
Bus Functional Description 19

Embedded Pentium® family processors support the same bus functionality. The processor bus
supports a 528-Mbyte/s data transfer rate at 66 MHz. All data transfers occur as a result of one or
more bus cycles. This chapter describes the processor bus cycles and the processor data transfer
mechanism.

19.1 Physical Memory and I/O Interface

Processor memory is accessible in 8-, 16-, 32-, and 64-bit quantities. Processor I/O is accessible in
8-, 16-, and 32-bit quantities. The processor can directly address up to 4 Gbytes of physical
memory, and up to 64 Kbytes of I/O.

In hardware, memory space is organized as a sequence of 64-bit quantities. Each 64-bit location
has eight individually addressable bytes at consecutive memory addresses (see Figure 19-1).

The I/O space is organized as a sequence of 32-bit quantities. Each 32-bit quantity has four
individually addressable bytes at consecutive memory addresses. See Figure 19-2 for a conceptual
diagram of the I/O space.

Figure 19-1. Memory Organization

A6159-01

Physical
Memory
4 Gbytes

Physical Memory
Space

64-Bit Wide Memory Organization

FFFFFFFFH

FFFFFFFFH

FFFFFFF8H

FFFFFFF8H

00000007H

00000007H

00000000H

00000000H
BE7# BE6# BE5# BE4# BE3# BE2# BE1# BE0#
Embedded Pentium® Processor Family Developer’s Manual 19-321

Bus Functional Description

l
ddress

rds
lines
ng to
 and

e byte

, word,
ary, but

 or 4-
d that

High-
 form

h the
ble
on
er
Sixty-four-bit memories are organized as arrays of physical quadwords (8-byte words). Physical
quadwords begin at addresses evenly divisible by 8. The quadwords are addressable by physical
address lines A31–A3.

Thirty-two-bit memories are organized as arrays of physical dwords (4-byte words). Physica
dwords begin at addresses evenly divisible by 4. The dwords are addressable by physical a
lines A31–A3 and A2. A2 can be decoded from the byte enables according to Table 19-2.

Sixteen-bit memories are organized as arrays of physical words (2-byte words). Physical wo
begin at addresses evenly divisible by two. The words are addressable by physical address
A31–A3, A2–A1, BHE#, and BLE#. A2 and A1 can be decoded from the byte enables accordi
Table 19-2, BHE# and BLE# can be decoded from the byte enables according to Table 19-3
Table 19-4.

To address 8-bit memories, the lower three address lines (A2–A0) must be decoded from th
enables as indicated in Table 19-2.

19.2 Data Transfer Mechanism

All data transfers occur as a result of one or more bus cycles. Logical data operands of byte
dword, and quadword lengths may be transferred. Data may be accessed at any byte bound
two cycles may be required for misaligned data transfers. The processor considers a 2-byte
byte operand that crosses a 4-byte boundary to be misaligned. In addition, an 8-byte operan
crosses an 8-byte boundary is misaligned.

Like the Intel486™ processor, the processor address signals are split into two components.
order address bits are provided by the address lines A31–A3. The byte enables BE7#–BE0#
the low-order address and select the appropriate byte of the 8-byte data bus.

The byte enable outputs are asserted when their associated data bus bytes are involved wit
present bus cycle as shown in Table 19-1. For both memory and I/O accesses, the byte ena
outputs indicate which of the associated data bus bytes are driven valid for write cycles and
which bytes data is expected back for read cycles. Non-contiguous byte enable patterns nev
occur.

Figure 19-2. I/O Space Organization

A6160-01

Not
Accessible

64 Kbyte
0000FFFCH

00000000H

0000FFFFH

00000003H
19-322 Embedded Pentium® Processor Family Developer’s Manual

Bus Functional Description

g to
BHE#

g to
BHE#
Address bits A2–A0 of the physical address can be decoded from the byte enables accordin
Table 19-2. The byte enables can also be decoded to generate BLE# (byte low enable) and
(byte high enable) to address 16-bit memory systems (see Table 19-3 and Table 19-4).

Address bits A2–A0 of the physical address can be decoded from the byte enables accordin
Table 19-2. The byte enables can also be decoded to generate BLE# (byte low enable) and
(byte high enable) to address 16-bit memory systems (see Table 19-3 and Table 19-4).

Table 19-1. Embedded Pentium® Processor Byte Enables and Associated Data Bytes

Byte Enable Signal Associated Data Bus Signals

BE0# D0–D7 (byte 0 — least significant)

BE1# D8–D15 (byte 1)

BE2# D16–D23 (byte 2)

BE3# D24–D31 (byte 3)

BE4# D32–D39 (byte 4)

BE5# D40–D47 (byte 5)

BE6# D48–D55 (byte 6)

BE7# D56–D63 (byte 7 — most significant)

Table 19-2. Generating A2–A0 from BE7#–BE0#

A2 A1 A0 BE7# BE6# BE5# BE4# BE3# BE2# BE1# BE0#

0 0 0 X X X X X X X Low

0 0 1 X X X X X X Low High

0 1 0 X X X X X Low High High

0 1 1 X X X X Low High High High

1 0 0 X X X Low High High High High

1 0 1 X X Low High High High High High

1 1 0 X Low High High High High High High

1 1 1 Low High High High High High High High

Table 19-3. When BLE# is Active

BE7# BE6# BE5# BE4# BE3# BE2# BE1# BE0# BLE#

X X X X X X X Low Low

X X X X X Low High High Low

X X X Low High High High High Low

X Low High High High High High High Low
Embedded Pentium® Processor Family Developer’s Manual 19-323

Bus Functional Description

elect
19.2.1 Interfacing With 8-, 16-, 32-, and 64-Bit Memories

In 64-bit physical memories such as Figure 19-3, each 8-byte quadword begins at a byte address
that is a multiple of eight. A31–A3 are used as an 8-byte quadword select and BE7#–BE0# s
individual bytes within the word.

Table 19-4. When BHE# is Active

BE7# BE6# BE5# BE4# BE3# BE2# BE1# BE0# BHE#

X X X X X X Low X Low

X X X X Low X High High Low

X X Low X High High High High Low

Low X High High High High High High Low

Table 19-5. When BE3’# is Active

BE7# BE6# BE5# BE4# BE3# BE2# BE1# BE0# BE3’#

Low X X X Low X X X Low

Table 19-6. When BE2’# is Active

BE7# BE6# BE5# BE4# BE3# BE2# BE1# BE0# BE2’#

X Low X X X Low X X Low

Table 19-7. When BE1’# is Active

BE7# BE6# BE5# BE4# BE3# BE2# BE1# BE0# BE1’#

X X Low X X X Low X Low

Table 19-8. When BE0’# is Active

BE7# BE6# BE5# BE4# BE3# BE2# BE1# BE0# BE0’#

X X X Low X X X Low Low

Figure 19-3. Embedded Pentium® Processor with 64-Bit Memory

A6161-01

A31-A3, BE7#-BE0#

D63-D0

Pentium® Processor 64-Bit Memory
19-324 Embedded Pentium® Processor Family Developer’s Manual

Bus Functional Description

.
ry
to the

fer (with
r at

st be

dress
2
Memories that are 32 bits wide require external logic for generating A2 and BE3’#–BE0’#.
Memories that are 16 bits wide require external logic for generating A2, A1, BHE# and BLE#
Memories that are 8 bits wide require external logic for generating A2, A1, and A0. All memo
systems that are less than 64 bits wide require external byte swapping logic for routing data
appropriate data lines.

The processor expects all the data requested by the byte enables to be returned as one trans
one BRDY#), so byte assembly logic is required to return all requested bytes to the processo
one time. Note that the processor does not support BS8#, BS16# or BS32#, so this logic mu
implemented externally if necessary.

Figure 19-4 shows the processor address bus interface to 64, 32, 16 and 8-bit memories. Ad
bits A2, A1, and A0 and BHE#, BLE#, and BE3’#–BE0’# are decoded as shown in Table 19-
through Table 19-8.

Figure 19-4. Addressing 32-, 16- and 8-Bit Memories

A6162-01

BE7#-BE0#

A2, BE3'# - BE0'#

BHE#, BLE#, A2, A1

A2, A1, A0

A31-A3
Pentium®

Processor
64-Bit

Memory

32-Bit
Memory

16-Bit
Memory

8-Bit
Memory

Byte
Select
Logic
Embedded Pentium® Processor Family Developer’s Manual 19-325

Bus Functional Description
Figure 19-5 shows the processor data bus interface to 32-, 16- and 8-bit wide memories. External
byte swapping logic is needed on the data lines so that data is supplied to and received from the
processor on the correct data pins (see Table 19-1). For memory widths smaller than 64 bits, byte
assembly logic is needed to return all bytes of data requested by the processor in one cycle.

Operand alignment and size dictate when two cycles are required for a data transfer. Table 19-9
shows the transfer cycles generated by the processor for all combinations of logical operand
lengths and alignment and applies to both locked and unlocked transfers. When multiple cycles are
required to transfer a multi-byte logical operand, the highest order bytes are transferred first.

