MOTOROLA
mE SEMICONDUCTOR I
TECHNICAL DATA
MC6800

8-Bit Microprocessing Unit (MPU)

The MC6800 is a monolithic 8-bit microprocessar forming the central control function for Motorola’s
M6800 Family. Compatibie with TTL, the MC680C, as with all M6800 system parts, requires only one
+5.0-volt power supply and no external TTL devices for bus interface.

The MC6800 is capable of addressing 64K bytes of memory with its 16-bit address lines. The 8-bit data
bus is bidirectional as well as three-state, making direct memory addressing and multiprocessing applica-
tions realizable.

® 8-Bit Parallel Processing
® Bidirectional Data Bus
® 16-Bit Address Bus — 64K Bytes of Addressing
® 72 Instructions — Variable Length
® Seven Addressing Modes — Direct, Relative, Immediate, Indexed, Extended, Implied, and
Accumulator
Variable Length Stack
Vectored Restart
Maskable interrupt Vectar
Separate Nonmaskable Interrupt — Internal Registers Saved in Stack
Six Internal Registers — Two Accumulators, Index Register, Program Counter, Stack Pointer and
Condition Code Register
Direct Memory Addressing (DMA) and Multiple Processor Capability
Simplified Clocking Characteristics
Clock Rates as High as 2.0 MHz
Simple Bus Interface without TTL
Halt and Single Instruction Execution Capability

This document contains information an a new product. Specifications and information herein are subject to change without notice.

MOTOROLA MICROPROCESSOR DATA
3-61

This Material Copyrighted By Its Respective Manufacturer

MC6800

MAXIMUM RATINGS

Rating Symbol Value Unit

Supply Voltage Vee —03to +7.0 \
Input Voltage Vin -0.3to +7.0 Vv
Operating Temperature Range Ta TLtoTH °C

MC6800, MC68A00, MC68BQO, —-0to 70

MC6800C, MC68A00C —40to +85
Storage Temperature Range Tstg ~55to +150 °C

THERMAL RESISTANCE
Rating Symbol Value Unit
Plastic Package A 100 °Cw
Cerdip Package 60
POWER CONSIDERATIONS
The average chip-junction temperature, TJ. in °C can be obtained from:
Ty=Ta+(Pp-0Ja) (1)
where:
TA = Ambient Temperature, °C
8JA = Package Thermal Resistance,
Junction-to-Ambient, °C/W
PD = PINT+PPORT
PINT = Iccx Ve, Watts — Chip Internal Power

PPORT = Port Power Dissipation, Watts — User Determined
For most applications PPORT<P)NT and can be neglected. PPORT may become significant if the device is configured
to drive Darlington bases or sink LED loads.
An approximate relationship between Pp and T (if PPORT is neglected) is:
Pp=K=(Ty+273°C) (2)
Solving equations (1) and (2) for K gives:
K=Pp+{TA+273°C) + 6)a*PD? {3)
where K is a constant pertaining to the particular part. K can be determined from equation (3) by measuring Pp {at

equilibrium) for a known Ta. Using this value of K, the vaiues of Pp and T can be obtained by solving equations
(1) and (2) iteratively for any value of Ta

DC ELECTRICAL CHARACTERISTICS (Vcc=5.0 Vde, +5%, Vss=0, TA=T¢ to TH unless otherwise noted)

Characteristic Symbol Min Typ Max Unit
input High Voltage Logic ViH Vgs+20 - Vee v
@1, 92 VIHC Vee-0.6 - Vee+0.3
input Low Voltage Logic ViL Vss-0.3 - Vgg+0.8 v
¢1, 62 ViLe Vgs-0.3 - Vsg+0.4
Input Leakage Current
(Vin=0105.25V, Voo =Max) Logic lin — 1.0 25 uA
Vin=010525V, Vcc=0V 10 5.25 V) ¢1, 2 — - 100
Hi-Z Input Leakage Current DO-D7 | - 2.0 10 A
Vin=0.4102.4V, Voo =Max) A0-A15, R/W iz - _ 100 #
Output High Voitage
(I oad= ~205 pA, Ve = Min) _Doo7| Vgs+24| — - v
(ILoad= - 146 yA, VcC =Min) AO0-A15, R/W, VMA OH Vss+24] — _
{I_oad= — 100 kA, VCC =Min) BA vss+24| — -
Output Low Voltage (I gag= 1.6 mA, Ve = Min) VoL - — Vgs+0.4 v
Internal Power Dissipation (Measured at TA=T) PINT — 0.5 1.0 W
Capacitance
Vin=0, TA=25°C, f= 1.0 MHz) 1 - 26 35
2 Cin - 45 70 pF
DO-D7 - 10 12.6
Logic Inputs - 6.5 10
AG-A15, R/W.VMA | Cout - — 12 of

.

MOTOROLA MICROPROCESSOR DATA
3-62

This Material Copyrighted By Its Respective Manufacturer

MC6800

CLOCK TIMING (Vcc=5.0V, £5%, Vgg=0, TA=T_ to T unless otherwise noted)

Characteristic Symbol Min Typ Max Unit
Frequency of Operation MC6800 0.1 - 1.0
MC68A00 f 0.1 - 1.5 MHz
MC68B00 0.1 = 2.0
Cycle Time (Figure 1) MC6800 1.000 - 10
MCBBA00 teye 0.666 - 10 ®S
MC68B00 0.500 — 10
Clock Puise Width #1,¢2 — MC6800 400 - 9500
{Measured at Vg — 0.6 V) ¢1, 62 — MCEBA00 | PWgH 230 - 9500 ns
@1, ¢2 — MCEBBO0 180 - 9500
Total¢1 and ¢2 Up Time MC6800 900 — -
MCE8A00 tut 600 - - ns
MC68B00 440 — —
Rise and Fall Time (Measured between Vgg+0.4 and Vo —0.6) tr, tf - - 100 ns
Delay Time or Clock Separation (Figure 1}
{Measured at Voy =Vss5+0.6 V@tr=17=< 100 ns) td 0 - 9100 ns
(Measured at Voy =Vgs+ 1.0 V@t,=1=35 ns) 0 — 9100
FIGURE 1 — CLOCK TIMING WAVEFORM
Teve
Tut *—{
tet ‘
Y/
tg— ta —=]
ViHe
*2 Vov i
ViLc | P
‘ér—4 L—"Wm-(-—.l b tgs
NOTES:
1. Voltage levels shown are V| 0.4, Vy=>2.4 V, uniess otherwise specified.
2. Measurement points shown are 0.8 V and 2.0 V, unless otherwise noted
READ/WRITE TIMING (Reference Figures 2 through 6, 8, 9, 11, 12 and 13)
Characteristic Symbol MCe800 MCeaA0 Mce8B00 Unit
Min | Typ | Max | Min | Typ | Max | Min | Typ | Max
Address Delay
C=90 pF tAD - - 270 - - 180 - - 150 ns
C=30 pF — — 250 — - 165 - - 135
Pe{':;e:':ﬁf e tace 530 — | — |3s0| - | — {280 - | — | ns
Data Setup Time (Read) tDSR 100 - - 60 - — 40 — — ns
input Data Hold Time tH 10 - - 10 - - 10 - - ns
Output Data Hold Time tH 10 25 - 10 25 - 10 25 - ns
Address Hold Time {Address, R/W, VMA) tAH 30 | % - 30 | 50 - 30 | sa - ns
Enable High Time for DBE input tEH 450 - - 280 - - 220 - - ns
Data Delay Time {Write) IDDW - - 225 - - 200 - - 160 ns
Processor Controls
Processor Control Setup Time tpCS 200 - - 140 - - 110 - -
Processor Control Rise and Fall Time tPCr. tPCE - - 100 - - 100 - - 100
Bus Available Delay 1BA - - 250 - - 165 — — 135
Hi-Z Enable 1TSE o | - |a|o|-]aw]o|l-]wo|™
Hi-Z Delay tTSD - - 270 - - 270 - — 220
Data Bus Enable Down Time During ¢1 Up Time 1DBE 150 - - 120 - - 75 - -
Data Bus Enable Rise and Fall Times tDBEr- 'DBEf | — - 25 - - 25 - - 25

MOTOROLA MICROPROCESSOR DATA
3-63
This Material Copyrighted By Its Respective Manufacturer

MC6800

FIGURE 2 — READ DATA FROM MEMORY OR PERIPHERALS

/ Start of Cycle

o1 VIHC x /S
ViLe ViLe

e ¢, l
Vv
02 / x IHC
|
tAD
A X
™ taH

Add
Fromrl;l‘l:u _‘\M

bt TAD ——ay

VMA
lety

tAD . 'osa’-J
Data
From Memory Data Valid %—

3 \\\\\\\\‘ Date Not Valid

FIGURE 3 — WRITE IN MEMORY OR PERIPHERALS

,—— Start of Cycle

teye
&1 ViHe 1 /
— | ViLe ViLc
— -t 1,
b2 / \
fe—tAD ——o]
A/W
——"—t T N
e tAH
Address
From MPU
e ——tAD —a]
vMa
—
le—tAD — =t
1DBE ey ﬁ]l
!
DBE Z 5
) S,
~— 'DBEf. ——af le—tDBEr R
—— -ty
Data -
From MPU Data Valid
~—‘DDW——‘

\\\\\\“ Data Not Valid

NOTES:
1. Voltage levels shown are V| <0.4, V4 =2.4 V, unless otherwise specified.

2. Measurement points shawn are 0.8 V and 2.0 V, unless otherwise noted.

MOTOROLA MICROPROCESSOR DATA
3-64

This Material Copyrighted By Its Respective Manufacturer

MC6800

FIGURE 4 — TYPICAL DATA BUS OUTPUT DELAY
versus CAPACITIVE LOADING (Tppw)

00 T T \
i IgH =-205 A mex @ 24 V
FigL=1.6mA max@04V
500 b VCC=5.0V
Tp=25°C
= 400
o
=
= 300
>
«
I
a 200
-
L1
/
100 =]
Cy includes stray capacitance
1)

0 100 200 300 400 500 600
C(, LOAD CAPACITANCE (pF)

FIGURE 5 — TYPICAL READ/WRITE, VMA, AND ADDRESS
OUTPUT DELAY versus CAPACITIVE LOADING {TAD)

B00 [=-145 yA max @ 2.4 V
FigL=16mA max @04V
Lvce =50V
500 I r ' 25°C
Z 400
w
z VMA
’:‘ 300 Jtings
< ress, R/W
5 0 L
—
P
L~
100
0 C| includes stray capacitance

0 100 200 300 400 500 600
Cy, LOAD CAPACITANCE {pF]

FIGURE 6 — BUS TIMING TEST LOADS

Vce
R =22 kQ

MMD6150
or Equiv.

Test Point

MMD 7800
or Equiv.

C = 130 pF for DO-D7, E
=90 pF for AD-A15, R/W, and VMA
{Except taop2)
= 30 pF for AD-A15, R/W, and VMA
{(tap2 only)
= 30 pF for BA
R =11.7 kQ for DO-D7
= 16.5 k2 for AO-A15, R/W, and VMA
= 24 kS for BA

TEST CONDITIONS

The dynamic test load for the Data Bus is
130 pF and one standard TTL load as shown.
The Address, R/W, and VMA outputs are tested
under two conditions to aillow optimum opera-
tion in both buffered and unbuffered systems,
The resistar {R) is chosen to insure specified
load currents during Vg measurement.

Notice that the Data Bus lines, the Address
lines, the Interrupt Request line, and the DBE
line are all specified and tested to guarantee
0.4 V of dynamic noise immunity at both
‘1" and 0"’ logic levels.

