NexGen~ Bus Operations

Bus Operations

This chapter covers NexBus processor cycles. NexBus® system bus cycles and cache-coherency
operations. The processor bus cycles are conducted primarily on NexBus although their effects can
also be seen on the L2 SRAM bus. The NxCLK clock, shown in the timing diagrams accompanying
this text. runs at half the irequency ot the processor's internal clock.

= In this chapter. the term “clock" refers to the NexBus clock not to the processor
clock. as is meant elsewhere throughout this book.

The notation regarding Source in the left-hand column of the timing diagrams shown in this section
indicates the chip or logic that generates the signal. When signals are driven by multiple sources, all
sources are shown, in the order in which they drive the signal. In some cases, signals take on
different names as outputs are NANDed in group-signal logic. In these cases. the signal source is
shown with additional notations. where the additional notations indicate the device or logic that
originally caused the change in the signal.

Level-2 Asynchronous SRAM Accesses

Figure 18 in the Nx386 Hardware Architecture chapter compares the basic clock timing for the
processor, its L1 caches. and the L2 cache. An L1 cache miss may cause an access (0 the L2 cache,
which resides off-chip on a dedicated 64-bit bus. Figure 28 shows a read. write, and read to the L2
cache. Transfers can begin on any processor clock and occur at the peak rate of eight bytes every -
two processor clocks.

In addition. Figure 28 shows a rcad followed by a write followed by a read cycle. Reads (or writes)
can be back-to-back without dead cvcles. An idle cycle is shown after the last read. The processor
clock. which runs at twice the rate of the NexBus clock (NxCLK). is represented here by its two
phases, PHI and PH2. These phases are not visible at the pins except through the delayed outputs,
XPHI and XPH2. The data-sampling point is shown as the falling edge of PH2. which is relative to
the rising edge of NxCLK. Two pins for COE* are shown, A and B. Both pins are identical in
function and transition on the rising edge of PHI. The two pins are made available for loading
considerations.

PRELIMINARY . Nx586™ Processor 57

Bus Operations

NexGen~

i Cache Read { Cache Write | Cache Read C‘giﬁe
S NxCLK | I I I [] .] |
i
P PHI e aqr e Jr re I
—» = Sampling Point Relative to CLK

P PH2 M7 It

| ; i

CADDR<«17:3> - -

P CBANK<1:0> X addre?ss x addrevss X addréss

i i |
P COEA* COEB" ! i |

Qsamoting point v v
PL CDATA<63:.0> — [ocaa data b—
P CWEN*
L Source P=Processor, L=L2 cache, S=System logic

Figure 28 Level-2 Asynchronous Cache Read and Write

The L2 cache controller provides data to the processor in 3 CPU phases. In other words, the
cache cycle time is 1.5 CPU clocks (one clock is equal to two phases). Data is provided to
either the CPU core or the L1 cache in 1.5 CPU clocks. L2 cache address generation occurs

before the cycle starts.

figure 29.

A total of 7.5 clocks are required for a cache line fill, as shown is

Cache Read Cache Read | Cache Read Cache Read :
S NxCLK [l |] [| | 1]
P PHI [S N S S I I A O
—» ~<— Sampling Point Relative to CLK
P PH2 S [I IS I I N I N O N
| | !
CADDR<17:3 \ -
P CBANK:T :O>> X address L addre|ss X addreiss X addr:ess r
l 1l
P COEA*® COEB* ! ! 1 |
«sampling point ", v v
PL CDATA<63:0> —{ 7] cata] data | data Y{ data —
P CWEN"
L Source P=Processor, L=L2 cache, S=System logic
L
Figure 29 Level-2 to Level-1 Asynchronous Cache Line Fill.
58 Nx586™ Processor PRELIMINARY

NexGen~ Bus Operations

Level-2 Synchronous SRAM Accesses

The type of SRAMs required for synchronous mode are "Synchronous Flow Through" with wide /O
(32 or 36 bits). A single clocking pin, CKMODE is used to initiate the read/write operations. At the
rising edge of CKMODE, all addresses, write-enables, chip selects and data are registered within the
SRAM. It is assumed that new signals can be applied to the SRAMs prior to data out valid. Read
data is sampled on the next rising edge of CKMODE (approximately two PH2 clocks later). A dead
cycle for bus turn around time is provided during read followed by write cycles (approximately one
PH2 clock). Figure 30 shows the signal relationships for the synchronous SRAM mode.