Figure 19-5. Data Bus Interface to 32-, 16- and 8-Bit Memories

A6163-01

Pentium®

Processor 64-Bit
Memory

D7-D0

D15-D8

D23-D16

D31-D24

D39-D32

D47-D40

D55-D48

D63-D56

A
31-A

3 B
E

7#-B
E

0#

32

D7-D0
D15-D8

D23-D16
D31-D24
D39-D32
D47-D40
D55-D48
D63-D56

64-Bit
Data Assembly

Logic

Byte
Swap
Logic

32-Bit
Memory

16
Byte
Swap
Logic

16-Bit
Memory

8 8-Bit
Memory

Byte
Swap
Logic
19-326 Embedded Pentium® Processor Family Developer’s Manual

Bus Functional Description
↑ ↑
byte with highest address byte with lowest address

Table 19-9. Transfer Bus Cycles for Bytes, Words, Dwords and Quadwords

Length of Transfer 1 Byte 2 Bytes

Low Order Address xxx 000 001 010 011 100 101 110 111

1st transfer b w w w hb w w w hb

Byte enables driven 0 BE0–1# BE1–2# BE2–3# BE4# BE4–5# BE5–6# BE6–7# BE0#

Value driven on A3 0 0 0 0 0 0 0 1

2nd transfer (if
needed) lb lb

Byte enables driven BE3# BE7#

Value driven on A3 0 0

Length of Transfer 4 Bytes

Low Order Address 000 001 010 011 100 101 110 111

1st transfer d hb hw h3 d hb hw h3

Byte enables driven BE0–3# BE4# BE4–5# BE4–6# BE4–7# BE0# BE0–1# BE0–2#

Low order address 0 0 0 0 0 1 1 1

2nd transfer (if
needed) l3 lw lb l3 lw lb

Byte enables driven BE1–3# BE2–3# BE3# BE5–7# BE6–7# BE7#

Value driven on A3 0 0 0 0 0 0

Length of Transfer 8 Bytes

Low Order Address 000 001 010 011 100 101 110 111

1st transfer q hb hw h3 hd h5 h6 h7

Byte enables driven BE0–7# BE0# BE0–1# BE0–2# BE0–3# BE0–4# BE0–5# BE0–6#

Value driven on A3 0 1 1 1 1 1 1 1

2nd transfer (if
needed) l7 l6 l5 ld l3 lw lb

Byte enables driven BE1–7# BE2–7# BE3–7# BE4–7# BE5–7# BE6–7# BE7#

Value driven on A3 0 0 0 0 0 0 0

Key:

b = byte transfer w = 2-byte transfer 3 = 3-byte transfer d = 4-byte transfer

5 = 5-byte transfer 6 = 6-byte transfer 7 = 7-byte transfer q = 8-byte transfer

h = high order ll = low order

8-byte operand:

high order
byte byte 7 byte 6 byte 5 byte 4 byte 3 byte 2 low order

byte
Embedded Pentium® Processor Family Developer’s Manual 19-327

Bus Functional Description
19.3 Bus State Definition

This section describes the processor bus states in detail. See Figure 19-6 for the bus state diagram.

Ti: This is the bus idle state. In this state, no bus cycles are being run. The processor may or may
not be driving the address and status pins, depending on the state of the HLDA, AHOLD, and
BOFF# inputs. An asserted BOFF# or RESET always forces the state machine back to this state.
HLDA is only driven in this state.

T1: This is the first clock of a bus cycle. Valid address and status are driven out and ADS# is
asserted. There is one outstanding bus cycle.

T2: This is the second and subsequent clock of the first outstanding bus cycle. In state T2, data is
driven out (if the cycle is a write), or data is expected (if the cycle is a read), and the BRDY# pin is
sampled. There is one outstanding bus cycle.

T12: This state indicates there are two outstanding bus cycles, and that the processor is starting the
second bus cycle at the same time that data is being transferred for the first. In T12, the processor
drives the address and status and asserts ADS# for the second outstanding bus cycle, while data is
transferred and BRDY# is sampled for the first outstanding cycle.

T2P: This state indicates there are two outstanding bus cycles, and that both are in their second and
subsequent clocks. In T2P, data is being transferred and BRDY# is sampled for the first
outstanding cycle. The address, status and ADS# for the second outstanding cycle were driven
sometime in the past (in state T12).

TD: This state indicates there is one outstanding bus cycle, that its address, status and ADS# have
already been driven sometime in the past (in state T12), and that the data and BRDY# pins are not
being sampled because the data bus requires one dead clock to turn around between consecutive
reads and writes, or writes and reads. The processor enters TD if in the previous clock there were
two outstanding cycles, the last BRDY# was returned, and a dead clock is needed. The timing
diagrams in the next section give examples when a dead clock is needed.

Table 19-10 gives a brief summary of bus activity during each bus state. Figure 19-6 shows the
processor bus state diagram.

Table 19-10. Processor Bus Activity

Bus State Cycles Outstanding ADS# Asserted
New Address Driven

BRDY# Sampled
Data Transferred

Ti 0 No No

T1 1 Yes No

T2 1 No Yes

T12 2 Yes Yes

T2P 2 No Yes

TD 1 No No
19-328 Embedded Pentium® Processor Family Developer’s Manual

Bus Functional Description

ed
on of
19.3.1 State Transitions

The state transition equations with descriptions are listed below. In the equations, “&” means
logical AND, “+” means logical OR, and “#” placed after label means active low. The NA# us
here is actually a delayed version of the external NA# pin (delayed by one clock). The definiti
request pending is:

• The processor has generated a new bus cycle internally & HOLD (delayed by one clock)
negated & BOFF# negated & (AHOLD negated + HITM# asserted).

Note that once NA# is sampled asserted, the processor latches NA#. The processor pipelines a
cycle when one becomes pending even if NA# is subsequently deasserted.

Figure 19-6. Processor Bus Control State Machine

A6164-01

 ADS# asserted
 If BOFF# is asserted during any state, a state transition to Ti occurs in the next clock (not shown)

 If RESET is sampled asserted in any state, a state transition to Ti will occur (not shown

NOTES:

Ti

T1

T2

TD

T12

[0]

[1]

[2]

[6]

[3]

[9]

[11]

[10]

[4]

[5]

[14]

[7]

[13]

[8]

[12]

T2P
Embedded Pentium® Processor Family Developer’s Manual 19-329

Bus Functional Description

state
19.4 Bus Cycles

The following terminology is used in this document to describe the processor bus functions. The
processor requests data transfer cycles, bus cycles, and bus operations. A data transfer cycle is one
data item, up to 8 bytes in width, being returned to the processor or accepted from the processor
with BRDY# asserted. A bus cycle begins with the embedded Pentium processor driving an
address and status and asserting ADS#, and ends when the last BRDY# is returned. A bus cycle
may have 1 or 4 data transfers. A burst cycle is a bus cycle with 4 data transfers. A bus operation is
a sequence of bus cycles to carry out a specific function, such as a locked read-modify-write or an
interrupt acknowledge.

“Bus State Definition” on page 19-328 describes each of the bus states, and shows the bus
diagram.

(0) No Request Pending

(1) Request Pending: The processor starts a new bus cycle & ADS# is
asserted in the T1 state.

(2) Always:
With BOFF# negated, and a cycle outstanding the
processor always moves to T2 to process the data
transfer.

(3) Not Last BRDY# & (No Request Pending
+ NA# Negated):

The processor stays in T2 until the transfer is over if no
new request becomes pending or if NA# is not asserted.

(4) Last BRDY# & Request Pending & NA#
Sampled Asserted:

If there is a new request pending when the current cycle
is complete, and if NA# was sampled asserted, the
processor begins from T1.

(5) Last BRDY# & (No Request Pending +
NA# Negated):

If no cycle is pending when the processor finishes the
current cycle or NA# is not asserted, the processor goes
back to the idle state.

(6) Not Last BRDY# & Request Pending &
NA# Sampled Asserted:

While the processor is processing the current cycle (one
outstanding cycle), if another cycle becomes pending
and NA# is asserted, the processor moves to T12
indicating that the processor now has two outstanding
cycles. ADS# is asserted for the second cycle.

(7) Last BRDY# & No dead clock: When the processor finishes the current cycle, and no
dead clock is needed, it goes to the T2 state.

(8) Last BRDY# & Need a dead clock: When the processor finishes the current cycle and a
dead clock is needed, it goes to the TD state.

(9) Not Last BRDY#:
With BOFF# negated, and the current cycle not
complete, the processor always moves to T2P to process
the data transfer.

(10) Not Last BRDY#: The processor stays in T2P until the first cycle transfer is
over.

(11) Last BRDY# & No dead clock: When the processor finishes the first cycle and no dead
clock is needed, it goes to T2 state.

(12) Last BRDY# & Need a dead clock: When the first cycle is complete, and a dead clock is
needed, it goes to TD state.

(13) Request Pending & NA# sampled
asserted:

If NA# was sampled asserted and there is a new request
pending, it goes to T12 state.

(14) No Request Pending + NA# Negated: If there is no new request pending, or NA# was not
asserted, it goes to T2 state.
19-330 Embedded Pentium® Processor Family Developer’s Manual

Bus Functional Description
Table 19-11 lists all of the bus cycles that are generated by the processor. Note that inquire cycles
(initiated by EADS#) may be generated from the system to the processor.

Note that all burst reads are cacheable, and all cacheable read cycles are bursted. There are no non-
cacheable burst reads or non-burst cacheable reads.

The remainder of this chapter describes all of the above bus cycles in detail. In addition, locked
operations and bus cycle pipelining is discussed.

19.4.1 Single-Transfer Cycle

The processor supports a number of different types of bus cycles. The simplest type of bus cycle is
a single-transfer non-cacheable 64-bit cycle, either with or without wait states. Non-pipelined read
and write cycles with 0 wait states are shown in Figure 19-7.

The processor initiates a cycle by asserting the address status signal (ADS#) in the first clock. The
clock in which ADS# is asserted is by definition the first clock in the bus cycle. The ADS# output
indicates that a valid bus cycle definition and address is available on the cycle definition pins and
the address bus. The CACHE# output is deasserted (high) to indicate that the cycle is a single
transfer cycle.

