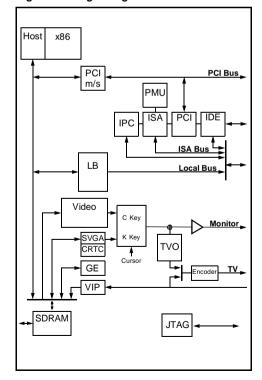


System On Chip

Consumer - SCX502

- POWERFUL x86 PROCESSOR
- 64-BIT SDRAM UMA CONTROLLER
- VGA & SVGA CRT CONTROLLER
- 135MHz RAMDAC
- 2D GRAPHICS ENGINE
- VIDEO INPUT PORT
- VIDEO PIPELINE
 - UP-SCALER
 - VIDEO COLOR SPACE CONVERTER
 - CHROMA & COLOUR KEY SUPPORT
- TV OUTPUT
 - 3-LINE FLICKER FILTER
 - CCIR 601/656 SCAN CONVERTER
 - NTSC / PAL COMPOSITE, RGB, S-VIDEO
- PCI MASTER / SLAVE / ARBITER
- ISA MASTER / SLAVE
- OPTIONAL 16-BIT LOCAL BUS INTERFACE
- EIDE CONTROLLER
- I²C INTERFACE
- IPC
 - DMA CONTROLLER
 - INTERRUPT CONTROLLER
 - TIMER / COUNTERS
- POWER MANAGEMENT UNIT
- JTAG IEEE1149.1


DESCRIPTION

The iDragon SCX502 integrates a standard 5th generation x86 core, a Synchronous DRAM controller, a graphics subsystem, a video pipeline, and support logic including PCI, ISA, and IDE controllers to provide a single consumer orientated PC compatible subsystem on a single device. The device is based on a tightly coupled Unified Memory Architecture (UMA), sharing memory between the CPU, the graphics and the video.

The iDragon SCX502 is packaged in a 388 Plastic Ball Grid Array (PBGA).

Figure 0-1. Logic Diagram

X86 Processor core

- Fully static 32-bit 5-stage pipeline, x86 processor fully PC compatible.
- Can access up to 4GB of external memory.
- 8Kbyte unified instruction and data cache with write back and write through capability.
- Parallel processing integral floating point unit, with automatic power down.
- Runs up to 100MHz (x1) or 133 MHz (x2).
- Fully static design for dynamic clock control.
- Low power and system management modes.
- Optimized design for 2.5V operation.

SDRAM Controller

- 64-bit data bus.
- Up to 100MHz SDRAM clock speed.
- Integrated system memory, graphic frame memory and video frame memory.
- Supports 2MB up to 128 MB system memory.
- Supports 16-, 64-, and 128-Mbit SDRAMs.
- Supports 8, 16, 32, 64, and 128 MB DIMMs.
- Supports buffered, non buffered, and registered DIMMs
- 4-line write buffers for CPU to SDRAM and PCI to SDRAM cycles.
- 4-line read prefetch buffers for PCI masters.
- Programmable latency
- Programmable timing for SDRAM parameters.
- Supports -8, -10, -12, -13, -15 memory parts
- Supports memory hole between 1MB and 8MB for PCI/ISA busses.

■ 2D Graphics Controller

- 64-bit windows accelerator.
- Backward compatibility to SVGA standards.
- Hardware acceleration for text, bitblts, transparent blts and fills.
- Up to 64 x 64 bit graphics hardware cursor.
- Up to 4MB long linear frame buffer.
- 8-, 16-, 24- and 32-bit pixels.
- Drivers availables for various OSes.

CRT Controller

- Integrated 135MHz triple RAMDAC allowing for 1280 x 1024 x 75Hz display.
- Requires external frequency synthesizer and reference sources.
- 8-, 16-, 24-bit pixels.
- Interlaced or non-interlaced output.
- Requires no external frequency synthesizer.
- Requires only external reference source.

Video Input port

- Accepts video inputs in CCIR 601 mode.
- Optional 2:1 decimator
- Stores captured video in off setting area of the onboard frame buffer.
- Video pass through to the TV output for full screen video images.
- HSYNC and B/T generation or lock onto external video timing source.

■ Video Pipeline

- Two-tap interpolative horizontal filter.
- Two-tap interpolative vertical filter.
- Color space conversion (RGB to YUV and YUV to RGB).
- Programmable window size.
- Chroma and color keying for integrated video overlav.

■ Video Output

- NTSC-M; PAL-B, D, G, H, I, M, N encoding.
- 4 analog outputs in two configurations:
 - R,G,B + CVBS
- C,YS,CVBS1 + CVBS2
- Flicker-free interlaced output.
- Programmable two tap filter with gamma correction or three tap flicker filter.
- Interlaced operation mode.
- Progressive to interlaced scan converter.
- Cross color reduction by specific trap filtering on luma within CVBS flow.
- Power down mode available on each DAC.

■ PCI Controller

- Fully compliant with PCI 2.1 specification.
- Integrated PCI arbitration interface. Up to 3 masters can connect directly. ExternalPAL allows for greater than 3 masters.
- Translation of PCI cycles to ISA bus.
- Translation of ISA master initiated cycle to PCI.
- Support for burst read/write from PCI master.
- PCI clock is 1/2. 1/3 or 1/4 cpu bus clock.

■ ISA master/slave

- Generates the ISA clock from either 14.318MHz oscillator clock or PCI clock
- Supports programmable extra wait state for ISA cycles
- Supports I/O recovery time for back to back I/O cycles.
- Fast Gate A20 and Fast reset.
- Supports the single ROM that C, D, or E. blocks shares with F block BIOS ROM.
- Supports flash ROM.
- Supports ISA hidden refresh.
- Buffered DMA & ISA master cycles to reduce bandwidth utilization of the PCI and Host bus.

■ Local Bus interface

- Multiplexed with ISA/DMA interface.
- Low latency asynchronous bus
- 22-bit address bus.
- 16-bit data bus with word steering capability.
- Programmable timing (Host clock granularity)
- 2 Programmable Flash Chip Select.
- 4 Programmable I/O Chip Select.
- Supports 32-bit Flash burst.
- 2-level hardware key protection for Flash boot block protection.
- Supports 2 banks of 16MB flash devices with boot block shadowed to 0x000F0000.

IDE Interface

- Supports PIO
- Transfer Rates to 22 MBytes/sec
- Supports up to 4 IDE devices
- Concurrent channel operation (PIO modes) 4 x 32-Bit Buffer FIFOs per channel
- Support for PIO mode 3 & 4.
- Individual drive timing for all four IDE devices
- Supports both legacy & native IDE modes
- Supports hard drives larger than 528MB
- Support for CD-ROM and tape peripherals
- Backward compatibility with IDE (ATA1).
- Drivers for Windows and other Operating Systems

Integrated Peripheral Controller

- 2X8237/AT compatible 7-channel DMA controller.
- 2X8259/AT compatible interrupt Controller.
 16 interrupt inputs ISA and PCI.
- Three 8254 compatible Timer/Counters.
- Co-processor error support logic.

■ Power Management

- Four power saving modes: On, Doze, Standby, Suspend.
- Programmable system activity detector
- Supports STOPCLK.
- Supports IO trap & restart.
- Independent peripheral time-out timer to monitor hard disk, serial & parallel port.
- 128K SM_RAM address space from 0xA0000 to 0xB0000

JTAG

- Boundary Scan compatible IEEE1149.1.
- Scan Chain control.
- Bypass register compatible IEEE1149.1.
- ID register compatible IEEE1149.1.
- RAM BIST control.

1 GENERAL DESCRIPTION

At the heart of the iDragon SCX502 is an advanced 64-bit x86 processor block. It includes a 64-bit SDRAM controller, advanced 64-bit accelerated graphics and video controller, a high speed PCI local-bus controller and Industry standard PC chip set functions (Interrupt controller, DMA Controller, Interval timer and ISA bus).

The iDragon SCX502 has in addition, an EIDE Controller, I²C Interface, a Local Bus interface and a JTAG interface.

The iDragon SCX502 makes use of a tightly coupled Unified Memory Architecture (UMA), where the same memory array is used for CPU main memory and graphics frame-buffer. This means a reduction in total system memory for system performances that are equal to that of a comparable frame buffer and system memory based system, and generally much better, due to the higher memory bandwidth allowed by attaching the graphics engine directly to the 64-bit processor host interface running at the speed of the processor bus rather than the traditional PCI bus. The 64-bit wide memory array provides the system with 528MB/s peak bandwidth. This allows for higher resolution screens and greater color depth.

The 'standard' PC chipset functions (DMA, interrupt controller, timers, power management logic) are integrated together with the x86 processor core; additional functions such as communications ports are accessed by the iDragon SCX502 via internal ISA bus.

The PCI bus is the main data communication link to the iDragon SCX502 chip. The iDragon SCX502 translates appropriate host bus I/O and Memory cycles onto the PCI bus. It also supports generation of Configuration cycles on the PCI bus. The iDragon SCX502, as a PCI bus agent (host bridge class), fully complies with PCI specification 2.1. The chip-set also implements the PCI mandatory header registers in Type 0 PCI configuration space for easy porting of PCI aware system BI-OS. The device contains a PCI arbitration function for three external PCI devices.

The iDragon SCX502 has two functional blocks sharing the same balls: The ISA / IPC / IDE block and the Local Bus / IDE block (see Table 3). Any board with the iDragon SCX502 should be built using only one of these two configurations. The IDE pins are dynamically multiplexed in each of the blocks in ISA mode only.

Configuration is done by 'strap options'. It is a set of pull-up or pull-down resistors on the memory data bus, checked on reset, which auto-configure the iDragon SCX502.

GRAPHICS FUNCTIONS

Graphics functions are controlled through the on chip SVGA controller and the monitor display is produced through the 2D graphics display engine.

This Graphics Engine is tuned to work with the host CPU to provide a balanced graphics system with a low silicon area cost. It performs limited graphics drawing operations which include hardware acceleration of text, bitblts, transparent blts and fills. The results of these operations change the contents of the on-screen or off-screen frame buffer areas of SDRAM memory. The frame buffe can occupy a space up to 4 Mbytes anywhere in the physical main memory.

The graphics resolution supported is a maximum of 1280x1024 in 16M colors and 16M colors at 75Hz refresh rate, VGA and SVGA compatible. Horizontal timing fields are VGA compatible while the vertical fields are extended by one bit to ac commodate above display resolution.

VIDEO FUNCTIONS

The iDragon SCX502 provides several additional functions to handle MPEG or similar video streams. The Video Input Port accepts an encod ed digital video stream in one of a number of in dustry standard formats, decodes it, optionally decimates it, and deposits it into an off screen area of the frame buffer. An interrupt request can be generated when an entire field or frame has been captured. The video output pipeline incorpo rates a video-scaler and color space converte function and provisions in the CRT controller to display a video window. While repainting the screen the CRT controller fetches both the video as well as the normal non-video frame buffer in two separate internal FIFOs. The video stream can be color-space converted (optionally) and smooth scaled. Smooth interpolative scaling in both horizontal and vertical direction are imple mented. Color and Chroma key functions are also implemented to allow mixing video stream with non-video frame buffer.

The video output passes directly to the RAMDA for monitor output or through another optional color space converter (RGB to 4:2:2 YCrCb) to the programmable anti-flicker filter. The flicker filter is

configured as either a two line filter with gamma correction (primarily designed for DOS type text) or a 3 line flicker filter (primarily designed for Windows type displays). The fliker filter is optional and can be software disabled for use with large screen area's of video.

The Video output pipeline of the iDragon SCX502 interfaces directly to the internal digital TV encoder. It takes a 24 bit RGB non-interlaced pixel stream and converts to a multiplexed 4:2:2 YCrCb 8 bit output stream, the logic includes a progressive to interlaced scan converter and logic to insert appropriate CCIR656 timing reference codes into the output stream. It facilitates the high quality display of VGA or full screen video streams received via the Video input port to standard NTSC or PAL televisions.

The digital PAL/NTSC encoder outputs interlaced or non-interlaced video in PAL-B,D,G,H,I PAL-N, PAL-M or NTSC-M standards and "NTSC- 4.43" is also possible.

The four frame (for PAL) or 2 frame (for NTSC) burst sequences are internally generated, subcarrier generation being performed numerically with CKREF as reference. Rise and fall times of synchronisation tips and burst envelope are internally controlled according to the relevant ITU-R and SMPTE recommendations.

Video output signals are directed to four analog output pins through internal D/A converters giving, simultaneous R,G,B and composite CVBS outputs.

MEMORY CONTROLLER

The iDragon handles the memory data (DATA) bus directly, controlling from 2 to 128 MBytes. The SDRAM controller supports accesses to the Memory Banks to/from the CPU (via the host), from the VMI, to/from the CRTC, to the VIDEO & to/from the GE. (Banks 0 to 3) which can be populated with either single or double sided 72-bit (4 bit parity) DIMMs. Parity is not supported.

The SDRAM controller only supports 64 bit wide Memory Banks.

Four Memory Banks (if DIMMS are used; Single sided or two double-sided DIMMs) are supported in the following configurations (see Table 1-1)

Table 1-1. Memory configurations

	-	-	
Memory Bank size	Number	Organisa tion	Device Size
1Mx64	4	1Mx16	
2Mx64	8	2Mx8	16Mbits
4Mx64	16	4Mx4	
4Mx64	4	2Mx16x2	
8Mx64	8	4Mx8x2	
16Mx64	16	8Mx4x2	64Mbits
4Mx64	4	1Mx16x4	64IVIDIIS
8Mx64	8	2Mx8x4	
32Mx64	16	4Mx4x4	
16Mx64	8	2Mx16x2	128Mbits
32Mx64	16	4Mx8x4	IZOMBILS

The SDRAM Controller supports buffered or un buffered SDRAM but not EDO or FPM modes. SDRAMs must support Full Page Mode Type access.

The iDragon Memory Controller provides various programmable SDRAM parameters to allow the SDRAM interface to be optimized for different processor bus speeds SDRAM speed grades and CAS Latency.

IDE INTERFACE

An industry standard EIDE (ATA 2) controller is built into the iDragon SCX502. The IDE port is capable of supporting a total of four devices.

POWER MANAGEMENT

The iDragon SCX502 core is compliant with the Advanced Power Management (APM) specification to provide a standard method by which the BIOS can control the power used by personal computers. The Power Management Unit module (PMU) controls the power consumption providing a comprehensive set of features that control the power usage and supports compliance with the United States Environmental Protection Agency's Energy Star Computer Program. The PMU provides following hardware structures to assist the software in managing the power consumption by the system.

- System Activity Detection.
- Three power down timers.

- Doze timer for detecting lack of system activity for short durations.
- Stand-by timer for detecting lack of system activity for medium durations
- Suspend timer for detecting lack of system activity for long durations.
- House-keeping activity detection.
- House-keeping timer to cope with short bursts of house-keeping activity while dozing or in stand-by state.
- Peripheral activity detection.
- Peripheral timer for detecting lack of peripheral activity
- SUSP# modulation to adjust the system performance in various power down states of the system including full power on state.
- Power control outputs to disable power from different planes of the board.

Lack of system activity for progressively longer period of times is detected by the three power down timers. These timers can generate SMI interrupts to CPU so that the SMM software can put the system in decreasing states of power consumption. Alternatively, system activity in a power down state can generate SMI interrupt to allow the software to bring the system back up to full power on state. The chip-set supports up to three power down states: Doze state, Stand-by state and Suspend mode. These correspond to decreasing levels of power savings.

POWER DOWN

Power down puts the iDragon SCX502 into suspend mode. The processor completes execution of the current instruction, any pending decoded instructions and associated bus cycles. During the suspend mode, internal clocks are stopped. Removing power down, the processor resumes instruction fetching and begins execution in the instruction stream at the point it had stopped. Because of the static nature of the core, no internal data is lost.

Figure 1-1. Functionnal description.

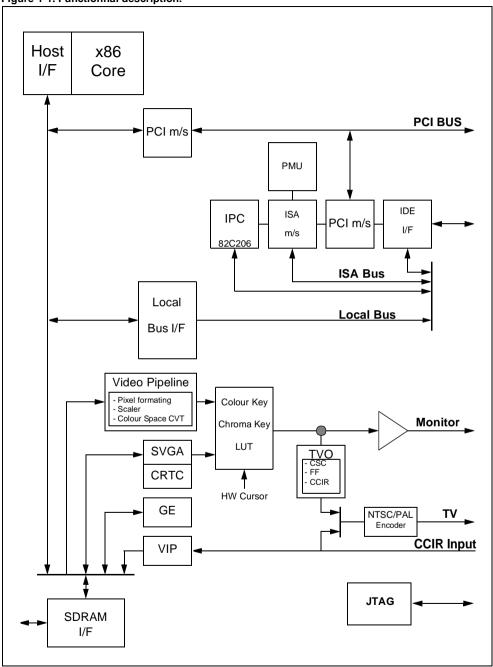
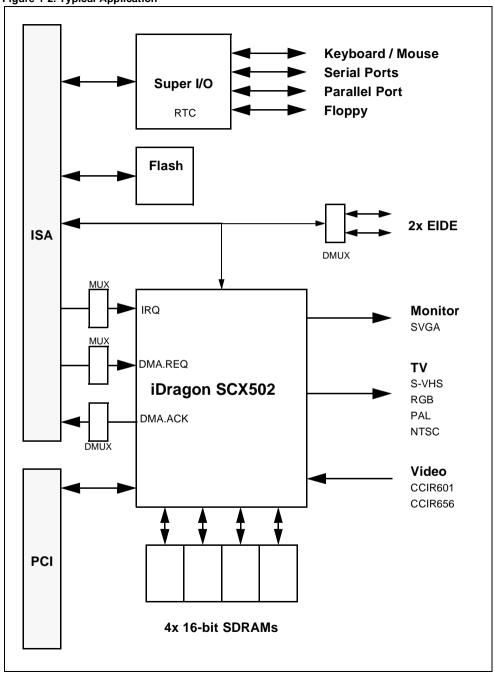



Figure 1-2. Typical Application

2 PIN DESCRIPTION

2.1 INTRODUCTION

The iDragon SCX502 integrates most of the functionalities of the PC architecture. As a result, many of the traditional interconnections between the host PC microprocessor and the peripheral devices are totally internal to the iDragon SCX502. This offers improved performance due to the tight coupling of the processor core and these peripherals. As a result many of the external pin connections are made directly to the on-chip peripheral functions.

Figure 2-1 shows the iDragon SCX502 external interfaces. It defines the main busses and their function. Table 2-1 describes the physical implementation listing signals type and their functionality. Table 2-2 provides a full pin listing and description of pins. Table 2-5 provides a full listing of pin locations of the iDragon SCX502 package by physical connection.

