

Mobile Intel® Pentium® III
Processor and Mobile Intel®
Pentium® III Processor-M

Specification Update

August 2007

Revision 063

Intel Confidential

Document Number: 245306-063

2BPreface

2 Intel Confidential Specification Update

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL® PRODUCTS. NO LICENSE, EXPRESS OR
IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT
AS PROVIDED IN INTEL’S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY
WHATSOEVER, AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL
PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY,
OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. Intel products are not intended
for use in medical, life saving, or life sustaining applications.

Intel may make changes to specifications and product descriptions at any time, without notice.

Designers must not rely on the absence or characteristics of any features or instructions marked "reserved" or "undefined." Intel
reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from
future changes to them.

The Mobile Intel® Pentium® III Processor and Mobile Intel® Pentium® III Processor-M may contain design defects or errors known
as errata which may cause the product to deviate from published specifications. Current characterized errata are available on
request.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.

Intel, Pentium, and the Intel logo are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United
States and other countries.

*Other names and brands may be claimed as the property of others.

Copyright © 2007, Intel Corporation. All rights reserved.

Document Number: 245306-063

2BPreface

Specification Update Intel Confidential 3

Contents
Preface ...8

Summary Tables of Changes ..13

Identification Information ..22

Errata ...28

Specification Changes ... 12H68

5HSpecification Clarifications ... 13H69

6HDocumentation Changes .. 14H73

2BPreface

4 Intel Confidential Specification Update

Revision History

Revision Description Date

-001 Initial release October 1999

-002 Added Errata K45, K46, K47, and K2MO; added Documentation
Change K2; added Specification Clarification K1; added
Specification Change K1; Updated the reference to the published
datasheets in the Preface; updated the Mobile Pentium III
Processor in BGA2 and micro-PGA2 Packages Identification
Information table.

December 1999

-003 Added Errata K48, K49 and K50; Added Documentation change
K3.

January 2000

-004 Updated the reference to the published datasheets in the Preface.
; Updated Identification Information for BGA2, micro-PGA2
packages, and mobile modules; Updated Summary of Changes
Tables to include B0-step products; Revised Erratum K44; Added
Erratum K51, K52; Added Documentation Change K4; Deleted
Specification Clarification K1 and Specification Change K1 since
these referred to the older datasheets and the new datasheets
referred to in this document have already incorporated them.
Updated Summary of Changes product letter codes.

February 2000

-005 Revised Errata K38, K47, K43; Added Erratum K53. Added new
Specification Clarifications K1 and K2

March 2000

-006 Updated the Preface with new references; Updated the “Intel
Pentium III Processor Mobile Module Markings” section; Updated
Identification Information for BGA2, micro-PGA2 packages, and
mobile modules; Updated Erratum K34; Added Erratum K54;
Added Documentation Change K5; Added Specification
Clarifications K3, K4.

April 2000

-007 Updated Intel Pentium III Processor Mobile Module Identification
Information table. Updated Erratum K53, and added Erratum
K55, K56.

May 2000

-008 Updated the Preface with new document references; Updated
Identification Information for BGA2, micro-PGA2 packages, and
mobile modules. Added Erratum K57.

June 2000

-009 Updated Identification Information for BGA2, micro-PGA2
packages, and mobile modules; Updated Summary of Changes
Tables to include C0-step products; Added Erratum K58, K59;
Updated the Specification Clarifications and Documentation
Changes section by removing old items that were incorporated in
the new documents referenced in this spec update; Added new
Specification Clarifications K3, K4; Added Specification Change
K1

July 2000

-010 Added Erratum K60. August 2000

2BPreface

Specification Update Intel Confidential 5

Revision Description Date

-011 Added Erratum K61, K62; Revised Erratum K22, K43, K52;
Added Documentation Changes K5, K6

September
2000

-012 Updated the list of referenced documents in the preface; Updated
Identification Information for BGA2, micro-PGA2 packages, and
mobile modules; Added Erratum K63; Added Documentation
Changes K7, K8

October 2000

-013 Added Erratum K64; Added Documentation Changes K9. November 2000

-014 Updated Specification Update product key to include the Intel®
Pentium® 4 processor, Revised Erratum K2; Added
Documentation Changes K10 thru K15

December 2000

-015 Revised Erratum K2; Added Documentation Changes K16, K17 January 2001

-016 Updated the Preface with new document references; Updated
Identification Information for BGA2 packages; Revised
Documentation Change K16 and Added K18.

February 2001

-017 Updated the Preface with new document references; Added
Erratum K65 and K66; Revised Specification Clarification K4.

March 2001

-018 Updated the list of referenced documents in the preface; Updated
Identification Information table, updated Summary of Errata,
Summary of Documentation Changes, Summary of Specification
Clarifications, and Summary of Specification Changes tables with
new D0 stepping information; Changed “NoFix” plan for Erratum
K38 to “Fixed” in D0 stepping; Updated the Specification
Clarifications section by removing old items that were
incorporated in the new documents referenced in this spec
update

April 2001

-019 Updated the list of referenced documents in the preface; Updated
Identification Information for BGA2, micro-PGA2 packages;
Added Erratum K67; Updated the Specification Clarifications
section by removing old items that were incorporated in the new
documents referenced in this spec update; Added Specification
Clarification K1; Added new Specification Change K2.

May 2001

-020 Updated Summary of Changes; Updated the Specification
Clarifications section by removing an old item that was
incorporated in the new documents referenced in this spec
update.

June 2001

-021 Updated the list of referenced documents in the preface; Updated
Identification Information for BGA2 packages.

July 2001

-022 Updated the list of referenced documents in the preface; Added
micro-FCPGA and micro-FCBGA package marking diagrams for
mobile Intel Pentium III Processor-M to general information
section; Added identification information for mobile Intel Pentium
III Processor-M in micro-FCPGA and micro-FCBGA packages;
Updated Summary of Changes; Added Erratum K68, K69 and
K70; Revised Erratum K52 for mobile Intel Pentium III Processor-
M to Fixed; Added Note to Summary of Errata table; Updated the
Documentation Changes by removing old items that were
incorporated in the new documents references in this spec
update; Added Documentation Change K19.

August 2001

2BPreface

6 Intel Confidential Specification Update

Revision Description Date

-023 Updated the list of referenced documents in the preface; Added
identification information for mobile Intel Pentium III Processor-M
in micro-FCPGA and micro-FCBGA packages; Updated the
Documentation Changes by removing old items that were
incorporated in the new documents references in this spec
update; Added Specification Clarification K1; Updated the
Celeron® mark to a registered trademark.

October 2001

-024 Updated Summary of Changes; Added Documentation Change
K2, K3, K4, K5, and K6.

November 2001

-025 Updated the list of referenced documents in the preface. December 2001

-026 Updated Documentation Changes K7, K8, K9, K10, and K11. January 2002

-027 Added new Mobile Pentium® III Processor-M in micro-FCBGA and
micro-FCPGA identification information

February 2002

-028 Updated Summary of Changes; Added erratum K71; Updated
errata K68; Added documentation change K12.

March 2002

-029 Added Documentation change K2; updated the Documentation
Changes by removing old items that already have been
incorporated in the published Software Developer’s manual.

April 2002

-030 Updated erratum K48; added Documentation changes K3, K4,
and K5.

May 2002

-031 Updated Summary of Changes; Added erratum K72; added
Documentation changes K6 and K7; Added columns for FBB1 &
FPB1.

June 2002

-032 Updated Summary of Changes; Removed old items that have
been added to the Software Developers Manual; Added
Documentation changes K3, K4, K5, K6, K7, K8, K9, K10, K11,
K12, K13, K14, and K15.

July 2002

-033 Updated the Documentation Changes summary section by
removing old items that already have been incorporated in the
published Software Developer’s manual.

August 2002

-034 Updated the Documentation Changes summary section; Added
Documentation changes K3, K4, K5, K6, K7, K8, K9, K10, K11,
K12, K13, K14, K15, K16, K17, K18, K19, K20, K21, K22, K23,
and K41.

September
2002

-035 Updated Summary of Changes; Added prefix letter W; Added
Documentation changes K25, K26, K27, K28, K29, K30, K31, and
K32.

October 2002

-036 Updated the Documentation Changes summary section by
removing old items that already have been incorporated in the
published Software Developer’s manual. Updated Packages
Identification Information table. Added a note in Documentation
Changes.

November 2002

-037 Updated a note in Documentation Changes. December 2002

-038 Update Packages Identification Information table February 2003

-039 Added erratum K73 March 2003

2BPreface

Specification Update Intel Confidential 7

Revision Description Date

-040 Updated Identification information table. Added prefix letter Y
and Z. Removed prefix letter W.

June 2003

-041 Updated Identification information table. Updated “ Z = Mobile
Intel® Pentium® 4 Processor with 533 MHz System Bus ”

July 2003

-042 Added errata K74 and K75. November 2003

-043 Added errata K76. Update errata K75. December 2003

-044 Added errata K77-79 October 2004

-045 Added errata K80-82 November 2004

-046 Added errata K83-84 December 2004

-047 Added SL545 and SL546 parts February 2005

-48 Updated erratum K68 March 2005

-49 Updated processor identification table

Added specification clarification K2

April 2005

-50 Added errata K85 May 2005

-051 Added erratum K86 and updated processor identification table. October 2005

-052 Added erratum K87 and K88. January 2006

-053 Updated errata K73, K83, and Software Developers Manual
document numbers.

March 2006

-054 Added erratum K89. April 2006

-055 Added errata K90 and K91. July 2006

-056 Added erratum K92. Updated Summary of Changes Table. August 2006

-057 Added erratum K93. September
2006

-058 Updated erratum K76 and K78. Updated Summary Table of
Changes. Updated the names of the Software Developer Manuals.

October 2006

-059 Added erratum K94. November 2006

-060 Added erratum K95, K96, K97. Updates Summary Table of
Changes.

December 2006

-061 Added erratum K98. January 2007

-062 Updated Summary Table of Changes. May 2007

-063 Added erratum K99. Updated Summary Table of Changes. August 2007

§

2BPreface

8 Intel Confidential Specification Update

Preface

This document is an update to the specifications contained in the documents listed in
the following Affected Documents/Related Documents table. It is a compilation of
device and document errata and specification clarifications and changes, and is
intended for hardware system manufacturers and for software developers of
applications, operating system, and tools.

Information types defined in the Nomenclature section of this document are
consolidated into this update document and are no longer published in other
documents. This document may also contain information that has not been previously
published.

Affected Documents
Document Title Document

Number/Location

Mobile Intel® Pentium® III Processor-M Datasheet 298340-002

Mobile Pentium® III Processor in BGA2 and Micro-PGA2 Packages at 1
GHz, 900 MHz, 850 MHz, 800 MHz, 750 MHz, 700 MHz, Low Voltage
750 MHz, Low Voltage 700 MHz, Low voltage 600 MHz, Ultra Low
Voltage 600 MHz and Ultra Low Voltage 500 MHz Datasheet

283653-002

Intel® Pentium® III Processor Mobile Module Connector 2 (MMC2)
Datasheet

245304

Intel® Pentium® III Processor Mobile Module: Mobile Module Connector
2 (MMC2) Featuring Intel® SpeedStep™ Technology Datasheet

243356-06

Intel® 64 and Intel IA-32 Architectures Software Developer’s Manual,
Volumes 1, 2-A, 2-B, 3-A and 3-B

253665, 253666,
253667, 253668,

and 253669
respectively

P6 Family of Processors Hardware Developer’s Manual 244001

Intel® Pentium® III Processor – Low Power Datasheet 273500-02

Note: Documentation changes for Intel® 64 and Intel IA-32 Architectures Software
Developer’s Manual volumes 1, 2, and 3 are posted in a separate document, Intel® 64
and Intel IA-32 Architectures Software Developer’s Manual Documentation Changes.
This document has been posted to http://developer.intel.com/

http://developer.intel.com/�

2BPreface

Specification Update Intel Confidential 9

Nomenclature

Errata are design defects or errors. Errata may cause the Mobile Intel® Pentium® III
Processor and Mobile Intel® Pentium® III Processor-M’s behavior to deviate from
published specifications. Hardware and software designed to be used with any given
stepping must assume that all errata documented for that stepping are present on all
devices.

Specification Changes are modifications to the current published specifications.
These changes will be incorporated in the next release of the specifications.

Specification Clarifications describe a specification in greater detail or further
highlight a specification’s impact to a complex design situation. These clarifications
will be incorporated in the next release of the specifications.

Documentation Changes include typos, errors, or omissions from the current
published specifications. These changes will be incorporated in the next release of the
specifications.

Note: Errata remain in the specification update throughout the product’s lifecycle, or until a
particular stepping is no longer commercially available. Under these circumstances,
errata removed from the specification update are archived and available upon request.
Specification changes, specification clarifications and documentation changes are
removed from the specification update when the appropriate changes are made to the
appropriate product specification or user documentation (datasheets, manuals, etc.).

General Information

Figure 1. Mobile Intel® Pentium® III Processor (Micro-PGA2) Markings

Legal Requirements
(YY = Year)

FFFFFFFF SXXXX
KP ZZZ/CCC

M C ‘YYINTEL

2D Matrix

(supplier Lot ID + SER#)

S-spec#FPO#

Package
Designator Cache

Speed

2BPreface

10 Intel Confidential Specification Update

Figure 2. Mobile Intel® Pentium® III Processor-M (Micro-FCPGA) Markings

Figure 3. Mobile Intel® Pentium® III Processor (BGA2) Markings

(Supplier Lot ID +
SER#)

Legal
(YY = Year)

FFFFFFFF SXXX
KC ZZZ/CCC

M C ‘YYINTEL

2D Matrix

S-specFPO

Package
Designator Cache

Speed

2BPreface

Specification Update Intel Confidential 11

Figure 4. Mobile Intel® Pentium® III Processor-M (Micro-FCBGA) Markings

Intel® Pentium® III Processor Mobile Module Markings

The Product Tracking Code (PTC) shows the assembly level of the module. The PTC is
on the secondary side of the module and contains 13 characters. See the example
below:

Example: PMM85002201AA

Definition:

AA Processor Module = PM

B Intel® Pentium® III Processor Mobile Module =L

 Pentium® III Processor Mobile Module Featuring Intel® SpeedStep®
Technology = M

CCC Speed Identity: 850/700, 800/650, 750/600, 700/550, 650/500, 600/500,
500 or 450, etc.

DD Cache Size02 (256 kB)

EEE Notifiable Design Revision (Start at 001

FFN Notifiable Processor Revision (Start at AA)

2BPreface

12 Intel Confidential Specification Update

For other Intel Mobile Modules, the second field (B) is defined as:

Pentium® II Processor Mobile Module (MMC-1) = D

Pentium® II Processor Mobile Module (MMC-2) = E

Pentium® II Processor Mobile Module with On-die Cache (MMC-1) = F

Pentium® II Processor Mobile Module with On-die Cache (MMC-2) = G

Celeron® Processor Mobile Module (MMC-1) = H

Celeron® Processor Mobile Module (MMC-2) = I

Celeron® Processor (.18μ) Mobile Module (MMC-2) = N

Secondary Side of the Module

Intel Serial Number
Intel Assembly Identification

Product Tracking Code

ISYWW6666 PBA XXXXXX-XXX
XXXXXXXXXXXXX

§

3BSummary Tables of Changes

Specification Update Intel Confidential 13

Summary Tables of Changes

The following table indicates the Specification Changes, Errata, Specification
Clarifications or Documentation Changes, which apply to the listed MCH steppings.
Intel intends to fix some of the errata in a future stepping of the component, and to
account for the other outstanding issues through documentation or Specification
Changes as noted. This table uses the following notations:

Codes Used in Summary Table

Stepping

X: Erratum, Specification Change or Clarification that applies
to this stepping.

(No mark) or (Blank Box): This erratum is fixed in listed stepping or specification
change does not apply to listed stepping.

Status

Doc: Document change or update that will be implemented.

PlanFix: This erratum may be fixed in a future stepping of the
product.

Fixed: This erratum has been previously fixed.

NoFix: There are no plans to fix this erratum.

Row

Shaded: This item is either new or modified from the previous
version of the document.

