
ng the
.
),

NIT)
 of the

ures,

o

e

in

low

d
ted

Microprocessor Initialization and
Configuration 17

This chapter covers microprocessor initialization and configuration information for both uni-
processor and dual-processor implementations of the embedded Pentium® processor family. For
configuration information on symmetric dual-processing mode, refer to “Managing and Designing
with the Symmetrical Dual Processing Configuration” on page 17-231.

Before normal operation of the processor can begin, the processor must be initialized by drivi
RESET pin active. The RESET pin forces the processor to begin execution in a known state
Several features are optionally invoked at the falling edge of RESET: Built-in-Self-Test (BIST
Functional Redundancy Checking and Three-state Test Mode.

In addition to the standard RESET pin, the processor has implemented an initialization pin (I
that allows the processor to begin execution in a known state without disrupting the contents
internal caches or the floating-point state.

This chapter describes the embedded Pentium processor power up and initialization proced
and the test and configuration features enabled at the falling edge of RESET.

17.1 Power Up Specifications

During power up, RESET must be asserted while VCC is approaching nominal operating voltage t
prevent internal bus contention, which could negatively affect the reliability of the processor.

It is recommended that CLK begin toggling within 150 ms after VCC reaches its proper operating
level. For the embedded Pentium® processor with MMX™ technology, it is recommended that th
CLK signal begin toggling within 150 ms after the last VCC plane stabilizes. This recommendation
is only to ensure long term reliability of the device.

In order for RESET to be recognized, the CLK input needs to be toggling. RESET must rema
asserted for 1 millisecond after VCC and CLK have reached their AC/DC specifications.

17.2 Test and Configuration Features

The INIT, FLUSH#, and FRCMC# inputs are sampled when RESET transitions from high to
to determine if BIST will be run, or if three-state test mode, or checker mode will be entered
(respectively). If RESET is driven synchronously, these signals must be at their valid level an
meet setup and hold times on the clock before the falling edge of RESET. If RESET is asser
asynchronously, these signals must be at their valid level two clocks before and after RESET
transitions from high to low.
Embedded Pentium® Processor Family Developer’s Manual 17-225

Microprocessor Initialization and Configuration
17.2.1 Built-in Self-Test

Self-test is initiated by driving the INIT pin high when RESET transitions from high to low. No bus
cycles are run by the processor during self test. The duration of self test is approximately 219 core
clocks. Approximately 70% of the devices in the processor are tested by BIST. The embedded
Pentium processor BIST consists of two parts: hardware self-test and microcode self-test. During
the hardware portion of BIST, the microcode ROM and all large PLAs are tested. All possible input
combinations of the microcode ROM and PLAs are tested.

The constant ROMs, BTB, TLBs, and all caches are tested by the microcode portion of BIST. The
array tests (caches, TLBs and BTB) have two passes. On the first pass, data patterns are written to
arrays, read back, and checked for mismatches. The second pass writes the complement of the
initial data pattern, reads it back, and checks for mismatches. The constant ROMs are tested by
using the microcode to add various constants and check the result against a stored value.

Upon successful completion of BIST, the cumulative result of all tests are stored in the EAX
register. If EAX contains 0H, then all checks passed; any non-zero result indicates a faulty unit.
Note that when an internal parity error is detected during BIST, the processor asserts the IERR# pin
and attempts to shutdown.

17.2.2 Three-state Test Mode

When the FLUSH# pin is sampled low when RESET transitions from high to low, the processor
enters three-state test mode. The processor floats all of its output pins and bidirectional pins,
including pins that are never floated during normal operation (except TDO). Three-state test mode
can be initiated to facilitate testing board interconnects. The processor remains in three-state test
mode until the RESET pin is asserted again.

17.2.3 Functional Redundancy Checking

The functional redundancy checking (FRC) master/checker configuration input is sampled when
RESET is high to determine whether the processor is configured in master mode (FRCMC# high)
or checker mode (FRCMC# low). Note, the embedded Pentium processor with MMX technology
does not support FRC mode.

The final master/checker configuration of the processor is determined the clock before the falling
edge of RESET. When configured as a master, the processor drives its output pins as required by
the bus protocol. When configured as a checker, the processor three-states all outputs (except
IERR#, PICD0, PICD1 and TDO) and samples the output pins (that would normally be driven in
master mode). If the sampled value differs from the value computed internally, the processor
asserts IERR# to indicate an error. Note that IERR# is not asserted due to an FRC mismatch until
two clocks after the ADS# of the first bus cycle (or in the third clock of the bus cycle).

To avoid an FRC error caused by differences in the unitialized FPU state, FINIT/FNINIT must be
used to initialize the FPU state prior to using FSAVE/FNSAVE in FRC mode. The initialization
should be done before other FPU activity so that it does not corrupt the previous state.

17.2.4 Lock Step APIC Operation

Lock Step operation is entered by holding BE4# high during the falling edge of RESET. Lock Step
operation is not supported by the embedded Pentium processor with MMX technology.
17-226 Embedded Pentium® Processor Family Developer’s Manual

Microprocessor Initialization and Configuration

the

tion
RESET
d data

h target

tion
s A20-
ns in

top of

ycle
T is
 is
bus
Lock Step operation guarantees recognition of an interrupt on a specific clock by two processors
operating together that are using the APIC as the interrupt controller. This functionality is related to
FRC operation, but FRC on the APIC pins is not fully supported in this way. There is no FRC
comparator on the APIC pins, but mismatches on these pins result in a mismatch on other pins of
the processor.

Fault tolerant systems implemented with multiple processors that run identical code sequences and
generate identical bus cycles on all clocks may utilize Lock Step operation.

Setup and Hold time specifications PICCLK (in relation to CLK) are added for this functionality.
Additionally, there is a requirement to sustain specific integer ratios between the frequencies of
PICCLK and CLK. This ratio should support both the maximum bus frequency of the device and
the maximum frequency of PICCLK. Details of these specifications can be found in Chapter 7,
“Electrical Differences Between Family Members.”

17.3 Initialization with RESET, INIT and BIST

Two pins, RESET and INIT, are used to reset the processor in different manners. A “cold” or
“power on” RESET refers to the assertion of RESET while power is initially being applied to
processor. A “warm” RESET refers to the assertion of RESET or INIT while VCC and CLK remain
within specified operating limits.

Table 17-1 shows the effect of asserting RESET and/or INIT.
.

Toggling either the RESET pin or the INIT pin individually forces the processor to begin execu
at address FFFFFFF0H. The internal instruction cache and data cache are invalidated when
is asserted (modified lines in the data cache are NOT written back). The instruction cache an
cache are not altered when the INIT pin is asserted without RESET. In both cases, the branc
buffer (BTB) and translation lookaside buffers (TLBs) are invalidated.

After RESET (with or without BIST) or INIT, the processor starts executing instructions at loca
FFFFFFF0H. When the first Intersegment Jump or Call instruction is executed, address line
A31 are driven low for CS-relative memory cycles and the processor only executes instructio
the lower 1 Mbyte of physical memory. This allows the system designer to use a ROM at the
physical memory to initialize the system.

RESET is internally hardwired and forces the processor to terminate all execution and bus c
activity within two clocks. No instruction or bus activity occurs as long as RESET is active. INI
implemented as an edge triggered interrupt and is recognized when an instruction boundary
reached. As soon as the processor completes the INIT sequence, instruction execution and
cycle activity continues at address FFFFFFF0H even if the INIT pin is not deasserted.

Table 17-1. Pentium® Processor Reset Modes

RESET INIT BIST Run? Effect on Code
and Data Caches

Effect on FP
Registers

Effect on BTB and
TLBs

0 0 No n/a n/a n/a

0 1 No None None Invalidated

1 0 No Invalidated Initialized Invalidated

1 1 Yes Invalidated Initialized Invalidated
Embedded Pentium® Processor Family Developer’s Manual 17-227

Microprocessor Initialization and Configuration
At the conclusion of RESET (with or without self-test) or INIT, the DX register contains a
component identifier. The upper byte contain 05H and the lower byte contains a stepping identifier.

Table 17-2 defines the processor state after RESET, INIT, and RESET with BIST (built in
self-test).

.

