)y

vwORLD

Dynamic C TCP/IP

User’s Manual

Volume 2
050223 » 019-0144-B

This manual (or an even more up-to-date revision) is available for free download
at the Z-World website: www.zworld.com.

Dynamic C TCP/IP User’s Manual
Volume 2

Part Number 019-0144-B « Printed in U.SA.
©2005 Z-World Inc. « All rightsreserved.

Z-World reserves the right to make changes and
improvements to its products without providing notice.

Trademarks
Dynamic C isaregistered trademark of Z-World Inc.
Windows® is aregistered trademark of Microsoft Corporation

Z-World, Inc.

2900 Spafford Street
Davis, California 95616-6800
USA

Telephone: 530.757.3737
Fax: 530.757.3792 or 530.753.5141
www.zworld.com

ii Dynamic C TCP/IP User’s Manual

http://www.zworld.com

Table of Contents

1 Introduction........cccccocvveeeeciiieecereenn, 1
2 Web-Enabling Your Application........ 3
2.1 Designing Your Application...........c.cc...... 3
2.2 The Smallest Web Server inthe WWW ... 4
2.3 Web Server Architecture..........ccooveeeennne.. 6
Application Block 7
HTTP Block 8
HTTP Block Subcomponents 9
Zserver Block 10
2.4 Architecture of a Toy Application.......... 1n
2.5 A Simple but Realistic Application........ 13
2.6 Adding Access Contrals.......c.cceevveennnne 16
2.7 A Full-Featured Application................... 22
2.8 Living Without RabbitWeb and FAT 26
3 Server Utility Library.......ccccvevennene 31
3.1 Data Structures for Zserver.lib 31
MIMETypeMap Structure 32
ServerSpec Structure 33
ServerAuth Structure 35
ServerPermissions Structure 35
RuleEntry Structure 36
ServerContext Structure 36
SSpecStat Structure 37
sspec_fatinfo Structure 37
FormVar Structure 38
SSpecFileHandle Structure 38
3.2 Constants Used in Zserver lib................. 38
ServerSpec Type Field 38
ServerSpec Vartype Field 39
ServerPermissions Servermask Field 39
Configuration Macros 39
Macros for Control Data Initialization
41
3.3 File Compression Support........cccceeveeene 44
3 4AHTML FOrmMS.....oooieeeeeee e
3.5 APl FUNCLIONS.....ccooceeeeeie e
sauth_ addusercccccevvevveveeeeneenen,
sauth_authenticateccocvveveevienene.
sauth_getpassword..........ccccevereereenee.
SaUth_QetSErVercoceeeevieeeeeeeine
sauth_getuserid.........ccoeveeverrecennnnn,
sauth_getusermask
sauth_getusername.......
sauth_getwriteaccess
SaUth_remoVEeUSEYccceeerereeeeereens
sauth_setpasswordcoeveeeereenen.
SaUth_SELSEIVErcccvvveeieeeere e
sauth_setusermaskc.ceevvereereenee
sauth_setwriteaccess
SSPEC_ACCESS ..evvvrrrrrrreeeeneeresseesersenns
sspec_addCGlvvvvvveececere e

sspec_addform ...
sspec_addfsfile.......oviniiiiiiiee
sspec_addfunctionccceeevvevennns
sspec_addfV ...
sspec_addrootfile.......cooeeericninene
sspec_addrule.......ooovvvvevceeciec
SSpEC_ addUSESooveeieeieeeeee
sspec_addvariable.........cccceiierennene
sspec_addxmemfile......ccoceevvvcennene
sspec_addxmemvar.........ccceeveeenene
SSPEC_ATBSTPEC ...
SSPEC_aUtomMOoUNtcoeerveerreereenene
SSPEC Cl.eeivirienieie e
sspec_checkaccess...........
sspec_checkpermissions..
SSPEC _ClOSE .. e e
sspec_delete......oiiiniie
sSpeC dirlist...ccovvvvvvieeecere e
sspec_fatregister ...oovvvvvvnvvernecennenn,
sspec_fatregistered.........coooviviiiienene
sspec findfv.....cocveevveverveceec
sspec_findname........ccoeeeeveverecenene,
sspec_findfsname..........ccccevreeinene
sspec_findnextfile........ccooveevrvennnene.
sspec_getfilelocoovvvvvrvceceece
sspec_getfiletypeocoveeeeeevnccine
sspec_getformtitle........covveveevvceennnne,
sspec_getfunctionccceeeeevececnene
SSpecC_getfvdesCooveeeecercereeie
sspec_getfventrytype.....cceeevveeennene
sspec_getfvlenoovvvevveecvec
Sspec_getfvname........cceceeeeercceciene
SSPEC_gEtfvNUM ...
SSPEC_GEtfVOPL ..o
sspec_getfvoptlistlenccoceeuenee.
sspec_getfvreadonlyccccvvevennene
SSPEC_QEtfVSPEC ...ovvvvvee e
sspec_getlength........occoceiieeinenn
sspec_getMIMEtype........cccvveeeee.
SSPEC_QEtNaME......ooveeeeeeireeerieeenes
SSPEC_QEtpermissions.........ccoceeuenee.
sspec_getpreformfunction 105
SSpEC_getrealM.....cccvvvveveveeereeeenne, 106
sspec_getservermaskcccoeeeeeeenee. 107
SSPEC_gEttyPe. .o 108
SSPEC_GEtUSENTd....vcveeeeee e 109
SSpec_getusername..........cceeeeeeeeeene 110
sspec_getvaraddrccceeveeerireennnn, 111
sspec_getvarkindcccevevevereennnne, 112
SSpec_getvartype.......ccoeeveeeeeieennne 113
sspec_getxvaraddrcceevvereennene 113
SSPEC MKAIT...ovvveeceee e 114
sspec_needsauthentication............... 115

SSPEC read......eeviieeiiiieee e 120
sspec_readfile.....cccvvvvvrivieveeennnne, 121
sspec_readvariable.........ccocveeerienene 122
SSPEC_IEIMOVE......ceueeeieeerieeieeeeeaene 123
SSPEC_removerule......ocvvveveveeeennnne. 124
SSPEC_eMOVEUSESovveeeeeeeneeeeeenns 125
sspec_resizerootfilecooeveeeennne. 126
S 0= ol (= (0] (2 127

TCP/IP User’s Manual

SSPEC_SAVE....eeveeeeereeeieereenreeeeeneeeas 129
SSPEC_SEEK ..t 130
sspec_setformepilog......cccceevvveennne 131
sspec_setformfunction 132
sspec_setformprologccoeeveeeenee. 133
sspec_setformtitle.......ccoveveveecveennnns 134
sspec_setfvchecK.....coovvvvvvvvivcenne, 135
Sspec_SetfvdesCovveevevceecencnce 136
sspec_setfventrytype.....cccccvevereennee 137
sspec_setfvfloatrange........ccceeveeneee 138
sspec_setfvlen ... 139
sspec_setfvname.......cccoeeeeeeeveeeeenns 140
sspec_setfvoptlistccoceveceeceeeeeennns 141
sspec_setfvrange.....coceeeeeveieeeenne. 142
sspec_setfvreadonlycccceeveeeene 143
SSPEC_SEtPErMISSIONSccecveeeenenene 144
sspec_setpreformfunction 145
sspec_setrealm ...o.eoveeeveceeceeeee 146
sspec_setsavedata........oceeveeerveiennne 147
SSPEC_SELUSEYccuveeurenieeeenieeee e 148
SSPEC_SHAL ..o 149
15501 o (= | 151
S50 oV] TS 152
HTTP Server ..., 153
4.1 HTTP Server Data Structures.............. 154
HttpState 154
4.2 Configuration Macros..........ccoceeveeeeae 157
Sending Customized HTTP Headers to
the Client 159
Saving Custom Headers from the Client
160
4.3 Authentication Methods..........cccccoeeeeee 161
4.4 Setting the Time Zone........ccccoeceevennee 162
4.5 Sample Programs..........cccvevevnevnennas 163
Serving Static Web Pages 163
Dynamic Web Pages Without HTML
Forms 165

Web Pages With HTML Forms 170
HTML Forms Using Zserver.lib 176

46 HTTPFileUploadcccoeevvevrinennnae 182
What isa CGI Function and Why is It
Useful? 182
How Do | Use the New CGI Facility?
183
4.7 APl Functionsfor HTTP Servers......... 202
COI_CONLINUE......eoeeieeeereeeeeee e 202
COi_redireCttocoocevevrceecencnce 203
COi_sSendstringcceeveeereeeeneneeneanens 204
http_abortCGIcocooeiierie 205
http_addfile ... 206
http_contentencode...........ccccveennee. 207
http_date Str......cccocveveeeeinenenen 208
http_defaultCGlIcoceevvevrieene, 209
http_delfile......ccoovvvireeeee 211
http_finderrbuf ... 212
http_findname ... 213
http_finishCGIcccooeeeveceece 214
http_getACtion........coceveeeeineeen 215

http_getCond.......cccoeevvveeveireenenee, 217
http_getContentDisposition 218
http_getContentLength.................... 219
http_getContentType.........cceevvvvunene. 220
http_getcontext.........ccoevvvvererernnne 221
http_getContext.........cccoeeverereneenne. 222
http_getData..........ccocevvveevcreeeenenne. 223
http_getDatalLength..........ccccveueeeeee. 224

http getField ... 225

http getHTTPMethod...................... 226

http getHTTPVersionccc......... 227
http_getRemainingLength............... 228
http_getSocket.......ccoovvveevvceeeennnne. 229
http_getState.......ccocvevvvveccerecennn, 230
http_getTransferEncoding............... 231

http getURLcccoovvevieececeeee, 232
http_getUserState........cccceeeeveneenenee. 233
http_handler ..., 234

http idle ..o 235

9100 o T] o SR 236
http_nextfverr........cceineneeenn 237
http_parseform.........ccoceeeeeenienene. 238

http Safe...cccevvevirece e 239
http_SCaNPOSt......cccceveveereenieieeene 240
http_set_anonymous............ccccceue... 241
http_setauthentication 242

http setCondcccoveveeneeiieeeenienne 243
http_setcookie........cocovvveiiccricnnene. 244

http set path......ccccoovvevvvivierce 245
http_setState.......ccooveveveieiereene 246
http_shutdown..........ccocoveieiinnenne 247
http SKipCGlccovvveeeceeeeeeceee, 248
http_sock _bytesready...........c.cc....... 249

http sock fastreadcccceeenenee. 250
http_sock fastwrite........ccccceveevenenee. 251

http Sock_gets.....cccoveviveeiiceeeeiee 252
http_sock_mode........ccoeieirinnene 253
http_sock tbl€eft........covvvivieenee 254
http_sock_write........ccocoveieicninene. 255

http sock xfastreadccccceeueeee. 256
http_sock xfastwrite.........cc.cccveuee. 257

http StatUS ...ccooereeere e 258

http SWitchCGIccocvvvieiiiienne 259
http_urldecode..........ccccvvevivvvernnnnne. 260

http Wt ..o 261
shtml_addfunction...........cccccuvneee.. 263
shtml_addvariable.........ccccccevvrennne 264
shtml_delfunction..........cccccveveneeee. 265
shtml_delvariable..........ccceueenee. 266

5 FTPClient...coooeviveeeeeeceeceeeee 267
5.1 Configuration Macros..........c.ccccevveueene 267
5.2 APl FUNCLIONS....cceoiiirie e 268
ftp_client_setup.......ccocevervneinnennn. 268
ftp_client tickccooveviiiineiinnn. 269
ftp_client filesize.......ccoovvvvcevvneenen. 270
ftp_client Xfer......cocovvininennnenn. 271
ftp_data handler........cccooeeevnnncnene 272

ftp last_code......cccovevevrceccenecennne 274

5.3 Sample FTP Transfercccccevvvennnene. 275
FTP SErver ... 277
6.1 Configuration Macros..........cccceevueeenne 278
6.2 File Handlers.......ccooorvienininincnen 280

TCP/IP User’'s Manual

Replacing the Default Handlers 280 pop3_getmail ..o 328
File Handlers Specification 280 POP3_tICK cevveeeiecee e 329
ftp_dflt_OPeN ..oeeeeeeeeeee e 281 9.5 Sample Receiving of E-mall................. 330
ftp_dflt getfilesize.......cccovevvevrnnnne 282 Sample Conversation 331
ftp dflt readcocoioiiiiiiiiee 283
BT WHIE oo 284 10 TeNet ..o 333
ftp_dflt_close.......ccoveviiiiiicinne, 285 10.1 Telnet (Dynamic C 7.05 and later) 333
ftp_dﬂt_l (S 286 Setup 333
ftp dflt Cd .ovvveeeececee e, 287 . .
BT D oo 288 API Functions (Dynamic C 7.05 and
ftp_aflt MAtM ... 289 | ater) 334
ftp _dflt delete......ccoovevvvvvceivieiee 290 vserial_Close. ... 334
6.3 APl FUNCHONS........oveeeeeereeeee e, 291 vser!g_lk nit T ggg
; vseria_keepalive.......ccccooveveevennnnn,
I T O —— 33
ftp_load_filenamesoooooooon. 293 veeri gll_?pﬁn ------------------------------------- g%
ftp_SaVe_fi [ENAMES .o 204 vserial_UucK......... s
ftp_set_anonymous................c......... 295 10.2 Telnet (pre-Dynamic C 7.05).............. 339
ftp_shutdown ... 296 Configuration Macros 339
FIP tICK i 297 API Functions 339
6.4 Sample FTP Server ..., 298 telNEt_iNit.. oo, 339
6.5 Getti ng Through aFirewal 299 Eg ng_tiICk .. :?3)28
NEL_ClOSE ...

6.6 FTP Server Commands...........c.ccceevenene. 299 An Example Telnet Server 341

6.7 Reply Codesto FTP Commands.......... 301 An Example Telnet Client 342

TFTPClientc.ccoveveeieeve e, 303 11 Genera Purpose Console............... 343

7.1 BOOTP/DHCP.......tveeeeeveeeeee e 303 11.1 Zconsole FeatureS.....oovevveeeoiiii, 343

7.2 Data Structure for TFTP......ccccevrienene 304 File System Requirement 343

7.3 APl FUNGHONS.......oooreverceriesrieeseseane, 304 TCP/IP and Zconsole 343
TP NIt 305 11.2 Login Name and Password................. 344
tftp_l_nltx .. 306 11.3 Zconsole Commands and M eSSages... 344
P HCK oo 307
HEP_tICKX i 308 Zconsole Command Data Structure 344
tIP EXEC .o 309 11.4 Zconsole Command Array.................. 346

SMTP Mail Client.........ccccooccne 31 Zconsole Commands 346

8.1 Sample Conversation...........cccceeervenne 311 157 Zconslzol Sgrlrotr '\;I ges ggz

. .5 Zconsole nterface........coevvvevinens

8.2 SMTPAuther.1t|cat|on..........._ 312 How to Include an 1/0 Method 356

8.3 Sample Sending of an E-mail 313 Predefined 1/O Methods 356

8.4 Configuration Macros..........c.cceevveeevnnn. 314 Multiple 1/O Streams 357

8.5 APl Functions..........ccceveveveviee e, 316 11.6 Zconsole EXECULION ...evveeeeeeeeeeeeeeian, 358
smtp_data_handler.............cccoconeenee. 316 File System Initialization 358
smtp_malltlck_ 318 Serial Buffers 358
smtp_sendmailcccovreiiieninnnne. 319 Using TCPIIP 358
smtp_sendmailxmem....................... 320 sng _

SMEP_SELAULNcoovvecae, 321 Required Zconsole Functions 359
SMEP_SELSEIVEN ... 322 CoNSole iNit......ccceveecieiieciereeee e 359
SMEP_SELSErVEr P ..ccoceveereereeeeene 322 (000150 [T 10! 359
SMEP_SEALUS ..o 323 Useful Zconsole Function 360

i con_backup......ccoeeeeveereeecere e, 360

POP3 (?I Ient. 325 CON backUp, Dytes. s 360

9.1 Conflguratlon .. 325 Con_backu-p_reserve ________________________ 361

9.2 Steps to Receive E-mal........................ 326 Con_IChfls\(d_tlb mel?ut ----------------------------- gg%

. con_load backup.......cccceevrvivrinnnnn.

9.3 Call-Back Function.........ccccccoeeeverueennne 326 CON_TESEE 10evvrvveeoomemoeooeoeooeeeeeoreoeo 362
Normal call-back 326 con_set_backup [Xcoc.ovvrveeeeenene. 363
POP_PARSE EXTRA call-back 326 con_set files [X.evvvvevieciecieee, 363

; con_set user idle.....cooeeveeveiennee, 364

9.4 AP Fu;c;u R TT— gg CON S TMEOUL e 364

pOp _| n|t .. COﬂ_Set_useI’_tl meout 365
TCP/IP User’s Manual v

console_disable.......cccovvvevireecnnnns 365

console_enable........ccccoveeeevereennnnnns 366
Zconsole Execution Choices 367
11.7 Backup System......cccevveeverererenennnn 368

Data Structure for Backup System 368
Array Definition for Backup System

369
11.8 Zconsole MaCros........coveveeeeveeevensenen, 370
11.9 Sample Program........c.ccoceveieeeeecenenne 373
Notice to Users 377
INAEX . 379

Vi

TCP/IP User’s Manual

1. Introduction

The TCP/IP User’'s Manual isintended for embedded system designers and support professionals
who are using a Rabbit-based controller board. Most of the information contained here is meant
for use with Ethernet-enabled boards, but using only serial communication is also an option.
Knowledge of networks and TCP/IP (Transmission Control Protocol/Internet Protocol) is
assumed. For an overview of these two topics a separate manual is provided, An Introduction to
TCP/IP. A basic understanding of HTML (HyperText Markup Language) is a so assumed. For
information on this subject, there are numerous sources on the Web and in any major book store.

The Dynamic C implementation of TCP/IP comprises several libraries. The main library is
DCRTCP.LIB. Asof Dynamic C 7.05, thislibrary is alight wrapper around DNS . LIB,
IP.LIB,NET.LIB, TCP.LIB and UDP.LIB. Theselibrariesimplement DNS (Domain Name
Server), IP, TCP, and UDP (User Datagram Protocol). This, along with the librariesARP . LIB,
ICMP.LIB, IGMP.LIB and PPP.LIB arethetransport and network layers of the TCP/IP pro-
tocol stack.

The Dynamic C libraries:

e BOOTP.LIB

FTP SERVER.LIB
FTP_CLIENT.LIB

HTTP.LIB

POP3.LIB

SMNP.LIB

SMTP.LIB

TFTP.LIB

VSERIAL.LIB

implement application-layer protocols. Except for BOOTR, which is described in volume 1 of the
manual, these protocols are described in volume 2.

All user-callable functions are listed and described in their appropriate chapter. Example programs
throughout both volumes of the manual illustrate the use of al the different protocols. The sample
code also provides templates for creating servers and clients of various types.

To address embedded system design needs, additional functionality has been included in Dynamic
C'simplementation of TCP/IP. There are step-by-step instructions on how to create HTML forms,
allowing remote access and manipulation of information. There is also a serial-based consol e that
can be used with TCP/IP to open up legacy systems for additional control and monitoring. The
console may also be used for configuration when a serial port is available. The consoleand HTML
forms are discussed in volume 2.

Multiple interfaces are supported starting with Dynamic C version 7.30.

Introduction 1

TCP/IP User’s Manual

2. Web-Enabling Your Application

This chapter, and the next two, describe how to add web browser control to your application. Web-
enabling isalogical and appealing choice for adding a user interface to your application, since the
necessary hardware (an Ethernet or serial port) is available on all Z-World core modules and
SBCs. Most users of your application will be familiar with at least one web browser (Netscape,
Mozilla, Internet Explorer, Opera), with its graphical user interface, so they will be ready to start
controlling your application with minimal training.

This chapter provides an overview of the steps you will need to take to web-enable an application.
Knowledge of browsers, and something of their capability, is assumed. With this knowledge, you
can understand the concepts described in this chapter. The following chapters go into more detail
about the specific libraries; but for ssimple programs, you may be able to use just theinformation in
this chapter along with the sample code to write aworking application.

Dynamic C provides libraries that implement most of the functions required to implement a web
server, more formally known asan HTTP (HyperText Transfer Protocol) server. (The browser is
formally called an HTTP client). You only need to write code specific to your application, such as
dealing with 1/0s and the Rabbit peripheral devices, and possibly some codeto help the HTTP
server generate the appropriate responses back to the user’s web browser. In addition, thereisa
small amount of “boilerplate’ that needsto be written to include and configure the HTTP server
and any ancillary libraries such as the TCP/IP suite and filesystems.

2.1 Designing Your Application

Should you decide to web-enable your application, you probably already have some idea of the
format and layout of the web pages that will be presented to the browser. Unless the application
only returns information and does not allow any updates (such as a datalogger), you will probably
need to lay out some forms. Forms, in web parlance, alow the browser’s user to fill in some infor-
mation then submit it to the server. The server, your application, then performs the requested
actions and sends a confirmation back to the browser. Thisis the most common means for imple-
menting control of the server as opposed to merely querying it.

There are several other thingsto consider. Answers to the following list of questions will deter-
mine the pieces of software that need to be gathered into your application, and how they link
together.

e Does accessto some or all resources need to be limited to a select set of users?

e |f so, how confident does your application need to be that the user’s credentials are valid?

e Do you need to be able to upload large amounts of data (over, say, 250 bytes)?

e Do you want to be able to update the web pages themselves, or maybe even the entire appli-

cation firmware?
e |sthe application small, medium, or large?
e Do you want to use this same (web) interface to configure all aspects of the application

including, for example, the network settings? In other words, is the web interface going to
be the only interface once the unit leaves the factory?

Chapter 2: Web-Enabling Your Application 3

Thefirst and second questions relate to user authentication and access control. The next two ques-
tionsrelate to the HTTP upload facility. The last two questions concern the overall design of your

application; in particular, alarge application may necessitate more storage thanisusually available
for agiven Z-World product, and may require a sophisticated filesystem to manage the large num-
ber of resources.

Since the terms small, medium and large are rather vague, we shall define them by example. A
small application would be limited to less than 10 different web pages, and up to about 30 different
“controls’ (buttons to press, dials to twiddle, options to select etc.). A large application may have
upwards of 100 pages, and more than 10KB of configurable data. A medium application sits, as
you might expect, near the middle of these.

Note that we are not considering the size of the application other than the web interface part. For
example, you may have a sophisticated G-code interpreter and motion control system, where the
web interfaceis limited to simply enabling/disabling the actuators and showing an error log to
maintenance personnel. For the purposes of our discussion, thiswould be a small application.

The next section describes a*“ smaller-than-small” application, that is, atoy, which we use to show
the bare essentials of aweb-enabled application.

2.2 The Smallest Web Server in the WWW

Before moving on to real applications, the following sample code shows how to create the sim-
plest possible web server. It does nothing but show “Hello WWW?” on the browser. There are two
files needed for this. Thefirst isthe Dynamic C code to be loaded to the target board (which must
support TCP/IP). The second is the web page content itself, written in a syntax known asHTML
(HyperText Markup Language). The second file is effectively included in the program, using the
#ximport directive.

// toy http.c

#define TCPCONFIG 1
#use “dcrtcp.lib”
#use “http.lib”

#ximport “hellowww.html” hellowww html

SSPEC MIMETABLE START
SSPEC_MIME (“.html”, “text/html”)
SSPEC_MIMETABLE END

SSPEC_RESOURCETABLE START
SSPEC_RESOURCE_XMEMFILE ("/hellowww.html", hellowww_ html)
SSPEC_RESOURCETABLE END

void main() {
sock_init () ;
http init () ;
for (;;) http handler();

}
The second file, named hellowww.html is coded as follows:
<HTML >

<HEAD><TITLE>Hello, WWW</TITLE></HEAD>
<BODY><H1>Hello, WWW</H1></BODY></HTML>

4 TCP/IP User’'s Manual

That's al thereisto it. However, thereis actually alot of activity going on beneath the covers. For
astart, the #use “dcrtcp.lib” directive and the TCPCONFIG macro definition bring in the TCP/IP
networking suite and configure it. Unless you have a private test network, you probably have to
modify the default setting - how to do that is beyond the scope of this chapter; it is described in
volume 1 of the manual. The #use “http.lib” statement is required in order to bring in the web
server. The next lines down to the start of themain () function are setting up tables that are con-
sulted by the HTTP server and other libraries in order to “do theright thing.” Finally, themain ()
function calls the necessary runtimeinitialization of the network and the HTTP server. It then calls
the HTTP server in an endless loop, which drives the entire system into motion.

The .html fileis ASCII text, in HTML syntax, which is transferred back to the browser wheniitis
requested. Apart from the server adding some header lines, the .html file istransferred verbatim.
This markup is merely telling the browser to display “Hello, WWW” asa 1st level heading, i.e.,
big bold text. Thisis specified by the second line. Thefirst line adds atitle to the page, which most
browsers display in the window bar.

To see this web page on screen, the user needs to tell their browser what to get. If doing it manu-
ally, they would need to enter something like “ http://10.10.6.100/hellowww.html” in the browser’s
URL entry field. The browser strips off the http://10.10.6.100 part of it, and sends the rest to the
specified host address (10.10.6.100) using a TCP connection to port 80 (interpreted from the
http:// part). The server gets the /hellowww.html part, which it knows about since it has a page of
that name, and returns the contents of that file as aresponse. The browser interpretsthe HTML it
receives, and generates a nice visua rendition of the contents.

Chapter 2: Web-Enabling Your Application 5

2.3 Web Server Architecture

Before describing areal application, it is useful to know how such an application is organized. The
following diagram shows all of the relevant components of a web-enabled application. There may
seem to be alarge number of components, however keep in mind that not all components need to
be used by your application.

Application
Compile-Time Run-Time Main Application cal
Initialization __)Inltlallzatlon . Loop __»Specmcs, I/O‘__ Functions
\ A
A
#web
Variables
A
N—
HTTP HTTP-X
Metadata
Requests,
| mive| Resources Context
| Table '
! \ Y
i _ LN Zserver TCP/IP
i _|Rule [* N
| Table [/; (Resource Manager) I
:'-'-'-'-'-'-'-'-'-'-'-;/ Virtual File System {:3
i User : 1
; Table e

Authorization /
g ¥ --

Static Dynamic '
Resource Resource FS2 FAT H

Table Table

PERET TrTN

‘
:)
$| Program Second Backed Serial
'

‘

:

:

______ €
Battery- i
Flash Flash RAM Flash :

Figure 2.1. Components in a web-enabled application.

6 TCP/IP User’'s Manual

2.3.1 Application Block

At the top of thisdiagram isablock, called “ Application,” consisting of five sub-blocks. The
Application block represents the code that you have to create. Everything below thisis provided
by the libraries, although you will need to specify some parts of the interface to these components.
Thiswill be described in detail in the following sections.

The application block is subdivided into 5 parts:

1. Compile-time initialization. This includes things like selection of the appropriate library mod-
ules; initialization of static (constant) data structures and tables; selecting default network con-
figuration; and inclusion of static resources (external files) viathe #ximport or #zimport
directives. The arrows leading from the “ Compile-Time Initialization” sub-block indicate the
tables that may be set up at compile time; namely:

e The MIME type mapping table. This mandatory table indicates to the browser how the
content isto be presented to the user. Thisis necessary for the browser, and needs to be
specified by the server, however the server does not need to be particularly aware of
the details.

e Theruletable. Thisisonly necessary if afilesystemisin use. It is used by the resource
manager to apply access permissions to the resources contained in afilesystem. Thisis
necessary because not all filesystems can associate file ownership and access rights
with individual files.

e The static resourcetable. Thisisthe classic method of defining resourcesin
Dynamic C. Thistableis optional, since all necessary resources may be loaded in a
filesystem, or in the dynamic resource table. Most applications will contain at least a
few static resources, as an initial default or fallback, or for data that will never change
such as alogo image.

e Program flash. This realy represents the loading of resource files into program
memory viathe #ximport directive. There will almost always need to be afew
#ximport files, but this can be limited to a few kilobytes total.

2. Runtimeinitialization. Your main () function needsto call some specific library functions,
once only, when it starts:

e sock_init (). Thisisawaysmandatory. It initializes the TCP/IP networking
system.

® sspec automount (). Thisisoptional. It initializes the available filesystems (FS2
and/or FAT) for use by the resource manager, Zserver.

e http init (). Thisismandatory. Itinitializesthe HTTP server.

e Various functionsfor setting up auser 1D table, the rule table and/or the dynamic
resource table. These are optional, but would be used in the mgjority of applications.
The user ID table can only beinitialized at run time, unlike the other tables that may, at
least partially, beinitialized at compile-time.

3. Mainloop. Thefinal codeinthemain () function continuously callshttp handler () and
possibly other functions. Thisis mandatory, sinceit allowsthe HTTP server to process requests
from the network. Other functions may be specific to your application. For example, you may
need to poll an 1/0O devicein order to obtain best performance.

Chapter 2: Web-Enabling Your Application 7

4. Application specificsand I/O. Thisisrealy your part of the application or, if you like, the
“back end” to the HTTP server. There are anumber of ways that your application can commu-
nicate with the HTTP server. (These are not all shown on the diagram since it would add need-
less complexity.) Your application can directly call functionsin the HTTP server, in the
resource manager (Zserver), in TCP/IP, and just about anywhere else. One very clean and pow-
erful interface is provided via #web variables. Thisis a new add-on module in Dynamic C
8.50.

5. CGl functions. CGlI stands for “Common Gateway Interface,” however this acronym has a
more specific use in Dynamic C—it refersto a C function that is called by the HT TP server to
generate some dynamic content for the browser. Thisis the only truly optional block. Many
applications can be written without resorting to CGlI functions; however, there are some cases
where the power and flexibility of a CGI will be required. Prior to Dynamic C 8.50, writing a
robust CGI was the most difficult part of the entire process. From 8.50, there is a new style of
CGlI writing that simplifies the process, and reduces the chances of error. The old style of CGlI
isstill supported for backwards compatibility.

2.3.2 HTTP Block

Let us now progress to the HTTP server itself. In the diagram, thisisthe block with two circles
inside. The server isresponsible for fielding requests from the outside world. Each request is ana-
lyzed to determine the resource that is being requested, the user who is making the request, and
whether the user is authorized to obtain that resource. If the resource is available, the user is
known and has the proper permissions, then the resource is transmitted back to the browser.

Following the above steps in more detail, we have:

1. Analyzethe request: abtain the resource name. Part of the information provided by the browser
isarequest header that contains a URL (Uniform Resource Locator). The URL issimply the
name of the resource to retrieve. URL s typically look like afile name in a Unix-style filesys-
tem, that is, component directory and file names separated by dash (/) characters.

2. Obtain the user ID. The browser has the option of sending the username and password of its
user. If it does not do this, then the userid is “anonymous.” If thisis not good enough, then the
browser can always try again when it is denied a protected resource. On receipt of user creden-
tials (name and password), the HT TP server consults the resource manager (which in turn looks
up the rule table) to see if the user’s credentials are OK. If they are, then the resource manager
also determines the group(s) of which this user is amember. Thereafter, all access and permis-

sion checking is based on the group, not the individual user.

3. Return the resource. Having verified the group access rights (if necessary), the resourceis
transmitted back to the user. The resource may be an HTML or image file obtained from pro-
gram memory or afilesystem, or it may be ascript filethat is processed “ on the fly” to generate
markup language. It may even represent a CGI function that will be called to generate all the
necessary response. Note that a complete response requires a small amount of header informa-
tion to be prefixed to the actual resource. The HTTP server usually takes care of this, however
CGl s sometimes need to generate the header themselves.

1. Thisisanecessary optimization. There may be hundreds of individual users; however, the
majority of these would be considered to bein asingle “class,” with that class giving equal
accessto al its members. Considering the class, i.e., group, as the entity that is requesting a
resource reduces the amount of information that needs to be stored.

8 TCP/IP User’'s Manual

Referring to the diagram in Figure 2.1, you can see that there are several arrows leading in and out
of the HTTP server block. These represent lines of communication, and the arrow heads indicate
the usual direction of dataflow or, for function cals, “who calls whom.”

2.3.3 HTTP Block Subcomponents

Theinner circles represent subcomponents of the server. Thefirst of these, RabbitWeb, is a new
add-on modul e available starting with Dynamic C 8.50. RabbitWeb is an extension to C language
syntax to smplify presentation of C language objects (variables, structures) to a browser. Rabbit-
Web alows you to write web pagesin a special scripting language. The script makes it easy to
generate HTTR, which is the format expected by the browser. In addition, the script allows the
contents of your C language abjects to be turned into HTML fragments for presentation by the
browser.

The small block named “#web Variables,” between the Application block and the Rabbit\Web cir-
cle, indicates that the #web variables are the means of communication between your application
and the server. Since #web variables arereally just ordinary C variables, arrays or structures, they
are extremely easy to manipulate by your application. Since they also have the property of being
registered with the web server, the server has easy access too. (Registering an object with the web
server is discussed in the document titled, “ RabbitWeb,” available on our website.)

The second circle in the HTTP server block represents the classic way of generating dynamic con-
tent. SSI (Server Side Includes) is also a scripting language. It is not nearly as easy to use SSl as it
isto use RabbitWeb; however, an SSI can generate the same content as an RabbitWeb script. Itis
just that you will need to write CGI functions, and such functions can get large and complicated
fairly quickly! Infact, SSI has the ahility to invoke CGI functions whereas RabbitWeb does not. In
addition, SSls have the ability to include other resources directly in the primary returned resource
much like how #include worksin ANSI C.

The server a'so communicates with lower layers in the diagram. On the right hand side is the
TCP/IP block. Thisisthe pipeline to the outside world, i.e., the browser. Usually only the server
needs to talk directly to TCP/IP (viaa TCP socket). Prior to Dynamic C 8.50, it was often neces-
sary for the application’s CGI functions to call TCP/IP functions. Thisisno longer recommended.
Instead, there are functions in the HTTP server that should be called to mediate all networking
cals.

Chapter 2: Web-Enabling Your Application 9

2.3.4 Zserver Block

Directly under the HTTP server block is the Zserver, or resource manager, block. Thisisthe “cen-
tral telephone exchange” of the entire application. It controls access to many of the other blocksin
the diagram. In spite of itsimportance and central placing, you do not usually need to be aware of
itsinner workings. Zserver has applicability to other types of servers, such as FTP, because it pro-
vides a consistent interface to the various different types of resource. Asindicated in the diagram,
Zserver is architected as aresource manager and a virtual filesystem. The virtual filesystem is
basically a notational convenience for accessing all resources using a uniform naming scheme.
The external appearance of the virtual filesystem is modelled on the Unix approach. In Unix, all
storage devices, and the filesystems contained therein, are accessed from a single starting point
known as the root directory, written asasingle slash (/) character. Under the root directory may be
any number of files and directories. Some of these directories may actually refer to a completely
different device and filesystem. The term for such directory entries is mount-point.

Note the distinction between this naming convention and the one used by (PC) DOS and similar
operating systems. In DOS, you have to explicitly indicate the device by prefixing the file name.
For example, C:\index.htm and A:\index.htm are different files, on different devices. On Unix you
create two mount pointsin the root directory; /backup and /production for example. Then, the
above mentioned files are known as /backup/index.htm and /production/index.htm. This may seem
like afine distinction, however it matches better with the naming convention used by HTTR, i.e.,
the URL. It also offers greater flexibility with regards to naming devices.

Zserver does not currently allow arbitrary mount-point names like Unix. Instead, there is an estab-
lished convention for each filesystem. If FS2 isin use, then there is a mount-point called “/fs2.” If
the FAT filesystem isin use, then one or more mount points called “/A,” “/B,” “/C" etc. are cre-
ated.

Since Zserver isthe resource manager, it takes responsibility for mapping the various filesystems
and resource typesinto asingle unified API. This API not only takes care of the detailed differ-
ences between the various filesystem APIs, but also allows some functions to be emulated that are
not natively supported by the underlying filesystem.

In addition to the resource storage and filesystem, the resource manager needs to be able to associ-
ate other data with each resource. This other datais divided into two categories, which arelisted in
the blocks on the | eft of the diagram.

The two categories are “ metadata’ and “authorization.” Metadata consists of two tables: the
MIME table and the Rule table. The authorization datais currently just a single table of userids.
The reason for the split into two categoriesisthis. the metadataislogically associated with indi-
vidual resources, whereas the authorization data is a mapping from external entities (“users’) to
the unit in which authorization is performed, namely user groups. The Rule table has some over-
lap, since it associates groups with individual resource permissions.

The lowest blocks in the diagram are divided into two groups, with a dashed outline. The upper
group is labelled “filesystems,” and the lower “storage.” Both of these groups are indefinitely
extensible, meaning that new classes of storage and their organization (filesystems) may be added
in future rel eases of Dynamic C, or by you. The arrows between these groups are indicative of the
most common patterns of communication; others may be defined.

10 TCP/IP User’'s Manual

2.4 Architecture of a Toy Application
Using the diagram of the previous section as a basis, we now focus on writing a simple web-

enabled application. The following diagram is the same as the one above, except that the relevant

parts have been visually emphasized. This diagram is essentially the toy application that was
described at the start of this chapter. It shows the mandatory components for all web-enabled
applications. Later, we introduce the other elements of the diagram to show how a fully featured

application is built up.

Application
Compile-Time Run-Time Main Application CGl
Initialization 1y Initialization s Loop __)SpeCIfICS, |/O<__ Functions
A A
A
#web
Variables
K
HTTP HTTP-X
Metadata
pommmm . A
' Requests,
P [MivE]| Resources Context
v 2| Table '
' \\ y
g N Zserver TCP/IP
: 5|Rule |1 S Resource Manager
" |Table [/; (ger) 1
/ Virtual File System {::3
| user 1
: Table |«
Authorization
prmmmmmm e ¥-- .
| Static Dynamic '
$| Resource Resource FS2 FAT :
1 | Table Table .
r Q
4| Program Second Battery- Serial
T| Flash Flash Y Flash | !

Figure 2.2. Minimum components for a web-enabled application.

Chapter 2: Web-Enabling Your Application

11

Let uswork again from left to right in the Application block. To reiterate, the Application block
represents the coding that you have to do. First, there is the compile-time initialization. Taking the
super-simple example illustrated in Figure 2.2, Dynamic C code is given with the relevant part
highlighted in boldface.

#define TCPCONFIG 1
#use “dcrtcp.lib”
#use “http.lib”

#ximport “hellowww.html” hellowww html

SSPEC MIMETABLE START
SSPEC MIME (“.html”, “text/html”)
SSPEC MIMETABLE END

SSPEC_RESOURCETABLE START
SSPEC_RESOURCE XMEMFILE ("/hellowww.html", hellowww html)
SSPEC_RESOURCETABLE END

void main() {

sock init () ;

http init () ;

for (;;) http handler();
}

Thefirst boldface line isthe #ximport directive. Thistells the compiler to include the specified
filein the program flash, and make it accessibleviathe hellowww html constant. Inthe dia-
gram, the arrow from compile-time initialization to program flash represents thisinclusion. In
most cases you would be including more than just onefile.

The three lines starting with SSPEC_ MIMETABLE _START are initialization statements for the
MIME table. In this case, there is a single mapping from resources that end with “.html” to a
MIME type of “text/html.” All MIME types are registered with the relevant standards body, and
must be entered correctly so that the browser does not get confused. “text/html” is the registered
MIME type for HTML.

The next three lines, starting with SSPEC_ RESOURCETABLE_START, set up the static resource
table. Again, this contains asingle entry that associates the resource name “/hellowww.html” with
the file that was #ximported on the first line. Note that the resource name suffix (.html) matches
the first parameter of the SSPEC_MIME entry.

Although not directly indicated on the diagram, the other compile-timeinitialization that is always
required is the #use of the appropriate libraries. In this case, the first three lines create a default
TCP/IP configuration (TCPCONFIG = 1) and bring in the networking and HTTP libraries. Note
that http.1lib automatically includes zserver.lib.

Back in the Application block of the diagram, we move right and consider the runtime initializa-
tion block. Thisis contained inthemain () function. sock init () comesfirst, toinitialize
the TCP/IP network library and bring up the necessary interface(s). http init () resetsthe
HTTP library to a known state.

The last statement embodies the Main Loop sub-block. Thisis always required. Typically, only
http handler () needsto be called; however, your application can insert calls to its own poll-
ing and event handling code. Since thisis such asimple example, there is not even any applica-
tion-specific code.

12 TCP/IP User’'s Manual

2.5 A Simple but Realistic Application

To turn the above toy example into something more realistic, we need to add some application
specifics, and the ability to customize the resource returned to the browser depending on the rele-
vant state of the application. The following diagram shows the necessary parts.

Application
Compile-Time Run-Time Main Application CGlI
Initialization _|J Initialization |, ~ Loop _l 5 Specifics, I/Q_| Functions
A A
\
#web
Variables
7
N—

HTTP HTTP-X

_Metadata vy
Requests,
J|MIVE| Resources Context
Table \\ v LA
3 LN Zserver TCP/P
>Rule [> (Resource Manager)
. |Table [T / i
[—'—'—'—'—'—'—'—'—'—'—;/ Virtual File System
i |user]
' | Table j&=
Authorization
Optional i
o fe o e ELEREE LR T MR bl
| Static Dynamic :
| Resource Resource FS2 FAT
i | Table Table
S R AU N AN S B
____________ S S [, (o1 ¢
+| Program Second Eattﬁryg Serial
Flash Flash RAM Flash

Figure 2.3. Minimum components for a web-enabled application with dynamic content.

The easiest way to introduce dynamic content is to use the RabbitWeb module and the associated
scripting language. RabbitWeb is available as a Dynamic C add-on module starting with Dynamic
C 8.50. If you do not have RabbitWeb, you can use SSI instead, which is described in

Section 4.5.2.1 " SSI Feature.” This example, illustrated in Figure 2.3, assumes that you have Rab-
bitWeb.

Chapter 2: Web-Enabling Your Application 13

The document titled, “RabbitWeb, To Web-Enable Embedded Applications’ describes Rabbit\Web
and the scripting language, ZHTML, in detail. The following example is a simplification of the
web . ¢ sample programin Samples\tcpip\rabbitweb.

#define TCPCONFIG 1
#define USE RABBITWEB 1

#use "dcrtcp.lib"
#use "http.lib"

#ximport "my app.zhtml" my app zhtml

SSPEC MIMETABLE START
SSPEC_MIME FUNC(".html", "text/html",
SSPEC _MIMETABLE END

SSPEC _RESOURCETABLE START

SSPEC RESOURCE XMEMFILE ("/index.html",

SSPEC_RESOURCETABLE END
int io_state;

#web io_state

void my io polling(void);

void main ()

{
sock init () ;
http init () ;
for (;;) {
my io polling();
http handler() ;

}
}

void my io polling()

{
}

io state = read that io device();

zhtml handler),

my app zhtml)

The differences between the above code and the toy example in the previous section arein bold -
face. All the differences relate to the use of RabbitWeb. Thefirst additionisa#def ine of
USE_RABBITWEB. Thisisnecessary in order to include the necessary library code.

Next, there is amodification to the MIME table. The SSPEC_MIME_FUNC macro defines an
entry that saysthat if the resource name ends with “.html” then the MIME typeis text/html (as
before), and there is a special scripting function that must be run by the HTTP server. This script-
ing functioniscaled zhtml handler; itisprovided by the HTTP library. ZHTML isthe
unique embedded scripting language that converts script files into ordinary HTML so the browser

can understand it.!

1. Most applications will want to use a different resource suffix to distinguish between “ordinary”
HTML files and script files. The samples provided with dynamic C use .zhtml for script files,
and .html for plain HTML. In this sample, we only have script files, so it is convenient to retain
the .html suffix. The other reason for this relates to the way the HTTP server handles requests
for adirectory. If given aURL of “/”, the HTTP server will append “index.html” to determine
the actual resource. We take advantage of this default behavior so that this sample would work

as expected.

14

TCP/IP User’'s Manual

Theint io_ state and #web statements define and register aweb variable. Such avariableis
an ordinary global variable asfar as your C program is concerned. In addition, the script is able to
accessit.

my io polling () isafunctionthat ispart of the Application Specifics sub-block. Asthe
name suggests, it is called regularly to poll some external device so as to keep the #web variable
up-to-date. The implementation of themy io polling () function isshown updating the
#web variable, but we don’t specify the actual 1/O reading function since that istoo, well, applica-
tion specific.

Now you may be wondering what this scripting language, ZHTML, lookslike. The following code
shows the contents of themy app.zhtml file

<HTML><HEAD><TITLE>Web Variables</TITLE></HEAD>
<BODY><H1>Web Variables</H1l>
<P>The current value of io state is
<?z echo($io state) ?>
</P>
</BODY></HTML>

Thislooks like plain HTML, and it is. The only difference is the existence of special commands
flanked by “<?z” and “ ?>.” In this case, the command simply echos the current value of the web
variable that was registered. The value (binary in the global variable) is converted to ASCII text
by adefault printf () conversion, inthiscase “%d" because the variableis an integer. When
the browser gets the results returned by the HTTP server, it will see

<HTML><HEAD><TITLE>Web Variables</TITLE></HEAD>

<BODY><H1>Web Variables</Hl>

<P>The current value of io state is

50

</P>

</BODY></HTML>
Where the “50” represents the current variable value—of course, it may be any decimal value that
an integer variable could take: -32768 through 32767.

Thisis still atrivial example, but it isinfinitely more real-world than the toy example. We have
introduced the concept of dynamic content, which isrequired for embedded type applications. One
thing that has been glossed over is how (and even whether) the variable can be updated from the
browser, rather than just within the application. Yes, all #web variables may be updated viathe
browser. This requires use of HTML forms, which is a subject covered in the detailed documenta-
tion for RabbitWeb, and inthe HTTP library chapter. We will not go over this again here; however,
the possibility of remote updating introduces us to the topic of the next section, access control.

Chapter 2: Web-Enabling Your Application 15

2.6 Adding Access Controls

If your application allows updating of the controller state via remote access, and the network con-
nection allows access from locations that are not always under control, then it isimportant to add
some access controls or “security.”

The most common way of doing thisisto define a set of users, plus a method of authenticating

those users, and attaching a set of “permissions’ to each resource. The Dynamic C libraries allow
you to do thisfairly easily, viatwo tables. The relevant tables are:

The User Table

The user table contains alist of user IDs (short strings) and authentication information (currently a
password string). Each user table entry also contains a group mask. The group mask indicates the
user groups to which this user belongs. Up to 16 groups can be defined, and any given user can
belong to one or more of these 16 groups. There are two additional masks in each user table entry.
Thefirst is awrite access mask that indicates which server(s) allow the user to write (maodify) its
resources. The second mask indicates the server(s) that can recognize the user.

The Rule Table

Theruletableisalist of information associated with each resource name, generally called “ per-
missions.” Each resource has the following information:

e Therealm (string) that may be used by certain servers (including HTTP).
e The group mask of the user groups that are allowed read-only access.

e The group mask of the user groups that are allowed modify/write access.
e The server(s) that are allowed any access to this resource.

e The authentication method that is recommended.

e The MIME type of the resource.

Resources in the static and dynamic resource tables may be set up to have their own specific per-
missions, independent of the rule table itself. Resourcesin a filesystem may be very numerous
hence a simple one-to-one table would waste alot of storage. To solve this problem, the rule table
uses a name prefix matching algorithm. Using this technique, entire directories of resources need
only have one rule table entry provided that all resources therein use the same permissions.

16 TCP/IP User’'s Manual

The following diagram shows the application components when access control is added:

Application
Compile-Time Run-Time Main Application CGl
Initialization _1, Initialization |, ~ Loop __)Specifics, I/Q__ Functions
A A
A
#web
Variables
A
HTTP HTTP-X
_Metadata x
Requests,
L |MIvE| Resources Context
| Table \\
! Y Y
N Zserver TCP/IP
+ »|Rule [. > (Resource Manager)
i | Table | / 1
/ Virtual File System Q
i | User |)
' Table [«
Authorization
[A JUR S VRN File Systems
| Static Dynamic
| Resource Resource FS2 FAT
i | Table Table ;
S S .. l
iy il ainliaiiaiel S N B Zaiiaiaieieetei Y _t_or_ ‘gg.
+| Program Second Battery- Serial |
'| Flash Flash Backed Flash | !

Figure 2.4. Minimal components of a web-enabled application
with dynamic content and access control

The main difference between this and the previous diagram is that the Rule Table and User Table

blocks have been activated.

Chapter 2: Web-Enabling Your Application

17

The sample program is now expanded to add access control. As before, the changesareinbold-
face.

#define TCPCONFIG 1
#define USE RABBITWEB 1

#define USE HTTP BASIC AUTHENTICATION 1
#use "dcrtcp.lib™

#use "http.lib"

#web groups monitor group, admin group
#ximport "my app.zhtml" my app zhtml
SSPEC MIMETABLE START

SSPEC_MIME FUNC(".html", "text/html", zhtml handler),
SSPEC _MIMETABLE END

SSPEC _RESOURCETABLE START
SSPEC_RESOURCE XMEMFILE ("/index.html", my app zhtml)

SSPEC _RESOURCETABLE END

int io_state;

#web io state auth=basic groups=monitor group(ro),admin group

void my io polling(void) ;

void main ()
sspec_addrule ("/index.html", "Pet",

admin_ group |monitor group, 0, SERVER HTTP,
SERVER_ AUTH BASIC, NULL);

sauth setusermask(sauth adduser ("admin", "dog",
SERVER_ANY), admin group, NULL);

sauth setusermask(sauth adduser ("monitor", "cat",
SERVER_ANY), monitor group, NULL);
sock init();
http init();
for (;;) {
my io polling() ;
http handler() ;
}
}
void my io polling()

{
}

The first change is the definition of USE_ HTTP BASIC AUTHENTICATION. Thissets up the
HTTP server to be able to process this form of authentication. If not defined, then the server is
unable to do this; there islittle point in setting up any other access controls if the user cannot be
verified!

Next, the user groups are defined. In this case, we are defining an “admin” and a“ monitor” group.
Presumably, the admin group has ability to alter the state of the controller, but the monitor group

can only read its current state. The names admin_group and monitor group are actualy
defined to be unsigned integer constants with just one bit set out of 16.

io state = read that io device() ;

18 TCP/IP User’'s Manual

The #web registration of the io_state variableisaugmented with some access controls. #web
variables are not strictly resources—they are included as parts of other resources—however, they
can be assigned some access controls of their own. In this example, access to the variable is being
set to require “basic authentication,” and the allowabl e user groups are both of the defined groups,
with the proviso that the monitor group isto be allowed read-only access.

The last mgjor changeisinthemain () function, where some runtime initialization needs to be
performed. Since the user ID table cannot be statically initialized (i.e., at compile-time), thisisa
necessary step. Therule table can be statically initialized, but in this example we chooseto do it at

runtime.l First, the rule table entry:
sspec_addrule ("/index.html", "Pet",

admin_group |monitor group, 0, SERVER HTTP,
SERVER AUTH BASIC, NULL) ;

Thefirst parameter specifies the name of the resource to which this rule applies; or rather, the first
characters in the resource name. For clarity, the sample shows the full name. In practice, since
thereisonly one resource, it would be acceptableto usejust “ /” instead of “ / index . html.”

The second parameter, “Pet,” isan arbitrary string called the “realm.” Thisis presented to the
browser’s user when prompted for the password, as shown here.

Enter Hetwork Password |
? Pleaze type pour uzer name and paszword.
Site: 10.10.4.22
Realm Pet
zer Mame I
Paszzword I
[T Save thiz password in your password list
OF. I Cancel

The third and fourth parametersindicate the group(s) that have read and write access to the
resource. Both groups are allowed read access, and none write (0). Note that the resource in this
caseisthe index.html page, not the variables which may or may not be displayed on it. Since
this web page (actually aZHTML script) isin program flash, it is obviously not modifiable.

The SERVER HTTP parameter indicates that this resource is only visible from the HTTP server.
Thiswould be more relevant is there was another server, such as FTP, running concurrently.

1. Inthis example we also choose to use arule table. Thisis not strictly necessary since no filesys-
temisin use. The alternative isto use a different form of initializing the static resource table,
namely by using the SSPEC_RESOURCE_P_XMEMFILE macro, which allows permission
information to be stored in the static table instead of in the rule table. See Section 3.2.5.3.

Chapter 2: Web-Enabling Your Application 19

SERVER AUTH BASIC indicates that the server should use “basic authentication” when the
browser calsfor thisresource. Notethat Zserver does not enforce the method of authentication; it
only stores the recommended method in the rule table. Any enforcement of authentication
requires the co-operation of the server, since each different type of server may have widdly differ-
ent means of implementing the same type of authentication. Rest assured that the HTTP server
(and other servers provided with Dynamic C) always enforce the suggested authentication method.

Thefinal NULL parameter allows some arbitrary datato be stored in the rule table entry. This data
isavailableto the server. It is not currently used by any of the serversin Dynamic C, but it may be
useful if you implement your own server.

Now, let’s turn to the user ID initialization:

sauth setusermask (sauth adduser ("admin", "dog", SERVER ANY),
admin group, NULL) ;

Thisisanested function call. sauth adduser () iscalledfirst, to add a user called “admin”
with password “dog.” Thisuser isvisibleto al servers (SERVER _ANY).

The result of thisfunction call isauserlD handle, which isthe first parameter to

sauth setusermask (). Thisfunction explicitly assigns a group mask to the user. You can
omit this call; however, the default method of assigning group masks is designed to be backward
compatible with old versions of the library, and may not be what you want when using new fea-
tures. You should always usethe sauth setusermask () function for each user ID.

In this example, we have added access contral to the code. We do not need to change the ZHTML
script, although in reality you would probably want to. Using the script unchanged, when the user
triestoretrieve index . html, the browser will prompt for a userid and password. If one of the
valid usersis entered, then the page will be displayed. Otherwise, the browser will print an error
message saying that access was denied.

20 TCP/IP User’'s Manual

Unfortunately, as written above, the sample will not allow usto test the distinction between the
two users regarding the ability to modify the #web variable. We have shown how to add access
control, but not how to actually specify aweb form that allows the user to update the variable. It
turns out that adding aform is not difficult. A modified script file is shown below. Thereis quite a
lot to HTML forms, so most of the details are documented elsewhere. There are many good

HTML reference books available.

<HTML><HEAD><TITLE>Web Variables</TITLE></HEAD>
<BODY><H1>Web Variables</H1l>
<P>The current value of io state is
<?z echo($io state) ?>
</P>

<?z if (error($io state)) { 2>
<P>Sorry, you were not authorized to perform an update.</P>
<?z } ?>

<FORM ACTION="/index.html" METHOD="POST">
<P>Enter a new value if you dare:</P>

<INPUT TYPE="text" NAME:"io_state" SIZE=5
VALUE="<?z echo($io state) ?>">
<INPUT TYPE="submit" VALUE="Submit">
<INPUT TYPE="reset" VALUE="Reset">
</FORM>
</BODY></HTML>

If you run the above sample with this script, then the user will be able to attempt an update to the
#web variable, io_state. If the user was “monitor,” that is, not able to make an update, then
the “ Sorry” message will be printed. Recall that the accessto 1o state was set up when the
variable was registered with #web.

You may be asking how the application notices when the #web variable is updated by the
browser, not justinthemy io polling () function. Thisisagood question, sincethe HTTP
server updates the variable just like anormal C variable. The solution to this requires that you
specify an “update” callback function in the #web variable registration. Thisis described in detail
in the Dynamic C Modul e document titled, “ Rabbit\Web: Web-Enabling Your Application;” for the
purposes of this section please just remember that it is easy to do.

Chapter 2: Web-Enabling Your Application 21

2.7 A Full-Featured Application

The previous examples have relied on #ximport to store filesin the program flash. Thisis limit-
ing in terms of storage capacity and does not allow for dynamic file updates. Adding the ability to
storefilesin afilesystem that islocated somewhere besides the program flash is of high value

because it adds storage capacity and allows for dynamic updates.

Application
Compile-Time Run-Time Main Application CGl
Initialization 1, Initialization_{ Loop __>Specifics, I/Q__ Functions
A A
A
#web
Variables
A
N—— !
HTTP HTTP-X
_Metadata y\
Requests,
:|MIvE| Resources Context
| Table \\ v
: Y
i B E \ Zserver TCP/IP
+>|Rule | . > (Resource Manager)
: ~|Table [! / I
/ Virtual File System {":}
i | user
' Table (<=
Authorization

N

1 [Static

Table

Dynamic
Resource
Table

Flash

| Program

Battery-
Backed

RAM

Figure 2.5. Components of a full-featured web-enabled application.

As mentioned previoudly, Zserver implements avirtual filesystem that can be used by an applica-

tion for a clean, consistent interface to the various available methods of resource organization. An
application can a so bypass the resource manager and access a filesystem directly. (Note that there
isno arrow in the diagram showing this line of communication.)

22

TCP/IP User’'s Manual

Looking at the bottom of the diagram in Figure 2.5 you can see that there are some additional
hardware requirements when using FAT or FS2. The FAT needs a serial flash and FS2 needs a sec-
ond flash or battery-backed RAM.

The sample program is now expanded to use a FAT filesystem and has the ability to upload filesto
it. Asbefore, the changesareinboldface.

#define FAT USE FORWARDSLASH
#define FAT BLOCK
#define USE HTTP UPLOAD

#define TCPCONFIG 1
#define USE RABBITWEB 1
#define USE HTTP BASIC AUTHENTICATION 1

#use "sflash fat.lib"
#use "fat.lib"

#use "dcrtcp.lib"

#use "http.lib"

#web groups monitor group, admin_ group
#ximport "my app.zhtml" my app zhtml

SSPEC MIMETABLE START
SSPEC_MIME FUNC(".html", "text/html", zhtml handler),
SSPEC MIME (".cgi", "m)

SSPEC_MIMETABLE END

SSPEC RESOURCETABLE START
SSPEC_RESOURCE_XMEMFILE ("/index.html", my app zhtml),
SSPEC_RESOURCE CGI ("upload.cgi", http defaultCGI)
SSPEC _RESOURCETABLE END
int io_state;
#web io state auth=basic groups=monitor group(ro),admin group
void my io polling(void) ;
void main ()
int rc;
sspec_addrule ("/index.html", "Pet",

admin_group |monitor group, 0, SERVER HTTP,
SERVER AUTH BASIC, NULL) ;

sauth setusermask (sauth adduser ("admin", "dog",
SERVER ANY), admin group, NULL) ;
sauth setusermask (sauth adduser ("monitor", "cat",

SERVER_ANY), monitor group, NULL) ;
rc = sspec_automount (SSPEC MOUNT ANY, NULL, NULL, NULL);

if (rc)
printf("Failed to initialize, rc=%d\n
Proceeding anyway...\n", rc);
sock init () ;
http init () ;
for (;;) {

my io polling() ;
http handler () ;

}

Chapter 2: Web-Enabling Your Application 23

The first change is the addition of FAT USE_FORWARDSLASH and FAT BLOCK. Theseare
needed by Zserver to work with the FAT filesystem. The definition of USE_ HTTP_UPLOAD is
needed for Zserver to use the file upload feature. Next, the libraries for the FAT (fat.1ib) and
for the serial flash driver (sflash fat.1lib) arebrought in with #use statements.

The MIME type mapping for CGlsis added to the MIME table with SSPEC_ RESOURCE_ CGI.
An empty string is the registered type for CGls. This makes sense since CGls are not displayed by
the browser.

Next, we want to give the server access to the CGI function by creating an entry for it in the static
resource table with SSPEC_ RESOURCE_ CGI. Thefirst parameter is a string that must match the
string used in the FORM ACTION tag in the HTML code. The second parameter identifies the
CGl function that will be called when the form is submitted. http defaultCGI () isaCGl
that is provided with the HTTP server. It uploads filesto a FAT filesystem, shows a status page to
the browser after the upload and allows the user to click back to the server’s home page. For a
detailed description of the file upload feature, see Section 4.6.

Finally, the FAT filesystem must be readied for use. The call to sspec_automount () takes
care of everything, assuming that a FAT partition already exists on the serial flash. How to create
theinitial filesystem is discussed in the Dynamic C Module document titled, “ Compact FAT File-
system.”

The application now supports uploading files to the FAT, but we have yet to give the user any way
to actudly doit. That involves changing the HTML page.

<HTML><HEAD><TITLE>Web Variables</TITLE></HEAD>
<BODY><H1>Web Variables</H1l>
<P>The current value of io_state is
<?z echo($io_state) ?>
</P>
<?z if (error($io state)) { 2>
<P>Sorry, you were not authorized to perform an update.</P>
<?z } ?>

<FORM ACTION="/index.html" METHOD="POST">
<P>Enter a new value if you dare:</P>
<INPUT TYPE="text" NAME="io state" SIZE=5
VALUE="<?z echo($io state) ?>">
<INPUT TYPE="gubmit" VALUE="Submit"s>
<INPUT TYPE="reset" VALUE="Reset">
</FORM>

<FORM ACTION="upload.cgi" METHOD="POST"
enctype="multipart/form-data">

<TABLE BORDER=0 CELLSPACING=2 CELLPADDING=1>
<TR>
<TD ALIGN=RIGHT>File to upload
(to /A/new.htm)</TD>
<TD><INPUT TYPE="FILE" NAME="/A/new.htm" SIZE=50></TD>
</TR>
</TABLE>
<INPUT TYPE="SUBMIT" VALUE="Upload">
</FORM>
</BODY></HTML>

24 TCP/IP User’'s Manual

Thetext in boldface is the description of a new form, which, when displayed by the browser,
allows afile to be uploaded to a FAT filesystem.

The FORM teg = |Weh Variahles - Mozilla {Build ID: 2001090111} (==
. = B ariaples - Dz (]| : —_
:\:E#f_?ége v File Edit View Search Go Bookmarks Tasks Help

atribute, which || Web Variables

isthe same as

that of the first The current value of io_state is 50

form. The Enter anew value if you dare:

ACTION

attribute has o Submit | Reset |

changed to spec-

ify the CGI File to upload

function that (to /A/new hm) _Browse.. |
was added to the Upload |

server’'s static

resource table;

thisisthe

default CGI provided by the server. When the Upload button is clicked, http defaultCGI ()
will be called by the server. A new attribute is included that specifies the MIME type used to sub-
mit the form to the server: enctype="multipart/form-data’. Thisisthe MIME type required when
the returned document includes files.

Note that the two forms are being submitted and processed separately. Could they be processed as
one form? Yes, but from a modular design perspective, it makes sense to keep the form submis-
sions separate when the purpose of each form is entirely separate.

You may have noticed that no security was added to protect the filesystem—anyone can upload a
file that passed the initial user and password protection that limits access to the web page. Thisis
probably not the ideal situation. Typically there needsto be some limit placed on who is able to
write to the filesystem.When considering security, there are three possible things to protect:

e The web page that contains the form. Give read access only to those users who could con-
ceivably upload the files specified therein.

e The CGl itself. Protect the same as the web page.

e Theuploaded resource. You should set up arule allowing write access only to the intended
user(s).

When defining user 1Ds that can use the upload, don't forget to give those users overall write
access using e.g.,

sauth setwriteaccess(uid, SERVER HTTP) ;
Another way to design this application is to have a separate HTML file that contains the form for
the file upload; then instead of having the form for the file upload on the current HTML page, you

put alink to the new page and then apply a permission to alow the new page to be displayed, such
as.

sspec_addrule (“/newpage.html”, “Pet”, admin group,
admin group, SERVER HTTP, SERVER AUTH BASIC, NULL) ;

Chapter 2: Web-Enabling Your Application 25

That way the only people who see the Upload button are those authorized to use it. Design deci-
sions such asthese are guided by the needs of the application. The point hereis that these design
decisions are not limited by the underlying tools you are using to accomplish your goal.

2.8 Living Without RabbitWeb and FAT

Without the use of Rabbit\Web we are back to SSI tagsin the HTML page and writing a CGI to
process them. With the new-style CGlsintroduced in Dynamic C 8.50, thisis easier than it used to
be. If thereis no serial flash, the FAT filesystem isn't available; but if there is a second flash or
some battery-backed RAM, FS2 is. The following diagram shows the components that are used in
this case. Note that even though both the second flash and the battery-backed RAM are high-
lighted, an application can use either or both.

Application
Compile-Time Run-Time Main Application CGl
Initialization 15 Initialization__) Loop __)Specifics, I/Q__ Functions
A A
\i
#web
Variables
)
_/ v
HTTP HTTP-X
_Metadata x
' Requests,
_ImivE| Resources Context
~| Table \\ v
4
- F N Zserver TCP/IP
»>|Rule [~ > (Resource Manager)
: ~ |Table [! / I
/ Virtual File System {:},
L user | ’
1 | Table <=
Authorization
File Systems
__________________ .‘ﬁ R R V. ¢ P S
| Static Dynamic
$| Resource Resource FS2 FAT
i | Table Table

| Program Second E:Ltlfgg Serial
Flash Flash RAM Flash

Figure 2.6. Components of a full-featured web-enabled application.

26 TCP/IP User’'s Manual

The sample program is now modified to use the FS2 filesystem. It still has the ability to upload
filesto the filesystem. Asbefore, the changesareinboldface.

#define USE_HTTP_UPLOAD

#define TCPCONFIG 1
#define USE HTTP BASIC AUTHENTICATION 1

#use "fs2.1lib"

#define admin group 0x0001
#define monitor group 0x0002

#use "dcrtcp.lib"
#use "http.lib"

#ximport "my app.shtml" my app shtml

SSPEC MIMETABLE START
SSPEC_MIME FUNC(".ssi", "text/html", shtml handler),
SSPEC_MIME(".Cgi", LD

SSPEC_MIMETABLE END

int io_state;

SSPEC RESOURCETABLE START
SSPEC_RESOURCE ROOTVAR (“io state”, &io state, INT1l6, “%d”),
SSPEC_RESOURCE_XMEMFILE ("/index.html", my app shtml),
SSPEC _RESOURCE CGI ("upload.cgi", http defaultCGI),
SSPEC_RESOURCE CGI ("update.cgi", VarUpdateCGI)
SSPEC_RESOURCETABLE END

void my io polling(void) ;

void main () {

int rc;
io state = 42;
sspec_addrule ("/index.html", "Pet",

admin_group |monitor group, 0, SERVER HTTP,
SERVER AUTH BASIC, NULL);

sauth setusermask (sauth adduser ("admin", "dog",
SERVER_ANY), admin group, NULL) ;

sauth setusermask (sauth adduser ("monitor", "cat",
SERVER_ANY), monitor group, NULL) ;

rc = sspec_automount (SSPEC_MOUNT ANY, NULL, NULL, NULL);
if (rc)

printf ("Failed to initialize, rc=%d\n

Proceeding anyway...\n", rc);

sock init () ;
http init();
for (;;) {

my io polling() ;

http handler() ;

}

Chapter 2: Web-Enabling Your Application 27

Thefirst change is the removal of the macros we added for FAT and also the removal of #use
statements for the FAT library and the associated serial flash driver library. Aswith the samplein
the last section, this code assumesthat avalid filesystem partition exists on the target board; in this
case, it'san FS2 partition. In the simplest case, which is one FS2 partition on the secondary flash,
bringingin £s2.11ib and then mounting the filesystem with acall to sspec_automount () is
all that isrequired. (For more information on FS2, refer to the Dynamic C User’s Manual.)

The next change isthe #def ine of the user groups. Each user group has to be explicitly given a
value when RabbitWeb is not available to do it. Note that they are word values, each with a unique
bit position set.

Next, thefirst entry in the MIME table was changed. Recall that the entry “ /” and requests with-
out an extension are dealt with by the handler in the first entry of the MIME table. In this example,
if abrowser pointsto the Rabbit board’s | P address, the page is processed by

shtml handler (), ahandler that will understand the SSI tags that we are about to add to the
HTML file. The #ximport statement did not, technically, need to change. The extension used for
the file was changed from . zhtml to . shtml. These file extensions are only a convention. The
important thing isthat the HTML file istouched by the correct handler function. As a matter of
fact, in this example, our HTML page is not recognized by the server as ending with either .zhtml
or .shtml, but by . html. The name known to the server is determined by the name parameter of
the file's resource table entry, “/index.html.”

The next change is anew entry in the static resource table. This reflects the shift in how the vari-
ableio state becomesknown to the HTTP server. Previoudly, it was done using the #web
statement of Rabbit\Web.

A second new entry in the resource table is for a CGI function that will handle the processing
when io_ state isupdated. When using RabbitWeb, this same form submission did not require
aCGl. Theenhanced HTTP server took care of all the details for us. Without RabbitWeb, we have
to do the work ourselves. Fortunately, the new-style CGls make this job easier. A detailed descrip-
tion of writing anew-style CGl isgiven in Section 4.6 "HTTP File Upload.” Aswe saw in
Section 2.7, thereisaCGl in http. 1ib that processes file uploads to afilesystem. If you study
and understand Section 4.6 and the codeinhttp defaultCGI (), you will be abletowrite a
new-style CGlI that will processthe form that is submitted when io state is changed.

28 TCP/IP User’'s Manual

Since we are not using RabbitWeb and have changed from using FAT to FS2, the HTML page
must be changed. As before, all changes are in boldface.

<HTML><HEAD><TITLE>Web Variables</TITLE></HEAD>
<BODY><H1>Web Variables</H1l>

<P>The current value of io state is:
<!--#echo var="io_state” -->

</P>

<FORM ACTION="update.cgi" METHOD="POST"
enctype="multipart/form-data">

<P>Enter a new value if you dare:</P>
<INPUT TYPE="text" NAME="io state" SIZE=5
VALUE="<!--#echo var="io state” -->">
<INPUT TYPE="submit" VALUE="Submit">
<INPUT TYPE="reset" VALUE="Reset">
</FORM>

<FORM ACTION="upload.cgi" METHOD="POST"
enctype="multipart/form-data">
<TABLE BORDER=0 CELLSPACING=2 CELLPADDING=1>
<TR>
<TD ALIGN=RIGHT>File to upload
(to /A/new.htm)</TD>
<TD><INPUT TYPE="FILE" NAME="/fs2/extl/new.htm"
SIZE=50></TD>
</TR>
</TABLE>
<INPUT TYPE="SUBMIT" VALUE="Upload"s>
</FORM>
</BODY></HTML>

Thefirst changeis the substitution of the new server-parsed tags with SSI tags. The next changeis
the absence of any error checking. Without Rabbit\Web, it is difficult to achieve this same function-
aity. The CGI responsible for the processing the variable update would need to do it. Which
brings us to the next change in this HTML page, the need for a second CGlI function.

The ACTION attribute in the FORM tag identifies the new CGI by name, update.cgi. The
FORM tag also has a parameter for the encoding type. When no encoding type is specified, it
defaults to URL-encoded. All new-style CGls must set the encoding type in the FORM tag to
“multipart/form-data’ as shown above.

The other change on this page is the NAME attribute in the first INPUT tag of the second form.
When uploading to an FS2 partition, the mount-point “/fs2” must be prepended to the filename.
The /extl part is aso prepended to the filename and refers to the second flash. The default CGI
function can now store an uploaded file in avalid FS2 partition.

Chapter 2: Web-Enabling Your Application 29

30

TCP/IP User’s Manual

3. Server Utility Library

This chapter isintended to be a detailed description of the resource manager, Zserver, and how it
interfaces to other libraries, such as servers (HTTP, FTP etc.) and filesystems (FS2, FAT). For an
overview, please see Chapter 2. “Web-Enabling Your Application.”

The resource manager, Zserver . 1ib, contains the structures, functions, and constants to allow
HTTP (Hypertext Transfer Protocol) and FTP (File Transfer Protocol) servers to share data and
user authentication information while running concurrently.

In general, you do not need to know some of the details of Zserver described in this chapter if you
are using the server libraries provided with Dynamic C. Such sections are marked as “ advanced,”
and you may skip them unless you are writing a server or filesystem. Some sections are marked
“historical.” They areincluded to describe how previous versions of the library worked. These
may be skipped for new code.

The basic facility provided by Zserver is the ability to translate resource names (URLsin the case
of HTTP) into references to filesystem and memory objects. The term resource refersto the
objects (files, functions and variables) that are manipulated by the Zserver library on behalf of the
server. A fileresource refers specifically to aresource of typefile, as opposed to the actual file that
is manipulated by an underlying filesystem (which may not be a resource as such).

Support for HTML formsisaso included in Zserver . lib. Starting with Dynamic C 8.50, an
enhanced HTTP server (RabbitWeb) is available that has an easy-to-use interface for form genera-
tion and no limitations on the form layout. See the document titled " RabbitWeb, To Web-Enable
Embedded Applications' for more information on this enhanced HTTP server.

Zserver supports the concept of avirtual file system. Thisis modeled on the Unix directory struc-
ture.

3.1 Data Structures for Zserver.lib

There are several data structuresin this library that servers with Zserver functionality must use,
and may need to be manipulated or initialized by the application program:

® MIMETypeMap

® ServerSpec

® ServerAuth

® ServerPermissions

® RuleEntry

Use of the following structuresis considered advanced:

® ServerContext
® SSpecStat

e sspec fatinfo

Chapter 3: Server Utility Library 31

The following structures are documented for historical reasons:

® FormVar

® SSpecFileHandle

3.1.1 MIMETypeMap Structure

This structure, organized into a table, associates a file extension with a MIME type (M ultipurpose
Internet Mail Extension) and a function that handles the MIME type. Users can override

HTTP_ MAXNAME (defaultsto 20 characters) in their sourcefile. If the function pointer given is
NULL, then the default handler (which sends the content verbatim) is used.

typedef struct ({

char extension[10] ;

char type [HTTP_ MAXNAME] ;

int (*fptr) (/* HttpState* */);
} MIMETypeMap;

For example, to create an HTTP server that can serve fileswith html or gif extensions, the follow-
ing declaration is required in the application code:

SSPEC_MIMETABLE START
SSPEC_MIME (".html", "text/html"),
SSPEC_MIME (".gif", "image/gif"),
SSPEC_MIMETABLE END

Use of the above macros is the recommended method for maintaining forward compatibility. For
more information, see Section 3.2.5.2 "Static MIME Type Table." All these macros are doing is
generating the correct C syntax for a static constant initializer.

Note that serversthat do not implement MIME, such as FTPR, do not require a MIME table to be
defined. Currently, thistableis required only for HTTP.

32 TCP/IP User’'s Manual

3.1.2 ServerSpec Structure

This structure is used for both the static and dynamic resource tables. The only difference between
these two tablesisthat oneis aconstant (initialized at compile-time) and the other is created at
runtime in RAM, and thus modifiable.

Historical note: The Ht tpSpec data structure in HTTP . 1ib used prior to Dynamic C 8.50is
now synonymous with this structure, ServerSpec.

typedef struct {
word type;
char name [SSPEC_MAXNAME] ;
long data;
void *addr;
word vartype;
char *format;
ServerPermissions perm;

#ifdef FORM ERROR BUF
#endif
} ServerSpec;

The structure fields are described below. The #ifdef expression adds some fields to the
ServerSpec structureif the HTML form functionality provided by Zserver isincluded by the
web server application. These fields are not described below. For more details, Section 4.5.4
"HTML FormsUsing Zserver.lib."

Starting with Dynamic C 8.50, enhanced support is provided for HTML forms with the purchase
of the Dynamic C RabbitWeb Module. This module provides an easy to develop web interface for
your embedded device and alows for complete flexibility in form layout. See the document titled
"RabbitWeb, To Web-Enable Embedded Applications' for more information on this enhanced
HTTP server.

In older versions of Dynamic C, it was necessary to explicitly create the static resource table by
doing something like this:

const HttpSpec http flashspec[] = {

Vi
in your main application code (filling in the entries, of course). Starting with Dynamic C 8.50,
thereis new recommended syntax for creating these resources, using the
SSPEC_RESOURCETABLE* series of macros. This new method is recommended for maintain-
ing future compatibility. For more information, see Section 3.2.5.3 " Static Resource Table."

Chapter 3: Server Utility Library 33

3.1.2.1 ServerSpec Fields
Thefieldsin each resource table (static or dynamic) are usually manipulated via Zserver functions,
or by using the SSPEC_ RESOURCE* macros. The field descriptions below are for reference only.

type

name

data

addr

vartype

format

perm

Thisfield tellsthe server if the entry isafile, variable or function
(SSPEC_FILE, SSPEC_VARIABLE, SSPEC_FUNCTION,
etc.).

Thisfield contains the resource name, as a null-terminated string.

Location of data (when *FILE isthe type of data), or maximum
number of variablesin aform (when SSPEC_FORM is the type of
data)

Address of function or variable (when SSPEC_FUNCTION,
SSPEC_CGI or SSPEC_VARIABLE isthetype of data). Address
of form struct for SSPEC_ FORM.

Typeof variable (when SSPEC_ VARIABLE isthetype of data), or
length of data (when *FILE isthe type of dataand the lengthis
needed e.g., aroot file). For SSPEC_HARDLINK, containsthe
sspec index number of ahttp flashspec Or server spec
entry.

sprintf () format for avariable, or formtitle for aform, or base
addressfor SSPEC_ROOTFILE. For SSPEC LINK, pointsto a
string containing the linked-to resource name.

Permissions associated with this resource. If realm subfield is
NULL, then the permissions table is consulted as for filesystem re-
sources. Note: thisfield used to be char* for the realm string
(only). Programs that used this feature need to be modified. This
structure is detailed under ServerPermissions.

There are some other fieldsthat are conditionally included if HTTP forms are in use. These are not
generally relevant. Seethe library source for details.

34

TCP/IP User’'s Manual

3.1.3 ServerAuth Structure
This structure defines a global array that isalist of user name/password pairs.

ServerAuth server auth[SAUTH MAXUSERS] ;

Throughout this manual, this array is called the user table. The fieldsin the ServerAuth struct
are manipulated using the sauth_* () functions. The description below isfor reference only.

username
password
mask
writeaccess
servermask

data

Name of user, or
Password, or "
Group mask
Which servers this user has write access to
Which serversthisuser isvisibleto

Arbitrary data (application-dependent)

3.1.4 ServerPermissions Structure
This data structure holds access permissions for aresource or a group of resources. An instance of
ServerPermissions iscontained in each ServerSpec structure, aswell aswithin each
rule table entry. The fieldsfor the ServerPermissions struct are:

realm

readgroups

writegroups

servermask

method

mimetype

Pointer to realm string of theresource. Itisonly used by HTTP serv-
ers, but can be used for other purposes.

Read permission is granted if the current ServerAuth.mask
value matchesin at least one bit position.

Write permissionsis granted if the current ServerAuth.mask
value matchesin at least one bit position and
ServerAuth.writeaccess iSset.

A 16-bit mask with abit set for each server that can accessthisre-
source. NB: for backwards compatibility, if thisis set to zero then
al serversare alowed.

Authentication method(s) allowed: combination of
SERVER_AUTH_* bits. Notethat Zserver.1ib doesnot di-
rectly support anything other than basic authentication, that is
SERVER_AUTH BASIC; however, the required information is
stored here so that servers can accessit as needed in a consistent
manner.

MIME type for thisresource, or NULL. If NULL, the MIME type
will be derived from the file name using the MIMETypeMap table
caledhttp types. If not found in that table, the first entry in
that table will be used (for backward compatibility.)

Historical note: Prior to Dynamic C 8.50, Ht tpRealm was used in place of
ServerPermissions. If you have used Ht tpRealm for password protection in existing

Chapter 3: Server Utility Library

35

code and are upgrading to Dynamic C 8.50 or later, you must rewrite any code that used this old
structure. For an example of the new way to password protect an entity, see the sample program
samples\tcpip\http\authentication.c.

3.1.5 RuleEntry Structure
This structure associates a resource name prefix with aServerPermissions structure. The
ruletableis an array of these structures.

prefix Prefix of resource name(s) which are associated with thisrule table
entry. If there are multiple entries which match a resource name,
then the rule with the longest matching prefix is used.

perm ServerPermissions to usefor thisentry.

3.1.6 ServerContext Structure

Starting with Dynamic C 8.50, context information must be maintained by each server that wants
Zserver functionality. Therefore, servers must provide aServerContext struct when required.
Thefieldsof ServerContext are:

userid Thisfield identifies the current user.

server Thisfield identifies the server, for example, SERVER_HTTP. This
isone of the few cases where only a single server bit should be set.

rootdir Thisfield isapointer to theroot directory Thisisusually “ /" if the
whole namespace is tobe accessible. Otherwise, it may be, for ex-
ample, “ /A" to restrict accessto just the first DOS FAT partition.
The first and last character must be“ /”!

cwd [] Thisfield isan array containing the current working directory. This
would normally contain the root directory as a prefix. The first and
|ast character must be“ /!

dfltname Thisfield pointsto afile nameto be used asa resource name suffix
when the first parameter refersto a directory name.

The ServerContext structure helps support more powerful resource access control. Itis
needed by several of the new API functionsthat deal with resourceretrieval and control, aswell as
functions that perform directory navigation.

There are two functions that return a ServerContext struct: http getcontext () and
http getContext (). Thelatter isfor usein CGI functions.

These functions can be used with other API functions that need the context structure. For example:

sspec_open (“MyFile”, http getcontext (servno), O _READ, 0);
will open “MyFile” for reading for the server instance identified by servno.

36 TCP/IP User’'s Manual

3.1.7 SSpecStat Structure
This structure holds status information about afile resource. It isfilled in by the function
sspec_stat ().

Thefieldsof SSpecStat are:

flags A 16-bit mask that passes information about the file resource. The
flags field can be any number of the following:

SSPEC_ATTR_MDTM - have modification date/time
SSPEC_ATTR_ LENGTH - have current length
SSPEC_ATTR WRITE - fileiswritable
SSPEC_ATTR_EXEC - fileis "executable"
SSPEC_ATTR_HIDDEN - "Hidden" attribute bit
SSPEC_ATTR_SYSTEM - "System" attribute bit
SSPEC_ATTR_ARCHIVE - "Archive" attribute bit
SSPEC_ATTR DIR - directory name
SSPEC_ATTR_COMPRESSED - stored in compressed format
SSPEC_ATTR_ MAXLENGTH - have maximum length
SSPEC_ATTR SEEKABLE - resourceisrandomly accessible
SSPEC_ATTR_EXTENSIBLE - File may be expanded at end

mdtm Modification date/time (SEC_TIMER format), thisfieldisonly val-
idif SSPEC_ATTR_MDTM is Set.

length The current file size; thisfield isonly valid if
SSPEC_ATTR_ LENGTH is Set.

maxlength The maximum allowable file size; thisfield isonly valid if
SSPEC_ATTR MAXLENGTH iSset.

perm Pointer to ServerPermissions struct. This structure is de-
scribed above.

3.1.8 sspec_fatinfo Structure

This structureis only relevant if you are using the FAT filesystem. It allows the
sspec_automount () function to return some FAT-related information to your application.
Thefieldsin this structure are:

ctrl Pointer to dos_ctrl (controller) structure.
drive Pointer tombr_drive structure.
part [4] 4 pointersto fat part (partition) structures. Only the mounted

partitions are returned.

Note that when used with sspec_automount (), some of the above fields may be set to non-
NULL in order to indicateto sspec_automount () that the application has already initialized
some or al of the FAT.

Chapter 3: Server Utility Library 37

3.1.9 FormVar Structure

An array of FormVar structures represent the variablesin an HTML form. The developer will
declare an array of these structures, with the size needed to hold all variables for a particular form.
The FormVvar structure contains:

e A server spec index that references the variable to be modified. Thisisthe location of the
form variable in the server spec list.

e Anintegrity-checking function pointer that ensuresthat the variables are set to valid values.

e High and low values (for numerical types).

e | ength (for the string type, and for the maximum length of the string representations of values).

e A Pointer to an array of values (for when the value must be one of a specific, and probably
short, list).

The developer can specify whether the variable is set through a text entry field or a pull-down
menu, and if the variable should be considered read-only.

ThisFormvar array isplaced in aserverSpec structure using the function
sspec_addform (). ServerSpec entries that represent variables will be added to the
FormVar array using sspec_addfv. Propertiesfor these Formvar entries (for example, the
integrity-checking properties) can be set with various other functions. Hence, thereis alevel of
indirection between the variablesin the forms and the actual variables themselves. This allowsthe
same variable to be included in multiple forms with different ranges for each form, and perhaps be
read-only in one form and modifiable in another.

3.1.10 SSpecFileHandle Structure

This structure is used internally by Zserver, and is only of interest to developers of new filesys-
tems which may be incorporated into Zserver.

3.2 Constants Used in Zserver.lib

The constants in this section are values assigned to the fields of the structures ServerSpec and
ServerAuth. They are used in the functions described in Section 3.5, some as function parame-
ters and some as return values.

3.2.1 ServerSpec Type Field
Thisfield describes the resource in the server spec list. The possible values are:

® SSPEC XMEMFILE - The dataresidesin xmem

® SSPEC ZMEMFILE - The dataresidesin xmem and is compressed

® SSPEC ROOTFILE - Thedataresidesin root memory

® SSPEC FSFILE - Thedataresidesinan FS2file.

e SSPEC FATFILE - Thedataresidesin aDOS FAT file.

e SSPEC FILE - Thedataresidesinafile- generic typereturned by sspec_gettype ().
® SSPEC ROOTVAR - Thedataisavariable in root memory (for HTTP)

® SSPEC XMEMVAR - Thedataisavariablein xmem (for HTTP)

38 TCP/IP User’'s Manual

e SSPEC VARIABLE Thedataisavariable (for HTTP) - generic type returned by
sspec_gettype ().

e SSPEC FUNCTION - Thedataisafunction (for HTTR)

e SSPEC FORM - A set of modifiable variables.

® SSPEC CGI - ThedataisaCGl function (for HTTP) - new style CGls with better interface.

e SSPEC LINK - Symboliclink ("alias") to another resource name.

e SSPEC HARDLINK - Symboliclink ("alias") to another resource table entry.

3.2.2 ServerSpec Vartype Field
If the object isavariable, then thisfield will tell you what type of variableit is:

INT8, INT16, INT32, PTR16, FLOAT32

3.2.3 ServerPermissions Servermask Field
Thetype of server (HTTP and/or FTP) that has accessto a particular resource is determined by the
servermask fieldinthe ServerPermissions structure.

e SERVER HTTP - Web server

® SERVER_ FTP - Filetransfer server

® SERVER SMTP - Mail server

e SERVER HTTPS - Secure web server

e SERVER_SNMP - SNMP agent

e SERVER USER - Placeholder for first user-defined server

e SERVER USER?2 - Placeholder for second user-defined server (etc.) - grow down.
e SERVER ANY - Any server. May be passed in most cases when any server will do.

3.2.4 Configuration Macros

There are several configuration macros that may be set up by the application to control the mem-
ory usage and behavior of Zserver. These should be defined before #use Zserver.lib,
unless otherwise noted.

HTTP NO FLASHSPEC

SSPEC_NO STATIC
When defined, these macros saves space by not compiling in code that supports astatic
resource table. Presumably the application is using only the dynamic resource table, or
filesystems arein use. Historical note: the name of HTTP_NO FLASHSPEC implies
HTTP, however it actually appliesto Zserver as awhole, not any specific server. Dy-
namic C 8.50 introduces SSPEC_NO_STATIC, anadiasfor
HTTP NO_ FLASHSPEC.

SAUTH MAXNAME
Maximum length of the name and password stringsinthe ServerAuth structure. De-
fault is 20. Strings must include a NULL character, so with its default value of 20,
strings in this structure may be at most 19 characters long.

Chapter 3: Server Utility Library 39

SAUTH MAXUSERS

Define the maximum number of unique users. Defaults to 4. This determines the size
of the userid table. Each table entry takes up 2* SAUTH_MAXNAME + 8 bytes of root
storage.

SERVER PASSWORD ONLY

Thisisset to abitmask of the server mask bitsfor each server that supports the concept
of apassword-only user, that is, no user name. Defaults to zero since currently no serv-
ers are implemented that use this facility.

SSPEC_ DEFAULT READGROUPS
SSPEC_DEFAULT WRITEGROUPS
SSPEC DEFAULT SERVERMASK
SSPEC_DEFAULT REALM
SSPEC_DEFAULT METHOD

This group of macros establishes global default permissions for resources that do not
havearuleassociated. SSPEC_DEFAULT READGROUPS is” OxFFFF’ which means
“al users.” For writegroups, thisis“0” meaning “no users.” The servermask defaults
to SERVER ANY (all servers can access). realm defaultsto “” that is, an empty string,
or norealm. SSPEC_DEFAULT METHOD defaults to no authentication method re-
quired.

SSPEC_MAX FATDRIVES

Determine the maximum number of independent FAT filesystem “drives.” Defaults to
1. Each drive takes 8 bytes of root storage (plus whatever is required by the filesystem
itself). Each drive can have up to 4 partitions. Thismacroisonly relevant if you usethe
FAT library.

SSPEC_MAXNAME

Define the maximum name length of each dynamic or static resource. Defaults to 20.
You can minimize memory usage by choosing short namesfor all resources, and reduc-
ing the value of this macro.

SSPEC_MAXRULES

Definethe maximum number of dynamically added “rules.” Defaultsto 10, but you can
explicitly defineit to zero if all the rule table entries are static (see
SSPEC_RULETABLE * macros). Each rule takes up 13 bytes of root storage, plus
whatever storageisrequired for the realm and prefix strings (which must be null-termi-
nated, and in static storage, since pointers to these are stored in the rule table).

SSPEC_MAXSPEC

Defineto the number of dynamic (RAM) resourcetabl e entriesto allocatefor the global
array, server spec. Each entry takes SSPEC_ MAXNAME + 23 bytes of root mem-
ory (or SSPEC_MAXNAME + 33if FORM_ERROR_BUF isdefined).

Defaultsto 10 entries (approximately 530 bytes). Do not set higher than 511.

40 TCP/IP User’s Manual

SSPEC_MAX OPEN

Determine the maximum number of simultaneously open resources. Defaults to 4.
Choose this number carefully, since each entry can take up afairly large amount of root
storage, depending on the mix of filesystemsin use. Unlessyou are anticipating avery
busy server, 4 should be enough.

If you increase the default value of HTTP MAXSERVERS from 4, you may experience
404 or 503 messages. The solutionistoincrease SSPEC_MAX OPEN. ldeally, thisval-
ue should be HTTP_MAXSERVERS + FTP_MAXSERVERS + any specia use of
zserver.1lib that you create.

SSPEC_XMEMVARLEN

Defines the size of the stack-allocated buffer used by sspec readvariable ()
when reading avariable in xmem. It defaultsto 20.

3.2.5 Macros for Control Data Initialization
As of Dynamic C 8.50, the following macros are available for building the static tables used by the
servers.

3.2.5.1 Static Rule Table

Resource rules are used to associate access information with resource names. The following mac-
rosdefine and initialize astatic rule table. If using a static rule table, the dynamically added entries
will be searched before the static ones.

SSPEC_FLASHRULES

Definethisif your application isusing static rules. You must define thisif you want to
usethemacro SSPEC_RULETABLE START. If you defineSSPEC_FLASHRULES,
and you do not need dynamic rules, you can define the macro SSPEC_ MAXRULES to
zero to recover the root memory that would be wasted otherwise.

SSPEC_RULETABLE START
SSPEC_RULE (prefix, realm, rg, wg, sm)
SSPEC_MM RULE (prefix, realm, rg, wg, sm, method, mimetype)
SSPEC_RULETABLE END
This sequence of macrosis used to define static rules. See the documentation with the
sspec_addrule () function for moreinformation. You must define
SSPEC_FLASHRULES to use these macros.

Chapter 3: Server Utility Library 41

3.2.5.2 Static MIME Type Table

This table maps file extensions and MIME types. You only need such atableif using a server that
requires MIME types. Currently, only the HTTP server needs this.

SSPEC_MIMETABLE START

SSPEC_MIME (extension, type)
SSPEC_MIME FUNC (extension, type, function)
SSPEC_MIMETABLE END

This sequence sets up the MIME type mapping table. Currently only astatic MIME ta-
bleis supported. Though you cannot dynamically add new MIME typesto thistable, it
ispossible to allocate new MIMETypeMap structuresin RAM and assign them to spe-
cific resourcesusing sspec_addrule () or sspec_setpermissions ().
Such entries will not be accessed using the default resource name extension method.

42 TCP/IP User’s Manual

3.2.5.3 Static Resource Table

The static resource table associates the names of web server resources (files, functions, and vari-
ables) to references to memory abjects.

HTTP NO FLASHSPEC

Defineif thereisto be NO static resourcetable, that is, al resourcesare in the dynamic
(RAM) table or in the filesystem(s). If you define this, then thereis no point in using
the SSPEC_RESOURCE_ * series of macros below.

SSPEC_RESOURCETABLE START

SSPEC_RESOURCE ROOTFILE (name, addr, len)

SSPEC_RESOURCE XMEMFILE (name, addr)

SSPEC_RESOURCE ZMEMFILE (name, addr)
SSPEC_RESOURCE_FSFILE (name, fnum)

SSPEC_RESOURCE ROOTVAR (name, addr, type, format)
SSPEC_RESOURCE XMEMVAR (name, addr, type, format)
SSPEC_RESOURCE_FUNCTION (name, addr)

SSPEC_RESOURCE_CGI (name, addr)

SSPEC_RESOURCE P ROOTFILE (name, addr, len, realm, rg, wg, sm, meth)
SSPEC_RESOURCE P XMEMFILE (name, addr, realm, rg, wg, sm, meth)

SSPEC_RESOURCE P ZMEMFILE (name, addr, realm, rg, wg, sm, meth)

SSPEC_RESOURCE P FSFILE (name, fnum, realm, rg, wg, sm, meth)

SSPEC_RESOURCE P ROOTVAR (name, addr, type, format, realm, rg, wg,
sm, meth)

SSPEC_RESOURCE P XMEMVAR (name, addr, type, format, realm, rg, wg,
sm, meth)

SSPEC_RESOURCE P FUNCTION (name, addr, realm, rg, wg, sm, meth)

SSPEC_RESOURCE P CGI (name, addr, realm, rg, wg, sm, meth)

SSPEC_RESOURCETABLE END

These macros are used to initialize the static resource table. Prior to Dynamic C 8.50
this had to be done by explicitly using C language initialization of atable declared as:

const HttpSpec http spec|]

These macros perform the samefunction. It isrecommended to use them instead of stat-
icinitializersin order to maintain forward compatibility.

Themacroswith P inthenamearethe same asthe others, except that they explicitly
allow all the server permissionsinformation (except for the MIME type mapping) to be
initialized. See sspec_addrule () for more information on the parameters.

The name parameter to all these macrosis the resource name. Thisusually startswith
a“ /" for files, but not for variables. The string length should be less than or equal to
SSPEC MAXNAME.

Chapter 3: Server Utility Library 43

The other parameters depend on the resource type being created:

ROOTFILE: addr =root memory address of first byte of file, 1en = length of file
(0..32767).

XMEMFILE: addr = longword (physical address) of the length word of thefile. The
length word (4 bytes) is followed by the first byte of data.

ZMEMFILE: asfor XMEMFILE, except thefileis compressed and imported using
#zimport instead of #ximport.

FSFILE: fnum = FS2 file number of file (1..255)

ROOTVAR: addr =root memory address of data, t ype = type of data, asdocumented
with sspec_addvariable (), format = char * format, asused by printf ().
For example, “%d” for adecimal number.

XMEMVAR: as for ROOTVAR except the addressis alongword physical address.
FUNCTION or CGI: addr = address of C function.

Note that a maximum of 511 static resource table entries can be defined.

3.3 File Compression Support

Dynamic C 8.50 introduces file compression support. The sample program
/samples/tepip/http/zimport . c demonstrates how to use thisfunctionality. This sam-
pleis oriented towards the HTTP server; however, under the covers, HTTP is relying on Zserver
to perform the compressed file handling.

In the sample program, notice that the statement “#use zimport.lib” comes beforethe
statement “#use http.lib” inthecode. Thisisrequired to have file compression supportin
Zserver and the web server. The next thing to notice is the use of the compiler directive
#zimport instead of #ximport. #zimport performsastandard #ximport, but com-
presses the file by invoking a compression utility before emitting the file to the target.

When adding a compressed file to the static resource table, use the macro
SSPEC_RESOURCE_ZMEMFILE instead of SSPEC_RESOURCE XMEMFILE. When you add
acompressed file to the dynamic resource table using the sspec _addxmemfile () function, it
will be recognized as a compressed file automatically. sspec _addxmemfile () isthusused
for both compressed and uncompressed imported files.

Each instance of a server will use a buffer for decompression—thisis necessary since multiple
server instances can be decompressing files at the same time. Make sure that the buffer macro
INPUT COMPRESSION BUFFERS isat |least aslarge asthe number of serverswhich may need
concurrently to decompress a compressed resource. The buffer macro describes the number of
4KB xmem RAM buffers used for decompression. This definition is used by the zimport.1ib
library.

For details on compression ratios, memory usage and performance, please see Technical Note 234,
“File Compression.” For more information on using #zimport and the support libraries, please
see the Dynamic C User’s Manual and the Dynamic C Function Reference Manual.

All of these documents are available on our website, at www.zworld.com.

44 TCP/IP User’'s Manual

http://www.zworld.com/docs/

3.4 HTML Forms

Thisfacility is oriented towards the HT TP server, however it is Zserver that actually handles the
form data (as a special resource type in the dynamic resource table only).

Defining FORM _ERROR_BUF isrequired to use the HTML form functionality in ZSERVER . LIB.
The value assigned to this macro is the number of bytes to reservein root memory for the buffer used
for form processing. This buffer must be large enough to hold the name and value for each variable,
plus four bytes for each variable.

An array of type Formvar must be declared to hold information about the form variables. Be sure to
allocate enough entriesin the array to hold all of the variables that will go in the form. If more forms
are needed, then more of these arrays can be allocated. Please see Section 4.5.4 on page 176 for an
example program.

Starting with Dynamic C 8.50, amore flexible way of supporting form generation is available with
the Dynamic C RabbitWeb Module. For more information on this enhanced HTTP server, seethe
document "RabbitWeb, To Web-Enable Embedded Applications' available at:

www . zworld.com/products/dc/DC8/docs.shtml

3.5 API Functions
The resource manager API functions are described in this section. These functions give servers a
consistent interface to files, variables and client information.

Chapter 3: Server Utility Library 45

http://www.zworld.com/products/dc/DC8/docs.shtml

sauth adduser

int sauth adduser(char *username, char *password,
word servermask);

DESCRIPTION

This function adds a user to the user table. It fillsin the fields of the ServeraAuth
structure associated with this user. Three of the field are specified by the parameters
passed into the function. Two other fields, one for the user group mask and the other for
the write access mask, are given default values.

The default for the user group mask is the assigned index number (O to

SAUTH MAXNAME-1) asabit number; that is, 1<<index. This effectively creates
each user in aunique (single) group. Sincethisdoesnot offer any real control over the
assigned group mask, itisrecommendedtouse sauth setusermask () afterthis
to assign the correct access masks.

The default for the write access mask is the user has no write access to any server. To
assignthispermission, call thefunction sauth_setwriteaccess () withtheuser
table index returned by sauth adduser ().

PARAMETERS
username Name of the user, a character string up to SAUTH MAXNAME
characters.
password Password for the user, another character string up to

SAUTH MAXNAME characters.

servermask Bitmask representing valid servers (e.g., SERVER_HTTP,
SERVER_FTP).

RETURN VALUE

-1: Failure.
20: Success; index into user table (id passed to sauth_getusername ()).

LIBRARY
ZSERVER.LIB

SEE ALSO

sauth authenticate, sauth getwriteaccess, sauth setusermask,
sauth setwriteaccess, sauth removeuser

46 TCP/IP User’s Manual

sauth authenticate

int sauth authenticate(char *username, char *password,
word server);

DESCRIPTION

Authenticate user and return the user index representing the authenticated user, that is,
the user table index. This performs only a plaintext comparison of the userid and pass-
word. Servers probably will have their own, more sophisticated, checks.

If username isNULL, or empty string, then password-only matching is attempted for
servers who allow this type of authentication (as defined by the
SERVER_PASSWORD_ONLY Macro).

PARAMETERS
username Name of user.
password Password for the user.
server The server for which this function is authenticating (e.g.,

SERVER_HTTP, SERVER FTP).

RETURN VALUE

-1: Failure or user not authorized.
2>0: Success, array index of the ServerAuth structure for authenticated user.

LIBRARY
ZSERVER.LIB

SEE ALSO

sauth_ adduser

Chapter 3: Server Utility Library

a7

sauth getpassword

sauth getpassword(int userid);

DESCRIPTION
Get the password for a user.

PARAMETER

userid user index

RETURN VALUE

! =NULL: password string
NULL: Failure

LIBRARY
ZSERVER.LIB

SEE ALSO

sauth setpassword

sauth getserver

int sauth getserver(int sauth);

DESCRIPTION
Returns whether or not a user is visible to particular server(s).

PARAMETER
sauth user index

RETURN VALUE

0: Thisuser isvisibleto all servers
>0: Visible to select servers. One bit is set for each server that knows about this user.
-1: Failure; for example, sauth isan invalid index into the user table.

SEE ALSO

sauth_ setserver

48 TCP/IP User’s Manual

sauth getuserid

int sauth getuserid(char *username, word server);

DESCRIPTION
Getsthe user index for a user.

PARAMETERS

username User's name. If thisnameis not found, then the list is re-scanned
looking for an entry with an empty user name (") and a password
that matchesusername. Thesecond passisonly donefor servers
that allow password-only matching. Such servers must be speci-
fied by defining asymbol SERVER PASSWORD_ONLY to bea
bitmask of such servers.

server Server(s) for which we are looking up. Use SERVER_ANY if not
concerned with the server mask.

RETURN VALUE

>0: Success, index of user in the user table.
-1: Failure.

LIBRARY
ZSERVER.LIB

Chapter 3: Server Utility Library

49

sauth getusermask

int sauth getusermask(int userid, word * groupbits,
void ** authdata);

DESCRIPTION
Get the group access bit(s) and/or authorization data for a given user ID.

PARAMETERS
userid User index
groupbits Pointer to bitmask that will be set to group(s) of which thisuser is
amember. If NULL, thisinformation is not retrieved.
authdata Pointer tovoid~* that isset to arbitrary server data. If NULL, this

information is not retrieved.

RETURN VALUE

0: OK
-1: Failed: userid not valid.

50 TCP/IP User’'s Manual

sauth getusername

char *sauth getusername(int userid);

DESCRIPTION

Returns the name of the user, acharacter string fromthe ServerAuth structure asso-
ciated withuserid.

PARAMETERS
userid The user’sid, that is, the index into the user table.

RETURN VALUE

NULL: Failure.
I NULL: Success, pointer to the user’s name string.

LIBRARY
ZSERVER.LIB

SEE ALSO

sspec_getusername

Chapter 3: Server Utility Library

51

sauth getwriteaccess

int sauth getwriteaccess(int sauth);

DESCRIPTION

Checks whether or not a user has write access to any server'sresources. Thisisan “in
principle” test. Each resource isindividually protected from write access: thisis not
checked. In other words, this function may return TRUE even when none of there-
sources are writable to this user.

PARAMETERS

sauth Index into the user table.

RETURN VALUE

0: User does not have write access.
1: User has write access.
-1: Failure.

LIBRARY
ZSERVER.LIB

SEE ALSO

sauth setwriteaccess

52 TCP/IP User’'s Manual

sauth removeuser

int sauth removeuser (int userid);

DESCRIPTION

Remove the given user from the user list. IMPORTANT: Any associations of the given
user with web pages should be changed. Otherwise, no one will have access to the un-
changed web pages. Authentication can be turned off for a page with
sspec_setrealm(sspec, "").

PARAMETERS
userid Index in user table.

RETURN VALUE

0: Success.
-1: Failure.

LIBRARY
ZSERVER.LIB

SEE ALSO

sauth_ adduser

Chapter 3: Server Utility Library

53

sauth setpassword

int sauth setpassword(int userid,

DESCRIPTION
Sets the password for a user.

PARAMETERS
userid Index of user in user table.
password User's new password.

RETURN VALUE

0: Success.
-1: Failure.

LIBRARY
ZSERVER.LIB

SEE ALSO

sauth getpassword

char *password);

54

TCP/IP User’s Manual

sauth setserver

int sauth setserver (int sauth, int server);

DESCRIPTION
Sets whether a user isvisible to the specified server(s).

PARAMETERS
sauth User index
server Server bitmask, with bit set to 1 to make this user “known” to the

server. If this parameter is zero, then the user isvisibleto ALL
servers, however it is recommended to pass the value
SERVER_ANY in this case.

RETURN VALUE

0: Success
-1: Failure

SEE ALSO

sauth getserver

Chapter 3: Server Utility Library

55

sauth setusermask

int sauth setusermask(int userid, word userid, void *
authdata) ;

DESCRIPTION
Set the group access hit(s) and authorization data for agiven user ID.

PARAMETERS
userid User index
userid Bitmask of group(s) of which this user isamember. This should
be non-zero, otherwise the user will not have accessto any re-
Sources.
authdata Arbitrary datathat can be used by specific servers.

RETURN VALUE

0: OK
-1: Failed: userid not valid.

56 TCP/IP User’'s Manual

sauth setwriteaccess

int sauth setwriteaccess(int sauth, int writeaccess);

DESCRIPTION
Set whether or not a user has write access with the specified server(s).

PARAMETERS
sauth Index of the user in the user table.
writeaccess Server bitmask, with bit set to 1 for write access, O for no write

access. Thisis abitwise OR of the server macros,
SERVER_HTTP, etc., that you want the user to have write ac-
cessto.

RETURN VALUE

0: Success.
-1: Failure.

LIBRARY
ZSERVER.LIB

SEE ALSO

sauth getwriteaccess

Chapter 3: Server Utility Library

57

Sspec_access

int sspec_access(char * name, ServerContext * context);

DESCRIPTION

Test access to a given resource by a specified user. Theuseridissetin
context->userid, or -1 for testing access by the server in general.

NOTE: sspec_checkpermissions () performsasimilar function, except on a
resource handle rather than a resource name.

PARAMETERS
name Resource name, as a null-terminated string. Thisnameis assumed
to berelativeto context - >cwd if it does not begin witha*“ /”
character. Otherwise, the name is assumed to be relative to
context->rootdir.
context Additional contextinformation. The ServerContext structure

is set up by the caller. See sspec_open () for documentation
on this structure. For thisfunction, context - >userid should
be set to the current user whose access is being tested, or may be
set to -1 to test access by the server in general.

RETURN VALUE
20: Success. The return value is a bitmask of the following values:
e O READ - usert+server hasread access
e O WRITE - user+server haswrite access
e ((zero) - no access

The following return values are negatives of the values defined in errno . 1ib.
e -ENOENT - The resource was not found.

e -EINVAL - Theresource name was malformed (e.g., too long), or context
was NULL, or the resource was not afile type.

SEE ALSO

sspec_read, sspec _write, sspec_seek, sspec tell, sspec close,
sspec_checkpermissions

58 TCP/IP User’'s Manual

sspec_addCGI

int sspec_addCGI(char* name, void (*fptr) (), word servermask) ;

DESCRIPTION

Add aCGl function to the RAM resource list. Thisfunctionis currently only useful for
the HTTP server, inwhich casethefunctionisregistered asa CGI processor. Make sure
that SSPEC_MAXSPEC islarge enough to hold this new entry.

PARAMETERS
name URL name of the new function, for example, myCGI . cgi
fptr Pointer to the function. The prototype for this function is:

int (*fptr) (HttpState * state);

There is a specific documented interface that must be used when
specifying thistype of CGI handler function. See the manual for
details.

servermask Bitmask representing valid servers (currently only useful with
SERVER_HTTP)

RETURN VALUE

20: Successfully added spec index
-1: Failed to add function.

LIBRARY
ZSERVER.LIB

SEE ALSO

sspec_addfsfile, sspec addfunction, sspec addrootfile,
sspec_addvariable, sspec_ addxmemvar, sspec addxmemfile
sspec_aliasspec, sspec_addform

Chapter 3: Server Utility Library 59

sspec_addform

int sspec_addform(char *name, FormVar *form, int formsize,
word servermask);

DESCRIPTION
Adds aform (set of modifiable variables) to the TCP/IP servers' object list. Make sure
that SSPEC MAXSPEC islarge enough to hold this new entry. Thisfunction is current-
ly only useful for the HTTP server.

PARAMETERS
name Name of the new form.
form Pointer to theform array. Thisisauser-defined array to hold infor-
mation about form variables.
formsize Size of the form array

servermask Bitmask representing valid servers (currently only useful with
SERVER_HTTP)

RETURN VALUE

=>0: Success; location of form in server spec list.
-1: Failed to add form.

LIBRARY
ZSERVER.LIB

SEE ALSO

sspec_addfsfile, sspec_addfunction, sspec addrootfile,
sspec_addvariable, sspec addxmemvar, sspec_ addxmemfile
sspec_aliasspec, sspec_addfv

60 TCP/IP User’'s Manual

sspec_addfsfile

int sspec_addfsfile(char *name, byte filenum,
word servermask);

DESCRIPTION

Adds afile, located in the FS2 filesystem, to the RAM resource list. Make sure that
SSPEC MAXSPEC islarge enough to hold this new entry. This function associates a
name with thefile.

Thiscreatesan dliasentry for /fs2/file<n>.

Notethat all FS2 filesare automatically accessible. Thereisno needto call thisfunction
unlessit isdesired to assign a name to an FS2 file other than the default, which is
filel, file2 €tc.

For more information regarding the FS2 filesystem, please see the Dynamic C User’s

Manual.
PARAMETERS
name Name of the new file.
filenum Number of thefilein the file system (1-255) . Thisisthe number

passed in as the second parameter to fcreate () or thereturn
valuefrom fcreate unused().

servermask Bitmask representing servers for which this entry will be valid
(e.g., SERVER_HTTP, SERVER FTP).

RETURN VALUE

-1: Failure.
=>0: Success; location of filein TCP/IP servers' object list.

LIBRARY
ZSERVER.LIB

SEE ALSO

sspec_addrootfile, sspec_addfunction, sspec_addvariable,
sspec_addxmemfile, sspec_addform, sspec_aliasspec

Chapter 3: Server Utility Library 61

sspec_addfunction

int sspec_addfunction(char *name, void (*fptr) (),
word servermask);

DESCRIPTION
Adds afunction to the RAM resource list. Make surethat SSPEC_ MAXSPEC islarge
enough to hold this new entry. Thisfunction is currently only useful for HTTP servers.

NOTE: If using HTTP upload facility and/or the new CGlI interface, use
sspec_addCGI () instead.

PARAMETERS
name Name of the function.
(*£tpr) () Pointer to the function.

servermask Bitmask representing servers for which thisfunction will be valid
(currently only useful with SERVER HTTP).
RETURN VALUE

-1: Failure.
20: Success, location of the function in the TCP/IP servers' object list.

LIBRARY
ZSERVER.LIB

SEE ALSO

sspec_addform, sspec_addfsfile, sspec addrootfile,
sspec_addvariable, sspec_ addxmemvar, sspec addxmemfile,
sspec_aliasspec

62 TCP/IP User’'s Manual

sspec_addfv

int sspec_addfv(int form, int var);

DESCRIPTION
Adds avariableto aform.

PARAMETERS
form spec index of the form (previoudly returned by
sspec_addform()).
var spec index of the variable to add (which must have been previous-

ly created using sspec_addvariable ())

RETURN VALUE

-1: Failure.
=>0: Success; next available index into the Formvar array.

LIBRARY
ZSERVER.LIB

SEE ALSO

sspec_addform

Chapter 3: Server Utility Library

63

sspec_addrootfile

int sspec_addrootfile(char *name, char *fileloc, int len, word
servermask) ;

DESCRIPTION

Addsafilethat islocated in root memory to the dynamic resource table. Make sure that
SSPEC MAXSPEC islarge enough to hold this new entry.

PARAMETERS
name Name of the new file. This must be unique, but this function does
not check. The name should not conflict withthevirtual filesystem
hierarchy. That is, it should not start with /fs2/, /a/, /B/ €c.
fileloc Pointer to the beginning of thefile.
len Length of thefilein bytes.

servermask Bitmask representing servers for which this entry will be valid
(e.g., SERVER_HTTP, SERVER FTP).

RETURN VALUE

-1: Failure.
>0: Success; file index into the resource list.

LIBRARY
ZSERVER.LIB

SEE ALSO

sspec_addfsfile, sspec addxmemfile, sspec addxmemvar,
sspec_addvariable, sspec_addfunction, sspec_addform,
sspec_aliasspec, sspec_resizerootfile

64 TCP/IP User’'s Manual

sspec_addrule

int sspec_addrule(char * pfx, char * realm, word readgroups,

word writegroups, word servermask, word method,
MIMETypeMap * mimetype);

DESCRIPTION

Add arule to the dynamic resource rule table. Resource rules are used to associate ac-
cess information with resource names matching the specified prefix string. The most
specific, that is, the longest, matching string is used.

Normally, therule table is consulted only for resource names that belong in afile sys-
tem (FS2 or FAT). You can also cause the rule table to be consulted for flash- or RAM-
tableentriesif you leavethe realm field asNULL inthe entry. If the realm field is
not NULL, then the rule table is not consulted for that entry. If the realm field was
NULL, and there was no applicable entry in the rule table, then the resource table per-
missions are used (with NULL realm).

Do not attempt to use avery large number of rule table entries, since the table must be
searched exhaustively for each initial resource access. There should be no need for a
large number of entries provided that the resource name hierarchy isorganized in area
sonably efficient manner. For example, keep the resources for aparticular user or realm
in one directory, and just add an entry for that directory instead of an entry for each re-
source. Thisworks because the full path nameis always used for matching, and the di-
rectory will always be a prefix string of the files that reside in that directory.

Asan dternative to this function, you can statically initialize arule table using the fol -
lowing macros:

#define SSPEC FLASHRULES // Required.

#use "zserver.lib" // thislib
SSPEC_RULETABLE START

SSPEC RULE ("prefix", realm, rg, wg, sm)

SSPEC_RULE ("prefix", realm, rg, wg, sm)
SSPEC_MM RULE ("prefix", realm, rg, wg, sm, meth, mime)
SSPEC_MM RULE ("prefix", realm, rg, wg, sm, meth, mime)

SSPEC_RULETABLE_END

TheSSPEC MM RULE macro parameters are basically the same parameters as would
be passed to this function. These macros define and initialize a constant rule table
named £ rule table. SSPEC RULE just omitsthe (rarely used) method and
mimetype fields.

When using a static rule table, the dynamically added entries are searched before the
static ones.

Chapter 3: Server Utility Library

65

PARAMETER

pEx Prefix of resource name. This must include theinitial “ /” charac-
ter, since all matching is done using absolute path names. If this
prefix string exactly matches an existing entry in the table, that en-
try isreplaced. Otherwise, anew entry iscreated (if possible). This
string is not copied, only the pointer is stored. Thus, pf£x must
point to static storage, that is, astring constant or aglobal variable.
Initial characters other than “ /" are reserved for future use.

realm If not NULL, isan arbitrary null-terminated string that may be
used by the server. For HTTR, thisisused asthe “realm” of the re-
source. Thisstring is not copied, only the pointer is stored. Thus,
the parameter must point to static storage.

readgroups A word with a bit set for each group that can access this resource
for reading. A maximum of 16 different user groups can exist.

writegroups A wordwith abit set for each group that can access this resource
for writing. The user must also be given write permission to re-
sourcesin theuserid table entry for the appropriate server(s).

servermask The server(s) that are all owed to access thisresource. Servershave
predefined bits. This parameter should be a combination of

e SERVER HTTP: web server
e SERVER_ FTP: filetransfer protocol server
e SERVER SMTP: emall
e SERVER HTTPS: secure web server
® SERVER_SNMP: SNMP agent
e SERVER _USER: user-defined server
e SERVER_ANY: for all servers.
method Allowable authentication method(s) to be used when accessing

this resource. If zero, then the resource has no particular authenti-
cation method requirements. Thisis a bitwise combination of:

e SERVER AUTH BASIC: plaintext userid/password

e SERVER AUTH DIGEST: challenge-response protocol
e SERVER AUTH PK: public key (such as SSL/TLS)

mimetype An appropriate MIME typeto use. If NULL, then the default table
(caledhttp_ types) will be consulted.

RETURN VALUE
=>0: OK
-1: Error. For example, out of spacein rule table; increase SSPEC_ MAXRULES.

SEE ALSO

sspec_removerule, sspec getMIMEtype

66 TCP/IP User’'s Manual

sspec_adduser

int sspec_adduser (int sspec, int userid);

DESCRIPTION

Add to the read permission mask for the given resource. The groupsthat userid is
amember of are ORed into the existing permission mask for the resource. The write
permissions are not modified.

NOTE: Thisis not used to create new userids. For that, see sauth_adduser ().

Adds auser to the list of usersthat have accessto the given spec entry. Up to
SSPEC_USERSPERRESOURCE users can be added. Any more than that will resultin
this function returning - 1.

Thisfunction is deprecated as of Dynamic C 8.50. Use the more genera
sspec_setpermissions () function instead.

PARAMETERS
sspec Spec index.
userid User index.

RETURN VALUE
2>0: Success, index of userid added for given spec entry.
-1: Failure.

LIBRARY

ZSERVER.LIB

SEE ALSO

sspec_setuser, sspec_getusername, sspec _getuserid,
sspec_removeuser, Sspec_setpermissions

Chapter 3: Server Utility Library

67

sspec_addvariable

int sspec_addvariable(char *name, void *variable, word type,
char *format, word servermask);

DESCRIPTION

Adds avariable to the dynamic resource table (aka, the RAM resource list). Make sure
that SSPEC_MAXSPEC islarge enough to hold this new spec entry. Thisfunction is
currently only useful for the HTTP server.

PARAMETERS

name Name of the new variable. This must be unique, but this function
does not check. The name should not conflict with the virtual file-
system hierarchy. That is, it should not start with /fs2/, /A/,
/B/ etc. Variables appear in adirectory listing of the root directo-
ry “/” however, they cannot be opened using sspec_open ().

variable Address of actual variable.

type Variable type, one of:
e |NT8 - single character
e [NT16 - 2-byte integer
e PTRI16 - string in root memory
e [NT32 - 4-byte (long) integer
e FLOAT32 - floating point variable

format Output format of thevariableasaprintf () conversion specifi-
e, eg., “%d.”

servermask Bitmask representing servers for which thisfunction will be valid
(currently only useful with SERVER_HTTP).

RETURN VALUE

-1: Failure.
>0: Success, the index of the variable in the resource list.

LIBRARY
ZSERVER.LIB

SEE ALSO

sspec_addfsfile, sspec addrootfile, sspec addxmemfile,
sspec_addxmemvar, sspec_addfunction sspec addform,
sspec_aliasspec

68 TCP/IP User’'s Manual

sspec_addxmemfile

int sspec_addxmemfile(char *name, long fileloc,
word servermask);

DESCRIPTION

Adds afile, located in extended memory, to the RAM resource list. Make sure that
SSPEC MAXSPEC islarge enough to hold this new entry.

