
Error Detection 22

The embedded Pentium processor incorporates a number of data integrity features that are focused
on the detection and limited recovery of errors. The data integrity features provide capabilities for
error detection of the internal devices and the external interface. The processor also provides the
capability to obtain maximum levels of error detection by incorporating Functional Redundancy
Checking (FRC) support. Error detecting circuits in the embedded Pentium processor do not limit
the operating frequency of the chip.

The data integrity features can be categorized as (1) internal error detection, (2) error detection at
the bus interface, and (3) FRC support.

22.1 Internal Error Detection

Detection of errors of a majority of the devices in the processor is accomplished by employing
parity checking in the large memory arrays of the chip. The data and instruction caches (both
storage and tag arrays), translation lookaside buffers, and microcode ROM are all parity protected.
The following describes the parity checking employed in the major memory arrays in the processor
(MESI status bits are not parity protected):

• Parity bit per byte in the data cache storage array.

• Parity bit per entry in the data cache tag array.

• Four Parity bits: One for each of the even upper, even lower, odd upper, odd lower bits of an
instruction cache line.

• Parity bit per entry in the instruction cache tag array.

• Parity bit per entry in both the data and instruction TLBs storage arrays.

• Parity bit per entry in both the data and instruction TLBs tag arrays.

• Parity bit per entry in the microcode ROM.

Parity checking as described above provides error detection coverage of 53% of the on-chip
devices. This error detection coverage number also includes the devices in the branch target buffer
since branch predictions are always verified.

If a parity error has occurred internally, processor operation can no longer be trusted. Normally, a
parity error on a read from an internal array will cause the processor to assert the IERR# pin and
then shutdown. (Shutdown will be entered assuming it is not prevented from doing so by the
error.); however, if TR1.NS is set, IERR# will not result in processor shutdown. Execution will
continue, but operation will not be reliable. Parity errors on reads during normal instruction
execution, reads during a flush operation, reads during BIST and testability cycles, and reads
during inquire cycles will cause IERR# to be asserted. The IERR# pin will be asserted for one
clock for each clock a parity error is detected and may be latched by the system. The IERR# pin is
a glitch free signal, so no spurious assertions of IERR# will occur.

In general, internal timing constraints of the processor do not allow the inhibition of writeback
cycles caused by inquire cycles, FLUSH# assertion or the WBINVD instruction when a parity error
is encountered. In those cases where an internal parity error occurred during the generation of a
writeback cycle, and that cycle was not able to be inhibited, the IERR# pin can be used to
Embedded Pentium® Processor Family Developer’s Manual 22-393

Error Detection

ng

dress
ssor
.

HK#
nquire.
rams
will
system.

e
ddress
ack
recognize that the writeback should be ignored. If an internal parity error occurs during a flush
operation, the processor will assert the IERR# pin as stated above, and the internal caches will be
left in a partially flushed state. The flush, flush acknowledge, or writeback special cycles will not
be run.

22.2 Error Detection at the Processor Interface

The processor provides parity checking on the external address and data buses. There is one parity
bit for each byte of the data bus and one parity bit for bits A31–A5 of the address bus.

22.2.1 Address Parity

A separate and independent mechanism is used for parity checking on the address bus duri
inquire cycles. Even address parity is driven along with the address bus during all processor
initiated bus cycles and checked during inquire cycles. When the processor is driving the ad
bus, even parity is driven on the AP pin. When the address bus is being driven into the proce
during an inquire cycle, this pin is sampled in any clock in which EADS# is sampled asserted
APCHK# is driven with the parity status two clocks after EADS# is sampled active. The APC
output (when active) indicates that a parity error has occurred on the address bus during an i
Figure 22-1 depicts an address parity error during an inquire cycle. For additional timing diag
which show address parity, see Chapter 19, “Bus Functional Description.” The APCHK# pin
be asserted for one clock for each clock a parity error is detected and may be latched by the
The APCHK# pin is a glitch free signal, so no spurious assertions of APCHK# will occur.

In the event of an address parity error during inquire cycles, the internal snoop will not be
inhibited. If the inquire hits a modified line in this situation and an active AHOLD prevents th
processor from driving the address bus, the processor will potentially writeback a line at an a
other than the one intended. If the processor is not driving the address bus during the writeb
cycle, it is possible that memory will be corrupted.

