
Software Migration
and Trade-offs of

Processor-specific Tuning

©1995, Intel Corporation



The software developed for the Intel Architecture has, naturally, been focused
in the area where the architecure performed the highest. That typically has
been the integer area. This has resulted in algorithm development that has been
forced into a “non-natural” implementation.

The arrival of the Pentium® Processor improved the performance of the
Floating Point unit to the point where many applications could move their
integer workarounds into floating point where it should have always been.

P6 completes this process by bringing a “high performance” FP and integer
unit together.

Older code optimizations may be capable of being improved on the newer
Pentium® Processor and P6 architectures by creating a more appropriately
targeted or balanced algorithm.

Background:
Architectural Evolution

• The Intel Architecture has evolved since the i386
– i386/i486  bias towards integer caused developers to use integer even

for many naturally floating point applications

– Pentium® Processor removed this bias by speeding up Floating Point
execution

– “P6” has made further improvements in both Integer and Floating Point
execution and enabled Multi-Processor performance scaling

• Significant microarchitecture improvements have been made (superscalar,
better branch prediction, and others)

– Previous highly aggressive processor-specific optimizations aren’t
necessarily optimal on new processor generations

Challenge:  Maximize the performance of critical software on multiple
processor generations yet minimize effort



The most approiate time for application tuning is at design time. Selecting an
algorithm and architecture that leads to high performance is easier than trying
to retroactively tune an existing code base. However, reality indicates that code
tuning is always required and occasionally vital to the success of a coding
effort.

Background:  Design Cycle
Considerations

Intel architecture (IA) evolution has implications at two different points in the
product development cycle

• Design

– What data formats will provide the best performance?

– This is primarily a “Natural Signal Processing” software consideration

• Dominated by vector/matrix operations

• Loop-intensive, parallelizable

• Highly performance sensitive

• Tuning

– How do I get good performance from my source code?

– I want good performance across all IA generations

– This affects all software



In developing code for Intel architecture processors, opting to implement
algorithms and code sequences that are “blended” will ensure that the code will
scale on present and future processors.

New compilers implement a blended code generation process that has the
ability to shift the center of the blend. Today the blend is migrating from an
i486™ processor center to a Pentium® Processor center. We will see this
center point move towards the P6 over the next 2 years.

Caution! If you need to tune code for a particular processor be it an i486
processor or the Pentium® processor, you may need to recode the tuned
sections for a future procesor architecture. The more aggressive the tuning, the
higher the certainty that recoding will be required.

IA Blended Code Optimization
• Blended code:  A single binary that executes “very well” on all Intel

Architecture processors

• Blended Intel Architecture code will provide scaleable performance across
processor families with no negative impact:
i486™ ⇒ Pentium® Processor ⇒ Intel “P6” processor

• Use a new technology 32-bit compiler in application development

– We have seen 25+% performance gain in blended code over the past 2
years

– Newer versions will be extending the balance of their blend towards “P6”

– P6’s dynamic execution significantly reduces the need for “hand”
instruction scheduling producing high performance from C programs

• If you must tune in assembly language, using generic optimizations you will
produce good scaleable performance

• Aggressive, processor-specific code optimization may force you to re-optimize
for the next processor generation



A graphical representation of code tuning. The more Pentium® Processor
specific optimizations used in a code sequence, the more the P6 performance
will deteriorate. i486™ processor performance will deteriorate more also.
When the scales are balanced, we have a scalable application.

Potential Impact of Processor-Specific
Optimizations

Pentium ® Processor
Optimization

P6 Processor
Optimization

Intel
Architecture

is Best

Pentium ®

Processor
family is Best

P6
Processor

is Best

In
cr

ea
si

ng
 p

er
fo

rm
an

ce

Partia
l S

talls

Self Modifying Code

M
ultiple Loads per Clock

P6 I
nstr

ucti
ons

O
ne Clock 

M
ultiply/Accum

ulate F
as

te
r 

O
pc

od
es



The three main areas for Pentium® Processor code optimizations are: Branch
Prediction, Instruction Pairing and Floating Point pipelining.

These optimizations are still good optimizations for the P6. The P6 enhances
the Pentium® Processor branch prediction algorithms so branches that cannot
be optimized for the Pentium® Processor will be handled better by P6.

P6 performance is reduced when it encounters a Partial Stall. This caused by
writing one of the general purpose registers in its 8/16-bit form and then
reading it in its 32-bit form. These sequences should be removed from
performance-critical sections of code.

Ensure data access occur on the appropriate alignment.

Remove self modifying code. This causes the P6 pipeline to be flushed when
detected.

Intel Architecture Optimizations
• Areas for Pentium® Processor-Specific Optimizations

– Branch Prediction (i.e. always select fall through)

– Instruction scheduling (i.e. instruction pairing)

– Use FXCH to optimize floating point performance

• Areas for “P6” Processor (the next generation Intel processor)

– Use Pentium® Processor branch prediction algorithm as a baseline.

• P6 will enhance the branch prediction algorithms of the Pentium®

Processor and so will handle the cases where fall through is not possible

– Remove Partial Stalls

• “P6” processors will implement register renaming

• Register renaming predicates a performance issue with intermixed 8, 16
and 32-bit  registers (e.g. writing AL followed by reading EAX is a stall)

– Align Data References

• Ensure data alignment rules are followed

– Remove Self Modifying Code

See “Optimizations for Intel 32-Bit processors” guide for details



The level to which code is tuned is determined by the business needs of a
particular company. It may be needed to make an application even possible or
acceptable. The implications of this are multiple versions of software and
multiple coding/tuning efforts.

It is best to ensure that the heavily tuned sections of code are encapsulated in
“removable” modules or libraries. Modern processors support the CPUID
instruction and provide specific processor feature identification. Combining
this processor feature with the current models for operating systems that allow
loadable modules and libraries will ensure that optimum performance is
maintained accross a mixture of application and processor bases. This will also
reduce software maintainace and support costs.

Exceptions to the Model

• Performance gains from processor-specific tuning may be significant for your
business

– We’ve seen this in certain video and graphics applications

• This will mean multiple versions of software

• Insulate most of your code from the processor-specific optimizations by
encapsulation

• Use standard optimized libraries for easier scaleability

• Use CPU-ID to provide a single scaleable product



Roll Your
Own

  NSPGraphics

Blended 32-bit C code

 Blend 94: i486  -Pentium®  Processor
      Blend 95: i486 -Pentium® Processor-“P6”

Insulating code:
Sample Encapsulation Model

Check
CPU ID

. . .dlls per
processor
or blended use std naming

conventions, e.g.
nsp486.dll or
nsp.dll (blend)

Startup



Intel has been following the encapsulation and tuning models outlined
previously and has developed libraries for specific functions. An example from
the table above is 3DR, the three dimensional grahics library. Today this
library is being tuned for the Pentium® Processor. Later this year it will be
tuned for the P6 processor.

Q2 ‘95 Q4 ‘95 Q1 ‘96

3DR Inner Loop Pentium® P6 -
Processor

Recognition Lib  — P6 -

NSP Lib (selected) Intel  — P6

Architecture

Math Libs (fpt)  Intel  — P6

Architecture

P6 and Pentium® Processor
Optimized Libraries from IAL



Summary

• Using blended code when compiling or tuning will yield a binary
that executes well on all Intel Architecture processors

– If processor-specific tuning is needed for your business

• You will need multiple versions of your code

• Encapsulate if possible to insulate the effect

• Use standard libraries if possible to facilitate scaleability

• Use CPU-ID to provide a single scaleable product