Table 2-1, Signal Description

Group name	Q	ty
Basic Clocks reset & Xtal (SYS)		7
SDRAM Controller		95
PCI interface		56
ISA	79	
IDE	34	89
Local Bus	49	
Video Input		9
TV Output		12
VGA Monitor interface		8
Grounds		71
V_{DD}		26
Miscellaneous		9
Unconnected		6
Total Pin Count		388

Note: Several interface pins are multiplexed with other functions, refer to Table 2-3 and Table 2-4 for further details

Figure 2-1. iDragon SCX502 External Interfaces

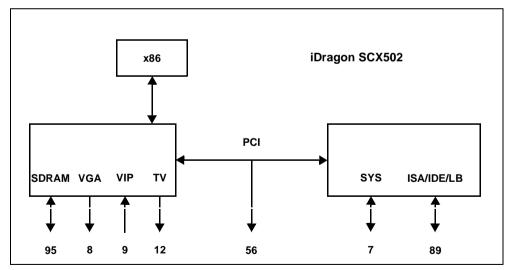


Table 2-2. Definition of Signal Pins

Signal Name	Dir	Description	Qty
BASIC CLOCKS AND RESETS			
SYSRSETI#	- 1	System Power Good Input	1
SYSRSTO#	0	System Reset Output	1
XTALI	I	14.3MHz Crystal Input	1
XTALO	I/O	14.3MHz Crystal Output - External Oscillator Input	1
HCLK ²	I/O	Host Clock (Test)	1
DEV_CLK	0	24MHz Peripheral Clock (floppy drive)	1
DCLK ²	I/O	27-135MHz Graphics Dot Clock	1
V _{DD} _xxx_PLL ¹		Power Supply for PLL Clocks	
SDRAM CONTROLLER			
MCLKI	1	Memory Clock Input	1
MCLKO	0	Memory Clock Output	1
CS#[1:0]	0	DIMM Chip Select	2
CS2# / MA11	0	DIMM Chip Select/ Memory Address/ Bank Address	1
CS3# / MA12 / BA1	0	DIMM Chip Select/ Bank Address	1
BA[0]	0	Bank Address	1
MA[10:0] ²	0	Memory Row & Column Address	12
MD[63:0] ³	1/0	Memory Data	64
RAS#[1:0] ²	0	Row Address Strobe	2
CAS#[1:0] ²	0	Column Address Strobe	2
MWE# ²	0	Write Enable	1
DQM[7:0]	0	Data Input/Output Mask	8
DQIVI[1.0]	0	Data Input/Output Iviask	
PCI CONTROLLER			
PCI_CLKI ²	ı	33MHz PCI Input Clock	1
PCI_CLKO	0	33MHz PCI Output Clock (from internal PLL)	1
AD[31:0] ²	I/O	PCI Address / Data	32
CBE[3:0] ²	I/O	Bus Commands / Byte Enables	4
FRAME# ²	I/O	Cycle Frame	1
IRDY# ²	I/O	Initiator Ready	1
TRDY#	I/O	Target Ready	1
LOCK# ²		PCI Lock	1
DEVSEL# ²	I/O	Device Select	1
STOP#	I/O	Stop Transaction	1
PAR ²	I/O	Parity Signal Transactions	1
SERR#	0	System Error	1
PCIREQ#[2:0] ²	I	PCI Request	3
PCIGNT#[2:0] ²	0	PCI Grant	3
PCI_INT[3:0] ²	I	PCI Interrupt Request	4
ISA INTERFACE			
ISA_CLK	0	ISA Clock Output - Multiplexer Select Line For IPC	1
ISA_CLK2X	0	ISA Clock x2 Output - Multiplexer Select Line For IPC	1
OSC14M ²	0	ISA bus synchronisation clock	1
	-	to the 2.5Vpower supply. They must not be connected to the	3.3V suppl
Note ² ; Denotes that the pin is V_{57}			
Note ³ ; see Table 2-5 for V _{5T} sign			

Table 2-2. Definition of Signal Pins

Signal Name	Dir	Description	Qty
LA[23:17] ²	0	Unlatched Address	7
SA[19:0]	I/O	Latched Address	20
SD[15:0]	I/O	Data Bus	16
ALE ²	0	Address Latch Enable	1
MEMR# ² , MEMW# ²	I/O	Memory Read and Memory Write	2
SMEMR#, SMEMW#	0	System Memory Read and Memory Write	2
IOR# ² , IOW# ²	I/O	I/O Read and Write	2
MCS16# ² , IOCS16# ²	I	Memory/IO Chip Select16	2
BHE# ²	0	System Bus High Enable	1
ZWS#	I	Zero Wait State	1
REF#	0	Refresh Cycle.	1
MASTER# ²	ı	Add On Card Owns Bus	1
AEN ²	0	Address Enable	1
IOCHCK# ²	I	I/O Channel Check.	1
IOCHRDY ²	I/O	I/O Channel Ready (ISA) - Busy/Ready (IDE)	1
ISAOE# ²	0	ISA/IDE Selection	1
GPIOCS# ²	I/O	General Purpose Chip Select	1
IRQ_MUX[3:0] ²	ı	Time-Multiplexed Interrupt Request	4
DREQ_MUX[1:0] ²	1	Time-Multiplexed DMA Request	2
DACK_ENC[2:0] ²	0	Encoded DMA Acknowledge	3
TC	0	ISA Terminal Count	1
RTCAS#	0	Real Time Clock Address Strobe	1
RMRTCCS#	I/O	ROM/RTC Chip Select	1
KBCS# ²	I/O	Keyboard Chip Select	1
RTCRW#	I/O	RTC Read/Write	1
RTCDS	I/O	RTC Data Strobe	1
LOCAL BUS INTERFACE			
PA[23:0]	Ιο	Address Bus	24
PD[15:0]	I/O	Data Bus	16
PRD1#,PRD0#	0	Peripheral Read Control	2
PWR1#,PWR0#	0	Peripheral Write Control	2
PRDY#	Ī	Data Ready	1
FCS1#, FCS0#	0	Flash Chip Select	2
IOCS#[3:0]	0	I/O Chip Select	4
1000#[0.0]	U	I/O Only delect	
IDE CONTROLLER			
DA[2:0]	0	Address Bus	3
DD[15:0]	I/O	Data Bus	16
PCS3#,PCS1#,SCS3#,SCS1#	0	Primary & Secondary Chip Selects	4
DIORDY	0	Data I/O Ready	1
PIRQ, SIRQ	I	Primary & Secondary Interrupt Request	2
PDRQ ² , SDRQ	I	Primary & Secondary DMA Request	2
PDACK# ² , SDACK#	0	Primary & Secondary DMA Acknowledge	2
PDIOR#, SDIOR#	0	Primary & Secondary I/O Channel Read	2
Note ¹ ; These pins are must be or Note ² ; Denotes that the pin is V ₅ Note ³ ; see Table 2-5 for V _{5T} sign	T (see Se	to the 2.5Vpower supply. They must not be connected to ction 4)	the 3.3V supply.

Table 2-2. Definition of Signal Pins

Signal Name	Dir	Description	Qty
PDIOW#, SDIOW#	0	Primary & Secondary I/O Channel Write	2
VGA CONTROLLER			
RED, GREEN, BLUE	0	Analog Red, Green, Blue	3
VSYNC	0	Vertical Sync	1
HSYNC ²	0	Horizontal Sync	1
VREF_DAC ¹	ı	DAC Voltage reference	1
RSET	I	Resistor Set	1
COMP	l	Compensation	1
VIDEO INPUT PORT			
VCLK	ı	27-33MHz Video Input Port Clock	1
VIN[7:0]	I	CCIR 601 or 656 YUV Video Data Input	8
ANALOG TV OUTPUT PORT			
		TA 1 DOD 0.7/10 1 1	
RED_TV, GREEN_TV, BLUE_TV	0	Analog RGB or S-VHS outputs	3
CVBS	0	Analog video composite output	1
IREF1_TV	<u>!</u>	Reference current of 9bit DAC for CVBS	1
VREF1_TV	<u>!</u>	Reference voltage of 9bit DAC for CVBS	1
IREF2_TV		Reference current of 8bit DAC for R,G,B	1
VREF2_TV	ı	Reference voltage of 8bit DAC for R,G,B	1
VSSA_TV	I	Analog Vss for DAC	1
VDDA_TV ²	I	Analog Vdd for DAC	1
VCS	I/O	Composite Synch or Horizontal line SYNC output	1
ODD_EVEN ²	I/O	Frame Synchronisation	1
MISCELLANEOUS			
SPKRD	0	Consider Device Output	T 4
SCL	-	Speaker Device Output	1
	1/0	I ² C Interface - Clock / Can be used for VGA DDC[1] signal	1
SDA	I/O	I ² C Interface - Data / Can be used for VGA DDC[0] signal	1
SCAN_ENABLE	<u> </u>	Reserved (Test pin)	1
COL_SEL ²	0	Colour Select	1
VDD_CORE			
TCLK	<u>!</u>	Test Clock	1
TDI	ı	Test Data Input	1
TMS	I	Test Mode Set	1
TDO	0	Test Data output	1

Note²; Denotes that the pin is V_{5T} (see Section 4) Note ³; see Table 2-5 for V_{5T} signals

2.2 SIGNAL DESCRIPTIONS

2.2.1 BASIC CLOCKS AND RESETS

SYSRSTI# System Reset/Power good. This input is low when the reset switch is depressed. Otherwise, it reflects the power supply's power good signal. This input is asynchronous to all clocks, and acts as a negative active reset. The reset circuit initiates a hard reset on the rising edge of this signal.

SYSRSTO# Reset Output to System. This is the system reset signal and is used to reset the rest of the components (not on Host bus) in the system. The ISA bus reset is an externally inverted buffered version of this output and the PCI bus reset is an externally buffered version of this output.

XTALI 14.3MHz Crystal Input

XTALO 14.3MHz Crystal Output. These pins are connected to the 14.318 MHz crystal to provide the reference clock for the internal frequency synthesizer to generate all the other clocks.

A 14.318 MHz Series Cut Quartz Crystal should be connected between these two pins. Balance capacitors of 15 pF should also be added. In the event of an external oscillator providing the master clock signal to the iDragon SCX502 device, the LVTTL signal should be provided on XTALO.

HCLK Host Clock. This clock supplies the CPU and the host related blocks. This clock can e doubled inside the CPU and is intended to operate in the range of 25 to 100 MHz. This clock in generated internally from a PLL but can be driven directly from the external system.

DEV_CLK 24MHz Peripheral Clock. This 24MHZ signal is provided as a convenience for the system integration of a Floppy Disk driver function in an external chip.

DCLK 135MHz Dot Clock. This is the dot clock, which drives graphics display cycles. Its frequency can go from 8MHz (using internal PLL) up to 135 MHz, and it is required to have a worst case duty cycle of 60-40.

This signal is either driven by the internal pll (VGA) or an external 27MHz oscillator (when the composite video output is enabled). The direction can be controlled by a strap option or an internal register bit.

2.2.2 SDRAM CONTROLLER

MCLKO *Memory Clock Output.* This clock is driving the DIMMs on board and is generated from an internal PLL. The default value is 66MHz.

MCLKI Memory Clock Input. This clock is driving the SDRAM controller, the graphics engine and display controller. This input should be a buffered version of the MCLKO signal with the track lengths between the buffer and the pin matched with the track lengths between the buffer and the DIMMs.

CS#[1:0] Chip Select These signals are used to disable or enable device operation by masking o enabling all SDRAM inputs except MCLK, CKE, and DQM.

CS#[2]/MA[11] Chip Select/ Bank Address This pin is CS#[2] in the case when 16Mbit devices are used. For all other densities, it becomes MA[11].

CS#[3]/MA[12]/BA[1] Chip Select/ Memory Ad dress/Bank Address This pin is CS#[3] in the case when 16Mbit devices are used. For all other den sities, it becomes MA[12] when 2 internal banks devices are used and BA[1] when 4 internal bank devices are used.

MA[10:0] *Memory Address*. Multiplexed row and column address lines.

BA[0] Memory Bank Address.

MD[63:0] *Memory Data.* This is the 64-bit memory data bus. MD[40-0] are read by the device strap option registers during rising edge of SYSRSTI#.

RAS#[1:0] Row Address Strobe. These signals enable row access and precharge. Row address is latched on rising edge of MCLK when RAS# is low.

CAS#[1:0] Column Address Strobe. These signals enable column access. Column address is latched on rising edge of MCLK when CAS# is low.

MWE# Write Enable. Write enable specifies whether the memory access is a read (MWE# = H) or a write (MWE# = L).

DQM#[7:0] Data Mask. Makes data output Hi-Z after the clock and masks the SDRAM outputs. Blocks SDRAM data input when DQM active.

2.2.3 PCI CONTROLLER

PCI_CLKI 33MHz PCI Input Clock. This signal is the PCI bus clock input and should be driven from the PCI_CLKO pin.

PCI_CLKO 33MHz PCI Output Clock. This is the master PCI bus clock output.

AD[31:0] PCI Address/Data. This is the 32-bit multiplexed address and data bus of the PCI. This bus is driven by the master during the address phase and data phase of write transactions. It is driven by the target during data phase of read transactions.

CBE#[3:0] Bus Commands/Byte Enables. These are the multiplexed command and byte enable signals of the PCI bus. During the address phase they define the command and during the data phase they carry the byte enable information. These pins are inputs when a PCI master other than the iDragon SCX502 owns the bus and outputs when the iDragon SCX502 owns the bus.

FRAME# Cycle Frame. This is the frame signal of the PCI bus. It is an input when a PCI master owns the bus and is an output when iDragon SCX502 owns the PCI bus.

IRDY# Initiator Ready. This is the initiator ready signal of the PCI bus. It is used as an output when the iDragon SCX502 initiates a bus cycle on the PCI bus. It is used as an input during the PCI cycles targeted to the iDragon SCX502 to determine when the current PCI master is ready to complete the current transaction.

TRDY# Target Ready. This is the target ready signal of the PCI bus. It is driven as an output when the iDragon SCX502 is the target of the current bus transaction. It is used as an input when iDragon SCX502 initiates a cycle on the PCI bus.

LOCK# *PCI Lock*. This is the lock signal of the PCI bus and is used to implement the exclusive bus operations when acting as a PCI target agent.

DEVSEL# I/O Device Select. This signal is used as an input when the iDragon SCX502 initiates a bus cycle on the PCI bus to determine if a PCI slave device has decoded itself to be the target of the current transaction. It is asserted as an output either when the iDragon SCX502 is the target of the current PCI transaction or when no other device asserts DEVSEL# prior to the subtractive decode phase of the current PCI transaction.

STOP# Stop Transaction. Stop is used to imple ment the disconnect, retry and abort protocol of the PCI bus. It is used as an input for the bus cy cles initiated by the iDragon SCX502 and is used as an output when a PCI master cycle is targeted to the iDragon SCX502.

PAR Parity Signal Transactions. This is the parity signal of the PCI bus. This signal is used to guar antee even parity across AD[31:0], CBE#[3:0], and PAR. This signal is driven by the master during the address phase and data phase of write transactions. It is driven by the target during data phase of read transactions. (Its assertion is identical to that of the AD bus delayed by one PCI clock cycle)

SERR# System Error. This is the system error signal of the PCI bus. It may, if enabled, be asserted for one PCI clock cycle if target aborts a iDragon SCX502 initiated PCI transaction. Its assertion by either the iDragon SCX502 or by another PCI bus agent will trigger the assertion of NMI to the host CPU. This is an open drain output.

PCIREQ#[2:0] *PCI Request.* This pin are the three external PCI master request pins. They indicates to the PCI arbiter that the external agents desire use of the bus.

PCIGNT#[2:0] *PCI Grant.* These pins indicate that the PCI bus has been granted to the master requesting it on its PCIREQ#.

PCI_INT[3:0] *PCI Interrupt Request.* These are the PCI bus interrupt signals.

2.2.4 ISA INTERFACE

ISA_CLK, ISA_CLKX2 ISA Clock x1, x2. These pins generate the Clock signal for the ISA bus and a Doubled Clock signal. They are also used as the multiplexor control lines for the Interrupt Controlle Interrupt input lines. ISA_CLK is generated from either PCICLK/4 or OSC14M/2.

OSC14M *ISA* bus synchronisation clock Output. This is the buffered 14.318 Mhz clock for the ISA bus.

LA[23:17] Unlatched Address. When the ISA bus is active, these pins are ISA Bus unlatched ad dress for 16-bit devices. When ISA bus is ac cessed by any cycle initiated from PCI bus, these pins are in output mode. When an ISA bus master owns the bus, these pins are in input mode.

SA[19:0] ISA Address Bus. System address bus of ISA on 8-bit slot. These pins are used as an in

put when an ISA bus master owns the bus and are outputs at all other times.

SD[15:0] I/O Data Bus. These pins are the external databus to the ISA bus.

ALE Address Latch Enable. This is the address latch enable output of the ISA bus and is asserted by the iDragon SCX502 to indicate that LA23-17, SA19-0, AEN and SBHE# signals are valid. The ALE is driven high during refresh, DMA master or an ISA master cycles by the iDragon SCX502. ALE is driven low after reset.

MEMR# *Memory Read.* This is the memory read command signal of the ISA bus. It is used as an input when an ISA master owns the bus and is an output at all other times.

The MEMR# signal is active during refresh.

MEMW# *Memory Write*. This is the memory write command signal of the ISA bus. It is used as an input when an ISA master owns the bus and is an output at all other times.

SMEMR# System Memory Read. The iDragon SCX502 generates SMEMR# signal of the ISA bus only when the address is below one megabyte or the cycle is a refresh cycle.

SMEMW# System Memory Write. The iDragon SCX502 generates SMEMW# signal of the ISA bus only when the address is below one megabyte.

IOR# I/O Read. This is the IO read command signal of the ISA bus. It is an input when an ISA master owns the bus and is an output at all other times.

IOW# I/O Write. This is the IO write command signal of the ISA bus. It is an input when an ISA master owns the bus and is an output at all other times.

MCS16# Memory Chip Select16. This is the decode of LA23-17 address pins of the ISA address bus without any qualification of the command signal lines. MCS16# is always an input. The iDragon SCX502 ignores this signal during IO and refresh cycles.

IOCS16# *IO Chip Select16.* This signal is the decode of SA15-0 address pins of the ISA address bus without any qualification of the command signals. The iDragon SCX502 does not drive IOCS16# (similar to PC-AT design). An ISA master access to an internal register of the iDragon

SCX502 is executed as an extended 8-bit IO cycle.

BHE# System Bus High Enable. This signal, when asserted, indicates that a data byte is being transferred on SD15-8 lines. It is used as an input when an ISA master owns the bus and is an output at all other times.

ZWS# Zero Wait State. This signal, when assert ed by addressed device, indicates that current cycle can be shortened.

REF# Refresh Cycle. This is the refresh command signal of the ISA bus. It is driven as an output when the iDragon SCX502 performs a refresh cycle on the ISA bus. It is used as an input when an ISA master owns the bus and is used to trigger a refresh cycle.

The iDragon SCX502 performs a pseudo hidden refresh. It requests the host bus for two host clocks to drive the refresh address and capture it in external buffers. The host bus is then relin quished while the refresh cycle continues on the ISA bus.

MASTER# Add On Card Owns Bus. This signal is active when an ISA device has been granted bus ownership.

AEN Address Enable. Address Enable is enabled when the DMA controller is the bus owner to indicate that a DMA transfer will occur. The enabling of the signal indicates to IO devices to ignore the IOR#/IOW# signal during DMA transfers.

IOCHCK# *IO* Channel Check. IO Channel Check is enabled by any ISA device to signal an erro condition that can not be corrected. NMI signal be comes active upon seeing IOCHCK# active if the corresponding bit in Port B is enabled.

IOCHRDY Channel Ready. IOCHRDY is the IO channel ready signal of the ISA bus and is driven as an output in response to an ISA master cycle targeted to the host bus or an internal register of the iDragon SCX502. The iDragon SCX502 moni tors this signal as an input when performing an ISA cycle on behalf of the host CPU, DMA maste or refresh.

ISA masters which do not monitor IOCHRDY are not guaranteed to work with the iDragon SCX502 since the access to the system memory can be considerably delayed due UMA architecture.

ISAOE# <u>Bidirectional OE Control</u>. This signal con trols the OE signal of the external transceiver that connects the IDE DD bus and ISA SA bus.

GPIOCS# I/O General Purpose Chip Select. This output signal is used by the external latch on ISA bus to latch the data on the SD[7:0] bus. The latch can be use by PMU unit to control the external peripheral devices or any other desired function.