Table 17-2. Register State after RESET, INIT and BIST (Sheet 1 of 2)

Storage Element RESET (No BIST)
(Note 1)

RESET (BIST)
(Note 1) INIT

EAX 0 0 if pass 0

EDX 0500+stepping 0500+stepping 0500+stepping

ECX, EBX, ESP, EBP, ESI, EDI 0 0 0

EFLAGS 2 2 2

EIP 0FFF0 0FFF0 0FFF0

CS selector = F000 selector = F000 selector = F000

AR = P, R/W, A AR = P, R/W, A AR = P, R/W, A

base = FFFF0000 base = FFFF0000 base = FFFF0000

limit = FFFF limit = FFFF limit = FFFF

DS, ES, FE, GS, SS selector = 0 selector = 0 selector = 0

AR = P, R/W, A AR = P, R/W, A AR = P, R/W, A

base = 0 base = 0 base = 0

limit = FFFF limit = FFFF limit = FFFF

(I/G/L)DTR, TSS selector = 0 selector = 0 selector = 0

base = 0 base = 0 base = 0

AR = P, R/W AR = P, R/W AR = P, R/W

limit = FFFF limit = FFFF limit = FFFF

CR0 60000010 60000010 Note 2

CR2, 3, 4 0 0 0

DR3–DR0 0 0 0

DR6 FFFF0FF0 FFFF0FF0 FFFF0FF0

DR7 00000400 00000400 00000400

Time Stamp Counter 0 0 Unchanged

Control and Event Select 0 0 Unchanged

TR12 0 0 Unchanged

All other MSR’s Undefined Undefined Unchanged

CW 0040 0040 Unchanged

SW 0 0 Unchanged

TW 5555 5555 Unchanged

FIP, FEA, FCS, FDS, FOP 0 0 Unchanged

FSTACK 0 0 Unchanged

SMBASE 30000 30000 Unchanged

Data and Code Cache Invalid Invalid Unchanged

NOTES:
1. Register States are given in hexadecimal format.
2. CD and NW are unchanged, bit 4 is set to 1, all other bits are cleared.
17-228 Embedded Pentium® Processor Family Developer’s Manual

Microprocessor Initialization and Configuration
17.3.1 Recognition of Interrupts after RESET

To guarantee recognition of the edge sensitive interrupts (FLUSH#, NMI, R/S#, SMI#) after
RESET or after RESET with BIST, the interrupt input must not be asserted until four clocks after
RESET is deasserted, regardless of whether or not BIST is run.

17.3.2 Pin State During/After RESET

The processor recognizes and responds to HOLD, AHOLD, and BOFF# during RESET.
Figure 17-1 shows the processor state during and after a power on RESET if HOLD, AHOLD, and
BOFF# are inactive. Note that the address bus pins (A31–A3, AP, BE7#–BE0#) and cycle
definition pins
(M/IO#, D/C#, W/R#, CACHE#, SCYC, PCD, PWT, PM0/BP0, PM1/BP1 and LOCK#) are
undefined from the time RESET is asserted until the start of the first bus cycle.

The following lists the state of the output pins after RESET assuming HOLD, AHOLD, and
BOFF# are inactive, boundary scan is not invoked, and no internal parity error is detected.

Code Cache TLB, Data Cache
TLB, BTB, SDC Invalid Invalid Invalid

Table 17-2. Register State after RESET, INIT and BIST (Sheet 2 of 2)

Storage Element RESET (No BIST)
(Note 1)

RESET (BIST)
(Note 1) INIT

NOTES:
1. Register States are given in hexadecimal format.
2. CD and NW are unchanged, bit 4 is set to 1, all other bits are cleared.

• High: LOCK#, ADS#, ADSC#, APCHK#, PCHK#, IERR#, HIT#,
HITM#, FERR#, SMIACT#

• Low: HLDA, BREQ, BP3, BP2, PRDY

• High Independence: D63–D0, DP7–DP0

• Undefined: A31–A3, AP, BE7#–BE0#, W/R#, M/IO#, D/C#, PCD, PWT,
CACHE#, TDO, SCYC, PM0/BP0, PM1/BP1
Embedded Pentium® Processor Family Developer’s Manual 17-229

Microprocessor Initialization and Configuration
Figure 17-1. Pin States during Reset

A6127-01

1

Unidentified

Unidentified Valid

Valid

Unidentified Valid

Unidentified

CLK

Tx Tx Tx Tx Tx T1 T1 T1 T1

RESET

INT, FLUSH#
FRCMC# (SYNC)

INT, FLUSH#
FRCMC# (ASYNC)

ADS#, ADSC#

BREQ, HLDA,
BP3, BP2, PRDY

A31-A3, M/IO#, D/C#,
W/R#, SCYC, CACHE#,

BE7#-BE0#, AP, PCD,
PM0/BP0, PM1/BP1,

TDO, PWT

LOCK#, APCHK#,
PCHK#, IERR#,

HIT#, HITM#, FERR#,
SMIACT#

D63-D0
DP7-PD0

NOTES:
1. RESET must meet setup and hold times to guarantee recognition on a specific clock edge. If RESET

does not need to be recognized on a specific clock edge, it may be asserted asynchronously.

2. At power up, RESET needs to be asserted for 1 ms after Vcc and CLK have reached their AC/DC specifications.
For warm reset, RESET needs to be asserted for at least 15 clocks while Vcc and CLK remain within specified
operating limits.

3. If RESET is driven synchronously, FLUSH#, FRCMC# and INIT must be at their valid level and meet setup and
hold times to the clock before the falling edge of RESET.

4. If RESET is driven asynchronously, FLUSH#, FRCMC# and INIT must be at their valid level two clocks before
and after the falling edge of RESET.

5. An assertion of RESET takes at least two clocks to affect the pins.

5

3

4

219 Core Clock if BIST

150-200 Clocks if no BIST
17-230 Embedded Pentium® Processor Family Developer’s Manual

Microprocessor Initialization and Configuration

gister
sor

t for a

 pin.
ed,
d their

of
17.4 Managing and Designing with the Symmetrical Dual
Processing Configuration

17.4.1 Dual Processor Bootup Protocol

17.4.1.1 Bootup Overview

Systems using the embedded Pentium processor may be equipped with a second processor socket.
For correct system operation, the processor must be able to identify the presence and type of the
second processor (such as a Dual processor). Furthermore, since upgrade processors typically are
installed in the field by end users, system configuration may change between any two consecutive
power-down/up sequences. The system must therefore have a mechanism to ascertain the system
configuration during boot time. The boot up handshake protocol provides this mechanism.

17.4.1.2 BIOS/Operating System Requirements

The BIOS or HAL (hardware abstraction layer) of the operating system software should be generic,
independent of the kind of OEM or upgrade processor present in the system. BIOS/HAL are
specific to the system hardware, and should not need any change when an upgrade processor is
installed. For dual processors, if the BIOS is not DP-ready, it will be up to the operating system to
initialize and configure the dual processor appropriately.

The CPUID instruction is used to deliver processor-specific information. The embedded Pentium
processor CPUID status has been extended to supply the processor type information which
includes “turbo-upgrade” classification (“type” field: bits 13-12 = 0-1). For upgradability with a
future Pentium Overdrive processor, system software must allow the type field of the EAX re
following the CPUID instruction to contain the values for both the embedded Pentium proces
and the Pentium Overdrive processor. Note also that the model field of the CPUID is differen
Pentium OverDrive processor.

17.4.1.3 System Requirements

The number of Dual processors per Primary processor is limited to 1.

This bootup handshake protocol requires enabling the local APIC module using the APICEN
The startup IPI must be sent via the local APICs. Once the Dual processor has been initializ
software can later disable the local APIC module using several methods. These methods an
considerations are discussed in “APIC Interrupt Controller” on page 16-213.

The protocol does not preclude more generic multiprocessing systems where multiple pairs
Primary and Dual processors may exist on the system bus.

Figure 17-2. EAX Bit Assignments for CPUID

A6126-01

0 (Reserved)EAX

31 1314

Type

1112 78 3 04

Family Model Stepping
Embedded Pentium® Processor Family Developer’s Manual 17-231

Microprocessor Initialization and Configuration

 other
y the

clude

pace
17.4.1.4 Start-up Behavior

On RESET and INIT (message or pin), the processor begins execution at the reset vector
(0FFFFFFF0H). The Dual processor waits for a startup IPI from the BIOS or operating system via
the local APIC of the processor. The INIT IPI can be used to put the embedded Pentium processor
or Dual processor to sleep (once the INIT IPI is received, the processor must wait for the startup
IPI).