MOTOROLA MICROPROCESSOR DATA

2_RR

This Material Copyrighted By Its Respective Manufacturer

MC6800

FIGURE 7 — EXPANDED BLOCK DIAGRAM

AlB A4 A3 A12 A1l A0 A9 A7 A5 A5 A4 A3
|
Output Output
Buffers r— Buffers
Clock, ¢1 —
Clock, ¢2 —
RESET — Program Program
Non-Maskable Interrupt —_— Counter Counter |
HALT —"1 Instruction
Interrupt Request —»| Decode Stack Stack
and Pointer |, Pointer |
Three-State Control — Control
Deata Bus Enable | -——a» Index Index
Bus Available - Register |, Regi L
Valid Memory Address —-——
Read/Write, R/W Accumulator
[-
Instruction Accumutator
Condition
Code
RetT'ster
Data ,_J
Buffer ALU
Vgc=Pin 8 1 t i i : i t
Vgg=Pins 1, 21 D7 D6 D5 D4 D3 D2 DI DO

MOTOROLA MICROPROCESSOR DATA

2 co

This Material Copyrighted By Its Respective Manufacturer

IMAGE UNAVAILABLE

s S00ukL97 0743074 LT3 8

This Material Copyrighted By Its Respective Manufacturer

MC6800

/ \ \Aﬂmmﬂlﬂu YIWA
/ O\ AT /s
8uUIINOY 1dnJielu| sseippy sseippy

4O 35U ISAIS £ -0 DY MBN GL-8 Og Moy jele] a800v Y35V Si-8B X L-0X SlL-82d (L-00d {x) I8u)

X X X § X X X Ef *[j X X sng neq

e
\ E:.uo.,_n
SOdy —w| j—

—\ IWNN
SS8JPPY $seuppy ssauppy yosley ‘© oul

Jd MeN 6444 8444 {L-v)dS (9-u)dS (S-u)dS (p-u)ds (E-U)dS {¢-u)dS (L-u)ds {u)ds su(yxeN -
XXX X X X X XX XX
_ $58.ppy
SRR SRR EpEnEnNnipt
Si# ; vig %3 [4%:3 Lig 0l# 6% _ B# 7 4 ‘ O ; G# 7 1.3 7 %3 A H# L#
810AD

ONIWLL LdNYYILNE — 6 3UNDI4

B1BU|WIBOPUY = E
IL

3 I - .

uodNIIsU|
W4 L-0 Od G1-8 Od

I s /
3343 3343 ““

Qod _MON dd444 3444

A AN,

—) 13s3y
§2dy

" B o« A SL v\ >_“m”w

14 I T A STg=—— 4 d
|
4 — f uo mog

T:E_N+E.+E_ET+= v+ule+ulzsulvu] w _oa‘wu_ﬁ_#_g_ _g 5_ _
812AD)

ONIWIL 13830 — 8 34NOI4

™

MOTOROLA MICROPROCESSOR DATA

3-68

Copyrighted By Its Respective Mnufacturer

This Materi al

This Materia

MC6800

The HALT line must be in the high state for interrupts to
be serviced. Interrupts will be latched internally while HALT
is low.

The IRQ has a high-impedance pullup device internal to
the chip; however, a 3 kl external resistor to VCC should be
used for wire-OR and optimum control of interrupts.

Non-Maskable Interrupt (NMI) and Wait for Interrupt
(WAI) — The MC680Q is capable of handling two types of in-
terrupts: maskable (IRQ) as described earlier, and_non-
maskable (NMID) which is an edge sensitive input. IRQ is
maskable by the interrupt mask in the condition code register
while NMT is not maskable. The handling of these interrupts
by the MPU is the same except that each has its own vector
address. The behavior of the MPU when interrupted is
shown in Figure 9 which details the MPU response to an in-
terrupt while the MPU is executing the control program. The
interrupt shown could be either IRQ or NMT and can be asyn-
chronous with respect to ¢2. The interrupt is shown going
low at time tpCs in cycle #1 which precedes the first cycle of
an instruction (OP code fetch). This instruction is not ex-
ecuted but instead the Program Counter (PC), Index
Register {IX), Accumulators (ACCX), and the Condition
Code Register (CCR) are pushed onto the stack.

The Interrupt Mask bit is set to prevent further interrupts.
The address of the interrupt service routine is then fetched
from FFFC, FFFD for an NMl interrupt and from FFF8, FFF9
for an IRQ interrupt. Upon completion of the interrupt ser-
vice routine, the execution of RT! will pull the PC, IX, ACCX,
and CCR off the stack; the Interrupt Mask bit is restored to
its condition prior to Interrupts (see Figure 10}.

Figure 11 is a similar interrupt sequence, except in this
case, a WAIT instruction has been executed in preparation
for the interrupt. This technique speeds up the MPU’s
response to the interrupt because the stacking of the PC, IX,
ACCX, and the CCR is already done. While the MPU is
waiting for the interrupt, Bus Available will go high in-
dicating the following states of the control lines: VMA is low,
and the Address Bus, R/W and Data Bus are all in the high
impedance state. After the interrupt occurs, it is serviced as
previously described.

A 3-10 k® external resistor to YV C should be used for wire-
OR and optimum control of interrupts.

MEMORY MAP FOR INTERRUPT VECTORS

MsVeﬂor s Description

FFFE FFFF Reset

FFFC FFFD Non-Maskable Interrupt
FFFA FFFB Software Interrupt
FFF8 FFF9 Interrupt Request

Refer to Figure 10 for program flow for Interrupts.

Three-State Control (TSC) — When the level sensitive
Three-State Control {TSC) line is a logic 1", the Address
Bus and the R/W line are placed in a high-impedance state.
VMA and BA are forced low when TSC="1" to prevent
false reads or writes on any device enabled by VMA_ i is
necessary to delay program execution while TSC is held
high. This is done by insuring that no transitions of ¢1 (or ¢2)
occur during this period. (Logic levels of the clocks are irrele-
vant so long as they do not change}. Since the MPU is a
dynamic device, the ¢1 clock can be stopped for a maximum

time PWgH without destroying data within the MPU, TSC
then can be used in a short Direct Memory Access (DMA)
application.

Figure 12 shows the effect of TSC on the MPU. TSC must
haveits transitions at tT S {three-state enable) while hoiding
¢1 high and ¢2 low as shown. The Address Bus and R/W
line will reach the high-impedance state at tTSD (three-state
delay), with VMA being forced low. In this example, the
Data Bus is also in the high-impedance state while ¢2 is be-
ing heid low since DBE=¢2. At this point in time, a DMA
transfer could occur on cycles #3 and #4. When TSC is
returned low, the MPU Address and R/W lines return to the
bus. Because it is 100 late in cycle #5 to access memory, this
cycle is dead and used for synchronization. Program execu-
tion resumes in cycle #6.

Valid Memory Address {VMA) — This output indicates to
peripheral devices that there is a valid address on the address
bus. In normal operation, this signal should be utilized for
enabling peripheral interfaces such as the PIA and ACIA.
This signal is not three-state. One standard TTL load and
90 pF may be directly driven by this active high signai.

HALT — When this level sensitive input is in the low state,
all activity in the machine will be halted. This input is level
sensitive.

The HALT line provides an input to the MPU to allow con-
trol of program execution by an outside source. If HALT is
high, the MPU will execute the instructions; if it is low, the
MPU will go to a halted or idle mode. A response signal, Bus
Available (BA) provides an indication of the current MPU
status. When BA is low, the MPU is in the process of ex-
ecuting the control program; if BA is high, the MPU has
halted and all internal activity has stopped.

When BA is high, the Address Bus, Data Bus, and R/W
line will be in a high-impedance state, effectively removing
the MPU fram the system bus. VMA is forced low so that the
floating system bus will not activate any device on the bus
that is enabled by VMA.

While the MPU is halted, all program activity is stopped,
and if either an NMi or IRQ interrupt occurs, it will be latched
into the MPU and acted on as soon as the MPU is taken out
of the haited mode. If a RESET command occurs while the
MPU is halted, the following states occur: VMA=low,
BA=low, Data Bus=high impedance, R/W=high {read
state}, and the Address Bus will contain address FFFE as
long as RESET is low. As soon as the RESET line goes high,
the MPU will go to locations FFFE and FFFF for the address
of the reset routine.

Figure 13 shows the timing relationships involved when
halting the MPU. The instruction illustrated is a one byte, 2
cycle instruction such as CLRA. When HALT goes low, the
MPU will halt after completing execution of the current in-
struction. The transition of HALT must occur tpcs before
the trailing edge of ¢1 of the last cycle of an instruction
({point A of Figure 13). HALT must not go low any time later
than the minmum tpcs specified.

The fetch of the OP code by the MPU is the first cycle of
the instruction. If HALT had not been low at Point A but
went low during ¢2 of that cycle, the MPU would have
haited after completion of the following instruction. BA will
go high by time tgA (bus available delay time) after the last
instruction cycle. At this point in time, VMA is low and R/W,
Address Bus, and the Data Bus are in the high-impedance
state.

MOTOROLA MICROPROCESSOR DATA

3-69

Copyrighted By Its Respective Mnufacturer

MC6800

To debug programs it is advantageous to step through
programs instruction by instruction. To do this, HALT must
be brought high for one MPU cycle and then returned low as
shown at point B of Figure 13. Again, the transitions of

must occur tpCs before the trailing edge of ¢1. BA
will go low at tga after the leading edge of the next @1, in-
dicating that the Address Bus, Data Bus, VMA and R/W

lines are back on the bus. A single byte, 2 cycle instruction
such as LSR is used for this example alsc. During the first cy-
cle, the instruction Y is fetched from address M+ 1. BA
returns high at tgA on the last cycle of the instruction in-
dicating the MPU is off the bus. If instruction Y had been
three cycles, the width of the BA low time would have been
increased by one cycle.

FIGURE 10 — MPU FLOWCHART

e

Vector — PC

ITMP—1

Notes:
. Reset is recognized at any positian in the flowchart,
. Instructions which affect the I-Bit act upon a one-bit buffer register,

N WAI

Conditien Cade Register

Vector — PC l1[1[HI'[N]ZIVJCJ
NMI FFCA

SWI FFFA 1TEMP’ 1-Bit
IRQ FFFB Buffer Register

“ITMP."” This has the etfect of delaying any CLEARING of the i-Bit one
clock time. Setting the I-Bit, however, is not delayed.

. See Tables 6-11 for details of Instruction Execution.

MOTOROLA MICROPROCESSOR DATA
3-70

This Material Copyrighted By Its Respective Manufacturer

MC6800

—| | 351

351, —o f—o

7 281

38Q =¢¢

1), S
H eieq

x” YINA
X

b He—aSl,

sng
x $531pPY
ASLy—ee M#—

L NdW

T|I||I| xewHO g |||'+

‘93835 aouepedui ybiy

<m._,|'_ — $8380)pU| WI0eAEM BBURIPIN 8I0N
$$0.ppYy $S8.IPPY /||¢L sy
L-0 Od MON G1-8 Od MeN 400 a00v YOOV S1-81 L0t G1-80d (-00d nem
X A D e G G G e—" " S— e
X\ x x gl! " x x
sunnoy _
idnuselu) jo G
FLTRCYIF / =
/ T\
" \
o rrassrrrperzrdi (9-ujdS (6-U)S (Y-U)S (E-U)dS (E-U)dS (1-u)ds (U)dS TORARIT
il e
X X) # C XXX XX X X XX
Sseippv

va

sng neq

1WN

40 DHI
Asew
dnaieu|

VWA

Mwd

sng
$801pPY

Od MeN
(ipininipipipinEninis

g+u +u £+u Z+u | +u u

ONIWIL NOILONYLSNI LIVM — LI 38NDI4

SRR

L#
B812AD

MOTOROLA MICROPROCESSOR DATA

37

Copyrighted By Its Respective Mnufacturer

This Materi al

MC6800

FIGURE 13 — HALT AND SINGLE INSTRUCTION EXECUTION FOR SYSTEM DEBUG

Last Cycle
of Current
Instruction Instruction

Fetch Execute

Instruction ,

o1 m _I MR
v L P tpcs PCS tpcs~1 —]
A MR /e o
tBA‘-i :ﬂé T
s / -\ r

. S o Z— i e e
R
W {
" X > — —~———
Fatch Execute

s G
R e — -XOC0—

Inst Inst
X Y

Note: Midranga waveform indicates
high impedance state.

