A/

we.
e
L

Cyrix Il
Processor
DataBook

Socket 370 Compatible x86 CPU Featuring
MMX™ and 3DNow! ™ Technology

©2000 Copyright Via-Cyrix Corporation. All rights reserved.
Printed in the United States of America

Trademark Acknowledgments:

Cyrix isaregistered trademark of Via Cyrix Corporation.
Cyrix Il isa trademark of Via-Cyrix Corporation. MM X is atrademark of Intel Corporation.
All other brand or product names are trademarksof their respective companies.

Via-Cyrix Corporation

2703 North Central Expressway
Richardson, Texas 75080-2010
United States of America

Via-Cyrix Corporation (Cyrix) reserves the right to make changes in the devices or specifications described herein without notice.
Before design-in or order placement, customers are advised to verify that the information is current on which orders or design
activities are based. Via-Cyrix warrants its products to conform to current specificationsin accordance with Via-Cyrix’ standard
warranty. Testing is performed to the extent necessary as determined by Via-Cyrix to support thiswarranty. Unless explicitly spec-
ified by customer order requirements, and agreed to in writing by Via-Cyrix, not al device characteristics are necessarily tested.
Via-Cyrix assumes no liability, unless specifically agreed to in writing, for customers' product design or infringement of patertsor
copyrights of third parties arising from the use of Via-Cyrix devices. No license, either express or implied, to Cyrix patents, copy-
rights, or other intellectual property rights pertaining to any machine or combination of Via-Cyrix devices is hereby granted.
Via-Cyrix products are not intended for use in any medical, life saving, or life sustaining system. Information in this document is
subject to change without notice.

i Cyrix I

April 4, 2000 9:49 am

REVISION HISTORY

Date Version | Revision
1/25/00 1.0 Final Specs updated for production
3/22/99 0.53 Changed name from MXsto Cyrix |l processor.

3/17/99 0.52 Pages 1-9, 1-10: Both L1 and L2 caches are unified.

Page 1-11 Remove paragraph concerning Scratch Pad Cache Memory
Page 2-36 and similar pages Replace “Don’'t care” with xxxxb.

Page 2-56 Added Clock Ratio Table for BIOS Core/Bus Frequency Ratios
Added CPUPRESH# signal.

Changed X 32 pin to GND

Changed Z32 pinto Vcc

Changed name VDD-2.5t0 VCC_2.5

Changed AD32 pinto Vcc

Added |ERR# signal

Added BRO#

Modified Figure 5.3 Voltage Connections

Changed REF7 to VREF7 in pin diagrams.

3/16/99 0.51 Corrected Pages 5-1 and 5-2 Pin Assignment Diagrams
Corrected Pages 5-3 and 5-4 Pin Signal List
Added power diagram Page 5-6 Figure 5-3.

3/11/99 0.5 Page 2-33 Updated and completed CPU Configuration Register Table
Page 2-43 Added question marks --Does CCR7 exist?

Page 2-48 Updated RCRn bit 0 RCD/RCE

Page 2-53 Added Clock Ratio Table for DIR3 TY PE Field

3/9/99 04 Bullet Page:Added Programmable Clock/Bus Ratio, new ratio
Page 3-1 Made several changesto Figure 3-1.
Page 3-2 Removed subname explanation.
Page 3-2 Redefined ADSH.
Page 3-3 LOCK# is now I/O.
Page 3-5 Many changes to Table 3-2, non-supported signals.
Page 3-9 Rewrote second paragraph right column.
Page 3-10 Omitted table 3-6 as all signals are disconnected during RESET#.
Page 3-13 Placed Error Phase before Snoop Phase.
Page 3-14 Rewrote INTR explanation. Now there is one interrupt acknowledge bus cycle.
Page 3-15 Next to last paragraph. Removed last sentence concerning FERR#.
Page 4-2 Made many changes to Table 4-1 Pull-Up Resistors.
Page 4-3 Table 4-2 Note 3. Removed the word “APIC”.
Page 4-4 Table 4-3, Recommended Operating Conditions for CMOS Signals.
Removed V¢ o row.
Page 4-5 Moved BSEL signalsfrom GTL 1/0 to CMOS Input row. Removed LINT signals.
Page 4-7 and 4-8 Added 433, 450, 500 MHz frequencies.

3/3/99 0.3 Page 1-9, reworded right-top paragraph concerning exclusive cache. Corrected BSELO and BSEL 1
typos on page 3-1 and 4-5. Added 133 MHz bus on page 3-9. Corrected note to Figure 4-14 on page
4-12. Updated Figure 4-15 on page 4-11.

3/1/99 0.2 Typos. Added 2.5x to Table 3-3. Updated thermal information.
2/18/99 0.1 Initial Version C:\documentation\joshua\CyrixI11_0.fm

Cyrix Il iii

Cyrix 111 PROCESSOR
Socket 370 Compatible CPU
MMX™ and 3DNow! ™ Technology

Cyrix Processors

Introduction

Performance Features

: : " Other Features
- Performance Rating: PR400, PR450, PR500 and higher -
- Leverages Existing Socket 370 Infrastructure
- Integrated 8-way 256 KByte L2 Cache ages BIsing i

. . - Compatible with MMX " and 3D Now! ™" Technology
- 64K 4-Way Unified Write-Back L1 Cache

- Branch Prediction with a512_entry BTB - Runs WindOWS® 98, Windows 3.X, Windows NT,
- Enhanced Memory Management DOS, UNIX®, 0S/2%, and all other x86 operating systems.
Unit 2 Level TLB (16 Entry L1, 384 Entry L2) - 2.2V Core

- Scratchpad RAM in Unified Cache - Flexible Core/Bus Clock Ratios:

- Optimized pipelining for both 32- and 16-Bit Code 2.5x, 3%, 3.5x, 4.0x, 4.5x, 5.0%, 5.5x, 6.0x, 6.5x, 7.0x, 7.5x

- High Performance dual pipeline 80-Bit FPU - BIOS Programmable Core/Bus Clock Ratio

- Supports bus speeds of 66, 100, and 133 Mhz
Ine Lyrix 111 Processor orTers signiticant perrormarnce can execute instructions from both execution units
enhancements over previous generation processorsinaSocket ~ simultaneously. The 64 K L1 cache and 256 K integrated L2
370 compatible package. The Cyrix I11 includes a 64 KByte cache employ write-back technologies to make access to the
L1 cache, an integrated 256 KByte L2 cache, and has fre- code and data as fast as possible to avoid pipeline stalls. The
quency scalability to 400 MHz and beyond. It is compatible cache supports caching SMI code and data, and can be used as
with MMX and 3DNow! Technology for superior graphics scratchpad RAM by the processor.
performance. A new dual pipeline FPU/MMX Unit delivers The superpipelined architecture reduces timing constraints
superior floating point performance. The Cyrix |11 delivers and increases frequency scalability. Advanced architectural
high 32-bit and 16-bit performance while running Windows technol ogies include register renaming, out of order
98, 95 and 3.X, WindowsNT, OS2, DOS, UNIX, and all other

completion, data dependency removal, branch prediction, and

x86 operating systems and applications. speculative execution. The pipelining and superscaling are
designed to remove data dependencies and resolve conflicts to

The Cyrix |11 processor achieves top performance through the ~ alow for a high number of instruction executions per clock

use of two optimize superpipelined execution units, two cycle. This promotes the highest performance for both 32 bit
integer units, and a dual issue FPU/MMX/3DNow! unit that and 16-bit applications.
Instruction Address
Direct- M apped 32 S uperpipelined Instruction Data
16-Entry 1-7-— Inte ger U nit
Level 1 X Linear 128 32
X Data) ~z1-42
TLB Address ‘ ’ Address
32 32 22 Bus
6-way —] Y Data Integrated 256K L2 Cach Interface
384-Entry v Linear | | 512-Entry FPU with <4—) e e Unit 17‘» D63-D0
Lewel2 Ak BTB MMX, 32 64
B ess 3DNow! .y
Extensions i
Memory Data 64- KByte 4-Way Unified Cache bata l BOLK
Manage ment Unit CPU Core 64 ‘_/_>
Cache Unit 64
2 4 ‘—> Control
X Physical
Address 3z
Y Physical
Address Bus Interface

iv Cyrix 11l

April 4, 2000 9:51 am

Cyrix 111 PROCESSOR
Socket 370 Compatible CPU
MMXm™ and 3DNow!™ Technol ogy

Cyrix Processors

Table of Contents

1 ARCHITECTURE OVERVIEW

1.1 Processor Differences oL 2
1.2 Celeron™ Compatibility 2
1.3 Major Functional Blocks, 3
1.4 IntegerUnit. 4
1.5 Data Bypassing 8
1.6 CacheUnits 10
1.7 Memory ManagementUnit. 12
1.8 Floating PointUnit 13
1.9 Bus Interface Unit 14
2 PROGRAMMING INTERFACE

2.1 Processor Initialization. 15
2.2 Instruction Set Overview 18
2.3 Register Sets.o 19
2.4 System Register Seto 28
2.5 Cyrix llRegisterSet a7
2.6 Debug Registers o 73
2.7 AddressSpace. 75
2.8 Memory Addressing Methods 76
2.9 Memory Caches 85
2.10 Interrupts and Exceptions 90
211 System ManagementMode 98
212 SleepandHalt 107
2.13 Protection 109
214 Virtual 8086 Mode 112
2.15 Floating Point Unit Operations. 113
216 MMXOperations. 116
3 Cyrix 1l BUS INTERFACE

3.1 Signal Description Table 119
3.2 Signal Descriptions. 124
4 ELECTRICAL SPECIFICATIONS

4.1 Introduction. Lo 133
4.2 Electrical Ground. 133
4.3 Power Supply Voltage Signalling. 133
4.4 Power and Ground Connections. 133
4.5 Gunning Transceiver Logic. 133
4.6 Recommended Operating Conditions 136

Cyrix Il \

Cyrix Processors

Table of Contents

4.7
4.8
4.9

51
5.2

6.1
6.2
6.3
6.4
6.5
6.6
6.7

Bus Signal Groups 137
DC Characteristics oo 138
AC Characteristics 141

MECHANICAL SPECIFICATIONS
370-PinSPGAPackage 145
Thermal Resistances. 153

INSTRUCTION SET

Instruction Set Format 155
General Instruction Format. 157
CPUID Instruction, 166
Instruction Set Tables 167
FPU Instruction Clock Counts 186
Cyrix lll Processor MMX Instruction Clock Counts. 193
Cyrix Il Processor 3DNow! Clock Counts 199

vi

Cyrix I

April 4, 2000 11:10 am

Cyrix Processors

Cyrix 1l PROCESSOR
Socket 370 Compatible CPU
MM X™ and 3DNow!™ Technology

Product Overview —

1 ARCHITECTURE OVERVIEW

The Cyrix Il processor is a 64-bit, x86
instruction set compatible processor that
provides high-performance in a Celeron™
compatible PGA 370 socket. The Cyrix ||
processor offers an enhanced super-scalar
core, and anew pipeline, dual-issue MMX™
and 3DNOW!™ -compatible floating point
unit (FPU). The Cyrix Il processor can
process 57 new multimediainstructions
compatible with MMX™ technology.

The processor contains a64K L1 cacheand a
256K L2 cache. It operates at a higher
frequency, contains an enlarged cache, a
two-level TLB, and an improved branch target
cache.

The Cyrix |11 processor core is an enhanced
version of aproven design that offers competi-
tive CPU performance. It has integer and
floating point execution unitsthat are based on
sixth-generation technology. The integer core
contains a dual-issue, seven-stage execution
pipeline and offers advanced features such as
operand forwarding, branch target buffers, and
extensive write buffering. The FPU has been
redesigned to provide additional buffering,
reduced latency, and improved throughput up
to 1 GFLOP (peak). The dual issue FPU can
alow two MMX or floating point instructions

Cyrix Il

to execute simultaneously. A 64KB
write-back L1 cacheis accessed in a unique
fashion that eliminates pipeline stalls for fetch
operands that hit inthe cache.

Through the use of unique architectural
features, the Cyrix 111 processor eliminates
many data dependencies and resource
conflicts, resulting in optimal performance for
both 16-bit and 32-bit x86 software.

To provide support for multimedia operations,
the cache can be turned into a scratchpad RAM
memory on aline by line basis. The cache
area set aside as scratchpad memory actsas a
private memory for the CPU and does not
participate in cache operations.

The on-chip FPU has been enhanced to
process MMX ™ and 3DNow! instructions as
well as the floating point instructions. Both
types of instructions execute in parallel with
integer instruction processing. To facilitate
FPU operations, the FPU features a 64-bit data
interface, afour-deep instruction queue and a
six-deep store queue.

For mobile systems and other power sensitive
applications, the Cyrix |11 processor incorpo-
rates low power suspend mode, stop clock
capability, and system management mode
(SMM).

Cyrix Processors

11 Processor Differences

Tables 1 describe the major differences between the M Il and Cyrix |11 processors.

Table 1-1. Cyrix |11 Processor vs. M |1 Processor

Feature

Cyrix Il Processor

M Il Processor

Package/pinout

Socket 370 SPGA

Socket 7

Supply voltage

Core voltage = 2.2v
i/o reference voltage = 1.0v

Core voltage = 2.9v
I/O voltage = 3.3v

CPU primary cache (L1)

64 KB write-back L1 Cache

64 KB write-back Cache

Support for secondary cache (L2)

Internal L2 Cache, 256KBs

Yes (512K external typical)

MMX™ Instruction Set

Yes

Yes

3DNOW! ™ Instruction Set

Yes

No

Floating point unit

Dual-issue from Integer Unit

Single-issue from Integer Unit

4MB paging Yes No
Virtual Mode Extensions Yes No
1.2 Celeron™ Compatibility

The Cyrix 11 processor is design to be compatible with motherboards created for the Intel®
Celeron processor with a socket 370 footprint. However some electrical signaling differs so that
the Cyrix 111 can provide features not supported by the Celeron. In particular, the Cyrix I11 support
two unigue pins, the VID[4] pin AK36 used to signal 2.2 volt operation and the BSEL 1 pin AK30
used with BSELO pin AJ33 to signal system bus frequency.

Conversely, afew minor Celeron signals are not supported by the Cyrix 111 processor and include:
breakpoint signals (BP[3:2] and BPM[1:0]#; internal error signa (IERR#); probe signals
(PRDY#, PREQ#); and thermal trip signa (THERMTRIP#).

Refer to chapter 3 of this manual for more details on Cyrix |11 signal descriptions. For mother-
board design considerations and more details concerning Celeron compatibility refer to the Cyrix
Il Board Design and AC/DC Specifications Application Note 120.

2 Cyrix I

April 4, 2000 11:10 am

I |

13 Mgor Functiona Blocks

The Cyrix Il processor consists of four major
functional blocks, as shown in the overall

block diagram on the first page of this manual:

e Memory Management Unit
e CPU Core

e Cache Unit

e BusInterface Unit

The CPU contains the superpipelined integer
unit, the BTB (Branch Target Buffer) unit and
the FPU (Floating Point Unit).

The BIU (Bus Interface Unit) provides the
interface between the external system board
and the processor’ s internal execution units.
During a memory cycle, amemory location is
selected through the address lines (A[31-3]#).
Datais passed from or to memory through the
datalines (D[63-0]#).

Each instruction is read into 256-Byte Instruc-
tion Line Cache. The Cache Unit stores the
most recently used data and instructions to
allow fast access to the information by the
Integer Unit and FPU.

The CPU core requests instructions from the
Cache Unit. The received integer instructions
are decoded by either the X or Y processing
pipelines within the superpipelined integer
unit. If theinstructionisaMMX or FPU
instruction it is passed to the floating point unit
for processing.

Datais fetched from the 64-KB unified cache
asrequired. If the datais not in the cacheit is
accessed viathe bus interface unit from main

memory.

Cyrix Il

The Memory Management Unit calculates
physical addresses including addresses based

on paging.

Physical addresses are calculated by the
Memory Management Unit and passed to the
Cache Unit and the Bus Interface Unit (BIU).

Cyrix Processors

14 Integer Unit

The Integer Unit (Figure 1-1) provides paralel * Address Calculation 1 (AC1)
instruction execution using two seven-stage * Address Calculation 2 (AC2)
integer pipelines. Each of the two pipelines, * Execute (EX)

XandY, can process several instructions * Write-Back (WB)

simultaneously.

) i , Theinstruction decode and address cal culation
The Integer Unit consists of the following functions are both divided into superpipelined
pipeline stages: stages.

* Instruction Fetch (IF)
* Instruction Decode 1 (ID1)
* Instruction Decode 2 (ID2)

Instruction Fetch
Instruction Decode 1
J |
Y
Instruction Instruction
In-Order Decode 2 Decode 2
Processing |
P <
Address Address
Calculation 1 Calculation 1
A J
Address Address
Calculation 2 Calculation 2
[[¥ . reu
' i -
Out-of-Order Execution Execution
Processing |
; l
Write Back Write Back
X Pipeline Y Pipeline

Figure 1-1. Integer Unit

4 Cyrix I

April 4, 2000 11:10 am

I |

14.1 Pipeline Stages

The Instruction Fetch (IF) stage, shared by
both the X and Y pipelines, fetches 16 bytes of
code from the cache unit in asingle clock
cycle. Within this section, the code stream is
checked for any branch instructions that could
affect normal program sequencing.

If an unconditional or conditional branchis
detected, branch prediction logic within the IF
stage generates a predicted target address for
the instruction. The |F stage then begins
fetching instructions at the predicted address.

The superpipelined Instruction Decode func-
tion containsthe ID1 and ID2 stages. 1D1,
shared by both pipelines, evaluates the code
stream provided by the IF stage and deter-
mines the number of bytes in each instruction.
Up to two instructions per clock are delivered
to the ID2 stages, one in each pipeline.

The 1D2 stages decode instructions and send
the decoded instructions to either the X or Y
pipeline for execution. The particular pipeline
is chosen, based on which instructions are
aready in each pipeline and how fast they are
expected to flow through the remaining stages.

The Address Cal culation function containstwo
stages, AC1 and AC2. If theinstruction refers
to amemory operand, the AC1 calculates a
linear memory address for the instruction.

The AC2 stage performs any required memory
management functions, cache accesses, and
register file accesses. If afloating point
instruction is detected by AC2, the instruction
is sent to the FPU for processing.

Cyrix Il

The Execute (EX) stage executes instructions
using the operands provided by the address
calculation stage.

The Write-Back (WB) stage isthe last 1U
stage. The WB stage stores execution results
either to aregister filewithinthe lU or to a
write buffer in the cache control unit.

1.4.2 Out-of-Order
Processing

If an instruction executes faster than the
previous instruction in the other pipeline, the
instructions may complete out of order. All
instructions are processed in order, up to the
EX stage. Whilein the EX and WB stages,
instructions may be completed out of order.

If there is a data dependency between two
instructions, the necessary hardware interlocks
are enforced to ensure correct program execu-
tion. Even though instructions may complete
out of order, exceptions and writes resulting
from the instructions are alwaysissued in
program order.

Cyrix Processors

1.4.3 Pipeline Selection

In most cases, instructions are processed in
either pipeline and without pairing constraints
on the instructions. However, certain instruc-
tions are processed only in the X pipeline:

e Branch instructions
* Floating point instructions
e Exclusiveinstructions

Branch and floating point instructions may be
paired with a second instruction in the Y pipe-
line.

Exclusive Instructions cannot be paired with
instructionsin the Y pipeline. These instruc-
tions typically require multiple memory
accesses. Although exclusive instructions may
not be paired, hardware from both pipelinesis
used to accel erate instruction completion.
Listed below are the Cyrix 11 CPU exclusive
instruction types:

* Protected mode segment loads

» Special register accesses

(Control, Debug, and Test Registers)
String instructions

Multiply and divide

1/O port accesses

Push all (PUSHA) and pop all (POPA)
Intersegment jumps, calls, and returns

144 Data Dependency

Solutions

When two instructions that are executing in
parallel require access to the same data or
register, one of the following types of data
dependencies may occur:

* Read-After-Write (RAW)
* Write-After-Read (WAR)
o Write-After-Write (WAW)

Data dependencies typically force serialized
execution of instructions. However, the Cyrix
[11 CPU implements three mechanisms that
allow parallel execution of instructions
containing data dependencies:

* Register Renaming
» DataForwarding
» DataBypassing

The following sections provide detailed exam-
ples of these mechanisms.

1441 Register Renaming

The Cyrix 11 CPU contains 32 physical
general purpose registers. Each of the 32 regis-
tersin the register file can be temporarily
assigned as one of the general purpose regis-
ters defined by the x86 architecture (EAX,
EBX, ECX, EDX, ESI, EDI, EBP, and ESP).
For each register write operation a new phys-
ical register is selected to alow previous data
to be retained temporarily. Register renaming
effectively removes all WAW and WAR
dependencies. The programmer does not have
to consider register renaming as register
renaming is completely transparent to both the
operating system and application software.

Cyrix I

April 4, 2000 11:10 am

I |

14.4.2 Data Forwarding

Register renaming alone cannot remove RAW
dependencies. The Cyrix 11 CPU usestwo
types of data forwarding in conjunction with
register renaming to eliminate RAW depen-
dencies:

* Operand Forwarding
* Result Forwarding

Operand forwarding takes place when the first
inapair of instructions performs a move from
register or memory, and the datathat isread by
thefirst instruction is required by the second
instruction. The Cyrix 111 CPU performs the
read operation and makes the data read avail-
able to both instructions simultaneously.

Result forwarding takes place when the first in
apair of instructions performs an operation
(such asan ADD) and the result isrequired by
the second instruction to perform amoveto a
register or memory. The Cyrix 111 CPU
performs the required operation and stores the
results of the operation to the destination of
both instructions simultaneously.

Operand forwarding can only occur if the first
instruction does not modify its source data. In
other words, the instruction is a move type
instruction (for example, MOV, POP, LEA).
Operand forwarding occurs for both register
and memory operands. The size of thefirst
instruction destination and the second instruc-
tion source must match.

Cyrix Il

Cyrix Processors

15 DataBypassng

In addition to register renaming and data
forwarding, the Cyrix 111 CPU implements a
third data dependency-resolution technique
called data bypassing. Data bypassing reduces
the performance penalty of those memory data
RAW dependencies that cannot be eliminated
by data forwarding.

Data bypassing is implemented when the first
in apair of instructions writesto memory and
the second instruction reads the same data
from memory. The Cyrix |11 CPU retains the
data from the first instruction and passes it to
the second instruction, thereby eliminating a
memory read cycle. Data bypassing only
occurs for cacheable memory locations.

151 Branch Control

Branch instructions occur on average every
four to six instructions in x86-compatible
programs. When the normal sequential flow of
aprogram changes due to a branch instruction,
the pipeline stages may stall while waiting for
the CPU to calculate, retrieve, and decode the
new instruction stream. The Cyrix 111 CPU
minimizes the performance degradation and
latency of branch instructions through the use
of branch prediction and speculative execu-
tion.

1511 Branch Prediction

The Cyrix 111 CPU uses a512-entry, 4-way set
associative Branch Target Buffer (BTB) to
store branch target addresses. The Cyrix I11
CPU has 1024-entry branch history table.
During the fetch stage, the instruction stream
is checked for the presence of branch instruc-
tions. If an unconditional branch instruction is

encountered, the Cyrix 11 CPU accesses the
BTB to check for the branch instruction’s
target address. If the branch instruction’s
target addressisfound in the BTB, the Cyrix
[11 CPU begins fetching at the target address
specified by the BTB.

In case of conditiona branches, the BTB also
provides history information to indicate
whether the branch is more likely to be taken
or not taken. If the conditional branch instruc-
tionisfound in the BTB, the Cyrix |11 CPU
begins fetching instructions at the predicted
target address. If the conditional branch misses
inthe BTB, the Cyrix 111 CPU predicts that the
branch will not be taken, and instruction
fetching continues with the next sequential
instruction. The decision to fetch the taken or
not taken target addressis based on afour-state
branch prediction algorithm.

Once fetched, a conditional branch instruction
isfirst decoded and then dispatched to the X
pipeline only. The conditional branch instruc-
tion proceeds through the X pipelineand is
then resolved in either the EX stage or the WB
stage. The conditional branchisresolvedinthe
EX stage, if the instruction responsible for
setting the condition codes is completed prior
to the execution of the branch. If theinstruc-
tion that sets the condition codes is executed in
parallel with the branch, the conditional
branch instruction is resolved in the WB stage.

Correctly predicted branch instructions
execute in asingle core clock. If resolution of
abranch indicates that a misprediction has
occurred, the Cyrix 111 CPU flushes the pipe-
line and starts fetching from the correct target
address. The Cyrix |11 CPU prefetches both the

Cyrix I

April 4, 2000 11:10 am

I |

predicted and the non-predicted path for each
conditional branch, thereby eliminating the
cache access cycle on amisprediction. If the
branch is resolved in the EX stage, the
resulting misprediction latency is four cycles.
If the branch isresolved in the WB stage, the
latency isfive cycles.

Since the target address of return (RET)
instructions is dynamic rather than static, the
Cyrix 111 CPU cachestarget addressesfor RET
instructions in an eight-entry return stack
rather than in the BTB. Thereturn addressis
pushed on the return stack during a CALL
instruction and popped during the corre-
sponding RET instruction.

1512 Speculative Execution

The Cyrix 11 CPU is capable of speculative
execution following afloating point instruc-
tion or predicted branch. Specul ative execution
allows the pipelines to continuously execute
instructions following a branch without
stalling the pipelines waiting for branch reso-
[ution. The same mechanism is used to execute
floating point instructionsin parallel with
integer instructions.

The Cyrix 11 CPU is capable of up to four
levels of speculation (i.e., combinations of
four conditional branches and floating point
operations). After generating the fetch address
using branch prediction, the CPU checkpoints
the machine state (registers, flags, and
processor environment), increments the specu-
lation level counter, and begins operating on
the predicted instruction stream.

Once the branch instruction is resolved, the
CPU decreases the speculation level. For a
correctly predicted branch, the status of the

Cyrix Il

checkpointed resourcesis cleared. For a
branch misprediction, the Cyrix 111 processor
generatesthe correct fetch address and usesthe
checkpointed values to restore the machine
statein asingle clock.

In order to maintain compatibility, writes that
result from speculatively executed instructions
are not permitted to update the cache or
external memory until the appropriate branch
IS resolved. Speculative execution continues
until one of the following conditions occurs:

1) A branch or floating point operation is
decoded and the speculation level is already at
four.

2) An exception or afault occurs.
3) Thewrite buffersare full.

4) An attempt is made to modify a non-check-
pointed resource (i.e., segment registers,
system flags).

Cyrix Processors

16 CacheUnits

The Cyrix 111 CPU employs two caches, the
64K B L1 Cache and the Exclusive L2 Cache
(Figure 1-2, Page 1-10). Themain cacheisa
4-way set-associative 64-KB unified cache.
The unified cache provides a higher hit rate
than using equal-sized separate data and
instruction caches. Whilein Cyrix SMM mode
both SMM code and data are cacheable.

To avoid data conflicts, both caches are exclu-
sive, that is data can be stored in either cache
but not both at the same time.

16.1 64-KB L1 Cache

The 64-KB unified write-back cache functions
as the primary cache. Configured as a
four-way set-associative cache, the cache

stores up to 64Kilobytes of code and datain
2048 lines. The cache is dual-ported and
allows any two of the following operations to
occur in parallel:

* Codefetch
* Dataread (X pipe, Y pipeline or FPU)
» Datawrite (X pipe, Y pipeline or FPU)

The unified cache uses a pseudo-LRU replace-
ment algorithm and can be configured to allo-
cate new lines on read misses only or on read
and write misses.

e = Dual Bus
— =SingleBus

' Instruction
I Uni Address -
nteger Unit o Instruction Line Cache
I 256-Byte, Fully Associative, 8 Lines
- — i I—» FPU
X Y Data Bus '
Pipe | Pipe
L2 Cache -
| Exclusive 256K 14-» Bus Interface Unit
> Memory
Management o L1 Cache Cach
Unit > 64KB, - Tac e
(TLB) 4-Way Set Associative, ags
e 2048 Lines
Key: Modified X, Y

Physical Addresses

Figure 1-2. Cache Unit Operations

10

Cyrix I

April 4, 2000 11:10 am

I |

1.6.2 Exclusive L2 Cache

The exclusive 256 KB L2 cache serves as a unified secondary cache. ThisL2 cacheisfilled
through L1 cache eviction. Fetches from theinteger unit that do not hit in the L1 cache will access
the L2 cache. The L2 can act as avictim cache, saving cache linesreleased by the L1 cache. The
L2 cacheisthusreferred to as an exclusive, or victim cache, sinceit only contains datathat is not
found in the L1 cache. The L2 cacheis 8-way set associative.

Thetotal cache of the Cyrix 111 CPU can be up to 320k since the exclusive L2 architecture ensures
that no datawill bein boththeL1 and L2. Thisalso eliminates the need for an L1 to L2 writeback

cycle, thus improving performance.

The L2 cache bus operates at the same frequency as the cpu core, delivering cache data at very
high speed to the execution units.

Cyrix Il 11

Cyrix Processors

17 Memory Management Unit

42 lines. The 384-entry L2 TLB is 6-way asso-

ciative and hold 384 lines. The DTE islocated

The Memory Management Unit (MMU), in memory.

trandates the linear address supplied by the U

into aphysical address to be used by the Cache locking is controlled through use of the
unified caches and the bus interface. Memory RDMSR and WRMSR instructions.

management procedures are x86 compatible,
adhering to standard paging mechanisms.

Within the Cyrix 11 CPU there are two TLBs,
themain L1 TLB and thelarger L2 TLB. The
16-entry L1 TLB isdirect mapped and holds

Li
inear °

Address

> Main L1 TLB
) OTE —» L2TLB
Directory Table
CR3 > PTE Physical Page |
Control Register
>
Page Table Menory

1748000

Cyrix I

April 4, 2000 11:10 am

I |

18 Hoating Point Unit

The Floating Point Unit (FPU) processes
floating point, MM X, and SDNOW! instruc-
tions. The FPU interfaces to the Integer Unit
and the Cache Unit through a 64-bit bus. The
FPU isx87 instruction set compatible and
adheres to the |EEE-754 standard. Since most
applications contain FPU instructions mixed
with integer instructions, the FPU achieves
high performance by completing integer and
FPU operationsin paralel.

FPU Parallel Execution

The Cyrix |11 processor executes integer
instructions in parallel with FPU instructions.
Integer instructions may complete out of order
with respect to the FPU instructions. The
Cyrix Il processor maintains x86 compati-
bility by signaling exceptions and issuing write
cyclesin program order.

FPU instructions can be dispatched from the
Integer Unit's X or Y pipeline. The address
calculation stage of the pipeline checks for
memory management exceptions and accesses
memory operands used by the FPU. If no
exceptions are detected, the Cyrix 111
processor checkpoints the state of the CPU
and, during AC2, dispatches the floating point
instruction to the FPU instruction queue. The
Cyrix Il processor can then complete any
subsequent integer instructions speculatively
and out of order relative to the FPU instruction
and relative to any potential FPU exceptions
which may occur.

As additional FPU instructions enter the pipe-
line, the Cyrix 111 processor dispatches up to
eight FPU instructions to the FPU instruction
gueue. The Cyrix |11 processor continues
executing speculatively and out of order, rela-

Cyrix Il

tive to the FPU queue, until the Cyrix 111
processor encounters one of the conditionsthat
causes speculative execution to halt. Asthe
FPU completes instructions, the speculation
level decreases and the checkpointed resources
are available for reuse in subsequent opera-
tions. The FPU also uses a set of six write
buffers to prevent stalls due to speculative
writes.

13

Cyrix Processors

19 BusInterface Unit

The Bus Interface Unit (BIU) provides the
signals and timing required by external
circuitry. The signal descriptions and bus
interface timing information is provided in
Chapters 3 and 4 of this manual.

14 Cyrix I

April 4, 2000 11:32 am

Cyrix Processors

Cyrix 111 PROCESSOR
Socket 370 Compatible CPU
MMX™ and 3DNow! ™ Technology

-

Programming Interface 4'

2 PROGRAMMING INTERFACE

In this chapter, the internal operations of the
Cyrix 1l CPU are described mainly from an
application programmer’s point of view.
Included in this chapter are descriptions of
processor initialization, the register set,
memory addressing, varioustypes of interrupts
and the shutdown and halt process. An
overview of real, virtual 8086, and protected
operating modes is also included in this
chapter. The FPU operations are described
separately at the end of the chapter.

Cyrix Il

2.1 Processor Initialization

The Cyrix 1l CPU isinitialized when the
RESET# signal is asserted. The processor is
placed in real mode and the registerslisted in
Table 2-1 (Page 2-16) are set to their initialized
values. RESET# invalidates and disables the
cache and turns off paging. When RESET#is
asserted, the Cyrix 111 CPU terminates all local
bus activity and all internal execution. During
the entire time that RESET# is asserted, the
internal pipelinesare flushed and no instruction
execution or bus activity occurs.

Approximately 150 to 250 externa clock
cycles after RESET# is negated, the processor
begins executing instructions at the top of phys-
ical memory (address location FFFF FFFOh).
Typically, an intersegment JUMP is placed at
FFFF FFFOh. Thisinstruction will forcethe pro-
cessor to begin execution in thelowest 1 MB of
address space.

Note: The actual time depends on the clock
scaling in use. Also an additional 2%° clock
cycles are needed if self-test is requested.

15

Cyrix Processors

Processor |nitialization

Table 2-1. Initialized Core Registers Contents
Register Register Name Initialized Contents Comments
EAX Accumulator XXXX Xxxxh 0000 0000h indicates self-test passed.
EBX Base XXXX Xxxxh
ECX Count XXXX Xxxxh
EDX Data xxxx 04 [DIRQ] DIRO = DeviceID
EBP Base Pointer XXXX Xxxxh
ESI Source Index XXXX Xxxxh
EDI Destination Index XXXX Xxxxh
ESP Stack Pointer XXXX Xxxxh
EFLAGS Flags 0000 0002h See Table 2-6 on page 2-26 for bit defini-
tions.
EIP Instruction Pointer 0000 FFFOh
ES Extra Segment 0000h Base address set to 0000 0000h.
Limit set to FFFFh.
Cs Code Segment FOOOh Base address set to FFFF 0000h.
Limit set to FFFFh.
SS Stack Segment 0000h Base address set to 0000 0000h.
Limit set to FFFFh.
DS Data Segment 0000h Base address set to 0000 0000h.
Limit set to FFFFh.
FS Extra Segment 0000h Base address set to 0000 0000h.
Limit set to FFFFh.
GS Extra Segment 0000h Base address set to 0000 0000h.
Limit set to FFFFh.
IDTR Interrupt Descriptor Table Base = O, Limit = 3FFh
Register
GDTR Global Descriptor Table Register | xxxx xxxxh xxxxh
LDTR Local Descriptor Table Register | xxxx xxxxh, xxxxh
TR Task Register xxxxh
CRO Machine Status Word 6000 0010h See Table 2-12 on page29 for bit defini-
tions.
CR2 Control Register 2 XXXX Xxxxh See page30.
CR3 Control Register 3 XXXX Xxxxh See page30.
CR4 Control Register 4 0000 0000h See Table 2-9 on page 2-30 for bit defini-
tions.
CCR1 Configuration Control 1 00h See paragraph 2.5.4.1 on page52 for bit def-
initions.
CCR2 Configuration Control 2 00h See paragraph 2.5.4.3 on page53 for bit def-
initions.
CCR3 Configuration Control 3 00h See paragraph 2.5.4.4 on page54 for bit def-
initions.
CCR7 Configuration Control 7 00h See paragraph 2.5.4.8, page58 for bit defini-
tions.
DIRO Device Identification O 4xh Device ID and reads back initial CPU
clock-speed setting.
DIR1 Device ldentification 1 xxh Stepping and Revision ID (RO).
DR7 Debug Register 7 0000 0400h See (XREF) for bit definitions.
16 Cyrix 11l

Via Confidential, Requires Non-Disclosure Agreement

April 4, 2000 11:32 am

Processor Initialization 2

Table 2-1. Initialized Core Registers Contents (Continued)

| Register | Register Name | Initialized Contents | Comments

x = Undefined value

Cyrix Il 17

Via Confidential, Requires Non-Disclosure Agreement

Cyrix Processors

Instruction Set Overview

2.2 Instruction Set Overview

The Cyrix |11 Processor instruction set can be
divided into ten types of operations:

* Arithmetic » High-Level Language Support

« Shift/Rotate Operating System Support
 Control Transfer « Bit Manipulation

» DataTransfer * String Manipulation

e Floating Point « MMX and 3DNow! Instructions

Cyrix 11 Processor instructions operate on as
few as zero operands and as many as three oper-
ands. An NOP instruction (no operation) is an
example of a zero-operand instruction.
Two-operand instructions allow the specifica-
tion of an explicit source and destination pair as
part of the instruction. These two operand
instructions can be divided into eight groups
according to operand types:

* Register to Register
* Register to Memory
* Memory to Register
* Memory to Memory

* Register to 1/0
* |/Oto Register
* Immediate Data to Register
* Immediate Datato Memory

An operand can be held in the instruction itself
(asin the case of animmediate operand), in one
of the processor’ s registers or 1/0 ports, or in
memory. An immediate operand is fetched as
part of the opcode for the instruction.

Operand lengths of 8, 16, 32 or 48 bits are sup-
ported as well as 64 or 80 bits associated with

floating-point instructions. Operand lengths of

8 or 32 bits are generally used when executing

code written for 386- or 486-class (32-bit code)
processors. Operand lengths of 8 or 16 bits are
generally used when executing existing 8086 or
80286 code (16-bit code). The default length of
an operand can be overridden by placing one or
more instruction prefixes in front of the opcode.

18

For example, the use of prefixes allows a 32-bit
operand to be used with 16-bit code or a 16-bit
operand to be used with 32-bit code.

Chapter 6 of thismanual listseach instructionin
the Cyrix 111 CPU instruction set along with the
associ ated opcodes, execution clock counts, and
effects on the FLAGS register.

2.2.1 Lock Prefix

The LOCK prefix may be placed before certain
instructions that read, modify, then write back
to memory. The LOCK prefix can be used with
thefollowing instructionsonly whentheresultis
awrite operation to memory:

Bit Test Instructions (BTS, BTR, BTC)

Exchange Instructions (XADD, XCHG,
CMPXCHG)

One-operand Arithmetic and Logical
Instructions (DEC, INC, NEG, NOT)

Two-operand Arithmetic and Logical
Instructions (ADC, ADD, AND, OR,
SBB, SUB, XOR).

Aninvalid opcode exception is generated if the
LOCK prefix isused with any other instruction
or with one of the instructions above when no
write operation to memory occurs (for example,
when the destination is aregister).

Cyrix I

Via Confidential, Requires Non-Disclosure Agreement

April 4, 2000 11:32 am

T

2.3 Register Sets

From the programmer’ s point of view the acces-
sibleregistersin the Cyrix I11 CPU are grouped
into two sets of registers, the application and
system registersset. The application register set
contains the registers frequently used by appli-
cation programmers, and the system register set
contains the registers typically reserved for use
by operating system programmers.

The application register set is made up of gen-
eral purpose registers, segment registers, aflag
register, and an instruction pointer register.

The system register set is made up of the
remaining registerswhich include control regis-
ters, system address registers, debug registers,
configuration registers, and test registers.

Each of theregistersisdiscussed in detail inthe
following sections.

Cyrix Il

231 Application Register Set

The Application Register Set, as shown in Table
2-2, consists of the registers most often used by
the applications programmer.

These registers are generally accessible,
although some bitsin the Flags register are pro-
tected.

The General Purpose Register contents are
frequently modified by instructions and typi-
cally contain arithmetic and logical instruction
operands.

In real mode, Segment Register s contain the
base address for each segment. In protected
mode, the segment registers contain segment
selectors. The segment selectors provide index-
ing for tables (located in memory) that contain
the base address for each segment, aswell as
other memory addressing information.

Thelnstruction Pointer Register pointsto the
next instruction that the processor will execute.
Thisregister is automatically incremented by
the processor as execution progresses.

TheFlagsRegister containscontrol bitsusedto
reflect the status of previously executed instruc-
tions. Thisregister also containscontrol bitsthat
affect the operation of some instructions.

