

Intel® Pentium® II Processor
Specification Update

Release Date: July 2002

Order Number: 243337-049

The Pentium® II processor may contain design defects or errors known as errata which may cause the
product to deviate from published specifications. Current characterized errata are documented in this
Specification Update.

 ii

Information in this document is provided in connection with Intel® products. No license, express or implied, by estoppel or
otherwise, to any intellectual property rights is granted by this document. Except as provided in Intel’s Terms and Conditions
of Sale for such products, Intel assumes no liability whatsoever, and Intel disclaims any express or implied warranty, relating
to sale and/or use of Intel products including liability or warranties relating to fitness for a particular purpose, merchantability,
or infringement of any patent, copyright or other intellectual property right. Intel products are not intended for use in medical,
life saving, or life sustaining applications.

Intel may make changes to specifications and product descriptions at any time, without notice.

Designers must not rely on the absence or characteristics of any features or instructions marked “reserved” or “undefined.”
Intel reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising
from future changes to them.

The Pentium® II processor may contain design defects or errors known as errata which may cause the product to deviate
from published specifications. Current characterized errata are available on request.

The Specification Update should be publicly available following the last shipment date for a period of time equal to the
specific product’s warranty period. Hardcopy Specification Updates will be available for one (1) year following End of Life
(EOL). Web access will be available for three (3) years following EOL.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product
order.

Copies of documents which have an ordering number and are referenced in this document, or other Intel literature, may be
obtained by calling 1-800-548-4725 or by visiting Intel’s website at http://www.intel.com

Copyright © Intel Corporation 1999, 2000, 2001. 2002

Intel, Pentium, and the Intel logo are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the
United States and foreign countries.

*Other names and brands may be claimed as the property of others.

http://www.intel.com/

i

CONTENTS
REVISION HISTORY.. ii
PREFACE ... vi

Specification Update for the Pentium® II Processor ..1
GENERAL INFORMATION...1
Pentium II Processor and Boxed Pentium II Processor 3 Line Markings...1
Pentium II Processor Markings..2
Boxed Pentium II Processor Markings...3
Pentium® II OverDrive® Processor Line Markings ...4
IDENTIFICATION INFORMATION ...5
Mixed Steppings in DP Systems...6
SUMMARY OF CHANGES...12

Summary of Errata..13
Summary of Documentation Changes...20
Summary of Specification Clarifications ..21
Summary of Specification Changes...21

ERRATA...22
DOCUMENTATION CHANGES..76
SPECIFICATION CLARIFICATIONS..84
SPECIFICATION CHANGES..85

PENTIUM® II PROCESSOR SPECIFICATION UPDATE

 ii

REVISION HISTORY
Date of Revision Version Description

May 1997 -001 This document is the first Specification Update for the Pentium® II
processor.

June 1997 -002 Added Erratum 25. Update Erratum 13 status in the Summary Table
of Changes. Added Documentation Change Table and
Documentation Change 1. Added 300-MHz Pentium II processor
information.

July 1997 -003 Added Erratum 26. Added Specification Change Table and
Specification Changes 1 and 2.

August 1997 -004 Added Erratum 27. Added Document Change 2 and Spec Changes
3, 4, 5, 6, and 7.

September 1997 -005 Updated Erratum 27. Added Errata 28 and 29. Added Document
Change 3 and Spec Clarification 1. Added C1 stepping information.
Updated Spec Change 6.

October 1997 -006 Updated Errata 6 and 18, and S-spec table.
November 1997 -007 Updated Erratum 22. Added Specification Clarification 2, 3, and 4.
December 1997 -008 Updated and added notes to S-spec table. Updated package

information table. Updated Errata 24. Added Errata 30, 31, and 32.
January 1998 -009 Added notes to Pentium II processor markings. Updated Erratum 28.

Added Erratum 33. Added Documentation Change 4 and 5. Added
Specification Change 5.

January 26, 1998
(Special Edition)

-010 Updated S-spec table. Added dA0 stepping information. Added
Errata 34, 35, 36, 37, and 38.

February 1998 -011 Added new processor markings. Corrected Errata 13 and 34 for
steppings affected. Corrected typos in summary table for Errata 34,
35, and 36. Added Erratum 39. Added Documentation Change 6.

March 1998 -012 Added new boxed processor markings. Updated Documentation
Changes section, Specification Clarifications section, and
Specification Changes section. Corrected Erratum 8. Added Errata
40, and 41. Added Documentation Changes 6 and 7. Added
Specification Clarification 6. Added Specification Changes 1 and 2.

April 1998 -013 Added new Mobile Pentium® II processor markings and Pentium II
Mobile Modules markings. Updated Documentation Changes
section, Specification Clarifications section, and Specification
Changes section. Updated S-spec table. Added new steppings to
Summary Table of Changes. Corrected Erratum 1. Added Errata 42,
43 and 44. Added Documentation Change 8. Updated Specification
Change 1. Added Specification Change 3.

May 1998 -014 Updated S-spec table. Updated Errata 2 and 42. Added Errata 45
through 51. Corrected Documentation Change 7. Updated
Specification Change 2.

 PENTIUM® II PROCESSOR SPECIFICATION UPDATE

 iii

REVISION HISTORY
Date of Revision Version Description

June 1998 -015 Updated S-spec Table. Updated Summary Table of Changes.
Updated Erratum 47. Added Errata 52 and 53. Added
Documentation Changes 9 through 16. Added Specification
Clarifications 7 though 9. Updated Specification Change 1. Added
Specification Change 4 and 5.

July 1998 -016 Added Pentium II Processor and Boxed Pentium II Processor 3 Line
Markings. Updated Preface, Documentation Changes section,
Specification Clarifications section, and Specification Changes
section. Updated S-spec Table. Updated Summary Table of
Changes. Added Errata 54 and 55. Added Documentation Changes
17 through 21. Added Specification Clarifications 10 through 15.
Added Specification Change 6.

August 1998 -017 Moved all references to the Mobile Pentium II processor to the
Mobile Pentium® II Processor Specification Update. Updated S-spec
Table. Updated Summary Table of Changes. Updated Errata 6 and
38. Added Errata 56 through 59. Updated Specification Clarification
5.

September 1998 -018 Added new Pentium II OverDrive® processor markings. Updated S-
spec table. Updated Errata 56 and 57. Added Errata 60 through 62.
Added Specification Changes 6 and 7.

October 1998 -019 Implemented new numbering nomenclature. Updated S-spec table.
Updated Errata A1 and A48. Added Errata A62, A63 and A64.
Added Specification Change A8. Added Specification Clarifications
A16 and A17.

November 1998 -020 Updated Specification Change A1, Documentation Change A11,
Erratum A44, Specification Change A6 and the Pentium II Processor
Identification Information table. Added Erratum A65 and
Documentation Change A18.

December 1998 -021 Updated Specification Change A1 and the Pentium II Processor
Identification Information table. Added Erratum A66. Updated status
for Errata A16 through A29, A31, A35 through A39, A42, A48, A54,
A57, and A60. Changed affected steppings for Erratum A32.

 January 1999 -022 Updated Specification Change A1 and the Pentium II Processor
Identification Information table. Added Errata A67 through A69, and
Documentation Change A19 through A21.

February 1999 -023 Updated Processor Identification Information table. Added Erratum
A70.

March 1999 -024 Added Specification Change A8 and updated the Pentium II
Processor Identification Information table. Added S-Spec definition.
Removed Specification Changes, Specification Clarifications, and
Document Changes that have been incorporated into the appropriate
documentation. Renumbered remaining items.

April 1999 -025 Added Documentation Change A4 and updated the Pentium II
Processor Identification Information table. Moved revised Mixed
Steppings statement to the General Information section and

PENTIUM® II PROCESSOR SPECIFICATION UPDATE

 iv

REVISION HISTORY
Date of Revision Version Description

renumbered remaining items.

May 1999 -026 Removed Specification and Documentation Changes that have been
incorporated into the appropriate documentation and renumbered
remaining items. Added Specification Change A3. Updated Erratum
A57 Plans status to “Fix.”

June 1999 -027 Added Erratum A71. Added Documentation Change A2. Added
Specification Clarifications A2 and A3. Added Specification Change
A4. Corrected Pentium II Processor Identification Information table,
Note 10.

July 1999 -028 Added Erratum A72. Corrected Pentium II Processor Identification
Information table, Note 10 and table references to that note.
Corrections in the May 1999 version were incorrect.

August 1999 -029 Added Documentation Change A3. Updated the Pentium II
Processor Identification Information table and added Note 22.
Moved Identification Information into the General Information
section. Updated Codes Used in Summary Table. Updated column
heading in Errata, Documentation Changes, Specification
Clarifications and Specification Changes tables.

October 1999 -030 Added Errata A73. Added ‘Brand Id’ to Identification Information
table.

November 1999 -031 Updated references at the beginning of each section. Updated
Pentium® II Processor Identification Information table. Added Errata
A74 and A75. Added Documentation Change A4.

December 1999 -032 Added Errata A76. Added Documentation Change A5. Added
Specification Clarification A4.

January 2000 -033 Added Errata A77-A78. Added Documentation Change A6.
February 2000 -034 Updated Erratum A75. Added Documentation Change A7. Updated

Summary of Changes product letter codes.
March 2000 -035 Updated Erratum A74.
May 2000 -036 Added Erratum A79 & A80.
September 2000 -037 Added New Errata A81, A82, A83, A84, A85. Added Errata Re-

Writes A58, A69, A74, A78. Added Document Changes A8, A9.
October 2000 -038 Added New Erratum A86. .Added Document Changes A10, A11.

November 2000 -039 Added New Erratum A87.

December 2000 -040 Updated Specification Update product key to include the Intel®
Pentium® 4 processor, Revised Erratum A2. Added Documentation
Changes A12 - A17.

January 2001 -041 Revised Erratum A2. Added Documentation Changes A18 and A19.

February 2001 -042 Revised Document Change A18. Added Documentation Change
A20.

 PENTIUM® II PROCESSOR SPECIFICATION UPDATE

 v

REVISION HISTORY
Date of Revision Version Description

March 2001 -043 Added Errata A88 and A89

 August 2001 -044 Added Erratum A90

November 2001 -045 Added Documentation Changes A21 through A25

March 2002 -046 Added Erratum A91 and Documentation Change A1.

May 2002 -047 Added Doc Change A1.

 June 2002 -048 Added Erratum A92. Added Doc Changes A1 and A2.

 July 2002 -049 Added Doc Changes A3 to A12.

PENTIUM® II PROCESSOR SPECIFICATION UPDATE

 vi

PREFACE
This document is an update to the specifications contained in the following documents:

• P6 Family of Processors Hardware Developer’s Manual (Order Number 244001)
• Pentium® II Processor Developer’s Manual (Order Number 243341)

• Pentium® II Processor at 233 MHz, 266 MHz, 300 MHz, and 333 MHz datasheet (Order Number
243335)

• Pentium® II Processor at 350 MHz, 400 MHz, and 450 MHz datasheet (Order Number 243657)

• Intel Architecture Software Developer’s Manual, Volumes 1, 2, and 3 (Order Numbers 243190, 243191,
and 243192, respectively)

It is intended for hardware system manufacturers and software developers of applications, operating systems,
or tools. It contains S-Specs, Errata, Documentation Changes, Specification Clarifications and, Specification
Changes.

Nomenclature
S-Spec Number is a five-digit code used to identify products. Products are differentiated by their unique
characteristics, e.g., core speed, L2 cache size, package type, etc. as described in the processor identification
information table. Care should be taken to read all notes associated with each S-Spec number.

Errata are design defects or errors. Errata may cause the Pentium II processor’s behavior to deviate from
published specifications. Hardware and software designed to be used with any given processor must assume
that all errata documented for that processor are present on all devices unless otherwise noted.

Documentation Changes include typos, errors, or omissions from the current published specifications. These
changes will be incorporated in the next release of the specifications.

Specification Clarifications describe a specification in greater detail or further highlight a specification’s
impact to a complex design situation. These clarifications will be incorporated in the next release of the
specifications.

Specification Changes are modifications to the current published specifications for the Mobile Pentium® II
processor or the Intel® Pentium® II Processor Mobile Module. These changes will be incorporated in the next
release of the specifications.

Specification Update for the
Pentium® II Processor

 PENTIUM® II PROCESSOR SPECIFICATION UPDATE

1

GENERAL INFORMATION

Pentium II Processor and Boxed Pentium II Processor 3 Line
Markings

350/512E/100/2.2V S1
SL28R FFFFFFFF-NNNN
i ©’97 PHILIPPINES

2-D Matrix Mark

Country of Assy

Speed / Cache / Bus / Voltage

S-Spec - FPO - Serial #
m

UL Identifier

Dynamic Mark Area

PENTIUM® II PROCESSOR SPECIFICATION UPDATE

 2

Pentium II Processor Markings

80522PXZZZLLL SYYYY
FFFFFFFF-XXXX Country of Origin

2-D Matrix Mark
Intel UCC#
Order Code (Product - speed)
S Number
Lot Number (date, factory)

Dynamic Mark Area

Hologram
Location

pentium®IIP R O C E S S O
with MMX™ technology

pentium ®IIP R O C E S S

Dynamic Mark Area

80523PXZZZLLL SYYYY
FFFFFFFF-XXXX Country of Origin

NOTES:
• ZZZ = Speed (MHz).
• SYYYY = S-spec Number.
• LLL = Level 2 Cache Size (in Kilobytes).
• FFFFFFFF = FPO # (Test Lot Traceability #).
• XXXX = Serialization Code.

 PENTIUM® II PROCESSOR SPECIFICATION UPDATE

3

Boxed Pentium II Processor Markings

B80522PZZZLLLE SYYYY
FFFFFFFF-XXXX Country of Origin

2-D Matrix Mark
Intel UCC#
Order Code (Product - speed)
S Number
Lot Number (date, factory)

Dynamic Mark Area

Dynamic Mark Area

Hologram
Location

pentium®II
P R O C E S S

with MMX™ technology

pentium ®IIP R O C E S S O

dA-Step Production Units

C-Step Production Units

B80523PZZZLLLE SYYYY 2.0V
FFFFFFFF-XXXX Country of Origin

NOTES:
• ZZZ = Speed (MHz).
• LLL = Level 2 Cache Size (in Kilobytes).
• E = ECC Support in Level 2 Cache
• SYYYY = S-spec Number.
• FFFFFFFF = FPO # (Test Lot Traceability #).
• XXXX = Serialization Code.

PENTIUM® II PROCESSOR SPECIFICATION UPDATE

 4

Pentium® II OverDrive® Processor Line Markings
Bottom View of Pentium® II OverDrive® Processor

NOTES:

Label Markings
• FFFFFFF = FPO # (Test Lot Traceability #).
• DDDDDD – DDD = Altered Assembly Number.

Bottom Cover Markings
• PODP66X333 = Product Code.
• SYYYY = S-spec Number.
• VW.W = Version Number.

NOTES:

1. Attached fan heat sink is not end user removable.

2. Fan power is provided through external fan power
connector, not through the processor socket.

 PENTIUM® II PROCESSOR SPECIFICATION UPDATE

5

IDENTIFICATION INFORMATION
The Pentium II processor can be identified by the following values:

Family1 233-, 266-, 300-, 3333-
MHz Model 32

266-, 300-, 333-, 350-, 400-, and 450-
MHz Model 52

Brand ID4

0110 0011 0101 00h = Not Supported
NOTES:
1. The Family corresponds to bits [11:8] of the EDX register after RESET, bits [11:8] of the EAX register after the CPUID

instruction is executed with a 1 in the EAX register, and the generation field of the Device ID register accessible
through Boundary Scan.

2. The Model corresponds to bits [7:4] of the EDX register after RESET, bits [7:4] of the EAX register after the CPUID
instruction is executed with a 1 in the EAX register, and the model field of the Device ID register accessible through
Boundary Scan.

3. This is a Pentium® II OverDrive® processor. Please note that although this processor has a CPUID of 163xh, it uses a
Pentium II processor CPUID 065xh processor core.

4. The Brand ID corresponds to bits [7:0] of the EBX register after the CPUID instruction is executed with a 1 in the EAX
register.

The Pentium II processor’s second level (L2) cache size can be determined by the following register contents:

512-Kbyte Unified L2 Cache1 43h
NOTES:
1 For the Pentium® II processor, the unified L2 cache size corresponds to the value in bits [3:0] of the EDX register after

the CPUID instruction is executed with a 2 in the EAX register. Other Intel microprocessor models or families may
move this information to other bit positions or otherwise reformat the result returned by this instruction; generic code
should parse the resulting token stream according to the definition of the CPUID instruction.

PENTIUM® II PROCESSOR SPECIFICATION UPDATE

 6

Mixed Steppings in DP Systems
Intel Corporation fully supports mixed steppings of Pentium II processors. The following list and processor
matrix describes the requirements to support mixed steppings:

• While Intel has done nothing to specifically prevent processors operating at differing frequencies from
functioning within a dual processor system, there may be uncharacterized errata that exist in such
configurations. Intel does not support such configurations. In mixed stepping systems, all processors
must operate at identical frequencies (i.e., the highest frequency rating commonly supported by all
processors).

• While there are no known issues associated with the mixing of processors with differing cache sizes in a
dual processor system, and Intel has done nothing to specifically prevent such system configurations
from operating, Intel does not support such configurations since there may be uncharacterized errata that
exist. In mixed stepping systems, all processors must be of the same cache size.

• While Intel believes that certain customers may wish to perform validation of system configurations with
mixed frequency or cache sizes, and that those efforts are an acceptable option to our customers,
customers would be fully responsible for the validation of such configurations.

• The workarounds identified in this and following specification updates must be properly applied to each
processor in the system. Certain errata are specific to the multiprocessor environment and are identified
in the Mixed Stepping Processor Matrix found at the end of this section. Errata for all processor steppings
will affect system performance if not properly worked around. Also see the “Pentium® II Processor
Identification and Package Information” table for additional details on which processors are affected by
specific errata.

• In mixed stepping systems, the processor with the lowest feature-set, as determined by the CPUID
Feature Bytes, must be the Bootstrap Processor (BSP). In the event of a tie in feature-set, the tie should
be resolved by selecting the BSP as the processor with the lowest stepping as determined by the CPUID
instruction.

In the following processor matrix, “NI” indicates that there are currently no known issues associated with
mixing these steppings. A number indicates that a known issue has been identified as listed in the table
following the matrix. A dual processor system using mixed processor steppings must assure that errata are
addressed appropriately for each processor.

DP Platform Population Matrix for the Pentium® II Processor with 66 MHz System Bus
Pentium II
Processor
Stepping

266
MHz
C0

300
MHz
C0

233
MHz
C1

266
MHz
C1

300
MHz
C1

266
MHz
dA0

333
MHz
dA0

300
MHz
dA1

333
MHz
dA1

266
MHz
dB0

300
MHz
dB0

333
MHz
dB0

266-MHz C0 1 X X 1 X 1 X X X 1 X X
300-MHz C0 X 1 X X 1 X X 1 X X 1 X

233-MHz C1 X X NI X X X X X X X X X
266-MHz C1 1 X X NI X NI X X X NI X X

300-MHz C1 X 1 X X NI X X NI X X NI X
266-MHz dA0 1 X X NI X NI X X X NI X X

333-MHz dA0 X X X X X X NI X NI X X NI
300-MHz dA1 X 1 X X NI X X NI X X NI X
333-MHz dA1 X X X X X X NI X NI X X NI
266-MHz dB0 1 X X NI X NI X X X NI X X
300-MHz dB0 X 1 X X NI X X NI X X NI X

 PENTIUM® II PROCESSOR SPECIFICATION UPDATE

7

DP Platform Population Matrix for the Pentium® II Processor with 66 MHz System Bus
Pentium II
Processor
Stepping

266
MHz
C0

300
MHz
C0

233
MHz
C1

266
MHz
C1

300
MHz
C1

266
MHz
dA0

333
MHz
dA0

300
MHz
dA1

333
MHz
dA1

266
MHz
dB0

300
MHz
dB0

333
MHz
dB0

333-MHz dB0 X X X X X X NI X NI X X NI
NOTES:
1. Errata A16 and A17, as listed in the Pentium® II Processor Specification Update, may be problematic for DP systems

that use Pentium® II processor, model 3 C0 stepping. Please see the Pentium® II Processor Specification Update for
further information.

X = Mixing processors at different frequencies is not supported.
NI = No known issues associated with mixing these steppings.

DP Platform Population Matrix for the Pentium® II Processor with 100 MHz System Bus

Pentium® II Processor
Stepping

350
MHz
dA0

350
MHz
dA1

400
MHz
dA1

350
MHz
dB0

400
MHz
dB0

450
MHz
dB0

350
MHz
dB1

400 MHz
dB1

350-MHz dA0 NI NI X NI X X NI X
350-MHz dA1 NI NI X NI X X NI X

400-MHz dA1 X X NI X NI X X NI
350-MHz dB0 NI NI X NI X X NI X

400-MHz dB0 X X NI X NI X X NI
450-MHz dB0 X X X X X NI X X
350-MHz dB1 NI NI X NI X X NI X

400-MHz dB1 X X NI X NI X X NI
NOTE:
X = Mixing processors at different frequencies is not supported.
NI = No known issues associated with mixing these steppings.