MPU REGISTERS

The MPU has three 16-bit registers and three 8-bit FIGURE 14 — PROGRAMMING MODEL OF
registers available for use by the programmer (Figure 14). THE MICROPROCESSING UNIT

Program Counter — The program counter is a two byte
(16 bits) register that points to the current program address.

~
o

ACCA Accumulator A

Stack Pointer — The stack ponter is a two byte register
that contains the address of the next available location in an

~
o

external push-down/pop-up stack. This stack is normally a Accumulator 8
random access Read/Write memory that may have any loca- pa 9

tion (address) that is convenient. In those applications that 1x Index Register
require storage of information in the stack when power is 15

Index Register — The index register is a two byte register
that is used to store data or a sixteen bit memory address for [s
the Indexed mode of memory addressing. o

Condition Code
Accumulators — The MPU contains two B-bit ac- THINZIVIC] Register

cumulators that are used to hold operands and results from

v

Stack Pointer

o
lost, the stack must be nonvolatile.
PC Program Counter
[o}

~

an arithmetic logic unit (ALU). Carry (From Bit 7}
Overflow
Condition Code Register — The condition code register in- Zero
dicates the results of an Arithmetic Logic Unit operation: N .
Negative (N}, Zero (Z), Overflow {V], Carry from bit 7 (C), egative
and half carry from bit 3 (H). These bits of the Condition T Interrupt
Code Register are used as testable conditions for the condi- ——————— Half Carry (From 8it 3)

tional branch instructions. Bit 4 is the interrupt mask bit (1).
The unused bits of the Condition Code Register (b6 and b7)
are ones.

MOTOROLA MICROPROCESSOR DATA

3-72

This Material Copyrighted By Its Respective Manufacturer

MC6800

MPU INSTRUCTION SET

The MCB800 instructions are described in detail in the
M6800 Programming Manual. This Section will provide a
brief introduction and discuss their use in developing
MC6800 control programs. The MC8800 has a set of 72 dif-
ferent executable source instructions. Included are binary
and decimal arithmetic, logical, shift, rotate, load, store,
conditional or unconditional branch, interrupt and stack
manipulation instructions.

Each of the 72 executable instructions of the source
language assembles into 1 to 3 bytes of machine code. The
number of bytes depends on the particular instruction and
on the addressing mode. {The addressing modes which are
available for use with the various executive instructions are
discussed later.)

The coding of the first {or only) byte corresponding to an
executable instruction is sufficient to identify the instruction
and the addressing mode. The hexadecimal equivalents of
the binary codes, which result from the translation of the 72
instructions in all valid modes of addressing, are shown in
Table 1. There are 197 valid machine codes, 59 of the 266
possible codes being unassigned.

When an instruction translates into two or three bytes of
code, the second byte, or the second and third bytes con-
tain(s) an operand, an address, or information from which an
address is obtained during execution.

Microprocessor instructions are often divided into three
general classifications: {1} memory reference, so called
because they operate on specific memory locations; {2)
operating instructions that function without needing a
memory reference; (3) 1/0 instructions for transferring data
between the microprocessor and peripheral devices.

in many instances, the MC8800 performs the same opera-
tion on both its internal accumulators and the external
memory locations. In addition, the MCB800 interface
adapters (PIA and ACIA) allow the MPU to treat peripheral
devices exactly like other memory locations, hence, no I/QO
instructions as such are required. Because of these features,
other classifications are more suitable for introducing the
MC6800’s instruction set: (1) Accumulator and memory
operations; (2) Program control operations; (3) Condition
Code Register operations.

TABLE 1 — HEXADECIMAL VALUES OF MACHINE CODES

00 N 40 NEG A 80 suB A IMM
01 NOP a1 81 CMP A MM
02 N 42 ‘ 82 s8C A IMM
03 N 43 COm A 83 N

04 N 44 LSR A 84 AND A IMM
05 45 85 BIT A IMM
06 TAP 48 ROR A 86 LDA A IMM
07 TPA 47 ASR A 87

08 INX 48 ASL A 88 EOR A IMM
09 DEX 49 ROL A 89 ADC A MM
0A CLv 4A DEC A BA ORA A IMM
oB SEV 48 - 8B ADD A MM
oC CLe 4C INC A 8C CPX A MM
oD SEC 4D TST A 8D BsA REL
OE CL 4E - 8E LDS MM
0F SEl 4F CLR A 8F -

10 SBA 50 NEG B 90 sus A DIR
1" CBA 51 N 91 CMP A DIR
12 : 52 y 92 SBC A DIR
13 N 53 COM B 93 N

14 N 54 LSR B8 94 AND A DIR
15 " 55 - 95 BIT A DR
16 TAB 56 AOR 8 96 LDA A DIR
17 TBA 57 ASR =] 97 STA A DIR
18 N 58 ASL B 98 EOR A DIR
19 DAA 59 RAOL B 99 ADC A DR
1A ‘ SA DEC B 9A ORA A DIR
1B ABA 58 N 9B ADD A DIR
icot 5C INC a 9C CPX DIR
0 . 50 TST 8 90D .

1E N S5E y SE 108 DIR
1F M S5F CLR B 9F SYS DIR
20 BRA REL | 60 NEG IND | A0 SUB A IND
21 - [Al CMP A IND
22 BHI REL | 62 - A2 SBC A IND
23 BLS REL | 63 COM IND | A3 -

24 BCC REL [64 LSR IND | A4 AND A IND
25 BCS REL | 65 ° A5 BIT A IND
26 BNE REL | 66 ROR IND | A6 LDA A IND
27 BEQ REL | 67 ASR IND | A7 STA A IND
28 BvC REL | 68 ASL IND | A8 EOR A IND
29 BVS REL | 69 ROL IND | A9 ADC A IND
2A BPL REL | 6A DEC IND | AA ORA A IND
2B BMI REL j 68 N AB ADD A IND
2C BGE REL | 6C INC IND |AC CPX IND
20 BLT REL| 60 TST IND [AD JSR iND
2E BGT REL | 6E JMP IND [AE LDS IND
2F BLE REL | 6F CLR IND [AF STS IND
30 TSX 70 NEG EXT | B8O suB A EXT
31 INS 7 : 81 CMP A EXT
32 PUL A 72 N B2 seC A EXT
a3 PUL B 73 COM EXT|B3 -

34 DES 74 LSR EXT|B4 AND A EXT
35 XS 75 N BS BIT A EXT
36 PSH A 76 ROR EXT| B6 LDA A EXT
37 PSH B 77 ASR EXT|B7 STA A EXT
38 N 78 ASL EXT| 88 EOR A EXT
39 RTS 79 ROL EXT| B9 ADC A EXT
3A : 7A DEC EXT|BA ORA A EXT
38 RTi 78 N BB ADD A EXT
3C N 7C INC EXTIBC CPX EXT
30 N 70 TST EXT(BD JSR EXT
3E wal 7€ JMP EXT|BE LDS EXT
3F swi 7F CLR EXT| BF STS EXT

sus 8 IMM

CMP B IMM

SBC a IMM

AND B IMM

BIT a IMM

LOACEE IR Notes: 1. Addressing Modes:

EOR :] IMM A = Accumulator A

ADC B IMM B = Accumuiator B

ORA 8 IMM REL = Relative

ADD B iMM IND = Indexed

. IMM = Immediate
DIR = Direct

LDX IMM

sus 8 DIR e

oMP 8 IR 2. Unassigned code indicated by .

SBC B DIR

AND B DIR

BT B DIR

LDA B DIR

STA B DR

EOR 8 DIR

ADC 8 DR

ORA B DIR

ADD B8 DR

LDX DIA

STX DIR

sus B IND

CMP B IND

sec B IND

AND B IND

BIT B IND

LDA B INC

STA B IND

EOR B IND

ADC B IND

ORA B IND

ADD 8 IND

LDX IND

STX IND

sus B EXT

CMP B EXT

SBC B EXT

AND B EXT

8T B EXT

LDA B EXT

STA B8 EXT

EOR B EXT

ADC B EXT

ORA B EXT

ADD B EXT

LDX EXT

STX EXT

This Materia

MOTOROLA MICROPROCESSOR DATA

3-73

Copyrighted By Its Respective Mnufacturer

MC6800 ’

TABLE 2 — ACCUMULATOR AND MEMORY OPERATIONS

MODES BOOLEAN/ARITHMETIC OPERATION COND. COOE REG.
IMMED DIRECT INDEX EXTND wmpLIED | (All register lahels 5lalajz|1]0
OPERATIONS 00 ~ =Jop ~ -|op - =-|op - -|or - - refer 10 contents) wlin[z[v]c
Add ADDA 38 2 2(98 3 2/AB 5 2[88 & 3 A-m o-A dlel :
ADDE CB 2 2108 3 2(€8 5 2|f8 &4 3 BeM -8 el :
Add Acmttrs ABA 182 1| A+B -A Llepl !
Add with Carry ADCA 89 2 2189 3 2|A3 5 2(BY 4 3 ALMAC A O S HE
ADCE €8 2 2109 3 2|€3 5 2{Ff9 4 3 B-M:C -B LR R B
And ANDA 8 2 209 3 2(As 5 2|2 a4 3 Aemoea eiei1!|R]e
ANDH C& 2 2|04 3 2(/€a 5 2|¢¢ a 3 8-M -8 elef:|:fp|e
Bt Test BITA 8 2 219 3 2/a5 & 2(B5 4 3 A-m elolii:|R|e
BITE €5 2 2/05 3 2(€s 5 2|F5 a4 3 B M ejel:|:|r|e
Clear CLR 6F 7 2| & 3 o M ol R|R
CLRA aF 2) w -A .. RIR
CLRB SF 2 1008 oo a[R
Compare CMPA 81 2 2f91 3 2{m 5 2|1 a4 3 A om oo HN
CMPB 2 2{py 3 20Et s 2|F1 4 3 B M e HE
Compare Acmitrs cBA o2 1]a s . :
Campierent, 1's coM 83 7 2|13 5 3 Mom e S
coma 3 2 t|K-a sfe s
coms 53 2 1]8-8 .o S
Complement, 2's NEG 60 7 2|1 5 3 00 MM .o 2]
(Negate] NEGA 40 2 1 |00 A -A . @
NEGB % 2 100 B -8 . |
Decimai Adjust, A DAA 192 1| Converts Binary Add of BCD Characters | @ | ® | ¢ <
into BED Farmat
Decrement DEE 6A 7 2/7a 6 3 M1 oM oo ajel
DECA A 2 1A 1A .o ale
DECB 5A 2 1|18 oo 4|
Exclusve OR EQRA 8 2 2198 3 2|A8 5 2z|B8 4 13 ABM -A .o Rle
EGRB 8 2 2|08 3 2|88 5 2|Ff8 a 3 ‘ BOM -8 .o R|®
Increment INC 8C 7 t 6 3 M- -m oo]Gl
INCA 4C 2 1 a1 A ole 5 e
INCB 5 2 1| B-1 -8 .o 5| »
Laad Acmitr LDAA 86 2 29 3 2{A6 5 2(B6 4 3 ’ M oA ‘o . Ale
LDAB C6 2 2({06 3 2|E6 5 2|F6 4 3 Mg lole Rie
Or, inclusie DRAA 8A 2 2|9A 3 2|AA 5 2|BA a 3 ‘ AtM -A oo IR|e
ORAB | CA 2 2[DA 3 2(EA 5 2/FAa 4 3 B+M -8 le]e Ale
Push Data PSHA 3% 4 1 A -Mgp. SP 1 -SP .e oo
PSHB 37 4 1 | B -Mgp.SP 1 -SP .ie oo
Pull Dats PULA 32 4 1| sPer -sPomgp -A o|s oo
PULB 33 ¢ 1 SP-1 -SP Mgp - R .|a .o
Ruotate Left ROL 68 7 2,78 &© 3 M [— _ _ .o : :
ROLA g 72 A} 0 - oToTo— NOHHGE
ROLB 59 2 1|8 c b7 = b0 HUHHGOH
Ratate Right ROR 66 7 2176 5 3 rv} — —_ ele : :
AORA 8 2)| Ay =0 -~ IIIITII sfe : .
RORB 56 2 1 ’ 8 ¢ b7 =m0 IEICIHHG M
Sttt Lett, Anthmeti asL 68 7 2|78 & 3 [- DEIHNHG R
ASLA : |45 21, A O - TIOITS-o0 ele| ! .
Asts i LT S 3 b7 b0 URIHHGE
Shft Right, Arthmetic ASR | 8/ 7 z| 76 Ji i M} - . ‘- HHHGE
ASRA 2 1 AT - IOIHHGE
ASREB | 57 2 1 B b7 b0 c LK 2 M
Shift Right, Logic LSR 62 7 2|71 6 3 [o|eirl: H
LSRA 4 2 1. 4 0~ITIITTC - G o-n‘: H
LSRE) | 5 2 1|8 b7 W C ele|R) :
Store Acmitr STAA 97 & 2|A7 5 2 5 3 A M olel:
STAB D7 ¢ 2|Er § 2 9 3. B - ol
Subtract SuBA 80 2 230 3 2|A0 s 2| a]l A moa .o
suBs 0 2 200 3 2[es 5 2] a 3 B M-8 jele
Subtract Acmitrs SBA W2 1A B-a |. .
Subte. with Carry SBCA 82 2 2[82 3 2|az 5 2 4 3 A M oC - oo
SBCB €2 2 2|D2 3 2{€2 5 2 a3 B M C - oo
Transfer Acmitrs TAB %62) A -B ele
T8A P12 1 oea oo
Test, Zero or Minus IsT 6D 7 2{70 & 3 Moo00 LR
TSTA W 2 1 |a o .l
TSTR D2 18 00 .l
[x[]
LEGEND: CONDITION CODE SYMBOLS CONDITION CODE REGISTER NOTES:
{Bit set 1t test is true and cleared otherwise)

