transfer [DX] into AL and [DX-1] into AH. Byte reads from even or odd
addresses work normally, but only a byte will be read. For example, IN AL, DXatilfansfer

[DX] into AX (only AL is modified).

No problems will arise if the following recommendations are adhered to.

Word reads Aligned word reads of the PCB work normally. Access only even-
aligned words with IN AX, DX or MOWvord register, even PCB
address

Byte reads Byte reads of the PCB work normally. Beware of reading word-wide

PCB registers that may change value between successive reads (e.g.,
timer count value).

Word writes Always write even-aligned words to the PCB. Writing an odd-
aligned word will give unexpected results.

For the 80C186 Modular Core, use either
— OUT DX, AX or
— OUT DX, AL or
— MOQV even PCB addresword register

For the 80C188 Modular Core, using OUT DX, AX will perform an
unnecessary bus cycle and is not recommended. Use either
— OUT DX, AL or
— MOV even-aligned byte PCB addrebgte register low byte

Byte writes Always use even-aligned byte writes to the PCB. Even-aligned byte
writes will modify the entire word PCB location. Dt perform
unaligned byte writes to the PCB.

I 4-5

PERIPHERAL CONTROL BLOCK Intel®

443.1 Writing the PCB Relocation Register

Whenever mapping the Peripheral Control Block to another location, the user should program the
Relocation Register withlayte write (i.e., OUT DX, AL). Internally, the Relocation Register is
written with 16 bits of the AX register, while externally the Bus Interface Unit runs a single 8-bit
bus cycle. If a word instruction (i.e., OUT DX, AX) is used with an 80C188 Modular Core family
member, the Relocation Register is written on the first bus cycle. The Bus Interface Unit then runs
an unnecessary second bus cycle. The address of the second bus cycle is no longer within the con
trol block, since the Peripheral Control Block was moved on the first cycle. External READY
must now be generated to complete the cycle. For this reason, we recommend byte operations for
the Relocation Register.

4.43.2 Accessing the Peripheral Control Registers

Byte instructions should be used for the registers in the Peripheral Control Block of an 80C188
Modular Core family member. This requires half the bus cycles of word operations. Byte opera-
tions are valid only for even-addressed writes to the Peripheral Control Block. A word read (e.qg.,
IN AX, DX) must be performed to read a 16-bit Peripheral Control Block register when possible.

4.4.3.3 Accessing Reserved Locations

Unused locations are reserved. If a write is made to these locations, a bus cycle occurs, but data
is not stored. If a subsequent read is made to the same location, the value written is not read back.
If reserved registers are written (for example, during a block MOV instruction) they must be
cleared to OH.

NOTE

Failure to follow this guideline could result in incompatibilities with future
80C186 Modular Core family products.

4.5 SETTING THE PCB BASE LOCATION
Upon reset, the PCB Relocation Register (see Figure 4-1 on page 4-2) contains the value 00FFH,

which causes the Peripheral Control Block to be located at the top of 1/O space (OFFOOH to
OFFFFH). Writing the PCB Relocation Register allows the user to change that location.

4-6 I

Inte|® PERIPHERAL CONTROL BLOCK

As an example, to relocate the Peripheral Control Block to the memory range 10000-100FFH, the
user would program the PCB Relocation Register with the value 1100H. Since the Relocation
Register is part of the Peripheral Control Block, it relocates to word 10000H plus its fixed offset.

NOTE

Due to an internal condition, external ready is ignored if the device is
configured in Cascade mode and the Peripheral Control Block (PCB) is
located at 0000H in I/O space. In this case, wait statesot be added to
interrupt acknowledge bus cycles. However, gan add wait states to
interrupt acknowledge cycles if the PCB is located at any other address.

4.5.1 Considerations for the 80C187 Math Coprocessor Interface

Systems using the 80C187 math coprocessor interfacenoiustlocate the Peripheral Control
Block to location 0000H in I/O space. The 80C187 interface uses 1/O locations OF8H through
OFFH. If the Peripheral Control Block resides in these locations, the processor communicates
with the Peripheral Control Blockpt the 80C187 interface circuitry.

NOTE

If the PCB is located at 0000H in 1/0O space and access to the math coprocessor
interface is enabled (the Escape Trap bit is clear), a numerics (ESC) instruction
causes indeterminate system operation.

Since the 8-bit bus version of the device does not support the 80C187, it automatically traps an
ESC instruction to the Type 7 interrupt, regardless of the state of the Escape Trap (ET) bit.

For details on the math coprocessor interface, see Chapter 11, “Math Coprocessing.”

I 4-7

intel.

o

Clock Generation and
Power Management

CHAPTER 5
CLOCK GENERATION AND POWER
MANAGEMENT

The clock generation and distribution circuits provide uniform clock signals for the Execution
Unit, the Bus Interface Unit and all integrated peripherals. The 80C186 Modular Core Family
processors have additional logic that controls the clock signals to provide power management
functions.

5.1 CLOCK GENERATION

The clock generation circuit (Figure 5-1) includes a crystal oscillator, a divide-by-two counter,
power-save, powerdown, idle, and reset circuitry. See “Power Management” on page 5-10 for a
discussion of power management options.

- - * < Power Down
Schmitt Trigger — < dle
"Squares-up" CLKIN < Power Save
CLKIN
2o M clock [P Phase [01 | Internal
>Clock Divider Drivers Phase
- i > —> (2 | Clocks
> To CLKOUT
OSCOouUT Y
Reset Circuitry —> |Internal Reset
RESIN
A1118-0A

Figure 5-1. Clock Generator

5.1.1 Crystal Oscillator

The internal oscillator is a parallel resonant Pierce oscillator, a specific form of the common
phase shift oscillator.

I 5-1

CLOCK GENERATION AND POWER MANAGEMENT Intel®

5.1.1.1 Oscillator Operation

A phase shift oscillator operates through positive feedback, where a non-inverted, amplified ver-
sion of the input connects back to the input. A 360° phase shift around the loop will sustain the
feedback in the oscillator. The on-chip inverter provides a 180° phase shift. The combination of
the inverter’s output impedance and the first load capacitor (see Figure 5-2) provides another 90°
phase shift. At resonance, the crystal becomes primarily resistive. The combination of the crystal
and the second load capacitor provides the final 90° phase shift. Above and below resonance, the
crystal is reactive and forces the oscillator back toward the crystal’s nominal frequency.

Z, = Inverter Output Z

AW l lﬂl l {>o—

NOTE:

At resonance, the crystal is essentially resistive.
Above resonance, the crystal is inductive.
Below resonance, the crystal is capacitive.

A1125-0A

Figure 5-2. Ideal Operation of Pierce Oscillator

Figure 5-3 shows the actual microprocessor crystal connections. For low frequencies, crystal ven-
dors offer fundamental mode crystals. At higher frequencies, a third overtone crystal is the only
choice. The external capacitors, @t CLKIN and &, at OSCOUT, together with stray capaci-
tance, form the load. A third overtone crystal requires an additional indyctodLcapacitor C

to select the third overtone frequency and reject the fundamental frequency. See “Selecting Crys-
tals” on page 5-5 for a more detailed discussion of crystal vibration modes.

5-2

Intel® CLOCK GENERATION AND POWER MANAGEMENT

Choose Gand L, component values in the third overtone crystal circuit to satisfy the following
conditions:

* The LC components form an equivalent series resonant circuit at a frequency below the
fundamental frequency. This criterion makes the circuit inductive at the fundamental
frequency. The inductive circuit cannot make the 90° phase shift and oscillations do not
take place.

* The LC components form an equivalent parallel resonant circuit at a frequency about
halfway between the fundamental frequency and the third overtone frequency. This
criterion makes the circuit capacitive at the third overtone frequency, necessary for oscil-
lation.

* The two capacitors and inductor at OSCOUT, plus some stray capacitance, approximately
equal the 20 pF load capacitok,Cused alone in the fundamental mode circuit.

(@) (b) (c)
Fundamental Third Overtone Third Overtone Mode
Mode Circuit Mode Circuit (Equivalent Circuit)

T Yol l e

CLKIN [] CLKIN [] i; ! i

{Cx2 == Ly!

L,E :

0SCoUT 0SCcouT : _T_ :

B A N A
CXl = CXZ = 20pF C1 = 200pF L1 = (See text)

A1126-0A

Figure 5-3. Crystal Connections to Microprocessor

Choosing G as 200 pF (at least 10 times the value of the load capacitor) simplifies the circuit
analysis. At the series resonance, the capacitance connectdad &DQ pF in series with 20 pF.

The equivalent capacitance is still about 20 pF and the equation in Figure 5-4(a) yields the series
resonant frequency.

To examine the parallel resonant frequency, refer to Figure 5-3(c), an equivalent circuit to Figure
5-3(b). The capacitance connected 1as.200 pF in parallel with 20 pF. The equivalent capaci-
tance is still about 200 pF (within 10%) and the equation in Figure 5-4(a) now yields the parallel
resonant frequency.

I 5-3

CLOCK GENERATION AND POWER MANAGEMENT Intel®

(a) Series or Parallel Resonant Frequency (b) Equivalent Capacitance
‘= 1 c = w?C1Cyyly —=C1=Cyy
= — eq =
2m,[L,Cy w’Cyl, -1

Figure 5-4. Equations for Crystal Calculations

The equation in Figure 5-4(b) yields the equivalent capacitagecat the operation frequency.

The desired operation frequency is the third overtone frequency marked on the crystal. Optimiz-
ing equations for the above three criteria yields Table 5-1. This table shows suggested standard
inductor values for various processor frequencies. The equivalent capacitance is about 15 pF.

Table 5-1. Suggested Values for Inductor L ; in Third Overtone Oscillator Circuit

CLKOUT Third-Overtone Crystal Inductor L 4
Frequency (MHz) Frequency (MHz) Values (uH)
13.04 26.08 6.8, 8.2,10.0

16 32 3.9, 47,56

20 40 2.2,2.7,33

5-4

Intel® CLOCK GENERATION AND POWER MANAGEMENT

5.1.1.2 Selecting Crystals

When specifying crystals, consider these parameters:

Resonance and Load Capacitance — Crystals carry a parallel or series resonance specifi-
cation. The two types do not differ in construction, just in test conditions and expected
circuit application. Parallel resonant crystals carry a test load specification, with typical
load capacitance values of 15, 18 or 22 pF. Series resonant crystals do not carry a load
capacitance specification. You may use a series resonant crystal with the microprocessor,
even though the circuit is parallel resonant. However, it will vibrate at a frequency slightly
(on the order of 0.1%) higher than its calibration frequency.

Vibration Mode — The vibration mode is either fundamental or third overtone. Crystal
thickness varies inversely with frequency. Vendors furnish third or higher overtone crystals
to avoid manufacturing very thin, fragile quartz crystal elements. At a given frequency, an
overtone crystal is thicker and more rugged than its fundamental mode counterpart. Below
20 MHz, most crystals are fundamental mode. In the 20 to 32 MHz range, you can purchase
both modes. You must know the vibration mode to know whether to add the LC circuit at
OSCOUT.

Equivalent Series Resistance (ESR) — ESR is proportional to crystal thickness, inversely
proportional to frequency. A lower value gives a faster startup time, but the specification is
usually not important in microprocessor applications.

Shunt Capacitance — A lower value reduces ESR, but typical values such as 7 pF will work
fine.

Drive Level — Specifies the maximum power dissipation for which the manufacturer
calibrated the crystal. It is proportional to ESR, frequency, load apdDisregard this
specification unless you use a third overtone crystal whose ESR and frequency will be
relatively high. Several crystal manufacturers stock a standard microprocessor crystal line.
Specifying a “microprocessor grade” crystal should ensure that the rated drive level is a
couple of milliwatts with 5-volt operation.

Temperature Range — Specifies an operating range over which the frequency will not vary
beyond a stated limit. Specify the temperature range to match the microprocessor
temperature range.

Tolerance — The allowable frequency deviation at a particular calibration temperature,
usually 25° C. Quartz crystals are more accurate than microprocessor applications call for;
do not pay for a tighter specification than you need. Vendors quote frequency tolerance in
percentage or parts per million (ppm). Standard microprocessor crystals typically have a
frequency tolerance of 0.01% (100 ppm). If you use these crystals, you can usually
disregard all the other specifications; these crystals are ideal for the 80C186 Modular Core
family.

5-5

CLOCK GENERATION AND POWER MANAGEMENT Intel®

An important consideration when using crystals is that the oscifi@drcorrectly over the volt-

age and temperature ranges expected in operation. Observe oscillator startup in the laboratory.
Varying the load capacitors (within about + 50%) can optimize startup characteristics versus sta-
bility. In your experiments, consider stray capacitance and scope loading effects.

For help in selecting external oscillator components for unusual circumstances, count on the crys-
tal manufacturer as your best resource. Using low-cost ceramic resonators in place of crystals is
possible if your application will tolerate less precise frequencies.

5.1.2 Using an External Oscillator

The microprocessor’'s on-board clock oscillator allows the use of a relatively low cost crystal.
However, the designer may also use a “canned oscillator” or other external frequency source.
Connect the external frequency input (EFI) signal directly to the oscillator CLKIN input. Leave
OSCOUT unconnected. This oscillator input drives the internal divide-by-two counter directly,
generating the CPU clock signals. The external frequency input can have practically any duty cy-
cle, provided it meets the minimum high and low times stated in the data sheet. Selecting an ex-
ternal clock oscillator is more straightforward than selecting a crystal.

5.1.3 Output from the Clock Generator

The crystal oscillator output drives a divide-by-two circuit, generating a 50% duty cycle clock for
the processor’s integrated components. All processor timings refer to this clock, available exter-
nally at the CLKOUT pin. CLKOUT changes state on the high-to-low transition of the CLKIN
signal, even during reset and bus hold. CLKOUT is also available during Idle mode, but not dur-
ing Powerdown mode. (See “Idle Mode” on page 5-11 and “Powerdown Mode” on page 5-16.)

In a CMOS circuit, significant current flows only during logic level transitions. Since the micro-
processor consists mostly of clocked circuitry, the clock distribution is the basis of power man-
agement.

5.1.4 Reset and Clock Synchronization

The clock generator provides a system reset signal (RESOUT). The RipBitNjenerates RE-
SOUT and the clock generator synchronizes it to the CLKOUT signal.

A Schmitt trigger in thé RESIMput ensures that the switch point for a low-to-high transition is
greater than the switch point for a high-to-low transition. The processor must remain in reset a
minimum of 4 CLKOUT cycles after \éd and CLKOUT stabilize. The hysteresis allows a simple

RC circuit to drive the RESIMput (see Figure 5-5). Typical applications can use about 100 mil-
liseconds as an RC time constant.

5-6

Intel® CLOCK GENERATION AND POWER MANAGEMENT

Reset may be either cold (power-up) or warm. Figure 5-6 illustrates a cold reset. Assert the RES-
IN input during power supply and oscillator startup. The processor’s pins assume their reset pin
states a maximum of 28 CLKIN periods after CLKIN ang: gtabilize. Assert RESIM addi-

tional CLKIN periods after the device pins assume their reset states.

Applying RESINwhen the device is running constitutes a warm reset (see Figure 5-7). In this
case, assert RESIgr at least 4 CLKOUT periods. The device pins will assume their reset states
on the second falling edge of CLKIN following the assertion of RESIN

VC C

100k typical Vc(t) =Vil-e

RESET IN RESIN

1uF typical

A1128-0A

Figure 5-5. Simple RC Circuit for Powerup Reset

The processor exits reset identically in both cases. The falling R&f®jdlgenerates an internal
RESYNC pulse (see Figure 5-8), resynchronizing the divide-by-two internal phase clock. The
clock generator samples RESty the falling CLKIN edge. If RESINs sampled high while
CLKOUT is high, the processor forces CLKOUT low for the next two CLKIN cycles. The clock
essentially “skips a beat” to synchronize the internal phases. If RESampled high while
CLKOUT is low, CLKOUT is already in phase.

I 5-7

CLOCK GENERATION AND POWER MANAGEMENT Intel®

| | | | | |
i i i i i i
Vee —II/Vcc and CLKIN stable to output valid 28 CLKIN periods (max)
F >
CLKOUT_"_/'_/__/-_/_?Z_/__‘/—_‘/_\]L‘[_”_/_\}_/_\ r/1 '\r
UCS, LCS
MCS3:0 it :Ht
PCS6:0 H——— (¢ /
TOOUT, T10UT
NPS
__— [
HLDA, ALEH! 2/ \ i} -
A19:1 64— L / t
AD15:0, S2:0 —
RD, WR, DENH———= (¢ L e S A
DT/R, LOCK
i—t
ST 3 1/
RESINH# 2 -
RESOUTH! —— (¢ . [_.hr
I r >
Ve and CLKIN stable to RESIN high, RESIN high to
approximately 32 CLKIN periods. first bus activity,

7 CLKOUT periods.

NOTE: CLKOUT synchronization occurs approximately 1 1/2 CLKIN periods
after RESIN is sampled low.

Al1114-0A

Figure 5-6. Cold Reset Waveform

5-8

Intel® CLOCK GENERATION AND POWER MANAGEMENT

ANV

\/\/! W\
AVAVAN/AVA WaN

.S

MCS3:0
PCS6:0 | / it it
TOOUT
T10UT

NPS

HLDA, ALE | \

L
A19/S6-A16 | 7 y '~
K

AD15:0
' S2:0,RD
WR, DEN | VAR " :
DT/R
LOCK
I—
RESIN AN N
RESOUT N \
——
I > >
Minimum RESIN RESIN
low time 4 CLKOUT high to
periods. first bus
activity 7
CLKOUT
periods.

Al1131-0A

Figure 5-7. Warm Reset Waveform

At the second falling CLKOUT edge after sampling RE8lattive, the processor deasserts RE-
SOUT. Bus activity starts 6%2 CLKOUT periods after recognition of RESIte logic high

state. If an alternate bus master asserts HOLD during reset, the processor immediately asserts
HLDA and will not prefetch instructions.

5-9

CLOCK GENERATION AND POWER MANAGEMENT Intel®

CLKIN

RESIN

RESYNC
(Internal)

CLKOUT

RESOUT

e

/@

NOTES:

. Setup of RESIN to falling CLKIN.

. RESYNC pulse active.

. RESYNC pulse drives CLKOUT high, resynchronizing the clock generator.

. RESOUT goes active.

. RESIN allowed to go active after minimum 4 CLKOUT cycles.

. RESOUT goes inactive 1 1/2 CLKOUT cycles after RESIN sampled inactive.

OO WN PP

A1115-0A

Figure 5-8. Clock Synchronization at Reset

5.2 POWER MANAGEMENT

Many VLSI devices available today use dynamic circuitry. A dynamic circuit uses a capacitor
(usually parasitic gate or diffusion capacitance) to store information. The stored charge decays
over time due to leakage currents in the silicon. If the device does not use the stored information
before it decays, the state of the entire device may be lost. Circuits must periodically refresh dy-
namic RAMs, for example, to ensure data retention. Any microprocessor that has a minimum
clock frequency has dynamic logic. On a dynamic microprocessor, if you stop or slow the clock,
the dynamic nodes within it begin discharging. With a long enough delay, the processor is likely
to lose its present state, needing a reset to resume normal operation.