PENTIUM® II PROCESSOR SPECIFICATION UPDATE

 8

Pentium II Processor Identification Information

S-Spec
Core

Steppings CPUID

Speed
(MHz)

Core/Bus
L2 Size
(Kbytes)

TagRAM/
Stepping

ECC/Non
-ECC

Processor
Substrate
Revision

Package
and

Revision Notes
SL264 C0 0633h 233/66 512 T6/B0 non-ECC D SECC 3.00 1, 2, 13, 20,

21

SL265 C0 0633h 266/66 512 T6/B0 non-ECC D SECC 3.00 1, 2, 13, 20,
21

SL268 C0 0633h 233/66 512 T6/B0 ECC D SECC 3.00 1, 2, 13, 20,
21

SL269 C0 0633h 266/66 512 T6/B0 ECC D SECC 3.00 1, 2, 13, 20,
21

SL28K C0 0633h 233/66 512 T6/B0 non-ECC D SECC 3.00 1, 2, 3, 9,
13, 20, 21

SL28L C0 0633h 266/66 512 T6/B0 non-ECC D SECC 3.00 1, 2, 3, 9,
13, 20, 21

SL28R C0 0633h 300/66 512 T6/B0 ECC D SECC 3.00 1, 2, 13, 20,
21

SL2MZ C0 0633h 300/66 512 T6/B0 ECC D SECC 3.00 1, 2, 3, 13,
20, 21

SL2HA C1 0634h 300/66 512 T6/B0 ECC D SECC 3.00 1, 2, 13, 20,
21

SL2HC C1 0634h 266/66 512 T6/B0 non-ECC D SECC 3.00 1, 2, 13, 20,
21

SL2HD C1 0634h 233/66 512 T6/B0 non-ECC D SECC 3.00 1, 2, 13, 20,
21

SL2HE C1 0634h 266/66 512 T6/B0 ECC D SECC 3.00 1, 2, 13, 20,
21

SL2HF C1 0634h 233/66 512 T6/B0 ECC D SECC 3.00 1, 2, 13, 20,
21

SL2QA C1 0634h 233/66 512 T6/B0 non-ECC D SECC 3.00 1, 2, 3, 9,
13, 20, 21

SL2QB C1 0634h 266/66 512 T6/B0 non-ECC D SECC 3.00 1, 2, 3, 9,
13, 20, 21

SL2QC C1 0634h 300/66 512 T6/B0 ECC D SECC 3.00 1, 2, 3, 13,
20, 21

SL2KA dA0 0650h 333/66 512 T6P/A3 ECC B1 SECC 3.00 4, 5, 8, 14,
(20 or 21)

SL2QF dA0 0650h 333/66 512 T6P/A3 ECC B1 SECC 3.00 3, 4, 5, 8, 14

SL2K9 dA0 0650h 266/66 512 T6P/A3 ECC B1 SECC 3.00 4, 5, 8, 14,
21

SL35V dA1 0651h 300/66 512 T6P-e/A0 ECC B1 SECC 3.00 3, 4, 5, 7, 8,
15

SL2QH dA1 0651h 333/66 512 T6P-e/A0 ECC B1 SECC 3.00 3, 4, 5, 7, 8,
15

SL2S5 dA1 0651h 333/66 512 T6P-e/A0 ECC B1 SECC 3.00 4, 5, 7, 8,
15, (20 or

21)

 PENTIUM® II PROCESSOR SPECIFICATION UPDATE

9

Pentium II Processor Identification Information

S-Spec
Core

Steppings CPUID

Speed
(MHz)

Core/Bus
L2 Size
(Kbytes)

TagRAM/
Stepping

ECC/Non
-ECC

Processor
Substrate
Revision

Package
and

Revision Notes
SL2ZP dA1 0651h 333/66 512 T6P-e/A0 ECC B1 SECC 3.00 4, 5, 7, 8,

15, 19, 20

SL2ZQ dA1 0651h 350/100 512 T6P-e/A0 ECC B1 SECC 3.00 4, 5, 7, 8,
15, 19, 20

SL2S6 dA1 0651h 350/100 512 T6P-e/A0 ECC B1 SECC 3.00 4, 6, 7, 8,
15, (20 or

21), 22

SL2S7 dA1 0651h 400/100 512 T6P-e/A0 ECC B1 SECC 3.00 4, 6, 7, 8,
10, 15, (20

or 21)

SL2SF dA1 0651h 350/100 512 T6P-e/A0 ECC B1 SECC 3.00 3, 4, 6, 7, 8,
15

SL2SH dA1 0651h 400/100 512 T6P-e/A0 ECC B1 SECC 3.00 3, 4, 6, 7, 8,
10, 15

SL2VY dA1 0651h 300/66 512 T6P-e/A0 ECC B1 SECC 3.00 3, 4, 6, 7, 8,
15

SL33D dB0 0652h 266/66 512 T6P-e/A0 ECC B1 SECC 3.00 3, 4, 5, 7, 8,
15, 20

SL2YK dB0 0652h 300/66 512 T6P-e/A0 ECC B1 SECC 3.00 3, 4, 5, 7, 8,
15, 20

SL2WZ dB0 0652h 350/100 512 T6P-e/A0 ECC B1 SECC 3.00 3, 4, 6, 7, 8,
15, 20

SL2YM dB0 0652h 400/100 512 T6P-e/A0 ECC B1 SECC 3.00 3, 4, 6, 7, 8,
10, 15, 20

SL37G dB0 0652h 400/100 512 T6P-e/A0 ECC B1 SECC2
OLGA

3, 7, 10, 12,
15, 18

SL2WB dB0 0652h 450/100 512 T6P-e/A0 ECC B1 SECC 3.00 3, 4, 7, 8,
10, 11, 15,

20

SL37H dB0 0652h 450/100 512 T6P-e/A0 ECC B1 SECC2
OLGA

3, 4, 7, 8,
10, 15, 18

SL2KE TdB0 1632h 333/66 512 C6C/A3 ECC N/A PGA 4, 7, 8, 12

SL2W7 dB0 0652h 266/66 512 T6P-e/A0 ECC B1 SECC 2.00 4, 5, 7, 8,
15, 20

SL2W8 dB0 0652h 300/66 512 T6P-e/A0 ECC B1 SECC 3.00 4, 5, 7, 8,
15, 20

SL2TV dB0 0652h 333/66 512 T6P-e/A0 ECC B1 SECC 3.00 4, 5, 7, 8,
15, 20

SL2U3 dB0 0652h 350/100 512 T6P-e/A0 ECC B1 SECC 3.00 4, 6, 7, 8,
15, 20

SL2U4 dB0 0652h 350/100 512 T6P-e/A0 ECC B1 SECC 3.00 4, 6, 7, 8,
15, 20

PENTIUM® II PROCESSOR SPECIFICATION UPDATE

 10

Pentium II Processor Identification Information

S-Spec
Core

Steppings CPUID

Speed
(MHz)

Core/Bus
L2 Size
(Kbytes)

TagRAM/
Stepping

ECC/Non
-ECC

Processor
Substrate
Revision

Package
and

Revision Notes
SL2U5 dB0 0652h 400/100 512 T6P-e/A0 ECC B1 SECC 3.00 4, 6, 7, 8,

10, 15, 20,
22

SL2U6 dB0 0652h 400/100 512 T6P-e/A0 ECC B1 SECC 3.00 4, 6, 7, 8,
10, 15, 20

SL2U7 dB0 0652h 450/100 512 T6P-e/A0 ECC B1 SECC 3.00 4, 7, 8, 10,
11, 15, 20

SL356 dB0 0652h 350/100 512 T6P-e/A0 ECC B1 SECC2
PLGA

4, 7, 8, 10,
15, 16, 20,

22

SL357 dB0 0652h 400/100 512 T6P-e/A0 ECC B1 SECC2
OLGA

4, 7, 8, 10,
15, 18, 20

SL358 dB0 0652h 450/100 512 T6P-e/A0 ECC B1 SECC2
OLGA

4, 7, 8, 10,
15, 17, 18,

20

SL37F dB0 0652h 350/100 512 T6P-e/A0 ECC B1 SECC2
PLGA

3, 4, 7, 8,
10, 15, 16,

20

SL3FN dB0 0652h 350/100 512 T6P-e/0 ECC B1 SECC2
OLGA

4, 7, 8, 10,
15, 18, 20

SL3EE dB0 0652h 400/100 512 T6P-e/0 ECC B1 SECC2
PLGA

1, 7, 8, 15,
16, 20, 22

SL3F9 dB0 0652h 400/100 512 T6Pe/A0 ECC B1 SECC2
PLGA

3, 4, 7, 8,
10, 15, 16

SL38M dB1 0653h 350/100 512 T6P-e/A0 ECC B1 SECC 3.00 3, 4, 6, 7, 8,
10, 15, 20

SL38N dB1 0653h 400/100 512 T6P-e/A0 ECC B1 SECC 3.00 3, 4, 6, 7, 8,
10, 15, 20

SL36U dB1 0653h 350/100 512 T6P-e/A0 ECC B1 SECC 3.00 4, 6, 7, 8,
10, 15, 20

SL38Z dB1 0653h 400/100 512 T6P-e/A0 ECC B1 SECC 3.00 4, 6, 7, 8,
10, 15, 20

SL3D5 dB1 0653h 400/100 512 T6P-e/A0 ECC B1 SECC2
OLGA

3, 7, 8, 10,
15, 18

SL3J2 dB1 0653h 350/100 512 T6P-e/A0 ECC B1 SECC2
PLGA

4, 7, 8, 10,
15, 16, 22

NOTES:
1. VCC_CORE is specified for 2.8 V +100/-70 mV for all Pentium® II processors.
2. TPLATE is specified for 5° C – 75° C for these Pentium II processors with S.E.C. cartridge packages except for s-specs SL28R ,

SL2HA, SL2MZ, and SL2QC which have a TPLATE specification for 5º C – 72º C.
3. This is a boxed Pentium II processor with an attached fan heatsink.
4. VCCCORE is specified for 2.0 V +100/-70 mV for these Pentium II processors.

5. TPLATE is specified for 5° C – 65° C for these Pentium II processors.
6. TPLATE is specified for 5° C – 75° C with ETP (extended thermal plate) for these Pentium II processors.
7. Cacheable address space supports up to 4 Gbytes for these Pentium II processors.

 PENTIUM® II PROCESSOR SPECIFICATION UPDATE

11

8. These processors will not shut down automatically on THERMTRIP#.
9. These boxed processors may have packaging which incorrectly indicates ECC support in the L2 cache.
10. These processors are affected by Erratum A56.
11. TPLATE is specified for 5° C – 70° C with ETP (extended thermal plate) for these Pentium II processors.
12. This is a boxed Pentium II OverDrive® processor with an attached fan heatsink.
13. This TagRAM notation is equivalent to part number 82459AB.
14. This TagRAM notation is equivalent to part number 82459AC.
15. This TagRAM notation is equivalent to part number 82459AD.
16. TCASE (MAX) is specified as 80° C for these Pentium II processors.
17. These processors are affected by Erratum A67.
18. TJUNCTION (MAX) is specified as 90° C for these Pentium II processors.
19. These processors require a dual reset BIOS.
20. These parts will only operate at the specified core to bus frequency ratio at which they were manufactured and tested. It is not

necessary to configure the core frequency ratios by using the A20M#, IGNEE#, LINT[1]/NMI and LINT[0]/INTR pins during
RESET.

21. These parts require the inputs from A20M#, IGNEE#, LINT[1]/NMI and LINT[0]/INTR pins during RESET to set the correct core
to bus frequency ratio.

22. This part also ships as a boxed processor with an attached fan heatsink.

PENTIUM® II PROCESSOR SPECIFICATION UPDATE

 12

SUMMARY OF CHANGES
The following table indicates the Errata, Documentation Changes, Specification Clarifications, or Specification
Changes that apply to Pentium® II processors. Intel intends to fix some of the errata in a future stepping of the
component, and to account for the other outstanding issues through documentation or specification changes
as noted. This table uses the following notations:

X:
Specification Change, Erratum, Specification Clarification, or Documentation
Change applies to the given processor stepping.

(No mark) or (blank box): This item is fixed in or does not apply to the given stepping.
Doc: Document change or update that will be implemented.
PlanFix: This erratum may be fixed in a future stepping of the product
Fixed: This erratum has been previously fixed.
NoFix: There are no plans to fix this erratum.
AP: APIC related erratum.
PKG: This column refers to errata on the Pentium® III processor substrate.
Shaded or Changed Bars: This item is either new or modified from the previous version of the document.

Each Specification Update item is prefixed with a capital letter to distinguish the product. The key below
details the letters that are used in Intel’s microprocessor Specification Updates:
A = Intel® Pentium® II processor
B = Mobile Intel® Pentium® II processor
C = Intel® Celeron® processor
D = Intel® Pentium® II Xeon™ processor
E = Intel® Pentium® III processor
G = Intel® Pentium® III Xeon™ processor

H = Mobile Intel® Celeron® processor at 466 MHz, 433 MHz, 400 MHz, 366 MHz, 333 MHz, 300 MHz, and
266 MHz

K = Mobile Intel® Pentium® III processor

M = Mobile Intel® Celeron® processor

N = Intel® Pentium® 4 processor

P = Intel® Xeon™ processor
T = Mobile Intel® Pentium® 4 processor - M

V = Mobile Intel® Celeron® processor on .13 Micron Process in Micro-FCPGA Package

The Specification Updates for the Pentium® processor, Pentium® Pro processor, and other Intel products do
not use this convention.

 PENTIUM® II PROCESSOR SPECIFICATION UPDATE

13

Summary of Errata

NO. C0 C1 dA0 dA1 dB0 TdB0 dB1 PKG Plans ERRATA

A1 X X X X X X X NoFix FP data operand
pointer may be
incorrectly calculated
after FP access which
wraps 64-Kbyte
boundary in 16-bit code

A2 X X X X X X X NoFix Differences exist in
debug exception
reporting

A3 X X X X X X X NoFix FLUSH# servicing
delayed while waiting
for STARTUP_IPI in 2-
way MP systems

A4 X X X X X X X NoFix Code fetch matching
disabled debug register
may cause debug
exception

A5 X X X X X X X NoFix Double ECC error on
read may result in
BINIT#

A6 X X X X X X X NoFix FP inexact-result
exception flag may not
be set

A7 X X X X X X X NoFix BTM for SMI will
contain incorrect FROM
EIP

A8 X X X X X X X NoFix I/O restart in SMM may
fail after simultaneous
MCE

A9 X X X X X X X NoFix Branch traps do not
function if BTMs are
also enabled

A10 X X X X X X X NoFix Checker BIST failure in
FRC mode not signaled

A11 X X X X X X X NoFix BINIT# assertion
causes FRCERR
assertion in FRC mode

A12 X X X X X X X NoFix Machine check
exception handler may
not always execute
successfully

A13 X X X X X X X NoFix MCE due to L2 parity
error gives L1

PENTIUM® II PROCESSOR SPECIFICATION UPDATE

 14

Summary of Errata

NO. C0 C1 dA0 dA1 dB0 TdB0 dB1 PKG Plans ERRATA
MCACOD.LL

A14 X X X X X X X NoFix LBER may be corrupted
after some events

A15 X X X X X X X NoFix BTMs may be corrupted
during simultaneous L1
cache line replacement

A16 X Fixed System may hang due
to internal protocol
violation

A17 X Fixed Livelock condition may
cause system hang

A18 X X Fixed Mispredicted branch
may cause incorrect tag
word on MMX™
technology instructions

A19 X X Fixed Thermal
sensor/THERMTRIP#
does not work

A20 X X Fixed Spurious machine
check exception via IFU
data parity error

A21 X X Fixed Loss of inclusion in IFU
can cause machine
check exception

A22 X X Fixed Possible system hang
when paging is disabled
and reenabled from
uncached memory

A23 X X Fixed L2 performance
counters miscount
L2_RQSTS

A24 X X Fixed Erroneous signaling of
user mode protection
violation

A25 X Fixed Invalid operation not
signaled by the FIST
instruction on some out
of range operands

A26 X X Fixed FLUSH# assertion
disables L2 machine
check exception
reporting

A27 X X Fixed EFLAGS may be
incorrect after a

 PENTIUM® II PROCESSOR SPECIFICATION UPDATE

15

Summary of Errata

NO. C0 C1 dA0 dA1 dB0 TdB0 dB1 PKG Plans ERRATA
multiprocessor TLB
shootdown

A28 X X X X Fixed Delayed line
invalidation issue during
2-way MP data
ownership transfer

A29 X X X X Fixed Potential early
deassertion of LOCK#
during split-lock cycles

A30 X X X X X X X NoFix A20M# may be inverted
after returning from
SMM and Reset

A31 X X X X Fixed Reporting of floating-
point exception may be
delayed

A32 X X X X X X X NoFix EFLAGS discrepancy
on a page fault after a
multiprocessor TLB
shootdown

A33 X X X X X X X NoFix Near CALL to ESP
creates unexpected EIP
address

A34 Fixed Deep sleep exit
transition may cause
hang

A35 X X Fixed Built-in self test always
gives nonzero result

A36 X X Fixed THERMTRIP# may not
be asserted as
specified

A37 X Fixed Cache state corruption
in the presence of page
A/D-bit setting and
snoop traffic

A38 X Fixed Snoop cycle generates
spurious machine check
exception

A39 X X X X Fixed MOVD/MOVQ
instruction writes to
memory prematurely

A40 X X X X X X X NoFix Memory type undefined
for nonmemory
operations

A41 X X X X X NoFix Infinite snoop stall
during L2 initialization of

PENTIUM® II PROCESSOR SPECIFICATION UPDATE

 16

Summary of Errata

NO. C0 C1 dA0 dA1 dB0 TdB0 dB1 PKG Plans ERRATA
during L2 initialization of
MP systems

A42 X X X X Fixed Bus protocol conflict
with optimized chipsets

A43 X X X X X X X NoFix FP data operand
pointer may not be zero
after power on or Reset

A44 X X X X X X X NoFix MOVD following zeroing
instruction can cause
incorrect result

A45 X X X X X X X NoFix Premature execution of
a load operation prior to
exception handler
invocation

A46 X X X X X X X NoFix Read portion of RMW
instruction may execute
twice

A47 X X X X X X X PlanFi
x

Test pin must be high
during power up

A48 X X X X X X X NoFix Intervening writeback
may occur during
locked transaction

A49 X X X X X X X NoFix MC2_STATUS MSR
has model-specific error
code and machine
check architecture error
code reversed

A50 X X X X X X X NoFix Mixed cacheability of
lock variables is
problematic in MP
systems

A51 X X X X X X X NoFix MOV with debug
register causes debug
exception

A52 X X X X X NoFix Upper four PAT entries
not usable with Mode B
or Mode C paging

A53 X X X X X X X PlanFi
x

UC write may be
reordered around a
cacheable write

A54 X X Fixed Incorrect memory type
may be used when
MTRRs are disabled

A55 X X X X X X X PlanFi
x

Misprediction in
program flow may

 PENTIUM® II PROCESSOR SPECIFICATION UPDATE

17

Summary of Errata

NO. C0 C1 dA0 dA1 dB0 TdB0 dB1 PKG Plans ERRATA
x program flow may

cause unexpected
instruction execution

A56 X X X X X PlanFi
x

System bus ECC may
report false errors

A57 X X X X X X PlanFi
x

Full in-order queue may
cause infinite DBSY#
assertion

A58 X X X X X X X NoFix Data breakpoint
exception in a
displacement relative
near call may corrupt
EIP

A59 X X X X X NoFix System bus ECC not
functional with 2:1 ratio

A60 X X X X X X X NoFix Fault on REP
CMPS/SCAS operation
may cause incorrect
EIP

A61 X X X X X X X NoFix RDMSR and WRMSR
to invalid MSR may not
cause GP fault

A62 X X X X X X X NoFix SYSENTER/SYSEXIT
instructions can
implicitly load “null
segment selector” to SS
and CS registers

A63 X X X X X X X NoFix PRELOAD followed by
EXTEST does not load
boundary scan data

A64 X X X X X X X NoFix Far jump to new TSS
with D-bit cleared may
cause system hang

A65 X X X X X X X PlanFi
x

Incorrect chunk
ordering may prevent
execution of the
machine check
exception handler after
BINIT#

A66 X X X X X X X NoFix Resume Flag may not
be cleared after debug
exception

A67 X X X X X X X NoFix System bus address
parity generator may
report false AERR#s

PENTIUM® II PROCESSOR SPECIFICATION UPDATE

 18

Summary of Errata

NO. C0 C1 dA0 dA1 dB0 TdB0 dB1 PKG Plans ERRATA

A68 X X X X X X X NoFix Misaligned locked
access to APIC space
results in hang

A69 X X X X X X X NoFix Potential loss of data
coherency during MP
data ownership transfer

A70 X X X X X X X NoFix Memory ordering based
synchronization may
cause a livelock
condition in MP
systems

A71 X X X X X X X NoFix GP# fault on WRMSR
to
ROB_CR_BKUPTMPD
R6

A72 X X X X X X X NoFix Machine check
exception may occur
due to improper line
eviction in the IFU

A73 X X X X X X X NoFix Lower bits of SMRAM
SMBASE register
cannot be written with
an ITP

A74 X X X X X X X NoFix Task switch may cause
wrong PTE and PDE
access bit to be set

A75 X X X X X X X NoFix Unsynchronized Cross-
Modifying code
operations can cause
unexpected instruction
execution results

A76 X X X X X X X NoFix Deadlock may occur
due to illegal-
instruction/page-miss
combination

A77 X X X X X X X NoFix FLUSH# assertion
following STPCLK#
may prevent CPU
clocks from stopping

A78 X X X X X X X NoFix Floating-point exception
condition may be
deferred

A79 X X X X X X X NoFix Snoop probe during
FLUSH# could cause
L2 to be left in shared

 PENTIUM® II PROCESSOR SPECIFICATION UPDATE

19

Summary of Errata

NO. C0 C1 dA0 dA1 dB0 TdB0 dB1 PKG Plans ERRATA
state

A80 X X X X X X X NoFix Livelock may occur due
to IFU line eviction

A81 X X X X X X X NoFix Selector for the
LTR/LLDT register may
get corrupted

A82 X X X X X X X NoFix INIT does not clear
global entries in the
TLB

A83 X X X X X X X NoFix VM bit will be cleared
on a double fault
handler

A84 X X X X X X X NoFix Memory aliasing with
inconsistent A and D
bits may cause
processor deadlock

A85 X X X X X X X NoFix Use of memory aliasing
with inconsistent
memory type may
cause system hang

A86 X X X X X X X NoFix Processor may report
invalid TSS fault instead
of double fault during
mode C paging

A87 X X X X X X X NoFix Machine check
exception may occur
when interleaving code
between different
memory types

A88 X X X X X X X NoFix Wrong ESP register
values during a fault in
VM86 mode

A89 X X X X X X X NoFix APIC ICR write may
cause interrupt not to
be sent when ICR
delivery bit pending