PARAMETERS
name Name of the new file. This must be unique, but this function does
not check. The name should not conflict withthevirtual filesystem
hierarchy. That is, it should not start with /£s2/, /a/, /B/ €c.
fileloc Location of the beginning of the file. The first 4 bytes of the file
must represent the length of the file (#ximport doesthisauto-
matically).

servermask Bitmask representing servers for which this entry will be valid
(e.g., SERVER_HTTP, SERVER FTP).

RETURN VALUE

-1: Failure.
20: Success, the location of the file in the dynamic resource list.

LIBRARY
ZSERVER.LIB

SEE ALSO

sspec_addfsfile, sspec_addrootfile, sspec addvariable,
sspec_addxmemvar, sspec_addfunction, sspec_addform,
sspec_aliasspec

Chapter 3: Server Utility Library

sspec_addxmemvar

int sspec_addxmemvar (char *name, long variable, word type,
char *format, word servermask);

DESCRIPTION

Add avariable located in extended memory to the RAM resource list. Make sure that
SSPEC MAXSPEC islarge enough to hold this new entry. Currently, thisfunction is
useful only for the HTTP server.

PARAMETERS

name Name of the new variable. This must be unique, but this function
does not check. The name should not conflict with the virtual file-
system hierarchy. That is, it should not start with /fs2/, /A/,
/B/ etc. Variables appear in directory listing of the root directory
“/" however, they cannot be opened using sspec_open ().

variable Address of the variable in extended memory.

type Variable type, one of:

INTS8 - single character

INT16 - 2-byte integer

PTR16 - string in root memory
INT32 - 4-byte (long) integer
FLOAT32 - floating point variable

format Output format of thevariableasaprintf () conversion specifi-
ereg., “%d.”

servermask Bitmask representing valid servers (currently only useful with
SERVER_HTTP).

RETURN VALUE

-1: Failure.
>0: Success, the index of the variable in the resource list.

LIBRARY
ZSERVER.LIB

SEE ALSO

sspec_addfsfile, sspec_ addrootfile, sspec addvariable,
sspec_addfunction, sspec_addform, sspec addxmemfile,
sspec_aliasspec

70 TCP/IP User’'s Manual

sspec_aliasspec

int sspec_aliasspec(int sspec, char *name);

DESCRIPTION

Creates an dlias to an existing ServerSpec structure. Make sure that
SSPEC_MAXSPEC islarge enough to hold this new entry.

ThisisNOT adeep copy. That is, any file, variable, or form that the alias (the new spec
entry) references will be the same copy of thefile, variable, or form that already exists
in the old spec entry. This should be called only when the original entry has been com-
pletely set up.

NOTE: do not attempt to alias a sspec handle that was returned by sspec_open (),
because the handle may be dynamically allocated. I n such acase, thediaswill not work
oncetheoriginal handleisclosed. You cantest whether sucha"virtual" handle hasbeen
returned using the macro SSPEC_IS VIRT (sspec).

PARAMETERS
sspec sspec index that this function will alias.
name Alias name.

RETURN VALUE

-1: Failure.
>0: Success; return location of dlias, i.e., new index.

LIBRARY
ZSERVER.LIB

SEE ALSO

sspec_addform, sspec_addfsfile, sspec addfunction,
sspec_addrootfile, sspec addvariable, sspec addxmemfile

Chapter 3: Server Utility Library 71

sspec_automount

int sspec_automount(word which, wvoid ** fatstuff,
void ** fs2stuff, void ** reserved);

DESCRIPTION

Thisfunction automatically initializes and mountsthe specified filesystem(s) for use by
Zserver. Mounting afilesystem creates an entry point to that filesystem for the server.

You must #use the appropriatefilesystem library (for example, FS2 . LIB) otherwise
the filesystem will not be mountable.

If using the FAT library, you must include one or more “driver libraries’ (such as
sflash fat.lib)before#use fat.lib.Only thedefault devicefrom thefirst
driver library will beinitialized and used by this routine. If you need to use any other
devices, you will need to initialize them individually and call the
sspec_fatregister () function. SSPEC_MAX FATDRIVES will also needto
be increased from its default value of one.

For the FAT library, thisroutinecallsfat Init () andmountsthefirst available FAT
partition on that drive (if any). If the first available partition is the first partition on the
drive, then it will be mounted at mount point “ /A", If it isthe second partition, it will
be mounted at “ /B” etc. Up to four partitions are scanned. If none are found (or none
are FAT12 or FAT16 partitions) then an error is returned.

For FS2, all logical extentswill beinitialized viathe fs_init () function.

PARAMETERS
which The filesystem(s) to mount. Thisisabitwise OR of the following
constants:
e SSPEC MOUNT FS - FSor FS2 flash filesystem
e SSPEC MOUNT FAT - FAT filesystem (1st drive).

You can also pass SSPEC_MOUNT_ANY to mount all known file-
systems.

72 TCP/IP User’'s Manual

fatstuff

fs2stuff

reserved

RETURN VALUE
0: OK

Either NULL (no info return) or must point to a struct of type
sspec_fatinfo. Thisstructure (definedin zserver.1ib)
consists of the following fields:

typedef struct ({
dos ctrl * ctrl;
mbr drive * drive;
fat part * part[4];
} sspec_fatinfo;

When calling this function, you should NULL out all these point-
ersusing memset (..., 0, ...).Youcanthenoptionaly
set some of the pointersto valid non-NULL valuesin order to
overridethe defaults supplied by thisfunction. If yousetthectrl
pointer, then it is assumed by this function that you have already
called the controller initialization function. If the pointer isNULL
on entry, then this function will call the default controller initial-
ization viatheDOS_CONTROLLER_INIT macro.

On return, pointers that were NULL on entry may be changed to
point to valid default information. In particular, the ctr1 and
drive fiddswill point to defaults. One (and only one) of the
NULL part pointers may be set to adefault partition structure if
adefault partition could be located on the drive.

If £fat.1lib isnotincluded, the above structureis still defined,
but contains 6 void pointers. Thisisjust to avoid compilation
problems, since no information will be used or returned.

This parameter is currently reserved for returning FS2 informa-
tion. For now, passas NULL.

Reserved for other filesystems. For now, passas NULL.

Otherwise, if afilesystem fails to mount, the return code is the bitwise OR of the
SSPEC_MOUNT_* constants of those filesystem(s) that failed to initialize.

SEE ALSO

sspec_fatregister, sspec fatregistered

Chapter 3: Server Utility Library

73

sspec_cd

int sspec cd(char * path, ServerContext * context, int check);

DESCRIPTION

Change the current working directory inthe ServerContext structure. This func-
tionmay beused by serversthat support theconcept of acurrent directory, suchasFTP

(but not HTTP). Standard Unix-like path names are used, including support for “ . ” and
“. .7 directory components.

The resulting directory name is not allowed to be closer to the root directory than
context->rootdir. If thereisany specification error, then the current directory is
not changed. The resulting absolute directory name cannot be longer than

SSPEC MAXNAME, including aleading and trailing “ /" character.

PARAMETERS

path

context

check

RETURN VALUE
0: OK.

New directory path string, as anull-terminated string. If this starts
with“ /" itismerely appended to the context ->rootdir
string. Otherwise, it is appended to the current directory (in
context - >cwd). Directory components are separated by “ /”
characters. A trailing slashisoptional. A directory component “ .”
means “ no changeto thislevel,” and acomponent of “ . .” means

“up onelevel” (towards the root).

Server context structure. Two fields in this are of interest:
rootdir pointsto avirtua root directory for this server. For ex-
ample, if the FTP server is only allowed to access files under the
/24/ directory, thenrootdir pointstoastring“/a/". If theuser
entered adirectory nameof “ /ftpfiles/” thefull directory
wouldbe“ /a/ftpfiles/”

The other field that is updated by thisfunction, is cwd. Thisisan
array of characters of length SSPEC_ MAXNAME. It contains the
absolute path of the current directory, with leading and trailing
dash, including the rootdir part (if any).

If TRUE, check theresulting directory nameto seeif it exists. Oth-
erwise, no check is made.

Any other negative values indicate an error:

-E2BIG: Resulting directory name too long

-EACCES: Attempt to change above root directory

-ENOENT: 3rd parameter was TRUE, and the directory did not exist.

SEE ALSO

sspec_pwd

74

TCP/IP User’'s Manual

sspec_checkaccess

int sspec_checkaccess(int sspec, int userid);

DESCRIPTION

This function checks whether or not the specified user has permission to access the
specified resource in the resource table. Only read accessis checked.

Thisfunction is deprecated as of Dynamic C 8.50. Use the function
sspec_checkpermissions () instead.

PARAMETERS
sspec spec index
userid user index

RETURN VALUE

0: User does not have access.
1: User has access.
-1: Failure.

LIBRARY
ZSERVER.LIB

SEE ALSO

sspec_needsauthentication,

sspec_checkpermissions

Chapter 3: Server Utility Library

75

sspec_checkpermissions

int sspec checkpermissions (int sspec, ServerContext * context);

DESCRIPTION
Returns the access permissions for the given server and user, for the given resource.

sspec_access () performsthe same function, except that aresource name can be
given (rather than an open resource handle).

PARAMETERS
sspec spec index
context Server context. Therelevant fields are:

context->server: the current server (SERVER_HTTP €tc.)
context->userid: current user, or -1 fortestingthe serverin
general.

When testing the server in general, both O READ and O_ WRITE
will be returned.

RETURN VALUE
>0: Bitwise combination of:

e O READ: resourceisreadable

® O WRITE: resource haswrite permission. Thisdoes NOT necessarily mean
that the resource can actually be written, only that the permission bits allow it.

<0: Error. For example, no permissions can be located or the sspec handleisinvalid.

SEE ALSO

sspec_setpermissions, sspec getpermissions, sspec_access

76 TCP/IP User’'s Manual

sspec_close

int sspec close(int sspec);

DESCRIPTION

Closeafileresource. Thisfunction must be called by serverswhen they have compl eted
operations on the file, otherwise there will be aresource leak and future open callswill
fail.

PARAMETER

sspec Open file handle. This must be a handle that was returned by
sspec_open().

RETURN VALUE
20: Success.
The following return values are negatives of the values defined in errno . 1ib.
e -EBADF: The specified handle was not open or invalid.

e Other negative valuesindicate an error in closing the file resource.

SEE ALSO:

sspec_read, sspec_write, sspec seek, sspec_ tell, sspec_open

Chapter 3: Server Utility Library

7

sspec_delete

int sspec_delete(char * name, ServerContext * context);

DESCRIPTION
Delete aresource by name. See sspec_open () for adetailed description of param-
eters.
PARAMETERS
name Name of resource.
context Current server context.

RETURN VALUE
0: OK.

The following return value is a negative of the values defined in errno. 1ib. Any
other negative values indicate an error.

e -ENOENT: The specified resource did not exist.

SEE ALSO

sspec_mkdir, sspec_rmdir, sspec_open

78 TCP/IP User’'s Manual

sspec_dirlist

int sspec _dirlist(int item, char *line, int linelen,
ServerContext * context, word options);

DESCRIPTION

Return formatted directory listing line. To use thisfunction, call it with item =0the
first time, then keep calling it with i t em = <previous return value> until it returns neg-
ative. This allows you to iterate through all entriesin a directory.

The ServerContext structure containsthe current user ID, server, and the name of
the directory to list.

Note: For agiven directory, you should call thisfunction with i tem = 0, followed by
more callsuntil it returns -1. If you want to terminate the directory listing without iter-
ating through every entry, passthe SSPEC_LIST END option flag (see below). This
allows Zserver to rel ease any temporary resources acquired for the purpose of iterating
through thedirectory. Thisisespecially important for FAT filesystem listings. After this
function returns negative, you must start the next directory listing from thetop, that is,
item=0.

If you do not complete the listing, then your application may not be able to perform fur-
ther listings owing to internal resource leakage. Thisis similar to the need to close file
resources that are opened. See the second example below.

Passthe same ServerContext structurefor the entire directory list sequence, since
Zserver keepstrack of state information in this structure.

EXAMPLE
To iterate through all resources under “/A/”:

ServerContext ctx;
int item;

char buf[80];

word opts;

word n;

ctx.rootdir = "/";

ctx.server = SERVER FTP;

ctx.userid = sauth getuserid("foo", SERVER FTP) ;
sspec_cd("/A", &ctx);

for (item = 0; item >= 0;) {
item = sspec dirlist(item, buf, sizeof (buf), &ctx,
SSPEC_LIST LONG) ;
if (item >= 0)
printf (buf) ;
} // finished now, can re-use ctx.

Chapter 3: Server Utility Library 79

To iterate through the first 5 resources only:

opts = SSPEC LIST LONG;

for (item = 0, n = 0; item >= 0; ++n) {
if (n >= 4)
opts |= SSPEC_LIST END;

item = sspec dirlist (item, buf, sizeof (buf), &ctx, opts) ;

if (item >= 0)
printf (buf) ;
}

PARAMETERS

item Directory entry to list. If zero, thisalwaysreturnsthefirst entry in
the directory. Thereafter, pass the return value from the previous
call to thisfunction to get the next item(s). NOTE: thereturn value
does not necessarily count up 1, 2, 3 etc. Apart from 0, the only
values you should passin this parameter are previous return val-
ues, otherwise the results will be undefined.

line Points to buffer that is filled with resulting string. The string will
be terminated with \r\n (CRLF) thenaNULL.

linelen Length of the above buffer. If it is not long enough, then the line
will be truncated (however it will still have the terminating CRLF
+ null). The minimum reasonable value is about 15 for format O,
and 80 for format 1.

context Server context. Thisstructurewill havethefollowing fieldsinitial-
ized:
userid: current user who isdoing thelisting, or -1 if no spe-
cific user.
server: mask bit of the server who is performing the listing.

cwd []: settothedirectory tolist. The sspec cd () func-
tion can be used to set thisfield correctly.

This struct must be the same instance for all callsin asingle direc-
tory listing sequence.

80

TCP/IP User’'s Manual

options Listing options. Thisisabit field that should have a combination
of the following flags:

® SSPEC LIST LONG: Longformat listing (elsejust
names)

e SSPEC LIST END: Closethe current directory listing.
For the long format, the templateis:
<permissions> 1 <user> <group> <length> <date> <name>

Where

e permissionsisastring of 10 charactersin 3 sets of 3, plus
one. Each set of 3 indicates read, write or execute permis-
sions for the user, group, and “world” respectively. The
1st charis“d” if theentry isadirectory, or “ - otherwise.
Since Zserver does not really support file owners or
groups, or execute permissions, the 3 setswill be either
“rw-"or“r--" or sometimes“-w-". The user bitsare
set according to the current user's access. The group bits
are set if any other user has access, and the “world” bits
are set if any other server has access.

e “1" isaconstant for Unix compatibility.

e user istheusername who “owns’ thefile resource.
Since Zserver does not have the concept of resource own-
ership, thisis set to the user ID of the context -
>useridfidd. If context->useridis-1, thisisset
to anon.

e group istheresource“group name.” Zserver does not
support this Unix concept either, so thisfield is set to the
realm of thefile resource (if it has one) otherwiseit is set
to anon.

e length issettothecurrent length of thefile resource, or
0if not known.

e date isset to the modification date of the file resourcein
Mon dd yyyy format.

e name isthe name of thefile resource in this directory.
Example:
dr--r--r-- 1 foo admin 0 Jan 1 1980 ftpfiles

-rw-rw-rw- 1 foo admin 1250 Mar 6 2003 index.htm

RETURN VALUE

-EEOF: there were no (more) entries in this directory.

Any other negative value: parameter or 1/O error.

Otherwise (non-negative): the return val ue should be passed back to thisfunction asthe
i tem parameter vaue, to retrieve the next entry.

SEE ALSO

sspec_cd

Chapter 3: Server Utility Library

81

sspec _fatregister

int sspec_ fatregister(int partno, fat part * pt);

DESCRIPTION

This function must be used to register al FAT partitions that will be accessible to
Zserver.1ib. Partitions are numbered consecutively from 0, and they correspond
to mount points/A, /B, /C etc.

It is assumed that by the time this function is called the required drives and partitions
have been mounted. For example, call fat EnumbDrive () followed by as many
fat MountPartition () calsasrequired. The fat part pointer returned by
fat MountPartition () should be passed to thisfunction. Up to

SSPEC_MAX PARTITIONS canberegistered. Thisnumber can be changed indirect-
ly by defining SSPEC_MAX FATDRIVES before #use zserver.lib. Thisde-
faultsto one drive, and the number of partitionsis set to 4 times this number (hencethe
default allows up to four partitions).

NOTE: ItisNOT necessary to call thisfunction if you called sspec_automount
(SSPEC_MOUNT FAT, .. .) sincethat function doesall the necessary initializations
for asingle “drive.”

PARAMETERS
partno Partition number to register. This starts at 0, corresponding to the
“ /A" mount point; 1 for “ /B” etc.
pt Pointer to fat part datastructure returned by

fat MountPartition etc. To unregister a partition, pass
NULL for this parameter. Note: attempted access to an unregis-
tered partition generally resultsin an error code of -ENXIO.

RETURN VALUE

20: Success.
-ENXIO : partno outsidethe allowablerangeof 0.. SSPEC_MAX PARTITIONS-1.

LIBRARY
ZSERVER.LIB

SEE ALSO

fat EnumDrive, fat EnumPartition, fat MountPartition,
sspec_automount, sspec fatregistered

82 TCP/IP User’'s Manual

sspec fatregistered

fat part * sspec fatregistered(int partno);

DESCRIPTION
Test whether a FAT partition has been registered with Zserver.

PARAMETER

partno Partition number to test. Thisstartsat O, correspondingtothe* /A"
mount point; 1 for “/B"etc.

RETURN VALUE

NULL: Not registered.
Otherwise: Registered, and thisisthe fat part pointer.

SEE ALSO

fat EnumDrive, fat EnumPartition, fat MountPartition,
sspec_automount, sspec_fatregister

Chapter 3: Server Utility Library

83

sspec_findfv

int sspec_findfv(int form, char *varname);

DESCRIPTION
Finds the index of aform variablein agiven form.

PARAMETERS
form spec index of the form in which to search.
varname Name of the variable to find.

RETURN VALUE
-1: Failure.

2>0: Success, the index of the form variablein the array of type Formvar.

LIBRARY
ZSERVER.LIB

SEE ALSO

sspec_addfv

84

TCP/IP User’s Manual

sspec_findname

int sspec_findname(char *name, word server);

DESCRIPTION
Find the spec entry with aname field that matches the given name and is allowed with

the specified server(s). Note that aleading slash in the given name and/or in the re-
source name isignored for backwards compatibility.

PARAMETERS
name Name to search for in the resource list.
server The server making the request (e.g., SERVER_HTTP).

RETURN VALUE

-1: Failure.
20: Success, spec index. The special value SSPEC_ VIRTUAL isreturned if the name

refersto part of thevirtual filesystem hierarchy. In thiscase, the server mask isnot con-
sulted. SSPEC_VIRTUAL isnot avalid handle for other functions.

LIBRARY
ZSERVER.LIB

SEE ALSO
sspec_findnextfile

Chapter 3: Server Utility Library

85

sspec_findfsname

int sspec findfsname(byte filenum, word server);

DESCRIPTION

Find the server spec entry for £ i1enum. Theentry must be of type SSPEC_FSFILE
and be allowed with the specified server.

PARAMETERS
filenum File to search for. Thisvalue is the number passed in as the 2nd
pamto fcreate () or thereturn value from
fcreate unused().
server The server making the request (e.g., SERVER_HTTP).

RETURN VALUE

-1: Failure.
>0: Success, index into resource list.

LIBRARY
ZSERVER.LIB

SEE ALSO

sspec_findname

86 TCP/IP User’s Manual

sspec_findnextfile

int sspec_ findnextfile(int start, word servermask);

DESCRIPTION

Find the first spec file entry at or following the start spec that is accessible by the
given server. When the end of the RAM entriesis reached, the flash entries are
searched. Virtual filesystem entries are not considered. Only entries for which
sspec_gettype () would return SSPEC_FILE are considered.

If you are using this function to iterate through the availabl e resources, then the caller
isresponsible for incrementing the starting point. To do this, you can call the function
sspec_nexthandle () whichwill return the next valid handle after the given one
(or -1 if no more handles).

PARAMETERS

start Thearray index at which to begin the search. -1 starts searching the
RAM entries.

servermask The server making the request (e.g., SERVER HTTP).

RETURN VALUE

-1: Failure.
=>0: Success, index of requested ServerSpec structure.

LIBRARY
ZSERVER.LIB

SEE ALSO

sspec_findname, sspec_gettype

Chapter 3: Server Utility Library

87

sspec _getfileloc

long sspec getfileloc(int sspec);

DESCRIPTION

Getsthe location in memory or in the file system of afile represented by a
ServerSpec structure. Thelocation of thefileis returned as along, even if thefile
location should be represented by achar* (for aroot file) or aFi1eNum (for thefile-
system). The return value should be cast to the appropriate type by the user.

sspec_getfiletype () canbeused to find the file type.

PARAMETERS

sspec spec index of thefilein the resource list

RETURN VALUE
>0: Success, location of the file.
-1: Failure.

LIBRARY
ZSERVER.LIB

SEE ALSO

sspec_getfiletype, sspec getlength

88 TCP/IP User’'s Manual

sspec _getfiletype

word sspec _getfiletype(int sspec);

DESCRIPTION
Get the type of afile represented by the given spec index.

PARAMETERS

sspec spec index of thefilein the resourcelist, that is, theindex into the
array of ServerSpec structures.

RETURN VALUE

SSPEC_ROOTFILE: root memory data
SSPEC_XMEMFILE: xmem data
SSPEC_ZMEMFILE: compressed xmem data
SSPEC_FSFILE: FS2file

SSPEC_ERROR: failure - not afile, or invalid handle

LIBRARY
ZSERVER.LIB

SEE ALSO
sspec_getfileloc, sspec_gettype

Chapter 3: Server Utility Library

89

sspec _getformtitle

char *sspec getformtitle(int form);

DESCRIPTION
Getsthetitle for an automatically generated form.

PARAMETERS

form server_spec index of theform.

RETURN VALUE

NULL: Failure.
I NULL: Success, title string.

LIBRARY
ZSERVER.LIB

SEE ALSO

sspec_setformtitle

90 TCP/IP User’s Manual

sspec_getfunction

void *sspec _getfunction(int sspec);

DESCRIPTION

Returns a pointer to the function represented by the sspec index. The entry must have
been creasted asa SSPEC_FUNCTION or asaSSPEC_CGI.

PARAMETERS
sspec spec index

RETURN VALUE

NULL: Failure.
I NULL: Success, pointer to requested function.

LIBRARY
ZSERVER.LIB

SEE ALSO

sspec_addfunction

Chapter 3: Server Utility Library

91

sspec_getfvdesc

char *sspec getfvdesc(int form, int var);

DESCRIPTION
Gets the description of avariable that is displayed inthe HTML form table.

PARAMETERS
form spec index of the form.
var Index (into the FormVar array) of the variable.

RETURN VALUE

NULL: Failure.
INULL: Success, description string.

LIBRARY
ZSERVER.LIB

SEE ALSO

sspec_setfvdesc

92 TCP/IP User’s Manual

sspec_getfventrytype

int sspec_getfventrytype(int form, int wvar);

DESCRIPTION

Getsthe type of form entry element that should be used for the given variable.

PARAMETERS
form spec index of the form.
var Index (into the FormVar array) of the variable.

RETURN VALUE

-1: Failure;
Type of form entry element on success:
HTML FORM TEXT isatext box.
HTML FORM PULLDOWN isapull-down menu.

LIBRARY
ZSERVER.LIB

SEE ALSO
sspec_setfventrytype

Chapter 3: Server Utility Library

93

sspec_getfvlen

int sspec _getfvlen(int form, int var);

DESCRIPTION
Getsthe length of aform variable (the maximum length of the string representation of
the variable).
PARAMETERS
form spec index of the form.
var Index (into the Formvar array) of the variable.

RETURN VALUE

-1: Failure.
=>0: Success, length of the variable.

LIBRARY
ZSERVER.LIB

SEE ALSO

sspec_setfvlen

94 TCP/IP User’s Manual

sspec_getfvname

char *sspec getfvname(int form, int var);

DESCRIPTION
Gets the name of avariable that is displayed in the HTML form table.

PARAMETERS
form spec index of the form.
var Index into the array of Formvar structures of the variable.

RETURN VALUE

NULL: Failure.
I NULL, name of the form variable.

LIBRARY
ZSERVER.LIB

SEE ALSO

sspec_setfvname

Chapter 3: Server Utility Library

95

sspec_getfvnum

int sspec _getfvnum(int form);

DESCRIPTION
Gets the number of variablesin aform.

PARAMETERS

form spec index of the form.

RETURN VALUE

-1: Failure.
>0: Success, number of form variables.

LIBRARY
ZSERVER.LIB

96 TCP/IP User’s Manual

sspec_getfvopt

char *sspec getfvopt(int form, int wvar, int option);

DESCRIPTION

Gets the numbered option (starting from 0) of the form variable. This function isonly
valid if the form variable has the option list set.

PARAMETERS
form spec index of the form.
var Index into the array of Formvar structures of the variable.
option Index of the form variable option.

RETURN VALUE

NULL: Failure.
INULL: Success, form variable option.

LIBRARY
ZSERVER.LIB

SEE ALSO

sspec_setfvoptlist, sspec getfvoptlistlen

Chapter 3: Server Utility Library

97

sspec_getfvoptlistlen

int sspec_getfvoptlistlen(int form, int wvar);

DESCRIPTION

Getsthelength of the optionslist of the form variable. Thisfunctionisonly valid if the
form variable has the option list set.

PARAMETERS
form spec index of the form.
var Index (into the Formvar array) of the variable.

RETURN VALUE

-1: Failure.
>0: Success, length of the optionslist.

LIBRARY
ZSERVER.LIB

SEE ALSO
sspec_getfvopt, sspec_setfvoptlist

98 TCP/IP User’s Manual

sspec_getfvreadonly

int sspec_getfvreadonly(int form, int wvar);

DESCRIPTION
Checksif aform variable is read-only.

PARAMETERS
form spec index of the form.
var Index (into the FormVar array) of the variable.

RETURN VALUE
0: Not read-only.
1: Read-only.
-1: Failure.
LIBRARY
ZSERVER.LIB

SEE ALSO

sspec_setfvreadonly

Chapter 3: Server Utility Library

99

sspec_getfvspec

int sspec _getfvspec(int form, int var);

DESCRIPTION
Getsthe server spec index of avariablein aform.

PARAMETERS
form server_spec index of theform.
var Index into the array of Formvar structures of the variable.

RETURN VALUE

-1: Failure.
>0: Success, index of the form variable in the resource list.

LIBRARY
ZSERVER.LIB

SEE ALSO

sspec_addfv

100 TCP/IP User’s Manual

sspec_getlength

long sspec _getlength(int sspec);

DESCRIPTION

Getsthe length of the file associated with the specified ServersSpec structure. Get
the length of the file specified by the sspec index. Note that compressed files
(#zimport) return -1 because their expanded length is not known until they are pro-
cessed.

PARAMETERS

sspec spec index of filein resource list

RETURN VALUE

- 1: Failure (compressed file, or other type whose effective length is not known).
=>0: Success, length of thefilein bytes.

LIBRARY
ZSERVER.LIB

SEE ALSO

sspec_readfile, sspec getfileloc

Chapter 3: Server Utility Library

101

sspec _getMIMEtype

MIMETypeMap * sspec getMIMEtype (char* name,
ServerContext * context);

DESCRIPTION

Return the MIME type information for a specified resource name, in the given server
context.

Note that the available MIME types are set up by defining a global variable (or con-
stant) table using the definition (for example),

const MIMETypeMap http types|[] =

{

{ ".html", "text/html", NULL},
{ ".gif", "image/gif", NULL}
}i
Thenamehttp types isrequired for backward compatibility even though servers
other than HTTP can make use of MIME types.

When searching for the appropriate type, the rule table is consulted first. Only if this
resultsinaNULL MIME type pointer isthehttp_types table consulted.

See sspec_open () for adetailed description of the parameters.

PARAMETER
name Name of the resource.
context Current server context.

RETURN VALUE
Pointer to the appropriate table entry. MIMETypeMap is defined as:

typedef struct {

char extension[10]; // File extension or suffix.
char type[SSPEC MAXNAME]; //MIMEtypeeg., "text/html"
int (*fptr) (); // Server-specific processing, e.g., SSI.

} MIMETypeMap;

A valid pointer isalwaysreturned. If the appropriate table entry cannot belocated by the
resource's extension (or using arule (see sspec_addrule)) then the first table entry
is returned.

SEE ALSO

sspec_addrule

102 TCP/IP User’'s Manual

sspec_getname

char *sspec getname(int sspec);

DESCRIPTION
Returns the name of the spec entry represented by the sspec index

Thisonly works for RAM and flash table entries.
PARAMETERS
sspec spec index

RETURN VALUE

NULL: Failure.
INULL: Success, pointer to name string.

LIBRARY
ZSERVER.LIB

Chapter 3: Server Utility Library 103

sspec_getpermissions

int sspec _getpermissions(int sspec, char ** realm,
word * readgroups, word * writegroups, word * servermask,
word * method, MIMETypeMap ** mimetype) ;

DESCRIPTION
Get the permission (access control) attributes of aresource.

Except for sspec, al parameters are pointers to variables that will be set to the appro-
priate return value. If the parameter is NULL, then that information is not retrieved.

NOTE: Thedataat **realmand **mimetype should not be altered by the caller.
The datais read-only.

PARAMETERS
sspec spec index
realm Pointer to pointer to realm string

readgroups Pointer to mask of user groups who have read access
writegroups Pointer to mask of user groupswho have write access
servermask Pointer to servers alowed to access this resource.
method Pointer to required authentication method.

mimetype Pointer to pointer to MIME table entry.

RETURN VALUE

0: Success.
<0: Failure. For example, an invalid sspec handle

SEE ALSO

sspec_setpermissions, sspec checkpermissions, sspec access

104 TCP/IP User’'s Manual

sspec_getpreformfunction

void *sspec getpreformfunction(int form);

DESCRIPTION

Getsthe user function that will be called just before HTML form generation. Thisfunc-
tion is useful mainly for custom form generation functions.

PARAMETERS

form spec index of the form

RETURN VALUE

NULL: No user function.
I NULL: Pointer to user function.

LIBRARY
ZSERVER.LIB

SEE ALSO

sspec_setpreformfunction, sspec setformfunction

Chapter 3: Server Utility Library 105

sspec_getrealm

char *sspec getrealm(int sspec);

DESCRIPTION

Returns the realm of the spec entry represented by sspec.
PARAMETERS

sspec spec index

RETURN VALUE

NULL: Failure.
I NULL: Success, pointer to the realm string.

LIBRARY
ZSERVER.LIB

SEE ALSO

sspec_setrealm

106 TCP/IP User’s Manual

sspec_getservermask

int sspec_getservermask(int sspec, word *servermask);

DESCRIPTION

Getsthe server mask for the given spec entry. Thisis the bitmask passed in when the
entry is created with the sspec_add* () functions.

This function only works for RAM and flash table entries.
PARAMETERS
sspec spec index of the variable

servermask Addressin which the servermask will be returned

RETURN VALUE

0: Success
-1: Failure

Chapter 3: Server Utility Library

107

sspec_gettype

word sspec _gettype(int sspec);

DESCRIPTION

Returnsthe type (SSPEC_FILE, SSPEC_VARIABLE, etc.) of the spec entry repre-
sented by sspec. Thisisagenerictype, inthat, SSPEC_FILE isreturned for any type
(SSPEC_ROOTFILE, SSPEC_FSFILE etc.) that hasfile properties and
SSPEC_VARIABLE isreturnedfor SSPEC_ROOTVAR Of SSPEC_XMEMVAR. Other
types are returned without tranglation.

PARAMETERS
sspec spec index

RETURN VALUE

SSPEC_ERROR: Failure.
I SSPEC_ERROR: Success, type as described above.

LIBRARY
ZSERVER.LIB

SEE ALSO
sspec_getfiletype, sspec getvartype

108 TCP/IP User’s Manual

sspec_getuserid

int sspec getuserid(int sspec, int index);

DESCRIPTION

Returnsa userid for the given sspec resource. Since aresource can have multiple use-
rids associated with it, index indicates which userid should be returned. Note that
index should follow therelation 0 < index < SSPEC_USERSPERRESOURCE.

If thereisno userid for agivenindex, -1 will bereturned. If -1isreturned for anindex,
then -1 will also be returned for all higher indices.

This function may be used to iterate through all usersthat have read accessto a
particular resource.

Thisonly works for RAM and flash table entries.

Starting with Dynamic C 8.50, access control is done by user groups rather than indi-
vidual users; therefore, sspec_getuserid () may not work as expected.

PARAMETERS
sspec spec index
index index of userid for this sspec resourcetoreturn: 0, 1, 2 ...

RETURN VALUE

-1: Error, or no such userid.
2> 0: Success, userid is returned.

LIBRARY
ZSERVER.LIB

SEE ALSO

sspec_getusername, sauth getusername

Chapter 3: Server Utility Library

109

sspec_getusername

char *sspec getusername(int sspec);

DESCRIPTION

Getsthe username field of the first user in the user table that has read access to the
resource indexed by sspec. If multiple users are associated with this resource, the first
user'susername will bereturned. See sspec _getuserid () toget all useridsfor a
resource, and sauth getusername () to convert the userids to usernames.

Starting with Dynamic C 8.50, access control is done by groups rather than individual
users, therefore, sspec getusername () may not work as expected.

Thisonly works for RAM and flash table entries.
PARAMETERS
sspec spec index

RETURN VALUE

NULL: Failure, or no user has read access to this resource.
| =NULL: Success, pointer to username.

LIBRARY
ZSERVER.LIB

SEE ALSO

sauth adduser, sspec_setuser, sauth getuserid,
sauth getusername

110 TCP/IP User’'s Manual

sspec_getvaraddr

void *sspec getvaraddr(int sspec);

DESCRIPTION
Returns a pointer to the requested variable in the resource list.

PARAMETERS
sspec spec index

RETURN VALUE

NULL: Failure.
I NULL: Success, pointer to variable.

LIBRARY
ZSERVER.LIB

SEE ALSO

sspec_readvariable

Chapter 3: Server Utility Library 111

sspec_getvarkind

word sspec_getvarkind(int sspec);

DESCRIPTION
Returns the kind of variable represented by sspec.

PARAMETERS

sspec spec index

RETURN VALUE

0: Failure.

On success, returns one of :
e |NT8 - single character
e [NT16 - 2-byte integer
e PTRI16 - string in root memory
e [NT32 - 4-byte (long) integer
e FLOAT32 - floating point variable

LIBRARY
ZSERVER.LIB

SEE ALSO

sspec_getvaraddr, sspec _getvartype, sspec_gettype

112 TCP/IP User’'s Manual

sspec_getvartype

word sspec _getvartype(int sspec);

DESCRIPTION

Getsthe type of variable represented by the spec index.
PARAMETERS

sspec spec index.

RETURN VALUE

SSPEC_ERROR: Failure.
SSPEC_ROOTVAR Or SSPEC_XMEMVAR: SuCCeSS.

LIBRARY
ZSERVER.LIB

SEE ALSO

sspec_getvaraddr, sspec getvarkind, sspec _gettype

sspec_getxvaraddr

long sspec _getxvaraddr(int sspec);

DESCRIPTION

Returns a pointer to the variable in xmem represented by the sspec index.
PARAMETER

sspec spec index

RETURN VALUE

> 0: Variable pointer.
-1: Failure.

SEE ALSO

sspec_readvariable

Chapter 3: Server Utility Library 113

sspec mkdir

int sspec _mkdir(char * name, ServerContext * context);

DESCRIPTION
Create anamed directory in the FAT filesystem.

PARAMETERS
name Name of new directory.
context Current server context.

RETURN VALUE

0: OK.

-EPERM: Not afilesystem that supports creation of new directories.
-EACCES: Not authorized

Any other negative valuesindicate an error.

SEE ALSO

sspec_delete, sspec_rmdir, sspec_open

114 TCP/IP User’s Manual

sspec _needsauthentication

int sspec needsauthentication(int sspec);

DESCRIPTION
Checks if the item represented by the spec entry needs authentication for access. This
is defined by having anon-NULL “ream” string for the resource.

This function is deprecated starting with Dynamic C 8.50 in favor of
sspec_checkpermissions (). Itisretained for cases where the permissions
structure for a resource contains an authentication method of
SERVER AUTH DEFAULT.

PARAMETERS
sspec spec index

RETURN VALUE

0: Does NOT need authentication.
1: Does need authentication.
- 1: Failure, no permissions struct assigned or invalid sspec handle.

LIBRARY
ZSERVER.LIB

SEE ALSO

sspec_getrealm, sspec_ checkpermissions

Chapter 3: Server Utility Library

115

sspec_open

int sspec_open(char * name, ServerContext * context, word mode) ;

DESCRIPTION

Open afile resource by name. The name may refer to aflash- or RAM-spec entry, or
may be the name of afilein afilesystem.

The resource namespace is specified asadirectory hierarchy, similar to aUnix-likefile-
system. Theroot directory, “ /", isthe base for all named resources.

If £s2.1ib isincluded, then files stored in the FS2 filesystem are accessible under a
mount point called “ / £s2.” FS2 files do not have native names. Instead, each fileis
numbered from 1 to 255. Zserver assigns namesto FS2 files by appending the file num-
ber (in decimal) to the string “file.” For example, FS2 file number 99 has a complete
resource name of “/fs2/file99.”

If fat.libisincluded, thenall DOSFAT filesare mounted under adriveletter. The
first partition of thefirst DOS FAT filesystemiscalled “/A” and the second partition (if
any) iscaled“/B” etc. For example, if the FAT filesystem hasafile called “/system/ad-
min.htm” then the complete resource name will be “/A/system/admin.htm”.

NOTE: Forward slashes are required. Do not use backslashes as is customary with
DOS filesystems.

If the resource name does not begin with “/fs2” or “/A” etc., thentheresourceislocated
in the static resource table (“flashspec” that is, thehttp flashspec global table)
or in the dynamic (RAM) table.

To access the file resource, the return value from this function must be passed to other
functions, such as sspec_read (). A few functions do not work with resources
opened with this function. These cases are documented with the function.

NOTE: When the application has finished accessing the resource, it must be closed

using sspec_close (). Thismust be done because there is alimited amount of stor-

age for maintaining the necessary file handles.

PARAMETERS

name Resource name, as a NULL terminated string. This nameis as-
sumed to berelativeto context - >cwd if it does not begin with
a“ /" character. Otherwise, the name is assumed to be relative to
context->rootdir. Notethat the name string can contain
“."and“..” directory components. These will be interpreted as
“samedirectory” and “onelevel up” asiscustomary. If “. .” com-
ponents are included, the resulting name cannot be above or out-
side the root directory specified in context - >rootdir.

116

TCP/IP User’'s Manual

context Additional contextinformation. The ServerContext structure
is set up by the caller. It hasthe following fields:

typedef struct ({

int userid; // User ID of the current user, or
// -1if not applicable.
word server; // Serverid(e.y. SERVER_HTTP)

char * rootdir; // Root directory. Usually "/"
// if the whole namespace isto
// be accessible. Otherwise, may
// beeg,. "/A" torestrict accessto
// just first DOS FAT partition.
// First and last char must be “/”.

char cwdl]; // Current working directory.
// Normally includes rootdir as
// aprefix. First and last char
// mustbe“/".

char * dfltname; // A filenametobeused asa
// resource name suffix in the case
// that the first parameter refers
// toadirectory name.

} ServerContext;

mode Resource opening mode. Bitwise OR of the following macros:
e O READ: open for reading
e O WRITE: open for writing (impliesreading aswell)

® O CREAT: withO WRITE, if file does not exist then cre-
ate it with zero length and allocation.

e O TRUNC:withO WRITE, if filealready exists, truncate
it to zero length.

e O APPEND: withO WRITE, if file already exists, posi-
tion at end of file so asto append new data. You can later
seek to the existing portion of thefile.

Chapter 3: Server Utility Library 117

RETURN VALUE

20: Success. Thereturned value should be passed to other functions that require a
genera handle, such as sspec_read (), sspec_seek (), sspec_write(),
sspec_tell(),and sspec_close().

The following return values are negatives of the values defined in errno . 1ib.

e -ENOENT: The resource was not found when it was expected to exist.

® -EACCES: Thecontext->userid fieldwasnot -1, and the specified user
is not allowed to access the resource using the specified mode.

-EINVAL: The resource name was malformed (e.g., too long), or context was
NULL, or the resource was not afile type, or O CREAT, O_TRUNC or
O_APPEND were specified without O WRITE.

e -ENOMEM: Insufficient storage for handle or buffers. Increase definition of
SSPEC_MAX_ OPEN.

-EPERM: Operation not permitted, for example., opening an xmem file for
writing.

SEE ALSO

sspec_read, sspec_write, sspec seek, sspec tell, sspec close

118 TCP/IP User’'s Manual

sspec_ pwd

char * sspec pwd(ServerContext * context, char * buf);

DESCRIPTION

Print the current working directory inthe ServerContext structureto the specified
buffer. The context - >cwd field contains the CWD. Thisfunction removes the root
directory component (context - >rootdir) and copiesthe result. This makes
rootdir invisible to the end user.

Theleading dashisincluded, but thetrailing slash isomitted from the result (unlessthe
resultisjust“/").

For example, if

context->rootdir pointsto“/a/" and
context->cwd[] contains“/A/ftpfiles/”
“/ftpfiles” will betheresult returned in buf.

PARAMETERS
context Server context structure. Two fields in this are of interest:
rootdir pointsto avirtual root directory for this server, and
cwd isacharacter array containing the CWD.
buf Pointsto buffer that isfilled with resulting string. This buffer isas-

sumed to be dimensioned at least SSPEC_MAXNAME chars long,
and it will be null terminated on return.

RETURN VALUE
The buf parameter is returned.

SEE ALSO

sspec_cd

Chapter 3: Server Utility Library 119

sspec_read

int sspec_read(int sspec, char * buf, int len);

DESCRIPTION
Read the next byte(s) from the given file resource.

PARAMETERS
sspec Open file handle. This must be a handle that was returned by
sspec_open().
buf Buffer into which datais copied.
len Length of the above buffer. If 1en is zero, then the return value

will be the minimum number of charactersthat could beread at the
current position, which isusually at least 1 except at EOF (0).
Thus, this function can be used to test for end-of-file (EOF), that

is, if

(sspec_read(sspec, NULL, 0) == 0)

is TRUE, then EOF has been reached in the file identified by
sspec.

RETURN VALUE

0: Nodataiscurrently available. If the 1en parameter was zero, then areturn value of

zero definitely means end-of-file has been reached. If 1en > 0, there may be data avail-
ablein the future, e.g., because the underlying filesystem is socket-based and this host

has read all available data, but the socket is still open to receive more data.

1. .len: the specified number of characters has been copied to the supplied buffer,
and the current file position has been advanced by that many bytes. Possibly lessthan
len bytes may beread, in which case the server should test for EOF.

>1en: no datawas copied, because the underlying filesystem isunableto return apar-
tial record and maintain its current position. The return value is the minimum sized
buffer that should be passed on the next call. Note: this sort of return is not currently
implemented by any of thefile systems, however servers should be coded to handlethis
case for future anticipated systems which have record-level accessrather than byte-lev-
el.

The following return values are negatives of the values defined in errno . 1ib.

e -EINVA: len parameter was< 0.
e -EBADF: The specified handle was not open or invalid.
e Any other negative values indicate an error.

SEE ALSO

sspec_close, sspec _write, sspec_seek, sspec_tell, sspec_open

120 TCP/IP User’'s Manual

sspec_readfile

int sspec_readfile(int sspec, char *buffer, long offset,
int len);

DESCRIPTION

Read afile (represented by the sspec index) into buf fer, starting at of fset, and
only copying 1en bytes. For xmem files, this function automatically skipsthe first 4
bytes. Hence, an offset of 0 marksthe beginning of the file contents, not the file length.

Thisfunction isintended for file types that do not require explicit open or close calls,
that is, root or xmem files. It can also be called for FS2 files, but thisis not recommend-
ed since each call requiresthe file to be opened, seeked, read then closed. Instead, use
sspec_open (), sspec_read () and sspec_close () calswhicharethe
most efficient.

sspec_readfile () hastheadvantage of being “stateless,” but the priceto pay is
great loss of efficiency (especially when sequentia accessisall that isrequired.)

Thisfunction will NOT work for compressed xmem files or DOS FAT files.

PARAMETERS
sspec spec index
buffer The buffer to put the file contents into.
offset The offset from the start of thefile, in bytes, at which copying
should begin.
len The number of bytesto copy.

RETURN VALUE

-1: Failure.
=>0: Success, number of bytes copied.

LIBRARY
ZSERVER.LIB

SEE ALSO
sspec_getlength, sspec getfileloc

Chapter 3: Server Utility Library 121

sspec readvariable

int sspec readvariable(int sspec, char *buffer);

DESCRIPTION
Formatsthe variable associated with the specified ServersSpec structure, and putsa
NULL-terminated string representation of it in buf fer. The macro
SSPEC XMEMVARLEN (default is 20) defines the size of the stack-allocated buffer
when reading a variable in xmem.

PARAMETERS
sspec spec index
buffer The buffer in which to put the variable.

RETURN VALUE

0: Success.
-1: Failure.

LIBRARY
ZSERVER.LIB

SEE ALSO

sspec_getvaraddr

122 TCP/IP User’'s Manual

Sspec_remove

int sspec remove(int sspec);

DESCRIPTION

Removes aspec entry (by marking it unused). Inthe case of files, note that thisfunction
does naot actually remove the file, only the reference to the file in the spec structure.

This only works for RAM table entries.
PARAMETERS
sspec spec index

RETURN VALUE

0: Success.
-1: Failure (i.e., theindex is aready unused).

LIBRARY
ZSERVER.LIB

Chapter 3: Server Utility Library 123

sspec_removerule

int sspec_removerule(char * pfx);

DESCRIPTION
Remove arule from the dynamic resource rule table.

PARAMETER

pfx Prefix of resource name. This must be an exact match to one of the
rules previously added using sspec_addrule ().

RETURN VALUE

>0: OK
- 1: Error. For example, the rulewas not found, or maybe therule wasin the flash table
(f_rule table).

SEE ALSO

sspec_addrule

124 TCP/IP User’s Manual

Sspec_removeuser

int sspec_removeuser(int sspec, int userid);

DESCRIPTION

Removes the user group(s) that userid belongsto from the read and write access
masks for the specified resource. Thiswill deny access to other users who have the
same group(s) as the current user.

Thisfunction is deprecated as of Dynamic C 8.50. Use the more general
sspec_setpermissions () function instead.

PARAMETERS
sspec spec index
userid user index

RETURN VALUE

0: Success, user was removed.
-1: Failure, no such userid found.

LIBRARY
ZSERVER.LIB

SEE ALSO

sspec_setuser, sspec_adduser, sspec_getusername,
sspec_getuserid, sspec setpermissions

Chapter 3: Server Utility Library 125

sspec _resizerootfile

int sspec_resizerootfile(int spec_index, int new size);

DESCRIPTION

Change the byte size of a SSPEC item stored in root memory. Item must be a
ROOTFILE, thusthe item must have been created with sspec_addrootfile ().

PARAMETERS
spec_index spec index of the item

new size New size to assign to item.

RETURN VALUE

2>0: Successfully adjust size of item.
-1: Failed to adjust size.

LIBRARY
ZSERVER.LIB

SEE ALSO

sspec_addrootfile

126 TCP/IP User’s Manual

sspec_restore

int sspec_restore(void);

DESCRIPTION

Restores the TCP/IP servers' object list and the TCP/IP userslist (and some user-spec-
ified dataif set up with sspec_setsavedata ()) from the file system. This does

not restore the actual files and variables, but only the structures that reference them. If

thefilesare stored in flash, then the referenceswill till bevalid. Filesin volatile RAM

and variables must be rebuilt through other means.

RETURN VALUE

0: Successfully restored the server_spec and server_auth tables.
-1: Failure.

LIBRARY
ZSERVER.LIB

SEE ALSO

sspec_save, sspec_setsavedata

Chapter 3: Server Utility Library

127

sspec_rmdir

int sspec_rmdir(char * name, ServerContext * context);

DESCRIPTION
Delete a named directory in the FAT filesystem.

PARAMETERS
name Name of directory to delete.
context Current server context.

RETURN VALUE

0: OK.
-EPERM: Not afilesystem that supports deletion of directories.
-EACCES: Not authorized

Any other negative valuesindicate an error.

SEE ALSO

sspec_delete, sspec _mkdir, sspec_open

128 TCP/IP User’s Manual

sspec_save

int sspec_save(void);

DESCRIPTION

Savesthe servers' object list and server authorization list (along with some user-speci-
fied dataif set up with sspec_setsavedata ()) to thefile system. This does not

savetheactual filesand variables, but only the structuresthat reference them. If thefiles
are stored in flash, then the referenceswill still bevalid. Filesin volatile RAM and vari-
ables must be rebuilt through other means.

RETURN VALUE

0: Successfully save the server_spec and server_auth tables.
-1: Failure.

LIBRARY
ZSERVER.LIB

SEE ALSO

sspec_restore, sspec_setsavedata

Chapter 3: Server Utility Library

129

sspec_seek

int sspec_seek(int sspec, long offset, int whence);

DESCRIPTION

Seek to specified offset in the file resource. The next sspec_read () or
sspec_write () cal will start at this position.

Note that offsets that are not in the file are clamped to the start or end of the file as ap-
propriate.

Clamp isterminology meaning that a value past the end is set to the end, or avalue be-
fore the beginning is set to the beginning. For example, if afileisactually 10 bytes, then
seek to position 20 is actually a seek to position 10. Likewise, seek to -20 is set to po-

sition 0.
PARAMETERS
sspec Open file handle. This must be a handle that was returned by
sspec_open().
offset Byte offset.
whence Reference point for seek. One of the following constants:

e SEEK SET: start of file, offset should be non-negative.

e SEEK CUR: current position in file, offset may be nega-
tive, zero, or positive.

e SEEK END: end of file, offset should be non-positive to
stay within thefile.

RETURN VALUE
0: OK.

The following return values are negatives of the values defined in errno . 1ib.

e -EINVAL: whence parameter wasinvalid.
e -EBADF: The specified handle was not open or invalid.

e -EPERM: Operation not permitted on thisfile resource. Thisis usually
because the resource is not seekable (such as a compressed file).

Any other negative values indicate an error.

SEE ALSO:

sspec_close, sspec _write, sspec read, sspec_tell, sspec_open

130 TCP/IP User’'s Manual

sspec _setformepilog

int sspec setformepilog(int form, int function);

DESCRIPTION
Setsthe user-specified function that will be called when the form has been successfully
submitted. This function can, for example, executeacgi redirectto to redirect
to a specific page. It should accept HttpState *state asanargument, return 0
when it isnot finished, and 1 when it isfinished (i.e., behave like a normal CGI func-

tion).
PARAMETERS
form spec index of the form
function spec index of the function to call when the specified form hasbeen

successfully submitted. Thisisthe return vaue of the function
sspec_addfunction().

RETURN VALUE

0: Success.
-1: Failure.

LIBRARY
ZSERVER.LIB

SEE ALSO

sspec_setformprolog

Chapter 3: Server Utility Library

131

sspec_setformfunction

int sspec_setformfunction(int form, void (*fptr) ());

DESCRIPTION
Sets the function that will generate the form.

PARAMETERS
form spec index of the form.
fptr Form generation function (NULL for the default function).

RETURN VALUE

0: Success.
-1: Failure.

LIBRARY
ZSERVER.LIB

132 TCP/IP User’s Manual

sspec_setformprolog

int sspec setformprolog(int form, int function);

DESCRIPTION

Allows a user-specified function to be called just before form variables are updated.
Thisis useful for implementing locking on the form variables (which can then be un-
locked in the epilog function), so that other code will not update the variables during
form processing. The user-specified function should accept Ht tpState *stateas
an argument, return O when it isnot finished, and 1 when itisfinished (i.e., behavelike
anormal CGI function).

PARAMETERS
form spec index of the form
function spec index of the function. Thisisthe return value of

sspec_addfunction().

RETURN VALUE

0: Success.
-1: Failure.

LIBRARY
ZSERVER.LIB

SEE ALSO

sspec_setformepilog

Chapter 3: Server Utility Library 133

sspec_setformtitle

int sspec_setformtitle(int form, char *title);

DESCRIPTION
Setsthetitle for an automatically generated form.

PARAMETERS
form spec index of the form.
title Pointer to the title of the HTML page.

RETURN VALUE

0: Success.
-1: Failure.

LIBRARY
ZSERVER.LIB

SEE ALSO

sspec_getformtitle

134

TCP/IP User’s Manual

sspec_setfvcheck

int sspec_setfvcheck(int form, int var, int (*varcheck) ());

DESCRIPTION

Setsafunction that can be used to check theintegrity of avariable. The function should
return O if thereisno error, or !0 if thereis an error.

PARAMETERS
form spec index of the form.
var Index (into the FormVvar array) of the variable.
varcheck Pointer to integrity-checking function.

RETURN VALUE

0: Success.
-1: Failure.

LIBRARY
ZSERVER.LIB

SEE ALSO

sspec_setfvfloatrange, sspec_ setfvoptlist, sspec setfvrange

Chapter 3: Server Utility Library 135

sspec_setfvdesc

int sspec_setfvdesc(int form, int var, char *desc);

DESCRIPTION
Sets the description of avariable that is displayed in the HTML form table.

PARAMETERS
form server_spec index of theform.
var Index (into the FormVvar array) of the variable.
desc Description of the variable. Thistext will display on the HTML
page.
RETURN VALUE
0: Success.
-1: Failure.

LIBRARY
ZSERVER.LIB

SEE ALSO

sspec_getfvdesc

136 TCP/IP User’s Manual

sspec_setfventrytype

int sspec setfventrytype(int form, int wvar, int entrytype):

DESCRIPTION
Sets the type of form entry element that should be used for the given variable.

PARAMETERS
form spec index of the form.
var Index (into the FormVar array) of the variable.
entrytype HTML FORM TEXT for atext box, HTML FORM PULLDOWN

for apull-down menu. The default iISHTML_FORM_TEXT.

RETURN VALUE

0: Success.
-1: Failure.

LIBRARY
ZSERVER.LIB

SEE ALSO
sspec_getfventrytype

Chapter 3: Server Utility Library 137

sspec_setfvfloatrange

int sspec _setfvfloatrange(int form, int wvar, float low,
float high);

DESCRIPTION
Sets the range of afloat variable.

PARAMETERS
form spec index of the form.
var Index (into the Formvar array) of the variable.
low Minimum value of the variable.
high Maximum value of the variable.

RETURN VALUE

0: Success.
-1: Failure.

LIBRARY
ZSERVER.LIB

SEE ALSO

sspec_setfvrange, sspec_ setfvoptlist

138 TCP/IP User’s Manual

sspec_setfvlen

int sspec_setfvlen(int form, int var, int len);

DESCRIPTION

Sets the length of aform variable (the maximum length of the string representation of
the variable). Note that for string variables, 1 en should not include the NULL termi-

nator.
PARAMETERS
form spec index of the form.
var Index (into the Formvar array) of the variable.
len Length of the variable.

RETURN VALUE

0: Success.
-1: Failure.

LIBRARY
ZSERVER.LIB

SEE ALSO

sspec_getfvlen

Chapter 3: Server Utility Library

139

sspec_setfvname

int sspec_setfvname(int form, int var, char *name);

DESCRIPTION
Sets the name of avariablethat is displayed in the HTML form.

PARAMETERS
form spec index of the form
var Index (into the FormVar array) of the variable.
name Display name of the variable.

RETURN VALUE

0: Success.
-1: Failure.

LIBRARY
ZSERVER.LIB

SEE ALSO

sspec_getfvname

140 TCP/IP User’s Manual

sspec setfvoptlist

int sspec _setfvoptlist(int form, int wvar, char *listl[],
int listlen);

DESCRIPTION
Sets an enumerated list of possible values for a string variable.

PARAMETERS
form spec index of the form.
var Index (into the FormVvar array) of the variable.
list[] Array of string values that the variable can assume.
listlen Length of the array.

RETURN VALUE

0: Success.
-1: Failure.

LIBRARY
ZSERVER.LIB

SEE ALSO

sspec_getfvopt, sspec getfvoptlistlen, sspec setfvfloatrange,
sspec_setfvrange

Chapter 3: Server Utility Library

141

sspec_setfvrange

int sspec setfvrange(int form, int var, long low, long high);

DESCRIPTION
Sets the range of an integer variable.

PARAMETERS
form spec index of the form.
var Index (into the FormVar array) of the variable.
low Minimum value of the variable.
high Maximum value of the variable.

RETURN VALUE

0: Success.
-1: Failure.

LIBRARY
ZSERVER.LIB

SEE ALSO

sspec_setfvfloatrange, sspec_setfvoptlist

142 TCP/IP User’s Manual

sspec_setfvreadonly

int sspec_setfvreadonly(int form, int wvar, int readonly):;

DESCRIPTION
Sets the form variable to be read-only.

PARAMETERS
form spec index of the form.
var Index (into the FormVar array) of the variable.
readonly 0 for read/write (thisis the default);
1 for read-only.
RETURN VALUE
0: Success.
-1: Failure.
LIBRARY

ZSERVER.LIB

SEE ALSO

sspec_getfvreadonly

Chapter 3: Server Utility Library 143

sspec_setpermissions

int sspec_ setpermissions(int sspec, char * realm,
word readgroups, word writegroups, word servermask,
word method, MIMETypeMap * mimetype);

DESCRIPTION
Set the permission (access control) attributes of aresource.

Thisonly works for RAM table entries. For entriesin afilesystem, use
sspec_addrule ().

PARAMETERS
sspec spec index
realm Realm string, or NULL

readgroups Mask of user groups who have read access
writegroups Mask of user groups who have write access

servermask Servers that can access this resource (or SERVER _ANY for all

servers).

method Required authentication method (0, SERVER_AUTH BASIC
etc.)

mimetype MIME table entry, or NULL.

RETURN VALUE

0: Success.
<0: Failure. For example, not a RAM spec handle.

SEE ALSO

sspec_checkpermissions, sspec getpermissions, sspec access

144 TCP/IP User’'s Manual

sspec_setpreformfunction

int sspec_setpreformfunction(int form, void (*fptr) ());

DESCRIPTION

Setsauser function that will be called just before form generation. The user functionis
not called when the form is being generated because of errorsin the form input. The
user function must have the following prototype:

volid userfunction(int form) ;

Thefunction may not usethe f orm parameter, but it isuseful if the same user function
isused for multiple forms.

PARAMETERS
form spec index of the form.
fptr Pointer to user function to be called just before form generation

RETURN VALUE

0: Success.
-1: Failure.

LIBRARY
ZSERVER.LIB

SEE ALSO

sspec_getpreformfunction

Chapter 3: Server Utility Library

145

sspec_setrealm

int sspec_setrealm(int sspec, char *realm);

DESCRIPTION

Setstheream fidd of a ServerSpec structure for HT TP authentication purposes.
Setting thisfield enabl es authentication for the given spec entry . Authentication can be
turned off again by passing "" asthe realm parameter to thisfunction.

Note: realm must NOT point to an auto variable, since only the pointer is stored. The
string is NOT copied.

PARAMETERS
sspec spec index - this must refer to the RAM resource table
realm Name of the realm.

RETURN VALUE

0: Success.
-1: Failure.

LIBRARY
ZSERVER.LIB

SEE ALSO

sspec_getrealm

146 TCP/IP User’'s Manual

sspec_setsavedata

int sspec_setsavedata(char *data, unsigned long len,
void *fptr);

DESCRIPTION

Sets user-supplied datathat will be saved in addition to the spec and user authentication
tableswhen sspec_save () iscalled.

PARAMETERS
data Pointer to location of user-supplied data.
len Length of the user-supplied datain bytes.
fptr Pointer to a function that will be called when the user-supplied

data has been restored.

RETURN VALUE

0: Successfully set up the user-supplied data.
-1: Failure.

LIBRARY
ZSERVER.LIB

SEE ALSO

sspec_save, sspec_restore

Chapter 3: Server Utility Library

147

sspec_setuser

int sspec_setuser(int sspec, int userid);

DESCRIPTION

Set the read permission mask of a spec entry (usualy afile). The permissions for this
resource are set to readable only by the group(s) which this user isamember of. Write
accessis set to “none.”

Thisfunction is deprecated in Dynamic C 8.50. Use sspec_setpermissions ()

instead.

PARAMETERS
sspec spec index - this must refer to aRAM resource
userid user index

RETURN VALUE

0: Success.
-1: Failure.

LIBRARY
ZSERVER.LIB

SEE ALSO

sauth_adduser, sspec _getusername, sspec_setpermissions

148 TCP/IP User’s Manual

sspec_stat

int sspec_stat (char * name, ServerContext * context,

SSpecStat * s);

DESCRIPTION

Get information about aresource by name. The name may refer to aflash- or ram-spec
entry, or may be the name of afilein afilesystem. See sspec _open () for amore
detailed description of the name and context parameters.

PARAMETERS

name Resource name, as a null-terminated string. Thisnameis assumed
toberelativeto context - >cwd if it doesnot beginwitha*“/”
character. Otherwise, the nameis assumed to be relative to
context->rootdir.

context Additional contextinformation. The ServerContext structure
is set up by the caller.

s Returned data. Thisis a pointer to the following structure, which

will befilled in on return.

typedef struct

{

word flags; // See below.
long mdtm; // Dateltime (sEc_TIMER format)
long length; // Current file size

long maxlength; // Max alowablefilesize
ServerPermissions *perm; // Seebelow.

} SSpecStat;

The £1ags field can be one of the following:

SSPEC_ATTR_ MDTM - Modification date/time
SSPEC_ATTR LENGTH - Current length
SSPEC_ATTR WRITE - Fileiswritable
SSPEC_ATTR EXEC - Fileisexecutable
SSPEC_ATTR_ HIDDEN - "Hidden" attribute bit
SSPEC_ATTR_ SYSTEM - "System" attribute bit
SSPEC_ATTR ARCHIVE - "Archive" attribute bit
SSPEC_ATTR DIR - Thisisdirectory name
SSPEC_ATTR_COMPRESSED - Compressed format
SPEC_ATTR_MAXLENGTH - Have maximum length
SSPEC_ATTR_ SEEKABLE - Randomly accessible

SSPEC_ATTR EXTENSIBLE - Filemay be expanded at
end

Chapter 3: Server Utility Library

149

The ServerPermissions structureis defined as follows:

typedef struct ({

word readgroups;

word writegroups;

word servermask;

char * realm;

char method;

} ServerPermissions;

Read (or write) permission is granted for readgroups (or
writegroups) if current ServerAuth.mask (i.e., userid
entry group mask) matchesin at least one bit position.

Bitissetin servermask field for each server that can accessthe
resource.

Realm string of the resource (only used by HTTP server, but can
be used for other purposes).

Authentication method(s) allowed: combination of
SERVER AUTH * bits.

RETURN VALUE

>0: Success.
The following return values are negatives of the values defined in errno . 1ib.
e _ENOENT: The resource was not found.

e -EINVAL: Theresource name was maformed (for example, too long), or con-
text was NULL, or the resource was not afile type.

SEE ALSO

sspec_open, sspec_delete, sspec_close

150 TCP/IP User’s Manual

sspec_tell

long sspec_tell(int sspec);

DESCRIPTION

Return the current read/write offset in the file resource. Thiswill be anon-negative val-
ue unless there was an error.

PARAMETER

sspec Open file handle. This must be a handle that was returned by
sspec_open().

RETURN VALUE:
>0: Offset in thefile resource.

Thefollowing return valueis anegative of thevaluedefinedinerrno. 1ib. Any oth-
er negative values indicate an error.

e -EBADF: The specified handle was not open or invalid.

SEE ALSO:

sspec_close, sspec _write, sspec read, sspec_tell, sspec_ open

Chapter 3: Server Utility Library

151

sspec _write

int sspec write(int sspec, char * buf, int len);

DESCRIPTION

Write byte(s) to the given file resource. The dataiswritten to the current position, then
the current position is advanced by the number of bytes written.

PARAMETERS
sspec Open file handle. This must be a handle that was returned by
sspec_open().
buf Buffer from which datais copied.
len Length of the above buffer.

RETURN VALUE

0: No data was written because 1en was zero or because alocal buffer isfull (e.g.,
when writing to an underlying filesystem that streams data to a peer).

1. .1len: Thespecified number of charactershasbeen copied from the supplied buffer,
and the current file position has been advanced by that many bytes. Possibly lessthan
len bytes may be written, in which case the server should attempt to write the remain-
ing datalater.

The following return values are negatives of the values defined in errno . 1ib.

e -EINVAL: len parameter was< 0.
-EBADF: The specified handle was not open or invalid.

-ENOSPC: Thereisinsufficient space in the underlying filesystem, or thefile
cannot be extended.

-EPERM: The file resource does not support writing (e.g. xmem files, or a
read-only filesystem).
Any other negative valuesindicate an error.

SEE ALSO

sspec_close, sspec_read, sspec_seek, sspec_tell, sspec_open

152 TCP/IP User’'s Manual

4. HTTP Server

This chapter isintended to be a detailed description of the HT TP server, and how it interfacesto
other libraries, such as Zserver and TCP/IP. For an overview of how these libraries interface with
one another and with your application, please see Chapter 2. “Web-Enabling Your Application.”

An HTTP (Hypertext Transfer Protocol) server makes HTML (Hypertext Markup Language)
pages and other resources available to clients (that is, web browsers). HTTP is implemented by
HTTP.LIB,thusyou need towrite #use “http.lib” near thetop of your program. HTTP
depends on the Dynamic C networking suite, which isincluded in your program by writing #use
“dcrtcep.lib”.

Setting up the network subsystem is a necessary pre-requisite for use of HTTP. Thisisdescribed in
volume 1 of the manual. However, it can be quite simple for test applications and samplesto ini-
tialize the network subsystem. Inthefiletcp config.1lib are predefined configurations that
may be accessed by a#define of the macro TCPCONF IG. For instructions on how to set up differ-
ent configurations, please see volume 1 of the manual or look in the file

\LIB\TCPIP\TCP CONFIG.LIB.

HTTP makes use of the Zserver library to manage resources and access control. The previous
chapter discusses Zserver. When reading this chapter, it will help if you are familiar with Zserver,
itsinterfaces and capabilities.

Much of this chapter contains material that could be considered advanced usage. Thereisalso
some material of ahistorical nature, with relevant sections marked as such.

Chapter 4: HTTP Server 153

4.1 HTTP Server Data Structures

The single data structurein HTTP . LIB of interest to devel opers of CGI functionsis discussed in
this section.

4.1.1 HttpState

Use of theHt tpState structureis necessary for CGI functions (whether or not they were writ-
ten prior to Dynamic C 8.50). Some of the fields are off-limits to developers. Thefield that are
available for use are described in the next section.

Historical note: prior to Dynamic C 8.50, it was sometimes necessary for CGI functions to access
directly the fields of this structure. New programs should not directly access the fields, since it
reduces the chance of upward compatibility. There is a new suite of macros (see

http getAction () and related macros) that should be used instead. Where applicable, the
equivalent macro is documented with the field. Some fields do not have an equivalent macro (such
as the cookie field); for now, use read-only access to such fields.

A pointer to Ht tpState isthefirst (and only) parameter to all CGI functions. Most of the time,
this pointer should be passed on to other HTTP library functions.

Note that the Ht tpState structureisonly valid within a CGI function that has been called from
the HTTP server. Outside of this (for example, in your main () function) none of the fields are
guaranteed to be meaningful or consistent.

4.1.1.1 HttpState Fields
The fields discussed here are available for developersto use in their CGI functions.

s Thisis the socket associated with the given HTTP server. A devel-
oper can usethisinaCGl function to output dynamic data (although
there are better, safer ways of doing this. seethe section on "Writing
aCGl Function"). Any of the TCP functions can be used; however,
you should not use any functions that may wait for long periods, or
may change the state or mode of the socket (sincethe HTTP server
depends on it being anormal ASCII mode TCP socket).

It isrecommended that you usethehttp getSocket () macro
instead of directly accessing thisfield.

substate

subsubstate Intended for holding the current state of a state machine for a CGlI
function. That is, if a CGI function relinguishes control back to the
HTTP server, then the valuesin these variableswill be preserved for
thenexthttp handler () cdl, inwhichthe CGI function will
be called again. These variables areinitialized to 0 before the CGI
function is called for the first time. Hence, the first state of a state
machine using substate should be 0.

It isrecommended that you use the macroshttp getState ()
andhttp setState () to manipulate the substate fieldin-
stead of directly accessing it. subsubstate isnot accessiblevia
these macros, but there are better alternatives.

154 TCP/IP User’'s Manual

timeout

main_ timeout

buffer|[]

p

method

url[]

version

Thisvalue can be used by the CGI function to implement aninternal
time-out.

Thisvalue holdsthe timeout that is used by theweb server. Theweb
server checks against this timeout on every call of

http handler ().Whentheweb server changes states, it resets
main_ timeout. When it has stayed in one state for too long, it
cancelsthe current processing for the server and goes back to theini-
tial state. Hence, a CGI function may want to reset thistimeout if it
needs more processing time (but care should be taken to make sure
that the server is not locked up forever). This can be achieved like
this:

state->main timeout=set timeout (HTTP_ TIMEOUT)

HTTP_TIMEOUT isthenumber of secondsuntil theweb server will
time out. It is 16 seconds by default.

A buffer that the devel oper can useto put datato betransmitted over
the socket. Itisof Size HTTP MAXBUFFER (defaultsto 256 bytes).

Note: It is not recommended to directly access “buffer” or “p” (be-
low). Use the new-style CGlI functionsand thehttp write (),
http getData () andhttp getDataLength () functions
instead. These create amuch easier-to-use and safer method of read-
ing/writing data to the client.

Pointer into the buffer given above. See above note.

Thisshould betreated asread-only. It holdsthe method by which the
web request was submitted. The valueis either

HTTP_ METHOD GETOrHTTP_ METHOD POST,fortheGET and
POST request methods, respectively.

Usehttp getHTTPMethod () for new code.

This should be treated as read-only. It holds the URL by which the
current web request was submitted. . If there is GET-style form in-
formation, then that information will follow the first NULL bytein
the url array. The form information will itself be NULL-terminated.
If the information in the url array istruncated to HTTP_MAXURL
bytes, the truncated information is also NULL-terminated.

Usehttp getURL () for new code.
This should be treated as read-only. This holds the version of the
HTTP request that was made. It canbe HTTP_VER_09,

HTTP_VER 10, 0r HTTP_VER 11 for 0.9, 1.0, or 1.1 requests,
respectively.

Usehttp getHTTPVersion () for new code.

I

Chapter 4: HTTP Server

155

content typel] Thisshould be treated asread-only. This buffer holds the value
from the Content-Type header sent by the client.

Usehttp getContentType () for new code.

content length Thisshould betreated asread-only. Thisvariable holdsthe length
of the content sent by the client. It matches the value of the Con-
tent-Length header sent by the client.

Usehttp getContentLength () for new code.

has form Thisshould betreated asread-only. If thevalueis 1 thereisaGET
style form, after the\O byteinurl [].

abort notify Set to ! 0 in user-defined formprolog () functiontoindicate
that the formepilog () function needsto be called on an abort
condition. If the epilog function is reached normally, thisfield
must be set to zero. This preventsthe formepil og function from be-
ing called one more time on a connection abort.

cancel This should be treated as read-only. It is intended for when the
user-defined functions, which may be called before and after an
HTML form is submitted, are used for locking resources.

If the formprolog function was called and then the connection is
aborted before the formepilog function can be called, cancel is
set to 1 and the formepilog function is called exactly once. If the
epilog function was already called but returned zero (not finished
yet), thenit is called again if the connection is aborted, except if
cgi redirectto () hasbeen called from theepilog function.
In that case the epilog function is not called after an abort.

username [] Read-only buffer has username of the user making the request, if
authentication took place.

Note: New code should usethehttp getContext () macro,
then use the resultsto ook up theuser detailsusingthe sauth_ *
functions. See the documentation for the ServerContext Structure
in the previous chapter.

password[] Read-only buffer has password of the user making the request, if
authentication took place. See the above note.

cookiel] Read-only buffer contains the value of the cookie "DCRABBIT"
(seehttp setcookie () for moreinformation).

156 TCP/IP User’'s Manual

headerlen

headeroff These variables can be used together to cause the web server to
flush datafromthebuffer [] aray intheHttpState struc-
ture. headerlen should be set to the amount of datain
buffer [],and headerof f should be set to O (to indicate the
offset into the array). The next time the CGI function iscalled the
datainbuffer [] will beflushed to the socket.

For new code, consider writing a new-style CGlI function, which
obviates the need to manipulate these fields.

cond[] Support for conditional SSI (error feedback etc.).

New code should use the macroshttp getCond () and
http setCond().

userdatal] Thisfieldisincluded if HTTP USERDATA SIZE isdefined. It
isan optional user data area. The areais cleared to zero when the
structureisinitialized, otherwiseit is not touched. Its size must be
greater than zero.

New code shouldusethehttp getUserData () macrotoob-
tain a pointer to user-defined storage in this structure.

4.2 Configuration Macros

The following macros are specified in HTTP . LIB. Unless otherwise noted, you can override the
default values by defining the macro (same name, different value) before you #use “http.lib”.

HTTP HOMEDIR
Specify the“home directory” for the server. Thisistheroot directory towhichall URLs
are appended. The defaultis” /7, which meansthat all resources are accessible. If this
is set to, say, “/htdocs’, then an incoming URL of “foo/bar.html” gets turned into “/ht-
docs/foo/bar.html”. You can usethistorestrict the HT TP server’saccessto all but aspe-
cific “branch” of resources.

Note: the string value for this macro must start and end witha* /” character.

HTTP DFLTFILE
Specify the default file nameto append to the URL if the URL refersto adirectory. This
isonly applicable if the URL is*“ /", or isin afilesystem (not the static or dynamic re-
sourcetables). The default setting is*“index.html”. The value must not start or end with
a“ /" character.

HTTP SOCK BUF SIZE
Thismacro is not defined by default. If you defineit, then it specifies the amount of
extended memory to allocate (xalloc ()) for each HTTP server instance. If you do
not define it, then socket buffers are allocated from the usual pool. See
tcp_extopen () for more details.

Chapter 4: HTTP Server 157

HTTP DIGEST NONCE TIMEOUT
Thismacroisused when USE_HTTP DIGEST AUTHENTICATION isS set to one.
Nonces that are generated by the server are valid for this many seconds (900 by de-
fault). If set to O, nonces are good forever. Setting thisto a smaller value can possibly
result in higher security, although internal use of the nonce-count facility offsets this.
Setting it to alarger value reduces the negotiation between the browser and the server,
since when a nonce times out, the browser must be told that it is using a stale nonce
value and provided with anew one. Since M ozillaand Netscape ignore the stale param-
eter, the user must reenter the username and password when anonce times out. Internet
Explorer and Operarespect the stale parameter, so they automatically try the username
and password with the new nonce without asking the user.

HTTP MAXBUFFER
Thisisthe size of the buffer accessiblethrough the Ht t pSpec structure. It defaultsto
256 bytes. The size of this buffer affects the speed of the HTTP server; the larger the
buffer (up to a point), the faster the server will run. The buffer sizeis alsoimportant for
use in CGI functions because it is awork space the programmer can use.
HTTP_ MAXBUFFER must be at least 180 bytes for CGI functionality.

HTTP MAX COND
Support for conditional SSI (error feedback etc.). It defaultsto 4. Thisisthe maximum
number of state variables that may be accessed usingthehttp getCond () or
http setCond () macros.

HTTP MAX NONCES
Thismacroisused when USE_HTTP DIGEST AUTHENTICATION iS set to one.
Defined to 5 by default, it specifies the number of noncesthe HTTP server will allow
asvalid at any onetime. Thisvalue should be somewhat larger than the maximum num-
ber of clients expected to be accessing the server simultaneously. Otherwise perfor-
mance could suffer asclientsare forced to retry authorization in order to acquireafresh
nonce.

HTTP MAXSERVERS
Thisis the maximum number of HTTP serverslistening on port 80. The default is 2.
You may increase this value to the maximum number of independent entities on your
page. For example, for a Web page with four pictures, two of which are the same, set
HTTP MAXSERVERS to 4: onefor the page, onefor the duplicate images, and onefor
each of the other two images. By default, each server takes 2500 bytes of RAM. This
RAM usage can be changed by the macro SOCK_BUF SIZE (or
tcp MaxBufSize whichisdeprecated as of Dynamic C ver. 6.57). Another option
istousethetcp reserveport () function and asmaller number of sockets.

HTTP MAXURL

This macro defines the maximum incoming URL. This could be important if someone
isalowing GET requests with alarge number of parameters.

158 TCP/IP User’'s Manual

HTTP PORT
This macro alows the user to override the default port of 80.

HTTP IFACE
This macro allows the user to override the default listening network interface. The de-
faultis IF_ANY, meaning that the HT TP server(s) will listen for incoming network
connectionson all interfaceswhich areup. You canrestrict the HTTP serverstoasingle
interface by overriding this macro to the specific interface number (for example,
IF ETHO).

HTTP TIMEOUT

Defines the number of seconds of no activity that can elapse before the HTTP server
closes a connection. The default is 16 seconds.

HTTP USERDATA SIZE

Thismacro causes "char userdata[]" to be added to the Ht t pState structure. Define
your structure before the statement #use HTTP.LIB.

struct UserStateData {char name[50]; int floor; int model;};
#define HTTP USERDATA SIZE (sizeof (struct UserStateData))
#use http.lib

In your own CGI function code, access it using:

mystate = (struct UserStateData *)http getUserData(state);

USE HTTP DIGEST AUTHENTICATION

Set to 1 to enable digest authentication, O to disable digest authentication. Set to 0 by
default.

USE HTTP BASIC AUTHENTICATION

Set to 1 to enabl e basic authentication, 0 to disable basic authentication. Set to 1 by de-
fault.

4.2.1 Sending Customized HTTP Headers to the Client

The callback macro, H-TTP _CUSTOM_HEADERS, will be called whenever HTTP headers are
being sent. It must be defined as a function with the following prototype:

void my headers (HttpState *state, char *buffer, int bytes);

state Pointer to the state structure for the calling web server.
buffer The buffer in which the header(s) can be written.
bytes The number of bytes available in the buffer.

Typicaly, the macro would be defined by the user beforethe #use “http.lib” statement,
like in the following:

#define HTTP CUSTOM HEADERS (state, buffer, bytes) \
my headers (state, buffer, bytes)

Chapter 4: HTTP Server 159

Then, for the above to work, my headers () must be defined by the user, like so:
void my headers (HttpState *state, char *buffer, int bytes)

{

strepy (buffer, "Fake-Header: Hello Z-World!\r\n");
printf ("bytes: %d\n", bytes);

}

In the real world, the user may need to check the number of bytes available to be sure they don't
overwrite the buffer. The buffer must end with "\r\n" and be NUL L -terminated.

4.2.2 Saving Custom Headers from the Client

Customers may want to save some specific headers that aweb client sends to the server as part of
arequest. One possibility for thisisto check the browser version of the client and display a differ-
ent page depending on that value. Thisis mostly useful for CGI functions.

The user can create a structure like the following to indicate to the web server that it should save
the specified tags:
const HttpHeader http headers[] = {
"Host",
"Content-Length",
"User-Agent",
END HTTP_ HEADERS
}i
END HTTP HEADERS issimply amacro (NULL) that indicates the end of the structure. These
headers will be saved in aninternal buffer of a user-specified size:

#define HTTP_CUSTOM HEADERS SIZE 1024

By default, H-TTP CUSTOM_ HEADERS SIZE isundefined, which disables the custom header
functionality (since, in most cases, it will not need to be used). This buffer will be located in
xmem, and there will be one per HTTP server. A define will also be provided to limit the maxi-
mum size of asingle header (to keep one very long header from monopolizing al of the buffer
space):

#define HTTP CUSTOM HEADER MAX SIZE 128
By default, thisis undefined and thereis no limit.
The user will also need functions that ook up the data:

int http getheader (HttpState *state, char *header,
char *dest, int destlen);

int http xgetheader (HttpState *state, char *header,
long *destptr) ;

The first function requires the user to provide aroot buffer to place the header. TheHttpState
state structure must be passed so that the server knows which set of headers to access. The header
parameter is, of course, the name of the header the user wantsto retrieve. dest isapointer to the
destination buffer. destlen isthelength of the destination buffer (provided by the user). The
function returns -1 on error, and the number of bytesin the header on success.

160 TCP/IP User’'s Manual

The second function, http xgetheader (), simply returns along pointer into the internal
header buffer for the given header. It returns -1 on error, and the number of bytesin the header on
success.

Note that some headers are saved by the HT TP server by default into the HTTP state structure,
such as “Content-Length.” We will also begin saving the “Host” header, which is useful in per-
forming CGI redirection. Hence, we can change the semantics of the cgi_redirectto ()
function:

int cgi redirectto (HttpState *state, char *url);

such that the ur1 parameter no longer needs to be an absolute URL.

4.3 Authentication Methods

HTTP/1.0 Basic Authentication is used by default. This scheme is not a secure method of user
authentication across an insecure network (e.g., the Internet). HTTP/1.0 does not, however, pre-
vent additional authentication schemes and encryption mechanisms from being employed to
increase security.

Starting with Dynamic C version 8.01, HTTP Digest Authentication as specified in RFC 2617 is
supported. Instead of sending the password in cleartext asis done using Basic Authentication,
MD5 is used to perform a cryptographic hash. To use HTTP Digest Authentication, define
USE_HTTP DIGEST AUTHENTICATION asl. WhenthisUSE_* macro is defined, the mac-
rOSHTTP MAX NONCES and HTTP DIGEST NONCE TIMEOUT are available; they affect
negotiation time between server and client. For more details see Section 4.2 "Configuration Mac-
ros."

In either case (basic and/or digest), you will need to add the appropriate rules and/or permissions
to the appropriate tables. See the previous chapter for details on protecting resources. The HTTP
server applies the strongest applicable authenti cation mechanism depending on the information it
retrieves from the resource manager. Typically, in addition to defining user IDs and groups, you
also need to associate an authentication mechanism with the resource using e.g. the

SSPEC_MM_ RULE macro, or the sspec_setpermissions () function.

Starting with Dynamic C 8.50, Secure Socket Layer (SSL) as specified in RFC 2818, is supported.
It isalso known by its newer official name, TLS (Transport Layer Security). To use SSL, you must
create asecure HTTP server, known as an HTTPS server. To do this you must define some macros
and import the SSL certificate.

#define USE_HTTP_SSL
#define HTTP_SSL_ SOCKETS 1

#ximport "cert\mycert.dcc" SSL CERTIFICATE

For complete documentation on the Dynamic C implementation of SSL, see the Dynamic C

M odule document, “ Secure Sockets Layer (SSL) Protocol.” Another good source of information
are the sample programs that demonstrate using SSL. They are located in the
/Samples/tcpip/ssl folder that will be created when the Dynamic C Module for SSL is
installed.

Chapter 4: HTTP Server 161

4.4 Setting the Time Zone

The HTTP specification requires the server to indicate its current clock timein the response to any
request. The HT TP implementation performs this function by consultingthe rtc_timezone ()
library function (in RTCLOCK . L.IB). The server uses the returned time zone to adjust the local
real-time clock (RTC) value so that it is always returned to the client in UTC (Co-ordinated
Universal Time).

There are several macros which you can set to define

e TIMEZONE: Thelocal timezone offset from UTC.
e RTC_ IS UTC: Whether the RTCisalready running on UTC.

The local timezone offset may be defined using the TIMEZONE macro, or it may be obtained
automatically from a DHCP server if you are using DHCP to configure the network interface.
Failing that, it defaults to zero.

If the RTC isaready set to UTC (not local time), then you must define the macro RTC_ IS UTC,
in which case the local timezone offset will be ignored.

For many reasons, including the fact that daylight savings transitions are more manageable, it is
better to set the RTC to UTC, however some users prefer the clock to run in local time.

See the documentation for rtc_timezone () for more details. To do this, use the function
lookup feature in Dynamic C or refer to the Dynamic C Function Reference Manual.

162 TCP/IP User’'s Manual

4.5 Sample Programs

Sample programs demonstrating HTTP arein the Samples\Tcpip\Http directory. Thereisa
configuration block at the beginning of each sample program. The macrosin this block need to be
changed to reflect your network settings.

Starting with Dynamic C 7.30, setting up the network addresses is both more complex and more
simple. The complexity liesin the added support for multiple interfaces. Luckily for us, the sim-
plicity isin the interface to this more intricate implementation. Inthefiletcp _config.lib are
predefined configurations that may be accessed by a#define of the macro TCPCONFIG. For
instructions on how to set the configuration, please see volume 1 of the manual or
LIB\TCPIP\TCP CONFIG.LIB.

4.5.1 Serving Static Web Pages

The sample program, Static. c,initidizesHTTP . LIB and then sets up a basic static web page.
It is assumed you are on the same subnet as the controller. The codefor Static.c isexplained
in the following pages.

From Dynamic C, compile and run the program. You will seethe LNK light on the board come on
after a couple of seconds. Point your internet browser at the controller (e.g., http://10.10.6.100/).
The ACT light will flash a couple of times and your browser will display the page.

Program Name: static.c

#define TCPCONFIG 1
##define TIMEZONE -8

#memmap xmem
#use "dcrtcp.lib"
#use "http.lib"

#ximport "samples/tcpip/http/pages/static.html" index html
#ximport "samples/tcpip/http/pages/rabbitl.gif" rabbitl gif
SSPEC MIMETABLE START
SSPEC MIME (".html", "text/html"),
SSPEC_MIME (".gif", "image/gif")
SSPEC_MIMETABLE END
SSPEC_RESOURCETABLE START
SSPEC_RESOURCE_XMEMFILE("/index.html", index html),
SSPEC_RESOURCE_XMEMFILE("/rabbitl.gif", rabbitl gif)
SSPEC RESOURCETABLE END

main ()

{
sock _init(); // Initializes the TCP/IP stack
http init () ; // Initializes the web server

tcp reserveport (80) ;

while (1) {
http handler() ;
}

Chapter 4: HTTP Server 163

The program servesthe static.html fileand the rabbit1.gif fileto any user contacting
the controller. If you want to change the file that is served by the controller, find and modify this
lineinStatic.c:

#ximport "samples/tcpip/http/pages/static.html" index html

Replace static.html with the name of the file you want the controller to serve.

4.5.1.1 Adding Files to Display

Adding additional files to the controller to serve as web pagesis slightly more complicated. First,
add an #ximport line with the filename as the first parameter, and a symbol that referencesit in
Dynamic C as the second parameter.

#ximport "samples/tcpip/http/pages/static.html" index html
#ximport "samples/tcpip/http/pages/newfile.html" newfile html

Next, find theselinesin Static.c:

SSPEC_RESOURCETABLE START
SSPEC_RESOURCE_XMEMFILE ("/index.html", index html),
SSPEC_RESOURCE_XMEMFILE ("/rabbitl.gif", rabbitl gif)
SSPEC RESOURCETABLE END

Insert the name of your new file, preceded by “ /”, into this structure, using the same format asthe
other lines.

SSPEC RESOURCETABLE START
SSPEC_RESOURCE_XMEMFILE ("/index.html", index html),
SSPEC_RESOURCE XMEMFILE ("/newfile.html", newfile html),
SSPEC_RESOURCE XMEMFILE ("/rabbitl.gif", rabbitl gif)
SSPEC_RESOURCETABLE END

Compile and run the program. Open up your browser to the new page (for example,
“http://10.10.6.100/newfile.ntml™), and your new page will be displayed by the browser.

4.5.1.2 Adding Files with Different Extensions

If you are adding afile with an extension that is not html or gif, you need to use the appropriate
macros to make an entry in the MIMETypeMap structure for the new extension. The first field is
the extension and the second field describes the MIME type for that extension. You can find alist
of MIME types at:

ftp://ftp.isi.edu/in-notes/iana/assignments/media-types/media-
types

In the media-types document located there, the text in the type column would precede the“ /”, and
the subtype column would directly follow. Find the type subtype entry that matches your extension
andaddittothehttp types table.

164 TCP/IP User’'s Manual

ftp://ftp.isi.edu/in-notes/iana/assignments/media-types/media-types

SSPEC_MIMETABLE START

SSPEC_MIME (" .html", "text/html"),
SSPEC_MIME (".pdf", "application/pdf"), //addedthisone
SSPEC_MIME(".gif", "image/gif")

SSPEC _MIMETABLE END

4.5.1.3 Handling of Files With No Extension

Theentry “ /" and files without an extension are dealt with by the handler specified in the first
entry in the MIME table. If you usethe SSPEC_MIME macro, the default handler is used. It
passes the information verbatim. You can also use the macro SSPEC_ MIME _FUNC to specify a
non-default text processor; thisis necessary for SSI and RabbitWeb scripts (described |ater).

4.5.2 Dynamic Web Pages Without HTML Forms

Serving a dynamic web page without the use of HTML formsis done by sample program ss1i . c.
This program displays four “lights’ and four buttons to toggle them. Users can browse to the
device and change the status of the lights.

The sample code follows, but it has been edited for brevity. Open ssi . ¢ in Dynamic C to see the
fully-commented source.

#define TCPCONFIG 1

#define HTTP_ MAXSERVERS 1

#define MAX TCP_SOCKET BUFFERS 1

#define REDIRECTHOST PRIMARY STATIC IP

#define REDIRECTTO "http://" REDIRECTHOST "/index.shtml"

#memmap xmem

#use "dcrtcp.lib"
#use "http.lib"

#ximport "samples/tcpip/http/pages/ssi.shtml"” index html
#ximport "samples/tcpip/http/pages/rabbitl.gif" rabbitl gif
#ximport "samples/tcpip/http/pages/ledon.gif" ledon gif
#ximport "samples/tcpip/http/pages/ledoff.gif" ledoff gif
#ximport "samples/tcpip/http/pages/button.gif" button gif
#ximport "samples/tcpip/http/pages/showsrc.shtml" showsrc shtml
#ximport "samples/tcpip/http/ssi.c" ssi c
SSPEC MIMETABLE START

SSPEC MIME FUNC(".shtml", "text/html", shtml handler),

SSPEC MIME (".html", "text/html"),

SSPEC_MIME (".gif", "image/gif"),

SSPEC MIME (".cgi", "")
SSPEC MIMETABLE END

Chapter 4: HTTP Server 165

ledl[15] ;
led2[15];
led3 [15]

led4 [15] ;

int ledltoggle (HttpState* state)
if (strcmp(ledl,"ledon.gif")==0)
strcpy (ledl, "ledoff.gif") ;
else
strcpy (ledl,"ledon.gif") ;
cgi redirectto(state, REDIRECTTO) ;
return O0;

char
char
char
char

I

}

int led2toggle (HttpState* state)
// Entirely analogous to led1toggle
}

int led3toggle (HttpState* state) {
// Entirely analogousto led1toggle
}

int led4toggle (HttpState* state)
// Entirely analogous to led1toggle
}

SSPEC_RESOURCETABLE START
SSPEC RESOURCE XMEMFILE
SSPEC RESOURCE XMEMFILE
SSPEC RESOURCE XMEMFILE

(v,
(
(
SSPEC_RESOURCE_XMEMFILE ("/rabbitl.gif",
(
(
(

"/index.shtml",

SSPEC_RESOURCE_ XMEMFILE ("/ledon.gif",
SSPEC_RESOURCE XMEMFILE ("/ledoff.gif",

"/showsrc.shtml",

index html),

index html),
showsrc shtml),
rabbitl gif),

ledon gif),
ledoff gif),

SSPEC RESOURCE XMEMFILE ("/button.gif", button gif),

SSPEC RESOURCE XMEMFILE ("/ssi.c", ssi c),
SSPEC_RESOURCE ROOTVAR("ledl", ledl, PTR16, "%s"),
SSPEC RESOURCE ROOTVAR("led2", led2, PTR1l6, "%s"),
SSPEC RESOURCE ROOTVAR("led3", led3, PTR1l6, "%s"),
SSPEC RESOURCE ROOTVAR("led4", led4, PTR1l6, "%s"),
SSPEC_RESOURCE FUNCTION ("/ledltog.cgi", ledltoggle),
SSPEC RESOURCE FUNCTION ("/led2tog.cgi", led2toggle),
SSPEC RESOURCE FUNCTION ("/led3tog.cgi", led3toggle),
SSPEC_RESOURCE_FUNCTION("/led4tog.cgi", led4toggle)

SSPEC_RESOURCETABLE END

166

TCP/IP User’'s Manual

void main ()

strcpy (ledl,"ledon.gif") ;

strcpy (led2,"ledon.gif") ;

strcpy (led3,"ledoff.gif") ;
strcpy (led4,"ledon.gif") ;

sock init () ;

http init () ;

tcp reserveport (80) ;

while (1) http handler() ;

When you compile and run ssi . ¢, you see the LNK light on the board come on. Point your
browser at the controller (e.g., http://10.10.6.100/). The ACT light will flash a couple of times and

your browser will display the page.
This program displays pictures of LEDs. Their state istoggled by pressing the image of a button.

This program uses Server Side Includes (SSI) and the old style of CGlI
(SSPEC_RESOURCE_ FUNCTION). Use of SSI isexplained in greater detail below.

Chapter 4: HTTP Server 167

45.2.1 SSI| Feature

SSI commands are an extension of the HTML comment command (<!--Thisis a comment -->).
They allow dynamic changesto HTML files and are resolved at the server side, so the client never
sees them. HTML files that need to be parsed because they contain SSI commands, are conven-

tionally recognized by the HTTP server by the resource name extension .shtml 1
The supported SSI commands are:

e #echo var

® #exec cmd

e #include file
They are used by inserting the command into an HTML file:

<!--#include file=“anyfile” -->

The server replaces the command, #include file, withthe contentsof anyfile.

#exec cmd executes acommand i.e. and old-style CGI and replaces the SSI command with the
output.

Dynamically Changing the Display of a Variable on a Web Page

Thessi.shtml file located in Samples\Tcpip\Http\Pages, gives an example of
dynamically changing a variable on aweb page using #echo var.

<img SRC="<!--#echo var="ledl" -->">

Inan shtml file, the“ <! - -#echo var="1ledl" -->"isreplaced by thevalue of the variable

ledil from the static resource table.

SSPEC_RESOURCETABLE START
SSPEC_RESOURCE_ROOTVAR ("ledl", ledl, PTR16, "%s"),
SSPEC_RESOURCE_ROOTVAR ("led2", led2, PTR16, "%s"),
SSPEC_RESOURCE_ROOTVAR ("led3", led3, PTR1l6, "%s"),
SSPEC_RESOURCE_ROOTVAR ("led4", led4, PTR16, "%s"),

SSPEC_RESOURCETABLE END

shtml handler (whichisthe built-in script processor for SSI) looks up 1edl1 and replaces it

with the text output from:

brintf(“%s",(char*)ledl);

Theledil variableiseither ledon.gif or ledoff.gif. When thebrowser |oadsthe page, it

replaces

kimg SRC="<!--#echo var="ledl"-->">

with

kimg SRC="ledon.gif">

1. Thisisjust aconvention. If you add a MIMETypeMap entry SSPEC_MIME_FUNC(“.shtml”,

“text/html”, shtml_handler) then you are following this convention.

168

TCP/IP User’'s Manual

or

This causes the browser to load the appropriate image file.

SSl string variables are only appropriate for relatively short strings. (In the above example, the SSI
string variables are “ledon.gif” and “ledoff.gif.”) The size that can be output is limited to the size
HTTP_ MAXBUFFER. If you need larger strings, you should either increase HTTP_ MAXBUFFER
(which will use more root RAM) or switch to using a CGl function.

4.5.2.2 CGI Feature

Ssi . c aso demonstrates the Common Gateway Interface. CGl isa standard for interfacing exter-
nal applications with HTTP servers. Each time aclient requests an URL corresponding to a CGl
program, the server will execute the CGI program in real-time.

For increased flexibility, a CGI function is responsible for outputting its own HTTP headers.
Information about HT TP headers can be found at:
http://deesse.univ-lemans.fr:8003/Connected/RFC/1945/

and many other web sites and books. Inthe Ss1i . shtml file, thisline creates the clickabl e button
viewable from the browser.

<TD> </TD>

When the user clicks on the button, the browser will request the /1edltog. cgi entity. This
causes the HTTP server to examine the contents of the http flashspec structure looking for
/ledltog.cgi. Itfindsit and noticesthat leditoggle () needsto be called.

The led1toggle function changes the value of the 1ed1 variable, then redirects the browser
back to the origina page. When the original pageis reloaded by the browser, the LED image will
have changed states to reflect the user’s action.

This sample demonstrates the so-called “ old-style” CGI. New-style CGls are easier to write (espe-
cially when they are doing something non-trivial). They are described in Section 4.6 "HTTP File
Upload."

Connection Abort Condition

Therearetwo fiddsinthe Ht tpState structure that allow a CGI function to appropriately
respond to a connection abort condition. The user may set thefield abort notify toanon-
zero value in a CGI function to request that the CGI function be called one more time with the
cancel field set to one if a connection abort occurs.

Chapter 4: HTTP Server 169

http://deesse.univ-lemans.fr:8003/Connected/RFC/1945/

4.5.3 Web Pages With HTML Forms

With aweb browser, HTML forms enable usersto input values. With a CGI program, those values
can be sent back to the server and processed. The FORM and INPUT tags are used to create forms
inHTML.

The FORM tag specifies which elements congtitute a single form and what CGI program to call
when the form is submitted. The FORM tag has an option called ACTION. This option defines
what CGI program is called when the form is submitted (when the “ Submit” button is pressed).
The FORM tag also has an option called METHOD that defines the method used to return the
form information to the web server. In Section 4.5.3.1, “Sample HTML Page,” on page 171, the
POST method is used, which will be described later. All of the HTML between the <FORM> and
</FORM?> tags define what is contained within aform.

Starting with Dynamic C 8.50, you can also use the enctype option inside the FORM tag. This
specifies areturn encoding type for the form’s information. If you did not specify this option, then
you can use old-style CGl s (as described in this section). If you specify enctype="multipart/form-
data' then you should specify a new-style CGI instead. See Section 4.6 describing the HTTP
upload feature for more details on writing a new-style CGlI.

The INPUT tag defines a specific form element, theindividual input fieldsin aform. For example,
atext box in which the user may type in avalue, or a pull-down menu from which the user may
choose an item. The TY PE parameter defines what type of input field is being used. In the follow-
ing example, in the first two cases, it is the text input field, which is a single-line text entry box.
The NAME parameter defines what the name of that particular input variable is, so that when the
information is returned to the server, then the server can associate it with aparticular variable. The
VALUE parameter defines the current value of the parameter. The SIZE parameter defines how
long the text entry box is (in characters).

At the end of the HTML page in our example, the Submit and Reset buttons are defined with the
INPUT tag. These use the special types“submit” and “reset,” since these buttons have special pur-
poses. When the submit button is pressed, the form is submitted by calling the CGI program
“myform.”

170 TCP/IP User’'s Manual

4.5.3.1 Sample HTML Page
An HTML page that includes aform may look like the following:

<HTML><HEAD><TITLE>ACME Thermostat Settings</TITLE></HEAD>

<BODY>

<H1>ACME Thermostat Settings</H1l>
<FORM ACTION="myform.html" METHOD="POST">

<TABLE BORDER>
<TR>

<TD>Name</TD> <TD>Value</TD> <TD>Description</TD></TR>

<TR>

<TD>High Temp</TD>
<TD><INPUT TYPE="text" NAME="temphi" VALUE="80"

SIZE="5">
</TD>
<TD>Maximum in

<TR>

temperature range (°F)</TD></TR>

<TD>Low Temp</TD>
<TD><INPUT TYPE="text" NAME="templo" VALUE="65"

SIZE="5">
</TD>
<TD>Minimum in

</TABLE>

<P>

temperature range (°F)</TD></TR>

<INPUT TYPE="submit" VALUE="Submit">
<INPUT TYPE="reset" Value="Reset">

</FORM></BODY >
</HTML>

The form might display as fol-
lows:

#7 ACME Thermostat Settings - Netscape

File Edit “iew Go Communicator Help

Back Farwerd Reload Hame Search Metscape Print Sm

J " Bookmarks Locatinn:Ifile:.f'f.f’[ll.f’myform.html j B what's Related

ACME Thermostat Settings

|Name |Value |Desu:ription
|High Temp ||8El ‘Ma:mnum i temperature range (°F)
|LOW Temp ||65 ‘I'.{[umnum i temperature range (°F)

Submit | Resetl

&FEE=| |Document: Done =| 352 % =)@ o 4

Chapter 4: HTTP Server

171

When the form is displayed by a browser, the user can change values in the form. But how does
this changed data get back to the HTTP server? By using the HTTP POST command. When the
user presses the “Submit” button, the browser connects to the HTTP server and makes the follow-
ing request:

POST myform HTTP/1.0
(some header information)

Content-Length: 19

where “myform” isthe CGI program that was specified in the ACTION attribute of the FORM
tag and POST isthe METHOD attribute of the FORM tag. “ Content-L ength” defines how many
bytes of information are being sent to the server (not including the request line and the headers).

Then, the browser sends a blank line followed by the form information in the following manner:
temphi=80&templo=65

That is, it sends back name and value pairs, separated by the ‘&’ character. (There can be some
further encoding done here to represent special characters, but we will ignore that in this explana-
tion.) The server must read in the information, decode it, parse it, and then handle it in some fash-
ion. It will examine the new values, and assign them to the appropriate C variablesif they are
valid.

4.5.3.2 POST-Style Form Submission

If an HTML file specifies a POST-style form submission (that is, METHOD="POST"), the form
will till be waiting on the socket when the old-style CGI handler is called. Therefore, it isthe job
of the CGI handler to read this data off the socket and parse it in a meaningful way. The sample
filesPost.c and Post2.cinthe\Samples\Tcpip\Http folder show how to do this.

The HTTP POST command can put any kind of data onto the network. There are many encoding
schemes currently used, but we will only look at URL-encoded data in this document. Other
encoding schemes can be handled in asimilar manner.

172 TCP/IP User’'s Manual

4.5.3.3 URL-Encoded Data

URL-encoded datais of the form "namel=valuel& name2=value2," and is similar to the CGI form
submission type passed in normal URLSs. Thishasto be parsed to name=value pairs. Therest of
this section details an extensible way to do this.

Thisinitializes two possible HTML form entries to be received, and a place to store the results.

#define MAX FORMSIZE 64

typedef struct ({

char *name;

char value [MAX FORMSIZE] ;
} FORMType;

FORMType FORMSpec [2] ;

void init forms(void) ({
FORMSpec [0] .name = "user name";
FORMSpec [1] .name = "user email";

Reading & Storing URL-encoded Data

parse_ post () iscaled from the CGI function (submit ()) to read URL-encoded data off
the network. It callshttp scanpost () to storethedatain FORMSpec []. These code snip-
petsarefrom Samples\tcpip\http\post.c

int parse post (HttpState *state) {
auto int retval;
auto int 1i;

retval = sock aread(&state->s, state->p, \
(state->content length < HTTP MAXBUFFER-1)?\
(int) state->content length:HTTP MAXBUFFER-1) ;

if (retval < 0)
return 1;

state->subsubstate += retval;

if (state->subsubstate >= state->content length) {
state->buffer|[(int)state->content length] = '\0';
for(i=0; i<(sizeof (FORMSpec) /sizeof (FORMType)); i++) {
http scanpost (FORMSpec [i] .name, state-s>buffer,\
FORMSpec [i] .value, MAX FORMSIZE) ;
}

return 1;

}

return O0;

Chapter 4: HTTP Server 173

4.5.3.4 Sample of a CGI Handler
This next function isthe CGI handler that callsparse post () . It isastate machine-based han-

dler that generates the page. It callsparse post () and references the structure that is now
filled with the parsed data we wanted.

Thisfunctionisfrom Samples\tcpip\http\post.c.

int submit (HttpState *state) {
auto int 1i;

if (state->length) { // buffer to write out
if (state->offset < state->length) {
state->offset += sock fastwrite(&state->s, state->buffer
+ (int)state-s>offset, (int)state->length -
(int) state->offset) ;
} else {
state->offset
state->length

0;
0;

}
} else {
switch(state->substate) {

case O0:
strcpy (state->buffer, "HTTP/1.0 200 OK\r\n\r\n");
state->length = strlen(state-s>buffer);
state->offset = 0;
state->substate++;
break;

case 1:

strcpy (state->buffer, "<html><head><title>Results</title>
</head><body>\r\n") ;

state->length = strlen(state->buffer);

state->substate++;

break;

case 2: // initialize the FORM Spec data
FORMSpec [0] .value[0] "\0';
FORMSpec [1] .value[0] = '\0';
state->p = state->buffer;
state->substate++;
break;

174 TCP/IP User’s Manual

case 3: // parsethe POST information
if (parse post (state)) {
sprintf (state->buffer, "<p>Username:
$s<p>\r\n<p>Email: %s<p>\r\n", FORMSpec[0].value,
FORMSpec [1] .value) ;

state->length = strlen(state->buffer);
state->substate++;

}

break;

case 4:
strecpy (state->buffer, "<p>Go home</body> </html>\r\n") ;

state->length = strlen(state->buffer);
state->substate++;
break;

default:
state->substate = 0;
return 1;

}
}

return O0;

Chapter 4: HTTP Server 175

4.5.4 HTML Forms Using Zserver.lib

In this section, we will step through a sample program, Samples\tcpip\http\forml.c,
that uses HTML forms. Through this step-by-step explanation, the method of using the functions
in zserver.1lib will become clear. (Asof Dynamic C 8.50, you have the option of using the
RabbitWeb server, with its easier-to-use interface and completely flexible ZHTML page layout
capabilities. For more information, see the document titled "RabbitWeb, To Web-Enable Embed-
ded Applications' available on our website.)

Defining FORM_ERROR_BUF isrequired in order to use the HTML form functionality in
Zserver.1lib. The value represents the number of bytesthat will be reserved in root memory
for the buffer that will be used for form processing. This buffer must be large enough to hold the
name and value for each variable, plus four bytes for each variable. Since we are building asmall
form, 256 bytesis sufficient.

#define FORM ERROR BUF 256

Since we will not be using the static resource table, we can define the following macro, to remove
some code for handling this table from Zserver.

#define HTTP_ NO FLASHSPEC

These lines are part of the standard TCP/IP and MIME table configuration.

#memmap xmem
#use "dcrtcp.lib"
#use "http.lib"

SSPEC_MIMETABLE START
SSPEC_ MIME (".html", "text/html")
SSPEC MIMETABLE END

These are the declarations of the variables that will be included in the form.

int temphi;
int tempnow;
int templo;
float humidity;
char fail([21];

176 TCP/IP User’'s Manual

http://www.zworld.com/products/dc/DC8/docs.shtml

void main (void)

{

An array of type Formvar must be declared to hold information about the form variables. Be
sure to allocate enough entriesin the array to hold all of the variables that will go in the form. If
more forms are needed, then more of these arrays can be alocated.

FormVar myform[5] ;

These variables will hold the indicesin the TCP/IP servers' object list for the form and the form
variables.

int var;
int form;

This array holds the possible values for the fail variable. The fail variable will be used to make a
pulldown menu inthe HTML form.

const char *const fail options[] = {
"Email",
"Page",
"Email and page",
"Nothing"

b

These lines initialize the form variables,

temphi = 80;

tempnow = 72;

templo = 65;

humidity = 0.3;
strcpy (fail, "Page") ;

The next line adds aform to the dynamic resource table. The first parameter gives the name of the
form. When a browser requests the page “myform. html” the HTML form is generated and pre-
sented to the browser. The second parameter gives the developer-declared array in which form
information will be saved. The third parameter gives the number of entriesin themyform array
(this number should match the one given in themy £ orm declaration above). The fourth parameter
indicates that this form should only be accessible to the HTTP server, and not the FTP server.
SERVER_HTTP should always be given for HTML forms. The return value is the index of the
newly created form in the dynamic resource table.

form = sspec addform("myform.html", myform, 5, SERVER HTTP) ;

Chapter 4: HTTP Server 177

Thisline setsthetitle of the form. The first parameter is the form index (the return value of
sspec_addform ()), and the second parameter isthe form title. Thistitle will be displayed as
the title of the HTML page and as alarge heading in the HTML page.

sspec_setformtitle (form, "ACME Thermostat Settings") ;

The following line adds a variable to the resource table. It must be added to this table before being
added to the form. The first parameter is the name to be given to the variable, the second isthe
address of the variable, the third is the type of variable (thiscan be INT8, INT16, INT32,
FLOAT32, or PTR16), the fourth is a printf-style format specifier that indicates how the variable
should be printed, and the fifth is the server for which this variable is accessible. The return value
isthe handle of the variablein the resource table.

var = sspec_addvariable("temphi", &temphi, INT1le, "%d4d",
SERVER HTTP) ;

Thefollowing line adds avariable to aform. Thefirst parameter isthe index of the form to add the
variable to (the return value of sspec_addform ()), and the second parameter isthe index of
the variable (thereturn value of sspec_addvariable ()). Thereturn valueisthe index of
the variable within the devel oper-declared Formvar array, myform.

‘ var = sspec_addfv(form, var);

This function sets the name of aform variable that will be displayed in the first column of the form
table. If thisnameis not set, it defaultsto the name for the variable in the resource table (“temphi”,
in this case). Thefirst parameter is the form in which the variable islocated, the second parameter
isthe variable index within the form, and the third parameter is the name for the form variable.

‘ sspec_setfvname (form, var, "High Temp") ;

This function sets the description of the form variable, which is displayed in the third column of
the form table.

sspec_setfvdesc (form, var, "Maximum in temperature range
(60 - 90 °F)");

This function sets the length of the string representation of the form variable. In this case, the text
box for the form variable in the HTML form will be 5 characters long. If the user enters avalue
longer than 5 characters, the extra characters will be ignored.

sspec_setfvlen (form, var, 5);

This function sets the range of values for the given form variable. The variable must be within the
range of 60 to 90, inclusive, or an error will be generated when the form is submitted.

178 TCP/IP User’'s Manual

sspec_setfvrange (form, var, 60, 90);

This concludes setting up the first variable. The next five lines set up the second variable, which
represents the current temperature.

var = sspec_addvariable ("tempnow", &tempnow, INT16, "%d",
SERVER HTTP) ;

var = sspec_addfv(form, var);

sspec_setfvname (form, var, "Current Temp") ;

sspec_setfvdesc (form, var, "Current temperature in °F") ;

sspec_setfvlen (form, var, 5);

Since the value of the second variable should not be modifiable viathe HTML form (by default
variables are modifiable,) the following line is necessary and makes the given form variable read-
only when the third parameter is 1. The variable will be displayed in the form table, but can not be
modified within the form.

sspec_setfvreadonly (form, wvar, 1);

These lines set up the low temperature variable. It is set up in much the same way as the high tem-
perature variable.

var = sspec_addvariable("templo", &templo, INTl6, "%d",
SERVER_HTTP) g

var = sspec_addfv(form, var);

sspec_setfvname (form, var, "Low Temp") ;

sspec_setfvdesc (form, var, "Minimum in temperature range
(50 - 80 °F)");

sspec_setfvlen (form, var, 5);

sspec_setfvrange (form, var, 50, 80);

This code begins setting up the string variabl e that specifies what to do in case of air conditioning
failure. Note that the variableis of type PTR16, and that the address of the variableis not given to
sspec_addvariable (), sincethevariable fail already represents an address.

var = sspec_addvariable("failure", fail, PTR1l6, "%s",
SERVER_HTTP) ;
var = sspec_addfv(form, var);

sspec_setfvname (form, var, "Failure Action") ;
sspec_setfvdesc (form, var,

"Action to take in case of air-conditioning failure") ;
sspec_setfvlen (form, var, 20);

Chapter 4: HTTP Server 179

Thisline associates an option list with aform variable. The third parameter gives the developer-
defined option array, and the fourth parameter gives the length of the array. The form variable can
now only take on values listed in the option list.

sspec_setfvoptlist (form, var, fail options, 4);

This function sets the type of form element that is used to represent the variable. The default is
HTML FORM TEXT, which isastandard text entry box. This line sets the type to
HTML FORM PULLDOWN, which isa pull-down menu.

sspec_setfventrytype (form, var, HTML FORM PULLDOWN) ;

Finally, this code sets up the last variable. Notethat it isafloat, so FLOAT32 isgivenin the
sspec_addvariable () cal. Thelast function call issspec_setfvfloatrange ()
instead of sspec_setfvrange (), since thisisafloating point variable.

var = sspec_addvariable ("humidity", &humidity, FLOAT32,
"y.2f", SERVER_HTTP) 8

var = sspec_addfv(form, var);

sspec_setfvname (form, var, "Humidity") ;

sspec_setfvdesc (form, var, "Target humidity (between0.0and 1.0)") ;
sspec_setfvlen (form, var, 8);
sspec_setfvfloatrange (form, var, 0.0, 1.0);

These calls create aliases in the dynamic resource table for the HTML form. That is, the same
form can now be generated by requesting “ index . html” or “/”. Note that
sspec_aliasspec () should be caled after the form has already been set up. Thediasing is
done by creating a new entry in the resource table and copying the original entry into the new
entry. Note that aliasing can also be done for files and other types of server objects.

sspec_aliasspec (form, "index.html");
sspec_aliasspec (form, "/");

These lines complete the sample program. They initialize the TCP/IP stack and web server, and
run the web server.

sock init () ;
http init () ;
while (1) {

http handler () ;
}

180 TCP/IP User’'s Manual

Thisisthe form that is generated:

#= ACME Thermostat Settings - Netscape

File Edit “iew Go Communicator Help

=

Back Fonvard Reload Home Search Metscape Frint Security Shop Stnpm

o Bookmaks Goto:l =l 01" what's Related
ACME Thermostat Settings

=

|Name |Value |Description

|High Temp “EED— ‘Ma}mnum m temperature range (60 - 90 °F)
|Cun’ent Temp |7"2 |Current temperature m °F

|Low Temp “65— ‘L’_Bmmwn in temperature range (30 - 80 °F)
|Pajlure Artion ‘l Page j ‘Action to talke in casze of air-conditioning falure
|Humidity “F ‘Target humidity (between 0.0 and 1.0)

Submit | Reset |

=R [=0=| |Document; Done

Chapter 4: HTTP Server

181

4.6 HTTP File Upload

This section describesthe HTTP file upload feature available starting with Dynamic C 8.50. The
enhanced CGI capabilities of this version of Dynamic C allow files of unlimited size to be
uploaded using aweb interface. It has always been possible to upload files using FTP; however, it
is usually more convenient to use a browser-based upload.

4.6.1 What is a CGI Function and Why is It Useful?

The HTTP library provided with Dynamic C allows the association of C functions with web page
URLs. When the user, viatheir web browser, retrieves a specified resource, the C function may be
called from the HTTP server. Such afunction is called a Common Gateway Interface (CGlI) func-
tion, and it is responsible for generating a response to the user’s request.

The advantage of using a CGl isthat it can generate web page content on-the-fly, and cause the
browser to display or do anything that it is capable of. In addition, the CGl is able to read data that
was sent by the browser.

Previous to this release of Dynamic C, the CGI was limited to handling relatively small amounts
of data sent from the browser. Thisis satisfactory for processing simple forms, but does not allow
large data sets to be uploaded. This release of Dynamic C supports upload of one or more files
from the browser. The files can be of unlimited size. In conjunction with the latest Zserver
(resource manager) enhancements available in Dynamic C 8.50, the uploaded files may be stored
in the FS2 or FAT file systems, or even processed dynamically.

The new CGil file upload facility enables arange of convenient firmware features. Possibilities
include:

e Remote firmware updates.
e \Web page content updates (i.e. “publishing”).
e Executable (interpreter) scripts.
e Remote hardware updates (if using an FPGA or other configurable logic device).
e Firmware configuration.
NOTE: Throughout this document the FAT file system is the destination for the

uploaded file. The FAT uses onboard serial flash and is available as a module which
may be purchased separately. See www . zworld. com.

182 TCP/IP User’'s Manual

http://www.zworld.com/support/downloads/

4.6.2 How Do | Use the New CGI Facility?

There are anumber of steps, some of which will be familiar to users of CGlsin previous releases.

They are listed here and described in more detail in the following pages. The steps, if coding from

scratch, are:

1. #use“dcrtep.lib”, and specify network configuration options.

2. #use <filesystem(s) of choice>, and specify the file system configuration.

3. #define USE_HTTP_UPLOAD

4. #use " http.lib”

5. Create an initial web page with aform asking for the file(s) to be uploaded. The main require-
ment is that you specify enctype="multipart/form-data" insidethe <FORM>
tag(s).

6. Write a CGlI function (if not using the default one provided).

7. Create an initial resource table containing at least an entry for each of the above two resources
(the web page and the CGl).

8. Create alist of content type mappings, i.e., the MIME table.

9. Create rules which limit the upload facility to select user groups.
10. Create a set of user IDs

11. In the main program, call http_handler () inaloop.

Step 1: Specify Network Configuration

To make use of HTTP upload, you need to perform the usual inclusion and configuration of the
networking library, dertcp. 1ib. Atitssimplest, it istwo lines of code at the top of your main
program:

#define TCPCONFIG 1
#use “dcrtcp.lib”

This specifies that the default TCP (networking) configuration isto be used. If you want to change
the default networking configuration, first read the comments at thetop of tcp config.lib.

HTTP upload usually requires at least two additional librariesto be included: afile system library,
and http.1lib itself. A file system isrequired, otherwise the uploaded file has nowhere to go
(although you can write a CGI which processes the file as it is uploaded, in which case you do not
need to store it permanently, and thus you do not need to include a file system; the following dis-
cussion assumes that you are using afile system).

Chapter 4: HTTP Server 183

Steps 2, 3 and 4: Specify File system and Web Server

You need to include the file system library (or libraries) beforeincluding http.1lib. Thisis
because the HTTP library needs to know about the filesystem(s) it is going to support. In addition,
you need to tell the HTTP library to use the upload facility. For example, if you want to use the
FAT file system, then you would write the following:

#define TCPCONFIG 1
#use “dcrtcp.lib”

#use “fat.lib” // Step 2: thefilesystem
#define USE_HTTP_ UPLOAD // Step 3: enable upload feature
#use “http.lib” // Step 4: HTTP server code

The order of the above statements is important. A possible exception isthat the order of
dertep.liband fat.1ib may beinterchanged, since these libraries are independent. How-
ever, it isrecommended you use the given ordering since future releases of the FAT may be able to
use networking services.

Step 5: Create a Web Page

When using HTTP upload, there needs to be away to prompt the user (web browser) to enter afile
name to upload. Thisis done by using an HTML form. The form specifiesinput fields that may be
filled out by the user, and one or more “submit” buttons that the user presses to start the upload
process.

If you have an existing web-based application to which you want to add a file upload facility, you
probably already have aweb page with aform on it; in this case, you can add an extrainput field
to an existing form on that page, or create a new form on the same page. You may already have a
CGil function that processes the results of the form submission. Thiswill need to be rewritten to
process data that is not URL encoded.

If you are creating a new application, you need to construct an initial page to contain the necessary
form elements. As a starting point you can use the sample pagein
samples\tcpip\http\pages\upload.html. Clickonupload.html andthe
browser will display something like this:

/R HTTP Upload Form - Microsoft Internet Explorer M= E
J File Edit “iew Favortes Tools Help |
e e TR S BT A T B B
Cut Copy Paste Back Fomyard Stop Refresh Home Search Favaorites
| Address [E:\DCinProgh5 amplesticpipthtp'pagesiUPLOAD HTHML =l |J Links >
Name I
File 1o upload
(1o /A/mew him) I Browse... |
File io upload
(mfmnewz_]lm)l Browse... |
Upload |
H
|@ Done ’_’__n by Carnputer i

The construction of this pageis outlined below, but it has been simplified and reformatted dightly.
A blow-by-blow description of each lineisadded initalics.

184 TCP/IP User’'s Manual

<html>
This introduces the page as an HTML document.

<head><title>HTTP Upload Form</title></head>

This (“HTTP Upload Form”) gets displayed at the top of the browser window. You can change this
to whatever is appropriate for describing the overall purpose of this page.

<body>
Introduce the main content of this page.

<FORM ACTION="upload.cgi" METHOD="POST" enctype="multipart/form-data"s>

Sart a form definition. The parameters are

action="upload.cgi” : thisrefersto the CGI function that will process the results of the form submis-
sion. Thisisa URL name, which is mapped to a C function on the server.

method=post: thisisrequired, since a post-type request must be sent to the server.
enctype="multipart/form-data” : thisis also required, and is the part that is different from the old
style of processing. The old style did not specify an encoding type, thus the default of “ URL
encoded” was used.

<TABLE BORDER=0 CELLSPACING=2 CELLPADDING=1>

For neatness of screen layout, we put everything in an HTML table. The following <TR>...</TR>
sections delimit each row of the table, and the data for each cell is delimited by <TD>...</TD>.

<TR>
<TD WIDTH=130 ALIGN=RIGHT>Name</TD>
<TD WIDTH=500><INPUT TYPE="TEXT" NAME="user name" SIZE=50></TD>

Thisisthefirst input field. It is not a fileto upload, but it is information that the server may never-
theless be interested in. This shows that not every formfield needs to be a fileto upload. The order is
important. Browserswill send back the form fields in the same order that they are defined in the
HTML, however it is probably best not to rely on this if you can help it.

</TR>

<TR>
<TD ALIGN=RIGHT>File to upload
(to /A/new.htm)</TD>
<TD><INPUT TYPE="FILE" NAME="/A/new.htm" SIZE=50></TD>

Thisisthefile-to-upload input field. The browser displays this as a text input field, with an addi-
tional “ browse” button so that the user can easily navigate hislocal filesystem to find the appropri-
atefile. Thecritical distinction isthat it contains a type=file parameter (as opposed to, for example,
type=text in the previous field). The name="/A/new.htm” parameter specifies the name of the input
field, not the name of the file on the user’s system! Asit happens, this looks like a file name, and
indeed the server may use it as the name of a local file, but thisis a convention only. The size=50
parameter specifies the number of characters that the browser will display for file name selection.

<TR>
</TABLE>
<INPUT TYPE="SUBMIT" VALUE="Upload"s>

It is necessary to supply a type=submit form element. The user presses this button to start to post
(upload) process. Note that thisis another input field, however if you leave out the name= parameter
(asin this example) then the browser will not send the value of this button back with the form sub-
mission. If there is only one submit button, then there is no need to nameit.

</FORM></body></html>
Close and complete the form, body, and entire page.

Chapter 4: HTTP Server 185

If you have an existing application, you can take out the relevant parts of the above, and insert
them in your existing web page. The relevant parts are the enctype="multipart/form-data’ parame-
ter in the <FORM> element, and the <INPUT type=file> element.

If you have an existing application that processes the form data submission, you will need to
rewrite the CGI function that handles the submitted data. Thisis becausethe enctype parameter
changes the syntax that the browser uses to encode the data. In short, you will need to rewrite the
CGl asa“new-style’” CGI as described in Step 6: Writing a CGI Function.

Having created the HTML file with the upload form, it is necessary to import it into your main
program, so that the HTTP server can present it to the user. This can be doneusing #ximport,
or you can write it directly to the filesystem (although, initialy at least, this presents a chicken-
and-egg type problem since you might not have established an upload procedure in the first place!)

4.6.2.1 Step 6: Writing a CGI Function

The CGI function is responsible for processing the form submission data as it comes in from the
client (browser). In addition, it generally needs to write some sort of response back to the client
indicating whether or not the submission was acceptable.

If you start reading the following, and start feeling somewhat overwhelmed, please be aware that
thereisadefault CGI functioninthe HTTP library that is very useful. The default CGl, called
http defaultCGI (), automatically saves uploaded files into the filesystem. If that is all you
need to do, then you do not need to fully comprehend this section on first reading.

Note that all of this section is describing new-style CGls. Old-style CGls are covered in
Section 4.5.3.

CGI Syntax
All CGl functions are C functions with the following prototype:

int my CGI (HttpState * s);

TheHttpState parameter isapointer to theinternal state variables of the HTTP server instance
that is handling the current request. You can have one or more server instances. If thereis more
than one, the same CGI may be invoked at the same time for more than one client (if both happen
to press the submit button at about the same time). Thus, it isimportant to write the CGI function
so that it is re-entrant. This basically means that the function should not update global or static
variables. The CGI should not attempt to modify directly any of thefieldsinthe HttpState
structure, otherwise the server may become inoperable.

API Functions

The HTTP library provides a set of API functionsthat can be called safely from the CGI. The list
of safe functionsisin the index under “Function Reference, CGl.”

It is unwise to make direct calls to TCP/IP functions, especially functions that may not return for a
long timesuch as sock_read ().

186 TCP/IP User’'s Manual

How to Transfer Form Submission Data

To understand how to write a CGI function, it is necessary to have some understanding of the pro-
tocol used to transfer the form submission data. Since the data can consist of one or more files
and/or form fields, there needs to be away of separating them within the one, sequential, stream of
datathat is sent by the client.

Theway thisisdoneisthat the client specifies aunique string that separates each item of data. The
following text is a dump of the actual data sent by a client (with someirrelevant details omitted,
and with comments added in italics):

POST /upload.cgi HTTP/1.1
Thisindicates that it is POSTed form data, and the target handler is upload.cgi.

Content-length: 277
This givesthe total number of bytes of data following the initial header.

Content-Type: multipart/form-data; boundary=3vAL1QsFOUg2GsSY3p6én3YQ

The multipart/form-data type indicates that thisis a multipart form data submission. The boundary
parameter specifies a unique character sequence that separates each part. The boundary is deliber-
ately chosen as a long, random, string of characters so that it is unlikely to be confused with the
actual data content.

The above blank line is significant; it indicates the end of the initial header lines, and the start of
data.

--3vAL1QsFOUg2GsY3p6n3YQ

Thisisthefirst boundary. Boundary strings are always prefixed by an additional -- sequence. The
following lines are header lines for the individual part. The actual data follows the first empty line.

Content-Disposition: form-data; name="/A/new.htm"; filename="test.txt"

The Content-Disposition header indicates the presentation of the data. The only type which isrele-
vant is“ form-data” . The name= parameter indicates the field name (which was originally part of
the name= parameter of the <input> element). The filename= parameter isonly set if thisisan
uploaded file. It gives the name of the file on the remote (client) side. Thisis not usually relevant to
the server. The name of thefile asit is stored on the server is not specified (since the browser does
not know it or have control over where the file is stored). We are using the convention that the field
name indicates the local file name, but thisisjust a convention!

Content-Type: text/plain

Content-Type indicates the type of information. The default is plain (i.e. ascii) text, however it could
also be set to image/gif for a GIF file, text/ntml for HTML etc. The following blank line indicates the
end of headers for this part.

test file contents, first line
Thisisthe actual file or formfield content.
--3vAL1QsFOUg2GsY3p6n3YQ

The boundary string terminates the data for the previous part. Headers for the next part immediately
follow.

Chapter 4: HTTP Server 187

Content-Disposition: form-data; name="submit"

Thisisformfield data, in this case the submit button itself.
upload

--3vAL1QsFOUg2GsY3p6n3YQ--
The boundary terminates the previous formfield. Snce thisisthe last boundary; it also hasatrailing

When writing the CGI, you do not have to worry about parsing the headers and boundary separa-
tors. Thisisalready done by the HTTP server. However, you do need to be aware of the stream-
oriented nature of the incoming data. The HTTP server separates out the parts (and parses the
headers). Asit does this, it calls the defined CGI with the data for each section.

Action Codes Received by a CGI Function

The CGl iscaled in anumber of different contexts. It determines the context by calling the
http getAction () function. Thereturnvalueof http getAction () indicatestherea
son that the CGl is being called by the HTTP server.

For a given upload, the CGl is called with atypical sequence of action codes. Thefirst codeis
CGI START (for the start of anew part), CGI_DATA (for each chunk of datain that part), then
CGI_END (for the end of the part). Thus, the typical sequence for asingle part is

CGI_START, CGI DATA, CGI _DATA, CGI _DATA, CGI _END

Finally, at the end of all the parts, the action code is set to CGlI_EOF.

Most CGls should a'so handle a special action code called CGI_ABORT. This code only occurs if
the upload isterminated early by a network problem (or by the user pressing the browser’s cancel
or stop button).

Let's examine asimple CGI that handles these five action codes. Thisis the minimum require-
ment; however, there are some additional codes that may be used by more advanced CGls. The
switch statement ignores action codes that are not listed. Thisis deliberate, since any other action
codes may be safely ignored.

int my CGI (HttpState * s)
{
switch (http getAction(s)) {
case CGI START:
break;
case CGI_DATA:
break;
case CGI_END:
break;
case CGI_EOF:
break;
case CGI_ABORT:
break;

}

return O0;

188 TCP/IP User’'s Manual

The above code is a skeleton that does nothing! In other words, all incoming datais sent to the bit-
bucket. It isready to fill out with more useful actions. To avoid repeating the code, we just take
each case condition, and fill in the details.

Action Code CGI_START

When the action code CGI START isreceived, all of the part headers have been read, so the
server knows everything relevant about the datathat follows. The CGI can access thisinformation
using several of the HTTP API functions. The most important information is the field name on the
form, from the <INPUT NAME= “fieldname’> element in the HTML form:

case CGI_ START:
if (http_getField(s) [0] == /") {
printf (“*Found a file to upload!\n”);

}

break;

http getField () looksat thefirst character of the field name to seeif it is aslash character.
We are using the convention that if the field starts with aslash, it isthe name of alocd fileto be
overwritten with the following data. Note that the field names are controlled by the server, viathe
NAME= parametersin the INPUT fields. We can choose any naming convention desired; in this
case, using aninitial slash seems to make sense for file destinations.

Now let’sfill inwhat happenswhen thereis afile to save. In most cases, when writing or reading a
file, it is necessary to “open” the file. When afileis open, it can be read and/or written. Finally, it
isclosed. All thisimplies that some sort of state needs to be maintained so that we can refer to the
correct open file. It would be very easy if all the data was presented at once to the CGl, so that it
could open, write, and close the file in one fell swoop. Unfortunately, that cannot happen since the
datais not yet available on the cGI_START call. The CGI has no choice than to return to the
HTTP server after doing whatever it caninthe CGI_START state.

The solution to this problem is that the CGI opensthefileonthe CGI_START call, and stores the
open file handle somewhere where it can be retrieved on the next (CGI_DATA or CGI_END) call.
The recommended method for accomplishing this is to save the handle back with the server. You
canusethehttp setCond () and http getCond () functionsto do this.

The HTTP server maintains a set of so-called “cond” variables for each CGI instance. Your appli-
cation decides how many cond variables there are by defining the HTTP_ MAX COND macro,
which defaults to 4. Each cond variable is a 16-bit integer.

There isalso asingle integer variable accessed using http _getState () and
http setState().

Chapter 4: HTTP Server 189

Expanding on the above, let’'s add opening of thefile:

#define COND_HANDLE O // cond variable for storing the handle.
case CGI START:
if (http getField(s) [0] == /") {
printf (“Found a file to upload!\n”);
http setCond(s, COND_ HANDLE,
sspec_open (http getField(s), http getContext (s),
O WRITE|O_ CREAT|O TRUNC, 0));
if (http getCond(s, COND HANDLE) < 0)
http skipCGI () ;

}

else
http skipCGI (s) ;
break;

The sspec_open () function opensthefile (whose nameisin the field name) with write access.
Thehttp getcontext () function returns aserver context structure which isrequired for the
sspec_open () cal. The context structure contains some details, such as the current user ID,
but the details are usually not relevant to the CGlI function itself. Thefile is created if it does not
exist, and it isinitially truncated if it already exists. The return value from sspec_open () is
stored in the cond variable COND_HANDLE, which is a macro we defined to zero so we wouldn’t
have to remember hard-coded numbers. The return value is either negative (if there was an error),
or not negative in which case it isavalid file handle. We check the cond variable just set, to make
sureit hasavalid value.

The else clauseis added so that if the part is hot afile to upload the rest of the data for this part
isignored. Thisis convenient, since we don’t want to get called with CGI_DATA or CGI_END if
thisisnot afile. If http skipCGI () iscalled, then the next action code will be either

CGI START (if thereisanother part), or CGI_EOF (if there were none). Note that we are also
calinghttp skipCGI () inthe case that thefile could not be opened.

Action Code CGI_DATA
Let’s now turn to saving the data. For this, we make use of the CGI_DATA action code:

int handle;

case CGI_DATA:
handle = http getCond(s, COND HANDLE) ;
sspec _write (handle, http getData(s), http getDataLength(s)) ;

break;

First, the open file handle is retrieved from the cond variable. Thisworks becausethe HTTP server
does not touch these variables between calls. The only time the server changes the cond variables
is at the start of a completely new form submission, in which case they are usually set to zero. But
don’t depend on them being zero, since a form submission can sometimes contain syntax that sets
them to non-default values. You canrely onhttp getState () returning zero on the very first
call; thereafter, it is not touched, but can be manipulated by the CGI calling the function

http setState().

190 TCP/IP User’'s Manual

Having retrieved the open file handle (you didn't saveit in astatic variable, did you?) itisusedin
thesspec_write () cal. http getData () returnsthe available data, and

http getDataLength () returnsitslength (in bytes). The maximum length that

http getDataLength () will returnisHTTP MAXBUFFER, whichisamacro controlled by
the application (defaulting to 256). Often, the available data length will be less than this, evenin
the middle of along file.

Note that the return code from sspec_write () isnot checked. Thisisashortcoming that we
fix later, since the solution can be dlightly complex. For now, we just hope that it works.

Action Code CGI_END

The next thing to consider is closing the file when the upload is complete. For this, we make use of
the CGI_END action code:

case CGI_END:
handle = http getCond(s, COND_HANDLE) ;
sspec_close (handle) ;
break;

Thisis quite simple. We simply retrieve the handle, and close it.

Response to the Client: Redirection

Finally, we have to consider what to do at the end of all parts (CGI_EOF), or if the connection
was cancelled (CGI_ABORT). You may recall that the CGI has two responsibilities: oneisto pro-
cess the incoming data, and the other isto write some results back to the client. We have already
donethe former, it isonly left to do the latter.

Writing results to the client means we have to generate the proper HTTP response, including all
the necessary headers and web page content. The CGI can do thisitself, by putting stringsin the
buffer provided by thehttp getData () call. Alternatively, the CGI can simply redirect back
to another local (or even remote) web page and not bother writing anything itself.

If the CGI wants to generate the response itself, then this has the advantage of being dightly more
efficient, but the disadvantage of requiring more code in the CGI. Usually, the application already
has some sort of web page that can display the necessary results. Thisis often an “SSI” page (that
is, dynamically generated using a specialized function) or may be just a static page (for example,
/index.html).

Action Code CGI_EOF
Since referring to another web page is easiest, it is shown first:

case CGI_EOF:
cgl redirectto(s, “/index.html”);
break;

Thecgi redirectto () functiontellsthe HTTP server to stop calling this CGI function, and
tell the client to retrieve its next web page from the specified location (in this case, the
index.html page on the current server). The onusis on the client (browser) to go and get that
page. It will come straight back to this server, but the CGI does not have to worry about it. Easy!

Chapter 4: HTTP Server 191

Inasimilar vein, you can usethehttp switchCGI () function. Again, the current CGI does

not have to generate aresponse. The difference isthat the HTTP server goes straight to the speci-
fied web page and presents it to the client on the same connection (rather than requiring the client
to come back to the server with a new request).

http switchCGI () can transfer control to any local web page, asif the client had directly
requested that resource. If the resource happens to be another new-style CGI (like the one we are
describing), then it gets control with the current action code, which will usually be CGI_EOF.
Otherwise, the resourceis processed asif it was directly retrieved by the client, by name. Note:
the current CGI must not have written anything back to the client, otherwise the data wil not be
intelligible to the client). Hereisan example:

case CGI_EOF:
http switchCGI (s, “/index.html”);
break;

Asyou can seg, itisvery similar tothecgi_redirectto () case

Action Code CGI_ABORT

The conventions for having the CGI generate its own response back to the client are covered in the
next section, titled, Writing Responses to the Client from a CGI Function. First, we look at the
proper handling of aCGI_ ABORT action code. This code means that the connection has been lost
and thereis no point in handling any more incoming data or generating any response. Thus, pro-
cessing of CGI_ABORT is necessarily limited to cleaning up any open files or other resources:

case CGI ABORT:
handle = http getCond(s, COND HANDLE) ;
sspec_close (handle) ;
break;

In this example, we simply close the handle, possibly leaving the file with partially written con-
tents. It isimportant to do this, sinceif the handle isleft open, then that handleis lost forever (or
until the next reboot). The CGI_ABORT code can happen at any time, so the CGI must handle it if
it ever uses“leakable” resources.

If you are alert, you noticed that CGI ABORT may be called when there is no open handle. We
must guard against the possibility of trying to close an “invalid” handle, since it may happen to
belong to another active CGI. We can do this by ensuring the value in the cond variableis “-1" if
the handle is not open.

192 TCP/IP User’'s Manual

Minimum Required Functionality of CGI
All the above code is pulled together, with the proper tests and comments on the additional code:

#define COND HANDLE 0 // cond variable for storing the handle.
int my CGI (HttpState * s){
int handle;

// Following block ensures that the first time (http_getState() is zero) we set the handleto -1.
if (http getState(s) == 0) {
http setState(s, 1);
http setCond(s, COND HANDLE, -1);
}
switch (http getAction(s)) {
case CGI_START:
if (http getField(s) [0] == /") {
printf (*Found a file to upload!\n”);
http setCond(s, COND_ HANDLE,
sspec_open (http getField(s), http getContext (s),
O _WRITE|O_ CREAT|O_TRUNC, 0));
if (http getCond(s, COND HANDLE) < 0)
http skipCGI () ;
}
else
http skipCGI(s) ;
break;

case CGI DATA:
handle = http getCond(s, COND HANDLE) ;
sspec_write (handle, http getData(s),
http getDatalLength(s)) ;
break;

case CGI_END:
handle = http getCond(s, COND HANDLE) ;
sspec_close (handle) ;

// Thefollowing statement ensures that the handle is set back to -1 when we know it is closed.
http setCond(s, COND HANDLE, -1);
break;

case CGI_EOF:
http switchCGI (s, “/index.html”);
break;

case CGI_ABORT:
handle = http getCond(s, COND_HANDLE) ;

// Thefollowing test is added so we don't try to close the handleif it is already closed.
if (handle >= 0)
sspec_close (handle) ;
break;

}

return O0;

Chapter 4: HTTP Server 193

What Happens if the Write Fails?

Thereis still one point to cover. That is, the sspec_write () cal isnot guaranteed to swallow
all of the data that it was told to write. In fact, sspec_write () may completely fail (for exam-
ple, if thefile system runs out of space).

First, let’'s handle the case where sspec_write () returnsan error, that is, its return codeis
negative. In this case, we probably want to return an error indication to the client. This can be done
usingthehttp switchCGI () orcgi redirectto () functions. A special page will need
to be created for this purpose. If thispageiscaled“ /upld err.html”, then thefollowing
code could be used:

case CGI DATA:
handle = http getCond(s, COND HANDLE) ;
if (sspec write(handle, http getData(s),
http getDatalLength(s)) < 0)
{

sspec_close (handle) ;
http switchCGI (s, “/upld err.html”);

}

break;

In the case of an error, the handleis closed, then the HTTP server presentstheupld err.html
page to the client. The current CGl is abandoned, including any pending data that is still incoming.
Thisiswhy the handleis explicitly closed (Snceupld err.html probably doesn’'t know any-
thing about it!). Naturally, upld err.html isaweb page that tells the user that something
went wrong. In practice, this would usually be an SSI rather than a static web page, since you
would probably want to give the user different feedback depending on the exact type of error.

Thefinal consideration iswhat to do if sspec_write () canonly write some (or perhaps none)
of the data it was given. The normal course of action isto just retry later, with the data that was not
written. You could just sit in aloop in the CGI function waiting for the datato be written. This
may be satisfactory in some cases, but often this will unnecessarily reduce system performance
(since nothing else will get a chanceto run except interrupts). It is preferableto returntothe HTTP
server, which in turn can return to the application before coming back into the CGl.

CGI Return Codes

Thisiswherethe CGI return code becomes important. Up to now, the return code has always been
zero, which means “ continue as usual.” (However, some of the APIs such as
http abortCGI () overridethis)

There are several other legitimate values for the return code:

CGI_MORE: Call back again when free space in transmit buffer.
CGI_DONE: CGI has finished writing data to the client.
CGI_SEND: Send the data (null term string) in the main buffer.
CGI_SEND_DONE: combination of the above two.

194 TCP/IP User’'s Manual

Action Code CGI_CONTINUE

In the case we are discussing, the CGI_MORE return code is used. Thistellsthe server that the
CGil function is busy trying to do something, but it could not complete the task. It wants to be
called back again, but without any new incoming data.

Thus, if the CGI function returns CGI_MORE, the HTTP server will eventually come back with a
special action code, which has not been mentioned yet, called CGI_CONTINUE. The CGI needs
to respond to this code so that it can continue doing what it was trying before. Thisimpliesthat the
CGl will need to remember at least a bit of information (like how many bytes of the total it suc-
cessfully wrote). For this, it can use the “state” and “cond” variables.

The following code shows the relevant sections for following this protocol:

int len, newlen;
#define COND LEN 1
case CGI_DATA:
handle = http getCond(s, COND_HANDLE) ;
len = sspec write(handle, http getData(s),
http getDataLength(s)) ;

if (len < 0) { / /permanent error
sspec_close (handle) ;
http switchCGI (s, “/upld err.html”);

}

else if (len < http getDataLength(s)) / /no error, but not all written
{
http setCond(s, COND_LEN, len); / /save placeinfile
return CGI_MORE; / /tell server we're not done
}
break;
case CGI CONTINUE: / /CGI_MORE returned last time
handle = http getCond (s, COND HANDLE); //getfilehandle
len = http getCond (s, COND_ LEN) ; / /get placein file

// Try writing the part that wasn't written.

newlen = sspec _write(handle, http getData(s)+len,
http getDatalLength(s)-len);
if (newlen < 0) { / /permanent error when retrying.

sspec_close (handle) ;
http switchCGI (s, “/upld err.html”);
}
else { / /sum the total written count
len += newlen;
if (len < http getDatalength(s)) { //stll haven't written all
http setCond(s, COND LEN, len); //savenew place
return CGI_MORE; / /tell server we' re not done
}
}

break;

Chapter 4: HTTP Server 195

The important point isthat when CGI_CONTINUE isthe action code, the CGlI retries the failed
part of the previous operation, then tests whether it is complete. On completion, the usual “0”
return code is returned, otherwise the CGI keepsreturning CGI_MORE until the operation either
completes or permanently fails. (The above code does not show the CGI returning zero. Look at
the code in the default handler, http defaultCGI (), to seethisbeing done.)

You may notice the repetition of parts of this code, for example the callsto
http switch CGI (). Thisisfor clarity; you can condense some of this by factoring out the
common parts.

The CGI remembers where it was up to by using another cond variable, COND LEN. Thisisall
that is required, since the contentsof http getData () and itslength are guaranteed not to be
changed on the next call, when the CGI returns CGI_MORE.

Writing Responses to the Client from a CGI Function

A CGil function is able to generate al or part of the response to the client. To do this, it hasto fol-
low the HTTP specification. That is, it must write the response headers, plusthe HTML content.
The HTTP headers must be the first thing written. At a minimum, the header lines look like the
following:

HTTP/1.0 200 OK
Date: Sun, 20 Jan 1980 23:27:10 GMT
Content-Type: text/html

NOTE: Each line must be terminated with a CRLF (that is, “\r\n"), and there must
be ablank line after the last header. The date string can be constructed using the
http date str () function.

You can create the headers in one hit using the following code:

char datel[30];
sprintf (http getData(s),
"HTTP/1.0 200 OK\r\nDate: %s\r\nContent-Type: text/html\r\n\r\n",
http date str(date));
Then send it to the client by returning CGI_SEND straight away. CGI_SEND tellsthe HTTP
server that the CGlI function has put a null-terminated stringinthehttp_getData () buffer,
and that the server should not call the CGI again until the string has been sent.

Thisisthe most convenient way of sending relatively small amounts of dataat atime. It relieson
the fact that the CGlI is allowed to write to the buffer returned by http getData (). Since

http getData () isusedto passincoming datato the CGl, it isimportant to ensure that the
incoming data has been fully processed before writing over that buffer. In addition, the buffer’s
length ISHTTP_MAXBUFFER which limits the size of the string (including the null terminator).

The CGI canreturn CGI_SEND for any action code (except CGI_ABORT). When the action code
iSCGI_EOF, thereisno moreincoming data, so strings can be written back to the client indefi-
nitely; the server keeps calling the CGI at CGI_EOF. When the CGlI has finished generating all
the content, it must return CGI_ DONE.

When the server getsthe CGI_DONE return code, it closes the client connection normally, and
ceases calling the CGl.

196 TCP/IP User’'s Manual

If the CGI has one more thing to write beforeit is“done,” it can return CGI_SEND DONE which
combinesthe CGI_SEND and CGI_DONE return codes. This can simplify the CGl if it does not
have to do much when it first getsthe CGI_EOF action code.

Using CGI_SEND return code has some limitations. In particular, only alimited size of string may
be sent to the client on any one call. Also, anull character cannot be sent to the client because the
null isinterpreted as the end of the string. The null character problem is not usually important,
since nulls arerarely (if ever) sentin an HTML document. The length limitation is more impor-
tant, since some HTML constructs can be very verbose.

Thehttp write () function isdesigned to overcome these limitations. http write ()
writes data from an arbitrary buffer (with a higher length limit on any one call), and returns either
zero meaning that all data was successfully queued, or it may return CGI_MORE if it could not
write the data. Either all or none of the datawill be written, respectively. In the case that none was
written, the CGI returnsthe CGI_MORE return code to the HTTP server. The CGI will then be
called back with an action code of CGI CONTINUE, whereit should retry the failed

http write () cal.

If http write () returnszero, it can be called again immediately with more data, or the CGI
can return zero to the HTTP server. Otherwise, the CGI function will generally need to remember
what it was up to, and retry thehttp write () onthenext cal. The following codeillustrates
useof http write():

static const char * a very long html fragment = “....”; //512bytes
case CGI_END:
return http write(s, a very long html fragment,
strlen(a very long html fragment)) ;

case CGI_CONTINUE:
if (was_writing that long fragment)
return http write(s, a very long html fragment,
strlen(a_very long html fragment)) ;
break;

The details of determining which write was in progress have been glossed over. Basically, you
would have to use acond variable to keep track of whichhttp write () wasin progress, if
there is more than one possibility.

Thereisalimit to the amount of datathat http write () can possibly write on any given call.
Thislimit is set by the HT TP server socket transmit buffer size. This buffer sizeis given by

TCP_ BUF SIZE/2. Thetransmit buffer isusually at least 1024 bytes, which is considerably
larger than the limitation when using the CGI_SEND return code (typically 255 bytes). If you try
exceeding that limit, http write () will never succeed.

Chapter 4: HTTP Server 197

Step 7: Creating the Resource Tables

Web browsers use URLS, which are specially formatted strings, to refer to resources (web pages)
on the server. For example, a user may enter

http://rabbit server/admin/upload.html to retrieve the
/admin/upload.html resource fromthe HTTP server on “rabbit_server.”

When the server receives such arequest, it needs to look up the name, open the resource that it
refers to, and send the contents back to the client.

CGil functions are no different from other resources, as far as the client is concerned. The server,
of course, does entirely different things. The server needs to have alookup table defined, which
trandates URL s into the appropriate local type of resource. Thisisthe function of the “resource
table,” which is also known as the “flashspec” or “ramspec” table in Dynamic C parlance.

The static resource table is a statically defined, constant, table. The dynamic resource table is gen-
erated at runtime. Both types can be used in the same program, with dynamic entries overriding
static entries with the same URL.

With this release of Dynamic C, there is no need to put anything in either of these tables, provided
that afilesystem (FAT or FS2) is used. However, it is convenient to have at least afew entriesin
the dynamic table, and it is mandatory to have entries in either or both the static and dynamic
tablesif CGlI functions are used.

When using the HT TP upload facility, you will need at least one CGI function to be defined, and
probably another entry for theinitial form. The resource table may be defined as follows:

SSPEC_RESOURCETABLE START
SSPEC RESOURCE XMEMFILE (" /index.html", index html),
SSPEC RESOURCE CGI ("upload.cgi", my CGI)

SSPEC _RESOURCETABLE END

This defines a static resource table with two entries. Thefirst is a static web page for the form
(index.html) and the second points to the CGI that will be used to process the uploaded data.
Important: use SSPEC_ RESOURCE_ CGI, not SSPEC_RESOURCE FUNCTION - this defines
the CGI asnew-style. SSPEC_RESOURCE_XMEMFILE specifiesafilethat has beenimported in
the server’s flash memory using the #ximport directive. For example,

#ximport "samples/tcpip/http/pages/upload.html™ index html

index_html isaplaceholder (along int) for the start of thefile. Thisis mentioned inthe
resource table entry so that the server knows where to get it.

The second entry above specifies a“new-style” CGI function, which has been the subject of the
preceding sections. You must use the SSPEC_RESOURCE_ CGI macro to specify this type of
CGlI. The URL (string) parameter is whatever is mentioned in the <form action=...> parameter of
theinitial web page. The other parameter is the function pointer to the CGI that will process the
upload.

If you do not wish to write a CGl just for handling file uploads, you could specify
http defaultCGI () asthe CGI function.

198 TCP/IP User’'s Manual

Step 8: Create List of Content Type Mappings

The HTTP server needs to recognize different file formats. Thisis done using file extensions and
MIME types. The server shares thisinformation with the browser in its header. In this way, the
browser knows how to handle thefile.

The following code creates a table that maps file extensions to the appropriate MIME type.

SSPEC MIMETABLE START

SSPEC_MIME (".htm", "text/html"),
SSPEC MIME (".html", "text/html"),
SSPEC_MIME (".gif", "image/gif"),

SSPEC MIME(".cgi", "")
SSPEC_MIMETABLE END

This method of creating the MIME type mapping table is hew with Dynamic C version 8.5.

Step 9: Rule Creation
There must be rules to limit the upload facility to select user groups. This access control adds
security to the system by disallowing unauthorized tampering.

Thisis done be assigning a unique user (or user group) the privilege of uploading new files. All
other users will be permitted only read access. To do this, there are severa things that need to be
coordinated. First, the user(s) need to be created and assigned the correct group bit (which defines
the upload privilege). Then, the CGI and the file system need to be protected so that only the privi-
leged group can use the CGl, and only the privileged group can write to a defined subset of thefile
system.

Let’'stake this step-by-step. In the main program, define a group bit to represent the privileged
user(s):

#define ADMIN GROUP 0x0002

Groups are assigned one bit out of 16. In this case, we select bit 1. (Bit 0, or 0x0001, will be used
for all other users).

Next, augment the resource table so that the CGlI is accessible only to usersin ADMIN GROUP:

SSPEC_RESOURCETABLE START
SSPEC_RESOURCE_XMEMFILE("/index.html", indeX_html),
SSPEC _RESOURCE_ P CGI ("upload.cgi", my CGI,

"newPages", ADMIN GROUP, 0x0000,
SERVER_HTTP, SERVER AUTH BASIC)
SSPEC_RESOURCETABLE_ END

The SSPEC_RESOURCE_P_CGI isamacro that allows specification of access control parame-
ters. After the usual URL string and function pointer, the next parameters are:

e “newPages’ - thisisthe so-called “realm” of the CGI resource. Thisis not particularly signifi-
cant, except that it notifiesthe client that thisisarestricted resource, and that a userid/password
will be required. The user sees this string when prompted for his or her credentials.

e ADMIN GROUP - thiswas the group defined above. In this context, it appliesto the read
accessrights. To read this resource (that is, to use the CGl), the user needs to be in this group.

Chapter 4: HTTP Server 199

e (0x0000 - thisis aso agroup bit parameter, for write access. CGls themselves do not have the
concept of “writability” (that would imply the ability to change the CGI function!) so thisis
always zero for a CGl.

e SERVER HTTP - this specifies the server that can use the CGI function. CGls are currently
only usable by the HTTP server, thus there is no other sensible choice for this parameter.

e SERVER AUTH BASIC - this specifies the required (minimum) authentication method.
BASIC meansthat asimple plain-text userid and password will be required. A better choiceis
SERVER_AUTH DIGEST since that does not reveal the password to anyone listening in on
the conversation; however, older web browsers do not support this.

Next, the file system needs to be protected. Usually, you do not want the entire file system to be
writable, even to the privileged group members. To establish this sort of protection, you need to set
up arule-based access control. Thisis done using the SSPEC_ RULETABLE method, or equiva-
lent runtime control:

#define SSPEC FLASHRULES
#use “http.lib”

SSPEC_RULETABLE_START
SSPEC_MM_RULE ("/A/new", "newPages", OxFFFF, ADMIN GROUP,
SERVER HTTP, SERVER AUTH NONE, NULL)
SSPEC_RULETABLE_END

The SSPEC_FLASHRULES macro must be defined before you #use “ http.lib”. The rule table has
one entry in this example. The parameters to this entry are:

e “/A/new” -thisisthe string prefix of al file namesto which thisrule applies. In thisexample,
everything in the first FAT partition (/A/) with afilename starting with “new” is protected
according to the remaining parameters. Thisincludes any file in the root directory whose name
starts with “new,” or any filein any subdirectory of the root directory where the subdirectory
name starts with “ new.”

e “newPages’ - thisisthe ream string assigned to these files. Thisisthe same as the CGI realm,
but need not be.

e OxFFFF - thisisthe user groups who are allowed read access. In this case, everyoneis allowed.
e ADMIN GROUP - thisisthe writable group: only the one defined for the CGlI is allowed.
e SERVER HTTP - only the HTTP server can access.

e SERVER AUTH NONE - thisisonly relevant when the resource is being read directly by the
client. When the fileiswritten (viathe CGI) the CGI has already authenticated the user inits
own way, and doesn’t need to re-authenticate. In this example, no authentication isrequired for
retrieval (read-only) of the file.

e NULL - thisisan additional parameter that is not relevant to this discussion.

By default, every other file in the filesystem(s) that is not covered by thisrule is denied write
access. In general, aruleisonly required when it isdesired to permit write access (not deny it).

200 TCP/IP User’'s Manual

Step 10: Create Set of User IDs

The last step isto actually define the users. This must be done at runtime, using the sauth_* ()
functions. The following codeillustrates:

int uid;
uid = sauth adduser ("admin", "upload", SERVER HTTP) ;

sauth setusermask (uid, ADMIN GROUP, NULL) ;
sauth setwriteaccess(uid, SERVER_HTTP) ;

This sets up asingle user, with userid “admin” and password “upload.” The user is only “known”
tothe HTTP server. sauth_setusermask () isrequired when auserid is created (since the
default may not be satisfactory). It makes sure the user is placed into the correct group(s), in this
case, the ADMIN GROUP that we defined above. Finally, each user must be individually granted
write access using the sauth setwriteaccess () function. If thisis not done, the user will
not be able to write the file in spite of passing other tests.

Step 11: Tying It All Together

After performing the above steps, the actual running of the HTTP server and CGI isamost trivial.
The main C function should have aloop init which callshttp handler():

void main ()

{

int uid;
sock _init(); // Initidlize the network

// Mount the FAT filesystem.
sspec_automount (SSPEC _MOUNT ANY, NULL, NULL, NULL) ;

// Create the authorized user, as described in the previous section.

uid = sauth adduser ("admin", "upload", SERVER HTTP) ;
sauth setusermask (uid, ADMIN GROUP, NULL) ;

sauth setwriteaccess(uid, SERVER HTTP) ;

http init () ; // Initializethe HTTP server
tcp reserveport (80) ; / / Enable smooth handling of multiple HTTP requests
for (;;) http_handler(); // Thebigloop! Driveseverything.

}

All error handling has been pared out of the above code. For full details, please refer to the sample
program samples\tcpip\http\upld fat.c.

Chapter 4: HTTP Server 201

4.7 API Functions for HTTP Servers

cgi continue

int cgi continue (HttpState * state, char * localurl)

DESCRIPTION

Called from a CGlI function after processing any data submitted. This function contin-
ues creating aresponse asif from anormal GET request to the specified local URL.

NOTE: the CGI function must NOT have sent any data to the socket.

PARAMETERS
state A pointer to the HTTP server state structure.
localurl The URL string, which must be a URL defined in the server spec

table (otherwise the browser will see a"not found" message).

RETURN VALUE
The return value from this function should be used as the return value from the CGI
handler function that callsit.

LIBRARY
HTTP.LIB

202 TCP/IP User’'s Manual

cgi redirectto

void cgi redirectto(HttpState *state, char *url);

DESCRIPTION

Thisutility function may be calledinaCGI function to redirect the user to another page.
It sends auser to the URL stored inurl. You should immediately issuea“return
0 ;" after calling this function. The CGl is considered finished when you call this, and
will be in an undefined state.

The http sampleswork correctly withcgi _redirectto () becausethey use macro
constantsto definethe URL parameter. If you manipul atethe url string, please be aware
of the following issues:

e Thelibrary function sets a pointer to the 2nd parameter - url. The calling routineis
responsible for ensuring that the location represented by the pointer remains valid
after the call. Thisis because the URL string will not be processed until after the
CGil function is finished.

e |f the application hasMAX TCP_ SOCKET BUFFERS and
HTTP_ MAXSERVERS set to more than one, it is possible that the CGI function
will be called successively with different server states serving different client
reguests. In these circumstances it is necessary to ensure that the pointer to the url
isvalid for each of the server states.

e After the cgi function hascalled cgi_redirecto () andreturnsO, the
http_handler then causes the server response to be sent to the browser. The infor-
mation is sent as follows:

1. HTTP header response containing the redirection information response code
302.

2. A human readable redirection html page telling the user that redirection has
taken place, and to click "here" to go to the new URL. Thisisfor browsers
that do not recognize the redirection 302 command in the header.

This may cause a problem for browsers which do recognize the 302 redirection
command. Some browsersimmediately issue a GET request to the new location
while still reading in the human readable page. If MAX TCP_SOCKET BUFFERS
and HTTP_MAXSERVERS are set to one, the server will not receive the GET
request becauseit is busy sending out the human-readable page. The symptom is
that the browser appears to time-out. (Thistiming problem may be masked when a
proxy server isused.) Set MAX TCP_SOCKET BUFFERS and

HTTP_ MAXSERVERS to avalue more than one to prevent this problem.

Chapter 4: HTTP Server

203

PARAMETERS
state Current server struct, as received by the CGI function.

url Fully qualified URL to redirect to.

RETURN VALUE
None - sets the state, so the CGI must immediately return with avalue of 0.

LIBRARY
HTTP.LIB

SEE ALSO

cgi sendstring

cgi sendstring

void cgi sendstring(HttpState *state, char *str);

DESCRIPTION

Sendsastring to the user. You should immediately issuea“return 0;” after calling
this function. The CGl is considered finished when you call this, and will bein an un-
defined state. This function greatly ssmplifiesa CGI handler because it allows you to

generate your page in a buffer, and then let the library handle writing it to the network.

PARAMETERS
state Current server struct, as received by the CGI function.
str String to send.

RETURN VALUE
None - sets the state, so the CGI must immediately return with avalue of 0.

LIBRARY
HTTP.LIB

SEE ALSO

cgi_redirectto

204 TCP/IP User’'s Manual

http abortCGI

int http abortCGI(HttpState * state);

DESCRIPTION

Terminate this CGI request. The client will receive an error message indicating the con-
nection was closed.

The CGI should not make any further HTTP calls after calling this function. It should
clean up any resourcesthat it opened, since no further callsare madeto this CGl for this
request.

PARAMETERS

state HTTP state pointer, as provided in the first parameter to the CGI
function.

RETURN VALUE
0

LIBRARY
HTTPLIB

SEE ALSO

http getAction, http skipCGI, http switchCGI, http finishCGI,
http write

Chapter 4: HTTP Server 205

http addfile

int http addfile(char *name, long location);

DESCRIPTION
Adds afile to the dynamic resource table.

PARAMETERS
name Name of thefile (for example, /index.html).
location Address of the file data. (Return value from #ximport)

RETURN VALUE

0: Success.

1: Failure.
LIBRARY

HTTP.LIB
SEE ALSO

http delfile

206 TCP/IP User’s Manual

http contentencode

char *http contentencode(char *dest, const char *src,
int len);

DESCRIPTION

Convertsastring to include HTTP transfer-coding tokens (such as & #64; (decimal) for
at-sign) where appropriate. Encodes these characters: "<>@%#& "

Source string is NULL - byte terminated. Destination buffer is bounded by 1en. This
function is reentrant.

PARAMETERS
dest Buffer where encoded string is stored.
src Buffer holding original string (not changed)
len Size of destination buffer.

RETURN VALUE
dest: Therewas room for all conversions.
NULL: Not enough room.

LIBRARY
HTTP.LIB

SEE ALSO
http urldecode

Chapter 4: HTTP Server

207

http date str

char *http date str(char *buf);

DESCRIPTION
Print the date (time zone adjusted) into the given buffer. This assumes there is room!

PARAMETERS

buf The buffer to write the date into. Thisrequires at least 30 bytesin
the destination buffer.

RETURN VALUE
A pointer to the string.

LIBRARY
HTTP.LIB

SEE ALSO
http handler

208 TCP/IP User’s Manual

http defaultCGI

int http defaultCGI (HttpState * state);

DESCRIPTION

This function should not be called directly by the application. It isintended to be used
asanew-style CGI for handling file upl oads. See " sampl es\tcpip\http\upld_fat.c" for an
example of using this function.

This CGI function accepts POST requests from the client (browser) which may contain
one or more files that are being uploaded. It looks at the field name of the form datain
therequest. If the field name startswith “ /”, it is assumed to be the name of aresource
which isto be created (if it does not already exist) and overwritten with the uploaded
file contents.

There are three steps required to use this CGl:

1. Define a CGl resource in the flash- or ram-spec table. If using flashspec, for
example, there would be an entry like

SSPEC_RESOURCETABLE START

SSPEC_RESOURCE_XMEMFILE ("/index.html", index html),
SSPEC_RESOURCE_CGI ("/upload.cgi", http defaultCGI)
SSPEC_RESOURCETABLE END

There may be other resources, but at |east two are normally required. One
resource is aweb page (see below) that contains aform the user canfill in
with the name of the file to upload. The other resource (CGl) isareferenceto
this function, giving it a URL name that identifies it to the browser.

2. Create a web page which contains a form like the following skeleton exam-
ple

<FORM ACTION="/upload.cgi" METHOD="POST"
enctype="multipart/form-data">
<INPUT TYPE="FILE" NAME="/A/incoming/new.htm">
<INPUT TYPE="SUBMIT" VALUE="Upload"s>
</FORM>

in the <FORM> element, the ACTION= parameter specifiesthe URL
assigned to this CGl. In the <INPUT TY PE="FILE"> element, the NAME=
parameter specifies the resource name used to contain the uploaded file con-
tents. In this example, the resourceis called "/A/incoming/new.htm", which
will work if you are using the FAT filesystem.

If uploading to a subdirectory, “incoming” in the above example, the subdi-
rectory must already exist. If not, the upload will fail.

Chapter 4: HTTP Server 209

3. To add user authentication and other facilities there are three possible things
to protect:

e The web page containing the form. Give read access only to those
users who could conceivably upload the files specified therein.

e The CGI itself (thisfunction). Protect asfor (a).

e The uploaded resource. You should set up arule alowing write access
only to the intended user(s).
When defining user 1Ds which can use the upload, do not forget to give those users
overall write access using, for example:

sauth_setwriteaccess(uid, SERVER_HTTP)

Beawarethat “rogueclients’ could easily change the resource name to something other
than the one that was intended in the origina form. Thisiswhy resource protectionis
important.

Having done these three things, the HTTP server is now set up to automatically place
uploaded files in the filesystem.

Note that this CGI islimited to placing filesinto fixed resource locations (as specified
by the field name of the INPUT element). If you need more sophisticated control, you
may wish to write your own CGI function, using the code of this one as a starting point.

This CGI also presents adefault status web page back to the client. This page indicates
whether the upload was successful, the number of bytes uploaded, and alink to test out
the new file (assuming it is something the browser will understand, suchasan HTML
document or GIF image). You can use this function as a starting point for generating
your own content.

PARAMETERS
state HTTP state pointer, provided by HTTP server to all CGls.
newURL The resource name to present to the client. This may be another

CGil, or any other type of resource that could be presented to the
clientinresponsetoan HTTP GET or POST request. Theresource
must exist in the flash- or ram-spec table, or in afilesystem.
RETURN VALUE
See documentation for "writing a data handler CGI"

LIBRARY
HTTPLIB

SEE ALSO

http getAction, http skipCGI, http switchCGI, http finishCGI,
http write

210 TCP/IP User’'s Manual

http delfile

int http delfile(char *name);

DESCRIPTION
Deletes afile from the RAM spec table.
PARAMETERS
name Name of thefile, aspassedto http addfile ().

RETURN VALUE

0: Success;
1: Failure (not found).

LIBRARY
HTTP.LIB

SEE ALSO
http addfile

Chapter 4: HTTP Server 211

http finderrbuf

char *http finderrbuf(char *name);

DESCRIPTION
Finds the occurrence of the given variable in the HTML form error buffer, and returns
its location.

PARAMETERS
name Name of the variable.

RETURN VALUE

NULL: Failure.
I NULL: Success, location of the variable in the error buffer.

LIBRARY
HTTP.LIB

212 TCP/IP User’s Manual

http findname

int http findname (char *name) ;

DESCRIPTION
Finds a spec entry, searching first in RAM, then in flash.

Thisfunction is deprecated as of Dynamic C 8.50. Use sspec_findname ().

PARAMETERS

name Name, in text, of the spec to find.

RETURN VALUE
The spec entry.

LIBRARY
HTTP.LIB

Chapter 4: HTTP Server 213

http finishCGI

int http finishCGI(HttpState * state);

DESCRIPTION

Indicate to the HTTP server that this CGI has finished processing data from this multi-
part data stream. The server reads (and discards) datato the end of the entire stream (in-
cluding epilog). The next call to the CGI function will have an action code of
CGI_EOF (or possibly CGI_ABORT if there was a stream error).

PARAMETERS

state HTTP state pointer, as provided in the first parameter to the CGlI
function.

RETURN VALUE
0

LIBRARY
HTTPLIB

SEE ALSO

http getAction, http skipCGI, http abortCGI, http switchCGI, ,
http write

214 TCP/IP User’'s Manual

http getAction

char http getAction(HttpState * state);

DESCRIPTION
Return the current CGI action. This should be called only from a CGI function regis-
tered asa SSPEC_CGI resource in the zserver resource table.

NOTE: Thisisimplemented as amacro. You must define the macro
USE_HTTP_UPLOAD if using this macro, otherwise you will get a compile-time error.

http getAction () should be called at the top of the CGI function. Other
http get* functions/macros may or may not be valid depending on the action code.
The following table shows which functions are applicable:

Table 4-1. Valid Functions per Action Code

CGl Action Code Valid Functions/Macros

http_getContext, http_getURL, http_getState,
http_setState, http_getCond, http_setCond,
http_getUserState, http_getSocket, http_write,
Any action code except CGI_ABORT | http_abortCGl, http_skipCGl, http_finishCGl,
http_switchCGl, http_getHTTPVersion,
http_getHTTPMethod,

http_getRemainingL ength

http_getField, http_getContentL ength,
http_getContentType,
http_getContentDisposition,
http_getTransferEncoding

CGI_START

http_getField, http_getContentLength
http_getContentType,

CGI DATA http_getContentDisposition,
http_getTransferEncoding,
http_getData, http_getDatalength

http_getField, http_getContentL ength,
http_getContentType,

CGI_END http_getContentDisposition,
http_getTransferEncoding
CGI HEADER, CGI PROLOG, http_getData, http_getDatal ength

CGI_EPILOG, CGI_EOF

Depends on previous action code at time of
CGI_CONTINUE returning CGI_MORE, however
http getData will NOT bevalid.

Chapter 4: HTTP Server 215

Table 4-1. Valid Functions per Action Code

CGIl Action Code Valid Functions/Macros

Should only do resource cleanup.
http_getContext, http_getURL, http_getState,

CGI_ABORT http_getCond, http_getUserState,
http_getHTTPVersion, http_getHTTPMethod
PARAMETER
state HTTP state pointer, as provided in the first parameter to the CGI

function.

RETURN VALUE
Action code. One of the following values:
® CGI START - start of apartinamulti-part transfer.
® CGI DATA - binary datafor this part
® CGI_END - endof apart
® CGI_HEADER - header line of a part
® CGI PROLOG - binary data before the first part
® CGI EPILOG - lineof data after the last part
e CGI EOF - norma end of all parts and epilog

® CGI ABORT - abnormal termination. CGI should recover and/or close any
open resources.

® CGI CONTINUE - being called from the HTTP server after the CGI previously
returned CGI_MORE.

LIBRARY
HTTPLIB

SEE ALSO

(functions mentioned above), http defaultCGI

216 TCP/IP User’s Manual

http getCond

int http getCond(HttpState * state, int idx);

DESCRIPTION
Return the current HTTP condition state variable (aka., cond variable). There are
HTTP_ MAX_ COND of these integer state variables, thus i dx must be between 0 and
HTTP_ MAX COND-1, inclusive.

Use of cond variablesis entirely up to the application; however, they are initialized by
the HT TP server under certain conditions. By default, they are set to zero at the start of
each request from the client. If the client request includes URL GET-type parameters
of the form http://host/resource.html ?A=1& B=2& C=3 etc. then cond state 0 is set to
thevaluefor 'A’, cond state 1 is set to the value for 'B' etc. The values must be integers,
which are coerced into 16 bit signed integers.

NOTE: Thisisimplemented as a macro.

PARAMETERS
state HTTP state pointer, as provided in the first parameter to the CGlI
function.
idx Index of cond variable: 0. HTTP_MAX COND-1. Validity is not
checked.

RETURN VALUE
Value of cond variable idx.

LIBRARY
HTTPLIB

SEE ALSO
http getAction, http setCond

Chapter 4: HTTP Server 217

http getContentDisposition

char http getContentDisposition(HttpState * state);

DESCRIPTION

Return the current disposition of the datawhich isbeing provided by the client. Thisis
one of the following enumerated values:

e MIME DISP NONE: unspecified disposition
e MIME DISP INLINE: the content isto bedisplayed "inline"

e MIME DISP ATTACHMENT: the content isonly to be displayed if thereis
some action by the user

e MIME DISP FORMDATA: the content isform field data (or an uploaded fil€).

Of these, only NONE and FORMDATA arereally relevanttoHTTP. Itisonly valid to call
this when the action codeis CGI_START, CGI_DATA or CGI_END.

NOTE: Thisisimplemented as a macro.
PARAMETER

state HTTP state pointer, as provided in the first parameter to the CGI
function.

RETURN VALUE
Content disposition code, as documented above.

LIBRARY
HTTPLIB

SEE ALSO
http getAction

218 TCP/IP User’'s Manual

http getContentLength

long http getContentLength(HttpState * state);

DESCRIPTION

Return thelength of datain the current part of amulti-part datastream. The return value
isinterpreted differently, depending on the action code.

Itisonly valid to call thiswhen the action codeis CGI_START, CGI_DATA or
CGI_END.

When CGI_START, thisreturnsthe value of the ContentL ength header for this part (or
-1 if there was no such header).

When CGI_DATA or CGI_END, itisthetotal number of bytesthat have actually been
read and presented to the CGI. Thisincreases for each CGI_DATA call, until it repre-
sents the total content length when actionisCGI__END.

NOTE: Thisisimplemented as a macro.

PARAMETER

state HTTP state pointer, as provided in the first parameter to the CGlI
function.

RETURN VALUE
Length of part data.

LIBRARY
HTTPLIB

SEE ALSO
http getAction

Chapter 4: HTTP Server 219

http getContentType

char * http getContentType(HttpState * state);

DESCRIPTION
Return the current content type of the data which is being provided by the client. This
isaMIME type string e.g. "text/html" or "image/jpeg".

The CGI might need to look at thisto determine the appropriate way to processthe data
Normal form fields will usually contain "text/plain”, however uploaded files may con-
tain any type of data.

Itisonly valid to call thiswhen the action codeis CGl_START, CGI_DATA or
CGI_END.

NOTE: Thisisimplemented as a macro.

PARAMETER

state HTTP state pointer, as provided in the first parameter to the CGI
function.

RETURN VALUE
Null terminated string containing the MIME type name.

LIBRARY
HTTPLIB

SEE ALSO
http getAction

220 TCP/IP User’'s Manual

http getcontext

ServerContext * http getcontext(int servno);

DESCRIPTION
Returnthe serverContext struct for the specified HTTP server instance.

NOTE: This structure should not be modified by the application.

PARAMETER

servno Server instance number (0. HTTP MAXSERVERS-1)

RETURN VALUE

NULL: invalid server instance.
Otherwise, pointer to thisserver's ServerContext.

LIBRARY
HTTP.LIB

Chapter 4: HTTP Server 221

http getContext

ServerContext * http getContext(HttpState * state);

DESCRIPTION

Return the current HT TP server context. The context pointer isrequired by many zserv-
er resource handler functions.

NOTE: Thisisimplemented as a macro.
PARAMETER

state HTTP state pointer, as provided in the first parameter to the CGlI
function.

RETURN VALUE
Pointer to the HT TP server's context structure. See zserver documentation.

LIBRARY
HTTPLIB

SEE ALSO
http getAction

222 TCP/IP User’'s Manual

http getData

char * http getData(HttpState * state);

DESCRIPTION

Return apointer to the datathat isavailable. Itisonly valid to call thisif the action code
isoneof CGI_DATA, CGI_PROLOG, CGI_EPILOG, CGI_HEADER Or CGI_ EOF.

When CGI_DATA, thisisthe next chunk of datareceived as the content of the current
part of amulti-part transfer. The dataarrivesin arbitrary amounts. CRLF boundaries (if
any) are not respected, and the datamay contain NUL Ls and other binary values. THE
CGI MUST CONSUME ALL DATA PROVIDED sincethe datawill not be presented
again on the next call.

When CGI_PROLOG, thisis data that occurs before the first boundary (part) but after
the main HTTP headers. This data (like that for CGI _DATA) is not line-oriented.

When CGI_EPILOG,CGI_HEADER Or CGI_EOF, thedatawill beacompleteline of
input (with the terminating CRLF stripped off). The returned string will also be null-
terminated. When CGI_EOF, the data (if any) istechnically part of the epilog.

Prolog datais lines of input that were provided before the first "official" part of the
multi-part data. Most HT TP clientswill not provide any prolog data. Epilog dataislines
of data after the last official part. Again, HTTP clients do not usually generateit. Itis
aways safe to ignore prolog and epilog data, since it is usually provided only for non-
MIME compliant servers.

Dataprovided whentheactionisCGI_HEADER isaline of header dataprovided at the
start of each part of the multi-part data. It issafefor the CGI to ignore header lines, since
the HTTP server also processes the ones that it needs. The CGl is given these header
lines so that it can extract useful or customized information if desired.

The length of the data may be obtained using http getDataLength ().

The CGl is alowed to overwrite data at the returned area, provided that it writes no
morethan HTTP_ MAXBUFFER bytes.

NOTE: Thisisimplemented as a macro.

PARAMETER

state HTTP state pointer, as provided in the first parameter to the CGlI
function.

RETURN VALUE
Pointer to the first character of data.

SEE ALSO
http getAction

Chapter 4: HTTP Server 223

http getDataLength

word http getDatalLength(HttpState * state);

DESCRIPTION

Return the length of datathat isavailable. It isonly valid to call thisif it isvalid to call
http getData (). Thatis, if theaction codeisoneof CGI_DATA,CGI_PROLOG,
CGI EPILOG, CGI HEADER Ofr CGI EOF.

NOTE: Thisisimplemented as a macro.

PARAMETER

state HTTP state pointer, as provided in the first parameter to the CGlI
function.

RETURN VALUE

Length of availabledata. Thiswill rangefrom0to HTTP_MAXBUFFER. Owill only be
returned for PROLOG and EPILOG when ablank line is read.

LIBRARY
HTTPLIB

SEE ALSO
http getAction

224 TCP/IP User’'s Manual

http getField

char * http getField(HttpState * state);

DESCRIPTION

Returnthe current formfield name. Thisfunction should only be called when the action
codeisSCGI_START,CGI DATA or CGI_END.

NOTE: Thisisimplemented as a macro.

PARAMETER

state HTTP state pointer, as provided in the first parameter to the CGlI
function.

RETURN VALUE

Null-terminated string containing the current field name. The field name isthe name of
aform element, specified using, for example,

<INPUT TYPE="TEXT" NAME="srv file">

inthe HTML, where srv_file isthefield name.

If there was no "name=" parameter in the returned form data, this will be an empty
string (zero length, not NULL).

LIBRARY
HTTPLIB

SEE ALSO
http getAction

Chapter 4: HTTP Server

225

http getHTTPMethod

char http getHTTPMethod(HttpState * state);

DESCRIPTION
Return the HT TP request method of the current request protocol. The CGI might need
to look at thisto generate the correct response headers.

NOTE: Thisisimplemented as a macro.
PARAMETER

HTTP state pointer, as provided in the first parameter to the CGI
function.

state

RETURN VALUE
One of the following codes:
e HTTP METHOD GET -"GET"i.e, normal retrieval, without making any per-
manent state update.

e HTTP_ METHOD POST -"POST" i.e., uploading some information to be stored,
or making some permanent state change. Thisis the norma method for invoking

CGls.

e HTTP_ METHOD HEAD - "HEAD" i.e, the client only wants the headers, not
the actual content e.g. it might be trying to determine the most recent modifica-

tion date.
Other codes may be returned in the future.

LIBRARY
HTTPLIB

SEE ALSO
http getAction

226 TCP/IP User’'s Manual

http getHTTPVersion

char http getHTTPVersion(HttpState * state);

DESCRIPTION
Return the HTTP version number of the current request protocol. The CGI might need
to look at thisin order to generate the correct response headers.
NOTE: Thisisimplemented as a macro.

PARAMETER

state HTTP state pointer, as provided in the first parameter to the CGlI
function.

RETURN VALUE
One of the following codes:
e HTTP_VER 09 -version0.9
e HTTP_VER 10 -versionl.0
e HTTP VER 11 -versionl.l
Other codes may be returned in the future.

LIBRARY
HTTPLIB

SEE ALSO
http getAction

Chapter 4: HTTP Server

227

http getRemainingLength

long http getRemainingLength(HttpState * state);

DESCRIPTION

Return the remaining length of the incoming data stream. Thislength includes all parts
(not just the current part) and also includes the boundary separators and epilog data.
Normally, thisvaluewill be zero when the action codeisCGI EOF. If thevalueisneg-
ative, then the client might not have indicated the total data length, or might not have
set theright value.

NOTE: Thisisimplemented as a macro.

PARAMETER

state HTTP state pointer, as provided in the first parameter to the CGlI
function.

RETURN VALUE
Length of remaining data, or negative if not known.

LIBRARY
HTTPLIB

SEE ALSO
http getAction

228 TCP/IP User’'s Manual

http getSocket

tcp Socket * http getSocket(HttpState * state);

DESCRIPTION

Return the current HT TP server socket. The socket may be written/read; however, this
isinadvisable since it may interfere with the server's use of it.

NOTE: Thisisimplemented as a macro.
PARAMETER

state HTTP state pointer, as provided in the first parameter to the CGlI
function.

RETURN VALUE
Pointer to the HT TP server's TCP socket structure.

LIBRARY
HTTPLIB

SEE ALSO
http getAction

Chapter 4: HTTP Server

229

http getState

int http getState(HttpState * state);

DESCRIPTION
Return the current primary HTTP CGl state variable.

Use of this state variableis entirely up to the application; however, it isinitialized by
the HTTP server to zero before calling the CGI for the first time.

NOTE: Thisisimplemented as a macro.

PARAMETER

state HTTP state pointer, as provided in the first parameter to the CGlI
function.

RETURN VALUE
Value of primary state variable.

LIBRARY
HTTPLIB

SEE ALSO
http getAction

230 TCP/IP User’'s Manual

http getTransferEncoding

char http getTransferEncoding(HttpState * state);

DESCRIPTION

Return the current encoding of the data which is being provided by the client. Thisis
one of the following enumerated values:

e CTE BINARY Thedefault

e CTE 7BIT 7-bitsafe ASCII
e CTE 8BIT 8-bit ASCII

e CTE QP Quoted printable
e CTE BASEG4 Base64

Of these, the CGl isonly likely to see CTE BINARY, since HTTPisan 8-bit protocol,
and most clients (browsers) will not bother to encode the data. Encodingisonly anissue
for internet mail, which sometimes has to cross interfaces that do not support full 8-bit
binary transfers.

If the CGI detectsatransfer encoding that requiresnon-null operation (that is, CTE_ QP
or CTE_BASE64) then it should either regject the transfer, or decode the data as it
comesin.

Itisonly valid to call thiswhen the action codeis CGI_START, CGI_DATA or
CGI_END.

NOTE: Thisisimplemented as a macro.

PARAMETER

state HTTP state pointer, as provided in the first parameter to the CGI
function.

RETURN VALUE
Transfer encoding code, as documented above.

LIBRARY
HTTPLIB

SEE ALSO
http getAction

Chapter 4: HTTP Server 231

http getURL

char * http getURL(HttpState * state);

DESCRIPTION
Return the URL of the current HTTP client request. In aCGl, thiswill usually be some-
thing like foo . cgi.
NOTE: Thisisimplemented as a macro.

PARAMETER

state HTTP state pointer, as provided in the first parameter to the CGlI
function.

RETURN VALUE

Null-terminated string containing the URL. Note that GET-style form parameters will
be stripped off: for example, the URL, foo.cgi?A=99&D=-45, will bereturned as
foo.cgi.

The GET parameters are availableusing ht tp _getCond ().

LIBRARY
HTTPLIB

SEE ALSO
http getAction

232 TCP/IP User’'s Manual

http getUserState

void * http getUserState(HttpState * state);

DESCRIPTION

Get the "user state”" area of the HT TP server structure. Thisis an area of memory that
can be used by the CGlI to keep track of itsinternal state, from call to call.

Thesizeof thisareaisSHTTP_USERDATA_ SIZE. If that macrois not defined, it de-
faultsto zero, souse of thehttp getUserState macro will result in acompile-
time error.

NOTE: Thisisimplemented as a macro.
Example:

typedef struct { ... } myCGIdata;

#define HTTP_ USERDATA SIZE sizeof (myCGIdata)
#use "http.lib"

int myCGI (HttpState * s)
myCGIdata * d;

d = (myCGIdata *)http getUserState(state);
}
PARAMETERS
state HTTP state pointer, as provided in the first parameter to the CGlI
function.

RETURN VALUE

Returns the address of the first byte of the user area. This should be cast to the appro-
priate structure type.

LIBRARY
HTTPLIB

SEE ALSO
http getAction

Chapter 4: HTTP Server 233

http handler

void http handler(void);

DESCRIPTION

Thisisthe basic control function for the HTTP server, atick function to runthe HTTP
daemon. It must be called periodically for the daemon to work. It parses the requests
and passes control to the other handlers, either html handler, shtml handler,
or to the devel oper-defined CGI handler based on the request’s extension.

LIBRARY
HTTP.LIB

SEE ALSO
http init

234 TCP/IP User’s Manual

http idle

int http idle(wvoid);

DESCRIPTION
Query to seeif any HTTP servers are active.

RETURN VALUE

0: at least one HTTP server is active
1:dl HTTPserversareidle

LIBRARY
HTTP.LIB

SEE ALSO
http_handler

Chapter 4: HTTP Server

235

http init

int http init(void);

DESCRIPTION
Initializes the HT TP daemon. This must be called after sock _init (), and before
calinghttp handler () inaloop.

This setsthe root directory to "/" and setsthe default filenameto index . html. You
can change these defaultsby calling http_set path () after thisfunction.

You can override these defaults at compile-time by defining the macros

#define HTTP HOMEDIR "/"
#define HTTP DFLTFILE "index.html"

to be something other than these defaults. If you do this, then thereisno need to invoke
thehttp set path () function.

RETURN VALUE
0: Success.

LIBRARY
HTTP.LIB

SEE ALSO
http handler, http shutdown, http status, http set path

236 TCP/IP User’s Manual

http nextfverr

void http nextfverr(char *start, char **name, char **value,
int *error, char **next);

DESCRIPTION
Getstheinformation for the next variablein the HTML form error buffer. If any of the
last four parametersin the function call are NULL, then those parameters will not have
avauereturned. Thisisuseful if you areonly interested in certain variableinformation.

PARAMETERS

start Pointer to the variable in the buffer for which we want to get infor-
mation.

name Return location for the name of the variable.

value Return location for the value of the variable.

error Return location for whether or not the variableisin error (O if itis
not, 1if itis).

next Return location for a pointer to the variable after this one.

RETURN VALUE
None, although information is returned in the last four parameters.

LIBRARY
HTTP.LIB

Chapter 4: HTTP Server

237

http parseform

int http parseform(int form, HttpState *state);

DESCRIPTION

Parses the returned form information. It expects a POST submission. Thisfunctionis
useful for a devel oper who only wants the parsing functionality and wishesto generate
forms herself. Note that the developer must still build the array of Formvarsand use
the server spec table. Thisfunction will not, however, automatically display the
form when used by itsdlf. If all variables satisfy all integrity checks, then the variables
values are updated. If any variablesfail, then none of the values are updated, and error
informationiswritteninto the error buffer If thisfunction isused directly, the devel oper
Must Process errors.

PARAMETERS
form server_spec index of theform (i.e., locationin TCP/IP serv-
ers’ object list).
state The HTTP server with which to parse the POSTed data.

RETURN VALUE

0: There is more processing to do;
1: Form processing has been completed.

LIBRARY
HTTP.LIB

238 TCP/IP User’'s Manual

http safe

int http safe(char * to, char * from, int tolen, int fromlen);

DESCRIPTION

Convert a http-unsafe string in £ rom (length fromlen) into a properly escaped
string. For example, the string "hell o& goodbye<>" would be changed to
"hello& amp;goodbye& It;& gt;".

Returns non-zero if result could not fitin tolen-1 bytes. A null isaways added, thus
tolen should account for this. Double quotes are escaped since the result may itself
be quoted.

Newline characters are turned into HTML line break "
" markup. Control charac-
ters (codeslessthan 32) areturned into "&#xx;" where"xx" isthe hexadecimal control
char value. The source string can contain null character(s) which iswhy itslength is
passed in the parameter fromlen.

PARAMETERS
to Destination buffer for escaped string
from Source buffer for string to convert
tolen Length of destination buffer (must be at least equal to fromlen,
since string is never smaller than source string).
fromlen Length of source buffer.

RETURN VALUE

0 on success

non-zero if resulting string (plusits null terminator) could not fit in the provided buffer.
LIBRARY

HTTP.LIB

SEE ALSO
http_handler

Chapter 4: HTTP Server 239

http scanpost

int http scanpost(char *tag, char *buffer, char *dest,
int maxlen);

DESCRIPTION

Thisfunction allows you to scan abuffer with aPOST response for the key/value pairs.
Thisfunction is reentrant.

PARAMETERS
tag Buffer holding the tag name.
buffer Buffer to read data from.
dest Buffer to store value to.
maxlen Size of destination buffer.

RETURN VALUE

0: Successful
1 0: Not successful

LIBRARY
HTTP.LIB

240 TCP/IP User’'s Manual

http set anonymous

int http set anonymous(int uid);

DESCRIPTION

Set the “anonymous” user ID. Thisisthe assumed user ID when no credentials are pro-
vided by the client (browser). A typical use of this function would be:

int anon;

anon = sauth adduser ("anonymous", "",
SERVER_FTP|SERVER HTTP) ;

sauth setusermask (uid, WORLD GROUP, NULL) ;

http set anonymous (uid) ;

ftp set anonymous (uid) ; // ifusing FTPtoo

which defines an “anonymous’ login for the HTTP and, optionally, the FTP servers.
(Since FTP also requires an anon user, you can use the same user 1D for both FTP and
HTTP).

When aweb browser initially requests a resource, it may not pass any user credentials
(i.e., user name and password). The HTTP server will assume that the user is anony-
mous, and apply the access permissionstests on that basis. If accessisdenied, then the
browser will prompt the user for areal user name and password, and the request will be
re-tried.

You do not always need to define an anonymous user to HTTP. But it isrequired if you
have some resource which is (say) protected for write access, but you want any user to
be able to retrieve the resource without requiring a user name/password.

NOTE: Thisfunction is non-reentrant. It setsaglobal variable which is accessed by all
HTTP server instances. For this reason, you should call this function once only before
startingto call http _handler ().

PARAMETER

uid The userID to use as the anonymous user. This should have been
defined using sauth_adduser (). Pass-1 to set no anony-
mous user. In this case, only resources which are completely free
of any access controls will be accessible to users who do not pro-
vide credentials.

RETURN VALUE
Same as the uid parameter, except -1 if uid invalid.

LIBRARY
HTTPLIB

SEE ALSO

sauth adduser, ftp set anonymous, sauth setusermask

Chapter 4: HTTP Server 241

http setauthentication

int http setauthentication(int auth);

DESCRIPTION

Setsthe type of authentication to be used globally by the HTTP server. By default, this
is set to the strongest available type of authentication available (in order of weakest to
strongest: HTTP NO AUTH, HTTP BASIC AUTH,HTTP DIGEST AUTH. This
function returns the type of authentication that was actually configured. If the type of
authentication that you ask for was not compiled in at compile time, then the type of
authentication will not be changed.

NOTE: thisfunction only sets the "default" authentication method for resources who
have their authentication method set to SERVER_AUTH DEFAULT (Or, none Speci-
fied).

PARAMETERS

auth Type of authentication. Choices are:
e HTTP NO AUTH
e HTTP BASIC AUTH
e HTTP DIGEST AUTH

RETURN VALUE
Actual resulting type of authentication.

LIBRARY
HTTP.LIB

242 TCP/IP User’'s Manual

http setCond

int http setCond(HttpState * state, int idx, int val);

DESCRIPTION

Set the value of an HTTP condition state variable (aka., cond variable). There are
HTTP_ MAX_ COND of these integer state variables, thus i dx must be between 0 and
HTTP_ MAX COND-1, inclusive.

NOTE: Thisisimplemented as a macro.

PARAMETERS
state HTTP state pointer, as provided in the first parameter to the CGlI
function.
idx Index of cond variable: 0. HTTP_MAX COND-1. Validity is not
checked.
val New value.

RETURN VALUE
Returns the new value of the cond variable, i.e,, val.

LIBRARY
HTTPLIB

SEE ALSO
http getAction, http getCond

Chapter 4: HTTP Server

243

http setcookie

void http setcookie(char *buf, char *value);

DESCRIPTION

This utility generates a cookie on the client. Thiswill storethetextinvalue intoa
cookie-generation header that will be written to buf. The header placed in bu f isnot
automatically sent to the web client. It isthe caller’s responsibility to send the header
inbuf, along with any other HTTP headers, to the client.

When a page is requested from the client, and the cookie is already set, the text of the
cookiewill bestoredin state->cookie []. Thisisachaxr*, andif no cookie was
available, state->cookie[0] will equal *"\0"'.

PARAMETERS

buf

value

LIBRARY
HTTP.LIB

Buffer to store cookie-generation header, that is, the name of the
cookie.

Text to store in cookie-generation header, that is, the value of the
cookie.

244

TCP/IP User’'s Manual

http set path

int http set path(char * rootdir, char * dfltname);

DESCRIPTION

Set the default root directory and resource name for all HTTP server instances. In gen-
eral, this function should be called once only, after http init () but before
http handler().

Theroot directory isthe base directory and is used as a prefix for all resource requests
from clients. For example, if the root directory is set to "/A/" then a client request for
http://<hostnames>/foo.htmwill look uptheresourcecaled /A/foo.htm
on this server.

Thedefault resource nameisused if theclient'sURL requestsadirectory. For example,
if df1tname isset to "index.htm" (and rootdir is"/A/") then a client request for
“http://<hostname>/admin™ will look up the resource called "/A/admin”. If that
resource is actually adirectory, then it will look up a resource called
"/Aladmin/index.htm". If it is not a directory, then the default name is not used.

PARAMETERS
rootdir Root directory name to use. This must be a null-terminated string
and MUST gart and end with aforward dash (/) character. If this
function is not called, the root directory nameissetto“ /" by
http init ().
dfltname Default file name to use. Thisis appended to the directory part of

the URL, if the URL actually refersto adirectory. If thisfunction
is not called, the default file nameis set to index . html by
http init ().

If this parameter is NULL, there will be no default name. A
request for adirectory will generally return a404 error (not found)
to theclient. If itisnot NULL, this parameter must be anull-
terminated string. It must not start or end witha“ /" character.

RETURN VALUE
0: OK

-E2BIG: rootdir was too long. It should be limited to less than about 12 characters, but
you can increase the value of SSPEC_ MAXNAME if necessary.

-EINVAL: rootdir was NULL, or did not start and end with aforward slash character.
LIBRARY

HTTP.LIB

SEE ALSO
http handler, http init

Chapter 4: HTTP Server 245

http setState

int http setState(HttpState * state, int wval);

DESCRIPTION
Set the current primary HTTP CGl state variable.

Use of this state variableis entirely up to the application; however, it isinitialized by
the HTTP server to zero before calling the CGI for the first time.

NOTE: Thisisimplemented as a macro.

PARAMETER
state HTTP state pointer, as provided in the first parameter to the CGlI
function.
val New value for the primary state variable.

RETURN VALUE
Returns the new value, that is, val.

LIBRARY
HTTPLIB

SEE ALSO
http getAction

246 TCP/IP User’'s Manual

http shutdown

int http shutdown(int graceful);

DESCRIPTION
Shut down the http daemon. Usehttp init () torestart.

PARAMETER

If non-zero, current connections are alowed to terminate normally. Otherwise, any
open connections are reset.

RETURN VALUE
0

LIBRARY
HTTP.LIB

SEE ALSO
http handler, http init, http status

Chapter 4: HTTP Server 247

http skipCGI

int http skipCGI(HttpState * state);

DESCRIPTION

Indicate to the HTTP server that the CGI has finished processing this part of a multi-
part datastream. The server reads (and discards) datafrom the stream until the next part
isfound (or the epilog). When the next part is found, the server continues calling the
CGl function as before.

PARAMETERS

state HTTP state pointer, as provided in the first parameter to the CGlI
function.

RETURN VALUE
0

LIBRARY
HTTPLIB

SEE ALSO

http getAction, http abortCGI, http switchCGI,
http finishCGI, http write

248 TCP/IP User’'s Manual

http sock bytesready

int http sock bytesready(HttpState *state);

DESCRIPTION

HTTP wrapper function for sock_bytesready (). Thisfunction may be used by
CGlI applicationsto determineif there is data waiting on the socket associated with a
particular HTTP server.

PARAMETERS

state HTTP state pointer, as provided in the first parameter to the CGI
function.

RETURN VALUE

-1: no bytes waiting to be read
0:in ASCII mode, ablank lineiswaiting to be read,
or, for UDP, an empty datagram is waiting to be read
>0: number of byteswaiting to be read

LIBRARY
HTTPLIB

Chapter 4: HTTP Server

249

http sock fastread

int http sock fastread(HttpState *state, byte *dp, int len);

DESCRIPTION

HTTP wrapper function for sock fastread (), that isfor non-blocking reads
(root). Thisfunction can be used to read data from a socket associated with a particular
HTTP server. Thisfunction isintended for use in CGI applications.

PARAMETERS
state HTTP state pointer, as provided in the first parameter to the CGI
function.
dp Pointer to return buffer
len Maximum size of return buffer

RETURN VALUE
>0: the number of bytes read
-1: error

LIBRARY
HTTP.LIB

250 TCP/IP User’'s Manual

http sock fastwrite

int http sock fastwrite(HttpState *state, byte *dp, int len);

DESCRIPTION

HTTP wrapper function for sock _fastwrite (), thatis, for non-blocking writes.
Thisfunction can be used to write data from aroot buffer to a socket associated with a
particular HTTP server. Thisfunction is intended for use in CGI applications.

PARAMETERS
state HTTP state pointer, as provided in the first parameter to the CGI
function.
dp Pointer to buffer containing data to be written.
len Maximum number of bytes to write to the socket.

RETURN VALUE
>0: the number of bytes written
-1: error

LIBRARY
HTTP.LIB

Chapter 4: HTTP Server 251

http sock gets

int http sock gets (HttpState *state, byte* dp, int 1len);

DESCRIPTION

HTTP wrapper function for sock_gets (). Thisfunction can be used by CGI appli-
cations to retrieve a string waiting on an ASCII-mode socket associated with a partic-
ular HTTP server.

PARAMETERS
state HTTP state pointer, as provided in the first parameter to the CGI
function.
dp Pointer to return buffer
len Maximum size of return buffer

RETURN VALUE

0: if buffer is empty, or
if no“\r” or “\n” isread, but buffer had room and
the connection can get more datal
>0: isthe length of the string
-1: error

LIBRARY
HTTP.LIB

SEE ALSO
http_ sock mode

252 TCP/IP User’'s Manual

http sock mode

void http sock mode(HttpState* state, http sock mode t mode);

DESCRIPTION

HTTP socket wrapper function for socket mode. This function can be used by CGI ap-
plications to set the mode of a socket associated with a particular HTTP server.

PARAMETERS
state HTTP state pointer, as provided in the first parameter to the CGI
function.
mode HTTP mode to use for the socket. Valid values for mode are:
e HTTP MODE ASCII - Setsthe associated socket to
ASCII mode.
e HTTP MODE BINARY - Setsthe associated socket to
BINARY.

RETURN VALUE
None

LIBRARY
HTTP.LIB

Chapter 4: HTTP Server 253

http sock tbleft

long http sock tbleft (HttpState *state);

DESCRIPTION

HTTPwrapper functionfor sock _tbleft (). Thisfunction may be used by CGI ap-
plications to determine how much space is left in the HTTP socket's transmit buffer.

PARAMETERS

state HTTP state pointer, as provided in the first parameter to the CGI
function.

RETURN VALUE
Number of bytes of free space remaining in the transmit buffer.

LIBRARY
HTTP.LIB

254 TCP/IP User’'s Manual

http sock write

int http sock write(HttpState *state, byte *dp, int len);

DESCRIPTION

HTTP wrapper function for blocking writes. This function can be used to write data
from aroot buffer to a socket associated with a particular HTTP server. This function
isintended for usein CGI applications.

PARAMETERS
state HTTP state pointer, as provided in the first parameter to the CGI
function.
dp pointer to buffer containing data to be written
len maximum number of bytes to write to the socket

RETURN VALUE
Number of bytes of written or -1 if there was an error

LIBRARY
HTTP.LIB

Chapter 4: HTTP Server

255

http sock xfastread

int http sock xfastread(HttpState *state, long dp, long len);

DESCRIPTION

HTTP wrapper function for sock _fastxread (), that is, for non-blocking reads
(xmem). Thisfunction can be used to read data from a socket associated with a partic-
ular HTTP server. Thisfunction isintended for usein CGI applications.

PARAMETERS
state HTTP state pointer, as provided in the first parameter to the CGI
function.
dp Pointer to return xmem buffer.
len Maximum length of the return xmem buffer.

RETURN VALUE
Number of bytes of read or -1 if there was an error

LIBRARY
HTTP.LIB

256 TCP/IP User’'s Manual

http sock xfastwrite

int http sock xfastwrite(HttpState *state, long dp, long len);

DESCRIPTION

HTTP wrapper function for sock xfastwrite (), that isfor non-blocking writes.
Thisfunction can be used to writethe contents of an xmem buffer to a socket associated

with aparticular HTTP server.

PARAMETERS
state HTTP state pointer, as provided in the first parameter to the CGI
function.
dp Buffer containing datato be written, asan xmem address obtained
from, for example, xalloc ().
len Maximum number of bytes to write to the socket.

RETURN VALUE
Number of bytes of written or -1 if there was an error

LIBRARY
HTTP.LIB

Chapter 4: HTTP Server

257

http status

int http status(void);

DESCRIPTION

Determine whether the HT TP server is allowing connections.

RETURN VALUE
0: server iscurrently disabled
non-zero: server is enabled.
LIBRARY
HTTP.LIB

SEE ALSO
http handler, http init, http shutdown

258

TCP/IP User’s Manual

http switchCGI

int http switchCGI(HttpState * state, char * newURL);

DESCRIPTION
Tell the HTTP server to switch processing to a different CGI function or resource.

The CGl isresponsible for generating the correct HT TP response header(s) using

http write () etc. If thisfunctionis used to pass control to a different CGl, then
both CGls must coordinate so that only one header iswritten. You can usethe HTTP
state variable (http_setState () andhttp getState ()) and/or

http getUserState () toachievethe necessary coordination.

If newURL referstoafileor SSI resource (not aCGl), thenthe CGI function must NOT
have already written the HT TP response header(s)—the headers will be generated
when the new resource is opened.

If newURL refersto anew-style CGI (that is, a CGI resource added using
SSPEC_CGI,notSSPEC FUNCTION) thenthat CGI ispresented with theremaining
content of the current request data stream.

If newURL refersto an old-style CGlI (that is, a CGl added using SSPEC_FUNCTION
or HTTPSPEC_FUNCTION) then the HTTP server abandons parsing of the request
data stream, since old-style CGls are expected to read the HTTP socket themselves.

Rather than calling ht tp_switchCGI (), it isoften more convenient to call
cgi_redirectto (), whichtellstheclient to retrieve the next resource rather than
the resource being provided in the current connection. Using redirect isless efficient,

however.
PARAMETERS
state HTTP state pointer, as provided in the first parameter to the CGlI
function.
newURL The resource name to present to the client. This may be another

CGil, or any other type of resource that could be presented to the
clientinresponsetoan HTTP GET or POST request. Theresource
must exist in the flash- or ram-spec table, or in afilesystem.

RETURN VALUE
0

LIBRARY
HTTPLIB

SEE ALSO

http getAction, http skipCGI, http abortCGI, http finishCGI,
http write

Chapter 4: HTTP Server

259

http urldecode

char *http urldecode(char *dest, const char *src, int len);

DESCRIPTION

Convertsastring with URL -escaped "tokens" (such as %20 (hex) for space) into actual
values. Changes"+" into aspace. String can be NULL terminated; it is also bounded by
aspecified string length. This function is reentrant.

PARAMETERS
dest Buffer where decoded string is stored.
src Buffer holding original string (not changed).
len Maximum size of string (NULL terminated strings can be shorter).

RETURN VALUE

dest: if al conversion was good.
NULL: if some conversion had trouble.

LIBRARY
HTTP.LIB

SEE ALSO

http_ contentencode

260 TCP/IP User’'s Manual

http write

int http write(HttpState * state, char * data, word length);

DESCRIPTION

Write data back to the client. Thisfunction either sends all of the given data or none of
it. If the data cannot be sent (for example, because the socket transmit buffer is already
full) then a special return code indicates that the CGI should try again on the next call.

Often, the CGI itself will not need to write anything to the client—the

http switchCGI () function takes care of most needs. If thisfunctionisused,
then the CGlI isresponsible for generating the correct HTTP response (including head-
es)andhttp switchCGI () and similar functions should NOT be called.

Use of thisfunction can often be avoided. Instead, the CGI can copy astring to the
pointer provided by http getData (), thenreturn CGI_SEND. Thiswill causethe
server to send out the (null terminated) string in the buffer, and not call the CGI until
the string is sent to the client. Seethe sourcetohttp defaultCGI () for an exam-
ple of this method.

PARAMETERS

state HTTP state pointer, as provided to the CGI function.

data Pointer to first char to transmit. It is OK to make this the same
pointer that wasreturned by http _getData (), sincethat buff-
er can be used for output as well asinput. In any case, the CGI
must ensurethat it has processed any incoming data before writing
new datato that buffer.

length Length of datato transmit. Thereis alimit to the amount of data

thathttp write () canwriteonany givencall. Thislimitisset
by the HTTP server socket transmit buffer size. Thisbuffer sizeis
givenby TCP_BUF_SIZE/2. Thetransmit buffer isusualy at
least 1024 bytes. If youtry exceedingthat limit, http write ()
will never succeed.

Chapter 4: HTTP Server 261

RETURN VALUE
0: datawritten (or buffered) successfully.

CGI_MORE: data not written, try again on next call to the CGI. In general, the CGI
should passthiscode (CGI_MORE) back tothe HTTP server. When the server callsthe
CGI next time, it will set the action codeto CGI CONTINUE which will be acueto
the CGl to try retransmitting the previous data. When CGI_CONTINUE is provided,
the contentsinthe http getData () buffer will not have been altered.

LIBRARY
HTTPLIB

SEE ALSO
http getAction, http skipCGI, http switchCGI, http finishCGI,
http_ abortCGI, http defaultCGI

262 TCP/IP User’'s Manual

shtml addfunction

int shtml addfunction(char *name, void (*fptr()));

DESCRIPTION
Adds a CGI/SSI-exec function for making dynamic web pagesto the RAM resource ta-
ble.
PARAMETERS
name Name of thefunction (e.g.,"/foo.cgi").
fptr Function pointer to the handler, that must take Ht tpState* as

an argument. This function should return an int (0 while still
pending, 1 when finished).

RETURN VALUE

0: Success;
1: Failure (no room).

LIBRARY
HTTP.LIB

SEE ALSO

shtml delfunction

Chapter 4: HTTP Server

263

shtml addvariable

int shtml addvariable(char *name, void *variable, word type,
char *format);

DESCRIPTION
Thisfunction adds a variable so it can be recognized by shtml handler ().

PARAMETERS
name Name of the variable.
variable Pointer to the variable.
type Type of variable. The following types are supported: INT8,
INT16, INT32, PTR16, FLOAT32.
format Standard printf format string. (e.g., "%d").

RETURN VALUE

0: Success.
1: Failure (no room).

LIBRARY
HTTP.LIB

SEE ALSO
shtml delvariable

264 TCP/IP User’'s Manual

shtml delfunction

int shtml delfunction(char *name);

DESCRIPTION
Deletes a function from the RAM resource table.

PARAMETERS

name Name of the function asgivento shtml addfunction().

RETURN VALUE

0: Success;
1: Failure (not found).

LIBRARY
HTTP.LIB

SEE ALSO

shtml addfunction

Chapter 4: HTTP Server 265

shtml delvariable

int shtml delvariable(char *name);

DESCRIPTION
Deletes avariable from the RAM resource table.

PARAMETERS

name Name of the variable, asgivento shtml addvariable ().

RETURN VALUE

0: Success;
1: Failure (not found).

LIBRARY
HTTP.LIB

SEE ALSO
shtml addvariable

266 TCP/IP User’s Manual

5. FTP Client

Thelibrary FTP CLIENT.LIB implementsthe File Transfer Protocol (FTP) for the client side
of the connection.

Thislibrary supports asingle FTP session at any onetime since the session stateismaintained in a
single global structure in root memory.

You can upload and download files to either a static buffer in root data memory (for simple appli-
cations) or, starting with Dynamic C version 7.20, you can have the data passed to, or generated
by, adata handler callback function that you specify. The data handler function can implement
large file transfers in extended memory buffers, or it can be used to generate or process data on-
the-fly with minimal buffering.

Starting with Dynamic C 7.20, you can specify “passive” mode transfers. Thisis most important
for clientswhich are inside afirewall. Passive mode is specified by passing the

FTP_MODE PASSIVE optiontoftp client setup ().When passive modeis specified,
the client will actively open the data transfer port to the server, rather than the other way around.
This avoids the need for the server to penetrate the firewall with an active connection from the out-
side, which ismost often blocked by the firewall. For thisreason, it is recommended that your FTP
client application uses passive mode by default, unless overridden by an end-user.

5.1 Configuration Macros

The following macros may be defined in a #def ine statement before the inclusion of
FTP CLIENT.LIB inan application program. Note that strings must contain the NULL byte, so
if amaximum string length is 16, the maximum number of charactersis 15.

FTP MAX DIRLEN
The default is 64, which is the maximum string length of a directory name.

FTP MAX FNLEN
The default is 16, which is the maximum string length of afile name.

FTP MAX NAMELEN
The default is 16 which is the maximum string length of usernames and passwords.

FTP MAXLINE

The default is 256, which is both the maximum command line length and data chunk
size that can be passed between the FTP data transfer socket and the data handler (if
any defined).

FTP TIMEOUT
The default is 16, which is the number of seconds that pass before atime out occurs.

Chapter 5: FTP Client 267

5.2 API Functions

ftp client setup

int ftp client setup(long host, int port, char *username, char
*password, int mode, char *filename, char *dir, char
*buffer, int length);

DESCRIPTION

Setsup aFTPtransfer. Itiscalled first, thenftp client tick () iscaleduntil it
returns non-zero. Failure can occur if the host addressis zero, if 1ength is negative,
or if the internal control socket to the FTP server cannot be opened (e.g., because of
lack of socket buffers).

PARAMETERS

host Host IP address of FTP server.

port Port of FTP server, O for default.

username Username of account on FTP server.

password Password of account on FTP server.

mode Mode of transfer: FTP_ MODE_UPLOAD oOf
FTP_MODE_ DOWNLOAD. You may also OR in the value
FTP_MODE_ PASSIVE to use passive mode transfer (important
if you are behind afirewall).

filename Filename to get/put.

dir Directory fileisin, NULL for default directory.

buffer Buffer to get/put the file from/to. Must be NULL if a data handler
function will beused. See ftp data_ handler () for more
details.

length On upload, length of file; on download size of buffer. This pa-

rameter limits the transfer size to a maximum of 32767 bytes. For
larger transfers, it will be necessary to use a data handler func-
tion.

RETURN VALUE

0: Success.
1: Failure.

LIBRARY
FTP_CLIENT.LIB

SEE ALSO
ftp client tick, ftp data handler

268 TCP/IP User’'s Manual

ftp client tick

int ftp client tick(void);

DESCRIPTION

Tick function to run the FTP daemon. Must be called periodically. The return codes
are not very specific. Youcancall ftp last code () togettheinteger value of
the last FTP message received from the server. See RFC959 for details. For example,
code 530 means that the client was not logged in to the server.

RETURN VALUE

FTPC_AGAIN (0): still pending, cal again.

FTPC_OK (1): success (filetransfer complete).

FTPC_ERROR (2):failure(call ftp last code () for more details).

FTPC _NOHOST (3): failure (Couldn't connect to remote host).

FTPC_NOBUF (4): failure (no buffer or data handler).

FTPC_TIMEOUT (5):warning (Timed out on close: data may or may not be OK).
FTPC_DHERROR (6): error (Datahandler error in FTPDH _END operation).
FTPC_CANCELLED (7):FTP control socket was aborted (reset) by the server.

LIBRARY
FTP_CLIENT.LIB

SEE ALSO

ftp client setup, ftp client filesize, ftp client xfer,
ftp last code

Chapter 5: FTP Client 269

ftp client filesize

int ftp client filesize(void);

DESCRIPTION

Returns the byte count of datatransferred. Thisfunction is deprecated in favor of
ftp client xfer (), whichreturnsalong value.

If the number of bytestransferred was over 32767, then this function returns 32767
which may be mideading.

RETURN VALUE
Size, in bytes.

LIBRARY
FTP_CLIENT.LIB

SEE ALSO
ftp client setup, ftp data handler, ftp client xfer

270 TCP/IP User’s Manual

ftp client xfer

longword ftp client xfer(void);

DESCRIPTION

Returns the byte count of datatransferred. Transfers of over 232 bytes (about 4GB) are
not reported correctly.

RETURN VALUE
Size, in bytes.

LIBRARY
FTP_CLIENT.LIB

SEE ALSO
ftp client setup, ftp data handler, ftp client filesize

Chapter 5: FTP Client 271

ftp data handler

void ftp_data handler(int (*dhnd) (), void *dhnd data,
word opts);

DESCRIPTION

Sets adata handler for further FTP data transfer(s). This handler is only used if the
"buffer" parameter to ftp client setup () ispassed asNULL.

The handler is afunction which must be coded according to the following prototype:

int my handler (char *data, int len, longword offset, int
flags, void *dhnd data) ;

Thisfunction is called with dat a pointing to a data buffer, and 1en containing the
length of that buffer. of £ set isthe byte number relative to the first byte of the entire
FTP stream. Thisis useful for data handler functions that do not wish to keep track of
the current state of the data source. dhnd_data isthe pointer that was passed to
ftp data handler().

flags contains an indicator of the current operation:

* FTPDH_IN: dataisto be stored on this host (obtained from an FTP download).
* FTPDH_OUT: dataisto be filled with the next data to upload to the FTP server.

* FTPDH END: dataand len areirrelevant: this marksthe end of data, and givesthe
function an opportunity to e.g., close the file. Called after either in or out process-
ing.

* FTPDH_ABORT: end of data; error encountered during FTP operation. Similar to

END except the transfer did not complete. Can use thisto e.g., delete apartialy
written file.

The return value from this function depends on the in/out flag. For FTPDH_IN, the
function should return 1en if the data was processed successfully and download
should continue; -1 if an error has occurred and the transfer should be aborted. For
FTPDH_OUT, the function should return the actual number of bytes placed in the data
buffer, or -1 to abort. If zero is returned, then the upload is terminated normally. For
FTPDH END, the return code should be zero for success or -1 for error. If an error is
flagged, then thisisused asthereturn codefor ftp client tick().For
FTPDH_ABORT, thereturn code isignored.

272 TCP/IP User’'s Manual

ftp data handler (continued)

PARAMETERS
dhnd Pointer to data handler function, or NULL to remove the current
data handler.
dhnd_data A pointer which is passed to the data handler function. This may
be used to point to any further data required by the data handler
such as an open file descriptor.
opts Options word (currently reserved, set to zero).
LIBRARY

FTP_CLIENT.LIB

SEE ALSO
ftp client setup

Chapter 5: FTP Client

273

ftp last code

int ftp last code(void);

DESCRIPTION

Returns the most recent message code sent by the FTP server. RFC959 describes the
codesin detail. This function is most useful for error diagnosisin the case that an FTP
transfer failed.

RETURN VALUE

Error code; anumber between 0 and 999. Codes less than 100 indicate that an internal
error occurred e.g., the server was never contacted.

LIBRARY
FTP_CLIENT.LIB

SEE ALSO
ftp client setup, ftp client tick

274 TCP/IP User’s Manual

5.3 Sample FTP Transfer
Program Name: Samplesitcpip\ftp\ftp_client.c

//#define MY IP ADDRESS "10.10.6.105"
//#define MY NETMASK "255.255.255.0"

#define TCPCONFIG 1

#memmap xmem
#use "dcrtcp.lib"
#use "ftp client.lib"

#define REMOTE HOST "10.10.6.19"
#define REMOTE PORT 0

main () {
char buf[2048];
int ret, i, j;
printf ("Calling sock init()...\n");
sock init () ;
/* Set up the ftp transfer. Thisisto the host defined above, with a normal

* anonymous/e-mail password login info. A get of thefile bar is requested, which
* will be stored inbuf . */

printf ("Calling ftp client setup()...\n");
if (ftp client setup(resolve (REMOTE HOST), REMOTE PORT,
“anonymous", "anon@anon.com", FTP MODE DOWNLOAD, "bar",

NULL, buf,sizeof (buf)))

printf ("FTP setup failed.\n") ;

exit (0) ;
}
printf ("Looping on ftp client tick()...\n");
while(0 == (ret = ftp client tick()))
continue;
if(1 == ret) {

printf ("FTP completed successfully.\n");

// ftp client filesize () returnstransfer size, since we asked for download.
buf [ftp client filesize()] = '\0';
printf ("Data => '%s'\n", buf) ;

}
else {

printf ("FTP failed: status == %d\n", ret);
}

Chapter 5: FTP Client 275

276 TCP/IP User’s Manual

6. FTP Server

This chapter documents the FTP server. The following information is included:

e configuration macros

e thedefault file handlers

e how to assign replacement file handlers

e what to do when thereis afirewal

e AP functions

e commands accepted by the server

e reply codes generated by the server

e sample code demonstrating aworking FTP server

Thelibrary FTP_SERVER. LIB implementsthe File Transfer Protocol for the server side of a
connection. FTP uses two TCP connections to transfer afile. The FTP server does a passive open
on well-known port 21 and then listens for aclient. This isthe command connection. The server
receives commands through this port and sends reply codes. The second TCP connection isfor the
actual datatransfer.

Anonymous FTP is supported. Most FTP servers on the Internet use the identifier “anonymous.”
So since FTP clients expect it, thisis the identifier that is recommended. But any string (with a
maximum length of HTTP_NO FLASHSPEC SSPEC NO_STATIC) may be used.

Dynamic C 8 includes some enhancements that basically |et the FTP server act asafull FTP
server, where you can create, read and delete files at will. To use these enhancements, the configu-
ration macro FTP_USE FS2 HANDLERS must be defined to enable FS2 support in the default
file handler functions. The structure that holds the association of filenames and FS2 file locations
isthe server spec list—the global array defined in zserver. 1ib. Itisstored in the User block
and the API functions ftp save filenames () and ftp load filenames () areused
for support of this.

NOTE: For ademonstration of the enhanced FTP server, see the sample program,
/SAMPLES/TCPIP/FTP/FTP_SERVER FULL.C.

Chapter 6: FTP Server 277

6.1 Configuration Macros

The configuration macros control various conditions of the server’s operation. Read through them
to understand the default conditions. Any changes to these macros may be made in the server
application with #define statements before inclusion of FTPSERVER . LIB.

FTP CMDPORT

This macro defaults to 21 which is the well-known FTP server port number. You can
override thisto cause the server to listen on a non-standard port number.

FTP CREATE MASK

This macro specifies the mask that is passed into the servermask parameter in
sspec_addfsfile () calswhenanew fileis created. In particular, this defines
which servers will be allowed to access thisfile. By default, it is defined to
SERVER FTP | SERVER WRITABLE .

FTP DTPTIMEOUT
The default is 16, the same as FTP_TIMEOUT. Thisappliesto the datatransfer port
instead of the command port. The data transfer port is involved with get/store com-
mands, as well as directory listings.

FTP EXTENSIONS

The macro is not defined by default. Define it to allow the server to recognize the
DELE, SIZE and MDTM commands. If this macro is defined, then the FTP handler
structure (FTPhandlers) isaugmented with pointers to mdtm and delete handlers.

FTP INTERFACE

Thismacro defaultsto IF DEFAULT, i.e., the (single) default interface. Define to
IF_ANY if FTPsessionscan be accepted on any activeinterface, or aspecificinterface
number (e.g., IF_ETHO) to allow sessionson that interface only. Note that you are cur-
rently limited to asingleinterface, or al interfaces. Thismacro isonly relevant starting
with Dynamic C version 7.30.

FTP MAXLINE
The default is 256: the number of bytes of the working buffer in each server. Thisis
also the maximum size of each network read/write. The default value of 256 isthe min-
imum value that allows the server to function properly.

FTP MAXSERVERS

The default is 1: the number of simultaneous connections the FTP server can support.
Each server requires a significant amount of RAM (4096 bytes by default, though this
can change through SOCK_BUF SIZE or tcp MaxBufSize (deprecated)).

FTP NODEFAULTHANDLERS
This macro is undefined. Define it to eliminate the code for the default file handlers.
You must then provide your own file handlers. Thismacro isno longer needed starting
with Dynamic C version 7.20.

278 TCP/IP User’'s Manual

FTP TIMEOUT

The default is 16: the number of seconds to wait for FTP commands from the remote
host before terminating the connection. In ahigh-latency network this value may need
to be increased to avoid premature closures.

FTP_USE_FS2 HANDLERS

Define thisto enable the full use of FS2 in the default FTP handler functions. Defining
this macro will automatically define FTP WRITABLE FILESto 1, aswell.

FTP USERBLOCK OFFSET

This macro should be defined to anumber that specifies the offset into the User block
at which thelist of filenames will be saved. Thislist correlates the filenames with the
locations of the files in the filesystem (FS2). This macro defaultsto O. If the user is
putting other information in the User block, this offset may need to be adjusted to pre-
vent clobbering the other data.

FTP WRITABLE FILES

The defaultsis 0. Defineto 1 to provide supportin ftp dflt open () for authen-
ticating auser for write access before afileis opened. Thisalso provides support in the
filelisting function, ftp dflt 1list (), toshow thewrite permissionfor writable
files.

NOTE: The user will need to override both the write and close default file handlers to

provide full support for writing afile.

SSPEC_NO STATIC

This macro must be defined in any FTP server application compiled with
Dynamic C 8.50 or later.

Chapter 6: FTP Server

279

6.2 File Handlers

Default file handlers are provided. The defaults access the server spec list, which is set up using
sspec_addxmemfile (), sauth adduser () etc. The default file handlers are used when
NULL is passed to the initialization function ftp_init ().

6.2.1 Replacing the Default Handlers

The FTPhandlers structure contains function pointers to the file handlers. This structure may
bepassedto ftp init () to selectively replace the default file handlers. You may provide a
NULL pointer for handlers that you do not wish to override. If you have defined
FTP_EXTENSIONS then there are an additional two function pointers that should be initialized.

typedef struct {

int (*open) () ;
int (*read) () ;
int (*write) () ;
int (*close) () ;

long (*getfilesize) ();
int (*dirlist) ();
int (*cd) () ;
int (*pwd) () ;
#ifdef FTP EXTENSIONS
long (*mdtm) () ;
int (*delete) () ;
#endif
} FTPhandlers;

Starting with Dynamic C 7.30, all FTP server instances share the same set of data handlers. Before
this release, there was a separate copy of the handler pointers for each instance of the server. This
change does not affect your existing application except to slightly reduce memory usage. This
change does add flexibility becauseit gives any file handler the ability to call any other file
handler. In particular, ftp dflt list () maynow cal ftp dflt getfilesize() to
get thefile'ssize

6.2.2 File Handlers Specification

Function descriptions for the default handlers are detailed in this section. Additional informationis
provided in these descriptions when the default handler does not cover the entire function specifi-
cation.

The default file handlers arein FTPSERVER . LIB.

280 TCP/IP User’'s Manual

ftp dflt open

int ftp dflt open(char *name, int options, int uid, int cwd);

DESCRIPTION

Opensafile. If afileissuccessfully opened, the returned value is passed to subsequent
handler routines to identify the particular file or resource, asthe 'fd' parameter. If nec-
essary, you can use this number to index an array of any other state information needed
to communicate with the other handlers. The number returned should be unique with
respect to all other open resource instances, so that your handler does not get confused
if multiple FTP data transfers are active simultaneously.

Note that the specified file to open may be an absolute or relative path: if the handler
supports the concept of directories, then it should handle the path name appropriately
and not just assume that the fileisin the current directory. If the filenameis relative,
then the cwd parameter indicates the current directory.

PARAMETERS

name Thefile to open.

options File access options.
O_RDONLY (marksfile asread-only).
O_WRONLY (not currently supported by the default handler).
O_RDWR (not used since it's not supported by the FTP protocol).

uid The userid of the currently logged-in user.

cwd Current directory (not currently supported by the default handler).

RETURN VALUE

>0: File descriptor of the opened file.

FTP_ERR NOTFOUND: File not found.

FTP_ERR NOTAUTH: Unauthorized user.

FTP_ERR BADMODE: Requested option (2nd parameter) is not supported.
FTP_ERR UNAVAIL: Resource temporarily unavailable.

Inthefirst case, the returned value is passed to subsequent handler routines to identify
the particular file or resource, asthe 'fd' parameter. If necessary, you can use this num-
ber to index an array of any other state information needed to communicate with the
other handlers. The number returned should be unigque with respect to all other open
resource instances, so that your handler does not get confused if multiple FTP data
transfers are active simultaneously. Note that the given file name may be an absolute
or relative path: if the handler supportsthe concept of directories, then it should handle
the path name as appropriate and not just assume that thefileisin the current directory.
If the filenameis "relative," then the cwd parameter indicates the current directory.

Chapter 6: FTP Server 281

ftp dflt getfilesize

long ftp dflt getfilesize(int £fd);

DESCRIPTION
Return the length of the specified file. Thisis called immediately after open for aread
file. If thefileis of a known constant length, the correct length should be returned. If
the resource length is not known (perhapsit is generated on-the-fly) then return -1. For
write operations, the maximum permissible length should be returned, or -1 if not

known.

PARAMETERS
£d Thefile descriptor returned when the file was opened.

RETURN VALUE

=>0: The size of thefilein bytes.
-1: Thelength of thefile is not known.

282 TCP/IP User’'s Manual

ftp dflt read

int ftp dflt read(int £d4d, char *buf, long offset, int len);

DESCRIPTION

Read fileidentified by £d. Thefile contents at the specified offset should be stored into
buf, up toamaximum length of 1en. Thereturn value should be the actual number of

bytestransferred, which may belessthan 1en. If thereturn valueiszero, thisindicates
normal end-of-file. If thereturn valueis negative, then thetransfer isaborted. Each suc-
cessive cal to this handler will have an increasing offset. If the getfilesize handler re-

turns anon-negative length, then the read handler will only be called for dataup to that
length — there is no need for such read handlersto check for EOF since the server will

assume that only the specified amount of datais available.

Thereturn value can also be greater than 1en. Thisisinterpreted as”| have not put any-
thing in buf. Call me back when you (the server) can accept at least 1en bytes of da-
ta" Thisisuseful for read handlers that find it inconvenient to retrieve data from
arbitrary offsets, for example alog reader that can only accesswholelog records. If the
returned value is greater than the server can ever offer, then the server aborts the data
transfer. The handler should never ask for more than FTP_MAXLINE bytes.

PARAMETERS
£d Thefile descriptor returned when the file was opened.
buf Pointer to the buffer to place the file contents.
offset Offset in the file at which copying should begin.
len The number of bytes to read.

RETURN VALUE

0: EOF.
>0: The number of bytesread into buf.
-1: Error, transfer aborted.

Chapter 6: FTP Server 283

ftp dflt write

int ftp dflt write(int £f£d, char *buf, long offset, int len);

DESCRIPTION
The default write handler does nothing but return zero.

The specification states that the handler may write the file identified by £d4. buf con-
tains data of length 1en, which isto bewritten to the file at the given offset within the
file. The return value must be equal to 1en, or a negative number if an error occurs
(such as out of space).

The FTP server does not handle partia writes: the given data must be completely writ-
tenor not at al. If thereturn codeislessthan 1en, an error isassumed to have occurred.
Note that it is up to the handler to ensure that another FTP server is not accessing afile
which is opened for write. The open call for the other server should return

FTP_ERR UNAVAIL if the current server iswriting to afile.

PARAMETERS
fd The file descriptor returned when the file was opened.
buf Pointer to the data to be written.
offset Offset in the file at which to start.
len The number of bytesto write.

RETURN VALUE

20: The number of bytes written. If thisislessthan 1en, an error occurred.
-1: Error.

284 TCP/IP User’'s Manual

ftp dflt close

int ftp dflt close(int fd);

DESCRIPTION
The default close handler does nothing but return zero.

Thehandler may closethe specified file and free up any temporary resources associated
with the transfer.

PARAMETERS

£d Thefile descriptor returned when the file was opened.

RETURN VALUE
0

Chapter 6: FTP Server 285

ftp dflt list

int ftp dflt list(int item, char *line, int listing, int uid,
int cwd);

DESCRIPTION
Returns the next file for the FTP server to list. The file name is formatted as a string.

PARAMETERS
item Index number starting at zero for thefirst function call. Subsegquent
calls should be one plus the return value from the previous call.
line Pointer to location to put the formatted string.
listing Boolean variable to control string form:
0: print file name, permissions, date, etc.
1: print file name only.
uid The currently logged-in user.
cwd The current working directory.

RETURN VALUE

2>0: File descriptor for last file listed.
-1: Error.

286 TCP/IP User’'s Manual

ftp dflt cd

int ftp dflt cd(int cwd, char *dir, int uid);

DESCRIPTION
Changeto new "directory." Thisiscalled when the client issuesa CWD command. The
FTP server itself has no concept of what a directory is—thisis meaningful only to the

handler.
PARAMETERS
cwd Integer representing the current directory.
dir String that indicates the new directory that will become the current
directory. The interpretation of this string is entirely up to the han-
dler. Thedir string will be passed as”.." to move up onelevel.
uid The currently logged-in user.

RETURN VALUE

0: No such directory exists.
-1: Root directory.
>0: Anything that is meaningful to the handler.

Chapter 6: FTP Server

287

ftp dflt pwd

int ftp dflt pwd(int cwd, char *buf);

DESCRIPTION

Print the current directory, passed as cwd, asastring. The result is placed in buf,
whose length may be assumed to be at least (FTP_MAXLINE-6). Thereturn valueis

ignored.
PARAMETERS
cwd The current directory.
buf Pointer to buffer to put the string.

RETURN VALUE
The return value is ignored.

288 TCP/IP User’s Manual

ftp dflt mdtm

unsigned long ftp dflt mdtm(int £d4d);

DESCRIPTION

This handler function is called when the server receives the FTP command MDTM. The
return value of this handler function is the number of seconds that have passed since
January 1, 1980. A return value of zero will cause the reply code 213 followed by a
space and then the val ue 19800101000000 (yyyymmddhhmmss) to be sent by the serv-
er.

TheFTP server assumesthat thisreturn valueisin UTC (Coordinated Universal Time).
If SEC_TIMER isrunning in local time, the handler should make the necessary time
zone adjustment so that the return value is expressed in UTC.

The handler isonly recognized if FTP_EXTENSIONS isdefined.

PARAMETERS

£d File descriptor for the currently opened file.

RETURN VALUE

The number of seconds that have passed since January 1, 1980. The default handler al-
ways returns zero. The number of seconds will be converted to a date and time value
of the form yyyymmddhhmmss.

Chapter 6: FTP Server 289

ftp dflt delete

int ftp dflt delete(char *name, int uid, int cwd);

DESCRIPTION
The default handler does not support the delete command. It simply returns the error
code for an unauthorized user.

The delete handler is only recognized by the server if FTP EXTENSIONS isdefined.
Itiscalled whenthe DELE command isreceived. Thegiven file name (possibly relative

to cwd) should be deleted.

PARAMETERS
name Pointer to the name of afile.
uid The currently logged-in user.
cwd The current directory.

RETURN VALUE

0: File was successfully deleted .

FTP_ERR NOTFOUND: File not found.

FTP_ERR NOTAUTH: Unauthorized user.

FTP_ERR BADMODE: Requested option (2nd parameter) is not supported.
FTP_ERR UNAVAIL: Resource temporarily unavailable.

290 TCP/IP User’'s Manual

6.3 API Functions

The API functions described here, initialize and run the FTP server.

ftp dflt is auth

int ftp dflt is auth(int spec, int options, int uid);

DESCRIPTION

Determine amount of accessto afile. If the FTP anonymous user has been set, then also
checks that. "options" is how to access the file. Currently, this value isignored. If the
anonymous user |D has been set, then filesit owns are globally accessible.

Returns whether the user can accessit ("owner permission") or if accessis because
there is an anonymous user ("world permission").

NOTE: Thisroutine only determines accessibility of a name, not whether the user can
read and/or write the contents.

PARAMETERS
spec Handle to SSPEC file (item).
options How to accessO_RDONLY, O WRONLY or O_RDWR. Currently
thisvalueisignored.
uid The userID to access as.

RETURN VALUE

0: No access.
1:uid only access.
2: anonymous access (user "anonymous" has been set).

SEE ALSO

sspec_checkaccess

Chapter 6: FTP Server 291

ftp init

void ftp init(FTPhandlers *handlers);

DESCRIPTION

Initializes the FTP server. You can optionally specify a set of handlersfor controlling
what the server presents to the client. Thisis done with function pointersin the
FTPhandlers structure. All FTP server instances share the same list of handlers.

The FTPhandlers structure is defined as:

typedef struct ({
int (*open) (char *name, int options, int uid, int cwd) ;
int (*read) (int £f£d, char *buf, long offset, int len);
int (*write) (int £d, char *buf, long offset, int len);
int (*close) (int £4) ;

long (*getfilesize) (int £d);

int (*dirlist) (int item, char *line, int listing, int
uid, int cwd) ;

int (*cd) (int cwd, char *dir, int uid) ;

int (*pwd) (int cwd, char *buf);

[long (*mdtm) (int £d) ;]

[int (*delete) (char *name, int uid, int cwd) ;]
} FTPhandlers;

If you always provide all your own handlers, then you can define
FTP_NODEFAULTHANDLER to eliminate the code for the default handlers. The han-
dlers must be written to the specification described in Section 6.2.2. To use a default
handler, leave thefield NULL. If you passaNULL handlers pointer, then the all default
handlers will be used.

The defaults access the server spec list which is set up using the zserver functions
sspec_addxmemfile (), sauth_adduser () €fc.

PARAMETERS
handlers NULL means use default internal file handlers. Otherwise, you
must supply astruct of pointersto the various file handlers (open,
read, write, close, getfilesize, list). To not override a particular
handler, leave it NULL in the structure.
LIBRARY

FTP_SERVER.LIB

SEE ALSO
ftp tick

292 TCP/IP User’'s Manual

ftp load filenames

int ftp load filenames(void)

DESCRIPTION

Thisfunction isused in conjunction withthe FTP_USE_FS2 HANDLERS macro. It
loads the data structure (i.e., the server spec list) that keeps track of the association of
filenamesto file locations in the file system. The information is loaded from the User
block, from the offset givenin FTP_USERBLOCK OFFSET.

The function removes any entries from the server spec list that are not FS2 files.

RETURN VALUE

0: Success
-1: Failure (possibly due to the filenames having not yet been saved)

SEE ALSO

ftp _save filenames

Chapter 6: FTP Server 293

ftp save filenames

int ftp save filenames(void);

DESCRIPTION

Thisfunction isused in conjunction with the FTP_ USE_FS2 HANDLERS Macro.
This function saves the data structure (i.e., the server spec list) that keeps track of the
association of filenamesto filelocationsin thefile system. Theinformation is saved to
the User block, at the offset givenin FTP_ USERBLOCK OFFSET.

RETURN VALUE

0: Success.
- 1: Failure, the information could not be saved (due to a write error).

SEE ALSO

ftp load filenames

294 TCP/IP User’s Manual

ftp set anonymous

int ftp set anonymous(int uid);

DESCRIPTION

Set the "anonymous' user |D. Resources belonging to this userlD may be accessed by
any user. A typical use of thisfunction would be

ftp set anonymous (sauth adduser ("anonymous", "",
SERVER_FTP)) ;

which defines an "anonymous' login for the FTP server. This only appliesto the FTP
server. The username "anonymous' is recommended, since most FTP clients use this
for hosts that have no account for the user.

PARAMETER
uid The user ID to use as the anonymous user. This should have been
defined using sauth _adduser ().Pass -1 tosetno
anonymous user.

RETURN VALUE
Same asthe uid parameter, except -1 if uidisinvalid.

LIBRARY
FTP_SERVER.LIB

SEE ALSO

sauth_ adduser

Chapter 6: FTP Server

295

ftp shutdown

void ftp_shutdown(int bGraceful);

DESCRIPTION

Close and cancel all FTP connections. If the server is connected to a client, forces the
QUIT state. If the application has called tcp_reserveport (), then it must call
tcp clearreserve (). For agraceful shutdown, the application must call
tcp_tick () afew moretimes.

After the FTP sockets close, the application must call f£tp_init () toagain start the
server running.

PARAMETER
bGraceful (boolean) zero to immediately abort all open connections, or non-

zero to simulate the QUIT command.

RETURN VALUE
None

LIBRARY
FTP_SERVER.LIB

SEE ALSO
ftp_init

296 TCP/IP User’'s Manual

ftp tick

void ftp tick(void);

DESCRIPTION

Onceftp init () hasbeencalled, ftp tick () must be called periodicaly to
run the server. This function is non-blocking.

LIBRARY
FTP_SERVER.LIB

SEE ALSO
ftp init

Chapter 6: FTP Server 297

6.4 Sample FTP Server

This code demonstrates a simple FTP server, using the ftp library. The user "anonymous' may
download the file "rabbitA.gif," but not "rabbitF.gif." The user "foo" (with password "bar") may
download "rabbitF.gif," but also "rabbitA.gif," since files owned by the anonymous user are
world-readable.

FileName: Samples\tcpip\ftp server.c
#define TCPCONFIG 101
#define SSPEC _NO_ STATIC / /Required for DC 8.50 or later

#memmap xmem
#use "dcrtcp.lib"
#use "ftp server.lib"

#ximport "samples/tcpip/http/pages/rabbitl.gif" rabbitl gif

main () {
int file, user;

/* Setupthefirst fileand user */

file = sspec addxmemfile ("rabbitA.gif", rabbitl gif,
SERVER FTP) ;

user = sauth adduser ("anonymous", "", SERVER FTP) ;
ftp set anonymous (user) ;
sspec_setuser (file, user);

sspec_setuser (sspec addxmemfile ("testl", rabbitl gif,
SERVER FTP), user) ;

sspec_setuser (sspec addxmemfile ("test2", rabbitl gif,
SERVER FTP), user) ;

/* Set up the second file and user */

file = sspec addxmemfile ("rabbitF.gif", rabbitl gif,
SERVER FTP) ;

user = sauth adduser ("foo", "bar", SERVER FTP) ;
sspec_setuser (file, user) ;

sspec_setuser (sspec addxmemfile ("test3", rabbitl gif,
SERVER FTP), user) ;

sspec_setuser (sspec addxmemfile ("test4", rabbitl gif,
SERVER FTP), user) ;

sock init () ;

ftp init (NULL) ; // usedefault handlers
tcp reserveport (FTP_CMDPORT) ; // Port 21
while (1) {

ftp tick();

}

298 TCP/IP User’'s Manual

Each user may execute the "dir" or "Is" command to see alisting of the available files. The listing
shows only the files that the logged-in user can access.

Notice the definition for TCP_CONFIG. When the value for this macro exceeds 100, a special
configuration fileis pulled in that will not be overridden by future updates of Dynamic C. In the
fileCUSTOM CONFIG.LIB,you may specify any network configuration that suits your pur-
poses. Please see /LIB/TCPIP/TCP CONFIG.LIB for examples of setting up alibrary of con-
figuration options.

6.5 Getting Through a Firewall

If aclientisbehind afirewall, it isincumbent upon the client to request that the server do apassive
open on its data port instead of the normal active open. Thisis so that the client can then do an
active open using the passively opened data port of the server, thus getting through the firewall.

Typicaly the server would not be behind afirewall.

6.6 FTP Server Commands

The following commands are recognized by the FTP server. The reply codes sent in response to
these commands are detailed in Section 6.7 on page 301. They are noted here to associate them
with the commands that may cause them to be sent.

Table 6.2 Recognized FTP Server Commands

L Possible
Command Description Reply Codes
The current data transfer completes before the abort command is
ABOR 226
read by the server.
CDUP A special case of CWD (Change Working Directory); the parent of 250, 431
the working directory is changed to be the working directory. :
CWD Changes working directory. 250, 431
DELE Delete the specified file. 250, 450, 550
LIST leplays Ils_t of flles_requested by |t_s argument inIs-l format. This 150, 226, 425
gives extra information about the file.
T e e 213, 250,
MDTM Shows the last modification time of the specified file. 450, 550
MODE Confirms the mode of datatransmission. Only stream modeis 200, 504
supported.
NLST D|§plays list of f|Ies_ requested by its argument, Wl_th names only. 150, 226, 425
This allows an application to further process the files.
Specifies no action except that the server send an OK reply. It does
NOOP ; 200
not affect any parameters or previously entered commands.

Chapter 6: FTP Server 299

Table 6.2 Recognized FTP Server Commands

o Possible
Command Description Reply Codes

Password for the user name (sent in clear text). It is accepted only

PASS after USER returns code 331 230, 530
Requests a passive open on a port that is not the default data port.

PASV The server responds with the host and port address on whichitis | 227, 452
listening.
Changes the data port from the default port to the port specified in

PORT the command’s argument. The argument is the concatenation of a | 200
32-bit internet host address and a 16-bit TCP port address.

PWD Prints the working directory name. 257

QUIT Closes the control connection. If adata transfer isin progress, the 291
connection will not be closed until it has completed.

RETR Transfers a copy of the file specified in the pathname argument 150, 226,
from the server to the client. 425, 550

. e e 213, 250,

SIZE Returns the size of the specified file. 450, 550
Stores afile from the client onto the server. The file will be 150, 226, 250

STOR overwritten if it already exists at the specified pathname, or it will | 425, 450,
be created if it does not exist. 452, 550

STRU Confirms .the sup_ported structure of afile. Only file-structureis 200, 504
supported: a continuous stream of data bytes.

SYST Sends the string “RABBIT2000.” 215

TYPE Confirmsthetransfer type. The types IMAGE (binary), ASCII and 200. 504
Local with 8-bit bytes are all supported and are treated the same. '

USER User name to use for authentication. 331, 530

300

TCP/IP User’s Manual

6.7 Reply Codes to FTP Commands

The FTP server repliesto all of the commands that it receives. The reply consists of a 3-digit num-
ber followed by a space and then atext string explaining the reply. All reply codes sent from the
FTP server are listed here.

Table 6.3

Reply Code Reply Text

150 File status okay; about to open data connection.

200 Command okay.

202 Command not implemented, superfluous at this site.

211 System status, or system help reply.

213 File status

214 Help message. On how to u_sethe server or the meaning of a particular
non-standard command. This reply is useful only to the human user.

215 System type.

220 Service ready for new user.

221 Service closing connection.

296 (?Iosi ng data connecti on. Requested file action successful (for example,
file transfer or file abort).

227 Entering Passive Maode (h1,h2,h3,h4,p1,p2).

230 User logged in, proceed

250 Requested file action okay, completed.

257 "PATHNAME" created.

331 User name okay, need password.

425 Can't open data connection.

450 Requested file action not taken. File unavailable (e.g., file busy).

452 Requested action not taken. Insufficient storage space in system.

502 Command not implemented.

504 Command not implemented for that parameter.

530 Not logged in.

550 Requested action not taken. File unavailable (e.g., file not found, no
access).

The text used for the reply codes, may be slightly different than what is shown here. It will be con-

text specific.

Chapter 6: FTP Server

301

302 TCP/IP User’s Manual

7. TFTP Client

TFTP.LIB implementsthe Trivial File Transfer Protocol (TFTP). This standard protocol (inter-
net RFC783) is alightweight protocol typically used to transfer bootstrap or configuration files
from a server to aclient host, such as a diskless workstation. TFTP allows data to be sent in either
direction between client and server, using UDP as the underlying transport.

Thislibrary fully implements TFTP, but as aclient only.
Compared with more capable protocols such as FTR, TFTP:

e has no security or authentication
e isnot asfast because of the step-by-step protocol
e uses fewer machine resources.

Because of the lack of authentication, most TFTP serversrestrict the set of accessiblefilesto a
small number of configuration filesin a single directory. For uploading files, servers are usually
configured to accept only certain file names that are writable by any user. If these restrictions are
acceptable, TFTP has the advantage of requiring very little 'footprint' in the client host.

7.1 BOOTP/DHCP

In conjunction with DHCP/BOOTP and appropriate server configuration, TFTP is often used to
download a kernel image to a diskless host. The target TCP/IP board does not currently support
loading the BIOS in this way, since the BIOS and application program are written to non-volatile
flash memory. However, the downloaded file does not have to be a binary executable - it can be
any reasonably small file, such as an application configuration file. TFTP and DHCP/BOOTP can
thus be used to administer the configuration of multiple targets from a central server.

Using TFTP with BOOTP/DHCP requires minimal additional effort for the programmer. Just
#define thesymbol DHCP USE TFTP to an integer representing the maximum allowable boot
file size (1-65535). See the description of the variables bootpsize, bootpdata and
_bootperror involume 1 of the TCP/IP User’s Manual for further details.

Chapter 7: TFTP Client 303

7.2 Data Structure for TFTP

This data structure is used to send and receive. Thetftp state structure, whichisrequired for
many of the API functionsin TFTP . LIB, may be alocated either in root data memory or in
extended memory. This structure is approximately 155 bytes long.

typedef struct tftp state {

byte state; // Current state. LSB indicates read (0)
// orwrite(1). Other bits determine
// state within this (see below).

long buf addr; // Physical address of buffer

word buf len; // Length of buffer

word buf used; // Amount Tx or Rx from/to buffer

word next blk; // Next expected block #, or next to Tx

word my tid; // UDP port number used by this host

udp Socket *sock; // UDP socket to use

longword rem ip; // |P address of remote host

longword timeout; // mstimer value for next timeout

char retry; // retransmit retry counter

char flags; // miscellaneous flags (see below).

// Following fields not used after initial request has been acknowledged.
char mode; // Trandation mode (see below).
char file[129] ; // File name on remote host (TFTP server)
// - NULL terminated. Thisfield will be
// overwritten with aNULL-term error message
// from the server if an error occurs.

b s

The following macros are valid for tftp_state- >mode.

#define TFTP_MODE NETASCII O
#define TFTP_MODE OCTET 1
#define TFTP_MODE MAIL 2

7.3 API Functions

// ASCII text

// 8-hit binary

// Mail (remote file name is email address,
// eg., user@host.blob.org)

Any of the following functions will require approximately 600-800 bytes of free stack. The data
buffer for the file to put or to get is always alocated in xram (see xalloc ()).

TFTP Session

A session can be either a single download (get) or upload (put). The functions ending with 'x' are
versions that use a data structure allocated in extended memory, for applications that are con-

strained in their use of root data memory.

304

TCP/IP User’'s Manual

tftp init

int tftp init(struct tftp state *ts);

DESCRIPTION

Thisfunction preparesfor a TFTP session and is called to complete initiaization of the
TFTP dtate structure. Before calling this function, some fields in the structure
tftp state must beset up asfollows:

ts->state = <0 for read, 1 for write>

ts->buf addr <physical address of xmem buffers

ts->buf len <length of physical buffer, 0-65535>

ts->my tid <UDP port number. Set 0 for defaults>

ts->sock <address of UDP socket (udp_Socket *),or NULL to

use DHCP/BOOTP sockets>

ts->rem ip = <IP address of TFTP server host, or zero to use
default BOOTP hosts>

<one of the following constants:
TFTP_MODE NETASCII (ASCII text)
TFTP_MODE_OCTET (8-bit binary)
TFTP_MODE_MAIL (Mail)>

strcpy (ts->file, <remote filename or mail address>)

ts->mode

Notethat mail mode can only be used to write mail to the TFTP server, and the file name
isthe email address of the recipient. The e-mail message must be ASClI-encoded and
formatted with RFC822 headers. Sending e-mail via TFTP is deprecated. Use SMTPin-
stead since TFTP servers may not implement mail.

PARAMETERS

ts Pointer totftp state.

RETURN VALUE

0: OK.
-4 Error, default socket in use.

LIBRARY
TFTP.LIB

Chapter 7: TFTP Client 305

http://www.faqs.org/rfcs/rfc822.html

tftp initx

int tftp_initx(long ts_addr);

DESCRIPTION

Thisfunction is called to complete initiaization of the TFTP state structure, where the
structureispossibly stored somewhere other thanin theroot dataspace. Thisisawrapper
functionfor tftp init (). Seethat function description for details.

PARAMETERS
ts addr Physical address of TFTP state (struct t ftp_state)
RETURN VALUE

0: OK
-1: Error, default socket in use

LIBRARY
TFTP.LIB

306 TCP/IP User’'s Manual

tftp tick

int tftp tick(struct tftp state *ts);

DESCRIPTION

Thisfunctioniscalled periodically in order to take the next stepin aTFTP process. Ap-
propriate use of thisfunction allows single or multiple transfersto occur without bl ock-
ing. For multiple concurrent transfers, theremust beauniquetftp state structure,
and a unique UDP socket, for each transfer in progress. This function calls

sock tick().

PARAMETERS

ts Pointer to TFTP state. This must have been set up using
tftp init (), and must be passed to each call of
tftp tick () without alteration.

RETURN VALUE

1: OK, transfer not yet complete.
0: OK, transfer complete
-1: Error from remote side, transfer terminated. In this case, thets_addr->filefield
will be overwritten with a NULL-terminated error message from the server.
-2: Error, could not contact remote host or lost contact.
-3: Timed out, transfer terminated.
-4: (not used)
-5: Transfer complete, but truncated -- buffer too small to receive the complete file.

LIBRARY
TFTP.LIB

Chapter 7: TFTP Client 307

tftp tickx

int tftp_tickx(long ts_addr);

DESCRIPTION
Thisfunction isawrapper for calling tftp tick (), wherethe structureis possibly

stored somewhere other than in the root data space. See that function description for de-
tails.

PARAMETERS

ts addr Physical address of TFTP state (struct t ftp_state).

RETURN VALUE

1: OK, transfer not yet complete.
0: OK, transfer complete
-1: Error from remote side, transfer terminated. In this case, thets addr->file field
will be overwritten with a NULL-terminated error message from the server.
-2: Error, could not contact remote host or lost contact.
-3: Timed out, transfer terminated.
-4 (not used)
-5: Transfer complete, but truncated -- buffer too small to receive the complete file.

LIBRARY
TFTP.LIB

308 TCP/IP User’'s Manual

tftp exec

int tftp exec(char put, long buf addr, word *len, int mode,
char *host, char *hostfile, udp Socket *sock);

DESCRIPTION

Prepare and execute a complete TFTP session, blocking until complete. This function is a wrapper
fortftp init () andtftp tick().Itdoesnot return until thecompletefileistransferred or
an error occurs. Note that approximately 750 bytes of free stack will be required by this function.

PARAMETERS

put 0: get file from remote host; 1: put file to host.

buf addr Physical address of data buffer.

len Length of data buffer. Thisis both an input and a return parameter.
It should beinitialized to the buffer length. On return, it will be set
to the actual length received (for a get), or unchanged (for a put).

mode Data representation;: 0=NETASCII, 1=OCTET (binary), 2=MAIL.

host Remote host name, or NULL to use default BOOTP host.

hostfile Name of file on remote host, or e-mail address for mail.

sock UDP socket to use, or NULL to re-use BOOTP socket if available.

RETURN VALUE

0: OK, transfer complete.
- 1: Error from remote side, transfer terminated. Inthiscase, ts_addr->file
will be overwritten with a NULL-terminated error message from the server.
-2: Error, could not contact remote host or lost contact.
-3: Timed out, transfer terminated
-4: sock parameter was NULL, but BOOTP socket was unavailable.

LIBRARY
TFTP.LIB

Chapter 7: TFTP Client 309

310 TCP/IP User’s Manual

8. SMTP Mail Client

SMTP (Simple Mail Transfer Protocol) is one of the most common ways of sending e-mail. SMTP
isasimple text conversation across a TCP/IP connection. The SMTP server usualy resides on
TCP port 25 waiting for clients to connect. (Define SMTP_PORT to override the default port num-
ber.)

Sending mail with the Dynamic C SMTP client library is a simple process, demonstrated in the
sample program shown in Section 8.3. Dynamic C 9 introduced SM TP authentication, described
below in Section 8.2.

8.1 Sample Conversation

The following isatypical listing of mail from the controller (ne@somewhere . com) to
someone@somewhereelse.com. The mail server that the controller istalkingtois
mail.somehost .com. Thelinesthat begin with a numeric value are coming from the mail
server. The other lines were sent by the controller. More information on the exact specification of
SMTP and the meanings of the commands and responses can be found in RFC821 at
http://mwww.ietf.org.

220 mail.somehost.com ESMTP Service (WorldMail 1.3.122)
ready
HELO 10.10.6.100

250 mail.somewhere.com
MAIL FROM: <me@somewhere.com>

250 MAIL FROM:<me@somewhere.com> OK
RCPT TO: <someone@somewhereelse.com>

250 RCPT TO:<someone@somewhereelse.com> OK
DATA

354 Start mail input; end with <CRLF>.<CRLF>
From: <me@somewhere.com>

To: <someone@somewhereelse.com>

Subject: test mail

test mail

250 Mail accepted
QUIT

221 mail.somehost.com QUIT

You can see alisting of the conversation between your controller and the mail server by defining
the SMTP_DEBUG macro at the top of your program. Note that there must be a blank line after the
line “Subject: test mail.”

Chapter 8: SMTP Mail Client 311

http://www.ietf.org

8.2 SMTP Authentication

In most situations, Internet accessis provided by an Internet Service Provider (1SP). Usuadly the
ISP runs an email server that will accept emails without authentication from customers that are
within their network. Users outside of their network are not alowed to send email through their
servers because the mail server would quickly become a gateway for spam. With more people on
the go with laptops, SM TP authentication allows them to send email through a trusted server with-
out being directly on the network.

An informative tutorial on SMTP authentication is available at:

www.fehcom.de/gmail/smtpauth.html

Default behavior prior to Dynamic C 9.21 was for the login to fail if authentication failed. With
Dynamic C 9.21 the SMTP library will fall back on unauthenticated login if authentication
fails. To restore the old behavior when using Dynamic C 9.21, define the macro

SMTP AUTH FAIL IF NO AUTH.

Three methods of authentication are recognized by the implementation of an SMTP client.

AUTH PLAIN
Theclient sends"AUTH PLAIN <token>" where <token> isthe Base64-encoded string
"username\Ousername\Opassword” that will look something like:

AUTH PLAIN dGVzdABOZXNOAHRI1c3RwYXNz
The server responds with a message indicating whether authentication was successful.

AUTH LOGIN
Client sends"AUTH LOGIN" command; server respondswith 334 V XNlcm5hbWU6"
(Baseb4-encoded "Username:"); client responds with its Base64-encoded username;
server responds with " 334 UGFzc3dvemQ6"; client responds with its Base64-encoded
password. At this point, the server should respond with a message indicating whether au-
thentication was successful. This method is only slightly more complex than AUTH
PLAIN.

AUTH CRAM-MD5
Client sends"AUTH CRAM-MD5"; server responds with "334 <challenge>" where
<challenge> is a unique Baseb4-encoded challenge string (for example,
"'<4994.1088035610@zworld.com>").

The client generates a digest using the following M D5 hashing algorithm (where pass-
word is null-padded to alength of 64 bytes, ipad is 0x36 repeated 64 times and opad is
Ox5C repeated 64 times):

digest = MD5 ((password XOR opad), MD5 ((password XOR
ipad), challenge))
The client responds with the string "<username> <response>" Baseb4-encoded; <user-
name> isin plaintext, and <response> is the 16-byte digest in hex form.This method is
the most secure, since someone sniffing the connection would be unableto determinethe
cleartext password used to authenticate.

312 TCP/IP User’'s Manual

http://www.fehcom.de/qmail/smtpauth.html

8.3 Sample Sending of an E-mail

This program, smtp . ¢, sends an e-mail. To have the client query the server for authentication,
define the macro USE_ SMTP_AUTH and call smtp setauth () beforecalling
smtp_sendmail () (or smtp_ sendmailxmem ()). If themail server does not support
authentication, either do not defineUSE_SMTP AUTH or passempty strings (“”) as the parameters
tosmtp setauth().

Program Name: Samples\tcpip\smtp\smtp.c

#define TCPCONFIG 1 // pick network configuration

#define FROM "myaddress@mydomain.com"

#define TO "myaddress@mydomain.com"

#define SUBJECT "You've got mail!™"

#idefine BODY "Visit the Rabbit Semiconductor web site.\r\n"

/* SMTP_SERVER identifiesthe mail server. This can be name or IP address. */
#define SMTP SERVER "mymailserver.mydomain.com"

#define USE_SMTP_AUTH

#memmap xmem
#use dcrtcp.lib
#use smtp.lib

main() {
sock init () ;

while (ifpending(IF DEFAULT) == IF COMING UP) {
tcp tick (NULL) ;
}

#ifdef USE_SMTP_ AUTH
smtp setauth ("myusername", "mypassword") ;
#endif

smtp sendmail (TO, FROM, SUBJECT, BODY) ;

while (smtp mailtick () ==SMTP_PENDING)
continue;
if (smtp status () ==SMTP_SUCCESS)

printf ("Message sent\n") ;

else
printf ("Error sending message\n") ;

Chapter 8: SMTP Mail Client 313

8.4 Configuration Macros
The SMTP client is configured by using compiler macros.

SMTP_ AUTH FAIL IF NO AUTH
Defaultsto undefined. This macro wasintroduced in Dynamic C 9.21. If itisdefined, the
loginwill fail if authentication fails. Otherwise, thelibrary will fall back on an unauthen-
ticated login if authentication fails. Prior to Dynamic C 9.21, the login failed if authenti-
cation failed, so the macro is restoring that behavior.

SMTP DEBUG
Thismacrotellsthe SMTP codeto log eventsto the STDIO window in Dynamic C. This
provides a convenient way of troubleshooting an e-mail problem.

SMTP DOMAIN
Thismacro definesthetext to be sent with the HEL O client command. Many mail servers
ignoretheinformation supplied with the HEL O, but some e-mail serversrequirethefully
quaified namein thisfield (i.e., somemachine.somedomain.com). If you have problems
with e-mail being rejected by the server, turn on SMTP_DEBUG. If it isgiving an error
message after the HEL O line, talk to the administer of the machine for the appropriate
valueto placein SMTP_DOMAIN. If you do not define this macro, it will default to
MY IP ADDRESS.

#define SMTP_DOMAIN "somemachine.somedomain.com"

SMTP MAX DATALEN
Defaultsto 256. Maximum buffer size for server responses and short client requests.

SMTP MAX PASSWORDLEN
Defaultsto 16. Maximum length of the password used in authentication.

SMTP MAX USERNAMELEN
Defaultsto 64. Maximum length of the user name used in authentication.

SMTP MAX SERVERLEN
Defaultsto MAX STRING, which defaultsto 50. Maximum length of mail server name.

SMTP SERVER
This macro defines the mail server that will relay the controller’s mail. This server must
be configured to relay mail for your controller. You can either place afully qualified do-
main name or an IP addressin thisfield.

#define SMTP_SERVER "mail.mydomain.com"
or
#define SMTP SERVER "10.10.6.19"

314 TCP/IP User’'s Manual

SMTP TIMEOUT
Thismacrotellsthe SMTP code how long in secondsto try to send the e-mail beforetim-
ing out. It defaults to 20 seconds.

#define SMTP TIMEOUT 10

USE_SMTP_AUTH
Define this macro to enable SM TP authentication.

Chapter 8: SMTP Mail Client 315

8.5 API Functions

The user-callable functions described in this section are found in the Dynamic C library
Lib\tcpip\smtp.lib.

smtp data handler

void smtp data handler(int (*dhnd) (), void * dhnd data, word
opts);

DESCRIPTION

Sets a data handler for generating mail message content. This function should be called
after calling smtp sendmail () etc. It overrides any message parameter set by the
smtp sendmail () call, sincethe messageisgenerated dynamically by the callback
function.

Note: you can use the same data handler as used for the FTP library (see the

ftp data handler () description). Theflagsvaluesare numerically equivalent to
those of the same meaning for f£tp data_ handler (). The SMTP datahandler is
only used to generate data, not receiveiit.

The handler is afunction that must be coded according to the following prototype:

int my handler (char *data, int len, longword offset,
int flags, void *dhnd data) ;

The data handler function must be called with the following parameters:
data Pointer to a data buffer

len The length of the above data buffer. This parameter is set to
SMTP_ MAX DATALEN (256) by default. You can override that
macro to allow larger "chunks'.

offset The byte number relative to the first byte of the entire message
stream. Thisis useful for data handler functions that do not wish to
keep track of the current state of the data source.

flags Containsanindicator of the current operation: SMTPDH_OUT: data
isto befilled with the next data to send to the mail server. The max-
imum allowable chunk of datais specified by 'len’. The data must
not contain the sequence <CRLF>.<CRLF> sincethat will confuse
the process. SMTPDH_ABORT: end of data; error encountered dur-
ing SMTP operation. The mail was probably not delivered.

dhnd data The pointer that waspassedto ftp data handler().

316 TCP/IP User’'s Manual

PARAMETERS

dhnd Pointer to data handler function, or NULL to remove the current
data handler.
dhnd data A pointer that is passed to the data handler function. This may be

used to point to any further datarequired by the datahandler such as
an open file descriptor.

opts Optionsword (currently reserved, set to zero).

RETURN VALUE

The return value from this function should be the actual number of bytes placed in the

data buffer, or -1 to abort. If 0 isreturned, then thisis considered to be the end of data
You can write up to and including "len" bytes into the buffer, but at least one byte must
be written otherwise it is assumed that no more datais following.

For SMTPDH_ABORT, the return code isignored.

SEE ALSO

smtp sendmail, smtp sendmailxmem, smtp mailtick

EXAMPLE
The program Samples/tcpip/smtp/smtp dh.c makesuse of thisfunction.

Chapter 8: SMTP Mail Client 317

smtp mailtick

int smtp mailtick(void);

DESCRIPTION
Repetitively call thisfunction until e-mail is completely sent.

RETURN VALUE

SMTP_SUCCESS - email sent.

SMTP_PENDING - email not sent yet call smtp mailtick again.
SMTP_TIME -e-mail not sent within SMTP_TIMEOUT seconds.
SMTP_UNEXPECTED - received an invalid response from SMTP server.
SMTP_DNSERROR - cannot resolve server name

SMTP_ ABORTED - transaction aborted (by data handler)

If usng SMTP AUTH, the following values are also possible:

SMTP_AUTH UNAVAILABLE - unable to attempt authentication|
SMTP_AUTH_ FAILED - attempts to authenticate failed

LIBRARY
SMTP.LIB

SEE ALSO

smtp_sendmail, smtp_ status

318 TCP/IP User’s Manual

smtp sendmail

void smtp sendmail(char *to, char *from, char *subject, char
*message);

DESCRIPTION

Start an e-mail being sent. Thisfunction isintended to be used for short messagesthat are
entirely constructed prior to being sent.

If you have previoudly installed adata handler viasmtp data handler (), then
youmust call smtp _data_ handler () withaNULL datahandler, otherwise this
message will not get sent.

NOTE: The strings pointed to by the parameters must not be changed until the entire
processis completed. Also, if the first character of any line of the messageis aperiod
(), then this character will be deleted as part of normal mail processing. Thus, to actu-
aly send aline starting with "', you must start the line with '.." i.e. double up an initial

period.
PARAMETERS

to String containing the e-mail address of the destination. Maximum of
192 characters. Currently, only one recipient is supported.

from String containing the e-mail address of the source. Maximum of 192
charactersfor areturn address. If no return should be sent by receiv-
er, then pass an empty string ("").

subject String containing the subject of the message. Thismay be NULL in
which case no subject linewill be sent. Thisstring may also contain
embedded \r\n sequences so that additional mail header linesmay be
inserted. The length of this string is unlimited.

message String containing the message. (This string must not contain the

byte sequence "\r\n.\r\n" (CRLFE.CRLF), asthisisused to mark the
end of thee-mail, and will be appended to the e-mail automatically.)
This message must be null terminated, and is only alowed to con-
tain 7-bit characters. You can pass NULL if adatahandler isto be
used to generate the message.

RETURN VALUE

None.

SEE ALSO

smtp mailtick, smtp status, smtp sendmailxmem

Chapter 8: SMTP Mail Client 319

smtp sendmailxmem

void smtp sendmailxmem(char *to, char *from, char *subject,
long message, long messagelen);

DESCRIPTION

Start an e-mail being sent. Thisisintended for moderately long, fixed messagesthat are
stored in extended memory (e.g., via#ximport'ed fil€).

Seesmtp_ sendmail () for moredetails.

PARAMETERS
to String containing the e-mail address of the destination.
from String containing the e-mail address of the source.
subject String containing the subject of the message.
message Physica address in xmem containing the message. (The message

must NOT contain the byte sequence "\n\n.\r\n" (CRLF.CRLF), as
thisis used to mark the end of the e-mail, and will be appended to
the e-mail automatically.)

messagelen Length of the message in xmem.

RETURN VALUE
None

LIBRARY
SMTP.LIB

SEE ALSO

smtp mailtick, smtp status, smtp sendmail

320 TCP/IP User’'s Manual

smtp setauth

int smtp setauth(char* username, char* password);

DESCRIPTION

Sets the username and password to use for SMTP AUTH (Authentication). You must
#defineUSE_SMTP_AUTH in your program if you want to use SMTP AUTH on your
outbound connections. To disable SMTP authentication, set both username and

passwordto“” (empty strings).
PARAMETERS
username Thisiscopied into the SMTP state structure. Note that some SMTP
serversrequire afull email address while others just want a user-
name.
password Thisis copied into the SMTP state structure.

RETURN VALUE

SMTP_OK: server name was set successfully
SMTP_USERNAMETOOLONG: the username was too long
SMTP_PASSWORDTOOLONG: the username was too long

SEE ALSO

smtp sendmail, smtp mailtick

Chapter 8: SMTP Mail Client

321

smtp setserver

int smtp_ setserver(char* server);

DESCRIPTION

Setsthe SMTP server. Thisvaue overrides SMTP_SERVER and the results of any pre-
viouscall to smtp_setserver ip ().

PARAMETER

server Server name string. Thisis copied into the SMTP state structure.
This name is not resolved to an | P address until you start calling
smtp mailtick().

RETURN VALUE

SMTP_OK: Server name was set successfully
SMTP_NAMETOOLONG: The server name was too long

SEE ALSO

smtp_ sendmail, smtp setserver ip, smtp mailtick

smtp setserver ip

int smtp setserver ip(longword server);

DESCRIPTION

Setsthe SMTPserver. Thisvalueoverridesthevaluesetby smtp setserver (),and
is used when the | P address of the mail server isknown.

PARAMETER

server Server |P address.

RETURN VALUE
SMTP_OK: server |P was set successfully

SEE ALSO

smtp sendmail, smtp setserver, smtp mailtick

322 TCP/IP User’'s Manual

smtp status

int smtp status(void);

DESCRIPTION
Return the status of the last e-mail processed.

RETURN VALUE

SMTP_SUCCESS - email sent.

SMTP_PENDING - e-mail not sent yet call smtp_mailtick again.
SMTP_TIME -e-mail not sent within SMTP_TIMEOUT seconds.
SMTP_UNEXPECTED - received an invalid response from SMTP server.

LIBRARY
SMTP.LIB

Chapter 8: SMTP Mail Client 323

324 TCP/IP User’s Manual

9. POP3 Client

Post Office Protocol version 3 (POP3) is probably the most common way of retrieving e-mail
from aremote server. Most e-mail programs, such as Eudora, M S-Outlook, and Netscape's e-mail
client, use POP3. The protocol is afairly simple text-based chat across a TCP socket, normally
using TCP port 110.

There are two ways of using POP3 . LIB. Thefirst method provides araw dump of the incoming
e-mail. Thisincludes all of the header information that is sent with the e-mail, which, while some-
times useful, may be more information than is needed. The second method provides a parsed ver-
sion of the e-mail, with the sender, recipient, subject line, and body text separated out.

In both methods, each line of e-mail has CRLF stripped from it and ‘\O' appended to it.

9.1 Configuration
The POP3 client can be configured through the following macros:

POP_BUFFER SIZE

Thiswill setthebuffer szefor POP_ PARSE EXTRA inbytes. Thesearethe buffersthat
hold the sender, recipient and subject of thee-mail. POP_ BUFFER _SIZE defaultsto 64
bytes.

POP_DEBUG

Thiswill turn on debug information. It will show the actual conversation between the de-
vice and the remote mail server, aswell as other useful information.

POP_ NODELETE

Thiswill stop the POP3 library from removing messages from the remote server asthey
areread. By default, the messages are deleted to save storage space on the remote mail
server.

POP_PARSE EXTRA
Thiswill enable the second mode, creating a parsed version of the e-mail as mentioned
above. The POP3 library parses the incoming mail more fully to provide the Sender, Re-
cipient, Subject, and Body fields as separate items to the call-back function.

Chapter 9: POP3 Client 325

9.2 Steps to Receive E-mail.

1. pop3_ init ()iscalledto provide the POP3 library with a call-back function. This call-
back will be used to provide you the incoming data. This function is usually called once.

2. pop3 getmail () iscalledto start the e-mail being received, and to provide the library
with e-mail account information.

3. pop3 tick () iscalled aslong asit returns POP PENDING, to actually run thelibrary.
The library will call the function you provided pop3 init () severa timesto give you
the e-mail.

9.3 Call-Back Function
There are two types of call-back functions, which are described here.

9.3.1 Normal call-back
When not using POP_PARSE EXTRA, you need to provide a function with the following proto-
type:

int storemail (int number, char *buf, int size);

The parameter number isthe number of the e-mail being transferred, usualy 1 for the first, 2 for
the second, but not necessarily. The numbers are only guaranteed to be unique between all e-mails
transferred.

Thebuf parameter is the text buffer containing one line of the incoming e-mail. This must be
copied out immediately, as the buffer will be different when the next line comesin, and your call-
back is called again. si ze isthe number of bytesin buf.

The sample program Samples\tcpip\pop3\ pop.c providesan example of this style of
call-back.

9.3.2 POP_PARSE_EXTRA call-back

If POP_PARSE EXTRA isdefined, you need to provide a call-back function with the following
prototype:

int storemail (int number, char *to, char *from, char *subject,
char *body, int size);

number, body, and size arethe same as before.

to hasthe e-mail address of who this e-mail was sent to.
from has the email address of who sent this e-mail.
subject hasthe subject line of the e-mail.

These new fields should be used only the first time your call-back is called with a new number
field. In subsequent calls, these fields are not guaranteed to have accurate information.

Seeparse extra.c in Section 9.5 for an example of thistype of call-back.

326 TCP/IP User’'s Manual

9.4 API Functions

pop3 init

int pop3 init(int (*storemail) ());

DESCRIPTION

Thisfunction must be called before any other POP3 functioniscalled. It will set the call-
back function where theincoming e-mail will be passed to. This probably should only be
caled once.

PARAMETERS
storemail A function pointer to the call-back function.

RETURN VALUE

0: Success.
1: Failure.

LIBRARY
POP3.LIB

Chapter 9: POP3 Client 327

pop3 getmail

int pop3 getmail (char *username, char *password, long server);

DESCRIPTION

This function will initiate receiving e-mail (a POP3 request to aremote e-mail server).
IMPORTANT NOTE - the buffersfor username and password must NOT change
until pop3 tick () returnssomething besides POP PENDING. Thesevaluesare not
saved interndly, and depend on the buffers not changing.

PARAMETERS
username Theusername of the account to access.
password Thepassword of the account to access.
server The IP address of the server to connect to, as returned from

resolve ().

RETURN VALUE

0: Success.
1: Failure,

LIBRARY
POP3.LIB

328 TCP/IP User’s Manual

pop3 tick

int pop3 tick(void)

DESCRIPTION

A standard tick function, to run the daemon. Continue to cal it aslong asit returns
POP_PENDING.

RETURN VALUE

POP_PENDING: Transfer isnot done; cal pop3 tick again.

POP_SUCCESS: All emails were received successfully.

POP_ERROR: Unknown error occurred.

POP_TIME: Sessontimed-out. Try again, or use POP_TIMEOUT toincreasethetime-
out length.

LIBRARY
POP3.LIB

Chapter 9: POP3 Client 329

9.5 Sample Receiving of E-mail
This program connects to a POP3 server and downloads e-mail fromit.

Program Name: Samples\tcpip\pop3\parse _extra.c

#define TCPCONFIG 1
#define POP_HOST mail.domain.com" // Name of your POP3 server

#define POP_USER "myname"

/ / Username for POP3 account

#define POP_PASS "secret" / / Password for POP3 account
#define POP_PARSE EXTRA

#memmap xmem

#use "dcrtcp.lib"

#use "pop3.lib"

int n;

int storemsg(int num, char *to, char *from, char *subject,

}

char *body, int len) {

#GLOBAL INIT{n = -1;}

if(n != num) {
n = num;
printf ("RECEIVING MESSAGE <%d>\n", n);
printf ("\tFrom: %s\n", from);

(
printf ("\tTo: %s\n", to);
printf ("\tSubject: %s\n", subject) ;
}
printf ("MSG DATA> '$s'\n", body) ;
return O0;

main () {

static long address;
static int ret;

sock init () ;

pop3 init (storemsg) ; / /set up call-back
printf ("Resolving name...\n") ;
address = resolve (POP_HOST) ;
printf ("Calling pop3 getmail()...\n");
pop3 getmail (POP_USER, POP_PASS, address); // Requesttoserver
printf ("Entering pop3 tick()...\n");
while ((ret = pop3 tick()) == POP_ PENDING)
continue;
if (ret == POP_ SUCCESS)
printf ("POP was successful!\n") ;
if (ret == POP_TIME)
printf ("POP timed out!\n") ;
if (ret == POP_ERROR)

printf ("POP returned a general error!\n");
printf ("All done!\n") ;

330

TCP/IP User’'s Manual

9.5.1 Sample Conversation
The following is an example POP3 session from the specification in RFC1939. For more informa-
tion see:

http://www.rfc-editor.org/rfc/std/std53.txt

In the following example, lines starting with ‘' S:” are from the server, and lines starting with * C:’
are from the client.

n

<wait for connection on TCP port 110>

<open connections>

+0K POP3 server ready <1896.697170952@dbc.mtview.ca.us>
APOP mrose c4c9334bac560ecc979e58001b3e22fb

+0OK mrose's maildrop has 2 messages (320 octets)
STAT

+OK 2 320

LIST

+0K 2 messages (320 octets)

1 120

2 200

RETR 1
+OK 120 octets
<the POP3 server sends message 1>

DELE 1

+0K message 1 deleted

RETR 2

+OK 200 octets

<the POP3 server sends message 2>

DELE 2

+0K message 2 deleted

QUIT

+0OK dewey POP3 server signing off (maildrop empty)

QAN QO N QN Nnh nh OQCLhnh QO hnh NN OQONnn nn NMn NOun QOn N

<close connection>

0

<wait for next connection>

For debugging purposes, you can observe this conversation by defining POP_DEBUG at the top of
your program.

Chapter 9: POP3 Client 331

http://www.rfc-editor.org/rfc/std/std53.txt

332 TCP/IP User’s Manual

10. Telnet

Thelibrary Vserial . 1ib implements the telecommunications network interface known as tel-
net. The implementation is atelnet-to-serial and serial-to-telnet gateway. This chapter is divided
into two parts. The first part describes the library from Dynamic C version 7.05 and later. The sec-
ond part describes the library prior to 7.05.

10.1 Telnet (Dynamic C 7.05 and later)

Thisimplementation is more general than the previous one. Any of the four seria ports can be
used and other 1/0O streams can be added. Multiple connections are supported by the use of unique
gateway identifiers.

10.1.1 Setup
To use aserial port, the circular buffers must be initialized. For instance, if serial port A isused by
an application, then the following macros must be defined in the program:

#define AINBUFSIZE 31
#define AOUTBUFSIZE 31

It might be necessary to have bigger buffers for some applications.

10.1.1.1 Low-Level Serial Routines
A tableto hold the low-level 1/O routines must be defined astype vSerialSpec.

typedef struct ({

int 1id; // unique ID to match with callsto listen/open
int (*open) () ; // seria port routines, or

int (*close) () ; // serial port compatible routines.

int (*tick) () ;

int (*rdUsed) () ;

int (*wrFree) () ;

int (*read) ()

int (*write) () ;
} VSerialSpec;

For each serial port A, B, C and D, thereis a pre-defined macro in VSERIAL . LIB:

#define VSERIAL PORTA(id) { (id), serAopen, serAclose, NULL,
serArdUsed, serAwrFree, serAread, serAwrite }

The parameter passed to VSERIAL PORTA is the unique gateway identifier mentioned earlier.
Thisvalue is chosen by the developer when entries are made to the array of type VvSerialSpec
(also known as the spec table).

Dynamic C 9.21 includes support for serial ports E and F on all Rabbit 3000 based boards.

Chapter 10: Telnet 333

10.1.1.2 Configuration Macros

VSERIAL DEBUG
Turns on debug messages.

VSERIAL NUM GATEWAYS

The number of telnet sessions must be defined and must match the number of entriesin
the spec table.

10.1.2 API Functions (Dynamic C 7.05 and later)

The following functions compose the latest telnet API. A sample program demonstrating their use
isavailableat Samples\tcpip\telnet\vserial.c.

vserial close

int vserial close(int id);

DESCRIPTION

Closesthe specified gateway. Thiswill not only terminate any network activity, but will
also close the serial port.

PARAMETERS
id ID of the gateway to change, as specified in the spec table.

RETURN VALUE

0: Success.
1: Failure.

LIBRARY
VSERIAL.LIB

vserial init

int vserial init (void);

DESCRIPTION
Initializes the daemon and parses the spec table.

RETURN VALUE
0: Success;
1: Failure.

LIBRARY
VSERIAL.LIB

334 TCP/IP User’'s Manual

vserial keepalive

int vserial keepalive (int id, long timeout);

DESCRIPTION

This function sets the keepalive timer to generate TCP keepdives after timeout pe-
riods of inactivity. This helps detect if the connection has gone bad.

Keepalives should be used at the application level, but if that is not possible, then
timeout should be set so asto not overload the network. The standard timeout istwo
hours, and should be set sooner than that only for a Very Good Reason.

PARAMETERS
id Unique gateway identifier.
timeout Number of seconds of inactivity allowed beforea TCP keepaliveis

sent. A value of 0 shuts off keepalives.

RETURN VALUE

0: Success.
1: Failure.

LIBRARY
VSERIAL.LIB

Chapter 10: Telnet 335

vserial listen

int vserial listen(int id, long baud, int port, long
remote host, int flags);

DESCRIPTION

Listens on the specified port for atelnet connection. The gateway processis started
when a connection request is received. On disconnect, re-listen happens automatically.

PARAMETERS
id ID of the gateway to change, as specified in the spec table.
baud The parameter to sendtotheopen () serial port command; it’susu-
ally the baud rate.
port Thelocal TCP port to listen on.

remote host Theremote host from whom to accept connections, or O to accept a
connection from anybody.

flags Option flags for this gateway. Currently the only valid bit flags are
VSERIAL COOKED to strip out telnet control codes, or O to leave
it araw datalink.

RETURN VALUE

0: Success.
1: Failure.

LIBRARY
VSERIAL.LIB

336 TCP/IP User’'s Manual

vserial open

int vserial open(int id, long baud, int port, long remote host,
int flags, long retry):

DESCRIPTION

Opens a connection to aremote host and maintains it, starting the gateway process.

PARAMETERS
id

baud

port
remote host

flags

retry

RETURN VALUE

0: Success.
1: Failure.

LIBRARY
VSERIAL.LIB

ID of the gateway to change, as specified in the spec table.

The parameter to send to theopen () serial port command; it’'susu-
ally the baud rate.

The TCP port on the remote host to connect to.
The remote host to connect to.

Option flags for this gateway. Currently the only valid bit flags are
VSERIAL COOKED to strip out telnet control codes, or O to leave
it araw datalink.

The retry time-out, in seconds. When a connection fails, or if the
connection wasrefused, wewill wait this number of seconds before
retrying.

Chapter 10: Telnet

337

vserial tick

int vserial tick(void);

DESCRIPTION
Runs the telnet daemon - must be called periodically.

RETURN VALUE

0: Success;
1: Failure.

But call it periodically no matter the return value! An error message can be seen when
lisreturned if you define VSERIAL DEBUG at the top of your program.

LIBRARY
VSERIAL.LIB

338 TCP/IP User’s Manual

10.2 Telnet (pre-Dynamic C 7.05)
The API available for telnet changed with Dynamic C version 7.05. Thisisthe old API

10.2.1 Configuration Macros

SERIAL PORT SPEED
The baud rate of the serial port. Defaults to 115,200 bps.

TELNET COOKED
#define thisto have telnet control codes stripped out of the data stream.

Thisisuseful if you are actually telneting to the device from another box. It should not
be defined if you are using two devices as atransparent bridge over the Ethernet.

10.2.2 API Functions

telnet init

int telnet init(int which, longword addy, int port);

DESCRIPTION

Initializes the connection. This function must not be called by an application program
starting with Dynamic C 7.05.

PARAMETERS

which Is one of the following:
TELNET LISTEN—Listenson aport for incoming connections.
TELNET RECONNECT—Connectsto aremote host, and recon-
nectsif the connection dies.
TELNET CONNECT—Connectsto aremote host, and terminatesif
the connection dies.

addy IP address of the remote host, or 0 if we are listening.

port Port to bind to if we are listening, or the port of the remote host to

connect to.

RETURN VALUE

0: Success.
1: Failure.

LIBRARY
VSERIAL.LIB

Chapter 10: Telnet

339

telnet tick

int telnet tick(void);
DESCRIPTION
Must be called periodically to run the daemon.

RETURN VALUE
0: Success (cal it again);

1: Failure; TELNET CONNECT died, or afatal error occurred.

LIBRARY
VSERIAL.LIB

telnet close

void telnet close(void);

DESCRIPTION

Terminates any connections currently open, and shuts down the daemon.

LIBRARY
VSERIAL.LIB

340

TCP/IP User’s Manual

10.2.3 An Example Telnet Server

The following code implements a telnet server. It listens on well-known port 23 for a connection
request. Datais passed transparently via serial port C.

#define MY IP ADDRESS "10.10.6.105"
#define MY NETMASK "255.255.255.0"
#define MY GATEWAY "10.10.6.19"
#define MY NAMESERVER "10.10.6.19"

#define SERIAL PORT SPEED 115200 // Set serial port speed.
#undef TELNET COOKED // Thisisaraw data port.

#memmap xmem
#use "dcrtcp.lib"
#use "vserial.lib"

#define SERVER PORT 0 // Defaultsto port 23.
main () {
sock init () ; // Initialize stack.
telnet init (TELNET LISTEN, O, SERVER PORT) ; // Initialize server
while (!telnet tick()) // Run server; thisis non-blocking
continue;
telnet close(); // Error, close telnet connection

Chapter 10: Telnet 341

10.2.4 An Example Telnet Client
This sample code implements a client that can connect to the above telnet server.

#define MY IP ADDRESS "10.10.6.106"
#define MY NETMASK "255.255.255.0"
#define MY GATEWAY "10.10.6.19"

#define MY NAMESERVER "10.10.6.19"

#define SERIAL PORT SPEED 115200 // Must match server.

#undef TELNET COOKED
#memmap xmem

#use "dcrtcp.lib"
#use "vserial.lib"

#define SERVER PORT 0 // Defaults to port 23; must match server.
#define REM HOST "10.10.6.19" // RemotelP to connect to.

main () {
sock_init () ; // Initialize the stack

// Téll the server to connect and reconnect if the connection is lost
telnet init (TELNET RECONNECT,resolve (REM HOST),SERVER PORT) ;

while (!telnet tick()) // Run client; thisis non-blocking
continue;
telnet close(); // Error, close telnet connection

342 TCP/IP User’'s Manual

11. General Purpose Console

Thelibrary, zconsole.lib, implementsaserial-based console that we call Zconsole. It can be
used to:

e Configure aboard.

e Upload and download web pages.

e Change web page variables without re-uploading the page.

e Send e-mail.

e Cadlssubsysteminitialization for ARP, TCP, UDP and DNS (if applicable).

11.1 Zconsole Features

Recognizing that embedded control systems are wide-ranging in their requirements, zcon-
sole.lib was designed with flexibility and extensibility in mind. Designers can choose the
available functionality they want and leave the rest alone. Zconsole includes:

e | ogin name and password protection.

e Default and custom Zconsole commands.

e Default and custom error messages.

e Help text for Zconsole commands, including custom commands
e Multiple /O streams that can be used simultaneously.

e A fail-safe backup system for configuration data

11.1.1 File System Requirement
Prior to Dynamic C 7.30, an application program using Zconsole must include the lines:
#use "filesystem.lib" // If usingtheimproved file system available with

// Dynamic C 7.05, substitute “fs2.lib” for “filesystem.lib”
#use "zconsole.lib"

Using the file system is no longer necessary.

11.1.2 TCP/IP and Zconsole
Dynamic C TCP/IP functionality may be used by a Zconsole application program by including the
statement

#use “dcrtcp.lib”

in the program. Other TCP/IP protocols may be added with #use statements of the appropriate
libraries.

Chapter 11: General Purpose Console 343

11.2 Login Name and Password

Thereisasample program, Samples\tcpip\LOGINCONSOLE . C, that demonstrates the use
of the login name/password functionality for Zconsole. Zconsole command functions:
con_loginname (), con loginpassword () and con logout () aredescribedin
Section 11.4.1.1 starting on page 347. The structure that saves the name and password information
can be backed up using the backup macro CONSOLE BACKUP_LOGIN. Please see Section 11.7
starting on page 368 for details on the backup system.

11.3 Zconsole Commands and Messages

Zconsole is acommand-driven application. A command isissued either at the keyboard using a
terminal emulator or acommand is generated and sent from an attached machine. Zconsole carries
out the command, and either the message “ OK” \r\n is returned, or an error is returned in the form
of:

ERROR XXXX Thisis an error message.\r\n

Note that the carriage return and new line characters (\r\n) are always returned by Zconsole
whether the command completed successfully or not.

11.3.1 Zconsole Command Data Structure

The command system is set up at compile time with an array of ConsoleCommand structures.
Thereisone array entry for each command recognized by Zconsole.

typedef struct ({
char *command;
int (*cmdfunc) () ;
long helptext;

} ConsoleCommand

command
Thisfield isastring like the following: “SET MAIL FROM.” That is, each word of the
command is separated by a space. The case of the command does not matter. Entering
this string is how the command is invoked.

cmdfunc
Thisfield isafunction pointer to the function that implements the command. The func-
tionsthat come with Zconsole are listed in Section 11.4.1.1 on page 347.

helptext
Thisfield pointsto atext file. The text file contains hel p information for the associated
command. When HELP COMMAND is entered, this text file (the help information for
COMMAND) will be printed to Zconsole. The help text comes from #ximported text
files.

344 TCP/IP User’'s Manual

11.3.1.1 Help Text for General Cases
There aretwo casesin zconsole. 1ib where help text is needed, but is not associated with a
particular command. It is still necessary to alocate a ConsoleCommand structure to access the
help text. Thefirst caseisthe help overview given when HELP is entered by itself. The command
field should be ““ and the cmdfunc field should be NULL.

{ ", NULL, help txt },

The second case iSHELP SET. Thisisan overview of the family of SET commands, i.e., com-
mands that set configuration values. For HELP SET, the command field should be “ SET” and the
cmdfunc field should be NULL.

{ "SET", NULL, help set txt },

This second case illustrates the general case of displaying help for afamily of commands. The
family name can not be the name of a command.

Chapter 11: General Purpose Console 345

11.4 Zconsole Command Array

An array of ConsoleCommand structures must be defined in an application program as a con-
stant global variable named console commands []. All commands available at the console,
those provided in Zconsole . 1ib and custom commands, must have an entry in this array.

11.4.1 Zconsole Commands

The following is an example of alist of commands that may be defined in a Zconsole application.
When the command name {i.e., the string in the command field) isreceived by the console, the
function pointed to in the cmdfunc field is executed. When the console receives the command,
HELP <command name>, the text file located at physical addresshelptext will be displayed.

const ConsoleCommand console commands[] =

{

"HELLO WORLD", hello world, 0 },

"ECHO", con_echo, help echo txt },

"HELP", con_help, help help txt },

"n, NULL, help txt },

"SET", NULL, help set txt },

"SET PARAM", con_ set param, 0 },

"SET IP", con set ip, help set txt },

"SET NETMASK", con_ set netmask, help set txt },

"SET GATEWAY", con set gateway, help set txt },

"SET NAMESERVER", con set nameserver, help set txt },

"SET MAIL", NULL, help set mail txt },

"SET MAIL SERVER", con_set mail server, help set mail server_ txt },
"SET MAIL FROM", con_set mail from, help set mail from txt },
"SHOW", con show, help show txt },

"PUT", con_put, help put txt },

"GET", con _get, help get txt },

"DELETE", con delete, help delete txt },

"LIST", NULL, help list txt },

"LIST FILES", con_list files, help list txt },

"LIST VARIABLES", con list variables, help list txt },
"CREATEV", con createv, help createv txt },

"PUTV", con_putv, help putv_txt },

"GETV", con _getv, help getv txt },

"MAIL", con _mail, help mail txt },

"RESET FILES", con reset files, 0 }

"RESET VARIABLES”, con reset variables, help reset variables }

et Rt Rt Rt Rt Rt Rt Rt Rarte Rante Rart Rante Rarte Rt Rt Rate Rats Ratn Rt Rt Xarts Rate Xatn Rt Raten Rate

346 TCP/IP User’'s Manual

11.4.1.1 Default Command Functions
The following functions are provided in Zconsole . 1ib. Each one takes apointer to a Con-
soleState structure asits only parameter, following the prototype for custom functions
described in Section 11.4.1.2 on page 352. Each of these functions return 0 when it has more pro-
cessing to do (and thus will be called again), 1 for successful completion of itstask, and -1 to
report an error.

Parameters needed by the commands using these functions are passed on the command line.

con_add_nameserver()

This function adds a name server to the list of name servers (unlike con_set nameserver ()
that clearsthe list of name servers and adds one name server). A command that use this function
takes one parameter: the I P address of the name server in dotted quad notation.

con_createv()

Thisfunction creates a variable that can be used with SSI commandsin SHTML files. Certain SSI
commands can be replaced by the value of this variable, so that aweb page can be dynamically
altered without re-uploading the entire page. Note, however, that the value of the variable is not
preserved across power cycles, athough the variable entry is still preserved. That is, the value of
the variable may change after a power cycle. It can be changed again, though, with a putv com-
mand. It worksin the following fashion (if the command is called “ CREATEV"):

usage: '"createv <varname> <vartype> <formats> <value> [strlen]"
A web variable that can be referenced within web files is created.

<varname> isthe name of the variable

<vartype> isthetype of the variable (INT8, INT16, INT32, FLOAT32, Or STRING)

<format > isthe printf-style format specifier for outputting the variable (such as "%d")

<value> isthevaueto assign the variable.

[strlen] isonly usedif thevariableis of type STRING. It is used to give the maximum
length of the string.

con_delete()
Thisfunction deletes a file from the file system. A command that uses this function takes one
parameter: the name of the file to delete.

con_echo()

This function turns on or off the echoing of characters on aparticular 1/0 stream. That is, it does
not affect echoing globally, but only for the 1/O stream on which it isissued. A command that uses
this function takes one parameter: ON | OFF.

Chapter 11: General Purpose Console 347

con_get()

Thisfunction displays afile from the file system. It works in the following fashion (if the com-
mand is called “ GET"):

e ASCII mode: usage: "get <filename>"
Thefileisthen sent, followed by the usual OK message.

e BINARY mode: usage: "get <filename> <size in bytes>"

The message "LENGTH <len>" will be sent, indicating length of the file to be sent, and
then the file will be sent, but not more than <size in bytes> bytes.

con_getv()

This function displays the value of the given variable. The variable is displayed using the printf-
style format specifier given in the createv command. A command that uses this function takes
one parameter: the name of the variable.

con_help()

This function implements the help system for Zconsole. A command that uses this function takes
one parameter: the name of another command. Zconsole outputs the associated help text for the
requested command. The help text isthe text file referenced in the third field of the Console-
Command structure.

con_list_files()
Thisfunction lists the filesin the file system and their file sizes. A command that uses this func-
tion takes no parameters.

con_list_variables()
This function displays the names and types of all variables. A command that uses this function
takes no parameters.

con_loginname()

This function stores an identifier that will be remembered across power cycles (with battery-
backed RAM). The existence of the identifier will be used to prompt the user of anew console ses-
sion. Before console access to the controller is alowed, avalid identifier must be entered in
response to the prompt. A command that uses this function takes one parameter: an identifier that
will be used as the login name.

348 TCP/IP User’'s Manual

con_loginpassword()

This function stores an identifier that will be remembered across power cycles (with battery-
backed RAM). The existence of the identifier will be used to prompt the user for a password after
alogin name has been entered. Before console access to the controller isallowed, avalid identifier
must be entered in response to the prompt. A command that uses this function takes no parameters
on the command line, but requires a series of user inputs in response to prompts. In the following
screen shot, the command is named “login password,” and istyped in by the user. All other screen
text shown here was printed by Zconsole.

File Edit Setup Control ‘Window Help

BazicConsole Uersion 1.6 4|

d password:
ew Password:

Retype new Passuord:
assword Accepted

M

If no identifier is stored for the password, a <CR> must be sent in response to the prompt for the
old password.

NOTE: A login name must be stored by acommand using con_loginname () for alogin
password to be applicable, i.e., if apassword has been stored but no login name, new con-
sole sessions will not prompt for the password or alogin name. If alogin name is applica
ble, but thereisno password, new console sessionswill prompt for the login name and grant
access after avalid name is entered without prompting for a password.

con_logout()
This function exits the current console session and begins a new session by entering the initializa-
tion state of Zconsole. A command that uses this function takes no parameters.

con_mail()

This function sends e-mail to the server specified by con mail server (), with thereturn
address specified by set _mail from().A command that uses this function takes one parame-
ter: the destination e-mail address. If the command is named mail, the usage is:

"mail destination@where.com"

Thefirgt line of the message will be used as the subject, and the other lines are the body. The body
isterminated with a”D or ~Z (0x04 or Ox1A).

Chapter 11: General Purpose Console 349

con_put()
Thisfunction creates a new filein the file system for use with the HTTP server. It worksin the fol-
lowing fashion (if the command is called “PUT"):

e ASCII mode: usage: "put <filename>"
Thefileisthen sent, terminating with a”D or ~Z (0x04 or Ox1A).

e BINARY mode: usage: "put <filename> <size in bytes>"
The fileisthen sent, and must be exactly the specified number of bytesin length.
Note that ASCII mode is only useful for text files, since the console will ignore non-displayable
characters. In binary mode, the put command will time out after CON_TIMEOUT seconds of inac-
tivity (60 by default).

con_putv()

This function updates the value of avariable. A command that uses this function takes two param-
eters: the name of the variable, and the new value for the variable.

con_reset_files()
Thisfunction removes all web files.

con_reset_variables()
This function removes all web variables.

con_set_dhcp()

This function turns DHCP configuration for an interface "on" or "off." Currently this command
only works with the default interface. After DHCP has been turned on, ZConsole will undertake
reacquiring the lease should it be dropped. (For example, alease might be dropped if the DHCP
server isunavailable for an extended period of time.)

con_set_gateway()
This function changes the gateway of the board. A command that uses this function takes one
parameter: the new gateway in dotted quad notation, e.g., 192.168.1.1.

con_set_icmp_config()

This function configures an interface to use directed ICMP echo request (ping) packets for config-
uration. A command that uses this function takes two parameters. Thefirst is"on" or "off" to turn
this feature on or off. The second parameter is optional, and specifies the intended interface
(ETHO or ETH1). Only non-PPPoE Ethernet may be used for ping configuration.

con_set_icmp_config_reset()

Normally, when an interface has been configured via a directed ping packet, further configuration
viaadirected ping packet is disabled (until the next power cycle). This function allows the inter-
face to be configured viaa ping packet again. A command that uses this function takes an optional
interface argument (ETHO or ETH1).

con_set_ip()
This function changes the I P address of the board. A command that uses this function takes one
parameter: the new IP address in dotted quad notation, e.g., 192.168.1.112.

350 TCP/IP User’'s Manual

con_set_param()

This function sets the parameter for the current 1/0 device. Depending on the 1/0 device, this
value could be a baud rate, a port number or achannel number. A command that uses this function
takes one parameter: the value for the I/O device parameter.

con_set_mail_from()

This function sets the return address for all e-mail messages. This address will be added to the out-
going e-mail and should be valid in case the e-mail needsto bereturned. A command that usesthis
function takes one parameter: the return address.

con_set_mail_server()
This functions identifies the SMTP server to use. A command that uses this function takes one
parameter: the | P address of the SMTP server.

con_set_nameserver()
This function changes the name server for the board. A command that uses this function takes one
parameter: the | P address of the new name server in dotted quad notation, e.g., 192.168.1.1.

con_set_netmask()
This function changes the netmask of the board. A command that uses this function takes one
parameter: the new netmask in dotted quad notation, e.g., 255.255.255.0.

con_set_tcpip_debug()

Thisfunction isintended to aid in development and debugging. A command that uses this function
takes one parameter: the numerical level of debugging messages. The higher the number, the more
verbose the TCP/IP debugging messages will be.

con_show()

This function displays the current configuration of the board (1P address, netmask, and gateway).
If the developer’s application has configuration options she would like to show other than the IP
address, netmask, and gateway, she will probably want to implement her own version of the show
command. The new show command can be modelled after con show () in ZConsole.lib. A
command that uses this function takes no parameters.

con_show_multi()
Likethe con_show () function, this function shows the current console configuration. This com-
mand will, however, show more network configuration than is available viacon show ().

Interface-specific configuration information is separated out. A command that uses this function
takes an optiona parameter (ETHO, ETH1, PPPO, PPP1, PPP2, etc.) to display the interface spe-
cific configuration for the specified interface. If the optional parameter is missing, the current con-
sole configuration for all valid interfacesis displayed.