IRQ_MUX[3:0] Multiplexed Interrupt Request. These are the ISA bus interrupt signals. They have to be encoded before connection to the iDragon SCX502 using ISACLK and ISACLKX2 as the input selection strobes.

Note that IRQ8B, which by convention is connected to the RTC, is inverted before being sent to the interrupt controller, so that it may be connected directly to the IRQ pin of the RTC.

DREQ_MUX[1:0] ISA Bus Multiplexed DMA Request. These are the ISA bus DMA request signals. They are to be encoded before connection to the iDragon SCX502 using ISACLK and ISACLKX2 as the input selection strobes.

DACK_ENC[2:0] *DMA Acknowledge.* These are the ISA bus DMA acknowledge signals. They are encoded by the iDragon SCX502 before output and should be decoded externally using ISACLK and ISACLKX2 as the control strobes.

TC ISA Terminal Count. This is the terminal count output of the DMA controller and is connected to the TC line of the ISA bus. It is asserted during the last DMA transfer, when the byte count expires.

RTCAS# Real time clock address strobe. This signal is asserted for any I/O write to port 70H.

RMRTCCS# ROM/Real Time clock chip select. This signal is asserted if a ROM access is decoded during a memory cycle. It should be combined with MEMR# or MEMW# signals to properly access the ROM. During a IO cycle, this signal is asserted if access to the Real Time Clock (RTC) is decoded. It should be combined with IOR or IOW# signals to properly access the real time clock.

KBCS# Keyboard Chip Select. This signal is asserted if a keyboard access is decoded during a I/O cycle.

RTCRW# Real Time Clock $R\overline{W}$. This pin is a multifunction pin. When ISAOE# is active, this signal is used as RTCRW#. This signal is asserted for any I/O write to port 71H.

RTCDS# Real Time Clock D . This pin is a multifunction pin. When ISAOE# is active, this signal is used as RTCDS. This signal is asserted for any I/O read to port 71H.

Note: RMRTCCS#, KBCS#, RTCRW# and RTCDS# signals must be ORed externally with ISAOE# and then connected to the external de vice. An LS244 or equivalent function can be used if OE# is connected to ISAOE# and the output is provided with a weak pull-up resistor as shown in Figure 2-2.

2.2.5 LOCAL BUS INTERFACE

PA[23:0] Address Bus Output.

PD[15:0] Data Bus. This is the 16-bit data bus. D[7:0] is the LSB and PD[15:8] is the MSB.

PRD#[1:0] Read Control output. PRD0# is used to read the LSB and PRD1# to read the MSB.

PWR#[1:0] Write Control output. PWR0# is used to write the LSB and PWR1# to write the MSB.

PRDY# Data Ready input. This signal is used to create wait states on the bus. When low, it completes the current cycle.

FCS#[1:0] Flash Chip Select output. These are the Programmable Chip Select signals for up to 2 banks of Flash memory.

IOCS#[3:0] I/O Chip Select output. These are the Programmable Chip Select signals for up to 4 ex ternal I/O devices.

2.2.6 IDE INTERFACE

SCS1#, SCS3# Secondary Chip Select. These signals are used as the active high secondary master & slave IDE chip select signals. These signals must be externally ANDed with the ISAOE# signal before driving the IDE devices to guarantee it is active only when ISA bus is idle.

DA[2:0] Address. These signals are connected to DA[2:0] of IDE devices directly or through a buffer. If the toggling of signals are to be masked during ISA bus cycles, they can be externally ORed with ISAOE# before being connected to the IDE devices.

DD[15:0] Databus. When the IDE bus is active, they serve as IDE signals DD[11:0]. IDE devices are connected to SA[19:8] directly and ISA bus is connected to these pins through two LS245 transceivers as described in Figure 2-2.

PCS1#, PCS3# Primary Chip Select. These signals are used as the active high primary master & slave IDE chip select signals. These signals must be externally ANDed with the ISAOE# signal be-

fore driving the IDE devices to guarantee it is active only when ISA bus is idle.

DIORDY Busy/Ready. This pin serves as IDE signal DIORDY.

PIRQ Primary Interrupt Request. SIRQ Secondary Interrupt Request. Interrupt request from IDE channels.

PDRQ Primary DMA Request. SDRQ Secondary DMA Request. DMA request from IDE channels.

PDACK# Primary DMA Acknowledge. SDACK# Secondary DMA Acknowledge. DMA acknoledge to IDE channels.

PDIOR#, PDIOW# Primary I/O Read & Write. SDIOR#, SDIOW# Secondary I/O Read & Write. Primary & Secondary channel read & write.

2.2.7 VGA CONTROLLER

RED, GREEN, BLUE *RGB Video Outputs.* These are the 3 analog color outputs from the RAM-DACs. These signals are sensitive to interference, therefore they need to be properly shielded.

VSYNC *Vertical Synchronisation Pulse.* This is the vertical synchronization signal from the VGA controller.

HSYNC Horizontal Synchronisation Pulse. This is the horizontal synchronization signal from the VGA controller.

VREF_DAC DAC Voltage reference. An external voltage reference is connected to this pin to bias the DAC.

RSET Resistor Current Set. This reference current input to the RAMDAC is used to set the full-scale output of the RAMDAC.

COMP *Compensation.* This is the RAMDAC compensation pin. Normally, an external capacitor (typically 10nF) is connected between this pin and $V_{\rm DD}$ to damp oscillations.

2.2.8 VIDEO INPUT PORT

VCLK Pixel Clock Input. This signal is used to synchronise data being transfered from an external video device to either the frame buffer, or alternatively out the TV output in bypass mode. This pin can be sourced from iDragon if no external VCLK is detected, or can be input from an external video clock source.

VIN[7:0] YUV Video Data Input CCIR 601 or 656. Time multiplexed 4:2:2 luminance and chromi nance data as defined in ITU-R Rec601-2 and Rec656 (except for TTL input levels). This bus typically carries a stream of Cb,Y,Cr,Y digital vid eo at VCLK frequency, clocked on the rising edge (by default) of VCLK.

2.2.9 ANALOG TV OUTPUT PORT

RED_TV / C_TV Analog video outputs synchro nized with CVBS. This output is current-driven and must be connected to analog ground over a load resistor (R_{LOAD}). Following the load resistor, a simple analog low pass filter is recommended. In S-VHS mode, this is the Chrominance Output.

GREEN_TV / Y_TV Analog video outputs synchronized with CVBS. This output is current-driven and must be connected to analog ground ove a load resistor (R_{LOAD}). Following the load resistor, a simple analog low pass filter is recommended. In S-VHS mode, this is the Luminance Output.

BLUE_TV / CVBS Analog video outputs synchronized with CVBS. This output is current-driven and must be connected to analog ground over a load resistor (R_{LOAD}). Following the load resistor, a simple analog low pass filter is recommended. In S-VHS mode, this is a second composite output.

CVBS Analog video composite output (luminance/ chrominance). CVBS is current-driven and must be connected to analog ground over a load resis tor (R_{LOAD}). Following the load resistor, a simple analog low pass filter is recommended.

IREF1_TV Ref. current for CVBS 10-bit DAC.

IREF2 TV Reference current for RGB 9-bit DAC.

VREF1_TV Ref. voltage for CVBS 10-bit DAC.

VREF2_TV Reference voltage for RGB 9-bit DAC.

VSSA_TV Analog V_{SS} for DACs.

VDDA_TV Analog V_{DD} for DACs.

JTAG Signals

VCS Line synchronisation Output. This pin is an input in ODDEV+HSYNC or VSYNC + HSYNC o VSYNC slave modes and an output in all othe modes (master/slave)

ODD_EVE Frame Synchronisation Ourput. This pin supports the Frame synchronisation signal. It is an input in slave modes, except when sync is

extracted from YCrCbdata, and an output in master mode and when sync is extracted from YCrCb data

The signal is synchronous to rising edge of DCLK. The default polarity for this pin is:

- odd (not-top) field : LOW level - even (bottom) field : HIGH level

2.2.10 MISCELLANEOUS

SPKRD Speaker Drive. This the output to the speaker. It is an AND of the counter 2 output with bit 1 of Port 61, and drives an external speaker driver. This output should be connected to 7407 type high voltage driver.

SCL, **SDA** I²C Interface. These bidirectional pins are connected to CRTC register 3Fh to implement DDC capabilities. They conform to I ²C electrical specifications, they have open-collector output drivers which are internally connected to V _{DD} through pull-up resistors.

They can be used for the DDC1 (SCL) and DDC0 (SDA) lines of the VGA interface.

SCAN_ENABLE *Reserved.* The pin is reserved for Test and Miscellaneous functions.

COL_SEL Colour Select. Can be use for Picture in Picture function

VDD_CORE 2.5V Power Supply. These power pins are necessary to supply the core with 2.5V.

TCLK Test clock

TDI Test data input

TMS Test mode input

TDO Test data output

Table 2-3. ISA / IDE dynamic multiplexing

ISA BUS (ISAOE# = 0)	IDE (ISAOE# = 1)
RMRTCCS#	DD[15]
KBCS#	DD[14]
RTCRW#	DD[13]
RTCDS	DD[12]
SA[19:8]	DD[11:0]
LA[23]	SCS3#
LA[22]	SCS1#
SA[21]	PCS3#
SA[20]	PCS1#
LA[19:17]	DA[2:0]
IOCHRDY	DIORDY

Table 2-4. ISA / Local Bus pin sharing

ISA / IPC	LOCAL BUS
SD[15:0]	PD[15:0]
DREQ_MUX[1:0]	PA[21:20]
SMEMR#	PA[19]
MEMW#	PA[18]
BHE#	PA[17]
AEN	PA[16]
ALE	PA[15]
MEMR#	PA[14]
IOR#	PA[13]
IOW#	PA[12]
REF#	PA[11]
IOCHCK#	PA[10]
GPIOCS#	PA[9]
ZWS#	PA[8]
SA[7:4]	PA[7:4]
TC, DACK_ENC[2:0]	PA[3:0]
SA[3]	PRDY
ISAOE#,SA[2:0]	IOCS#[3:0]
DEV_CLK, RTCAS#	FCS#[1:0]
IOCS16#, MASTER#	PRD#[1:0]
SMEMW#, MCS16#	PWR#[1:0]
ISACLK, ISA_CLK2X	

Figure 2-2. Typical ISA/IDE Demultiplexing

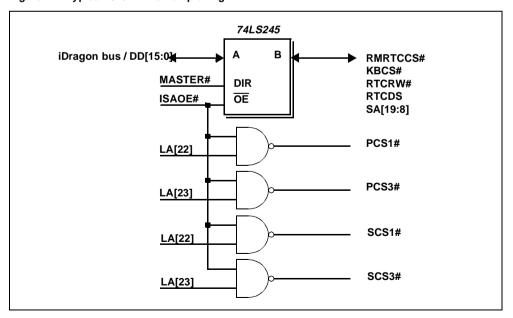


Table 2-5. Pinout.

Table 2-5. Pinout.		
Pin #	Pin name	
AF3	SYSRSETI#	
AE4	SYSRSETO#	
A3	XTALI	
C4	XTALO	
G23	HCLK	
H24	DEV_CLK	
AD11	DCLK	
AF15	MCLKI	
AB23	MCLKO	
AE16	MA[0]	
AD15	MA[1]	
AF16	MA[2]	
AE17	MA[3]	
AD16	MA[4]	
AF17	MA[5]	
AE18	MA[6]	
AD17	MA[7]	
AF18	MA[8] ³	
AE19	MA[9] ³	
AE20	MA[10]	
AC19	BA[0]	
AF22	CS#[0]	
AD21	CS#[1]	
AE24	CS#[2]/MA[11]	
AD23	CS#[3]/MA[12]/BA[1]	
AF23	RAS#[0]	
AD22	RAS#[1]	
AE21	CAS#[0]	
AC20	CAS#[1]	
AF20	DQM#[0]	
AD19	DQM#[1]	
AF21	DQM#[2]	
AD20	DQM#[3]	
AE22	DQM#[4]	
AE23	DQM#[5]	
AF19	DQM#[6]	
AD18	DQM#[7]	
AC22	MWE#	
R1	MD[0] ³	
T2	MD[1] ³	
R3	MD[2]	
T1	MD[3]	
R4	MD[4]	
U2	MD[5]	
T3	MD[6]	
U1	MD[7]	
U4	MD[8]	
V2	MD[9]	
L		

Pin#	Pin name
U3	MD[10]
V1	MD[11]
W2	MD[12]
V3	MD[13]
Y2	MD[14]
W4	MD[15]
Y1	MD[16]
W3	MD[17]
AA2	MD[18]
Y4	MD[19]
AA1	MD[20]
Y3	MD[21]
AB2	MD[22]
AB1	MD[23]
AA3	MD[24]
AB4	MD[25]
AC1	MD[26]
AB3	MD[27]
AD2	MD[28]
AC3	MD[29]
AD1	MD[30]
AF2	MD[31]
AF24	MD[32]
AE26	MD[33]
AD25	MD[34]
AD26	MD[35]
AC25	MD[36]
AC24	MD[37]
AC26	MD[38]
AB25	MD[39]
AB24	MD[40]
AB26	MD[40]
AA25	MD[41]
Y23	MD[43]
AA24	
AA24 AA26	MD[44]
Y25	MD[45]
Y25 Y26	MD[46]
	MD[47]
Y24	MD[48]
W25 V23	MD[49] ³
W26	MD[50] ³
W24	MD[51] ³
	MD[52] ³
V25	MD[53] ³
V26	MD[54] ³
U25	MD[55] ³
V24	MD[56] ³
U26	MD[57] ³
U23	MD[58] ³

Pin #	Pin name
T25	MD[59] ³
U24	MD[60] ³
T26	MD[61] ³
R25	MD[62] ³
R26	MD[63] ³
F24	PCI_CLKI
D25	PCI_CLKO
B20	AD[0]
C20	AD[1]
B19	AD[2]
A19	AD[3]
C19	AD[4]
B18	AD[5]
A18	AD[6]
B17	AD[7]
C18	AD[8]
A17	AD[9]
D17	AD[10]
B16	AD[11]
C17	AD[12]
B15	AD[13]
A15	AD[14]
C16	AD[15]
B14	AD[16]
D15	AD[17]
A14	AD[18]
B13	AD[19]
D13	AD[20]
A13	AD[21]
C14	AD[22]
B12	AD[23]
C13	AD[24]
A12	AD[25]
C12	AD[26]
A11	AD[27]
D12	AD[28]
B10	AD[29]
C11	AD[30]
A10	AD[31]
D10	CBE[0]
C10	CBE[1]
A9	CBE[2]
B8	CBE[3]
A8	FRAME#
B7	TRDY#
D8	IRDY#
A7	STOP#
C8	DEVSEL#
B6	PAR

Pin #	Pin name
D7	SERR#
A6	LOCK#
D20	PCI_REQ#[0]
C21	PCI_REQ#[1]
A21	PCI_REQ#[2]
C22	PCI_GNT#[0]
A22	PCI_GNT#[1]
B21	PCI_GNT#[2]
A5	PCI_INT[0]
C6	PCI_INT[1]
B4	PCI_INT[2]
D5	PCI_INT[3]
F2	LA[17]/DA[0]
G4	LA[18]/DA[1]
F3	LA[19]/DA[2]
F1	LA[20]/PCS1#
G2	LA[21]/PCS3#
G1	LA[22]/SCS1#
H2	LA[23]/SCS3#
J4	SA[0]
H1	SA[1]
H3	SA[2]
J2	SA[3]
J1	
K2	SA[4]
	SA[5]
J3	SA[6]
K1	SA[7]
K4 L2	SA[8]
	SA[9]
K3	SA[10]
L1	SA[11]
M2	SA[12]
M1	SA[13]
L3	SA[14]
N2	SA[15]
M4	SA[16]
M3	SA[17]
P2	SA[18]
P4	SA[19]
K25	SD[0]
L24	SD[1]
K26	SD[2]
K23	SD[3]
J25	SD[4]
K24	SD[5]
J26	SD[6]
H25	SD[7]
H26	SD[8]
	1

Pin#	Pin name
J24	SD[9]
G25	SD[10]
H23	SD[11]
D24	SD[12]
C26	SD[12]
A25	SD[14]
B24	
D24	SD[15]
AD4	ISA CLK
AF4	ISA_CLK2X
	OSC14M
C9	
P25	ALE
AE8	ZWS#
R23	BHE#
P26	MEMR#
R24	MEMW#
N25	SMEMR#
N23	SMEMW#
N26	IOR#
P24	IOW#
N24	MCS16#
M26	IOCS16#
M25	MASTER#
L25	REF#
M24	AEN
L26	IOCHCK#
T24	IOCHRDY
M23	ISAOE#
A4	RTCAS#
P3	RTCDS#
R2	RTCRW#
P1	RMRTCCS#
AE3	GPIOCS#
G26	PA[22] ³
A20	PA[23] ³
B1	PIRQ
C2	SIRQ
C1	PDRQ
D2	SDRQ
D3	PDACK#
D1	SDACK#
E2	PDIOR#
E4	PDIOR#
E3	SDIOR#
E1	SDIOW#
F00	10.0 141.0/(6)
E23	IRQ_MUX[0]
D26	IRQ_MUX[1]

Pin#	Pin name
E24	IRQ_MUX[2]
C25	IRQ_MUX[3]
A24	DREQ_MUX[0]
B23	DREQ_MUX[1]
C23	DACK_ENC[0]
A23	DACK_ENC[1]
B22	DACK_ENC[2]
D22	TC
N3	KBCS#
140	NBOO#
AF9	RED
AE9	GREEN
AD8	BLUE
AC5	VSYNC
AE5	HSYNC
AC10	VREF_DAC
AE10	RSET
AD7	COMP
AD7	COMP
AE15	VCLK
AD5	VIN[0]
AF7	VIN[0]
AF5	VIN[1] VIN[2]
AE6	
AC7	VIN[3]
AC7	VIN[4]
	VIN[5]
AF6	VIN[6]
AE7	VIN[7]
AD10	RED_TV
AF11	GREEN TV
AE12	BLUE_TV
AE13	VCS
AC12	ODD EVEN
AF14	CVRS
AE11	IREF1_TV
AF12	VREF1_TV
AE14	IREF2_TV
AC14	VREF2_TV
, 10 14	VIXE14_1V
C5	SPKRD
B5	SCL
C7	SDA
B3	SCAN_ENABLE
C15	COL_SEL
G3	TCLK
N1	TMS
W1	TDI