An 80C186 Modular Core microprocessor is fulhatic. The CPU stores its current state in
flip-flops, not capacitive nodes. The clock signal to both the CPU core and the peripherals can
stop without losing any internal information, provided the design maintains power. When the
clock restarts, the device will execute from its previous state. When the processor is inactive for
significant periods, special power management hardware takes advantage of static operation to
achieve major power savings.

5-10

Intel® CLOCK GENERATION AND POWER MANAGEMENT

There are three power management modes: Idle, Powerdown and Power-Save. Power-Save mode
is a clock generation function, while Idle and Powerdown modes are clock distribution functions.
For this discussion, Active mode is the condition of no programmed power management. Active
mode operation feeds the clock signal to the CPU core and all the integrated peripherals and pow-
er consumption reaches its maximum for the application. The processor defaults to Active mode
at reset.

5.2.1 Idle Mode

During Idle mode operation, the clock signal is routed only to the integrated peripheral devices.
CLKOUT continues toggling. The clocks to the CPU core (Execution and Bus Interface Units)
freeze in a logic low state. Idle mode reduces current consumption by about a third, depending
on the activity in the peripheral units.

5.2.11 Entering Idle Mode

Setting the appropriate bit in the Power Control Register (Figure 5-9) prepares for Idle mode. The
processor enters Idle mode when it executes the HLT (halt) instruction. If the program arms both
Idle mode and Powerdown mode by mistake, the device halts but remains in Active mode. See
Chapter 3, “Bus Interface Unit,” for detailed information on HALT bus cycles. Figure 5-10
shows some internal and external waveforms during entry into Idle mode.

5-11

CLOCK GENERATION AND POWER MANAGEMENT

15

Register Name:

Register Function:

Register Mnemonic:

Power Control Register

PWRCON

Arms power management functions.

mro-—
ZUTSTO

A1129-0A

Bit
Mnemonic

Bit Name

Reset
State

Function

IDLE

Idle Mode

Setting the IDLE bit forces the CPU to enter the
Idle mode when the HLT instruction is executed.
The PWRDN bit must be cleared when setting
the IDLE bit, otherwise Idle mode is not armed.

PWRDN

Powerdown
Mode

Setting the PWRDN bit forces the CPU to enter
the Powerdown mode when the next HLT
instruction is executed. The IDLE bit must be
cleared when setting the PWRDN bit, otherwise
Powerdown mode is not armed.

NOTE: Reserved register bits are shown with gray shading. Reserved bits must be written
to a logic zero to ensure compatibility with future Intel products.

5-12

Figure 5-9. Power Control Register

Intel® CLOCK GENERATION AND POWER MANAGEMENT

Halt Cycle
T4 or Tl T1 Tl Tl Tl
CLKOUT
Internal
Peripheral
Clock

CPU Core Clock

A1119-0A

Figure 5-10. Entering Idle Mode

5.2.1.2 Bus Operation During Idle Mode

DMA requests, refresh requests and HOLD requests temporarily turn on the core clocks. If the
processor needs to run a DMA cycle during Idle mode, the internal core clock begins to toggle
on the falling CLKOUT edge three clocks after the processor samples the DMA request pin. After
one idle T-state, the processor runs the DMA cycle. The BIU uses the ready, wait state generation
and chip-select circuitry as necessary for DMA cycles during Idle mode. There is one idle T-state
after T4 before the internal core clock shuts off again.

I 5-13

CLOCK GENERATION AND POWER MANAGEMENT Intel®

If the processor needs to run a refresh cycle during Idle mode, the internal core clock begins to
toggle on the falling CLKOUT edge immediately after the down-counter reaches zero. After one
idle T-state, the processor runs the refresh cycle. As with all other bus cycles, the BIU uses the
ready, wait state generation and chip-select circuitry as necessary for refresh cycles during Idle
mode. There is one idle T-state after T4 before the internal core clock shuts off again.

A HOLD request from an external bus master turns on the core clock as long as HOLD is active
(see Figure 5-11). The core clock restarts one CLKOUT cycle after the bus processor samples
HOLD high. The microprocessor asserts HLDA one cycle after the core clock starts. The core
clock turns off and the processor deasserts HLDA one cycle after the external bus master deas-
serts HOLD.

1 Clock Core Processor Core Clock
Delay Restart In Hold Shuts Off
s SIS . .
ot s Y ' g \
TIETIETIETIETIETIETIE ETIETIETIETIETIE
CLKOUT
Internal
Peripheral
Clock
Internal
Core Clock
HOLD
HLDA

A1120-0A

Figure 5-11. HOLD/HLDA During Idle Mode
As in Active mode, refresh requests will force the BIU to drop HLDA during bus hold. (For more
information on refresh cycles during hold, see “Refresh Operation During a Bus HOLD” on page

3-43 and “Refresh Operation and Bus HOLD” on page 7-12.) Refresh requests will also correctly
break into sequences of back-to-back DMA cycles.

5.2.1.3 Leaving Idle Mode

Any unmasked interrupt or non-maskable interrupt (NMI) will return the processor to Active
mode. Reset also returns the processor to Active mode, but the device loses its prior state.

5-14 I

Intel® CLOCK GENERATION AND POWER MANAGEMENT

Any unmaskedinterrupt received by the core will return the processor to Active mode. Interrupt
requests pass through the Interrupt Control Unit with an interrupt resolution time for mask and
priority level checking. Then, after 1% clocks, the core clock begins toggling. It takes an addi-
tional 6 CLKOUT cycles for the core to begin the interrupt vectoring sequence.

After execution of the IRET (interrupt return) instruction in the interrupt service routine, the
CS:IP will point to the instruction following the HALT. Interrupt execution does not modify the
Power Control Register. Unless the programmer intentionally reprograms the register after exit-
ing Idle mode, the processor will re-enter Idle mode at the next HLT instruction.

Like an unmasked interrupt, an NMI will return the core to Active mode from Idle mode. It takes
two CLKOUT cycles to restart the core clock after an NMI occurs. The NMI signal does not need
the mask and priority checks that a maskable interrupt does. This results in a considerable differ-
ence in clock restart time between an NMI and an unmasked interrupt. The core begins the inter-
rupt response six cycles after the core clock restarts when it fetches the NMI vector from location
00008H. NMI does not clear the IDLE bit in the Power Control Register.

Resetting the microprocessor will return the device to Active mode. Unlike interrupts, a reset
clears the Power Control Register. Execution begins as it would following a warm reset (see “Re-
set and Clock Synchronization” on page 5-6).

5.2.14 Example Idle Mode Initialization Code

Example 5-1 illustrates programming the Power Control Register and entering Idle mode upon
HLT. The interrupts from the serial port and timers are not masked. Assume that the serial port
connects to a keyboard controller. At every keystroke, the keyboard sends a data byte, and the
processor wakes up to service the interrupt. After acting on the keystroke, the core will go back
into Idle mode. The example excludes the actual keystroke processing.

5-15

CLOCK GENERATION AND POWER MANAGEMENT Intel®

$mod186
name example_80C186_power_management_code
;FUNCTION: This function reduces CPU power consumption.
; SYNTAX: extern void far power_mgt(int mode);
; INPUTS: mode - 00 -> Active Mode
; 01 -> Powerdown Mode
; 02 -> Idle Mode
; 03 -> Active Mode
; OUTPUTS: None
;. NOTE: Parameters are passed on the stack as required
; by high-level languages
PWRCON equ xxxxH ;substitute PWRCON register
;offset
lib_80C186 segment public ‘code’
assume cs:lib_80C186
public _power_mgt
_power_mgt proc far
push bp ;save caller's bp
mov bp, sp ;get current top of stack
push ax ;save registers that will
push dx ;be modified
_mode equ word ptr[bp+6] ;get parameter off the
;stack
mov dx, PWRCON ;select Power Control Reg
mov ax, _mode ;get mode
and ax, 3 ;mask off unwanted bits
out dx, ax
hit ;enter mode
pop dx ;restore saved registers
pop ax
pop bp ;restore caller's bp
ret
_power_mgt endp
lib_80C186 ends
end

Example 5-1. Initializing the Power Management Unit for Idle or Powerdown Mode

5.2.2 Powerdown Mode

Powerdown mode freezes the clock to the entire device (core and peripherals) and disables the
crystal oscillator. All internal devices (registers, state machines, etc.) maintain their states as long
as V¢ is applied. The BIU will not honor DMA, DRAM refresh and HOLD requests in Power-
down mode because the clocks for those functions are off. CLKOUT freezes in a logic high state.
Current consumption in Powerdown mode consists of just transistor leakage (typically less than

100 microamps).

5-16

Intel® CLOCK GENERATION AND POWER MANAGEMENT

5.2.2.1 Entering Powerdown Mode

Powerdown mode is entered by executing the HLT instruction after setting the PWRDN bit in the
Power Control Register (see Figure 5-9 on page 5-12). The HALT cycle turns off both the core
and peripheral clocks and disables the crystal oscillator. See Chapter 3, “Bus Interface Unit,” for
detailed information on HALT bus cycles. Figure 5-12 shows the internal and external wave-
forms during entry into Powerdown mode.

CLKIN toggles
only when
external

f 1 frequency
T4 or T1 E T1 i T2 i T E input is used E

cwn L L LML L L L L
oscoutT + [ML ML LML L[Tindeterminais:

Halt Cycle

CLKOUT

CPU Core |
Clock E—I |
L

Internal
Peripheral
Clock

>
—
m

Al1121-0A

Figure 5-12. Entering Powerdown Mode

During the T2 phase of the HLT instruction, the core generates a signal called Enter_Powerdown.
Enter_Powerdown immediately disables the internal CPU core and peripheral clocks. The pro-
cessor disables the oscillator inverter during the next CLKOUT cycle. If the design uses a crystal
oscillator, the oscillator stops immediately. When CLKIN originates from an external frequency
input (EFI1), Powerdown isolates the signal on the CLKIN pin from the internal circuitry. There-
fore, the circuit may drive CLKIN during Powerdown mode, although it will not clock the device.

I 5-17

CLOCK GENERATION AND POWER MANAGEMENT Intel®

5.2.2.2 Leaving Powerdown Mode

An NMI or reset returns the processor to Active mode. If the device leaves Powerdown mode by
an NMI, a delay must follow the interrupt request to allow the crystal oscillator to stabilize before
gating it to the internal phase clocks.An external timing pin sets this delay as described below.
Leaving Powerdown by an NMI does not clear the PWRDN bit in the Power Control Register. A
reset also takes the processor out of Powerdown mode. Since the oscillator is off, the user should
follow the oscillator cold start guidelines (see “Reset and Clock Synchronization” on page 5-6).

The Powerdown timer circuit (Figure 5-13) has a PDTMR pin. Connecting this pin to an external

capacitor gives the user control over the gating of the crystal oscillator to the internal clocks. The
strong P-channel device is always on except during exit from Powerdown mode. This pullup

keeps the powerdown capacitaiz€harged up to .. Cop discharges slowly. At the same time,

the circuit turns on the feedback inverter on the crystal oscillator and oscillation starts.

The Schmitt trigger connected to the PDTMR pin asserts the internal OSC_OK signal when the
voltage at the pin drops below its switching threshold. The OSC_OK signal gates the crystal os-
cillator output to the internal clock circuitry. One CLKOUT cycle runs before the internal clocks
turn back on. It takes two additional CLKOUT cycles for an NMI request to reach the CPU and
another six clocks for the vector to be fetched.

Strong P-Channel | 0, Except when leaving

Pullup Powerdown
PDTMR Pi
n ¢ 3[%—»050_%
Cpp = Weak N-Channe Ii Exit Powerdown
Pulldown

Al1122-0A

Figure 5-13. Powerdown Timer Circuit

5-18 I

Intel® CLOCK GENERATION AND POWER MANAGEMENT

The first step in determining the propes;@alue is startup time characterization for the crystal
oscillator circuit. This step can be done with a storage oscilloscope if you compensate for scope
probe loading effects. Characterize startup over the full range of operating voltages and temper-
atures. The oscillator starts up on the order of a couple of milliseconds. After determining the os-
cillator startup time, refer to “PDTMR Pin Delay Calculation” in the data sheet. Multiply the
startup time (in seconds) by the given constant to getghgalue. Typical values are less than

1pF.

If the design uses an external oscillator instead of a crystal, the external oscillator continues run-
ning during Powerdown mode. Leave the PDTMR pin unconnected and the processor can exit
Powerdown mode immediately.

5.2.3 Power-Save Mode

In addition to Idle and Powerdown modes, Power-Save mode provides another means for reduc-
ing operating current. Power-Save mode enables a programmable clock divider in the clock gen-
eration circuit. This divider operates in addition to the divide-by-two counter (see Figure 5-1 on
page 5-1)

NOTE

Power-Save mode can be used to stretch bus cycles as an alternative to wait
states.

Possible clock divisor settings are 1 (undivided), 4, 8 and 16. The divided frequency feeds the
core, the integrated peripherals and CLKOUT. The processor operates at the divided clock rate
exactly as if the crystal or external oscillator frequency were lower by the same amount. Since
the processor is static, a lower limit clock frequency does not apply.

The advantage of Power-Save mode over Idle and Powerdown modes is that operation of both
the core and the integrated peripherals can continue. However, it may be necessary to reprogram
integrated peripherals such as the Timer Counter Unit and the Refresh Control Unit to compen-
sate for the overall reduced clock rate.

5231 Entering Power-Save Mode

The Power-Save Register (Figure 5-14) controls Power-Save mode operation. The lower two bits
select the divisor. When program execution sets the PSEN bit, the processor enters Power-Save
mode. The internal clock frequency changes at the falling edge of T3 of the write to the Power-
Save Register. CLKOUT changes simultaneously and does not glitch. Figure 5-15 illustrates the
change at CLKOUT.

5-19

CLOCK GENERATION AND POWER MANAGEMENT Intel®

Register Name:
Register Mnemonic:

Register Function:

15

Power Save Register
PWRSAV

Enables and sets clock division factor.

ZmwnT

A1130-0A

Bit

Mnemonic Bit Name

Reset

State Function

PSEN Power Save
Enable

OH Setting this bit enables Power Save mode and
divides the internal operating clock by the value
defined by F1:0. Clearing this bit disables
Power-Save mode and forces the CPU to
operate at full speed. PSEN is automatically
cleared whenever an interrupt occurs.

F1.0 Clock
Division
Factor

OH These bits control the clock division factor used
when Power Save mode is enabled. The
allowable values are listed below:

F1 FO Divisor

0 O By 1 (undivided)
0 1 By4
1 0 By8
1 1 By16

NOTE: Reserved register bits are shown with gray shading. Reserved bits must be written
to a logic zero to ensure compatibility with future Intel products.

Figure 5-14. Power-Save Register

5-20

Intel® CLOCK GENERATION AND POWER MANAGEMENT

T2 T3 T4

CLKOUTJ
®
w0 /

NOTES:
1. : Write to Power-Save Register (as viewed on the bus).
2. : Low-going edge of T3 starts new clock rate.

Al1124-0A

Figure 5-15. Power-Save Clock Transition

5.2.3.2 Leaving Power-Save Mode

Power-Save mode continues until one of three events occurs: execution clears the PSEN bit in
the Power-Save Register, an unmasked interrupt occurs or an NMI occurs.

When the PSEN bit clears, the clock returns to its undivided frequency (standard divide-by-two)
at the falling T3dge of the write to the Power-Save Register. The same result happens from re-
programming the clock divisor to a new value. The Power-Save Register can be read or written
at any time.

Unmasked interrupts include those from the Interrupt Control Unit, but not software interrupts.
If an NMI occurs, or an unmasked interrupt request has sufficient priority to pass to the core,
Power-Save mode will end. The PSEN bit clears and the clock resumes full-speed operation at
the falling edge of a bus cycle T3 state. However, the exact bus cycle of the transition is unde-
fined. The Return from Interrupt instruction (IRET) does not automatically set the PSEN bit
again. If you still want Power-Save mode operation, you can set the PSEN bit as part of the inter-
rupt service routine.

5.2.3.3 Example Power-Save Initialization Code

Example 5-2 illustrates programming the Power-Save Unit for a typical system. The program also
includes code to change the DRAM refresh rate to compensate for the reduced clock rate.

5-21

CLOCK GENERATION AND POWER MANAGEMENT

$mod186
name

;FUNCTION:

: SYNTAX:
; INPUTS:

: OUTPUTS:
;. NOTE:
PWRSAV
RFTIME

RFCON
PSEN

data
FreqTable
data

lib_80C186

_power_save

_divisor

_power_save

lib_80C186

example_PSU_code

This function reduces CPU power consumption
by dividing the CPU operating frequency by a
divisor.
extern void far power_save(int divisor);

divisor - This variable represents FO, F1 and F2
of PWRSAV.
None

Parameters are passed on the stack as required
by high-level languages

;substitute register offset

equ xXxxxH ;Power-Save Register
equ XxxxxH ;Refresh Interval Count
;Register
equ xXxxxH ;Refresh Control Register
equ 8000H ;Power-Save enable bit

segment public 'data’
dw 1, 4,8, 16, 32,64,0,0
ends

segment public ‘code'
assume cs:lib_80C186, ds:data

public _power_save

proc far
push bp ;save caller's bp
mov bp, sp ;get current top of stack
push ax ;save registers that will
push dx ;be modified
equ word ptr[bp+6] ;get parameter off the
;stack
mov dx, RFTIME ;get current DRAM refresh
in ax, dx ;rate

and ax, 01ffh ;mask off unwanted bits
div FreqTable[_divisor] ;divide refresh rate
;by _divisor
;set new refresh rate
;select Power-Save Register
;get divisor

out dx, ax
mov dx, PWRSAV
mov ax, _divisor

and ax, 7 ;mask off unwanted bits
or ax, PSEN ;set enable bit
out dx, ax ;divide frequency
pop dx ;restore saved registers
pop bx
pop ax
pop bp ;restore caller's bp
ret
endp
ends
end

Example 5-2. Initializing the Power Management Unit for Power-Save Mode

5-22

CLOCK GENERATION AND POWER MANAGEMENT

intel.

5.2.4 Implementing a Power Management Scheme

Table 5-2 summarizes the power management options available to the user. With three ways
available to reduce power consumption, here are some guidelines:

¢ Powerdown mode reduces power consumption by several orders of magnitude. If the
application goes into and out of Powerdown frequently, the power reduction can probably
offset the relatively long intervals spent leaving Powerdown mode.

¢ If background CPU tasks are usually necessary and the overhead of reprogramming
peripherals is not severe, Power-Save mode can “tune” the clock rate to the best value.
Remember that current varies linearly with respect to frequency.

* |dle mode fits DMA-intensive and interrupt-intensive (as opposed to CPU-intensive) appli-
cations perfectly.