19

Via Confidential, Requires Non-Disclosure Agreement

Cyrix Processors

2.3.2 General Purpose Registers

The Genera Purpose Registers are divided into four data registers, two pointer registers, and two
index registers as shown in Table 2-2 on page 2-20.

TheData Register sare used by the applications programmer to manipulate data structures and to
hold the results of logical and arithmetic operations. Different portions of a general dataregisters
can be addressed by using different names. An*“E” prefix identifies acomplete 32-bit register. An
“X” suffix without the “E” prefix identifies the lower 16 bits of the register.

The lower two bytes of a data register are addressed with an “H” suffix (identifiesthe upper byte)
or an“L” suffix (identifiesthe lower byte). These L and _H portions of the data registers act as
independent registers. For example, if the AH register iswritten to by an instruction, the AL reg-
ister bits remain unchanged.

Table2-2. Application Register Set
General Purpose Registers
31 16 |15 8|7 0
AX
AH [AL

EAX (Extended A Register)

BX
BH [BL
EBX (Extended B Register)
CX
CH | CL
ECX (Extended C Register)
DX
DH | DL

EDX (Extended D Register)

T (Source InNdex)

ESI (Extended Source Index)

I (Destination Index)
EDI (Extended Destination Index)

BP (Base Pointer)

EBP (Extended Base Pointer)

TP (Sack Pointen)

ESP (Extended Stack Pointer)

20 Cyrix 1
Via Confidential, Requires Non-Disclosure Agreement

April 4, 2000 11:32 am

T

ThePointer and Index Register sarelisted below.

Sl or ESI Source Index

DI or EDI Destination Index
SPor ESP Stack Pointer
BP or EBP Base Pointer

These registers can be addressed as 16- or 32-bit
registers, with the “E” prefix indicating 32 hits.

The pointer and index registers can be used as
general purpose registers, however, some
instructions use afixed assignment of these reg-
isters. For example, repeated string operations
alwaysuse ESI asthe source pointer, EDI asthe
destination pointer, and ECX as a counter. The
instructions that use fixed registers include mul-
tiply and divide, 1/0 access, string operations,
stack operations, loop, variable shift and rotate,
and tranglate instructions.

The Cyrix |11 Processor implements a stack
using the ESP register. This stack is accessed
during the PUSH and POP instructions, proce-
dure calls, procedure returns, interrupts, excep-
tions, and interrupt/exception returns. The
Cyrix 11 Processor automatically adjusts the
value of the ESP during operations that result
from these instructions.

The EBP register may be used to refer to data
passed on the stack during procedure calls.

L ocal data may also be placed on the stack and
accessed with BP. Thisregister provides a
mechanism to accesstack datain high-level lan-

guages.

Cyrix Il

233 Segment Registers and
Selectors

Segmentation providesameans of defining data
structures inside the memory space of the
microprocessor. There are three basic types of
segments: code, data, and stack. Segments are
used automatically by the processor to deter-
mine the location in memory of code, data, and
stack references.

There are six 16-bit segment registers as shown
in Table 2-3.

Table 2-3. Application Register Set
Segment Selector Registers

15 0
CS (Code Segment)
SS (Stack Segment)
DS (D Data Segment)
ES (E Data Segment)
FS (F Data Segment)
GS (G Data Segment)

In real and virtual 8086 operating modes, a seg-
ment register holds a 16-bit segment base. The
16-bit segment is multiplied by 16 and a 16-bit
or 32-bit offset isthen added to it to create alin-
ear address. The offset sizeis dependent on the
current addresssize. Inreal modeandin virtual
8086 mode with paging disabled, the linear
address is also the physical address. In virtual
8086 mode with paging enabled, the linear
address is trandated to the physical address
using the current page tables.

21

Via Confidential, Requires Non-Disclosure Agreement

Cyrix Processors

Table 2-4. Segment Register Selection Rules

Type of Memory Implied (Default) ?)evg::ﬁg;
Reference Segment Prefix

Code Fetch CS None
Destination of PUSH, PUSHF, INT, CALL, PUSHA SS None
instructions
Source of POP, POPA, POPF, IRET, RET instructions SS None
Degtination of STOS, MOV S, REP STOS, REP MOV'S ES None
instructions
Other data references with effective address using base reg- DS CS ES, FS, GS, SS
isters of:

EAX, EBX, ECX, EDX, ESI, EDI, EBP, ESP SS CS, DS, ES, FS, GS

22 Cyrix 11l

Via Confidential, Requires Non-Disclosure Agreement

April 4, 2000 11:32 am

T

In protected mode a segment register holds a
Segment Selector containing a 13-bit index, a
Table Indicator (TI) bit, and atwo-bit
Requested Privilege Level (RPL) field. The
Index points into a descriptor table in memory
and selects one of 8192 (213) segment descrip-
tors contained in the descriptor table.

A segment descriptor is an eight-byte value
used to describe amemory segment by defining
the segment base, the segment limit, and access
control information. To address data within a
segment, a 16-bit or 32-bit offset isadded to the
segment’ s base address. Once a segment selec-
tor has been loaded into a segment register, an
instruction needs only to specify the segment
register and the offset.

The Table Indicator (TI) bit of the selector
defines which descriptor table the index points
into. If TI=0, the index references the Global
Descriptor Table (GDT). If TI=1, theindex ref-
erencesthe Local Descriptor Table (LDT). The
GDT and LDT are described in more detail in
Section 2.4.2 (Page 2-33). Protected mode
addressing isdiscussed further in Sections 2.8.2
(Page 2-78).

The Requested Privilege Level (RPL) fieldina
segment selector is used to determine the Effec-
tive Privilege Level of an instruction (where
RPL =0 indicatesthe most privileged level, and
RPL=3 indicatesthe least privileged level).

If the level requested by RPL islessthan the
Current Program Level (CPL), the RPL level is
accepted and the Effective Privilege Level is
changedtothe RPL value. If thelevel requested
by RPL is greater than CPL, the CPL overrides
therequested RPL and EffectivePrivilegeLevel
remains unchanged.

Cyrix Il

When a segment register is loaded with a seg-
ment selector, the segment base, segment limit
and accessrights are loaded from the descriptor
table entry into auser-invisible or hidden por-
tion of the segment register (i.e., cached
on-chip). The CPU does not access the descrip-
tor table entry again until another segment reg-
ister load occurs. If the descriptor tables are
modified in memory, the segment registers must
be reloaded with the new selector values by the
software.

The active segment register is selected accord-
ing to theruleslisted in Table 2-4 and the type
of instruction being currently processed. In gen-
eral, the DSregister selector isused for dataref-
erences. Stack references use the SS register,
and instruction fetches use the CSregister.
While some of these selections may be overrid-
den, instruction fetches, stack operations, and
the destination write operation of string opera-
tions cannot be overridden. Special seg-
ment-overrideinstruction prefixesallow theuse
of alternate segment registers. These segment
registersinclude the ES, FS, and GSregisters.

23

Via Confidential, Requires Non-Disclosure Agreement

Cyrix Processors

234 I nstruction Pointer
Register

The Instruction Pointer (EIP) Register containsthe offset into the current code segment of the next
instruction to be executed. The register is normally incremented by the length of the current
instruction with each instruction execution unlessit isimplicitly modified through an interrupt,

exception, or an instruction that changes the sequential execution flow (for example IMP and
CALL.

Table 2-5. Application Register Set
Instruction Pointer

31 0
EIP (Extended Instruction Pointer Register)

24 Cyrix 111
Via Confidential, Requires Non-Disclosure Agreement

April 4, 2000 11:32 am

T

235

The Extended Flags Register, EFLAGS, contains status information and controls certain opera-
tions on the Cyrix [11 CPU microprocessor. Thelower 16 bitsof this register are referred to as the
FLAGS regiger that is used when executing 8086 or 80286 code. The flag bits listed in Table 2-6.

Cyrix Il

Extended Flags Register

dentification — S
AlignmentCheck — S
Virtual 8086 Mode S
Resume Flag — D

Flags
A\
Y’ ‘\i.
2 2 2 111 111 1 1 1 1 '
4 3 1 987 654 32 109 876543210
T
I NME N 10 oD I|[T|[sS|z A P c
0 00000000050 0ciyieg0lr L FF E|E|F|F|O|F|O]F|2]F
|

Nested Task Flag — S
VO Privilege Level S

Overflow — A
Direction Flag —C
InteruptEnable — S
Trap Flag — D
Sign Flag —A
Zero Flag — A
Auxiliary Carry — A
Parity Flag — A
Carry Flag A

0 or 1 Indicates Reserved

A =Arithmetic Flag, D =DebugFlag, S =SystemFlag, C =Control Flag

1701105

Figure 2-3. EFLAGS Register

Via Confidential, Requires Non-Disclosure Agreement

25

Cyrix Processors

Table 2-6. Register Bits EFLAGS Register

Bit Name Flag Type Description

31:22 RSVD -- Reserved — Set to 0.

21 ID System Identification Bit— The ability to set and clear this bit indicates that the CPUID instruc-
tion is supported. The ID can be modified only if the CPUID bit in CCR4 (Index E8h[7]) is
Set.

20:19 RSVD -- Reserved — Set to 0.

18 AC System Alignment Check Enable— In conjunction with the AM flag in CRO, the AC flag deter-
mines whether or not misaligned accesses to memory cause afault. If AC is set, alignment
faults are enabled.

17 VM System Virtual 8086 Mode — If set whilein protected mode, the processor switches to virtual
8086 operation handling segment loads as the 8086 does, but generating exception 13
faults on privileged opcodes. The VM bit can be set by the IRET instruction (if current
privilege level
is0) or by task switches at any privilege level.

16 RF Debug Resume Flag— Used in conjunction with debug register breakpoints. RF is checked at
instruction boundaries before breakpoint exception processing. If set, any debug fault is
ignored on the next instruction.

15 RSVD -- Reserved — Set to 0.

14 NT System Nested Task — While executing in protected mode, NT indicates that the execution of the
current task is nested within another task.

13:12 10PL System 1/0 Privilege Level — While executing in protected mode, |OPL indicates the maximum
current privilege level (CPL) permitted to execute I/O instructions without generating an
exception 13 fault or consulting the 1/O permission bit map. |OPL a so indicates the maxi-
mum CPL allowing alteration of the IF bit when new values are popped into the EFLAGS
register.

11 OF Arithmetic | Overflow Flag — Set if the operation resulted in acarry or borrow into the sign bit of the
result but did not result in a carry or borrow out of the high-order bit. Also set if the opera-
tion resulted in acarry or borrow out of the high-order bit but did not result in a carry or
borrow into the sign bit of the result.

10 DF Control Direction Flag— When cleared, DF causes string instructions to auto-increment (default)
the appropriate index registers (ES| and/or EDI). Setting DF causes auto-decrement of the
index registersto occur.

9 IF System Interrupt Enable Flag — When set, maskable interrupts (INTR input pin) are acknow!-
edged and serviced by the CPU.

8 TF Debug Trap Enable Flag — Once set, asingle-step interrupt occurs after the next instruction com-
pletes execution. TF is cleared by the single-step interrupt.

7 SF Arithmetic | Sign Flag — Set equal to high-order bit of result (O indicates positive, 1 indicates nega-
tive).

6 ZF Arithmetic | Zero Flag— Set if result is zero; cleared otherwise.

5 RSvVD - Reserved — Set to 0.

4 AF Arithmetic [Auxiliary Carry Flag — Set when a carry out of (addition) or borrow into (subtraction) bit
position 3 of the result occurs; cleared otherwise.

3 RSVD - Reserved — Set to 0.

26 Cyrix 11l

Via Confidential, Requires Non-Disclosure Agreement

April 4, 2000 11:32 am

T

Table 2-6. Register Bits EFLAGS Register (Continued)

Bit Name Flag Type Description
2 PF Arithmetic | Parity Flag— Set when the low-order 8 bits of the result contain an even number of ones;
otherwise PF is cleared.
1 RSvVD Reserved — Set to 1.
0 CF Arithmetic | Carry Flag— Set when a carry out of (addition) or borrow into (subtraction) the most sig-
nificant bit of the result occurs; cleared otherwise.

Cyrix Il 27

Via Confidential, Requires Non-Disclosure Agreement

Cyrix Processors

2.4 System Register Set

The system register set is used for system level
programming. The system register set consists
of registers not generally used by application
programmers. These registers are typically
employed by system level programmers who
generate operating systems and memory man-
agement programs. Associated with the system
register set are tables and segments which are
defined in memory.

The Control Registers control certain aspects of
the Cyrix |11 Processor such as paging, copro-
cessor functions, and segment protection.

The Descriptor Tables hold descriptors that
manage memory segments and tables, interrupts
and task switching. The tables are defined by
corresponding registers.

Thetwo Task State Segments Tables defined
by TSSregister, are used to save and load the
computer state when switching tasks.

The Configuration Registersare used to define
Cyrix 1 Processor CPU setup including cache
management.

The ID Registersalow BIOS and other soft-
ware to identify the specific CPU and stepping.
System Management Mode (SMM) control
information is stored in the SMM registers.

The Debug Registers provide debugging facili-
tiesfor the Cyrix 111 Processor and enable the
use of data access breakpoints and code execu-
tion breakpoints.

The Test Registers provide a mechanism to test
the contents of both the on-chip 16KB cache
and the Trandlation L ookaside Buffer (TLB).
TheTLB isused asacachefor thetablesthat are
used in to translate linear addresses to physical
addresses while paging is enabled

Cyrix I

Via Confidential, Requires Non-Disclosure Agreement

April 4, 2000 11:32 am

e [

24.1 Control Registers

The standard x86 Control Registers (CRO, CR2,
CR3 and CR4), are shown in Table 2-7.1The
CRO register contains system control bits which
configure operating modes and indicate the gen-
eral state of the CPU. The lower 16 bits of CRO
are referred to as the Machine Status Word
(MSW). The CRO bit definitions are described
in Table 2-13. Thereserved bitsin CRO should
not be modified. A CR1 register is not defined.

When paging is enabled and a page fault is
generated, the CR2 register retains the 32-bit
linear address of the address that caused the
fault. When a double page fault occurs, CR2
contains the address for the second faullt.
Register CR3 contains the 20 most significant

1. The CRn are standard x86 registers, and are distinct from
the CCRn registers unique to Cyrix.)

bits of the physical base address of the page
directory. The page directory must always be
aligned to a4-K B page boundary, therefore, the
lower 12 bits of CR3 are not required to specify
the base address.

Register CR3 contains the 20 most significant
bits of the physical base address of the page
directory. The page directory must always be
aligned to a 4K B page boundary, therefore, the
lower 12 bits of CR3 are not required to specify
the base address.

CR3 aso contains the Page Cache Disable
(PCD) and Page Write Through (PWT) bits.
Control Register CR4 Table 2-9 on page 30 con-
trols usage of the Time Stamp Counter Instruc-
tion, Debugging Extensions, Page Global
Enable and the RDPMC instruction.

Table 2-7. Control Registers
|31|30|29|28|27|26|25|24|23|22|21|20|19|18|l7|16|15|14|13|12|11|10|9|8|7|6|5|4|3|2|1|O|

CR4 Register
RSVD P[P RSVD |D|T |RSVD
C|G E|S
E|E C
CR3 Register
PDBR (Page Directory Base Register) RSVD P|P| RSVD
C|W
D|T
CR2 Register
| PFLA (Page Fault Linear Address) |
CR1 Register
| RSVD |
CRO Register
P|C|N RSVD AR |W RSVD N|1|T|E|M|PE
G|(D|W M|S|P E S(M|P
\%
D
Machine Status Word (M SW)
Cyrix Il 29

Via Confidential, Requires Non-Disclosure Agreement

Cyrix Processors

Table 2-8. CR4 Bit Definitions

BIT NAME FUNCTION
POSITION
2 TSD |Time Stamp Counter Instruction
If = 1 RDTSC instruction enabled for CPL=0 only; Reset State
If = 0 RDTSC instruction enabled for all CPL states
3 DE |Debugging Extensions
If = 1 enables 1/0 breakpoints and R/W bits for each debug register are defined as:
00 -Break on instruction execution only.
01 -Break on data writes only.
10 -Break on 1/O reads or writes.
11 -Break on data reads or writes but not instruction fetches.
If = 01/0O breakpoints and R/W bits for each debug register are not enabled.
7 PGE [Page Global Enable
If = 1 global page feature is enabled.
If = 0 global page feature is disabled.
Global pages are not flushed from TLB on atask switch or write to CR3
8 PCE |Performance Monitoring Counter Enable
If = 1 enables execution of RDPMC instruction at any protection level.
If = 0 RDPMC instruction can only be executed at protection level 0.
Table 2-9. CR3 Bit Definitions
Bits Name Description
31-12 |PDBR Page Directory Base Register: Identifies page directory base address on a 4KB page bound-
ary.
11-5 |RSVD Reserved: Set to 0.

4 PCD Page Cache Disable: During bus cycles that are not paged, the state of the PCD bit is
reflected on the PCD pin. These bus cyclesinclude interrupt acknowledge cycles and all bus
cycles, when paging is not enabled. The PCD pin should be used to control caching in an
external cache.

3 PWT Page Write-Through: During bus cycles that are not paged, the state of the PWT bit is
driven on the PWT pin. These bus cycles include interrupt acknowledge cycles and all bus
cycles, when paging is not enabled. The PWT pin should be used to control write policy in
an external cache.

2-1 RSVD Reserved: Set to 0.
Table 2-10. CR2 Bit Definitions
Bits Name Description
31-0 |PFLA Page Fault Linear Address: With paging enabled and after a page fault, PFLA contains the
linear address of the address that caused the page fault.

Cyrix I

Via Confidential, Requires Non-Disclosure Agreement

April 4, 2000 11:32 am

e [

Table 2-11. CR1 Bit Definitions

Bit Name Description
31.0 RSvVD Reserved: Set to O (always returns O when read).
Table 2-12. CRO Bit Definitions

Bit Name Description

31 PG Paging Enable Bit: If PG=1 and protected mode is enabled (PE=1), paging is enabled.
After changing the state of PG, software must execute an unconditional branch instruction
(e.g., IMP, CALL) to have the change take effect.

30 CD CacheDisable: If CD=1, no further cache linefills occur. However, data already present in
the cache continues to be used if the requested address hits in the cache. Writes continue to
update the cache and cache invalidations due to inquiry cycles occur normally. The cache
must also beinvalidated to completely disable any cache activity.

29 NW Not Write-Back: If NW=1, the on-chip cache operates in write-through mode. In
write-through mode, all writes (including cache hits) are issued to the external bus. If
NW=0, the on-chip cache operates in write-back mode. In write-back mode, writes are
issued to the external bus only for a cache miss, aline replacement of a modified line, or as
the result of a cacheinquiry cycle.

2819 |[RSVD Reserved: Do not modify.

18 AM Alignment Check Mask: If AM=1, the AC bit in the EFLAGS register is unmasked and
allowed to enable alignment check faults. Setting AM=0 prevents AC faults from occurring.

17 RSVD Reserved: Do not modify.

16 WP Write Protect: Protects read-only pages from supervisor write access. WP=0 allows a
read-only page to be written from privilege level 0-2. WP=1 forces afault on awriteto a
read-only page from any privilege level.

15:6 RSVD Reserved: Do not modify.

5 NE Numerics Exception: NE=1 to allow FPU exceptions to be handled by interrupt 16. NE=0
if FPU exceptions are to be handled by external interrupts.

4 1 Reserved: Do not attempt to modify.

3 TS Task Switched: Set whenever atask switch operation is performed. Execution of afloating
point instruction with TS=1 causes a DNA fault. If MP=1 and TS=1, a WAIT instruction
also causes a DNA fault.

2 EM Emulate Processor Extension: If EM=1, all floating point instructions cause a DNA fault
7.

1 MP Monitor Processor Extension: If MP=1 and TS=1, aWAIT instruction causes Device Not
Available (DNA) fault 7. The TS hit is set to 1 on task switches by the CPU. Floating point
instructions are not affected by the state of the MP bit. The MP bit should be set to one dur-
ing normal operations.

0 PE Protected M ode Enable: Enables the segment based protection mechanism. If PE=1, pro-
tected mode is enabled. If PE=0, the CPU operatesin real mode and addresses are formed as
in an 8086-style CPU.

Cyrix Il 31

Via Confidential, Requires Non-Disclosure Agreement

Cyrix Processors

Table 2-13. CRO Register EM, TS, and MP Bits Combinations

CRO Register Bits Instruction Type
EM Bit 2 TSBIit3 MPBIt 1 WAIT ESC
0 0 0 Execute Execute
0 0 1 Execute Execute
0 1 0 Execute Fault 7
0 1 1 Fault 7 Fault 7
1 0 0 Execute Fault 7
1 0 1 Execute Fault 7
1 1 0 Execute Fault 7
1 1 1 Fault 7 Fault 7
32 Cyrix 1

Via Confidential, Requires Non-Disclosure Agreement

April 4, 2000 11:32 am

e [

24.2 Descriptor Table
Registers and Descriptors

Descriptor Table Registers

The Global, Interrupt, and Local Descriptor
Table Registers (GDTR, IDTR and LDTR),
shown in Figure 2-4, are used to specify the
location of the data structures that control seg-
mented memory management. The GDTR,
IDTR and LDTR are loaded using the LGDT,
LIDT and LLDT instructions, respectively. The
values of theseregistersare stored using the cor-
responding store instructions. The GDTR and
IDTR load instructions are privileged instruc-
tions when operating in protected mode. The
LDTR can only be accessed in protected mode.

The Global Descriptor Table Register (GDTR)
holds a 32-bit linear base address and 16-hbit
limit for the Global Descriptor Table (GDT).
The GDT isan array of up to 8192 8-byte
descriptors. When a segment register isloaded
from memory, the T1 bit in the segment sel ector
chooses either the GDT or the Local Descriptor
Table(LDT) tolocateadescriptor. I1f TI =0, the
index portion of the selector isused to locate the
descriptor within the GDT table. The contents
of the GDTR are completely visible to the pro-

grammer by using aSGDT instruction. Thefirst
descriptorinthe GDT (location 0) isnot used by
the CPU and isreferred to as the “null descrip-
tor”. The GDTRIsinitialized usingaLGDT
instruction.

The Interrupt Descriptor Table Register (IDTR)
holds a 32-bit linear base address and 16-hit
limit for the Interrupt Descriptor Table (IDT).
ThelDT isan array of 256 interrupt descriptors,
each of which is used to point to aninterrupt ser-
viceroutine. Every interrupt that may occur in
the system must have an associated entry in the
IDT. The contents of the IDTR are completely
visible to the programmer by using aSIDT
instruction. The IDTR isinitialized using the
LIDT instruction.

The Loca Descriptor Table Register (LDTR)
holds a 16-bit selector for the Local Descriptor
Table(LDT). TheLDT isanarray of upto 8192
8-byte descriptors. When the LDTR isloaded,
the LDTR selector indexes an LDT descriptor
that resides in the Global Descriptor Table
(GDT). Thebase addressand limit areloaded
automatically and cached from the LDT
descriptor within the GDT.

a7 16 15 o
I
BASE ADDRESS LIMT GDTR
BASE ADDRESS LIMIT IDTR
1
1 ECTOR LDTR

1708003

Figure 2-4. Descriptor Table Registers

Cyrix Il

33

Via Confidential, Requires Non-Disclosure Agreement

Cyrix Processors

Subsequent accessto entriesinthe LDT usethe
hidden LDTR cache to obtain linear addresses.
If the LDT descriptor is modified in the GDT,
the LDTR must be reloaded to update the hid-
den portion of the LDTR.

When a segment register is loaded from mem-
ory, the Tl bit in the segment selector chooses
either the GDT or the LDT to locate a segment
descriptor. If TI =1, the index portion of the
selector is used to locate a given descriptor
withinthe LDT. Eachtask in the system may be
givenitsown LDT, managed by the operating
system. The LDTs provide a method of isolat-
ing agiven task’ s segments from other tasksin
the system.

The LDTR can beread or written by the LLDT
and SLDT instructions.

Descriptors
There are three types of descriptors:

» Application Segment Descriptors that
define code, data and stack segments.

* System Segment Descriptors that define
an LDT segment or a Task State Segment
(TSS) table described later in this text.

» Gate Descriptors that define task gates,
interrupt gates, trap gates and call gates.

Application Segment Descriptors can belocated
in either the LDT or GDT. System Segment
Descriptors can only be located in the GDT.
Dependent on the gate type, gate descriptors
may belocated in either the GDT, LDT or IDT.
Figure 2-5 illustrates the descriptor format for
both A pplication Segment Descriptors and Sys-
tem Segment Descriptors. Table 2-14 (Page
2-35) lists the corresponding bit definitions.

Table 2-15. (Page 2-35) and Table 2-16. (Page
2-36) definesthe DT field within the segment
descriptor.

2 24 23 2 21 20 19 16 15 14 13 12 11 87 O
A
BASE 31-24 G |D|O| v |UMTI1916 P DFEL D TYFE BASE 23-16 +4
L Ll
BAE 150 UMIT 150 +0

Figure 2-5. Application and System Segment Descriptors

Cyrix I

Via Confidential, Requires Non-Disclosure Agreement

April 4, 2000 11:32 am

e [

Table 2-14. Segment Descriptor Bit Definitions

BIT MEMORY
POSITION orrser | NAME DESCRIPTION
31-24 +4 BASE | Segment base address.
7-0 +4 32-bit linear address that points to the beginning of the segment.
31-16 +0
19-16 +4 LIMIT [Segment limit.
150 +0
23 +4 G Limit granularity bit:
0 = byte granularity, 1 = 4 KB (page) granularity.
22 +4 D Default length for operands and effective addresses.
Valid for code and stack segments only: 0 = 16 bit, 1 = 32-bit.
20 +4 AVL |Segment available.
15 +4 P Segment present.
14-13 +4 DPL |Descriptor privilege level.
12 +4 DT |Descriptor type:
0 = system, 1 = application.
11-8 +4 TYPE |[Segment type. See Tables 2-7 and 2-8.
Table 2-15. TYPE Field Definitionswith DT =0
TYPE
(BITS11-8) DESCRIPTION
0001 TSS-16 descriptor, task not busy.
0010 LDT descriptor.
0011 TSS-16 descriptor, task busy.
1001 TSS-32 descriptor, task not busy
1011 TSS-32 descriptor, task busy.
Cyrix Il 35

Via Confidential, Requires Non-Disclosure Agreement

Cyrix Processors

Table 2-16. TYPE Field Definitionswith DT =1

TYPE

oD APPLICATION DECRIPTOR INFORMATION

data, expand up, limit is upper bound of segment

data, expand down, limit is lower bound of segment

executable, non-conforming

executable, conforming (runs at privilege level of calling procedure)
data, non-writable

data, writable

executable, non-readable

executable, readable

not-accessed

accessed

X|X ||l o|lo|lr|lr|lo|lo|lm
X|X|X|X|x|[x]|r|o|r|o
><><|—\op—\o><><><><§
Rlo| x| x| x|x]|x]|x|x]|x|>

36 Cyrix I

Via Confidential, Requires Non-Disclosure Agreement

April 4, 2000 11:32 am

e [

Gate Descriptors provide protection for executable ssgments operating at different privilegelevels.
Figure 2-7 illustrates the format for Gate Descriptors and the table lists the corresponding bit defini-
tions.

Task Gate Descriptorsare used to switch the CPU’ s context during atask switch. The selector por-
tion of thetask gate descriptor locatesa Task State Segment. These descriptorscan belocated inthe
GDT, LDT or IDT tables.

Interrupt Gate Descriptors are used to enter a hardware interrupt service routine. Trap Gate
Descriptorsare used to enter exceptions or software interrupt serviceroutines. Trap Gate and Inter-
rupt Gate Descriptors can only be located in the IDT.

Call Gate Descriptorsare used to enter a procedure (subroutine) that executes at the same or amore
privileged level. A Call Gate Descriptor primarily defines the procedure entry point and the pro-
cedure s privilege level.

31 24 23 22 21 20 19 16 1514 13 12 11 87 0
A
BASE 31-24 G|D|O|V |LMT1916]| P DPL _I? TYPE BASE 23-16 |+4
L
BASE 15-0 LIMIT 15-0 —+0
1707803

Figure 2-6 Gate Descriptor

e T DESCRIPTION
31-16 +4 OFFSET |Offset used during a call gate to calculate the branch target.
150 +0
31-16 +0 SELECTOR |Segment selector used during a call gate to calculate the branch target.
15 +4 P Segment present.
14-13 +4 DPL Descriptor privilege level.
11-8 +4 TYPE Segment type:
0100 = 16-hit call gate
0101 = task gate

0110 = 16-hit interrupt gate
0111 = 16-hit trap gate
1100 = 32-hit call gate
1110 = 32-bit interrupt gate
1111 = 32-bit trap gate.

4-0 +4 PARAME- |Number of 32-bit parametersto copy from the caller’s stack to the called
TERS procedure’s stack (valid for calls).

Cyrix Il 37

Via Confidential, Requires Non-Disclosure Agreement

Cyrix Processors

2.4.3 Task Register

The Task Register (TR) holds a 16-bit selector for the current Task State Segment (TSS) table as
showninFigure2-7. The TRisloaded and stored viathe LTR and STR instructions, respectively.
The TR can only be accessed during protected mode and can only be loaded when the privilege
level isO (most privileged). Whenthe TR isloaded, the TR selector field indexes a TSS descriptor
that must reside in the Global Descriptor Table (GDT). The contents of the selected descriptor are
cached on-chip in the hidden portion of the TR.

During task switching, the processor saves the current CPU state in the TSS before starting a new
task. The TR pointsto the current TSS. The TSS can beather a386/486-style 32-bit TSS ora
286-yle 16-hit TSStype. An1/O permission bit map isreferenced in the 32-bit TSS by the /O Map
Base Address.

Figure2-7. Task Register

15 O

1708103

38 Cyrix I

Via Confidential, Requires Non-Disclosure Agreement

April 4, 2000 11:32 am

e [

1l 16 15 (@)

170 MAP BASE ADCHESS O0O0O0O000000000O0O0| T s&a
0000000000000 00O0 F FCTCRFOR TASKSLDT 4ah
(oNeoXoNoNoXoNoNoNoNoNoNoNoNoNONO) (@€ S 45 h
0000000000000 00O0 = +59h
(eNeXoNoNoRoNeXoNoNoNoNoNoNoNONO) s +54h
000000000000 0OO0OO0O0 s +5h
0000000000000 00O0 (@3 +ACh
000000000000 OOO0OO B +49h

B +aN

B +A0h

BH=P +3h

B +35h

BEBX +=h

H3X +30h

=X +“=h

EAX +26n

BEALAGS +24n

BP +=2h

aB +“=1Ch
OOOOOOOOOOOOOOOOl SfadirL=2 +1sh
BEBPfa 1. =2 +14h
OOOOOOOOOOOOOOOOl SfadirL=1 +10h
Efa 1L =1 +Ch
OOOOOOOOOOOOOOOO| SfadrL =0 +&h
B fa 1. =0 -+
OOOOOOOOOOOOOOOOl BAK LINK (AD TSSs S H EKCTAR +Oh
O = RESERVED 1708203

Figure 2-8. 32-Bit Task State Segment (TSS) Table

Cyrix Il

Via Confidential, Requires Non-Disclosure Agreement

39

Cyrix Processors

SH ECTORFORTASKSLDT +2Ah

DS +28h

s +26h

Ccs +24h

= +22h

DI +20h

S| +1Eh

BP +1Ch

sP +1Ah

BX +18h

DX +16h

CX +14h

AX +12h

FLAGS +10h
P +Eh
SSFORFRVILEGELBEVA. 2 +Ch
SFPFORFRVILEGELEVA_ 2 +Ah
SSFORFRVILEGELEVA. 1 +8h
SPFORFRVILEGELEVA. 1 +6h
SSFORFRVILEGELEVA. O +4h
SPFORFRVILEGELEVA_ O +2h
BACK LINK (OLD TSSSELECTOR +Oh

1708803

Table 2-17. 16-Bit Task State Segment (TSS) Table

40 Cyrix I

Via Confidential, Requires Non-Disclosure Agreement

April 4, 2000 11:32 am

e [

244 Model Specific Registers

The CPU contains severa Model Specific Reg-
isters (MSR's) that provide time stamp, perfor-
mance monitoring and counter event functions.
Access to a specific MSR through an index
valuein the ECX register asshownin Table 18
below.

Table 2-18. Model Specific Register

Register Description ECX Value
Test Data 3h
Test Address 4h
Command/Status 5h
Time Stamp Counter (TSC) 10h
Counter Event Control Register 11h
Performance Counter #0 12h
Performance Counter #1 13h

The M SR registers can be read using the

RDM SR instruction, opcode OF32h. During an
M SR register read, the contents of the particular
MSR register, specified by the ECX register, is
loaded into the EDX:EAX registers.

The M SR registers can be written using the
WRM SR instruction, opcode OF30h. During a
M SR register write the contents of EDX:EAX
areloaded into the M SR register specifiedinthe
ECX register.

The RDM SR and WRM SR instructions are
privileged instructions and are also used to
setup scratchpad lock.

Cyrix Il

2441 Time Stamp Counter

The Time Stamp Counter (TSC) Register
MSR[10] is a 64-bit counter that counts the
internal CPU clock cycles since the last reset.
The TSC uses acontinuous CPU core clock and
will continue to count clock cycles even when
the processor is in Suspend mode.

The TSC can be accessed using the RDM SR
and WRM SR instructions. In addition, the TSC
can be read using the RDTSC instruction,
opcode OF31h. The RDTSC instruction loads
the contents of the TSC into EDX:EAX. The
useof theRDTSC instructionisrestricted by the
Time Stamp Counter, (TSC) flagin CR4. When
the TSC flag is 0, the RDTSC instruction can be
executed at any privilegelevel. WhentheTSC
flag is 1, the RDTSC instruction can only be
executed at privilege levelO.

2442 Performance Monitoring

Performance monitoring allows counting of
over ahundred different event occurrences and
durations. Two 48-bit counters are used: Perfor-
mance Monitor Counter 0 and Performance
Monitor Counter 1. These two performance
monitor counters are controlled by the Counter
Event Selection and Control Register MSR[11].
The performance monitor counters use acontin-
uous CPU core clock and will continue to count
clock cycles even when the processor isin Sus-
pend or Shutdown mode.

41

Via Confidential, Requires Non-Disclosure Agreement

Cyrix Processors

24421 PerformanceMonitoring

Countersland2
The 48-bit Performance Monitoring Counter
(PMC) Registers MSR[12] and M SR[13] count
events as specified by the Counter Event Selec-
tion and Control Register, MSR[11].

The PMCs can be accessed by the RDM SR and
WRMSR instructions. In addition, the PMCs
can be read by the RDPM C instruction, opcode
OF33h. The RDPMC instruction loads the con-
tents of the PMC register specified in the ECX
register into EDX:EAX. The use of RDPMC
instructions s restricted by the Performance
Monitoring Counter Enable, (PCE) flag in CRA4.

When the PCE flag is set to 1, the RDPMC
instruction can be executed at any privilege
level. When the PCE flag is 0, the RDPMC
instruction can only be executed at privilege
level O.

24.4.2.2 Counter Event Selection and
Control Register

Register MSR[11] controls the two internal

counters, #0 and #1. The events to be counted

have been chosen based on the micro-architec-

ture of the Cyrix 111 processor. The control reg-

ister for the two event counters is described in

Table 2-19.

24423 Counter Type Control

The Counter Type bit determines whether the
counter will count clocks or events. When
counting clocks the counter operates as atimer.

24424 CPL Control

The Current Privilege Level (CPL) can be used
to determine if the counters are enabled. The
CPO2 bit inthe M SR[11] register enables count-
ing when the CPL isless than three, and the
CPO3 bit enables counting when CPL isequal to
three. If both bits are set, counting is not depen-
dent onthe CPL level; if neither bit is set, count-
ing is disabled.

Table 2-19. Counter Event Selection and Control Register

313012928 |27 |26 (2524 |23 |22|21(20)19 (18|17 |16 (15|14 |13 |12|11|(10|9 |8 |7 |6 (5|4 |3|2]|1|0
RSVD T|R[c|c|cC TC1* RSVD T|R[c|c|c TCO*
cls|t|rp|P cls|t|rp|P
1{v]1|1]1 o|lv|ofolo
*Ip| |[3]2 *Ip| |[3]2

Note: Split fields.
V) Cyrix I

Via Confidential, Requires Non-Disclosure Agreement

April 4, 2000 11:32 am

e [

Table 2-20. Counter Event Selection and Control Register Bit Definitions

Bit Name Description
32:27 RSVD | Reserved

25 RSVD | Reserved

24 CT1l Counter #1 Counter Type:

If = 1: Count clock cycles

If = 0: Count events (reset state).

23 CP13 Counter #1 CPL 3 Enable:

If = 1: Enable counting when CPL=3.

If = 0: Disable counting when CPL=3. (Reset state)
22 CP12 Counter #1 CPL Less Than 3 Enable:

If = 1: Enable counting when CPL < 3.

If = 0: Disable counting when CPL < 3. (Reset state)
26,21:16 | TC1[5:0] | Counter #1 Event Type:

Reset state = 0
15:9 RSVD | Reserved
8 CTO Counter #0 Counter Type

If = 1. Count clock cycles

If = 0: Count events (reset state).

7 CPO3 Counter #0 CPL 3 Enable:

If = 1: Enable counting when CPL=3.

If = 0: Disable counting when CPL=3. (reset state)
6 CP02 Counter #0 CPL Less Than 3 Enable:

If = 1: Enable counting when CPL < 3.

If = 0: Disable counting when CPL < 3. (reset state)
10,5:0 | TCO[5:0] |Counter #0 Event Type:

Reset state=0

Cyrix Il 43

Via Confidential, Requires Non-Disclosure Agreement

Cyrix Processors

245 Event Type and fields. Thereisaseparate field for counter #0
Description and #1.

The events that can be counted by the perfor- The events are divided into two groups. The
mance monitoring counters are listed in Table occurrence type events and duration type
2-21. Each of the 127 event typesisassigned an events. The occurrence type events, such as

event number. hardware interrupts, are counted as single
events. The duration type events such as* clock

A particular event number to be counted is whilebuscyclesarein progress’ count the num-

placed in one of the MSR[11] Event Type ber of clock cycles that occur during the event.