Chapter 11: General Purpose Console 351

11.4.1.2 Custom Zconsole Commands
Developers are not limited to the default commands. A custom command is easy to add to Zcon-
sole; simply create an entry for itin console commands []. Thethreefields of thisentry were
described in Section 11.3.1. Thefirst field is the name of the command. The second field isthe
function that implements the command. This function must follow this prototype:

int function name (ConsoleState *state);

The parameter passed to the function is a structure of type ConsoleState. Some of thefieldsin
this structure must be manipulated by your custom command function, other fields are used by
Zconsole. 1ib and must not be changed by the your program.

typedef struct ({
int console number;
ConsoleIO *conio;
int state;
int laststate;

char command[CON CMD SIZE] ;

char *cmdptr;

char buffer [CON_BUF_SIZE]; // Usefor reading in data.
char *bufferend; // Usefor reading in data.

ConsoleCommand *cmdspec;

int sawcr;

int sawesc;

int echo; // Check if echo is enabled, or changeit.
int substate;

unsigned int error;

int numparams; // Number of parameters on command line.
int commandparams; // Number of commands issued on cmd line
char cmddata[CON_CMD DATA SIZE];

#ifndef CON_NO FS_ SUPPORT // File processing not needed with DC 7.30
FileNumber filenum; // Usefor file processing.
File file; // Usefor file processing.

#endif
int spec; // Usefor working with Zserver entities
long timeout; // Usefor extending the time out.

} ConsoleState;

#endif

To accomplish its tasks, the function should use state->substate for its state machine
(whichisinitialized to zero before dispatching the command handler), and state- >command to
read out the command buffer (to get other parameters to the command, for instance). In case of
error, the function should set state->error to the appropriate value.

The buffer at state->cmddata isavailable for the command to preserve data across invoca-
tions of the command’s state machine. The size of the buffer is adjustable viathe

CON_CMD DATA SIZE macro (setto 16 bytes by default). Generally this buffer areawill be cast
into adata structure appropriate for the given command state machine.

352 TCP/IP User’'s Manual

Both state->numparams and state->commandparams are read-only. The |atter was
introduced in Dynamic C 7.30. It indicates the number of argumentsin the command line that are
NOT part of the command name itself. For instance, for the command

SET IP 10.10.6.112 ETHO
state->commandparams would be 2, but state->numparams would be 4. Thisdistinc-
tion is made to allow the commands in Zconsole to be insensitive to the number of words that
make up the name of the command itself, but still maintain backwards compatibility with custom
commands that use state->numparams.

The function that implements the custom command should return O when it has more processing to
do (and thus will be called again), 1 for successful completion of its task, and -1 to report an error.

Thethird and final field of the console commands [] entry isthe physical address of the help
text file for the custom command in question. This file must be #ximported, along with all of
the default command function help files that are being used.

IMPORTANT: Thefields discussed in the previous paragraph and the fields that
have comments in the structure definition are the only ones that an application
program should change. The other fields must not be changed.

11.4.2 Zconsole Error Messages
ZCONSOLE . LIB providesalist of default error messages for the default Zconsole commands. An
application program must define an array for these error messages, as well as for any custom error
messages that are desired. To include only the default error messages, the following array is suffi-
cient:

const ConsoleError console errors[] = {

CON_STANDARD ERRORS // includes all default error messages
}

Chapter 11: General Purpose Console 353

11.4.2.1 Default Error Messages
These are the error codes for the default error messages and the text that will be displayed by the
console if the error occurs.

#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define

CON_ERR_TIMEOUT
CON_ERR_BADCOMMAND
CON_ERR_BADPARAMETER
CON_ERR_NAMETOOLONG
CON_ERR_DUPLICATE
CON_ERR_BADFILESIZE
CON_ERR_SAVINGFILE
CON_ERR_READINGFILE
CON_ERR_FILENOTFOUND
CON_ERR_MSGTOOLONG
CON_ERR_SMTPERROR
CON_ERR_BADPASSPHRASE
CON_ERR_CANCELRESET
CON_ERR_BADVARTYPE
CON_ERR_BADVARVALUE
CON_ERR_NOVARSPACE
CON_ERR_VARNOTFOUND
CON_ERR_STRINGTOOLONG
CON_ERR_NOTAFILE
CON_ERR_NOTAVAR
CON_ERR_COMMANDTOOLONG
CON_ERR_BADIPADDRESS

CON_ERR_ INVALIDPASSWORD

CON_ERR_ BADIFACE

CON_ERR BADNETWORKPARAM

0 J 0 Ul b WN K

NHE R RRERRPRPR B R R
CWVW LU UIA WNRO L

21
22
23
24
25

354

TCP/IP User’s Manual

#define CON_STANDARD ERRORS \

{CON_ERR_TIMEOUT, "Timed out." },\
{CON_ERR_BADCOMMAND, "Unknown command." },\

{CON_ERR BADPARAMETER, "Bad or missing parameter." },\
{CON_ERR_ NAMETOOLONG, "Filename too long." },\
{CON_ERR DUPLICATE, "Duplicate object found." },\
{CON_ERR BADFILESIZE, "Bad file size." },\

{CON_ERR SAVINGFILE, "Error saving file." },\
{CON_ERR READINGFILE, "Error reading file." },\
{CON_ERR FILENOTFOUND, "File not found." },\
{CON_ERR_MSGTOOLONG, "Mail message too long." },\
{CON_ERR_SMTPERROR, "SMTP server error." },\
{CON_ERR BADPASSPHRASE, "Passphrases do not match!" },6\
{CON_ERR CANCELRESET, "Reset cancelled." },\

{CON_ERR BADVARTYPE, "Bad variable type." },\
{CON_ERR BADVARVALUE, "Bad variable value." },\
{CON_ERR NOVARSPACE, "Oout of variable space." },\
{CON_ERR_VARNOTFOUND, "Variable not found." },\
{CON_ERR STRINGTOOLONG, "String too long." },\

{CON_ERR NOTAFILE, "Not a file." },\
{CON_ERR_NOTAVAR, "Not a variable." },\

{CON_ERR COMMANDTOOLONG, "Command too long." },\
{CON_ERR BADIPADDRESS, "Bad IP address." },
{CON_ERR_INVALIDPASSWORD, "Invalid Password.", },\
{CON_ERR BADIFACE, "Bad interface name." },\
{CON_ERR BADNETWORKPARAM, "Error setting network parameter."}

11.4.2.2 Custom Error Messages
Developers can create their own error messages by following the format of the default error mes-
sages. The error code numbers should be greater than 1,000 to save room for expansion of built-in
€rror messages.

#define NEW ERROR 1001

const ConsoleError console errors[] = {
CON_STANDARD ERRORS, // includesall default error messages
{ NEW_ERROR, "Any error message I want." }

}
The default error messages should be included in console errors [] adong with any custom
error messages that are used since the commands that come with Zconsole . 1ib each expect
their own particular error message.

Chapter 11: General Purpose Console 355

11.5 Zconsole I/O Interface

Multiple I/O methods are supported, as well as the ability to add custom 1/O methods. An array of
ConsoleIO structures must be defined in the application program and named console io[].
This structure holds handlers for common 1/O functions for the 1/0 method.

typedef struct ({
long param; // Baud for serial, port for telnet, etc.
int (*open) ();
void (*close) () ;

int (*tick) ();
int (*puts) ();
int (*rdUsed) ();
int (*wrUsed) ();
int (*wrFree) ();
int (*read) ();

int (*write) ();
} ConsoleIO;

11.5.1 How to Include an 1/0O Method
Each supported 1/0O method is determined at compile time, i.e., each supported 1/0O method must
have an entry in console iol[].

11.5.2 Predefined 1/0O Methods
Several predefined I/0O methods arein Zconsole. 1ib. They will beincluded by entering their
respective macrosin console iol[].

const ConsoleIO console io[] = {
CONSOLE IO SERA (baud rate),
CONSOLE IO SERB (baud rate),
CONSOLE IO SERC (baud rate),
CONSOLE IO SERD(baud rate),
CONSOLE_ IO SP(channel number),
CONSOLE IO TELNET (port number),

}

The macros expand to the appropriate set of pre-defined handler functions, e.g.,

#define CONSOLE IO SERA (param) { param, serBopen, serAclose,
NULL, conio serAputs, serArdUsed, serAwrUsed, serAwrFree,
serAread, serAwrite}

11.5.2.1 Serial Ports
There are predefined 1/0 methods for all four of the serial ports on a Rabbit board. The baud rateis
set by passing it to the macro. See above.

11.5.2.2 Telnet
Zconsole runs atelnet server. The port number is passed to the macro CONSOLE_IO TELNET.
The user telnets to the controller that is running the console.

356 TCP/IP User’'s Manual

11.5.2.3 Slave Port

The Rabbit slave port is an 8-bit bidirectional data port. Zconsole runs on the slave processor. Two
drivers are needed.

11.5.2.3.1 Slave Port Driver

The slave port driver isimplemented by SLAVE PORT . LIB. For an application to use the slave
port:

e Thedriver must be installed by including the library in the program.
e Acdltospinit (mode) must be madeto initialize the driver.
e A function to process Zconsole commands sent to the slave port must be provided.

The dave port has 256 channels, separate port addresses that are independent of one another. A
handler function for each channel that is used must be provided. For details on how to do this,
please see the Dynamic C User’s Manual.

A stream-based handler, SPShandler (), to process Zconsole commands for the aveis pro-
vided in SP_ STREAM. LIB. The handler is set up automatically by the console when the slave
port I/0O method isincluded. The macro, CONSOLE IO _SP, expands to the I/O functions defined
in SP_STREAM. LIB.

11.5.2.3.2 Master Connected to Rabbit Slave Port
The master controller board can be another Rabbit processor or something el se.

The master also needs adriver for its end of the dave port connection. An example of the software
needed on the master isgiven in MASTER SERIAL.LIB. The software on the master controller
is, of course, specific to the task at hand. In the example driver provided, most of the work is done
by the slave, making minimal changes necessary to the code on the master.

11.5.2.4 Custom 1/O Methods
To define a custom 1/0O method, you must add a structure of type ConsoleIO to
console io[]. Thisstructure holdsthe common handler functions for the 1/O method. The
tick function may have aNULL pointer, but the rest of the function pointers must be valid pointers
to functions.

11.5.3 Multiple I/O Streams

Each 1/0 method has its own state machine in Zconsole. That means that each 1/0 method isinde-
pendent of the others and they can all be used simultaneously. This imposes the important restric-
tion that all command handlers be able to run simultaneously on different 1/O streams or support
proper locking for functions that cannot be performed simultaneoudly.

Chapter 11: General Purpose Console 357

11.6 Zconsole Execution

Normally, Zconsole will communicate over a serid link. The physical connection will differ
slightly from board to board. Basically, you will need a 3 wire (GND, RXD, TXD) serial cable.
Several initialization steps must be taken at the beginning of an application program to execute the
console.

11.6.1 File System Initialization

Prior to Dynamic C 7.30, Zconsole depended on the flash file system included with Dynamic C.
There are actually two file systems: FS1 wasthefirst Dynamic C file system. The second one, FS2
(introduced with Dynamic C 7.05), is an improved file system.

Besides defining the macro that directs the file system to EEPROM memory and including the
appropriate library, i.e.,

#define FS_FLASH
#use "filesystem.lib" // If usingtheimproved file system available with
// Dynamic C 7.05, substitute “fs2.lib” for “filesystem.lib”

the application program must initialize the file system with acall to £s_init (). Starting with
Dynamic C 7.30 none of thisis necessary because Zconsol e saves configuration information to the
User block. See the Rabbit 2000 Microprocessor User’s Manual or the Rabbit 3000 Microproces-
sor User’s Manual for more information about the User block.

11.6.2 Serial Buffers
If the pre-defined serial 1/0 methods are used, the circular buffers used for 1/0O data can be resized
from their default values of 31 bytes by using macros. For example, if CONSOLE IO SERIALC
isincluded in console io[], thenlinessimilar to the following can bein the application pro-
gram:

#define CINBUFSIZE 1023

#define COUTBUFSIZE 255

In general, these buffers can be smaller for slower baud rates, but must be larger for faster baud
rates.

11.6.3 Using TCP/IP
To use the TCP/IP functionality of Zconsole you must have the following line in your application
program:

#use “dcrtcp.lib”

If you are serving web pages you must d'so includehttp . 1ib, and if you are sending e-mail you
must include smtp.1ib.

358 TCP/IP User’'s Manual

11.6.4 Required Zconsole Functions
To run the console, the following two functions are required.

console init

int console init(void);

DESCRIPTION

This function will initialize Zconsole data structures. It must be called before
console tick () iscaledfor thefirst time. Thisfunction also loads the configura-
tion information from the file system.

RETURN VALUE

0: Success;
1: No configuration information found.
<0 : Indicates an error loading the configuration data;
-1 indicates an error reading the 1st set of information,
-2 the 2nd set, and so on.

LIBRARY

zconsole.lib

console tick

void console tick(void);

DESCRIPTION
Thisfunction needsto be called periodically in an application program to alow Zconsole
time for processing.

LIBRARY

zconsole.lib

Chapter 11: General Purpose Console 359

11.6.5 Useful Zconsole Function
Most of the following functions are only useful for creating custom commands.

con backup

int con_backup(void);

DESCRIPTION
This function backs up the current configuration.

RETURN VALUE
0: Success
1: Failure
LIBRARY
zconsole.lib

SEE ALSO
con_backup_reserve, con_load backup

con backup bytes

long con backup bytes(void);

DESCRIPTION

Returns the number of bytes necessary for each backup configuration file. Note that
enough space for two of these files needs to be reserved. This function is most useful
when ZCONSOLE . LIB isbeing used with FS2 . LIB.

RETURN VALUE
Number of bytes needed for a backup configuration file.

LIBRARY

zconsole.lib

SEE ALSO
con_backup_reserve

360 TCP/IP User’'s Manual

con backup reserve

void con backup reserve(void);

DESCRIPTION

Reserves spacefor the configuration information in thefile system. For moreinformation
on the file system see the Dynamic C User’s Manual.

LIBRARY

zconsole.lib

SEE ALSO
con_backup, con_load_backup, con_backup_bytes

con chk timeout

int con chk timeout(unsigned long timeout);

DESCRIPTION
Checks whether the given timeout value has passed.

RETURN VALUE
0: Timeout has not passed
10: Timeout has passed

LIBRARY

zconsole.lib

SEE ALSO

con_set timeout

Chapter 11: General Purpose Console 361

con_ load backup

int con load backup(void);

DESCRIPTION
L oads the configuration from the file system.

RETURN VALUE

0: Success

1: No configuration information found
<0: Failure

-1: error reading 1st set of information
-2: error reading 2nd set of information, and so on

LIBRARY
zconsole.lib
SEE ALSO

con_backup, con_ backup reserve

con reset io

void con reset io(wvoid);

DESCRIPTION

Resets all 1/0 methods by calling close () and open () on each of them.
LIBRARY

zconsole.lib

362 TCP/IP User’'s Manual

con_ set backup 1lx

void con_set_backup 1lx(FSLXnum backuplx);

DESCRIPTION

Setsthelogical extent (LX) that will be used to store the backup configuration data. For more
information on the file system see the Dynamic C User’s Manual. Thisis only useful in conjunc-
tion with FS2 . LIB. This should be called once before console init (). Careshould be
taken that enough space is available in thislogical extent for the configuration files. See
con_backup bytes () for moreinformation.

PARAMETER

backuplx L X number to use for backup

LIBRARY

zconsole.lib

SEE ALSO

con_set files 1x, con backup bytes

con set files 1x

void con_set files 1x(FSLXnum fileslx);

DESCRIPTION

Setsthelogical extent (LX) that will be used to store files. For more information on the
file system see the Dynamic C User’s Manual. Thisisonly useful in conjunction with
FS2.LIB. Thisshould be called once before console init ().

PARAMETER

fileslx LX number to usefor files.

LIBRARY

zconsole.lib

SEE ALSO

con_set backup 1x

Chapter 11: General Purpose Console 363

con set user idle

void con_set user idle(void (*funcptr) ());

DESCRIPTION

Sets a user-defined function that will be called when the console (for a particular 1/0
channd) isidle. The user-defined function should take an argument of type
ConsoleState*

LIBRARY

zconsole.lib

SEE ALSO

con_set user timeout

con set timeout

unsigned long con set timeout(unsigned int seconds);

DESCRIPTION
Returnsthe valuethat MS_TIMER should have when the number of seconds given have
elapsed.

LIBRARY

zconsole.lib

SEE ALSO

con_chk timeout

364 TCP/IP User’'s Manual

con set user timeout

void con_set user timeout(void (*funcptr) ());

DESCRIPTION
Sets a user-defined function that will be called when atimeout event has occurred. The
user-defined function should take an argument of type ConsoleStatex*.

LIBRARY

zconsole.lib

SEE ALSO

con_set user_ idle

console disable

void console disable(int which);

DESCRIPTION

Disable processing for the designated console in the console io[] array. Thisfunc-
tion, long with console enable (), alowsthe sharing of the Zconsole port with
some other processing.

PARAMETER

which The console to disable.

LIBRARY

zconsole.lib

SEE ALSO

console init, console enable

Chapter 11: General Purpose Console 365

console enable

void console enable(int which);

DESCRIPTION

Enable processing for the designated console in the console io[] array. Thisfunc-
tion, ong with console disable (), alowsthe sharing of the Zconsole port with
some other processing.

PARAMETER

which The console to enable.

LIBRARY

zconsole.lib

SEE ALSO

console init, console disable

366 TCP/IP User’s Manual

11.6.6 Zconsole Execution Choices
Zconsole can be used interactively with atermina emulator or by sending commands from a pro-
gram running on a device connected to the controller that is running the console.

11.6.6.1 Terminal Emulator

To manually enter Zconsole commands from a keyboard and view resultsin the Stdio window you
must:

1. Run Dynamic C 7.05 or later.

2. Open aterminal emulator. Windows HyperTerminal comes with Windows. It does not work
with binary files, only ASCII. Tera Term can handle both ASCII and binary. It is available for
free download at

http://hp.vector.co.jp/authors/VA002416/teraterm.html

3. Configure the terminal emulator as follows:

COM port: (1 or 2) to which 3-wire serial cableis connected
Baud Rate: 57,600 bps

Data Bits: 8

Parity: None

Stop Bits: 1

Flow Control: None

The terminal emulator should now accept Zconsole commands.

To avoid losing a<LF> at the beginning of afile when using the con put command function,
select Setup->Terminal from the Tera Term menu and set the Transmit option to CR+LF. This
option might be located el sewhere if you are using a different terminal emulator.

Chapter 11: General Purpose Console 367

http://hp.vector.co.jp/authors/VA002416/teraterm.html

11.7 Backup System

Zconsole can save configuration parameters to the file system or, starting with Dynamic C 7.30, to
the User block. The configuration is then available across power cycles. The backup processis
doneby con_backup () . Unlike the other Zconsole command functions, con_backup ()

does not take a parameter and it returns 0 if the backup was successful and 1 if it was not. This
function is called by several of the Zconsole command functions that change configuration param-
eters, or that add or delete files or variables from the file system. Caution is advised when calling
con_backup () sinceit writes to flash memory.

11.7.1 Data Structure for Backup System
The developer must define an array called console backup [] of ConsoleBackup struc-
tures.

typedef struct ({

void *data;

int len;

void (*postload) () ;
void (*presave) () ;

} ConsoleBackup;

data
Thisis apointer to the data to be backed up.

len
Thisis how many bytes of data need to be backed up.

postload
Thisis afunction pointer to afunction that is called after configuration datais loaded, in case the
devel oper needs to do something with the newly loaded configuration data

presave

Thisisafunction pointer that is called just before the configuration data is saved so that the devel-
oper can fill in the data structure to be saved. The functions referenced by postload () and
presave () should have the following prototype:

void my preload(void *dataptr) ;

The dataptr parameter is the address of the configuration data (the same as the data pointer in
the ConsoleBackup structure).

368 TCP/IP User’'s Manual

11.7.2 Array Definition for Backup System

const ConsoleBackup console backup[] = {
CONSOLE_BASIC BACKUP, // echo state, baud rate/port number
CONSOLE_TCPIP_ BACKUP,
CONSOLE_TCP_MULTI BACKUP,
CONSOLE_HTTP_BACKUP,
CONSOLE_SMTP_ BACKUP,
CONSOLE BACKUP_LOGIN,
{ my data, my data len, my preload, my_ presave }

}

CONSOLE BASIC BACKUP
Causes backup of the echo state (on or off), baud rate and port number information.

CONSOLE TCPIP BACKUP
Causes backup of the | P addresses of the controller board and the | P address of its net-
mask, gateway and name server.

Note that only one of the CONSOLE _TCP_* structures should be used.

CONSOLE TCP MULTI BACKUP
Using thisstructure causes ifconfig () to save and restore network configuration. In
addition to the information saved by CONSOLE_TCP_BACKUP, multiple name servers,
DHCP configuration, ICMP (Ping) configuration, and multiple interface configuration
areall saved by CONSOLE_TCP_MULTI BACKUP.

Some built-in console functionsarefor usewith CONSOLE_TCP_MULTI_BACKUP.In
generd, except for backwardscompetibility issues, CONSOLE_TCP_MULTI BACKUP
should be used instead of CONSOLE_TCP_BACKUP.

Note that only one of the CONSOLE_TCP_* structures should be used.

CONSOLE HTTP BACKUP
Causes backup of thefiles and variables visibleto the HTTP server.

CONSOLE SMTP BACKUP
Causes backup of the mail configuration.

CONSOLE BACKUP LOGIN
Causes backup of the ConsoleLogin structure which stores the login name and pass-
word strings.

Chapter 11: General Purpose Console 369

11.8 Zconsole Macros

Many macros are available to change the behavior of Zconsole. They are dl listed here. Starting
with Dynamic C 7.30 additional macros are available to support saving configuration information
to the User block, DHCP, ping configuration, and multiple interfaces.

CON BACKUP FILE1l
Thefile number used for the first backup file. For FS1, this number must bein the range
128-143,sothat fs_reserve_blocks () canbeusedto guaranteefree spacefor the
backup files. Defaults to 128 for FS1. Defaults to 254 for FS2.

CON BACKUP FILE2
Same as above, except thisisfor the second backup file. Two files are used so that con-
figuration information is preserved even if the power cycles while configuration datais
being saved. For FS1, this number must bein therange 128-143. Defaultsto 129 for FSL1.
Defaultsto 255 for FS2.

CON BACKUP USER BLOCK
Defaultsto not defined. If thisis defined, then configuration information for the console
will be saved to the User block instead of to the flash file system. Note that the configu-
ration is only safe in the case of power failures with aversion 3 or higher System 1D
block.

CON BUF SIZE
Changes the size of the data buffer that is alocated for each I/O method. If the baud rate
or transfer speed is too great for the consol e to keep up, then increasing this value may
help avoid dropped characters. It isallocated in root data space. It defaultsto 1024 bytes.

CON_CMD SIZE
Changesthe size of the command buffer that isallocated for each I/0 method. Thislimits
the length of acommand line. It isallocated in root data space. Defaults to 128 bytes.

CON CMD DATA SIZE
Default is 16. Adjusts the size of the user data area within the state structure so that user
commands may preserve arbitrary information across calls. The user data areais dlocat-
ed in root data space.

CON DHCP ACQUIRE RETRY TIMEOUT
Defaults to 120 seconds. If DHCP is enabled, then Zconsole will maintain the DHCP
lease. This macro specifies the number of seconds after which a DHCP lease has been
dropped that the board will attempt to reacquire the lease. Note that in the normal course
of operation, aleasewill never be dropped. Generally, that will only happenif the DHCP
server isinoperable for an extended period of time (subject to the lengths of the leases
that the DHCP server issues).

370 TCP/IP User’'s Manual

CON HELP VERSION
This macro should be defined if the developer wants a version message to be displayed
when the HEL P command isissued with no parameters. If thismacro is defined, then the
macro CON_VERSION MESSAGE must also be defined.

CON_INIT MESSAGE

Defines the message that isdisplayed on all Zconsole 1/0 methods upon startup. Defaults
to “Console Ready\r\n”.

CON MAIL BUF SIZE
Maximum length of amail message. Defaults to 1024.

CON MAIL FROM SIZE
Maximum length of mail from address to NULL terminator. Default to 51.

CON MAIL SERV SIZE
Maximum length of mail server name and NULL terminator. Defaults to 51.

CON MAX NAME
Default is 10: maximum number of charactersfor alogin name. Thisvalue must be equa
to or lessthan CON_CMD_DATA_SIZE.

CON MAX PASSWORD
Default is 10: maximum number of charactersfor alogin password.

CON NO FS SUPPORT

Thismacro is defined by default only if no filesystem libraries have been used. Evenif a
filesystem library has been used, this can still be explicitly defined by the user. When this
isdefined, then the consolewill not save configuration information to thefilesystem, and
no filesystem function calls will be included.

CON SP RDBUF SIZE
Size of the dave port read buffer. Defaults to 255.

CON SP WRBUF SIZE
Size of the dave port write buffer. Defaults to 255.

CON TIMEOUT

Adjusts the number of seconds that the console will wait before cancelling the current
command. The timeout can be adjusted in user code in the following manner:

state->timeout = con_ set timeout (CON_TIMEOUT) ;

Thisisuseful for custom user commands so that they can indicate when something
“meaningful” has happened on the console (such as some data being successfully trans-
ferred).

Chapter 11: General Purpose Console 371

CON VAR BUF SIZE
Adjusts the size of the variable buffer, in which values of variables can be stored for use
with the HTTP server. Itis allocated in xmem space. Defaults to 1024 bytes.

CON VERSION MESSAGE

This defines the version message to display when the HEL P command is issued with no
parameters. It is not defined by default, so has no default value.

372 TCP/IP User’'s Manual

11.9 Sample Program

The sample program Samples\zconsole\tcpipconsole . c demonstrates many of the
features of zconsole.lib. Among the features this application supportsis network configura-
tion, uploading web pages, changing variables for use with web pages, sending mail, and accessto
the console through atelnet client. Please note that all libraries needed by zconsole.1ib must
be included with #use statements before the #use statement for the Zconsole library.

The following code istaken from tcpipconsole.c.

/ *
* Size of the buffersfor serial port C. If you want to use another serial port, you should
* change the buffer macros below appropriately (and changethe console io[] array below).
*/

#define CINBUFSIZE 1023

#define COUTBUFSIZE 255

/ *
* Maximum number of connectionsto the web server. Thisindicatesthe number of sockets
* that the web server will use.
*/

#define HTTP_ MAXSERVERS 2

/ *
* Maximum number of sockets this program can use. The web server istaking two sockets:
* the mail client uses one socket, and the tel net interface uses the other socket.

*/

#define MAX SOCKETS 4

/*
* All web server content is dynamic, sowe do not need http flashspec|].
5y

#define HTTP NO FLASHSPEC

/*
* Thefile system that the console uses should be located in flash.
*/

#define FS_ FLASH

/*

* The function prototype for a custom command must be declared before the
* console command[] array.
*/

int hello world (ConsoleState *state);

Chapter 11: General Purpose Console 373

The following code is for Zconsole configuration.

/ *
* The number of console I/O streams that this program supports. Since we are supporting
* serial port C and telnet, there are two 1/0 streams.
*/
#define NUM_CONSOLES 2
/ *
* |f this macro is defined, then the version message will be shown with the help command,
* when the help command has no parameters.
*/
#define CON_HELP VERSION
/ *
* Defines the version message that will be displayed in the help command if
* CON_HELP VERSION is defined.
5y
#define CON_VERSION MESSAGE "TCP/IP Console Version 1.0\r\n"
/ *
* Defines the message that is displayed on all 1/0 channels when the console starts.
5y
#define CON_INIT MESSAGE CON VERSION MESSAGE
/ *
* The ximport directivesinclude the help texts for the console commands. Having the help text
* in xmem helps save root code space.
*/
#ximport "samples\zconsole\tcpipconsole help\help.txt" help txt

/* Therest of the #ximport statements may be seenin tcpipconsole.c. */

374 TCP/IP User’'s Manual

The following code sets up all the data structures needed by the console.

/* The console will be available to the I/O streams given in the following array. The I/O streams
* are defined through macros as documented in Section 11.5.2. The parameter for the first macro
* representstheinitial baud rate for seria port C. The second macro is passed the port number
* for telnet. If you change the number of 1/O streams, update NUM CONSOLES above.* /

const ConsoleIO console io[] = {
CONSOLE_ IO SERC(57600),
CONSOLE_IO TELNET (23)

~.

S~

* ok ok Kk kK % % ok

This array defines the commands that are available in the console. The first parameter for the
ConsoleCommand structure is the command specification, i.e., how the console
recognizes acommand. The second parameter is the function to call when the command
isrecognized. Thethird parameter isthe location of the #ximport’ ed help file for the command.
Note that the second parameter can be NULL, which is useful if help information is needed
for something that is not acommand (like for the "SET" command below--the help file for
"SET" contains alist of all of the set commands). Also note the entry for the command ""
which is used to set up the help text that is displayed when the help command is used by
itself (that is, with no parameters).* /

const ConsoleCommand console commands[] =

"HELLO WORLD", hello world, 0 },

"ECHO", con_echo, help echo txt },

"HELP", con _help, help help txt },

"n, NULL, help txt },

"SET", NULL, help set txt },

"SET PARAM", con set param, help set param txt },

Lt Rt e W W e

b s

/* Thisarray sets up the error messages that can be generated. CON_STANDARD ERRORS IS
* amacro that expands to the standard errors used by the built-in commands in zconsole.lib.
* Users can define their own errors here, aswell.* /

const ConsoleError console errors[] = {
CON_STANDARD ERRORS
}i
/* Thisarray definesthe information (such as configuration) that will be saved to the file system.
* Notethat if, for example, the HTTP or SMTP related commands are included in the
* console commands array above, then the backup information must be included in
* thisarray. The entries below are macros that expand to the appropriate entry for each set of
* functionality. Users can aso add their own information to be backed up here by adding
* more ConsoleBackup Structures. * /
const ConsoleBackup console backup[] = {

CONSOLE_BASIC_BACKUP,
CONSOLE_TCP_BACKUP,
CONSOLE_HTTP_BACKUP,
CONSOLE_SMTP_BACKUP

b s

Chapter 11: General Purpose Console 375

The following code defines the MIME types that the web server will handle.

const HttpType http types[] = {
{ ".shtml", "text/html", shtml handler}, // sS
{ ".html", "text/html", NULL}, // html
{ ".gif", "image/gif", NULL},
{ ".Jpg", "image/jpeg", NULL},
{ ".jpeg", "image/jpeg", NULL},
{ ".txt", "text/plain", NULL}

b s

The function for the custom command is defined here and the main program finishes up the pro-
gram. To see the complete sample, look in Samples\zconsole\tcpipconsole.c.

* ok k¥ X

Thisis a custom command. Custom commands alwaystake a ConsoleState* asan
argument (a pointer to the state structure for the given I/O stream), and return an int.
The return value should be 0 when the command wishes to be called again on the next
console tick (), 1whenthecommand has successfully finished processing, or -1
when the command has finished due to an error.* /

int hello world(ConsoleState *state) {

}

state->conio->puts ("Hello, World!\r\n") ;
return 1;

void main (void) {

/* Initialize TCP/IP, clients, servers, and 1/0 prior to using any console functions.* /
sock init () ;

tcp _reserveport (80) ; // Start alisten queue and disable the 2M SL wait .
http init () ;

if (f£s_init (0, 64))
printf ("Filesystem not present!\n");
if (console init () != 0) {

printf ("Console did not initialize!\n");
fs format (0, 64, 1);

/* After thefile system has been initialized or formatted, space must be reserved in
* thefile system for the backup information. */

con backup reserve() ;
con_backup (); // Savethebackupinformation to the console.

}

while (1) {
console tick() ;
http handler() ;

}

376

TCP/IP User’'s Manual

Notice to Users

Z-WORLD PRODUCTS ARE NOT AUTHORIZED FOR USE AS
CRITICAL COMPONENTS IN LIFE-SUPPORT DEVICES OR SYS
TEMS UNLESS A SPECIFIC WRITTEN AGREEMENT REGARD-
ING SUCH INTENDED USE IS ENTERED INTO BETWEEN THE
CUSTOMER AND Z-WORLD PRIOR TO USE. Life-support devices
or systems are devices or systems intended for surgical implantation into
the body or to sustain life, and whose failure to perform, when properly
used in accordance with instructions for use provided in the labeling and
user’s manual, can be reasonably expected to result in significant injury.

No complex software or hardware system is perfect. Bugs are always
present in a system of any size. In order to prevent danger to life or prop-
erty, it is the responsibility of the system designer to incorporate redun-
dant protective mechanisms appropriate to the risk involved.

The Dynamic C TCP/IP software is designed for use only with Rabbit
Semiconductor chips.

Index

Symbols F
HECNO VA ..o 168 file eXteNSIONS ..o 32,164
HEXEC CMA . 168 filehandlers ... 280
Hincludefile ... 168 fIESIZE o 270
filetransfer ... 268
A FIEWEI oo oo 299
ANONYMOUS 10GIN oo 277 flow cqntrol .. 367
application protocols FTPCHENt .o 267-275
FTP ClHNE v 267 FTPSOIVEN s 277301
S LT 277 FTPSEIVEr CMMANGS wovvovvssnvsssnsssnsson 299-300
HTTP oottt 153 ~ Function Reference
POPS ClIENL oo 325 Authentication and Identification
SMTP ClIENt wevveeeeeeeeeeeeeee oo 311 SAULN_BOAUSEY .ovvvve 46
TEINEL .o 333 SAUN_BUNENUCRLE ..o 47
TETP ClHENE oo 303 SAUtN_GELPasSWONdooovvveivvrerssi 48
authentication sauth_getserv_er .. 48
1 = 161 SAUN_GEMUSENTD ooovoo 49
SMTP oo 312 SAUN_GELUSEMASKoovvvesvvvs 50
Sauth_getusernameccceeveeereneeseeseens 51
B SaUth_getwriteacCesscvvvvverereeierieennns 52
SsaUth removeuserccccevcveceeeeecveceeenene 53
basic authenticationc.ccccoevveiveccnecninne, 161 SAUN_SELPASSWOTT vvvvveeeveeeeeeseeeeeeeeesessee 54
BOOTF/ DHCP SAULN_ SELSEIVENoveeieeeeeeeeeee e 55
USed With TFTP v 303 SAULH,_SELUSEIMESK <.v.oooeeeeeee e 56
C sauth setwriteacCesscccoveveeveeceeeeenenne, 57
CGlI
callbacks COI_CONLINUE ... 202
FTP datatransfersoovveeveeeeeeeeeeceeeeeeeneenns 272 COi_redirecttoccooeveevererieneeereeeeee 203
sending HTTP headerscccccceevvcvcvevenenee, 159 COI_SENASEIING ..cveeeeereeeeeere e 204
[154, 169 http_abortCGIccocevvvieiveeereseiee 205
console, serial-basedcoeeveeeeeeeeeeen 343-376 http_defaultCGI ... 209
http_finishCGIceevvererrircreeene 214
D http_getACtioNoc.ovieeereereeees 215
daemons http_getCond e s 217
FTP CHENE oo 269 http_getCONENtDISPOSIHON oo 218
FTP SEIVEN oo 297 hitp_QEtCONENtLENGIN ...ooovvsvvsvovvoeve 219
HTTP SEOVET oo 234 NLD_QELCONENETYPE .ovsvvrvvsvvvorvove 220
POP3 ClENt oo 329 NLD_QEICONEXE v 222
S 1172 S 340 NUD_QEDAIA ..o 223
EFEDTICK eeeeeeeeeeeeeeeeeeeeeeeeesesssssssessessensneenees 307 L 224
PZee < ¢ [T 359 NUD_QELFIEND oo 225
DHCP/IBOOTP, See BOOTP/DHCP http_getHTTPM ethod 226
directory listingcccooevereneieneeereeere e 79 http_getHTTRV_ers B 227
dynamic web pagesccoeererieniiine s 165 hitp_QetRemainingLengthc..o.. 228
http_getSocketccooeveieeireeineeeee 229
E http_getStatecoocvveveieeeeereeees 230
http_getTransferEncodingc.cccceveeene 231
e-mail http_ GEtURL oo 232
POP3 Clientcccocvvvinvenninieesieeeeene 325-331 http_ getUSErStateooovvvereveveresreerenen. 233
SMTPcClient ...ccovvvvere e 311-323 http_set(:ond __ 243
eNtrieSin dir€Ctoryoccoeveenevennenee e 79 http_SEESEALEvveeveeeeeeeee s 246
TCP/IP User's Manual 379

http SKIPCGI ...ovvcvececeee e
http_sock bytesreadyc.cccocevvervrivennnnnns
http_sock fastreadcccccocevvvverenieennnnnns
http SOCK_QELS .ovvvveie e
http_sock_ modeccocvevvevvivvcvieve e
http_sock_thleftccooevvevecrceeceee
http_SOCK_ WIIte ..o
http_sock xfastreadccccevevvereneecnnnnns
http_sock xfastwriteccceevvivverirennnee
http SWItChCGI ...
http W e
Console
€oN_backupooeveveerece e
con_backup _bytesccccovveevrinivneenn,
con_backup_reservecoccccevneenenene,
con_chk _timeoutcccocceeeveceenineeceene,
con_load backupccccoevrveieniincnencne,
(o0 o 1 (=== = A (o I
con_set_backup_IX ..o
con_set filesS IX oo,
con_set timeoutcccceeveveeveeciecveeeene,
con_set user idle ...ooeevviecieeceeceeec e,
con_set user timeoutcccceeeveieennenen,
(00010 1= YN | o (R
(0001 o 1Y 1o
Cookie
http_Setcookieccooeveevineneieeeeee
Data Conversion
http_contentencodeccoceveeeinieenenncns
http_date Str ...ooeeeieeeee e
http_urldecodeccooeveieiiniccee
Directory Navigation
SSPEC CU i e
SSPEC AIMliSt .o
SSPEC PWA .
Dynamic (RAM) Resource Table
Sspec_addformococeeecnieneneeee
sspec_addfsfile ...
sspec_addfunctionccceeeevcencnenine
sspec_addrootfilecceveeeeeicninie
sspec_addvariableccooeeiiiieiinin
sspec_addxmemfile ...
SSpEC_addXmemVarccceceeveveerencnnenne
SSPEC_AIBSIPEC ..
SSpeC_resizerootfileovoeeeeeeineninien
Dynamic Rule Table
sspec_addruleooeveeiii
SSPEC_remOVeEruleccoceeeeerenccrienciee
E-mail
pop3_getmailccooeveiiiee e
POP3_INIT .o
POP3_LICK .o
SMEP._MaltiCK oo
smtp_sendmailcoceoeiiiiniin

smtp_sendmailXmemcccceeveeeevreennnne. 320

SMEP_SEALUS ..ooeeveeeceecee e 323
File System Specifics
SSPEC_aUtOMOUNTc.evveeeeeee e 72
SSpeC fatregister ..ooovvvvvveveeereeeee e 82
sspec fatregisteredcoovvvvevevieciecenennen 83
FTP Client
ftp_client_fileSizeccocevveeveceeceee, 270
ftp_client_Setup ...coevvvvereeceerere e 268
ftp_client tick ...oocvvvvevevceceee e 269
ftp_client Xfer .o 271
ftp_data handlercccoevvvveeceeeeeee 272
ftp last codeccocvvveeveececcee e 274
FTP Server
FEP NIt oo 292
ftp_set_ anonymouscccceeeeercenencnnene 295
ftp_Shutdown ..o 296
FEP HICK ceeeceee e 297
HTML Forms
http_finderrbuf ... 212
http_NeXtfVErT ... 237
http_parseform ... 238
http_SCaNPOSEeeverveririesee e 240
SSpeC_addfV ..o 63
SSPEC FINAFV .o 84
sspec_getformtitle ... 90
SSPEC_GEtfVAESC ..o 92
sspec_getfventrytypeccoceceeeenencncnen 93
SSpec_getfvlen ..o 94
SSpeC_getfvnamecccceeveeecncnceee 95
SSPEC_GEtfVNUM .o 96
SSPEC_GEfVOPL .. 97
sspec_getfvoptlistlen ... 98
sspec_getfvreadonlyccocevieeieiincnnnn 99
SSPEC_QEFVSPEC ..o 100
sspec_getpreformfunction ..., 105
sspec_setformepilogcccoveveeceeerencniene, 131
sspec_setformfunctionccccceeeeeenenne. 132
sspec_setformprologcc.coveeeeerenencnene, 133
sspec_setformtitleo.ooovveveieiccncee, 134
sspec_setfveheck ... 135
SspeC_SetfvdesC ..o 136
sspec_setfventrytypecococeeeevevenccene, 137
sspec_setfvfloatrangeccoceeveeeereenenne. 138
Sspec_setfvlen ..o, 139
sspec_setfvname ..o, 140
sspec_setfvoptlistcooeeeverercceee, 141
SSpec_setfvrange ..o.voeeeeee e 142
sspec_setfvreadonlyccocoveviiiiinicenne 143
sspec_setpreformfunction ..., 145
HTTP Server
http_findname ... 213
http_getCcontextccocvereeernceeienenenns 221
http_handler ... 234

380

TCP/IP User’s Manual

http idl€ .ooveee e 235 sspec_needsauthenticationcccceeeee. 115
http NIt oo 236 sspec_readfile ...ooeveveceececeeeeeeeee e 121
http SAf€ .ovvvvveescc e 239 SPEC FEMOVE ...eveeeeeeereerere e eeeseeseeseeneas 123
http_set_anonymousccccecevevvvriernnnnns 241 SSPEC_EMOVEUSESocvveveereeenieeeeneensenseens 125
http_set_ pathcocveveereerec s 245 (S5 0= ol (== (0] (Y 127
http_setauthenticationcccceeevvevvennns 242 SHPEC SAVE .eevvverrieeereererreereereeseeseseeseerenees 129
http_ Shutdowncoveeereeeecce e 247 sspec_setsavedatacocvvevereeierereceeeenn, 147
(01010 TS - (1 S 258 SIS olS < (VS < 148
MIME Types Telnet
sspec_gEtMIMELYPE .ovvvveveveeececece e, 102 10 101= o [0 1S T 340
Resource Access Control telnet_init .o 339
SSPEC_ACCESS .uvevveeereereereesensenresessessensesseseens 58 105 101= A (o 340
SSpec_Checkpermissionsccovvereseeneens 76 vserial CloSeccovvvcvvivee e, 334
SSPEC_QELPEMISSIONS ...oveevveeeeeeereeeeee e 104 vserial init ..o 334
SSPEC_GEtrealmcceveeveeveeeceeeeee e, 106 vserial_keepalivecoeiiieiencnncien, 335
SSPEC_SEtPErmMiSSIONScccoveeeeeericnieneenen. 144 vserial listen ..., 336
SSpEC_Setrealmoocoovveeveee e, 146 VSerial_OpeN ... 337
Resource Location and Information vserial _tick oo, 338
sspec_findfsname ..o 86 TFTP Client
sspec_findname ... 85 P EXEC e 309
sspec_findnextfile ... 87 TP NI e 305
SSpeC_getfileloc ...oovvveeeeeeeieeee 88 TP TNIEX e, 306
Sspec_getfiletype ..o 89 TP HICK o, 307
SSpec_getfunctioncccveeeverevencnieens 91 TP HICKX e, 308
sspec_getlength ..o, 101
SSPEC_QENAME ..o 103 H
SSPEC_GEASEIVENMESKoovvvrrvvvrensse 107 HTML fOrMS cooeeeeeeeeeeeeee e 45, 170-181
e 108 HTTP configuration macrosccccceeeeereenns 157
SHPEC_GEVAIAN oo L HTTP SOIVEr oo 153-266
SPEC_GEVAKING oo 112 L HHRSEAE coooooeeeeeesees oo 154
SSPEC_QELVAITYPE ...oooveeeieeeie e 113
sspec_getxvaraddrcceveeeeeeinnienieennns 113 L
Resource Retrieval and Update
SSPEC_CIOSE eevvveveeeeeeeeseeeeeeeeseeee s 77 listing directory entriesccovveevcenrceneeenenn 79
SSpeC_delete ... 78 M
SSPEC MKAIT ..o 114
SSPEC _OPEN ..ot 116 macros
sspec_readvariable ..., 122 FTP SEIVEN ..o eeees 278
SSPEC_IMAIN .o 128 HTTP SEIVEN ot 157
SHPEC_SEEK ..ovvririresiee s 130 serial portsfor telnetcccococueeecvevceevcnnnne. 333
SHPEC_SHAL ..o 149 SMTP Client ..o 314
SSPEC Ll e 151 telnet (7.05 and later)ccoooeveevcvevceercrne. 334
SHPEC_WIIHE .o 152 telnet (Pre 7.05) ..o 339
Server Resource Management ZCONSOIE ..ot 370
http_addfileooovvvvvvviiins 206 MIME YPES ...oooururrrcrveiieenssssrrreeseesieanns 32, 164
http_delfile ..o 211
shtml_addfunctionccccceeevevviennnen, 263 P
shtml_addvariableccccceevvevvivceenen, 264 passive open 277
shtml_delfunctionccccoveveeeieeeeenann. 265 password protlé(.:.t.i.(.).rlw """""""""""""""""""""" 46 54
shtml_delvariablecccooeeeeveeireeeerennne. 266 permissions ’
SPOC_AAUSES v 67 S 40
SYPEC_CNECKBACCESS .vvvvsvvrsvvsvesvvsvrv 'S POP BUFFER SIZE v 325
SYPEC_GRUSENM oo 109 BOP DEBUG mooooeoeeeeoeoeeeee 325
SYPEC_QEIUSBINAME .o 0 BOP NODELETE oo 325
TCP/IP User's Manual 381

POP_PARSE EXTRA ... 325
POP3 client

CONfIgUIationccccveeerevenese e 325
POST commandccccceevvvverinreereereeeeeseeeeeens 172
R
resources

ACCESS CONLIOIS ..vovveiierieiecee e 16
rUletableoceee e, 16
S
sample programs

FTP SEIVEr e 298

POP3 Clientcceeveveeese e 330

SMTP CHENt .ocvvvvee e 313

telnet clientcocvveeve v 342

tEINEL SEIVEr ..o 341

ZCONSOIE .ot 373
SAUTH_MAXNAMEccoooriieecee 39
SAUTH_MAXUSERS. ..o 40
LSS o U] 161
SERIAL_PORT_SPEEDcccovcvveinieinieneeene 339
(S AVICTES o= ol 11 33,36
SERVER_PASSWORD_ONLYcccocevvrrnnnnn 40
SMTP Client ...ccvoeveeecee e 311-323
SMTP configuration macroscccceeeeeerernen. 314
SOl 158, 168
SSOL e 161
SSPEC_MAX_FATDRIVES ..o 40
SSPEC_MAX_OPEN ..ot 41
SSPEC_MAXNAME ...t 40
SSPEC_MAXRULESccoooiiiirireenren 40
SSPEC_MAXSPECccooeitreireereeree e 40
SSPEC_USERSPERRESOURCEc.c..... 41
SSPEC_XMEMVARLEN ... 41
stack

free space for TFTP functionscc.c........ 304
static resource tableccocevvreieeveceecreeece, 43
static Web Pagescocvvvve v 163

T
LEINEL .o 333-342
TELNET _COOKEDcoeviereecieeeetece e, 339
TETPCHENt e 303-309
TME ZONE ... 162
TIMEZONE ... 159
TS e 161
U
URL-encoded datacoceeveeiveeeeeeiieiiee e 173
(U < = o[16
(U < Y L S 35
V
VSERIAL _DEBUGccoooiveeieeececteee e 334
VSERIAL_NUM_GATEWAYSccceeveeneee 334
W
web browser controlcocoevveeevccceeee i, 3-29
well-known ports
FTP SEIVEr ..t 277
HTTP SENVE o 158
POP3 ...t 325
SMTP SEIVES ..o 311
Z
ZCONSOIE ..ot 343-376
backup SYStEM ..o 368
circular bUFfErsoooeveveei i 358
COMMANGS ..t 344
CUSLOM COMIMANGSecvveeirerereecrre et ereeeareaa 352
€ITON MESSAGES ..eevvveeererrnerreesreeseeeseesreeseeseeenes 353
1O INEITACES .o 356
(472102 (01 T 370-372
physical CONNECLIONccevevrvreirreerie e 358
terminal emulatorccocvveeeevee i, 367
USING TCP/IP .ot 358

382

TCP/IP User’s Manual

	Table of Contents
	1. Introduction
	2. Web-Enabling Your Application
	2.1� Designing Your Application
	2.2� The Smallest Web Server in the WWW
	2.3� Web Server Architecture
	2.3.1� Application Block
	2.3.2� HTTP Block
	2.3.3� HTTP Block Subcomponents
	2.3.4� Zserver Block

	2.4� Architecture of a Toy Application
	2.5� A Simple but Realistic Application
	2.6� Adding Access Controls
	2.7� A Full-Featured Application
	2.8� Living Without RabbitWeb and FAT

	3. Server Utility Library
	3.1� Data Structures for Zserver.lib
	3.1.1� MIMETypeMap Structure
	3.1.2� ServerSpec Structure
	3.1.2.1� ServerSpec Fields

	3.1.3� ServerAuth Structure
	3.1.4� ServerPermissions Structure
	3.1.5� RuleEntry Structure
	3.1.6� ServerContext Structure
	3.1.7� SSpecStat Structure
	3.1.8� sspec_fatinfo Structure
	3.1.9� FormVar Structure
	3.1.10� SSpecFileHandle Structure

	3.2� Constants Used in Zserver.lib
	3.2.1� ServerSpec Type Field
	3.2.2� ServerSpec Vartype Field
	3.2.3� ServerPermissions Servermask Field
	3.2.4� Configuration Macros
	3.2.5� Macros for Control Data Initialization
	3.2.5.1 Static Rule Table
	3.2.5.2 Static MIME Type Table
	3.2.5.3 Static Resource Table

	3.3� File Compression Support
	3.4� HTML Forms
	3.5� API Functions
	sauth_adduser
	sauth_authenticate
	sauth_getpassword
	sauth_getserver
	sauth_getuserid
	sauth_getusermask
	sauth_getusername
	sauth_getwriteaccess
	sauth_removeuser
	sauth_setpassword
	sauth_setserver
	sauth_setusermask
	sauth_setwriteaccess
	sspec_access
	sspec_addCGI
	sspec_addform
	sspec_addfsfile
	sspec_addfunction
	sspec_addfv
	sspec_addrootfile
	sspec_addrule
	sspec_adduser
	sspec_addvariable
	sspec_addxmemfile
	sspec_addxmemvar
	sspec_aliasspec
	sspec_automount
	sspec_cd
	sspec_checkaccess
	sspec_checkpermissions
	sspec_close
	sspec_delete
	sspec_dirlist
	sspec_fatregister
	sspec_fatregistered
	sspec_findfv
	sspec_findname
	sspec_findfsname
	sspec_findnextfile
	sspec_getfileloc
	sspec_getfiletype
	sspec_getformtitle
	sspec_getfunction
	sspec_getfvdesc
	sspec_getfventrytype
	sspec_getfvlen
	sspec_getfvname
	sspec_getfvnum
	sspec_getfvopt
	sspec_getfvoptlistlen
	sspec_getfvreadonly
	sspec_getfvspec
	sspec_getlength
	sspec_getMIMEtype
	sspec_getname
	sspec_getpermissions
	sspec_getpreformfunction
	sspec_getrealm
	sspec_getservermask
	sspec_gettype
	sspec_getuserid
	sspec_getusername
	sspec_getvaraddr
	sspec_getvarkind
	sspec_getvartype
	sspec_getxvaraddr
	sspec_mkdir
	sspec_needsauthentication
	sspec_open
	sspec_pwd
	sspec_read
	sspec_readfile
	sspec_readvariable
	sspec_remove
	sspec_removerule
	sspec_removeuser
	sspec_resizerootfile
	sspec_restore
	sspec_rmdir
	sspec_save
	sspec_seek
	sspec_setformepilog
	sspec_setformfunction
	sspec_setformprolog
	sspec_setformtitle
	sspec_setfvcheck
	sspec_setfvdesc
	sspec_setfventrytype
	sspec_setfvfloatrange
	sspec_setfvlen
	sspec_setfvname
	sspec_setfvoptlist
	sspec_setfvrange
	sspec_setfvreadonly
	sspec_setpermissions
	sspec_setpreformfunction
	sspec_setrealm
	sspec_setsavedata
	sspec_setuser
	sspec_stat
	sspec_tell
	sspec_write

	4. HTTP Server
	4.1� HTTP Server Data Structures
	4.1.1� HttpState
	4.1.1.1� HttpState Fields

	4.2� Configuration Macros
	4.2.1� Sending Customized HTTP Headers to the Client
	4.2.2� Saving Custom Headers from the Client

	4.3� Authentication Methods
	4.4� Setting the Time Zone
	4.5� Sample Programs
	4.5.1� Serving Static Web Pages
	4.5.1.1� Adding Files to Display
	4.5.1.2� Adding Files with Different Extensions
	4.5.1.3� Handling of Files With No Extension

	4.5.2� Dynamic Web Pages Without HTML Forms
	4.5.2.1� SSI Feature
	4.5.2.2� CGI Feature

	4.5.3� Web Pages With HTML Forms
	4.5.3.1� Sample HTML Page
	4.5.3.2� POST-Style Form Submission
	4.5.3.3� URL-Encoded Data
	4.5.3.4� Sample of a CGI Handler

	4.5.4� HTML Forms Using Zserver.lib

	4.6� HTTP File Upload
	4.6.1� What is a CGI Function and Why is It Useful?
	4.6.2� How Do I Use the New CGI Facility?
	Step 1: Specify Network Configuration
	Steps 2, 3 and 4: Specify File system and Web Server
	Step 5: Create a Web Page
	4.6.2.1� Step 6: Writing a CGI Function
	Step 7: Creating the Resource Tables
	Step 8: Create List of Content Type Mappings
	Step 9: Rule Creation
	Step 10: Create Set of User IDs
	Step 11: Tying It All Together

	4.7� API Functions for HTTP Servers
	cgi_continue
	cgi_redirectto
	cgi_sendstring
	http_abortCGI
	http_addfile
	http_contentencode
	http_date_str
	http_defaultCGI
	http_delfile
	http_finderrbuf
	http_findname
	http_finishCGI
	http_getAction
	http_getCond
	http_getContentDisposition
	http_getContentLength
	http_getContentType
	http_getcontext
	http_getContext
	http_getData
	http_getDataLength
	http_getField
	http_getHTTPMethod
	http_getHTTPVersion
	http_getRemainingLength
	http_getSocket
	http_getState
	http_getTransferEncoding
	http_getURL
	http_getUserState
	http_handler
	http_idle
	http_init
	http_nextfverr
	http_parseform
	http_safe
	http_scanpost
	http_set_anonymous
	http_setauthentication
	http_setCond
	http_setcookie
	http_set_path
	http_setState
	http_shutdown
	http_skipCGI
	http_sock_bytesready
	http_sock_fastread
	http_sock_fastwrite
	http_sock_gets
	http_sock_mode
	http_sock_tbleft
	http_sock_write
	http_sock_xfastread
	http_sock_xfastwrite
	http_status
	http_switchCGI
	http_urldecode
	http_write
	shtml_addfunction
	shtml_addvariable
	shtml_delfunction
	shtml_delvariable

	5. FTP Client
	5.1� Configuration Macros
	5.2� API Functions
	ftp_client_setup
	ftp_client_tick
	ftp_client_filesize
	ftp_client_xfer
	ftp_data_handler
	ftp_last_code

	5.3� Sample FTP Transfer

	6. FTP Server
	6.1� Configuration Macros
	6.2� File Handlers
	6.2.1� Replacing the Default Handlers
	6.2.2� File Handlers Specification
	ftp_dflt_open
	ftp_dflt_getfilesize
	ftp_dflt_read
	ftp_dflt_write
	ftp_dflt_close
	ftp_dflt_list
	ftp_dflt_cd
	ftp_dflt_pwd
	ftp_dflt_mdtm
	ftp_dflt_delete

	6.3� API Functions
	ftp_dflt_is_auth
	ftp_init
	ftp_load_filenames
	ftp_save_filenames
	ftp_set_anonymous
	ftp_shutdown
	ftp_tick

	6.4� Sample FTP Server
	6.5� Getting Through a Firewall
	6.6� FTP Server Commands
	6.7� Reply Codes to FTP Commands

	7. TFTP Client
	7.1� BOOTP/DHCP
	7.2� Data Structure for TFTP
	7.3� API Functions
	tftp_init
	tftp_initx
	tftp_tick
	tftp_tickx
	tftp_exec

	8. SMTP Mail Client
	8.1� Sample Conversation
	8.2� SMTP Authentication
	8.3� Sample Sending of an E-mail
	8.4� Configuration Macros
	8.5� API Functions
	smtp_data_handler
	smtp_mailtick
	smtp_sendmail
	smtp_sendmailxmem
	smtp_setauth
	smtp_setserver
	smtp_setserver_ip
	smtp_status

	9. POP3 Client
	9.1� Configuration
	9.2� Steps to Receive E-mail.
	9.3� Call-Back Function
	9.3.1� Normal call-back
	9.3.2� POP_PARSE_EXTRA call-back

	9.4� API Functions
	pop3_init
	pop3_getmail
	pop3_tick

	9.5� Sample Receiving of E-mail
	9.5.1� Sample Conversation

	10. Telnet
	10.1� Telnet (Dynamic C 7.05 and later)
	10.1.1� Setup
	10.1.1.1� Low-Level Serial Routines
	10.1.1.2� Configuration Macros

	10.1.2� API Functions (Dynamic C 7.05 and later)
	vserial_close
	vserial_init
	vserial_keepalive
	vserial_listen
	vserial_open
	vserial_tick

	10.2� Telnet (pre-Dynamic C 7.05)
	10.2.1� Configuration Macros
	10.2.2� API Functions
	telnet_init
	telnet_tick
	telnet_close

	10.2.3� An Example Telnet Server
	10.2.4� An Example Telnet Client

	11. General Purpose Console
	11.1� Zconsole Features
	11.1.1� File System Requirement
	11.1.2� TCP/IP and Zconsole

	11.2� Login Name and Password
	11.3� Zconsole Commands and Messages
	11.3.1� Zconsole Command Data Structure
	11.3.1.1 Help Text for General Cases

	11.4� Zconsole Command Array
	11.4.1� Zconsole Commands
	11.4.1.1 Default Command Functions
	11.4.1.2 Custom Zconsole Commands

	11.4.2� Zconsole Error Messages
	11.4.2.1 Default Error Messages
	11.4.2.2 Custom Error Messages

	11.5� Zconsole I/O Interface
	11.5.1� How to Include an I/O Method
	11.5.2� Predefined I/O Methods
	11.5.2.1 Serial Ports
	11.5.2.2 Telnet
	11.5.2.3 Slave Port
	11.5.2.4 Custom I/O Methods

	11.5.3� Multiple I/O Streams

	11.6� Zconsole Execution
	11.6.1� File System Initialization
	11.6.2� Serial Buffers
	11.6.3� Using TCP/IP
	11.6.4� Required Zconsole Functions
	console_init
	console_tick

	11.6.5� Useful Zconsole Function
	con_backup
	con_backup_bytes
	con_backup_reserve
	con_chk_timeout
	con_load_backup
	con_reset_io
	con_set_backup_lx
	con_set_files_lx
	con_set_user_idle
	con_set_timeout
	con_set_user_timeout
	console_disable
	console_enable

	11.6.6� Zconsole Execution Choices
	11.6.6.1 Terminal Emulator

	11.7� Backup System
	11.7.1� Data Structure for Backup System
	11.7.2� Array Definition for Backup System

	11.8� Zconsole Macros
	11.9� Sample Program

	Notice to Users
	Index