Note: Each Specification Update item is prefixed with a capital letter to distinguish the
product. The key below details the letters that are used in Intel’s microprocessor
Specification Updates.
A = Dual-Core Intel® Xeon® processor 7000 sequence

C = Intel ® Celeron ® processor

D = Dual-Core Intel® Xeon™ Processor 2.80 GHz

3BSummary Tables of Changes

14 Intel Confidential Specification Update

E = Intel ® Pentium ® III processor

F = Intel® Pentium® processor Extreme Edition and Intel® Pentium® D processor

I = Dual-Core Intel® Xeon® Processor

J = 64-bit Intel® Xeon™ processor MP with 1MB L2 Cache

K = Mobile Intel ® Pentium ® III processor

L = Intel ® Celeron ® D processor

M = Mobile Intel ® Celeron ® processor

N = Intel ® Pentium ® 4 processor

O = Intel ® Xeon™ processor MP

P = Intel ® Xeon™ processor

Q = Mobile Intel® Pentium® 4 processor supporting Hyper-Threading Technology on
90-nm process technology

R = Intel® Pentium® 4 processor on 90 nm process

S = 64-bit Intel® Xeon™ processor with 800 MHz system bus (1 MB and 2 MB L2
cache versions)

T = Mobile Intel® Pentium® 4 processor-M

U = 64-bit Intel® Xeon™ processor MP with up to 8MB L3 Cache

V = Mobile Intel® Celeron® processor on .13 Micron Process in Micro-FCPGA Package

W= Intel® Celeron® M processor

X = Intel® Pentium® M processor on 90nm process with 2-MB L2 Cache

Y = Intel® Pentium® M processor

Z = Mobile Intel ® Pentium ® 4 processor with 533 MHz system bus

AA = Intel® Pentium® D Processor 900 Sequence and Intel® Pentium® Processor
Extreme Edition 955, 965

AB = Intel® Pentium® 4 Processor 6x1 Sequence

AC = Intel® Celeron® Processor in 478 Pin Package

AD = Intel® Celeron® D processor on 65nm process

3BSummary Tables of Changes

Specification Update Intel Confidential 15

AE = Intel® CoreTM Duo Processor and Intel® CoreTM Solo processor on 65nm process

AF = Dual-Core Intel® Xeon® processor LV

AG = Dual-Core Intel® Xeon® Processor 5100 Series

AH = Intel® Core™2 Duo/Solo Processor for Intel® Centrino® Duo Processor
Technology

AI = Intel® Core™2 Extreme Processor X6800Δ and Intel® Core™2 Duo Desktop
Processor E6000Δ and E4000Δ Sequence

AJ = Quad-Core Intel® Xeon® Processor 5300 Series

AK = Intel® Core™2 Extreme quad-core processor QX6700Δ and Intel® Core™2
Quad processor Q6600Δ

AL = Dual-Core Intel® Xeon® Processor 7100 Series

AM = Intel® Celeron® processor 400 sequence

AN = Intel® Pentium® Dual-Core Processor

AO = Quad-Core Intel® Xeon® processor 3200 series

AP = Dual-Core Intel® Xeon® Processor 3000 Series

AQ = Intel® Pentium® Dual-Core Desktop Processor E2000Δ Sequence

AR = Intel® Celeron processor 500 series

AS = Intel® Xeon® processor 7200, 7300 series

The Specification Updates for the Pentium® processor, Pentium® Pro processor, and
other Intel products do not use this convention.

Steppings

No.

B
A
2

P
A
2

M
A
2

B
B
0

P
B
0

M
B
0

B
C
0

P
C
0

M
C
0

B
D
0

P
D
0

F
B
A
1

F
P
A
1

F
B
B
1

F
P
B
1 Plans ERRATA

K1 X X X X X X X X X X X X X X X NoFix
FP data operand pointer may be incorrectly
calculated after FP access which wraps
64-Kbyte boundary in 16-bit code

K2 X X X X X X X X X X X X X X X NoFix Differences exist in debug exception reporting

K3 X X X X X X X X X X X X X X X NoFix
Code fetch matching disabled debug register
may cause debug exception

K4 X X X X X X X X X X X X X X X NoFix Double ECC error on read may result in BINIT#

3BSummary Tables of Changes

16 Intel Confidential Specification Update

Steppings

No.

B
A
2

P
A
2

M
A
2

B
B
0

P
B
0

M
B
0

B
C
0

P
C
0

M
C
0

B
D
0

P
D
0

F
B
A
1

F
P
A
1

F
B
B
1

F
P
B
1 Plans ERRATA

K5 X X X X X X X X X X X X X X X NoFix FP inexact-result exception flag may not be set

K6 X X X X X X X X X X X X X X X NoFix BTM for SMI will contain incorrect FROM EIP

K7 X X X X X X X X X X X X X X X NoFix
I/O restart in SMM may fail after simultaneous
MCE

K8 X X X X X X X X X X X X X X X NoFix
Branch traps do not function if BTMs are also
enabled

K9 X X X X X X X X X X X X X X X NoFix
Machine check exception handler may not
always execute successfully

K10 X X X X X X X X X X X X X X X NoFix
MCE due to L2 parity error gives L1
MCACOD.LL

K11 X X X X X X X X X X X X X X X NoFix LBER may be corrupted after some events

K12 X X X X X X X X X X X X X X X NoFix
BTMs may be corrupted during simultaneous L1
cache line replacement

K13 X X X X X X X X X X X X X X X NoFix
Near CALL to ESP creates unexpected EIP
address

K14 X X X X X X X X X X X X X X X NoFix
Memory type undefined for non-memory
operations

K15 X X X X X X X X X X X X X X X NoFix
FP data operand pointer may not be zero after
power on or Reset

K16 X X X X X X X X X X X X X X X NoFix
MOVD following zeroing instruction can cause
incorrect result

K17 X X X X X X X X X X X X X X X NoFix
Premature execution of a load operation prior
to exception handler invocation

K18 X X X X X X X X X X X X X X X NoFix
Read portion of RMW instruction may execute
twice

K19 X X X X X X X X X X X X X X X NoFix
MC2_STATUS MSR has model-specific error
code and machine check architecture error
code reversed

K20 X X X X X X X X X X X X X X X NoFix
MOV with debug register causes debug
exception

K21 X X X X X X X X X X X X X X X NoFix
Upper four PAT entries not usable with Mode B
or Mode C paging

K22 X X X X X X X X X X X X X X X NoFix
Data breakpoint exception in a displacement
relative near call may corrupt EIP

K23 X X X X X X X X X X X X X X X NoFix
RDMSR and WRMSR to invalid MSR may not
cause GP fault

K24 X X X X X X X X X X X X X X X NoFix
SYSENTER/SYSEXIT instructions can implicitly
load null segment selector to SS and CS
registers

3BSummary Tables of Changes

Specification Update Intel Confidential 17

Steppings

No.

B
A
2

P
A
2

M
A
2

B
B
0

P
B
0

M
B
0

B
C
0

P
C
0

M
C
0

B
D
0

P
D
0

F
B
A
1

F
P
A
1

F
B
B
1

F
P
B
1 Plans ERRATA

K25 X X X X X X X X X X X X X X X NoFix
PRELOAD followed by EXTEST does not load
boundary scan data

K26 X X X X X X X X X X X X X X X NoFix
INT 1 instruction handler execution could
generate a debug exception

K27 X X X X X X X X X X X X X X X NoFix
Misaligned Locked access to APIC space results
in a hang

K28 X X X X X X X X X X X X X X X NoFix
Processor may assert DRDY# on a write with
no data.

K29 X X X X X X X X X X X X X X X NoFix
GP# Fault on WRMSR to
ROB_CR_BKUPTMPDR6

K30 X X X X X X Fixed
Machine check exception may occur due to
improper line eviction in the IFU

K31 X X X Fixed
Performance counters include streaming SIMD
extensions L1 prefetch

K32 X X X Fixed Processor will erroneously report a BIST failure

K33 Fix
Internal snooping mechanism causes livelock
condition

K34 Fixed
Cache coherency may be lost if snoop occurs
during cache line invalidation

K35 Fix
Extra DRDY# assertion when eviction back-to-
back write combining lines

K36 X X X Fixed ECC detection and correction issue

K37 X X X Fixed
L2_LD and L2_M_LINES_OUTM performance-
monitoring counters do not work

K38 X X X X X X X X X Fixed Snoop request may cause DBSY# hang

K39 X X X Fixed IFU/DCU deadlock may cause system hang

K40 Fix WBINVD may lock write out buffer

K41 X X X Fixed
L2_DBUS_BUSY performance monitoring
counter will not count writes

K42 X X X X X X X X X X X X X X X NoFix
Lower bits of SMRAM SMBASE register cannot
be written with an ITP

K43 X X X Fixed
Task switch may cause wrong PTE and PDE
access bit to be set

K44 X X X X X X X X X X X X X X X NoFix
Unsynchronized cross-modifying code
operations can cause unexpected instruction
execution results

K45 X X X X X X Fixed
Deadlock may occur due to illegal-
instruction/page-miss combination

3BSummary Tables of Changes

18 Intel Confidential Specification Update

Steppings

No.

B
A
2

P
A
2

M
A
2

B
B
0

P
B
0

M
B
0

B
C
0

P
C
0

M
C
0

B
D
0

P
D
0

F
B
A
1

F
P
A
1

F
B
B
1

F
P
B
1 Plans ERRATA

K46 X X X X X X Fixed
MASKMOVQ instruction interaction with string
operation may cause deadlock

K47 X X X Fixed Noise sensitivity issue on processor SMI# pin

K48 X X X X X X X X X X X X X X X NoFix
MOVD, CVTSI2SS, or PINSRW Following
Zeroing Instruction Can Cause Incorrect Result

K49 X X X X X X X X X X X X X X X NoFix
FLUSH# assertion following STPCLK# may
prevent CPU clocks from stopping

K50 X X X Fixed
Intermittent failure to assert ADS# during
processor power-on

K51 X X X Fixed Floating-point exception signal can be deferred

K52 X X X X X X X X X X X NoFix
Floating-point exception condition can be
deferred

K53 X X X NoFix
Race conditions may exist on thermal sensor
SMBus collision detection/arbitration circuitry

K54 X X X X X X Fixed
Cache line reads may result in eviction of
invalid data

K55 X X X X X X X X X X X X X X X NoFix
Snoop probe during FLUSH# could cause L2 to
be left in shared state

K56 X X X X X X Fixed Livelock may occur due to IFU line eviction

K57 X X X Fixed
Intermittent power-on failure due to
uninitialized processor internal nodes

K58 X X X X X X Fixed
Selector for the LTR/LLDT register may get
corrupted

K59 X X X X X X X X X X X X X X X NoFix INIT does not clear global entries in the TLB

K60 X X X X X X X X X X X X X X X NoFix VM bit is cleared on a double fault handler

K61 X X X X X X X X X X X X X X X NoFix
Memory aliasing with inconsistent A and D bits
may cause processor deadlock

K62 X X X X X X X X X X X X X X X NoFix
Use of memory aliasing with inconsistent
memory type may cause system hang

K63 X X X X X X X X X X X X X X X NoFix
Processor may report invalid TSS fault instead
of Double fault during mode C paging

K64 X X X X X X X X X X X X X X X NoFix
Machine check exception may occur when
interleaving code between different memory
types

K65 X X X X X X X X X X X X X X X NoFix
Wrong ESP Register Values During a Fault in
VM86 Mode

K66 X X X X X X X X X X X X X X X NoFix
APIC ICR Write May Cause Interrupt Not to be
Sent When ICR Delivery Bit Pending

3BSummary Tables of Changes

Specification Update Intel Confidential 19

Steppings

No.

B
A
2

P
A
2

M
A
2

B
B
0

P
B
0

M
B
0

B
C
0

P
C
0

M
C
0

B
D
0

P
D
0

F
B
A
1

F
P
A
1

F
B
B
1

F
P
B
1 Plans ERRATA

K67 X X X X X X X X X X X X X X X NoFix
Processor Incorrectly Samples NMI Interrupt
after RESET# Deassertion When Processor
APIC is Hardware-Disabled

K68 X X X X X X X X X X X X1 X1 X X Fix
The Instruction Fetch Unit (IFU) May Fetch
Instructions Based Upon Stale CR3 Data After a
Write to CR3 Register

K69 X X NoFix
Processor Might not Exit Sleep State Properly
Upon De-assertion of CPUSLP# Signal

K70 X X X X NoFix
During Boundary Scan, BCLK Not Sampled
High When DPSLP# is Asserted Low

K71 X X X X X X X X X X X X X X X NoFix
Under some complex conditions, the
instructions in the Shadow of a JMP FAR may
be Unintentionally Executed and Retired

K72 X X X X X X X X X X X X X X X NoFix
Processor Does not Flag #GP on Non-zero
Write to Certain MSRs

K73 X X X X X X X X X X X X X X X NoFix
A Locked Data Access that Spans Across Two
Pages May Cause the System to Hang

K74 X X X X X X X X X X X X X X X NoFix
REP MOVS Operation in Fast string Mode
Continues in that Mode When Crossing into a
Page with a Different Memory Type

K75 X X X X X X X X X X X X X X X NoFix
The FXSAVE, STOS, or MOVS Instructions May
Cause a Store Ordering Violation When Data
Crosses a Page with a UC Memory Type

K76 X X X X X X X X X X X X X X X NoFix
POPF and POPFD Instructions that Set the Trap
Flag Bit May Cause Unpredictable Processor
Behavior

K77 X X X X X X X X X X X X X X X NoFix
Code Segment Limit Violation May Occur on 4
Gbyte Limit Check

K78 X X X X X X X X X X X X X X X NoFix
FST Instruction with Numeric and Null Segment
Exceptions May take Numeric Exception with
Incorrect FPU Operand Pointer

K79 X X X X X X X X X X X X X X X NoFix
Code Segment is Wrong on SMM Handler when
SMBASE is not Aligned

K80 X X X X X X X X X X X X X X X NoFix

Page with PAT (Page Attribute Table) Set to
USWC (Uncacheable Speculative Write
Combine) While Associated MTRR (Memory
Type Range Register) is UC (Uncacheable) May
Consolidate to UC

K81 X X X X X X X X X X X X X X X NoFix
Under Certain Conditions LTR (Load Task
Register) Instruction May Result in System
Hang

3BSummary Tables of Changes

20 Intel Confidential Specification Update

Steppings

No.

B
A
2

P
A
2

M
A
2

B
B
0

P
B
0

M
B
0

B
C
0

P
C
0

M
C
0

B
D
0

P
D
0

F
B
A
1

F
P
A
1

F
B
B
1

F
P
B
1 Plans ERRATA

K82 X X X X X X X X X X X X X X X NoFix

Loading from Memory Type USWC
(Uncacheable Speculative Write Combine) May
Get Its Data Internally Forwarded from a
Previous Pending Store

K83 X X X X X X X X X X X X X X X NoFix
FPU Operand Pointer May Not be Cleared
Following FINIT/FNINIT

K84 X X X X X X X X X X X X X X X NoFix

FSTP (Floating Point Store) Instruction Under
Certain Conditions May Result In Erroneously
Setting a Valid Bit on an FP (Floating
Point) Stack Register

K85 X X X X X X X X X X X X X X X NoFix

Invalid Entries in Page-Directory-Pointer-Table
Register (PDPTR) May Cause General
Protection (#GP) Exception if the Reserved Bits
are Set to One

K86 X X X X X X X X X X X X X X X NoFix
Writing the Local Vector Table (LVT)
when an Interrupt is Pending May Cause an
Unexpected Interrupt

K87 X X X X X X X X X X X X X X X NoFix
The Processor May Report a #TS Instead of a
#GP Fault

K88 X X X X X X X X X X X X X X X NoFix
A Write to an APIC Register Sometimes May
Appear to Have Not Occurred

K89 X X X X X X X X X X X X X X X NoFix
Using 2M/4M Pages When A20M# Is Asserted
May Result in Incorrect Address Translations

K90 X X X X X X X X X X X X X X X NoFix
Values for LBR/BTS/BTM will be Incorrect after
an Exit from SMM

K91 X X X X X X X X X X X X X X X NoFix INIT Does Not Clear Global Entries in the TLB

K92 X X X X X X X X X X X X X X X NoFix

REP MOVS/STOS Executing with Fast Strings
Enabled and Crossing Page Boundaries with
Inconsistent Memory Types may use an
Incorrect Data Size or Lead to Memory-
Ordering Violations

K93 X X X X X X X X X X X X X X X NoFix
The BS Flag in DR6 May be Set for Non-Single-
Step #DB Exception

K94 X X X X X X X X X X X X X X X NoFix
Fault on ENTER Instruction May Result in
Unexpected Values on Stack Frame

K95 X X X X X X X X X X X X X X X NoFix
Unaligned Accesses to Paging Structures May
Cause the Processor to Hang

K96 X X X X X X X X X X X X X X X NoFix
INVLPG Operation for Large (2M/4M) Pages
May be Incomplete under Certain Conditions

K97 X X X X X X X X X X X X X X X NoFix
Page Access Bit May be Set Prior to Signaling a
Code Segment Limit Fault

3BSummary Tables of Changes

Specification Update Intel Confidential 21

Steppings

No.

B
A
2

P
A
2

M
A
2

B
B
0

P
B
0

M
B
0

B
C
0

P
C
0

M
C
0

B
D
0

P
D
0

F
B
A
1

F
P
A
1

F
B
B
1

F
P
B
1 Plans ERRATA

K98 X X X X X X X X X X X X X X X NoFix
EFLAGS, CR0, CR4 and the EXF4 Signal May be
Incorrect after Shutdown

K99 X X X X X X X X X X X X X X X NoFix
Performance Monitoring Event
FP_MMX_TRANS_TO_MMX May Not Count
Some Transitions

B
A
2

P
A
2

M
A
2

B
B
0

P
B
0

M
B
0

B
C
0

P
C
0

M
C
0

B
D
0

P
D
0

F
B
A
1

F
P
A
1

F
B
B
1

F
P
B
1 SPECIFICATION CHANGES

K1 X X X Doc
Thermal Resistance (θj-ttp) specification
change

K2 X X Doc
New Product Specification for Mobile Intel
Pentium III Processor 1000/700 MHz at
Tj=92oC

K3 X
New Product Specifications for Ultra Low
Voltage Mobile Intel Pentium III Processor 600
MHz

B
A
2

P
A
2

M
A
2

B
B
0

P
B
0

M
B
0

B
C
0

P
C
0

M
C
0

B
D
0

P
D
0

F
B
A
1

F
P
A
1

F
B
B
1

F
P
B
1 SPECIFICATION CLARIFICATIONS

K1 X X Doc
Temperature Specification Clarification for
Measuring Currents

K2 X X X X X X X X X X X X X X X Doc
Specification Clarification with Respect to Time
Stamp Counter

B
A
2

P
A
2

M
A
2

B
B
0

P
B
0

M
B
0

B
C
0

P
C
0

M
C
0

B
D
0

P
D
0

F
B
A
1

F
P
A
1

F
B
B
1

F
P
B
1 DOCUMENTATION CHANGES

 No Documentation Changes

§

4BIdentification Information

22 Intel Confidential Specification Update

Identification Information

The mobile Intel® Pentium® III processor can be identified by the following values:

Family1 Model2

0110 1000

NOTES:
1. The Family corresponds to bits [11:8] of the EDX register after Reset, bits [11:8] of the

EAX register after the CPUID instruction is executed with a 1 in the EAX register, and
the generation field of the Device ID register accessible through Boundary Scan.

