
24388707.doc

Mobile Pentium II Processor
Specification Update

Release Date: January 25, 1999

Order Number: 243887-007

The Mobile Pentium® II processor or the Intel® Pentium II Processor Mobile Module may contain design defects
or errors known as errata which may cause the product to deviate from published specifications. Current
characterized errata are documented in this Specification Update.

Information in this document is provided in connection with Intel products. No license, express or implied, by estoppel or
otherwise, to any intellectual property rights is granted by this document. Except as provided in Intel’s Terms and Conditions of
Sale for such products, Intel assumes no liability whatsoever, and Intel disclaims any express or implied warranty, relating to
sale and/or use of Intel products including liability or warranties relating to fitness for a particular purpose, merchantability, or
infringement of any patent, copyright or other intellectual property right. Intel products are not intended for use in medical, life
saving, or life sustaining applications.

Intel may make changes to specifications and product descriptions at any time, without notice.

Designers must not rely on the absence or characteristics of any features or instructions marked “reserved” or “undefined.”
Intel reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from
future changes to them.

The Mobile Pentium® II processor or the Intel® Pentium II Processor Mobile Module may contain design defects or errors
known as errata which may cause the product to deviate from published specifications. Current characterized errata are
available on request.

The Specification Update should be publicly available following the last shipment date for a period of time equal to the specific
product’s warranty period. Hardcopy Specification Updates will be available for one (1) year following End of Life (EOL). Web
access will be available for three (3) years following EOL.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.

Copies of documents which have an ordering number and are referenced in this document, or other Intel literature, may be
obtained by calling 1-800-548-4725 or by visiting Intel’s website at http://www.intel.com

Copyright © Intel Corporation 1999.

* Third-party brands and names are the property of their respective owners.

24388707.doc

CONTENTS

REVISION HISTORY... v

PREFACE ... vi

Specification Update for Mobile Pentium ® II Processors .. 1

GENERAL INFORMATION.. 3

ERRATA... 18

DOCUMENTATION CHANGES .. 41

SPECIFICATION CLARIFICATIONS .. 53

SPECIFICATION CHANGES .. 69

MOBILE PENTIUM® II PROCESSOR SPECIFICATION UPDATE

24388707.doc

v

REVISION HISTORY
Date of Revision Version Description

August 1998 -001 This document is the first Specification Update for the Mobile
Pentium® II processor.

September 1998 -002 Updated Erratum 56. Added Errata 60 through 62.

October 1998 -003 Implemented new numbering nomenclature. Updated Errata B1
and B27. Added Specification Change B3. Added Documentation
Change B21. Added Specification Clarifications B14 through B16.
Added Errata B40 through B42.

November 1998 -004 Updated Erratum B23, Documentation Change B10 and B22.
Added Erratum B43 and Specification Change B4.

December 1998 -005 Added Erratum B44. Updated mobile module identification
information table. Status update on Errata B13, B15, B17 through
B20, B26, and B34.

January 1999 -006 Added Erratum B45, and Documentation Change B23 through
B25.

January 25, 1999 -007 Special issue to coincide with launch of new processor. Added
new product markings and updated the product ID tables. Updated
summary table of changes.

MOBILE PENTIUM® II PROCESSOR SPECIFICATION UPDATE

vi

PREFACE
This document is an update to the specifications contained the Mobile Pentium® II Processor at 233 MHz, 266
MHz, and 300 MHz datasheet (Order Number 243669), the Intel® Pentium® II Processor Mobile Module : Mobile
Module Connector 1 (MMC-1) datasheet (Order Number 243667), Intel® Pentium® II Processor Mobile Module :
Mobile Module Connector 2 (MMC-2) datasheet (Order Number 243668), Mobile Pentium® II Processor in Mini-
Cartridge Package at 366 MHz, 333 MHz, 300PE MHz, and 266PE MHz datasheet (Order Number 243669),
Mobile Pentium® II Processor in BGA Package at 366 MHz, 333 MHz, 300PE MHz, and 266PE MHz datasheet
(Order Number 245106), Mobile Pentium® II Processor Mobile Module MMC-7 datasheet (Order Number
243667), Mobile Pentium® II Processor Mobile Module MMC-2 datasheet (Order Number 243668), and the Intel
Architecture Software Developer’s Manual, Volumes 1, 2 and 3 (Order Numbers 243190, 243191, and 243192,
respectively). It is intended for hardware system manufacturers and software developers of applications,
operating systems, or tools. It contains Specification Changes, S-Specs, Errata, Specification Clarifications, and
Documentation Changes.

Nomenclature

Specification Changes are modifications to the current published specifications for the Mobile Pentium® II
processor or the Intel® Pentium II Processor Mobile Module. These changes will be incorporated in the next
release of the specifications.

S-Specs are exceptions to the published specifications, and apply only to the units assembled under that
s-spec.

Specification Clarifications describe a specification in greater detail or further highlight a specification’s impact
to a complex design situation. These clarifications will be incorporated in the next release of the specifications.

Documentation Changes include typos, errors, or omissions from the current published specifications. These
changes will be incorporated in the next release of the specifications.

Errata are design defects or errors. Errata may cause the Mobile Pentium II processor’s or the Intel Pentium II
Processor Mobile Module’s behavior to deviate from published specifications. Hardware and software designed
to be used with any given processor must assume that all errata documented for that processor are present on
all devices unless otherwise noted.

Identification Information

The Mobile Pentium II processor or the Intel Pentium II Processor Mobile Module can be identified by the
following values:

Family 1 233-, 266-, 300- Model 5 2

0110 0101

Family 1 266PE, 300PE, 333, 366 Model 6 2

0110 0110

MOBILE PENTIUM® II PROCESSOR SPECIFICATION UPDATE

24388707.doc

vii

NOTES:
1. The Family corresponds to bits [11:8] of the EDX register after RESET, bits [11:8] of the EAX register after the CPUID

instruction is executed with a 1 in the EAX register, and the generation field of the Device ID register accessible through
Boundary Scan.

2. The Model corresponds to bits [7:4] of the EDX register after RESET, bits [7:4] of the EAX register after the CPUID
instruction is executed with a 1 in the EAX register, and the model field of the Device ID register accessible through
Boundary Scan.

The Mobile Pentium II processor’s and the Intel Pentium II Processor Mobile Module’s second level (L2) cache
size can be determined by the following register contents:

512-Kbyte Unified L2 Cache 1 43h
256-Kbyte Unified L2 Cache 42h

NOTE:
1. For the Mobile Pentium® II processor and the Intel® Pentium II Processor Mobile Module, the unified L2 cache size will

be returned as one of the cache/TLB descriptors when the CPUID instruction is executed with a 2 in the EAX register.

Specification Update for
Mobile Pentium ® II Processors

MOBILE PENTIUM® II PROCESSOR SPECIFICATION UPDATE

24388707.doc

3

GENERAL INFORMATION

Intel ® Pentium ® II Processor Mobile M odule at 233 MHz, 266 MHz, and
300 MHz Markings

The Product Tracking Code label provides module information that is used by Intel to determine the assembly
level of the module. The PTC label exists on the secondary side of the module and provides the following
information:

Example: PMD30005001AA

• The Product Tracking code consists of 13 characters as identified in the above
example and can be broken down as follows:

AABCCCDDEEEFF

• Definition: AA - Processor Module = PM

B - Pentium® II Processor Mobile Module (MMC-1) = D

 - Pentium II Processor Mobile Module (MMC-2) = E

CCC - Speed Identity = 300, 266, 233

DD - Cache Size = 05 (512 KB)

EEE - Notifiable Design Revision (Start at 001)

FF - Notifiable Processor Revision (Start at AA)

MOBILE PENTIUM® II PROCESSOR SPECIFICATION UPDATE

4

Pentium ® II Processor Mobile Module (MMC- 1)

MOBILE PENTIUM® II PROCESSOR SPECIFICATION UPDATE

24388707.doc

5

Pentium ® II Processor Mobile Module (MMC- 2)

MOBILE PENTIUM® II PROCESSOR SPECIFICATION UPDATE

6

Intel ® Pentium ® II Processor Mobile M odule at 266PE, 300PE, 333 and
366 MHz Markings

The Product Tracking Code (PTC) determines the Intel assembly level of the module. The PTC is on the
secondary side of the module and provides the following information:

Example: PMG33302001AA

• The PTC consists of 13 characters as identified in the above example and can be
broken down as follows:

AABCCCDDEEEFF

• Definition: AA - Processor Module = PM

B - Intel® Pentium® II Processor Mobile Module At 266PE, 300PE, 333 and

366 MHz Markings Processor Mobile Module (MMC-1) = F

Intel Pentium II Processor Mobile Module At 266PE, 300PE, 333 and

366 MHz Markings Processor Mobile Module (MMC-2)= G

CCC- Speed Identity = 366, 333, 300, 266

DD - Cache Size = 02 (256 KB)

EEE - Notifiable Design Revision (Start at 001)

FF - Notifiable Processor Revision (Start at AA)

MOBILE PENTIUM® II PROCESSOR SPECIFICATION UPDATE

24388707.doc

7

Intel ® Pentium ® II Processor Mobile Module at 266PE, 300PE, 333 and 366 MHz Markings
(MMC-1)

Intel ® Pentium ® II Processor Mobile Module at 266PE, 300PE, 333 and 366 MHz Markings
(MMC-2)

MOBILE PENTIUM® II PROCESSOR SPECIFICATION UPDATE

8

Intel ® Mobile Pentium ® II Processor Mini Cartridge Markings

TOP VIEW BOTTOM VIEW

Board-to-board Connector
(240 pin)

Bottom
Cover

Bottom
Cover Snap
Retention
Feature Mounting

Hole

Core DIE
(Exposed)

Top
Cover

Thermal
Attach
Through Hole

Label

MOBILE PENTIUM® II PROCESSOR SPECIFICATION UPDATE

24388707.doc

9

Current Mobile Pentium ® II Processor in Mini-Cartridge Package Label
with Supplier Matrix Mark

New Mobile Pentium ® II Processor in Mini-Cartridge Package Label with
Supplier Matrix Mark Removed

NOTES:
• FFFFFFFF = FPO # (Test Lot Traceability)
• NNNN = Serial Number
• XXXX = Country of Origin

• SYYY = Production S-Spec
• ZZZ = Speed (MHz)
• LLL = Cache Size (k)

MOBILE PENTIUM® II PROCESSOR SPECIFICATION UPDATE

10

Mobile Pentium ® II Processor BGA1 Package Markings

Mobile Pentium II Processor Identification Information

S-Spec
Core

Stepping CPUID
Speed (MHz)

Core/Bus
 L2 Size
(Kbytes)

TagRAM/
Stepping Package Notes

SL2KH mdA0 0650h 233/66 512 T6P/A3 Mini-Cartridge

SL2KJ mdA0 0650h 266/66 512 T6P/A3 Mini-Cartridge

SL2RS mdB0 0652h 300/66 512 T6P-e/A0 Mini-Cartridge 1

SL2RR mdB0 0652h 266/66 512 T6P-e/A0 Mini-Cartridge 1

SL2RQ mdB0 0652h 233/66 512 T6P-e/A0 Mini-Cartridge 1

SL32M mdxA0 066Ah 266/66 256 N/A Mini-Catridge 1

SL32N mdxA0 066Ah 300/66 256 N/A Mini-Catridge 1

SL32P mdxA0 066Ah 333/66 256 N/A Mini-Catridge 1

SL36Z mdxA0 066Ah 366/66 256 N/A Mini-Catridge 1

SL32Q mdbA0 066Ah 266/66 256 N/A BGA 2

SL32R mdbA0 066Ah 300/66 256 N/A BGA 2

SL32S mdbA0 066Ah 333/66 256 N/A BGA 2

SL3AG mdbA0 066Ah 366/66 256 N/A BGA 2

NOTES:
1. VCC_CORE is specified for 1.6 V +/-120mV for these Mobile Pentium® II processors (mini-cartridge).
2. VCC_CORE is specified for 1.6 V +/-135mV for these Mobile Pentium II processors (BGA1 package).

MOBILE PENTIUM® II PROCESSOR SPECIFICATION UPDATE

24388707.doc

11

Intel Pentium II Processor Mobile Module Identification Information

PTC
Core

Stepping CPUID
Speed (MHz)

Core/Bus
 L2 Size
(Kbytes)

TagRAM/
Stepping Package Notes

PMD23305001AA mmdA0 0650h 233/66 512 T6P/A3 MMC-1

PMD26605001AA mmdA0 0650h 266/66 512 T6P/A3 MMC-1

PMD30005002AA mmdB0 0652h 300/66 512 T6P-e/A0 MMC-1

PMD26605002AB mmdB0 0652h 266/66 512 T6P-e/A0 MMC-1

PMD23305002AB mmdB0 0652h 233/66 512 T6P-e/A0 MMC-1

PME23305001AA mmdB0 0652h 233/66 512 T6P-e/A0 MCC-2

PME26605001AA mmdB0 0652h 266/66 512 T6P-e/A0 MCC-2

PME30005001AA mmdB0 0652h 300/66 512 T6P-e/A0 MCC-2

PME30005002AA mmdB0 0652h 300/66 512 T6P-e/A0 MCC-2

PMG26602001AA dmmA0 066Ah 266/66 256 N/A MMC-2 1,2

PMG30002001AA dmmA0 066Ah 300/66 256 N/A MMC-2 1,2

PMG33302001AA dmmA0 066Ah 333/66 256 N/A MMC-2 1,2

PMG36602001AA dmmA0 066Ah 366/66 256 N/A MMC-2 1,2

PMF26602001AA dmmA0 066Ah 266/66 256 N/A MMC-1 1,2

PMF30002001AA dmmA0 066Ah 300/66 256 N/A MMC-1 1,2

PMF33302001AA dmmA0 066Ah 333/66 256 N/A MMC-1 1,2

PMF36602001AA dmmA0 066Ah 366/66 256 N/A MMC-1 1,2

NOTES:

1. VCC_CORE is 1.6 V for these module products.

2. Voltage regulator modification implemented on these module products.

MOBILE PENTIUM® II PROCESSOR SPECIFICATION UPDATE

12

Summary Table of Changes

The following table indicates the Specification Changes, Errata, Specification Clarifications, or Documentation
Changes which apply to the Pentium II processors. Intel intends to fix some of the errata in a future stepping of
the component, and to account for the other outstanding issues through documentation or specification changes
as noted. This table uses the following notations:

CODES USED IN SUMMARY TABLE

X: Specification Change, Erratum, Specification Clarification, or Documentation
Change applies to the given processor stepping.

Doc: Intel intends to update the appropriate documentation in a future revision.

Fix: This erratum is intended to be fixed in a future stepping of the component.

Fixed: This erratum has been previously fixed.

NoFix: There are no plans to fix this erratum.

(No mark) or (blank box): This item is fixed in or does not apply to the given stepping.

AP: APIC related erratum.

SUB: This column refers to errata on the Mobile Pentium® II processor or the Intel®
Pentium II Processor Mobile Module substrate.

Shaded: This item is either new or modified from the previous version of the document.

Some of Intel’s Specification Updates will be undergoing a numbering methodology change to reduce confusion
when referring to errata which affect a specific product. Each Specification Update item will be prefixed with a
capital letter to distinguish the product it refers to. The key below details the letters which will be used for the
current Intel microprocessor Specification Updates:

A = Pentium® II processor

B = Mobile Pentium II processor

C = Intel® Celeron™ processor

D = Pentium II Xeon™ processor

The Specification Updates for the Pentium processor, Pentium Pro processor, and other Intel products will not
be implementing such a convention at this time.

