
Pentium® Processor for
Embedded Applications
Specification Update

January 1999
Notice: The Pentium® processor may contain design defects or errors known as errata which
may cause the product to deviate from published specifications. Current characterized errata are
documented in this Specification Update.

Order Number: 273183-003

Pentium® Processor for Embedded Applications Specification Update

Information in this document is provided in connection with Intel products. No license, express or implied, by estoppel or otherwise, to any intellectual
property rights is granted by this document. Except as provided in Intel’s Terms and Conditions of Sale for such products, Intel assumes no liability
whatsoever, and Intel disclaims any express or implied warranty, relating to sale and/or use of Intel products including liability or warranties relating to
fitness for a particular purpose, merchantability, or infringement of any patent, copyright or other intellectual property right. Intel products are not
intended for use in medical, life saving, or life sustaining applications.

Intel may make changes to specifications and product descriptions at any time, without notice.

Designers must not rely on the absence or characteristics of any features or instructions marked "reserved" or "undefined." Intel reserves these for
future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them.

The Pentium® processor may contain design defects or errors known as errata which may cause the product to deviate from published specifications.
Current characterized errata are available on request.

MPEG is an international standard for video compression/decompression promoted by ISO. Implementations of MPEG CODECs, or MPEG enabled
platforms may require licenses from various entities, including Intel Corporation.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.

Copies of documents which have an ordering number and are referenced in this document, or other Intel literature may be obtained by calling 1-800-
548-4725 or by visiting Intel’s website at http://www.intel.com.

Copyright © Intel Corporation, 1998, 1999

*Third-party brands and names are the property of their respective owners.

Contents

Revision History ... 5

Preface... 6

Specification Changes ... 20

S-Specs ... 23

Errata ... 27

Specification Clarifications ... 64

Documentation Changes ... 72

Appendix A Pentium® Processor Related Technical Collateral................ 74
Pentium® Processor for Embedded Applications Specification Update 3

Revision History
Revision History

Revision History
Revision Date Version Description

1/11/99 003 Added Specification Updates for embedded Pentium processor with
MMX technology devices.

12/11/98 002
Added: Specification Change 20; Errata 83; and Specification
Clarification 25. Updated the Processor Identification section to
reflect new SL2TU S-spec number.

6/11/98 001 This is the first publication of this document.
Pentium® Processor for Embedded Applications Specification Update 5

Preface

pping

 in
Preface

This document is an update to the specifications contained in the Pentium® Processor Family
Developer’s Manual, (order number 273204), the Intel Architecture Software Developer’s Manual,
Volume 1, 2 and 3 (order numbers 243190, 243191, and 243192); and the Embedded Pentium®
Processor (order number 273202), Embedded Pentium® Processor with Voltage Reduction
Technology (order number 273203), Embedded Pentium® Processor with MMX™ Technology
(order number 273214) and Low-Power Embedded Pentium® Processor with MMX™ Technology
(order number 273184) datasheets. It is intended for hardware system manufacturers and software
developers of applications, operating systems, or tools. It contains Specification Changes, S-Specs,
Errata, Specification Clarifications and Documentation Changes for Pentium processors for high-
performance embedded applications. The following processors are included in this Specification
Update:

• 100 MHz Pentium® Processor

• 133 MHz Pentium® Processor

• 133 MHz Pentium® Processor with Voltage Reduction Technology

• 166 MHz Pentium® Processor

• 200 MHz Pentium Processor with MMX Technology

• 233 MHz Pentium Processor with MMX Technology

• 166 MHz Low-Power Pentium Processor with MMX Technology

• 266 MHz Low-Power Pentium Processor with MMX Technology

For information pertaining to processors not listed above, refer to the Pentium® Processor
Specification Update (order number 242480).

Nomenclature

Specification Changes are modifications to the current published specifications. These changes
will be incorporated in the next release of the specifications.

S-Specs are exceptions to the published specifications and apply only to the units assembled under
that s-spec.

Errata are design defects or errors. Errata may cause the Pentium® processor’s behavior to deviate
from published specifications. Hardware and software designed to be used with any given ste
must assume that all errata documented for that stepping are present on all devices.

Specification Clarifications describe a specification in greater detail or further highlight a
specification’s impact to a complex design situation. These clarifications will be incorporated
the next release of the specifications.

Documentation Changes include typos, errors, or omissions from the current published
specifications. These changes will be incorporated in the next release of the specifications.
6 Pentium® Processor for Embedded Applications Specification Update

Preface
Identification Information

The Pentium processor can be identified by the following register contents:

Marking Information

Processor Identification

Family(1)
100/133/166 MHz

Pentium® Processor
Model(2)

200/233 MHz Pentium
Processor with MMX™

Technology Model (2)

166/266 MHz Low-Power
Pentium Processor with

MMX Technology Model (2)

05H 02H 04H 08H

NOTES:
1. The Family corresponds to bits [11:8] of the EDX register after RESET, bits [11:8] of the EAX register after

the CPUID instruction is executed, and the generation field of the Device ID register accessible through
Boundary Scan.

2. The Model corresponds to bits [7:4] of the EDX register after RESET, bits [7:4] of the EAX register after the
CPUID instruction is executed, and the model field of the Device ID register accessible through Boundary
Scan.

Figure 1. Topside Markings Key

pentium

A8050x166 SY016
ICOMP® 2 #=127
FFFFFFFF-DDDD
INTEL © ‘92 ‘93M

Intel Part Number
(A=SPGA)

Processor Core
Speed (MHz)

S-Spec Number

ICOMP®2 Rating

Serialization Number

Test Lot Traceability
Number (FPO#)

®

w/ MMX™ tech

Pentium® Processors and Pentium Processors with MMX™ Technology

Low-Power Pentium Processors with MMX Technology

pentium®

GC80503CSM
x66 MHz

SL27S
INTEL © ‘92 ‘95M

Intel Part Number
(GC=HL-PBGA)

S-Spec Number

Serialization Number
Test Lot Traceability
Number (FPO#)

w/ MMX™ tech

FFFFFFFF-DDDD

Processor Core
Speed (MHz)

(Pentium Processors only)

AAAAAAAAAA
BBB BBB
Pentium® Processor for Embedded Applications Specification Update 7

Preface
Figure 2. Bottomside Markings Key

pentium®
w/ MMX™ tech
FV80503xxx

XXXX ES/1.9 V
MALAY
XXXXXXXX-XXXX

© ‘92 ‘93M

INTEL © ‘92 ‘93M

Intel Part Number
(A=SPGA)

Processor
Core Speed

S-Spec Number

XXXXXXXXXX
XXXXXXXXXX

A80502100
SY007 iPP

XXXXXXXXXX
XXXXXXXXXX

A80502100
SL2TU/KLM

Pentium® Processors Before 7/95 Pentium® Processors After 7/95

(MHz)

Processor
Core Speed
(MHz)

Intel Part Number
(A=SPGA)

S-Spec Number

Special
Marking
(See Notes)

K= V for VRE voltage range and S for standard voltage range
L= M for min valid MD timings and S for min valid standard timings
M= U is not tested for DP, but is tested for UP and MP. S is tested

Pentium® Processors
with MMX™ Technology

for DP, UP and MP.

S-Spec Number

Core Voltage

Intel Part Number
(A=SPGA,
xxx=200/233 MHz)

Intel Part

(FV=PPGA,

Core Voltage

®

S-Spec Number

Number

xxx=166/266
MHz)

Test Lot Traceability

Low-Power Pentium® Processors
with MMX™ Technology (PPGA)

Number (FP0#)
8 Pentium® Processor for Embedded Applications Specification Update

Preface
Top Markings

Bottom Markings

A6349-01

A80502-100 SL2TU
ICOMP® INDEX=815

FFFFFFFF-DDDD
INTEL® '92 '93C

100 MHz C2-Step Production Units

pentium®

A80502133 SY022
ICOMP® 2 #=111
FFFFFFFF-DDDD
INTEL® '92 '93C

133 MHz cC0-Step Production Units

pentium®

A80502166SY016
ICOMP® 2 #=127
FFFFFFFF-DDDD
INTEL® '92 '93C

166 MHz cC0-Step Production Units

pentium®

A80503XXX SZZZZ
FFFFFFFF-DDDD
INTEL '92 '95CM

200/233 MHz xB1-Step
Pentium® Processor w/ MMX™
Tech. Production SPGA Units

pentium®

166/266 MHz myA0-Step Low-Power
Pentium® Processor w/ MMX™
Tech. Production PPGA Units

166/266 MHz myA0-Step Low-Power
Pentium® Processor w/ MMX™

Tech. Production HL-PBGA Units

w/MMX™ tech pentium®

w/MMX™ tech

w/MMX™ tech

GC80503CSM
x66 MHz
FFFFFFFF-DDDD
SL27S
INTEL '92 '95
AAAAAAAAAA
BBB BBB

pentium®

CM

A6348-01

XXXXXXXXXX
XXXXXXXXXX

INTEL® '92 '93
A80502-100

SY007

C

100 MHz C-Step Production Units
(before 7/95)

XXXXXXXXXX
XXXXXXXXXX

A80502100
SL2TU/VMU

IPP

100 MHz C-Step Production Units
(after 7/95)

XXXXXXXXXX
XXXXXXXXXX

A80502133
SL022/VMU

IPP

133 MHz cC0-Step
Production Units

XXXXXXXXXX
XXXXXXXXXX

A80503XXX
SZZZZ/2.8V

IPP

200/233 MHz xB1-Step Pentium®

Processor w/ MMX™ Technology
Production SPGA Units

166/266 MHz myA0-Step Low-Power
Pentium® Processor w/ MMX™
Tech. Production PPGA Units

XXXXXXXXXX
XXXXXXXXXX

A80502166
SY016/VMU

IPP

166 MHz cC0-Step
Production Units

w/MMX™ tech
FV80503266

XXXX ES/1.9 V
MALAY
XXXXXXXX-XXXX
 '92 '93CM

pentium®
Pentium® Processor for Embedded Applications Specification Update 9

Preface
Processor Identification

• CPU Type of “2” or “0 or 2” indicates this part supports dual processing.

• The Type corresponds to bits [13:12] of the EDX register after RESET, bits [13:12] of the
EAX register after the CPUID instruction is executed. This is shown as two different values
based on the operation of the device as the primary processor or the dual processor upgrade.

• The Family corresponds to bits [11:8] of the EDX register after RESET, bits [11:8] of the EAX
register after the CPUID instruction is executed.

• The Model corresponds to bits [7:4] of the EDX register after RESET, bits [7:4] of the EAX
register after the CPUID instruction is executed.

• The Stepping corresponds to bits [3:0] of the EDX register after RESET, bits [3:0] of the EAX
register after the CPUID instruction is executed.

• The absence of a package type in the comments column means the processor is SPGA by
default.

Table 1. Pentium® Processor Identification Information

CPUID

Type Family Model Stepping

Manufac-
turing

Stepping

Speed (MHz)
Core / Bus S-Spec Comments

0 or 2 5 2 C cC0 133/66 SY022 STD

0 or 2 5 2 C cC0 166/66 SY016 VRE1, No Kit2

0 5 2 C mcC0 3 133/66 SY028 SPGA 3.1V

0 or 2 5 2 6 E0 100/50 or 66 SY007 STD4, 9

0 or 2 5 2 C cc0 100/50 or 66 SL2TU STD

0 or 2 5 4 3 xB1 200/66 SL27J PPGA5

0 or 2 5 4 3 xB1 233/66 SL27S PPGA5

0 5 8 1 myA0 166/66 SL2ZX PPGA6

0 5 8 1 myA0 166/66 SL388 HL-PBGA7

0 5 8 1 myA0 266/66 SL2Z4 PPGA6

0 5 8 1 myA0 266/66 SL389 HL-PBGA8

NOTES:
1. VRE: These parts have a reduced and shifted voltage specification, and reductions in the minimum

output valid delays on the pins listed in the specifications in S-Spec 10. The VRE voltage range for the C2
and subsequent steppings of the Pentium processor is VCC = 3.40-3.60V. The VRE voltage range for B-
step parts remains at 3.45-3.60V.

2. No Kit means that part meets the specifications but is not tested to support 82498/82493 and 82497/
82492 cache timings.

3. The mcC0-step uses Intel’s VRT (Voltage Reduction Technology) to support mobile applications.
4. STD: The VCC specification for the C2 and subsequent steppings of the Pentium processor is VCC =

3.135V to 3.6V. The voltage range for B-step parts remains at 3.135V–3.465V (B-step devices are no
longer offered). All E0-step production parts are standard voltage.

5. This is a Pentium processor with MMX technology with a core operating voltage of 2.7V –2.9V.
6. This is a Low-Power Pentium processor with MMX technology with a core operating voltage of 1.75V –

2.04V and an I/O operating voltage of 2.375V – 2.625V.
7. This is a Low-Power Pentium processor with MMX technology with a core operating voltage of 1.665V –

1.935V and an I/O operating voltage of 2.375V – 2.625V.
8. This is a Low-Power Pentium processor with MMX technology with a core operating voltage of 1.85V –

2.15V and an I/O operating voltage of 2.375V – 2.625V.
9. The SY007 product has been discontinued. SY007 was replaced by SL2TU.
10 Pentium® Processor for Embedded Applications Specification Update

Preface
Summary Table of Changes

The following table indicates the Specification Changes, S-Specs, Errata, Specification
Clarifications or Documentation Changes, which apply to the listed 100/133/166 MHz Pentium
processor steppings. Intel intends to fix some of the errata in a future stepping of the component,
and to account for the other outstanding issues through documentation or specification changes as
noted. This table uses the following notations:

Codes Used in Summary Table

X: Erratum, Specification Change or Clarification that applies to this
stepping.

Doc: Document change or update that will be implemented.

Fix: This erratum is intended to be fixed in a future stepping of the
component.

Fixed: This erratum has been previously fixed.

NoFix: There are no plans to fix this erratum.

(No mark) or (Blank Box):This erratum is fixed in listed stepping or specification change does not
apply to listed stepping.

DP: Dual processing related errata.

AP: APIC related errata.

TCP: Applies to the listed stepping of a mobile Pentium processor in a TCP
package only.

Change bar to left of table row indicates this erratum is either new or
modified from the previous version of the document.
Pentium® Processor for Embedded Applications Specification Update 11

Preface
Specification Changes
No. cC0 mcC0 E0 xB1 myA0 Plans Specification Changes

1 X X X X X Doc IDT limit violation causes GP fault, not interrupt 8

2 Note 1 Doc 150 MHz active power dissipation (typical) change

3 X X X X X Doc Redundant timing spec: t42d for all bus frequencies

4 Note 1 Doc Stop clock power

5 X Doc Max valid delay A3 – A31

6

Note 1

Doc Max valid delay data bus D0 – D63

7 Doc Maximum Stop-Grant/AutoHALT Power

8 Doc TCK VIL

9 X Doc 2/7 bus fraction

10 X Doc 233-MHz ICC specifications

11 X Doc Active power

12

Note 1

Doc 133-MHz current and power specifications

13 Doc 1/2 bus fraction

14 Doc Maximum thermal design power

15 X Doc PCHK# Low state output current in DP mode

16 X Doc Absolute maximum rating for VCC3

17

Note 1

Doc 120/60 MHz VCC, ICC, power, DC and AC specifications

18 Doc 166- and 266-MHz VCC2, ICC and power specifications

19 Doc Mobile 200/66 MHz on 0.35 micron VCC2, ICC, TCASE and power
specifications

20 Doc Low Voltage 266 MHz on 0.25 micron Process Technology (for TCP
only) VCC, ICC, TCASE and Power Specifications

NOTE:
1. This item does not apply to Pentium® processors for embedded applications. For the full text of this item, refer to the

Pentium® Processor Specification Update, order number 242480.
12 Pentium® Processor for Embedded Applications Specification Update

Preface
S-Specs
No. cC0 mcC0 E0 xB1 myA0 Plans S-Spec Changes

1

Note 1

Fixed t6a, t6b, max valid delay A31 – A3, BE7# – BE0#, ADS#, LOCK#

2 Fixed Minimum required voltage separation between Vcc3 and Vcc2

3 Fixed VIH for TRST#

4 Fixed VIL for BF and BF1 is reduced

5 X Fixed Boundary scan timing changes

6 X Fixed SPGA Vcc2 supply voltage change

7 Note 1 Fixed AC specifications for the Pentium Processor with Voltage Reduction
Technology

8 X Fixed Reduced VIL for TCK

9 Note 1 Fixed Mixing steppings in dual processing mode

10 X Fixed MD/VR/VRE specifications

11

Note 1

Fixed
120-MHz and 133-MHz parts (Q0707, Q0708, Q0711, Q0732, Q0733,
Q0751, Q0775, SK086, SX994, SK098, SU033) do not support dual
processing

12 Fixed 120-MHz and 133-MHz parts (Q0707, Q0708, Q0711, Q0733, Q0751,
Q0775, SK086, SK098) do not support FRC

13 Fixed 120-MHz and 133-MHz parts (Q0707, Q0708, Q0711, Q0733, Q0751,
Q0775, SK086, SK098) VCC to CLK startup specification

14 Fixed 120-MHz and 133-MHz parts (Q0707, Q0708, Q0711, Q0733, Q0751,
Q0775, SK086, SK098) current leakage on PICD1 pin

15 Fixed Mobile stop clock power

16 Fixed IIH, input leakage current

17 NoFix Max valid delay A3 – A31 (Replaced by a Spec Change)

18 Fixed Max valid delay ADS#

19 Fixed Max valid delay HITM#

20 NoFix Max valid delay data bus D0 – D63 (Replaced by a Spec Change)

21 Fixed Desktop stop clock power

22 Fix Min valid delay data bus D0 – D63

NOTE:
1. This item does not apply to Pentium processors for embedded applications. For the full text of this item, refer to the Pentium®

Processor Specification Update, order number 242480.
Pentium® Processor for Embedded Applications Specification Update 13

Preface
Errata
No. cC0 mcC0 E0 xB1 myA0 Plans Errata

1

Note 1

Fixed Branch trace messages during lock cycles

2 Fixed Breakpoint or single-step may be missed for one instruction following
STI

3 Fixed I/O restart does not function during single stepping or data breakpoint
exceptions

4 Fixed NMI or INIT in SMM with I/O restart during single-stepping

5 Fixed SMI# and FLUSH# during shutdown

6 Fixed No shutdown after IERR#

7 Fixed FLUSH# with a breakpoint pending causes false DR6 values

8 Fixed Processor core may not serialize on bus idle

9 Fixed SMIACT# premature assertion during replacement writeback cycle

10 STPCLK# deassertion not recognized for 5 CLKs after BRDY#
returned

11 Fixed Future Pentium OverDrive® processor FERR# contention in
two-socket systems

12 Fixed Code cache lines are not invalidated if snooped during AutoHALT or
Stop-Grant states

13 Fixed STPCLK# assertion during execution of the HALT instruction hangs
system

14 X X X X X NoFix NMI or INIT during HALT within SMM may cause large amount of bus
activity

15 X X X Fixed RUNBIST restrictions when run through boundary scan circuitry

16 X X Fixed FRC mode miscompare due to uninitialized internal register

17

Note 1

STPCLK# restrictions during EWBE#

18 Fixed Multiple allocations into branch target buffer

19 Fixed 100-MHz REP MOVS speed path

20 Fixed Overflow undetected on some numbers on FIST

21 Fixed Six operands result in unexpected FIST operation

22 Fixed Snoop with table-walk violation may not invalidate snooped line

23 Fixed Slight precision loss for floating-point divides on specific operand
pairs

24 Fixed FLUSH#, INIT or machine check dropped due to floating-point
exception

25 Fixed Floating-point operations may clear alignment check bit

26 Fixed CMPXCHG8B across page boundary may cause invalid opcode
exception

27 X X NoFix Single-step debug exception breaks out of HALT

28 X X X Fixed Branch trace message corruption

NOTE:
1. This item does not apply to Pentium processors for embedded applications. For the full text of this item, refer to the Pentium®

Processor Specification Update, order number 242480.
14 Pentium® Processor for Embedded Applications Specification Update

Preface
29

Note 1

Fixed FRC lock-step failure during APIC write

30 Fixed BE4# – BE0# sampled incorrectly at min VIH

31 Fixed Incorrect PCHK# output during boundary scan if in DP mode

32 Fixed EIP altered after specific FP operations followed by MOV Sreg, Reg

33 X X X Fixed WRMSR into illegal MSR does not generate GP Fault

34
Note 1

Fixed Inconsistent data cache state from concurrent snoop and memory
write

35 Fixed BE3# – BE0# not driven during boundary scan if RESET high

36 X X X Fixed Incorrect FIP after RESET

37 X X X X X NoFix Second assertion of FLUSH# not ignored

38 X X X X X NoFix Segment limit violation by FPU operand may corrupt FPU state

39 X X X X X NoFix FP exception inside SMM with pending NMI hangs system

40 Note 1 Fixed Current in Stop Clock state exceeds specification

41 X Fixed STPCLK# buffer samples incorrectly during boundary scan testing

42 Note 1 Fixed Incorrect decode of certain 0F instructions

43 X X X X X NoFix Data breakpoint deviations

44 X X X X X NoFix Event monitor counting discrepancies

45 X X X X X NoFix VERR type instructions causing page fault task switch with T bit set
may corrupt CS:EIP

46 X X X X X NoFix BUSCHK# interrupt has wrong priority

47 X Fixed BF and CPUTYP buffers sample incorrectly during boundary scan
testing

48 X X X X X NoFix Matched but disabled data breakpoint can be lost by STPCLK#
assertion

49 X X X X X NoFix STPCLK# ignored in SMM when INIT or NMI pending

50 X X X X Fixed STPCLK# pullup not engaged at RESET

51 X X X X X NoFix A fault causing a page fault can cause an instruction to execute twice

52 X X X X X NoFix Machine check exception pending, then HLT, can cause skipped or
incorrect instruction, or CPU hang

53 X X X X X NoFix FBSTP stores BCD operand incorrectly If address wrap and FPU
error both occur

54 X X X X X NoFix V86 interrupt routine at illegal privilege level can cause spurious
pushes to stack

55 X X X X X NoFix Corrupted HLT flag can cause skipped or incorrect instruction, or
CPU hang

56 X X X X X NoFix Benign exceptions can erroneously cause double fault

57 X X X X X NoFix Double fault counter may not increment correctly

58 X Fixed Some input pins may float high when core VCC powers up after I/O
VCC (mobile CPU)

59 X X X X X NoFix Short form of mov EAX / AX / AL may not pair

60 X X X X X NoFix Turning off paging may result in prefetch to random location

Errata
No. cC0 mcC0 E0 xB1 myA0 Plans Errata

NOTE:
1. This item does not apply to Pentium processors for embedded applications. For the full text of this item, refer to the Pentium®