The startup IPI is specifically provided to start the Dual processor’s execution from a location
than the reset vector, although it also can be used for the processor. The startup IPI is sent b
system software via the local APIC by using a delivery mode of 110B. The startup IPI must in
an 8-bit vector that defines the starting address. The starting address = 000 VV 000H, where VV
indicates the vector field (in hex) passed through the IPI.

The 8-bit vector defines the address of a 4 Kbyte page in the Intel architecture Real Mode S
(1 Mbyte space). For example, a vector of 0CDH specifies a startup memory address of
000CD000H. This value is used by the processor to initialize the segment descriptor for the
upgrade’s CS register as follows:

• The CS selector is set to the startup memory address/16 (real mode addressing)

• The CS base is set to the startup memory address

• The CS limit is set to 64 Kbytes

• The current privilege level (CPL) and instruction pointer (IP) are set to 0

Note: Vectors of 0A0H to 0BFH are reserved by Intel. Do not use them.

The benefit of the startup IPI is that it does not require the APIC to be software enabled (the APIC
must be hardware enabled via the APICEN pin) and does not require the interrupt table to be
programmed. Startup IPIs are non-maskable and can be issued at any time to the embedded
Pentium processor or Dual processor. If the startup IPI message is not preceded by a RESET or
INIT (message or pin), it is ignored.

It is the responsibility of the system software to resend the startup IPI message if there is an error in
the IPI message delivery. Although the APIC need not be enabled in order to send the startup IPI,
the advantage to enabling the APIC prior to sending the startup IPI is to allow APIC error handling
to occur via the APIC error handling entry of the local vector table (ERROR INT or LVT3 at APIC
address 0FEE00370H). Otherwise, the system software would have to poll the delivery status bit of
the interrupt command register to determine if the IPI is pending (Bit 12 of the ICR=1) and resend
the startup IPI if the IPI remains pending after an appropriate amount of time.

17.4.1.5 Dual-Processor Presence Indication

The bootup handshake protocol becomes aware that an additional processor is present through the
DPEN# pin. The second processor is guaranteed to drive this signal low during RESETs falling
edge. If the system needs to remember the presence of a second processor for future use, it must
latch the state of the DPEN# pin during the falling edge of RESET.
17-232 Embedded Pentium® Processor Family Developer’s Manual

Microprocessor Initialization and Configuration
17.4.2 Dual-Processor Arbitration

The embedded Pentium processor incorporates a private arbitration mechanism that allows the
Primary and Dual processors to arbitrate for the shared processor bus without assistance from a bus
controller. The arbitration scheme is architected in such a way that the dual processor pair appears
as a single processor to the system.

The processor arbitration logic uses a fair arbitration scheme. The arbitration state machine is
designed to efficiently use the processor bus bandwidth. The dual processor pair supports inter-
processor pipelining of most bus transactions. Furthermore, the arbitration mechanism does not
introduce any dead clocks on bus transactions.

17.4.2.1 Basic Dual-Processor Arbitration Mechanism

The basic set of arbitration premises requires that the processor check the second socket (Socket 7)
for a processor every time the processor enters reset. To perform the checking of the Socket 7 and
to perform the actual boot sequence, the processor in the 296-pin socket always comes out of reset
as the most-recent master (MRM). This requires the part in the Socket 7 to always come out of
reset as the least-recent master (LRM).

The LRM processor requests ownership of the processor bus by asserting the private arbitration
request pin, PBREQ#. The processor that is currently the MRM and owns the bus grants the bus to
the LRM as soon as any pending bus transactions have completed. The MRM grants the bus to the
LRM immediately if that processor has a pipelined cycle to issue. The MRM notifies that the LRM
can assume ownership by asserting the private arbitration grant pin, PBGNT#. The PBREQ# pin is
always the output of the LRM and the PBGNT# is always an input to the LRM.

A processor can park on the processor bus if there are no requests from the LRM. A parked
processor can be running cycles or just sitting idle on the bus. If a processor just ran a cycle on the
bus and has another cycle pending without an LRM request, the processor runs the second cycle on
the bus.

Locked cycles present an exception to the simple arbitration rules. All locked cycles are performed
as atomic operations without interrupt from the LRM. An exception to this rule is when a locked
access causes an assertion of PHITM# by the LRM. In this case, the MRM grants the bus to the
LRM and allows the writeback to complete.

The normal system arbitration pins (HOLD, HLDA, BOFF#) functions the same as in uni-
processor mode. Thus, the dual-processor pair always factors the state of the processor bus as well
as the state of the local arbitration before actually running a cycle on the processor bus.
Embedded Pentium® Processor Family Developer’s Manual 17-233

Microprocessor Initialization and Configuration
17.4.2.2 Dual-Processor Arbitration Interface

Figure 17-3 details the hardware arbitration interface.

Note: For proper operation, PBREQ# and PBGNT# must not be loaded by the system.

Figure 17-4 shows a typical arbitration exchange.

Diagram (a) of Figure 17-4 shows PA running a cycle on the processor bus with a transaction
pending. At the same time, PB has a cycle pending and has asserted the PBREQ# pin to notify PA
that PB needs the bus.

Diagram (b) of Figure 17-4 shows PA’s cycle completing with an NA# or the last BRDY#. Note
here that PA does not run the pending cycle, instead, PA grants the bus to PB to allow PB to run its
pending cycle.

In Diagram (c) of Figure 17-4, PB is running the pending transaction on the processor bus, and PA
asserts a request for the bus to PB. The bus is granted to PA, and Diagram (d) of Figure 17-4 shows
PA running the last pending cycle on the bus.

Figure 17-3. Dual-Processor Arbitration Interface

A6129-01

Primary
Processor

A31-A3 D63-D0

Dual
Processor

Processor Control

Processor Data Bus

Processor Address Bus

PBREQ#

PBGNT#

BOFF#

AHOLD

LOCK#

BREQ

HOLD

HLDA

PBREQ#

PBGNT#

BOFF#

AHOLD

LOCK#

BREQ

HOLD

HLDA
D63-D0 A31-A3
17-234 Embedded Pentium® Processor Family Developer’s Manual

Microprocessor Initialization and Configuration
Figure 17-4. Typical Dual-Processor Arbitration Example

A6139-01

Primary
Processor

Dual
Processor

MRM LRM

Cycle
Completes

Processor Bus

Processor Bus

Bus
Transaction

Automatic
Snoop

Bus
Transaction

Automatic
Snoop

Primary
Processor

Dual
Processor

MRM LRM

[a]
Processor Bus

Primary
Processor Dual

Processor

PBGNT#

PBREQ#

PBGNT#

PBREQ#
PBREQ#

LRM

PA

PA

PB PA PB

PB

MRM

[c]

[b]

Bus
Transaction

Primary
Processor

Dual
Processor

MRM LRM

Processor Bus

PA PB

[d]

Cycle
Pending

Cycle
Pending

Cycle
Pending

Cycle
Pending

Cycle
Pending
Embedded Pentium® Processor Family Developer’s Manual 17-235

Microprocessor Initialization and Configuration
17.4.2.3 Dual-Processor Arbitration from a Parked Bus

When both processors are idle on the processor bus, and the LRM wants to issue an ADS#, there is
an arbitration delay in order that it may become the MRM. Figure 17-5 shows how the embedded
Pentium processor dual-processor arbitration mechanism handles this case.

This example shows the arbitration necessary for the LRM to gain control of the idle processor bus
in order to drive a cycle. In this example, PA is the Primary processor, and PB is the Dual processor.

Diagram (a) of Figure 17-5 shows PB requesting the bus from the MRM (PA). Diagram (b) of
Figure 17-5 shows PA granting control of the bus to PB. Diagram (c) of Figure 17-5 shows PB,
now the MRM, issuing a cycle.

Figure 17-5. Arbitration from LRM to MRM when Bus is Parked

A6140-01

Primary
Processor

Dual
Processor

MRM LRM

Processor Bus

Parked Bus Parked Bus

Primary
Processor

Dual
Processor

MRM LRM

[a]
Processor Bus

PBGNT#PBREQ#

PA PB PA PB

[b]

Bus Cycle

Primary
Processor

Dual
Processor

LRM MRM

Processor Bus

PA PB

[d]
17-236 Embedded Pentium® Processor Family Developer’s Manual

Microprocessor Initialization and Configuration
17.4.3 Dual-Processor Cache Consistency

The embedded Pentium processor incorporates a mechanism to maintain cache coherency with the
Dual processor. The mechanism allows a dual processor to be inserted into the upgrade socket
without special considerations for the system hardware or software. The presence or absence of the
dual processor is totally transparent to the system.