Table 19-11. Processor Initiated Bus Cycles

M/IO# D/C# W/R# CACHE#† KEN# Cycle Description # of Transfers

0 0 0 1 x Interrupt Acknowledge
(2 locked cycles) 1 transfer each cycle

0 0 1 1 x Special Cycle
(Table 19-13) 1

0 1 0 1 x I/O Read, 32-bits or less,
non-cacheable 1

0 1 1 1 x I/O Write, 32-bits or less,
non-cacheable 1

1 0 0 1 x Code Read, 64-bits,
non-cacheable 1

1 0 0 x 1 Code Read, 64-bits,
non-cacheable 1

1 0 0 0 0 Code Read, 256-bit burst
line fill 4

1 0 1 x x Intel Reserved (is not driven
by the processor) n/a

1 1 0 1 x Memory Read, 64 bits or
less, non-cacheable 1

1 1 0 x 1 Memory Read, 64 bits or
less, non-cacheable 1

1 1 0 0 0 Memory Read, 256-bit burst
line fill 4

1 1 1 1 x Memory Write, 64 bits or
less, non-cacheable 1

1 1 1 0 x 256-bit Burst Writeback 4

† CACHE# is not asserted for any cycle in which M/IO# is driven low or for any cycle in which PCD is driven
high.
Embedded Pentium® Processor Family Developer’s Manual 19-331

Bus Functional Description

s the

arity

y not
e and
t the

For a zero wait state transfer, BRDY# is returned by the external system in the second clock of the
bus cycle. BRDY# indicates that the external system has presented valid data on the data pins in
response to a read or the external system has accepted data in response to a write. The processor
samples the BRDY# input in the second and subsequent clocks of a bus cycle (the T2, T12 and T2P
bus states; see the “Bus State Definition” on page 19-328 for more information).

The timing of the data parity input, DP, and the parity check output, PCHK#, is also shown in
Figure 19-7. DP is driven by the processor and returned to the processor in the same clock a
data. PCHK# is driven two clocks after BRDY# is returned for reads with the results of the p
check.

If the system is not ready to drive or accept data, wait states can be added to these cycles b
returning BRDY# to the processor at the end of the second clock. Cycles of this type, with on
two wait states added are shown in Figure 19-8. Note that BRDY# must be driven inactive a
end of the second clock. Any number of wait states can be added to processor bus cycles by
maintaining BRDY# inactive.

Figure 19-7. Non-Pipelined Read and Write

A6069-01

CLK

ADDR

ADS#

CACHE#

W/R#

BRDY#

DATA

PCHK#

T1 T2 Ti T1 T2 Ti T1

DP

NA#

InvalidInvalid ValidValid

To CPU

To CPU From CPU

From CPU
19-332 Embedded Pentium® Processor Family Developer’s Manual

Bus Functional Description
19.4.2 Burst Cycles

For bus cycles that require more than a single data transfer (cacheable cycles and writeback
cycles), the processor uses the burst data transfer. In burst transfers, a new data item can be
sampled or driven by the processor in consecutive clocks. In addition the addresses of the data
items in burst cycles all fall within the same 32-byte aligned area (corresponding to an internal
processor cache line).

The implementation of burst cycles is via the BRDY# pin. While running a bus cycle of more than
one data transfer, the processor requires that the memory system perform a burst transfer and
follow the burst order (see Table 19-12). Given the first address in the burst sequence, the address
of subsequent transfers must be calculated by external hardware. This requirement exists because
the processor address and byte-enables are asserted for the first transfer and are not re-driven for
each transfer. The burst sequence is optimized for two bank memory subsystems and is shown in
Table 19-12.

Figure 19-8. Non-Pipelined Read and Write with Wait States

A6165-01

T1 T2 T2 T2T1Ti T2 T2

TO CPU From CPU

CLK

ADDR

ADS#

NA#

CACHE#

W/R#

BRDY#

DATA / DP#

PCHK#

Valid Valid
Embedded Pentium® Processor Family Developer’s Manual 19-333

Bus Functional Description
The cycle length is driven by the processor together with cycle specification (see Table 19-11), and
the system should latch this information and terminate the cycle on time with the appropriate
number of transfers. The fastest burst cycle possible requires two clocks for the first data item to be
returned/driven with subsequent data items returned/driven every clock.

19.4.2.1 Burst Read Cycles

When initiating any read, the processor presents the address and byte enables for the data item
requested. When the cycle is converted into a cache linefill, the first data item returned should
correspond to the address sent out by the processor; however, the byte enables should be ignored,
and valid data must be returned on all 64 data lines. In addition, the address of the subsequent
transfers in the burst sequence must be calculated by external hardware since the address and byte
enables are not re-driven for each transfer.

Figure 19-9 shows a cacheable burst read cycle. Note that in this case the initial cycle generated by
the processor might have been satisfied by a single data transfer, but was transformed into a
multiple-transfer cache fill by KEN# being returned active on the clock that the first BRDY# is
returned. In this case KEN# has such an effect because the cycle is internally cacheable in the
processor (CACHE# pin is driven active). KEN# is only sampled once during a cycle to determine
cacheability.

PCHK# is driven with the parity check status two clocks after each BRDY#.

Table 19-12. Processor Burst Order

1st Address 2nd Address 3rd Address 4th Address

0 8 10 18

8 0 18 10

10 18 0 8

18 10 8 0

NOTE: The addresses are represented in hexadecimal format
19-334 Embedded Pentium® Processor Family Developer’s Manual

Bus Functional Description
Data is sampled only in the clock that BRDY# is returned, which means that data need not be sent
to the processor every clock in the burst cycle. An example burst cycle where two clocks are
required for every burst item is shown in Figure 19-10.

Figure 19-9. Basic Burst Read Cycle

A6166-01

T2
CLK

ADDR

ADS#

CACHE#

W/R#

BRDY#

DATA/DP

PCHK#

T1 T2 T2 T2

KEN#

Ti

Valid

To CPU To CPU To CPUTo CPU
Embedded Pentium® Processor Family Developer’s Manual 19-335

Bus Functional Description
19.4.2.2 Burst Write Cycles

Figure 19-11 shows the timing diagram of basic burst write cycle. KEN# is ignored in burst write
cycle. If the CACHE# pin is active (low) during a write cycle, it indicates that the cycle is a burst
writeback cycle. Burst write cycles are always writebacks of modified lines in the data cache.
Writeback cycles have several causes:

1. Writeback due to replacement of a modified line in the data cache.

2. Writeback due to an inquire cycle that hits a modified line in the data cache.

3. Writeback due to an internal snoop that hits a modified line in the data cache.

4. Writebacks caused by asserting the FLUSH# pin.

5. Writebacks caused by executing the WBINVD instruction.

Writeback cycles are described in more detail in the Inquire Cycle section of this chapter.

The only write cycles that are burstable by the processor are writeback cycles. All other write
cycles are 64 bits or less, single transfer bus cycles.

Figure 19-10. Slow Burst Read Cycle

A6167-01

T1 T2 T2 T2T2T2 T2 T2

TO CPU TO CPU TO CPU TO CPU

CLK

ADDR

ADS#

CACHE#

W/R#

KEN#

BRDY#

DATA/DP

PCHK#
19-336 Embedded Pentium® Processor Family Developer’s Manual

Bus Functional Description
For writeback cycles, the lower five bits of the first burst address always starts at zero; therefore,
the burst order becomes 0, 8H, 10H, and 18H. Again, note that the address of the subsequent
transfers in the burst sequence must be calculated by external hardware since the processor does
not drive the address and byte enables for each transfer.

19.4.3 Locked Operations

The embedded Pentium processor family architecture provides a facility to perform atomic
accesses of memory. For example, a programmer can change the contents of a memory-based
variable and be assured that the variable was not accessed by another bus master between the read
of the variable and the update of that variable. This functionality is provided for select instructions
using a LOCK prefix, and also for instructions which implicitly perform locked read modify write
cycles such as the XCHG (exchange) instruction when one of its operands is memory based.
Locked cycles are also generated when a segment descriptor or page table entry is updated and
during interrupt acknowledge cycles.

In hardware, the LOCK functionality is implemented through the LOCK# pin, which indicates to
the outside world that the processor is performing a read-modify-write sequence of cycles, and that
the processor should be allowed atomic access for the location that was accessed with the first
locked cycle. Locked operations begin with a read cycle and end with a write cycle. Note that the
data width read is not necessarily the data width written. For example, for descriptor access bit
updates the processor fetches eight bytes and writes one byte.

Figure 19-11. Basic Burst Write Cycle

A6168-01

T2

ADDR

CLK

ADS#

CACHE#

W/R#

BRDY#

DATA/DP

PCHK#

T1 T2 T2 T2 Ti

Valid

From CPU From CPU From CPUFrom CPU
Embedded Pentium® Processor Family Developer’s Manual 19-337

Bus Functional Description
A locked operation is a combination of one or multiple read cycles followed by one or multiple
write cycles. Programmer generated locked cycles and locked page table/directory accesses are
treated differently and are described in the following sections.

19.4.3.1 Programmer Generated Locks and Segment Descriptor Updates

For programmer generated locked operations and for segment descriptor updates, the sequence of
events is determined by whether or not the accessed line is in the internal cache and what state that
line is in.

Cached Lines in the Modified (M) State

Before a programmer initiated locked cycle or a segment descriptor update is generated, the
processor first checks if the line is in the Modified (M) state. If it is, the processor drives an
unlocked writeback first, leaving the line in the Invalid (I) state, and then runs the locked read on
the external bus. Since the operand may be misaligned, it is possible that the processor may do two
writeback cycles before starting the first locked read. In the misaligned scenario the sequence of
bus cycles is: writeback, writeback, locked read, locked read, locked write, then the last locked
write. Note that although a total of six cycles are generated, the LOCK# pin is active only during
the last four cycles. In addition, the SCYC pin is asserted during the last four cycles to indicate that
a misaligned lock cycle is occurring. In the aligned scenario the sequence of cycles is: writeback,
locked read, locked write. The LOCK# pin is asserted for the last two cycles (SCYC is not asserted,
indicating that the locked cycle is aligned). The cache line is left in the Invalid state after the locked
operation.

Non-Cached (I-State), S-State and E-State Lines

A programmer initiated locked cycle or a segment descriptor update to an I, S, or E -state line is
always forced out to the bus and the line is transitioned to the Invalid state. Since the line is not in
the M-State, no writeback is necessary. Because the line is transitioned to the Invalid state, the
locked write is forced out to the bus also. The cache line is left in the Invalid state after the locked
operation.