Processor Specification Update, order number 242480.
Pentium® Processor for Embedded Applications Specification Update 15

Preface
61 X X X X X NoFix STPCLK#, FLUSH# or SMI# after STI

62 X X X X X NoFix REP string instruction not interruptible by STPCLK#

63 X X X X X NoFix Single step may not be reported on first instruction after FLUSH#

64 X X X X NoFix Double fault may generate illegal bus cycle

65 X X X X X NoFix TRST# not asynchronous

66 X X X X X NoFix STPCLK# on RSM to HLT causes non-standard behavior

67 X X X X X NoFix Code cache dump may cause wrong IERR#

68 X X X X X NoFix Asserting TRST# pin or issuing JTAG instructions does not exit TAP
Hi-Z state

69 X X X X X NoFix ADS# may be delayed after HLDA deassertion

70 X X X X X NoFix Stack underflow in IRET gives #GP, not #SS

71 X X X X X NoFix Performance monitoring pins PM[1:0] may count the events
incorrectly

72 Note 1 Fixed BIST is disabled

73 X X NoFix Branch trace messages may cause system hang

74 Note 1 Fixed Enabling RDPMC in CR4 and also using SMM may cause shutdown

75 X Fixed Event monitor counting discrepancies (fix)

76 X X NoFix Event monitor counting discrepancies (Nofix)

77 Note 1 Fixed INVD may leave valid entries in the cache due to snoop interaction

78 X X NoFix TLB update is blocked after a specific sequence of events with a
misaligned descriptor

79 X X X X X NoFix Erroneous debug exception on POPF/IRET instructions with a GP
fault

80 X X NoFix CR2 and CR4 Content upon Return from SMM

81 X X X X X Fix Invalid operand with locked CMPXCHG8B instruction

82 X X X X X Fix Event monitor counting discrepancy

83 X X X X X NoFix FBSTP instruction incorrectly sets Accessed and Dirty bits of Page
Table entry

1DP

Note 1

Fixed Problem with external snooping while two cycles are pending on the
bus

2DP Fixed STPCLK# assertion and the Stop-Grant bus cycle

3DP Fixed External snooping with AHOLD asserted may cause processor to
hang

4DP Fixed Address parity check not supported in dual processing mode

5DP Fixed Inconsistent cache state may result from interprocessor pipelined
READ into a WRITE

6DP Fixed Processors hang during Zero WS, pipelined bus cycles

7DP Fixed Bus lock-up problem in a specific dual processing mode sequence

8DP Fixed Incorrect assertion of PHITM# without PHIT#

9DP Fixed Double issuance of read cycles

10DP Fixed Line invalidation may occur on read or prefetch cycles

Errata
No. cC0 mcC0 E0 xB1 myA0 Plans Errata

NOTE:
1. This item does not apply to Pentium processors for embedded applications. For the full text of this item, refer to the Pentium®

Processor Specification Update, order number 242480.
16 Pentium® Processor for Embedded Applications Specification Update

Preface
11DP X X Fixed EADS# or floating ADS# may cause extra invalidates

12DP
Note 1

Fixed HOLD and BOFF# during APIC cycle may cause dual processor
arbitration problem

13DP Fixed System hang after hold during local APIC second INTA cycle

14DP X X Fixed External snoop can be incorrectly invalidated

15DP X X X NoFix STPCLK# re-assertion recognition constraint with DP

16DP X X X NoFix Second assertion of FLUSH# during flush acknowledge cycle may
cause hang

17DP X NoFix Asserting FLUSH# may cause a processor deadlock in a DP system
with a 2/7 bus fraction

1AP

Note 1

Fixed Remote read message shows valid status after a checksum error

2AP Fixed Chance of clearing an unread error in the error register

3AP Fixed Writes to error register clears register

4AP Fixed Three interrupts of the same priority causes lost local interrupt

5AP Fixed APIC bus synchronization lost due to checksum error on a remote
read message

6AP Fixed HOLD during a READ from local APIC register may cause incorrect
PCHK#

7AP Fixed HOLD during an outstanding interprocessor pipelined APIC cycle
hangs processor

8AP Fixed PICCLK reflection may cause an APIC checksum error

9AP X X Fixed Spurious interrupt in APIC through local mode

10AP

Note 1

Fixed Potential for lost interrupts while using APIC in through Local mode

11AP Fixed Back to back assertions of HOLD or BOFF# may cause lost APIC
write cycle

12AP X Fixed System hangs when BOFF# is asserted during second internal INTA
cycle

13AP X X Fixed APIC pipeline cycle during cache linefill causes restarted cycle to lose
its attribute

14AP X X X X NoFix INIT and SMI via the APIC three-wire bus may be lost

15AP X X Fixed IERR# in FRC lock-step mode during APIC write

16AP X X Fixed Inadvertent BRDY# during external INTA cycle with BOFF#

17AP X X Fixed APIC read cycle may not complete upon assertion of BOFF# and
HOLD

18AP X X X X NoFix PICCLK must toggle for at least twenty cycles before RESET

19AP

Note 1

Fixed APIC ID can not be changed

1TCP Fixed CPU may not reset correctly due to floating FRCMC# pin

2TCP Fixed BRDY# does not have buffer selection capability

Errata
No. cC0 mcC0 E0 xB1 myA0 Plans Errata

NOTE:
1. This item does not apply to Pentium processors for embedded applications. For the full text of this item, refer to the Pentium®

Processor Specification Update, order number 242480.
Pentium® Processor for Embedded Applications Specification Update 17

Preface
Specification Clarifications
No. cC0 mcC0 E0 xB1 myA0 Plans Specification Clarifications

1 X X X Doc Pentium processor’s response to startup and init IPIs

2

Note 1

Doc APIC timer use clarification

3 Fixed PICCLK reflection may cause APIC checksum errors and dropped
IPIs

4 Fixed Boundary scan RUNBIST register requires initialization prior to use

5 X X X X X Doc Only one SMI# can be latched during SMM

6 X X X X Doc APIC 8-bit access

7 X X X X Doc LOCK prefix excludes APIC memory space

8 X X X X X Doc SMI# activation may cause a nested NMI handling

9 X X X X X Doc Code breakpoints set on meaningless prefixes not guaranteed to be
recognized

10 X X X X X Doc Resume flag should be set by software

11 X X X X X Doc Data breakpoints on INS delayed one iteration

12 X X X X X Doc When L1 cache disabled, inquire cycles are blocked

13 X X X X X Doc Serializing operation required when one CPU modifies another
CPU’s code

14 X X X X X Doc For correct translations, the TLB should be flushed after the PSE bit
in CR4 is set

15 X X X Doc When APIC enabled, its 4K block should not be used in regular
memory

16 X X X X X Doc Extra code break can occur on I/O or HLT instruction if SMI coincides

17 X X Doc LRU maybe updated for non-cacheable cycles

18 X X X X X Doc FYL2XP1 does not generate exceptions for X out of range

19 X X X X X Doc Enabling NMI inside SMM

20 X X X X X Doc BF[1:0] must not change values while RESET is active

21 X X X X X Doc Active A20M# during SMM

22 X X X X X Doc POP[ESP] with 16-bit stack size

23 Note 1 Doc Pin #11 and pin #190 (TCP package) connection

24 X X X X X Doc Line fill order optimization revision

25 X X X X X Doc Test Parity Check Mechanism Clarification

NOTE:
1. This item does not apply to Pentium processors for embedded applications. For the full text of this item, refer to the Pentium®

Processor Specification Update, order number 242480.
18 Pentium® Processor for Embedded Applications Specification Update

Preface
Documentation Changes
No. cC0 mcC0 E0 xB1 myA0 Plans Documentation Changes

1 X X X X X Doc JMP Cannot Do a Nested Task Switch, Volume 3, Page 13-12

2 X X X X X Doc Interrupt Sampling Window, Volume 3, Page 23-39

3 X X X X X Doc FSETPM Is Like NOP, Not Like FNOP

4 X X X X X Doc Errors in Three Tables of Special Descriptor Types

5 X X X X X Doc Invalid Arithmetic Operations and Masked Responses to Them
Relative to FIST/FISTP Instruction

6 X X X X X Doc Incorrect Sequence of Registers Stored in PUSHA/PUSHAD

7 X X X X X Doc One-Byte Opcode Map Correction
Pentium® Processor for Embedded Applications Specification Update 19

Specification Changes

upt
 fact,
 IDT

of this
Specification Changes

The Specification Changes listed in this section apply to the documents listed in the Preface of this
Specification Update. Specification Changes may be incorporated into future versions of the
appropriate document(s).

1. IDT Limit Violation Causes GP Fault, Not Interrupt 8

The last sentence in Section 9.3 of the Pentium® Processor Family Developer’s Manual, Volume 3,
says about exception handling in Real Mode: “If an interrupt occurs and its entry in the interr
table is beyond the limit stored in the IDTR register, a double-fault exception is generated.” In
in the Pentium processor, there is no difference between Real and Protected Mode when an
limit violation occurs. It generates interrupt 13: General Protection Fault in both modes.

2. 150 MHz Active Power Dissipation (Typical) Change

This item does not apply to Pentium processors for embedded applications. For the full text
item, refer to the Pentium® Processor Specification Update, order number 242480.

3. Redundant Timing Specification: t42d for All Bus Frequencies (50, 60 and 66 MHz)

t42d is the minimum hold time required when BRDYC# is used as a configuration signal and when
RESET is driven synchronously with CLK. This timing specification is redundant because it is a
subset of t21, hold time for BRDYC# with respect to CLK. Therefore, t42d will be removed from all
future documentation.

4. Stop Clock Power

This item does not apply to Pentium processors for embedded applications. For the full text of this
item, refer to the Pentium® Processor Specification Update, order number 242480.

5. Max Valid Delay A3 – A31

These are the new specifications for the maximum valid delay for t6e of the Pentium processor with
MMX technology. This will replace both the original specifications of t6e in the Pentium®
Processor with MMX™ Technology datasheet as well as S-Spec 17, mobile max valid delay
A3–A31.

6. Max Valid Delay Data Bus D0 – D63

This item does not apply to Pentium processors for embedded applications. For the full text of this
item, refer to the Pentium® Processor Specification Update, order number 242480.

Symbol Parameter Bus Frequency Previous Max
Valid Delay

New Max Valid
Delay

t6e A3 – A31 60 MHz
(mobile only) 6.3 ns 7.0 ns

t6e A3 – A31 66 MHz 6.3 ns 6.6 ns
20 Pentium® Processor for Embedded Applications Specification Update

Specification Changes
7. Maximum Stop-Grant/AutoHALT Power

This item does not apply to Pentium processors for embedded applications. For the full text of this
item, refer to the Pentium® Processor Specification Update, order number 242480.

8. TCK VIL

This item does not apply to Pentium processors for embedded applications. For the full text of this
item, refer to the Pentium® Processor Specification Update, order number 242480.

9. 2/7 Bus Fraction
.

10. 233-MHz ICC Specifications

11. Active Power

Bus Frequency Selections

BF1 BF0 Bus/Core
Ratio

Max Bus/Core
Frequency (MHz)

Min Bus/Core
Frequency (MHz)

0 1 1/3 66/200 33/100

0 0 2/5 66/166 33/83

1 0 1/2 (1) 66/133 33/66

1 1 2/7 66/233 33/116

NOTE:
1. This is the default bus fraction for the Pentium processor with MMX™ technology. If the BF pins are left

floating, the processor will be configured for the 1/2 bus to core frequency ratio.

Specifications
(Measured at VCC2 =2.9V and VCC3 =3.6V)

Symbol Parameter Min Max Unit Notes

ICC2 Power Supply Current 6500 mA 233 MHz(1)

ICC3 Power Supply Current 750 mA 233 MHz(1)

NOTE:
1. This value should be used for power supply design. It was determined using a worst case instruction

mix and maximum VCC. Power supply transient response and decoupling capacitors must be sufficient
to handle the instantaneous current changes occurring during transitions from Stop Clock to full Active
modes.

Power Dissipation Requirements for Thermal Design
(Measured at VCC2 =2.8V and VCC3 =3.3V)

Parameter Typical(1) Max(2) Unit Notes

Active Power 7.9(3) 17.0(4) Watts 233 MHz

NOTE:
1. This is the typical power dissipation in a system. This value is expected to be the average value that will be

measured in a system using a typical device at Vcc2 = 2.8V running typical applications. This value is
highly dependent upon the specific system configuration. Typical power specifications are not tested.

2. Systems must be designed to thermally dissipate the maximum active power dissipation. It is determined
using worst case instruction mix with Vcc2 = 2.8V and Vcc3 = 3.3 and also takes into account the thermal
time constants of the package.

3. Active Power (typ) is the average power measured in a system using a typical device running typical
applications under normal operating conditions at nominal VCC and room temperature.

4. Active Power (max) is the maximum power dissipation under normal operating conditions at nominal Vcc2,
worst-case temperature, while executing the worst case power instruction mix. Active power (max) is
equivalent to Thermal Design Power (max).
Pentium® Processor for Embedded Applications Specification Update 21

Specification Changes

ed on
than
13
12. 133-MHz Current and Power Specifications

This item does not apply to Pentium processors for embedded applications. For the full text of this
item, refer to the Pentium® Processor Specification Update, order number 242480.

13. 1/2 Bus Fraction

This item does not apply to Pentium processors for embedded applications. For the full text of this
item, refer to the Pentium® Processor Specification Update, order number 242480.

14. Maximum Thermal Design Power

This item does not apply to Pentium processors for embedded applications. For the full text of this
item, refer to the Pentium® Processor Specification Update, order number 242480.

15. PCHK# Low State Output Current in DP Mode

In the Pentium® Processor with MMX™ Technology datasheet, Note 4 on page 31 should be
modified. Specifically, the PCHK# in a DP system should be changed from 14 mA to 13 mA. The
new note should read:

“4. In dual processing systems, up to a 9 mA load from the second processor may be observ
the PCHK# signal. Based on silicon characterization data, VOL3 of PCHK# will remain less
400 mV even with a 9 mA load. PCHK# VOL3 will increase to approximately 500 mV with a
mA load (worst case for a DP system with a 4 mA system load).”

16. Absolute Maximum Rating for VCC3

In the 1997 Pentium® Processor Family Developer’s Manual, Section 7.2, Table 7-1, it states the
maximum VCC3 is 4.6V. This applies to the Pentium processor 75/90/100/120/133/150/166/200
only. The maximum VCC3 for the Pentium processor with MMX technology is 4.0V.

17. 120/60 MHz VCC, ICC, Power, DC and AC Specifications

This item does not apply to Pentium processors for embedded applications. For the full text of this
item, refer to the Pentium® Processor Specification Update, order number 242480.

18. 166- and 266-MHz VCC2, ICC and Power Specifications

This item does not apply to Pentium processors for embedded applications. For the full text of this
item, refer to the Pentium® Processor Specification Update, order number 242480.

19. Mobile 200/66 MHz on 0.35 micron VCC, ICC, TCASE and Power Specifications

This item does not apply to Pentium processors for embedded applications. For the full text of this
item, refer to the Pentium® Processor Specification Update, order number 242480.

20. Low Voltage 266 MHz on 0.25 micron Process Technology (for TCP only)
VCC, ICC, TCASE and Power Specifications

This item does not apply to Pentium processors for embedded applications. For the full text of this
item, refer to the Pentium® Processor Specification Update, order number 242480.
22 Pentium® Processor for Embedded Applications Specification Update

S-Specs
S-Specs

1. t6a, t6c, Max Valid Delay A31-A3, BE7#-BE0#, ADS#, LOCK#

This item does not apply to Pentium processors for embedded applications. For the full text of this
item, refer to the Pentium® Processor Specification Update, order number 242480.

2. Minimum Required Voltage Separation Between VCC3 and VCC2

This item does not apply to Pentium processors for embedded applications. For the full text of this
item, refer to the Pentium® Processor Specification Update, order number 242480.

3. VIH For TRST#

This item does not apply to Pentium processors for embedded applications. For the full text of this
item, refer to the Pentium® Processor Specification Update, order number 242480.

4. VIL For BF0 and BF1 is Reduced

This item does not apply to Pentium processors for embedded applications. For the full text of this
item, refer to the Pentium® Processor Specification Update, order number 242480.

5. Boundary Scan Timing Changes

The boundary scan valid delay minimum time for t53 and t55 has been reduced for the mcC0
stepping as indicated below. This applies to both SPGA and TCP packages.

6. SPGA VCC2 Supply Voltage Change

The core supply voltage (VCC2) required is changed from 2.9V to 3.1V. This applies to SPGA
100/133 MHz units only. I/O voltage supply (VCC3) remains at 3.3V+/-165mV.

Symbol Parameter

Standard
Min Time

(60/66MHz)

S-Spec
Min Time

(60/66MHz)

t53 TDO Valid Delay 3.0 nS 2.8 nS

t55 All Non-Test Outputs Valid Delay 3.0 nS 2.5 nS

Symbol Parameter
Standard

Supply Voltage
S-Spec

Supply Voltage

VCC2 Core voltage supply 2.9V+/-165mV 3.1V+/-165mV
Pentium® Processor for Embedded Applications Specification Update 23

S-Specs

ion

–

he
ings
ge

ut

o be

rt
nt
7. AC Specifications for the Pentium® Processor with Voltage Reduction
Technology

This item does not apply to Pentium processors for embedded applications. For the full text of this
item, refer to the Pentium® Processor Specification Update, order number 242480.

8. Reduced VIL For TCK

9. Mixing Steppings in Dual Processing Mode

This item does not apply to Pentium processors for embedded applications. For the full text of this
item, refer to the Pentium® Processor Specification Update, order number 242480.

10. MD/VR/VRE Specifications

There are some changes to the standard VCC and timing specifications to support the highest
performance operation of the Pentium processor.

STD: The VCC specification for the C2 and subsequent steppings of the
Pentium processor is VCC = 3.135V to 3.6V. The voltage range for B-
step parts remains at 3.135V–3.465V. Note that all E0-step product
parts are standard voltage.

VR: This is a reduced voltage specification that has the range of 3.300V
3.465V.

VRE/MD: These parts have a reduced and shifted voltage specification, and
reductions in the minimum output valid delays on the list of pins in t
table below. The VRE voltage range for the C2 and subsequent stepp
of the Pentium processor is VCC = 3.40-3.60V. The VRE voltage ran
for B-step parts remains at 3.45-3.60V.

MD: This is a reduction in the minimum valid timings on a subset of outp
pins. Due to faster operation of the core, and faster operation of the
transistors at the higher voltages these minimum valid timings need t
met. These parts have the standard VCC specification.

There are no allowances for crossing the high and low limits of the voltage specification. Pa
operation beyond these ranges cannot be guaranteed. For more information on measureme
techniques, see Chapter 7 of the Pentium® Processor Family Developer’s Manual and the
application note Implementation Guidelines for 3.3V Pentium Processors with VR/VRE
Specifications.

Symbol Pin Standard Min S-Spec Min Unit

VIL TCK 0.8 0.6 Volts

Previous Current

Operating VCC Range (VRE) 3.45 to 3.60V 3.40 to 3.60V
24 Pentium® Processor for Embedded Applications Specification Update

S-Specs
11. 120-MHz and 133-MHz Parts (Q0707, Q0708, Q0711, Q0732, Q0733, Q0751,
Q0775, SK086, SX994, SU033, SK098) Do Not Support Dual Processing

This item does not apply to Pentium processors for embedded applications. For the full text of this
item, refer to the Pentium® Processor Specification Update, order number 242480.

12. 120-MHz and 133-MHz Parts (Q0707, Q0708, Q0711, Q0733, Q0751, Q0775,
SK086, SK098) Do Not Support FRC

This item does not apply to Pentium processors for embedded applications. For the full text of this
item, refer to the Pentium® Processor Specification Update, order number 242480.

13. 120-MHz and 133-MHz Parts (Q0707, Q0708, Q0711, Q0733, Q0751, Q0775,
SK086, SK098) VCC to CLK Startup Specification

This item does not apply to Pentium processors for embedded applications. For the full text of this
item, refer to the Pentium® Processor Specification Update, order number 242480.

14. 120-MHz and 133-MHz Parts (Q0707, Q0708, Q0711, Q0733, Q0751, Q0775,
SK086, SK098) Current Leakage on PICD1 Pin

This item does not apply to Pentium processors for embedded applications. For the full text of this
item, refer to the Pentium® Processor Specification Update, order number 242480.

15. Mobile Stop Clock Power

This item does not apply to Pentium processors for embedded applications. For the full text of this
item, refer to the Pentium® Processor Specification Update, order number 242480.

16. IIH Input Leakage Current

This item does not apply to Pentium processors for embedded applications. For the full text of this
item, refer to the Pentium® Processor Specification Update, order number 242480.

17. Max Valid Delay A3-A31

This item does not apply to Pentium processors for embedded applications. For the full text of this
item, refer to the Pentium® Processor Specification Update, order number 242480.

Symbol Signal

Min Valid STD (50/
60/66) Specifica-

tions

Min Valid, MD
(50/60/66)

Specifications Units

t6c A3-16 1.1 0.5 nS

t6c A17-31 1.1 0.6 nS

t6a W/R# 1.0 0.8 nS

t6a M/IO# 1.0 0.8 nS

t6a D/C# 1.0 0.8 nS

t6c LOCK# 1.1 0.9 nS

t10b HITM# 1.1 0.7 nS

t6a BE0-7# 1.0 0.9 nS
Pentium® Processor for Embedded Applications Specification Update 25

S-Specs
18. Max Valid Delay ADS#

This item does not apply to Pentium processors for embedded applications. For the full text of this
item, refer to the Pentium® Processor Specification Update, order number 242480.

19. Max Valid Delay HITM#

This item does not apply to Pentium processors for embedded applications. For the full text of this
item, refer to the Pentium® Processor Specification Update, order number 242480.

20. Max Valid Delay Data Bus D0-D63

This item does not apply to Pentium processors for embedded applications. For the full text of this
item, refer to the Pentium® Processor Specification Update, order number 242480.