A90 X X X X X X X NoFix The Instruction Fetch
Unit (IFU) May Fetch
Instructions Based
Upon Stale CR3 Data
After a Write to CR3
Register

PENTIUM® II PROCESSOR SPECIFICATION UPDATE

 20

Summary of Errata

NO. C0 C1 dA0 dA1 dB0 TdB0 dB1 PKG Plans ERRATA

A91 X X X X X X X NoFix Under some complex
conditions, the
instructions in the
shadow of a JMP FAR
may be unintentionally
executed and retired

A92 X X X X X X X NoFix Processor Does not
Flag #GP on Non-zero
Write to Certain MSRs

A1AP X X X X X X X NoFix APIC access to
cacheable memory
causes SHUTDOWN

A2AP X X X X X X X NoFix 2-way MP systems may
hang due to
catastrophic errors
during BSP
determination

A3AP X X X X X X X NoFix Write to mask LVT
(programmed as
EXTINT) will not
deassert outstanding
interrupt

Summary of Documentation Changes

NO. C0 C1 dA0 dA1 dB0 TdB0 dB1 PKG Plans
DOCUMENTATION
CHANGES

A1 X X X X X X X Doc SSE and SSE2
Instructions Opcodes

A2 X X X X X X X Doc Executing the SSE2
Variant on a Non-SSE2
Capable Processor

A3 X X X X X X X Doc Update to Table B-2,
MSRs in the P6 Family
Processors

A4 X X X X X X X Doc ISR Must Re-enable
CCCR After Each
PEBS Overflow

A5 X X X X X X X Doc Sequence to
Programming
Performance Counters

A6 X X X X X X X Doc Performance Counter
MSRs
(MSR_IQ_COUNTER)

 PENTIUM® II PROCESSOR SPECIFICATION UPDATE

21

Summary of Documentation Changes

NO. C0 C1 dA0 dA1 dB0 TdB0 dB1 PKG Plans
DOCUMENTATION
CHANGES

A7 X X X X X X X Doc 0x2B MSR Definition

A8 X X X X X X X Doc ESI and EDI Alignment
For Fast String Moves

A9 X X X X X X X Doc BUS_UTILIZATION_DU
E_TO_PROCESSOR_
ACTIVITY Event
Number Correction

A10 X X X X X X X Doc Complement flag, bit 19

A11 X X X X X X X Doc BSF and BSR
Incorrectly Documented
in Vol 2 Appendix B

A12 X X X X X X X Doc Tagging Mechanism for
Replay_Event

Summary of Specification Clarifications

NO. C0 C1 dA0 dA1 dB0 TdB0 dB1 PKG Plans
SPECIFICATION
CLARIFICATIONS

Summary of Specification Changes

NO. C0 C1 dA0 dA1 dB0 TdB0 dB1 PKG Plans
SPECIFICATION
CHANGES

PENTIUM® II PROCESSOR SPECIFICATION UPDATE

 22

ERRATA

A1. FP Data Operand Pointer May Be Incorrectly Calculated After
FP Access Which Wraps 64-Kbyte Boundary in 16-Bit Code

Problem: The FP Data Operand Pointer is the effective address of the operand associated with the last
noncontrol floating-point instruction executed by the machine. If an 80-bit floating-point access (load or store)
occurs in a 16-bit mode other than protected mode (in which case the access will produce a segment limit
violation), the memory access wraps a 64-Kbyte boundary, and the floating-point environment is subsequently
saved, the value contained in the FP Data Operand Pointer may be incorrect.

Implication: A 32-bit operating system running 16-bit floating-point code may encounter this erratum, under
the following conditions:
• The operating system is using a segment greater than 64 Kbytes in size.
• An application is running in a 16-bit mode other than protected mode.
• An 80-bit floating-point load or store which wraps the 64-Kbyte boundary is executed.
• The operating system performs a floating-point environment store (FSAVE/FNSAVE/FSTENV/FNSTENV)

after the above memory access.
• The operating system uses the value contained in the FP Data Operand Pointer.

Wrapping an 80-bit floating-point load around a segment boundary in this way is not a normal programming
practice. Intel has not currently identified any software that exhibits this behavior.

Workaround: If the FP Data Operand Pointer is used in an OS which may run 16-bit floating-point code,
care must be taken to ensure that no 80-bit floating-point accesses are wrapped around a 64-Kbyte boundary.

Status: For the steppings affected see the Summary of Changes at the beginning of this section.

 PENTIUM® II PROCESSOR SPECIFICATION UPDATE

23

A2. Differences Exist in Debug Exception Reporting
Problem: There exist some differences in the reporting of code and data breakpoint matches between that
specified by previous Intel processor specifications and the behavior of the processor, as described below:

Case 1: The first case is for a breakpoint set on a MOVSS or POPSS instruction, when the instruction
following it causes a debug register protection fault (DR7.gd is already set, enabling the fault). The processor
reports delayed data breakpoint matches from the MOVSS or POPSS instructions by setting the matching
DR6.bi bits, along with the debug register protection fault (DR6.bd). If additional breakpoint faults are matched
during the call of the debug fault handler, the processor sets the breakpoint match bits (DR6.bi) to reflect the
breakpoints matched by both the MOVSS or POPSS breakpoint and the debug fault handler call. The
processor only sets DR6.bd in either situation, and does not set any of the DR6.bi bits.

Case 2: In the second breakpoint reporting failure case, if a MOVSS or POPSS instruction with a data
breakpoint is followed by a store to memory which:

a) crosses a 4-Kbyte page boundary,

OR

b) causes the page table Access or Dirty (A/D) bits to be modified,

the breakpoint information for the MOVSS or POPSS will be lost. Previous processors retain this information
under these boundary conditions.

Case 3: If they occur after a MOVSS or POPSS instruction, the INTn, INTO, and INT3 instructions zero the
DR6.bi bits (bits B0 through B3), clearing pending breakpoint information, unlike previous processors.

Case 4: If a data breakpoint and an SMI (System Management Interrupt) occur simultaneously, the SMI will
be serviced via a call to the SMM handler, and the pending breakpoint will be lost.

Case 5: When an instruction that accesses a debug register is executed, and a breakpoint is encountered on
the instruction, the breakpoint is reported twice.

Case 6: Unlike previous versions of Intel Architecture processors, P6 family processors will not set the Bi bits
for a matching disabled breakpoint unless at least one other breakpoint is enabled.

Implication: When debugging or when developing debuggers for a P6 family processor-based system, this
behavior should be noted. Normal usage of the MOVSS or POPSS instructions (i.e., following them with a
MOV ESP) will not exhibit the behavior of cases 1-3. Debugging in conjunction with SMM will be limited by
case 4.

Workaround: Following MOVSS and POPSS instructions with a MOV ESP instruction when using
breakpoints will avoid the first three cases of this erratum. No workaround has been identified for cases 4, 5,
or 6.

Status: For the steppings affected see the Summary of Changes at the beginning of this section.

PENTIUM® II PROCESSOR SPECIFICATION UPDATE

 24

A3. FLUSH# Servicing Delayed While Waiting for STARTUP_IPI
in 2-way MP Systems

Problem: In a 2-way MP system, if an application processor is waiting for a startup inter-processor interrupt
(STARTUP_IPI), then it will not service a FLUSH# pin assertion until it has received the STARTUP_IPI.

Implication: After the 2-way MP initialization protocol, only one processor becomes the bootstrap processor
(BSP). The other processor becomes a slave application processor (AP). After losing the BSP arbitration, the
AP goes into a wait loop, waiting for a STARTUP_IPI.

The BSP can wake up the AP to perform some tasks with a STARTUP_IPI, and then put it back to sleep with
an initialization inter-processor interrupt (INIT_IPI, which has the same effect as asserting INIT#), which
returns it to a wait loop. The result is a possible loss of cache coherency if the off-line processor is intended to
service a FLUSH# assertion at this point. The FLUSH# will be serviced as soon as the processor is awakened
by a STARTUP_IPI, before any other instructions are executed. Intel has not encountered any operating
systems that are affected by this erratum.

Workaround: Operating system developers should take care to execute a WBINVD instruction before the
AP is taken off-line using an INIT_IPI.

Status: For the steppings affected see the Summary of Changes at the beginning of this section.

A4. Code Fetch Matching Disabled Debug Register May Cause
Debug Exception

Problem: The bits L0-3 and G0-3 enable breakpoints local to a task and global to all tasks, respectively. If
one of these bits is set, a breakpoint is enabled, corresponding to the addresses in the debug registers DR0-
DR3. If at least one of these breakpoints is enabled, any of these registers are disabled (i.e., Ln and Gn are
0), and RWn for the disabled register is 00 (indicating a breakpoint on instruction execution), normally an
instruction fetch will not cause an instruction-breakpoint fault based on a match with the address in the
disabled register(s). However, if the address in a disabled register matches the address of a code fetch which
also results in a page fault, an instruction-breakpoint fault will occur.

Implication: While debugging software, extraneous instruction-breakpoint faults may be encountered if
breakpoint registers are not cleared when they are disabled. Debug software which does not implement a
code breakpoint handler will fail, if this occurs. If a handler is present, the fault will be serviced. Mixing data
and code may exacerbate this problem by allowing disabled data breakpoint registers to break on an
instruction fetch.

Workaround: The debug handler should clear breakpoint registers before they become disabled.

Status: For the steppings affected see the Summary of Changes at the beginning of this section.

 PENTIUM® II PROCESSOR SPECIFICATION UPDATE

25

A5. Double ECC Error on Read May Result in BINIT#
Problem: For this erratum to occur, the following conditions must be met:
• Machine Check Exceptions (MCEs) must be enabled.
• A dataless transaction (such as a write invalidate) must be occurring simultaneously with a transaction

which returns data (a normal read).
• The read data must contain a double-bit uncorrectable ECC error.

If these conditions are met, the Pentium II processor will not be able to determine which transaction was
erroneous, and instead of generating an MCE, it will generate a BINIT#.

Implication: The bus will be reinitialized in this case. However, since a double-bit uncorrectable ECC error
occurred on the read, the MCE handler (which is normally reached on a double-bit uncorrectable ECC error
for a read) would most likely cause the same BINIT# event.

Workaround: Though the ability to drive BINIT# can be disabled in the Pentium II processor, which would
prevent the effects of this erratum, overall system behavior would not improve, since the error which would
normally cause a BINIT# would instead cause the machine to shut down. No other workaround has been
identified.

Status: For the steppings affected see the Summary of Changes at the beginning of this section.

PENTIUM® II PROCESSOR SPECIFICATION UPDATE

 26

A6. FP Inexact-Result Exception Flag May Not Be Set
Problem: When the result of a floating-point operation is not exactly representable in the destination format
(1/3 in binary form, for example), an inexact-result (precision) exception occurs. When this occurs, the PE bit
(bit 5 of the FPU status word) is normally set by the processor. Under certain rare conditions, this bit may not
be set when this rounding occurs. However, other actions taken by the processor (invoking the software
exception handler if the exception is unmasked) are not affected. This erratum can only occur if the floating-
point operation which causes the precision exception is immediately followed by one of the following
instructions:

• FST m32real
• FST m64real

• FSTP m32real
• FSTP m64real

• FSTP m80real
• FIST m16int

• FIST m32int
• FISTP m16int

• FISTP m32int
• FISTP m64int

Note that even if this combination of instructions is encountered, there is also a dependency on the internal
pipelining and execution state of both instructions in the processor.

Implication: Inexact-result exceptions are commonly masked or ignored by applications, as it happens
frequently, and produces a rounded result acceptable to most applications. The PE bit of the FPU status word
may not always be set upon receiving an inexact-result exception. Thus, if these exceptions are unmasked, a
floating-point error exception handler may not recognize that a precision exception occurred. Note that this is
a “sticky” bit, i.e., once set by an inexact-result condition, it remains set until cleared by software.

Workaround: This condition can be avoided by inserting two NOP instructions between the two floating-
point instructions.

Status: For the steppings affected see the Summary of Changes at the beginning of this section.

A7. BTM for SMI Will Contain Incorrect FROM EIP
Problem: A system management interrupt (SMI) will produce a Branch Trace Message (BTM), if BTMs are
enabled. However, the FROM EIP field of the BTM (used to determine the address of the instruction which
was being executed when the SMI was serviced) will not have been updated for the SMI, so the field will
report the same FROM EIP as the previous BTM.

Implication: A BTM which is issued for an SMI will not contain the correct FROM EIP, limiting the
usefulness of BTMs for debugging software in conjunction with System Management Mode (SMM).

Workaround: None identified

Status: For the steppings affected see the Summary of Changes at the beginning of this section.

 PENTIUM® II PROCESSOR SPECIFICATION UPDATE

27

A8. I/O Restart in SMM May Fail After Simultaneous MCE
Problem: If an I/O instruction (IN, INS, REP INS, OUT, OUTS, or REP OUTS) is being executed, and if the
data for this instruction becomes corrupted, the Pentium II processor will signal a machine check exception
(MCE). If the instruction is directed at a device which is powered down, the processor may also receive an
assertion of SMI#. Since MCEs have higher priority, the processor will call the MCE handler, and the SMI#
assertion will remain pending. However, upon attempting to execute the first instruction of the MCE handler,
the SMI# will be recognized and the processor will attempt to execute the SMM handler. If the SMM handler is
completed successfully, it will attempt to restart the I/O instruction, but will not have the correct machine state,
due to the call to the MCE handler.

Implication: A simultaneous MCE and SMI# assertion may occur for one of the I/O instructions above. The
SMM handler may attempt to restart such an I/O instruction, but will have corrupted state due to the MCE
handler call, leading to failure of the restart and shutdown of the processor.

Workaround: If a system implementation must support both SMM and MCEs, the first thing the SMM
handler code (when an I/O restart is to be performed) should do is check for a pending MCE. If there is an
MCE pending, the SMM handler should immediately exit via an RSM instruction and allow the machine check
exception handler to execute. If there is not, the SMM handler may proceed with its normal operation.

Status: For the steppings affected see the Summary of Changes at the beginning of this section.

A9. Branch Traps Do Not Function If BTMs Are Also Enabled
Problem: If branch traps or branch trace messages (BTMs) are enabled alone, both function as expected.
However, if both are enabled, only the BTMs will function, and the branch traps will be ignored.

Implication: The branch traps and branch trace message debugging features cannot be used together.

Workaround: If branch trap functionality is desired, BTMs must be disabled.

Status: For the steppings affected see the Summary of Changes at the beginning of this section.

A10. Checker BIST Failure in FRC Mode Not Signaled
Problem: If a system is running in functional redundancy checking (FRC) mode, and the checker of the
master-checker pair encounters a hard failure while running the built-in self test (BIST), the checker will tri-
state all outputs without signaling an IERR#.

Implication: Assuming the master passes BIST successfully, it will continue execution unchecked,
operating without functional redundancy. However, the necessary pull-up on the FRCERR pin will cause an
FRCERR to be signaled. The operation of the master depends on the implementation of FRCERR.

Workaround: For successful detection of BIST failure in the checker of an FRC pair, use the FRCERR
signal, instead of IERR#.

Status: For the steppings affected see the Summary of Changes at the beginning of this section.

PENTIUM® II PROCESSOR SPECIFICATION UPDATE

 28

A11. BINIT# Assertion Causes FRCERR Assertion in FRC Mode
Problem: If a pair of Pentium II processors are running in functional redundancy checking (FRC) mode, and
a catastrophic error condition causes BINIT# to be asserted, the checker in the master-checker pair will enter
shutdown. The next bus transaction from the master will then result in the assertion of FRCERR.

Implication: Bus initialization via an assertion of BINIT# occurs as the result of a catastrophic error
condition which precludes the continuing reliable execution of the system. Under normal circumstances, the
master-checker pair would remain synchronized in the execution of the BINIT# handler. However, due to this
erratum, an FRCERR will be signaled. System behavior then depends on the system specific error recovery
mechanisms.

Workaround: None identified

Status: For the steppings affected see the Summary of Changes at the beginning of this section.

A12. Machine Check Exception Handler May Not Always Execute
Successfully

Problem: An asynchronous machine check exception (MCE), such as a BINIT# event, which occurs during
an access that splits a 4-Kbyte page boundary may leave some internal registers in an indeterminate state.
Thus, MCE handler code may not always run successfully if an asynchronous MCE has occurred previously.

Implication: An MCE may not always result in the successful execution of the MCE handler. However,
asynchronous MCEs usually occur upon detection of a catastrophic system condition that would also hang the
processor. Leaving MCEs disabled will result in the condition which caused the asynchronous MCE instead
causing the processor to enter shutdown. Therefore, leaving MCEs disabled may not improve overall system
behavior.

Workaround: None identified

Status: For the steppings affected see the Summary of Changes at the beginning of this section.

A13. MCE Due to L2 Parity Error Gives L1 MCACOD.LL
Problem: If a Cache Reply Parity (CRP) error, Cache Address Parity (CAP) error, or Cache Synchronous
Error (CSER) occurs on an access to the Pentium II processor’s L2 cache, the resulting Machine Check
Architectural Error Code (MCACOD) will be logged with ‘01’ in the LL field. This value indicates an L1 cache
error; the value should be ‘10’, indicating an L2 cache error. Note that L2 ECC errors have the correct value of
‘10’ logged.

Implication: An L2 cache access error, other than an ECC error, will be improperly logged as an L1 cache
error in MCACOD.LL.

Workaround: None identified

Status: For the steppings affected see the Summary of Changes at the beginning of this section.

 PENTIUM® II PROCESSOR SPECIFICATION UPDATE

29

A14. LBER May Be Corrupted After Some Events
Problem: The last branch record (LBR) and the last branch before exception record (LBER) can be used to
determine the source and destination information for previous branches or exceptions. The LBR contains the
source and destination addresses for the last branch or exception, and the LBER contains similar information
for the last branch taken before the last exception. This information is typically used to determine the location
of a branch which leads to execution of code which causes an exception. However, after a catastrophic bus
condition which results in an assertion of BINIT# and the re-initialization of the buses, the value in the LBER
may be corrupted. Also, after either a CALL which results in a fault or a software interrupt, the LBER and LBR
will be updated to the same value, when the LBER should not have been updated.

Implication: The LBER and LBR registers are used only for debugging purposes. When this erratum
occurs, the LBER will not contain reliable address information. The value of LBER should be used with caution
when debugging branching code; if the values in the LBR and LBER are the same, then the LBER value is
incorrect. Also, the value in the LBER should not be relied upon after a BINIT# event.

Workaround: None identified

Status: For the steppings affected see the Summary of Changes at the beginning of this section.

A15. BTMs May Be Corrupted During Simultaneous L1 Cache Line
Replacement

Problem: When Branch Trace Messages (BTMs) are enabled and such a message is generated, the BTM
may be corrupted when issued to the bus by the L1 cache if a new line of data is brought into the L1 data
cache simultaneously. Though the new line being stored in the L1 cache is stored correctly, and no corruption
occurs in the data, the information in the BTM may be incorrect due to the internal collision of the data line and
the BTM.

Implication: Although BTMs may not be entirely reliable due to this erratum, the conditions necessary for
this boundary condition to occur have only been exhibited during focused simulation testing. Intel has currently
not observed this erratum in a system level validation environment.

Workaround: None identified

Status: For the steppings affected see the Summary of Changes at the beginning of this section.

PENTIUM® II PROCESSOR SPECIFICATION UPDATE

 30

A16. System May Hang Due To Internal Protocol Violation
Problem: Pentium II processor-based systems may hang due to an internal protocol violation. When a
snoopable transaction is issued on the bus and the cache line being accessed is in the modified state, the
processor must deliver to the system bus an updated copy of the cache line. When the processor attempts to
deliver the most up to date copy via an implicit writeback, the data transfer transaction fails and the DBSY#
signal remains asserted until the next RESET#. This causes the system to hang indefinitely. In order to
encounter this erratum, the following sequence of events must occur:
1. A snoopable transaction (transaction 1) is issued on the system bus. The processor contains in its L1

and/or L2 caches the data for this line in the modified state.
2. Another snoopable transaction (transaction 2) is issued and the processor contains this line only in its L2

cache in the modified state. Both of these transactions can be issued by either the chipset, by the
processor (in which case they are of the self-snoop type), by another processor (2-way MP systems), or
any combination thereof.

3. A nonsnoopable transaction is then issued (transaction 3) for which address bits A15-A5 are the same as
those in transaction 2.

4. Transaction 3 is followed by a snoopable transaction (transaction 4).
5. The completion of the data transfer phase of transaction 1 must line up with the snoop response phase

of transaction 3. This data transfer phase of transaction 1 must occur after the ADS# of transaction 4 and
line up with the completion of an internal cache transaction.

6. The internal cache transaction must miss the L2 targeting a line for eviction, but the internal cache
transaction must be such that it has to be retried.

The result of this sequence of transactions causes the processor bus to lock up after delivering the data for
transaction 1, but prior to delivering the data for transaction 2. Since this data is never delivered, DBSY# does
not deassert and the system hangs.

Implication: The Pentium II processor may cause a system to hang if the above listed sequence of events
occurs. This sequence is a necessary condition to hit the erratum, but multiple variations of this sequence
which also cause this erratum are also possible. The probability of encountering this erratum increases with
I/O queue depth greater than 4 and in 2-way MP systems.

Workaround: None identified

Status: For the steppings affected see the Summary of Changes at the beginning of this section.

 PENTIUM® II PROCESSOR SPECIFICATION UPDATE

31

A17. Livelock Condition May Cause System Hang
Problem: A “livelock” situation could occur in 2-way MP Pentium II processor-based systems, when IOQ
depth is set to 1, with a failure signature such that a processor arbitrates for the system bus but fails to drive
out a transaction when it gains ownership of the bus. The processor then relinquishes bus ownership to
another requester, but on rearbitration performs the same repetitive actions. This course of action continues
until RESET# is asserted. The failure signature in 2-way MP systems is such that both processors require
execution of an explicit writeback cycle and both processors request the bus for this transaction. However,
when the time comes to drive out the writeback transaction, the internal request has been suspended due to
an internal blocking condition. After the internal blocking condition has gone away the original writeback
request is reasserted. However, by the time bus ownership has been regained, the blocking condition has
recurred, thus suppressing the writeback request before the transaction can be driven out to the system bus.

