

APPLICATION
NOTE

AP-485

Intel Processor
Identification and the
CPUID Instruction

Order Number: 241618-017

February 2001

Information in this document is provided in connection with Intel products. No license, express or implied,
by estoppel or otherwise, to any intellectual property rights is granted by this document. Except as
provided in Intel’s Terms and Conditions of Sale for such products, Intel assumes no liability whatsoever,
and Intel disclaims any express or implied warranty, relating to sale and/or use of Intel products including
liability or warranties relating to fitness for a particular purpose, merchantability, or infringement of any
patent, copyright or other intellectual property right. Intel products are not intended for use in medical, life
saving, or life sustaining applications.

Intel may make changes to specifications and product descriptions at any time, without notice.

Designers must not rely on the absence or characteristics of any features or instructions marked
“reserved” or “undefined.” Intel reserves these for future definition and shall have no responsibility
whatsoever for conflicts or incompatibilities arising from future changes to them.

Intel’s Intel Architecture processors (e.g., Pentium® processor, Pentium processor with MMX™
technology, Pentium Pro processor, Pentium II processor, Pentium II Xeon™ processor, Pentium III
processor, Pentium III Xeon™ processor, Pentium 4 processor and Intel Celeron™ processor) may
contain design defects or errors known as errata which may caus e the product to deviate from published
specifications. Current characterized errata are available on request. Contact your local Intel sales office
or your distributor to obtain the latest specifications and before placing your product order.

Copies of documents which have an ordering number and are referenced in this document, or other Intel
literature, may be obtained from:

 Intel Corporation
 P.O. Box 7641
 Mt. Prospect IL 60056-7641

or call 1-800-879-4683
or visit Intel’s website at http://www.intel.com/

Copyright © Intel Corporation 1993-2001.

* Third-party brands and names are the property of their respective owners.

 AP-485

 3

CONTENTS
PAGE

1. INTRODUCTION ...6
1.1. Update Support..6

2. DETECTING THE CPUID INSTRUCTION...6
3. OUTPUT OF THE CPUID INSTRUCTION...7

3.1. Vendor ID String...7
3.2. Processor Signature...7
3.3. Feature Flags ...13
3.4. SYSENTER/SYSEXIT – SEP Features Bit...13
3.5. Cache Size and Format Information...15
3.6. Pentium® II Processor, model 3 Output Example ..17

4. PROCESSOR SERIAL NUMBER ...18
4.1. Presence of Processor Serial Number ...18
4.2. Forming the 96-bit Processor Serial Number ...18

5. BRAND ID ...19
6. BRAND STRING ...20
7. USAGE GUIDELINES ...21
8. PROPER IDENTIFICATION SEQUENCE...21
9. USAGE PROGRAM EXAMPLES ..23
10. ALTERNATE METHOD OF DETECTING FEATURES ...23
11. DENORMALS ARE ZERO ..23
12. OPERATING FREQUENCY ..24

AP-485

4

REVISION HISTORY

Revision Revision History Date
-001 Original Issue. 05/93
-002 Modified Table 2, Intel486™ and Pentium® Processor

Signatures.
10/93

-003 Updated to accommodate new processor versions. Program
examples modified for ease of use, section added discussing
BIOS recognition for OverDrive® processors and feature flag
information updated.

09/94

-004 Updated with Pentium Pro and OverDrive processors
information. Modified Tables1, 3 and 5. Inserted Tables 6, 7 and
8. Inserted Sections 3.4. and 3.5.

12/95

-005 Added Figures 1 and 3. Added Footnotes 1 and 2. Modified
Figure 2. Added Assembly code example in Section 4. Modified
Tables 3, 5 and 7. Added two bullets in Section 5.0. Modified
cpuid3b.ASM and cpuid3b.C programs to determine if processor
features MMX™ technology. Modified Figure 6.0.

11/96

-006 Modified Table 3. Added reserved for future member of P6 family
of processors entry. Modified table header to reflect Pentium II
processor family. Modified Table 5. Added SEP bit definition.
Added Section 3.5. Added Section 3.7 and Table 9. Corrected
references of P6 family to reflect correct usage.
Modified cpuid3a.asm, cpuid3b.asm and cpuid3.c example code
sections to check for SEP feature bit and to check for, and
identify, the Pentium II processor. Added additional disclaimer
related to designers and errata.

3/97

- 007 Modified Table 2. Added Pentium II processor, model 5 entry.
Modified existing Pentium II processor entry to read “Pentium II
processor, model 3”. Modified Table 5. Added additional feature
bits, PAT and FXSR. Modified Table 7. Added entries 44h and
45h.
Removed the note “Do not assume a value of 1 in a feature flag
indicates that a given feature is present. For future feature flags,
a value of 1 may indicate that the specific feature is not present”
in section 4.0.
Modified cpuid3b.asm and cpuid3.c example code section to
check for, and identify, the Pentium II processor, model 5.
Modified existing Pentium II processor code to print Pentium II
processor, model 3.

1/98

- 008 Added note to identify Intel Celeron™ processor, model 5 in
section 3.2. Modified Table 2. Added Intel Celeron processor &
Pentium® OverDrive® processor with MMX™ technology entry.
Modified Table 5. Added additional feature bit, PSE-36.
Modified cpuid3b.asm and cpuid3.c example code to check for,
and identify, the Intel Celeron processor.

4/98

-009 Added note to identify Pentium II Xeon™ processor in section
3.2. Modified Table 2. Added Pentium II Xeon processor entry.
Modified cpuid3b.asm and cpuid3.c example code to check for,
and identify, the Pentium II Xeon processor.

6/98

-010 No Changes

-011 Modified Table 2. Added Intel Celeron processor, model 6 entry.
Modified cpuid3b.asm and cpuid3.c example code to check for,
and identify, the Intel Celeron processor, model 6.

12/98

 AP-485

 5

REVISION HISTORY

Revision Revision History Date
-012 Modified Figure 1 to add the reserved information for the

Intel386 processors. Modified Figure 2. Added the Processor
serial number information returned when the CPUID instruction
is executed with EAX=3. Modified Table 1. Added the Processor
serial number parameter. Modified Table 2. Added the Pentium
III processor and Pentium III Xeon processor. Added Section 4
“Processor serial number”.
Modified cpuid3a.asm, cpuid3b.asm and cpuid3.c example code
to check for and identify the Pentium III processor and the
Pentium III Xeon processor.

12/98

-013 Modified Figure 2. Added the Brand ID information returned
when the CPUID instruction is executed with EAX=1. Added
section 5 “Brand ID”. Added Table 10 that shows the defined
Brand ID values.
Modified cpuid3a.asm, cpuid3b.asm and cpuid3.c example code
to check for and identify the Pentium III processor, model 8 and
the Pentium III Xeon processor, model 8.

10/99

-014 Modified Table 4. Added Intel Celeron processor, model 8 03/00

-015 Modified Table 4. Added Pentium III Xeon processor, model
AModified Table 7, Added the 8-way set associative 1M, and 8-
way set associative 2M cache descriptor entries.

05/00

-016 Revised Figure 3 to include the Extended Family and Extended
Model when CPUID is executed with EAX=1.
Added section 6 which describes the Brand String.
Added section 10 Alternate Method of Detecting Features and
sample code Example 4.
Added the Pentium 4 processor signature to Table 4.
Added new feature flags (SSE2, SS and TM) to Table 5.
Added new cache descriptors to Table 7.
Removed Pentium Pro cache descriptor example.

11/00

-017 Modified Figure 3 to include additional features reported by the
Pentium 4 processors.
Modified Table 7 to include additional Cache and TLB
descriptors defined by the Intel® NetBurst™ Micro-Architecture.
Added Section 11 and program Example 5 which describes how
to detect if a processor supports the DAZ feature.
Added Section 12 and program Example 6 which describes a
method of calculating the actual operating frequency of the
processor.

AP-485

6

1. INTRODUCTION
As the Intel Architecture evolves with the addition of
new generations and models of processors (8086, 8088,
Intel286, Intel386™, Intel486™, Pentium® processors,
Pentium® OverDrive® processors, Pentium®
processors with MMX™ technology, Pentium®
OverDrive processors with MMX™ technology,
Pentium® Pro processors, Pentium® II processors,
Pentium® II Xeon™ processors, Pentium® II
Overdrive® processors, Intel® Celeron™ processors,
Pentium® III processors, Pentium® III Xeon™
processors and Pentium® 4 processors), it is essential
that Intel provide an increasingly sophisticated means
with which software can identify the features available
on each processor. This identification mechanism has
evolved in conjunction with the Intel Architecture as
follows:

1. Originally, Intel published code sequences that could
detect minor implementation or architectural differences
to identify processor generations.

2. Later, with the advent of the Intel386 processor, Intel
implemented processor signature identification that
provided the processor family, model, and stepping
numbers to software, but only upon reset.

3. As the Intel Architecture evolved, Intel extended the
processor signature identification into the CPUID
instruction. The CPUID instruction not only provides the
processor signature, but also provides information about
the features supported by and implemented on the Intel
processor.

The evolution of processor identification was necessary
because, as the Intel Architecture proliferates, the
computing market must be able to tune processor
functionality across processor generations and models
that have differing sets of features. Anticipating that
this trend will continue with future processor
generations, the Intel Architecture implementation of
the CPUID instruction is extensible.

The Pentium III processors and Pentium III Xeon
processors extend the concept of processor
identification with the addition of processor serial
number. Processor serial number is a 96-bit number
accessible through the CPUID instruction. Processor
serial number can be used by applications to identify a
processor, and by extensions, its system.

Beginning with the Pentium III processors, model 8,
the Pentium III Xeon processors, model 8, and the Intel
Celeron processor, model 8 the concept of processor
identification is further extended with the addition of
Brand ID. Brand ID is an 8-bit number accessible
through the CPUID instruction. Brand ID is used by

applications to identify the Intel brand name of the
processor.

This application note explains how to use the CPUID
instruction in software applications, BIOS
implementations, and various processor tools. By
taking advantage of the CPUID instruction, software
developers can create software applications and tools
that can execute compatibly across the widest range of
Intel processor generations and models, past, present,
and future.

1.1. Update Support
You can obtain new Intel processor signature and
feature bits information from the developer’s manual,
programmer’s reference manual or appropriate
documentation for a processor. In addition, you can
receive updated versions of the programming examples
included in this application note; contact your Intel
representative for more information, or visit Intel’s
website at http://developer.intel.com/ .

2. DETECTING THE CPUID
INSTRUCTION

The Intel486 family and subsequent Intel processors
provide a straightforward method for determining
whether the processor's internal architecture is able to
execute the CPUID instruction. This method uses the
ID flag in bit 21 of the EFLAGS register. If software
can change the value of this flag, the CPUID
instruction is executable 1 (see Figure 1).

The POPF, POPFD, PUSHF, and PUSHFD instructions
are used to access the Flags in Eflags register. The
program examples at the end of this application note
show how you use the PUSHFD instruction to read and
the POPFD instruction to change the value of the ID
flag.

Footnotes

1 Only in some Intel486™ and succeeding processors.
Bit 21 in the Intel386™ processor’s Eflag register
cannot be changed by software, and the Intel386
processor cannot execute the CPUID instruction.
Execution of CPUID on a processor that does not
support this instruction will result in an invalid
opcode exception.

 AP-485

 7

ID

R

Pentium® and subsequent IA32 Processor Eflags
Register
Notes:
1) R – Intel Reserved
2) ID - CPUID Presence bit

ID

Intel486™ Processor Eflags Register

Intel386™ Processor Eflags Register

286 Flags Register

8086 Flags Register

21

Figure 1. Flag Register Evolution

3. OUTPUT OF THE CPUID
INSTRUCTION

Figure 3 summarizes the outputs of the CPUID
instruction. The function of the CPUID instruction is
fully dependent upon the contents of the EAX register.
This means, by placing different values in the EAX
register and then executing CPUID, the CPUID
instruction will perform a specific function dependent
upon whatever value is resident in the EAX register
(see Table 1). In order to determine the highest
acceptable value for the EAX register input and CPUID
operation, the program should set the EAX register
parameter value to “0” and then execute the CPUID
instruction as follows

 MOV EAX, 00H
 CPUID

After the execution of the CPUID instruction, a return
value will be present in the EAX register. Always use
an EAX parameter value that is equal to or greater than
zero and less than or equal to this highest EAX
“returned” value. On current and future IA-32
processors, bit 31 in the EAX register will be clear
when CPUID is called with an input parameter greater
then highest value. All other bit values returned by the
processor in response to a CPUID instruction with
EAX set to a value higher than appropriate for that

processor are model specific and should not be relied
upon.

3.1. Vendor ID String
In addition to returning the highest value in the EAX
register, the Intel Vendor-ID string can be
simultaneously verified as well. If the EAX register
contains an input value of 0, the CPUID instruction
also returns the vendor identification string in the EBX,
EDX, and ECX registers (see Figure 3). These registers
contain the ASCII string:

GenuineIntel

While any imitator of the Intel Architecture can provide
the CPUID instruction, no imitator can legitimately
claim that its part is a genuine Intel part. So the
presence of the “GenuineIntel” string is an assurance
that the CPUID instruction and the processor signature
are implemented as described in this document. If the
“GenuineIntel” string is not returned after execution of
the CPUID instruction, do not rely upon the
information described in this document to interpret the
information returned by the CPUID instruction.

3.2. Processor Signature
Beginning with the Intel486 processor family, the EDX
register contains the processor identification signature
after reset (see Figure 2).

Reserved Type Family Model SteppingEDX

000963

Figure 2. EDX Register after RESET

Processors that implement the CPUID instruction also
return the processor identification signature after reset;
however, the CPUID instruction gives you the
flexibility of checking the processor signature at any
time. Figure 2 shows the format of the signature for the
Intel486, Pentium, Pentium Pro, Pentium II processors,
Pentium II Xeon processors, Pentium II Overdrive
processors, Intel Celeron processors, Pentium III
processors, and Pentium III Xeon processors. The
Pentium 4 processor also utilizes the extended family
as shown in Figure 3. Note that the EDX processor
signature value after reset is equivalent to the processor
signature output value in the EAX register in Figure 3.
Table 4 shows the values returned in the EAX register
currently defined for these processors.

AP-485

8

 31 0
Highest Value EAX Highest Integer Value

 31 23 15 7 0
 EBX u (75) n (6E)) e (65) G (47)
Vendor ID EDX I (49) e (65) n (6E) i (69)

 ECX l (6C) e (65) t (74) n (6E)
 ASCII String (with Hexadecimal)

Output of CPUID if EAX = 0

Processor 31 27 19 15 13 11 7 3 0
Signature EAX

Reserved (gray)

Extended Family
Extended Model
Processor Type

Family
Model

Stepping

 31 23 15 7 0
Misc. Info EBX APIC ID Reserved chunks Brand ID

ECX Bit Array (reserved for future features) Feature Flags
EDX Bit Array (Refer to Table 5)

Output of CPUID if EAX = 1

Output of CPUID if EAX = 2

 31 0
 EAX
Configuration EBX
Parameters ECX
 EDX

Configuration Parameters
(Refer to Section 3.5)

Output of CPUID if EAX = 3

 31 0
EAX Reserved
EBX Reserved
ECX Lower 32-bits (of lower 64-bits)

Lower 64-bits
of the 96-bit
processor
serial number

EDX Upper 32 bits (of lower 64-bits)

Figure 3. CPUID Instruction Outputs

 AP-485

 9

Table 1. Effects of EAX Contents on
CPUID Instruction Output

Parameter Outputs of CPUID
EAX = 0 EAX ? Highest value recognized by

CPUID instruction
 EBX:EDX:ECX ? Vendor

identification string
EAX = 1 EAX ? Processor signature, or

Upper 32 bits of 96-bit processor
serial number

 EDX ? Feature flags

 EBX[7:0] ? Brand ID
EBX[31:8] ? Reserved

 ECX ? Reserved

EAX = 2 EAX:EBX:ECX:EDX ? Processor
configuration parameters

EAX = 3 EDX:ECX ? ?lower 64-bits of 96-bit
processor serial number

4 ? EAX ?
highest value

Reserved

EAX > highest
value

EAX:EBX:ECX:EDX ? Undefined
(Do not use.)

