
Document Number: 252046-020

Intel® 64 and IA-32 Architectures
Software Developer’s Manual
Documentation Changes

May 2007

Notice: The Intel® 64 and IA-32 architectures may contain design defects or errors known as
errata that may cause the product to deviate from published specifications. Current characterized
errata are documented in the specification updates.

2 Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL® PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED,
BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS
PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER,
AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING
LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY
PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. Intel products are not intended for use in medical, life saving, or
life sustaining applications.

Intel may make changes to specifications and product descriptions at any time, without notice.

64-bit computing on Intel architecture requires a computer system with a processor, chipset, BIOS, operating system, device
drivers and applications enabled for Intel® 64 architecture. Performance will vary depending on your hardware and software
configurations. Consult with your system vendor for more information.

Designers must not rely on the absence or characteristics of any features or instructions marked “reserved” or “undefined.” Intel
reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future
changes to them.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.

I2C is a two-wire communications bus/protocol developed by Philips. SMBus is a subset of the I2C bus/protocol and was developed
by Intel. Implementations of the I2C bus/protocol may require licenses from various entities, including Philips Electronics N.V. and
North American Philips Corporation.

Intel, Pentium, Intel Core, Intel Xeon, Intel 64, Intel NetBurst, and the Intel logo, and the Intel logo are trademarks of Intel
Corporation in the U.S. and other countries.

*Other names and brands may be claimed as the property of others.

Copyright © 2002–2007, Intel Corporation. All rights reserved.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 3

Contents
Preface ... 5

Summary Table of Changes ... 6

Documentation Changes.. 7

4 Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes

Revision History

Version Description Date

-001 • Initial Release November 2002

-002 • Added 1-10 Documentation Changes.
• Removed old Documentation Changes items that already have been

incorporated in the published Software Developer’s manual

December 2002

-003 • Added 9 -17 Documentation Changes.
• Removed Documentation Change #6 - References to bits Gen and Len

Deleted.
• Removed Documentation Change #4 - VIF Information Added to CLI

Discussion.

February 2003

-004 • Removed Documentation changes 1-17.
• Added Documentation changes 1-24.

June 2003

-005 • Removed Documentation Changes 1-24.
• Added Documentation Changes 1-15.

September 2003

-006 • Added Documentation Changes 16- 34. November 2003

-007 • Updated Documentation changes 14, 16, 17, and 28.
• Added Documentation Changes 35-45.

January 2004

-008 • Removed Documentation Changes 1-45.
• Added Documentation Changes 1-5.

March 2004

-009 • Added Documentation Changes 7-27. May 2004

-010 • Removed Documentation Changes 1-27.
• Added Documentation Changes 1.

August 2004

-011 • Added Documentation Changes 2-28. November 2004

-012 • Removed Documentation Changes 1-28.
• Added Documentation Changes 1-16.

March 2005

-013 • Updated title.
• There are no Documentation Changes for this revision of the document.

July 2005

-014 • Added Documentation Changes 1-21. September 2005

-015 • Removed Documentation Changes 1-21.
• Added Documentation Changes 1-20.

March 9, 2006

-016 • Added Documentation changes 21-23. March 27, 2006

-017 • Removed Documentation Changes 1-23.
• Added Documentation Changes 1-36.

September 2006

-018 • Added Documentation Changes 37-42. October 2006

-019 • Removed Documentation Changes 1-42.
• Added Documentation Changes 1-19.

March 2007

-020 • Removed Documentation Change 3 (updated iteration incorporated in
new changes).

• Added Documentation Changes 19-26.

May 2007

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 5

Preface

Preface

This document is an update to the specifications contained in the Affected Documents/
Related Documents table below. This document is a compilation of documentation
changes. It is intended for hardware system manufacturers and software developers of
applications, operating systems, or tools.

Affected Documents/Related Documents

Nomenclature
Documentation Changes include errors or omissions from the current published
specifications. These changes will be incorporated in the next release of the Software
Developer’s Manual.

Document Title Document
Number

Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1:
Basic Architecture

253665

Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 2A:
Instruction Set Reference, A-M

253666

Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 2B:
Instruction Set Reference, N-Z

253667

Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A:
System Programming Guide.

253668

Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3B:
System Programming Guide

253669

6 Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes

Summary Table of Changes

Summary Table of Changes

The following table indicates documentation changes which apply to the Intel® 64 and
IA-32 architectures. This table uses the following notations:

Codes Used in Summary Table
Change bar to left of table row indicates this erratum is either new or modified from
the previous version of the document.

Summary Table of Documentation Changes
Number Documentation Changes

1 APIC ID reference corrected

2 VMPTRST summary table correction

3 Blocks of pseudocode updated

4 Material covering handling of VM Exit during Virtual-NMI injection corrected

5 More information about R8-15 & XMM8-15 transitions

6 Figure 8-6 corrected

7 Note added to section on APIC timer

8 Coverage of PEBS updated

9 Missing exception added for MFENCE

10 IA32_MCG_STATUS information added

11 Introduction section for CPUID updated

12 Update to CPUID documentation on deterministic cache parameters leaf

13 Updated pseudocode in VMCALL description

14 IA32_MCi_STATUS figure corrected

15 IA32_MCi_STATUS flag description updated

16 Instruction summaries fixed for MOVD/MOVQ, PMOVMSKB, PINSRW, PEXTRW

17 Correction to microcode update documentation

18 PSHUFB compiler intrinsic fixed

19 RDMSR/RDPMC/RDTSC/WRMSR descriptions updated

20 Location data corrected

21 LOOP/LOOPcc description updated

22 MOV CR and MOV DR sections updated

23 IRET/IRETD information updated

24 Table 3-1 updated

25 MONITOR/MWAIT sections updated

26 Note on VMX added to microcode update information

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 7

Documentation Changes

Documentation Changes

1. APIC ID reference corrected

In Section 7.5.5 of the Intel® 64 and IA-32 Architectures Software Developer’s
Manual, Volume 3A, an APIC ID reference has been corrected.

--

7.5.5 Identifying Logical Processors in an MP System

After the BIOS has completed the MP initialization protocol, each logical processor can
be uniquely identified by its local APIC ID. Software can access these APIC IDs in
either of the following ways:

• Read APIC ID for a local APIC — Code running on a logical processor can
execute a MOV instruction to read the processor’s local APIC ID register (see
Section 8.4.6, “Local APIC ID”). This is the ID to use for directing physical
destination mode interrupts to the processor.

• Read ACPI or MP table — As part of the MP initialization protocol, the BIOS
creates an ACPI table and an MP table. These tables are defined in the
Multiprocessor Specification Version 1.4 and provide software with a list of the
processors in the system and their local APIC IDs. The format of the ACPI table is
derived from the ACPI specification, which is an industry standard power
management and platform configuration specification for MP systems.

• Read Initial APIC ID — An APIC ID is assigned to a logical processor during
power up and is called the initial APIC ID. This is the APIC ID reported by
CPUID.1:EBX[31:24] and may be different from the current value read from the
local APIC. Use the initial APIC ID to determine the topological relationship between
logical processors.

Bits in the initial APIC ID can be interpreted using several bit masks. Each bit mask
can be used to extract an identifier to represent a hierarchical level of the multi-
threading resource topology in an MP system (See Section 7.10.1, “Hierarchical
Mapping of Shared Resources”). The initial APIC ID may consist of up to four bit-
fields. In a non-clustered MP system, the field consists of up to three bit fields.

... more text here... ...

2. VMPTRST summary table correction

In Section “VMPTRST—Store Pointer to Virtual-Machine Control Structure” in Chapter 5
of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 2B, the
summary table has been corrected. See the corrected cells below.

--

VMPTRST—Store Pointer to Virtual-Machine Control Structure

... ... more text here

Opcode Instruction Description
0F C7 /7 VMPTRST m64 Stores the current VMCS pointer into memory.

8 Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes

Documentation Changes

3. Blocks of pseudocode updated

In Chapter 4 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 2B, some of the pseudocode has been updated. There are multiple sections,
identified by the reproduced code blocks below.

--
Three blocks of pseudocode were corrected in the “PCMPEQB/PCMPEQW/PCMPEQD—
Compare Packed Data for Equal” section. Corrected blocks follow.

...

PCMPEQB instruction with 128-bit operands:
IF DEST[7:0] = SRC[7:0]

THEN DEST[7:0) ← FFH;
ELSE DEST[7:0] ← 0; FI;

(* Continue comparison of 2nd through 15th bytes in DEST and SRC *)
IF DEST[127:120] = SRC[127:120]

THEN DEST[127:120] ← FFH;
ELSE DEST[127:120] ← 0; FI;

...

PCMPEQW instruction with 128-bit operands:
IF DEST[15:0] = SRC[15:0]

THEN DEST[15:0] ← FFFFH;
ELSE DEST[15:0] ← 0; FI;

(* Continue comparison of 2nd through 7th words in DEST and SRC *)
IF DEST[127:112] = SRC[127:112]

THEN DEST[127:112] ← FFFFH;
ELSE DEST[127:112] ← 0; FI;

..

PCMPEQD instruction with 128-bit operands:
IF DEST[31:0] = SRC[31:0]

THEN DEST[31:0] ← FFFFFFFFH;
ELSE DEST[31:0] ← 0; FI;

(* Continue comparison of 2nd and 3rd doublewords in DEST and SRC *)
IF DEST[127:96] = SRC[127:96]

THEN DEST[127:96] ← FFFFFFFFH;
ELSE DEST[127:96] ← 0; FI;

...

--
Three blocks of pseudocode were corrected in the “PCMPGTB/PCMPGTW/PCMPGTD—
Compare Packed Signed Integers for Greater Than” section. Corrected blocks follow.

..

PCMPGTB instruction with 128-bit operands:
IF DEST[7:0] > SRC[7:0]

THEN DEST[7:0) ← FFH;
ELSE DEST[7:0] ← 0; FI;

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 9

Documentation Changes

(* Continue comparison of 2nd through 15th bytes in DEST and SRC *)
IF DEST[127:120] > SRC[127:120]

THEN DEST[127:120] ← FFH;
ELSE DEST[127:120] ← 0; FI;

...

PCMPGTW instruction with 128-bit operands:
IF DEST[15:0] > SRC[15:0]

THEN DEST[15:0] ← FFFFH;
ELSE DEST[15:0] ← 0; FI;

(* Continue comparison of 2nd through 7th words in DEST and SRC *)
IF DEST[63:48] > SRC[127:112]

THEN DEST[127:112] ← FFFFH;
ELSE DEST[127:112] ← 0; FI;

...

PCMPGTD instruction with 128-bit operands:
IF DEST[31:0] > SRC[31:0]

THEN DEST[31:0] ← FFFFFFFFH;
ELSE DEST[31:0] ← 0; FI;

(* Continue comparison of 2nd and 3rd doublewords in DEST and SRC *)
IF DEST[127:96] > SRC[127:96]

THEN DEST[127:96] ← FFFFFFFFH;
ELSE DEST[127:96] ← 0; FI;

...

4. Material covering handling of VM Exit during Virtual-NMI injection
corrected

In Section 25.7.1.2 of the Intel® 64 and IA-32 Architectures Software Developer’s
Manual, Volume 3B, some VM-exit material has been corrected. See the reproduced
section below noted by change bars.

--

25.7.1.2 Resuming Guest Software after Handling an Exception

If the VMM determines that a VM exit was caused by an exception due to a condition
established by the VMM itself, it may choose to resume guest software after removing
the condition. The approach for removing the condition may be specific to the VMM’s
software architecture. and algorithms This section describes how guest software may be
resumed after removing the condition.

In general, the VMM can resume guest software simply by executing VMRESUME. The
following items provide details of cases that may require special handling:

• If the “NMI exiting” VM-execution control is 0, bit 12 of the VM-exit interruption-
information field indicates that the VM exit was due to a fault encountered during an
execution of the IRET instruction that unblocked non-maskable interrupts (NMIs). In
particular, it provides this indication if the following are both true:

— Bit 31 (valid) in the IDT-vectoring information field is 0.

— The value of bits 7:0 (vector) of the VM-exit interruption-information field is not
8 (the VM exit is not due to a double-fault exception).

10 Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes

Documentation Changes

If both are true and bit 12 of the VM-exit interruption-information field is 1, NMIs
were blocked before guest software executed the IRET instruction that caused the
fault that caused the VM exit. The VMM should set bit 3 (blocking by NMI) in the
interruptibility-state field (using VMREAD and VMWRITE) before resuming guest
software.

• If the “virtual NMIs” VM-execution control is 1, bit 12 of the VM-exit interruption-
information field indicates that the VM exit was due to a fault encountered during an
execution of the IRET instruction that removed virtual-NMI blocking. In particular, it
provides this indication if the following are both true:

— Bit 31 (valid) in the IDT-vectoring information field is 0.

— The value of bits 7:0 (vector) of the VM-exit interruption-information field is not
8 (the VM exit is not due to a double-fault exception).

If both are true and bit 12 of the VM-exit interruption-information field is 1, there
was virtual-NMI blocking before guest software executed the IRET instruction that
caused the fault that caused the VM exit. The VMM should set bit 3 (blocking by NMI)
in the interruptibility-state field (using VMREAD and VMWRITE) before resuming
guest software.

• Bit 31 (valid) of the IDT-vectoring information field indicates, if set, that the
exception causing the VM exit occurred while another event was being delivered to
guest software. The VMM should ensure that the other event is delivered when guest
software is resumed. It can do so using the VM-entry event injection described in
Section 22.5 and detailed in the following paragraphs:

— The VMM can copy (using VMREAD and VMWRITE) the contents of the IDT-
vectoring information field (which is presumed valid) to the VM-entry inter-
ruption-information field (which, if valid, will cause the exception to be delivered
as part of the next VM entry).

