

Mobile Intel® Celeron® Processor

(0.18µ and 0.13µ) Specification
Update

Release Date: November 2001

Order Number: 245421-021

The Mobile Intel® Celeron® processor (0.18µ and 0.13µ) may contain design defects or errors known as errata
which may cause the product to deviate from published specifications. Current characterized errata are
documented in this Specification Update.

Information in this document is provided in connection with Intel® products.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document.

Except as provided in Intel’s Terms and Conditions of Sale for such products, Intel assumes no liability whatsoever, and
Intel disclaims any express or implied warranty, relating to sale and/or use of Intel products including liability or warranties
relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright or other intellectual
property right.

Intel products are not intended for use in medical, life saving, or life sustaining applications.

Intel may make changes to specifications and product descriptions at any time, without notice.

Designers must not rely on the absence or characteristics of any features or instructions marked "reserved" or "undefined."
Intel reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising
from future changes to them.

The Mobile Intel® Celeron® processor (0.18µ and 0.13µ) may contain design defects or errors known as errata which may
cause the product to deviate from published specifications. Current characterized errata are available on request.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product
order.

Copies of documents which have an ordering number and are referenced in this document, or other Intel literature, may be
obtained from:

Intel Corporation

 www.intel.com

 or call 1-800-548-4725

Intel®, Pentium®, Celeron®, and Xeon ™ are trademarks or registered trademarks of Intel Corporation or its subsidiaries in
the United States and other countries

*Other names and brands may be claimed as the property of others.

Copyright © 1998-2001, Intel Corporation

http://www.intel.com/

 MOBILE INTEL® CELERON® PROCESSOR (0.18µ and 0.13µ) SPECIFICATION UPDATE

 i

CONTENTS
REVISION HISTORY ... ii
PREFACE... iv
GENERAL INFORMATION ..1
Mobile Intel® Celeron® Processor (Micro-PGA2) Markings..1
Mobile Intel® Celeron® Processor (BGA2) Markings..2
Mobile Intel® Celeron® Processor 0.18µ (Micro-FCPGA) Markings ...3
Mobile Intel® Celeron® Processor 0.18µ (Micro-FCBGA) Markings ...4
Mobile Intel® Celeron® Processor 0.13µ (Micro-FCPGA) Markings ...5
Mobile Intel® Celeron® Processor 0.13µ (Micro-FCBGA) Markings ...6
Intel® Celeron® Processor Mobile Module Markings ...7
IDENTIFICATION INFORMATION ...9
SUMMARY OF CHANGES ..14

Summary of Errata ..15
Summary of Documentation Changes ...20
Summary of Specification Clarifications...20
Summary of Specification Changes...21

ERRATA ..22
DOCUMENTATION CHANGES ...61
SPECIFICATION CLARIFICATIONS..64
SPECIFICATION CHANGES ...66

MOBILE INTEL® CELERON® PROCESSOR (0.18µ and 0.13µ) SPECIFICATION UPDATE

ii

REVISION HISTORY
Date of Revision Version Description
February 2000 -001 Initial release

March 2000 -002 Revised Errata M38, M43, and M47. Added Erratum M53.
Added new Specification Clarification M1.

April 2000 -003 Updated the Preface with new references; Updated “Intel
Celeron Processor Mobile Module Markings” section; Updated
Identification Information for BGA2, micro-PGA2 packages, and
mobile modules; Updated Erratum M34; Added Erratum M54;
Added Documentation Change M5; Added Specification
Clarifications M2, M3.

May 2000 -004 Updated Identification Information for mobile modules. Updated
Erratum M53. Added Erratum M55, M56

June 2000 -005 Updated the Preface with new document references; Updated
Identification Information for BGA2, micro-PGA2 packages, and
mobile modules. Added Erratum M57.

July 2000 -006 Updated Identification Information for BGA2, micro-PGA2
packages, and mobile modules; Updated Summary of Changes
Tables to include C0-step products; Added Erratum M58, M59;
Updated the Specification Clarifications and Documentation
Changes section by removing old items that were incorporated
in the new documents referenced in this spec update; Added
new Specification Clarifications M1, M2.

August 2000 -007 Added Erratum M60.

September 2000 -008 Added Erratum M61, M62; Revised Erratum M22, M43, M52;
Added Documentation Changes M5, M6.

October 2000 -009 Updated the list of referenced documents in the preface;
Updated Identification Information for BGA2, micro-PGA2
packages, and mobile modules; Added Erratum M63; Added
Documentation Changes M7, M8

November 2000 -010 Added Erratum M64.

December 2000 -011 Updated Specification Update product key to include the Intel®
Pentium® 4 processor, Revised Erratum M2; Added
Documentation Changes M9 thru M14

January 2001 -012 Revised Erratum M2; Added Documentation Changes M15,
M16.

February 2001 -013 Updated the list of referenced documents in the preface;
Updated Identification Information for BGA2 packages; Revised
Documentation Change M15 and Added M17.

 MOBILE INTEL® CELERON® PROCESSOR (0.18µ and 0.13µ) SPECIFICATION UPDATE

 iii

REVISION HISTORY
Date of Revision Version Description
March 2001 -014 Added Erratum M65 and M66. Revised Specification

Clarification M2.

April 2001 -015 Updated the list of referenced documents in the preface;
Updated Identification Information for BGA2 and micro-PGA2
packages; Updated the Specification Clarifications section by
removing old items that were incorporated in the new
documents referenced in this spec update.

May 2001 -016 Updated the list of referenced documents in the preface;
Updated Identification Information for BGA2 and micro-PGA2
packages; Changed “NoFix” plan for Erratum K38 to “Fixed” in
D0 stepping; Added Erratum M67.

June 2001 -017 Updated Summary of Changes.

July 2001 -018 Updated the list of referenced documents in the preface;
Updated Identification Information for BGA2 and micro-PGA2
packages.

August 2001 -019 Updated Summary of Changes; Added Erratum M68 and M69;
Added Documentation Change M18.

October 2001 -020 Updated list of referenced documents in the preface; Updated
the Celeron® mark to a registered trademark; Added micro-
FCPGA and micro-FCBGA package marking diagrams for
Mobile Intel Celeron Processor (0.18µ and 0.13µ) to general
information section; Added identification information for Mobile
Intel Celeron Processor (0.18µ and 0.13µ) micro-FCPGA and
micro-FCBGA packages; Updated Summary of Changes;
Updated columns with FBD0, FPD0, FPA1, FBA1 steppings in
Summary of Changes; Added Errata M2AP and M70; Updated
the Documentation Changes by removing old items that were
incorporated in the new documents references in this spec
update; Added Specification Clarification M1.

November 2001 -021 Updated Summary of Changes; Added Documentation Changes
M1, M2, M3, M4, M5.

MOBILE INTEL® CELERON® PROCESSOR (0.18µ and 0.13µ) SPECIFICATION UPDATE

iv

PREFACE
This document is an update to the specifications contained in the following documents:

• Mobile Intel® Celeron® Processor in BGA2 and Micro-PGA2 Packages at 900 MHz, 850 MHz, 800 MHz, 750 MHz,
700 MHz, 650 MHz, 600 MHz, 550 MHz, 500 MHz, 450 MHz, Low voltage 600 MHz, Low voltage 500 MHz, Low
voltage 400A MHz, Ultra Low Voltage 600MHz and Ultra Low Voltage 500 MHz datasheet (Order Number 283654-
003)

• Mobile Intel® Celeron® Processor (0.18�) in Micro-FCBGA and Micro-FCPGA packages at 933, 866, 800A, and 733
MHz (Order Number 298514-001)

• Mobile Intel® Celeron® Processor (0.13�) in Micro-FCBGA in Low Voltage Package at 650 MHz (Order Number
298517-001)

• Intel® Celeron® Processor Mobile Module: Mobile Module Connector 2 (MMC-2) at 700 MHz, 650 MHz, 600 MHz,
550 MHz, 500 MHz and 450 MHz datasheet (Order Number 243357-005)

• Intel Architecture Software Developer’s Manual, Volumes 1, 2, and 3 (Order Numbers 243190, 243191, and 243192,
respectively)

• P6 Family of Processors Hardware Developer’s Manual (Order Number 244001)

This document intended for hardware system manufacturers and software developers of applications, operating systems,
or tools. It contains Errata, Documentation Changes, Specification Clarifications, and Specification Changes.

Nomenclature
S-Spec Number is a five-digit code used to identify products. Products are differentiated by their unique characteristics,
e.g., core speed, L2 cache size, package type, etc. as described in the processor identification information table. Care
should be taken to read all notes associated with each S-Spec number.

Errata are design defects or errors. Errata may cause the processor’s behavior to deviate from published specifications.
Hardware and software designed to be used with any given processor must assume that all errata documented for that
processor are present on all devices unless otherwise noted.

Documentation Changes include errors (including typographical), or omissions from the current published specifications.
These changes will be incorporated in the next release of the appropriate documentation(s).

Specification Clarifications describe a specification in greater detail or further highlight a specification’s impact to a
complex design situation. These clarifications will be incorporated in the next release of the appropriate documentation(s).

Specification Changes are modifications to the current published specifications for the processor. These changes will be
incorporated in the next release of the appropriate documentation(s).

Specification Update for the Mobile Intel®
Celeron® Processor (0.18µ and 0.13µ)

MOBILE INTEL® CELERON® PROCESSOR (0.18µ and 0.13µ) SPECIFICATION UPDATE

 1

GENERAL INFORMATION

Mobile Intel® Celeron® Processor (Micro-PGA2) Markings

Legal
(YY = Year)

FFFFFFFF SXXXX
KP ZZZ/CCC

M C ‘YYINTEL

2D
(supplier Lot ID +

)

S-spec#FPO#

Packag
Designato Cache

Speed

MOBILE INTEL® CELERON® PROCESSOR (0.18µ and 0.13µ) SPECIFICATION UPDATE

2

Mobile Intel® Celeron® Processor (BGA2) Markings

(Supplier Lot ID +
SER#)

Legal
(YY = Year)

FFFFFFFF SXXX
KC ZZZ/CCC

M C ‘YYINTEL

2D Matrix

S-specFPO

Package
Designator Cache

Speed

MOBILE INTEL® CELERON® PROCESSOR (0.18µ and 0.13µ) SPECIFICATION UPDATE

 3

Mobile Intel® Celeron® Processor 0.18µ (Micro-FCPGA) Markings

MOBILE INTEL® CELERON® PROCESSOR (0.18µ and 0.13µ) SPECIFICATION UPDATE

4

Mobile Intel® Celeron® Processor 0.18µ (Micro-FCBGA) Markings

Legal Requirements

 M C ‘YYINTEL

2D Matrix

(supplier Lot ID + SER#)

S-spec#FPO#

FFFFFFFF SXXXX
PRODUCT DETAIL

MOBILE INTEL® CELERON® PROCESSOR (0.18µ and 0.13µ) SPECIFICATION UPDATE

 5

Mobile Intel® Celeron® Processor 0.13µ (Micro-FCPGA) Markings

MOBILE INTEL® CELERON® PROCESSOR (0.18µ and 0.13µ) SPECIFICATION UPDATE

6

Mobile Intel® Celeron® Processor 0.13µ (Micro-FCBGA) Markings

MOBILE INTEL® CELERON® PROCESSOR (0.18µ and 0.13µ) SPECIFICATION UPDATE

 7

Intel® Celeron® Processor Mobile Module Markings
The Product Tracking Code (PTC) determines the Intel assembly level of the module. The PTC is on
the secondary side of the module and provides the following information:

Example: PMN70001201AA

• The PTC will consist of 13 characters as identified in the above example and
can be broken down as follows:

 AABCCCDDEEEFF
• Definition: AA - Processor Module = PM

 B - Celeron® Processor (.18µ) Mobile Module (MMC-2) = N
 CCC - Speed Identity = 700, 650, 600, 550, 500 or 450, etc.
 DD - Cache Size = 01 (128 KB)
 EEE - Notifiable Design Revision (Start at 001)
 FF - Notifiable Processor Revision (Start at AA)

Note: For other Intel Mobile Modules, the second field (B) is defined as:
Pentium® II Processor Mobile Module (MMC-1) = D
Pentium® II Processor Mobile Module (MMC-2) = E
Pentium® II Processor Mobile Module With On-die Cache (MMC-1) = F
Pentium® II Processor Mobile Module With On-die Cache (MMC-2) = G
Celeron® Processor Mobile Module (MMC-1) = H
Celeron® Processor Mobile Module (MMC-2) = I
Pentium® III Processor Mobile Module = L
Pentium® III Processor Mobile Module Featuring Intel® SpeedStep™
Technology = M

MOBILE INTEL® CELERON® PROCESSOR (0.18µ and 0.13µ) SPECIFICATION UPDATE

8

Intel® Celeron® Processor Mobile Module at 650 MHz, 600 MHz, 550 MHz, 500 MHz and 450 MHz

MOBILE INTEL® CELERON® PROCESSOR (0.18µ and 0.13µ) SPECIFICATION UPDATE

 9

IDENTIFICATION INFORMATION
The Mobile Intel® Celeron® processor (0.18µ and 0.13µ) can be identified by the following values:

Family1 Model2 Brand ID3

0110 1000 00000001

NOTES:
1. The Family corresponds to bits [11:8] of the EDX register after Reset, bits [11:8] of the EAX register after the CPUID instruction is

executed with a 1 in the EAX register, and the generation field of the Device ID register accessible through Boundary Scan.
2. The Model corresponds to bits [7:4] of the EDX register after Reset, bits [7:4] of the EAX register after the CPUID instruction is

executed with a 1 in the EAX register, and the model field of the Device ID register accessible through Boundary Scan.
3. The Brand ID is returned by the CPUID instruction in the EBX[7:0] when CPUID is executed with the value of 1 in the EAX.