MOBILE PENTIUM® II PROCESSOR SPECIFICATION UPDATE

24388707.doc

13

NO.
m

dA0
mm
dA0

m
dB0

mm
dB0

mdx
A0

mdb
A0

dmm
A0 Plans ERRATA

B1 X X X X X X X NoFix FP Data Operand Pointer may be
incorrectly calculated after FP access
which wraps 64-Kbyte boundary in 16-bit
code

B2 X X X X X X X NoFix Differences exist in debug exception
reporting

B3 X X X X X X X NoFix Code fetch matching disabled debug
register may cause debug exception

B4 X X X X X X X NoFix Double ECC error on read may result in
BINIT#

B5 X X X X X X X NoFix FP inexact-result exception flag may not
be set

B6 X X X X X X X NoFix BTM for SMI will contain incorrect FROM
EIP

B7 X X X X X X X NoFix I/O restart in SMM may fail after
simultaneous MCE

B8 X X X X X X X NoFix Branch traps do not function if BTMs are
also enabled

B9 X X X X X X X NoFix Machine check exception handler may
not always execute successfully

B10 X X X X X X X NoFix MCE due to L2 parity error gives L1
MCACOD.LL

B11 X X X X X X X NoFix LBER may be corrupted after some
events

B12 X X X X X X X NoFix BTMs may be corrupted during
simultaneous L1 cache line replacement

B13 X X X X X Fixed Potential early deassertion of LOCK#
during split-lock cycles

B14 X X X X X X X NoFix A20M# may be inverted after returning
from SMM and Reset

B15 X X X X X Fix Reporting of floating-point exception may
be delayed

B16 X X X X X X X NoFix Near CALL to ESP creates unexpected
EIP address

B17 X X X X X Fix Built-in self test always gives nonzero
result

B18 X X X X X Fix Cache state corruption in the presence
of page A/D-bit setting and snoop traffic

B19 X X X X X Fix Snoop cycle generates spurious
machine check exception

MOBILE PENTIUM® II PROCESSOR SPECIFICATION UPDATE

14

NO.
m

dA0
mm
dA0

m
dB0

mm
dB0

mdx
A0

mdb
A0

dmm
A0 Plans ERRATA

B20 X X X X X Fix MOVD/MOVQ instruction writes to
memory prematurely

B21 X X X X X X X NoFix Memory type undefined for nonmemory
operations

B22 X X X X X X X NoFix FP Data Operand Pointer may not be
zero after power on or Reset

B23 X X X X X X X NoFix MOVD following zeroing instruction can
cause incorrect result

B24 X X X X X X X NoFix Premature execution of a load operation
prior to exception handler invocation

B25 X X X X X X X NoFix Read portion of RMW instruction may
execute twice

B26 X X Fixed Voltage sequencing during power up

B27 X X X X X X X Fix Intervening writeback may occur during
locked transaction

B28 X X X X X X X NoFix MC2_STATUS MSR has model-specific
error code and machine check
architecture error code reversed

B29 X X X X X X X NoFix Mixed cacheability of lock variables is
problematic in MP systems

B30 X X X X X X X Fix Thermal sensor may assert
SMBALERT# incorrectly

B31 X X X X X X X NoFix MOV with debug register causes debug
exception

B32 X X X X X X X NoFix Upper four PAT entries not usable with
Mode B or Mode C paging

B33 X X X X Fix UC write may be reordered around a
cacheable write

B34 X X X X X Fix Incorrect memory type may be used
when MTRRs are disabled

B35 X X X X X X X Fix Misprediction in program flow may cause
unexpected instruction execution

B36 X X X X X X X NoFix Data breakpoint exception in a
displacement relative near call may
corrupt EIP

B37 X X X X X X X NoFix System bus ECC not functional with 2:1
ratio

B38 X X X X X X X Fix Fault on REP CMPS/SCAS operation
may cause incorrect EIP

B39 X X X X X X X NoFix RDMSR and WRMSR to invalid MSR
may not cause GP fault

MOBILE PENTIUM® II PROCESSOR SPECIFICATION UPDATE

24388707.doc

15

NO.
m

dA0
mm
dA0

m
dB0

mm
dB0

mdx
A0

mdb
A0

dmm
A0 Plans ERRATA

B40 X X X X X X X NoFix SYSENTER/SYSEXIT instructions can
implicitly load “null segment selector” to
SS and CS registers

B41 X X X X X X X NoFix PRELOAD followed by EXTEST does
not load boundary scan data

B42 X X X X X X X NoFix Far jump to new TSS with D-bit cleared
may cause system hang

B43 X X X X X X X NoFix Incorrect chunk ordering may prevent
execution of the Machine Check
Exception handler after BINIT#

B44 X X X X X X X Fix Resume flag may not be cleared after
debug exception.

B45 X X Fixed Thermal sensor leakage current may
exceed specification

B1AP X X X X X X X NoFix APIC access to cacheable memory
causes SHUTDOWN

NO.
m

dA0
mm
dA0

m
dB0

mm
dB0

mdx
A0

mdb
A0

dmm
A0 Plans DOCUMENTATION CHANGES

B1 X X X X X X X Doc Invalid arithmetic operations and masked
responses to them relative to
FIST/FISTP instruction

B2 X X X X X X X Doc FIDIV/FIDIVR m16int description

B3 X X X X X X X Doc PUSH does not pad with zeros

B4 X X X X X X X Doc DR7, bit 10 is reserved

B5 X X X X X X X Doc Additional states that are not
automatically saved and restored

B6 X X X X X X X Doc Cache and TLB description correction

B7 X X X X X X X Doc SMRAM state save map contains
documentation error

B8 X X X X X X X Doc OF and DF of the EFLAGS register are
mislabeled as system flags

B9 X X X X X X X Doc CS:EIP pushed onto stack prior to code
segment limit check

B10 X X X X X X X Doc Corrections to opcode maps

B11 X X Doc PC compatibility signal group AC
specifications correction

B12 X X Doc Mislabeled vertical dimension
parameters

B13 X X Doc Correction to dimension definitions

MOBILE PENTIUM® II PROCESSOR SPECIFICATION UPDATE

16

NO.
m

dA0
mm
dA0

m
dB0

mm
dB0

mdx
A0

mdb
A0

dmm
A0 Plans DOCUMENTATION CHANGES

B14 X X X X X X X Doc MP initialization protocol algorithm
correction

B15 X X X X X X X Doc Interrupt 13-general protection exception
(#GP)

B16 X X X X X X X Doc Corrections to Intel Architecture
Software Developer’s Manual, Volume 2:
Instruction Set Reference

B17 X X X X X X X Doc MCI_ADDR MSR reference section
correction

B18 X X X X X X X Doc FCOMI/FCOMIP/FUCOMI/FUCOMIP
setting of flags relative to exceptions

B19 X X X X X X X Doc MemTypeGet() function example

B20 X X X X X Correction to vertical dimensions

B21 X X X X X X X Doc SMBus data setup time

B22 X X X X X X X Doc RSVD flag correction

B23 X X X X X X X Doc SMRAM state save map documentation
correction

B24 X X X X X X X Doc Stop-Grant state correction

B25 X X X X X X X Doc Correction to Stop-Grant state definition

NO.
m

dA0
mm
dA0

m
dB0

mm
dB0

mdx
A0

mdb
A0

dmm
A0 Plans SPECIFICATION CLARIFICATIONS

B1 X X X X X X X Doc Writes to WC memory

B2 X X X X X X X Doc Multiple processors protocol and
restrictions

B3 X X X X X X X Doc Critical sequence of events during a
page fault exception

B4 X X X X X X X Doc Performance-monitoring counter issues

B5 X X X X X X X Doc POP[ESP] with 16-bit stack size

B6 X X X X X X X Doc Preventing caching

B7 X X X X X X X Doc Paging must be enabled before enabling
the page global bit

B8 X X X X X X X Doc PWRGOOD inactive pulse width

B9 X X X X X X X Doc Interrupt recognition determines priority

B10 X X X X X X X Doc References to 2-Mbyte pages should
include 4-Mbyte pages

B11 X X X X X X X Doc Modification of reserved areas in the
SMRAM saved state map

B12 X X X X X X X Doc TLB flush necessary after PDPE change

MOBILE PENTIUM® II PROCESSOR SPECIFICATION UPDATE

24388707.doc

17

NO.
m

dA0
mm
dA0

m
dB0

mm
dB0

mdx
A0

mdb
A0

dmm
A0 Plans SPECIFICATION CLARIFICATIONS

B13 X X X X X X X Doc Exception handler wrong code bit
clarification

B14 X X X X X X X Doc Switching to protected mode while in
SMM

B15 X X X X X X X Doc Thermal sensor setpoint

B16 X X X X X X X Doc Thermal sensor configuration register –
RUN/STOP bit

NO.
m

dA0
mm
dA0

m
dB0

mm
dB0

mdx
A0

mdb
A0

dmm
A0 Plans SPECIFICATION CHANGES

B1 X X Doc Maximum die and cover pressure
specifications

B2 X X Doc New footnote for PWRGOOD inactive
pulse width

B3 X X X X X X X Doc WC buffer eviction data ordering

B4 X X X X X X X Doc APIC reference correction

MOBILE PENTIUM® II PROCESSOR SPECIFICATION UPDATE

18

ERRATA

B1. FP Data Operand Pointer May Be Incorrectly Calculated After FP
Access Which Wraps 64-Kbyte B oundary in 16-Bit Code

PROBLEM: The FP Data Operand Pointer is the effective address of the operand associated with the last
noncontrol floating-point instruction executed by the machine. If an 80-bit floating-point access (load or store)
occurs in a 16-bit mode other than protected mode (in which case the access will produce a segment limit
violation), the memory access wraps a 64-Kbyte boundary, and the floating-point environment is subsequently
saved, the value contained in the FP Data Operand Pointer may be incorrect.

IMPLICATION: A 32-bit operating system running 16-bit floating-point code may encounter this erratum, under
the following conditions:

• The operating system is using a segment greater than 64 Kbytes in size.

• An application is running in a 16-bit mode other than protected mode.

• An 80-bit floating-point load or store which wraps the 64-Kbyte boundary is executed.

• The operating system performs a floating-point environment store (FSAVE/FNSAVE/FSTENV/FNSTENV)
after the above memory access.

• The operating system uses the value contained in the FP Data Operand Pointer.

Wrapping an 80-bit floating-point load around a segment boundary in this way is not a normal programming
practice. Intel has not currently identified any software which exhibits this behavior.

WORKAROUND: If the FP Data Operand Pointer is used in an OS which may run 16-bit floating-point code, care
must be taken to ensure that no 80-bit floating-point accesses are wrapped around a 64-Kbyte boundary.

STATUS: For the steppings affected see the Summary Table of Changes at the beginning of this section.

B2. Differences Exist in De bug E xception Reporting

 PROBLEM: There exist some differences in the reporting of code and data breakpoint matches between that
specified by previous Intel processors’ specifications and the behavior of the Pentium II processor, as described
below:

 CASE 1:

 The first case is for a breakpoint set on a MOVSS or POPSS instruction, when the instruction following it causes
a debug register protection fault (DR7.gd is already set, enabling the fault). The processor reports delayed data
breakpoint matches from the MOVSS or POPSS instructions by setting the matching DR6.bi bits, along with the
debug register protection fault (DR6.bd). If additional breakpoint faults are matched during the call of the debug
fault handler, the processor sets the breakpoint match bits (DR6.bi) to reflect the breakpoints matched by both
the MOVSS or POPSS breakpoint and the debug fault handler call. The Pentium II processor only sets DR6.bd
in either situation, and does not set any of the DR6.bi bits.

 CASE 2:

 In the second breakpoint reporting failure case, if a MOVSS or POPSS instruction with a data breakpoint is
followed by a store to memory which crosses a 4-Kbyte page boundary, the breakpoint information for the
MOVSS or POPSS will be lost. Previous processors retain this information across such a page split.

MOBILE PENTIUM® II PROCESSOR SPECIFICATION UPDATE

24388707.doc

19

 CASE 3:

 If they occur after a MOVSS or POPSS instruction, the INT n, INTO, and INT3 instructions zero the DR6.bi bits
(bits B0 through B3), clearing pending breakpoint information, unlike previous processors.

 CASE 4:

 If a data breakpoint and an SMI (System Management Interrupt) occur simultaneously, the SMI will be serviced
via a call to the SMM handler, and the pending breakpoint will be lost.

 CASE 5:

 When an instruction which accesses a debug register is executed, and a breakpoint is encountered on the
instruction, the breakpoint is reported twice.

 IMPLICATION: When debugging or when developing debuggers for a Pentium II processor-based system, this
behavior should be noted. Normal usage of the MOVSS or POPSS instructions (e.g., following them with a MOV
ESP) will not exhibit the behavior of cases 1-3. Debugging in conjunction with SMM will be limited by case 4.

 WORKAROUND: Following MOVSS and POPSS instructions with a MOV ESP instruction when using
breakpoints will avoid the first three cases of this erratum. No workaround has been identified for cases 4 or 5.

 STATUS: For the steppings affected see the Summary Table of Changes at the beginning of this section.

B3. Code Fetch Matching Disabled Debug Register May Cause Debug
Exception

 PROBLEM: The bits L0-3 and G0-3 enable breakpoints local to a task and global to all tasks, respectively. If one
of these bits is set, a breakpoint is enabled, corresponding to the addresses in the debug registers DR0-DR3. If
at least one of these breakpoints is enabled, any of these registers are disabled (e.g., Ln and Gn are 0), and
RWn for the disabled register is 00 (indicating a breakpoint on instruction execution), normally an instruction
fetch will not cause an instruction-breakpoint fault based on a match with the address in the disabled register(s).
However, if the address in a disabled register matches the address of a code fetch which also results in a page
fault, an instruction-breakpoint fault will occur.

 IMPLICATION: While debugging software, extraneous instruction-breakpoint faults may be encountered if
breakpoint registers are not cleared when they are disabled. Debug software which does not implement a code
breakpoint handler will fail, if this occurs. If a handler is present, the fault will be serviced. Mixing data and code
may exacerbate this problem by allowing disabled data breakpoint registers to break on an instruction fetch.

 WORKAROUND: The debug handler should clear breakpoint registers before they become disabled.

 STATUS: For the steppings affected see the Summary Table of Changes at the beginning of this section.

B4. Double ECC Error on Read May Result in BINIT#

 PROBLEM: For this erratum to occur, the following conditions must be met:

• Machine Check Exceptions (MCEs) must be enabled.

• A dataless transaction (such as a write invalidate) must be occurring simultaneously with a transaction
which returns data (a normal read).

• The read data must contain a double-bit uncorrectable ECC error.

MOBILE PENTIUM® II PROCESSOR SPECIFICATION UPDATE

20

 If these conditions are met, the Pentium II processor will not be able to determine which transaction was
erroneous, and instead of generating an MCE, it will generate a BINIT#.

 IMPLICATION: The bus will be reinitialized in this case. However, since a double-bit uncorrectable ECC error
occurred on the read, the MCE handler (which is normally reached on a double-bit uncorrectable ECC error for a
read) would most likely cause the same BINIT# event.

 WORKAROUND: Though the ability to drive BINIT# can be disabled in the Pentium II processor, which would
prevent the effects of this erratum, overall system behavior would not improve, since the error which would
normally cause a BINIT# would instead cause the machine to shut down. No other workaround has been
identified.

 STATUS: For the steppings affected see the Summary Table of Changes at the beginning of this section.

B5. FP Inexact-Result Exception Flag May Not Be Set

 PROBLEM: When the result of a floating-point operation is not exactly representable in the destination format
(1/3 in binary form, for example), an inexact-result (precision) exception occurs. When this occurs, the PE bit (bit
5 of the FPU status word) is normally set by the processor. Under certain rare conditions, this bit may not be set
when this rounding occurs. However, other actions taken by the processor (invoking the software exception
handler if the exception is unmasked) are not affected. This erratum can only occur if the floating-point operation
which causes the precision exception is immediately followed by one of the following instructions:

• FST m32real

• FST m64real

• FSTP m32real

• FSTP m64real

• FSTP m80real

• FIST m16int

• FIST m32int

• FISTP m16int

• FISTP m32int

• FISTP m64int

Note that even if this combination of instructions is encountered, there is also a dependency on the internal
pipelining and execution state of both instructions in the processor.

IMPLICATION: Inexact-result exceptions are commonly masked or ignored by applications, as it happens
frequently, and produces a rounded result acceptable to most applications. The PE bit of the FPU status word
may not always be set upon receiving an inexact-result exception. Thus, if these exceptions are unmasked, a
floating-point error exception handler may not recognize that a precision exception occurred. Note that this is a
“sticky” bit, e.g., once set by an inexact-result condition, it remains set until cleared by software.

WORKAROUND: This condition can be avoided by inserting two NOP instructions between the two floating-point
instructions.

STATUS: For the steppings affected see the Summary Table of Changes at the beginning of this section.

MOBILE PENTIUM® II PROCESSOR SPECIFICATION UPDATE

24388707.doc

21

B6. BTM for SMI Will Contain Incorrect FROM EIP

PROBLEM: A system management interrupt (SMI) will produce a Branch Trace Message (BTM), if BTMs are
enabled. However, the FROM EIP field of the BTM (used to determine the address of the instruction which was
being executed when the SMI was serviced) will not have been updated for the SMI, so the field will report the
same FROM EIP as the previous BTM.

IMPLICATION: A BTM which is issued for an SMI will not contain the correct FROM EIP, limiting the usefulness
of BTMs for debugging software in conjunction with System Management Mode (SMM).

WORKAROUND: None identified at this time.

STATUS: For the steppings affected see the Summary Table of Changes at the beginning of this section.

B7. I/O Restart in SMM May Fail After Simultaneous MCE

PROBLEM: If an I/O instruction (IN, INS, REP INS, OUT, OUTS, or REP OUTS) is being executed, and if the
data for this instruction becomes corrupted, the Pentium II processor will signal a machine check exception
(MCE). If the instruction is directed at a device which is powered down, the processor may also receive an
assertion of SMI#. Since MCEs have higher priority, the processor will call the MCE handler, and the SMI#
assertion will remain pending. However, upon attempting to execute the first instruction of the MCE handler, the
SMI# will be recognized and the processor will attempt to execute the SMM handler. If the SMM handler is
completed successfully, it will attempt to restart the I/O instruction, but will not have the correct machine state,
due to the call to the MCE handler.

IMPLICATION: A simultaneous MCE and SMI# assertion may occur for one of the I/O instructions above. The
SMM handler may attempt to restart such an I/O instruction, but will have corrupted state due to the MCE
handler call, leading to failure of the restart and shutdown of the processor.

WORKAROUND: If a system implementation must support both SMM and MCEs, the first thing the SMM handler
code (when an I/O restart is to be performed) should do is check for a pending MCE. If there is an MCE pending,
the SMM handler should immediately exit via an RSM instruction and allow the machine check exception handler
to execute. If there is not, the SMM handler may proceed with its normal operation.

STATUS: For the steppings affected see the Summary Table of Changes at the beginning of this section.

B8. Branch Traps Do Not Function If BTMs Are Also Enabled

PROBLEM: If branch traps or branch trace messages (BTMs) are enabled alone, both function as expected.
However, if both are enabled, only the BTMs will function, and the branch traps will be ignored.

IMPLICATION: The branch traps and branch trace message debugging features cannot be used together.

WORKAROUND: If branch trap functionality is desired, BTMs must be disabled.

STATUS: For the steppings affected see the Summary Table of Changes at the beginning of this section.

B9. Machine Check Exception Handler May Not Always Execute
Successfully

PROBLEM: An asynchronous machine check exception (MCE), such as a BINIT# event, which occurs during an
access that splits a 4-Kbyte page boundary may leave some internal registers in an indeterminate state. Thus,
MCE handler code may not always run successfully if an asynchronous MCE has occurred previously.