The processor can operate in Power-Save mode and Idle mode concurrently. With Idle mode
alone, rated power consumption typically drops a third or more. Power-Save mode multiplies that
reduction further according to the selected clock divisor.

Overall power consumption has two parts: switching power dissipated by driving loads such as
the address/data bus, and device power dissipated internally by the microprocessor whether or not
it is connected to external devices. A power management scheme should consider loading as well
as the raw specifications in the processor's data sheet.

Table 5-2. Summary of Power Management Modes

Mode Relative Typical User Chief
Power Power Overhead Advantage
Active Full 250 mW at 16 MHz — Full-speed operation
Idle Low 175 mW at 16 MHz Low Peripherals are unaffected
Power-Save Adjustable 125 mW at 16/2 MHz Moderate to High | Code execution continues
Powerdown Lowest 250 pw Low to Moderate | Long battery life

NOTE

If an NMI or external maskable interrupt service routine is used to enter a
power management mode, the interrupt request signal should be deasserted
before entering the power management mode.

5-23

intel.

Chip-Select Unit

intel.

CHAPTER 6
CHIP-SELECT UNIT

Every system requires some form of component-selection mechanism to enable the CPU to ac-
cess a specific memory or peripheral device. The signal that selects the memory or peripheral de-
vice is referred to as a chip-select. Besides selecting a specific device, each chip-select can be
used to control the number of wait states inserted into the bus cycle. Devices that are too slow to
keep up with the maximum bus bandwidth can use wait states to slow the bus down.

6.1 COMMON METHODS FOR GENERATING CHIP-SELECTS

One method of generating chip-selects uses latched address signals directly. An example inter-
face is shown in Figure 6-1(A). In the example, an inverted A16 is connected to an SRAM device
with an active-low chip-select. Any bus cycle with an address between 10000H and 1FFFFH
(A16 = 1) enables the SRAM device. Also note that any bus cycle with an address starting at
30000H, 50000H, 70000H and so on also selects the SRAM device.

Decoding more address bits solves the problem of a chip-select being active over multiple address
ranges. In Figure 6-1(B), a one-of-eight decoder is connected to the uppermost address bits. Each
decoded output is active for one-eighth of the 1 Mbyte address space. However, each chip-select
has a fixed starting address and range. Future system memory changes could require circuit
changes to accommodate the additional memory.

6.2 CHIP-SELECT UNIT FEATURES AND BENEFITS
The Chip-Select Unit overcomes limitations of the designs shown in Figure 6-1 and has the fol-
lowing features:

* Ten chip-select outputs

* Programmable start and stop addresses

¢ Memory or I/O bus cycle decoder

* Programmable wait-state generator

* Provision to disable a chip-select

* Provision to override bus ready

Figure 6-2 illustrates the logic blocks that generate a chip-select. Each chip-select has a duplicate
set of logic.

I 6-1

CHIP-SELECT UNIT

intel.

27C256

A16 {>o0—q

A0:12

(D7:0

D158

(A)
Chip-Selects Using
Addresses Directly

74AC138
A19 — A3 Y7 [0> Selects 896K to 1M
A18 — A2 Y6 [0 Selects 768K to 896K
Al7—Al Y5 o>
Y4 [0
ALE—9 E1 Y3 [o>
HLDA—OQ E2 Y2 o>
Y1 jo>» Selects 128K to 256K
t E3 YO jo> Selects 0 to 128K

Chip-Selects Using
Simple Decoder

A1168-0A

6.3 CHIP-SELECT UNIT FUNCTIONAL OVERVIEW

The Chip-Select Unit (CSU) decodes bus cycle address and status information and enables the
appropriate chip-select. Figure 6-3 illustrates the timing of a chip-select during a bus cycle. Note

that the chip-select goes active in the same bus state as address goes active, eliminating any dela:
through address latches and decoder circuits. The Chip-Select Unit activates a chip-select for bus

Figure 6-1. Common Chip-Select Generation Methods

cycles initiated by the CPU, DMA Control Unit or Refresh Control Unit.

Six of the chip-selects map only into memory address space, while the remaining seven can map
into either memory or I/O address space. The chip-selects typically associate with memory and

peripheral devices as follows:

6-2

In) CHIP-SELECT UNIT

Internal
Address Bus

| =Block size |- UCS

= Block Size [— LCS

= Block Size/4 — MCS3

= Block Size/4 — MCS2
f‘> = Base

= Block Size/4 — MCS1
= Block Size/4 (— MCS0

:> = Base —{ Base+0 [— PCSO
Base + 128 }— PCS1
Memory/ Base + 256 |— @
/0 Selector Base + 384 |— PCS3
MS Base + 512 |— PCS4
Base + 640
Base + 768
A MUX [— PCS5
Internal Address Bit 2; : B NB | Bess

EX Control Bit

A1139-0A

Figure 6-2. Chip-Select Block Diagram

I 6-3

CHIP-SELECT UNIT Intel®

UCS

Mapped only to the upper memory address space; selects the BOOT memory
device (EPROM or Flash memory types).

Mapped only to the lower memory address space; selects a static memory
(SRAM) device that stores the interrupt vector table, local stack, local data, and
scratch pad data.

Mapped only to memory address space; selects additional SRAM memory,
DRAM memory, or the system bus.

Mapped to memory or I/O address space; selects peripheral devices or generates
a DMA acknowledge strobe. Note that each P@&Snot individually config-
urable for I/O space or memory space.

CLKOUT |

AD15:0

UCS, PCS6:0 Jf\
MCS3:0, LCS i i

RD, WR

T4 T1 T2 T3

—
N

ALE

S2:0

[l

E\ Status /

‘___;__

A1140-0A

Figure 6-3. Chip-Select Relative Timings

The UCSchip-select always ends at address location OFFFFH; its block size (and thus its starting
address) is programmed in the UMCS register (Figure 6-5 on page 6-7). Tiohip&®lect al-

ways starts at address location OH; its block size (and thus its ending address) is programmed in
the LMCS Control register (Figure 6-6 on page 6-8). The block size can range from 1 Kbyte to
256 Kbytes for both.

The' MCS3:chip-selects access a contiguous block of memory address space. The block size can
range from 8 Kbytes to 512 Kbytes; it is programmed in the MMCS register (Figure 6-7 on page
6-9). Each chip-select goes active for one-fourth of the block. The start address is programmed
in the MPCS register (Figure 6-9 on page 6-11); it must be an integer multiple of the block size.
Because of the start address limitation, the MC 8Bip-selects cannot cover the entire memory
address space between the L& UCSchip-selects.

6-4

Intel® CHIP-SELECT UNIT

By combining LCSUCSand MCS3:0you can cover up to 786 Kbytes of memory address space.
Methods such as those shown in Figure 6-1 on page 6-2 can be used to decode the remaining 25¢€
Kbytes.

The PCS6:&hip-selects access a contiguous, 896-byte block of memory or I/O address space.
Each chip-select goes active for one-seventh of the block (128 bytes). The start address is pro-
grammed in the PACS register (Figure 6-8 on page 6-10); it can begin on any 1 Kbyte boundary.
A chip-select goes active when it meets all of the following criteria:

1. The chip-select is enabled.

2. The bus cycle status matches the default or programmed type (memory or I/O).

3. The bus cycle address is within the default or programmed block size.

4. The bus cycle isot accessing the Peripheral Control Block.
A memory address applies to memory read, memory write and instruction prefetch bus cycles.

An 1/O address applies to 1/0O read and I/O write bus cycles. Interrupt acknowledge and HALT
bus cycles never activate a chip-select, regardless of the address generated.

After power-on or system reset, only the Ugf$p-select is initialized and active (see Figure 6-4).
@ Address
— 1MB
|—> SRDY ucs —[:
ARDY K—pData 1023K
ucs >
Active For Memory
Processor — Top 1 KByte Map
0
NOTE:

1. 3 wait states automatically inserted. Bus READY must be provided.

A1006-0A

Figure 6-4. UCS Reset Configuration

I 6-5

CHIP-SELECT UNIT Intel®

6.4 PROGRAMMING

Four registers determine the operating characteristics of the chip-selects. The Peripheral Control
Block defines the location of the Chip-Select Unit registers. Table 6-1 lists the registers and their
associated programming names.

Table 6-1. Chip-Select Unit Registers

Control Register | - Allerate Register | oy et Afected
umMCsS None ucs
LMCS None LCS
MMCS MPCS MCS3:0
PACS MPCS PCS6:0

The control registers (Figures 6-5 through 6-7) define the base address and bus ready and wait
state requirements for the corresponding chip-selects. The alternate control register (Figure 6-9)
defines the block size for MCS3:l also selects memory or I/O space for PCSéelects the
function of the PCS6:pins, and defines the bus ready and wait state requirements for PCS6:4

6.4.1 Initialization Sequence
Chip-selects do not have to be initialized in any specific order. However, the following guidelines
help prevent a system failure.

1. Initialize local memory chip-selects

2. Initialize local peripheral chip-selects

3. Perform local diagnostics

4. Initialize off-board memory and peripheral chip-selects

5. Complete system diagnostics
An unmasked interrupt or NMI must not occur until the interrupt vector addresses have been writ-
ten to memory. Failure to prevent an interrupt from occurring during initialization will cause a

system failure. Use external logic to generate the chip-select if interrupts cannot be masked prior
to initialization.

6-6

intel.

CHIP-SELECT UNIT

Register Name:
Register Mnemonic:

Register Function:

UCS Control Register
UMCS

Controls the operation of the UCS chip-select.

15 0
Uulu ululJul|lu Uulu RIR|R
111 11111]1 111 21110
716 51432 110
A1141-0A
Bit . Reset)
Mnemonic Bit Name State Function
U17:10 Start OFFH Defines the starting address for the chip-select.
Address During memory bus cycles, U17:10 are
compared with the A17:10 address bits. An
equal to or greater than result enables the UCS
chip-select if A19:18 are both one. Table 6-2 on
page 6-12 lists the only valid programming
combinations.
R2 Bus Ready OH When R2 is clear, bus ready must be active to
Disable complete a bus cycle. When R2 is set, R1:0
control the number of bus wait states and bus
ready is ignored.
R1:0 Wait State 3H R1:0 define the minimum number of wait states
Value inserted into the bus cycle.
NOTE: Reserved register bits are shown with gray shading. Reserved bits must be written

to a logic zero to ensure compatibility with future Intel products. Programming

U17:10 with values other than those shown in Table 6-2 on page 6-12 results in
unreliable chip-select operation. Reading this register (before writing it) enables
the chip-select; however, none of the programmable fields will be properly initial-

ized.

Figure 6-5. UMCS Register Definition

6-7

CHIP-SELECT UNIT Intel®

Register Name: LCS Control Register
Register Mnemonic: LMCS
Register Function: Controls the operation of the LCS chip-select.
15 0
Ul u ulujlu|u Uulu R]IR]|R
1 1 1 1 1 1 1 1 2 1 0
7 6 514183 2 1 0
A1142-0A
Bit . Reset .
Mnemonic Bit Name State Function
U17:10 Ending 00H Defines the ending address for the chip-select.
Address During memory bus cycles, U17:10 are

compared with the A17:10 address bits. A less
than result enables the LCS chip-select if

A19:18 are both zero. Table 6.3 on page 6-13
lists the only valid programming combinations.

R2 Bus Ready X When R2 is clear, bus ready must be active to
Disable complete a bus cycle. When R2 is set, R1:0
control the number of bus wait states and bus
ready is ignored.

R1:0 Wait State 3H R1:0 define the minimum number of wait states
Value inserted into the bus cycle.

NOTE: Reserved register bits are shown with gray shading. Reserved bits must be written
to a logic zero to ensure compatibility with future Intel products. Programming
U17:10 with values other than those shown in Table 6.3 on page 6-13 results in
unreliable chip-select operation. Reading this register (before writing it) enables
the chip-select; however, none of the programmable fields will be properly initial-
ized.

Figure 6-6. LMCS Register Definition

6-8

intel.

CHIP-SELECT UNIT

Register Name:

MCS Control Register

Register Mnemonic: MMCS
Register Function: Controls the operation of the MCS chip-selects.
15 0
ujulul|u uljulu RIR|R
111]11]1 11111 21110
91876 51413
A1143-0B
Bit . Reset)
Mnemonic Bit Name State Function
U19:13 Start XXH Defines the starting address for the block of
Address MCS chip-selects. During memory bus cycles,
U19:13 are compared with the A19:13 address
bits. An equal to or greater than result enables
the MCS chip-select. The starting address must
be an integer multiple of the block size defined
in the MPCS register. See Table 6-5 on page
6-14 for additional information.
R2 Bus Ready X When R2 is clear, bus ready must be active to
Disable complete a bus cycle. When R2 is set, R1:0
control the number of bus wait states and bus
ready is ignored.
R1:0 Wait State 3H R1:0 define the minimum number of wait states
Value inserted into the bus cycle.

NOTE: Reserved register bits are shown with gray shading. Reserved bits must be written
to a logic zero to ensure compatibility with future Intel products. A starting address
other than an integer multiple of the block size defined in the MPCS register
causes unreliable chip-select operation. (See Table 6-5 on page 6-14 for details.)
Reading this register and the MPCS register (before writing them) enables the
MCS chip-selects; however, none of the programmable fields will be properly ini-
tialized.

Figure 6-7. MMCS Register Definition

6-9

CHIP-SELECT UNIT Intel®

Register Name: PCS Control Register
Register Mnemonic: PACS
Register Function: Controls the operation of the PCS chip-selects.
15 0
uluJufu]lu]lul]u RIR|R
ST I T I T I I 2110
9o|l8|7]|6||[5]4]3

A1143-0B
Bit . Reset .
Mnemonic Bit Name State Function
U19:13 Start XXH Defines the starting address for the block of
Address PCS chip-selects. During memory or I/O bus
cycles, U19:13 are compared with the A19:13
address bits. An equal to or greater than result
enables the PCS chip-select. U19:16 must be
programmed to zero for proper I/O bus cycle
operation.
R2 Bus Ready X When R2 is clear, bus ready must be active to
Disable complete a bus cycle. When R2 is set, R1:0
control the number of bus wait states and bus
ready is ignored.
R1:0 Wait State 3H R1:0 define the minimum number of wait states
Value inserted into the bus cycle.

NOTE: Reserved register bits are shown with gray shading. Reserved bits must be written
to a logic zero to ensure compatibility with future Intel products. U19:16 must be
programmed to zero for proper I/O bus cycle operation. Reading this register and
the MPCS register (before writing them) enables the PCS chip-selects; however,
none of the programmable fields will be properly initialized.

Figure 6-8. PACS Register Definition

6-10

intel.

CHIP-SELECT UNIT

Register Name:

Register Mnemonic:

Register Function:

MCS and PCS Alternate Control Register

MPCS

Controls operation of the MCS and PCS chip-

selects.
15 0
M|IM]|M MIM|M|M E|M RIR|R
65| 4 312|110 X|Ss 21110
A1144-0A
Bit . Reset .
Mnemonic Bit Name State Function
M6:0 Block Size XXH Defines the block size for the MCS chip-selects.
Table 6-5 on page 6-14 lists allowable values.
EX Pin Selector | XH Setting EX configures PCS6:5 as chip-selects.
Clearing EX configures the pins as latched
address bits A2:Al.
MS Bus Cycle XH Clearing MS activates PCS6:0 for I/O bus
Selector cycles. Setting MS activates PCS6:0 for
memory bus cycles.
R2 Bus Ready X Applies only to PCS6:4. When R2 is clear, bus
Disable for ready must be active to complete a bus cycle.
PCS6:4 When R2 is set, R1:0 control the number of bus
wait states and bus ready is ignored.
R1:0 Wait State 3H Apply only to PCS6:4. R1:0 define the minimum
Value for number of wait states inserted into the bus
PCS6:4 cycle.

NOTE: Reserved register bits are shown with gray shading. Reserved bits must be written
to a logic zero to ensure compatibility with future Intel products. A starting address
other than an integer multiple of the block size defined in this register causes
unreliable chip-select operation. Reading this register and the MMCS or PACS
register (before writing them) enables the associated chip-selects; however, none
of the programmable fields will be properly initialized.

Figure 6-9. MPCS Register Definition

6-11

CHIP-SELECT UNIT Intel®

The UMCS and LMCS registers can be programmed in any sequence. To program taedVICS
PCSchip-selects, follow this sequence:

1. Program the MPCS register
2. Program the MMCS register to enable the MGip-selects.
3. Program the PACS register to enable the &tjsselects.

6.4.2 Programming the Active Ranges

The active ranges of the chip-selects are determined by a combination of their starting or ending
addresses and block sizes. This section describes how to control the active range of each chip-
select.

6.4.2.1 UCS Active Range

The UCSstarting address is 100000H (1 Mbyte) minus the block size; its ending address is fixed
at OFFFFFH.Table 6-2 defines the acceptable values for the field (U17:10) in the UMCS register
that determines the UQ8ock size and starting address.

Table 6-2. UCS Block Size and Starting Address

UNLIJCS:I]:_iOeId B('E‘él;tzisz)e Starting Address
OOH 256 0CO0000H
80H 128 0E0000H
COH 64 OFO000H
EOH 32 OF8000H
FOH 16 OFCOOOH
F8H 8 OFEOOOH
FCH 4 OFFOO0OH
FEH 2 OFF800H
FFH 1 OFFCOOH

6-12

Intel® CHIP-SELECT UNIT

6.4.2.2 LCS Active Range

The LCSstarting address is fixed at zero in memory address space; its ending address is the pro-
grammed block size minus one. Table 6.3 defines the acceptable values for the field (U17:10) in
the LMCS register that determines the LKlSck size and ending address.

Table 6.3 LCS Active Range

LMUClS;:ilgﬂd B(Iﬁgl;tzlsz)e Ending Address
00H 1 003FFH
01H 2 007FFH
03H 4 00FFFH
07H 8 01FFFH
OFH 16 03FFFH
1FH 32 07FFFH
3FH 64 OFFFFH
7FH 128 1FFFFH
FFH 256 3FFFFH

6.4.2.3 MCS Active Range

The starting and ending addresses of the individual Bii}sselects are determined by the base
address programmed in the MMCS register and the block size programmed in the MPCS register
(see Table 6-4 and Figure 6-10). The base address must be an integer multiple of the block size.
Table 6-5 lists the allowable block sizes and base address limitations.

Table 6-4. MCS Active Range

Active Range

Chip-
Select Start Address Ending Address
MCSO0 Base Base + (1/4 block size —1)

MCS1 Base + 1/4 block size | Base + (1/2 block size —1)
MCS2 Base + 1/2 block size | Base + (3/4 block size —1)
MCS3 Base + 3/4 block size | Base + (block size — 1)

6-13

CHIP-SELECT UNIT

intel.

Table 6-5. MCS Block Size and Start Address Restrictions

MPCS Block Size Bits Block Size MMCS Start Address

M6 M5 | Ma | ma | M2 | m1 | mo (Kbytes) Restrictions

0 0 0 0 0 0 1 8 None

0 0 0 0 0 1 X 16 U13 must be zero.