OP Operation Code {Hexadecimal);

~ Number of MPU Cycles; Ho Halfcarry from bit 3; 1 [Bit VI Test: Result - 100000007
= Number of Program Bytes; ! Intereupt mask 2 iBit C} Test: Result = 000000G0?
+ Arithmetic Plus; N Negative (sign bit)
~ Anthmetic Minus; Z Zero toyrel 3 {Bit €)' Test: Decimal value of most significant BCD
. Boolean AND; v Overtiow, 2's complement Character greater than nine?
Mgp Contents af memory location pointed to be Stack Painter; C Caury frombit 7 (Not cleared if previously set.)
+ Baolean Inciusive OR; [Reset Always 4 {8it V) Test: Operand = 10000000 prior to execution?
@ Bodlean Exclusive DR; S Set Always 5 (Bit VI Test: Gperand = 01111111 prior ta execution?
M Complement of M; t Testand set if 1rue, cleared otherwise 6 (Bit VI Test: Set equal to result af NGIC alter shitt has occurred
Transfer (nto ® NotAffected
0 Bit = Zero;
00 Byte = Zero;
Note — addressing mode are included 1n the calumn for IMPLIED addressing
MOTOROLA MICROPROCESSOR DATA

3-74

This Material Copyrighted By Its Respective Manufacturer

MC6800

PROGRAM CONTROL OPERATIONS

Program Control operation can be subdivided into two
categories: {1} Index Register/ Stack Pointer instructions; (2)
Jump and Branch operations.

Index Register/Stack Pointer Operations

The instructions for direct operation on the MPU'’s index
Register and Stack Pointer are summarized in Table 3.
Decrement (DEX, DES), increment {INX, INS], load (LDX,
LDS), and store {STX, STS) instructions are provided for
both. The Compare instruction, CPX, can be used to com-
pare the Index Register to a 16-bit value and update the Con-
dition Code Register accordingly.

The TSX instruction causes the Index Register to be load-
ed with the address of the last data byte put onto the
“stack.” The TXS instruction loads the Stack Pointer with a
value equal to one less than the current contents of the Index
Register. This causes the next byte to be puiled from the
“stack” to come from the location indicated by the Index
Register. The utility of these two instructions can be clarified
by describing the ‘‘stack’’ concept relative to the M6800
system.

The ""stack’"'can be thought of as a sequential list of data
stored in the MPU'’s read/write memory. The Stack Pointer
contains a 16-bit memory address that is used to access the
list from one end on a last-in-first-out {LIFO) basis in contrast
to the random access mode used by the MPU'’s other ad-
dressing modes.

The MC6800 instruction set and interrupt structure allow
extensive use of the stack concept for efficient handling of
data mavement, subroutines and interrupts. The instructions
can be used to establish one or more “"stacks’ anywhere in
read/write memory. Stack length is limited only by the
amount of memory that is made available.

Operation of the Stack Pointer with the Push and Pull in-
structions is illustrated in Figures 15 and 16. The Push in-
struction (PSHA) causes the contents of the indicated ac-
cumulator (A in this example) to be stored in memory at the
location indicated by the Stack Pointer. The Stack Pointer is
automatically decremented by one following the storage
operation and is “'pointing”’ to the next empty stack location.
The Pull instruction {(PULA or PULB) causes the last byte
stacked to be loaded into the appropriate accumulator. The

Stack Pointer is automatically incremented by one just prior
to the data transfer so that it will point to the last byte stack-
ed rather than the next empty focation. Note that the PULL
instruction does not ““remove” the data from memory; in the
example, 1A is still in location (m+ 1) following execution of
PULA. A subsequent PUSH instruction would overwrite that
location with the new "‘pushed” data.

Execution of the Branch to Subroutine (BSR) and Jump to
Subroutine (JSR) instructions cause a return address to be
saved on the stack as shown in Figures 18 through 20. The
stack is decremented after each byte of the return address is
pushed onto the stack. For both of these instructions, the
return address is the memory tocation following the bytes of
code that correspond to the BSR and JSR instruction. The
code required for BSR or JSR may be either two or three
bytes, depending on whether the JSR is in the indexed (two
bytes) or the extended {three bytes] addressing mode.
Before it is stacked, the Program Counter is automatically in-
cremented the correct number of times to be pointing at the
location of the next instruction. The Return from Subroutine
Instruction, RTS, causes the return address to be retrieved
and loaded into the Program Counter as shown in Figure 21.

There are several operations that cause the status of the
MPU to be saved on the stack. The Software Interrupt (SWI)
and Wait for !nterrupt (WA} instructions as well as the
maskable (IRQ) and non-maskable (NMi) hardware inter-
rupts all cause the MPU's internal registers {except for the
Stack Pointer itself) to be stacked as shown in Figure 23.
MPU status is restored by the Return from interrupt, RTI, as
shown in Figure 22.

Jump and Branch Operation

The Jump and Branch instructions are summarized in
Table 4. These instructions are used to control the transfer or
operation from one point to another in the control program.

The No Operation instruction, NOP, while included here,
is a jump operation in a very limited sense. Its only effectis to
increment the Program Counter by one. It is useful during
program development as a ‘‘stand-in” for some other in-
struction that is to be determined during debug. Itis also us-
ed for equalizing the execution time through alternate paths
in a control program.

TABLE 3 — INDEX REGISTER AND STACK POINTER INSTRUCTIONS

COND. CQDE REG.

IMMED DIRECT INDEX EXTND IMPLIED 5(4/3)2[1([0
POINTER OPERATIONS MNEMONIC | OP [~!| = |OP{~| =|0OP|~| = |DP|~ | =} DP|~ | = BODOLEAN/ARITHMETIC OPERATION |H{)| N [Z (VT
Compare Index Reg cPX sc|3] 3|9cla|2{ac|6|2|eC|s5 |3 Xy - M XL -(M+1) BROAYE
Decrement index Reg DEX 094 |1 X-1-X oio[eo|llele
Decrement Stack Pntr DES 3[4 |1 SP—1—8P DUEKIOEIRS
Increment index Reg INX 08|41 X+1—+X oo ol®
increment Stack Potr INS 34l SP+1~SP olo|/o|eiale
Load Index Reg LDX CE|3| 3/DE| 4| 2 |EE}{6 |2 FE;5 {3 M~ XK, M+ 1) = X DO MELIT
Load Stack Patr L0S Be | 3| 3fse|a}2|aE|6]2|BE|S |3 M~ SPy, (M + 1) =SP olo®|t|R|e
Stote Index Reg STX OF 5| 2|€F|7{2(¢fF|6 |3 KH—~M, X~ (M+ 1) oo RED
Store Stack Pnte STS SF| S| 2 |AF{7 | 2{BF| 6|3 SPH —~ M, SPL ~(M+1} . ‘@ I|R|e
Indx Reg — Stack Pntr S 4|1 X-1-5§P ele|ejo|aje
Stack Pntr — Indx Reg TSX 0411 SP+1—X oloolelale

(@ (Bit N) Test: Sign bit of most significant {MS) byte of result = 1?
{Bit V) Test: 2's comptement overflow from subtraction of ms bytes?
(Bit N) Test: Result less than zero? {Bit 15 = 1)

MOTOROLA MICROPROCESSOR DATA

3-75

This Material Copyrighted By Its Respective Manufacturer

MC6800

FIGURE 16 — STACK OPERATION, PUSH INSTRUCTION
MPU MPU

=

ACCA =] AccA 2]
/

SP ——— m — 1

m—1
o
SP———> m é New Data m 3
-]
m+ 1 7F a m+1 7F
Previously Freviousty
Stacked m+2 63 Stacked m+2 63
Data Data
m+3 FD m+3 FD

J/ 3c
r——/ — |

PC PSHA PSHA
Next Instr, PC —— Next Instr,
(a) Before PSHA (b) After PSHA

FIGURE 16 — STACK OPERATION, PULL INSTRUCTION
MPU MPU

ACCA] AccA
m -2 m-—2
m -1 m—1
SP e 1y m
m+ 1 1A SP—» m + 1 1A
Previously
Stacked m+2 3c m+2 3c
OData Previously
m+3 DS Stacked m+3 DS
Data
R P —
PC i PULA PULA
Next Instr. PC] Next (nstr.

{a) Betore PULA (b) After PULA

MOTOROLA MICROPROCESSOR DATA
3-76

This Material Copyrighted By Its Respective Manufacturer

MC6800

TABLE 4 — JUMP AND BRANCH INSTRUCTIONS
COND. CODE REG.