MOBILE PENTIUM® II PROCESSOR SPECIFICATION UPDATE

22

IMPLICATION: An MCE may not always result in the successful execution of the MCE handler. However,
asynchronous MCEs usually occur upon detection of a catastrophic system condition that would also hang the
processor. Leaving MCEs disabled will result in the condition which caused the asynchronous MCE instead
causing the processor to enter shutdown. Therefore, leaving MCEs disabled may not improve overall system
behavior.

WORKAROUND: No workaround which would guarantee successful MCE handler execution under this condition
has been identified.

STATUS: For the steppings affected see the Summary Table of Changes at the beginning of this section.

B10. MCE Due to L2 Parity Error Gives L1 M CACOD.LL

PROBLEM: If a Cache Reply Parity (CRP) error, Cache Address Parity (CAP) error, or Cache Synchronous
Error (CSER) occurs on an access to the Pentium II processor’s L2 cache, the resulting Machine Check
Architectural Error Code (MCACOD) will be logged with ‘01’ in the LL field. This value indicates an L1 cache
error; the value should be ‘10’, indicating an L2 cache error. Note that L2 ECC errors have the correct value of
‘10’ logged.

IMPLICATION: An L2 cache access error, other than an ECC error, will be improperly logged as an L1 cache
error in MCACOD.LL.

WORKAROUND: None identified at this time.

STATUS: For the steppings affected see the Summary Table of Changes at the beginning of this section.

B11. LBER May Be Corrupted After Some Events

PROBLEM: The last branch record (LBR) and the last branch before exception record (LBER) can be used to
determine the source and destination information for previous branches or exceptions. The LBR contains the
source and destination addresses for the last branch or exception, and the LBER contains similar information for
the last branch taken before the last exception. This information is typically used to determine the location of a
branch which leads to execution of code which causes an exception. However, after a catastrophic bus
condition which results in an assertion of BINIT# and the reinitialization of the buses, the value in the LBER may
be corrupted. Also, after either a CALL which results in a fault or a software interrupt, the LBER and LBR will be
updated to the same value, when the LBER should not have been updated.

IMPLICATION: The LBER and LBR registers are used only for debugging purposes. When this erratum occurs,
the LBER will not contain reliable address information. The value of LBER should be used with caution when
debugging branching code; if the values in the LBR and LBER are the same, then the LBER value is incorrect.
Also, the value in the LBER should not be relied upon after a BINIT# event.

WORKAROUND: None identified at this time.

STATUS: For the steppings affected see the Summary Table of Changes at the beginning of this section.

B12. BTMs May Be Corrupted During Simultaneous L1 Cache Line
Replacement

PROBLEM: When Branch Trace Messages (BTMs) are enabled and such a message is generated, the BTM
may be corrupted when issued to the bus by the L1 cache if a new line of data is brought into the L1 data cache
simultaneously. Though the new line being stored in the L1 cache is stored correctly, and no corruption occurs in
the data, the information in the BTM may be incorrect due to the internal collision of the data line and the BTM.

MOBILE PENTIUM® II PROCESSOR SPECIFICATION UPDATE

24388707.doc

23

IMPLICATION: Although BTMs may not be entirely reliable due to this erratum, the conditions necessary for this
boundary condition to occur have only been exhibited during focused simulation testing. Intel has currently not
observed this erratum in a system level validation environment.

WORKAROUND: None identified at this time.

STATUS: For the steppings affected see the Summary Table of Changes at the beginning of this section.

B13. Potential Early Deassertion of LOCK# During Split-Lock Cycles

PROBLEM : During a split-lock cycle there are four bus transactions: 1st ADS# (a partial read), 2nd ADS# (a
partial read), 3rd ADS# (a partial write), and the 4th ADS# (a partial write). Due to this erratum, LOCK# may
deassert one clock after the 4th ADS# of the split-lock cycle instead of after the 4th RS# assertion corresponding
to the 4th ADS# has been sampled. The following sequence of events are required for this erratum to occur:

1. A lock cycle occurs (split or nonsplit).

2. Five more bus transactions (assertion of ADS#) occur.

3. A split-lock cycle occurs and BNR# toggles after the 3rd ADS# (partial write) of the split-lock cycle. This in
turn delays the assertion of the 4th ADS# of the split-lock cycle. BNR# toggling at this time could most likely
happen when the bus is set for an IOQ depth of 2.

When all of these events occur, LOCK# will be deasserted in the next clock after the 4th ADS# of the split-lock
cycle.

IMPLICATION: This may affect chipset logic which monitors the behavior of LOCK# deassertion.

WORKAROUND : None identified at this time.

STATUS: For the steppings affected see the Summary Table of Changes at the beginning of this section.

B14. A20M# May Be Inverted After Returning From SMM and Reset

PROBLEM: This erratum is seen when software causes the following events to occur:

1. The assertion of A20M# in real address mode.

2. After entering the 1-Mbyte address wrap-around mode caused by the assertion of A20M#, there is an
assertion of SMI# intended to cause a Reset or remove power to the processor. Once in the SMM handler,
software saves the SMM state save map to an area of nonvolatile memory from which it can be restored at
some point in the future. Then software asserts RESET# or removes power to the processor.

3. After exiting Reset or completion of power-on, software asserts SMI# again. Once in the SMM handler, it
then retrieves the old SMM state save map which was saved in event 2 above and copies it into the current
SMM state save map. Software then asserts A20M# and executes the RSM instruction. After exiting the
SMM handler, the polarity of A20M# is inverted.

IMPLICATION: If this erratum occurs, A20M# will behave with a polarity opposite from what is expected (e.g., the
1-Mbyte address wrap-around mode is enabled when A20M# is deasserted, and does not occur when A20M# is
asserted).

WORKAROUND: Software should save the A20M# signal state in nonvolatile memory before an assertion of
RESET# or a power down condition. After coming out of Reset or at power on, SMI# should be asserted again.
During the restoration of the old SMM state save map described in event 3 above, the entire map should be
restored, except for bit 5 of the byte at offset 7F18h. This bit should retain the value assigned to it when the SMM

MOBILE PENTIUM® II PROCESSOR SPECIFICATION UPDATE

24

state save map was created in event 3. The SMM handler should then restore the original value of the A20M#
signal.

STATUS: For the steppings affected see the Summary Table of Changes at the beginning of this section.

B15. Reporting of Floating-Point Exception May Be Delayed

PROBLEM: The Pentium II processor normally reports a floating-point exception for an instruction when the next
floating-point or MMX™ technology instruction is executed. The assertion of FERR# and/or the INT 16 interrupt
corresponding to the exception may be delayed until the floating-point or MMX technology instruction after the
one which is expected to trigger the exception, if the following conditions are met:

1. A floating-point instruction causes an exception.

2. Before another floating-point or MMX™ technology instruction, any one of the following occurs:

a. A subsequent data access occurs to a page which has not been marked as accessed, or

b. Data is referenced which crosses a page boundary, or

c. A possible page-fault condition is detected which, when resolved, completes without faulting.

3. The instruction causing event 2 above is followed by a MOVQ or MOVD store instruction.

IMPLICATION: This erratum only affects software which operates with floating-point exceptions unmasked.
Software which requires floating-point exceptions to be visible on the next floating-point or MMX technology
instruction, and which uses floating-point calculations on data which is then used for MMX technology
instructions, may see a delay in the reporting of a floating-point instruction exception in some cases. Note that
mixing floating-point and MMX technology instructions in this way is not recommended.

WORKAROUND: Inserting a WAIT or FWAIT instruction (or reading the floating-point status register) between
the floating-point instruction and the MOVQ or MOVD instruction will give the expected results. This is already
the recommended practice for software.

STATUS: For the steppings affected see the Summary Table of Changes at the beginning of this section.

B16. Near CALL to ESP Creates Unexpected EIP Address

PROBLEM: As documented, the CALL instruction saves procedure linking information in the procedure stack
and jumps to the called procedure specified with the destination (target) operand. The target operand specifies
the address of the first instruction in the called procedure. This operand can be an immediate value, a general
purpose register, or a memory location. When accessing an absolute address indirectly using the stack pointer
(ESP) as a base register, the base value used is the value in the ESP register before the instruction executes.
However, when accessing an absolute address directly using ESP as the base register, the base value used is
the value of ESP after the return value is pushed on the stack, not the value in the ESP register before the
instruction executed.

IMPLICATION: Due to this erratum, the processor may transfer control to an unintended address. Results are
unpredictable, depending on the particular application, and can range from no effect to the unexpected
termination of the application due to an exception. Intel has observed this erratum only in a focused testing
environment. Intel has not observed any commercially available operating system, application, or compiler that
makes use of or generates this instruction.

WORKAROUND: If the other seven general purpose registers are unavailable for use, and it is necessary to do a
CALL via the ESP register, first push ESP onto the stack, then perform an indirect call using ESP (e.g., CALL
[ESP]). The saved version of ESP should be popped off the stack after the call returns.

STATUS: For the steppings affected see the Summary Table of Changes at the beginning of this section.

MOBILE PENTIUM® II PROCESSOR SPECIFICATION UPDATE

24388707.doc

25

B17. Built-in Self Test Always Gives Nonzero Result

PROBLEM: The Built-in Self Test (BIST) of the Pentium II processor does not give a zero result to indicate a
passing test. Regardless of pass or fail status, bit 6 of the BIST result in the EAX register after running BIST is
set.

IMPLICATION: Software which relies on a zero result to indicate a passing BIST will indicate BIST failure.

WORKAROUND: Mask bit 6 of the BIST result register when analyzing BIST results.

STATUS: For the steppings affected see the Summary Table of Changes at the beginning of this section.

B18. Cache State Corruption in the Presence of Page A/D-bit Setting
and Snoop Traffic

PROBLEM: If an operating system uses the Page Access and/or Dirty bit feature implemented in the Intel
architecture and there is a significant amount of snoop traffic on the bus, while the processor is setting the
Access and/or Dirty bit the processor may inappropriately change a single L1 cache line to the modified state.

IMPLICATION: The occurrence of this erratum may result in cache incoherency, which may cause parity errors,
data corruption (with no parity error), unexpected application or operating system termination, or system hangs.

WORKAROUND: It is possible for BIOS code to contain a workaround for this erratum.

STATUS: For the steppings affected see the Summary Table of Changes at the beginning of this section.

B19. Snoop Cycle Generates Spurious Machine Ch eck Exception

PROBLEM: The processor may incorrectly generate a Machine Check Exception (MCE) when it processes a
snoop access that does not hit the L1 data cache. Due to an internal logic error, this type of snoop cycle may still
check data parity on undriven data lines. The processor generates a spurious machine check exception as a
result of this unnecessary parity check.

IMPLICATION: A spurious machine check exception may result in an unexpected system halt if Machine Check
Exception reporting is enabled in the operating system.

WORKAROUND: It is possible for BIOS code to contain a workaround for this erratum. This workaround would
fix the erratum; however, the data parity error will still be reported.

STATUS: For the steppings affected see the Summary Table of Changes at the beginning of this section.

B20. MOVD/MOVQ Instruction Writes to Memory Prematurely

PROBLEM: When an instruction encounters a fault, the faulting instruction should not modify any CPU or system
state. However, when the MMX technology store instructions MOVD and MOVQ encounter any of the following
events, it is possible for the store to be committed to memory even though it should be canceled:

1. If CR0.EM = 1 (Emulation bit), then the store could happen prior to the triggered invalid opcode exception.

2. If the floating-point Top-of-Stack (FP TOS) is not zero, then the store could happen prior to executing the
processor assist routine that sets the FP TOS to zero.

3. If there is an unmasked floating-point exception pending, then the store could happen prior to the triggered
unmasked floating-point exception.

MOBILE PENTIUM® II PROCESSOR SPECIFICATION UPDATE

26

4. If CR0.TS = 1 (Task Switched bit), then the store could happen prior to the triggered Device Not Available
(DNA) exception.

If the MOVD/MOVQ instruction is restarted after handling any of the above events, then the store will be
performed again, overwriting with the expected data. The instruction will not be restarted after event 1. The
instruction will definitely be restarted after events 2 and 4. The instruction may or may not be restarted after
event 3, depending on the specific exception handler.

IMPLICATION: This erratum causes unpredictable behavior in an application if MOVD/MOVQ instructions are
used to manipulate semaphores for multiprocessor synchronization, or if these MMX instructions are used to
write to uncacheable memory or memory mapped I/O that has side effects, e.g., graphics devices. This erratum
is completely transparent to all applications that do not have these characteristics. When each of the above
conditions are analyzed:

1. Setting the CR0.EM bit forces all floating-point/MMX™ instructions to be handled by software emulation. The
MOVD/MOVQ instruction, which is an MMX instruction, would be considered an invalid instruction.
Operating systems typically terminates the application after getting the expected invalid opcode fault.

2. The FP TOS not equal to 0 case only occurs when the MOVD/MOVQ store is the first MMX instruction in an
MMX technology routine and the previous floating-point routine did not clean up the floating-point states
properly when it exited. Floating-point routines commonly leave TOS to 0 prior to exiting. For a store to be
executed as the first MMX instruction in an MMX technology routine following a floating-point routine, the
software would be implementing instruction level intermixing of floating-point and MMX instructions. Intel
does not recommend this practice.

3. The unmasked floating-point exception case only occurs if the store is the first MMX technology instruction
in an MMX technology routine and the previous floating-point routine exited with an unmasked floating-point
exception pending. Again, for a store to be executed as the first MMX instruction in an MMX technology
routine following a floating-point routine, the software would be implementing instruction level intermixing of
floating-point and MMX instructions. Intel does not recommend this practice.

4. Device Not Available (DNA) exceptions occur naturally when a task switch is made between two tasks that
use either floating-point instructions and/or MMX instructions. For this erratum, in the event of the DNA
exception, data from the prior task may be temporarily stored to the present task’s program state.

WORKAROUND: Do not use MMX instructions to manipulate semaphores for multiprocessor synchronization.
Do not use MOVD/MOVQ instructions to write directly to I/O devices if doing so triggers user visible side effects.
An OS can prevent old data from being stored to a new task’s program state by cleansing the FPU explicitly after
every task switch. Follow Intel’s recommended programming paradigms in the Intel Architecture Optimization
Manual for writing MMX technology programs. Specifically, do not mix floating-point and MMX instructions. When
transitioning to new a MMX technology routine, begin with an instruction that does not depend on the prior state
of either the MMX technology registers or the floating-point registers, such as a load or PXOR mm0, mm0. Be
sure that the FP TOS is clear before using MMX instructions.

STATUS: For the steppings affected see the Summary Table of Changes at the beginning of this section.

B21. Memory Type Undefined for Nonmemory Operations

PROBLEM: The Memory Type field for nonmemory transactions such as I/O and Special Cycles are undefined.
Although the Memory Type attribute for nonmemory operations logically should (and usually does) manifest itself
as UC, this feature is not designed into the implementation and is therefore inconsistent.

IMPLICATION: Bus agents may decode a non-UC memory type for nonmemory bus transactions.

WORKAROUND: Bus agents must consider transaction type to determine the validity of the Memory Type field
for a transaction.

STATUS: For the steppings affected, see the Summary Table of Changes at the beginning of this section.

MOBILE PENTIUM® II PROCESSOR SPECIFICATION UPDATE

24388707.doc

27

B22. FP Data Operand Pointer May Not Be Zero After Power On or Reset

PROBLEM: The FP Data Operand Pointer, as specified, should be reset to zero upon power on or Reset by the
processor. Due to this erratum, the FP Data Operand Pointer may be nonzero after power on or Reset.

IMPLICATION: Software which uses the FP Data Operand Pointer and count on its value being zero after power
on or Reset without first executing an FINIT/FNINIT instruction will use an incorrect value, resulting on incorrect
behavior of the software.

WORKAROUND: Software should follow the recommendation in Section 8.2 of the Intel Architecture Software
Developer’s Manual, Volume 3: System Programming Guide (Order Number 243192). This recommendation
states that if the FPU will be used, software-initialization code should execute an FINIT/FNINIT instruction
following a hardware reset. This will correctly clear the FP Data Operand Pointer to zero.

STATUS: For the steppings affected see the Summary Table of Changes at the beginning of this section.

B23. MOVD Following Zeroing Instruction Can Cause Incorrect Result

PROBLEM: An incorrect result may be calculated after the following circumstances occur:

1. A register has been zeroed with either a SUB reg, reg instruction or an XOR reg, reg instruction,

2. A value is moved with sign extension into the same register’s lower 16 bits;or a signed integer multiply is
performed to the same register’s lower 16 bits,

3. This register is then copied to an MMX™ technology register using the MOVD instruction prior to any other
operations on the sign-extended value.

Specifically, the sign may be incorrectly extended into bits 16-31 of the MMX technology register. Only the MMX
technology register is affected by this erratum.

The erratum only occurs when the 3 following steps occur in the order shown. The erratum may occur with up to
40 intervening instructions that do not modify the sign-extended value between steps 2 and 3.

1. XOR EAX, EAX
or SUB EAX, EAX

2. MOVSX AX, BL
or MOVSX AX, byte ptr <memory address> or MOVSX AX, BX
or MOVSX AX, word ptr <memory address> or IMUL BL (AX implicit, opcode F6 /5)
or IMUL byte ptr <memory address> (AX implicit, opcode F6 /5) or IMUL AX, BX (opcode 0F AF /r)
or IMUL AX, word ptr <memory address> (opcode 0F AF /r) or IMUL AX, BX, 16 (opcode 6B /r ib)
or IMUL AX, word ptr <memory address>, 16 (opcode 6B /r ib) or IMUL AX, 8 (opcode 6B /r ib)
or IMUL AX, BX, 1024 (opcode 69 /r iw)
or IMUL AX, word ptr <memory address>, 1024 (opcode 69 /r iw) or IMUL AX, 1024 (opcode 69 /r iw)
or CBW

3. MOVD MM0, EAX

Note that the values for immediate byte/words are merely representative (i.e., 8, 16, 1024) and that any value in
the range for the size may be affected. Also, note that this erratum may occur with “EAX” replaced with any 32-
bit general purpose register, and “AX” with the corresponding 16-bit version of that replacement. “BL” or “BX”
can be replaced with any 8-bit or 16-bit general purpose register. The CBW and IMUL (opcode F6 /5)
instructions are specific to the EAX register only.

