
Dynamic C TCP/IP
User’s Manual

Volume 2
050223 • 019-0144-B

This manual (or an even more up-to-date revision) is available for free download
at the Z-World website: www.zworld.com.

Dynamic C TCP/IP User’s Manual

Volume 2

Part Number 019-0144–B • Printed in U.S.A.

©2005 Z-World Inc. • All rights reserved.

Z-World reserves the right to make changes and
improvements to its products without providing notice.

Trademarks
Dynamic C is a registered trademark of Z-World Inc.

Windows® is a registered trademark of Microsoft Corporation

Z-World, Inc.
2900 Spafford Street

Davis, California 95616-6800
USA

Telephone: 530.757.3737
Fax: 530.757.3792 or 530.753.5141

www.zworld.com
ii Dynamic C TCP/IP User’s Manual

http://www.zworld.com

Table of Contents

1 Introduction.. 1

2 Web-Enabling Your Application........ 3
2.1 Designing Your Application 3

2.2 The Smallest Web Server in the WWW ... 4

2.3 Web Server Architecture 6
Application Block 7
HTTP Block 8
HTTP Block Subcomponents 9
Zserver Block 10

2.4 Architecture of a Toy Application.......... 11

2.5 A Simple but Realistic Application........ 13

2.6 Adding Access Controls 16

2.7 A Full-Featured Application................... 22

2.8 Living Without RabbitWeb and FAT...... 26

3 Server Utility Library....................... 31
3.1 Data Structures for Zserver.lib 31

MIMETypeMap Structure 32
ServerSpec Structure 33
ServerAuth Structure 35
ServerPermissions Structure 35
RuleEntry Structure 36
ServerContext Structure 36
SSpecStat Structure 37
sspec_fatinfo Structure 37
FormVar Structure 38
SSpecFileHandle Structure 38

3.2 Constants Used in Zserver.lib................. 38
ServerSpec Type Field 38
ServerSpec Vartype Field 39
ServerPermissions Servermask Field 39
Configuration Macros 39
Macros for Control Data Initialization

41

3.3 File Compression Support 44

3.4 HTML Forms.. 45

3.5 API Functions... 45
sauth_adduser 46
sauth_authenticate 47
sauth_getpassword............................. 48
sauth_getserver 48
sauth_getuserid 49
sauth_getusermask............................. 50
sauth_getusername............................. 51
sauth_getwriteaccess 52
sauth_removeuser 53
sauth_setpassword 54
sauth_setserver................................... 55
sauth_setusermask 56
sauth_setwriteaccess 57
sspec_access 58
sspec_addCGI 59

sspec_addform 60
sspec_addfsfile................................... 61
sspec_addfunction 62
sspec_addfv 63
sspec_addrootfile 64
sspec_addrule..................................... 65
sspec_adduser 67
sspec_addvariable 68
sspec_addxmemfile 69
sspec_addxmemvar............................ 70
sspec_aliasspec 71
sspec_automount 72
sspec_cd... 74
sspec_checkaccess 75
sspec_checkpermissions 76
sspec_close .. 77
sspec_delete 78
sspec_dirlist 79
sspec_fatregister 82
sspec_fatregistered............................. 83
sspec_findfv....................................... 84
sspec_findname 85
sspec_findfsname............................... 86
sspec_findnextfile 87
sspec_getfileloc 88
sspec_getfiletype 89
sspec_getformtitle.............................. 90
sspec_getfunction 91
sspec_getfvdesc 92
sspec_getfventrytype 93
sspec_getfvlen 94
sspec_getfvname................................ 95
sspec_getfvnum 96
sspec_getfvopt 97
sspec_getfvoptlistlen 98
sspec_getfvreadonly 99
sspec_getfvspec 100
sspec_getlength................................ 101
sspec_getMIMEtype........................ 102
sspec_getname 103
sspec_getpermissions....................... 104
sspec_getpreformfunction 105
sspec_getrealm................................. 106
sspec_getservermask 107
sspec_gettype................................... 108
sspec_getuserid 109
sspec_getusername 110
sspec_getvaraddr 111
sspec_getvarkind 112
sspec_getvartype.............................. 113
sspec_getxvaraddr 113
sspec_mkdir 114
sspec_needsauthentication............... 115
sspec_open....................................... 116
sspec_pwd.. 119
sspec_read.. 120
sspec_readfile 121
sspec_readvariable........................... 122
sspec_remove................................... 123
sspec_removerule 124
sspec_removeuser 125
sspec_resizerootfile 126
sspec_restore.................................... 127
TCP/IP User’s Manual iii

sspec_rmdir 128
sspec_save....................................... 129
sspec_seek....................................... 130
sspec_setformepilog........................ 131
sspec_setformfunction 132
sspec_setformprolog 133
sspec_setformtitle............................ 134
sspec_setfvcheck 135
sspec_setfvdesc 136
sspec_setfventrytype 137
sspec_setfvfloatrange 138
sspec_setfvlen 139
sspec_setfvname.............................. 140
sspec_setfvoptlist 141
sspec_setfvrange 142
sspec_setfvreadonly 143
sspec_setpermissions 144
sspec_setpreformfunction 145
sspec_setrealm 146
sspec_setsavedata............................ 147
sspec_setuser 148
sspec_stat .. 149
sspec_tell ... 151
sspec_write...................................... 152

4 HTTP Server 153
4.1 HTTP Server Data Structures 154

HttpState 154

4.2 Configuration Macros 157
Sending Customized HTTP Headers to

the Client 159
Saving Custom Headers from the Client

160

4.3 Authentication Methods....................... 161

4.4 Setting the Time Zone.......................... 162

4.5 Sample Programs 163
Serving Static Web Pages 163
Dynamic Web Pages Without HTML

Forms 165
Web Pages With HTML Forms 170
HTML Forms Using Zserver.lib 176

4.6 HTTP File Upload 182
What is a CGI Function and Why is It

Useful? 182
How Do I Use the New CGI Facility?

183

4.7 API Functions for HTTP Servers......... 202
cgi_continue 202
cgi_redirectto 203
cgi_sendstring 204
http_abortCGI 205
http_addfile 206
http_contentencode 207
http_date_str.................................... 208
http_defaultCGI 209
http_delfile 211
http_finderrbuf 212
http_findname 213
http_finishCGI 214
http_getAction................................. 215

http_getCond................................... 217
http_getContentDisposition 218
http_getContentLength.................... 219
http_getContentType 220
http_getcontext................................ 221
http_getContext............................... 222
http_getData 223
http_getDataLength......................... 224
http_getField 225
http_getHTTPMethod 226
http_getHTTPVersion 227
http_getRemainingLength............... 228
http_getSocket................................. 229
http_getState.................................... 230
http_getTransferEncoding............... 231
http_getURL.................................... 232
http_getUserState 233
http_handler 234
http_idle .. 235
 http_init .. 236
http_nextfverr.................................. 237
http_parseform 238
http_safe .. 239
http_scanpost................................... 240
http_set_anonymous........................ 241
http_setauthentication 242
http_setCond 243
http_setcookie 244
http_set_path 245
http_setState 246
http_shutdown................................. 247
http_skipCGI................................... 248
http_sock_bytesready...................... 249
http_sock_fastread 250
http_sock_fastwrite 251
http_sock_gets................................. 252
http_sock_mode 253
http_sock_tbleft............................... 254
http_sock_write............................... 255
http_sock_xfastread 256
http_sock_xfastwrite 257
http_status 258
http_switchCGI 259
http_urldecode................................. 260
http_write .. 261
shtml_addfunction........................... 263
shtml_addvariable 264
shtml_delfunction............................ 265
shtml_delvariable 266

5 FTP Client...................................... 267
5.1 Configuration Macros 267

5.2 API Functions 268
ftp_client_setup............................... 268
ftp_client_tick 269
ftp_client_filesize............................ 270
ftp_client_xfer................................. 271
ftp_data_handler.............................. 272
ftp_last_code 274

5.3 Sample FTP Transfer 275

6 FTP Server 277
6.1 Configuration Macros 278

6.2 File Handlers.. 280
iv TCP/IP User’s Manual

Replacing the Default Handlers 280
File Handlers Specification 280
ftp_dflt_open 281
ftp_dflt_getfilesize........................... 282
ftp_dflt_read 283
ftp_dflt_write 284
ftp_dflt_close 285
ftp_dflt_list 286
ftp_dflt_cd 287
ftp_dflt_pwd 288
ftp_dflt_mdtm.................................. 289
ftp_dflt_delete.................................. 290

6.3 API Functions....................................... 291
ftp_dflt_is_auth................................ 291
ftp_init ... 292
ftp_load_filenames 293
ftp_save_filenames 294
ftp_set_anonymous.......................... 295
ftp_shutdown 296
ftp_tick ... 297

6.4 Sample FTP Server............................... 298

6.5 Getting Through a Firewall 299

6.6 FTP Server Commands......................... 299

6.7 Reply Codes to FTP Commands 301

7 TFTP Client 303
7.1 BOOTP/DHCP 303

7.2 Data Structure for TFTP....................... 304

7.3 API Functions....................................... 304
tftp_init ... 305
tftp_initx .. 306
tftp_tick ... 307
tftp_tickx.. 308
tftp_exec .. 309

8 SMTP Mail Client.......................... 311
8.1 Sample Conversation............................ 311

8.2 SMTP Authentication........................... 312

8.3 Sample Sending of an E-mail 313

8.4 Configuration Macros........................... 314

8.5 API Functions....................................... 316
smtp_data_handler........................... 316
smtp_mailtick 318
smtp_sendmail 319
smtp_sendmailxmem 320
smtp_setauth 321
smtp_setserver 322
smtp_setserver_ip 322
smtp_status 323

9 POP3 Client 325
9.1 Configuration.. 325

9.2 Steps to Receive E-mail........................ 326

9.3 Call-Back Function............................... 326
Normal call-back 326
POP_PARSE_EXTRA call-back 326

9.4 API Functions....................................... 327
pop3_init .. 327

pop3_getmail 328
pop3_tick ... 329

9.5 Sample Receiving of E-mail................. 330
Sample Conversation 331

10 Telnet ... 333
10.1 Telnet (Dynamic C 7.05 and later) 333

Setup 333
API Functions (Dynamic C 7.05 and

later) 334
vserial_close 334
vserial_init 334
vserial_keepalive 335
vserial_listen.................................... 336
vserial_open..................................... 337
vserial_tick....................................... 338

10.2 Telnet (pre-Dynamic C 7.05).............. 339
Configuration Macros 339
API Functions 339
telnet_init ... 339
telnet_tick .. 340
telnet_close 340
An Example Telnet Server 341
An Example Telnet Client 342

11 General Purpose Console............... 343
11.1 Zconsole Features 343

File System Requirement 343
TCP/IP and Zconsole 343

11.2 Login Name and Password................. 344

11.3 Zconsole Commands and Messages ... 344
Zconsole Command Data Structure 344

11.4 Zconsole Command Array.................. 346
Zconsole Commands 346
Zconsole Error Messages 353

11.5 Zconsole I/O Interface 356
How to Include an I/O Method 356
Predefined I/O Methods 356
 Multiple I/O Streams 357

11.6 Zconsole Execution 358
File System Initialization 358
Serial Buffers 358
Using TCP/IP 358
Required Zconsole Functions 359
console_init...................................... 359
console_tick 359
Useful Zconsole Function 360
con_backup...................................... 360
con_backup_bytes 360
con_backup_reserve 361
con_chk_timeout 361
con_load_backup 362
con_reset_io..................................... 362
con_set_backup_lx 363
con_set_files_lx 363
con_set_user_idle 364
con_set_timeout............................... 364
con_set_user_timeout 365
TCP/IP User’s Manual v

console_disable 365
console_enable 366
Zconsole Execution Choices 367

11.7 Backup System................................... 368
Data Structure for Backup System 368
Array Definition for Backup System

369

11.8 Zconsole Macros 370

11.9 Sample Program................................. 373

Notice to Users 377

Index .. 379
vi TCP/IP User’s Manual

1. Introduction

The TCP/IP User’s Manual is intended for embedded system designers and support professionals
who are using a Rabbit-based controller board. Most of the information contained here is meant
for use with Ethernet-enabled boards, but using only serial communication is also an option.
Knowledge of networks and TCP/IP (Transmission Control Protocol/Internet Protocol) is
assumed. For an overview of these two topics a separate manual is provided, An Introduction to
TCP/IP. A basic understanding of HTML (HyperText Markup Language) is also assumed. For
information on this subject, there are numerous sources on the Web and in any major book store.

The Dynamic C implementation of TCP/IP comprises several libraries. The main library is
DCRTCP.LIB. As of Dynamic C 7.05, this library is a light wrapper around DNS.LIB,
IP.LIB, NET.LIB, TCP.LIB and UDP.LIB. These libraries implement DNS (Domain Name
Server), IP, TCP, and UDP (User Datagram Protocol). This, along with the libraries ARP.LIB,
ICMP.LIB, IGMP.LIB and PPP.LIB are the transport and network layers of the TCP/IP pro-
tocol stack.

The Dynamic C libraries:

• BOOTP.LIB
• FTP_SERVER.LIB
• FTP_CLIENT.LIB
• HTTP.LIB
• POP3.LIB
• SMNP.LIB
• SMTP.LIB
• TFTP.LIB
• VSERIAL.LIB

implement application-layer protocols. Except for BOOTP, which is described in volume 1 of the
manual, these protocols are described in volume 2.

All user-callable functions are listed and described in their appropriate chapter. Example programs
throughout both volumes of the manual illustrate the use of all the different protocols. The sample
code also provides templates for creating servers and clients of various types.

To address embedded system design needs, additional functionality has been included in Dynamic
C’s implementation of TCP/IP. There are step-by-step instructions on how to create HTML forms,
allowing remote access and manipulation of information. There is also a serial-based console that
can be used with TCP/IP to open up legacy systems for additional control and monitoring. The
console may also be used for configuration when a serial port is available. The console and HTML
forms are discussed in volume 2.

Multiple interfaces are supported starting with Dynamic C version 7.30.
Introduction 1

2 TCP/IP User’s Manual

2. Web-Enabling Your Application

This chapter, and the next two, describe how to add web browser control to your application. Web-
enabling is a logical and appealing choice for adding a user interface to your application, since the
necessary hardware (an Ethernet or serial port) is available on all Z-World core modules and
SBCs. Most users of your application will be familiar with at least one web browser (Netscape,
Mozilla, Internet Explorer, Opera), with its graphical user interface, so they will be ready to start
controlling your application with minimal training.

This chapter provides an overview of the steps you will need to take to web-enable an application.
Knowledge of browsers, and something of their capability, is assumed. With this knowledge, you
can understand the concepts described in this chapter. The following chapters go into more detail
about the specific libraries; but for simple programs, you may be able to use just the information in
this chapter along with the sample code to write a working application.

Dynamic C provides libraries that implement most of the functions required to implement a web
server, more formally known as an HTTP (HyperText Transfer Protocol) server. (The browser is
formally called an HTTP client). You only need to write code specific to your application, such as
dealing with I/Os and the Rabbit peripheral devices, and possibly some code to help the HTTP
server generate the appropriate responses back to the user’s web browser. In addition, there is a
small amount of “boilerplate” that needs to be written to include and configure the HTTP server
and any ancillary libraries such as the TCP/IP suite and filesystems.

2.1 Designing Your Application
Should you decide to web-enable your application, you probably already have some idea of the
format and layout of the web pages that will be presented to the browser. Unless the application
only returns information and does not allow any updates (such as a data logger), you will probably
need to lay out some forms. Forms, in web parlance, allow the browser’s user to fill in some infor-
mation then submit it to the server. The server, your application, then performs the requested
actions and sends a confirmation back to the browser. This is the most common means for imple-
menting control of the server as opposed to merely querying it.

There are several other things to consider. Answers to the following list of questions will deter-
mine the pieces of software that need to be gathered into your application, and how they link
together.

• Does access to some or all resources need to be limited to a select set of users?

• If so, how confident does your application need to be that the user’s credentials are valid?

• Do you need to be able to upload large amounts of data (over, say, 250 bytes)?

• Do you want to be able to update the web pages themselves, or maybe even the entire appli-
cation firmware?

• Is the application small, medium, or large?

• Do you want to use this same (web) interface to configure all aspects of the application
including, for example, the network settings? In other words, is the web interface going to
be the only interface once the unit leaves the factory?
Chapter 2: Web-Enabling Your Application 3

The first and second questions relate to user authentication and access control. The next two ques-
tions relate to the HTTP upload facility. The last two questions concern the overall design of your
application; in particular, a large application may necessitate more storage than is usually available
for a given Z-World product, and may require a sophisticated filesystem to manage the large num-
ber of resources.

Since the terms small, medium and large are rather vague, we shall define them by example. A
small application would be limited to less than 10 different web pages, and up to about 30 different
“controls” (buttons to press, dials to twiddle, options to select etc.). A large application may have
upwards of 100 pages, and more than 10KB of configurable data. A medium application sits, as
you might expect, near the middle of these.

Note that we are not considering the size of the application other than the web interface part. For
example, you may have a sophisticated G-code interpreter and motion control system, where the
web interface is limited to simply enabling/disabling the actuators and showing an error log to
maintenance personnel. For the purposes of our discussion, this would be a small application.

The next section describes a “smaller-than-small” application, that is, a toy, which we use to show
the bare essentials of a web-enabled application.

2.2 The Smallest Web Server in the WWW
Before moving on to real applications, the following sample code shows how to create the sim-
plest possible web server. It does nothing but show “Hello WWW” on the browser. There are two
files needed for this. The first is the Dynamic C code to be loaded to the target board (which must
support TCP/IP). The second is the web page content itself, written in a syntax known as HTML
(HyperText Markup Language). The second file is effectively included in the program, using the
#ximport directive.

// toy_http.c

#define TCPCONFIG 1
#use “dcrtcp.lib”
#use “http.lib”

#ximport “hellowww.html” hellowww_html

SSPEC_MIMETABLE_START
SSPEC_MIME(“.html”, “text/html”)

SSPEC_MIMETABLE_END

SSPEC_RESOURCETABLE_START
SSPEC_RESOURCE_XMEMFILE("/hellowww.html", hellowww_html)

SSPEC_RESOURCETABLE_END

void main() {
sock_init();
http_init();

for (;;) http_handler();
}

The second file, named hellowww.html is coded as follows:

<HTML>
<HEAD><TITLE>Hello, WWW</TITLE></HEAD>
<BODY><H1>Hello, WWW</H1></BODY></HTML>
4 TCP/IP User’s Manual

That’s all there is to it. However, there is actually a lot of activity going on beneath the covers. For
a start, the #use “dcrtcp.lib” directive and the TCPCONFIG macro definition bring in the TCP/IP
networking suite and configure it. Unless you have a private test network, you probably have to
modify the default setting - how to do that is beyond the scope of this chapter; it is described in
volume 1 of the manual. The #use “http.lib” statement is required in order to bring in the web
server. The next lines down to the start of the main() function are setting up tables that are con-
sulted by the HTTP server and other libraries in order to “do the right thing.” Finally, the main()
function calls the necessary runtime initialization of the network and the HTTP server. It then calls
the HTTP server in an endless loop, which drives the entire system into motion.

The .html file is ASCII text, in HTML syntax, which is transferred back to the browser when it is
requested. Apart from the server adding some header lines, the .html file is transferred verbatim.
This markup is merely telling the browser to display “Hello, WWW” as a 1st level heading, i.e.,
big bold text. This is specified by the second line. The first line adds a title to the page, which most
browsers display in the window bar.

To see this web page on screen, the user needs to tell their browser what to get. If doing it manu-
ally, they would need to enter something like “http://10.10.6.100/hellowww.html” in the browser’s
URL entry field. The browser strips off the http://10.10.6.100 part of it, and sends the rest to the
specified host address (10.10.6.100) using a TCP connection to port 80 (interpreted from the
http:// part). The server gets the /hellowww.html part, which it knows about since it has a page of
that name, and returns the contents of that file as a response. The browser interprets the HTML it
receives, and generates a nice visual rendition of the contents.
Chapter 2: Web-Enabling Your Application 5

2.3 Web Server Architecture
Before describing a real application, it is useful to know how such an application is organized. The
following diagram shows all of the relevant components of a web-enabled application. There may
seem to be a large number of components, however keep in mind that not all components need to
be used by your application.

Figure 2.1. Components in a web-enabled application.

��������� ������	�

���	�
	

����
�����

����
�����

��		����
������
���

����
���������

����� !!"

#���$��
��������
�����

%!& %��

!�����
%���'

!�����
%���'

�("
%���	����

��	���	�

��	'���)�	���
%���*!��	�$�

!	���+�

,��������*����+��-

��$.������$�
"��	����)�	���

������$�
"��	����)�	���

����
/��.

�..����	���
!.���0���
*"12

�..����	���

����

!	�	��
��������
�����

���+��$
%���'

�"�3
�����

4���5��

���	���*%���*!��	�$

���1"�
6 TCP/IP User’s Manual

2.3.1 Application Block
At the top of this diagram is a block, called “Application,” consisting of five sub-blocks. The
Application block represents the code that you have to create. Everything below this is provided
by the libraries, although you will need to specify some parts of the interface to these components.
This will be described in detail in the following sections.

The application block is subdivided into 5 parts:

1. Compile-time initialization. This includes things like selection of the appropriate library mod-
ules; initialization of static (constant) data structures and tables; selecting default network con-
figuration; and inclusion of static resources (external files) via the #ximport or #zimport
directives. The arrows leading from the “Compile-Time Initialization” sub-block indicate the
tables that may be set up at compile time; namely:

• The MIME type mapping table. This mandatory table indicates to the browser how the
content is to be presented to the user. This is necessary for the browser, and needs to be
specified by the server, however the server does not need to be particularly aware of
the details.

• The rule table. This is only necessary if a filesystem is in use. It is used by the resource
manager to apply access permissions to the resources contained in a filesystem. This is
necessary because not all filesystems can associate file ownership and access rights
with individual files.

• The static resource table. This is the classic method of defining resources in
Dynamic C. This table is optional, since all necessary resources may be loaded in a
filesystem, or in the dynamic resource table. Most applications will contain at least a
few static resources, as an initial default or fallback, or for data that will never change
such as a logo image.

• Program flash. This really represents the loading of resource files into program
memory via the #ximport directive. There will almost always need to be a few
#ximport files, but this can be limited to a few kilobytes total.

2. Runtime initialization. Your main() function needs to call some specific library functions,
once only, when it starts:

• sock_init(). This is always mandatory. It initializes the TCP/IP networking
system.

• sspec_automount(). This is optional. It initializes the available filesystems (FS2
and/or FAT) for use by the resource manager, Zserver.

• http_init(). This is mandatory. It initializes the HTTP server.

• Various functions for setting up a user ID table, the rule table and/or the dynamic
resource table. These are optional, but would be used in the majority of applications.
The user ID table can only be initialized at run time, unlike the other tables that may, at
least partially, be initialized at compile-time.

3. Main loop. The final code in the main() function continuously calls http_handler() and
possibly other functions. This is mandatory, since it allows the HTTP server to process requests
from the network. Other functions may be specific to your application. For example, you may
need to poll an I/O device in order to obtain best performance.
Chapter 2: Web-Enabling Your Application 7

4. Application specifics and I/O. This is really your part of the application or, if you like, the
“back end” to the HTTP server. There are a number of ways that your application can commu-
nicate with the HTTP server. (These are not all shown on the diagram since it would add need-
less complexity.) Your application can directly call functions in the HTTP server, in the
resource manager (Zserver), in TCP/IP, and just about anywhere else. One very clean and pow-
erful interface is provided via #web variables. This is a new add-on module in Dynamic C
8.50.

5. CGI functions. CGI stands for “Common Gateway Interface,” however this acronym has a
more specific use in Dynamic C—it refers to a C function that is called by the HTTP server to
generate some dynamic content for the browser. This is the only truly optional block. Many
applications can be written without resorting to CGI functions; however, there are some cases
where the power and flexibility of a CGI will be required. Prior to Dynamic C 8.50, writing a
robust CGI was the most difficult part of the entire process. From 8.50, there is a new style of
CGI writing that simplifies the process, and reduces the chances of error. The old style of CGI
is still supported for backwards compatibility.

2.3.2 HTTP Block
Let us now progress to the HTTP server itself. In the diagram, this is the block with two circles
inside. The server is responsible for fielding requests from the outside world. Each request is ana-
lyzed to determine the resource that is being requested, the user who is making the request, and
whether the user is authorized to obtain that resource. If the resource is available, the user is
known and has the proper permissions, then the resource is transmitted back to the browser.

Following the above steps in more detail, we have:

1. Analyze the request: obtain the resource name. Part of the information provided by the browser
is a request header that contains a URL (Uniform Resource Locator). The URL is simply the
name of the resource to retrieve. URLs typically look like a file name in a Unix-style filesys-
tem, that is, component directory and file names separated by slash (/) characters.

2. Obtain the user ID. The browser has the option of sending the username and password of its
user. If it does not do this, then the userid is “anonymous.” If this is not good enough, then the
browser can always try again when it is denied a protected resource. On receipt of user creden-
tials (name and password), the HTTP server consults the resource manager (which in turn looks
up the rule table) to see if the user’s credentials are OK. If they are, then the resource manager
also determines the group(s) of which this user is a member. Thereafter, all access and permis-

sion checking is based on the group, not the individual user.1

3. Return the resource. Having verified the group access rights (if necessary), the resource is
transmitted back to the user. The resource may be an HTML or image file obtained from pro-
gram memory or a filesystem, or it may be a script file that is processed “on the fly” to generate
markup language. It may even represent a CGI function that will be called to generate all the
necessary response. Note that a complete response requires a small amount of header informa-
tion to be prefixed to the actual resource. The HTTP server usually takes care of this, however
CGIs sometimes need to generate the header themselves.

1. This is a necessary optimization. There may be hundreds of individual users; however, the
majority of these would be considered to be in a single “class,” with that class giving equal
access to all its members. Considering the class, i.e., group, as the entity that is requesting a
resource reduces the amount of information that needs to be stored.
8 TCP/IP User’s Manual

Referring to the diagram in Figure 2.1, you can see that there are several arrows leading in and out
of the HTTP server block. These represent lines of communication, and the arrow heads indicate
the usual direction of data flow or, for function calls, “who calls whom.”

2.3.3 HTTP Block Subcomponents
The inner circles represent subcomponents of the server. The first of these, RabbitWeb, is a new
add-on module available starting with Dynamic C 8.50. RabbitWeb is an extension to C language
syntax to simplify presentation of C language objects (variables, structures) to a browser. Rabbit-
Web allows you to write web pages in a special scripting language. The script makes it easy to
generate HTTP, which is the format expected by the browser. In addition, the script allows the
contents of your C language objects to be turned into HTML fragments for presentation by the
browser.

The small block named “#web Variables,” between the Application block and the RabbitWeb cir-
cle, indicates that the #web variables are the means of communication between your application
and the server. Since #web variables are really just ordinary C variables, arrays or structures, they
are extremely easy to manipulate by your application. Since they also have the property of being
registered with the web server, the server has easy access too. (Registering an object with the web
server is discussed in the document titled, “RabbitWeb,” available on our website.)

The second circle in the HTTP server block represents the classic way of generating dynamic con-
tent. SSI (Server Side Includes) is also a scripting language. It is not nearly as easy to use SSI as it
is to use RabbitWeb; however, an SSI can generate the same content as an RabbitWeb script. It is
just that you will need to write CGI functions, and such functions can get large and complicated
fairly quickly! In fact, SSI has the ability to invoke CGI functions whereas RabbitWeb does not. In
addition, SSIs have the ability to include other resources directly in the primary returned resource
much like how #include works in ANSI C.

The server also communicates with lower layers in the diagram. On the right hand side is the
TCP/IP block. This is the pipeline to the outside world, i.e., the browser. Usually only the server
needs to talk directly to TCP/IP (via a TCP socket). Prior to Dynamic C 8.50, it was often neces-
sary for the application’s CGI functions to call TCP/IP functions. This is no longer recommended.
Instead, there are functions in the HTTP server that should be called to mediate all networking
calls.
Chapter 2: Web-Enabling Your Application 9

2.3.4 Zserver Block
Directly under the HTTP server block is the Zserver, or resource manager, block. This is the “cen-
tral telephone exchange” of the entire application. It controls access to many of the other blocks in
the diagram. In spite of its importance and central placing, you do not usually need to be aware of
its inner workings. Zserver has applicability to other types of servers, such as FTP, because it pro-
vides a consistent interface to the various different types of resource. As indicated in the diagram,
Zserver is architected as a resource manager and a virtual filesystem. The virtual filesystem is
basically a notational convenience for accessing all resources using a uniform naming scheme.
The external appearance of the virtual filesystem is modelled on the Unix approach. In Unix, all
storage devices, and the filesystems contained therein, are accessed from a single starting point
known as the root directory, written as a single slash (/) character. Under the root directory may be
any number of files and directories. Some of these directories may actually refer to a completely
different device and filesystem. The term for such directory entries is mount-point.

Note the distinction between this naming convention and the one used by (PC) DOS and similar
operating systems. In DOS, you have to explicitly indicate the device by prefixing the file name.
For example, C:\index.htm and A:\index.htm are different files, on different devices. On Unix you
create two mount points in the root directory; /backup and /production for example. Then, the
above mentioned files are known as /backup/index.htm and /production/index.htm. This may seem
like a fine distinction, however it matches better with the naming convention used by HTTP, i.e.,
the URL. It also offers greater flexibility with regards to naming devices.

Zserver does not currently allow arbitrary mount-point names like Unix. Instead, there is an estab-
lished convention for each filesystem. If FS2 is in use, then there is a mount-point called “/fs2.” If
the FAT filesystem is in use, then one or more mount points called “/A,” “/B,” “/C” etc. are cre-
ated.

Since Zserver is the resource manager, it takes responsibility for mapping the various filesystems
and resource types into a single unified API. This API not only takes care of the detailed differ-
ences between the various filesystem APIs, but also allows some functions to be emulated that are
not natively supported by the underlying filesystem.

In addition to the resource storage and filesystem, the resource manager needs to be able to associ-
ate other data with each resource. This other data is divided into two categories, which are listed in
the blocks on the left of the diagram.

The two categories are “metadata” and “authorization.” Metadata consists of two tables: the
MIME table and the Rule table. The authorization data is currently just a single table of userids.
The reason for the split into two categories is this: the metadata is logically associated with indi-
vidual resources, whereas the authorization data is a mapping from external entities (“users”) to
the unit in which authorization is performed, namely user groups. The Rule table has some over-
lap, since it associates groups with individual resource permissions.

The lowest blocks in the diagram are divided into two groups, with a dashed outline. The upper
group is labelled “filesystems,” and the lower “storage.” Both of these groups are indefinitely
extensible, meaning that new classes of storage and their organization (filesystems) may be added
in future releases of Dynamic C, or by you. The arrows between these groups are indicative of the
most common patterns of communication; others may be defined.
10 TCP/IP User’s Manual

2.4 Architecture of a Toy Application
Using the diagram of the previous section as a basis, we now focus on writing a simple web-
enabled application. The following diagram is the same as the one above, except that the relevant
parts have been visually emphasized. This diagram is essentially the toy application that was
described at the start of this chapter. It shows the mandatory components for all web-enabled
applications. Later, we introduce the other elements of the diagram to show how a fully featured
application is built up.

Figure 2.2. Minimum components for a web-enabled application.

��������� ������	�

���	�
	

����
�����

����
�����

��		����
������
���

����
���������

����� !!"

#���$��
��������
�����

%!& %��

!�����
%���'

!�����
%���'

�("
%���	����

��	���	�

��	'���)�	���
%���*!��	�$�

!	���+�

,��������*����+��-

��$.������$�
"��	����)�	���

������$�
"��	����)�	���

����
/��.

�..����	���
!.���0���
*"12

�..����	���

����

!	�	��
��������
�����

���+��$
%���'

�"�3
�����

4���5��

���	���*%���*!��	�$

���1"�
Chapter 2: Web-Enabling Your Application 11

Let us work again from left to right in the Application block. To reiterate, the Application block
represents the coding that you have to do. First, there is the compile-time initialization. Taking the
super-simple example illustrated in Figure 2.2, Dynamic C code is given with the relevant part
highlighted in boldface.

#define TCPCONFIG 1
#use “dcrtcp.lib”
#use “http.lib”

#ximport “hellowww.html” hellowww_html

SSPEC_MIMETABLE_START
SSPEC_MIME(“.html”, “text/html”)

SSPEC_MIMETABLE_END

SSPEC_RESOURCETABLE_START
SSPEC_RESOURCE_XMEMFILE("/hellowww.html", hellowww_html)

SSPEC_RESOURCETABLE_END

void main() {
sock_init();
http_init();
for (;;) http_handler();

}

The first boldface line is the #ximport directive. This tells the compiler to include the specified
file in the program flash, and make it accessible via the hellowww_html constant. In the dia-
gram, the arrow from compile-time initialization to program flash represents this inclusion. In
most cases you would be including more than just one file.

The three lines starting with SSPEC_MIMETABLE_START are initialization statements for the
MIME table. In this case, there is a single mapping from resources that end with “.html” to a
MIME type of “text/html.” All MIME types are registered with the relevant standards body, and
must be entered correctly so that the browser does not get confused. “text/html” is the registered
MIME type for HTML.

The next three lines, starting with SSPEC_RESOURCETABLE_START, set up the static resource
table. Again, this contains a single entry that associates the resource name “/hellowww.html” with
the file that was #ximported on the first line. Note that the resource name suffix (.html) matches
the first parameter of the SSPEC_MIME entry.

Although not directly indicated on the diagram, the other compile-time initialization that is always
required is the #use of the appropriate libraries. In this case, the first three lines create a default
TCP/IP configuration (TCPCONFIG = 1) and bring in the networking and HTTP libraries. Note
that http.lib automatically includes zserver.lib.

Back in the Application block of the diagram, we move right and consider the runtime initializa-
tion block. This is contained in the main() function. sock_init() comes first, to initialize
the TCP/IP network library and bring up the necessary interface(s). http_init() resets the
HTTP library to a known state.

The last statement embodies the Main Loop sub-block. This is always required. Typically, only
http_handler() needs to be called; however, your application can insert calls to its own poll-
ing and event handling code. Since this is such a simple example, there is not even any applica-
tion-specific code.
12 TCP/IP User’s Manual

2.5 A Simple but Realistic Application
To turn the above toy example into something more realistic, we need to add some application
specifics, and the ability to customize the resource returned to the browser depending on the rele-
vant state of the application. The following diagram shows the necessary parts.

Figure 2.3. Minimum components for a web-enabled application with dynamic content.

The easiest way to introduce dynamic content is to use the RabbitWeb module and the associated
scripting language. RabbitWeb is available as a Dynamic C add-on module starting with Dynamic
C 8.50. If you do not have RabbitWeb, you can use SSI instead, which is described in
Section 4.5.2.1 ”SSI Feature.” This example, illustrated in Figure 2.3, assumes that you have Rab-
bitWeb.

��������� ������	�

���	�
	

����
�����

����
�����

!!"

%!& %��

!�����
%���'

!�����
%���'

�("
%���	����

��	���	�

��	'���)�	���
%���*!��	�$�

!	���+�

��		����
������
���

,��������*����+��-

��$.������$�
"��	����)�	���

������$�
"��	����)�	���

����
/��.

�..����	���
!.���0���
*"12

�..����	���

����

!	�	��
��������
�����

���+��$
%���'

�"�3
�����

4���5��

���	���*%���*!��	�$

���1"�

����
���������

�����

#���$��
��������
�����

2.	�����
Chapter 2: Web-Enabling Your Application 13

The document titled, “RabbitWeb, To Web-Enable Embedded Applications” describes RabbitWeb
and the scripting language, ZHTML, in detail. The following example is a simplification of the
web.c sample program in Samples\tcpip\rabbitweb.

#define TCPCONFIG 1
#define USE_RABBITWEB 1

#use "dcrtcp.lib"
#use "http.lib"

#ximport "my_app.zhtml" my_app_zhtml

SSPEC_MIMETABLE_START
SSPEC_MIME_FUNC(".html", "text/html", zhtml_handler),

SSPEC_MIMETABLE_END

SSPEC_RESOURCETABLE_START
SSPEC_RESOURCE_XMEMFILE("/index.html", my_app_zhtml)

SSPEC_RESOURCETABLE_END

int io_state;
#web io_state

void my_io_polling(void);

void main()
{

sock_init();
http_init();

for (;;) {
my_io_polling();
http_handler();

}
}

void my_io_polling()
{

io_state = read_that_io_device();
}

The differences between the above code and the toy example in the previous section are in bold-
face. All the differences relate to the use of RabbitWeb. The first addition is a #define of
USE_RABBITWEB. This is necessary in order to include the necessary library code.

Next, there is a modification to the MIME table. The SSPEC_MIME_FUNC macro defines an
entry that says that if the resource name ends with “.html” then the MIME type is text/html (as
before), and there is a special scripting function that must be run by the HTTP server. This script-
ing function is called zhtml_handler; it is provided by the HTTP library. ZHTML is the
unique embedded scripting language that converts script files into ordinary HTML so the browser

can understand it.1

1. Most applications will want to use a different resource suffix to distinguish between “ordinary”
HTML files and script files. The samples provided with dynamic C use .zhtml for script files,
and .html for plain HTML. In this sample, we only have script files, so it is convenient to retain
the .html suffix. The other reason for this relates to the way the HTTP server handles requests
for a directory. If given a URL of “/”, the HTTP server will append “index.html” to determine
the actual resource. We take advantage of this default behavior so that this sample would work
as expected.
14 TCP/IP User’s Manual

The int io_state and #web statements define and register a web variable. Such a variable is
an ordinary global variable as far as your C program is concerned. In addition, the script is able to
access it.

my_io_polling() is a function that is part of the Application Specifics sub-block. As the
name suggests, it is called regularly to poll some external device so as to keep the #web variable
up-to-date. The implementation of the my_io_polling() function is shown updating the
#web variable, but we don’t specify the actual I/O reading function since that is too, well, applica-
tion specific.

Now you may be wondering what this scripting language, ZHTML, looks like. The following code
shows the contents of the my_app.zhtml file:

<HTML><HEAD><TITLE>Web Variables</TITLE></HEAD>
<BODY><H1>Web Variables</H1>
<P>The current value of io_state is

<?z echo($io_state) ?>
</P>
</BODY></HTML>

This looks like plain HTML, and it is. The only difference is the existence of special commands
flanked by “<?z” and “?>.” In this case, the command simply echos the current value of the web
variable that was registered. The value (binary in the global variable) is converted to ASCII text
by a default printf() conversion, in this case “%d” because the variable is an integer. When
the browser gets the results returned by the HTTP server, it will see

<HTML><HEAD><TITLE>Web Variables</TITLE></HEAD>
<BODY><H1>Web Variables</H1>
<P>The current value of io_state is

50
</P>
</BODY></HTML>

Where the “50” represents the current variable value—of course, it may be any decimal value that
an integer variable could take: -32768 through 32767.

This is still a trivial example, but it is infinitely more real-world than the toy example. We have
introduced the concept of dynamic content, which is required for embedded type applications. One
thing that has been glossed over is how (and even whether) the variable can be updated from the
browser, rather than just within the application. Yes, all #web variables may be updated via the
browser. This requires use of HTML forms, which is a subject covered in the detailed documenta-
tion for RabbitWeb, and in the HTTP library chapter. We will not go over this again here; however,
the possibility of remote updating introduces us to the topic of the next section, access control.
Chapter 2: Web-Enabling Your Application 15

2.6 Adding Access Controls
If your application allows updating of the controller state via remote access, and the network con-
nection allows access from locations that are not always under control, then it is important to add
some access controls or “security.”

The most common way of doing this is to define a set of users, plus a method of authenticating
those users, and attaching a set of “permissions” to each resource. The Dynamic C libraries allow
you to do this fairly easily, via two tables. The relevant tables are:

The User Table
The user table contains a list of user IDs (short strings) and authentication information (currently a
password string). Each user table entry also contains a group mask. The group mask indicates the
user groups to which this user belongs. Up to 16 groups can be defined, and any given user can
belong to one or more of these 16 groups. There are two additional masks in each user table entry.
The first is a write access mask that indicates which server(s) allow the user to write (modify) its
resources. The second mask indicates the server(s) that can recognize the user.

The Rule Table
The rule table is a list of information associated with each resource name, generally called “per-
missions.” Each resource has the following information:

• The realm (string) that may be used by certain servers (including HTTP).

• The group mask of the user groups that are allowed read-only access.

• The group mask of the user groups that are allowed modify/write access.

• The server(s) that are allowed any access to this resource.

• The authentication method that is recommended.

• The MIME type of the resource.

Resources in the static and dynamic resource tables may be set up to have their own specific per-
missions, independent of the rule table itself. Resources in a filesystem may be very numerous
hence a simple one-to-one table would waste a lot of storage. To solve this problem, the rule table
uses a name prefix matching algorithm. Using this technique, entire directories of resources need
only have one rule table entry provided that all resources therein use the same permissions.
16 TCP/IP User’s Manual

The following diagram shows the application components when access control is added:

Figure 2.4. Minimal components of a web-enabled application
with dynamic content and access control

The main difference between this and the previous diagram is that the Rule Table and User Table
blocks have been activated.

��������� ������	�

���	�
	

��		����
������
���

!!"

%!& %��

!�����
%���'

!�����
%���'

�("
%���	����

��	���	�

��	'���)�	���
%���*!��	�$�

!	���+�

,��������*����+��-

��$.������$�
"��	����)�	���

������$�
"��	����)�	���

����
/��.

�..����	���
!.���0���
*"12

�..����	���

����

!	�	��
��������
�����

���+��$
%���'

�"�3
�����

4���5��

���	���*%���*!��	�$

���1"�

�����

����
���������

#���$��
��������
�����

����
�����

����
�����
Chapter 2: Web-Enabling Your Application 17

The sample program is now expanded to add access control. As before, the changes are in bold-
face.

#define TCPCONFIG 1
#define USE_RABBITWEB 1

#define USE_HTTP_BASIC_AUTHENTICATION 1

#use "dcrtcp.lib"
#use "http.lib"

#web_groups monitor_group, admin_group

#ximport "my_app.zhtml" my_app_zhtml

SSPEC_MIMETABLE_START
SSPEC_MIME_FUNC(".html", "text/html", zhtml_handler),

SSPEC_MIMETABLE_END

SSPEC_RESOURCETABLE_START
SSPEC_RESOURCE_XMEMFILE("/index.html", my_app_zhtml)

SSPEC_RESOURCETABLE_END

int io_state;
#web io_state auth=basic groups=monitor_group(ro),admin_group

void my_io_polling(void);

void main(){

sspec_addrule("/index.html", "Pet",
admin_group|monitor_group, 0, SERVER_HTTP,
SERVER_AUTH_BASIC, NULL);

sauth_setusermask(sauth_adduser("admin", "dog",
SERVER_ANY), admin_group, NULL);

sauth_setusermask(sauth_adduser("monitor", "cat",
SERVER_ANY), monitor_group, NULL);

sock_init();
http_init();

 for (;;) {
my_io_polling();
http_handler();

}
}
void my_io_polling()
{

io_state = read_that_io_device();
}

The first change is the definition of USE_HTTP_BASIC_AUTHENTICATION. This sets up the
HTTP server to be able to process this form of authentication. If not defined, then the server is
unable to do this; there is little point in setting up any other access controls if the user cannot be
verified!

Next, the user groups are defined. In this case, we are defining an “admin” and a “monitor” group.
Presumably, the admin group has ability to alter the state of the controller, but the monitor group
can only read its current state. The names admin_group and monitor_group are actually
defined to be unsigned integer constants with just one bit set out of 16.
18 TCP/IP User’s Manual

The #web registration of the io_state variable is augmented with some access controls. #web
variables are not strictly resources—they are included as parts of other resources—however, they
can be assigned some access controls of their own. In this example, access to the variable is being
set to require “basic authentication,” and the allowable user groups are both of the defined groups,
with the proviso that the monitor group is to be allowed read-only access.

The last major change is in the main() function, where some runtime initialization needs to be
performed. Since the user ID table cannot be statically initialized (i.e., at compile-time), this is a
necessary step. The rule table can be statically initialized, but in this example we choose to do it at

runtime.1 First, the rule table entry:

sspec_addrule("/index.html", "Pet",
admin_group|monitor_group, 0, SERVER_HTTP,
SERVER_AUTH_BASIC, NULL);

The first parameter specifies the name of the resource to which this rule applies; or rather, the first
characters in the resource name. For clarity, the sample shows the full name. In practice, since
there is only one resource, it would be acceptable to use just “/” instead of “/index.html.”

The second parameter, “Pet,” is an arbitrary string called the “realm.” This is presented to the
browser’s user when prompted for the password, as shown here.

The third and fourth parameters indicate the group(s) that have read and write access to the
resource. Both groups are allowed read access, and none write (0). Note that the resource in this
case is the index.html page, not the variables which may or may not be displayed on it. Since
this web page (actually a ZHTML script) is in program flash, it is obviously not modifiable.

The SERVER_HTTP parameter indicates that this resource is only visible from the HTTP server.
This would be more relevant is there was another server, such as FTP, running concurrently.

1. In this example we also choose to use a rule table. This is not strictly necessary since no filesys-
tem is in use. The alternative is to use a different form of initializing the static resource table,
namely by using the SSPEC_RESOURCE_P_XMEMFILE macro, which allows permission
information to be stored in the static table instead of in the rule table. See Section 3.2.5.3.
Chapter 2: Web-Enabling Your Application 19

SERVER_AUTH_BASIC indicates that the server should use “basic authentication” when the
browser calls for this resource. Note that Zserver does not enforce the method of authentication; it
only stores the recommended method in the rule table. Any enforcement of authentication
requires the co-operation of the server, since each different type of server may have widely differ-
ent means of implementing the same type of authentication. Rest assured that the HTTP server
(and other servers provided with Dynamic C) always enforce the suggested authentication method.

The final NULL parameter allows some arbitrary data to be stored in the rule table entry. This data
is available to the server. It is not currently used by any of the servers in Dynamic C, but it may be
useful if you implement your own server.

Now, let’s turn to the user ID initialization:

sauth_setusermask(sauth_adduser("admin", "dog", SERVER_ANY),
admin_group, NULL);

This is a nested function call. sauth_adduser() is called first, to add a user called “admin”
with password “dog.” This user is visible to all servers (SERVER_ANY).

The result of this function call is a userID handle, which is the first parameter to
sauth_setusermask(). This function explicitly assigns a group mask to the user. You can
omit this call; however, the default method of assigning group masks is designed to be backward
compatible with old versions of the library, and may not be what you want when using new fea-
tures. You should always use the sauth_setusermask() function for each user ID.

In this example, we have added access control to the code. We do not need to change the ZHTML
script, although in reality you would probably want to. Using the script unchanged, when the user
tries to retrieve index.html, the browser will prompt for a userid and password. If one of the
valid users is entered, then the page will be displayed. Otherwise, the browser will print an error
message saying that access was denied.
20 TCP/IP User’s Manual

Unfortunately, as written above, the sample will not allow us to test the distinction between the
two users regarding the ability to modify the #web variable. We have shown how to add access
control, but not how to actually specify a web form that allows the user to update the variable. It
turns out that adding a form is not difficult. A modified script file is shown below. There is quite a
lot to HTML forms, so most of the details are documented elsewhere. There are many good
HTML reference books available.

<HTML><HEAD><TITLE>Web Variables</TITLE></HEAD>
<BODY><H1>Web Variables</H1>
<P>The current value of io_state is
 <?z echo($io_state) ?>
</P>

<?z if (error($io_state)) { ?>
 <P>Sorry, you were not authorized to perform an update.</P>
<?z } ?>

<FORM ACTION="/index.html" METHOD="POST">

<P>Enter a new value if you dare:</P>

<INPUT TYPE="text" NAME="io_state" SIZE=5
VALUE="<?z echo($io_state) ?>">

<INPUT TYPE="submit" VALUE="Submit">
<INPUT TYPE="reset" VALUE="Reset">

</FORM>
</BODY></HTML>

If you run the above sample with this script, then the user will be able to attempt an update to the
#web variable, io_state. If the user was “monitor,” that is, not able to make an update, then
the “Sorry” message will be printed. Recall that the access to io_state was set up when the
variable was registered with #web.

You may be asking how the application notices when the #web variable is updated by the
browser, not just in the my_io_polling() function. This is a good question, since the HTTP
server updates the variable just like a normal C variable. The solution to this requires that you
specify an “update” callback function in the #web variable registration. This is described in detail
in the Dynamic C Module document titled, “RabbitWeb: Web-Enabling Your Application;” for the
purposes of this section please just remember that it is easy to do.
Chapter 2: Web-Enabling Your Application 21

2.7 A Full-Featured Application
The previous examples have relied on #ximport to store files in the program flash. This is limit-
ing in terms of storage capacity and does not allow for dynamic file updates. Adding the ability to
store files in a filesystem that is located somewhere besides the program flash is of high value
because it adds storage capacity and allows for dynamic updates.

Figure 2.5. Components of a full-featured web-enabled application.

As mentioned previously, Zserver implements a virtual filesystem that can be used by an applica-
tion for a clean, consistent interface to the various available methods of resource organization. An
application can also bypass the resource manager and access a filesystem directly. (Note that there
is no arrow in the diagram showing this line of communication.)

��������� ������	�

���	�
	

��		����
������
���

!!"

%!&

!�����
%���'

��	���	�

��	'���)�	���
%���*!��	�$�

!	���+�

,��������*����+��-

��$.������$�
"��	����)�	���

������$�
"��	����)�	���

����
/��.

�..����	���
!.���0���
*"12

�..����	���

����

!	�	��
��������
�����

���+��$
%���'

�"�3
�����

4���5��

���	���*%���*!��	�$

���1"�

�����

����
���������

#���$��
��������
�����

����
�����

����
�����

�("
%���	����

%��

!�����
%���'
22 TCP/IP User’s Manual

Looking at the bottom of the diagram in Figure 2.5 you can see that there are some additional
hardware requirements when using FAT or FS2. The FAT needs a serial flash and FS2 needs a sec-
ond flash or battery-backed RAM.

The sample program is now expanded to use a FAT filesystem and has the ability to upload files to
it. As before, the changes are in boldface.

#define FAT_USE_FORWARDSLASH
#define FAT_BLOCK
#define USE_HTTP_UPLOAD

#define TCPCONFIG 1
#define USE_RABBITWEB 1
#define USE_HTTP_BASIC_AUTHENTICATION 1

#use "sflash_fat.lib"
#use "fat.lib"

#use "dcrtcp.lib"
#use "http.lib"
#web_groups monitor_group, admin_group
#ximport "my_app.zhtml" my_app_zhtml

SSPEC_MIMETABLE_START
SSPEC_MIME_FUNC(".html", "text/html", zhtml_handler),
SSPEC_MIME(".cgi", "")

SSPEC_MIMETABLE_END

SSPEC_RESOURCETABLE_START
SSPEC_RESOURCE_XMEMFILE("/index.html", my_app_zhtml),
SSPEC_RESOURCE_CGI("upload.cgi", http_defaultCGI)

SSPEC_RESOURCETABLE_END

int io_state;
#web io_state auth=basic groups=monitor_group(ro),admin_group

void my_io_polling(void);

void main(){

int rc;

sspec_addrule("/index.html", "Pet",
admin_group|monitor_group, 0, SERVER_HTTP,
SERVER_AUTH_BASIC, NULL);

sauth_setusermask(sauth_adduser("admin", "dog",
SERVER_ANY), admin_group, NULL);

sauth_setusermask(sauth_adduser("monitor", "cat",
SERVER_ANY), monitor_group, NULL);

rc = sspec_automount(SSPEC_MOUNT_ANY, NULL, NULL, NULL);
if (rc)

printf("Failed to initialize, rc=%d\n
Proceeding anyway...\n", rc);

sock_init();
http_init();

for (;;) {
my_io_polling();
http_handler();

}
}

Chapter 2: Web-Enabling Your Application 23

The first change is the addition of FAT_USE_FORWARDSLASH and FAT_BLOCK. These are
needed by Zserver to work with the FAT filesystem. The definition of USE_HTTP_UPLOAD is
needed for Zserver to use the file upload feature. Next, the libraries for the FAT (fat.lib) and
for the serial flash driver (sflash_fat.lib) are brought in with #use statements.

The MIME type mapping for CGIs is added to the MIME table with SSPEC_RESOURCE_CGI.
An empty string is the registered type for CGIs. This makes sense since CGIs are not displayed by
the browser.

Next, we want to give the server access to the CGI function by creating an entry for it in the static
resource table with SSPEC_RESOURCE_CGI. The first parameter is a string that must match the
string used in the FORM ACTION tag in the HTML code. The second parameter identifies the
CGI function that will be called when the form is submitted. http_defaultCGI() is a CGI
that is provided with the HTTP server. It uploads files to a FAT filesystem, shows a status page to
the browser after the upload and allows the user to click back to the server’s home page. For a
detailed description of the file upload feature, see Section 4.6.

Finally, the FAT filesystem must be readied for use. The call to sspec_automount() takes
care of everything, assuming that a FAT partition already exists on the serial flash. How to create
the initial filesystem is discussed in the Dynamic C Module document titled, “Compact FAT File-
system.”

The application now supports uploading files to the FAT, but we have yet to give the user any way
to actually do it. That involves changing the HTML page.

<HTML><HEAD><TITLE>Web Variables</TITLE></HEAD>
<BODY><H1>Web Variables</H1>
<P>The current value of io_state is
 <?z echo($io_state) ?>
</P>
<?z if (error($io_state)) { ?>
 <P>Sorry, you were not authorized to perform an update.</P>
<?z } ?>

<FORM ACTION="/index.html" METHOD="POST">
<P>Enter a new value if you dare:</P>
<INPUT TYPE="text" NAME="io_state" SIZE=5

VALUE="<?z echo($io_state) ?>">
<INPUT TYPE="submit" VALUE="Submit">
<INPUT TYPE="reset" VALUE="Reset">

</FORM>

<FORM ACTION="upload.cgi" METHOD="POST"
enctype="multipart/form-data">

<TABLE BORDER=0 CELLSPACING=2 CELLPADDING=1>
<TR>

<TD ALIGN=RIGHT>File to upload
(to /A/new.htm)</TD>
<TD><INPUT TYPE="FILE" NAME="/A/new.htm" SIZE=50></TD>

</TR>
</TABLE>
<INPUT TYPE="SUBMIT" VALUE="Upload">

</FORM>
</BODY></HTML>
24 TCP/IP User’s Manual

The text in boldface is the description of a new form, which, when displayed by the browser,
allows a file to be uploaded to a FAT filesystem.

The FORM tag
includes the
METHOD
attribute, which
is the same as
that of the first
form. The
ACTION
attribute has
changed to spec-
ify the CGI
function that
was added to the
server’s static
resource table;
this is the
default CGI provided by the server. When the Upload button is clicked, http_defaultCGI()
will be called by the server. A new attribute is included that specifies the MIME type used to sub-
mit the form to the server: enctype="multipart/form-data". This is the MIME type required when
the returned document includes files.

Note that the two forms are being submitted and processed separately. Could they be processed as
one form? Yes, but from a modular design perspective, it makes sense to keep the form submis-
sions separate when the purpose of each form is entirely separate.

You may have noticed that no security was added to protect the filesystem—anyone can upload a
file that passed the initial user and password protection that limits access to the web page. This is
probably not the ideal situation. Typically there needs to be some limit placed on who is able to
write to the filesystem.When considering security, there are three possible things to protect:

• The web page that contains the form. Give read access only to those users who could con-
ceivably upload the files specified therein.

• The CGI itself. Protect the same as the web page.

• The uploaded resource. You should set up a rule allowing write access only to the intended
user(s).

When defining user IDs that can use the upload, don't forget to give those users overall write
access using e.g.,

sauth_setwriteaccess(uid, SERVER_HTTP);

Another way to design this application is to have a separate HTML file that contains the form for
the file upload; then instead of having the form for the file upload on the current HTML page, you
put a link to the new page and then apply a permission to allow the new page to be displayed, such
as:

sspec_addrule(“/newpage.html”, “Pet”, admin_group,
admin_group, SERVER_HTTP, SERVER_AUTH_BASIC, NULL);
Chapter 2: Web-Enabling Your Application 25

That way the only people who see the Upload button are those authorized to use it. Design deci-
sions such as these are guided by the needs of the application. The point here is that these design
decisions are not limited by the underlying tools you are using to accomplish your goal.

2.8 Living Without RabbitWeb and FAT
Without the use of RabbitWeb we are back to SSI tags in the HTML page and writing a CGI to
process them. With the new-style CGIs introduced in Dynamic C 8.50, this is easier than it used to
be. If there is no serial flash, the FAT filesystem isn’t available; but if there is a second flash or
some battery-backed RAM, FS2 is. The following diagram shows the components that are used in
this case. Note that even though both the second flash and the battery-backed RAM are high-
lighted, an application can use either or both.

Figure 2.6. Components of a full-featured web-enabled application.

��������� ������	�

���	�
	

%��

!�����
%���'

��	���	�

��	'���)�	���
%���*!��	�$�

!	���+�

,��������*����+��-

��$.������$�
"��	����)�	���

������$�
"��	����)�	���

����
/��.

�..����	���
!.���0���
*"12

�..����	���

����

!	�	��
��������
�����

���+��$
%���'

�"�3
�����

4���5��

���	���*%���*!��	�$

���1"�

����
���������

#���$��
��������
�����

����
�����

����
�����

%!&

!�����
%���'

!!"

�("
%���	����

��		����
������
���

�����
26 TCP/IP User’s Manual

The sample program is now modified to use the FS2 filesystem. It still has the ability to upload
files to the filesystem. As before, the changes are in boldface.

#define USE_HTTP_UPLOAD

#define TCPCONFIG 1
#define USE_HTTP_BASIC_AUTHENTICATION 1

#use "fs2.lib"

#define admin_group 0x0001
#define monitor_group 0x0002

#use "dcrtcp.lib"
#use "http.lib"

#ximport "my_app.shtml" my_app_shtml

SSPEC_MIMETABLE_START
SSPEC_MIME_FUNC(".ssi", "text/html", shtml_handler),
SSPEC_MIME(".cgi", "")

SSPEC_MIMETABLE_END

int io_state;

SSPEC_RESOURCETABLE_START
SSPEC_RESOURCE_ROOTVAR(“io_state”, &io_state, INT16, “%d”),
SSPEC_RESOURCE_XMEMFILE("/index.html", my_app_shtml),
SSPEC_RESOURCE_CGI("upload.cgi", http_defaultCGI),
SSPEC_RESOURCE_CGI("update.cgi", VarUpdateCGI)

SSPEC_RESOURCETABLE_END

void my_io_polling(void);

void main(){
int rc;

io_state = 42;

sspec_addrule("/index.html", "Pet",
admin_group|monitor_group, 0, SERVER_HTTP,
SERVER_AUTH_BASIC, NULL);

sauth_setusermask(sauth_adduser("admin", "dog",
SERVER_ANY), admin_group, NULL);

sauth_setusermask(sauth_adduser("monitor", "cat",
SERVER_ANY), monitor_group, NULL);

rc = sspec_automount(SSPEC_MOUNT_ANY, NULL, NULL, NULL);

if (rc)
printf("Failed to initialize, rc=%d\n

Proceeding anyway...\n", rc);

sock_init();
http_init();

for (;;) {
my_io_polling();
http_handler();

}
}

Chapter 2: Web-Enabling Your Application 27

The first change is the removal of the macros we added for FAT and also the removal of #use
statements for the FAT library and the associated serial flash driver library. As with the sample in
the last section, this code assumes that a valid filesystem partition exists on the target board; in this
case, it’s an FS2 partition. In the simplest case, which is one FS2 partition on the secondary flash,
bringing in fs2.lib and then mounting the filesystem with a call to sspec_automount() is
all that is required. (For more information on FS2, refer to the Dynamic C User’s Manual.)

The next change is the #define of the user groups. Each user group has to be explicitly given a
value when RabbitWeb is not available to do it. Note that they are word values, each with a unique
bit position set.

Next, the first entry in the MIME table was changed. Recall that the entry “/” and requests with-
out an extension are dealt with by the handler in the first entry of the MIME table. In this example,
if a browser points to the Rabbit board’s IP address, the page is processed by
shtml_handler(), a handler that will understand the SSI tags that we are about to add to the
HTML file. The #ximport statement did not, technically, need to change. The extension used for
the file was changed from .zhtml to .shtml. These file extensions are only a convention. The
important thing is that the HTML file is touched by the correct handler function. As a matter of
fact, in this example, our HTML page is not recognized by the server as ending with either .zhtml
or .shtml, but by .html. The name known to the server is determined by the name parameter of
the file’s resource table entry, “/index.html.”

The next change is a new entry in the static resource table. This reflects the shift in how the vari-
able io_state becomes known to the HTTP server. Previously, it was done using the #web
statement of RabbitWeb.

A second new entry in the resource table is for a CGI function that will handle the processing
when io_state is updated. When using RabbitWeb, this same form submission did not require
a CGI. The enhanced HTTP server took care of all the details for us. Without RabbitWeb, we have
to do the work ourselves. Fortunately, the new-style CGIs make this job easier. A detailed descrip-
tion of writing a new-style CGI is given in Section 4.6 ”HTTP File Upload.” As we saw in
Section 2.7, there is a CGI in http.lib that processes file uploads to a filesystem. If you study
and understand Section 4.6 and the code in http_defaultCGI(), you will be able to write a
new-style CGI that will process the form that is submitted when io_state is changed.
28 TCP/IP User’s Manual

Since we are not using RabbitWeb and have changed from using FAT to FS2, the HTML page
must be changed. As before, all changes are in boldface.

<HTML><HEAD><TITLE>Web Variables</TITLE></HEAD>
<BODY><H1>Web Variables</H1>

<P>The current value of io_state is:
<!--#echo var=”io_state” -->

</P>

<FORM ACTION="update.cgi" METHOD="POST"
enctype="multipart/form-data">

<P>Enter a new value if you dare:</P>
<INPUT TYPE="text" NAME="io_state" SIZE=5

VALUE="<!--#echo var=”io_state” -->">
<INPUT TYPE="submit" VALUE="Submit">
<INPUT TYPE="reset" VALUE="Reset">

</FORM>

<FORM ACTION="upload.cgi" METHOD="POST"
enctype="multipart/form-data">

<TABLE BORDER=0 CELLSPACING=2 CELLPADDING=1>
<TR>

<TD ALIGN=RIGHT>File to upload
(to /A/new.htm)</TD>
<TD><INPUT TYPE="FILE" NAME="/fs2/ext1/new.htm"

SIZE=50></TD>
</TR>
</TABLE>
<INPUT TYPE="SUBMIT" VALUE="Upload">

</FORM>
</BODY></HTML>

The first change is the substitution of the new server-parsed tags with SSI tags. The next change is
the absence of any error checking. Without RabbitWeb, it is difficult to achieve this same function-
ality. The CGI responsible for the processing the variable update would need to do it. Which
brings us to the next change in this HTML page, the need for a second CGI function.

The ACTION attribute in the FORM tag identifies the new CGI by name, update.cgi. The
FORM tag also has a parameter for the encoding type. When no encoding type is specified, it
defaults to URL-encoded. All new-style CGIs must set the encoding type in the FORM tag to
“multipart/form-data” as shown above.

The other change on this page is the NAME attribute in the first INPUT tag of the second form.
When uploading to an FS2 partition, the mount-point “/fs2” must be prepended to the filename.
The /ext1 part is also prepended to the filename and refers to the second flash. The default CGI
function can now store an uploaded file in a valid FS2 partition.
Chapter 2: Web-Enabling Your Application 29

30 TCP/IP User’s Manual

3. Server Utility Library

This chapter is intended to be a detailed description of the resource manager, Zserver, and how it
interfaces to other libraries, such as servers (HTTP, FTP etc.) and filesystems (FS2, FAT). For an
overview, please see Chapter 2. “Web-Enabling Your Application.”

The resource manager, Zserver.lib, contains the structures, functions, and constants to allow
HTTP (Hypertext Transfer Protocol) and FTP (File Transfer Protocol) servers to share data and
user authentication information while running concurrently.

In general, you do not need to know some of the details of Zserver described in this chapter if you
are using the server libraries provided with Dynamic C. Such sections are marked as “advanced,”
and you may skip them unless you are writing a server or filesystem. Some sections are marked
“historical.” They are included to describe how previous versions of the library worked. These
may be skipped for new code.

The basic facility provided by Zserver is the ability to translate resource names (URLs in the case
of HTTP) into references to filesystem and memory objects. The term resource refers to the
objects (files, functions and variables) that are manipulated by the Zserver library on behalf of the
server. A file resource refers specifically to a resource of type file, as opposed to the actual file that
is manipulated by an underlying filesystem (which may not be a resource as such).

Support for HTML forms is also included in Zserver.lib. Starting with Dynamic C 8.50, an
enhanced HTTP server (RabbitWeb) is available that has an easy-to-use interface for form genera-
tion and no limitations on the form layout. See the document titled "RabbitWeb, To Web-Enable
Embedded Applications" for more information on this enhanced HTTP server.

Zserver supports the concept of a virtual file system. This is modeled on the Unix directory struc-
ture.

3.1 Data Structures for Zserver.lib
There are several data structures in this library that servers with Zserver functionality must use,
and may need to be manipulated or initialized by the application program:

• MIMETypeMap

• ServerSpec

• ServerAuth

• ServerPermissions

• RuleEntry

Use of the following structures is considered advanced:

• ServerContext

• SSpecStat

• sspec_fatinfo
Chapter 3: Server Utility Library 31

The following structures are documented for historical reasons:

• FormVar

• SSpecFileHandle

3.1.1 MIMETypeMap Structure
This structure, organized into a table, associates a file extension with a MIME type (Multipurpose
Internet Mail Extension) and a function that handles the MIME type. Users can override
HTTP_MAXNAME (defaults to 20 characters) in their source file. If the function pointer given is
NULL, then the default handler (which sends the content verbatim) is used.

For example, to create an HTTP server that can serve files with html or gif extensions, the follow-
ing declaration is required in the application code:

SSPEC_MIMETABLE_START
SSPEC_MIME(".html", "text/html"),
SSPEC_MIME(".gif", "image/gif"),

SSPEC_MIMETABLE_END

Use of the above macros is the recommended method for maintaining forward compatibility. For
more information, see Section 3.2.5.2 "Static MIME Type Table." All these macros are doing is
generating the correct C syntax for a static constant initializer.

Note that servers that do not implement MIME, such as FTP, do not require a MIME table to be
defined. Currently, this table is required only for HTTP.

typedef struct {
char extension[10];
char type[HTTP_MAXNAME];
int (*fptr)(/* HttpState* */);

} MIMETypeMap;
32 TCP/IP User’s Manual

3.1.2 ServerSpec Structure
This structure is used for both the static and dynamic resource tables. The only difference between
these two tables is that one is a constant (initialized at compile-time) and the other is created at
runtime in RAM, and thus modifiable.

Historical note: The HttpSpec data structure in HTTP.lib used prior to Dynamic C 8.50 is
now synonymous with this structure, ServerSpec.

The structure fields are described below. The #ifdef expression adds some fields to the
ServerSpec structure if the HTML form functionality provided by Zserver is included by the
web server application. These fields are not described below. For more details, Section 4.5.4
"HTML Forms Using Zserver.lib."

Starting with Dynamic C 8.50, enhanced support is provided for HTML forms with the purchase
of the Dynamic C RabbitWeb Module. This module provides an easy to develop web interface for
your embedded device and allows for complete flexibility in form layout. See the document titled
"RabbitWeb, To Web-Enable Embedded Applications" for more information on this enhanced
HTTP server.

In older versions of Dynamic C, it was necessary to explicitly create the static resource table by
doing something like this:

const HttpSpec http_flashspec[] = {
...

};

in your main application code (filling in the entries, of course). Starting with Dynamic C 8.50,
there is new recommended syntax for creating these resources, using the
SSPEC_RESOURCETABLE* series of macros. This new method is recommended for maintain-
ing future compatibility. For more information, see Section 3.2.5.3 "Static Resource Table."

typedef struct {
word type;
char name[SSPEC_MAXNAME];
long data;
void *addr;
word vartype;
char *format;
ServerPermissions perm;

#ifdef FORM_ERROR_BUF
...
#endif

} ServerSpec;
Chapter 3: Server Utility Library 33

3.1.2.1 ServerSpec Fields
The fields in each resource table (static or dynamic) are usually manipulated via Zserver functions,
or by using the SSPEC_RESOURCE* macros. The field descriptions below are for reference only.

type This field tells the server if the entry is a file, variable or function
(SSPEC_FILE, SSPEC_VARIABLE , SSPEC_FUNCTION,
etc.).

name This field contains the resource name, as a null-terminated string.

data Location of data (when *FILE is the type of data), or maximum
number of variables in a form (when SSPEC_FORM is the type of
data)

addr Address of function or variable (when SSPEC_FUNCTION,
SSPEC_CGI or SSPEC_VARIABLE is the type of data). Address
of form struct for SSPEC_FORM.

vartype Type of variable (when SSPEC_VARIABLE is the type of data), or
length of data (when *FILE is the type of data and the length is
needed e.g., a root file). For SSPEC_HARDLINK, contains the
sspec index number of a http_flashspec or server_spec
entry.

format sprintf() format for a variable, or form title for a form, or base
address for SSPEC_ROOTFILE. For SSPEC_LINK, points to a
string containing the linked-to resource name.

perm Permissions associated with this resource. If realm subfield is
NULL, then the permissions table is consulted as for filesystem re-
sources. Note: this field used to be char* for the realm string
(only). Programs that used this feature need to be modified. This
structure is detailed under ServerPermissions.

There are some other fields that are conditionally included if HTTP forms are in use. These are not
generally relevant. See the library source for details.
34 TCP/IP User’s Manual

3.1.3 ServerAuth Structure
This structure defines a global array that is a list of user name/password pairs.

ServerAuth server_auth[SAUTH_MAXUSERS];

Throughout this manual, this array is called the user table. The fields in the ServerAuth struct
are manipulated using the sauth_*() functions. The description below is for reference only.

username Name of user, or ""

password Password, or ""

mask Group mask

writeaccess Which servers this user has write access to

servermask Which servers this user is visible to

data Arbitrary data (application-dependent)

3.1.4 ServerPermissions Structure
This data structure holds access permissions for a resource or a group of resources. An instance of
ServerPermissions is contained in each ServerSpec structure, as well as within each
rule table entry. The fields for the ServerPermissions struct are:

realm Pointer to realm string of the resource. It is only used by HTTP serv-
ers, but can be used for other purposes.

readgroups Read permission is granted if the current ServerAuth.mask
value matches in at least one bit position.

writegroups Write permissions is granted if the current ServerAuth.mask
value matches in at least one bit position and
ServerAuth.writeaccess is set.

servermask A 16-bit mask with a bit set for each server that can access this re-
source. NB: for backwards compatibility, if this is set to zero then
all servers are allowed.

method Authentication method(s) allowed: combination of
SERVER_AUTH_* bits. Note that Zserver.lib does not di-
rectly support anything other than basic authentication, that is
SERVER_AUTH_BASIC; however, the required information is
stored here so that servers can access it as needed in a consistent
manner.

mimetype MIME type for this resource, or NULL. If NULL, the MIME type
will be derived from the file name using the MIMETypeMap table
called http_types. If not found in that table, the first entry in
that table will be used (for backward compatibility.)

Historical note: Prior to Dynamic C 8.50, HttpRealm was used in place of
ServerPermissions. If you have used HttpRealm for password protection in existing
Chapter 3: Server Utility Library 35

code and are upgrading to Dynamic C 8.50 or later, you must rewrite any code that used this old
structure. For an example of the new way to password protect an entity, see the sample program
samples\tcpip\http\authentication.c.

3.1.5 RuleEntry Structure
This structure associates a resource name prefix with a ServerPermissions structure. The
rule table is an array of these structures.

prefix Prefix of resource name(s) which are associated with this rule table
entry. If there are multiple entries which match a resource name,
then the rule with the longest matching prefix is used.

perm ServerPermissions to use for this entry.

3.1.6 ServerContext Structure
Starting with Dynamic C 8.50, context information must be maintained by each server that wants
Zserver functionality. Therefore, servers must provide a ServerContext struct when required.
The fields of ServerContext are:

userid This field identifies the current user.

server This field identifies the server, for example, SERVER_HTTP. This
is one of the few cases where only a single server bit should be set.

rootdir This field is a pointer to the root directory This is usually “/” if the
whole namespace is tobe accessible. Otherwise, it may be, for ex-
ample, “/A” to restrict access to just the first DOS FAT partition.
The first and last character must be “/”!

cwd[] This field is an array containing the current working directory. This
would normally contain the root directory as a prefix. The first and
last character must be “/”!

dfltname This field points to a file name to be used as a resource name suffix
when the first parameter refers to a directory name.

The ServerContext structure helps support more powerful resource access control. It is
needed by several of the new API functions that deal with resource retrieval and control, as well as
functions that perform directory navigation.

There are two functions that return a ServerContext struct: http_getcontext() and
http_getContext(). The latter is for use in CGI functions.

These functions can be used with other API functions that need the context structure. For example:

sspec_open(“MyFile”, http_getcontext(servno), O_READ, 0);

will open “MyFile” for reading for the server instance identified by servno.
36 TCP/IP User’s Manual

3.1.7 SSpecStat Structure
This structure holds status information about a file resource. It is filled in by the function
sspec_stat().

The fields of SSpecStat are:

flags A 16-bit mask that passes information about the file resource. The
flags field can be any number of the following:

• SSPEC_ATTR_MDTM - have modification date/time
• SSPEC_ATTR_LENGTH - have current length
• SSPEC_ATTR_WRITE - file is writable
• SSPEC_ATTR_EXEC - file is "executable"
• SSPEC_ATTR_HIDDEN - "Hidden" attribute bit
• SSPEC_ATTR_SYSTEM - "System" attribute bit
• SSPEC_ATTR_ARCHIVE - "Archive" attribute bit
• SSPEC_ATTR_DIR - directory name
• SSPEC_ATTR_COMPRESSED - stored in compressed format
• SSPEC_ATTR_MAXLENGTH - have maximum length
• SSPEC_ATTR_SEEKABLE - resource is randomly accessible
• SSPEC_ATTR_EXTENSIBLE - File may be expanded at end

mdtm Modification date/time (SEC_TIMER format), this field is only val-
id if SSPEC_ATTR_MDTM is set.

length The current file size; this field is only valid if
SSPEC_ATTR_LENGTH is set.

maxlength The maximum allowable file size; this field is only valid if
SSPEC_ATTR_MAXLENGTH is set.

perm Pointer to ServerPermissions struct. This structure is de-
scribed above.

3.1.8 sspec_fatinfo Structure
This structure is only relevant if you are using the FAT filesystem. It allows the
sspec_automount() function to return some FAT-related information to your application.
The fields in this structure are:

ctrl Pointer to dos_ctrl (controller) structure.

drive Pointer to mbr_drive structure.

part[4] 4 pointers to fat_part (partition) structures. Only the mounted
partitions are returned.

Note that when used with sspec_automount(), some of the above fields may be set to non-
NULL in order to indicate to sspec_automount() that the application has already initialized
some or all of the FAT.
Chapter 3: Server Utility Library 37

3.1.9 FormVar Structure
An array of FormVar structures represent the variables in an HTML form. The developer will
declare an array of these structures, with the size needed to hold all variables for a particular form.
The FormVar structure contains:

• A server_spec index that references the variable to be modified. This is the location of the
form variable in the server spec list.

• An integrity-checking function pointer that ensures that the variables are set to valid values.

• High and low values (for numerical types).

• Length (for the string type, and for the maximum length of the string representations of values).

• A Pointer to an array of values (for when the value must be one of a specific, and probably
short, list).

The developer can specify whether the variable is set through a text entry field or a pull-down
menu, and if the variable should be considered read-only.

This FormVar array is placed in a ServerSpec structure using the function
sspec_addform(). ServerSpec entries that represent variables will be added to the
FormVar array using sspec_addfv. Properties for these FormVar entries (for example, the
integrity-checking properties) can be set with various other functions. Hence, there is a level of
indirection between the variables in the forms and the actual variables themselves. This allows the
same variable to be included in multiple forms with different ranges for each form, and perhaps be
read-only in one form and modifiable in another.

3.1.10 SSpecFileHandle Structure
This structure is used internally by Zserver, and is only of interest to developers of new filesys-
tems which may be incorporated into Zserver.

3.2 Constants Used in Zserver.lib
The constants in this section are values assigned to the fields of the structures ServerSpec and
ServerAuth. They are used in the functions described in Section 3.5, some as function parame-
ters and some as return values.

3.2.1 ServerSpec Type Field
This field describes the resource in the server spec list. The possible values are:

• SSPEC_XMEMFILE - The data resides in xmem

• SSPEC_ZMEMFILE - The data resides in xmem and is compressed

• SSPEC_ROOTFILE - The data resides in root memory

• SSPEC_FSFILE - The data resides in an FS2 file.

• SSPEC_FATFILE - The data resides in a DOS FAT file.

• SSPEC_FILE - The data resides in a file - generic type returned by sspec_gettype().

• SSPEC_ROOTVAR - The data is a variable in root memory (for HTTP)

• SSPEC_XMEMVAR - The data is a variable in xmem (for HTTP)
38 TCP/IP User’s Manual

• SSPEC_VARIABLE The data is a variable (for HTTP) - generic type returned by
sspec_gettype().

• SSPEC_FUNCTION - The data is a function (for HTTP.)

• SSPEC_FORM - A set of modifiable variables.

• SSPEC_CGI - The data is a CGI function (for HTTP) - new style CGIs with better interface.

• SSPEC_LINK - Symbolic link ("alias") to another resource name.

• SSPEC_HARDLINK - Symbolic link ("alias") to another resource table entry.

3.2.2 ServerSpec Vartype Field
If the object is a variable, then this field will tell you what type of variable it is:

INT8, INT16, INT32, PTR16, FLOAT32

3.2.3 ServerPermissions Servermask Field
The type of server (HTTP and/or FTP) that has access to a particular resource is determined by the
servermask field in the ServerPermissions structure.

• SERVER_HTTP - Web server

• SERVER_FTP - File transfer server

• SERVER_SMTP - Mail server

• SERVER_HTTPS - Secure web server

• SERVER_SNMP - SNMP agent

• SERVER_USER - Placeholder for first user-defined server

• SERVER_USER2 - Placeholder for second user-defined server (etc.) - grow down.

• SERVER_ANY - Any server. May be passed in most cases when any server will do.

3.2.4 Configuration Macros
There are several configuration macros that may be set up by the application to control the mem-
ory usage and behavior of Zserver. These should be defined before #use Zserver.lib,
unless otherwise noted.

HTTP_NO_FLASHSPEC
SSPEC_NO_STATIC

When defined, these macros saves space by not compiling in code that supports a static
resource table. Presumably the application is using only the dynamic resource table, or
filesystems are in use. Historical note: the name of HTTP_NO_FLASHSPEC implies
HTTP, however it actually applies to Zserver as a whole, not any specific server. Dy-
namic C 8.50 introduces SSPEC_NO_STATIC, an alias for
HTTP_NO_FLASHSPEC.

SAUTH_MAXNAME

Maximum length of the name and password strings in the ServerAuth structure. De-
fault is 20. Strings must include a NULL character, so with its default value of 20,
strings in this structure may be at most 19 characters long.
Chapter 3: Server Utility Library 39

SAUTH_MAXUSERS

Define the maximum number of unique users. Defaults to 4. This determines the size
of the userid table. Each table entry takes up 2*SAUTH_MAXNAME + 8 bytes of root
storage.

SERVER_PASSWORD_ONLY

This is set to a bitmask of the server mask bits for each server that supports the concept
of a password-only user, that is, no user name. Defaults to zero since currently no serv-
ers are implemented that use this facility.

SSPEC_DEFAULT_READGROUPS
SSPEC_DEFAULT_WRITEGROUPS
SSPEC_DEFAULT_SERVERMASK
SSPEC_DEFAULT_REALM
SSPEC_DEFAULT_METHOD

 This group of macros establishes global default permissions for resources that do not
have a rule associated. SSPEC_DEFAULT_READGROUPS is “0xFFFF” which means
“all users.” For writegroups, this is “0” meaning “no users.” The servermask defaults
to SERVER_ANY (all servers can access). realm defaults to “” that is, an empty string,
or no realm. SSPEC_DEFAULT_METHOD defaults to no authentication method re-
quired.

SSPEC_MAX_FATDRIVES

Determine the maximum number of independent FAT filesystem “drives.” Defaults to
1. Each drive takes 8 bytes of root storage (plus whatever is required by the filesystem
itself). Each drive can have up to 4 partitions. This macro is only relevant if you use the
FAT library.

SSPEC_MAXNAME

Define the maximum name length of each dynamic or static resource. Defaults to 20.
You can minimize memory usage by choosing short names for all resources, and reduc-
ing the value of this macro.

SSPEC_MAXRULES

Define the maximum number of dynamically added “rules.” Defaults to 10, but you can
explicitly define it to zero if all the rule table entries are static (see
SSPEC_RULETABLE_* macros). Each rule takes up 13 bytes of root storage, plus
whatever storage is required for the realm and prefix strings (which must be null-termi-
nated, and in static storage, since pointers to these are stored in the rule table).

SSPEC_MAXSPEC

Define to the number of dynamic (RAM) resource table entries to allocate for the global
array, server_spec. Each entry takes SSPEC_MAXNAME + 23 bytes of root mem-
ory (or SSPEC_MAXNAME + 33 if FORM_ERROR_BUF is defined).

 Defaults to 10 entries (approximately 530 bytes). Do not set higher than 511.
40 TCP/IP User’s Manual

SSPEC_MAX_OPEN

Determine the maximum number of simultaneously open resources. Defaults to 4.
Choose this number carefully, since each entry can take up a fairly large amount of root
storage, depending on the mix of filesystems in use. Unless you are anticipating a very
busy server, 4 should be enough.

If you increase the default value of HTTP_MAXSERVERS from 4, you may experience
404 or 503 messages. The solution is to increase SSPEC_MAX_OPEN. Ideally, this val-
ue should be HTTP_MAXSERVERS + FTP_MAXSERVERS + any special use of
zserver.lib that you create.

SSPEC_XMEMVARLEN

Defines the size of the stack-allocated buffer used by sspec_readvariable()
when reading a variable in xmem. It defaults to 20.

3.2.5 Macros for Control Data Initialization
As of Dynamic C 8.50, the following macros are available for building the static tables used by the
servers.

 3.2.5.1 Static Rule Table
Resource rules are used to associate access information with resource names. The following mac-
ros define and initialize a static rule table. If using a static rule table, the dynamically added entries
will be searched before the static ones.

SSPEC_FLASHRULES

Define this if your application is using static rules. You must define this if you want to
use the macro SSPEC_RULETABLE_START. If you define SSPEC_FLASHRULES,
and you do not need dynamic rules, you can define the macro SSPEC_MAXRULES to
zero to recover the root memory that would be wasted otherwise.

SSPEC_RULETABLE_START
SSPEC_RULE(prefix, realm, rg, wg, sm)
SSPEC_MM_RULE(prefix, realm, rg, wg, sm, method, mimetype)
SSPEC_RULETABLE_END

This sequence of macros is used to define static rules. See the documentation with the
sspec_addrule() function for more information. You must define
SSPEC_FLASHRULES to use these macros.
Chapter 3: Server Utility Library 41

 3.2.5.2 Static MIME Type Table
This table maps file extensions and MIME types. You only need such a table if using a server that
requires MIME types. Currently, only the HTTP server needs this.

SSPEC_MIMETABLE_START
SSPEC_MIME(extension, type)
SSPEC_MIME_FUNC(extension, type, function)
SSPEC_MIMETABLE_END

This sequence sets up the MIME type mapping table. Currently only a static MIME ta-
ble is supported. Though you cannot dynamically add new MIME types to this table, it
is possible to allocate new MIMETypeMap structures in RAM and assign them to spe-
cific resources using sspec_addrule() or sspec_setpermissions().
Such entries will not be accessed using the default resource name extension method.
42 TCP/IP User’s Manual

 3.2.5.3 Static Resource Table
The static resource table associates the names of web server resources (files, functions, and vari-
ables) to references to memory objects.

HTTP_NO_FLASHSPEC

Define if there is to be NO static resource table, that is, all resources are in the dynamic
(RAM) table or in the filesystem(s). If you define this, then there is no point in using
the SSPEC_RESOURCE_* series of macros below.

SSPEC_RESOURCETABLE_START
SSPEC_RESOURCE_ROOTFILE(name, addr, len)
SSPEC_RESOURCE_XMEMFILE(name, addr)
SSPEC_RESOURCE_ZMEMFILE(name, addr)
SSPEC_RESOURCE_FSFILE(name, fnum)
SSPEC_RESOURCE_ROOTVAR(name, addr, type, format)
SSPEC_RESOURCE_XMEMVAR(name, addr, type, format)
SSPEC_RESOURCE_FUNCTION(name, addr)
SSPEC_RESOURCE_CGI(name, addr)
SSPEC_RESOURCE_P_ROOTFILE(name, addr, len, realm, rg, wg, sm, meth)
SSPEC_RESOURCE_P_XMEMFILE(name, addr, realm, rg, wg, sm, meth)

SSPEC_RESOURCE_P_ZMEMFILE(name, addr, realm, rg, wg, sm, meth)
SSPEC_RESOURCE_P_FSFILE(name, fnum, realm, rg, wg, sm, meth)
SSPEC_RESOURCE_P_ROOTVAR(name, addr, type, format, realm, rg, wg,

sm, meth)
SSPEC_RESOURCE_P_XMEMVAR(name, addr, type, format, realm, rg, wg,

sm, meth)
SSPEC_RESOURCE_P_FUNCTION(name, addr, realm, rg, wg, sm, meth)
SSPEC_RESOURCE_P_CGI(name, addr, realm, rg, wg, sm, meth)
SSPEC_RESOURCETABLE_END

These macros are used to initialize the static resource table. Prior to Dynamic C 8.50
this had to be done by explicitly using C language initialization of a table declared as:

const HttpSpec http_spec[]

These macros perform the same function. It is recommended to use them instead of stat-
ic initializers in order to maintain forward compatibility.

 The macros with _P_ in the name are the same as the others, except that they explicitly
allow all the server permissions information (except for the MIME type mapping) to be
initialized. See sspec_addrule() for more information on the parameters.

The name parameter to all these macros is the resource name. This usually starts with
a “/” for files, but not for variables. The string length should be less than or equal to
SSPEC_MAXNAME.
Chapter 3: Server Utility Library 43

The other parameters depend on the resource type being created:

ROOTFILE: addr = root memory address of first byte of file, len = length of file
(0..32767).

XMEMFILE: addr = longword (physical address) of the length word of the file. The
length word (4 bytes) is followed by the first byte of data.

ZMEMFILE: as for XMEMFILE, except the file is compressed and imported using
#zimport instead of #ximport.

FSFILE: fnum = FS2 file number of file (1..255)

ROOTVAR: addr = root memory address of data, type = type of data, as documented
with sspec_addvariable(), format = char * format, as used by printf().
For example, “%d” for a decimal number.

XMEMVAR: as for ROOTVAR except the address is a longword physical address.

FUNCTION or CGI: addr = address of C function.

Note that a maximum of 511 static resource table entries can be defined.

3.3 File Compression Support
Dynamic C 8.50 introduces file compression support. The sample program
/samples/tcpip/http/zimport.c demonstrates how to use this functionality. This sam-
ple is oriented towards the HTTP server; however, under the covers, HTTP is relying on Zserver
to perform the compressed file handling.

In the sample program, notice that the statement “#use zimport.lib” comes before the
statement “#use http.lib” in the code. This is required to have file compression support in
Zserver and the web server. The next thing to notice is the use of the compiler directive
#zimport instead of #ximport. #zimport performs a standard #ximport, but com-
presses the file by invoking a compression utility before emitting the file to the target.

When adding a compressed file to the static resource table, use the macro
SSPEC_RESOURCE_ZMEMFILE instead of SSPEC_RESOURCE_XMEMFILE. When you add
a compressed file to the dynamic resource table using the sspec_addxmemfile() function, it
will be recognized as a compressed file automatically. sspec_addxmemfile() is thus used
for both compressed and uncompressed imported files.

Each instance of a server will use a buffer for decompression—this is necessary since multiple
server instances can be decompressing files at the same time. Make sure that the buffer macro
INPUT_COMPRESSION_BUFFERS is at least as large as the number of servers which may need
concurrently to decompress a compressed resource. The buffer macro describes the number of
4KB xmem RAM buffers used for decompression. This definition is used by the zimport.lib
library.

For details on compression ratios, memory usage and performance, please see Technical Note 234,
“File Compression.” For more information on using #zimport and the support libraries, please
see the Dynamic C User’s Manual and the Dynamic C Function Reference Manual.

All of these documents are available on our website, at www.zworld.com.
44 TCP/IP User’s Manual

http://www.zworld.com/docs/

3.4 HTML Forms
This facility is oriented towards the HTTP server, however it is Zserver that actually handles the
form data (as a special resource type in the dynamic resource table only).

Defining FORM_ERROR_BUF is required to use the HTML form functionality in ZSERVER.LIB.
The value assigned to this macro is the number of bytes to reserve in root memory for the buffer used
for form processing. This buffer must be large enough to hold the name and value for each variable,
plus four bytes for each variable.

An array of type FormVar must be declared to hold information about the form variables. Be sure to
allocate enough entries in the array to hold all of the variables that will go in the form. If more forms
are needed, then more of these arrays can be allocated. Please see Section 4.5.4 on page 176 for an
example program.

Starting with Dynamic C 8.50, a more flexible way of supporting form generation is available with
the Dynamic C RabbitWeb Module. For more information on this enhanced HTTP server, see the
document "RabbitWeb, To Web-Enable Embedded Applications" available at:

www.zworld.com/products/dc/DC8/docs.shtml

3.5 API Functions
The resource manager API functions are described in this section. These functions give servers a
consistent interface to files, variables and client information.
Chapter 3: Server Utility Library 45

http://www.zworld.com/products/dc/DC8/docs.shtml

sauth_adduser

int sauth_adduser(char *username, char *password,
word servermask);

DESCRIPTION

This function adds a user to the user table. It fills in the fields of the ServerAuth
structure associated with this user. Three of the field are specified by the parameters
passed into the function. Two other fields, one for the user group mask and the other for
the write access mask, are given default values.

The default for the user group mask is the assigned index number (0 to
SAUTH_MAXNAME-1) as a bit number; that is, 1<<index. This effectively creates
each user in a unique (single) group. Since this does not offer any real control over the
assigned group mask, it is recommended to use sauth_setusermask() after this
to assign the correct access masks.

The default for the write access mask is the user has no write access to any server. To
assign this permission, call the function sauth_setwriteaccess() with the user
table index returned by sauth_adduser().

PARAMETERS

username Name of the user, a character string up to SAUTH_MAXNAME
characters.

password Password for the user, another character string up to
SAUTH_MAXNAME characters.

servermask Bitmask representing valid servers (e.g., SERVER_HTTP,
SERVER_FTP).

RETURN VALUE

-1: Failure.
≥0: Success; index into user table (id passed to sauth_getusername()).

LIBRARY

ZSERVER.LIB

SEE ALSO

sauth_authenticate, sauth_getwriteaccess, sauth_setusermask,
sauth_setwriteaccess, sauth_removeuser
46 TCP/IP User’s Manual

sauth_authenticate

int sauth_authenticate(char *username, char *password,
word server);

DESCRIPTION

Authenticate user and return the user index representing the authenticated user, that is,
the user table index. This performs only a plaintext comparison of the userid and pass-
word. Servers probably will have their own, more sophisticated, checks.

If username is NULL, or empty string, then password-only matching is attempted for
servers who allow this type of authentication (as defined by the
SERVER_PASSWORD_ONLY macro).

PARAMETERS

username Name of user.

password Password for the user.

server The server for which this function is authenticating (e.g.,
SERVER_HTTP, SERVER_FTP).

RETURN VALUE

-1: Failure or user not authorized.
≥0: Success, array index of the ServerAuth structure for authenticated user.

LIBRARY

ZSERVER.LIB

SEE ALSO

sauth_adduser
Chapter 3: Server Utility Library 47

sauth_getpassword

sauth_getpassword(int userid);

DESCRIPTION

Get the password for a user.

PARAMETER

userid user index

RETURN VALUE

!=NULL: password string
NULL: Failure

LIBRARY

ZSERVER.LIB

SEE ALSO

sauth_setpassword

sauth_getserver

int sauth_getserver(int sauth);

DESCRIPTION

Returns whether or not a user is visible to particular server(s).

PARAMETER

sauth user index

RETURN VALUE

0: This user is visible to all servers
>0: Visible to select servers. One bit is set for each server that knows about this user.
-1: Failure; for example, sauth is an invalid index into the user table.

SEE ALSO

sauth_setserver
48 TCP/IP User’s Manual

sauth_getuserid

int sauth_getuserid(char *username, word server);

DESCRIPTION

Gets the user index for a user.

PARAMETERS

username User's name. If this name is not found, then the list is re-scanned
looking for an entry with an empty user name ("") and a password
that matches username. The second pass is only done for servers
that allow password-only matching. Such servers must be speci-
fied by defining a symbol SERVER_PASSWORD_ONLY to be a
bitmask of such servers.

server Server(s) for which we are looking up. Use SERVER_ANY if not
concerned with the server mask.

RETURN VALUE

≥0: Success, index of user in the user table.
-1: Failure.

LIBRARY

ZSERVER.LIB
Chapter 3: Server Utility Library 49

sauth_getusermask

int sauth_getusermask(int userid, word * groupbits,
void ** authdata);

DESCRIPTION

Get the group access bit(s) and/or authorization data for a given user ID.

PARAMETERS

userid User index

groupbits Pointer to bitmask that will be set to group(s) of which this user is
a member. If NULL, this information is not retrieved.

authdata Pointer to void* that is set to arbitrary server data. If NULL, this
information is not retrieved.

RETURN VALUE

0: OK
-1: Failed: userid not valid.
50 TCP/IP User’s Manual

sauth_getusername

char *sauth_getusername(int userid);

DESCRIPTION

Returns the name of the user, a character string from the ServerAuth structure asso-
ciated with userid.

PARAMETERS

userid The user’s id, that is, the index into the user table.

RETURN VALUE

NULL: Failure.
!NULL: Success, pointer to the user’s name string.

LIBRARY

ZSERVER.LIB

SEE ALSO

sspec_getusername
Chapter 3: Server Utility Library 51

sauth_getwriteaccess

int sauth_getwriteaccess(int sauth);

DESCRIPTION

Checks whether or not a user has write access to any server's resources. This is an “in
principle” test. Each resource is individually protected from write access: this is not
checked. In other words, this function may return TRUE even when none of the re-
sources are writable to this user.

PARAMETERS

sauth Index into the user table.

RETURN VALUE

0: User does not have write access.
1: User has write access.

-1: Failure.

LIBRARY

ZSERVER.LIB

SEE ALSO

sauth_setwriteaccess
52 TCP/IP User’s Manual

sauth_removeuser

int sauth_removeuser(int userid);

DESCRIPTION

Remove the given user from the user list. IMPORTANT: Any associations of the given
user with web pages should be changed. Otherwise, no one will have access to the un-
changed web pages. Authentication can be turned off for a page with
sspec_setrealm(sspec, "").

PARAMETERS

userid Index in user table.

RETURN VALUE

0: Success.
-1: Failure.

LIBRARY

ZSERVER.LIB

SEE ALSO

sauth_adduser
Chapter 3: Server Utility Library 53

sauth_setpassword

int sauth_setpassword(int userid, char *password);

DESCRIPTION

Sets the password for a user.

PARAMETERS

userid Index of user in user table.

password User's new password.

RETURN VALUE

0: Success.
-1: Failure.

LIBRARY

ZSERVER.LIB

SEE ALSO

sauth_getpassword
54 TCP/IP User’s Manual

sauth_setserver

int sauth_setserver(int sauth, int server);

DESCRIPTION

Sets whether a user is visible to the specified server(s).

PARAMETERS

sauth User index

server Server bitmask, with bit set to 1 to make this user “known” to the
server. If this parameter is zero, then the user is visible to ALL
servers, however it is recommended to pass the value
SERVER_ANY in this case.

RETURN VALUE

0: Success
-1: Failure

SEE ALSO

sauth_getserver
Chapter 3: Server Utility Library 55

sauth_setusermask

int sauth_setusermask(int userid, word userid, void *
authdata);

DESCRIPTION

Set the group access bit(s) and authorization data for a given user ID.

PARAMETERS

userid User index

userid Bitmask of group(s) of which this user is a member. This should
be non-zero, otherwise the user will not have access to any re-
sources.

authdata Arbitrary data that can be used by specific servers.

RETURN VALUE

0: OK
-1: Failed: userid not valid.
56 TCP/IP User’s Manual

sauth_setwriteaccess

int sauth_setwriteaccess(int sauth, int writeaccess);

DESCRIPTION

Set whether or not a user has write access with the specified server(s).

PARAMETERS

sauth Index of the user in the user table.

writeaccess Server bitmask, with bit set to 1 for write access, 0 for no write
access. This is a bitwise OR of the server macros,
SERVER_HTTP, etc., that you want the user to have write ac-
cess to.

RETURN VALUE

0: Success.
-1: Failure.

LIBRARY

ZSERVER.LIB

SEE ALSO

sauth_getwriteaccess
Chapter 3: Server Utility Library 57

sspec_access

int sspec_access(char * name, ServerContext * context);

DESCRIPTION

Test access to a given resource by a specified user. The userid is set in
context->userid, or -1 for testing access by the server in general.

NOTE: sspec_checkpermissions() performs a similar function, except on a
resource handle rather than a resource name.

PARAMETERS

name Resource name, as a null-terminated string. This name is assumed
to be relative to context->cwd if it does not begin with a “/”
character. Otherwise, the name is assumed to be relative to
context->rootdir.

context Additional context information. The ServerContext structure
is set up by the caller. See sspec_open() for documentation
on this structure. For this function, context->userid should
be set to the current user whose access is being tested, or may be
set to -1 to test access by the server in general.

RETURN VALUE

≥0: Success. The return value is a bitmask of the following values:

• O_READ - user+server has read access

• O_WRITE - user+server has write access

• 0 (zero) - no access

The following return values are negatives of the values defined in errno.lib.

• -ENOENT - The resource was not found.

• -EINVAL - The resource name was malformed (e.g., too long), or context
was NULL, or the resource was not a file type.

SEE ALSO

sspec_read, sspec_write, sspec_seek, sspec_tell, sspec_close,
sspec_checkpermissions
58 TCP/IP User’s Manual

sspec_addCGI

int sspec_addCGI(char* name, void (*fptr)(), word servermask);

DESCRIPTION

Add a CGI function to the RAM resource list. This function is currently only useful for
the HTTP server, in which case the function is registered as a CGI processor. Make sure
that SSPEC_MAXSPEC is large enough to hold this new entry.

PARAMETERS

name URL name of the new function, for example, myCGI.cgi

fptr Pointer to the function. The prototype for this function is:

int (*fptr)(HttpState * state);

There is a specific documented interface that must be used when
specifying this type of CGI handler function. See the manual for
details.

servermask Bitmask representing valid servers (currently only useful with
SERVER_HTTP)

RETURN VALUE

≥0: Successfully added spec index
-1: Failed to add function.

LIBRARY

ZSERVER.LIB

SEE ALSO

sspec_addfsfile, sspec_addfunction, sspec_addrootfile,
sspec_addvariable, sspec_addxmemvar, sspec_addxmemfile
sspec_aliasspec, sspec_addform
Chapter 3: Server Utility Library 59

sspec_addform

int sspec_addform(char *name, FormVar *form, int formsize,
word servermask);

DESCRIPTION

Adds a form (set of modifiable variables) to the TCP/IP servers’ object list. Make sure
that SSPEC_MAXSPEC is large enough to hold this new entry. This function is current-
ly only useful for the HTTP server.

PARAMETERS

name Name of the new form.

form Pointer to the form array. This is a user-defined array to hold infor-
mation about form variables.

formsize Size of the form array

servermask Bitmask representing valid servers (currently only useful with
SERVER_HTTP)

RETURN VALUE

≥0: Success; location of form in server spec list.
-1: Failed to add form.

LIBRARY

ZSERVER.LIB

SEE ALSO

sspec_addfsfile, sspec_addfunction, sspec_addrootfile,
sspec_addvariable, sspec_addxmemvar, sspec_addxmemfile
sspec_aliasspec, sspec_addfv
60 TCP/IP User’s Manual

sspec_addfsfile

int sspec_addfsfile(char *name, byte filenum,
word servermask);

DESCRIPTION

Adds a file, located in the FS2 filesystem, to the RAM resource list. Make sure that
SSPEC_MAXSPEC is large enough to hold this new entry. This function associates a
name with the file.

This creates an alias entry for /fs2/file<n>.

Note that all FS2 files are automatically accessible. There is no need to call this function
unless it is desired to assign a name to an FS2 file other than the default, which is
file1, file2 etc.

For more information regarding the FS2 filesystem, please see the Dynamic C User’s
Manual.

PARAMETERS

name Name of the new file.

filenum Number of the file in the file system (1-255) . This is the number
passed in as the second parameter to fcreate() or the return
value from fcreate_unused().

servermask Bitmask representing servers for which this entry will be valid
(e.g., SERVER_HTTP, SERVER_FTP).

RETURN VALUE

-1: Failure.
≥0: Success; location of file in TCP/IP servers’ object list.

LIBRARY

ZSERVER.LIB

SEE ALSO

sspec_addrootfile, sspec_addfunction, sspec_addvariable,
sspec_addxmemfile, sspec_addform, sspec_aliasspec
Chapter 3: Server Utility Library 61

sspec_addfunction

int sspec_addfunction(char *name, void (*fptr)(),
word servermask);

DESCRIPTION

Adds a function to the RAM resource list. Make sure that SSPEC_MAXSPEC is large
enough to hold this new entry. This function is currently only useful for HTTP servers.

NOTE: If using HTTP upload facility and/or the new CGI interface, use
sspec_addCGI() instead.

PARAMETERS

name Name of the function.

(*ftpr)() Pointer to the function.

servermask Bitmask representing servers for which this function will be valid
(currently only useful with SERVER_HTTP).

RETURN VALUE

-1: Failure.
≥0: Success, location of the function in the TCP/IP servers’ object list.

LIBRARY

ZSERVER.LIB

SEE ALSO

sspec_addform, sspec_addfsfile, sspec_addrootfile,
sspec_addvariable, sspec_addxmemvar, sspec_addxmemfile,
sspec_aliasspec
62 TCP/IP User’s Manual

sspec_addfv

int sspec_addfv(int form, int var);

DESCRIPTION

Adds a variable to a form.

PARAMETERS

form spec index of the form (previously returned by
sspec_addform()).

var spec index of the variable to add (which must have been previous-
ly created using sspec_addvariable())

RETURN VALUE

-1: Failure.
≥0: Success; next available index into the FormVar array.

LIBRARY

ZSERVER.LIB

SEE ALSO

sspec_addform
Chapter 3: Server Utility Library 63

sspec_addrootfile

int sspec_addrootfile(char *name, char *fileloc, int len, word
servermask);

DESCRIPTION

Adds a file that is located in root memory to the dynamic resource table. Make sure that
SSPEC_MAXSPEC is large enough to hold this new entry.

PARAMETERS

name Name of the new file. This must be unique, but this function does
not check. The name should not conflict with the virtual filesystem
hierarchy. That is, it should not start with /fs2/, /A/, /B/ etc.

fileloc Pointer to the beginning of the file.

len Length of the file in bytes.

servermask Bitmask representing servers for which this entry will be valid
(e.g., SERVER_HTTP, SERVER_FTP).

RETURN VALUE

-1: Failure.
≥0: Success; file index into the resource list.

LIBRARY

ZSERVER.LIB

SEE ALSO

sspec_addfsfile, sspec_addxmemfile, sspec_addxmemvar,
sspec_addvariable, sspec_addfunction, sspec_addform,
sspec_aliasspec, sspec_resizerootfile
64 TCP/IP User’s Manual

sspec_addrule

int sspec_addrule(char * pfx, char * realm, word readgroups,
word writegroups, word servermask, word method,
MIMETypeMap * mimetype);

DESCRIPTION

Add a rule to the dynamic resource rule table. Resource rules are used to associate ac-
cess information with resource names matching the specified prefix string. The most
specific, that is, the longest, matching string is used.

Normally, the rule table is consulted only for resource names that belong in a file sys-
tem (FS2 or FAT). You can also cause the rule table to be consulted for flash- or RAM-
table entries if you leave the realm field as NULL in the entry. If the realm field is
not NULL, then the rule table is not consulted for that entry. If the realm field was
NULL, and there was no applicable entry in the rule table, then the resource table per-
missions are used (with NULL realm).

Do not attempt to use a very large number of rule table entries, since the table must be
searched exhaustively for each initial resource access. There should be no need for a
large number of entries provided that the resource name hierarchy is organized in a rea-
sonably efficient manner. For example, keep the resources for a particular user or realm
in one directory, and just add an entry for that directory instead of an entry for each re-
source. This works because the full path name is always used for matching, and the di-
rectory will always be a prefix string of the files that reside in that directory.

As an alternative to this function, you can statically initialize a rule table using the fol-
lowing macros:

#define SSPEC_FLASHRULES // Required.
#use "zserver.lib" // this lib

SSPEC_RULETABLE_START
SSPEC_RULE("prefix", realm, rg, wg, sm)
SSPEC_RULE("prefix", realm, rg, wg, sm)
SSPEC_MM_RULE("prefix", realm, rg, wg, sm, meth, mime)
SSPEC_MM_RULE("prefix", realm, rg, wg, sm, meth, mime)
 ...
SSPEC_RULETABLE_END

The SSPEC_MM_RULE macro parameters are basically the same parameters as would
be passed to this function. These macros define and initialize a constant rule table
named f_rule_table. SSPEC_RULE just omits the (rarely used) method and
mimetype fields.

When using a static rule table, the dynamically added entries are searched before the
static ones.
Chapter 3: Server Utility Library 65

PARAMETER

pfx Prefix of resource name. This must include the initial “/” charac-
ter, since all matching is done using absolute path names. If this
prefix string exactly matches an existing entry in the table, that en-
try is replaced. Otherwise, a new entry is created (if possible). This
string is not copied, only the pointer is stored. Thus, pfx must
point to static storage, that is, a string constant or a global variable.
Initial characters other than “/” are reserved for future use.

realm If not NULL, is an arbitrary null-terminated string that may be
used by the server. For HTTP, this is used as the “realm” of the re-
source. This string is not copied, only the pointer is stored. Thus,
the parameter must point to static storage.

readgroups A word with a bit set for each group that can access this resource
for reading. A maximum of 16 different user groups can exist.

writegroups A word with a bit set for each group that can access this resource
for writing. The user must also be given write permission to re-
sources in the userid table entry for the appropriate server(s).

servermask The server(s) that are allowed to access this resource. Servers have
predefined bits. This parameter should be a combination of

• SERVER_HTTP: web server

• SERVER_FTP: file transfer protocol server

• SERVER_SMTP: email

• SERVER_HTTPS: secure web server

• SERVER_SNMP: SNMP agent

• SERVER_USER: user-defined server

• SERVER_ANY: for all servers.

method Allowable authentication method(s) to be used when accessing
this resource. If zero, then the resource has no particular authenti-
cation method requirements. This is a bitwise combination of:

• SERVER_AUTH_BASIC: plaintext userid/password

• SERVER_AUTH_DIGEST: challenge-response protocol

• SERVER_AUTH_PK: public key (such as SSL/TLS)

mimetype An appropriate MIME type to use. If NULL, then the default table
(called http_types) will be consulted.

RETURN VALUE

 ≥0: OK
-1: Error. For example, out of space in rule table; increase SSPEC_MAXRULES.

SEE ALSO

 sspec_removerule, sspec_getMIMEtype
66 TCP/IP User’s Manual

sspec_adduser

int sspec_adduser(int sspec, int userid);

DESCRIPTION

Add to the read permission mask for the given resource. The groups that userid is
a member of are ORed into the existing permission mask for the resource. The write
permissions are not modified.

NOTE: This is not used to create new userids. For that, see sauth_adduser().

Adds a user to the list of users that have access to the given spec entry. Up to
SSPEC_USERSPERRESOURCE users can be added. Any more than that will result in
this function returning -1.

This function is deprecated as of Dynamic C 8.50. Use the more general
sspec_setpermissions() function instead.

PARAMETERS

sspec Spec index.

userid User index.

RETURN VALUE

≥0: Success, index of userid added for given spec entry.
-1: Failure.

LIBRARY

ZSERVER.LIB

SEE ALSO

sspec_setuser, sspec_getusername, sspec_getuserid,
sspec_removeuser, sspec_setpermissions
Chapter 3: Server Utility Library 67

sspec_addvariable

int sspec_addvariable(char *name, void *variable, word type,
char *format, word servermask);

DESCRIPTION

Adds a variable to the dynamic resource table (aka, the RAM resource list). Make sure
that SSPEC_MAXSPEC is large enough to hold this new spec entry. This function is
currently only useful for the HTTP server.

PARAMETERS

name Name of the new variable. This must be unique, but this function
does not check. The name should not conflict with the virtual file-
system hierarchy. That is, it should not start with /fs2/, /A/,
/B/ etc. Variables appear in a directory listing of the root directo-
ry “/” however, they cannot be opened using sspec_open().

variable Address of actual variable.

type Variable type, one of:

• INT8 - single character
• INT16 - 2-byte integer
• PTR16 - string in root memory
• INT32 - 4-byte (long) integer
• FLOAT32 - floating point variable

format Output format of the variable as a printf() conversion specifi-
er, e.g., “%d.”

servermask Bitmask representing servers for which this function will be valid
(currently only useful with SERVER_HTTP).

RETURN VALUE

-1: Failure.
≥0: Success, the index of the variable in the resource list.

LIBRARY

ZSERVER.LIB

SEE ALSO

sspec_addfsfile, sspec_addrootfile, sspec_addxmemfile,
sspec_addxmemvar, sspec_addfunction sspec_addform,
sspec_aliasspec
68 TCP/IP User’s Manual

sspec_addxmemfile

int sspec_addxmemfile(char *name, long fileloc,
word servermask);

DESCRIPTION

Adds a file, located in extended memory, to the RAM resource list. Make sure that
SSPEC_MAXSPEC is large enough to hold this new entry.

PARAMETERS

name Name of the new file. This must be unique, but this function does
not check. The name should not conflict with the virtual filesystem
hierarchy. That is, it should not start with /fs2/, /A/, /B/ etc.

fileloc Location of the beginning of the file. The first 4 bytes of the file
must represent the length of the file (#ximport does this auto-
matically).

servermask Bitmask representing servers for which this entry will be valid
(e.g., SERVER_HTTP, SERVER_FTP).

RETURN VALUE

-1: Failure.
≥0: Success, the location of the file in the dynamic resource list.

LIBRARY

ZSERVER.LIB

SEE ALSO

sspec_addfsfile, sspec_addrootfile, sspec_addvariable,
sspec_addxmemvar, sspec_addfunction, sspec_addform,
sspec_aliasspec
Chapter 3: Server Utility Library 69

sspec_addxmemvar

int sspec_addxmemvar(char *name, long variable, word type,
char *format, word servermask);

DESCRIPTION

Add a variable located in extended memory to the RAM resource list. Make sure that
SSPEC_MAXSPEC is large enough to hold this new entry. Currently, this function is
useful only for the HTTP server.

PARAMETERS

name Name of the new variable. This must be unique, but this function
does not check. The name should not conflict with the virtual file-
system hierarchy. That is, it should not start with /fs2/, /A/,
/B/ etc. Variables appear in directory listing of the root directory
“/” however, they cannot be opened using sspec_open().

variable Address of the variable in extended memory.

type Variable type, one of:

• INT8 - single character
• INT16 - 2-byte integer
• PTR16 - string in root memory
• INT32 - 4-byte (long) integer
• FLOAT32 - floating point variable

format Output format of the variable as a printf() conversion specifi-
er e.g., “%d.”

servermask Bitmask representing valid servers (currently only useful with
SERVER_HTTP).

RETURN VALUE

-1: Failure.
≥0: Success, the index of the variable in the resource list.

LIBRARY

ZSERVER.LIB

SEE ALSO

sspec_addfsfile, sspec_addrootfile, sspec_addvariable,
sspec_addfunction, sspec_addform, sspec_addxmemfile,
sspec_aliasspec
70 TCP/IP User’s Manual

sspec_aliasspec

int sspec_aliasspec(int sspec, char *name);

DESCRIPTION

Creates an alias to an existing ServerSpec structure. Make sure that
SSPEC_MAXSPEC is large enough to hold this new entry.

This is NOT a deep copy. That is, any file, variable, or form that the alias (the new spec
entry) references will be the same copy of the file, variable, or form that already exists
in the old spec entry. This should be called only when the original entry has been com-
pletely set up.

NOTE: do not attempt to alias a sspec handle that was returned by sspec_open(),
because the handle may be dynamically allocated. In such a case, the alias will not work
once the original handle is closed. You can test whether such a "virtual" handle has been
returned using the macro SSPEC_IS_VIRT(sspec).

PARAMETERS

sspec sspec index that this function will alias.

name Alias name.

RETURN VALUE

-1: Failure.
≥0: Success; return location of alias, i.e., new index.

LIBRARY

ZSERVER.LIB

SEE ALSO

sspec_addform, sspec_addfsfile, sspec_addfunction,
sspec_addrootfile, sspec_addvariable, sspec_addxmemfile
Chapter 3: Server Utility Library 71

sspec_automount

int sspec_automount(word which, void ** fatstuff,
void ** fs2stuff, void ** reserved);

DESCRIPTION

This function automatically initializes and mounts the specified filesystem(s) for use by
Zserver. Mounting a filesystem creates an entry point to that filesystem for the server.

You must #use the appropriate filesystem library (for example, FS2.LIB) otherwise
the filesystem will not be mountable.

If using the FAT library, you must include one or more “driver libraries” (such as
sflash_fat.lib) before #use fat.lib. Only the default device from the first
driver library will be initialized and used by this routine. If you need to use any other
devices, you will need to initialize them individually and call the
sspec_fatregister() function. SSPEC_MAX_FATDRIVES will also need to
be increased from its default value of one.

For the FAT library, this routine calls fat_Init() and mounts the first available FAT
partition on that drive (if any). If the first available partition is the first partition on the
drive, then it will be mounted at mount point “/A”. If it is the second partition, it will
be mounted at “/B” etc. Up to four partitions are scanned. If none are found (or none
are FAT12 or FAT16 partitions) then an error is returned.

For FS2, all logical extents will be initialized via the fs_init() function.

PARAMETERS

which The filesystem(s) to mount. This is a bitwise OR of the following
constants:

• SSPEC_MOUNT_FS - FS or FS2 flash filesystem

• SSPEC_MOUNT_FAT - FAT filesystem (1st drive).

You can also pass SSPEC_MOUNT_ANY to mount all known file-
systems.
72 TCP/IP User’s Manual

fatstuff Either NULL (no info return) or must point to a struct of type
sspec_fatinfo. This structure (defined in zserver.lib)
consists of the following fields:

typedef struct {
dos_ctrl * ctrl;
mbr_drive * drive;
fat_part * part[4];

} sspec_fatinfo;

When calling this function, you should NULL out all these point-
ers using memset(..., 0, ...). You can then optionally
set some of the pointers to valid non-NULL values in order to
override the defaults supplied by this function. If you set the ctrl
pointer, then it is assumed by this function that you have already
called the controller initialization function. If the pointer is NULL
on entry, then this function will call the default controller initial-
ization via the DOS_CONTROLLER_INIT macro.

On return, pointers that were NULL on entry may be changed to
point to valid default information. In particular, the ctrl and
drive fields will point to defaults. One (and only one) of the
NULL part pointers may be set to a default partition structure if
a default partition could be located on the drive.

If fat.lib is not included, the above structure is still defined,
but contains 6 void pointers. This is just to avoid compilation
problems, since no information will be used or returned.

fs2stuff This parameter is currently reserved for returning FS2 informa-
tion. For now, pass as NULL.

reserved Reserved for other filesystems. For now, pass as NULL.

RETURN VALUE

0: OK
Otherwise, if a filesystem fails to mount, the return code is the bitwise OR of the
SSPEC_MOUNT_* constants of those filesystem(s) that failed to initialize.

SEE ALSO

sspec_fatregister, sspec_fatregistered
Chapter 3: Server Utility Library 73

sspec_cd

int sspec_cd(char * path, ServerContext * context, int check);

DESCRIPTION

Change the current working directory in the ServerContext structure. This func-
tion may be used by servers that support the concept of a current directory, such as FTP
(but not HTTP). Standard Unix-like path names are used, including support for “.” and
“..” directory components.

The resulting directory name is not allowed to be closer to the root directory than
context->rootdir. If there is any specification error, then the current directory is
not changed. The resulting absolute directory name cannot be longer than
SSPEC_MAXNAME, including a leading and trailing “/” character.

PARAMETERS

path New directory path string, as a null-terminated string. If this starts
with “/” it is merely appended to the context->rootdir
string. Otherwise, it is appended to the current directory (in
context->cwd). Directory components are separated by “/”
characters. A trailing slash is optional. A directory component “.”
means “no change to this level,” and a component of “..” means
“up one level” (towards the root).

context Server context structure. Two fields in this are of interest:
rootdir points to a virtual root directory for this server. For ex-
ample, if the FTP server is only allowed to access files under the
/A/ directory, then rootdir points to a string “/A/”. If the user
entered a directory name of “/ftpfiles/” the full directory
would be “/A/ftpfiles/”

The other field that is updated by this function, is cwd. This is an
array of characters of length SSPEC_MAXNAME. It contains the
absolute path of the current directory, with leading and trailing
slash, including the rootdir part (if any).

check If TRUE, check the resulting directory name to see if it exists. Oth-
erwise, no check is made.

RETURN VALUE

 0: OK.

Any other negative values indicate an error:
-E2BIG: Resulting directory name too long
-EACCES: Attempt to change above root directory
-ENOENT: 3rd parameter was TRUE, and the directory did not exist.

SEE ALSO

sspec_pwd
74 TCP/IP User’s Manual

sspec_checkaccess

int sspec_checkaccess(int sspec, int userid);

DESCRIPTION

This function checks whether or not the specified user has permission to access the
specified resource in the resource table. Only read access is checked.

This function is deprecated as of Dynamic C 8.50. Use the function
sspec_checkpermissions() instead.

PARAMETERS

sspec spec index

userid user index

RETURN VALUE

0: User does not have access.
1: User has access.

-1: Failure.

LIBRARY

ZSERVER.LIB

SEE ALSO

sspec_needsauthentication, sspec_checkpermissions
Chapter 3: Server Utility Library 75

sspec_checkpermissions

int sspec_checkpermissions(int sspec, ServerContext * context);

DESCRIPTION

Returns the access permissions for the given server and user, for the given resource.

sspec_access() performs the same function, except that a resource name can be
given (rather than an open resource handle).

PARAMETERS

sspec spec index

context Server context. The relevant fields are:

context->server: the current server (SERVER_HTTP etc.)
context->userid: current user, or -1 for testing the server in
general.

When testing the server in general, both O_READ and O_WRITE
will be returned.

RETURN VALUE

≥0: Bitwise combination of:

• O_READ: resource is readable

• O_WRITE: resource has write permission. This does NOT necessarily mean
that the resource can actually be written, only that the permission bits allow it.

<0: Error. For example, no permissions can be located or the sspec handle is invalid.

SEE ALSO

sspec_setpermissions, sspec_getpermissions, sspec_access
76 TCP/IP User’s Manual

sspec_close

int sspec_close(int sspec);

DESCRIPTION

Close a file resource. This function must be called by servers when they have completed
operations on the file, otherwise there will be a resource leak and future open calls will
fail.

PARAMETER

sspec Open file handle. This must be a handle that was returned by
sspec_open().

RETURN VALUE

≥0: Success.

The following return values are negatives of the values defined in errno.lib.

• -EBADF: The specified handle was not open or invalid.

• Other negative values indicate an error in closing the file resource.

SEE ALSO:

sspec_read, sspec_write, sspec_seek, sspec_tell, sspec_open
Chapter 3: Server Utility Library 77

sspec_delete

int sspec_delete(char * name, ServerContext * context);

DESCRIPTION

Delete a resource by name. See sspec_open() for a detailed description of param-
eters.

PARAMETERS

name Name of resource.

context Current server context.

RETURN VALUE

 0: OK.

The following return value is a negative of the values defined in errno.lib. Any
other negative values indicate an error.

• -ENOENT: The specified resource did not exist.

SEE ALSO

sspec_mkdir, sspec_rmdir, sspec_open
78 TCP/IP User’s Manual

sspec_dirlist

int sspec_dirlist(int item, char *line, int linelen,
ServerContext * context, word options);

DESCRIPTION

Return formatted directory listing line. To use this function, call it with item = 0 the
first time, then keep calling it with item = <previous return value> until it returns neg-
ative. This allows you to iterate through all entries in a directory.

The ServerContext structure contains the current user ID, server, and the name of
the directory to list.

Note: For a given directory, you should call this function with item = 0, followed by
more calls until it returns -1. If you want to terminate the directory listing without iter-
ating through every entry, pass the SSPEC_LIST_END option flag (see below). This
allows Zserver to release any temporary resources acquired for the purpose of iterating
through the directory. This is especially important for FAT filesystem listings. After this
function returns negative, you must start the next directory listing from the top, that is,
item = 0.

If you do not complete the listing, then your application may not be able to perform fur-
ther listings owing to internal resource leakage. This is similar to the need to close file
resources that are opened. See the second example below.

Pass the same ServerContext structure for the entire directory list sequence, since
Zserver keeps track of state information in this structure.

EXAMPLE

To iterate through all resources under “/A/”:

ServerContext ctx;
int item;
char buf[80];
word opts;
word n;

ctx.rootdir = "/";
ctx.server = SERVER_FTP;
ctx.userid = sauth_getuserid("foo", SERVER_FTP);
sspec_cd("/A", &ctx);

for (item = 0; item >= 0;) {
item = sspec_dirlist(item, buf, sizeof(buf), &ctx,

SSPEC_LIST_LONG);

if (item >= 0)
printf(buf);

} // finished now, can re-use ctx.
Chapter 3: Server Utility Library 79

To iterate through the first 5 resources only:

opts = SSPEC_LIST_LONG;

for (item = 0, n = 0; item >= 0; ++n) {
if (n >= 4)

opts |= SSPEC_LIST_END;

item = sspec_dirlist(item, buf, sizeof(buf), &ctx, opts);

if (item >= 0)
printf(buf);

}

PARAMETERS

item Directory entry to list. If zero, this always returns the first entry in
the directory. Thereafter, pass the return value from the previous
call to this function to get the next item(s). NOTE: the return value
does not necessarily count up 1, 2, 3 etc. Apart from 0, the only
values you should pass in this parameter are previous return val-
ues, otherwise the results will be undefined.

line Points to buffer that is filled with resulting string. The string will
be terminated with \r\n (CRLF) then a NULL.

linelen Length of the above buffer. If it is not long enough, then the line
will be truncated (however it will still have the terminating CRLF
+ null). The minimum reasonable value is about 15 for format 0,
and 80 for format 1.

context Server context. This structure will have the following fields initial-
ized:

userid: current user who is doing the listing, or -1 if no spe-
cific user.

server: mask bit of the server who is performing the listing.

cwd[]: set to the directory to list. The sspec_cd() func-
tion can be used to set this field correctly.

This struct must be the same instance for all calls in a single direc-
tory listing sequence.
80 TCP/IP User’s Manual

options Listing options. This is a bit field that should have a combination
of the following flags:

• SSPEC_LIST_LONG: Long format listing (else just
names)

• SSPEC_LIST_END: Close the current directory listing.

For the long format, the template is:

<permissions> 1 <user> <group> <length> <date> <name>

Where
• permissions is a string of 10 characters in 3 sets of 3, plus

one. Each set of 3 indicates read, write or execute permis-
sions for the user, group, and “world” respectively. The
1st char is “d” if the entry is a directory, or “-” otherwise.
Since Zserver does not really support file owners or
groups, or execute permissions, the 3 sets will be either
“rw-” or “r--” or sometimes “-w-”. The user bits are
set according to the current user's access. The group bits
are set if any other user has access, and the “world” bits
are set if any other server has access.

• “1” is a constant for Unix compatibility.

• user is the username who “owns” the file resource.
Since Zserver does not have the concept of resource own-
ership, this is set to the user ID of the context-
>userid field. If context->userid is -1, this is set
to anon.

• group is the resource “group name.” Zserver does not
support this Unix concept either, so this field is set to the
realm of the file resource (if it has one) otherwise it is set
to anon.

• length is set to the current length of the file resource, or
0 if not known.

• date is set to the modification date of the file resource in
Mon dd yyyy format.

• name is the name of the file resource in this directory.

Example:

dr--r--r-- 1 foo admin 0 Jan 1 1980 ftpfiles

-rw-rw-rw- 1 foo admin 1250 Mar 6 2003 index.htm

RETURN VALUE

-EEOF: there were no (more) entries in this directory.
Any other negative value: parameter or I/O error.
Otherwise (non-negative): the return value should be passed back to this function as the
item parameter value, to retrieve the next entry.

SEE ALSO

sspec_cd
Chapter 3: Server Utility Library 81

sspec_fatregister

int sspec_fatregister(int partno, fat_part * pt);

DESCRIPTION

This function must be used to register all FAT partitions that will be accessible to
Zserver.lib. Partitions are numbered consecutively from 0, and they correspond
to mount points /A, /B, /C etc.

It is assumed that by the time this function is called the required drives and partitions
have been mounted. For example, call fat_EnumDrive() followed by as many
fat_MountPartition() calls as required. The fat_part pointer returned by
fat_MountPartition() should be passed to this function. Up to
SSPEC_MAX_PARTITIONS can be registered. This number can be changed indirect-
ly by defining SSPEC_MAX_FATDRIVES before #use zserver.lib. This de-
faults to one drive, and the number of partitions is set to 4 times this number (hence the
default allows up to four partitions).

NOTE: It is NOT necessary to call this function if you called sspec_automount
(SSPEC_MOUNT_FAT,...) since that function does all the necessary initializations
for a single “drive.”

PARAMETERS

partno Partition number to register. This starts at 0, corresponding to the
“/A” mount point; 1 for “/B” etc.

pt Pointer to fat_part data structure returned by
fat_MountPartition etc. To unregister a partition, pass
NULL for this parameter. Note: attempted access to an unregis-
tered partition generally results in an error code of -ENXIO.

RETURN VALUE

≥0: Success.
-ENXIO : partno outside the allowable range of 0 .. SSPEC_MAX_PARTITIONS-1.

LIBRARY

ZSERVER.LIB

SEE ALSO

fat_EnumDrive, fat_EnumPartition, fat_MountPartition,
sspec_automount, sspec_fatregistered
82 TCP/IP User’s Manual

sspec_fatregistered

fat_part * sspec_fatregistered(int partno);

DESCRIPTION

Test whether a FAT partition has been registered with Zserver.

PARAMETER

partno Partition number to test. This starts at 0, corresponding to the “/A”
mount point; 1 for “/B”etc.

RETURN VALUE

 NULL: Not registered.
 Otherwise: Registered, and this is the fat_part pointer.

SEE ALSO

fat_EnumDrive, fat_EnumPartition, fat_MountPartition,
sspec_automount, sspec_fatregister
Chapter 3: Server Utility Library 83

sspec_findfv

int sspec_findfv(int form, char *varname);

DESCRIPTION

Finds the index of a form variable in a given form.

PARAMETERS

form spec index of the form in which to search.

varname Name of the variable to find.

RETURN VALUE

-1: Failure.
≥0: Success; the index of the form variable in the array of type FormVar.

LIBRARY

ZSERVER.LIB

SEE ALSO

sspec_addfv
84 TCP/IP User’s Manual

sspec_findname

int sspec_findname(char *name, word server);

DESCRIPTION

Find the spec entry with a name field that matches the given name and is allowed with
the specified server(s). Note that a leading slash in the given name and/or in the re-
source name is ignored for backwards compatibility.

PARAMETERS

name Name to search for in the resource list.

server The server making the request (e.g., SERVER_HTTP).

RETURN VALUE

-1: Failure.
≥0: Success, spec index. The special value SSPEC_VIRTUAL is returned if the name
refers to part of the virtual filesystem hierarchy. In this case, the server mask is not con-
sulted. SSPEC_VIRTUAL is not a valid handle for other functions.

LIBRARY

ZSERVER.LIB

SEE ALSO

sspec_findnextfile
Chapter 3: Server Utility Library 85

sspec_findfsname

int sspec_findfsname(byte filenum, word server);

DESCRIPTION

Find the server spec entry for filenum. The entry must be of type SSPEC_FSFILE
and be allowed with the specified server.

PARAMETERS

filenum File to search for. This value is the number passed in as the 2nd
parm to fcreate() or the return value from
fcreate_unused().

server The server making the request (e.g., SERVER_HTTP).

RETURN VALUE

-1: Failure.
≥0: Success, index into resource list.

LIBRARY

ZSERVER.LIB

SEE ALSO

sspec_findname
86 TCP/IP User’s Manual

sspec_findnextfile

int sspec_findnextfile(int start, word servermask);

DESCRIPTION

Find the first spec file entry at or following the start spec that is accessible by the
given server. When the end of the RAM entries is reached, the flash entries are
searched. Virtual filesystem entries are not considered. Only entries for which
sspec_gettype() would return SSPEC_FILE are considered.

If you are using this function to iterate through the available resources, then the caller
is responsible for incrementing the starting point. To do this, you can call the function
sspec_nexthandle() which will return the next valid handle after the given one
(or -1 if no more handles).

PARAMETERS

start The array index at which to begin the search. -1 starts searching the
RAM entries.

servermask The server making the request (e.g., SERVER_HTTP).

RETURN VALUE

-1: Failure.
≥0: Success, index of requested ServerSpec structure.

LIBRARY

ZSERVER.LIB

SEE ALSO

sspec_findname, sspec_gettype
Chapter 3: Server Utility Library 87

sspec_getfileloc

long sspec_getfileloc(int sspec);

DESCRIPTION

Gets the location in memory or in the file system of a file represented by a
ServerSpec structure. The location of the file is returned as a long, even if the file
location should be represented by a char* (for a root file) or a FileNum (for the file-
system). The return value should be cast to the appropriate type by the user.

sspec_getfiletype() can be used to find the file type.

PARAMETERS

sspec spec index of the file in the resource list

RETURN VALUE

≥0: Success, location of the file.
-1: Failure.

LIBRARY

ZSERVER.LIB

SEE ALSO

sspec_getfiletype, sspec_getlength
88 TCP/IP User’s Manual

sspec_getfiletype

word sspec_getfiletype(int sspec);

DESCRIPTION

Get the type of a file represented by the given spec index.

PARAMETERS

sspec spec index of the file in the resource list, that is, the index into the
array of ServerSpec structures.

RETURN VALUE

SSPEC_ROOTFILE: root memory data
SSPEC_XMEMFILE: xmem data
SSPEC_ZMEMFILE: compressed xmem data
SSPEC_FSFILE: FS2 file
SSPEC_ERROR: failure - not a file, or invalid handle

LIBRARY

ZSERVER.LIB

SEE ALSO

sspec_getfileloc, sspec_gettype
Chapter 3: Server Utility Library 89

sspec_getformtitle

char *sspec_getformtitle(int form);

DESCRIPTION

Gets the title for an automatically generated form.

PARAMETERS

form server_spec index of the form.

RETURN VALUE

NULL: Failure.
!NULL: Success, title string.

LIBRARY

ZSERVER.LIB

SEE ALSO

sspec_setformtitle
90 TCP/IP User’s Manual

sspec_getfunction

void *sspec_getfunction(int sspec);

DESCRIPTION

Returns a pointer to the function represented by the sspec index. The entry must have
been created as a SSPEC_FUNCTION or as a SSPEC_CGI.

PARAMETERS

sspec spec index

RETURN VALUE

NULL: Failure.
!NULL: Success, pointer to requested function.

LIBRARY

ZSERVER.LIB

SEE ALSO

sspec_addfunction
Chapter 3: Server Utility Library 91

sspec_getfvdesc

char *sspec_getfvdesc(int form, int var);

DESCRIPTION

 Gets the description of a variable that is displayed in the HTML form table.

PARAMETERS

form spec index of the form.

var Index (into the FormVar array) of the variable.

RETURN VALUE

NULL: Failure.
!NULL: Success, description string.

LIBRARY

ZSERVER.LIB

SEE ALSO

sspec_setfvdesc
92 TCP/IP User’s Manual

sspec_getfventrytype

int sspec_getfventrytype(int form, int var);

DESCRIPTION

Gets the type of form entry element that should be used for the given variable.

PARAMETERS

form spec index of the form.

var Index (into the FormVar array) of the variable.

RETURN VALUE

-1: Failure;
Type of form entry element on success:

HTML_FORM_TEXT is a text box.
HTML_FORM_PULLDOWN is a pull-down menu.

LIBRARY

ZSERVER.LIB

SEE ALSO

sspec_setfventrytype
Chapter 3: Server Utility Library 93

sspec_getfvlen

int sspec_getfvlen(int form, int var);

DESCRIPTION

Gets the length of a form variable (the maximum length of the string representation of
the variable).

PARAMETERS

form spec index of the form.

var Index (into the FormVar array) of the variable.

RETURN VALUE

-1: Failure.
≥0: Success, length of the variable.

LIBRARY

ZSERVER.LIB

SEE ALSO

sspec_setfvlen
94 TCP/IP User’s Manual

sspec_getfvname

char *sspec_getfvname(int form, int var);

DESCRIPTION

 Gets the name of a variable that is displayed in the HTML form table.

PARAMETERS

form spec index of the form.

var Index into the array of FormVar structures of the variable.

RETURN VALUE

NULL: Failure.
!NULL, name of the form variable.

LIBRARY

ZSERVER.LIB

SEE ALSO

sspec_setfvname
Chapter 3: Server Utility Library 95

sspec_getfvnum

int sspec_getfvnum(int form);

DESCRIPTION

Gets the number of variables in a form.

PARAMETERS

form spec index of the form.

RETURN VALUE

-1: Failure.
≥0: Success, number of form variables.

LIBRARY

ZSERVER.LIB
96 TCP/IP User’s Manual

sspec_getfvopt

char *sspec_getfvopt(int form, int var, int option);

DESCRIPTION

Gets the numbered option (starting from 0) of the form variable. This function is only
valid if the form variable has the option list set.

PARAMETERS

form spec index of the form.

var Index into the array of FormVar structures of the variable.

option Index of the form variable option.

RETURN VALUE

NULL: Failure.
!NULL: Success, form variable option.

LIBRARY

ZSERVER.LIB

SEE ALSO

sspec_setfvoptlist, sspec_getfvoptlistlen
Chapter 3: Server Utility Library 97

sspec_getfvoptlistlen

int sspec_getfvoptlistlen(int form, int var);

DESCRIPTION

Gets the length of the options list of the form variable. This function is only valid if the
form variable has the option list set.

PARAMETERS

form spec index of the form.

var Index (into the FormVar array) of the variable.

RETURN VALUE

-1: Failure.
>0: Success, length of the options list.

LIBRARY

ZSERVER.LIB

SEE ALSO

sspec_getfvopt, sspec_setfvoptlist
98 TCP/IP User’s Manual

sspec_getfvreadonly

int sspec_getfvreadonly(int form, int var);

DESCRIPTION

Checks if a form variable is read-only.

PARAMETERS

form spec index of the form.

var Index (into the FormVar array) of the variable.

RETURN VALUE

0: Not read-only.
1: Read-only.

-1: Failure.

LIBRARY

ZSERVER.LIB

SEE ALSO

sspec_setfvreadonly
Chapter 3: Server Utility Library 99

sspec_getfvspec

int sspec_getfvspec(int form, int var);

DESCRIPTION

Gets the server_spec index of a variable in a form.

PARAMETERS

form server_spec index of the form.

var Index into the array of FormVar structures of the variable.

RETURN VALUE

-1: Failure.
≥0: Success, index of the form variable in the resource list.

LIBRARY

ZSERVER.LIB

SEE ALSO

sspec_addfv
100 TCP/IP User’s Manual

sspec_getlength

long sspec_getlength(int sspec);

DESCRIPTION

Gets the length of the file associated with the specified ServerSpec structure. Get
the length of the file specified by the sspec index. Note that compressed files
(#zimport) return -1 because their expanded length is not known until they are pro-
cessed.

PARAMETERS

sspec spec index of file in resource list

RETURN VALUE

-1: Failure (compressed file, or other type whose effective length is not known).
≥0: Success, length of the file in bytes.

LIBRARY

ZSERVER.LIB

SEE ALSO

sspec_readfile, sspec_getfileloc
Chapter 3: Server Utility Library 101

sspec_getMIMEtype

MIMETypeMap * sspec_getMIMEtype(char* name,
ServerContext * context);

DESCRIPTION

Return the MIME type information for a specified resource name, in the given server
context.

Note that the available MIME types are set up by defining a global variable (or con-
stant) table using the definition (for example),

const MIMETypeMap http_types[] =
{

{ ".html", "text/html", NULL},
{ ".gif", "image/gif", NULL}

};

The name http_types is required for backward compatibility even though servers
other than HTTP can make use of MIME types.

When searching for the appropriate type, the rule table is consulted first. Only if this
results in a NULL MIME type pointer is the http_types table consulted.

See sspec_open() for a detailed description of the parameters.

PARAMETER

name Name of the resource.

context Current server context.

RETURN VALUE

Pointer to the appropriate table entry. MIMETypeMap is defined as:

typedef struct {
char extension[10]; // File extension or suffix.
char type[SSPEC_MAXNAME]; // MIME type e.g., "text/html"
int (*fptr)(); // Server-specific processing, e.g., SSI.

} MIMETypeMap;

A valid pointer is always returned. If the appropriate table entry cannot be located by the
resource's extension (or using a rule (see sspec_addrule)) then the first table entry
is returned.

SEE ALSO

sspec_addrule
102 TCP/IP User’s Manual

sspec_getname

char *sspec_getname(int sspec);

DESCRIPTION

Returns the name of the spec entry represented by the sspec index

This only works for RAM and flash table entries.

PARAMETERS

sspec spec index

RETURN VALUE

NULL: Failure.
!NULL: Success, pointer to name string.

LIBRARY

ZSERVER.LIB
Chapter 3: Server Utility Library 103

sspec_getpermissions

int sspec_getpermissions(int sspec, char ** realm,
word * readgroups, word * writegroups, word * servermask,
word * method, MIMETypeMap ** mimetype);

DESCRIPTION

Get the permission (access control) attributes of a resource.

Except for sspec, all parameters are pointers to variables that will be set to the appro-
priate return value. If the parameter is NULL, then that information is not retrieved.

NOTE: The data at **realm and **mimetype should not be altered by the caller.
The data is read-only.

PARAMETERS

sspec spec index

realm Pointer to pointer to realm string

readgroups Pointer to mask of user groups who have read access

writegroups Pointer to mask of user groups who have write access

servermask Pointer to servers allowed to access this resource.

method Pointer to required authentication method.

mimetype Pointer to pointer to MIME table entry.

RETURN VALUE

0: Success.
<0: Failure. For example, an invalid sspec handle

SEE ALSO

sspec_setpermissions, sspec_checkpermissions, sspec_access
104 TCP/IP User’s Manual

sspec_getpreformfunction

void *sspec_getpreformfunction(int form);

DESCRIPTION

Gets the user function that will be called just before HTML form generation. This func-
tion is useful mainly for custom form generation functions.

PARAMETERS

form spec index of the form

RETURN VALUE

NULL: No user function.
!NULL: Pointer to user function.

LIBRARY

ZSERVER.LIB

SEE ALSO

sspec_setpreformfunction, sspec_setformfunction
Chapter 3: Server Utility Library 105

sspec_getrealm

char *sspec_getrealm(int sspec);

DESCRIPTION

Returns the realm of the spec entry represented by sspec.

PARAMETERS

sspec spec index

RETURN VALUE

NULL: Failure.
!NULL: Success, pointer to the realm string.

LIBRARY

ZSERVER.LIB

SEE ALSO

sspec_setrealm
106 TCP/IP User’s Manual

sspec_getservermask

int sspec_getservermask(int sspec, word *servermask);

DESCRIPTION

Gets the server mask for the given spec entry. This is the bitmask passed in when the
entry is created with the sspec_add*() functions.

This function only works for RAM and flash table entries.

PARAMETERS

sspec spec index of the variable

servermask Address in which the servermask will be returned

RETURN VALUE

0: Success
-1: Failure
Chapter 3: Server Utility Library 107

sspec_gettype

word sspec_gettype(int sspec);

DESCRIPTION

Returns the type (SSPEC_FILE, SSPEC_VARIABLE, etc.) of the spec entry repre-
sented by sspec. This is a generic type, in that, SSPEC_FILE is returned for any type
(SSPEC_ROOTFILE, SSPEC_FSFILE etc.) that has file properties and
SSPEC_VARIABLE is returned for SSPEC_ROOTVAR or SSPEC_XMEMVAR. Other
types are returned without translation.

PARAMETERS

sspec spec index

RETURN VALUE

SSPEC_ERROR: Failure.
!SSPEC_ERROR: Success, type as described above.

LIBRARY

ZSERVER.LIB

SEE ALSO

sspec_getfiletype, sspec_getvartype
108 TCP/IP User’s Manual

sspec_getuserid

int sspec_getuserid(int sspec, int index);

DESCRIPTION

Returns a userid for the given sspec resource. Since a resource can have multiple use-
rids associated with it, index indicates which userid should be returned. Note that
index should follow the relation 0 ≤ index < SSPEC_USERSPERRESOURCE.

If there is no userid for a given index, -1 will be returned. If -1 is returned for an index,
then -1 will also be returned for all higher indices.

This function may be used to iterate through all users that have read access to a
particular resource.

This only works for RAM and flash table entries.

Starting with Dynamic C 8.50, access control is done by user groups rather than indi-
vidual users; therefore, sspec_getuserid() may not work as expected.

PARAMETERS

sspec spec index

index index of userid for this sspec resource to return: 0, 1, 2 ...

RETURN VALUE

-1: Error, or no such userid.
≥ 0: Success, userid is returned.

LIBRARY

ZSERVER.LIB

SEE ALSO

sspec_getusername, sauth_getusername
Chapter 3: Server Utility Library 109

sspec_getusername

char *sspec_getusername(int sspec);

DESCRIPTION

Gets the username field of the first user in the user table that has read access to the
resource indexed by sspec. If multiple users are associated with this resource, the first
user's username will be returned. See sspec_getuserid() to get all userids for a
resource, and sauth_getusername() to convert the userids to usernames.

Starting with Dynamic C 8.50, access control is done by groups rather than individual
users, therefore, sspec_getusername() may not work as expected.

This only works for RAM and flash table entries.

PARAMETERS

sspec spec index

RETURN VALUE

NULL: Failure, or no user has read access to this resource.
!=NULL: Success, pointer to username.

LIBRARY

ZSERVER.LIB

SEE ALSO

sauth_adduser, sspec_setuser, sauth_getuserid,
sauth_getusername
110 TCP/IP User’s Manual

sspec_getvaraddr

void *sspec_getvaraddr(int sspec);

DESCRIPTION

Returns a pointer to the requested variable in the resource list.

PARAMETERS

sspec spec index

RETURN VALUE

NULL: Failure.
!NULL: Success, pointer to variable.

LIBRARY

ZSERVER.LIB

SEE ALSO

sspec_readvariable
Chapter 3: Server Utility Library 111

sspec_getvarkind

word sspec_getvarkind(int sspec);

DESCRIPTION

Returns the kind of variable represented by sspec.

PARAMETERS

sspec spec index

RETURN VALUE

0: Failure.
On success, returns one of:

• INT8 - single character

• INT16 - 2-byte integer

• PTR16 - string in root memory

• INT32 - 4-byte (long) integer

• FLOAT32 - floating point variable

LIBRARY

ZSERVER.LIB

SEE ALSO

sspec_getvaraddr, sspec_getvartype, sspec_gettype
112 TCP/IP User’s Manual

sspec_getvartype

word sspec_getvartype(int sspec);

DESCRIPTION

Gets the type of variable represented by the spec index.

PARAMETERS

sspec spec index.

RETURN VALUE

SSPEC_ERROR: Failure.
SSPEC_ROOTVAR or SSPEC_XMEMVAR: Success.

LIBRARY

ZSERVER.LIB

SEE ALSO

sspec_getvaraddr, sspec_getvarkind, sspec_gettype

sspec_getxvaraddr

long sspec_getxvaraddr(int sspec);

DESCRIPTION

Returns a pointer to the variable in xmem represented by the sspec index.

PARAMETER

sspec spec index

RETURN VALUE

≥ 0: Variable pointer.
-1: Failure.

SEE ALSO

sspec_readvariable
Chapter 3: Server Utility Library 113

sspec_mkdir

int sspec_mkdir(char * name, ServerContext * context);

DESCRIPTION

Create a named directory in the FAT filesystem.

PARAMETERS

name Name of new directory.

context Current server context.

RETURN VALUE

0: OK.
-EPERM: Not a filesystem that supports creation of new directories.
-EACCES: Not authorized
Any other negative values indicate an error.

SEE ALSO

sspec_delete, sspec_rmdir, sspec_open
114 TCP/IP User’s Manual

sspec_needsauthentication

int sspec_needsauthentication(int sspec);

DESCRIPTION

Checks if the item represented by the spec entry needs authentication for access. This
is defined by having a non-NULL “realm” string for the resource.

 This function is deprecated starting with Dynamic C 8.50 in favor of
sspec_checkpermissions(). It is retained for cases where the permissions
structure for a resource contains an authentication method of
SERVER_AUTH_DEFAULT.

PARAMETERS

sspec spec index

RETURN VALUE

0: Does NOT need authentication.
1: Does need authentication.

-1: Failure, no permissions struct assigned or invalid sspec handle.

LIBRARY

ZSERVER.LIB

SEE ALSO

sspec_getrealm, sspec_checkpermissions
Chapter 3: Server Utility Library 115

sspec_open

int sspec_open(char * name, ServerContext * context, word mode);

DESCRIPTION

Open a file resource by name. The name may refer to a flash- or RAM-spec entry, or
may be the name of a file in a filesystem.

The resource namespace is specified as a directory hierarchy, similar to a Unix-like file-
system. The root directory, “/”, is the base for all named resources.

If fs2.lib is included, then files stored in the FS2 filesystem are accessible under a
mount point called “/fs2.” FS2 files do not have native names. Instead, each file is
numbered from 1 to 255. Zserver assigns names to FS2 files by appending the file num-
ber (in decimal) to the string “file.” For example, FS2 file number 99 has a complete
resource name of “/fs2/file99.”

If fat.lib is included, then all DOS FAT files are mounted under a drive letter. The
first partition of the first DOS FAT filesystem is called “/A” and the second partition (if
any) is called “/B” etc. For example, if the FAT filesystem has a file called “/system/ad-
min.htm” then the complete resource name will be “/A/system/admin.htm”.

NOTE: Forward slashes are required. Do not use backslashes as is customary with
DOS filesystems.

If the resource name does not begin with “/fs2” or “/A” etc., then the resource is located
in the static resource table (“flashspec” that is, the http_flashspec global table)
or in the dynamic (RAM) table.

To access the file resource, the return value from this function must be passed to other
functions, such as sspec_read(). A few functions do not work with resources
opened with this function. These cases are documented with the function.

NOTE: When the application has finished accessing the resource, it must be closed
using sspec_close(). This must be done because there is a limited amount of stor-
age for maintaining the necessary file handles.

PARAMETERS

name Resource name, as a NULL terminated string. This name is as-
sumed to be relative to context->cwd if it does not begin with
a “/” character. Otherwise, the name is assumed to be relative to
context->rootdir. Note that the name string can contain
“.” and “..” directory components. These will be interpreted as
“same directory” and “one level up” as is customary. If “..” com-
ponents are included, the resulting name cannot be above or out-
side the root directory specified in context->rootdir.
116 TCP/IP User’s Manual

context Additional context information. The ServerContext structure
is set up by the caller. It has the following fields:

typedef struct {
int userid; // User ID of the current user, or

// -1 if not applicable.
word server; // Server id (e.g. SERVER_HTTP)
char * rootdir; // Root directory. Usually "/"

// if the whole namespace is to
// be accessible. Otherwise, may
// be e.g,. "/A" to restrict access to
// just first DOS FAT partition.
// First and last char must be “/”.

char cwd[]; // Current working directory.
// Normally includes rootdir as
// a prefix. First and last char
// must be “/”.

char * dfltname; // A file name to be used as a
// resource name suffix in the case
// that the first parameter refers
// to a directory name.

} ServerContext;

mode Resource opening mode. Bitwise OR of the following macros:

• O_READ: open for reading

• O_WRITE: open for writing (implies reading as well)

• O_CREAT: with O_WRITE, if file does not exist then cre-
ate it with zero length and allocation.

• O_TRUNC: with O_WRITE, if file already exists, truncate
it to zero length.

• O_APPEND: with O_WRITE, if file already exists, posi-
tion at end of file so as to append new data. You can later
seek to the existing portion of the file.
Chapter 3: Server Utility Library 117

RETURN VALUE

 ≥0: Success. The returned value should be passed to other functions that require a
general handle, such as sspec_read(), sspec_seek(), sspec_write(),
sspec_tell(), and sspec_close().

The following return values are negatives of the values defined in errno.lib.

• -ENOENT: The resource was not found when it was expected to exist.

• -EACCES: The context->userid field was not -1, and the specified user
is not allowed to access the resource using the specified mode.

• -EINVAL: The resource name was malformed (e.g., too long), or context was
NULL, or the resource was not a file type, or O_CREAT, O_TRUNC or
O_APPEND were specified without O_WRITE.

• -ENOMEM: Insufficient storage for handle or buffers. Increase definition of
SSPEC_MAX_OPEN.

• -EPERM: Operation not permitted, for example., opening an xmem file for
writing.

SEE ALSO

sspec_read, sspec_write, sspec_seek, sspec_tell, sspec_close
118 TCP/IP User’s Manual

sspec_pwd

char * sspec_pwd(ServerContext * context, char * buf);

DESCRIPTION

Print the current working directory in the ServerContext structure to the specified
buffer. The context->cwd field contains the CWD. This function removes the root
directory component (context->rootdir) and copies the result. This makes
rootdir invisible to the end user.

The leading slash is included, but the trailing slash is omitted from the result (unless the
result is just “/”).

For example, if
context->rootdir points to “/A/” and
context->cwd[] contains “/A/ftpfiles/”
 “/ftpfiles” will be the result returned in buf.

PARAMETERS

context Server context structure. Two fields in this are of interest:
rootdir points to a virtual root directory for this server, and
cwd is a character array containing the CWD.

buf Points to buffer that is filled with resulting string. This buffer is as-
sumed to be dimensioned at least SSPEC_MAXNAME chars long,
and it will be null terminated on return.

RETURN VALUE

The buf parameter is returned.

SEE ALSO

sspec_cd
Chapter 3: Server Utility Library 119

sspec_read

int sspec_read(int sspec, char * buf, int len);

DESCRIPTION

Read the next byte(s) from the given file resource.

PARAMETERS

sspec Open file handle. This must be a handle that was returned by
sspec_open().

buf Buffer into which data is copied.

len Length of the above buffer. If len is zero, then the return value
will be the minimum number of characters that could be read at the
current position, which is usually at least 1 except at EOF (0).
Thus, this function can be used to test for end-of-file (EOF), that
is, if

(sspec_read(sspec, NULL, 0) == 0)

is TRUE, then EOF has been reached in the file identified by
sspec.

RETURN VALUE

0: No data is currently available. If the len parameter was zero, then a return value of
zero definitely means end-of-file has been reached. If len > 0, there may be data avail-
able in the future, e.g., because the underlying filesystem is socket-based and this host
has read all available data, but the socket is still open to receive more data.

1..len: the specified number of characters has been copied to the supplied buffer,
and the current file position has been advanced by that many bytes. Possibly less than
len bytes may be read, in which case the server should test for EOF.

>len: no data was copied, because the underlying filesystem is unable to return a par-
tial record and maintain its current position. The return value is the minimum sized
buffer that should be passed on the next call. Note: this sort of return is not currently
implemented by any of the file systems, however servers should be coded to handle this
case for future anticipated systems which have record-level access rather than byte-lev-
el.

The following return values are negatives of the values defined in errno.lib.

• -EINVA: len parameter was < 0.
• -EBADF: The specified handle was not open or invalid.
• Any other negative values indicate an error.

SEE ALSO

sspec_close, sspec_write, sspec_seek, sspec_tell, sspec_open
120 TCP/IP User’s Manual

sspec_readfile

int sspec_readfile(int sspec, char *buffer, long offset,
int len);

DESCRIPTION

Read a file (represented by the sspec index) into buffer, starting at offset, and
only copying len bytes. For xmem files, this function automatically skips the first 4
bytes. Hence, an offset of 0 marks the beginning of the file contents, not the file length.

This function is intended for file types that do not require explicit open or close calls,
that is, root or xmem files. It can also be called for FS2 files, but this is not recommend-
ed since each call requires the file to be opened, seeked, read then closed. Instead, use
sspec_open(), sspec_read() and sspec_close() calls which are the
most efficient.

sspec_readfile() has the advantage of being “stateless,” but the price to pay is
great loss of efficiency (especially when sequential access is all that is required.)

This function will NOT work for compressed xmem files or DOS FAT files.

PARAMETERS

sspec spec index

buffer The buffer to put the file contents into.

offset The offset from the start of the file, in bytes, at which copying
should begin.

len The number of bytes to copy.

RETURN VALUE

-1: Failure.
≥0: Success, number of bytes copied.

LIBRARY

ZSERVER.LIB

SEE ALSO

sspec_getlength, sspec_getfileloc
Chapter 3: Server Utility Library 121

sspec_readvariable

int sspec_readvariable(int sspec, char *buffer);

DESCRIPTION

Formats the variable associated with the specified ServerSpec structure, and puts a
NULL-terminated string representation of it in buffer. The macro
SSPEC_XMEMVARLEN (default is 20) defines the size of the stack-allocated buffer
when reading a variable in xmem.

PARAMETERS

sspec spec index

buffer The buffer in which to put the variable.

RETURN VALUE

0: Success.
-1: Failure.

LIBRARY

ZSERVER.LIB

SEE ALSO

sspec_getvaraddr
122 TCP/IP User’s Manual

sspec_remove

int sspec_remove(int sspec);

DESCRIPTION

Removes a spec entry (by marking it unused). In the case of files, note that this function
does not actually remove the file, only the reference to the file in the spec structure.

This only works for RAM table entries.

PARAMETERS

sspec spec index

RETURN VALUE

0: Success.
-1: Failure (i.e., the index is already unused).

LIBRARY

ZSERVER.LIB
Chapter 3: Server Utility Library 123

sspec_removerule

int sspec_removerule(char * pfx);

DESCRIPTION

Remove a rule from the dynamic resource rule table.

PARAMETER

pfx Prefix of resource name. This must be an exact match to one of the
rules previously added using sspec_addrule().

RETURN VALUE

≥0: OK
-1: Error. For example, the rule was not found, or maybe the rule was in the flash table
(f_rule_table).

SEE ALSO

sspec_addrule
124 TCP/IP User’s Manual

sspec_removeuser

int sspec_removeuser(int sspec, int userid);

DESCRIPTION

Removes the user group(s) that userid belongs to from the read and write access
masks for the specified resource. This will deny access to other users who have the
same group(s) as the current user.

This function is deprecated as of Dynamic C 8.50. Use the more general
sspec_setpermissions() function instead.

PARAMETERS

sspec spec index

userid user index

RETURN VALUE

0: Success, user was removed.
-1: Failure, no such userid found.

LIBRARY

ZSERVER.LIB

SEE ALSO

sspec_setuser, sspec_adduser, sspec_getusername,
sspec_getuserid, sspec_setpermissions
Chapter 3: Server Utility Library 125

sspec_resizerootfile

int sspec_resizerootfile(int spec_index, int new_size);

DESCRIPTION

Change the byte size of a SSPEC item stored in root memory. Item must be a
ROOTFILE, thus the item must have been created with sspec_addrootfile().

PARAMETERS

spec_index spec index of the item

new_size New size to assign to item.

RETURN VALUE

≥0: Successfully adjust size of item.
-1: Failed to adjust size.

LIBRARY

ZSERVER.LIB

SEE ALSO

sspec_addrootfile
126 TCP/IP User’s Manual

sspec_restore

int sspec_restore(void);

DESCRIPTION

Restores the TCP/IP servers’ object list and the TCP/IP users list (and some user-spec-
ified data if set up with sspec_setsavedata()) from the file system. This does
not restore the actual files and variables, but only the structures that reference them. If
the files are stored in flash, then the references will still be valid. Files in volatile RAM
and variables must be rebuilt through other means.

RETURN VALUE

0: Successfully restored the server_spec and server_auth tables.
-1: Failure.

LIBRARY

ZSERVER.LIB

SEE ALSO

sspec_save, sspec_setsavedata
Chapter 3: Server Utility Library 127

sspec_rmdir

int sspec_rmdir(char * name, ServerContext * context);

DESCRIPTION

Delete a named directory in the FAT filesystem.

PARAMETERS

name Name of directory to delete.

context Current server context.

RETURN VALUE

0: OK.
-EPERM: Not a filesystem that supports deletion of directories.
-EACCES: Not authorized

Any other negative values indicate an error.

SEE ALSO

sspec_delete, sspec_mkdir, sspec_open
128 TCP/IP User’s Manual

sspec_save

int sspec_save(void);

DESCRIPTION

Saves the servers’ object list and server authorization list (along with some user-speci-
fied data if set up with sspec_setsavedata()) to the file system. This does not
save the actual files and variables, but only the structures that reference them. If the files
are stored in flash, then the references will still be valid. Files in volatile RAM and vari-
ables must be rebuilt through other means.

RETURN VALUE

0: Successfully save the server_spec and server_auth tables.
-1: Failure.

LIBRARY

ZSERVER.LIB

SEE ALSO

sspec_restore, sspec_setsavedata
Chapter 3: Server Utility Library 129

sspec_seek

int sspec_seek(int sspec, long offset, int whence);

DESCRIPTION

Seek to specified offset in the file resource. The next sspec_read() or
sspec_write() call will start at this position.

Note that offsets that are not in the file are clamped to the start or end of the file as ap-
propriate.

Clamp is terminology meaning that a value past the end is set to the end, or a value be-
fore the beginning is set to the beginning. For example, if a file is actually 10 bytes, then
seek to position 20 is actually a seek to position 10. Likewise, seek to -20 is set to po-
sition 0.

PARAMETERS

sspec Open file handle. This must be a handle that was returned by
sspec_open().

offset Byte offset.

whence Reference point for seek. One of the following constants:

• SEEK_SET: start of file, offset should be non-negative.

• SEEK_CUR: current position in file, offset may be nega-
tive, zero, or positive.

• SEEK_END: end of file, offset should be non-positive to
stay within the file.

RETURN VALUE

0: OK.

The following return values are negatives of the values defined in errno.lib.

• -EINVAL: whence parameter was invalid.

• -EBADF: The specified handle was not open or invalid.

• -EPERM: Operation not permitted on this file resource. This is usually
because the resource is not seekable (such as a compressed file).

• Any other negative values indicate an error.

SEE ALSO:

sspec_close, sspec_write, sspec_read, sspec_tell, sspec_open
130 TCP/IP User’s Manual

sspec_setformepilog

int sspec_setformepilog(int form, int function);

DESCRIPTION

Sets the user-specified function that will be called when the form has been successfully
submitted. This function can, for example, execute a cgi_redirectto to redirect
to a specific page. It should accept HttpState *state as an argument, return 0
when it is not finished, and 1 when it is finished (i.e., behave like a normal CGI func-
tion).

PARAMETERS

form spec index of the form

function spec index of the function to call when the specified form has been
successfully submitted. This is the return value of the function
sspec_addfunction().

RETURN VALUE

0: Success.
-1: Failure.

LIBRARY

ZSERVER.LIB

SEE ALSO

sspec_setformprolog
Chapter 3: Server Utility Library 131

sspec_setformfunction

int sspec_setformfunction(int form, void (*fptr)());

DESCRIPTION

Sets the function that will generate the form.

PARAMETERS

form spec index of the form.

fptr Form generation function (NULL for the default function).

RETURN VALUE

0: Success.
-1: Failure.

LIBRARY

ZSERVER.LIB
132 TCP/IP User’s Manual

sspec_setformprolog

int sspec_setformprolog(int form, int function);

DESCRIPTION

Allows a user-specified function to be called just before form variables are updated.
This is useful for implementing locking on the form variables (which can then be un-
locked in the epilog function), so that other code will not update the variables during
form processing. The user-specified function should accept HttpState *state as
an argument, return 0 when it is not finished, and 1 when it is finished (i.e., behave like
a normal CGI function).

PARAMETERS

form spec index of the form

function spec index of the function. This is the return value of
sspec_addfunction().

RETURN VALUE

0: Success.
-1: Failure.

LIBRARY

ZSERVER.LIB

SEE ALSO

sspec_setformepilog
Chapter 3: Server Utility Library 133

sspec_setformtitle

int sspec_setformtitle(int form, char *title);

DESCRIPTION

Sets the title for an automatically generated form.

PARAMETERS

form spec index of the form.

title Pointer to the title of the HTML page.

RETURN VALUE

0: Success.
-1: Failure.

LIBRARY

ZSERVER.LIB

SEE ALSO

sspec_getformtitle
134 TCP/IP User’s Manual

sspec_setfvcheck

int sspec_setfvcheck(int form, int var, int (*varcheck)());

DESCRIPTION

Sets a function that can be used to check the integrity of a variable. The function should
return 0 if there is no error, or !0 if there is an error.

PARAMETERS

form spec index of the form.

var Index (into the FormVar array) of the variable.

varcheck Pointer to integrity-checking function.

RETURN VALUE

0: Success.
-1: Failure.

LIBRARY

ZSERVER.LIB

SEE ALSO

sspec_setfvfloatrange, sspec_setfvoptlist, sspec_setfvrange
Chapter 3: Server Utility Library 135

sspec_setfvdesc

int sspec_setfvdesc(int form, int var, char *desc);

DESCRIPTION

Sets the description of a variable that is displayed in the HTML form table.

PARAMETERS

form server_spec index of the form.

var Index (into the FormVar array) of the variable.

desc Description of the variable. This text will display on the HTML
page.

RETURN VALUE

0: Success.
-1: Failure.

LIBRARY

ZSERVER.LIB

SEE ALSO

sspec_getfvdesc
136 TCP/IP User’s Manual

sspec_setfventrytype

int sspec_setfventrytype(int form, int var, int entrytype);

DESCRIPTION

Sets the type of form entry element that should be used for the given variable.

PARAMETERS

form spec index of the form.

var Index (into the FormVar array) of the variable.

entrytype HTML_FORM_TEXT for a text box, HTML_FORM_PULLDOWN
for a pull-down menu. The default is HTML_FORM_TEXT.

RETURN VALUE

0: Success.
-1: Failure.

LIBRARY

ZSERVER.LIB

SEE ALSO

sspec_getfventrytype
Chapter 3: Server Utility Library 137

sspec_setfvfloatrange

int sspec_setfvfloatrange(int form, int var, float low,
float high);

DESCRIPTION

Sets the range of a float variable.

PARAMETERS

form spec index of the form.

var Index (into the FormVar array) of the variable.

low Minimum value of the variable.

high Maximum value of the variable.

RETURN VALUE

0: Success.
-1: Failure.

LIBRARY

ZSERVER.LIB

SEE ALSO

sspec_setfvrange, sspec_setfvoptlist
138 TCP/IP User’s Manual

sspec_setfvlen

int sspec_setfvlen(int form, int var, int len);

DESCRIPTION

Sets the length of a form variable (the maximum length of the string representation of
the variable). Note that for string variables, len should not include the NULL termi-
nator.

PARAMETERS

form spec index of the form.

var Index (into the FormVar array) of the variable.

len Length of the variable.

RETURN VALUE

0: Success.
-1: Failure.

LIBRARY

ZSERVER.LIB

SEE ALSO

sspec_getfvlen
Chapter 3: Server Utility Library 139

sspec_setfvname

int sspec_setfvname(int form, int var, char *name);

DESCRIPTION

 Sets the name of a variable that is displayed in the HTML form.

PARAMETERS

form spec index of the form

var Index (into the FormVar array) of the variable.

name Display name of the variable.

RETURN VALUE

0: Success.
-1: Failure.

LIBRARY

ZSERVER.LIB

SEE ALSO

sspec_getfvname
140 TCP/IP User’s Manual

sspec_setfvoptlist

int sspec_setfvoptlist(int form, int var, char *list[],
 int listlen);

DESCRIPTION

 Sets an enumerated list of possible values for a string variable.

PARAMETERS

form spec index of the form.

var Index (into the FormVar array) of the variable.

list[] Array of string values that the variable can assume.

listlen Length of the array.

RETURN VALUE

0: Success.
-1: Failure.

LIBRARY

ZSERVER.LIB

SEE ALSO

sspec_getfvopt, sspec_getfvoptlistlen, sspec_setfvfloatrange,
sspec_setfvrange
Chapter 3: Server Utility Library 141

sspec_setfvrange

int sspec_setfvrange(int form, int var, long low, long high);

DESCRIPTION

Sets the range of an integer variable.

PARAMETERS

form spec index of the form.

var Index (into the FormVar array) of the variable.

low Minimum value of the variable.

high Maximum value of the variable.

RETURN VALUE

0: Success.
-1: Failure.

LIBRARY

ZSERVER.LIB

SEE ALSO

sspec_setfvfloatrange, sspec_setfvoptlist
142 TCP/IP User’s Manual

sspec_setfvreadonly

int sspec_setfvreadonly(int form, int var, int readonly);

DESCRIPTION

Sets the form variable to be read-only.

PARAMETERS

form spec index of the form.

var Index (into the FormVar array) of the variable.

readonly 0 for read/write (this is the default);
1 for read-only.

RETURN VALUE

0: Success.
-1: Failure.

LIBRARY

ZSERVER.LIB

SEE ALSO

sspec_getfvreadonly
Chapter 3: Server Utility Library 143

sspec_setpermissions

int sspec_setpermissions(int sspec, char * realm,
word readgroups, word writegroups, word servermask,
word method, MIMETypeMap * mimetype);

DESCRIPTION

Set the permission (access control) attributes of a resource.

This only works for RAM table entries. For entries in a filesystem, use
sspec_addrule().

PARAMETERS

sspec spec index

realm Realm string, or NULL

readgroups Mask of user groups who have read access

writegroups Mask of user groups who have write access

servermask Servers that can access this resource (or SERVER_ANY for all
servers).

method Required authentication method (0, SERVER_AUTH_BASIC
etc.)

mimetype MIME table entry, or NULL.

RETURN VALUE

0: Success.
<0: Failure. For example, not a RAM spec handle.

SEE ALSO

sspec_checkpermissions, sspec_getpermissions, sspec_access
144 TCP/IP User’s Manual

sspec_setpreformfunction

int sspec_setpreformfunction(int form, void (*fptr)());

DESCRIPTION

Sets a user function that will be called just before form generation. The user function is
not called when the form is being generated because of errors in the form input. The
user function must have the following prototype:

void userfunction(int form);

The function may not use the form parameter, but it is useful if the same user function
is used for multiple forms.

PARAMETERS

form spec index of the form.

fptr Pointer to user function to be called just before form generation

RETURN VALUE

0: Success.
-1: Failure.

LIBRARY

ZSERVER.LIB

SEE ALSO

sspec_getpreformfunction
Chapter 3: Server Utility Library 145

sspec_setrealm

int sspec_setrealm(int sspec, char *realm);

DESCRIPTION

Sets the realm field of a ServerSpec structure for HTTP authentication purposes.
Setting this field enables authentication for the given spec entry . Authentication can be
turned off again by passing "" as the realm parameter to this function.

Note: realm must NOT point to an auto variable, since only the pointer is stored. The
string is NOT copied.

PARAMETERS

sspec spec index - this must refer to the RAM resource table

realm Name of the realm.

RETURN VALUE

0: Success.
-1: Failure.

LIBRARY

ZSERVER.LIB

SEE ALSO

sspec_getrealm
146 TCP/IP User’s Manual

sspec_setsavedata

int sspec_setsavedata(char *data, unsigned long len,
void *fptr);

DESCRIPTION

Sets user-supplied data that will be saved in addition to the spec and user authentication
tables when sspec_save() is called.

PARAMETERS

data Pointer to location of user-supplied data.

len Length of the user-supplied data in bytes.

fptr Pointer to a function that will be called when the user-supplied
data has been restored.

RETURN VALUE

0: Successfully set up the user-supplied data.
-1: Failure.

LIBRARY

ZSERVER.LIB

SEE ALSO

sspec_save, sspec_restore
Chapter 3: Server Utility Library 147

sspec_setuser

int sspec_setuser(int sspec, int userid);

DESCRIPTION

Set the read permission mask of a spec entry (usually a file). The permissions for this
resource are set to readable only by the group(s) which this user is a member of. Write
access is set to “none.”

This function is deprecated in Dynamic C 8.50. Use sspec_setpermissions()
instead.

PARAMETERS

sspec spec index - this must refer to a RAM resource

userid user index

RETURN VALUE

0: Success.
-1: Failure.

LIBRARY

ZSERVER.LIB

SEE ALSO

sauth_adduser, sspec_getusername, sspec_setpermissions
148 TCP/IP User’s Manual

sspec_stat

int sspec_stat(char * name, ServerContext * context,
SSpecStat * s);

DESCRIPTION

Get information about a resource by name. The name may refer to a flash- or ram-spec
entry, or may be the name of a file in a filesystem. See sspec_open() for a more
detailed description of the name and context parameters.

PARAMETERS

name Resource name, as a null-terminated string. This name is assumed
to be relative to context->cwd if it does not begin with a “/”
character. Otherwise, the name is assumed to be relative to
context->rootdir.

context Additional context information. The ServerContext structure
is set up by the caller.

s Returned data. This is a pointer to the following structure, which
will be filled in on return.

typedef struct
{

word flags; // See below.
long mdtm; // Date/time (SEC_TIMER format)
long length; // Current file size
long maxlength; // Max allowable file size
ServerPermissions *perm; // See below.

} SSpecStat;

The flags field can be one of the following:

• SSPEC_ATTR_MDTM - Modification date/time

• SSPEC_ATTR_LENGTH - Current length

• SSPEC_ATTR_WRITE - File is writable

• SSPEC_ATTR_EXEC - File is executable

• SSPEC_ATTR_HIDDEN - "Hidden" attribute bit

• SSPEC_ATTR_SYSTEM - "System" attribute bit

• SSPEC_ATTR_ARCHIVE - "Archive" attribute bit

• SSPEC_ATTR_DIR - This is directory name

• SSPEC_ATTR_COMPRESSED - Compressed format

• SPEC_ATTR_MAXLENGTH - Have maximum length

• SSPEC_ATTR_SEEKABLE - Randomly accessible

• SSPEC_ATTR_EXTENSIBLE - File may be expanded at
end
Chapter 3: Server Utility Library 149

The ServerPermissions structure is defined as follows:

typedef struct {
word readgroups;
word writegroups;
word servermask;
char * realm;
char method;

} ServerPermissions;

Read (or write) permission is granted for readgroups (or
writegroups) if current ServerAuth.mask (i.e., userid
entry group mask) matches in at least one bit position.

Bit is set in servermask field for each server that can access the
resource.

Realm string of the resource (only used by HTTP server, but can
be used for other purposes).

Authentication method(s) allowed: combination of
SERVER_AUTH_* bits.

RETURN VALUE

≥0: Success.
The following return values are negatives of the values defined in errno.lib.

• -ENOENT: The resource was not found.

• -EINVAL: The resource name was malformed (for example, too long), or con-
text was NULL, or the resource was not a file type.

SEE ALSO

sspec_open, sspec_delete, sspec_close
150 TCP/IP User’s Manual

sspec_tell

long sspec_tell(int sspec);

DESCRIPTION

Return the current read/write offset in the file resource. This will be a non-negative val-
ue unless there was an error.

PARAMETER

sspec Open file handle. This must be a handle that was returned by
sspec_open().

RETURN VALUE:

≥0: Offset in the file resource.

The following return value is a negative of the value defined in errno.lib. Any oth-
er negative values indicate an error.

• -EBADF: The specified handle was not open or invalid.

SEE ALSO:

sspec_close, sspec_write, sspec_read, sspec_tell, sspec_open
Chapter 3: Server Utility Library 151

sspec_write

int sspec_write(int sspec, char * buf, int len);

DESCRIPTION

Write byte(s) to the given file resource. The data is written to the current position, then
the current position is advanced by the number of bytes written.

PARAMETERS

sspec Open file handle. This must be a handle that was returned by
sspec_open().

buf Buffer from which data is copied.

len Length of the above buffer.

RETURN VALUE

0: No data was written because len was zero or because a local buffer is full (e.g.,
when writing to an underlying filesystem that streams data to a peer).

1..len: The specified number of characters has been copied from the supplied buffer,
and the current file position has been advanced by that many bytes. Possibly less than
len bytes may be written, in which case the server should attempt to write the remain-
ing data later.

The following return values are negatives of the values defined in errno.lib.

• -EINVAL: len parameter was < 0.

• -EBADF: The specified handle was not open or invalid.

• -ENOSPC: There is insufficient space in the underlying filesystem, or the file
cannot be extended.

• -EPERM: The file resource does not support writing (e.g. xmem files, or a
read-only filesystem).

Any other negative values indicate an error.

SEE ALSO

sspec_close, sspec_read, sspec_seek, sspec_tell, sspec_open
152 TCP/IP User’s Manual

4. HTTP Server

This chapter is intended to be a detailed description of the HTTP server, and how it interfaces to
other libraries, such as Zserver and TCP/IP. For an overview of how these libraries interface with
one another and with your application, please see Chapter 2. “Web-Enabling Your Application.”

An HTTP (Hypertext Transfer Protocol) server makes HTML (Hypertext Markup Language)
pages and other resources available to clients (that is, web browsers). HTTP is implemented by
HTTP.LIB, thus you need to write #use “http.lib” near the top of your program. HTTP
depends on the Dynamic C networking suite, which is included in your program by writing #use
“dcrtcp.lib”.

Setting up the network subsystem is a necessary pre-requisite for use of HTTP. This is described in
volume 1 of the manual. However, it can be quite simple for test applications and samples to ini-
tialize the network subsystem. In the file tcp_config.lib are predefined configurations that
may be accessed by a #define of the macro TCPCONFIG. For instructions on how to set up differ-
ent configurations, please see volume 1 of the manual or look in the file
\LIB\TCPIP\TCP_CONFIG.LIB.

HTTP makes use of the Zserver library to manage resources and access control. The previous
chapter discusses Zserver. When reading this chapter, it will help if you are familiar with Zserver,
its interfaces and capabilities.

Much of this chapter contains material that could be considered advanced usage. There is also
some material of a historical nature, with relevant sections marked as such.
Chapter 4: HTTP Server 153

4.1 HTTP Server Data Structures
The single data structure in HTTP.LIB of interest to developers of CGI functions is discussed in
this section.

4.1.1 HttpState
Use of the HttpState structure is necessary for CGI functions (whether or not they were writ-
ten prior to Dynamic C 8.50). Some of the fields are off-limits to developers. The field that are
available for use are described in the next section.

Historical note: prior to Dynamic C 8.50, it was sometimes necessary for CGI functions to access
directly the fields of this structure. New programs should not directly access the fields, since it
reduces the chance of upward compatibility. There is a new suite of macros (see
http_getAction() and related macros) that should be used instead. Where applicable, the
equivalent macro is documented with the field. Some fields do not have an equivalent macro (such
as the cookie field); for now, use read-only access to such fields.

A pointer to HttpState is the first (and only) parameter to all CGI functions. Most of the time,
this pointer should be passed on to other HTTP library functions.

Note that the HttpState structure is only valid within a CGI function that has been called from
the HTTP server. Outside of this (for example, in your main() function) none of the fields are
guaranteed to be meaningful or consistent.

4.1.1.1 HttpState Fields
The fields discussed here are available for developers to use in their CGI functions.

s This is the socket associated with the given HTTP server. A devel-
oper can use this in a CGI function to output dynamic data (although
there are better, safer ways of doing this: see the section on "Writing
a CGI Function"). Any of the TCP functions can be used; however,
you should not use any functions that may wait for long periods, or
may change the state or mode of the socket (since the HTTP server
depends on it being a normal ASCII mode TCP socket).

It is recommended that you use the http_getSocket() macro
instead of directly accessing this field.

substate
subsubstate Intended for holding the current state of a state machine for a CGI

function. That is, if a CGI function relinquishes control back to the
HTTP server, then the values in these variables will be preserved for
the next http_handler() call, in which the CGI function will
be called again. These variables are initialized to 0 before the CGI
function is called for the first time. Hence, the first state of a state
machine using substate should be 0.

It is recommended that you use the macros http_getState()
and http_setState() to manipulate the substate field in-
stead of directly accessing it. subsubstate is not accessible via
these macros, but there are better alternatives.
154 TCP/IP User’s Manual

timeout This value can be used by the CGI function to implement an internal
time-out.

main_timeout This value holds the timeout that is used by the web server. The web
server checks against this timeout on every call of
http_handler(). When the web server changes states, it resets
main_timeout. When it has stayed in one state for too long, it
cancels the current processing for the server and goes back to the ini-
tial state. Hence, a CGI function may want to reset this timeout if it
needs more processing time (but care should be taken to make sure
that the server is not locked up forever). This can be achieved like
this:

state->main_timeout=set_timeout(HTTP_TIMEOUT);

HTTP_TIMEOUT is the number of seconds until the web server will
time out. It is 16 seconds by default.

buffer[] A buffer that the developer can use to put data to be transmitted over
the socket. It is of size HTTP_MAXBUFFER (defaults to 256 bytes).

Note: It is not recommended to directly access “buffer” or “p” (be-
low). Use the new-style CGI functions and the http_write(),
http_getData() and http_getDataLength() functions
instead. These create a much easier-to-use and safer method of read-
ing/writing data to the client.

p Pointer into the buffer given above. See above note.

method This should be treated as read-only. It holds the method by which the
web request was submitted. The value is either
HTTP_METHOD_GET or HTTP_METHOD_POST, for the GET and
POST request methods, respectively.

Use http_getHTTPMethod() for new code.

url[] This should be treated as read-only. It holds the URL by which the
current web request was submitted. . If there is GET-style form in-
formation, then that information will follow the first NULL byte in
the url array. The form information will itself be NULL-terminated.
If the information in the url array is truncated to HTTP_MAXURL
bytes, the truncated information is also NULL-terminated.

Use http_getURL() for new code.

version This should be treated as read-only. This holds the version of the
HTTP request that was made. It can be HTTP_VER_09,
HTTP_VER_10, or HTTP_VER_11 for 0.9, 1.0, or 1.1 requests,
respectively.

Use http_getHTTPVersion() for new code.
Chapter 4: HTTP Server 155

content_type[] This should be treated as read-only. This buffer holds the value
from the Content-Type header sent by the client.

Use http_getContentType() for new code.

content_length This should be treated as read-only. This variable holds the length
of the content sent by the client. It matches the value of the Con-
tent-Length header sent by the client.

Use http_getContentLength() for new code.

has_form This should be treated as read-only. If the value is 1 there is a GET
style form, after the \0 byte in url[].

abort_notify Set to !0 in user-defined formprolog() function to indicate
that the formepilog() function needs to be called on an abort
condition. If the epilog function is reached normally, this field
must be set to zero. This prevents the formepilog function from be-
ing called one more time on a connection abort.

cancel This should be treated as read-only. It is intended for when the
user-defined functions, which may be called before and after an
HTML form is submitted, are used for locking resources.

If the formprolog function was called and then the connection is
aborted before the formepilog function can be called, cancel is
set to 1 and the formepilog function is called exactly once. If the
epilog function was already called but returned zero (not finished
yet), then it is called again if the connection is aborted, except if
cgi_redirectto() has been called from the epilog function.
In that case the epilog function is not called after an abort.

username[] Read-only buffer has username of the user making the request, if
authentication took place.

Note: New code should use the http_getContext() macro,
then use the results to look up the user details using the sauth_*
functions. See the documentation for the ServerContext Structure
in the previous chapter.

password[] Read-only buffer has password of the user making the request, if
authentication took place. See the above note.

cookie[] Read-only buffer contains the value of the cookie "DCRABBIT"
(see http_setcookie() for more information).
156 TCP/IP User’s Manual

headerlen
headeroff These variables can be used together to cause the web server to

flush data from the buffer[] array in the HttpState struc-
ture. headerlen should be set to the amount of data in
buffer[], and headeroff should be set to 0 (to indicate the
offset into the array). The next time the CGI function is called the
data in buffer[] will be flushed to the socket.

For new code, consider writing a new-style CGI function, which
obviates the need to manipulate these fields.

cond[] Support for conditional SSI (error feedback etc.).

New code should use the macros http_getCond()and
http_setCond().

userdata[] This field is included if HTTP_USERDATA_SIZE is defined. It
is an optional user data area. The area is cleared to zero when the
structure is initialized, otherwise it is not touched. Its size must be
greater than zero.

New code should use the http_getUserData() macro to ob-
tain a pointer to user-defined storage in this structure.

4.2 Configuration Macros
The following macros are specified in HTTP.LIB. Unless otherwise noted, you can override the
default values by defining the macro (same name, different value) before you #use “http.lib”.

HTTP_HOMEDIR
Specify the “home directory” for the server. This is the root directory to which all URLs
are appended. The default is “/”, which means that all resources are accessible. If this
is set to, say, “/htdocs”, then an incoming URL of “foo/bar.html” gets turned into “/ht-
docs/foo/bar.html”. You can use this to restrict the HTTP server’s access to all but a spe-
cific “branch” of resources.

Note: the string value for this macro must start and end with a “/” character.

HTTP_DFLTFILE
Specify the default file name to append to the URL if the URL refers to a directory. This
is only applicable if the URL is “/”, or is in a filesystem (not the static or dynamic re-
source tables). The default setting is “index.html”. The value must not start or end with
a “/” character.

HTTP_SOCK_BUF_SIZE
This macro is not defined by default. If you define it, then it specifies the amount of
extended memory to allocate (xalloc()) for each HTTP server instance. If you do
not define it, then socket buffers are allocated from the usual pool. See
tcp_extopen() for more details.
Chapter 4: HTTP Server 157

HTTP_DIGEST_NONCE_TIMEOUT
This macro is used when USE_HTTP_DIGEST_AUTHENTICATION is set to one.
Nonces that are generated by the server are valid for this many seconds (900 by de-
fault). If set to 0, nonces are good forever. Setting this to a smaller value can possibly
result in higher security, although internal use of the nonce-count facility offsets this.
Setting it to a larger value reduces the negotiation between the browser and the server,
since when a nonce times out, the browser must be told that it is using a stale nonce
value and provided with a new one. Since Mozilla and Netscape ignore the stale param-
eter, the user must reenter the username and password when a nonce times out. Internet
Explorer and Opera respect the stale parameter, so they automatically try the username
and password with the new nonce without asking the user.

HTTP_MAXBUFFER
This is the size of the buffer accessible through the HttpSpec structure. It defaults to
256 bytes. The size of this buffer affects the speed of the HTTP server; the larger the
buffer (up to a point), the faster the server will run. The buffer size is also important for
use in CGI functions because it is a work space the programmer can use.
HTTP_MAXBUFFER must be at least 180 bytes for CGI functionality.

HTTP_MAX_COND
Support for conditional SSI (error feedback etc.). It defaults to 4. This is the maximum
number of state variables that may be accessed using the http_getCond() or
http_setCond() macros.

HTTP_MAX_NONCES
This macro is used when USE_HTTP_DIGEST_AUTHENTICATION is set to one.
Defined to 5 by default, it specifies the number of nonces the HTTP server will allow
as valid at any one time. This value should be somewhat larger than the maximum num-
ber of clients expected to be accessing the server simultaneously. Otherwise perfor-
mance could suffer as clients are forced to retry authorization in order to acquire a fresh
nonce.

HTTP_MAXSERVERS
This is the maximum number of HTTP servers listening on port 80. The default is 2.
You may increase this value to the maximum number of independent entities on your
page. For example, for a Web page with four pictures, two of which are the same, set
HTTP_MAXSERVERS to 4: one for the page, one for the duplicate images, and one for
each of the other two images. By default, each server takes 2500 bytes of RAM. This
RAM usage can be changed by the macro SOCK_BUF_SIZE (or
tcp_MaxBufSize which is deprecated as of Dynamic C ver. 6.57). Another option
is to use the tcp_reserveport() function and a smaller number of sockets.

HTTP_MAXURL
This macro defines the maximum incoming URL. This could be important if someone
is allowing GET requests with a large number of parameters.
158 TCP/IP User’s Manual

HTTP_PORT
This macro allows the user to override the default port of 80.

HTTP_IFACE
This macro allows the user to override the default listening network interface. The de-
fault is IF_ANY, meaning that the HTTP server(s) will listen for incoming network
connections on all interfaces which are up. You can restrict the HTTP servers to a single
interface by overriding this macro to the specific interface number (for example,
IF_ETH0).

HTTP_TIMEOUT
 Defines the number of seconds of no activity that can elapse before the HTTP server
closes a connection. The default is 16 seconds.

HTTP_USERDATA_SIZE
This macro causes "char userdata[]" to be added to the HttpState structure. Define
your structure before the statement #use HTTP.LIB.

struct UserStateData {char name[50]; int floor; int model;};
#define HTTP_USERDATA_SIZE (sizeof(struct UserStateData))
#use http.lib

In your own CGI function code, access it using:

mystate = (struct UserStateData *)http_getUserData(state);

USE_HTTP_DIGEST_AUTHENTICATION
Set to 1 to enable digest authentication, 0 to disable digest authentication. Set to 0 by
default.

USE_HTTP_BASIC_AUTHENTICATION
Set to 1 to enable basic authentication, 0 to disable basic authentication. Set to 1 by de-
fault.

4.2.1 Sending Customized HTTP Headers to the Client
The callback macro, HTTP_CUSTOM_HEADERS, will be called whenever HTTP headers are
being sent. It must be defined as a function with the following prototype:

void my_headers(HttpState *state, char *buffer, int bytes);

state Pointer to the state structure for the calling web server.

buffer The buffer in which the header(s) can be written.

bytes The number of bytes available in the buffer.

Typically, the macro would be defined by the user before the #use “http.lib” statement,
like in the following:

#define HTTP_CUSTOM_HEADERS(state, buffer, bytes) \
my_headers(state, buffer, bytes)
Chapter 4: HTTP Server 159

Then, for the above to work, my_headers() must be defined by the user, like so:

void my_headers(HttpState *state, char *buffer, int bytes)
{

strcpy(buffer, "Fake-Header: Hello Z-World!\r\n");
printf("bytes: %d\n", bytes);

}

In the real world, the user may need to check the number of bytes available to be sure they don't
overwrite the buffer. The buffer must end with "\r\n" and be NULL-terminated.

4.2.2 Saving Custom Headers from the Client
Customers may want to save some specific headers that a web client sends to the server as part of
a request. One possibility for this is to check the browser version of the client and display a differ-
ent page depending on that value. This is mostly useful for CGI functions.

The user can create a structure like the following to indicate to the web server that it should save
the specified tags:

const HttpHeader http_headers[] = {
"Host",
"Content-Length",
"User-Agent",
END_HTTP_HEADERS

};

END_HTTP_HEADERS is simply a macro (NULL) that indicates the end of the structure. These
headers will be saved in an internal buffer of a user-specified size:

#define HTTP_CUSTOM_HEADERS_SIZE 1024

By default, HTTP_CUSTOM_HEADERS_SIZE is undefined, which disables the custom header
functionality (since, in most cases, it will not need to be used). This buffer will be located in
xmem, and there will be one per HTTP server. A define will also be provided to limit the maxi-
mum size of a single header (to keep one very long header from monopolizing all of the buffer
space):

#define HTTP_CUSTOM_HEADER_MAX_SIZE 128

By default, this is undefined and there is no limit.

The user will also need functions that look up the data:

int http_getheader(HttpState *state, char *header,
char *dest, int destlen);

int http_xgetheader(HttpState *state, char *header,
long *destptr);

The first function requires the user to provide a root buffer to place the header. The HttpState
state structure must be passed so that the server knows which set of headers to access. The header
parameter is, of course, the name of the header the user wants to retrieve. dest is a pointer to the
destination buffer. destlen is the length of the destination buffer (provided by the user). The
function returns -1 on error, and the number of bytes in the header on success.
160 TCP/IP User’s Manual

The second function, http_xgetheader(), simply returns a long pointer into the internal
header buffer for the given header. It returns -1 on error, and the number of bytes in the header on
success.

Note that some headers are saved by the HTTP server by default into the HTTP state structure,
such as “Content-Length.” We will also begin saving the “Host” header, which is useful in per-
forming CGI redirection. Hence, we can change the semantics of the cgi_redirectto()
function:

int cgi_redirectto(HttpState *state, char *url);

such that the url parameter no longer needs to be an absolute URL.

4.3 Authentication Methods
HTTP/1.0 Basic Authentication is used by default. This scheme is not a secure method of user
authentication across an insecure network (e.g., the Internet). HTTP/1.0 does not, however, pre-
vent additional authentication schemes and encryption mechanisms from being employed to
increase security.

Starting with Dynamic C version 8.01, HTTP Digest Authentication as specified in RFC 2617 is
supported. Instead of sending the password in cleartext as is done using Basic Authentication,
MD5 is used to perform a cryptographic hash. To use HTTP Digest Authentication, define
USE_HTTP_DIGEST_AUTHENTICATION as 1. When this USE_* macro is defined, the mac-
ros HTTP_MAX_NONCES and HTTP_DIGEST_NONCE_TIMEOUT are available; they affect
negotiation time between server and client. For more details see Section 4.2 "Configuration Mac-
ros."

In either case (basic and/or digest), you will need to add the appropriate rules and/or permissions
to the appropriate tables. See the previous chapter for details on protecting resources. The HTTP
server applies the strongest applicable authentication mechanism depending on the information it
retrieves from the resource manager. Typically, in addition to defining user IDs and groups, you
also need to associate an authentication mechanism with the resource using e.g. the
SSPEC_MM_RULE macro, or the sspec_setpermissions() function.

Starting with Dynamic C 8.50, Secure Socket Layer (SSL) as specified in RFC 2818, is supported.
It is also known by its newer official name, TLS (Transport Layer Security). To use SSL, you must
create a secure HTTP server, known as an HTTPS server. To do this you must define some macros
and import the SSL certificate.

#define USE_HTTP_SSL
#define HTTP_SSL_SOCKETS 1

#ximport "cert\mycert.dcc" SSL_CERTIFICATE

For complete documentation on the Dynamic C implementation of SSL, see the Dynamic C
Module document, “Secure Sockets Layer (SSL) Protocol.” Another good source of information
are the sample programs that demonstrate using SSL. They are located in the
/Samples/tcpip/ssl folder that will be created when the Dynamic C Module for SSL is
installed.
Chapter 4: HTTP Server 161

4.4 Setting the Time Zone
The HTTP specification requires the server to indicate its current clock time in the response to any
request. The HTTP implementation performs this function by consulting the rtc_timezone()
library function (in RTCLOCK.LIB). The server uses the returned time zone to adjust the local
real-time clock (RTC) value so that it is always returned to the client in UTC (Co-ordinated
Universal Time).

There are several macros which you can set to define

• TIMEZONE: The local timezone offset from UTC.

• RTC_IS_UTC: Whether the RTC is already running on UTC.

The local timezone offset may be defined using the TIMEZONE macro, or it may be obtained
automatically from a DHCP server if you are using DHCP to configure the network interface.
Failing that, it defaults to zero.

If the RTC is already set to UTC (not local time), then you must define the macro RTC_IS_UTC,
in which case the local timezone offset will be ignored.

For many reasons, including the fact that daylight savings transitions are more manageable, it is
better to set the RTC to UTC, however some users prefer the clock to run in local time.

See the documentation for rtc_timezone() for more details. To do this, use the function
lookup feature in Dynamic C or refer to the Dynamic C Function Reference Manual.
162 TCP/IP User’s Manual

4.5 Sample Programs
Sample programs demonstrating HTTP are in the Samples\Tcpip\Http directory. There is a
configuration block at the beginning of each sample program. The macros in this block need to be
changed to reflect your network settings.

Starting with Dynamic C 7.30, setting up the network addresses is both more complex and more
simple. The complexity lies in the added support for multiple interfaces. Luckily for us, the sim-
plicity is in the interface to this more intricate implementation. In the file tcp_config.lib are
predefined configurations that may be accessed by a #define of the macro TCPCONFIG. For
instructions on how to set the configuration, please see volume 1 of the manual or
LIB\TCPIP\TCP_CONFIG.LIB.

4.5.1 Serving Static Web Pages
The sample program, Static.c, initializes HTTP.LIB and then sets up a basic static web page.
It is assumed you are on the same subnet as the controller. The code for Static.c is explained
in the following pages.

From Dynamic C, compile and run the program. You will see the LNK light on the board come on
after a couple of seconds. Point your internet browser at the controller (e.g., http://10.10.6.100/).
The ACT light will flash a couple of times and your browser will display the page.

Program Name: Static.c

#define TCPCONFIG 1

#define TIMEZONE -8

#memmap xmem
#use "dcrtcp.lib"
#use "http.lib"

#ximport "samples/tcpip/http/pages/static.html" index_html
#ximport "samples/tcpip/http/pages/rabbit1.gif" rabbit1_gif

SSPEC_MIMETABLE_START
SSPEC_MIME(".html", "text/html"),
SSPEC_MIME(".gif", "image/gif")

SSPEC_MIMETABLE_END

SSPEC_RESOURCETABLE_START
SSPEC_RESOURCE_XMEMFILE("/index.html", index_html),
SSPEC_RESOURCE_XMEMFILE("/rabbit1.gif", rabbit1_gif)

SSPEC_RESOURCETABLE_END

main()
{

sock_init(); // Initializes the TCP/IP stack
http_init(); // Initializes the web server

tcp_reserveport(80);

while (1) {
http_handler();

}
}

Chapter 4: HTTP Server 163

The program serves the static.html file and the rabbit1.gif file to any user contacting
the controller. If you want to change the file that is served by the controller, find and modify this
line in Static.c:

Replace static.html with the name of the file you want the controller to serve.

4.5.1.1 Adding Files to Display
Adding additional files to the controller to serve as web pages is slightly more complicated. First,
add an #ximport line with the filename as the first parameter, and a symbol that references it in
Dynamic C as the second parameter.

Next, find these lines in Static.c:

Insert the name of your new file, preceded by “/”, into this structure, using the same format as the
other lines.

Compile and run the program. Open up your browser to the new page (for example,
“http://10.10.6.100/newfile.html”), and your new page will be displayed by the browser.

4.5.1.2 Adding Files with Different Extensions
If you are adding a file with an extension that is not html or gif, you need to use the appropriate
macros to make an entry in the MIMETypeMap structure for the new extension. The first field is
the extension and the second field describes the MIME type for that extension. You can find a list
of MIME types at:

ftp://ftp.isi.edu/in-notes/iana/assignments/media-types/media-
types

In the media-types document located there, the text in the type column would precede the “/”, and
the subtype column would directly follow. Find the type subtype entry that matches your extension
and add it to the http_types table.

#ximport "samples/tcpip/http/pages/static.html" index_html

#ximport "samples/tcpip/http/pages/static.html" index_html
#ximport "samples/tcpip/http/pages/newfile.html" newfile_html

SSPEC_RESOURCETABLE_START
SSPEC_RESOURCE_XMEMFILE("/index.html", index_html),
SSPEC_RESOURCE_XMEMFILE("/rabbit1.gif", rabbit1_gif)

SSPEC_RESOURCETABLE_END

SSPEC_RESOURCETABLE_START
SSPEC_RESOURCE_XMEMFILE("/index.html", index_html),
SSPEC_RESOURCE_XMEMFILE("/newfile.html", newfile_html),
SSPEC_RESOURCE_XMEMFILE("/rabbit1.gif", rabbit1_gif)

SSPEC_RESOURCETABLE_END
164 TCP/IP User’s Manual

ftp://ftp.isi.edu/in-notes/iana/assignments/media-types/media-types

4.5.1.3 Handling of Files With No Extension
The entry “/” and files without an extension are dealt with by the handler specified in the first
entry in the MIME table. If you use the SSPEC_MIME macro, the default handler is used. It
passes the information verbatim. You can also use the macro SSPEC_MIME_FUNC to specify a
non-default text processor; this is necessary for SSI and RabbitWeb scripts (described later).

4.5.2 Dynamic Web Pages Without HTML Forms
Serving a dynamic web page without the use of HTML forms is done by sample program ssi.c.
This program displays four “lights” and four buttons to toggle them. Users can browse to the
device and change the status of the lights.

The sample code follows, but it has been edited for brevity. Open ssi.c in Dynamic C to see the
fully-commented source.

SSPEC_MIMETABLE_START
SSPEC_MIME(".html", "text/html"),
SSPEC_MIME(".pdf", "application/pdf"), //added this one
SSPEC_MIME(".gif", "image/gif")

SSPEC_MIMETABLE_END

#define TCPCONFIG 1
#define HTTP_MAXSERVERS 1
#define MAX_TCP_SOCKET_BUFFERS 1
#define REDIRECTHOST _PRIMARY_STATIC_IP
#define REDIRECTTO "http://" REDIRECTHOST "/index.shtml"

#memmap xmem

#use "dcrtcp.lib"
#use "http.lib"

#ximport "samples/tcpip/http/pages/ssi.shtml" index_html
#ximport "samples/tcpip/http/pages/rabbit1.gif" rabbit1_gif
#ximport "samples/tcpip/http/pages/ledon.gif" ledon_gif
#ximport "samples/tcpip/http/pages/ledoff.gif" ledoff_gif
#ximport "samples/tcpip/http/pages/button.gif" button_gif
#ximport "samples/tcpip/http/pages/showsrc.shtml" showsrc_shtml
#ximport "samples/tcpip/http/ssi.c" ssi_c

SSPEC_MIMETABLE_START
SSPEC_MIME_FUNC(".shtml", "text/html", shtml_handler),
SSPEC_MIME(".html", "text/html"),
SSPEC_MIME(".gif", "image/gif"),
SSPEC_MIME(".cgi", "")

SSPEC_MIMETABLE_END
Chapter 4: HTTP Server 165

char led1[15];
char led2[15];
char led3[15];
char led4[15];

int led1toggle(HttpState* state){
if (strcmp(led1,"ledon.gif")==0)

strcpy(led1,"ledoff.gif");
else

strcpy(led1,"ledon.gif");
cgi_redirectto(state,REDIRECTTO);
return 0;

}
int led2toggle(HttpState* state){

// Entirely analogous to led1toggle
}
int led3toggle(HttpState* state){

// Entirely analogous to led1toggle
}
int led4toggle(HttpState* state){

// Entirely analogous to led1toggle
}

SSPEC_RESOURCETABLE_START
SSPEC_RESOURCE_XMEMFILE("/", index_html),
SSPEC_RESOURCE_XMEMFILE("/index.shtml", index_html),
SSPEC_RESOURCE_XMEMFILE("/showsrc.shtml", showsrc_shtml),
SSPEC_RESOURCE_XMEMFILE("/rabbit1.gif", rabbit1_gif),
SSPEC_RESOURCE_XMEMFILE("/ledon.gif", ledon_gif),
SSPEC_RESOURCE_XMEMFILE("/ledoff.gif", ledoff_gif),
SSPEC_RESOURCE_XMEMFILE("/button.gif", button_gif),
SSPEC_RESOURCE_XMEMFILE("/ssi.c", ssi_c),

SSPEC_RESOURCE_ROOTVAR("led1", led1, PTR16, "%s"),
SSPEC_RESOURCE_ROOTVAR("led2", led2, PTR16, "%s"),
SSPEC_RESOURCE_ROOTVAR("led3", led3, PTR16, "%s"),
SSPEC_RESOURCE_ROOTVAR("led4", led4, PTR16, "%s"),

SSPEC_RESOURCE_FUNCTION("/led1tog.cgi", led1toggle),
SSPEC_RESOURCE_FUNCTION("/led2tog.cgi", led2toggle),
SSPEC_RESOURCE_FUNCTION("/led3tog.cgi", led3toggle),
SSPEC_RESOURCE_FUNCTION("/led4tog.cgi", led4toggle)

SSPEC_RESOURCETABLE_END
166 TCP/IP User’s Manual

When you compile and run ssi.c, you see the LNK light on the board come on. Point your
browser at the controller (e.g., http://10.10.6.100/). The ACT light will flash a couple of times and
your browser will display the page.

This program displays pictures of LEDs. Their state is toggled by pressing the image of a button.
This program uses Server Side Includes (SSI) and the old style of CGI
(SSPEC_RESOURCE_FUNCTION). Use of SSI is explained in greater detail below.

void main(){
strcpy(led1,"ledon.gif");
strcpy(led2,"ledon.gif");
strcpy(led3,"ledoff.gif");
strcpy(led4,"ledon.gif");

sock_init();
http_init();

tcp_reserveport(80);
while (1) http_handler();

}

Chapter 4: HTTP Server 167

4.5.2.1 SSI Feature
SSI commands are an extension of the HTML comment command (<!--This is a comment -->).
They allow dynamic changes to HTML files and are resolved at the server side, so the client never
sees them. HTML files that need to be parsed because they contain SSI commands, are conven-

tionally recognized by the HTTP server by the resource name extension .shtml.1

The supported SSI commands are:
• #echo var
• #exec cmd
• #include file

They are used by inserting the command into an HTML file:

<!--#include file=“anyfile” -->

The server replaces the command, #include file, with the contents of anyfile.

#exec cmd executes a command i.e. and old-style CGI and replaces the SSI command with the
output.

Dynamically Changing the Display of a Variable on a Web Page
The Ssi.shtml file, located in Samples\Tcpip\Http\Pages, gives an example of
dynamically changing a variable on a web page using #echo var.

In an shtml file, the “<!--#echo var="led1" -->“ is replaced by the value of the variable
led1 from the static resource table.

shtml_handler (which is the built-in script processor for SSI) looks up led1 and replaces it
with the text output from:

The led1 variable is either ledon.gif or ledoff.gif. When the browser loads the page, it
replaces

with

1. This is just a convention. If you add a MIMETypeMap entry SSPEC_MIME_FUNC(“.shtml”,
“text/html”, shtml_handler) then you are following this convention.

<img SRC="<!--#echo var="led1" -->">

SSPEC_RESOURCETABLE_START
...
SSPEC_RESOURCE_ROOTVAR("led1", led1, PTR16, "%s"),
SSPEC_RESOURCE_ROOTVAR("led2", led2, PTR16, "%s"),
SSPEC_RESOURCE_ROOTVAR("led3", led3, PTR16, "%s"),
SSPEC_RESOURCE_ROOTVAR("led4", led4, PTR16, "%s"),
...

SSPEC_RESOURCETABLE_END

printf("%s",(char*)led1);

<img SRC="<!--#echo var="led1"-->">

168 TCP/IP User’s Manual

or

This causes the browser to load the appropriate image file.

SSI string variables are only appropriate for relatively short strings. (In the above example, the SSI
string variables are “ledon.gif” and “ledoff.gif.”) The size that can be output is limited to the size
HTTP_MAXBUFFER. If you need larger strings, you should either increase HTTP_MAXBUFFER
(which will use more root RAM) or switch to using a CGI function.

4.5.2.2 CGI Feature
Ssi.c also demonstrates the Common Gateway Interface. CGI is a standard for interfacing exter-
nal applications with HTTP servers. Each time a client requests an URL corresponding to a CGI
program, the server will execute the CGI program in real-time.

For increased flexibility, a CGI function is responsible for outputting its own HTTP headers.
Information about HTTP headers can be found at:

http://deesse.univ-lemans.fr:8003/Connected/RFC/1945/

and many other web sites and books. In the Ssi.shtml file, this line creates the clickable button
viewable from the browser.

When the user clicks on the button, the browser will request the /led1tog.cgi entity. This
causes the HTTP server to examine the contents of the http_flashspec structure looking for
/led1tog.cgi. It finds it and notices that led1toggle() needs to be called.

The led1toggle function changes the value of the led1 variable, then redirects the browser
back to the original page. When the original page is reloaded by the browser, the LED image will
have changed states to reflect the user’s action.

This sample demonstrates the so-called “old-style” CGI. New-style CGIs are easier to write (espe-
cially when they are doing something non-trivial). They are described in Section 4.6 "HTTP File
Upload."

Connection Abort Condition
There are two fields in the HttpState structure that allow a CGI function to appropriately
respond to a connection abort condition. The user may set the field abort_notify to a non-
zero value in a CGI function to request that the CGI function be called one more time with the
cancel field set to one if a connection abort occurs.

<TD> </TD>
Chapter 4: HTTP Server 169

http://deesse.univ-lemans.fr:8003/Connected/RFC/1945/

4.5.3 Web Pages With HTML Forms
With a web browser, HTML forms enable users to input values. With a CGI program, those values
can be sent back to the server and processed. The FORM and INPUT tags are used to create forms
in HTML.

The FORM tag specifies which elements constitute a single form and what CGI program to call
when the form is submitted. The FORM tag has an option called ACTION. This option defines
what CGI program is called when the form is submitted (when the “Submit” button is pressed).
The FORM tag also has an option called METHOD that defines the method used to return the
form information to the web server. In Section 4.5.3.1, “Sample HTML Page,” on page 171, the
POST method is used, which will be described later. All of the HTML between the <FORM> and
</FORM> tags define what is contained within a form.

Starting with Dynamic C 8.50, you can also use the enctype option inside the FORM tag. This
specifies a return encoding type for the form’s information. If you did not specify this option, then
you can use old-style CGIs (as described in this section). If you specify enctype="multipart/form-
data" then you should specify a new-style CGI instead. See Section 4.6 describing the HTTP
upload feature for more details on writing a new-style CGI.

The INPUT tag defines a specific form element, the individual input fields in a form. For example,
a text box in which the user may type in a value, or a pull-down menu from which the user may
choose an item. The TYPE parameter defines what type of input field is being used. In the follow-
ing example, in the first two cases , it is the text input field, which is a single-line text entry box.
The NAME parameter defines what the name of that particular input variable is, so that when the
information is returned to the server, then the server can associate it with a particular variable. The
VALUE parameter defines the current value of the parameter. The SIZE parameter defines how
long the text entry box is (in characters).

At the end of the HTML page in our example, the Submit and Reset buttons are defined with the
INPUT tag. These use the special types “submit” and “reset,” since these buttons have special pur-
poses. When the submit button is pressed, the form is submitted by calling the CGI program
“myform.”
170 TCP/IP User’s Manual

4.5.3.1 Sample HTML Page
An HTML page that includes a form may look like the following:

<HTML><HEAD><TITLE>ACME Thermostat Settings</TITLE></HEAD>
<BODY>
<H1>ACME Thermostat Settings</H1>
<FORM ACTION="myform.html" METHOD="POST">

<TABLE BORDER>
<TR>

<TD>Name</TD> <TD>Value</TD> <TD>Description</TD></TR>
<TR>

<TD>High Temp</TD>
<TD><INPUT TYPE="text" NAME="temphi" VALUE="80"

SIZE="5">
</TD>
<TD>Maximum in temperature range (°F)</TD></TR>

<TR>
<TD>Low Temp</TD>
<TD><INPUT TYPE="text" NAME="templo" VALUE="65"

SIZE="5">
</TD>
<TD>Minimum in temperature range (°F)</TD></TR>

</TABLE>
<P>

<INPUT TYPE="submit" VALUE="Submit">
<INPUT TYPE="reset" Value="Reset">

</FORM></BODY>
</HTML>

The form might display as fol-
lows:
Chapter 4: HTTP Server 171

When the form is displayed by a browser, the user can change values in the form. But how does
this changed data get back to the HTTP server? By using the HTTP POST command. When the
user presses the “Submit” button, the browser connects to the HTTP server and makes the follow-
ing request:

POST myform HTTP/1.0
.
. (some header information)
.
Content-Length: 19

where “myform” is the CGI program that was specified in the ACTION attribute of the FORM
tag and POST is the METHOD attribute of the FORM tag. “Content-Length” defines how many
bytes of information are being sent to the server (not including the request line and the headers).

Then, the browser sends a blank line followed by the form information in the following manner:

temphi=80&templo=65

That is, it sends back name and value pairs, separated by the ‘&’ character. (There can be some
further encoding done here to represent special characters, but we will ignore that in this explana-
tion.) The server must read in the information, decode it, parse it, and then handle it in some fash-
ion. It will examine the new values, and assign them to the appropriate C variables if they are
valid.

4.5.3.2 POST-Style Form Submission
If an HTML file specifies a POST-style form submission (that is, METHOD="POST"), the form
will still be waiting on the socket when the old-style CGI handler is called. Therefore, it is the job
of the CGI handler to read this data off the socket and parse it in a meaningful way. The sample
files Post.c and Post2.c in the \Samples\Tcpip\Http folder show how to do this.

The HTTP POST command can put any kind of data onto the network. There are many encoding
schemes currently used, but we will only look at URL-encoded data in this document. Other
encoding schemes can be handled in a similar manner.
172 TCP/IP User’s Manual

4.5.3.3 URL-Encoded Data
URL-encoded data is of the form "name1=value1&name2=value2," and is similar to the CGI form
submission type passed in normal URLs. This has to be parsed to name=value pairs. The rest of
this section details an extensible way to do this.

This initializes two possible HTML form entries to be received, and a place to store the results.

Reading & Storing URL-encoded Data
parse_post() is called from the CGI function (submit()) to read URL-encoded data off
the network. It calls http_scanpost() to store the data in FORMSpec[]. These code snip-
pets are from Samples\tcpip\http\post.c.

#define MAX_FORMSIZE 64

typedef struct {
char *name;
char value[MAX_FORMSIZE];

} FORMType;

FORMType FORMSpec[2];

void init_forms(void) {
FORMSpec[0].name = "user_name";
FORMSpec[1].name = "user_email";

}

int parse_post(HttpState *state) {
auto int retval;
auto int i;

retval = sock_aread(&state->s, state->p,\
(state->content_length < HTTP_MAXBUFFER-1)?\
(int)state->content_length:HTTP_MAXBUFFER-1);

if (retval < 0)
return 1;

state->subsubstate += retval;

if (state->subsubstate >= state->content_length) {
state->buffer[(int)state->content_length] = '\0';
for(i=0; i<(sizeof(FORMSpec)/sizeof(FORMType)); i++) {

http_scanpost(FORMSpec[i].name, state->buffer,\
FORMSpec[i].value, MAX_FORMSIZE);

}
return 1;

}
return 0;

}

Chapter 4: HTTP Server 173

4.5.3.4 Sample of a CGI Handler
This next function is the CGI handler that calls parse_post(). It is a state machine-based han-
dler that generates the page. It calls parse_post() and references the structure that is now
filled with the parsed data we wanted.

This function is from Samples\tcpip\http\post.c.

int submit(HttpState *state){
auto int i;

if(state->length) { // buffer to write out
if(state->offset < state->length) {

state->offset += sock_fastwrite(&state->s, state->buffer
+ (int)state->offset,(int)state->length -
(int)state->offset);

} else {
state->offset = 0;
state->length = 0;

}

} else {
switch(state->substate) {

case 0:
strcpy(state->buffer, "HTTP/1.0 200 OK\r\n\r\n");
state->length = strlen(state->buffer);
state->offset = 0;
state->substate++;
break;

case 1:

strcpy(state->buffer,"<html><head><title>Results</title>
</head><body>\r\n");

state->length = strlen(state->buffer);
state->substate++;
break;

case 2: // initialize the FORMSpec data
FORMSpec[0].value[0] = '\0';
FORMSpec[1].value[0] = '\0';
state->p = state->buffer;
state->substate++;
break;
174 TCP/IP User’s Manual

case 3: // parse the POST information
if(parse_post(state)) {

sprintf(state->buffer, "<p>Username:
%s<p>\r\n<p>Email: %s<p>\r\n", FORMSpec[0].value,
FORMSpec[1].value);

state->length = strlen(state->buffer);
state->substate++;

}
break;

case 4:

strcpy(state->buffer,"<p>Go home</body> </html>\r\n");

state->length = strlen(state->buffer);
state->substate++;
break;

default:
state->substate = 0;
return 1;

}
}
return 0;

}

Chapter 4: HTTP Server 175

4.5.4 HTML Forms Using Zserver.lib
In this section, we will step through a sample program, Samples\tcpip\http\form1.c,
that uses HTML forms. Through this step-by-step explanation, the method of using the functions
in zserver.lib will become clear. (As of Dynamic C 8.50, you have the option of using the
RabbitWeb server, with its easier-to-use interface and completely flexible ZHTML page layout
capabilities. For more information, see the document titled "RabbitWeb, To Web-Enable Embed-
ded Applications" available on our website.)

Defining FORM_ERROR_BUF is required in order to use the HTML form functionality in
Zserver.lib. The value represents the number of bytes that will be reserved in root memory
for the buffer that will be used for form processing. This buffer must be large enough to hold the
name and value for each variable, plus four bytes for each variable. Since we are building a small
form, 256 bytes is sufficient.

Since we will not be using the static resource table, we can define the following macro, to remove
some code for handling this table from Zserver.

These lines are part of the standard TCP/IP and MIME table configuration.

These are the declarations of the variables that will be included in the form.

#define FORM_ERROR_BUF 256

#define HTTP_NO_FLASHSPEC

#memmap xmem
#use "dcrtcp.lib"
#use "http.lib"

SSPEC_MIMETABLE_START
SSPEC_MIME(".html", "text/html")

SSPEC_MIMETABLE_END

int temphi;
int tempnow;
int templo;
float humidity;
char fail[21];
176 TCP/IP User’s Manual

http://www.zworld.com/products/dc/DC8/docs.shtml

An array of type FormVar must be declared to hold information about the form variables. Be
sure to allocate enough entries in the array to hold all of the variables that will go in the form. If
more forms are needed, then more of these arrays can be allocated.

These variables will hold the indices in the TCP/IP servers’ object list for the form and the form
variables.

This array holds the possible values for the fail variable. The fail variable will be used to make a
pulldown menu in the HTML form.

These lines initialize the form variables.

The next line adds a form to the dynamic resource table. The first parameter gives the name of the
form. When a browser requests the page “myform.html” the HTML form is generated and pre-
sented to the browser. The second parameter gives the developer-declared array in which form
information will be saved. The third parameter gives the number of entries in the myform array
(this number should match the one given in the myform declaration above). The fourth parameter
indicates that this form should only be accessible to the HTTP server, and not the FTP server.
SERVER_HTTP should always be given for HTML forms. The return value is the index of the
newly created form in the dynamic resource table.

void main(void)
{

FormVar myform[5];

int var;
int form;

const char *const fail_options[] = {
"Email",
"Page",
"Email and page",
"Nothing"

};

temphi = 80;
tempnow = 72;
templo = 65;
humidity = 0.3;
strcpy(fail, "Page");

form = sspec_addform("myform.html", myform, 5, SERVER_HTTP);
Chapter 4: HTTP Server 177

This line sets the title of the form. The first parameter is the form index (the return value of
sspec_addform()), and the second parameter is the form title. This title will be displayed as
the title of the HTML page and as a large heading in the HTML page.

The following line adds a variable to the resource table. It must be added to this table before being
added to the form. The first parameter is the name to be given to the variable, the second is the
address of the variable, the third is the type of variable (this can be INT8, INT16, INT32,
FLOAT32, or PTR16), the fourth is a printf-style format specifier that indicates how the variable
should be printed, and the fifth is the server for which this variable is accessible. The return value
is the handle of the variable in the resource table.

The following line adds a variable to a form. The first parameter is the index of the form to add the
variable to (the return value of sspec_addform()), and the second parameter is the index of
the variable (the return value of sspec_addvariable()). The return value is the index of
the variable within the developer-declared FormVar array, myform.

This function sets the name of a form variable that will be displayed in the first column of the form
table. If this name is not set, it defaults to the name for the variable in the resource table (“temphi”,
in this case). The first parameter is the form in which the variable is located, the second parameter
is the variable index within the form, and the third parameter is the name for the form variable.

This function sets the description of the form variable, which is displayed in the third column of
the form table.

This function sets the length of the string representation of the form variable. In this case, the text
box for the form variable in the HTML form will be 5 characters long. If the user enters a value
longer than 5 characters, the extra characters will be ignored.

This function sets the range of values for the given form variable. The variable must be within the
range of 60 to 90, inclusive, or an error will be generated when the form is submitted.

sspec_setformtitle(form, "ACME Thermostat Settings");

var = sspec_addvariable("temphi", &temphi, INT16, "%d",
SERVER_HTTP);

var = sspec_addfv(form, var);

sspec_setfvname(form, var, "High Temp");

sspec_setfvdesc(form, var, "Maximum in temperature range
 (60 - 90 °F)");

sspec_setfvlen(form, var, 5);
178 TCP/IP User’s Manual

This concludes setting up the first variable. The next five lines set up the second variable, which
represents the current temperature.

Since the value of the second variable should not be modifiable via the HTML form (by default
variables are modifiable,) the following line is necessary and makes the given form variable read-
only when the third parameter is 1. The variable will be displayed in the form table, but can not be
modified within the form.

These lines set up the low temperature variable. It is set up in much the same way as the high tem-
perature variable.

This code begins setting up the string variable that specifies what to do in case of air conditioning
failure. Note that the variable is of type PTR16, and that the address of the variable is not given to
sspec_addvariable(), since the variable fail already represents an address.

sspec_setfvrange(form, var, 60, 90);

var = sspec_addvariable("tempnow", &tempnow, INT16, "%d",
SERVER_HTTP);

var = sspec_addfv(form, var);
sspec_setfvname(form, var, "Current Temp");
sspec_setfvdesc(form, var, "Current temperature in °F");
sspec_setfvlen(form, var, 5);

sspec_setfvreadonly(form, var, 1);

var = sspec_addvariable("templo", &templo, INT16, "%d",
SERVER_HTTP);

var = sspec_addfv(form, var);
sspec_setfvname(form, var, "Low Temp");
sspec_setfvdesc(form, var, "Minimum in temperature range

(50 - 80 °F)");
sspec_setfvlen(form, var, 5);
sspec_setfvrange(form, var, 50, 80);

var = sspec_addvariable("failure", fail, PTR16, "%s",
SERVER_HTTP);

var = sspec_addfv(form, var);

sspec_setfvname(form, var, "Failure Action");
sspec_setfvdesc(form, var,

"Action to take in case of air-conditioning failure");
sspec_setfvlen(form, var, 20);
Chapter 4: HTTP Server 179

This line associates an option list with a form variable. The third parameter gives the developer-
defined option array, and the fourth parameter gives the length of the array. The form variable can
now only take on values listed in the option list.

This function sets the type of form element that is used to represent the variable. The default is
HTML_FORM_TEXT, which is a standard text entry box. This line sets the type to
HTML_FORM_PULLDOWN, which is a pull-down menu.

Finally, this code sets up the last variable. Note that it is a float, so FLOAT32 is given in the
sspec_addvariable() call. The last function call is sspec_setfvfloatrange()
instead of sspec_setfvrange(), since this is a floating point variable.

These calls create aliases in the dynamic resource table for the HTML form. That is, the same
form can now be generated by requesting “index.html” or “/”. Note that
sspec_aliasspec() should be called after the form has already been set up. The aliasing is
done by creating a new entry in the resource table and copying the original entry into the new
entry. Note that aliasing can also be done for files and other types of server objects.

These lines complete the sample program. They initialize the TCP/IP stack and web server, and
run the web server.

sspec_setfvoptlist(form, var, fail_options, 4);

sspec_setfventrytype(form, var, HTML_FORM_PULLDOWN);

var = sspec_addvariable("humidity", &humidity, FLOAT32,
"%.2f", SERVER_HTTP);

var = sspec_addfv(form, var);
sspec_setfvname(form, var, "Humidity");
sspec_setfvdesc(form, var, "Target humidity (between 0.0 and 1.0)");
sspec_setfvlen(form, var, 8);
sspec_setfvfloatrange(form, var, 0.0, 1.0);

sspec_aliasspec(form, "index.html");
sspec_aliasspec(form, "/");

sock_init();
http_init();
while (1) {

http_handler();
}

}

180 TCP/IP User’s Manual

This is the form that is generated:

Chapter 4: HTTP Server 181

4.6 HTTP File Upload
This section describes the HTTP file upload feature available starting with Dynamic C 8.50. The
enhanced CGI capabilities of this version of Dynamic C allow files of unlimited size to be
uploaded using a web interface. It has always been possible to upload files using FTP; however, it
is usually more convenient to use a browser-based upload.

4.6.1 What is a CGI Function and Why is It Useful?
The HTTP library provided with Dynamic C allows the association of C functions with web page
URLs. When the user, via their web browser, retrieves a specified resource, the C function may be
called from the HTTP server. Such a function is called a Common Gateway Interface (CGI) func-
tion, and it is responsible for generating a response to the user’s request.

The advantage of using a CGI is that it can generate web page content on-the-fly, and cause the
browser to display or do anything that it is capable of. In addition, the CGI is able to read data that
was sent by the browser.

Previous to this release of Dynamic C, the CGI was limited to handling relatively small amounts
of data sent from the browser. This is satisfactory for processing simple forms, but does not allow
large data sets to be uploaded. This release of Dynamic C supports upload of one or more files
from the browser. The files can be of unlimited size. In conjunction with the latest Zserver
(resource manager) enhancements available in Dynamic C 8.50, the uploaded files may be stored
in the FS2 or FAT file systems, or even processed dynamically.

The new CGI file upload facility enables a range of convenient firmware features. Possibilities
include:

• Remote firmware updates.

• Web page content updates (i.e. “publishing”).

• Executable (interpreter) scripts.

• Remote hardware updates (if using an FPGA or other configurable logic device).

• Firmware configuration.

NOTE: Throughout this document the FAT file system is the destination for the
uploaded file. The FAT uses onboard serial flash and is available as a module which
may be purchased separately. See www.zworld.com.
182 TCP/IP User’s Manual

http://www.zworld.com/support/downloads/

4.6.2 How Do I Use the New CGI Facility?
There are a number of steps, some of which will be familiar to users of CGIs in previous releases.
They are listed here and described in more detail in the following pages. The steps, if coding from
scratch, are:

1. #use “dcrtcp.lib”, and specify network configuration options.

2. #use <filesystem(s) of choice>, and specify the file system configuration.

3. #define USE_HTTP_UPLOAD

4. #use “http.lib”

5. Create an initial web page with a form asking for the file(s) to be uploaded. The main require-
ment is that you specify enctype="multipart/form-data" inside the <FORM>
tag(s).

6. Write a CGI function (if not using the default one provided).

7. Create an initial resource table containing at least an entry for each of the above two resources
(the web page and the CGI).

8. Create a list of content type mappings, i.e., the MIME table.

9. Create rules which limit the upload facility to select user groups.

10. Create a set of user IDs

11. In the main program, call http_handler() in a loop.

Step 1: Specify Network Configuration
To make use of HTTP upload, you need to perform the usual inclusion and configuration of the
networking library, dcrtcp.lib. At its simplest, it is two lines of code at the top of your main
program:

#define TCPCONFIG 1
#use “dcrtcp.lib”

This specifies that the default TCP (networking) configuration is to be used. If you want to change
the default networking configuration, first read the comments at the top of tcp_config.lib.

HTTP upload usually requires at least two additional libraries to be included: a file system library,
and http.lib itself. A file system is required, otherwise the uploaded file has nowhere to go
(although you can write a CGI which processes the file as it is uploaded, in which case you do not
need to store it permanently, and thus you do not need to include a file system; the following dis-
cussion assumes that you are using a file system).
Chapter 4: HTTP Server 183

Steps 2, 3 and 4: Specify File system and Web Server
You need to include the file system library (or libraries) before including http.lib. This is
because the HTTP library needs to know about the filesystem(s) it is going to support. In addition,
you need to tell the HTTP library to use the upload facility. For example, if you want to use the
FAT file system, then you would write the following:

#define TCPCONFIG 1
#use “dcrtcp.lib”
#use “fat.lib” // Step 2: the filesystem
#define USE_HTTP_UPLOAD // Step 3: enable upload feature
#use “http.lib” // Step 4: HTTP server code

The order of the above statements is important. A possible exception is that the order of
dcrtcp.lib and fat.lib may be interchanged, since these libraries are independent. How-
ever, it is recommended you use the given ordering since future releases of the FAT may be able to
use networking services.

Step 5: Create a Web Page
When using HTTP upload, there needs to be a way to prompt the user (web browser) to enter a file
name to upload. This is done by using an HTML form. The form specifies input fields that may be
filled out by the user, and one or more “submit” buttons that the user presses to start the upload
process.

If you have an existing web-based application to which you want to add a file upload facility, you
probably already have a web page with a form on it; in this case, you can add an extra input field
to an existing form on that page, or create a new form on the same page. You may already have a
CGI function that processes the results of the form submission. This will need to be rewritten to
process data that is not URL encoded.

If you are creating a new application, you need to construct an initial page to contain the necessary
form elements. As a starting point you can use the sample page in
samples\tcpip\http\pages\upload.html. Click on upload.html and the
browser will display something like this:

The construction of this page is outlined below, but it has been simplified and reformatted slightly.
A blow-by-blow description of each line is added in italics.
184 TCP/IP User’s Manual

<html>

This introduces the page as an HTML document.

<head><title>HTTP Upload Form</title></head>

This (“HTTP Upload Form”) gets displayed at the top of the browser window. You can change this
to whatever is appropriate for describing the overall purpose of this page.

<body>

Introduce the main content of this page.

<FORM ACTION="upload.cgi" METHOD="POST" enctype="multipart/form-data">

Start a form definition. The parameters are
action=”upload.cgi”: this refers to the CGI function that will process the results of the form submis-
sion. This is a URL name, which is mapped to a C function on the server.
method=post: this is required, since a post-type request must be sent to the server.
enctype=”multipart/form-data”: this is also required, and is the part that is different from the old
style of processing. The old style did not specify an encoding type, thus the default of “URL
encoded” was used.

<TABLE BORDER=0 CELLSPACING=2 CELLPADDING=1>

For neatness of screen layout, we put everything in an HTML table. The following <TR>...</TR>
sections delimit each row of the table, and the data for each cell is delimited by <TD>...</TD>.

<TR>
<TD WIDTH=130 ALIGN=RIGHT>Name</TD>
<TD WIDTH=500><INPUT TYPE="TEXT" NAME="user_name" SIZE=50></TD>

This is the first input field. It is not a file to upload, but it is information that the server may never-
theless be interested in. This shows that not every form field needs to be a file to upload. The order is
important. Browsers will send back the form fields in the same order that they are defined in the
HTML, however it is probably best not to rely on this if you can help it.

</TR>
<TR>

<TD ALIGN=RIGHT>File to upload
(to /A/new.htm)</TD>
<TD><INPUT TYPE="FILE" NAME="/A/new.htm" SIZE=50></TD>

This is the file-to-upload input field. The browser displays this as a text input field, with an addi-
tional “browse” button so that the user can easily navigate his local filesystem to find the appropri-
ate file. The critical distinction is that it contains a type=file parameter (as opposed to, for example,
type=text in the previous field). The name=”/A/new.htm” parameter specifies the name of the input
field, not the name of the file on the user’s system! As it happens, this looks like a file name, and
indeed the server may use it as the name of a local file, but this is a convention only. The size=50
parameter specifies the number of characters that the browser will display for file name selection.

<TR>
</TABLE>
<INPUT TYPE="SUBMIT" VALUE="Upload">

It is necessary to supply a type=submit form element. The user presses this button to start to post
(upload) process. Note that this is another input field, however if you leave out the name= parameter
(as in this example) then the browser will not send the value of this button back with the form sub-
mission. If there is only one submit button, then there is no need to name it.

</FORM></body></html>

Close and complete the form, body, and entire page.
Chapter 4: HTTP Server 185

If you have an existing application, you can take out the relevant parts of the above, and insert
them in your existing web page. The relevant parts are the enctype=”multipart/form-data” parame-
ter in the <FORM> element, and the <INPUT type=file> element.

If you have an existing application that processes the form data submission, you will need to
rewrite the CGI function that handles the submitted data. This is because the enctype parameter
changes the syntax that the browser uses to encode the data. In short, you will need to rewrite the
CGI as a “new-style” CGI as described in Step 6: Writing a CGI Function.

Having created the HTML file with the upload form, it is necessary to import it into your main
program, so that the HTTP server can present it to the user. This can be done using #ximport,
or you can write it directly to the filesystem (although, initially at least, this presents a chicken-
and-egg type problem since you might not have established an upload procedure in the first place!)

4.6.2.1 Step 6: Writing a CGI Function
The CGI function is responsible for processing the form submission data as it comes in from the
client (browser). In addition, it generally needs to write some sort of response back to the client
indicating whether or not the submission was acceptable.

If you start reading the following, and start feeling somewhat overwhelmed, please be aware that
there is a default CGI function in the HTTP library that is very useful. The default CGI, called
http_defaultCGI(), automatically saves uploaded files into the filesystem. If that is all you
need to do, then you do not need to fully comprehend this section on first reading.

Note that all of this section is describing new-style CGIs. Old-style CGIs are covered in
Section 4.5.3.

CGI Syntax
All CGI functions are C functions with the following prototype:

int my_CGI(HttpState * s);

The HttpState parameter is a pointer to the internal state variables of the HTTP server instance
that is handling the current request. You can have one or more server instances. If there is more
than one, the same CGI may be invoked at the same time for more than one client (if both happen
to press the submit button at about the same time). Thus, it is important to write the CGI function
so that it is re-entrant. This basically means that the function should not update global or static
variables. The CGI should not attempt to modify directly any of the fields in the HttpState
structure, otherwise the server may become inoperable.

API Functions
The HTTP library provides a set of API functions that can be called safely from the CGI. The list
of safe functions is in the index under “Function Reference, CGI.”

It is unwise to make direct calls to TCP/IP functions, especially functions that may not return for a
long time such as sock_read().
186 TCP/IP User’s Manual

How to Transfer Form Submission Data
To understand how to write a CGI function, it is necessary to have some understanding of the pro-
tocol used to transfer the form submission data. Since the data can consist of one or more files
and/or form fields, there needs to be a way of separating them within the one, sequential, stream of
data that is sent by the client.

The way this is done is that the client specifies a unique string that separates each item of data. The
following text is a dump of the actual data sent by a client (with some irrelevant details omitted,
and with comments added in italics):

POST /upload.cgi HTTP/1.1

This indicates that it is POSTed form data, and the target handler is upload.cgi.

Content-length: 277

This gives the total number of bytes of data following the initial header.

Content-Type: multipart/form-data; boundary=3vAL1QsFOUg2GsY3p6n3YQ

The multipart/form-data type indicates that this is a multipart form data submission. The boundary
parameter specifies a unique character sequence that separates each part. The boundary is deliber-
ately chosen as a long, random, string of characters so that it is unlikely to be confused with the
actual data content.

The above blank line is significant; it indicates the end of the initial header lines, and the start of
data.

--3vAL1QsFOUg2GsY3p6n3YQ

This is the first boundary. Boundary strings are always prefixed by an additional -- sequence. The
following lines are header lines for the individual part. The actual data follows the first empty line.

Content-Disposition: form-data; name="/A/new.htm"; filename="test.txt"

The Content-Disposition header indicates the presentation of the data. The only type which is rele-
vant is “form-data”. The name= parameter indicates the field name (which was originally part of
the name= parameter of the <input> element). The filename= parameter is only set if this is an
uploaded file. It gives the name of the file on the remote (client) side. This is not usually relevant to
the server. The name of the file as it is stored on the server is not specified (since the browser does
not know it or have control over where the file is stored). We are using the convention that the field
name indicates the local file name, but this is just a convention!

Content-Type: text/plain

Content-Type indicates the type of information. The default is plain (i.e. ascii) text, however it could
also be set to image/gif for a GIF file, text/html for HTML etc. The following blank line indicates the
end of headers for this part.

test file contents, first line

This is the actual file or form field content.

--3vAL1QsFOUg2GsY3p6n3YQ

The boundary string terminates the data for the previous part. Headers for the next part immediately
follow.
Chapter 4: HTTP Server 187

Content-Disposition: form-data; name="submit"

This is form field data, in this case the submit button itself.

upload

--3vAL1QsFOUg2GsY3p6n3YQ--

The boundary terminates the previous form field. Since this is the last boundary, it also has a trailing
--.

When writing the CGI, you do not have to worry about parsing the headers and boundary separa-
tors. This is already done by the HTTP server. However, you do need to be aware of the stream-
oriented nature of the incoming data. The HTTP server separates out the parts (and parses the
headers). As it does this, it calls the defined CGI with the data for each section.

Action Codes Received by a CGI Function
The CGI is called in a number of different contexts. It determines the context by calling the
http_getAction() function. The return value of http_getAction() indicates the rea-
son that the CGI is being called by the HTTP server.

For a given upload, the CGI is called with a typical sequence of action codes. The first code is
CGI_START (for the start of a new part), CGI_DATA (for each chunk of data in that part), then
CGI_END (for the end of the part). Thus, the typical sequence for a single part is

CGI_START, CGI_DATA, CGI_DATA, CGI_DATA, CGI_END

Finally, at the end of all the parts, the action code is set to CGI_EOF.

Most CGIs should also handle a special action code called CGI_ABORT. This code only occurs if
the upload is terminated early by a network problem (or by the user pressing the browser’s cancel
or stop button).

Let’s examine a simple CGI that handles these five action codes. This is the minimum require-
ment; however, there are some additional codes that may be used by more advanced CGIs. The
switch statement ignores action codes that are not listed. This is deliberate, since any other action
codes may be safely ignored.

int my_CGI(HttpState * s)
{

switch(http_getAction(s)) {
case CGI_START:

break;
case CGI_DATA:

break;
case CGI_END:

break;
case CGI_EOF:

break;
case CGI_ABORT:

break;
}
return 0;

}

188 TCP/IP User’s Manual

The above code is a skeleton that does nothing! In other words, all incoming data is sent to the bit-
bucket. It is ready to fill out with more useful actions. To avoid repeating the code, we just take
each case condition, and fill in the details.

Action Code CGI_START
When the action code CGI_START is received, all of the part headers have been read, so the
server knows everything relevant about the data that follows. The CGI can access this information
using several of the HTTP API functions. The most important information is the field name on the
form, from the <INPUT NAME= “fieldname”> element in the HTML form:

case CGI_START:
if (http_getField(s)[0] == ‘/’) {

printf(“Found a file to upload!\n”);
...

}
break;

http_getField() looks at the first character of the field name to see if it is a slash character.
We are using the convention that if the field starts with a slash, it is the name of a local file to be
overwritten with the following data. Note that the field names are controlled by the server, via the
NAME= parameters in the INPUT fields. We can choose any naming convention desired; in this
case, using an initial slash seems to make sense for file destinations.

Now let’s fill in what happens when there is a file to save. In most cases, when writing or reading a
file, it is necessary to “open” the file. When a file is open, it can be read and/or written. Finally, it
is closed. All this implies that some sort of state needs to be maintained so that we can refer to the
correct open file. It would be very easy if all the data was presented at once to the CGI, so that it
could open, write, and close the file in one fell swoop. Unfortunately, that cannot happen since the
data is not yet available on the CGI_START call. The CGI has no choice than to return to the
HTTP server after doing whatever it can in the CGI_START state.

The solution to this problem is that the CGI opens the file on the CGI_START call, and stores the
open file handle somewhere where it can be retrieved on the next (CGI_DATA or CGI_END) call.
The recommended method for accomplishing this is to save the handle back with the server. You
can use the http_setCond() and http_getCond() functions to do this.

The HTTP server maintains a set of so-called “cond” variables for each CGI instance. Your appli-
cation decides how many cond variables there are by defining the HTTP_MAX_COND macro,
which defaults to 4. Each cond variable is a 16-bit integer.

There is also a single integer variable accessed using http_getState() and
http_setState().
Chapter 4: HTTP Server 189

Expanding on the above, let’s add opening of the file:

#define COND_HANDLE 0 // cond variable for storing the handle.
case CGI_START:

if (http_getField(s)[0] == ‘/’) {
printf(“Found a file to upload!\n”);
http_setCond(s, COND_HANDLE,

sspec_open(http_getField(s), http_getContext(s),
O_WRITE|O_CREAT|O_TRUNC, 0));

if (http_getCond(s, COND_HANDLE) < 0)
http_skipCGI();

}
else

http_skipCGI(s);
break;

The sspec_open() function opens the file (whose name is in the field name) with write access.
The http_getcontext() function returns a server context structure which is required for the
sspec_open() call. The context structure contains some details, such as the current user ID,
but the details are usually not relevant to the CGI function itself. The file is created if it does not
exist, and it is initially truncated if it already exists. The return value from sspec_open() is
stored in the cond variable COND_HANDLE, which is a macro we defined to zero so we wouldn’t
have to remember hard-coded numbers. The return value is either negative (if there was an error),
or not negative in which case it is a valid file handle. We check the cond variable just set, to make
sure it has a valid value.

The else clause is added so that if the part is not a file to upload the rest of the data for this part
is ignored. This is convenient, since we don’t want to get called with CGI_DATA or CGI_END if
this is not a file. If http_skipCGI() is called, then the next action code will be either
CGI_START (if there is another part), or CGI_EOF (if there were none). Note that we are also
calling http_skipCGI() in the case that the file could not be opened.

Action Code CGI_DATA
Let’s now turn to saving the data. For this, we make use of the CGI_DATA action code:

int handle;
...
case CGI_DATA:

handle = http_getCond(s, COND_HANDLE);
sspec_write(handle, http_getData(s), http_getDataLength(s));

break;

First, the open file handle is retrieved from the cond variable. This works because the HTTP server
does not touch these variables between calls. The only time the server changes the cond variables
is at the start of a completely new form submission, in which case they are usually set to zero. But
don’t depend on them being zero, since a form submission can sometimes contain syntax that sets
them to non-default values. You can rely on http_getState() returning zero on the very first
call; thereafter, it is not touched, but can be manipulated by the CGI calling the function
http_setState().
190 TCP/IP User’s Manual

Having retrieved the open file handle (you didn’t save it in a static variable, did you?) it is used in
the sspec_write() call. http_getData() returns the available data, and
http_getDataLength() returns its length (in bytes). The maximum length that
http_getDataLength() will return is HTTP_MAXBUFFER, which is a macro controlled by
the application (defaulting to 256). Often, the available data length will be less than this, even in
the middle of a long file.

Note that the return code from sspec_write() is not checked. This is a shortcoming that we
fix later, since the solution can be slightly complex. For now, we just hope that it works.

Action Code CGI_END
The next thing to consider is closing the file when the upload is complete. For this, we make use of
the CGI_END action code:

case CGI_END:
handle = http_getCond(s, COND_HANDLE);
sspec_close(handle);
break;

This is quite simple. We simply retrieve the handle, and close it.

Response to the Client: Redirection
Finally, we have to consider what to do at the end of all parts (CGI_EOF), or if the connection
was cancelled (CGI_ABORT). You may recall that the CGI has two responsibilities: one is to pro-
cess the incoming data, and the other is to write some results back to the client. We have already
done the former, it is only left to do the latter.

Writing results to the client means we have to generate the proper HTTP response, including all
the necessary headers and web page content. The CGI can do this itself, by putting strings in the
buffer provided by the http_getData() call. Alternatively, the CGI can simply redirect back
to another local (or even remote) web page and not bother writing anything itself.

If the CGI wants to generate the response itself, then this has the advantage of being slightly more
efficient, but the disadvantage of requiring more code in the CGI. Usually, the application already
has some sort of web page that can display the necessary results. This is often an “SSI” page (that
is, dynamically generated using a specialized function) or may be just a static page (for example,
/index.html).

Action Code CGI_EOF
Since referring to another web page is easiest, it is shown first:

case CGI_EOF:
cgi_redirectto(s, “/index.html”);
break;

The cgi_redirectto() function tells the HTTP server to stop calling this CGI function, and
tell the client to retrieve its next web page from the specified location (in this case, the
index.html page on the current server). The onus is on the client (browser) to go and get that
page. It will come straight back to this server, but the CGI does not have to worry about it. Easy!
Chapter 4: HTTP Server 191

In a similar vein, you can use the http_switchCGI() function. Again, the current CGI does
not have to generate a response. The difference is that the HTTP server goes straight to the speci-
fied web page and presents it to the client on the same connection (rather than requiring the client
to come back to the server with a new request).

http_switchCGI() can transfer control to any local web page, as if the client had directly
requested that resource. If the resource happens to be another new-style CGI (like the one we are
describing), then it gets control with the current action code, which will usually be CGI_EOF.
Otherwise, the resource is processed as if it was directly retrieved by the client, by name. Note:
the current CGI must not have written anything back to the client, otherwise the data wil not be
intelligible to the client). Here is an example:

case CGI_EOF:
http_switchCGI(s, “/index.html”);
break;

As you can see, it is very similar to the cgi_redirectto() case.

Action Code CGI_ABORT
The conventions for having the CGI generate its own response back to the client are covered in the
next section, titled, Writing Responses to the Client from a CGI Function. First, we look at the
proper handling of a CGI_ABORT action code. This code means that the connection has been lost
and there is no point in handling any more incoming data or generating any response. Thus, pro-
cessing of CGI_ABORT is necessarily limited to cleaning up any open files or other resources:

case CGI_ABORT:
handle = http_getCond(s, COND_HANDLE);
sspec_close(handle);
break;

In this example, we simply close the handle, possibly leaving the file with partially written con-
tents. It is important to do this, since if the handle is left open, then that handle is lost forever (or
until the next reboot). The CGI_ABORT code can happen at any time, so the CGI must handle it if
it ever uses “leakable” resources.

If you are alert, you noticed that CGI_ABORT may be called when there is no open handle. We
must guard against the possibility of trying to close an “invalid” handle, since it may happen to
belong to another active CGI. We can do this by ensuring the value in the cond variable is “-1” if
the handle is not open.
192 TCP/IP User’s Manual

Minimum Required Functionality of CGI
All the above code is pulled together, with the proper tests and comments on the additional code:

#define COND_HANDLE 0 // cond variable for storing the handle.
int my_CGI(HttpState * s){

int handle;

// Following block ensures that the first time (http_getState() is zero) we set the handle to -1.
if (http_getState(s) == 0) {

http_setState(s, 1);
http_setCond(s, COND_HANDLE, -1);

}
switch(http_getAction(s)) {

case CGI_START:
if (http_getField(s)[0] == ‘/’) {

printf(“Found a file to upload!\n”);
http_setCond(s, COND_HANDLE,

sspec_open(http_getField(s), http_getContext(s),
O_WRITE|O_CREAT|O_TRUNC, 0));

if (http_getCond(s, COND_HANDLE) < 0)
http_skipCGI();

}
else

http_skipCGI(s);
break;

case CGI_DATA:
handle = http_getCond(s, COND_HANDLE);
sspec_write(handle, http_getData(s),

http_getDataLength(s));
break;

case CGI_END:
handle = http_getCond(s, COND_HANDLE);
sspec_close(handle);

// The following statement ensures that the handle is set back to -1 when we know it is closed.
http_setCond(s, COND_HANDLE, -1);
break;

case CGI_EOF:
http_switchCGI(s, “/index.html”);
break;

case CGI_ABORT:
handle = http_getCond(s, COND_HANDLE);

// The following test is added so we don’t try to close the handle if it is already closed.
if (handle >= 0)

sspec_close(handle);
break;

}
return 0;

}

Chapter 4: HTTP Server 193

What Happens if the Write Fails?
There is still one point to cover. That is, the sspec_write() call is not guaranteed to swallow
all of the data that it was told to write. In fact, sspec_write() may completely fail (for exam-
ple, if the file system runs out of space).

First, let’s handle the case where sspec_write() returns an error, that is, its return code is
negative. In this case, we probably want to return an error indication to the client. This can be done
using the http_switchCGI() or cgi_redirectto() functions. A special page will need
to be created for this purpose. If this page is called “/upld_err.html”, then the following
code could be used:

case CGI_DATA:
handle = http_getCond(s, COND_HANDLE);
if (sspec_write(handle, http_getData(s),

http_getDataLength(s)) < 0)
{

sspec_close(handle);
http_switchCGI(s, “/upld_err.html”);

}
break;

In the case of an error, the handle is closed, then the HTTP server presents the upld_err.html
page to the client. The current CGI is abandoned, including any pending data that is still incoming.
This is why the handle is explicitly closed (since upld_err.html probably doesn’t know any-
thing about it!). Naturally, upld_err.html is a web page that tells the user that something
went wrong. In practice, this would usually be an SSI rather than a static web page, since you
would probably want to give the user different feedback depending on the exact type of error.

The final consideration is what to do if sspec_write() can only write some (or perhaps none)
of the data it was given. The normal course of action is to just retry later, with the data that was not
written. You could just sit in a loop in the CGI function waiting for the data to be written. This
may be satisfactory in some cases, but often this will unnecessarily reduce system performance
(since nothing else will get a chance to run except interrupts). It is preferable to return to the HTTP
server, which in turn can return to the application before coming back into the CGI.

CGI Return Codes
This is where the CGI return code becomes important. Up to now, the return code has always been
zero, which means “continue as usual.” (However, some of the APIs such as
http_abortCGI() override this.)

There are several other legitimate values for the return code:

• CGI_MORE: Call back again when free space in transmit buffer.

• CGI_DONE: CGI has finished writing data to the client.

• CGI_SEND: Send the data (null term string) in the main buffer.

• CGI_SEND_DONE: combination of the above two.
194 TCP/IP User’s Manual

Action Code CGI_CONTINUE
In the case we are discussing, the CGI_MORE return code is used. This tells the server that the
CGI function is busy trying to do something, but it could not complete the task. It wants to be
called back again, but without any new incoming data.

Thus, if the CGI function returns CGI_MORE, the HTTP server will eventually come back with a
special action code, which has not been mentioned yet, called CGI_CONTINUE. The CGI needs
to respond to this code so that it can continue doing what it was trying before. This implies that the
CGI will need to remember at least a bit of information (like how many bytes of the total it suc-
cessfully wrote). For this, it can use the “state” and “cond” variables.

The following code shows the relevant sections for following this protocol:

int len, newlen;
#define COND_LEN 1
case CGI_DATA:

handle = http_getCond(s, COND_HANDLE);
len = sspec_write(handle, http_getData(s),

http_getDataLength(s));

if (len < 0) { //permanent error
sspec_close(handle);
http_switchCGI(s, “/upld_err.html”);

}
else if (len < http_getDataLength(s)) //no error, but not all written
{

http_setCond(s, COND_LEN, len); //save place in file
return CGI_MORE; //tell server we’re not done

}
break;

case CGI_CONTINUE: //CGI_MORE returned last time
handle = http_getCond(s, COND_HANDLE); //get file handle
len = http_getCond(s, COND_LEN); //get place in file

// Try writing the part that wasn’t written.
newlen = sspec_write(handle, http_getData(s)+len,

http_getDataLength(s)-len);
if (newlen < 0) { //permanent error when retrying.

sspec_close(handle);
http_switchCGI(s, “/upld_err.html”);

}
else { //sum the total written count

len += newlen;
if (len < http_getDataLength(s)) { //still haven’t written all

http_setCond(s, COND_LEN, len); //save new place
return CGI_MORE; //tell server we’re not done

}
}
break;
Chapter 4: HTTP Server 195

The important point is that when CGI_CONTINUE is the action code, the CGI retries the failed
part of the previous operation, then tests whether it is complete. On completion, the usual “0”
return code is returned, otherwise the CGI keeps returning CGI_MORE until the operation either
completes or permanently fails. (The above code does not show the CGI returning zero. Look at
the code in the default handler, http_defaultCGI(), to see this being done.)

You may notice the repetition of parts of this code, for example the calls to
http_switch_CGI(). This is for clarity; you can condense some of this by factoring out the
common parts.

The CGI remembers where it was up to by using another cond variable, COND_LEN. This is all
that is required, since the contents of http_getData() and its length are guaranteed not to be
changed on the next call, when the CGI returns CGI_MORE.

Writing Responses to the Client from a CGI Function
A CGI function is able to generate all or part of the response to the client. To do this, it has to fol-
low the HTTP specification. That is, it must write the response headers, plus the HTML content.
The HTTP headers must be the first thing written. At a minimum, the header lines look like the
following:

HTTP/1.0 200 OK
Date: Sun, 20 Jan 1980 23:27:10 GMT
Content-Type: text/html

NOTE: Each line must be terminated with a CRLF (that is, “\r\n”), and there must
be a blank line after the last header. The date string can be constructed using the
http_date_str() function.

You can create the headers in one hit using the following code:

char date[30];
sprintf(http_getData(s),

"HTTP/1.0 200 OK\r\nDate: %s\r\nContent-Type: text/html\r\n\r\n",
http_date_str(date));

Then send it to the client by returning CGI_SEND straight away. CGI_SEND tells the HTTP
server that the CGI function has put a null-terminated string in the http_getData() buffer,
and that the server should not call the CGI again until the string has been sent.

This is the most convenient way of sending relatively small amounts of data at a time. It relies on
the fact that the CGI is allowed to write to the buffer returned by http_getData(). Since
http_getData() is used to pass incoming data to the CGI, it is important to ensure that the
incoming data has been fully processed before writing over that buffer. In addition, the buffer’s
length is HTTP_MAXBUFFER which limits the size of the string (including the null terminator).

The CGI can return CGI_SEND for any action code (except CGI_ABORT). When the action code
is CGI_EOF, there is no more incoming data, so strings can be written back to the client indefi-
nitely; the server keeps calling the CGI at CGI_EOF. When the CGI has finished generating all
the content, it must return CGI_DONE.

When the server gets the CGI_DONE return code, it closes the client connection normally, and
ceases calling the CGI.
196 TCP/IP User’s Manual

If the CGI has one more thing to write before it is “done,” it can return CGI_SEND_DONE which
combines the CGI_SEND and CGI_DONE return codes. This can simplify the CGI if it does not
have to do much when it first gets the CGI_EOF action code.

Using CGI_SEND return code has some limitations. In particular, only a limited size of string may
be sent to the client on any one call. Also, a null character cannot be sent to the client because the
null is interpreted as the end of the string. The null character problem is not usually important,
since nulls are rarely (if ever) sent in an HTML document. The length limitation is more impor-
tant, since some HTML constructs can be very verbose.

The http_write() function is designed to overcome these limitations. http_write()
writes data from an arbitrary buffer (with a higher length limit on any one call), and returns either
zero meaning that all data was successfully queued, or it may return CGI_MORE if it could not
write the data. Either all or none of the data will be written, respectively. In the case that none was
written, the CGI returns the CGI_MORE return code to the HTTP server. The CGI will then be
called back with an action code of CGI_CONTINUE, where it should retry the failed
http_write() call.

If http_write() returns zero, it can be called again immediately with more data, or the CGI
can return zero to the HTTP server. Otherwise, the CGI function will generally need to remember
what it was up to, and retry the http_write() on the next call. The following code illustrates
use of http_write():

static const char * a_very_long_html_fragment = “....”; //512 bytes
case CGI_END:

return http_write(s, a_very_long_html_fragment,
strlen(a_very_long_html_fragment));

case CGI_CONTINUE:
if (was_writing_that_long_fragment)

return http_write(s, a_very_long_html_fragment,
strlen(a_very_long_html_fragment));

break;

The details of determining which write was in progress have been glossed over. Basically, you
would have to use a cond variable to keep track of which http_write() was in progress, if
there is more than one possibility.

There is a limit to the amount of data that http_write() can possibly write on any given call.
This limit is set by the HTTP server socket transmit buffer size. This buffer size is given by
TCP_BUF_SIZE/2. The transmit buffer is usually at least 1024 bytes, which is considerably
larger than the limitation when using the CGI_SEND return code (typically 255 bytes). If you try
exceeding that limit, http_write() will never succeed.
Chapter 4: HTTP Server 197

Step 7: Creating the Resource Tables
Web browsers use URLs, which are specially formatted strings, to refer to resources (web pages)
on the server. For example, a user may enter
http://rabbit_server/admin/upload.html to retrieve the
/admin/upload.html resource from the HTTP server on “rabbit_server.”

When the server receives such a request, it needs to look up the name, open the resource that it
refers to, and send the contents back to the client.

CGI functions are no different from other resources, as far as the client is concerned. The server,
of course, does entirely different things. The server needs to have a lookup table defined, which
translates URLs into the appropriate local type of resource. This is the function of the “resource
table,” which is also known as the “flashspec” or “ramspec” table in Dynamic C parlance.

The static resource table is a statically defined, constant, table. The dynamic resource table is gen-
erated at runtime. Both types can be used in the same program, with dynamic entries overriding
static entries with the same URL.

With this release of Dynamic C, there is no need to put anything in either of these tables, provided
that a filesystem (FAT or FS2) is used. However, it is convenient to have at least a few entries in
the dynamic table, and it is mandatory to have entries in either or both the static and dynamic
tables if CGI functions are used.

When using the HTTP upload facility, you will need at least one CGI function to be defined, and
probably another entry for the initial form. The resource table may be defined as follows:

SSPEC_RESOURCETABLE_START
SSPEC_RESOURCE_XMEMFILE("/index.html", index_html),
SSPEC_RESOURCE_CGI("upload.cgi", my_CGI)

SSPEC_RESOURCETABLE_END

This defines a static resource table with two entries. The first is a static web page for the form
(index.html) and the second points to the CGI that will be used to process the uploaded data.
Important: use SSPEC_RESOURCE_CGI, not SSPEC_RESOURCE_FUNCTION - this defines
the CGI as new-style. SSPEC_RESOURCE_XMEMFILE specifies a file that has been imported in
the server’s flash memory using the #ximport directive. For example,

#ximport "samples/tcpip/http/pages/upload.html" index_html

index_html is a placeholder (a long int) for the start of the file. This is mentioned in the
resource table entry so that the server knows where to get it.

The second entry above specifies a “new-style” CGI function, which has been the subject of the
preceding sections. You must use the SSPEC_RESOURCE_CGI macro to specify this type of
CGI. The URL (string) parameter is whatever is mentioned in the <form action=...> parameter of
the initial web page. The other parameter is the function pointer to the CGI that will process the
upload.

If you do not wish to write a CGI just for handling file uploads, you could specify
http_defaultCGI() as the CGI function.
198 TCP/IP User’s Manual

Step 8: Create List of Content Type Mappings
The HTTP server needs to recognize different file formats. This is done using file extensions and
MIME types. The server shares this information with the browser in its header. In this way, the
browser knows how to handle the file.

The following code creates a table that maps file extensions to the appropriate MIME type.

SSPEC_MIMETABLE_START
SSPEC_MIME(".htm", "text/html"),
SSPEC_MIME(".html", "text/html"),
SSPEC_MIME(".gif", "image/gif"),
SSPEC_MIME(".cgi", "")

SSPEC_MIMETABLE_END

This method of creating the MIME type mapping table is new with Dynamic C version 8.5.

Step 9: Rule Creation
There must be rules to limit the upload facility to select user groups. This access control adds
security to the system by disallowing unauthorized tampering.

This is done be assigning a unique user (or user group) the privilege of uploading new files. All
other users will be permitted only read access. To do this, there are several things that need to be
coordinated. First, the user(s) need to be created and assigned the correct group bit (which defines
the upload privilege). Then, the CGI and the file system need to be protected so that only the privi-
leged group can use the CGI, and only the privileged group can write to a defined subset of the file
system.

Let’s take this step-by-step. In the main program, define a group bit to represent the privileged
user(s):

#define ADMIN_GROUP 0x0002

Groups are assigned one bit out of 16. In this case, we select bit 1. (Bit 0, or 0x0001, will be used
for all other users).

Next, augment the resource table so that the CGI is accessible only to users in ADMIN_GROUP:

SSPEC_RESOURCETABLE_START
SSPEC_RESOURCE_XMEMFILE("/index.html", index_html),
SSPEC_RESOURCE_P_CGI("upload.cgi", my_CGI,

"newPages", ADMIN_GROUP, 0x0000,
SERVER_HTTP, SERVER_AUTH_BASIC)
SSPEC_RESOURCETABLE_END

The SSPEC_RESOURCE_P_CGI is a macro that allows specification of access control parame-
ters. After the usual URL string and function pointer, the next parameters are:

• “newPages” - this is the so-called “realm” of the CGI resource. This is not particularly signifi-
cant, except that it notifies the client that this is a restricted resource, and that a userid/password
will be required. The user sees this string when prompted for his or her credentials.

• ADMIN_GROUP - this was the group defined above. In this context, it applies to the read
access rights. To read this resource (that is, to use the CGI), the user needs to be in this group.
Chapter 4: HTTP Server 199

• 0x0000 - this is also a group bit parameter, for write access. CGIs themselves do not have the
concept of “writability” (that would imply the ability to change the CGI function!) so this is
always zero for a CGI.

• SERVER_HTTP - this specifies the server that can use the CGI function. CGIs are currently
only usable by the HTTP server, thus there is no other sensible choice for this parameter.

• SERVER_AUTH_BASIC - this specifies the required (minimum) authentication method.
BASIC means that a simple plain-text userid and password will be required. A better choice is
SERVER_AUTH_DIGEST since that does not reveal the password to anyone listening in on
the conversation; however, older web browsers do not support this.

Next, the file system needs to be protected. Usually, you do not want the entire file system to be
writable, even to the privileged group members. To establish this sort of protection, you need to set
up a rule-based access control. This is done using the SSPEC_RULETABLE method, or equiva-
lent runtime control:

#define SSPEC_FLASHRULES
...
#use “http.lib”
...
SSPEC_RULETABLE_START

SSPEC_MM_RULE("/A/new", "newPages", 0xFFFF, ADMIN_GROUP,
SERVER_HTTP, SERVER_AUTH_NONE, NULL)

SSPEC_RULETABLE_END

The SSPEC_FLASHRULES macro must be defined before you #use “http.lib”. The rule table has
one entry in this example. The parameters to this entry are:

• “/A/new” - this is the string prefix of all file names to which this rule applies. In this example,
everything in the first FAT partition (/A/) with a filename starting with “new” is protected
according to the remaining parameters. This includes any file in the root directory whose name
starts with “new,” or any file in any subdirectory of the root directory where the subdirectory
name starts with “new.”

• “newPages” - this is the realm string assigned to these files. This is the same as the CGI realm,
but need not be.

• 0xFFFF - this is the user groups who are allowed read access. In this case, everyone is allowed.

• ADMIN_GROUP - this is the writable group: only the one defined for the CGI is allowed.

• SERVER_HTTP - only the HTTP server can access.

• SERVER_AUTH_NONE - this is only relevant when the resource is being read directly by the
client. When the file is written (via the CGI) the CGI has already authenticated the user in its
own way, and doesn’t need to re-authenticate. In this example, no authentication is required for
retrieval (read-only) of the file.

• NULL - this is an additional parameter that is not relevant to this discussion.

By default, every other file in the filesystem(s) that is not covered by this rule is denied write
access. In general, a rule is only required when it is desired to permit write access (not deny it).
200 TCP/IP User’s Manual

Step 10: Create Set of User IDs
The last step is to actually define the users. This must be done at runtime, using the sauth_*()
functions. The following code illustrates:

int uid;

uid = sauth_adduser("admin", "upload", SERVER_HTTP);
sauth_setusermask(uid, ADMIN_GROUP, NULL);
sauth_setwriteaccess(uid, SERVER_HTTP);

This sets up a single user, with userid “admin” and password “upload.” The user is only “known”
to the HTTP server. sauth_setusermask() is required when a userid is created (since the
default may not be satisfactory). It makes sure the user is placed into the correct group(s), in this
case, the ADMIN_GROUP that we defined above. Finally, each user must be individually granted
write access using the sauth_setwriteaccess() function. If this is not done, the user will
not be able to write the file in spite of passing other tests.

Step 11: Tying It All Together
After performing the above steps, the actual running of the HTTP server and CGI is almost trivial.
The main C function should have a loop in it which calls http_handler():

void main()
{

int uid;

sock_init(); // Initialize the network

// Mount the FAT filesystem.
sspec_automount(SSPEC_MOUNT_ANY, NULL, NULL, NULL);

// Create the authorized user, as described in the previous section.
uid = sauth_adduser("admin", "upload", SERVER_HTTP);
sauth_setusermask(uid, ADMIN_GROUP, NULL);
sauth_setwriteaccess(uid, SERVER_HTTP);

http_init(); // Initialize the HTTP server

tcp_reserveport(80); // Enable smooth handling of multiple HTTP requests
for (;;) http_handler(); // The big loop! Drives everything.

}

All error handling has been pared out of the above code. For full details, please refer to the sample
program samples\tcpip\http\upld_fat.c.
Chapter 4: HTTP Server 201

4.7 API Functions for HTTP Servers

cgi_continue

int cgi_continue(HttpState * state, char * localurl)

DESCRIPTION

Called from a CGI function after processing any data submitted. This function contin-
ues creating a response as if from a normal GET request to the specified local URL.

NOTE: the CGI function must NOT have sent any data to the socket.

PARAMETERS

state A pointer to the HTTP server state structure.

localurl The URL string, which must be a URL defined in the server spec
table (otherwise the browser will see a "not found" message).

RETURN VALUE

The return value from this function should be used as the return value from the CGI
handler function that calls it.

LIBRARY

HTTP.LIB
202 TCP/IP User’s Manual

cgi_redirectto

void cgi_redirectto(HttpState *state, char *url);

DESCRIPTION

This utility function may be called in a CGI function to redirect the user to another page.
It sends a user to the URL stored in url. You should immediately issue a “return
0;” after calling this function. The CGI is considered finished when you call this, and
will be in an undefined state.

The http samples work correctly with cgi_redirectto() because they use macro
constants to define the URL parameter. If you manipulate the url string, please be aware
of the following issues:

• The library function sets a pointer to the 2nd parameter - url. The calling routine is
responsible for ensuring that the location represented by the pointer remains valid
after the call. This is because the URL string will not be processed until after the
CGI function is finished.

• If the application has MAX_TCP_SOCKET_BUFFERS and
HTTP_MAXSERVERS set to more than one, it is possible that the CGI function
will be called successively with different server states serving different client
requests. In these circumstances it is necessary to ensure that the pointer to the url
is valid for each of the server states.

• After the cgi function has called cgi_redirecto() and returns 0, the
http_handler then causes the server response to be sent to the browser. The infor-
mation is sent as follows:

1. HTTP header response containing the redirection information response code
302.

2. A human readable redirection html page telling the user that redirection has
taken place, and to click "here" to go to the new URL. This is for browsers
that do not recognize the redirection 302 command in the header.

This may cause a problem for browsers which do recognize the 302 redirection
command. Some browsers immediately issue a GET request to the new location
while still reading in the human readable page. If MAX_TCP_SOCKET_BUFFERS
and HTTP_MAXSERVERS are set to one, the server will not receive the GET
request because it is busy sending out the human-readable page. The symptom is
that the browser appears to time-out. (This timing problem may be masked when a
proxy server is used.) Set MAX_TCP_SOCKET_BUFFERS and
HTTP_MAXSERVERS to a value more than one to prevent this problem.
Chapter 4: HTTP Server 203

PARAMETERS

state Current server struct, as received by the CGI function.

url Fully qualified URL to redirect to.

RETURN VALUE

None - sets the state, so the CGI must immediately return with a value of 0.

LIBRARY

HTTP.LIB

SEE ALSO

cgi_sendstring

cgi_sendstring

void cgi_sendstring(HttpState *state, char *str);

DESCRIPTION

Sends a string to the user. You should immediately issue a “return 0;” after calling
this function. The CGI is considered finished when you call this, and will be in an un-
defined state. This function greatly simplifies a CGI handler because it allows you to
generate your page in a buffer, and then let the library handle writing it to the network.

PARAMETERS

state Current server struct, as received by the CGI function.

str String to send.

RETURN VALUE

None - sets the state, so the CGI must immediately return with a value of 0.

LIBRARY

HTTP.LIB

SEE ALSO

cgi_redirectto
204 TCP/IP User’s Manual

http_abortCGI

 int http_abortCGI(HttpState * state);

DESCRIPTION

Terminate this CGI request. The client will receive an error message indicating the con-
nection was closed.

The CGI should not make any further HTTP calls after calling this function. It should
clean up any resources that it opened, since no further calls are made to this CGI for this
request.

PARAMETERS

state HTTP state pointer, as provided in the first parameter to the CGI
function.

RETURN VALUE

0

LIBRARY

HTTP.LIB

SEE ALSO

http_getAction, http_skipCGI, http_switchCGI, http_finishCGI,
http_write
Chapter 4: HTTP Server 205

http_addfile

int http_addfile(char *name, long location);

DESCRIPTION

Adds a file to the dynamic resource table.

PARAMETERS

name Name of the file (for example, /index.html).

location Address of the file data. (Return value from #ximport)

RETURN VALUE

0: Success.
1: Failure.

LIBRARY

HTTP.LIB

SEE ALSO

http_delfile
206 TCP/IP User’s Manual

http_contentencode

 char *http_contentencode(char *dest, const char *src,
int len);

DESCRIPTION

Converts a string to include HTTP transfer-coding tokens (such as @ (decimal) for
at-sign) where appropriate. Encodes these characters: ''<>@%#&''

Source string is NULL-byte terminated. Destination buffer is bounded by len. This
function is reentrant.

PARAMETERS

dest Buffer where encoded string is stored.

src Buffer holding original string (not changed)

len Size of destination buffer.

RETURN VALUE

dest: There was room for all conversions.
NULL: Not enough room.

LIBRARY

HTTP.LIB

SEE ALSO

http_urldecode
Chapter 4: HTTP Server 207

http_date_str

char *http_date_str(char *buf);

DESCRIPTION

Print the date (time zone adjusted) into the given buffer. This assumes there is room!

PARAMETERS

buf The buffer to write the date into. This requires at least 30 bytes in
the destination buffer.

RETURN VALUE

A pointer to the string.

LIBRARY

HTTP.LIB

SEE ALSO

http_handler
208 TCP/IP User’s Manual

http_defaultCGI

int http_defaultCGI(HttpState * state);

DESCRIPTION

This function should not be called directly by the application. It is intended to be used
as a new-style CGI for handling file uploads. See "samples\tcpip\http\upld_fat.c" for an
example of using this function.

This CGI function accepts POST requests from the client (browser) which may contain
one or more files that are being uploaded. It looks at the field name of the form data in
the request. If the field name starts with “/”, it is assumed to be the name of a resource
which is to be created (if it does not already exist) and overwritten with the uploaded
file contents.

There are three steps required to use this CGI:

1. Define a CGI resource in the flash- or ram-spec table. If using flashspec, for
example, there would be an entry like

SSPEC_RESOURCETABLE_START
SSPEC_RESOURCE_XMEMFILE("/index.html",index_html),
SSPEC_RESOURCE_CGI("/upload.cgi", http_defaultCGI)
SSPEC_RESOURCETABLE_END

There may be other resources, but at least two are normally required. One
resource is a web page (see below) that contains a form the user can fill in
with the name of the file to upload. The other resource (CGI) is a reference to
this function, giving it a URL name that identifies it to the browser.

2. Create a web page which contains a form like the following skeleton exam-
ple:

<FORM ACTION="/upload.cgi" METHOD="POST"
 enctype="multipart/form-data">

<INPUT TYPE="FILE" NAME="/A/incoming/new.htm">
<INPUT TYPE="SUBMIT" VALUE="Upload">

</FORM>

in the <FORM> element, the ACTION= parameter specifies the URL
assigned to this CGI. In the <INPUT TYPE= "FILE"> element, the NAME=
parameter specifies the resource name used to contain the uploaded file con-
tents. In this example, the resource is called "/A/incoming/new.htm", which
will work if you are using the FAT filesystem.

If uploading to a subdirectory, “incoming” in the above example, the subdi-
rectory must already exist. If not, the upload will fail.
Chapter 4: HTTP Server 209

3. To add user authentication and other facilities there are three possible things
to protect:

• The web page containing the form. Give read access only to those
users who could conceivably upload the files specified therein.

• The CGI itself (this function). Protect as for (a).

• The uploaded resource. You should set up a rule allowing write access
only to the intended user(s).

When defining user IDs which can use the upload, do not forget to give those users
overall write access using, for example:

sauth_setwriteaccess(uid, SERVER_HTTP)

Be aware that “rogue clients” could easily change the resource name to something other
than the one that was intended in the original form. This is why resource protection is
important.

Having done these three things, the HTTP server is now set up to automatically place
uploaded files in the filesystem.

Note that this CGI is limited to placing files into fixed resource locations (as specified
by the field name of the INPUT element). If you need more sophisticated control, you
may wish to write your own CGI function, using the code of this one as a starting point.

This CGI also presents a default status web page back to the client. This page indicates
whether the upload was successful, the number of bytes uploaded, and a link to test out
the new file (assuming it is something the browser will understand, such as an HTML
document or GIF image). You can use this function as a starting point for generating
your own content.

PARAMETERS

state HTTP state pointer, provided by HTTP server to all CGIs.

newURL The resource name to present to the client. This may be another
CGI, or any other type of resource that could be presented to the
client in response to an HTTP GET or POST request. The resource
must exist in the flash- or ram-spec table, or in a filesystem.

RETURN VALUE

See documentation for "writing a data handler CGI"

LIBRARY

HTTP.LIB

SEE ALSO

http_getAction, http_skipCGI, http_switchCGI, http_finishCGI,
http_write
210 TCP/IP User’s Manual

http_delfile

int http_delfile(char *name);

DESCRIPTION

Deletes a file from the RAM spec table.

PARAMETERS

name Name of the file, as passed to http_addfile().

RETURN VALUE

0: Success;
1: Failure (not found).

LIBRARY

HTTP.LIB

SEE ALSO

http_addfile
Chapter 4: HTTP Server 211

http_finderrbuf

char *http_finderrbuf(char *name);

DESCRIPTION

Finds the occurrence of the given variable in the HTML form error buffer, and returns
its location.

PARAMETERS

name Name of the variable.

RETURN VALUE

NULL: Failure.
!NULL: Success, location of the variable in the error buffer.

LIBRARY

HTTP.LIB
212 TCP/IP User’s Manual

http_findname

int http_findname(char *name);

DESCRIPTION

Finds a spec entry, searching first in RAM, then in flash.

This function is deprecated as of Dynamic C 8.50. Use sspec_findname().

PARAMETERS

name Name, in text, of the spec to find.

RETURN VALUE

The spec entry.

LIBRARY

HTTP.LIB
Chapter 4: HTTP Server 213

http_finishCGI

int http_finishCGI(HttpState * state);

DESCRIPTION

Indicate to the HTTP server that this CGI has finished processing data from this multi-
part data stream. The server reads (and discards) data to the end of the entire stream (in-
cluding epilog). The next call to the CGI function will have an action code of
CGI_EOF (or possibly CGI_ABORT if there was a stream error).

PARAMETERS

state HTTP state pointer, as provided in the first parameter to the CGI
function.

RETURN VALUE

0

LIBRARY

HTTP.LIB

SEE ALSO

http_getAction, http_skipCGI, http_abortCGI, http_switchCGI, ,
http_write
214 TCP/IP User’s Manual

http_getAction

char http_getAction(HttpState * state);

DESCRIPTION

Return the current CGI action. This should be called only from a CGI function regis-
tered as a SSPEC_CGI resource in the zserver resource table.

NOTE: This is implemented as a macro. You must define the macro
USE_HTTP_UPLOAD if using this macro, otherwise you will get a compile-time error.

http_getAction() should be called at the top of the CGI function. Other
http_get* functions/macros may or may not be valid depending on the action code.
The following table shows which functions are applicable:

Table 4-1. Valid Functions per Action Code

CGI Action Code Valid Functions/Macros

Any action code except CGI_ABORT

http_getContext, http_getURL, http_getState,
http_setState, http_getCond, http_setCond,
http_getUserState, http_getSocket, http_write,
http_abortCGI, http_skipCGI, http_finishCGI,
http_switchCGI, http_getHTTPVersion,
http_getHTTPMethod,
http_getRemainingLength

CGI_START

http_getField, http_getContentLength,
http_getContentType,
http_getContentDisposition,
http_getTransferEncoding

CGI_DATA

http_getField, http_getContentLength
http_getContentType,
http_getContentDisposition,
http_getTransferEncoding,
http_getData, http_getDataLength

CGI_END

http_getField, http_getContentLength,
http_getContentType,
http_getContentDisposition,
http_getTransferEncoding

CGI_HEADER, CGI_PROLOG,
CGI_EPILOG, CGI_EOF

 http_getData, http_getDataLength

CGI_CONTINUE
Depends on previous action code at time of
returning CGI_MORE, however
http_getData will NOT be valid.
Chapter 4: HTTP Server 215

PARAMETER

state HTTP state pointer, as provided in the first parameter to the CGI
function.

RETURN VALUE

Action code. One of the following values:

• CGI_START - start of a part in a multi-part transfer.

• CGI_DATA - binary data for this part

• CGI_END - end of a part

• CGI_HEADER - header line of a part

• CGI_PROLOG - binary data before the first part

• CGI_EPILOG - line of data after the last part

• CGI_EOF - normal end of all parts and epilog

• CGI_ABORT - abnormal termination. CGI should recover and/or close any
open resources.

• CGI_CONTINUE - being called from the HTTP server after the CGI previously
returned CGI_MORE.

LIBRARY

HTTP.LIB

SEE ALSO

(functions mentioned above), http_defaultCGI

CGI_ABORT

Should only do resource cleanup.
http_getContext, http_getURL, http_getState,
http_getCond, http_getUserState,
http_getHTTPVersion, http_getHTTPMethod

Table 4-1. Valid Functions per Action Code

CGI Action Code Valid Functions/Macros
216 TCP/IP User’s Manual

http_getCond

int http_getCond(HttpState * state, int idx);

DESCRIPTION

Return the current HTTP condition state variable (aka., cond variable). There are
HTTP_MAX_COND of these integer state variables, thus idx must be between 0 and
HTTP_MAX_COND-1, inclusive.

Use of cond variables is entirely up to the application; however, they are initialized by
the HTTP server under certain conditions. By default, they are set to zero at the start of
each request from the client. If the client request includes URL GET-type parameters
of the form http://host/resource.html?A=1&B=2&C=3 etc. then cond state 0 is set to
the value for 'A', cond state 1 is set to the value for 'B' etc. The values must be integers,
which are coerced into 16 bit signed integers.

NOTE: This is implemented as a macro.

PARAMETERS

state HTTP state pointer, as provided in the first parameter to the CGI
function.

idx Index of cond variable: 0..HTTP_MAX_COND-1. Validity is not
checked.

RETURN VALUE

Value of cond variable idx.

LIBRARY

HTTP.LIB

SEE ALSO

http_getAction, http_setCond
Chapter 4: HTTP Server 217

http_getContentDisposition

char http_getContentDisposition(HttpState * state);

DESCRIPTION

Return the current disposition of the data which is being provided by the client. This is
one of the following enumerated values:

• MIME_DISP_NONE: unspecified disposition

• MIME_DISP_INLINE: the content is to be displayed "inline"

• MIME_DISP_ATTACHMENT: the content is only to be displayed if there is
some action by the user

• MIME_DISP_FORMDATA: the content is form field data (or an uploaded file).

Of these, only NONE and FORMDATA are really relevant to HTTP. It is only valid to call
this when the action code is CGI_START, CGI_DATA or CGI_END.

NOTE: This is implemented as a macro.

PARAMETER

state HTTP state pointer, as provided in the first parameter to the CGI
function.

RETURN VALUE

Content disposition code, as documented above.

LIBRARY

HTTP.LIB

SEE ALSO

http_getAction
218 TCP/IP User’s Manual

http_getContentLength

long http_getContentLength(HttpState * state);

DESCRIPTION

Return the length of data in the current part of a multi-part data stream. The return value
is interpreted differently, depending on the action code.

It is only valid to call this when the action code is CGI_START, CGI_DATA or
CGI_END.

When CGI_START, this returns the value of the ContentLength header for this part (or
-1 if there was no such header).

When CGI_DATA or CGI_END, it is the total number of bytes that have actually been
read and presented to the CGI. This increases for each CGI_DATA call, until it repre-
sents the total content length when action is CGI_END.

NOTE: This is implemented as a macro.

PARAMETER

state HTTP state pointer, as provided in the first parameter to the CGI
function.

RETURN VALUE

Length of part data.

LIBRARY

HTTP.LIB

SEE ALSO

http_getAction
Chapter 4: HTTP Server 219

http_getContentType

char * http_getContentType(HttpState * state);

DESCRIPTION

Return the current content type of the data which is being provided by the client. This
is a MIME type string e.g. "text/html" or "image/jpeg".

The CGI might need to look at this to determine the appropriate way to process the data.
Normal form fields will usually contain "text/plain", however uploaded files may con-
tain any type of data.

It is only valid to call this when the action code is CGI_START, CGI_DATA or
CGI_END.

NOTE: This is implemented as a macro.

PARAMETER

state HTTP state pointer, as provided in the first parameter to the CGI
function.

RETURN VALUE

Null terminated string containing the MIME type name.

LIBRARY

HTTP.LIB

SEE ALSO

http_getAction
220 TCP/IP User’s Manual

http_getcontext

ServerContext * http_getcontext(int servno);

DESCRIPTION

Return the ServerContext struct for the specified HTTP server instance.

NOTE: This structure should not be modified by the application.

PARAMETER

servno Server instance number (0..HTTP_MAXSERVERS-1)

RETURN VALUE

NULL: invalid server instance.
Otherwise, pointer to this server's ServerContext.

LIBRARY

HTTP.LIB
Chapter 4: HTTP Server 221

http_getContext

ServerContext * http_getContext(HttpState * state);

DESCRIPTION

Return the current HTTP server context. The context pointer is required by many zserv-
er resource handler functions.

NOTE: This is implemented as a macro.

PARAMETER

state HTTP state pointer, as provided in the first parameter to the CGI
function.

RETURN VALUE

Pointer to the HTTP server's context structure. See zserver documentation.

LIBRARY

HTTP.LIB

SEE ALSO

http_getAction
222 TCP/IP User’s Manual

http_getData

char * http_getData(HttpState * state);

DESCRIPTION

Return a pointer to the data that is available. It is only valid to call this if the action code
is one of CGI_DATA, CGI_PROLOG, CGI_EPILOG, CGI_HEADER or CGI_EOF.

When CGI_DATA, this is the next chunk of data received as the content of the current
part of a multi-part transfer. The data arrives in arbitrary amounts. CRLF boundaries (if
any) are not respected, and the data may contain NULLs and other binary values. THE
CGI MUST CONSUME ALL DATA PROVIDED since the data will not be presented
again on the next call.

When CGI_PROLOG, this is data that occurs before the first boundary (part) but after
the main HTTP headers. This data (like that for CGI_DATA) is not line-oriented.

When CGI_EPILOG, CGI_HEADER or CGI_EOF, the data will be a complete line of
input (with the terminating CRLF stripped off). The returned string will also be null-
terminated. When CGI_EOF, the data (if any) is technically part of the epilog.

Prolog data is lines of input that were provided before the first "official" part of the
multi-part data. Most HTTP clients will not provide any prolog data. Epilog data is lines
of data after the last official part. Again, HTTP clients do not usually generate it. It is
always safe to ignore prolog and epilog data, since it is usually provided only for non-
MIME compliant servers.

Data provided when the action is CGI_HEADER is a line of header data provided at the
start of each part of the multi-part data. It is safe for the CGI to ignore header lines, since
the HTTP server also processes the ones that it needs. The CGI is given these header
lines so that it can extract useful or customized information if desired.

The length of the data may be obtained using http_getDataLength().

The CGI is allowed to overwrite data at the returned area, provided that it writes no
more than HTTP_MAXBUFFER bytes.

NOTE: This is implemented as a macro.

PARAMETER

state HTTP state pointer, as provided in the first parameter to the CGI
function.

RETURN VALUE

Pointer to the first character of data.

SEE ALSO

http_getAction
Chapter 4: HTTP Server 223

http_getDataLength

word http_getDataLength(HttpState * state);

DESCRIPTION

Return the length of data that is available. It is only valid to call this if it is valid to call
http_getData(). That is, if the action code is one of CGI_DATA, CGI_PROLOG,
CGI_EPILOG, CGI_HEADER or CGI_EOF.

NOTE: This is implemented as a macro.

PARAMETER

state HTTP state pointer, as provided in the first parameter to the CGI
function.

RETURN VALUE

Length of available data. This will range from 0 to HTTP_MAXBUFFER. 0 will only be
returned for PROLOG and EPILOG when a blank line is read.

LIBRARY

HTTP.LIB

SEE ALSO

http_getAction
224 TCP/IP User’s Manual

http_getField

char * http_getField(HttpState * state);

DESCRIPTION

Return the current form field name. This function should only be called when the action
code is CGI_START, CGI_DATA or CGI_END.

NOTE: This is implemented as a macro.

PARAMETER

state HTTP state pointer, as provided in the first parameter to the CGI
function.

RETURN VALUE

Null-terminated string containing the current field name. The field name is the name of
a form element, specified using, for example,

 <INPUT TYPE="TEXT" NAME="srv_file">

in the HTML, where srv_file is the field name.

If there was no "name=" parameter in the returned form data, this will be an empty
string (zero length, not NULL).

LIBRARY

HTTP.LIB

SEE ALSO

http_getAction
Chapter 4: HTTP Server 225

http_getHTTPMethod

char http_getHTTPMethod(HttpState * state);

DESCRIPTION

Return the HTTP request method of the current request protocol. The CGI might need
to look at this to generate the correct response headers.

NOTE: This is implemented as a macro.

PARAMETER

state HTTP state pointer, as provided in the first parameter to the CGI
function.

RETURN VALUE

One of the following codes:

• HTTP_METHOD_GET - "GET" i.e., normal retrieval, without making any per-
manent state update.

• HTTP_METHOD_POST - "POST" i.e., uploading some information to be stored,
or making some permanent state change. This is the normal method for invoking
CGIs.

• HTTP_METHOD_HEAD - "HEAD" i.e., the client only wants the headers, not
the actual content e.g. it might be trying to determine the most recent modifica-
tion date.

Other codes may be returned in the future.

LIBRARY

HTTP.LIB

SEE ALSO

http_getAction
226 TCP/IP User’s Manual

http_getHTTPVersion

char http_getHTTPVersion(HttpState * state);

DESCRIPTION

Return the HTTP version number of the current request protocol. The CGI might need
to look at this in order to generate the correct response headers.

NOTE: This is implemented as a macro.

PARAMETER

state HTTP state pointer, as provided in the first parameter to the CGI
function.

RETURN VALUE

One of the following codes:

• HTTP_VER_09 - version 0.9

• HTTP_VER_10 - version 1.0

• HTTP_VER_11 - version 1.1

Other codes may be returned in the future.

LIBRARY

HTTP.LIB

SEE ALSO

http_getAction
Chapter 4: HTTP Server 227

http_getRemainingLength

long http_getRemainingLength(HttpState * state);

DESCRIPTION

Return the remaining length of the incoming data stream. This length includes all parts
(not just the current part) and also includes the boundary separators and epilog data.
Normally, this value will be zero when the action code is CGI_EOF. If the value is neg-
ative, then the client might not have indicated the total data length, or might not have
set the right value.

NOTE: This is implemented as a macro.

PARAMETER

state HTTP state pointer, as provided in the first parameter to the CGI
function.

RETURN VALUE

Length of remaining data, or negative if not known.

LIBRARY

HTTP.LIB

SEE ALSO

http_getAction
228 TCP/IP User’s Manual

http_getSocket

tcp_Socket * http_getSocket(HttpState * state);

DESCRIPTION

Return the current HTTP server socket. The socket may be written/read; however, this
is inadvisable since it may interfere with the server's use of it.

NOTE: This is implemented as a macro.

PARAMETER

state HTTP state pointer, as provided in the first parameter to the CGI
function.

RETURN VALUE

Pointer to the HTTP server's TCP socket structure.

LIBRARY

HTTP.LIB

SEE ALSO

http_getAction
Chapter 4: HTTP Server 229

http_getState

int http_getState(HttpState * state);

DESCRIPTION

Return the current primary HTTP CGI state variable.

Use of this state variable is entirely up to the application; however, it is initialized by
the HTTP server to zero before calling the CGI for the first time.

NOTE: This is implemented as a macro.

PARAMETER

state HTTP state pointer, as provided in the first parameter to the CGI
function.

RETURN VALUE

Value of primary state variable.

LIBRARY

HTTP.LIB

SEE ALSO

http_getAction
230 TCP/IP User’s Manual

http_getTransferEncoding

char http_getTransferEncoding(HttpState * state);

DESCRIPTION

Return the current encoding of the data which is being provided by the client. This is
one of the following enumerated values:

• CTE_BINARY The default

• CTE_7BIT 7-bit safe ASCII

• CTE_8BIT 8-bit ASCII

• CTE_QP Quoted printable

• CTE_BASE64 Base 64

Of these, the CGI is only likely to see CTE_BINARY, since HTTP is an 8-bit protocol,
and most clients (browsers) will not bother to encode the data. Encoding is only an issue
for internet mail, which sometimes has to cross interfaces that do not support full 8-bit
binary transfers.

If the CGI detects a transfer encoding that requires non-null operation (that is, CTE_QP
or CTE_BASE64) then it should either reject the transfer, or decode the data as it
comes in.

It is only valid to call this when the action code is CGI_START, CGI_DATA or
CGI_END.

NOTE: This is implemented as a macro.

PARAMETER

state HTTP state pointer, as provided in the first parameter to the CGI
function.

RETURN VALUE

Transfer encoding code, as documented above.

LIBRARY

HTTP.LIB

SEE ALSO

http_getAction
Chapter 4: HTTP Server 231

http_getURL

char * http_getURL(HttpState * state);

DESCRIPTION

Return the URL of the current HTTP client request. In a CGI, this will usually be some-
thing like foo.cgi.

NOTE: This is implemented as a macro.

PARAMETER

state HTTP state pointer, as provided in the first parameter to the CGI
function.

RETURN VALUE

Null-terminated string containing the URL. Note that GET-style form parameters will
be stripped off: for example, the URL, foo.cgi?A=99&D=-45, will be returned as
foo.cgi.

The GET parameters are available using http_getCond().

LIBRARY

HTTP.LIB

SEE ALSO

http_getAction
232 TCP/IP User’s Manual

http_getUserState

void * http_getUserState(HttpState * state);

DESCRIPTION

Get the "user state" area of the HTTP server structure. This is an area of memory that
can be used by the CGI to keep track of its internal state, from call to call.

The size of this area is HTTP_USERDATA_SIZE. If that macro is not defined, it de-
faults to zero, so use of the http_getUserState macro will result in a compile-
time error.

NOTE: This is implemented as a macro.

Example:

typedef struct { ... } myCGIdata;
...
#define HTTP_USERDATA_SIZE sizeof(myCGIdata)
#use "http.lib"
...
int myCGI(HttpState * s) {

myCGIdata * d;
d = (myCGIdata *)http_getUserState(state);
...

}

PARAMETERS

state HTTP state pointer, as provided in the first parameter to the CGI
function.

RETURN VALUE

Returns the address of the first byte of the user area. This should be cast to the appro-
priate structure type.

LIBRARY

HTTP.LIB

SEE ALSO

http_getAction
Chapter 4: HTTP Server 233

http_handler

void http_handler(void);

DESCRIPTION

This is the basic control function for the HTTP server, a tick function to run the HTTP
daemon. It must be called periodically for the daemon to work. It parses the requests
and passes control to the other handlers, either html_handler, shtml_handler,
or to the developer-defined CGI handler based on the request’s extension.

LIBRARY

HTTP.LIB

SEE ALSO

http_init
234 TCP/IP User’s Manual

http_idle

int http_idle(void);

DESCRIPTION

Query to see if any HTTP servers are active.

 RETURN VALUE

0: at least one HTTP server is active
1: all HTTP servers are idle

LIBRARY

HTTP.LIB

SEE ALSO

http_handler
Chapter 4: HTTP Server 235

 http_init

int http_init(void);

DESCRIPTION

Initializes the HTTP daemon. This must be called after sock_init(), and before
calling http_handler() in a loop.

This sets the root directory to "/" and sets the default file name to index.html. You
can change these defaults by calling http_set_path() after this function.

You can override these defaults at compile-time by defining the macros

#define HTTP_HOMEDIR "/"
#define HTTP_DFLTFILE "index.html"

to be something other than these defaults. If you do this, then there is no need to invoke
the http_set_path() function.

RETURN VALUE

0: Success.

LIBRARY

HTTP.LIB

SEE ALSO

http_handler, http_shutdown, http_status, http_set_path
236 TCP/IP User’s Manual

http_nextfverr

void http_nextfverr(char *start, char **name, char **value,
int *error, char **next);

DESCRIPTION

Gets the information for the next variable in the HTML form error buffer. If any of the
last four parameters in the function call are NULL, then those parameters will not have
a value returned. This is useful if you are only interested in certain variable information.

PARAMETERS

start Pointer to the variable in the buffer for which we want to get infor-
mation.

name Return location for the name of the variable.

value Return location for the value of the variable.

error Return location for whether or not the variable is in error (0 if it is
not, 1 if it is).

next Return location for a pointer to the variable after this one.

RETURN VALUE

None, although information is returned in the last four parameters.

LIBRARY

HTTP.LIB
Chapter 4: HTTP Server 237

http_parseform

int http_parseform(int form, HttpState *state);

DESCRIPTION

Parses the returned form information. It expects a POST submission. This function is
useful for a developer who only wants the parsing functionality and wishes to generate
forms herself. Note that the developer must still build the array of FormVars and use
the server_spec table. This function will not, however, automatically display the
form when used by itself. If all variables satisfy all integrity checks, then the variables’
values are updated. If any variables fail, then none of the values are updated, and error
information is written into the error buffer If this function is used directly, the developer
must process errors.

PARAMETERS

form server_spec index of the form (i.e., location in TCP/IP serv-
ers’ object list).

state The HTTP server with which to parse the POSTed data.

RETURN VALUE

0: There is more processing to do;
1: Form processing has been completed.

LIBRARY

HTTP.LIB
238 TCP/IP User’s Manual

http_safe

int http_safe(char * to, char * from, int tolen, int fromlen);

DESCRIPTION

Convert a http-unsafe string in from (length fromlen) into a properly escaped
string. For example, the string "hello&goodbye<>" would be changed to
"hello&goodbye<>".

Returns non-zero if result could not fit in tolen-1 bytes. A null is always added, thus
tolen should account for this. Double quotes are escaped since the result may itself
be quoted.

Newline characters are turned into HTML line break "
" markup. Control charac-
ters (codes less than 32) are turned into "&#xx;" where "xx" is the hexadecimal control
char value. The source string can contain null character(s) which is why its length is
passed in the parameter fromlen.

PARAMETERS

to Destination buffer for escaped string

from Source buffer for string to convert

tolen Length of destination buffer (must be at least equal to fromlen,
since string is never smaller than source string).

fromlen Length of source buffer.

RETURN VALUE

0 on success
non-zero if resulting string (plus its null terminator) could not fit in the provided buffer.

LIBRARY

HTTP.LIB

SEE ALSO

http_handler
Chapter 4: HTTP Server 239

http_scanpost

int http_scanpost(char *tag, char *buffer, char *dest,
int maxlen);

DESCRIPTION

This function allows you to scan a buffer with a POST response for the key/value pairs.
This function is reentrant.

PARAMETERS

tag Buffer holding the tag name.

buffer Buffer to read data from.

dest Buffer to store value to.

maxlen Size of destination buffer.

RETURN VALUE

0: Successful
!0: Not successful

LIBRARY

HTTP.LIB
240 TCP/IP User’s Manual

http_set_anonymous

int http_set_anonymous(int uid);

DESCRIPTION

Set the “anonymous” user ID. This is the assumed user ID when no credentials are pro-
vided by the client (browser). A typical use of this function would be:

int anon;
anon = sauth_adduser("anonymous", "",

SERVER_FTP|SERVER_HTTP);
sauth_setusermask(uid, WORLD_GROUP, NULL);
http_set_anonymous(uid);
ftp_set_anonymous(uid); // if using FTP too

which defines an “anonymous” login for the HTTP and, optionally, the FTP servers.
(Since FTP also requires an anon user, you can use the same user ID for both FTP and
HTTP).

When a web browser initially requests a resource, it may not pass any user credentials
(i.e., user name and password). The HTTP server will assume that the user is anony-
mous, and apply the access permissions tests on that basis. If access is denied, then the
browser will prompt the user for a real user name and password, and the request will be
re-tried.

You do not always need to define an anonymous user to HTTP. But it is required if you
have some resource which is (say) protected for write access, but you want any user to
be able to retrieve the resource without requiring a user name/password.

NOTE: This function is non-reentrant. It sets a global variable which is accessed by all
HTTP server instances. For this reason, you should call this function once only before
starting to call http_handler().

PARAMETER

uid The userID to use as the anonymous user. This should have been
defined using sauth_adduser(). Pass -1 to set no anony-
mous user. In this case, only resources which are completely free
of any access controls will be accessible to users who do not pro-
vide credentials.

RETURN VALUE

Same as the uid parameter, except -1 if uid invalid.

LIBRARY

HTTP.LIB

SEE ALSO

sauth_adduser, ftp_set_anonymous, sauth_setusermask
Chapter 4: HTTP Server 241

http_setauthentication

int http_setauthentication(int auth);

DESCRIPTION

Sets the type of authentication to be used globally by the HTTP server. By default, this
is set to the strongest available type of authentication available (in order of weakest to
strongest: HTTP_NO_AUTH, HTTP_BASIC_AUTH, HTTP_DIGEST_AUTH. This
function returns the type of authentication that was actually configured. If the type of
authentication that you ask for was not compiled in at compile time, then the type of
authentication will not be changed.

NOTE: this function only sets the "default" authentication method for resources who
have their authentication method set to SERVER_AUTH_DEFAULT (or, none speci-
fied).

PARAMETERS

auth Type of authentication. Choices are:

• HTTP_NO_AUTH

• HTTP_BASIC_AUTH

• HTTP_DIGEST_AUTH

RETURN VALUE

Actual resulting type of authentication.

LIBRARY

HTTP.LIB
242 TCP/IP User’s Manual

http_setCond

int http_setCond(HttpState * state, int idx, int val);

DESCRIPTION

Set the value of an HTTP condition state variable (aka., cond variable). There are
HTTP_MAX_COND of these integer state variables, thus idx must be between 0 and
HTTP_MAX_COND-1, inclusive.

NOTE: This is implemented as a macro.

PARAMETERS

state HTTP state pointer, as provided in the first parameter to the CGI
function.

idx Index of cond variable: 0..HTTP_MAX_COND-1. Validity is not
checked.

val New value.

RETURN VALUE

Returns the new value of the cond variable, i.e., val.

LIBRARY

HTTP.LIB

SEE ALSO

http_getAction, http_getCond
Chapter 4: HTTP Server 243

http_setcookie

void http_setcookie(char *buf, char *value);

DESCRIPTION

This utility generates a cookie on the client. This will store the text in value into a
cookie-generation header that will be written to buf. The header placed in buf is not
automatically sent to the web client. It is the caller’s responsibility to send the header
in buf, along with any other HTTP headers, to the client.

When a page is requested from the client, and the cookie is already set, the text of the
cookie will be stored in state->cookie[]. This is a char*, and if no cookie was
available, state->cookie[0] will equal '\0'.

PARAMETERS

buf Buffer to store cookie-generation header, that is, the name of the
cookie.

value Text to store in cookie-generation header, that is, the value of the
cookie.

LIBRARY

HTTP.LIB
244 TCP/IP User’s Manual

http_set_path

int http_set_path(char * rootdir, char * dfltname);

DESCRIPTION

Set the default root directory and resource name for all HTTP server instances. In gen-
eral, this function should be called once only, after http_init() but before
http_handler().

The root directory is the base directory and is used as a prefix for all resource requests
from clients. For example, if the root directory is set to "/A/" then a client request for
http://<hostname>/foo.htm will look up the resource called /A/foo.htm
on this server.

The default resource name is used if the client's URL requests a directory. For example,
if dfltname is set to "index.htm" (and rootdir is "/A/") then a client request for
“http://<hostname>/admin" will look up the resource called "/A/admin". If that
resource is actually a directory, then it will look up a resource called
"/A/admin/index.htm". If it is not a directory, then the default name is not used.

PARAMETERS

rootdir Root directory name to use. This must be a null-terminated string
and MUST start and end with a forward slash (/) character. If this
function is not called, the root directory name is set to “/” by
http_init().

dfltname Default file name to use. This is appended to the directory part of
the URL, if the URL actually refers to a directory. If this function
is not called, the default file name is set to index.html by
http_init().

If this parameter is NULL, there will be no default name. A
request for a directory will generally return a 404 error (not found)
to the client. If it is not NULL, this parameter must be a null-
terminated string. It must not start or end with a “/” character.

RETURN VALUE

0: OK

-E2BIG: rootdir was too long. It should be limited to less than about 12 characters, but
you can increase the value of SSPEC_MAXNAME if necessary.

-EINVAL: rootdir was NULL, or did not start and end with a forward slash character.

LIBRARY

HTTP.LIB

SEE ALSO

http_handler, http_init
Chapter 4: HTTP Server 245

http_setState

int http_setState(HttpState * state, int val);

DESCRIPTION

Set the current primary HTTP CGI state variable.

Use of this state variable is entirely up to the application; however, it is initialized by
the HTTP server to zero before calling the CGI for the first time.

NOTE: This is implemented as a macro.

PARAMETER

state HTTP state pointer, as provided in the first parameter to the CGI
function.

val New value for the primary state variable.

RETURN VALUE

Returns the new value, that is, val.

LIBRARY

HTTP.LIB

SEE ALSO

http_getAction
246 TCP/IP User’s Manual

http_shutdown

 int http_shutdown(int graceful);

DESCRIPTION

Shut down the http daemon. Use http_init() to restart.

PARAMETER

If non-zero, current connections are allowed to terminate normally. Otherwise, any
open connections are reset.

RETURN VALUE

0

LIBRARY

HTTP.LIB

SEE ALSO

http_handler, http_init, http_status
Chapter 4: HTTP Server 247

http_skipCGI

int http_skipCGI(HttpState * state);

DESCRIPTION

Indicate to the HTTP server that the CGI has finished processing this part of a multi-
part data stream. The server reads (and discards) data from the stream until the next part
is found (or the epilog). When the next part is found, the server continues calling the
CGI function as before.

PARAMETERS

state HTTP state pointer, as provided in the first parameter to the CGI
function.

RETURN VALUE

0

LIBRARY

HTTP.LIB

SEE ALSO

http_getAction, http_abortCGI, http_switchCGI,
http_finishCGI, http_write
248 TCP/IP User’s Manual

http_sock_bytesready

int http_sock_bytesready(HttpState *state);

DESCRIPTION

HTTP wrapper function for sock_bytesready(). This function may be used by
CGI applications to determine if there is data waiting on the socket associated with a
particular HTTP server.

PARAMETERS

state HTTP state pointer, as provided in the first parameter to the CGI
function.

RETURN VALUE

-1: no bytes waiting to be read
0: in ASCII mode, a blank line is waiting to be read,

or, for UDP, an empty datagram is waiting to be read
>0: number of bytes waiting to be read

LIBRARY

HTTP.LIB
Chapter 4: HTTP Server 249

http_sock_fastread

int http_sock_fastread(HttpState *state, byte *dp, int len);

DESCRIPTION

HTTP wrapper function for sock_fastread(), that is for non-blocking reads
(root). This function can be used to read data from a socket associated with a particular
HTTP server. This function is intended for use in CGI applications.

PARAMETERS

state HTTP state pointer, as provided in the first parameter to the CGI
function.

dp Pointer to return buffer

len Maximum size of return buffer

RETURN VALUE

>0: the number of bytes read
-1: error

LIBRARY

HTTP.LIB
250 TCP/IP User’s Manual

http_sock_fastwrite

int http_sock_fastwrite(HttpState *state, byte *dp, int len);

DESCRIPTION

HTTP wrapper function for sock_fastwrite(), that is, for non-blocking writes.
This function can be used to write data from a root buffer to a socket associated with a
particular HTTP server. This function is intended for use in CGI applications.

PARAMETERS

state HTTP state pointer, as provided in the first parameter to the CGI
function.

dp Pointer to buffer containing data to be written.

len Maximum number of bytes to write to the socket.

RETURN VALUE

>0: the number of bytes written
-1: error

LIBRARY

HTTP.LIB
Chapter 4: HTTP Server 251

http_sock_gets

int http_sock_gets(HttpState *state, byte* dp, int len);

DESCRIPTION

HTTP wrapper function for sock_gets(). This function can be used by CGI appli-
cations to retrieve a string waiting on an ASCII-mode socket associated with a partic-
ular HTTP server.

PARAMETERS

state HTTP state pointer, as provided in the first parameter to the CGI
function.

dp Pointer to return buffer

len Maximum size of return buffer

RETURN VALUE

0: if buffer is empty, or
if no “\r” or “\n” is read, but buffer had room and
the connection can get more data!

>0: is the length of the string
-1: error

LIBRARY

HTTP.LIB

SEE ALSO

http_sock_mode
252 TCP/IP User’s Manual

http_sock_mode

void http_sock_mode(HttpState* state, http_sock_mode_t mode);

DESCRIPTION

HTTP socket wrapper function for socket mode. This function can be used by CGI ap-
plications to set the mode of a socket associated with a particular HTTP server.

PARAMETERS

state HTTP state pointer, as provided in the first parameter to the CGI
function.

mode HTTP mode to use for the socket. Valid values for mode are:

• HTTP_MODE_ASCII - Sets the associated socket to
ASCII mode.

• HTTP_MODE_BINARY - Sets the associated socket to
BINARY.

RETURN VALUE

None

LIBRARY

HTTP.LIB
Chapter 4: HTTP Server 253

http_sock_tbleft

long http_sock_tbleft(HttpState *state);

DESCRIPTION

HTTP wrapper function for sock_tbleft(). This function may be used by CGI ap-
plications to determine how much space is left in the HTTP socket's transmit buffer.

PARAMETERS

state HTTP state pointer, as provided in the first parameter to the CGI
function.

RETURN VALUE

Number of bytes of free space remaining in the transmit buffer.

LIBRARY

HTTP.LIB
254 TCP/IP User’s Manual

http_sock_write

int http_sock_write(HttpState *state, byte *dp, int len);

DESCRIPTION

HTTP wrapper function for blocking writes. This function can be used to write data
from a root buffer to a socket associated with a particular HTTP server. This function
is intended for use in CGI applications.

PARAMETERS

state HTTP state pointer, as provided in the first parameter to the CGI
function.

dp pointer to buffer containing data to be written

len maximum number of bytes to write to the socket

RETURN VALUE

Number of bytes of written or -1 if there was an error

LIBRARY

HTTP.LIB
Chapter 4: HTTP Server 255

http_sock_xfastread

int http_sock_xfastread(HttpState *state, long dp, long len);

DESCRIPTION

HTTP wrapper function for sock_fastxread(), that is, for non-blocking reads
(xmem). This function can be used to read data from a socket associated with a partic-
ular HTTP server. This function is intended for use in CGI applications.

PARAMETERS

state HTTP state pointer, as provided in the first parameter to the CGI
function.

dp Pointer to return xmem buffer.

len Maximum length of the return xmem buffer.

RETURN VALUE

Number of bytes of read or -1 if there was an error

LIBRARY

HTTP.LIB
256 TCP/IP User’s Manual

http_sock_xfastwrite

 int http_sock_xfastwrite(HttpState *state, long dp, long len);

DESCRIPTION

HTTP wrapper function for sock_xfastwrite(), that is for non-blocking writes.
This function can be used to write the contents of an xmem buffer to a socket associated
with a particular HTTP server.

PARAMETERS

state HTTP state pointer, as provided in the first parameter to the CGI
function.

dp Buffer containing data to be written, as an xmem address obtained
from, for example, xalloc().

len Maximum number of bytes to write to the socket.

RETURN VALUE

Number of bytes of written or -1 if there was an error

LIBRARY

HTTP.LIB
Chapter 4: HTTP Server 257

http_status

int http_status(void);

DESCRIPTION

Determine whether the HTTP server is allowing connections.

RETURN VALUE

0: server is currently disabled
non-zero: server is enabled.

LIBRARY

HTTP.LIB

SEE ALSO

http_handler, http_init, http_shutdown
258 TCP/IP User’s Manual

http_switchCGI

int http_switchCGI(HttpState * state, char * newURL);

DESCRIPTION

Tell the HTTP server to switch processing to a different CGI function or resource.

The CGI is responsible for generating the correct HTTP response header(s) using
http_write() etc. If this function is used to pass control to a different CGI, then
both CGIs must coordinate so that only one header is written. You can use the HTTP
state variable (http_setState() and http_getState()) and/or
http_getUserState() to achieve the necessary coordination.

If newURL refers to a file or SSI resource (not a CGI), then the CGI function must NOT
have already written the HTTP response header(s)—the headers will be generated
when the new resource is opened.

If newURL refers to a new-style CGI (that is, a CGI resource added using
SSPEC_CGI, not SSPEC_FUNCTION) then that CGI is presented with the remaining
content of the current request data stream.

If newURL refers to an old-style CGI (that is, a CGI added using SSPEC_FUNCTION
or HTTPSPEC_FUNCTION) then the HTTP server abandons parsing of the request
data stream, since old-style CGIs are expected to read the HTTP socket themselves.

Rather than calling http_switchCGI(), it is often more convenient to call
cgi_redirectto(), which tells the client to retrieve the next resource rather than
the resource being provided in the current connection. Using redirect is less efficient,
however.

PARAMETERS

state HTTP state pointer, as provided in the first parameter to the CGI
function.

newURL The resource name to present to the client. This may be another
CGI, or any other type of resource that could be presented to the
client in response to an HTTP GET or POST request. The resource
must exist in the flash- or ram-spec table, or in a filesystem.

RETURN VALUE

0

LIBRARY

HTTP.LIB

SEE ALSO

http_getAction, http_skipCGI, http_abortCGI, http_finishCGI,
http_write
Chapter 4: HTTP Server 259

http_urldecode

char *http_urldecode(char *dest, const char *src, int len);

DESCRIPTION

Converts a string with URL-escaped ''tokens'' (such as %20 (hex) for space) into actual
values. Changes "+" into a space. String can be NULL terminated; it is also bounded by
a specified string length. This function is reentrant.

PARAMETERS

dest Buffer where decoded string is stored.

src Buffer holding original string (not changed).

len Maximum size of string (NULL terminated strings can be shorter).

RETURN VALUE

dest: if all conversion was good.
NULL: if some conversion had trouble.

LIBRARY

HTTP.LIB

SEE ALSO

http_contentencode
260 TCP/IP User’s Manual

http_write

int http_write(HttpState * state, char * data, word length);

DESCRIPTION

Write data back to the client. This function either sends all of the given data or none of
it. If the data cannot be sent (for example, because the socket transmit buffer is already
full) then a special return code indicates that the CGI should try again on the next call.

Often, the CGI itself will not need to write anything to the client—the
http_switchCGI() function takes care of most needs. If this function is used,
then the CGI is responsible for generating the correct HTTP response (including head-
ers) and http_switchCGI() and similar functions should NOT be called.

Use of this function can often be avoided. Instead, the CGI can copy a string to the
pointer provided by http_getData(), then return CGI_SEND. This will cause the
server to send out the (null terminated) string in the buffer, and not call the CGI until
the string is sent to the client. See the source to http_defaultCGI() for an exam-
ple of this method.

PARAMETERS

state HTTP state pointer, as provided to the CGI function.

data Pointer to first char to transmit. It is OK to make this the same
pointer that was returned by http_getData(), since that buff-
er can be used for output as well as input. In any case, the CGI
must ensure that it has processed any incoming data before writing
new data to that buffer.

length Length of data to transmit. There is a limit to the amount of data
that http_write() can write on any given call. This limit is set
by the HTTP server socket transmit buffer size. This buffer size is
given by TCP_BUF_SIZE/2. The transmit buffer is usually at
least 1024 bytes. If you try exceeding that limit, http_write()
will never succeed.
Chapter 4: HTTP Server 261

RETURN VALUE

0: data written (or buffered) successfully.

CGI_MORE: data not written, try again on next call to the CGI. In general, the CGI
should pass this code (CGI_MORE) back to the HTTP server. When the server calls the
CGI next time, it will set the action code to CGI_CONTINUE which will be a cue to
the CGI to try retransmitting the previous data. When CGI_CONTINUE is provided,
the contents in the http_getData() buffer will not have been altered.

LIBRARY

HTTP.LIB

SEE ALSO

http_getAction, http_skipCGI, http_switchCGI, http_finishCGI,
http_abortCGI, http_defaultCGI
262 TCP/IP User’s Manual

shtml_addfunction

int shtml_addfunction(char *name, void (*fptr()));

DESCRIPTION

Adds a CGI/SSI-exec function for making dynamic web pages to the RAM resource ta-
ble.

PARAMETERS

name Name of the function (e.g., "/foo.cgi").

fptr Function pointer to the handler, that must take HttpState* as
an argument. This function should return an int (0 while still
pending, 1 when finished).

RETURN VALUE

0: Success;
1: Failure (no room).

LIBRARY

HTTP.LIB

SEE ALSO

shtml_delfunction
Chapter 4: HTTP Server 263

shtml_addvariable

int shtml_addvariable(char *name, void *variable, word type,
char *format);

DESCRIPTION

This function adds a variable so it can be recognized by shtml_handler().

PARAMETERS

name Name of the variable.

variable Pointer to the variable.

type Type of variable. The following types are supported: INT8,
INT16, INT32, PTR16, FLOAT32.

format Standard printf format string. (e.g., "%d").

RETURN VALUE

0: Success.
1: Failure (no room).

LIBRARY

HTTP.LIB

SEE ALSO

shtml_delvariable
264 TCP/IP User’s Manual

shtml_delfunction

int shtml_delfunction(char *name);

DESCRIPTION

Deletes a function from the RAM resource table.

PARAMETERS

name Name of the function as given to shtml_addfunction().

RETURN VALUE

0: Success;
1: Failure (not found).

LIBRARY

HTTP.LIB

SEE ALSO

shtml_addfunction
Chapter 4: HTTP Server 265

shtml_delvariable

int shtml_delvariable(char *name);

DESCRIPTION

Deletes a variable from the RAM resource table.

PARAMETERS

name Name of the variable, as given to shtml_addvariable().

RETURN VALUE

0: Success;
1: Failure (not found).

LIBRARY

HTTP.LIB

SEE ALSO

shtml_addvariable
266 TCP/IP User’s Manual

5. FTP Client

The library FTP_CLIENT.LIB implements the File Transfer Protocol (FTP) for the client side
of the connection.

This library supports a single FTP session at any one time since the session state is maintained in a
single global structure in root memory.

You can upload and download files to either a static buffer in root data memory (for simple appli-
cations) or, starting with Dynamic C version 7.20, you can have the data passed to, or generated
by, a data handler callback function that you specify. The data handler function can implement
large file transfers in extended memory buffers, or it can be used to generate or process data on-
the-fly with minimal buffering.

Starting with Dynamic C 7.20, you can specify “passive” mode transfers. This is most important
for clients which are inside a firewall. Passive mode is specified by passing the
FTP_MODE_PASSIVE option to ftp_client_setup(). When passive mode is specified,
the client will actively open the data transfer port to the server, rather than the other way around.
This avoids the need for the server to penetrate the firewall with an active connection from the out-
side, which is most often blocked by the firewall. For this reason, it is recommended that your FTP
client application uses passive mode by default, unless overridden by an end-user.

5.1 Configuration Macros
The following macros may be defined in a #define statement before the inclusion of
FTP_CLIENT.LIB in an application program. Note that strings must contain the NULL byte, so
if a maximum string length is 16, the maximum number of characters is 15.

FTP_MAX_DIRLEN

The default is 64, which is the maximum string length of a directory name.

FTP_MAX_FNLEN

The default is 16, which is the maximum string length of a file name.

FTP_MAX_NAMELEN

The default is 16 which is the maximum string length of usernames and passwords.

FTP_MAXLINE

The default is 256, which is both the maximum command line length and data chunk
size that can be passed between the FTP data transfer socket and the data handler (if
any defined).

FTP_TIMEOUT

The default is 16, which is the number of seconds that pass before a time out occurs.
Chapter 5: FTP Client 267

5.2 API Functions

ftp_client_setup

int ftp_client_setup(long host, int port, char *username, char
*password, int mode, char *filename, char *dir, char
*buffer, int length);

DESCRIPTION

Sets up a FTP transfer. It is called first, then ftp_client_tick() is called until it
returns non-zero. Failure can occur if the host address is zero, if length is negative,
or if the internal control socket to the FTP server cannot be opened (e.g., because of
lack of socket buffers).

PARAMETERS

host Host IP address of FTP server.

port Port of FTP server, 0 for default.

username Username of account on FTP server.

password Password of account on FTP server.

mode Mode of transfer: FTP_MODE_UPLOAD or
FTP_MODE_DOWNLOAD. You may also OR in the value
FTP_MODE_PASSIVE to use passive mode transfer (important
if you are behind a firewall).

filename Filename to get/put.

dir Directory file is in, NULL for default directory.

buffer Buffer to get/put the file from/to. Must be NULL if a data handler
function will be used. See ftp_data_handler() for more
details.

length On upload, length of file; on download size of buffer. This pa-
rameter limits the transfer size to a maximum of 32767 bytes. For
larger transfers, it will be necessary to use a data handler func-
tion.

RETURN VALUE

0: Success.
1: Failure.

LIBRARY

FTP_CLIENT.LIB

SEE ALSO

ftp_client_tick, ftp_data_handler
268 TCP/IP User’s Manual

ftp_client_tick

int ftp_client_tick(void);

DESCRIPTION

Tick function to run the FTP daemon. Must be called periodically. The return codes
are not very specific. You can call ftp_last_code() to get the integer value of
the last FTP message received from the server. See RFC959 for details. For example,
code 530 means that the client was not logged in to the server.

RETURN VALUE

FTPC_AGAIN (0): still pending, call again.
FTPC_OK (1): success (file transfer complete).
FTPC_ERROR (2): failure (call ftp_last_code() for more details).
FTPC_NOHOST (3): failure (Couldn't connect to remote host).
FTPC_NOBUF (4): failure (no buffer or data handler).
FTPC_TIMEOUT (5): warning (Timed out on close: data may or may not be OK).
FTPC_DHERROR (6): error (Data handler error in FTPDH_END operation).
FTPC_CANCELLED (7): FTP control socket was aborted (reset) by the server.

LIBRARY

FTP_CLIENT.LIB

SEE ALSO

ftp_client_setup, ftp_client_filesize, ftp_client_xfer,
ftp_last_code
Chapter 5: FTP Client 269

ftp_client_filesize

int ftp_client_filesize(void);

DESCRIPTION

Returns the byte count of data transferred. This function is deprecated in favor of
ftp_client_xfer(), which returns a long value.

If the number of bytes transferred was over 32767, then this function returns 32767
which may be misleading.

RETURN VALUE

Size, in bytes.

LIBRARY

FTP_CLIENT.LIB

SEE ALSO

ftp_client_setup, ftp_data_handler, ftp_client_xfer
270 TCP/IP User’s Manual

ftp_client_xfer

longword ftp_client_xfer(void);

DESCRIPTION

Returns the byte count of data transferred. Transfers of over 232 bytes (about 4GB) are
not reported correctly.

RETURN VALUE

Size, in bytes.

LIBRARY

FTP_CLIENT.LIB

SEE ALSO

ftp_client_setup, ftp_data_handler, ftp_client_filesize
Chapter 5: FTP Client 271

ftp_data_handler

void ftp_data_handler(int (*dhnd)(), void *dhnd_data,
word opts);

DESCRIPTION

Sets a data handler for further FTP data transfer(s). This handler is only used if the
"buffer" parameter to ftp_client_setup() is passed as NULL.

The handler is a function which must be coded according to the following prototype:

int my_handler(char *data, int len, longword offset, int
flags, void *dhnd_data);

This function is called with data pointing to a data buffer, and len containing the
length of that buffer. offset is the byte number relative to the first byte of the entire
FTP stream. This is useful for data handler functions that do not wish to keep track of
the current state of the data source. dhnd_data is the pointer that was passed to
ftp_data_handler().

flags contains an indicator of the current operation:

• FTPDH_IN: data is to be stored on this host (obtained from an FTP download).

• FTPDH_OUT: data is to be filled with the next data to upload to the FTP server.

• FTPDH_END: data and len are irrelevant: this marks the end of data, and gives the
function an opportunity to e.g., close the file. Called after either in or out process-
ing.

• FTPDH_ABORT: end of data; error encountered during FTP operation. Similar to
END except the transfer did not complete. Can use this to e.g., delete a partially
written file.

The return value from this function depends on the in/out flag. For FTPDH_IN, the
function should return len if the data was processed successfully and download
should continue; -1 if an error has occurred and the transfer should be aborted. For
FTPDH_OUT, the function should return the actual number of bytes placed in the data
buffer, or -1 to abort. If zero is returned, then the upload is terminated normally. For
FTPDH_END, the return code should be zero for success or -1 for error. If an error is
flagged, then this is used as the return code for ftp_client_tick(). For
FTPDH_ABORT, the return code is ignored.
272 TCP/IP User’s Manual

ftp_data_handler (continued)

PARAMETERS

dhnd Pointer to data handler function, or NULL to remove the current
data handler.

dhnd_data A pointer which is passed to the data handler function. This may
be used to point to any further data required by the data handler
such as an open file descriptor.

opts Options word (currently reserved, set to zero).

LIBRARY

FTP_CLIENT.LIB

SEE ALSO

ftp_client_setup
Chapter 5: FTP Client 273

ftp_last_code

int ftp_last_code(void);

DESCRIPTION

Returns the most recent message code sent by the FTP server. RFC959 describes the
codes in detail. This function is most useful for error diagnosis in the case that an FTP
transfer failed.

RETURN VALUE

Error code; a number between 0 and 999. Codes less than 100 indicate that an internal
error occurred e.g., the server was never contacted.

LIBRARY

FTP_CLIENT.LIB

SEE ALSO

 ftp_client_setup, ftp_client_tick
274 TCP/IP User’s Manual

5.3 Sample FTP Transfer
Program Name: Samples\tcpip\ftp\ftp_client.c

//#define MY_IP_ADDRESS "10.10.6.105"
//#define MY_NETMASK "255.255.255.0"

#define TCPCONFIG 1

#memmap xmem
#use "dcrtcp.lib"
#use "ftp_client.lib"

#define REMOTE_HOST "10.10.6.19"
#define REMOTE_PORT 0

main() {

char buf[2048];

int ret, i, j;

printf("Calling sock_init()...\n");

sock_init();

/* Set up the ftp transfer. This is to the host defined above, with a normal
 * anonymous/e-mail password login info. A get of the file bar is requested, which
 * will be stored in buf.*/

printf("Calling ftp_client_setup()...\n");

if(ftp_client_setup(resolve(REMOTE_HOST), REMOTE_PORT,
“anonymous", "anon@anon.com", FTP_MODE_DOWNLOAD,"bar",
 NULL, buf,sizeof(buf)))

{
printf("FTP setup failed.\n");
exit(0);

}
printf("Looping on ftp_client_tick()...\n");
while(0 == (ret = ftp_client_tick()))

continue;

if(1 == ret) {
printf("FTP completed successfully.\n");

 // ftp_client_filesize() returns transfer size,since we asked for download.
buf[ftp_client_filesize()] = '\0';

printf("Data => '%s'\n", buf);
}

else {
printf("FTP failed: status == %d\n",ret);

}
}

Chapter 5: FTP Client 275

276 TCP/IP User’s Manual

6. FTP Server

This chapter documents the FTP server. The following information is included:

• configuration macros

• the default file handlers

• how to assign replacement file handlers

• what to do when there is a firewall

• API functions

• commands accepted by the server

• reply codes generated by the server

• sample code demonstrating a working FTP server

The library FTP_SERVER.LIB implements the File Transfer Protocol for the server side of a
connection. FTP uses two TCP connections to transfer a file. The FTP server does a passive open
on well-known port 21 and then listens for a client. This is the command connection. The server
receives commands through this port and sends reply codes. The second TCP connection is for the
actual data transfer.

Anonymous FTP is supported. Most FTP servers on the Internet use the identifier “anonymous.”
So since FTP clients expect it, this is the identifier that is recommended. But any string (with a
maximum length of HTTP_NO_FLASHSPEC SSPEC_NO_STATIC) may be used.

Dynamic C 8 includes some enhancements that basically let the FTP server act as a full FTP
server, where you can create, read and delete files at will. To use these enhancements, the configu-
ration macro FTP_USE_FS2_HANDLERS must be defined to enable FS2 support in the default
file handler functions. The structure that holds the association of filenames and FS2 file locations
is the server spec list—the global array defined in zserver.lib. It is stored in the User block
and the API functions ftp_save_filenames() and ftp_load_filenames() are used
for support of this.

NOTE: For a demonstration of the enhanced FTP server, see the sample program,
/SAMPLES/TCPIP/FTP/FTP_SERVER_FULL.C.
Chapter 6: FTP Server 277

6.1 Configuration Macros
The configuration macros control various conditions of the server’s operation. Read through them
to understand the default conditions. Any changes to these macros may be made in the server
application with #define statements before inclusion of FTPSERVER.LIB.

FTP_CMDPORT

This macro defaults to 21 which is the well-known FTP server port number. You can
override this to cause the server to listen on a non-standard port number.

FTP_CREATE_MASK

This macro specifies the mask that is passed into the servermask parameter in
sspec_addfsfile() calls when a new file is created. In particular, this defines
which servers will be allowed to access this file. By default, it is defined to
SERVER_FTP | SERVER_WRITABLE .

FTP_DTPTIMEOUT

The default is 16, the same as FTP_TIMEOUT. This applies to the data transfer port
instead of the command port. The data transfer port is involved with get/store com-
mands, as well as directory listings.

FTP_EXTENSIONS

The macro is not defined by default. Define it to allow the server to recognize the
DELE, SIZE and MDTM commands. If this macro is defined, then the FTP handler
structure (FTPhandlers) is augmented with pointers to mdtm and delete handlers.

FTP_INTERFACE

This macro defaults to IF_DEFAULT, i.e., the (single) default interface. Define to
IF_ANY if FTP sessions can be accepted on any active interface, or a specific interface
number (e.g., IF_ETH0) to allow sessions on that interface only. Note that you are cur-
rently limited to a single interface, or all interfaces. This macro is only relevant starting
with Dynamic C version 7.30.

FTP_MAXLINE

The default is 256: the number of bytes of the working buffer in each server. This is
also the maximum size of each network read/write. The default value of 256 is the min-
imum value that allows the server to function properly.

FTP_MAXSERVERS

The default is 1: the number of simultaneous connections the FTP server can support.
Each server requires a significant amount of RAM (4096 bytes by default, though this
can change through SOCK_BUF_SIZE or tcp_MaxBufSize (deprecated)).

FTP_NODEFAULTHANDLERS

This macro is undefined. Define it to eliminate the code for the default file handlers.
You must then provide your own file handlers. This macro is no longer needed starting
with Dynamic C version 7.20.
278 TCP/IP User’s Manual

FTP_TIMEOUT

The default is 16: the number of seconds to wait for FTP commands from the remote
host before terminating the connection. In a high-latency network this value may need
to be increased to avoid premature closures.

FTP_USE_FS2_HANDLERS

Define this to enable the full use of FS2 in the default FTP handler functions. Defining
this macro will automatically define FTP_WRITABLE_FILES to 1, as well.

FTP_USERBLOCK_OFFSET

This macro should be defined to a number that specifies the offset into the User block
at which the list of filenames will be saved. This list correlates the filenames with the
locations of the files in the filesystem (FS2). This macro defaults to 0. If the user is
putting other information in the User block, this offset may need to be adjusted to pre-
vent clobbering the other data.

FTP_WRITABLE_FILES

The defaults is 0. Define to 1 to provide support in ftp_dflt_open() for authen-
ticating a user for write access before a file is opened. This also provides support in the
file listing function, ftp_dflt_list(), to show the write permission for writable
files.

NOTE: The user will need to override both the write and close default file handlers to
provide full support for writing a file.

SSPEC_NO_STATIC

This macro must be defined in any FTP server application compiled with
Dynamic C 8.50 or later.
Chapter 6: FTP Server 279

6.2 File Handlers
Default file handlers are provided. The defaults access the server spec list, which is set up using
sspec_addxmemfile(), sauth_adduser() etc. The default file handlers are used when
NULL is passed to the initialization function ftp_init().

6.2.1 Replacing the Default Handlers
The FTPhandlers structure contains function pointers to the file handlers. This structure may
be passed to ftp_init() to selectively replace the default file handlers. You may provide a
NULL pointer for handlers that you do not wish to override. If you have defined
FTP_EXTENSIONS then there are an additional two function pointers that should be initialized.

typedef struct {
int (*open)();
int (*read)();
int (*write)();
int (*close)();
long (*getfilesize)();
int (*dirlist)();
int (*cd)();
int (*pwd)();

#ifdef FTP_EXTENSIONS
long (*mdtm)();
int (*delete)();

#endif
} FTPhandlers;

Starting with Dynamic C 7.30, all FTP server instances share the same set of data handlers. Before
this release, there was a separate copy of the handler pointers for each instance of the server. This
change does not affect your existing application except to slightly reduce memory usage. This
change does add flexibility because it gives any file handler the ability to call any other file
handler. In particular, ftp_dflt_list() may now call ftp_dflt_getfilesize() to
get the file’s size

6.2.2 File Handlers Specification
Function descriptions for the default handlers are detailed in this section. Additional information is
provided in these descriptions when the default handler does not cover the entire function specifi-
cation.

The default file handlers are in FTPSERVER.LIB.
280 TCP/IP User’s Manual

ftp_dflt_open

int ftp_dflt_open(char *name, int options, int uid, int cwd);

DESCRIPTION

Opens a file. If a file is successfully opened, the returned value is passed to subsequent
handler routines to identify the particular file or resource, as the 'fd' parameter. If nec-
essary, you can use this number to index an array of any other state information needed
to communicate with the other handlers. The number returned should be unique with
respect to all other open resource instances, so that your handler does not get confused
if multiple FTP data transfers are active simultaneously.

Note that the specified file to open may be an absolute or relative path: if the handler
supports the concept of directories, then it should handle the path name appropriately
and not just assume that the file is in the current directory. If the filename is relative,
then the cwd parameter indicates the current directory.

PARAMETERS

name The file to open.

options File access options:

O_RDONLY (marks file as read-only).
O_WRONLY (not currently supported by the default handler).
O_RDWR (not used since it’s not supported by the FTP protocol).

uid The userid of the currently logged-in user.

cwd Current directory (not currently supported by the default handler).

RETURN VALUE

≥0: File descriptor of the opened file.
FTP_ERR_NOTFOUND: File not found.
FTP_ERR_NOTAUTH: Unauthorized user.
FTP_ERR_BADMODE: Requested option (2nd parameter) is not supported.
FTP_ERR_UNAVAIL: Resource temporarily unavailable.

In the first case, the returned value is passed to subsequent handler routines to identify
the particular file or resource, as the 'fd' parameter. If necessary, you can use this num-
ber to index an array of any other state information needed to communicate with the
other handlers. The number returned should be unique with respect to all other open
resource instances, so that your handler does not get confused if multiple FTP data
transfers are active simultaneously. Note that the given file name may be an absolute
or relative path: if the handler supports the concept of directories, then it should handle
the path name as appropriate and not just assume that the file is in the current directory.
If the filename is "relative," then the cwd parameter indicates the current directory.
Chapter 6: FTP Server 281

ftp_dflt_getfilesize

long ftp_dflt_getfilesize(int fd);

DESCRIPTION

Return the length of the specified file. This is called immediately after open for a read
file. If the file is of a known constant length, the correct length should be returned. If
the resource length is not known (perhaps it is generated on-the-fly) then return -1. For
write operations, the maximum permissible length should be returned, or -1 if not
known.

PARAMETERS

fd The file descriptor returned when the file was opened.

RETURN VALUE

≥0: The size of the file in bytes.
-1: The length of the file is not known.
282 TCP/IP User’s Manual

ftp_dflt_read

int ftp_dflt_read(int fd, char *buf, long offset, int len);

DESCRIPTION

Read file identified by fd. The file contents at the specified offset should be stored into
buf, up to a maximum length of len. The return value should be the actual number of
bytes transferred, which may be less than len. If the return value is zero, this indicates
normal end-of-file. If the return value is negative, then the transfer is aborted. Each suc-
cessive call to this handler will have an increasing offset. If the getfilesize handler re-
turns a non-negative length, then the read handler will only be called for data up to that
length — there is no need for such read handlers to check for EOF since the server will
assume that only the specified amount of data is available.

The return value can also be greater than len. This is interpreted as "I have not put any-
thing in buf. Call me back when you (the server) can accept at least len bytes of da-
ta." This is useful for read handlers that find it inconvenient to retrieve data from
arbitrary offsets, for example a log reader that can only access whole log records. If the
returned value is greater than the server can ever offer, then the server aborts the data
transfer. The handler should never ask for more than FTP_MAXLINE bytes.

PARAMETERS

fd The file descriptor returned when the file was opened.

buf Pointer to the buffer to place the file contents.

offset Offset in the file at which copying should begin.

len The number of bytes to read.

RETURN VALUE

0: EOF.
>0: The number of bytes read into buf.
-1: Error, transfer aborted.
Chapter 6: FTP Server 283

ftp_dflt_write

int ftp_dflt_write(int fd, char *buf, long offset, int len);

DESCRIPTION

The default write handler does nothing but return zero.

The specification states that the handler may write the file identified by fd. buf con-
tains data of length len, which is to be written to the file at the given offset within the
file. The return value must be equal to len, or a negative number if an error occurs
(such as out of space).

The FTP server does not handle partial writes: the given data must be completely writ-
ten or not at all. If the return code is less than len, an error is assumed to have occurred.
Note that it is up to the handler to ensure that another FTP server is not accessing a file
which is opened for write. The open call for the other server should return
FTP_ERR_UNAVAIL if the current server is writing to a file.

PARAMETERS

fd The file descriptor returned when the file was opened.

buf Pointer to the data to be written.

offset Offset in the file at which to start.

len The number of bytes to write.

RETURN VALUE

 ≥0: The number of bytes written. If this is less than len, an error occurred.
-1: Error.
284 TCP/IP User’s Manual

ftp_dflt_close

int ftp_dflt_close(int fd);

DESCRIPTION

The default close handler does nothing but return zero.

The handler may close the specified file and free up any temporary resources associated
with the transfer.

PARAMETERS

fd The file descriptor returned when the file was opened.

RETURN VALUE

0

Chapter 6: FTP Server 285

ftp_dflt_list

int ftp_dflt_list(int item, char *line, int listing, int uid,
int cwd);

DESCRIPTION

Returns the next file for the FTP server to list. The file name is formatted as a string.

PARAMETERS

item Index number starting at zero for the first function call. Subsequent
calls should be one plus the return value from the previous call.

line Pointer to location to put the formatted string.

listing Boolean variable to control string form:

0: print file name, permissions, date, etc.
1: print file name only.

uid The currently logged-in user.

cwd The current working directory.

RETURN VALUE

≥0: File descriptor for last file listed.
-1: Error.
286 TCP/IP User’s Manual

ftp_dflt_cd

int ftp_dflt_cd(int cwd, char *dir, int uid);

DESCRIPTION

Change to new "directory." This is called when the client issues a CWD command. The
FTP server itself has no concept of what a directory is —this is meaningful only to the
handler.

PARAMETERS

cwd Integer representing the current directory.

dir String that indicates the new directory that will become the current
directory. The interpretation of this string is entirely up to the han-
dler. The dir string will be passed as ".." to move up one level.

uid The currently logged-in user.

RETURN VALUE

0: No such directory exists.
-1: Root directory.
>0: Anything that is meaningful to the handler.
Chapter 6: FTP Server 287

ftp_dflt_pwd

int ftp_dflt_pwd(int cwd, char *buf);

DESCRIPTION

Print the current directory, passed as cwd, as a string. The result is placed in buf,
whose length may be assumed to be at least (FTP_MAXLINE-6). The return value is
ignored.

PARAMETERS

cwd The current directory.

buf Pointer to buffer to put the string.

RETURN VALUE

The return value is ignored.
288 TCP/IP User’s Manual

ftp_dflt_mdtm

unsigned long ftp_dflt_mdtm(int fd);

DESCRIPTION

This handler function is called when the server receives the FTP command MDTM. The
return value of this handler function is the number of seconds that have passed since
January 1, 1980. A return value of zero will cause the reply code 213 followed by a
space and then the value 19800101000000 (yyyymmddhhmmss) to be sent by the serv-
er.

The FTP server assumes that this return value is in UTC (Coordinated Universal Time).
If SEC_TIMER is running in local time, the handler should make the necessary time
zone adjustment so that the return value is expressed in UTC.

The handler is only recognized if FTP_EXTENSIONS is defined.

PARAMETERS

fd File descriptor for the currently opened file.

RETURN VALUE

The number of seconds that have passed since January 1, 1980. The default handler al-
ways returns zero. The number of seconds will be converted to a date and time value
of the form yyyymmddhhmmss.
Chapter 6: FTP Server 289

ftp_dflt_delete

int ftp_dflt_delete(char *name, int uid, int cwd);

DESCRIPTION

The default handler does not support the delete command. It simply returns the error
code for an unauthorized user.

The delete handler is only recognized by the server if FTP_EXTENSIONS is defined.
It is called when the DELE command is received. The given file name (possibly relative
to cwd) should be deleted.

PARAMETERS

name Pointer to the name of a file.

uid The currently logged-in user.

cwd The current directory.

RETURN VALUE

0: File was successfully deleted .
FTP_ERR_NOTFOUND: File not found.
FTP_ERR_NOTAUTH: Unauthorized user.
FTP_ERR_BADMODE: Requested option (2nd parameter) is not supported.
FTP_ERR_UNAVAIL: Resource temporarily unavailable.
290 TCP/IP User’s Manual

6.3 API Functions
The API functions described here, initialize and run the FTP server.

ftp_dflt_is_auth

int ftp_dflt_is_auth(int spec, int options, int uid);

DESCRIPTION

Determine amount of access to a file. If the FTP anonymous user has been set, then also
checks that. "options" is how to access the file. Currently, this value is ignored. If the
anonymous user ID has been set, then files it owns are globally accessible.

Returns whether the user can access it ("owner permission") or if access is because
there is an anonymous user ("world permission").

NOTE: This routine only determines accessibility of a name, not whether the user can
read and/or write the contents.

PARAMETERS

spec Handle to SSPEC file (item).

options How to access O_RDONLY, O_WRONLY or O_RDWR. Currently
this value is ignored.

uid The userID to access as.

RETURN VALUE

0: No access.
1: uid only access.
2: anonymous access (user "anonymous" has been set).

SEE ALSO

sspec_checkaccess
Chapter 6: FTP Server 291

ftp_init

void ftp_init(FTPhandlers *handlers);

DESCRIPTION

Initializes the FTP server. You can optionally specify a set of handlers for controlling
what the server presents to the client. This is done with function pointers in the
FTPhandlers structure. All FTP server instances share the same list of handlers.

The FTPhandlers structure is defined as:

typedef struct {
int (*open)(char *name, int options, int uid, int cwd);
int (*read)(int fd, char *buf, long offset, int len);
int (*write)(int fd, char *buf, long offset, int len);
int (*close)(int fd);
long (*getfilesize)(int fd);

int (*dirlist)(int item, char *line, int listing, int
uid, int cwd);

int (*cd)(int cwd, char *dir, int uid);
int (*pwd)(int cwd, char *buf);
[long (*mdtm)(int fd);]
[int (*delete)(char *name, int uid, int cwd);]

} FTPhandlers;

If you always provide all your own handlers, then you can define
FTP_NODEFAULTHANDLER to eliminate the code for the default handlers. The han-
dlers must be written to the specification described in Section 6.2.2. To use a default
handler, leave the field NULL. If you pass a NULL handlers pointer, then the all default
handlers will be used.

The defaults access the server spec list which is set up using the zserver functions
sspec_addxmemfile(), sauth_adduser() etc.

PARAMETERS

handlers NULL means use default internal file handlers. Otherwise, you
must supply a struct of pointers to the various file handlers (open,
read, write, close, getfilesize, list). To not override a particular
handler, leave it NULL in the structure.

LIBRARY

FTP_SERVER.LIB

SEE ALSO

ftp_tick
292 TCP/IP User’s Manual

ftp_load_filenames

int ftp_load_filenames(void)

DESCRIPTION

This function is used in conjunction with the FTP_USE_FS2_HANDLERS macro. It
loads the data structure (i.e., the server spec list) that keeps track of the association of
filenames to file locations in the file system. The information is loaded from the User
block, from the offset given in FTP_USERBLOCK_OFFSET.

The function removes any entries from the server spec list that are not FS2 files.

RETURN VALUE

0: Success
-1: Failure (possibly due to the filenames having not yet been saved)

SEE ALSO

ftp_save_filenames
Chapter 6: FTP Server 293

ftp_save_filenames

int ftp_save_filenames(void);

DESCRIPTION

This function is used in conjunction with the FTP_USE_FS2_HANDLERS macro.
This function saves the data structure (i.e., the server spec list) that keeps track of the
association of filenames to file locations in the file system. The information is saved to
the User block, at the offset given in FTP_USERBLOCK_OFFSET.

RETURN VALUE

0: Success.
-1: Failure, the information could not be saved (due to a write error).

SEE ALSO

ftp_load_filenames
294 TCP/IP User’s Manual

ftp_set_anonymous

int ftp_set_anonymous(int uid);

DESCRIPTION

Set the "anonymous" user ID. Resources belonging to this userID may be accessed by
any user. A typical use of this function would be

ftp_set_anonymous (sauth_adduser("anonymous", "",
SERVER_FTP));

which defines an "anonymous" login for the FTP server. This only applies to the FTP
server. The username "anonymous" is recommended, since most FTP clients use this
for hosts that have no account for the user.

PARAMETER

uid The user ID to use as the anonymous user. This should have been
defined using sauth_adduser(). Pass -1 to set no
anonymous user.

RETURN VALUE

Same as the uid parameter, except -1 if uid is invalid.

LIBRARY

FTP_SERVER.LIB

SEE ALSO

sauth_adduser
Chapter 6: FTP Server 295

ftp_shutdown

void ftp_shutdown(int bGraceful);

DESCRIPTION

Close and cancel all FTP connections. If the server is connected to a client, forces the
QUIT state. If the application has called tcp_reserveport(), then it must call
tcp_clearreserve(). For a graceful shutdown, the application must call
tcp_tick() a few more times.

After the FTP sockets close, the application must call ftp_init() to again start the
server running.

PARAMETER

bGraceful (boolean) zero to immediately abort all open connections, or non-
zero to simulate the QUIT command.

RETURN VALUE

None

LIBRARY

FTP_SERVER.LIB

SEE ALSO

ftp_init
296 TCP/IP User’s Manual

ftp_tick

void ftp_tick(void);

DESCRIPTION

Once ftp_init() has been called, ftp_tick() must be called periodically to
run the server. This function is non-blocking.