The processor type, specified in bit positions 12 and 13
of Table 2 indicates whether the processor is an original
OEM processor, an OverDrive processor, or a dual
processor (capable of being used in a dual processor
system). Table 2 shows the processor type values
returned in bits 12 and 13 of the EAX register.

Table 2. Processor Type
(Bit Positions 13 and 12)

Value Description
00 Original OEM processor

01 OverDrive® processor

10 Dual processor

11 Intel reserved (Do not use.)

The model number, specified in bits 4 though 7,
indicates the processor’s family model number, while
the stepping number in bits 0 through 3 indicates the
revision number of that model.

The family value, specified in bit positions 8 through
11, indicates whether the processor belongs to the
Intel386, Intel486, Pentium, Pentium Pro or Pentium 4
family of processors. P6 family processors include all
processors based on the Pentium® Pro processor
architecture and have a family code equal to 6.

In the event that an IA-32 processors Family or Model
fields exceed 0Eh, the format of the returned data in
EAX when the CPUID instruction is executed with
EAX = 1 will change to match Figure 3. If the Family
field EAX[11:8] contains the value 0Fh, that indicates
the Extended Family field is valid. If the Model field
EAX[7:4] contains the value 0Fh, that indicates the
Extended Model field is valid. The extended Family
field is represented in EAX[27:20]. The extended
Model field is represented in EAX[19:16].

Figure 4 shows the CPUID for the Pentium 4 processor,
model 0, stepping 7. Since the family field EAX[11:8]
= 0Fh, software must examine the extended family
field EAX[27:20] to uniquely identify the processor
family. For the Pentium 4 processor the extended
family EAX[27:20] = 00h. The model EAX[7:4] in this
example Pentium 4 processor CPUID is 0h, therefore
the extended model field EAX[19:16] is not utilized.

 31 27 19 15 13 11 7 3 0

EAX = rsvd 00000000 rsvd rsvd 00 1111 0000 0111

Figure 4. CPUID Utilizing the Extended Family

The Pentium II processor, model 5, the Pentium II
Xeon processor and the Intel Celeron processor, model
5 share the same family and model number. To
differentiate between the processors, software should
check the cache descriptor values through executing
CPUID instruction with EAX = 2. If no L2 cache is
returned, the processor is identified as an Intel Celeron
processor, model 5. If 1M or 2M L2 cache size is
reported, the processor is the Pentium II Xeon
processor otherwise it is a Pentium II processor, model
5 or a Pentium II Xeon processor with 512K L2 cache.

The Pentium III processor, model 7, and the Pentium
III Xeon processor, model 7, share the same family and
model number. To differentiate between the processors,
software should check the cache descriptor values
through executing CPUID instruction with EAX = 2. If
1M or 2M L2 cache size is reported, the processor is
the Pentium III Xeon processor otherwise it is a
Pentium III processor or a Pentium III Xeon processor
with 512K L2 cache.

Beginning with the Pentium III processor, model 8, the
Pentium III Xeon processor, model 8, and the Intel
Celeron processor, model 8, software should use the
Brand ID values returned by the CPUID instruction
when executed with EAX = 1 to determine the
processor brand. Table 9 shows the processor brands
defined by the Brand ID.

AP-485

10

Older versions of Intel486 SX, Intel486 DX and
IntelDX2 processors do not support the CPUID
instruction,2 so they can only return the processor

Footnotes

2 All Intel486 SL-enhanced and Write-Back enhanced
processors are capable of executing the CPUID
instruction. See Table 4.

signature at reset. Refer to Table 4 to determine which
processors support the CPUID instruction.

Figure 5 shows the format of the processor signature
for Intel386 processors, which are different from other
processors. Table 3 shows the values currently defined
for these Intel386 processors.

 31 15 0

Type
Family

Major Stepping
Minor Stepping

Intel Reserved. Do not define.

RESET ?? EDX

11 7 3

000813

Figure 5. Processor Signature Format on Intel386™ Processors

Table 3. Intel386™ Processor Signatures

Type Family Major Stepping Minor Stepping Description
0000 0011 0000 xxxx Intel386™ DX processor

0010 0011 0000 xxxx Intel386 SX processor
0010 0011 0000 xxxx Intel386 CX processor

0010 0011 0000 xxxx Intel386 EX processor

0100 0011 0000 and 0001 xxxx Intel386 SL processor

0000 0011 0100 xxxx RapidCAD® coprocessor

 AP-485

 11

Table 4. Intel486™, and Subsequent Processor Signatures

Type Family Model Stepping Description
00 0100 0000 and 0001 xxxx (1) Intel486™ DX processors
00 0100 0010 xxxx (1) Intel486 SX processors

00 0100 0011 xxxx (1) Intel487™ processors

00 0100 0011 xxxx (1) IntelDX2™ processors

00 0100 0011 xxxx (1) IntelDX2 OverDrive® processors

00 0100 0100 xxxx (3) Intel486 SL processor
00 0100 0101 xxxx (1) IntelSX2™ processors

00 0100 0111 xxxx (3) Write-Back Enhanced IntelDX2 processors

00 0100 1000 xxxx (3) IntelDX4™ processors

00, 01 0100 1000 xxxx (3) IntelDX4 OverDrive processors

00 0101 0001 xxxx (2) Pentium ® processors (60, 66)
00 0101 0010 xxxx (2) Pentium processors (75, 90, 100, 120, 133, 150,

166, 200)
01 (4) 0101 0001 xxxx (2) Pentium OverDrive processor for Pentium

processor (60, 66)
01 (4) 0101 0010 xxxx (2) Pentium OverDrive processor for Pentium

processor (75, 90, 100, 120, 133)
01 0101 0011 xxxx (2) Pentium OverDrive processors for Intel486

processor-based systems
00 0101 0100 xxxx (2) Pentium processor with MMX™ technology (166,

200)
01 0101 0100 xxxx (2) Pentium OverDrive processor with MMX™

technology for Pentium processor (75, 90, 100,
120, 133)

00 0110 0001 xxxx (2) Pentium Pro processor

00 0110 0011 xxxx (2) Pentium II processor, model 3
00 0110 0101(5) xxxx (2) Pentium II processor, model 5, Pentium II Xeon

processor, model 5, and Intel Celeron processor,
model 5

00 0110 0110 xxxx (2) Intel Celeron processor, model 6

00 0110 0111(6) xxxx (2) Pentium III processor, model 7, and Pentium III
Xeon processor, model 7

00 0110 1000(7) xxxx (2) Pentium III processor, model 8, Pentium III Xeon
processor, model 8, and Intel Celeron processor,
model 8

00 0110 1010 xxxx (2) Pentium III Xeon processor, model A
01 0110 0011 xxxx (2) Intel Pentium II OverDrive processor

00 1111 (9) 0000 xxxx (2) Intel Pentium 4 processor

AP-485

12

NOTES:

1. This processor does not implement the CPUID instruction.

2. Refer to the Intel486™ documentation, the Pentium® Processor Specification Update (Order Number 242480),
the Pentium® Pro Processor Specification Update (Order Number 242689), the Pentium® II Processor
Specification Update (Order Number 243337), the Pentium® II Xeon Processor Specification Update (Order
Number 243776), the Intel Celeron Processor Specification Update (Order Number 243748), the Pentium ® III
Processor Specification Update (Order Number 244453), the Pentium® III Xeon™ Processor Specification
Update (Order Number 244460) or the Pentium® 4 Processor Specification Update (Order Number 249199) for
the latest list of stepping numbers.

3. Stepping 3 implements the CPUID instruction.

4. The definition of the type field for the OverDrive® processor is 01h. An erratum on the Pentium OverDrive
processor will always return 00h as the type.

5. To differentiate between the Pentium II processor, model 5, Pentium II Xeon processor and the Intel Celeron
processor, model 5, software should check the cache descriptor values through executing CPUID instruction with
EAX = 2. If no L2 cache is returned, the processor is identified as an Intel Celeron processor, model 5. If 1M or
2M L2 cache size is reported, the processor is the Pentium II Xeon processor otherwise it is a Pentium II
processor, model 5 or a Pentium II Xeon processor with 512K L2 cache size.

6. To differentiate between the Pentium III processor, model 7 and the Pentium III Xeon processor, model 7,
software should check the cache descriptor values through executing CPUID instruction with EAX = 2. If 1M or
2M L2 cache size is reported, the processor is the Pentium III Xeon processor otherwise it is a Pentium III
processor or a Pentium III Xeon processor with 512K L2 cache size.

7. To differentiate between the Pentium III processor, model 8 and the Pentium III Xeon processor, model 8,
software should check the Brand ID values through executing CPUID instruction with EAX = 1.

8. When the Model field = 1111b, software must check the Extended Model field to determine the correct processor
model.

9. When the Family field = 1111b, software must also check the Extended Family field to determine the correct
processor family. The Pentium 4 processor extended family field = 00h.

 AP-485

 13

3.3. Feature Flags
When the EAX register contains a value of 1, the
CPUID instruction (in addition to loading the processor
signature in the EAX register) loads the EDX and ECX
register with the feature flags. The feature flags (when
Flag = 1) indicate what features the processor supports.
Table 5 lists the currently defined feature flag values.

For future processors, refer to the programmer’s
reference manual, user’s manual, or the appropriate
documentation for the latest feature flag values.

Use the feature flags in your applications to
determine which processor features are supported.
By using the CPUID feature flags to determine
processor features, your software can detect and
avoid incompatibilities introduced by the addition
or removal of processor features.

3.4. SYSENTER/SYSEXIT – SEP
Features Bit

The SYSENTER Present (SEP) bit 11 of CPUID
indicates the presence of this facility. An operating
system that detects the presence of the SEP bit must
also qualify the processor family and model to ensure
that the SYSENTER/SYSEXIT instructions are
actually present:

IF (CPUID SEP bit is set)
{
 IF (Family == 6) AND (Model Stepping < 0x33)
 Fast System Call is NOT supported
 ELSE
 Fast System Call is supported
}

The Pentium Pro processor (Model = 1) returns a set
SEP CPUID feature bit, but should not be used by
software.

AP-485

14

Table 5. Feature Flag Values

Bit

Name
Description when

Flag = 1

Comments
0 FPU Floating-point unit on-

Chip
The processor contains an FPU that supports the Intel387
floating-point instruction set.

1 VME Virtual Mode Extension The processor supports extensions to virtual-8086 mode.
2 DE Debugging Extension The processor supports I/O breakpoints, including the

CR4.DE bit for enabling debug extensions and optional
trapping of access to the DR4 and DR5 registers.

3 PSE Page Size Extension The processor supports 4-Mbyte pages.

4 TSC Time Stamp Counter The RDTSC instruction is supported including the
CR4.TSD bit for access/privilege control.

5 MSR Model Specific Registers Model Specific Registers are implemented with the
RDMSR, WRMSR instructions

6 PAE Physical Address
Extension

Physical addresses greater than 32 bits are supported.

7 MCE Machine Check
Exception

Machine Check Exception, Exception 18, and the
CR4.MCE enable bit are supported

8 CX8 CMPXCHG8 Instruction
Supported

The compare and exchange 8 bytes instruction is
supported.

9 APIC On-chip APIC Hardware
Supported

The processor contains a software-accessible Local APIC.

10 Reserved Do not count on their value.

11 SEP Fast System Call Indicates whether the processor supports the Fast System
Call instructions, SYSENTER and SYSEXIT. NOTE: Refer
to Section 3.4 for further information regarding
SYSENTER/ SYSEXIT feature and SEP feature bit.

12 MTRR Memory Type Range
Registers

The Processor supports the Memory Type Range
Registers specifically the MTRR_CAP register.

13 PGE Page Global Enable The global bit in the page directory entries (PDEs) and
page table entries (PTEs) is supported, indicating TLB
entries that are common to different processes and need
not be flushed. The CR4.PGE bit controls this feature.

14 MCA Machine Check
Architecture

The Machine Check Architecture is supported, specifically
the MCG_CAP register.

15 CMOV Conditional Move
Instruction Supported

The processor supports CMOVcc, and if the FPU feature
flag (bit 0) is also set, supports the FCMOVCC and FCOMI
instructions.

16 PAT Page Attribute Table Indicates whether the processor supports the Page
Attribute Table. This feature augments the Memory Type
Range Registers (MTRRs), allowing an operating system to
specify attributes of memory on 4K granularity through a
linear address.

17 PSE-36 36-bit Page Size
Extension

Indicates whether the processor supports 4-Mbyte pages
that are capable of addressing physical memory beyond
4GB. This feature indicates that the upper four bits of the
physical address of the 4-Mbyte page is encoded by bits
13-16 of the page directory entry.

18 PSN Processor s erial number
is present and enabled

The processor supports the 96-bit processor serial number
feature, and the feature is enabled.

19 CLFSH CLFLUSH Instruction
supported

Indicates that the processor supports the CLFLUSH
instruction.

 AP-485

 15

Table 5. Feature Flag Values

Bit

Name
Description when

Flag = 1

Comments
20 Reserved Do not count on their value.

21 DS Debug Store Indicates that the processor has the ability to write a history
of the branch to and from addresses into a memory buffer.

22 ACPI Thermal Monitor and
Software Controlled
Clock Facilities
supported

The processor implements internal MSRs that allow
processor temperature to be monitored and processor
performance to be modulated in predefined duty cycles
under software control.

23 MMX Intel Architecture MMX
technology supported

The processor supports the MMX technology instruction set
extensions to Intel Architecture.

24 FXSR Fast floating point save
and restore

Indicates whether the processor supports the FXSAVE and
FXRSTOR instructions for fast save and restore of the
floating point context. Presence of this bit also indicates
that CR4.OSFXSR is available for an operating system to
indicate that it uses the fast save/restore instructions.

25 SSE Streaming SIMD
Extensions supported

The processor supports the Streaming SIMD Extensions to
the Intel Architecture.

26 SSE2 Streaming SIMD
Extensions 2

Indicates the processor supports the Streaming SIMD
Extensions - 2 Instructions.

27 SS Self-Snoop The processor supports the management of conflicting
memory types by performing a snoop of its own cache
structure for transactions issued to the bus.

28 Reserved Do not count on their value.

29 TM Thermal Monitor
supported

The processor implements the Thermal Monitor automatic
thermal control circuit (TCC).

30 – 31 Reserved Do not count on their value.

3.5. Cache Size and Format

Information
When the EAX register contains a value of 2, the
CPUID instruction loads the EAX, EBX, ECX and
EDX registers with descriptors that indicate the
processors cache characteristics. The lower 8 bits of the
EAX register (AL) contain a value that identifies the
number of times the CPUID has to be executed to
obtain a complete image of the processor’s caching
systems. For example, the Pentium Pro processor
returns a value of 1 in the lower 8 bits of the EAX
register to indicate that the CPUID instruction need
only be executed once (with EAX = 2) to obtain a
complete image of the processor configuration.

The remainder of the EAX register, the EBX, ECX and
EDX registers contain valid 8 bit descriptors. Table 6
shows that when bit 31 is zero, the register contains
valid 8-bit descriptors. To decode descriptors, move

sequentially from the most significant byte of the
register down through the least significant byte of the
register. Table 7 lists the current descriptor values and
their respective cache characteristics. This list will be
extended in the future as necessary

Table 6. Descriptor Formats

Register
bit 31

Descriptor
Type

Description

1 Reserved Reserved for future
use.

0 8 bit descriptors Descriptors point to a
param eter table to
identify cache
characteristics. The
descriptor is null if it
has a 0 value.