In the example, EAX is forced to contain 0 by the XOR or SUB instructions. Since the MOVSX, IMUL and CBW
instructions listed should modify only bits 15:8 of EAX by sign extension, bits 31:16 of EAX should always
contain 0. This implies that when MOVD copies EAX to MM0, bits 31:16 of MM0 should also be 0. Under certain

MOBILE PENTIUM® II PROCESSOR SPECIFICATION UPDATE

28

scenarios, bits 31:16 of MM0 are not 0, but are replicas of bit 15 (the 16th bit) of AX. This is noticeable when the
value in AX after the MOVSX, IMUL or CBW instruction is negative, i.e., bit 15 of AX is a 1.

When AX is positive (bit 15 of AX is a 0), MOVD will always produce the correct answer. If AX is negative (bit 15
of AX is a 1), MOVD may produce the right answer or the wrong answer depending on the point in time when the
MOVD instruction is executed in relation to the MOVSX, IMUL or CBW instruction.

IMPLICATION: The effect of incorrect execution will vary from unnoticeable, due to the code sequence discarding
the incorrect bits, to an application failure. If the MMX technology-enabled application in which MOVD is used to
manipulate pixels, it is possible for one or more pixels to exhibit the wrong color or position momentarily. It is also
possible for a computational application that uses the MOVD instruction in the manner described above to
produce incorrect data. Note that this data may cause an unexpected page fault or general protection fault.

WORKAROUND: There are two possible workarounds for this erratum:

1. Rather than using the MOVSX-MOVD or CBW-MOVD pairing to handle one variable at a time, use the sign
extension capabilities (PSRAW, etc.) within MMX™ technology for operating on multiple variables. This
would result in higher performance as well.

2. Insert another operation that modifies or copies the sign-extended value between the MOVSX/IMUL/CBW
instruction and the MOVD instruction as in the example below:

XOR EAX, EAX (or SUB EAX, EAX)
MOVSX AX, BL (or other MOVSX, other IMUL or CBW instruction)
*MOV EAX, EAX
MOVD MM0, EAX

*Note: MOV EAX, EAX is used here as it is fairly generic. Again, EAX can be any 32-bit register.

STATUS: For the steppings affected see the Summary Table of Changes at the beginning of this section.

B24. Premature Execution of a Load Operation Prior to Exception
Handler Invocation

PROBLEM: This erratum can occur with any of the following situations:

1. If an instruction that performs a memory load causes a code segment limit violation

2. If a waiting floating-point instruction or MMX™ instruction that performs a memory load has a floating-point
exception pending, or

3. If an MMX instruction that performs a memory load and has either CR0.EM =1 (Emulation bit set), or a
floating-point Top-of-Stack (FP TOS) not equal to 0, or a DNA exception pending.

If any of the above circumstances, occur it is possible that the load portion of the instruction will have executed
before the exception handler is entered.

IMPLICATION: In normal code execution where the target of the load operation is to write back memory there is
no impact from the load being prematurely executed, nor from the restart and subsequent re-execution of that
instruction by the exception handler. If the target of the load is to uncached memory that has a system side-
effect, restarting the instruction may cause unexpected system behavior due to the repetition of the side-effect.

WORKAROUND: Code which performs loads from memory that has side-effects can effectively workaround this
behavior by using simple integer-based load instructions when accessing side-effect memory and by ensuring
that all code is written such that a code segment limit violation cannot occur as a part of reading from side-effect
memory.

STATUS: For the steppings affected see the Summary Table of Changes at the beginning of this section.

MOBILE PENTIUM® II PROCESSOR SPECIFICATION UPDATE

24388707.doc

29

B25. Read Portion of RMW Instruction May Execute Twice

PROBLEM: When the Pentium II processor executes a read-modify-write (RMW) arithmetic instruction, with
memory as the destination, it is possible for a page fault to occur during the execution of the store on the
memory operand after the read operation has completed but before the write operation completes.

If the memory targeted for the instruction is UC (uncached), memory will observe the occurrence of the initial
load before the page fault handler and again if the instruction is restarted.

IMPLICATION: This erratum has no effect if the memory targeted for the RMW instruction has no side-effects. If,
however, the load targets a memory region that has side-effects, multiple occurrences of the initial load may lead
to unpredictable system behavior.

WORKAROUND: Hardware and software developers who write device drivers for custom hardware that may
have a side-effect style of design should use simple loads and simple stores to transfer data to and from the
device. Then, the memory location will simply be read twice with no additional implications.

STATUS: For the steppings affected see the Summary Table of Changes at the beginning of this section.

B26. Voltage Sequencing During Power Up

PROBLEM: The processor uses the PWRGOOD signal to ensure that no voltage sequencing issues arise; no
pin assertions should cause the processor to change its behavior until this signal is asserted, when all power
supplies and clocks to the processor are valid and stable. However, if VCC ramps up before VCCP, it will cause
the processor to enter an invalid state.

IMPLICATION: If this erratum occurs, the system may boot normally however, the L2 cache may not be
initialized.

WORKAROUND: For Mobile Pentium II processors, ensure that VCC ramps after or with the L2 cache IO voltage
(VCCP). If VCCP ramps after the VCC, a delay circuit can be placed on the core VCC to ensure that VCC ramps at
the same time or after VCCP as shown below in Figure 1.

MOBILE PENTIUM® II PROCESSOR SPECIFICATION UPDATE

30

Vcc

Vccp
Volts

Time

90% Vcc (nominal)

10% Vcc (nominal) T1

Time

Note 1.

Symbol Parameter Min Max Notes

T1 VCC Ramp Time 200 uSec Measured between 10% VCC (nom) to
90% VCC (nom)

Note 1: VCCP must be greater than VCC during the interval in which VCC rises from 20% VCC to 80% VCC.

Figure 1. V CC/VCCP Timing Requirements (Mobile)

STATUS: For the steppings affected see the Summary Table of Changes at the beginning of this section.

B27. Intervening Writeback May Occur During Locked Transaction

PROBLEM: During a transaction which has the LOCK# signal asserted (e.g., a locked transaction), there is a
potential for an explicit writeback caused by a previous transaction to complete while the bus is locked. The
explicit writeback will only be issued by the processor which has locked the bus, and the lock signal will not be
deasserted until the locked transaction completes, but the atomicity of a lock may be compromised by this
erratum. Note that the explicit writeback is an expected cycle, and no memory ordering violations will occur. This
erratum is, however, a violation of the bus lock protocol.

IMPLICATION: A chipset or third-party agent (TPA) which tracks bus transactions in such a way that locked
transactions may only consist of a read-write or read-read-write-write locked sequence, with no transactions
intervening, may lose synchronization of state due to the intervening explicit writeback. Systems using chipsets
or TPAs which can accept the intervening transaction will not be affected.

WORKAROUND: The bus tracking logic of all devices on the system bus should allow for the occurrence of an
intervening transaction during a locked transaction.

STATUS: For the steppings affected see the Summary Table of Changes at the beginning of this section.

MOBILE PENTIUM® II PROCESSOR SPECIFICATION UPDATE

24388707.doc

31

B28. MC2_STATUS MSR Has Model-Specific Error Code and Machine
Check Architecture Error Code Reversed

PROBLEM: The Intel Architecture Software Developer’s Manual, Volume 3: System Programming Guide,
documents that for the MCi_STATUS MSR, bits 15:0 contain the MCA (machine-check architecture) error code
field and bits 31:16 contain the model-specific error code field. However, for the MC2_STATUS MSR, these bits
have been reversed. For the MC2_STATUS MSR, bits 15:0 contain the model-specific error code field and bits
31:16 contain the MCA error code field.

IMPLICATION: A machine check error may be decoded incorrectly if this erratum on the MC2_STATUS MSR is
not taken into account.

WORKAROUND: When decoding the MC2_STATUS MSR, reverse the two error fields.

STATUS: For the steppings affected see the Summary Table of Changes at the beginning of this section.

B29. Mixed Cacheability of Lock Variables Is Problematic in MP
Systems

PROBLEM: This errata only affects multiprocessor systems where a lock variable address is marked cacheable
in one processor and uncacheable in any others. The processors which have it marked uncacheable may stall
indefinitely when accessing the lock variable. The stall is only encountered if:

• One processor has the lock variable cached, and is attempting to execute a cache lock.

• If the processor which has that address cached has it cached in its L2 only.

• Other processors, meanwhile, issue back to back accesses to that same address on the bus.

IMPLICATION: MP systems where all processors either use cache locks or consistent locks to uncacheable
space will not encounter this problem. If, however, a lock variable’s cacheability varies in different processors,
and several processors are all attempting to perform the lock simultaneously, an indefinite stall may be
experienced by the processors which have it marked uncacheable in locking the variable (if the conditions above
are satisfied). Intel has only encountered this problem in focus testing with artificially generated external events.
Intel has not currently identified any commercial software which exhibits this problem.

WORKAROUND: Follow a homogenous model for the memory type range registers (MTRRs), ensuring that all
processors have the same cacheability attributes for each region of memory; do not use locks whose memory
type is cacheable on one processor, and uncacheable on others. Avoid page table aliasing, which may produce
a nonhomogenous memory model.

STATUS: For the steppings affected see the Summary Table of Changes at the beginning of this section.

B30. Thermal Sensor May Assert SMBALERT# Incorrectly

PROBLEM: The Mobile Pentium II processor and the Pentium II Processor Mobile Module have a thermal sensor
that monitors the processor core’s temperature. Please note that desktop systems could have a similar thermal
device. The thermal sensor asserts SMBALERT# if the processor temperature exceeds the temperature limits
set in the Alarm Threshold Registers (THIGH, TLOW). It also sets the corresponding Status Register bits to identify
the cause of the interrupt. Figure 1 gives one example of the how the SMBALERT# signal could be used in a
system.

MOBILE PENTIUM® II PROCESSOR SPECIFICATION UPDATE

32

South
Bridge

3

SMBCLK
SMBDATA

SMBALERT#

THRM# Micro-Controller

SMBALERT#

SMBCLK

SMBDATA

SMBCLK

SMBDATA

Thermal
Sensor

Processor Core

L2 Cache

SMBALERT#

Figure 1. An Example of Microcontroller Driven Thermal Management

Under the conditions described below, the thermal sensor incorrectly generates the SMBALERT# interrupt. All of
the following conditions must be met to trigger a false interrupt:

1. The thermal sensor must be in auto-convert mode.

2. The absolute value of the difference between the current temperature reading and the THIGH or TLOW limit
value must be less than or equal to 8 °C.

3. The current temperature reading must be different from the previous reading.

With a false assertion of SMBALERT#, the corresponding bit in the Status Register (LHIGH, LLOW, RHIGH, and
RLOW) also will be incorrect.

IMPLICATION: There is no system impact from this erratum if temperature polling is used for processor thermal
management. If the SMABLERT# interrupt is employed to manage processor thermal sensing, then servicing the
false interrupt may result in premature system action depending on the software and hardware implementations
used. The rate of the false interrupts is less than the auto-convert rate of the thermal sensor.

WORKAROUND: Three different (mutually exclusive) workarounds are possible:

1. Before servicing an interrupt from the thermal sensor, read and compare the processor thermal reading with
the threshold limits (THIGH or TLOW). Figures 2 and 3 provide basic flowcharts for the implementation of this
workaround in an interrupt driven system.

2. If the firmware implemented polls the Status Register only, then before taking any action, re-read the
temperature register and do a comparison with the alarm threshold limits (THIGH or TLOW) to determine if the
value is actually still within the temperature window.

3. Use a temperature polling scheme to monitor the processor temperature.

MOBILE PENTIUM® II PROCESSOR SPECIFICATION UPDATE

24388707.doc

33

Figure 2. Workaround Flowchart: SMBALERT#-Driven System

MOBILE PENTIUM® II PROCESSOR SPECIFICATION UPDATE

34

Figure 3. Workaround Flowchart: SMI#-Driven System

STATUS: For the steppings affected see the Summary Table of Changes at the beginning of this section.

B31. MOV With Debug Register Cau ses Debug E xception

PROBLEM: When in V86 mode, if a MOV instruction is executed on debug registers, a general-protection
exception (#GP) should be generated, as documented in the Intel Architecture Software Developer's Manual,
Volume 3: System Programming Guide, Section 14.2. However, in the case when the general detect enable flag
(GD) bit is set, the observed behavior is that a debug exception (#DB) is generated instead.

IMPLICATION: With debug-register protection enabled (e.g., the GD bit set), when attempting to execute a MOV
on debug registers in V86 mode, a debug exception will be generated instead of the expected general-protection
fault.

MOBILE PENTIUM® II PROCESSOR SPECIFICATION UPDATE

24388707.doc

35

WORKAROUND: In general, operating systems do not set the GD bit when they are in V86 mode. The GD bit is
generally set and used by debuggers. The debug exception handler should check that the exception did not
occur in V86 mode before continuing. If the exception did occur in V86 mode, the exception may be directed to
the general-protection exception handler.

STATUS: For the steppings affected see the Summary Table of Changes at the beginning of this section.

B32. Upper Four PAT Entries Not Usable With Mode B or Mode C Paging

PROBLEM: The Page Attribute Table (PAT) contains eight entries, which must all be initialized and considered
when setting up memory types for the Pentium II processor. However, in Mode B or Mode C paging, the upper
four entries do not function correctly for 4-Kbyte pages. Specifically, bit seven of page table entries that translate
addresses to 4-Kbyte pages should be used as the upper bit of a three-bit index to determine the PAT entry that
specifies the memory type for the page. When Mode B (CR4.PSE = 1) and/or Mode C (CR4.PAE) are enabled,
the processor forces this bit to zero when determining the memory type regardless of the value in the page table
entry. The upper four entries of the PAT function correctly for 2-Mbyte and 4-Mbyte large pages (specified by bit
12 of the page directory entry for those translations).

IMPLICATION: Only the lower four PAT entries are useful for 4KB translations when Mode B or C paging is used.
In Mode A paging (4-Kbyte pages only), all eight entries may be used. All eight entries may be used for large
pages in Mode B or C paging.

WORKAROUND: None identified.

STATUS: For the steppings affected see the Summary Table of Changes at the beginning of this section.

B33. UC Write May be Reordered Around a Cacheable Write

PROBLEM: After a write occurs to a UC (uncacheable) region of memory, there exists a small window of
opportunity where a subsequent write transaction targeted for a UC memory region may be reordered in front of
a write targeted to a region of cacheable memory. This erratum can only occur during the following sequence of
bus transactions:

• A write to memory mapped as UC occurs,

• A write to memory mapped as cacheable (WB or WT) which is present in Shared or Invalid state in the L2
cache occurs, and

• During the bus snoop of the cacheable line, another store to UC memory occurs.

 IMPLICATION: If this erratum occurs, the second UC write will be observed on the bus prior to the Bus Invalidate
Line (BIL) or Bus Read Invalidate Line (BRIL) transaction for the cacheable write. This presents a small window
of opportunity for a fast bus-mastering I/O device which triggers an action based on the second UC write to
arbitrate and gain ownership of the bus prior to the completion of the cacheable write, possibly retrieving stale
data.

 WORKAROUND: It is possible for BIOS code to contain a workaround for this erratum.

 STATUS: For the steppings affected see the Summary Table of Changes at the beginning of this section.

B34. Incorrect Memory Type May be Used When MTRRs Are Disabled

 PROBLEM: If the Memory Type Range Registers (MTRRs) are disabled without setting the CR0.CD bit to
disable caching, and the Page Attribute Table (PAT) entries are left in their default setting, which includes
UC- memory type (PCD = 1, PWT = 0; see the Addendum—Intel Architecture Software Developer’s Manual,

MOBILE PENTIUM® II PROCESSOR SPECIFICATION UPDATE

36

Volume 3: System Programming Guide, for details), data for entries set to UC- will be cached as if the memory
type were writeback (WB). Also, if the page tables are set to a memory type other than UC-, then the effective
memory type used will be that specified by the page tables and PAT. Any regions of memory normally forced to
UC by the MTRRs (such as the VGA video region) may now be incorrectly cached and speculatively accessed.

 Even if the CR0.CD bit is correctly set when the MTRRs are disabled and the PAT is left in its default state, then
retries and out of order retirement of UC accesses may occur, contrary to the strong ordering expected for these
transactions.

 IMPLICATION: The occurrence of this erratum may result in the use of incorrect data and unpredictable
processor behavior when running with the MTRRs disabled. Interaction between the mouse, cursor, and VGA
video display leading to video corruption may occur as a symptom of this erratum as well.

 WORKAROUND: Ensure that when the MTRRs are disabled, the CR0.CD bit is set to disable caching. This
recommendation is described in Intel Architecture Software Developer’s Manual, Volume 3: System
Programming Guide. If it is necessary to disable the MTRRs, first clear the PAT register before setting the
CR0.CD bit, flushing the caches, and disabling the MTRRs to ensure that UC memory type is always returned
and strong ordering is maintained.

 STATUS: For the steppings affected see the Summary Table of Changes at the beginning of this section.