AC2 TDO AC2 TDO AD12 VDDA_TV AF8 VDD_DAC1 G24 VDD_CPUCLK_PLL¹ F25 VDD_DEVCLK_PLL¹ AC17 VDD_MCLK_PLL¹ F26 VDD_HCLK_PLL¹ F26 VDD_HCLK_PLL¹ E25 VDD_SKEW_PLL¹ E25 VDD_SKEW_PLL¹ T4 VDD_CORE¹ T4 VDD_CORE¹ T4 VDD_CORE¹ T4 VDD D16 VDD D16 VDD D21 VDD F4 VDD F23 VDD AC11 VDD AC16 VDD AC21 VDD AC21 VDD AA23 VDD AA23 VDD T23 VDD AA4 VDD AA23 VDD T23 VDD AA4 VDD AA59 VSS_DAC1 AC9 VSS_DAC1 AC9 VSS_DAC1 AC9 VSS B2 VSS B2 VSS B2 VSS B2 VSS B2 VSS B2 VSS D14 VSS D19 VSS D19 VSS D19 VSS D19 VSS D19 VSS D11 VSS N11:16 VSS	Pin #	Pin name
AD12 VDDA_TV AF8 VDD_DAC1 G24 VDD_CPUCLK_PLL¹ AD13 VDD_DCLK_PLL¹ F25 VDD_DEVCLK_PLL¹ AC17 VDD_MCLKI_PLL¹ F26 VDD_HCLK_PLL¹ E25 VDD_SKEW_PLL¹ E25 VDD_SKEW_PLL¹ E25 VDD_CORE¹ L23 VDD_CORE¹ T4 VDD_CORE¹ AC6 VDD_CORE¹ T4 VDD D16 VDD D21 VDD F4 VDD F4 VDD AC16 VDD AC16 VDD AC21 VDD AC16 VDD AC21 VDD AA44 VDD AA23 VDD L4 VDD AF13 VSSA_TV AC9 VSS_DAC1 A1:2 VSS B2 VSS B2 VSS B2 VSS B2 VSS B2 VSS D4 VSS D14 VSS D19 VSS D111:16 VSS M11:16 VSS M14 VSS		
AF8 VDD_DAC1 G24 VDD_CPUCLK_PLL¹ AD13 VDD_DCLK_PLL¹ F25 VDD_DEVCLK_PLL¹ AC17 VDD_MCLKI_PLL¹ AC15 VDD_MCLKO_PLL¹ F26 VDD_HCLK_PLL¹ E25 VDD_SKEW_PLL¹ L23 VDD_CORE¹ L23 VDD_CORE¹ AC6 VDD_CORE¹ AC6 VDD D16 VDD F23 VDD AC11 VDD AC21 VDD AC21 VDD AA4 VDD AA23 VDD AA4 VDD AA4 VDD AF13 VSSA_TV AC9 VSS_DAC1 A1:2 VSS B2 VSS B2 VSS B2 VSS D4 VSS D9 VSS D14 VSS D19 VSS D19 <td< td=""><td>ACZ</td><td>100</td></td<>	ACZ	100
AF8 VDD_DAC1 G24 VDD_CPUCLK_PLL¹ AD13 VDD_DCLK_PLL¹ F25 VDD_DEVCLK_PLL¹ AC17 VDD_MCLKI_PLL¹ AC15 VDD_MCLKO_PLL¹ F26 VDD_HCLK_PLL¹ E25 VDD_SKEW_PLL¹ L23 VDD_CORE¹ L23 VDD_CORE¹ AC6 VDD_CORE¹ AC6 VDD D16 VDD F23 VDD AC11 VDD AC21 VDD AC21 VDD AA4 VDD AA23 VDD AA4 VDD AA4 VDD AF13 VSSA_TV AC9 VSS_DAC1 A1:2 VSS B2 VSS B2 VSS B2 VSS D4 VSS D9 VSS D14 VSS D19 VSS D19 <td< td=""><td>AD12</td><td>VDDA TV</td></td<>	AD12	VDDA TV
G24 VDD_CPUCLK_PLL¹ AD13 VDD_DCLK_PLL¹ F25 VDD_DEVCLK_PLL¹ AC17 VDD_MCLKI_PLL¹ AC15 VDD_MCLKO_PLL¹ F26 VDD_HCLK_PLL¹ E25 VDD_SKEW_PLL¹ L23 VDD_CORE¹ L23 VDD_CORE¹ AC6 VDD_CORE¹ AC6 VDD D16 VDD D21 VDD F4 VDD F23 VDD AC11 VDD AC21 VDD AA23 VDD AA24 VDD AA23 VDD AA4 VDD AF13 VSSA_TV AC9 VSS_DAC1 A1:2 VSS B2 VSS B2 VSS B2 VSS D4 VSS D9 VSS D14 VSS D19 VSS D23 VSS<		
AD13		
F25 VDD_DEVCLK_PLL¹ AC17 VDD_MCLKI_PLL¹ AC15 VDD_MCLKO_PLL¹ F26 VDD_HCLK_PLL¹ E25 VDD_SKEW_PLL¹ L23 VDD_CORE¹ L23 VDD_CORE¹ AC6 VDD_CORE¹ D6 VDD D16 VDD D21 VDD F4 VDD F23 VDD AC11 VDD AC21 VDD AA23 VDD AA24 VDD AA25 VDD AF13 VSSA_TV AC9 VSS_DAC1 A1:2 VSS B2 VSS B2 VSS B2 VSS D4 VSS D9 VSS D14 VSS D19 VSS D23 VSS L11:16 VSS M11:16 VSS		
AC17 VDD_MCLKI_PLL1 AC15 VDD_MCLKO_PLL1 F26 VDD_HCLK_PLL1 E25 VDD_SKEW_PLL1 D11 VDD_CORE1 L23 VDD_CORE1 T4 VDD_CORE1 AC6 VDD_CORE1 D6 VDD D16 VDD D21 VDD F4 VDD F4 VDD AC11 VDD AC16 VDD AC21 VDD AA44 VDD AA23 VDD T23 VDD L4 VDD AF13 VSSA_TV AC9 VSS_DAC1 A1:2 VSS B2 VSS B2 VSS B2 VSS B2 VSS D4 VSS D14 VSS D19 VSS D14 VSS D19 VSS D14 VSS D19 VSS D14 VSS D19 VSS D11 VSS M11:16 VSS		
AC15		
F26 VDD_HCLK_PLL¹ E25 VDD_SKEW_PLL¹ D11 VDD_CORE¹ L23 VDD_CORE¹ T4 VDD_CORE¹ AC6 VDD_D D16 VDD D21 VDD F4 VDD AC11 VDD AC16 VDD AC21 VDD AA4 VDD AA23 VDD T23 VDD AA12 VSS_DAC1 AF13 VSSA_TV AC9 VSS_DAC1 A1:2 VSS B2 VSS B2 VSS B2 VSS D4 VSS D9 VSS D14 VSS D19 VSS D23 VSS L11:16 VSS M11:16 VSS N4 VSS		VDD_MCLKI_PLL1
E25 VDD_SKEW_PLL¹ D11 VDD_CORE¹ L23 VDD_CORE¹ T4 VDD_CORE¹ AC6 VDD_CORE¹ D6 VDD D16 VDD D21 VDD F4 VDD AC11 VDD AC16 VDD AA21 VDD AA4 VDD AA23 VDD L4 VDD AF13 VSSA_TV AC9 VSS_DAC1 A1:2 VSS B2 VSS B2 VSS B2 VSS B2 VSS D4 VSS D9 VSS D14 VSS D19 VSS D23 VSS L11:16 VSS M11:16 VSS N4 VSS		VDD_MCLKO_PLL¹
D11	0	
L23 VDD_CORE¹ T4 VDD_CORE¹ AC6 VDD_CORE¹ D6 VDD D16 VDD D21 VDD F4 VDD F23 VDD AC11 VDD AC21 VDD AA4 VDD AA23 VDD T23 VDD L4 VDD AF13 VSSA_TV AC9 VSS_DAC1 A1:2 VSS B2 VSS B2 VSS B2 VSS C3 VSS C4 VSS D4 VSS D9 VSS D19 VSS D23 VSS L11:16 VSS M11:16 VSS	E25	VDD_SKEW_PLL ¹
L23 VDD_CORE¹ T4 VDD_CORE¹ AC6 VDD_CORE¹ D6 VDD D16 VDD D21 VDD F4 VDD F23 VDD AC11 VDD AC21 VDD AA4 VDD AA23 VDD T23 VDD L4 VDD AF13 VSSA_TV AC9 VSS_DAC1 A1:2 VSS B2 VSS B2 VSS B2 VSS C3 VSS C4 VSS D4 VSS D9 VSS D19 VSS D23 VSS L11:16 VSS M11:16 VSS		
T4		
AC6 VDD_CORE ¹ D6 VDD D16 VDD D21 VDD F4 VDD F4 VDD F23 VDD AC11 VDD AC16 VDD AC21 VDD AC21 VDD AC21 VDD AA4 VDD AA23 VDD T23 VDD L4 VDD AF13 VSSA_TV AC9 VSS_DAC1 A1:2 VSS B2 VSS B2 VSS B2 VSS B2 VSS B2 VSS B2 VSS D4 VSS D9 VSS D14 VSS D19 VSS D19 VSS D14 VSS D19 VSS D19 VSS D14 VSS D19 VSS D19 VSS D19 VSS D14 VSS D19 VSS D19 VSS D19 VSS D111-116 VSS M11:116 VSS		
D6 VDD D16 VDD D16 VDD D21 VDD F4 VDD F4 VDD F23 VDD AC11 VDD AC16 VDD AC21 VDD AA44 VDD AA23 VDD T23 VDD L4 VDD AF13 VSSA_TV AC9 VSS_DAC1 A1:2 VSS B2 VSS B2 VSS B25:26 VSS C3 VSS C24 VSS D4 VSS D9 VSS D14 VSS D19 VSS D19 VSS D14 VSS D19 VSS D19 VSS D14 VSS D19 VSS D14 VSS D19 VSS D19 VSS D14 VSS D19 VSS D15 VSS D16 VSS D17 VSS D18 VSS D19 VSS D10 VSS D11 VSS D12 VSS D11 VSS D11 VSS D12 VSS D11 VSS D12 VSS D11 VSS D11 VSS D12 VSS D11 VSS D12 VSS D12 VSS D13 VSS D14 VSS D15 VSS D15 VSS D17 VSS D17 VSS D18 VSS D18 VSS D18 VSS D19		
D16 VDD D21 VDD F4 VDD F23 VDD AC11 VDD AC16 VDD AC21 VDD AA4 VDD AA23 VDD T23 VDD L4 VDD AF13 VSSA_TV AC9 VSS_DAC1 A1:2 VSS B2 VSS B25:26 VSS C3 VSS C24 VSS D4 VSS D9 VSS D14 VSS D23 VSS L11:16 VSS M11:16 VSS N4 VSS	AC6	VDD_CORE ¹
D16 VDD D21 VDD F4 VDD F23 VDD AC11 VDD AC16 VDD AC21 VDD AA4 VDD AA23 VDD T23 VDD L4 VDD AF13 VSSA_TV AC9 VSS_DAC1 A1:2 VSS B2 VSS B25:26 VSS C3 VSS C24 VSS D4 VSS D9 VSS D14 VSS D23 VSS L11:16 VSS M11:16 VSS N4 VSS		
D21 VDD F4 VDD F23 VDD AC11 VDD AC16 VDD AC21 VDD AA4 VDD AA23 VDD T23 VDD L4 VDD AF13 VSSA_TV AC9 VSS_DAC1 A1:2 VSS B2 VSS B2 VSS C3 VSS C4 VSS D4 VSS D9 VSS D14 VSS D23 VSS L11:16 VSS M11:16 VSS N4 VSS	D6	VDD
F4 VDD F23 VDD AC11 VDD AC16 VDD AC21 VDD AA4 VDD AA23 VDD T23 VDD L4 VDD AF13 VSSA_TV AC9 VSS_DAC1 A1:2 VSS B2 VSS B2 VSS B2 VSS C3 VSS C4 VSS D9 VSS D14 VSS D19 VSS D23 VSS H4 VSS M11:16 VSS M4 VSS	D16	VDD
F23 VDD AC11 VDD AC16 VDD AC21 VDD AA4 VDD AA23 VDD T23 VDD L4 VDD AF13 VSSA_TV AC9 VSS_DAC1 A1:2 VSS B2 VSS B2 VSS B2 VSS C3 VSS C4 VSS D9 VSS D14 VSS D19 VSS D23 VSS H4 VSS M11:16 VSS M4 VSS	D21	VDD
AC11 VDD AC16 VDD AC16 VDD AC21 VDD AA4 VDD AA4 VDD T23 VDD L4 VDD AF13 VSSA_TV AC9 VSS_DAC1 A1:2 VSS A26 VSS B2 VSS B2 VSS B2 VSS B2 VSS B2 VSS D4 VSS D4 VSS D9 VSS D14 VSS D19 VSS D23 VSS L11:116 VSS M11:16 VSS	F4	VDD
AC16 VDD AC21 VDD AC21 VDD AA4 VDD AA4 VDD T23 VDD L4 VDD L4 VDD AF13 VSSA_TV AC9 VSS_DAC1 A1:2 VSS A26 VSS B2 VSS B2 VSS B2 VSS B2 VSS B2 VSS D4 VSS D4 VSS D9 VSS D14 VSS D19 VSS D23 VSS H4 VSS J23 VSS L11:16 VSS M11:16 VSS	F23	VDD
AC21 VDD AA4 VDD AA23 VDD T23 VDD L4 VDD AF13 VSSA_TV AC9 VSS_DAC1 A1:2 VSS A26 VSS B2 VSS B2 VSS B2 VSS B25:26 VSS C3 VSS C24 VSS D4 VSS D9 VSS D14 VSS D19 VSS D19 VSS D19 VSS D14 VSS D19 VSS D14 VSS D19 VSS D23 VSS D4 VSS D5 VSS D6 VSS D7 VSS D	AC11	VDD
AA4 VDD AA23 VDD T23 VDD L4 VDD L4 VDD AF13 VSSA_TV AC9 VSS_DAC1 A1:2 VSS A26 VSS B2 VSS B2 VSS B2 VSS B25:26 VSS C3 VSS C24 VSS D4 VSS D9 VSS D14 VSS D19 VSS D23 VSS D11:116 VSS	AC16	VDD
AA23 VDD T23 VDD L4 VDD L4 VDD AF13 VSSA_TV AC9 VSS_DAC1 A1:2 VSS A26 VSS B2 VSS B2 VSS B25:26 VSS C3 VSS C24 VSS D4 VSS D9 VSS D14 VSS D19 VSS D23 VSS L11:116 VSS M11:16 VSS	AC21	VDD
T23 VDD L4 VDD AF13 VSSA_TV AC9 VSS_DAC1 A1:2 VSS A26 VSS B2 VSS B2 VSS B25:26 VSS C3 VSS C24 VSS D4 VSS D9 VSS D14 VSS D19 VSS D19 VSS D19 VSS D19 VSS D23 VSS H4 VSS J23 VSS L11:16 VSS M11:16 VSS N4 VSS	AA4	VDD
L4 VDD AF13 VSSA_TV AC9 VSS_DAC1 A1:2 VSS A26 VSS B2 VSS B2:5:26 VSS C3 VSS C24 VSS D4 VSS D9 VSS D14 VSS D19 VSS D19 VSS D23 VSS H4 VSS J23 VSS L11:16 VSS M11:16 VSS N4 VSS	AA23	VDD
AF13 VSSA_TV AC9 VSS_DAC1 A1:2 VSS A26 VSS B2 VSS B2 VSS C3 VSS C24 VSS D4 VSS D9 VSS D14 VSS D19 VSS D19 VSS D23 VSS H4 VSS J23 VSS L11:16 VSS M11:16 VSS	T23	VDD
AC9 VSS_DAC1 A1:2 VSS A26 VSS B2 VSS B2 VSS C3 VSS C24 VSS D4 VSS D9 VSS D14 VSS D19 VSS D23 VSS D23 VSS D4 VSS D5 VSS D6 VSS D7 VSS D7 VSS D8 VSS	L4	VDD
AC9 VSS_DAC1 A1:2 VSS A26 VSS B2 VSS B2 VSS C3 VSS C24 VSS D4 VSS D9 VSS D14 VSS D19 VSS D23 VSS D23 VSS D4 VSS D5 VSS D6 VSS D7 VSS D7 VSS D8 VSS		
AC9 VSS_DAC1 A1:2 VSS A26 VSS B2 VSS B2 VSS C3 VSS C24 VSS D4 VSS D9 VSS D14 VSS D19 VSS D23 VSS D23 VSS D4 VSS D5 VSS D6 VSS D7 VSS D7 VSS D8 VSS	AF13	VSSA TV
A1:2 VSS A26 VSS B2 VSS B2 VSS C3 VSS C24 VSS D4 VSS D9 VSS D14 VSS D19 VSS D19 VSS D23 VSS H4 VSS J23 VSS L11:16 VSS N4 VSS		
A26 VSS B2 VSS B2 VSS C3 VSS C24 VSS D4 VSS D9 VSS D14 VSS D19 VSS D19 VSS D23 VSS H4 VSS J23 VSS L11:16 VSS N4 VSS		_
B2 VSS B25:26 VSS C3 VSS C24 VSS D4 VSS D9 VSS D14 VSS D19 VSS D19 VSS D19 VSS D23 VSS H4 VSS J23 VSS L11:16 VSS M11:16 VSS N4 VSS		
B25:26 VSS C3 VSS C24 VSS D4 VSS D9 VSS D14 VSS D19 VSS D19 VSS D23 VSS H4 VSS J23 VSS L11:16 VSS M11:16 VSS N4 VSS		
C3 VSS C24 VSS D4 VSS D9 VSS D14 VSS D19 VSS D19 VSS D23 VSS H4 VSS J23 VSS L11:16 VSS M11:16 VSS N4 VSS		
C24 VSS D4 VSS D9 VSS D14 VSS D19 VSS D23 VSS H4 VSS J23 VSS L11:16 VSS M11:16 VSS N4 VSS		
D4 VSS D9 VSS D14 VSS D19 VSS D19 VSS D23 VSS H4 VSS J23 VSS L11:16 VSS M11:16 VSS N4 VSS		
D9 VSS D14 VSS D19 VSS D23 VSS H4 VSS J23 VSS L11:16 VSS M11:16 VSS N4 VSS		
D14 VSS D19 VSS D23 VSS H4 VSS J23 VSS L11:16 VSS M11:16 VSS N4 VSS		
D19 VSS D23 VSS H4 VSS J23 VSS L11:16 VSS M11:16 VSS N4 VSS	_	
D23 VSS H4 VSS J23 VSS L11:16 VSS M11:16 VSS N4 VSS		
H4 VSS J23 VSS L11:16 VSS M11:16 VSS N4 VSS		
J23 VSS L11:16 VSS M11:16 VSS N4 VSS		
L11:16 VSS M11:16 VSS N4 VSS		
M11:16 VSS N4 VSS		
N4 VSS		
N11:16 VSS		
	N11:16	VSS

Pin#	Pin name
P11:16	VSS
P23	VSS
R11:16	VSS
T11:16	VSS
V4	VSS
W23	VSS
AC4	VSS
AC8	VSS
AC13	VSS
AC18	VSS
AC23	VSS
AD3	VSS
AD14	VSS
AD24	VSS
AE1:2	VSS
AE25	VSS
AF1	VSS
AF25	VSS
AF26	VSS
A16	Unconnected
B9	Unconnected
B11	Unconnected
D18	Unconnected
E26	Unconnected
AD9	Unconnected
AF10	Unconnected

Note¹; These pins must be connected to the 2.5Vpower supply. They **must not** be connected to the 3.3V supply.

3 STRAP OPTIONS

This chapter defines the iDragon SCX502 Strap Options and their location. Some strap options are left programmable for future versions of silicon. .