Figure 22-1. Inquire Cycle Address Parity Checking

A5906-01

1 2 3 4

CLK

AHOLD

EADS#

APCHK#

HIT#

ADDR/AP To CPU From CPU
22-394 Embedded Pentium® Processor Family Developer’s Manual

Error Detection

during
 back
data
ow if
 for
CHK#
when
al

bility
Driving APCHK# is the only effect that bad address parity has on the processor. It is the
responsibility of the system to take appropriate action if a parity error occurs. If parity checks are
not implemented in the system, the APCHK# pin may be ignored.

22.2.2 Data Parity

Even data parity is driven on the DP7–DP0 pins in the same clock as the data bus is driven
all processor initiated data write cycles. During reads, even parity information may be driven
to the processor on the data parity pins along with the data being returned. Parity status for
sampled is driven on the PCHK# pin two clocks after the data is returned. PCHK# is driven l
a data parity error was detected, otherwise it is driven high. The PCHK# pin will be asserted
one clock for each clock a parity error is detected and may be latched by the system. The P
pin is a glitch free signal, so no spurious assertions of PCHK# will occur. Figure 22-2 shows
the data parity (DP) pins are driven/sampled and when the PCHK# pin is driven. For addition
timing diagrams that show data parity, see Chapter 19, “Bus Functional Description.”

Driving PCHK# is the only effect that bad data parity has on the processor. It is the responsi
of the system to take appropriate action if a parity error occurs. If parity checks are not
implemented in the system, the PCHK# pin may be ignored.

Figure 22-2. Data Parity During a Read and Write Cycle

A6069-01

CLK

ADDR

ADS#

CACHE#

W/R#

BRDY#

DATA

PCHK#

T1 T2 Ti T1 T2 Ti T1

DP

NA#

InvalidInvalid ValidValid

To CPU

To CPU From CPU

From CPU
Embedded Pentium® Processor Family Developer’s Manual 22-395

Error Detection

e

is the
us to
terrupt

check
ption.
 check
pt

ter to
E to 1,

ction
llow
ror code
 an
d the

rity

he
ll
g

ific,
ysical

T and
), the
 MCT
22.2.2.1 Machine Check Exception as a Result of a Data Parity Error

The PEN# input determines whether a machine check interrupt will be taken as a result of a data
parity error. If a data parity error occurs on a read for which PEN# was asserted, the physical
address and cycle information of the cycle causing the parity error will be saved in the Machine
Check Address Register and the Machine Check Type Register. If in addition, the CR4.MCE is set
to 1, the machine check exception is taken. See “Machine Check Exception” on page 22-396 for
more information.

The parity check pin, PCHK#, is driven as a result of read cycles regardless of the state of th
PEN# input.

22.2.3 Machine Check Exception

As mentioned in the earlier section, a new exception has been added to the processor. This
machine check exception which resides at interrupt vector 18 (decimal). In processors previo
the Pentium processor, interrupt vector 18 was reserved and, therefore, there should be no in
routine located at vector 18. For compatibility, the MCE bit of the CR4 register will act as the
machine check enable bit. When set to “1,” this bit will enable the generation of the machine
exception. When reset to “0,” the processor will inhibit generation of the machine check exce
CR4.MCE will be cleared on processor reset. In the event that a system is using the machine
interrupt vector for another purpose and the Machine Check Exception is enabled, the interru
routine at vector 18 must examine the state of the CHK bit in the Machine Check Type regis
determine the cause of its activation. Note that at the time the system software sets CR4.MC
it must read the Machine Check Type register in order to clear the CHK bit.

The Machine Check Exception is an abort; that is, it is not possible to reliably restart the instru
stream or identify the instruction causing the exception. Therefore, the exception does not a
the restart of the program that caused the exception. The processor does not generate an er
for this exception. Since the machine check exception is synchronous to a bus cycle and not
instruction, the IP pushed on to the stack may not be pointing to the instruction which cause
failing bus cycle.