B35. Misprediction in Program Flow May Cause Unexpected Instruction
Execution

PROBLEM: To optimize performance through dynamic execution technology, the P6 architecture has the ability
to predict program flow. In the event of a misprediction, the processor will normally clear the incorrect prediction,
adjust the EIP to the correct location, and flush out any instructions it may have fetched from the misprediction.
In circumstances where a branch misprediction occurs, the correct target of the branch has already been
opportunistically fetched into the streaming buffers, and the L2 cycle caused by the evicted cache line is retried
by the L2 cache, the processor may fail to flush out the retirement unit before the speculative program flow is
committed to a permanent state.

IMPLICATION: The results of this erratum may range from no effect to unpredictable application or OS failure.
Manifestations of this failure may result in:

• Unexpected values in EIP,

• Faults or traps (e.g., page faults) on instructions that do not normally cause faults,

• Faults in the middle of instructions, or

• Unexplained values in registers/memory at the correct EIP.

WORKAROUND: It is possible for BIOS code to contain a workaround for this erratum.

STATUS: For the steppings affected see the Summary Table of Changes at the beginning of this section.

B36. Data Breakpoint Exception in a Displacement Relative Near Call
May Corrupt EIP

PROBLEM: If a data breakpoint is programmed at the memory location where the stack push of a near call is
performed, the processor will update the stack and ESP appropriately, but may skip the code at the destination
of the call. Hence, program execution will continue with the next instruction immediately following the call,
instead of the target of the call.

MOBILE PENTIUM® II PROCESSOR SPECIFICATION UPDATE

24388707.doc

37

IMPLICATION: The failure mechanism for this erratum is that the call would not be taken; therefore, instructions
in the called subroutine would not be executed. As a result, any code relying on the execution of the subroutine
will behave unpredictably.

WORKAROUND: Do not program a data breakpoint exception on the stack where the push for the near call is
performed.

STATUS: For the steppings affected see the Summary Table of Changes at the beginning of this section.

B37. System Bus ECC Not Functional With 2:1 Ratio

PROBLEM: If a processor is underclocked at a core frequency to system bus frequency ratio of 2:1 and system
bus ECC is enabled, the system bus ECC detection and correction will negatively affect internal timing
dependencies.

IMPLICATION: If system bus ECC is enabled, and the processor is underclocked at a 2:1 ratio, the system may
behave unpredictably due to these timing dependencies.

WORKAROUND: All bus agents that support system bus ECC must disable it when a 2:1 ratio is used.

STATUS: For the steppings affected see the Summary Table of Changes at the beginning of this section.

B38. Fault on REP CMPS/SCAS Operation May Cause Incorrect EIP

PROBLEM: If either a General Protection Fault, Alignment Check Fault or Machine Check Exception occur
during the first iteration of a REP CMPS or a REP SCAS instruction, an incorrect EIP may be pushed onto the
stack of the event handler if all the following conditions are true:

• The event occurs on the initial load performed by the instruction(s),

• The condition of the zero flag before the repeat instruction happens to be opposite of the repeat condition
(e.g., REP/REPE/REPZ CMPS/SCAS with ZF = 0 or RENE/REPNZ CMPS/SCAS with ZF = 1), and

• The faulting micro-op and a particular micro-op of the REP instruction are retired in the retirement unit in a
specific sequence.

The EIP will point to the instruction following the REP CMPS/SCAS instead of pointing to the faulting instruction.

IMPLICATION: The result of the incorrect EIP may range from no effect to unexpected application/OS behavior.

WORKAROUND: None identified at this time.

STATUS: For the steppings affected see the Summary Table of Changes at the beginning of this section.

B39. RDMSR or WRMSR to Invalid MSR Address May Not Cause GP
Fault

PROBLEM: The RDMSR and WRMSR instructions allow reading or writing of MSRs (Model Specific Registers)
based on the index number placed in ECX. The processor should reject access to any reserved or
unimplemented MSRs by generating #GP(0). However, there are some invalid MSR addresses for which the
processor will not generate #GP(0).

IMPLICATION: For RDMSR, undefined values will be read into EDX:EAX. For WRMSR, undefined processor
behavior may result.

MOBILE PENTIUM® II PROCESSOR SPECIFICATION UPDATE

38

WORKAROUND: Do not use invalid MSR addresses with RDMSR or WRMSR.

STATUS: For the steppings affected see the Summary Table of Changes at the beginning of this section.

B40. SYSENTER/SYSEXIT Instructions Can Implicitly Load “Null
Segment Selector” to SS and CS Registers

PROBLEM: According to the processor specification, attempting to load a null segment selector into the CS and
SS segment registers should generate a General Protection Fault (#GP). Although loading a null segment
selector to the other segment registers is allowed, the processor will generate an exception when the segment
register holding a null selector is used to access memory.

However, the SYSENTER instruction can implicitly load a null value to the SS segment selector. This can occur
if the value in SYSENTER_CS_MSR is between FFF8h and FFFBh when the SYSENTER instruction is
executed. This behavior is part of the SYSENTER/SYSEXIT instruction definition; the content of the
SYSTEM_CS_MSR is always incremented by 8 before it is loaded into the SS. This operation will set the null bit
in the segment selector if a null result is generated, but it does not generate a #GP on the SYSENTER
instruction itself. An exception will be generated as expected when the SS register is used to access memory,
however.

The SYSEXIT instruction will also exhibit this behavior for both CS and SS when executed with the value in
SYSENTER_CS_MSR between FFF0h and FFF3h, or between FFE8h and FFEBh, inclusive.

IMPLICATION: These instructions are intended for operating system use. If this erratum occurs (and the OS does
not ensure that the processor never has a null segment selector in the SS or CS segment registers), the
processor’s behavior may become unpredictable, possibly resulting in system failure.

WORKAROUND: Do not initialize the SYSTEM_CS_MSR with the values between FFF8h and FFFBh, FFF0h
and FFF3h, or FFE8h and FFEBh before executing SYSENTER or SYSEXIT.

STATUS: For the steppings affected see the Summary Table of Changes at the beginning of this section.

B41. PRELOAD Followed by EXTEST Does Not Load Boundary Scan
Data

PROBLEM: According to the IEEE 1149.1 Standard, the EXTEST instruction would use data “typically loaded
onto the latched parallel outputs of boundary-scan shift-register stages using the SAMPLE/PRELOAD instruction
prior to the selection of the EXTEST instruction.” As a result of this erratum, this method cannot be used to load
the data onto the outputs.

IMPLICATION: Using the PRELOAD instruction prior to the EXTEST instruction will not produce expected data
after the completion of EXTEST.

WORKAROUND: None identified at this time.

STATUS: For the steppings affected see the Summary Table of Changes at the beginning of this section.

B42. Far Jump to New TSS With D-bit Cleared May Cause System Hang

PROBLEM: A task switch may be performed by executing a far jump through a task gate or to a new Task State
Segment (TSS) directly. Normally, when such a jump to a new TSS occurs, the D-bit (which indicates that the
page referenced by a Page Table Entry (PTE) has been modified) for the PTE which maps the location of the

MOBILE PENTIUM® II PROCESSOR SPECIFICATION UPDATE

24388707.doc

39

previous TSS will already be set and the processor will operate as expected. However, if the D-bit is clear at the
time of the jump to the new TSS, the processor will hang.

IMPLICATION: If an OS is used which can clear the D-bit for system pages, and which jumps to a new TSS on a
task switch, then a condition may occur which results in a system hang. Intel has not identified any commercial
software which may encounter this condition; this erratum was discovered in a focused testing environment.

WORKAROUND: Ensure that OS code does not clear the D-bit for system pages (including any pages that
contain a task gate or TSS). Use task gates rather than jumping to a new TSS when performing a task switch.

STATUS: For the steppings affected see the Summary Table of Changes at the beginning of this section.

B43. Incorrect Chunk Ordering May Pr event Execution of the Machine
Check Exception Handler After BINIT#

PROBLEM: If a catastrophic bus error is detected which results in a BINIT# assertion, and the BINIT# assertion
is propagated to the processor’s L2 cache at the same time that data is being sent to the processor, then the
data may become corrupted in the processor’s L1 cache.

IMPLICATION: Since BINIT# assertion is due to a catastrophic event on the bus, the corrupted data will not be
used. However, it may prevent the processor from executing the Machine Check Exception (MCE) handler,
causing the system to hang.

WORKAROUND: None identified at this time.

STATUS: For the steppings affected see the Summary Table of Changes at the beginning of this section.

B44. Resume Flag May Not Be Cleared After Debug E xception

PROBLEM: The Resume Flag (RF) is normally cleared by the processor after executing an instruction which
causes a debug exception (#DB). In the process of determining whether the RF needs to be cleared after
executing the instruction, the processor uses an internal register containing stale data. The stale data may
unpredictably prevent the processor from clearing the RF.

IMPLICATION: If this erratum occurs, further debug exceptions will be disabled.

WORKAROUND : None identified at this time.

STATUS: For the steppings affected see the Summary Table of Changes at the beginning of this section.

B45. Thermal Sensor Leakage Current May Exceed Specification

PROBLEM: The thermal sensor contained on the Pentium II Processor Mobile Module violates the input leakage
current specification of ± 1µA as specified in the SMBus Specification.

IMPLICATION: The thermal sensor incorporates input protection diodes on the SMBCLK and SMBDATA signals
for ESD protection. The protection diodes can potentially clamp these lines to ~0.6 V when the V_3 voltage
supply to the module is powered off. Hence, when module is powered down, the thermal sensor on the Pentium
II Processor Mobile Module may prevent SMBus transactions from occurring. When SMBus devices are
powered from different voltage power planes, they are typically isolated from one another. This erratum will not
affect designs using this isolation technique.

WORKAROUND: It is recommended to have SMBus devices that are powered by a source other than V_3, be
isolated from the Pentium II Processor Mobile Module SMBus to ensure that this erratum does not occur.

MOBILE PENTIUM® II PROCESSOR SPECIFICATION UPDATE

40

STATUS: For the steppings affected see the Summary Table of Changes at the beginning of this section.

B1AP. APIC Access to Cacheable Memory Causes SHUTDOWN

 PROBLEM: APIC operations which access memory with any type other than uncacheable (UC) are illegal. If an
APIC operation to a memory type other than UC occurs and Machine Check Exceptions (MCEs) are disabled,
the processor will enter shutdown after such an access. If MCEs are enabled, an MCE will occur. However, in
this circumstance, a second MCE will be signaled. The second MCE signal will cause the Pentium II processor
to enter shutdown.

 IMPLICATION: Recovery from a PIC access to cacheable memory will not be successful. Software that
accesses only UC type memory during APIC operations will not encounter this erratum.

 WORKAROUND: Ensure that the memory space to which PIC accesses can be made is marked as type UC
(uncacheable) in the memory type range registers (MTRRs) to avoid this erratum.

 STATUS: For the steppings affected see the Summary Table of Changes at the beginning of this section.

MOBILE PENTIUM® II PROCESSOR SPECIFICATION UPDATE

24388707.doc

41

 DOCUMENTATION CHANGES
 The Documentation Changes listed in this section apply to the Mobile Pentium® II Processor at 233 MHz, 266
MHz, and 300 MHz (Order Number 243669), the Intel® Pentium® II Processor Mobile Module : Mobile Module
Connector 1 (MMC-1) datasheet (Order Number 243667), Intel® Pentium® II Processor Mobile Module : Mobile
Module Connector 2 (MMC-2) datasheet (Order Number 243668), Mobile Pentium® II Processor in Mini-
Cartridge Package at 366 MHz, 333 MHz, 300PE MHz, and 266PE MHz datasheet (Order Number 243669),
Mobile Pentium® II Processor in BGA Package at 366 MHz, 333 MHz, 300PE MHz, and 266PE MHz datasheet
(Order Number 245106), Mobile Pentium® II Processor Mobile Module MMC-7 datasheet (Order Number
243667), Mobile Pentium® II Processor Mobile Module MMC-2 datasheet (Order Number 243668), and the Intel
Architecture Software Developer’s Manual, Volumes 1, 2, and 3. All Documentation Changes will be
incorporated into a future version of the appropriate Pentium II processor documentation.

 NOTE

 The Intel Architecture Software Developer’s Manual, Volumes 1, 2, and 3, applies
to all P6 family processors, and therefore some of the documentation changes in
this section may not pertain to the Mobile Pentium II processor or the Intel
Pentium II Processor Mobile Module specifically.

B1. Invalid Arithmetic Operations and Masked Res ponses to Them
Relative to FIST/FISTP Instruction

 In the Intel Architecture Software Developer’s Manual, Volume 1: Basic Architecture, Table 7-20 shows “Invalid
Arithmetic Operations and the Masked Responses to Them.” The table entry corresponding to the FIST/FISTP
condition is missing, and is shown below:

 Condition Masked Response

 FIST/FISTP instruction when input operand <>
MAXINT for destination operand size.

 Return MAXNEG to destination operand.

 When FIST/FISTP instruction is executed with input operand <> and the destination operand size is MAXINT,
the floating-point zero-divide exception will return MAXNEG to the destination operand as its masked response.

B2. FIDIV/FIDIVR m16int Description

 The Intel Architecture Software Developer’s Manual, Volume 1: Basic Architecture, pages 3-118 and 3-122,
shows in the Description column for the FIDIV m16int instruction as “Divide ST(0) by m64int by ST(0) and store
the result in ST(0)” and FIDIVR m16int instruction as “Divide m64int by ST(0) and store the result in ST(0).” In
both of these cases, m64int should be replaced with m16int.

B3. PUSH Does Not Pad With Zeros

 The Intel Architecture Software Developer’s Manual, Volume 1: Basic Architecture, page 4-3, contains a section
regarding stack alignment. The last sentence in the first paragraph of this section, reads “If a 16-bit value is
pushed onto a 32-bit wide stack, the value is automatically padded with zeros out to 32-bits.” This sentence
should be removed. The PUSH instruction does not pad with zeros.

MOBILE PENTIUM® II PROCESSOR SPECIFICATION UPDATE

42

B4. DR7, Bit 10 is Reserved

 In Figure 14-1 of the Intel Architecture Software Developer’s Manual, Volume 3: System Programming Guide, bit
10 of DR7 should be “Reserved” instead of “1”.

B5. Additional States That Are Not Automatically Saved and Restored

 In Section 11.4.1 of the Intel Architecture Software Developer’s Manual, Volume 3: System Programming Guide,
the end of section lists the registers that are not automatically saved and restored following an SMI and the RSM
instruction, respectively. The last two paragraphs should be as follows:

 The following state is not automatically saved and restored following an SMI and the RSM instruction,
respectively:

• Debug registers DR0 through DR3.

• The FPU registers.

• The MTRRs.

• Control register CR2.

• The model-specific registers (for the P6 family and Pentium® processors), or test registers TR3 through
TR7 (for the Pentium and Intel486™ processors).

• The state of the trap controller.

• The Machine-Check architecture registers.

• The APIC internal interrupt state (ISR, IRR, etc.).

• The Microcode Update state.

 If an SMI is used to power down the processor, a power-on reset will be required before returning to SMM, which
will reset much of this state back to its default values. So an SMI handler that is going to trigger power down
should first read these registers listed above directly, and save them (along with the rest of RAM) to nonvolatile
storage. After the power-on reset, the continuation of the SMI handler should restore these values, along with the
rest of the system’s state. Anytime the SMI handler changes these registers in the processor it must also save
and restore them.

 NOTE

 A small subset of the MSRs (such as the time-stamp counter and performance-
monitoring counter) are not arbitrarily writeable and therefore cannot be saved
and restored. SMM-based power-down and restoration should only be performed
with operating systems that do not use or rely on the values of these registers.
Operating system developers should be aware of this fact and ensure that their
operating-system assisted power-down and restoration software is immune to
unexpected changes in these register values.

MOBILE PENTIUM® II PROCESSOR SPECIFICATION UPDATE

24388707.doc

43

B6. Cache and TLB Description Correction

 In the Intel Architecture Software Developer’s Manual, Volume 2: Instruction Set Reference, Table 3-7, the
correct description for descriptor value 02H should be as follows:

 Descriptor Value Cache or TLB Description

 02H Instruction TLB: 4-Mbyte Pages, fully associative, 2 entries

 Also, the third bullet after the table should be as follows:

• Bytes 1, 2 and 3 of register EAX indicate that the processor contains the following:
–01H–A 32-entry instruction TLB (4-way set associative) for mapping 4-Kbyte pages.
–02H–A 2-entry instruction TLB (fully associative) for mapping 4-Mbyte pages.
–03H–A 64-entry data TLB (4-way set associative) for mapping 4-Kbyte pages.

For the Intel Architecture Software Developer’s Manual, Volume 3: System Programming Guide, Table 9-1, the
following corrections should be made:

Cache or Buffer Characteristics

Instruction TLB
(Large Pages)

- P6 family processors: 2 entries, fully associative.

- Pentium® processor: Uses same TLB as used for 4-Kbyte pages.

- Intel486™ processor: None (large pages not supported).

Data TLB (Large Pages) - P6 family processors: 8 entries, 4-way set associative.

- Pentium processor: 8 entries, 4-way set associative; uses same TLB as used for
4-Kbyte pages in Pentium processors with MMX™ technology.

- Intel486 processor: None (large pages not supported).

B7. SMRAM State Save Map Contains Documentation Errors

In the Intel Architecture Software Developer's Manual, Volume 3: System Programming Guide, Chapter 11,
“System Management Mode,” Table 11-1 incorrectly documents the SMBASE+Offset for IDT Base and GDT
Base for Pentium II processors.

The storage locations for these parameters are model specific (e.g., they may differ between the Pentium
processor, the Pentium Pro processor, Pentium II processor, and other P6 family proliferations). These entries in
the tables above will be changed to Reserved. Hardware and software may not rely on the contents of these
Reserved regions.

B8. OF and DF of the EFLAGS Register are Mislabeled as System
Flags

In the Intel Architecture Software Developer’s Manual, Volume 1: Basic Architecture, the Overflow Flag (OF) and
Direction Flag (DF) are both incorrectly labeled as System Flags. The Overflow Flag should be labeled as a
Status Flag and the Direction Flag should be labeled as a Control Flag.