• The VMM should ensure that reserved bits 30:12 in the VM-entry inter-
ruption-information field are 0. In particular, the value of bit 12 in the IDT-
vectoring information field is undefined after all VM exits. If this bit is copied
as 1 into the VM-entry interruption-information field, the next VM entry will
fail because the bit should be 0.

• If the “virtual NMIs” VM-execution control is 1 and the value of bits 10:8
(interruption type) in the IDT-vectoring information field is 2 (indicating
NMI), the VM exit occurred during delivery of an NMI that had been injected
as part of the previous VM entry. In this case, bit 3 (blocking by NMI) will be
1 in the interruptibility-state field in the VMCS. The VMM should clear this bit;
otherwise, the next VM entry will fail (see Section 22.3.1.5).

— The VMM can also copy the contents of the IDT-vectoring error-code field to the
VM-entry exception error-code field. This need not be done if bit 11 (error code
valid) is clear in the IDT-vectoring information field.

— The VMM can also copy the contents of the VM-exit instruction-length field to
the VM-entry instruction-length field. This need be done only if bits 10:8
(interruption type) in the IDT-vectoring information field indicate either
software interrupt, privileged software exception, or software exception.

5. More information about R8-15 & XMM8-15 transitions

In Section 3.4.1.1 of the Intel® 64 and IA-32 Architectures Software Developer’s
Manual, Volume 1, information covering mode transition behavior for R8-15 and
XMM8-15 has been added. This information has been reproduced in context below
noted by change bars.

--

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 11

Documentation Changes

3.4.1.1 General-Purpose Registers in 64-Bit Mode

In 64-bit mode, there are 16 general purpose registers and the default operand size is
32 bits. However, general-purpose registers are able to work with either 32-bit or 64-
bit operands. If a 32-bit operand size is specified: EAX, EBX, ECX, EDX, EDI, ESI, EBP,
ESP, R8D - R15D are available. If a 64-bit operand size is specified: RAX, RBX, RCX,
RDX, RDI, RSI, RBP, RSP, R8-R15 are available. R8D-R15D/R8-R15 represent eight
new general-purpose registers. All of these registers can be accessed at the byte,
word, dword, and qword level. REX prefixes are used to generate 64-bit operand sizes
or to reference registers R8-R15.

Registers only available in 64-bit mode (R8-R15 and XMM8-XMM15) are preserved
across transitions from 64-bit mode into compatibility mode then back into 64-bit
mode. However, values of R8-R15 and XMM8-XMM15 are undefined after transitions
from 64-bit mode through compatibility mode to legacy or real mode and then back
through compatibility mode to 64-bit mode.

In 64-bit mode, there are limitations on accessing byte registers. An instruction
cannot reference legacy high-bytes (for example: AH, BH, CH, DH) and one of the new
byte registers at the same time (for example: the low byte of the RAX register).
However, instructions may reference legacy low-bytes (for example: AL, BL, CL or DL)
and new byte registers at the same time (for example: the low byte of the R8 register,
or RBP). The architecture enforces this limitation by changing high-byte references
(AH, BH, CH, DH) to low byte references (BPL, SPL, DIL, SIL: the low 8 bits for RBP,
RSP, RDI and RSI) for instructions using a REX prefix.

When in 64-bit mode, operand size determines the number of valid bits in the
destination general-purpose register:

• 64-bit operands generate a 64-bit result in the destination general-purpose
register.

• 32-bit operands generate a 32-bit result, zero-extended to a 64-bit result in the
destination general-purpose register.

• 8-bit and 16-bit operands generate an 8-bit or 16-bit result. The upper 56 bits or
48 bits (respectively) of the destination general-purpose register are not be
modified by the operation. If the result of an 8-bit or 16-bit operation is intended
for 64-bit address calculation, explicitly sign-extend the register to the full 64-bits.

Table 3-2. Addressable General Purpose Registers

Register Type Without REX With REX

Byte Registers AL, BL, CL, DL, AH, BH, CH,
DH

AL, BL, CL, DL, DIL, SIL, BPL, SPL,
R8L - R15L

Word Registers AX, BX, CX, DX, DI, SI, BP, SP AX, BX, CX, DX, DI, SI, BP, SP, R8W
- R15W

Doubleword Registers EAX, EBX, ECX, EDX, EDI,
ESI, EBP, ESP

EAX, EBX, ECX, EDX, EDI, ESI, EBP,
ESP, R8D - R15D

Quadword Registers N.A. RAX, RBX, RCX, RDX, RDI, RSI,
RBP, RSP, R8 - R15

12 Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes

Documentation Changes

Because the upper 32 bits of 64-bit general-purpose registers are undefined in 32-bit
modes, the upper 32 bits of any general-purpose register are not preserved when
switching from 64-bit mode to a 32-bit mode (to protected mode or compatibility
mode). Software must not depend on these bits to maintain a value after a 64-bit to
32-bit mode switch.

6. Figure 8-6 corrected

In Figure 8-6 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 3A, bit designations have been corrected. See the corrected figure below.

--

7. Note added to section on APIC timer

In Section 8.5.4 of the Intel® 64 and IA-32 Architectures Software Developer’s
Manual, Volume 3A, a note has been added (discusses deep C-states and GV3
transitions). Part of the section is reproduced below with the change in context noted
by change bar.

--

8.5.4 APIC Timer

The local APIC unit contains a 32-bit programmable timer that is available to software
to time events or operations. This timer is set up by programming four registers: the
divide configuration register (see Figure 8-10), the initial-count and current-count
registers (see Figure 8-11), and the LVT timer register (see Figure 8-8).

NOTE
The APIC timer may temporarily stop while the processor is in deep C-
states or during SpeedStep (EST) transitions.

Figure 8-6. Local APIC ID Register

31 27 24 0

ReservedAPIC ID

Address: 0FEE0 0020H
Value after reset: 0000 0000H

P6 family and Pentium processors

Pentium 4 processors, Xeon processors, and later processors
31 24 0

ReservedAPIC ID

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 13

Documentation Changes

... section continues....

8. Coverage of PEBS updated

In Section 18.14.4 of the Intel® 64 and IA-32 Architectures Software Developer’s
Manual, Volume 3A, coverage of PEBS has been updated. Coverage has also been
updated in Appendix B of the same volume. See the reproductions of the applicable
sections below noted by change bars.

--
Addition to Chapter 18, Vol. 3B.

18.14.4 Precise Even Based Sampling (PEBS)

Processors based on Intel Core microarchitecture also support precise event based
sampling (PEBS). This feature was introduced by processors based on Intel NetBurst
microarchitecture.

PEBS uses a debug store mechanism and a performance monitoring interrupt to store
a set of architectural state information for the processor (See Section 18.15.8). The
information provides architectural state of the instruction executed immediately after
the instruction that caused the event.

In cases where the same instruction causes BTS and PEBS to be activated, PEBS is
processed before BTS are processed. The PMI request is held until the processor
completes processing of PEBS and BTS.

Figure 8-10. Divide Configuration Register

Figure 8-11. Initial Count and Current Count Registers

Address: FEE0 03E0H
Value after reset: 0H

0

Divide Value (bits 0, 1 and 3)
000: Divide by 2
001: Divide by 4
010: Divide by 8
011: Divide by 16
100: Divide by 32
101: Divide by 64
110: Divide by 128
111: Divide by 1

31 0

Reserved
1234

31 0

Initial Count

Address: Initial Count

Value after reset: 0H

Current Count

Current Count FEE0 0390H
FEE0 0380H

14 Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes

Documentation Changes

For processors based on Intel Core microarchitecture, events that support precise
sampling are listed in Table 18-15. The procedure for detecting availability of PEBS is
the same as described in Section 18.15.8.1.

18.14.4.1 Setting up the PEBS Buffer

For processors based on Intel Core microarchitecture, PEBS is available using
IA32_PMC0 only. Use the following procedure to set up the processor and IA32_PMC0
counter for PEBS:

1. Set up the precise event buffering facilities. Place values in the precise event buffer
base, precise event index, precise event absolute maximum, precise event interrupt
threshold, and precise event counter reset fields of the DS buffer management area.
In processors based on Intel Core microarchitecture, PEBS records consist of 64-bit
address entries. See Figure 18-24 to set up the precise event records buffer in
memory.

2. Enable PEBS. Set the Enable PEBS on PMC0 flag (bit 0) in IA32_PEBS_ENABLE MSR.

3. Set up the IA32_PMC0 performance counter and IA32_PERFEVTSEL0 for an event
listed in Table 18-15.

18.14.4.2 Writing a PEBS Interrupt Service Routine

PEBS facilities share the same interrupt vector and interrupt service routine (called the
DS ISR) with the non-precise event-based sampling and BTS facilities. To handle PEBS
interrupts, PEBS handler code must be included in the DS ISR. See Section 18.5.2.2,
“Debug Store (DS) Mechanism,” for guidelines when writing the DS ISR.

The service routine can query MSR_PERF_GLOBAL_STATUS to determine which
counter(s) caused of overflow condition. The service routine should clear overflow
indicator by writing to MSR_PERF_GLOBAL_OVF_CTL.

A comparison of the sequence of requirements to program PEBS for processors based
on Intel Core and Intel NetBurst microarchitectures is listed in Table 18-16.

Table 18-15. PEBS Performance Events for Intel Core Microarchitecture
Event Name UMask Event Select

INSTR_RETIRED.ANY_P 00H C0H

X87_OPS_RETIRED.ANY FEH C1H

BR_INST_RETIRED.MISPRED 00H C5H

SIMD_INST_RETIRED.ANY 1FH C7H

MEM_LOAD_RETIRED.L1D_MISS 01H CBH

MEM_LOAD_RETIRED.L1D_LINE_MISS 02H CBH

MEM_LOAD_RETIRED.L2_MISS 04H CBH

MEM_LOAD_RETIRED.L2_LINE_MISS 08H CBH

MEM_LOAD_RETIRED.DTLB_MISS 10H CBH

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 15

Documentation Changes

Table 18-16. Requirements to Program PEBS

For Processors based on Intel Core
microarchitecture

For Processors based on Intel
NetBurst microarchitecture

Verify PEBS support of
processor/OS

• IA32_MISC_ENABLES.EMON_AVAILABE (bit 7) is set.
• IA32_MISC_ENABLES.PEBS_UNAVAILABE (bit 12) is clear.

Ensure counters are in
disabled

On initial set up or changing event
configurations, write
MSR_PERF_GLOBAL_CTRL MSR
(0x38F) with 0.

On subsequent entries:

• Clear all counters if “Counter
Freeze on PMI“ is not enabled.

• If IA32_DebugCTL.Freeze is
enabled, counters are
automatically disabled.

Counters MUST be stopped before
writing.a

a. Counters read while enabled are not guaranteed to be precise with event counts that occur in timing proximity
to the RDMSR.

Optional

Disable PEBS. Clear ENABLE PMC0 bit in
IA32_PEBS_ENABLE MSR (0x3F1).

Optional

Check overflow
conditions.

Check MSR_PERF_GLOBAL_STATUS
MSR (0x 38E) handle any overflow
conditions.

Check OVF flag of each CCCR for
overflow condition

Clear overflow status. Clear MSR_PERF_GLOBAL_STATUS
MSR (0x 38E) using
IA32_CR_PERF_GLOBAL_OVF_CTRL
MSR (0x390).

Clear OVF flag of each CCCR.

Write “sample-after“
values.

Configure the counter(s) with the sample after value.

Configure specific counter
configuration MSR.

• Set local enable bit 22 - 1.
• Do NOT set local counter PMI/INT

bit, bit 20 - 0.
• Event programmed must be PEBS

capable.

• Set appropriate OVF_PMI bits
- 1.

• Only CCCR for
MSR_IQ_COUNTER4 support
PEBS.

Allocate buffer for PEBS
states.

Allocate a buffer in memory for the precise information.

Program the
IA32_DS_AREA MSR.

Program the IA32_DS_AREA MSR.

Configure the PEBS buffer
management records.

Configure the PEBS buffer management records in the DS buffer
management area.

Configure/Enable PEBS. Set Enable PMC0 bit in
IA32_PEBS_ENABLE MSR (0x3F1).

Configure MSR_PEBS_ENABLE,
MSR_PEBS_MATRIX_VERT and
MSR_PEBS_MATRIX_HORZ as
needed.

Enable counters. Set Enable bits in
MSR_PERF_GLOBAL_CTRL MSR
(0x38F).

Set each CCCR enable bit 12 - 1.

16 Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes

Documentation Changes

Addition to Appendix B, Vol. 3B.

9. Missing exception added for MFENCE

In Section “MFENCE—Memory Fence” in Chapter 3 of the Intel® 64 and IA-32
Architectures Software Developer’s Manual, Volume 2A, an exception section has been
added. See below.

--

MFENCE—Memory Fence

... more material here

Exceptions (All Modes of Operation)

#UD If CPUID.01H:EDX.SSE2[bit 26] = 0.

... more material here

10. IA32_MCG_STATUS information added

In Section 7.8.5 of the IA-32 Intel® Architecture Software Developer’s Manual, Volume
3A, information has been updated to better reflect the implementation of
IA32_MCG_STATUS. This section is reproduced below noted by change bars.

--

7.8.5 Machine Check Architecture

In the HT Technology context, only the IA32_MCG_STATUS MSR is duplicated for each
logical processor. This design is compatible with machine check exception handlers
that follow guidelines given in Chapter 14. Note that the MCA specification permits
duplication of MSRs other than IA32_MCG_STATUS, but current implementations do
not take advantage of this. Software that follows the guidelines in Chapter 14 for
machine check exception handlers does not need to be aware of whether an
implementation duplicates the other machine check MSRs.