19.4.3.2 Page Table/directory Locked Cycles

In addition to programmer generated locked operations, the processor performs locked operations
to set the dirty and accessed bits in page tables/page directories. The processor runs the following
sequence of bus cycles to set the dirty/accessed bit.

Cached Lines in the Modified (M) State

If there is a TLB miss, the processor issues an (unlocked) read cycle to determine if the dirty or
accessed bits need to be set. If the line is modified in the internal data cache, the line is written back
to memory (lock not asserted). If the dirty or accessed bits need to be set, the processor then issues
a locked read-modify-write operation. The sequence of bus cycles to set the dirty or accessed bits
in a page table/directory when the line is in the M-state is: unlocked read, unlocked writeback,
locked read, then locked write. The line is left in the Invalid state after the locked operation. Note
that accesses to the page tables/directories will not be misaligned.
19-338 Embedded Pentium® Processor Family Developer’s Manual

Bus Functional Description

tion
ed.

n
n

e
nd the

d for

cked
op hit

of
3
ally
pin
d
Non-Cached (I-State), S-State and E-State Lines

If the line is in the I, S or E-state, the locked cycle is always forced out to the bus and the line is
transitioned to the Invalid state. The sequence of bus cycles for an internally generated locked
operation is locked read, locked write. The line is left in the Invalid state. Note that accesses to the
page tables/directories are not misaligned.

19.4.3.3 LOCK# Operation During AHOLD/HOLD/BOFF#

LOCK# is not deasserted if AHOLD is asserted in the middle of a locked cycle.

LOCK# is floated during bus HOLD, but if HOLD is asserted during a sequence of locked cycles,
HLDA is not asserted until the locked sequence is complete.

LOCK# floats if BOFF# is asserted in the middle of a locked cycle, and is driven low again when
the cycle is restarted. If BOFF# is asserted during the read cycle of a locked read-modify write, the
locked cycle is redriven from the read when BOFF# is deasserted. If BOFF# is asserted during the
write cycle of a locked read-modify-write, only the write cycle is re-driven when BOFF# is
deasserted. The system is responsible for ensuring that other bus masters do not access the operand
being locked if BOFF# is asserted during a LOCKed cycle.

19.4.3.4 Inquire Cycles During LOCK#

This section describes the processor bus cycles that occur when an inquire cycle is driven while
LOCK# is asserted. Note that inquire cycles are only recognized if AHOLD, BOFF# or HLDA is
asserted and the external system returns an external snoop address to the processor. If AHOLD,
BOFF# or HLDA is not asserted when EADS# is driven, EADS# is ignored. Note also that an
inquire cycle cannot hit the “locked line” because the LOCK cycle invalidated it.

Because HOLD is not acknowledged when LOCK# is asserted, inquire cycles run in conjunc
with the assertion of HOLD cannot be driven until LOCK# is deasserted and HLDA is assert

BOFF# takes priority over LOCK#. Inquire cycles are permitted while BOFF# is asserted. If a
inquire cycle hits a modified line in the data cache, the writeback due to the snoop hit is drive
before the locked cycle is re-driven. LOCK# is asserted for the writeback.

An inquire cycle with AHOLD may be run concurrently with a locked cycle. If the inquire cycl
hits a modified line in the data cache, the writeback may be driven between the locked read a
locked write. If the writeback is driven between the locked read and write, LOCK# is asserte
the writeback.

Note: Only writebacks due to an external snoop hit to a modified line may be driven between the lo
read and the locked write of a LOCKed sequence. No other writebacks (due to an internal sno
or data cache replacement) are allowed to invade a LOCKed sequence.

19.4.3.5 LOCK# Timing and Latency

The timing of LOCK# is shown in Figure 19-12. Note that LOCK# is asserted with the ADS#
the read cycle and remains active until the BRDY# of the write cycle is returned. Figure 19-1
shows an example of two consecutive locked operations. Note that the processor automatic
inserts at least one idle clock between two consecutive locked operations to allow the LOCK
to be sampled inactive by external hardware. Figure 19-14 shows an example of a misaligne
locked operation with SCYC asserted.
Embedded Pentium® Processor Family Developer’s Manual 19-339

Bus Functional Description
The maximum number of processor initiated cycles that can be locked together is four. Four cycles
are locked together when data is misaligned for programmer generated locks (read, read, write,
write). SCYC is asserted for misaligned locked cycles. Note that accesses to the page
tables/directories are not misaligned.

Figure 19-12. LOCK# Timing

Figure 19-13. Two Consecutive Locked Operations

A6169-01

Ti
CLK

ADDR

ADS#

W/R#

BRDY#

DATA

LOCK#

T1 T2 T1 T2 Ti

To CPU From CPU

ValidValid Invalid

A6170-01

T1 T2 Ti TiT2T1 T1 T2

To
CPU

To
CPUFrom CPU

CLK

ADDR

ADS#

CACHE#

W/R#

BRDY#

DATA

LOCK#

Valid

Rd RdWr

Valid ValidInvalidInvalid

Min1 clock
19-340 Embedded Pentium® Processor Family Developer’s Manual

Bus Functional Description
19.4.4 BOFF#

In a multi-master system, another bus master may require the use of the bus to enable the processor
to complete its current cycle. The BOFF# pin is provided to prevent this deadlock situation. If
BOFF# is asserted, the processor immediately (in the next clock) floats the bus (see Figure 19-15).
Any bus cycles in progress are aborted and any data returned to the processor in the clock BOFF#
is asserted is ignored. In response to BOFF#, the processor floats the same pins as HOLD, but
HLDA is not asserted. BOFF# overrides BRDY#, so if both are sampled active in the same clock,
BRDY# is ignored. The processor samples the BOFF# pin every clock.

Figure 19-14. Misaligned Locked Cycles

A6177-01

T1 T2 Ti T1 T2 Ti T1 T2 Ti T1 T2 Ti

CLK

ADS#

W/R#

DATA

CACHE

BRDY#

LOCK#

SCYC

From
CPU

To
CPU

From
CPU

To
CPU
Embedded Pentium® Processor Family Developer’s Manual 19-341

Bus Functional Description
The device that asserts BOFF# to the processor is free to run any bus cycle while the processor is in
the high impedance state. If BOFF# is asserted after the processor has started a cycle, the new
master should wait for memory to return BRDY# before driving a cycle. Waiting for BRDY#
provides a handshake to insure that the memory system is ready to accept a new cycle. If the bus is
idle when BOFF# is asserted, the new master can start its cycle two clocks after issuing BOFF#.
The system must wait two clocks after the assertion of BOFF# to begin its cycle to prevent address
bus contention.

The bus remains in the high impedance state until BOFF# is negated. At that time, the processor
restarts all aborted bus cycles from the beginning by driving out the address and status and
asserting ADS#. Any data returned before BOFF# was asserted is used to continue internal
execution, however that data is not placed in an internal cache. Any aborted bus cycles are restarted
from the beginning.

External hardware should assure that if the cycle attribute KEN# was returned to the processor
(with the first BRDY# or NA#) before the cycle was aborted, it must be returned with the same
value after the cycle is restarted. In other words, backoff cannot be used to change the cacheability
property of the cycle. The WB/WT# attribute may be changed when the cycle is restarted.

If more than one cycle is outstanding when BOFF# is asserted, the processor restarts both
outstanding cycles in their original order. The cycles are not pipelined unless NA# is asserted
appropriately.

A pending writeback cycle due to an external snoop hit is reordered in front of any cycles aborted
due to BOFF#. For example, if a snoop cycle is run concurrently with a line fill, and the snoop hits
an M-state line and then BOFF# is asserted, the writeback cycle due to the snoop is driven from the
processor before the cache linefill cycle is restarted.

Figure 19-15. Back Off Timing

A6178-01

T1 T1T2 T2 T2 TiT2 T2

CLK

CACHE#

BOFF#

ADS#

BRDY#
19-342 Embedded Pentium® Processor Family Developer’s Manual

Bus Functional Description

ter
The system must not rely on the original cycle, that was aborted due to BOFF#, from restarting
immediately after BOFF# is deasserted. In addition to reordering writebacks due to external snoop
hit in front of cycles that encounter a BOFF#, the processor may also reorder bus cycles in the
following situations:

• A pending writeback cycle due to an internal snoop hit is reordered in front of any cycles
aborted due to BOFF#. If a read cycle is running on the bus, and an internal snoop of that read
cycle hits a modified line in the data cache, and the system asserts BOFF#, the processor
drives out a writeback cycle resulting from the internal snoop hit. After completion of the
writeback cycle, the processor then restarts the original read cycle. This circumstance can
occur during accesses to the page tables/directories, and during prefetch cycles, since these
accesses cause a bus cycle to be generated before the internal snoop to the data cache is
performed.

• If BOFF# is asserted during a data cache replacement writeback cycle, the writeback cycle is
aborted and then restarted once BOFF# is deasserted. However, if the processor encounters a
request to access the page table/directory in memory during the BOFF#, this request is
reordered in front of the replacement writeback cycle that was aborted due to BOFF#. The
processor is first run the sequence of bus cycles to service the page table/directory access and
then restart the original replacement writeback cycle.

Asserting BOFF# in the same clock as ADS# may cause the processor to leave the ADS# signal
floating low. Since ADS# is floating low, a peripheral device may think that a new bus cycle has
begun even though the cycle was aborted. There are several ways to approach this situation:

• Design the system’s state machines/logic such that ADS# is not recognized the clock af
ADS# is sampled active.

• Recognize a cycle as ADS# asserted and BOFF# negated in the previous clock.

• Assert AHOLD one clock before asserting BOFF#.