MOBILE PENTIUM® II PROCESSOR SPECIFICATION UPDATE

44

B9. CS:EIP Pushed Onto Stack Prior to Code Segment Limit Check

The Intel Architecture Software Developer’s Manual, Volume 2: Instruction Set Reference, Section 3.4, contains
a detailed definition of the CALL instruction. In this definition, all instances where the instruction pointer is
checked to ensure it is within the acceptable code segment limit followed by the CS:EIP register being pushed
on the stack are in error. CS:EIP is pushed on the stack prior to the check of the instruction pointer. This means
that in the case of a GP#(0) being generated due to an out-of-range instruction pointer, these values will be
present on the stack.

B10. Corrections to Opcode Maps

In Appendix A, “Opcode Map,” in the Pentium Pro Family Developer’s Manual Volume 3: Operating System
Writer’s Manual, and in Appendix A, “Opcode Map,” in the Intel Architecture Software Developer’s Manual,
Volume 2: Instruction Set Reference, are the one and two byte opcode maps. The following tables are intended
to replace those tables in their entirety:

Table A-1. One-Byte Opcode Map 1

0 1 2 3 4 5 6 7

0 ADD PUSH POP

Eb,Gb Ev,Gv Gb,Eb Gv,Ev AL,Ib eAX,Iv ES ES

1 ADC PUSH POP

Eb,Gb Ev,Gv Gb,Eb Gv,Ev AL,Ib eAX,Iv SS SS

2 AND DAA

Eb,Gb Ev,Gv Gb,Eb Gv,Ev AL,Ib eAX,Iv =ES

3 XOR AAA

Eb,Gb Ev,Gv Gb,Eb Gb,Ev AL,Ib eAX,Iv =SS

4 INC general register

eAX eCX eDX eBX eSP eBP eSI eDI

5 PUSH general register

eAX eCX eDX eBX eSP eBP eSI eDI

6 PUSHA/
PUSHAD

POPA/
POPAD

BOUND ARPL Operand Address

Gv,Ma Ew,Gw =FS =GS Size Size

7 Short-displacement jump on condition (Jb)

JO JNO JB/JNAE/J
C

JNB/
JAE/JNC

JZ/JE JNZ/
JNE

JBE/
JNA

JNBE/
JA

8 Imm Group 12 Imm Group 12 TEST XCHG

Eb,Ib Ev,Iv Ev,Ib Ev,lb Eb,Gb Ev,Gv Eb,Gb Ev,Gv

9 NOP XCHG word or double-word register with eAX

eCX eDX eBX eSP eBP eSI eDI

A MOV MOVSB MOVSW CMPSB CMPSW

AL,Ob eAX,Ov Ob,AL Ov,eAX Xb,Yb Xv,Yv Xb,Yb Xv,Yv

MOBILE PENTIUM® II PROCESSOR SPECIFICATION UPDATE

24388707.doc

45

Table A-1. One-Byte Opcode Map 1 (Continued)

B MOV immediate byte into byte register

AL CL DL BL AH CH DH BH

C Shift Group 22 RET near LES LDS MOV

Eb,1 Ev,1 Eb,CL Ev,CL

E LOOPNE/
LOOPNZ

LOOPE/L
OOPZ

LOOP JCXZ/
JECXZ

IN OUT

Jb Jb Jb Jb AL,Ib eAX,Ib Ib,AL Ib,eAX

F LOCK REPNE REP/

REPE

HLT CMC Unary Group 32

Eb Ev

8 9 A B C D E F

0 OR PUSH 2-byte

Eb,Gb Ev,Gv Gb,Eb Gv,Ev AL,Ib eAX,Iv CS Escape

1 SBB PUSH POP

Eb,Gb Ev,Gv Gb,Eb Gv,Ev AL,Ib eAX,Iv DS DS

2 SUB DAS

Eb,Gb Ev,Gv Gb,Eb Gv,Ev AL,Ib eAX,Iv

3 CMP AAS

Eb,Gb Ev,Gv Gb,Eb Gv,Ev AL,Ib eAX,Iv =DS

4 DEC General-Purpose Register

eAX eCX eDX eBX eSP eBP eSI eDI

5 POP Into General-Purpose Register

eAX eCX eDX eBX eSP eBP eSI eDI

6 PUSH IMUL PUSH IMUL INSB INSW/D OUTSB OUTSW/D

lv Gv,Ev,lv lb Gv,Ev,lb Yb,DX Yv,DX Dx,Xb DX,Xv

7 Short-Displacement Jump on Condition (Jb)

JS JNS JP/JPE JNP/JPO JL/JNGE JNL/JGE JLE/JNG JNLE/JG

8 MOV LEA MOV POP

Eb,Gb Ev,Gv Gb,Eb Gv,Ev Ew,Sw Gv,M Sw,Ew Ev

9 CBW/
CWDE

CWD/
CDQ

CALL FWAIT PUSHF/
PUSHFD

POPF/
POPFD

SAHF LAHF

Ap Fv Fv

A TEST STOS/
STOSB

STOS/STOS
W/STOTSD

LODSB LODSW/
LODSD

SCAS/
SCACSB

SCASW/
SCASD/
SCAS

MOBILE PENTIUM® II PROCESSOR SPECIFICATION UPDATE

46

Table A-1. One-Byte Opcode Map 1 (Continued)

AL,Ib eAX,Iv Yb,AL Yv,eAX AL,Xb eAX,Xv AL,Yb eAX,Yv

B MOV Immediate Word or Double Into Word or Double Register

eAX eCX eDX eBX eSP eBP eSI eDI

C ENTER LEAVE RET far RET far INT 3 INT INTO IRET

Iw, Ib Iw lb

D ESC (Escape to Coprocessor Instruction Set)

E CALL JMP IN OUT

Jv Jv Ap Jb AL,DX eAX,DX DX,AL DX,eAX

F CLC STC CLI STI CLD STD Group 42 Group 52

NOTES:
1. All blanks in the opcode map are reserved and should not be used. Do not depend on the operation of these undefined

opcodes.
2. Bits 5, 4, and 3 of ModR/M byte used as an opcode extension (see Section A.4).

Table A-2. Two Byte Opcode Map (First byte is 0FH) 1

0 1 2 3 4 5 6 7

0 Group 62 Group 72 LAR LSL CLTS

Gv,Ew Gv,Ew

1

2 MOV

Rd,Cd Rd,Cd Cd,Rd Dd,Rd

3 WRMSR RDTSC RDMSR RDPMC

4 CMOVO CMOVNO CMOVB/
CMOVC/

CMOVNA
E

CMOVAE/
CMOVNB/
CMOVNC

CMOVE/
CMOVZ

CMOVN
E/CMOV

NZ

CMOVBE/
CMOVNA

CMOVA/
CMOVNBE

Gv, Ev Gv, Ev Gv, Ev Gv, Ev Gv, Ev Gv, Ev Gv, Ev Gv, Ev

5

6 PUNPCKL
BW

PUNPCKL
WD

PUNPCKL
DQ

PACKSSDW PCMPGTB PCMPGT
W

PCMPGT
D

PACKUSW
B

Pq, Qd Pq, Qd Pq, Qd Pq, Qd Pq, Qd Pq, Qd Pq, Qd Pq, Qd

7 Group A2 PCMPEQB PCMPE
QW

PCMPEQ
D

EMMS

PSHIMW3 PSHIMD3 PSHIMQ3 Pq, Qd Pq, Qd Pq, Qd

8 Long-Displacement Jump on Condition (Jv)

MOBILE PENTIUM® II PROCESSOR SPECIFICATION UPDATE

24388707.doc

47

Table A-2. Two Byte Opcode Map (First byte is 0FH) 1 (Continued)

JO JNO JB/JNAE/
JC

JAE/JNB/JN
C

JE/JZ JNE/JNZ JBE/JNA JA/JNBE

9 Byte Set
on

condition
(Eb)

PSRLW PSRLD PSRLQ PMULLW

SETO SETNO SETB/
SETC/
SETNA

SETAE/
SETNB/
SETNC

SETE/
SETG/
SETZ

SETNE/
SETNZ

SETBE/
SETNA

SETA/
SETNBE

A PUSH POP CPUID BT SHLD SHLD

FS FS Ev,Gv Ev,Gv,Ib Ev,Gv,C
L

B CMPXCHG CMPXCHG LSS BTR LFS LGS MOVZX

Eb,Gb Ev,Gv Mp Ev,Gv Mp Mp Gv,Eb Gv,Ew

C XADD XADD Group 92

8 9 A B C D E F

0 INVD WBINVD UD24

1

2

3

4 CMOVS CMOVNS CMOVP/
CMOVPE

CMOVNP/CM
OVPO

CMOVL/
CMOVNGE

CMOVG
E/CMOV

NL

CMOVLE/
CMOVNG

CMOVG/
CMOVNLE

Gv, Ev Gv, Ev Gv, Ev Gv, Ev Gv, Ev Gv, Ev Gv, Ev Gv, Ev

5

6 PUNPCKH
BW

PUNPCKH
WD

PUNPCKH
DQ

PACKSSDW MOVD MOVQ

Pq,Qd Pq,Qd Pq,Qd Pq,Qd Pd,Ed Pq,Qq

7 MOVD MOVQ

Ed,Pd Qq,Pq

8 Long-Displacement Jump on Condition (Jv)

JS JNS JP/JPE JNP/JPO JL/JNGE JNL/JGE JLE/JNG JNLE/JG

Byte set on condition (Eb)

9 SETS SETNS SETP/
SETPE

SETNP/
SETPO

SETL/
SETNGE

SETNL/
SETGE

SETLE/
SETNG

SETNLE

Eb Eb Eb Eb Eb Eb Eb Eb

A PUSH POP RSM BTS SHRD SHRD IMUL

MOBILE PENTIUM® II PROCESSOR SPECIFICATION UPDATE

48

Table A-2. Two Byte Opcode Map (First byte is 0FH) 1 (Continued)

GS GS Ev,Gv Ev,Gv,Ib Ev,Gv,C
L

Gv,Ev

B Invalid
Opcode4

Group 82 BTC BSF BSR MOVSX

Ev,lb Ev,Gv Gv,Ev Gv,Ev Gv,Eb Gv,Ew

C BSWAP

EAX ECX EDX EBX ESP EBP ESI EDI

D PSUBUSB PSUBUS
W

PAND PADDUSB PADDUS
W

PANDN

Pq,Qq Pq,Qq Pq,Qq Pq,Qq Pq,Qq Pq,Qq

E PSUBSB PSUBSW POR PADDSB PADDS
W

PXOR

Pq,Qq Pq,Qq Pq,Qq Pq,Qq Pq,Qq Pq,Qq

F PSUBB PSUBW PSUBD PADDB PADDW PADDD

Pq,Qq Pq,Qq Pq,Qq Pq,Qq Pq,Qq Pq,Qq

NOTES:
1. All blanks in the opcode map are reserved and should not be used. Do not depend on the operation of these undefined

opcodes.
2. Bits 5, 4, and 3 of ModR/M byte used as an opcode extension (see Section A.4).
3. These abbreviations are not actual mnemonics. When shifting by immediate shift counts, the PSHIMD mnemonic

represents the PSLLD, PSRAD, and PSRLD instructions, PSHIMW represents the PSLLW, PSRAW, and PSRLW
instructions, and PSHIMQ represents the PSLLQ and PSRLQ instructions. The instructions that shift by immediate
counts are differentiated by the ModR/M bytes (see Section A.4).

4. Use the 0F0B opcode (UD2 instruction) or the 0FB9H opcode when deliberately trying to generate an invalid opcode
exception (#UD).

B11. PC Compatibility Signal Group AC Specifications Correction

In Table 3.11 of the Mobile Pentium® II Processor at 233 MHz, 266 MHz, and 300 MHz datasheet, the following
correction should be made:

Table 3.11. PC Compatibility Signal Group AC Specifications 1, 2

Symbol Parameter Min Max Unit Figure Notes

T14B LINT[1:0] Input Pulse Width 6 BCLKs 3.3 9

B12. Mislabeled Vertical Dimension Parameters

Figure 5.6 in the Mobile Pentium® II Processor at 233 MHz, 266 MHz, and 300 MHz datasheet should be
replaced by the following figure:

MOBILE PENTIUM® II PROCESSOR SPECIFICATION UPDATE

24388707.doc

49

SH

BS

BLT

BC

P

M

H

Figure 5.6. Cross Sectional View with Vertical Dimensions

B13. Correction to Dimension Definitions

In Table 5.3 of the Mobile Pentium® II Processor at 233 MHz, 266 MHz, and 300 MHz datasheet, the following
correction should be made:

 Table 5.3. Mobile Pentium ® II Processor Dimension Definitions

Symbol Parameter Definition

P Bottom Cover Height Distance from the bottom side of the processor substrate to the
bottom outer surface of the processor

B14. MP Initialization Protocol Algorithm Correction

In Section 7.6.5 of the Intel Architecture Software Developer’s Manual, Volume 3: System Programming Guide,
the algorithm for MP Initialization is defined. It is stated “the APIC hardware observes the BNR# (block next
request) and BPRI# (priority agent bus request) pins to guarantee that the initial BIPI is not issued on the APIC
bus until the BIST sequence is complete for all processors in the system.” This is not correct. Only the
observation of BNR# is required for the APIC hardware to proceed.

B15. Interrupt 13-General Protection Exception (#GP)

In Section 5.12 of the Intel Architecture Software Developer’s Manual, Volume 3: System Programming Guide, a
description of the exception interrupts is provided. In the description section of Interrupt 13-General Protection
Exception (#GP), the last bullet applies if the PAE and/or PSE flags are set, rather than just the PAE flag as
reported in the documentation.

B16. Corrections to Intel Architecture Software Developer’s Manual,
Volume 2: Instruction Set Reference

The following typographical errors and other documentation errors will be corrected in the next revision of the
Intel Architecture Software Developer’s Manual, Volume 2: Instruction Set Reference. A list of significant

MOBILE PENTIUM® II PROCESSOR SPECIFICATION UPDATE

50

changes is given below. Note that other changes may be made, and not all significant changes may be listed
here.

• Page 3-79: The example for the DAA instruction is incorrect, and should read:

 ADD AL, BL Before: AL=79H BL=35H EFLAGS(0SZAPC)=XXXXXX
 After: AL=AEH BL=35H EFLAGS(0SZAPC)=110000
 DAA Before: AL= 2EH BL=35H EFLAGS(0SZAPC)=110000
 After: AL= 04H BL=35H EFLAGS(0SZAPC)=X00101

• Page 3-236: The TASK-RETURN parameters are (* PE=1, VM=0, NT=1 *).

• Page 3-350: The second paragraph of the description should begin “The current operand -size attribute...”

B17. MCI_ADDR MSR Reference Section Correction

The first sentence of Section 12.3.2.3 of the Intel Architecture Software Developer’s Manual, Volume 3: System
Programming Guide, contains a reference to a previous section, but incorrectly identify the referenced section
number. The first sentence should read: “The MCi_ADDR MSR contains the address of the code or data
memory location that produced the machine-check error if the ADDRV flag in the MCi_STATUS register is set
(see Section 12.3.2.2, “MCi_STATUS MSR”).”

B18. FCOMI/FCOMIP/FUCOMI/FUCOMIP Setting of Flags Relative to
Exceptions

Page 3-112 of the Intel Architecture Software Developer’s Manual, Volume 2: Instruction Set Reference, shows
a table for FCOMI/FCOMIP/FUCOMI/FUCOMIP comparison results, where the last entry in the table
“Unordered” has an asterisk (*) beside it referencing a table note that reads: “Note: * Flags not set if unmasked
invalid-arithmetic operand (#IA) exception is generated”; however this note should read: “Note: * Flags are set
regardless, whether there is an unmasked invalid operand (#IA) exception generated or not.”

B19. MemTypeGet() Function Example

Example 9-2 of Section 9.11.7.1 of the Intel Architecture Software Developer’s Manual, Volume 3: System
Programming Guide, contains pseudocode that uses the MemTypeGet() function.

The line that reads: “IF (BASE + SIZE) wrap 4-Gbyte address space THEN return INVALID” is incorrect. This
line should read: “IF (BASE + SIZE) wrap 64-Gbyte address space THEN return INVALID.”

B20. Correction to Vertical Dimensions

Bottom Cover Height (P) and Note 2 in Table 5.2 of the Mobile Pentium® II Processor at 233 MHz, 266 MHz, and
300 MHz datasheet should read as follows:

MOBILE PENTIUM® II PROCESSOR SPECIFICATION UPDATE

24388707.doc

51

Table 5.2. Mobile Pentium ® II Processor Vertical Dimensions 1, 2

Symbol Parameter Min Nom Max Units Figure

H Processor Height 4.40 4.55 4.70 mm 5.6

M Plug Height 0.91 1.03 1.15 mm 5.6

P Bottom Cover Height -- 2.54 2.81 mm 5.6

BLT Bond-Line Thickness 0.01 0.12 0.23 mm 5.6

NOTES:
1. See Table 5.3 and Figure 5.6 for the definitions and illustration of processor height, plug height, bottom cover height and

bond-line thickness.
2. Processor height, plug height, bottom cover height and bond-line thickness are the only monitored vertical dimensions.

The other dimensions in Figure 5.6 are dependent on the receptacle height. Refer to the Mobile Pentium® II Mechanical
and Thermal Design Guide for information on the effect of receptacle mounting technique on these dimensions.

B21. SMBus Data Setup Time

The SMBus data signal has a min setup time (min Tsu: DAT) of 250ns, as published in the System Management
Bus Specification rev 1.0. This parameter is currently specified to 800 ns for the Mobile Pentium II processor
(mini-cartridge) and Pentium II Processor Mobile Module products (see table below).