2. The Model corresponds to bits [7:4] of the EDX register after Reset, bits [7:4] of the
EAX register after the CPUID instruction is executed with a 1 in the EAX register, and
the model field of the Device ID register accessible through Boundary Scan.

The mobile Intel® Pentium® III Processor-M can be identified by the following values:

Family1 Model2 Brand ID3

1111 0010 000010004

1111 0010 000011115

NOTES:
1. The Family corresponds to bits [11:8] of the EDX register after Reset, bits [11:8] of the

EAX register after the CPUID instruction is executed with a 1 in the EAX register, and
the generation field of the Device ID register accessible through Boundary Scan.

2. The Model corresponds to bits [7:4] of the EDX register after Reset, bits [7:4] of the
EAX register after the CPUID instruction is executed with a 1 in the EAX register, and
the model field of the Device ID register accessible through Boundary Scan.

3. The Brand ID corresponds to bits [7:0] of the EBX register after the CPUID instruction
is executed with a 1 in the EAX register.

Table 1. Mobile Intel® Pentium® III Processor in BGA2 and micro-PGA2 Packages
Identification Information

S-Spec Product
Stepping

CPU
Signature

Speed (MHz)
Core/Bus

Integrated L2
Size (Kbytes) Package Notes

SL3DU BA2 0681h 400(F)/100 256 BGA2 1

SL43K BB0 0683h 400(F)/100 256 BGA2 1

SL3PK BA2 0681h 500(F)/100 256 BGA2 1

SL43Z BB0 0683h 500(F)/100 256 BGA2 1

SL3KX BA2 0681h 450(F)/100 256 BGA2 2

SL43L BB0 0683h 450(F)/100 256 BGA2 2

SL3DT BA2 0681h 500(F)/100 256 BGA2 2

SL43M BB0 0683h 500(F)/100 256 BGA2 2

4BIdentification Information

Specification Update Intel Confidential 23

S-Spec Product
Stepping

CPU
Signature

Speed (MHz)
Core/Bus

Integrated L2
Size (Kbytes) Package Notes

SL3PH BA2 0681h 600-500(S)/100 256 BGA2 3

SL43Y BB0 0683h 600-500(S)/100 256 BGA2 3

SL4GH BB0 0683h 600-500(S)/100 256 BGA2 4

SL3PG BA2 0681h 650-500(S)/100 256 BGA2 3

SL43X BB0 0683h 650-500(S)/100 256 BGA2 3

SL3Z7 BB0 0683h 700-550(S)/100 256 BGA2 3

SL4AS BB0 0683h 750-600(S)/100 256 BGA2 3

SL4JN BC0 0686h 400(F)/100 256 BGA2 1

SL4JA BC0 0686h 450(F)/100 256 BGA2 2

SL4JB BC0 0686h 500(F)/100 256 BGA2 2

SL4JP BC0 0686h 500(F)/100 256 BGA2 1

SL4ZH BC0 0686h 500-300(S)/100 256 BGA2 5

SL4JH BC0 0686h 600-500(S)/100 256 BGA2 3

SL4JM BC0 0686h 600-500(S)/100 256 BGA2 4

SL4JJ BC0 0686h 650-500(S)/100 256 BGA2 3

SL56R BC0 0686h 700-500(S)/100 256 BGA2 4

SL4JK BC0 0686h 700-550(S)/100 256 BGA2 3

SL4JL BC0 0686h 750-600(S)/100 256 BGA2 3

SL4AK BC0 0686h 800-650(S)/100 256 BGA2 3

SL4AG BC0 0686h 850-700(S)/100 256 BGA2 3

SL59H BC0 0686h 900-700(S)/100 256 BGA2 6

SL5P4 BD0 068Ah 500-300(S)/100 256 BGA2 5

SL5V4 BD0 068Ah 600-300(S)/100 256 BGA2 8

SL588 BD0 068Ah 600-300(S)/100 256 BGA2 5

SL54D BD0 068Ah 700-500(S)/100 256 BGA2 4

SL583 BD0 068Ah 750-500(S)/100 256 BGA2 4

SL54A BD0 068Ah 750-600(S)/100 256 BGA2 3

SL548 BD0 068Ah 800-650(S)/100 256 BGA2 3

SL547 BD0 068Ah 850-700(S)/100 256 BGA2 3

SL545 BD0 068Ah 500(S)/100 256 BGA2 3, 9

SL546 BD0 068Ah 400(S)/100 256 BGA2 3, 9

SL54G BD0 068Ah 900-700(S)/100 256 BGA2 6

SL54F BD0 068Ah 1000-700(S)/100 256 BGA2 6

SL5TB BD0 068Ah 1000-700(S)/100 256 BGA2 7

4BIdentification Information

24 Intel Confidential Specification Update

S-Spec Product
Stepping

CPU
Signature

Speed (MHz)
Core/Bus

Integrated L2
Size (Kbytes) Package Notes

SL3LG PA2 0681h 450(F)/100 256 Micro-PGA2 2

SL43N PB0 0683h 450(F)/100 256 Micro-PGA2 2

SL3DW PA2 0681h 500(F)/100 256 Micro-PGA2 2

SL43P PB0 0683h 500(F)/100 256 Micro-PGA2 2

SL3PM PA2 0681h 600-500(S)/100 256 Micro-PGA2 3

SL443 PB0 0683h 600-500(S)/100 256 Micro-PGA2 3

SL3PL PA2 0681h 650-500(S)/100 256 Micro-PGA2 3

SL442 PB0 0683h 650-500(S)/100 256 Micro-PGA2 3

SL3Z8 PB0 0683h 700-550(S)/100 256 Micro-PGA2 3

SL44T PB0 0683h 750-600(S)/100 256 Micro-PGA2 3

SL4JQ PC0 0686h 450(F)/100 256 Micro-PGA2 2

SL4JR PC0 0686h 500(F)/100 256 Micro-PGA2 2

SL4JX PC0 0686h 600-500(S)/100 256 Micro-PGA2 3

SL4JY PC0 0686h 650-500(S)/100 256 Micro-PGA2 3

SL4JZ PC0 0686h 700-550(S)/100 256 Micro-PGA2 3

SL4K2 PC0 0686h 750-600(S)/100 256 Micro-PGA2 3

SL4GT PC0 0686h 800-650(S)/100 256 Micro-PGA2 3

SL4AH PC0 0686h 850-700(S)/100 256 Micro-PGA2 3

SL59J PC0 0686h 900-700(S)/100 256 Micro-PGA2 6

SL53P PD0 068Ah 750-600(S)/100 256 Micro-PGA2 3

SL53M PD0 068Ah 800-650(S)/100 256 Micro-PGA2 3

SL53L PD0 068Ah 850-700(S)/100 256 Micro-PGA2 3

SL53T PD0 068Ah 900-700(S)/100 256 Micro-PGA2 6

SL53S PD0 068Ah 1000-700(S)/100 256 Micro-PGA2 6

SL5TF PD0 068Ah 1000-700(S)/100 256 Micro-PGA2 7

NOTES:
1. VID[4:0] = 01101; VCC_CORE = 1.35V
2. VID[4:0] = 01000; VCC_CORE = 1.60V
3. VID[4:0] = 01101; VCC_CORE = 1.60V for Maximum Performance Mode; VCC_CORE = 1.35V

for Battery Optimized Mode
4. VID[4:0] = 10111; VCC_CORE = 1.35V for Maximum Performance Mode; VCC_CORE = 1.10V

for Battery Optimized Mode
5. VID[4:0] = 11100; VCC_CORE = 1.10V for Maximum Performance Mode; VCC_CORE = 0.975V

for Battery Optimized Mode
6. VID[4:0] = 01101; VCC_CORE = 1.70V for Maximum Performance Mode; VCC_CORE = 1.35V

for Battery Optimized Mode; Junction Temperature (Tj)= 100°C
7. VID[4:0] = 01101; VCC_CORE = 1.70V for Maximum Performance Mode; VCC_CORE = 1.35V

for Battery Optimized Mode; Junction Temperature (Tj)= 92°C
8. VID[4:0] = 11100; Vcc_core = 1.15V for Maximum Performance Mode; Vcc_core =

0.975V for Battery Optimized Mode
9. This part is for embedded customers
F Fixed Core frequency

4BIdentification Information

Specification Update Intel Confidential 25

S Intel® SpeedStep® Technology

Table 2. Mobile Intel® Pentium® III Processor-M in micro-FCBGA and micro-FCPGA
Packages Identification Information

S-Spec Product
Stepping

CPU
Signature

Speed (MHz)
Core/Bus

Integrated L2
Size (Kbytes) Package Notes

SL6CQ FPB1 06B4h 1333-800(S)/133 512 Micro-FCPGA 1

SL6AA FPB1 06B4h 1266-800(S)/133 512 Micro-FCPGA 1

SL5CL FPA1 06B1h 1200-800(S)/133 512 Micro-FCPGA 1

SL6A9 FPB1 06B4h 1200-800(S)/133 512 Micro-FCPGA 1

SL5CK FPA1 06B1h 1133-733(S)/133 512 Micro-FCPGA 1

SL6A8 FPB1 06B4h 1133-733(S)/133 512 Micro-FCPGA 1

SL5CJ FPA1 06B1h 1066-733(S)/133 512 Micro-FCPGA 1

SL6A5 FPB1 06B4h 1066-733(S)/133 512 Micro-FCPGA 1

SL5CH FPA1 06B1h 1000-733(S)/133 512 Micro-FCPGA 1

SL69V FPB1 06B4h 1000-733(S)/133 512 Micro-FCPGA 1

SL5CG FPA1 06B1h 933-733(S)/133 512 Micro-FCPGA 1

SL5CF FPA1 06B1h 866-667(S)/133 512 Micro-FCPGA 1

SL6CS FBB1 06B4h 1333-800(S)/133 512 Micro-FCBGA 1

SL6AL FBB1 06B4h 1266-800(S)/133 512 Micro-FCBGA 1

SL5CT FBA1 06B1h 1200-800(S)/133 512 Micro-FCBGA 1

SL6AK FBB1 06B4h 1200-800(S)/133 512 Micro-FCBGA 1

SL5CS FBA1 06B1h 1133-733(S)/133 512 Micro-FCBGA 1

SL6AJ FBB1 06B4h 1133-733(S)/133 512 Micro-FCBGA 1

SL5CR FBA1 06B1h 1066-733(S)/133 512 Micro-FCBGA 1

SL6AH FBB1 06B4h 1066-733(S)/133 512 Micro-FCBGA 1

SL5CQ FBA1 06B1h 1000-733(S)/133 512 Micro-FCBGA 1

SL6AG FBB1 06B4h 1000-733(S)/133 512 Micro-FCBGA 1

SL5CP FBA1 06B1h 933-733(S)/133 512 Micro-FCBGA 1

SL5CN FBA1 06B1h 866-667(S)/133 512 Micro-FCBGA 1

SL6AT FBB1 06B4h 933-533(S)/133 512 Micro-FCBGA 1

SL6CT FBB1 06B4h 1000-533(S)/133 512 Micro-FCBGA 2

SL639 FPA1 06B1h 866-533(S)/133 512 Micro-FCBGA 2

SL6AM FBB1 06B4h 866-533(S)/133 512 Micro-FCBGA 2

SL6CV FBB1 06B4h 866-400(S)/133 512 Micro-FCBGA 3

SL6CU FBB1 06B4h 850-400(S)/100 512 Micro-FCBGA 3

SL63A FBA1 06B1h 850-500(S)/100 512 Micro-FCBGA 2

4BIdentification Information

26 Intel Confidential Specification Update

S-Spec Product
Stepping

CPU
Signature

Speed (MHz)
Core/Bus

Integrated L2
Size (Kbytes) Package Notes

SL6AN FBB1 06B4h 850-500(S)/100 512 Micro-FCBGA 2

SL5QP FBA1 06B1h 800-533(S)/133 512 Micro-FCBGA 2

SL6AP FBB1 06B4h 800-533(S)/133 512 Micro-FCBGA 2

SL5QQ FBA1 06B1h 800A-500(S)/100 512 Micro-FCBGA 2

SL6AQ FBB1 06B4h 800A-500(S)/100 512 Micro-FCBGA 2

SL6AY FBB1 06B4h 800-400(S)/100 512 Micro-FCBGA 3

SL6AX FBB1 06B4h 800-400(S)/133 512 Micro-FCBGA 3

SL5QR FBA1 06B1h 750-450(S)/100 512 Micro-FCBGA 2

SL635B FBA1 06B1h 750-350(S)/100 512 Micro-FCBGA 3

SL5QT FBA1 06B1h 700-300(S)/100 512 Micro-FCBGA 3

QQA3 FBB1 06B4h 866-400(S)/133 512 Micro-FCBGA 3

QQB5 FBB1 06B4h 850-400(S)/100 512 Micro-FCBGA 3

QQB2 FBB1 06B4h 900-400(S)/100 512 Micro-FCBGA 3

QQA0 FBB1 06B4h 933-400(S)/133 512 Micro-FCBGA 3

NOTES:
1. VID[4:0] = 01100; VCC_CORE = 1.15V for Battery Optimized Mode; VID[4:0] =

01000; VCC_CORE = 1.40V for Maximum Performance Mode
2. VID[4:0] = 01110; VCC_CORE = 1.05V for Battery Optimized Mode; VID[4:0] =

01100; VCC_CORE = 1.15V for Maximum Performance Mode
3. VID[4:0] = 10001; VCC_CORE = 0.95V for Battery Optimized Mode; VID[4:0] =

01101; VCC_CORE = 1.10V for Maximum Performance Mode
S Intel® SpeedStep® Technology

The Processor Serial Number feature has been disabled for the mobile Intel®
Pentium® III Processor-M.

Table 3. Intel® Pentium® III Processor Mobile Module Identification Information

PTC Product
Stepping CPUID Speed (MHz)

Core/Bus
Integrated L2
Size (Kbytes) Package Notes

PML45002001AA MA2 0681h 450(F)/100 256 MMC-2 1

PML50002001AA MA2 0681h 500(F)/100 256 MMC-2 1

PMM60002001AA MA2 0681h 600-500(S)/100 256 MMC-2 2

PMM65002001AA MA2 0681h 650-500(S)/100 256 MMC-2 2

PML45002101AB MB0 0683h 450(F)/100 256 MMC-2 2

PML50002101AB MB0 0683h 500(F)/100 256 MMC-2 2

PMM60002101AB MB0 0683h 600-500(S)/100 256 MMC-2 2

PMM65002101AB MB0 0683h 650-500(S)/100 256 MMC-2 2

PMM70002101AA MB0 0683h 700-550(S)/100 256 MMC-2 2

4BIdentification Information

Specification Update Intel Confidential 27

PTC Product
Stepping CPUID Speed (MHz)

Core/Bus
Integrated L2
Size (Kbytes) Package Notes

PMM75002101AA MB0 0683h 750-600(S)/100 256 MMC-2 2

PML45002201AC MC0 0686h 450(F)/100 256 MMC-2 1

PML50002201AC MC0 0686h 500(F)/100 256 MMC-2 1

PMM60002201AC MC0 0686h 600-500(S)/100 256 MMC-2 2

PMM65002201AC MC0 0686h 650-500(S)/100 256 MMC-2 2

PMM70002201AB MC0 0686h 700-550(S)/100 256 MMC-2 2

PMM75002201AB MC0 0686h 750-600(S)/100 256 MMC-2 2

PMM80002201AA MC0 0686h 800-650(S)/100 256 MMC-2 2

PMM85002201AA MC0 0686h 850-700(S)/100 256 MMC-2 2

NOTES:
1. VCC_CORE voltage is 1.6V
2. VCC_CORE = 1.60V for Maximum Performance Mode; VCC_CORE = 1.35V for Battery

Optimized Mode
F Fixed Core frequency
S Intel® SpeedStep® Technology

§

5BErrata

28 Intel Confidential Specification Update

Errata

K1. WBINVD May Lock Write Out Buffer

Problem: The FP Data Operand Pointer is the effective address of the operand associated with
the last noncontrol floating-point instruction executed by the machine. If an 80-bit
floating-point access (load or store) occurs in a 16-bit mode other than protected
mode (in which case the access will produce a segment limit violation), the memory
access wraps a 64-Kbyte boundary, and the floating-point environment is
subsequently saved, the value contained in the FP Data Operand Pointer may be
incorrect.

Implication: A 32-bit operating system running 16-bit floating-point code may encounter this
erratum, under the following conditions:

• The operating system is using a segment greater than 64 Kbytes in size.

• An application is running in a 16-bit mode other than protected mode.

• An 80-bit floating-point load or store which wraps the 64-Kbyte boundary is
executed.

• The operating system performs a floating-point environment store
(FSAVE/FNSAVE/FSTENV/FNSTENV) after the above memory access.

• The operating system uses the value contained in the FP Data Operand Pointer.

Wrapping an 80-bit floating-point load around a segment boundary in this way is not a
normal programming practice. Intel has not currently identified any software which
exhibits this behavior.

Workaround: If the FP Data Operand Pointer is used in an OS which may run 16-bit floating-point
code, care must be taken to ensure that no 80-bit floating-point accesses are wrapped
around a 64-Kbyte boundary.

Status: For the steppings affected, see the Summary Tables of Changes at the beginning of
this section.