, Dead | Cache .
Cache Read | Cycle | write !

P PHI JL I L I | M T1
P PH2 T {_I f_] ﬂ .
S CKMODE M nm N n_r

CADDR<17:3> X
CBANK<1:0>

P COEA" [
P CWEn*) ‘
sampling point v

PL CDATA<63:0> —— =«={ daa }—r data —

P WE'(COEB") l

read address x write address X

L Source: P=Processor, L=L2 cache, S=System logic

Figure 30 Level-2 Synchronous Cache Read and Write cycles

PRELIMINARY / Nx586™ Processor 59

Bus Operations NexGen~

NexBus and NexBus® Arbitration and Address Phase

Processor operations on NexBus/NexBus> may or may not begin with arbitration for the bus. To
obtain the bus, the processor asserts NREQ*, LOCK*, and/or AREQ* to the arbiter, which responds
to the arbitration winner with GNT*. Automatic re-grant occurs when the arbiter holds GNT*
asserted at the time the processor samples it, in which case the processor need not assert NREQ*,
LOCK*, or AREQ* and can immediately begin its operation.

NREQ#*, when asserted, remains active until GNT* is received from the arbiter. In systems using the
systems logic that interfaces directly to NexBus, NREQ* is typically treated the same as AREQ¥;
when NexBus control is granted, control of all other buses is also granted at the same time.

LOCK* is asserted during sequences in which multiple bus operations should be performed
sequentially and uninterrupted. This signal is used by the arbiter to determine the end of such a
sequence. Cache-block fills are not locked: they are implicitly treated as atomic reads. Arbiters
may allow a master on another system bus to intervene in a locked NexBus transaction. To avoid
this, the processor asserts AREQ*. LOCK* is typically software-configured to be asserted for read-
modify-writes and explicitly locked instructions.

AREQ* is asserted to gain control of the NexBus? or any other buses supported by the system. This
signal always remains active until GNT* is received.

When GNT* is received, the processor places the address of a qword (for memory operations) on
NxAD<31:3> or the address of a dword (for I/O operations) on NxAD<15:2>. It drives status bits on
NxAD<63:32> and asserts its ALE* signal to assume bus mastership and to indicate that there is
valid address on the bus. The processor asserts ALE* for only one bus clock. The slave uses the
GALE ssignal generated by system logic to cnable the latching of address and status from the
NexBus~.

NexBus Basic Operations

The Nx586 supports two local bus interfaces, NexBus and NexBusY. NexBus is considered a true
CPU or processor local bus. Where as, NexBus® is a NexGen proprietary system bus. During
RESET* active, the XCVERE* pin is sampled for the local bus mode. XCVERE* determines what
type of bus is generated by the processor. When pulled high, the Nx586 will generate the NexBus
standard which requires external transceivers to connect the processor to the NexBus® system bus.
Figure 31 and 32 show the NexBus transceiver control signals for basic QWORD Read and Write
operations. AD<63:0> is the multiplexed NexBus processor local bus while NxAD<63:0> is the
multiplexed NexBus> system local bus.

60 Nx586™ Processor PRELIMINARY

NexGen~

Bus Operations

NxCLK

.

NREQ*
GNT*
XBCKE™
XBOE*
XNOE*
AD<63:0>
NxAD<63:0>
ALE"

GALE

4~ ® v v WV VOV o
-

GXACK
[— Source:

Request Grant Address Dead Acknidge NxAD AD
i Phase | Phase| Phase | Phase | Phase | Phase | Phase |

1 N EE

N

—<address } __11412\13)

{adaress } —{oma }

L J
.

