
August 3, 2001

 1

 S o f t w a r e D e v e l o p e r B u l l e t i n

Crusoe™ Processor
Software Optimization Guide

This document contains recommendations for optimizing x86 software for use with Transmeta Crusoe
processors. These software optimization guidelines are intended primarily for model TM5x00 Crusoe
processors, though many of these tips are useful for any x86 software application. The purpose of this
document is to encourage software developers to produce high performance code that will run more
efficiently on Crusoe processors.

Code Morphing Software
Crusoe processors consist of a hardware engine logically surrounded by a software layer. The hardware
component of the Crusoe processor is a very long instruction word (VLIW) CPU capable of executing up to
four operations in each clock cycle. The VLIW native instruction set bears no resemblance to the x86
instruction set. It has been designed purely for fast low-power implementation using conventional CMOS
fabrication. The surrounding software layer gives x86 programs the impression they are running on x86
hardware. The software layer is called Code Morphing software because it dynamically “morphs” (changes)
x86 instructions into native VLIW instructions. Code Morphing software includes a number of advanced
features to achieve good system-level performance. Code Morphing software support facilities are also built
into the underlying processor hardware.

Code Morphing software is fundamentally a dynamic translation system - a program that compiles
instructions for one instruction set architecture (in this case, the x86 target ISA) into instructions for another
ISA (the VLIW host ISA). Code Morphing software is the first program to start executing when the processor
boots. All x86 code sees only the x86 ISA that the Code Morphing software supports. The only program
written directly for the VLIW engine is the Code Morphing software itself.

The typical behavior of Code Morphing software is to execute a loop that decodes and executes x86
instructions. The first few times a specific x86 code sequence is executed, Code Morphing software
interprets the code by decoding the instructions one at a time and then dispatching execution to
corresponding VLIW native instruction subroutines. Once the x86 code has been executed several times,
Code Morphing software translates the x86 instructions into highly optimized and extremely fast native VLIW
instructions, executes the translated code, and caches the native instruction translations for future use. If the
same x86 code is required to execute again, the high-performance cached translations are executed
immediately and no re-translation is required. For a detailed explanation of the Crusoe processor Code
Morphing software technology, see the Transmeta white paper The Technology Behind Crusoe Processors.

The flexibility of the software translation approach comes at a price - the processor has to dedicate some of
its operating cycles to running the Code Morphing software. These extra operating cycles are cycles that a
conventional x86 processor could use to execute application code. To deliver good overall system
performance, Code Morphing software has been carefully designed for maximum efficiency and low
overhead. Application code developed for use on the Crusoe processor can also benefit from a few simple
guidelines that likewise improve code execution efficiency and minimize Code Morphing software overhead.

August 3, 2001

2

Crusoe™ Processor Software
Optimization Guide

The guidelines provided below should be followed to maximize the performance/power benefits of Crusoe
processors with Code Morphing software.

Instructions and Registers
The Crusoe processor VLIW core incorporates many internal registers, so Code Morphing software attempts
to turn repeated loads of the same memory location into on-chip register references, which are faster and
more efficient. This technique, for example, works well with temporary variables on the stack. On the other
hand, this optimization only works over short spans of code, so it should not be expected to apply to reloading
a stack location that was last touched more than, for example, 100 instructions earlier.

Crusoe processors do not suffer from partial register stalls, but using the “high” registers (ah, bh, ch, dh) can
result in slower execution and should be avoided.

VLIW engines have large instruction words. This off-loads a lot of the work spent in out-of-order execution
cores that can be spent elsewhere, but the trade-off is in instruction cache (I-cache) pressure. If there is a
choice between using a template that generates thirty different versions of the same piece of code with mildly
different parameters and having just one lean routine that does them all fairly quickly, the latter approach will
generally prove superior.

Crusoe processor muls and imuls are not single-cycle operations. However, muls and imuls (and idivs) using
small immediates, which are commonly used to generate array references by C compilers, are converted into
shifts and adds, often leveraging special Crusoe processor instructions that do both a shift and add in the
same instruction.

Unconditional branches to fixed addresses eventually become free (after Code Morphing software
optimization). Too many conditional branches in an active loop should be avoided. Loops should ideally be
limited to three conditional branches or less, with enough non-branching work at either destination of a
branch to improve scheduling. Ten to twenty x86 instructions is usually enough.

Expressions should be structured to expose as much parallelism as possible.