K2. Differences Exist in Debug Exception Reporting

Problem: There exist some differences in the reporting of code and data breakpoint matches
between that specified by previous Intel processor specifications and the behavior of
the Mobile Intel® Pentium® lll processor, as described below:

Case 1. The first case is for a breakpoint set on a MOVSS or POPSS instruction, when
the instruction following it causes a debug register protection fault (DR7.gd is already
set, enabling the fault). The processor reports delayed data breakpoint matches from
the MOVSS or POPSS instructions by setting the matching DR6.bi bits, along with the
debug register protection fault (DR6.bd). If additional breakpoint faults are matched
during the call of the debug fault handler, the processor sets the breakpoint match
bits (DR6.bi) to reflect the breakpoints matched by both the MOVSS or POPSS

5BErrata

Specification Update Intel Confidential 29

breakpoint and the debug fault handler call. The Mobile Intel Pentium lll processor
only sets DR6.bd in either situation, and does not set any of the DR6.bi bits.

Case 2. In the second breakpoint reporting failure case, if a MOVSS or POPSS
instruction with a data breakpoint is followed by a store to memory which:

1. crosses a 4-Kbyte page boundary,

OR

2. causes the page table Access or Dirty (A/D) bits to be modified,

the breakpoint information for the MOVSS or POPSS will be lost. Previous processors
retain this information under these boundary conditions.

Case 3. If they occur after a MOVSS or POPSS instruction, the INTn, INTO, and INT3
instructions zero the DR6.bi bits (bits B0 through B3), clearing pending breakpoint
information, unlike previous processors.

Case 4. If a data breakpoint and an SMI (System Management Interrupt) occur
simultaneously, the SMI will be serviced via a call to the SMM handler, and the
pending breakpoint will be lost.

Case 5. When an instruction that accesses a debug register is executed, and a
breakpoint is encountered on the instruction, the breakpoint is reported twice.

Case 6. Unlike previous versions of Intel Architecture processors, Mobile Intel
Pentium lll processors will not set the Bi bits for a matching disabled breakpoint unless
at least one other breakpoint is enabled.

Implication: When debugging or when developing debuggers for a Mobile Intel Pentium lll
processor-based system, this behavior should be noted. Normal usage of the MOVSS
or POPSS instructions (i.e., following them with a MOV ESP) will not exhibit the
behavior of cases 1-3. Debugging in conjunction with SMM will be limited by case 4.

Workaround: Following MOVSS and POPSS instructions with a MOV ESP instruction when using
breakpoints will avoid the first three cases of this erratum. No workaround has been
identified for cases 4, 5, or 6.

Status: For the steppings affected, see the Summary Tables of Changes at the beginning of
this section.

K3. Code Fetch Matching Disabled Debug Register May Cause Debug
Exception

Problem: The bits L0-3 and G0-3 enable breakpoints local to a task and global to all tasks,
respectively. If one of these bits is set, a breakpoint is enabled, corresponding to the
addresses in the debug registers DR0-DR3. If at least one of these breakpoints is
enabled, any of these registers are disabled (i.e., Ln and Gn are 0), and RWn for the
disabled register is 00 (indicating a breakpoint on instruction execution), normally an
instruction fetch will not cause an instruction-breakpoint fault based on a match with
the address in the disabled register(s). However, if the address in a disabled register
matches the address of a code fetch, which also results in a page fault, an instruction-
breakpoint fault will occur.

5BErrata

30 Intel Confidential Specification Update

Implication: The bits L0-3 and G0-3 enable breakpoints local to a task and global to all tasks,
respectively. If one of these bits is set, a breakpoint is enabled, corresponding to the
addresses in the debug registers DR0-DR3. If at least one of these breakpoints is
enabled, any of these registers are disabled (i.e., Ln and Gn are 0), and RWn for the
disabled register is 00 (indicating a breakpoint on instruction execution), normally an
instruction fetch will not cause an instruction-breakpoint fault based on a match with
the address in the disabled register(s). However, if the address in a disabled register
matches the address of a code fetch, which also results in a page fault, an instruction-
breakpoint fault will occur.

Workaround: The debug handler should clear breakpoint registers before they become disabled.

Status: For the steppings affected, see the Summary Tables of Changes at the beginning of
this section.

K4. Double ECC Error on Read May Result in BINIT#

Problem: For this erratum to occur, the following conditions must be met:

• Machine Check Exceptions (MCEs) must be enabled.

• A dataless transaction (such as a write invalidate) must be occurring
simultaneously with a transaction which returns data (a normal read).

• The read data must contain a double-bit uncorrectable ECC error.

If these conditions are met, the mobile Pentium III processor will not be able to
determine which transaction was erroneous, and instead of generating an MCE, it will
generate a BINIT#.

Implication: The bus will be reinitialized in this case. However, since a double-bit uncorrectable
ECC error occurred on the read, the MCE handler (which is normally reached on a
double-bit uncorrectable ECC error for a read) would most likely cause the same
BINIT# event.

Workaround: Though the ability to drive BINIT# can be disabled in the mobile Pentium III
processor, which would prevent the effects of this erratum, overall system behavior
would not improve, since the error which would normally cause a BINIT# would
instead cause the machine to shut down. No other workaround has been identified.

Status: For the steppings affected, see the Summary Tables of Changes at the beginning of
this section.

K5. FP Inexact-Result Exception Flag May Not Be Set

Problem: When the result of a floating-point operation is not exactly representable in the
destination format (1/3 in binary form, for example), an inexact-result (precision)
exception occurs. When this occurs, the PE bit (bit 5 of the FPU status word) is
normally set by the processor. Under certain rare conditions, this bit may not be set
when this rounding occurs. However, other actions taken by the processor (invoking
the software exception handler if the exception is unmasked) are not affected. This
erratum can only occur if the floating-point operation, which causes the precision
exception, is immediately followed by one of the following instructions:

• FST m32real

• FST m64real

5BErrata

Specification Update Intel Confidential 31

• FSTP m32real

• FSTP m64real

• FSTP m80real

• FIST m16int

• FIST m32int

• FISTP m16int

• FISTP m32int

• FISTP m64int

Note: Even if this combination of instructions is encountered, there is also a dependency on
the internal pipelining and execution state of both instructions in the processor.

Implication: Inexact-result exceptions are commonly masked or ignored by applications, as it
happens frequently, and produces a rounded result acceptable to most applications.
The PE bit of the FPU status word may not always be set upon receiving an inexact-
result exception. Thus, if these exceptions are unmasked, a floating-point error
exception handler may not recognize that a precision exception occurred. Note that
this is a “sticky” bit, i.e., once set by an inexact-result condition, it remains set until
cleared by software.

Workaround: This condition can be avoided by inserting two NOP instructions between the two
floating-point instructions.

Status: For the steppings affected, see the Summary Tables of Changes at the beginning of
this section.

K6. BTM for SMI Will Contain Incorrect FROM EIP

Problem: A system management interrupt (SMI) will produce a Branch Trace Message (BTM), if
BTMs are enabled. However, the FROM EIP field of the BTM (used to determine the
address of the instruction which was being executed when the SMI was serviced) will
not have been updated for the SMI, so the field will report the same FROM EIP as the
previous BTM.

Implication: A BTM which is issued for an SMI will not contain the correct FROM EIP, limiting the
usefulness of BTMs for debugging software in conjunction with System Management
Mode (SMM).

Workaround: None identified

Status: For the steppings affected, see the Summary Tables of Changes at the beginning of
this section.

K7. I/O Restart in SMM May Fail After Simultaneous MCE

Problem: If an I/O instruction (IN, INS, REP INS, OUT, OUTS, or REP OUTS) is being executed,
and if the data for this instruction becomes corrupted, the mobile Pentium III processor
will signal a machine check exception (MCE). If the instruction is directed at a device
which is powered down, the processor may also receive an assertion of SMI#. Since
MCEs have higher priority, the processor will call the MCE handler, and the SMI#
assertion will remain pending. However, upon attempting to execute the first

5BErrata

32 Intel Confidential Specification Update

instruction of the MCE handler, the SMI# will be recognized and the processor will
attempt to execute the SMM handler. If the SMM handler is completed successfully, it
will attempt to restart the I/O instruction, but will not have the correct machine state,
due to the call to the MCE handler.

Implication: A simultaneous MCE and SMI# assertion may occur for one of the I/O instructions
above. The SMM handler may attempt to restart such an I/O instruction, but will have
corrupted state due to the MCE handler call, leading to failure of the restart and
shutdown of the processor.

Workaround: If a system implementation must support both SMM and MCEs, the first thing the SMM
handler code (when an I/O restart is to be performed) should do is check for a
pending MCE. If there is an MCE pending, the SMM handler should immediately exit
via an RSM instruction and allow the machine check exception handler to execute. If
there is not, the SMM handler may proceed with its normal operation.

Status: For the steppings affected, see the Summary Tables of Changes at the beginning of
this section.

K8. Branch Traps Do Not Function If BTMs Are Also Enabled

Problem: If branch traps or branch trace messages (BTMs) are enabled alone, both function as
expected. However, if both are enabled, only the BTMs will function, and the branch
traps will be ignored.

Implication: The branch traps and branch trace message debugging features cannot be used
together.

Workaround: If branch trap functionality is desired, BTMs must be disabled.

Status: For the steppings affected, see the Summary Tables of Changes at the beginning of
this section.

K9. Machine Check Exception Handler May Not Always Execute
Successfully

Problem: An MCE may not always result in the successful execution of the MCE handler.
However, asynchronous MCEs usually occur upon detection of a catastrophic system
condition that would also hang the processor. Leaving MCEs disabled will result in the
condition, which caused the asynchronous MCE instead causing the processor to enter
shutdown. Therefore, leaving MCEs disabled may not improve overall system
behavior.

Implication: No workaround that would guarantee successful MCE handler execution under this
condition has been identified.

Workaround: If branch trap functionality is desired, BTMs must be disabled.

Status: For the steppings affected, see the Summary Tables of Changes at the beginning of
this section.

5BErrata

Specification Update Intel Confidential 33

K10. MCE Due to L2 Parity Error Gives L1 MCACOD.LL

Problem: If a Cache Reply Parity (CRP) error, Cache Address Parity (CAP) error, or Cache
Synchronous Error (CSER) occurs on an access to the mobile Pentium III processor’s
L2 cache, the resulting Machine Check Architectural Error Code (MCACOD) will be
logged with ‘01’ in the LL field. This value indicates an L1 cache error; the value
should be ‘10’, indicating an L2 cache error. Note that L2 ECC errors have the correct
value of ‘10’ logged.

Implication: An L2 cache access error, other than an ECC error, will be improperly logged as an L1
cache error in MCACOD.LL.

Workaround: None identified

Status: For the steppings affected, see the Summary Tables of Changes at the beginning of
this section.

K11. LBER May Be Corrupted After Some Events

Problem: The last branch record (LBR) and the last branch before exception record (LBER) can
be used to determine the source and destination information for previous branches or
exceptions. The LBR contains the source and destination addresses for the last branch
or exception, and the LBER contains similar information for the last branch taken
before the last exception. This information is typically used to determine the location
of a branch which leads to execution of code which causes an exception. However,
after a catastrophic bus condition which results in an assertion of BINIT# and the re-
initialization of the buses, the value in the LBER may be corrupted. Also, after either a
CALL which results in a fault or a software interrupt, the LBER and LBR will be updated
to the same value, when the LBER should not have been updated.

Implication: The LBER and LBR registers are used only for debugging purposes. When this erratum
occurs, the LBER will not contain reliable address information. The value of LBER
should be used with caution when debugging branching code; if the values in the LBR
and LBER are the same, then the LBER value is incorrect. Also, the value in the LBER
should not be relied upon after a BINIT# event.

Workaround: None identified

Status: For the steppings affected, see the Summary Tables of Changes at the beginning of
this section.

K12. BTMs May Be Corrupted During Simultaneous L1 Cache Line
Replacement

Problem: When Branch Trace Messages (BTMs) are enabled and such a message is generated,
the BTM may be corrupted when issued to the bus by the L1 cache if a new line of
data is brought into the L1 data cache simultaneously. Though the new line being
stored in the L1 cache is stored correctly, and no corruption occurs in the data, the
information in the BTM may be incorrect due to the internal collision of the data line
and the BTM.

Implication: Although BTMs may not be entirely reliable due to this erratum, the conditions
necessary for this boundary condition to occur have only been exhibited during
focused simulation testing. Intel has currently not observed this erratum in a system
level validation environment.

5BErrata

34 Intel Confidential Specification Update

Workaround: None identified

Status: For the steppings affected, see the Summary Tables of Changes at the beginning of
this section.

K13. Near CALL to ESP Creates Unexpected EIP Address

Problem: As documented, the CALL instruction saves procedure linking information in the
procedure stack and jumps to the called procedure specified with the destination
(target) operand. The target operand specifies the address of the first instruction in
the called procedure. This operand can be an immediate value, a general purpose
register, or a memory location. When accessing an absolute address indirectly using
the stack pointer (ESP) as a base register, the base value used is the value in the ESP
register before the instruction executes. However, when accessing an absolute
address directly using ESP as the base register, the base value used is the value of
ESP after the return value is pushed on the stack, not the value in the ESP register
before the instruction executed.

Implication: Due to this erratum, the processor may transfer control to an unintended address.
Results are unpredictable, depending on the particular application, and can range from
no effect to the unexpected termination of the application due to an exception. Intel
has observed this erratum only in a focused testing environment. Intel has not
observed any commercially available operating system, application, or compiler that
makes use of or generates this instruction.

Workaround: If the other seven general purpose registers are unavailable for use, and it is
necessary to do a CALL via the ESP register, first push ESP onto the stack, then
perform an indirect call using ESP (e.g., CALL [ESP]). The saved version of ESP should
be popped off the stack after the call returns.

Status: For the steppings affected, see the Summary Tables of Changes at the beginning of
this section.

K14. Memory Type Undefined for Non-memory Operations

Problem: The Memory Type field for nonmemory transactions such as I/O and Special Cycles
are undefined. Although the Memory Type attribute for nonmemory operations
logically should (and usually does) manifest itself as UC, this feature is not designed
into the implementation and is therefore inconsistent.

Implication: Bus agents may decode a non-UC memory type for nonmemory bus transactions.

Workaround: Bus agents must consider transaction type to determine the validity of the Memory
Type field for a transaction.

Status: For the steppings affected, see the Summary Tables of Changes at the beginning of
this section.

K15. FP Data Operand Pointer May Not Be Zero After Power On or Reset

Problem: The FP Data Operand Pointer, as specified, should be reset to zero upon power on or
Reset by the processor. Due to this erratum, the FP Data Operand Pointer may be
nonzero after power on or Reset.

5BErrata

Specification Update Intel Confidential 35

Implication: Software which uses the FP Data Operand Pointer and count on its value being zero
after power on or Reset without first executing an FINIT/FNINIT instruction will use an
incorrect value, resulting in incorrect behavior of the software.

Workaround: Software should follow the recommendation in Section 8.2 of the Intel Architecture
Software Developer’s Manual, Volume 3: System Programming Guide (Order Number
243192). This recommendation states that if the FPU will be used, software-
initialization code should execute an FINIT/FNINIT instruction following a hardware
reset. This will correctly clear the FP Data Operand Pointer to zero.

Status: For the steppings affected, see the Summary Tables of Changes at the beginning of
this section.

K16. MOVD Following Zeroing Instruction Can Cause Incorrect Result

Problem: An incorrect result may be calculated after the following circumstances occur:

1. A register has been zeroed with either a SUB reg, reg instruction or an XOR
reg, reg instruction,

2. A value is moved with sign extension into the same register’s lower 16 bits; or
a signed integer multiply is performed to the same register’s lower 16 bits,

3. This register is then copied to an MMX™ technology register using the MOVD
instruction prior to any other operations on the sign-extended value.

Specifically, the sign may be incorrectly extended into bits 16-31 of the MMX
technology register. Only the MMX technology register is affected by this erratum.

The erratum only occurs when the three following steps occur in the order shown. The
erratum may occur with up to 40 intervening instructions that do not modify the sign-
extended value between steps 2 and 3.

4. XOR EAX, EAX
or SUB EAX, EAX

5. MOVSX AX, BL
or MOVSX AX, byte ptr <memory address> or MOVSX AX, BX
or MOVSX AX, word ptr <memory address> or IMUL BL (AX implicit, opcode
F6 /5)
or IMUL byte ptr <memory address> (AX implicit, opcode F6 /5) or IMUL AX,
BX (opcode 0F AF /r)
or IMUL AX, word ptr <memory address> (opcode 0F AF /r) or IMUL AX, BX,
16 (opcode 6B /r ib)
or IMUL AX, word ptr <memory address>, 16 (opcode 6B /r ib) or IMUL AX, 8
(opcode 6B /r ib)
or IMUL AX, BX, 1024 (opcode 69 /r iw)
or IMUL AX, word ptr <memory address>, 1024 (opcode 69 /r iw) or IMUL AX,
1024 (opcode 69 /r iw)
or CBW

6. MOVD MM0, EAX

NOTES:
1. The values for immediate byte/words are merely representative (i.e., 8, 16, 1024) and

that any value in the range for the size may be affected. Also, note that this erratum
may occur with “EAX” replaced with any 32-bit general purpose register, and “AX” with

5BErrata

36 Intel Confidential Specification Update

the corresponding 16-bit version of that replacement. “BL” or “BX” can be replaced with
any 8-bit or 16-bit general purpose register. The CBW and IMUL (opcode F6 /5)
instructions are specific to the EAX register only.

2. In the example, EAX is forced to contain 0 by the XOR or SUB instructions. Since the
four types of the MOVSX or IMUL instructions and the CBW instruction modify only bits
15:8 of EAX by sign extending the lower 8 bits of EAX, bits 31:16 of EAX should always
contain 0. This implies that when MOVD copies EAX to MM0, bits 31:16 of MM0 should
also be 0. Under certain scenarios, bits 31:16 of MM0 are not 0, but are replicas of bit
15 (the 16th bit) of AX. This is noticeable when the value in AX after the MOVSX, IMUL
or CBW instruction is negative, i.e., bit 15 of AX is a 1.