Memory Data Lines	Refer to	Designation	Location	Actual Settings ¹	Set to '0'	Set to '1'
MD1	-	Reserved	Index 4A, bit 1	-	-	-
MD2	Host Clock	HCLK PLL Speed	Index 5F, bit 6	User defined	see Section	3.1.4 bit 6
MD3	Host Clock	HCLK PLL Speed	Index 5F, bit 7	User defined		3.1.4 bit 7
MD4	PCICLK	PCICLKO Division	Index 4A, bit 4	User defined	see Section	1 3.1.3 bit 1
MD5	MCLK	MCLK/HCLK Synch	Index 4A, bit 5	User defined	Unsynch	Synch
MD6	PCICLK	PCICLK frequency	Index 4A, bit 6	User defined	see Section	1 3.1.1 bit 6
MD7	PCICLK	PCICLK frequency	Index 4A, bit 7	User defined	see Section	1 3.1.1 bit 7
MD8	-	Reserved	-	-	-	-
MD9	-	Reserved	-	-	-	-
MD10	-	Reserved	Index 4B, bit 2	Pull down	-	-
MD11	-	Reserved	Index 4B, bit 3	Pull up	-	-
MD12	-	Reserved	Index 4B, bit 4	Pull up	-	-
MD13	-	Reserved	Index 4B, bit 5	Pull up	-	-
MD14	-	Reserved	Index 4B, bit 6	Pull up	-	-
MD15	-	Reserved	Index 4B, bit 7	-	-	-
MD16	-	Reserved	Index 4C,bit0	Pull up	-	-
MD17	PCI Clock	PCI_CLKO Divisor	Index 4C,bit 1	User defined	see Section	1 3.1.3 bit 1
MD18	Host Clock	HCLK Pad Direction	Index 4C,bit 2	User defined	External	Internal
MD19	Memory Clock	MCLK Pad Direction	Index 4C,bit 3	User defined	External	Internal
MD20	Dot Clock	DCLK Pad Direction	Index 4C, bit4	User defined	External	Internal
MD21	-	Reserved	Index 5F, bit 0	Pull up	-	-
MD22	-	Reserved	Index 5F, bit 1	Pull up	-	-
MD23	-	Reserved	Index 5F,bit 2	Pull up	-	-
MD24	HCLK	HCLK PLL Speed	Index 5F,bit 3	User defined		1 3.1.4 bit 3
MD25			Index 5F,bit 4	User defined		1 3.1.4 bit 4
MD26			Index 5F,bit 5	User defined	see Section	1 3.1.4 bit 5
MD27	-	Reserved	-	-	-	-
MD28	-	Reserved	-	-	-	-
MD29	-	Reserved	-	-	-	-
MD30	-	Reserved	-	-	•	-
MD31	-	Reserved	-	-		
MD32	-	Reserved	-	-	•	-
MD33	-	Reserved	-	-	-	-
MD34	-	Reserved	-	-	-	-
MD35	-	Reserved	-	-	-	-
MD36	-	Reserved	-	-	-	-
MD37	-	Reserved	-	-	-	-
MD38	-	Reserved	-	-	-	-
MD39	-	Reserved	-	-	-	-
MD40	CPU	CPU Mode	Hardware	User defined	DX1	DX2

Note¹; Where a strap is represented by a 'Pull up' or 'Pull down', these have to be adhered to. If it is represented as a '-' it can be left unconnected. Where 'User defined', the strap is set by the user.

Memory Data Lines	Refer to	Designation	Location	Actual Settings ¹	Set to '0'	Set to '1'
MD41	-	Reserved	Hardware	Pull down		
MD42	-	Reserved	Hardware	Pull up	-	-
MD43	-	Reserved	Hardware	Pull down	-	-
MD44 Section 3.1.7		ISA/Local Bus select	Hardware	User defined	ISA	Local
MD45 -		Reserved	Hardware	Pull down	-	-
MD46 -		Reserved	Hardware	Pull uo	-	-
MD47 -		Reserved	Hardware	Pull down	-	-
MD48	-	Reserved	Hardware	Pull up	-	-

Note¹; Where a strap is represented by a 'Pull up' or 'Pull down', these have to be adhered to. If it is represented as a '-' it can be left unconnected. Where 'User defined', the strap is set by the user.

3.1 Power on strap registers description

3.1.1 Strap register 0 Configuration Index 4A (Strap0)

Bits 7-6 This bit reflets the value sampled on MD[7:6] pins and controlles the PCICLK Programming. The PLL setup will vary depending on the PCICLK frequency;

MD[7]	MD[6]	Description
0	0	PCICLK frequency between 16 & 32 MHz
0	1	PCICLK frequency between 32 & 64 MHz
1	0	PCICLK frequency greater than 64 MHz
1	1	Reserved

Bit 5 This bit reflects the **value sampled on MD[5] pin** and controls the MCLK/HCLK Synchronization. When MCLK and HCLK frequency are the same, this bit when 1 unifies HCLK and MCLK and it will improve system performances.

Bit 4 This bit reflects the **value sampled on MD[4] pin** and controls the PCICLKO division. It works with MD[17]. refer to 4.17.3 bit 1 for a detailed description.

Bits 3-2 These bits are the same as Index 5F bit 7:6.

Bits 1-0 Reserved.

3.1.2 Strap register 1 Configuration Index 4Bh (Strap1)

Bits 7-0 Reserved

3.1.3 Strap register 2 Configuration Index 4Ch (Strap2)

Bits 7-5 Reserved

Bit 4 This bit reflects the value sampled on MD[20] pin and controls the Dot clock (DCLK) source as follows:

0: External. DCLK pin is an input.
1: Internal. DCLK pin is an output and is connected to the internal frequen cy synthesizer output.

Note this bit is writeable as well as readable.

Bit 3 This bit reflects the **value sampled on MD[19] pin** and controls the Memory clock output (MCLKO) source as follows:

O: External. MCLKO pin is tristated.
I: Internal. MCLKO pin is an output and is connected to the internal fre quency synthesizer output.

Bit 2 This bit reflects the **value sampled on MD[18] pin** and controls the Host/CPU clock source as follows:

0: External. HCLK pin is an input.
1: Internal. HCLK pin is an output and is connected to the internal frequen cy synthesizer output.

Bit 1 This bit reflects the value sampled on MD[17] pin and controls the PCI clock output as follows:

MD[4]	MD[17]	Description	
0	0	Reserved	
0	1	PCI clock output = HCLK / 4	

I	MD[4]	MD[17]	Description
	1	0	PCI clock output = HCLK / 3
	1	1	PCI clock output = HCLK / 2

Bit 0 Reserved

This register defaults to the values sampled on MD[23] & MD[20:16] pins after reset.

3.1.4 Strap register 0 Configuration Index 5Fh (HCLK_Strap)

Bits 7-3 These pins reflect the value sampled on MD[3:2] and MD[26:24] pins respectively and control the Host clock frequency synthesizer as follows:

MD[3]	MD[2]	MD[26]	MD[25]	MD[24]	HCLK Speed
0	0	0	0	0	25 MHz
0	0	0	0	1	50 MHz
0	0	0	1	0	60 MHz
0	0	0	1	1	66 MHz
0	1	0	0	1	75 MHz
1	0	0	1	1	90 MHz
1	0	0	1	1	100 MHz
1	1	1	1	1	133 MHz

Bit 2-0 Reserved

3.1.5 HCLKI Programming (HCLK_Prog)

The HCLKI clock signal is selected and programmed through strap values on MD[46:45]. MD[46:45]

MD[46]	MD[45]	HCLKI Source
0	0	HCLKI PLL enabled & HCLKI frequency between 16 & 32 MHz
0	1	HCLKI PLL enabled & HCLKI frequency between 32 & 64 MHz
1	0	HCLKI PLL enabled & HCLKI frequency greater than 64 MHz
1	1	Reserved

3.1.6 486 Clock Programming (486_Prog)

The bit MD[40] is used to set the clock multiplication factor of the 486 core. With the MD[40] pin pulled low the 486 will run in DX (x1) mode, while with the MD[40] pin pulled high the 486 will run in DX2 (x2) mode. The default value of the resistor on this strap input should be a resister to gnd (DX mode).

MD[43:41] are used to set the clock tic input value for the 486 core DLL.

The recommended value for these three bits is 010.

3.1.7 MD44 ISA/Local Bus selection

This pin is pulled down to select ISA Bus operation, pulled up to select Local Bus operation. Note that the Local Bus is totally disabled when in ISA mode, and vive versa.

4 ELECTRICAL SPECIFICATIONS

4.1 Introduction

The electrical specifications in this chapter are valid for the iDragon SCX502.

4.2 Electrical Connections

4.2.1 Power/Ground Connections/Decoupling

Due to the high frequency of operation of the iDragon SCX502, it is necessary to install and test this device using standard high frequency techniques. The high clock frequencies used in the iDragon SCX502 and its output buffer circuits can cause transient power surges when several output buffers switch output levels simultaneously. These effects can be minimized by filtering the DC power leads with low-inductance decoupling capacitors, using low impedance wiring, and by utilizing all of the VSS and VDD pins.

4.2.2 Unused Input Pins

All inputs not used by the designer and not listed in the table of pin connections in Chapter 3 should be connected either to VDD or to VSS. Connect active-high inputs to VDD through a 20 k W (±10%) pull-down resistor and active-low inputs to VSS and connect active-low inputs to VCC

through a 20 kW (±10%) pull-up resistor to pre vent spurious operation.

4.2.3 Reserved Designated Pins

Pins designated reserved should be left disconnected. Connecting a reserved pin to a pull-up re sistor, pull-down resistor, or an active signal could cause unexpected results and possible circuit malfunctions

4.3 Absolute Maximum Ratings

The following table lists the absolute maximum ratings for the iDragon SCX502 device. Stresses beyond those listed under Table 4-1 limits may cause permanent damage to the device. These are stress ratings only and do not imply that oper ation under any conditions other than those spec ified in section "Operating Conditions".

Exposure to conditions beyond Table 4-1 may (1) reduce device reliability and (2) result in prema ture failure even when there is no immediately ap parent sign of failure. Prolonged exposure to conditions at or near the absolute maximum ratings (Table 4-1) may also result in reduced useful life and reliability.

Table 4-1. Absolute Maximum Ratings

Symbol	Parameter	Minimum	Maximum	Units
V_{DDx}	V _{DDx} DC Supply Voltage		4.0	V
V _{CORE}	DC Supply Voltage for Core		2.75	V
V_I, V_O	Digital Input and Output Voltage	-0.3	VDD + 0.5	V
V _{5T}	5Volt Tolerance		5.5	V
V _{ESD}	ESD Capacity (Human body mode)	-	2000	V
T _{STG} Storage Temperature		-40	+150	°C
T _{OPER} Operating Temperature (Tcase) (Note 1)		-40	+115°	°C
P _{TOT}	Total Power Dissipation (package)		5	W

Note 1 : -40°C limit of T_{CASE} (extended temperature range) is given a s a preliminary specification and so as all the -40°C related data.

4.4 DC Characteristics

Table 4-2. DC Characteristics

Recommended Operating conditions : VDD = $3.3V \pm 0.3V$, Vcore = $2.5V \pm 0.25V$, Tcase = 0 to 85° C (Commercial Range) or -40 to 100° C (Industrial Range) unless otherwise specified

Symbol	Parameter	Test conditions	Min	Тур	Max	Unit
V_{DD}	Operating Voltage		3.0	3.3	3.6	V
V_{CORE}	Operating Voltage		2.25	2.50	2.75	V
V_{DD5}	5V operating voltage	Note 3	4.5	5	5.5	V
P_{DD}	Supply Power	$V_{DD} = 3.3V, V_{CORE} = 2.5VH_{CLK} = 133MHz$		2.5		W
H _{CLK}	Internal Clock	(Note 1)			133	MHz
V_{REF}	DAC Voltage Reference		1.215	1.235	1.255	V
V _{OL}	Output Low Voltage	I _{Load} =1.5 to 8mA depending of the pin			0.5	V
V _{OH}	Output High Voltage	I _{Load} =-0.5 to -8mA depending of the pin	2.4			V
V _{IL}	Input Low Voltage	Except XTALI	-0.3		0.8	V
		XTALI	-0.3		0.9	V
V _{IH}	Input High Voltage	Except XTALI	2		V _{DD} +0.5	V
		XTALI	2.35		V _{DD} +0.5	V
I _{LK}	Input Leakage Current	Input, I/O	-1		2	μΑ
C _{IN}	Input Capacitance	(Note 2)				pF
C _{OUT}	Output Capacitance	(Note 2)				pF
C _{CLK}	Clock Capacitance	(Note 2)				pF

Notes:

- 1. MHz ratings refer to CPU clock frequency.
- 2. Not 100% tested.
- 3. Detail of pins refer to Table 2-2

4.5 AC Characteristics

Table 4-4 through Table 4-9 list the AC characteristics including output delays, input setup requirements, input hold requirements and output float delays. These measurements are based on the measurement points identified in Figure 4-1 and

Figure 4-2. The rising clock edge reference level VREF, and other reference levels are shown in Table 4-3 below for the iDragoniDragon SCX502. Input or output signals must cross these levels during testing.

Figure 4-1 shows output delay (A and B) and input setup and hold times (C and D). Input setup and hold times (C and D) are specified minimums, defining the smallest acceptable sampling window a synchronous input signal must be stable for cor rect operation.

Table 4-3. Drive Level and Measurement Points for Switching Characteristics

Symbol	Value	Units
V_{REF}	1.5	V
V _{IHD}	3.0	V
V _{ILD}	0.0	V

Note: Refer to Figure 4-1.

Figure 4-1. Drive Level and Measurement Points for Switching Characteristics

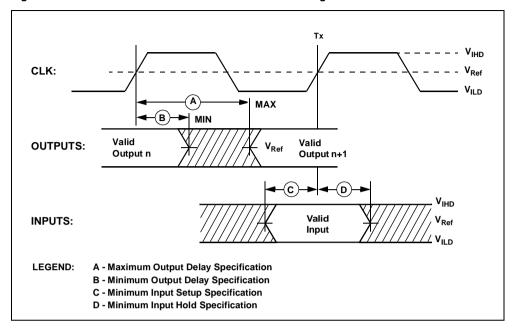
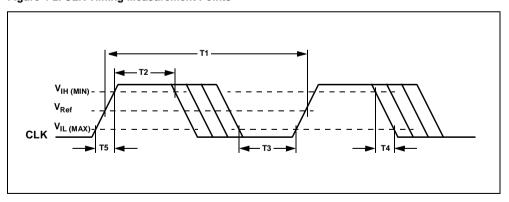
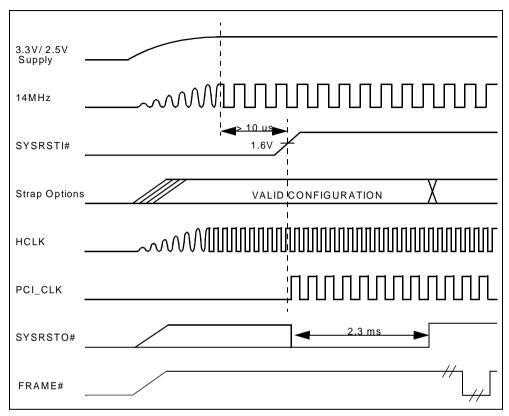




Figure 4-2. CLK Timing Measurement Points

4.5.1 Power on sequence

SYSRSTI# has no constraint on its rising time but needs to be set to high at least $10\mu s$ after power supply is stable.

Strap Options are continuously sampled during SYSRSTI# low and should be stable. Once SYSRSTI# is high, they MUST NOT CHANGE until SYSRSTO# is high.

Table 4-4. PCI Bus AC Timing

Name	Parameter	Min	Max	Unit
t1	PCI_CLKI to AD[31:0] valid	2	11	ns
t2	PCI_CLKI to FRAME# valid	2	11	ns
t3	PCI_CLKI to CBE#[3:0] valid	2	12	ns
t4	PCI_CLKI to PAR valid	2	11	ns
t5	PCI_CLKI to TRDY# valid	2	11	ns
T6	PCI_CLKI to IRDY# valid	2	11	ns
T7	PCI_CLKI to STOP# valid	2	11	ns
T8	PCI_CLKI to DEVSEL# valid	2	11	ns
T9	PCI_CLKI to PCI_GNT# valid	2	14	ns
t10	AD[31:0] bus setup to PCI_CLKI	7		ns
t11	AD[31:0] bus hold from PCI_CLKI	0		ns
t12	PCI_REQ#[2:0] setup to PCI_CLKI	10		ns
t13	PCI_REQ#[2:0] hold from PCI_CLKI	1		ns
t14	CBE#[3:0] setup to PCI_CLKI	0		ns
t15	CBE#[3:0] hold to PCI_CLKI	5		ns
t16	IRDY# setup to PCI_CLKI	7		ns
t17	IRDY# hold to PCI_CLKI	0		ns
t18	FRAME# setup to PCI_CLKI	7		ns
t19	FRAME# hold from PCI_CLKI	0		ns

Table 4-5. SDRAM Bus AC Timing

Name	Parameter	Min	Max	Unit
t22	MCLKI to RAS#[1:0] Output Valid	1.5	6.2	ns
t23	MCLKI to CAS#[1:0] Output Valid	1.5	6.2	ns
t24	MCLKI to CS#[3:0] Output Valid	1.5	7.6	ns
t25	MCLKI to DQM#[7:0] Output Valid	1.5	8.1	ns
t26	MCLKI to MA[11:0] Output Valid	1.5	6.2	ns
t27	MCLKI to MWE# Output Valid	1.5	6.2	ns

Note, the SDRAM parameters are to be defined

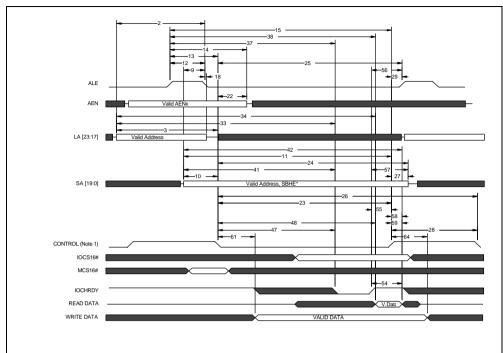
Table 4-6. IDE Bus AC Timing

Name	Parameter	Min	Max	Unit
t28	PCI_CLKI to SA[19:8] Active	0	42	ns
t29	PCI_CLKI to RMRTCCS# Active	0	42	ns
t30	PCI_CLKI to KBCS# Active	0	42	ns
t31	PCI_CLKI to RTCRW# Active	0	42	ns
t32	PCI_CLKI to RTCDS Active	0	42	ns
t33	SA[19:8] Input Setup to SIOR# Rising	-10	10	ns
t34	SA[19:8] Input Hold to SIOR# Rising	-10	10	ns
t35	RMRTCCS# Input Setup to SIOR# Rising	-10	10	ns
t36	RMRTCCS# Input Hold to SIOR# Rising	-10	10	ns
t37	KBCS# Input Setup to SIOR# Rising	-10	10	ns
t38	KBCS# Input Hold to SIOR# Rising	-10	10	ns

ELECTRICAL SPECIFICATIONS

Table 4-6. IDE Bus AC Timing

t39	RTCRW# Input Setup to SIOR# Rising	-10	10	ns
t40	RTCRW# Input Hold to SIOR# Rising	-10	10	ns
t41	RTCDS Input Setup to SIOR# Rising	-10	10	ns
t42	RTCDS Input Hold to SIOR# Rising	-10	10	ns
t43	PCI_CLKI to LA[23:17] Active	0	28	ns
t44	PCI_CLKI to PDACK# Active	0	32	ns
t45	PCI_CLKI to SDACK Active	0	32	ns
t46	PCI_CLKI to PIOR# Active	0	28	ns
t47	PCI_CLKI to PIOW# Active	0	28	ns
t48	PCI_CLKI to SIOR# Active	0	28	ns
t49	PCI_CLKI to SIOW# Active	0	28	ns


Table 4-7. Video Input/TV Output AC Timing

Name	Parameter	Min	Max	Unit
t50	DCLK to TV_YUV[7:0] bus valid		18	ns
t51	VIDEO_D[7:0] setup to VCLK	5		ns
t52	VIDEO_D[7:0] hold from VCLK	3		ns
t53	VCLK to VTV_BT# valid		21	ns
t54	VCLK to VTV_HSYNC valid		21	ns
t55	VTV_BT# setup to VCLK	10		ns
t56	VTV_BT# hold from VCLK	5		ns
t57	VTV_HSYNC setup to VCLK	10		ns
t58	VTV_HSYNC hold from VCLK	5		ns

Table 4-8. Graphics Adapter (VGA) AC Timing

Name	Parameter	Min	Max	Unit
t59	DCLK to VSYNC valid		45	ns
t60	DCLK to HSYNC valid		45	ns

Figure 4-3. ISA Cycle (ref table Table 4-9)

Note 1; Stands for SMEMR#, SMEMW#, MEMR#, MEMW#, IOR# & IOW#.