17.4.3.1 Basic Cache Consistency Mechanism

A private snoop interface has been added to the embedded Pentium processor. The interface
consists of two pins (PHIT#, PHITM#) that only connect between the two sockets. The dual
processors arbitrate for the system bus via two private arbitration pins (PBREQ#, PBGNT#).

The LRM processor initiates a snoop sequence for all ADS# cycles to memory that are initiated by
the MRM. The LRM processor asserts the private hit indication (PHIT#) if the data accessed (read
or written) by the MRM matches a valid cache line in the LRM. In addition, if the data requested
by the MRM matches a valid cache line in the LRM that is in the modified state, the LRM asserts
the PHITM# signal. The system snooping indication signals (HIT#, HITM#) do not change state as
a result of a private snoop.

The processor supports system snooping via the EADS# pin in the same manner in which the
processor supports system snooping.

The private snoop interface is bidirectional. The processor that is currently the MRM samples the
private snoop interface, while the processor that is the LRM drives the private snoop signals.

The MRM initiates a self backoff sequence if the MRM detects an assertion of the PHITM# signal
while running a bus cycle. The self backoff sequence involves the following steps:

1. The MRM allows the cycle that was requested on the bus to finish. However, the MRM
ignores the data returned by the system.

2. The MRM-LRM exchanges ownership of the bus (as well as MRM-LRM state) to allow the
LRM to write the modified data back to the system.

3. The bus ownership will exchange one more time to allow the original bus master ownership of
the bus. At this point the MRM retries the cycle, receiving the fresh data from the system or
writing the data again.

The MRM uses an assertion of the PHIT# signal as an indication that the requested data is being
shared with the LRM. Independent of the WB/WT# pin, a cache line is placed in the cache in the
shared state if PHIT# is asserted. This makes all subsequent writes to that line externally visible
until the state of the line becomes exclusive (E or M states). In a uniprocessor system, the line may
have been placed in the cache in the E state. In this situation, all subsequent writes to that line are
not visible on the bus until the state is changed to I.

17.4.3.2 Cache Consistency Interface

Figure 17-6 details the hardware cache consistency interface.

Note: For proper operation, PHIT# and PHITM# must not be loaded by the system.
Embedded Pentium® Processor Family Developer’s Manual 17-237

Microprocessor Initialization and Configuration

ssor

ons.
rm
17.4.3.3 Pin Modifications Due to the Dual-Processor

The processor, when operating in dual processing mode, modifies the functionality of the following
signals:

• A20M#, ADS#, BE4#–BE0#, CACHE#, D/C#, FERR#, FLUSH#, HIT#, HITM#, HLDA,
IGNNE#, LOCK#, M/IO#, PCHK#, RESET, SCYC, SMIACT#, W/R#

Table 17-10 on page 17-251 summarizes the functional changes of all the pins in dual proce
mode.

17.4.3.4 Locked Cycles

The processor implements atomic bus transactions by asserting the LOCK# pin. Atomic
transactions can be initiated explicitly in software by using a LOCK prefix on specific instructi
In addition, atomic cycles may be initiated implicitly for instructions or transactions that perfo
locked read-modify-write cycles. By asserting the LOCK# pin, the processor indicates to the
system that the bus transaction in progress cannot be interrupted.

Figure 17-6. Cache Consistency Interface

A6141-01

Primary
Processor

A31-A3 D63-D0

Dual
Processor

Processor Control

Processor Data Bus

Processor Address Bus

CACHE#

KEN#

BRDY#

ADS#

AHOLD

EADS#

HITM#

HIT#

PHIT#

PHITM#

W/R#

M/IO#

D/C#

EWBE#

WB/WT#

CACHE#

KEN#

BRDY#

ADS#

AHOLD

EADS#

HITM#

HIT#

PHIT#

PHITM#

W/R#

M/IO#

D/C#

EWBE#

WB/WT#

D63-D0 A31-A3
17-238 Embedded Pentium® Processor Family Developer’s Manual

Microprocessor Initialization and Configuration
Lock cycles adhere to the following sequence:

1. An unlocked writeback occurs when a cache line is in the modified state in the MRM
processor. Two unlocked write back cycles may be required if the locked item spans two cache
lines that are both in the modified state.

2. A locked read to a cache line that is in the shared, exclusive or invalid state is always run on
the system bus. The cache line always is moved to the invalid state at the completion of the
cycle. A locked read cycle that is run by the MRM could hit a line that is in the modified state
in the LRM. In this case, the LRM asserts the PHITM# signal, indicating that the requested
data is modified in the LRM data cache. The MRM completes the locked read, but ignores the
data returned by the system. The components exchange ownership of the bus, allowing the
Modified cache line to be written back with LOCK# still active. The sequence completes with
the original bus owner re-running the locked read followed by a locked write. The sequence is
as shown in Figure 17-7.

In Figure 17-7, the small box inside each processor indicates the state of an individual cache line in
the sequence shown above. Diagram (c) of Figure 17-7 shows the locked writeback occurring as a
result of the inter-processor snoop hit to the M-state line.

Figure 17-7. Dual-Processor Cache Consistency for Locked Accesses

A6142-01

Primary
Processor

Dual
Processor

MRM LRM

Cycle
Completes

Processor Bus

Processor Bus

Locked
READ

Automatic
Snoop

Locked
Write Back

Primary
Processor

Dual
Processor

MRM LRM

[a]
Processor Bus

Primary
Processor Dual

Processor

PBGNT#

PBREQ#

PBGNT#

PBREQ#

PHITM#

LRM

PA

PA

PB PA PB

PB

MRM

[c]

[b]

Locked Read
Locked Write

Primary
Processor

Dual
Processor

MRM LRM

Processor Bus

PA PB

[d]

I

I IM

M

I

MI
Embedded Pentium® Processor Family Developer’s Manual 17-239

Microprocessor Initialization and Configuration
17.4.3.5 External Snoop Examples

Example 17-1. During a Write to an M-State Line

The following set of diagrams illustrates the actions performed when one processor attempts a
write to a line that is contained in the cache of the other processor. In this situation, the cached line
is in the M state in the LRM processor. The external snoop and the write are to the same address in
this example. In this example, PA is the Primary processor, and PB is the Dual processor.

In diagram (a) of Figure 17-8, processor PA starts a write cycle on the bus to a line that is in the M
state in processor PB. Processor PB notifies PA that the write transaction has hit an M-state line in
diagram (b) of Figure 17-8 by asserting the PHITM# signal. The MRM (PA) completes the write
cycle on the bus as if the LRM processor did not exist.

In this example, an external snoop happens just as the write cycle completes on the bus, but before
PB has a chance to write the modified data back to the system memory. Diagram (b) of Figure 17-8
shows PB asserting the HITM# signal, informing the system that the snoop address is cached in the
dual processing pair and is in the modified state. The external snoop in this example is hitting the
same line that caused the PHITM# signal to be asserted.

Diagram (c) of Figure 17-8 shows that an arbitration exchange has occurred on the bus, and PB is
now the MRM. Processor PB writes back the M state line; it appears to the system as if a single
processor was completing a snoop transaction.

Finally, diagram (d) of Figure 17-8 shows processor PA re-running the original write cycle after PB
has granted the bus back to PA.

Figure 17-8. Dual-Processor Cache Consistency for External Snoops

A6157-01

Primary
Processor

Dual
Processor

MRM LRM

Cycle
Completes

Processor Bus

Write
Cycle

Automatic
Snoop

Write
Back

Primary
Processor

Dual
Processor

MRM LRM

[a]
Processor Bus HITM#

Processor Bus HITM#

Primary
Processor Dual

Processor

PBREQ#

PBGNT#

PBREQ#

PHITM#

PBGNT#

LRM

PA

PA

PB PA PB

PB

MRM

[c]

[b]

Write
Cycle

Primary
Processor

Dual
Processor

MRM LRM

Processor Bus

PA PB

[d]

I

I I I I

M I M

System
Snoop
17-240 Embedded Pentium® Processor Family Developer’s Manual

Microprocessor Initialization and Configuration
Example 17-2. During an MRM Self-Backoff

The following diagrams show an example in which an external snoop hits an M-state line during a
self backoff sequence.

