# Intel<sup>®</sup> Pentium<sup>®</sup> II Xeon<sup>TM</sup> Processor Bus Terminator Design Guidelines

Release Date: July 1998

Order Number: 243774-001

Intel Pentium<sup>®</sup> II Xeon<sup>™</sup> Processor Bus Terminator Design Guidelines

Information in this document is provided in connection with Intel products. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document. Except as provided in Intel's Terms and Conditions of Sale for such products, Intel assumes no liability whatsoever, and Intel disclaims any express or implied warranty, relating to sale and/or use of Intel products including liability or warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright or other intellectual property right. Intel products are not intended for use in medical, life saving, or life sustaining applications.

Intel may make changes to specifications and product descriptions at any time, without notice.

Designers must not rely on the absence or characteristics of any features or instructions marked "reserved" or "undefined." Intel reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them.

The Pentium® II Xeon™ processor may contain design defects or errors known as errata which may cause the product to deviate from published specifications. Current characterized errata are available on request.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.

Copies of documents which have an ordering number and are referenced in this document, or other Intel literature, may be obtained by calling 1-800-548-4725 or by visiting Intel's website at http://www.intel.com

Copyright © Intel Corporation 1998.

\* Third-party brands and names are the property of their respective owners.

# **CONTENTS**

| 1.0 OVERVIEW                   | .4 |
|--------------------------------|----|
| 2.0 MECHANICAL SPECIFICATIONS  | 4  |
| 2.1 Connector Interface        | .4 |
| 2.1.1 Interface Pin Locations. | 6  |
| 2.2 Mechanical Considerations  | 6  |
| 3.0 ELECTRICAL SPECIFICATIONS  | 7  |
| 3.1 Power Requirements         | 7  |
| 3.2 CARD LAYOUT GUIDELINES     | 7  |
| 3.3 Interface Pinout           | .8 |
| APPENDIX1                      | 11 |

## 1. Overview

The Intel® Pentium® II Xeon™ processor includes termination circuitry for the microprocessor's Assisted Gunning Transceiver Logic (AGTL+) bus. In a multiple-processor system each processor location (Slot 2 connector) must be properly terminated, whether or not all locations have processors installed. This document describes design considerations for a termination card to occupy unused connector locations and terminate the bus.

These design guidelines include layout rules and hints based on system design experience. They do not define a specific card design nor constitute a specification. Card designers will still need an understanding of the system the card will be used in, as well as the customary simulation and system testing.

In the following four-way symmetric multi-processing (SMP) design example, all processor system bus AGTL+ signals are tied to +1.5V through a 150 W resistor, so that the bus maintains a 25 W impedance no matter what configuration is used in the five available slots. For a two-way SMP design (i.e. dual processor), the cluster controller connector is not needed. A two-way SMP design would simply have two processor locations and the 440GX AGPset or 450NX PCIset.

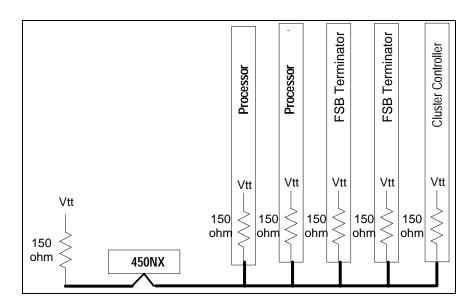



Figure 1. Processor System Bus Termination Example

# 2. Mechanical Specifications

## 2.1 Connector Interface

The Terminator Card uses a 330-pin gold finger connection to the processor baseboard Slot 2 connector. Below is the mechanical specification for the gold finger layout.