Note; The clock has not been represented as it cannot be accuratly represented depending on the ISA Slave mode.

Table 4-9. ISA Bus AC Timing

Name	Parameter	Min	Max	Units
2 4	LA[23:17] valid before ALE# negated	5T		Cycle
3 ⁴	LA[23:17] valid before MEMR#, MEMW# asserted		•	
	3a ⁴ Memory access to 16 bit ISA Slave	5T		Cycle
	3b ⁴ Memory access to 8 bit ISA Slave	5T		Cycle
9 4	SA[19:0] & SBHE valid before ALE# negated	1T		Cycle
10 ⁴	SA[19:0] & SBHE valid before MEMR#, MEMW# asserted			
	10a ⁴ Memory access to 16 bit ISA Slave	2T		Cycle
	10b ⁴ Memory access to 8 bit ISA Slave	2T		Cycle
10 ⁴	SA[19:0] & SHBE valid before SMEMR#, SMEMW# asserted			
	10c4 Memory access to 16 bit ISA Slave	2T		Cycle
	10d ⁴ Memory access to 8 bit ISA Slave	2T		Cycle
10e ⁴	SA[19:0] & SBHE valid before IOR#, IOW# asserted	2T		Cycle
11 ⁴	XTALO to IOW# valid		•	
	11a ⁴ Memory access to 16 bit ISA Slave - 2BCLK	2T		Cycle
	11b ⁴ Memory access to 16 bit ISA Slave - Standard 3BCLK	2T		Cycle
te; The si	gnal numbering refers to Table 4-3			
ote 4: The	se timings are extracted from simulations and are not garantee	ed by testing		

35

Table 4-9. ISA Bus AC Timing

Name	Param	eter	Min	Max	Units
	11c ⁴	Memory access to 16 bit ISA Slave - 4BCLK	2T		Cycles
	11d ⁴	Memory access to 8 bit ISA Slave - 2BCLK	2T		Cycle
11e ⁴		Memory access to 8 bit ISA Slave - Standard 3BCLK	2T		Cycle
12 ⁴	ALE#	asserted before ALE# negated	1T		Cycle
13 ⁴	ALE#	asserted before MEMR#, MEMW# asserted			
	13a ⁴	Memory Access to 16 bit ISA Slave	2T		Cycle
	13b ⁴	Memory Access to 8 bit ISA Slave	2T		Cycle
13 ⁴	ALE#	asserted before SMEMR#, SMEMW# asserted			
	13c ⁴	Memory Access to 16 bit ISA Slave	2T		Cycle
	13d ⁴	Memory Access to 8 bit ISA Slave	2T		Cycle
13e ⁴	ALE#	asserted before IOR#, IOW# asserted	2T		Cycle
14 ⁴	ALE#	asserted before AL[23:17]			
		Non compressed	15T		Cycle
	14b ⁴	Compressed	15T		Cycle
15 ⁴	ALE#	asserted before MEMR#, MEMW#, SMEMR#, SMEMW			
-		Memory Access to 16 bit ISA Slave- 4 BCLK	11T		Cycle
		Memory Access to 8 bit ISA Slave- Standard Cycle	11T		Cycle
18a ⁴		negated before LA[23:17] invalid (non compressed)	14T		Cycle
18a ⁴	ALE#	negated before LA[23:17] invalid (compressed)	14T		Cycle
22 ⁴	MEMF	#, MEMW# asserted before LA[23:17]			
		Memory access to 16 bit ISA Slave.	13T		Cycle
	22b ⁴	Memory access to 8 bit ISA Slave.	13T		Cycle
23 ⁴		#, MEMW# asserted before MEMR#, MEMW# negated			
		Memory access to 16 bit ISA Slave Standard cycle	9T		Cycle
	23e ⁴	Memory access to 8 bit ISA Slave Standard cycle	9T		Cycle
23 ⁴		R#, SMEMW# asserted before SMEMR#, SMEMW# ne			
		Memory access to 16 bit ISA Slave Standard cycle	9T		Cycle
		Memory access to 16 bit ISA Slave Standard cycle	9T		Cycle
23 ⁴		IOW# asserted before IOR#, IOW# negated			
		Memory access to 16 bit ISA Slave Standard cycle	9T		Cycle
	23r ⁴	Memory access to 8 bit ISA Slave Standard cycle	9T		Cycle
24 ⁴		#, MEMW# asserted before SA[19:0]			
		Memory access to 16 bit ISA Slave Standard cycle	10T		Cycle
	24d ⁴		10T		Cycle
	24e ⁴	. ,	10T		Cycle
	24f4	,	10T		Cycle
24 ⁴		R#, SMEMW# asserted before SA[19:0]		1	1 -
	24h	,	10T		Cycle
	24i ⁴	memory district to the result of the result	10T		Cycle
		Memory access to 8 bit ISA Slave - 3BCLK	10T		Cycle
		Memory access to 8 bit ISA Slave Standard cycle	10T		Cycle
24 ⁴		IOW# asserted before SA[19:0]		1	1 -
		I/O access to 16 bit ISA Slave Standard cycle	19T		Cycle
		I/O access to 16 bit ISA Slave Standard cycle	19T		Cycle
25 ⁴		R#, MEMW# asserted before next ALE# asserted			
		bering refers to Table 4-3	and have a set		
ote 4; Thes	e timing	gs are extracted from simulations and are not garante	eea by testing	l .	

Table 4-9. ISA Bus AC Timing

Name	Param		Min	Max	Unit
	25b ⁴	Memory access to 16 bit ISA Slave Standard cycle	10T		Cycle
	25d ⁴	Memory access to 8 bit ISA Slave Standard cycle	10T		Cycle
25 ⁴		R#, SMEMW# asserted before next ALE# aserted			
	25e ⁴	Memory access to 16 bit ISA Slave - 2BCLK	10T		Cycle
	25f ⁴	Memory access to 16 bit ISA Slave Standard cycle	10T		Cycle
	25h ⁴	Memory access to 8 bit ISA Slave Standard cycle	10T		Cycle
25 ⁴	,	IOW# asserted before next ALE# asserted			
	25i ⁴	I/O access to 16 bit ISA Slave Standard cycle	10T		Cycle
	25k ⁴	I/O access to 16 bit ISA Slave Standard cycle	10T		Cycle
26 ⁴		#, MEMW# asserted before next MEMR#, MEMW# as		1	
	26b ⁴	Memory access to 16 bit ISA Slave Standard cycle	12T		Cycle
	26d ⁴	Memory access to 8 bit ISA Slave Standard cycle	12T		Cycle
26 ⁴		IR#, SMEMW# asserted before next SMEMR#, SMEM			
	26f ⁴	Memory access to 16 bit ISA Slave Standard cycle	12T		Cycle
	26h ⁴	Memory access to 8 bit ISA Slave Standard cycle	12T		Cycle
26 ⁴		IOW# asserted before next IOR#, IOW# asserted		1	1
	26i ⁴	I/O access to 16 bit ISA Slave Standard cycle	12T		Cycle
	26k ⁴	I/O access to 8 bit ISA Slave Standard cycle	12T		Cycle
28 ⁴		ommand negated to MEMR#, SMEMR#, MEMR#, SMI		d	1
	28a ⁴	Memory access to 16 bit ISA Slave	3T		Cycle
	28b ⁴	Memory access to 8 bit ISA Slave	3T		Cycle
28 ⁴		ommand negated to IOR#, IOW# asserted	_	ı	1
	28c ⁴	I/O access to ISA Slave	3T		Cycle
29a ⁴		R#, MEMW# negated before next ALE# asserted	1T		Cycle
29b ⁴		IR#, SMEMW# negated before next ALE# asserted	1T		Cycle
29c ⁴		IOW# negated before next ALE# asserted	1T		Cycle
33 ⁴		:17] valid to IOCHRDY negated		1	
	33a ⁴	,	8T		Cycle
	33b ⁴	Memory access to 8 bit ISA Slave - 7 BCLK	14T		Cycle
34 ⁴		:17] valid to read data valid		ı	
	34b ⁴	Memory access to 16 bit ISA Slave Standard cycle	8T		Cycle
1	34e ⁴	Memory access to 8 bit ISA Slave Standard cycle	14T		Cycle
37 ⁴		asserted to IOCHRDY# negated	0.7	1	1 0 :
	37a ⁴	Memory access to 16 bit ISA Slave - 4 BCLK	6T		Cycle
	37b ⁴	Memory access to 8 bit ISA Slave - 7 BCLK	12T		Cycle
	37c ⁴	I/O access to 16 bit ISA Slave - 4 BCLK	6T		Cycle
204	37d ⁴	I/O access to 8 bit ISA Slave - 7 BCLK	12T		Cycle
38 ⁴		asserted to read data valid	1 47	1	1 0 .
	38b ⁴	Memory access to 16 bit ISA Slave Standard Cycle	4T		Cycle
	38e ⁴	Memory access to 8 bit ISA Slave Standard Cycle	10T		Cycle
	38h ⁴	I/O access to 16 bit ISA Slave Standard Cycle	4T		Cycle
414	38l ⁴	I/O access to 8 bit ISA Slave Standard Cycle	10T		Cycle
417		:0] SBHE valid to IOCHRDY negated	1	1	16:
	41a ⁴	Memory access to 16 bit ISA Slave	6T		Cycle
	41b ⁴	Memory access to 8 bit ISA Slave	12T		Cycle

Table 4-9. ISA Bus AC Timing

41d ⁴ 1/4 1/4 42d ⁴ SA[19:0] 42b ⁴ M 42e ⁴ M 42e ⁴ M 42l ⁴ 1/6 M 47c ⁴ MEMR#, 47d ⁴ M 47d ⁴ M 48d ⁴ M 48d ⁴ M 48d ⁴ M 54d ⁴ M 54d ⁴ M 54d ⁴ M 55d ⁴ M 57d ⁴ M M M 61d ⁴ M	O access to 16 bit ISA Slave O access to 8 bit ISA Slave ISBHE valid to read data valid Idemory access to 16 bit ISA Slave Standard cycle Idemory access to 8 bit ISA Slave Standard cycle O access to 16 bit ISA Slave Standard cycle O access to 8 bit ISA Slave Standard cycle MEMW#, SMEMR#, SMEMW#, IOR#, IOW# asserte Idemory access to 16 bit ISA Slave Idemory access to 8 bit ISA Slave O access to 16 bit ISA Slave O access to 16 bit ISA Slave SMEMR#, IOR# asserted to read data valid Idemory access to 16 bit ISA Slave Standard Cycle Idemory access to 8 bit ISA Slave Standard Cycle Idemory access to 8 bit ISA Slave Standard Cycle Idemory access to 8 bit ISA Slave Standard Cycle Idemory access to 16 bit ISA Slave Standard Cycle Idemory access to 16 bit ISA Slave Standard Cycle O access to 16 bit ISA Slave Standard Cycle	4T 10T 4T 10T ed to IOCHRDY r 2T 5T 2T 5T	negated	Cycle Cycle Cycle Cycle Cycle Cycle Cycle Cycle
42 ⁴ SA[19:0] 42b ⁴ M 42e ⁴ M 42e ⁴ M 42l ⁴ 1/0 47 ⁴ MEMR#, 47a ⁴ M 47c ⁴ 1/0 48 ⁴ MEMR#, 48b ⁴ M 48b ⁴ M 54b ⁴ M 54b ⁴ M 55b ⁴ IOCHRD' 55a ⁴ IOCHRD' 55a ⁴ IOCHRD' 57a ⁴ IOCHRD' 57a IOCHRD' 57a IOCHRD' 58a MEMR#, 59a MEMR#, 61a Mineral M	SBHE valid to read data valid Iemory access to 16 bit ISA Slave Standard cycle Iemory access to 8 bit ISA Slave Standard cycle O access to 16 bit ISA Slave Standard cycle O access to 8 bit ISA Slave Standard cycle MEMW#, SMEMR#, SMEMW#, IOR#, IOW# asserte Iemory access to 16 bit ISA Slave Iemory access to 8 bit ISA Slave O access to 16 bit ISA Slave O access to 8 bit ISA Slave SMEMR#, IOR# asserted to read data valid Iemory access to 16 bit ISA Slave Standard Cycle Iemory access to 8 bit ISA Slave Standard Cycle	4T 10T 4T 10T ed to IOCHRDY r 2T 5T 2T	negated	Cycle Cycle Cycle Cycle
42b ⁴ M 42e ⁴ M 42e ⁴ M 42e ⁴ M 42l ⁴ I/0 42l ⁴ I/0 47a ⁴ MEMR#, 47a ⁴ M 47c ⁴ I/0 47d ⁴ I/0 48d MEMR#, 48b ⁴ M 48e ⁴ M 48h ⁴ I/0 54d IOCHRD 54a ⁴ I/0 55d ⁴ IOCHRD 55b ⁴ IOCHRD 57d IOCHRD 57d IOCHRD 57d IOCHRD 57d IOCHRD 57d IOCHRD 58d MEMR#, 59d MEMR#, 61d Mitte dat 61a ⁴ M 61b ⁴ M 61b ⁴ M 61b ⁴ M 61d M 61d M	lemory access to 16 bit ISA Slave Standard cycle lemory access to 8 bit ISA Slave Standard cycle O access to 16 bit ISA Slave Standard cycle O access to 8 bit ISA Slave Standard cycle MEMW#, SMEMR#, SMEMW#, IOR#, IOW# asserte lemory access to 16 bit ISA Slave lemory access to 8 bit ISA Slave O access to 16 bit ISA Slave O access to 8 bit ISA Slave SMEMR#, IOR# asserted to read data valid lemory access to 16 bit ISA Slave Standard Cycle lemory access to 8 bit ISA Slave Standard Cycle	10T 4T 10T ed to IOCHRDY r 2T 5T 2T	negated	Cycle Cycle Cycle
42e ⁴ M 42h ⁴ 1/0 42l ⁴ 1/0 47d ⁴ MEMR#, 47a ⁴ M 47b ⁴ M 47c ⁴ 1/0 48d ⁴ MEMR#, 48b ⁴ M 48h ⁴ 1/0 54d ⁴ 1/0 54d ⁴ 1/0 55d ⁴ 10CHRD' 55a ⁴ 10CHRD' 55a ⁴ 10CHRD' 57d ⁴ 10CHRD' 57d ⁴ 10CHRD' 58d ⁴ M 54b ⁴ M 61b ⁴ M	lemory access to 8 bit ISA Slave Standard cycle O access to 16 bit ISA Slave Standard cycle O access to 8 bit ISA Slave Standard cycle MEMW#, SMEMR#, SMEMW#, IOR#, IOW# asserted Immory access to 16 bit ISA Slave Immory access to 8 bit ISA Slave O access to 16 bit ISA Slave O access to 8 bit ISA Slave O access to 8 bit ISA Slave SMEMR#, IOR# asserted to read data valid Immory access to 16 bit ISA Slave Standard Cycle Immory access to 8 bit ISA Slave Standard Cycle	10T 4T 10T ed to IOCHRDY r 2T 5T 2T	negated	Cycle Cycle Cycle
42h ⁴ 1/0 42l ⁴ 1/0 47d ⁴ MEMR#, 47a ⁴ M 47b ⁴ M 47c ⁴ 1/0 47d ⁴ 1/0 48d ⁴ MEMR#, 48b ⁴ M 48h ⁴ 1/0 54d ⁴ 1/0 54d ⁴ 1/0 54d ⁴ 1/0 55d ⁴ 10CHRD' 55a ⁴ 10CHRD' 57d ⁴ 10CHRD' 57d ⁴ 10CHRD' 58d ⁴ M 61d ⁴ M 61b ⁴ M 61b ⁴ M 61b ⁴ M 61b ⁴ M 61d ⁴ M 61d ⁴ M 61d ⁴ M	O access to 16 bit ISA Slave Standard cycle O access to 8 bit ISA Slave Standard cycle MEMW#, SMEMR#, SMEMW#, IOR#, IOW# asserted Itemory access to 16 bit ISA Slave Itemory access to 8 bit ISA Slave O access to 16 bit ISA Slave O access to 8 bit ISA Slave SMEMR#, IOR# asserted to read data valid Itemory access to 16 bit ISA Slave Standard Cycle Itemory access to 8 bit ISA Slave Standard Cycle	4T 10T ed to IOCHRDY r 2T 5T 2T	negated	Cycle
42 4 1/4 42 4 1/4 47 4 MEMR#, 47 4 M	O access to 8 bit ISA Slave Standard cycle MEMW#, SMEMR#, SMEMW#, IOR#, IOW# asserted Memory access to 16 bit ISA Slave Memory access to 8 bit ISA Slave O access to 16 bit ISA Slave O access to 8 bit ISA Slave SMEMR#, IOR# asserted to read data valid Memory access to 16 bit ISA Slave Standard Cycle Memory access to 8 bit ISA Slave Standard Cycle	10T dt to IOCHRDY r 2T 5T 2T	negated	Cycle
47 ⁴ MEMR#, 47a ⁴ M 47b ⁴ M 47c ⁴ I/C 47d ⁴ I/C 47d ⁴ I/C 48 ⁴ MEMR#, 48b ⁴ M 48b ⁴ I/C 54d ⁴ I/C 54d ⁴ I/C 55a ⁴ IOCHRD 55b ⁴ IOCHRD 57 ⁴ IOCHRD 57 ⁴ IOCHRD 57 ⁴ IOCHRD 58 ⁴ MEMR#, 59 ⁴ MEMR#, 61 ⁴ Write dat 61a ⁴ M 61b ⁴ M 61d ⁴ M	MEMW#, SMEMR#, SMEMW#, IOR#, IOW# asserted femory access to 16 bit ISA Slave femory access to 8 bit ISA Slave O access to 16 bit ISA Slave O access to 8 bit ISA Slave SMEMR#, IOR# asserted to read data valid femory access to 16 bit ISA Slave Standard Cycle femory access to 8 bit ISA Slave Standard Cycle	ed to IOCHRDY r 2T 5T 2T	negated	
47a ⁴ M 47b ⁴ M 47c ⁴ 1/0 47d ⁴ 1/0 47d ⁴ 1/0 48d ⁴ MEMR#, 48b ⁴ M 48h ⁴ 1/0 54d ⁴ 1/0 54d ⁴ M 54b ⁴ M 54b ⁴ M 54c ⁴ 1/0 54d ⁴ 1/0 61d ⁴ 1/0 61d ⁴ 1/0	Memory access to 16 bit ISA Slave Memory access to 8 bit ISA Slave O access to 16 bit ISA Slave O access to 8 bit ISA Slave SMEMR#, IOR# asserted to read data valid Memory access to 16 bit ISA Slave Standard Cycle Memory access to 8 bit ISA Slave Standard Cycle	2T 5T 2T	negated	Cycle
47b ⁴ M 47c ⁴ 1/0 47d ⁴ 1/0 48d ⁴ MEMR#, 48b ⁴ M 48e ⁴ M 48h ⁴ 1/0 54d ⁴ 1/0 54d ⁴ 1/0 55b ⁴ IOCHRD' 55b ⁴ IOCHRD' 57d ⁴ IOCHRD' 58d ⁴ MEMR#, 59d MEMR#, 61d Write dat 61d ⁴ M 61d ⁴ M 61d ⁴ M 61d ⁴ M	lemory access to 8 bit ISA Slave O access to 16 bit ISA Slave O access to 8 bit ISA Slave SMEMR#, IOR# asserted to read data valid lemory access to 16 bit ISA Slave Standard Cycle lemory access to 8 bit ISA Slave Standard Cycle	5T 2T		Cycle
47c ⁴ 1/6 47d ⁴ 1/6 47d ⁴ 1/6 48d ⁴ MEMR#, 48b ⁴ M 48e ⁴ M 48h ⁴ 1/6 54d ⁴ 1/6 54d ⁴ 1/6 55d ⁴ IOCHRD 55d ⁴ IOCHRD 55b ⁴ IOCHRD 57d ⁴ IOCHRD 57d IOCHRD 57d IOCHRD 58d MEMR#, 59d MEMR#, 61d Write dat 61d ⁴ M 61d ⁴ M 61d ⁴ M 61d ⁴ M	O access to 16 bit ISA Slave O access to 8 bit ISA Slave SMEMR#, IOR# asserted to read data valid lemory access to 16 bit ISA Slave Standard Cycle lemory access to 8 bit ISA Slave Standard Cycle	2T		
47d ⁴ 1/0 48 ⁴ MEMR#, 48b ⁴ M 48e ⁴ M 48h ⁴ 1/0 48l ⁴ 1/0 54e ⁴ IOCHRD 54e ⁴ I/0 55b ⁴ IOCHRD 55b ⁴ IOCHRD 57 ⁴ IOCHRD 58 ⁴ MEMR#, 59 ⁴ MEMR#, 61 ⁴ Write dat 61e ⁴ M 61t ⁴ M 61t ⁴ M 61t ⁴ M 61d ⁴ M	O access to 8 bit ISA Slave SMEMR#, IOR# asserted to read data valid Iemory access to 16 bit ISA Slave Standard Cycle Iemory access to 8 bit ISA Slave Standard Cycle			Cycle
48 ⁴ MEMR#, 48b ⁴ M 48c ⁴ M 48c ⁴ M 48c ⁴ M 48c ⁴ M 54c ⁴ I/C 54c ⁴ I/C 54c ⁴ I/C 55c ⁴ IOCHRD 55c ⁴ IOCHRD 55c ⁴ IOCHRD 57c ⁴ IOCHRD 61c ⁴ Memr#, 61c ⁴ Write dat 61c ⁴ Mrite dat	SMEMR#, IOR# asserted to read data valid femory access to 16 bit ISA Slave Standard Cycle femory access to 8 bit ISA Slave Standard Cycle	5T		Cycle
48b ⁴ M 48e ⁴ M 48e ⁴ M 48h ⁴ I/C 48l ⁴ I/C 544 IOCHRD 54a ⁴ M 54b ⁴ M 54c ⁴ I/C 55a ⁴ IOCHRD 55b ⁴ IOCHRD 57 ⁴ IOCHRD 57 ⁴ IOCHRD 57 ⁴ IOCHRD 58 ⁴ MEMR#, 59 ⁴ MEMR#, 61 ⁴ Write dat 61a ⁴ M 61b ⁴ M 61c ⁴ M 61c ⁴ M 61c ⁴ M 61c ⁴ M	Memory access to 16 bit ISA Slave Standard Cycle Memory access to 8 bit ISA Slave Standard Cycle			Cycle
48e ⁴ M 48h ⁴ 1// 48l ⁴ 1// 48l ⁴ 1// 544 ⁴ IOCHRD 54a ⁴ M 54b ⁴ M 54c ⁴ 1// 55a ⁴ IOCHRD 55b ⁴ IOCHRD 57 ⁴ IOCHRD 57 ⁴ IOCHRD 57 ⁴ IOCHRD 58 ⁴ MEMR#, 59 ⁴ MEMR#, 61 ⁴ Write dat 61a ⁴ M 61b ⁴ M st 61c ⁴ Mrite dat 61c ⁴ M 61d ⁴ M	Memory access to 8 bit ISA Slave Standard Cycle			
48h ⁴ 1// 48l ⁴ 1// 48l ⁴ 1// 544 ⁴ IOCHRD 54a ⁴ M 54b ⁴ M 54c ⁴ 1// 54d ⁴ 1// 55a ⁴ IOCHRD 55b ⁴ IOCHRD 57 ⁴ IOCHRD 58 ⁴ MEMR#, 59 ⁴ MEMR#, 61 ⁴ Write dat 61a ⁴ M 61b ⁴ M 61c ⁴ Mrite dat 61c ⁴ Mrite dat 61c ⁴ Mrite dat 61c ⁴ Mrite dat	•	2T		Cycle
48I ⁴ I/C 544 IOCHRD 54a ⁴ M 54b ⁴ M 54c ⁴ I/C 55a ⁴ IOCHRD 55a ⁴ IOCHRD 57 ⁴ IOCHRD 57 ⁴ IOCHRD 58 ⁴ MEMR#, 59 ⁴ MEMR#, 61 ⁴ Write dat 61a ⁴ M 61b ⁴ M 61c ⁴ M 61c ⁴ M 61d ⁴ M	O access to 16 bit ISA Slave Standard Cycle	5T		Cycle
544 IOCHRD' 54a ⁴ M 54b ⁴ M 54c ⁴ I/C 54d ⁴ I/C 54d ⁴ I/C 55a ⁴ IOCHRD' 55b ⁴ IOCHRD' 57 ⁴ IOCHRD' 58 ⁴ MEMR#, 59 ⁴ MEMR#, 61 ⁴ Write dat 61a ⁴ M 61b ⁴ M 61b ⁴ M 61c ⁴ M 61d ⁴ M 61d ⁴ M		2T		Cycle
54a ⁴ M 54b ⁴ M 54c ⁴ 1/6 54c ⁴ 1/6 54d ⁴ 1/6 55a ⁴ IOCHRD 55b ⁴ IOCHRD 57 ⁴ IOCHRD 58 ⁴ MEMR#, 59 ⁴ MEMR#, 61 ⁴ Write dat 61a ⁴ M 61b ⁴ M 61c ⁴ Mrite dat 61c ⁴ M 61d ⁴ M	O access to 8 bit ISA Slave Standard Cycle	5T		Cycle
54b ⁴ M 54c ⁴ 1/0 54d ⁴ 1/0 54d ⁴ 1/0 55d ⁴ 1OCHRD SMEMWi 55b ⁴ 1OCHRD 57 ⁴ 1OCHRD 58 ⁴ MEMR#, 59 ⁴ MEMR#, 61 ⁴ Write dat 61a ⁴ M 61b ⁴ M 61b ⁴ M 61c ⁴ M 61d ⁴ M 61d ⁴ M	Y asserted to read data valid			
54c ⁴ 1/0 54d ⁴ 1/0 54d ⁴ 1/0 56d ⁴ 1/0 55b ⁴ 1/0 57d ⁴ 1/0 1/0 57d ⁴ 1/0 1/0 1/0 1/0 1/0 1/0 1/0 1/0	lemory access to 16 bit ISA Slave	1T(R)/2T(W)		Cycle
54d ⁴ I//C 55a ⁴ IOCHRD SMEMWR 55b ⁴ IOCHRD 57 ⁴ IOCHRD 58 ⁴ MEMR#, 59 ⁴ MEMR#, 61 ⁴ Write dat 61a ⁴ M 61b ⁴ M 61c ⁴ Mrite dat 61c ⁴ Mrite dat 61c ⁴ Mrite dat	flemory access to 8 bit ISA Slave	1T(R)/2T(W)		Cycle
55a ⁴ IOCHRD' SMEMWi 55b ⁴ IOCHRD' 56 ⁴ IOCHRD' 57 ⁴ IOCHRD' 58 ⁴ MEMR#, 59 ⁴ MEMR#, 61 ⁴ Write dat 61a ⁴ M 61b ⁴ M 5t 61 ⁴ Write dat 61a ⁴ M G1d ⁴ M	O access to 16 bit ISA Slave	1T(R)/2T(W)		Cycle
SMEMWind	O access to 8 bit ISA Slave	1T(R)/2T(W)		Cycle
56 ⁴ IOCHRD 57 ⁴ IOCHRD 58 ⁴ MEMR#, 59 ⁴ MEMR#, 61 ⁴ Write dat 61a ⁴ M 61b ⁴ M 5t 61 ⁴ Write dat 61a ⁴ M G 61a ⁴ M G 61a ⁴ M G 61a ⁴ M	Y asserted to MEMR#, MEMW#, SMEMR#, #, IOR#, IOW# negated	1T		Cycle
57 ⁴ IOCHRD 58 ⁴ MEMR#, 59 ⁴ MEMR#, 61 ⁴ Write dat 61a ⁴ M 61b ⁴ M 5t 61 ⁴ Write dat 61c ⁴ M 61d ⁴ M	asserted to MEMR#, SMEMR# negated (refresh)	1T		Cycle
58 ⁴ MEMR#, 59 ⁴ MEMR#, 61 ⁴ Write dat 61a ⁴ M 61b ⁴ M st 611 ⁴ Write dat 61c ⁴ M 61d ⁴ M	Y asserted to next ALE# asserted	2T		Cycle
59 ⁴ MEMR#, 61 ⁴ Write dat 61a ⁴ M 61b ⁴ M st 611 ⁴ Write dat 61c ⁴ M 61d ⁴ M	Y asserted to SA[19:0], SBHE invalid	2T		Cycle
61 ⁴ Write dat 61a ⁴ M 61b ⁴ M st 611 ⁴ Write dat 6110 ⁴ M 6110 ⁴ M	IOR#, SMEMR# negated to read data invalid	OT		Cycle
61a ⁴ M 61b ⁴ M st 611a ⁴ Write dat 61a ⁴ M 61d ⁴ M	IOR#, SMEMR# negated to daabus float	OT		Cycle
61b ⁴ M st 61 ⁴ Write dat 61c ⁴ M 61d ⁴ M	ta before MEMW# asserted			
61 ⁴ Write dat 61c ⁴ M 61d ⁴ M	lemory access to 16 bit ISA Slave	2T		Cycle
61c ⁴ M 61d ⁴ M	lemory access to 8 bit ISA Slave (Byte copy at end of tart)	2T		Cycle
61d ⁴ M	ta before SMEMW# asserted			•
	lemory access to 16 bit ISA Slave	2T		Cycle
61 ⁴ Write Da	lemory access to 8 bit ISA Slave	2T		Cycle
	ta valid before IOW# asserted			
	O access to 16 bit ISA Slave	2T		Cycle
	O access to 8 bit ISA Slave	2T		Cycle
64a ⁴ MEMW#	negated to write data invalid - 16 bit	1T		Cycle
	negated to write data invalid - 8 bit	1T		Cycle
		1T		Cycle
64d ⁴ SMEMW	# negated to write data invalid - 16 bit	1T		Cycle
64e ⁴ IOW# neg	<u> </u>	1T		Cycle

Table 4-9. ISA Bus AC Timing

Name	Parameter	Min	Max	Units		
64f ⁴	MEMW# negated to copy data float, 8 bit ISA Slave, odd Byte by ISA Master	1T		Cycles		
64g ⁴	IOW# negated to copy data float, 8 bit ISA Slave, odd Byte by ISA Master	1T		Cycles		
Note; The sig	nal numbering refers to Table 4-3					
Note 4; These timings are extracted from simulations and are not garanteed by testing						

5. MECHANICAL DATA

5.1 388-Pin Package Dimension

Dimensions are shown in Figure 5-2, Table 5-1 and Figure 5-3, Table 5-2.

The pin numbering for the iDragon 388-pin Plastic BGA package is shown in Figure 5-1.

Figure 5-1. 388-Pin PBGA Package - Top View

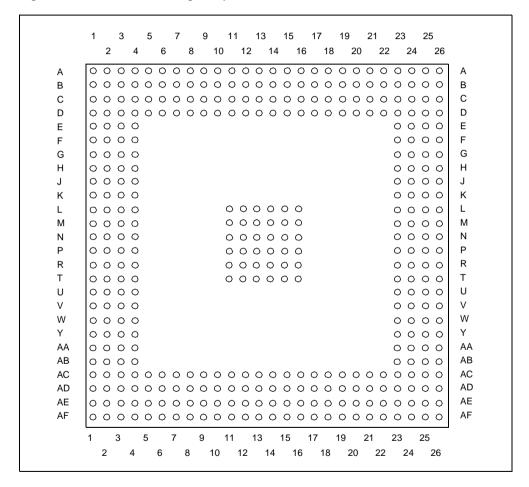


Figure 5-2. 388-pin PBGA Package - PCB Dimensions

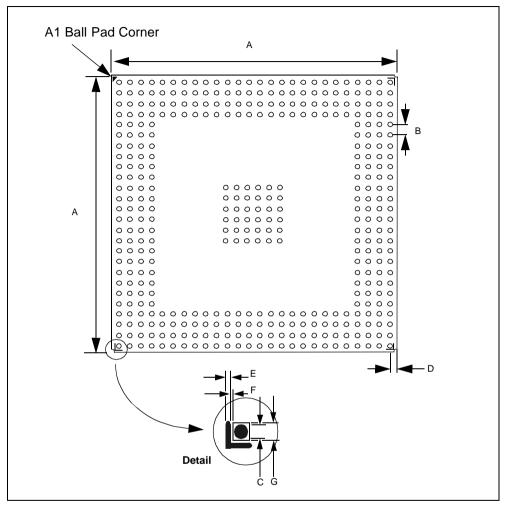


Table 5-1. 388-pin PBGA Package - PCB Dimensions

Cumbolo	mm mm			inches				
Symbols	Min	Тур	Max	Min	Тур	Max		
А	34.95	35.00	35.05	1.375	1.378	1.380		
В	1.22	1.27	1.32	0.048	0.050	0.052		
С	0.58	0.63	0.68	0.023	0.025	0.027		
D	1.57	1.62	1.67	0.062	0.064	0.066		
E	0.15	0.20	0.25	0.006	0.008	0.001		
F	0.05	0.10	0.15	0.002	0.004	0.006		
G	0.75	0.80	0.85	0.030	0.032	0.034		

Figure 5-3. 388-pin PBGA Package - Dimensions

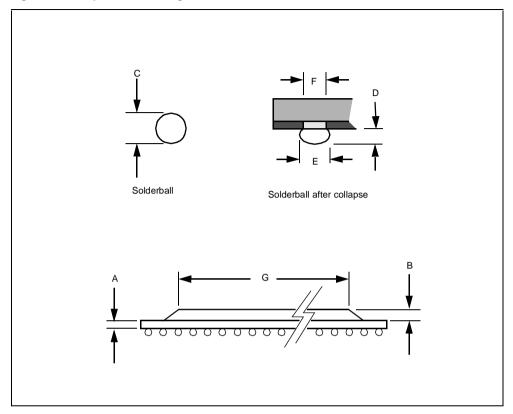


Table 5-2. 388-pin PBGA Package - Dimensions

Cumhala		mm		inches			
Symbols	Min	Тур	Max	Min	Тур	Max	
Α	0.50	0.56	0.62	0.020	0.022	0.024	
В	1.12	1.17	1.22	0.044	0.046	0.048	
С	0.60	0.76	0.92	0.024	0.030	0.036	
D	0.52	0.53	0.54	0.020	0.021	0.022	
E	0.63	0.78	0.93	0.025	0.031	0.037	
F	0.60	0.63	0.66	0.024	0.025	0.026	
G		30.0			11.8		

5.2 388-Pin Package thermal data

388-pin PBGA package has a Power Dissipation Capability of 4.5W which increases to 6W when used with a Heatsink.

Structure in shown in Figure 5-4.

Thermal dissipation options are illustrated in Figure 5-5 and Figure 5-6.

Figure 5-4. 388-Pin PBGA structure

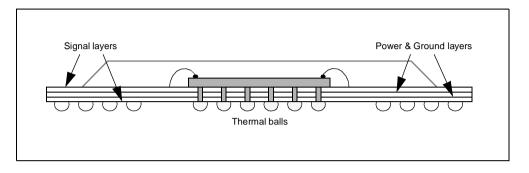


Figure 5-5. Thermal dissipation without heatsink

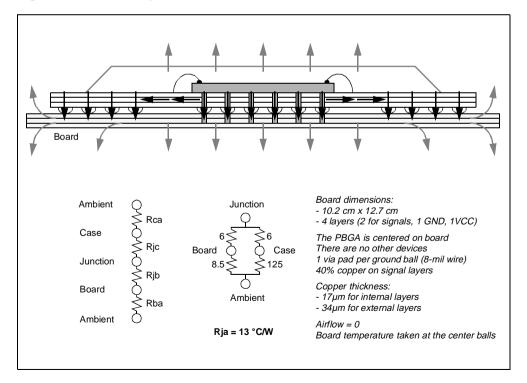
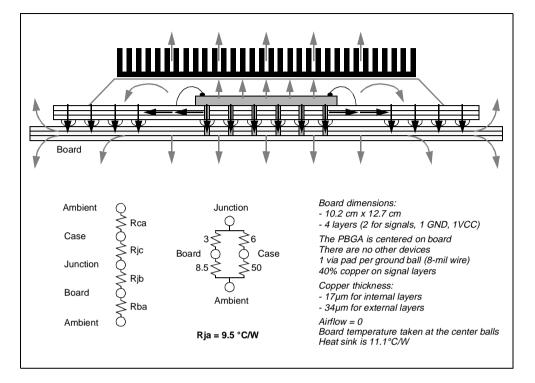



Figure 5-6. Thermal dissipation with heatsink

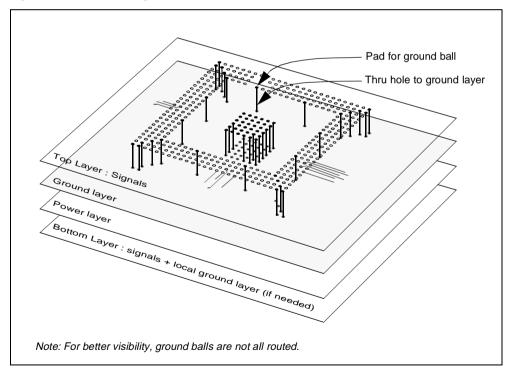
6. BOARD LAYOUT

6.1 Thermal dissipation

Thermal dissipation of the iDragon depends mainly on supply voltage. As a result, when the system does not need to work at 3.45V, it is interesting to reduce the voltage to 3.15V, for example, if it is possible. This may save few 100's of mW.

The second area to look at is unused interfaces and functions. Depending on the application, some input signals can be grounded, and some blocks not powered or shutdown. Clock speed dynamic adjustment is also a solution that can be used along with the integrated power management unit.

The standard way to route thermal balls to internal ground layer implements only one via pad for each ball pad, connected using a 8-mil wire.


With such configuration the Plastic BGA 388 package does 90% of the thermal dissipation through the ground balls, and especially the central ther mal balls which are directly connected to the die, the remaining 10% is dissipated through the case. Adding a heat sink reduces this value to 85%.

As a result, some basic rules has to be applied when routing the iDragon in order to avoid thermal problems.

First of all, the whole ground layer acts as a heat sink and ground balls must be directly connected to it as illustrated in Figure 6-1.

If one ground layer is not enough, a second ground plane may be added on solder side.

Figure 6-1. Ground routing

When considering thermal dissipation, the most important - and not the more obvious - part of the layout is the connection between the ground balls and the ground layer.

A 1-wire connection is shown in Figure 6-2. The use of a 8-mil wire results in a thermal resistance of 105°C/W assuming copper is used (418 W/m.°K). This high value is due to the thickness (34 µm) of the copper on the external side of the PCB.