21. Desktop Stop Clock Power

This item does not apply to Pentium processors for embedded applications. For the full text of this
item, refer to the Pentium® Processor Specification Update, order number 242480.

22. Min Valid Delay Data Bus D0 – D63

This item does not apply to Pentium processors for embedded applications. For the full text of this
item, refer to the Pentium® Processor Specification Update, order number 242480.
26 Pentium® Processor for Embedded Applications Specification Update

Errata
Errata

1. Branch Trace Message During Lock Cycles

This item does not apply to Pentium processors for embedded applications. For the full text of this
item, refer to the Pentium® Processor Specification Update, order number 242480.

2. Breakpoint or Single-Step May Be Missed for One Instruction Following STI

This item does not apply to Pentium processors for embedded applications. For the full text of this
item, refer to the Pentium® Processor Specification Update, order number 242480.

3. I/O Restart Does Not Function During Single Stepping or Data Breakpoint
Exceptions

This item does not apply to Pentium processors for embedded applications. For the full text of this
item, refer to the Pentium® Processor Specification Update, order number 242480.

4. NMI or INIT in SMM with I/O Restart During Single Stepping

This item does not apply to Pentium processors for embedded applications. For the full text of this
item, refer to the Pentium® Processor Specification Update, order number 242480.

5. SMI# and FLUSH# During Shutdown

This item does not apply to Pentium processors for embedded applications. For the full text of this
item, refer to the Pentium® Processor Specification Update, order number 242480.

6. No Shutdown After IERR#

This item does not apply to Pentium processors for embedded applications. For the full text of this
item, refer to the Pentium® Processor Specification Update, order number 242480.

7. FLUSH# with a Breakpoint Pending Causes False DR6 Values

This item does not apply to Pentium processors for embedded applications. For the full text of this
item, refer to the Pentium® Processor Specification Update, order number 242480.

8. Processor Core May Not Serialize on Bus Idle

This item does not apply to Pentium processors for embedded applications. For the full text of this
item, refer to the Pentium® Processor Specification Update, order number 242480.

9. SMIACT# Premature Assertion During Replacement Writeback Cycle

This item does not apply to Pentium processors for embedded applications. For the full text of this
item, refer to the Pentium® Processor Specification Update, order number 242480.

10. STPCLK# Deassertion Not Recognized for 5 CLKs After BRDY# Returned

This erratum has been superseded by a specification change.
Pentium® Processor for Embedded Applications Specification Update 27

Errata

d with

tem
m

hown
ed in
11. Future Pentium® OverDrive® Processor FERR# Contention in Two-Socket
Systems

This item does not apply to Pentium processors for embedded applications. For the full text of this
item, refer to the Pentium® Processor Specification Update, order number 242480.

12. Code Cache Lines Are Not Invalidated if Snooped During AutoHALT or Stop
Grant States

This item does not apply to Pentium processors for embedded applications. For the full text of this
item, refer to the Pentium® Processor Specification Update, order number 242480.

13. STPCLK# Assertion During Execution of the HALT Instruction Hangs
System

This item does not apply to Pentium processors for embedded applications. For the full text of this
item, refer to the Pentium® Processor Specification Update, order number 242480.

14. NMI or INIT During HALT Within SMM May Cause Large Amount of Bus
Activity

Problem: If a HALT or REP (repeat string instruction) instruction is executed while the processor is in
System Management mode (SMM), and an NMI or INIT is asserted prior to interrupt initialization,
the processor may continuously re-execute the HALT, and generate the HALT special cycle, or it
will perform iterations of the REP instruction that was executed. Normally the processor would
ignore NMI and INIT while in SMM. However, NMI and INIT will be enabled inside of SMM if
interrupts have been enabled and then an INTR signal is received. Also, exceptions, when taken,
enable NMI and INIT inside of SMM, but this behavior is not part of the Intel Architecture.

Implication: The processor may continuously run the same cycle on the bus until a non-masked interrupt is
detected. There are no other problems associated with the erratum, the component resumes correct
operation at this time. This impacts the “low power operation” that might have been expecte
the use of a HALT while in SMM.

Workaround: Use one of the following:

1. Do not use HALT while in SMM.

2. If the system must use HALT in SMM, the system is required to initialize interrupt vector
tables prior to use of any interrupts, doing so will ensure the error will not occur. The sys
must ensure that NMI and INIT are not asserted while the processor is HALTed in Syste
Management mode, prior to interrupt vector initialization.

Status: For the steppings affected see the Summary Table of Changes.

15. RUNBIST Restrictions When Run through Boundary Scan Circuitry
Problem: When the built in self test (Runbist) is run via the Boundary Scan circuitry a failing result is s

on the device. This failing result appears even after initializing the RESET cell as describ
Chapter 11 of the Pentium® Processor Family Developer’s Manual.

Implication: If one of the workarounds listed is not implemented then the system cannot depend of the result of
this test as part of a Boundary Scan generated manufacturing test or power on test.
28 Pentium® Processor for Embedded Applications Specification Update

Errata

en turn

entium
Workaround: Use one of the following workarounds. Both of these workarounds rely on the initialization of the
RESET scan cell as stated in the Specification Clarifications section of this document.

1. Although not IEEE 1149.1 compatible, it has been found that if BRDY# is asserted low for
every ADS# the processor generates, the Runbist test completes correctly. If the system can
return these BRDY#s to the CPU then the BIST functionality can be utilized on the processor
through Boundary Scan.

2. If RESET is held HIGH during the execution of the RUNBIST Boundary Scan instruction and
the subsequent 219 core clocks.

Status: For the steppings affected see the Summary Table of Changes.

16. FRC Mode Miscompare Due to Uninitialized Internal Register
Problem: There is a mismatch and a resulting IERR# assertion when running in FRC mode due to an unini-

tialized internal register in the paging unit. The failure mechanism is due to uninitialized data being
driven on the upper 32-bits of the data bus while updating a page table entry on the lower 32-bits
(upon enabling paging). The data bits that mismatch are not valid during that bus cycle (byte
enables are inactive), so the IERR# output is due to a spurious comparison.

Implication: The FRC mode of the processor requires use of a workaround to initialize the paging unit if
addresses in the upper 32 bits are accessed.

Workaround: Initialize this internal register through software by performing a dummy page table lookup on the
upper 32 bits. (In a code segment with linear address bit 22 set to ‘1’, turn paging on and th
it off again immediately).

Status: For the steppings affected see the Summary Table of Changes.

17. STPCLK# Restrictions During EWBE#

This erratum has been superseded by a specification change. This item does not apply to P
processors for embedded applications. For the full text of this item, refer to the Pentium®
Processor Specification Update, order number 242480.

18. Multiple Allocations Into Branch Target Buffer

This item does not apply to Pentium processors for embedded applications. For the full text of this
item, refer to the Pentium® Processor Specification Update, order number 242480.

19. 100-MHz REP MOVS Speed Path

This item does not apply to Pentium processors for embedded applications. For the full text of this
item, refer to the Pentium® Processor Specification Update, order number 242480.

20. Overflow Undetected on Some Numbers on FIST

This item does not apply to Pentium processors for embedded applications. For the full text of this
item, refer to the Pentium® Processor Specification Update, order number 242480.

21. Six Operands Result in Unexpected FIST Operation

This item does not apply to Pentium processors for embedded applications. For the full text of this
item, refer to the Pentium® Processor Specification Update, order number 242480.
Pentium® Processor for Embedded Applications Specification Update 29

Errata
22. Snoop With Table-Walk Violation May Not Invalidate Snooped Line

This item does not apply to Pentium processors for embedded applications. For the full text of this
item, refer to the Pentium® Processor Specification Update, order number 242480.

23. Slight Precision Loss for Floating-point Divides on Specific Operand Pairs

This item does not apply to Pentium processors for embedded applications. For the full text of this
item, refer to the Pentium® Processor Specification Update, order number 242480.

24. FLUSH#, INIT or Machine Check Dropped Due to Floating-point Exception

This item does not apply to Pentium processors for embedded applications. For the full text of this
item, refer to the Pentium® Processor Specification Update, order number 242480.

25. Floating-point Operations May Clear Alignment Check Bit

This item does not apply to Pentium processors for embedded applications. For the full text of this
item, refer to the Pentium® Processor Specification Update, order number 242480.

26. CMPXCHG8B Across Page Boundary May Cause Invalid Opcode Exception

This item does not apply to Pentium processors for embedded applications. For the full text of this
item, refer to the Pentium® Processor Specification Update, order number 242480.

27. Single Step Debug Exception Breaks Out of HALT
Problem: When Single Stepping is enabled (i.e., the TF flag is set) and the HLT instruction is executed the

processor does not stay in the HALT state as it should. Instead, it exits the HALT state and
immediately begins servicing the Single Step exception.

Implication: The behavior described above is identical to Intel486 CPU behavior.

Workaround: None identified at this time.

Status: For the steppings affected see the Summary Table of Changes at the beginning of this section.

28. Branch Trace Message Corruption
Problem: When performing execution tracing (in normal or fast mode), the linear address of the instruction

causing the taken branch is sent to the bus as part of a branch trace message. In a tight loop of code,
the reported linear address of the instruction causing the taken branch may be corrupted in some
branch trace messages. If the first branch trace message completes on the bus before the second one
is posted, the problem will be avoided. Note that this erratum applies to normal mode for processor
steppings prior to C2 and to fast mode on all processor steppings.

This erratum only affects execution tracing, a specialized feature allowing external hardware to
track the flow of instructions as they execute in the processor. Regular operation of the processor is
not affected.

Workaround: Use normal trace mode for processor steppings C2 and later since these steppings are not affected
by this erratum in normal mode.

Status: For the steppings affected see the Summary Table of Changes.

29. FRC Lock Step Failure During APIC Write

This item does not apply to Pentium processors for embedded applications. For the full text of this
item, refer to the Pentium® Processor Specification Update, order number 242480.
30 Pentium® Processor for Embedded Applications Specification Update

Errata
30. BE4#-BE0# Sampled Incorrectly at Min Vih

This item does not apply to Pentium processors for embedded applications. For the full text of this
item, refer to the Pentium® Processor Specification Update, order number 242480.

31. Incorrect PCHK# Output During Boundary Scan if in DP Mode

This item does not apply to Pentium processors for embedded applications. For the full text of this
item, refer to the Pentium® Processor Specification Update, order number 242480.

32. EIP Altered After Specific FP Operations Followed by MOV Sreg, Reg

This item does not apply to Pentium processors for embedded applications. For the full text of this
item, refer to the Pentium® Processor Specification Update, order number 242480.

33. WRMSR Into Illegal MSR Does Not Generate GP Fault
Problem: The WRMSR and RDMSR instructions allow writing and reading of special MSRs (Model

Specific Registers) based on the index number placed in ECX. The architecture was specified to
reject access to illegal MSRs by generating the fault GP(0) if WRMSR or RDMSR is executed
with an illegal index. However, negative indices, all of which are illegal, do not trigger GP(0).

Implication: If RDMSR is used with negative indices, undefined values will be read into EAX. If WRMSR is
used with negative indices, undefined processor behavior may result.

Workaround: Do not use illegal indices with WRMSR and RDMSR.

Status: For the steppings affected see the Summary Table of Changes.

34. Inconsistent Data Cache State From Concurrent Snoop and Memory Write

This item does not apply to Pentium processors for embedded applications. For the full text of this
item, refer to the Pentium® Processor Specification Update, order number 242480.

35. BE3#-BE0# Not Driven During Boundary Scan if RESET High

This item does not apply to Pentium processors for embedded applications. For the full text of this
item, refer to the Pentium® Processor Specification Update, order number 242480.

36. Incorrect FIP After RESET
Problem: After a RESET, the floating point instruction pointer (FIP) should be initialized to 00000000h. The

FIP will instead retain the value it contained prior to the RESET. The FIP gets updated whenever
the processor decodes a floating point instruction other than an administrative floating point
instruction (FCLEX, FLDCW, FSTCW, FSTSW, FSTSWAX, FSTENV, FLDENV, FSAVE,
FRSTOR and FWAIT). If an FSAVE or FSTENV is executed after a RESET and before any non-
administrative floating point instruction caused the FIP to be updated, the old value contained in
the FIP will be saved. If a non-administrative floating point instruction is the first floating point
instruction executed after RESET, the old value in the FIP will be overwritten and any successive
FSAVE of FSTENV will save the correct value.

The FIP is used by software exception handlers to determine which floating point instruction
caused the exception. The only instructions that can cause an exception are non-administrative
floating point instructions, so a non-administrative floating point instruction is usually executed
before an FSAVE or FSTENV.

Implication: If an FSAVE or FSTENV is executed after a RESET and before any non-administrative floating
point instruction, the incorrect FIP will be saved.
Pentium® Processor for Embedded Applications Specification Update 31

Errata

ENV
n, the
9 is

 or its
ction
l

Workaround: If an FSAVE or FSTENV is executed after a RESET and before a non-administrative floating point
instruction is executed, perform an FINIT instruction after RESET as recommended in the Intel
Architecture Software Developer’s Manual, Volume 3, Section 8.2. This will set the FIP to
00000000h. Otherwise, no workaround is required.

Status: For the steppings affected see the Summary Table of Changes.

37. Second Assertion of FLUSH# Not Ignored
Problem: If FLUSH# is asserted while the processor is servicing an existing flush request, a second flush

operation will follow after the first one completes. Proper operation is for a second assertion of
FLUSH# to be ignored between the time the first FLUSH# is asserted and completion of its Flush
Acknowledge cycle.

Implication: A system that asserts FLUSH# during a flush that’s already in progress will flush the cache a
second time. Flushing the cache again is not necessary and results in a slight performance degra-
dation.

Workaround: For best performance, the system hardware should not assert any subsequent FLUSH# while a
flush is already being serviced.

Status: For the steppings affected see the Summary Table of Changes.

38. Segment Limit Violation by FPU Operand May Corrupt FPU State
Problem: On the Intel486™, Intel386™ and earlier processors, if the operand of the FSTENV/FLD

instructions, or the FSAVE/FRSTOR instructions, exceeds a segment limit during executio
resulting General Protection fault blocks completion of the instruction. (Actually, interrupt #
generated in the 80386 and earlier.) This leaves the FPU state (with FLDENV, FRSTOR)
image in memory (with FSTENV, FSAVE) partly updated, thus corrupted, and the instru
generally is non-restartable. It is stated in the Intel Architecture Software Developer’s Manua,
Volume 3, Chapter 17 that the Pentium processor fixes this problem by starting these instructions
with a test read of the first and last bytes of the operand. Thus if there is a segment limit violation,
it is triggered before the actual data transfer begins, so partial updates cannot occur.

This improvement works as intended in the large majority of segment limit violations. There is
however a special case in which the beginning and end of the FPU operand are within the segment,
so the endpoints pass the initial test, but part of the operand exceeds the segment limit. Thus part
way through the data transfer, the limit is violated, the GP fault occurs, and thus the FPU state is
corrupted. Note that this is a subset of the cases which will cause the same problem with Intel486
and earlier CPUs, so any code that executes correctly on those CPUs will run correctly on the
Pentium processor.

This erratum will happen when both the segment limit and a 16 or 32 bit addressing wrap around
boundary falls within the range of the FPU operand, with the segment limit below the wrap
boundary. (To use a 16 bit wrap boundary of course, one must be executing code using 16 bit
addressing.) The upper endpoint of the FPU operand wraps to near the bottom of the segment, so it
passes the initial test. But part way through the data transfer the CPU tries to access memory above
the segment limit but below the wrap boundary, causing the GP fault with the FPU state partly
copied. This erratum can also happen if the segment limit is at or above a 16 bit addressing wrap
boundary, with both straddled by an FPU operand that is not aligned on an 8 byte boundary. Test
of the upper endpoint wraps and thus passes. When the instruction is actually transferring data, the
misalignment forces the CPU to calculate extra addresses for special bus cycles. This special
address calculation does not support the 16 bit wrap, so the GP fault is triggered when the segment
limit is crossed.
32 Pentium® Processor for Embedded Applications Specification Update

Errata

ss of
which
Note that the Intel Architecture Software Developer’s Manual, Volume 3, Chapter 17 warns in
general that the Pentium processor may store only part of operands which generate a memory fault
by crossing either a segment or page limit. This erratum is just one case of that general problem,
and all cases will be avoided by following the recommended programming practice of never
straddling segment or page boundaries with operands. Note also that the handling of operands
which straddle such boundaries is processor specific, so code which uses such straddling will
behave differently when run on different Intel Architecture processors.

Implication: This erratum can corrupt that state of the FPU and will cause a GP fault. This generally will require
that the task using the FPU be restarted, but it will not cause unflagged errors in results. Code
written following Intel recommendations, and any code which runs on the Intel486 (or earlier)
CPUs, will not cause this erratum. The case where the Pentium processor will experience this
erratum is a small subset of the cases in which the Intel486 (and earlier) CPUs will be corrupted.

Workaround:

1. Do not use code in which FPU operands wrap around the top of their segments.

2. If one must use FPU operands which wrap at the top of their segments, make sure that they are
aligned on an 8 byte boundary, and that the segment limit is not below the 16 or 32 bit wrap
boundary.

Status: For the steppings affected see the Summary Table of Changes.

39. FP Exception Inside SMM with Pending NMI Hangs System
Problem: If a previous FPU instruction has caused an unmasked exception, and an FP instruction is executed

inside SMM with an NMI pending, the system will hang unless the system is both DOS compatible
(CR0.NE=0), and external interrupts are enabled.

Implication: For standard PC-AT systems, NMI is typically used (if at all) to indicate a parity error, and the
response required is a system reset, to preserve data integrity. So this erratum will only occur when
the system has already suffered a parity error; the effect of the erratum is only to force reset inside
SMM, instead of after the RSM when the NMI would normally be serviced. In a system where
NMI is not used for an error that requires shutdown, the workaround should be implemented.

A properly designed system should not experience a hang-up. In such a system the SMM BIOS
checks for pending interrupts before issuing an FSAVE or FRSTOR. If an interrupt is pending, the
BIOS will exit SMM to handle the interrupt. If an interrupt is not present, the BIOS will disable
interrupts (for example, it will disable NMI by writing to the chip set) and only then will issue the
FP instruction.

Workaround: If FPU instructions are used in SMM, and NMI is used for other than an error that requires
shutdown, NMI should be blocked from outside the CPU during SMM.

Status: For the steppings affected see the Summary Table of Changes.

40. Current in Stop Clock State Exceeds Specification

This item does not apply to Pentium processors for embedded applications. For the full text of this
item, refer to the Pentium® Processor Specification Update, order number 242480.

41. STPCLK# Buffer Samples Incorrectly During Boundary Scan Testing
Problem: During boundary scan input testing, the boundary scan input path in the STPCLK# buffer is

disabled when RESET is high.

Implication: The boundary scan cell in the STPCLK# buffer captures a “1” from the STPCLK# pin regardle
the actual data on that pin when RESET is high. This violates the IEEE Specification 1149.1
Pentium® Processor for Embedded Applications Specification Update 33

Errata

of this
states that the value driven should always be that in the boundary scan cell regardless of the state of
RESET. However, the buffer functions correctly when the EXTEST instruction is used.

Workaround: If testing boundary scan in a system environment this pin can be left untested by marking this pin
as “INTERNAL” in the BSDL file.

Status: For the steppings affected see the Summary Table of Changes.

42. Incorrect Decode of Certain 0F Instructions

This item does not apply to Pentium processors for embedded applications. For the full text
item, refer to the Pentium® Processor Specification Update, order number 242480.

43. Data Breakpoint Deviations

The following three problems are deviations from the data breakpoint specification when a fault
occurs during an FP instruction while the data breakpoint is waiting to be serviced. They all share
the same workaround. In the first case the breakpoint is serviced, incorrectly, before the actual data
access that should trigger it takes place; in the other cases the breakpoint is not serviced when it
should be.

Problem: PROBLEM A: First, the debug registers must be set up so that any of the FP instructions which read
from memory (except for FRSTOR, FNRSTOR, FLDENV and FNLDENV) will trigger a data
breakpoint upon accessing its memory operand. Second, there must be an unmasked FP exception
pending from a previous FP instruction when the FP load or store instruction enters the execution
stage. This so far would cause, per specification, a branch to the FP exception handler. The data
breakpoint would not be triggered until/ unless the memory access is made after return from the
exception handler. But if third, either of the external interrupts INTR or NMI is asserted after the
FP instruction enters the execution stage, but before the branch to the FP exception handler occurs,
this erratum is generated. In this situation, the processor should branch to the external interrupt
handler, but instead it goes to the data breakpoint handler. This is incorrect because the data access
that should trigger the breakpoint has not occurred yet.

Problem: PROBLEM B: Interrupts are blocked for the instruction after a MOV or POP to SS (to allow a MOV
or POP to ESP to complete a stack switch before any interrupt). If the MOV or POP to SS triggers
a data breakpoint, it normally is serviced after the following instruction is executed. However, if
the following instruction is a FP instruction and there is a pending FP error from a preceding FP
instruction (even if the error is masked), the delayed data breakpoint is forgotten.

Problem: PROBLEM C: If the sequence of memory accesses during execution of FSAVE or FSTENV (or their
counterparts FNSAVE and FNSTENV) touches an enabled data breakpoint location, the data
breakpoint exception (interrupt 1) occurs at the end of the FP instruction. If however the sequence
of memory accesses cross a segment limit after touching the data breakpoint location, the General
Protection (GP) fault will occur. This erratum is that as the processor branches to the GP fault
handler, the valid data breakpoint is forgotten.

Implication: This erratum will only be seen by software or hardware developers using the data breakpoint
feature of the debug registers. It can cause data breakpoints to be both lost, and asserted prema-
turely, as long as the contributing FP and GP errors remain uncorrected.

Workaround: Use one of the following:

1. General solution: For problems A & B to occur, an FP error must be caused by a preceding FP
instruction, and in problem C, the FP operand causes a segment limit violation. These errors
are all indicated in the normal way, despite this erratum. Eliminate them and this erratum
disappears, allowing the data breakpoint debugging to proceed normally. Since debugging is
usually done in successive stages, this workaround is usually performed as part of the
debugging process.
34 Pentium® Processor for Embedded Applications Specification Update

Errata

same
times

on a
get
es an
point

e

ed.

y also
d there
r will

ized.
urs
unter

of
al data
es not

hile

isses

-pipe
2. Problem A may also be handled by blocking NMI and INTR during debugging.