3. When AX is positive (bit 15 of AX is a 0), MOVD will always produce the correct answer.
If AX is negative (bit 15 of AX is a 1), MOVD may produce the right answer or the
wrong answer depending on the point in time when the MOVD instruction is executed in
relation to the MOVSX, IMUL or CBW instruction.

Implication: The effect of incorrect execution will vary from unnoticeable, due to the code
sequence discarding the incorrect bits, to an application failure. If the MMX
technology-enabled application in which MOVD is used to manipulate pixels, it is
possible for one or more pixels to exhibit the wrong color or position momentarily. It
is also possible for a computational application that uses the MOVD instruction in the
manner described above to produce incorrect data. Note that this data may cause an
unexpected page fault or general protection fault.

Workaround: There are two possible workarounds for this erratum:

1. Rather than using the MOVSX-MOVD, IMUL-MOVD or CBW-MOVD pairing to
handle one variable at a time, use the sign extension capabilities (PSRAW,
etc.) within MMX technology for operating on multiple variables. This would
result in higher performance as well.

2. Insert another operation that modifies or copies the sign-extended value
between the MOVSX/IMUL/CBW instruction and the MOVD instruction as in the
example below:

XOR EAX, EAX (or SUB EAX, EAX)
MOVSX AX, BL (or other MOVSX, other IMUL or CBW instruction)
*MOV EAX, EAX
MOVD MM0, EAX

Note: *MOV EAX, EAX is used here as it is fairly generic. Again, EAX can be any 32-
bit register.

Status: For the steppings affected, see the Summary Tables of Changes at the beginning of
this section.

K17. Premature Execution of a Load Operation Prior to Exception Handler
Invocation

Problem: This erratum can occur with any of the following situations:

1. If an instruction that performs a memory load causes a code segment limit
violation,

2. If a waiting floating-point instruction or MMX™ instruction that performs a
memory load has a floating-point exception pending, or

5BErrata

Specification Update Intel Confidential 37

3. If an MMX instruction that performs a memory load and has either CR0.EM =1
(Emulation bit set), or a floating-point Top-of-Stack (FP TOS) not equal to 0,
or a DNA exception pending.

If any of the above circumstances occur it is possible that the load portion of the
instruction will have executed before the exception handler is entered.

Implication: In normal code execution where the target of the load operation is to write back
memory there is no impact from the load being prematurely executed, nor from the
restart and subsequent re-execution of that instruction by the exception handler. If
the target of the load is to uncached memory that has a system side-effect, restarting
the instruction may cause unexpected system behavior due to the repetition of the
side-effect.

Workaround: Code which performs loads from memory that has side-effects can effectively
workaround this behavior by using simple integer-based load instructions when
accessing side-effect memory and by ensuring that all code is written such that a code
segment limit violation cannot occur as a part of reading from side-effect memory.

Status: For the steppings affected, see the Summary Tables of Changes at the beginning of
this section.

K18. Read Portion of RMW Instruction May Execute Twice

Problem: When the mobile Pentium III processor executes a read-modify-write (RMW)
arithmetic instruction, with memory as the destination, it is possible for a page fault to
occur during the execution of the store on the memory operand after the read
operation has completed but before the write operation completes.

If the memory targeted for the instruction is UC (uncached), memory will observe the
occurrence of the initial load before the page fault handler and again if the instruction
is restarted.

Implication: This erratum has no effect if the memory targeted for the RMW instruction has no
side-effects. If, however, the load targets a memory region that has side-effects,
multiple occurrences of the initial load may lead to unpredictable system behavior.

Workaround: Hardware and software developers who write device drivers for custom hardware that
may have a side-effect style of design should use simple loads and simple stores to
transfer data to and from the device. Then, the memory location will simply be read
twice with no additional implications.

Status: For the steppings affected, see the Summary Tables of Changes at the beginning of
this section.

K19. MC2_STATUS MSR Has Model-Specific Error Code and Machine Check
Architecture Error Code Reversed

Problem: The Intel Architecture Software Developer’s Manual, Volume 3: System Programming
Guide, documents that for the MCi_STATUS MSR, bits 15:0 contain the MCA
(machine-check architecture) error code field, and bits 31:16 contain the model-
specific error code field. However, for the MC2_STATUS MSR, these bits have been
reversed. For the MC2_STATUS MSR, bits 15:0 contain the model-specific error code
field and bits 31:16 contain the MCA error code field.

5BErrata

38 Intel Confidential Specification Update

Implication: A machine check error may be decoded incorrectly if this erratum on the MC2_STATUS
MSR is not taken into account.

Workaround: When decoding the MC2_STATUS MSR, reverse the two error fields.

Status: For the steppings affected, see the Summary Tables of Changes at the beginning of
this section.

K20. MOV With Debug Register Causes Debug Exception

Problem: When in V86 mode, if a MOV instruction is executed on debug registers, a general-
protection exception (#GP) should be generated, as documented in the Intel
Architecture Software Developer's Manual, Volume 3: System Programming Guide,
Section 14.2. However, in the case when the general detect enable flag (GD) bit is
set, the observed behavior is that a debug exception (#DB) is generated instead.

Implication: With debug-register protection enabled (i.e., the GD bit set), when attempting to
execute a MOV on debug registers in V86 mode, a debug exception will be generated
instead of the expected general-protection fault.

Workaround: In general, operating systems do not set the GD bit when they are in V86 mode. The
GD bit is generally set and used by debuggers. The debug exception handler should
check that the exception did not occur in V86 mode before continuing. If the exception
did occur in V86 mode, the exception may be directed to the general-protection
exception handler.

Status: For the steppings affected, see the Summary Tables of Changes at the beginning of
this section.

K21. Upper Four PAT Entries Not Usable With Mode B or Mode C Paging

Problem: The Page Attribute Table (PAT) contains eight entries, which must all be initialized and
considered when setting up memory types for the mobile Pentium III processor.
However, in Mode B or Mode C paging, the upper four entries do not function correctly
for 4-Kbyte pages. Specifically, bit seven of page table entries that translate
addresses to 4-Kbyte pages should be used as the upper bit of a three-bit index to
determine the PAT entry that specifies the memory type for the page. When Mode B
(CR4.PSE = 1) and/or Mode C (CR4.PAE) are enabled, the processor forces this bit to
zero when determining the memory type regardless of the value in the page table
entry. The upper four entries of the PAT function correctly for 2-Mbyte and 4-Mbyte
large pages (specified by bit 12 of the page directory entry for those translations).

Implication: Only the lower four PAT entries are useful for 4-KB translations when Mode B or C
paging is used. In Mode A paging (4-Kbyte pages only), all eight entries may be used.
All eight entries may be used for large pages in Mode B or C paging.

Workaround: None identified

Status: For the steppings affected, see the Summary Tables of Changes at the beginning of
this section.

5BErrata

Specification Update Intel Confidential 39

K22. Data Breakpoint Exception in a Displacement Relative Near Call May
Corrupt EIP

Problem: If a misaligned data breakpoint is programmed to the same cache line as the memory
location where the stack push of a near call is performed and any data breakpoints are
enabled, the processor will update the stack and ESP appropriately, but may skip the
code at the destination of the call. Hence, program execution will continue with the
next instruction immediately following the call, instead of the target of the call.

Implication: The failure mechanism for this erratum is that the call would not be taken; therefore,
instructions in the called subroutine would not be executed. As a result, any code
relying on the execution of the subroutine will behave unpredictably.

Workaround: Whether enabled or not, do not program a misaligned data breakpoint to the same
cache line on the stack where the push for the near call is performed.

Status: For the steppings affected, see the Summary Tables of Changes at the beginning of
this section.

K23. RDMSR or WRMSR to Invalid MSR Address May Not Cause GP Fault

Problem: The RDMSR and WRMSR instructions allow reading or writing of MSRs (Model Specific
Registers) based on the index number placed in ECX. The processor should reject
access to any reserved or unimplemented MSRs by generating #GP(0). However,
there are some invalid MSR addresses for which the processor will not generate
#GP(0).

Implication: For RDMSR, undefined values will be read into EDX:EAX. For WRMSR, undefined
processor behavior may result.

Workaround: Do not use invalid MSR addresses with RDMSR or WRMSR.

Status: For the steppings affected, see the Summary Tables of Changes at the beginning of
this section.

K24. SYSENTER/SYSEXIT Instructions Can Implicitly Load “Null Segment
Selector” to SS and CS Registers

Problem: According to the processor specification, attempting to load a null segment selector
into the CS and SS segment registers should generate a General Protection Fault
(#GP). Although loading a null segment selector to the other segment registers is
allowed, the processor will generate an exception when the segment register holding a
null selector is used to access memory.

However, the SYSENTER instruction can implicitly load a null value to the SS segment
selector. This can occur if the value in SYSENTER_CS_MSR is between FFF8h and
FFFBh when the SYSENTER instruction is executed. This behavior is part of the
SYSENTER/SYSEXIT instruction definition; the content of the SYSTEM_CS_MSR is
always incremented by 8 before it is loaded into the SS. This operation will set the null
bit in the segment selector if a null result is generated, but it does not generate a #GP
on the SYSENTER instruction itself. An exception will be generated as expected when
the SS register is used to access memory, however.

5BErrata

40 Intel Confidential Specification Update

The SYSEXIT instruction will also exhibit this behavior for both CS and SS when
executed with the value in SYSENTER_CS_MSR between FFF0h and FFF3h, or between
FFE8h and FFEBh, inclusive.

Implication: These instructions are intended for operating system use. If this erratum occurs (and
the OS does not ensure that the processor never has a null segment selector in the SS
or CS segment registers), the processor’s behavior may become unpredictable,
possibly resulting in system failure.

Workaround: Do not initialize the SYSTEM_CS_MSR with the values between FFF8h and FFFBh,
FFF0h and FFF3h, or FFE8h and FFEBh before executing SYSENTER or SYSEXIT.

Status: For the steppings affected, see the Summary Tables of Changes at the beginning of
this section.

K25. PRELOAD Followed by EXTEST Does Not Load Boundary Scan Data

Problem: According to the IEEE 1149.1 Standard, the EXTEST instruction would use data
“typically loaded onto the latched parallel outputs of boundary-scan shift-register
stages using the SAMPLE/PRELOAD instruction prior to the selection of the EXTEST
instruction.” As a result of this erratum, this method cannot be used to load the data
onto the outputs.

Implication: Using the PRELOAD instruction prior to the EXTEST instruction will not produce
expected data after the completion of EXTEST.

Workaround: None identified

Status: For the steppings affected, see the Summary Tables of Changes at the beginning of
this section.

K26. INT 1 Instruction Handler Execution Could Generate a Debug
Exception

Problem: If the processor’s general detect enable flag is set and an explicit call is made to the
interrupt procedure via the INT 1 instruction, the general detect enable flag should be
cleared prior to entering the handler. As a result of this erratum, the flag is not
cleared prior to entering the handler. If an access is made to the debug registers while
inside of the handler, the state of the general detect enable flag will cause a second
debug exception to be taken. The second debug exception clears the general detect
enable flag and returns control to the handler which is now able to access the debug
registers.

Implication: This erratum will generate an unexpected debug exception upon accessing the debug
registers while inside of the INT 1 handler.

Workaround: Ignore the second debug exception that is taken as a result of this erratum.

Status: For the steppings affected, see the Summary Tables of Changes at the beginning of
this section.

5BErrata

Specification Update Intel Confidential 41

K27. Misaligned Locked Access to APIC Space Results in Hang

Problem: When the processor’s APIC space is accessed with a misaligned locked access a
machine check exception is expected. However, the processor’s machine check
architecture is unable to handle the misaligned locked access.

Implication: If this erratum occurs the processor will hang. Typical usage models for the APIC
address space do not use locked accesses. This erratum will not affect systems using
such a model.

Workaround: Ensure that all accesses to APIC space are aligned.

Status: For the steppings affected, see the Summary Tables of Changes at the beginning of
this section.

K28. Processor May Assert DRDY# on a Write with No Data

Problem: When a MASKMOVQ instruction is misaligned across a chunk boundary in a way that
one chunk has a mask of all 0’s, the processor will initiate two partial write
transactions with one having all byte enables deasserted. Under these conditions, the
expected behavior of the processor would be to perform both write transactions, but
to deassert DRDY# during the transaction which has no byte enables asserted. As a
result of this erratum, DRDY# is asserted even though no data is being transferred.

Implication: The implications of this erratum depend on the bus agent’s ability to handle this
erroneous DRDY# assertion. If a bus agent cannot handle a DRDY# assertion in this
situation, or attempts to use the invalid data on the bus during this transaction,
unpredictable system behavior could result.

Workaround: A system which can accept a DRDY# assertion during a write with no data will not be
affected by this erratum. In addition, this erratum will not occur if the MASKMOVQ is
aligned.

Status: For the steppings affected, see the Summary Tables of Changes at the beginning of
this section.

K29. GP# Fault on WRMSR to ROB_CR_BKUPTMPDR6

Problem: Writing a ‘1’ to unimplemented bit(s) in the ROB_CR_BKUPTMPDR6 MSR (offset 1E0h)
will result in a general protection fault (GP#).

Implication: The normal process used to write an MSR is to read the MSR using RDMSR, modify the
bit(s) of interest, and then to write the MSR using WRMSR. Because of this erratum,
this process may result in a GP# fault when used to modify the
ROB_CR_BKUPTMPDR6 MSR.

Workaround: When writing to ROB_CR_BKUPTMPDR6 all unimplemented bits must be ‘0.’
Implemented bits may be set as ‘0’ or ‘1’ as desired.

Status: For the steppings affected, see the Summary Tables of Changes at the beginning of
this section.

5BErrata

42 Intel Confidential Specification Update

K30. Machine Check Exception May Occur Due to Improper Line Eviction in
the IFU

Problem: The mobile Pentium III processor is designed to signal an unrecoverable Machine
Check Exception (MCE) as a consistency checking mechanism. Under a complex set of
circumstances involving multiple speculative branches and memory accesses there
exists a one cycle long window in which the processor may signal a MCE in the
Instruction Fetch Unit (IFU) because instructions previously decoded have been
evicted from the IFU. The one cycle long window is opened when an opportunistic
fetch receives a partial hit on a previously executed but not as yet completed store
resident in the store buffer. The resulting partial hit erroneously causes the eviction of
a line from the IFU at a time when the processor is expecting the line to still be
present. If the MCE for this particular IFU event is disabled, execution will continue
normally.

Implication: While this erratum may occur on a system with any number of mobile Pentium III
processors, the probability of occurrence increases with the number of processors. If
this erratum does occur, a machine check exception will result. Note systems that
implement an operating system that does not enable the Machine Check Architecture
will be completely unaffected by this erratum (e.g., Windows95* and Windows98*).

Workaround: It is possible for BIOS code to contain a workaround for this erratum.

Status: For the steppings affected, see the Summary Tables of Changes at the beginning of
this section.

K31. Performance Counter L2 Prefetch Count Includes Streaming SIMD
Extensions L1 Prefetch

Problem: The processors allow the measurement of the frequency and duration of numerous
different internal and bus related events (see the Intel Architecture Software
Developer's Manual, Volume 3, for more details). The Streaming SIMD Extension
(SSE) architecture provides a mechanism to pre-load data into the L1 cache,
bypassing the L2 cache. The number of these L1 pre-loads measured by the
performance monitoring logic will incorrectly be included in the count of
“L2_LINES_IN” (24H) events.

Implication: If application software is run which utilizes the SSE L1 prefetch feature, the count of
“L2_LINES_IN” (24H) will read a value that is greater than the correct value.

Workaround: The correct value of this counter may be calculated by taking the value read for
L2_LINES_IN (24H) and subtracting from it the value read for
"EMON_KNI_PREF_MISS" (4BH, Unit Mask 00H).

Status: For the steppings affected, see the Summary Tables of Changes at the beginning of
this section.

K32. Processor Will Erroneously Report a BIST Failure

Problem: If the processor performs BIST at power-up, the EAX register is normally cleared (0H)
if the processor passes BIST. The processor will erroneously report a non-zero value
(signaling a BIST failure) even if BIST passes.

Implication: The processor will incorrectly signal an error after BIST is performed.

5BErrata

Specification Update Intel Confidential 43

Workaround: The system BIOS should ignore the BIST results in the EAX register.

Status: For the steppings affected, see the Summary Tables of Changes at the beginning of
this section.

K33. Internal Snooping Mechanism Causes Livelock Condition

Problem: Internal timings may align where the L2 cache snooping mechanism and the
Instruction Fetch Unit snooping mechanism reject each other’s requests to the Data
Cache Unit. Both units will continue to retry but reject requests on every other clock,
leading to a livelock condition.

Implication: The system will hang. If an external agent is snooping the processor’s caches, the
hang will appear as an infinite snoop stall.

Workaround: It is possible for BIOS code to contain a workaround for this erratum.

Status: For the steppings affected, see the Summary Tables of Changes at the beginning of
this section.

K34. Cache Coherency May Be Lost If Snoop Occurs During Cache Line
Invalidation

Problem: There exists a two cycle window during a cache line invalidation (due to a WBINVD
instruction or FLUSH# pin assertion) during which a processor performing a snoop of
that line will not see the line in the cache. In addition, when this erratum occurs, the
processor invalidating the line will not write back the data in that line.

Implication: If this erratum occurs, cache coherency and data will be lost.

Workaround: None identified

Status: For the steppings affected, see the Summary Tables of Changes at the beginning of
this section.