The writeback that is waiting to go out on the system bus must be issued before the internal blocking condition
can be removed. But the writeback can never be issued because of the recurring blocking condition. This
causes an “infinite loop” situation to develop, and the processor essentially stops executing code.

Implication: This erratum was observed to occur when both processors are configured for IOQ depth = 1 in
Intel commercial system testing.

Workaround: None identified

Status: For the steppings affected see the Summary of Changes at the beginning of this section.

A18. Mispredicted Branch May Cause Incorrect Tag Word on
MMX™ Technology Instructions

Problem: After any MMX technology instruction is executed, all of the FPU stack registers should be
marked valid in the FPU tag word. If one or more of the first three instructions of a mispredicted branch are
MMX technology instructions of the form “opcode reg, mem” not including MOVD and MOVQ, the FPU tag
word is incorrectly modified. Some of the tag word bits may remain invalid. This tag word will remain incorrect
until one of two events occur:
1. Any MMX technology instruction is executed four or more instructions after the branch target, or
2. An MMX technology instruction of the following type is executed:
• Any MMX technology instruction of the form “opcode reg, reg”
• MOVD
• MOVQ
• EMMS

The following are examples of code that will encounter this erratum.

PENTIUM® II PROCESSOR SPECIFICATION UPDATE

 32

Example 1:
EMMS
...
Jcc target ; mispredicted as not taken
...

target:
PADDW mm0, [edi] ; Is an “reg, mem” format instruction
FSTENV env

In this example, the tag word stored in memory by FSTENV will be incorrect.

Example 2:
EMMS
...
Jcc target ; mispredicted as not taken
...

target:
PADDW mm0, [edi]
FUCOMPP ; depends on tag word, also violates coding guideline against mixing

; floating-point and MMX technology instructions
FWAIT

In this example, the FUCOMPP instruction will cause a Numeric Invalid Operation Exception if the FPU stack
fault exception is unmasked.

Implication: When writing code that mixes FP and MMX technology instructions where the target of a
branch is an MMX technology instruction with a memory operand, the FPU tag word may be incorrect.
Software that expects the FP stack register to be set to valid after an MMX technology instruction and utilizes
this information may be affected.
If floating-point instructions are intermixed, the floating-point instructions may raise the floating-point stack
exception. If this exception is unmasked, the application will receive an unexpected numeric exception. The
result is application dependent. If the floating-point stack exception is masked, the floating-point instruction will
compute with a indefinite operand instead of the register contents. In either case the result is application
dependent. Applications that follow the Intel MMX Technology Coding Guidelines against intermixing floating-
point and MMX technology code are not affected by this erratum.

If the floating-point tag word is saved immediately after an affected MMX technology instruction, an erroneous
value will be stored. Program behavior is application dependent. This may also cause debuggers to
temporarily display incorrect tag word contents.

 PENTIUM® II PROCESSOR SPECIFICATION UPDATE

33

Workaround: All of the following must be applied to work around this erratum:
• Follow the Intel MMX technology guidelines in the Intel Architecture Optimization Manual for writing MMX

technology programs. Specifically, do not intermix MMX technology instructions and floating-point
instructions on a per instruction basis.

• If it is possible that some of the tag word bits may be invalid prior to a branch, avoid using MMX
technology instructions of the form “opcode reg, mem”, except MOVD, MOVQ, within the first three
instructions at the target of a branch.

• Use the FSAVE instruction to save all floating-point stack registers if at least one of the registers is valid
during a context switch.

• Before a transition from MMX technology code to floating-point code that does not meet the Intel MMX
Technology Guidelines in the Intel Architecture Optimization Manual, execute a nonsusceptible MMX
technology instruction such as MOVD eax, mm0.

Floating-point instructions should not depend on MMX technology instructions to set the tag word bits to valid.

Status: For the steppings affected see the Summary of Changes at the beginning of this section.

A19. Thermal Sensor/THERMTRIP# Does Not Work
Problem: THERMTRIP# is a feature of the Pentium II processor which asserts when the core reaches a
certain temperature during operation as specified in the Pentium® II Processor at 233 MHz, 266 MHz, 300
MHz, and 333 MHz datasheet. The Pentium II processor may assert THERMTRIP# at a temperature lower or
higher than the specified trippoint of 135° C for TJUNCTION. When THERMTRIP# is asserted, the processor
may shut down causing all execution to be halted.

Implication: When running the Pentium II processor, the Pentium II processor core may reach a
temperature causing the processor to assert THERMTRIP# early. Once THERMTRIP# has been asserted, the
processor may shut down due to this erratum. All execution after the SHUTDOWN will be halted. This erratum
is only exhibited when TPLATE is above the Maximum Specification of 75° C (see the Pentium® II Processor at
233 MHz, 266 MHz, 300 MHz, and 333 MHz datasheet (Order Number 243335) for details on specifications).

Workaround: Avoid operation of the Pentium II processor outside of thermal specifications defined by the
Pentium® II Processor at 233 MHz, 266 MHz, 300 MHz, and 333 MHz datasheet. Do not monitor the
THERMTRIP# pin (pin A15).

Status: For the steppings affected see the Summary of Changes at the beginning of this section.

PENTIUM® II PROCESSOR SPECIFICATION UPDATE

 34

A20. Spurious Machine Check Exception Via IFU Data Parity Error
Problem: The Pentium II processor can signal an unrecoverable Machine Check Exception (MCE) in the
event that the Instruction Fetch Unit (IFU) detects a mismatch when verifying instruction parity. The execution
of code that modifies the current instruction sequence that may already be fetched into the processor can
cause an instruction at a given address to appear differently depending on when it was fetched in time relative
to its being modified. Thus, a speculatively prefetched instruction may have been modified such that it now
differs from the copy of the same instruction resident in the instruction cache. This discrepancy (of one copy
located in the speculative prefetch portion, and a different copy in the instruction cache) is sensed by the IFU.
When the IFU detects that the instruction stream has been modified, it flushes the pipeline and attempts to
restart the instruction stream. In the interim, the IFU recognizes the disparate instructions described above,
and signals a data parity error. The data parity error is signaled as an MCE before the instruction stream has
had a chance to restart. This MCE will cause an operating system that has enabled MCE to shut down. No
incorrect code is executed by the processor in this situation (even if MCE is disabled). Note that this erratum
occurs under a specific set of address dependencies and timing events.

Implication: Executing such a sequence by modifying code without proper synchronization may not always
result in predictable program behavior. The processor’s signaling of an MCE due to a data parity error in the
IFU may then result in an unexpected system halt if the above conditions are met and MCEs are enabled.

Workaround: It is possible for BIOS code to contain a workaround for this erratum.

Status: For the steppings affected see the Summary of Changes at the beginning of this section.

A21. Loss of Inclusion In IFU Can Cause Machine Check
Exception

Problem: The Pentium II processor can signal an unrecoverable Machine Check Exception (MCE) as a
consistency checking mechanism in the event that the Instruction Fetch Unit (IFU) detects differences in the
consistency of code in instruction streaming buffers against code resident in the instruction cache, i.e., a loss
of inclusion. When application code makes an operating system call, the processor transitions execution
privilege levels. If the code for the OS call is not already resident in the level 1 cache, then the processor may
prefetch code while identifying a cache line(s) for eventual eviction to make space for the new code. Upon
return from the OS call, the processor continues execution of application code at the user level. The
processor, due to deep speculation and branch prediction, may attempt to execute instructions from the
previously prefetched kernel code starting by attempting to replace the victim line with kernel code in a buffer
internal to the IFU. The IFU detects that the current application is insufficiently privileged to execute the kernel
code and so, suppresses the eviction of the previously selected victim line. Despite having detected this
condition, the IFU does replace this victim line with the kernel line. If the processor now attempts to restart
execution of the current application code by refetching the original victim line it no longer finds it in the
instruction cache. The IFU detects this loss of inclusion, and signals this by generating a MCE. If MCEs are
enabled, this event can cause an operating system to shutdown. Note that this erratum occurs under a
specific set of address dependencies and timing events.

Implication: The occurrence of all the conditions above can lead the IFU to signal a loss of inclusion by
generating an MCE. If MCEs are enabled in the system, then the operating system may shut down upon
noticing the MCE resulting in system failure. If MCEs are disabled, then unpredictable application behavior is
theoretically possible, although current validation has shown execution to continue normally.

Workaround: It is possible for BIOS code to contain a workaround for this erratum.

Status: For the steppings affected see the Summary of Changes at the beginning of this section.

 PENTIUM® II PROCESSOR SPECIFICATION UPDATE

35

A22. Possible System Hang When Paging Is Disabled and
Reenabled from Uncached Memory

Problem: If paging is disabled via the PG bit of CR0 and then later reenabled while executing code from a
page marked uncachable by its Page Table Entry (PCD=1) but located in memory mapped as Write Back or
Write Through by the processor MTRRs, the processor could internally enter a state resulting in a system
hang.

Implication: Operating systems that enable and disable paging with the above described memory
configurations could hang. Intel has not observed this erratum to date in laboratory testing of commercially
available operating systems and applications.

Workaround: It is possible for BIOS code to contain a workaround for this erratum.

Status: For the steppings affected see the Summary of Changes at the beginning of this section.

A23. L2 Performance Counters Miscount L2_RQSTS
Problem: L2_RQSTS is a performance counter that counts the number of L2 cache access requests. This
counter increments for each incoming L2 cache request. In some cases, an L2 request cannot be serviced by
the L2 Cache. This request is then retried at a later time when the request can be serviced by the L2 cache.
When this happens, the L2_RQSTS counter counts the initial L2 cache request and the retried L2 cache
request, thereby counting the same request twice.

Implication: The L2_RQSTS counter may contain a larger erroneous number of L2 cache requests due to
this erratum. This erratum does not affect functionality of the Pentium II processor. This erratum only affects
the performance counter specified.

Workaround: None identified

Status: For the steppings affected see the Summary of Changes at the beginning of this section.

A24. Erroneous Signaling of User Mode Protection Violation
Problem: If the Pentium II processor attempts to access a page in physical memory marked not present
(Present bit clear), a page fault exception (#PF) is generated. Before proceeding, there is a narrow internal
timing window where the processor verifies that no other higher priority fault conditions are present. During
this time, it is possible for another agent to allocate a new page directory or page table entry (PDE/PTE)
corresponding to the same linear address of the original access, writing new values into the PDE/PTE with the
Access bit (A-bit) or the Dirty bit (D-bit) cleared. When the original processor completes its checking for other
fault conditions, and re-examines the A/D bit of the recently modified PDE/PTE, it finds that it has been
cleared. Internal hardware correctly signals this scenario as a condition to which the processor should
respond by setting the A/D bit, but erroneously reports it as a generic paging protection violation. Instead of
attempting to set the appropriate A/D bit, this event is reported as an Int14 with exception code 0x05, i.e., user
mode protection violation.

Implication: The occurrence of this scenario will result in the erroneous signaling of a user mode protection
violation instead of a page fault and may result in application termination depending on operating system
behavior in response to a user mode protection violation. Intel has only observed this erratum to date in
laboratory testing of multi-processor systems.

PENTIUM® II PROCESSOR SPECIFICATION UPDATE

 36

Workaround: Operating systems which allocate new PTEs and PDEs should set the Access bit (A-bit) and
Dirty bit (D-bit) to workaround this erratum. Alternatively, an operating system’s Int14 handler can determine if
a protection violation condition truly exists, and if none is found, return without further action.

Status: For the steppings affected see the Summary of Changes at the beginning of this section.

A25. Invalid Operation Not Signaled by the FIST Instruction on
Some Out of Range Operands

Problem: On certain, large, negative, floating-point operands, and only in three of the four possible
processor rounding modes, the instructions FIST[P] m16int and FIST[P] m32int do not detect that the operand
is so large that it will not fit into the target data size. As a consequence, the expected Invalid Operation
exception response for this situation is not correctly provided, nor is the Invalid Operation flag set in the
Floating-Point status word as specified in the Intel Architecture Software Developer’s Manual, Volume 2:
Instruction Set Reference. Under the failing conditions, noted below, the precision exception (#PE) flag will
also be incorrectly set.
The erratum occurs only when all of the following conditions are met:
1. The FIST[P] instruction is either a 16- or 32-bit operation; 64-bit operations are unaffected.
2. Either the ‘to nearest ’, ‘to zero’ or ‘up’ rounding modes are being used. The round ‘down’ mode is

unaffected by this erratum.
3. The sign bit of the floating-point operand is negative.
4. The floating-point operand being converted is significantly more negative than can be described by the

integer size being targeted.

ACTUAL vs. EXPECTED RESPONSE

A. Actual Response
When the required conditions are encountered, the processor provides the following response:
• Return the MAXNEG value (8000h for FIST16 & 80000000h for FIST32) to memory.
• The IE (Invalid Operation) bit in the Floating-Point status word is not set to flag the use of an invalid

operand.
• The PE (precision error) bit in the Floating-Point status word is set.
• No exception handler is invoked.
• In the case of a FISTP instruction the Operand will have been popped from the floating-point stack.

B. Expected Response
The expected processor response when the invalid operation exception is masked is:
• Return the MAXNEG value (8000h for FIST16 & 80000000h for FIST32) to memory.
• The IE (Invalid Operation) bit in the Floating-Point status word is set to flag the overflow.
• The PE (precision error) bit in the Floating-Point status word is not set.

The expected processor response when the invalid operation exception is unmasked is:
• Do not return a result to memory. Keep the original operand intact on the stack.
• The IE (Invalid Operation) bit in the Floating-Point status word is set to flag the overflow.
• The PE (precision error) bit in the Floating-Point status word is not set.

 PENTIUM® II PROCESSOR SPECIFICATION UPDATE

37

Vector to the user numeric exception handler.

Implication: Erroneous operation results when the operand is so large that it will not fit into the target data
size. The operands affected by this erratum are significantly outside (by a factor of 3X) the range that can be,
correctly, converted to an integer value. The figure below and corresponding table identifies the normal range
of integer numbers (between A and B) and the starting point of the operands affected by this erratum. Discrete
failing operands will be present in the range between point C and the maximum negative number that can be
represented by the processor (-21023 in double precision format). Note 2 below gives a qualitative description
of the nature of the discrete failing values. Software that does not rely on the Invalid Operation exception flag
being set and signaled by either an exception OR by software polling is not impacted by this erratum.

16-bit Operation A B C

 -32,768.0 +32,767.0 < -98304.0
32-bit Operation A B C

 -2,147,483,648.0 +2,147,483,647.0 < -6,442,450,944.0

Workaround: Any of two software workarounds will avoid occurrence of this erratum:
1. Range checking performed prior to execution of the FIST[P] instruction will prevent the overflow condition

from occurring, and may already be implemented as a coding style.

2. Software can use the presence of MAXNEG in the result integer to indicate that an out of range
conversion may have occurred.

Note1: A possible alternative is to use the FIST64 instruction to store the converted operand to memory and
access the lower 16 or 32 bits as the required integer. Even though this mechanism will not signal an
attempted out of range conversion with a 16 bit or 32 bit target, it is currently in use by many compilers today.

Note2: The values affected by this erratum are those which contain an exponent value within the affected
range, AND a specific bit pattern at a specific offset within the mantissa, AND at least one nonzero bit to the
right of the above bit pattern. The offset within the mantissa is a function of the floating-point exponent value.
The specific bit pattern is 0x8000 for FIST16 and 0x80000000 for FIST32. This means that for any given
exponent within the range, one mantissa value in every 216 possible mantissa values exhibits the erratum for
FIST16, and one mantissa value in every 232 possible mantissa values exhibits the erratum for FIST32.

Range for a valid
Integer

- 21023

+21023

Range of potentially
affected numbers.

Not all number in this
range are affected

0 A B C

PENTIUM® II PROCESSOR SPECIFICATION UPDATE

 38

Examples of affected values for FIST16, 80-bit binary notation (not an exhaustive list)
 (xx means any bit pattern, yy means any nonzero bit pattern)

sign exponent mantissa

1 100000000010100 1xxxxx1000000000000000yy

1 100000000010101 1xxxxxx1000000000000000yyy

1 100000000010110 1xxxxxxx1000000000000000yy

 Examples of affected values for FIST32, 80-bit binary notation (not an exhaustive list)
 (xx means any bit pattern, yy means any nonzero bit pattern)

sign exponent mantissa
1 100000000100011 1xxxx10000000000000000000000000000000yyyyyyyyyyyyyyyyyyyyyyyyyyy
1 100000000100100 1xxxxx10000000000000000000000000000000yyyyyyyyyyyyyyyyyyyyyyyyyy
1 100000000100101 1xxxxxx10000000000000000000000000000000yyyyyyyyyyyyyyyyyyyyyyyyy

Status: For the steppings affected see the Summary of Changes at the beginning of this section.

A26. FLUSH# Assertion Disables L2 Machine Check Exception
Reporting

Problem: Upon FLUSH# assertion, the L2 Machine Check Exception generation is disabled. Once the
FLUSH# pin is asserted, the processor disables the L2 MCA, by clearing the associated MCi_CTL control
register to “0”s. This operation is invisible to the software being executed.

Implication: Errors that should be reported by the L2 MCA are not reported from the time that the FLUSH#
signal is asserted until the time that the MCi_CTL register is written back to all “1”s. All other errors will
continue to be logged as normal.

Workaround: Platform specific code (e.g., BIOS or system management software) has the potential for
driving a device to assert the FLUSH# pin. If the platform specific code asserts the FLUSH# pin, this code
should be enhanced to detect that MCA Exceptions are globally enabled (via register CR4.MCE). The code
should then write “0”s to all of the MCi_CTL registers to clear any spurious entries and then write “1”s to all of
the MCi_CTL registers in order to re-enable exception reporting. Hardware devices in systems that require L2
error reporting which could assert the FLUSH# pin should not assert FLUSH#.

Status: For the steppings affected see the Summary of Changes at the beginning of this section.

 PENTIUM® II PROCESSOR SPECIFICATION UPDATE

39

A27. EFLAGS May Be Incorrect After a Multiprocessor TLB
Shootdown

Problem: When the Pentium II processor executes a read-modify-write arithmetic instruction with memory
as the destination, it is possible for a page fault to occur during the execution of the store on the memory
operand after the read operation has completed but before the write operation completes. In this case the
EFLAGS value pushed onto the stack of the page fault handler may be reflective of the status of the EFLAGS
register after the instruction would have completed execution rather than that before it has executed under a
certain set of circumstances. This class of instruction will initially perform a load operation that has the side
effect of ensuring that the final store portion of the instruction will successfully complete. The load ensures this
by bringing the page table information of the page containing the data into the DTLB. This page entry could be
evicted from the DTLB by speculative loads from other instructions that hit the same way of the DTLB, before
the store is executed. DTLB eviction will require at least three load operations that have linear address bits
15:12 equal to each other and address bits 31:16 different from each other in close physical proximity to the
arithmetic operation. If, in the very small window of time between the page eviction and the store execution,
the page table entry has had its page permissions tightened (e.g., from Present to Not Present, or from
Read/Write to Read Only, etc.) by the operating system in main memory by another processor (with no
corresponding synchronization and subsequent TLB flush), the store will generate a DTLB miss and a call to
the OS’s page fault handler. The EFLAGS register may have already been updated by the arithmetic portion
of the instruction before entry to the page fault handler. If under these circumstances the fault handler elects
to restart the instruction, the re-execution may generate an incorrect result. Instructions affected by this
erratum are the memory destination forms of ADC, SBB, RCR & RCL (instructions that use a flag, carry, as
input to the instruction). It should be noted that the locked version of these instructions is not impacted by this
erratum.

Implication: This scenario can only occur in a multiprocessor system running under an operating system
that implements a “lazy” TLB shootdown. Lazy TLB shootdown occurs when one processor makes changes to
the page tables in memory, and then signals other processors to remove the page entry from their TLB
without a multiprocessor synchronization being performed. To date, Intel has not observed this erratum in any
laboratory testing of commercially available software applications.

In a multiprocessor system the arithmetic flags of the EFLAGS register and its memory stack image, may
contain incorrect data if the read-modify-write arithmetic instruction encounters a page fault. Page Fault
handler software that uses the resulting EFLAGS may see incorrect information. If the original instruction is
restarted by the page fault handler, the instruction may produce incorrect results based on the prior
modifications of the EFLAGS register.

Workaround: Software may use the locked form of the ADC, SBB, RCR & RCL instructions to avoid this
erratum. Operating systems should ensure that no processor is currently accessing a page that is scheduled
to have its page permissions tightened, e.g., moved from Present to Not Present or have a page fault handler
that can handle any incorrect state. Intel is working with Multiprocessor Operating System vendors to ensure
that an OS level workaround is implemented as required.

Status: For the steppings affected see the Summary of Changes at the beginning of this section.

PENTIUM® II PROCESSOR SPECIFICATION UPDATE

 40

A28. Delayed Line Invalidation Issue During 2-Way MP Data
Ownership Transfer

Problem: In 2-way MP systems, each processor may attempt to modify a different portion of the same cache
line, referenced as line ‘A’ in the discussion below. When this erratum occurs (with the following example
given for a 2-way MP system with processors noted as ‘P0’ and ‘P1’), each processor contains a shared copy
of line A in both their L1 and L2 caches. Each processor must issue an invalidation cycle before that
processor can definitively source the results of its internal write to a portion of line A to the other processors.

There exists a narrow timing window when, if P0 wins the external bus invalidation race and gains ownership
rights to line A due to the sequence of bus invalidation traffic, P1 may not have completed the pending
invalidation of its own, currently valid and shared copy of line A. During this window, it is possible for a P1
internal opportunistic write to a portion of line A (while awaiting ownership rights) to occur with the original
shared copy of line A still resident in P1’s L2 cache. Such internal modification is permissible subject to
delaying the broadcast of such changes until line ownership has actually been gained. However, the
processor must ensure that any internal re-read by P1 of line A returns with data in the order actually written;
in this case, this should be the data written by P0. In the case of this erratum, the internal re-read uses the
data which was written by P1.