RELATIVE | INDEX EXTND IMPLIED s|af3aj2[1]oe
OPERATIONS MNEMONIC | OP |~ | #OP| ~| #[OP| ~| #|OP|~ |# BRANCH TEST Wit |N|[2Zz]|Vvic
Branch Always BRA 20|42 None oo | o|0o e e
Branch if Carry Clear BCC 24|42 c=0 ol eo|o|o|le|m
Branch If Carry Set BCS 25 (4 (2 c=1 e e |0 0|0 |
Branch If = Zero BEQ 2742 zZ=1 ol o o o e
Branch If 2> Zero BGE €| 4 (2 N®V=0 oo (o| o o
Branch If > Zero BGT 26| 4|2 Z+(IN®OVI=0 el oo e ol
Branch M Higher BHI 224 |2 c+Z2=0 ol o |e| 0| e|mn
Branch If < Zero BLE 2642 Z+IN®OVI=1 ejele o|e|e
Branch If Lower Or Same BLS 23| 4|2 c+Z=1 ol ejo| ool
Branch If < Zero BLT 20| 4 |2 N V=1 e o|e|o|e|w
Branch If Minus BMI 2B 4|2 N= el oo o ol
Branch It Not Equal Zera BNE 264 (2 z=0 o o o 0|e|»
Branch 1f Overflow Clear BVC 28| 4|2 V=0 o{ o oo |
Branch If Overflow Set BVS 29| 4|2 V=1 o/l of[o| el e|e
Branch If Plus BPL 2| 4 | 2 N=0 ol ojo| oje|e®
Branch To Subroutine BSR 8D | 8 | 2 ol o ol o|le|e
Jump JMP 6E| 4| 2(7E| 3|3 } See Special Operatians o oo o]
Jump To Subroutine JSR AD| 8| 2|BO[9|3 o aleo| ofle|m
No Dperation NOP 012 |1 Advances Prog. Cotr. Only o|a|e|oje|n
Return From interrupt RTI 38 (101 ®
Return From Subroutine RTS 3/ |1 o| oo o|a|e
Software Interrupt swi 3 [12)1 See Special Operations o a|o|o(e]|e
Wait for Interrupt * WAL 3E|9 [} BIOIREKIK

“WAI puts Address Bus, R/W, and Data Bus in the three-state made while VMA is hetd low.
@ (am Load Condition Code Register from Stack. {See Special Operations)
@ (Bit 1) Set when interrupt occurs. {f previously set, a Non-Maskable interrupt
is required 1o exit the wait state.

Execution of the Jump Instruction, JMP, and Branch cle faster than JSR. The Return from Subroutine, RTS, is
Always, BRA, affects program flow as shown in Figure 17. used as the end of a subroutine to return to the main pro-
When the MPU encounters the Jump {Indexed) instruction, gram as indicated in Figure 21.
it adds the offset to the value in the Index Register and uses The effect of executing the Software Interrupt, SWI, and
the result as the address of the next instruction to be ex- the Wait for Interrupt, WAI, and their relationship to the
ecuted. In the extended addressing mode, the address of the hardware interrupts is shown in Figure 22. SWI causes the
next instruction to be executed is fetched from the two loca- MPU contents to be stacked and then fetches the starting
tions immediately following the JMP instruction. The Branch address of the interrupt routine from the memory locations
Always (BRA) instruction is similar to the JMP {extended) in- that respond to the addresses FFFA and FFFB. Note that as
struction except that the relative addressing mode applies in the case of the subroutine instructions, the Program
and the branch is limited to the range within — 125 or + 127 Counter is incremented to point at the correct return address
bytes of the branch instruction itself. The opcode for the before being stacked. The Return from Interrupt instruction,
BRA instruction requires one less byte than JMP (extended) RTI, (Figure 22) is used at the end of an interrupt routine to
but takes one more cycle to execute. restore cantrol to the main program. The SWI instruction is

The effect on program flow for the Jump to Subroutine useful for inserting break points in the control program, that
(JSR} and Branch to Subroutine {BSR) is shown in Figures is, it can be used to stop operation and put the MPU
18 through 20. Note that the Program Counter is properly in- registers in memory where they can be examined. The WAI
cremented to be pointing at the correct return address instruction is used to decrease the time required to service a
before it is stacked. Operation of the Branch to Subroutine hardware interrupt; it stacks the MPU contents and then
and Jump to Subroutine (extended) instruction is similar ex- waits for the interrupt to occur, effectively removing the
cept for the range. The BSH instruction requires less opcode stacking time from a hardware interrupt sequence.
than JSR (2 bytes versus 3 bytes) and also executes one cy-

FIGURE 17 — PROGRAM FLOW FOR JUMP AND BRANCH INSTRUCTIONS
PC Main Program Main Program
PC Main Program n ZE= JMP ~ BO:A
i Sl n+1 |Kyi=Next Address "1 sdnliilal
INDXD n+1 K = Offset EXTND n+2 |Ki=Next Address o+ K= C:ﬂset
:

K

*K = Signed 7-bit value

(a) Jump {b) Branch

MOTOROLA MICROPROCESSOR DATA
3-77

This Material Copyrighted By Its Respective Manufacturer

MC6800

FIGURE 18 — PROGRAM FLOW FOR BSR

(s) Before Execution

FIGURE 19 — PROGRAM FLOW FOR JSR {EXTENDED)

m -2 SP—m — 2
m—-1 m—1 {n+2)H
SP—— m m (n+2)L
m+1 7€ m+ 7E
TA
f _/_~
PCe=—» n BSA n BSR
n+1 K = Offser* n+1 K = Offset
n+2 Next Main Instr. n+2 Next Main tnstr.
*K = Si 7-Bi |
gned 7-Bit Value PC—(n + 2) +K 13t Subr. Instr.

(b) After Execution

FIGURE 20 — PROGRAM FLOW FOR JSR (INDEXED)

J
f J
r_/ m-3 m-2 SP—em -2
m-2 Sp—=m -2 m-1 ™1 (n+ 20M
m-1 m-1 (n+3H SP— m - s 2
SP——-t m m {a+ 3L - 7€ e e
me 7€ m+ 7€ 7A 7a
f
me+2 7A me2 7A .
__}-* _/7(:’__ PC— n JSR = AD n JSR = AD
—] N+ K = Offser* e K = Offset
PC== n JSR = BD " SR n+2 Next Main tastr. n+2 Next Main Instr.
n+1 Sy = Subr. Addr. n+1 Sy = Subr. Addr. /_ . —
n+2 Si = Subr. Addr. n+2 S| = Subr. Addr. s))
n+3 Next Main Instr. n+3 Next Main lostr. K" B8l Unsignea value e o xe vk 15t Subr. Insur
_—— —
e
(a) Before Exscution PC—S 15t Subr. instr. *Contents of Index Registar
{a) Befors Execution {b) After Execution
(S formed from
S and S} .

(b} Ateer Execution

MOTOROLA MICROPROCESSOR DATA

3-78

This Material Copyrighted By Its Respective Manufacturer

FIGURE 21 — PROGRAM FLOW FOR RTS

SP—»m — 2 m-~2
m—1 in+3)H m -1
m (n +3)L SP——» m
m+1 7E m+1 7E
A e —
n JSR = BD n JSR = 8D
n+1 Sy = Subr. Addr. n+1 S = Subr. Addr.
n+2 S = Subr. Addr. n+2 S| = Subr. Addr.
n+3 Next Main Instr. PC —+n+3 Next Main Instr,
Last Subr. Instr. Last Subr. instr.
PC —— Sn RTS Sq RTS
(a) Before E xecution {b} After Execution
FIGURE 22 — PROGRAM FLOW FOR RT!
SP—w m — 7 m—7
m-—6 CCR m -6 CCR
m -5 ACCB m -5 ACCB
m -4 ACCA m — 4 ACCA
m -3 Xy (Index Reg) m—3 XH
m— 2 X {index Reg) m—2 x|
m — 1 PC(n+1)H m -1 PCH
m PCin+1)L SP—a— m PCL

PC —ee

[= ——
/

Next Main Instr.

/
/

Last Inter. Instr.

RTI

(a) Before Execution

PC—a= n+1

7E

—/

Next Main Instr.

L
/

Last Subr. Instr,

RTI

(b) After Execution

MOTOROLA MICROPROCESSOR DATA
3-79

This Material Copyrighted By Its Respective Manufacturer

MC6800

FIGURE 23 — PROGRAM FLOW FOR INTERRUPTS

Wait For Hardware tnterrupt or
Software Interrupt interrupt Non-Maskable Interrupt (NM1)
Main Program Main Program Main Program

n 3F = Sw) n 3E = WAI
n+1 Next Main Instr. a+l Next Main instr. n Last Prog. Byte

Continue Main Prog.

ne

Stack

m — & 1 Condition Code
:> — 5| Acmitr. B

Stack MPU
Register Contents

m
m— 4] Acmitr. A

m — 3| Index Register (X))
™ — 2| Index Register (X)
m -1 PCln + 1)H

m PC{n + 1)L
Swi HDWR WA NM} < Restart
INT -

Int.
Mask Set?
{CCR 4)

Wait Loop

FFFA FFF8 FFFC FFFE
§ FEEB ¥ FFFY FreD Y FRFF

Interrupt Memory Assignment]

Set Interrupt

FFF8 IRQ MS Mask (CCR 4}
FFF9 IRQ Ls
FFFA SWI MS First Instr.

Wi LS Addr. Formed Load Interrupt
FFFB S s By Fetching Vector Ito
FFFC NMI 2-Bytes From Program Counter
FFFO NMI LS Per. Mem.
FFFE Reset Ms Assign.
FFFF Reset Ls

interrupt Program

NOTE: MS = Most Significant Address Byte;
LS = Least Significant Address Byte;

MOTOROLA MICROPROCESSOR DATA

3-80

This Material Copyrighted By Its Respective Manufacturer

This Materia

MC6800

FIGURE 24 — CONDITIONAL BRANCH INSTRUCTIONS

BMI N=1 BEQ : Z=1 ;
BPL : N=¢ BNE : Z=9¢ .
8vVC : V=¢ ; BCC : C=¢ ;
8vs : v=1 ; BCS c=1
BHI C+2=9¢ ; BLT N&Vv=1 ;
BLS C+Z=1 ; BGE : N&V=¢ ;
BLE : Z+(NBV)=1 ;
8GT : Z+(N®V)=9¢ ;

The conditional branch instructions, Figure 24, consists of
seven pairs of complementary instructions. They are used to
test the results of the preceding operation and either con-
tinue with the next instruction in sequence (test fails) or
cause a branch to another point in the program {test suc-
ceeds).

Four of the pairs are used for simple tests of status bits N,
Z,V,and C:

1. Branch on Minus (BMI) and 8ranch On Plus (BPL) tests
the sign bit, N, to determine if the previous result was
negative or positive, respectively.

2. Branch On Equal (BEQl and Branch On Not Equal
(BNE)} are used to test the zero status bit, Z, to determine
whether or not the result of the previous operation was equal
to zero. These two instructions are useful following s Com-
pare {CMP) instruction to test for equality between an ac-
cumulator and the operand. They are also used following the
Bit Test {BIT} to determine whether or not the same bit posi-
tions are set in an accumulator and the operand.

3. Branch On Overflow Clear (BVC) and Branch On
Overflow Set {BVS) tests the state of the V bit to determine
if the previous operation caused an arithmetic overflow.

4. Branch On Carry Clear (BCC) and Branch On Carry Set
[BCS) tests the state of the C bit to determine if the previous
operation caused a carry 1o occur. BCC and BCS are useful

for testing relative magnitude when the vaiues being tested
are regarded as unsigned binary numbers, that is, the values
are in the range 00 (lowest) to FF (highest). BCC following a
camparison (CMP) will cause a branch if the (unsigned)
value in the accumulator is higher than or the same as the
value of the operand. Conversely, BCS will cause a branch if
the accumulator value is lower than the operand.

The fifth complementary pair, Branch On Higher (BH!} and
Branch On Lower or Same (BLS) are, in a sense, com-
plements to BCC and BCS. BHI tests for both C and Z=0; if
used following a CMP, it will cause a branch if the value in
the accumulator is higher than the operand. Conversely,
BLS will cause a branch if the unsigned binary value in the
accumulator is lower than or the same as the operand.