The IA32_MCG_STATUS MSR is duplicated for each logical processor so that its
machine check in progress bit field (MCIP) can be used to detect recursion on the part
of MCA handlers. In addition, the MSR allows each logical processor to determine that
a machine-check exception is in progress independent of the actions of another logical
processor in the same physical package.

Because the logical processors within a physical package are tightly coupled with
respect to shared hardware resources, both logical processors are notified of machine
check errors that occur within a given physical processor. If machine-check exceptions
are enabled when a fatal error is reported, all the logical processors within a physical

B-1. MSRs in Processors Based on Intel Core Microarchitecture (Contd.)

... table continues...

3F1H 1009 IA32_PEBS_
ENABLE

Unique See Section 18.14.4, “Precise Even Based
Sampling (PEBS).”

0 Enable PEBS on IA32_PMC0. (R/W)

....table continues...

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 17

Documentation Changes

package are dispatched to the machine-check exception handler. If machine-check
exceptions are disabled, the logical processors enter the shutdown state and assert
the IERR# signal.

When enabling machine-check exceptions, the MCE flag in control register CR4 should
be set for each logical processor.

11. Introduction section for CPUID updated

In Section “CPUID—CPU Identification” in Chapter 3 of the Intel® 64 and IA-32
Architectures Software Developer’s Manual, Volume 2A, a footnote has been added to
clarify behavior in 64-bit processors. The impacted area is reproduced below noted by
change bars.

--

CPUID—CPU Identification

Description

The ID flag (bit 21) in the EFLAGS register indicates support for the CPUID instruction.
If a software procedure can set and clear this flag, the processor executing the
procedure supports the CPUID instruction. This instruction operates the same in non-
64-bit modes and 64-bit mode.

CPUID returns processor identification and feature information in the EAX, EBX, ECX,
and EDX registers.1 The instruction’s output is dependent on the contents of the EAX
register upon execution (in some cases, ECX as well). For example, the following
pseudocode loads EAX with 00H and causes CPUID to return a Maximum Return Value
and the Vendor Identification String in the appropriate registers:

MOV EAX, 00H
CPUID

1. On Intel 64 processors, CPUID clears the high 32 bits of the RAX/RBX/RCX/RDX registers in all modes.

.. section continues ...

12. Update to CPUID documentation on deterministic cache parameters
leaf

In Table 3-12 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 2A, information has been added for CPUID.04H:EAX[Bit 10, Bit 11] values.
The impacted part of the table has been reproduced below noted by change bars.

--

Opcode Instruction 64-Bit
Mode

Compat/
Leg Mode

Description

0F A2 CPUID Valid Valid Returns processor identification
and feature information to the
EAX, EBX, ECX, and EDX
registers, as determined by
input entered in EAX (in some
cases, ECX as well).

18 Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes

Documentation Changes

13. Updated pseudocode in VMCALL description

In Section “VMCALL—Call to VM Monitor” in Chapter 5 of the Intel® 64 and IA-32
Architectures Software Developer’s Manual, Volume 2B, the pseudocode has been
corrected. See the reproduced segment below noted by change bars.

--

Operation

IF not in VMX operation

Table 3-12. Information Returned by CPUID Instruction (contd.)

... table continues

Deterministic Cache Parameters Leaf

04H NOTES:
04H output depends on the initial value in ECX.
See also: “INPUT EAX = 4: Returns Deterministic Cache Parameters for
each level on page 3-177.

Deterministic Cache Parameters Leaf

EAX Bits 4-0: Cache Type Field
0 = Null - No more caches 3 = Unified Cache
1 = Data Cache 4-31 = Reserved
2 = Instruction Cache

Bits 7-5: Cache Level (starts at 1)
Bits 8: Self Initializing cache level (does not need SW initialization)
Bits 9: Fully Associative cache

Bit 10: Write-Back Invalidate/Invalidate
0 = WBINVD/INVD from threads sharing this cache acts upon lower
level caches for threads sharing this cache
1 = WBINVD/INVD is not guaranteed to act upon lower level caches
of non-originating threads sharing this cache.

Bit 11: Cache Inclusiveness
0 = Cache is not inclusive of lower cache levels.
1 = Cache is inclusive of lower cache levels.

Bits 13-12: Reserved
Bits 25-14: Maximum number of threads sharing this cache in a physi-
cal package*
Bits 31-26: Maximum number of processor cores in the physical
package* **

EBX Bits 11-00: L = System Coherency Line Size*
Bits 21-12: P = Physical Line partitions*
Bits 31-22: W = Ways of associativity*

ECX
EDX

Bits 31-00: S = Number of Sets*
Reserved = 0

NOTES:
* Add one to the return value to get the result.
**The returned value is constant for valid initial values in ECX. Valid ECX

values start from 0.

... table continues

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 19

Documentation Changes

THEN #UD;
ELSIF in VMX non-root operation

THEN VM exit;
ELSIF (RFLAGS.VM = 1) OR (IA32_EFER.LMA = 1 and CS.L = 0)

THEN #UD;
ELSIF CPL > 0

THEN #GP(0);
ELSIF in SMM or the logical processor does not support the dual-monitor treatment of SMIs and SMM or
the valid bit in the IA32_SMM_MONITOR_CTL MSR is clear

THEN VMfail (VMCALL executed in VMX root operation);
ELSIF dual-monitor treatment of SMIs and SMM is active

THEN perform an SMM VM exit (see Section 24.16.2
 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3B);

ELSIF current-VMCS pointer is not valid
THEN VMfailInvalid;

ELSIF launch state of current VMCS is not clear
THEN VMfailValid(VMCALL with non-clear VMCS);

ELSIF VM-exit control fields are not valid (see Section 24.16.6.1 of the Intel® 64 and IA-32 Architec-
tures Software Developer’s Manual, Volume 3B)

THEN VMfailValid (VMCALL with invalid VM-exit control fields);
ELSE

enter SMM;
read revision identifier in MSEG;
IF revision identifier does not match that supported by processor

THEN
leave SMM;
VMfailValid(VMCALL with incorrect MSEG revision identifier);

ELSE
read SMM-monitor features field in MSEG (see Section 24.16.6.2,
in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3B);
IF features field is invalid

THEN
leave SMM;
VMfailValid(VMCALL with invalid SMM-monitor features);

ELSE activate dual-monitor treatment of SMIs and SMM (see Section 24.16.6
in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3B);

FI;
FI;

FI;

14. IA32_MCi_STATUS figure corrected

In Figure 14.5 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 3A, a field definition has been corrected. The figure is reproduced below. See
the model-specific error code field.

--

20 Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes

Documentation Changes

.

15. IA32_MCi_STATUS flag description updated

In Section 14.8.1 of the Intel® 64 and IA-32 Architectures Software Developer’s
Manual, Volume 3A, the information describing IA32_MCi_STATUS flags has been
corrected. This section is reproduced below noted by change bar.

14.8.6 Machine-Check Exception Handler
The machine-check exception (#MC) corresponds to vector 18. To service
machine-check exceptions, a trap gate must be added to the IDT. The pointer in
the trap gate must point to a machine-check exception handler. Two approaches
can be taken to designing the exception handler:

1. The handler can merely log all the machine status and error information, then call a
debugger or shut down the system.

2. The handler can analyze the reported error information and, in some cases, attempt
to correct the error and restart the processor.

For Pentium 4, Intel Xeon, P6 family, and Pentium processors; virtually all
machine-check conditions cannot be corrected (they result in abort-type excep-
tions). The logging of status and error information is therefore a baseline imple-
mentation requirement.

Figure 14-5. IA32_MCi_STATUS Register

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 21

Documentation Changes

When recovery from a machine-check error may be possible, consider the
following when writing a machine-check exception handler:

• To determine the nature of the error, the handler must read each of the error-
reporting register banks. The count field in the IA32_MCG_CAP register gives
number of register banks. The first register of register bank 0 is at address 400H.

• The VAL (valid) flag in each IA32_MCi_STATUS register indicates whether the error
information in the register is valid. If this flag is clear, the registers in that bank do
not contain valid error information and do not need to be checked.

• To write a portable exception handler, only the MCA error code field in the
IA32_MCi_STATUS register should be checked. See Section 14.7, “Interpreting the
MCA Error Codes,” for information that can be used to write an algorithm to interpret
this field.

• The RIPV, PCC, and OVER flags in each IA32_MCi_STATUS register indicate whether
recovery from the error is possible. If PCC or OVER are set, recovery is not possible.
If RIPV is not set, program execution can not be restarted reliably. When recovery is
not possible, the handler typically records the error information and signals an abort
to the operating system.

• Correctable errors are corrected automatically by the processor. The UC flag in each
IA32_MCi_STATUS register indicates whether the processor automatically corrected
an error.

• The RIPV flag in the IA32_MCG_STATUS register indicates whether the program can
be restarted at the instruction indicated by the instruction pointer (the address of the
instruction pushed on the stack when the exception was generated). If this flag is
clear, the processor may still be able to be restarted (for debugging purposes) but
not without loss of program continuity.

• For unrecoverable errors, the EIPV flag in the IA32_MCG_STATUS register indicates
whether the instruction indicated by the instruction pointer pushed on the stack
(when the exception was generated) is related to the error. If the flag is clear, the
pushed instruction may not be related to the error.

• The MCIP flag in the IA32_MCG_STATUS register indicates whether a machine-check
exception was generated. Before returning from the machine-check exception
handler, software should clear this flag so that it can be used reliably by an error
logging utility. The MCIP flag also detects recursion. The machine-check architecture
does not support recursion. When the processor detects machine-check recursion, it
enters the shutdown state.

16. Instruction summaries fixed for MOVD/MOVQ, PMOVMSKB, PINSRW,
PEXTRW

For sections on individual instructions in Chapters 3 and 4 of the Intel® 64 and IA-32
Architectures Software Developer’s Manual, Volume 2A & 2B, the positioning of REX
prefixes in instruction summary tables has been corrected. The applicable tables are
reproduced below noted by change bars.

--

22 Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes

Documentation Changes

MOVD/MOVQ—Move Doubleword/Move Quadword

Text omitted here......

PMOVMSKB—Move Byte Mask

Text omitted here......

Opcode Instruction 64-Bit
Mode

Compat/
Leg Mode

Description

0F 6E /r MOVD mm, r/
m32

Valid Valid Move doubleword from r/
m32 to mm.

REX.W + 0F 6E /r MOVQ mm, r/
m64

Valid N.E. Move quadword from r/
m64 to mm.

0F 7E /r MOVD r/m32,
mm

Valid Valid Move doubleword from
mm to r/m32.

REX.W + 0F 7E /r MOVQ r/m64,
mm

Valid N.E. Move quadword from mm
to r/m64.

66 0F 6E /r MOVD xmm, r/
m32

Valid Valid Move doubleword from r/
m32 to xmm.

REX.W 66 0F 6E /r MOVQ xmm, r/
m64

Valid N.E. Move quadword from r/
m64 to xmm.

66 0F 7E /r MOVD r/m32,
xmm

Valid Valid Move doubleword from
xmm register to r/m32.

REX.W 66 0F 7E /r MOVQ r/m64,
xmm

Valid N.E. Move quadword from
xmm register to r/m64.

Opcode Instruction 64-Bit
Mode

Compat/
Leg Mode

Description

0F D7 /r PMOVMSKB
r32, mm

Valid Valid Move a byte mask of mm
to r32.

REX.W + 0F D7 /r PMOVMSKB
r64, mm

Valid N.E. Move a byte mask of mm
to the lower 32-bits of r64
and zero-fill the upper
32-bits.

66 0F D7 /r PMOVMSKB
r32, xmm

Valid Valid Move a byte mask of xmm
to r32.

66 REX.W 0F D7 /r PMOVMSKB
r64, xmm

Valid N.E. Move a byte mask of xmm
to the lower 32-bits of r64
and zero-fill the upper
32-bits.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 23

Documentation Changes

PINSRW—Insert Word

Text omitted here......

PEXTRW—Extract Word

Text omitted here......

17. Correction to microcode update documentation

In Section 9.11.6 of the Intel® 64 and IA-32 Architectures Software Developer’s
Manual, Volume 3A, additions made pertaining to 64-bit support. The section is
reproduced below noted by change bars.

--

Opcode Instruction 64-Bit
Mode

Compat/
Leg Mode

Description

0F C4 /r ib PINSRW mm,
r32/m16, imm8

Valid Valid Insert the low word from
r32 or from m16 into mm
at the word position
specified by imm8

REX.W + 0F C4 /r ib PINSRW mm,
r64/m16, imm8

Valid N.E. Insert the low word from
r64 or from m16 into mm
at the word position
specified by imm8

66 0F C4 /r ib PINSRW xmm,
r32/m16, imm8

Valid Valid Move the low word of
r32 or from m16 into
xmm at the word position
specified by imm8.

66 REX.W 0F C4 /r ib PINSRW xmm,
r64/m16, imm8

Valid N.E. Move the low word of r64
or from m16 into xmm at
the word position
specified by imm8.

Opcode Instruction 64-Bit
Mode

Compat/
Leg Mode

Description

0F C5 /r ib PEXTRW r32,
mm, imm8

Valid Valid Extract the word specified by
imm8 from mm and move it to
r32, bits 15-0. Zero-extend
the result.

REX.W + 0F C5 /r ib PEXTRW r64,
mm, imm8

Valid N.E. Extract the word specified by
imm8 from mm and move it to
r64, bits 15-0. Zero-extend
the result.

66 0F C5 /r ib PEXTRW r32,
xmm, imm8

Valid Valid Extract the word specified by
imm8 from xmm and move it
to r32, bits 15-0. Zero-extend
the result.

66 REX.W 0F C5 /r ib PEXTRW r64,
xmm, imm8

Valid N.E. Extract the word specified by
imm8 from xmm and move it
to r64, bits 15-0. Zero-extend
the result.