Implication: Multiprocessor or threaded application synchronization that is implemented via operating
system-provided synchronization constructs are not affected by this erratum. Applications which rely upon the
usage of locked semaphores rather than memory ordering are also unaffected. Uniprocessor systems are not
affected by this erratum. Intel has not identified, to date, any commercially available application or operating
system software which is affected by this erratum. If the erratum does occur, the delayed line invalidation that
occurs naturally due to the fact that one processor will necessarily win the invalidation race allows a narrow
timing window to exist where one processor may re-read a line that it just wrote internally, but return with the
stale data that was present from the previous shared state rather than the data written more recently by
another processor.

Workaround: Deterministic barriers beyond which program variables will not be modified can be achieved
via the usage of locked semaphore operations, and this scheme has been shown to effectively work around
this erratum.

Status: For the steppings affected see the Summary of Changes at the beginning of this section.

 PENTIUM® II PROCESSOR SPECIFICATION UPDATE

41

A29. Potential Early Deassertion of LOCK# During Split-Lock
Cycles

Problem: During a split-lock cycle there are four bus transactions: 1st ADS# (a partial read), 2nd ADS# (a
partial read), 3rd ADS# (a partial write), and the 4th ADS# (a partial write). Due to this erratum, LOCK# may
deassert one clock after the 4th ADS# of the split-lock cycle instead of after the 4th RS# assertion
corresponding to the 4th ADS# has been sampled. The following sequence of events are required for this
erratum to occur:

1. A lock cycle occurs (split or nonsplit).
2. Five more bus transactions (assertion of ADS#) occur.
3. A split-lock cycle occurs and BNR# toggles after the 3rd ADS# (partial write) of the split-lock cycle. This in

turn delays the assertion of the 4th ADS# of the split-lock cycle. BNR# toggling at this time could most
likely happen when the bus is set for an IOQ depth of 2.

When all of these events occur, LOCK# will be deasserted in the next clock after the 4th ADS# of the split-lock
cycle.

Implication: This may affect chipset logic which monitors the behavior of LOCK# deassertion.

Workaround: None identified

Status: For the steppings affected see the Summary of Changes at the beginning of this section.

A30. A20M# May Be Inverted After Returning From SMM and
Reset

Problem: This erratum is seen when software causes the following events to occur:
1. The assertion of A20M# in real address mode.
2. After entering the 1-Mbyte address wrap-around mode caused by the assertion of A20M#, there is an

assertion of SMI# intended to cause a Reset or remove power to the processor. Once in the SMM
handler, software saves the SMM state save map to an area of nonvolatile memory from which it can be
restored at some point in the future. Then software asserts RESET# or removes power to the processor.

3. After exiting Reset or completion of power-on, software asserts SMI# again. Once in the SMM handler, it
then retrieves the old SMM state save map which was saved in event 2 above and copies it into the
current SMM state save map. Software then asserts A20M# and executes the RSM instruction. After
exiting the SMM handler, the polarity of A20M# is inverted.

Implication: If this erratum occurs, A20M# will behave with a polarity opposite from what is expected (i.e.,
the 1-Mbyte address wrap-around mode is enabled when A20M# is deasserted, and does not occur when
A20M# is asserted).
Workaround: Software should save the A20M# signal state in nonvolatile memory before an assertion of
RESET# or a power down condition. After coming out of Reset or at power on, SMI# should be asserted
again. During the restoration of the old SMM state save map described in event 3 above, the entire map
should be restored, except for bit 5 of the byte at offset 7F18h. This bit should retain the value assigned to it
when the SMM state save map was created in event 3. The SMM handler should then restore the original
value of the A20M# signal.

Status: For the steppings affected see the Summary of Changes at the beginning of this section.

PENTIUM® II PROCESSOR SPECIFICATION UPDATE

 42

A31. Reporting of Floating-Point Exception May Be Delayed
Problem: The Pentium II processor normally reports a floating-point exception for an instruction when the
next floating-point or MMX™ technology instruction is executed. The assertion of FERR# and/or the INT 16
interrupt corresponding to the exception may be delayed until the floating-point or MMX technology instruction
after the one which is expected to trigger the exception, if the following conditions are met:
1. A floating-point instruction causes an exception.
2. Before another floating-point or MMX technology instruction, any one of the following occurs:

a. A subsequent data access occurs to a page which has not been marked as accessed, or
b. Data is referenced which crosses a page boundary, or
c. A possible page-fault condition is detected which, when resolved, completes without faulting.

3. The instruction causing event 2 above is followed by a MOVQ or MOVD store instruction.

Implication: This erratum only affects software which operates with floating-point exceptions unmasked.
Software which requires floating-point exceptions to be visible on the next floating-point or MMX technology
instruction, and which uses floating-point calculations on data which is then used for MMX technology
instructions, may see a delay in the reporting of a floating-point instruction exception in some cases. Note that
mixing floating-point and MMX technology instructions in this way is not recommended.

Workaround: Inserting a WAIT or FWAIT instruction (or reading the floating-point status register) between
the floating-point instruction and the MOVQ or MOVD instruction will give the expected results. This is already
the recommended practice for software.

Status: For the steppings affected see the Summary of Changes at the beginning of this section.

 PENTIUM® II PROCESSOR SPECIFICATION UPDATE

43

A32. EFLAGS Discrepancy on a Page Fault After a Multiprocessor
TLB Shootdown

Problem: This erratum may occur when the Pentium II processor executes one of the following read-modify-
write arithmetic instructions and a page fault occurs during the store of the memory operand: ADD, AND, BTC,
BTR, BTS, CMPXCHG, DEC, INC, NEG, NOT, OR, ROL/ROR, SAL/SAR/SHL/SHR, SHLD, SHRD, SUB,
XOR, and XADD. In this case, the EFLAGS value pushed onto the stack of the page fault handler may reflect
the status of the register after the instruction would have completed execution rather than before it. The
following conditions are required for the store to generate a page fault and call the operating system page fault
handler:
1. The store address entry must be evicted from the DTLB by speculative loads from other instructions that

hit the same way of the DTLB before the store has completed. DTLB eviction requires at least three load
operations that have linear address bits 15:12 equal to each other and address bits 31:16 different from
each other in close physical proximity to the arithmetic operation.

2. The page table entry for the store address must have its permissions tightened during the very small
window of time between the DTLB eviction and execution of the store. Examples of page permission
tightening include from Present to Not Present or from Read/Write to Read Only, etc.

3. Another processor, without corresponding synchronization and TLB flush, must cause the permission
change.

Implication: This scenario may only occur on a multiprocessor platform running an operating system that
performs “lazy” TLB shootdowns. The memory image of the EFLAGS register on the page fault handler’s
stack prematurely contains the final arithmetic flag values although the instruction has not yet completed. Intel
has not identified any operating systems that inspect the arithmetic portion of the EFLAGS register during a
page fault nor observed this erratum in laboratory testing of software applications.

Workaround: No workaround is needed upon normal restart of the instruction, since this erratum is
transparent to the faulting code and results in correct instruction behavior. Operating systems may ensure that
no processor is currently accessing a page that is scheduled to have its page permissions tightened or have a
page fault handler that ignores any incorrect state.

Status: For the steppings affected see the Summary of Changes at the beginning of this section.

PENTIUM® II PROCESSOR SPECIFICATION UPDATE

 44

A33. Near CALL to ESP Creates Unexpected EIP Address
Problem: As documented, the CALL instruction saves procedure linking information in the procedure stack
and jumps to the called procedure specified with the destination (target) operand. The target operand
specifies the address of the first instruction in the called procedure. This operand can be an immediate value,
a general purpose register, or a memory location. When accessing an absolute address indirectly using the
stack pointer (ESP) as a base register, the base value used is the value in the ESP register before the
instruction executes. However, when accessing an absolute address directly using ESP as the base register,
the base value used is the value of ESP after the return value is pushed on the stack, not the value in the ESP
register before the instruction executed.
Implication: Due to this erratum, the processor may transfer control to an unintended address. Results are
unpredictable, depending on the particular application, and can range from no effect to the unexpected
termination of the application due to an exception. Intel has observed this erratum only in a focused testing
environment. Intel has not observed any commercially available operating system, application, or compiler
that makes use of or generates this instruction.

Workaround: If the other seven general purpose registers are unavailable for use, and it is necessary to do
a CALL via the ESP register, first push ESP onto the stack, then perform an indirect call using ESP (e.g.,
CALL [ESP]). The saved version of ESP should be popped off the stack after the call returns.

Status: For the steppings affected see the Summary of Changes at the beginning of this section.

A34. Deep Sleep Exit Transition May Cause Hang
Problem: Under normal operating conditions, when a system enters a power conservation mode, it enters
System Management Mode (SMM), puts the processor in the Stop Grant State, followed by Sleep State and
then may enter Deep Sleep State. Upon a resume event, the processor exits Deep Sleep but remains in SMM
execution space until the SMI handler completes the system resume cycle.

If, prior to entering the Deep Sleep, the system was in SMM space, it is possible for the processor to exit Deep
Sleep state and begin making accesses in the ‘normal’ memory space instead of staying in SMM space. The
converse is also possible, i.e., if the processor is in ‘normal’ space prior to entering the Deep Sleep state, the
processor may exit Deep Sleep and make accesses in SMM space instead.
Implication: Systems may execute incorrect code after exiting Deep Sleep, due to accesses to incorrect
address space. This may produce unpredictable behavior, most likely hanging the system.

Workaround: Avoid entering Deep Sleep. The table below offers the possible state transitions:

System State Processor State Possible Solutions

Name
ACPI

Equivalent Transition
ACPI

Equivalent Description
Suggested
Solution

1 Active S0 Normal to
Stop Grant

C0, C1 N/A None necessary

 PENTIUM® II PROCESSOR SPECIFICATION UPDATE

45

System State Processor State Possible Solutions

Name
ACPI

Equivalent Transition
ACPI

Equivalent Description
Suggested
Solution

2 Active S0 Stop Grant
to Sleep to
Deep Sleep

C1, C3 Use Stop
Grant/Sleep
only; do not
use Deep
Sleep

BIOS can specify
the C3 latency
time to be
>1000 �s in the
ACPI FACP
table
(P_LVL3_LAT,
worst case
hardware latency
for the C3 state).

3 Powered
On
Suspend

S1, S2 Stop Grant
to Deep
Sleep

C1, C3 Reset CPU
only and flush
the cache
without
resetting the
PCI bus, i.e.,
use
POS_CCL
state (POS
with CPU
Context Lost)
instead of
POS state.

BIOS can
prevent the OS
from entering the
S1 state by NOT
defining the S1
object in the
ACPI DSDT
table. Ensure
that the cache is
always flushed.

Status: For the steppings affected see the Summary of Changes at the beginning of this section.

A35. Built-in Self Test Always Gives Nonzero Result
Problem: The Built-in Self Test (BIST) of the Pentium II processor does not give a zero result to indicate a
passing test. Regardless of pass or fail status, bit 6 of the BIST result in the EAX register after running BIST is
set.
Implication: Software that relies on a zero result to indicate a passing BIST will indicate BIST failure.

Workaround: Mask bit 6 of the BIST result register when analyzing BIST results.

Status: For the steppings affected see the Summary of Changes at the beginning of this section.

PENTIUM® II PROCESSOR SPECIFICATION UPDATE

 46

A36. THERMTRIP# May Not Be Asserted as Specified
Problem: THERMTRIP# is a signal on the Pentium II processor which is asserted when the core reaches a
critical temperature during operation as detailed in the processor specification. The Pentium II processor may
not assert THERMTRIP# until a much higher temperature than the one specified is reached.

Implication: The THERMTRIP# feature is not functional on the Pentium II processor. Note that this erratum
can only occur when the processor is running with a TPLATE temperature over the maximum specification of
75° C.

Workaround: Avoid operation of the Pentium II processor outside of the thermal specifications defined by
the processor specifications.

Status: For the steppings affected see the Summary of Changes at the beginning of this section.

A37. Cache State Corruption in the Presence of Page A/D-bit
Setting and Snoop Traffic

Problem: If an operating system uses the Page Access and/or Dirty bit feature implemented in the Intel
architecture and there is a significant amount of snoop traffic on the bus, while the processor is setting the
Access and/or Dirty bit the processor may inappropriately change a single L1 cache line to the modified state.

Implication: The occurrence of this erratum may result in cache incoherency, which may cause parity
errors, data corruption (with no parity error), unexpected application or operating system termination, or
system hangs.

Workaround: It is possible for BIOS code to contain a workaround for this erratum.

Status: For the steppings affected see the Summary of Changes at the beginning of this section.

A38. Snoop Cycle Generates Spurious Machine Check Exception
Problem: The processor may incorrectly generate a Machine Check Exception (MCE) when it processes a
snoop access that does not hit the L1 data cache. Due to an internal logic error, this type of snoop cycle may
still check data parity on undriven data lines. The processor generates a spurious machine check exception as
a result of this unnecessary parity check.

Implication: A spurious machine check exception may result in an unexpected system halt if Machine
Check Exception reporting is enabled in the operating system.

Workaround: It is possible for BIOS code to contain a workaround for this erratum. This workaround would
fix the erratum, however, the data parity error will still be reported.

Status: For the steppings affected see the Summary of Changes at the beginning of this section.

 PENTIUM® II PROCESSOR SPECIFICATION UPDATE

47

A39. MOVD/MOVQ Instruction Writes to Memory Prematurely
Problem: When an instruction encounters a fault, the faulting instruction should not modify any CPU or
system state. However, when the MMX™ technology store instructions MOVD and MOVQ encounter any of
the following events, it is possible for the store to be committed to memory even though it should be canceled:
1. If CR0.EM = 1 (Emulation bit), then the store could happen prior to the triggered invalid opcode

exception.
2. If the floating-point Top-of-Stack (FP TOS) is not zero, then the store could happen prior to executing the

processor assist routine that sets the FP TOS to zero.
3. If there is an unmasked floating-point exception pending, then the store could happen prior to the

triggered unmasked floating-point exception.
4. If CR0.TS = 1 (Task Switched bit), then the store could happen prior to the triggered Device Not

Available (DNA) exception.

If the MOVD/MOVQ instruction is restarted after handling any of the above events, then the store will be
performed again, overwriting with the expected data. The instruction will not be restarted after event 1. The
instruction will definitely be restarted after events 2 and 4. The instruction may or may not be restarted after
event 3, depending on the specific exception handler.

Implication: This erratum causes unpredictable behavior in an application if MOVD/MOVQ instructions are
used to manipulate semaphores for multiprocessor synchronization, or if these MMX instructions are used to
write to uncacheable memory or memory mapped I/O that has side effects, e.g., graphics devices. This
erratum is completely transparent to all applications that do not have these characteristics. When each of the
above conditions is analyzed:
1. Setting the CR0.EM bit forces all floating-point/MMX instructions to be handled by software emulation.

The MOVD/MOVQ instruction, which is an MMX instruction, would be considered an invalid instruction.
Operating systems typically terminates the application after getting the expected invalid opcode fault.

2. The FP TOS not equal to 0 case only occurs when the MOVD/MOVQ store is the first MMX instruction in
an MMX technology routine and the previous floating-point routine did not clean up the floating-point
states properly when it exited. Floating-point routines commonly leave TOS to 0 prior to exiting. For a
store to be executed as the first MMX instruction in an MMX technology routine following a floating-point
routine, the software would be implementing instruction level intermixing of floating-point and MMX
instructions. Intel does not recommend this practice.

3. The unmasked floating-point exception case only occurs if the store is the first MMX technology instruction
in an MMX technology routine and the previous floating-point routine exited with an unmasked floating-
point exception pending. Again, for a store to be executed as the first MMX instruction in an MMX
technology routine following a floating-point routine, the software would be implementing instruction level
intermixing of floating-point and MMX instructions. Intel does not recommend this practice.

Device Not Available (DNA) exceptions occur naturally when a task switch is made between two tasks that
use either floating-point instructions and/or MMX instructions. For this erratum, in the event of the DNA
exception, data from the prior task may be temporarily stored to the present task’s program state.

Workaround: Do not use MMX instructions to manipulate semaphores for multiprocessor synchronization.
Do not use MOVD/MOVQ instructions to write directly to I/O devices if doing so triggers user visible side
effects. An OS can prevent old data from being stored to a new task’s program state by cleansing the FPU
explicitly after every task switch. Follow Intel’s recommended programming paradigms in the Intel Architecture
Optimization Manual for writing MMX technology programs. Specifically, do not mix floating-point and MMX
instructions. When transitioning to new a MMX technology routine, begin with an instruction that does not
depend on the prior state of either the MMX technology registers or the floating-point registers, such as a load
or PXOR mm0, mm0. Be sure that the FP TOS is clear before using MMX instructions.

PENTIUM® II PROCESSOR SPECIFICATION UPDATE

 48

Status: For the steppings affected see the Summary of Changes at the beginning of this section.

A40. Memory Type Undefined for Nonmemory Operations
Problem: The Memory Type field for nonmemory transactions such as I/O and Special Cycles are
undefined. Although the Memory Type attribute for nonmemory operations logically should (and usually does)
manifest itself as UC, this feature is not designed into the implementation and is therefore inconsistent.

Implication: Bus agents may decode a non-UC memory type for nonmemory bus transactions.

Workaround: Bus agents must consider transaction type to determine the validity of the Memory Type field
for a transaction.

Status: For the steppings affected see the Summary of Changes at the beginning of this section.

 PENTIUM® II PROCESSOR SPECIFICATION UPDATE

49

A41. Infinite Snoop Stall During L2 Initialization of MP Systems
Problem: It is possible for snoop traffic generated on the system bus while a processor is executing its L2
cache initialization routine to cause the initializing processor to hang.

Implication: A DP (2-way) system which does not suppress snoop traffic while L2 caches are being
initialized may hang during this initialization sequence.

Workaround: System BIOS can create an execution environment which allows processors to initialize their
L2 caches without the system generating any snoop traffic on the bus.

Below is a pseudo-code fragment, designed explicitly for a two-processor system, that uses a serial algorithm
to initialize each processor’s L2 cache:

Suppress_all_I/O_traffic()
K = 0;
while (K <= 1)
{
/* Obtain current value of K. This forces both Temp and K into */
/* the L1 cache. Note that Temp could also be maintained in a */
/* general purpose register. */

Temp = K;
Wait_until_all_processors_are_signed_in_at_barrier()
if (logical_proc_APIC_id == K) {
{
wait_10_usecs_delay_loop(); /* this time delay, required */
/* in the worst case, allows */
/* the barrier semaphore to */
/* settle to shared state. */
Initialize L2 cache
K++
}
else
while (Temp == K);
}
}

This algorithm prevents bus snoop traffic from the other processors, which would otherwise cause the
initializing processor to hang. The algorithm assumes that the L1 cache is enabled (the Temp and K variables
must be cached by each processor). Also, the Memory Type Range Register (MTRR) for the data segment
must be set to WB (writeback) memory type.

Status: For the steppings affected see the Summary of Changes at the beginning of this section.

PENTIUM® II PROCESSOR SPECIFICATION UPDATE

 50

A42. Bus Protocol Conflict With Optimized Chipsets
Problem: A “dead” turnaround cycle with no agent driving the address, address parity, request command, or
request parity signals must occur between the processor driving these signals and the chipset driving them
after asserting BPRI#. The Pentium II processor does not follow this protocol. Thus, if a system uses a chipset
or third party agent which optimizes its arbitration latency (reducing it to 2 clocks when it observes an active
(low) ADS# signal and an inactive (high) LOCK# signal on the same clock that BPRI# is asserted (driven
low)), the Pentium II processor may cause bus contention during an unlocked bus exchange.

Implication: This violation of the bus exchange protocol when using a reduced arbitration latency may
cause a system-level setup timing violation on the address, address parity, request command, or request
parity signals on the system bus. This may result in a system hang or assertion of the AERR# signal, causing
an attempted corrective action or shutdown of the system, as the system hardware and software dictate. The
possibility of failure due to the contention caused by this erratum may be increased due to the processor’s
internal active pull-up of these signals on the clock after the signals are no longer being driven by the
processor.

Workaround: Ensure that OS code does not clear the D-bit for system pages (including any pages that
contain a task gate or TSS). Use task gates rather than jumping to a new TSS when performing a task switch.

Status: For the steppings affected see the Summary of Changes at the beginning of this section.

A43. FP Data Operand Pointer May Not Be Zero After Power On or
Reset

Problem: The FP Data Operand Pointer, as specified, should be reset to zero upon power on or Reset by
the processor. Due to this erratum, the FP Data Operand Pointer may be nonzero after power on or Reset.

Implication: Software which uses the FP Data Operand Pointer and count on its value being zero after
power on or Reset without first executing an FINIT/FNINIT instruction will use an incorrect value, resulting in
incorrect behavior of the software.

Workaround: Software should follow the recommendation in Section 8.2 of the Intel Architecture Software
Developer’s Manual, Volume 3: System Programming Guide (Order Number 243192). This recommendation
states that if the FPU will be used, software-initialization code should execute an FINIT/FNINIT instruction
following a hardware reset. This will correctly clear the FP Data Operand Pointer to zero.

Status: For the steppings affected see the Summary of Changes at the beginning of this section.

 PENTIUM® II PROCESSOR SPECIFICATION UPDATE

51

A44. MOVD Following Zeroing Instruction Can Cause Incorrect
Result

Problem: An incorrect result may be calculated after the following circumstances occur:
1. A register has been zeroed with either a SUB reg, reg instruction or an XOR reg, reg instruction,
2. A value is moved with sign extension into the same register’s lower 16 bits; or a signed integer multiply is

performed to the same register’s lower 16 bits,
3. This register is then copied to an MMX™ technology register using the MOVD instruction prior to any

other operations on the sign-extended value.

Specifically, the sign may be incorrectly extended into bits 16-31 of the MMX technology register. Only the
MMX technology register is affected by this erratum.