Intel® Mobile Celeron® Processor (0.18µ) in BGA2 and micro-PGA2 Packages Identification Information

S-Spec
Product
Stepping CPUID

Speed (MHz)
Core/Bus

Integrated L2
Size (Kbytes) Package Notes

SL3UL BA2 0681h 400/100 128 BGA2 1

SL43W BB0 0683h 400/100 128 BGA2 1

SL45A BB0 0683h 500/100 128 BGA2 1

SL3PD BA2 0681h 450/100 128 BGA2 2

SL43T BB0 0683h 450/100 128 BGA2 2

SL3PC BA2 0681h 500/100 128 BGA2 2

SL43Q BB0 0683h 500/100 128 BGA2 2

SL3ZE BB0 0683h 550/100 128 BGA2 2

SL4AR BB0 0683h 600/100 128 BGA2 2

SL4AD BB0 0683h 650/100 128 BGA2 2

SL4J8 BC0 0686h 400/100 128 BGA2 1

SL4JC BC0 0686h 450/100 128 BGA2 2

SL4JD BC0 0686h 500/100 128 BGA2 2

SL4J9 BC0 0686h 500/100 128 BGA2 1

SL4ZR BC0 0686h 500/100 128 BGA2 3

MOBILE INTEL® CELERON® PROCESSOR (0.18µ and 0.13µ) SPECIFICATION UPDATE

10

Intel® Mobile Celeron® Processor (0.18µ) in BGA2 and micro-PGA2 Packages Identification Information

S-Spec
Product
Stepping CPUID

Speed (MHz)
Core/Bus

Integrated L2
Size (Kbytes) Package Notes

SL4JE BC0 0686h 550/100 128 BGA2 2

SL4JF BC0 0686h 600/100 128 BGA2 2

SL4JG BC0 0686h 650/100 128 BGA2 2

SL4GU BC0 0686h 700/100 128 BGA2 2

SL56P BC0 0686h 750/100 128 BGA2 2

SL5DR BD0 068Ah 500/100 128 BGA2 3

SL5V5 BD0 068Ah 600/100 128 BGA2 4

SL5DS BD0 068Ah 600/100 128 BGA2 3

SL582 BD0 068Ah 600/100 128 BGA2 1

SL53V BD0 068Ah 700/100 128 BGA2 2

SL53U BD0 068Ah 750/100 128 BGA2 2

SL57X BD0 068Ah 800/100 128 BGA2 2

SL57Y BD0 068Ah 850/100 128 BGA2 2

SL3PF PA2 0681h 450/100 128 Micro-PGA2 2

SL43U PB0 0683h 450/100 128 Micro-PGA2 2

SL3PE PA2 0681h 500/100 128 Micro-PGA2 2

SL43R PB0 0683h 500/100 128 Micro-PGA2 2

SL3ZF PB0 0683h 550/100 128 Micro-PGA2 2

SL4AP PB0 0683h 600/100 128 Micro-PGA2 2

SL4AE PB0 0683h 650/100 128 Micro-PGA2 2

SL4JS PC0 0686h 450/100 128 Micro-PGA2 2

SL4JT PC0 0686h 500/100 128 Micro-PGA2 2

SL4JU PC0 0686h 550/100 128 Micro-PGA2 2

SL4JV PC0 0686h 600/100 128 Micro-PGA2 2

SL4JW PC0 0686h 650/100 128 Micro-PGA2 2

SL4GX PC0 0686h 700/100 128 Micro-PGA2 2

MOBILE INTEL® CELERON® PROCESSOR (0.18µ and 0.13µ) SPECIFICATION UPDATE

 11

Intel® Mobile Celeron® Processor (0.18µ) in BGA2 and micro-PGA2 Packages Identification Information

S-Spec
Product
Stepping CPUID

Speed (MHz)
Core/Bus

Integrated L2
Size (Kbytes) Package Notes

SL56Q PC0 0686h 750/100 128 Micro-PGA2 2

SL53D PD0 068Ah 700/100 128 Micro-PGA2 2

SL53C PD0 068Ah 750/100 128 Micro-PGA2 2

SL584 PD0 068Ah 800/100 128 Micro-PGA2 2

SL585 PD0 068Ah 850/100 128 Micro-PGA2 2

NOTES:

1. VID[4:0] = 01101; VCC_CORE = 1.35 V

2. VID[4:0] = 01000; VCC_CORE = 1.60 V

3. VID[4:0] = 10111; VCC_CORE = 1.10 V

4. VID[4:0] = 10101; VCC_CORE = 1.15V

Identification information for Mobile Celeron (0.18µµµµ) Micro-FCBGA and Micro-FCPGA Packages

S-Spec Product
Stepping CPUID Speed (MHz)

Core/Bus
Integrated L2
Size (Kbytes) Package Notes

SL5SU FPD0 068Ah 933/133 128 Micro-FCPGA 1
SL5SR FBD0 068Ah 933/133 128 Micro-FCBGA 1
SL5Q3 FPD0 068Ah 866/133 128 Micro-FCPGA 1
SL5Q2 FBD0 068Ah 866/133 128 Micro-FCBGA 1
SL5ST FPD0 068Ah 800A/133 128 Micro-FCPGA 1
SL5SQ FBD0 068Ah 800A/133 128 Micro-FCBGA 1
SL5SS FPD0 068Ah 733/133 128 Micro-FCPGA 1
SL5SP FBD0 068Ah 733/133 128 Micro-FCBGA 1

NOTES:

1. VID[4:0] = 00001; VCC_CORE = 1.70V

MOBILE INTEL® CELERON® PROCESSOR (0.18µ and 0.13µ) SPECIFICATION UPDATE

12

Identification information for Mobile Celeron (0.13µµµµ) Micro-FCBGA and Micro-FCPGA Packages

S-Spec Product
Stepping CPUID Speed (MHz)

Core/Bus
Integrated L2
Size (Kbytes) Package Notes

SL5YA FBA1 06B1 650/100 256 Micro-FCBGA 1

NOTES:

1. VID[4:0] = 01100; VCC_CORE = 1.15V

MOBILE INTEL® CELERON® PROCESSOR (0.18µ and 0.13µ) SPECIFICATION UPDATE

 13

Intel® Celeron® Processor (0.18µ) Mobile Module Identification Information

Product Tracking
Code (PTC) Core Stepping CPUID

Speed (MHz)
Core/Bus

Integrated L2 Size
(Kbytes) Package Notes

PMN45001001AA MA2 0681h 450/100 128 MMC2 1

PMN50001001AA MA2 0681h 500/100 128 MMC2 1

PMN45001101AB MB0 0683 450/100 128 MMC2 1

PMN50001101AB MB0 0683 500/100 128 MMC2 1

PMN55001101AA MB0 0683h 550/100 128 MMC2 1

PMN60001101AA MB0 0683h 600/100 128 MMC2 1

PMN65001101AA MB0 0683h 650/100 128 MMC2 1

PMN45001201AC MC0 0686 450/100 128 MMC-2 1

PMN50001201AC MC0 0686 500/100 128 MMC-2 1

PMN55001201AB MC0 0686 550/100 128 MMC-2 1

PMN60001201AB MC0 0686 600/100 128 MMC-2 1

PMN65001201AB MC0 0686 650/100 128 MMC-2 1

PMN70001201AA MC0 0686 700/100 128 MMC-2 1

NOTES:

1. VCC_CORE = 1.60 V

MOBILE INTEL® CELERON® PROCESSOR (0.18µ and 0.13µ) SPECIFICATION UPDATE

14

SUMMARY OF CHANGES
The following table indicates the Errata, Documentation Changes, Specification Clarifications, or
Specification Changes that that apply to Mobile Celeron processors Intel intends to fix some of the
errata in a future stepping of he component, and to account for the other outstanding issues through
documentation or specification changes as noted. This table uses the following notation:

CODES USED IN SUMMARY TABLE

X:
Specification Change, Erratum, Specification Clarification, or Documentation
Change applies to the given processor stepping.

(No mark) or (blank box): This item is fixed in or does not apply to the given stepping.

Doc: Intel intends to update the appropriate documentation in a future revision.

Fix: This erratum is intended to be fixed in a future stepping of the component.

Fixed: This erratum has been previously fixed.

NoFix: There are no plans to fix this erratum.

Doc: Intel intends to update the appropriate documentation in a future revision.

AP: APIC related erratum.

MO: Mobile processor related erratum

PKG: This column refers to errata on the mobile processor substrate.
Shaded: This item is either new or modified from the previous version of the document.

Each Specification Update item will be prefixed with a capital letter to distinguish the product. The key
below details the letters that are used in Intel’s microprocessor Specification Updates:

A = Intel® Pentium® II processor

B = Mobile Intel® Pentium® II processor

C = Intel® Celeron® processor

D = Intel® Pentium® II Xeon™ processor

E = Intel® Pentium® III processor

G = Intel® Pentium® III Xeon™ processor

H = Mobile Intel® Celeron® processor at 466 MHz, 433 MHz, 400 MHz, 366 MHz, 333 MHz, 300 MHz,
and 266 MHz

K = Mobile Intel® Pentium® III processor

M = Mobile Intel® Celeron® processor

N = Intel® Pentium® 4 processor

P = Intel® Xeon™ processor

The Specification Updates for the Pentium® processor, Pentium® Pro processor, and other Intel
products do not use this convention.

MOBILE INTEL® CELERON® PROCESSOR (0.18µ and 0.13µ) SPECIFICATION UPDATE

 15

Summary of Errata

N
O

.

B
A

2

P
A

2

M
A

2

B
B

0

P
B

0

M
B

0

B
C

0

P
C

0

M
C

0

B
D

0

P
D

0

FB
D

O

FP
D

O

FB
A

1

FP
A

1

P
la

ns

ERRATA

M1 X X X X X X X X X X X X X X X NoFix

FP data operand pointer may be
incorrectly calculated after FP
access which wraps 64-Kbyte
boundary in 16-bit code

M2 X X X X X X X X X X X X X X X NoFix Differences exist in debug
exception reporting

M3 X X X X X X X X X X X X X X X NoFix
Code fetch matching disabled
debug register may cause debug
exception

M4 X X X X X X X X X X X X X X X NoFix Double ECC error on read may
result in BINIT#

M5 X X X X X X X X X X X X X X X NoFix FP inexact-result exception flag
may not be set

M6 X X X X X X X X X X X X X X X NoFix BTM for SMI will contain incorrect
FROM EIP

M7 X X X X X X X X X X X X X X X NoFix I/O restart in SMM may fail after
simultaneous MCE

M8 X X X X X X X X X X X X X X X NoFix Branch traps do not function if
BTMs are also enabled

M9 X X X X X X X X X X X X X X X NoFix
Machine check exception handler
may not always execute
successfully

M10 X X X X X X X X X X X X X X X NoFix MCE due to L2 parity error gives
L1 MCACOD.LL

M11 X X X X X X X X X X X X X X X NoFix LBER may be corrupted after
some events

M12 X X X X X X X X X X X X X X X NoFix
BTMs may be corrupted during
simultaneous L1 cache line
replacement

M13 X X X X X X X X X X X X X X X NoFix Near CALL to ESP creates
unexpected EIP address

M14 X X X X X X X X X X X X X X X No Fix Memory type undefined for non-
memory operations

MOBILE INTEL® CELERON® PROCESSOR (0.18µ and 0.13µ) SPECIFICATION UPDATE

16

Summary of Errata

N
O

.

B
A

2

P
A

2

M
A

2

B
B

0

P
B

0

M
B

0

B
C

0

P
C

0

M
C

0

B
D

0

P
D

0

FB
D

O

FP
D

O

FB
A

1

FP
A

1

P
la

ns

ERRATA

M15 X X X X X X X X X X X X X X X NoFix FP Data operand pointer may not
be zero after power on or Reset

M16 X X X X X X X X X X X X X X X NoFix
MOVD following zeroing
instruction can cause incorrect
result

M17 X X X X X X X X X X X X X X X NoFix
Premature execution of a load
operation prior to exception
handler invocation

M18 X X X X X X X X X X X X X X X NoFix Read portion of RMW instruction
may execute twice

M19 X X X X X X X X X X X X X X X NoFix

MC2_STATUS MSR has model-
specific error code and machine
check architecture error code
reversed

M20 X X X X X X X X X X X X X X X NoFix MOV with debug register causes
debug exception

M21 X X X X X X X X X X X X X X X NoFix Upper four PAT entries not usable
with Mode B or Mode C paging

M22 X X X X X X X X X X X X X X X NoFix
Data breakpoint exception in a
displacement relative near call
may corrupt EIP

M23 X X X X X X X X X X X X X X X NoFix RDMSR and WRMSR to invalid
MSR may not cause GP fault

M24 X X X X X X X X X X X X X X X NoFix
SYSENTER/SYSEXIT instructions
can implicitly load null segment
selector to SS and CS registers

M25 X X X X X X X X X X X X X X X NoFix PRELOAD followed by EXTEST
does not load boundary scan data

M26 X X X X X X X X X X X X X X X NoFix INT 1 instruction handler execution
could generate a debug exception

M27 X X X X X X X X X X X X X X X NoFix Misaligned Locked access to APIC
space results in a hang

M28 X X X X X X X X X X X X X X X NoFix Processor may assert DRDY# on
a write with no data.

M29 X X X X X X X X X X X X X X X NoFix GP# Fault on WRMSR to
ROB_CR_BKUPTMPDR6

MOBILE INTEL® CELERON® PROCESSOR (0.18µ and 0.13µ) SPECIFICATION UPDATE

 17

Summary of Errata

N
O

.

B
A

2

P
A

2

M
A

2

B
B

0

P
B

0

M
B

0

B
C

0

P
C

0

M
C

0

B
D

0

P
D

0

FB
D

O

FP
D

O

FB
A

1

FP
A

1

P
la

ns

ERRATA

M30 X X X X X X

Fixed
Machine check exception may
occur due to improper line eviction
in the IFU

M31 X X X

Fixed
Performance counters include
streaming SIMD extensions L1
prefetch

M32 X X X Fixed Processor will erroneously report a
BIST failure

M33 Fix Internal snooping mechanism
causes livelock condition

M34

Fixed
Cache coherency may be lost if
snoop occurs during cache line
invalidation

M35

Fix
Extra DRDY# assertion when
eviction back-to-back write
combining lines

M36 X X X Fixed ECC detection and correction
issue

M37 X X X

Fixed
L2_LD and L2_M_LINES_OUTM
performance-monitoring counters
do not work

M38 X X X X X X X X X Fixed Snoop request may cause DBSY#
hang

M39 X X X Fixed IFU/DCU deadlock may cause
system hang

M40 Fix WBINVD may lock write out buffer

M41 X X X

Fixed
L2_DBUS_BUSY performance
monitoring counter will not count
writes

M42 X X X X X X X X X X X X X X X NoFix
Lower bits of SMRAM SMBASE
register cannot be written with an
ITP

M43 X X X Fixed Task switch may cause wrong
PTE and PDE access bit to be set

MOBILE INTEL® CELERON® PROCESSOR (0.18µ and 0.13µ) SPECIFICATION UPDATE

18

Summary of Errata

N
O

.