24 Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes

Documentation Changes

9.11.6 Microcode Update Loader
This section describes an update loader used to load an update into a Pentium 4, Intel
Xeon, or P6 family processor. It also discusses the requirements placed on the BIOS to
ensure proper loading. The update loader described contains the minimal instructions
needed to load an update. The specific instruction sequence that is required to load an
update is dependent upon the loader revision field contained within the update header.
This revision is expected to change infrequently (potentially, only when new processor
models are introduced).

Example 9-8 below represents the update loader with a loader revision of 00000001H.
Note that the microcode update must be aligned on a 16-byte boundary and the size of
the microcode update must be 1-KByte granular.

Example 9-8. Assembly Code Example of Simple Microcode Update Loader

mov ecx,79h ; MSR to read in ECX

xor eax,eax ; clear EAX

xor ebx,ebx ; clear EBX

mov ax,cs ; Segment of microcode update

shl eax,4

mov bx,offset Update ; Offset of microcode update

add eax,ebx ; Linear Address of Update in EAX

add eax,48d ; Offset of the Update Data within the Update

xor edx,edx ; Zero in EDX

WRMSR ; microcode update trigger

The loader shown in Example 9-8 assumes that update is the address of a microcode
update (header and data) embedded within the code segment of the BIOS. It also
assumes that the processor is operating in real mode. The data may reside anywhere in
memory, aligned on a 16-byte boundary, that is accessible by the processor within its
current operating mode.

Before the BIOS executes the microcode update trigger (WRMSR) instruction, the
following must be true:

• In 64-bit mode, EAX contains the lower 32-bits of the microcode update linear
address. In protected mode, EAX contains the full 32-bit linear address of the
microcode update.

• In 64-bit mode, EDX contains the upper 32-bits of the microcode update linear
address. In protected mode, EDX equals zero.

• ECX contains 79H (address of IA32_BIOS_UPDT_TRIG).

Other requirements are:

• If the update is loaded while the processor is in real mode, then the update data may
not cross a segment boundary.

• If the update is loaded while the processor is in real mode, then the update data may
not exceed a segment limit.

• If paging is enabled, pages that are currently present must map the update data.

• The microcode update data requires a 16-byte boundary alignment.

Section continues, omitted material starts here......

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 25

Documentation Changes

18. PSHUFB compiler intrinsic fixed

In Section “PSHUFB — Packed Shuffle Bytes” in Chapter 4 of the Intel® 64 and IA-32
Architectures Software Developer’s Manual, Volume 2B, a compiler intrinsic has
been corrected. The new subsection is reproduced below.

--

Intel C/C++ Compiler Intrinsic Equivalent

PSHUFB __m64 _mm_shuffle_pi8 (__m64 a, __m64 b)

PSHUFB __m128i _mm_shuffle_epi8 (__m128i a, __m128i b)

19. RDMSR/RDPMC/RDTSC/WRMSR descriptions updated

In the subsections covering RDMSR, RDPMC, RDTSC and WRMSR in Chapter 4 of the
Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 2B,
descriptions have been updated to correct errors and enforce consistency. The new
language is provided below. See the change bars.

--

RDMSR—Read from Model Specific Register

Description

Loads the contents of a 64-bit model specific register (MSR) specified in the ECX
register into registers EDX:EAX. (On processors that support the Intel 64 architecture,
the high-order 32 bits of RCX are ignored.) The EDX register is loaded with the high-
order 32 bits of the MSR and the EAX register is loaded with the low-order 32 bits. (On
processors that support the Intel 64 architecture, the high-order 32 bits of each of
RAX and RDX are cleared.) If fewer than 64 bits are implemented in the MSR being
read, the values returned to EDX:EAX in unimplemented bit locations are undefined.

This instruction must be executed at privilege level 0 or in real-address mode;
otherwise, a general protection exception #GP(0) will be generated. Specifying a
reserved or unimplemented MSR address in ECX will also cause a general protection
exception.

The MSRs control functions for testability, execution tracing, performance-monitoring,
and machine check errors. Appendix B, “Model-Specific Registers (MSRs),” in the
Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3B, lists all
the MSRs that can be read with this instruction and their addresses. Note that each
processor family has its own set of MSRs.

The CPUID instruction should be used to determine whether MSRs are supported
(EDX[5]=1) before using this instruction.

Opcode* Instruction 64-Bit
Mode

Compat/
Leg Mode

Description

0F 32 RDMSR Valid Valid Load MSR specified by ECX into
EDX:EAX.

NOTES:
* See IA-32 Architecture Compatibility section below.

26 Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes

Documentation Changes

IA-32 Architecture Compatibility

The MSRs and the ability to read them with the RDMSR instruction were introduced
into the IA-32 Architecture with the Pentium processor. Execution of this instruction by
an IA-32 processor earlier than the Pentium processor results in an invalid opcode
exception #UD.

See “Changes to Instruction Behavior in VMX Non-Root Operation” in Chapter 21 of
the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3B, for
more information about the behavior of this instruction in VMX non-root operation.

Operation

EDX:EAX ← MSR[ECX];

Flags Affected

None.

Protected Mode Exceptions

#GP(0) If the current privilege level is not 0.

If the value in ECX specifies a reserved or unimplemented MSR
address.

#UD If the LOCK prefix is used.

Real-Address Mode Exceptions

#GP If the value in ECX specifies a reserved or unimplemented MSR
address.

#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions

#GP(0) The RDMSR instruction is not recognized in virtual-8086 mode.

Compatibility Mode Exceptions

Same exceptions as in protected mode.

64-Bit Mode Exceptions

#GP(0) If the current privilege level is not 0.

If the value in ECX or RCX specifies a reserved or
unimplemented MSR address.

#UD If the LOCK prefix is used.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 27

Documentation Changes

RDPMC—Read Performance-Monitoring Counters

Description

Loads the 40-bit performance-monitoring counter specified in the ECX register into
registers EDX:EAX. (On processors that support the Intel 64 architecture, the high-
order 32 bits of RCX are ignored.) The EDX register is loaded with the high-order 8
bits of the counter and the EAX register is loaded with the low-order 32 bits. (On
processors that support the Intel 64 architecture, the high-order 32 bits of each of
RAX and RDX are cleared.) See below for the treatment of the EDX register for “fast”
reads.

The indices used to specify performance counters are model-specific and may vary by
processor implementations. See Table 4-2 for valid indices for each processor family.

The Pentium 4 and Intel Xeon processors also support “fast” (32-bit) and “slow”
(40-bit) reads on the first 18 performance counters. Selected this option using
ECX[bit 31]. If bit 31 is set, RDPMC reads only the low 32 bits of the selected

Opcode Instruction 64-Bit
Mode

Compat/
Leg Mode

Description

0F 33 RDPMC Valid Valid Read performance-monitoring
counter specified by ECX into
EDX:EAX.

Table 4-2. Valid Performance Counter Index Range for RDPMC

Processor Family CPUID Family/Model/
Other Signatures

Valid PMC
Index Range

40-bit Counters

P6 Family 06H 0, 1 0, 1

Pentium® 4, Intel® Xeon
processors

Family 0FH; Model 00H,
01H, 02H

≥ 0 and ≤ 17 ≥ 0 and ≤ 17

Pentium 4, Intel Xeon
processors

(Family 0FH; Model 03H,
04H, 06H) and (L3 is
absent)

≥ 0 and ≤ 17 ≥ 0 and ≤ 17

Pentium M processors Family 06H, Model 09H,
0DH

0, 1 0, 1

64-bit Intel Xeon processors
with L3

(Family 0FH; Model 03H,
04H) and (L3 is present)

≥ 0 and ≤ 25 ≥ 0 and ≤ 17

Intel® Core™ Solo and Intel Core
Duo processors, Dual-core Intel
Xeon processor LV

Family 06H, Model 0EH 0, 1 0, 1

Intel® Core™2 Duo processor,
Intel Xeon processor 3000,
5100, 5300 Series - general-
purpose PMC

Family 06H, Model 0FH 0, 1 0, 1

Intel Xeon processors 7100
series with L3

(Family 0FH; Model 06H)
and (L3 is present)

≥ 0 and ≤ 25 ≥ 0 and ≤ 17

28 Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes

Documentation Changes

performance counter. If bit 31 is clear, all 40 bits are read. A 32-bit result is returned
in EAX and EDX is set to 0. A 32-bit read executes faster on Pentium 4 processors and
Intel Xeon processors than a full 40-bit read.

On 64-bit Intel Xeon processors with L3, performance counters with indices 18-25 are
32-bit counters. EDX is cleared after executing RDPMC for these counters. On Intel
Xeon processor 7100 series with L3, performance counters with indices 18-25 are also
32-bit counters.

In Intel Core 2 processor family, Intel Xeon processor 3000, 5100, and 5300 series,
the fixed-function performance counters are 48-bit wide and can be accessed by
RDMPC with ECX between from 8000_0000H and 8000_0002H.

When in protected or virtual 8086 mode, the performance-monitoring counters
enabled (PCE) flag in register CR4 restricts the use of the RDPMC instruction as
follows. When the PCE flag is set, the RDPMC instruction can be executed at any
privilege level; when the flag is clear, the instruction can only be executed at privilege
level 0. (When in real-address mode, the RDPMC instruction is always enabled.)

The performance-monitoring counters can also be read with the RDMSR instruction,
when executing at privilege level 0.

The performance-monitoring counters are event counters that can be programmed to
count events such as the number of instructions decoded, number of interrupts
received, or number of cache loads. Appendix A, “Performance Monitoring Events,” in
the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3B, lists
the events that can be counted for various processors in the Intel 64 and IA-32
architecture families.

The RDPMC instruction is not a serializing instruction; that is, it does not imply that all
the events caused by the preceding instructions have been completed or that events
caused by subsequent instructions have not begun. If an exact event count is desired,
software must insert a serializing instruction (such as the CPUID instruction) before
and/or after the RDPCM instruction.

In the Pentium 4 and Intel Xeon processors, performing back-to-back fast reads are
not guaranteed to be monotonic. To guarantee monotonicity on back-to-back reads, a
serializing instruction must be placed between the two RDPMC instructions.

The RDPMC instruction can execute in 16-bit addressing mode or virtual-8086 mode;
however, the full contents of the ECX register are used to select the counter, and the
event count is stored in the full EAX and EDX registers. The RDPMC instruction was
introduced into the IA-32 Architecture in the Pentium Pro processor and the Pentium
processor with MMX technology. The earlier Pentium processors have performance-
monitoring counters, but they must be read with the RDMSR instruction.

Operation

(* Intel Core 2 Duo processor family and Intel Xeon processor 3000, 5100, 5300 series*)

IF (ECX = 0 or 1) and ((CR4.PCE = 1) or (CPL = 0) or (CR0.PE = 0))
THEN IF (ECX[31] = 1)

EAX ← IA32_FIXED_CTR(ECX)[30:0];
EDX ← IA32_FIXED_CTR(ECX)[39:32];

ELSE IF (ECX[30:0] in valid range)
EAX ← PMC(ECX[30:0])[31:0];

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 29

Documentation Changes

EDX ← PMC(ECX[30:0])[39:32];
ELSE IF (ECX[31] and ECX[30:0] in valid fixed-counter range)

EAX ← FIXED_PMC(ECX[30:0])[31:0];
EDX ← FIXED_PMC(ECX[30:0])[47:32];

ELSE (* ECX is not valid or CR4.PCE is 0 and CPL is 1, 2, or 3 and CR0.PE is 1 *)
#GP(0);

FI;

(* P6 family processors and Pentium processor with MMX technology *)

IF (ECX = 0 or 1) and ((CR4.PCE = 1) or (CPL = 0) or (CR0.PE = 0))
THEN

EAX ← PMC(ECX)[31:0];
EDX ← PMC(ECX)[39:32];

ELSE (* ECX is not 0 or 1 or CR4.PCE is 0 and CPL is 1, 2, or 3 and CR0.PE is 1 *)
#GP(0);

FI;
(* Processors with CPUID family 15 *)
IF ((CR4.PCE = 1) or (CPL = 0) or (CR0.PE = 0))

THEN IF (ECX[30:0] = 0:17)
THEN IF ECX[31] = 0

THEN
EAX ← PMC(ECX[30:0])[31:0]; (* 40-bit read *)
EDX ← PMC(ECX[30:0])[39:32];

ELSE (* ECX[31] = 1*)
THEN

EAX ← PMC(ECX[30:0])[31:0]; (* 32-bit read *)
EDX ← 0;

FI;
ELSE IF (*64-bit Intel Xeon processor with L3 *)

THEN IF (ECX[30:0] = 18:25)
EAX ← PMC(ECX[30:0])[31:0]; (* 32-bit read *)
EDX ← 0;

FI;
ELSE IF (*Intel Xeon processor 7100 series with L3 *)

THEN IF (ECX[30:0] = 18:25)
EAX ← PMC(ECX[30:0])[31:0]; (* 32-bit read *)
EDX ← 0;

FI;
ELSE (* Invalid PMC index in ECX[30:0], see Table 4-4. *)

GP(0);
FI;

ELSE (* CR4.PCE = 0 and (CPL = 1, 2, or 3) and CR0.PE = 1 *)
#GP(0);

FI;

Flags Affected

None.

30 Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes

Documentation Changes

Protected Mode Exceptions

#GP(0) If the current privilege level is not 0 and the PCE flag in the CR4
register is clear.

If an invalid performance counter index is specified (see
Table 4-2).

(Pentium 4 and Intel Xeon processors) If the value in ECX[30:0]
is not within the valid range.

#UD If the LOCK prefix is used.

Real-Address Mode Exceptions

#GP If an invalid performance counter index is specified (see
Table 4-2).

(Pentium 4 and Intel Xeon processors) If the value in ECX[30:0]
is not within the valid range.