In this example, PA is the Primary processor, and PB is the Dual processor.

In diagram (a) of Figure 17-9 processor PA initiates a write cycle that hits a line that is modified in
processor PB. In diagram of (b) of Figure 17-9, processor PB notifies PA that the line is modified in
its cache by asserting the PHITM# signal.

Diagram (c) of Figure 17-9 shows an external snoop occurring just as the bus arbitration has
exchanged ownership of the bus. Processor PB asserts the HITM# signal to notify the system that
the external snoop has hit a line in the cache. In this example, the external snoop hits a different
line that was just hit on the private snoop.

In diagram (d) of Figure 17-9, processor PB takes ownership of the processor bus from PA.
Processor PB initiates a writeback of the data just hit on the external snoop even though a
writeback due to the private snoop is pending. The external snoop causes processor PB to delay the
writeback that was initiated by the private snoop (to line 1).

Diagram (f) of Figure 17-9 shows the writeback of the modified data hit during the initial private
snoop. Processor PA then restarts the write cycle for the second time, and completes the write cycle
in Diagram (h) of Figure 17-9.
Embedded Pentium® Processor Family Developer’s Manual 17-241

Microprocessor Initialization and Configuration
Figure 17-9. Dual-Processor Cache Consistency for External Snoops

A6143-01

Primary
Processor

Dual
Processor

MRM LRM

Write Cycle
(line 1)

Processor Bus

Processor Bus

Write Cycle
(line 1)

Automatic
Snoop

Cycle
Completes

Primary
Processor

Dual
Processor

MRM LRM

[a]
Processor Bus

HITM# Processor Bus HITM#

Primary
Processor

Dual
Processor

PBGNT#

PBREQ#

PBREQ#

PBREQ#

PHITM#

LRM

PA

PA

PB PA PB

PB

MRM

[c]

[b]

Write
Back
(line 2)

Primary
Processor

Dual
Processor

LRM MRM

PA PB

[d]

I1 M1

I1 M1

M2

M2

I1 M1

M2

I1 M1

M2

Primary
Processor

Dual
Processor

LRM MRM

Write Back
(line 1)

Processor Bus

Write Back
Completes
(line2)

Primary
Processor

Dual
Processor

LRM MRM

[e]
Processor Bus

PBREQ#

PA PB PA PB

[f]

I1

I2

M1 I1 I1

I2

PBGNT#
Primary

Processor
Dual

Processor

MRM LRM

Write Cycle
(line 1)

Processor Bus

Primary
Processor

Dual
Processor

MRM LRM

[g]
Processor Bus

PA PB PA PB

[h]

I1 I1

I2

I1 I1

I2

System
Snoop
(hits line 2)
17-242 Embedded Pentium® Processor Family Developer’s Manual

Microprocessor Initialization and Configuration
17.4.3.6 State Transitions Due to Dual-Processor
Cache Consistency

The following tables outline the state transitions that a cache line can encounter during various
conditions.

Table 17-3. Read Cycle State Transitions Due to Dual-Processor

Present State Pin Activity Next State Description

M n/a M Read hit. Data is provided to the processor
core by the cache. No bus activity.

E n/a E Read hit. Data is provided to the processor
core by the cache. No bus activity.

S n/a S Read hit. Data is provided to the processor
core by the cache. No bus activity.

I

CACHE#(L) &
KEN#(L) &

WB/WT#(H) &
PHIT#(H) &

PWT(L)

E

Cache miss. The cacheability information
indicates that the data is cacheable. A bus
cycle is requested to fill the cache line.
PHIT#(H) indicates that the data is not
shared by the LRM processor.

I

CACHE#(L) &
KEN#(L) &

[WB/WT#(L) +
PHIT#(L) +
PWT(H)]

S

Cache miss. The line is cacheable and a
bus cycle is requested to fill the cache line.
In this case, either the system or the LRM is
sharing the requested data.

I CACHE#(H) +
KEN#(h) I Cache miss. The system or the processor

indicates that the line is not cacheable.

NOTE: The assertion of PHITM# would cause the requested cycle to complete as normal, with the requesting
processor ignoring the data returned by the system. The LRM processor would write the data back
and the MRM would retry the cycle. This is called a self backoff cycle.
Embedded Pentium® Processor Family Developer’s Manual 17-243

Microprocessor Initialization and Configuration
Table 17-4. Write Cycle State Transitions Due to Dual-Processor

Present State Pin Activity Next State Description

M n/a M Write hit. Data is written directly to the
cache. No bus activity.

E n/a M Write hit. Data is written directly to the
cache. No bus activity.

S PWT(L) &
WB/WT#(H) E

Write hit. Data is written directly to the
cache. A write-through cycle is generated
on the bus to update memory and invalidate
the contents of other caches. The LRM
invalidates the line if it is sharing the data.
The state transition from S to E occurs
AFTER the write completes on the
processor bus.

S PWT(H) +
WB/WT#(L) S

Write hit. Data is written directly to the
cache. A write-through cycle is generated
on the bus to update memory and invalidate
the contents of other caches. The LRM
invalidates the line if it is sharing the data.

I n/a I
Write miss (the Pentium® processor does
not support write allocate). The LRM
invalidates the line if it is sharing the data.

Table 17-5. Inquire Cycle State Transitions Due to External Snoop

Present State Next State
(INV=1)

Next State
(INV=0) Description

M I S
Snoop hit to an M-state line. HIT# and
HITM# are asserted, followed by a
writeback of the line.

E I S Snoop hit. HIT# will be asserted.

S I S Snoop hit. HIT# will be asserted.

I I I Snoop miss.

Table 17-6. State Transitions in the LRM Due to Dual-Processor “Private” Snooping

Present State Next State
(MRM Write)

Next State
(MRM Read) Description

M I S

Snoop hit to an M state line. PHIT# and
PHITM# are asserted, followed by a
write-back of the line. Note that HIT#
and HITM# are NOT asserted.

E I S Snoop hit. PHIT# is asserted.

S I S Snoop hit. PHIT# is asserted.

I I I Snoop miss.
17-244 Embedded Pentium® Processor Family Developer’s Manual

Microprocessor Initialization and Configuration
17.5 Designing with Symmetrical Dual Processors

Figure 17-10 shows how a typical system might be configured to support the Dual processor.

Refer to Table 17-10 on page 17-251 for a complete list of dual processor signal connection
requirements.

17.5.1 Dual Processor Bus Interface

The processor in the dual-processor configuration is designed to have an identical bus interface to a
standard processor system. The processor in dual processor mode has the capability to run the
following types bus of cycles:

• Single reads and writes from one processor.

• Burst reads and writes from one processor.

• Address pipelining with up to two outstanding bus cycles from one processor.

• Inter-processor address pipelining with up to two outstanding bus cycles, one from each
processor.

All cycles run by the two processors are clock-accurate to corresponding processor bus cycles.

Figure 17-10. Dual-Processor Configuration

A6152-01

Primary
Processor

A31-A3 D63-D0

Dual
Processor

System Control

Processor Control

Processor Data Bus

Processor Address Bus

Private Interface Private Interface

TCK

CACHE#

KEN#

BRDY#

STPCLK#

SMI#

TDO

ADS#

FLUSH#

TCK

CACHE#

KEN#

BRDY#

STPCLK#

SMI#

TDI

TDI TDO

ADS#

FLUSH#

D63-D0 A31-A3
Embedded Pentium® Processor Family Developer’s Manual 17-245

Microprocessor Initialization and Configuration
17.5.1.1 Intra- and Inter-Processor Pipelining

In uni-processor mode, the embedded Pentium processor supports bus pipelining with the use of
the NA# pin. The bus pipelining concept has been extended to the dual processor pair by allowing
inter-processor pipelining. This mechanism allows an exchange between LRM and MRM on
assertions of NA#.

When NA# is sampled low, the current MRM processor may drive one more cycle onto the bus or
it may grant the address bus and the control bus to the LRM. The MRM gives the bus to the LRM
only if its current cycle can have another cycle pipelined into it.

The cacheability (KEN#) and cache policy (WB/WT#) indicators for the current cycle are sampled
either in the same clock in which NA# is sampled or with the first BRDY# of the current cycle,
whichever comes first.

There are no restrictions on NA# due to dual processing mode.

Inter-processor pipelining is not supported in some situations, as shown in Table 17-7.