B
A

2

P
A

2

M
A

2

B
B

0

P
B

0

M
B

0

B
C

0

P
C

0

M
C

0

B
D

0

P
D

0

FB
D

O

FP
D

O

FB
A

1

FP
A

1

P
la

ns

ERRATA

M44 X X X X X X X X X X X X X X X NoFix

Unsynchronized cross-modifying
code operations may cause
unexpected instruction execution
results

M45 X X X X X X

Fixed

Deadlock May Occur Due To
Illegal-Instruction/Page-Miss
Combination

M46 X X X X X X

Fixed

MASKMOVQ Instruction Interaction
with String Operation May Cause
Deadlock

M47 X X X Fixed Noise Sensitivity Issue on
Processor SMI# Pin

M48 X X X X X X X X X X X X X X X NoFix
MOVD or CVTSI2SS following
zeroing instruction can cause
incorrect result

M49 X X X X X X X X X X X X X X X NoFix
FLUSH# assertion following
STPCLK# may prevent CPU clocks
from stopping

M50 X X X Fixed Intermittent failure to assert ADS#
during processor power-on

M51 X X X Fixed Floating-point exception signal may
be deferred

M52 X X X X X X X X X X X X X NoFix Floating-point exception condition
may be deferred

M53 X X X

NoFix
Race conditions may exist on
thermal sensor SMBus collision
detection/arbitration circuitry

M54 X X X X X X Fixed Cache line reads may result in
eviction of invalid data

M55 X X X X X X X X X X X X X X X NoFix Snoop probe during FLUSH# could
cause L2 to be left in shared state

M56 X X X X X X Fixed Livelock may occur due to IFU line
eviction

M57 X X X

Fixed
Intermittent power-on failure due to
uninitialized processor internal
nodes

MOBILE INTEL® CELERON® PROCESSOR (0.18µ and 0.13µ) SPECIFICATION UPDATE

 19

Summary of Errata

N
O

.

B
A

2

P
A

2

M
A

2

B
B

0

P
B

0

M
B

0

B
C

0

P
C

0

M
C

0

B
D

0

P
D

0

FB
D

O

FP
D

O

FB
A

1

FP
A

1

P
la

ns

ERRATA

M58 X X X X X X Fixed Selector for the LTR/LLDT register
may get corrupted

M59 X X X X X X X X X X X X X X X NoFix INIT does not clear global entries in
the TLB

M60 X X X X X X X X X X X X X X X NoFix VM bit cleared on a double fault
handler

M61 X X X X X X X X X X X X X X X NoFix
Memory aliasing with inconsistent A
and D bits may cause processor
deadlock

M62 X X X X X X X X X X X X X X X NoFix
Use of memory aliasing with
inconsistent memory type may
cause system hang

M63 X X X X X X X X X X X X X X X NoFix
Processor may report invalid TSS
fault instead of Double fault during
mode C paging

M64 X X X X X X X X X X X X X X X NoFix
Machine check exception may
occur when interleaving code
between different memory types

M2AP X X X X X X X X X X X X X X X NoFix
Write to mask LVT (programmed as
EXTINT) will not deassert
outstanding interrupt

M65 X X X X X X X X X X X X X X X NoFix Wrong ESP Register Values During
a Fault in VM86 Mode

M66 X X X X X X X X X X X X X X X NoFix
APIC ICR Write May Cause
Interrupt Not to be Sent When ICR
Delivery Bit Pending

M67 X X X X X X X X X X X X X X X NoFix

Processor Incorrectly Samples
NMI Interrupt after RESET#
Deassertion When Processor
APIC is Hardware-Disabled

M68 X X X X X X X X X X X X X X X NoFix

The Instruction Fetch Unit (IFU)
May Fetch Instructions Based
Upon Stale CR3 Data After a Write
to CR3 Register

M69 X X X X NoFix
Processor Might not Exit Sleep
State Properly Upon De-assertion
of CPUSLP# Signal

MOBILE INTEL® CELERON® PROCESSOR (0.18µ and 0.13µ) SPECIFICATION UPDATE

20

Summary of Errata

N
O

.

B
A

2

P
A

2

M
A

2

B
B

0

P
B

0

M
B

0

B
C

0

P
C

0

M
C

0

B
D

0

P
D

0

FB
D

O

FP
D

O

FB
A

1

FP
A

1

P
la

ns

ERRATA

M70 X X NoFix
During Boundary Scan, BCLK Not
Sampled High When DPSLP# is
Asserted Low

Summary of Documentation Changes

N
O

.

B
A

2

P
A

2

M
A

2

B
B

0

P
B

0

M
B

0

B
C

0

P
C

0

M
C

0

B
D

0

P
D

0

FB
D

O

FP
D

O

FB
A

1

FP
A

1

P
la

ns

Documentation Changes

M1 X X X X X X X X X X X X X X X Doc Machine Check Exception detected
when BINIT# drive enabled

M2 X X X X X X X X X X X X X X X Doc Encoding of “Immediate to register” of
“AND” instruction

M3 X X X X X X X X X X X X X X X Doc The 'reg' field of CMPXCHG8B
instruction encoding must be 001

M4 X X X X X X X X X X X X X X X Doc SCAS/SCASB/SCASW/SCASD
encoding operand is incorrect

M5 X X X X X X X X X X X X X X X Doc

XCHG encoding operand information
(1-byte form) does not have a w-bit,
hence the reg size is implied. The AL
register is not a valid option for this 1-
byte encoding

Summary of Specification Clarifications

N
O

.

B
A

2

P
A

2

M
A

2

B
B

0

P
B

0

M
B

0

B
C

0

P
C

0

M
C

0

B
D

O

P
D

O

FB
D

O

FP
D

O

FB
A

1

FP
A

1

P
la

ns

Specification Clarifications

M1 X X Doc Temperature Specification Clarification
for Measuring Currents.

MOBILE INTEL® CELERON® PROCESSOR (0.18µ and 0.13µ) SPECIFICATION UPDATE

 21

Summary of Specification Changes

N
O

.

B
A

2

P
A

2

M
A

2

B
B

0

P
B

0

M
B

0

B
C

0

P
C

0

M
C

0

B
D

O

P
D

O

FB
D

O

FP
D

O

FB
A

1

FP
A

1

P
la

ns

Specification Changes

 Doc There are no Specification Changes

MOBILE INTEL® CELERON® PROCESSOR (0.18µ and 0.13µ) SPECIFICATION UPDATE

22

ERRATA

M1. WBINVD May Lock Write Out Buffer

Problem: The FP Data Operand Pointer is the effective address of the operand associated with the
last noncontrol floating-point instruction executed by the machine. If an 80-bit floating-point access
(load or store) occurs in a 16-bit mode other than protected mode (in which case the access will
produce a segment limit violation), the memory access wraps a 64-Kbyte boundary, and the floating-
point environment is subsequently saved, the value contained in the FP Data Operand Pointer may be
incorrect.

Implication: A 32-bit operating system running 16-bit floating-point code may encounter this erratum,
under the following conditions:

• The operating system is using a segment greater than 64 Kbytes in size.

• An application is running in a 16-bit mode other than protected mode.

• An 80-bit floating-point load or store which wraps the 64-Kbyte boundary is executed.

• The operating system performs a floating-point environment store
(FSAVE/FNSAVE/FSTENV/FNSTENV) after the above memory access.

• The operating system uses the value contained in the FP Data Operand Pointer.

Wrapping an 80-bit floating-point load around a segment boundary in this way is not a normal
programming practice. Intel has not currently identified any software which exhibits this behavior.

Workaround: If the FP Data Operand Pointer is used in an OS which may run 16-bit floating-point
code, care must be taken to ensure that no 80-bit floating-point accesses are wrapped around a 64-
Kbyte boundary.

Status: For the steppings affected see the Summary of Changes at the beginning of this section.

MOBILE INTEL® CELERON® PROCESSOR (0.18µ and 0.13µ) SPECIFICATION UPDATE

 23

M2. Differences Exist in Debug Exception Reporting

Problem: There exist some differences in the reporting of code and data breakpoint matches
between that specified by previous Intel processor specifications and the behavior of the Intel® Mobile
Celeron® processor, as described below:

Case 1: The first case is for a breakpoint set on a MOVSS or POPSS instruction, when the instruction
following it causes a debug register protection fault (DR7.gd is already set, enabling the fault). The
processor reports delayed data breakpoint matches from the MOVSS or POPSS instructions by setting
the matching DR6.bi bits, along with the debug register protection fault (DR6.bd). If additional
breakpoint faults are matched during the call of the debug fault handler, the processor sets the
breakpoint match bits (DR6.bi) to reflect the breakpoints matched by both the MOVSS or POPSS
breakpoint and the debug fault handler call. The Intel® Mobile Celeron® processor only sets DR6.bd in
either situation, and does not set any of the DR6.bi bits.

Case 2: In the second breakpoint reporting failure case, if a MOVSS or POPSS instruction with a data
breakpoint is followed by a store to memory which:

a) crosses a 4-Kbyte page boundary,

OR

b) causes the page table Access or Dirty (A/D) bits to be modified,

the breakpoint information for the MOVSS or POPSS will be lost. Previous processors retain this
information under these boundary conditions.

Case 3: If they occur after a MOVSS or POPSS instruction, the INTn, INTO, and INT3 instructions
zero the DR6.bi bits (bits B0 through B3), clearing pending breakpoint information, unlike previous
processors.

Case 4: If a data breakpoint and an SMI (System Management Interrupt) occur simultaneously, the
SMI will be serviced via a call to the SMM handler, and the pending breakpoint will be lost.

Case 5: When an instruction that accesses a debug register is executed, and a breakpoint is
encountered on the instruction, the breakpoint is reported twice.

Case 6: Unlike previous versions of Intel Architecture processors, Intel® Mobile Celeron® processors
will not set the Bi bits for a matching disabled breakpoint unless at least one other breakpoint is
enabled.

Implication: When debugging or when developing debuggers for a Intel® Mobile Celeron®
processor-based system, this behavior should be noted. Normal usage of the MOVSS or POPSS
instructions (i.e., following them with a MOV ESP) will not exhibit the behavior of cases 1-3. Debugging
in conjunction with SMM will be limited by case 4.

Workaround: Following MOVSS and POPSS instructions with a MOV ESP instruction when using
breakpoints will avoid the first three cases of this erratum. No workaround has been identified for cases
4, 5, or 6.

MOBILE INTEL® CELERON® PROCESSOR (0.18µ and 0.13µ) SPECIFICATION UPDATE

24

Status: For the steppings affected see the Summary of Changes at the beginning of this section.

M3. Code Fetch Matching Disabled Debug Register May Cause Debug
Exception

Problem: The bits L0-3 and G0-3 enable breakpoints local to a task and global to all tasks,
respectively. If one of these bits is set, a breakpoint is enabled, corresponding to the addresses in the
debug registers DR0-DR3. If at least one of these breakpoints is enabled, any of these registers are
disabled (i.e., Ln and Gn are 0), and RWn for the disabled register is 00 (indicating a breakpoint on
instruction execution), normally an instruction fetch will not cause an instruction-breakpoint fault based
on a match with the address in the disabled register(s). However, if the address in a disabled register
matches the address of a code fetch which also results in a page fault, an instruction-breakpoint fault
will occur.

Implication: The bits L0-3 and G0-3 enable breakpoints local to a task and global to all tasks,
respectively. If one of these bits is set, a breakpoint is enabled, corresponding to the addresses in the
debug registers DR0-DR3. If at least one of these breakpoints is enabled, any of these registers are
disabled (i.e., Ln and Gn are 0), and RWn for the disabled register is 00 (indicating a breakpoint on
instruction execution), normally an instruction fetch will not cause an instruction-breakpoint fault based
on a match with the address in the disabled register(s). However, if the address in a disabled register
matches the address of a code fetch which also results in a page fault, an instruction-breakpoint fault
will occur.

Workaround: The debug handler should clear breakpoint registers before they become disabled.

Status: For the steppings affected see the Summary of Changes at the beginning of this section.

MOBILE INTEL® CELERON® PROCESSOR (0.18µ and 0.13µ) SPECIFICATION UPDATE

 25

M4. Double ECC Error on Read May Result in BINIT#

Problem: For this erratum to occur, the following conditions must be met:

• Machine Check Exceptions (MCEs) must be enabled.

• A dataless transaction (such as a write invalidate) must be occurring simultaneously with a
transaction which returns data (a normal read).

• The read data must contain a double-bit uncorrectable ECC error.

If these conditions are met, the mobile processor will not be able to determine which transaction was
erroneous, and instead of generating an MCE, it will generate a BINIT#.

Implication: The bus will be reinitialized in this case. However, since a double-bit uncorrectable ECC
error occurred on the read, the MCE handler (which is normally reached on a double-bit uncorrectable
ECC error for a read) would most likely cause the same BINIT# event.

Workaround: Though the ability to drive BINIT# can be disabled in the mobile processor, which
would prevent the effects of this erratum, overall system behavior would not improve, since the error
which would normally cause a BINIT# would instead cause the machine to shut down. No other
workaround has been identified.

Status: For the steppings affected see the Summary of Changes at the beginning of this section.

MOBILE INTEL® CELERON® PROCESSOR (0.18µ and 0.13µ) SPECIFICATION UPDATE

26

M5. FP Inexact-Result Exception Flag May Not Be Set

Problem: When the result of a floating-point operation is not exactly representable in the destination
format (1/3 in binary form, for example), an inexact-result (precision) exception occurs. When this
occurs, the PE bit (bit 5 of the FPU status word) is normally set by the processor. Under certain rare
conditions, this bit may not be set when this rounding occurs. However, other actions taken by the
processor (invoking the software exception handler if the exception is unmasked) are not affected. This
erratum can only occur if the floating-point operation which causes the precision exception is
immediately followed by one of the following instructions:

• FST m32real

• FST m64real

• FSTP m32real

• FSTP m64real

• FSTP m80real

• FIST m16int

• FIST m32int

• FISTP m16int

• FISTP m32int

• FISTP m64int

Note that even if this combination of instructions is encountered, there is also a dependency on the
internal pipelining and execution state of both instructions in the processor.

Implication: Inexact-result exceptions are commonly masked or ignored by applications, as it
happens frequently, and produces a rounded result acceptable to most applications. The PE bit of the
FPU status word may not always be set upon receiving an inexact-result exception. Thus, if these
exceptions are unmasked, a floating-point error exception handler may not recognize that a precision
exception occurred. Note that this is a “sticky” bit, i.e., once set by an inexact-result condition, it
remains set until cleared by software.

Workaround: This condition can be avoided by inserting two NOP instructions between the two
floating-point instructions.

Status: For the steppings affected see the Summary of Changes at the beginning of this section.

MOBILE INTEL® CELERON® PROCESSOR (0.18µ and 0.13µ) SPECIFICATION UPDATE

 27

M6. BTM for SMI Will Contain Incorrect FROM EIP

Problem: A system management interrupt (SMI) will produce a Branch Trace Message (BTM), if
BTMs are enabled. However, the FROM EIP field of the BTM (used to determine the address of the
instruction which was being executed when the SMI was serviced) will not have been updated for the
SMI, so the field will report the same FROM EIP as the previous BTM.

Implication: A BTM which is issued for an SMI will not contain the correct FROM EIP, limiting the
usefulness of BTMs for debugging software in conjunction with System Management Mode (SMM).

Workaround: None identified

Status: For the steppings affected see the Summary of Changes at the beginning of this section.

M7. I/O Restart in SMM May Fail After Simultaneous MCE

Problem: If an I/O instruction (IN, INS, REP INS, OUT, OUTS, or REP OUTS) is being executed, and
if the data for this instruction becomes corrupted, the mobile processor will signal a machine check
exception (MCE). If the instruction is directed at a device which is powered down, the processor may
also receive an assertion of SMI#. Since MCEs have higher priority, the processor will call the MCE
handler, and the SMI# assertion will remain pending. However, upon attempting to execute the first
instruction of the MCE handler, the SMI# will be recognized and the processor will attempt to execute
the SMM handler. If the SMM handler is completed successfully, it will attempt to restart the I/O
instruction, but will not have the correct machine state, due to the call to the MCE handler.