K35. Extra DRDY# Assertion When Eviction Back-to-Back Write Combining
Lines

Problem: The processor has the ability to evict back-to-back lines in its write combining buffers.
If the processor writes back data from L1 to L2 during a back-to-back write combining
line eviction, the processor may assert an extra DRDY# on the system bus.

Implication: Data corruption (loss of data) may occur.

Workaround: It is possible for BIOS code to contain a workaround for this erratum.

Status: For the steppings affected, see the Summary Tables of Changes at the beginning of
this section.

5BErrata

44 Intel Confidential Specification Update

K36. Limitation on Cache Line ECC Detection and Correction

Problem: ECC can detect and correct up to four single-bit ECC errors per cache line. However,
the processor will only detect and correct one single-bit ECC error per cache line.
While all ECC errors will be detected, multiple single bit errors will be incorrectly
reported as uncorrectable double bit errors, rather than correctable single bit errors.

Implication: The processor may report fewer single bit ECC errors and more double bit ECC errors
than previous processors.

Workaround: None identified

Status: For the steppings affected, see the Summary Tables of Changes at the beginning of
this section.

K37. L2_LD and L2_M_LINES_OUTM Performance-Monitoring Counter
Does Not Work

Problem: The L2_LD (29h) Performance-Monitoring counter, used for counting the number of L2
cache data loads, does not work properly.

Implication: This counter will report incorrect data.

Workaround: None identified

Status: For the steppings affected, see the Summary Tables of Changes at the beginning of
this section.

K38. Snoop Request May Cause DBSY# Hang

Problem: A small window of time exists in which a snoop request originating from a bus agent
to a processor with one or more outstanding memory transactions may cause the
processor to assert DBSY# without issuing a corresponding bus transaction, causing
the processor to hang (livelock). The exact circumstances are complex, and include
the relative timing of internal processor functions with the snoop request from a bus
agent.

Implication: This erratum may occur on a system with any number of processors. However, the
probability of occurrence increases with the number of processors. If this erratum
does occur, the system will hang with DBSY# asserted. At this point, the system
requires a hard reset.

Workaround: It is possible for BIOS code to contain a workaround for this erratum.

Status: For the steppings affected, see the Summary Tables of Changes at the beginning of
this section.

K39. IFU/DCU Deadlock May Cause System Hang

Problem: An internal deadlock situation may occur in systems with multiple bus agents, with a
failure signature such that a processor either asserts DBSY# without issuing the
corresponding data, or fails to respond to a snoop request from another bus agent.
Should this erratum occur, the affected processor ceases code execution and the
system will hang.

5BErrata

Specification Update Intel Confidential 45

The specific circumstances surrounding the occurrence of this erratum are:

1. A locked operation to the Data Cache Unit (DCU) is in process.

2. A snoop occurs, but cannot complete due to the ongoing locked operation.

3. The presence of the snoop prevents pending Instruction Fetch Unit (IFU)
requests from completing.

4. The IFU requests are periodically restarted.

The continued IFU restart attempts create additional DCU snoops, which prevent the
in-process locked operation from completing, keeping the DCU locked.

Implication: The system may hang.

Workaround: It is possible for BIOS code to contain a workaround for this erratum.

Status: For the steppings affected, see the Summary Tables of Changes at the beginning of
this section.

K40. WBINVD May Lock Write Out Buffer

Problem: If a processor is performing a WBINVD operation on a modified line, that line is stored
in the processor's Write Out Buffer (WOB) until it is written to main memory. If
another bus agent (such as a processor or PCI device) in the system generates a
snoop that results in a hit to a modified line that is in the processor's WOB, that line
could become permanently locked in the WOB. In addition to being locked in the WOB,
the processor will not respond to the initial or subsequent snoop requests to this line,
and the line in the WOB is never written to memory.

Implication: In the event of this erratum, coherency may be lost, which may result in a system
lockup or system instability.

Workaround: None identified

Status: For the steppings affected, see the Summary Tables of Changes at the beginning of
this section.

K41. L2_DBUS_BUSY Performance Monitoring Counter Will Not Count
Writes

Problem: The L2_DBUS_BUSY (22H) performance monitoring counter is intended to count the
number of cycles during which the L2 data bus is in use. For some steppings of the
processor, the L2_DBUS_BUSY counter will not be incremented during write cycles
and therefore will only reflect the number of L2 data bus cycles resulting from cache
reads.

Implication: The L2_DBUS_BUSY event counts only L2 read cycles.

Workaround: None identified

Status: For the steppings affected, see the Summary Tables of Changes at the beginning of
this section.

5BErrata

46 Intel Confidential Specification Update

K42. Lower Bits of SMRAM SMBASE Register Cannot Be Written With an
ITP

Problem: The System Management Base (SMBASE) register (7EF8H) stores the starting address
of the System Management RAM (SMRAM). This register is used by the processor
when it is in System Management Mode (SMM), and its contents serve as the memory
base for code execution and data storage. The 32-bit SMBASE register can normally
be programmed to any value. When programmed with an In-Target Probe (ITP),
however, any attempt to set the lower 11 bits of SMBASE to anything other than zeros
via the WRMSR instruction will cause the attempted write to fail.

Implication: When set via ITP, any attempt to relocate SMRAM space must be made with 2 KB
alignment.

Workaround: None identified

Status: For the steppings affected, see the Summary Tables of Changes at the beginning of
this section.

K43. Task Switch May Cause Wrong PTE and PDE Access Bit to be Set

Problem: If an operating system executes a task switch via a Task State Segment (TSS), and
the TSS is wholly or partially located within a clean page (A and D bits clear) and the
GDT entry for the new TSS is either misaligned across a cache line boundary or is in a
clean page, the accessed and dirty bits for an incorrect page table/directory entry may
be set.

Implication: An operating system that uses hardware task switching (or hardware task
management) may encounter this erratum. The effect of the erratum depends on the
alignment of the TSS and ranges from no anomalous behavior to unexpected errors.

Workaround: The operating system could align all TSSs to be within page boundaries and set the A
and D bits for those pages to avoid this erratum. The operating system may
alternately use software task management.

Status: For the steppings affected, see the Summary Tables of Changes at the beginning of
this section.

K44. Unsynchronized Cross-Modifying Code Operations Can Cause
Unexpected Instruction Execution Results

Problem: The act of one processor, or system bus master, writing data into a currently
executing code segment of a second processor with the intent of having the second
processor execute that data as code is called cross-modifying code (XMC). XMC that
does not force the second processor to execute a synchronizing instruction prior to
execution of the new code is called unsynchronized XMC.

Software using unsynchronized XMC to modify the instruction byte stream of a
processor can see unexpected instruction execution from the processor which is
executing the modified code.

Implication: In this case, the phrase "unexpected execution behavior" encompasses the generation
of most of the exceptions listed in the Intel Architecture Software Developer's Manual
Volume 3: System Programming Guide including a General Protection Fault (GPF). In

5BErrata

Specification Update Intel Confidential 47

the event of a GPF, the application executing the unsynchronized XMC operation would
be terminated by the operating system.

Workaround: In order to avoid this erratum, programmers should use the XMC synchronization
algorithm as detailed in the Intel Architecture Software Developer's Manual Volume 3:
System Programming Guide, Section 7.1.3.

Status: For the steppings affected, see the Summary Tables of Changes at the beginning of
this section.

K45. Deadlock May Occur Due To Illegal-Instruction/Page-Miss
Combination

Problem: Intel’s 32-bit Instruction Set Architecture (ISA) utilizes most of the available op-code
space; however some byte combinations remain undefined and are considered illegal
instructions. Intel processors detect the attempted execution of illegal instructions and
signal an exception. This exception is handled by the operating system and/or
application software.

Under a complex set of internal and external conditions involving illegal instructions, a
deadlock may occur within the processor. The necessary conditions for the deadlock
involve:

1. The illegal instruction is executed.

2. Two page table walks occur within a narrow timing window coincident with the
illegal instruction.

Implication: The illegal instructions involved in this erratum are unusual and invalid byte
combinations that are not useful to application software or operating systems. These
combinations are not normally generated in the course of software programming, nor
are such sequences known by Intel to be generated in commercially available software
and tools. Development tools (compilers, assemblers) do not generate this type of
code sequence, and will normally flag such a sequence as an error. If this erratum
occurs, the processor deadlock condition will occur and result in a system hang. Code
execution cannot continue without a system RESET.

Workaround: None identified

Status: For the steppings affected, see the Summary Tables of Changes at the beginning of
this section.

K46. MASKMOVQ Instruction Interaction with String Operation May Cause
Deadlock

Problem: Under the following scenario, combined with a specific alignment of internal events,
the processor may enter a deadlock condition:

1. A store operation completes, leaving a write-combining (WC) buffer partially
filled.

2. The target of a subsequent MASKMOVQ instruction is split across a cache line.

3. The data in (2) above results in a hit to the data in the WC buffer in (1).

5BErrata

48 Intel Confidential Specification Update

Implication: If this erratum occurs, the processor deadlock condition will occur and result in a
system hang. Code execution cannot continue without a system RESET.

Workaround: It is possible for BIOS code to contain a workaround for this erratum.

Status: For the steppings affected, see the Summary Tables of Changes at the beginning of
this section.

K47. Noise Sensitivity Issue on Processor SMI# Pin

Problem: Post silicon characterization has demonstrated a greater than expected sensitivity to
noise on the processor's SMI# input, which may result in spurious SMI# interrupts.

Implication: BIOS/SMM code that is capable of handling spurious SMI events will report a spurious
SMI#, but should not be negatively impacted by this erratum. Systems whose BIOS
code cannot handle spurious SMI events may fail, resulting in a system hang or other
anomalous behavior.

Spurious SMI# interrupts should be controlled on the system board regardless of BIOS
implementation.

Workaround: Possible workarounds that may reduce or eliminate the occurrence of the spurious SMI
include:

1. Use a lower effective pull-up resistance on the SMI# pin. This resistor must
meet the specifications of the component driving the SMI# signal.

2. Externally condition the SMI# signal prior to providing it to the processor's
SMI# pin.

These workarounds should be evaluated on a design-by-design basis.

Status: For the steppings affected, see the Summary Tables of Changes at the beginning of
this section.

K48. MOVD, CVTSI2SS, or PINSRW Following Zeroing Instruction Can
Cause Incorrect Result

Problem: An incorrect result may be calculated after the following circumstances occur:

1. A register has been zeroed with either a SUB reg, reg instruction, or an XOR
reg, reg instruction,

⎯ A value is moved with sign extension into the same register’s lower 16
bits; or a signed integer multiply is performed to the same register’s lower
16 bits,

⎯ The register is then copied to an MMX™ technology register using the
MOVD instruction, or converted to single precision floating-point and
moved to an MMX technology register using the CVTSI2SS instruction
prior to any other operations on the sign-extended value.

Specifically, the sign may be incorrectly extended into bits 16-31 of the MMX
technology register. This erratum only affects the MMX technology register.

5BErrata

Specification Update Intel Confidential 49

This erratum only occurs when the following three steps occur in the order
shown. This erratum may occur with up to 40 intervening instructions that do
not modify the sign-extended value between steps 2 and 3.

2. XOR EAX, EAX
or SUB EAX, EAX

3. MOVSX AX, BL
or MOVSX AX, byte ptr <memory address> or MOVSX AX, BX
or MOVSX AX, word ptr <memory address> or IMUL BL (AX implicit, opcode
F6 /5)
or IMUL byte ptr <memory address> (AX implicit, opcode F6 /5) or IMUL AX,
BX (opcode 0F AF /r)
or IMUL AX, word ptr <memory address> (opcode 0F AF /r) or IMUL AX, BX,
16 (opcode 6B /r ib)
or IMUL AX, word ptr <memory address>, 16 (opcode 6B /r ib) or IMUL AX, 8
(opcode 6B /r ib)
or IMUL AX, BX, 1024 (opcode 69 /r iw)
or IMUL AX, word ptr <memory address>, 1024 (opcode 69 /r iw)
or IMUL AX, 1024 (opcode 69 /r iw) or CBW

4. MOVD MM0, EAX or CVTSI2SS MM0, EAX

Note that the values for immediate byte/words are merely representative (i.e., 8,
16, 1024) and that any value in the range for the size is affected. Also, note that
this erratum may occur with “EAX” replaced with any 32-bit general-purpose
register, and “AX” with the corresponding 16-bit version of that replacement. “BL”
or “BX” can be replaced with any 8-bit or 16-bit general-purpose register. The
CBW and IMUL (opcode F6 /5) instructions are specific to the EAX register only.

In the above example, EAX is forced to contain 0 by the XOR or SUB instructions.
Since the four types of the MOVSX or IMUL instructions and the CBW instruction
only modify bits 15:8 of EAX by sign extending the lower 8 bits of EAX, bits 31:16
of EAX should always contain 0. This implies that when MOVD or CVTSI2SS copies
EAX to MM0, bits 31:16 of MM0 should also be 0. In certain scenarios, bits 31:16
of MM0 are not 0, but are replicas of bit 15 (the 16th bit) of AX. This is noticeable
when the value in AX after the MOVSX, IMUL or CBW instruction is negative (i.e.,
bit 15 of AX is a 1).

When AX is positive (bit 15 of AX is 0), MOVD or CVTSI2SS will produce the
correct answer. If AX is negative (bit 15 of AX is 1), MOVD or CVTSI2SS may
produce the right answer or the wrong answer, depending on the point in time
when the MOVD or CVTSI2SS instruction is executed in relation to the MOVSX,
IMUL or CBW instruction.

Implication: The effect of incorrect execution will vary from unnoticeable, due to the code
sequence discarding the incorrect bits, to an application failure.

Workaround: There are two possible workarounds for this erratum:

1. Rather than using the MOVSX-MOVD/CVTSI2SS, IMUL-MOVD/CVTSI2SS or
CBW-MOVD/CVTSI2SS pairing to handle one variable at a time, use the sign
extension capabilities (PSRAW, etc.) within MMX technology for operating on
multiple variables. This will also result in higher performance.

5BErrata

50 Intel Confidential Specification Update

2. Insert another operation that modifies or copies the sign-extended value
between the MOVSX/IMUL/CBW instruction and the MOVD or CVTSI2SS
instruction as in the example below:

• XOR EAX, EAX (or SUB EAX, EAX)

• MOVSX AX, BL (or other MOVSX, other IMUL or CBW instruction)

• †MOV EAX, EAX

• MOVD MM0, EAX or CVTSI2SS MM0, EAX

†MOV EAX, EAX is used here in a generic sense. Again, EAX can be substituted
with any 32-bit register.

Status: For the steppings affected, see the Summary Tables of Changes at the beginning of
this section.

K49. FLUSH# Assertion Following STPCLK# May Prevent CPU Clocks From
Stopping

Problem: If FLUSH# is asserted after STPCLK# is asserted, the cache flush operation will not
occur until after STPCLK# is de-asserted. Furthermore, the pending flush will prevent
the processor from entering the Sleep state, since the flush operation must complete
prior to the processor entering the Sleep state.

Implication: Following SLP# assertion, processor power dissipation may be higher than expected.
Furthermore, if the source to the processor’s input bus clock (BCLK) is removed,
normally resulting in a transition to the Deep Sleep state, the processor may
shutdown improperly. The ensuing attempt to wake up the processor will result in
unpredictable behavior and may cause the system to hang.

Workaround: For systems that use the FLUSH# input signal and Deep Sleep state of the processor,
ensure that FLUSH# is not asserted while STPCLK# is asserted.

Status: For the steppings affected, see the Summary Tables of Changes at the beginning of
this section.

K50. Intermittent Failure to Assert ADS# During Processor Power-On

Problem: Under a system-specific set of initial parametric conditions, a very small number of
mobile Pentium® III processors (CPUID 068xh) may be susceptible to entering an
internal test mode during processor power-on. The symptom of this test mode is a
failure to assert ADS# during a processor power-on.

Implication: On susceptible platforms, when power is applied to the processor, there is a possibility
that the processor will occasionally enter the test mode rather than initiate a system
boot sequence.

Workaround: A subsequent processor power-off then power-on cycle should remove the processor
from this test mode, allowing normal processor operation to resume.

Status: For the steppings affected, see the Summary Tables of Changes at the beginning of
this section.

5BErrata

Specification Update Intel Confidential 51

K51. Floating-Point Exception Signal Can Be Deferred

Problem: A one clock window exists where a pending x87 floating-point exception that should
be signaled on the execution of a CVTPS2PI, CVTPI2PS, or CVTTPS2PI instruction can
be deferred to the next waiting floating-point instruction or instruction that would
change MMX™ register state.

Implication: If this erratum occurs, the floating-point exception will not be handled as expected.

Workaround: Applications that follow Intel programming guidelines (empty all x87 registers before
executing MMX technology instructions) will not be affected by this erratum.

Status: For the steppings affected, see the Summary Tables of Changes at the beginning of
this section.

K52. Floating-Point Exception Condition Can Be Deferred

Problem: A floating-point instruction that causes a pending floating-point exception (ES=1) is
normally signaled by the processor on the next waiting FP/MMX™ technology
instruction. In the following set of circumstances, the exception may be delayed or the
FSW register may contain a wrong value:

1. The excepting floating-point instruction is followed by an instruction that
accesses memory across a page (4-Kbyte) boundary or its access results in
the update of a page table dirty/access bit.

2. The memory accessing instruction is immediately followed by a waiting
floating-point or MMX technology instruction.

3. The waiting floating-point or MMX technology instruction retires during a one-
cycle window that coincides with a sequence of internal events related to
instruction cache line eviction.

Implication: The floating-point exception will not be signaled until the next waiting floating-
point/MMX technology instruction. Alternatively, it may be signaled with the wrong
TOS and condition code values. This erratum has not been observed in any
commercial software applications.

Workaround: None identified

Status: For the steppings affected, see the Summary Tables of Changes at the beginning of
this section.