P=Processor, S=System or memory logic,
T=Targe slave or slave interface, O=Other master

Figure 31 Fastest NexBus Single-Qword Read

S NxCLK
P NREQ"
S GNT®
P XBCKE*®
P XBOE"
P XNOE”*

P.T AD<83:0>

P. T NxAD<63:0>

P ALET

S GALE
‘ T GXACK
Source

Request Grant Address Dead Acknldge AD NxAD
' Phase | Phase | Phase | Phase | Phase | Phase | Phase |

I I

—
J
) o
—address | { data
[t 1 —
! - f \
\address \j‘_"f__, e
I
——

) H
i L

P=Processor, S=System or memory logic,
T=Targe slave or slave interface, O=Other master

Figure 32 Fastest NexBus Single-Qword Write

PRELIMINARY

Nx586™ Processor

61

Bus Operations NexGen~

NexBus® Single-Qword Memory Operations

Figure 33 shows the fastest possible NexBus® single-qword read. The notation regarding Source
indicates the logic that originated the signal as an output. In this figure and others to follow, the
source of group signals (such as GXACK) is shown with additional symbols indicating the device or
logic that output the originally activating signal. For example, the source of the GXACK signal is
shown as "S,P", which means that system logic (S) generated GXACK but that the processor (P)
caused this by generating XACK*. In some timing diagrams later in this section, bus signals take on
different names as outputs cross buses through transceivers or are ORed in group-signal logic; in
these cases, the source of the signals is shown with additional symbols indicating the logic that
originally output the activating signals.

The data phase of a fast single-qword read starts when the slave responds to the processor's request
by asserting its XACK* signal. The processor samples the GXACK and GXHLD signals from system
logic to determine when data is placed on the bus. The processor then samples the data at the end of
the bus clock after GXACK is asserted and GXHLD is negated. The operation finishes with an idle
phase of at least one clock.

This protocol guarantees the processor and other caching devices enough time to recognize a
modified cache block and to assert GDCL in time to cancel a data transfer. A slave may not assert
XACK* until the second clock following GALE. However, the slave must always assert XACK*
during or before the third clock following GALE, since otherwise the absence of an active GXACK
indicates to the systems logic interface between the NexBus> and other system buses (called the
alternate-bus interface) that.the address must reside cn the other system bus. In that case, the
systems logic interface to that other bus assumes the role of slave and asserts GXACK.

Figure 33 shows when GBLKNBL may be asserted. If appropriate, the slave must assert GBLKNBL
no later than it asserts XACK*, and it must keep GBLKNBL asserted until it negates XACK*. It
must negate GBLKNBL at or before it stops placing data on the bus. Although not shown,
OWNABL must also be valid (either asserted or negated) whenever GXACK is asserted. In the
cxample shown in Figure 34, the slave asserts GXACK at the latest allowable time. thereby
effectively inserting one wait state. The slave may or may not drive the NxAD<63:0> signals during
the wait states. The processor will not drive them during the data phase of a read operation.

62 Nx586™ Processor PRELIMINARY

NexGen~ Bus Operations

Grant Address Dead Acknidge Data
© Phase| Phase | Phase | Phase | Phase |

S NxCLK

S GNT®

P GALE []

P,T NxAD<63:0> ———{address)——{=i i data }—
T GXACK N
T GXHLD 7]

T GBLKNBL] }
1 _

—— Source: P=Processor, S=System or memory logic,
T=Target slave or slave interface, O=Other master

Figure 33 Fastest NexBus® Single-Qword Read

! Grant Address Dead Delayed Acknidge Data
Phase 1 Phase | Phase | GXACK| Phase | Phase i

s Nk (Y I O
S GNT |] R
P GALE [

P.T NxAD<63:0> ———{agdress)—_ = - { daa }
T GXACK [

T GXHLD

T GBLKNBL =] B

L— Source:

P=Processor, S=System or memory logic,
T=Target slave or slave interface, O=Other master

Figure 34 Fast NexBus® Single-Qword Read with a delayed GXACK

If the slave is unable 1o supply data during the next clock after asserting NACK*. the siave must
assert its XHLD* signal at the same time. Similarly. if the processor is not ready to accept data in
the next clock it asserts its NHLD* signal. The slave supplics data in the clock following the first
clock during which GXACK is asserted and GXHLD is negated. The processor strobes the data at
the end of that clock. A single-qword read with wait states is shown in Figure 35 and 36. For such
an operation. the slave must negate XACK* after a single clock during which GXACK is asserted

PRELIMINARY Nx586™ Processor 63

Bus Operations NexGen~

and GXHLD is negated, and it must stop driving data onto the bus one clock thereafter. “The
processor does not assert XHLD* while GALE is asserted, nor may either party to the transaction
assert XHLD* after the slave negates GXACK. In the example shown in Figure 35, the slave asserts
GXACK at the latest allowable time, thereby inserting one wait state, and GXHLD is asserted for
one clock to insert an additional wait state. The slave may or may not drive the NxAD<63:0> signals
during the wait states. The processor will not drive them during the data phase of a read operation.

Grant Address Dead Delayed Wait Acknldge Data
| Phase| Phase | Phase |GXACK| State | Phase | Phase |

S NxCLK IIII‘IIII]‘]‘II]]I

S GNT*

P GALE \

J\audress I‘

P,T NxAD<63:0>

T GXACK

T GXHLD

T GBLKNBL

L Source: P=Processor, S=System or memory logic,

T=Target slave or slave interface, O=Other master

Figure 35 NexBus® Single-Qword Read with Wait States using a delayed GXACK

64 Nx586™ Processor PRELIMINARY

NexGen~ Bus Operations

Grant Address Dead Wait Wait Acknldge Data
Phase | Phase | Phase | State | State | Phase | Phase i

S NxCLK
S GNT*
P GALE

P, T NxAD<63:0>

T GXACK | |

T GXHLD | |

T GBLKNBL [eiaae] [el
L Source: P=Processor. S=System or memory logic,

i T=Target slave or slave interface, O=Other master

Figure 36 NexBus® Single-Qword Read with Wait States using GXHLD only

A single-qword write operation is handled similarly. Figure 37 illustrates the fastest write operation
possible. Figure 38 shows a single-qword write with wait states. After the bus is granted, the
processor puts the address and status on the bus and asserts ALE*. As in the read operation. the slave
must assert its XACK* signal during ecither the second or third clock following the assertion of
GALE. If the slave is not ready to strobe the data at the end of the clock following the assertion of
GXACK. it must assert its XHLD* signal. The processor places the data on the bus in the clock after
the assertion of GXACK. which may be as soon as the third clock following the assertion of GALE.
The slave samples GXHLD to determine when the data is valid. The processor will drive data as
soon as it is able. and it continues to drive the data for one (and only one) clock after the
simultancous assertion of GXACK and negation of GXHLD. As in the read operation. the slave's
XACK* is asserted until the clock following the trailing edge of GXHLD.

PRELIMINARY - Nx586™ Processor 65

Bus Operations

NexGen~

. Grant ‘Address Dead Acknldge Data
| Phase| Phase | Phase | Phase | Phase |
S NxCLK
S GNT*
P GALE
P NxAD<63:0>
T GXACK
T GXHLD
T GBLKNBL
L Source: P=Processor, S=System or memory logic,
T=Target slave or slave interface, O=Other master
Figure 37 Fastest NexBus® Single-Qword Write
Grant Address Dead Delayed Wait Ac.knldge Data
| Phase| Phase | Phase | GXACK| State | Phase | Phase |
S NxCLK
S GNT*
P GALE
P NxAD<63:0>
T GXACK
T GXHLD
T GBLKNBL
L Source: P=Processor, S=System or memory logic,
- T=Target slave or slave interface, O=Other master

Figure 38

66

NexBus® Single-Qword Write With Wait States

Nx586™ Processor PRELIMINARY

NexGen~ : Bus Operations

NexBus® Cache Line Memory Operations

The processor performs cache line fill or block operations with memory at a much higher bandwidth
than the single-qword operations described in the previous section. Block operations, both reads and
writes, are done only in four-qword increments (32-bytes). All cache line reads are cache fills.