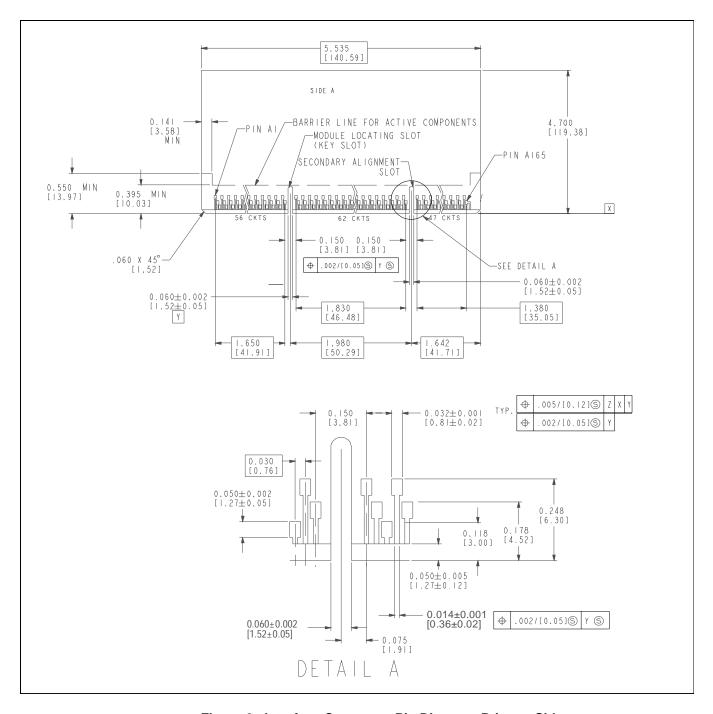



Figure 2. Interface Connector Pin Diagram, Primary Side

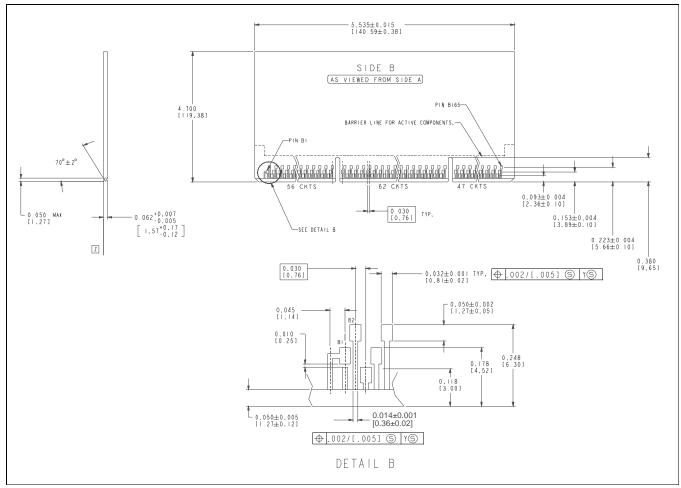



Figure 3. Interface Connector Pin Diagram, Secondary Side

## 2.1.1 Interface Pin Locations

Pin locations on the primary side, viewed from the primary side:

| Upper row of gold fingers:  |              | A1 A | 44 A | 7  |
|-----------------------------|--------------|------|------|----|
| Middle row of gold fingers: | Board Edge → | A2   | A5   | A8 |
| Lower row of gold fingers:  | 1            | A3   | A6   | A9 |

Pin Locations on the secondary side, viewed from the secondary side:

| Upper row of gold fingers:  | B8 | B5  | B2 |              |
|-----------------------------|----|-----|----|--------------|
| Middle Row of gold fingers: | B7 | B4  | B1 | ⊢ Board Edge |
| Lower row of gold fingers:  | B6 | 5 I | 33 |              |

## 2.2 Mechanical Considerations

The bus terminator must mechanically fit into the Slot 2 connector, and also be retained during system shock and vibration. Normally the terminator PCB should mate with a housing or frame which emulates the top of the Pentium® II Xeon<sup>TM</sup> processor cartridge. The package emulation should allow the bus terminator to utilize any retention mechanism designed for the Pentium II Xeon processor.

# 3. Electrical Specifications

## 3.1 Power Requirements

The system baseboard must supply  $V_{_{\!\scriptscriptstyle H}}$  voltage to the pull-up resistors on the Terminator Card:

**Table 1. DC Voltage** 

| Voltage | 1.5V ± 9 % | Measured at substrate edge fingers |
|---------|------------|------------------------------------|
|         |            | • $1.5V \pm 3\%$ when bus is idle  |
| Current | 1.2 A      | Maximum                            |

# 3.2 Card Layout Guidelines

The design should follow AGTL+ layout guidelines:

- Use a trace routing length of  $3.400 \pm 0.032$  inches to emulate the processor substrate's termination traces. Reducing this length may be beneficial for some topologies. Analog simulation should be performed to ensure the bus termination card does not cause any violation of signal integrity specifications (i.e. overshoot and undershoot).
- Distribute V<sub>π</sub> with a wide trace or plane. A four-layer board, with V<sub>π</sub> and ground planes as the internal layers, is preferred.
- If there are V<sub>11</sub> partial planes on either the top or the bottom layer, the widths of the planes should be <sup>3</sup> 200 mils. The partial planes should be stitched densely to the V<sub>11</sub> power plane.
- The  $V_{tt}$  end of terminating resistors should be connected to the  $V_{tt}$  plane with closely placed vias. Traces connecting the common pins of the  $V_{tt}$  end of the R-pack should be <sup>3</sup> 30 mils wide.
- Four sets of two edge finger pins connect to the  $V_{tt}$  plane on the top left, top right, bottom left, and bottom right. Each of the traces connecting the edge fingers to the  $V_{tt}$  plane should be <sup>3</sup> 12 mils wide and £ 200 mils long.
- Closely control the characteristic line impedance, Z  $_{0}$ , at 65  $\Omega$   $\pm$  10%. A ground plane will be needed to maintain the proper characteristic line impedance.
- Use a PCB signal velocity of 2.05 to 2.15 ns/ft (stripline).
- Ensure that V<sub>#</sub> is decoupled correctly.
  - ♦ Traces connecting a capacitor pad to a via or component should be <sup>3</sup> 20 mils wide and £ 15 mils long.
  - $\Diamond$  There need to be at least two 47  $\mu$ F capacitors on the card. One should be placed to the left and one to the right (top or bottom), adjacent to the  $V_{\parallel}$ -pin traces.
  - ♦ Connect one 1 uF capacitor directly to the V<sub>tt</sub> end of each R-pack (or equivalent group of discrete resistors). Also for every two R-packs, place one 0.1 uF capacitor next to the R-packs.
- Take steps to minimize crosstalk:
  - Maximize the line-to-line spacing (minimum three width spacing to one width trace). Leave at least 15 mils between traces.
  - ♦ Keep the dielectric constant of the termination card between 4.2 and 4.8.
  - Minimize the cross-sectional area of the traces (5 mil lines with 1 ounce/ft <sup>2</sup> copper but beware of higher-resistivity traces).
  - ♦ Eliminate parallel traces between layers if not separated by a power or ground plane.

- ♦ Isolate AGTL+ signals in groups. That is, route the data signals in one group, the control signals in one group, and the address signals in another group. If the groups are routed together on a plane, provide at least 25 mils separation between the groups.
- Conventional "pull-up" resistor networks may not be suitable for termination. These networks have a common power or ground pin at the extreme end of the package, shared by 13 to 19 resistors (for 14-and 20-pin components). These packages generally have too much inductance to maintain the voltage and current needed at each resistive load. For better results, use discrete resistors, resistor packages with two separate pins for each resistor, or other resistor networks with acceptable characteristics.

The design should follow these guidelines in addition to the AGTL+ layout rules:

- The PWR EN trace must be <sup>3</sup> 15 mils wide.
- BCLK termination may be necessary in some systems, using a 2-inch trace to a pad to allow addition of a capacitor (probably about 10 pF) if system testing shows it is necessary.

#### 3.3 Interface Pinout

The tables on the following pages list the connections on the Terminator Card for each pin. Each line on the table lists:

- Pin number
- Signal name, if used by the Terminator Card
- Connection on the card

Pins designated "N/C" should be open — not connected to any trace or plane on the terminator card.