SMBus Data Min Setup

Parameter Description Spec Change to

min Tsu: DAT min SMBus Data Setup Time 250 ns 800 ns

B22. RSVD Flag Correction

Figure 5-7 of the Intel Architecture Software Developer’s Manual, Volume 3: System Programming Guide,
contains a definition of the RSVD flag. The definition is reversed and should read as follows:

RSVD 1 The page fault occurred because a 1 was detected in one of the reserved bit positions of a page
table entry or directory entry that was marked present.

0 The fault was not caused by a reserved bit violation.

B23. SMRAM State Save Map Documentation Correction

In the Intel Architecture Software Developer’s Manual, Volume 3: System Programming Guide, Chapter 11,
“System Management Mode,” Section11.4.1, a description of the register status is provided. It is stated,

“The following registers are saved (but not readable) and restored upon exiting SMM:

• Control register CR4.”

 This sentence should read:

 “The following registers are saved (but not readable) and restored upon exiting SMM:

MOBILE PENTIUM® II PROCESSOR SPECIFICATION UPDATE

52

• Control register CR4 (CR4 is set to “0” while in the SMM handler).”

B24. Stop-Grant State Correction

In the Pentium® II Processor Developer’s Manual, Chapter 7, “Electrical Specifications,” Section 7.2.3, and the
Mobile Pentium® II Processor at 233 MHz, 266 MHz, and 300 MHz datasheet, Section 2.2.4, a description of
State 3, Stop-Grant State, of the stop clock state machine reads:

• “FLUSH# will be serviced during Stop-Grant state, and the processor will return to the Stop-Grant state.”

 This sentence should read:

• “FLUSH# will be not be serviced during Stop-Grant state.”

B25. Correction To Stop-Grant State Definition

In the Mobile Pentium® II Processor at 233 MHz, 266 MHz and 300 MHz datasheet, Stop-Grant state is defined
and a description of BINIT# servicing is provided. The document currently reads:

“BINIT# will be recognized while the processor is in Stop-Grant state. If STPCLK# is still asserted at the
completion of the BINIT# handler, the processor will remain in Stop-Grant mode. If the STPCLK# is not asserted
at the completion of the BINIT# handler, the processor will return in normal state.”

This is incorrect and should be replaced with:

“BINIT# will not be serviced while the processor is in Stop-Grant state. The event will be latched and can be
serviced by software upon exit from Stop-Grant state.”

MOBILE PENTIUM® II PROCESSOR SPECIFICATION UPDATE

24388707.doc

53

SPECIFICATION CLARIFICATIONS
The Specification Clarifications listed in this section apply to the Mobile Pentium® II Processor at 233 MHz,
266 MHz, and 300 MHz datasheet (Order Number 243669), the Intel® Pentium® II Processor Mobile Module :
Mobile Module Connector 1 (MMC-1) datasheet (Order Number 243667), Intel® Pentium® II Processor Mobile
Module : Mobile Module Connector 2 (MMC-2) datasheet (Order Number 243668), Mobile Pentium® II Processor
in Mini-Cartridge Package at 366 MHz, 333 MHz, 300PE MHz, and 266PE MHz datasheet (Order Number
243669), Mobile Pentium® II Processor in BGA Package at 366 MHz, 333 MHz, 300PE MHz, and 266PE MHz
datasheet (Order Number 245106), Mobile Pentium® II Processor Mobile Module MMC-7 datasheet (Order
Number 243667), Mobile Pentium® II Processor Mobile Module MMC-2 datasheet (Order Number 243668), and
the Intel Architecture Software Developer’s Manual, Volumes 1, 2, and 3. All Specification Clarifications will be
incorporated into a future version of the appropriate Pentium II processor documentation.

NOTE

The Intel Architecture Software Developer’s Manual, Volumes 1, 2, and 3, applies
to all P6 family processors, and therefore some of the specification clarifications
in this section may not pertain to the Mobile Pentium II processor or the Intel
Pentium II Processor Mobile Module specifically.

B1. Writes to WC Memory

Section 9.3 of the Intel Architecture Software Developer’s Manual, Volume 3: System Programming Guide,
identifies that “Writes” to a region of WC memory “may be delayed and combined in the write buffer to reduce
memory accesses.” This sentence should state that “Writes” to a region of WC memory “may be delayed and
combined in the write buffer to reduce memory accesses. The writes may be delayed until the next occurrence
of a buffer or processor serialization event, e.g., CPUID execution, a read or write to uncached memory,
interrupt occurrence, LOCKed instruction execution, etc., if the WC buffer is partially filled.”

B2. Multiple Processor Protocol and Restrictions

Section 7.6.1 of the Intel Architecture Software Developer’s Manual, Volume 3: System Programming Guide,
contain inconsistencies which will be clarified as follows:

7.6.1 Protocol Requirements and Restrictions

The MP protocol imposes the following requirements and restrictions on the system:

• An APIC clock (APICLK) must be provided on all systems based on the P6 family processors (excluding
mobile processors and modules).

• All interrupt mechanisms must be disabled for the duration of the MP protocol algorithm, including the
window of time between the assertion of INIT# or receipt of an INIT IPI by the application processors and the
receipt of a STARTUP IPI by the application processors. That is, requests generated by interrupting devices
must not be seen by the local APIC unit (on board the processor) until the completion of the algorithm.
Failure to disable the interrupt mechanisms may result in processor shutdown.

• The MP protocol should be initiated only after a hardware reset. After completion of the protocol algorithm, a
flag is set in the APIC base MSR of the BSP (APIC_BASE.BSP) to indicate that it is the BSP. This flag is
cleared for all other processors. If a processor or the system is subject to an INIT sequence (either through
the INIT# pin or an INIT IPI), then the MP protocol is not re-executed. Instead, each processor examines its
BSP flag to determine whether the processor should boot or wait for a STARTUP IPI.

MOBILE PENTIUM® II PROCESSOR SPECIFICATION UPDATE

54

B3. Critical Sequence of Events During a Page Fault Exception

Section 3.6.4 of the Intel Architecture Software Developer’s Manual, Volume 3: System Programming Guide, will
be clarified as follows:

If the processor generates a page-fault exception, the operating system must carry out the following operations
in this order:

1. Copy the page from disk storage into physical memory if needed.

2. Load the page address into the page-table or page-directory entry and set its present flag. Other bits, such
as the dirty and accessed bits, may also be set at this time.

3. Invalidate the current page table entry in the TLB (see Section 3.7, “Translation Lookaside Buffers (TLBs)”
for a discussion of TLBs and how to invalidate them).

4. Return from the page fault handler to restart the interrupted program or task.

B4. Performance-Monitoring Counter Issues

The following table replaces Table A-1 of the Intel Architecture Software Developer’s Manual, Volume 3: System
Programming Guide. The only changes to this new table are enhanced descriptions of the events counted.

Unit
Event

Number
Mnemonic

Event Name
Unit
Mask Description Comments

Data
Cache
Unit
(DCU)

43H DATA_ MEM_
REFS

00H All loads from any
memory type. All
stores to any memory
type. Each part of a
split is counted
separately. The
internal logic counts
not only external
memory loads and
stores, but also
internal retries.

Note: 80-bit floating-
point accesses are
double counted, since
they are decomposed
into a 16-bit exponent
load and a 64-bit
mantissa load.Memory
accesses are only
counted when they are
actually performed.
E.g., a load that gets
squashed because a
previous cache miss is
outstanding to the
same address, and
which finally gets
performed, is only
counted once.

MOBILE PENTIUM® II PROCESSOR SPECIFICATION UPDATE

24388707.doc

55

Unit
Event

Number
Mnemonic

Event Name
Unit
Mask Description Comments

Does not include I/O
accesses, or other
nonmemory accesses.

45H DCU_LINES_I
N

00H Total lines allocated
in the DCU.

46H DCU_M_
LINES_IN

00H Number of M state
lines allocated in the
DCU.

47H DCU_M_
LINES_ OUT

00H Number of M state
lines evicted from the
DCU. This includes
evictions via snoop
HITM, intervention or
replacement.

48H DCU_ MISS_
OUT-STAND-
ING

00H Weighted number of
cycles while a DCU
miss is outstanding,
incremented by the
number of
outstanding cache
misses at any
particular time.
Cacheable read
requests only are
considered.
Uncacheable
requests are
excluded. Read-for-
ownerships are
counted as well as
line fills, invalidates,
and stores.

An access that also
misses the L2 is
short-changed by 2
cycles. (e.g., if count
is N cycles, should
be N+2 cycles.)
Subsequent loads to
the same cache line
will not result in any
additional counts.
Count value not
precise, but still
useful.

Instruc-
tion Fetch
Unit (IFU)

80H IFU_ IFETCH 00H Number of instruction
fetches, both
cacheable and
noncacheable.
Including UC fetches.

81H IFU_
IFETCH_MISS

00H Number of instruction
fetch misses. All
instruction fetches
that do not hit the
IFU, e.g., that
produce memory
requests. Includes
UC accesses.

85H ITLB_ MISS 00H Number of ITLB
misses.

86H IFU_ MEM_ 00H Number of cycles

MOBILE PENTIUM® II PROCESSOR SPECIFICATION UPDATE

56

Unit
Event

Number
Mnemonic

Event Name
Unit
Mask Description Comments

STALL instruction fetch is
stalled, for any
reason. Includes IFU
cache misses, ITLB
misses, ITLB faults
and other minor
stalls.

87H ILD_ STALL 00H Number of cycles
that the instruction
length decoder is
stalled.

L2
Cache1

28H L2_ IFETCH MESI
0FH

Number of L2
instruction fetches.
This event indicates
that a normal
instruction fetch was
received by the L2.
The count includes
only L2 cacheable
instruction fetches; it
does not include UC
instruction fetches. It
does not include ITLB
miss accesses.

29H L2_LD MESI
0FH

Number of L2 data
loads. This event
indicates that a
normal, unlocked,
load memory access
was received by the
L2. It includes only L2
cacheable memory
accesses; it does not
include I/O accesses,
other nonmemory
accesses, or memory
accesses such as
UC/WT memory
accesses. It does
include L2 cacheable
TLB miss memory
accesses.

2AH L2_ST MESI
0FH

Number of L2 data
stores. This event
indicates that a
normal, unlocked,
store memory access
was received by the
L2. Specifically, it
indicates that the

MOBILE PENTIUM® II PROCESSOR SPECIFICATION UPDATE

24388707.doc

57

Unit
Event

Number
Mnemonic

Event Name
Unit
Mask Description Comments

DCU sent a read-for-
ownership request to
the L2. It also
includes Invalid to
Modified requests
sent by the DCU to
the L2. It includes
only L2 cacheable
store memory
accesses; it does not
include I/O accesses,
other nonmemory
accesses, or memory
accesses like UC/WT
stores. It includes
TLB miss memory
accesses.

24H L2_LINES _IN 00H Number of lines
allocated in the L2.

26H L2_LINES_OU
T

00H Number of lines
removed from the L2
for any reason.

25H L2_M_ LINES_
INM

00H Number of modified
lines allocated in the
L2.

27H L2_M_ LINES_
OUTM

00H Number of modified
lines removed from
the L2 for any
reason.

2EH L2_ RQSTS MESI
0FH

Total number of L2
requests.

21H L2_ADS 00H Number of L2
address strobes.

22H L2_DBUS_BU
SY

00H Number of cycles
during which the L2
cache data bus was
busy.

23H L2_DBUS_BU
SY_ RD

00H Number of cycles
during which the data
bus was busy
transferring read data
from L2 to the
processor.

External
Bus
Logic
(EBL)2

62H BUS_ DRDY_
CLOCKS

00H
(Self)
20H
(Any)

Number of clocks
during which DRDY#
is asserted.
Essentially, utilization

Unit Mask = 00H
counts bus clocks
when the processor
is driving DRDY#.

MOBILE PENTIUM® II PROCESSOR SPECIFICATION UPDATE

58

Unit
Event

Number
Mnemonic

Event Name
Unit
Mask Description Comments

of the external
system data bus.

Unit Mask = 20H
counts in processor
clocks when any
agent is driving
DRDY#.

63H BUS_ LOCK_
CLOCKS

00H
(Self)
20H
(Any)

Number of clocks
during which LOCK#
is asserted on the
external system bus.

Always counts in
processor clocks.

60H BUS_REQ_OU
T-STAND-ING

00H
(Self)

Number of bus
requests outstanding.
This counter is
incremented by the
number of cacheable
read bus requests
outstanding in any
given cycle.

Counts only DCU full-
line cacheable reads,
not RFOs, writes,
instruction fetches, or
anything else. Counts
“waiting for bus to
complete” (last data
chunk received).

65H BUS_ TRAN_
BRD

00H
(Self)
20H
(Any)

Number of burst read
transactions.

66H BUS_ TRAN_
RFO

00H
(Self)
20H
(Any)

Number of completed
read for ownership
transactions.

67H BUS_
TRANS_WB

00H
(Self)
20H
(Any)

Number of completed
write back
transactions.

68H BUS_ TRAN_
IFETCH

00H
(Self)
20H
(Any)

Number of completed
instruction fetch
transactions.

69H BUS_ TRAN_
INVAL

00H
(Self)
20H
(Any)

Number of completed
invalidate
transactions.

6AH BUS_ TRAN_
PWR

00H
(Self)
20H
(Any)

Number of completed
partial write
transactions.

6BH BUS_
TRANS_P

00H
(Self)
20H
(Any)

Number of completed
partial transactions.

6CH BUS_ TRANS_
IO

00H
(Self)

Number of completed
I/O transactions.

MOBILE PENTIUM® II PROCESSOR SPECIFICATION UPDATE

24388707.doc

59

Unit
Event

Number
Mnemonic

Event Name
Unit
Mask Description Comments

20H
(Any)

6DH BUS_ TRAN_
DEF

00H
(Self)
20H
(Any)

Number of completed
deferred transactions.

6EH BUS_ TRAN_
BURST

00H
(Self)
20H
(Any)

Number of completed
burst transactions.

70H BUS_ TRAN_
ANY

00H
(Self)
20H
(Any)

Number of all
completed bus
transactions. Address
bus utilization can be
calculated knowing
the minimum address
bus occupancy.
Includes special
cycles, etc.

6FH BUS_ TRAN_
MEM

00H
(Self)
20H
(Any)

Number of completed
memory transactions.

64H BUS_ DATA_
RCV

00H
(Self)

Number of bus clock
cycles during which
this processor is
receiving data.

61H BUS_BNR_DR
V

00H
(Self)

Number of bus clock
cycles during which
this processor is
driving the BNR# pin.

7AH BUS_HIT_
DRV

00H
(Self)

Number of bus clock
cycles during which
this processor is
driving the HIT# pin.

Includes cycles due
to snoop stalls.

The event counts
correctly, but the
BPMi pins function as
follows based on the
setting of the PC bits
(bit 19 in the
PerfEvtSel0 and
PerfEvtSel1
registers). If the core
clock to bus clock
ratio is 2:1 or 3:1, and
a PC bit is set, the
BPMi pins will be
asserted for a single
clock when the

MOBILE PENTIUM® II PROCESSOR SPECIFICATION UPDATE

60

Unit
Event

Number
Mnemonic

Event Name
Unit
Mask Description Comments

counters overflow. If
the PC bit is clear,
the processor toggles
the BPMi pins when
the counter
overflows. If the clock
ratio is not 2:1 or 3:1,
the BPMi pins will not
function for these
performance-
monitoring counter
events.

7BH BUS_ HITM_
DRV

00H
(Self)

Number of bus clock
cycles during which
this processor is
driving the HITM#
pin.

Includes cycles due
to snoop stalls.

The event counts
correctly, but the
BPMi pins function as
follows based on the
setting of the PC bits
(bit 19 in the
PerfEvtSel0 and
PerfEvtSel1
registers). If the core
clock to bus clock
ratio is 2:1 or 3:1, and
a PC bit is set, the
BPMi pins will be
asserted for a single
clock when the
counters overflow. If
the PC bit is clear,
the processor toggles
the BPMi pins when
the counter
overflows. If the clock
ratio is not 2:1 or 3:1,
the BPMi pins will not
function for these
performance-
monitoring counter
events.

7EH BUS_
SNOOP_
STALL

00H
(Self)

Number of clock
cycles during which
the bus is snoop
stalled.

Floating
Point
Unit

C1H FLOPS 00H Number of
computational
floating-point
operations retired.
Excludes floating-

Counter 0 only

MOBILE PENTIUM® II PROCESSOR SPECIFICATION UPDATE

24388707.doc

61

Unit
Event

Number
Mnemonic

Event Name
Unit
Mask Description Comments

point computational
operations that cause
traps or assists.
Includes floating-point
computational
operations executed
by the assist handler.
Includes internal sub-
operations of
complex floating-point
instructions like
transcendentals.
Excludes floating-
point loads and
stores.

10H FP_COMP_OP
S_ EXE

00H Number of
computational
floating-point
operations executed.
The number of
FADD, FSUB,
FCOM, FMULs,
integer MULs and
IMULs, FDIVs,
FPREMs, FSQRTS,
integer DIVs and
IDIVs. Note not the
number of cycles but,
the number of
operations. This
event does not
distinguish an FADD
used in the middle of
a transcendental flow
from a separate
FADD instruction.

Counter 0 only

11H FP_ ASSIST 00H Number of floating-
point exception cases
handled by
microcode.

Counter 1 only. This
event includes counts
due to speculative
execution.

12H MUL 00H Number of multiplies.
Note: includes integer
and well FP multiplies
and is speculative.

Counter 1 only

13H DIV 00H Number of divides.
Note: includes integer
and FP multiplies and
is speculative.