AP-485

16

Table 7. Descriptor Decode Values

Value Cache or TLB Description
00h Null

01h Instruction TLB, 4K pages, 4-way set associative, 32 entries

02h Instruction TLB, 4M pages, fully associative, 2 entries
03h Data TLB, 4K pages, 4-way set associative, 64 entries

04h Data TLB, 4M pages, 4-way set associative, 8 entries

06h Instruction cache, 8K, 4-way set associative, 32 byte line size

08h Instruction cache 16K, 4-way set associative, 32 byte line size

0Ah Data cache, 8K, 2-way set associative, 32 byte line size
0Ch Data cache, 16K, 4-way set associative, 32 byte line size

40h No L2 cache (P6 family), or No L3 cache (Pentium 4 processor)

41h Unified cache, 32 byte cache line,4-way set associative, 128K

42h Unified cache, 32 byte cache line, 4-way set associative, 256K

43h Unified cache, 32 byte cache line, 4-way set associative, 512K
44h Unified cache, 32 byte cache line, 4-way set associative, 1M

45h Unified cache, 32 byte cache line, 4-way set associative, 2M

50h Instruction TLB, 4K, 2M or 4M pages, fully associative, 64 entries

51h Instruction TLB, 4K, 2M or 4M pages, fully associative, 128 entries

52h Instruction TLB, 4K, 2M or 4M pages, fully associative, 256 entries
5Bh Data TLB, 4K or 4M pages, fully associative, 64 entries

5Ch Data TLB, 4K or 4M pages, fully associative, 128 entries

5Dh Data TLB, 4K or 4M pages, fully associative, 256 entries

66h Data cache, sectored, 64 byte cache line, 4 way set associative, 8K

67h Data cache, sectored, 64 byte cache line, 4 way set associative, 16K
66h Data cache, sectored, 64 byte cache line, 4 way set associative, 32K

70h Instruction Trace cache, 8 way set associative, 12K uOps

71h Instruction Trace cache, 8 way set associative, 16K uOps

72h Instruction Trace cache, 8 way set associative, 32K uOps

79h Unified cache, sectored, 64 byte cache line, 8 way set associative, 128K
7Ah Unified cache, sectored, 64 byte cache line, 8 way set associative, 256K

7Bh Unified cache, sectored, 64 byte cache line, 8 way set associative, 512K

7Ch Unified cache, sectored, 64 byte cache line, 8 way set associative, 1M

82h Unified cache, 32 byte cache line, 8 way set associative, 256K

84h Unified cache, 32 byte cache line, 8 way set associative, 1M
85h Unified cache, 32 byte cache line, 8 way set associative, 2M

 AP-485

 17

3.6. Pentium® II Processor, model 3
Output Example

The Pentium II processor, model 3 returns the values
shown in Table 8. Since the value of AL=1, it is valid
to interpret the remainder of the registers. Table 8
also shows the MSB (bit 31) of all the registers are 0.
As with the Pentium Pro processor this indicates that
each register contains valid 8-bit descriptor. The
register values in Table 8 show the Pentium II
processor has the following cache characteristics:

• A data TLB that maps 4K pages, is 4 way set
associative, and has 64 entries.

• An instruction TLB that maps 4M pages, is fully
associative, and has 2 entries.

• An instruction TLB that maps 4K pages, is 4
way set associative, and has 32 entries.

• A data cache that is 16K, is 4 way set
associative, and has a 32 byte line size.

• A data TLB that maps 4M pages, is 4 way set
associative, and has 8 entries.

• An instruction cache that is 16K, is 4 way set
associative, and has a 32 byte line size.

• A unified cache that is 512K, is 4 way set
associative, and has a 32 byte line size.

Table 8. Pentium® II Processor, model 3 with 512K L2 Cache,
CPUID (EAX=2) Example Return Values

 31 23 15 7 0
EAX 03h 02h 01h 01h

EBX 0 0 0 0

ECX 0 0 0 0

EDX 0Ch 04h 08h 43h

AP-485

18

4. PROCESSOR SERIAL NUMBER
The Pentium III processors and the Pentium III Xeon
processors extend the concept of processor
identification with the addition of processor serial
number. Processor serial number is a 96-bit number
accessible through the CPUID instruction. Processor
serial number can be used by applications to identify a
processor, and by extension, its system.

The processor serial number creates a software
accessible identity for an individual processor. The
processor serial number, combined with other
qualifiers, could be applied to user identification.
Applications include membership authentication, data
backup/restore protection, removable storage data
protection, managed access to files, or to confirm
document exchange between appropriate users.

Processor serial number is another tool for use in asset
management, product tracking, remote systems load
and configuration, or to aid in boot-up configuration. In
the case of system service, processor serial number
could be used to differentiate users during help desk
access, or track error reporting.Processor serial number
provides an identifier for the processor, but should not
be assumed to be unique in itself. There are potential
modes in which erroneous processor serial numbers
may be reported. For example, in the event a processor
is operated outside its recommended operating
specifications, (e.g. voltage, frequency, etc.) the
processor serial number may not be correctly read from
the processor. Improper BIOS or software operations
could yield an inaccurate processor serial number.
These events could lead to possible erroneous or
duplicate processor serial numbers being reported.
System manufacturers can strengthen the robustness of
the feature by including redundancy features, or other
fault tolerant methods.

Processor serial number used as a qualifier for another
independent number could be used to create an
electrically accessible number that is likely to be
distinct. Processor serial number is one building block
useful for the purpose of enabling the trusted,
connected PC.

4.1. Presence of Processor Serial
Number

To determine if the processor serial number feature is
supported, the program should set the EAX register
parameter value to “1” and then execute the CPUID
instruction as follows:

 MOV EAX, 01H
 CPUID

After execution of the CPUID instruction, the EDX
register contains the Feature Flags. If Feature Flags bit
18 equals “1”, the processor serial number feature is
supported, and enabled. If Feature Flags bit 18 equals
“0”, the processor serial number feature is either
not supported, or disabled.

4.2. Forming the 96-bit Processor
Serial Number

The 96-bit processor serial number is the concatenation
of three 32-bit entities.

To access the most significant 32-bits of the processor
serial number the program should set the EAX register
parameter value to “1” and then execute the CPUID
instruction as follows:

 MOV EAX, 01H
 CPUID

After execution of the CPUID instruction, the EAX
register contains the Processor Signature. The
Processor Signature comprises the most significant 32-
bits of the processor serial number. The value in EAX
should be saved prior to gathering the remaining 64-
bits of the processor serial number.

To access the remaining 64-bits of the processor serial
number the program should set the EAX register
parameter value to “3” and then execute the CPUID
instruction as follows:

 MOV EAX, 03H
 CPUID

After execution of the CPUID instruction, the EDX
register contains the middle 32-bits, and the ECX
register contains the least significant 32-bits of the
processor serial number. Software may then
concatenate the saved Processor Signature, EDX, and
ECX before returning the complete 96-bit processor
serial number.

Processor serial number should be displayed as 6
groups of 4 hex nibbles (Ex. XXXX-XXXX-XXXX-
XXXX-XXXX-XXXX where X represents a hex digit).
Alpha hex characters should be displayed as capital
letters.

 AP-485

 19

5. BRAND ID
Beginning with the Pentium III processors, model 8,
the Pentium III Xeon processors, model 8, and Intel
Celeron processor, model 8, the concept of processor
identification is further extended with the addition of
Brand ID. Brand ID is an 8-bit number accessible
through the CPUID instruction. Brand ID is used by
applications to accurately identify the processor.

Processors that implement the Brand ID feature return
the Brand ID in bits 7 through 0 of the EBX register
when the CPUID instruction is executed with EAX=1
(see Table 9). Processors that do not support the feature
return a value of 0 in EBX bits 7 through 0.

To differentiate previous models of the Pentium II
processor, Pentium II Xeon processor, Intel Celeron
processor, Pentium III processor and Pentium III Xeon
processor, application software relied on the L2 cache
descriptors. In a few cases the results were ambiguous,

for example software could not accurately differentiate
a Pentium II processor from a Pentium II Xeon
processor with a 512K L2 cache. Brand ID eliminates
this ambiguity by providing a software accessible value
unique to each processor brand. Table 9 shows the
values defined for each processor.

Table 9. Brand ID, CPUID (EAX=1) Return
Values (bits 7 through 0)

Value Description

0 Unsupported

1 Intel® Celeron™ processor

2 Intel® Pentium® III processor

3 Intel® Pentium® III Xeon™ processor

4h – 7h Reserved

8 Intel® Pentium® 4 processor

9h - FFh Reserved

AP-485

20

6. BRAND STRING
The Brand string is a new extension to the CPUID
instruction implemented in some Intel IA-32
processors, including the Pentium 4 processor. Using
the brand string feature, future IA-32 architecture based
processors will return their ASCII brand identification
string and maximum operating frequency via an
extended CPUID instruction. Note that the frequency
returned is the maximum operating frequency that the
processor has been qualified for and not the current
operating frequency of the processor.

When CPUID is exe cuted with EAX set to the values
listed in, Table 10 the processor will return an ASCII
brand string in the general-purpose registers as detailed
in Table 10.

The brand/frequency string is defined to be 48
characters long, 47 bytes will contain characters and the
48th byte is defined to be NULL (0). A processor may

return less than the 47 ASCII characters as long as the
string is null terminated and the processor returns valid
data when CPUID is executed with EAX = 80000002h,
80000003h and 80000004h. The string may be right
justified (with leading spaces) for implementation
simplicity. It is returned in little endian format.

The cpuid3a.asm program (Example 1) shows how
software forms the brand string. To determine if the
brand string is supported on a processor, software must
follow the step below:

1. Execute the CPUID instruction with EAX=80000000h

2. If ((returned value in EAX) & 80000000h) != 0) then the
processor supports the extended CPUID and EAX
contains the largest extended function supported.

3. The processor brand string feature is supported if EAX ?
80000004.

Table 10. Processor Brand String Feature
Processor Brand String Feature

EAX input
value

Function Return value

80000000h Largest Extended Function Supported EAX=80000004, EBX=0, ECX=0, EDX=0

80000001h Extended Processor Signature and
Extended Feature Bits

EAX=0, EBX=0, ECX=0, EDX=0

80000002h Processor Brand String EAX, EBX, ECX, EDX contain ASCII brand string

80000003h Processor Brand String EAX, EBX, ECX, EDX contain ASCII brand string

80000004h Processor Brand String EAX, EBX, ECX, EDX contain ASCII brand string

 AP-485

 21

7. USAGE GUIDELINES
This document presents Intel-recommended feature-
detection methods. Software should not try to identify
features by exploiting programming tricks,
undocumented features, or otherwise deviating from the
guidelines presented in this application note.

The following guidelines are intended to help
programmers maintain the widest range of
compatibility for their software.

• Do not depend on the absence of an invalid opcode trap
on the CPUID opcode to detect the CPUID instruction.
Do not depend on the absence of an invalid opcode trap
on the PUSHFD opcode to detect a 32-bit processor.
Test the ID flag, as described in Section 2.0. and shown
in Section 7.0.

• Do not assume that a given family or model has any
specific feature. For example, do not assume the
family value 5 (Pentium processor) means there is a
floating-point unit on-chip. Use the feature flags for
this determination.

• Do not assume processors with higher family or model
numbers have all the features of a processor with a lower
family or model number. For example, a processor with
a family value of 6 (P6 family processor) may not
necessarily have all the features of a processor with a
family value of 5.

• Do not assume that the features in the OverDrive
processors are the same as those in the OEM version of
the processor. Internal caches and instruction execution
might vary.

• Do not use undocumented features of a processor to
identify steppings or features. For example, the Intel386
processor A-step had bit instructions that were
withdrawn with the B-step. Some software attempted to
execute these instructions and depended on the invalid-
opcode exception as a signal that it was not running on
the A-step part. The software failed to work correctly
when the Intel486 processor used the same opcodes for
different instructions. The software should have used the
stepping information in the processor signature.

• Test feature flags individually and do not make
assumptions about undefined bits. For example, it would
be a mistake to test the FPU bit by comparing the feature
register to a binary 1 with a compare instruction.

• Do not assume the clock of a given family or model runs
at a specific frequency, and do not write processor
speed-dependent code, such as timing loops. For
instance, an OverDrive Processor could operate at a
higher internal frequency and still report the same family
and/or model. Instead, use a combination of the system’s
timers to measure elapsed time and the TSC (Time

Stamp Counter) to measure processor core clocks to
allow direct calibration of the processor core.

• Processor model-specific registers may differ among
processors, including in various models of the Pentium
processor. Do not use these registers unless identified for
the installed processor. This is particularly important for
systems upgradeable with an OverDrive processor. Only
use Model Specific registers that are defined in the BIOS
writers guide for that processor.

• Do not rely on the result of the CPUID algorithm when
executed in virtual 8086 mode.

• Do not assume any ordering of model and/or stepping
numbers. They are assigned arbitrarily.

• Do not assume processor serial number is a unique
number without further qualifiers.

• Display processor serial number as 6 groups of 4 hex
nibbles (Ex. XXXX-XXXX-XXXX-XXXX-XXXX-
XXXX where X represents a hex digit).

• Display alpha hex characters as capital letters.

• A zero in the lower 64 bits of the processor serial
number indicate the processor serial number is invalid,
not supported, or disabled on this processor.

8. PROPER IDENTIFICATION
SEQUENCE

The cpuid3a.asm program example demonstrates the
correct use of the CPUID instruction (see Example 1). It
also shows how to identify earlier processor
generations that do not implement the processor
signature or CPUID instruction (see Figure 6). This
program example contains the following two
procedures:

• get_cpu_type identifies the processor type. Figure 6
illustrates the flow of this procedure.

• get_fpu_type determines the type of floating-point
unit (FPU) or math coprocessor (MCP).

This procedure has been tested with 8086, 80286,
Intel386, Intel486, Pentium processor, Pentium
processor with MMX technology, OverDrive processor
with MMX technology, Pentium Pro processors,
Pentium II processors, Pentium II Xeon processors,
Pentium II Overdrive processors, Intel Celeron
processors, Pentium III processors, Pentium III Xeon
processors and Pentium 4 processors. This program
example is written in assembly language and is suitable
for inclusion in a run-time library, or as system calls in
operating systems.

AP-485

22

cpu_type=0

Is the
CPUID

instruction
supported

Does the
vendor ID =

“GenuineIntel”
?

?

Is it
an 8086

processor?

Is it
an 80286

processor?

Is it
an 80386

processor?

No

No

No

Yes

cpu_type=2

cpu_type=3

cpu_type>=4

Yes

Yes

Yes

No

cpuid_flag = 1; indicates
CPUID instruction present.

Execute CPUID with input of 0
to get vendor ID string and

input values for EAX.

If highest input value is at least 1,
execute CPUID with input of 1 in
EAX to obtain model, stepping,

family, and features.
Save in cpu_type, stepping,

model, and feature_flags.

Yes

No

end_get_cpu_type

000806

Figure 6. Flow of Processor get_cpu_type Procedure

 AP-485

 23

9. USAGE PROGRAM EXAMPLES
The cpuid3b.asm or cpuid3.c program examples
demonstrate applications that call get_cpu_type and
get_fpu_type procedures and interpret the returned
information. This code is shown in Example 2 and
Example 3. The results, which are displayed on the
monitor, identify the installed processor and features.
The cpuid3b.asm example is written in assembly
language and demonstrates an application that displays
the returned information in the DOS environment. The
cpuid3.c example is written in the C language (see
Example 2 and Example 3). Figure 7 presents an
overview of the relationship between the three program
examples.