Signal Signal 'Pin Connects to: Pin Signal Connects to: Pin Connects to: N/C N/C A111 **GROUND** A56 A57 GROUND A2 N/C A112 A#(19) 150  $\Omega$  to Vtt N/C A58 A113 А3 D#(42) 150  $\Omega$  to Vtt A#(18) 150  $\Omega$  to Vtt GROUND Α4 A59 D#(45) 150  $\Omega$  to Vtt A114 **GROUND** +1.5V GROUND A115 Α5 A60 A#(16) 150  $\Omega$  to Vtt A6 +1.5V A61 D#(39) 150  $\Omega$  to Vtt A116 A#(13) 150  $\Omega$  to Vtt GROUND A62 N/C A117 GROUND Α7 GROUND A118 A#(14) **A8** N/C A63 150  $\Omega$  to Vtt N/C D#(43) GROUND A64 150  $\Omega$  to Vtt A119 Α9 GROUND A120 A10 A65 D#(37) 150  $\Omega$  to Vtt A#(10) 150  $\Omega$  to Vtt GROUND N/C A66 A121 A#(5) 150  $\Omega$  to Vtt A11 GROUND A12 N/C A67 D#(33) A122 150 Ω to Vtt GROUND A13 A68 D#(35) 150  $\Omega$  to Vtt A123 A#(9) 150  $\Omega$  to Vtt N/C A69 GROUND A124 A14 A#(4) 150  $\Omega$  to Vtt N/C A125 GROUND A70 D#(31) A15 150  $\Omega$  to Vtt GROUND A16 A71 D#(30) 150  $\Omega$  to Vtt A126 N/C A72 **GROUND** A127 BNR# A17 N/C 150  $\Omega$  to Vtt GROUND A18 TEST A20 A73 D#(27) 150  $\Omega$  to Vtt A128 A19 GROUND A74 D#(24) A129 BPRI# 150  $\Omega$  to Vtt 150  $\Omega$  to Vtt A20 TEST A18 A75 GROUND A130 TRDY# 150  $\Omega$  to Vtt N/C A131 GROUND 421 A76 D#(23) 150  $\Omega$  to Vtt **A22** GROUND A77 D#(21) 150  $\Omega$  to Vtt A132 DEFER# 150  $\Omega$  to Vtt REQ#(2) A23 N/C A78 GROUND A133 150  $\Omega$  to Vtt A24 N/C A79 D#(16) 150  $\Omega$  to Vtt A134 GROUND GROUND A135 A25 A80 D#(13) 150  $\Omega$  to Vtt REQ#(3) 150  $\Omega$  to Vtt A26 A136 N/C A81 **GROUND** HITM# 150  $\Omega$  to Vtt A27 N/C A82 TESTHI 150  $\Omega$  to Vtt A137 **GROUND** A28 GROUND A83 N/C A138 DBSY# 150  $\Omega$  to Vtt GROUND **A29** N/C A84 A139 RS#(1) 150  $\Omega$  to Vtt