Status: For the steppings affected see the Summary Table of Changes.

44. Event Monitor Counting Discrepancies
Problem: The Pentium processor contains two registers which can count the occurrence of specific events

used to measure and monitor various parameters which contribute to the performance of the
processor. There are several conditions where the counters do not operate as specified.

In some cases it is possible for the same instruction to cause the “Breakpoint match” (event
100011, 100100, 100101 or 100110) event counter to be incremented multiple times for the
instruction. Instructions which generate FP exceptions may be stalled and restarted several
causing the counter to be incremented every time the instruction is restarted. In addition, if
FLUSH# or STPCLK# is asserted during a matched breakpoint or if a data breakpoint is set
POP SS instruction, the counter will be incremented twice. The counter will (incorrectly) not
incremented if the matched instruction generates an exception and the exception handler do
IRET which sets the resume flag. The counter will also not get incremented for a data break
match on a u-pipe instruction if the paired instruction in the v-pipe generates an exception.

The “Hardware interrupts” (event 100111) event counter counts the number of taken INTR and
NMIs. In the event that both INTR/NMI and a higher priority interrupt are present on the sam
instruction boundary, the higher priority interrupt correctly gets processed first. However, the
counter prematurely counts the INTR/NMI as taken and the count incorrectly gets increment

The “Code breakpoint match” (event 100011, 100100, 100101 or 100110) event counter ma
fail to be incremented in some cases. If there is a code breakpoint match on an instruction an
is also a single-step or data breakpoint interrupt pending, the code breakpoint match counte
not be incremented.

The “Non-cacheable memory reads” (event 0111110) event counter is defined to count non-
cacheable instruction or data memory read bus cycles. Reads to I/O memory space are not
supposed to be counted. However, the counter incorrectly gets incremented for reads to I/O
memory space.

The “Instructions executed” (event 010110) and “Instructions executed in the v-pipe” (event
010111) event counters are both supposed to be incremented when any exception is recogn
However, if the instruction in the v-pipe generates an exception and a second exception occ
before execution of the first instruction of the exception handler for the first exception, the co
incorrectly does not get incremented for the first exception.

The “Stall on write to an E or M state line” (event 011011) event counter counts the number
clocks the processor is stalled on a data memory write hit to an E or M state line in the intern
cache while either the write buffers are not empty or EWBE# is not asserted. However, it do
count stalls while the write buffers are not empty, it only counts the number of clocks stalled w
EWBE# is not asserted.

The “Code TLB miss” (event 001101) and “Data TLB miss” (event 000010) event counters
incorrectly get incremented twice if the instruction that misses the code TLB or the data that m
the data TLB also causes an exception.

The “Data read miss” (event 000011) and “Data write miss” (event 000100) event counters
incorrectly get incremented twice if the access to the cache is misaligned.

The “Bank conflicts” (event 001010) event counter may be incremented more than once if a v
access takes more than 1 clock to execute.
Pentium® Processor for Embedded Applications Specification Update 35

Errata

d

e

SS. It

e
lected

uses a

nch to

this
r TSS

 page
et up as
met, the
, the
ystem

wing:

nt in the
The “Misaligned data memory or I/O References” (event 001011) incorrectly gets incremente
twice if the access was caused by a FST or FSTP instruction.

The “Pipeline flushes” (event 010101) event counter may incorrectly be incremented for som
segment descriptor loads and the VERR instruction.

The “Pipeline stalled waiting for data memory read” (event 011010) event counter incorrectly
counts a misaligned access as 2 clocks instead of 3 clocks, unless it misses the TLB.

Implication: The event monitor counters report an inaccurate count for certain events.

Workaround: None identified at this time.

Status: For the steppings affected see the Summary Table of Changes.

45. VERR Type Instructions Causing Page Fault Task Switch with T Bit Set May
Corrupt CS:EIP

Problem: This erratum can only occur during debugging with the T bit set in the Page Fault Handler’s T
requires the following very specific sequence of events:

1. The descriptor read caused by a VERR type instruction must trigger a page fault. (Thes
instructions are VERR, VERW, LAR and LSL. They each use a selector to access the se
descriptor and perform some checks on it.)

2. The OS must have the page fault handler set up as a separate task, so the page fault ca
task switch.

3. The T bit in the page fault handler’s TSS must be set, which would normally cause a bra
the interrupt 1 (debug exception) handler.

4. The interrupt 1 handler must be in a not present code segment.

The not present code segment should cause a branch to interrupt 11. However, because of
erratum, execution begins at an invalid location selected by the CS from the page fault handle
but with the EIP value pointing to the instruction just beyond the VERR type instruction.

Implication: This erratum will only be seen by software or hardware developers setting the T bit in the
fault handler’s TSS for debugging. It requires that the OS in use has the page fault handler s
a separate task, which is not done in any standard OS. Even when these conditions are
other conditions will cause this erratum to occur only infrequently. When it does occur
processor will execute invalid or erroneous instructions. Depending on software and s
configuration, the developer will typically see an application error message or system reset.

Workaround: If debugging a system in which the page fault handler is a separate task, use one of the follo

1. Do not set the T bit in the page fault handler’s TSS.

2. Ensure that the code segment where the debug exception handler starts is always prese
system memory during debugging.

Status: For the steppings affected see the Summary Table of Changes.

46. BUSCHK# Interrupt Has Wrong Priority
Problem: Section 2.7 of the Pentium® Processor Family Developer’s Manual lists the priorities of the

external interrupts, with BUSCHK# as the highest (if the BUSCHK# interrupt, AKA the machine
check exception, is enabled by setting the MCE bit in CR4), and INTR as the lowest. It is also
specified that STPCLK# is the very lowest priority external interrupt for those Pentium processors
provided with it (all CPUs with a core frequency of 75 MHz and above). Consistently with this
specification, the CPU blocks all other external interrupts once execution of the BUSCHK#
exception handler begins.
36 Pentium® Processor for Embedded Applications Specification Update

Errata

nnot
ires a

er
n

errupt
layed by
rated
uire a
, the
is

 an I/O
rupt

ually

e to the
upt is
HK#
y well
mple
ode

However this erratum can change the effective priority for a given assertion of BUSCHK# in the
following cases:

CASE 1:An additional external interrupt (except INTR) or a debug exception occurs during a
narrow window after the CPU begins to transfer control to the BUSCHK# handler, but before the
first instruction of the handler begins execution.

In this case, the other interrupt may be serviced before BUSCHK# is serviced. Thus for other
interrupts that occur during this narrow window, BUSCHK# is effectively treated as the next to
lowest priority interrupt instead of the highest.

CASE 2: The following conditions must all apply for this case to cause an erratum:

1. A machine check request (INT 18) is pending

2. A FLUSH# or SMI# request is pending

3. A single step or data breakpoint exception (INT 1) is pending

4. The IO_Restart feature is enabled (i.e., TR12 bit 9 is set)

Given the above set of conditions, the interrupt priority logic does not recognize the machine check
exception as the highest priority. The processor will not service the FLUSH#/SMI# nor the debug
exception (INT 1). Instead, it will generate an illegal opcode exception (INT 6).

Implication: Most systems do not use BUSCHK# and thus are unaffected by this erratum. For those that do use
BUSCHK#, the pin allows the system to signal an unsuccessful completion of a bus cycle. This
would only occur in a defective system. (Since BUSCHK# is an “abort” type exception, it ca
be used to handle a problem from which the OS intends to recover; BUSCHK# always requ
system reset.)

Due to this erratum, the BUSCHK# interrupt would either occasionally be displaced by anoth
interrupt (which incorrectly would be serviced first) or an unexpected illegal opcode exceptio
(INT 6) would be generated and the pending machine check would be skipped.

Depending on the system and also the severity of the defect, this delay of the BUSCHK# int
(case #1 above) could cause a system hang or reset before a bus cycle error message is disp
the BUSCHK# interrupt. In case #2 above where an illegal opcode exception (INT 6) is gene
instead of the machine check exception, a properly architected INT 6 handler will usually req
reset since this handler was erroneously entered without an illegal opcode. But in any event
normal outcome of a bus cycle error is to require a system reset, so the practical result of th
erratum is just the occasional loss of the proper error message in a defective system.

Another problem can occur due to this erratum if the system is using the SMM I/O instruction
restart feature. This problem requires an improbable coincidence: the SMI# signal caused by
restart event must occur essentially simultaneously with BUSCHK#, such that the SMI# inter
hits the narrow window (as described above) just before the first instruction of the BUSCHK#
handler begins execution. This could happen if the same I/O instruction that triggers SMI# (us
to turn back on a device that’s been turned off to save power) also generates a bus failure du
system suddenly going defective, thus signaling BUSCHK#. The result is that the SMI# interr
serviced after the EIP has already been switched to point to the first instruction of the BUSC
handler, instead of the I/O instruction. The SMM code that services the I/O restart feature ma
use the image of EIP in the SMRAM state save memory to inspect the I/O instruction, for exa
to determine what I/O address it’s trying to access. In this case, the I/O restart part of SMM c
will not find the correct instruction. If it is well written, it will execute RSM when it determines
Pentium® Processor for Embedded Applications Specification Update 37

Errata

pins,
ication
the state

arking

 all
erated,
 which

ster. If
andler
porary
kpoint

isabled
 if the

e debug
il to set

lock
hile in

ending
there is no valid I/O access to service. Then execution returns to the BUSCHK# handler with no
deleterious impact. But less robust code might turn on the wrong I/O device, hang up, or begin
executing from a random location.

Workaround: Do not design a system which relies on BUSCHK# as the highest priority interrupt. If using SMM,
do not use BUSCHK# at all.

Note that Case 2 does not apply to B1, C1 or D1 steppings of the 60- and 66-MHz Pentium
processors.

Status: For the steppings affected see the Summary Table of Changes.

47. BF and CPUTYP Buffers Sample Incorrectly During Boundary Scan Testing
Problem: During boundary scan input testing, the boundary scan input paths in the BF0, BF1 and CPUTYP

buffers are disabled when RESET is low. (Note that this is different from the BSDL testing
problem with STPCLK#, documented as Erratum 41; STPCLK# is “stuck” when RESET is high.)

Implication: The boundary scan cells in the BF0, BF1 and CPUTYP buffers capture a “1” from their
regardless of the actual data on the pins, when RESET is low. This violates the IEEE specif
1149.1 which states that the value captured should always be that on the pins regardless of
of RESET. However, the buffer functions correctly when the EXTEST instruction is used.

Workaround: If testing with boundary scan in a system environment these pins can be left untested by m
them “INTERNAL” in the BSDL file.

Status: For the steppings affected see the Summary Table of Changes.

48. Matched But Disabled Data Breakpoint Can Be Lost By STPCLK# Assertion
Problem: Assertion of STPCLK# can interfere with a feature described in the Intel Architecture Software

Developer’s Manual, Volume 3, Section 14.2.3: “The processor sets the DR6 B bits for
breakpoints which match the conditions present at the time the debug exception is gen
whether or not they are enabled.” When the debug exception is generated, all breakpoints
match the conditions present at that time are flagged by a bit set in a temporary regi
STPCLK# is asserted after this, but before control is transferred to the debug exception h
(interrupt 1), a matched but disabled data breakpoint may not be transferred from the tem
register. That is, as a result of the STPCLK# assertion, the B bit corresponding to that brea
may not get set in DR6.

Implication: This feature (defining disabled breakpoints) can be used in debugging; e.g., one can set a d
data breakpoint on a memory location and then check the corresponding bit in DR6, to see
location has been accessed by the most recent (main code) instruction, any time one is in th
handler for some other reason. This erratum will sometimes cause this debug feature to fa
its DR6 bit, when STPCLK# is also being used.

Workaround: Use one of the following:

1. Use only enabled data breakpoints when STPCLK# may be asserted.

2. Disable the assertion of STPCLK# while this debug feature is being used.

Status: For the steppings affected see the Summary Table of Changes.

49. STPCLK# Ignored In SMM When INIT or NMI Pending
Problem: If an INIT or NMI is pending while in SMM mode, and STPCLK# is asserted, the stop c

interrupt is not serviced. The correct operation is for the stop clock request to be serviced w
SMM, regardless of pending NMI or INIT.

Implication: The stop clock request is blocked until after the processor exits SMM and services the p
NMI or INIT. The processor then services the lower priority stop clock interrupt.
38 Pentium® Processor for Embedded Applications Specification Update

Errata

by
d by a

T) is
Workaround: None identified at this time.

Status: For the steppings affected see the Summary Table of Changes.

50. STPCLK# Pullup Not Engaged at RESET
Problem: The internal pullup on the STPCLK# pin may not pullup at power on if the pin is floating at a low

input level.

Implication: If the STPCLK# pin is floating at a low input level and the pin is left unconnected at bootup, the
processor may initiate the stop grant bus cycle in response to the STPCLK# request shortly after
completing the reset sequence. This may result in a system hang.

Workaround: Use one of the following:

1. Always drive a valid logic level on STPCLK# (including during RESET).

2. Use an appropriately sized external pullup resistor.

Status: For the steppings affected see the Summary Table of Changes.

51. A Fault Causing a Page Fault Can Cause an Instruction To Execute Twice
Problem: When the processor encounters an exception while trying to begin the handler for a prior exception,

it should be able to handle the two serially (i.e., the second fault is handled and then the faulting
instruction is restarted, which causes the first fault again, whose handler now should begin
properly); if not, it signals the double-fault exception. A “contributory” exception followed
another contributory exception causes the double-fault, but a contributory exception followe
page fault are both handled. (See the Intel Architecture Software Developer’s Manual, Volume 3,
Section 5.12, Interrupt 8 for the list of contributory exceptions and other details.) This erratum
occurs under the following circumstances:

1. One of these three contributory faults: #12 (stack fault), #13 (General Protection), or #17
(alignment check), is caused by an instruction in the v-pipe.

2. Then a page fault occurs before the first instruction of the contributory fault handler is fetched.
(This means that a page fault that occurs because the handler starts in a not present page will
not cause this erratum.)

The result is that execution correctly branches to the page fault handler, but an incorrect return
address is pushed on the stack: the address of the (immediately preceding) u-pipe instruction,
instead of the v-pipe instruction that caused the faults. This causes the u-pipe instruction to be
executed an extra time, after the page fault handler is finished.

Implication: When this erratum occurs, an instruction will be (incorrectly) executed, effectively, twice in a row.
For many instructions (e.g., MOV, AND, OR) it will have no effect, but for some instructions it can
cause an incorrect answer (e.g., ADD would increase the destination by double the correct
amount). However, the page fault (during transfer to the handler for fault #12, #13 or #17) required
for this erratum to occur can happen in only three unusual cases:

1. If the alignment check fault handler is placed at privilege level 3, the push of the return address
could cause a page fault, thus causing this erratum. (Fault #17 can only be invoked from level
3, so it is legal to have its handler at level 3. Fault 12 and 13 handlers must always be at level 0
since they can be invoked from level 0. The push of a return address on the level 0 stack must
not cause a page fault, because if the OS allowed that to happen, the push of return address for
a regular page fault could cause a second page fault, which causes a double-fault and crashes
the OS.)

2. If the descriptor for the fault handler’s code segment (in either the GDT or the current LD
in a not present page, a page fault occurs which causes this erratum.
Pentium® Processor for Embedded Applications Specification Update 39

Errata

te task

 a HLT
ed by
rupts,
hat the
 if it is

 the

g
lag in

 1),
 the

 must
d

ut in

dom

 some
is not
ception
Case 2
abled.
rogram
 for it
bility
ate the
hus
es 1, 2
3. If the OS has defined the fault handler as a separate task, and a page fault occurs while
bringing in the new LDT or initial segments, this erratum will occur.

Workaround: All of the following steps must be taken (but 2 & 3 are part of normal OS strategy, done in order to
optimize speed of access to key OS elements, and minimize chances for bugs): 1). If allowing the
alignment fault (#17), place its handler at level 0. 2). Do not allow any of the GDT or current LDT
to be “swapped out” during virtual memory management by paging. 3). Do not use a separa
for interrupts 12, 13 or 17.

Status: For the steppings affected see the Summary Table of Changes.

52. Machine Check Exception Pending, then HLT, Can Cause Skipped or
Incorrect Instruction, or CPU Hang

Problem: This erratum can occur if a machine check exception is pending when the CPU encounters
instruction, or occurs while the CPU is in the HLT state. (the BUSCHK# error could be caus
executing the previous instruction, or by a code prefetch.) Before checking for pending inter
the HLT instruction issues its special bus cycle, and sets an special internal flag to indicate t
CPU is in the HLT state. The machine check exception (MCE) can then be detected, and
present the CPU branches to the MCE handler, but without clearing the special HLT flag - the
source of this erratum. As when other interrupts break into HLT, the return address is that of
next instruction after HLT, so execution continues there after return from the MCE handler.

Except for MCE (and some cases of the debug interrupt), interrupts clear the special HLT fla
before executing their handlers. The erratum that causes the MCE logic to not clear the HLT f
this case can have the following consequences:

1. If NMI, or INTR if enabled, occurs while the HLT flag is set, the CPU logic assumes the
instruction immediately following the interrupt is an HLT. So it places the address of the
instruction after that on the stack, which means that upon return from the interrupt, the
instruction immediately following the interrupt occurrence is skipped over.

2. If FLUSH # is asserted while the HLT flag is set, the CPU flushes the L1 cache and then
returns to the HLT state. If the CPU is extracted from the HLT state by NMI or INTR, as in
the CPU logic assumes that the current CS:EIP points to an HLT instruction, and pushes
address of the next instruction on the stack, so the instruction immediately following the
FLUSH# assertion is skipped over.

3. If RSM is executed while the HLT flag is set, again the CPU logic assumes that the CPU
have been interrupted (by SMI, in this case) while in the HLT state. Normally, RSM woul
cause the CPU to branch back to the instruction that was aborted when entering SMM. B
this case, the CPU branches to the address of the next instruction minus one byte. If the aborted
instruction is one byte long, this is fine. If it is longer, the CPU executes effectively a ran
opcode: the last byte of the aborted instruction is interpreted as the first byte of the next
instruction.

Implication: In cases 1 and 2, skipping an instruction can have no noticeable effect, or it could cause
obvious error condition signaled by a system exception, or it could cause an error which
easily detected. In case 3, executing a random opcode is most likely to cause a system ex
like #6 (invalid opcode), but it could cause either of the other results as with cases 1 and 2.
can also cause an indefinite CPU hang, if the problem occurred when INTR was dis
However, in order to encounter any of these problems, the system has to continue on with p
execution after servicing the MCE. Since the MCE is an abort type exception, the handler
cannot rely on a valid return address. Also MCE usually signals a serious system relia
problem. For both these reasons, the usual protocol is to require a system reset to termin
MCE handler. If this usual protocol is followed successfully, it will clear the HLT flag and t
always prevent the above problems. However, there is an additional complication: the cas
and 3 above can occur inside the MCE handler, possibly preventing its completion.
40 Pentium® Processor for Embedded Applications Specification Update

Errata

.

arget
 the

occurs
Workaround: The problems caused by this erratum will be prevented if the Machine Check Exception handler (if
invoked) always forces a CPU RESET or INIT (which it should do anyway, for reasons given
above). Since the problems can occur inside the MCE handler, the IF should be left zero to prevent
INTR from interrupting. Also, NMI, SMI and FLUSH could be blocked inside the MCE handler.
The most secure strategy is to force INIT immediately upon entrance to the MCE handler.

Status: For the steppings affected see the Summary Table of Changes.

53. FBSTP Stores BCD Operand Incorrectly If Address Wrap & FPU Error Both
Occur

Problem: This erratum occurs only if a program does all of the following:

1. The program uses 16 bit addressing inside a USE32 segment (requiring the 67H addressing
override prefix) in order to wrap addresses at offsets above 64K back to the bottom of the
segment.

2. The 10 byte BCD operand written to memory by the FBSTP instruction must actually straddle
the 64K boundary. If all 10 bytes are either above or below 64K, the wrap works normally.

3. The FBSTP instruction whose operand straddles the boundary must also generate an FPU
exception. (e.g., Overflow if the operand is too big, or Precision if the operand must be
rounded, to fit the BCD format.)

The result is that some of the 10 bytes of the stored BCD number will be located incorrectly if there
is an FPU exception. They will be nearby, in the same segment, so no protection violation occurs
from this erratum.

The erratum is caused by the fact that when an FPU exception occurs due to FBSTP, a different
internal logic sequence is used by the CPU, which sends the bytes to memory in different
groupings. Normally this does not affect the result, but when address wrap occurs in the middle of
the operand, the different groupings can cause different destination addresses to be calculated for
some bytes.

Implication: Code which relies on this address wrap with a straddled FBSTP operand may not store the operand
correctly if FBSTP also generates an FPU exception. Intel recommends not to straddle segment or
addressing boundaries with operands for several reasons, including (see the Intel Architecture
Software Developer’s Manual, Volume 3, Chapter 17) the chance of losing data if a memory fault
interrupts an access to the operand. Also there is variation between generations of Intel processors
in how straddled operands are handled.

Workaround: Use one of the following:

Do not use 16 bit addressing to cause wraps at 64K inside a USE32 segment.

Follow Intel’s recommendation and do not straddle an addressing boundary with an operand

Status: For the steppings affected see the Summary Table of Changes.

54. V86 Interrupt Routine at Illegal Privilege Level Can Cause Spurious Pushes
to Stack

Problem: By architectural definition, V86 mode interrupts must be executed at privilege level 0. If the t
CPL (Current Privilege Level) in the interrupt gate in the IDT (Interrupt Descriptor Table) and
DPL (Descriptor Privilege Level) of the selected code segment are not 0 when an interrupt
in V86 mode, then interrupt 13 (GP fault) occurs. This is described in the Intel Architecture
Software Developer’s Manual, Volume 3, Section 15.3. The architectural definition says that
execution transfers to the GP fault routine (which must be at level 0) with nothing done at the
privilege level (call it level N) where the interrupt service routine is illegally located. In fact (this
erratum) the Pentium Processor incorrectly pushes the segment registers GS and FS on the stack at
Pentium® Processor for Embedded Applications Specification Update 41

Errata

 or 3)
t, the
g the
service
ing the

pecific

y
fter
t is
its
nches
to

s in
RSM
he
 re-
MM
 the

ag

wing

the
s of
t, the

then
 =
R,
, and

CPU
SM

ing
level N, before correctly transferring to the GP fault routine at level 0 (and pushing GS and FS
again, along with all the rest that’s specified for a V86 interrupt).