#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions

#GP(0) If the PCE flag in the CR4 register is clear.

If an invalid performance counter index is specified (see
Table 4-2).

(Pentium 4 and Intel Xeon processors) If the value in ECX[30:0]
is not within the valid range.

#UD If the LOCK prefix is used.

Compatibility Mode Exceptions

Same exceptions as in protected mode.

64-Bit Mode Exceptions

#GP(0) If the current privilege level is not 0 and the PCE flag in the CR4
register is clear.

If an invalid performance counter index is specified in ECX[30:0]
(see Table 4-2).

#UD If the LOCK prefix is used.

RDTSC—Read Time-Stamp Counter

Description

Loads the current value of the processor’s time-stamp counter (a 64-bit MSR) into the
EDX:EAX registers. The EDX register is loaded with the high-order 32 bits of the MSR
and the EAX register is loaded with the low-order 32 bits. (On processors that support
the Intel 64 architecture, the high-order 32 bits of each of RAX and RDX are cleared.)

Opcode Instruction 64-Bit
Mode

Compat/
Leg Mode

Description

0F 31 RDTSC Valid Valid Read time-stamp counter into
EDX:EAX.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 31

Documentation Changes

The processor monotonically increments the time-stamp counter MSR every clock
cycle and resets it to 0 whenever the processor is reset. See “Time Stamp Counter” in
Chapter 18 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 3B, for specific details of the time stamp counter behavior.

When in protected or virtual 8086 mode, the time stamp disable (TSD) flag in register
CR4 restricts the use of the RDTSC instruction as follows. When the TSD flag is clear,
the RDTSC instruction can be executed at any privilege level; when the flag is set, the
instruction can only be executed at privilege level 0. (When in real-address mode, the
RDTSC instruction is always enabled.)

The time-stamp counter can also be read with the RDMSR instruction, when executing
at privilege level 0.

The RDTSC instruction is not a serializing instruction. Thus, it does not necessarily wait
until all previous instructions have been executed before reading the counter.
Similarly, subsequent instructions may begin execution before the read operation is
performed.

This instruction was introduced by the Pentium processor.

See “Changes to Instruction Behavior in VMX Non-Root Operation” in Chapter 21 of
the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3B, for
more information about the behavior of this instruction in VMX non-root operation.

Operation

IF (CR4.TSD = 0) or (CPL = 0) or (CR0.PE = 0)
THEN EDX:EAX ← TimeStampCounter;
ELSE (* CR4.TSD = 1 and (CPL = 1, 2, or 3) and CR0.PE = 1 *)

#GP(0);
FI;

Flags Affected

None.

Protected Mode Exceptions

#GP(0) If the TSD flag in register CR4 is set and the CPL is greater than
0.

#UD If the LOCK prefix is used.

Real-Address Mode Exceptions

#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions

#GP(0) If the TSD flag in register CR4 is set.

#UD If the LOCK prefix is used.

Compatibility Mode Exceptions

Same exceptions as in protected mode.

32 Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes

Documentation Changes

64-Bit Mode Exceptions

Same exceptions as in protected mode.

WRMSR—Write to Model Specific Register

Description

Writes the contents of registers EDX:EAX into the 64-bit model specific register (MSR)
specified in the ECX register. (On processors that support the Intel 64 architecture, the
high-order 32 bits of RCX are ignored.) The contents of the EDX register are copied to
high-order 32 bits of the selected MSR and the contents of the EAX register are copied
to low-order 32 bits of the MSR. (On processors that support the Intel 64 architecture,
the high-order 32 bits of each of RAX and RDX are ignored.) Undefined or reserved
bits in an MSR should be set to values previously read.

This instruction must be executed at privilege level 0 or in real-address mode;
otherwise, a general protection exception #GP(0) is generated. Specifying a reserved
or unimplemented MSR address in ECX will also cause a general protection exception.
The processor will also generate a general protection exception if software attempts to
write to bits in a reserved MSR.

When the WRMSR instruction is used to write to an MTRR, the TLBs are invalidated.
This includes global entries (see “Translation Lookaside Buffers (TLBs)” in Chapter 3 of
the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A).

MSRs control functions for testability, execution tracing, performance-monitoring and
machine check errors. Appendix B, “Model-Specific Registers (MSRs)”, in the Intel® 64
and IA-32 Architectures Software Developer’s Manual, Volume 3B, lists all MSRs that
can be read with this instruction and their addresses. Note that each processor family
has its own set of MSRs.

The WRMSR instruction is a serializing instruction (see “Serializing Instructions” in
Chapter 7 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 3A).

The CPUID instruction should be used to determine whether MSRs are supported
(EDX[5]=1) before using this instruction.

IA-32 Architecture Compatibility

The MSRs and the ability to read them with the WRMSR instruction were introduced
into the IA-32 architecture with the Pentium processor. Execution of this instruction by
an IA-32 processor earlier than the Pentium processor results in an invalid opcode
exception #UD.

Opcode Instruction 64-Bit
Mode

Compat/
Leg Mode

Description

0F 30 WRMSR Valid Valid Write the value in EDX:EAX to MSR
specified by ECX.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 33

Documentation Changes

Operation

MSR[ECX] ← EDX:EAX;

Flags Affected

None.

Protected Mode Exceptions

#GP(0) If the current privilege level is not 0.

If the value in ECX specifies a reserved or unimplemented MSR
address.

If the value in EDX:EAX sets bits that are reserved in the MSR
specified by ECX.

#UD If the LOCK prefix is used.

Real-Address Mode Exceptions

#GP(0) If the value in ECX specifies a reserved or unimplemented MSR
address.

If the value in EDX:EAX sets bits that are reserved in the MSR
specified by ECX.

#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions

#GP(0) The WRMSR instruction is not recognized in virtual-8086 mode.

Compatibility Mode Exceptions

Same exceptions as in protected mode.

64-Bit Mode Exceptions

Same exceptions as in protected mode.

20. Location data corrected

In Table B-1 in Appendix B of the Intel® 64 and IA-32 Architectures Software
Developer’s Manual, Volume 3B, the status of MSR location1E0H has been changed. It
is now reserved. See IA32_MISC_ENABLE for the fast string enable bit in the Intel
Core Microarchitecture.

21. LOOP/LOOPcc description updated

In the subsection LOOP/LOOPcc in Chapter 3 of the Intel® 64 and IA-32 Architectures
Software Developer’s Manual, Volume 2A, the description has been updated to an
correct errors. The old version incorrectly represented LOOP as REX.W dependent.

--

34 Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes

Documentation Changes

LOOP/LOOPcc—Loop According to ECX Counter

Description

Performs a loop operation using the RCX, ECX or CX register as a counter (depending
on whether address size is 64 bits, 32 bits, or 16 bits). Note that the LOOP instruction
ignores REX.W; but 64-bit address size can be over-ridden using a 67H prefix.

Each time the LOOP instruction is executed, the count register is decremented, then
checked for 0. If the count is 0, the loop is terminated and program execution
continues with the instruction following the LOOP instruction. If the count is not zero,
a near jump is performed to the destination (target) operand, which is presumably the
instruction at the beginning of the loop.

The target instruction is specified with a relative offset (a signed offset relative to the
current value of the instruction pointer in the IP/EIP/RIP register). This offset is
generally specified as a label in assembly code, but at the machine code level, it is
encoded as a signed, 8-bit immediate value, which is added to the instruction pointer.
Offsets of –128 to +127 are allowed with this instruction.

Some forms of the loop instruction (LOOPcc) also accept the ZF flag as a condition for
terminating the loop before the count reaches zero. With these forms of the
instruction, a condition code (cc) is associated with each instruction to indicate the
condition being tested for. Here, the LOOPcc instruction itself does not affect the state
of the ZF flag; the ZF flag is changed by other instructions in the loop.

Operation

IF (AddressSize = 32)
THEN Count is ECX;

ELSE IF (AddressSize = 64)
Count is RCX;

ELSE Count is CX;
FI;

Count ← Count – 1;

IF Instruction is not LOOP
THEN

IF (Instruction ← LOOPE) or (Instruction ← LOOPZ)
THEN IF (ZF = 1) and (Count ≠ 0)

THEN BranchCond ← 1;
ELSE BranchCond ← 0;

FI;
ELSE (Instruction = LOOPNE) or (Instruction = LOOPNZ)

Opcode Instruction 64-Bit
Mode

Compat/
Leg Mode

Description

E2 cb LOOP rel8 Valid Valid Decrement count; jump short if count ≠ 0.

E1 cb LOOPE rel8 Valid Valid Decrement count; jump short if count ≠ 0
and ZF = 1.

E0 cb LOOPNE rel8 Valid Valid Decrement count; jump short if count ≠ 0
and ZF = 0.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 35

Documentation Changes

IF (ZF = 0) and (Count ≠ 0)
THEN BranchCond ← 1;
ELSE BranchCond ← 0;

FI;
FI;

ELSE (* Instruction = LOOP *)
IF (Count ≠ 0)

THEN BranchCond ← 1;
ELSE BranchCond ← 0;

FI;
FI;

IF BranchCond = 1
THEN

IF OperandSize = 32
THEN EIP ← EIP + SignExtend(DEST);
ELSE IF OperandSize = 64

THEN RIP ← RIP + SignExtend(DEST);
FI;

ELSE IF OperandSize = 16
THEN EIP ← EIP AND 0000FFFFH;
FI;

ELSE IF OperandSize = (32 or 64)
THEN IF (R/E)IP < CS.Base or (R/E)IP > CS.Limit

#GP; FI;
FI;

FI;
ELSE

Terminate loop and continue program execution at (R/E)IP;
FI;

Flags Affected

None.

Protected Mode Exceptions

#GP(0) If the offset being jumped to is beyond the limits of the CS
segment.

#UD If the LOCK prefix is used.

Real-Address Mode Exceptions

#GP If the offset being jumped to is beyond the limits of the CS
segment or is outside of the effective address space from 0 to
FFFFH. This condition can occur if a 32-bit address size override
prefix is used.

#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions

Same exceptions as in real address mode.

36 Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes

Documentation Changes

Compatibility Mode Exceptions

Same exceptions as in protected mode.

64-Bit Mode Exceptions

#GP(0) If the offset being jumped to is in a non-canonical form.

#UD If the LOCK prefix is used.

22. MOV CR and MOV DR sections updated

In the subsections covering MOV CR and MOV DR in Chapter 3 of the Intel® 64 and
IA-32 Architectures Software Developer’s Manual, Volume 2A, descriptions have been
updated to correct errors and enforce consistency. Both opcode tables have been
updated, information on the use of REX prefixes has been updated, and changes have
been made to the exception listings.

--

MOV—Move to/from Control Registers

Description

Moves the contents of a control register (CR0, CR2, CR3, CR4, or CR8) to a general-
purpose register or the contents of a general purpose register to a control register. The
operand size for these instructions is always 32 bits in non-64-bit modes, regardless of

Opcode Instruction 64-Bit
Mode

Compat/
Leg Mode

Description

0F 20 /0 MOV r32,CR0 N.E. Valid Move CR0 to r32.
0F 20 /0 MOV r64,CR0 Valid N.E. Move extended CR0 to r64.
0F 20 /2 MOV r32,CR2 N.E. Valid Move CR2 to r32.
0F 20 /2 MOV r64,CR2 Valid N.E. Move extended CR2 to r64.
0F 20 /3 MOV r32,CR3 N.E. Valid Move CR3 to r32.
0F 20 /3 MOV r64,CR3 Valid N.E. Move extended CR3 to r64.
0F 20 /4 MOV r32,CR4 N.E. Valid Move CR4 to r32.
0F 20 /4 MOV r64,CR4 Valid N.E. Move extended CR4 to r64.
REX.R + 0F 20 /0 MOV r64,CR8 Valid N.E. Move extended CR8 to r64.1

0F 22 /0 MOV CR0,r32 N.E. Valid Move r32 to CR0.
0F 22 /0 MOV CR0,r64 Valid N.E. Move r64 to extended CR0.
0F 22 /2 MOV CR2,r32 N.E. Valid Move r32 to CR2.
0F 22 /2 MOV CR2,r64 Valid N.E. Move r64 to extended CR2.
0F 22 /3 MOV CR3,r32 N.E. Valid Move r32 to CR3.
0F 22 /3 MOV CR3,r64 Valid N.E. Move r64 to extended CR3.
0F 22 /4 MOV CR4,r32 N.E. Valid Move r32 to CR4.
0F 22 /4 MOV CR4,r64 Valid N.E. Move r64 to extended CR4.
REX.R + 0F 22 /0 MOV CR8,r64 Valid N.E. Move r64 to extended CR8.
NOTE:
1. MOV CR* instructions, except for MOV CR8, are serializing instructions. MOV CR8 is not

architecturally defined as a serializing instruction. For more information, see Chapter 7 in Intel® 64
and IA-32 Architectures Software Developer’s Manual, Volume 3A.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 37

Documentation Changes

the operand-size attribute. (See “Control Registers” in Chapter 2 of the Intel® 64 and
IA-32 Architectures Software Developer’s Manual, Volume 3A, for a detailed
description of the flags and fields in the control registers.) This instruction can be
executed only when the current privilege level is 0.

When loading control registers, programs should not attempt to change the reserved
bits; that is, always set reserved bits to the value previously read. An attempt to
change CR4's reserved bits will cause a general protection fault. Reserved bits in CR0
and CR3 remain clear after any load of those registers; attempts to set them have no
impact. On Pentium 4, Intel Xeon and P6 family processors, CR0.ET remains set after
any load of CR0; attempts to clear this bit have no impact.

At the opcode level, the reg field within the ModR/M byte specifies which of the control
registers is loaded or read. The 2 bits in the mod field are always 11B. The r/m field
specifies the general-purpose register loaded or read.