**Table 2. Interface Connector Pinout** 

| 'Pin | Signal   | Connects to:        | Pin  | Signal | Connects to:        | Pin  | Signal    | Connects to: |
|------|----------|---------------------|------|--------|---------------------|------|-----------|--------------|
| A30  | N/C      |                     | A85  | D#(11) | 150 $\Omega$ to Vtt | A140 | GROUND    |              |
| A31  | GROUND   |                     | A86  | D#(10) | 150 Ω to Vtt        | A141 | BREQ#(2)  | 150 Ω to Vtt |
| A32  | N/C      |                     | A87  | GROUND |                     | A142 | BREQ#(0)  | 150 Ω to Vtt |
| A33  | N/C      |                     | A88  | D#(14) | 150 Ω to Vtt        | A143 | GROUND    |              |
| A34  | GROUND   |                     | A89  | D#(9)  | 150 Ω to Vtt        | A144 | ADS#      | 150 Ω to Vtt |
| A35  | BINIT#   | 150 Ω to Vtt        | A90  | GROUND |                     | A145 | AP#(0)    | 150 Ω to Vtt |
| A36  | DEP#(0)  | 150 Ω to Vtt        | A91  | D#(8)  | 150 Ω to Vtt        | A146 | GROUND    |              |
| A37  | GROUND   |                     | A92  | D#(5)  | 150 Ω to Vtt        | A147 | N/C       |              |
| A38  | (DEP#(1) | 150 Ω to Vtt        | A93  | GROUND |                     | A148 | N/C       |              |
| A39  | (DEP#(3) | 150 Ω to Vtt        | A94  | D#(3)  | 150 Ω to Vtt        | A149 | GROUND    |              |
| A40  | GROUND   |                     | A95  | D#(1)  | 150 Ω to Vtt        | A150 | N/C       |              |
| A41  | DEP#(5)  | 150 Ω to Vtt        | A96  | GROUND |                     | A151 | N/C       |              |
| A42  | DEP#(6)  | 150 Ω to Vtt        | A97  | BCLK   | 2" trace to pad     | A152 | GROUND    |              |
| A43  | GROUND   |                     | A98  | N/C    |                     | A153 | L2_VID(2) | (OPEN)       |
| A44  | D#(61)   | 150 $\Omega$ to Vtt | A99  | GROUND |                     | A154 | L2_VID(1) | (OPEN)       |
| A45  | D#(55)   | 150 $\Omega$ to Vtt | A100 | BERR#  | 150 Ω to Vtt        | A155 | GROUND    |              |
| A46  | GROUND   |                     | A101 | A#(33) | 150 Ω to Vtt        | A156 | +1.5V     |              |
| A47  | D#(60)   | 150 $\Omega$ to Vtt | A102 | GROUND |                     | A157 | +1.5V     |              |
| A48  | D#(53)   | 150 Ω to Vtt        | A103 | A#(34) | 150 Ω to Vtt        | A158 | GROUND    |              |
| A49  | GROUND   |                     | A104 | A#(30) | 150 $\Omega$ to Vtt | A159 | N/C       |              |
| A50  | D#(57)   | 150 Ω to Vtt        | A105 | GROUND |                     | A160 | N/C       |              |
| A51  | D#(46)   | 150 Ω to Vtt        | A106 | A#(31) | 150 Ω to Vtt        | A161 | GROUND    |              |
| A52  | GROUND   |                     | A107 | A#(27) | 150 Ω to Vtt        | A162 | N/C       |              |
| A53  | D#(49)   | 150 Ω to Vtt        | A108 | GROUND |                     | A163 | N/C       |              |
| A54  | D#(51)   | 150 Ω to Vtt        | A109 | A#(22) | 150 Ω to Vtt        | A164 | GROUND    |              |
| A55  | GROUND   |                     | A110 | A#(23) | 150 Ω to Vtt        | A165 | PWR_EN(0) | Pin B1       |