Table 2-21. Event Type Register

Number | Counter #0 | Counter #1 Description Type
00h Yes Yes Datareads Occurrence
0lh Yes Yes Datawrites Occurrence
02h Yes Yes Data TLB misses Occurrence
03h Yes Yes Cache misses. Datareads Occurrence
04h Yes Yes Cache misses: Data writes Occurrence
05h Yes Yes Datawrites that hit on modified or exclusive lines Occurrence
06h Yes Yes Data cache lines written back Occurrence
07h Yes Yes External inquiries Occurrence
08h Yes Yes External inquires that hit Occurrence
0%h Yes Yes Memory accesses in both pipelines Occurrence
OAh Yes Yes Cache bank conflicts Occurrence
0Bh Yes Yes Misaligned data references Occurrence
0Ch Yes Yes Instruction fetch requests Occurrence
0Dh Yes Yes L2 TLB code misses Occurrence
OEh Yes Yes Cache misses: Instruction fetch Occurrence
OFh Yes Yes Any Segment Register load Occurrence
10h Yes Yes Reserved Occurrence
11h Yes Yes Reserved Occurrence
12h Yes Yes Any branch Occurrence
13h Yes Yes BTB hits Occurrence
14h Yes Yes Taken branches or BTB hits Occurrence
15h Yes Yes Pipeline flushes Occurrence
16h Yes Yes Instructions executed in both pipelines Occurrence
17h Yes Yes Instructions executed in Y pipeline Occurrence
18h Yes Yes Clocks while bus cycles are in progress Duration
1%h Yes Yes Pipeline stalled by full write buffers Duration
1Ah Yes Yes Pipeline stalled by waiting on data memory reads Duration
1Bh Yes Yes Pipeline stalled by writes to not-modified or not-exclusive cache Duration

lines.
14 Cyrix 11l

Via Confidential, Requires Non-Disclosure Agreement

April 4, 2000 11:32 am

e [

Table 2-21. Event Type Register (Continued)

Number | Counter #0 | Counter #1 Description Type
1Ch Yes Yes Locked bus cycles Occurrence
1Dh Yes Yes 1/0 cycles Occurrence
1Eh Yes Yes Non-cacheable memory requests Occurrence
1Fh Yes Yes Pipeline stalled by address generation interlock Duration
20h Yes Yes Reserved -
21h Yes Yes Reserved -
22h Yes Yes Floating point operations Occurrence
23h Yes Yes Breakpoint matches on DRO register Occurrence
24h Yes Yes Breakpoint matches on DR1 register Occurrence
25h Yes Yes Breakpoint matches on DR2 register Occurrence
26h Yes Yes Breakpoint matches on DR3 register Occurrence
27h Yes Yes Hardware interrupts Occurrence
28h Yes Yes Data reads or data writes Occurrence
29h Yes Yes Data read misses or data write misses Occurrence
2Bh Yes No MMX instruction executed in X pipeline Occurrence
2Bh No Yes MMX instruction executed in Y pipeline Occurrence
2Dh Yes No EMMS instruction executed Occurrence
2Dh No Yes Transition between MM X instruction and FP instructions Occurrence
2Eh No Yes Reserved -
2Fh Yes No Saturating MM X instructions executed Occurrence
2Fh No Yes Saturations performed Occurrence
30h Yes No Reserved -
31h Yes No MMX instruction data reads Occurrence
32h Yes No Reserved -
32h No Yes Taken branches Occurrence
33h No Yes Reserved -
34h Yes No Reserved -
34h No Yes Reserved -
35h Yes No Reserved -
35h No Yes Reserved -
36h Yes No Reserved -
36h No Yes Reserved -
37h Yes No Returns predicted incorrectly Occurrence
37h No Yes Return predicted (correctly and incorrectly) Occurrence
38h Yes No MMX instruction multiply unit interlock Duration
38h No Yes MODV/MOVQ store stall due to previous operation Duration
3% Yes No Returns Occurrence
3% No Yes RSB overflows Occurrence
3Ah Yes No BTB false entries Occurrence
3Ah No Yes BTB miss prediction on a not-taken back Occurrence
3Bh Yes No Number of clock stalled due to full write buffers while executing Duration

Cyrix Il 45

Via Confidential, Requires Non-Disclosure Agreement

Cyrix Processors

Table 2-21. Event Type Register (Continued)

Number | Counter #0 | Counter #1 Description Type
3Bh No Yes Stall on MMX instruction writeto E or M line Duration

3Ch-3Fh Yes Yes Reserved --
40h Yes Yes L2 TLB misses (code or data) Occurrence
41h Yes Yes L1 TLB datamiss Occurrence
42h Yes Yes L1 TLB code miss Occurrence
43h Yes Yes L1 TLB miss (code or data) Occurrence
44h Yes Yes TLB flushes Occurrence
45h Yes Yes TLB pageinvdidates Occurrence
46h Yes Yes TLB page invalidates that hit Occurrence
47h Yes Yes Reserved -
48h Yes Yes Instructions decoded Occurrence
49h Yes Yes Reserved --

46 Cyrix 11l

Via Confidential, Requires Non-Disclosure Agreement

April 4, 2000 11:32 am

Cyrix 111 Register Set 2

25 Cyrix 11 Register Set

The Cyrix 111 Register Set includes the configu-
ration registers that are used to enable features
in the CPU. These features are specific to the
Cyrix Il processor architecture and are typi-
cally only accessed during the boot/initializa-
tion process.

Registersincluded in this section are:

» Configuration Control Registers
» Address Region Registers
* Region Control Registers

251 |/O Port 22h and
23h Access

Accesstointernal registers isaccomplished via
an 8-hit index/data 1/O pair. Each data transfer,
1/O Port 23h, must be preceded by avalid index
write, 1/0 Port 22h. All readsfrom 1/0 Port 22h
produce external 1/0 cycles; therefore, theindex
cannot be read. Accesses that hit within the
on-chip configuration registers do not generate
external 1/0 cycles.

To access the above registers, the programmer
uses the Port 22h (index) and Port 23h (data).
The accessis atomic when an SMI isinvolved,
but is not atomic when any of the following
three conditions are presented: 1) INT, 2) NMI
3) INIT#. Proper steps must be taken to inhibit
these three conditionsif apure atomic operation
isto be achieved. An example of thisto prevent
an INT sequencewould beto useaPUSHF, CLI
instruction pair before doing the Port 22h/23h
access with a POPF after the access has been
done.

After reset, only configuration registers with

Cyrix Il

indices CO-CFh and FC-FFh are accessible.
This prevents potential conflicts with other
devices that use Ports 22h and 23h to access
their registers.

25.2 Map Enable (MAPEN)

The purpose of MAPEN isto increase the num-
ber of registersthat can be accessed via Ports
22h/23h. The MAPEN fields can be thought of
as a paging mechanism to the compl ete register
set allowing multipleregistersto share the same
index value but providing different functional -
ity. MAPEN must be set correctly to gain access
to theregister that isto be modified. MAPEN is
located in CCR3[7:4]. It is strongly recom-
mended that the programmer use the following
sequence:

1) Read CCRS.

2) Save CCRS.

3) Modify MAPEN at CCR3[7-4].

4) Access Register via Port 22h/23h access.

5) Restore CCR3 to control the MAPEN field.

There are 256 possible registers available for
each MAPEN setting, for atotal of 4096. Most
registers are not defined and are therefore
reserved.

47

Via Confidential, Requires Non-Disclosure Agreement

Cyrix Processors

Cyrix Il Register Set

253 Cyrix Configuration Control Registers

Table 2-22 summarizes the Core Registers. The registers are described in greater detail beginning
on page 52.

Table 2-22. CPU Configuration Register Summary

Acronym Register Index (2 iztz) C'\C/IZQ:E[E?'-\L] Reference
CCRO Configuration Control O COh 8 Xxxxb
CCR1 Configuration Control 1 Cilh
CCR2 Configuration Control 2 C2h
CCR3 Configuration Control 3 C3h
CCR4 Configuration Control 4 E8h 0001b
CCR5 Configuration Control 5 ESh
CCR6 Configuration Control 6 EAhQ
CCR7 Configuration Control 7 EBh
ARRO Address Region 0 C4h-Céh 24 XXXXb
ARR1 Address Region 1 C7h-C%h
ARR2 Address Region 2 CAh-CCh
ARR3 Address Region 3 CDh-CFh
ARR4 Address Region 4 Dh0-D2h 0001b
ARR5 Address Region 5 D3h-D5h
ARR6 Address Region 6 D6h-D8h
ARR7 Address Region 7 D%h-DBh
ARRS Address Region 8 A4dh-A6h read=x010b
ARR9 Address Region 9 A7h-A%h write=x01xb
ARRA Address Region A AAh-ACh
ARRB Address Region B ADh-AFh
ARRC Address Region C DOh-D2h
ARRD Address Region D D3h-D5h
RCRO Region Configuration Register O DCh 8 0001b
RCR1 Region Configuration Register 1 DDh

48 Cyrix 11l

Via Confidential, Requires Non-Disclosure Agreement

April 4, 2000 11:32 am

Cyrix 111 Register Set 2

Table 2-22. CPU Configuration Register Summary (Continued)

Acronym Register Index (2 iztz) C'\C/IZQ:E[E?'-\L] Reference
RCR2 Region Configuration Register 2 DEh 8 x00xb
RCR3 Region Configuration Register 3 DFh
RCR4 Region Configuration Register 4 EOh
RCR5 Region Configuration Register 5 Elh
RCR6 Region Configuration Register 6 E2h
RCR7 Region Configuration Register 7 E3h
RCRS8 Region Configuration Register 8 DCh
RCR9 Region Configuration Register 9 DDh
RCRA Region Configuration Register A DEh
RCRB Region Configuration Register B DFh
RCRC Region Configuration Register C EOh
RCRD Region Configuration Register D Elh
DIRO Directory Register 0 FEh Xxxxb
DIR1 Directory Register 1 FFh
DIR2 Directory Register 2 FDh
DIR3 Directory Register 3 FCh read= x010b
DIR4 Directory Register 4 FBh write=x01xb
BCR1 BIOS Core to Bus Clock Ratio 48h 0100b
BCR1 BIOS PLL Hot Reset 4%h
LCR1 L2 CNTL 41h
TWRO TableWalk 0 20h 0001b

Note: Registers and MAPEN values not mentioned in this section are reserved.

Cyrix Il

Via Confidential, Requires Non-Disclosure Agreement

49

Cyrix Processors

Cyrix Il Register Set

254 Cyrix Configuration Control Registers (CCRO-CCR7)

The Configuration Control Registers (CCR0-CCR7) are used to assign non-cached memory areas,
set up SMM, provide CPU identification information and control various features.

CCR1, CCR3, and CCR6 may be written at any time unless the SMI_L OCK (CCR3[0]) is set or
an SMI is active.

50 Cyrix I

Via Confidential, Requires Non-Disclosure Agreement

April 4, 2000 11:32 am

Cyrix |11 Register Set 2

254.1 Configuration Control Register 0 (CCRO)
7 6 5 4 3 2 1 0
Reserved NC1 Reserved
Index: COh
Default Value: 02h
Access. Read/Write
MAPEN: xxxxh
Bit Name Description
1 NC1 No Cache 640 KB - 1 MB
1 = Address region 640 KB to 1 MB is non-cacheable.
0 = Address region 640 KB to 1 MB is cacheable.
Cyrix Il 51

Via Confidential, Requires Non-Disclosure Agreement

Cyrix Processors

Cyrix Il Register Set

2542 Configuration Control Register 1 (CCR1)
7 6 5 4 3 2 1 0

SM3 Reserved
Index: Cih
Default Value: 20h
Access. Read/Write
MAPEN: xxxxh

Bit Name Description

7 SM3 SMM Address Space Address Region 3:

1= Address Region 3 is designated as SMM address space.
0 = Address Region 3 is system memory.

1 Reserved Read only (USE_SMI). Setto 1.

Thisregister may be written at any time unlessthe SMI1_LOCK (CCR3[0Q]) is set or an SMI is active.

52 Cyrix 1
Via Confidential, Requires Non-Disclosure Agreement

April 4, 2000 11:32 am

Cyrix 111 Register Set 2

2543 Configuration Control Register 2 (CCR2)

7 6 5 4 3 2
Reserved WPR1 SUSP HLT | LOCK_NW Reserved

Index: C2h
Default Value: 00h
Access: Read/Write
MAPEN: xxXxxh

Bit Name Description

4 WPR1 Write-Protect Region 1

1 = Designates any cacheable accessesin 640 KB to 1 MB address region

are write protected.

3 SUSP_HLT

Suspend on Halt:

1 = Execution of the HLT instruction causes the CPU to enter low power suspend mode.

0 = Halt behaves normally.

2 LOCK_NW

Lock NW:

1=NW bit (CRO[29]) becomes read-only and the CPU ignores any writes to the NW bit.

0 = NW bit (CR0[29]) can be modified.

Cyrix Il

Via Confidential, Requires Non-Disclosure Agreement

53

Cyrix Processors

Cyrix Il Register Set

2544 Configuration Control Register 3 (CCR3)
7 6 5 4 3 2 1 0
MAPEN]3-0] Reserved NMI_EN SMI_LOCK
Index: C3h
Default Value: 00h
Access: Read/Write
MAPEN: xxxxh
Bit Name Description
7:4 MAPEN[3-0 | Map Enable Bits
] These four bits enable different combinations of configuration registers. Refer to
Section 2.5.2 “Map Enable (MAPEN)" on page 47.
0001 = All configuration registers are accessible.
0000 = Only configuration register with indexes: CO - CFh, FEh, and FFh are accessible
1 NMI_EN NMI Enable:
1 = NMI interrupt is recognized while servicing an SMI interrupt.
NMI_EN should be set only whilein SMM after the appropriate SM1 interrupt
service routine has been set up.
0 =NMI disabled while servicing SM1I.
0 SMI_LOCK |SMI Lock:

1=Thefollowing SMM configuration bits can only be modified while
inan SMI service routine:

CCR1: USE_SMI, SMAC, SM3
CCR3: NMI_EN

CCR6: N, SMM_MODE

ARRS3: Starting address and block size.

Once set, the features locked by SMI_LOCK cannot be unlocked until the RESET pinis
asserted.

This register contains MAPEN which is a pointer to the group of registers. See MAPEN Section 2.5.2 on page 2-47.

Thisregister may be written at any time unlessthe SMI1_LOCK is set or an SMI isactive.

Cyrix 111
Via Confidential, Requires Non-Disclosure Agreement

April 4, 2000 11:32 am

Cyrix |11 Register Set 2

2545 Configuration Control Register 4 (CCR4)
7 6 5 4 3 2 1
CPUID Reserved
Index: E8h
Default Value: 84h
Access: Read/Write
MAPEN: 0001
Bit Name Description
7 CPUID Enable CPUID Instructions:
1=ThelD bit in the FFLAGS register can be modified and execution of the
CPUID instruction occurs.
0=The D hit inthe EFLAGS register can not be modified and execution of the
CPUID instruction causes an invalid opcode exception.
Cyrix Il 55

Via Confidential, Requires Non-Disclosure Agreement

Cyrix Processors

Cyrix Il Register Set

2.5.4.6 Configuration Control Register 5 (CCR5)

7 6 5 4 3 2 1 0
Reserved ARREN Reserved
Index: E9h
Default Value: 00h
Access: Read/Write
MAPEN: 0001
Bit Name Description

5 ARREN Address Region Registers Enable: Enables address decoding of ARRO-ARRD.

1=Enablesal ARR registers.
0 =Disables all ARR registers. If SM3is set ARR3 is enabled regardless of the
setting of ARREN. (SM3isbit 7in CCR1.)

56 Cyrix I

Via Confidential, Requires Non-Disclosure Agreement

April 4, 2000 11:32 am

Cyrix |11 Register Set 2

254.7 Configuration Control Register 6 (CCR6)
7 6 5 4 2 1 0
Reserved SMM_MODE

Index: EAR:
Default Value: 40h
Access: Read/Write
MAPEN: 0001

Bit Name Description

0 SMM_MODE | SMM Mode:

1 = Enable Cyrix-enhanced SMM mode.
0 = Disable Cyrix-enhanced SMM mode.

Thisregister may be written at any time unless the SMI_LOCK (CCR3[0]) is set or the processor isin SMM.

Cyrix Il

Via Confidential, Requires Non-Disclosure Agreement

57

Cyrix Processors

Cyrix Il Register Set

25438 Configuration Control Register 7 (CCR7)

7 6 5 4 3 2 1 0
Reserved Reserved Reserved |3DNOW_EN| Reserved Reserved Reserved Reserved

Index: EBh
Default Value: 00h
Access. Read/Write
MAPEN: 0001

Bit Name Description

4 3DNOW_EN |1 = Enable 3BDNOW instructions.

0 = Disable 3BDNOW instructions.
2549 TableWalk Register 0 (TWRO)
7 6 5 4 3 2 1 0
Reserved Reserved Reserved Cache TE Reserved Reserved Reserved Reserved

Index: 20h
Default Value: 00h
Access: Read/Write
MAPEN: 0001

Bit Name Description

4 Cache_TE 1 = Enable caching of table entries. Improves performance.
0 = Disable caching of table entries.

58 Cyrix 1

Via Confidential, Requires Non-Disclosure Agreement

April 4, 2000 11:32 am

Cyrix |11 Register Set 2

2.5.4.10 Address Regions in Memory

Sel ected regions of main memory space can be assigned different attributes. Theseregionsarecalled
address regions. Each addressregion is defined by a pair of registers—an Address Region Register
(ARRnN) and a Region Control Register (RCRn).

The ARRnN registers are used to specify the location and size for these regions.
The RCRn registers are used to specify the attributes for these regions.

The number (n) is ahexadecima number that designates the region number.

Cyrix Il 59

Via Confidential, Requires Non-Disclosure Agreement

Cyrix Processors

Cyrix Il Register Set

25411 Address Region Registers (ARRnN)
23 16 ‘ 15 8 ‘ 7 413 0 ‘
MAIN MEMORY BASE ADDRESS SIZE |
Index: See Table 2-23
Default Value: 00h
Access: Read/Write
MAPEN: See next page.
Bit Name Description
23-4 | MAIN MEMORY | Starting address for the particular address region.
BASE ADDRESS | Memory address bits A[31-24] defined by ARRn bits 23 - 16
Memory address bits A[23-16] defined by ARRn bits 15 - 8
Memory address bits A[15-12] defined by ARRn bits 7 - 4
30 SIZE Size of the particular address region as defined by Table 2-24 (Page 2-62).

Cyrix I

Via Confidential, Requires Non-Disclosure Agreement

April 4, 2000 11:32 am

Cyrix 111 Register Set 2

Three 1/0 22h/23h port passes are required access one of 24-bit ARRnN registers. The three index
numbersfor all the ARRN registers are listed in Table 2-23.

Table 2-23. ARRn Register Index Assignment

ARRN MAIN MEMORY BASE ADDRESS SIZE MAPEN
Name A31-A24 A23-A16 Al15-A12 CCR3[7-4]
ARRO C4h Cb5h ceh[7-4] C6h[3-0] XXXXb
ARRL C7h C8h CON[7-4] Con[3-0]

ARR2 CAR CBh CCh[7-4] CCh[3-0]

ARR3 CDh CEh CFh[7-4] CFh[3-0]

ARRA DOh D1h D2Nn[7-4] D2n[3-0] 0001b
ARRB D3h D4h D5h[7-4] D5N[3-0]

ARRB D6h D7h D8N[7-4] D4n[3-0]

ARR7 Doh DAR DBh[7-4] DBh[3-0]

ARRBS Adn A5h ABN[7-4] ABN[3-0] read= x010b
ARR9 A7h Agh AON[7-4] ASh[3-0] write=x01xb
ARRA AAh ABh ACH[7-4] ACRh[3-0]

ARRB ADh AEh AFN[7-4] AFN[3-0]

ARRC DOh D1h D2Nn[7-4] D2n[3-0]

ARRD D3h D4h D5h[7-4] D5N[3-0]

Cyrix Il 61

Via Confidential, Requires Non-Disclosure Agreement

Cyrix Processors

Cyrix Il Register Set

Addressregion 7 defines total system memory unless superseded by other address region defini-

tions. The SIZE field is defined in two different way as listed in Table 2-24. If the address region
sizefield is zero, the address region is disabled. After areset, al ARR Registers areinitialized to
00h. The base address of the ARR address region, selected by the Base Address field, must be on
ablock size boundary. For example, a 128K B block is allowed to have a starting address of OKB,
128K B, 256K B, and so on. A 512K B block is allowed to have a starting address of OKB, 512K B,
1024K B, and so on. Address region 3 defines SMM space when enabled by CCR1 hit 7.

Table 2-24. ARRn Address Region Size Field Definitions

Size Block Size
ARRO-ARR6 ARR7-ARRB ARRC-ARRD
00h Disable Disable Disable
01h 4KB 256 KB 256K B
02h 8 KB 512 KB Reserved
03h 16 KB 1MB
04h 32KB 2MB
05h 64 KB 4MB
06h 128 KB 8MB
07h 256 KB 16 MB
08h 512KB 32MB
09h 1MB 64 MB
0Ah 2MB 128 MB
0Bh 4 MB 256 MB
0Ch 8 MB 512 MB
0Dh 16 MB 1GB
OEh 32MB 2GB
OFh 4GB 4GB
62 Cyrix 1

Via Confidential, Requires Non-Disclosure Agreement

April 4, 2000 11:32 am

Cyrix 111 Register Set 2

25412 Region Control Registers
7 6 5 4 3 2 1 0
Reserved | INV_RGN wP wWT WG Reserved RCD/RDE

*Note: RCD is defined for RCRO-RCR6. RCE is defined for RCRY7.

BIT
POSITION

NAME

DESCRIPTION

6

INV_RGN

ARRO Invert Region

1 = appliesthe controls specified in RCRn to all memory addresses outside the region
specified in ARRO.

WP

Write-Protect
1 = enables write protect for address region n.

WT

Write-Through

1 = definesthe address region as write through instead of write-back. Any system ROM
that is allowed to be cached by the processor should be defined as write through.

WG

Write-Gathering
1 = enables write gathering for address region n.

With WG enabled, multiple byte, word or dword writes to sequential addresses that
would normally occur asindividual cycles on the bus are collapsed, or “gathered” within
the processor and then completed as a single write cycle. WG improves bus utilization
and should be used on memory regions that are not sensitive to gathering.

RCD

Cache Disable (RCRO - RCR6 only)
1 = defines the address region n as non-cacheable.

RCE

Cache Enable (RCR7 only)

1 = enables caching of all memory outside of con-cachable regions

Cyrix Il

63

Via Confidential, Requires Non-Disclosure Agreement

Cyrix Processors

Cyrix Il Register Set

The Region Control Registers (RCRn) specify
the attributes for the memory address regions
defined by the corresponding Address Region
Registers (ARRn). Cacheability, weak locking,
write gathering and cache write-through poli-
cies can be enabled or disabled using the RCRn
registers. Table 2-25 describes the index and
MAPEN assignments for RCRn.

Undefined Memory Regions

If an addressisaccessed that isnot in amemory
region defined by an ARR/RCR register pair,
the following conditions apply:

* If the memory addressis cached, write-back
isenabled
» Writes are not gathered

Overlapping Regions

If two regions specified by ARR Registersover-
lap and conflicting attributes are specified, the
following attributes take precedence:

» Write-back is disabled

» Writes are not gathered

» Strong locking takes place

» The overlapping regions are non-cacheable

Table 2-25. RCRn Register Index Assignment

RCRn Name Index Cl\é'ég[?l]
RCRO DCh x00xb
RCR1 DDh
RCR2 DEh
RCR3 DFh
RCR4 EOh
RCR5 Elh
RCR6 E2h
RCR7 E3h
RCR8 DCh read=x010b
RCRY DDh write=x01xb
RCRA DEh
RCRB DFh
RCRC EOh
RCRD Elh

Inverted Region (INV_RGN)

Setting INV_RGN appliesthe controlsin RCRx
to all the memory addresses outside the speci-
fied address region ARRXx. This bit affects
RCRO-RCR6, but not RCR7

Write-Through (WT)

Setting WT defines the address region as
write-through instead of write-back, assuming
the region is cacheable. Regions where system
ROM are loaded (shadowed or not) should be
defined as write-through.

Write Gathering (WG)

Setting WG enables write gathering for the
associated address region. Write gathering
allows multiple byte, word, or DWORD
sequential address writes to accumulate in the
on-chip write buffer. Asinstructions are exe-

Cyrix I

Via Confidential, Requires Non-Disclosure Agreement

April 4, 2000 11:32 am

Cyrix 111 Register Set 2

cuted the results are placed in a series of output
buffers. These buffersare gathered into thefinal
output buffer.

- When the 32-byte buffer becomesfull, the contents
of the buffer are written on the external 64-bit data
bus. Performance is enhanced by avoiding many
memory write cycles.

- WG should not be used on memory regions that are
sensitive to write cycle gathering. WG can be
enabled for both cacheable and non-cacheable
regions.

Write Protect (WP)

- Setting WP enables write protect for the corre-
sponding address region. With WP enabled, The
memory region is treated as read-only when cached
into the cpu cache. During a cache-hit write, the
cache will not be modified. The data will still be
written through to main memory however, and itis
up to the chipset memory controller to ignore the
main memory write if necessary.

Cache Disable (CD)

- Cache Disable, if set, defines the address region as
non-cacheable. This bit works in conjunction with
the CRO_CD and PCD bits to determine line
cacheability. Whenever possible, the ARR/RCR
combination should be used to define non-cache-
ableregions.

Cyrix Il

For RCRO through RCR6

e Only one RCD, WG, WT. WP hit of each
RCR register can be SET at atime.

» To define aregion to be WC, define corre-
sponding ARR6-0 and SET only WG bit in
the corresponding RCR6-0 to 1.

» To define aregion to be WP, define corre-
sponding RCR6-0 and SET only WP bitin
the corresponding RCR6-0 to 1.

ARR/RCR Programming Example

The following example illustrates the values
used to program ARR/RCR registers. In this
example, ARR4 is available. Index DOh isthe
most significant byte of thisregister; Index D2h
isthe least significant byte of thisregister. Val-
ues are programmed viathe Port 22h/23h mech-
anism.

Scenario:
- Define aregion from 31MB-32MB of memory as
non-cacheable and not located in physical memory
space:

1) ARR4 (MAPEN = Sets AD31-AD24 to

0001, Index DOh)= 01h

2) ARR4 (MAPEN =
0001, Index D1h)= FOh

3) ARR4 (MAPEN =

0001, Index D2h)= 0%9h

4) RCR4 (MAPEN = 0001,
Index EOh= 01h

Via Confidential, Requires Non-Disclosure Agreement

01h

Sets AD23-AD16 to
FOh

Sets AD15-AD12 to Oh
and Size= 1MB
(O1F0000h = 31M)

Sets Memory Region
to Non-Cacheable

65

Cyrix Processors

Cyrix Il Register Set

255 Directory Registers

The DIR Registers allow BIOS and other software to identify the specific CPU and stepping. Sys-
tem Management Mode (SMM) control information is stored in the SMM registers. DIRO and
DIRL1 registers are accessed by writing to the I/O Port 22h index using indices FEh and FFh. They
can be read from any MAPEN except 4.

2551 Directory Register 0 (DIRO)
7 6 5 4 3 2 1 0
Cyrix Processor Family = 8h CPU Clock Multiplier
Index: FEh
Default Value: Dynamic - Revision Dependent
Access: Read Only
MAPEN
Bit Name Description
7-4 Cyrix Processor | Cyrix Processor family code.
Family

Read only value set to 8.
30 CLK_MULT Clock Multiplier

Indicates the clock ratio. The value of CLK_MULT is set by the input pins
NMI, INTR, A20M#, IGNNE#; or by BIOS through BCR1 and BCR2

TYPE Bits Clock Ratio
4h 25
1h 30
5h 35
2h 4.0
6h 45
3h 50
7h 55
8h 6.0
Ah 6.5
9h 7.0
Bh 75
66 Cyrix 11l

Via Confidential, Requires Non-Disclosure Agreement

Cyrix 111 Register Set 2

April 4, 2000 11:32 am

2552 Directory Register 1 (DIR1)
7 6 5 4 3 2 1 0
STEP_ID REV_ID
Index: FFh
Default Value: Dynamic - Revision Dependent
Access. Read Only
MAPEN: xxxh
Bit Name Description
7-4 STEP_ID Step Identification

Indicates the major revision of the Cyrix Ill. Thisvalueis zero based and is usually
only incremented on production revision parts.

3-0 REV_ID Revision Identification

Indicates the minor revision of the Cyrix I11. Thisvalueis zero based. For example, the
production revision 1.1 of a CPU islisted as 01h. Thisvalueisincremented on
production revision parts.

DIR2 isreserved.

Cyrix Il 67

Via Confidential, Requires Non-Disclosure Agreement

Cyrix Processors

Cyrix Il Register Set

2553 Directory Register 3 (DIR3)
7 6 5 4 3 2 1 0
TYPE FAMILY

Index: FCh
Default Value: Dynamic - Revision Dependent
Access. Read Only
MAPEN: Read =xxxxb, Write = x00xb

Bit Name Description

7-4 |TYPE Processor type asread by CPU_ID instruction. Read only value set to 0.

3-0 [FAMILY Processor family asread by CPU_ID instruction. Read only value set to 6.

68 Cyrix I

Via Confidential, Requires Non-Disclosure Agreement

April 4, 2000 11:32 am

Cyrix |11 Register Set 2

2554 Directory Register 4 (DIRO)
7 6 5 4 3 2 1
STEP_ID REV_ID

Index: FBh
Default Value: Dynamic - Revision Dependent
Access. Read Only
MAPEN: Read =xxxxb, Write = x00xb

Bit Name Description

7-4 | MODEL Processor model as read by CPU_ID instruction. Read only value set to 5.

3-0 |STEPPING

Processor stepping as read by CPU_ID instruction.

Cyrix Il

Via Confidential, Requires Non-Disclosure Agreement

69

Cyrix Processors

Cyrix Il Register Set

2555 BI1OS Core-to-Bus Clock Ratio Configuration Register
Index: 48h
Default Value: 00h
Access: Read/Write
MAPEN: 0100b
Bit Name Description
7 HOTRST_TRIGGERED A read/write bit used to indicate to the BIOS whether hot reset
has been triggered or not.
6 Reserved. 0
5:4 BSEL[1- Q] Indicate the P6 bus speed.
3.0 BIOS_CLKRATIO[3-0] Core-to-bus clock ratio as described below.
TYPE Bits Clock Ratio
4h 25
1h 3.0
5h 35
2h 4.0
6h 45
3h 5.0
7h 55
8h 6.0
Ah 6.5
% 7.0
Bh 7.5
Stepsto set clock multiplier through BIOS)
70 Cyrix 11

Via Confidential, Requires Non-Disclosure Agreement

April 4, 2000 11:32 am

Cyrix 111 Register Set 2

2556 BIOS PLL Hot Reset Configuration Register
Index: 49h
Default Value: 00h
Access: Read/Write
MAPEN: 010
Bit Name Description
71 Reserved. 0
0 BIOS HOTRESET Writing a 1 to this bit will start the internal reset sequence to
the PLL and load the BIOS_CLKRATIQ[3:0] value to the
PLL.

Yes

Is Index register 48h bit(7) set to 1?7

Program CCR2 hit(3) to 1 to enable suspend on HALT.
Program index register 48h bit(3:0) to the desired clock

ratio, and set bit(7) to 1 to remember that clock ratio has
been programmed.

Program index register 49h bit(0) to 1 to initiate the hot
reset sequence. This bit will be reset automatically upon
the deassertion of hot reset.

|
L

Execute aHALT Instruction

i<

Cyrix Il 71

Via Confidential, Requires Non-Disclosure Agreement

Cyrix Processors

Cyrix Il Register Set

2557 L2 _CNTL Configuration Register
Index: 41h
Default Value:
Access: Read/Write
MAPEN: 0100b
Bit Name Description
3 L2 WT L2 Write Through. All L1 evictions (cache line writes) are

not stored in the L 2. If the evicted cache lineis modified, the
cache line is written to the P6 bus. If the cachelineisin the
shared or exclusive state, it is discarded.

2 L2_ENABLE L2 Enable. All L2 accesses (reads, writes or snoops) will
miss the L2. An eviction from the L1 (cache line write) will
not update the L2. A WBINV instruction must be generated
when changing thisbit froma1toa0. The POR value of this
bitisO.

72 Cyrix I

Via Confidential, Requires Non-Disclosure Agreement

April 4, 2000 11:32 am

Debug Registers 2

2.6 Debug Registers

Six debug registers (DR0O-DR3, DR6 and DR7),
shown in Figure 2-9, support debugging on the
Cyrix 111 CPU. Thebit definitionsfor the debug
registers are listed in Table 2-26 (Page 2-74).

Memory addresses |oaded in the debug
registers, referred to as “ breakpoints’, generate
adebug exception when amemory access of the
specified type occurs to the specified address.
A data breakpoint can be specified for a
particular kind of memory access such asaread
or awrite. Code breakpoints can also be set
allowing debug exceptionsto occur whenever a
given code access (execution) occurs.

Thesize of thedebug target canbesetto 1, 2, or
4bytes. The debug registers are accessed via
MOQV instructions which can be executed only
at privilegelevel 0.

The Debug Address Registers (DR0O-DR3) each
contain the linear address for one of four
possible breakpoints. Each breakpoint isfurther
specified by bitsin the Debug Control Register
(DR7). For each breakpoint address in
DRO-DRS, there are corresponding fields L,
R/W, and LEN in DR7 that specify the type of
memory access associated with the breakpoint.

TheR/W field can be used to specify instruction
execution as well as data access breakpoints.
Instruction execution breakpoints are always
taken before execution of the instruction that
matches the breakpoint.

The Debug Status Register (DR6) reflects
conditions that were in effect at the time the
debug exception occurred. The contents of the
DR6 register are not automatically cleared by
the processor after a debug exception occurs
and, therefore, should be cleared by software at
the appropriate time.

33 22 222 22 22 21 11 11 11111

10987654321098765432109876543210
LEN RwW | LEN RwW| LEN | RvwW LEN RV G G|L|G|L|G|L G|L G| L

O o ool DR7
3 3 2 2 1 1 (] (0] D E|E|3|3|2|2 1|1 O|O
B|B BB BB

O OO OO OO OO O OO0 Oo oo OoO/fO01 1211211 1 1 1 DFR5
T|S 32 1|0

BREAKFOINT 3 LINEAR ADDRESS DR3

BREAKFOINT 2 LINEARADDHESS DR2

BREAKFOINT 1 LINEARADDRESS DRL

BREAKFOINT O LINEARADDRESS DFO

ALL BTSMARKED ASO OR 1 ARE RESERVED AND SHOULD NOT BE MODIFIED. 1703203

Figure 2-9. Debug Registers

Cyrix Il

73

Via Confidential, Requires Non-Disclosure Agreement

Cyrix Processors

Address Space

Code execution breakpoints may also be generated by placing the breakpoint instruction (INT 3) at
the location where control isto beregained. Additionaly, the single-step feature may be enabled
by setting the TF flag in the EFLAGS register. This causes the processor to perform a debug
exception after the execution of every instruction.

Table 2-26. DR6 and DR7 Debug Register Field Definitions

REGISTER

FIELD

NUMBER
OF BITS

DESCRIPTION

DR6

Bl

1

Bl is set by the processor if the conditions described by DRI, R/Wi,
and LENI occurred when the debug exception occurred, even if the
breakpoint is not enabled viathe Gl or LI bits.

BT

BT is set by the processor before entering the debug handler if atask
switch has occurred to atask with the T bit in the TSS set.

BS

BSis set by the processor if the debug exception was triggered by the
single-step execution mode (TF flag in EFLAGS set).

DR7

R/Wi

Specifies type of break for the linear addressin DRO, DR1, DRS3,
DR4:

00 - Break on instruction execution only

01 - Break on data writes only

10 - Not used

11 - Break on data reads or writes.

LENI

Specifies length of the linear addressin DRO, DR1, DR3, DR4:
00 - One byte length

01 - Two byte length

10 - Not used

11 - Four byte length.

Gi

If set to a1, breakpoint in DRI is globally enabled for all tasksand is
not cleared by the processor as the result of atask switch.

LI

If set to a1, breakpoint in DRI islocally enabled for the current task
and is cleared by the processor as the result of atask switch.

GD

Global disable of debug register access. GD bit is cleared whenever a
debug exception occurs.

2.7 Address Space

and FFFF FFFFh. This4 GB memory space
can be accessed using byte, word (16 bits), or

The Cyrix 111 CPU can directly address 64 KB doubleword (32 bits) format. Words and

of 1/0 space and 4 GB of physical memory

(Figure 2-24).

doublewords are stored in consecutive memory
bytes with the low-order byte located in the
lowest address. The physical address of aword

Memory Address Space. Access canbemade o doubleword is the byte address of the

to memory addresses between 0000 0000h

74

low-order byte.

Cyrix I

Via Confidential, Requires Non-Disclosure Agreement

April 4, 2000 11:32 am

Address Space 2

Physical
Mearory Soece
I/O Address Space
FA-F FFFFh FFFF FEFFh
Physical Memory Not
Accessble
4 CBytes
0000 FFFFh U
Configuratian
Raiger 1/0
64 KBytes Space
0000 0023h
0000 0000h G000 0A00h <4 0000 0022n
1750201
Figure 2-24. Memory and 1/O Address Spaces
I/0O Address Space The accessible 1/0 address space ranges between

_ _ |ocations 0000 0000h and O0O00FFFFh (64 KB).
The Cyrix I11 1/0O address space is accessed The 1/0 locations (ports) 22h and 23h can be

using IN and OUT instructions to addresses used to access the Cyrix |11 configuration
referred to as“ ports’. The accessible [/0O registers.

address space sizeis 64 KB and can be accessed
through 8-bit, 16-bit or 32-bit ports.

Cyrix Il 75

Via Confidential, Requires Non-Disclosure Agreement

Cyrix Processors

Memory Addressing Methods

2.8 Memory Addressing Methods

With the Cyrix 11 CPU, memory can be
addressed using nine different addressing
modes (Table 2-26, Page 2-77). These
addressing modes are used to cal cul ate an offset
addressoftenreferred to asan effective address.
Depending on the operating mode of the CPU,
the offset is then combined using memory
management mechanisms to create a physical
address that actually addresses the physical
memory devices.

Memory management mechanismson the Cyrix
[l CPU consist of segmentation and paging.
Segmentation allows each program to use
severa independent, protected address spaces.
Paging supports a memory subsystem that
simulates a large address space using a small
amount of RAM and disk storage for physical
memory. Either or both of these mechanisms
can be used for management of the Cyrix 111
CPU memory address space.

76 Cyrix I

Via Confidential, Requires Non-Disclosure Agreement

April 4, 2000 11:32 am

Memory Addressing Methods 2

281 Offset Mechanism

The offset mechanism computes an offset
(effective) address by adding together one or
more of three values: abase, an index and a
displacement. When present, the baseisthe
valueof oneof theeight 32-bit general registers.
Theindex if present, likethebase, isavaluethat
isin one of the eight 32-bit general purpose
registers (not including the ESP register). The
index differs from the base in that the index is
first multiplied by ascale factor of 1, 2,4 or 8
before the summation ismade. The third
component added to the memory address calcu-
lation isthe displacement. The displacementis
avalue of up to 32-bitsin length supplied as part
of theinstruction. Figure 2-25 illustrates the
calculation of the offset address.

Nine valid combinations of the base, index,
scale factor and displacement can be used with
the Cyrix 111 CPU instruction set. These combi-
nations are listed in Table 2-26. The base and
index both refer to contents of aregister as
indicated by [Base] and [Index].

Index

O splacement

[

Ssding

ay

A

> s Address
(Hfective Address)

1706603

Figure 2-25. Offset Address
Calculation

Table 2-26. Memory Addressing Modes

ADDMROESEING BASE | INDEX FSATCS%)ER DISPL,(ADCFI;M ENT OFFiEATL/éBEEEIsOs '\(IOA)
Direct X OA =DP
Register Indirect OA =[BASE]
Based X OA =[BASE] + DP
Index X OA =[INDEX] + DP
Scaled Index X X OA = ([INDEX] * SF) + DP
Based Index X X OA =[BASE] + [INDEX]
Based Scaled Index X X OA =[BASE] + ([INDEX] * SF)
Based Index with X X OA =[BASE] +[INDEX] + DP
Displacement
Based Scaled Index with X X X X OA =[BASE] + ([INDEX] * SF) + DP
Displacement
Cyrix Il 77

Via Confidential, Requires Non-Disclosure Agreement

Cyrix Processors

Memory Addressing Methods

2.8.2 Memory

Addressing
Real Mode Memory Addressing

In real mode operation, the Cyrix 11 CPU only
addresses the lowest 1 MB of memory. To
calculate a physical memory address, the 16-bit
segment base address |ocated in the selected
segment register ismultiplied by 16 and then the
16-hit offset addressis added. The resulting
20-bit address is then extended. Three
hexadecimal zeros are added as upper address
bits to create the 32-bit physical address. Figure
2-26 illustrates the real mode address calcu-
lation.

The addition of the base address and the offset
address may result in acarry. Therefore, the
resulting address may actually contain up to 21
significant address bits that can address
memory in the first 64 KB above 1 MB.

Protected Mode Memory Addressing

In protected mode three mechanismscalculate a
physicad memory address (Figure 2-27, Page 2-79).

» Offsat Mechanism that produces the offset
or effective address asin real mode.

» Selector Mechanism that produces the
base address.

* Optiona Paging Mechanism that trandl ates
alinear address to the physical memory
address.

The offset and base address are added together
to produce the linear address. If paging is not
enabled, the linear address is used as the
physical memory address. If paging isenabled,
the paging mechanism is used to trand ate the
linear address into the physical address. The
offset mechanism is described earlier in this
section and applies to both real and protected
mode. The selector and paging mechanismsare
described in the following paragraphs.