Cache line reads and writes are indicated by the assertion of BLKSIZ* during the address/status
phase of the bus operations. as previously defined for single-qword operations.

A cache line operation consists of a single address phase followed by a multi-transfer data phase. The
data transfer may begin with any qword in the block. as indicated by the address bits. but it then
proceeds through additional qwords of the specified contiguous data in any order.

NexBus® I/0 Operations

I/0 operations on the NexBus” are performed exactiy like single-qword reads and writes, with three
exceptions. First. the /O address space is limited to 64K bytes. Second. the 16-bit I/O address is
broken into two ficlds: fourtcen address bits and two byte-enable bits. [/O addresses do not use
BE<7:2>* (which must be set to all 1's) but instead specify a quad address on NxAD<2>. Third, data
is always transferred on NxAD<15:0>. and NxAD<63:16> is undefined during the data transfer
phase of an I/O operation.

[/0O operations are indicated by driving 010 (data read) and 011 (data write) on NxAD<48:46> and
all zeros on NxAD<31:16> when GALE is asserted. I/O space is always non-cacheable. so a slave
should never assert GBLKNBL when responding to an I/O operation.

NexBus® Interrupt-Acknowledge Sequence

When an interrupt request is sensed by external interrupt-control logic. the request is signaled to the
processor by the control logic, the processor acknowledges the interrupt request (during which
sequence the controller passes the interrupt vector), and the processor services the interrupt as
specified by the vector. The hardware mechanism is described above in the Hardware Architecture
chapter.

An interrupt-acknowledge sequence. shown in Figure 39, consists of two back-to-back locked reads
on NexBus®. where the operation type (NxAD<48:46>) is 000 and the byte enable bits BE<7:0>* =
11111110, The iirst (synchronizing) read is used latch the state of the interrupt controller. It is
indicated by NxAD<2> = | (I/O-bvte address 4). The sccond read is used to transter the 8-bit
interrupt vector on NxAD<7:0> to the processor. which uses it as an index to the interrupt service
routine. This read is indicated by NxAD<2> = 0 (I/O-byte address 0). During these two reads only
the least significant bit of the address ficld is driven to a valid state. The most signiiicant bits are
undefined. After the interrunt is serviced. the request is clecared and normal processing resumes.

PRELIMINARY Nx586™ Processor 67

Bus Operations NexGen~

S NHOLK pEpipEnlnlnE el el nEnl
S GNT* : T Er
P GALE [—] []
P.S NxAD<63:0> {{address} {address}——{ data_}
S GXACK
P LOCK#
L Source: P=Processor, S=System or memory logic,
: T=Target slave or slave interface, O=Other master

Figure 39 Interrupt Acknowledge Cycle

NexBus® Halt and Shutdown Operations

Halt and shutdown operations are signaled on the NexBus? by driving 001 on NxAD<48:46> during
the address/status phase, as shown in Figure 40. The halt and shutdown conditions are distinguished
from one another by the address that is simultaneously signaled on the byte-cnable bits, BE<7:0>*
on NxAD<39:32>. The processor does not generate a data phase for these operations.

Type of NxAD<48> | NxAD<47> | NxAD<46> | NxAD<39:32> NxAD<31:3> NxAD<2>
Bus Cvcle M/IO* D/C* W/R* BE<7:0>*

Halt 0 Q 1 11111011 undefined

Shutdown 0 0 ! i 11111110 undefined 0

Figure 40 Halt and Shutdown Encoding

For the halt operation. the processor places an address of 2 on the bus. signified by BE<7:0>* bits
(NxAD<39:32>) = 11111011. NxAD<2> = 0 and NxAD<31:3> are undefined. After this, the
processor remains in the halted state until NMI*, RESETCPU*, or RESET* becomes active.