19.4.5 Bus Hold

The embedded Pentium processor provides a bus hold, hold acknowledge protocol using the
HOLD and HLDA pins. HOLD is used to indicate to the processor that another bus master wants
control of the bus. When the processor completes all outstanding bus cycles, it releases the bus by
floating its external bus, and drives HLDA active. An example HOLD/HLDA transaction is shown
in Figure 19-16.
Embedded Pentium® Processor Family Developer’s Manual 19-343

Bus Functional Description
The processor recognizes HOLD while RESET is asserted, when BOFF# is asserted, and during
BIST (built in self test). HOLD is not recognized when LOCK# is asserted. Once HOLD is
recognized, HLDA is asserted two clocks after the later of the last BRDY# or HOLD assertion.
Because of this, it is possible that a cycle may begin after HOLD is asserted, but before HLDA is
driven. The maximum number of cycles that are driven after HOLD is asserted is one. BOFF# may
be used if it is necessary to force the processor to float its bus in the next clock. Figure 19-16 shows
the latest HOLD may be asserted relative to ADS# to guarantee that HLDA is asserted before
another cycle is begun.

The operation of HLDA is not affected by the assertion of BOFF#. If HOLD is asserted while
BOFF# is asserted, HLDA is asserted two clocks later. If HOLD goes inactive while BOFF# is
asserted, HLDA is deasserted two clocks later.

Note that HOLD may be acknowledged between two bus cycles in a misaligned access.

All outputs are floated when HLDA is asserted except: APCHK#, BREQ, FERR#, HIT#, HITM#,
HLDA, IERR#, PCHK#, PRDY, BP3–BP2, PM1/BP1, PM0/BP0, SMIACT# and TDO.

Figure 19-16. HOLD/HLDA Cycles

A6179-01

T1 T2 T2 TiTiTi Ti T1

To
CPU

CLK

ADDR

ADS#

CACHE#

W/R#

BRDY#

DATA

HOLD

HLDA

Valid Valid
19-344 Embedded Pentium® Processor Family Developer’s Manual

Bus Functional Description

g the

 states
 clock
t
19.4.6 Interrupt Acknowledge

The processor generates interrupt acknowledge cycles in response to maskable interrupt requests
generated on the interrupt request input (INTR) pin (if interrupts are enabled). Interrupt
acknowledge cycles have a unique cycle type generated on the cycle type pins.

An example interrupt acknowledge transaction is shown in Figure 19-17. Interrupt acknowledge
cycles are generated in locked pairs. Data returned during the first cycle is ignored, however the
specified data setup and hold times must be met. The interrupt vector is returned during the second
cycle on the lower 8 bits of the data bus. The processor has 256 possible interrupt vectors.

The state of address bit 2 (as decoded from the byte enables) distinguishes the first and second
interrupt acknowledge cycles. The byte address driven during the first interrupt acknowledge cycle
is 4: A31–A3 = 0, BE4# = 0, BE7#–BE5# = 1, and BE3#–BE0# = 1. The address driven durin
second interrupt acknowledge cycle is 0: A31–A3 = 0, BE0# = 0 and BE7#–BE1# = 1H.

Interrupt acknowledge cycles are terminated when the external system returns BRDY#. Wait
can be added by withholding BRDY#. The processor automatically generates at least one idle
between the first and second cycles; however the external system is responsible for interrup
controller (8259A) recovery.

Figure 19-17. Interrupt Acknowledge Cycles

A6181-01

Ti T1 T2 T2T1Ti Ti Ti

To
CPU

To
CPU

CLK

ADS#

ADDR

BRDY#

DATA

LOCK#

Valid Valid
Embedded Pentium® Processor Family Developer’s Manual 19-345

Bus Functional Description

aries

mory.
 and

13 are

A3 are
19.4.7 Flush Operations

The FLUSH# input is implemented in the processor as an asynchronous interrupt, similar to NMI.
Therefore, unlike the Intel486™ microprocessor, FLUSH# is recognized on instruction bound
only. FLUSH# is latched internally. Once setup, hold and pulse width times have been met,
FLUSH# may be deasserted, even if a bus cycle is in progress.

To execute a flush operation, the processor first writes back all modified lines to external me
The lines in the internal caches are invalidated as they are written back. After the write-back
invalidation operations are complete, a special cycle, flush acknowledge, is generated by the
processor to inform the external system.

19.4.8 Special Bus Cycles

The processor provides six special bus cycles to indicate that certain instructions have been
executed, or certain conditions have occurred internally. The special bus cycles in Table 19-
defined when the bus cycle definition pins are in the following state: M/IO# = 0, D/C# = 0 and
W/R# = 1. During most special cycles the data bus is undefined and the address lines A31–
driven to “0.” The external hardware must acknowledge all special bus cycles by returning
BRDY#.

Shutdown can be generated due to the following reasons:

• If any other exception occurs while the processor is attempting to invoke the double-fault
handler.

• An internal parity error is detected.

Prior to going into shutdown, the processor does not writeback the M-state lines. Upon entering
shutdown, the state of the processor is unpredictable and may or may not be recoverable. RESET
or INIT should be asserted to return the system to a known state. Although some system operations
(i.e., FLUSH# and R/S#) are generally recognized during shutdown, these operations may not
complete successfully in some cases once shutdown is entered. During shutdown, the internal
caches remain in the same state unless an inquire cycle is run or the cache is flushed.

Table 19-13. Special Bus Cycles Encoding

BE7# BE6# BE5# BE4# BE3# BE2# BE1# BE0# Special Bus Cycle

1 1 1 1 1 1 1 0 Shutdown

1 1 1 1 1 1 0 1 Flush
(INVD,WBINVD instr)

1 1 1 1 1 0 1 1 Halt/Stop Grant†

1 1 1 1 0 1 1 1 Writeback
(WBINVD instruction)

1 1 1 0 1 1 1 1 Flush Acknowledge
(FLUSH# assertion)

1 1 0 1 1 1 1 1 Branch Trace Message

† The definition of the Stop Grant bus cycle is the same as the HALT cycle definition, with the exception that
the address bus is driven with the value 0000 0010H during the Stop Grant bus cycle.
19-346 Embedded Pentium® Processor Family Developer’s Manual

Bus Functional Description

l. The
ddress

The processor remains in shutdown until NMI, INIT, or RESET is asserted. Furthermore, upon exit
from shutdown with NMI (to the NMI handler), the SS, ESP and EIP of the task that was executing
when shutdown occurred can no longer be relied upon to be valid. Therefore, using NMI to exit
shutdown should be used only for debugging purposes and not to resume execution from where
shutdown occurred.

If invoking NMI to exit shutdown, use a task gate rather than an interrupt or trap gate in slot 2 of
the IDT. One of the conditions that may lead to shutdown is an attempt to use an invalid stack
segment selector (SS). In this case, if the NMI successfully exits shutdown, it immediately re-
enters shutdown because it has no valid stack on which to push the return address. It is more robust
to vector NMI through a task gate rather than an interrupt gate in the IDT, since the task descriptor
allocates a new stack for the NMI handler context.

The Flush Special Cycle is driven after the INVD (invalidate cache) or WBINVD (writeback
invalidate cache) instructions are executed. The Flush Special Cycle is driven to indicate to the
external system that the internal caches were invalidated and that external caches should also be
invalidated.

Note: INVD should be used with care. This instruction does not write back modified cache lines.

The Halt Special Cycle is driven when a Halt instruction is executed. Externally, halt differs from
shutdown in only two ways:

• In the resulting byte enables that are asserted.

• The processor exits the Halt state if INTR is asserted and maskable interrupts are enabled in
addition to the assertion of NMI, INIT or RESET.

A special Stop Grant bus cycle is driven after the processor recognizes the STPCLK# interrupt.
The definition of the Stop Grant bus cycle is the same as the HALT cycle definition, with the
exception that the address bus is driven with the value 0000 0010H during the Stop Grant bus
cycle.

The Writeback Special Cycle is driven after the WBINVD instruction is executed and it indicates
that modified lines in the processor data cache were written back to memory or a second level
cache. The Writeback Special Cycle also indicates that modified lines in external caches should be
written back. After the WBINVD instruction is executed, the Writeback Special cycle is generated,
followed by the Flush Special Cycle. Note that INTR is not recognized while the WBINVD
instruction is being executed.

When the FLUSH# pin is asserted to the processor, all modified lines in the data cache are written
back and all lines in the code and data caches are invalidated. The Flush Acknowledge Special
Cycle is driven after the writeback and invalidations are complete. The Flush Acknowledge Special
Cycle is driven only in response to the FLUSH# pin being activated. Note that the Flush
Acknowledge Special Cycle indicates that all modified lines were written back and all cache lines
were invalidated while the Flush special cycle only indicates that all cache lines were invalidated.

The Branch Trace Message Special Cycle is part of the processor’s execution tracing protoco
Branch Trace Message Special Cycle is the only special cycle that does not drive 0’s on the a
bus, however like the other special cycles, the data bus is undefined. When the branch trace
message is driven, bits 31–3 of the branch target linear address are driven on A31–A3.
Embedded Pentium® Processor Family Developer’s Manual 19-347

Bus Functional Description

ing
quire

ample,
,

ne is
 are
er
r
g cycle

at
ing

lined

 NA#
19.4.9 Bus Error Support

The processor provides basic support for bus error handling through data and address parity check.
Even data parity is generated by the processor for every enabled byte in write cycles and is checked
for all valid bytes in read cycles. The PCHK# output signals if a data parity error is encountered for
reads.

Even address parity is generated for A31–A5 during write and read cycles, and checked dur
inquire cycles. The APCHK# output signals if an address parity error is encountered during in
cycles.

External hardware is free to take whatever actions are appropriate after a parity error. For ex
external hardware may signal an interrupt if PCHK# or APCHK# is asserted. See Chapter 22
“Error Detection” for details.