Offset Adcress 16 12
Offset Mecharism -
,-*_\\)

I - %0 , 32 p Liner Addres

_ -,/" (Fhys @A Addresy
SHeded Sagmant 16 20 |

x16
Regge
1708304

Figure 2-26. Real Mode Address Calculation

78

Cyrix I

Via Confidential, Requires Non-Disclosure Agreement

April 4, 2000 11:32 am

Memory Addressing Methods 2

2z Addes ’ Qiicni /32 >

Cffst
= Adtes
Y.
i)
Sgrat NI
B A
fc=4
. Address
Sdata Mdeisn —f——

Linexx

RgrgMaedenisn Addes

1708

Figure 2-27. Protected Mode Address Calculation

283 Selector Mechanism

Using segmentation, memory isdivided into an
arbitrary number of segments, each containing
usually much less than the 232 byte (4 GB)
maximum.

The six segment registers (CS, DS, SS, ES, FS
and GS) each contain a 16-bit selector that is
used when the register isloaded to locate a
segment descriptor in either the global
descriptor table (GDT) or the local descriptor
table (LDT). The segment descriptor defines
the base address, limit, and attributes of the

selected segment and is cached on the Cyrix 11
CPU as aresult of loading the selector. The
cached descriptor contents are not visible to the
programmer. When amemory reference occurs
in protected mode, the linear addressis
generated by adding the segment base address
in the hidden portion of the segment register to
the offset address. If paging isnot enabled, this
linear address is used as the physical memory
address. Figure 2-28 illustrates the operation of
the selector mechanism.

Keda
InSgnat INCEX mn R
Rgster

SHECTOR LOADINSRUCTION

oooooo

Figure 2-28. Selector Mechanism

Cyrix Il

79

Via Confidential, Requires Non-Disclosure Agreement

Cyrix Processors

Memory Addressing Methods

284 Paging Mechanism

The paging mechanism tranglates linear
addresses to their corresponding physical
addresses. Thepagesizeisalways4K B. Paging
is activated when the PG and the PE bitswithin
the CRO register are set.

The paging mechanism translates the 20 most
significant bits of alinear address to a physical
address. Thelinear addressisdivided into three
fieldsDTI, PTI, PFO (, Page 2-81). Thesefields
respectively select:

e anentry inthedirectory table,

e anentry in the page table selected by the
directory table

* theoffset in the physical page selected by
the page table

The directory table and all the page tables can
be considered as pages asthey are 4 KB in size
and are aligned on 4 KB boundaries. Each entry
in these tablesis 32 bitsin length. Thefields
within the entries are detailed in Figure 2-30
(Page 2-81) and Table 2-27 (Page 2-82).

A single page directory table can address up to
4 GB of virtual memory (1,024 page tables—
each table can select 1,024 pages and each page
contains4KB).

Trandation Lookaside Buffer (TLB) ismade up
of two caches (Page 2-81).

* the L1 TLB caches page tables entries
e thelL2 TLB stores PTEsthat have been
evicted fromtheL1 TLB

The L1 TLB isal6-entry direct-mapped dual
ported cache. TheL2 TLB isa 384 entry,
6-way, dual ported cache.

80 Cyrix I

Via Confidential, Requires Non-Disclosure Agreement

April 4, 2000 11:32 am

Memory Addressing Methods 2

H ECTOR LOADINGS R CTIAN SOVENT R IHER
S ECTEHDBY T O HD
Shatar 1s o INSIRUCTICN
InSgret INCEX | P
Rysear
Sograt
> Dexaiptar
Gdoa Desriptor Sorat
Tade BeseAddress
Sograt
> Cesriptar
Locel Desxipar 1739100
Tdade
Figure 2-29. Paging Mechanism
31 12 11 10 9 8 7 6 5 4 3 2 1 (¢]
PlU |[w
BASE ADDRESS AVAILABLE RESERVED D|IA|C|W / / P
D T S R
Note In DTE format, bit 6 isresarved 1708503

Figure 2-30. Directory and Page Table Entry (DTE and PTE) Format

Cyrix Il

Via Confidential, Requires Non-Disclosure Agreement

81

Cyrix Processors

Memory Addressing Methods

Table 2-27. Directory and Page Table Entry (DTE and PTE) Bit Definitions

BIT POSITION FIELD NAME DESCRIPTION
31-12 BASE Specifies the base address of the page or page table.
ADDRESS
11-9 - Undefined and available to the programmer.
8-7 - Reserved and not available to the programmer.

6 D Dirty Bit. If set, indicates that a write access has occurred to the page (PTE
only, undefined in DTE).

5 A Accessed Flag. If set, indicates that aread access or write access has occurred
to the page.

4 PCD Page Caching Disable Flag. If set, indicates that the page is not cacheablein
the on-chip cache.

3 PWT Page Write-Through Flag. If set, indicates that writes to the page or page
tables that hit in the on-chip cache must update both the cache and external
memory.

2 u/s User/Supervisor Attribute. If set (user), pageis accessible at privilege level 3.
If clear (supervisor), page is accessible only when CPL £ 2.

1 W/R Write/Read Attribute. If set (write), pageiswritable. If clear (read), pageis
read only.

0 P Present Flag. If set, indicates that the page is present in RAM memory, and
validates the remaining DTE/PTE bits. If clear, indicates that the page is not
present in memory and the remaining DTE/PTE bits can be used by the
programmer.

For aTLB hit, the TLB eliminates accesses to
external directory and page tables.

TheL1 TLB isasmall cache optimized for
speed whereasthe L2 TLB isamuch larger
cache optimized for capacity. TheL2 TLB isa
proper superset of the L1 TLB.

The TLB must be flushed by the software when
entriesin the page tables are changed. Both the
L1 and L2 TLBsareflushed whenever the CR3
register isloaded. A particular page can be
flushed from the TLBs by using the INVLPG
instruction.

82

2841 Transation Lookaside

Buffer Testing

The L1 and L2 Trandation Lookaside Buffers
(TLBs) can be tested by writing, then reading
from the same TLB location. The operation to
be performed is determined by the command
(CMD) field Table 2-28 (Page 2-82) inthe TR6
register.

Table 2-28. CMD Field

CMD OPERATION ADSIRNEESASF;HS

x00 Writeto L1 15-12

x01 Writeto L2 17-12

010 Read from L1 X port 15-12

011 Read from L2 X port 17 -12

110 Read from L1Y port 15-12
Cyrix 111

Via Confidential, Requires Non-Disclosure Agreement

April 4, 2000 11:32 am

Memory Addressing Methods 2

Table 2-28. CMD Field
| Read from L2 Y port |

| 110 17-12 |

TLB Write

To perform awrite to the Cyrix 111 TLBs, the
TRY7 register (Figure 2-31) isloaded with the
desired physical addressaswell asthe PCD and
PWT bits. For awritetothe L2 TLB, the SET
field of TR7 must be also specified. The H1,
H2, and HSET fields of TR7 are not used. The
TR6 register is then loaded with the linear
address, V, D, U, W and A fields and the appro-
priate CMD. ForalL1TLB write, the TLB entry
is selected by bits 15-12 of the linear address.
For aL2 TLB write, the TLB entry is selected
by bits 17-12 of the linear address and the SET
field of TR7.

TLB Read

ForaL1LTB read, the TR6 register isloaded
with the linear address and the appropriate
CMD. TheL1TLB entry selected by bits 15-12

of thelinear addresswill then be accessed. The
linear address, V, D, PG, U, W and A fields of
TR6 and the physical address, PCD and PWT
fields of TR7 are loaded from the specified L1
entry. The H1 bit of TR7 will indicate if the
specified linear address hitinthe L1 TLB.

For aL2 TLB read, the TR7 register is loaded
with the desired SET. The TR6 register isthen
loaded with the linear address and the appro-
priate CMD. TheL2 TLB entry selected by bits
17-12 of thelinear address and the SET field in
TR7 will then be accessed. The linear address,
V.,D, PG, V, W, and A fields of TR6 and the
physical address, PCD and PWT fields of TR7
are loaded from the specified L2 entry. The H2
bit of TR7 will indicate if the specified linear
addresshitinthe L2 TLB. If therewasan L2
hit, the HSET field of TR7 will indicate which
SET hit.

TheTLB test register fieldsare defined in Table
2-29. (Page 2-84).

ACR7 (AHYSCAL ADDRESS) Fc[m|'| =T HL| 2 reEr TR
21 1211 10 9 8 7 6 5 4 3 2 1 O

ADFS (LINEARACDRESS v D|PG u| o wlo| Al o ab |
31 1211 10 9 8 7 6 5 4 3 2 1 O

Figure 2-31. TLB Test Registers

Cyrix Il

83

Via Confidential, Requires Non-Disclosure Agreement

Cyrix Processors

Memory Addressing Methods

Table 2-29. TLB Test Register Bit Definitions

REGISTER
NAME

NAME

RANGE

DESCRIPTION

TR7

ADR7

31-12

Physical address or variable page size mechanism mask.
TLB lookup: datafield from the TLB.
TLB write: datafield written into the TLB.

PCD

1

Page-level cache disable bit (PCD).
Corresponds to the PCD bit of a page table entry.

PWT

10

Page-level cache write-through bit (PWT).
Corresponds to the PWT bit of a page table entry.

SET

L2 TLB Set Selection (Oh - 5h)

H1

HitinL1TLB

H2

HitinL2 TLB

HSET

L2 Set Selection when L2 TLB hit occurred (Oh - 5h)

TR6

ADRG6

Linear Address.

TLB lookup: The TLB isinterrogated per this address. If
one and only one match occursin the TLB, therest of the
fieldsin TR6 and TR7 are updated per the matching TLB
entry.

TLB write: A TLB entry isallocated to thislinear address.

1

PTE Valid.
TLB write: If set, indicates that the TLB entry contains
valid data. If clear, target entry isinvalidated.

10

Dirty Attribute Bit

8lo

Page Global

User/Supervisor Attribute Bit

Write Protect bit.

Zl=s|c

2-0

Array Command Select.
Determines TLB array command.

Refer to Table 2-28 (Page 2-82).

Via Confidential, Requires Non-Disclosure Agreement

Cyrix I

April 4, 2000 11:32 am

Memory Caches 2

29 Memory Caches

TheCyrix 111 CPU containstwo memory caches
as described in Chapter 1. The Unified Cache
acts as the primary data cache, and secondary
instruction cache. Thelnstruction Line Cacheis
the primary instruction cache and provides a
high speed instruction stream for the Integer
Unit.

The unified cache is dual-ported allowing
simultaneous access to any two unique banks.
Two different banks may be accessed at the
same time permitting any two of the following
operations to occur in parallel:

e Codefetch

» Dataread (X pipe, Y pipe or FPU)
» Datawrite (X pipe, Y pipeor FPU).

Cyrix Il

291 Unified Cache
MES! States

The unified cachelines are assigned one of four
MESI states as determined by MES! bits stored
in tag memory. Each 32-byte cachelineis
divided into two 16-byte sectors. Each sector
contains its own MES! bits. The four MESI
states are described below:

Modified MESI cache lines are those that have
been updated by the CPU, but the corresponding
main memory location has not yet been updated
by an external write cycle. Modified cachelines
arereferred to as dirty cache lines.

Exclusive MESI lines are lines that are
exclusive to the Cyrix 111 CPU and are not
duplicated within another caching agent’s
cache within the same system. A writeto this
cache line may be performed without issuing an
external write cycle.

Shared MES lines may be present in another
caching agent’ s cache within the same system.
A writeto thiscachelineforcesacorresponding
external write cycle.

InvalidMESI lines are cache lines that do not
contain any valid data.

85

Via Confidential, Requires Non-Disclosure Agreement

Cyrix Processors

Memory Caches

2911 Unified Cache Testing

The TR3, TR4, and TR5 on-chip test registers
provide information so the unified cache can be
tested. Thisinformation determines what
particular areawill betested. Fieldswithin these
test registers identify which area of the cache
will be selected for testing.

Cache Organization. The unified cache (Figure
2-32) isdivided into 32-bytes lines. This cache
isdivided into four sets. Since a set (aswell as
the cache) is smaller than main memory, each

linein the set corresponds to more than oneline
inmain memory. When acachelineisallocated,

bits A31-A14 of the main memory address are
stored in the cache linetag. The remaining
address bits are used to identify the specific
32-byte cache line (A13-A5), and the specific
4-byte entry within the cache line (A4-A2).

Test Initiation. A test register operation is
initiated by writing to the TR5 register shownin
Figure 2-33 (Page 2-87) using a special MOV
instruction. The TR5 CTL field, detailed in
Table 2-30 (Page 2-87), determinesthe function
to be performed. For cache writes, theregisters
TR4 and TR3 must beinitialized before awrite
ismade to TR5. Eight 4-byte accesses are
required to access a complete cache line.

< 32 Bytes of Data >

SETO

512 Lines

SET1

2048 Lines
SET2
SET3
v
Typical
Single
ENT | ENT| ENT | ENT ENT| ENT | ENT | ENT Line
BNT = 1747500
Figure 2-32. Unified Cache
Cyrix 1

Via Confidential, Requires Non-Disclosure Agreement

April 4, 2000 11:32 am

Memory Caches 2

31 24 23 22 20 19 18 16 15 12 11 87 65 432 0

S TRS5
M V| MESI MRU SET CTL
[

31 21

TR4
ADDRESS

31

TR3
DATA

Figure 2-33. Cache Test Registers

Table 2-30. Cache Test Register Bit Definitions

REGISTER FIELD
NAME NAME
TR5 SMI 23 SMI Address Bit. Selects separate/cacheable SMI code/data

space

V, MESI 19-16 |Valid, MESI Bits*

If = 1000, Modified

If = 1001, Shared

If = 1010, Exclusive

If =0011, Invalid

If = 1100, Locked Valid

If = 0111, Locked Invalid

Else = Undefined

MRU 11-8 |[Used to determine the Least Recently Used (LRU) line.
SET 5-4 Cache Set. Selects one of four cache sets to perform opera-
tion on.

CTL 1-0 Control field

If = 00: flush cache without invalidate

If = 01: write cache

If =10: read cache

If = 11: no cache or test register modification
TR4 ADDRES 31-2 Physical Address

S

TR3 DATA 31-0 |Datawritten or read during a cache test.
*Note: All 32 bytes should contain valid data before aline is marked as valid.

RANGE DESCRIPTION

Cyrix Il 87

Via Confidential, Requires Non-Disclosure Agreement

Cyrix Processors

Memory Caches

Write Operations. During awrite, the TR3 DATA (32-bits) and TAG field information is written
to the address selected by the ADDRESS field in TR4 and the SET field in TR5.

Read Operations. During aread, the cache address selected by the ADDRESS field in TR4 and the
SET fieldin TR5. The TVB, MESI and MRU fieldsin TR5 are updated with the information from
the selected line. TR3 holds the selected read data.

Cache Flushing. A cache flush occurs during a TR5 write if the CTL field is set to zero. During
flushing, the CPU’ s cache controller reads through al the linesin the cache. “Modified” linesare
redefined as “ shared” by setting the shared MESI bit. Clean lines are left in their original state.

88 Cyrix 1
Via Confidential, Requires Non-Disclosure Agreement

April 4, 2000 11:32 am

Memory Caches 2

292 RAM Cache Locking

RAM cache locking (was called Scratch Pad
Memory) sets up a private area of memory that
can be assigned within the Cyrix Il unified
cache. Cached locked RAM isread/writable and
iISNOT kept coherent with the rest of the
system. Scratch Pad Memory is a separate
memory on certain Cyrix CPUs.

Cache locking may be implemented differently
on different processors. On the Cyrix 111 CPU,
the cache locking RAM may be assigned on a
cache line granularity.

RDM SR and WRM SR instructions (Page 2-39)
with indices 03h to 05h are used to assign
scratch pad memory. These instructions access
the cache test registers. See section 2.9.1.1
(Page 2-86) for detailed description of cache
test register operation. The cachelineis
assigned into Scratch Pad RAM by setting its
MESI stateto “locked valid.”

When locking physical addressesinto the cache
(Table 2-31), the programmer should be aware
of several issues:

1) Locking all sets of the cache should not be
done. It isrequired that one set always be
available for general purpose caching. 2) Care
must be taken by the programmer not to create
synonyms. Thisisdone by first checking to see
if aparticular addressis locked before
attempting to lock the address. If synonymsare
created, Cyrix 11 CPU operation will be
undefined.

When ever possible, itisrecommended to flush
the cache before assigning locked memory
areas. Locked areas of the cache are cleared on
reset, and are unaffected by warm reset and
FLUSH#, or the INVD and WBINVD instruc-
tions.

Table 2-31. RAM Cache Locking Operations

Read/Write ECX EDX EAX Operation
Read/Write 03h Datato be read or Loads or stores data to/from TR3.
written from/to the
cache.

Write 04h 32 bits of address Addressin EAX isloaded into TR4.
This addressis the cache line address
that will be locked.

Read 04h 32 bits of address Stores the contents of TR4 in EAX

Write 05h Data to be written Performs operation specified in CTL

into TR5 field of TR5.

Read 05h Datain TR5regiss | Readsdatain TR5 and storesin EAX.

ter
Cyrix Il 89

Via Confidential, Requires Non-Disclosure Agreement

Cyrix Processors

Interrupts and Exceptions

210 Interrupts and Exceptions

The processing of an interrupt or an exception
changes the normal sequential flow of a
program by transferring program control to a
selected service routine. Except for SMM inter-
rupts, thelocation of the selected serviceroutine
is determined by one of the interrupt vectors
stored in the interrupt descriptor table.

Hardware interrupts are generated by signal
sources external to the CPU. All exceptions
(including so-called software interrupts) are
produced internally by the CPU.

2.10.1 Interrupts

External events can interrupt normal program
execution by using one of the three interrupt
pins on the Cyrix 111 CPU.

* Non-maskable Interrupt (NMI pin)
* Maskable Interrupt (INTR pin)
e SMM Interrupt (SMI# pin).

For most interrupts, program transfer to the
interrupt routine occurs after the current
instruction has been completed. When the
execution returnsto the origina program, it begins
immediately following the last completed
ingruction.

With the exception of string operations, inter-
rupts are acknowledged between instructions.
Long string operations have interrupt windows
between memory movesthat allow interruptsto
be acknowledged.

The NMI interrupt cannot be masked by
software and always uses interrupt vector 2 to
locate its service routine. Since the interrupt
vector isfixed and is supplied internaly, no
interrupt acknowledge bus cycles are
performed. Thisinterrupt isnormally reserved
for unusual situations such as parity errors and
has priority over INTR interrupts.

Once NMI processing has started, no additional
NMIsare processed until an IRET instructionis
executed, typically at the end of the NMI
serviceroutine. If NMI isre-asserted prior to
execution of the IRET instruction, one and only
one NMI rising edge is stored and processed
after execution of the next IRET. During the
NMI service routine, maskable interrupts may
be enabled (unmasked). If an unmasked INTR
occurs during the NM1 service routine, the
INTR is serviced and execution returnsto the
NMI serviceroutinefollowingthenext IRET. If
aHALT instruction is executed within the NMI
service routine, the Cyrix 111 CPU restarts
execution only in reponse to RESET#, an
unmasked INTR or an SMM interrupt. NM|
does not restart CPU execution under this
condition.

Cyrix I

Via Confidential, Requires Non-Disclosure Agreement

April 4, 2000 11:32 am

Interrupts and Exceptions 2

The INTR interrupt is unmasked when the
Interrupt Enable Flag (IF) in the EFLAGS
register isset to 1. When an INTR interrupt
occurs, the CPU performs two locked interrupt
acknowledge bus cycles. During the second
cycle, the CPU reads an 8-bit vector that is
supplied by anexterna interrupt controller. This
vector selects one of the 256 possible interrupt
handlers which will be executed in response to
the interrupt.

The SMM interrupt has higher priority than
either INTR or NMI. After SMI# is asserted,
program execution is passed to an SMI service
routine that runsin SMM address space
reserved for thispurpose. Theremainder of this
section does not apply to the SMM interrupts.
SMM interrupts are described in greater detail
later in this chapter.

Cyrix Il

2.10.2 Exceptions

Exceptions are generated by an interrupt
instruction or a program error. Exceptions are
classified astraps, faults or aborts depending on
the mechanism used to report them and the
restart ability of the instruction that first caused
the exception.

A Trap Exception is reported immediately
following theinstruction that generated the trap
exception. Trap exceptions are generated by
execution of a software interrupt instruction
(INTO, INT 3, INT n, BOUND), by a
single-step operation or by a data breakpoint.

Software interrupts can be used to simulate
hardware interrupts. For example, an INT n
instruction causes the processor to execute the
interrupt service routine pointed to by the nth
vector in the interrupt table. Execution of the
interrupt serviceroutine occursregardless of the
state of the IF flag in the EFLAGS register.

The one byte INT 3, or breakpoint interrupt
(vector 3), isaparticular case of the INT n
instruction. By inserting this one byte
instruction in a program, the user can set break-
pointsin the code that can be used during debug.

Single-step operation is enabled by setting the
TFbitinthe EFLAGSregister. When TFis set,
the CPU generates a debug exception (vector 1)
after the execution of every instruction. Data
breakpoints al so generate adebug exception and
are specified by loading the debug registers
(DRO-DRY7) with the appropriate values.

91

Via Confidential, Requires Non-Disclosure Agreement

Cyrix Processors

Interrupts and Exceptions

A Fault Exception is reported prior to
completion of the instruction that generated the
exception. By reporting the fault prior to
instruction completion, the CPU isleftin astate
that allowstheinstructionto berestarted and the
effectsof thefaulting instruction to benullified.
Fault exceptions include divide-by-zero errors,
invalid opcodes, page faults and coprocessor
errors. Instruction breakpoints (vector 1) are
also handled asfaults. After execution of the
fault service routine, the instruction pointer
pointsto the instruction that caused the fault.

An Abort Exceptionisatype of fault exception
that is severe enough that the CPU cannot restart
the program at the faulting instruction. The
double fault (vector 8) isthe only abort
exception that occurs on the Cyrix 111 CPU.

92

2.10.3 Interrupt Vectors

When the CPU services an interrupt or
exception, the current program’s FLAGS, code
segment and instruction pointer are pushed onto
the stack to alow resumption of execution of
theinterrupted program. In protected mode, the
processor also saves an error code for some
exceptions. Program control isthen transferred
to the interrupt handler (also called the interrupt
service routing). Upon execution of an IRET at
the end of the service routine, program
execution resumes by popping from the stack,
the instruction pointer, code segment, and
FLAGS.

Interrupt Vector Assignments

Each interrupt (except SMI#) and exception is
assigned one of 256 interrupt vector numbers
Table 2-32, (Page 2-93). Thefirst 32 interrupt
vector assignments are defined or reserved.
INT instructions acting as software interrupts
may use any of the interrupt vectors, O through
255.

Cyrix I

Via Confidential, Requires Non-Disclosure Agreement

April 4, 2000 11:32 am

Interrupts and Exceptions 2

Table 2-32. Interrupt Vector Assignments

INTERRUPT VECTOR FUNCTION EXCEPTION TYPE

0 Divide error FAULT
1 Debug exception TRAP/FAULT*
2 NMI interrupt
3 Breakpoint TRAP
4 Interrupt on overflow TRAP
5 BOUND range exceeded FAULT
6 Invalid opcode FAULT
7 Device not available FAULT
8 Double fault ABORT
9 Reserved
10 Invalid TSS FAULT
11 Segment not present FAULT
12 Stack fault FAULT
13 General protection fault TRAP/FAULT
14 Page fault FAULT
15 Reserved
16 FPU error FAULT
17 Alignment check exception FAULT

18-31 Reserved

32-255 Maskable hardware interrupts TRAP

0-255 Programmed interrupt TRAP

*Note: Data breakpoints and single-steps are traps. All other debug exceptions are faults.

Cyrix Il 93

Via Confidential, Requires Non-Disclosure Agreement

Cyrix Processors

Interrupts and Exceptions

In response to a maskable hardware interrupt
(INTR), the Cyrix 1l CPU issues an interrupt
acknowledge bus cycleto read the vector number
from external hardware. Thesevectorsshould be
intherange 32 - 255 asvectors 0 - 31 are
reserved.

Interrupt Descriptor Table

The interrupt vector number is used by the
Cyrix I11 CPU to locate an entry in the interrupt
descriptor table (IDT). Inrea mode, each IDT
entry consists of a four-byte far pointer to the
beginning of the correspondinginterrupt service
routine. In protected mode, each IDT entry isan
eight-byte descriptor. The Interrupt Descriptor
Table Register (IDTR) specifies the beginning
address and limit of the IDT. Following reset,
the IDTR contains a base address of Oh with a
limit of 3FFh.

The IDT can be located anywhere in physical
memory as determined by the IDTR register.
The IDT may contain different types of
descriptors:. interrupt gates, trap gates and task
gates. Interrupt gatesare used primarily to enter
a hardware interrupt handler. Trap gates are
generally used to enter an exception handler or
software interrupt handler. If an interrupt gate
isused, the Interrupt Enable Flag (IF) in the
EFLAGS register iscleared before the interrupt
handler isentered. Task gates are used to make
the transition to a new task.

2.10.4 Interrupt and Exception

Priorities

Asthe Cyrix 111 CPU executes instructions, it
follows a consistent policy for prioritizing
exceptions and hardware interrupts. The prior-
itiesfor competing interruptsand exceptionsare
listed in Table 2-33 (Page 2-95). Debug traps
for the previousinstruction and the next instruc-
tions always take precedence. SMM interrupts
arethe next priority. When NMI and maskable
INTR interrupts are both detected at the same
instruction boundary, the Cyrix 111 processor
services the NMI interrupt first.

The Cyrix 1l CPU checks for exceptionsin
parallel with instruction decoding and
execution. Several exceptions can result froma
singleinstruction. However, only one
exception is generated upon each attempt to
execute theinstruction. Each exception service
routine should make the appropriate corrections
totheinstruction and thenrestart theinstruction.
In thisway, exceptions can be serviced until the
instruction executes properly.

The Cyrix I11 CPU supports instruction restart
after al faults, except when an instruction
causes atask switch to atask whose task state
segment (TSS) is partialy not present. A TSS
can be partially not present if the TSSis not
page aligned and one of the pages where the
TSSresidesis not currently in memory

Cyrix I

Via Confidential, Requires Non-Disclosure Agreement

April 4, 2000 11:32 am

Interrupts and Exceptions 2

Cyrix Il

Table 2-33. Interrupt and Exception Priorities

PRIORITY DESCRIPTION NOTES
0 Warm Reset Caused by the assertion of INIT#.
1 Debug traps and faults from previ- |Includes single-step trap and data breakpoints
ousinstruction. specified in the debug registers.
2 Debug traps for next instruction. | Includes instruction execution breakpoints
specified in the debug registers.
3 Hardware Cache Flush Caused by the assertion of FLUSH#.
4 SMM hardware interrupt. SMM interrupts are caused by SMI# asserted
and always have highest priority.
5 Non-maskable hardware interrupt. | Caused by NM|I asserted.
6 Maskable hardware interrupt. Caused by INTR asserted and IF = 1.
7 Faults resulting from fetching the | Includes segment not present, general protec-
next instruction. tion fault and page fault.
8 Faults resulting from instruction | Includesillegal opcode, instruction too long,
decoding. or privilege violation.
9 WAIT instructionand TS=1and |Device not available exception generated.
MP=1.
10 ESC instruction and EM = 1 or Device not available exception generated.
TS=1.
11 Floating point error exception. Caused by unmasked floating point exception
with NE = 1.
12 Segmentation faults (for each Includes segment not present, stack fault, and
memory reference required by the |general protection fault.
instruction) that prevent transfer-
ring the entire memory operand.
13 Page Faults that prevent transfer-
ring the entire memory operand.
14 Alignment check fault.

Via Confidential, Requires Non-Disclosure Agreement

95

Cyrix Processors

Interrupts and Exceptions

2105 Exceptionsin Real Mode

Many of the exceptions described in Table 2-33 (Page 2-95) are not applicable in real mode.
Exceptions 10, 11, and 14 do not occur in real mode. Other exceptions have dlightly different
meaningsin real mode as listed in Table 2-34.

Table 2-34. Exception Changesin Real Mode

VECTOR PROTECTED MODE REAL MODE FUNCTION
NUMBER FUNCTION

8 Double fault. Interrupt table limit overrun.

10 Invalid TSS. X

11 Segment not present. X

12 Stack fault. SS segment limit overrun.

13 General protection fault. CS, DS, ES, FS, GS segment limit overrun.

14 Page fault. X

Note: x = does not occur

Via Confidential, Requires Non-Disclosure Agreement

Interrupts and Exceptions 2

2.10.6 Error Codes

When operating in protected mode, the following exceptions generate a 16-bit error code:

Double Fault Invalid TSS
Alignment Check Segment Not Present
Page Fault Stack Fault

General Protection Fault

April 4, 2000 11:32 am

Theerror codeis pushed onto the stack prior to entering the exception handler. The error code format
is shown in Figure 2-34 and the error code bit definitions are listed in Table 2-35. Bits 15-3
(selector index) are not meaningful if the error code was generated astheresult of apagefault. The

error code is always zero for double faults and alignment check exceptions.

15 3 2 1 0
Selector Index SV S1)
Figure 2-34. Error Code Format
Table 2-35. Error Code Bit Definitions
SELECTOR
FTAYUPLET INDEX BlsT2 2 BlsTl 1 Blsg 0
(BITS 15-3) () BT ()
Double Fault or
Alignment Check 0 0 0 0
Page Fault Reserved. Fault caused by: Fault occurred Fault occurred during:
0 = not present page | during: 0 = supervisor access.
1 = page-level 0 = read access 1 = user access.
protection violation. | 1 = \yrite access.
IDT Fault Index of faulty Reserved. 1 If =1, exception
IDT selector. occurred while trying
to invoke exception or
hardware interrupt
handler.
Segment Index of faulty TI bit of faulty 0 If =1, exception
Fault selector. selector. occurred while trying
to invoke exception or
hardware interrupt
handler.
Cyrix Il 97

Via Confidential, Requires Non-Disclosure Agreement

Cyrix Processors

System Management Mode

211 System Management Mode

System Management Mode (SMM) isadistinct
CPU mode that differs from normal CPU x86
operating modes (real mode, V86 mode, and
protected mode) and is most often used to
perform power management.

The Cyrix 111 CPU isbackward compatible with
the SL-compatible SMM found on previous
Cyrix microprocessors. On the Cyrix II1 SMM
has been enhanced to optimized software
emulation of multimedia and I/O peripherals.

The Cyrix Enhanced SMM provides new
features:

e Cacheability of SMM memory
* Improved SMM entry and exit time.

Overall Operation

The overall operation of a SMM operation is
shown in (Figure 2-35). SMM is entered using
the System Management Interrupt (SM1) pin.
SMI interrupts have higher priority than any
other interrupt, including NMI interrupts.

Upon entering SMM mode, portions of the CPU
state are automatically saved in the SMM
address memory space header. The CPU enters
real mode and begins executing the SM1 service
routine in SMM address space.

Execution of a SMM routine starts at the base
addressin SMM memory address space. Since
the SMM routines residein SMM memory

space, SMM routines can be made totally trans-
parent to all software, including protected-
mode operating systems.

SMI Sampled Active

CPU State Stored in
SMM Address Header

CPU Enters Real Mode

Execution Begins at
SMM Space Base Address

RSM Instruction Restores
CPU State using Header

Normal Execution Resumes

SMI| Execution Flow Diagram

Cyrix I

Via Confidential, Requires Non-Disclosure Agreement

April 4, 2000 11:32 am

System Management Mode 2

Figure 2-35. SMI Execution 2111 SMM Memory Space
Flow Diagram

SMM memory must reside within the bounds of physical memory and not overlap with system
memory. SMM memory space (Figure 2-36) isdefined by setting the SM3 bit in CCR1 and spec-
ifying the base address and size of the SMM memory space in the ARRS3 register.

The base address must be amultiple of the SMM memory space size. For example, a32 KB SMM
memory space must be located on a 32KB address boundary. The memory space size can range
from 4 KB to 4 GB SMM accesses ignore the state of the A20M# input pin and drive the A20
address bit to the unmasked value.

Physical Potential
Menory Space SMM Address
Space
FFFF FFFFh| FFFF FFFFh
Defined
i 4 KBytes to
Physical Menmory 4GBytes Ail\j'/lg/l > SMIACT#HActive
4 GBytes SS
Space
Non-S MM Mode SMM Mode
SMIACT#Negated 1747600

Figure 2-36. System Management Memory Space

Cyrix Il 99

Via Confidential, Requires Non-Disclosure Agreement

Cyrix Processors

System Management Mode

211.2 SMM Memory SpaceHeader

The SMM Memory Space Header (Figure2-37) information is used to restore the original CPU
isused to storethe CPU state prior to startingan state. The location of the SMM header is

SMM routine. The fieldsin this header are determined by the SMM Header Address
described in Table 2-36 (Page 2-101). Afterthe Register (SMHR).

SMM routine has completed, the header

31 (0]
1 1 1 <— SMR
DR7 Regster
T “4dh
ERLAGS
-8h
CRO
T _Ch
Curat P
T -1Ch
Next IP
31 . 1615 . ° m
Resened ‘ CS Selector
-18n
CS Desariptor (Bits 63-32)
-1Ch
CS Desariptor Bits 31-0)
31 22 21 15 13 43 210
2Ch
Resened CPL N 5‘ HIS|P 1|C
1 15 1 2N
1O Wite Dala Size O Wite Addess
T T T 28N
VO Wite Dala
! ' ' -2Ch
ESlorEO
-3 1747700
Figure 2-37. SMM Memory Space Header
100 Cyrix Il

Via Confidential, Requires Non-Disclosure Agreement

April 4, 2000 11:32 am

System Management Mode 2

Table 2-36. SMM Memory Space Header

NAME DESCRIPTION SIZE
DR7 The contents of Debug Register 7. 4 Bytes
EFLAGS The contents of Extended Flags Register. 4 Bytes
CRO The contents of Control Register O. 4 Bytes
Current IP The address of the instruction executed prior to servicing SMI interrupt. 4 Bytes
Next IP The address of the next instruction that will be executed after exiting SMM mode. 4 Bytes
CS Selector Code segment register selector for the current code segment. 2 Bytes
CS Descriptor Code segment register descriptor for the current code segment. 8 Bytes
CPL Current privilege level for current code segment. 2 Bits
IS Internal SMI Indicator 1 Bit

If IS=1: current SMM istheresult of aninternal SMI event.
If IS =0: current SMM istheresult of an external SMI event.
H SMI during CPU HALT state indicator 1 Bit
If H = 1: the processor was in a halt or shutdown prior to servicing the SMM
interrupt.
S Software SMM Entry Indicator. 1Bit
If S=1: current SMM isthe result of an SMINT instruction.
If S=0: current SMM is not the result of an SMINT instruction.
P REP INSx/OUTSx Indicator 1Bit
If P =1: current instruction has a REP prefix.
If P=0: current instruction does not have a REP prefix.
I IN, INSx, OUT, or OUTSx Indicator 1 Bit
If I = 1:if current instruction performed is an 1/0 WRITE.
If 1 =0:if current instruction performed is an 1/0 READ.
C Code Segment writable Indicator 1 Bit
If C = 1. the current code segment is writable.
If C = 0: the current code segment is not writable.
1/10 Indicates size of datafor the trapped 1/0 write: 2 Bytes
01h = byte
03h = word
OFh = dword
I/O Write Address |1/0O Write Address 2 Bytes
Processor port used for the trapped 1/0 write.
I/O Write Data I/O Write Data 4 Bytes
Data associated with the trapped |/O write.
ESI or EDI Restored ES| or EDI value. Used when it is necessary to repeat a REP OUTSx or| 4 Bytes
REP INSx instruction when one of the I/O cycles caused an SMI# trap.
Note: INSx = INS, INSB, INSW or INSD instruction.
Note: OUTSx = OUTS, OUTSB, OUTSW and OUTSD instruction.
Cyrix Il 101

Via Confidential, Requires Non-Disclosure Agreement

Cyrix Processors

System Management Mode

Current and Next | P Pointers

Included in the header information are the
Current and Next IP pointers. The Current 1P
points to the instruction executing when the
SMI was detected and the Next I P points to the
instruction that will be executed after exiting
SMM.

Normally after an SMM routine is completed,
the instruction flow begins at the Next IP
address. However, if an 1/0 trap has occurred,
instruction flow should return to the Current IP
to complete the 1/0O instruction.

If SMM has been entered dueto an I/O trap for
aREP INSx or REP OUTSx instruction, the
Current IP and Next IP fields contain the same
address.

If an entry into SMM mode was caused by an
1/O trap, the port address, data size and data
value associated with that 1/0 operation are
stored in the SMM header. Note that these
valuesareonly validfor 1/0 operations. Thel/O
datais not restored within the CPU when
executing a RSM instruction.

Under these circumstances the | and P hits, as
well as ESI/EDI field, contain valid informa-
tion.

Also saved are the contents of debug register 7
(DRY7), the extended flags register (EFLAGYS),
and control register 0 (CRO).

102

SMM Header Address Pointer

The SMM Header Address Pointer Register
(SMHR) (Figure 2-38) contains the 32-hit
SMM Header pointer. The SMHR addressis
dword aligned, so the two least significant bits
are ignored.

TheSMHRvalidbit (bit 0) iscleared with every
writeto ARR3 and during ahardware RESET#.
Upon entry to SMM, the SMHR valid bit is
examined before the CPU state is saved into the
SMM memory space header. When the valid bit
isreset, the SMM header pointer will be calcu-
lated (ARR3 base field + ARR3 size field) and
loaded into the SMHR and the valid bit will be
set.

If the desired SMM header location is different
than the top of SMM memory space, as may be
the case when nesting SM1’s, then the SMHR
register must be loaded with anew value and
valid bit from within the SMI routine before
nesting is enabled.

The SMM memory space header can be relo-
cated using the new RDSHR and WRSHR
instructions.

Figure 2-38. SMHR Register

31 2 1 0
| SMHR [Res| V|

Table 2-37. SMHR Register Bits

POSBI!I'-II—ON DESCRPTION
31-2 SMHR header pointer address.
1 Reserved
0 Vdid Bit

Cyrix I

Via Confidential, Requires Non-Disclosure Agreement

April 4, 2000 11:32 am

System Management Mode 2

2.11.3 SMM Instructions

After entering the SMI service routine, the

complete CPU state information must be saved.
Sincethe CPU isastatic device, itsinterna state

is retained when the input clock is stopped.

MQV, SVYDC, SVLDT and SV TS instructions

(Table 2-38) can be used to save the complete
CPU state information. If the SMI service

routine modifies more than what is automatically

saved or forces the CPU to power down, the

sary prior to stopping the input clock.

Therefore, an entire CPU state saveis not neces-

Table 2-38. SMM Instruction Set

INSTRUCTION

OPCODE

FORMAT

DESCRIPTION

SvDC

OF 78 [mod sreg3 r/m]

SVDC mem80, sreg3

Save Segment Register and Descriptor
Savesreg (DS, ES, FS, GS, or SS) to mem80.

RSDC

OF 79 [mod sreg3 r/m]

RSDC sreg3, mem80

Restore Segment Register and Descriptor
Restoresreg (DS, ES, FS, GS, or SS) from mem80.
Use RSM to restore CS.

Note: Processing “RSDC CS, Mem80” will produce an excep-
tion.

SVLDT

OF 7A [mod 000 r/m]

SVLDT mem80

Save LDTR and Descriptor
Saves Local Descriptor Table (LDTR) to mem80.

RSLDT

OF 7B [mod 000 r/m]

RSLDT mem80

Restore LDTR and Descriptor
Restores Local Descriptor Table (LDTR) from
mem80.

SVTS

OF 7C [mod 000 r/m]

SVTS mem80

Save TSR and Descriptor
Saves Task State Register (TSR) to mem80.

RSTS

OF 7D [mod 000 r/m]

RSTS mem80

Restore TSR and Descriptor
Restores Task State Register (TSR) from mem80.

SMINT

OF 38

SMINT

Software SMM Entry

CPU enters SMM mode. CPU state information is
saved in SMM memory space header and execution
begins at SMM base address.

RSM

OF AA

RSM

Resume Normal Mode

Exits SMM mode. The CPU state is restored using
the SMM memory space header and execution
resumes at interrupted point.

RDSHR

OF 36

RDSHR ereg/mem32

Read SMM Header Pointer Register
Saves SMM header pointer to extended register or
memory.

WRSHR

OF 37

WRSHR ereg/mem32

Write SMM Header Pointer Register
Load SMM header pointer register from extended
register or memory.

Note: mem32 = 32-bit memory location
mem80 = 80-bit memory location

Cyrix Il

103

Via Confidential, Requires Non-Disclosure Agreement

Cyrix Processors

System Management Mode

The SMM instructions listed in Table 2-38,
(except the SMINT instruction) can be executed
only if:

1) ARR3Size>0

2) Current Privilege Level =0

3) the CPU isexecuting an SMI service
routine.

4) USE_SMI (CCR1-bit1)=1

5 SM3(CCR1L-bit7)=1

If the above conditions are not met and an
attempt is made to execute an SVDC, RSDC,
SVLDT,RSLDT, SVTS, RSTS, SMINT, RSM,
RDSHR, or WDSHR instruction, an invalid
opcode exception is generated. Theseinstruc-
tions can be executed outside of defined SMM
space provided the above conditions are met.

The SVDC, RSDC, SVLDT, RSLDT, SVTS
and RSTSinstructions save or restore 80 bits of
data, allowing the saved values to include the
hidden portion of the register contents.

The WRSHR instruction loads the contents of
either a 32-bit memory operand or a 32-bit
register operand into the SMHR pointer register
based on the value of the mod r/m instruction
byte. Likewise the RDSHR instruction stores
the contents of the SMHR pointer register to
either a 32 bit memory operand or a 32 bit
register operand based on the value of the mod
r/m instruction byte.

104

2114 SMM Operation

This section details the SMM operations.
Entering SMM

Entering SMM requires the assertion of the
SMI# pin. SMI interrupts have higher priority
than any interrupt including NMI interrupts.

For the SMI# to be recognized, the following
configuration register bits must be set as shown
in Table 2-39.

Table 2-39. Requirements for Recognizing SMI# and

SMINT
REGISTER (Bit) SMI# SMINT
SMI CCR1(1) 1 1
ARR3 |SIZE (3-0) >0 >0
SM3 |CCR1(7) 1 1

Upon entry into SMM, after the SMM header
has been saved, the CRO, EFLAGS, and DR7
registers are set to their reset values. The Code
Segment (CS) register isloaded with the base,
as defined by the ARR3 register, and alimit of
4 GB. The SMI service routine then begins
execution at the SMM base addressin real mode.

Cyrix I

Via Confidential, Requires Non-Disclosure Agreement

April 4, 2000 11:32 am

System Management Mode 2

Saving the CPU State

The programmer must save the value of any
registers that may be changed by the SMI service
routine. For data accessesimmediately after
entering the SMI service routine, the programmer
must use CS as a segment override. 1/0 port
access is possible during the routine but care must
be taken to save registers modified by the 1/0
ingructions. Before using a segment register, the
register and theregister’ sdescriptor cache contents
should be saved using the SVDC ingtruction.
While executing in the SMM space, execution
flow can transfer to norma memory locations.

Program Execution

Hardware interrupts, (INTRs and NMIs), may
be serviced during a SM1 service routine. If
interrupts are to be serviced while executing in
the SMM memory space, the SMM memory
space must be within the 0 to 1 MB address
range to guarantee proper return to the SMI
service routine after handling the interrupt.

INTRs are automatically disabled when entering
SMM sincethe IF flag is set to its reset value.
Oncein SMM, the INTR can be enabled by
setting the IF flag. NMI is also automatically
disable when entering SMM. Oncein SMM,
NMI can be enabled by setting NMI_EN in
CCR3. If NMI is not enabled, the CPU latches
one NMI event and services the interrupt after
NMI has been enabled or after exiting SMM
through the RSM instruction.

Within the SMI service routine, protected mode
may be entered and exited asrequired, and real
or protected mode device drivers may be
called.

Cyrix Il

Exiting SMM

To exit the SMI service routine, a Resume
(RSM) instruction, rather than an IRET, is
executed. The RSM instruction causes the
Cyrix |11 processor to restore the CPU state
using the SMM header information and resume
execution at the interrupted point. If the full
CPU state was saved by the programmer, the
stored values should be reloaded prior to
executing the RSM instruction using the MOV,
RSDC, RSLDT and RSTS instructions.

When the RSM instruction is executed at the
end of the SMI handler, the EIP instruction
pointer isautomatically read from the NEXT IP
field in the SMM header.

When restarting 1/0 instructions, the value of
NEXTIP may need modification. Before
executing the RSM instruction, useaM OV
instruction to move the CURRENTIP value to
the NEXT IP location asthe CURRENT IP
valueisvalidif an1/Oinstruction was executing
when the SMI interrupt occurred. Execution is
then returned to the 1/0 instruction, rather than
to the instruction after the 1/O instruction.

A set H bit in the SMM header indicates that a
HLT instruction was being executed when the
SMI occurred. To resume execution of theHLT
instruction, the NEXTIP field in the SMM
header should be decremented by one before
executing RSM instruction.

105

Via Confidential, Requires Non-Disclosure Agreement

Cyrix Processors

System Management Mode

2115 SL and Cyrix SMM

Operating Modes

There are two SMM modes, SL-compatible
mode (default) and Cyrix SMM mode.

21151 SL-Compatible

SMM Mode

While in SL-compatible mode, SMM memory
Space accesses can only occur during an SMI
serviceroutine. Thisincludesthetimewhenthe
SMI service routine accesses memory outside
the defined SMM memory space.

SMM memory caching is not supported in
SL-compatible SMM mode. If a cache inquiry
cycle occurswhilein SMM mode, any resulting
write-back cycleisissued with SMM_MEM
asserted. This occurs even though the
write-back cycleisintended for normal memory
rather than SMM memory. To avoid this
problem it is recommended that the internal
caches be flushed prior to servicing an SM1
event. Of course in write-back mode this could
add an indeterminate delay to servicing of SMI.

An interrupt on the SMI# input pin has higher
priority than the NMI input. The SMI# input pin
isfalling edge sensitive and is sampled on every
rising edge of the processor input clock.

Asserting SMI# forces the processor to save the
CPU state to memory defined by SMHR
register and to begin execution of the SMI
service routine at the beginning of the defined
SMM memory space. After the processor inter-
nally acknowledges the SMI# interrupt, an
SMM acknowledge cycleisdriven onto the bus,
and SMM_MEM (pin EX4) is asserted.

106

When the RSM instruction isexecuted, the CPU
negates the SMM_MEM pin after the last bus
cycleto SMM memory. While executing the
SMM service routine, one additional SMI# can
be latched for service after resuming from the
first SMI.

During RESET#, the USE_SMI bitin CCR1is
cleared.

21152 Cyrix Enhanced

SMM Mode

The Cyrix SMM Modeisenabled when bitOin
the CCR6 (SMM_MODE) isset. Only in Cyrix
enhanced SMM mode can SMM space be
cached.

Cacheability of SMM Space

In SL-compatible SMM mode, caching is not
available, but in Cyrix SMM mode, both code
and data caching is supported. In order to cache
SMM data and avoid coherency issues the
processor assumes no overlap of main memory
with SMM memory. Thisimplies that a section
of main memory must be dedicated for SMM.

The on-chip cache sets a special ID bit in the
cachetag block for each linethat contains SMM
code data. ThisID bit isthen used by the bus
controller to regulate assertion of the
SMM_MEM pin for write-back of any SMM
data

2116 Maintaining the FPU

and MMX States

If power will beremoved from the CPU or if the
SMM routine will execute MM X or FPU
instructions, thenthe MM X or FPU state should

Cyrix I

Via Confidential, Requires Non-Disclosure Agreement

April 4, 2000 11:32 am

I

bemaintained for the application running before
SMM was entered. If the MM X or FPU stateis
to be saved and restored from within SMM,
there are certain guidelines that must be
followed to make SMM completely transparent
to the application program.

The complete state of the FPU can be saved and
restored with the FNSAVE and FNRSTOR
instructions. FNSAVE is used instead of the
FSAVE because FSAVE will wait for the FPU
to check for existing error conditions before
storing the FPU state. If there is a unmasked
FPU exception condition pending, the FSAVE
instruction will wait until the exception condi-
tion is serviced. To maintain transparency for
the application program, the SMM routine
should not service this exception. If the FPU
state is restored with the FNRSTOR instruction
before returning to normal mode, the applica-
tion program can correctly service the excep-
tion. FPU instructions can be executed within
SMM once the FPU state has been saved.

Theinformation saved with the FSAVE instruc-
tion varies depending on the operating mode of
the CPU. To save and restore all FPU informa-
tion, the 32-hit protected mode version of the
FPU save and restore instruction should be
used.

Cyrix Il

212 Sleep and Halt

The Halt Instruction (HLT) stops program
execution and prevents the processor from using
the local bus until restarted. The Cyrix 111 CPU
thenissuesaspecia HALT buscycleand enters
alow-power suspend mode if the SUSP_HLT
bit in CCR2 isset. SMI, NMI, INTR with inter-
rupts enabled (IF bit in EFLAGS=1), INIT# or
RESET# force the CPU out of the halt state. If
interrupted, the saved code segment and
instruction pointer specify the instruction
following the HLT.

Sleep states can be entered using STPCLK#
and SLP# pins to perform power management.
The three low power states are Stop Grant,

Sleep, and Deep Sleep.

Stop Grant state is entered by asserting
STPCLK#. When STPCLK# is deasserted, the
Stop Grant state is exited and processor returns
to normal operation.

Sleep state is entered by asserting the SLP# pin
whilethe processor isin Stop Grant state. Sleep
state is exited when SLP# is deasserted and the
processor returns to Stop Grant state.

Deep Sleep can be entered while in Sleep state
by stopping the bus clock pin BCLK. When
BCLK isrestarted the processor exits Deep
Sleep and returnsto Sleep state.

107

Via Confidential, Requires Non-Disclosure Agreement

Cyrix Processors
Sleep and Halt

NMI or INTR

Interrupt Sarvice

HLT*

Routi ne

IS0 ~
OSApplication Suspend Mode
Software = = (=9
/ (INTR NMI and SVl latched)
SMI# =0
SMINT* R

Non-SVIM Operations

SVl Sarvice
Routine
(GI#=0)

INTRor NMI

SJUISFH=0 SJISFH=L

Interrupt Sarvice \(/\

Routine
Suspend Mode

(USSP =0)

* |nstructions (INTRand NMIl latched)

—

SMIM Oper &ti ons

K
Susgpend Mode

(SUSPAH = 0)

IRET*
INTRand NMI

Interrupt Savice
Routine

17159038

Figure 2-39. SMM and Suspend Mode State Diagram

108

Cyrix I

Via Confidential, Requires Non-Disclosure Agreement

April 4, 2000 11:32 am

I

2.13 Protection

Segment protection and page protection are
safeguards built into the Cyrix 11 CPU
protected mode architecture which deny unau-
thorized or incorrect accessto selected memory
addresses. These safeguards allow multi-
tasking programsto beisolated from each other
and from the operating system. Page protection
isdiscussed earlier in this chapter. Thissection
concentrates on segment protection.

Selectors and descriptors are the key elements
in the segment protection mechanism. The
segment base address, size, and privilege level
are established by a segment descriptor. Privi-
lege levels control the use of privileged instruc-
tions, 1/0 instructions and access to segments
and segment descriptors. Selectors are used to
locate segment descriptors.

Segment accesses are divided into two basic
types, those involving code segments (e.g.,
control transfers) and those involving data
accesses. The ability of atask to accessa
segment depends on the:

e Segment type
* Instruction requesting access

* Type of descriptor used to define the
segment

» Associated privilege levels (described
below).

Data stored in a segment can be accessed only
by code executing at the same or a more privi-
leged level. A code segment or procedure can
only be called by atask executing at the same
or alessprivileged level.

Cyrix Il

2131 Privilege Levels

Thevaluesfor privilege levelsrange between
Oand 3. Level 0isthe highest privilege level
(most privileged), and level 3isthe lowest
privilege level (least privileged). Theprivilege
level in real modeis effectively 0.

The Descriptor Privilege Level (DPL) isthe
privilege level defined for a segment in the
segment descriptor. The DPL field specifiesthe
minimum privilege level needed to access the
memory segment pointed to by the descriptor.

The Current Privilege Level (CPL) is defined
asthe current task’s privilegelevel. The CPL
of an executing task is stored in the hidden
portion of the code segment register and essen-
tially isthe DPL for the current code segment.

The Requested Privilege Level (RPL) specifies
aselector’s privilege level and is used to distin-
guish between the privilege leve of aroutine actu-
ally accessing memory (the CPL), and the
privilegelevel of the origina requestor (the RPL)
of the memory access. The lesser of the RPL
and CPL iscalled the effective privilege leve
(EPL). Therefore, if RPL = 0 in a segment
selector, the effective privilege level is always
determined by the CPL. If RPL = 3, the effec-
tive privilege level isaways 3 regardless of the
CPL.

For amemory access to succeed, the effective
privilege level (EPL) must be at least as privi-
leged as the descriptor privilege level (EPL £
DPL). If the EPL isless privileged than the
DPL (EPL > DPL), agenera protection fault is
generated. For example, if asegment hasa
DPL = 2, an instruction accessing the segment
only succeeds if executed with an EPL £ 2.

109

Via Confidential, Requires Non-Disclosure Agreement

Cyrix Processors

2.13.2 I/O Privilege Levels

The 1/O Privilege Level (I0OPL) alowsthe
operating system executing at CPL=0 to define
the least privileged level a which IOPL-sensi-
tive instructions can unconditionally be used.
The IOPL-sensitive instructions include CLI,
IN, OUT, INS, OUTS, REP INS, REP OUTS,
and STI. Modification of the IF bit in the
EFLAGS register isaso sendtiveto the /O priv-
ilegelevel. ThelOPL isstored inthe EFLAGS
register.

An /O permission bit map is available as
defined by the 32-bit Task State Segment
(TSS). Since each task can haveitsown TSS,
access to individual processor 1/O ports can be
granted through separate I/O permission bit

maps.

If CPL £ 10PL, |IOPL-sensitive operations can
be performed. If CPL > 10PL, ageneral
protection fault is generated if the current task
is associated with a 16-bit TSS. If the current
task is associated with a 32-bit TSS and CPL >
|OPL, the CPU consults the I/O permission
bitmap in the TSS to determine on a port-by-port
basis whether or not I/O instructions (IN, OUT,
INS, OUTS, REP INS, REP OUTYS) are
permitted, and the remaining |OPL-sensitive
operations generate a general protection fault.

110

2133 Privilege Leve Transfers

A task’s CPL can be changed only through
intersegment control transfers using gates or
task switches to a code segment with adifferent
privilege level. Control transfers result from
exception and interrupt servicing and from
execution of the CALL, JMP, INT, IRET and
RET instructions.

There are five types of control transfersthat are
summarized in Table 2-40 (Page 2-111). Control
transfers can be made only when the operation
causing the control transfer references the correct
descriptor type. Any violation of these descriptor
usage rules causes a general protection fault.

Any control transfer that changes the CPL
within atask resultsin a change of stack. The
initial values for the stack segment (SS) and
stack pointer (ESP) for privilege levels O, 1,
and 2 are stored inthe TSS. During a CALL
control transfer, the SS and ESP are |oaded
with the new stack pointer and the previous
stack pointer is saved on the new stack. When
returning to the original privilege level, the
RET or IRET instruction restores the less-privi-
leged stack

Cyrix I

Via Confidential, Requires Non-Disclosure Agreement

April 4, 2000 11:32 am

I

Table 2-40. Descriptor Types Used for Control Transfer

OPERATION DESCRIPTOR DESCRIPTOR
TYPE OF CONTROL TRANSFER TYPES REFERENCED TABLE
Intersegment within the sasme privilegelevel. |IMP, CALL, RET, Code Segment GDT or LDT
IRET*
Intersegment to the same or amore privileged |CALL Gate Call GDT or LDT
level. o Interrupt Instruction, Trap or Interrupt Gate [IDT
Interrupt within task (could change CPL level). | Exception, External
Interrupt
Intersegment to aless privileged level (changes | RET, IRET* Code Segment GDT or LDT
task CPL).
Task SwitchviaTSS CALL, JMP Task State Segment GDT
Task Switch via Task Gate CALL, JMP Task Gate GDTorLDT
IRET**, Interrupt Task Gate IDT
Instruction, Exception,
External Interrupt

* NT (Nested Task bit in EFLAGS) = 0
** NT (Nested Task bit in EFLAGS) = 1

Gates

Gate descriptors provide protection for privi-
lege transfers among executable segments.
Gates are used to transition to routines of the
same or amore privileged level. Call gates,
interrupt gates and trap gates are used for privi-
legetransferswithin atask. Task gatesare used
to transfer between tasks.

Gates conform to the standard rules of privi-
lege. In other words, gates can be accessed by
atask if the effective privilege level (EPL) is
the same or more privileged than the gate
descriptor’s privilege level (DPL).

Cyrix Il

Initialization and
Transition to Protected
Mode

2134

The Cyrix Il processor switchesto real mode
immediately after RESET#. While operatingin
real mode, the system tables and registers
should beinitiaized. The GDTR and IDTR
must pointtoavadid GDT and IDT, respectively. The
GDT must contain descriptors which describe
theinitial code and data segments.

The processor can be placed in protected mode
by setting the PE bit in the CRO register. After
enabling protected mode, the CS register should
be loaded and the instruction decode queue
should be flushed by executing an intersegment
JMP. Finally, all data segment registers should
beinitialized with appropriate selector values.

111

Via Confidential, Requires Non-Disclosure Agreement

Cyrix Processors

Virtual 8086 Mode

2.14 Virtual 8086 Mode

Both real mode and virtual 8086 (V86) mode
are supported by the Cyrix 11 CPU alowing
execution of 8086 application programs and 8086
operating systems. V86 mode allows the
execution of 8086-type applications, yet still
permits use of the Cyrix 111 CPU paging mech-
anism. V86 tasksrun at privilege level 3.
When loaded, all segment limits are set to
FFFFh (64K) asin real mode.

2141 V86 Memory

Addressing

While in V86 mode, segment registers are used
in an identical fashion to real mode. The
contents of the segment register are multiplied
by 16 and added to the offset to form the
segment base linear address. The Cyrix 111
CPU permits the operating system to select
which programs use the V86 address mecha-
nism and which programs use protected mode
addressing for each task.

The Cyrix 11 CPU also permits the use of
paging when operating in V86 mode. Using
paging, the 1-MB memory space of the V86
task can be mapped to anywhere in the 4-GB
linear memory space of the Cyrix 111 CPU.

The paging hardware allows multiple V86
tasks to run concurrently, and provides protec-
tion and operating system isolation. The
paging hardware must be enabled to run
multiple V86tasks or to relocate the address
gpace of aV86task to physical address space
greater than 1IMB.

112

2.14.2 V86 Protection

All V86 tasks operate with the least amount of
privilege (level 3) and are subject to al of the
Cyrix 111 CPU protected mode protection checks.
Asaresult, any attempt to execute a privileged
instruction within aVV86 task resultsin a
general protection fault.

In V86 mode, a slightly different set of instruc-
tions are sensitive to the 1/0 privilege level
(IOPL) than in protected mode. These instruc-
tionsare: CLI, INT n, IRET, POPF, PUSHF,
and STI. TheINT3, INTO and BOUND varia-
tions of the INT instruction are not IOPL sensi-
tive.

2143 V86 Interrupt Handling

To fully support the emulation of an 8086-type
machine, interruptsin V86 mode are handled as
follows. When an interrupt or exception is
serviced in V86 mode, program execution
transfers to the interrupt service routine at priv-
ilegelevel O (i.e., transition from V86 to
protected mode occurs) and the VM bit in the
EFLAGS register iscleared. The protected
mode interrupt service routine then determines
if the interrupt came from a protected mode or
V86 application by examining the VM bit in
the EFLAGS image stored on the stack. The
interrupt service routine may then choose to
allow the 8086 operating system to handle the
interrupt or may emulate the function of the
interrupt handler. Following completion of the
interrupt service routine, an IRET instruction
restores the EFLAGS register (restores VM=1)
and segment selectors and control returnsto the
interrupted V 86 task.

Cyrix I

Via Confidential, Requires Non-Disclosure Agreement

April 4, 2000 11:32 am

Floating Point Unit Operations 2

2144 Entering and Leaving
V86 Mode

V86 mode is entered from protected mode by
either executing an IRET instructionat CPL =0
or by task switching. If an IRET is used, the
stack must contain an EFLAGS image with
VM = 1. If atask switchisused, the TSS must
contain an EFLAGS image containingalin
the VM bit position. The POPF instruction
cannot be used to enter V86 mode since the
state of the VM bit is not affected. V86 mode
can only be exited as the result of an interrupt
or exception. The transition out must use a
32-hit trap or interrupt gate which must point to
anon-conforming privilege level 0 segment
(DPL =0), or a32-bit TSS. These restrictions
are required to permit the trap handler to IRET
back to the V86 program.

Cyrix Il

2.15 Floating Point Unit Operations

The Cyrix 11 CPU includes an on-chip FPU
that provides the user access to a complete set
of floating point instructions (see Chapter 6).
Information is passed to and from the FPU
using eight data registers accessed in a
stack-like manner, a control register, and a
status register. The Cyrix 11 CPU also
provides a data register tag word which
improves context switching and performance
by maintaining empty/non-empty status for
each of the eight data registers. In addition,
registersin the CPU contain pointersto (a) the
memory location containing the current
instruction word and (b) the memory location
containing the operand associated with the
current instruction word (if any).

FPU Tag Word Register. The Cyrix |11 CPU
maintainsatag word register (Figure 2-40 (Page
2-114)) comprised of two bitsfor each physical
dataregister. Tag Word fields assume one of
four values depending on the contents of their
associated dataregisters, Valid (00), Zero (01),
Special (10), and Empty (11). Note: Denormal,
Infinity, QNaN, SNaN and unsupported formats
aretagged as“ Special”. Tag valuesare
maintained transparently by the Cyrix 111 CPU
and are only available to the programmer
indirectly through the FSTENV and FSAVE
instructions.

FPU Control and Status Registers. The FPU
circuitry communicates information about its
status and the results of operationsto the
programmer viathe status register. The FPU
status register is comprised of bit fields that
reflect exception status, operation execution
status, register status, operand class, and
comparison results. The FPU status register bit

113

Via Confidential, Requires Non-Disclosure Agreement

Cyrix Processors

Floating Point Unit Operations

definitions are shown in Figure 2-41 (Page to the CPU viatraps. The user controls

2-114) and Table 2-41 (Page 2-114). precision, rounding, and exception reporting by
, , setting or clearing appropriate bitsin the MCR.

The FPU Mode Control Register (MCR) isused The FPU mode control register bit definitions

by the CPU to specify t_he opergti ng mo_de ofthe e shownin Figure 2-42 (Page 2-115) and
FPU. The MCR contains bit fields which Table 2-42 (Page 2-115).

specify the rounding mode to be used, the
precision by which to calculate results, and the
exception conditions which should be reported

15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0
| Tag(7) | Tag®) | Tag(® | Tagd) | Teg® | Teg? | Teg(l) | Teg(0) |

Figure 2-40. FPU Tag Word Register

15 12 11 8 7 4 3 0
B C3 S S§s|SC2C CO|ES S P O zZz D |
U

Figure 2-41. FPU Status Register

Table 2-41. FPU Status Register Bit Definitions

PosB|ITT|0N NAME DESCRIPTION
15 B Copy of the ES bit. (ESisbit 7 in thistable.)
14,10-8 | C3-CO Condition code hits.
13-11 SSS Top of stack register number which points to the current TOS.
7 ES Error indicator. Setto 1if an unmasked exception is detected.
6 SF Stack Fault or invalid register operation hit.
5 P Precision error exception bit.
4 U Underflow error exception bit.
3 0] Overflow error exception hit.
2 4 Divide by zero exception bit.
1 D Denormalized operand error exception bit.
0 I Invalid operation exception hit.
114 Cyrix 1

Via Confidential, Requires Non-Disclosure Agreement

Cyrix Processors

Floating Point Unit Operations

15 12 11 8 7 4 3 0
- - - - RC RC - - P U Oz D I
PC

Figure 2-42. FPU Mode Control Register

Table 2-42. FPU Mode Control Register Bit Definitions

BIT
POSITION NAME DESCRIPTION
11-10 RC Rounding Control bits:
00 Round to nearest or even
01 Round towards minus infinity
10 Round towards plusinfinity
11 Truncate
9-8 PC Precision Control bits:
00 24-bit mantissa
01 Reserved
10 53-bit mantissa
11 64-bit mantissa
5 P Precision error exception bit mask.
4 U Underflow error exception bit mask.
3 0] Overflow error exception bit mask.
2 z Divide by zero exception bit mask.
1 D Denormalized operand error exception bit mask.
0 I Invalid operation exception bit mask.
115 Cyrix 1

Via Confidential, Requires Non-Disclosure Agreement

Cyrix Processors

MMX Operations

2.16 MMX Operations 2.16.3 MMX Instruction Set

The Cyrix 11 CPU provides user accesstothe The MMX instructions operate on all the

MM X instruction set. MM X dataisconfigured elements of asigned or unsigned packed data

in one of four MMX dataformats. During oper- group. All data elements (bytes, words, double-

ations eight 64-bit MM X registersare utilized. words or a quadword) are operated on sepa-
rately in parallel. For example, eight bytesin

2.16.1 MMX Data Formats one packed data group can be added to another

packed data group, such that eight independent

groups called “packed data.” A single packed
data group can be interpreted as a:

* Packed byte (8 bytes) 2.16.4 Instruction Group

e Packed word (4 words) Overview

* Packed doubleword (2 doublewords)

* Quadword (1 quadword) The 57 MMX instructions are grouped into

. seven categories.
The packed datatypes supported are signed and

unsigned integer. * Arithmetic Instructions
_ * Comparison Instructions
2.16.2 MMX Registers Conversion Instructions
The MMX instruction set operates on eight : ;ﬁ%ﬁ;ﬂ?ﬁﬂg ns
64-bit, general-purpose registers (MMO-MM7). e DataTransfer Instructions
These registers are overlaid with the floating . -
point register stack, so no new architectural Empty MMX State (EMMS) Instruction
state is defined by the MM X instruction set.
Existing mechanisms for saving and restoring
floating point state automatically work for
saving and restoring MM X state.
116 Cyrix 11

Via Confidential, Requires Non-Disclosure Agreement

Cyrix Processors

MMX Operations

2.16.5 Saturation Arithmetic

For saturating MM X instructions, aceiling is
placed on an overflow and afloor is placed on
an underflow. When the result of an operation
exceeds the range of the data-type it saturates
to the maximum value of the range.
Conversealy, when aresult that is less than the
range of adatatype, the result saturates to the
minimum value of the range.

The saturation limits are shown in Table 2-43.

Table 2-43. Saturation Limits

DATA TYPE LOWER UPPER
LIMIT LIMIT
Signed 80h -128 7Fh 127
Byte
Signed 8000h |-32,768 7FFFh 32,767
Word
117

Table 2-43. Saturation Limits

LOWER UPPER
DATATYPE LIMIT LIMIT
Unsigned 00h 0 FFh 256
Byte
Unsigned [0000h |0 FFFFh 165,535
Word

MM X instructions do not indicate overflow or
underflow occurrence by generating exceptions
or setting flags.

2.16.6 EMMS Instruction

The EMMS Instruction clears the TOS pointer
and sets the entire FPU tag word as empty. An
EMMS instruction should be executed at the
end of each MMX routine.

Cyrix I

Via Confidential, Requires Non-Disclosure Agreement

Cyrix Processors

MMX Operations

118 Cyrix 1

Via Confidential, Requires Non-Disclosure Agreement

April 4, 2000 11:32 am

MMX Operations 2

Cyrix Il 119

Via Confidential, Requires Non-Disclosure Agreement

Cyrix Processors

MMX Operations

120 Cyrix 1

Via Confidential, Requires Non-Disclosure Agreement

April 4, 2000 11:10 am

Cyrix Processors

Bus Interface

Cyrix 1l PROCESSOR
Socket 370 Compatible CPU
MM X™ and 3DNow!™ Technology

Cyrix 111 BUSINTERFACE

The signalsused in the Cyrix |11 CPU businterface are described in this chapter. Figure 3-1 shows
the signal directions and groupsthe signalsfor later description. Individual signal are described in
Table 3-1 (Page 3-120).

Cyrix Il

T —
Clock
—
Control
| —
—
Reset l
—_—>
. —_—

Address | <:>
<

Bus
Data
Bus

Voltage J -
Detection

BCLK INTR | Interrupt

fe——————
BUSELO NMI S I:"" Control
et
BUSEL1 SMI# .
PWRGOOD I cach
" ache
INT# FLUSH# [S—— II_ Control
RESET#
CPUPRES#
.
SLP# l_ power
f———————
STPCLK# | Management
A31# - A3# -‘I
Bus
f— - >
BPRI# r Arbitration
A20M# !
D63# - DO# HITH [— |} cache
HITM# -—-I Coherency
Gobi
CPU
VID4 - VIDO

FERR# |—— |
IGNNE# |t o+ Error

—= |
IERR# :
D ——
Bus Cycle -[ADS#
Definition I <— LoCK#
TCOLK [rt——
DI f&—
;| <«——>| BNR# Tp0 p—> JTAG
-— =] pRsy# TMs [
— <——
DEFER# TRST# »
Bus
-
Cycle DRDY#
Control - 1 REQ4 - REQO
—] RS2# - RSO#
—>| TrRDY#
\, «=—| BrO#
Figure 3-1. Cyrix 1l CPU Functional Signal Groupings

119

Cyrix Processors

Signal Description Table

31

Signal Description Table

The Signal Summary Table (Table 3-1) describes the signalsin their active state unless otherwise
mentioned. Signals ending with a“#’ character are active low.

Table 3-1. Cyrix 1l CPU Signals Sorted by Signal Name

Pin Name

Description

110

Clock

A[31-3|#

The Address Bus provides addresses for physical memory
and external 1/0O devices. During cache inquiry cycles,
A31#-A3# are used as inputs to perform snoop cycles.

170 (GTL+)

BCLK

A20M#

A20 Mask causes the CPU to mask (force to 0) the A20
address bit when driving the external address bus or
performing an internal cache access. A20M# is provided to
emulate the 1 MByte address wrap-around that occurs on the
8086. Snoop addressing is not affected.

I (25V)

Asynch

ADSH

Address Strobe begins amemory/I/O cycle and indicates the
address bus (A31#-A3#) and transaction request signals
(REQ#) are valid.

170 (GTL+)

BCLK

BCLK

Bus Clock provides the fundamental timing for the Cyrix 111
CPU. Thefreguency of the Cyrix 111 CPU input clock
determines the operating frequency of the CPU’s bus. Externa
timing is defined referenced to the rising edge of CLK.

I (25V)

BNR#

Block Next Request signalsabus stall by abus agent unable to
accept new transactions.

/0 (GTL+)

BCLK

BPRI#

Priority Agent Bus Request arbitrates for ownership of the
system bus.

| (GTL+)

BCLK

BSEL[0- 1]

Bus Selection Busprovides system bus frequency datato the
CPU.

I (GTL+)

BCLK

BRO#

Bus Request Always asserted since Cyrix |11 supports only
uni-processing.

Ground

None

CPUPRESH

CPU Present provides aground to allow the motherboard to
detect the cpu

Ground

None

D[63- O]#

Data Bussignals are bi-directiona signals which provide the
data path between the Cyrix 111 CPU and external memory and
1/0 devices. Thedatabusdriver must assert DRDY #toindicate
valid datatransfer.

/0 (GTL+)

BCLK

DBSY#

DataBus Busy is asserted by the data bus driver to indicate
databusisin use.

/0 (GTL+)

BCLK

DEFER#

Defer isasserted by target agent (e.g., north bridge) and
indicates the transaction cannot be guaranteed as an in-order
completion.

| (GTL+)

BCLK

DRDY#

Data Ready is asserted by data driver to indicate that avalid
signal ison the data bus.

/0 (GTL+)

BCLK

FERR#

FPU Error Statusindicates an unmasked floating point error
has occurred. FERR# is asserted during execution of the FPU
instruction that caused the error.

0 (25V)

Asynch

120

Cyrix I

April 4, 2000 11:10 am

Table 3-1. Cyrix 1l CPU Signals Sorted by Signal Name

Signal Description Table 3

Pin Name Description 110 Clock

FLUSH# Flush Internal Caches writing back all datain the modified I (2.5V) Asynch
state.

HIT# Snoop Hit indicates that the current cache inquiry addresshas | 1/O (GTL+) BCLK
been found in the cache (exclusive or shared states).

HITM# Snoop Hit Modified indicates that the current cache inquiry 1/0 (GTL+) BCLK
address has been found in the cache and dirty dataexistsin the
cache line (modified state).

|IERR# Internal Error Tied to apull-up resistor. Never occurs. Pull-up. None

IGNNE# Ignore Numeric Error forcesthe Cyrix Il CPU toignoreany | | (2.5V) Asynch
pending unmasked FPU errors and alows continued execution
of floating point instructions.

INIT# Initialization resetsinteger registersand does not effectinternal | | (2.5V) Asynch
cache or floating point registers.

INTR Maskable Interrupt I (25V) Asynch

NMI Non-Maskable Interrupt I (25V) Asynch

LOCK# Lock Statusisused by the CPU to signal to thetarget that the | I/O (GTL+) BCLK
operation is atomic.

PWRGOOD Power Good indicates to the CPU that clocks and power I (2.5V) Asynch
supplies are stable and in specification.

REQ4# - REQO# | Request Commandis asserted by bus driver to definecurrent | 1/0 (GTL+) BCLK
transaction type.

RESET# Resets the processor and invalidatesinternal cache without | (GTL+) BCLK
writing back.

RS[2 - O)# Response Status signals the completion status of the current | (GTL+) BCLK
transaction when the CPU isthe response agent.

SLP# Sleep, when asserted in the stop grant state, causesthe CPU to | | (2.5V) Asynch
enter the deep date.

SMI# System Management (SMM) Interrupt forcesthe processorto | | (2.5V) Asynch
save the CPU state to the top of SMM memory and to begin
execution of the SMI service routine at the beginning of the
defined SMM memory space. An SMI is a higher-priority
interrupt than an NMI.

STPCLK# Stop Clock causes the CPU to enter the stop grant state. I (2.5V) Asynch

TCLK Test Clock (JTAG) isthe clock input used by the Cyrix 111 I (2.5V) -
CPU’ s boundary scan (JTAG) test logic. (Called TCK by Intel)

TDI Test Data In (JTAG) isthe seria datainput used by the Cyrix | | (2.5V) TCLK
Il CPU’s boundary scan (JTAG) test logic.

TDO Test Data Out (JTAG) isthe serial data output used by the 0O (25V) TCLK
Cyrix 11 CPU’ s boundary scan (JTAG) test logic.

T™MS Test Mode Select (JTAG) isthe control input used by the I (2.5V) TCLK
Cyrix 11 CPU’s boundary scan (JTAG) test logic.

Cyrix Il 121

Cyrix Processors

Signal Description Table

Table 3-1. Cyrix 1l CPU Signals Sorted by Signal Name

Pin Name Description 110 Clock
TRDY# Target Ready indicatesthat the target isready to receivea | (GTL+) BCLK
write or write-back transfer from the CPU.
TRST# Test Mode Reset (JTAG) initidizesthe Cyrix Il CPU's I (25V) Asynch
boundary scan (JTAG) test logic.
VID[4- Q] Voltage I dentification Businformstheregulator syssemonthe | O (2.5V) Asynch
motherboard of the CPU Core voltage requirements.

122

Cyrix I

April 4, 2000 11:10 am

Signal Description Table 3

Table 3-2. Intel® Celeron™ Signals Not Supported by Cyrix® Cyrix 111 CPU

Pin Name Description Reason
BP[3:2)# Breakpoint. Debug extension not supported.
BPM[1:0]# Breakpoint and performance monitor. Debug extension not supported.
BR[O]# Bus request. Multiprocessing not supported.
|IERR# Interna error. Internal error detection not supported.
PICCLK Advanced Programmable Multiprocessor mode and therefore the APIC busis
Interrupt Controller (APIC) clock. not required.
PICD[1:0] Advanced Programmable
Interrupt Controller (APIC) data.
PRDY# Probe ready. Intel debug tools are not supported.
PREQ# Probe request.
THERMTRIP# | Therma Sensor. Over temperaturetrip signal is not supported, The
CPU does have athermal diode but supportsthe other
temperature related signals.

Cyrix Il

123

Cyrix Processors

Signal Descriptions

3.2 Signal Descriptions

The following paragraphs provide additional
information about the Cyrix 11 CPU signals.
For ease of this discussion, the signals are
divided into 16 functional groups asillustrated
in Figure 3-1 (Page 3-119).

3.21 Bus Clock

The Bus Clock Input (BCLK) signal, supplied
by the system, is the timing reference used by
the Cyrix 111 CPU businterface. All external
timing parameters are defined with respect to
the BCLK rising edge. The BCLK signal enters
the Cyrix 111 CPU whereit ismultiplied to
produce the Cyrix 11 CPU internal clock
signal. During power on, the CLK signal must
be running even if CLK does not meet AC
specifications.

124

322 Acquiring the CPU/Bus Clock

Ratio

The CPU/Bus clock ratio is acquired from the
group of input signalslisted in Table 3-3 (Page
3-125) during reset. Unlike the Intel Celeron
processor which hardwires CPU core clock
ratios, the Cyrix |11 processor uses this original
Pentium I method for setting the core clock
ratio.

The Cyrix Il CPU samplesNMI, INTR,
A20M# and IGNNE# while RESET# is
asserted (low) and latches the values at the
rising edge of RESET#. These signals must be
stable for 1ms prior to the rising edge of
RESET# to ensure proper operation.

Thereisapin called external ratio pin,
EXTRATIO#, which must be low for the clock
ratio jumpersto work. This pin defaultsto high
in the cpu, so if not hooked up, or hooked up to
Vcc, the clock ratio jJumpers will not work and
the cpu default will boot up.

Clock ratios under 2.5:1 and selections identi-
fied as not applicable (N/A) are not supported.
All clock ratios and frequencies listed may not
be available.

A BIOS method for setting the clock ratio is
also available. See chapter 2 for the configura-
tion register programming method of setting the
clock multiplier. When using the BIOS method
only, no jumpers, then EXTRATIO# must be
tied high, so that invalid information on the
jumper pinsis not latched into the cpu before
BI1OS programming can take place.

Thus there are three ways to set the bus clock
multiplier: With board jumpers, with BIOS, or
simply using cpu default.

Cyrix I

April 4, 2000 11:10 am

Signal Descriptions 3

Table 3-3. CPU/Bus Frequency Ratio Encoding

CPU/BUS Core Block (MHz)

Ratio NMI INTR A20M# IGNNE# 66&:2 100 MH2 Bus 155 M2 Bus
25 L H L L =

30 L L L H 300 400

35 L H L H 350 466

40 L L H L 200

4.5 L H H L 300 450

50 L L H H 333 500

55 L H H H 366

6.0 H L L L 200

6.5 H H L L 433

70 H L L H 266

75 H H L H 500

Cyrix Il 15

Cyrix Processors

Signal Descriptions

323 Providing CPU Voltage Information

The CPU supply voltage requirements are provided by the Voltage Identification Bus (VID) Bus.
This bus consists of five CPU pins VID[4 - 0]. The encoding of these pinsislisted in Table 3-4.

Note that an “L” in the table indicates the output pin is switched to ground, and a“H” indicates
that the CPU pinisopen. The VID bus identifies the same voltages on the Celeron from 1.80 to
2.05 voltsinclusive. Other encodings are reserved.

Table 3-4. Voltage Identification Bus

S?,?;Z;E%ﬁﬁf VID4 VID3 VID2 VID1 VIDO
1.80 L L H L H
1.85 L L H L L
1.90 L L L H H
1.95 L L L H L
2.00 L L L L H
2.05 L L L L L
2.10 H H H H L
2.20 H H H L H

126 Cyrix 1

April 4, 2000 11:10 am

Signal Descriptions 3

324

Acquiring Bus Speed Information

The CPU acquires the bus by sampling pins
BSELO and BSEL 1 pins during reset. The bus
speed information is used to setup the internal
clocks within the CPU and tune the I/O bus
interface. The Cyrix I11 processor currently
supports 66 MHz, 100 MHz and 133 MHz bus
frequencies.

Table 3-5. Bus Speed Signaling

BSEL1

BSELO

Bus Frequency
(MHz)

X L 66
L H 100
H H 133

Cyrix Il

3.25 Reset Control

The Cyrix 111 CPU output signals are initialized
to their reset states during the CPU reset
sequence.