K53. Race Conditions May Exist on Thermal Sensor SMBus Collision
Detection/Arbitration Circuitry

Problem: In certain SMBus configurations, when the thermal sensor is used in “hard wired alert”
mode along with at least one other device on the bus, the thermal sensor may
continue to send its address after losing a collision arbitration in response to an Alert
Response Address (ARA) by the SMBus controller.

In order for this erratum to occur, all of the following conditions must be present:

1. The thermal sensor must be configured with alert enabled (default setting).

5BErrata

52 Intel Confidential Specification Update

2. There must be one or more other devices on the SMBus along with the
thermal sensor.

3. One or more of these other devices must be also configured with the alert
enabled.

4. One or more of these other devices must have a lower address (higher
priority) than the thermal sensor.

5. The thermal sensor must generate an SM alert while at least one other device
has an SM alert pending to be serviced.

In this situation, the thermal sensor will continue to send its address on the SMBus
even if it has a lower priority than the pending alert. When this occurs, the SMBus
controller cannot correctly interpret the device address. This may cause the thermal
sensor’s alert flag not to clear and may result in SMBus lockup.

Implication: The SMBus controller may see an invalid address and the resulting response of the
SMBus controller will vary from implementation to implementation.

Workaround: Remove any one of the five conditions listed above or:

1. In software, use polling mode for the thermal sensor data collection with alert
disabled. This software workaround has been validated on both Intel’s test
platforms as well as on certain OEM systems.

2. Ensure that the thermal sensor alert may be cleared by a hardware or
software mechanism. The implementation of this workaround will be system
dependent.

Status: For the steppings affected, see the Summary Tables of Changes at the beginning of
this section.

K54. Cache Line Reads May Result in Eviction of Invalid Data

Problem: A small window of time exists in which internal timing conditions in the processor
cache logic may result in the eviction of an L2 cache line marked in the invalid state.

Implication: There are three possible implications of this erratum:

1. The processor may provide incorrect L2 cache line data by evicting an invalid
line.

2. A BNR# (Block Next Request) stall may occur on the system bus.

3. Should a snoop request occur to the same cache line in a small window of
time, the processor may incorrectly assert HITM#. It is then possible for an
infinite snoop stall to occur should another processor respond (correctly) to
the snoop request with HIT#. In order for this infinite snoop stall to occur, at
least three agents must be present, and the probability of occurrence
increases with the number of processors.

Should implication 2 or 3 occur, the processor will eventually assert BINIT# (if
enabled) with an MCA error code indicating a ROB time-out. At this point, the system
requires a hard reset.

5BErrata

Specification Update Intel Confidential 53

Workaround: It is possible for BIOS code to contain a workaround for this erratum.

Status: For the steppings affected, see the Summary Tables of Changes at the beginning of
this section.

K55. Snoop Probe During FLUSH# Could Cause L2 to be Left in Shared
State

Problem: During a L2 FLUSH operation using the FLUSH# pin, it is possible that a read request
from a bus agent or other processor to a valid line will leave the line in the Shared
state (S) instead of the Invalid state (I) as expected after flush operation. Before the
FLUSH operation is completed, another snoop request to invalidate the line from
another agent or processor could be ignored, again leaving the line in the Shared
state.

Implication: Current desktop and mid range server systems have no mechanism to assert the flush
pin and hence are not affected by this errata. A high end server system that does not
suppress snoop traffic before the assertion of the FLUSH# pin may cause a line to be
left in an incorrect cache state.

Workaround: Affected systems (those capable of asserting the FLUSH# pin) should prevent snoop
activity on the front side bus until invalidation is completed after asserting FLUSH#, or
use a WBINVD instruction instead of asserting the FLUSH# pin in order to flush the
cache.

Status: For the steppings affected, see the Summary Tables of Changes at the beginning of
this section.

K56. Livelock May Occur Due to IFU Line Eviction

Problem: Following the conditions outlined for erratum K30, if the instruction that is currently
being executed from the evicted line must be restarted by the IFU, and the IFU
receives another partial hit on a previously executed (but not as yet completed) store
that is resident in the store buffer, then a livelock may occur.

Implication: If this erratum occurs, the processor will hang in a live lock-situation, and the system
will require a reset to continue normal operation.

Workaround: None identified

Status: For the steppings affected, see the Summary Tables of Changes at the beginning of
this section.

K57. Intermittent Power-on Failure due to Uninitialized Processor Internal
Nodes

Problem: If there is no clock source supplied to the processor’s PICCLK pin, the processor may
drive an incorrect address for the reset vector at power-on due to uninitialized
processor internal nodes. In this scenario when ADS# is asserted, it is possible that
the processor drives either the SMI or NMI vector addresses, rather than the reset
vector address.

Implication: Systems that provide a clock to the processor’s PICCLK pin are unaffected by this
issue. On a system implementation with no clock source supplied to the processor’s

5BErrata

54 Intel Confidential Specification Update

PICCLK pin, a small percentage of the systems may intermittently fail to boot, or may
fail to resume from a STR or STD state. On the next power-on, the system will likely
boot normally.

Workaround: Supply a clock source to the processor’s PICCLK pin.

Status: For the steppings affected, see the Summary Tables of Changes at the beginning of
this section.

K58. Selector for the LTR/LLDT Register May Get Corrupted

Problem: The internal selector portion of the respective register (TR, LDTR) may get corrupted
if, during a small window of LTR or LLDT system instruction execution, the following
sequence of events occur:

1. Speculative write to a segment register that might follow the LTR or LLDT
instruction.

2. The read segment descriptor of LTR/LLDT operation spans a page (4 Kbytes)
boundary; or causes a page fault.

Implication: Incorrect selector for LTR, LLDT instruction could be used after a task switch.

Workaround: Software can insert a serializing instruction between the LTR or LLDT instruction and
the segment register write.

Status: For the steppings affected, see the Summary Tables of Changes at the beginning of
this section.

K59. INIT Does Not Clear Global Entries in the TLB

Problem: INIT may not flush a TLB entry when:

1. The processor is in protected mode with paging enabled and the page global
enable flag is set (PGE bit of CR4 register).

2. G bit for the page table entry is set.

3. TLB entry is present in TLB when INIT occurs.

Implication: Software may encounter unexpected page fault or incorrect address translation due to
a TLB entry erroneously left in TLB after INIT.

Workaround: Write to CR3, CR4 or CR0 registers before writing to memory early in BIOS code to
clear all the global entries from TLB.

Status: For the steppings affected, see the Summary Tables of Changes at the beginning of
this section.

K60. VM Bit Will Be Cleared on a Double Fault Handler

Problem: Following a task switch to a Double Fault Handler that was initiated while the
processor was in virtual-8086 (VM86) mode, the VM bit will be incorrectly cleared in
EFLAGS.

5BErrata

Specification Update Intel Confidential 55

Implication: When the OS recovers from the double fault handler, the processor will no longer be
in VM86 mode.

Workaround: None identified

Status: For the steppings affected, see the Summary Tables of Changes at the beginning of
this section.

K61. Memory Aliasing with Inconsistent A and D Bits May Cause Processor
Deadlock

Problem: In the event that software implements memory aliasing by having two Page Directory
Entries (PDEs) point to a common Page Table Entry (PTE) and the accessed and dirty
bits for the two PDEs are allowed to become inconsistent the processor may become
deadlocked.

Implication: This erratum has not been observed with commercially available software.

Workaround: Software that needs to implement memory aliasing in this way should manage the
consistency of the accessed and dirty bits.

Status: For the steppings affected, see the Summary Tables of Changes at the beginning of
this section.

K62. Use of Memory Aliasing with Inconsistent Memory Type May Cause
System Hang

Problem: Software that implements memory aliasing by having more than one linear addresses
mapped to the same physical page with different cache types may cause the system
to hang. This would occur if one of the addresses is non-cacheable used in code
segment and the other a cacheable address. If the cacheable address finds its way in
instruction cache, and non-cacheable address is fetched in IFU, the processor may
invalidate the non-cacheable address from the fetch unit. Any micro-architectural
event that causes instruction restart will expect this instruction to still be in fetch unit
and lack of it will cause system hang.

Implication: This erratum has not been observed with commercially available software.

Workaround: Although it is possible to have a single physical page mapped by two different linear
addresses with different memory types, Intel has strongly discouraged this practice as
it may lead to undefined results. Software that needs to implement memory aliasing
should manage the memory type consistency.

Status: For the steppings affected, see the Summary Tables of Changes at the beginning of
this section.

K63. Processor may Report Invalid TSS Fault Instead of Double Fault
During Mode C Paging

Problem: When an operating system executes a task switch via a Task State Segment (TSS) the
CR3 register is always updated from the new task TSS. In the mode C paging, once
the CR3 is changed the processor will attempt to load the PDPTRs. If the CR3 from the
target task TSS or task switch handler TSS is not valid then the new PDPTR will not be

5BErrata

56 Intel Confidential Specification Update

loaded. This will lead to the reporting of invalid TSS fault instead of the expected
Double fault.

Implication: Operating systems that access an invalid TSS may get invalid TSS fault instead of a
Double fault.

Workaround: Software needs to ensure any accessed TSS is valid.

Status: For the steppings affected, see the Summary Tables of Changes at the beginning of
this section.

K64. Machine Check Exception may Occur When Interleaving Code
Between Different Memory Types

Problem: A small window of opportunity exists where code fetches interleaved between different
memory types may cause a machine check exception. A complex set of micro-
architectural boundary conditions is required to expose this window.

Implication: Interleaved instruction fetches between different memory types may result in a
machine check exception. The system may hang if machine check exceptions are
disabled. Intel has not observed the occurrence of this erratum while running
commercially available applications or operating systems.

Workaround: Software can avoid this erratum by placing a serializing instruction between code
fetches which span different memory types.

Status: For the steppings affected, see the Summary Tables of Changes at the beginning of
this section.

K65. Wrong ESP Register Values During a Fault in VM86 Mode

Problem: At the beginning of the IRET instruction execution in VM86 mode, the lower 16 bits of
the ESP register are saved as the old stack value. When a fault occurs, these 16 bits
are moved into the 32-bit ESP, effectively clearing the upper 16 bits of the ESP.

Implication: This erratum has not been observed to cause any problems with commercially
available software.

Workaround: None identified

Status: For the steppings affected, see the Summary Tables of Changes at the beginning of
this section.

K66. APIC ICR Write May Cause Interrupt Not to be Sent When ICR
Delivery Bit Pending

Problem: If the APIC ICR (Interrupt Control Register) is written with a new interrupt command
while the Delivery Status bit from a previous interrupt command is set to ‘1’ (Send
Pending), the interrupt message may not be sent out by the processor.

Implication: This erratum will cause an interrupt message not to be sent, potentially resulting in
system hang.

Workaround: Software should always poll the Delivery Status bit in the APIC ICR and ensure that it
is '0’ (Idle) before writing a new value to the ICR.

5BErrata

Specification Update Intel Confidential 57

Status: For the steppings affected, see the Summary Tables of Changes at the beginning of
this section.

K67. Processor Incorrectly Samples NMI Interrupt after RESET#
Deassertion When Processor APIC is Hardware-Disabled

Problem: When the processor APIC is hardware-disabled the processor may incorrectly interpret
the NMI signal as an NMI interrupt, instead of a frequency strap value, starting six bus
clocks after RESET# is de-asserted. This will result in a processor hang due to the NMI
Handler not being installed at this time.

Implication: The system may fail to boot due to this issue.

Workaround: The processor APIC must be hardware-enabled by pulling PICD[1:0] high with
separate pull up resistors and supplying PICCLK to the processor.

Status: For the steppings affected, see the Summary Tables of Changes at the beginning of
this section.

K68. The Instruction Fetch Unit (IFU) May Fetch Instructions Based Upon
Stale CR3 Data after a Write to CR3 Register

Problem: Under a complex set of conditions, there exists a one-clock window following a write
to the CR3 register wherein it is possible for the iTLB fill buffer to obtain a stale page
translation based on the stale CR3 data. This stale translation will persist until the
next write to the CR3 register, the next page fault or execution of a certain class of
instructions including CPUID or IRETD with privilege level change.

Implication: The wrong page translation could be used leading to erroneous software behavior.

Workaround: Operating systems that are potentially affected can add a second write to the CR3
register.

Status: For the steppings affected, see the Summary Tables of Changes at the beginning of
this section.

K69. Processor Might not Exit Sleep State Properly Upon De-assertion of
CPUSLP# Signal

Problem: If the processor enters a sleep state upon assertion of CPUSLP# signal, and if the core
to system bus multiplier is an odd bus fraction, then the processor may not resume
from the CPU sleep state upon the de-assertion of CPUSLP# signal.

Implication: This erratum may result in a system hang during a resume from CPU sleep state.
Mobile platforms using Quick Start recommendations are not affected.

Workaround: It is possible to workaround this in BIOS by not asserting CPUSLP# for power
management purposes. For mobile platforms, the workaround is to use the Quick
Start recommendation.

Status: For the steppings affected, see the Summary Tables of Changes at the beginning of
this section.

5BErrata

58 Intel Confidential Specification Update

K70. During Boundary Scan, BCLK Not Sampled High When DPSLP# is
Asserted Low

Problem: During boundary scan, BCLK not sampled high when DPSLP# is asserted low.

Implication: Boundary scan results may be incorrect when DPSLP# is asserted low.

Workaround: Do not use boundary scan when DPSLP# is asserted low.

Status: For the steppings affected, see the Summary Tables of Changes at the beginning of
this section.

K71. Under Some Complex conditions, the Instructions in the Shadow of a
JMP FAR may be Unintentionally Executed and Retired

Problem: If all of the following events happen in sequence it is possible for the system or
application to hang or to execute with incorrect data:

1. The execution of an instruction, with an OPCODE that requires the processor
to stall the issue of micro-instructions in the flow from the microcode
sequence logic block to the instruction decode block (a StallMS condition).

2. Less than 63 (39 for Pre-CPUID 0x6BX) micro-instructions later, the execution
of a mispredictable branch instruction (Jcc, LOOPcc, RET Near, CALL Near
Indirect, JMP ECX=0, or JMP Near Indirect).

3. The conditional branch in event (2) is mispredicted, and furthermore the
mispredicted path of execution must result in either an ITLB miss, or an
Instruction Cache miss. This needs to briefly stall the issue of micro-
instructions again immediately after the conditional branch until that branch
prediction is corrected by the jump execution block (a second StallMS
condition).

4. Along the correct path of execution, the next instruction must contain a 3rd
StallMS condition at a precisely aligned point in the execution of the
instruction (CLTS, POPSS, LSS, or MOV to SS).

5. A JMP FAR instruction must execute within the next 63 micro-instructions (39
Pre-CPUID 0x6BX). The intervening micro-instructions must not have any
events or faults. When the instruction from event (2) retires, the StallMS
condition within the event (5) instruction fails to operate correctly, and
instructions in the shadow of the JMP FAR instruction could be unintentionally
executed.

Implication: Occurrence of this erratum could lead to erroneous software behavior. Intel has not
identified any commercially available software which may encounter this condition;
this erratum was discovered in a focused test environment. One of the four
instructions that are required to trigger this erratum, CLTS, is a privileged instruction
that is only executed by an operating system or driver code. The remaining three
instructions, POPSS, LSS, and MOV to SS, are executed infrequently in modern 32-bit
application code.

Workaround: None identified at this time

Status: For the steppings affected, see the Summary Tables of Changes at the beginning of
this section.

5BErrata

Specification Update Intel Confidential 59

K72. Processor Does Not Flag #GP on Non-zero Write to Certain MSRs

Problem: When a non-zero write occurs to the upper 32 bits of SYSENTER_EIP_MSR or
SYSENTER_ESP_MSR, the processor should indicate a general protection fault by
flagging #GP. Due to this erratum, the processor does not flag #GP.

Implication: The processor unexpectedly does not flag #GP on a non-zero write to the upper 32
bits of SYSENTER_EIP_MSR or SYSENTER_ESP_MSR. No known commercially
available operating system has been identified to be affected by this erratum.

Workaround: None identified

Status: For the steppings affected, see the Summary Tables of Changes at the beginning of
this section.

K73. A Locked Data Access that Spans Across Two Pages May Cause the
System to Hang

Problem: An instruction with lock data access that spans across two pages may, given some
rare internal conditions, hang the system.

Implication: When this erratum occurs, the system may hang. Intel has not observed this erratum
with any commercially available software or system.

Workaround: A locked data access should always be aligned.

Status: For the steppings affected, see the Summary Tables of Changes at the beginning of
this section.

K74. REP MOVS Operation in Fast string Mode Continues in that Mode
When Crossing into a Page with a Different Memory Type

Problem: A fast “REP MOVS” operation will continue to be handled in fast mode when the string
operation crosses a page boundary into an Uncacheable (UC) memory type. Also if the
fast string operation crosses a page boundary into a WC memory region, the
processor will not self snoop the WC memory region. This may eventually result in
incorrect data for the WC portion of the operation if those cache lines were previously
cached as WB (through aliasing) and modified.

Implication: String elements should be handled by the processor at the native operand size in UC
memory. In the event that the WB to WC aliasing case occurs, the end result could
vary from normal software execution to potential software failure. Intel has not
observed either aspects of this erratum in commercially available software.

Workaround: Software operating within Intel’s recommendation will not require WB and WC
memory aliased to the same physical address.

Status: For the steppings affected, see the Summary Tables of Changes at the beginning of
this section.

5BErrata

60 Intel Confidential Specification Update

K75. The FXSAVE, STOS, or MOVS Instructions May Cause a Store Ordering
Violation When Data Crosses a Page with a UC Memory Type

Problem: If the data from an FXSAVE, STOS, or MOVS instruction crosses a page boundary from
WB to UC memory type and this instruction is immediately followed by a second
instruction that also issues a store to memory, the final data stores from both
instructions may occur in the wrong order.