| 'Pin | Signal     | Connects to:             | Pin        | Signal        | Connects to:        | Pin          | Signal    | Connects to:  |
|------|------------|--------------------------|------------|---------------|---------------------|--------------|-----------|---------------|
| B1   | PWR_EN(1)  | Pin A165                 | B56        | N/C           |                     | B111         | A#(21)    | 150 Ω to Vtt  |
| B2   | N/C        |                          | B57        | N/C           |                     | B112         | N/C       |               |
| B3   | N/C        |                          | B58        | N/C           |                     | B113         | A#(25)    | 150 Ω to Vtt  |
| B4   | N/C        |                          | B59        | D#(41)        | 150 Ω to Vtt        | B114         | A#(15)    | 150 Ω to Vtt  |
| B5   | N/C        |                          | B60        | D#(47)        | 150 Ω to Vtt        | B115         | N/C       |               |
| B6   | +1.5V      |                          | B61        | N/C           |                     | B116         | A#(17)    | 150 Ω to Vtt  |
| В7   | +1.5V      |                          | B62        | D#(44)        | 150 Ω to Vtt        | B117         | A#(11)    | 150 Ω to Vtt  |
| B8   | N/C        |                          | B63        | D#(36)        | 150 Ω to Vtt        | B118         | N/C       |               |
| В9   | N/C        |                          | B64        | N/C           |                     | B119         | A#(12)    | 150 Ω to Vtt  |
| B10  | N/C        |                          | B65        | D#(40)        | 150 Ω to Vtt        | B120         | N/C       |               |
| B11  | N/C        |                          | B66        | D#(34)        | 150 Ω to Vtt        | B121         | A#(8)     | 150 Ω to Vtt  |
| B12  | N/C        |                          | B67        | N/C           | 100 11 10 11        | B122         | A#(7)     | 150 Ω to Vtt  |
| B13  | N/C        |                          | B68        | D#(38)        | 150 Ω to Vtt        | B123         | N/C       | 100 12 10 11  |
| B14  | N/C        |                          | B69        | D#(32)        | 150 Ω to Vtt        | B124         | A#(3)     | 150 Ω to Vtt  |
| B15  | N/C        |                          | B70        | N/C           | 100 12 10 11        | B125         | A#(6)     | 150 Ω to Vtt  |
| B16  | N/C        |                          | B71        | D#(28)        | 150 Ω to Vtt        | B126         | N/C       | 100 10 VII    |
| B17  | N/C        |                          | B72        | D#(29)        | 150 Ω to Vtt        | B127         | AERR#     | 150 Ω to Vtt  |
| B18  | N/C        |                          | B73        | N/C           | 100 22 10 VII       | B128         | REQ#(0)   | 150 Ω to Vtt  |
| B19  | N/C        |                          | B74        | D#(26)        | 150 Ω to Vtt        | B129         | N/C       | 100 22 10 VII |
| B20  | N/C        |                          | B75        | D#(25)        | 150 Ω to Vtt        | B130         | REQ#(1)   | 150 Ω to Vtt  |
| B21  | N/C        |                          | B76        | N/C           | 130 22 10 VII       | B131         | REQ#(1)   | 150 Ω to Vtt  |
| B22  | N/C        |                          | B77        | D#(22)        | 150 Ω to Vtt        | B131         | N/C       | 130 22 10 VII |
| B23  | N/C        |                          | B78        | D#(22)        | 150 Ω to Vtt        | B133         | LOCK#     | 150 Ω to Vtt  |
| B24  | N/C        |                          | B79        | N/C           | 130 22 το νπ        | B134         | DRDY#     |               |
| B25  | N/C        |                          | B80        | D#(18)        | 150 Ω to Vtt        | B135         | N/C       | 150 Ω to Vtt  |
|      |            |                          | 41         | . , ,         |                     |              |           | 450 O to 1/2  |
| B26  | N/C        |                          | B81        | D#(20)        | 150 Ω to Vtt        | B136         | RS#(0)    | 150 Ω to Vtt  |
| B27  | N/C        |                          | B82        | N/C           |                     | B137         | HIT#      | 150 Ω to Vtt  |
| B28  | N/C<br>N/C |                          | B83        | N/C<br>N/C    |                     | B138         | N/C       | 450 O to 1/1  |
| B29  |            |                          | B84        |               |                     | B139         | RS#(2)    | 150 Ω to Vtt  |
| B30  | N/C        |                          | B85        | N/C           | 450.04-14           | B140         | RP#       | 150 Ω to Vtt  |
| B31  | N/C<br>N/C |                          | B86<br>B87 | D#(17)        | 150 Ω to Vtt        | B141<br>B142 | N/C       | 450.04.1/     |
| B32  |            |                          |            | D#(15)<br>N/C | 150 Ω to Vtt        | 41           | BREQ#(3)  | 150 Ω to Vtt  |
| B33  | N/C        |                          | B88        |               | 450.01-1/           | B143         | BREQ#(1)  | 150 Ω to Vtt  |
| B34  | N/C        |                          | B89        | D#(12)        | 150 Ω to Vtt        | B144         | N/C       | 450.04.14     |
| B35  | N/C        |                          | B90        | D#(7)         | 150 Ω to Vtt        | B145         | RSP#      | 150 Ω to Vtt  |
| B36  | N/C        |                          | B91        | N/C           | 450 0 4 14          | B146         | AP#(1)    | 150 Ω to Vtt  |
| B37  | N/C        |                          | B92        | D#(6)         | 150 Ω to Vtt        | B147         | N/C       |               |
| B38  | N/C        |                          | B93        | D#(4)         | 150 Ω to Vtt        | B148         | N/C       |               |
| B39  | (DEP#(2)   | 150 Ω to Vtt             | B94        | N/C           |                     | B149         | N/C       |               |
| B40  | (DEP#(4)   | 150 Ω to Vtt             | B95        | D#(2)         | 150 Ω to Vtt        | B150         | N/C       |               |
| B41  | N/C        |                          | B96        | D#(0)         | 150 Ω to Vtt        | B151         | N/C       | (005)"        |
| B42  | (DEP#(7)   | 150 Ω to Vtt             | B97        | N/C           | 1                   | B152         | L2_VID(0) | (OPEN)        |
| B43  | D#(62)     | 150 Ω to V <sub>tt</sub> | B98        | P6_RESET_L    | 150 Ω to Vtt        | B153         | N/C       |               |
| B44  | N/C        | 1,500                    | B99        | N/C           |                     | B154         | L2_VID(4) | GROUND        |
| B45  | D#(58)     | 150 Ω to Vtt             | B100       | N/C           | 150 0 / 3/          | B155         | L2_VID(3) | (OPEN)        |
| B46  | D#(63)     | 150 Ω to Vtt             | B101       | A#(35)        | 150 Ω to Vtt        | B156         | N/C       |               |
| B47  | N/C        | 1                        | B102       | A#(32)        | 150 Ω to Vtt        | B157         | +1.5V     |               |
| B48  | D#(56)     | 150 Ω to Vtt             | B103       | N/C           |                     | B158         | +1.5V     |               |
| B49  | D#(50)     | 150 Ω to Vtt             | B104       | A#(29)        | 150 Ω to Vtt        | B159         | N/C       |               |
| B50  | N/C        |                          | B105       | A#(26)        | 150 Ω to Vtt        | B160         | N/C       |               |
| B51  | D#(54)     | 150 Ω to Vtt             | B106       | N/C           |                     | B161         | N/C       |               |
| B52  | D#(59)     | 150 Ω to Vtt             | B107       | A#(24)        | 150 Ω to Vtt        | B162         | N/C       |               |
| B53  | N/C        |                          | B108       | A#(28)        | 150 Ω to Vtt        | B163         | N/C       |               |
| B54  | D#(48)     | 150 Ω to Vtt             | B109       | N/C           |                     | B164         | N/C       |               |
| B55  | D#(52)     | 150 $\Omega$ to Vtt      | B110       | A#(20)        | 150 $\Omega$ to Vtt | B165         | N/C       |               |