These instructions have the following side effect:

• When writing to control register CR3, all non-global TLB entries are flushed (see
“Translation Lookaside Buffers (TLBs)” in Chapter 3 of the Intel® 64 and IA-32
Architectures Software Developer’s Manual, Volume 3A).

The following side effects are implementation specific for the Pentium 4, Intel Xeon,
and P6 processor family. Software should not depend on this functionality in all Intel
64 or IA-32 processors:

• When modifying any of the paging flags in the control registers (PE and PG in
register CR0 and PGE, PSE, and PAE in register CR4), all TLB entries are flushed,
including global entries.

• If the PG flag is set to 1 and control register CR4 is written to set the PAE flag to 1
(to enable the physical address extension mode), the pointers in the page-directory
pointers table (PDPT) are loaded into the processor (into internal, non-architectural
registers).

• If the PAE flag is set to 1 and the PG flag set to 1, writing to control register CR3
will cause the PDPTRs to be reloaded into the processor. If the PAE flag is set to 1
and control register CR0 is written to set the PG flag, the PDPTRs are reloaded into
the processor.

In 64-bit mode, the instruction’s default operation size is 64 bits. The REX.R prefix
must be used to access CR8. Use of REX.B permits access to additional registers (R8-
R15). Use of the REX.W prefix or 66H prefix is ignored. See the summary chart at the
beginning of this section for encoding data and limits.

See “Changes to Instruction Behavior in VMX Non-Root Operation” in Chapter 21 of
the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3B, for
more information about the behavior of this instruction in VMX non-root operation.

Operation

DEST ← SRC;

Flags Affected

The OF, SF, ZF, AF, PF, and CF flags are undefined.

38 Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes

Documentation Changes

Protected Mode Exceptions

#GP(0) If the current privilege level is not 0.

If an attempt is made to write invalid bit combinations in CR0
(such as setting the PG flag to 1 when the PE flag is set to 0, or
setting the CD flag to 0 when the NW flag is set to 1).

If an attempt is made to write a 1 to any reserved bit in CR4.

If any of the reserved bits are set in the page-directory pointers
table (PDPT) and the loading of a control register causes the
PDPT to be loaded into the processor.

#UD If the LOCK prefix is used.

Real-Address Mode Exceptions

#GP If an attempt is made to write a 1 to any reserved bit in CR4.

If an attempt is made to write invalid bit combinations in CR0
(such as setting the PG flag to 1 when the PE flag is set to 0).

#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions

#GP(0) These instructions cannot be executed in virtual-8086 mode.

Compatibility Mode Exceptions

#GP(0) If the current privilege level is not 0.

If an attempt is made to write invalid bit combinations in CR0
(such as setting the PG flag to 1 when the PE flag is set to 0, or
setting the CD flag to 0 when the NW flag is set to 1).

If an attempt is made to write a 1 to any reserved bit in CR3.

If an attempt is made to leave IA-32e mode by clearing
CR4.PAE[bit 5].

#UD If the LOCK prefix is used.

64-Bit Mode Exceptions

#GP(0) If the current privilege level is not 0.

If an attempt is made to write invalid bit combinations in CR0
(such as setting the PG flag to 1 when the PE flag is set to 0, or
setting the CD flag to 0 when the NW flag is set to 1).

Attempting to clear CR0.PG[bit 32].

If an attempt is made to write a 1 to any reserved bit in CR4.

If an attempt is made to write a 1 to any reserved bit in CR8.

If an attempt is made to write a 1 to any reserved bit in CR3.

If an attempt is made to leave IA-32e mode by clearing
CR4.PAE[bit 5].

#UD If the LOCK prefix is used.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 39

Documentation Changes

MOV—Move to/from Debug Registers

Description

Moves the contents of a debug register (DR0, DR1, DR2, DR3, DR4, DR5, DR6, or
DR7) to a general-purpose register or vice versa. The operand size for these
instructions is always 32 bits in non-64-bit modes, regardless of the operand-size
attribute. (See Chapter 18, “Debugging and Performance Monitoring”, of the Intel® 64
and IA-32 Architectures Software Developer’s Manual, Volume 3A, for a detailed
description of the flags and fields in the debug registers.)

The instructions must be executed at privilege level 0 or in real-address mode.

When the debug extension (DE) flag in register CR4 is clear, these instructions operate
on debug registers in a manner that is compatible with Intel386 and Intel486
processors. In this mode, references to DR4 and DR5 refer to DR6 and DR7,
respectively. When the DE flag in CR4 is set, attempts to reference DR4 and DR5
result in an undefined opcode (#UD) exception. (The CR4 register was added to the
IA-32 Architecture beginning with the Pentium processor.)

At the opcode level, the reg field within the ModR/M byte specifies which of the debug
registers is loaded or read. The two bits in the mod field are always 11. The r/m field
specifies the general-purpose register loaded or read.

In 64-bit mode, the instruction’s default operation size is 64 bits. Use of the REX.B
prefix permits access to additional registers (R8-R15). Use of the REX.W or 66H prefix
is ignored. See the summary chart at the beginning of this section for encoding data
and limits.

Operation

IF ((DE = 1) and (SRC or DEST = DR4 or DR5))
THEN

#UD;
ELSE

DEST ← SRC;

FI;

Flags Affected

The OF, SF, ZF, AF, PF, and CF flags are undefined.

Opcode Instruction 64-Bit
Mode

Compat/
Leg Mode

Description

0F 21/r MOV r32, DR0-DR7 N.E. Valid Move debug register to r32

0F 21/r MOV r64, DR0-DR7 Valid N.E. Move extended debug register
to r64.

0F 23 /r MOV DR0-DR7, r32 N.E. Valid Move r32 to debug register

0F 23 /r MOV DR0-DR7, r64 Valid N.E. Move r64 to extended debug
register.

40 Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes

Documentation Changes

Protected Mode Exceptions

#GP(0) If the current privilege level is not 0.

#UD If CR4.DE[bit 3] = 1 (debug extensions) and a MOV instruction
is executed involving DR4 or DR5.

If the LOCK prefix is used.

#DB If any debug register is accessed while the DR7.GD[bit 13] = 1.

Real-Address Mode Exceptions

#UD If CR4.DE[bit 3] = 1 (debug extensions) and a MOV instruction
is executed involving DR4 or DR5.

If the LOCK prefix is used.

#DB If any debug register is accessed while the DR7.GD[bit 13] = 1.

Virtual-8086 Mode Exceptions

#GP(0) The debug registers cannot be loaded or read when in virtual-
8086 mode.

Compatibility Mode Exceptions

Same exceptions as in protected mode.

64-Bit Mode Exceptions

#GP(0) If the current privilege level is not 0.

#UD If CR4.DE[bit 3] = 1 (debug extensions) and a MOV instruction
is executed involving DR4 or DR5.

If the LOCK prefix is used.

#DB If any debug register is accessed while the DR7.GD[bit 13] = 1.

23. IRET/IRETD information updated

In the subsection covering IRET/IRETD in Chapter 3 of the Intel® 64 and IA-32
Architectures Software Developer’s Manual, Volume 2A, the description has been
updated to correct the treatment of VM. The updated text is below.

--

IRET/IRETD—Interrupt Return

Opcode Instruction 64-Bit
Mode

Compat/
Leg Mode

Description

CF IRET Valid Valid Interrupt return (16-bit operand
size).

CF IRETD Valid Valid Interrupt return (32-bit operand
size).

REX.W + CF IRETQ Valid N.E. Interrupt return (64-bit operand
size).

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 41

Documentation Changes

Description

Returns program control from an exception or interrupt handler to a program or
procedure that was interrupted by an exception, an external interrupt, or a software-
generated interrupt. These instructions are also used to perform a return from a
nested task. (A nested task is created when a CALL instruction is used to initiate a task
switch or when an interrupt or exception causes a task switch to an interrupt or
exception handler.) See the section titled “Task Linking” in Chapter 6 of the Intel® 64
and IA-32 Architectures Software Developer’s Manual, Volume 3A.

IRET and IRETD are mnemonics for the same opcode. The IRETD mnemonic (interrupt
return double) is intended for use when returning from an interrupt when using the
32-bit operand size; however, most assemblers use the IRET mnemonic
interchangeably for both operand sizes.

In Real-Address Mode, the IRET instruction preforms a far return to the interrupted
program or procedure. During this operation, the processor pops the return instruction
pointer, return code segment selector, and EFLAGS image from the stack to the EIP,
CS, and EFLAGS registers, respectively, and then resumes execution of the interrupted
program or procedure.

In Protected Mode, the action of the IRET instruction depends on the settings of the
NT (nested task) and VM flags in the EFLAGS register and the VM flag in the EFLAGS
image stored on the current stack. Depending on the setting of these flags, the
processor performs the following types of interrupt returns:

• Return from virtual-8086 mode.

• Return to virtual-8086 mode.

• Intra-privilege level return.

• Inter-privilege level return.

• Return from nested task (task switch).

If the NT flag (EFLAGS register) is cleared, the IRET instruction performs a far return
from the interrupt procedure, without a task switch. The code segment being returned
to must be equally or less privileged than the interrupt handler routine (as indicated
by the RPL field of the code segment selector popped from the stack).

As with a real-address mode interrupt return, the IRET instruction pops the return
instruction pointer, return code segment selector, and EFLAGS image from the stack to
the EIP, CS, and EFLAGS registers, respectively, and then resumes execution of the
interrupted program or procedure. If the return is to another privilege level, the IRET
instruction also pops the stack pointer and SS from the stack, before resuming
program execution. If the return is to virtual-8086 mode, the processor also pops the
data segment registers from the stack.

If the NT flag is set, the IRET instruction performs a task switch (return) from a nested
task (a task called with a CALL instruction, an interrupt, or an exception) back to the
calling or interrupted task. The updated state of the task executing the IRET
instruction is saved in its TSS. If the task is re-entered later, the code that follows the
IRET instruction is executed.

If the NT flag is set and the processor is in IA-32e mode, the IRET instruction causes a
general protection exception.

42 Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes

Documentation Changes

In 64-bit mode, the instruction’s default operation size is 32 bits. Use of the REX.W
prefix promotes operation to 64 bits (IRETQ). See the summary chart at the beginning
of this section for encoding data and limits.

See “Changes to Instruction Behavior in VMX Non-Root Operation” in Chapter 21 of
the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3B, for
more information about the behavior of this instruction in VMX non-root operation.

Operation

IF PE = 0
THEN

GOTO REAL-ADDRESS-MODE;
ELSE

IF (IA32_EFER.LMA = 0)
THEN (* Protected mode *)

GOTO PROTECTED-MODE;
ELSE (* IA-32e mode *)

GOTO IA-32e-MODE;
FI;

FI;

REAL-ADDRESS-MODE;
IF OperandSize = 32

THEN
IF top 12 bytes of stack not within stack limits

THEN #SS; FI;
tempEIP ← 4 bytes at end of stack
IF tempEIP[31:16] is not zero THEN #GP(0); FI;
EIP ← Pop();
CS ← Pop(); (* 32-bit pop, high-order 16 bits discarded *)
tempEFLAGS ← Pop();
EFLAGS ← (tempEFLAGS AND 257FD5H) OR (EFLAGS AND 1A0000H);

ELSE (* OperandSize = 16 *)
IF top 6 bytes of stack are not within stack limits

THEN #SS; FI;
EIP ← Pop(); (* 16-bit pop; clear upper 16 bits *)
CS ← Pop(); (* 16-bit pop *)
EFLAGS[15:0] ← Pop();

FI;
END;

PROTECTED-MODE:
IF VM = 1 (* Virtual-8086 mode: PE = 1, VM = 1 *)

THEN
GOTO RETURN-FROM-VIRTUAL-8086-MODE; (* PE = 1, VM = 1 *)

FI;
IF NT = 1

THEN
GOTO TASK-RETURN; (* PE = 1, VM = 0, NT = 1 *)

FI;
IF OperandSize = 32

THEN

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 43

Documentation Changes

IF top 12 bytes of stack not within stack limits
THEN #SS(0); FI;

tempEIP ← Pop();
tempCS ← Pop();
tempEFLAGS ← Pop();

ELSE (* OperandSize = 16 *)
IF top 6 bytes of stack are not within stack limits

THEN #SS(0); FI;
tempEIP ← Pop();
tempCS ← Pop();
tempEFLAGS ← Pop();
tempEIP ← tempEIP AND FFFFH;
tempEFLAGS ← tempEFLAGS AND FFFFH;

FI;
IF tempEFLAGS(VM) = 1 and CPL = 0

THEN
GOTO RETURN-TO-VIRTUAL-8086-MODE;

ELSE
GOTO PROTECTED-MODE-RETURN;

FI;

IA-32e-MODE:
IF NT = 1

THEN #GP(0);
ELSE IF OperandSize = 32

THEN
IF top 12 bytes of stack not within stack limits

THEN #SS(0); FI;
tempEIP ← Pop();
tempCS ← Pop();
tempEFLAGS ← Pop();

ELSE IF OperandSize = 16
THEN

IF top 6 bytes of stack are not within stack limits
THEN #SS(0); FI;

tempEIP ← Pop();
tempCS ← Pop();
tempEFLAGS ← Pop();
tempEIP ← tempEIP AND FFFFH;
tempEFLAGS ← tempEFLAGS AND FFFFH;

FI;
ELSE (* OperandSize = 64 *)

THEN
tempRIP ← Pop();
tempCS ← Pop();
tempEFLAGS ← Pop();
tempRSP ← Pop();
tempSS ← Pop();

FI;
GOTO IA-32e-MODE-RETURN;

44 Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes

Documentation Changes

RETURN-FROM-VIRTUAL-8086-MODE:
(* Processor is in virtual-8086 mode when IRET is executed and stays in virtual-8086 mode *)