The erratum only occurs when the 3 following steps occur in the order shown. The erratum may occur with up
to 40 intervening instructions that do not modify the sign-extended value between steps 2 and 3.
1. XOR EAX, EAX

or SUB EAX, EAX
2. MOVSX AX, BL

or MOVSX AX, byte ptr <memory address> or MOVSX AX, BX
or MOVSX AX, word ptr <memory address> or IMUL BL (AX implicit, opcode F6 /5)
or IMUL byte ptr <memory address> (AX implicit, opcode F6 /5) or IMUL AX, BX (opcode 0F AF /r)
or IMUL AX, word ptr <memory address> (opcode 0F AF /r) or IMUL AX, BX, 16 (opcode 6B /r ib)
or IMUL AX, word ptr <memory address>, 16 (opcode 6B /r ib) or IMUL AX, 8 (opcode 6B /r ib)
or IMUL AX, BX, 1024 (opcode 69 /r iw)
or IMUL AX, word ptr <memory address>, 1024 (opcode 69 /r iw) or IMUL AX, 1024 (opcode 69 /r iw)
or CBW

3. MOVD MM0, EAX

Note that the values for immediate byte/words are merely representative (i.e., 8, 16, 1024) and that any value
in the range for the size may be affected. Also, note that this erratum may occur with “EAX” replaced with any
32-bit general purpose register, and “AX” with the corresponding 16-bit version of that replacement. “BL” or
“BX” can be replaced with any 8-bit or 16-bit general purpose register. The CBW and IMUL (opcode F6 /5)
instructions are specific to the EAX register only.

In the example, EAX is forced to contain 0 by the XOR or SUB instructions. Since the four types of the
MOVSX or IMUL instructions and the CBW instruction modify only bits 15:8 of EAX by sign extending the
lower 8 bits of EAX, bits 31:16 of EAX should always contain 0. This implies that when MOVD copies EAX to
MM0, bits 31:16 of MM0 should also be 0. Under certain scenarios, bits 31:16 of MM0 are not 0, but are
replicas of bit 15 (the 16th bit) of AX. This is noticeable when the value in AX after the MOVSX, IMUL or CBW
instruction is negative, i.e., bit 15 of AX is a 1.

When AX is positive (bit 15 of AX is a 0), MOVD will always produce the correct answer. If AX is negative (bit
15 of AX is a 1), MOVD may produce the right answer or the wrong answer depending on the point in time
when the MOVD instruction is executed in relation to the MOVSX, IMUL or CBW instruction.

Implication: The effect of incorrect execution will vary from unnoticeable, due to the code sequence
discarding the incorrect bits, to an application failure. If the MMX technology-enabled application in which
MOVD is used to manipulate pixels, it is possible for one or more pixels to exhibit the wrong color or position
momentarily. It is also possible for a computational application that uses the MOVD instruction in the manner
described above to produce incorrect data. Note that this data may cause an unexpected page fault or general
protection fault.

PENTIUM® II PROCESSOR SPECIFICATION UPDATE

 52

Workaround: There are two possible workarounds for this erratum:

1. Rather than using the MOVSX-MOVD, IMUL-MOVD or CBW-MOVD pairing to handle one variable at a
time, use the sign extension capabilities (PSRAW, etc.) within MMX technology for operating on multiple
variables. This would result in higher performance as well.

2. Insert another operation that modifies or copies the sign-extended value between the
MOVSX/IMUL/CBW instruction and the MOVD instruction as in the example below:

XOR EAX, EAX (or SUB EAX, EAX)
MOVSX AX, BL (or other MOVSX, other IMUL or CBW instruction)
*MOV EAX, EAX
MOVD MM0, EAX

*Note: MOV EAX, EAX is used here as it is fairly generic. Again, EAX can be any 32-bit register.

Status: For the steppings affected see the Summary of Changes at the beginning of this section.

A45. Premature Execution of a Load Operation Prior to Exception
Handler Invocation

Problem: This erratum can occur with any of the following situations:
1. If an instruction that performs a memory load causes a code segment limit violation,
2. If a waiting floating-point instruction or MMX™ instruction that performs a memory load has a floating-

point exception pending, or
3. If an MMX instruction that performs a memory load and has either CR0.EM =1 (Emulation bit set), or a

floating-point Top-of-Stack (FP TOS) not equal to 0, or a DNA exception pending.

If any of the above circumstances occur it is possible that the load portion of the instruction will have executed
before the exception handler is entered.

Implication: In normal code execution where the target of the load operation is to write back memory there
is no impact from the load being prematurely executed, nor from the restart and subsequent re-execution of
that instruction by the exception handler. If the target of the load is to uncached memory that has a system
side-effect, restarting the instruction may cause unexpected system behavior due to the repetition of the side-
effect.

Workaround: Code which performs loads from memory that has side-effects can effectively workaround this
behavior by using simple integer-based load instructions when accessing side-effect memory and by ensuring
that all code is written such that a code segment limit violation cannot occur as a part of reading from side-
effect memory.

Status: For the steppings affected see the Summary Table of Changes at the beginning of this section.

 PENTIUM® II PROCESSOR SPECIFICATION UPDATE

53

A46. Read Portion of RMW Instruction May Execute Twice
Problem: When the Pentium II processor executes a read-modify-write (RMW) arithmetic instruction, with
memory as the destination, it is possible for a page fault to occur during the execution of the store on the
memory operand after the read operation has completed but before the write operation completes.

If the memory targeted for the instruction is UC (uncached), memory will observe the occurrence of the initial
load before the page fault handler and again if the instruction is restarted.

Implication: This erratum has no effect if the memory targeted for the RMW instruction has no side-effects.
If, however, the load targets a memory region that has side-effects, multiple occurrences of the initial load may
lead to unpredictable system behavior.

Workaround: Hardware and software developers who write device drivers for custom hardware that may
have a side-effect style of design should use simple loads and simple stores to transfer data to and from the
device. Then, the memory location will simply be read twice with no additional implications.

Status: For the steppings affected see the Summary of Changes at the beginning of this section.

A47. Test Pin Must Be High During Power Up
Problem: The processor uses the PWRGOOD signal to ensure that no voltage sequencing issues arise; no
pin assertions should cause the processor to change its behavior until this signal is asserted, when all power
supplies and clocks to the processor are valid and stable. However, if the TESTHI signal is at a low voltage
level when the core power supply comes up, it will cause the processor to enter an invalid test state.

Implication: If this erratum occurs, the system may boot normally however, L2 cache may not be initialized.

Workaround: Ensure that the 2.5 V (VCC2.5) power supply ramps at or before the 2.0 V (VCCCORE) power
plane. If 2.5 V ramps after core, pull up TESTHI to 2.5 V (VCC2.5) with a 100K ohm resistor. The internal pull-
up will keep the signal from being asserted during power up. For new motherboard designs, it is
recommended that TESTHI be pulled up to 2.0 V (VCCCORE) using a 1K-10K ohm resistor.

Status: For the steppings affected see the Summary of Changes at the beginning of this section.

A48. Intervening Writeback May Occur During Locked Transaction
Problem: During a transaction which has the LOCK# signal asserted (i.e., a locked transaction), there is a
potential for an explicit writeback caused by a previous transaction to complete while the bus is locked. The
explicit writeback will only be issued by the processor which has locked the bus, and the lock signal will not be
deasserted until the locked transaction completes, but the atomicity of a lock may be compromised by this
erratum. Note that the explicit writeback is an expected cycle, and no memory ordering violations will occur.
This erratum is, however, a violation of the bus lock protocol.

Implication: A chipset or third-party agent (TPA) which tracks bus transactions in such a way that locked
transactions may only consist of a read-write or read-read-write-write locked sequence, with no transactions
intervening, may lose synchronization of state due to the intervening explicit writeback. Systems using
chipsets or TPAs which can accept the intervening transaction will not be affected.

Workaround: The bus tracking logic of all devices on the system bus should allow for the occurrence of an
intervening transaction during a locked transaction.

PENTIUM® II PROCESSOR SPECIFICATION UPDATE

 54

Status: For the steppings affected see the Summary of Changes at the beginning of this section.

A49. MC2_STATUS MSR Has Model-Specific Error Code and
Machine Check Architecture Error Code Reversed

Problem: The Intel Architecture Software Developer’s Manual, Volume 3: System Programming Guide,
documents that for the MCi_STATUS MSR, bits 15:0 contain the MCA (machine-check architecture) error
code field, and bits 31:16 contain the model-specific error code field. However, for the MC2_STATUS MSR,
these bits have been reversed. For the MC2_STATUS MSR, bits 15:0 contain the model-specific error code
field and bits 31:16 contain the MCA error code field.

Implication: A machine check error may be decoded incorrectly if this erratum on the MC2_STATUS MSR
is not taken into account.

Workaround: When decoding the MC2_STATUS MSR, reverse the two error fields.

Status: For the steppings affected see the Summary of Changes at the beginning of this section.

A50. Mixed Cacheability of Lock Variables Is Problematic in MP
Systems

Problem: This errata only affects multiprocessor systems where a lock variable address is marked
cacheable in one processor and uncacheable in any others. The processors which have it marked
uncacheable may stall indefinitely when accessing the lock variable. The stall is only encountered if:
• One processor has the lock variable cached, and is attempting to execute a cache lock.
• If the processor which has that address cached has it cached in its L2 only.

Other processors, meanwhile, issue back to back accesses to that same address on the bus.

Implication: MP systems where all processors either use cache locks or consistent locks to uncacheable
space will not encounter this problem. If, however, a lock variable’s cacheability varies in different processors,
and several processors are all attempting to perform the lock simultaneously, an indefinite stall may be
experienced by the processors which have it marked uncacheable in locking the variable (if the conditions
above are satisfied). Intel has only encountered this problem in focus testing with artificially generated external
events. Intel has not currently identified any commercial software which exhibits this problem.

Workaround: Follow a homogenous model for the memory type range registers (MTRRs), ensuring that all
processors have the same cacheability attributes for each region of memory; do not use locks whose memory
type is cacheable on one processor, and uncacheable on others. Avoid page table aliasing, which may
produce a nonhomogenous memory model.

Status: For the steppings affected see the Summary of Changes at the beginning of this section.

 PENTIUM® II PROCESSOR SPECIFICATION UPDATE

55

A51. MOV With Debug Register Causes Debug Exception
Problem: When in V86 mode, if a MOV instruction is executed on debug registers, a general-protection
exception (#GP) should be generated, as documented in the Intel Architecture Software Developer's Manual,
Volume 3: System Programming Guide, Section 15.2. However, in the case when the general detect enable
flag (GD) bit is set, the observed behavior is that a debug exception (#DB) is generated instead.

Implication: With debug-register protection enabled (i.e., the GD bit set), when attempting to execute a
MOV on debug registers in V86 mode, a debug exception will be generated instead of the expected general-
protection fault.

Workaround: In general, operating systems do not set the GD bit when they are in V86 mode. The GD bit is
generally set and used by debuggers. The debug exception handler should check that the exception did not
occur in V86 mode before continuing. If the exception did occur in V86 mode, the exception may be directed
to the general-protection exception handler.

Status: For the steppings affected see the Summary of Changes at the beginning of this section.

A52. Upper Four PAT Entries Not Usable With Mode B or Mode C
Paging

Problem: The Page Attribute Table (PAT) contains eight entries, which must all be initialized and considered
when setting up memory types for the Pentium II processor. However, in Mode B or Mode C paging, the
upper four entries do not function correctly for 4-Kbyte pages. Specifically, bit seven of page table entries that
translate addresses to 4-Kbyte pages should be used as the upper bit of a three-bit index to determine the
PAT entry that specifies the memory type for the page. When Mode B (CR4.PSE = 1) and/or Mode C
(CR4.PAE) are enabled, the processor forces this bit to zero when determining the memory type regardless of
the value in the page table entry. The upper four entries of the PAT function correctly for 2-Mbyte and 4-Mbyte
large pages (specified by bit 12 of the page directory entry for those translations).

Implication: Only the lower four PAT entries are useful for 4 KB translations when Mode B or C paging is
used. In Mode A paging (4-Kbyte pages only), all eight entries may be used. All eight entries may be used for
large pages in Mode B or C paging.

Workaround: None identified

Status: For the steppings affected see the Summary of Changes at the beginning of this section.

PENTIUM® II PROCESSOR SPECIFICATION UPDATE

 56

A53. UC Write May Be Reordered Around a Cacheable Write
Problem: After a write occurs to a UC (uncacheable) region of memory, there exists a small window of
opportunity where a subsequent write transaction targeted for a UC memory region may be reordered in front
of a write targeted to a region of cacheable memory. This erratum can only occur during the following
sequence of bus transactions:
• A write to memory mapped as UC occurs,
• A write to memory mapped as cacheable (WB or WT) which is present in Shared or Invalid state in the L2

cache occurs, and
• During the bus snoop of the cacheable line, another store to UC memory occurs.

Implication: If this erratum occurs, the second UC write will be observed on the bus prior to the Bus
Invalidate Line (BIL) or Bus Read Invalidate Line (BRIL) transaction for the cacheable write. This presents a
small window of opportunity for a fast bus-mastering I/O device which triggers an action based on the second
UC write to arbitrate and gain ownership of the bus prior to the completion of the cacheable write, possibly
retrieving stale data.

Workaround: It is possible for BIOS code to contain a workaround for this erratum.

Status: For the steppings affected see the Summary of Changes at the beginning of this section.

A54. Incorrect Memory Type May Be Used When MTRRs Are
Disabled

Problem: If the Memory Type Range Registers (MTRRs) are disabled without setting the CR0.CD bit to
disable caching, and the Page Attribute Table (PAT) entries are left in their default setting, which includes
UC- memory type (PCD = 1, PWT = 0; see the Intel Architecture Software Developer’s Manual, Volume 3:
System Programming Guide, for details), data for entries set to UC- will be cached as if the memory type were
writeback (WB). Also, if the page tables are set to a memory type other than UC-, then the effective memory
type used will be that specified by the page tables and PAT. Any regions of memory normally forced to UC by
the MTRRs (such as the VGA video region) may now be incorrectly cached and speculatively accessed.
Even if the CR0.CD bit is correctly set when the MTRRs are disabled and the PAT is left in its default state,
then retries and out of order retirement of UC accesses may occur, contrary to the strong ordering expected
for these transactions.

Implication: The occurrence of this erratum may result in the use of incorrect data and unpredictable
processor behavior when running with the MTRRs disabled. Interaction between the mouse, cursor, and VGA
video display leading to video corruption may occur as a symptom of this erratum as well.

Workaround: Ensure that when the MTRRs are disabled, the CR0.CD bit is set to disable caching. This
recommendation is described in Intel Architecture Software Developer’s Manual, Volume 3: System
Programming Guide. If it is necessary to disable the MTRRs, first clear the PAT register before setting the
CR0.CD bit, flushing the caches, and disabling the MTRRs to ensure that UC memory type is always returned
and strong ordering is maintained.

Status: For the steppings affected see the Summary of Changes at the beginning of this section.

 PENTIUM® II PROCESSOR SPECIFICATION UPDATE

57

A55. Misprediction in Program Flow May Cause Unexpected
Instruction Execution

Problem: To optimize performance through dynamic execution technology, the P6 architecture has the
ability to predict program flow. In the event of a misprediction, the processor will normally clear the incorrect
prediction, adjust the EIP to the correct location, and flush out any instructions it may have fetched from the
misprediction. In circumstances where a branch misprediction occurs, the correct target of the branch has
already been opportunistically fetched into the streaming buffers, and the L2 cycle caused by the evicted
cache line is retried by the L2 cache, the processor may fail to flush out the retirement unit before the
speculative program flow is committed to a permanent state.

Implication: The results of this erratum may range from no effect to unpredictable application or OS failure.
Manifestations of this failure may result in:
• Unexpected values in EIP,
• Faults or traps (e.g., page faults) on instructions that do not normally cause faults,
• Faults in the middle of instructions, or

• Unexplained values in registers/memory at the correct EIP.

Workaround: It is possible for BIOS code to contain a workaround for this erratum.

Status: For the steppings affected see the Summary of Changes at the beginning of this section.

A56. System Bus ECC May Report False Errors
Problem: The processor’s ECC circuitry may fail to meet its frequency timing specification under certain
environmental conditions. At the high end of the temperature specification and/or the low end of the voltage
range, the processor may report false ECC errors.

Implication: If the system has data error checking enabled (bit [1] of the EBL_CR_POWERON register set
to “1”) and has Machine Check Architecture enabled, spurious double bit error detection can occur causing
Machine Check Exceptions (MCE) and spurious single bit errors to occur and be logged. Under some
circumstances the processor may assert BINIT#, which in turn, may cause some systems to generate an
MCE, and in others cause a reboot.

Workaround: Disable system bus data error checking (set bit [1] of the EBL_CR_POWERON register to
“0”).

Status: For the processor part numbers affected see the “Pentium II Processor Identification Information”
table in the General Information section.

PENTIUM® II PROCESSOR SPECIFICATION UPDATE

 58

A57. Full In-Order Queue May Cause Infinite DBSY# Assertion
Problem: For this erratum to occur, there must be a high rate of code fetches from the core to its L2 cache,
which must hit the L2 cache, AND in parallel an externally generated read transaction that hits a modified line
FOLLOWED by 7 consecutive 0 length external transactions in rapid succession FOLLOWED by another
external transaction that also hits a modified line.

Implication: The writeback data is not transferred to memory. No further bus transactions may be issued
because the In-Order Queue is full.

Workaround: None Identified

Status: For the steppings affected see the Summary of Changes at the beginning of this section.

A58. Data Breakpoint Exception in a Displacement Relative Near
Call May Corrupt EIP

Problem: If a misaligned data breakpoint is programmed to the same cache line as the memory
location where the stack push of a near call is performed and any data breakpoints are enabled,
the processor will update the stack and ESP appropriately, but may skip the code at the
destination of the call. Hence, program execution will continue with the next instruction
immediately following the call, instead of the target of the call.

Implication: The failure mechanism for this erratum is that the call would not be taken;
therefore, instructions in the called subroutine would not be executed. As a result, any code
relying on the execution of the subroutine will behave unpredictably.

Workaround: Whether enabled or not, do not program a misaligned data breakpoint to the
same cache line on the stack where the push for the near call is performed.

Status: For the stepping affected see the Summary of Changes at the beginning of this section.

A59. System Bus ECC Not Functional With 2:1 Ratio
Problem: If a processor is underclocked at a core frequency to system bus frequency ratio of 2:1 and
system bus ECC is enabled, the system bus ECC detection and correction will negatively affect internal timing
dependencies.

Implication: If system bus ECC is enabled, and the processor is underclocked at a 2:1 ratio, the system
may behave unpredictably due to these timing dependencies.

Workaround: All bus agents that support system bus ECC must disable it when a 2:1 ratio is used.

Status: For the steppings affected see the Summary of Changes at the beginning of this section.

 PENTIUM® II PROCESSOR SPECIFICATION UPDATE

59

A60. Fault on REP CMPS/SCAS Operation May Cause Incorrect
EIP

Problem: If either a General Protection Fault, Alignment Check Fault or Machine Check Exception occur
during the first iteration of a REP CMPS or a REP SCAS instruction, an incorrect EIP may be pushed onto the
stack of the event handler if all the following conditions are true:

• The event occurs on the initial load performed by the instruction(s),
• The condition of the zero flag before the repeat instruction happens to be opposite of the repeat condition

(i.e., REP/REPE/REPZ CMPS/SCAS with ZF = 0 or RENE/REPNZ CMPS/SCAS with ZF = 1), and

• The faulting micro-op and a particular micro-op of the REP instruction are retired in the retirement unit in
a specific sequence.

The EIP will point to the instruction following the REP CMPS/SCAS instead of pointing to the faulting
instruction.

Implication: The result of the incorrect EIP may range from no effect to unexpected application/OS
behavior.

Workaround: None identified

Status: For the steppings affected see the Summary of Changes at the beginning of this section.

A61. RDMSR or WRMSR To Invalid MSR Address May Not Cause
GP Fault

Problem: The RDMSR and WRMSR instructions allow reading or writing of MSRs (Model Specific
Registers) based on the index number placed in ECX. The processor should reject access to any reserved or
unimplemented MSRs by generating #GP(0). However, there are some invalid MSR addresses for which the
processor will not generate #GP(0).

Implication: For RDMSR, undefined values will be read into EDX:EAX. For WRMSR, undefined processor
behavior may result.

Workaround: Do not use invalid MSR addresses with RDMSR or WRMSR.

Status: For the steppings affected see the Summary of Changes at the beginning of this section.

PENTIUM® II PROCESSOR SPECIFICATION UPDATE

 60

A62. SYSENTER/SYSEXIT Instructions Can Implicitly Load “Null
Segment Selector” to SS and CS Registers

Problem: According to the processor specification, attempting to load a null segment selector into the CS
and SS segment registers should generate a General Protection Fault (#GP). Although loading a null segment
selector to the other segment registers is allowed, the processor will generate an exception when the segment
register holding a null selector is used to access memory.

However, the SYSENTER instruction can implicitly load a null value to the SS segment selector. This can
occur if the value in SYSENTER_CS_MSR is between FFF8h and FFFBh when the SYSENTER instruction is
executed. This behavior is part of the SYSENTER/SYSEXIT instruction definition; the content of the
SYSTEM_CS_MSR is always incremented by 8 before it is loaded into the SS. This operation will set the null
bit in the segment selector if a null result is generated, but it does not generate a #GP on the SYSENTER
instruction itself. An exception will be generated as expected when the SS register is used to access memory,
however.
The SYSEXIT instruction will also exhibit this behavior for both CS and SS when executed with the value in
SYSENTER_CS_MSR between FFF0h and FFF3h, or between FFE8h and FFEBh, inclusive.

Implication: These instructions are intended for operating system use. If this erratum occurs (and the OS
does not ensure that the processor never has a null segment selector in the SS or CS segment registers), the
processor’s behavior may become unpredictable, possibly resulting in system failure.

Workaround: Do not initialize the SYSTEM_CS_MSR with the values between FFF8h and FFFBh, FFF0h
and FFF3h, or FFE8h and FFEBh before executing SYSENTER or SYSEXIT.

Status: For the steppings affected see the Summary of Changes at the beginning of this section.

A63. PRELOAD Followed by EXTEST Does Not Load Boundary
Scan Data

Problem: According to the IEEE 1149.1 Standard, the EXTEST instruction would use data “typically loaded
onto the latched parallel outputs of boundary-scan shift-register stages using the SAMPLE/PRELOAD
instruction prior to the selection of the EXTEST instruction.” As a result of this erratum, this method cannot be
used to load the data onto the outputs.