Implication: When this erratum occurs, it will place a few additional bytes on the stack at the level (1, 2
where the interrupt service routine is illegally located. If the stack is full or does not exis
erratum will cause an unexpected exception. But this problem will have to be fixed durin
development process for a V86 mode OS or application, because otherwise the interrupt
routine can never be accessed by V86 code. Thus this erratum can only be seen dur
debugging process, and only if the software violates V86 specifications.

Workaround: Place all code for V86 mode interrupt service routines at privilege level 0, per specification.

Status: For the steppings affected see the Summary Table of Changes.

55. Corrupted HLT Flag Can Cause Skipped or Incorrect Instruction, or CPU
Hang

Problem: The Pentium processor sets an internal HLT flag while in the HLT state. There are some s
instances where this HLT flag can be incorrectly set when the CPU is not in the HLT state.

1. A POP SS which generates a data breakpoint, and is immediately followed by a HLT. An
interrupt which is pending during an instruction which changes the SS, is delayed until a
the next instruction (to allow atomic modification of SS:ESP). In this case, the breakpoin
therefore correctly delayed until after the HLT instruction is executed. The processor wa
until after the HLT cycle to honor the breakpoint, but in this case when the processors bra
to the interrupt 1 handler, it fails to clear the HLT flag. The interrupt 1 handler will return
the instruction following the HLT, and execution will proceed, but with the HLT flag
erroneously set.

2. A code breakpoint is placed on a HLT instruction, and an SMI# occurs while processor i
the HLT state (after servicing the code breakpoint). The SMI handler usually chooses to
to the HLT instruction, rather than the next one, in order to be transparent to the rest of t
system. In this case, on returning from the SMI# handler, the code breakpoint is typically
triggered (SMI# handler does not typically set the RF flag in the EFLAGS image in the S
save area). The processor branches to the interrupt 1 handler again, but without clearing
HLT flag. The interrupt 1 handler will return to the instruction following the HLT, and
execution will proceed, but with the HLT flag erroneously set.

3. A machine check exception just before, or during, a HLT instruction can leave the HLT fl
erroneously set. This is described in detail in erratum #52: Machine Check Exception Pending,
then HLT, Can Cause Skipped or Incorrect Instruction, or CPU Hang.

Implication: For cases 1 and 2, the CPU will proceed with the HLT flag erroneously set. The follo
problematic conditions may then occur.

a. If NMI, or INTR if enabled, occurs while the HLT flag is set, the CPU logic assumes
instruction immediately following the interrupt is a HLT. It therefore places the addres
the instruction after that on the stack, which means that upon return from the interrup
instruction immediately following the interrupt occurrence is skipped over.

b. If FLUSH # is asserted while the HLT flag is set, the CPU flushes the L1 cache and
incorrectly returns to the HLT state, which will hang the system if INTR is blocked (IF
0) and NMI does not occur. If the CPU is extracted from the HLT state by NMI or INT
as in a), the CPU logic assumes that the current CS:EIP points to an HLT instruction
pushes the address of the next instruction on the stack, so the instruction immediately
following the FLUSH# assertion is skipped over.

c. If RSM is executed while the HLT flag is set, again the CPU logic assumes that the
must have been interrupted (by SMI#, in this case) while in the HLT state. Normally, R
would cause the CPU to branch back to the instruction that was aborted when enter
42 Pentium® Processor for Embedded Applications Specification Update

Errata

SMM. But in this case, the CPU branches to the address of the next instruction minus one
byte. If the aborted instruction is one byte long, this is fine. If it is longer, the CPU
executes effectively a random opcode: the last byte of the aborted instruction is
interpreted as the first byte of the next instruction.

d. If STPCLK# is asserted to the CPU while the HLT flag is incorrectly set, the CPU will
hang such that a CPU reset is required to continue execution.

Cases 1 and 2 of this erratum occur only during code development work, and only with the unusual
combination of data breakpoint triggered by POP SS followed by HLT or code breakpoint on HLT
followed by SMI#.

Workaround: CASE 1: Avoid following POP SS with a HLT instruction. POP SS should always be followed by
POP ESP anyway, to finish switching stacks without interruption. Following POP SS with HLT
instead would normally be a program logic error (the interrupt that breaks the CPU out of HLT will
not have a well defined stack to use).

CASE 2: Do not place code breakpoints on HLT instructions. Or: Modify the SMI# handler slightly
for debugging purposes by adding instructions to set the RF flag in the EFLAGS image in the
SMM save area.

Status: For the steppings affected see the Summary Table of Changes.

56. Benign Exceptions Can Erroneously Cause Double Fault
Problem: The double-fault counter can be incorrectly incremented in the following cases:

CASE 1: An instruction generates a benign exception (for example, a FP instruction generates an
INT 7) and this instruction causes a segment limit violation (or is paired with a v-pipe instruction
which causes a segment limit violation)

CASE 2: A machine check exception (INT 18) is generated.

The initial benign exception will be serviced properly. However, if while trying to begin execution
of the benign exception handler, the processor gets an additional contributory exception, the
processor will trigger a double fault (and start to service the double fault handler) instead of
servicing the new contributory fault. (See Table 5-3 in the Intel Architecture Software Developer’s
Manual, Volume 3 for a complete list of benign/contributory exceptions).

Implication: Contributory exceptions generated while servicing benign exceptions can erroneously cause the
processor to execute the double fault handler instead of the contributory exception handler.

Workaround: Use benign exception handlers that do not generate additional exceptions. Operating systems
designed such that benign exception handlers do not generate additional exceptions will be
immune to this erratum. In general, most operating system exception handlers are architected
accordingly.

Status: For the steppings affected see the Summary Table of Changes.

57. Double Fault Counter May Not Increment Correctly
Problem: In some cases a double fault exception is not generated when it should have been because the

internal double fault counter does not correctly get incremented.

When the processor encounters a contributory exception while attempting to begin execution of the
handler for a prior contributory exception (for example, while fetching the interrupt vector from the
IDT or accessing the GDT/LDT) it should signal the double fault exception. Due to this erratum,
however, the CPU will incorrectly service the new exception instead of going to the double fault
handler.
Pentium® Processor for Embedded Applications Specification Update 43

Errata
In addition, if the first contributory fault is the result of an instruction executed in the v-pipe, a
second contributory fault will cause the processor to push an incorrect EIP onto the stack before
entering the second exception handler. Upon completion of the second exception handler, this
incorrect EIP gets popped from the stack and the processor resumes execution from the wrong
address.

Implication: The processor could incorrectly service a second contributory fault instead of going to the double
fault handler. The resulting system behavior will be operating system dependent. Additionally, an
inconsistent EIP may be pushed on to the stack.

Robust operating systems should be immune to this erratum because their exception handlers are
designed such that they do not generate additional contributory exceptions. This erratum is only of
concern during operating system development and debug.

Workaround: Use contributory exception handlers that do not generate additional contributory exceptions.
Operating systems which are designed such that their contributory exception handlers do not
generate additional contributory exceptions will not be affected by this erratum. In general, most
operating system exception handlers are architected accordingly.

Status: For the steppings affected see the Summary Table of Changes.

58. Some Input Pins May Float High Erroneously When Core VCC Powers Up
After I/O VCC (Mobile CPU)

Problem: Unused input signals are typically tied to either VCC or VSS. Low inputs can be provided with a
hard VSS strap or a pulldown resistor. If any of the input pins AHOLD, KEN#, WB/WT#, NA#,
INV, BRDY#, or EWBE# are not driven by system logic, and are tied to ground via a weak
pulldown resistor (i.e., >2 KOhms), and CPU I/O power supply (VCC3) ramps before CPU core
power supply (VCC2), these input pins may float high and be erroneously latched high by the
processor during boot. The effect of this erratum depends on the usage of each pin. For example, if
EWBE# gets latched high, the processor may hang indefinitely.

Implication: The input pins AHOLD, KEN#, WB/WT#, NA#, INV, BRDY#, or EWBE# may register a false
start up state. In some cases, the processor may erroneously hang while waiting for an input
response. For example, the EWBE# being sampled high may cause the system to hang while
waiting for the processor to sample EWBE# low.

Workaround: If the signal is not driven by system logic and is pulled low, a pulldown resistor of 2K Ohms or less
should be used to guarantee logic level zero.

Status: For the steppings affected see the Summary Table of Changes.

59. Short Form of MOV EAX/ AX/ AL May Not Pair
Problem: The MOV data instruction forms (excluding MOV using Control, Debug or Segment registers) are

intended to be pairable, unless there is a register dependency between the two instructions
considered for pairing. (e.g., MOV EAX, mem1 followed by MOV mem2, EAX: here the 2nd
instruction cannot be completed until after the first has put the new value in EAX.) This pairing for
MOV data is documented by the UV symbol in the Pairing column in the table of Pentium
processor instruction timings in the Optimizations for Intel’s 32-Bit Processors application note
(Order # 243195). This erratum is that the instruction unit under some conditions fails to pair the
special short forms of MOV mem, EAX /AX /AL, when no register dependency exists.

The Intel Architecture includes special instructions to MOV EAX /AX /AL to a memory offset
(opcodes 0A2H & 0A3H). These instructions don’t have a MOD/RM byte (and so are shortened by
one byte). Instead, the opcode is followed immediately by 1/2/4 bytes giving the memory offset
(displacement). This erratum occurs specifically when a MOV mem, EAX /AX /AL instruction
using opcode 0A2H or 0A3H is followed by an instruction that uses the EAX /AX /AL register as a
44 Pentium® Processor for Embedded Applications Specification Update

Errata

esses

ystem.
ses are
s zero
d
tch to

ch was
tate of a

3 and

ruction
cuted
tion

y be
source (register source, or as base or index for the address of a memory source) or a destination
register. Then the instruction unit detects a (false) dependency and it doesn’t allow pairing. For
example, the following two instructions are not paired:

A340000000 MOV DWORD PTR 40H, EAX ; memory DS:[40H] <- EAX [goes into u-pipe]
A160000000 MOV EAX, DWORD PTR 60H ; EAX <- memory DS:[60H] [does NOT go into
v-pipe]

Implication: The only result of this erratum is a very small performance impact due to the non-pairing of the
above instructions under the specified conditions. The impact was evaluated for SPECint92* and
SPECfp92* and was estimated to be much smaller than run-to-run measurement variations.

Workaround: For the Pentium processor, use the normal MOV instructions (with the normal MOD/RM byte) for
EAX /AX /AL instead of the short forms, when writing optimizing compilers and assemblers or
hand assembling code for maximum speed. However, as documented above, the performance
improvement from avoiding this erratum will be quite small for most programs.

Status: For the steppings affected see the Summary Table of Changes.

60. Turning Off Paging May Result In Prefetch To Random Location
Problem: When paging is turned off a small window exists where the BTB has not been flushed and a

speculative prefetch to a random location may be performed. The Intel Architecture Software
Developer’s Manual, Volume 3, Section 8.8.2, lists a sequence of nine steps for switching from
protected mode to real-address mode. Listed here is step 1.

1. If paging is enabled, perform the following sequence:

— Transfer control to linear addresses which have an identity mapping (i.e., linear addr
equal physical addresses). Ensure the GDT and IDT are identity mapped.

— Clear the PG bit in the CR0 register.

— Move zero into the CR3 register to flush the TLB.

With paging enabled, linear addresses are mapped to physical addresses using the paging s
In step a above the executing code transfers control to code located where the linear addres
mapped directly to physical addresses. Step b turns off paging followed by step c which write
to CR3 which flushes the TLB (and BTB). A small window exists (after clearing the PG bit an
before zeroing CR3) where the BTB has not been flushed, and a BTB hit may cause a prefe
an unintended physical address.

Implication: A prefetch to an unintended physical address could potentially cause a problem if this prefet
to a memory mapped I/O address. If reading a memory mapped I/O address changes the s
memory mapped I/O device, this unintended access may cause a system problem.

Workaround: Flush the BTB just before turning paging off. This can be done by reading the contents of CR
writing it back to CR3 prior to clearing the PG bit in CR0.

Status: For the steppings affected see the Summary Table of Changes.

61. REVISED ERRATUM: STPCLK#, FLUSH# or SMI# After STI
Problem: The STI specification says that external interrupts are enabled at the end of the next inst

after STI. However, external interrupts may be enabled before the next instruction is exe
following STI if a STPCLK#, FLUSH# or SMI# is asserted and serviced before the instruc
boundary of this next instruction.

Implication: External interrupts which are assumed blocked until after the instruction following STI ma
recognized before this instruction executes.

Workaround: None identified at this time.
Pentium® Processor for Embedded Applications Specification Update 45

Errata

ot be
 for

or. This

lock

from
d” bit

ssor

ot
bove).

the
us-lock
essor
Status: For the steppings affected, see the Summary Table of Changes.

62. REP String Instruction Not Interruptible by STPCLK#
Problem: The Intel Architecture Software Developer’s Manual, Volume 2, Chapter 3 under the REP string

instruction, states that any pending interrupts are acknowledged during a string instruction. On the
Pentium processor there is one exception. STPCLK# is not able to interrupt a REP string
instruction. It is only recognized on an instruction boundary (as stated in Volume 1, Section
21.1.36). However, if any other interrupt is recognized during a REP string instruction, this will
allow STPCLK# to be serviced before returning to execution of the REP string instruction.

Implication: A system that uses stop clock frequently can not interrupt the REP string instruction in the middle
and must wait until it completes or another interrupt is recognized before STPCLK# is recognized.
Note that in standard PC-AT architecture, the real time clock interrupt will interrupt a long string
instruction allowing STPCLK# to be recognized.

Workaround: None identified at this time.

Status: For the steppings affected see the Summary Table of Changes.

63. Single Step May Not be Reported on First Instruction After FLUSH#
Problem: The single step trap should cause an exception to occur upon completion of all instructions.

However, in some cases when ITR (bit 9 of TR12) = ‘1’, a single step exception may n
reported for the first instruction following FLUSH#. The Single Step exception will be skipped
this instruction. Note that subsequent single step exceptions will be reported correctly.

Implication: A single step breakpoint may be missed when a FLUSH# request is presented to the process
erratum will only affect software developers while debugging code.

Workaround: None identified at this time.

Status: For the steppings affected see the Summary Table of Changes.

64. Double Fault May Generate Illegal Bus Cycle
Problem: A double fault condition may generate an illegal bus cycle (a cacheable line-fill with a

attribute). This scenario is caused by following sequence of events:

1. A contributory fault occurs.

2. The processor begins to service this fault by reading the appropriate trap/interrupt gate
the IDT. However, this gate points to a segment descriptor (in the GDT) whose “accesse
is not set.

3. The segment descriptor is modified and marked “not present/not valid” by another proce
in the system

4. A locked Read-Modify-Write cycle is generated to update the “accessed” bit.

The erratum condition is encountered if the segment descriptor was modified and marked “n
present/not valid” by another processor in the system before the locked read cycle (step #4 a
The processor will begin to execute the locked read. Since the descriptor is marked invalid,
processor should go to the exception handler to service a specific exception and clear the b
(through a write operation). However, since a contributory fault has already occurred, the proc
will interpret this condition as a double fault. The double fault logic incorrectly generates a
cacheable line-fill with a lock attribute.

Implication: This erratum can only occur in DP and MP systems.

Cacheable line-fills with a lock attribute are “illegal” bus cycles. Exact operation under this
condition is chipset dependent. It may cause the system to hang.
46 Pentium® Processor for Embedded Applications Specification Update

Errata

this
Note that this erratum will only occur in the case of a double fault, which are rare events for well
architected operating systems. Also, the double fault condition is not generally recoverable,
implying that the system will need to be rebooted anyway.

Finally, this erratum can only happen on the first pass through the interrupt handler. After that, the
“accessed” bit of the code descriptor will be set, eliminating a prerequisite for occurrence of
erratum.

Workaround: None identified at this time.

Status: For the steppings affected see the Summary Table of Changes.

65. TRST# Not Asynchronous
Problem: TRST# is not an asynchronous input as specified in Section 5.1.67 of the Pentium® Processor

Family Developer’s Manual.

Implication: TRST# will not be recognized in cases where it does not overlap a rising TCK# clock edge. This
violates the IEEE 1149.1 specification on Boundary Scan.

Workaround: TRST# should be asserted for a minimum of two TCK periods to ensure recognition by the
processor.

Status: For the steppings affected see the Summary Table of Changes.

66. STPCLK# on RSM to HLT Causes Non-Standard Behavior
Problem: This problem will occur if STPCLK# is asserted during the execution of an RSM instruction which

is returning from SMM to a HALT instruction (Auto HALT restart must be enabled for this to
happen). The RSM instruction will be completed, and then the CPU correctly issues, in response to
the STPCLK# assertion, a Stop Grant special cycle, and goes into the Stop Grant state. However,
following this, behavior occurs which deviates from the CPU specifications in one of two ways,
depending on whether STPCLK# is de-asserted before any (enabled) external interrupt occurs
(Case 1), or an (enabled) external interrupt occurs while STPCLK# is still active (Case 2).

CASE 1: After STPCLK# is de-asserted, no HALT special cycle is issued, and the CPU effectively
stays in the Stop Grant state until an external interrupt is asserted (to which the CPU responds
normally). However, a HALT cycle should be issued when STPCLK# is de-asserted, because it is
stated that a HALT cycle will be issued upon an RSM to the HALT state.

CASE 2: When the (enabled) external interrupt is asserted while STPCLK# is still active, the CPU
should remain in the Stop Grant state. But when the conditions have been met for this erratum, the
CPU comes out of the Stop Grant state and starts the internal interrupt service process. This
includes issuing the interrupt acknowledge cycles, reading the selected entry from the interrupt
descriptor table, and fetching the first instruction of the requested interrupt service routine (I.S.R.).
However, before the CPU executes that first instruction, STPCLK# is recognized again, execution
halts, and a Stop Grant cycle is issued. The erratum condition is cleared by one of the steps which
the CPU performs to prepare for the I.S.R., so any further interrupts (while STPCLK# remains
asserted) will not remove the CPU from the Stop Grant state. When STPCLK# is de-asserted, the
CPU begins executing the requested I.S.R.

Implication: CASE 1: The absence of the usual HALT special cycle upon a RSM to a HLT instruction in this
rare case should have no impact, unless the system is looking for the HALT cycle after RSM and
would normally make some response to it. The system will have received the HALT cycle upon
initial entry to the HALT state. To expect another HALT cycle after RSM, the system would have
to be tracking the fact that the SMI occurred during a HLT.
Pentium® Processor for Embedded Applications Specification Update 47

Errata
CASE 2: This case of the erratum means that some cycles preparatory to executing the I.S.R. are
issued when the interrupt is received, rather than waiting until after STPCLK# is de-asserted. Also,
an extra Stop Grant cycle is issued just after these premature cycles. However, all of the I.S.R.
itself is executed at the correct time. This difference in the bus cycles has no known system
implications.

Workaround: None required for any known implementations.

Status: For the steppings affected see the Summary Table of Changes.

67. Code Cache Dump May Cause Wrong IERR#
Problem: When using the test registers to read a cache line that is not initialized, the data array may indicate

a wrong parity, which may cause IERR# to be asserted. It may also cause a shutdown.

Implication: A code cache dump through test registers may cause a parity check when reading an uninitialized
cache entry, resulting in a shutdown.

Workaround: Set TR[1] to 1 to ignore IERR#, so that shutdown during a code cache dump can be avoided, or
ensure that all cache lines have been initialized prior to a code cache dump.

68. Asserting TRST# Pin or Issuing JTAG Instructions Does not Exit TAP Hi-Z
State

Problem: The Pentium® Processor Family Developer’s Manual, Section 11.3.2.1 states that the TAP Hi-Z
state can be terminated by resetting the TAP with the TRST# pin, by issuing another TAP
instruction, or by entering the Test_Logic_Reset state. However, the indication that the processor
has entered the TAP Hi-Z state is maintained until the next RESET. Therefore by using the above
methods alone, the TAP Hi-Z state can not be terminated.

Implication: When the TAP Hi-Z instruction is enabled and executed, the processor may not terminate the Hi-Z
state.

Workaround: To exit TAP Hi-Z state, in addition to the methods described above, the processor needs to be
RESET as well.

Status: For the steppings affected see the Summary Table of Changes.

69. ADS# May be Delayed After HLDA Deassertion
Problem: The Pentium processor typically starts a pending bus cycle on the same clock that HLDA is

deasserted and the Pentium processor with MMX technology typically starts the cycle one clock
after HLDA is deasserted. However, in both processors it may be delayed by as many as two
clocks. See the diagram below:

Pending Cycle May Be Delayed

CLK

ADS#

HOLD

HLDA

Typical Delayed
48 Pentium® Processor for Embedded Applications Specification Update

Errata
In two cases, for example, if HOLD is deasserted for one clock (i.e., clock 2) or two clocks (i.e.,
clocks 1 & 2) and then reasserted, the window may not be large enough to start a pending snoop
writeback cycle. The writeback cycle may be delayed until the HLDA is deasserted again (i.e.,
clock N). See diagram below.

Implication: If the system expects a cycle, for example a writeback cycle, and depends on this cycle to
commence within the HLDA deassertion window, then the system may not complete the
handshake and cause a hang.

Workaround:

1. Deassert HOLD for at least 3 clocks (i.e., clocks 1, 2, and 3 shown in figure) before reasserting
HOLD again. This ensures that the Pentium processor initiates any pending cycles before
reasserting HLDA.

2. If the system is waiting for the snoop writeback cycle to commence, for instance if HITM# is
asserted, the system should wait for the ADS# before reasserting HOLD.

Status: For the steppings affected see the Summary Table of Changes.

70. Stack Underflow in IRET Gives #GP, Not #SS
Problem: The general Intel architecture rule about accessing the stack beyond either its top or bottom is that

the stack fault error (#SS) will be generated. However, if during the execution of the IRET
instruction there are insufficient bytes for an interlevel IRET to pop from the stack (stack
underflow), the general protection (#GP) fault is generated instead of #SS.

This can only occur if the stack has been modified since the interrupt stored its return address, flags
etc. such that there is no longer room on the stack for all of the stored information when IRET tries
to access it. This would constitute a serious programming error that would cause problems more
obvious than this erratum, and would normally be corrected during debugging. If this erratum did
occur during regular execution of a program, the normal O/S response to a task causing either a
#GP or #SS exception is to terminate the task, and so this erratum (#GP instead of #SS) would
normally have no effect. If however the O/S is to be programmed to try to correct #GP and #SS
problems and allow the task to continue execution, the workaround should be used.