Implication: A simultaneous MCE and SMI# assertion may occur for one of the I/O instructions
above. The SMM handler may attempt to restart such an I/O instruction, but will have corrupted state
due to the MCE handler call, leading to failure of the restart and shutdown of the processor.

Workaround: If a system implementation must support both SMM and MCEs, the first thing the
SMM handler code (when an I/O restart is to be performed) should do is check for a pending MCE. If
there is an MCE pending, the SMM handler should immediately exit via an RSM instruction and allow
the machine check exception handler to execute. If there is not, the SMM handler may proceed with its
normal operation.

Status: For the steppings affected see the Summary of Changes at the beginning of this section.

MOBILE INTEL® CELERON® PROCESSOR (0.18µ and 0.13µ) SPECIFICATION UPDATE

28

M8. Branch Traps Do Not Function If BTMs Are Also Enabled

Problem: If branch traps or branch trace messages (BTMs) are enabled alone, both function as
expected. However, if both are enabled, only the BTMs will function, and the branch traps will be
ignored.

Implication: The branch traps and branch trace message debugging features cannot be used
together.

Workaround: If branch trap functionality is desired, BTMs must be disabled.

Status: For the steppings affected see the Summary of Changes at the beginning of this section.

M9. Machine Check Exception Handler May Not Always Execute
Successfully

Problem: An MCE may not always result in the successful execution of the MCE handler. However,
asynchronous MCEs usually occur upon detection of a catastrophic system condition that would also
hang the processor. Leaving MCEs disabled will result in the condition which caused the asynchronous
MCE instead causing the processor to enter shutdown. Therefore, leaving MCEs disabled may not
improve overall system behavior.

Implication: No workaround which would guarantee successful MCE handler execution under this
condition has been identified.

Workaround: If branch trap functionality is desired, BTMs must be disabled.

Status: For the steppings affected see the Summary of Changes at the beginning of this section.

M10. MCE Due to L2 Parity Error Gives L1 MCACOD.LL

Problem: If a Cache Reply Parity (CRP) error, Cache Address Parity (CAP) error, or Cache
Synchronous Error (CSER) occurs on an access to the mobile processor’s L2 cache, the resulting
Machine Check Architectural Error Code (MCACOD) will be logged with ‘01’ in the LL field. This value
indicates an L1 cache error; the value should be ‘10’, indicating an L2 cache error. Note that L2 ECC
errors have the correct value of ‘10’ logged.

Implication: An L2 cache access error, other than an ECC error, will be improperly logged as an L1
cache error in MCACOD.LL.

Workaround: None identified

Status: For the steppings affected see the Summary of Changes at the beginning of this section.

MOBILE INTEL® CELERON® PROCESSOR (0.18µ and 0.13µ) SPECIFICATION UPDATE

 29

M11. LBER May Be Corrupted After Some Events

Problem: The last branch record (LBR) and the last branch before exception record (LBER) can be
used to determine the source and destination information for previous branches or exceptions. The
LBR contains the source and destination addresses for the last branch or exception, and the LBER
contains similar information for the last branch taken before the last exception. This information is
typically used to determine the location of a branch which leads to execution of code which causes an
exception. However, after a catastrophic bus condition which results in an assertion of BINIT# and the
re-initialization of the buses, the value in the LBER may be corrupted. Also, after either a CALL which
results in a fault or a software interrupt, the LBER and LBR will be updated to the same value, when
the LBER should not have been updated.

Implication: The LBER and LBR registers are used only for debugging purposes. When this erratum
occurs, the LBER will not contain reliable address information. The value of LBER should be used with
caution when debugging branching code; if the values in the LBR and LBER are the same, then the
LBER value is incorrect. Also, the value in the LBER should not be relied upon after a BINIT# event.

Workaround: None identified

Status: For the steppings affected see the Summary of Changes at the beginning of this section.

M12. BTMs May Be Corrupted During Simultaneous L1 Cache Line
Replacement

Problem: When Branch Trace Messages (BTMs) are enabled and such a message is generated, the
BTM may be corrupted when issued to the bus by the L1 cache if a new line of data is brought into the
L1 data cache simultaneously. Though the new line being stored in the L1 cache is stored correctly,
and no corruption occurs in the data, the information in the BTM may be incorrect due to the internal
collision of the data line and the BTM.

Implication: Although BTMs may not be entirely reliable due to this erratum, the conditions
necessary for this boundary condition to occur have only been exhibited during focused simulation
testing. Intel has currently not observed this erratum in a system level validation environment.

Workaround: None identified

Status: For the steppings affected see the Summary of Changes at the beginning of this section.

MOBILE INTEL® CELERON® PROCESSOR (0.18µ and 0.13µ) SPECIFICATION UPDATE

30

M13. Near CALL to ESP Creates Unexpected EIP Address

Problem: As documented, the CALL instruction saves procedure linking information in the procedure
stack and jumps to the called procedure specified with the destination (target) operand. The target
operand specifies the address of the first instruction in the called procedure. This operand can be an
immediate value, a general purpose register, or a memory location. When accessing an absolute
address indirectly using the stack pointer (ESP) as a base register, the base value used is the value in
the ESP register before the instruction executes. However, when accessing an absolute address
directly using ESP as the base register, the base value used is the value of ESP after the return value
is pushed on the stack, not the value in the ESP register before the instruction executed.

Implication: Due to this erratum, the processor may transfer control to an unintended address.
Results are unpredictable, depending on the particular application, and can range from no effect to the
unexpected termination of the application due to an exception. Intel has observed this erratum only in a
focused testing environment. Intel has not observed any commercially available operating system,
application, or compiler that makes use of or generates this instruction.

Workaround: If the other seven general purpose registers are unavailable for use, and it is
necessary to do a CALL via the ESP register, first push ESP onto the stack, then perform an indirect
call using ESP (e.g., CALL [ESP]). The saved version of ESP should be popped off the stack after the
call returns.

Status: For the steppings affected see the Summary of Changes at the beginning of this section.

M14. Memory Type Undefined for Non-memory Operations

Problem: The Memory Type field for nonmemory transactions such as I/O and Special Cycles are
undefined. Although the Memory Type attribute for nonmemory operations logically should (and usually
does) manifest itself as UC, this feature is not designed into the implementation and is therefore
inconsistent.

Implication: Bus agents may decode a non-UC memory type for nonmemory bus transactions.

Workaround: Bus agents must consider transaction type to determine the validity of the Memory
Type field for a transaction.

Status: For the steppings affected see the Summary of Changes at the beginning of this section.

MOBILE INTEL® CELERON® PROCESSOR (0.18µ and 0.13µ) SPECIFICATION UPDATE

 31

M15. FP Data Operand Pointer May Not Be Zero After Power On or
Reset

Problem: The FP Data Operand Pointer, as specified, should be reset to zero upon power on or
Reset by the processor. Due to this erratum, the FP Data Operand Pointer may be nonzero after
power on or Reset.

Implication: Software which uses the FP Data Operand Pointer and count on its value being zero
after power on or Reset without first executing an FINIT/FNINIT instruction will use an incorrect value,
resulting in incorrect behavior of the software.

Workaround: Software should follow the recommendation in Section 8.2 of the Intel Architecture
Software Developer’s Manual, Volume 3: System Programming Guide (Order Number 243192). This
recommendation states that if the FPU will be used, software-initialization code should execute an
FINIT/FNINIT instruction following a hardware reset. This will correctly clear the FP Data Operand
Pointer to zero.

Status: For the steppings affected see the Summary of Changes at the beginning of this section.

MOBILE INTEL® CELERON® PROCESSOR (0.18µ and 0.13µ) SPECIFICATION UPDATE

32

M16. MOVD Following Zeroing Instruction Can Cause Incorrect Result

Problem: An incorrect result may be calculated after the following circumstances occur:

1. A register has been zeroed with either a SUB reg, reg instruction or an XOR reg, reg instruction,

2. A value is moved with sign extension into the same register’s lower 16 bits; or a signed integer
multiply is performed to the same register’s lower 16 bits,

3. This register is then copied to an MMX™ technology register using the MOVD instruction prior to
any other operations on the sign-extended value.

Specifically, the sign may be incorrectly extended into bits 16-31 of the MMX technology register. Only
the MMX technology register is affected by this erratum.

The erratum only occurs when the 3 following steps occur in the order shown. The erratum may occur
with up to 40 intervening instructions that do not modify the sign-extended value between steps 2 and
3.

1. XOR EAX, EAX
or SUB EAX, EAX

2. MOVSX AX, BL
or MOVSX AX, byte ptr <memory address> or MOVSX AX, BX
or MOVSX AX, word ptr <memory address> or IMUL BL (AX implicit, opcode F6 /5)
or IMUL byte ptr <memory address> (AX implicit, opcode F6 /5) or IMUL AX, BX (opcode 0F AF
/r)
or IMUL AX, word ptr <memory address> (opcode 0F AF /r) or IMUL AX, BX, 16 (opcode 6B /r ib)
or IMUL AX, word ptr <memory address>, 16 (opcode 6B /r ib) or IMUL AX, 8 (opcode 6B /r ib)
or IMUL AX, BX, 1024 (opcode 69 /r iw)
or IMUL AX, word ptr <memory address>, 1024 (opcode 69 /r iw) or IMUL AX, 1024 (opcode 69 /r
iw)
or CBW

3. MOVD MM0, EAX

Note that the values for immediate byte/words are merely representative (i.e., 8, 16, 1024) and that
any value in the range for the size may be affected. Also, note that this erratum may occur with “EAX”
replaced with any 32-bit general purpose register, and “AX” with the corresponding 16-bit version of
that replacement. “BL” or “BX” can be replaced with any 8-bit or 16-bit general purpose register. The
CBW and IMUL (opcode F6 /5) instructions are specific to the EAX register only.

In the example, EAX is forced to contain 0 by the XOR or SUB instructions. Since the four types of the
MOVSX or IMUL instructions and the CBW instruction modify only bits 15:8 of EAX by sign extending
the lower 8 bits of EAX, bits 31:16 of EAX should always contain 0. This implies that when MOVD
copies EAX to MM0, bits 31:16 of MM0 should also be 0. Under certain scenarios, bits 31:16 of MM0
are not 0, but are replicas of bit 15 (the 16th bit) of AX. This is noticeable when the value in AX after
the MOVSX, IMUL or CBW instruction is negative, i.e., bit 15 of AX is a 1.

MOBILE INTEL® CELERON® PROCESSOR (0.18µ and 0.13µ) SPECIFICATION UPDATE

 33

When AX is positive (bit 15 of AX is a 0), MOVD will always produce the correct answer. If AX is
negative (bit 15 of AX is a 1), MOVD may produce the right answer or the wrong answer depending on
the point in time when the MOVD instruction is executed in relation to the MOVSX, IMUL or CBW
instruction.

Implication: The effect of incorrect execution will vary from unnoticeable, due to the code sequence
discarding the incorrect bits, to an application failure. If the MMX technology-enabled application in
which MOVD is used to manipulate pixels, it is possible for one or more pixels to exhibit the wrong
color or position momentarily. It is also possible for a computational application that uses the MOVD
instruction in the manner described above to produce incorrect data. Note that this data may cause an
unexpected page fault or general protection fault.

Workaround: There are two possible workarounds for this erratum:

1. Rather than using the MOVSX-MOVD, IMUL-MOVD or CBW-MOVD pairing to handle one
variable at a time, use the sign extension capabilities (PSRAW, etc.) within MMX technology for
operating on multiple variables. This would result in higher performance as well.

2. Insert another operation that modifies or copies the sign-extended value between the
MOVSX/IMUL/CBW instruction and the MOVD instruction as in the example below:

3. XOR EAX, EAX (or SUB EAX, EAX)
MOVSX AX, BL (or other MOVSX, other IMUL or CBW instruction)
*MOV EAX, EAX
MOVD MM0, EAX

*Note: MOV EAX, EAX is used here as it is fairly generic. Again, EAX can be any 32-bit register.

Status: For the steppings affected see the Summary of Changes at the beginning of this section.

MOBILE INTEL® CELERON® PROCESSOR (0.18µ and 0.13µ) SPECIFICATION UPDATE

34

M17. Premature Execution of a Load Operation Prior to Exception
Handler Invocation

Problem: This erratum can occur with any of the following situations:

1. If an instruction that performs a memory load causes a code segment limit violation,

2. If a waiting floating-point instruction or MMX instruction that performs a memory load has a
floating-point exception pending, or

3. If an MMX instruction that performs a memory load and has either CR0.EM =1 (Emulation bit set),
or a floating-point Top-of-Stack (FP TOS) not equal to 0, or a DNA exception pending.

If any of the above circumstances occur it is possible that the load portion of the instruction will have
executed before the exception handler is entered.

Implication: In normal code execution where the target of the load operation is to write back memory
there is no impact from the load being prematurely executed, nor from the restart and subsequent re-
execution of that instruction by the exception handler. If the target of the load is to uncached memory
that has a system side-effect, restarting the instruction may cause unexpected system behavior due to
the repetition of the side-effect.

Workaround: Code which performs loads from memory that has side-effects can effectively
workaround this behavior by using simple integer-based load instructions when accessing side-effect
memory and by ensuring that all code is written such that a code segment limit violation cannot occur
as a part of reading from side-effect memory.

Status: For the steppings affected see the Summary of Changes at the beginning of this section.

M18. Read Portion of RMW Instruction May Execute Twice

Problem: When the mobile processor executes a read-modify-write (RMW) arithmetic instruction,
with memory as the destination, it is possible for a page fault to occur during the execution of the store
on the memory operand after the read operation has completed but before the write operation
completes.

If the memory targeted for the instruction is UC (uncached), memory will observe the occurrence of the
initial load before the page fault handler and again if the instruction is restarted.

Implication: This erratum has no effect if the memory targeted for the RMW instruction has no side-
effects. If, however, the load targets a memory region that has side-effects, multiple occurrences of the
initial load may lead to unpredictable system behavior.

Workaround: Hardware and software developers who write device drivers for custom hardware that
may have a side-effect style of design should use simple loads and simple stores to transfer data to
and from the device. Then, the memory location will simply be read twice with no additional
implications.

MOBILE INTEL® CELERON® PROCESSOR (0.18µ and 0.13µ) SPECIFICATION UPDATE

 35

Status: For the steppings affected see the Summary of Changes at the beginning of this section.