The table indicates that, unlike the uni-processor system, back-to-back write cycles are never
pipelined between the two processors.

The processor alone may pipeline I/O cycles into non-I/O cycles, non-I/O cycles into I/O cycles,
and I/O cycles into I/O cycles only for OUTS or INS (e.g., string instructions). I/O cycles may be
pipelined in any combination (barring writes into writes) between the Primary and Dual processors.

17.5.1.2 FLUSH# Cycles

The on-chip caches can be flushed by asserting the FLUSH# pin. The FLUSH# pin must be
connected to both the Primary and Dual processor parts. All cache lines in the instruction cache and
all lines in the data cache that are not in the modified state are invalidated when the FLUSH# pin is
asserted. All modified lines in the data cache are written back to system memory and then marked
as invalid in the data cache. The processor runs a special bus cycle to indicate that the flush process
has completed.

Table 17-7. Primary and Dual Processor Pipelining

Cycle Types
Primary and Dual Processor Pipelining

Inter-processor Intra-processor

First Cycle Pipelined Cycle Primary<>Dual Primary<>Primary Dual<>Dual

Write Back X No No No

LOCK# X No No No

X Write Back No No No

X LOCK# No No No

Write Write No Yes Yes

Write Read Yes Yes Yes

Read Write Yes Yes Yes

Read Read Yes Yes Yes

I/O I/O† Yes No No

† I/O write cycles may not be inter-processor pipelined into I/O write cycles
17-246 Embedded Pentium® Processor Family Developer’s Manual

Microprocessor Initialization and Configuration

t least

stem, a
flushed.

e
s will

an run
 the
essor

g
ined,

 the
cycle.
The embedded Pentium processor incorporates the following mechanism to present to the system a
unified view of the cache flush operation when used with a Dual processor part:

1. FLUSH# is asserted by the system.

2. The Dual processor requests the bus (if it is not already MRM when FLUSH# is recognized).
The Dual processor will always perform the cache flush operation first, but will not run a flush
special cycle on the system bus.

3. The Dual processor completes writebacks of modified cache lines, and invalidates all others.

4. Once the Dual processor caches are completely invalid, the processor grants the bus to the
Primary processor.

5. The Primary processor completes any pending cycles. The Primary processor may have
outstanding cycles if the Dual processor initiated its flush operation prior to the Primary
processor completing pending operations.

6. Primary processor flushes both of its internal caches and runs the cache flush special cycle.
The Primary processor maintains its status of MRM. The Dual processor halts all code
execution while the Primary processor is flushing its caches, and does not begin executing
code until it recognizes the flush acknowledge special cycle.

The atomic flush operation assumes that the system can tolerate potentially longer interrupt latency
during flush operations. The interrupt latency in a dual processor system can be double the
interrupt latency in a single processor system during flush operations.

The processor primary cache can be flushed using the WBINVD instruction. In a dual processor
system, the WBINVD instruction only flushes the cache in the processor that executed the
instruction. The other processor’s cache will be intact.

If the FLUSH# signal is deasserted before the corresponding Flush Acknowledge cycle, the
FLUSH# signal must not be asserted again until the Flush Acknowledge cycle is completed.
Similarly, if the FLUSH# signal is asserted in dual processing mode, it must be deasserted a
one clock prior to BRDY# of the Flush Acknowledge cycle to avoid dual-processor arbitration
problems. This requirement does not apply to a uni-processor system. In a dual processor sy
single Flush Acknowledge cycle is generated after the caches in both processors have been

Warning: If FLUSH# is recognized active a second time by the Primary and Dual processors prior to th
completion of the Flush Acknowledge special cycle, the private bus arbitration state machine
be corrupted.

17.5.1.3 Arbitration Exchange with Bus Parking

The dual processor pair supports a number of different types of bus cycles. Each processor c
single-transfer cycles or burst-transfer cycles. A processor can only initiate bus cycles if it is
MRM. To gain ownership of the bus, the LRM processor requests the bus from the MRM proc
by asserting PBREQ#.

In response to PBREQ# the MRM grants the address and control buses to the LRM by assertin
PBGNT#. If NA# is not asserted or if the current cycle on the bus is not capable of being pipel
the MRM waits until the end of the active cycle before granting the bus to the LRM. Once
PBGNT# is asserted, since the bus is idling, the LRM immediately becomes the MRM. While
MRM, the processor owns the address and the control buses and can therefore start a new
Embedded Pentium® Processor Family Developer’s Manual 17-247

Microprocessor Initialization and Configuration
17.5.1.4 BOFF#

If BOFF# is asserted, the dual-processor pair immediately (in the next clock) floats the address,
control, and data buses. Any bus cycles in progress are aborted, and any data returned to the
processor in the clock in which BOFF# is asserted is ignored. In response to BOFF#, Primary and
Dual processors float the same pins as when HOLD is active.

The Primary and Dual processors may reorder cycles after a BOFF#. The reordering occurs if there
is inter-processor pipelining at the time of the BOFF#, but the system cannot change the
cacheability of the cycles after the BOFF#. Note that there could be a change of bus ownership
transparent to the system while the processors are in the backed-off state. Table 17-8 illustrates the
flow of events which would result in cycle reordering due to BOFF#:

17.5.1.5 Bus Hold

The processor supports a bus hold/hold acknowledge protocol using the HOLD and HLDA signals.
When the processor completes all outstanding bus cycles, it releases the bus by floating the
external bus, and driving HLDA active. HLDA normally is driven two clocks after the later of the
last BRDY# or HOLD being asserted, but may be up to six clocks due to active internal APIC
cycles. Because of this, it is possible that an additional cycle may begin after HOLD is asserted but
before HLDA is driven. Therefore, asserting HOLD does not prevent a dual-processor arbitration
from occurring before HLDA is driven out. Even if an arbitration switch occurs, no new cycles are
started after HOLD has been active for two clocks.

Table 17-8. Cycle Reordering Due to BOFF#

Time† Processor A System Processor B

0 ADS# driven -- --

1 -- NA# active --

2 -- -- ADS# driven

3 Bus float BOFF# active Bus float

4 -- EADS# active --

5 -- -- HITM# driven

6 -- BOFF# inactive --

7 -- -- Write back ‘M’ data

8 -- BRDY#s --

9 -- -- Restart ADS#

10 Restart ADS# -- --

† Time is merely sequential, NOT measured in CLKs.
17-248 Embedded Pentium® Processor Family Developer’s Manual

Microprocessor Initialization and Configuration

ssor
ctions

te

the

s if
n

 owns

sor

, from
special

17.5.2 Dual Processing Power Management

17.5.2.1 STPCLK#

The Primary and Dual processor STPCLK# signals may be tied together or left separate. Refer to
Chapter 24, “Power Management.” for more information on stop clock and Autohalt.

17.5.2.2 System Management Mode

The embedded Pentium processor supports system management mode (SMM) with a proce
inserted in the upgrade socket. SMM provides a means to implement power management fun
and operating system independent functions. SMM consists of an interrupt (SMI), an alterna
address space and an instruction (RSM). SMM is entered by asserting the SMI# pin or delivering
the SMI interrupt via the local APIC.

Although SMM functions the same when a Dual processor is inserted in Socket 5/Socket 7,
dual processor operation of the system must be carefully considered. The SMI# pins may be tied
together or not, depending upon the power management features supported.

17.5.3 Other Dual-Processor Considerations

17.5.3.1 Strong Write Ordering

The ordering of write cycles in the processor can be controlled with the EWBE# pin. During
uniprocessor operation, the EWBE# pin is sampled by the processor with each BRDY# assertion
during a write cycle. The processor stalls all subsequent write operations to E or M state line
EWBE# is sampled inactive. If the EWBE# pin is sampled inactive, it continues to be sampled o
every clock until it is found to be active.

In dual processing mode, each processor tracks EWBE# independently of bus ownership. EWBE#
is sampled and handled independently between the two processors. Only the processor that
the bus (MRM) samples EWBE#. Once sampled inactive, the processor stalls subsequent write
operations.

17.5.3.2 Bus Snarfing

The dual processor pair does not support cache-to-cache transfers (bus snarfing). If a procesPB
requires data that is modified in processor PA, processor PA writes the data back to memory. After
PA has completed the data transfer, PB runs a read cycle to memory. Where PA is either the Primary
or the Dual processor, and PB is the other processor.