Asserting RESET# suspends all operations in
progress and placesthe Cyrix I11 CPU in areset
state. RESET# can be asserted asynchronously
but must be de-asserted synchronously from the
clock.

On system power-up, RESET# must be held
asserted for at least 1 millisecond after
PWRGOOD, Vcc and CLK have reached spec-
ified DC and AC limits. Thisdelay allowsthe
CPU’ s clock circuit to stabilize and guarantees
proper completion of the reset sequence.

During normal operation, RESET# must be
asserted for at least 1 microsecond in order to
guarantee the proper reset sequenceis
executed.

127

Cyrix Processors

Signal Descriptions

3.2.6 Address Bus

The Address Bus (A[31-3]#) lines provide the
physical memory and external 1/0 device
addresses. A[31-3]# are bi-directional signals
used by the Cyrix 111 CPU to drive addresses to
both memory devices and 1/O devices. During
cacheinquiry cyclesthe Cyrix Il CPU receives
addresses from the system using signals
A[31-3]#.

Using signals A[31-3]#, the Cyrix 111 CPU can
address a 4-GByte memory address space.
Using signals A[15-3]#, the Cyrix 111 CPU can
address a 64-KByte /O space through the
processor’s /O ports. During 1/0 accesses,
signals A[31-16]# are driven low.

Address Bit 20 Mask (A20M#) isan activelow
input which causes the Cyrix 111 CPU to mask
(force low) physical address bit 20 when
driving the external address bus or when
performing an internal cache access. Asserting
A20M# emulates the 1 MByte address
wrap-around that occurs on the 8086. The A20
signal is never masked during write-back
cycles, inquiry cycles, system management
address space accesses or when paging is
enabled, regardless of the state of the A20M#
input.

3.2.7 DataBus

Data Bus (D63#-D0#) lines carry, bi-direc-
tional signals between the Cyrix 11 CPU and
the system (i.e., external memory and 1/0
devices). The data bus transfers data to the
Cyrix 11 CPU during memory read, /O read,
and interrupt acknowledge cycles. Datais
transferred from the Cyrix 11 CPU during
memory and 1/0 write cycles.

128

Data setup and hold times must be met for
correct read cycle operation. The databusis
driven only while awrite cycleis active.

3.2.8 Bus Cycle Definition

A bus transaction is divided into six phases:
arbitration phase, request phase, error phase,
snoop phase, response phase, and data phase.
Each phasesis assigned a different set of
processor pins.

3.28.1 Arbitration Phase

Three CPU pins are used during the arbitration
phase:

* Priority Agent Bus Request (BPRI#)
* Block Next Request (BNR#)
e Lock (LOCK#).

When the chipset requiresthe bus, arequest for
bus ownership is generated by BPRI# on the
chipset. After BPRI# is asserted, the chipset is
assigned as the priority agent and will be
granted ownership of the next available transac-
tion.

If the P6 bus agent (e.g., CPU or north bridge)
anticipates that the system resources, such as
the address and data buffers, are going to be
temporarily busy, BNR# can be asserted to
delay the next transaction. During the bus stall
no agent will be granted bus control.

During non-interruptible sequences of bus
transactions, LOCK# is asserted to prevent
other agents from accessing the bus. This
process allows the processor to maintain
control of the bus for a series of transactions.

Cyrix I

April 4, 2000 11:10 am

Signal Descriptions 3

3.28.2 Request Phase

During the Request phase the following signals are used:

e Address Strobe (ADSH)
* Request Bus (REQ[4-0]#)
* AddressBus (A[31-3]#)

The Cyrix |11 asserts ADS# when it isready to begin the transaction. REQ[4-0]# and A[31-3]# are
valid in the clock cycle and one clock after in which ADS# is asserted.

The REQ[4-0]# pins define the type of transaction according to Table 3-6.

Table 3-6. Transaction Types

REQ4# REQ3# REQ2# REQ1# REQO# Transaction Type
0 0 Deferred Reply

Reserved

Interrupt Acknowledge or Special Cycle
Reserved

1/0 Read

1/O Write

Reserved

Memory Read and Invalidate
Reserved

Memory Code Read

Memory Data Read

Memory Write (no retry)
Memory Write (may retry)

o
o
o

X| x| x|[x|x|*x|r|[r|rr|o|lo|lo
x| x| x|x|x|x|r|o| o r|r|o
Rl R|r|lr|o|lo|lo|lo| o|lo|o| o
Rl ol r|lo|lr|r|lolo|olo|lo|l o
Rl o|lo|lr|o|x]|r| ool -

Cyrix Il 129

Cyrix Processors

Signal Descriptions

3.28.3 Error Phase

The CPU is passive during Error Phase.

3.284 Snoop Phase

The snoop signals are:

* CacheHit (HIT#)
» Cache Hit Modified (HITM#),
» Transaction Defer (DEFER).

HIT# and HITM# are used to maintain cache
coherency. The snooped agent asserts HI T#
when a snooped line isin the exclusive or
shared state in the cache. HITM# is asserted
when the line isin the modified state in the
cache.

If HIT# and HITM# are asserted together, it
indicates that the caching agent is not ready to
indicate the snoop status and the snoop phase
must be extended.

DEFER# indicates that the transaction cannot
be guaranteed to complete in order. The
response agent will either be issuing aretry or
defer transaction in the response phase.

130

3285 Response Phase

The response pins are:

* Response Status (RS2-0)
 Target Ready (TRDY#).

RS[2-0] provides the response status from the
response agent. The status of the responseto the
transaction request according to RSislisted in
the following table:

Cyrix I

April 4, 2000 11:10 am

Signal Descriptions 3

Table 3-7. Response Type

RS2# RSL# RSO# Response Type
0 0 0 Idle. Thisisthe default state when no response is being delivered.
0 0 1 Retry. Request agent must try the transaction later.
0 1 0 Deferred. The response agent will service the request later.
0 1 1 Reserved
1 0 0 Hard Failure. The response agent cannot service the request.
1 0 1 No Data. No datais needed from the response agent, asin awrite for example.
1 1 0 Implicit Writeback. The transaction resulted in a hit on amodified line, and the
snoop agent must supply the data. The response agent receives the writeback.
1 1 1 Normal Data. Datawill be sent by the response agent, asin anormal read.

The response agent asserts TRDY whenitis
ready to accept the written data or writeback
data.

3.2.8.6 Data Phase

The datapins are:

 DataBus Ready (DRDY#)
» DataBusBusy (DBSY#)
» DataBus(D[63-0]#).

The driving agent on the bus asserts DRDY # to
indicate that the data being driven onto the data
busisvalid. Thebusdriver must assert DRDY #
for each busclock inwhichthereisvalid datato
be transferred. DRDY # can be deasserted to
insert wait states between data transfers.

DBSY# is used to hold the bus during wait
states before the first DRDY # and between
consecutive DRDY #. DBSY # indicates to other
bus agent that the data busisin use even though
thereis no valid data currently on the bus.

Cyrix Il

DBSY# need not be asserted for single clock
datatransfers with no wait states.

3.29 Interrupt Control

The interrupt control signals (INTR, NMI,
SMI#) alow the execution of the current
instruction stream to be interrupted and
suspended.

Maskable Interrupt Request (INTR) isan active
high level-sensitive input which causes the
processor to suspend execution of the current
instruction stream and begin execution of an
interrupt service routine. The INTR input can
be masked (ignored) through the IF bit in the
Flags Register.

When not masked, the Cyrix 111 CPU responds
to the INTR input by performing an interrupt
acknowledge bus cycle. During the interrupt
acknowledge cycle, the Cyrix 111 CPU readsthe
interrupt vector (an 8-bit value), from the data
bus. The 8-hit interrupt vector indicates the
interrupt level that caused generation of the

131

Cyrix Processors

Signal Descriptions

INTR and is used by the CPU to determine the
beginning address of the interrupt service
routine. To assure recognition of the INTR
reguest, INTR must remain active until the start
of the interrupt acknowledge cycle.

Non-Maskable Interrupt Request (NMI) isa
rising edge sensitive input which causes the
processor to suspend execution of the current
instruction stream and begin execution of an
NMI interrupt service routine. The NMI inter-
rupt cannot be masked by the IF bit in the Flags
Register. Asserting NMI causes an interrupt
which internally suppliesinterrupt vector 2h to
the CPU core. Therefore, external interrupt
acknowledge cycles are not issued.

Once NMI processing has started, no additional
NMIsare processed until an IRET instructionis
executed, typically at the end of the NMI
serviceroutine. If NMI isre-asserted prior to
execution of the IRET, one and only one NMI
rising edge is stored and then processed after
execution of the next IRET.

System Management Interrupt Request (SMI#)
isan interrupt input with higher priority than
the NMI input. Asserting SMI# forces the
processor to save the CPU state to SMM
memory and to begin execution of the SMI
service routine.

SMI# behaves one of two ways depending on
the SMM mode of the CPU.

In SL-compatible mode SMI# isafalling edge
sensitive input and is sampled on every rising
edge of the processor input clock. Once SMI#
servicing has started, no additional SMI# inter-
rupts are processed until a RSM instruction is
executed. If SMI# is reasserted prior to execu-
tion of aRSM instruction, one and only one

132

SMI# falling edge is stored and then processed
after execution of the next RSM.

In Cyrix enhanced SMM mode, SMI#is level
sensitive. As alevel sensitive input, software
can process al SMI interrupts until all sources
in the chipset have cleared.

3.2.10 FPU Error Interface

The FPU interface signals FERR# and IGNNE#
are used to control error reporting for the
on-chip floating point unit. These signals are
typically used for a PC-compatible system
implementation. For other applications, FPU
errors are reported to the Cyrix 111 CPU core
through an internal interface.

Floating Point Error Status (FERR#) isan
activelow output asserted by the Cyrix 111 CPU
when an unmasked floating point error occurs.
FERR# is asserted during execution of the FPU
instruction that caused the error.

Ignore Numeric Error (IGNNE#) isan active
low input which forces the Cyrix 111 CPU to
ignore any pending unmasked FPU errors and
allows continued execution of floating point
instructions. When IGNNE# is not asserted and
an unmasked FPU error is pending, the Cyrix
Il CPU only executes the following floating
point instructions: FNCLEX, FNINIT,
FNSAVE, FNSTCW, FNSTENV, and
FNSTSW#. IGNNE# isignored when the NE
bitin CROissettoal.

Cyrix I

April 4, 2000 11:10 am

Cyrix Processors

Cyrix 111 PROCESSOR
Socket 370 Compatible CPU
MMX™ and 3DNow!™ Technol ogy

/|
—

Electrical Specifications —

4 ELECTRICAL SPECIFICATIONS

41 Introduction

Thischapter describesthe electrical interface of
the Cyrix |11 processor and provides AC and
DC specifications.

4.2 Electrical Ground

All voltage valuesin Electrical Specifications
are measured with respect to Vss ground (GND
pins) unless otherwise noted.

4.3 Power Supply Voltage Signalling

The Cyrix 111 CPU operates using one power
supply voltage (Vcc) typically at 2.2 volts, as
determined by the VID bus. Hard-wired within
the CPU, the 5-pin VID bus signalsits core
voltage requirement to the motherboard regu-
lator.

4.4 Power and Ground
Connections

The Cyrix 11 CPU contains 370 pinsincluding
86 power pins and 80 ground (GND) pins. The
power pins are divided into 73 Vcc pins, eight
VREF pinsand one Vcc_ CMOS pin. TheVece
supply core voltage, the VREF pins are use to
establish reference voltage for GTL+ logic (see
below) and the Vcc CMOS pin supplies 1/0
voltage to a portion of the 1/O interface.

Cyrix Il

44.1 Decoupling

Testing and operating the Cyrix 111 CPU
requires the use of standard high frequency
techniquesto reduce parasitic effects. The high
clock frequencies used in the Cyrix 111 CPU
and its output buffer circuits can cause transient
power surges when several output buffers
switch output levels smultaneously. These
effects can be minimized by filtering the DC
power leads with low-inductance decoupling
capacitors, using low impedance wiring, and by
utilizing all of the Vc and GND pins.

4.5 Gunning Transceiver Logic

Many of the I/O interface signalsin the Cyrix
I11 and Celeron processors use a variation of
the Gunning Transceiver Logic (GTL+) to help
eliminate ringing and signal degradations
caused by the fast switching.

The GTL+ logic uses areference level voltage
to determine switch point between alogical one
and zero. Thereference level voltage (VREF)
issplit into eight individual sources for indi-
vidual decoupling and appears on eight
VREF[7-0] pins to eliminate significant cross
coupling.

133

Cyrix Processors

Gunning Transceiver Logic

451 PU”_'Up/PU”'Down Table 4-1. Pins Connected to Internal Pull-Up
Resistors Resistors
Table 4-1 liststhe input pinsthat areinternaly SIGNAL PIN NO. RESISTOR
connected to pull-up and pull-down resistors. BSEL1 AK30 20-kWdown
The pull-up resistors are connected to V ¢ and
. BSEL AJ33 20-kWpull-
the pull-down resistors are connected to ground SELO puup
(GND). When unused, these inputs do not TCK AL33 20-kWpull-up
require connection to external pull-up or DI AN35 20-kWpull-up
pull-down resistors.
THER- AH28
MTRIP# 20-kWpull-up
T™S AK32 20-kWopull-up
TRST# AN33 20-kWpull-up
EXTRATPIN# | AD2 20-kWpull-up-

134 Cyrix 1

April 4, 2000 11:10 am

Gunning Transceiver Logic 4

45.2 NC Connection and Reserved Pins

Pinsin the Cyrix 111 processor that are functional in the Celeron are left disconnected in the Cyrix
I11 processor and designated as NC pins. These pins can be used as needed by the motherboard
designer.

Reserved (RESV) pins are used by Cyrix for factory testing or for future use. These pins should
not be connected to any component on the motherboard. Connecting areserved pin to a pull-up
resistor, pull-down resistor, or an active signal could cause unexpected results and possible circuit
malfunctions.

453 Absolute MaximumRatings

The following table lists absolute maximum ratings for the Cyrix I11 CPU processors. Stresses
beyond those listed under Table 4-2 limits may cause permanent damage to the device. These are
stress ratings only and do not imply that operation under any conditions other than those listed
under “Recommended Operating Conditions’ Table 4-3 (Page 4-136) is possible. Exposureto
conditions beyond Table 4-2 may (1) reduce device reliability and (2) result in premature failure
even when there is no immediately apparent sign of failure. Prolonged exposure to conditions at
or near the absolute maximum ratings may also result in reduced useful life and reliability.

Table 4-2. Absolute Maximum Ratings

PARAMETER MIN MAX UNITS NOTES
Operating Case Temperature 5 85 °C
Storage Temperature -40 85 °C
Max VID pin current 5 ma

Notes:
1. Operating voltage is the voltage to which the component id designed to operate.

2. Thisrating applies to Vcc, and any input (except noted below) to the processor.
3. Parameter appliesto CMOS and JTAG bus signal groups only.

Cyrix Il 135

Cyrix Processors

Recommended Operating Conditions

4.6 Recommended Operating Conditions

Table 4-3 presents the recommended operating conditions for the Cyrix 111 CPU device.

Table 4-3. Recommended Operating Conditions for CMOS Signals

SYMBOL PARAMETER MIN TYP MAX UNITS NOTES
Te Operating Case Temperature 0 70 °C Power Applied
Vee core Core Supply Voltage (2.2 V) 21 2.3 \%

Vil emos CMOS Input Low Voltage -0.3 0.7 \%
V|HcMos CMOS Input High Voltage 17 2.625 \Y
loL cmos Output Low Current 14 mA

Table 4-4. Recommended Operating Conditions for GTL+ Signals

SYMBOL PARAMETER MIN TYP MAX UNITS | NOTES
ViLGTL+ GTL+ Input Low Voltage -0.3 0.82 \%
ViH oTL+ | GTL+ Input High Voltage 1.22 Vi \%
loL gTL+ | GTL+ Output Low Current 36 48 mA
V171 oTL+ | GTL+ BusTermination Voltage 1.365 15 1.635 V
Btt gL+ | GTL+ BusTermination Resistance 56 Ohms
VRer GTL+ Input Reference Voltage 213V —2% | 23V 2/13 V11 \
GTL+ +2%

136 Cyrix 11

April 4, 2000 11:10 am

Bus Signal Groups 4

4.7

Bus Signa Groups

The Cyrix 111 bus can be divided into four bus-signals groups. These groups arelisted in Table 4-5

below.

Table 4-5. Bus Signal Groups

SIGNAL TYPE

PARAMETER

GTL Input

BPRI#, DEFER#, RESET#, RS[2:0]#, TRDY#

GTL Input/Output

A[31:3]#, ADS#, BNR#, D[63:0]#, DBSY#, DRDY#, HIT#, HITM#,
LOCK#, REQ[4:0]#

CMOS Input A20M#, BSELO, BSEL1, CLK,FLUSH#, IGNNE#, INIT#, INTR,
NMI, PWRGOOQOD, SMI#, SLP#, STPCLK#
CMOS Output FERR#

Continuous DC Level

CPUPRESH#, VID[4:0]

Cyrix Il

137

Cyrix Processors

DC Characteristics

4.8 DC Characteristics

Table4-6. DC Characterigticsfor CMOS Signds (at Recommended Operating Conditions)

SYMBOL PARAMETER MAX UNIT NOTES
VoL Output Low Voltage 04 \
VoH Output High Voltage 2.625 \%

I Leakage Current + 100 UA

o Output L eakage Current +10 UA

Table4-7. DC Characterigicsfor GTL+ Signd's (a Recommended Operating Conditions)

SYMBOL PARAMETER MAX UNITS NOTES
VoL Output Low Voltage 0.60 \Y Measured into 25 ohm
resistor to 1.5v
VoH Output High Voltage Vi \Y See bus termination
table
I Leakage Current +100 UA
Lo Output Leakage Current +15 UA

138 Cyrix 11

April 4, 2000 11:10 am

DC Characteristics 4

Table 4-8. DC Characteristics (at Recommended Operating Conditions)

Cyrix Il

ICC CORE
PARAMETER MAX UNITS NOTES
lcc Activelsc Notes 1, 2
333 MHz 9.15 A
366 MHz 9.76
400 MHz 10.40
433 MHz 10.85
450 MHz 11.20
lccsg Stop Grant | ¢ Notes 1, 2, 3
PR 433 (333 MHz) 1.05 A
PR 466 (366 MHZz) 1.10
PR 500 (400 MHZ2) 1.15
PR 533 (433 MHz) 1.20
PR 533 (450 MHz) 1.25
lcc s Sleep Mode |
PR 433 (333 MHz) 0.87 A Notes 1, 2, 4
PR 466 (366 MHz) 0.89
PR 500 (400 MHz) 0.91
PR 533 (433 MHz) 0.93
PR 533 (450 MHz) 0.95
Notes: 1. These values should be used for power supply design. Maximum Icc is determined using the worst-case instruc-

tion sequences and functions at maximum V cc.

2. Frequency (MHZz) ratings refer to the internal clock frequency.
3. Allinputsat 0.4 or V¢ - 0.4 (CMOS evels). All inputs held static except clock and all outputs unloaded (static

louT =0mA).

4. Allinputsat 0.4 or V - 0.4 (CMOS levels). All inputs held static and all outputs unloaded (static | 5y =0 mA).

139

Cyrix Processors

DC Characteristics

Table 4-9. Power Dissipation

PARAMETER POWER UNITS NOTES

Pcc Active Power Dissipation Note 1

PR 433 (333 MHz) 201 W

PR 466 (366 MHz) 215

PR 500 (400 MHz) 22.9

PR 533 (433 MH2) 239

PR 533 (450 MHz) 24.6
P Stop Grant Power Dissipation Notes 1, 2

PR 433 (333 MH2) 231 W

PR 466 (366 MHz) 242

PR 500 (400 MHZz) 253

PR 533 (433 MHz) 2.64

PR 533 (450 MHz) 2.75
Pgy Sleep Mode Power Dissipation Notes 1, 3

PR 433 (333 MHz) 191 W

PR 466 (366 MHz) 1.96

PR 500 (400 MHz) 2.00

PR 533 (433 MH?z) 2.05

PR 533 (450 MHz) 2.09
Notes: 1. Systems must be designed to thermally dissipate the maximum active power dissipation. Maximum power is determined

using the worst-case instruction sequences and functions at maximum V ¢

2. Allinputsat 0.4 or V¢ - 0.4 (CMOS evels). All inputs held static except clock and all outputs unloaded (static | o7
=0mA).

3. Allinputs at 0.4 or V¢ - 0.4 (CMOS levels). All inputs held static and all outputs unloaded (static | o1 = 0 mA).

140 Cyrix 1

April 4, 2000 11:10 am

AC Characteristics 4

4.9

AC Characteristics

The preliminary AC characteristics for the system bus clock, BCLK, and the Cyrix 11l GTL and

CMOS signas at different bus clock speeds are listed in the tables below.

Table 4-10. 66 MHz System Bus AC Characteristics

SYMBOL PARAMETER MIN TYPICAL MAX UNIT NOTES
BCLK System Bus Frequency 66.67 MHz
T1 BCLK Period 150 ns
T2 BCLK Period Stabhility + 300 ps
T3 BCLK High Time 3.6 ns
T4 BCLK Low Time 3.6 ns
T5 BCLK Rise Time 0.34 1.40 ns 0.5v to 2.0v
T6 BCLK Fall Time 0.34 1.40 ns 2.0vto 0.5v
Table 4-11. 100 MHz System Bus AC Characteristics
SYMBOL PARAMETER MIN TYPICAL MAX UNIT NOTES
BCLK System Bus Fregquency 100.00 MHz
T1 BCLK Period 10.0 ns
T2 BCLK Period Stability + 250 ps
T3 BCLK High Time 24 ns
T4 BCLK Low Time 24 ns
T5 BCLK Rise Time 0.34 1.40 ns
T6 BCLK Fall Time 0.34 1.40 ns

Cyrix Il

141

Cyrix Processors

AC Characteristics

Table 4-12. 133 MHz System Bus AC Characteristics

SYMBOL PARAMETER MIN TYPICAL MAX UNIT NOTES
BCLK System Bus Frequency 133.00 MHz
T1 BCLK Period 7.5 ns
T2 BCLK Period Stability + 200 ps
T3 BCLK High Time 18 ns
T4 BCLK Low Time 18 ns
T5 BCLK Rise Time 0.34 1.40 ns
T6 BCLK Fall Time 0.34 1.40 ns
e T1 -

Viary / \
N/

T6 (= - T5 -

1740502

Figure 4-2. BCLK Timing and Measurement Points

142 Cyrix 1

April 4, 2000 11:10 am

AC Characteristics 4

Table4-13. GTL+ Signal AC Characteristics

66 MHz 100 MHz 133 MHz
PARAMETER UNIT NOTES
MIN MAX MIN MAX MIN MAX
GTL+ Output Valid Delay 0.17 4.40 0.17 3.45 0.17 3.00 ns 1,2
GTL+ Input Setup Time 1.60 1.60 1.40 ns 1
GTL+ Input Hold Time 0.90 0.90 0.90 ns 1
RESET Pulse Width 1.00 1.00 1.00 ms 3

Note:

1. All timings are referenced from the rising edge of BCLK at 1.25V and are measured to the GTL+ signal when it crosses 1.00 Volt.
2. Valid delay timings are specified for a 25 ohm resistance to V1 and with Vrggat 1.0 Volt.
3. RESET# must remain asserted for the time specified after V- corg @and BCLK are stable

CLK
(not GTL+)

GTL+ Input

GTL+ Output — — [—

A = Output Delay
B = Setup Time
C=Hold Time

Vgrer =1.0Volts

Cyrix Il

Figure4-3. GTL+ Signal Definition

143

Cyrix Processors

AC Characteristics

Table 4-14. CMOS Signal AC Characteristics

66 MHz 100 MHz 133 MHz
PARAMETER UNIT NOTES
MIN MAX MIN MAX MIN MAX
2.5V Output Valid Delay 0 8.0 0 8.0 0 7.0 ns
2.5V Input Setup Time 4.0 4.0 4.0 ns
See below
2.5V Input Hold Time 13 13 13 ns

Note. All timings are referenced from the rising edge of BCLK at 1.25V and are measured to the CMOS signal when it crosses 1.25
V.olts.

™

w2 N N
\(

- @ MAX

4—(_@* MN

amme S e)] /K N S
INFUTS A / / Mo I\'e“d Mo % //
Vo i L

LECEND: A- Maxdi mum Quitput Delay Spedfication
B- Mininmum Quput Deay Soedificatian
C- Minnmum Inpu Setup Spedfication
D- Minimum I rput Hdd Spedficetion 1709406

Figure 4-4. Drive Level and Measurement Points for Switching Characteristics

144 Cyrix I

Cyrix 111" PROCESSOR
Socket 370 CPU

MMX™ and 3DNow!™ Technology

Cyrix Processors —a |

5 MECHANICAL SPECIFICATIONS
51 370-Pin SPGA Package

The pin assignments for the Cyrix I11 CPU in a370-pin SPGA package are shown in Figure 5-1.
Pin lists and dimensions are also included in this chapter.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37
AN GND Al2# Al6# A6# RESV RESV RESV BPRI# DEFER# RESV RESV TRDY# DRDY# BRO# ADS# TRST# TDI DO
14 1 4 * 1 4 . 4 1 4 * 14 . 14 . 14 1 4 (4 1 4 e | AN
AM GND VCC GND VCC GND VCC GND VCC GND VCC GND VCC GND VCC GND VCC GND VID1 AM
L L [4 L 4 L [4 ° 9 L 4 L 4 ®
AL |GND = GND " AlS# AL3# A9# RESV RESV A7# REQ# REQ3# RESV HITM# HIT# DBSY#THERMDNHERMDP TCLK — VIDO ~wviD2 |
[L 4 L] L 4 L | L 4 |] [L L 4 L 4 | [4 L 4 L 4 o
AK VCC =~ GND A28# A3# All# VREF6 Al4# RESV REQO# LOCK# VREF7 RESVPWRGOODRS2# BSELL TMS ~ VCC VID4 AK
[] L [] [([| » ® . [[
AJ [A2# T GND T veC TGND T VCC T GND T veC T GND T VCC T GND - VCC T GND © VCC T GND VCC UBSELL BSELO SMi# ~ VID3 | o
| ® »
AH GND ~ RESV ~ Al0# AS5# A8# A4# BNR# REQL# REQ2# RESV RS1# VCC RSOATHERMTRIP#SLP# VCC ~ GND — vCC AH
®] [4 . L 4 ® L [4 L 4 L 4 L 4 9 L4
A |RESV AL9% GND INIT# STPCLKHIGNNE# [,
[] » ® ® [[]
VCC RESV A25# GND VCC GND
AF Py e * PY AF
AE |AuE o A22# vgc A20M# IERR# FLUSH#| o
GND A31# VREF5 VvVCC GND VCC_1.5V
AD e ® @ e v ® AD
Ac |RESV A204 onD GND FERR# RESV [).
A23#

AB | EXTRATIO#A24# 2 Guo vcecvee_cmos | o
AA |A27# A30# vee . RESV ~RESV ~ vCC [.,
® o o ® Cyrix Il ® oo Yec 2?

z GND ~ A29# Al8# VCC ~ GND VCC_2.5V z
[® ® [] » ®
v [RESvV ~A26# enD GND veC GND [
e » hd GND 'vcc .GND e

RESV RESET# RESV P
X e o o rocessor s o e |X
w |po# RESV - vce PLL_VDD RESV ~ BCLK | \y
9 [4 ® L 4 9
v GND RESV ~VREF4 VCC GND VCC v
] L\ 4 o L 4 » L 4
u |pa#r “pis# oD 370 SPGA PLL_GND RESV ~RESV |
[| [[J » [[
T vee D1# D6# GND = VCC GND T
[] ®
s |ps# D5# vce RESV RESV ~RESV | g
R RESV ~ D17# VR;FS . VCC ~ GND ~ VvCC R
e 0 B ttom V e » @
q [pi2# Dpior onD O O IeW RESV RESV RESV [o
® ® ® bos . e ®
vCcC D1s# . . GND VCC GND
P * o e (Pins Visible) e o ® P
N |D2# D1 vee RESV ~RESV ~RESV |
[4 ® 9
GND D11# D3# VCC GND INTR M
M °
D13# D20# GND RESV ~ RESV ~ NMI ||
-)
K VCC ~VREF2 D24# vcc ~ VCC GND K
[. L
g |p7# " p3ox T~ vce RESV RESV ~ RESV
[] » [2 [[[]
H GND D16# D19# vCC GND VCC H
[] [2 L] [] » ®
¢ |p22# p23# enD RESV RESV RESV | o
® ® e . e ®
E VCC ~ vCC ~ D32# D22# RESV D27# VCC D63% VREFL GND VCC GND VCC GND VCC GND VCC GND E
[® v ® ® [L
g |D26# Das# - vcC GND VCC GND VCC GND VCC GND RESV RESV D62# RESV RESV RESV VREFO RESV RESV | g
L [L 4 L] L 4 L [4 L 4] [] L 4 L 4 L | L 4 L 4 o L
D GND GND VCC D38# D39# D42# D4l# D52# GND VCC GND VCC GND VCC GND VCC GND VCC D
L ® [] ® [] [[J ® [[
c |pss# " vcc pD3i1# D3sr - D36# D4s# D4g# D40# D59# DS5# DS4# D58 DS0# D56# RESV RESV RESV RESV RESV | ¢
[] ® ® [[[] »® L [} [[] [[[] [® [® [

B D354 GND vac GND VCC GND VCC GND VCC GND VCC GND VCC GND VCC GND VCC RESV B
A D29# ~ D28# DA43%# D37# DA44# D51# D47# D48# DS7# D46# D53# DBO# D61# RESV RESV RESV RESV GND | A
N\ » ® [® [] » o [» [] [® [] » ® ® [[]

/ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37
Index Corner

Figure 5-1. Bottom View 370-Pin SPGA Package Pin Assignments
Cyrix Il 145

Cyrix Processors

370-Pin SPGA Package

Index Corner
\ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37
A ® L 4 ® ® [] L ® ® ® ® L] ® ® ® ® ® [] A
D29# D28# DA43# D374 D44# D51# DA7# DA8# D57# DAa6# D53# D60# D61# RESV RESV RESV RESV ~ GND
B Dag# GN.D vgc GRD v&: GRD vgc GRD vgc Gso v&: GRD vgc GRD vgc GRD v&: R?SV B
c L [J |] |] L 4 ® L J » L] L 4 ® ® ® [] [] L 4 c
D33# VCC D31# D34# D36# D45# D49% D40# D59%# D55# D54# D58# D50# D56# RESV RESV RESV RESV RESV
D ® [] [4 ® [4 ® ® »® L ® ® ® ® ® [L] ® D
GND GND vcc D38# D39% D42# D4l# D52# GND VCC GND VCC GND VCC GND VCC GND VvCC
E |] [[® L] ® ® ® ® [] ® [4 ® ® [] [] ® E
D26# D25# VCC GND VCC GND VCC GND VCC GND RESV RESV D62# RESV RESV RESV VREFO RESV RESV
® L 4 [® ® ® F
F vce vee D32# D22# RESV D274 VCC D63# VREF1 GND vcc GND vcc GND vcc GND VCC GND
G ® G
D21# D23# GND RESV RESV RESV
H [] ® H
GND DI16%# DI19# vCC GND vCC
J ® L J
D7# D30# VCC RESV RESV RESV
K ® L » [® K
VCC VREF2 Dp24# VvCC VvCC GND
L [] [3 » [] [L
D13# D20# GND RESV RESV NMI
M ® L d ® M
GND DI1l¥ D3# VCC GND INTR
N L ® ® [] [4 N
D2# D14# VCC RESV RESV RESV
[» ® 1 [] [[]
P VCC D18# D9# yrIX GND VCC GND P
[® ® ® [] 0
Q | p12# Dio¥ GND RESV RESV RESV
R ® ® ® ® ® ® R
RESV D17# VREF3 P VvCC GND vCC
|8 e e rocessor » o o |,
D8# D5# VCC RESV RESV RESV
® ® ® ®
T vce D1# D6# GND vcCc GND T
u L ® ® ® [] [4 U
D4# D15# GND 370 f ;PGA PLL_GND RESV RESV
v [] » ® ® L] [] v
GND RESV VREF4 VCC GND vcC
L [A [J w
W | po# RESV vceC PLL_VDD RESV BCLK
®
X R!SV REgET# RESV GND vc.c GRD X
o ® ® 1 » . ®
Y | RESV A26# GND o p | eW GND vcc GND | Y
z GND Azgw Alg# vc'c GND VCC_2.5V z
s o @ (Pins Not Visible)) ® |
AA | A27# A30# VCC RESV RESV VCC
\d » [[] L 4 L 4
AB EXTRATIO# A24# A23# GND VCC VCC_CMOS AB
[] ® [4
AC | RESV A204# GND GND FERR# RESV |AC
® ® | ® [] ®
AD GND A31# VREF5 vce GND VCC_1.5V AD
L d ® ® [4 9 ® |
AE | A17# ° A22# VCC * A20M# _ IERR# 'FLUSH#
AF VCC RESV A25# GND VCC GND AF
[] ® ® L4 ®
AG | RESV A19# GND INIT# STPCLK# IGGNE# | AG
® |] ® ® ® ® ® ® ® ® ° ® ® ® |] L
AH GND RESV Al0# A5# A8# A4# BNR# REQl# REQ2# RESV RS1# VCC RSO#THERMTRIP#LP# VCC GND VCC AH
[] ® [A ® ® L] [] ® [A ® ® ° ® ® [[] ® L ®
AJ | A21# GND VCC GND VCC GND VCC GND VCC GND VCC GND VCC GND VCC BSEL1 BSELO SMI# VvID3 | AJ
® ® [] ® [4 ® ® ® [] ® ® ® ® [4 [] [] [®
AK VCC GND A28# A3# All# VREF6 Al4# RESV REQO# LOCK# VREF7 RESVPWRGOODRS2# BSELL TMS VCC ViD4 AK
L ® ® ® [4 * L4 Ld L 4 ® » L4 ® ® ® L4 ® 9
AL | GND GND A15%# A13% A% RESV RESV A7# REQ4# REQ3%# RESV HITM# HIT# DBSY#THERMDWHERMDP TCLK vIDO viD2 | AL
® L ® ® ® ® [] L ® ® ® ® ® L ® ®
AM GND VvCC GND VvCC GND VCC GND VCC GND VCC GND VCC GND VCC GND VCC GND VID1 AM
® ® ® ® L4 L J ® ® ® ® [4 ® ® ® ® ® LJ ®
AN GND Al2# Ale# A6# RESV RESV RESV BPRI# DEFER# RESV RESV TRDY# DRDY# BRO# ADS# TRST# TDI 00 | AN
12 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37

Figure 5-5. Top View 370-Pin SPGA Package Pin Assignments
Note: REV'S = Reserved

146

Cyrix I

April 5, 2000 7:36 am

370-Pin SPGA Package 5

Table 5-15. 370-Pin SPGA Package Signal Names Sorted by Signal Name

SIGNAL NAME PIN TYPE l[e} SIGNAL NAME PIN TYPE 110 SIGNAL NAME PIN TYPE l[e}
A3t AKS8 GTLP 110 D10# Q3 GTLP 110 D58# Cc23 GTLP 110
Ad# AH12 GTLP 1/10 D11# M4 GTLP 110 D59# Cc17 GTLP 110
ASH# AHS8 GTLP 110 D12# Q1 GTLP 110 D60# A25 GTLP 110
A6H AN9 GTLP 170 D13# L1 GTLP 110 D61# A27 GTLP 110
ATH AL15 GTLP 170 D14# N3 GTLP 170 D62# E25 GTLP 170
A8t AH10 GTLP 110 D15# (VK] GTLP 110 D63# F16 GTLP 110
AO# AL9 GTLP 1/0 D16# H4 GTLP 110 DBSY # AL27 GTLP 110
A10# AH6 GTLP 110 D17# R4 GTLP 110 DEFER# AN19 GTLP 110
Al1# AK10 GTLP 110 D18# P4 GTLP 9 DRDY# AN27 GTLP 110
Al2# ANS GTLP 110 D19# H6 GTLP 110 EXTRATIO# AB2 CMOS/PD]
A13# AL7 GTLP 110 D20# L3 GTLP 110 FERR# AC35 CMOS
Al4# AK14 | GTLP 110 D21# Gl GTLP e} FLUSH# AE37 CMOs |
A15# ALS5 GTLP 110 D22# F8 GTLP 110 HIT# AL25 GTLP 110
Al6# AN7 GTLP 170 D23# G3 GTLP 9] HITM# AL23 GTLP 110
Al7# AEl GTLP 170 D24# K6 GTLP 9] IERR# AE35 Pull Up ¢}
A18# Z6 GTLP 110 D25# E3 GTLP 110 IGNNE# AG37 CMOS [
Al19# AG3 GTLP] D26# E1l GTLP 110 INIT# AG33 CMOs !
A20# AC3 GTLP 110 D27# F12 GTLP 110 INTR M36 CMOs !
A21# AJL GTLP 70 D28# A5 GTLP 170 LOCK# AK?20 GTLP 70
A22# AE3 GTLP 70 D29# A3 GTLP 170 NMI L37 CMOS T
A23# AB6 GTLP 110 D30# J3 GTLP 110 PLL_GND U33 VSSPLL
A244# AB4 GTLP 110 D31# C5 GTLP e} PLL_VDD W33 VDDPLL
A25# AF6 GTLP 110 D32# F6 GTLP 9] PWRGOOD AK?26 CMOs |
A26# Y3 GTLP 170 D33# C1 GTLP 170 REQO# AK18 GTLP 170
A27H AAL GTLP 170 D34# C7 GTLP 170 REQ1# AH16 GTLP 170
A28# AK6 GTLP 1/0 D35# B2 GTLP 110 REQ2# AH18 GTLP 110
A29# 74 GTLP 1/0 D36# C9 GTLP 110 REQ3# AL19 GTLP 110
A30# AA3 GTLP 110 D37# A9 GTLP 110 REQ4# AL17 GTLP 110
A31# AD4 GTLP 110 D38# D8 GTLP 9 RESET# X4 GTLP !
A20M# AE33 CMOS [D39# D10 GTLP 110 RSO# AH26 GTLP 110
ADSH# AN31 GTLP 110 D40# C15 GTLP 110 RS1# AH22 GTLP 110
BCLK W37 GTLP I D41# D14 GTLP e} RS2# AK?28 GTLP 110
BNR# AH14 | GTLP 110 D42# D12 GTLP 9] SLP# AH30 CMOs |
BPRI# AN17 GTLP [DA43# A7 GTLP 9] SMI# AJ35 CMOS [
BRO# AN29 Ground o D44# A1l GTLP 9] STPCLK# AG35 CMOS [
BSELO AJ33 CMOS/PU [DA45# Cl1 GTLP 110 TCLK AL33 CMOS/PU [
BSEL1 AK30 CMOS/PD I D46# A21 GTLP 110 TDI AN35 CMOs/PU !