Implication: Using the PRELOAD instruction prior to the EXTEST instruction will not produce expected data
after the completion of EXTEST.

Workaround: None identified

Status: For the steppings affected see the Summary of Changes at the beginning of this section.

 PENTIUM® II PROCESSOR SPECIFICATION UPDATE

61

A64. Far Jump to New TSS With D-bit Cleared May Cause System
Hang

Problem: A task switch may be performed by executing a far jump through a task gate or to a new Task
State Segment (TSS) directly. Normally, when such a jump to a new TSS occurs, the D-bit (which indicates
that the page referenced by a Page Table Entry (PTE) has been modified) for the PTE which maps the
location of the previous TSS will already be set, and the processor will operate as expected. However, if the
D-bit is clear at the time of the jump to the new TSS, the processor will hang.

Implication: If an OS is used which can clear the D-bit for system pages, and which jumps to a new TSS on
a task switch, then a condition may occur which results in a system hang. Intel has not identified any
commercial software which may encounter this condition; this erratum was discovered in a focused testing
environment.

Workaround: Ensure that OS code does not clear the D-bit for system pages (including any pages that
contain a task gate or TSS). Use task gates rather than jumping to a new TSS when performing a task switch.

Status: For the steppings affected see the Summary of Changes at the beginning of this section.

A65. Incorrect Chunk Ordering May Prevent Execution of the
Machine Check Exception Handler After BINIT#

Problem: If a catastrophic bus error is detected which results in a BINIT# assertion, and the BINIT#
assertion is propagated to the processor’s L2 cache at the same time that data is being sent to the processor,
then the data may become corrupted in the processor’s L1 cache.

Implication: Since BINIT# assertion is due to a catastrophic event on the bus, the corrupted data will not be
used. However, it may prevent the processor from executing the Machine Check Exception (MCE) handler,
causing the system to hang.

Workaround: None identified

Status: For the steppings affected see the Summary of Changes at the beginning of this section.

A66. Resume Flag May Not Be Cleared After Debug Exception
Problem: The Resume Flag (RF) is normally cleared by the processor after executing an instruction which
causes a debug exception (#DB). In the process of determining whether the RF needs to be cleared after
executing the instruction, the processor uses an internal register containing stale data. The stale data may
unpredictably prevent the processor from clearing the RF.

Implication: If this erratum occurs, further debug exceptions will be disabled.

Workaround: None identified

Status: For the steppings affected see the Summary of Changes at the beginning of this section.

PENTIUM® II PROCESSOR SPECIFICATION UPDATE

 62

A67. System Bus Address Parity Generator May Report False
AERR#s

Problem: The processor’s address parity error detection circuit may fail to meet its frequency timing
specification under certain environmental conditions. At the high end of the temperature specification and/or
the low end of the voltage range, the processor may report false address parity errors (AERRs).

Implication: If the system has AERR# drive enabled (bit [3] of the EBL_CR_POWERON resister set to ‘1’)
spurious address detection and reporting may occur. In some system configurations BINIT# may be asserted
on the system bus. This may cause some systems to generate a machine check exception and in others may
cause a reboot.

Workaround: Disable AERR# drive from the processor. AERR# drive may be disabled by clearing bit [3] in
the EBL_CR_POWERON register. In addition, if the chipset allows, AERR# drive should be enabled from the
chipset and AERR# observation enabled on the processor. AERR# observation on the processor is enabled
by asserting A8# on the active-to-inactive transition of RESET#.

Status: For the processor part numbers affected see the “Pentium® II Processor Identification and
Packaging Information” table at the General Information section.

A68. Misaligned Locked Access to APIC Space Results in Hang
Problem: When the processor’s APIC space is accessed with a misaligned locked access a machine check
exception is expected. However, the processor's machine check architecture is unable to handle the
misaligned locked access.

Implication: If this erratum occurs the processor will hang. Typical usage models for the APIC address
space do not use locked accesses. This erratum will not affect systems using such a model.

Workaround: Ensure that all accesses to APIC space are aligned.

Status: For the steppings affected see the Summary of Changes at the beginning of this section.

 PENTIUM® II PROCESSOR SPECIFICATION UPDATE

63

A69. Potential Loss of Data Coherency During MP Data
Ownership Transfer

Problem: In MP systems, processors may be sharing data in different cache lines, referenced as line A and
line B in the discussion below. When this erratum occurs (with the following example given for a 2-way MP
system with processors noted as ‘P0’ and ‘P1’), P0 contains a shared copy of line B in its L1. P1 has a shared
copy of Line A. Each processor must manage the necessary invalidation and snoop cycles before that
processor can modify and source the results of any internal writes to the other processor.

There exists a narrow timing window when, if P1 requests a copy of line B it may be supplied by P0 in an
exclusive state which allows P1 to modify the contents of the line with no further external invalidation cycles.
In this narrow window P0 may also retire instructions that use the original data present before P1 performed
the modification.

Implication: Multiprocessor or threaded application synchronization, required for low-level data sharing, that
is implemented via operating system provided synchronization constructs are not affected by this erratum.
Applications that rely upon the usage of locked semaphores rather than memory ordering are also unaffected.
Uniprocessor systems are not affected by this erratum. If the erratum does occur, one processor may execute
software with the stale data that was present from the previous shared state rather than the data written more
recently by another processor.

Workaround: Deterministic barriers beyond which program variables will not be modified can be achieved
via the usage of locked semaphore operations. These should effectively prevent the occurrence of this
erratum.

Status: For the steppings affected see the Summary of Changes at the beginning of this section.

PENTIUM® II PROCESSOR SPECIFICATION UPDATE

 64

A70. Memory Ordering Based Synchronization May Cause a
Livelock Condition in MP Systems

Problem: In an MP environment, the following sequence of code (or similar code) in two processors (P0 and
P1) may cause them to each enter an infinite loop (livelock condition):

P0 P1
 MOV [xyz], EAX (1) wait1: MOV EBX, [abc] (2)
 . CMP EBX, val1 (3)
 . JNE wait1 (4)
 .
 MOV [abc], val1 (6) MOV [abc], val2 (5)

wait0: MOV EBX, [abc] (7)
 CMP EBX, val2 (8)
 JNE wait0 (9)

NOTE
EAX and EBX can be any general-purpose register. Addresses [abc] and [xyz]
can be any location in memory and must be in the same bank of the L1 cache.
Variables “val1” and “val2” can be any integer.

The algorithm above involves processors P0 and P1, each of which use loops to keep them synchronized with
each other. P1 is looping until instruction (6) in P0 is globally observed. Likewise, P0 will loop until instruction
(5) in P1 is globally observed.

The P6 architecture allows for instructions (1) and (7) in P0 to be dispatched to the L1 cache simultaneously.
If the two instructions are accessing the same memory bank in the L1 cache, the load (7) will be given higher
priority and will complete, blocking instruction (1).

Instructions (8) and (9) may then execute and retire, placing the instruction pointer back to instruction (7). This
is due to the condition at the end of the “wait0” loop being false. The livelock scenario can occur if the timing
of the wait0 loop execution is such that instruction (7) in P0 is ready for completion every time that instruction
(1) tries to complete. Instruction (7) will again have higher priority, preventing the data ([xyz]) in instruction (1)
from being written to the L1 cache. This causes instruction (6) in P0 to not complete and the sequence “wait0”
to loop infinitely in P0.
A livelock condition also occurs in P1 because instruction (6) in P0 does not complete (blocked by instruction
(1) not completing). The problem with this scenario is that P0 should eventually allow for instruction (1) to write
its data to the L1 cache. If this occurs, the data in instruction (6) will be written to memory, allowing the
conditions in both loops to be true.

Implication: Both processors will be stuck in an infinite loop, leading to a hang condition. Note that if P0
receives any interrupt, the loop timing will be disrupted such that the livelock will be broken. The system timer,
a keystroke, or mouse movement can provide an interrupt that will break the livelock.

Workaround: Use a LOCK instruction to force P0 to execute instruction (6) before instruction (7).

Status: For the steppings affected see the Summary of Changes at the beginning of this section.

 PENTIUM® II PROCESSOR SPECIFICATION UPDATE

65

A71. GP# Fault on WRMSR to ROB_CR_BKUPTMPDR6
Problem: Writing a ‘1’ to unimplemented bit(s) in the ROB_CR_BKUPTMPDR6 MSR (offset 1E0h) will result
in a general protection fault (GP#).

Implication: The normal process used to write an MSR is to read the MSR using RDMSR, modify the bit(s)
of interest, and then to write the MSR using WRMSR. Because of this erratum, this process may result in a
GP# fault when used to modify the ROB_CR_BKUPTMPDR6 MSR.

Workaround: When writing to ROB_CR_BKUPTMPDR6 all unimplemented bits must be ‘0.’ Implemented
bits may be set as ‘0’ or ‘1’ as desired.

Status: For the steppings affected see the Summary of Changes at the beginning of this section.

A72. Machine Check Exception May Occur Due to Improper Line
Eviction in the IFU

Problem: The Pentium II processor is designed to signal an unrecoverable Machine Check Exception
(MCE) as a consistency checking mechanism. Under a complex set of circumstances involving multiple
speculative branches and memory accesses there exists a one cycle long window in which the processor may
signal a MCE in the Instruction Fetch Unit (IFU) because instructions previously decoded have been evicted
from the IFU. The one cycle long window is opened when an opportunistic fetch receives a partial hit on a
previously executed but not as yet completed store resident in the store buffer. The resulting partial hit
erroneously causes the eviction of a line from the IFU at a time when the processor is expecting the line to still
be present. If the MCE for this particular IFU event is disabled, execution will continue normally.

Implication: While this erratum may occur on a system with any number of Pentium II processors, the
probability of occurrence increases with the number of processors. If this erratum does occur, a machine
check exception will result. Note systems that implement an operating system that does not enable the
Machine Check Architecture will be completely unaffected by this erratum (e.g., Windows* 95 and Windows
98).

Workaround: It is possible for BIOS code to contain a workaround for this erratum.

Status: For the steppings affected see the Summary of Changes at the beginning of this section.

A73. Lower Bits of SMRAM SMBASE Register Cannot Be Written
With an ITP

Problem: The System Management Base (SMBASE) register (7EF8H) stores the starting address of the
System Management RAM (SMRAM). This register is used by the processor when it is in System
Management Mode (SMM), and its contents serve as the memory base for code execution and data storage.
The 32-bit SMBASE register can normally be programmed to any value. When programmed with an In-Target
Probe (ITP), however, any attempt to set the lower 11 bits of SMBASE to anything other than zeros via the
WRMSR instruction will cause the attempted write to fail.

Implication: When set via an ITP, any attempt to relocate SMRAM space must be made with 2 Kbyte
alignment.

Workaround: None identified

PENTIUM® II PROCESSOR SPECIFICATION UPDATE

 66

Status: For the steppings affected see the Summary of Changes at the beginning of this section.

A74. Task Switch May Cause Wrong PTE and PDE Access Bit to
be Set

Problem: If an operating system executes a task switch via a Task State Segment (TSS), and the TSS is
wholly or partially located within a clean page (A and D bits clear) and the GDT entry for the new TSS is either
misaligned across a cache line boundary or is in a clean page, the accessed and dirty bits for an incorrect
page table/directory entry may be set.

Implication: An operating system that uses hardware task switching (or hardware task management) may
encounter this erratum. The effect of the erratum depends on the alignment of the TSS and ranges from no
anomalous behavior to unexpected errors.

Workaround: The operating system could align all TSSs to be within page boundaries and set the A and D
bits for those pages to avoid this erratum. The operating system may alternately use software task
management.

Status: For the stepping affected see the Summary of Changes at the beginning of this section.

A75. Unsynchronized Cross-Modifying Code Operations Can
Cause Unexpected Instruction Execution Results

Problem: The act of one processor, or system bus master, writing data into a currently executing code
segment of a second processor with the intent of having the second processor execute that data as code is
called cross-modifying code (XMC). XMC that does not force the second processor to execute a
synchronizing instruction prior to execution of the new code is called unsynchronized XMC.

Software using unsynchronized XMC to modify the instruction byte stream of a processor can see unexpected
instruction execution from the processor that is executing the modified code.

Implication: In this case, the phrase "unexpected execution behavior" encompasses the generation of most
of the exceptions listed in the Intel Architecture Software Developer's Manual Volume 3: System Programming
Guide including a General Protection Fault(GPF). In the event of a GPF the application executing the
unsynchronized XMC operation would be terminated by the operating system.

Workaround: In order to avoid this erratum, programmers should use the XMC synchronization algorithm
as detailed in the Intel Architecture Software Developer's Manual Volume 3: System Programming Guide,
Section 7.1.3.

Status: For the steppings affected see the Summary of Changes at the beginning of this section.

 PENTIUM® II PROCESSOR SPECIFICATION UPDATE

67

A76. Deadlock May Occur Due To Illegal-Instruction/Page-Miss
Combination

Problem: Intel's 32-bit Instruction Set Architecture (ISA) utilizes most of the available op-code space;
however some byte combinations remain undefined and are considered illegal instructions. Intel processors
detect the attempted execution of illegal instructions and signal an exception. This exception is handled by
the operating system and/or application software.

Under a complex set of internal and external conditions involving illegal instructions, a deadlock may occur
within the processor. The necessary conditions for the deadlock involve:

1. The illegal instruction is executed.

2. Two page table walks occur within a narrow timing window coincident with the illegal instruction.

Implication: The illegal instructions involved in this erratum are unusual and invalid byte combinations that
are not useful to application software or operating systems. These combinations are not normally generated in
the course of software programming, nor are such sequences known by Intel to be generated in commercially
available software and tools. Development tools (compilers, assemblers) do not generate this type of code
sequence, and will normally flag such a sequence as an error. If this erratum occurs, the processor deadlock
condition will occur and result in a system hang. Code execution cannot continue without a system RESET.

Workaround: None identified

Status: For the steppings affected see the Summary of Changes at the beginning of this section.

A77. FLUSH# Assertion Following STPCLK# May Prevent CPU
Clocks From Stopping

Problem: If FLUSH# is asserted after STPCLK# is asserted, the cache flush operation will not occur until
after STPCLK# is de-asserted. Furthermore, the pending flush will prevent the processor from entering the
Sleep state, since the flush operation must complete prior to the processor entering the Sleep state.

Implication: Following SLP# assertion, processor power dissipation may be higher than expected.
Furthermore, if the source to the processor’s input bus clock (BCLK) is removed, normally resulting in a
transition to the Deep Sleep state, the processor may shutdown improperly. The ensuing attempt to wake up
the processor will result in unpredictable behavior and may cause the system to hang.

Workaround: For systems that use the FLUSH# input signal and Deep Sleep state of the processor, ensure
that FLUSH# is not asserted while STPCLK# is asserted.

Status: For the steppings affected see the Summary of Changes at the beginning of this section.

PENTIUM® II PROCESSOR SPECIFICATION UPDATE

 68

A78. Floating-Point Exception Condition May be Deferred
Problem: A floating-point instruction that causes a pending floating-point exception (ES=1) is
normally signaled by the processor on the next waiting FP/MMX™ technology instruction. In the
following set of circumstances, the exception may be delayed or the FSW register may contain a
wrong value:

1. The excepting floating-point instruction is followed by an instruction that accesses
memory across a page (4-Kbyte) boundary or its access results in the update of a page
table dirty/access bit.

2. The memory accessing instruction is immediately followed by a waiting floating-point or
MMX technology instruction.

3. The waiting floating-point or MMX technology instruction retires during a one-cycle
window that coincides with a sequence of internal events related to instruction cache
line eviction.

Implication: The floating-point exception will not be signaled until the next waiting floating-
point/MMX technology instruction. Alternatively it may be signaled with the wrong TOS and
condition code values. This erratum has not been observed in any commercial software
applications.

Workaround: None identified

Status: For the stepping affected see the Summary of Changes at the beginning of this section.

A79. Snoop Probe During FLUSH# Could Cause L2 to be Left In
Shared State

Problem: During a L2 FLUSH operation using the FLUSH# pin, it is possible that a read request from a bus
agent or other processor to a valid line will leave the line in the Shared state (S) instead of the Invalid state (I)
as expected after flush operation. Before the FLUSH operation is completed, another snoop request to
invalidate the line from another agent or processor could be ignored, again leaving the line in the Shared
state.

Implication: Current desktop and mid range server systems have no mechanism to assert the flush pin and
hence are not affected by this erratum. A high-end server system that does not suppress snoop traffic before
the assertion of the FLUSH# pin may cause a line to be left in an incorrect cache state.

Workaround: Affected systems (those capable of asserting the FLUSH# pin) should prevent snoop activity
on the front side bus until invalidation is completed after asserting FLUSH#, or use a WBINVD instruction
instead of asserting the FLUSH# pin in order to flush the cache.

Status: For the steppings affected see the Summary of Changes at the beginning of this section.

 PENTIUM® II PROCESSOR SPECIFICATION UPDATE

69

A80. Livelock May Occur Due to IFU Line Eviction
Problem: Following the conditions outlined for erratum A72, if the instruction that is currently being executed
from the evicted line must be restarted by the IFU, and the IFU receives another partial hit on a previously
executed (but not as yet completed) store that is resident in the store buffer, then a livelock may occur.

Implication: If this erratum occurs, the processor will hang in a live lock-situation, and the system will
require a reset to continue normal operation

Workaround: None identified

Status: For the steppings affected see the Summary of Changes at the beginning of this section.

A81. Selector for the LTR/LLDT Register May Get Corrupted
Problem: The internal selector portion of the respective register (TR, LDTR) may get corrupted, if during a
small window of LTR or LLDT system instruction execution, the following sequence of events occurs:

1. Speculative write to a segment register that might follow the LTR or LLDT instruction
2. The read segment descriptor of LTR/LLDT operation spans a page (4 Kbytes) boundary; or causes

a page fault

Implication: Incorrect selector for LTR, LLDT instruction could be used after a task switch.

Workaround: Software can insert a serializing instruction between the LTR or LLDT instruction and the
segment register write.

Status: For the steppings affected see the Summary of Changes at the beginning of this section.

A82. INIT Does Not Clear Global Entries in the TLB
Problem: INIT may not flush a TLB entry when:

1. The processor is in protected mode with paging enabled and the page global enable flag is set
(PGE bit of CR4 register)

2. G bit for the page table entry is set
3. TLB entry is present in TLB when INIT occurs

Implication: Software may encounter unexpected page fault or incorrect address translation due to a TLB
entry erroneously left in TLB after INIT.

Workaround: Write to CR3, CR4 or CR0 registers before writing to memory early in BIOS code to clear all
the global entries from TLB.

Status: For the steppings affected see the Summary of Changes at the beginning of this section.

PENTIUM® II PROCESSOR SPECIFICATION UPDATE

 70

A83. VM Bit will be Cleared on a Double Fault Handler
Problem: Following a task switch to a Double Fault Handler that was initiated while the processor was in
virtual-8086 (VM86) mode, the VM bit will be incorrectly cleared in EFLAGS.

Implication: When the OS recovers from the double fault handler, the processor will no longer be in VM86
mode.

Workaround: None identified

Status: For the steppings affected see the Summary of Errata at the beginning of this section.

A84. Memory Aliasing with inconsistent A and D Bits May Cause
Processor Deadlock

Problem: In the event that software implements memory aliasing by having two Page Directory Entries
(PDEs) point to a common Page Table Entry (PTE) and the accessed and dirty bits for the two PDEs are
allowed to become inconsistent the processor may become deadlocked.

Implication: This erratum has not been observed with commercially available software.

Workaround: Software that needs to implement memory aliasing in this way should manage the
consistency of the accessed and dirty bits.

Status: For the steppings affected see the Summary of Changes at the beginning of this section.

A85. Use of Memory Aliasing with Inconsistent Memory Type
May Cause System Hang

Problem: Software that implements memory aliasing by having more than one linear address mapped to the
same physical page with different cache types may cause the system to hang. This would occur if one of the
addresses is non-cacheable used in code segment and the other a cacheable address. If the cacheable
address finds its way in instruction cache, and non-cacheable address is fetched in IFU, the processor may
invalidate the non-cacheable address from the fetch unit. Any micro-architectural event that causes instruction
restart will expect this instruction to still be in fetch unit and lack of it will cause system hang.

Implication: This erratum has not been observed with commercially available software.

Workaround: Although it is possible to have a single physical page mapped by two different linear
addresses with different memory types, Intel has strongly discouraged this practice as it may lead to
undefined results. Software that needs to implement memory aliasing should manage the memory type
consistency.

Status: For the steppings affected see the Summary of Changes at the beginning of this section.

 PENTIUM® II PROCESSOR SPECIFICATION UPDATE

71

A86. Processor may Report Invalid TSS Fault Instead of Double
Fault During Mode C Paging

Problem: When an operating system executes a task switch via a Task State Segment (TSS) the CR3
register is always updated from the new task TSS. In the mode C paging, once the CR3 is changed the
processor will attempt to load the PDPTRs. If the CR3 from the target task TSS or task switch handler TSS is
not valid then the new PDPTR will not be loaded. This will lead to the reporting of invalid TSS fault instead of
the expected Double fault.

Implication: Operating systems that access an invalid TSS may get invalid TSS fault instead of a double
fault.

Workaround: Software needs to ensure any accessed TSS is valid.

Status: For the steppings affected see the Summary of Changes at the beginning of this section.

A87. Machine Check Exception May Occur When Interleaving
Code Between Different Memory Types

Problem: A small window of opportunity exists where code fetches interleaved between different memory
types may cause a machine check exception. A complex set of micro-architectural boundary conditions is
required to expose this window.

Implication: Interleaved instruction fetches between different memory types may result in a machine check
exception. The system may hang if machine check exceptions are disabled. Intel has not observed the
occurrence of this erratum while running commercially available applications or operating systems.

Workaround: Software can avoid this erratum by placing a serializing instruction between code fetches
between different memory types.

Status: For the steppings affected see the Summary of Changes at the beginning of this section.