17.5.3.3 Interrupts

A processor may need to arbitrate for the use of the bus as a result of an interrupt. However
the simple arbitration model used by the embedded Pentium processor, an interrupt is not a
case. There is no interaction between dual-processor support and the interrupt model in the
embedded Pentium processor.
Embedded Pentium® Processor Family Developer’s Manual 17-249

Microprocessor Initialization and Configuration
17.5.3.4 INIT Sequences

The INIT operation in dual-processor mode is exactly the same as in uni-processor mode. The two
INIT pins must be tied together. However, in dual processor mode, the Primary processor must
send an IPI and a starting vector to the Dual processor via the local APIC modules.

17.5.3.5 Boundary Scan

The embedded Pentium processor supports the full IEEE JTAG specification. The system designer
is responsible to configure an upgrade ready system in such a way that the addition of a Dual
processor in Socket 7 allows the boundary scan chain to functional as normal. This could be
implemented with a jumper in Socket 7 that connects the TDI and TDO pins. The jumper would
then be removed when the dual processor is inserted.

Alternatively, Socket 7 could be placed near the end of the boundary scan chain in the system. A
multiplexer in the system boundary scan logic could switch between the TDO of the Primary and
the dual processors as a Dual processor part is inserted. An illustration of this approach is shown in
Figure 17-11.

17.5.3.6 Presence of a Processor in Socket 7

The Dual processor drives the DPEN# signal low during RESET to indicate to the Primary
processor that a processor is present in Socket 7. The processor samples this line during RESETs
falling edge.

DPEN# shares a pin with the APIC PICD0 signal.

17.5.3.7 MRM Processor Indication

In a dual-processor system, the D/P# (Dual processor/Primary processor Indication) signal
indicates which processor is running a cycle on the bus. Table 17-9 shows how the external
hardware can determine which processor is the MRM.

Figure 17-11. Dual-Processor Boundary Scan Connections

A6155-01

MUX

TDI TDI

Processor in Socket 5 Present

Level
Translator

Primary
Processor Socket 5

Other
System Logic

TDI

TDO TDI

TDO TDO TDO
17-250 Embedded Pentium® Processor Family Developer’s Manual

Microprocessor Initialization and Configuration
D/P# can be sampled by the system with ADS# to determine which processor is driving the cycle
on the bus. D/P# is driven only by the processor when operating as the Primary processor. Because
of this, this signal is never driven by the Dual processor.

17.5.4 Dual-Processor Pin Functions

All the inputs pins are sampled with bus clock or test clock, and therefore, must meet setup and
hold times with respect to the rising edge of the appropriate clock. In the dual-processor
configuration, the RESET and FLUSH# pins have been changed to be synchronous (i.e., to meet
setup and hold times). There have been no changes to the other existing input pins.

If the FLUSH# signal is deasserted before the corresponding FLUSH ACK cycle, the FLUSH#
signal must not be asserted again until the FLUSH ACK cycle is generated. This requirement does
not apply to a uni-processor system. In a dual processor system, a single FLUSH ACK cycle is
generated after the caches in both processors have been flushed.

All system output pins are driven from the rising edge of the bus clock and meet maximum and
minimum valid delays with respect to the bus clock. TDO is driven with respect to the rising edge
of TCK and PICD0–PICD1 are driven with respect to the rising edge of PICCLK.

Table 17-10 summarizes the functional changes of all the pins in dual-processor mode.
.

Table 17-9. Using D/P# to Determine MRM

D/P# Bus Owner

0 Primary processor is MRM

1 Dual processor is MRM

Table 17-10. Dual-Processor Pin Functions vs. Pentium® Processor (Sheet 1 of 4)

Pin Name I/O Load
(Note 1)

Same?
(Note 2)

Tied
Together?

(Note 3)
Comments

A31–A3 I/O Y N Yes When the MRM becomes the LRM (and issues
PBGNT#), it three-states these signals for one CLK.

A20M# I Y Y Yes
Used in virtual mode and possibly in real mode by
DOS and DOS extenders. Internally masked by the
Dual processor.

ADS#,
ADSC#

I/O

O
Y N Yes

ADS# and ADSC# are three-stated by the LRM
processor in order to allow the MRM processor to
begin driving them. There are no system
implications.

AHOLD I Y Y Yes

AP I/O Y N Yes When the MRM becomes the LRM (and issues
PBGNT#), it three-states this signal for one CLK.

NOTES:
1. “Load” indicates whether the pin would introduce a capacitive load to the system board due to the presence of

the dual processor.
2. “N” indicates that there is a minor functional change to the pin(s) either as an enhancement to the embedded

Pentium processor or due to dual processor operation.
3. “Yes” means that both processors must see the same value on the pin(s) for proper dual-processor operation.

“No” means that the system must provide the signal to each processor independently. “May be” means that
the system designer can choose to provide the signal to both processors or provide independent signals to
each processor.
Embedded Pentium® Processor Family Developer’s Manual 17-251

Microprocessor Initialization and Configuration
APCHK# O N Y No Requires a system OR function.

BE7–BE5#
BE4# –BE0#

O
I/O

Y
Y

N
N

Yes
Yes

When the MRM becomes the LRM (and issues
PBGNT#), it three-states these signals for one CLK.
BE3#–BE0# are used by the local APIC modules to
load the APIC_ID at RESET. BE3#–BE0# will be
three-stated by the Primary and Dual processors
during RESET.

BF I Y n/a Yes

BOFF# I Y Y Yes

BP3–BP0 O N N No

BP3–BP0 now only indicates breakpoint match in
the I/O clock. Each processor must have different
breakpoints. Note that BP1–BP0 are muxed with
PM1–PM0.

BRDY#,
BRDYC# I Y Y Yes

BREQ O Y N Yes The MRM drives this signal as a combined bus cycle
request for itself and the LRM.

BUSCHK# I Y Y Yes

CACHE# I/O Y N Yes When the MRM becomes the LRM (and issues
PBGNT#), it three-states this signal for one CLK.

CLK I Y Y Yes Both processors must use the same system clock.

CPUTYP I Y n/a No

D/C# I/O Y N Yes When the MRM becomes the LRM (and issues
PBGNT#), it three-states this signal for one CLK.

D/P# O n/a n/a No The Primary processor always drives this signal.
This output is not defined on the Dual processor.

D63–D0 I/O Y Y Yes

DP7–DP0 I/O Y Y Yes

EADS# I Y Y Yes

EWBE# I Y Y Yes

This signal is sampled active with BRDY#, but
inactive asynchronously. For optimized performance
(minimum number of write E/M stalls) the chip
set/platform should allow a dead clock between
buffer going empty to buffer going full. This allows
this signal to be completely independent between
the two processors, rather than having one stall
internal cache writes due to the other filling the
external buffer.

FERR# O Y Y Yes
Used for DOS floating-point compatibility. The
Primary processor drives this signal. The Dual
processor never drives this signal.

Table 17-10. Dual-Processor Pin Functions vs. Pentium® Processor (Sheet 2 of 4)

Pin Name I/O Load
(Note 1)

Same?
(Note 2)

Tied
Together?
(Note 3)

Comments

NOTES:
1. “Load” indicates whether the pin would introduce a capacitive load to the system board due to the presence of

the dual processor.
2. “N” indicates that there is a minor functional change to the pin(s) either as an enhancement to the embedded

Pentium processor or due to dual processor operation.
3. “Yes” means that both processors must see the same value on the pin(s) for proper dual-processor operation.

“No” means that the system must provide the signal to each processor independently. “May be” means that
the system designer can choose to provide the signal to both processors or provide independent signals to
each processor.
17-252 Embedded Pentium® Processor Family Developer’s Manual

Microprocessor Initialization and Configuration
FLUSH# I Y Y Yes

In a dual-processor system, the flush operation is
atomic with a single flush acknowledge bus cycle.
Therefore, FLUSH# must not be re-asserted until
the corresponding FLUSH ACK cycle is generated.

FRCMC# I N Y Yes
Both processors must be in Master mode. A
processor in the Socket 7 cannot be used as a
Checker.

HIT# I/O Y N Yes
This signal is asserted by the MRM based on the
combined outcome of the inquire cycle between the
two processors.

HITM# I/O Y N Yes See HIT#.

HLDA I/O Y N Yes Driven by the MRM.

HOLD I Y Y Yes

IERR# O N Y No

IGNNE# I Y Y Yes The Dual processor ignores this signal.