19.4.10 Pipelined Cycles

The NA# input indicates to the processor that it may drive another cycle before the current o
completed. Cacheability (KEN#) and cache policy (WB/WT#) indicators for the current cycle
sampled in the same clock NA# is sampled active (or the first BRDY# for that cycle, whichev
comes first). Note that the WB/WT# and KEN# inputs are sampled with the first of BRDY# o
NA# even if NA# does not cause a pipelined cycle to be driven because there was no pendin
internally or two cycles are already outstanding.

The NA# input is latched internally, so even if a cycle is not pending internally in the clock th
NA# is sampled active, but becomes pending before the current cycle is complete, the pend
cycle is driven to the bus even if NA# is subsequently deasserted.

LOCK# and writeback cycles are not pipelined into other cycles and other cycles are not pipe
into them (regardless of the state of NA#). Special cycles and I/O cycles may be pipelined.

An example of burst pipelined back to back reads is shown in Figure 19-18. The assertion of
causes a pending cycle to be driven two clocks later. Note KEN# timing.
19-348 Embedded Pentium® Processor Family Developer’s Manual

Bus Functional Description

k
Write cycles can be pipelined into read cycles and read cycles can be pipelined into write cycles,
but one dead clock is inserted between read and write cycles to allow bus turnover (see
Figure 19-6, “Processor Bus Control State Machine” on page 19-329). Pipelined back-to-bac
read/write cycles are shown in Figure 19-19.

Figure 19-18. Two Pipelined Cache Linefills

A6182-01

T1 T2 T2 T2PT12T2 T2 T2 T2

CLK

ADDR

ADS#

CACHE#

W/R#

KEN#

NA#

BRDY#

DATA

Valid Validb

b

a

a

a a a a b b b
Embedded Pentium® Processor Family Developer’s Manual 19-349

Bus Functional Description
Figure 19-19. Pipelined Back-to-Back Read/Write Cycles

A6183-01

T1 T2 T2 T2PT12T2 TD T2 Ti

CLK

ADDR

ADS#

CACHE#

W/R#

KEN#

NA#

BRDY#

DATA

Valid Validb

wr

a

rd

To
CPU

To
CPU

To
CPU

To
CPU

From
CPU
19-350 Embedded Pentium® Processor Family Developer’s Manual

Bus Functional Description
19.4.10.1 KEN# and WB/WT# Sampling for Pipelined Cycles

KEN# and WB/WT# are sampled with NA# or BRDY# for that cycle, whichever comes first.
Figure 19-20 and Figure 19-21 clarify this specification.

Figure 19-20 shows that even though two cycles have been driven, the NA# for the second cycle
still causes KEN# and WB/WT# to be sampled for the second cycle. A third ADS# is not driven
until all the BRDY#s for cycle 1 are returned to the processor.

Figure 19-21 shows that two cycles are outstanding on the processor bus. The assertion of NA#
caused the sampling of KEN# and WB/WT# for the first cycle. The assertion of the four BRDY#s
for the first cycle DO NOT cause the KEN# and WB/WT# for the second cycle to be sampled. In
this example, KEN# and WB/WT# for the second cycle are sampled with the first BRDY# for the
second cycle.

Figure 19-20. KEN# and WB/WT# Sampling with NA#

A6184-01

T1 T2 T2 T2P T2P T2P T2PT2PT12 T2 T12

CLK

ADS#

NA#

KEN#

W/R#

BRDY#

WB/WT#

Cycle 2

Cycle 1

Cycle 1
Embedded Pentium® Processor Family Developer’s Manual 19-351

Bus Functional Description

hat is
f cycle
19.4.11 Dead Clock Timing Diagrams

The timing diagrams in Figure 19-22 and Figure 19-23 show bus cycles with and without a dead
clock.

In Figure 19-22, cycles 1 and 2 can be either read or write cycles and no dead clock would be
needed because only one cycle is outstanding when those cycles are driven. To prevent a dead
clock from being necessary after cycle 3 is driven, it must be of the “same type” as cycle 2. T
if cycle 2 is a read cycle, cycle 3 must also be a read cycle in order to prevent a dead clock. I
2 is a write cycle, cycle 3 must also be a write cycle to prevent a dead clock.

Figure 19-21. KEN# and WB/WT# Sampling with BRDY#

A6185-01

T1 T2 T2 T2P T2P T2PT2PT12 T2 T2 T2

CLK

ADS#

KEN#

BRDY#

Cycle 1 Cycle 2

WB/WT#

W/R#

NA#

Cycle 1 Cycle 2

Figure 19-22. Bus Cycles without Dead Clock

A6186-01

T1 T2 T2 T2 T12 T2T2T1 T2 Ti Ti

ADS#

NA#

BRDY#

wr

1

1 2 3

2 3

rd rd
19-352 Embedded Pentium® Processor Family Developer’s Manual

Bus Functional Description

 need
uts

high)

the

pled
e only
M#
e.
rrent
rite it
ack

high
he
cache
Note: Although the processor ignores BRDY# during this dead clock when configured in uni-processor
mode, BRDY# may be falsely recognized in an inter-processor pipelined cycle. As such, dual
processing system designs must not drive BRDY# low during this dead clock.

19.5 Cache Consistency Cycles (Inquire Cycles)

The purpose of an inquire cycle is to check whether a particular address is cached in a processor
internal cache and optionally invalidate it. After an inquire cycle is complete, the system has
information on whether or not a particular address location is cached and what state it is in.

An inquire cycle is typically performed by first asserting AHOLD to force the processor to float its
address bus, waiting two clocks, and then driving the inquire address and INV and asserting
EADS#. Inquire cycles may also be executed while the processor is forced off the bus due to
HLDA, or BOFF#. Because the entire cache line is affected by an inquire cycle, only A31–A5
to be driven with the valid inquire address. Although the value of A4–A3 is ignored, these inp
should be driven to a valid logic level during inquire cycles for circuit reasons. The INV pin is
driven along with the inquire address to indicate whether the line should be invalidated (INV
or marked as shared (INV low) in the event of an inquire hit.

After the processor determines if the inquire cycle hit a line in either internal cache, it drives
HIT# pin. HIT# is asserted (low) two clocks after EADS# is sampled asserted1 if the inquire cycle
hit a line in the code or data cache. HIT# is deasserted (high) two clocks after EADS# is sam
asserted if the inquire cycle missed in both internal caches. The HIT# output changes its valu
as a result of an inquire cycle. It retains its value between inquire cycles. In addition, the HIT
pin is asserted two clocks after EADS# if the inquire cycle hit a modified line in the data cach
HITM# is asserted to indicate to the external system that the processor contains the most cu
copy of the data and any device needing to read that data should wait for the processor to w
back. The HITM# output remains asserted until two clocks after the last BRDY# of the writeb
cycle is asserted.

The external system must inhibit inquire cycles during BIST (initiated by INIT being sampled
on the falling edge of RESET), and during the Boundary Scan Instruction RUNBIST. When t
model specific registers (test registers) are used to read or write lines directly to or from the

Figure 19-23. Bus Cycles with TD Dead Clock

A6187-01

dead
CLK

dead
CLK

wrrd

rdrd wr wr
ADS

T1 T2 T2 T2 T2P T2PT12 T12 T12TD TD

W/R#

NA#

BRDY#

1. Since the EADS# input is ignored by the processor in certain clocks, the two clocks reference is from the clock in which EADS# is asserted
and actually sampled by the processor at the end of this clock (i.e., rising edge of next clock) as shown in Figure 19-25.
Embedded Pentium® Processor Family Developer’s Manual 19-353

Bus Functional Description
it is important that external snoops (inquire cycles) are inhibited to guarantee predictable results
when testing. This can be accomplished by inhibiting the snoops externally or by putting the
processor in SRAM mode (CR0.CD=CR0.NW=1).

The EADS# input is ignored during external snoop writeback cycles (HITM# asserted), or during
the clock after ADS# or EADS# is active. EADS# is also ignored when the processor is in SRAM
mode, or when the processor is driving the address bus.

Note that the processor may drive the address bus in the clock after AHOLD is deasserted. It is the
responsibility of the system designer to ensure that address bus contention does not occur. This can
be accomplished by not deasserting AHOLD to the processor until all other bus masters have
stopped driving the address bus.

Figure 19-24 shows an inquire cycle that misses both internal caches. Note that both the HIT# and
HITM# signals are deasserted two clocks after EADS# is sampled asserted.

Figure 19-25 shows an inquire cycle that invalidates a non-modified line. Note that INV is asserted
(high) in the clock that EADS# is returned. Note that two clocks after EADS# is sampled asserted,
HIT# is asserted and HITM# is deasserted.

Figure 19-24 and Figure 19-25 both show that the AP pin is sampled/driven along with the address
bus, and that the APCHK# pin is driven with the address parity status two clocks after EADS# is
sampled asserted.

An inquire cycle that hits a M-state line is shown in Figure 19-26. Both the HIT# and HITM#
outputs are asserted two clocks after EADS# is sampled asserted. ADS# for the writeback cycle
occurs no earlier than two clocks after the assertion of HITM#.
19-354 Embedded Pentium® Processor Family Developer’s Manual

Bus Functional Description
Figure 19-24. Inquire Cycle that Misses the Processor Cache

A6188-01

CLK

ADS#

W/R#

T2

BRDY#

DATA

T2T2 T1T iT iT1

AHOLD

EADS#

ADDR

INV

HIT#

HITM#

APCHK#

AP

To CPU

To CPUFrom CPU From CPU

To CPUFrom CPU From CPU
Embedded Pentium® Processor Family Developer’s Manual 19-355

Bus Functional Description
HITM# is asserted only if an inquire cycle (external snoop) hits a modified line in the processor
data cache. HITM# is not asserted for internal snoop writeback cycles or cache replacement
writeback cycles. HITM# informs the external system that the inquire cycle hit a modified line in
the data cache and that line is written back. Any ADS# driven by the processor while HITM# is
asserted will be the ADS# of the writeback cycle. The HITM# signal stays active until the last
BRDY# is returned for the corresponding inquire cycle. Writeback cycles start at burst address 0.