AJ31 D47# A15 GTLP 110 TDO AN37 CMOS [¢)
CPUPRES# C37 GND] D48% Al7 GTLP 70 THERMDN AL29 ESD only (¢}
DO# wi GTLP 110 DA49# Ci3 GTLP 7o THERMDP AL31 | ESDonly | ©
D1# T4 GTLP 110 D50# C25 GTLP 110 THRMTRIP# AH28 | cMOSPU | 1O
D2# N1 GTLP 110 D51# A13 GTLP 110 TMS AK32 | CMOSPU |
D3# M6 GTLP 170 D52# D16 GTLP 110 TRDY # AN25 | GTLP 110
D4 Ul GTLP 170 D53%# A23 GTLP 170 TRST# AN33 | CMOSPU T
D5# S3 GTLP 110 D54# C21 GTLP 1710 VIDO AL35 | VoltagelD [¢]
D6# T6 GTLP 110 D55# C19 GTLP 110 VID1 AM36 | VoltagelD | ©
D7# NI GTLP 110 D56# Cc27 GTLP 110 VID2 AL37 | VoltagelD [¢]
D8# S1 GTLP 110 D57# A19 GTLP 110
Do# 6 GTLP 70

Cyrix Il 147

Cyrix Processors

370-Pin SPGA Package

Table 5-2. 370-Pin SPGA Package Signal Names Sorted by Pin Number

PACK- SIGNAL lfl’_AD 1/0 PACK- SIGNAL -ll:_'AD 110 PACK- SIGNAL I:-l’_AD 110
APG|E NAME YPE A;S NAME YPE APCTE NAME YPE

A3 D29# GTLP 1/0 L1 D13# GTLP 110 AH14 |BNR# GTLP 110
A5 D28# GTLP 110 L3 D20# GTLP 1/0 AH16 |REQ1# GTLP 110
A7 D43# GTLP 170 L37 NMI CMOS I AH18 | REQ2# GTLP 170
AQ D37# GTLP 170 M4 D11# GTLP 170 AH22 |RS1# GTLP 170
A1l D44# GTLP 110 M6 D3# GTLP 110 AH26 | RSO# GTLP 110
A13 D51# GTLP 110 M36 [INTR CMOS | AH28 | THRMTRIP# CMOS/PU [1/0
A15 D47# GTLP 110 N1 D2# GTLP] AH30 |SLP# CMOS I
Al7 D48# GTLP 70 N3 D14# GTLP 170 AH6 |A10# GTLP 70
A19 D57# GTLP 70 P4 D18# GTLP 170 AH8 [AS# GTLP 70
A21 D46# GTLP 110 P6 Do# GTLP 1/0 AJl A21# GTLP 1/10
A23 D53# GTLP 110 Q1 D12# GTLP 1/0 AJ31 |BSEL1 CMOS/PD

A25 D60# GTLP 110 Q3 D10# GTLP 1/0 AJ33 |[BSELO cMos/PU I
A27 D61# GTLP 170 R4 D17# GTLP 170 AJ35 |SMI# CMOS [
B2 D35# GTLP 170 S1 D8# GTLP 170 AJ37 |VID3 VoltagelD | O
C1l D33# GTLP 1/0 S3 D5# GTLP 110 AKG6 A28t GTLP 110
C5 D31# GTLP 110 T4 D1# GTLP 1/0 AKS8 [A3# GTLP 110
c7 D34# GTLP 110 T6 D6# GTLP 1/0 AK10 [A11# GTLP 110
C9 D36# GTLP 70 U1l Da4# GTLP 170 AK14 |A14# GTLP 70
C11 D45# GTLP 70 U3 D16# GTLP 170 AK18 |REQO# GTLP 70
C13 D49# GTLP 110 u33 PLL_GND VSSPLL AK20 [LOCK# GTLP 110
C15 D40# GTLP 110 w1 DO# GTLP 1/0 AK26 |PWRGOOD CMOS [
C17 D59# GTLP 110 W33 |PLL_VDD VDDPLL AK28 | RS2# GTLP 110
C19 D55# GTLP 110 W37 |BCLK GTLP I AK30 |BSEL1 CMOS/PD |1
c21 D54# GILP 170 X4 RESET# GTLP I AK32 | TMS CMOS/PU 1
C23 D58# GTLP 1/0 Y3 A26# GTLP 110 AK36 [VID4 VoltagelD |O
C25 D50# GTLP 110 Z4 A29# GTLP 1/0 ALS5 [Al5# GTLP 110
Cc27 D56# GTLP 110 76 A18# GTLP 1/0 AL7 [A13# GTLP 110
C37 CPUPRES# GND o AAl |A27# GTLP 110 AL9 |A9% GTLP 110
D8 D38# GTLP 70 AA3 |A30# GTLP 170 AL1S |AT# GTLP 70
D10 D39# GTLP 110 AB2 |EXTRATIO# CMOSPD |O AL17 |REQ4# GTLP 110
D12 D42# GTLP 110 AB4 |A24# GTLP 1/0 AL19 |REQ3# GTLP 110
D14 D41# GTLP 110 AB6 |A23# GTLP 110 AL23 |HITM# GTLP 110
D16 D52# GTLP 110 AC3 |A20# GTLP 110 AL25 |HIT# GTLP 110
E1l D26# GILP 170 AC35 |FERR# CMOS o AL27 |DBSY# GTLP 170
E3 D25# GTLP 110 AD4 |A31# GTLP 1/10 AL29 | THERMDN ESDonly |O
E25 D62# GTLP 110 AEl1 |Al7# GTLP 1/10 AL31 |THERMDP ESDonly |O
F6 D32# GTLP 110 AE3 |A22# GTLP 1/0 AL33 [TCLK CMOS/PU I
F8 D22# GTLP 110 AE33 |A20M# CMOs | AL35 [VIDO VoltageID |0
F12 D27# GTLP 1/0 AE35 |IERR# Pull Up o AL37 |VID2 VoltagelD O
F16 D63# GTLP 110 AE37 |FLUSH# CMOS | AM36 |VID1 VoltagelD |O
G1 D21# GTLP 1/0 AF6 A25# GTLP 110 AN5S Al2# GTLP 110
G3 D23# GTLP 110 AG3 [A19# GTLP 1/0 AN7 [A16# GTLP 110
H4 D16# GTLP 110 AG33 |INIT# CMOs I AN9 [|A6# GTLP 110
H6 D19# GILP 170 AG35 |STPCLK# CMOS I AN17 | BPRI# GTLP [
J1 D7# GTLP 110 AG37 |IGNNE# CMOs [AN19 | DEFER# GTLP 110
J3 D30# GTLP 110 AH10 [A8# GTLP 1/0 AN25 | TRDY# GTLP 110
K6 D24# GTLP 110 AH12 |A4# GTLP 1/0 AN27 |DRDY# GTLP 110

148 Cyrix 1

April 5, 2000 7:36 am

370-Pin SPGA Package 5

Table 5-15. Voltage and Reserved Pins

VI?:_EI/ESE P URPOSE PINS
VCC Voltage Inputs. B6, B10, B14, B18, B22, B26, B30, B34, C3, D6, D20, D24,
Supplies nominal 2.2 voltsto D28, D32, D36, E5, E9, E13, E17, H32, F2, F4, F14, F22,
processor core. F26, F30, F34, H36, J5, K2, K32, K34, M32, N5, P2, P34,
R32, R36, S5, T2, T34, V32, V36, W5, X34, Y35, Z32, AAS5,
AA37, AB2, AB34, AD32, AE5, AF2, AF34, AH24, AH32,
AH36, AJ5, AJ9, AJ13, AJ17, Ad21, AJ25, AJ29, AK2,
AK34, AM12, AM4, AM8, AM16, AM20, AM24, AM28,
AM32
VCC 15V Voltage Input. AD36
Supplies 1.5 volts to processor core
VCC_ 2.5V Voltage Input. Z36
Supplies 2.5 volts to processor I/0
VCC_CMOS Voltage Output. AB36
Connectsto VCC_2.5. Supplies 2.5
volts to motherboard or other
component.
VREF[0-7] Voltage Input. Vgsero E33
Establishes reference voltage for Vger; F18
GTL+ logic switching level. Vrer, K4
Vrerz R6
Vrers V6
Vrers AD6
Vrers AK12
Vieey AK22
GND Return path for all voltages. A37, B4, B8, B12, B16, B20, B24, B28, B32, D2, D4, D18,
D22, D26, D30, D34, E7, E11, E15, E19, F20, F24, F28, F32,
F36, G5, H2, H34, K36, L5, M2, M34, P32, P36, Q5, R34,
T32,T36,U5,V2,V34, X36,Y5,Y33,Y37,X32,22, 234,
AB32, AC33, AC5, AD2, AD34, AF32, AF36, AG5, AH2,
AH34, AJ3, AJ7, AJll, AJ15, AJ19, AJ23, AJ27, AJ3l,
AK4, AL1, AL3, AM6, AM10, AM14, AM18, AM2, AM22,
AM26, AM30, AM34, AN3
Reserved Pins | These pins are used for factory A29, A31, A33, A35, B36, C29, C31, C33, C35, E21, E23,
testing or reserved for future use. E27, E29, E31, E35, E37, F10, G33, G35, G37, J33, J37, J35,
Generally compatible with L33, L35, N33, N35, N37, Q33, Q35, Q37, R2, S33, S35,
Celeron™ processor defined pins. S37, U35, U37, V4, W3, W35, X2, X6, Y1, AA33, AA35,
AC1, AC37, AF4, AG1, AH4, AH20, AK16, AK24, AL11,
AL13, AL21, AN11, AN13, AN15, AN21, AN23, AN29

Cyrix Il

149

Cyrix Processors

370-Pin SPGA Package

/73 > Vce
L - Vcee 1.5V
1 Ve 2.5V Vce_CMOS
5
la / VID[4-0]
f i VREF[7-0]
Resistor Network GND
1
Lo LOWI Pass | /! PLL_VcC
Filter
- | PLL_GND

Voltage Regulator

Figure 5-3. Typical Connections Between V oltage Regulator

and Cyrix |11 Processor

150

Cyrix Il Processor

April 5, 2000 7:36 am

370-Pin SPGA Package

L
L
4
L
4 D ¢ 9 2
z a3 a c a a
o oa c & ©
m(:B o a a > a a
w u a o u u
\o 2 49 9 o o o o0 o =] 2 0 o o cC [& a 0
[0o 9 9O O O C [0o 9 9 9 O O 0 [[
¢ & L] L] =] o [+ o & bl bl =] o o o o & a bl
'] '] '] o 2 o "] [o '] o < o o a '] '] ']
\:l L] a (=] o o 13 2 a a =] o o -3 -3 2 o a \’
¢G] (A
(INCEXCORNER > &« A1
< D>
D4
¢ " ™\
e A
- J
- J
|l \l
|€ [>24 1
| | 1750800
|< D >|

Figure 5-4. 370-Pin “Flip Chip SPGA
Cyrix Il 151

Cyrix Processors

370-Pin SPGA Package

Table5-16. 370-Pin SPGA Dimensions

SYMBOL MILLIMETERS INCHES

MIN MAX MIN MAX
A 3.80 4.50 0.150 0.177
Al 1.62 1.98 0.064 0.078
B 0.43 0.51 0.017 0.020
D 49.28 49.91 1.940 1.965
D1 4547 45.97 1.790 1.810
D2 36.755q. | 37.25 . 1.447 1.467
El 241 2.67 0.095 0.105
E2 1.14 1.40 0.045 0.055
G 1.52 2.29 0.060 0.090
L 2.97 3.38 0.117 0.133
S1 1.65 2.16 0.065 0.085

152 Cyrix 1

April 5, 2000 7:36 am

Thermal Resistances 5

5.2 Thermal Resistances

Three thermal resistances can be used to idealize the heat flow from the junction of the Cyrix 1l
CPU to ambient:

0;c = thermal resistance from junction to case in °C/W

Ocs = thermal resistance from case to heatsink in °C/W,

Osa = thermal resistance from heatsink to ambient in °C/W,

Oca = Ocs + Osa » thermal resistance from case to ambient in °C/W.

Tc =Ta + P* gca (Where T, = ambient temperature and P = power applied to the CPU).

To maintain the case temperature under 85°C during operation gca can be reduced by a heat-
sink/fan combination. (The heatsink/fan decreases gc 5 by afactor of three compared to using a
heatsink alone.) Therequired qc, to maintain 85°C isshown in Table 5-4. The designer should
ensure that adequate air flow is maintained to control the ambient temperature (T,). A typical g
value for the Cyrix 111 370-pin PGA-package valueis 0.5 °C/W.

Cyrix Il - MAXACTIVE |\ 4 e Qca FOR DIFFERENT AMBIENT TEMPERATURES
PERFOR- Current POWER
MANCE | Actual MHz A) W) 25°c | 30°c | 3s°Cc | 40°c | 45°C
RATING
PR 433 333 MHz 9.15 20.1 2.98 2.74 2.50 2.24 1.99
PR 466 366 MHz 9.76 215 2.79 2.55 2.33 2.09 1.86
PR 500 400 MHz 10.40 22.9 2.62 2.40 2.18 1.96 1.75
PR 533 433 MHz 10.85 23.9 251 2.30 2.09 1.88 167
PR 533 450 MHz 11.20 24.6 241 2.24 2.03 1.83 1.63

Required (cp to Maintain 85°C Case Temperature

Cyrix Il 153

Cyrix Processors

Thermal Resistances

154 Cyrix 1

April 4, 2000 11:10 am

Cyrix Processors

Cyrix 11l PROCESSOR
Socket 370 CPU
MMX™ and 3DNow!™ Technology

r_|
)

6 INSTRUCTION SET

This section summarizes the Cyrix 111 CPU
instruction set and provides detailed information
on the instruction encodings.

All instructions are listed in CPU, FPU and
MMX Instruction Set Summary Tables shown
on pages 6-14, 6-31 and 6-38. These tables
provide information ontheinstruction encoding,
and the instruction clock counts for each
instruction. The clock count values for these
tables are based on the assumptions described in
Section 6.3.

Depending on the instruction, the Cyrix 111
CPU instructions follow the general instruction
format shown in Table 6-1. These instructions

vary in length and can start at any byte address.

Cyrix Il

155

Cyrix Processors

Instruction Set Format

6.1 Instruction Set Format one byte and aslong as 15 bytes. If there are
more than 15 bytesin the instruction a general

An instruction consists of one or more bytes protection fault (error code of 0) is generated.

that can include: prefix byte(s), at least one

opcode byte(s), mod r/m byte, s-i-b byte,

address displacement byte(s) and immediate

data byte(s). An instruction can be as short as

Table 6-1. Instruction Set Format

REGISTER AND ADDRESS MODE SPECIFIER ADDRESS IMMEDIATE
PREFIX OPCODE mod r/m Byte s-i-b Byte DISPLACEMENT DATA
mod reg r/m ss Index Base
0 or More Bytes | 1 or 2 Bytes 7-6 5-3 2-0 7-6 5-3 2-0 0, 8, 16, or 32 Bits 0, 8, 16, or 32 Bits

156 Cyrix 11

April 4, 2000 11:10 am

General Instruction Format 6

6.2

Genera Instruction Format

The fields in the general instruction format at the byte level arelisted in Table 6-2.

Table 6-2. Instruction Fields

base register

FIELD NAME DESCRIPTION REFERENCE
Prefix Segment register override 6.2.1 (Page 6-158)
Address size
Operand size
Repeat elements in string instructions
L OCK# assertion
Opcode Instruction operation 6.2.2 (Page 6-159)
mod AddressMode Used with r/m field to select address mode 6.2.3 (Page 6-161)
Specifier
reg General Register |Usesreg, sreg2 or sreg3 encoding depending on | 6.2.4 (Page 6-162)
Specifier opcode field
r/m AddressMode Used with mod field to select addressing mode. |6.2.3 (Page 6-161)
Specifier
ss Scale Factor Scaled-index address mode 6.2.5 (Page 6-164)
Index Determines general register to be selected as 6.2.6 (Page 6-164)
index register
Base Determines general register to be selected as 6.2.7 (Page 6-165)

Address Displacement

Determines address displacement

Immediate data

Immediate data operand used by instruction

Cyrix Il

157

Cyrix Processors

General Instruction Format

6.2.1 Prefix Field

Prefix bytes can be placed in front of any instruction. The prefix modifies the operation of the
next instruction only. When more than one prefix is used, the order is not important. There are
five type of prefixes asfollows:

1. Segment Override explicitly specifies which segment register an instruction will use for

effective address calculation.

2. Address Size switches between 16- and 32-bit addressing. Selects the inverse of the

default.

3. Operand Size switches between 16- and 32-bit operand size. Selectsthe inverse of the

default.

4. Repeat isused with a string instruction which causes the instruction to be repeated for
each element of the string.

5. Lock isused to assert the hardware LOCK# signal during execution of the instruction.

Table 6-3 lists the encodings for each of the available prefix bytes.

Table 6-3. Instruction Prefix Summary

PREFIX ENCODING DESCRIPTION

ES: 26h Override segment default, use ES for memory operand
Cs 2Eh Override segment default, use CS for memory operand
SS 36h Override segment default, use SS for memory operand
DS 3Eh Override segment default, use DS for memory operand
FS: 64h Override segment default, use FS for memory operand
GS. 65h Override segment default, use GS for memory operand
Operand Size 66h Make operand size attribute the inverse of the default
Address Size 67h Make address size attribute the inverse of the default
LOCK FOh Assert LOCK# hardware signal.

REPNE F2h Repeat the following string instruction.

REP/REPE F3h Repeat the following string instruction.

158

Cyrix I

April 4, 2000 11:10 am

General Instruction Format 6

6.2.2 Opcode Field

The opcode field specifies the operation to be performed by the instruction. The opcode field is

either one or two bytesin length and may be further defined by additional bitsin the mod r/m

byte. Some operations have more than one opcode, each specifying a different form of the opera-
tion. Some opcodes name instruction groups. For example, opcode 80h names a group of opera-
tionsthat have an immediate operand and aregister or memory operand. The reg field may appear

in the second opcode byte or in the mod r/m byte.

6.2.2.1 Opcode Field: w Bit

The 1-bit w bit (Table 6-4) selects the operand size during 16 and 32 bit data operations.

Table 6-4. w Field Encoding

w BIT OPERAND SIZE
16-BIT DATA OPERATIONS 32-BIT DATA OPERATIONS
0 8 Bits 8 Bits
1 16 Bits 32 Bits
6.2.2.2 Opcode Field: d Bit

Thed bit (Table 6-11) determines which operand is taken as the source operand and which
operand is taken as the destination.

Table 6-5. d Field Encoding

DESTINATION
dBIT DIRECTION OF OPERATON SOURCE OPERAND OPERAND
0 Register --> Register or reg mod r/m or
Register --> Memory mod ss-index-base
1 Register --> Register or mod r/m or reg
Memory --> Register mod ss-index-base

Cyrix Il

159

Cyrix Processors

General Instruction Format

6.2.2.3 Opcode Field: sBit

The shit (Table 6-11) determines the size of the immediate datafield. If the Shbit is set, theimme-
diate field of the OP codeis 8-bits wide and is sign extended to match the operand size of the
opcode.

Table 6-6. s Field Encoding

SHELD IMMEDIATE FIELD SIZE
8-BIT OPERAND SIZE 16-BIT OPERAND SIZE 32-BIT OPERAND SIZE
0 . . .
(or not present) 8 bits 16 bits 32 hits
1 8 hits 8 hits (sign extended) 8 bits (sign extended)
6.2.2.4 Opcode Field: eee Bits

The eeefield (Table 6-7) is used to select the control, debug and test registersin the MOV instruc-
tions. The type of register and base registers selected by the eee bitsare listed in Table 6-7. The
values shown in Table 6-7 are the only valid encodings for the eee hits.

Table 6-7. eee Field Encoding

eee BITS REGISTER TYPE BASE REGISTER
000 Control Register CRO
010 Control Register CR2
011 Control Register CR3
100 Control Register CR4
000 Debug Register DRO
001 Debug Register DR1
010 Debug Register DR2
011 Debug Register DR3
110 Debug Register DR6
111 Debug Register DR7
011 Test Register TR3
100 Test Register TR4
101 Test Register TR5
110 Test Register TR6
111 Test Register TR7

160 Cyrix 11

April 4, 2000 11:10 am

General Instruction Format 6

6.2.3 mod and r/m Fields

The mod and r/m fields (Table 6-8), within the mod r/m byte, select the type of memory
addressing to be used. Some instructions use a fixed addressing mode (e.g., PUSH or POP) and
therefore, thesefields are not present. Table 6-8lists the addressing method when 16-bit addressing
isused and amod r/m byteis present. Some mod r/m field encodings are dependent on the w
field and are shown in Table 6-9 (Page 6-162).

Table 6-8. mod r/m Field Encoding

mod and r/m fields 16- ?AI/IhA n?tijr/En?zngE 32\/v‘i3tIhTm’.L<\)([j) IrjliEBSSt;w a(r?(lj) -
No s-i-b Byte Present
00 000 DS:[BX+Sl] DS:[EAX]
00 001 DS.[BX+DI] DS:[ECX]
00010 DS:[BP+SI] DS:[EDX]
00011 DS.[BP+DI] DS:[EBX]
00 100 DS[SI] Note 1
00101 DS[DI] DS:[d32]
00 110 DS:[d16] DS:[ESI]
00111 DS:[BX] DS:[EDI]
01 000 DS:[BX+SI+d8] DS:[EAX+d8]
01001 DS [BX+DI+d8] DS:[ECX+d8]
01010 DS:[BP+SI+d8] DS:[EDX+d8]
01011 DS:[BP+DI+d8] DS:[EBX+d8]
01100 DS:[SI+d8] Note 1
01101 DS:[DI+dg] SS:[EBP+d8]
01110 SS:[BP+d8] DS:[ESI+d8]
01111 DS:[BX+d8] DS:[EDI+d8]
10000 DS:[BX+SI+d16] DS:[EAX+d32]
10001 DS:[BX+DI+d16] DS [ECX+d32]
10010 DS:[BP+Sl+d16] DS:[EDX+d32]
10011 DS:[BP+DI+d16] DS [EBX+d32]
10100 DS:[SI+d16] Note 1
10101 DS:[DI+d16] SS:[EBP+d32]
10110 SS:[BP+d16] DS:[ESI+d32]
10111 DS:[BX+d16] DS.[EDI+d32]
11 000through 11111 |See Table 6-9 (Page 6-162)

Note 1. An*“s-i-d” (ss, Index, Base) field is present. Refer to the ss Table 6-13 (Page 6-164), Index Table 6-14 (Page

6-164)

and Base Table 6-15 (Page 6-165).

161

Cyrix Processors

General Instruction Format

Table 6-9. mod r/m Field Encoding Dependent on w Field

16-BIT 16-BIT 32-BIT 32-BIT
mod r/m OPERATION OPERATION OPERATION OPERATION

w=0 w=1 w=0 w=1
11 000 AL AX AL EAX
11 001 CL CX CL ECX
11 010 DL DX DL EDX
11 011 BL BX BL EBX
11 100 AH SP AH ESP
11 101 CH BP CH EBP
11 110 DH Sl DH ESI
11111 BH DI BH EDI

6.2.4 reg Field

Thereg field (Table 6-10) determines which general registersareto be used. The selected register
is dependent on whether a 16 or 32 bit operation is current and the status of the w bit.

Table 6-10. reg Field

16-BIT 32-BIT
o | OFERATION | OPERATION | qoptnion | opepation | opeRATION | opeRATION

Present Present w=0 w=1 w=0 w=1
000 AX EAX AL AX AL EAX
001 CX ECX CL CX CL ECX
010 DX EDX DL DX DL EDX
011 BX EBX BL BX BL EBX
100 SP ESP AH SP AH ESP
101 BP EBP CH BP CH EBP
110 S ES DH S DH ESI
111 Dl EDI BH DI BH EDI

162

Cyrix I

April 4, 2000 11:10 am

General Instruction Format 6

6.2.4.1 reg Field: sreg3 Encoding
Thesreg3 field (Table 6-11) is 3-hit field that is similar to the sreg2 field, but allows use of the FS
and GS segment registers.
Table 6-11. sreg3 Field Encoding
sreg3 FIELD SEGMENT REGISTER SELECTED

000 ES

001 CS

010 SS

011 DS

100 FS

101 GS

110 undefined

111 undefined
6.2.4.2 reg Field: sreg2 Encoding
The sreg2 field (Table 6-4) is a 2-bit field that allows one of the four 286-type segment registers
to be specified.

Table 6-12. sreg2 Field Encoding
sreg2 FIELD SEGMENT REGISTER SELECTED

00 ES

01 CS

10 SS

11 DS

Cyrix Il

163

Cyrix Processors

General Instruction Format

6.2.5 ssField

The ssfield (Table 6-13) specifies the scale factor used in the offset mechanism for address calcu-
lation. The scale factor multipliesthe index value to provide one of the components used to calcu-
late the offset address.

Table 6-13. ss Field Encoding

ss FIELD SCALE FACTOR
00 x1
01 X2
01 x4
11 x8

6.2.6 Index Field

Theindex field (Table 6-14) specifies the index register used by the offset mechanism for offset

address calculation. When no index register is used (index field = 100), the ss valuemust be 00 or
the effective address is undefined.

Table 6-14. Index Field Encoding

Index FIELD INDEX REGISTER

000 EAX
001 ECX
010 EDX
011 EBX
100 none
101 EBP
110 ES

111 EDI

164 Cyrix 1

April 4, 2000 11:10 am

General Instruction Format 6

6.2.7 Base Field

In Table 6-8 (Page 6-161), the note “ s-i-b present” for certain entries forces the use of the mod and
base field aslisted in Table 6-15. Thefirst two digitsin the first column of Table 6-15 identifies
the mod bitsin the mod r/m byte. The last three digitsin the first column of this table identifies

the base fields in the s-i-b byte.

Table 6-15. mod base Field Encoding

medFELDWITHIN | Pl o imand

s-i-bBYTE s-i-b Bytes Present

00 000 DS:;[EAX+(scaled index)]

00 001 DS:;[ECX+(scaled index)]

00 010 DS:[EDX+(scaled index)]

00 011 DS:[EBX+(scaled index)]

00 100 SS:[ESP+(scaled index)]

00 101 DS:[d32+(scaled index)]

00 110 DS:[ESI+(scaled index)]

00 111 DS:[EDI+(scaled index)]

01 000 DS:[EAX+(scaled index)+d8]

01 001 DS:[ECX+(scaled index)+d8]

01 010 DS:[EDX+(scaled index)+d8]

01 011 DS:[EBX+(scaled index)+d8]

01 100 SS:[ESP+(scaled index)+d8g]

01 101 SS:[EBP+(scaled index)+d8]

01 110 DS:[ESI+(scaled index)+d8]

01 111 DS:[EDI+(scaled index)+d8]

10 000 DS:;[EAX+(scaled index)+d32]

10 001 DS:[ECX+(scaled index)+d32]

10 010 DS:[EDX+(scaled index)+d32]

10 011 DS:[EBX+(scaled index)+d32]

10 100 SS:[ESP+(scaled index)+d32]

10 101 SS:[EBP+(scaled index)+d32]

10 110 DS:[ESI+(scaled index)+d32]

10 111 DS:[EDI+(scaled index)+d32]

Cyrix Il

165

Cyrix Processors

CPUID Instruction

6.3 CPUID Instruction

The Cyrix 11 CPU executes the CPUID
instruction (opcode OFA2) as documented in
this section only if the CPUID bit in the CCR4
configuration register isset. The CPUID
instruction may be used by software to deter-
mine the vendor and type of CPU.

When the CPUID instruction is executed with
EAX =0, the ASCII characters“ CyrixIn-
stead” are placed in the EBX, EDX, and ECX
registers as shown in Table 6-16:

Table 6-16. CPUID Data
Returned When EAX =0

Table 6-17. CPUID Data
Returned When EAX =1

REGISTER CONTENTS

EDX[4] 1 = Time Stamp Counter

EDX[5] 1 =RDMSR and WRMSR

EDX[6] 0 = No Physical Address Extensions

EDX[7] 0 = No Machine Check Exception

EDX[8] 1 =CMPXCHGSB Instruction

EDX[9] 0=NoAPIC

EDX[11- 10] |0 = Undefined

EDX[12] 0 = No Memory Type Range Registers

EDX[13] 1= PTE Global Bit

EDX[14] 0 = No Machine Check Architecture

EDX[15] 1=CMOV, FCMOV, FCOMI Instruc-
tions

EDX[22 - 16] [0 = Undefined

EDX[23] 1=MMX Instructions

EDX[31- 24] |0 = Undefined

REGISTER (EBI;IIES;)S
EBX 69727943
i r y C*
EDX 73 6E 49 78
s n | x*
ECX 64 616574
d a e t*

* ASCII equivalent

When the CPUID instruction is executed with
EAX =1, EAX and EDX contain the values
shown in Table 6-17.

Table 6-17. CPUID Data
Returned When EAX =1

REGISTER CONTENTS
EAX[7-0] |0Oh

EAX[15-8] |06h

EDX[O0] 1=FPU Built In

EDX[1] 0 = No V86 Enhancements
EDX[2] 1 = 1/O Breakpoints

EDX[3] 0 = No Page Size Extensions
166

Cyrix I

April 4, 2000 11:10 am

Instruction Set Tables 6

6.4 Instruction Set Tables

The Cyrix 11 CPU instruction set is presented
in three tables: Table 6-21. “Cyrix 111 CPU
Instruction Set Clock Count Summary” on
page 6-169, Table 6-23. “Cyrix 111 FPU
Instruction Set Summary” on page 6-187 and
the Table 6-25. “Cyrix |11 Processor MM X
Instruction Set Clock Count Summary” on
page 6-194. Additional information
concerning the FPU Instruction Set is presented
on page 6-186, and the Cyrix Il MMX instruc-
tion set on page 6-193.

6.4.1 Assumptions Made in
Determining Instruction
Clock Count

The assumptions made in determining instruc-
tion clock counts are listed below:

1. All clock countsrefer to the
internal CPU interna clock
frequency.

2. Theinstruction has been
prefetched, decoded and is ready
for execution.

3. Buscyclesdo not require wait
states.

4. Therearenoloca busHOLD
requests delaying processor access
to the bus.

5. No exceptions are detected during
instruction execution.

6. If aneffective addressis calculated,

it does not use two general register
components. One register, scaling

Cyrix Il

and displacement can be used
within the clock count shown.
However, if the effective address
calculation uses two general
register components, add 1 clock to
the clock count shown.

7. All clock counts assume aligned
32-bit memory/IO operands.

8. If instructions access a 32-hit
operand that crosses a 64-bit
boundary, add 1 clock for read or
write and add 2 clocks for read and
write.

9. For non-cached memory accesses,
add two clocks (Cyrix 111 CPU with
2x clock) or four clocks (Cyrix 111
CPU with 3x clock). (Assumes zero
wait state memory accesses).

10. Locked cyclesare not cacheable.
Therefore, using the LOCK prefix
with an instruction adds additional
clocks as specified in paragraph 9
above.

11. No paradléel execution of
instructions.

6.4.2 CPU Instruction Set
Summary Table
Abbreviations

The clock countslisted in the CPU Instruction
Set Summary Table are grouped by operating
mode and whether there is a register/cache hit
or acache miss. In some cases, more than one
clock count is shown in acolumn for agiven
instruction, or avariable is used in the clock
count. The abbreviations used for these condi-
tionsarelisted in Table 6-18.

167

Cyrix Processors

Instruction Set Tables

Table 6-18. CPU Clock Count Abbreviations

CLOCK COUNT SYMBOL EXPLANATION
/ Register operand/memory operand.
n Number of times operation is repeated.
L Level of the stack frame.

Conditional jump taken | Conditional jump not taken.
(e.g. “4|1" = 4clocksif jump taken, 1 clock if jump not taken)
CPL £10PL \ CPL >|0OPL

\ (where CPL = Current Privilege Level, IOPL = 1/O Privilege
Level)
m Number of parameters passed on the stack.
6.4.3 CPU Instruction Set Summary Table Flags Table

The CPU Instruction Set Summary Table lists nine flags that are affected by the execution of
ingructions. The conventions shown in Table 6-19 are used to identify the different flags. Table 6-20
lists the conventions used to indicate what action the instruction has on the particular flag.

Table 6-19. Flag Abbreviations

ABBREVIATION NAME OF FLAG
OF Overflow Flag
DF Direction Flag
IF Interrupt Enable Flag
TF Trap Flag
SF Sign Flag
ZF Zero Flag
AF Auxiliary Flag
PF Parity Flag
CF Carry Flag

Table 6-20. Action of Instruction on Flag

e s,
X Flag is modified by the instruction.
- Flag is not changed by the instruction.
0 Flagisreset to “0".
1 Flag isset to “1".

168 Cyrix 11

April 4, 2000 11:10 am

Instruction Set Tables 6

Table 6-20. Action of Instruction on Flag

INSTRUCTION
TABLE SYMBOL ACTION
u Flag is undefined following execu-
tion of the instruction.

Table6-21. Cyrix Il11 CPU Instruction Set Clock Count Summary

REAL PROTECTED
FLAGS MODE CLOCK | MODE CLOCK NOTES
INSTRUCTION OPCODE COUNT COUNT
OF DF IF TF SF ZF AF PF CF Canhe it caverit | Mode | Mods
JAAA ASCII Adjust AL after Add 37 u - - - U U X U X 7 7
JAAD ASCII Adjust AX before Divide D5 0A u - - - X X U X u 7 7
JAAM ASCII Adjust AX after Multiply D4 0A u - - - X X U X u 13-21 13-21
JAAS ASCII Adjust AL after Subtract 3F u - - - U U X U X 7 7
JADC Add with Carry X - - - X X X X X b h
Register to Register 1 [00dw] [11 reg r/m] 1 1
Register to Memory 1 [000w] [mod reg r/m] 1 1
Memory to Register 1 [001w] [mod reg r/m] 1 1
Immediate to Register/Memory 8 [00sw] [mod 010 r/m]### 1 1
Immediate to Accumul ator 1 [010w] ### 1 1
JADD Integer Add X - - - X X X X X b h
Register to Register 0 [00dw] [11 reg r/m] 1 1
Register to Memory 0 [000w] [mod reg r/m] 1 1
Memory to Register 0 [001w] [mod reg r/m] 1 1
Immediate to Register/Memory 8 [00sw] [mod 000 r/m]### 1 1
Immediate to Accumul ator 0 [010w] ### 1 1
JAND Boolean AND 0O - - - x xu x O b h
Register to Register 2 [00dw] [11 reg r/m] 1 1
Register to Memory 2 [000w] [mod reg r/m] 1 1
Memory to Register 2 [001w] [mod reg r/m] 1 1
Immediate to Register/Memory 8 [00sw] [mod 100 r/m]### 1 1
Immediate to Accumul ator 2 [010w] ### 1 1
JARPL Adjust Requested Privilege Level - - - - - X - - - 9 a h
From Register/Memory 63 [mod reg r/m]
BOUND Check Array Boundaries 62 [mod reg r/m] L T T b, e [g,h,jk,r
If Out of Range (Int 5) 20 20+INT
If In Range 11 11
BSF Scan Bit Forward - - - - - X - - - 3 3 b h
Register, Register/Memory OF BC [mod reg r/m]
BSR Scan Bit Reverse - - - - - X - - - 3 3 b h
Register, Register/Memory OF BD [mod reg r/m]
BSWAP Byte Swap OF C[1 reg] E 4 4
=immediate 8-bit data + = 8-bit signed displacement
x = modified
=immediate 16-bit data +++ = full signed displacement (16, 32 bits)
- = unchanged
= full immediate 32-bit data (8, 16, 32 hits)
u = undefined
Cyrix Il 169

Cyrix Processors

Instruction Set Tables

Table 6-21. Cyrix I11 CPU Instruction Set Clock Count Summary (Continued)

REAL PROTECTED
FLAGS MODE CLOCK | MODE CLOCK NOTES
INSTRUCTION OPCODE COUNT COUNT
OF DF IF TF SF ZF AF PF CF o it e | Tropecied
BT Test Bit - - - - - - - - X b h
Register/Memory, Immediate OF BA [mod 100 r/m]# 2 2
Register/Memory, Register OF A3 [mod reg r/m] 5/6 5/6
BTC Test Bit and Complement - - - - - - - - X b h
Register/Memory, Immediate OF BA [mod 111 r/m]# 3 3
Register/Memory, Register OF BB [mod reg r/m] 5/6 5/6
BTR Test Bit and Reset - - - - - - - - X b h
Register/Memory, Immediate OF BA [mod 110 r/m]# 3 3
Register/Memory, Register OF B3 [mod reg r/m] 5/6 5/6
BTS Test Bit and Set - - - - - - - - X b h
Register/Memory OF BA [mod 101 r/m] 3 3
Register (short form) OF AB [mod reg r/m] 5/6 5/6
CALL Subroutine Call B b h,j,k,r
Direct Within Segment E8 +++ 1 1
Register/Memory Indirect Within Segment [FF [mod 010 r/m] 1/3 1/3
Direct I ntersegment 9A [unsigned full offset, 3 4
Call Gate to Same Privilege selector] 15
Call Gateto Different Privilege No 26
Parameters 35+2m
Call Gateto Different Privilege m Par’s 110
16-bit Task to 16-bit TSS 118
16-bit Task to 32-bit TSS 96
16-bit Task to V86 Task 112
32-bit Task to 16-hit TSS 120
32-bit Task to 32-bit TSS 98
32-bit Task to V86 Task FF [mod 011 r/m] 5 8
Indirect Intersegment 20
Call Gate to Same Privilege 31
Call Gate to Different Privilege No 40+2m
Parameters 114
Call Gate to Different Privilege Level m 122
Par’s 100
16-bit Task to 16-bit TSS 116
16-bit Task to 32-bit TSS 124
16-bit Task to V86 Task 102
32-bit Task to 16-bit TSS
32-bit Task to 32-bit TSS
32-hit Task to V86 Task
CBW Convert Byte to Word 98 R R 3 3
CDQ Convert Doubleword to Quadword 99 R T 2 2
CLC Clear Carry Flag F8 - - - - - - - -0 1 1
CLD Clear Direction Flag FC N 7 7
CLI Clear Interrupt Flag FA - -0 - - - - - - 7 7 m
=immediate 8-bit data + = 8-bit signed displacement
x = modified
=immediate 16-bit data +++ = full signed displacement (16, 32 bits)
- = unchanged
= full immediate 32-bit data (8, 16, 32 bits)
u = undefined

170 Cyrix 1

April 4, 2000 11:10 am

Instruction Set Tables 6

Table 6-21. Cyrix I11 CPU Instruction Set Clock Count Summary (Continued)

REAL PROTECTED
FLAGS MODE CLOCK | MODE CLOCK NOTES
INSTRUCTION OPCODE COUNT COUNT
Reg/ Reg/ Real Pre ed
OF DF IF TF SF ZF AF PF CF Cac:g Hit Cac::Hlt Mode A‘j\t;‘e

CLTS Clear Task Switched Flag OF 06 R R 10 10 c |
CM C Complement the Carry Flag F5 - - - - - - - - X 2 2
CM P Compare Integers X - - - X X X X X b h
Register to Register 3 [10dw] [11 reg r/m] 1 1
Register to Memory 3 [101w] [mod reg r/m] 1 1
Memory to Register 3 [100w] [mod reg r/m] 1 1
|mmediate to Register/Memory 8 [00sw] [mod 111 r/m)] ### 1 1
|mmediate to Accumul ator 3 [110w] ### 1 1
CMOVA/CMOVNBE Move if Above/ L r
Not Below or Equal
Register, Register/Memory OF 47 [mod reg r/m] 1 1
CMOVBE/CMOVNA Move if Below or L - T r
Equal/ Not Above
Register, Register/Memory OF 46 [mod reg r/m] 1 1
CMOVAE/CMOVNB/CMOVNC/ Move if L r
lJAbove or Equal/Not Below/Not Carry
Register, Register/Memory OF 43 [mod reg r/m] 1 1
CMOVB/CMOVC/CMOVNAE Move if L r
Below/ Carry/Not Above or Equal
Register, Register/Memory OF 42 [mod reg r/m] 1 1
CMOVE/CMOVZ Move if Equal/Zero S L r
Register, Register/Memory OF 44 [mod reg r/m] 1 1
CMOVNE/CMOVNZ Move if Not Equal/ L r
Not Zero
Register, Register/Memory OF 45 [mod reg r/m] 1 1
CMOVG/CMOVNLE Moveif Greater/ L T r
Not Less or Equal
Register, Register/Memory OF 4F [mod reg r/m] 1 1
CMOVLE/CMOVNG Move if Less or L T T r
Equal/
Not Greater OF 4E [mod reg r/m] 1 1
Register, Register/Memory
CMOVL/CMOVNGE Moveif Less/ L T r
Not Greater or Equal
Register, Register/Memory OF 4C [mod reg r/m] 1 1

=immediate 8-bit data + =8-bit signed displacement

x = modified

=immediate 16-bit data +++ = full signed displacement (16, 32 bits)

= = unchanged

#H = full immediate 32-bit data (8, 16, 32 hits)

u = undefined

Cyrix Il 171

Cyrix Processors

Instruction Set Tables

Table 6-21. Cyrix I11 CPU Instruction Set Clock Count Summary (Continued)

REAL PROTECTED

FLAGS MODE CLOCK | MODE CLOCK NOTES

INSTRUCTION OPCODE COUNT COUNT
OF DF IF TF SF ZF AF PF CF Cache i canerit | Made | Mods