10. ALTERNATE METHOD OF
DETECTING FEATURES

Some feature flags indicate support of instruction set
extensions (i.e. MMX, SSE and SSE2). The preferred
mechanism for determining support of instruction
extensions is through the use of the CPUID instruction,
and testing the feature flags. However an alternate
method for determining processor support of
instruction extensions is to install an exception handler
and execute one of the instructions. If the instruction
executes without generating an exception, then the
processor supports that set of instruction extensions. If
an exception is raised, and the exception handler is
executed, then those instruction extensions are not
supported by the processor. Before installing the
exception handler, the software should execute the
CPUID instruction with EAX = 0. If the CPUID
instruction returns the Intel vendor-ID string
“GenuineIntel”, then software knows that it can test for
the Intel instruction extensions. As long as the CPUID
instruction returns the Intel vendor-ID, this method can
be used to support future Intel processors. This method
does not require software to check the family and
model.

The features.cpp program is written using the C++
language (see Example 4) and demonstrates the use of
exceptions to determine support of SSE2, SSE, and
MMX instruction extensions. performs the following
steps:

1. Check that the vendor-ID == “GenuineIntel”

2. Install exception handler for SSE2 test

3. Attempt to execute a SSE2 instruction (paddq xmm1,
xmm2)

4. Install exception handler for SSE test

5. Attempt to execute a SSE instruction (orps xmm1,
xmm2)

6. Install exception handler for MMX test

7. Attempt to execute a MMX instruction (emms)

8. Print supported instruction set extensions.

11. DENORMALS ARE ZERO
With the introduction of the SSE2 extensions, some
Intel Architecture processors have the ability to
convert SSE and SSE2 source operand denormal
numbers to zero. This feature is referred to as
Denormals -Are-Zero (DAZ). The DAZ mode is not
compatible with IEEE Standard 754. The DAZ mode is
provided to improve processor performance for
applications such as streaming media processing, where
rounding a denormal operand to zero does not
appreciably affect the quality of the processed data.

Some processor steppings support SSE2 but do not
support the DAZ mode. To determine if a processor
supports the DAZ mode, software must perform the
following steps.

1. Execute the CPUID instruction with an input value of
EAX=0 and ensure the vendor-ID string returned is
“GenuineIntel”.

2. Execute the CPUID instruction with EAX=1. This will
load the EDX register with the feature flags.

3. Ensure that the FXSR feature flag (EDX bit 24) is set.
This indicates the processor supports the FXSAVE and
FXRSTOR instructions.

4. Ensure that the XMM feature flag (EDX bit 25) or the
EMM feature flag (EDX bit 26) is set. This indicates that
the processor supports at least one of the SSE/SSE2
instruction sets and its MXCSR control register.

5. Zero a 16-byte aligned, 512-byte area of memory. This
is necessary since some implementations of FXSAVE do
not modify reserved areas within the image.

6. Execute an FXSAVE into the cleared area.

7. Bytes 28-31 of the FXSAVE image are defined to
contain the MXCSR_MASK. If this value is 0, then the
processor's MXCSR_MASK is 0xFFBF, otherwise
MXCSR_MASK is the value of this dword.

8. If bit 6 of the MXCSR_MASK is set, then DAZ is
supported.

After completing this algorithm, if DAZ is supported,
software can enable DAZ mode by setting bit 6 in the
MXCSR register save area and executing the
FXRSTOR instruction. Alternately software can enable
DAZ mode by setting bit 6 in the MXCSR by executing

AP-485

24

the LDMXCSR instruction. Refer to the chapter titled
“Programming with the Streaming SIMD Extensions
(SSE)” in the Intel Architecture Software Developer’s
Manual volume 1: Basic Architecture.

The assembly language program dazdtect.asm (see
Example 5) demonstrates this DAZ detection algorithm.

12. OPERATING FREQUENCY
With the introduction of the Time Stamp Counter, it is
possible for software operating in real mode or
protected mode with ring 0 privilege to calculate the
actual operating frequency of the processor. To
calculate the operating frequency, the software needs a
reference period. The reference period can be a
periodic interrupt, or another timer that is based on
time, and not based on a system clock. Software needs
to read the Time Stamp Counter (TSC) at the beginning
and ending of the reference period. Software can read
the TSC by executing the RDTSC instruction, or by
setting the ECX register to 10h and executing the
RDMSR instruction. Both instructions copy the current
64-bit TSC into the EDX:EAX register pair.

To determine the operating frequency of the processor,
software performs the following steps. The assembly
language program frequenc.asm (see Example 6)
demonstrates the frequency detection algorithm.

1. Execute the CPUID instruction with an input value of
EAX=0 and ensure the vendor-ID string returned is
“GenuineIntel”.

2. Execute the CPUID instruction with EAX=1 to load the
EDX register with the feature flags.

3. Ensure that the TSC feature flag (EDX bit 4) is set. This
indicates the processor supports the Time Stamp Counter
and RDTSC instruction.

4. Read the TSC at the beginning of the reference period

5. Read the TSC at the end of the reference period.

6. Compute the TSC delta from the beginning and ending
of the reference period.

7. Compute the actual frequency by dividing the TSC delta
by the reference period.

Actual frequency = (Ending TSC value – Beginning
TSC value) / reference period

Note: The measured accuracy is dependent on the
accuracy of the reference period. A longer reference
period produces a more accurate result. In
addition, repeating the calculation multiple times
may also improve accuracy.

 AP-485

 25

Main

get_cpu_type*

get_fpu_type

Print

Call cpu_type
Call fpu_type

cpuid3b.ASM or cpuid3.C

cpuid3a.ASM

Processor features check

End

000964

Figure 7. Flow of Processor Identification Extraction Procedure

AP-485

26

Example 1. Processor Identification Extraction Procedure

; Filename: cpuid3a.asm
; Copyright(c) 1993 - 2001 by Intel Corp.
;
; This program has been developed by Intel Corporation. Intel
; has various intellectual property rights which it may assert
; under certain circumstances, such as if another
; manufacturer's processor mis-identifies itself as being
; "GenuineIntel" when the CPUID instruction is executed.
;
; Intel specifically disclaims all warranties, express or
; implied, and all liability, including consequential and other
; indirect damages, for the use of this program, including
; liability for infringement of any proprietary rights,
; and including the warranties of merchantability and fitness
; for a particular purpose. Intel does not assume any
; responsibility for any errors which may appear in this program
; nor any responsibility to update it.
;
; This code contains two procedures:
; _get_cpu_type: Identifies processor type in _cpu_type:
; 0=8086/8088 processor
; 2=Intel 286 processor
; 3=Intel386(TM) family p rocessor
; 4=Intel486(TM) family processor
; 5=Pentium(R) family processor
; 6=P6 family of processors
;
; _get_fpu_type: Identifies FPU type in _fpu_type:
; 0=FPU not present
; 1=FPU present
; 2=287 present (only if _cpu_type=3)
; 3=387 present (only if _cpu_type=3)
;
; This program has been tested with the Microsoft Developer Studio.
; This code correctly detects the current Intel 8086/8088,
; 80286, 80386, 80486, Pentium(R) processor, Pentium(R) Pro
; processor, Pentium(R) II processor, Pentium II Xeon(TM) processor,
; Pentium II Overdrive(R), Intel Celeron processor, Pentium III processor
; and Pentium III Xeon processor in the real-address mode only.

; NOTE: When using this code with C program cpuid3.c, 32-bit
; segments are recommended.

; To assemble this code with TASM, add the JUMPS directive.
; jumps ; Uncomment this line for TASM

 TITLE cpuid3a
;
; comment this line for 32-bit segments
;
DOSSEG
;
; uncomment the following 2 lines for 32-bit segments
;
; .386
; .model flat
;
; comment this line for 32-bit segments

 AP-485

 27

;
 .model small

CPU_ID MACRO
 db 0fh ; Hardcoded CPUID instruction
 db 0a2h
ENDM

.data
 public _cpu_type
 public _fpu_type
 public _v86_flag
 public _cpuid_flag
 public _intel_CPU
 public _vendor_id
 public _cpu_signature
 public _features_ecx
 public _features_edx
 public _features_ebx
 public _cache_eax
 public _cache_ebx
 public _cache_ecx
 public _cache_edx
 public _sep_flag
 public _brand_string

 _cpu_type db 0
 _fpu_type db 0
 _v86_flag db 0
 _cpuid_flag db 0
 _intel_CPU db 0
 _sep_flag db 0
 _vendor_id db "------------"
 intel_id db "GenuineIntel"
 _cpu_signature dd 0
 _features_ecx dd 0
 _features_edx dd 0
 _features_ebx dd 0
 _cache_eax dd 0
 _cache_ebx dd 0
 _cache_ecx dd 0
 _cache_edx dd 0
 fp_status dw 0
 _brand_string db 48 dup (0)

.code
;
; comment this line for 32-bit segments
;
.8086
;
; uncomment this line for 32-bit segments
;
; .386

;***
 public _get_cpu_type
 _get_cpu_type proc

; This procedure determines the type of processor in a system
; and sets the _cpu_type variable with the appropriate

AP-485

28

; value. If the CPUID instruction is available, it is used
; to determine more specific details about the processor.
; All registers are used by this procedure, none are preserved.
; To avoid AC faults, the AM bit in CR0 must not be set.

; Intel 8086 processor check
; Bits 12-15 of the FLAGS register are always set on the
; 8086 processor.

;
; For 32-bit segments comment the following lines down to the next
; comment line that says "STOP"
;
check_8086:
 pushf ; push original FLAGS
 pop ax ; get original FLAGS
 mov cx, ax ; save original FLAGS
 and ax, 0fffh ; clear bits 12-15 in FLAGS
 push ax ; save new FLAGS value on stack
 popf ; replace current FLAGS value
 pushf ; get new FLAGS
 pop ax ; store new FLAGS in AX
 and ax, 0f000h ; if bits 12-15 are set, then
 cmp ax, 0f000h ; processor is an 8086/8088
 mov _cpu_type, 0 ; turn on 8086/8088 flag
 jne check_80286 ; go check for 80286
 push sp ; double check with push sp
 pop dx ; if value pushed was different
 cmp dx, sp ; means it's really an 8086
 jne end_cpu_type ; jump if processor is 8086/8088
 mov _cpu_type, 10h ; indicate unknown processor
 jmp end_cpu_type

; Intel 286 processor check
; Bits 12-15 of the FLAGS register are always clear on the
; Intel 286 processor in real-address mode.

.286
check_80286:
 smsw ax ; save machine status word
 and ax, 1 ; isolate PE bit of MSW
 mov _v86_flag, al ; save PE bit to indicate V86

 or cx, 0f000h ; try to set bits 12-15
 push cx ; save new FLAGS value on stack
 popf ; replace current FLAGS value
 pushf ; get new FLAGS
 pop ax ; store new FLAGS in AX
 and ax, 0f000h ; if bits 12-15 are clear
 mov _cpu_type, 2 ; processor=80286, turn on 80286 flag
 jz end_cpu_type ; jump if processor is 80286

; Intel386 processor check
; The AC bit, bit #18, is a new bit introduced in the EFLAGS
; register on the Intel486 processor to generate alignment
; faults.
; This bit cannot be set on the Intel386 processor.

.386
;
; "STOP"

 AP-485

 29

;
; ; it is safe to use 386 instructions
check_80386:
 pushfd ; push original EFLAGS
 pop eax ; get original EFLAGS
 mov ecx, eax ; save original EFLAGS
 xor eax, 40000h ; flip AC bit in EFLAGS
 push eax ; save new EFLAGS value on stack
 popfd ; replace current EFLAGS value
 pushfd ; get new EFLAGS
 pop eax ; store new EFLAGS in EAX
 xor eax, ecx ; can't toggle AC bit, processor=80386
 mov _cpu_type, 3 ; turn on 80386 processor flag
 jz end_cpu_type ; jump if 80386 processor
 push ecx
 popfd ; restore AC bit in EFLAGS first

; Intel486 processor check
; Checking for ability to set/clear ID flag (Bit 21) in EFLAGS
; which indicates the presence of a processor with the CPUID
; instruction.

.486
check_80486:
 mov _cpu_type, 4 ; turn on 80486 processor flag
 mov eax, ecx ; get original EFLAGS
 xor eax, 200000h ; flip ID bit in EFLAGS
 push eax ; save new EFLAGS value on stack
 popfd ; replace current EFLAGS value
 pushfd ; get new EFLAGS
 pop eax ; store new EFLAGS in EAX
 xor eax, ecx ; can't toggle ID bit,
 je end_cpu_type ; processor=80486

; Execute CPUID instruction to determine vendor, family,
; model, stepping and features. For the purpose of this
; code, only the initial set of CPUID information is saved.

 mov _cpuid_flag, 1 ; flag indicating use of CPUID inst.
 push ebx ; save registers
 push esi
 push edi
 mov eax, 0 ; set up for CPUID instruction
 CPU_ID ; get and save vendor ID

 mov dword ptr _vendor_id, ebx
 mov dword ptr _vendor_id[+4], edx
 mov dword ptr _vendor_id[+8], ecx

 cmp dword ptr intel_id, ebx
 jne end_cpuid_type
 cmp dword ptr intel_id[+4], edx
 jne end_cpuid_type
 cmp dword ptr intel_id[+8], ecx
 jne end_cpuid_type ; if not equal, not an Intel processor

 mov _intel_CPU, 1 ; indicate an Intel processor
 cmp eax, 1 ; make sure 1 is valid input for CPUID
 jl end_cpuid_type ; if not, jump to end
 mov eax, 1
 CPU_ID ; get family/model/stepping/features

AP-485

30

 mov _cpu_signature, eax
 mov _features_ebx, ebx
 mov _features_edx, edx
 mov _features_ecx, ecx

 shr eax, 8 ; isolate family
 and eax, 0fh
 mov _cpu_type, al ; set _cpu_type with family

; Execute CPUID instruction to determine the cache descriptor
; information.

 mov eax, 0 ; set up to check the EAX value
 CPU_ID
 cmp ax, 2 ; Are cache descriptors supported?
 jl end_cpuid_type

 mov eax, 2 ; set up to read cache descriptor
 CPU_ID
 cmp al, 1 ; Is one iteration enough to obtain
 jne end_cpuid_type ; cache information?
 ; This code supports one iteration
 ; only.
 mov _cache_eax, eax ; store cache information
 mov _cache_ebx, ebx ; NOTE: for future processors, CPUID
 mov _cache_ecx, ecx ; instruction may need to be run more
 mov _cache_edx, edx ; than once to get complete cache
 ; information

 mov eax, 80000000h ; check if brand string is supported
 CPU_ID
 cmp eax, 80000000h
 jbe end_cpuid_type ; take jump if not supported

 mov di, offset _brand_string

 mov eax, 80000002h ; get first 16 bytes of brand string
 CPU_ID
 mov dword ptr [di], eax ; save bytes 0 .. 15
 mov dword ptr [di+4], ebx
 mov dword ptr [di+8], ecx
 mov dword ptr [di+12], edx
 add di, 16

 mov eax, 80000003h
 CPU_ID
 mov dword ptr [di], eax ; save bytes 16 .. 31
 mov dword ptr [di+4], ebx
 mov dword ptr [di+8], ecx
 mov dword ptr [di+12], edx
 add di, 16

 mov eax, 80000004h
 CPU_ID
 mov dword ptr [di], eax ; save bytes 32 .. 47
 mov dword ptr [di+4], ebx
 mov dword ptr [di+8], ecx
 mov dword ptr [di+12], edx

end_cpuid_type:
 pop edi ; restore registers

 AP-485

 31

 pop esi
 pop ebx
;
; comment this line for 32-bit segments
;
.8086
end_cpu_type:
 ret
_get_cpu_type endp

;***

 public _get_fpu_type
 _get_fpu_type proc

; This procedure determines the type of FPU in a system
; and sets the _fpu_type variable with the appropriate value.
; All registers are used by this procedure, none are preserved.