M19. MC2_STATUS MSR Has Model-Specific Error Code and Machine
Check Architecture Error Code Reversed

Problem: The Intel Architecture Software Developer’s Manual, Volume 3: System Programming
Guide, documents that for the MCi_STATUS MSR, bits 15:0 contain the MCA (machine-check
architecture) error code field, and bits 31:16 contain the model-specific error code field. However, for
the MC2_STATUS MSR, these bits have been reversed. For the MC2_STATUS MSR, bits 15:0
contain the model-specific error code field and bits 31:16 contain the MCA error code field.

Implication: A machine check error may be decoded incorrectly if this erratum on the MC2_STATUS
MSR is not taken into account.

Workaround: When decoding the MC2_STATUS MSR, reverse the two error fields.

Status: For the steppings affected see the Summary of Changes at the beginning of this section.

M20. MOV With Debug Register Causes Debug Exception

Problem: When in V86 mode, if a MOV instruction is executed on debug registers, a general-
protection exception (#GP) should be generated, as documented in the Intel Architecture Software
Developer's Manual, Volume 3: System Programming Guide, Section 14.2. However, in the case when
the general detect enable flag (GD) bit is set, the observed behavior is that a debug exception (#DB) is
generated instead.

Implication: With debug-register protection enabled (i.e., the GD bit set), when attempting to execute
a MOV on debug registers in V86 mode, a debug exception will be generated instead of the expected
general-protection fault.

Workaround: In general, operating systems do not set the GD bit when they are in V86 mode. The
GD bit is generally set and used by debuggers. The debug exception handler should check that the
exception did not occur in V86 mode before continuing. If the exception did occur in V86 mode, the
exception may be directed to the general-protection exception handler.

Status: For the steppings affected see the Summary of Changes at the beginning of this section.

MOBILE INTEL® CELERON® PROCESSOR (0.18µ and 0.13µ) SPECIFICATION UPDATE

36

M21. Upper Four PAT Entries Not Usable With Mode B or Mode C Paging

Problem: The Page Attribute Table (PAT) contains eight entries, which must all be initialized and
considered when setting up memory types for the mobile processor. However, in Mode B or Mode C
paging, the upper four entries do not function correctly for 4-Kbyte pages. Specifically, bit seven of
page table entries that translate addresses to 4-Kbyte pages should be used as the upper bit of a
three-bit index to determine the PAT entry that specifies the memory type for the page. When Mode B
(CR4.PSE = 1) and/or Mode C (CR4.PAE) are enabled, the processor forces this bit to zero when
determining the memory type regardless of the value in the page table entry. The upper four entries of
the PAT function correctly for 2-Mbyte and 4-Mbyte large pages (specified by bit 12 of the page
directory entry for those translations).

Implication: Only the lower four PAT entries are useful for 4-KB translations when Mode B or C
paging is used. In Mode A paging (4-Kbyte pages only), all eight entries may be used. All eight entries
may be used for large pages in Mode B or C paging.

Workaround: None identified

Status: For the steppings affected see the Summary of Changes at the beginning of this section.

M22. Data Breakpoint Exception in a Displacement Relative Near Call
May Corrupt EIP

Problem: If a misaligned data breakpoint is programmed to the same cache line as the
memory location where the stack push of a near call is performed and any data
breakpoints are enabled, the processor will update the stack and ESP appropriately, but
may skip the code at the destination of the call. Hence, program execution will continue
with the next instruction immediately following the call, instead of the target of the call.

Implication: The failure mechanism for this erratum is that the call would not be taken;
therefore, instructions in the called subroutine would not be executed. As a result, any
code relying on the execution of the subroutine will behave unpredictably.

Workaround: Whether enabled or not, do not program a misaligned data breakpoint to
the same cache line on the stack where the push for the near call is performed.

Status: For the stepping affected see the Summary of Changes at the beginning of this section.

MOBILE INTEL® CELERON® PROCESSOR (0.18µ and 0.13µ) SPECIFICATION UPDATE

 37

M23. RDMSR or WRMSR to Invalid MSR Address May Not Cause GP
Fault

Problem: The RDMSR and WRMSR instructions allow reading or writing of MSRs (Model Specific
Registers) based on the index number placed in ECX. The processor should reject access to any
reserved or unimplemented MSRs by generating #GP(0). However, there are some invalid MSR
addresses for which the processor will not generate #GP(0).

Implication: For RDMSR, undefined values will be read into EDX:EAX. For WRMSR, undefined
processor behavior may result.

Workaround: Do not use invalid MSR addresses with RDMSR or WRMSR.

Status: For the steppings affected see the Summary of Changes at the beginning of this section.

M24. SYSENTER/SYSEXIT Instructions Can Implicitly Load “Null
Segment Selector” to SS and CS Registers

Problem: According to the processor specification, attempting to load a null segment selector into the
CS and SS segment registers should generate a General Protection Fault (#GP). Although loading a
null segment selector to the other segment registers is allowed, the processor will generate an
exception when the segment register holding a null selector is used to access memory.

However, the SYSENTER instruction can implicitly load a null value to the SS segment selector. This
can occur if the value in SYSENTER_CS_MSR is between FFF8h and FFFBh when the SYSENTER
instruction is executed. This behavior is part of the SYSENTER/SYSEXIT instruction definition; the
content of the SYSTEM_CS_MSR is always incremented by 8 before it is loaded into the SS. This
operation will set the null bit in the segment selector if a null result is generated, but it does not
generate a #GP on the SYSENTER instruction itself. An exception will be generated as expected when
the SS register is used to access memory, however.

The SYSEXIT instruction will also exhibit this behavior for both CS and SS when executed with the
value in SYSENTER_CS_MSR between FFF0h and FFF3h, or between FFE8h and FFEBh, inclusive.

Implication: These instructions are intended for operating system use. If this erratum occurs (and
the OS does not ensure that the processor never has a null segment selector in the SS or CS segment
registers), the processor’s behavior may become unpredictable, possibly resulting in system failure.

Workaround: Do not initialize the SYSTEM_CS_MSR with the values between FFF8h and FFFBh,
FFF0h and FFF3h, or FFE8h and FFEBh before executing SYSENTER or SYSEXIT.

Status: For the steppings affected see the Summary of Changes at the beginning of this section.

MOBILE INTEL® CELERON® PROCESSOR (0.18µ and 0.13µ) SPECIFICATION UPDATE

38

M25. PRELOAD Followed by EXTEST Does Not Load Boundary Scan
Data

Problem: According to the IEEE 1149.1 Standard, the EXTEST instruction would use data “typically
loaded onto the latched parallel outputs of boundary-scan shift-register stages using the
SAMPLE/PRELOAD instruction prior to the selection of the EXTEST instruction.” As a result of this
erratum, this method cannot be used to load the data onto the outputs.

Implication: Using the PRELOAD instruction prior to the EXTEST instruction will not produce
expected data after the completion of EXTEST.

Workaround: None identified

Status: For the steppings affected see the Summary of Changes at the beginning of this section.

M26. INT 1 Instruction Handler Execution Could Generate a Debug
Exception

Problem: If the processor’s general detect enable flag is set and an explicit call is made to the
interrupt procedure via the INT 1 instruction, the general detect enable flag should be cleared prior to
entering the handler. As a result of this erratum, the flag is not cleared prior to entering the handler. If
an access is made to the debug registers while inside of the handler, the state of the general detect
enable flag will cause a second debug exception to be taken. The second debug exception clears the
general detect enable flag and returns control to the handler which is now able to access the debug
registers.

Implication: This erratum will generate an unexpected debug exception upon accessing the debug
registers while inside of the INT 1 handler.

Workaround: Ignore the second debug exception that is taken as a result of this erratum.

Status: For the steppings affected see the Summary of Changes at the beginning of this section.

M27. Misaligned Locked Access to APIC Space Results in Hang

Problem: When the processor’s APIC space is accessed with a misaligned locked access a machine
check exception is expected. However, the processor’s machine check architecture is unable to handle
the misaligned locked access.

Implication: If this erratum occurs the processor will hang. Typical usage models for the APIC
address space do not use locked accesses. This erratum will not affect systems using such a model.

Workaround: Ensure that all accesses to APIC space are aligned.

MOBILE INTEL® CELERON® PROCESSOR (0.18µ and 0.13µ) SPECIFICATION UPDATE

 39

Status: For the steppings affected see the Summary of Changes at the beginning of this section.

M28. Processor May Assert DRDY# on a Write with No Data

Problem: When a MASKMOVQ instruction is misaligned across a chunk boundary in a way that one
chunk has a mask of all 0’s, the processor will initiate two partial write transactions with one having all
byte enables deasserted. Under these conditions, the expected behavior of the processor would be to
perform both write transactions, but to deassert DRDY# during the transaction which has no byte
enables asserted. As a result of this erratum, DRDY# is asserted even though no data is being
transferred.

Implication: The implications of this erratum depend on the bus agent’s ability to handle this
erroneous DRDY# assertion. If a bus agent cannot handle a DRDY# assertion in this situation, or
attempts to use the invalid data on the bus during this transaction, unpredictable system behavior
could result.

Workaround: A system which can accept a DRDY# assertion during a write with no data will not be
affected by this erratum. In addition, this erratum will not occur if the MASKMOVQ is aligned.

Status: For the steppings affected see the Summary of Changes at the beginning of this section.

M29. GP# Fault on WRMSR to ROB_CR_BKUPTMPDR6

Problem: Writing a ‘1’ to unimplemented bit(s) in the ROB_CR_BKUPTMPDR6 MSR (offset 1E0h)
will result in a general protection fault (GP#).

Implication: The normal process used to write an MSR is to read the MSR using RDMSR, modify
the bit(s) of interest, and then to write the MSR using WRMSR. Because of this erratum, this process
may result in a GP# fault when used to modify the ROB_CR_BKUPTMPDR6 MSR.

Workaround: When writing to ROB_CR_BKUPTMPDR6 all unimplemented bits must be ‘0.’
Implemented bits may be set as ‘0’ or ‘1’ as desired.

Status: For the steppings affected see the Summary of Changes at the beginning of this section.

MOBILE INTEL® CELERON® PROCESSOR (0.18µ and 0.13µ) SPECIFICATION UPDATE

40

M30. Machine Check Exception May Occur Due to Improper Line
Eviction in the IFU

Problem: The mobile processor is designed to signal an unrecoverable Machine Check Exception
(MCE) as a consistency checking mechanism. Under a complex set of circumstances involving
multiple speculative branches and memory accesses there exists a one cycle long window in which the
processor may signal a MCE in the Instruction Fetch Unit (IFU) because instructions previously
decoded have been evicted from the IFU. The one cycle long window is opened when an opportunistic
fetch receives a partial hit on a previously executed but not as yet completed store resident in the store
buffer. The resulting partial hit erroneously causes the eviction of a line from the IFU at a time when
the processor is expecting the line to still be present. If the MCE for this particular IFU event is
disabled, execution will continue normally.

Implication: While this erratum may occur on a system with any number of mobile processors, the
probability of occurrence increases with the number of processors. If this erratum does occur, a
machine check exception will result. Note systems that implement an operating system that does not
enable the Machine Check Architecture will be completely unaffected by this erratum (e.g.,
Windows95* and Windows98*).

Workaround: It is possible for BIOS code to contain a workaround for this erratum.

Status: For the steppings affected see the Summary of Changes at the beginning of this section.

M31. Performance Counter L2 Prefetch Count Includes Streaming SIMD
Extensions L1 Prefetch

Problem: The processors allow the measurement of the frequency and duration of numerous
different internal and bus related events (see the Intel Architecture Software Developer's Manual,
Volume 3, for more details). The Streaming SIMD Extension (SSE) architecture provides a mechanism
to pre-load data into the L1 cache, bypassing the L2 cache. The number of these L1 pre-loads
measured by the performance monitoring logic will incorrectly be included in the count of
"L2_LINES_IN" (24H) events.

Implication: If application software is run which utilizes the SSE L1 prefetch feature, the count of
"L2_LINES_IN" (24H) will read a value that is greater than the correct value.

Workaround: The correct value of this counter may be calculated by taking the value read for
L2_LINES_IN (24H) and subtracting from it the value read for "EMON_KNI_PREF_MISS" (4BH, Unit
Mask 00H).

Status: For the steppings affected see the Summary of Changes at the beginning of this section.

MOBILE INTEL® CELERON® PROCESSOR (0.18µ and 0.13µ) SPECIFICATION UPDATE

 41

M32. Processor Will Erroneously Report a BIST Failure

Problem: If the processor performs BIST at power-up, the EAX register is normally cleared (0H) if the
processor passes BIST. The processor will erroneously report a non-zero value (signaling a BIST
failure) even if BIST passes.

Implication: The processor will incorrectly signal an error after BIST is performed.

Workaround: The system BIOS should ignore the BIST results in the EAX register.

Status: For the steppings affected see the Summary of Changes at the beginning of this section.

M33. Internal Snooping Mechanism Causes Livelock Condition

Problem: Internal timings may align where the L2 cache snooping mechanism and the Instruction
Fetch Unit snooping mechanism reject each other’s requests to the Data Cache Unit. Both units will
continue to retry but reject requests on every other clock, leading to a livelock condition.

Implication: The system will hang. If an external agent is snooping the processor’s caches, the
hang will appear as an infinite snoop stall.

Workaround: It is possible for BIOS code to contain a workaround for this erratum.

Status: For the steppings affected see the Summary of Changes at the beginning of this section.

M34. Cache Coherency May Be Lost If Snoop Occurs During Cache Line
Invalidation

Problem: There exists a two cycle window during a cache line invalidation (due to a WBINVD
instruction or FLUSH# pin assertion) during which a processor performing a snoop of that line will not
see the line in the cache. In addition, when this erratum occurs, the processor invalidating the line will
not write back the data in that line.

Implication: If this erratum occurs, cache coherency and data will be lost.

Workaround: None identified

Status: For the steppings affected see the Summary of Changes at the beginning of this section.

MOBILE INTEL® CELERON® PROCESSOR (0.18µ and 0.13µ) SPECIFICATION UPDATE

42

M35. Extra DRDY# Assertion When Eviction Back-to-Back Write
Combining Lines

Problem: The processor has the ability to evict back-to-back lines in its write combining buffers. If
the processor writes back data from L1 to L2 during a back-to-back write combining line eviction, the
processor may assert an extra DRDY# on the system bus.

Implication: Data corruption (loss of data) may occur.

Workaround: It is possible for BIOS code to contain a workaround for this erratum.

Status: For the steppings affected see the Summary of Changes at the beginning of this section.

M36. Limitation on Cache Line ECC Detection and Correction

Problem: ECC can detect and correct up to four single-bit ECC errors per cache line. However, the
processor will only detect and correct one single-bit ECC error per cache line. While all ECC errors will
be detected, multiple single bit errors will be incorrectly reported as uncorrectable double bit errors,
rather than correctable single bit errors.

Implication: The processor may report fewer single bit ECC errors and more double bit ECC errors
than previous processors.

Workaround: None identified

Status: For the steppings affected see the Summary of Changes at the beginning of this section.