Counter 1 only

14H CYCLES_DIV_ 00H Number of cycles Counter 0 only

MOBILE PENTIUM® II PROCESSOR SPECIFICATION UPDATE

62

Unit
Event

Number
Mnemonic

Event Name
Unit
Mask Description Comments

BUSY that the divider is
busy, and cannot
accept new divides.
Note: includes integer
and FP divides,
FPREM, FPSQRT,
etc., and is
speculative.

Memory
Order-
ing

03H LD_ BLOCKS 00H Number of store
buffer blocks.
Includes counts
caused by preceding
stores whose
addresses are
unknown, preceding
stores whose
addresses are known
to conflict, but whose
data is unknown and
preceding stores that
conflicts with the
load, but which
incompletely overlap
the load.

04H SB_
DRAINS

00H Number of store
buffer drain cycles.
Incremented during
every cycle the store
buffer is draining.
Draining is caused by
serializing operations
like CPUID,
synchronizing
operations like
XCHG, Interrupt
acknowledgment as
well as other
conditions such as
cache flushing.

05H MIS-ALIGN_
MEM_ REF

00H Number of misaligned
data memory
references.
Incremented by 1
every cycle during
which either the proc
load or store pipeline
dispatches a
misaligned uop.
Counting is
performed if it’s the

It should be noted
that
MISALIGN_MEM_RE
F is only an
approximation, to the
true number of
misaligned memory
references. The value
returned is roughly
proportional to the
number of misaligned

MOBILE PENTIUM® II PROCESSOR SPECIFICATION UPDATE

24388707.doc

63

Unit
Event

Number
Mnemonic

Event Name
Unit
Mask Description Comments

first half or second
half, or if it is blocked,
squashed or misses.
Note in this context
misaligned means
crossing a 64 bit
boundary.

memory accesses,
e.g., the size of the
problem.

In-
struc-
tion De-
coding
and
Retire-
ment

C0H INST_
RETIRED

00H Number of
instructions retired.

A hardware interrupt
received during/after
the last iteration of
the REP STOS flow
causes the counter to
undercount by 1
instruction.

C2H UOPS_
RETIRED

00H Number of UOPs
retired.

D0H INST_
DECOD-ER

00H Number of instructions
decoded.

Inter-
rupts

C8H HW_INT_
RX

00H Number of hardware
interrupts received.

C6H CYCLES_ INT_
MASKED

00H Number of processor
cycles for which
interrupts are
disabled.

C7H CYCLES_ INT_
PENDING_AN
D_
MASKED

00H Number of processor
cycles for which
interrupts are
disabled and
interrupts are
pending.

Bran-
ches

C4H BR_INST_RET
IRED

00H Number of branch
instructions retired.

C5H BR_MISS_
PRED_
RETIRED

00H Number of
mispredicted
branches retired.

C9H BR_ TAKEN_
RETIRED

00H Number of taken
branches retired.

CAH BR_MISS_PRE
D_ TAKEN_
RET

00H Number of taken
mispredictions
branches retired.

E0H BR_INST_
DECOD-ED

00H Number of branch
instructions decoded.

E2H BTB_ MISSES 00H Number of branches
that for which the
BTB did not produce
a prediction

MOBILE PENTIUM® II PROCESSOR SPECIFICATION UPDATE

64

Unit
Event

Number
Mnemonic

Event Name
Unit
Mask Description Comments

E4H BR_ BOGUS 00H Number of bogus
branches.

E6H BA-CLEARS 00H Number of time
BACLEAR is
asserted. This is the
number of times that
a static branch
prediction was made,
where the branch
decoder decided to
make a branch
prediction because
the BTB did not.

Stalls A2H RE-
SOURCE_STA
LLS

00H Incremented by one
during every cycle
that there is a
resource related stall.
Includes register
renaming buffer
entries, memory
buffer entries. Does
not include stalls due
to bus queue full, too
many cache misses,
etc. In addition to
resource related
stalls, this event
counts some other
events.
Includes stalls arising
during branch
misprediction
recovery, e.g., if
retirement of the
mispredicted branch
is delayed and stalls
arising while store
buffer is draining from
synchronizing
operations.

D2H PARTIAL_RAT
_
STALLS

00H Number of cycles or
events for partial
stalls. Note Includes
flag partial stalls.

Seg-
ment
Register
Loads

06H SEG-MENT_
REG_ LOADS

00H Number of segment
register loads

MOBILE PENTIUM® II PROCESSOR SPECIFICATION UPDATE

24388707.doc

65

Unit
Event

Number
Mnemonic

Event Name
Unit
Mask Description Comments

Clocks 79H CPU_CLK_UN-
HALTED

00H Number of cycles
during which the
processor is not
halted.

MMX™
Unit

B0H MMX_INSTR_
EXEC

00H Number of MMX
Instructions Executed

Available in Intel®
Celeron™, Pentium®

II and Pentium II
Xeon™ processors
only.

Does not account for
MOVQ and MOVD
stores from register
to memory.

NOTES:
1. Several L2 cache events, where noted, can be further qualified using the Unit Mask (UMSK) field in the PerfEvtSel0 and

PerfEvtSel1 registers. The lower 4 bits of the Unit Mask field are used in conjunction with L2 events to indicate the cache
state or cache states involved. The Pentium® II processor identifies cache states using the “MESI” protocol and
consequently each bit in the Unit Mask field represents one of the four states: UMSK[3] = M (8H) state, UMSK[2] = E
(4H) state, UMSK[1] = S (2H) state, and UMSK[0] = I (1H) state. UMSK[3:0] = MESI (FH) should be used to collect data
for all states; UMSK = 0H, for the applicable events, will result in nothing being counted.

2. All of the external bus logic (EBL) events, except where noted, can be further qualified using the Unit Mask (UMSK) field
in the PerfEvtSel0 and PerfEvtSel1 registers. Bit 5 of the UMSK field is used in conjunction with the EBL events to
indicate whether the processor should count transactions that are self generated (UMSK[5] = 0) or transactions that
result from any processor on the bus (UMSK[5] = 1).

B5. POP[ESP] with 16-bit Stack Size

In the Intel Architecture Software Developer’s Manual, Volume 2: Instruction Set Reference, the section
regarding “POP–Pop a Value from the Stack,” the following note:

“If the ESP register is used as a base register for addressing a destination operand in memory, the POP
instruction computes the effective address of the operand after it increments the ESP register.”

is incomplete, and should read as follows:

“If the ESP register is used as a base register for addressing a destination operand in memory, the POP
instruction computes the effective address of the operand after it increments the ESP register. For the case of a
16-bit stack where ESP wraps to 0h as a result of the POP instruction, the resulting location of the memory write
is processor family specific.”

In Section 17.23.1 of the Intel Architecture Software Developer’s Manual, Volume 3: System Programming
Guide, a new section will be added:

A POP-to-memory instruction, Which U ses the Stack Pointer (ESP) as a Base Register.

For a POP-to-memory instruction that meets the following conditions:

1. The stack segment size is 16-bits,

2. Any 32-bit addressing form with the SIB byte specifying ESP as the base register, and

MOBILE PENTIUM® II PROCESSOR SPECIFICATION UPDATE

66

3. The initial stack pointer is FFFCh(32-bit operand) or FFFEh (16-bit operand) and will wrap around to 0h as a
result of the POP operation.

The result of the memory write is processor family specific. For example, in Pentium II and Pentium Pro
processors the result of the memory write is to SS:0h plus any scaled index and displacement. In Pentium and
i486™ processors, the result of the memory write may be either a stack fault (real mode or protected mode with
stack segment size of 64-Kbytes), or write to SS:10000h plus any scaled index and displacement (protected
mode and stack segment size exceeds 64-Kbytes).

B6. Preventing Caching

Section 9.5.2 of the Intel Architecture Software Developer’s Manual, Volume 3: System Programming Guide,
document the procedure to prevent the L1 and L2 caches from performing all caching operations. However, this
procedure differs from that given in Section 9.11.8, “Multiple-Processor Considerations.” The correct procedure
that should be used is as follows:

1. Enter the no-fill cache mode. (Set the CD flag in control register CR0 to 1 and the NW flag to 0.)

2. Flush all caches using the WBINVD instruction.

3. Disable the MTRRs and set the default memory type to uncached, or set all MTRRs for the uncached
memory type (see the discussion of the TYPE field and the E flag in Section 11.11.2.1, “MTRRdefType
Register”).

The caches must be flushed when the CD flag is cleared to insure system memory coherency. If the caches are
not flushed in step 2, cache hits on reads will still occur and data will be read from valid cache lines.

B7. Paging Must Be Enabled Before Enabling the Page Global Bit

In Section 2.5 of the Intel Architecture Software Developer’s Manual, Volume 3: System Programming Guide, the
following line should be added to the text describing the Page Global Enable bit (PGE).

“In addition, the bit must not be enabled before paging is enabled via CR0.PG. Program correctness may be
affected by reversing this sequence and processor performance will be impacted.”

B8. PWRGOOD Inactive Pulse Width

Footnote 10 of Table 3.11 in the Mobile Pentium® II Processor at 233 MHz, 266 MHz, and 300 MHz datasheet,
should read as follows:

10. When driven inactive or after VCC, VCCP, VCC3, and BCLK become stable. PWRGOOD must remain below
VIL,max from Table 3.7 until all the voltage planes meet the voltage tolerance specifications in Table 3.4
and BCLK has met the BCLK AC specifications in Table 3.8 for at least 10 clock cycles. PWRGOOD must
rise glitch-free and monotonically to 2.5 V.

B9. Interrupt Recognition Determines Priority

The interrupt priority documented in Table 5-2 of the Intel Architecture Software Developer’s Manual, Volume 3:
System Programming Guide, reflects the order in which interrupts will be serviced upon simultaneous recognition
by the processor (for example, when multiple interrupts are pending at an instruction boundary). These tables do
not necessarily reflect the order in which interrupts will be recognized by the processor if received
simultaneously at the processor pins.

MOBILE PENTIUM® II PROCESSOR SPECIFICATION UPDATE

24388707.doc

67

B10. References to 2-Mbyte Pages S hould Include 4-Mbyte Pages

Generically, “large pages” refers to either 2-Mbyte or 4-Mbyte pages. In Section 3.8 of the Intel Architecture
Software Developer’s Manual, Volume 3: System Programming Guide, 2-Mbyte pages are often referenced
alone, when the behavior of 4-Mbyte pages is identical; these references should include all large pages.

B11. Modification of Reserved Areas in the SMRAM Saved State Map

If data is incorrectly written to reserved areas of the saved state map, the processor will enter the shutdown
state. This can also occur if invalid state information is saved in the SMRAM (such as if illegal combinations of
bits are written to CR0 or CR4 before an SMI is serviced). CR4 is not distinctly part of the saved state map, as
implied in Section 11.3.1.1 of the Intel Architecture Software Developer’s Manual, Volume 3: System
Programming Guide.

B12. TLB Flush Necessary After PDPE Change

As described in Section 3.7 of the Intel Architecture Software Developer’s Manual, Volume 3: System
Programming Guide, the operating system is required to invalidate the corresponding entry in the TLB after any
change to a page-directory or page-table entry. However, if the physical address extension (PAE) feature is
enabled to use 36-bit addressing, a new table is added to the paging hierarchy, called the page directory pointer
table (as per Section 3.8, “Physical Address Extension”). If an entry is changed in this table (to point to another
page directory), the TLBs must then be flushed by writing to CR3.

B13. Exception Handler Error Code Bit Clarification

Section 5.11 of the Intel Architecture Software Developer’s Manual, Volume 3: System Programming Guide,
describe the bit definitions for the error code pushed onto the stack of the exception handler. The explanation of
the EXT bit 0 will be changed to read as follows: External event (bit 0). When set, indicates that an event
external to the program caused the exception, such as a hardware interrupt.

B14. Switching to Protected Mode While in SMM

Should the System Management Mode (SMM) code developer require a transition to protected mode while in
SMM, a change is required to the sequence of events used to switch to protected mode as documented in
Section 8.8.1 of the Intel Architecture Software Developer's Manual, Volume 3: System Programming Guide.

Items 3 and 4 of this section state:

3. Execute a MOV CR0 instruction that sets the PE flag (and optionally the PG flag) in control register CR0.

4. Immediately following the MOV CR0 instruction, execute a far JMP or far CALL instruction. (This operation
is typically a far jump or call to the next instruction in the instruction stream.)

Random failures can occur if other instructions exist between steps 3 and 4, and failures will be readily seen in
some situations such as when instructions that reference memory are inserted between steps 3 and 4 above
while in System Management mode.

MOBILE PENTIUM® II PROCESSOR SPECIFICATION UPDATE

68

B15. Thermal Sensor Setpoint

The thermal sensor in the Mobile Pentium II processor and mobile module implements the SMBALERT# signal
described in the SMBus specification. SMBALERT# is always asserted when the temperature of the processor
core thermal diode or the thermal sensor internal temperature exceeds either the upper or lower temperature
thresholds. SMBALERT# may also be asserted if the measured temperature equals either the upper or lower
threshold.

B16. Thermal Sensor Configuration Register—RUN/STOP Bit

(Refer to Mobile Pentium® II Processor and Pentium® II Processor Mobile Module Thermal Sensor Interface
Specifications, Rev.1.0. AP-825)

The configuration register of the thermal sensor in Mobile Pentium II processor based systems controls the
operating mode (Auto-convert vs. Standby) of the device. Since the processor temperature varies dynamically
during normal operation, auto-convert mode should be used exclusively to monitor processor temperature. Table
1 shows the format of the configuration register. If the RUN/STOP bit is low, then the thermal sensor enters auto-
conversion mode. If the RUN/STOP bit is set high, then the thermal sensor immediately stops converting and
enters Standby mode. The thermal sensor will still perform temperature conversions in Standby mode when it
receives a one-shot command. However, the result of a one-shot command during auto-convert mode is not
guaranteed. Intel does not recommend using the one-shot command to monitor temperature when the processor
is active—only auto-convert mode should be used.

Table 1. Thermal Sensor Configuration Register

Bit Name Reset State Function

7 MSB) MASK 0 Masks SMBALERT# when high.

6 RUN/STO
P

0 Standby mode control bit. If low, the device enters auto-
convert mode. If high, the device immediately stops
converting, and enters standby mode where the one-
shot command can be performed.

5 – 0 RFU 0 Reserved for future use.

NOTE: All RFU bits should be written as “0” and read as “don’t care” for programming purposes.

MOBILE PENTIUM® II PROCESSOR SPECIFICATION UPDATE

24388707.doc

69

SPECIFICATION CHANGES
The Specification Changes listed in this section apply to the Mobile Pentium® II Processor at 233 MHz, 266
MHz, and 300 MHz datasheet (Order Number 243669), the Intel® Pentium® II Processor Mobile Module : Mobile
Module Connector 1 (MMC-1) datasheet (Order Number 243667), the Intel® Pentium® II Processor Mobile
Module : Mobile Module Connector 2 (MMC-2) datasheet (Order Number 243668), Mobile Pentium® II Processor
in Mini-Cartridge Package at 366 MHz, 333 MHz, 300PE MHz, and 266PE MHz datasheet (Order Number
243669), Mobile Pentium® II Processor in BGA Package at 366 MHz, 333 MHz, 300PE MHz, and 266PE MHz
datasheet (Order Number 245106), Mobile Pentium® II Processor Mobile Module MMC-7 datasheet (Order
Number 243667), or the Mobile Pentium® II Processor Mobile Module MMC-2 datasheet (Order Number
243668), . All Specification Changes will be incorporated into a future version of the appropriate Pentium II
processor documentation.

B1. Maximum Die and Cover Pressure Specifications

The die and top cover pressure specification in Table 5.1 in the Mobile Pentium® II Processor at 233 MHz, 266
MHz, and 300 MHz datasheet should be changed as follows:

Table 5.1. Mobile Pentium ® II Processor Mechanical Specifications

Symbol Parameter Max Unit Notes

PDIE Allowable Pressure On Die For Thermal Attach Plate (TAP) 411 kPa

PTOP Allowable Pressure on Recessed Part of the Top Cover 411 kPa

B2. New Footnote for PWRGOOD Inactive Pulse Width

In Table 3.11 of the Mobile Pentium® II Processor at 233 MHz, 266 MHz, and 300 MHz datasheet, the following
addition should be made:

Table 3.11. PC Compatibility Signal Group AC Specifications 1, 2

Symbol Parameter Min Max Unit Figure Notes

T15 PWRGOOD Inactive Pulse Width 10 BCLKs 3.6 10, 11

Also, the following footnote should be added:

11. If the BCLK signal meets its AC specification within 150ns of turning on, then the PWRGOOD Inactive Pulse Width
specification (T15) is waived and BCLK may start after PWRGOOD is asserted. PWRGOOD must still remain below
VIL,max until all the voltage planes meet the voltage tolerance specifications.

B3. WC Buffer Eviction Data Ordering

The Intel Architecture Software Developer’s Manual, Volume 3: System Programming Guide, states in Section
9.3.1 that “a completely full WC [Write Combining] buffer will always be propagated as a single burst transaction
with ascending data order.” This statement is incorrect and should be changed to “a completely full WC buffer
will always be propagated as a single burst transaction using any of the valid chunk orders.”

MOBILE PENTIUM® II PROCESSOR SPECIFICATION UPDATE

70

B4. APIC Reference Correction

Advanced Programmable Interrupt Controller (APIC) is not a supported mobile feature. References to this
feature were inadvertently included in the current datasheet. Please disregard any and all references.

	REVISION HISTORY
	PREFACE
	Specification Update for Mobile Pentium ® II Processors
	GENERAL INFORMATION
	Summary Table of Changes

	ERRATA
	DOCUMENTATION CHANGES
	SPECIFICATION CLARIFICATIONS
	SPECIFICATION CHANGES

	p17mask:

