Executing on Sun’s Throughput Computing Strategy

Throughput Computing is the underlying strategy of Sun’s new family of UltraSPARC® processors, which are designed to significantly increase real-world application processing throughput. At the heart of this new strategy is Chip Multithreading (CMT), a design concept that would eventually allow processors to execute tens of threads simultaneously. The dual-threaded UltraSPARC IV processor marks the first milestone in Sun’s CMT processor roadmap.

Developed in concert with the Solaris™ Operating Environment to meet the performance, reliability, and scalability requirements of mission-critical enterprise, HPTC, and other compute-intensive applications, the UltraSPARC IV processor can almost double the current UltraSPARC III processor-based system throughput.

The UltraSPARC IV processor is binary compatible with previous generations of SPARC processors and will support both versions 8 and 9 of the Solaris Operating Environment. This is consistent with Sun’s commitment to protecting customers’ investments in software and training. The UltraSPARC IV processor can also provide an upgrade path for servers powered by the existing UltraSPARC III processor.
UltraSPARC® IV Processor Features and Benefits

Processor Features
- Dual thread execution based on two UltraSPARC III pipelines
- L1 cache (per pipeline): 64 KB data, 32 KB instruction, 2 KB write, 2 KB prefetch
- Level 2 cache: On-chip tags for 16 MBs off-chip, two-way set-associative, LLC eviction policy, and reduced sub-blocked cache.
- Exclusive access to 8MB per pipeline
- On-chip SDRAM memory controller
- Shared system interface to Sun Fireplane interconnect system bus
- Enhanced Floating Point Unit with additional hardware support for IEEE 754-1985 exceptions
- CMT enhancements support Sun Standard CMT model helping to assure compatibility with current and future operating system interaction

Pipeline Design
- 14-stage non-stalling pipeline
- Sustainable 4-way superscalar
- Six parallel execution units (2 integer, 1 branch, 1 load/store, 2 FP/VIS)
- Speculative execution of instructions after branches
- Speculative memory loads
- 95% branch prediction accuracy (16 K-entry branch prediction table)

Data Integrity
- EDC (Error Detection and Correction) using ECC (Error Correction Codes) or parity on all major SRAMs and data buses inside and outside the processor
- Error removal and recovery system to help prevent the propagation of copy-back errors
- Diagnostic bus to monitor processor internals and address system errors, independent of the main system interface

Memory Subsystem
- Integrated memory controller
- Memory size: 16 GB per processor
- Memory Interface: SDRAM

Physical Characteristics
- Package: 1368-pin LGA
- Transistor count: 66 million
- Maximum power dissipation: 108 W at 1.35 V, 1.2 GHz
- Process: TI’s CMOS 0.13µ, 7-layer copper

SDRAM Memory
- (16 GB total)

External L2 Cache
- 8 MB per pipeline (16 MB total)

UltraSPARC III Pipeline
- (L1 Caches)

UltraSPARC III Pipeline
- (L1 Caches)

UltraSPARC IV Processor Block Diagram