The remaining two pairs are useful in testing results of
operations in which the values are regarded as signed two's
camplement numbers. This differs from the unsigned binary
case in the following sense: in unsigned, the orientation is
higher or lower; in signed two’s complement, the com-
parison is between larger or smaller where the range of
values is between — 128 and + 127.

Branch On Less Than Zero (BLT) and Branch On Greater
Than Or Equal Zero (BGE) test the status bits for Ne V=1
and Ne V=0, respectively. BLT will always cause a branch
following an operation in which two negative numbers were
added. In addition, it will cause a branch following a CMP in
which the value in the accumulator was negative and the
operand was positive. BLT will never cause a branch follow-
ing a CMP in which the accumulator value was positive and
the operand negative. BGE, the complement to BLT, will
cause.a branch following operations in which twa positive
values were added or in which the result was zero.

The last pair, Branch On Less Than Or Equal Zero {BLE)
and Branch On Greater Than Zero (BGT) test the status bits
for Ze (N+V)=1 and Ze {N+ V)=0, respectively. The ac-
tion of BLE is identical to that for BLT except that a branch
will also occur if the result of the previous result was zero.
Conversely, BGT is similar to BGE except that no branch will
occur following a zero result.

CONDITION CODE REGISTER
OPERATIONS

The Condition Code Register (CCR) is a 6-bit register
within the MPU that is useful in controlling program flow
during system operation. The bits are defined in Figure 25.

The instructions shown in Table b are available to the user
for direct manipulation of the CCR.

A CLI-WAI instruction sequence operated properly, with
early MCB800 processars, only if the preceding instruction
was odd {Least Significant Bit=1). Similarly it was advisable

to precede any SEl instruction with an odd opcode — such
as NOP. These precautions are not necessary for MC6800
processors indicating manufacture in November 1977 or
later.

Systems which require an interrupt window to be opened
under program control should use a CLI-NOP-SEI sequence
rather than CLI-SEI.

MOTOROLA MICROPROCESSOR DATA

3-81

Copyrighted By Its Respective Mnufacturer

MC6800

FIGURE 26 — CONDITION CODE REGISTER BIT DEFINITION

bs bg b3z by by

(hl]z]v]

bo
o]

This Materia

H = Half-carry; set whenever a carry from b3 to bg of the result is generated
by ADD, ABA, ADC; cleared if no b3 10 by carry; not affected by other
instructions.

| = Interrupt Mask; set by hardware or software interrupt or SE| instruction;
cleared by CLI instruction. {Narmally not used in arithmetic operations.)
Restored to a zero as a result of an RT1 instruction if Im stared on the
stacked is low.

N = Negative; set if high order bit (b7) of result is set; cleared otherwise.

Z = Zero; set if result = 0; cleared otherwise.

V = Overlow; set if there wasarithmetic overflow as a result of the operation;
cteared otherwise.

C = Carry; set if there was a carry from the most significant bit (by) of the
resuit; cleared otherwise.

TABLE 5 — CONDITION CODE REGISTER INSTRUCTIONS
COND. CODE REG.
IMPLIED sJal3f2]1]e
OPERATIONS 0P | ~ | = | BOOLEAN OPERATION | H [1 | N l Z|v]c
Clear Carry cLe oc|21 0-c e|e|efe|e|r
Clear Interrupt Mask cLi 0E |2 |1 0--1 e/ R|o oo e
Clear Overtiow CcLv GAl2 [-V o o | o |0 |R| e
Set Carry SEC 2|1 t—c ele|le|e]els
Set Interrupt Mask SEI oF |2 |1 11 eis|e ‘ eje|e
Set Dverflow SEV 0B |2 (1 1-v e| oo 05! e
Acmir A — CCR TAP 06 (2|1 A ~CCR
CCR — Acmitr A TPA 0721 CCR -A
R = Reset
S = Set

® = Not affected

@ (ALL) Set according to the contents

of Accumulator A

ADDRESSING MODES

The MPU operates on 8-bit binary numbers presented
to it via the data bus. A given number {byte) may rep-
resent either data or an instruction to be executed, de-
pending on where it is encountered in the control program.
The M6800 has 72 unique instructions; however, it rec-
ognizes and takes action on 197 of the 256 possibilities
that can occur using an 8-bit word length. This larger
number of instructions results from the fact that many of
the executive instructions have more than one address-
ing mode.

These addressing modes refer to the manner in which
the program causes the MPU to obtain its instructions
and data. The programmer must have a method for ad-
dressing the MPU’s internal registers and all of the ex-
ternal memory locations.

Selection of the desired addressing mode is made by
the user as the source statements are written. Translation

into appropriate opcode then depends on the methad
used. If manual translation is used, the addressing mode
is inherent in the opcode. For example, the immediate,
direct, indexed, and extended modes may all be used
with the ADD instruction. The proper mode is determined
by selecting (hexadecimal notation) 8B, 9B, AB, or BB,
respectively.

The source statement format includes adequate infor-
mation for the selection if an assembler program is used
to generate the opcode. For instance, the immediate mode
is selected by the assembler whenever it encounters the
“#'" symbol in the operand field. Similarly, an X" in the
operand field causes the indexed mode to be selected.
Only the relative mode applies to the branch instructions;
therefore, the mnemonic instruction itself is enough for
the assemble to determine addressing mode.

L .

MOTOROLA MICROPROCESSOR DATA

3-82

Copyrighted By Its Respective Mnufacturer

This Materia

MC6800

For the instructions that use both Direct and Extended
modes, the Assembler selects the Direct mode if the operand
value is in the range 0-255 and Extended otherwise. There
are a number of instructions for which the Extended mode is
valid but the Direct is not. For these instructions, the
Assembler automatically selects the Extended mode even if
the operand is in the 0-255 range. The addressing modes are
summarized in Figure 26.

Inherent (includes ““Accumulator Addressing” Mode)

The successive fields in a statement are normally
separated by one or more spaces. An exception to this rule
occurs for instructions that use dual addressing in the
operand field and for instructions that must distinguish be-
tween the two accumulators. In these cases, A and B are

“‘operands’ but the space between them and the operator
may be omitted. This is commonly done, resulting in ap-
parent four character mnemonics for those instructions.

The addition instruction, ADD, provides an example of
dual addressing in the operand field:

Operator Operand Comment

ADDA MEM12 ADD CONTENTS OF MEM12 TO ACCA
or

ADDB MEM12 ADD CONTENTS OF MEM12 TO ACCB

The example used earlier for the test instruction, TST, also
applies to the accumulators and uses the “‘accumulator ad-
dressing mode’’ to designate which of the two accumulators
is being tested:

FIGURE 26 — ADDRESSING MCDE SUMMARY

Direct: n 00 Instruction

Example: SUBB Z
Addr. Range = 0—255 n+1 Z = Oprnd Address

&

n+2 Next Instr.

(K€ = One-Byre Oproa) §

OR

(K = Two-Byte Oprnd) z K4 = Operand

Z+1 K| = Operand

/N 12 £ 255, Assembler Select Direct Mode
1f Z .~ 255, Extended Mode is selacted

Extended: n FO Instruction
Example: CMPA 2 n+1 244 = Oprnd Address
Addr. Range: n+2 Z| = Oprnd Address
256-65535
n+3 Next Instr.
L]
L]
(K = One-Byte Oprnd) z
QR
{K = Two-Byte Oprnd} r4 Ky = Operand

P Ky = Operand

Immediate: n {nstruction
Exampie: LDAA #K n+1 =
(K = One-Byte Oprnd) K = Operand
n+2 Next Inst.
OR
(K = Two-Byte Oprnd) n :
(CPX, LDX, and LDS) Instruction
n+ Ky = Operand
n+2 K{ = Operand
n+3 Next tnstr.
Relative: n Instruction
Example: BNE K n+1 +K = 8rnch Offset
(K = Signed 7-Bit Value) n+2 Next instr. A\
Addr. Range: Y
-125to +129
Relative to n.
L]
°

(n*z)tK

& If Brnch Tst False, @ if Brnch Tst True.

Indexed: n Instruction
Example: ADDA Z, X n+ Z = Otfsat
Addr. Range: n+2 Next instr.
0—255 Relative to
index Register, X P

L]

L]

{Z = 8-Bit Unsigned X+ 2
Vaiue)

MOTOROLA MICROPROCESSOR DATA

Copyrighted By Its Respective Mnufacturer

mMceso00

Comment
TSTB TEST CONTENTS OF ACCB
or
TSTA TEST CONTENTS OFf ACCA

A number of the instructions either alone or together with
an accumuiator operand contain all of the address informa-
tion that is required, that is, “inherent” in the instruction
itself. For instance, the instruction ABA causes the MPU to
add the contents of accmulators A and B together and place
the result in accumulator A. The instruction INCB, another
example of “accumulator addressing,” causes the contents
of accumuiator B to be increased by one. Similarly, INX, in-
crement the Index Register, causes the contents of the Index
Register to be increased by one.

Program flow for instructions of this type is illustrated in
Figures 27 and 28. In these figures, the general case is shown
on the left and a specific example is shown on the right.
Numerical examples are in decimal notation. Instructions of
this type require only one byte of opcode. Cycle-by-cycle
operation of the inherent mode is shown in Table 6.

Immediate Addressing Mode — In the Immediate address-
ing mode, the operand is the value that is to be operated on.
For instance, the instruction

Operator Operand Comment
LDAA #25 LOAD 25 INTO ACCA

causes the MPU to “immediately load accumulator A with
the value 25"; no further address reference is required. The
immediate mode is selected by preceding the operand value
with the “‘#’ symboal. Program flow for this addressing mode
is itlustrated in Figure 29.

The operand format allows either properly defined sym-
bols or numerical values. Except for the instructions CPX,
LDX, and LDS, the operand may be any value in the range O
to 265. Since Compare Index Register {(CPX), Load Index
Register (LDX), and Load Stack Pointer (LDS}, require 16-bit
values, the immediate mode for these three instructions re-
quire two-byte operands. in the Immediate addressing

FIGURE 27 — INHERENT ADDRESSING

mMPU MPU
INDEX
=
AAM AAM
e PROGRAM
MEMORY iy
PC INSTR K PC = 5000 INX K
L—_
GENERAL FLOW EXAMPLE

mode, the “address” of the operand is effectively the
memory location immediately following the instruction itself.
Table 7 shows the cycle-by-cycle operation for the im-
mediate addressing mode.

Direct and Extended Addressing Modes — in the Direct
and Extended modes of addressing, the operand field of the
source statement is the address of the value that is to be
operated on. The Direct and Extended modes differ only in
the range of memory locations to which they can direct the
MPU. Direct addressing generates a single 8-bit operand
and, hence, can address only memory locations 0 through
255; a two byte operand is generated for Extended address-
ing, enabling the MPU to reach the remaining memory loca-
tions, 266 through 65635. An example of Direct addressing
and its effect on program flow is illustrated in Figure 30.

The MPU, after encountering the opcode for the instruc-
tion LDAA (Direct) at memory location 5004 (Program
Counter=5004), looks in the next location, 5006, for the ad-
dress of the operand. It then sets the program counter equal
to the value found there (100 in the example) and fetches the
operand, in this case a value to be loaded into accumulator
A, from that location. For instructions requiring a twa-byte
operand such as LDX {Load the Index Register}, the operand
bytes would be retrieved from locatiens 100 and 101. Table 8
shows the cycle-by-cycle operation for the direct mode of
addressing.

Extended addressing, Figure 31, is similar except that a
two-byte address is obtained from locations 5007 and 5008
after the LDAB (Extended) opcade shows up in location
5006. Extended addressing can be thought of as the ‘‘stan-
dard” addressing made, that is, it is a8 method of reaching
any place in memory. Direct addressing, since anly one ad-
dress byte is required, provides a faster method of process-
ing data and generates fewer bytes of control code. In most
applications, the direct addressing range, memory locations
0-255, are reserved for RAM. They are used for data buffer-
ing and temporary storage of system variables, the area in
which faster addressing is of most value. Cycle-by-cycle
operation is shown in Table 8 for Extended Addressing.