0 0 0 0 1 X X 32 U14:13 must be zero.

0 0 0 1 X X X 64 U15:13 must be zero.

0 0 1 X X X X 128 U16:13 must be zero.

0 1 X X X X X 256 U17:13 must be zero.

1 X X X X X X 512 U18:13 must be zero. _
NOTE: If U19 is one, will overlap UCS.

X=don't care, but should be 0 for future compatibility.

Starting Address

Ending Address

Block Size is
defined by M6:0

Base + 3/4 Block Size

MCS3 Active Range

Base + (Block Size-1)

Base + 1/2 Block Size

MCS2 Active Range

Base + (3/4 Block Size-1)

Base + 1/4 Block Size

MCS1 Active Range

Base + (1/2 Block Size-1)

MCSO0 Active Range

Base + (1/4 Block Size-1)

MCS Base -
(Defined by U19:13)

Memory Map

Al1136-0C

Figure 6-10. MCS3:0 Active Ranges

6-14

intel.

6.4.2.4 PCS Active Range

Each PCShip-select starts at an offset above the base address programmed in the PACS register
and is active for 128 bytes. The base address can start on any 1 Kbyte memory or 1/O address

location. Table 6-6 lists the active range for each Ei@-select.

Table 6-6. PCS Active Range

Chip Active Range

Select Start Address Ending Address
PCSO Base Base + 127 (7FH)
PCS1 Base + 128 (080H) | Base + 255 (OFFH)
PCS2 Base + 256 (100H) | Base + 383 (17FH)
PCS3 | Base + 384 (180H) | Base + 511 (1FFH)
PCS4 Base + 512 (200H) | Base + 639 (27FH)
PCS5 | Base + 640 (280H) | Base + 767 (2FFH)
PCS6 | Base + 768 (300H) | Base + 895 (37FH)

CHIP-SELECT UNIT

6.4.3 Bus Wait State and Ready Control

Normally, the bus ready input must be inactive at the appropriate time to insert wait states into
the bus cycle. The Chip-Select Unit can ignore the state of the bus ready input to extend and com-
plete the bus cycle automatically. Most memory and peripheral devices operate properly using
three or fewer wait states. However, accessing such devices as a dual-port memory, an expansion
bus interface, a system bus interface or remote peripheral devices can require more than three
wait states to complete a bus cycle.

A three-bit field (R2:0) in the control registers defines the number of wait states and the ready

requirements for the chip-selects. Figure 6-11 shows a simplified logic diagram of the wait state
and ready control functions.

6-15

CHIP-SELECT UNIT Intel®

BUS READY ’D_
R2 Control Bit

:D— READY

Wait Wait

Wait State Value (R1:0) :} State St tl
Counter ate
Ready

A1137-0A

Figure 6-11. Wait State and Ready Control Functions

The R2 control bit determines whether the bus cycle completes normally (requires bus ready) or
unconditionally (ignores bus ready). The R1:0 bits define the number of wait states to insert into
the bus cycle. For devices requiring three or fewer wait states, you can set R2 (ignore bus ready)
and program R1:0 with the number of required wait states. For devices that may require more than
three wait states, you must clear R2 (require bus ready).

A bus cycle with wait states automatically inserted cannot be shortened. A bus cycle that ignores
bus ready cannot be lengthened.

6.4.4 Overlapping Chip-Selects

The Chip-Select Unit activates all enabled chip-selects programmed to cover the same physical
address space. This is true if any portion of the chip-selects’ address ranges overlap (i.e., chip-
selects’ ranges do not need to overlap completely to all go active). There are various reasons for
overlapping chip-selects. For example, a system might have a need for overlapping a portion of
read-only memory with read/write memory or copying data to two devices simultaneously.

If overlapping chip-selects do not have identical wait state and bus ready programming, the Chip-
Select Unit uses the following priority scheme:

1. If any MCSchip-select is active, it uses the R2:0 bits in the MPCS register.
2. If the' PC=hip-selects overlap LG8 uses the R2:0 bits in the LMCS register.
3. If the' PC=hip-selects overlap UC& uses the R2:0 bits in the UMCS register.

6-16 I

Intel® CHIP-SELECT UNIT

For example, assume MC®%erlaps UCSMCS3is programmed for two wait states and re-
quires bus ready, while UQS programmed for no wait states and ignores bus ready. An access
to the overlapped region has two wait states and requires bus ready (the values programmed in
the R2:0 bits in the MPCS register).

Be cautious when overlapping chip-selects with different wait state or bus ready programming.
The following two conditions require special attention to ensure proper system operation:

1. When all overlapping chip-selects ignore bus ready but have different wait states, verify
that each chip-select still works properly using the highest wait state value. A system
failure may result when too few or too many wait states occur in the bus cycle.

2. If one or more of the overlapping chip-selects requires bus ready, verify that all chip-
selects thaignore bus ready still work properly using both the smallest wait state value
and the longest possible bus cycle. A system failure may result when too few or too many
wait states occur in the bus cycle.

6.4.5 Memory or I/O Bus Cycle Decoding

The' UCSLCSand MCS&chip-selects activate only for memory bus cycles. The é¥ijsselects
activate for either memory or 1/O bus cycles, depending on the state of the MS bit in the MPCS
register (Figure 6-9 on page 6-11). Memory bus cycles consist of memory read, memory write
and instruction prefetch cycles. 1/0 bus cycles consist of I/O read and I/O write cycles.

Chip-selects go active for bus cycles initiated by the CPU, DMA Control Unit and Refresh Con-
trol Unit.

6.4.6 Programming Considerations

When programming the PG3iip-selects active for /0O bus cycles, remember that eight bytes of

I/O are reserved by Intel. These eight bytes (locations 00F8H through 00FFH) control the inter-
face to an 80C187 math coprocessor. A chip-select can overlap this reserved space provided there
is no intention of using the 80C187. However, to avoid possible future compatibility issues, Intel
recommends that the PCBip-selects not start at I/O address location OH.

Reading or writing the chip-select registers enables the corresponding chip-select. Reading a reg-
ister before writing to it enables the chip-select without initializing the programmable fields,
which causes indeterminate operation. For example, reading the LMCS register enables the LCS
chip-select, but it does not ensure that Li€programmed correctly. Once you enable a chip-
select, you cannot disable it, but you can change its operation by writing to the appropriate reg-
ister.

I 6-17

CHIP-SELECT UNIT Intel®

6.5 CHIP-SELECTS AND BUS HOLD

The Chip-Select Unit decodes only internally generated address and bus state information. An ex-
ternal bus master cannot make use of the Chip-Select Unit. During HLDA, all chip-selects remain
inactive.

The circuit shown in Figure 6-12 allows an external bus master to access a device during bus
HOLD.

CSU Chip Select
::D07 Device select
External Master Chip Select

A1167-0A

Figure 6-12. Using Chip-Selects During HOLD

6.6 EXAMPLES

The following sections provide examples of programming the Chip-Select Unit to meet the needs
of a particular application. The examples do not go into hardware analysis or design issues.

6.6.1 Example 1: Typical System Configuration
Figure 6-13 illustrates a block diagram of a typical system design with a 128 Kbyte EPROM and

a 32 Kbyte SRAM. The peripherals are mapped to I/O address space. Example 6.1 shows a pro-
gram template for initializing the Chip-Select Unit.

6-18 I

intel.

CHIP-SELECT UNIT

Processor
ARDY [<€
SRDY | |
1 1 1
ALE <[EPROM D SRAM Floppy
- L 128K R 32K Disk [
a 20, A Control
A19:16 Addr M DACK |
ap150[N\T oy /] ¢ | Bus / 256
7 DRQ [
h I-) AO
|| —>I|CE CE CE | | >ICE
DRQ|=
PCS1
ucs
4
MCS3:0 frmmmmye
LCS
PCSO0
A1138-0A

Figure 6-13. Typical System

6-19

CHIP-SELECT UNIT

$ TITLE (Chip-Select Unit Initialization)
$ MOD186XREF
NAME CSU_EXAMPLE_1

; External reference from this module

$ include(PCBMAP.INC ;File declares register

;locations and names.
; Module equates

; Configuration equates

INTRDY EQU 0004H ;Internal bus ready modifier
EXTRDY EQU 0000H ;External bus ready modifier
10 EQU 0080H

;PCS Memory/IO select modifier
ALLPCS EQU 0040H ;PCS/Latched address modifier

;Below is a list of the default system memory and I/O environment. These
;defaults configure the Chip-Select Unit for proper system operation.

;EPROM memory is located from OE0000 to OFFFFF (128 Kbytes).
;Wait states are calculated assuming 16MHz operation.
;UCS# controls the accesses to EPROM memory space.

EPROM_SIZE EQU 128 ;Size in Kbytes

EPROM_BASE EQU 1024 - EPROM_SIZE;Start address in Kbytes
EPROM_WAIT EQU 1 ;Wait states

;The UMCS register values are calculated using the above system contraints
;and the equations below.

UMCS_VALEQU (EPROM_BASE SHL 6)OR (0C038H) OR
& (EPROM_RDY) OR (EPROM_WAIT)

;SRAM memory starts at OH and continues to 7FFFH (32 Kbytes).
;Wait states are calculated assuming 16MHz operation.
;LCS# controls the accesses to SRAM memory space.

SRAM_SIZE EQU 32 ;Size in Kbytes
SRAM_BASE EQU 0 ;Start address in Kbytes
SRAM_WAITEQU 0 ;Wait states
SRAM_RDY EQU INTRDY ;lgnore bus ready

;The LMCS register value is calculated using the above system constraints
;and the equations below

LMCS_VAL EQU ((SRAM_SIZE - 1)SHL6) OR (0038H) OR
& (SRAM_RDY) OR (SRAM_WAIT)

;A DRAM interface is selected by the MCS3:0 chip-selects. The BASE value
;defines the starting address of the DRAM window. The SIZE value (along with
;the BASE ;value) defines the ending address. Zero wait state performance

;is assumed. The Refresh Control Unit uses DRAM_BASE to properly configure
;refresh operation.

Example 6-1. Initializing the Chip-Select Unit

6-20

Intel® CHIP-SELECT UNIT

DRAM_BASE EQU 256 ;window start address in Kbytes
DRAM_SIZE EQU 256 ;window size in Kbytes
DRAM_WAIT EQU 0 ;wait states

DRAM_RDY EQU INTRDY ;ignore bus ready

;The MPCS register is used to program both the MCS and PCS chip-selects.
;Below are the equates for the I/O peripherals (also used to program the PACS

register.

I0_WAIT EQU 4 ;10 wait states

I0_RDY EQU INTRDY ;ignore bus ready

PCS_SPACE EQU 10 ;put PCS# chip-selects in 1/0 space
PCS_FUNC EQU ALLPCS ;generate PCS5# and PCS6#

;The MMCS and MPCS register values are calculated using the above system
;constraints and the equations below:

MMCS_VAL EQU (DRAM_BASE SHL 6) OR (001F8H) OR (DRAM_RDY) OR (DRAM_WAIT)
MPCS VAL EQU (DRAM_SIZE SHL 5) OR (08038H) OR (PCS_SPACE) OR (PCS_FUNC) OR
& (I0_RDY) OR (I0_WAIT)

;1/O is selected using the PCS0# chip-select. Wait states assume operation at

;16 MHz. For this example, the Floppy Disk Controller is connected to PCS2# and

;PCS1# provides the DACK signal.

I0_BASE EQU 1 ;1/O start address in Kbytes

;The PACS register value is calculated using the above system constraints and
;the equation below.

PACS_VAL EQU (I0_BASE SHL 6) OR (0038H) OR (I0_RDY) OR (I0_WAIT)
;The following statements define the default assumptions for segment locations.
ASSUME CS:CODE
ASSUME DS:DATA
ASSUME SS:DATA
ASSUME ES:DATA
CODE SEGMENT PUBLIC 'CODE'
;Entry point on power-up

i:W_START LABEL FAR ;forces far jump
CLI ;disable interrupts

;Place register initialization code here

;Set up chip-selects.

;UCS - EPROM Select (initialized during POWER_ON code)
;LCS - SRAM Select (set to SRAM size)
;PCS - 1/0O Select (PCS1:0 to support floppy)
;MCS - DRAM Select (set to DRAM size)
mov dx, LMCS_REG ;set up LMCS register
mov ax, LMCS_VAL
out dx, al ;remember that byte writes are OK

Example 6-1. Initializing the Chip-Select Unit (Continued)

6-21

CHIP-SELECT UNIT Intel®

mov dx, MPCS_REG ;ready for PCS lines 4-6

mov ax, MPCS_VAL ;as well as MCS programming
out dx, al

mov dx, MMCS_REG ;set up DRAM chip-selects
mov ax, MMCS_VAL

out dx, al

mov dx, PACS_REG ;set up I/O chip-select

mov ax, PACS_VAL

out dx, al

CODE ENDS
;Power-on reset code to get started

ASSUME CS:POWER_ON
POWER_ON SEGMENT AT OFFFFH

mov dx, UMCS_REG ;point to UMCS register
mov ax, UMCS_VAL ;reprogram UMCS to match system
out dx, al ;requirements
jmp FW_START ;jump to initialization code
POWER_ON ENDS
;Data segment
bATA SEGMENT PUBLIC 'DATA'
DD 256 DUP (?) ;reserved for interrupt vectors

;Place memory variables here

DW 500 DUP (?) ;stack allocation
STACK_TOP LABEL WORD
DATA ENDS

;Program ends
END

Example 6-1. Initializing the Chip-Select Unit (Continued)

6-22

intel.
7

Refresh Control Unit

intel.

The Refreh Control Unit (RCU) simplifies dynamic memory controller design with its integrat-
ed address and clock counters. Figure 7-1 shows the relationship between the Bus Interface Unit
and the Refresh Control Unit. Integrating the Refresh Control Unit into the processor allows an

CHAPTER 7
REFRESH CONTROL UNIT

external DRAM controller to use chip-selects, wait state logic and status lines.

Refresh Control
Register

BIU

“ Interface

/\

<:> Refresh Clock

Interval Register

CPU 35

Clock -

——> 9-Bit Down

Counter Refresh Request
CLR | Refresh Acknowledge

F-Bus REO <

9-Bit Addrgss Counter

Refresh Base

Refresh Address

Address Register Register
4y 13 v
M Y
20-Bit
Refresh Address

A1539-01

Figure 7-1. Refresh Control Unit Block Diagram

7-1

REFRESH CONTROL UNIT Intel®

7.1 THE ROLE OF THE REFRESH CONTROL UNIT

Like a DMA controller, the Refresh Control Unit runs bus cycles independent of CPU execution.
Unlike a DMA controller, however, the Refresh Control Unit does not run bus cycle bursts nor
does it transfer data. The DRAM refresh process freshens individual DRAM rows in “dummy
read” cycles, while cycling through all necessary addresses.

The microprocessor interface to DRAMSs is more complicated than other memory interfaces. A
complete DRAM controller requires circuitry beyond that provided by the processor even in the
simplest configurations. This circuitry must respond correctly to reads, writes and DRAM refresh
cycles. The external DRAM controller generates the Row Address Strobg, (RalIBmn Ad-

dress Strobe (CASand other DRAM control signals.

Pseudo-static RAMs use dynamic memory cells but generate address strobes and refresh address
es internally. The address counters still need external timing pulses. These pulses are easy to de-
rive from the processor’s bus control signals. Pseudo-static RAMs do not need a full DRAM
controller.

7.2 REFRESH CONTROL UNIT CAPABILITIES

A 9-bit address counter forms the refresh addresses, supporting any dynamic memory devices
with up to 9 rows of memory cells (9 refresh address bits). This includes all practical DRAM sizes
for the processor’'s 1 Mbyte address space.

7.3 REFRESH CONTROL UNIT OPERATION

Figure 7-2 illustrates Refresh Control Unit counting, address generation and BIU bus cycle gen-
eration in flowchart form.

The nine-bit down-counter loads from the Refresh Interval Register on the falling edge of CLK-
OUT. Once loaded, it decrements every falling CLKOUT edge until it reaches one. Then the
down-counter reloads and starts counting again, simultaneously triggering a refresh request.
Once enabled, the DRAM refresh process continues indefinitely until the user reprograms the Re-
fresh Control Unit, a reset occurs, or the processor enters Powerdown mode. Power-Save mode
divides the Refresh Control Unit clocks, so reprogramming the Refresh Interval Register be-
comes necessary.

The refresh request remains active until the bus becomes available. When the bus is free, the BIU
will run its “dummy read” cycle. Refresh bus requests have higher priority than most CPU bus
cycles, all DMA bus cycles and all interrupt vectoring sequences. Refresh bus cycles also have a
higher priority than the HOLD/HLDAbus arbitration protocol (see “Refresh Operation and Bus
HOLD” on page 7-12).

7-2 I

Inte|® REFRESH CONTROL UNIT

Refresh Control BIU Refresh
Unit Operation Bus Operation
Set "E" Bi Refresh Request
et"E" Bit Acknowledged
Y
Load Counter Execute
From Refresh Clock Memory Read

Interval Register

Increment
Address

¢

Remove
Executed Request

— Every
Clock

Continue

Decrement
Counter

Generated BIU
Request

A1265-0A

Figure 7-2. Refresh Control Unit Operation Flow Chart

The nine-bit refresh clock counter does not wait until the BIU services the refresh request to con-
tinue counting. This operation ensures that refresh requests occur at the correct interval. Other-
wise, the time between refresh requests would be a function of varying bus activity. When the

BIU services the refresh request, it clears the request and increments the refresh address.

7-3

REFRESH CONTROL UNIT Intel®

The BIU does not queue DRAM refresh requests. If the Refresh Control Unit generates another
request before the BIU handles the present request, the BIU loses the present request. However,
the address associated with the request is not lost. The refresh address changes only after the BIU
runs a refresh bus cycle. If a DRAM refresh cycle is excessively delayed, there is still a chance
that the processor will successfully refresh the corresponding row of cells in the DRAM, retaining
the data.

7.4 REFRESH ADDRESSES

Figure 7-3 shows the physical address generated during a refresh bus cycle. This figure applies
to both the 8-bit and 16-bit data bus microprocessor versions. Refresh address bits RA19:13 come
from the Refresh Base Address Register. (See “Refresh Base Address Register” on page 7-8.)

From Refresh Base
Address Register Fixed From Refresh Address Counter Fixed

RA|RA|RA|RA|RA|IRAIRA] 0 | 0 | O |RAJRA|RA|RA|RA|IRAIRA|RAIRA] 1
19118|17]116|15|14]13 918|7|6]|5|4|3]|]2]|1

19 0
20-Bit Refresh Address

A1502-0A

Figure 7-3. Refresh Address Formation

Refresh address bits RA12:10 are always zero. A linear-feedback shift counter generates address
bits RA9:1 and RAO is always one. The counter does not count linearly from 0 through 1FFH.
However, the counting algorithm cycles uniquely through all possible 9-bit values. It matters only
that each row of DRAM memory cells is refreshed at a specific interval. The order of the rows is
unimportant.