INIT I N N Yes In dual-processor mode, the Dual processor
requires an IPI during initialization.

INTR/LINT0 I N N May be
If the APIC is enabled, this pin is a local interrupt. If
the APIC is hardware disabled, this pin function is
not changed.

INV I Y Y Yes

KEN# I Y Y Yes

LOCK# I/O Y N Yes

The LRM samples the value of LOCK#, and drives
the sampled value in the clock in which it gets
ownership of the dual-processor bus. If sampled
active, then the LRM keeps driving the LOCK#
signal until ownership changes again.

M/IO# I/O Y N Yes When the MRM becomes the LRM (and issues
PBGNT#), it three-states this signal for one CLK.

NA# I Y Y Yes

NC n/a N Y No

NMI/LINT1 I N Y May be
If the APIC is enabled, then this pin is a local
interrupt. If the APIC is hardware disabled, this pin
function is not changed.

PBGNT# I/O n/a n/a Yes This signal is always driven by one of the
processors.

PBREQ# I/O n/a n/a Yes This signal is always driven by one of the
processors.

PCD O Y N Yes When the MRM becomes the LRM (and issues
PBGNT#), it three-states this signal for one CLK.

Table 17-10. Dual-Processor Pin Functions vs. Pentium® Processor (Sheet 3 of 4)

Pin Name I/O Load
(Note 1)

Same?
(Note 2)

Tied
Together?

(Note 3)
Comments

NOTES:
1. “Load” indicates whether the pin would introduce a capacitive load to the system board due to the presence of

the dual processor.
2. “N” indicates that there is a minor functional change to the pin(s) either as an enhancement to the embedded

Pentium processor or due to dual processor operation.
3. “Yes” means that both processors must see the same value on the pin(s) for proper dual-processor operation.

“No” means that the system must provide the signal to each processor independently. “May be” means that
the system designer can choose to provide the signal to both processors or provide independent signals to
each processor.
Embedded Pentium® Processor Family Developer’s Manual 17-253

Microprocessor Initialization and Configuration
PCHK# O N Y May be
May be wire-ANDed together in the system, tied
together, or the chip set may have two PCHK#
inputs for dual-processor data parity.

PEN# I Y Y Yes

PHIT# I/O n/a n/a Yes This signal is always driven by one of the
processors.

PHITM# I/O n/a n/a Yes This signal is always driven by one of the
processors.

PHITM# I/O n/a n/a Yes This signal is always driven by one of the
processors.

PICCLK I Y n/a Yes

PICD1–
PICD0 I/O Y n/a Yes

PM1–PM0 O N N No
Each processor may track different performance
monitoring events. Note that PM1–PM0 are mux’d
with BP1–BP0.

PRDY O N Y No

PWT O Y N Yes When the MRM becomes the LRM (and issues
PBGNT#), it three-states this signal for one CLK.

R/S# I N Y No

RESET I Y Y Yes
In dual-processor mode, RESET must be
synchronous to the processor CLK that goes to the
Primary and Dual processors.

SCYC I/O Y N Yes When the MRM becomes the LRM (and issues
PBGNT#), it three-states this signal for one CLK.

SMI# I N Y May be Refer to Chapter 24.

SMIACT# O N Y Yes Refer to Chapter 24.

STPCLK# I n/a n/a May be Refer to Chapter 24.

TCK I n/a n/a May be System dependent

TDI I n/a n/a No System dependent

TDO O n/a n/a No System dependent

TMS I n/a n/a May be System dependent

TRST# I n/a n/a May be System dependent

VCC I N N Yes VCC on the processor must be connected to 3.3 V.

VSS I N Y Yes

W/R# I/O Y N Yes When the MRM becomes the LRM (and issues
PBGNT#), it three-states this signal for one CLK.

WB/WT# I Y Y Yes

Table 17-10. Dual-Processor Pin Functions vs. Pentium® Processor (Sheet 4 of 4)

Pin Name I/O Load
(Note 1)

Same?
(Note 2)

Tied
Together?
(Note 3)

Comments

NOTES:
1. “Load” indicates whether the pin would introduce a capacitive load to the system board due to the presence of

the dual processor.
2. “N” indicates that there is a minor functional change to the pin(s) either as an enhancement to the embedded

Pentium processor or due to dual processor operation.
3. “Yes” means that both processors must see the same value on the pin(s) for proper dual-processor operation.

“No” means that the system must provide the signal to each processor independently. “May be” means that
the system designer can choose to provide the signal to both processors or provide independent signals to
each processor.
17-254 Embedded Pentium® Processor Family Developer’s Manual

	Microprocessor Initialization and Configuration 17
	17.1 Power Up Specifications
	17.2 Test and Configuration Features
	17.2.1 Built-in Self-Test
	17.2.2 Three-state Test Mode
	17.2.3 Functional Redundancy Checking
	17.2.4 Lock Step APIC Operation

	17.3 Initialization with RESET, INIT and BIST
	Table 17�1. Pentium® Processor Reset Modes
	Table 17�2. Register State after RESET, INIT and BIST (Sheet 1 of 2)
	17.3.1 Recognition of Interrupts after RESET
	17.3.2 Pin State During/After RESET
	Figure 17�1. Pin States during Reset

	17.4 Managing and Designing with the Symmetrical Dual Processing Configuration
	17.4.1 Dual Processor Bootup Protocol
	17.4.1.1 Bootup Overview
	17.4.1.2 BIOS/Operating System Requirements
	Figure 17�2. EAX Bit Assignments for CPUID

	17.4.1.3 System Requirements
	17.4.1.4 Start-up Behavior
	17.4.1.5 Dual-Processor Presence Indication

	17.4.2 Dual-Processor Arbitration
	17.4.2.1 Basic Dual-Processor Arbitration Mechanism
	17.4.2.2 Dual-Processor Arbitration Interface
	Figure 17�3. Dual-Processor Arbitration Interface
	Figure 17�4. Typical Dual-Processor Arbitration Example

	17.4.2.3 Dual-Processor Arbitration from a Parked Bus
	Figure 17�5. Arbitration from LRM to MRM when Bus is Parked

	17.4.3 Dual-Processor Cache Consistency
	17.4.3.1 Basic Cache Consistency Mechanism
	17.4.3.2 Cache Consistency Interface
	Figure 17�6. Cache Consistency Interface

	17.4.3.3 Pin Modifications Due to the Dual-Processor
	Figure 17�7. Dual-Processor Cache Consistency for Locked Accesses

	17.4.3.5 External Snoop Examples
	Figure 17�8. Dual-Processor Cache Consistency for External Snoops
	Figure 17�9. Dual-Processor Cache Consistency for External Snoops

	17.4.3.6 State Transitions Due to Dual-Processor Cache Consistency
	Table 17�3. Read Cycle State Transitions Due to Dual-Processor
	Table 17�4. Write Cycle State Transitions Due to Dual-Processor
	Table 17�5. Inquire Cycle State Transitions Due to External Snoop
	Table 17�6. State Transitions in the LRM Due to Dual-Processor “Private” Snooping

	17.5 Designing with Symmetrical Dual Processors
	Figure 17�10. Dual-Processor Configuration
	17.5.1 Dual Processor Bus Interface
	17.5.1.1 Intra- and Inter-Processor Pipelining
	Table 17�7. Primary and Dual Processor Pipelining

	17.5.1.2 FLUSH# Cycles
	17.5.1.3 Arbitration Exchange with Bus Parking
	17.5.1.4 BOFF#
	Table 17�8. Cycle Reordering Due to BOFF#

	17.5.1.5 Bus Hold

	17.5.2 Dual Processing Power Management
	17.5.2.1 STPCLK#
	17.5.2.2 System Management Mode

	17.5.3 Other Dual-Processor Considerations
	17.5.3.1 Strong Write Ordering
	17.5.3.2 Bus Snarfing
	17.5.3.3 Interrupts
	17.5.3.4 INIT Sequences
	17.5.3.5 Boundary Scan
	Figure 17�11. Dual-Processor Boundary Scan Connections

	17.5.3.6 Presence of a Processor in Socket 7
	17.5.3.7 MRM Processor Indication
	Table 17�9. Using D/P# to Determine MRM

	17.5.4 Dual-Processor Pin Functions
	Table 17�10. Dual-Processor Pin Functions vs. Pentium® Processor (Sheet 1 of 4)