IF IOPL = 3 (* Virtual mode: PE = 1, VM = 1, IOPL = 3 *)
THEN IF OperandSize = 32

THEN
IF top 12 bytes of stack not within stack limits

THEN #SS(0); FI;
IF instruction pointer not within code segment limits

THEN #GP(0); FI;
EIP ← Pop();
CS ← Pop(); (* 32-bit pop, high-order 16 bits discarded *)
EFLAGS ← Pop();
(* VM, IOPL,VIP and VIF EFLAG bits not modified by pop *)

ELSE (* OperandSize = 16 *)
IF top 6 bytes of stack are not within stack limits

THEN #SS(0); FI;
IF instruction pointer not within code segment limits

THEN #GP(0); FI;
EIP ← Pop();
EIP ← EIP AND 0000FFFFH;
CS ← Pop(); (* 16-bit pop *)
EFLAGS[15:0] ← Pop(); (* IOPL in EFLAGS not modified by pop *)

FI;
ELSE

#GP(0); (* Trap to virtual-8086 monitor: PE = 1, VM = 1, IOPL < 3 *)
FI;

END;

RETURN-TO-VIRTUAL-8086-MODE:
(* Interrupted procedure was in virtual-8086 mode: PE = 1, CPL=0, VM = 1 in flag image *)
IF top 24 bytes of stack are not within stack segment limits

THEN #SS(0); FI;
IF instruction pointer not within code segment limits

THEN #GP(0); FI;
CS ← tempCS;
EIP ← tempEIP;
EFLAGS ← tempEFLAGS;
TempESP ← Pop();
TempSS ← Pop();
ES ← Pop(); (* Pop 2 words; throw away high-order word *)
DS ← Pop(); (* Pop 2 words; throw away high-order word *)
FS ← Pop(); (* Pop 2 words; throw away high-order word *)
GS ← Pop(); (* Pop 2 words; throw away high-order word *)
SS:ESP ← TempSS:TempESP;
CPL ← 3;
(* Resume execution in Virtual-8086 mode *)

END;

TASK-RETURN: (* PE = 1, VM = 0, NT = 1 *)
Read segment selector in link field of current TSS;
IF local/global bit is set to local
or index not within GDT limits

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 45

Documentation Changes

THEN #TS (TSS selector); FI;
Access TSS for task specified in link field of current TSS;
IF TSS descriptor type is not TSS or if the TSS is marked not busy

THEN #TS (TSS selector); FI;
IF TSS not present

THEN #NP(TSS selector); FI;
SWITCH-TASKS (without nesting) to TSS specified in link field of current TSS;
Mark the task just abandoned as NOT BUSY;
IF EIP is not within code segment limit

THEN #GP(0); FI;
END;

PROTECTED-MODE-RETURN: (* PE = 1 *)
IF return code segment selector is NULL

THEN GP(0); FI;
IF return code segment selector addresses descriptor beyond descriptor table limit

THEN GP(selector); FI;
Read segment descriptor pointed to by the return code segment selector;
IF return code segment descriptor is not a code segment

THEN #GP(selector); FI;
IF return code segment selector RPL < CPL

THEN #GP(selector); FI;
IF return code segment descriptor is conforming
and return code segment DPL > return code segment selector RPL

THEN #GP(selector); FI;
IF return code segment descriptor is not present

THEN #NP(selector); FI;
IF return code segment selector RPL > CPL

THEN GOTO RETURN-OUTER-PRIVILEGE-LEVEL;
ELSE GOTO RETURN-TO-SAME-PRIVILEGE-LEVEL; FI;

END;

RETURN-TO-SAME-PRIVILEGE-LEVEL: (* PE = 1, RPL = CPL *)
IF new mode ≠ 64-Bit Mode

THEN
IF tempEIP is not within code segment limits

THEN #GP(0); FI;
EIP ← tempEIP;

ELSE (* new mode = 64-bit mode *)
IF tempRIP is non-canonical

THEN #GP(0); FI;
RIP ← tempRIP;

FI;
CS ← tempCS; (* Segment descriptor information also loaded *)
EFLAGS (CF, PF, AF, ZF, SF, TF, DF, OF, NT) ← tempEFLAGS;
IF OperandSize = 32 or OperandSize = 64

THEN EFLAGS(RF, AC, ID) ← tempEFLAGS; FI;
IF CPL ≤ IOPL

THEN EFLAGS(IF) ← tempEFLAGS; FI;
IF CPL = 0

 THEN (* VM = 0 in flags image *)
 EFLAGS(IOPL) ← tempEFLAGS;

46 Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes

Documentation Changes

 IF OperandSize = 32 or OperandSize = 64
THEN EFLAGS(VIF, VIP) ← tempEFLAGS; FI;

 FI;
END;

RETURN-TO-OUTER-PRIVILEGE-LEVEL:
IF OperandSize = 32

THEN
IF top 8 bytes on stack are not within limits

THEN #SS(0); FI;
ELSE (* OperandSize = 16 *)

IF top 4 bytes on stack are not within limits
THEN #SS(0); FI;

FI;
Read return segment selector;
IF stack segment selector is NULL

THEN #GP(0); FI;
IF return stack segment selector index is not within its descriptor table limits

THEN #GP(SSselector); FI;
Read segment descriptor pointed to by return segment selector;
IF stack segment selector RPL ≠ RPL of the return code segment selector
or the stack segment descriptor does not indicate a a writable data segment;
or the stack segment DPL ≠ RPL of the return code segment selector

THEN #GP(SS selector); FI;
IF stack segment is not present

THEN #SS(SS selector); FI;
IF new mode ≠ 64-Bit Mode

THEN
IF tempEIP is not within code segment limits

THEN #GP(0); FI;
EIP ← tempEIP;

ELSE (* new mode = 64-bit mode *)
IF tempRIP is non-canonical

THEN #GP(0); FI;
RIP ← tempRIP;

FI;
CS ← tempCS;
EFLAGS (CF, PF, AF, ZF, SF, TF, DF, OF, NT) ← tempEFLAGS;
IF OperandSize = 32

THEN EFLAGS(RF, AC, ID) ← tempEFLAGS; FI;
IF CPL ≤ IOPL

THEN EFLAGS(IF) ← tempEFLAGS; FI;
IF CPL = 0

THEN
EFLAGS(IOPL) ← tempEFLAGS;
IF OperandSize = 32

THEN EFLAGS(VM, VIF, VIP) ← tempEFLAGS; FI;
IF OperandSize = 64

THEN EFLAGS(VIF, VIP) ← tempEFLAGS; FI;
FI;
CPL ← RPL of the return code segment selector;
FOR each of segment register (ES, FS, GS, and DS)

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 47

Documentation Changes

DO
IF segment register points to data or non-conforming code segment
and CPL > segment descriptor DPL (* Stored in hidden part of segment register *)

THEN (* Segment register invalid *)
SegmentSelector ← 0; (* NULL segment selector *)

FI;
OD;

END;

IA-32e-MODE-RETURN: (* IA32_EFER.LMA = 1, PE = 1 *)
IF ((return code segment selector is NULL) or (return RIP is non-canonical) or

(SS selector is NULL going back to compatibility mode) or
(SS selector is NULL going back to CPL3 64-bit mode) or
(RPL <> CPL going back to non-CPL3 64-bit mode for a NULL SS selector))

THEN GP(0); FI;
IF return code segment selector addresses descriptor beyond descriptor table limit

THEN GP(selector); FI;
Read segment descriptor pointed to by the return code segment selector;
IF return code segment descriptor is not a code segment

THEN #GP(selector); FI;
IF return code segment selector RPL < CPL

THEN #GP(selector); FI;
IF return code segment descriptor is conforming
and return code segment DPL > return code segment selector RPL

THEN #GP(selector); FI;
IF return code segment descriptor is not present

THEN #NP(selector); FI;
IF return code segment selector RPL > CPL

THEN GOTO RETURN-OUTER-PRIVILEGE-LEVEL;
ELSE GOTO RETURN-TO-SAME-PRIVILEGE-LEVEL; FI;

END;

Flags Affected

All the flags and fields in the EFLAGS register are potentially modified, depending on
the mode of operation of the processor. If performing a return from a nested task to a
previous task, the EFLAGS register will be modified according to the EFLAGS image
stored in the previous task’s TSS.

Protected Mode Exceptions

#GP(0) If the return code or stack segment selector is NULL.

If the return instruction pointer is not within the return code
segment limit.

#GP(selector) If a segment selector index is outside its descriptor table limits.

If the return code segment selector RPL is greater than the CPL.

If the DPL of a conforming-code segment is greater than the
return code segment selector RPL.

If the DPL for a nonconforming-code segment is not equal to the
RPL of the code segment selector.

If the stack segment descriptor DPL is not equal to the RPL of
the return code segment selector.

48 Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes

Documentation Changes

If the stack segment is not a writable data segment.

If the stack segment selector RPL is not equal to the RPL of the
return code segment selector.

If the segment descriptor for a code segment does not indicate
it is a code segment.

If the segment selector for a TSS has its local/global bit set for
local.

If a TSS segment descriptor specifies that the TSS is not busy.

If a TSS segment descriptor specifies that the TSS is not
available.

#SS(0) If the top bytes of stack are not within stack limits.

#NP(selector) If the return code or stack segment is not present.

#PF(fault-code) If a page fault occurs.

#AC(0) If an unaligned memory reference occurs when the CPL is 3 and
alignment checking is enabled.

#UD If the LOCK prefix is used.

Real-Address Mode Exceptions

#GP If the return instruction pointer is not within the return code
segment limit.

#SS If the top bytes of stack are not within stack limits.

Virtual-8086 Mode Exceptions

#GP(0) If the return instruction pointer is not within the return code
segment limit.

IF IOPL not equal to 3.

#PF(fault-code) If a page fault occurs.

#SS(0) If the top bytes of stack are not within stack limits.

#AC(0) If an unaligned memory reference occurs and alignment
checking is enabled.

#UD If the LOCK prefix is used.

Compatibility Mode Exceptions

#GP(0) If EFLAGS.NT[bit 14] = 1.

Other exceptions same as in Protected Mode.

64-Bit Mode Exceptions

#GP(0) If EFLAGS.NT[bit 14] = 1.

If the return code segment selector is NULL.

If the stack segment selector is NULL going back to compatibility
mode.

If the stack segment selector is NULL going back to CPL3 64-bit
mode.

If a NULL stack segment selector RPL is not equal to CPL going
back to non-CPL3 64-bit mode.

If the return instruction pointer is not within the return code
segment limit.

If the return instruction pointer is non-canonical.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 49

Documentation Changes

#GP(Selector) If a segment selector index is outside its descriptor table limits.

If a segment descriptor memory address is non-canonical.

If the segment descriptor for a code segment does not indicate
it is a code segment.

If the proposed new code segment descriptor has both the D-bit
and L-bit set.

If the DPL for a nonconforming-code segment is not equal to the
RPL of the code segment selector.

If CPL is greater than the RPL of the code segment selector.

If the DPL of a conforming-code segment is greater than the
return code segment selector RPL.

If the stack segment is not a writable data segment.

If the stack segment descriptor DPL is not equal to the RPL of
the return code segment selector.

If the stack segment selector RPL is not equal to the RPL of the
return code segment selector.

#SS(0) If an attempt to pop a value off the stack violates the SS limit.

If an attempt to pop a value off the stack causes a non-canonical
address to be referenced.

#NP(selector) If the return code or stack segment is not present.

#PF(fault-code) If a page fault occurs.

#AC(0) If an unaligned memory reference occurs when the CPL is 3 and
alignment checking is enabled.

#UD If the LOCK prefix is used.

24. Table 3-1 updated

In Chapter 3 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 2A, Table 3-1 has been updated. The updated table is reprinted below. See the
change bars.

--

Table 3-1. Register Codes Associated With +rb, +rw, +rd, +ro

byte register word register dword register quadword register
(64-Bit Mode only)

R
eg

is
te

r

R
EX

.B

R
eg

Fi
el

d

R
eg

is
te

r

R
EX

.B

R
eg

Fi
el

d

R
eg

is
te

r

R
EX

.B

R
eg

Fi
el

d

R
eg

is
te

r

R
EX

.B

R
eg

Fi
el

d

AL None 0 AX None 0 EAX None 0 RAX None 0

CL None 1 CX None 1 ECX None 1 RCX None 1

DL None 2 DX None 2 EDX None 2 RDX None 2

BL None 3 BX None 3 EBX None 3 RBX None 3

AH Not
encoda
ble
(N.E.)

4 SP None 4 ESP None 4 N/A N/A N/A

CH N.E. 5 BP None 5 EBP None 5 N/A N/A N/A

DH N.E. 6 SI None 6 ESI None 6 N/A N/A N/A

BH N.E. 7 DI None 7 EDI None 7 N/A N/A N/A

SPL Yes 4 SP None 4 ESP None 4 RSP None 4

50 Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes

Documentation Changes

25. MONITOR/MWAIT sections updated
In Chapter 3, Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume
2A, for the subsections covering MONITOR and MWAIT; descriptions have been updated
to correct errors and enforce consistency. The focus is on the exception sections. Both
subsections are reprinted below. See the change bars.

MONITOR—Set Up Monitor Address

Description

The MONITOR instruction arms address monitoring hardware using an address specified
in EAX (the address range that the monitoring hardware checks for store operations can
be determined by using CPUID). A store to an address within the specified address range
triggers the monitoring hardware. The state of monitor hardware is used by MWAIT.

The content of EAX is an effective address. By default, the DS segment is used to create
a linear address that is monitored. Segment overrides can be used.