Note that ADS# is asserted despite the AHOLD signal being active. This ADS# initiates a
writeback cycle corresponding to the inquire hit. Such a cycle can be initiated while address lines
are floating to support multiple inquires within a single AHOLD session. This functionality can be
used during secondary cache replacement processing if its line is larger than the processor cache
line (32 bytes). Although the cycle specification is driven properly by the processor, address pins
are not driven because AHOLD forces the processor off the address bus. If AHOLD is cleared
before the processor drives out the inquire writeback cycle, the processor drives the correct address
for inquire writeback in the next clock. The ADS# to initiate a writeback cycle as a result of an
inquire hit is the only time ADS# is asserted while AHOLD is also asserted.

Figure 19-25. Inquire Cycle that Invalidates a Non-M-State Line

A6189-01

CLK

ADS#

W/R#

T2

BRDY#

DATA

T2T2 T1T iT iT1

AHOLD

EADS#

INV

HIT#

HITM#

APCHK#

ADDR/AP

To CPU

To CPUFrom CPU From CPU
19-356 Embedded Pentium® Processor Family Developer’s Manual

Bus Functional Description
Note that in the event of an address parity error during inquire cycles, the snoop cycle is not
inhibited. If the inquire hits a modified line in this situation and an active AHOLD prevents the
processor from driving the address bus, the processor potentially writes back a line at an address
other than the one intended. If the processor is not driving the address bus during the writeback
cycle, it is possible that memory will corrupted.

If BOFF# or HLDA were asserted to perform the inquire cycle, the writeback cycle would wait
until BOFF# or HLDA was deasserted.

State machines should not depend on a writeback cycle to follow an assertion of HITM#. HITM#
may be negated without a corresponding writeback cycle being run. This may occur as a result of
the internal caches being invalidated due to the INVD instruction or by testability accesses. Note
that inquire cycles occurring during testability accesses generate unpredictable results. In addition,
a second writeback cycle is not generated for an inquire cycle that hits a line already being written
back (see Figure 19-28). This can happen if an inquire cycle hits a line in one of the processor
writeback buffers.

19.5.1 Restrictions on Deassertion of AHOLD

To prevent the address and data buses from switching simultaneously, the following restrictions are
placed on the negation of AHOLD: (i) AHOLD must not be negated in the same clock as the
assertion of BRDY# during a write cycle; (ii) AHOLD must not be negated in the dead clock
between write cycles pipelined into read cycles; and (iii) AHOLD must not be negated in the same
clock as the assertion of ADS# while HITM# is asserted. Note that there are two clocks between
EADS# being sampled asserted and HITM# being asserted, and a further minimum of two clocks
between an assertion of HITM# and ADS#.

These restrictions on the deassertion of AHOLD are the only considerations the system designer
needs to make to prevent the simultaneous switching of the address and data buses. All other
considerations are handled internally.

Figure 19-26 can be used to illustrate restrictions (i) and (iii). AHOLD may be deasserted in Clock
2, 3, or 4, but not in Clock 5, 6, 7, 8 or 9.

Figure 19-27 and Figure 19-28 depict restrictions (i) and (ii) respectively. Note that there are no
restrictions on the assertion of AHOLD.
Embedded Pentium® Processor Family Developer’s Manual 19-357

Bus Functional Description
Figure 19-27 shows a writeback (due to a previous snoop that is not shown). ADS# for the
writeback is asserted even though AHOLD is asserted. Note that AHOLD can be deasserted in
Clock 2, 4, 7, or 9. AHOLD cannot be deasserted in Clock 1, 3, 5, 6, or 8.

Figure 19-26. Inquire Cycle that Invalidates M-State Line

A6190-01

T2

1 2 3 4 5 6 7 8 9 10 11

T2 Ti T2 T2 T2 T2T1Ti Ti Ti

To
CPU

To
CPU

From
CPU

From
CPU

From
CPU

From
CPU

ADS#

CLK

CACHE#

W/R#

DATA

BRDY#

AHOLD

EADS#

ADDR

INV

HIT#

HITM#
19-358 Embedded Pentium® Processor Family Developer’s Manual

Bus Functional Description
Figure 19-28 shows a write cycle being pipelined into a read cycle. Note that if AHOLD is asserted
in Clock 5, it can be deasserted in Clock 7 before the TD, or in Clock 10 after the TD, but it cannot
be deasserted in Clock 8 (the TD clock). AHOLD cannot be deasserted in Clock 9 because BRDY#
for the write cycle is being returned.

Figure 19-27. AHOLD Restriction during Write Cycles

A6191-01

T1 T2 T2 T2 T2 T2 T2 T2 T i
1 2 3 4 5 6 7 8 9

ADS#

W/R#

BRDY#

HOLD

CACHE#

HITM#

Figure 19-28. AHOLD Restriction During TD

A6192-01

Cycle 1

W/R#

NA#

BRDY#

CACHE#

AHOLD

ADS#

T1 T2 T2 T12 T2 T12T2P T2P T2P TD

1 2 3 4 5 6 7 8 9 10

Cycle 2Cycle 1

Cycle 2
Embedded Pentium® Processor Family Developer’s Manual 19-359

Bus Functional Description

 that is
he
n

iss. In
ed. If
ated.

iss or a
idated.

cache,
ritten

 and
ctivity.
that the
 to each

the

cle. If a
ore
ing

the
ntil it
d the
during
perand
d in a

 a
rliest
r NA#.
19.5.2 Rate of Inquire Cycles

The processor can accept inquire cycles at a maximum rate of one every other clock. However, if
an inquire cycle hits an M-state line of the processor, subsequent inquire cycles will be ignored
until the line is written back and HITM# is deasserted. EADS# is also ignored the clock after ADS#
is asserted.

19.5.3 Internal Snooping

“Internal snoop” is the term used to describe the snooping of the internal code or data caches
not initiated by the assertion of EADS# by the external system. Internal snooping occurs in t
three cases described below. Note that neither HIT# nor HITM# are asserted as a result of a
internal snoop.

1. An internal snoop occurs if an access is made to the code cache, and that access is a m
this case, if the accessed line is in the S or E state in the data cache, the line is invalidat
the accessed line is in the M state in the data cache, the line is written back then invalid

2. An internal snoop occurs if an access is made to the data cache, and that access is a m
writethrough. In this case, if the accessed line is valid in the code cache, the line is inval

3. An internal snoop occurs if there is a write to the accessed and/or dirty bits in the page
table/directory entries. In this case, if the accessed line is valid in either the code or data
the line is invalidated. If the accessed line is in the M state in the data cache, the line is w
back then invalidated.

19.5.4 Snooping Responsibility

In systems with external second level caches allowing concurrent activity of the memory bus
processor bus, it is desirable to run invalidate cycles concurrently with other processor bus a
Writes on the memory bus can cause invalidations in the secondary cache at the same time
processor fetches data from the secondary cache. Such cases can occur at any time relative
other, and therefore the order in which the invalidation is requested, and data is returned to
processor becomes important.

The processor always snoops the instruction and data caches when it accepts an inquire cy
snoop comes in during a linefill, the processor also snoops the line currently being filled. If m
than one cacheable cycle is outstanding (through pipelining), the addresses of both outstand
cycles are snooped.

For example, during linefills, the processor starts snooping the address(es) associated with
line(s) being filled after KEN# has been sampled active for the line(s). Each line is snooped u
is put in the cache. If a snoop hits a line being currently filled, the processor asserts HIT# an
line ends up in the cache in the S or I state, depending on the value of the INV pin sampled
the inquire cycle. However, the processor uses the data returned for that line as a memory o
for the instruction that caused the data cache miss/line fill or execute an instruction containe
code cache miss/line fill.

Figure 19-29 and Figure 19-30 illustrate the snoop responsibility pickup. Figure 19-29 shows
non-pipelined cycle, while Figure 19-30 illustrates a pipelined cycle. The figures show the ea
EADS# assertion that causes snooping of the line being cached relative to the first BRDY# o
19-360 Embedded Pentium® Processor Family Developer’s Manual

Bus Functional Description
Figure 19-29. Snoop Responsibility Pickup — Non-Pipelined Cycles

A6193-01

T1 T2 T2 T2T2T2 T2 T2 Ti

CLK

ADDR

ADS#

AHOLD

EADS#

HIT#

CACHE#

W/R#

KEN#

BRDY#

DATA

From CPU To CPU

To
CPU

To
CPU

To
CPU

To
CPU
Embedded Pentium® Processor Family Developer’s Manual 19-361

Bus Functional Description

s the
op hit
t an
The processor also snoops M state lines in the writeback buffers until the writeback of the M state
lines are complete. If a snoop hits an M state line in a writeback buffer, both HIT# and HITM# are
asserted. Figure 19-31 illustrates snooping (snoop responsibility drop) of an M state line that is
being written back because it has been replaced with a “new” line in the data cache. It show
latest EADS# assertion, relative to the last BRDY# of the writeback cycle that results in a sno
to the line being written back. HITM# stays asserted until the writeback is complete. Note tha
additional ADS# is not asserted during the writeback cycle.

The HIT# signal is a super set of the HITM# signal; it is always asserted with HITM#.

Figure 19-30. Snoop Responsibility Pickup — Pipelined Cycle

A6194-01

T1 T2 T2 T2T2T2 T2 T2 TI

CLK

ADDR

ADS#

AHOLD

EADS#

HIT#

CACHE#

W/R#

NA#

BRDY#

KEN#

DATA

From
CPU

To
CPU

To
CPU

To
CPU

To
CPU

To
CPU
19-362 Embedded Pentium® Processor Family Developer’s Manual

Bus Functional Description
19.6 Summary of Dual Processing Bus Cycles

The following is a list of bus cycles or bus cycle sequences which would not occur in embedded
Pentium processor uni-processor systems, but may be seen in Dual processor systems.