Considering only the central matrix of 36 thermal balls and one via for each ball, the global thermal resistance is 2.9°C/W. This can be easily improved using four 10 mil wires to connect to the four vias around the ground pad link as in Figure 6-3. This gives a total of 49 vias and a global resistance for the 36 thermal balls of 0.6°C/W.

The use of a ground plane like in Figure 6-4 is even better.

To avoid solder wicking over to the via pads during soldering, it is important to have a solder mask of 4 mil around the pad (NSMD pad), this gives a di ameter of 33 mil for a 25 mil ground pad.

To obtain the optimum ground layout, place the vias directly under the ball pads. In this case no lo cal boar d distortion is tolerated.

The thickness of the copper on PCB layers is typ ically 34 μ m for external layers and 17 μ m for inter nal layers. That means thermal dissipation is not good and temperature of the board is concentrat ed around the devices and falls quickly with increased distance.

When it is possible to place a metal layer inside the PCB, this improves dramatically the heat spreading and hence thermal dissipation of the board.

Figure 6-2. Recommended 1-wire ground pad layout

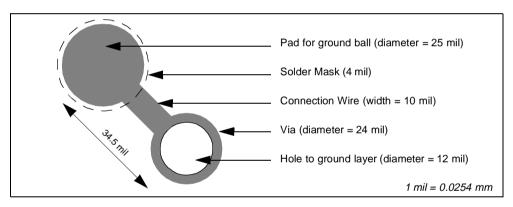


Figure 6-3. Recommended 4-wire ground pad layout

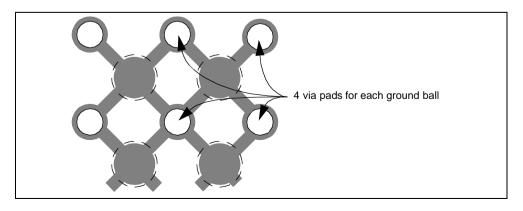
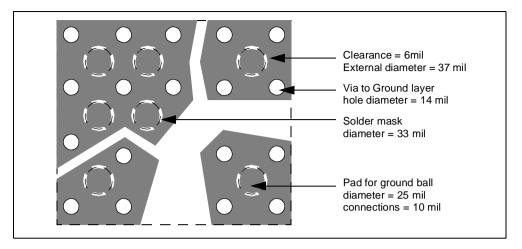



Figure 6-4. Optimum layout for central ground ball

The PBGA Package dissipates also through peripheral ground balls. When a heat sink is placed on the device, heat is more uniformely spread throughout the moulding increasing heat dissipation through the peripheral ground balls.

The more via pads are connected to each ground ball, the more heat is dissipated. The only limitation is the risk of lossing routing channels.

Figure 6-5 shows a routing with a good trade off between thermal dissipation and number of routing channels.

A local ground plane on opposite side of the board as shown in Figure 6-6 improves thermal dissipation. It is used to connect decoupling capacitances but can also be used for connection to a heat sink or to the system's metal box for better dissipation.

This possibility of using the whole system's box for thermal dissipation is very usefull in case of high temperature inside the system and low temperature outside. In that case, both sides of the PBGA should be thermally connected to the metal chassis in order to propagate the heat flow through the metal. Figure 6-7 illustrates such implementation.

6.2 High speed signals

Some Interfaces of the iDragon run at high speed and have to be carefully routed or even shielded.

Here is the list of these interfaces, in decreasing speed order:

- 1) Memory Interface.
- 2) Graphics and video interfaces
- 3) PCI bus
- 4) 14MHz oscillator stage

All the clocks haves to be routed first and shielded for speeds of 27MHz or more. The high speed signals follow the same contrainsts, like the memory control signals and the PCI control signals.

The next interfaces to be routed are Memory, Video/graphics, and PCI.

All the analog noise sensitive signals have to be routed in a separate area and hence can be rout ed indepedently.

Figure 6-5. Global ground layout for good thermal dissipation

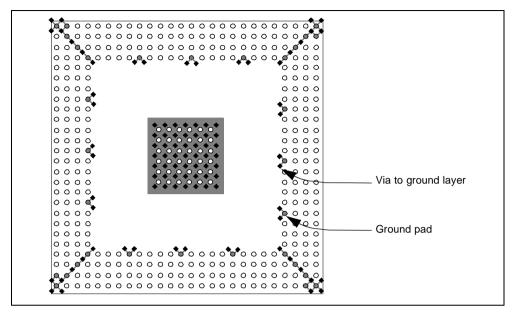


Figure 6-6. Bottom side layout and decoupling

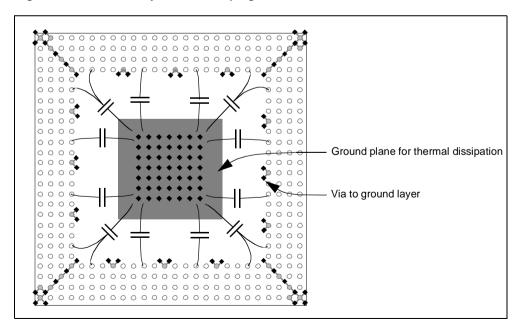


Figure 6-7. Use of metal plate for thermal dissipation

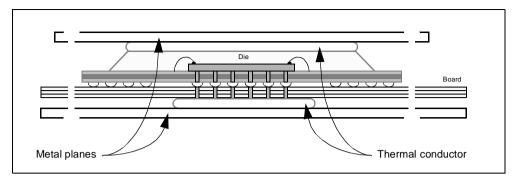
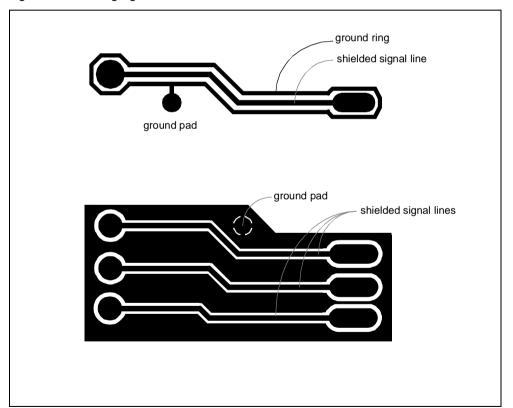
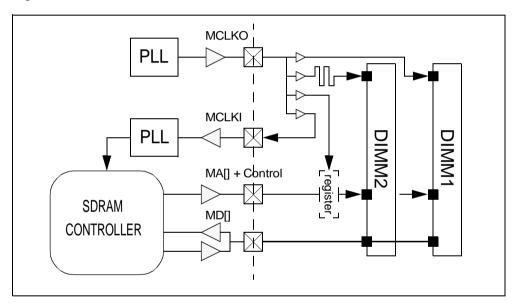



Figure 6-8. Shielding signals

6.3 Memory interface

6.3.1 Introduction

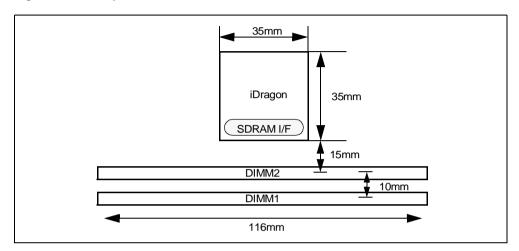

In order to achieve SDRAM memory interfaces which work at clock frequencies of 100MHz and above, careful consideration has to be given to the timing of the interface with all the various electrical and physical constraints taken into consideration. The guidelines described below are related to SDRAM components on DIMM modules. For applications where the memories are directly soldered to the motherboard, the PCB should be laid out such that the trace lengths fit within the constraints shown here. The traces could be slightly longer since the extra routing on the DIMM PCB is

no longer present but it is then up to the user to verify the timings.

6.3.2 SDRAM Clocking Scheme

The SDRAM Clocking Scheme deserves a special mention here. Basically the memory clock is gen erated on-chip through a PLL and goes directly to the MCLKO output pin of the iDragon. The nominal frequency is 100MHz. Because of the high load presented to the MCLK on the board by the DIMMs it is recommeded to rebuffer the MCLKO signal on the board and balance the skew to the clock ports of the different DIMMs and the MCLKI input pin of iDragon.

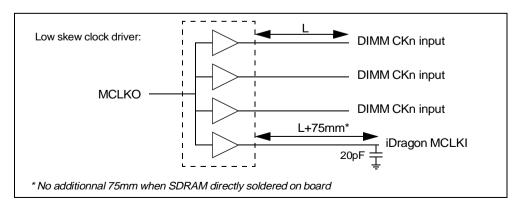
Figure 6-9. Clock scheme



6.3.3 Board Layout Issues

The physical layout of the motherboard PCB assumed in this presentation is as shown in Figure 6-10. Because all the memory interface signal

balls are located in the same region of the iDragon device it is possible to orientate the device to reduce the trace lengths. The worst case routing length to the DIMM1 is estimated to be 100mm.


Figure 6-10. DIMM placement

Solid power and ground planes are a must in order to provide good return paths for the signals and to reduce EMI and noise. Also there should be ample high frequency decoupling between the power and ground planes to provide a low impedance path between the planes for the return paths for signal routings which change layers. If possible the traces should be routed adjacent to the same power or ground plane for the length of the trace.

For the SDRAM interface the most critical signal is the clock. Any skew between the clocks at the SDRAM components and the memory controlle will impact the timing budget. In order to get well matched clocks at all the components it is recommended that all the DIMM clock pins, iDragon memory clock input (MCLKI) and any other component using the memory clock are individually driven from a low skew clock driver with matched routing lengths. This is shown in Figure 6-11.

Figure 6-11. Clock routing

The maximum skew between pins for this part is 250ps. The important factors for the clock buffer are a consistent drive strength and low skew between the outputs. The delay through the buffer is not important so it does not have to be a zero delay PLL type buffer. The trace lengths from the clock driver to the DIMM CKn pins should be matched exactly. Since the propagation speed can vary between PCB layers the clocks should be routed in a consistent way. The routing to the iDragon memory input should be longer by 75mm to compensate for the extra clock routing on the DIMM. Also a 20pF capacitor should be placed as near as possible to the clock input of the iDragon to compensate for the DIMM's higher clock load. The impedance of the trace used for the clock routing should be matched to the DIMM clock trace impedance (60-75 ohms). To minimise crosstalk the clocks should be routed with spacing to adjacent tracks of at least twice the clock trace width. For designs which use SDRAMs directly mounted on the motherboard PCB all the clock trace lengths should be matched exactly.

The DIMM sockets should be populated starting with the furthest DIMM from the iDragon device first (DIMM1). There are 2 types of DIMM devices; single row and dual row. The dual row devices require 2 chip select signals to select between the two rows. A iDragon device with 4 chip select con trol lines could control either 4 single row DIMMs or 2 dual row DIMMs.

When using DIMM modules, schematics have to be done carefully in order to avoid data busses completely crossed on the board. This has to be checked at the library level. In order to achive layout shown in Figure 6-12, schematics have to implement the crossing described on Figure 6-13. The DQM signals must be exchanged using the same order.

Figure 6-12. Optimum data bus layout for DIMM

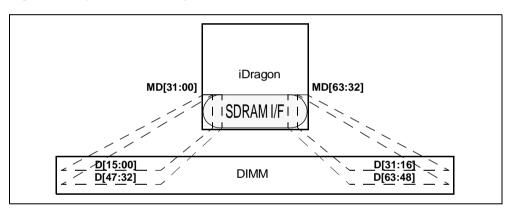
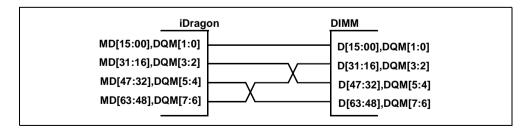
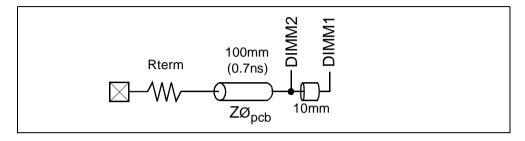



Figure 6-13. Schematics for optimum data bus layout for DIMM

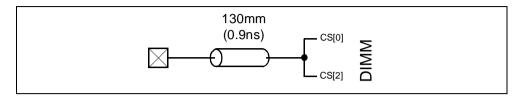


6.3.4 Address & Control Signals

This group encompasses the memory address MA[10:0], bank address BA[0], RAS, CAS and write enable WE signals. The load of the DIMM module on these signals is the most important one and depends upon the type of SDRAM compo-

nents used (x4, x8 or x16) and whether the DIMM module is single or dual row. The capacitive loading of the SDRAM inputs alone for an x8 single row DIMM will be about 30-40pF. An equivalent circuit for the timing simulation is shown in Figure 6-14 Most of the delays are due to the PCB traces and loading rather than the pad itself.

Figure 6-14. Address/control equivalent circuit



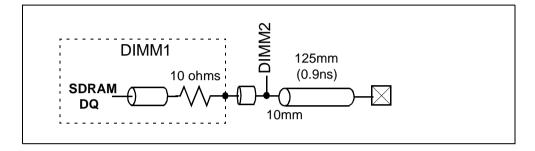
6.3.5 Chip Select Signals (CS#[3:0])

There are 4 chip select pins per DIMM. Chip selects 0 and 2 are always used to select the first

row of SDRAMs and chip selects 1 and 3 select the second row on dual bank SDRAMs. The chip select outputs only have to drive one DIMM each

Figure 6-15. CS# equivalent circuit

6.3.6 Data Write (MD[63:0])


The load on the data signals is much lower than the address/control signals for an unbuffered DIMM. For a registered DIMM the data signals are the only memory pins of the DIMM which are not registered. For the design to get maximum benefit from using registered DIMMs the timings should

be compared to the timings for registered DIMMs for the other pins.

6.3.7 Data Read (MD[63:0])

The data read simulation circuit is shown below...

Figure 6-16. Data read equivalent circuit

6.3.8 Data Mask (DQM[7:0])

The data mask load is quite similar to that of the data signals.

6.3.9 Summary

For unbuffered DIMMs the address/control signals will be the most critical for timing. The simulations show that for these signals the best way to drive them is to use a parallel termination. For applications where speed is not so critical series termination can be used as this will save power. Using a low impedance such as 50Ω for these critical traces is recommended as it both reduces the delay and the overshoot.

The other memory interface signals will typically be not as critical as the address/control signals for unbuffered DIMMs. When using registered DIMMs the other signals will probably be just as critical as the address/control signals so to gain maximum benefit from using registered DIMMs the timings should also be considered in that situation. Using lower impedance traces is also beneficial for the other signals but if their timing is not as critical as the address/control signals they could use the default value. Using a lower impedance implies using wider traces which may have an impact on the routing of the board.

6.4 SDRAM LAYOUT EXAMPLES

The iDragon provides MA, RAS#, CAS#, WE#, CS#, DQM#, BA0 (MA[11])and MD for SDRAM control. From 2 to 128 MBytes of main memory are supported in 1 to 4 banks. All Banks must be 64 bits wide.

The following memory devices are supported:

4Mbit x 4, 8Mbit x 2 & 16Mbit x 1 or if in the case of two internal bank chips, 2Mbit x 4 x 2, 4Mbit x 2 x 2 & 8Mbit x 1 x 2.

The following Figure 6-17 and Figure 6-18, shows two possible SDRAM organizations based on one or two bank configurations.

Notes for Figure 6-17 and Figure 6-18;

All buffers must be low skew clock buffers

One clock driver can operate upto four memory chips.

All the clock lines must follow the rules below:

MCLKI = MCLK0 + MCLK0A

=

= MCLK0 + MCLK0

= MCLK1 + MCLK1A

=

= MCLK1 + MCLK1

This means that all line lengths must go from the buffer to the memory chips (MCLK1 or MCLK0 o ...) and from the buffer to the iDragon (MCLKI must be identical.

6.4.1 Host Address to MA bus Mapping

Graphics memory resides at the beginning of Bank 0. Host memory begins at the top of graphics memory and extends to the top of populated SDRAM.

The bank attributes can be retrieved from a lookup table to select the final SDRAM row and column address mappings. (Table 6-2). Also Table 6-1 shows the Standard DIMM Pinout for the users that wish to design with DIMMs.

Figure 6-17. One memory Bank with eight chips (8-Bit)

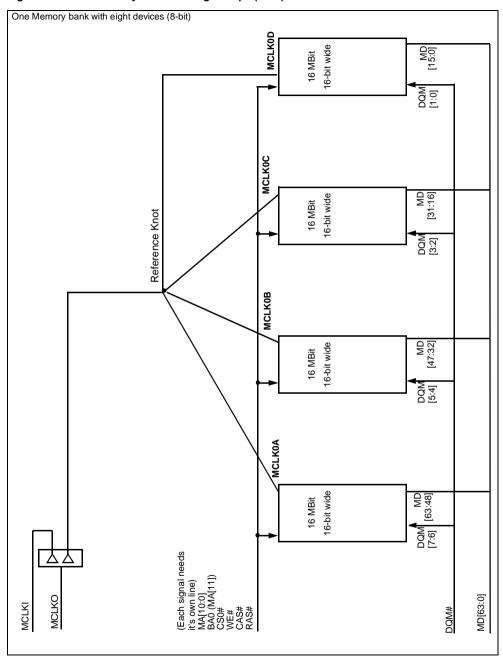


Figure 6-18.

Two memory banks with eight chips

on each (8-Bit)

Release 0.1

IDragonTM is the trademark of Rise Technology Company. All other trademarks are properties of respective owners. This is preliminary information on a new product now in development or undergoing evaluation. Details are subject to change with

Table 6-1. Standard Memory DIMM Pinout

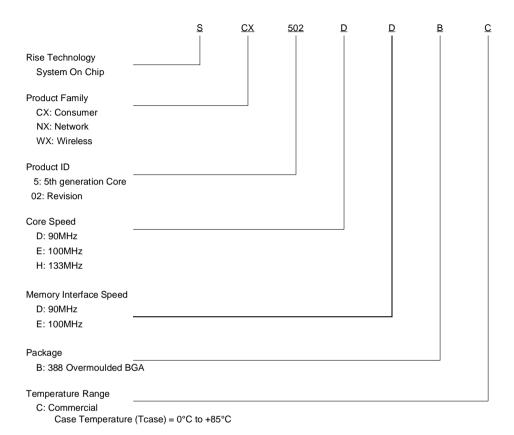

Memory Banks pin number	16Mbit(2 banks)
	MA[10:0]
123	-
126	-
39	-
122	BA0(MA11)

Table 6-2. Address Mapping

Address Mapping: 16 Mbit - 2 banks												
iDragon I/F	BA0(MA11)	MA10	MA9	MA8	MA7	MA6	MA5	MA4	MA3	MA2	MA1	MA0
RAS ADDRESS	A11	A22	A21	A2	A19	A18	A17	A16	A15	A14	A13	A12
CAS ADDRESS	A11	0	A24	A23	A10	A9	A8	A7	A6	A5	A4	A3

7 ORDERING DATA

7.1 Ordering Codes

7.2 Available Part Numbers

Part Number	Core Frequency (MHz)	CPU Mode (X1 / X2)	Interface Speed (MHz)	Tcase Range (°C)
SCX502DDBC	90	X1	90	
SCX502EEBC	100	X1	100	0°C to +85°
SCX502HDBC	133	X2	90	

7.3 Customer Service

More informations are available on Rise Technology internet site http://www.rise.com.

Information furnished is believed to be accurate and reliable. However, Rise Technology Company assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license
is granted by implication or otherwise under any patent or patent rights of Rise Technology. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. Rise Technology products are not authorized for use as critical components in life support devices or systems without express written approval of Rise Technology.
© 2001 Rise Technology Company- All Rights Reserved
The iDragon logo is a registered trademark of Rise Technology.
All other names are the property of their respective owners.
case manage are and property of their respective official.