ECX and EDX are also used. They communicate other information to MONITOR. ECX
specifies optional extensions. EDX specifies optional hints; it does not change the archi-
tectural behavior of the instruction. For the Pentium 4 processor (family 15, model 3), no

BPL Yes 5 BP None 5 EBP None 5 RBP None 5

SIL Yes 6 SI None 6 ESI None 6 RSI None 6

DIL Yes 7 DI None 7 EDI None 7 RDI None 7

Registers R8 - R15 (see below): Available in 64-Bit Mode Only
R8L Yes 0 R8W Yes 0 R8D Yes 0 R8 Yes 0

R9L Yes 1 R9W Yes 1 R9D Yes 1 R9 Yes 1

R10L Yes 2 R10W Yes 2 R10D Yes 2 R10 Yes 2

R11L Yes 3 R11W Yes 3 R11D Yes 3 R11 Yes 3

R12L Yes 4 R12W Yes 4 R12D Yes 4 R12 Yes 4

R13L Yes 5 R13W Yes 5 R13D Yes 5 R13 Yes 5

R14L Yes 6 R14W Yes 6 R14D Yes 6 R14 Yes 6

R15L Yes 7 R15W Yes 7 R15D Yes 7 R15 Yes 7

Table 3-1. Register Codes Associated With +rb, +rw, +rd, +ro
 (Contd.)

byte register word register dword register quadword register
(64-Bit Mode only)

R
eg

is
te

r

R
EX

.B

R
eg

Fi
el

d

R
eg

is
te

r

R
EX

.B

R
eg

Fi
el

d

R
eg

is
te

r

R
EX

.B

R
eg

Fi
el

d

R
eg

is
te

r

R
EX

.B

R
eg

Fi
el

d
Opcode Instruction 64-Bit

Mode
Compat/
Leg Mode

Description

OF 01 C8 MONITOR Valid Valid Sets up a linear address range to be
monitored by hardware and activates
the monitor. The address range should
be a write-back memory caching type.
The default address is DS:EAX.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 51

Documentation Changes

extensions or hints are defined. Undefined hints in EDX are ignored by the processor;
undefined extensions in ECX raises a general protection fault.

The address range must use memory of the write-back type. Only write-back memory
will correctly trigger the monitoring hardware. Additional information on determining
what address range to use in order to prevent false wake-ups is described in Chapter 7,
Multiple-Processor Management of the Intel® 64 and IA-32 Architectures Software
Developer’s Manual, Volume 3A.

The MONITOR instruction is ordered as a load operation with respect to other memory
transactions. The instruction can be used at all privilege levels and is subject to the
permission checking and faults associated with a byte load. Like a load, MONITOR sets
the A-bit but not the D-bit in page tables.

The MONITOR CPUID feature flag (ECX bit 3; CPUID executed EAX = 1) indicates the
availability of MONITOR and MWAIT in the processor. When set, the unconditional execu-
tion of MONITOR is supported at privilege levels 0; conditional execution is supported at
privilege levels 1 through 3 (test for the appropriate support before unconditional use).
The operating system or system BIOS may disable this instruction by using the
IA32_MISC_ENABLES MSR; disabling MONITOR clears the CPUID feature flag and
causes execution to generate an illegal opcode exception.

The instruction’s operation is the same in non-64-bit modes and 64-bit mode.

Operation

MONITOR sets up an address range for the monitor hardware using the content of EAX
as an effective address and puts the monitor hardware in armed state. Always use
memory of the write-back caching type. A store to the specified address range will
trigger the monitor hardware. The content of ECX and EDX are used to communicate
other information to the monitor hardware.

Intel C/C++ Compiler Intrinsic Equivalent

MONITOR void _mm_monitor(void const *p, unsigned extensions,unsigned hints)

Numeric Exceptions
None

Protected Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or GS

segment limit.
If the DS, ES, FS, or GS register is used to access memory and it contains a
NULL segment selector.
If ECX ¼ 0.

#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) For a page fault.
#UD If CPUID.01H:ECX.MONITOR[bit 3] = 0.

If current privilege level is not 0.

Real Address Mode Exceptions
#GP If any part of the operand in the CS, DS, ES, FS, or GS segment lies outside

of the effective address space from 0 to FFFFH.
If ECX ¼ 0.

#SS If any part of the operand in the SS segment lies outside of the effective
address space from 0 to FFFFH.

#UD If CPUID.01H:ECX.MONITOR[bit 3] = 0.

52 Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes

Documentation Changes

Virtual 8086 Mode Exceptions
#UD The MONITOR instruction is not recognized in virtual-8086 mode (even if

CPUID.01H:ECX.MONITOR[bit 3] = 1).

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#GP(0) If the linear address of the operand in the CS, DS, ES, FS, or GS segment is

in a non-canonical form.
If RCX ¼ 0.

#SS(0) If the linear address of the operand in the SS segment is in a non-canonical
form.

#PF(fault-code) For a page fault.
#UD If the current privilege level is not 0.

If CPUID.01H:ECX.MONITOR[bit 3] = 0.

MWAIT—Monitor Wait

Description

MWAIT instruction provides hints to allow the processor to enter an implementation-
dependent optimized state. There are two principal targeted usages: address-range
monitor and advanced power management. Both usages of MWAIT require the use of the
MONITOR instruction.

A CPUID feature flag (ECX bit 3; CPUID executed EAX = 1) indicates the availability of
MONITOR and MWAIT in the processor. When set, the unconditional execution of MWAIT
is supported at privilege levels 0; conditional execution is supported at privilege levels 1
through 3 (test for the appropriate support before unconditional use). The operating
system or system BIOS may disable this instruction by using the IA32_MISC_ENABLES
MSR; disabling MWAIT clears the CPUID feature flag and causes execution to generate
an illegal opcode exception.

This instruction’s operation is the same in non-64-bit modes and 64-bit mode.

MWAIT for Address Range Monitoring

For address-range monitoring, the MWAIT instruction operates with the MONITOR
instruction. The two instructions allow the definition of an address at which to wait
(MONITOR) and a implementation-dependent-optimized operation to commence at the
wait address (MWAIT). The execution of MWAIT is a hint to the processor that it can
enter an implementation-dependent-optimized state while waiting for an event or a
store operation to the address range armed by MONITOR.

ECX specifies optional extensions for the MWAIT instruction. EAX may contain hints such
as the preferred optimized state the processor should enter. For Pentium 4 processors
(CPUID signature family 15 and model 3), non-zero values for EAX and ECX are
reserved.

Opcode Instruction 64-Bit
Mode

Compat/
Leg Mode

Description

OF 01 C9 MWAIT Valid Valid A hint that allow the processor to stop
instruction execution and enter an
implementation-dependent optimized state
until occurrence of a class of events.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 53

Documentation Changes

A store to the address range armed by the MONITOR instruction, an interrupt, an NMI or
SMI, a debug exception, a machine check exception, the BINIT# signal, the INIT#
signal, or the RESET# signal will exit the implementation-dependent-optimized state.
Note that an interrupt will cause the processor to exit only if the state was entered with
interrupts enabled.

If a store to the address range causes the processor to exit, execution will resume at the
instruction following the MWAIT instruction. If an interrupt (including NMI) caused the
processor to exit the implementation-dependent-optimized state, the processor will exit
the state and handle the interrupt. If an SMI caused the processor to exit the implemen-
tation-dependent-optimized state, execution will resume at the instruction following
MWAIT after handling of the SMI. Unlike the HLT instruction, the MWAIT instruction does
not support a restart at the MWAIT instruction. There may also be other implementation-
dependent events or time-outs that may take the processor out of the implementation-
dependent-optimized state and resume execution at the instruction following the
MWAIT.

If the preceding MONITOR instruction did not successfully arm an address range or if the
MONITOR instruction has not been executed prior to executing MWAIT, then the
processor will not enter the implementation-dependent-optimized state. Execution will
resume at the instruction following the MWAIT.

MWAIT for Power Management

MWAIT accepts a hint and optional extension to the processor that it can enter a speci-
fied target C state while waiting for an event or a store operation to the address range
armed by MONITOR. Support for MWAIT extensions for power management is indicated
by CPUID.05H.ECX[0] reporting 1.

EAX and ECX will be used to communicate the additional information to the MWAIT
instruction, such as the kind of optimized state the processor should enter. ECX specifies
optional extensions for the MWAIT instruction. EAX may contain hints such as the
preferred optimized state the processor should enter. A given processor implementation
may choose to ignore the hint and continue executing the next instruction. Future
processor implementations may implement several optimized “waiting” states and will
select among those states based on the hint argument.

Table 3-62 describes the meaning of ECX and EAX registers for MWAIT extensions.

Table 3-62. MWAIT Extension Register (ECX)
Bits Description

0 Treat Interrupt as break-event, even when interrupts are disabled
(EFLAGS.IF=0)

31: 1 Reserved

54 Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes

Documentation Changes

Note that if MWAIT is used to enter any of the C-states that are numerically higher than
C1, a store to the address range armed by the MONITOR instruction will cause the
processor to exit MWAIT only if the store was originated by other processor agents. A
store from non-processor agent may not cause the processor to exit MWAIT in such
cases

For additional details of MWAIT extensions, see Chapter 13, “Power and Thermal
Management,” of Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 3A.

Operation

(* MWAIT takes the argument in EAX as a hint extension and is architected to take the argument in ECX
as an instruction extension MWAIT EAX, ECX *)
{
WHILE (! (“Monitor Hardware is in armed state”)) {

implementation_dependent_optimized_state(EAX, ECX); }
Set the state of Monitor Hardware as triggered;
}

Intel C/C++ Compiler Intrinsic Equivalent

MWAIT void _mm_mwait(unsigned extensions, unsigned hints)

Example

MONITOR/MWAIT instruction pair must be coded in the same loop because execution of
the MWAIT instruction will trigger the monitor hardware. It is not a proper usage to
execute MONITOR once and then execute MWAIT in a loop. Setting up MONITOR without
executing MWAIT has no adverse effects.

Typically the MONITOR/MWAIT pair is used in a sequence, such as:

EAX = Logical Address(Trigger)
ECX = 0 (*Hints *)
EDX = 0 (* Hints *)

IF (!trigger_store_happened) {
MONITOR EAX, ECX, EDX
IF (!trigger_store_happened) {

MWAIT EAX, ECX
}

}

Table 3-63. MWAIT Hints Register (EAX)
Bits Description
3 : 0 Sub C-state within a C-state, indicated by bits [7:4]
7 : 4 Target C-state*

Value of 0 means C1; 1 means C2 and so on

Value of 01111B means C0

Note: Target C states for MWAIT entensions are processor-specific C-states,
not ACPI C-states

31: 8 Reserved

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 55

Documentation Changes

The above code sequence makes sure that a triggering store does not happen between
the first check of the trigger and the execution of the monitor instruction. Without the
second check that triggering store would go un-noticed. Typical usage of MONITOR and
MWAIT would have the above code sequence within a loop.

Numeric Exceptions
None

Protected Mode Exceptions
#GP(0) If a memory operand effective address is outside the CS, DS, ES,

FS, or GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it
contains a NULL segment selector.

If ECX = 0.

#SS(0) If a memory operand effective address is outside the SS segment
limit.

#PF(fault-code) For a page fault.

#UD If CPUID.01H:ECX.MONITOR[bit 3] = 0.

If current privilege level is not 0.

Real Address Mode Exceptions
#GP If any part of the operand in the CS, DS, ES, FS, or GS segment lies

outside of the effective address space from 0 to FFFFH.

If ECX ≠ 0.

#SS If any part of the operand in the SS segment lies outside of the
effective address space from 0 to FFFFH.

#UD If CPUID.01H:ECX.MONITOR[bit 3] = 0.

Virtual 8086 Mode Exceptions
#UD The MONITOR instruction is not recognized in virtual-8086 mode

(even if CPUID.01H:ECX.MONITOR[bit 3] = 1).

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
#GP(0) If the linear address of the operand in the CS, DS, ES, FS, or GS

segment is in a non-canonical form.

If RCX ≠ 0.

#SS(0) If the linear address of the operand in the SS segment is in a non-
canonical form.

#PF(fault-code) For a page fault.

#UD If the current privilege level is not 0.

If CPUID.01H:ECX.MONITOR[bit 3] = 0.

56 Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes

Documentation Changes

26. Note on VMX added to microcode update information

In Section 26.4 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 3B, a note has been added.

26.4 MICROCODE UPDATE FACILITY
The microcode code update facility may be invoked at various points during the
operation of a platform. Typically, the BIOS invokes the facility on all processors during
the BIOS boot process. This is sufficient to boot the BIOS and operating system. As a
microcode update more current than the system BIOS may be available, system
software should provide another mechanism for invoking the microcode update facility.
The implications of the microcode update mechanism on the design of the VMM are
described in this section.

NOTE
Microcode updates must not be performed during VMX non-root
operation. Updates performed in VMX non-root operation may result in
unpredictable system behavior.

	Preface
	Affected Documents/Related Documents
	Nomenclature

	Summary Table of Changes
	Codes Used in Summary Table
	Summary Table of Documentation Changes

	Documentation Changes
	7.5.5 Identifying Logical Processors in an MP System
	8.5.4 APIC Timer
	18.14.4 Precise Even Based Sampling (PEBS)
	7.8.5 Machine Check Architecture
	14.8.6 Machine-Check Exception Handler
	9.11.6 Microcode Update Loader
	26.4 MICROCODE UPDATE FACILITY

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.5
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts false
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AdobePiStd
 /AdobeSansMM
 /AdobeSerifMM
 /CourierStd
 /CourierStd-Bold
 /CourierStd-BoldOblique
 /CourierStd-Oblique
 /Symbol
]
 /NeverEmbed [true
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /Courier-Oblique
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Oblique
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /Times-Roman
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 300
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings to create PDF documents suitable for reliable viewing and printing of business documents. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