Workaround: In order for the O/S code to correctly analyze this case of stack limit violation, the #GP code must
include a test for stack underflow when #GP occurs during the IRET instruction.

Status: For the steppings affected see the Summary Table of Changes.

CLK

ADS#

HOLD

HLDA

EADS#

HITM#

1 2 3

1 2 3 N

Snoop Writeback Cycle Delayed
Pentium® Processor for Embedded Applications Specification Update 49

Errata

writes
some
MMX
71. Performance Monitoring Pins PM[1:0] May Count The Events Incorrectly
Problem: The performance monitoring pins PM[1:0] can be used to indicate externally the status of event

counters CTR1 and CTR0. While events are generated at the rate of the CPU clock, the PM[1:0]
pins toggle at the rate of the I/O bus clock. However in some cases, the PM[1:0] pins may toggle
twice when the event counters increment twice in one I/O clock, while in some cases, the PM[1:0]
pins may toggle only once even when the event counters increment twice in two consecutive I/O
clocks.

Implication: The performance monitoring pins PM[1:0] may not be relied upon to reflect the correct number of
events that have occurred.

Workaround: None identified at this time.

Status: For the steppings affected see the Summary Table of Changes.

72. BIST Is Disabled

This item does not apply to Pentium processors for embedded applications. For the full text of this
item, refer to the Pentium® Processor Specification Update, order number 242480.

73. Branch Trace Messages May Cause System Hang
Problem: In a system with branch trace messages enabled, certain semaphore signaling sequences may cause

the system to hang. Branch trace messages have the highest priority bus cycle in the Pentium
processor with MMX technology, unlike previous Pentium processors, and take precedence over
any other write cycle. A sequence of code where the processor writes to another processor or a
controller, and then locks into a tight loop while waiting for the other processor or the controller to
respond to the write, is susceptible to a hang, if branch trace messages are enabled. The problem is
that the unending branch trace messages from the loop take priority over the previous write cycle.
The write cycle never occurs and the other processor or the controller never responds. However,
the processor will be pulled out of the hanging situation if an interrupt occurs.

Implication: This erratum only affects operation of the processor during instruction execution tracing which is
normally only done during code development and debug. In addition, this erratum would typically
only occur in an MP system, with short code sequences used for message passing. Also since
interrupts pull the processor out of the hanging condition and they normally occur frequently, there
should not be any noticeable system hang.

Workaround: Disable the branch trace message feature by setting TR12 bit 1 to 0 (the default is disabled).

Status: For the steppings affected see the Summary Table of Changes at the beginning of this section.

74. Enabling RDPMC in CR4 And Also Using SMM May Cause Shutdown

This item does not apply to Pentium processors for embedded applications. For the full text of this
item, refer to the Pentium® Processor Specification Update, order number 242480.

75. Event Monitor Counting Discrepancies (Fix)
Problem: The Pentium processor with MMX technology added several performance monitoring events to

those defined in the Pentium processor (75/90/100/120/133/166/200). There are several conditions
where the counters do not operate as specified.

The “Writes to non-cacheable memory” (event 101110) event counter counts the number of
to non-cacheable memory including non-cacheable writes caused by MMX™ instructions. In
cases the counter fails to get incremented for a non-cacheable memory write caused by an
instruction.
50 Pentium® Processor for Embedded Applications Specification Update

Errata

unts
ine in
pty or
ty, it

n.

nts to
ditions

ses”
s
10)
 misses

r of
ot
a
taken.

n.

of this
The “Stall on MMX instruction write to an E or M state line” (event 111011) event counter co
the number of clocks the processor is stalled on a data memory write hit to an E or M state l
the internal data cache caused by a MMX instruction while either the write buffers are not em
EWBE# is not asserted. However, it does not count stalls while the write buffers are not emp
only counts the number of clocks stalled while EWBE# is not asserted.

Implication: The event monitor counters report an inaccurate count for certain events.

Workaround: None identified at this time. See also Errata 82 and 76.

Status: For the steppings affected see the Summary Table of Changes at the beginning of this sectio

76. Event Monitor Counting Discrepancies (NoFix)
Problem: The Pentium processor with MMX technology added several performance monitoring eve

those defined in the Pentium processor (75/90/100/120/133/166/200). There are several con
where the counters do not operate as specified.

The “MMX instruction data read misses” (event 110001) and “MMX instruction data write mis
(event 110100) event counters get incorrectly incremented twice if the access to the cache i
misaligned. The “Pipeline stalled waiting for MMX instruction data memory read” (event 1101
event counter incorrectly counts a misaligned access as 2 clocks instead of 3 clocks unless it
the TLB.

The “MMX instruction multiply unit interlock” (event 111011) event counter counts the numbe
clocks the pipe is stalled because the destination of a previous MMX multiply instruction is n
ready. However, if there is a multiply instruction followed by a branch instruction followed by
dependent multiply instruction, the counter incorrectly gets incremented when the branch is

Implication: The event monitor counters report an inaccurate count for certain events.

Workaround: None identified at this time. See also Errata 82 and 75.

Status: For the steppings affected see the Summary Table of Changes at the beginning of this sectio

77. INVD May Leave Valid Entries In The Cache Due To Snoop Interaction

This item does not apply to Pentium processors for embedded applications. For the full text
item, refer to the Pentium® Processor Specification Update, order number 242480.

78. TLB Update Is Blocked After A Specific Sequence Of Events With A
Misaligned Descriptor

Problem: An obscure sequence of events may cause the TLB replacement mechanism to fail. This specific
sequence must contain all of the following:

1. A specific setup of the data TLB: all 64 entries must be valid and one entry must contain the
page where the IDT is located.

2. A REP-MOVS accesses a string that is at least 62-pages long.

3. A MOVS results in a GP fault in the 62nd page.

4. A gate in the IDT points to a descriptor and the descriptor is misaligned and crosses a page
boundary.

5. The descriptor causes a TLB miss.

When the TLB miss discussed in condition 5 above occurs, the processor starts a split locked read-
modify-write sequence to update the descriptor access or busy bit. During this split locked cycle,
the address of the low bytes of the descriptor is loaded into a slot in the TLB. The address of the
Pentium® Processor for Embedded Applications Specification Update 51

Errata

on.

virtual
POPF or
 < 3,
oint set
P fault

he TSS
ndler.
ing the
.

n this

. CR2
 such as
ptions.
MM

lues
y be

2 and

ion.

ue in
n are
 invalid

cessor
fix is

case,
e bus is
high bytes of the descriptor is then put into the same slot of the TLB causing the address of the low
bytes to be overwritten (this is caused by conditions 1-3 above). The address of the low bytes of the
descriptor then needs to be re-read from memory. However, since the bus is now locked, this
cannot occur and the processor hangs waiting for the sequence to complete.

Implication: If all of the above conditions occur, the processor may hang.

Workaround: Ensure that the base address of the GDT or LDT is aligned. This will prevent the split locked cycle
from occurring due to the misaligned descriptor. This is already recommended in the Intel Archi-
tecture Software Developer’s Manual, Volume 3, Section 3.5.1 for performance reasons.

Status: For the steppings affected see the Summary Table of Changes at the beginning of this secti

79. Erroneous Debug Exception on POPF/IRET Instructions with a GP Fault
Problem: An erroneous debug exception can occur due to execution of a POPF or IRET instruction in

8086 mode, if there is a data breakpoint set on the address pointed to by SS:ESP, and the
IRET triggers a general protection fault. This occurs in virtual 8086 mode when the IOPL
causing POPF and IRET to trap to the GP fault without accessing the stack. The data breakp
on the stack should not be triggered, but in fact it is incorrectly triggered as soon as the G
handler is entered.

Implication: This results in an invalid debug exception where the saved state (CS:EIP in the stack, or in t
in the case of a task-switch for interrupt 1) points to the first instruction of the GP Fault ha
This may confuse the debug monitor which expects to find a pointer to an instruction access
stack. Note this erratum only occurs during debugging and does not affect normal execution

Workaround: The debug monitor could be revised to detect this erratum, and to only perform an IRET whe
erratum is detected as the cause of entry into the debugger.

Status: For the steppings affected see the Summary Table of Changes.

80. CR2 and CR4 Content upon Return from SMM
Problem: Control registers CR2 and CR4 should maintain values across breakpoints or interrupts

contains the page fault linear address. CR4 is used in protected mode to control operations
virtual-8086 support, enabling I/O breakpoints, page size extension and machine check exce
If CR2 or CR4 are modified in SMM, the original contents of CR2 and CR4 prior to entering S
are not restored when exiting SMM.

Implication: If either CR2 or CR4 is modified during the execution of the SMM handler, the modified va
will remain after a resume from the SMM handler. The new values in CR2 or CR4 ma
unexpected.

Workaround: If the SMM handler needs to modify CR2 or CR4, the handler should store the values of CR
CR4 upon entering the SMM handler and restore the values prior to the RSM instruction.

Status: For the steppings affected, see the Summary Table of Changes at the beginning of this sect

81. Invalid Operand with Locked CMPXCHG8B Instruction
Problem: The CMPXCHG8B instruction compares an 8 byte value in EDX and EAX with an 8 byte val

memory (the destination operand). The only valid destination operands for this instructio
memory operands. If the destination operand is a register the processor should generate an
opcode exception, execution of the CMPXCHG8B instruction should be halted and the pro
should execute the invalid opcode exception handler. This erratum occurs if the LOCK pre
used with the CMPXCHG8B instruction with an (invalid) register destination operand. In this
the processor may not start execution of the invalid opcode exception handler because th
locked. This results in a system hang.
52 Pentium® Processor for Embedded Applications Specification Update

Errata

fected.

 Both
es, the
dition

e one

able
ue to
the
g entry
nize

e fault

g bit
id

 have
us
ption
heme

 faults
even

 on a

g the
 from
error
inue

 that
.

lt
Implication: If an (invalid) register destination operand is used with the CMPXCHG8B instruction and the
LOCK prefix, the system may hang. No memory data is corrupted and the user can perform a
system reset to return to normal operation. Note that the specific invalid code sequence necessary
for this erratum to occur is not normally generated in the course of programming nor is such a
sequence known by Intel to be generated by commercially available software.

This erratum only applies to Pentium processors, Pentium processors with MMX technology,
Pentium OverDrive® processors and Pentium OverDrive processors with MMX technology.
Pentium Pro processors, Pentium II processors and i486™ and earlier processors are not af

Workaround: There are two workarounds for this erratum for protected mode operating systems.
workarounds generate a page fault when the invalid opcode exception occurs. In both cas
page fault will be serviced before the invalid opcode exception and thus prevent the lock con
from occurring. The implementation details will differ depending on the operating system. Us
of the following:

1. The first part of this workaround sets the first 7 entries (0-6) of the Interrupt Descriptor T
(IDT) in a non-writeable page. When the invalid opcode exception (exception 6) occurs d
the locked CMPXCHG8B instruction with an invalid register destination (and only then),
processor will generate a page fault if it does not have write access to the page containin
6 of the IDT. The second part of this workaround modifies the page fault handler to recog
and correctly dispatch the invalid opcode exceptions that are now routed through the pag
handler.

Part I, IDT Page Access:

a. Mark the page containing the first seven entries (0-6) of the IDT as read only by settin
1 of the page table entry to zero. Also set CR0.WP (bit 16) to 1. Now when the inval
opcode exception occurs on the locked CMPXCHG8B instruction, the processor will
check for write access due to the lock prefix and trigger a page fault since it does not
write access to the page containing entry 6 of the IDT. This page fault prevents the b
lock condition and gives the OS complete control to process the invalid operand exce
as appropriate. Note that exception 6 is the invalid opcode exception, so with this sc
an OS has complete control of any program executing an invalid CMPXCHG8B
instruction.

b. Optional: If updates to entries 7-255 of the IDT occur during the course of normal
operation, page faults should be avoided on writes to these IDT entries. These page
can be avoided by aligning the IDT across a 4KB page boundary such that the first s
entries (0-6) of the IDT are on the first read only page and the remaining entries are
read/writeable page.

Part II, Page Fault Handler Modifications:

a. Modify the page fault handler to calculate which exception caused the page fault usin
fault address in CR2. If the error code on the stack indicates the exception occurred
ring 0 and if the address corresponds to the invalid opcode exception, then pop the
code off the stack and jump to the invalid opcode exception handler. Otherwise cont
with the normal page fault handler.

OR

2. This workaround has two parts. First, the Interrupt Descriptor Table (IDT) is aligned such
any invalid opcode exception will cause a page fault (due to the page not being present)
Second, the page fault handler is modified to recognize and correctly dispatch the invalid
opcode exception and certain other exceptions that are now routed through the page fau
handler.
Pentium® Processor for Embedded Applications Specification Update 53

Errata

les, it

yte of
Part I, IDT Alignment:

a. Align the Interrupt Descriptor Table (IDT) such that it spans a 4KB page boundary by
placing the first entry starting 56 bytes from the end of the first 4KB page. This places the
first seven entries (0-6) on the first 4KB page, and the remaining entries on the second
page.

b. The page containing the first seven entries of the IDT must not have a mapping in the OS
page tables. This will cause any of exceptions 0-6 to generate a page not present fault. A
page fault prevents the bus lock condition and gives the OS complete control to process
these exceptions as appropriate. Note that exception 6 is the invalid opcode exception, so
with this scheme an OS has complete control of any program executing an invalid
CMPXCHG8B instruction.

Part II, Page Fault Handler Modifications:

a. Recognize accesses to the first page of the IDT by testing the fault address in CR2. Page
not present faults on other addresses can be processed normally.

b. For page not present faults on the first page of the IDT, the OS must recognize and
dispatch the exception which caused the page not present fault. Before proceeding, test the
fault address in CR2 to determine if it is in the address range corresponding to exceptions
0-6.

c. Calculate which exception caused the page not present fault from the fault address in
CR2.

d. Depending on the operating system, certain privilege level checks and adjustments to the
interrupt stack may be required before jumping to the normal exception handler in Step e
below. If you are an operating system vendor, please contact your local Intel
representative for more information.

e. Jump to the normal handler for the appropriate exception.

Both workarounds should only be implemented on Intel processors that return Family=5 via the
CPUID instruction.

82. Event Monitor Counting Discrepancy
Problem: The Pentium processor contains two registers which can count the occurrence of specific events

used to measure and monitor various parameters that contribute to the performance of the
processor. There is one condition where the counter does not operate as specified:

The “Stall on write to E or M state line” (event 011011) event counts the number of clocks the
processor is stalled on a memory write to an E or M state line, while the write buffers are not
empty, or EWBE# is negated. In order for event 011011 to accurately count stalled clocks cyc
must ignore all other stall cases, such as TLB-miss. However, if data resides in the top 4 Kb
the physical address space, some stalls due to TLB-miss were also counted.

Implication: The event monitor counters report an inaccurate count for event 011011.

Workaround: Avoid mapping to the top 4 Kbytes of the address space, or physical page ‘0xFFFFF. See also
Errata 75 and 76.

Status: For the steppings affected see the Summary Table of Changes.

83. FBSTP Instruction Incorrectly Sets Accessed and Dirty Bits of Page Table
Entry

Problem: This erratum occurs only if a program does all of the following:

1. Paging is enabled.
54 Pentium® Processor for Embedded Applications Specification Update

Errata
2. The program uses 16-bit addressing inside a USE32 segment (requiring the 67H addressing
override prefix) in order to wrap addresses at offsets above 64K back to the bottom of the
segment.

3. The 10-byte BCD operand written to memory by the FBSTP instruction must actually straddle
the 64K boundary. If all 10 bytes are either above or below 64K, the wrap works normally.

The result is that Accessed and Dirty bits of a Page Table entry are sometimes incorrectly set by the
FBSTP instruction in case of a 16-bit address wraparound (Prefix 67H) within a 32-bit code
segment. FBSTP does the wraparound, but the attributes of the next sequential Page Table entry are
also set as if the page was accessed and written to.

Implication: An incorrectly set Accessed bit may cause a non-used page to be kept in memory. An incorrectly
set Dirty bit may cause unnecessary disk write-back cycles.

Workaround: None.

1DP. Problem with External Snooping while Two Cycles Are Pending on the Bus

This item does not apply to Pentium processors for embedded applications. For the full text of this
item, refer to the Pentium® Processor Specification Update, order number 242480.

2DP. STPCLK# Assertion and the Stop Grant Bus Cycle

This item does not apply to Pentium processors for embedded applications. For the full text of this
item, refer to the Pentium® Processor Specification Update, order number 242480.

3DP. External Snooping with AHOLD Asserted May Cause Processor to Hang

This item does not apply to Pentium processors for embedded applications. For the full text of this
item, refer to the Pentium® Processor Specification Update, order number 242480.

4DP. Address Parity Check Not Supported in Dual Processing Mode

This item does not apply to Pentium processors for embedded applications. For the full text of this
item, refer to the Pentium® Processor Specification Update, order number 242480.

5DP. Inconsistent Cache State May Result from Interprocessor Pipelined READ
into a WRITE

This item does not apply to Pentium processors for embedded applications. For the full text of this
item, refer to the Pentium® Processor Specification Update, order number 242480.

6DP. Processors Hang During Zero WS, Pipelined Bus Cycles

This item does not apply to Pentium processors for embedded applications. For the full text of this
item, refer to the Pentium® Processor Specification Update, order number 242480.

7DP. Bus Lock-up Problem in a Specific Dual Processing Mode Sequence

This item does not apply to Pentium processors for embedded applications. For the full text of this
item, refer to the Pentium® Processor Specification Update, order number 242480.

8DP. Incorrect Assertion of PHITM# without PHIT#

This item does not apply to Pentium processors for embedded applications. For the full text of this
item, refer to the Pentium® Processor Specification Update, order number 242480.
Pentium® Processor for Embedded Applications Specification Update 55

Errata

rrence
ormed

430NX
erefore

of this

 1 or

ata and

turn
ystem
n will

ount of
9DP. Double Issuance of Read Cycles

This item does not apply to Pentium processors for embedded applications. For the full text of this
item, refer to the Pentium® Processor Specification Update, order number 242480.

10DP. Line Invalidation May Occur On Read or Prefetch Cycles

This item does not apply to Pentium processors for embedded applications. For the full text of this
item, refer to the Pentium® Processor Specification Update, order number 242480.

11DP. EADS# or Floating ADS# May Cause Extra Invalidates
Problem: This erratum only occurs in a dual processing environment. Extra invalidates may occur into the L1

cache due to assertions of EADS#. If EADS# is asserted while the processor is driving the bus, an
invalidate into the processor’s L1 cache may occur.

Implication: The specification states that EADS# is ignored while the processor is driving the bus. Occu
of this erratum means that unnecessary invalidations and writeback cycles may be perf
resulting in sub-optimal performance.

Workaround: The system should not assert EADS# while the CPU owns the bus. Designs based on the 82
PCIset and other chip sets which do not assert EADS# while the CPU owns the bus are th
not affected.

Status: For the steppings affected see the Summary Table of Changes.

12DP. HOLD and BOFF# During APIC Cycle May Cause Dual Processor Arbitration
Problem

This item does not apply to Pentium processors for embedded applications. For the full text
item, refer to the Pentium® Processor Specification Update, order number 242480.

13DP. System Hang After Hold During Local APIC 2nd INTA Cycle

This item does not apply to Pentium processors for embedded applications. For the full text of this
item, refer to the Pentium® Processor Specification Update, order number 242480.

14DP. External Snoop Can Be Incorrectly Invalidated
Problem: An external snoop with INV pin = 0 (non invalidating snoop) can be incorrectly treated as an inval-

idating snoop under the following conditions:

1. The system must use Dual Processors, operating in Intel’s DP mode.

2. An external snoop occurs via EADS#, with INV = 0.

3. The previous bus master must have driven CACHE# = 1, M/IO# = 1, D/C# = 1, (W/R# =
LOCK# = 0), or the pins must float to this value by the time EADS# is asserted. (This
corresponds to an immediately preceding bus cycle that was non cacheable, memory, d
write or locked read.)

Implication: A small fraction of non-invalidating external snoops will be invalidated incorrectly, which in
will cause unnecessary write back cycles, resulting in a degradation of performance if the s
uses non invalidating external snoops frequently. The degree of performance degradatio
depend on the details of system hardware and software, and most importantly, on the am
non invalidating external snoops.

Workaround: None identified at this time.

Status: For the steppings affected see the Summary Table of Changes.
56 Pentium® Processor for Embedded Applications Specification Update

Errata

try into
sertion
to the
 for the
tion of

ed and
llowing
for
this
um
d de-

d thus
llowing

H# is
SH

ng a

 ACK
of the

rship is
s, the
ondary
ocessor
es the
 from
eturn to

ode
 wait
ary
15DP. STPCLK# Re-assertion Recognition Constraint With DP
Problem: The Pentium® Processor Family Developer’s Manual, Section 14.4.2.1 describes how to assure

that each assertion and de-assertion of STPCLK# is recognized. However, it is not possible to
guarantee that all changes on STPCLK# will be recognized in a DP system. This is because snoops
between the dual processors triggered by the PHITM# signal can delay the processor’s en
the Stop Grant state until well after the end of the Stop Grant cycle. It is specified that de-as
of STPCLK# must be held for at least 5 clocks after the beginning of the processor’s entry in
Stop Grant state to be guaranteed to be recognized by the processor. As it is not practical
system to monitor the PHITM# signal, there is no practical way to guarantee that deasser
STPCLK# will be recognized.

A DP system should not be designed to depend on every STPCLK# assertion being recogniz
thus generating a Stop Grant bus cycle response, and/or on every STPCLK# de-assertion a
execution of at least one instruction. If a system design (such as typical usage of STPCLK#
thermal control and/or power usage reduction) does not depend on either of these features,
erratum will have no effect. Aside from sometimes not displaying these two features, a Penti
Processor system will never hang or otherwise malfunction because of random assertion an
assertion of STPCLK#.

Workaround: Do not design DP systems to depend on every STPCLK# assertion being recognized an
generating a Stop Grant bus cycle response, or to depend on every STPCLK# de-assertion a
execution of at least one instruction.

Status: For the steppings affected see the Summary Table of Changes.