The Machine Check Exception can be caused by one of two events: 1) Detection of data pa
error during a read when the PEN# input is active, or 2) The BUSHCK# input being sampled
active. When either of these events occur, the cycle address and type will be latched into the
Machine Check Address (MCA) and Machine Check Type (MCT) registers (independent of t
state of the CR4.MCE bit). If in addition, the CR4.MCE is “1,” a machine check exception wi
occur. When the MCA and MCT registers are latched, the MCT.CHK bit is set to “1” indicatin
that their contents are valid (Figure 22-3).

The Machine Check Address register, and the Machine Check Type register are model spec
read only registers. The Machine Check Address register is a 64-bit register containing the ph
address for the cycle causing the error. The Machine Check Type register is a 64-bit register
containing the cycle specification information, as defined in Figure 22-3. These registers are
accessed using the RDMSR instruction. When the MCT.CHK is zero, the contents of the MC
MCA registers are undefined. When the MCT register is read (using the RDMSR instruction
CHK bit is reset to zero. Therefore, software must read the MCA register before reading the
register.
22-396 Embedded Pentium® Processor Family Developer’s Manual

Error Detection

it

e in
r a

a bus
If this
heck

riate
an

ause

e. This

he
or will

ing

ycle.
rs

 next
The bits in the Machine Check Type Register are defined as follows:

CHK: This bit is set to 1 when the Machine Check Type register is latched and
is reset to 0 after the Machine Check Type register is read via the
RDMSR instruction. In the event that the Machine Check Type register
is latched in the same clock in which it is read, the CHK bit will be set.
The CHK bit is reset to “0” on assertion of RESET. When the CHK b
is “0,” the contents of the MCT and MCA registers are undefined.

M/IO#, D/C#, W/R#: These cycle definition pins can be decoded to determine if the cycl
error was a memory or I/O cycle, a data or code fetch, and a read o
write cycle. (See the embedded Pentium processor datasheets for
detailed pin definitions.)

LOCK: Set to “1” if LOCK# is asserted for the cycle

22.2.4 Bus Error

The BUSCHK# input provides the system a means to signal an unsuccessful completion of
cycle. This signal is sampled on any edge in which BRDY# is sampled, for reads and writes.
signal is sampled active, then the cycle address and type will be latched into the Machine C
Address and Machine Check Type registers. If in addition, the CR4.MCE bit is set to 1, the
processor will be vectored to the machine check exception.

Even if BUSCHK# is asserted in the middle of a cycle, BRDY# must be asserted the approp
number of clocks required to complete the bus cycle. The purpose of BUSCHK# is to act as
indication of an error that is synchronous to bus cycles. If the machine check interrupt is not
enabled, i.e., the MCE bit in the CR4 register is zero, then an assertion of BUSCHK# will not c
the processor to vector to the machine check exception.

The embedded Pentium processor can remember only one machine check exception at a tim
exception is recognized on an instruction boundary. If BUSCHK# is sampled active while
servicing the machine check exception for a previous BUSCHK#, it will be remembered by t
processor until the original machine check exception is completed. It is then that the process
service the machine check exception for the second BUSCHK#. Note that only one BUSCHK
will be remembered by the processor while the machine exception for the previous one is be
serviced.

When the BUSCHK# is sampled active by the processor, the cycle address and cycle type
information for the failing bus cycle is latched upon assertion of the last BRDY# of the bus c
The information is latched into the Machine Check Address and Machine Check Type registe
respectively. However, if the BUSCHK# input is not deasserted before the first BRDY# of the

Figure 22-3. Machine Check Type Register

A6221-01

M
/
I
O

D
/
C

W
/
R

6
3

0
0

0
1

0
2

0
3

0
4

0
5

L
O
C
K

C
H
K

Reserved
Embedded Pentium® Processor Family Developer’s Manual 22-397

Error Detection

er”
signals

is not

er must
ates
are
C) so
ted
r-
ether.

t to the

during
l
nal

ock,
low for
ive.
ter the

r to the
essor

that the
puts
 same
e

ble to
to one,
e used
bus cycle, and the machine check exception for the first bus cycle has not occurred, then new
information will be latched into the MCA and MCT registers, over-writing the previous
information at the completion of this new bus cycle. Therefore, in order for the MCA and MCT
registers to report the correct information for the failing bus cycle when the machine check
exception for this cycle is taken at the next instruction boundary, the system must deassert the
BUSCHK# input immediately after the completion of the failing bus cycle and before the first
BRDY# of the next bus cycle is returned.