LIBRARY

FTP_SERVER.LIB

SEE ALSO

ftp_init
Chapter 6: FTP Server 297

6.4 Sample FTP Server
This code demonstrates a simple FTP server, using the ftp library. The user "anonymous" may
download the file "rabbitA.gif," but not "rabbitF.gif." The user "foo" (with password "bar") may
download "rabbitF.gif," but also "rabbitA.gif," since files owned by the anonymous user are
world-readable.

File Name: Samples\tcpip\ftp_server.c

#define TCPCONFIG 101
#define SSPEC_NO_STATIC //Required for DC 8.50 or later

#memmap xmem
#use "dcrtcp.lib"
#use "ftp_server.lib"

#ximport "samples/tcpip/http/pages/rabbit1.gif" rabbit1_gif

main(){
int file, user;

/* Set up the first file and user */

file = sspec_addxmemfile("rabbitA.gif", rabbit1_gif,
SERVER_FTP);

user = sauth_adduser("anonymous", "", SERVER_FTP);
ftp_set_anonymous(user);
sspec_setuser(file, user);

sspec_setuser(sspec_addxmemfile("test1", rabbit1_gif,
SERVER_FTP), user);

sspec_setuser(sspec_addxmemfile("test2", rabbit1_gif,
SERVER_FTP), user);

/* Set up the second file and user */

file = sspec_addxmemfile("rabbitF.gif", rabbit1_gif,
SERVER_FTP);

user = sauth_adduser("foo", "bar", SERVER_FTP);
sspec_setuser(file, user);

sspec_setuser(sspec_addxmemfile("test3", rabbit1_gif,
SERVER_FTP), user);

sspec_setuser(sspec_addxmemfile("test4", rabbit1_gif,
SERVER_FTP), user);

sock_init();
ftp_init(NULL); // use default handlers
tcp_reserveport(FTP_CMDPORT); // Port 21

while(1) {
ftp_tick();

}
}

298 TCP/IP User’s Manual

Each user may execute the "dir" or "ls" command to see a listing of the available files. The listing
shows only the files that the logged-in user can access.

Notice the definition for TCP_CONFIG. When the value for this macro exceeds 100, a special
configuration file is pulled in that will not be overridden by future updates of Dynamic C. In the
file CUSTOM_CONFIG.LIB, you may specify any network configuration that suits your pur-
poses. Please see /LIB/TCPIP/TCP_CONFIG.LIB for examples of setting up a library of con-
figuration options.

6.5 Getting Through a Firewall
If a client is behind a firewall, it is incumbent upon the client to request that the server do a passive
open on its data port instead of the normal active open. This is so that the client can then do an
active open using the passively opened data port of the server, thus getting through the firewall.

Typically the server would not be behind a firewall.

6.6 FTP Server Commands
The following commands are recognized by the FTP server. The reply codes sent in response to
these commands are detailed in Section 6.7 on page 301. They are noted here to associate them
with the commands that may cause them to be sent.

Table 6.2 Recognized FTP Server Commands

Command Description
Possible

Reply Codes

ABOR
The current data transfer completes before the abort command is
read by the server.

226

CDUP
A special case of CWD (Change Working Directory); the parent of
the working directory is changed to be the working directory.

250, 431

CWD Changes working directory. 250, 431

DELE Delete the specified file. 250, 450, 550

LIST
Displays list of files requested by its argument in ls -l format. This
gives extra information about the file.

150, 226, 425

MDTM Shows the last modification time of the specified file.
213, 250,
450, 550

MODE
Confirms the mode of data transmission. Only stream mode is
supported.

200, 504

NLST
Displays list of files requested by its argument, with names only.
This allows an application to further process the files.

150, 226, 425

NOOP
Specifies no action except that the server send an OK reply. It does
not affect any parameters or previously entered commands.

200
Chapter 6: FTP Server 299

PASS
Password for the user name (sent in clear text). It is accepted only
after USER returns code 331

230, 530

PASV
Requests a passive open on a port that is not the default data port.
The server responds with the host and port address on which it is
listening.

227, 452

PORT
Changes the data port from the default port to the port specified in
the command’s argument. The argument is the concatenation of a
32-bit internet host address and a 16-bit TCP port address.

200

PWD Prints the working directory name. 257

QUIT
Closes the control connection. If a data transfer is in progress, the
connection will not be closed until it has completed.

221

RETR
Transfers a copy of the file specified in the pathname argument
from the server to the client.

150, 226,
425, 550

SIZE Returns the size of the specified file.
213, 250,
450, 550

STOR
Stores a file from the client onto the server. The file will be
overwritten if it already exists at the specified pathname, or it will
be created if it does not exist.

150, 226, 250
425, 450,
452, 550

STRU
Confirms the supported structure of a file. Only file-structure is
supported: a continuous stream of data bytes.

200, 504

SYST Sends the string “RABBIT2000.” 215

TYPE
Confirms the transfer type. The types IMAGE (binary), ASCII and
Local with 8-bit bytes are all supported and are treated the same.

200, 504

USER User name to use for authentication. 331, 530

Table 6.2 Recognized FTP Server Commands

Command Description
Possible

Reply Codes
300 TCP/IP User’s Manual

6.7 Reply Codes to FTP Commands
The FTP server replies to all of the commands that it receives. The reply consists of a 3-digit num-
ber followed by a space and then a text string explaining the reply. All reply codes sent from the
FTP server are listed here.

The text used for the reply codes, may be slightly different than what is shown here. It will be con-
text specific.

Table 6.3

Reply Code Reply Text

150 File status okay; about to open data connection.

200 Command okay.

202 Command not implemented, superfluous at this site.

211 System status, or system help reply.

213 File status

214
Help message. On how to use the server or the meaning of a particular
non-standard command. This reply is useful only to the human user.

215 System type.

220 Service ready for new user.

221 Service closing connection.

226
Closing data connection. Requested file action successful (for example,
file transfer or file abort).

227 Entering Passive Mode (h1,h2,h3,h4,p1,p2).

230 User logged in, proceed

250 Requested file action okay, completed.

257 "PATHNAME" created.

331 User name okay, need password.

425 Can't open data connection.

450 Requested file action not taken. File unavailable (e.g., file busy).

452 Requested action not taken. Insufficient storage space in system.

502 Command not implemented.

504 Command not implemented for that parameter.

530 Not logged in.

550
Requested action not taken. File unavailable (e.g., file not found, no
access).
Chapter 6: FTP Server 301

302 TCP/IP User’s Manual

7. TFTP Client

TFTP.LIB implements the Trivial File Transfer Protocol (TFTP). This standard protocol (inter-
net RFC783) is a lightweight protocol typically used to transfer bootstrap or configuration files
from a server to a client host, such as a diskless workstation. TFTP allows data to be sent in either
direction between client and server, using UDP as the underlying transport.

This library fully implements TFTP, but as a client only.

Compared with more capable protocols such as FTP, TFTP:

• has no security or authentication

• is not as fast because of the step-by-step protocol

• uses fewer machine resources.

Because of the lack of authentication, most TFTP servers restrict the set of accessible files to a
small number of configuration files in a single directory. For uploading files, servers are usually
configured to accept only certain file names that are writable by any user. If these restrictions are
acceptable, TFTP has the advantage of requiring very little 'footprint' in the client host.

7.1 BOOTP/DHCP
In conjunction with DHCP/BOOTP and appropriate server configuration, TFTP is often used to
download a kernel image to a diskless host. The target TCP/IP board does not currently support
loading the BIOS in this way, since the BIOS and application program are written to non-volatile
flash memory. However, the downloaded file does not have to be a binary executable - it can be
any reasonably small file, such as an application configuration file. TFTP and DHCP/BOOTP can
thus be used to administer the configuration of multiple targets from a central server.

Using TFTP with BOOTP/DHCP requires minimal additional effort for the programmer. Just
#define the symbol DHCP_USE_TFTP to an integer representing the maximum allowable boot
file size (1-65535). See the description of the variables _bootpsize, _bootpdata and
_bootperror in volume 1 of the TCP/IP User’s Manual for further details.
Chapter 7: TFTP Client 303

7.2 Data Structure for TFTP
This data structure is used to send and receive. The tftp_state structure, which is required for
many of the API functions in TFTP.LIB, may be allocated either in root data memory or in
extended memory. This structure is approximately 155 bytes long.

The following macros are valid for tftp_state->mode.

#define TFTP_MODE_NETASCII 0 // ASCII text
#define TFTP_MODE_OCTET 1 // 8-bit binary
#define TFTP_MODE_MAIL 2 // Mail (remote file name is email address,
 // e.g., user@host.blob.org)

7.3 API Functions
Any of the following functions will require approximately 600-800 bytes of free stack. The data
buffer for the file to put or to get is always allocated in xram (see xalloc()).

TFTP Session
A session can be either a single download (get) or upload (put). The functions ending with 'x' are
versions that use a data structure allocated in extended memory, for applications that are con-
strained in their use of root data memory.

typedef struct tftp_state {
byte state; // Current state. LSB indicates read (0)

 // or write(1). Other bits determine
 // state within this (see below).

long buf_addr; // Physical address of buffer
word buf_len; // Length of buffer
word buf_used; // Amount Tx or Rx from/to buffer
word next_blk; // Next expected block #, or next to Tx
word my_tid; // UDP port number used by this host
udp_Socket *sock; // UDP socket to use
longword rem_ip; // IP address of remote host
longword timeout; // ms timer value for next timeout
char retry; // retransmit retry counter
char flags; // miscellaneous flags (see below).

// Following fields not used after initial request has been acknowledged.
char mode; // Translation mode (see below).
char file[129]; // File name on remote host (TFTP server)

 // - NULL terminated. This field will be
 // overwritten with a NULL-term error message
 // from the server if an error occurs.
};
304 TCP/IP User’s Manual

tftp_init

int tftp_init(struct tftp_state *ts);

DESCRIPTION

This function prepares for a TFTP session and is called to complete initialization of the
TFTP state structure. Before calling this function, some fields in the structure
tftp_state must be set up as follows:

ts->state = <0 for read, 1 for write>
ts->buf_addr = <physical address of xmem buffer>
ts->buf_len = <length of physical buffer, 0-65535>
ts->my_tid = <UDP port number. Set 0 for default>
ts->sock = <address of UDP socket (udp_Socket *),or NULL to

use DHCP/BOOTP socket>
ts->rem_ip = <IP address of TFTP server host, or zero to use

default BOOTP host>
ts->mode = <one of the following constants:

TFTP_MODE_NETASCII (ASCII text)
TFTP_MODE_OCTET (8-bit binary)
TFTP_MODE_MAIL (Mail)>

strcpy(ts->file, <remote filename or mail address>)

Note that mail mode can only be used to write mail to the TFTP server, and the file name
is the e-mail address of the recipient. The e-mail message must be ASCII-encoded and
formatted with RFC822 headers. Sending e-mail via TFTP is deprecated. Use SMTP in-
stead since TFTP servers may not implement mail.

PARAMETERS

ts Pointer to tftp_state.

RETURN VALUE

0: OK.
-4: Error, default socket in use.

LIBRARY

TFTP.LIB
Chapter 7: TFTP Client 305

http://www.faqs.org/rfcs/rfc822.html

tftp_initx

int tftp_initx(long ts_addr);

DESCRIPTION

This function is called to complete initialization of the TFTP state structure, where the
structure is possibly stored somewhere other than in the root data space. This is a wrapper
function for tftp_init(). See that function description for details.

PARAMETERS

ts_addr Physical address of TFTP state (struct tftp_state)

RETURN VALUE

0: OK
-1: Error, default socket in use

LIBRARY

TFTP.LIB
306 TCP/IP User’s Manual

tftp_tick

int tftp_tick(struct tftp_state *ts);

DESCRIPTION

This function is called periodically in order to take the next step in a TFTP process. Ap-
propriate use of this function allows single or multiple transfers to occur without block-
ing. For multiple concurrent transfers, there must be a unique tftp_state structure,
and a unique UDP socket, for each transfer in progress. This function calls
sock_tick().

PARAMETERS

ts Pointer to TFTP state. This must have been set up using
tftp_init(), and must be passed to each call of
tftp_tick() without alteration.

RETURN VALUE

1: OK, transfer not yet complete.
0: OK, transfer complete

-1: Error from remote side, transfer terminated. In this case, the ts_addr->file field
will be overwritten with a NULL-terminated error message from the server.

-2: Error, could not contact remote host or lost contact.
-3: Timed out, transfer terminated.
-4: (not used)
-5: Transfer complete, but truncated -- buffer too small to receive the complete file.

LIBRARY

TFTP.LIB
Chapter 7: TFTP Client 307

tftp_tickx

int tftp_tickx(long ts_addr);

DESCRIPTION

This function is a wrapper for calling tftp_tick(), where the structure is possibly
stored somewhere other than in the root data space. See that function description for de-
tails.

PARAMETERS

ts_addr Physical address of TFTP state (struct tftp_state).

RETURN VALUE

1: OK, transfer not yet complete.
0: OK, transfer complete

-1: Error from remote side, transfer terminated. In this case, the ts_addr->file field
will be overwritten with a NULL-terminated error message from the server.

-2: Error, could not contact remote host or lost contact.
-3: Timed out, transfer terminated.
-4: (not used)
-5: Transfer complete, but truncated -- buffer too small to receive the complete file.

LIBRARY

TFTP.LIB
308 TCP/IP User’s Manual

tftp_exec

int tftp_exec(char put, long buf_addr, word *len, int mode,
char *host, char *hostfile, udp_Socket *sock);

DESCRIPTION

Prepare and execute a complete TFTP session, blocking until complete.This function is a wrapper
for tftp_init() and tftp_tick(). It does not return until the complete file is transferred or
an error occurs. Note that approximately 750 bytes of free stack will be required by this function.

PARAMETERS

put 0: get file from remote host; 1: put file to host.

buf_addr Physical address of data buffer.

len Length of data buffer. This is both an input and a return parameter.
It should be initialized to the buffer length. On return, it will be set
to the actual length received (for a get), or unchanged (for a put).

mode Data representation: 0=NETASCII, 1=OCTET (binary), 2=MAIL.

host Remote host name, or NULL to use default BOOTP host.

hostfile Name of file on remote host, or e-mail address for mail.

sock UDP socket to use, or NULL to re-use BOOTP socket if available.

RETURN VALUE

0: OK, transfer complete.
-1: Error from remote side, transfer terminated. In this case, ts_addr->file

 will be overwritten with a NULL-terminated error message from the server.
-2: Error, could not contact remote host or lost contact.
-3: Timed out, transfer terminated
-4: sock parameter was NULL, but BOOTP socket was unavailable.

LIBRARY

TFTP.LIB
Chapter 7: TFTP Client 309

310 TCP/IP User’s Manual

8. SMTP Mail Client

SMTP (Simple Mail Transfer Protocol) is one of the most common ways of sending e-mail. SMTP
is a simple text conversation across a TCP/IP connection. The SMTP server usually resides on
TCP port 25 waiting for clients to connect. (Define SMTP_PORT to override the default port num-
ber.)

Sending mail with the Dynamic C SMTP client library is a simple process, demonstrated in the
sample program shown in Section 8.3. Dynamic C 9 introduced SMTP authentication, described
below in Section 8.2.

8.1 Sample Conversation
The following is a typical listing of mail from the controller (me@somewhere.com) to
someone@somewhereelse.com. The mail server that the controller is talking to is
mail.somehost.com. The lines that begin with a numeric value are coming from the mail
server. The other lines were sent by the controller. More information on the exact specification of
SMTP and the meanings of the commands and responses can be found in RFC821 at
http://www.ietf.org.

You can see a listing of the conversation between your controller and the mail server by defining
the SMTP_DEBUG macro at the top of your program. Note that there must be a blank line after the
line “Subject: test mail.”

220 mail.somehost.com ESMTP Service (WorldMail 1.3.122)
ready
HELO 10.10.6.100

250 mail.somewhere.com
MAIL FROM: <me@somewhere.com>

250 MAIL FROM:<me@somewhere.com> OK
RCPT TO: <someone@somewhereelse.com>

250 RCPT TO:<someone@somewhereelse.com> OK
DATA

354 Start mail input; end with <CRLF>.<CRLF>
From: <me@somewhere.com>
To: <someone@somewhereelse.com>
Subject: test mail

test mail
.

250 Mail accepted
QUIT

221 mail.somehost.com QUIT
Chapter 8: SMTP Mail Client 311

http://www.ietf.org

8.2 SMTP Authentication
In most situations, Internet access is provided by an Internet Service Provider (ISP). Usually the
ISP runs an email server that will accept emails without authentication from customers that are
within their network. Users outside of their network are not allowed to send email through their
servers because the mail server would quickly become a gateway for spam. With more people on
the go with laptops, SMTP authentication allows them to send email through a trusted server with-
out being directly on the network.

An informative tutorial on SMTP authentication is available at:

www.fehcom.de/qmail/smtpauth.html

Default behavior prior to Dynamic C 9.21 was for the login to fail if authentication failed. With
Dynamic C 9.21 the SMTP library will fall back on unauthenticated login if authentication
fails. To restore the old behavior when using Dynamic C 9.21, define the macro
SMTP_AUTH_FAIL_IF_NO_AUTH.

Three methods of authentication are recognized by the implementation of an SMTP client.

AUTH PLAIN
The client sends "AUTH PLAIN <token>" where <token> is the Base64-encoded string
"username\0username\0password” that will look something like:

AUTH PLAIN dGVzdAB0ZXN0AHRlc3RwYXNz

The server responds with a message indicating whether authentication was successful.

AUTH LOGIN
Client sends "AUTH LOGIN" command; server responds with "334 VXNlcm5hbWU6"
(Base64-encoded "Username:"); client responds with its Base64-encoded username;
server responds with "334 UGFzc3dvcmQ6"; client responds with its Base64-encoded
password. At this point, the server should respond with a message indicating whether au-
thentication was successful. This method is only slightly more complex than AUTH
PLAIN.

AUTH CRAM-MD5
Client sends "AUTH CRAM-MD5"; server responds with "334 <challenge>" where
<challenge> is a unique Base64-encoded challenge string (for example,
"<4994.1088035610@zworld.com>").

The client generates a digest using the following MD5 hashing algorithm (where pass-
word is null-padded to a length of 64 bytes, ipad is 0x36 repeated 64 times and opad is
0x5C repeated 64 times):

digest = MD5((password XOR opad), MD5((password XOR
ipad), challenge))

The client responds with the string "<username> <response>" Base64-encoded; <user-
name> is in plaintext, and <response> is the 16-byte digest in hex form.This method is
the most secure, since someone sniffing the connection would be unable to determine the
cleartext password used to authenticate.
312 TCP/IP User’s Manual

http://www.fehcom.de/qmail/smtpauth.html

8.3 Sample Sending of an E-mail
This program, smtp.c, sends an e-mail. To have the client query the server for authentication,
define the macro USE_SMTP_AUTH and call smtp_setauth() before calling
smtp_sendmail() (or smtp_sendmailxmem()). If the mail server does not support
authentication, either do not define USE_SMTP_AUTH or pass empty strings (“”) as the parameters
to smtp_setauth().

Program Name: Samples\tcpip\smtp\smtp.c

#define TCPCONFIG 1 // pick network configuration

#define FROM "myaddress@mydomain.com"
#define TO "myaddress@mydomain.com"
#define SUBJECT "You've got mail!"
#define BODY "Visit the Rabbit Semiconductor web site.\r\n"

/* SMTP_SERVER identifies the mail server. This can be name or IP address. */
#define SMTP_SERVER "mymailserver.mydomain.com"

#define USE_SMTP_AUTH

#memmap xmem
#use dcrtcp.lib
#use smtp.lib

main() {
sock_init();

while (ifpending(IF_DEFAULT) == IF_COMING_UP) {
tcp_tick(NULL);

}

#ifdef USE_SMTP_AUTH
smtp_setauth ("myusername", "mypassword");

#endif

smtp_sendmail(TO, FROM, SUBJECT, BODY);

while(smtp_mailtick()==SMTP_PENDING)
continue;

if(smtp_status()==SMTP_SUCCESS)
printf("Message sent\n");

else
printf("Error sending message\n");

}

Chapter 8: SMTP Mail Client 313

8.4 Configuration Macros
The SMTP client is configured by using compiler macros.

SMTP_AUTH_FAIL_IF_NO_AUTH
Defaults to undefined. This macro was introduced in Dynamic C 9.21. If it is defined, the
login will fail if authentication fails. Otherwise, the library will fall back on an unauthen-
ticated login if authentication fails. Prior to Dynamic C 9.21, the login failed if authenti-
cation failed, so the macro is restoring that behavior.

SMTP_DEBUG
This macro tells the SMTP code to log events to the STDIO window in Dynamic C. This
provides a convenient way of troubleshooting an e-mail problem.

SMTP_DOMAIN
This macro defines the text to be sent with the HELO client command. Many mail servers
ignore the information supplied with the HELO, but some e-mail servers require the fully
qualified name in this field (i.e., somemachine.somedomain.com). If you have problems
with e-mail being rejected by the server, turn on SMTP_DEBUG. If it is giving an error
message after the HELO line, talk to the administer of the machine for the appropriate
value to place in SMTP_DOMAIN. If you do not define this macro, it will default to
MY_IP_ADDRESS.

#define SMTP_DOMAIN "somemachine.somedomain.com"

SMTP_MAX_DATALEN
Defaults to 256. Maximum buffer size for server responses and short client requests.

SMTP_MAX_PASSWORDLEN
Defaults to 16. Maximum length of the password used in authentication.

SMTP_MAX_USERNAMELEN
Defaults to 64. Maximum length of the user name used in authentication.

SMTP_MAX_SERVERLEN
Defaults to MAX_STRING, which defaults to 50. Maximum length of mail server name.

SMTP_SERVER
This macro defines the mail server that will relay the controller’s mail. This server must
be configured to relay mail for your controller. You can either place a fully qualified do-
main name or an IP address in this field.

#define SMTP_SERVER "mail.mydomain.com"
or

#define SMTP_SERVER "10.10.6.19"
314 TCP/IP User’s Manual

SMTP_TIMEOUT
This macro tells the SMTP code how long in seconds to try to send the e-mail before tim-
ing out. It defaults to 20 seconds.

#define SMTP_TIMEOUT 10

USE_SMTP_AUTH
Define this macro to enable SMTP authentication.
Chapter 8: SMTP Mail Client 315

8.5 API Functions
The user-callable functions described in this section are found in the Dynamic C library
Lib\tcpip\smtp.lib.

smtp_data_handler

void smtp_data_handler(int (*dhnd)(), void * dhnd_data, word
opts);

DESCRIPTION

Sets a data handler for generating mail message content. This function should be called
after calling smtp_sendmail() etc. It overrides any message parameter set by the
smtp_sendmail() call, since the message is generated dynamically by the callback
function.

Note: you can use the same data handler as used for the FTP library (see the
ftp_data_handler() description). The flags values are numerically equivalent to
those of the same meaning for ftp_data_handler(). The SMTP data handler is
only used to generate data, not receive it.

The handler is a function that must be coded according to the following prototype:

int my_handler(char *data, int len, longword offset,
int flags, void *dhnd_data);

The data handler function must be called with the following parameters:

data Pointer to a data buffer

len The length of the above data buffer. This parameter is set to
SMTP_MAX_DATALEN (256) by default. You can override that
macro to allow larger "chunks".

offset The byte number relative to the first byte of the entire message
stream. This is useful for data handler functions that do not wish to
keep track of the current state of the data source.

flags Contains an indicator of the current operation: SMTPDH_OUT: data
is to be filled with the next data to send to the mail server. The max-
imum allowable chunk of data is specified by 'len'. The data must
not contain the sequence <CRLF>.<CRLF> since that will confuse
the process. SMTPDH_ABORT: end of data; error encountered dur-
ing SMTP operation. The mail was probably not delivered.

dhnd_data The pointer that was passed to ftp_data_handler().
316 TCP/IP User’s Manual

PARAMETERS

dhnd Pointer to data handler function, or NULL to remove the current
data handler.

dhnd_data A pointer that is passed to the data handler function. This may be
used to point to any further data required by the data handler such as
an open file descriptor.

opts Options word (currently reserved, set to zero).

RETURN VALUE

The return value from this function should be the actual number of bytes placed in the
data buffer, or -1 to abort. If 0 is returned, then this is considered to be the end of data.
You can write up to and including "len" bytes into the buffer, but at least one byte must
be written otherwise it is assumed that no more data is following.

For SMTPDH_ABORT, the return code is ignored.

SEE ALSO

smtp_sendmail, smtp_sendmailxmem, smtp_mailtick

EXAMPLE

The program Samples/tcpip/smtp/smtp_dh.c makes use of this function.
Chapter 8: SMTP Mail Client 317

smtp_mailtick

int smtp_mailtick(void);

DESCRIPTION

Repetitively call this function until e-mail is completely sent.

RETURN VALUE

SMTP_SUCCESS - e-mail sent.
SMTP_PENDING - e-mail not sent yet call smtp_mailtick again.
SMTP_TIME - e-mail not sent within SMTP_TIMEOUT seconds.
SMTP_UNEXPECTED - received an invalid response from SMTP server.
SMTP_DNSERROR - cannot resolve server name
SMTP_ABORTED - transaction aborted (by data handler)

If using SMTP AUTH, the following values are also possible:

SMTP_AUTH_UNAVAILABLE - unable to attempt authentication|
SMTP_AUTH_FAILED - attempts to authenticate failed

LIBRARY

SMTP.LIB

SEE ALSO

smtp_sendmail, smtp_status
318 TCP/IP User’s Manual

smtp_sendmail

void smtp_sendmail(char *to, char *from, char *subject, char
*message);

DESCRIPTION

Start an e-mail being sent. This function is intended to be used for short messages that are
entirely constructed prior to being sent.

If you have previously installed a data handler via smtp_data_handler(), then
you must call smtp_data_handler() with a NULL data handler, otherwise this
message will not get sent.

NOTE: The strings pointed to by the parameters must not be changed until the entire
process is completed. Also, if the first character of any line of the message is a period
(.), then this character will be deleted as part of normal mail processing. Thus, to actu-
ally send a line starting with '.', you must start the line with '..' i.e. double up an initial
period.

PARAMETERS

to String containing the e-mail address of the destination. Maximum of
192 characters. Currently, only one recipient is supported.

from String containing the e-mail address of the source. Maximum of 192
characters for a return address. If no return should be sent by receiv-
er, then pass an empty string ("").

subject String containing the subject of the message. This may be NULL in
which case no subject line will be sent. This string may also contain
embedded \r\n sequences so that additional mail header lines may be
inserted. The length of this string is unlimited.

message String containing the message. (This string must not contain the
byte sequence "\r\n.\r\n" (CRLF.CRLF), as this is used to mark the
end of the e-mail, and will be appended to the e-mail automatically.)
This message must be null terminated, and is only allowed to con-
tain 7-bit characters. You can pass NULL if a data handler is to be
used to generate the message.

RETURN VALUE

None.

SEE ALSO

smtp_mailtick, smtp_status, smtp_sendmailxmem
Chapter 8: SMTP Mail Client 319

smtp_sendmailxmem

void smtp_sendmailxmem(char *to, char *from, char *subject,
long message, long messagelen);

DESCRIPTION

Start an e-mail being sent. This is intended for moderately long, fixed messages that are
stored in extended memory (e.g., via #ximport'ed file).

See smtp_sendmail() for more details.

PARAMETERS

to String containing the e-mail address of the destination.

from String containing the e-mail address of the source.

subject String containing the subject of the message.

message Physical address in xmem containing the message. (The message
must NOT contain the byte sequence "\r\n.\r\n" (CRLF.CRLF), as
this is used to mark the end of the e-mail, and will be appended to
the e-mail automatically.)

messagelen Length of the message in xmem.

RETURN VALUE

None

LIBRARY

SMTP.LIB

SEE ALSO

smtp_mailtick, smtp_status, smtp_sendmail
320 TCP/IP User’s Manual

smtp_setauth

int smtp_setauth(char* username, char* password);

DESCRIPTION

Sets the username and password to use for SMTP AUTH (Authentication). You must
#define USE_SMTP_AUTH in your program if you want to use SMTP AUTH on your
outbound connections. To disable SMTP authentication, set both username and
password to “” (empty strings).

PARAMETERS

username This is copied into the SMTP state structure. Note that some SMTP
servers require a full email address while others just want a user-
name.

password This is copied into the SMTP state structure.

RETURN VALUE

SMTP_OK: server name was set successfully
SMTP_USERNAMETOOLONG: the username was too long
SMTP_PASSWORDTOOLONG: the username was too long

SEE ALSO

smtp_sendmail, smtp_mailtick
Chapter 8: SMTP Mail Client 321

smtp_setserver

int smtp_setserver(char* server);

DESCRIPTION

Sets the SMTP server. This value overrides SMTP_SERVER and the results of any pre-
vious call to smtp_setserver_ip().

PARAMETER

server Server name string. This is copied into the SMTP state structure.
This name is not resolved to an IP address until you start calling
smtp_mailtick().

RETURN VALUE

SMTP_OK: Server name was set successfully
SMTP_NAMETOOLONG: The server name was too long

SEE ALSO

smtp_sendmail, smtp_setserver_ip, smtp_mailtick

smtp_setserver_ip

int smtp_setserver_ip(longword server);

DESCRIPTION

Sets the SMTP server. This value overrides the value set by smtp_setserver(), and
is used when the IP address of the mail server is known.

PARAMETER

server Server IP address.

RETURN VALUE

SMTP_OK: server IP was set successfully

SEE ALSO

smtp_sendmail, smtp_setserver, smtp_mailtick
322 TCP/IP User’s Manual

smtp_status

int smtp_status(void);

DESCRIPTION

Return the status of the last e-mail processed.

RETURN VALUE

SMTP_SUCCESS - e-mail sent.
SMTP_PENDING - e-mail not sent yet call smtp_mailtick again.
SMTP_TIME - e-mail not sent within SMTP_TIMEOUT seconds.
SMTP_UNEXPECTED - received an invalid response from SMTP server.

LIBRARY

SMTP.LIB
Chapter 8: SMTP Mail Client 323

324 TCP/IP User’s Manual

9. POP3 Client

Post Office Protocol version 3 (POP3) is probably the most common way of retrieving e-mail
from a remote server. Most e-mail programs, such as Eudora, MS-Outlook, and Netscape’s e-mail
client, use POP3. The protocol is a fairly simple text-based chat across a TCP socket, normally
using TCP port 110.

There are two ways of using POP3.LIB. The first method provides a raw dump of the incoming
e-mail. This includes all of the header information that is sent with the e-mail, which, while some-
times useful, may be more information than is needed. The second method provides a parsed ver-
sion of the e-mail, with the sender, recipient, subject line, and body text separated out.

In both methods, each line of e-mail has CRLF stripped from it and ‘\0’ appended to it.

9.1 Configuration
The POP3 client can be configured through the following macros:

POP_BUFFER_SIZE

This will set the buffer size for POP_PARSE_EXTRA in bytes. These are the buffers that
hold the sender, recipient and subject of the e-mail. POP_BUFFER_SIZE defaults to 64
bytes.

POP_DEBUG

This will turn on debug information. It will show the actual conversation between the de-
vice and the remote mail server, as well as other useful information.

POP_NODELETE

This will stop the POP3 library from removing messages from the remote server as they
are read. By default, the messages are deleted to save storage space on the remote mail
server.

POP_PARSE_EXTRA

This will enable the second mode, creating a parsed version of the e-mail as mentioned
above. The POP3 library parses the incoming mail more fully to provide the Sender, Re-
cipient, Subject, and Body fields as separate items to the call-back function.
Chapter 9: POP3 Client 325

9.2 Steps to Receive E-mail.
1. pop3_init()is called to provide the POP3 library with a call-back function. This call-

back will be used to provide you the incoming data. This function is usually called once.

2. pop3_getmail() is called to start the e-mail being received, and to provide the library
with e-mail account information.

3. pop3_tick() is called as long as it returns POP_PENDING, to actually run the library.
The library will call the function you provided pop3_init() several times to give you
the e-mail.

9.3 Call-Back Function
There are two types of call-back functions, which are described here.

9.3.1 Normal call-back
When not using POP_PARSE_EXTRA, you need to provide a function with the following proto-
type:

int storemail(int number, char *buf, int size);

The parameter number is the number of the e-mail being transferred, usually 1 for the first, 2 for
the second, but not necessarily. The numbers are only guaranteed to be unique between all e-mails
transferred.

The buf parameter is the text buffer containing one line of the incoming e-mail. This must be
copied out immediately, as the buffer will be different when the next line comes in, and your call-
back is called again. size is the number of bytes in buf.

The sample program Samples\tcpip\pop3\ pop.c provides an example of this style of
call-back.

9.3.2 POP_PARSE_EXTRA call-back
If POP_PARSE_EXTRA is defined, you need to provide a call-back function with the following
prototype:

int storemail(int number, char *to, char *from, char *subject,
char *body, int size);

number, body, and size are the same as before.

to has the e-mail address of who this e-mail was sent to.

from has the e-mail address of who sent this e-mail.

subject has the subject line of the e-mail.

These new fields should be used only the first time your call-back is called with a new number
field. In subsequent calls, these fields are not guaranteed to have accurate information.

See parse_extra.c in Section 9.5 for an example of this type of call-back.
326 TCP/IP User’s Manual

9.4 API Functions

pop3_init

int pop3_init(int (*storemail)());

DESCRIPTION

This function must be called before any other POP3 function is called. It will set the call-
back function where the incoming e-mail will be passed to. This probably should only be
called once.

PARAMETERS

storemail A function pointer to the call-back function.

RETURN VALUE

0: Success.
1: Failure.

LIBRARY

POP3.LIB
Chapter 9: POP3 Client 327

pop3_getmail

int pop3_getmail(char *username, char *password, long server);

DESCRIPTION

This function will initiate receiving e-mail (a POP3 request to a remote e-mail server).
IMPORTANT NOTE - the buffers for username and password must NOT change
until pop3_tick() returns something besides POP_PENDING. These values are not
saved internally, and depend on the buffers not changing.

PARAMETERS

username The username of the account to access.

password The password of the account to access.

server The IP address of the server to connect to, as returned from
resolve().

RETURN VALUE

0: Success.
1: Failure.

LIBRARY

POP3.LIB
328 TCP/IP User’s Manual

pop3_tick

int pop3_tick(void)

DESCRIPTION

A standard tick function, to run the daemon. Continue to call it as long as it returns
POP_PENDING.

RETURN VALUE

POP_PENDING: Transfer is not done; call pop3_tick again.
POP_SUCCESS: All e-mails were received successfully.
POP_ERROR: Unknown error occurred.
POP_TIME: Session timed-out. Try again, or use POP_TIMEOUT to increase the time-
out length.

LIBRARY

POP3.LIB
Chapter 9: POP3 Client 329

9.5 Sample Receiving of E-mail
This program connects to a POP3 server and downloads e-mail from it.

Program Name: Samples\tcpip\pop3\parse_extra.c

#define TCPCONFIG 1

#define POP_HOST mail.domain.com" // Name of your POP3 server
#define POP_USER "myname" // Username for POP3 account
#define POP_PASS "secret" // Password for POP3 account
#define POP_PARSE_EXTRA
#memmap xmem
#use "dcrtcp.lib"
#use "pop3.lib"
int n;

int storemsg(int num, char *to, char *from, char *subject,
char *body, int len){

#GLOBAL_INIT{n = -1;}

if(n != num) {
n = num;
printf("RECEIVING MESSAGE <%d>\n", n);
printf("\tFrom: %s\n", from);
printf("\tTo: %s\n", to);
printf("\tSubject: %s\n", subject);

}

printf("MSG_DATA> '%s'\n", body);
return 0;

}
main(){

static long address;
static int ret;

sock_init();
pop3_init(storemsg); //set up call-back

printf("Resolving name...\n");
address = resolve(POP_HOST);
printf("Calling pop3_getmail()...\n");

pop3_getmail(POP_USER, POP_PASS, address); // Request to server

printf("Entering pop3_tick()...\n");

while((ret = pop3_tick()) == POP_PENDING)
continue;

if(ret == POP_SUCCESS)
printf("POP was successful!\n");

if(ret == POP_TIME)
printf("POP timed out!\n");

if(ret == POP_ERROR)
printf("POP returned a general error!\n");

printf("All done!\n");
}

330 TCP/IP User’s Manual

9.5.1 Sample Conversation
The following is an example POP3 session from the specification in RFC1939. For more informa-
tion see:

 http://www.rfc-editor.org/rfc/std/std53.txt

In the following example, lines starting with ‘S:’ are from the server, and lines starting with ‘C:’
are from the client.

S: <wait for connection on TCP port 110>
C: <open connection>
S: +OK POP3 server ready <1896.697170952@dbc.mtview.ca.us>
C: APOP mrose c4c9334bac560ecc979e58001b3e22fb
S: +OK mrose's maildrop has 2 messages (320 octets)
C: STAT
S: +OK 2 320
C: LIST
S: +OK 2 messages (320 octets)
S: 1 120
S: 2 200
S: .
C: RETR 1
S: +OK 120 octets
S: <the POP3 server sends message 1>
S: .
C: DELE 1
S: +OK message 1 deleted
C: RETR 2
S: +OK 200 octets
S: <the POP3 server sends message 2>
S: .
C: DELE 2
S: +OK message 2 deleted
C: QUIT
S: +OK dewey POP3 server signing off (maildrop empty)
C: <close connection>
S: <wait for next connection>

For debugging purposes, you can observe this conversation by defining POP_DEBUG at the top of
your program.
Chapter 9: POP3 Client 331

http://www.rfc-editor.org/rfc/std/std53.txt

332 TCP/IP User’s Manual

10. Telnet

The library Vserial.lib implements the telecommunications network interface known as tel-
net. The implementation is a telnet-to-serial and serial-to-telnet gateway. This chapter is divided
into two parts. The first part describes the library from Dynamic C version 7.05 and later. The sec-
ond part describes the library prior to 7.05.

10.1 Telnet (Dynamic C 7.05 and later)
This implementation is more general than the previous one. Any of the four serial ports can be
used and other I/O streams can be added. Multiple connections are supported by the use of unique
gateway identifiers.

10.1.1 Setup
To use a serial port, the circular buffers must be initialized. For instance, if serial port A is used by
an application, then the following macros must be defined in the program:

#define AINBUFSIZE 31
#define AOUTBUFSIZE 31

It might be necessary to have bigger buffers for some applications.

10.1.1.1 Low-Level Serial Routines
A table to hold the low-level I/O routines must be defined as type VSerialSpec.

typedef struct {
int id; // unique ID to match with calls to listen/open
int (*open)(); // serial port routines, or
int (*close)(); // serial port compatible routines.
int (*tick)();
int (*rdUsed)();
int (*wrFree)();
int (*read)();
int (*write)();

} VSerialSpec;

For each serial port A, B, C and D, there is a pre-defined macro in VSERIAL.LIB:

#define VSERIAL_PORTA(id) { (id), serAopen, serAclose, NULL,
serArdUsed, serAwrFree, serAread, serAwrite }

The parameter passed to VSERIAL_PORTA is the unique gateway identifier mentioned earlier.
This value is chosen by the developer when entries are made to the array of type VSerialSpec
(also known as the spec table).

Dynamic C 9.21 includes support for serial ports E and F on all Rabbit 3000 based boards.
Chapter 10: Telnet 333

10.1.1.2 Configuration Macros

VSERIAL_DEBUG

Turns on debug messages.

VSERIAL_NUM_GATEWAYS

The number of telnet sessions must be defined and must match the number of entries in
the spec table.

10.1.2 API Functions (Dynamic C 7.05 and later)
The following functions compose the latest telnet API. A sample program demonstrating their use
is available at Samples\tcpip\telnet\vserial.c.

vserial_close

int vserial_close(int id);

DESCRIPTION

Closes the specified gateway. This will not only terminate any network activity, but will
also close the serial port.

PARAMETERS

id ID of the gateway to change, as specified in the spec table.

RETURN VALUE

0: Success.
1: Failure.

LIBRARY

VSERIAL.LIB

vserial_init

int vserial_init (void);

DESCRIPTION

Initializes the daemon and parses the spec table.

RETURN VALUE

0: Success;
1: Failure.

LIBRARY

VSERIAL.LIB
334 TCP/IP User’s Manual

vserial_keepalive

int vserial_keepalive (int id, long timeout);

DESCRIPTION

This function sets the keepalive timer to generate TCP keepalives after timeout pe-
riods of inactivity. This helps detect if the connection has gone bad.

Keepalives should be used at the application level, but if that is not possible, then
timeout should be set so as to not overload the network. The standard timeout is two
hours, and should be set sooner than that only for a Very Good Reason.

PARAMETERS

id Unique gateway identifier.

timeout Number of seconds of inactivity allowed before a TCP keepalive is
sent. A value of 0 shuts off keepalives.

RETURN VALUE

0: Success.
1: Failure.

LIBRARY

VSERIAL.LIB
Chapter 10: Telnet 335

vserial_listen

int vserial_listen(int id, long baud, int port, long
remote_host, int flags);

DESCRIPTION

Listens on the specified port for a telnet connection. The gateway process is started
when a connection request is received. On disconnect, re-listen happens automatically.

PARAMETERS

id ID of the gateway to change, as specified in the spec table.

baud The parameter to send to the open() serial port command; it’s usu-
ally the baud rate.

port The local TCP port to listen on.

remote_host The remote host from whom to accept connections, or 0 to accept a
connection from anybody.

flags Option flags for this gateway. Currently the only valid bit flags are
VSERIAL_COOKED to strip out telnet control codes, or 0 to leave
it a raw data link.

RETURN VALUE

0: Success.
1: Failure.

LIBRARY

VSERIAL.LIB
336 TCP/IP User’s Manual

vserial_open

int vserial_open(int id, long baud, int port, long remote_host,
int flags, long retry);

DESCRIPTION

Opens a connection to a remote host and maintains it, starting the gateway process.

PARAMETERS

id ID of the gateway to change, as specified in the spec table.

baud The parameter to send to the open() serial port command; it’s usu-
ally the baud rate.

port The TCP port on the remote host to connect to.

remote_host The remote host to connect to.

flags Option flags for this gateway. Currently the only valid bit flags are
VSERIAL_COOKED to strip out telnet control codes, or 0 to leave
it a raw data link.

retry The retry time-out, in seconds. When a connection fails, or if the
connection was refused, we will wait this number of seconds before
retrying.

RETURN VALUE

0: Success.
1: Failure.

LIBRARY

VSERIAL.LIB
Chapter 10: Telnet 337

vserial_tick

int vserial_tick(void);

DESCRIPTION

Runs the telnet daemon - must be called periodically.

RETURN VALUE

0: Success;
1: Failure.

But call it periodically no matter the return value! An error message can be seen when
1 is returned if you define VSERIAL_DEBUG at the top of your program.

LIBRARY

VSERIAL.LIB
338 TCP/IP User’s Manual

10.2 Telnet (pre-Dynamic C 7.05)
The API available for telnet changed with Dynamic C version 7.05. This is the old API

10.2.1 Configuration Macros

SERIAL_PORT_SPEED

The baud rate of the serial port. Defaults to 115,200 bps.

TELNET_COOKED

#define this to have telnet control codes stripped out of the data stream.

This is useful if you are actually telneting to the device from another box. It should not
be defined if you are using two devices as a transparent bridge over the Ethernet.

10.2.2 API Functions

telnet_init

int telnet_init(int which, longword addy, int port);

DESCRIPTION

Initializes the connection. This function must not be called by an application program
starting with Dynamic C 7.05.

PARAMETERS

which Is one of the following:

TELNET_LISTEN—Listens on a port for incoming connections.

TELNET_RECONNECT—Connects to a remote host, and recon-
nects if the connection dies.

TELNET_CONNECT—Connects to a remote host, and terminates if
the connection dies.

addy IP address of the remote host, or 0 if we are listening.

port Port to bind to if we are listening, or the port of the remote host to
connect to.

RETURN VALUE

0: Success.
1: Failure.

LIBRARY

VSERIAL.LIB
Chapter 10: Telnet 339

telnet_tick

int telnet_tick(void);

DESCRIPTION

Must be called periodically to run the daemon.

RETURN VALUE

0: Success (call it again);
1: Failure; TELNET_CONNECT died, or a fatal error occurred.

LIBRARY

VSERIAL.LIB

telnet_close

void telnet_close(void);

DESCRIPTION

Terminates any connections currently open, and shuts down the daemon.

LIBRARY

VSERIAL.LIB
340 TCP/IP User’s Manual

10.2.3 An Example Telnet Server
The following code implements a telnet server. It listens on well-known port 23 for a connection
request. Data is passed transparently via serial port C.

#define MY_IP_ADDRESS "10.10.6.105"
#define MY_NETMASK "255.255.255.0"
#define MY_GATEWAY "10.10.6.19"
#define MY_NAMESERVER "10.10.6.19"

#define SERIAL_PORT_SPEED 115200 // Set serial port speed.

#undef TELNET_COOKED // This is a raw data port.

#memmap xmem
#use "dcrtcp.lib"
#use "vserial.lib"

#define SERVER_PORT 0 // Defaults to port 23.

main() {
sock_init(); // Initialize stack.

telnet_init(TELNET_LISTEN,0,SERVER_PORT); // Initialize server

while(!telnet_tick()) // Run server; this is non-blocking
continue;

telnet_close(); // Error, close telnet connection
}

Chapter 10: Telnet 341

10.2.4 An Example Telnet Client
This sample code implements a client that can connect to the above telnet server.

#define MY_IP_ADDRESS "10.10.6.106"
#define MY_NETMASK "255.255.255.0"
#define MY_GATEWAY "10.10.6.19"
#define MY_NAMESERVER "10.10.6.19"

#define SERIAL_PORT_SPEED 115200 // Must match server.

#undef TELNET_COOKED
#memmap xmem
#use "dcrtcp.lib"
#use "vserial.lib"

#define SERVER_PORT 0 // Defaults to port 23; must match server.

#define REM_HOST "10.10.6.19" // Remote IP to connect to.

main() {
sock_init(); // Initialize the stack

// Tell the server to connect and reconnect if the connection is lost
telnet_init(TELNET_RECONNECT,resolve(REM_HOST),SERVER_PORT);

while(!telnet_tick()) // Run client; this is non-blocking
continue;

telnet_close(); // Error, close telnet connection
}

342 TCP/IP User’s Manual

11. General Purpose Console

The library, zconsole.lib, implements a serial-based console that we call Zconsole. It can be
used to:

• Configure a board.

• Upload and download web pages.

• Change web page variables without re-uploading the page.

• Send e-mail.

• Calls subsystem initialization for ARP, TCP, UDP and DNS (if applicable).

11.1 Zconsole Features
Recognizing that embedded control systems are wide-ranging in their requirements, zcon-
sole.lib was designed with flexibility and extensibility in mind. Designers can choose the
available functionality they want and leave the rest alone. Zconsole includes:

• Login name and password protection.

• Default and custom Zconsole commands.

• Default and custom error messages.

• Help text for Zconsole commands, including custom commands

• Multiple I/O streams that can be used simultaneously.

• A fail-safe backup system for configuration data.

11.1.1 File System Requirement
Prior to Dynamic C 7.30, an application program using Zconsole must include the lines:

#use "filesystem.lib" // If using the improved file system available with
 // Dynamic C 7.05, substitute “fs2.lib” for “filesystem.lib”
#use "zconsole.lib"

Using the file system is no longer necessary.

11.1.2 TCP/IP and Zconsole
Dynamic C TCP/IP functionality may be used by a Zconsole application program by including the
statement

#use “dcrtcp.lib”

in the program. Other TCP/IP protocols may be added with #use statements of the appropriate
libraries.
Chapter 11: General Purpose Console 343

11.2 Login Name and Password
There is a sample program, Samples\tcpip\LOGINCONSOLE.C, that demonstrates the use
of the login name/password functionality for Zconsole. Zconsole command functions:
con_loginname(), con_loginpassword() and con_logout() are described in
Section 11.4.1.1 starting on page 347. The structure that saves the name and password information
can be backed up using the backup macro CONSOLE_BACKUP_LOGIN. Please see Section 11.7
starting on page 368 for details on the backup system.

11.3 Zconsole Commands and Messages
Zconsole is a command-driven application. A command is issued either at the keyboard using a
terminal emulator or a command is generated and sent from an attached machine. Zconsole carries
out the command, and either the message “OK” \r\n is returned, or an error is returned in the form
of:

ERROR XXXX This is an error message.\r\n

Note that the carriage return and new line characters (\r\n) are always returned by Zconsole
whether the command completed successfully or not.

11.3.1 Zconsole Command Data Structure
The command system is set up at compile time with an array of ConsoleCommand structures.
There is one array entry for each command recognized by Zconsole.

typedef struct {
char *command;
int (*cmdfunc)();
long helptext;

} ConsoleCommand

command
This field is a string like the following: “SET MAIL FROM.” That is, each word of the
command is separated by a space. The case of the command does not matter. Entering
this string is how the command is invoked.

cmdfunc
This field is a function pointer to the function that implements the command. The func-
tions that come with Zconsole are listed in Section 11.4.1.1 on page 347.

helptext
This field points to a text file. The text file contains help information for the associated
command. When HELP COMMAND is entered, this text file (the help information for
COMMAND) will be printed to Zconsole. The help text comes from #ximported text
files.
344 TCP/IP User’s Manual

 11.3.1.1 Help Text for General Cases
There are two cases in Zconsole.lib where help text is needed, but is not associated with a
particular command. It is still necessary to allocate a ConsoleCommand structure to access the
help text. The first case is the help overview given when HELP is entered by itself. The command
field should be ““ and the cmdfunc field should be NULL.

{ "", NULL, help_txt },

The second case is HELP SET. This is an overview of the family of SET commands, i.e., com-
mands that set configuration values. For HELP SET, the command field should be “SET” and the
cmdfunc field should be NULL.

{ "SET", NULL, help_set_txt },

This second case illustrates the general case of displaying help for a family of commands. The
family name can not be the name of a command.
Chapter 11: General Purpose Console 345

11.4 Zconsole Command Array
An array of ConsoleCommand structures must be defined in an application program as a con-
stant global variable named console_commands[]. All commands available at the console,
those provided in Zconsole.lib and custom commands, must have an entry in this array.

11.4.1 Zconsole Commands
The following is an example of a list of commands that may be defined in a Zconsole application.
When the command name {i.e., the string in the command field) is received by the console, the
function pointed to in the cmdfunc field is executed. When the console receives the command,
HELP <command name>, the text file located at physical address helptext will be displayed.

const ConsoleCommand console_commands[] =
{

{ "HELLO WORLD", hello_world, 0 },
{ "ECHO", con_echo, help_echo_txt },
{ "HELP", con_help, help_help_txt },
{ "", NULL, help_txt },
{ "SET", NULL, help_set_txt },
{ "SET PARAM", con_set_param, 0 },
{ "SET IP", con_set_ip, help_set_txt },
{ "SET NETMASK", con_set_netmask, help_set_txt },
{ "SET GATEWAY", con_set_gateway, help_set_txt },
{ "SET NAMESERVER", con_set_nameserver, help_set_txt },
{ "SET MAIL", NULL, help_set_mail_txt },
{ "SET MAIL SERVER", con_set_mail_server, help_set_mail_server_ txt },
{ "SET MAIL FROM", con_set_mail_from, help_set_mail_from_txt },
{ "SHOW", con_show, help_show_txt },
{ "PUT", con_put, help_put_txt },
{ "GET", con_get, help_get_txt },
{ "DELETE", con_delete, help_delete_txt },
{ "LIST", NULL, help_list_txt },
{ "LIST FILES", con_list_files, help_list_txt },
{ "LIST VARIABLES", con_list_variables, help_list_txt },
{ "CREATEV", con_createv, help_createv_txt },
{ "PUTV", con_putv, help_putv_txt },
{ "GETV", con_getv, help_getv_txt },
{ "MAIL", con_mail, help_mail_txt },
{ "RESET FILES", con_reset_files, 0 }
{ "RESET VARIABLES”, con_reset_variables, help_reset_variables }

};
346 TCP/IP User’s Manual

 11.4.1.1 Default Command Functions
The following functions are provided in Zconsole.lib. Each one takes a pointer to a Con-
soleState structure as its only parameter, following the prototype for custom functions
described in Section 11.4.1.2 on page 352. Each of these functions return 0 when it has more pro-
cessing to do (and thus will be called again), 1 for successful completion of its task, and -1 to
report an error.

Parameters needed by the commands using these functions are passed on the command line.

con_add_nameserver()
This function adds a name server to the list of name servers (unlike con_set_nameserver()
that clears the list of name servers and adds one name server). A command that use this function
takes one parameter: the IP address of the name server in dotted quad notation.

con_createv()
This function creates a variable that can be used with SSI commands in SHTML files. Certain SSI
commands can be replaced by the value of this variable, so that a web page can be dynamically
altered without re-uploading the entire page. Note, however, that the value of the variable is not
preserved across power cycles, although the variable entry is still preserved. That is, the value of
the variable may change after a power cycle. It can be changed again, though, with a putv com-
mand. It works in the following fashion (if the command is called “CREATEV”):

usage: "createv <varname> <vartype> <format> <value> [strlen]"

A web variable that can be referenced within web files is created.

<varname> is the name of the variable

<vartype> is the type of the variable (INT8, INT16, INT32, FLOAT32, or STRING)

<format> is the printf-style format specifier for outputting the variable (such as "%d")

<value> is the value to assign the variable.

[strlen] is only used if the variable is of type STRING. It is used to give the maximum
length of the string.

con_delete()
This function deletes a file from the file system. A command that uses this function takes one
parameter: the name of the file to delete.

con_echo()
This function turns on or off the echoing of characters on a particular I/O stream. That is, it does
not affect echoing globally, but only for the I/O stream on which it is issued. A command that uses
this function takes one parameter: ON | OFF.
Chapter 11: General Purpose Console 347

con_get()
This function displays a file from the file system. It works in the following fashion (if the com-
mand is called “GET”):

• ASCII mode: usage: "get <filename>"

The file is then sent, followed by the usual OK message.

• BINARY mode: usage: "get <filename> <size in bytes>"

The message "LENGTH <len>" will be sent, indicating length of the file to be sent, and
then the file will be sent, but not more than <size in bytes> bytes.

con_getv()
This function displays the value of the given variable. The variable is displayed using the printf-
style format specifier given in the createv command. A command that uses this function takes
one parameter: the name of the variable.

con_help()
This function implements the help system for Zconsole. A command that uses this function takes
one parameter: the name of another command. Zconsole outputs the associated help text for the
requested command. The help text is the text file referenced in the third field of the Console-
Command structure.

con_list_files()
This function lists the files in the file system and their file sizes. A command that uses this func-
tion takes no parameters.

con_list_variables()
This function displays the names and types of all variables. A command that uses this function
takes no parameters.

con_loginname()
This function stores an identifier that will be remembered across power cycles (with battery-
backed RAM). The existence of the identifier will be used to prompt the user of a new console ses-
sion. Before console access to the controller is allowed, a valid identifier must be entered in
response to the prompt. A command that uses this function takes one parameter: an identifier that
will be used as the login name.
348 TCP/IP User’s Manual

con_loginpassword()
This function stores an identifier that will be remembered across power cycles (with battery-
backed RAM). The existence of the identifier will be used to prompt the user for a password after
a login name has been entered. Before console access to the controller is allowed, a valid identifier
must be entered in response to the prompt. A command that uses this function takes no parameters
on the command line, but requires a series of user inputs in response to prompts. In the following
screen shot, the command is named “login password,” and is typed in by the user. All other screen
text shown here was printed by Zconsole.

If no identifier is stored for the password, a <CR> must be sent in response to the prompt for the
old password.

NOTE: A login name must be stored by a command using con_loginname()for a login
password to be applicable, i.e., if a password has been stored but no login name, new con-
sole sessions will not prompt for the password or a login name. If a login name is applica-
ble, but there is no password, new console sessions will prompt for the login name and grant
access after a valid name is entered without prompting for a password.

con_logout()
This function exits the current console session and begins a new session by entering the initializa-
tion state of Zconsole. A command that uses this function takes no parameters.

con_mail()
This function sends e-mail to the server specified by con_mail_server(), with the return
address specified by set_mail_from(). A command that uses this function takes one parame-
ter: the destination e-mail address. If the command is named mail, the usage is:

 "mail destination@where.com"

The first line of the message will be used as the subject, and the other lines are the body. The body
is terminated with a ^D or ^Z (0x04 or 0x1A).
Chapter 11: General Purpose Console 349

con_put()
This function creates a new file in the file system for use with the HTTP server. It works in the fol-
lowing fashion (if the command is called “PUT”):

• ASCII mode: usage: "put <filename>"
The file is then sent, terminating with a ^D or ^Z (0x04 or 0x1A).

• BINARY mode: usage: "put <filename> <size in bytes>"
The file is then sent, and must be exactly the specified number of bytes in length.