16DP. Second Assertion of FLUSH# During Flush Acknowledge Cycle May Cause
Hang

Problem: The Pentium® Processor Family Developer’s Manual, Section 3.5.1.2 states that in a DP system
the FLUSH# signal must not be asserted again until the FLUSH ACK cycle is generated. The
erratum occurs when the dual processor hasn’t been initialized (with the IPI), and a FLUS
asserted during a FLUSH ACK cycle (anytime from ADS# to 1 clock after BRDY# of FLU
ACK cycle).

Implication: Asserting FLUSH# in a DP system with the dual processor un-initialized by an IPI duri
FLUSH ACK cycle may cause a hang.

Workaround: Initialize the dual processor by sending an IPI, or do not assert FLUSH# during the FLUSH
cycle. The FLUSH# can safely be asserted two clocks after the completion (i.e., BRDY#)
FLUSH ACK cycle.

Status: For the steppings affected see the Summary Table of Changes.

17DP. Asserting FLUSH# May Cause a Processor Deadlock in a DP System with a
2/7 Bus Fraction

Problem: In a Dual Processing (DP) system, when FLUSH# is asserted by the system, the bus owne
first transferred from the primary to the secondary processor. With ownership of the bu
secondary processor starts to flush its L1 cache. Upon completion of the flush, the sec
processor then returns the bus ownership to the primary processor. Next, the secondary pr
will go into a waiting loop until the primary processor finishes flushing its cache and generat
flush acknowledge special cycle. Finally, upon sampling the flush acknowledge special cycle
the primary processor, the secondary processor exits the waiting loop and both processors r
the normal DP mode.

However, FLUSH# may not function correctly due to an internal cycle alignment issue in DP m
when operating with a 2/7 bus fraction. Due to this erratum, the secondary processor fails to
for the primary processor to release the bus, and initiates a new bus request before the prim
Pentium® Processor for Embedded Applications Specification Update 57

Errata
processor finishes flushing its L1 cache. In this case, the primary processor does not have access to
the bus and therefore cannot finish flushing its cache and cannot generate the flush
acknowledgment special cycle; at the same time, the secondary processor has the bus but cannot
resume operation until the primary processor issues the flush acknowledgement special cycle.

Implication: In a DP system which operates at 2/7 bus fraction, the usage of FLUSH# may cause primary and
secondary processors to end up in a dead-lock situation.

Workaround: While using the processors in 2/7 bus fractions and DP mode, do not use FLUSH#.

1AP. Remote Read Message Shows Valid Status After a Checksum Error

This item does not apply to Pentium processors for embedded applications. For the full text of this
item, refer to the Pentium® Processor Specification Update, order number 242480.

2AP. Chance of Clearing an Unread Error in the Error Register

This item does not apply to Pentium processors for embedded applications. For the full text of this
item, refer to the Pentium® Processor Specification Update, order number 242480.

3AP. Writes to Error Register Clears Register

This item does not apply to Pentium processors for embedded applications. For the full text of this
item, refer to the Pentium® Processor Specification Update, order number 242480.

4AP. Three Interrupts of the Same Priority Causes Lost Local Interrupt

This item does not apply to Pentium processors for embedded applications. For the full text of this
item, refer to the Pentium® Processor Specification Update, order number 242480.

5AP. APIC Bus Synchronization Lost Due to Checksum Error on a Remote Read
Message

This item does not apply to Pentium processors for embedded applications. For the full text of this
item, refer to the Pentium® Processor Specification Update, order number 242480.

6AP. HOLD During a READ from Local APIC Register May Cause Incorrect
PCHK#

This item does not apply to Pentium processors for embedded applications. For the full text of this
item, refer to the Pentium® Processor Specification Update, order number 242480.

7AP. HOLD During an Outstanding Interprocessor Pipelined APIC Cycle Hangs
Processor

This item does not apply to Pentium processors for embedded applications. For the full text of this
item, refer to the Pentium® Processor Specification Update, order number 242480.

8AP. PICCLK Reflection May Cause an APIC Checksum Error

This item does not apply to Pentium processors for embedded applications. For the full text of this
item, refer to the Pentium® Processor Specification Update, order number 242480.

9AP. Spurious Interrupt in APIC Through Local Mode
Problem: This erratum affects APIC in through Local (virtual wire) mode. The system can be a unipro-

cessing or dual processing system that is using a Pentium processor with the APIC in through-local
(virtual wire) mode. This mode is supposed to cause the processor to respond to interrupts
identically to a Level triggered 8259 interrupt controller, and is typically used to provide AT
58 Pentium® Processor for Embedded Applications Specification Update

Errata

these
s.

 for a
3=
d.
ed

to ‘1’.

uring
is
pings.

of this
compatibility mode for existing drivers. Currently it acts as an edge triggered mode interrupt
controller, latching any interrupts that may be quickly asserted and then deasserted based on driver
interception. The result is that some operating systems (i.e., Novell*) will report the spurious
interrupt and it may impact the performance or operation of certain debug hooks for the operating
system or network. Software disabling of the APIC by clearing bit 8 of the SVR (spurious vector
interrupt register) will not prevent this from occurring.

Implication: Reports of the a spurious interrupt or lost interrupt message may continuously be output to the
terminal connection and fill the screen of a monitoring host.

Workaround: Use one of the following:

1. Ignore/disable the spurious interrupt reports. This may impact other debug hooks normally
associated with the network or operating system.

2. Rewrite drivers such that they disable interrupt processing during the driver execution, and
then re-enable the interrupts at the end of the procedure.

3. Disable APIC instead of running it in through Local mode.

By Hardware: By deasserting the APICEN pin prior to the falling edge of reset.

By Software: This can be done on the B1, B3, B5, and C2-step components by using a
reserved bit (bit 4) in the TR12 test register set to ‘1’. The use of a reserved bit is only for
steppings (B1, B3, B5, and C2) and the function of this bit may change in future stepping
When implementing this workaround ensure that the BIOS does a CPUID check looking
specific stepping of the device. CPUIDs for the following components are B1 = 0521H, B
0522H, B5= 0524H and C2=0525H. If the TR12 register is used, the APIC is fully disable
To re-enable APIC, bit 4 must be cleared to ‘0’ and then a warm reset of the part perform
prior to APIC use of any kind.

4. For cB1, cC0 and E0 steppings, a software fix can be enabled by setting bit 14 of TR12
By enabling this bit, an interrupt that is asserted and deasserted during the window that
interrupts are disabled (after CLI and before STI) is ignored. If the interrupt is asserted d
this window and deasserted after interrupts are enabled (after STI sets IF), the interrupt
latched and serviced. By setting bit 14 to ‘0’, the processor will behave as in earlier step

Status: For the steppings affected see the Summary Table of Changes.

10AP. Potential for Lost Interrupts while Using APIC in Through Local Mode

This item does not apply to Pentium processors for embedded applications. For the full text
item, refer to the Pentium® Processor Specification Update, order number 242480.

11AP. Back to Back Assertions of HOLD or BOFF# May Cause Lost APIC Write
Cycle

This item does not apply to Pentium processors for embedded applications. For the full text of this
item, refer to the Pentium® Processor Specification Update, order number 242480.

12AP. System May Hang When BOFF# Is Asserted During the Second Internal
APIC INTA Cycle

Problem: The processor will hang if BOFF# is asserted and deasserted during the second internal APIC
INTA cycle. The erratum will occur if BOFF# is sampled during the interval (i.e., clocks 1, 2, or 3)
shown in the figure below, although keeping BOFF# asserted through the last cycle (i.e., cycle 4)
of the second INTA will prevent this erratum from occurring

If these conditions occur while a remote read message is being sent or received, the second INTA
cycle may take up to 8 clocks to complete (counting from clock 1). BOFF# is not latched and must
remain asserted until after the 2nd INTA completes (e.g., for 8 clocks).
Pentium® Processor for Embedded Applications Specification Update 59

Errata
Similarly, if HOLD is asserted anytime during the second INTA cycle, and during a remote read,
the processor will hang.

Implication: If the system does not assert BOFF# when the processor bus is idle, then this problem will not
occur. Internal APIC INTA cycles are run only when the bus is idle, thus asserting BOFF# during
an external bus cycle (e.g., started by an ADS#) will avoid these circumstances. In systems that can
assert BOFF# when the bus is idle, asserting BOFF# for a least 4 clocks will avoid the problem for
non-remote read cases. Note that there may be other implementations that guarantee BOFF# is not
asserted in the problematic window. For example, if BOFF# is only asserted with AHOLD active
and AHOLD always precedes BOFF# by at least 4 clocks, the erratum is avoided.

If a remote read is occurring (e.g., between two processors) this will delay completion of the
second INTA cycle by up to 8 clocks (i.e., bus clocks), and BOFF# asserted during this time may
hang the system. Remote reads are typically performed during system debug and not in normal
operation. Not performing remote reads will avert this case.

Asserting HOLD anytime during the second INTA cycle during a remote read cycle will cause the
system to hang. Not asserting HOLD or not performing APIC remote read cycles will avert this
case.

Workaround: Use one of the following to avoid the BOFF# case:

1. For non-remote read case, do not assert BOFF# when the bus is idle, or assert BOFF# for at
least 4 clocks during idle bus cycles. For the remote read case, assert BOFF# for at least 8
clocks.

2. Use APIC in through local mode.

Status: For the steppings affected see the Summary Table of Changes.

13AP. APIC Pipeline Cycle During Cache Linefill Causes Restarted Cycle to Lose
Its Attribute

Problem: When a read or write cycle to an APIC register is pipelined into a cache linefill and both cycles get
backed off (by assertion of BOFF# for one clock only), the cache linefill that is restarted loses its
attributes. When the cache linefill is restarted, although the processor does assert CACHE#, the
processor loses track of the cacheability of the cycle and treats the burst linefill as a single cycle
read.

3 4

BOFF# During 2nd INTA (Non-remote Read)

CLK

Address

BOFF#

Internal
Ready

1st INTA BE#=EF 2nd INTA BE#=FE

1 2
60 Pentium® Processor for Embedded Applications Specification Update

Errata
Implication: The processor reads only the first quad-word (indicated by the first BRDY#), but ignores the
following three transfers of the burst linefill. However, the internal APIC cycle is allowed to restart
after the first BRDY#. When the APIC cycle completes and another bus cycle is started by the
processor (indicated by an ADS#) before the last BRDY# from the burst linefill is returned, the
leftover BRDY#s could incorrectly terminate the new cycle and the processor could lose synchro-
nization with the bus, causing the processor to hang or get corrupted data.

It is unlikely this erratum will occur for systems using zero wait states (i.e., 2111 burst read) or one
wait state lead off (i.e., 3111 burst read). A high-latency memory subsystem or I/O subsystem
would increase the exposure of the new bus cycle to a leftover BRDY# (i.e., 3222 burst read).

Workaround: Use one of the following:

1. Always assert BOFF# for more than one clock.

2. Disable pipelining when using the APIC.

3. Avoid asserting BOFF# during pipelined linefill cycles when using the APIC.

Status: For the steppings affected see the Summary Table of Changes.

14AP. INIT and SMI# Via the APIC Three-Wire Bus May Be Lost
Problem: If the INIT and SMI# pins are kept asserted once they are recognized and then another INIT or

SMI# is asserted to the processor via the APIC three-wire bus, the processor will not recognize this
second assertion of INIT or SMI#.

INIT and SMI# are edge triggered interrupts and are only recognized on the rising edge (falling
edge for SMI#). Since the processor only detects the edges on these pins, it is possible to hold the
levels on these pins in the asserted state (logic 1 for INIT and logic 0 for SMI#). When another
INIT or SMI# is required, the levels at these pins can be deasserted for several clocks and
reasserted to generate the edge which triggers the interrupt. However, if the levels on these pins are
kept asserted, and the APIC three-wire bus is also used to assert INIT and SMI# to the processor,
the INIT and SMI# interrupts via the APIC three-wire bus are lost.

Implication: If the above conditions are met, INIT and SMI# interrupts via the APIC three-wire bus will be lost.
Designs which do not use the APIC three-wire bus to assert INIT and SMI# will not be affected by
this erratum.

Workaround: To avoid this erratum, use one of the following:

1. Assert INIT or SMI# to trigger the interrupt and then deassert the INIT or SMI# thereafter to
avoid conflict with the APIC serial bus INIT or SMI# messages.

2. Do not send an INIT or SMI# message via the APIC three-wire bus.

Status: For the steppings affected see the Summary Table of Changes.

15AP. IERR# in FRC Lock-Step Mode During APIC Write
Problem: When an APIC write is pipelined into a memory write, IERR# is incorrectly asserted one clock

after the BRDY# of the memory write for a duration of one clock. (Note that APIC write cycles are
not driven on the external bus). This problem is a subset of the problem described in Erratum 29.

Implication: This will cause an inadvertent IERR# to occur for one clock.

Workaround: Disable pipelining in FRC lock-step mode.

Status: For the steppings affected see the Summary Table of Changes.
Pentium® Processor for Embedded Applications Specification Update 61

Errata

dge of

EN/
uch a
s would
16AP. Inadvertent BRDY# During External INTA Cycle With BOFF#
Problem: The Pentium® Processor Family Developer’s Manual states that BRDY# is ignored during

assertion of ADS#. There are two cases when using the APIC in through local mode where an
inadvertent BRDY# asserted during the ADS# of an external INTA cycle, in combination with a
subsequent BOFF#, can cause the processor to hang.

1. If during the first INTA cycle an inadvertent BRDY# is asserted with ADS#, followed by the
real BRDY# for that cycle, and then the 2nd INTA cycle is backed off, the processor loses
synchronization. Instead of restarting the 2nd INTA cycle externally, the processor ends the
cycle internally without reading a valid interrupt number (0-255) which hangs the interrupt
handler. The window that BOFF# can cause this erratum is after (the valid BRDY#)
completion of the 1st INTA cycle and before completion of the 2nd INTA cycle.

2. If the 1st INTA cycle completes correctly (with only one valid BRDY#), and an inadvertent
BRDY# is asserted during the ADS# of the 2nd INTA cycle, and then the 2nd INTA cycle is
backed off before its completion, the processor again loses synchronization and hangs.

Implication: The interrupt will not be serviced and the system hangs waiting for the processor to complete its
2nd INTA cycle.

Workaround: Use one of the following:

1. Do not assert BRDY# during ADS#.

2. Do not assert BOFF# during an external INTA cycle.

Status: For the steppings affected see the Summary Table of Changes.

17AP. APIC Read Cycle Doesn’t Complete Upon Assertion of BOFF# and HOLD
Problem: During an APIC cycle (read or second INTA), if BOFF# is asserted for one clock, and HOLD is

asserted in the following cycle (at the rising edge of BOFF#) for one clock, the APIC cycle may
either not complete or not complete correctly. Either the processor is waiting for the APIC cycle to
complete before issuing any new cycles and the processor hangs (APIC read), or the cycle does
complete but with the incorrect Interrupt Vector being recognized (APIC second INTA). Note that
this erratum does not occur when BOFF# and HOLD are asserted simultaneously for one clock.

Implication: Systems typically use either BOFF# or HOLD (but not both) to gain control of the bus. If a system
were to assert this sequence of BOFF# and HOLD for one clock each, the system may be
susceptible to a hang.

Workaround: Do not assert BOFF# for one clock immediately followed by HOLD for one clock. If HOLD must
follow BOFF# by one clock, assert one of the signals (BOFF# or HOLD) for more than one clock.

Status: For the steppings affected see the Summary Table of Changes.

18AP. PICCLK Must Toggle For at Least Twenty Cycles Before RESET
Problem: In order for the internal circuitry of the local APIC to initialize properly, PICCLK must toggle at

least twenty times (1.2 µS – 10 µS depending on the PICCLK frequency) before the falling e
RESET.

Implication: An improper initialization of the internal APIC circuits may cause, for example, the APIC
PICD1 pin to be erroneously driven low; thus, the on-chip APIC would not be enabled. In s
scenario, the second-processor in DP systems and all messages sent on the serial APIC bu
not be recognized.

Workaround: Ensure that PICCLK toggles for at least twenty cycles before the falling edge of RESET.

Status: For the steppings affected see the Summary Table of Changes.
62 Pentium® Processor for Embedded Applications Specification Update

Errata
19AP. APIC ID Can Not Be Changed

This item does not apply to Pentium processors for embedded applications. For the full text of this
item, refer to the Pentium® Processor Specification Update, order number 242480.

1TCP. CPU May Not Reset Correctly Due to Floating FRCMC# Pin

This item does not apply to Pentium processors for embedded applications. For the full text of this
item, refer to the Pentium® Processor Specification Update, order number 242480.

2TCP. BRDY# Does Not Have Buffer Selection Capability

This item does not apply to Pentium processors for embedded applications. For the full text of this
item, refer to the Pentium® Processor Specification Update, order number 242480.
Pentium® Processor for Embedded Applications Specification Update 63

Specification Clarifications
Specification Clarifications

1. Pentium® Processor’s Response to Startup and Init IPIs

The Pentium processor when used as a dual processor upgrade component, will require a
STARTUP IPI to wake up this part after the following two situations:

• After any assertion of RESET.

Or

• After any assertion of INIT.

(The assertion of INIT could come from toggling the INIT pin or though an APIC IPI.)

In either case, the dual processor upgrade component will not jump to the RESET Vector, it will
instead go into a halt state. If an INIT IPI is then sent to the halted upgrade component, it will be
latched and kept pending until a STARTUP IPI is received. From the time the STARTUP IPI is
received the CPU will respond to further INIT IPIs but will ignore any STARTUP IPIs. It will not
respond to future STARTUP IPIs until a RESET assertion or an INIT assertion (INIT Pin or INIT
IPI) happens again.

The Pentium processor when used as a primary processor, will never respond to a STARTUP IPI at
any time. It will ignore the STARTUP IPI with no effects.

To shutdown the processors the operating system should only use the INIT IPI, STARTUP IPIs
should never be used once the processors are running.

The following pseudo-code shows the generic algorithm for waking up Pentium processors,
including 82489DX based systems, dual processor systems and multi-processor systems.

BSP sends AP an INIT IPI
BSP DELAYs (10mSec)
If (APIC VERSION is not an 82489DX)
{

BSP sends AP a STARTUP IPI
BSP DELAYs (200uSec)
BSP sends AP a STARTUP IPI
BSP DELAYs (200uSec)

}
BSP verifies synchronization with executing AP

For additional information please refer to the Intel Multiprocessor Specification, Version 1.4
(Order Number 242016).

2. APIC Timer Use Clarification

This item does not apply to Pentium processors for embedded applications. For the full text of this
item, refer to the Pentium® Processor Specification Update, order number 242480.

3. PICCLK Reflection May Cause APIC Checksum Errors and Dropped IPIs

This item does not apply to Pentium processors for embedded applications. For the full text of this
item, refer to the Pentium® Processor Specification Update, order number 242480.
64 Pentium® Processor for Embedded Applications Specification Update

Specification Clarifications

 in
xits

MI#
ction
4. Boundary Scan RUNBIST Register Requires Initialization Prior to Use

This item does not apply to Pentium processors for embedded applications. For the full text of this
item, refer to the Pentium® Processor Specification Update, order number 242480.

5. Only One SMI# Can Be Latched During SMM

Section 20.1.4.2 of Volume 3 of the Pentium® Processor Family Developer’s Manual correctly
states that only one SMI# can be latched by the CPU while it is in SMM (end of second paragraph).
However, Section 5.1.50 of Volume 1 of the manual in the SMI# pin definition incorrectly implies
by the use of the plural that more than one SMI# request may be held pending during SMM. Thus
the following changes will be implemented in the next revision of the Manual:

Section 20.1.4.2 of Volume 3, next to last sentence in the second paragraph, will have the
underlined phrase added: “The first SMI# interrupt request that occurs while the processor is
SMM (i.e., after SMIACT# has been asserted) is latched, and serviced when the processor e
SMM with the RSM instruction.”

Section 5.1.50 of Volume 1: The second paragraph of the Signal Description, that refers to S
requests held pending during SMM, will be replaced with the entire second paragraph of Se
20.1.4.2 of Volume 3.

6. APIC 8-Bit Access

The following should be added to the Pentium® Processor Family Developer’s Manual, Volume 3,
Section 19.3.1.4. The APIC supports 32 bit sized, 32 bit aligned, read and write cycles to its
registers. Therefore, all APIC registers should be accessed using 32-bit loads and stores. If a 32-bit
APIC register is accessed with an 8 or 16 bit write cycle the result may be unpredictable. This
implies that to modify a field, the entire 32-bit register should be read, the field modified, and the
entire 32 bits written back.

7. LOCK Prefix Excludes APIC Memory Space

In the Pentium® Processor Family Developer’s Manual, Volume 3, page 25-216, the LOCK prefix
is described. A line should be added at the end of the description as follows: The LOCK prefix has
no effect on instructions that address the APIC memory space. Therefore, LOCK# is not asserted.

8. SMI# Activation May Cause a Nested NMI Handling

In the Pentium® Processor Family Developer’s Manual, Volume 3, Section 20.1.4.4, the following
note should be added just before the last paragraph.

During NMI interrupt handling NMI interrupts are disabled. NMI interrupts are serviced and
completed with IRET one at a time. When the processor enters SMM from the NMI interrupt
handler, the processor saves the SMRAM State Save Map (e.g., contents of status registers) but
does not save the attribute to keep NMI interrupts disabled. Potentially a NMI could be latched
(while in SMM or upon exit) and serviced upon exit of SMM even though the previous NMI
handler has still not completed. One or more NMIs could be nested in the first NMI handler. The
interrupt handler should take this into consideration.

9. Code Breakpoints Set on Meaningless Prefixes Not Guaranteed to be
Recognized

The following should be added to the Pentium® Processor Family Developer’s Manual, Volume 3,
Section 17.3.1.1 (Instruction-Breakpoint Fault).
Pentium® Processor for Embedded Applications Specification Update 65

Specification Clarifications

m
 and

nt
ngless

int

bug
d.

on
Code breakpoints set on meaningless instruction prefixes (a prefix which has no logical meaning
for that instruction, e.g., a segment override prefix on an instruction that does not access memory)
are not guaranteed to be recognized.

Code breakpoints should be set on the instruction opcode, not on a meaningless prefix.

In the Pentium® Processor Family Developer’s Manual, Volume 3, Sections 3-4 (Instruction
Format) and 25.2 (Instruction Format), after “For each instruction one prefix may be used fro
each group. The effect of redundant prefixes (more than on prefix from a group) is undefined
may vary from processor to processor.” The following should be added:

Some prefixes when attached to specific instructions have no logical meaning (e.g., a segme
override prefix on an instruction that does not access memory). The effect of attaching meani
prefixes to instructions is undefined and may vary from processor to processor.