M37. L2_LD and L2_M_LINES_OUTM Performance-Monitoring Counter
Does Not Work

Problem: The L2_LD (29h) Performance-Monitoring counter, used for counting the number of L2
cache data loads, does not work properly.

Implication: This counter will report incorrect data.

Workaround: None identified

Status: For the steppings affected see the Summary of Changes at the beginning of this section.

MOBILE INTEL® CELERON® PROCESSOR (0.18µ and 0.13µ) SPECIFICATION UPDATE

 43

M38. Snoop Request May Cause DBSY# Hang

Problem: A small window of time exists in which a snoop request originating from a bus agent to a
processor with one or more outstanding memory transactions may cause the processor to assert
DBSY# without issuing a corresponding bus transaction, causing the processor to hang (livelock). The
exact circumstances are complex, and include the relative timing of internal processor functions with
the snoop request from a bus agent.

Implication: This erratum may occur on a system with any number of processors. However, the
probability of occurrence increases with the number of processors. If this erratum does occur, the
system will hang with DBSY# asserted. At this point, the system requires a hard reset.

Workaround: It is possible for BIOS code to contain a workaround for this erratum.

Status: For the steppings affected see the Summary of Changes at the beginning of this section.

M39. IFU/DCU Deadlock May Cause System Hang

Problem: An internal deadlock situation may occur in systems with multiple bus agents, with a failure
signature such that a processor either asserts DBSY# without issuing the corresponding data, or fails
to respond to a snoop request from another bus agent. Should this erratum occur, the affected
processor ceases code execution and the system will hang.

The specific circumstances surrounding the occurrence of this erratum are:

1. A locked operation to the Data Cache Unit (DCU) is in process.

2. A snoop occurs, but cannot complete due to the ongoing locked operation.

3. The presence of the snoop prevents pending Instruction Fetch Unit (IFU) requests from
completing.

4. The IFU requests are periodically restarted.

The continued IFU restart attempts create additional DCU snoops, which prevent the in-process locked
operation from completing, keeping the DCU locked.

Implication: The system may hang.

Workaround: It is possible for BIOS code to contain a workaround for this erratum.

Status: For the steppings affected see the Summary of Changes at the beginning of this section.

MOBILE INTEL® CELERON® PROCESSOR (0.18µ and 0.13µ) SPECIFICATION UPDATE

44

M40. WBINVD May Lock Write Out Buffer

Problem: If a processor is performing a WBINVD operation on a modified line, that line is stored in
the processor's Write Out Buffer (WOB) until it is written to main memory. If another bus agent (such
as a processor or PCI device) in the system generates a snoop that results in a hit to a modified line
that is in the processor's WOB, that line could become permanently locked in the WOB. In addition to
being locked in the WOB, the processor will not respond to the initial or subsequent snoop requests to
this line, and the line in the WOB is never written to memory.

Implication: In the event of this erratum, coherency may be lost, which may result in a system lockup
or system instability.

Workaround: None identified

Status: For the steppings affected see the Summary of Changes at the beginning of this section.

M41. L2_DBUS_BUSY Performance Monitoring Counter Will Not Count
Writes

Problem: The L2_DBUS_BUSY (22H) performance monitoring counter is intended to count the
number of cycles during which the L2 data bus is in use. For some steppings of the processor, the
L2_DBUS_BUSY counter will not be incremented during write cycles and therefore will only reflect the
number of L2 data bus cycles resulting from cache reads.

Implication: The L2_DBUS_BUSY event counts only L2 read cycles.

Workaround: None identified

Status: For the steppings affected see the Summary of Changes at the beginning of this section.

MOBILE INTEL® CELERON® PROCESSOR (0.18µ and 0.13µ) SPECIFICATION UPDATE

 45

M42. Lower Bits of SMRAM SMBASE Register Cannot Be Written With
an ITP

Problem: The System Management Base (SMBASE) register (7EF8H) stores the starting address of
the System Management RAM (SMRAM). This register is used by the processor when it is in System
Management Mode (SMM), and its contents serve as the memory base for code execution and data
storage. The 32-bit SMBASE register can normally be programmed to any value. When programmed
with an In-Target Probe (ITP), however, any attempt to set the lower 11 bits of SMBASE to anything
other than zeros via the WRMSR instruction will cause the attempted write to fail.

Implication: When set via ITP, any attempt to relocate SMRAM space must be made with 2 KB
alignment.

Workaround: None identified

Status: For the steppings affected see the Summary of Changes at the beginning of this section.

M43. Task Switch May Cause Wrong PTE and PDE Access Bit to be Set

Problem: If an operating system executes a task switch via a Task State Segment (TSS), and the
TSS is wholly or partially located within a clean page (A and D bits clear) and the GDT entry for the
new TSS is either misaligned across a cache line boundary or is in a clean page, the accessed and
dirty bits for an incorrect page table/directory entry may be set.

Implication: An operating system which uses hardware task switching (or hardware task
management) may encounter this erratum. The effect of the erratum depends on the alignment of the
TSS and ranges from no anomalous behavior to unexpected errors.

Workaround: The operating system could align all TSSs to be within page boundaries and set the A
and D bits for those pages to avoid this erratum. The operating system may alternately use software
task management.

Status: For the steppings affected see the Summary of Changes at the beginning of this section.

MOBILE INTEL® CELERON® PROCESSOR (0.18µ and 0.13µ) SPECIFICATION UPDATE

46

M44. Unsynchronized Cross-Modifying Code Operations May Cause
Unexpected Instruction Execution Results

Problem: The act of one processor, or system bus master, writing data into a currently executing
code segment of a second processor with the intent of having the second processor execute that data
as code is called cross-modifying code (XMC). XMC that does not force the second processor to
execute a synchronizing instruction prior to execution of the new code is called unsynchronized XMC.

Software using unsynchronized XMC to modify the instruction byte stream of a processor may see
unexpected instruction execution from the processor that is executing the modified code.

Implication: In this case, the phrase "unexpected execution behavior" encompasses the generation
of most of the exceptions listed in the Intel Architecture Software Developer's Manual Volume 3:
System Programming Guide including a General Protection Fault (GPF). In the event of a GPF the
application executing the unsynchronized XMC operation would be terminated by the operating
system.

Workaround: In order to avoid this erratum, programmers should use the XMC synchronization
algorithm as detailed in the Intel Architecture Software Developer's Manual Volume 3: System
Programming Guide, Section 7.1.3.
Status: For the steppings affected see the Summary of Changes at the beginning of this section.

M45. Deadlock May Occur Due To Illegal-Instruction/Page-Miss
Combination

Problem: Intel's 32-bit Instruction Set Architecture (ISA) utilizes most of the available op-code space,
however some byte combinations remain undefined and are considered illegal instructions. Intel
processors detect the attempted execution of illegal instructions and signal an exception. This
exception is handled by operating system and/or application software.

Under a complex set of internal and external conditions involving illegal instructions, a deadlock may
occur within the processor. The necessary conditions for the deadlock involve:

1. Execution of the illegal instruction.

2. Two page table walks occur within a narrow timing window coincident with the illegal
instruction.

Implication: The illegal instructions involved in this erratum are unusual and invalid byte
combinations that are not useful to application software or operating systems. These combinations are
not normally generated in the course of software programming, nor are such sequences known by Intel
to be generated in commercially available software and tools. Development tools (compilers,
assemblers) do not generate this type of code sequence, and will normally flag such a sequence as an
error. If this erratum occurs, the processor deadlock condition will occur and result in a system hang.
Code execution cannot continue without a system RESET.

Workaround: None identified

MOBILE INTEL® CELERON® PROCESSOR (0.18µ and 0.13µ) SPECIFICATION UPDATE

 47

Status: For the steppings affected see the Summary of Changes at the beginning of this section.

M46. MASKMOVQ Instruction Interaction with String Operation
May Cause Deadlock

Problem: Under the following scenario, combined with a specific alignment of internal events, the
processor may enter a deadlock condition:

1. A store operation completes, leaving a write-combining (WC) buffer partially filled.

2. The target of a subsequent MASKMOVQ instruction is split across a cache line.

3. The data in (2) above results in a hit to the data in the WC buffer in (1).

Implication: If this erratum occurs, the processor deadlock condition will occur and result in a system
hang. Code execution cannot continue without a system RESET.

Workaround: It is possible for BIOS code to contain a workaround for this erratum.

Status: For the steppings affected see the Summary of Changes at the beginning of this section.

M47. Noise Sensitivity Issue on Processor SMI# Pin

Problem: Post silicon characterization has demonstrated a greater than expected sensitivity to noise
on the processor's SMI# input, which may result in spurious SMI# interrupts.

Implication: BIOS/SMM code that is capable of handling spurious SMI events will report a spurious
SMI#, but should not be negatively impacted by this erratum. Systems whose BIOS code cannot
handle spurious SMI events may fail, resulting in a system hang or other anomalous behavior.

Spurious SMI# interrupts should be controlled on the system board regardless of BIOS
implementation.

Workaround: Possible workarounds that may reduce or eliminate the occurrence of the spurious
SMI include:

Use a lower effective pull-up resistance on the SMI# pin. This resistor must meet the specifications of
the component driving the SMI# signal.

1. Externally condition the SMI# signal prior to providing it to the processor's SMI# pin.

2. These workarounds should be evaluated on a design-by-design basis.

Status: For the steppings affected see the Summary of Changes at the beginning of this section.

MOBILE INTEL® CELERON® PROCESSOR (0.18µ and 0.13µ) SPECIFICATION UPDATE

48

M48. MOVD or CVTSI2SS Following Zeroing Instruction Can Cause
Incorrect Result

Problem: An incorrect result may be calculated after the following circumstances occur:

1. A register has been zeroed with either a SUB reg, reg instruction or an XOR reg, reg
instruction,

2. A value is moved with sign extension into the same register’s lower 16 bits; or a signed
integer multiply is performed to the same register’s lower 16 bits,

3. The register is then copied to an MMX™ technology register using the MOVD, or converted
to single precision floating point and moved to an MMX technology register using the
CVTSI2SS instruction prior to any other operations on the sign-extended value.

Specifically, the sign may be incorrectly extended into bits 16-31 of the MMX technology register. This
erratum only affects the MMX technology register.

This erratum only occurs when the following three steps occur in the order shown. This erratum may
occur with up to 40 intervening instructions that do not modify the sign-extended value between steps
2 and 3.

1. XOR EAX, EAX
or SUB EAX, EAX

2. MOVSX AX, BL
or MOVSX AX, byte ptr <memory address> or MOVSX AX, BX
or MOVSX AX, word ptr <memory address> or IMUL BL (AX implicit, opcode F6 /5)
or IMUL byte ptr <memory address> (AX implicit, opcode F6 /5) or IMUL AX, BX (opcode 0F AF
/r)
or IMUL AX, word ptr <memory address> (opcode 0F AF /r) or IMUL AX, BX, 16 (opcode 6B /r ib)
or IMUL AX, word ptr <memory address>, 16 (opcode 6B /r ib) or IMUL AX, 8 (opcode 6B /r ib)
or IMUL AX, BX, 1024 (opcode 69 /r iw)
or IMUL AX, word ptr <memory address>, 1024 (opcode 69 /r iw)
or IMUL AX, 1024 (opcode 69 /r iw) or CBW

3. MOVD MM0, EAX or CVTSI2SS MM0, EAX

Note that the values for immediate byte/words are merely representative (i.e., 8, 16, 1024) and that
any value in the range for the size is affected. Also, note that this erratum may occur with “EAX”
replaced with any 32-bit general-purpose register, and “AX” with the corresponding 16-bit version of
that replacement. “BL” or “BX” can be replaced with any 8-bit or 16-bit general-purpose register. The
CBW and IMUL (opcode F6 /5) instructions are specific to the EAX register only.

In the above example, EAX is forced to contain 0 by the XOR or SUB instructions. Since the four types
of the MOVSX or IMUL instructions and the CBW instruction only modify bits 15:8 of EAX by sign
extending the lower 8 bits of EAX, bits 31:16 of EAX should always contain 0. This implies that when
MOVD or CVTSI2SS copies EAX to MM0, bits 31:16 of MM0 should also be 0. In certain scenarios,
bits 31:16 of MM0 are not 0, but are replicas of bit 15 (the 16th bit) of AX. This is noticeable when the
value in AX after the MOVSX, IMUL or CBW instruction is negative, i.e., bit 15 of AX is a 1.

MOBILE INTEL® CELERON® PROCESSOR (0.18µ and 0.13µ) SPECIFICATION UPDATE

 49

When AX is positive (bit 15 of AX is 0), MOVD or CVTSI2SS will produce the correct answer. If AX is
negative (bit 15 of AX is 1), MOVD or CVTSI2SS may produce the right answer or the wrong answer,
depending on the point in time when the MOVD or CVTSI2SS instruction is executed in relation to the
MOVSX, IMUL or CBW instruction.

Implication: The effect of incorrect execution will vary from unnoticeable, due to the code sequence
discarding the incorrect bits, to an application failure.

Workaround: There are two possible workarounds for this erratum:

1. Rather than using the MOVSX-MOVD/CVTSI2SS, IMUL-MOVD/CVTSI2SS or CBW-
MOVD/CVTSI2SS pairing to handle one variable at a time, use the sign extension capabilities
(PSRAW, etc.) within MMX technology for operating on multiple variables. This will also result in
higher performance.

2. Insert another operation that modifies or copies the sign-extended value between the
MOVSX/IMUL/CBW instruction and the MOVD or CVTSI2SS instruction as in the example below:

 XOR EAX, EAX (or SUB EAX, EAX)
 MOVSX AX, BL (or other MOVSX, other IMUL or CBW instruction)
 *MOV EAX, EAX
 MOVD MM0, EAX or CVTSI2SS MM0, EAX

*Note: MOV EAX, EAX is used here in a generic sense. Again, EAX can be substituted with any 32-bit
register.

Status: For the steppings affected see he Summary of Changes at the beginning of this section.

M49. FLUSH# Assertion Following STPCLK# May Prevent CPU Clocks
From Stopping

Problem: If FLUSH# is asserted after STPCLK# is asserted, the cache flush operation will not occur
until after STPCLK# is de-asserted. Furthermore, the pending flush will prevent the processor from
entering the Sleep state, since the flush operation must complete prior to the processor entering the
Sleep state.

Implication: Following SLP# assertion, processor power dissipation may be higher than expected.
Furthermore, if the source to the processor’s input bus clock (BCLK) is removed, normally resulting in
a transition to the Deep Sleep state, the processor may shutdown improperly. The ensuing attempt to
wake up the processor will result in unpredictable behavior and may cause the system to hang.

Workaround: Systems that use the FLUSH# input signal and Deep Sleep state of the processor,
ensure that FLUSH# is not asserted while STPCLK# is asserted.

Status: For the steppings affected see the Summary of Changes at the beginning of this section.