Address bit AQ is fixed at one during all refresh operations. In applications based on a 16-bit data
bus processor, A0 typically selects memory devices placed on the low (even) half of the bus. Ap-
plications based on an 8-bit data bus processor typically use AO as a true address bit. The DRAM
controller musnot route AO to row address pins on the DRAMSs.

7-4 I

Inte|® REFRESH CONTROL UNIT

7.5 REFRESH BUS CYCLES

Refresh bus cycles look exactly like ordinary memory read bus cycles except for the control sig-
nals listed in Table 7-1. These signals can be ANDed in a DRAM controller to detect a refresh
bus cycle. The 16-bit bus processor drives both the &wEAO pins high during refresh cycles.

The 8-bit bus version replaces the BHIE with RFSH which has the same timings. The 8-bit

bus processor drives RFSéiv and AO high during refresh cycles.

Table 7-1. Identification of Refresh Bus Cycles

Data Bus Width BHE /RFSH A0
16-Bit Device 1 1
8-Bit Device 0 1

7.6 GUIDELINES FOR DESIGNING DRAM CONTROLLERS

The basic DRAM access method consists of four phases:
1. The DRAM controller supplies a row address to the DRAMSs.

2. The DRAM controller asserts a Row Address Strobe jRMA&ich latches the row
address inside the DRAMSs.

The DRAM controller supplies a column address to the DRAMSs.

4. The DRAM controller asserts a Column Address Strobe JGMS8ch latches the column
address inside the DRAMSs.

Most 80C186 Modular Core family DRAM interfaces use only this method. Others are not dis-
cussed here.

The DRAM controller's purpose is to use the processor’s address, status and control lines to gen-
erate the multiplexed addresses and strobes. These signals must be appropriate for three bus cycl
types: read, write and refresh. They must also meet specific pulse width, setup and hold timing
requirements. DRAM interface designs need special attention to transmission line effects, since
DRAMs represent significant loads on the bus.

DRAM controllers may be either clocked or unclocked. An unclocked DRAM controller requires
a tapped digital delay line to derive the proper timings.

Clocked DRAM controllers may use either discrete or programmable logic devices. A state ma-
chine design is appropriate, especially if the circuit must provide wait state control (beyond that
possible with the processor’s Chip-Select Unit). Because of the microprocessor’s four-clock bus,
clocking some logic elements on each CLKOUT phase is advantageous (see Figure 7-4).

I 7-5

REFRESH CONTROL UNIT Intel®

T1 T2 T3TW T4

CLKOUT

Muxed
Address

S2:0

RAS

@) CAS

NOTES:
1. CAS is unnecessary for refresh cycles only.
2. WE is necessary for write cycles only.

A1267-0A

Figure 7-4. Suggested DRAM Control Signal Timing Relationships

The cycle begins with presentation of the row address. $8Id go active on the falling edge

of T2. At the rising edge of T2, the address lines should switch to a column addreS3o€3AS
active on the falling edge of T3. Refresh cycles do not require @4&®n CASis present, the
“dummy read” cycle becomes a true read cycle (the DRAM drives the bus), and the DRAM row
still gets refreshed.

Both' RASand CASstay active during any wait states. They go inactive on the falling edge of T4.

At the rising edge of T4, the address multiplexer shifts to its original selection (row addressing),
preparing for the next DRAM access.

7-6 I

Inte|® REFRESH CONTROL UNIT

7.7 PROGRAMMING THE REFRESH CONTROL UNIT

Given a specific processor operating frequency and information about the DRAMs in the system,
the user can program the Refresh Control Unit registers.

7.7.1 Calculating the Refresh Interval

DRAM data sheets show DRAM refresh requirements as a number of refresh cycles necessary
and the maximum period to run the cycles. (The number of refresh cycles is the same as the num-
ber of rows.) You must compensate for bus latency — the time it takes for the Refresh Control
Unit to gain control of the bus. This is typically 1-5%, but if an external bus master will be ex-
tremely slow to release the bus, increase the overhead percentage. At standard operating frequen-
cies, DRAM refresh bus overhead totals 2—3% of the total bus bandwidth.

Given this information and the CPU operating frequency, use the formula in Figure 7-5 to deter-
mine the correct value for the RFTIME Register value.

Rperiop * Fepu

= RFTIME Register Value
Rows + (Rows x Overhead%)

Rperion = Maximum refresh period specified by DRAM manufacturer (in ps).
Fepu = Operating frequency (in MHz).
Rows = Total number of rows to be refreshed.

Overhead % Derating factor to compensate for missed refresh requests (typically 1-5 %).

Figure 7-5. Formula for Calculating Refresh Interval for RFTIME Register

If the processor enters Power-Save mode, the refresh rate must increase to offset the reduced CPL
clock rate to preserve memory. At lower frequencies, the refresh bus overhead increases. At fre-
guencies less than about 1.5 MHz, the Bus Interface Unit will spend almost all its time running
refresh cycles. There may not be enough bandwidth left for the processor to perform other activ-
ities, especially if the processor must share the bus with an external master.

7.7.2 Refresh Control Unit Registers

Three contiguous Peripheral Control Block registers operate the Refresh Control Unit: the Re-
fresh Base Address Register, Refresh Clock Interval Register and the Refresh Control Register.

77

REFRESH CONTROL UNIT Intel®

7.7.21 Refresh Base Address Register

The Refresh Base Address Register (Figure 7-6) programs the base (upper seven bits) of the re-
fresh address. Seven-bit mapping places the refresh address at any 4 Kbyte boundary within the
1 Mbyte address space. When the partial refresh address from the 9-bit address counter (see Fig-
ure 7-1 and “Refresh Control Unit Capabilities” on page 7-2) passes 1FFH, the Refresh Control
Unit doesot increment the refresh base address. Setting the base address ensures that the addres
driven during a refresh bus cycle activates the DRAM chip select.

Register Name: Refresh Base Address Register
Register Mnemonic: RFBASE
Register Function: Determines upper 7 bits of refresh address.
15 0
R]IR|R|R R]IR]|R
AlALTA]A AlA]A
1 1 1 1 1 1 1
9 81716 51413
A1503-0A
Bit : Reset :
Mnemonic Bit Name State Function
RA19:13 Refresh 00H Uppermost address bits for DRAM refresh
Base cycles.
NOTE: Reserved register bits are shown with gray shading. Reserved bits must be written
to a logic zero to ensure compatibility with future Intel products.

Figure 7-6. Refresh Base Address Register

7.7.2.2 Refresh Clock Interval Register

The Refresh Clock Interval Register (Figure 7-7) defines the time between refresh requests. The
higher the value, the longer the time between requests. The down-counter decrements every fall-
ing CLKOUT edge, regardless of core activity. When the counter reaches one, the Refresh Con-
trol Unit generates a refresh request, and the counter reloads the value from the register. Since
Power-Save mode divides the clock to the Refresh Control Unit, this register will require repro-
gramming if Power-Save mode is used.

7-8

Inte|® REFRESH CONTROL UNIT

Register Name: Refresh Clock Interval Register
Register Mnemonic: RFTIME
Register Function: Sets refresh rate.
15 0
R R|IR]R|R RIR|R|R
C c|c|c]|cC c|cl|c]|cC
8 7165 4 312(|1|0
A1288-0A
Bit . Reset .
Mnemonic Bit Name State Function
RC8:0 Refresh Counter 000H Sets the desired clock count between refresh
Reload Value cycles.
NOTE: Reserved register bits are shown with gray shading. Reserved bits must be written to a
logic zero to ensure compatibility with future Intel products.

Figure 7-7. Refresh Clock Interval Register

7.7.2.3 Refresh Control Register

Figure 7-8 shows the Refresh Control Register. The user may read or write the REN bit at any
time to turn the Refresh Control Unit on or off. The lower nine bits contain the current nine-bit
down-counter valueThe user cannot program these bitsDisabling the Refresh Control Unit
clears both the counter and the corresponding counter bits in the control register.

7-9

REFRESH CONTROL UNIT Intel®

Register Name: Refresh Control Register
Register Mnemonic: RFCON
Register Function: Controls Refresh Unit operation.
15 0
R R R|IR]R|R RIR|R|R
E C c|c|c]|C c|cl|c]|cC
N 8 7165 4 312(|1|0
A1311-0A
Bit . Reset .
Mnemonic Bit Name State Function
REN Refresh 0 Setting REN enables the Refresh Unit. Clearing
Control Unit REN disables the Refresh Unit.
Enable
RC8:0 Refresh O00OH These bits contain the present value of the
Counter down-counter that triggers refresh requests.
The user cannot program these bits.
NOTE: Reserved register bits are shown with gray shading. Reserved bits must be written
to a logic zero to ensure compatibility with future Intel products.

Figure 7-8. Refresh Control Register

7.7.3 Programming Example
Example 7-1 contains sample code to initialize the Refresh Control Unit. Example 5-2 on page

5-22 shows the additional code to reprogram the Refresh Control Unit upon entering Power-Save
mode.

7-10

intel.

REFRESH CONTROL UNIT

$mod186
name

i SYNTAX:

i INPUTS:

; OUTPUTS:

RFBASE
RFTIME
RFCON
Enable

lib_80186

_config_rcu

_clock_time
_dram_addr

example_80C186_RCU_code

; FUNCTION: This function initializes the DRAM Refresh
; Control Unit to refresh the DRAM starting at dram_addr
; at clock_time intervals.

; extern void far config_rcu(int dram_addr, int clock_time);

dram_addr - Base address of DRAM to refresh
clock_time - DRAM refresh rate

None

NOTE: Parameters are passed on the stack as
required by high-level languages.

equ xxxxh ;substitute register offset
equ xxxxh

equ xxxxh
equ 8000h ;enable bit

segment public ‘code’
assume cs:lib_80186

public _config_rcu

proc far

push bp ;save caller's bp

mov bp, sp ;get current top of stack
equ word ptr[bp+6] ;get parameters off

equ word ptr[bp+8] ;the stack

push ax ;save registers that

push cx ;will be modified

push dx

push di

Example 7-1. Initializing the Refresh Control Unit

7-11

REFRESH CONTROL UNIT

_exercise_ram:

_config_rcu
lib_80186

mov dx, RFBASE
mov ax, _dram_addr
out dx, al

mov dx, RFTIME
mov ax, _clock_time
out dx, al

mov dx, RFCON
mov ax, Enable
out dx, al

mov cX, 8

;set upper 7 address bits

;set clock pre_scaler

;Enable RCU

;8 dummy cycles are

;required by DRAMs

xor di, di

mov word ptr [di], O
loop _exercise_ram

pop di
pop dx
pop cx
pop ax
pop bp

ret

endp
ends

end

;before actual use

;restore saved registers

;restore caller’s bp

Example 7-1. Initializing the Refresh Control Unit (Continued)

7.8 REFRESH OPERATION AND BUS HOLD

When another bus master controls the bus, the processor keeps &titivé as long as the

HOLD input remains active. If the Refresh Control Unit generates a refresh request during bus
hold, the processor drives the HLB#gnal inactive, indicating to the current bus master that it
wishes to regain bus control (see Figure 7-9). The BIU begins a refresh bus cycle only after the
alternate master removes HOLD. The user must design the system so that the processor can re-
gain bus control. If the alternate master asserts HOLD after the processor starts the refresh cycle,

the CPU will relinquish control by asserting HLDwhen the refresh cycle is complete.

7-12

intel.

REFRESH CONTROL UNIT

T1 T1 T1 T1 T1 T4 T1

CLKOUTJ 0\
®

HOLD

HLDA

1.

a bk wN

NOTES:

HLDA is deasserted; signaling need to run DRAM refresh cycles less than TCLOV'
External bus master terminates use of the bus.

HOLD deasserted; greater than Ti| |g.

Hold may be reasserted after one clock.

Lines come out of float in order to run DRAM refresh cycle.

A1269-0A

Figure 7-9. Regaining Bus Control to Run a DRAM Refresh Bus Cycle

7-13

intel.

Interrupt Control
Unit

intel.

CHAPTER 8
INTERRUPT CONTROL UNIT

The 80C186 Modular Core has a single maskable interrupt input. (See “Interrupts and Exception
Handling” on page 2-39.) The Interrupt Control Unit (ICU) expands the interrupt capabilities be-
yond a single input. To fulfill this function, the Interrupt Control Unit operates in either of two
modes: Master or Slave.

In Master mode, the ICU controls the maskable interrupt input to the CPU. Interrupts can origi-
nate from the on-chip peripherals and from four external interrupt pins. The ICU synchronizes
and prioritizes all interrupt sources and presents the correct interrupt type vector to the CPU. (See
Figure 8-1.) Most systems use master mode.

In Slave mode, an external 8259A module controls the maskable interrupt input to the CPU and
acts as the master interrupt controller. The ICU processes only those interrupts from the on-chip
peripherals and acts as an interrupt input to the 8259A. (See Figure 8-15 on page 8-24.) This mode
can be useful in larger system designs.
The Interrupt Control Unit has the following features:

* Programmable priority of each interrupt source

¢ Individual masking of each interrupt source

* Nesting of interrupt sources

¢ Support for polled operation

¢ Support for cascading external 8259A modules to expand external interrupt sources

8.1 FUNCTIONAL OVERVIEW

All microcomputer systems must communicate in some way with the external world. A typical
system might have a keyboard, a disk drive and a communications port, all requiring CPU atten-
tion at different times. There are two distinct ways to process peripheral /O requests: polling and
interrupts.

Polling requires that the CPU check each peripheral device in the system periodically to see
whether it requires servicing. It would not be unusual to poll a low-speed peripheral (a serial port,
for instance) thousands of times before it required servicing. In most cases, the use of polling has
a detrimental effect on system throughput. Any time used to check the peripherals is time spent
away from the main processing tasks.

I 8-1

INTERRUPT CONTROL UNIT Intel®

Interrupts eliminate the need for polling by signalling the CPU that a peripheral device requires
servicing. The CPU then stops executing the main task, saves its state and transfers execution to
the peripheral-servicing code (ti@errupt handlej. At the end of the interrupt handler, the
CPUr's original state is restored and execution continues at the point of interruption in the main
task.

8.2 MASTER MODE

Figure 8-1 shows a block diagram of the Interrupt Control Unit in Master mode. In this mode, the
ICU processes all interrupt requests, both external and internal. The three timer interrupt requests
share a single input, while the others are supported directly.

DMA DMA
Timer O Timer1 Timer 2 0 1 INTO INT1 INT2 INT3
Interrupt
Priority
Resolver
Vector
To CPU Interrupt Request -—— Generation
Logic
Y F - Bus ¢
A1506-A0

Figure 8-1. Interrupt Control Unit in Master Mode

8.2.1 Generic Functions in Master Mode

Several functions of the Interrupt Control Unit are common among most interrupt controllers.
This section describes how those generic functions are implemented in the Interrupt Control Unit.

8-2 I

Intel® INTERRUPT CONTROL UNIT

8.2.1.1 Interrupt Masking

There are circumstances in which a programmer may need to disable an interrupt source tempo-
rarily (for example, while executing a time-critical section of code or servicing a high-priority
task). This temporary disabling is called interrupt masking. All interrupts from the Interrupt Con-
trol Unit can be masked either globally or individually.

The Interrupt Enable bit in the Processor Status Word globally enables or disables the maskable
interrupt request from the Interrupt Control Unit. The programmer controls the Interrupt Enable
bit with the STI (set interrupt) and CLI (clear interrupt) instructions.

Besides being globally enabled or disabled by the Interrupt Enable bit, each interrupt source can
be individually enabled or disabled. The Interrupt Mask register has a single bit for each interrupt

source. The programming can selectively mask (disable) or unmask (enable) each interrupt
source by setting or clearing the corresponding bit in the Interrupt Mask register.

8.2.1.2 Interrupt Priority

One critical function of the Interrupt Control Unit is to prioritize interrupt requests. When multi-
ple interrupts are pending, priority determines which interrupt request is serviced first. In many
systems, an interrupt handler may itself be interrupted by another interrupt source. This is known
asinterrupt nesting With interrupt nesting, priority determines whether an interrupt source can
preempt an interrupt handler that is currently executing.

Each interrupt source is assigned a priority between zero (highest) and seven (lowest). After reset,
the interrupts default to the priorities shown in Table 8-1. Because the timers share an interrupt
source, they also share a priority. Within the assigned priority, each has a relative priority (Timer
0 has the highest relative priority and Timer 2 has the lowest).

Table 8-1. Default Interrupt Priorities

Interrupt Name Relative Priority
Timer 0 0(a)
Timer 1 0 (b)
Timer 2 0 (c)

DMAO 1
DMA1 2
INTO 3
INT1 4
INT2 5
INT3 6

8-3

INTERRUPT CONTROL UNIT Intel®

The priority of each source is programmable. The Interrupt Control register enables the
programmer to assign each source a priority that differs from the default. The priority must still
be between zero (highest) and seven (lowest). Interrupt sources can be programmed to share &
priority. The Interrupt Control Unit uses the default priorities (see Table 8-1) within the shared
priority level to determine which interrupt to service first. For example, assume that INTO and
INT1 are both programmed to priority seven. Because INTO has the higher default priority, it is
serviced first.

Interrupt sources can be masked on the basis of their priority. The Priority Mask register masks
all interrupts with priorities lower than its programmed value. After reset, the Priority Mask reg-
ister contains priority seven, which effectively enables all interrupts. The programmer can then
program the register with any valid priority level.

8.2.1.3 Interrupt Nesting

When entering an interrupt handler, the CPU pushes the Processor Status Word onto the stack
and clears the Interrupt Enable bit. The processor enters all interrupt handlers with maskable in-
terrupts disabled. Maskable interrupts remain disabled until either the IRET instruction restores
the Interrupt Enable bit or the programmer explicitly enables interrupts. Enabling maskable in-
terrupts within an interrupt handler allows interrupts to be nested. Otherwise, interrupts are pro-
cessed sequentially; one interrupt handler must finish before another executes.

The simplest way to use the Interrupt Control Unit is without nesting. The operation and servicing
of all sources of maskable interrupts is straightforward. However, the application trade-off is that
an interrupt handler will finish executing even if a higher priority interrupt occurs. This can add
considerable latency to the higher priority interrupt.

In the simplest terms, the Interrupt Control Unit asserts the maskable interrupt request to the CPU,
waits for the interrupt acknowledge, then presents the interrupt type of the highest priority un-
masked interrupt to the CPU. The CPU then executes the interrupt handler for that interrupt. Be-
cause the interrupt handler never sets the Interrupt Enable bit, it can never be interrupted.

The function of the Interrupt Control Unit is more complicated with interrupt nesting. In this case,
an interrupt can occur during execution of an interrupt handler. That is, one interrpptempt
another. Two rules apply for interrupt nesting:

* An interrupt source cannot preempt interrupts of higher priority.

* An interrupt source cannot preempt itself. The interrupt handler must finish executing
before the interrupt is serviced again. (Special Fully Nested Mode is an exception. See
“Special Fully Nested Mode” on page 8-8.)