; Coprocessor check
; The algorithm is to determine whether the floating-point
; status and control words are present. If not, no
; coprocessor exists. If the status and control words can
; be saved, the correct coprocessor is then determined
; depending on the processor type. The Intel386 processor can
; work with either an Intel287 NDP or an Intel387 NDP.
; The infinity of the coprocessor must be checked to determine
; the correct coprocessor type.

 fninit ; reset FP status word
 mov fp_status, 5a5ah ; initialize temp word to non-zero
 fnstsw fp_status ; save FP status word
 mov ax, fp_status ; check FP status word
 cmp al, 0 ; was correct status written
 mov _fpu_type, 0 ; no FPU present
 jne end_fpu_type

check_control_word:
 fnstcw fp_status ; save FP control word
 mov ax, fp_status ; check FP control word
 and ax, 103fh ; selected parts to examine
 cmp ax, 3fh ; was control word correct
 mov _fpu_type, 0
 jne end_fpu_type ; incorrect control word, no FPU
 mov _fpu_type, 1

; 80287/80387 check for the Intel386 processor

check_infinity:
 cmp _cpu_type, 3
 jne end_fpu_type
 fld1 ; must use default control from FNINIT
 fldz ; form infinity
 fdiv ; 8087/Intel287 NDP say +inf = -inf
 fld st ; form negative infinity
 fchs ; Intel387 NDP says +inf <> -inf
 fcompp ; see if they are the same
 fstsw fp_status ; look at status from FCOMPP
 mov ax, fp_status
 mov _fpu_type, 2 ; store Intel287 NDP for FPU type
 sahf ; see if infinities matched

AP-485

32

 jz end_fpu_type ; jump if 8087 or Intel287 is present
 mov _fpu_type, 3 ; store Intel387 NDP for FPU type
end_fpu_type:
 ret
_get_fpu_type endp

 end

 AP-485

 33

Example 2. Processor Identification Procedure in Assembly Language

; Filename: cpuid3b.asm
; Copyright(c) 1993 - 2001 by Intel Corp.
;
; This program has been developed by Intel Corporation. Intel
; has various intellectual property rights which it may assert
; under certain circumstances, such as if another
; manufacturer's processor mis-identifies itself as being
; "GenuineIntel" when the CPUID instruction is executed.
;
; Intel specifically disclaims all warranties, express or
; implied, and all liability, including consequential and
; other indirect damages, for the use of this program,
; including liability for infringement of any proprietary
; rights, and including the warranties of merchantability and
; fitness for a particular purpose. Intel does not assume any
; responsibility for any errors which may appear in this
; program nor any responsibility to update it.
;
; This program contains three parts:
; Part 1: Identifies processor type in the variable
; _cpu_type:
;
; Part 2: Identifies FPU type in the variable _fpu_type:
;
; Part 3: Prints out the appropriate message. This part is
; specific to the DOS environment and uses the DOS
; system calls to print out the messages.
;
; This program has been tested with the Microsoft Developer Studio. If
; this code is assembled with no options specified and linked
; with the cpuid3a module, it correctly identifies the current
; Intel 8086/8088, 80286, 80386, 80486, Pentium(R), Pentium(R) Pro,
; Pentium(R) II processors, Pentium(R) II Xeon processors, Pentium II Overdrive
; processors, Intel Celeron(TM) processors, Pentium III processors and Pentium III Xeon processors
; in the real-address mode.

; NOTE: This code is written using 16-bit Segments

; To assemble this code with TASM, add the JUMPS directive.
; jumps ; Uncomment this line for TASM

 TITLE cpuid3b

DOSSEG
.model small

.stack 100h

OP_O MACRO
 db 66h ; hardcoded operand override
ENDM
.data
 extrn _cpu_type: byte
 extrn _fpu_type: byte
 extrn _cpuid_flag: byte
 extrn _intel_CPU: byte
 extrn _vendor_id: byte
 extrn _cpu_signature: dword
 extrn _features_ecx: dword

AP-485

34

 extrn _features_edx: dword
 extrn _features_ebx: dword
 extrn _cache_eax: dword
 extrn _cache_ebx: dword
 extrn _cache_ecx: dword
 extrn _cache_edx: dword
 extrn _brand_string: byte

; The purpose of this code is to identify the processor and
; coprocessor that is currently in the system. The program
; first determines the processor type. Then it determines
; whether a coprocessor exists in the system. If a
; coprocessor or integrated coprocessor exists, the program
; identifies the coprocessor type. The program then prints
; the processor and floating point processors present and type.

.code
.8086
start:
 mov ax, @data
 mov ds, ax ; set segment register
 mov es, ax ; set segment register
 and sp, not 3 ; align stack to avoid AC fault
 call _get_cpu_type ; determine processor type
 call _get_fpu_type
 call print

 mov ax, 4c00h
 int 21h

;***

 extrn _get_cpu_type: proc

;***

 extrn _get_fpu_type: proc

;***

FPU_FLAG equ 0001h
VME_FLAG equ 0002h
DE_FLAG equ 0004h
PSE_FLAG equ 0008h
TSC_FLAG equ 0010h
MSR_FLAG equ 0020h
PAE_FLAG equ 0040h
MCE_FLAG equ 0080h
CX8_FLAG equ 0100h
APIC_FLAG equ 0200h
SEP_FLAG equ 0800h
MTRR_FLAG equ 1000h
PGE_FLAG equ 2000h
MCA_FLAG equ 4000h
CMOV_FLAG equ 8000h
PAT_FLAG equ 10000h
PSE36_FLAG equ 20000h
PSNUM_FLAG equ 40000h
CLFLUSH_FLAG equ 80000h
DTS_FLAG equ 200000h
ACPI_FLAG equ 400000h

 AP-485

 35

MMX_FLAG equ 800000h
FXSR_FLAG equ 1000000h
SSE_FLAG equ 2000000h
SSE2_FLAG equ 4000000h
SS_FLAG equ 8000000h
TM_FLAG equ 20000000h

.data
id_msg db "This system has a$"
cp_error db "n unknown processor$"
cp_8086 db "n 8086/8088 processor$"
cp_286 db "n 80286 processor$"
cp_386 db "n 80386 processor$"

cp_486 db "n 80486DX, 80486DX2 processor or"
 db " 80487SX math coprocessor$"
cp_486sx db "n 80486SX processor$"

fp_8087 db " and an 8087 math coprocessor$"
fp_287 db " and an 80287 math coprocessor$"
fp_387 db " and an 80387 math coprocessor$"

intel486_msg db " Genuine Intel486(TM) processor$"
intel486dx_msg db " Genuine Intel486(TM) DX processor$"
intel486sx_msg db " Genuine Intel486(TM) SX processor$"
inteldx2_msg db " Genuine IntelDX2(TM) processor$"
intelsx2_msg db " Genuine IntelSX2(TM) processor$"
inteldx4_msg db " Genuine IntelDX4(TM) processor$"
inteldx2wb_msg db " Genuine Write-Back Enhanced"
 db " IntelDX2(TM) processor$"
pentium_msg db " Genuine Intel Pentium(R) processor$"
pentiumpro_msg db " Genuine Intel Pentium(R) Pro processor$"

pentiumiimodel3_msg db " Genuine Intel Pentium(R) II processor, model 3$"
pentiumiixeon_m5_msg db " Genuine Intel Pentium(R) II processor, model 5 or Intel Pentium(R) II Xeon(TM)
processor$"
pentiumiixeon_msg db " Genuine Intel Pentium(R) II Xeon(TM) processor$"
celeron_msg db " Genuine Intel Celeron(TM) processor, model 5$"
celeronmodel6_msg db " Genuine Intel Celeron(TM) processor, model 6$"
celeron_brand db " Genuine Intel Celeron(TM) processor$"
pentiumiii_msg db " Genuine Intel Pentium(R) III processor, model 7 or Intel Pentium(R) III Xeon(TM)
processor, model 7$"
pentiumiiixeon_msg db " Genuine Intel Pentium(R) III Xeon(TM) processor, model 7$"
pentiumiiixeon_brand db " Genuine Intel Pentium(R) III Xeon(TM) processor$"
pentiumiii_brand db " Genuine Intel Pentium(R) III processor$"
pentium4_brand db " Genuine Intel Pentium(R) 4 processor$"
unknown_msg db "n unknown Genuine Intel processor$"

brand_entry struct
 brand_value db ?
 brand_string dw ?
brand_entry ends

brand_table brand_entry <1, offset celeron_brand>
 brand_entry <2, offset pentiumiii_brand>
 brand_entry <3, offset pentiumiiixeon_brand>
 brand_entry <8, offset pentium4_brand>

brand_table_size equ ($ - offset brand_table) / (sizeof brand_entry)

; The following 16 entries must stay intact as an array

AP-485

36

intel_486_0 dw offset intel486dx_msg
intel_486_1 dw offset intel486dx_msg
intel_486_2 dw offset intel486sx_msg
intel_486_3 dw offset inteldx2_msg
intel_486_4 dw offset intel486_msg
intel_486_5 dw offset intelsx2_msg
intel_486_6 dw offset intel486_msg
intel_486_7 dw offset inteldx2wb_msg
intel_486_8 dw offset inteldx4_msg
intel_486_9 dw offset intel486_msg
intel_486_a dw offset intel486_msg
intel_486_b dw offset intel486_msg
intel_486_c dw offset intel486_msg
intel_486_d dw offset intel486_msg
intel_486_e dw offset intel486_msg
intel_486_f dw offset intel486_msg
; end of array

family_msg db 13,10,"Processor Family: $"
model_msg db 13,10,"Model: $"
stepping_msg db 13,10,"Stepping: $"
ext_fam_msg db 13,10," Extended Family: $"
ext_mod_msg db 13,10," Extended Model: $"
cr_lf db 13,10,"$"
turbo_msg db 13,10,"The processor is an OverDrive(R)"
 db " processor$"
dp_msg db 13,10,"The processor is the upgrade"
 db " processor in a dual processor system$"
fpu_msg db 13,10,"The processor contains an on-chip"
 db " FPU$"
vme_msg db 13,10,"The processor supports Virtual"
 db " Mode Extensions$"
de_msg db 13,10,"The processor supports Debugging"
 db " Extensions$"
pse_msg db 13,10,"The processor supports Page Size"
 db " Extensions$"
tsc_msg db 13,10,"The processor supports Time Stamp"
 db " Counter$"
msr_msg db 13,10,"The processor supports Model"
 db " Specific Registers$"
pae_msg db 13,10,"The processor supports Physical"
 db " Address Extensions$"
mce_msg db 13,10,"The processor supports Machine"
 db " Check Exceptions$"
cx8_msg db 13,10,"The processor supports the"
 db " CMPXCHG8B instruction$"
apic_msg db 13,10,"The processor contains an on-chip"
 db " APIC$"
sep_msg db 13,10,"The processor supports Fast System"
 db " Call$"
no_sep_msg db 13,10,"The processor does not support Fast"
 db " System Call$"
mtrr_msg db 13,10,"The processor supports Memory Type"
 db " Range Registers$"
pge_msg db 13,10,"The processor supports Page Global"
 db " Enable$"
mca_msg db 13,10,"The processor supports Machine"
 db " Check Architecture$"
cmov_msg db 13,10,"The processor supports Conditional"
 db " Move Instruction$"
pat_msg db 13,10,"The processor supports Page Attribute"

 AP-485

 37

 db " Table$"
pse36_msg db 13,10,"The processor supports 36-bit Page"
 db " Size Extension$"
psnum_msg db 13,10,"The processor supports the"
 db " processor serial number$"
clflush_msg db 13,10,"The processor supports the"
 db " CLFLUSH instruction$"
dts_msg db 13,10,"The processor supports the"
 db " Debug Trace Store feature$"
acpi_msg db 13,10,"The processor supports the"
 db " ACPI registers in MSR space$"
mmx_msg db 13,10,"The processor supports Intel Architecture"
 db " MMX(TM) Technology$"
fxsr_msg db 13,10,"The processor supports Fast floating point"
 db " save and restore$"
sse_msg db 13,10, "The processor supports the Streaming"
 db " SIMD extensions$"
sse2_msg db 13,10,"The processor supports the Streaming"
 db " SIMD extensions 2 instructions$"
ss_msg db 13,10, "The processor supports Self-Snoop$"
tm_msg db 13,10,"The processor supports the"
 db " Thermal Monitor$"

not_intel db "t least an 80486 processor."
 db 13,10,"It does not contain a Genuine"
 db "Intel part and as a result,"
 db "the",13,10,"CPUID"
 db " detection information cannot be"
 db " determined at this time.$"

ASC_MSG MACRO msg
 LOCAL ascii_done ; local label
 add al, 30h
 cmp al, 39h ; is it 0-9?
 jle ascii_done
 add al, 07h
ascii_done:
 mov byte ptr msg[20], al
 mov dx, offset msg
 mov ah, 9h
 int 21h
ENDM

.code
.8086

print proc

; This procedure prints the appropriate cpuid string and
; numeric processor presence status. If the CPUID instruction
; was used, this procedure prints out the CPUID info.
; All registers are used by this procedure, none are
; preserved.

 mov dx, offset id_msg ; print initial message
 mov ah, 9h
 int 21h

 cmp _cpuid_flag, 1 ; if set to 1, processor
 ; supports CPUID instruction
 je print_cpuid_data ; print detailed CPUID info

AP-485

38

print_86:
 cmp _cpu_type, 0
 jne print_286
 mov dx, offset cp_8086
 mov ah, 9h
 int 21h
 cmp _fpu_type, 0
 je end_print
 mov dx, offset fp_8087
 mov ah, 9h
 int 21h
 jmp end_print

print_286:
 cmp _cpu_type, 2
 jne print_386
 mov dx, offset cp_286
 mov ah, 9h
 int 21h
 cmp _fpu_type, 0
 je end_print

print_287:
 mov dx, offset fp_287
 mov ah, 9h
 int 21h
 jmp end_print

print_386:
 cmp _cpu_type, 3
 jne print_486
 mov dx, offset cp_386
 mov ah, 9h
 int 21h
 cmp _fpu_type, 0
 je end_print
 cmp _fpu_type, 2
 je print_287
 mov dx, offset fp_387
 mov ah, 9h
 int 21h
 jmp end_print

print_486:
 cmp _cpu_type, 4
 jne print_unknown ; Intel processors will have
 mov dx, offset cp_486sx ; CPUID instruction
 cmp _fpu_type, 0
 je print_486sx
 mov dx, offset cp_486

print_486sx:
 mov ah, 9h
 int 21h
 jmp end_print

print_unknown:
 mov dx, offset cp_error
 jmp print_486sx

 AP-485

 39

print_cpuid_data:
.486
 cmp _intel_CPU, 1 ; check for genuine Intel
 jne not_GenuineIntel ; processor

 mov di, offset _brand_string ; brand string supported?
 cmp byte ptr [di], 0
 J print_brand_id

 mov cx, 47 ; max brand string length

skip_spaces:
 cmp byte ptr [di], ' ' ; skip leading space chars
 jne print_brand_string

 inc di
 loop skip_spaces

print_brand_string:
 cmp cx, 0 ; Nothing to print
 je print_brand_id
 cmp byte ptr [di], 0
 je print_brand_id

print_brand_char:
 mov dl, [di] ; print upto the max chars
 mov ah, 2
 int 21h

 inc di
 cmp byte ptr [di], 0
 je print_family
 loop print_brand_char
 jmp print_family

print_brand_id:
 cmp _cpu_type, 6
 jb print_486_type
 ja print_pentiumiiimodel8_type

 mov eax, dword ptr _cpu_signature
 shr eax, 4
 and al, 0fh
 cmp al, 8
 jae print_pentiumiiimodel8_type

print_486_type:
 cmp _cpu_type, 4 ; if 4, print 80486 processor
 jne print_pentium_type
 mov eax, dword ptr _cpu_signature
 shr eax, 4
 and eax, 0fh ; isolate model
 mov dx, intel_486_0[eax*2]
 jmp print_common

print_pentium_type:
 cmp _cpu_type, 5 ; if 5, print Pentium processor
 jne print_pentiumpro_type
 mov dx, offset pentium_msg
 jmp print_common