• Locked Cycle Sequences

• Cycle Pipelining

• Cycle Ordering Due to BOFF#

• Cache Line State

• Back-to-Back Cycles

• Address Parity Checking

• Synchronous FLUSH# and RESET

• PCHK# Assertion

• Flush Cycles

• Floating-Point Error Handling

Figure 19-31. Latest Snooping of Writeback Buffer

A6195-01

CLK

ADS#

W/R#

BRDY#

DATA

AHOLD

T2 T2T2 T2

EADS#

ADDR

HIT#

HITM#

T2 T2 T2 T i T iT1

From CPU From
CPU

From CPU To
CPU

From
CPU

From
CPU

From
CPU
Embedded Pentium® Processor Family Developer’s Manual 19-363

Bus Functional Description

em sees

 NA#
itration
e I/O
ation

 dual
F#

 by the
that

ssor
stems
19.6.1 Locked Cycle Sequences

1. Locked read to address X

2. Locked write back to address X

3. Locked read to address X

4. Locked write to address X

May occur due to the inter-processor cache consistency mechanism. Refer to Chapter 17,
“Microprocessor Initialization and Configuration.”

Implications

Processor bus hardware needs to handle this locked sequence. The only other time the syst
a locked write back is when an external snoop hits a modified line while a locked cycle is in
progress (this can occur in a uni-processor or a dual-processor system).

19.6.2 Cycle Pipelining

Inter-processor (Primary/Dual processor) back-to-back write cycles are not pipelined even if
has been asserted. The purpose of this rule is to prevent data bus contention during bus arb
from one processor to the other. In dual processor mode, the Primary processor may pipelin
cycles into I/O cycles from the Dual processor (and vice versa) for any I/O instruction combin
(i.e., except I/O writes into writes).

Implications

System hardware designers should be aware of these bus changes.

19.6.3 Cycle Ordering Due to BOFF#

Cycle ordering following an assertion of BOFF# may be different between uni-processor and
processor modes. This occurs when there are pipelined cycles from both processors, a BOF
stalls both cycles, and an external snoop hits a modified line in the LRMs cache.

Implications

System hardware designers should be aware of these bus changes.

19.6.4 Cache Line State

In embedded Pentium processor family uni-processor systems, if a line is put into the E state
system hardware using the WB/WT# signal during the line fill, then all subsequent writes to
line are handled internally via the on-chip cache. In dual-processor systems, under certain
circumstances, even if the system puts a line into the E state using WB/WT#, the dual-proce
protocol may force the line to be stored in the S state. Private snooping in dual processor sy
can also cause a line to be placed into the S or I state.
19-364 Embedded Pentium® Processor Family Developer’s Manual

Bus Functional Description
Implications

There are no system implications. The system may be required to handle writes to a line which
would not otherwise have been seen.

Note: In a dual processing system where NW=1 and CD=1 are set, (i.e., SRAM mode), an inquire cycle
invalidates a cache line with INV on a HIT#.

19.6.5 Back-to-Back Cycles

Due to the dual-processor cache consistency protocol, the Primary and Dual processors may follow
a write to address X with a write back to a 32-byte area which contains X. This does not occur in
uni-processor systems. Also, a read to address X may be followed by a write back to a 32-byte area
which contains X.

Implications

There are no system implications.

19.6.6 Address Parity Checking

Address parity is checked during every private snoop between the Primary and Dual processors.
Therefore, APCHK# may be asserted due to an address parity error during this private snoop. If an
error is detected, APCHK# is asserted two clocks after ADS# for one processor clock period. The
system can choose to acknowledge this parity error indication at this time or do nothing.

Implications

There are no system implications. The system designers get extra address parity checking with dual
processors due to the automatic private snooping.

19.6.7 Synchronous FLUSH# and RESET

When the Dual processor is present, the FLUSH# and RESET signals must be recognized by both
processors at the same time.

Implications

FLUSH# and RESET must be asserted on the same clock to both the Primary and Dual processors.

19.6.8 PCHK# Assertion

In a dual-processor configuration, there is the possibility that the PCHK# signal can be asserted
either two or three CLKs following incorrect parity being detected on the data bus (depending on
the bus-to-core ratio).

Implications

Chip sets must account for this difference from the embedded Pentium processor in their logic or
state machines.
Embedded Pentium® Processor Family Developer’s Manual 19-365

Bus Functional Description
19.6.9 Flush Cycles

The Primary and Dual processors incorporate a mechanism to present a unified view of the cache
flush operation to the system when in dual processing mode. The Dual processor performs the
cache flush operation first, then grants the bus to the Primary processor. The Primary processor
flushes its internal caches, and then runs the cache flush special cycle.

Implications

The system hardware must not assert a subsequent FLUSH# to the processors until the flush
acknowledge special cycle has completed on the processor bus. The assertion of FLUSH# to the
processors prior to this point would result in a corruption of the dual processing bus arbitration
state machines.

19.6.10 Floating-Point Error Handling

The embedded Pentium processor, when configured as a Dual processor, ignores the IGNNE#
input. The FERR# output is also undefined in the Dual processor.

Implications

None.
19-366 Embedded Pentium® Processor Family Developer’s Manual

	Bus Functional Description 19
	19.1 Physical Memory and I/O Interface
	Figure 19�1. Memory Organization
	Figure 19�2. I/O Space Organization

	19.2 Data Transfer Mechanism
	Table 19�1. Embedded Pentium® Processor Byte Enables and Associated Data Bytes
	Table 19�2. Generating A2–A0 from BE7#–BE0#
	Table 19�3. When BLE# is Active
	Table 19�4. When BHE# is Active
	Table 19�5. When BE3’# is Active
	Table 19�6. When BE2’# is Active
	Table 19�7. When BE1’# is Active
	Table 19�8. When BE0’# is Active
	19.2.1 Interfacing With 8-, 16-, 32-, and 64-Bit Memories
	Figure 19�3. Embedded Pentium® Processor with 64-Bit Memory
	Figure 19�4. Addressing 32-, 16- and 8-Bit Memories
	Figure 19�5. Data Bus Interface to 32-, 16- and 8-Bit Memories
	Table 19�9. Transfer Bus Cycles for Bytes, Words, Dwords and Quadwords

	19.3 Bus State Definition
	Table 19�10. Processor Bus Activity
	Figure 19�6. Processor Bus Control State Machine
	19.3.1 State Transitions

	19.4 Bus Cycles
	Table 19�11. Processor Initiated Bus Cycles
	19.4.1 Single-Transfer Cycle
	Figure 19�7. Non-Pipelined Read and Write
	Figure 19�8. Non-Pipelined Read and Write with Wait States

	19.4.2 Burst Cycles
	Table 19�12. Processor Burst Order
	19.4.2.1 Burst Read Cycles
	Figure 19�9. Basic Burst Read Cycle
	Figure 19�10. Slow Burst Read Cycle

	19.4.2.2 Burst Write Cycles
	Figure 19�11. Basic Burst Write Cycle

	19.4.3 Locked Operations
	19.4.3.1 Programmer Generated Locks and Segment Descriptor Updates
	19.4.3.2 Page Table/directory Locked Cycles
	19.4.3.3 LOCK# Operation During AHOLD/HOLD/BOFF#
	19.4.3.4 Inquire Cycles During LOCK#
	19.4.3.5 LOCK# Timing and Latency
	Figure 19�12. LOCK# Timing
	Figure 19�13. Two Consecutive Locked Operations
	Figure 19�14. Misaligned Locked Cycles

	19.4.4 BOFF#
	Figure 19�15. Back Off Timing

	19.4.5 Bus Hold
	Figure 19�16. HOLD/HLDA Cycles

	19.4.6 Interrupt Acknowledge
	Figure 19�17. Interrupt Acknowledge Cycles

	19.4.7 Flush Operations
	19.4.8 Special Bus Cycles
	Table 19�13. Special Bus Cycles Encoding

	19.4.9 Bus Error Support
	19.4.10 Pipelined Cycles
	Figure 19�18. Two Pipelined Cache Linefills
	Figure 19�19. Pipelined Back-to-Back Read/Write Cycles
	19.4.10.1 KEN# and WB/WT# Sampling for Pipelined Cycles
	Figure 19�20. KEN# and WB/WT# Sampling with NA#
	Figure 19�21. KEN# and WB/WT# Sampling with BRDY#

	19.4.11 Dead Clock Timing Diagrams
	Figure 19�22. Bus Cycles without Dead Clock
	Figure 19�23. Bus Cycles with TD Dead Clock

	19.5 Cache Consistency Cycles (Inquire Cycles)
	Figure 19�24. Inquire Cycle that Misses the Processor Cache
	Figure 19�25. Inquire Cycle that Invalidates a Non-M-State Line
	19.5.1 Restrictions on Deassertion of AHOLD
	Figure 19�26. Inquire Cycle that Invalidates M-State Line
	Figure 19�27. AHOLD Restriction during Write Cycles
	Figure 19�28. AHOLD Restriction During TD

	19.5.2 Rate of Inquire Cycles
	19.5.3 Internal Snooping
	19.5.4 Snooping Responsibility
	Figure 19�29. Snoop Responsibility Pickup — Non-Pipelined Cycles
	Figure 19�30. Snoop Responsibility Pickup — Pipelined Cycle
	Figure 19�31. Latest Snooping of Writeback Buffer

	19.6 Summary of Dual Processing Bus Cycles
	19.6.1 Locked Cycle Sequences
	19.6.2 Cycle Pipelining
	19.6.3 Cycle Ordering Due to BOFF#
	19.6.4 Cache Line State
	19.6.5 Back-to-Back Cycles
	19.6.6 Address Parity Checking
	19.6.7 Synchronous FLUSH# and RESET
	19.6.8 PCHK# Assertion
	19.6.9 Flush Cycles
	19.6.10 Floating-Point Error Handling