8-4

Intel® INTERRUPT CONTROL UNIT

8.3 FUNCTIONAL OPERATION IN MASTER MODE

This section covers the process in which the Interrupt Control Unit receives interrupts and asserts
the maskable interrupt request to the CPU.

8.3.1 Typical Interrupt Sequence

When the Interrupt Control Unit first detects an interrupt, it sets the corresponding bit in the In-

terrupt Request register to indicate that the interrupt is pending. The Interrupt Control Unit checks
all pending interrupt sources. If the interrupt is unmasked and meets the priority criteria (see “Pri-
ority Resolution” on page 8-5), the Interrupt Control Unit asserts the maskable interrupt request
to the CPU, then waits for the interrupt acknowledge.

When the Interrupt Control Unit receives the interrupt acknowledge, it passes the interrupt type

to the CPU. At that point, the CPU begin the interrupt processing sequence.(See “Interrupt/Ex-
ception Processing” on page 2-39 for details.) The Interrupt Control Unit always passes the vector
that has the highest priority at the time the acknowledge is received. If a higher priority interrupt

occurs before the interrupt acknowledge, the higher priority interrupt has precedence.

When it receives the interrupt acknowledge, the Interrupt Control Unit clears the corresponding
bit in the Interrupt Request register and sets the corresponding bit in the In-Service register. The
In-Service register keeps track of which interrupt handlers are being processed. At the end of an
interrupt handler, the programmer must issue an End-of-Interrupt (EOI) command to explicitly
clear the In-Service register bit. If the bit remains set, the Interrupt Contratdsmot process

any additional interrupts from that source.

8.3.2 Priority Resolution

The decision to assert the maskable interrupt request to the CPU is somewhat complicated. The
complexity is needed to support interrupt nesting. First, an interrupt occurs and the corre-
sponding Interrupt Request register bit is set. The Interrupt Control Unit then asserts the
maskable interrupt request to the CPU, if the pending interrupt satisfies these requirements:

1. its Interrupt Mask bit is cleared (it is unmasked)
2. its priority is higher than the value in the Priority Mask register
3. its In-Service bit is cleared
4. its priority is equal to or greater than that of any interrupt whose In-Service bit is set
The In-Service register keeps track of interrupt handler execution. The Interrupt Control Unit

uses this information to decide whether another interrupt source has sufficient priority to preempt
an interrupt handler that is executing.

8-5

INTERRUPT CONTROL UNIT Intel®

8.3.2.1 Priority Resolution Example

This example illustrates priority resolution. Assume these initial conditions:

The
1.

10.

8-6

the Interrupt Control Unit has been initialized
no interrupts are pending

no In-Service bits are set

the Interrupt Enable bit is set

all interrupts are unmasked

the default priority scheme is being used

the Priority Mask register is set to the lowest priority (seven)

example uses two external interrupt sources, INTO and INT3, to describe the process.
A low-to-high transition on INTO sets its Interrupt Request bit. The interrupt is now
pending.
Because INTO is the only pending interrupt, it meets all the priority criteria. The Interrupt
Control Unit asserts the interrupt request to the CPU and waits for an acknowledge.
The CPU acknowledges the interrupt.
The Interrupt Control Unit passes the interrupt type (in this case, type 12) to the CPU.

The Interrupt Control Unit clears the INTO bit in the Interrupt Request register and sets the
INTO bit in the In-Service register.

The CPU executes the interrupt processing sequence and begins executing the interrupt
handler for INTO.

During execution of the INTO interrupt handler, a low-to-high transition on INT3 sets its
Interrupt Request bit.

The Interrupt Control Unit determines that INT3 has a lower priority than INTO, which is

currently executing (INTQ’s In-Service bit is set). INT3 does not meet the priority criteria,

SO no interrupt request is sent to the CPU. (If INT3were programmed with a higher
priority than INTO, the request would be sent.) INT3 remains pending in the Interrupt
Request register.

The INTO interrupt handler completes and sends an EOl command to clear the INTO bit in
the In-Service register.

INT3 is still pending and now meets all the priority criteria. The Interrupt Control Unit
asserts the interrupt request to the CPU and the process begins again.

Intel® INTERRUPT CONTROL UNIT

8.3.2.2 Interrupts That Share a Single Source

Multiple interrupt requests can share a single interrupt input to the Interrupt Control Unit. (For
example, the three timers share a single input.) Although these interrupts share an input, each has
its own interrupt vector. (For example, when a Timer O interrupt occurs, the Timer O interrupt
handler is executed.) This section uses the three timers as an example to describe how these in-
terrupts are prioritized and serviced.

The Interrupt Status register acts as a second-level request register to process the timer interrupts.
It contains a bit for each timer interrupt. When a timer interrupt occurs, both the individual Inter-
rupt Status register bit and the shared Interrupt Request register bit are set. From this point, the
interrupt is processed like any other interrupt source.

When the shared interrupt is acknowledged, the timer interrupt with the highest priority (see Ta-
ble 8-1 on page 8-3t that time is serviced first and that timer’s Interrupt Status bit is cleared.

If no other timer Interrupt Status bits are set, the shared Interrupt Request bit is also cleared. If
other timer interrupts are pending, the Interrupt Request bit remains set.

When the timer interrupt is acknowledged, the shared In-Service bithosether timer inter-

rupts can occur when the In-Service bit is setf a second timer interrupt occurs while another
timer interrupt is being serviced, the second interrupt remains pending until the interrupt handler
for the first interrupt finishes and clears the In-Service bit. (This is true even if the second interrupt
has a higher priority than the first.)

8.3.3 Cascading with External 8259As

For applications that require more external interrupt pins than the number provided on the Inter-
rupt Control Unit, external 8259A modules can be used to increase the number of external inter-
rupt pins. The cascade mode of the Interrupt Control Unit supports the external 8259As. The
INT2/INTAO and INT3/INTALpins can serve either of two functions. Outside cascade mode,
they serve as external interrupt inputs. In cascade mode, they serve as interrupt acknowledge out-
puts. TNTADis the acknowledge for INTO, and INTAd the acknowledge for INT1. (See Figure

8-2.)

The INT2/INTAOand INT3/INTAlpins are inputs after reset until the pins are configured as out-
puts. The pullup resistors ensure that the INJids never float (which would cause a spurious
interrupt acknowledge to the 8259A). The value of the resistors must be high enough to prevent
excessive loading on the pins.

8-7

INTERRUPT CONTROL UNIT Intel®

INT > INTO
8259A VCC
or
82C59A
INTA =€ INTAO
Interrupt
Control
Unit
INT > INT1
8259A VCC
or
82C59A
INTA =€ INTA1
A1211-A0

Figure 8-2. Using External 8259A Modules in Cascade Mode

8.3.3.1 Special Fully Nested Mode

Special fully nested mode is an optional feature normally used with cascade mode. It is applicable
only to INTO and INT1. In special fully nested mode, an interrupt request is serviced even if its
In-Service bit is set.

In cascade mode, an 8259A controls up to eight external interrupts that share a single interrupt
input pin. Special fully nested mode allows the 8259A’s priority structure to be maintained. For
example, assume that the CPU is servicing a low-priority interrupt from the 8259A. While the
interrupt handler is executing, the 8259A receives a higher priority interrupt from one of its sourc-
es. The 8259A applies its own priority criteria to that interrupt and asserts its interrupt to the In-
terrupt Control Unit. Special fully nested mode allows the higher priority interrupt to be serviced
even though the In-Service bit for that source is already set. A higher priority interrupt has pre-
empted a lower priority interrupt, and interrupt nesting is fully maintained.

Special fully nested mode can also be used without cascade mode. In this case, it allows a single
external interrupt pin (either INTO or INT1) to preempt itself.

8-8 I

Intel® INTERRUPT CONTROL UNIT

8.3.4 Interrupt Acknowledge Sequence

During the interrupt acknowledge sequence, the Interrupt Control Unit passes the interrupt type
to the CPU. The CPU then multiplies the interrupt type by four to derive the interrupt vector ad-
dress in the interrupt vector table. (“Interrupt/Exception Processing” on page 2-39 describes the
interrupt acknowledge sequence and Figure 2-25 on page 2-40 illustrates the interrupt vector ta-
ble.)

The interrupt types for all sources are fixed and unalterable (see Table 8-2). The Interrupt Control
Unit passes these types to the CPU internally. The first external indication of the interrupt ac-
knowledge sequence is the CPU fetch from the interrupt vector table.

In cascade mode, the external 8259A supplies the interrupt type. In this case, the CPU runs an
external interrupt acknowledge cycle to fetch the interrupt type from the 8259A (see “Interrupt
Acknowledge Bus Cycle” on page 3-25).

Table 8-2. Fixed Interrupt Types

Interrupt Name Interrupt Type
Timer O 8
Timer 1 18
Timer 2 19

DMAO 10
DMA1 11
INTO 12
INT1 13
INT2 14
INT3 15

8.3.5 Polling

In some applications, it is desirable to poll the Interrupt Control Unit. The CPU polls the Interrupt
Control Unit for any pending interrupts, and software can service interrupts whenever it is con-
venient. The Poll and Poll Status registers support polling.

Software reads the Poll register to get the type of the highest priority pending interrupt, then calls
the corresponding interrupt handler. Reading the Poll register also acknowledges the interrupt.
This clears the Interrupt Request bit and sets the In-Service bit for the interrupt. The Poll Status
register has the same format as the Poll register, but reading the Poll Status regisier atves
knowledge the interrupt.

8-9

INTERRUPT CONTROL UNIT Intel®

8.3.6 Edge and Level Triggering

The external interrupts (INT3:0) can be programmed for either edge or level triggering (see “In-
terrupt Control Registers” on page 8-12). Both types of triggering are active high. An edge-trig-
gered interrupt is generated by a zero-to-one transition on an external interrupt pin. The pin must
remain high until after the CPU acknowledges the interrupt, then must go low to reset the edge-
detection circuitry. (See the current data sheet for timing requirements.) The edge-detection cir-
cuitry must be reset to enable further interrupts to occur.

A level-triggered interrupt is generated by a valid logic one on the external interrupt pin. The pin
must remain high until after the CPU acknowledges the interrupt. Unlike edge-triggered inter-
rupts, level-triggered interrupts will continue to occur if the pin remains high. A level-triggered
external interrupt pin must go low before the EOl command to prevent another interrupt.

NOTE

When external 8259As are cascaded into the Interrupt Control Unit, INTO and
INT1 must be programmed for level-triggered interrupts.

8.3.7 Additional Latency and Response Time
The Interrupt Control Unit adds 5 clocks to the interrupt latency of the CPU. Cascade mode adds

13 clocks to the interrupt response time because the CPU must run the interrupt acknowledge bus
cycles. (See Figure 8-3 on page 8-11 and Figure 2-27 on page 2-46.)

8-10 I

Intel® INTERRUPT CONTROL UNIT

] Clocks
Interrupt presented to control unit «+---veveeeeenennss > =
5
|nterrupt presented to CPU >
INTA 4
IDLE 2
INTA 4 Cascade Mode Only
IDLE 5
READ IP 4
IDLE 3 (5 if not cascade mode)
READ CS 4
IDLE 4
PUSH FLAGS 4
IDLE 3
PUSH CS 4
PUSH IP 4
First instruction fetch IDLE 5
from interrupt routine
Total 55
A1212-A0

Figure 8-3. Interrupt Control Unit Latency and Response Time

8.4 PROGRAMMING THE INTERRUPT CONTROL UNIT

Table 8-3 lists the Interrupt Control Unit registers in master mode with their Peripheral Control
Block offset addresses. The remainder of this section describes the functions of the registers.

Table 8-3. Interrupt Control Unit Registers in Master Mode

Register Name Offset Address
INT3 Control 3EH
INT2 Control 3CH
INT1 Control 3AH
INTO Control 38H
DMAO Control 34H
DMA1 Control 36H
Timer Control 32H
Interrupt Status 30H
Interrupt Request 2EH

I 8-11

INTERRUPT CONTROL UNIT Intel®

Table 8-3. Interrupt Control Unit Registers in Master Mode (Continued)

Register Name Offset Address
In-Service 2CH
Priority Mask 2AH
Interrupt Mask 28H
Poll Status 26H
Poll 24H
EOI 22H

8.4.1 Interrupt Control Registers

Each interrupt source has its own Interrupt Control register. The Interrupt Control register allows
you to define the behavior of each interrupt source. Figure 8-4 shows the registers for the timers
and DMA channels, Figure 8-5 shows the registers for INT3:2, and Figure 8-6 shows the registers
for INTO and INT1.

All Interrupt Control registers have a three-bit field (PM2:0) that defines the priority level for the
interrupt source and a mask bit (MSK) that enables or disables the interrupt source. The mask bit
is the same as the one in the Interrupt Mask register. Modifying a bit in either register also mod-
ifies that same bit in the other register.

The Interrupt Control registers for the external interrupt pins also have a bit (LVL) that selects
level-triggered or edge-triggered mode for that interrupt. (See “Edge and Level Triggering” on
page 8-10.)

The Interrupt Control registers for the cascadable external interrupt pins (INTO and INT1) have
two additional bits to support the external 8259As. The CAS bit enables cascade mode, and the
SFNM bit enables special fully nested mode.

8-12

intel.

INTERRUPT CONTROL UNIT

Register Name:

Register Mnemonic:

Register Function:

Interrupt Control Register (internal sources)

TCUCON, DMAOCON, DMA1CON

Control register for the internal interrupt sources

NOTE: Reserved register bits are shown with gray shading. Reserved bits must be written
to a logic zero to ensure compatibility with future Intel products.

15
M|P|P]|P
S|IM|IM|M
Kl2]11]0
A1213-A0
Bit . Reset)
Mnemonic Bit Name State Function
MSK Interrupt 1 Clear to enable interrupts from this source.
Mask
PM2:0 Priority 111 Defines the priority level for this source.
Level

Figure 8-4. Interrupt Control Register for Internal Sources

8-13

INTERRUPT CONTROL UNIT

intel.

Register Name:

Register Mnemonic:

Register Function:

Interrupt Control Register (non-cascadable pins)
[2CON, I3CON

Control register for the non-cascadable external
internal interrupt pins

15 0
L M|P|P]|P
\Y, SIM|M]|M
L Kl2]1]0
A1214-A0
Bit . Reset .
Mnemonic Bit Name State Function
LVL Level-trigger | O Selects the interrupt triggering mode:
0 = edge triggering
1 = level triggering.
MSK Interrupt 1 Clear to enable interrupts from this source.
Mask
PM2:0 Priority 111 Defines the priority level for this source.
Level

NOTE: Reserved register bits are shown with gray shading. Reserved bits must be written
to a logic zero to ensure compatibility with future Intel products.

Figure 8-5. Interrupt Control Register for Noncascadable External Pins

8-14

intel.

INTERRUPT CONTROL UNIT

Register Name:
Register Mnemonic:

Register Function:

Interrupt Control Register (cascadable pins)
[OCON, I1CON

Control register for the cascadable external
interrupt pins

15 0
S|C]|L M|P|P]|P
FlA]|V SIM|M]|M
N|S]|L Kl2]1]0
M
A1215-A0
Bit . Reset .
Mnemonic Bit Name State Function
SFNM Special 0 Set to enable special fully nested mode.
Fully
Nested
Mode
CAS Cascade 0 Set to enable cascade mode.
Mode
LVL Level-trigger | O Selects the interrupt triggering mode:
0 = edge triggering
1 = level triggering.
The LVL bit must be setwhen external 8259As
are cascaded into the Interrupt Control Unit.
MSK Interrupt 1 Clear to enable interrupts from this source.
Mask
PM2:0 Priority 111 Defines the priority level for this source.
Level

NOTE: Reserved register bits are shown with gray shading. Reserved bits must be written
to a logic zero to ensure compatibility with future Intel products.

Figure 8-6. Interrupt Control Register for Cascadable Interrupt Pins

8-15

INTERRUPT CONTROL UNIT Intel®

8.4.2 Interrupt Request Register

The Interrupt Request register (Figure 8-7) has one bit for each interrupt source. When a source
requests an interrupt, its Interrupt Request bit is set (without regard to whether the interrupt is
masked). The Interrupt Request bit is cleared when the interrupt is acknowledged. An external
interrupt pin must remain asserted until its interrupt is acknowledged. Otherwise, the Interrupt
Request bit will be cleared, but the interrupt will not be serviced.

Register Name: Interrupt Request Register
Register Mnemonic: REQST
Register Function: Stores pending interrupt requests
15 0
| | | | D| D T
N|INJ]NJ|N MM M
TIT|T|T AlA R
3|12|11|o0 110
A1201-A0
Bit . Reset .
Mnemonic Bit Name State Function
INT3:0 External 00000 | A hitis set to indicate a pending interrupt from
Interrupts the corresponding external interrupt pin.
DMAL:0 DMA 0 A bit is set to indicate a pending interrupt from
Interrupt the corresponding DMA channel.
TMR Timer 0 This bit is set to indicate a pending interrupt
Interrupt from one of the timers.
NOTE: Reserved register bits are shown with gray shading. Reserved bits must be written
to a logic zero to ensure compatibility with future Intel products.

Figure 8-7. Interrupt Request Register

8.4.3 Interrupt Mask Register

The Interrupt Mask register (Figure 8-8) contains a mask bit for each interrupt source. This reg-
ister allows you to mask (disable) individual interrupts. Set a mask bit to disable interrupts from
the corresponding source. The mask bit is the same as the one in the Interrupt Control register.
Modifying a bit in either register also modifies that same bit in the other register.

8-16

Intel® INTERRUPT CONTROL UNIT

Register Name: Interrupt Mask Register
Register Mnemonic: IMASK
Register Function: Masks individual interrupt sources
15 0
| | I | D|D T
N|NJ|NJN M| M M
TIT|TI|T Al A R
312(1]0 110
A1202-A0
Bit . Reset .
Mnemonic Bit Name State Function
INT3:0 External 00000 | Seta bit to mask (disable) interrupt requests
Interrupt from the corresponding external interrupt pin.
Mask
DMAL:0 DMA 0 Set to mask (disable) interrupt requests from
Interrupt the corresponding DMA channel.
Mask
TMR Timer 0 Set to mask (disable) interrupt requests from
Interrupt the timers.
Mask
NOTE: Reserved register bits are shown with gray shading. Reserved bits must be written
to a logic zero to ensure compatibility with future Intel products.

Figure 8-8. Interrupt Mask Register

8.4.4 Priority Mask Register

The Priority Mask register (Figure 8-9) contains a three-level field that holds a priority value.
This register allows you to mask interrupts based on their priority levels. Write a priority value
to the PM2:0 field to specify the lowest priority interrupt to be serviced. This disables (masks)
any interrupt source whose priority is lower than the PM2:0 value. After reset, the Priority Mask
register is set to the lowest priority (seven), which enables all interrupts of any priority.

8-17

INTERRUPT CONTROL UNIT

Register Name:
Register Mnemonic:

Register Function:

Priority Mask Register
PRIMSK

Masks lower-priority interrupt sources

15 0
PIP]|P
M|M]|M
21110
A1216-A0
Bit . Reset)
Mnemonic Bit Name State Function
PM2:0 Priority 111 Defines a priority-based interrupt mask.
Mask Interrupts whose priority is lower than this value
are masked.