AP-485

40

print_pentiumpro_type:
 cmp _cpu_type, 6 ; if 6 & model 1, print Pentium
 ; Pro processor
 jne print_unknown_type
 mov eax, dword ptr _cpu_signature
 shr eax, 4
 and eax, 0fh ; isolate model
 cmp eax, 3
 jge print_pentiumiimodel3_type
 cmp eax, 1
 jne print_unknown_type ; incorrect model number = 2
 mov dx, offset pentiumpro_msg
 jmp print_common

print_pentiumiimodel3_type:
 cmp eax, 3 ; if 6 & model 3, print Pentium
 ; II processor, model 3
 jne print_pentiumiimodel5_type
 mov dx, offset pentiumiimodel3_msg
 jmp print_common

print_pentiumiimodel5_type:
 cmp eax, 5 ; if 6 & model 5, either Pentium
 ; II processor, model 5, Pentium II
 ; Xeon processor or Intel Celeron
 ; processor, model 5
 je celeron_xeon_detect

 cmp eax, 7 ; If model 7 check cache descriptors
 ; to determine Pentium III or Pentium III Xeon
 jne print_celeronmodel6_type
celeron_xeon_detect:

; Is it Pentium II processor, model 5, Pentium II Xeon processor, Intel Celeron processor,
; Pentium III processor or Pentium III Xeon processor.

 mov eax, dword ptr _cache_eax
 rol eax, 8
 mov cx, 3

celeron_detect_eax:
 cmp al, 40h ; Is it no L2
 je print_celeron_type
 cmp al, 44h ; Is L2 >= 1M
 jae print_pentiumiixeon_type

 rol eax, 8
 loop celeron_detect_eax

 mov eax, dword ptr _cache_ebx
 mov cx, 4

celeron_detect_ebx:
 cmp al, 40h ; Is it no L2
 je print_celeron_type
 cmp al, 44h ; Is L2 >= 1M
 jae print_pentiumiixeon_type

 rol eax, 8
 loop celeron_detect_ebx

 AP-485

 41

 mov eax, dword ptr _cache_ecx
 mov cx, 4

celeron_detect_ecx:
 cmp al, 40h ; Is it no L2
 je print_celeron_type
 cmp al, 44h ; Is L2 >= 1M
 jae print_pentiumiixeon_type

 rol eax, 8
 loop celeron_detect_ecx

 mov eax, dword ptr _cache_edx
 mov cx, 4

celeron_detect_edx:
 cmp al, 40h ; Is it no L2
 je print_celeron_type
 cmp al, 44h ; Is L2 >= 1M
 jae print_pentiumiixeon_type

 rol eax, 8
 loop celeron_detect_edx

 mov dx, offset pentiumiixeon_m5_msg
 mov eax, dword ptr _cpu_signature
 shr eax, 4
 and eax, 0fh ; isolate model
 cmp eax, 5
 je print_common
 mov dx, offset pentiumiii_msg
 jmp print_common

print_celeron_type:
 mov dx, offset celeron_msg
 jmp print_common

print_pentiumiixeon_type:
 mov dx, offset pentiumiixeon_msg
 mov ax, word ptr _cpu_signature
 shr ax, 4
 and eax, 0fh ; isolate model
 cmp eax, 5
 je print_common
 mov dx, offset pentiumiiixeon_msg
 jmp print_common

print_celeronmodel6_type:
 cmp eax, 6 ; if 6 & model 6, print Intel Celeron
 ; processor, model 6
 jne print_pentiumiiimodel8_type
 mov dx, offset celeronmodel6_msg
 jmp print_common

print_pentiumiiimodel8_type:
 cmp eax, 8 ; Pentium III processor, model 8, or
 ; Pentium III Xeon processor, model 8
 jb print_unknown_type

 mov eax, dword ptr _features_ebx
 cmp al, 0 ; Is brand_id supported?

AP-485

42

 je print_unknown_type

 mov di, offset brand_table ; Setup pointer to brand_id table
 mov cx, brand_table_size ; Get maximum entry count

next_brand:
 cmp al, byte ptr [di] ; Is this the brand reported by the processor
 je brand_found

 add di, sizeof brand_entry ; Point to next Brand Defined
 loop next_brand ; Check next brand if the table is not exhausted
 jmp print_unknown_type

brand_found:
 mov dx, word ptr [di+1] ; Load DX with the offset of the brand string
 jmp print_common

print_unknown_type:
 mov dx, offset unknown_msg ; if neither, print unknown
print_common:
 mov ah, 9h
 int 21h

; print family, model, and stepping
print_family:
 mov al, _cpu_type
 ASC_MSG family_msg ; print family msg

 mov eax, dword ptr _cpu_signature
 and ah, 0fh ; Check for Extended Family
 cmp ah, 0fh
 jne print_model
 mov dx, offset ext_fam_msg
 mov ah, 9h
 int 21h
 shr eax, 20
 mov ah, al ; Copy extended family into ah
 shr al, 4
 and ax, 0f0fh
 add ah, '0' ; Convert upper nibble to ascii
 add al, '0' ; Convert lower nibble to ascii
 push ax
 mov dl, al
 mov ah, 2
 int 21h ; print upper nibble of ext family
 pop ax
 mov dl, ah
 mov ah, 2
 int 21h ; print lower nibble of ext family

print_model:
 mov eax, dword ptr _cpu_signature
 shr ax, 4
 and al, 0fh
 ASC_MSG model_msg ; print model msg

 mov eax, dword ptr _cpu_signature
 and al, 0f0h ; Check for Extended Model
 cmp ah, 0f0h
 jne print_stepping
 mov dx, offset ext_mod_msg

 AP-485

 43

 mov ah, 9h
 int 21h
 shr eax, 16
 and al, 0fh
 add al, '0' ; Convert extended model to ascii
 mov dl, al
 mov ah, 2
 int 21h ; print lower nibble of ext family

print_stepping:
 mov eax, dword ptr _cpu_signature
 and al, 0fh
 ASC_MSG stepping_msg ; print stepping msg

print_upgrade:
 mov eax, dword ptr _cpu_signature
 test ax, 1000h ; check for turbo upgrade
 jz check_dp
 mov dx, offset turbo_msg
 mov ah, 9h
 int 21h
 jmp print_features

check_dp:
 test ax, 2000h ; check for dual processor
 jz print_features
 mov dx, offset dp_msg
 mov ah, 9h
 int 21h

print_features:
 mov eax, dword ptr _features_edx
 and eax, FPU_FLAG ; check for FPU
 jz check_VME
 mov dx, offset fpu_msg
 mov ah, 9h
 int 21h

check_VME:
 mov eax, dword ptr _features_edx
 and eax, VME_FLAG ; check for VME
 jz check_DE
 mov dx, offset vme_msg
 mov ah, 9h
 int 21h

check_DE:
 mov eax, dword ptr _features_edx
 and eax, DE_FLAG ; check for DE
 jz check_PSE
 mov dx, offset de_msg
 mov ah, 9h
 int 21h

check_PSE:
 mov eax, dword ptr _features_edx
 and eax, PSE_FLAG ; check for PSE
 jz check_TSC
 mov dx, offset pse_msg
 mov ah, 9h
 int 21h

AP-485

44

check_TSC:
 mov eax, dword ptr _features_edx
 and eax, TSC_FLAG ; check for TSC
 jz check_MSR
 mov dx, offset tsc_msg
 mov ah, 9h
 int 21h

check_MSR:
 mov eax, dword ptr _features_edx
 and eax, MSR_FLAG ; check for MSR
 jz check_PAE
 mov dx, offset msr_msg
 mov ah, 9h
 int 21h

check_PAE:
 mov eax, dword ptr _features_edx
 and eax, PAE_FLAG ; check for PAE
 jz check_MCE
 mov dx, offset pae_msg
 mov ah, 9h
 int 21h

check_MCE:
 mov eax, dword ptr _features_edx
 and eax, MCE_FLAG ; check for MCE
 jz check_CX8
 mov dx, offset mce_msg
 mov ah, 9h
 int 21h

check_CX8:
 mov eax, dword ptr _features_edx
 and eax, CX8_FLAG ; check for CMPXCHG8B
 jz check_APIC
 mov dx, offset cx8_msg
 mov ah, 9h
 int 21h

check_APIC:
 mov eax, dword ptr _features_edx
 and eax, APIC_FLAG ; check for APIC
 jz check_SEP
 mov dx, offset apic_msg
 mov ah, 9h
 int 21h

check_SEP:
 mov eax, dword ptr _features_edx
 and eax, SEP_FLAG ; Check for Fast System Call
 jz check_MTRR

 cmp _cpu_type, 6 ; Determine if Fast System
 jne print_sep ; Calls are supported.

 mov eax, dword ptr _cpu_signature
 cmp al, 33h
 jb print_no_sep

 AP-485

 45

print_sep:
 mov dx, offset sep_msg
 mov ah, 9h
 int 21h
 jmp check_MTRR

print_no_sep:
 mov dx, offset no_sep_msg
 mov ah, 9h
 int 21h

check_MTRR:
 mov eax, dword ptr _features_edx
 and eax, MTRR_FLAG ; check for MTRR
 jz check_PGE
 mov dx, offset mtrr_msg
 mov ah, 9h
 int 21h

check_PGE:
 mov eax, dword ptr _features_edx
 and eax, PGE_FLAG ; check for PGE
 jz check_MCA
 mov dx, offset pge_msg
 mov ah, 9h
 int 21h

check_MCA:
 mov eax, dword ptr _features_edx
 and eax, MCA_FLAG ; check for MCA
 jz check_CMOV
 mov dx, offset mca_msg
 mov ah, 9h
 int 21h

check_CMOV:
 mov eax, dword ptr _features_edx
 and eax, CMOV_FLAG ; check for CMOV
 jz check_PAT
 mov dx, offset cmov_msg
 mov ah, 9h
 int 21h

check_PAT:
 mov eax, dword ptr _features_edx
 and eax, PAT_FLAG
 jz check_PSE36
 mov dx, offset pat_msg
 mov ah, 9h
 int 21h

check_PSE36:
 mov eax, dword ptr _features_edx
 and eax, PSE36_FLAG
 jz check_PSNUM
 mov dx, offset pse36_msg
 mov ah, 9h
 int 21h

check_PSNUM:
 mov eax, dword ptr _features_edx

AP-485

46

 and eax, PSNUM_FLAG ; check for processor serial number
 jz check_CLFLUSH
 mov dx, offset psnum_msg
 mov ah, 9h
 int 21h

check_CLFLUSH:
 mov eax, dword ptr _features_edx
 and eax, CLFLUSH_FLAG ; check for Cache Line Flush
 jz check_DTS
 mov dx, offset clflush_msg
 mov ah, 9h
 int 21h

check_DTS:
 mov eax, dword ptr _features_edx
 and eax, DTS_FLAG ; check for Debug Trace Store
 jz check_ACPI
 mov dx, offset dts_msg
 mov ah, 9h
 int 21h

check_ACPI:
 mov eax, dword ptr _features_edx
 and eax, ACPI_FLAG ; check for processor serial number
 jz check_MMX
 mov dx, offset acpi_msg
 mov ah, 9h
 int 21h

check_MMX:
 mov eax, dword ptr _features_edx
 and eax, MMX_FLAG ; check for MMX technology
 jz check_FXSR
 mov dx, offset mmx_msg
 mov ah, 9h
 int 21h

check_FXSR:
 mov eax, dword ptr _features_edx
 and eax, FXSR_FLAG ; check for FXSR
 jz check_SSE
 mov dx, offset fxsr_msg
 mov ah, 9h
 int 21h

check_SSE:
 mov eax, dword ptr _features_edx
 and eax, SSE_FLAG ; check for Streaming SIMD
 jz check_SSE2 ; Extensions
 mov dx, offset sse_msg
 mov ah, 9h
 int 21h

check_SSE2:
 mov eax, dword ptr _features_edx
 and eax, SSE2_FLAG ; check for Streaming SIMD
 jz check_SS ; Extensions 2
 mov dx, offset sse2_msg
 mov ah, 9h
 int 21h

 AP-485

 47

check_SS:
 mov eax, dword ptr _features_edx
 and eax, SS_FLAG ; check for Self Snoop
 jz check_TM
 mov dx, offset ss_msg
 mov ah, 9h
 int 21h

check_TM:
 mov eax, dword ptr _features_edx
 and eax, TM_FLAG ; check for Thermal Monitor
 jz end_print
 mov dx, offset tm_msg
 mov ah, 9h
 int 21h

 jmp end_print

not_GenuineIntel:
 mov dx, offset not_intel
 mov ah, 9h
 int 21h

end_print:
 mov dx, offset cr_lf
 mov ah, 9h
 int 21h
 ret
print endp

 end start

AP-485

48

Example 3. Processor Identification Procedure in the C Language

/* FILENAME: CPUID3.C */
/* Copyright(c) 1994 - 2001 by Intel Corp. */
/* */
/* This program has been developed by Intel Corporation. Intel has */
/* various intellectual property rights which it may assert under */
/* certain circumstances, such as if another manufacturer's */
/* processor mis-identifies itself as being "GenuineIntel" when */
/* the CPUID instruction is executed. */
/* */
/* Intel specifically disclaims all warranties, express or implied, */
/* and all liability, including consequential and other indirect */
/* damages, for the use of this program, including liability for */
/* infringement of any proprietary rights, and including the */
/* warranties of merchantability and fitness for a particular */
/* purpose. Intel does not assume any responsibility for any */
/* errors which may appear in this program nor any responsibility */
/* to update it. */
/* */
/* */
/* This program contains three parts: */
/* Part 1: Identifies CPU type in the variable _cpu_type: */
/* */
/* Part 2: Identifies FPU type in the variable _fpu_type: */
/* */
/* Part 3: Prints out the appropriate message. */
/* */
/* This program has been tested with the Microsoft Developer Studio. */
/* If this code is compiled with no options specified and linked */
/* with the cpuid3a module, it correctly identifies the current */
/* Intel 8086/8088, 80286, 80386, 80486, Pentium(R), Pentium(R) Pro, */
/* Pentium(R) II, Pentium(R) II Xeon, Pentium(R) II OverDrive(R), */
/* Intel Celeron, Intel Pentium III and Intel Pentium III Xeon processors */

#define FPU_FLAG 0x0001
#define VME_FLAG 0x0002
#define DE_FLAG 0x0004
#define PSE_FLAG 0x0008
#define TSC_FLAG 0x0010
#define MSR_FLAG 0x0020
#define PAE_FLAG 0x0040
#define MCE_FLAG 0x0080
#define CX8_FLAG 0x0100
#define APIC_FLAG 0x0200
#define SEP_FLAG 0x0800
#define MTRR_FLAG 0x1000
#define PGE_FLAG 0x2000
#define MCA_FLAG 0x4000
#define CMOV_FLAG 0x8000
#define PAT_FLAG 0x10000
#define PSE36_FLAG 0x20000
#define PSNUM_FLAG 0x40000
#define CLFLUSH_FLAG 0x80000
#define DTS_FLAG 0x200000
#define ACPI_FLAG 0x400000
#define MMX_FLAG 0x800000
#define FXSR_FLAG 0x1000000
#define SSE_FLAG 0x2000000
#define SSE2_FLAG 0x4000000
#define SS_FLAG 0x8000000

 AP-485

 49

#define TM_FLAG 0x20000000

extern char cpu_type;
extern char fpu_type;
extern char cpuid_flag;
extern char intel_CPU;
extern char vendor_id[12];
extern long cpu_signature;
extern long features_ecx;
extern long features_edx;
extern long features_ebx;
extern long cache_eax;
extern long cache_ebx;
extern long cache_ecx;
extern long cache_edx;
extern char brand_string[48];
extern int brand_id;

long cache_temp;
long celeron_flag;
long pentiumxeon_flag;

struct brand_entry {
 long brand_value;
 char *brand_string;
};