10. Resume Flag Should Be Set by Software

The lead-in sentences and first bullet of Section 14.3.3 in the Pentium® Processor Family
Developer’s Manual, Volume 3 should be replaced with the following:

The RF (Resume Flag) in the EFLAGS register should be used during debugging to avoid
servicing an instruction breakpoint fault multiple times. RF works as follows:

• The debug handler (interrupt #1) should set the RF bit in the EFLAGS image on the stack
whenever it is servicing an instruction breakpoint fault (rather than a data breakpoint trap), and
the breakpoint is being left in place. If this is not done, the CPU will return to execute the
instruction, fault on the breakpoint again to interrupt #1, and so on.

The following should be added as fifth and sixth bullets:

• If a fault type breakpoint coincides with another fault (the instruction accesses a not present
page, violates a general protection rule, etc.) one spurious repetition of the breakpoint will
occur after the second fault is handled, even though the debug handler sets RF. As an optional
debugging convenience, to avoid this occasional confusion, all interrupt handlers that could
interact during debugging in this way can be modified by having them also set the RF bit in the
EFLAGS image on their stack.

• The CPU, in branching to fault handlers under some circumstances, will set the RF bit in the
EFLAGS image on the stack by hardware action. Exactly when the CPU does this is
implementation specific and should not be relied upon by software. No problem is caused by
setting this bit again if it is already set.

11. Data Breakpoints on INS Delayed One Iteration

The Pentium® Processor Family Developer’s Manual, Volume 3, last paragraph and sentence of
Section 17.3.1.2 states, “Repeated INS and OUTS instructions generate a memory breakpo
debug exception trap after the iteration in which the memory address breakpoint location is
accessed.”

The sentence should read, “Repeated OUTS instructions generate a memory breakpoint de
exception trap after the iteration in which the memory address breakpoint location is accesse
Repeated INS instructions generate the memory breakpoint debug exception trap one iterati
later.”
66 Pentium® Processor for Embedded Applications Specification Update

Specification Clarifications

ire
re

rs or
 self-

ell as

).

d.
.PSE

APIC

ts the
ther,
 fetch

 or
12. When L1 Cache Disabled, Inquire Cycles are Blocked

The last line in Table 18-2 in the Pentium® Processor Family Developer’s Manual, Volume 3
presently reads “Invalidation is inhibited”. This is part of the description of L1 cache behavior
when it is “disabled” by setting CR0 bits CD = NW = 1. This line will be clarified to read “Inqu
cycles (triggered by EADS# active) and resulting invalidation and any APCHK# assertions a
inhibited.”

13. Serializing Operation Required When One CPU Modifies Another CPU’s
Code

A new subsection, 19.2.1, will be added to the Pentium® Processor Family Developer’s Manual,
Volume 3, titled Processor Modifying Another Processor’s Code, and it will be referenced in the
current subsection 18.2.3 on self modifying code.

A particular problem in memory access ordering occurs in a multiprocessing system if one
processor (CPU1) modifies the code of another (CPU2). This obviously requires a semaphore
check by CPU2 before executing in the area being modified, to assure that CPU1 is finished with
the changes before CPU2 begins executing the changed code. In addition, it is necessary for CPU2
to execute a serializing operation after the semaphore allows access but before the modified code is
executed. This is needed because the external snoops into CPU2 caused by the code modification
by CPU1 will invalidate any matching lines in CPU2’s code cache, but not in its prefetch buffe
execution pipeline. Note that this is different from the situation described in Section 18.2.3 on
modifying code. When the CPU modifies its own code, the prefetch buffers and pipeline as w
the code cache are checked and invalidated if necessary.

14. For Correct Translations, the TLB Should be Flushed After the PSE Bit in
CR4 Is Set

Memory mapping tables may be changed by setting the page size extension bit in CR4 (bit 4
However if the TLB is not flushed after the CR4.PSE bit is set, it may provide an erroneous
4 Kbyte page translation rather than a new 4 Mbyte page translation, or the other way aroun
Therefore for correct translations, the TLB should be flushed by writing to CR3 after the CR4
bit is set.

This will be added to the Pentium® Processor Family Developer’s Manual, Volume 3, Sections 10.1.3
and 11.3.5.

15. When APIC Enabled, its 4K Block Should Not be Used in Regular Memory

When the local APIC is enabled, it uses a 4 Kbyte memory mapped address block starting at
0FEE00000H for its control and status registers. Obviously one can’t use the 4K block at
0FEE00000H in regular memory for data, because reads and writes would always go to the
registers instead. Not obviously, code placed in this location in memory usually is fetched
correctly, because the bus unit normally distinguishes code fetches from APIC reads and pu
code fetches on the external bus. Nonetheless, this 4K block should not be used for code ei
because in a case when the code fetch is backed off, the bus unit directs the recovered code
cycle to the APIC, resulting in interrupt 6, or unpredictable execution.

The following NOTE will be added as the last text in Section 19.3.1.4 in the Pentium® Processor
Family Developer’s Manual, Volume 3: “When the APIC is enabled, the 4K page in regular
memory that overlays the 4K block assigned to the APIC should not be used, for either code
data.”
Pentium® Processor for Embedded Applications Specification Update 67

Specification Clarifications

lts,”

nge,
 when
nge
is

the

re by
ed
 first
 the
MM.
d is
16. Extra Code Break Can Occur on I/O or HLT Instruction if SMI Coincides

If a code breakpoint is set on an I/O instruction, as usual the breakpoint will be taken before the I/O
instruction is executed. If the I/O instruction is also used as part of an I/O restart protocol, I/O
restart is enabled, and executing the instruction triggers SMI, RSM from the SMI handler will
return to the start of the I/O instruction, and the code breakpoint will be taken again before the I/O
instruction is executed a second time.

Similarly, if a code breakpoint is set on an HLT instruction, the breakpoint will be taken before the
processor enters the HLT state. If SMI occurs during this state, and the SMI handler chooses to
RSM to the HLT instruction (the usual choice, for SMI to be transparent), the code breakpoint will
be taken again before the HLT state is re-entered. In this case, other problems can occur, because an
internal HLT flag remains set incorrectly. These problems are documented in Erratum # 55, case 2.

This information will be added to the end of Section 17.3.1.1, on “Instruction-Breakpoint Fau
in the Pentium® Processor Family Developer’s Manual, Volume 3.

17. LRU May Be Updated for Non-cacheable Cycles

This item does not apply to Pentium processors for embedded applications. For the full text of this
item, refer to the Pentium® Processor Specification Update, order number 242480.

18. FYL2XP1 Does Not Generate Exceptions for X Out of Range

The FYL2XP1 instruction is intended to be used only for taking the log of numbers very close to
one, to provide improved accuracy. For X values outside of the FYL2XP1 instruction’s valid ra
the FYL2X instruction should be used instead. The present documentation of what happens
X is outside of the FYL2XP1 instruction’s valid range is inconsistent. For FYL2XP1, out of ra
behavior will be replaced by “If the ST operand is outside of its acceptable range, the result
undefined, and software should not rely on an exception being generated. Under some
circumstances exceptions may be generated when ST is out of range, but this behavior is
implementation specific and not guaranteed.” The information on pages 7-15 and 25-161 of
Pentium® Processor Family Developer’s Manual, Volume 3 will be clarified.

19. Enabling NMI Inside SMM

Page 20-11 of the Pentium® Processor Family Developer’s Manual Volume 3 states “Although
NMI requests are blocked when the CPU enters SMM, they may be enabled through softwa
invoking a dummy interrupt and vectoring to an Interrupt Service Routine.“This will be chang
to: “Although NMI requests are blocked when the CPU enters SMM, they may be enabled by
enabling interrupts through INTR by setting the IF flag, and then by triggering INTR. Also, for
Pentium processor, exceptions that invoke a trap or fault handler will enable NMI inside of S
This behavior of exceptions enabling NMI within SMM is not part of the Intel Architecture, an
implementation specific”.

20. BF[1:0] Must Not Change Values While RESET is Active

Table 4-3 and page 2-49 of the Pentium® Processor Family Developer’s Manual states that BF[1:0]
must not change values while RESET is active. Page 5-18 of the Pentium® Processor Family
Developer’s Manual also states that BF[1:0] must meet a 1 mS setup time to the falling edge of
RESET. Since RESET has to be active for at least 1ms, the setup time spec of 1mS is a subset of
the specification in Table 4-3 and will be removed. t43a (BF[1:0] 1 mS setup time to the falling
edge of RESET) will also be removed from Tables 7-8, 7-10, 7-12 and page 2-49.

The following will also be added to the “When Sampled/Driven” section on page 5-18:
68 Pentium® Processor for Embedded Applications Specification Update

Specification Clarifications

ted

e

ry, the
gister.”
Additionally, BF[1:0] must not change values while RESET is active.

The following will be added to the end of the first paragraph on page 5-17 and to note 22 on page
7-27:

In order to override the internal defaults and guarantee that the BF[1:0] inputs remain stable while
RESET is active, these pins should be strapped directly to or through a pullup/pulldown resistor to
Vcc3 or ground. Driving these pins with active logic is not recommended unless stability during
RESET can be guaranteed.

On pages 3-1 and 5-80, the sentence starting with “During power up, RESET must be asser
while VCC...” will be modified as follows:

During power up, RESET should be asserted prior to or ramped simultaneously with the cor
voltage supply to the processor.

21. Active A20M# During SMM

Section 14.3.3. of the 1997 Pentium® Processor Family Developer’s Manual describes two
considerations when using the A20M# input and SMM when SMRAM is relocated above 1
Megabyte. The system designer must ensure that A20M# is de-asserted on entry into SMM.
A20M# must be driven inactive before the first cycle of the SMM state save, and must be returned
to its original level after the last cycle of the SMM state restore. This can be done by blocking the
assertion of A20M# whenever SMIACT# is active.

The following will be added to the end of Section 14.3.3:

In addition to blocking the assertion of A20M# whenever SMIACT# is active, the system must also
guarantee that A20M# is de-asserted at least one I/O clock prior to the assertion of SMIACT#. The
processor may start the SMM state save as soon as SMIACT# is asserted. Processors faster than
200 MHz may not have enough time to recognize the de-assertion of A20M# before starting the
SMM state save. As a result, this may cause the processor to start the first few cycles of the SMM
state save with A20M# asserted. To avoid this, the system designer can use either of the following:

1. When relocating the SMRAM above 1 Megabyte, ensure that the SMRAM does not coincide
with any odd megabyte addresses. (Note that systems which use A20M# and SMM but do not
relocate SMRAM above 1 Megabyte are not affected.)

2. Use external logic to prevent the assertion of SMI to the processor until A20M# is de-asserted
(and guarantee that A20M# remains de-asserted while in SMM).

Note that the A20M# input must also meet setup and hold times in order to be recognized in a
specific clock.

22. POP[ESP] with 16-bit Stack Size

In the Pentium® Pro Family Developer's Manual, Volume 2: Programmer’s Reference Manual and
the Intel Architecture Software Developer’s Manual, Volume 2: Instruction Set Reference, the
section regarding “POP–Pop a Value from the Stack”, the following note in incomplete:

“If the ESP register is used as a base register for addressing a destination operand in memo
POP instruction computes the effective address of the operand after it increments the ESP re
Pentium® Processor for Embedded Applications Specification Update 69

Specification Clarifications

ry, the
egister.
sulting

e

a is
ally, it
from
st of

a is
data is
e used
on is
he

The
 from
g the
 will be
It should read as follows:

“If the ESP register is used as a base register for addressing a destination operand in memo
POP instruction computes the effective address of the operand after it increments the ESP r
In the case of a 16-bit stack where ESP wraps to 0h as a result of the POP instruction, the re
location of the memory write is processor family specific.”

In Section 15.12.1. of the Pentium® Pro Family Developer’s Manual, Volume 3: Operating System
Writer’s Guide and Section 17.23.1. of the Intel Architecture Software Developer’s Manual, Volum
3: System Programming Guide, add a new section:

A POP-to-memory instruction, which uses the stack pointer (ESP) as a base register.

For a POP-to-memory instruction that meets the following conditions:

1. The stack segment size is 16-bit,

2. Any 32-bit addressing form with the SIB byte specifying ESP as the base register, and

3. The initial stack pointer is FFFCh (32-bit operand) or FFFEh (16-bit operand) and will wrap
around to 0h as a result of the POP operation,

The result of the memory write is processor family specific. For example, in Pentium II and
Pentium Pro processors, the result of the memory write is to SS:0h plus any scaled index and
displacement. In Pentium and Intel486 processors, the result of the memory write may be either a
stack fault (real mode or protected mode with a stack segment size of 64 Kbytes), or write to
SS:10000h plus any scaled index and displacement (protected mode and stack segment size
exceeds 64 Kbytes).

23. Pin #11 and Pin #190 (TCP Package) Connection

This item does not apply to Pentium processors for embedded applications. For the full text of this
item, refer to the Pentium® Processor Specification Update, order number 242480.

24. Line Fill Order Optimization Revision

In Section 3.5.3 of the Intel Architecture Optimization Manual, the following passage is
incomplete:

“For Pentium processors with MMX technology, Pentium Pro and Pentium II processors, dat
available for use in the order that it arrives from memory. If an array of data is being read seri
is preferable to access it in sequential order so that each data item will be used as it arrives
memory. On Pentium processors, the first 8-byte section is available immediately, but the re
the cache line is not available until the entire line is read from memory.”

Instead, it should read as follows:

“For Pentium processors with MMX technology, Pentium Pro and Pentium II processors, dat
available for use in the order that it arrives from memory. On these processors, if an array of
being read serially, it is preferable to access it in sequential order so that each data item will b
as it arrives from memory. On Pentium processors with MMX technology, the first 8-byte secti
available immediately after it arrives from memory (after 5 I/O cycles), but the rest of the cac
line is not available until the entire line is read from memory. If an array of data is being read
serially, it is often preferable to pre-fetch portions of the array mapping to other cache lines.
first 8-byte section of the other cache line will be available for use immediately after it arrives
memory. This technique can be used to effectively hide the latency associated with accessin
last three 8-byte sections of the cache line.access it in sequential order so that each data item
70 Pentium® Processor for Embedded Applications Specification Update

Specification Clarifications

 0 to
used as it arrives from memory. If a request of reading the next cache line is made after the first
quad-word of the first cache line is available, memory will provide the first 8-byte section of the
second cache line, while the processor loads rest of the three quad-words of the first cache line
from the in-line buffer. It take three I/O cycles to load the first section of the second cache line
instead of five I/O cycles. Notice the order for each data item for these two cache line to arrive
from memory will still be in a sequential order, that is, the data items for the second cache line will
not be available until the first cache line is completely loaded. This technique is frequently used in
modern compiler technology.

25. Test Parity Check Mechanism Clarification

In the 1997 Pentium® Processor Family Developer’s Manual, Section 16.2.1.4 on Test Parity
Check, the sentence, “For the microcode, bad parity may be forced on a read by setting the
PRR.MC bit to 1.” is incorrect. The correct wording should be as follows:

“For the microcode, bad parity may be forced on a read by a transition of the PRR.MC bit from
1. No bad parity will be forced by setting the PRR.MC bit to 1 if the bit was already set as 1.”
Pentium® Processor for Embedded Applications Specification Update 71

Documentation Changes

d be

g

sserts

nged
Documentation Changes

The Documentation Changes listed in this section apply to the documents listed in the Preface of
this Specification Update. Documentation Changes that are incorporated into a future version of
the appropriate Pentium processor documentation are removed from the specification update upon
publication of the amended document.

1. JMP Cannot Do a Nested Task Switch, Volume 3, Page 13-12

In the Pentium® Processor Family Developer’s Manual, Volume 3, Section 13.6, the sentence
“When an interrupt, exception, jump, or call causes a task switch...” incorrectly includes the jump
in the list of actions that can cause a nested task switch. The word “jump” will be removed from
the sentence. The Table 13-2 correctly shows the effects of task switches via jumps vs. Task
switches via CALL’s or interrupts, on the NT flag and the Link field of the TSS.

2. Interrupt Sampling Window, Volume 3, Page 23-39

In the Pentium® Processor Family Developer’s Manual, Volume 3, Section 23.3.7 the first
sentence of the second paragraph “The Pentium processor... asserts the FERR# pin.” Shoul
replaced with the following:

The Pentium processor and the Intel486 processor implement the “No-Wait” Floating-Point
instructions (See Section 6.3.7) in the DOS-Compatibility mode (CR0.NE = 0) in the followin
manner:

In the event of a pending unmasked numeric exception, the “No-Wait” class of instructions a
the FERR# pin.

3. FSETPM Is Like NOP, Not Like FNOP

In the Pentium® Processor Family Developer’s Manual, Volume 3, page 23-37 in the Section
23.3.4 on Instructions, the 80287 instruction FSETPM is described as being equivalent to an FNOP
when executed in the Intel387 math coprocessor and the Intel486 and Pentium processors. In fact,
FSETPM is treated as a NOP in these processors, as is correctly explained (along with the
difference between FNOP and NOP) on the next page in Section 23.3.6. “FNOP” will be cha
to “NOP” in the FSETPM description.

4. Errors in Three Tables of Special Descriptor Types

In the Pentium® Processor Family Developer’s Manual, Volume 3 on page 25-199 and on page 25-
222, in the descriptions of the LAR and LSL instructions respectively, tables are given of the
special segment and gate descriptor types and names, with indication of which ones are valid with
the given instruction. The same two pairs of descriptor types are interchanged in these two tables.
Descriptor type 6 is the 16-bit interrupt gate, not trap gate, and type 7 is the 16-bit trap gate, not
interrupt gate. Similarly, descriptor type 0Eh is the 32-bit interrupt gate, and 0Fh is the 32-bit trap
gate. Table 12-1 gives a completely correct listing of the special descriptor types, but in the same
chapter, Table 12-3 (page 12-22) incorrectly indicates that the 16-bit gates are not valid for the LSL
instruction (this table does have the correct types for the interrupt and trap gates that it shows).
72 Pentium® Processor for Embedded Applications Specification Update

Documentation Changes

to the

e stack
if
red on
 order:

”. It
5. Invalid Arithmetic Operations and Masked Responses to Them Relative to
FIST/FISTP Instruction

The Pentium® Pro Family Developer’s Manual, Volume 2: Programmer’s Reference Manual, Table
7-20 and the Intel Architecture Software Developer’s Manual, Volume 1, Table 7-20 show “Invalid
Arithmetic Operations and the Masked Responses to Them.” The table entry corresponding
FIST/FISTP condition is missing, and is shown below:

6. Incorrect Sequence of Registers Stored in PUSHA/PUSHAD

In the Intel Architecture Software Developer’s Manual, Volume 2, the section on PUSHA/
PUSHAD–Push All General Purpose Registers, the sentence, “The registers are stored on th
in the following order: EAX, ECX, EDX, EBX, EBP, ESP (original value), EBP, ESI and EDI (
the current operand-size attribute is 32)” incorrectly states the sequence of the registers sto
the stack. The sentence should state, “The registers are stored on the stack in the following
EAX, ECX, EDX, EBX, ESP (original value), EBP, ESI and EDI (if the current operand-size
attribute is 32)”.

7. One-Byte Opcode Map Correction

In the Intel Architecture Software Developer’s Manual, Volume 2, there are two corrections that
need to be made to the Opcode Map:

1. In Appendix A, Opcode Map, Table A-1, Row 9, Column 8, only CBW is indicated. It should
indicate both CBW and CWDE.

2. In Appendix A, Opcode Map, Table A-1, Row 9, Column A, the operand is defined as “aP
should be defined as “Ap”. Operand “Ap” selects a pointer, 32-/48-bits in size without
specifying a MOD R/M byte.

Condition Masked Response

FIST/FISTP instruction when input operand <>
MAXINT for destination operand size. Return MAXNEG to destination operand.
Pentium® Processor for Embedded Applications Specification Update 73

Appendix A Pentium® Processor Related Technical Collateral

ite at
and
Appendix A Pentium® Processor
Related Technical Collateral

Unless otherwise noted, the following documentation may be obtained by visiting Intel’s webs
http:\\www.intel.com or by contacting Intel’s Literature Center at 1-800-879-4683 in the U.S.
Canada. In other geographies, please contact your local sales office.

Document Title Order Number

Embedded Pentium® Processor Family Developer’s Manual (1998) 273204

Embedded Pentium® Processor Datasheet 273202

Embedded Pentium® Processor with Voltage Reduction Technology Datasheet 273203

Embedded Pentium® Processor with MMX™ Technology Datasheet 273214

Low-Power Embedded Pentium® Processor with MMX™ Technology Datasheet 273184

Embedded Pentium® Processor with MMX™ Technology Flexible Motherboard Design
Guidelines 273206

Intel Architecture Software Developer’s Manual, Volume 1: Basic Architecture 243190

Intel Architecture Software Developer’s Manual, Volume 2: Instruction Set Reference 243191

Intel Architecture Software Developer’s Manual, Volume 3: System Programming Guide 243192

Pentium® Processor Specification Update 242480

MultiProcessor Specification 242016

Pentium® Processor Family Product Brief 241561

Pentium® Processor Performance Brief 241557

Pentium® Processor Technical Overview 241610

AP-579: Pentium® Processor Flexible Motherboard Design Guidelines 243187

AP-479: Pentium® Processor Clock Design 241574

AP-480: Pentium® Processor Thermal Design Guidelines 241575

AP-485: Intel Processor Identification with the CPUID Instruction 241618

AP-500: Optimizations for Intel’s 32-Bit Processors 241799

AP-577: An Introduction to PPGA Packaging 243103

AP-522: Implementation Guidelines for 3.3V Pentium® Processors with VRE
Specifications 242687

AP-578: Software and Hardware Considerations in Handling FPU Exceptions 242415
74 Pentium® Processor for Embedded Applications Specification Update

	Pentium ® Processor for Embedded Applications Specification Update
	Contents
	Revision History
	Preface
	Specification Changes
	S-Specs
	Errata
	Specification Clarifications
	Documentation Changes
	Appendix A Pentium® Processor Related Technical Collateral
	What's New
	New processors covered by this Spec Update
	Identification Information
	Marking Information
	Processor Identification
	New/Changed Specification Changes
	New/Changed Errata
	New/Changed Specification Clarifications