## Appendix: Indicating Presence of Processor or Terminator Card in Connector

#### 1. Power Enable Link

The processor indicates its presence by connecting the two PWR\_EN signals on pins B1 and A165. The Terminator Card should connect these two pins to allow the system to check continuity and verify that either a processor or Terminator Card is properly inserted in the socket.

#### 2. VRM Voltage Identification Bits

To allow the system to correctly detect that a Terminator Card (instead of the Pentium \*\* II Xeon\*\* II Xeon\*\* processor) is installed in a particular processor slot, some systems look for the Voltage Identification (VID) bit pattern. The example below uses the L2 cache VID bits. Refer to the Intel Pentium II Xeon processor data sheet for the rest of the possible VID combinations.

Table A. L2 Cache VRM Voltage Identification (VID, ) Bits

| ( <sub>1</sub> ) |           |   |   |   |                    |  |  |  |  |
|------------------|-----------|---|---|---|--------------------|--|--|--|--|
|                  | Proc      |   |   |   |                    |  |  |  |  |
|                  | 0 =       |   |   |   |                    |  |  |  |  |
|                  | $1 = O_1$ |   |   |   |                    |  |  |  |  |
| VID4             | VID3      |   |   |   |                    |  |  |  |  |
| 0                | 1         | 1 | 1 | 1 | Terminator present |  |  |  |  |



#### UNITED STATES, Intel Corporation 2200 Mission College Blvd., P.O. Box 58119, Santa Clara, CA 95052-8119 Tel: +1 408 765-8080

JAPAN, Intel Japan K.K. 5-6 Tokodai, Tsukuba-shi, Ibaraki-ken 300-26 Tel: + 81-29847-8522

> FRANCE, Intel Corporation S.A.R.L. 1, Quai de Grenelle, 75015 Paris Tel: +33 1-45717171

UNITED KINGDOM, Intel Corporation (U.K.) Ltd. Pipers Way, Swindon, Wiltshire, England SN3 1RJ Tel: +44 1-793-641440

GERMANY, Intel GmbH Dornacher Strasse 1 85622 Feldkirchen/ Muenchen Tel: +49 89/99143-0

HONG KONG, Intel Semiconductor Ltd. 32/F Two Pacific Place, 88 Queensway, Central Tel: +852 2844-4555

CANADA, Intel Semiconductor of Canada, Ltd. 190 Attwell Drive, Suite 500 Rexdale, Ontario M9W 6H8 Tel: +416 675-2438