#define brand_table_size 4

struct brand_entry brand_table[brand_table_size] = {
 1, " Genuine Intel Celeron(TM) processor",
 2, " Genuine Intel Pentium(R) III processor",
 3, " Genuine Intel Pentium(R) III Xeon(TM) processor",
 8, " Genuine Intel Pentium(R) 4 processor"
};

main() {
 get_cpu_type();
 get_fpu_type();
 print();
}

print() {
 int brand_index = 0;

 printf("This system has a");
 if (cpuid_flag == 0) {
 switch (cpu_type) {
 case 0:
 printf("n 8086/8088 processor");
 if (fpu_type) printf(" and an 8087 math coprocessor");
 break;
 case 2:
 printf("n 80286 processor");
 if (fpu_type) printf(" and an 80287 math coprocessor");
 break;
 case 3:
 printf("n 80386 processor");
 if (fpu_type == 2)

AP-485

50

 printf(" and an 80287 math coprocessor");
 else if (fpu_type)
 printf(" and an 80387 math coprocessor");
 break;
 case 4:
 if (fpu_type)
 printf("n 80486DX, 80486DX2 processor or 80487SX math coprocessor");
 else
 printf("n 80486SX processor");
 break;
 default:
 printf("n unknown processor");
 }
 }
 else {
 /* using cpuid instruction */
 if (intel_CPU) {
 if (brand_string[0]) {
 brand_index = 0;
 while ((brand_string[brand_index] == ' ') && (brand_index < 48))
 brand_index++;
 if (brand_index != 48)
 printf(" %s", &brand_string[brand_index]);
 }
 else if (cpu_type == 4) {
 switch ((cpu_signature>>4) & 0xf) {
 case 0:
 case 1:
 printf(" Genuine Intel486(TM) DX processor");
 break;
 case 2:
 printf(" Genuine Intel486(TM) SX processor");
 break;
 case 3:
 printf(" Genuine IntelDX2(TM) processor");
 break;
 case 4:
 printf(" Genuine Intel486(TM) processor");
 break;
 case 5:
 printf(" Genuine IntelSX2(TM) processor");
 break;
 case 7:
 printf(" Genuine Write-Back Enhanced \
 IntelDX2(TM) processor");
 break;
 case 8:
 printf(" Genuine IntelDX4(TM) processor");
 break;
 default:
 printf(" Genuine Intel486(TM) processor");
 }
 }
 else if (cpu_type == 5)
 printf(" Genuine Intel Pentium(R) processor");
 else if ((cpu_type == 6) && (((cpu_signature >> 4) & 0xf) == 1))
 printf(" Genuine Intel Pentium(R) Pro processor");
 else if ((cpu_type == 6) && (((cpu_signature >> 4) & 0xf) == 3))
 printf(" Genuine Intel Pentium(R) II processor, model 3");
 else if (((cpu_type == 6) && (((cpu_signature >> 4) & 0xf) == 5)) ||
 ((cpu_type == 6) && (((cpu_signature >> 4) & 0xf) == 7)))

 AP-485

 51

 {
 celeron_flag = 0;
 pentiumxeon_flag = 0;
 cache_temp = cache_eax & 0xFF000000;
 if (cache_temp == 0x40000000)
 celeron_flag = 1;
 if ((cache_temp >= 0x44000000) && (cache_temp <= 0x45000000))
 pentiumxeon_flag = 1;

 cache_temp = cache_eax & 0xFF0000;
 if (cache_temp == 0x400000)
 celeron_flag = 1;
 if ((cache_temp >= 0x440000) && (cache_temp <= 0x450000))
 pentiumxeon_flag = 1;

 cache_temp = cache_eax & 0xFF00;
 if (cache_temp == 0x4000)
 celeron_flag = 1;
 if ((cache_temp >= 0x4400) && (cache_temp <= 0x4500))
 pentiumxeon_flag = 1;

 cache_temp = cache_ebx & 0xFF000000;
 if (cache_temp == 0x40000000)
 celeron_flag = 1;
 if ((cache_temp >= 0x44000000) && (cache_temp <=0x45000000))
 pentiumxeon_flag = 1;

 cache_temp = cache_ebx & 0xFF0000;
 if (cache_temp == 0x400000)
 celeron_flag = 1;
 if ((cache_temp >= 0x440000) && (cache_temp <= 0x450000))
 pentiumxeon_flag = 1;

 cache_temp = cache_ebx & 0xFF00;
 if (cache_temp == 0x4000)
 celeron_flag = 1;
 if ((cache_temp >= 0x4400) && (cache_temp <= 0x4500))
 pentiumxeon_flag = 1;

 cache_temp = cache_ebx & 0xFF;
 if (cache_temp == 0x40)
 celeron_flag = 1;
 if ((cache_temp >= 0x44) && (cache_temp <= 0x45))
 pentiumxeon_flag = 1;

 cache_temp = cache_ecx & 0xFF000000;
 if (cache_temp == 0x40000000)
 celeron_flag = 1;
 if ((cache_temp >= 0x44000000) && (cache_temp <= 0x45000000))
 pentiumxeon_flag = 1;

 cache_temp = cache_ecx & 0xFF0000;
 if (cache_temp == 0x400000)
 celeron_flag = 1;
 if ((cache_temp >= 0x440000) && (cache_temp <= 0x450000))
 pentiumxeon_flag = 1;

 cache_temp = cache_ecx & 0xFF00;
 if (cache_temp == 0x4000)
 celeron_flag = 1;
 if ((cache_temp >= 0x4400) && (cache_temp <= 0x4500))

AP-485

52

 pentiumxeon_flag = 1;

 cache_temp = cache_ecx & 0xFF;
 if (cache_temp == 0x40)
 celeron_flag = 1;
 if ((cache_temp >= 0x44) && (cache_temp <= 0x45))
 pentiumxeon_flag = 1;

 cache_temp = cache_edx & 0xFF000000;
 if (cache_temp == 0x40000000)
 celeron_flag = 1;
 if ((cache_temp >= 0x44000000) && (cache_temp <= 0x45000000))
 pentiumxeon_flag = 1;

 cache_temp = cache_edx & 0xFF0000;
 if (cache_temp == 0x400000)
 celeron_flag = 1;
 if ((cache_temp >= 0x440000) && (cache_temp <= 0x450000))
 pentiumxeon_flag = 1;

 cache_temp = cache_edx & 0xFF00;
 if (cache_temp == 0x4000)
 celeron_flag = 1;
 if ((cache_temp >= 0x4400) && (cache_temp <= 0x4500))
 pentiumxeon_flag = 1;

 cache_temp = cache_edx & 0xFF;
 if (cache_temp == 0x40)
 celeron_flag = 1;
 if ((cache_temp >= 0x44) && (cache_temp <= 0x45))
 pentiumxeon_flag = 1;

 if (celeron_flag == 1)
 printf(" Genuine Intel Celeron(TM) processor, model 5");
 else
 {
 if (pentiumxeon_flag == 1) {
 if (((cpu_signature >> 4) & 0x0f) == 5)
 printf(" Genuine Intel Pentium(R) II Xeon(TM)
processor");
 else
 printf(" Genuine Intel Pentium(R) III Xeon(TM)
processor,");
 printf(" model 7");
 }
 else {
 if (((cpu_signature >> 4) & 0x0f) == 5) {
 printf(" Genuine Intel Pentium(R) II processor, model 5 ");
 printf("or Intel Pentium(R) II Xeon processor");
 }
 else {
 printf(" Genuine Intel Pentium(R) III processor, model 7");
 printf(" or Intel Pentium(R) III Xeon(TM) processor,");
 printf(" model 7");
 }
 }
 }
 }
 else if ((cpu_type == 6) && (((cpu_signature >> 4) & 0xf) == 6))
 printf(" Genuine Intel Celeron(TM) processor, model 6");
 else if ((features_ebx & 0xff) != 0) {

 AP-485

 53

 while ((brand_index < brand_table_size) &&
 ((features_ebx & 0xff) != brand_table[brand_index].brand_value))
 brand_index++;
 if (brand_index < brand_table_size)
 printf("%s", brand_table[brand_index].brand_string);
 else
 printf("n unknown Genuine Intel processor");
 }
 else
 printf("n unknown Genuine Intel processor");
 printf("\nProcessor Family: %X", cpu_type);
 if (cpu_type == 0xf)
 printf("\n Extended Family: %x",(cpu_signature>>20)&0xff);
 printf("\nModel: %X", (cpu_signature>>4)&0xf);
 if (((cpu_signature>>4) & 0xf) == 0xf)
 printf("\n Extended Model: %x",(cpu_signature>>16)&0xf);
 printf("\nStepping: %X\n", cpu_signature&0xf);
 if (cpu_signature & 0x1000)
 printf("\nThe processor is an OverDrive(R) processor");
 else if (cpu_signature & 0x2000)
 printf("\nThe processor is the upgrade processor in a dual processor system");
 if (features_edx & FPU_FLAG)
 printf("\nThe processor contains an on-chip FPU");
 if (features_edx & VME_FLAG)
 printf("\nThe processor supports Virtual Mode Extensions");
 if (features_edx & DE_FLAG)
 printf("\nThe processor supports the Debugging Extensions");
 if (features_edx & PSE_FLAG)
 printf("\nThe processor supports Page Size Extensions");
 if (features_edx & TSC_FLAG)
 printf("\nThe processor supports Time Stamp Counter");
 if (features_edx & MSR_FLAG)
 printf("\nThe processor supports Model Specific Registers");
 if (features_edx & PAE_FLAG)
 printf("\nThe processor supports Physical Address Extension");
 if (features_edx & MCE_FLAG)
 printf("\nThe processor supports Machine Check Exceptions");
 if (features_edx & CX8_FLAG)
 printf("\nThe processor supports the CMPXCHG8B instruction");
 if (features_edx & APIC_FLAG)
 printf("\nThe processor contains an on-chip APIC");
 if (features_edx & SEP_FLAG) {
 if ((cpu_type == 6) && ((cpu_signature & 0xff) < 0x33))
 printf("\nThe processor does not support the Fast System Call");
 else
 printf("\nThe processor supports the Fast System Call");
 }
 if (features_edx & MTRR_FLAG)
 printf("\nThe processor supports the Memory Type Range Registers");
 if (features_edx & PGE_FLAG)
 printf("\nThe processor supports Page Global Enable");
 if (features_edx & MCA_FLAG)
 printf("\nThe processor supports the Machine Check Architecture");
 if (features_edx & CMOV_FLAG)
 printf("\nThe processor supports the Conditional Move Instruction");
 if (features_edx & PAT_FLAG)
 printf("\nThe processor supports the Page Attribute Table");
 if (features_edx & PSE36_FLAG)
 printf("\nThe processor supports 36-bit Page Size Extension");
 if (features_edx & PSNUM_FLAG)
 printf("\nThe processor supports the processor serial number");

AP-485

54

 if (features_edx & CLFLUSH_FLAG)
 printf("\nThe processor supports the CLFLUSH instruction");
 if (features_edx & DTS_FLAG)
 printf("\nThe processor supports the Debug Trace Store feature");
 if (features_edx & ACPI_FLAG)
 printf("\nThe processor supports ACPI registers in MSR space");
 if (features_edx & MMX_FLAG)
 printf("\nThe processor supports Intel Architecture MMX(TM) technology");
 if (features_edx & FXSR_FLAG)
 printf("\nThe processor supports the Fast floating point save and restore");
 if (features_edx & SSE_FLAG)
 printf("\nThe processor supports the Streaming SIMD extensions to the Intel
Architecture");
 if (features_edx & SSE2_FLAG)
 printf("\nThe processor supports the Streaming SIMD extensions 2 instructions");
 if (features_edx & SS_FLAG)
 printf("\nThe processor supports Self-Snoop");
 if (features_edx & TM_FLAG)
 printf("\nThe processor supports the Thermal Monitor");
 }
 else {
 printf("t least an 80486 processor. ");
 printf("\nIt does not contain a Genuine Intel part and as a result, the ");
 printf("\nCPUID detection information cannot be determined at this time.");
 }
 }
 printf("\n");
}

 AP-485

 55

Example 4. Instruction Extension Detection Using Exception Handlers

// FILENAME: FEATURES.CPP
// Copyright(c) 2000 - 2001 by Intel Corp.
//
// This program has been developed by Intel Corporation. Intel has
// various intellectual property rights which it may assert under
// certain circumstances, such as if another manufacturer's
// processor mis-identifies itself as being "GenuineIntel" when
// the CPUID instruction is executed.
//
// Intel specifically disclaims all warranties, express or implied,
// and all liability, including consequential and other indirect
// damages, for the use of this program, including liability for
// infringement of any proprietary rights, and including the
// warranties of merchantability and fitness for a particular
// purpose. Intel does not assume any responsibility for any
// errors which may appear in this program nor any responsibility
// to update it.
//
#include "stdio.h"
#include "string.h"
#include "excpt.h"

 // The follow code sample demonstrate using exception handlers to identify available IA-32 features,
 // The sample code Identifies IA-32 features such as support for Streaming SIMD Extensions 2
 // (SSE2), support for Streaming SIMD Extensions (SSE), support for MMX (TM) instructions.
 // This technique can be used safely to determined IA-32 features and provide
 // forward compatibility to run optimally on future IA-32 processors.
 // Please note that the technique of trapping invalid opcodes is not suitable
 // for identifying the processor family and model.

int main(int argc, char* argv[])
{
 char sSupportSSE2[80]="Don't know";
 char sSupportSSE[80]="Don't know";
 char sSupportMMX[80]="Don't know";

 // To identify whether SSE2, SSE, or MMX instructions are supported on an x86 compatible
 // processor in a fashion that will be compatible to future IA-32 processors,
 // The following tests are performed in sequence: (This sample code will assume cpuid
 // instruction is supported by the target processor.)
 // 1. Test whether target processor is a Genuine Intel processor, if yes
 // 2. Test if executing an SSE2 instruction would cause an exception, if no exception occurs,
 // SSE2 is supported; if exception occurs,
 // 3. Test if executing an SSE instruction would cause an exception, if no exception occurs,
 // SSE is supported; if exception occurs,
 // 4. Test if executing an MMX instruction would cause an exception, if no exception occurs,
 // MMX instruction is supported,
 // if exception occurs, MMX instruction is not supported by this processor.