MOBILE INTEL® CELERON® PROCESSOR (0.18µ and 0.13µ) SPECIFICATION UPDATE

50

M50. Intermittent Failure to Assert ADS# during Processor Power-On

Problem: Under a system specific set of initial parametric conditions, a very small number of Intel®
Mobile Celeron processors (CPUID 068xh) can be susceptible to entering an internal test mode during
processor power-on. The symptom of this test mode is a failure to assert ADS# during a processor
power-on.

Implication: On susceptible platforms, when power is applied to the processor, there is a possibility
that the processor will occasionally enter the test mode rather than initiate a system boot sequence.

Workaround: A subsequent processor Power-Off then Power-On cycle should remove the
processor from this test mode, allowing normal processor operation to resume.

Status: For the steppings affected see the Summary of Changes at the beginning of this section.

M51. Floating-Point Exception Signal Can Be Deferred

Problem: A one clock window exists where a pending x87 FP exception that should be signaled on
the execution of a CVTPS2PI, CVTPI2PS, or CVTTPS2PI instruction can be deferred to the next
waiting floating-point instruction or instruction that would change MMX™ register state.

Implication: If this erratum occurs the floating-point exception will not be handled as expected.

Workaround: Applications that follow Intel programming guidelines (empty all x87 registers before
executing MMX technology instructions) will not be affected by this erratum.

Status: For the steppings affected see the Summary of Changes at the beginning of this section.

MOBILE INTEL® CELERON® PROCESSOR (0.18µ and 0.13µ) SPECIFICATION UPDATE

 51

M52. Floating-Point Exception Condition May Be Deferred

Problem: A floating-point instruction that causes a pending floating-point exception
(ES=1) is normally signaled by the processor on the next waiting FP/MMX™ technology
instruction. In the following set of circumstances, the exception may be delayed or the
FSW register may contain a wrong value:

1. The excepting floating-point instruction is followed by an instruction that accesses memory
across a page (4-Kbyte) boundary or its access results in the update of a page table
dirty/access bit.

2. The memory accessing instruction is immediately followed by a waiting floating-point or
MMX technology instruction.

3. The waiting floating-point or MMX technology instruction retires during a one-cycle window
that coincides with a sequence of internal events related to instruction cache line eviction.

Implication: The floating-point exception will not be signaled until the next waiting
floating-point/MMX technology instruction. Alternatively it may be signaled with the wrong
TOS and condition code values. This erratum has not been observed in any commercial
software applications.

Workaround: None identified

Status: For the stepping affected see the Summary of Changes at the beginning of this section.

MOBILE INTEL® CELERON® PROCESSOR (0.18µ and 0.13µ) SPECIFICATION UPDATE

52

M53. Race Conditions May Exist on Thermal Sensor SMBus Collision
Detection/Arbitration Circuitry

Problem: In certain SMBus configurations, when the thermal sensor is used in “hard wired alert”
mode along with at least one other device on the bus, the thermal sensor may continue to send its
address after losing a collision arbitration in response to an Alert Response Address (ARA) by the
SMBus controller.

In order for this erratum to occur, all of the following conditions must be present:

1. The thermal sensor must be configured with alert enabled (default setting).

2. There must be one or more other devices on the SMBus along with the thermal sensor.

3. One or more of these other devices must be also configured with the alert enabled.

4. One or more of these other devices must have a lower address (higher priority) than the thermal
sensor.

5. The thermal sensor must generate an SM alert while at least one other device has an SM alert
pending to be serviced.

In this situation, the thermal sensor will continue to send its address on the SMBus even if it has a
lower priority than the pending alert. When this occurs, the SMBus controller cannot correctly interpret
the device address. This may cause the thermal sensor’s alert flag not to clear and may result in
SMBus lockup.

Implication: The SMBus controller may see an invalid address and the resulting response of the
SMBus controller will vary from implementation to implementation.

Workaround: Remove any one of the five conditions listed above or:

1. In software, use polling mode for the thermal sensor data collection with alert disabled. This
software workaround has been validated on both Intel’s test platforms as well as on certain OEM
systems.

2. Ensure that the thermal sensor alert may be cleared by a hardware or software mechanism. The
implementation of this workaround will be system dependent.

Status: For the steppings affected, see the Summary of Changes at the beginning of this section.

MOBILE INTEL® CELERON® PROCESSOR (0.18µ and 0.13µ) SPECIFICATION UPDATE

 53

M54. Cache Line Reads May Result in Eviction of Invalid Data

Problem: A small window of time exists in which internal timing conditions in the processor cache
logic may result in the eviction of an L2 cache line marked in the invalid state.

Implication: There are three possible implications of this erratum:

1. The processor may provide incorrect L2 cache line data by evicting an invalid line.

2. A BNR# (Block Next Request) stall may occur on the system bus.

3. Should a snoop request occur to the same cache line in a small window of time, the processor
may incorrectly assert HITM#. It is then possible for an infinite snoop stall to occur should
another processor respond (correctly) to the snoop request with HIT#. In order for this infinite
snoop stall to occur, at least three agents must be present, and the probability of occurrence
increases with the number of processors.

Should 2 or 3 occur, the processor will eventually assert BINIT# (if enabled) with an MCA error code
indicating a ROB time-out. At this point, the system requires a hard reset.

Workaround: It is possible for BIOS code to contain a workaround for this erratum.

Status: For the steppings affected see the Summary of Changes at the beginning of this section.

M55. Snoop Probe During FLUSH# Could Cause L2 to be Left in
Shared State

Problem: During a L2 FLUSH operation using the FLUSH# pin, it is possible that a read request from
a bus agent or other processor to a valid line will leave the line in the Shared state (S) instead of the
Invalid state (I) as expected after flush operation. Before the FLUSH operation is completed, another
snoop request to invalidate the line from another agent or processor could be ignored, again leaving
the line in the Shared state.

Implication: Current desktop and mid range server systems have no mechanism to assert the flush
pin and hence are not affected by this errata. A high end server system that does not suppress snoop
traffic before the assertion of the FLUSH# pin may cause a line to be left in an incorrect cache state.

Workaround: Affected systems (those capable of asserting the FLUSH# pin) should prevent snoop
activity on the front side bus until invalidation is completed after asserting FLUSH#, or use a WBINVD
instruction instead of asserting the FLUSH# pin in order to flush the cache.

Status: For the steppings affected see the Summary of Changes at the beginning of this section.

MOBILE INTEL® CELERON® PROCESSOR (0.18µ and 0.13µ) SPECIFICATION UPDATE

54

M56. Livelock May Occur Due to IFU Line Eviction

Problem: Following the conditions outlined for erratum M30, if the instruction that is currently being
executed from the evicted line must be restarted by the IFU, and the IFU receives another partial hit on
a previously executed (but not as yet completed) store that is resident in the store buffer, then a
livelock may occur.

Implication: If this erratum occurs, the processor will hang in a live lock-situation, and the system will
require a reset to continue normal operation.

Workaround: None identified

Status: For the steppings affected see the Summary of Changes at the beginning of this section.

M57.
Intermittent Power-on Failure due to Uninitialized Processor
Internal Nodes

Problem: If there is no clock source supplied to the processor’s PICCLK pin, the processor may drive
an incorrect address for the reset vector at power-on due to uninitialized processor internal nodes. In
this scenario when ADS# is asserted, it is possible that the processor drives either the SMI or NMI
vector addresses, rather than the reset vector address.

Implication: Systems that provide a clock to the processor’s PICCLK pin are unaffected by this
issue. On a system implementation with no clock source supplied to the processor’s PICCLK pin, a
small percentage of the systems may intermittently fail to boot, or may fail to resume from a STR or
STD state. On the next power-on, the system will likely boot normally.

Workaround: Supply a clock source to the processor’s PICCLK pin.

Status: For the steppings affected see the Summary of Changes at the beginning of this section.

M58. Selector for the LTR/LLDT Register May Get Corrupted
Problem: The internal selector portion of the respective register (TR, LDTR) may get corrupted if,
during a small window of LTR or LLDT system instruction execution, the following sequence of events
occur:

1. Speculative write to a segment register that might follow the LTR or LLDT instruction

2. The read segment descriptor of LTR/LLDT operation spans a page (4 Kbytes) boundary; or
causes a page fault

Implication: Incorrect selector for LTR, LLDT instruction could be used after a task switch.

MOBILE INTEL® CELERON® PROCESSOR (0.18µ and 0.13µ) SPECIFICATION UPDATE

 55

Workaround: Software can insert a serializing instruction between the LTR or LLDT instruction and
the segment register write.

Status: For the steppings affected see the Summary of Changes at the beginning of this section.

M59. INIT Does Not Clear Global Entries in the TLB
Problem: INIT may not flush a TLB entry when:

1. The processor is in protected mode with paging enabled and the page global enable flag is set
(PGE bit of CR4 register)

2. G bit for the page table entry is set

3. TLB entry is present in TLB when INIT occurs

Implication: Software may encounter unexpected page fault or incorrect address translation due to a
TLB entry erroneously left in TLB after INIT.

Workaround: Write to CR3, CR4 or CR0 registers before writing to memory early in BIOS code to
clear all the global entries from TLB.

Status: For the steppings affected see the Summary of Changes at the beginning of this section.

M60. VM Bit Will be Cleared on a Double Fault Handler
Problem: Following a task switch to a Double Fault Handler that was initiated while the processor
was in virtual-8086 (VM86) mode, the VM bit will be incorrectly cleared in EFLAGS.

Implication: When the OS recovers from the double fault handler, the processor will no longer be in
VM86 mode.

Workaround: None identified

Status: For the steppings affected see the Summary of Changes at the beginning of this section.

MOBILE INTEL® CELERON® PROCESSOR (0.18µ and 0.13µ) SPECIFICATION UPDATE

56

M61.
Memory Aliasing with Inconsistent A and D Bits May Cause
Processor Deadlock

Problem: In the event that software implements memory aliasing by having two Page Directory
Entries(PDEs) point to a common Page Table Entry(PTE) and the Accessed and Dirty bits for the two
PDEs are allowed to become inconsistent the processor may become deadlocked.

Implication: This erratum has not been observed with commercially available software.

Workaround: Software that needs to implement memory aliasing in this way should manage the
consistency of the Accessed and Dirty bits

Status: For the steppings affected see the Summary of Changes at the beginning of this section.

M62.
Use of Memory Aliasing with Inconsistent Memory Type May Cause
System Hang

Problem: Software that implements memory aliasing by having more than one linear address
mapped to the same physical page with different cache types may cause the system to hang. This
would occur if one of the addresses is non-cacheable used in code segment and the other a cacheable
address. If the cacheable address finds its way in instruction cache, and non-cacheable address is
fetched in IFU, the processor may invalidate the non-cacheable address from the fetch unit. Any micro-
architectural event that causes instruction restart will expect this instruction to still be in fetch unit and
lack of it will cause system hang.

Implication: This erratum has not been observed with commercially available software.

Workaround: Although it is possible to have a single physical page mapped by two different linear
addresses with different memory types, Intel has strongly discouraged this practice as it may lead to
undefined results. Software that needs to implement memory aliasing should manage the memory type
consistency.

Status: For the steppings affected see the Summary of Changes at the beginning of this section.

MOBILE INTEL® CELERON® PROCESSOR (0.18µ and 0.13µ) SPECIFICATION UPDATE

 57

M63.
Processor may Report Invalid TSS Fault Instead of Double Fault
During Mode C Paging

Problem: When an operating system executes a task switch via a Task State Segment (TSS) the
CR3 register is always updated from the new task TSS. In the mode C paging, once the CR3 is
changed the processor will attempt to load the PDPTRs. If the CR3 from the target task TSS or task
switch handler TSS is not valid then the new PDPTR will not be loaded. This will lead to the reporting
of invalid TSS fault instead of the expected Double fault.

Implication: Operating systems that access an invalid TSS may get invalid TSS fault instead of a
Double fault.

Workaround: Software needs to ensure any accessed TSS is valid.

Status: For the steppings affected see the Summary of Changes at the beginning of this section.

M64.
Machine Check Exception may Occur When Interleaving Code
Between Different Memory Types

Problem: A small window of opportunity exists where code fetches interleaved between different
memory types may cause a machine check exception. A complex set of micro-architectural boundary
conditions is required to expose this window.

Implication: Interleaved instruction fetches between different memory types may result in a machine
check exception. The system may hang if machine check exceptions are disabled. Intel has not
observed the occurrence of this erratum while running commercially available applications or operating
systems.

Workaround: Software can avoid this erratum by placing a serializing instruction between code
fetches which span different memory types.

Status: For the steppings affected see the Summary of Changes at the beginning of this section.

MOBILE INTEL® CELERON® PROCESSOR (0.18µ and 0.13µ) SPECIFICATION UPDATE

58

M2AP.
Write to Mask LVT (Programmed as EXTINT) Will Not Deassert
Outstanding Interrupt

Problem: If the APIC subsystem is configured in Virtual Wire Mode implemented through the local
APIC (i.e., the 8259 INTR signal is connected to LINT0 and LVT1’s interrupt delivery mode field is
programmed as EXTINT), a write to LVT1 intended to mask interrupts will not deassert the internal
interrupt source if the external LINT0 signal is already asserted. The interrupt will be erroneously
posted to the mobile Pentium III processor despite the attempt to mask it via the LVT.

Implication: Because of the masking attempt, interrupts may be generated when the system software
expects no interrupts to be posted.

Workaround: Software can issue a write to the 8259A interrupt mask register to deassert the LINT0
interrupt level, followed by a read to the controller to ensure that the LINT0 signal has been
deasserted. Once this is ensured, software may then issue the write to mask LVT entry 1.

Status: For the steppings affected see the Summary of Changes at the beginning of this section.

M65. Wrong ESP Register Values During a Fault in VM86 Mode

Problem: At the beginning of the IRET instruction execution in VM86 mode, the lower 16 bits of the
ESP register are saved as the old stack value. When a fault occurs, these 16 bits are moved into the
32-bit ESP, effectively clearing the upper 16 bits of the ESP.

Implication: This erratum has not been observed to cause any problems with commercially available
software.

Workaround: None identified

Status: For the steppings affected see the Summary of Changes at the beginning of this section.

MOBILE INTEL® CELERON® PROCESSOR (0.18µ and 0.13µ) SPECIFICATION UPDATE

 59

M66.
APIC ICR Write May Cause Interrupt Not to be Sent When ICR
Delivery Bit Pending

Problem: If the APIC ICR (Interrupt Control Register) is written with a new interrupt command while
the Delivery Status bit from a previous interrupt command is set to '1’ (Send Pending), the interrupt
message may not be sent out by the processor.

Implication: This erratum will cause an interrupt message not to be sent, potentially resulting in
system hang.

Workaround: Software should always poll the Delivery Status bit in the APIC ICR and ensure that it
is '0’ (Idle) before writing a new value to the ICR.

Status: For the steppings affected see the Summary of Changes at the beginning of this section.