For the shutdown operation. the processor places an address of 0 on the bus. signified by BE<7:0>*
bits (NxAD<39:32>) = 11111110. NxAD<2> = 0 and NxAD<31:3> are undefined. An external
system controller shouid decode the shutdown cycle and assert RESETCPU*. After this, the
processor performs a soft reset. RESETCPU*; that is. the processor is reset. but the memory
contents, including modified cache blocks. are retained.

Because the Nx586 processor has a 64-bit data bus rather than a 32-bit data bus, cight total byte-
cnable bits (BE<7:0>*) are specified for quadword wide bus.

68 ' Nx586™ Processor PRELIMINARY

NexGen~ Bus Operations

Obtaining Exclusive Use Of Cache Blocks

The processor can obtain ownership of a cache block either preemptively or passively. Preemptive
ownership is gained by asserting OWN* during the address/status phase of a read or write operation.
Whenever the processor needs to write a cache block that is either cached in the shared or invalid
state, it performs a preemptive read-to-own operation by asserting OWN* during a single-qword
write or four-qword block read.

Passive ownership is normally gained when the processor performs a block read, because other
NexBus caching devices must snoop block reads. If any part of a block addressed by the processor's
read operation resides in another NexBus” device's cache. regardless of state, that device asserts
SHARE* after the assertion of GALE but not later than the clock during which the first qword of the
block is transferred. SHARE* remains asserted through the entire data transfer. If the processor sees
GSHARE negated during a block read when it samples the first qword of the block. it knows that it
has the only copy. It can therefore cache the block in the exclusive state rather than the shared state,
it and only if OWNABL is asserted by system logic.

It another NexBus” caching device is unable to meet this timing in the fastest possible case, it must
assert XHLD* to delay the operation until it is able to perform the cache check. While it is possible
to put a caching device on NexBus? that is unable to check its cache and report SHARE* correctly,
but instead always asserts SHARE*, this has a very negative effect on system efficiency. It is also
possible to design a device that invalidates its cache block during any block read hit. in which case
only the efficiency of that one device is impaired.

If the processor addresses a non-cacheable block on a system bus other than NexBus?, the systems
logic interface between the NexBus? and the other system bus (called the alternate-bus interface)
must indicate this by negating GBLKNBL. and it may not perform block reads or writes to such a
block. If the block on the other bus is cacheable, it can only be cached in the shared state, since
standard svstem buses (such as VL bus and ISA bus) do not support the MESI caching protocol, and
it is not possible to cache their memory addresses in the exclusive state.

The OWNABL signal from svstem logic is used to indicate cacheability of locations on other system
buses. Whenever OWNABL is negated during a bus operation, the processor will not cache the block
in the exclusive state even ii the processor asserted OWN*: instead, it may cache the block in the
shared state if other conditions permit it.

GBLKNBL and GSHARE must be asserted by system logic at the same time that OWNABL is
negated. The timing of these three signals is identical: they should be valid whenever GXACK is
asserted. Thev may be (but need not be) asserted ahead of XACK*. and may (but. except for
GSHARE. need not) be held one ciock after the negation of XACK*. This timing differs from that of
GSHARE. since when OWNABL is asserted GSHARE is not required to be vaiid until the clock
toilowing the negation of GXHLD—i.c.. coincident with the data transfer.

PRELIMINARY Nx586™ Processor 69

Bus Operations NexGen-

NexBus® Intervenor Operations

.The examples given above assume that the addressed data does not reside in a modified cache block.
When an operation by another NexBus> master results in a cache hit to a modified block in the
processor, the processor intervenes in the operation by asserting DCL*. The timing for DCL* is the
same as that for SHARE*: the NexBus master samples GDCL on the same clock in which it samples
NexBus® data. An asserted GDCL indicates to the master that data cached by the processor is
modified. To meet the fastest timing requirements, the processor asserts DCL* no later than the third
clock following the assertion of GALE. If a MESI write-back caching device is unable to determine
in a timely manner whether a transaction hits in its cache, it must assert XHLD* to delay the transfer.