NOTE: Reserved register bits are shown with gray shading. Reserved bits must be written
to a logic zero to ensure compatibility with future Intel products.

Figure 8-9. Priority Mask Register

8.4.5 In-Service Register

The In-Service register has a bit for each interrupt source. The bits indicate which source’s inter-
rupt handlers are currently executing. The In-Service bit is set when an interrupt is acknowl-
edged; the interrupt handler must clear it with an End-of-Interrupt (EOI) command. The Interrupt

Control Unit uses the In-Service register to support interrupt nesting.

8-18

Intel® INTERRUPT CONTROL UNIT

Register Name: In-Service Register
Register Mnemonic: INSERV
Register Function: Indicates which interrupt handlers are in process
15 0
| | | | D|D T
N|NJ|NJN M| M M
TIT|TI|T Al A R
312|110 110
A1192-A0
Bit . Reset .
Mnemonic Bit Name State Function
INT3:0 External 00000 | A hitis set to indicate that the corresponding
Interrupt In- external interrupt is being serviced.
Service
DMAL:0 DMA 0 This bit is set to indicate that the corresponding
Interrupt In- DMA channel interrupt is being serviced.
Service
TMR Timer 0 This bit is set to indicate that a timer interrupt is
Interrupt In- being serviced.
Service
NOTE: Reserved register bits are shown with gray shading. Reserved bits must be written
to a logic zero to ensure compatibility with future Intel products.

Figure 8-10. In-Service Register

8.4.6 Poll and Poll Status Registers

The Poll and Poll Status registers allow you to poll the Interrupt Control Unit and service inter-
rupts through software. You can read these registers to determine whether an interrupt is pending
and, if so, the interrupt type. The registers contain identical information, but reading them pro-
duces different results.

8-19

INTERRUPT CONTROL UNIT

Reading the Poll register (Figure 8-11) acknowledges the pending interrupt, just as if the CPU
had started the interrupt vectoring sequence. The Interrupt Control Unit updates the Interrupt Re-
quest, In-Service, Poll, and Poll Status registers, as it does in the normal interrupt acknowledge
sequence. However, the processor does not run an interrupt acknowledge sequence or fetch the
vector from the vector table. Instead, software must read the interrupt type and execute the proper
routine to service the pending interrupt.

Reading the Poll Status register (Figure 8-12) will merely transmit the status of the polling bits

intel.

without modifying any of the other Interrupt Controller registers.

Register Name:

Register Mnemonic:

Register Function:

Poll Register

POLL

Read to check for and acknowledge pending
interrupts when polling

15 0
| \Y viv]|Vv]yV
R T TIT|IT]|T
E 4 3|12|1]|0
Q
A1208-A0
Bit . Reset)
Mnemonic Bit Name State Function
IREQ Interrupt 0 This bit is set to indicate a pending interrupt.
Request
VT4:.0 Vector Type 0 Contains the interrupt type of the highest
priority pending interrupt.

NOTE: Reserved register bits are shown with gray shading. Reserved bits must be written
to a logic zero to ensure compatibility with future Intel products.

8-20

Figure 8-11. Poll Register

Intel® INTERRUPT CONTROL UNIT

Register Name: Poll Status Register
Register Mnemonic: POLLSTS
Register Function: Read to check for pending interrupts when polling
15 0
| \% V|iVv]|V]V
R T T|ITIT]|T
E 4 3|12|11|0
Q
A1209-A0
Bit . Reset .
Mnemonic Bit Name State Function
IREQ Interrupt 0 This bit is set to indicate a pending interrupt.
Request
VT4:.0 Vector Type 0 Contains the interrupt type of the highest
priority pending interrupt.
NOTE: Reserved register bits are shown with gray shading. Reserved bits must be written
to a logic zero to ensure compatibility with future Intel products.

Figure 8-12. Poll Status Register

8.4.7 End-of-Interrupt (EOI) Register

The End-of-Interrupt register (Figure 8-13) issues an End-of-Interrupt (EOI) command to the In-
terrupt Control Unit, which clears the In-Service bit for the associated interrupt. An interrupt han-
dler typically ends with an EOI command. There are two types of EOl commands: nonspecific
and specific. A nonspecific EOI simply clears the In-Service bit of the highest priority interrupt.
To issue a nonspecific EOl command, set the NSPEC bit. (Write 8000H to the EOI register.)

A specific EOI clears a particular In-Service bit. To issue a specific EOl command, clear the
NSPEC bit and write the VT4:0 bits with the interrupt type of the interrupt whose In-Service bit
you wish to clear. For example, to clear the In-Service bit for INT2, write 000EH to the EOI reg-
ister. The timer interrupts share an In-Service bit. To clear the In-Service bit for any timer inter-
rupt with a specific EOI, write 0008H (interrupt type 8) to the EOI register.

8-21

INTERRUPT CONTROL UNIT

Register Name:

Register Mnemonic:

Register Function:

End-of-Interrupt Register

EOI

Used to issue an EOl command

15 0
N \Y VIV]|V]V
S T TIT|ITI|T
P 4 3|12|1]|0
E
Cc
A1210-A0
Bit . Reset)
Mnemonic Bit Name State Function
NSPEC Nonspecific 0 Set to issue a nonspecific EOI.
EOI
VT4:.0 Interrupt 00000 | Write with the interrupt type of the interrupt
Type whose In-Service bit is to be cleared.

NOTE: Reserved register bits are shown with gray shading. Reserved bits must be written
to a logic zero to ensure compatibility with future Intel products.

8.4.8 Interrupt Status Register

The Interrupt Status register (Figure 8-14) contains the DMA Halt bit and one bit for each timer
interrupt. The CPU sets the DMA Halt bit to suspend DMA transfers while an NMI is processed.
Software can also read and write this bit. See “Suspension of DMA Transfers” on page 10-20 for
details. A timer bit is set to indicate a pending interrupt and is cleared when the interrupt request

Figure 8-13. End-of-Interrupt Register

is acknowledged. Any number of bits can be set at any one time.

8-22

intel.

INTERRUPT CONTROL UNIT

Register Name:

Register Mnemonic:

Register Function:

Interrupt Status Register
INTSTS

Indicates pending shared-source interrupts and
DMA suspension

15 0
D TIT|T
H M|M|M
L RIR]|]R
T 21110
A1193-A0
Bit . Reset .
Mnemonic Bit Name State Function
DHLT DMA Halt 0 This bit is set to suspend DMA activity.
TMR2:0 Timer 000 A bit is set to indicate a pending interrupt from
Interrupt the corresponding timer.
Pending

NOTE: Reserved register bits are shown with gray shading. Reserved bits must be written
to a logic zero to ensure compatibility with future Intel products.

Figure 8-14. Interrupt Status Register

NOTE

Do not write to the DHLT bit while Timer/Counter Unit interrupts are enabled.
A conflict with the internal use of the register may cause incorrect processing
of timer interrupts.

The DHLT bit does not function when the interrupt controller is in slave mode.

8.5 SLAVE MODE

Although Master mode is the most common, Slave mode is useful in larger system designs. In
Slave mode, an external 8259A module controls the interrupt input to the CPU and acts as the
master interrupt controller. The Interrupt Control Unit processes only the internal interrupt re-

guests and acts as an interrupt input to the external 8259A. In simplest terms, the Interrupt Control

Unit behaves like a cascaded 8259A to the master 8259A. (See Figures 8-15 and 8-16.)

8-23

INTERRUPT CONTROL UNIT

INTO

INTA
80186

Modular
Core

Select

IRQ

Vee

INT

8259A/
82C59A

INTA

A4

Cascade
Address
Decode

A1194-A0

8-24

Figure 8-15. Interrupt Control Unit in Slave Mode

Intel® INTERRUPT CONTROL UNIT

DMA
Timer 0 Timer1l Timer 2

(171

Priority
Resolver

Vector
To External 8259A .
Generation
Interrupt Request -
Logic

g
! F - Bus ¢

A1195-A0

Figure 8-16. Interrupt Sources in Slave Mode

8.5.1 Slave Mode Programming

Some registers differ between Slave mode and Master mode. Slave mode adds the Interrupt Vec-
tor Register; it does not support the Poll, Poll Status Registers, INT3 and INT2 Control registers;
and it replaces the Timer, INT1 and INTO Control registers with individual Timer O, Timer 1, and
Timer 2 Control registers. The remaining registers retain the same functions as in Master mode;
however, some bit positions change to accommodate the addition of the individual timer inter-
rupts and the deletion of the external interrupts. Table 8-4 compares the Master and Slave mode
registers and lists their PCB offset addresses.

I 8-25

intel.

INTERRUPT CONTROL UNIT

8.5.1.1 Interrupt Vector Register

The Interrupt Vector Register is used only in Slave mode. In Master mode, the interrupt vector
types are fixed; in Slave mode they are programmable. The Interrupt Vector Register is used to
specify the five most-significant bits of the interrupt vector type. The three least-significant bits
are fixed (Table 8-5).

Table 8-4. Interrupt Control Unit Register Comparison

Master Mode Slave Mode PCB Offset
Register Name Register Name Address
INT3 Control (not used) 3EH
INT2 Control (not used) 3CH
INT1 Control Timer 2 Control 3AH
INTO Control Timer 1 Control 38H
DMA1 Control DMAL Control 36H
DMAO Control DMAOQ Control 34H
Timer Control Timer 0 Control 32H
Interrupt Status Interrupt Status 30H
Interrupt Request Interrupt Request 2EH
In-Service In-Service 2CH
Priority Mask Priority Mask 2AH
Interrupt Mask Interrupt Mask 28H
Poll Status (not used) 26H
Poll (not used) 24H
EOI EOI 22H
(not used) Interrupt Vector 20H

Table 8-5. Slave Mode Fixed Interrupt Type Bits

Type Bits
Interrupt Source

2|11(0
Timer O 0O 0 O
(reserved) o o0 1
DMA 0 0O 1 O
DMA 1 0o 1 1
Timer 1 1 0 O
Timer 2 1 0 1
(reserved) 1 1 O
(reserved) 1 1 1

8-26

Intel® INTERRUPT CONTROL UNIT

Register Name: Interrupt Vector Register (Slave Mode only)
Register Mnemonic: INTVEC
Register Function: Specifies the five most-significant bit of the interrupt

vector types for the internal interrupt sources

15 0
T T|IT|IT|T
4 312|1]0
A1196-A0
Bit . Reset)
Mnemonic Bit Name State Function
T4:0 Interrupt 00000 Specifies the five most-significant bits of the
Vector Type interrupt vector types for the internal interrupt
Field sources. The three least-significant bits are
fixed (see Table 8-5).

NOTE: Reserved register bits are shown with gray shading. Reserved bits must be written
to a logic zero to ensure compatibility with future Intel products.

Figure 8-17. Interrupt Vector Register (Slave Mode Only)

8.5.1.2 End-Of-Interrupt Register

The End-of-Interrupt (EOI) register has the same function in Slave mode as in Master mode.
However, non-specific EOl commands are not supported, so the NSPEC bit is omitted from the
register. Onlyspecific EOl commands can be issued. To clear an In-Service bit in Slave mode,
write the three least-significant bits of the interrupt type (from Table 8-5) to the VT2:0 bits.

8-27

INTERRUPT CONTROL UNIT Intel®

Register Name: End-of-Interrupt Register (in Slave Mode)
Register Mnemonic: EOI
Register Function: Used to issue the EOI command
15 0
V|iVv]V
T|IT]T
21110
A1197-A0
Bit . Reset .
Mnemonic Bit Name State Function
VT2:0 Interrupt 0 Write the three LSBs of the interrupt type (see
Type Table 8-5) to these bits to issue an EOI
command in slave mode.
NOTE: Reserved register bits are shown with gray shading. Reserved bits must be written
to a logic zero to ensure compatibility with future Intel products.

Figure 8-18. End-of-Interrupt Register in Slave Mode

8.5.1.3 Other Registers

The Priority Mask register is identical in Slave mode and Master mode. The Interrupt Request,
Interrupt Mask, and In-Service registers retain the same function, but individual bits differ to ac-
commodate the addition of the individual timer interrupts and the deletion of the external inter-
rupts. Figure 8-19 shows the bit positions for Slave mode.

15 0
T|T D|D T
M| M M| M M
R|R AlA R
211 011 0

Figure 8-19. Request, Mask, and In-Service Registers

8-28

Intel® INTERRUPT CONTROL UNIT

8.5.2 Interrupt Vectoring in Slave Mode

In Slave mode, the external 8259A module acts as the master interrupt controller. Therefore, in-
terrupt acknowledge cycles are required for every interrupt, including those from integrated pe-
ripherals. During the first interrupt acknowledge cycle, the external 8259A determines which
slave interrupt controller has the highest priority interrupt request. It then drives that slave’s ad-
dress onto its CAS2:0ins (Figure 8-20). External logic must decode the correct slave address
from the CAS2:(pins to drive thé SELECPIn.

T1 | T2 T3 | T4 TI TI T1 1 T2 | T3 | T4

CLKOUT J_J_J_J_J_J_ﬂfﬁ{_l_
520 INTA |/ \{ intAa !/

NAo (\ / \ /

SELECT \ /

LOCK \
CAS2:0 [[[X: Slavle Casgade Alddressl Froml8259A: X:
I I I I I I I I I I
NOTES:
1. INTL/SELECT has the SELECT function in slave mode.
2. INT2/INTAO has the INTAOQ function in slave mode.
3. Cascade address is driven by the external 8259A.
4. SELECT must be driven before phase 2 of T2 of the second INTA.
5. SELECT read by processor.
6. ALE is generated for each INTA.
7. RD is inactive.

A1199-A0

Figure 8-20. Interrupt Vectoring in Slave Mode

The SELECTpin is the slave-select input to the Interrupt Control Unit. During the second inter-
rupt acknowledge cycle, the highest-priority slave interrupt controller transfers the interrupt type
of its highest priority interrupt to the CPU. If the Interrupt Control Unit is the highest-priority
slave, it passes the interrupt type to the CPU internally; however, the interrupt acknowledge cycle
still must occur for the benefit of the external 8259A module.

8-29

INTERRUPT CONTROL UNIT Intel®

External interrupt acknowledge cycles must be run for every maskable interrupt. Therefore, the
interrupt response time for every interrupt will be 55 clocks, as shown in Figure 8-21.

) Clocks
Interrupt presented to Interrupt Control Unit ---eeeeeeeeeennes > =
5
Interrupt presented to external 82C59A --werrreeereeninnnss > =
INTA 4
IDLE 2
INTA 4
IDLE 5
READ IP 4
IDLE 3
READ CS 4
IDLE 4
PUSH FLAGS 4
IDLE 3
PUSH CS 4
PUSH IP 4
First instruction fetch IDLE 5
from interrupt routine
Total 55
A1200-A0

Figure 8-21. Interrupt Response Time in Slave Mode

8.5.3 Initializing the Interrupt Control Unit for Master Mode

Follow these steps to initialize the Interrupt Control Unit for Master mode.
1. Determine which interrupt sources you want to use.
2. Determine whether to use the default priority scheme or devise your own.

3. Program the Interrupt Control register for each interrupt source.
— For external interrupt pins, select edge or level triggering.

— For INTO or INT1, enable cascade mode, special fully nested mode, or both, if you
wish to use them.

— If you are using a custom priority scheme, program the priority level for each interrupt
source.

4. Program the Priority Mask with a priority mask level, if you wish to mask interrupts based
on priority. (The default is level seven, which enables all interrupt levels.)

8-30 I

Intel® INTERRUPT CONTROL UNIT

5. Set the mask bit in the Interrupt Mask register for any interrupts that you wish to disable.

Example 8-1 shows sample code to initialize the Interrupt Control Unit.

$mod186

name example_80C186_ICU _initialization

;This routine configures the interrupt controller to provide two cascaded
;interrupt inputs (through an external 8259A connected to INTO and INTAO#)
;and two direct interrupt inputs connected to INT1 and INT3. The default
;priorities are used.

;The example assumes that the register addresses have been properly defined.
code segment
assume cs:code
set_int_ proc near
push dx
push ax
mov ax,0110111B ;cascade mode, priority seven
mov dx,/I0CON ;INTO control register
out dx,ax
mov ax,01001101B ;unmask INT1 and INT3
mov dx,IMASK
out dx,ax
pop ax
pop dx
ret
set_int_ endp
code ends
end

Example 8-1. Initializing the Interrupt Control Unit for Master Mode

8-31

INTERRUPT CONTROL UNIT

8-32

intel.

Timer/Counter Unit

intel.

CHAPTER 9
TIMER/COUNTER UNIT

The Timer/Counter Unit can be used in many applications. Some of these applications include a
real-time clock, a square-wave generator and a digital one-shot. All of these can be implemented
in a system design. A real-time clock can be used to update time-dependent memory variables. A
square-wave generator can be used to provide a system clock tick for peripheral devices. (See
“Timer/Counter Unit Application Examples” on page 9-17 for code examples that configure the
Timer/Counter Unit for these applications.)

9.1 FUNCTIONAL OVERVIEW

The Timer/Counter Unit is composed of three independent 16-bit timers (see Figure 9-1). The op-
eration of these timers is independent of the CPU. The internal Timer/Counter Unit can be mod-
eled as a single counter element, time-multiplexed to three register banks. The register banks are
dual-ported between the counter element and the CPU. During a given bus cycle, the counter el-
ement and CPU can both access the register banks; these accesses are synchronized.

The Timer/Counter Unit is serviced over four clock periods, one timer during each clock, with an
idle clock at the end (see Figure 9-2). No connection exists between the counter element’s se-
guencing through timer register banks and the Bus Interface Unit's sequencing through T-states.
Timer operation and bus interface operation are asynchronous. This time-multiplexed scheme re-
sults in a delay of 2% to 6%2 CLKOUT periods from timer input to timer output.

Each timer keeps its own running count and has a user-defined maximum count value. Timers 0
and 1 can use one maximum count value (single maximum count mode) or two alternating max-
imum count values (dual maximum count mode). Timer 2 can use only one maximum count val-
ue. The control register for each timer determines the counting mode to be used. When a timer is
serviced, its present count value is incremented and compared to the maximum count for that tim-
er. If these two values match, the count value resets to zero. The timers can be configured either
to stop after a single cycle or to run continuously.

Timers 0 and 1 are functionally identical. Figure 9-3 illustrates their operation. Each has a
latched, synchronized input pin and a single output pin. Each timer can be clocked internally or
externally. Internally, the timer can either increment at ¥4 CLKOUT frequency or be prescaled by
Timer 2. A timer that is prescaled by Timer 2 increments when Timer 2 reaches its maximum
count value.

9-1

TIMER/COUNTER UNIT

TO In

!

T1lIn

!