Crusoe processors do not feature a write-combiner, but if consecutive 32-bit words are written during PCI
writes, this allows the built-in PCI controller (integrated northbridge), to stream them out in burst-mode.

As for most modern processors, working data sets should be sized to fit into the on-chip L1 (64K-byte) and L2
(256K-byte) data caches.

Processor capabilities based on the CPUID string (e.g. “GenuineTMx86”) should never be assumed. The
capability bits should be used for this purpose. Current generation Crusoe processors support MMX and
conditional mov instructions, but don't support 3DNow and SSE instructions.

DMA
DMA operations utilize the Crusoe processor integrated northbridge. Before the processor is put into sleep
mode, as many DMA sources as possible should be turned off. This will lower processor power consumption
because it minimizes the periodic processor wake-ups required to handle DMA operations.

Long and contiguous DMA reads and writes are more efficient (per byte transferred) compared to many small,
non-contiguous DMA accesses, which are less efficient.

August 3, 2001

 3

Crusoe™ Processor Software

Optimization Guide

A side-benefit of integrating the northbridge into the Crusoe processor is that doing DMA transfers of data
already in the L1 or L2 cache is quite fast. This feature can be exploited by processing blocks of data that fit in
the cache and then submitting them to the device before they leave the cache.

MMX and Floating-Point Operations
Use of the floating-point stack pointer should be managed carefully. Some applications don't monitor the
stack pointer, and as a result they routinely overflow the stack. This can happen, for example, by not cleaning
up the stack pointer when exiting functions.

All data references should be aligned. Some compilers have trouble keeping the stack 8-byte aligned, which
can slow the system during 8-byte floating-point operands.

Crusoe processor performance is improved if the floating-point control word is set to make floating-point
divides and square roots operate on 32-bit floats instead of the full 80-bit internal calculation.

MMX and floating-point operations feature longer latencies than integer and load/store operations. If MMX or
floating-point code can be populated with integer work, or if written so the code isn’t totally serialized, it should
improve code scheduling and efficiency. For best MMX and floating-point performance, four independent
operations should be kept going at all times. The fxch instruction on Crusoe processors is mostly free due to
Code Morphing software optimizations.

To get the best floating-point performance from Crusoe processors, all exceptions should be masked in the
FSR, and denorm operands should be avoided. They should not be “accidentally” used as memory operands
to floating point operations, e.g. as might occur in “fmul dword ptr[eax]”.

Strategies to Avoid
Timing should not be done using artificial processor benchmarks. Code Morphing software will reduce some
artificial benchmarks into trivial code sequences. For instance, Code Morphing software often turns a
sequence of unconditional branches into a single stream of code, eliminating the branch, so simple branching
benchmarks appear to be getting zero-cycle branches. A walk-through code snippet of a real application
engine will yield much more realistic performance timing results. Also, timing-sensitive code should be
avoided. If a power-saving state triggers in the middle of a timing benchmark, the user experience for the rest
of the application will be thrown off.

In general, self-modifying code should not be used with Crusoe processors. If absolutely necessary, self-
modifying code should be limited to only patching immediates or address offsets.

It is very difficult for Code Morphing software to anticipate correct jump destinations. In general, indirect jumps
can be very expensive in modern processors, and this holds true for Code Morphing software as well.
However, commonly executed function pointers, like those used in virtual methods of C++ classes, assuming
they rarely change, are eventually optimized away.

Crusoe processors, like most modern processors, execute real- or SMI-mode code poorly. This code should
be avoided when possible and minimized where necessary.

In most cases, critical loops should not be less than about ten instructions, although the exact number
depends on which instructions are used. Code Morphing software de-constructs x86 operations into so-called
“atoms”, and those atoms are scheduled into “molecules” (VLIW instructions). The longer the loop, the better
the scheduler can do, while at the same time, I-cache pressure can also become an issue. Loop-unrolling,
however, should not be over-used either.

August 3, 2001

4

Crusoe™ Processor Software
Optimization Guide

Writable data and x86 instructions should not be mixed on the same 4K page. When data is written to a
memory page, Crusoe processors assume that any translations associated with code on that page should be
invalidated until proven otherwise.