Note that ASCII mode is only useful for text files, since the console will ignore non-displayable
characters. In binary mode, the put command will time out after CON_TIMEOUT seconds of inac-
tivity (60 by default).

con_putv()
This function updates the value of a variable. A command that uses this function takes two param-
eters: the name of the variable, and the new value for the variable.

con_reset_files()
This function removes all web files.

con_reset_variables()
This function removes all web variables.

con_set_dhcp()
This function turns DHCP configuration for an interface "on" or "off." Currently this command
only works with the default interface. After DHCP has been turned on, ZConsole will undertake
reacquiring the lease should it be dropped. (For example, a lease might be dropped if the DHCP
server is unavailable for an extended period of time.)

con_set_gateway()
This function changes the gateway of the board. A command that uses this function takes one
parameter: the new gateway in dotted quad notation, e.g., 192.168.1.1.

con_set_icmp_config()
This function configures an interface to use directed ICMP echo request (ping) packets for config-
uration. A command that uses this function takes two parameters. The first is "on" or "off" to turn
this feature on or off. The second parameter is optional, and specifies the intended interface
(ETH0 or ETH1). Only non-PPPoE Ethernet may be used for ping configuration.

con_set_icmp_config_reset()
Normally, when an interface has been configured via a directed ping packet, further configuration
via a directed ping packet is disabled (until the next power cycle). This function allows the inter-
face to be configured via a ping packet again. A command that uses this function takes an optional
interface argument (ETH0 or ETH1).

con_set_ip()
This function changes the IP address of the board. A command that uses this function takes one
parameter: the new IP address in dotted quad notation, e.g., 192.168.1.112.
350 TCP/IP User’s Manual

con_set_param()
This function sets the parameter for the current I/O device. Depending on the I/O device, this
value could be a baud rate, a port number or a channel number. A command that uses this function
takes one parameter: the value for the I/O device parameter.

con_set_mail_from()
This function sets the return address for all e-mail messages. This address will be added to the out-
going e-mail and should be valid in case the e-mail needs to be returned. A command that uses this
function takes one parameter: the return address.

con_set_mail_server()
This functions identifies the SMTP server to use. A command that uses this function takes one
parameter: the IP address of the SMTP server.

con_set_nameserver()
This function changes the name server for the board. A command that uses this function takes one
parameter: the IP address of the new name server in dotted quad notation, e.g., 192.168.1.1.

con_set_netmask()
This function changes the netmask of the board. A command that uses this function takes one
parameter: the new netmask in dotted quad notation, e.g., 255.255.255.0.

con_set_tcpip_debug()
This function is intended to aid in development and debugging. A command that uses this function
takes one parameter: the numerical level of debugging messages. The higher the number, the more
verbose the TCP/IP debugging messages will be.

con_show()
This function displays the current configuration of the board (IP address, netmask, and gateway).
If the developer’s application has configuration options she would like to show other than the IP
address, netmask, and gateway, she will probably want to implement her own version of the show
command. The new show command can be modelled after con_show() in ZConsole.lib. A
command that uses this function takes no parameters.

con_show_multi()
Like the con_show() function, this function shows the current console configuration. This com-
mand will, however, show more network configuration than is available via con_show().

Interface-specific configuration information is separated out. A command that uses this function
takes an optional parameter (ETH0, ETH1, PPP0, PPP1, PPP2, etc.) to display the interface spe-
cific configuration for the specified interface. If the optional parameter is missing, the current con-
sole configuration for all valid interfaces is displayed.
Chapter 11: General Purpose Console 351

 11.4.1.2 Custom Zconsole Commands
Developers are not limited to the default commands. A custom command is easy to add to Zcon-
sole; simply create an entry for it in console_commands[]. The three fields of this entry were
described in Section 11.3.1. The first field is the name of the command. The second field is the
function that implements the command. This function must follow this prototype:

int function_name (ConsoleState *state);

The parameter passed to the function is a structure of type ConsoleState. Some of the fields in
this structure must be manipulated by your custom command function, other fields are used by
Zconsole.lib and must not be changed by the your program.

typedef struct {
int console_number;
ConsoleIO *conio;
int state;
int laststate;

char command[CON_CMD_SIZE];
char *cmdptr;
char buffer[CON_BUF_SIZE]; // Use for reading in data.
char *bufferend; // Use for reading in data.

ConsoleCommand *cmdspec;
int sawcr;
int sawesc;
int echo; // Check if echo is enabled, or change it.
int substate;
unsigned int error;
int numparams; // Number of parameters on command line.
int commandparams; // Number of commands issued on cmd line
char cmddata[CON_CMD_DATA_SIZE];

#ifndef CON_NO_FS_SUPPORT // File processing not needed with DC 7.30
FileNumber filenum; // Use for file processing.
File file; // Use for file processing.

#endif

int spec; // Use for working with Zserver entities
long timeout; // Use for extending the time out.

} ConsoleState;

#endif

To accomplish its tasks, the function should use state->substate for its state machine
(which is initialized to zero before dispatching the command handler), and state->command to
read out the command buffer (to get other parameters to the command, for instance). In case of
error, the function should set state->error to the appropriate value.

The buffer at state->cmddata is available for the command to preserve data across invoca-
tions of the command’s state machine. The size of the buffer is adjustable via the
CON_CMD_DATA_SIZE macro (set to 16 bytes by default). Generally this buffer area will be cast
into a data structure appropriate for the given command state machine.
352 TCP/IP User’s Manual

Both state->numparams and state->commandparams are read-only. The latter was
introduced in Dynamic C 7.30. It indicates the number of arguments in the command line that are
NOT part of the command name itself. For instance, for the command

SET IP 10.10.6.112 ETHO

state->commandparams would be 2, but state->numparams would be 4. This distinc-
tion is made to allow the commands in Zconsole to be insensitive to the number of words that
make up the name of the command itself, but still maintain backwards compatibility with custom
commands that use state->numparams.

The function that implements the custom command should return 0 when it has more processing to
do (and thus will be called again), 1 for successful completion of its task, and -1 to report an error.

The third and final field of the console_commands[] entry is the physical address of the help
text file for the custom command in question. This file must be #ximported, along with all of
the default command function help files that are being used.

IMPORTANT: The fields discussed in the previous paragraph and the fields that
have comments in the structure definition are the only ones that an application
program should change. The other fields must not be changed.

11.4.2 Zconsole Error Messages
ZCONSOLE.LIB provides a list of default error messages for the default Zconsole commands. An
application program must define an array for these error messages, as well as for any custom error
messages that are desired. To include only the default error messages, the following array is suffi-
cient:

const ConsoleError console_errors[] = {
CON_STANDARD_ERRORS // includes all default error messages

}

Chapter 11: General Purpose Console 353

 11.4.2.1 Default Error Messages
These are the error codes for the default error messages and the text that will be displayed by the
console if the error occurs.

#define CON_ERR_TIMEOUT 1
#define CON_ERR_BADCOMMAND 2
#define CON_ERR_BADPARAMETER 3
#define CON_ERR_NAMETOOLONG 4
#define CON_ERR_DUPLICATE 5
#define CON_ERR_BADFILESIZE 6
#define CON_ERR_SAVINGFILE 7
#define CON_ERR_READINGFILE 8
#define CON_ERR_FILENOTFOUND 9
#define CON_ERR_MSGTOOLONG 10
#define CON_ERR_SMTPERROR 11
#define CON_ERR_BADPASSPHRASE 12
#define CON_ERR_CANCELRESET 13
#define CON_ERR_BADVARTYPE 14
#define CON_ERR_BADVARVALUE 15
#define CON_ERR_NOVARSPACE 16
#define CON_ERR_VARNOTFOUND 17
#define CON_ERR_STRINGTOOLONG 18
#define CON_ERR_NOTAFILE 19
#define CON_ERR_NOTAVAR 20
#define CON_ERR_COMMANDTOOLONG 21
#define CON_ERR_BADIPADDRESS 22
#define CON_ERR_INVALIDPASSWORD 23
#define CON_ERR_BADIFACE 24
#define CON_ERR_BADNETWORKPARAM 25
354 TCP/IP User’s Manual

#define CON_STANDARD_ERRORS \
{CON_ERR_TIMEOUT, "Timed out." },\
{CON_ERR_BADCOMMAND, "Unknown command." },\
{CON_ERR_BADPARAMETER, "Bad or missing parameter." },\
{CON_ERR_NAMETOOLONG, "Filename too long." },\
{CON_ERR_DUPLICATE, "Duplicate object found." },\
{CON_ERR_BADFILESIZE, "Bad file size." },\
{CON_ERR_SAVINGFILE, "Error saving file." },\
{CON_ERR_READINGFILE, "Error reading file." },\
{CON_ERR_FILENOTFOUND, "File not found." },\
{CON_ERR_MSGTOOLONG, "Mail message too long." },\
{CON_ERR_SMTPERROR, "SMTP server error." },\
{CON_ERR_BADPASSPHRASE, "Passphrases do not match!" },\
{CON_ERR_CANCELRESET, "Reset cancelled." },\
{CON_ERR_BADVARTYPE, "Bad variable type." },\
{CON_ERR_BADVARVALUE, "Bad variable value." },\
{CON_ERR_NOVARSPACE, "Out of variable space." },\
{CON_ERR_VARNOTFOUND, "Variable not found." },\
{CON_ERR_STRINGTOOLONG, "String too long." },\
{CON_ERR_NOTAFILE, "Not a file." },\
{CON_ERR_NOTAVAR, "Not a variable." },\
{CON_ERR_COMMANDTOOLONG, "Command too long." },\
{CON_ERR_BADIPADDRESS, "Bad IP address." },
{CON_ERR_INVALIDPASSWORD, "Invalid Password.", },\
{CON_ERR_BADIFACE, "Bad interface name." },\
{CON_ERR_BADNETWORKPARAM, "Error setting network parameter."}

 11.4.2.2 Custom Error Messages
Developers can create their own error messages by following the format of the default error mes-
sages. The error code numbers should be greater than 1,000 to save room for expansion of built-in
error messages.

#define NEW_ERROR 1001

const ConsoleError console_errors[] = {
CON_STANDARD_ERRORS, // includes all default error messages
{ NEW_ERROR, "Any error message I want." }

}

The default error messages should be included in console_errors[] along with any custom
error messages that are used since the commands that come with Zconsole.lib each expect
their own particular error message.
Chapter 11: General Purpose Console 355

11.5 Zconsole I/O Interface
Multiple I/O methods are supported, as well as the ability to add custom I/O methods. An array of
ConsoleIO structures must be defined in the application program and named console_io[].
This structure holds handlers for common I/O functions for the I/O method.

typedef struct {
long param; // Baud for serial, port for telnet, etc.
int (*open) ();
void (*close)();
int (*tick) ();
int (*puts) ();
int (*rdUsed) ();
int (*wrUsed) ();
int (*wrFree) ();
int (*read) ();
int (*write) ();

} ConsoleIO;

11.5.1 How to Include an I/O Method
Each supported I/O method is determined at compile time, i.e., each supported I/O method must
have an entry in console_io[].

11.5.2 Predefined I/O Methods
Several predefined I/O methods are in Zconsole.lib. They will be included by entering their
respective macros in console_io[].

const ConsoleIO console_io[] = {
CONSOLE_IO_SERA(baud rate),
CONSOLE_IO_SERB(baud rate),
CONSOLE_IO_SERC(baud rate),
CONSOLE_IO_SERD(baud rate),
CONSOLE_IO_SP(channel number),
CONSOLE_IO_TELNET(port number),

}

The macros expand to the appropriate set of pre-defined handler functions, e.g.,

#define CONSOLE_IO_SERA(param) { param, serAopen, serAclose,
NULL, conio_serAputs, serArdUsed, serAwrUsed, serAwrFree,
serAread, serAwrite}

 11.5.2.1 Serial Ports
There are predefined I/O methods for all four of the serial ports on a Rabbit board. The baud rate is
set by passing it to the macro. See above.

 11.5.2.2 Telnet
Zconsole runs a telnet server. The port number is passed to the macro CONSOLE_IO_TELNET.
The user telnets to the controller that is running the console.
356 TCP/IP User’s Manual

 11.5.2.3 Slave Port
The Rabbit slave port is an 8-bit bidirectional data port. Zconsole runs on the slave processor. Two
drivers are needed.

 11.5.2.3.1 Slave Port Driver
The slave port driver is implemented by SLAVE_PORT.LIB. For an application to use the slave
port:

• The driver must be installed by including the library in the program.
• A call to SPinit(mode) must be made to initialize the driver.
• A function to process Zconsole commands sent to the slave port must be provided.

The slave port has 256 channels, separate port addresses that are independent of one another. A
handler function for each channel that is used must be provided. For details on how to do this,
please see the Dynamic C User’s Manual.

A stream-based handler, SPShandler(), to process Zconsole commands for the slave is pro-
vided in SP_STREAM.LIB. The handler is set up automatically by the console when the slave
port I/O method is included. The macro, CONSOLE_IO_SP, expands to the I/O functions defined
in SP_STREAM.LIB.

 11.5.2.3.2 Master Connected to Rabbit Slave Port
The master controller board can be another Rabbit processor or something else.

The master also needs a driver for its end of the slave port connection. An example of the software
needed on the master is given in MASTER_SERIAL.LIB. The software on the master controller
is, of course, specific to the task at hand. In the example driver provided, most of the work is done
by the slave, making minimal changes necessary to the code on the master.

 11.5.2.4 Custom I/O Methods
To define a custom I/O method, you must add a structure of type ConsoleIO to
console_io[]. This structure holds the common handler functions for the I/O method. The
tick function may have a NULL pointer, but the rest of the function pointers must be valid pointers
to functions.

11.5.3 Multiple I/O Streams
Each I/O method has its own state machine in Zconsole. That means that each I/O method is inde-
pendent of the others and they can all be used simultaneously. This imposes the important restric-
tion that all command handlers be able to run simultaneously on different I/O streams or support
proper locking for functions that cannot be performed simultaneously.
Chapter 11: General Purpose Console 357

11.6 Zconsole Execution
Normally, Zconsole will communicate over a serial link. The physical connection will differ
slightly from board to board. Basically, you will need a 3 wire (GND, RXD, TXD) serial cable.
Several initialization steps must be taken at the beginning of an application program to execute the
console.

11.6.1 File System Initialization
Prior to Dynamic C 7.30, Zconsole depended on the flash file system included with Dynamic C.
There are actually two file systems: FS1 was the first Dynamic C file system. The second one, FS2
(introduced with Dynamic C 7.05), is an improved file system.

Besides defining the macro that directs the file system to EEPROM memory and including the
appropriate library, i.e.,

#define FS_FLASH
#use "filesystem.lib" // If using the improved file system available with
 // Dynamic C 7.05, substitute “fs2.lib” for “filesystem.lib”

the application program must initialize the file system with a call to fs_init(). Starting with
Dynamic C 7.30 none of this is necessary because Zconsole saves configuration information to the
User block. See the Rabbit 2000 Microprocessor User’s Manual or the Rabbit 3000 Microproces-
sor User’s Manual for more information about the User block.

11.6.2 Serial Buffers
If the pre-defined serial I/O methods are used, the circular buffers used for I/O data can be resized
from their default values of 31 bytes by using macros. For example, if CONSOLE_IO_SERIALC
is included in console_io[], then lines similar to the following can be in the application pro-
gram:

#define CINBUFSIZE 1023
#define COUTBUFSIZE 255

In general, these buffers can be smaller for slower baud rates, but must be larger for faster baud
rates.

11.6.3 Using TCP/IP
To use the TCP/IP functionality of Zconsole you must have the following line in your application
program:

#use “dcrtcp.lib”

If you are serving web pages you must also include http.lib, and if you are sending e-mail you
must include smtp.lib.
358 TCP/IP User’s Manual

11.6.4 Required Zconsole Functions
To run the console, the following two functions are required.

console_init

int console_init(void);

DESCRIPTION

This function will initialize Zconsole data structures. It must be called before
console_tick() is called for the first time. This function also loads the configura-
tion information from the file system.

RETURN VALUE

0: Success;
1: No configuration information found.

<0: Indicates an error loading the configuration data;
-1 indicates an error reading the 1st set of information,
-2 the 2nd set, and so on.

LIBRARY

zconsole.lib

console_tick

void console_tick(void);

DESCRIPTION

This function needs to be called periodically in an application program to allow Zconsole
time for processing.

LIBRARY

zconsole.lib
Chapter 11: General Purpose Console 359

11.6.5 Useful Zconsole Function
Most of the following functions are only useful for creating custom commands.

con_backup

int con_backup(void);

DESCRIPTION

This function backs up the current configuration.

RETURN VALUE

0: Success
1: Failure

LIBRARY

zconsole.lib

SEE ALSO

con_backup_reserve, con_load_backup

con_backup_bytes

long con_backup_bytes(void);

DESCRIPTION

Returns the number of bytes necessary for each backup configuration file. Note that
enough space for two of these files needs to be reserved. This function is most useful
when ZCONSOLE.LIB is being used with FS2.LIB.

RETURN VALUE

Number of bytes needed for a backup configuration file.

LIBRARY

zconsole.lib

SEE ALSO

con_backup_reserve
360 TCP/IP User’s Manual

con_backup_reserve

void con_backup_reserve(void);

DESCRIPTION

Reserves space for the configuration information in the file system. For more information
on the file system see the Dynamic C User’s Manual.

LIBRARY

zconsole.lib

SEE ALSO

con_backup, con_load_backup, con_backup_bytes

con_chk_timeout

int con_chk_timeout(unsigned long timeout);

DESCRIPTION

Checks whether the given timeout value has passed.

RETURN VALUE

0: Timeout has not passed
!0: Timeout has passed

LIBRARY

zconsole.lib

SEE ALSO

con_set_timeout
Chapter 11: General Purpose Console 361

con_load_backup

int con_load_backup(void);

DESCRIPTION

Loads the configuration from the file system.

RETURN VALUE

0: Success
1: No configuration information found

<0: Failure
-1: error reading 1st set of information
-2: error reading 2nd set of information, and so on

LIBRARY

zconsole.lib

SEE ALSO

con_backup, con_backup_reserve

con_reset_io

void con_reset_io(void);

DESCRIPTION

Resets all I/O methods by calling close() and open() on each of them.

LIBRARY

zconsole.lib
362 TCP/IP User’s Manual

con_set_backup_lx

void con_set_backup_lx(FSLXnum backuplx);

DESCRIPTION

Sets the logical extent (LX) that will be used to store the backup configuration data. For more
information on the file system see the Dynamic C User’s Manual. This is only useful in conjunc-
tion with FS2.LIB. This should be called once before console_init(). Care should be
taken that enough space is available in this logical extent for the configuration files. See
con_backup_bytes() for more information.

PARAMETER

backuplx LX number to use for backup

LIBRARY

zconsole.lib

SEE ALSO

con_set_files_lx, con_backup_bytes

con_set_files_lx

void con_set_files_lx(FSLXnum fileslx);

DESCRIPTION

Sets the logical extent (LX) that will be used to store files. For more information on the
file system see the Dynamic C User’s Manual. This is only useful in conjunction with
FS2.LIB. This should be called once before console_init().

PARAMETER

fileslx LX number to use for files.

LIBRARY

zconsole.lib

SEE ALSO

con_set_backup_lx
Chapter 11: General Purpose Console 363

con_set_user_idle

void con_set_user_idle(void (*funcptr)());

DESCRIPTION

Sets a user-defined function that will be called when the console (for a particular I/O
channel) is idle. The user-defined function should take an argument of type
ConsoleState* .

LIBRARY

zconsole.lib

SEE ALSO

con_set_user_timeout

con_set_timeout

unsigned long con_set_timeout(unsigned int seconds);

DESCRIPTION

Returns the value that MS_TIMER should have when the number of seconds given have
elapsed.

LIBRARY

zconsole.lib

SEE ALSO

con_chk_timeout
364 TCP/IP User’s Manual

con_set_user_timeout

void con_set_user_timeout(void (*funcptr)());

DESCRIPTION

Sets a user-defined function that will be called when a timeout event has occurred. The
user-defined function should take an argument of type ConsoleState*.

LIBRARY

zconsole.lib

SEE ALSO

con_set_user_idle

console_disable

void console_disable(int which);

DESCRIPTION

Disable processing for the designated console in the console_io[] array. This func-
tion, along with console_enable(), allows the sharing of the Zconsole port with
some other processing.

PARAMETER

which The console to disable.

LIBRARY

zconsole.lib

SEE ALSO

console_init, console_enable
Chapter 11: General Purpose Console 365

console_enable

void console_enable(int which);

DESCRIPTION

Enable processing for the designated console in the console_io[] array. This func-
tion, along with console_disable(), allows the sharing of the Zconsole port with
some other processing.

PARAMETER

which The console to enable.

LIBRARY

zconsole.lib

SEE ALSO

console_init, console_disable
366 TCP/IP User’s Manual

11.6.6 Zconsole Execution Choices
Zconsole can be used interactively with a terminal emulator or by sending commands from a pro-
gram running on a device connected to the controller that is running the console.

 11.6.6.1 Terminal Emulator
To manually enter Zconsole commands from a keyboard and view results in the Stdio window you
must:

1. Run Dynamic C 7.05 or later.

2. Open a terminal emulator. Windows HyperTerminal comes with Windows. It does not work
with binary files, only ASCII. Tera Term can handle both ASCII and binary. It is available for
free download at

http://hp.vector.co.jp/authors/VA002416/teraterm.html

3. Configure the terminal emulator as follows:

COM port: (1 or 2) to which 3-wire serial cable is connected
Baud Rate: 57,600 bps
Data Bits: 8
Parity: None
Stop Bits: 1
Flow Control: None

The terminal emulator should now accept Zconsole commands.

To avoid losing a <LF> at the beginning of a file when using the con_put command function,
select Setup->Terminal from the Tera Term menu and set the Transmit option to CR+LF. This
option might be located elsewhere if you are using a different terminal emulator.
Chapter 11: General Purpose Console 367

http://hp.vector.co.jp/authors/VA002416/teraterm.html

11.7 Backup System
Zconsole can save configuration parameters to the file system or, starting with Dynamic C 7.30, to
the User block. The configuration is then available across power cycles. The backup process is
done by con_backup(). Unlike the other Zconsole command functions, con_backup()
does not take a parameter and it returns 0 if the backup was successful and 1 if it was not. This
function is called by several of the Zconsole command functions that change configuration param-
eters, or that add or delete files or variables from the file system. Caution is advised when calling
con_backup() since it writes to flash memory.

11.7.1 Data Structure for Backup System
The developer must define an array called console_backup[] of ConsoleBackup struc-
tures.

typedef struct {

void *data;
int len;
void (*postload)();
void (*presave)();

} ConsoleBackup;

data
This is a pointer to the data to be backed up.

len
This is how many bytes of data need to be backed up.

postload
This is a function pointer to a function that is called after configuration data is loaded, in case the
developer needs to do something with the newly loaded configuration data.

presave
This is a function pointer that is called just before the configuration data is saved so that the devel-
oper can fill in the data structure to be saved. The functions referenced by postload() and
presave() should have the following prototype:

void my_preload(void *dataptr);

The dataptr parameter is the address of the configuration data (the same as the data pointer in
the ConsoleBackup structure).
368 TCP/IP User’s Manual

11.7.2 Array Definition for Backup System
const ConsoleBackup console_backup[] = {

CONSOLE_BASIC_BACKUP, // echo state, baud rate/port number
CONSOLE_TCPIP_BACKUP,
CONSOLE_TCP_MULTI_BACKUP,
CONSOLE_HTTP_BACKUP,
CONSOLE_SMTP_BACKUP,
CONSOLE_BACKUP_LOGIN,
{ my_data, my_data_len, my_preload, my_presave }

}

CONSOLE_BASIC_BACKUP
Causes backup of the echo state (on or off), baud rate and port number information.

CONSOLE_TCPIP_BACKUP
Causes backup of the IP addresses of the controller board and the IP address of its net-
mask, gateway and name server.

Note that only one of the CONSOLE_TCP_* structures should be used.

CONSOLE_TCP_MULTI_BACKUP
Using this structure causes ifconfig() to save and restore network configuration. In
addition to the information saved by CONSOLE_TCP_BACKUP, multiple name servers,
DHCP configuration, ICMP (Ping) configuration, and multiple interface configuration
are all saved by CONSOLE_TCP_MULTI_BACKUP.

Some built-in console functions are for use with CONSOLE_TCP_MULTI_BACKUP. In
general, except for backwards compatibility issues, CONSOLE_TCP_MULTI_BACKUP
should be used instead of CONSOLE_TCP_BACKUP.

Note that only one of the CONSOLE_TCP_* structures should be used.

CONSOLE_HTTP_BACKUP
Causes backup of the files and variables visible to the HTTP server.

CONSOLE_SMTP_BACKUP
Causes backup of the mail configuration.

CONSOLE_BACKUP_LOGIN
Causes backup of the ConsoleLogin structure which stores the login name and pass-
word strings.
Chapter 11: General Purpose Console 369

11.8 Zconsole Macros
Many macros are available to change the behavior of Zconsole. They are all listed here. Starting
with Dynamic C 7.30 additional macros are available to support saving configuration information
to the User block, DHCP, ping configuration, and multiple interfaces.

CON_BACKUP_FILE1
The file number used for the first backup file. For FS1, this number must be in the range
128-143, so that fs_reserve_blocks() can be used to guarantee free space for the
backup files. Defaults to 128 for FS1. Defaults to 254 for FS2.

CON_BACKUP_FILE2
Same as above, except this is for the second backup file. Two files are used so that con-
figuration information is preserved even if the power cycles while configuration data is
being saved. For FS1, this number must be in the range 128-143. Defaults to 129 for FS1.
Defaults to 255 for FS2.

CON_BACKUP_USER_BLOCK
Defaults to not defined. If this is defined, then configuration information for the console
will be saved to the User block instead of to the flash file system. Note that the configu-
ration is only safe in the case of power failures with a version 3 or higher System ID
block.

CON_BUF_SIZE
Changes the size of the data buffer that is allocated for each I/O method. If the baud rate
or transfer speed is too great for the console to keep up, then increasing this value may
help avoid dropped characters. It is allocated in root data space. It defaults to 1024 bytes.

CON_CMD_SIZE
Changes the size of the command buffer that is allocated for each I/O method. This limits
the length of a command line. It is allocated in root data space. Defaults to 128 bytes.

CON_CMD_DATA_SIZE
Default is 16. Adjusts the size of the user data area within the state structure so that user
commands may preserve arbitrary information across calls. The user data area is allocat-
ed in root data space.

CON_DHCP_ACQUIRE_RETRY_TIMEOUT
Defaults to 120 seconds. If DHCP is enabled, then Zconsole will maintain the DHCP
lease. This macro specifies the number of seconds after which a DHCP lease has been
dropped that the board will attempt to reacquire the lease. Note that in the normal course
of operation, a lease will never be dropped. Generally, that will only happen if the DHCP
server is inoperable for an extended period of time (subject to the lengths of the leases
that the DHCP server issues).
370 TCP/IP User’s Manual

CON_HELP_VERSION
This macro should be defined if the developer wants a version message to be displayed
when the HELP command is issued with no parameters. If this macro is defined, then the
macro CON_VERSION_MESSAGE must also be defined.

CON_INIT_MESSAGE
Defines the message that is displayed on all Zconsole I/O methods upon startup. Defaults
to “Console Ready\r\n”.

CON_MAIL_BUF_SIZE
Maximum length of a mail message. Defaults to 1024.

CON_MAIL_FROM_SIZE
Maximum length of mail from address to NULL terminator. Default to 51.

CON_MAIL_SERV_SIZE
Maximum length of mail server name and NULL terminator. Defaults to 51.

CON_MAX_NAME
Default is 10: maximum number of characters for a login name. This value must be equal
to or less than CON_CMD_DATA_SIZE.

CON_MAX_PASSWORD
Default is 10: maximum number of characters for a login password.

CON_NO_FS_SUPPORT
This macro is defined by default only if no filesystem libraries have been used. Even if a
filesystem library has been used, this can still be explicitly defined by the user. When this
is defined, then the console will not save configuration information to the filesystem, and
no filesystem function calls will be included.

CON_SP_RDBUF_SIZE
Size of the slave port read buffer. Defaults to 255.

CON_SP_WRBUF_SIZE
Size of the slave port write buffer. Defaults to 255.

CON_TIMEOUT
Adjusts the number of seconds that the console will wait before cancelling the current
command. The timeout can be adjusted in user code in the following manner:

state->timeout = con_set_timeout(CON_TIMEOUT);

This is useful for custom user commands so that they can indicate when something
“meaningful” has happened on the console (such as some data being successfully trans-
ferred).
Chapter 11: General Purpose Console 371

CON_VAR_BUF_SIZE
Adjusts the size of the variable buffer, in which values of variables can be stored for use
with the HTTP server. It is allocated in xmem space. Defaults to 1024 bytes.

CON_VERSION_MESSAGE
This defines the version message to display when the HELP command is issued with no
parameters. It is not defined by default, so has no default value.
372 TCP/IP User’s Manual

11.9 Sample Program
The sample program Samples\zconsole\tcpipconsole.c demonstrates many of the
features of zconsole.lib. Among the features this application supports is network configura-
tion, uploading web pages, changing variables for use with web pages, sending mail, and access to
the console through a telnet client. Please note that all libraries needed by zconsole.lib must
be included with #use statements before the #use statement for the Zconsole library.

The following code is taken from tcpipconsole.c.

/*
 * Size of the buffers for serial port C. If you want to use another serial port, you should
 * change the buffer macros below appropriately (and change the console_io[] array below).
 */
#define CINBUFSIZE 1023
#define COUTBUFSIZE 255

/*
 * Maximum number of connections to the web server. This indicates the number of sockets
 * that the web server will use.
 */
#define HTTP_MAXSERVERS 2

/*
 * Maximum number of sockets this program can use. The web server is taking two sockets:
 * the mail client uses one socket, and the telnet interface uses the other socket.
 */
#define MAX_SOCKETS 4

/*
 * All web server content is dynamic, so we do not need http_flashspec[].
 */
#define HTTP_NO_FLASHSPEC

/*
 * The file system that the console uses should be located in flash.
 */
#define FS_FLASH

/*
 * The function prototype for a custom command must be declared before the
 * console_command[] array.
 */
int hello_world (ConsoleState *state);
Chapter 11: General Purpose Console 373

The following code is for Zconsole configuration.

/*
 * The number of console I/O streams that this program supports. Since we are supporting
 * serial port C and telnet, there are two I/O streams.
 */
#define NUM_CONSOLES 2

/*
 * If this macro is defined, then the version message will be shown with the help command,
 * when the help command has no parameters.
 */
#define CON_HELP_VERSION

/*
 * Defines the version message that will be displayed in the help command if
 * CON_HELP_VERSION is defined.
 */
#define CON_VERSION_MESSAGE "TCP/IP Console Version 1.0\r\n"

/*
 * Defines the message that is displayed on all I/O channels when the console starts.
 */
#define CON_INIT_MESSAGE CON_VERSION_MESSAGE

/*
 * The ximport directives include the help texts for the console commands. Having the help text
 * in xmem helps save root code space.
 */
#ximport "samples\zconsole\tcpipconsole_help\help.txt" help_txt

...

/* The rest of the #ximport statements may be seen in tcpipconsole.c. */
374 TCP/IP User’s Manual

The following code sets up all the data structures needed by the console.

/* The console will be available to the I/O streams given in the following array. The I/O streams
 * are defined through macros as documented in Section 11.5.2. The parameter for the first macro
 * represents the initial baud rate for serial port C. The second macro is passed the port number
 * for telnet. If you change the number of I/O streams, update NUM_CONSOLES above.*/

const ConsoleIO console_io[] = {
CONSOLE_IO_SERC(57600),
CONSOLE_IO_TELNET(23)

};

/* This array defines the commands that are available in the console. The first parameter for the
 * ConsoleCommand structure is the command specification, i.e., how the console
 * recognizes a command. The second parameter is the function to call when the command
 * is recognized. The third parameter is the location of the #ximport’ed help file for the command.
 * Note that the second parameter can be NULL, which is useful if help information is needed
 * for something that is not a command (like for the "SET" command below--the help file for
 * "SET" contains a list of all of the set commands). Also note the entry for the command "",
 * which is used to set up the help text that is displayed when the help command is used by
 * itself (that is, with no parameters).*/

const ConsoleCommand console_commands[] = {
{ "HELLO WORLD", hello_world, 0 },
{ "ECHO", con_echo, help_echo_txt },
{ "HELP", con_help, help_help_txt },
{ "", NULL, help_txt },
{ "SET", NULL, help_set_txt },
{ "SET PARAM", con_set_param, help_set_param_txt },
 ...

};

/* This array sets up the error messages that can be generated. CON_STANDARD_ERRORS is
 * a macro that expands to the standard errors used by the built-in commands in zconsole.lib.
 * Users can define their own errors here, as well.*/

const ConsoleError console_errors[] = {
CON_STANDARD_ERRORS

};

/* This array defines the information (such as configuration) that will be saved to the file system.
 * Note that if, for example, the HTTP or SMTP related commands are included in the
 * console_commands array above, then the backup information must be included in
 * this array. The entries below are macros that expand to the appropriate entry for each set of
 * functionality. Users can also add their own information to be backed up here by adding
 * more ConsoleBackup structures.*/

const ConsoleBackup console_backup[] = {
CONSOLE_BASIC_BACKUP,
CONSOLE_TCP_BACKUP,
CONSOLE_HTTP_BACKUP,
CONSOLE_SMTP_BACKUP

};
Chapter 11: General Purpose Console 375

The following code defines the MIME types that the web server will handle.

The function for the custom command is defined here and the main program finishes up the pro-
gram. To see the complete sample, look in Samples\zconsole\tcpipconsole.c.

const HttpType http_types[] = {
 { ".shtml", "text/html", shtml_handler}, // ssi
 { ".html", "text/html", NULL}, // html
 { ".gif", "image/gif", NULL},
 { ".jpg", "image/jpeg", NULL},
 { ".jpeg", "image/jpeg", NULL},
 { ".txt", "text/plain", NULL}
};

/* This is a custom command. Custom commands always take a ConsoleState* as an
 * argument (a pointer to the state structure for the given I/O stream), and return an int.
 * The return value should be 0 when the command wishes to be called again on the next
 * console_tick(), 1 when the command has successfully finished processing, or -1
 * when the command has finished due to an error.*/

int hello_world(ConsoleState *state){
state->conio->puts("Hello, World!\r\n");
return 1;

}

void main(void){
/* Initialize TCP/IP, clients, servers, and I/O prior to using any console functions.*/
sock_init();

tcp_reserveport(80); // Start a listen queue and disable the 2MSL wait .
http_init();

if (fs_init(0, 64))
printf("Filesystem not present!\n");

if (console_init() != 0) {
printf("Console did not initialize!\n");
fs_format(0, 64, 1);

/* After the file system has been initialized or formatted, space must be reserved in
 * the file system for the backup information. */

con_backup_reserve();
con_backup(); // Save the backup information to the console.

}

while (1) {
console_tick();
http_handler();

}
}

376 TCP/IP User’s Manual

Notice to Users
Z-WORLD PRODUCTS ARE NOT AUTHORIZED FOR USE AS
CRITICAL COMPONENTS IN LIFE-SUPPORT DEVICES OR SYS-
TEMS UNLESS A SPECIFIC WRITTEN AGREEMENT REGARD-
ING SUCH INTENDED USE IS ENTERED INTO BETWEEN THE
CUSTOMER AND Z-WORLD PRIOR TO USE. Life-support devices
or systems are devices or systems intended for surgical implantation into
the body or to sustain life, and whose failure to perform, when properly
used in accordance with instructions for use provided in the labeling and
user’s manual, can be reasonably expected to result in significant injury.

No complex software or hardware system is perfect. Bugs are always
present in a system of any size. In order to prevent danger to life or prop-
erty, it is the responsibility of the system designer to incorporate redun-
dant protective mechanisms appropriate to the risk involved.

The Dynamic C TCP/IP software is designed for use only with Rabbit
Semiconductor chips.

Index
Symbols

#echo var .. 168
#exec cmd .. 168
#include file ... 168

A

anonymous login .. 277
application protocols

FTP client ... 267
FTP server .. 277
HTTP ... 153
POP3 client .. 325
SMTP client ... 311
telnet ... 333
TFTP client .. 303

authentication
HTTP ... 161
SMTP ... 312

B

basic authentication ... 161
BOOTP/DHCP

used with TFTP .. 303

C

callbacks
FTP data transfers .. 272
sending HTTP headers 159

CGI .. 154, 169
console, serial-based 343–376

D

daemons
FTP client ... 269
FTP server .. 297
HTTP server ... 234
POP3 client .. 329
telnet ... 340
tftp_tick .. 307
Zconsole ... 359

DHCP/BOOTP, See BOOTP/DHCP
directory listing .. 79
dynamic web pages .. 165

E

e-mail
POP3 client .. 325–331
SMTP client ... 311–323

entries in directory ... 79

F

file extensions .. 32, 164
file handlers ... 280
file size ... 270
file transfer ... 268
firewall ... 299
flow control .. 367
FTP client .. 267–275
FTP server .. 277–301
FTP server commands 299–300
Function Reference

Authentication and Identification
sauth_adduser ... 46
sauth_authenticate 47
sauth_getpassword 48
sauth_getserver .. 48
sauth_getuserid .. 49
sauth_getusermask 50
sauth_getusername 51
sauth_getwriteaccess 52
sauth_removeuser 53
sauth_setpassword 54
sauth_setserver ... 55
sauth_setusermask 56
sauth_setwriteaccess 57

CGI
cgi_continue ... 202
cgi_redirectto ... 203
cgi_sendstring .. 204
http_abortCGI .. 205
http_defaultCGI 209
http_finishCGI ... 214
http_getAction .. 215
http_getCond .. 217
http_getContentDisposition 218
http_getContentLength 219
http_getContentType 220
http_getContext .. 222
http_getData ... 223
http_getDataLength 224
http_getField .. 225
http_getHTTPMethod 226
http_getHTTPVersion 227
http_getRemainingLength 228
http_getSocket .. 229
http_getState .. 230
http_getTransferEncoding 231
http_getURL .. 232
http_getUserState 233
http_setCond .. 243
http_setState ... 246
TCP/IP User’s Manual 379

http_skipCGI .. 248
http_sock_bytesready 249
http_sock_fastread 250
http_sock_gets .. 252
http_sock_mode ..253
http_sock_tbleft ..254
http_sock_write ..255
http_sock_xfastread 256
http_sock_xfastwrite 257
http_switchCGI ..259
http_write .. 261

Console
con_backup ... 360
con_backup_bytes 360
con_backup_reserve 361
con_chk_timeout 361
con_load_backup 362
con_reset_io ..362
con_set_backup_lx 363
con_set_files_lx ..363
con_set_timeout ..364
con_set_user_idle 364
con_set_user_timeout 365
console_init ..359
console_tick ..359

Cookie
http_setcookie ... 244

Data Conversion
http_contentencode 207
http_date_str ... 208
http_urldecode .. 260

Directory Navigation
sspec_cd ..74
sspec_dirlist ..79
sspec_pwd .. 119

Dynamic (RAM) Resource Table
sspec_addform ..60
sspec_addfsfile ...61
sspec_addfunction62
sspec_addrootfile ..64
sspec_addvariable68
sspec_addxmemfile69
sspec_addxmemvar70
sspec_aliasspec ...71
sspec_resizerootfile 126

Dynamic Rule Table
sspec_addrule ...65
sspec_removerule 124

E-mail
pop3_getmail .. 328
pop3_init ...327
pop3_tick .. 329
smtp_mailtick ... 318
smtp_sendmail .. 319

smtp_sendmailxmem 320
smtp_status ... 323

File System Specifics
sspec_automount .. 72
sspec_fatregister ... 82
sspec_fatregistered 83

FTP Client
ftp_client_filesize 270
ftp_client_setup ..268
ftp_client_tick ... 269
ftp_client_xfer .. 271
ftp_data_handler 272
ftp_last_code .. 274

FTP Server
ftp_init .. 292
ftp_set_anonymous 295
ftp_shutdown .. 296
ftp_tick .. 297

HTML Forms
http_finderrbuf .. 212
http_nextfverr ... 237
http_parseform .. 238
http_scanpost .. 240
sspec_addfv .. 63
sspec_findfv .. 84
sspec_getformtitle 90
sspec_getfvdesc .. 92
sspec_getfventrytype 93
sspec_getfvlen .. 94
sspec_getfvname .. 95
sspec_getfvnum .. 96
sspec_getfvopt .. 97
sspec_getfvoptlistlen 98
sspec_getfvreadonly 99
sspec_getfvspec ..100
sspec_getpreformfunction 105
sspec_setformepilog 131
sspec_setformfunction 132
sspec_setformprolog 133
sspec_setformtitle 134
sspec_setfvcheck 135
sspec_setfvdesc ..136
sspec_setfventrytype 137
sspec_setfvfloatrange 138
sspec_setfvlen ... 139
sspec_setfvname 140
sspec_setfvoptlist 141
sspec_setfvrange 142
sspec_setfvreadonly143
sspec_setpreformfunction 145

HTTP Server
http_findname ... 213
http_getcontext ... 221
http_handler .. 234
380 TCP/IP User’s Manual

http_idle ... 235
http_init .. 236
http_safe ... 239
http_set_anonymous 241
http_set_path .. 245
http_setauthentication 242
http_shutdown .. 247
http_status .. 258

MIME Types
sspec_getMIMEtype 102

Resource Access Control
sspec_access ... 58
sspec_checkpermissions 76
sspec_getpermissions 104
sspec_getrealm ... 106
sspec_setpermissions 144
sspec_setrealm ... 146

Resource Location and Information
sspec_findfsname 86
sspec_findname .. 85
sspec_findnextfile 87
sspec_getfileloc .. 88
sspec_getfiletype .. 89
sspec_getfunction 91
sspec_getlength .. 101
sspec_getname ... 103
sspec_getservermask 107
sspec_gettype ... 108
sspec_getvaraddr 111
sspec_getvarkind 112
sspec_getvartype 113
sspec_getxvaraddr 113

Resource Retrieval and Update
sspec_close ... 77
sspec_delete ... 78
sspec_mkdir ... 114
sspec_open ... 116
sspec_readvariable 122
sspec_rmdir .. 128
sspec_seek .. 130
sspec_stat ... 149
sspec_tell .. 151
sspec_write ... 152

Server Resource Management
http_addfile .. 206
http_delfile ... 211
shtml_addfunction 263
shtml_addvariable 264
shtml_delfunction 265
shtml_delvariable 266
sspec_adduser ... 67
sspec_checkaccess 75
sspec_getuserid .. 109
sspec_getusername 110

sspec_needsauthentication 115
sspec_readfile ... 121
sspec_remove ... 123
sspec_removeuser 125
sspec_restore .. 127
sspec_save .. 129
sspec_setsavedata 147
sspec_setuser .. 148

Telnet
telnet_close .. 340
telnet_init ... 339
telnet_tick ... 340
vserial_close ... 334
vserial_init .. 334
vserial_keepalive 335
vserial_listen .. 336
vserial_open ... 337
vserial_tick ... 338

TFTP Client
tftp_exec ... 309
tftp_init ... 305
tftp_initx ... 306
tftp_tick .. 307
tftp_tickx .. 308

H

HTML forms 45, 170–181
HTTP configuration macros 157
HTTP server .. 153–266
HttpState .. 154

L

listing directory entries 79

M

macros
FTP server .. 278
HTTP server ... 157
serial ports for telnet 333
SMTP client ... 314
telnet (7.05 and later) 334
telnet (pre 7.05) .. 339
Zconsole ... 370

MIME types ... 32, 164

P

passive open ... 277
password protection 46, 54
permissions

defaults ... 40
POP_BUFFER_SIZE 325
POP_DEBUG .. 325
POP_NODELETE ... 325
TCP/IP User’s Manual 381

POP_PARSE_EXTRA 325
POP3 client

configuration .. 325
POST command ... 172

R

resources
access controls ..16

rule table ...16

S

sample programs
FTP server .. 298
POP3 client ...330
SMTP client .. 313
telnet client ...342
telnet server .. 341
Zconsole ... 373

SAUTH_MAXNAME39
SAUTH_MAXUSERS40
security ... 161
SERIAL_PORT_SPEED 339
server spec list .. 33, 36
SERVER_PASSWORD_ONLY40
SMTP client ...311–323
SMTP configuration macros 314
SSI ..158, 168
SSL ... 161
SSPEC_MAX_FATDRIVES40
SSPEC_MAX_OPEN ..41
SSPEC_MAXNAME ...40
SSPEC_MAXRULES ..40
SSPEC_MAXSPEC ...40
SSPEC_USERSPERRESOURCE41
SSPEC_XMEMVARLEN41
stack

free space for TFTP functions 304
static resource table ..43
static web pages ... 163

T

telnet ... 333–342
TELNET_COOKED ..339
TFTP client .. 303–309
time zone .. 162
TIMEZONE ... 159
TLS ... 161

U

URL-encoded data ... 173
user table .. 16
users list .. 35

V

VSERIAL_DEBUG ... 334
VSERIAL_NUM_GATEWAYS 334

W

web browser control 3–29
well-known ports

FTP server .. 277
HTTP server ... 158
POP3 .. 325
SMTP server ... 311

Z

Zconsole ... 343–376
backup system .. 368
circular buffers ... 358
commands .. 344
custom commands ..352
error messages .. 353
I/O interfaces .. 356
macros .. 370–372
physical connection 358
terminal emulator ... 367
using TCP/IP .. 358
382 TCP/IP User’s Manual

	Table of Contents
	1. Introduction
	2. Web-Enabling Your Application
	2.1� Designing Your Application
	2.2� The Smallest Web Server in the WWW
	2.3� Web Server Architecture
	2.3.1� Application Block
	2.3.2� HTTP Block
	2.3.3� HTTP Block Subcomponents
	2.3.4� Zserver Block

	2.4� Architecture of a Toy Application
	2.5� A Simple but Realistic Application
	2.6� Adding Access Controls
	2.7� A Full-Featured Application
	2.8� Living Without RabbitWeb and FAT

	3. Server Utility Library
	3.1� Data Structures for Zserver.lib
	3.1.1� MIMETypeMap Structure
	3.1.2� ServerSpec Structure
	3.1.2.1� ServerSpec Fields

	3.1.3� ServerAuth Structure
	3.1.4� ServerPermissions Structure
	3.1.5� RuleEntry Structure
	3.1.6� ServerContext Structure
	3.1.7� SSpecStat Structure
	3.1.8� sspec_fatinfo Structure
	3.1.9� FormVar Structure
	3.1.10� SSpecFileHandle Structure

	3.2� Constants Used in Zserver.lib
	3.2.1� ServerSpec Type Field
	3.2.2� ServerSpec Vartype Field
	3.2.3� ServerPermissions Servermask Field
	3.2.4� Configuration Macros
	3.2.5� Macros for Control Data Initialization
	3.2.5.1 Static Rule Table
	3.2.5.2 Static MIME Type Table
	3.2.5.3 Static Resource Table

	3.3� File Compression Support
	3.4� HTML Forms
	3.5� API Functions
	sauth_adduser
	sauth_authenticate
	sauth_getpassword
	sauth_getserver
	sauth_getuserid
	sauth_getusermask
	sauth_getusername
	sauth_getwriteaccess
	sauth_removeuser
	sauth_setpassword
	sauth_setserver
	sauth_setusermask
	sauth_setwriteaccess
	sspec_access
	sspec_addCGI
	sspec_addform
	sspec_addfsfile
	sspec_addfunction
	sspec_addfv
	sspec_addrootfile
	sspec_addrule
	sspec_adduser
	sspec_addvariable
	sspec_addxmemfile
	sspec_addxmemvar
	sspec_aliasspec
	sspec_automount
	sspec_cd
	sspec_checkaccess
	sspec_checkpermissions
	sspec_close
	sspec_delete
	sspec_dirlist
	sspec_fatregister
	sspec_fatregistered
	sspec_findfv
	sspec_findname
	sspec_findfsname
	sspec_findnextfile
	sspec_getfileloc
	sspec_getfiletype
	sspec_getformtitle
	sspec_getfunction
	sspec_getfvdesc
	sspec_getfventrytype
	sspec_getfvlen
	sspec_getfvname
	sspec_getfvnum
	sspec_getfvopt
	sspec_getfvoptlistlen
	sspec_getfvreadonly
	sspec_getfvspec
	sspec_getlength
	sspec_getMIMEtype
	sspec_getname
	sspec_getpermissions
	sspec_getpreformfunction
	sspec_getrealm
	sspec_getservermask
	sspec_gettype
	sspec_getuserid
	sspec_getusername
	sspec_getvaraddr
	sspec_getvarkind
	sspec_getvartype
	sspec_getxvaraddr
	sspec_mkdir
	sspec_needsauthentication
	sspec_open
	sspec_pwd
	sspec_read
	sspec_readfile
	sspec_readvariable
	sspec_remove
	sspec_removerule
	sspec_removeuser
	sspec_resizerootfile
	sspec_restore
	sspec_rmdir
	sspec_save
	sspec_seek
	sspec_setformepilog
	sspec_setformfunction
	sspec_setformprolog
	sspec_setformtitle
	sspec_setfvcheck
	sspec_setfvdesc
	sspec_setfventrytype
	sspec_setfvfloatrange
	sspec_setfvlen
	sspec_setfvname
	sspec_setfvoptlist
	sspec_setfvrange
	sspec_setfvreadonly
	sspec_setpermissions
	sspec_setpreformfunction
	sspec_setrealm
	sspec_setsavedata
	sspec_setuser
	sspec_stat
	sspec_tell
	sspec_write

	4. HTTP Server
	4.1� HTTP Server Data Structures
	4.1.1� HttpState
	4.1.1.1� HttpState Fields

	4.2� Configuration Macros
	4.2.1� Sending Customized HTTP Headers to the Client
	4.2.2� Saving Custom Headers from the Client

	4.3� Authentication Methods
	4.4� Setting the Time Zone
	4.5� Sample Programs
	4.5.1� Serving Static Web Pages
	4.5.1.1� Adding Files to Display
	4.5.1.2� Adding Files with Different Extensions
	4.5.1.3� Handling of Files With No Extension

	4.5.2� Dynamic Web Pages Without HTML Forms
	4.5.2.1� SSI Feature
	4.5.2.2� CGI Feature

	4.5.3� Web Pages With HTML Forms
	4.5.3.1� Sample HTML Page
	4.5.3.2� POST-Style Form Submission
	4.5.3.3� URL-Encoded Data
	4.5.3.4� Sample of a CGI Handler

	4.5.4� HTML Forms Using Zserver.lib

	4.6� HTTP File Upload
	4.6.1� What is a CGI Function and Why is It Useful?
	4.6.2� How Do I Use the New CGI Facility?
	Step 1: Specify Network Configuration
	Steps 2, 3 and 4: Specify File system and Web Server
	Step 5: Create a Web Page
	4.6.2.1� Step 6: Writing a CGI Function
	Step 7: Creating the Resource Tables
	Step 8: Create List of Content Type Mappings
	Step 9: Rule Creation
	Step 10: Create Set of User IDs
	Step 11: Tying It All Together

	4.7� API Functions for HTTP Servers
	cgi_continue
	cgi_redirectto
	cgi_sendstring
	http_abortCGI
	http_addfile
	http_contentencode
	http_date_str
	http_defaultCGI
	http_delfile
	http_finderrbuf
	http_findname
	http_finishCGI
	http_getAction
	http_getCond
	http_getContentDisposition
	http_getContentLength
	http_getContentType
	http_getcontext
	http_getContext
	http_getData
	http_getDataLength
	http_getField
	http_getHTTPMethod
	http_getHTTPVersion
	http_getRemainingLength
	http_getSocket
	http_getState
	http_getTransferEncoding
	http_getURL
	http_getUserState
	http_handler
	http_idle
	http_init
	http_nextfverr
	http_parseform
	http_safe
	http_scanpost
	http_set_anonymous
	http_setauthentication
	http_setCond
	http_setcookie
	http_set_path
	http_setState
	http_shutdown
	http_skipCGI
	http_sock_bytesready
	http_sock_fastread
	http_sock_fastwrite
	http_sock_gets
	http_sock_mode
	http_sock_tbleft
	http_sock_write
	http_sock_xfastread
	http_sock_xfastwrite
	http_status
	http_switchCGI
	http_urldecode
	http_write
	shtml_addfunction
	shtml_addvariable
	shtml_delfunction
	shtml_delvariable

	5. FTP Client
	5.1� Configuration Macros
	5.2� API Functions
	ftp_client_setup
	ftp_client_tick
	ftp_client_filesize
	ftp_client_xfer
	ftp_data_handler
	ftp_last_code

	5.3� Sample FTP Transfer

	6. FTP Server
	6.1� Configuration Macros
	6.2� File Handlers
	6.2.1� Replacing the Default Handlers
	6.2.2� File Handlers Specification
	ftp_dflt_open
	ftp_dflt_getfilesize
	ftp_dflt_read
	ftp_dflt_write
	ftp_dflt_close
	ftp_dflt_list
	ftp_dflt_cd
	ftp_dflt_pwd
	ftp_dflt_mdtm
	ftp_dflt_delete

	6.3� API Functions
	ftp_dflt_is_auth
	ftp_init
	ftp_load_filenames
	ftp_save_filenames
	ftp_set_anonymous
	ftp_shutdown
	ftp_tick

	6.4� Sample FTP Server
	6.5� Getting Through a Firewall
	6.6� FTP Server Commands
	6.7� Reply Codes to FTP Commands

	7. TFTP Client
	7.1� BOOTP/DHCP
	7.2� Data Structure for TFTP
	7.3� API Functions
	tftp_init
	tftp_initx
	tftp_tick
	tftp_tickx
	tftp_exec

	8. SMTP Mail Client
	8.1� Sample Conversation
	8.2� SMTP Authentication
	8.3� Sample Sending of an E-mail
	8.4� Configuration Macros
	8.5� API Functions
	smtp_data_handler
	smtp_mailtick
	smtp_sendmail
	smtp_sendmailxmem
	smtp_setauth
	smtp_setserver
	smtp_setserver_ip
	smtp_status

	9. POP3 Client
	9.1� Configuration
	9.2� Steps to Receive E-mail.
	9.3� Call-Back Function
	9.3.1� Normal call-back
	9.3.2� POP_PARSE_EXTRA call-back

	9.4� API Functions
	pop3_init
	pop3_getmail
	pop3_tick

	9.5� Sample Receiving of E-mail
	9.5.1� Sample Conversation

	10. Telnet
	10.1� Telnet (Dynamic C 7.05 and later)
	10.1.1� Setup
	10.1.1.1� Low-Level Serial Routines
	10.1.1.2� Configuration Macros

	10.1.2� API Functions (Dynamic C 7.05 and later)
	vserial_close
	vserial_init
	vserial_keepalive
	vserial_listen
	vserial_open
	vserial_tick

	10.2� Telnet (pre-Dynamic C 7.05)
	10.2.1� Configuration Macros
	10.2.2� API Functions
	telnet_init
	telnet_tick
	telnet_close

	10.2.3� An Example Telnet Server
	10.2.4� An Example Telnet Client

	11. General Purpose Console
	11.1� Zconsole Features
	11.1.1� File System Requirement
	11.1.2� TCP/IP and Zconsole

	11.2� Login Name and Password
	11.3� Zconsole Commands and Messages
	11.3.1� Zconsole Command Data Structure
	11.3.1.1 Help Text for General Cases

	11.4� Zconsole Command Array
	11.4.1� Zconsole Commands
	11.4.1.1 Default Command Functions
	11.4.1.2 Custom Zconsole Commands

	11.4.2� Zconsole Error Messages
	11.4.2.1 Default Error Messages
	11.4.2.2 Custom Error Messages

	11.5� Zconsole I/O Interface
	11.5.1� How to Include an I/O Method
	11.5.2� Predefined I/O Methods
	11.5.2.1 Serial Ports
	11.5.2.2 Telnet
	11.5.2.3 Slave Port
	11.5.2.4 Custom I/O Methods

	11.5.3� Multiple I/O Streams

	11.6� Zconsole Execution
	11.6.1� File System Initialization
	11.6.2� Serial Buffers
	11.6.3� Using TCP/IP
	11.6.4� Required Zconsole Functions
	console_init
	console_tick

	11.6.5� Useful Zconsole Function
	con_backup
	con_backup_bytes
	con_backup_reserve
	con_chk_timeout
	con_load_backup
	con_reset_io
	con_set_backup_lx
	con_set_files_lx
	con_set_user_idle
	con_set_timeout
	con_set_user_timeout
	console_disable
	console_enable

	11.6.6� Zconsole Execution Choices
	11.6.6.1 Terminal Emulator

	11.7� Backup System
	11.7.1� Data Structure for Backup System
	11.7.2� Array Definition for Backup System

	11.8� Zconsole Macros
	11.9� Sample Program

	Notice to Users
	Index