If a block write operation by another master hits a modified cache block in the processor, the
processor does not assert DCL*, since such a block write replaces all of a cache block. Instead, the
processor invalidates the block.

An addressed slave that sees GDCL asserted during the first qword transfer of an operation must
abort the operation by negating GXACK. It may then perform a block write-back starting with the
first qword. Immediately after the operation is completed, as determined by the negation of GXACK,
the NexBus® Arbiter must grant the bus to the intervenor by asserting GNT*. The arbiter must not
grant the bus to any other requester, even if the previous master has asserted AREQ* and/or LOCK*,
because DCL* has absolutely the highest priority. Upon seeing GNT* asserted, the intervenor
(whether the processor or another master) immediately updates the memory by performing a block
write, beginning at the qword address specified in the original operation. The intervenor negates
DCL* before performing the first data transfer, but not before it asserts ALE*. During this memory
update, the master must sample the data it requested (if the operation was a read) as it is sent to
memory on NexBus? by the intervenor. If the master is not ready to sample the data, it can assert
XHLD*, as can both the intervenor and the slave; all three parties to the operation examine GXHLD
to synchronize the data transfer.

Modified Cache-Block Hit During Single-Qword Operations

During single-qword reads that hit in a modified cache block, the NexBus> sequence looks like a
normal single-qword read from the memory followed by a block write by the intervenor. Figure 41
illustrates the timing. The fastest time is shown for the operation, while both the fastest and slowest
possible times are shown for the leading edge of GDCL. For a slow device intervening in a fast
operation, GDCL is available to be sampled on the same clock as the first qword of data is available.

In Figure 41, two sources are shown for GALE and NxAD<63:0>, and one source (Sp) has a
subscript. The source is the chip or logic that outputs the signal. The subscript for the source
indicates the chip or logic that originally caused the change in the signal.

During single-qword writes, the master with the modified cache block asserts DCL* to indicate that
the single write will be followed by a block write. If the single write included only some of the bytes
of the qword, the intervenor records this fact, and during the subsequent block write it outputs byte-
cnable bits indicating the other bytes of the qword. For example, if the byte-enable bits of the single
write were 00000111, the intervenor outputs 11111000. In other words. the intervenor updates only
those bytes that were not written by the master. Except for such intervening write-back operations,

70 Nx586™ Processor PRELIMINARY

NexGen~ Bus Operations

block writes must have all byte-enable bits asserted (00000000). During block write-backs, byte-
enable bits apply only to the first qword, so all bytes of the final three qwords are written.

S NCLK (N U I I

S GNT*
(To Other Master)
S GNT*

(To Nx586 Processor)

S,SP GALE]
S.P NxAD<63:0> ——{ address Y =

S GXACK

S GXHLD 1 I A]
P DCL [ey I

L Source: P=Processor, S=System or memory logic,

T=Target slave or slave interface, O=Other master

Figure 41 NexBus® Single-Qword Read Hits Modified Cache Block

Modified Cache-Block Hit During Four-Qword (Block) Operations

As described above for single-qword operations, a block read by another NexBus> master may hit a
modified cache block in the processor. When this happens. the processor responds exactly as for a
single-qword operation: it asserts DCL*, waits for the assertion of GNT* following the negation of
GXACK. and proceeds with a block write-back. It writes the entire four-qword block back to
memory. The original bus master must sample the data in this second block operation while it is
transferred to memory. The master may insert wait states by asserting XHLD*. Since the processor,
as intervenor, begins its write-back with the address requested by the master, if the original block
read is a four-qword operation, the master can intercept the data as it is transferred to memory and
find it in the expected order.

Block writes can hit in a modified or exclusive cache block only if the operation was initiated by the
DMA action of a disk controller. not by the processor. Since only complete block writes are
permitted. no write-back is required and the processor invalidates its cache block.

PRELIMINARY Nx586™ Processor 71

THIS PAGE INTENTIONALLY LEFT BLANK