22.2.5 Functional Redundancy Checking

Functional Redundancy Checking (FRC) in the embedded Pentium processor will provide
maximum error detection (>99%) of on-chip devices and the processor’s interface. A “check
processor that executes in lock step with the “master” processor is used to compare output
every clock.

Note: The embedded Pentium processor with MMX technology does not support FRC. Also, FRC
supported in Dual processor designs.

Two embedded Pentium processors are required to support FRC. Both the master and check
be of the same stepping and same bus fraction. The processor configured as a master oper
according to bus protocol described in this document. The outputs of the checker processor
three-stated (except IERR#, TDO, PICD0, PICD1—however, these signals are not part of FR
the outputs of the master can be sampled. If the sampled value differs from the value compu
internally by the checker, the checker asserts the IERR# output to indicate an error. A maste
checker pair should have all pins except FRCMC#, IERR#, PICD0, PICD1 and TDO tied tog

The processors are configured either as a master or a checker by driving the FRCMC# inpu
appropriate level while RESET is asserted. If sampled low during reset, the processor enters
checker mode and three-states all outputs except IERR# and TDO (IERR# is driven inactive
reset). This feature is provided to prevent bus contention before reset is completed. The fina
master/checker configuration is determined when RESET transitions from high to low. The fi
master/checker configuration may not be changed other than by a subsequent RESET.

The IERR# pin reflects the result of the master-checker comparison. It is asserted for one cl
two clocks after the mismatch. It is asserted for each detected mismatch, so IERR# may be
more than one consecutive clock. During the assertion of RESET, IERR# will be driven inact
After RESET is deasserted, IERR# will not be asserted due to a mismatch until two clocks af
ADS# of the first bus cycle (i.e., in the third clock of the first bus cycle). IERR# will reflect pin
comparisons thereafter. Note that IERR# may be asserted due to an internal parity error prio
first bus cycle. It is possible for FRC mismatches to occur in the event that an undefined proc
state is driven off-chip, therefore no processor state should be stored without having been
previously initialized.

In order for the master-checker pair to operate correctly, the system must be designed such
master and the checker sample identical input states in the same clock. All asynchronous in
should change state in such a manner that both the master and checker sample them in the
state in the same clock. The simplest way to do this is to design all asynchronous inputs to b
synchronously controlled.

The TDO pin is not tested by FRC since it operates on a separate clock. Note that it is possi
use boundary scan to verify the connection between the master and checker by scanning in
latching the outputs of the other and then scanning out. The Stop Clock state feature cannot b
in dual processing or functional redundancy checking modes because there is no way to re-
synchronize the internal clocks of the two processors.
22-398 Embedded Pentium® Processor Family Developer’s Manual

Error Detection
Figure 22-4 illustrates the configuration of output pins with respect to FRC. The comparators at
each output compare the value of the package pin with the value being driven from the core to that
pin, not the value driven by boundary scan to that pin. Therefore, during the use of boundary scan,
FRC mismatches (IERR# assertion) can be expected to occur.

Figure 22-4. Conceptual IERR# Implementation for FRC

A6222-01

Core

Boundary Scan Chain

Output
Enable

Input
Buffer

IERR#

Output Pin
Embedded Pentium® Processor Family Developer’s Manual 22-399

	Error Detection 22
	22.1 Internal Error Detection
	22.2 Error Detection at the Processor Interface
	22.2.1 Address Parity
	Figure 22�1. Inquire Cycle Address Parity Checking

	22.2.2 Data Parity
	Figure 22�2. Data Parity During a Read and Write Cycle
	22.2.2.1 Machine Check Exception as a Result of a Data Parity Error

	22.2.3 Machine Check Exception
	Figure 22�3. Machine Check Type Register

	22.2.4 Bus Error
	22.2.5 Functional Redundancy Checking
	Figure 22�4. Conceptual IERR# Implementation for FRC