Excessively complex instructions should not be used in the middle of an active loop. Crusoe processors send
those instructions to less efficient “out-of-line” code, which breaks-up translation scheduling. The biggest
offender is the rep prefix on mov instructions, but other examples include cpuid, cmpxchng, loadcs,
wrmsr, rdmsr, pusha, rdtsc, bts, bsf, bsr, etc. rep mov instructions are the best way to move large
amounts of data, but are not a good way to move small chunks of data because they become dynamically
generated “out-of-line” code that doesn't schedule with the other atoms in the translation to VLIW.

Do not use segmentation. Run in “flat mode”: segment base zero, limit 0xffffffff, all data segments readable
and writable.

Other Guidelines
During the first few iterations through application code, Crusoe processors execute more slowly than in the
steady state. Code Morphing software learns how executed code behaves and optimizes it for native VLIW
execution. This should be considered when trying to measure the processor speed, or when interfacing with
devices that have real-time constraints.

The adaptive learning behavior of Crusoe processors with Code Morphing software can cause x86
application execution time to vary more than expected. Very few applications are so sensitive that this
matters, but turning off the L2 or L1 cache on a conventional processor will often mimic these pauses and
help catch race conditions.

If an application is idle while waiting for system events, e.g. waiting for a keypress, disk interrupt, or the
mouse button to be released, a HALT instruction should be used while waiting for an interrupt. Applications
should not be designed to just sit in a loop and poll for some system activity. Applications that rely on loop
polling are extremely inefficient and unnecessarily waste energy, heating up the processor with no
performance benefit.

Application background activities that are not essential should be disabled, by default, in battery-operated
mode. Examples include spell-checking and grammar-checking functions on word processors. If these
functions are made to run in background mode by default, they generate a lot of processor activity and use a
large amount of power, without the user being aware of the energy penalty involved. If these functions are
disabled by default and only run as-needed, the application will be much more energy efficient and “battery-
friendly”.

Applications should be made “benchmark-capable”. The game applications that were most effective in the
development of Crusoe processors and Code Morphing software were Doom and Quake, because they both
have built-in benchmarking modes that allow saving results to a text file. Doom and Quake are also available
for Linux, allowing extensive automated testing of each Code Morphing software and Crusoe processor
hardware revision using Transmeta’s automated Linux-based test farm. If an application can be easily
benchmarked and works well on a portable computer, this applications can be used in the development and
enhancement of existing and next-generation Crusoe processors and Code Morphing software.

August 3, 2001

 5

Crusoe™ Processor Software

Optimization Guide

Property of: Transmeta Corporation
3940 Freedom Circle
Santa Clara, CA 95054 USA
(408) 919-3000

http://www.transmeta.com

The information contained in this document is provided solely for use in connection with Transmeta products, and Transmeta
reserves all rights in and to such information and the products discussed herein. This document should not be construed as
transferring or granting a license to any intellectual property rights, whether express, implied, arising through estoppel or
otherwise. Except as may be agreed in writing by Transmeta, all Transmeta products are provided “as is” and without a warranty
of any kind, and Transmeta hereby disclaims all warranties, express or implied, relating to Transmeta’s products, including, but
not limited to, the implied warranties of merchantability, fitness for a particular purpose and non-infringement of third party
intellectual property. Transmeta products may contain design defects or errors which may cause the products to deviate from
published specifications, and Transmeta documents may contain inaccurate information. Transmeta makes no representations
or warranties with respect to the accuracy or completeness of the information contained in this document, and Transmeta
reserves the right to change product descriptions and product specifications at any time, without notice.

Transmeta products have not been designed, tested, or manufactured for use in any application where failure, malfunction, or
inaccuracy carries a risk of death, bodily injury, or damage to tangible property, including, but not limited to, use in factory control
systems, medical devices or facilities, nuclear facilities, aircraft, watercraft or automobile navigation or communication,
emergency systems, or other applications with a similar degree of potential hazard.

Transmeta reserves the right to discontinue any product or product document at any time without notice, or to change any
feature or function of any Transmeta product or product document at any time without notice.

Trademarks: Transmeta, the Transmeta logo, Crusoe, the Crusoe logo, Code Morphing, and combinations thereof are
trademarks of Transmeta Corporation in the USA and other countries. Other product names and brands used in this document
are for identification purposes only, and are the property of their respective owners.

Copyright © 2001 Transmeta Corporation. All rights reserved.

	Crusoe™ Processor Software Optimization Guide
	Code Morphing Software
	Instructions and Registers
	DMA
	MMX and Floating-Point Operations
	Strategies to Avoid
	Other Guidelines