 // For clarity, the following stub function "IsGenuineIntelProcessor()" is not shown in this example,
 // The function "IsGenuineIntelProcessor()" can be adapted from the sample code implementation of
 // the assembly procedure "_get_cpu_type". The purpose of this stub function is to examine
 // whether the Vendor ID string, which is returned when executing
 // cpuid instruction with EAX = 0, indicates the processor is a genuine Intel processor.

 if (IsGenuineIntelProcessor())
 {
 // First, execute an SSE2 instruction to see whether an exception occurs

AP-485

56

 __try
 {
 __asm {
 paddq xmm1, xmm2 // this is an instruction available in SSE2
 }
 strcpy(&sSupportSSE2[0], "Yes"); // No exception executing an SSE2 instruction
 }

 __except(EXCEPTION_EXECUTE_HANDLER) // SSE2 exception handler
 {
 // exception occurred when executing an SSE2 instruction
 strcpy(&sSupportSSE2[0], "No");
 }

 // Second, execute an SSE instruction to see whether an exception occurs

 __try
 {
 __asm {
 orps xmm1, xmm2 // this is an instruction available in SSE
 }
 strcpy(&sSupportSSE[0], "Yes"); // no exception executing an SSE instruction
 }

 __except(EXCEPTION_EXECUTE_HANDLER) // SSE exception handler
 {
 // exception occurred when executing an SSE instruction
 strcpy(&sSupportSSE[0], "No");
 }

 // Third, execute an MMX instruction to see whether an exception occurs

 __try
 {
 __asm {
 emms // this is an instruction available in MMX
technology
 }
 strcpy(&sSupportMMX[0], "Yes"); // no exception executing an MMX instruction
 }

 __except(EXCEPTION_EXECUTE_HANDLER) // MMX exception handler
 {
 // exception occurred when executing an MMX instruction
 strcpy(&sSupportMMX[0], "No");
 }
 }

 printf("This Processor supports the following instruction extensions: \n");
 printf("SSE2 instruction: \t\t%s \n", &sSupportSSE2[0]);
 printf("SSE instruction: \t\t%s \n", &sSupportSSE[0]);
 printf("MMX instruction: \t\t%s \n", &sSupportMMX[0]);
 return 0;
}

 AP-485

 57

Example 5. Detecting Denormals-Are-Zero Support

; Filename: DAZDTECT.ASM
; Copyright(c) 2001 by Intel Corp.
;
; This program has been developed by Intel Corporation. Intel
; has various intellectual property rights which it may assert
; under certain circumstances, such as if another
; manufacturer's processor mis-identifies itself as being
; "GenuineIntel" when the CPUID instruction is executed.
;
; Intel specifically disclaims all warranties, express or
; implied, and all liability, including consequential and other
; indirect damages, for the use of this program, including
; liability for infringement of any proprietary rights,
; and including the warranties of merchantability and fitness
; for a particular purpose. Intel does not assume any
; responsibility for any errors which may appear in this program
; nor any resp onsibility to update it. \
;
; This example assumes the system has booted DOS.
; This program runs in Real mode.
;
;**
;
; This program performs the following 8 steps to determine if the
; processor supports the SSE/SSE2 DAZ mode.
;
; Step 1. Execute the CPUID instruction with an input value of EAX=0 and
; ensure the vendor-ID string returned is “GenuineIntel”.
;
; Step 2. Execute the CPUID instruction with EAX=1. This will load the
; EDX register with the feature flags.
;
; Step 3. Ensure that the FXSR feature flag (EDX bit 24) is set.
; This indicates the processor supports the FXSAVE and FXRSTOR
; instructions.
;
; Step 4. Ensure that the XMM feature flag (EDX bit 25) or the EMM feature
; flag (EDX bit 26) is set. This indicates that the processor supports
; at least one of the SSE/SSE2 instruction sets and its MXCSR control
; register.
;
; Step 5. Zero a 16-byte aligned, 512-byte area of memory.
; This is necessary since some implementations of FXSAVE do not
; modify reserved areas within the image.
;
; Step 6. Execute an FXSAVE into the cleared area.
;
; Step 7. Bytes 28-31 of the FXSAVE image are defined to contain the
; MXCSR_MASK. If this value is 0, then the processor's MXCSR_MASK
; is 0xFFBF, otherwise MXCSR_MASK is the value of this dword.
;
; Step 8. If bit 6 of the MXCSR_MASK is set, then DAZ is supported.
;
;**

 .DOSSEG
 .MODEL small, c
 .STACK

AP-485

58

; Data segment

 .DATA

buffer DB 512+16 DUP (0)

not_intel DB "This is not an Genuine Intel processor.", 0Dh, 0Ah, "$"
noSSEorSSE2 DB "Neither SSE or SSE2 extensions are supported.", 0Dh, 0Ah, "$"
no_FXSAVE DB "FXSAVE not supported.", 0Dh, 0Ah, "$"
daz_mask_clear DB "DAZ bit in MXCSR_MASK is zero (clear).", 0Dh, 0Ah, "$"
no_daz DB "DAZ mode not supported.", 0Dh, 0Ah, "$"
supports_daz DB "DAZ mode supported.", 0Dh, 0Ah, "$"

; Code segment

 .CODE
 .686p
 .XMM

dazdtect PROC NEAR

 .startup ; Allow assembler to create code that
 ; initializes stack and data segment
 ; registers

; Step 1.

 ;Verify Genuine Intel processor by checking CPUID generated vendor ID

 mov eax, 0
 cpuid

 cmp ebx, 'uneG' ; Compare first 4 letters of Vendor ID
 jne notIntelprocessor ; Jump if not Genuine Intel processor
 cmp edx, 'Ieni' ; Compare next 4 letters of Vendor ID
 jne notIntelprocessor ; Jump if not Genuine Intel processor
 cmp ecx, 'letn' ; Compare last 4 letters of Vendor ID
 jne notIntelprocessor ; Jump if not Genuine Intel processor

; Step 2, 3, and 4

 ; Get CPU feature flags
 ; Verify FXSAVE and either SSE or
 ; SSE2 are supported

 mov eax, 1
 cpuid
 bt edx, 24t ; Feature Flags Bit 24 is FXSAVE support
 jnc noFxsave ; jump if FXSAVE not supported

 bt edx, 25t ; Feature Flags Bit 25 is SSE support
 jc sse_or_sse2_supported ; jump if SSE is not supported

 bt edx, 26t ; Feature Flags Bit 26 is SSE2 support
 jnc no_sse_sse2 ; jump if SSE2 is not supported

sse_or_sse2_supported:

 ; FXSAVE requires a 16-byte aligned

 AP-485

 59

 ; buffer so get offset into buffer

 mov bx, OFFSET buffer ; Get offset of the buffer into bx
 and bx, 0FFF0h
 add bx, 16t ; DI is aligned at 16-byte boundary

; Step 5.

 ; Clear the buffer that will be
 ; used for FXSAVE data

 push ds
 pop es

mov di, bx
 xor ax, ax
 mov cx, 512/2
 cld
 rep stosw ; Fill at FXSAVE buffer with zeroes

; Step 6.

 fxsave [bx]

; Step 7.

 mov eax, DWORD PTR [bx][28t] ; Get MXCSR_MASK
 cmp eax, 0 ; Check for valid mask
 jne check_mxcsr_mask
 mov eax, 0FFBFh ; Force use of default MXCSR_MASK

check_mxcsr_mask:
; EAX contains MXCSR_MASK from FXSAVE buffer or default mask

; Step 8.

bt eax, 6t ; MXCSR_MASK Bit 6 is DAZ support
 jc supported ; Jump if DAZ supported

 mov dx, OFFSET daz_mask_clear
 jmp notSupported

supported:
 mov dx, OFFSET supports_daz ; Indicate DAZ is supported.
 jmp print

notIntelProcessor:
 mov dx, OFFSET not_intel ; Assume not an Intel processor
 jmp print

no_sse_sse2:
 mov dx, OFFSET noSSEorSSE2 ; Setup error message assuming no SSE/SSE2
 jmp notSupported

noFxsave:
 mov dx, OFFSET no_FXSAVE

notSupported:
 mov ah, 09h ; Execute DOS print string function
 int 21h

 mov dx, OFFSET no_daz

AP-485

60

print:
 mov ah, 09h ; Execute DOS print string function
 int 21h

exit:
 .exit ; Allow assembler to generate code
 ; that returns control to DOS
 ret

dazdtect ENDP

 END

 AP-485

 61

Example 6. Frequency Calculation

; Filename: FREQUENC.ASM
; Copyright(c) 2001 by Intel Corp.
;
; This program has been developed by Intel Corporation. Intel
; has various intellectual property rights which it may assert
; under certain circumstances, such as if another
; manufacturer's processor mis-identifies itself as being
; "GenuineIntel" when the CPUID instruction is executed.
;
; Intel specifically disclaims all warranties, express or
; implied, and all liability, including consequential and other
; indirect damages, for the use of this program, including
; liability for infringement of any proprietary rights,
; and including the warranties of merchantability and fitness
; for a particular purpose. Intel does not assume any
; responsibility for any errors which may appear in this program
; nor any responsibility to update it.
;
; This example assumes the system has booted DOS.
; This program runs in Real mode.
;
;**
;
; This program was assembled using MASM 6.14.8444 and tested on a
; system with a Pentium(r) II processor, a system with a
; Pentium(r) III processor, a system with a Pentium(r) 4 processor,
; B2 stepping, and a system with a Pentium(r) 4 processor,
; C1 stepping.
;
; This program performs the following 8 steps to determine the
; processor actual frequency.
;
; Step 1. Execute the CPUID instruction with an input value of EAX=0
; and ensure the vendor-ID string returned is "GenuineIntel".
; Step 2. Execute the CPUID instruction with EAX=1 to load the EDX
; register with the feature flags.
; Step 3. Ensure that the TSC feature flag (EDX bit 4) is set. This
; indicates the processor supports the Time Stamp Counter
; and RDTSC instruction.
; Step 4. Read the TSC at the beginning of the reference period
; Step 5. Read the TSC at the end of the reference period.
; Step 6. Compute the TSC delta from the beginning and ending of the
; reference period.
; Step 7. Coupute the actual frequency by dividing the TSC delta by
; the reference period.
;
;**

 .DOSSEG
 .MODEL small, pascal
 .STACK ;4096

wordToDec PROTO NEAR PASCAL decAddr:WORD, hexData:WORD

;--
; Macro printst
; This macro is used to print a string passed as an input
; parameter and a word value immediately after the string.
; The string is delared in the data segment routine during

AP-485

62

; assembly time. The word is converted to dec ascii and
; printed after the string.
;
; Input: stringData = string to be printed.
; wordData = word to be converted to dec ascii and printed
;
; Destroys: None
;
; Output: None
;
; Assumes: Stack is available
;
;--
printst MACRO stringdata, hexWord
 local stringlabel, decData

 .data

stringlabel DB stringdata
decData DB 5 dup (0)
 DB 0dh, 0ah, '$'

 .code

 pushf
 pusha

 ; Convert the word ino hex ascii and store in the string
 invoke wordToDec, offset decData, hexWord

 mov dx, offset stringlabel ; Setup string to be printed
 mov ah, 09h ; Execute DOS print function
 int 21h

 popa
 popf

ENDM

SEG_BIOS_DATA_AREA EQU 40h
OFFSET_TICK_COUNT EQU 6ch
INTERVAL_IN_TICKS EQU 10

; Data segment

 .DATA

; Code segment

 .CODE
 .686p

cpufreq PROC NEAR
 local tscLoDword:DWORD, \
 tscHiDword:DWORD, \
 mhz:WORD,\
 Nearest66Mhz:WORD,\
 Nearest50Mhz:WORD,\

 AP-485

 63

 delta66Mhz:WORD

 .startup ; Allow assembler to create code that
 ; initializes stack and data segment
 ; registers

; Step 1.

 ;Verify Genuine Intel processor by checking CPUID generated vendor ID

 mov eax, 0
 cpuid

 cmp ebx, 'uneG' ; Check VendorID = GenuineIntel
 jne exit ; Jump if not Genuine Intel processor
 cmp edx, 'Ieni'
 jne exit
 cmp ecx, 'letn'
 jne exit

; Step 2 and 3

 ; Get CPU feature flags
 ; Verify TSC is supported

 mov eax, 1
 cpuid
 bt edx, 4t ; Flags Bit 4 is TSC support
 jnc exit ; jump if TSC not supported

 push SEG_BIOS_DATA_AREA
 pop es
 mov si, OFFSET_TICK_COUNT ; The BIOS tick count updateds
 mov ebx, DWORD PTR es:[si] ; ~ 18.2 times per second.

wait_for_new_tick:
 cmp ebx, DWORD PTR es:[si] ; Wait for tick count change
 je wait_for_new_tick

; Step 4
 ; **Timed interval starts**

 ; Read CPU time stamp
 rdtsc ; Read and save TSC immediately
 mov tscLoDword, eax ; after a tick
 mov tscHiDword, edx

 add ebx, INTERVAL_IN_TICKS + 1 ; Set time delay value ticks.

wait_for_elapsed_ticks:
 cmp ebx, DWORD PTR es:[si] ; Have we hit the delay?
 jne wait_for_elapsed_ticks

; Step 5
 ; **Time interval ends**

 ; Read CPU time stamp immediatly after tick delay reached.
 rdtsc

; Step 6

AP-485

64

 sub eax, tscLoDword ; Calculate TSC delta from
 sbb edx, tscHiDword ; beginning to end of interval

; Step 7
 ;
 ; 54945 = (1 / 18.2) * 1,000,000 This adjusts for MHz.
 ; 54945*INTERVAL_IN_TICKS adjusts for number of ticks in interval
 ;

 mov ebx, 54945*INTERVAL_IN_TICKS
 div ebx

 ; ax contains measured speed in MHz
 mov mhz, ax

 ; Find nearest full/half multiple of 66/133 MHz
 xor dx, dx
 mov ax, mhz
 mov bx, 3t
 mul bx
 add ax, 100t
 mov bx, 200t
 div bx
 mul bx
 xor dx, dx
 mov bx, 3
 div bx

 ; ax contains nearest full/half multiple of 66/100 MHz

 mov Nearest66Mhz, ax
 sub ax, mhz
 jge delta66
 neg ax ; ax = abs(ax)

delta66:
 ; ax contains delta between actual and nearest 66/133 multiple
 mov Delta66Mhz, ax

 ; Find nearest full/half multiple of 100 MHz
 xor dx, dx
 mov ax, mhz
 add ax, 25t
 mov bx, 50t
 div bx
 mul bx

 ; ax contains nearest full/half multiple of 100 MHz

 mov Nearest50Mhz, ax
 sub ax, mhz
 jge delta50
 neg ax ; ax = abs(ax)

delta50:
 ; ax contains delta between actual and nearest 50/100 MHz multiple

 mov bx, Nearest50Mhz
 cmp ax, Delta66Mhz
 jb useNearest50Mhz

 AP-485

 65

 mov bx, Nearest66Mhz

 ; Correction for 666 MHz (should be reported as 667 MHZ)
 cmp bx, 666
 jne correct666
 inc bx
correct666:

useNearest50MHz:
 ; bx contains nearest full/half multiple of 66/100/133 MHz

 printst "Reported MHz = ~", bx
 printst "Measured MHz = ", mhz ; print decimal value

exit:

 .exit ; returns control to DOS

 ret

cpufreq ENDP

;--
; Procedure wordToDec
; This routine will convert a word value into a 5 byte decimal
; ascii string.
;
; Input: decAddr = address to 5 byte location for converted string
; (near address assumes DS as segment)
; hexData = word value to be converted to hex ascii
;
; Destroys: ax, bx, cx
;
; Output: 5 byte converted hex string
;
; Assumes: Stack is available
;
;--

wordToDec PROC NEAR PUBLIC uses es,
 decAddr:WORD, hexData:WORD

 pusha
 mov di, decAddr
 push @data
 pop es ; ES:DI -> 5-byte converted string

 mov ax, hexData
 xor dx, dx
 mov bx, 10000t
 div bx
 add ax, 30h
 stosb

 mov ax, dx
 xor dx, dx
 mov bx, 1000t
 div bx
 add ax, 30h
 stosb

AP-485

66

 mov ax, dx
 xor dx, dx
 mov bx, 100t
 div bx
 add ax, 30h
 stosb

 mov ax, dx
 xor dx, dx
 mov bx, 10t
 div bx
 add ax, 30h
 stosb

 mov ax, dx
 add ax, 30h
 stosb

 popa
 ret

wordToDec ENDP

 END

 AP-485

 67

UNITED STATES, Intel Corporation
2200 Mission College Blvd., P.O. Box 58119, Santa Clara, CA 95052-8119

Tel: +1 408 765-8080

JAPAN, Intel Japan K.K.
5-6 Tokodai, Tsukuba-shi, Ibaraki-ken 300-26

Tel: + 81-29847-8522

FRANCE, Intel Corporation S.A.R.L.
1, Quai de Grenelle, 75015 Paris

Tel: +33 1-45717171

UNITED KINGDOM, Intel Corporation (U.K.) Ltd.
Pipers Way, Swindon, Wiltshire, England SN3 1RJ

Tel: +44 1-793-641440
GERMANY, Intel GmbH

Dornacher Strasse 1

85622 Feldkirchen/ Muenchen
Tel: +49 89/99143-0

HONG KONG, Intel Semiconductor Ltd.

32/F Two Pacific Place, 88 Queensway, Central
Tel: +852 2844-4555

CANADA, Intel Semiconductor of Canada, Ltd.

190 Attwell Drive, Suite 500
Rexdale, Ontario M9W 6H8

Tel: +416 675-2438