A88. Wrong ESP Register Values During a Fault in VM86 Mode
Problem: At the beginning of the IRET instruction execution in VM86 mode the lower 16 bits of the ESP
register are saved as the old stack value. When a fault occurs, these 16 bits are moved into the 32-bit ESP,
effectively clearing the upper 16 bits of the ESP.

Implication: This erratum has not been observed to cause any problems with commercially available
software.

Workaround: None identified

Status: For the steppings affected see the Summary of Changes at the beginning of this section.

PENTIUM® II PROCESSOR SPECIFICATION UPDATE

 72

A89. APIC ICR Write May Cause Interrupt Not to be Sent When
ICR Delivery Bit Pending

Problem: If the APIC ICR (Interrupt Control Register) is written with a new interrupt command while the
Delivery Status bit from a previous interrupt command is set to '1' (Send Pending), the interrupt message may
not be sent out by the processor.

Implication: This erratum will cause an interrupt message not to be sent, potentially resulting in system
hang.

Workaround: Software should always poll the Delivery Status bit in the APIC ICR and ensure that it is '0'
(Idle) before writing a new value to the ICR.

Status: For the steppings affected see the Summary of Changes at the beginning of this section.

A90. The Instruction Fetch Unit (IFU) May Fetch Instructions
Based Upon Stale CR3 Data After a Write to CR3 Register

Problem - Under a complex set of conditions, there exists a one clock window following a write to the CR3
register where-in it is possible for the iTLB fill buffer to obtain a stale page translation based on the stale CR3
data. This stale translation will persist until the next write to the CR3 register, the next page fault or execution
of a certain class of instructions including RDTSC, CPUID or IRETD with privilege level change.

Implication - The wrong page translation could be used leading to erroneous software behavior.

Workaround - Operating systems that are potentially affected can add a second write to the CR3 register.

Status - For the steppings affected, see the Summary of Changes at the beginning of this section.

 PENTIUM® II PROCESSOR SPECIFICATION UPDATE

73

A91. Under Some Complex Conditions, the Instructions in the
Shadow of a JMP FAR may be Unintentionally Executed
and Retired

Problem: If all of the following events happen in sequence it is possible for the system or application to hang
or to execute with incorrect data.
1. The execution of an instruction, with an OPCODE that requires the processor to stall the issue of micro-
instructions in the flow from the microcode sequence logic block to the instruction decode block (a StallMS
condition).
2. Less than 63 (39 for Pre-CPUID 0x6BX) micro-instructions later, the execution of a mispredictable branch
instruction (Jcc, LOOPcc, RET Near, CALL Near Indirect, JMP ECX=0, or JMP Near Indirect).
3. The conditional branch in event (2) is mispredicted, and furthermore the mispredicted path of execution
must result in either an ITLB miss, or an Instruction Cache miss. This needs to briefly stall the issue of micro-
instructions again immediately after the conditional branch until that branch prediction is corrected by the jump
execution block (a 2nd StallMS condition).
4. Along the correct path of execution, the next instruction must contain a 3rd StallMS condition at a precisely
aligned point in the execution of the instruction (CLTS, POPSS, LSS, or MOV to SS).
5. A JMP FAR instruction must execute within the next 63 micro-instructions (39 Pre-CPUID 0x6BX). The
intervening micro-instructions must not have any events or faults.
When the instruction from event (2) retires, the StallMS condition within the event (5) instruction fails to
operate correctly, and instructions in the shadow of the JMP FAR instruction could be unintentionally
executed.

Implication: Occurrence of this erratum could lead to erroneous software behavior, Intel has not identified
any commercially available software which may encounter this condition; this erratum was discovered in a
focused test environment. One of the four instructions that are required to trigger this erratum, CLTS, is a
privileged instruction that is only executed by an operating system or driver code. The remaining three
instructions, POPSS, LSS, and MOV to SS, are executed infrequently in modern 32-bit application code.

Workaround: None identified at this time.

Status: For the stepping affected see the Summary of Changes at the beginning of this section.

PENTIUM® II PROCESSOR SPECIFICATION UPDATE

 74

A92

Processor Does not Flag #GP on Non-zero Write to Certain
MSRs

Problem: When a non-zero write occurs to the upper 32 bits of SYSENTER_EIP_MSR or
SYSENTER_ESP_MSR, the processor should indicate a general protection fault by flagging #GP.
Due to this erratum, the processor does not flag #GP.

Implication: The processor unexpectedly does not flag #GP on a non-zero write to the upper 32
bits of SYSENTER_EIP_MSR or SYSENTER_ESP_MSR. No known commercially available
operating system has been identified to be affected by this erratum.

Workaround: None identified.

Status: For the steppings affected see the Summary of Changes at the beginning of this section.

A1AP. APIC Access to Cacheable Memory Causes SHUTDOWN
Problem: APIC operations that access memory with any type other than uncacheable (UC) are illegal. If an
APIC operation to a memory type other than UC occurs and Machine Check Exceptions (MCEs) are disabled,
the processor will enter shutdown after such an access. If MCEs are enabled, an MCE will occur. However, in
this circumstance, a second MCE will be signaled. The second MCE signal will cause the Pentium II
processor to enter shutdown.

Implication: Recovery from a PIC access to cacheable memory will not be successful. Software that
accesses only UC type memory during APIC operations will not encounter this erratum.

Workaround: Ensure that the memory space to which PIC accesses can be made is marked as type UC
(uncacheable) in the memory type range registers (MTRRs) to avoid this erratum.

Status: For the steppings affected see the Summary of Changes at the beginning of this section.

 PENTIUM® II PROCESSOR SPECIFICATION UPDATE

75

A2AP. 2-Way MP Systems May Hang Due to Catastrophic Errors
During BSP Determination

Problem: In 2-way MP systems, a catastrophic error during the bootstrap processor (BSP) determination
process should cause the assertion of IERR#. If the catastrophic error is due to the APIC data bus being stuck
at electrical zero, then the system hangs without asserting IERR#.

Implication: 2-way MP systems may hang during boot due to a catastrophic error. This erratum has not
been observed to date in a typical commercial system, but was found during focused system testing using a
grounded APIC data bus.

Workaround: None identified

Status: For the steppings affected see the Summary of Changes at the beginning of this section.

A3AP. Write to Mask LVT (Programmed as EXTINT) Will Not
Deassert Outstanding Interrupt

Problem: If the APIC subsystem is configured in Virtual Wire Mode implemented through the local APIC
(i.e., the 8259 INTR signal is connected to LINT0 and LVT1’s interrupt delivery mode field is programmed as
EXTINT), a write to LVT1 intended to mask interrupts will not deassert the internal interrupt source if the
external LINT0 signal is already asserted. The interrupt will be erroneously posted to the Pentium II processor
despite the attempt to mask it via the LVT.

Implication: Because of the masking attempt, interrupts may be generated when the system software
expects no interrupts to be posted.

Workaround: Software can issue a write to the 8259A interrupt mask register to deassert the LINT0
interrupt level, followed by a read to the controller to ensure that the LINT0 signal has been deasserted. Once
this is ensured, software may then issue the write to mask LVT entry 1.

Status: For the steppings affected see the Summary of Changes at the beginning of this section.

PENTIUM® II PROCESSOR SPECIFICATION UPDATE

 76

DOCUMENTATION CHANGES
The Documentation Changes listed in this section apply to the following documents:

• P6 Family of Processors Hardware Developer’s Manual
• Pentium® II Processor Developer’s Manual

• Pentium® II Processor at 233 MHz, 266 MHz, 300 MHz, and 333 MHz datasheet

• Pentium® II Processor at 350 MHz, 400 MHz, and 450 MHz datasheet

• Intel Architecture Software Developer’s Manual, Volumes 1, 2, and 3

All Documentation Changes will be incorporated into a future version of the appropriate Pentium II processor
documentation.

A1.

SSE and SSE2 Instructions Opcodes

The note at the end of section 2.2 in the Intel Architecture Software Developer's Manual, Vol 2:
Instruction Set Reference states:

NOTE:
Some of the SSE and SSE2 instructions have three-byte opcodes. For these three-byte
opcodes, the third opcode byte may be F2H, F3H, or 66H. For example, the SSE2
instruction CVTDQ2PD has the three-byte opcode F3 OF E6. The third opcode byte of
these three-byte opcodes should not be thought of as a prefix, even though it has the
same encoding as the operand size prefix (66H) or one of the repeat prefixes (F2H and
F3H). As described above, using the operand size and repeat prefixes with SSE and
SSE2 instructions is reserved.

It should state:

NOTE:
Some of the SSE and SSE2 instructions have three-byte opcodes. For these three-byte
opcodes, the third opcode byte may be F2H, F3H, or 66H. For example, the SSE2
instruction CVTDQ2PD has the three-byte opcode F3 OF E6. The third opcode byte of
these three-byte opcodes should not be thought of as a prefix, even though it has the
same encoding as the operand size prefix (66H) or one of the repeat prefixes (F2H and
F3H). As described above, using the operand size and repeat prefixes with SSE and
SSE2 instructions is reserved. It should also be noted that execution of SSE2
instructions on an Intel processor that does not support SSE2 (CPUID Feature flag
register EDX bit 26 is clear) will result in unpredictable code execution.

 PENTIUM® II PROCESSOR SPECIFICATION UPDATE

77

A2.

Executing the SSE2 Variant on a Non-SSE2 Capable
Processor

In Intel Architecture Software Developer's Manual, Vol 2: Instruction Set Reference the
section for each of the following instructions states that executing the instruction in real
or protected mode on a processor for which the SSE2 feature flag returned by CPUID is
0 (SSE2 not supported by the processor) will result in the generation of an undefined
opcode exception (#UD). This is incorrect. The SSE2 form of these instructions is
defined by opcodes for which the leading opcode byte maps into an operand size prefix.
Executing the SSE2 variant of these instructions on a non-SSE2 capable processor will
result in an SSE like operation and not a #UD. Refer to section 2.2 of the Intel
Architecture Software Developer's Manual, Vol 2 for more detail.

Instructions:

MOVD xmm, r32; MOVD r32, xmm; MOVDQA; MOVDQU; MOVQ xmm, m64; PACKSSWB/DW;
PACKUSWB; PADDB/W/D; PADDSB/W; PADDUSB/W; PAND; PANDN; PCMPEQB/W/D;
PCMPGTB/W/D; PMADDWD; PMULHW; PMULLW; POR; PSLLW/D/Q; PSRAW/D; PSRLW/D/Q;
PSUBB/W/D; PSUBSB/W; PSUBUSB/W; PUNPCKHBW/WD/DQ; PUNPCKLBW/WD/DQ; PXOR.

A3.

 Update to Table B-2, MSRs in the P6 Family Processors

In Table B-2 in the IA-32 Intel® Architecture Software Developer’s Manual, Volume 3: System
Programming Guide two changes will be made. For the MC0_STATUS register, bit 60 row, the Bit
Description will be revised to read, "MC_STATUS_EN. (Note: For MC0_STATUS only, this bit is
hardcoded to 1.)" For the MC4_STATUS register row the Bit Description will be revised to read,
"Bit definitions same as MC0_STATUS, except bits 0, 4, 57, and 61 are hardcoded to 1."

A4.

 ISR Must Re-enable CCCR After Each PEBS Overflow

In the Intel Architecture Software Developer's Manual, Vol 3: System Programming Guide Section
15.5.7.4, under title "WRITING THE DS INTERRUPT SERVICE ROUTINE" a new bullet is added
at the end of the section.

The ISR must re-enable the CCCR's ENABLE bit if it is servicing an overflow PMI due to

PEBS.

PENTIUM® II PROCESSOR SPECIFICATION UPDATE

 78

A5.

Sequence to Programming Performance Counters

Sequence to Programming Performance Counters
The Intel Architecture Software Developer's Manual, Vol 3: System Programming Guide
Section 15.9.6, under title "Programming the Performance Counters for Non-Retirement
Events, " currently states:

2. Select the performance counter to count the events and an associated ESCR to
select the events to be counted.

It should state:

2. For each event, select an ESCR that supports the event using the values in the
ESCR Restrictions row in Table A-1.

4. Match the CCCR Select value and ESCR name in Table A-1 to the values listed ESCR
Name and ESCR No. columns in Table 15-4, to select a CCCR and performance counter.

 PENTIUM® II PROCESSOR SPECIFICATION UPDATE

79

A6.

Performance Counter MSRs (MSR_IQ_COUNTER)

The Intel Architecture Software Developer's Manual, Vol 3: System Programming Guide Section
15.9, Counter No.12, 13, and 16 of Table 15-4, it currently states:

MSR_IQ_COUNTER0 12 30CH MSR_IQ_CCCR0 36CH MSR_CRU_ESCR0
 4 3B8H

MSR_CRU_ESCR2
 5 3CCH

 MSR_CRU_ESCR4
 6 3E0H
 MSR_IQ_ESCR0
 0 3BAH
 MSR_RAT_ESCR0
 3 3BCH
 MSR_SSU_ESCR0
 2 3BEH
 MSR_ALF_ESCR0
 1 3CAH

MSR_IQ_COUNTER1 13 30DH MSR_IQ_CCCR1 36DH MSR_CRU_ESCR0
 4 3B8H
 MSR_CRU_ESCR2
 5 3CCH
 MSR_CRU_ESCR4
 6 3E0H
 MSR_IQ_ESCR0
 0 3BAH
 MSR_RAT_ESCR0
 3 3BCH
 MSR_SSU_ESCR0
 2 3BEH
 MSR_ALF_ESCR0
 1 3CAH

MSR_IQ_COUNTER4 16 310H MSR_IQ_CCCR4 370H MSR_CRU_ESCR0
 4 3B8H
 MSR_CRU_ESCR2
 5 3CCH
 MSR_CRU_ESCR4
 6 3E0H
 MSR_IQ_ESCR0
 0 3BAH
 MSR_RAT_ESCR0
 3 3BCH

PENTIUM® II PROCESSOR SPECIFICATION UPDATE

 80

 MSR_SSU_ESCR0
 2 3BEH
 MSR_ALF_ESCR0
 1 3CAH

It should state:

MSR_IQ_COUNTER0 12 30CH MSR_IQ_CCCR0 36CH MSR_CRU_ESCR0
 4 3B8H
 MSR_CRU_ESCR2
 5 3CCH
 MSR_CRU_ESCR4
 6 3E0H
 MSR_IQ_ESCR0
 0 3BAH
 MSR_RAT_ESCR0
 2 3BCH
 MSR_SSU_ESCR0
 3 3BEH
 MSR_ALF_ESCR0
 1 3CAH

MSR_IQ_COUNTER1 13 30DH MSR_IQ_CCCR1 36DH MSR_CRU_ESCR0
 4 3B8H
 MSR_CRU_ESCR2
 5 3CCH
 MSR_CRU_ESCR4
 6 3E0H
 MSR_IQ_ESCR0
 0 3BAH
 MSR_RAT_ESCR0
 2 3BCH
 MSR_SSU_ESCR0
 3 3BEH
 MSR_ALF_ESCR0
 1 3CAH

MSR_IQ_COUNTER4 16 310H MSR_IQ_CCCR4 370H MSR_CRU_ESCR0
 4 3B8H
 MSR_CRU_ESCR2
 5 3CCH
 MSR_CRU_ESCR4
 6 3E0H
 MSR_IQ_ESCR0
 0 3BAH
 MSR_RAT_ESCR0
 2 3BCH

 PENTIUM® II PROCESSOR SPECIFICATION UPDATE

81

 MSR_SSU_ESCR0
 3 3BEH
 MSR_ALF_ESCR0
 1 3CAH

A7.

0x2B MSR Definition

The Intel Architecture Software Developer's Manual, Vol 3: System Programming Guide Appendix
B, under Table B1, MSR_EBC_SOFT_POWERON, bit 4, currently states:

Initiator MCERR# Disable. (R/W) Set to disable MCERR# driving for initiator bus requests
(default); clear to disable.

It should state:

Initiator MCERR# Disable. (R/W) Set to disable MCERR# driving for initiator bus requests
default); clear to enable.

A8.

ESI and EDI Alignment For Fast String Moves

The Intel Architecture Software Developer's Manual, Vol 3: System Programming Guide Chapter 7,
Section 7.2.3, first bullet of the third paragraph currently states:

Source and destination addresses must be 8-byte aligned.

It should state:

EDI and ESI must be 8-byte aligned for the Pentium III processor. EDI must be 8-byte aligned for
the Pentium 4 processor.

PENTIUM® II PROCESSOR SPECIFICATION UPDATE

 82

A9.

BUS_UTILIZATION_DUE_TO_PROCESSOR_ACTIVITY Event
Number Correction

The Intel Architecture Software Developer's Manual, Vol 3: System Programming Guide in Table A-
8 under Mnemonic Event Name "BUS_UTILIZATION_DUE _TO_PROCESSOR_ACTIVITY
(Counter 0)", Event Number currently states:

2DH

It should state:

 2EH

A10.

Complement flag, bit 19

The Intel Architecture Software Developer's Manual, Vol 3: System Programming Guide Chapter
15,Section 15.9.3, CCCR MSRs, last sentence of the "Complement flag, bit 19" paragraph on
page 15-30 currently states:

The compare flag is not active unless the compare flag is set.

It should state:

 The complement flag is not active unless the compare flag is set.

 PENTIUM® II PROCESSOR SPECIFICATION UPDATE

83

A11.

BSF and BSR Incorrectly Documented in Vol 2 Appendix B

The Intel Architecture Software Developer's Manual, Vol 2: Instruction Set Reference Appendix
B-7, Table B-10 states:

BSF - Bit Scan Forward
 register1, register2 0000 1111 : 1011 1100 : 11 reg2 reg1
 memory, register 0000 1111 : 1011 1100 : mod reg r/m

BSR - Bit Scan Reverse
 register1, register2 0000 1111 : 1011 1101 : 11 reg2 reg1
 memory, register 0000 1111 : 1011 1101 : mod reg r/m

It should state:

BSF - Bit Scan Forward
 register1, register2 0000 1111 : 1011 1100 : 11 reg1 reg2
 memory, register 0000 1111 : 1011 1100 : mod reg r/m

BSR - Bit Scan Reverse
 register1, register2 0000 1111 : 1011 1101 : 11 reg1 reg2
 memory, register 0000 1111 : 1011 1101 : mod reg r/m

A12.

Tagging Mechanism for Replay_Event

The Intel Architecture Software Developer's Manual, Vol 3: System Programming Guide Section 15.9.7.4, in
the 3rd paragraph, currently states:

The Table A-5 lists the metrics that are support the replay tagging mechanism and the at-retire-ment events
that use the replay tagging mechanism, and specifies how the appropriate MSRs need to be configured. Each
of these metrics requires that the Replay_Event (see Table A-2) be used to count the tagged µops.

It should state:

The Table A-5 lists the metrics that are support the replay tagging mechanism and the at-retire-ment events
that use the replay tagging mechanism, and specifies how the appropriate MSRs need to be configured. The
replay tags defined in Table A-5 also enable Precise Event-Based Sampling (PEBS, see Section 15.9.8).
Each of these replay tags can also be used in normal sampling by not setting Bit 24 nor Bit 25 in
IA32_PEBS_ENABLE_MSR. Each of these metrics requires that the Replay_Event (see Table A-2) be used
to count the tagged µops.

PENTIUM® II PROCESSOR SPECIFICATION UPDATE

 84

SPECIFICATION CLARIFICATIONS

The Specification Clarifications listed in this section apply to the following documents:

• P6 Family of Processors Hardware Developer’s Manual
• Pentium® II Processor Developer’s Manual

• Pentium® II Processor at 233 MHz, 266 MHz, 300 MHz, and 333 MHz datasheet

• Pentium® II Processor at 350 MHz, 400 MHz, and 450 MHz datasheet

• Intel Architecture Software Developer’s Manual, Volumes 1, 2, and 3

All Specification Clarifications will be incorporated into a future version of the appropriate Pentium II
processor documentation.

There are no new Specification Clarifications for this Month

 PENTIUM® II PROCESSOR SPECIFICATION UPDATE

85

SPECIFICATION CHANGES
The Specification Changes listed in this section apply to:

• P6 Family of Processors Hardware Developer’s Manual

• Pentium® II Processor Developer’s Manual

• Pentium® II Processor at 233 MHz, 266 MHz, 300 MHz, and 333 MHz datasheet

• Pentium® II Processor at 350 MHz, 400 MHz, and 450 MHz datasheet

• Intel Architecture Software Developer’s Manual, Volumes 1, 2, and 3

There are no new Specification Changes for this month

	CONTENTS
	Date of Revision
	Nomenclature

	Specification Update for the�Pentium® II Processor
	Pentium(II Processor Markings
	Boxed Pentium(II Processor Markings
	Pentium® II OverDrive® Processor Line Markings
	IDENTIFICATION INFORMATION
	Mixed Steppings in DP Systems
	SUMMARY OF CHANGES
	Summary of Errata
	Summary of Documentation Changes
	Summary of Specification Clarifications
	Summary of Specification Changes

	ERRATA
	A1.
	A2.
	A3.
	A4.
	A5.
	A6.
	A7.
	A8.
	A9.
	A10.
	A11.
	A12.
	A13.
	A14.
	A15.
	A16.
	A17.
	A18.
	A19.
	A20.
	A21.
	A22.
	A23.
	A24.
	A25.
	A26.
	A27.
	A28.
	A29.
	A30.
	A31.
	A32.
	A33.
	A34.
	A35.
	A36.
	A37.
	A38.
	A39.
	A40.
	A41.
	A42.
	A43.
	A44.
	A45.
	A46.
	A47.
	A48.
	A49.
	A50.
	A51.
	A52.
	A53.
	A54.
	A55.
	A56.
	A57.
	A58.
	A59.
	A60.
	A61.
	A62.
	A63.
	A64.
	A65.
	A66.
	A67.
	A68.
	A69.
	A70.
	A71.
	A72.
	A73.
	A74.
	A75.
	A76.
	A77.
	A78.
	A79.
	A80.
	A81.
	A82.
	A83.
	A84.
	A85.
	A86.
	A87.
	A88.
	A89.
	A90.
	A91.
	A1AP.
	A2AP.
	A3AP.

	DOCUMENTATION CHANGES
	SPECIFICATION CLARIFICATIONS
	SPECIFICATION CHANGES