Implication: The impact of this store ordering behavior may vary from normal software execution
to potential software failure. Intel has not observed this erratum in commercially
available software.

Workaround: FXSAVE, STOS, or MOVS data must not cross page boundary from WB to UC memory
type.

Status: For the steppings affected, see the Summary Tables of Changes at the beginning of
this section.

K76. POPF and POPFD Instructions that Set the Trap Flag Bit May Cause
Unpredictable Processor Behavior

Problem: In some rare cases, POPF and POPFD instructions that set the Trap Flag (TF) bit in the
EFLAGS register (causing the processor to enter Single-Step mode) may cause
unpredictable processor behavior.

Implication: Single step operation is typically enabled during software debug activities, not during
normal system operation.

Workaround: There is no workaround for single step operation in commercially available software.
For debug activities on custom software, the POPF and POPFD instructions could be
immediately followed by a NOP instruction to facilitate correct execution.

Status: For the steppings affected, see the Summary Tables of Changes at the beginning of
this section.

K77. Code Segment Limit Violation May Occur on 4 Gigabyte Limit Check

Problem: Code Segment limit violation may occur on 4 Gigabyte limit check when the code
stream wraps around in a way that one instruction ends at the last byte of the
segment and the next instruction begins at 0x0.

Implication: This is a rare condition that may result in a system hang. Intel has not observed this
erratum with any commercially available software, or system.

Workaround: Avoid code that wraps around segment limit.

Status: For the steppings affected, see the Summary Tables of Changes.

K78. FST Instruction with Numeric and Null Segment Exceptions May take
Numeric Exception with Incorrect FPU Operand Pointer

Problem: If execution of an FST (Store Floating Point Value) instruction would generate both
numeric and null segment exceptions, the numeric exception may be taken first and
with the Null x87 FPU Instruction Operand (Data) Pointer.

5BErrata

Specification Update Intel Confidential 61

Implication: Due to this erratum, on an FST instruction the processor reports a numeric exception
instead of reporting an exception because of a Null segment. If the numeric exception
handler tries to access the FST data it will get a #GP fault. Intel had not observed this
erratum with any commercially available software, or system.

Workaround: The numeric exception handler should check the segment and if it is Null avoid further
access to the data that caused the fault.

Status: For the steppings affected, see the Summary Tables of Changes.

K79. Code Segment (CS) is Wrong on SMM Handler when SMBASE is not
Aligned

Problem: With SMBASE being relocated to a non-aligned address, during SMM entry the CS can
be improperly updated which can lead to an incorrect SMM handler.

Implication: This is a rare condition that may result in a system hang. Intel has not observed this
erratum with any commercially available software, or system.

Workaround: Align SMBASE to 32 kB.

Status: For the steppings affected, see the Summary Tables of Changes.

K80. Page with PAT (Page Attribute Table) Set to USWC (Uncacheable
Speculative Write Combine) While Associated MTRR (Memory Type
Range Register) is UC (Uncacheable) May Consolidate to UC

Problem: For a page whose PAT memory type is USWC while the relevant MTRR memory type is
UC, the consolidated memory type may be treated as UC (rather than WC as specified
in the IA-32 Intel® Architecture Software Developer's Manual).

Implication: When this erratum occurs, the memory page may be treated as UC (rather than WC).
This could have a negative impact on performance.

Workaround: None identified

Status: For the steppings affected, see the Summary Tables of Changes.

K81. Under Certain Conditions LTR (Load Task Register) Instruction May
Result in System Hang

Problem: An LTR instruction may result in a system hang if all the following conditions are met:

1. Invalid data selector of the TR (Task Register) resulting in either #GP (General
Protection Fault) or #NP (Segment Not Present Fault).

2. GDT (Global Descriptor Table) is not 8 bytes aligned.

3. Data BP (breakpoint) is set on cache line containing the descriptor data.

Implication: This erratum may result in a system hang if all conditions have been met. This
erratum has not been observed in commercial operating systems or software. For
performance reasons, GDT is typically aligned to 8 bytes.

Workaround: Software should align GDT to 8 bytes.

5BErrata

62 Intel Confidential Specification Update

Status: For the steppings affected, see the Summary Tables of Changes.

K82. Loading from Memory Type USWC (Uncacheable Speculative Write
Combine) May Get Its Data Internally Forwarded from a Previous
Pending Store

Problem: A load from memory type USWC may get its data internally forwarded from a pending
store. As a result, the expected load may never be issued to the external bus.

Implication: When this erratum occurs, a USWC load request may be satisfied without being
observed on the external bus. There are no known usage models where this behavior
results in any negative side-effects.

Workaround: Do not use memory type USWC for memory that has read side-effects.

Status: For the steppings affected, see the Summary Tables of Changes.

K83. FPU Operand Pointer May Not be Cleared Following FINIT/FNINIT

Problem: Initializing the floating point state with either FINIT or FNINT, may not clear the x87
FPU Operand (Data) Pointer Offset and the x87 FPU Operand (Data) Pointer Selector
(both fields form the FPUDataPointer). Saving the floating point environment with
FSTENV, FNSTENV, or floating point state with FSAVE or FNSAVE before an
intervening FP instruction may save uninitialized values for the FPUDataPointer.

Implication: When this erratum occurs, the values for FPUDataPointer in the saved floating point
image or floating point environment structure may appear to be random values.
Executing any non-control FP instruction with memory operand will initialize the
FPUDataPointer. Intel has not observed this erratum with any commercially available
software.

Workaround: After initialization, do not expect the FPUDataPointer in a floating point state or
floating point environment saved memory image to be correct, until at least one non-
control FP instruction with a memory operand has been executed.

Status: For the steppings affected, see the Summary Tables of Changes.

K84. FSTP (Floating Point Store) Instruction Under Certain Conditions May
Result In Erroneously Setting a Valid Bit on an FP (Floating Point)
Stack Register

Problem: An FSTP instruction with a PDE/PTE (Page Directory Entry/Page Table Entry) A/D bit
update followed by user mode access fault due to a code fetch to a page that has
supervisor only access permission may result in erroneously setting a valid bit of an
FP stack register. The FP top of stack pointer is unchanged.

Implication: This erratum may cause an unexpected stack overflow.

Workaround: User mode code should not count on being able to recover from illegal accesses to
memory regions protected with supervisor only access when using FP instructions.

Status: No Fix. For the steppings affected, see the Summary Tables of Changes.

5BErrata

Specification Update Intel Confidential 63

K85. Invalid Entries in Page-Directory-Pointer-Table Register (PDPTR) May
Cause General Protection (#GP) Exception if the Reserved Bits are
Set to One

Problem: Invalid entries in the Page-Directory-Pointer-Table Register (PDPTR) that have the
reserved bits set to one may cause a General Protection (#GP) exception.

Implication: Intel has not observed this erratum with any commercially available software.

Workaround: Do not set the reserved bits to one when PDPTR entries are invalid.

Status: For the steppings affected, see the Summary Tables of Changes.

K86. Writing the Local Vector Table (LVT) when an Interrupt is Pending
May Cause an Unexpected Interrupt

Problem: If a local interrupt is pending when the LVT entry is written, an interrupt may be taken
on the new interrupt vector even if the mask bit is set.

Implication: An interrupt may immediately be generated with the new vector when a LVT entry is
written, even if the new LVT entry has the mask bit set. If there is no Interrupt
Service Routine (ISR) set up for that vector the system will GP fault. If the ISR does
not do an End of Interrupt (EOI) the bit for the vector will be left set in the in-service
register and mask all interrupts at the same or lower priority.

Workaround: Any vector programmed into an LVT entry must have an ISR associated with it, even if
that vector was programmed as masked. This ISR routine must do an EOI to clear any
unexpected interrupts that may occur. The ISR associated with the spurious vector
does not generate an EOI, therefore the spurious vector should not be used when
writing the LVT.

Status: For the steppings affected, see the Summary Tables of Changes.

K87. The Processor May Report a #TS Instead of a #GP Fault

Problem: A jump to a busy TSS (Task-State Segment) may cause a #TS (invalid TSS exception)
instead of a #GP fault (general protection exception).

Implication: Operation systems that access a busy TSS may get invalid TSS fault instead of a #GP
fault. Intel has not observed this erratum with any commercially available software.

Workaround: None identified

Status: For the steppings affected, see the Summary Tables of Changes.

K88. A Write to an APIC Register Sometimes May Appear to Have Not
Occurred

Problem: With respect to the retirement of instructions, stores to the uncacheable memory-
based APIC register space are handled in a non-synchronized way. For example, if an
instruction that masks the interrupt flag, e.g. CLI, is executed soon after an
uncacheable write to the Task Priority Register (TPR) that lowers the APIC priority, the
interrupt masking operation may take effect before the actual priority has been
lowered. This may cause interrupts whose priority is lower than the initial TPR, but

5BErrata

64 Intel Confidential Specification Update

higher than the final TPR, to not be serviced until the interrupt enabled flag is finally
set, i.e. by STI instruction. Interrupts will remain pending and are not lost.

Implication: In this example the processor may allow interrupts to be accepted but may delay their
service.

Workaround: This non-synchronization can be avoided by issuing an APIC register read after the
APIC register write. This will force the store to the APIC register before any
subsequent instructions are executed. No commercial operating system is known to be
impacted by this erratum.

Status: For the steppings affected, see the Summary Tables of Changes.

K89. Using 2M/4M Pages When A20M# Is Asserted May Result in Incorrect
Address Translations

Problem: An external A20M# pin if enabled forces address bit 20 to be masked (forced to zero)
to emulates real-address mode address wraparound at 1 megabyte. However, if all of
the following conditions are met, address bit 20 may not be masked:

• Paging is enabled

• A linear address has bit 20 set

• The address references a large page

• A20M# is enabled

Implication: When A20M# is enabled and an address references a large page the resulting
translated physical address may be incorrect. This erratum has not been observed
with any commercially available operating system.

Workaround: Operating systems should not allow A20M# to be enabled if the masking of address
bit 20 could be applied to an address that references a large page. A20M# is normally
only used with the first megabyte of memory.

Status: For the steppings affected, see the Summary Tables of Changes.

K90. Values for LBR/BTS/BTM will be Incorrect after an Exit from SMM

Problem: After a return from SMM (System Management Mode), the CPU will incorrectly update
the LBR (Last Branch Record) and the BTS (Branch Trace Store), hence rendering
their data invalid. The corresponding data if sent out as a BTM on the system bus will
also be incorrect. Note: This issue would only occur when one of the three above
mentioned debug support facilities are used.

Implication: The value of the LBR, BTS, and BTM immediately after an RSM operation should not
be used.

Workaround: None identified

Status: For the steppings affected, see the Summary Tables of Changes.

K91. INIT Does Not Clear Global Entries in the TLB

Problem: INIT may not flush a TLB entry when:

5BErrata

Specification Update Intel Confidential 65

1. The processor is in protected mode with paging enabled and the page global
enable flag is set (PGE bit of CR4 register).

2. G bit for the page table entry is set.

3. TLB entry is present in TLB when INIT occurs.

Implication: Software may encounter unexpected page fault or incorrect address translation due to
a TLB entry erroneously left in TLB after INIT.

Workaround: Write to CR3, CR4 (setting bits PSE, PGE or PAE) or CR0 (setting bits PG or PE)
registers before writing to memory early in BIOS code to clear all the global entries
from TLB.

Status: For the steppings affected, see the Summary Tables of Changes.

K92. REP MOVS/STOS Executing with Fast Strings Enabled and Crossing
Page Boundaries with Inconsistent Memory Types may use an
Incorrect Data Size or Lead to Memory-Ordering Violations

Problem: Under certain conditions as described in the Software Developers Manual section “Out-
of-Order Stores For String Operations in Pentium 4, Intel Xeon, and P6 Family
Processors” the processor performs REP MOVS or REP STOS as fast strings. Due to
this erratum fast string REP MOVS/REP STOS instructions that cross page boundaries
from WB/WC memory types to UC/WP/WT memory types, may start using an
incorrect data size or may observe memory ordering violations.

Implication: Upon crossing the page boundary the following may occur, dependent on the new
page memory type.

• UC the data size of each write will now always be 8 bytes, as opposed to the
original data size.

• WP the data size of each write will now always be 8 bytes, as opposed to the
original data size and there may be a memory ordering violation.

• WT there may be a memory ordering violation.

Workaround: Software should avoid crossing page boundaries from WB or WC memory type to UC,
WP or WT memory type within a single REP MOVS or REP STOS instruction that will
execute with fast strings enabled.

Status: For the steppings affected, see the Summary Tables of Changes.

K93. The BS Flag in DR6 May be Set for Non-Single-Step #DB Exception

Problem: DR6 BS (Single Step, bit 14) flag may be incorrectly set when the TF (Trap Flag, bit 8)
of the EFLAGS Register is set, and a #DB (Debug Exception) occurs due to one of the
following:

• DR7 GD (General Detect, bit 13) being bit set;

• INT1 instruction;

• Code breakpoint

the DR6 BS (Single Step, bit 14) flag may be incorrectly set.

5BErrata

66 Intel Confidential Specification Update

Implication: The BS flag may be incorrectly set for non-single-step #DB exception.

Workaround: None identified

Status: For the steppings affected, see the Summary Tables of Changes.

K94. Fault on ENTER Instruction May Result in Unexpected Values on Stack
Frame

Problem: The ENTER instruction is used to create a procedure stack frame. Due to this erratum,
if execution of the ENTER instruction results in a fault, the dynamic storage area of
the resultant stack frame may contain unexpected values (i.e. residual stack data as a
result of processing the fault).

Implication: Data in the created stack frame may be altered following a fault on the ENTER
instruction. Please refer to “Procedure Calls For Block-Structured Languages” in IA-32
Intel® Architecture Software Developer’s Manual, Vol. 1, Basic Architecture, for
information on the usage of the ENTER instructions. This erratum is not expected to
occur in ring 3. Faults are usually processed in ring 0 and stack switch occurs when
transferring to ring 0. Intel has not observed this erratum on any commercially
available software.

Workaround: None identified

Status: For the steppings affected, see the Summary Tables of Changes.

K95. Unaligned Accesses to Paging Structures May Cause the Processor to
Hang

Problem: When an unaligned access is performed on paging structure entries, accessing a
portion of two different entries simultaneously, the processor may live lock.

Implication: When this erratum occurs, the processor may live lock causing a system hang.

Workaround: Do not perform unaligned accesses on paging structure entries.

Status: For the steppings affected, see the Summary Tables of Changes.

K96. INVLPG Operation for Large (2M/4M) Pages May be Incomplete
under Certain Conditions

Problem: The INVLPG instruction may not completely invalidate Translation Look-aside Buffer
(TLB) entries for large pages (2M/4M) when both of the following conditions exist:

• Address range of the page being invalidated spans several Memory Type Range
Registers (MTRRs) with different memory types specified.

• INVLPG operation is preceded by a Page Assist Event (Page Fault (#PF) or an
access that results in either A or D bits being set in a Page Table Entry (PTE)).

Implication: Stale translations may remain valid in TLB after a PTE update resulting in
unpredictable system behavior. Intel has not observed this erratum with any
commercially available software.

5BErrata

Specification Update Intel Confidential 67

Workaround: Software should ensure that the memory type specified in the MTRRs is the same for
the entire address range of the large page.

Status: For the steppings affected, see the Summary Tables of Changes.

K97. Page Access Bit May be Set Prior to Signaling a Code Segment Limit
Fault

Problem: If code segment limit is set close to the end of a code page, then due to this erratum
the memory page Access bit (A bit) may be set for the subsequent page prior to
general protection fault on code segment limit.

Implication: When this erratum occurs, a non-accessed page which is present in memory and
follows a page that contains the code segment limit may be tagged as accessed.

Workaround: Erratum can be avoided by placing a guard page (non-present or non-executable
page) as the last page of the segment or after the page that includes the code
segment limit.

Status: For the steppings affected, see the Summary Tables of Changes.

K98. EFLAGS, CR0, CR4 and the EXF4 Signal May be Incorrect after
Shutdown

Problem: When the processor is going into shutdown due to an RSM inconsistency failure,
EFLAGS, CR0 and CR4 may be incorrect. In addition the EXF4 signal may still be
asserted. This may be observed if the processor is taken out of shutdown by NMI#.

Implication: A processor that has been taken out of shutdown may have an incorrect EFLAGS, CR0
and CR4. In addition the EXF4 signal may still be asserted.

Workaround: None identified

Status: For the steppings affected, see the Summary Tables of Changes at the beginning of
this section.

K99. Performance Monitoring Event FP_MMX_TRANS_TO_MMX May Not
 Count Some Transitions

Problem: Performance Monitor Event FP_MMX_TRANS_TO_MMX (Event CCH, Umask 01H)
 counts transitions from x87 Floating Point (FP) to MMX™ instructions. Due to this
 erratum, if only a small number of MMX instructions (including EMMS) are executed
 immediately after the last FP instruction, an FP to MMX transition may not be
counted.

Implication: The count value for Performance Monitoring Event FP_MMX_TRANS_TO_MMX may be
lower than expected. The degree of undercounting is dependent on the occurrences of
the erratum condition while the counter is active. Intel has not observed this erratum
with any commercially available software.

Workaround: None identified.

Status: For the steppings affected see the Summary Tables of Changes at the beginning of
 this section.§

	Contents
	Revision History
	Preface
	Affected Documents
	Nomenclature
	General Information
	Intel® Pentium® III Processor Mobile Module Markings

	Summary Tables of Changes
	Codes Used in Summary Table
	Stepping
	Status
	Row

	Identification Information
	Errata
	Specification Changes
	Specification Clarifications
	Documentation Changes