M67.
Processor Incorrectly Samples NMI Interrupt after RESET#
Deassertion When Processor APIC is Hardware-Disabled

Problem: When the processor APIC is hardware-disabled the processor may incorrectly interpret the
NMI signal as an NMI interrupt, instead of a frequency strap value, starting six bus clocks after
RESET# is de-asserted. This will result in a processor hang due to the NMI Handler not being installed
at this time.

Implication: The system may fail to boot due to this issue.

Workaround: The processor APIC must be hardware-enabled by pulling PICD[1:0] high with
separate pull up resistors and supplying PICCLK to the processor.

Status: For the steppings affected, see the Summary of Changes at the beginning of this section.

M68.
The Instruction Fetch Unit (IFU) May Fetch Instructions Based
Upon Stale CR3 Data After a Write to CR3 Register

Problem - Under a complex set of conditions, there exists a one clock window following a write to the
CR3 register where-in it is possible for the iTLB fill buffer to obtain a stale page translation based on
the stale CR3 data. This stale translation will persist until the next write to the CR3 register, the next
page fault or execution of a certain class of instructions including RDTSC, CPUID, or IRETD with
privilege level change.

Implication - The wrong page translation could be used leading to erroneous software behavior.

MOBILE INTEL® CELERON® PROCESSOR (0.18µ and 0.13µ) SPECIFICATION UPDATE

60

Workaround - Operating systems that are potentially affected can add a second write to the CR3
register.

Status - For the steppings affected, see the Summary of Changes at the beginning of this section.

M69.
Processor Might not Exit Sleep State Properly Upon De-assertion
of CPUSLP# Signal

Problem - If the processor enters a sleep state upon assertion of CPUSLP# signal, and if the core to
system bus multiplier is an odd bus fraction, then the processor may not resume from the CPU sleep
state upon the de-assertion of CPUSLP# signal.

Implication - This erratum may result in a system hang during a resume from CPU sleep state.
Mobile platforms using Quick Start recommendations are not affected.

Workaround - It is possible to workaround this in BIOS by not asserting CPUSLP# for power
management purposes. For mobile platforms, the workaround is to use the Quick Start
recommendation.

Status - For the steppings affected, see the Summary of Changes at the beginning of this section.

M70.
During Boundary Scan, BCLK Not Sampled High When DPSLP# is
Asserted Low

Problem: During boundary scan, BCLK not sampled high when DPSLP# is asserted low.

Implication: Boundary scan results may be incorrect when DPSLP# is asserted low.

Workaround: Do not use boundary scan when DPSLP# is asserted low.

Status: For the steppings affected, see the Summary of Changes at the beginning of this section.

MOBILE INTEL® CELERON® PROCESSOR (0.18µ and 0.13µ) SPECIFICATION UPDATE

 61

DOCUMENTATION CHANGES

The Documentation Changes listed in this section apply to:

• Mobile Intel® Celeron® Processor in BGA2 and Micro-PGA2 Packages at 900 MHz, 850 MHz, 800
MHz, 750 MHz, 700 MHz, 650 MHz, 600 MHz, 550 MHz, 500 MHz, 450 MHz, Low voltage 600
MHz, Low voltage 500 MHz, Low voltage 400A MHz, Ultra Low Voltage 600MHz and Ultra Low
Voltage 500 MHz datasheet (Order Number 283654-003)

• Mobile Intel® Celeron® Processor (0.18�) in Micro-FCBGA and Micro-FCPGA packages at 933,
866, 800A, and 733 MHz (Order Number 298514-001)

• Mobile Intel® Celeron® Processor (0.13�) in Micro-FCBGA in Low Voltage Package at 650 MHz
(Order Number 298517-001)

• Intel® Celeron® Processor Mobile Module: Mobile Module Connector 2 (MMC-2) at 700 MHz, 650
MHz, 600 MHz, 550 MHz, 500 MHz and 450 MHz datasheet

• Intel Architecture Software Developer’s Manual, Volumes 1, 2, and 3

• P6 Family of Processors Hardware Developer’s Manual

M1. Machine Check Exception detected when BINIT# drive enabled

The last paragraph of section 13.7.1 in the Intel Architecture Software Developer's Manual, Volume 3:
System Programming Guide, has the following documentation change:

13.7.1 Machine Check Exception Handler

• The MCIP flag in the IA32_MCG_STATUS register indicates whether a machine-check

exception was generated. Before returning from the machine-check exception handler,
software should clear this flag so that it can be used reliably by an error logging utility. The
MCIP flag also detects recursion. The machine-check architecture does not support recursion.
When the processor detects machine-check recursion, it enters the shutdown state.

Note: For complete operation of the processors machine check capabilities it is essential that the
system BIOS enable BINIT# drive and BINIT# observation. This allows the processor to use BINIT#
to clear internal and potentially external blocking states and correctly report a wider range of machine
check exceptions. For Example, on an Intel® Pentium® III processor that is executing a locked
CMPXCHG8B instruction and a machine check exception is seen on the initial data read, but the
comparison operation fails, the processor unlocks the bus after completion of the locked sequence by
asserting a BINIT# signal. Without BINIT# drive (UP environment) or BINIT# drive and observation
(MP environment) enabled, the machine check error is logged, but the machine check exception is
not taken (if MCE's are enabled).

MOBILE INTEL® CELERON® PROCESSOR (0.18µ and 0.13µ) SPECIFICATION UPDATE

62

M2. Encoding of “Immediate to register” of “AND” instruction

The Architecture Software Developer's Manual, Volume 2: Instruction Set Reference Appendix B, table
B-10 is missing the encoding of "Immediate to register" of "AND" instruction. The encoding of
"Immediate to register" of "AND" instruction is as follows:

'1000 00sw 11100 reg : immediate data'

M3. The 'reg' field of CMPXCHG8B instruction encoding must be 001

The Architecture Software Developer's Manual, Volume 2: Instruction Set Reference Appendix B, table
B-10 incorrectly documents opcode encoding format of CMPXCHG8B. It should state:

CMPXCHG8B- Compare and Exchange 8 Bytes
Memory, register 0000 1111 : 1100 0111 : mod 001r/m

M4. SCAS/SCASB/SCASW/SCASD encoding operand is incorrect

The Architecture Software Developer's Manual, Volume 2: Instruction Set Reference Appendix B, table
B-10 incorrectly documents opcode encoding format of SCASx.

It currently states:

SCAS/SCASB/SCASW/SCASD - Scan String 1101 111w

It should state:

SCAS/SCASB/SCASW/SCASD - Scan String 1010 111w

MOBILE INTEL® CELERON® PROCESSOR (0.18µ and 0.13µ) SPECIFICATION UPDATE

 63

M5 .

XCHG encoding operand information (1-byte form) does not have a
w-bit, hence the reg size is implied. The AL register is not a valid
option for this 1-byte encoding

The Architecture Software Developer's Manual, Volume 2: Instruction Set Reference Appendix B, table
B-10 incorrectly documents opcode encoding format of XCHG. The XCHG encoding operand
information is incorrect, since there is no w bit for the 2nd operand form, therefore AL is not allowed.

The table currently states:
XCHG - Exchange Register/Memory with Register
register1 with register2 1000 011w : 11 reg1 reg2
AL, AX, or EAX with reg 1001 0 reg
memory with reg 1000 011w : mod reg r/m

It should state:
XCHG - Exchange Register/Memory with Register
register1 with register2 1000 011w : 11 reg1 reg2
AX or EAX with reg 1001 0 reg
memory with reg 1000 011w : mod reg r/m

MOBILE INTEL® CELERON® PROCESSOR (0.18µ and 0.13µ) SPECIFICATION UPDATE

64

SPECIFICATION CLARIFICATIONS
The Specification Clarifications listed in this section apply to:

• Mobile Intel® Celeron® Processor in BGA2 and Micro-PGA2 Packages at 900 MHz, 850 MHz, 800
MHz, 750 MHz, 700 MHz, 650 MHz, 600 MHz, 550 MHz, 500 MHz, 450 MHz, Low voltage 600
MHz, Low voltage 500 MHz, Low voltage 400A MHz, Ultra Low Voltage 600MHz and Ultra Low
Voltage 500 MHz datasheet (Order Number 283654-003)

• Mobile Intel® Celeron® Processor (0.18�) in Micro-FCBGA and Micro-FCPGA packages at 933,
866, 800A, and 733 MHz (Order Number 298514-001)

• Mobile Intel® Celeron® Processor (0.13�) in Micro-FCBGA in Low Voltage Package at 650 MHz
(Order Number 298517-001)

• Intel® Celeron® Processor Mobile Module: Mobile Module Connector 2 (MMC-2) at 700 MHz, 650
MHz, 600 MHz, 550 MHz, 500 MHz and 450 MHz datasheet

• Intel Architecture Software Developer’s Manual, Volumes 1, 2, and 3

• P6 Family of Processors Hardware Developer’s Manual

All Specification Clarifications will be incorporated into a future version of the appropriate Mobile Intel
Celeron processor documentation.

M1.
Temperature Specification Clarification for Measuring
Currents

The Mobile Intel Celeron Processor (0.18µ) in BGA2 and Micro-PGA2 Packages Datasheet (Order
Number 283654-002) has the following Specification Clarifications on note 3 of Table 32, Section 6.
The temperature at which the currents are measured was not clearly specified in note 3 of Table 32.

MOBILE INTEL® CELERON® PROCESSOR (0.18µ and 0.13µ) SPECIFICATION UPDATE

 65

Table 32. Mobile Celeron Processor Power Specifications

Symbol Parameter TDP Typ1,3 TDP Max2,3 PSGNT
3,4 PQS

3,5 PDSLP
3,6 Unit

Power at 500 MHz & 1.10V
at 600 MHz & 1.10V
at 600 MHz & 1.15V
at 400A MHz & 1.35V
at 500 MHz & 1.35V
at 600 MHz & 1.35V
at 450 MHz & 1.60V
at 500 MHz & 1.60V
at 550 MHz & 1.60V
at 600 MHz & 1.60V
at 650 MHz & 1.60V
at 700 MHz & 1.60V
at 750 MHz & 1.60V
at 800 MHz & 1.60V
at 850 MHz & 1.60V

5.0
6.4
7.0
6.5
7.9
8.7
10.2
11.2
11.9
13.0
14.0
15.0
15.8
17.6
18.8

8.1
9.7
9.7
10.1
12.2
14.4
15.5
16.8
18.4
20.0
21.5
23.0
24.6
25.9
27.5

0.8
0.8
0.7
1.1
1.1
1.1
1.7
1.7
1.7
1.7
1.7
2.7
2.7
2.51
2.51

0.6
0.6
0.5
0.8
0.8
0.8
1.3
1.3
1.3
1.3
1.3
1.9
1.9

1.76
1.76

0.2
0.2
0.3
0.3
0.3
0.3
0.5
0.5
0.5
0.5
0.5
0.75
0.75
0.87
0.87

W
W
W
W
W
W
W
W
W
W
W
W
W
W
W

TJ Junction Temperature is
measured with the on-die
thermal diode

100 100 50 50 35 °C

NOTES:
1. TDPTYP is a recommendation based on the power dissipation of the processor while executing

publicly available software under normal operating conditions at nominal voltages. Not 100%
tested.

2. TDPMAX is a specification of the total power dissipation of the processor while executing a worst-
case instruction mix under normal operating conditions at nominal voltages. It includes the power
dissipated by all of the components within the processor. Not 100% tested. Specified by
design/characterization.

3. Not 100% tested. These power specifications are determined by characterization of the processor
currents at higher temperatures and extrapolating the values for the temperature indicated.

4. PSGNT is Stop Grant and Auto Halt power.
5. PQS is Quick Start and Sleep power.
6. PDSLP is Deep Sleep power.

MOBILE INTEL® CELERON® PROCESSOR (0.18µ and 0.13µ) SPECIFICATION UPDATE

66

SPECIFICATION CHANGES

The Specification Changes listed in this section apply to:

• Mobile Intel® Celeron® Processor in BGA2 and Micro-PGA2 Packages at 900 MHz, 850 MHz, 800
MHz, 750 MHz, 700 MHz, 650 MHz, 600 MHz, 550 MHz, 500 MHz, 450 MHz, Low voltage 600
MHz, Low voltage 500 MHz, Low voltage 400A MHz, Ultra Low Voltage 600MHz and Ultra Low
Voltage 500 MHz datasheet (Order Number 283654-003)

• Mobile Intel® Celeron® Processor (0.18�) in Micro-FCBGA and Micro-FCPGA packages at 933,
866, 800A, and 733 MHz (Order Number 298514-001)

• Mobile Intel® Celeron® Processor (0.13�) in Micro-FCBGA in Low Voltage Package at 650 MHz
(Order Number 298517-001)

• Intel® Celeron® Processor Mobile Module: Mobile Module Connector 2 (MMC-2) at 700 MHz, 650
MHz, 600 MHz, 550 MHz, 500 MHz and 450 MHz datasheet

• Intel Architecture Software Developer’s Manual, Volumes 1, 2, and 3

• P6 Family of Processors Hardware Developer’s Manual

All Specification Changes will be incorporated into a future version of the appropriate Mobile Intel
Celeron processor documentation.

There are no Specification Changes.

	REVISION HISTORY
	
	Nomenclature

	Mobile Intel® Celeron® Processor (BGA2) Markings
	Mobile Intel® Celeron® Processor 0.18µ (Micro-FCPGA) Markings
	Mobile Intel® Celeron® Processor 0.18µ (Micro-FCBGA) Markings
	Mobile Intel® Celeron® Processor 0.13µ (Micro-FCPGA) Markings
	Mobile Intel® Celeron® Processor 0.13µ (Micro-FCBGA) Markings
	Intel® Celeron® Processor Mobile Module Markings
	IDENTIFICATION INFORMATION
	SUMMARY OF CHANGES
	
	CODES USED IN SUMMARY TABLE

	Summary of Errata
	Summary of Documentation Changes
	Summary of Specification Clarifications
	Summary of Specification Changes

	ERRATA
	
	M1.
	M2.
	M3.
	M4.
	M5.
	M6.
	M7.
	M8.
	M9.
	M10.
	M11.
	M12.
	M13.
	M14.
	M15.
	M16.
	M17.
	M18.
	M19.
	M20.
	M21.
	M22.
	M23.
	M24.
	M25.
	M26.
	M27.
	M28.
	M29.
	M30.
	M31.
	M32.
	M33.
	M34.
	M35.
	M36.
	M37.
	M38.
	M39.
	M40.
	M41.
	M42.
	M43.
	M44.
	M45.
	M46.
	M47.
	M48.
	M49.
	M50.
	M51.
	M52.
	M53.
	M54.
	M55.
	M56.
	M57.
	M58.
	M59.
	M60.
	M61.
	M62.
	M63.
	M64.
	M2AP.
	M65.
	M66.
	M67.
	M68.
	M69.
	M70.

	DOCUMENTATION CHANGES
	
	M1.
	M2.
	M3.
	M4.
	M5 .

	SPECIFICATION CLARIFICATIONS
	
	M1.

	SPECIFICATION CHANGES