FIGURE 28 — ACCUMULATOR ADDRESSING

mPy MPU

ACCB
RAM Ram

T~

i

=

/—\‘ /\-‘
PROGRAM PROGRAM
MEMORY MEMORY
pc[INSTR <£J PC=5001(INCB
GENERAL FLOW EXAMPLE

MOTOROLA MICROPROCESSOR DATA
3-84

This Material Copyrighted By Its Respective Manufacturer

MGGo00

Relative Address Mode — In both the Direct and Extended
modes, the address obtained by the MPU is an absolute
numerical address. The Relative addressing mode, im-
plemented for the MPU’s branch instructions, specifies a
memory location relative to the Program Counter's current
location. Branch instructions generate two bytes of machine
code, one for the instruction opcode and one for the
“'relative” address (see Figure 32). Since it is desirable to be
able to branch in either direction, the 8-bit address byte is in-
terpreted as a signed 7-bit value; the 8th bit of the operand is
treated as a sign bit, 0" =plus and “'1" =minus. The re-
maining seven bits represent the numerical value. This
results in a relative addressing range of + 127 with respect to
the location of the branch instruction itself. However, the
branch range is computed with respect to the next instruc-
tion that would be executed if the branch conditions are not
satisfied. Since two bytes are generated, the next instruction
is located at PC+2. if D is defined as the address of the
branch destination, the range is then:

(PC+2)-127<D=<(PC+2)+ 127
or
PC-125<D<PC+ 129
that is, the destination of the branch instruction must be
within —125 to + 129 memory locations of the branch in-
struction itself. For transferring controt beyond this range,

the unconditional jump {(JMP), jump to subroutine (JSR),
and return from subroutine (RTS) are used.

In Figure 32, when the MPU encounters the opcode for
BEQ (Branch if result of last instruction was zero), it tests the
Zero bit in the Condition Code Register. If that bit is “'0,"" in-
dicating a non-zero result, the MPU continues execution
with the next instruction {in location 5010 in Figure 32). If the
previous result was zero, the branch condition is satisfied
and the MPU adds the offset, 15 in this case, to PC+ 2 and
branches to location 5025 for the next instruction.

The branch instructions allow the programmer to efficient-
ly direct the MPU to one point or another in the control pro-
gram depending on the outcome of test resuits. Since the
control program is normally in read-only memary and cannat
be changed, the relative address used in execution of branch
instructions is a constant numerical value. Cycle-by-cycle
operation is shown in Table 10 for relative addressing.

Indexed Addressing Mode — With Indexed addressing,
the numerical address is variatle and depends on the current
contents of the Index Register. A source statement such as

Comment
PUT A IN INDEXED LOCATION

Operator Operand
STAA X

causes the MPU to store the contents of accumulator A in

TABLE 6 — INHERENT MODE CYCLE-BY-CYCLE OPERATION

Address Mode Cycle | VMA RW
and Instructions Cycles # Line Address Bus Line Data Bus
ABA DAA SEC 1 1 Op Code Address 1 Op Code
ASL DEC SEi 2 2 1 Op Code Address + 1 ® Op Code of Next Instruction
ASR INC SEV
CBA LSR TAB
CLC NEG TAP
CLI NOP TBA
CLR ROL TPA
CLV ROR TST
COM SBA
DES 1 1 Op Code Address 1 Op Code
E\JESX 4 2 1 Op Code Address + 1 1 Op Code of Next Instruction
INX 3 0 Previous Register Contents 1 trrelevant Data [Note 1)
4 0 New Register Contents 1 Irrelevant Data {Note 1)
PSH 1 1 Op Code Address 1 Op Code
4 2 1 Op Code Address + 1 1 Op Code of Next Instruction
3 1 Stack Pointer Q Accumulator Data
4 0 Stack Pointer — 1 1 Accumulator Data
PUL 1 1 Op Cade Address 1 Op Caode
a 2 1 Op Code Address + 1 1 Op Code of Next Instruction
3 0 Stack Pointer 1 Irrelevant Data {Note 1)
4 1 Stack Pointer + 1 1 Operand Data from Stack
TSX 1 1 Op Code Address 1 Op Code
a 2 1 Op Code Address + 1 1 Op Code of Next Instruction
3 o Stack Pointer 1 Irrelevant Data {Note 1)
aq 0 New Index Register 1 Irrelevant Data (Note 1)
XS 1 1 Op Code Address 1 Op Code
a 2 1 Op Code Address + 1 1 Op Code of Next instruction
3 [¢] Index Register 1 Irrelevant Data
4q o New Stack Pointer 1 Irrelevant Data
RTS 1 1 Op Code Address 1 Op Cade
2 1 Op Code Address + 1 1 Irrelevant Data (Note 2)
5 3 0 Stack Pointer 1 Irrelevant Data (Note 1}
4 1 Stack Pointer + 1 1 Address of Next Instruction (High
Order Byte)
5 1 Stack Pointer + 2 1 Address of Next Instruction (Low
Order Byte)

This Materia

MOTOROLA MICROPROCESSOR DATA

2-85

Copyrighted By Its Respective Mnufacturer

MC6800

TABLE 8 — INHERENT MODE CYCLE-BY-CYCLE OPERATION (CONTINUED)

Address Mode Cycle| VMA R/W|
and Instructions Cycles # Line Address Bus Line Data Bus
WAI 1 1 | Op Code Address 1 | Op Code
2 1 | Op Code Address + 1 1 | Op Code of Next Instruction
3 1 | Stack Pointer 0 | Return Address {Low Order Byte)
4 1 | Stack Pointer — 1 0 | Return Address (High Order Byte)
9 5 1 | Stack Pointer — 2 0 | Index Register (Low Order Byte)
6 1 | Stack Pointer — 3 O { Index Register (High Order Byte)
7 1 | Stack Pointer — 4 0 | Contents of Accumulator A
8 1 [Stack Pointer — 5 0 | Contents of Accumulator B
] 1 | Stack Pointer — 6 (Note 3} 1 | Contents of Cond. Code Register
RTI 1 1 | Op Code Address 1 | Op Code
2 1 | Op Code Address + 1 1 | Irrelevant Data {Note 2)
3 0 |Stack Pointer 1 | Irrelevant Data (Note 1)
4 1 |Stack Pointer + 1 1 | Contents of Cond. Code Register fram
Stack
10 5 1 |Stack Pointer + 2 1 [Contents of Accumulator B from Stack
6 1 | Stack Pointer + 3 1 | Contents of Accumulator A from Stack
7 1 |Stack Pointer + 4 1 | Index Register from Stack (High Order
Byte)
8 1 {Stack Pointer +5 1 [Index Register from Stack {Low Order
Byte)
9 1 | Stack Pointer +6 1 | Next Instruction Address from Stack
[High Order Byte}
10 1 |Stack Pointer + 7 1 (| Next Instruction Address from Stack
{Low Order Byte)
swi 1 1 !Op Code Address 1 |.Op Cade
2 1 [Op Code Address + 1 1 | lrrelevant Data (Note 1)
3 1 |[Stack Pointer 0 | Return Address (Low Order Byte)
4 1 |Stack Pointer — 1 0 | Return Address (High Order Byte)
[1 |Stack Pointer — 2 0 | Index Register {Low Order Byte}
12 6 1 |Stack Pointer — 3 0 | Index Register (High Order Byte)
7 1 |Stack Pointer — 4 0 | Contents of Accumulator A
8 1 |Stack Pointer — 5 0 | Contents of Accumulator B
9 1 |Stack Pointer — 6 0 | Contents of Cond. Code Register
10 O |Stack Pointer — 7 1 | Irrelevant Data (Note 1}
1 1 |Vector Address FFFA (Hex) 1 | Address of Subroutine (High Order
Byte)
12 1 [Vector Address FFFB (Hex) 1 { Address of Subroutine (Low Order
Byte)
Note 1. f device which is addressed during this cycle uses VMA, then the Data Bus will go to the high impedance three-state condition.
Depending on bus capacitance, data from the previous cycle may be retained on the Data Bus.
Note 2. Data is ignored by the MPU.
Note 3. While the MPU is waiting for the interrupt, Bus Available will go high indicating the following states of the control lines: VMA is

low; Address Bus, R/W, and Data Bus are all in the high impedance state.

the memory location specified by the contents of the Index
Register (recall that the label **X’’ is reserved to designate the
Index Register}. Since there are instructions for manipulating
X during program execution (LDX, INX, DEC, etc.), the In-
dexed addressing mode provides a dynamic “‘on the fly” way
to modify program activity.

The operand field can also contain a numerical value that
will be automatically added to X during execution. This for-
mat is illustrated in Figure 33.

When the MPU encounters the LDAB {Indexed) opcode in

location 5006, it looks in the next memory location for the
value to be added to X (56 in the examplel and calculates the
required address by adding 5 to the present Index Register
value of 400. In the operand format, the offset may be
represented by a label or a numerical value in the range 0-265
as in the example. In the earlier example, STAA X, the
operand is equivalent to 0, X, that is, the O may be omitted
when the desired address is equal to X. Table 11 shows the
cycle-by-cycle operation for the Indexed Mode of Address-

ing.

MOTOROLA MICROPROCESSOR DATA

This Materia

3-86

Copyrighted By Its Respective Mnufacturer

MC6800

FIGURE 29 — IMMEDIATE ADDRESSING MODE FIGURE 30 — DIRECT ADDRESSING MODE
MPy mPU mey MPU
: ACCA : : ACCA
RAM RAM RAM RAM
<: <: ADOR DATA ADDR = 100 35
NS s T~ i ——
PROGRAM PROGRAM PROGRAM PROGRAM
MEMORY MEMORY MEMORY MEMORY
_— ‘::h__
PC INSTR PC = 5002 LDA A PC INSTR PC = 5004 LDA A .
oata K 25 < pc+1| ADDR 5006 100 @

ADDR = 0 £ 255

GENERAL FLOW EXAMPLE GENERAL FLOW EXAMPLE

TABLE 7 — IMMEDIATE MODE CYCLE-BY-CYCLE OPERATION

Address Mode Cycle [VMA RN
and Instructions Cycles # Line Address Bus Line Data Bus

ADC EOR 1 1 Op Code Address 1 Op Code

ADD LDA 2 1 | OpCode Address + 1 1 | Operand O

AND ORA 2 P e ress pera ata

BIT SBC

CMP SsuUB

CPX 1 1 Op Code Address 1 Op Code

tgi 3 2 1 Op Code Address + 1 1 Operand Data (High Order Byte)
3 1 Op Code Address + 2 1 Operand Data (Low Order Byte}

TABLE 8 — DIRECT MODE CYCLE-BY-CYCLE OPERATION
Address Mode Cycle { VMA R/W
and Instructions Cycles # | Line Address Bus Line Data Bus

ADC EOR 1 1 Op Code Address 1 Op Code

ADD LDA

AND ORA 3 2 1 Op Code Address + 1 1 Address of Operand

BIT SBC 3 1 Address of Operand 1 Operand Data

CMP sUB

cPX 1 1 Op Code Address 1 Op Code

tgi a 2 1 Op Code Address + 1 1 Address of Operand
3 1 Address of Operand 1 Operand Data (High Order Byte)
4 1 Operand Address + 1 1 Operand Data {Low Order Byte)

STA 1 1 Op Code Address 1 Op Code

a 2 1 Op Code Address + 1 1 Destination Address

3 0 Destination Address 1 Irrelevant Data (Note 1)
4 1 Destination Address 0 Data from Accumulator

STS 1 1 Op Code Address 1 Op Code

STX 2 1 Op Code Address + 1 1 Address of Operand

5 3 0 Address of Operand 1 Irrelevant Data (Note 1)

4 1 Address of Qperand 0 Register Data {(High Order Byte)
5 1 Address of Operand + 1 0 Raegister Data (Low Order Byte)

Note 1. If device which is address during this cycle uses VMA, then the Data Bus will go to the high impedance three-state condition.
Depending on bus capacitance, data from the previous cycle may be retained an the Data Bus.