Transition Latch/

Synchronizer

Transition Latch/

Synchronizer

me_erO <> T0
Registers Output Latch
cPU _ Counter Out
<] TMerl | S| Element
Reqgisters T1
Tim_er2 - Output Latch out
Registers
A
CPU Inlfe;rl;]pt
Clock ac

A1292-0A

9-2

Figure 9-1. Timer/Co

unter Unit Block Diagram

Intel® TIMER/COUNTER UNIT

Timer 0 Timer1 Timer 2 Timer 0 Timer1 Timer 2 Timer O
Serviced Serviced Serviced Dead Serviced Serviced Serviced Dead Serviced
o g g o o g o g

® ®

TOIN / '\) / |

T1IN / \ /

TOOUT =]

T10UT =
NOTES:

. TOIN resolution time (setup time met).

. T1IN resolution time (setup time not met).

. Modified count value written into Timer O count register.

. T1IN resolution time, count value written into Timer 1 count register.
. T1IN resolution time.

a b~ wNE

A1293-0A

Figure 9-2. Counter Element Multiplexing and Timer Input Synchronization

TIMER/COUNTER UNIT Intel®

External

Clocking

(EXT =1)
?

Yes

Retrigger
(RTG=1)
?

Loto Hi
transition on input
pin since last
service

Lo to Hi
transition on input
pin since last
service

Timer Input Yes Yes

at High Level
?

No

Clear Count
Prescaler On Register

(P=1)
?

Did Timer 2

Reach Maxcount

Last Service

State
?

Increment
Counter

Continued
A

Figure 9-3. Timers 0 and 1 Flow Chart

A1294-0A

9-4

TIMER/COUNTER UNIT

Continued From
A

Alternating

Maxcount Regs

(ALT =1)
?

Yes

No
(Use"B")

Using

Maxcount A

(RIU =0)
?

Counter =
Compare "A"
?

Counter =
Compare "B"
?

Counter =
Compare "A"
?

Yes
Pulse TOUT Pin Set RIU Bit Clear RIU Bit
Low For 1 Clock TOUT Pin Driven Low TOUT Pin Driven High

Continuous Mode
(CONT=1)
?

Continuous Mode
(CONT=1)
?

No No

Interrupt Bit Set
?

Clear Enable Bit
(Stop Counting)

Clear Enable Bit
(Stop Counting)

]

i | Request Interrupt |

Y

| Clear Counter |

A1295-0A

Figure 9-3. Timers 0 and 1 Flow Chart (Continued)

TIMER/COUNTER UNIT Intel®

When configured for internal clocking, the Timer/Counter Unit uses the input pins either to en-
able timer counting or to retrigger the associated timer. Externally, a timer increments on low-to-
high transitions on its input pin (up to ¥4 CLKOUT frequency).

Timers 0 and 1 each have a single output pin. Timer output can be either a single pulse, indicating
the end of a timing cycle, or a variable duty cycle wave. These two output options correspond to
single maximum count mode and dual maximum count mode, respectively (Figure 9-4). Inter-
rupts can be generated at the end of every timing cycle.

Timer 2 has no input or output pins and can be operated only in single maximum count mode
(Figure 9-4). It can be used as a free-running clock and as a prescaler to Timers 0 and 1. Timer 2
can be clocked only internally, at ¥» CLKOUT frequency. Timer 2 can also generate interrupts at
the end of every timing cycle.

Maxcount A Maxcount B
Dual Maximum
Count Mode
One CPU
Maxcount A Clock

Single Maximum
Count Mode

A1296-0A

Figure 9-4. Timer/Counter Unit Output Modes

9.2 PROGRAMMING THE TIMER/COUNTER UNIT

Each timer has three registers: a Timer Control register (Figure 9-5 and Figure 9-6), a Timer
Count register (Figure 9-7) and a Timer Maxcount Compare register (Figure 9-8). Timers 0 and
1 also have access to an additional Maxcount Compare register. The Timer Control register con-
trols timer operation. The Timer Count register holds the current timer count value, and the Max-
count Compare register holds the maximum timer count value.

9-6 I

intel.

TIMER/COUNTER UNIT

Register Name: Timer 0 and 1 Control Registers
Register Mnemonic: TOCON, T1CON
Register Function: Defines Timer 0 and 1 operation.
15 0
E| I Il R M| R PIEJA]|C
N|INJ|NJI C|T X|1L]|]O
H|TJ|U G T|TIN
T
A1297-0A
Bit . Reset .
Mnemonic Bit Name State Function

EN Enable 0 Set to enable the timer. This bit can be written only
when the INH bit is set.

INH Inhibit X Set to enable writes to the EN bit. Clear to ignore
writes to the EN bit. The TNH bit is not stored,; it
always reads as zero.

INT Interrupt X Set to generate an interrupt request when the Count
register equals a Maximum Count register. Clear to
disable interrupt requests.

RIU Register In X Indicates which compare register is in use. When set,

Use the current compare register is Maxcount Compare B;
when clear, it is Maxcount Compare A.
MC Maximum X This bit is set when the counter reaches a maximum
Count count. The MC bit must be cleared by writing to the
Timer Control register. This is not done automati-
cally. If MC is clear, the counter has not reached a
maximum count.
NOTE: Reserved register bits are shown with gray shading. Reserved bits must be written to a

logic zero to ensure compatibility with future Intel products.

Figure 9-5. Timer 0 and Timer 1 Control Registers

9-7

TIMER/COUNTER UNIT

Register Name:
Register Mnemonic:

Register Function:

Timer 0 and 1 Control Registers
TOCON, T1CON

Defines Timer 0 and 1 operation.

15 0
E| I Il R M| R PIEJA]|C
N|INJ|NJI C| T X|1L]|]O
H|TJ|U G T|TIN
T
A1297-0A
Bit . Reset .
Mnemonic Bit Name State Function
RTG Retrigger X This bit specifies the action caused by a low-to-high
transition on the TMR INx input. Set RTG to reset the
count; clear RTG to enable counting. This bit is
ignored with external clocking (EXT=1).
P Prescaler X Set to increment the timer when Timer 2 reaches its
maximum count. Clear to increment the timer at %
CLKOUT. This bit is ignored with external clocking
(EXT=1).
EXT External X Set to use external clock; clear to use internal clock.
Clock The RTG and P bits are ignored with external clocking
(EXT set).
ALT Alternate X This bit controls whether the timer runs in single or
Compare dual maximum count mode (see Figure 9-4 on page
Register 9-6). Set to specify dual maximum count mode; clear
to specify single maximum count mode.
CONT Continuous X Set to cause the timer to run continuously. Clear to
Mode disable the counter (clear the EN bit) after each
counting sequence.

NOTE: Reserved register bits are shown with gray shading. Reserved bits must be written to a

logic zero to ensure compatibility with future Intel products.

9-8

Figure 9-5. Timer 0 and Timer 1 Control Registers (Continued)

Intel® TIMER/COUNTER UNIT

Register Name: Timer 2 Control Register
Register Mnemonic: T2CON
Register Function: Defines Timer 2 operation.
15 0
Ef 1] M c
N|N|[N c o
H|T N
T
ALZY98-UA
Bit . Reset .
Mnemonic Bit Name State Function
EN Enable 0 Set to enable the timer. This bit can be written

only when the TNH bit is set.

INH Inhibit X Set to enable writes to the EN bit. Clear to
ignore writes to the EN bit. The INH bit is not
stored; it always reads as zero.

INT Interrupt X Set to generate an interrupt request when the
Count register equals a Maximum Count
register. Clear to disable interrupt requests.

MC Maximum X This bit is set when the counter reaches a
Count maximum count. The MC bit must be cleared
by writing to the Timer Control register. This

is not done automatically. If MC is clear, the
counter has not reached a maximum count.

CONT Continuous X Set to cause the timer to run continuously.
Mode Clear to disable the counter (clear the EN bit)
after each counting sequence.

NOTE: Reserved register bits are shown with gray shading. Reserved bits must be written
to a logic zero to ensure compatibility with future Intel products.

Figure 9-6. Timer 2 Control Register

9-9

TIMER/COUNTER UNIT

Register Name:

Register Function:

Register Mnemonic:

Timer Count Register
TOCNT, T1CNT, T2CNT

Contains the current timer count.

15 0
T T T T T T T T T T T T T T T T
c|cjl]c]|c c|c|c|c c|cjlJcj|c c|cjl]cj|c
1 1 1 1 1 1 9 8 7 6 5 4 3 2 1 0
514]13]|2 110
A1299-0A
Bit . Reset .
Mnemonic Bit Name State Function
TC15:0 Timer Count | XXXXH | Contains the current count of the associated
Value timer.

9-10

Figure 9-7. Timer Count Registers

Intel® TIMER/COUNTER UNIT

Register Name: Timer Maxcount Compare Register
Register Mnemonic: TOCMPA, TOCMPB, TICMPA, TICMPB, T2CMPA
Register Function: Contains timer maximum count value.
15 0
Tl T|T(|T]T|T|T|fTlT]TT|[T|T|T]|T
clc|lcfc]lc|c|c]|c|lc]c|c]c]||lc]|c]|lc]c
11|21 f12 11|98l 7|6]|5]4|]3]2]1]0
5(4]3]2 1|0
A1300-0A
Bit . Reset .
Mnemonic Bit Name State Function
TC15:0 Timer XXXXH | Contains the maximum value a timer will count
Compare to before resetting its Count register to zero.
Value

Figure 9-8. Timer Maxcount Compare Registers

9.2.1 Initialization Sequence

When initializing the Timer/Counter Unit, the following sequence is suggested:
1. If timer interrupts will be used, program interrupt vectors into the Interrupt Vector Table.

2. Clear the Timer Count register. This must be done before the timer is enabled because
the count register is undefined at reset. Clearing the count register ensures that counting
begins at zero.

3. Write the desired maximum count value to the Timer Maxcount Compare register. For
dual maximum count mode, write a value to both Maxcount Compare A and B.

4. Program the Timer Control register to enable the timer. When using Timer 2 to prescale
another timer, enable Timer 2 last. If Timer 2 is enabled first, it will be at an unknown
point in its timing cycle when the timer to be prescaled is enabled. This results in an
unpredictable duration of the first timing cycle for the prescaled timer.

9-11

TIMER/COUNTER UNIT Intel®

9.2.2 Clock Sources

The 16-bit Timer Count register increments once for each timer event. A timer event can be a
low-to-high transition on a timer input pin (Timers 0 and 1), a pulse generated every fourth CPU
clock (all timers) or a timeout of Timer 2 (Timers 0 and 1). Up to 65586ef&nts can be count-

ed.

Timers 0 and 1 can be programmed to count low-to-high transitions on their input pins as timer
events by setting the External (EXT) bit in their control registers. Transitions on the external pin
are synchronized to the CPU clock before being presented to the timer circuitry. The timer counts
transitions on this pin. The input signal must go low, then high, to cause the timer to increment.
The maximum count-rate for the timers is ¥ the CPU clock rate (measured at CLKOUT) because
the timers are serviced only once every four clocks.

All timers can use transitions of the CPU clock as timer events. For internal clocking, the timer
increments every fourth CPU clock due to the counter element’s time-multiplexed servicing
scheme. Timer 2 can use only the internal clock as a timer event.

Timers 0 and 1 can also use Timer 2 reaching its maximum count as a timer event. In this config-
uration, Timer 0 or Timer 1 increments each time Timer 2 reaches its maximum count. See Table
9-1 for a summary of clock sources for Timers 0 and 1. Timer 2 must be initialized and running
in order to increment values in other timer/counters.

Table 9-1. Timer 0 and 1 Clock Sources

EXT P Clock Source
0 0 Timer clocked internally at ¥ CLKOUT frequency.
0 1 Timer clocked internally, prescaled by Timer 2.
1 X Timer clocked externally at up to ¥a CLKOUT frequency.

9.2.3 Counting Modes

All timers have a Timer Count register and a Maxcount Compare A register. Timers 0 and 1 also
have access to a second Maxcount Compare B register. Whenever the contents of the Timer
Count register equal the contents of the Maxcount Compare register, the count register resets to
zero. The maximum count value will never be stored in the count register. This is because the
counter element increments, compares and resets a timer in one clock cycle. Therefore, the max-
imum value is never written back to the count register. The Maxcount Compare register can be
written at any time during timer operation.

9-12

Intel® TIMER/COUNTER UNIT

The timer counting from its initial count (usually zero) to its maximum count (either Maxcount
Compare A or B) and resetting to zero defines one timing cycle. A Maxcount Compare value of
0 implies a maximum count of 65536, a Maxcount Compare value of 1 implies a maximum count
of 1, etc.

Only equivalence between the Timer Count and Maxcount Compare registers is checked. The

count does not reset to zero if its value is greater than the maximum count. If the count value ex-
ceeds the Maxcount Compare value, the timer counts to OFFFFH, increments to zero, then counts
to the value in the Maxcount Compare register. Upon reaching a maximum count value, the Max-

imum Count (MC) bit in the Timer Control register sd@ise MC bit must be cleared by writing

to the Timer Control register. This is not done automatically.

The Timer/Counter Unit can be configured to execute different counting sequences. The timers
can operate in single maximum count mode (all timers) or dual maximum count mode (Timers O
and 1 only). They can also be programmed to run continuously in either of these modes. The Al-
ternate (ALT) bit in the Timer Control register determines the counting modes used by Timers 0
and 1.

All timers can use single maximum count mode, where only Maxcount Compare A is used. The
timer will count to the value contained in Maxcount Compare A and reset to zero. Timer 2 can
operate only in this mode.

Timers 0 and 1 can also use dual maximum count mode. In this mode, Maxcount Compare A and
Maxcount Compare B are both used. The timer counts to the value contained in Maxcount Com-
pare A, resets to zero, counts to the value contained in Maxcount Compare B, and resets to zero
again. The Register In Use (RIU) bit in the Timer Control register indicates which Maxcount
Compare register is currently in use.

The timers can be programmed to run continuously in single maximum count and dual maximum
count modes. The Continuous (CONT) bit in the Timer Control register determines whether a
timer is disabled after a single counting sequence.

9231 Retriggering

The timer input pins affect timer counting in three ways (see Table 9-2). The programming of the
External (EXT) and Retrigger (RTG) bits in the Timer Control register determines how the input
signals are used. When the timers are clocked internally, the RTG bit determines whether the in-
put pin enables timer counting or retriggers the current timing cycle.

When the EXT and RTG bits are clear, the timer counts internal timer events. In this mode, the
input is level-sensitive, not edge-sensitive. A low-to-high transition on the timer input is not re-
quired for operation. The input pin acts as an external enable. If the input is high, the timer will
count through its sequence, provided the timer remains enabled.

9-13

TIMER/COUNTER UNIT Intel®

Table 9-2. Timer Retriggering

EXT RTG Timer Operation
0 0 Timer counts internal events, if input pin remains high.
0 1 Timer counts internal events; count resets to zero on every low-to-high transition on
the input pin.
1 X Timer input acts as clock source.

When the EXT bit is clear and the RTG bit is set, every low-to-high transition on the timer input
pin causes the Count register to reset to zero. After the timer is enabled, counting begins only after
the first low-to-high transition on the input pin. If another low-to-high transition occurs before
the end of the timer cycle, the timer count resets to zero and the timer cycle begins again. In dual
maximum count mode, the Register In Use (RIU) bit does not clear when a low-to-high transition
occurs. For example, if the timer retriggers while Maxcount Compare B is in use, the timer resets
to zero and counts to maximum count B before the RIU bit cléadual maximum count

mode, the timer retriggering extends the use of the current Maxcount Compare register.

9.2.4 Pulsed and Variable Duty Cycle Output

Timers 0 and 1 each have an output pin that can perform two functions. First, the output can be a
single pulse, indicating the end of a timing cycle (single maximum count mode). Second, the out-
put can be a level, indicating the Maxcount Compare register currently in use (dual maximum
count mode). The output occurs one clock after the counter element services the timer when the
maximum count is reached (see Figure 9-9).

With external clocking, the time between a transition on a timer input and the corresponding tran-
sition of the timer output varies from 2% to 6% clocks. This delay occurs due to the time-multi-
plexed servicing scheme of the Timer/Counter Unit. The exact timing depends on when the input
occurs relative to the counter element’s servicing of the timer. Figure 9-2 on page 9-3 shows the
two extremes in timer output delay. Timer 0 demonstrates the best possible case, where the input
occurs immediately before the timer is serviced. Timer 1 demonstrates the worst possible case,
where the input is latched, but the setup time is not met and the input is not recognized until the
counter element services the timer again.

In single maximum count mode, the timer output pin goes low for one CPU clock period (see Fig-

ure 9-4 on page 9-6). This occurs when the count value equals the Maxcount Compare A value.
If programmed to run continuously, the timer generates periodic pulses.

9-14

Intel® TIMER/COUNTER UNIT

Timer O
Serviced
{ ' @)

] N

Internal Count Value Maxcount - 1><

o
1

TxOUT Pin

NOTE: 1. TCLOVl

A1301-0A

Figure 9-9. TxOUT Signal Timing

In dual maximum count mode, the timer output pin indicates which Maxcount Compare register
is currently in use. A low output indicates Maxcount Compare B, and a high output indicates
Maxcount Compare A (see Figure 9-4 on page 9-6). If programmed to run continuously, a repet-
itive waveform can be generated. For example, if Maxcount Compare A contains 10, Maxcount
Compare B contains 20, and CLKOUT is 12.5 MHz, the timer generates a 33 percent duty cycle
waveform at 104 KHz. The output pin always goes high at the end of the counting sequence (even
if the timer is not programmed to run continuously).

9.2.5 Enabling/Disabling Counters

Each timer has an Enable (EN) bit in its Control register to allow or prevent timer counting. The
Inhibit (TNH) bit controls write accesses to the EN bit. Timers 0 and 1 can be programmed to use
their input pins as enable functions also. If a timer is disabled, the count register does not incre-
ment when the counter element services the timer.

The Enable bit can be altered by programming or the timers can be programmed to disable them-
selves at the end of a counting sequence with the Continuous (CONT) bit. If the timer is not pro-
grammed for continuous operation, the Enable bit automatically clears at the end of a counting
sequence. In single maximum count mode, this occurs after Maxcount Compare A is reached. In
dual maximum count mode, this occurs after Maxcount Compare B is reached (Timers 0 and 1

only).

9-15

TIMER/COUNTER UNIT Intel®

The input pins for Timers 0 and 1 provide an alternate method for enabling and disabling timer
counting. When using internal clocking, the input pin can be programmed either to enable the tim-
er or to reset the timer count, depending on the state of the Retrigger (RTG) bit in the control reg-
ister. When used as an enable function, the input pin either allows (input high) or prevents (input
low) timer counting. To ensure recognition of an input level, it must be valid for four CPU clocks.
This is due to the counter element’s time-multiplexed servicing scheme for the timers.

9.2.6 Timer Interrupts

All timers can generate internal interrupt requests. Although all three timers share a single inter-
rupt request to the CPU, each has its own vector location and internal priority. Timer O has the
highest interrupt priority and Timer 2 has the lowest.

Timer Interrupts are enabled or disabled by the Interrupt (INT) bit in the Timer Control register.

If enabled,