MOTOROLA MICROPROCESSOR DATA
3-87

This Material Copyrighted By Its Respective Manufacturer

This Materia

AODR

PC

MC6800

<]
<=
<

FIGURE 3t — EXTENDED ADDRESSING MODE
MPU MPU
: ACCB
RAM RAM
DATA ADDR = 300 a5
i i
PROGRAM PROGRAM
MEMORY MEMQRY
INSTR PC-5006 [oA B
ADDR <
300
ADDR
e R~
ADDR = 256
GENERAL FLOW EXAMPLE

TABLE 9 — EXTENDED MODE CYCLE-BY-CYCLE

Address Mode l Cvc!ul vmMa [RIW [
and Instructions Cycles = Line Address Bus Line Data Bus
STS 1 1 Op Code Address 1 Op Code
STX 2 1 Op Code Address + 1 1 Address of Operand {High Order Byte)
& 3 1 Op Code Address + 2 1 Address of Operand (Low Order Byte)
4 o} Address of Operand 1 trrelevant Data (Note 1}
5 1 Address of Operand [o} Operand Data (High Order Byte)
6 1 Address of Operand + 1 [¢] Operand Data {Law Order Byte)
JSR 1 1 Op Code Address 1 Op Code
2 1 Op Code Address + 1 1 Address of Subroutine (High Order Byte}
3 1 Op Code Address + 2 1 Address of Subroutine {Low Order Byte!}
4 1 Subroutine Starting Address 1 Op Code of Next Instruction
9 5 | Stack Pointer o] Return Address {Low Order Byte)
6 1 Stack Pointer - 1 0 Return Address (High Order Byte)
7 o} Stack Pointer - 2 1 Irrelevant Data (Noze 1)
8 o] Op Code Address + 2 1 Irrelevant Data (Note 1)
9 1 Op Code Address + 2 1 Address of Subroutine {Low Drder Bytel
IMP 1 1 Op Code Address 1 Op Code
3 2 1 Op Code Address + 1 1 Jump Address (High Order Byte)
3 1 Op Code Address + 2 1 Jump Address (Low Order Byte)
ADC EOR 1 1 Op Code Address 1 Op Code
:ﬁg ('SDR'; " 2 1 Op Code Address + 1 1 Adoress of Operand (High Order Byte)
BIT SBC 3 1 Op Code Address + 2 1 Address of Operand (Low Order Byte)
CMP SUB 4 1 Address of Operand 1 | Operand Data
CPX 1 1 Op Code Address 1 Op Code
tgi 2 1 Op Code Address + 1 1 Address of Operand [High Order Byte}
5 3 1 Op Code Address + 2 1 Address of Operand [Low Order Byte}
4 1 Address of Operand 1 Operand Data (High Order Byte)
s 1 Address of Operand + 1 1 Operand Data {Low Order Byte)
STA A 1 1 Op Code Address 1 Op Code
sTAB 2 1 Op Code Address + 1 1 Destination Address {(High Order Byte)
5 3 1 Op Code Address + 2 1 Destination Address (Low Order Byte)
4 Q Operand Destination Address 1 Irrelevant Data {Note 1)
5 1 Operand Destination Address o} Data from Accumulator
ASL LSR 1 1 Op Code Address 1 Op Code
2‘5_2 gg’f_ 2 1 Op Code Address + 1 1 Address of Operand (High Order Byte)
COM ROR 6 3 1 Op Code Address + 2 1 Address of Operand (Low Order Byte}
B\JECC TST a 1 Address of Operand 1 Current Operand Data
5 a Address of Operand 1 Irrelevant Data (Note 1)
6 1/0 Address of Operand [New Operand Data (Note 2)
(Note
2)
Note 1. If device which is addressed during this cycie uses VMA, then the Data Bus will go to the high impedance three-state condition.
Depending on bus capacitance, data from the previous cycle may be retained on the Data Bus.
Note 2. For TST, VMA = 0 and Operand data does not change.

MOTOROLA MICROPROCESSOR DATA

3-88

Copyrighted By Its Respective Mnufacturer

MC6800

FIGURE 32 — RELATIVE ADDRESSING MODE

MPU MPU
RAM IAM
Program Program
Memory Memory
PC| Instr,
Offset PC 5008 BEQ
(PC + 2)| Next Instr. 15

PC 5010] Next instr.

b ——]

{(PC + 2) + (Offset)] Next Instr. PC 5025| Next Instr.

i

FIGURE 33 — INDEXED ADDRESSING MODE

MPU MPU
ACCB
.23,]
NDEX
{400 |
RAM RAM
ADDR = INDX _
+ ofFfseT |—RATA ADDR = 405 59
PROGRAM PAOGRAM
MEMDRY MEMORY
PC INSTR PC = 5006 LDAB
OFFSET 5
OFFSET < 256 ——\v
GENERAL FLOW EXAMPLE

TABLE 10 — RELATIVE MODE CYCLE-BY-CYCLE OPERATION

Address Mode 1 Cycle VMA] RN
and Instructions Cycles # Line Address Bus Line Data Bus
BCC BHI BNE 1 1 |Op Code Address 1 |Op Code
BeS BLE BRU “ 2 | 1 |Op Code Address + 1 1 [Branch Offset
BGE BLT BVC 3 0 |Op Code Address + 2 1 [lIrrelevant Data (Note 1)
BGT BMI BVS 4q 0 [Branch Address 1 |lIrrelevant Data {Note 1)
BSR 1 1 |Op Code Address 1 |Op Code
2 1 |{Op Code Address + 1 1 |Branch Offset
3 0 |Return Address of Main Program 1 [irrelevant Data (Note 1)
8 4 1 |Stack Pointer 0 |[Return Address (Low Order Byte)
5 1 |[Stack Pointer — 1 0 Return Address {High Order Byte)
6 0 |Stack Pointer — 2 1 |lrrelevant Data (Note 1)
7 D | Return Address of Main Program 1 |lIrrelevant Data (Note 1}
8 0 |Subroutine Address 1 |lIrrelevant Data (Note 1)
Note 1. lt device which is addresed during this cycle uses VMA, then the Data Bus will go to the high impedance three-state condition.
ding on bus , data from the previous cycle may be retained on the Data Bus.

MOTOROLA MICROPROCESSOR DATA
3-89

This Material Copyrighted By Its Respective Manufacturer

MC6800

TABLE 11 — INDEXED MODE CYCLE-BY-CYCLE

L Address Mode [l Cycle VMAT [[]
ond Instructions Cycles Line Address Bus Line Dats Bus
INDEXED {
MP 1 1 Op Code Address 1 | OpCode K
a 2 1 Op Code Address + 1 1 Offset
3 0 index Register 1 Irrelevant Data {Note 1}
4 0 Index Register Plus Offset (w/o Carry) 1 Irretevant Data {Note 1)
ADC EOR 1 1 Op Code Address 1 Op Code
:23 (‘3?1: 2 1 Op Code Address + 1 1 Offset
BIT SBC 5 3 0 index Register 1 Irrelevant Data {Note 1)
CMP sue 4 1] Index Register Plus Offset (w/o Carry} 1 Irretevant Data {Note 1}
5 1 Index Register Plus Offset 1 Operand Data
CcPX 1 1 Op Code Address 1 Op Code
tgi 2 1 Op Code Address + 1 1 Offset
6 3 0 Index Register 1 Irrelevant Data {Note 1)
a4 0 Index Register Plus Offset (w/o Carry) 1 Irrelevant Data {Note 1)
5 1 Index Register Plus Offset 1 Operand Data (High Order 8yte)
6 1 Index Register Plus Offset + 1 1 Operand Data (Low Qrder Byte}
STA 1 1 Op Code Address 1 Op Code
2 1 Op Code Address + 1 1 Offset
6 3 0 index Register R 1 Irrefevant Data (Note 1)
4 0 Index Register Plus Offset (w/o Carry) 1 Irrelevant Data (Note 1)
5 (V] Index Register Plus Offset 1 Irrelevant Data (Note 1)
6 1 Index Register Plus Offset o] Operand Data
ASL LSR 1 1 Op Code Address 1 Op Code
é‘fg ';(E)(E 2 1 Op Code Address + 1 1 Offset
ggg ??P 7 3] Iindex Register 1 irrelevant Data {Note 1}
ING 4 0 Index Register Pius Offset {w/o Carry) 1 trrelevant Data (Note 1}
5 1 index Register Plus Offset 1 Current Operand Data
6 0 Index Register Plus Offset 1 Irrelevant Data {Note 1}
7 1/0 index Register Plus Offset a New Operand Data (Note 2}
{Note
2)
STS 1 1 Op Code Address 1 Op Code
STX 2 1 Op Code Address + 1 1 | Offset
7 3 0 Index Register 1 irrelevant Data (Note 1)
4 0 Index Register Plus Offset (w/o Carry} 1 Irrelevant Data (Note 1}
5 0 Index Register Plus Offset 1 Irrelevant Data (Note 11}
6 1 Index Register Plus Offset o Operand Data {High Order Byte)
7 1 Index Register Plus Offset + 1 0 Operand Data {Low Order Byte)
JSR 1 1 Op Code Address 1 Op Code
2 1 Op Code Address + 1 1 Offset
3 0 index Register 1 Irrelevant Data (Note 1)
8 4 1 Stack Pointer ¢ Return Addrass (Low Order Byte}
5 1 Stack Pointer — 1 0 Return Address (High Order Byte)
6 0 Stack Pointer — 2 1 Irrelevant Data (Note 1}
7 0 index Register 1 Irrelevant Data {(Nate 1}
8 0 Index Register Plus Offsat (w/o Carry) 1 Irrelevant Data (Note 1)
Note 1. I' device which is uddlesned during this cycle uses VMA, then the Data Bus will go to the high impedance three-state condition.
ding on bus data from the previous cycle may be retained on the Data Bus.
Note 2. For TST, VMA 0 and Operand data does not change.

This Materia

MOTOROLA MICROPROCESSOR DATA

3-90

Copyrighted By Its Respective Mnufacturer

nMcCcsgoo

ORDERING INFORMATION

Package Type Frequency (MHz) Temperature Order Number
Cerdip 1.0 0°C to 70°C MC6800S
S Suffix 1.0 —40°C to 85°C MC6800CS
1.5 0°C to 70°C MC68AQ0S
1.5 —40°C to 85°C MC68A00CS
2.0 0°C to 70°C MC68B00S
Plastic 1.0 0°C to 70°C MC6800P
P Suffix 1.0 —-40°C to 85°C MC6800CP
1.5 0°C to 70°C MC68ACOP
15 —40°C to 85°C MC68AGOCP
2.0 0°C to 70°C MC68BOOP

PIN ASSIGNMENT

vVssl]' @ AN N RESET
HALTO ¢ 39f]1TSC
#1003 38ONC
RGQ4 3/ 92
vMAallb 3u[JDBE
Nmids 350N.C.
BAL / 34R/W
veells 33[1D0
Aolle 32[D1
aifo 31[JD2
A2 30 D3
A3z 23[1D4
Asf]is 28{]05
A5[}14 27006
asls 26 [1D7
a7lhe 25A15
asll]:7? 2a[1A14
asi]s 23[JA13
aofhg 2203412
Ao 210vss

MOTOROLA MICROPROCESSOR DATA
3-91
This Material Copyrighted By Its Respective Manufacturer