CMOVGE/CMOVNL Moveif Greater or L r
Equal/ Not Less
Register, Register/Memory OF 4D [mod reg r/m] 1 1
CMOV O Move if Overflow L r
Register, Register/Memory OF 40 [mod reg r/m] 1 1
CMOVNO Moveif No Overflow L r
Register, Register/Memory OF 41 [mod reg r/m] 1 1
CMOVP/CMOV PE Moveif Parity/Parity L r
Even OF 4A [mod reg r/m] 1 1
Register, Register/Memory
CMONP/CMOV PO Move if Not Parity/ L L r
Parity Odd
Register, Register/Memory OF 4B [mod reg r/m] 1 1
CMOVS Move if Sign - - .- - r
Register, Register/Memory OF 48 [mod reg r/m] 1 1
CMOVNS Moveif Not Sign S r
Register, Register/Memory OF 49 [mod reg r/m] 1 1
CMPS Compare String JA [011w] X - - - X X X X 5 5 b h
CMPXCHG Compare and Exchange X - - - X X X X
Registerl, Register2 OF B [000w] [11 reg2 regl] 11 11
Memory, Register OF B [000w] [mod reg r/m] 11 11
CMPXCHG8B Compare and Exchange 8 Bytes|OF C7 [mod 001 r/m] R T
CPUID CPU ldentification OF A2 L L 12 12
CWD Convert Word to Doubleword 99 S R I 2 2
CWDE Convert Word to Doubleword 98 S R I 2 2
Extended
DAA Decimal Adjust AL after Add 27 - - - X X X X 9 9
DAS Decimal Adjust AL after Subtract 2F - - - X X X X 9 9
DEC Decrement by 1 X - - - X X X X b h
Register/Memory F [111w] [mod 001 r/m] 1 1
Register (short form) 4 [1 reg] 1 1

=immediate 8-bit data
x = modified

=immediate 16-bit data
- = unchanged

= full immediate 32-bit data (8, 16, 32 bits)

u = undefined

172

+ = 8-bit signed displacement

+++ = full signed displacement (16, 32 bits)

Cyrix I

April 4, 2000 11:10 am

Instruction Set Tables 6

Table 6-21. Cyrix I11 CPU Instruction Set Clock Count Summary (Continued)

REAL PROTECTED
FLAGS MODE CLOCK | MODE CLOCK NOTES
INSTRUCTION OPCODE COUNT COUNT
Reg/ Reg/ Real Pr ed
OF DF IF TF SF ZF AF PF CF Cac:g Hit Cacheengt Mode V\jtzl(e
DIV Unsigned Divide F [011w] [mod 110 r/m] - - - - X X U u b,e eh
JAccumulator by Register/Memory
Divisor: Byte 13-17 13-17
Word 13-25 13-25
Doubleword 13-41 13-41
ENTER Enter New Stack Frame C8 ##,# R T R b h
Level =0 10 10
Level = 1 13 13
Level (L)>1 10+L*3 10+L*3
HLT Halt Fa e e e e 5 5 I
IDIV Integer (Signed) Divide - - - - X X uwu b,e eh
lJAccumulator by Register/Memory F [011w] [mod 111 r/m]
Divisor: Byte 16-20 16-20
Word 16-28 16-28
Doubleword 17-45 17-45
IMUL Integer (Signed) Multiply X - - - X X u u b h
JAccumulator by Register/Memory F [011w] [mod 101 r/m]
Multiplier: Byte 4 4
Word 4 4
Doubleword 10 10
Register with Register/Memory OF AF [mod reg r/m]
Multiplier: Word 4 4
Doubleword 10 10
Register/Memory with Immediate to Register2
Multiplier: Word 6 [10s1] [mod reg r/m] # 5 5
Doubleword 11 11
IN Input from 1/O Port L L m
Fixed Port E [010w] [#] 14 14/28
ariable Port E [110w] 14 14/28
INC Increment by 1 X - - - X X X X b h
Register/Memory F [111w] [mod 000 r/m] 1 1
Register (short form) 4 [0 reg] 1 1
INS Input String from 1/0 Port 6 [110w] R R 14 14/28 b h,m
=immediate 8-bit data + = 8-bit signed displacement
x = modified
=immediate 16-bit data +++ = full signed displacement (16, 32 bits)
- = unchanged
= full immediate 32-bit data (8, 16, 32 bits)
u = undefined
Cyrix Il 173

Cyrix Processors

Instruction Set Tables

Table 6-21. Cyrix I11 CPU Instruction Set Clock Count Summary (Continued)

Full Displacement

REAL PROTECTED
FLAGS MODE CLOCK | MODE CLOCK NOTES
INSTRUCTION OPCODE COUNT COUNT
OF DF IF TF SF ZF AF PF CF Cache i canerit | Made | Mods
INT Software Interrupt - - x 0 - - - - b,e a.j,k,r
INT i CD # 9
Protected Mode:
Interrupt or Trap to Same Privilege 21
Interrupt or Trap to Different Privilege 32
16-bit Task to 16-bit TSS by Task Gate 114
16-bit Task to 32-bit TSS by Task Gate 122
16-bit Task to V86 by Task Gate 100
16-bit Task to 16-bit TSS by Task Gate 116
32-bit Task to 32-bit TSS by Task Gate 124
32-bit Task to V86 by Task Gate 102
86 to 16-bit TSS by Task Gate 124
86 to 32-bit TSS by Task Gate 102
86 to Privilege 0 by Trap Gate/Int Gate 46
INT 3 CC INT INT
INTO CE
If OF==0 6 6
If OF==1 (INT 4) 15+INT
INVD Invalidate Cache OF 08 L - T 12 12 t t
INVLPG Invalidate TLB Entry OF 01 [mod 111 r/m] L 13 13
IRET Interrupt Return CF X X X X X X X a,h,j.k,r
Real Mode 7
Protected Mode:
Within Task to Same Privilege 10
Within Task to Different Privilege 26
16-bit Task to 16-bit Task 117
16-bit Task to 32-bit TSS 125
16-bit Task to V86 Task 103
32-bit Task to 16-bit TSS 119
[32-bit Task to 32-bit TSS 127
32-bit Task to V86 Task 105
JB/INAE/JC Jump on Below/Not Above or R r
Equal/
Carry 72 + 1 1
8-bit Displacement OF 82 +++ 1 1
Full Displacement
JBE/INA Jump on Below or Equal/Not L L r
JAbove 76 + 1 1
8-bit Displacement OF 86 +++ 1 1

=immediate 8-bit data
x = modified

=immediate 16-bit data
- = unchanged

= full immediate 32-bit data (8, 16, 32 bits)

u = undefined

174

+ = 8-bit signed displacement

+++ = full signed displacement (16, 32 bits)

Cyrix I

April 4, 2000 11:10 am

Instruction Set Tables 6

Table 6-21. Cyrix I11 CPU Instruction Set Clock Count Summary (Continued)

REAL PROTECTED
FLAGS MODE CLOCK | MODE CLOCK NOTES
INSTRUCTION OPCODE COUNT COUNT
OF DF IF TF SF ZF AF PF CF o it e | Tropecied
[JCXZ/JECXZ Jump on CX/ECX Zero E3 + E 1 1 r
JE/JZ Jump on Equal/Zero E r
8-bit Displacement 74 + 1 1
Full Displacement OF 84 +++ 1 1
JL/INGE Jump on Less/Not Greater or S r
Equal 7C + 1 1
8-bit Displacement OF 8C +++ 1 1
Full Displacement
L E/ING Jump on Less or Equal/Not S r
Greater 7E + 1 1
8-bit Displacement OF 8E +++ 1 1
Full Displacement
JJM P Unconditional Jump R b h,j,k,r
8-bit Displacement EB + 1 1
Full Displacement E9 +++ 1 1
Register/Memory Indirect Within Segment [FF [mod 100 r/m] 1/3 1/3
Direct | ntersegment EA [unsigned full offset, 1 4
selector]
Call Gate Same Privilege Level 14
16-bit Task to 16-bit TSS 110
16-bit Task to 32-bit TSS 118
16-bit Task to V86 Task 96
32-bit Task to 16-bit TSS 112
32-bit Task to 32-bit TSS 120
32-bit Task to V86 Task 98
Indirect Intersegment FF [mod 101 r/m] 5 7
Call Gate Same Privilege Level 17
16-bit Task to 16-bit TSS 113
16-bit Task to 32-bit TSS 121
16-bit Task to V86 Task 99
32-bit Task to 16-bit TSS 115
32-bit Task to 32-bit TSS 123
32-bit Task to V86 Task 101
[INB/JAE/INC Jump on Not Below/Above or E r
Equal/Not Carry
8-bit Displacement 73 + 1 1
Full Displacement OF 83 +++ 1 1
UNBE/JA Jump on Not Below or ST T S T r
Equal/Above 77 + 1 1
8-bit Displacement OF 87 +++ 1 1
Full Displacement
=immediate 8-bit data + = 8-bit signed displacement
x = modified
=immediate 16-bit data +++ = full signed displacement (16, 32 bits)
- = unchanged
= full immediate 32-bit data (8, 16, 32 bits)
u = undefined
Cyrix Il 175

Cyrix Processors

Instruction Set Tables

Table 6-21. Cyrix I11 CPU Instruction Set Clock Count Summary (Continued)

REAL PROTECTED
FLAGS MODE CLOCK | MODE CLOCK NOTES
INSTRUCTION OPCODE COUNT COUNT
Reg/ Reg/ Real Pre ed
OF DF IF TF SF ZF AF PF CF Cac:g Hit CaCheEngt Mode V\jt:;(e

[INE/INZ Jump on Not Equal/Not Zero L L r
8-bit Displacement 75 + 1 1
Full Displacement OF 85 +++ 1 1
INL/JGE Jump on Not Less/Greater or S r
Equal 7D + 1 1
8-bit Displacement OF 8D +++ 1 1
Full Displacement
JINLE/JG Jump on Not Less or L T S r
Equal/Greater 7F + 1 1
8-bit Displacement OF 8F +++ 1 1
Full Displacement
IINO Jump on Not Overflow L T S r
8-bit Displacement 71 + 1 1
Full Displacement OF 81 +++ 1 1
IINP/JPO Jump on Not Parity/Parity Odd L T S r
8-bit Displacement 7B + 1 1
Full Displacement OF 8B +++ 1 1
NS Jump on Not Sign S r
8-bit Displacement 79 + 1 1
Full Displacement OF 89 +++ 1 1
JO Jump on Overflow L T S r
8-bit Displacement 70 + 1 1
Full Displacement OF 80 +++ 1 1
JP/JPE Jump on Parity/Parity Even L T S r
8-bit Displacement 7A + 1 1
Full Displacement OF 8A +++ 1 1
JS Jump on Sign - - - oo r
8-bit Displacement 78 + 1 1
Full Displacement OF 88 +++ 1 1
LAHF Load AH with Flags OF L 2 2
LAR Load Access Rights - - - - - X - - a | ghjp
From Register/Memory OF 02 [mod reg r/m] 8
LDS Load Pointer to DS C5 [mod reg r/m] L L 2 4 b h,i,j

=immediate 8-bit data
x = modified

=immediate 16-bit data
- = unchanged

= full immediate 32-bit data (8, 16, 32 bits)

u = undefined

176

+ = 8-bit signed displacement

+++ = full signed displacement (16, 32 bits)

Cyrix I

April 4, 2000 11:10 am

Instruction Set Tables 6

Table 6-21. Cyrix I11 CPU Instruction Set Clock Count Summary (Continued)

REAL PROTECTED
FLAGS MODE CLOCK | MODE CLOCK NOTES
INSTRUCTION OPCODE COUNT COUNT
OF DF IF TF SF ZF AF PF CF Cache i canerit | Made | Mods
LEA Load Effective Address 8D [mod reg r/m] L T
No Index Register 1 1
IWith Index Register 1 1
L EAVE Leave Current Stack Frame C9 L - T 4 4 b h
LES Load Pointer to ES C4 [mod reg r/m] L T 2 4 b h,i,j
L FS Load Pointer to FS OF B4 [mod reg r/m] L T T 2 4 b h,i,j
LGDT Load GDT Register OF 01 [mod 010 r/m] L T 8 8 b,c h,l
LGS Load Pointer to GS OF B5 [mod reg r/m] L T T 2 4 b h,i,j
LIDT Load IDT Register OF 01 [mod 011 r/m] L T 8 8 b,c h,l
LLDT Load LDT Register S a gh,jl
From Register/Memory OF 00 [mod 010 r/m] 5 5
LMSW Load Machine Status Word S L b,c h,l
From Register/Memory OF 01 [mod 110 r/m] 13 13
LODS Load String A [110 w] S L 3 3 b h
L OOP Offset Loop/No Loop E2 + L T 1 1 r
L OOPNZ/LOOPNE Offset EO0 + C 1 1 r
L OOPZ/L OOPE Offset E1l + - - - - - - e - 1 1 r
L SL Load Segment Limit - - - - - X - - - a |[ghjp
From Register/Memory OF 03 [mod reg r/m] 8
L SS Load Pointer to SS OF B2 [mod reg r/m] L T T 2 4 a h,i,j
L TR Load Task Register S T a g,h,jl
From Register/Memory OF 00 [mod 011 r/m] 7
MOV Move Data S T b h,i,j
Register to Register 8 [10dw] [11 reg r/m] 1 1
Register to Memory 8 [100w] [mod reg r/m] 1 1
Register/Memory to Register 8 [101w] [mod reg r/m] 1 1
|mmediate to Register/Memory C [011w] [mod 000 r/m)] ### 1 1
Immediate to Register (short form) B [w reg] ### 1 1
Memory to Accumulator (short form) IA [000W] +++ 1 1
JAccumulator to Memory (short form) IA [001w] +++ 1 1
Register/Memory to Segment Register 8E [mod sreg3 r/m] 1 1/3
Segment Register to Register/Memory 8C [mod sreg3 r/m] 1 1
=immediate 8-bit data + = 8-bit signed displacement
x = modified
=immediate 16-bit data +++ = full signed displacement (16, 32 bits)
- = unchanged
= full immediate 32-bit data (8, 16, 32 bits)
u = undefined
Cyrix Il 177

Cyrix Processors

Instruction Set Tables

Table 6-21. Cyrix I11 CPU Instruction Set Clock Count Summary (Continued)

REAL PROTECTED
FLAGS MODE CLOCK | MODE CLOCK NOTES
INSTRUCTION OPCODE COUNT COUNT
OF DF IF TF SF ZF AF PF CF o it Prorecied
MOV Move to/from Control/Debug/Test L T |
Regs OF 22 [11 eee reg] 20/5/5 20/5/5
Register to CRO/CR2/CR3/CR4 OF 20 [11 eee reg] 6 6
CRO/CR2/CR3/CR4 to Register OF 23 [11 eeereg] 16 16
Register to DRO-DR3 OF 21 [11 eeereg] 14 14
DRO-DR3 to Register OF 23 [11 eeereg] 16 16
Register to DR6-DR7 OF 21 [11 eeereg] 14 14
DR6-DR7 to Register OF 26 [11 eee reg] 10 10
Register to TR3-5 OF 24 [11 eeereg] 5 5
TR3-5 to Register OF 26 [11 eee reg] 10 10
Register to TR6-TR7 OF 24 [11 eeereg] 6 6
TR6-TR7 to Register
MOV'S Move String JA [010w] L 4 4 h
MOV SX Move with Sign Extension L T h
Register from Register/Memory OF B[111w] [mod reg r/m] 1 1
MOVZX Move with Zero Extension L T h
Register from Register/Memory OF B[011w] [mod reg r/m] 1 1
MUL Unsigned Multiply F [011w] [mod 100 r/m] X - - - X X U u X h
JAccumulator with Register/Memory
Multiplier: Byte 4 4
Word 4 4
Doubleword 10 10
NEG Negate Integer F [011w] [mod 011 r/m] X - - - X X X X X 1 1 h
NOP No Operation 90 L T 1 1
NOT Boolean Complement F [011w] [mod 010 r/m] S L 1 1 h
OIO Official Invalid OpCode OF FF - - x 0 - - - - - 1 8-125
OR Boolean OR 0O - - - x x u x 0 h
Register to Register 0 [10dw] [11 reg r/m] 1 1
Register to Memory 0 [100w] [mod reg r/m] 1 1
Memory to Register 0 [101w] [mod reg r/m] 1 1
|mmediate to Register/Memory 8 [00sw] [mod 001 r/m] ### 1 1
Immediate to Accumulator 0 [110w] ### 1 1
OUT Output to Port L T T m
Fixed Port E [011w] # 14 14/28
ariable Port E [111w] 14 14/28
OUTS Output String 6 [111w] L T 14 14/28 h,m
POP Pop Value off Stack S L hij
Register/Memory 8F [mod 000 r/m] 1 1
Register (short form) 5 [1 reg] 1 1
Segment Register (ES, SS, DS) [000 sreg2 111] 1 3
Segment Register (FS, GS) OF [10 sreg3 001] 1 3

=immediate 8-bit data
x = modified

=immediate 16-bit data
= = unchanged

#H = full immediate 32-bit data (8, 16, 32 hits)

u = undefined

178

+ =8-bit signed displacement

+++ = full signed displacement (16, 32 bits)

Cyrix I

April 4, 2000 11:10 am

Instruction Set Tables 6

Table 6-21. Cyrix I11 CPU Instruction Set Clock Count Summary (Continued)

REAL PROTECTED
FLAGS MODE CLOCK | MODE CLOCK NOTES
INSTRUCTION OPCODE COUNT COUNT
OF DF IF TF SF ZF AF PF CF Cache i canerit | Made | Mods
POPA Pop All General Registers 61 L L 6 6 b h
POPF Pop Stack into FLAGS 9D X X X X X 9 9 b h,n
PREFIX BYTES L m
|Assert Hardware LOCK Prefix FO
JAddress Size Prefix 67
Operand Size Prefix 66
Segment Override Prefix
CSs 2E
DS 3E
ES 26
FS 64
GS 65
SS 36
PUSH Push Value onto Stack S b h
Register/Memory FF [mod 110 r/m] 1 1
Register (short form) 5 [Oreg] 1 1
Segment Register (ES, CS, SS, DS) [000 sreg2 110] 1 1
Segment Register (FS, GS) OF [10 sreg3 000] 1 1
Immediate 6 [10s0] ### 1 1
PUSHA Push All General Registers 60 S 6 6 b h
PUSHF Push FLAGS Register 9C L 2 2 b h
RCL Rotate Through Carry Left b h
Register/Memory by 1 D [000w] [mod 010 r/m] X - - - - - - - 3 3
Register/Memory by CL D [001w] [mod 010 r/m] u - - - - - - - 8 8
Register/Memory by Immediate C [000w] [mod 010 r/m] # u - - - - - - - 8 8
RCR Rotate Through Carry Right b h
Register/Memory by 1 D [000w] [mod 011 r/m] X - - - - - - - 4 4
Register/Memory by CL D [001w] [mod 011 r/m] u - - - - - - - 9 9
Register/Memory by Immediate C [000w] [mod 011 r/m] # u - - - - - - - 9 9
RDM SR Read Model Specific Register OF 32 S
RDPM C Read Performance-Monitoring OF 33 L T
Counters
RDSHR Read SMM Header Pointer Regis- [OF 36 L L
ter
RDTSC Read Time Stamp Counter OF 31 L L
REP INS Input String F3 6[110w] S 12+5n 12+5n\ b h,m
28+5n
REPLODS Load String F3 A[110w] L 10+n 10+n b h
REP MOV S Move String F3 A[010w] L L 9+n 9+n b h
=immediate 8-bit data + = 8-bit signed displacement
x = modified
=immediate 16-bit data +++ = full signed displacement (16, 32 bits)
- = unchanged
= full immediate 32-bit data (8, 16, 32 bits)
u = undefined
Cyrix Il 179

Cyrix Processors

Instruction Set Tables

Table 6-21. Cyrix I11 CPU Instruction Set Clock Count Summary (Continued)

REAL PROTECTED
FLAGS MODE CLOCK | MODE CLOCK NOTES
INSTRUCTION OPCODE COUNT COUNT
OF DF IF TF SF ZF AF PF CF Cache i canerit | Made | Mods
REP OUTS Output String F3 6[111w] L T 12+5n 12+5n\ b h,m
28+5n
REP STOS Store String F3 A[101w] L T 10+n 10+n b h
REPE CMPS Compare String F3 A[011w] - - - X X X X X b h
(Find non-match) 10+2n 10+2n
REPE SCAS Scan String F3 A[111lw] - - - X X X X X 10+2n 10+2n b h
(Find non-AL/AX/EAX)
REPNE CMPS Compare String F2 A[011w] - - - X X X X X 10+2n 10+2n b h
(Find match)
REPNE SCAS Scan String F2 A[111lw] - - - X X X X X 10+2n 10+2n b h
(Find AL/AX/EAX)
RET Return from Subroutine S R T b [g,hjkr
ithin Segment C3 3 3
ithin Segment Adding Immediate to SP 4 4
Intersegment C2 ## 4 7
I ntersegment Adding Immediate to SP CB 4 7
Protected Mode: Different Privilege Level CA ##
Intersegment 23
Intersegment Adding Immediate to SP 23
ROL Rotate Left b h
Register/Memory by 1 D[000w] [mod 000 r/m] X - - - - - - -X 1 1
Register/Memory by CL D[001w] [mod 000 r/m] u - - - - - - - X 2 2
Register/Memory by Immediate C[000w] [mod 000 r/m] # u - - - - - - - X 1 1
ROR Rotate Right b h
Register/Memory by 1 D[000w] [mod 001 r/m] X - - - - - - - X 1 1
Register/Memory by CL D[001w] [mod 001 r/m] u - - - - - - - X 2 2
Register/Memory by Immediate C[000w] [mod 001 r/m] # u - - - - - - - X 1 1
RSDC Restore Segment Register and Descrip- [OF 79 [mod sreg3 r/m] S 6 6 s s
[tor
RSLDT Restore LDTR and Descriptor OF 7B [mod 000 r/m] R T 6 6 s s
RSM Resume from SMM Mode OF AA X X X X X X X X 40 40 S S
RSTS Restore TSR and Descriptor OF 7D [mod 000 r/m] R T 6 6 s s
SAHF Store AH in FLAGS 9E - - - X X X X X 1 1
SAL Shift Left Arithmetic b h
Register/Memory by 1 D[000w] [mod 100 r/m] - - - X X U X X 1 1
Register/Memory by CL D[001w] [mod 100 r/m] - - - X X U X X 2 2
Register/Memory by Immediate C[000w] [mod 100 r/m] # - - - X X U X X 1 1

=immediate 8-bit data
X = modified

=immediate 16-bit data
- = unchanged

= full immediate 32-bit data (8, 16, 32 hits)

u = undefined

180

+ =8-bit signed displacement

+++ = full signed displacement (16, 32 bits)

Cyrix I

April 4, 2000 11:10 am

Instruction Set Tables 6

Table 6-21. Cyrix I11 CPU Instruction Set Clock Count Summary (Continued)

INSTRUCTION

OPCODE

FLAGS

REAL
MODE CLOCK
COUNT

PROTECTED
MODE CLOCK
COUNT

NOTES

OF DF IF TF SF ZF AF PF CF

Reg/
Cache Hit

Reg/
Cache Hit

Protected
Mode

SAR Shift Right Arithmetic
Register/Memory by 1
Register/Memory by CL
Register/Memory by Immediate

D[000w] [mod 111 r/m]
D[001w] [mod 111 r/m]
C[000w] [mod 111 r/m] #

'
x
x

=N

=

h

SBB Integer Subtract with Borrow
Register to Register

Register to Memory

Memory to Register

|mmediate to Register/Memory
Immediate to Accumulator (short form)

1{10dw] [
1[100w] |
1[101w] |

11 reg r/m]
mod reg r/m]
mod reg r/m]

8[00sw] [mod 011 r/m] ###
1[110w] ###

SCAS Scan String

A [111w]

N|RPRRRER

N|[FRPrRrRRER

SETB/SETNAE/SETC Set Byte on
Bel ow/Not

Above or Equal/Carry
To Register/Memory

OF

92 [mod 000 r/m]

SETBE/SETNA Set Byte on Below or
Equal/Not Above
To Register/Memory

OF

96 [mod 000 r/m]

SETE/SETZ Set Byte on Equal/Zero
To Register/Memory

OF

94 [mod 000 r/m]

SETL/SETNGE Set Byte on Less/Not
Greater

or Equal
To Register/Memory

OF

9C [mod 000 r/m]

SETLE/SETNG Set Byte on Less or
Equal/Not

Greater
To Register/Memory

OF

9E [mod 000 r/m]

SETNB/SETAE/SETNC Set Byte on Not
Bel ow/

Above or Equal/Not Carry
To Register/Memory

OF

93 [mod 000 r/m]

SETNBE/SETA Set Byte on Not Below or
Equal/Above
To Register/Memory

OF

97 [mod 000 r/m]

SETNE/SETNZ Set Byte on Not Equal/Not
Zero
To Register/Memory

OF

95 [mod 000 r/m]

SETNL/SETGE Set Byte on Not
Less/Greater

or Equal
To Register/Memory

OF

9D [mod 000 r/m]

=immediate 8-bit data
x = modified

=immediate 16-bit data
= = unchanged

#H = full immediate 32-bit data (8, 16, 32 hits)

u = undefined

Cyrix Il

= 8-bit signed displacement

+++ = full signed displacement (16, 32 bits)

181

Cyrix Processors

Instruction Set Tables

Table 6-21. Cyrix I11 CPU Instruction Set Clock Count Summary (Continued)

REAL PROTECTED
FLAGS MODE CLOCK | MODE CLOCK NOTES
INSTRUCTION OPCODE COUNT COUNT
OFOFIFTFSFZEAFPFCE | cIw, | ol | | "
SETNLE/SETG Set Byte on Not Less or L T h
Equal/Greater
To Register/Memory OF 9F [mod 000 r/m] 1 1
SETNO Set Byte on Not Overflow L T T h
To Register/Memory OF 91 [mod 000 r/m] 1 1
SETNP/SETPO Set Byte on Not L - T h
Parity/Parity Odd
To Register/Memory OF 9B [mod 000 r/m] 1 1
SETNS Set Byte on Not Sign L T h
To Register/Memory OF 99 [mod 000 r/m] 1 1
SETO Set Byte on Overflow L T h
To Register/Memory OF 90 [mod 000 r/m] 1 1
SETP/SETPE Set Byte on Parity/Parity L T h
Even OF 9A [mod 000 r/m] 1 1
To Register/Memory
SETS Set Byte on Sign L T T h
To Register/Memory OF 98 [mod 000 r/m] 1 1
SGDT Store GDT Register L - T 4 4 b,c h
To Register/Memory OF 01 [mod 000 r/m]
SHL Shift Left Logical b h
Register/Memory by 1 D [000w] [mod 100 r/m] X - - - X X U X X 1 1
Register/Memory by CL D [001w] [mod 100 r/m] u - - - X X U X X 2 2
Register/Memory by Immediate C [000w] [mod 100 r/m] # u - - - X X U X X 1 1
SHLD Shift Left Double - - - X X u x X b h
Register/Memory by Immediate OF A4 [mod reg r/m] # 4 4
Register/Memory by CL OF A5 [mod reg r/m] 5 5
SHR Shift Right Logical b h
Register/Memory by 1 D [000w] [mod 101 r/m] X - - - X X U X X 1 1
Register/Memory by CL D [001w] [mod 101 r/m] u - - - X X U X X 2 2
Register/Memory by Immediate C [000w] [mod 101 r/m] # u - - - X X U X X 1 1
SHRD Shift Right Double - - - X X U X X b h
Register/Memory by Immediate OF AC [mod reg r/m] # 4 4
Register/Memory by CL OF AD [mod reg r/m] 5 5
SIDT Store IDT Register - - - - - - .o b,c h
To Register/Memory OF 01 [mod 001 r/m] 4 4
SLDT Store LDT Register L a h
To Register/Memory OF 00 [mod 000 r/m] 1
SMINT Software SMM Entry OF 38 S L 55 55 s 5

=immediate 8-bit data
x = modified

=immediate 16-bit data
= = unchanged

#H = full immediate 32-bit data (8, 16, 32 hits)

u = undefined

182

+ =8-bit signed displacement

+++ = full signed displacement (16, 32 bits)

Cyrix I

April 4, 2000 11:10 am

Instruction Set Tables 6

Table 6-21. Cyrix I11 CPU Instruction Set Clock Count Summary (Continued)
REAL PROTECTED
FLAGS MODE CLOCK | MODE CLOCK NOTES
INSTRUCTION OPCODE COUNT COUNT
OF DF IF TF SF ZF AF PF CF Cache i canerit | Made | Mods

SMSW Store Machine Status Word OF 01 [mod 100 r/m] L L 6 6 b,c h
STC Set Carry Flag F9 L R S 1 1
STD Set Direction Flag FD -1 - - - - - - 7 7
ST| Set Interrupt Flag FB - -1 - - - - - 7 7 m
STOS Store String A [101w] L L 2 2 b h
STR Store Task Register L T S a h
To Register/Memory OF 00 [mod 001 r/m] 4
SUB Integer Subtract - - - X X X X b h
Register to Register 2 [10dw] [11 reg r/m] 1 1
Register to Memory 2 [100w] [mod reg r/m] 1 1
Memory to Register 2 [101w] [mod reg r/m] 1 1
|mmediate to Register/Memory 8 [00sw] [mod 101 r/m] ### 1 1
Immediate to Accumulator (short form) 2 [110w] ### 1 1
SVDC Save Segment Register and Descrip- [OF 78 [mod sreg3 r/m] L T S 12 12 s S
ltor
SVLDT Save LDTR and Descriptor OF 7A [mod 000 r/m] L 12 12 S S
SVTS Save TSR and Descriptor OF 7C [mod 000 r/m] L L 14 14 s S
TEST Test Bits 0O - - - X X u X b h
Register/Memory and Register 8 [010w] [mod reg r/m] 1 1
Immediate Data and Register/Memory F [011w] [mod 000 r/m)] ### 1 1
Immediate Data and Accumulator IA [100w] ### 1 1

=immediate 8-bit data + = 8-bit signed displacement

x = modified

=immediate 16-bit data +++ = full signed displacement (16, 32 bits)

- = unchanged

= full immediate 32-bit data (8, 16, 32 bits)

u = undefined
Cyrix Il 183

Cyrix Processors

Instruction Set Tables

Table 6-21. Cyrix I11 CPU Instruction Set Clock Count Summary (Continued)

REAL PROTECTED
FLAGS MODE CLOCK | MODE CLOCK NOTES
INSTRUCTION OPCODE COUNT COUNT
OFOFIFTFSFZEAFPFCE | cIw, | ol | | "
ERR Verify Read Access - - - - - X - - - a g,hj.p
To Register/Memory OF 00 [mod 100 r/m] 7
ERW Verify Write Access - - - - - X - - - a | ghjp
To Register/Memory OF 00 [mod 101 r/m] 7
IWAIT Wait Until FPU Not Busy 9B L T 5 5
IWBINVD Write-Back and Invalidate CachelOF 09 S L 15 15 t t
IWRM SR Write to Model Specific Register [OF 30 L T
WRSHR Write SMM Header Pointer Regis- [OF 37 S L
ter
XADD Exchange and Add - - - X X X X
Registerl, Register2 OF C[000w] [11 reg2 regl] 2 2
Memory, Register OF C[000w] [mod reg r/m] 2 2
X CHG Exchange S T b,f f,h
Register/Memory with Register 8[011w] [mod reg r/m] 2 2
Register with Accumulator 9[0 reg] 2 2
XLAT Translate Byte D7 L 4 4 h
X OR Boolean Exclusive OR - - - X X U X b h
Register to Register 3 [00dw] [11 reg r/m] 1 1
Register to Memory 3 [000w] [mod reg r/m] 1 1
Memory to Register 3 [001w] [mod reg r/m] 1 1
|mmediate to Register/Memory 8 [00sw] [mod 110 r/m] ### 1 1
Immediate to Accumulator (short form) 3 [010w] ### 1 1

=immediate 8-bit data

x = modified

=immediate 16-bit data

= = unchanged

#H = full immediate 32-bit data (8, 16, 32 hits)
u = undefined

184

+ =8-bit signed displacement

+++ = full signed displacement (16, 32 bits)

Cyrix I

April 4, 2000 11:10 am

Instruction Set Tables 6

Instruction Notes for Instruction Set Summary

Notes athrough c apply to Real Address Mode only:

a ThisisaProtected Mode instruction. Attempted execution in Real Mode will result in exception 6 (invalid op-code).

b. Exception 13 fault (general protection) will occur in Real Mode if an operand reference is made that partially or fully extendsbeyond the max-
imum CS, DS, ES, FS, or GS segment limit (FFFFH). Exception 12 fault (stack segment limit violation or not present) will occur in Real Mode if
an operand reference is made that partially or fully extends beyond the maximum SS limit.

c. Thisinstruction may be executed in Real Mode. In Real Mode, its purpose is primarily to initialize the CPU for Protected Mode.

d -

Notes e through g apply to Real Address Mode and Protected Virtual Address Mode:

e An exception may occur, depending on the value of the operand.

f. LOCK# isautomatically asserted, regardless of the presence or absence of the LOCK prefix.
g. LOCK# isasserted during descriptor table accesses.

Notes h through r apply to Protected Virtual Address Mode only:

h. Exception 13 fault will occur if the memory operand in CS, DS, ES, FS, or GS cannot be used due to either a segment limit violation or an
access rights violation. If a stack limit is violated, an exception 12 occurs.

i. For segment load operations, the CPL, RPL, and DPL must agree with the privilege rules to avoid an exception 13 fault. The segment’s
descriptor must indicate “present” or exception
11 (CS, DS, ES, FS, GS not present). If the SS register is loaded and a stack segment not present is detected, an exception 12 occurs.

j. All segment descriptor accesses in the GDT or LDT made by this instruction will automatically assert LOCK# to maintain descriptor integrity
in multiprocessor systems.

k. JMP, CALL, INT, RET, and IRET instructions referring to another code segment will cause an exception 13, if an applicable privilegeruleis
violated.

. An exception 13 fault occurs if CPL is greater than O (0 is the most privileged level).

m. An exception 13 fault occurs if CPL is greater than |OPL.

n. TheIF bit of the flag register is not updated if CPL is greater than IOPL. The IOPL and VM fields of the flag register are updated only if CPL
=0.

0. The PE bit of the MSW (CRO) cannot be reset by this instruction. Use MOV into CRO if desiring to reset the PE bit.

p. Any violation of privilege rules as apply to the selector operand does not cause a Protection exception, rather, the zero flag is cleared.

g. If the coprocessor’s memory operand violates a segment limit or segment access rights, an exception 13 fault will occur before the ESC instruc-
tion is executed. An exception 12 fault will occur if the stack limit is violated by the operand’s starting address.

r. Thedestination of aJMP, CALL, INT, RET, or IRET must be in the defined limit of a code segment or an exception 13 fault will occur.

Note s applies to Cyrix specific SMM instructions:

s. All memory accesses to SMM space are non-cacheable. An invalid opcode exception 6 occurs unless SM1 is enabled and ARR3 size > 0, and
CPL =0 and [SMAC isset or if in an SMI
handler].

Note t applies to cache invalidation instructions with the cache operating in write-back mode:
t. Thetotal clock count isthe clock count shown plus the number of clocks required to write all “modified” cache lines to externd memory.

Cyrix Il 185

Cyrix Processors

FPU Instruction Clock Counts

6.5 FPU Instruction Clock Counts

The CPU isfunctionally divided into the FPU
unit, and the integer unit. The FPU has been
extended to processes MM X instructions as
well as floating point instructions in parallel
with the integer unit.

For example, when the integer unit detects a
floating point instruction the instruction passes
to the FPU for execution. The integer unit con-
tinues to execute instructions while the FPU
executes the floating point instruction.

If another FPU instruction is encountered, the

second FPU instruction is placed in the FPU
gueue. Up to four FPU instructions can be
gueued. Inthe event of an FPU exception,
while other FPU instructions are queued, the
state of the CPU is saved to ensure recovery.

6.5.1 FPU Clock Count Table

The clock counts for the FPU instructions are
listed in Table 6-23. (Page 6-187). The
abbreviations used in thistable are listed in
Table 6-22.

Table 6-22. FPU Clock Count Table Abbreviations

ABBREVIATION MEANING

n Stack register number

TOS Top of stack register pointed to by SSSin the status register.
ST(1) FPU register next to TOS

ST(n) A specific FPU register, relative to TOS

M.WiI 16-bit integer operand from memory

M.SI 32-hit integer operand from memory

M.LI 64-bit integer operand from memory

M.SR 32-hit real operand from memory

M.DR 64-bit real operand from memory

M.XR 80-hit real operand from memory

M.BCD 18-digit BCD integer operand from memory

CcC FPU condition code

Env Regs g)?t:ter ode Control and Tag Registers, Instruction Pointer and Operand

186

Cyrix I

April 4, 2000 11:10 am

Table 6-23. Cyrix 1l FPU Instruction Set Summary

FPU Instruction Clock Counts 6

FPU INSTRUCTION OP CODE OPERATION Eéﬁfﬁ NOTES
F2XM1 Function Evaluation 21 D9 FO TOS <— 27051 92-108 |See
FABS Floating Absolute Value D9 E1 TOS <— | TOS | 2 Note 2
FADD Floating Point Add
Top of Stack DC [11000 n] ST(n) <— ST(n) + TOS 4-7
80-bit Register D8 [11000 n] TOS <— TOS + ST(n) 4-7
64-bit Real DC [mod 000 r/m] TOS <— TOS+ M.DR 4-7
32-bit Real D8 [mod 000 r/m] TOS <— TOS + M.SR 4-7
FADDP Floating Point Add, Pop DE [11000 n] ST(n) <— ST(n) + TOS; then pop TOS 4-7
FIADD Floating Point Integer Add
32-bit integer DA [mod 000 r/m] TOS <— TOS + M.SI 8-12
16-bit integer DE [mod 000 r/m] TOS <— TOS + M.WI 8-12
FCHS Floating Change Sign D9 EO TOS <— -TOS
FCLEX Clear Exceptions (9B)DB E2 Wait then Clear Exceptions 5
FNCLEX Clear Exceptions DB E2 Clear Exceptions 3
FCOM Floating Point Compare
80-bit Register D8[11010 n] CC set by TOS - ST(n) 4
64-bit Real DC [mod 010 r/m] CCset by TOS- M.DR 4
32-bit Real D8 [mod 010 r/m] CC set by TOS - M.SR 4
FCOMP Floating Point Compare, Pop
80-bit Register D8[11011 n] CC set by TOS - ST(n); then pop TOS 4
64-bit Real DC [mod 011 r/m] CC set by TOS - M.DR; then pop TOS 4
32-bit Real D8 [mod 011 r/m] CC set by TOS - M.SR; then pop TOS 4
FCOMPP Floating Point Compare, Pop DE D9 CC set by TOS - ST(1); then pop TOS 4
Two Stack Elements and ST(1)
FICOM Floating Point Compare
32-bit integer DA [mod 010 r/m] 9-10
16-bit integer DE [mod 010 r/m] CC set by TOS - M.WI 9-10
FICOMP Floating Point Compare CC set by TOS- M.SI
32-bit integer DA [mod 011 r/m] 9-10
16-bit integer DE [mod 011 r/m] CC set by TOS - M.WI; then pop TOS 9-10
CC set by TOS - M.SlI; then pop TOS
FCOMI Floating Point Compare Real
and Set EFLAGS
80-bit Register DB [11110n] EFLAG set by TOS - ST(n) 4
FCOMIP Floating Point Compare Real
and Set EFLAGS, Pop
80-bit Register DF[11110n] EFLAG set by TOS - ST(n); then pop 4
FUCOMI Floating Point Unordered TOS
Compare Real and Set EFLAGS 9-10
80-bit integer DB [11101n]
FUCOMIP Floating Point Unordered EFLAG set by TOS - ST(n)
Compare Real and Set EFLAGS
80-hit integer DF[11101n] 9-10
EFLAG set by TOS - ST(n); then pop
TOS
FCMOVB Floating Point Conditional DA [1100 0 n] If (CF=1) ST(0) <—ST(n) 4
Move if Below
FCMOVE Floating Point Conditional DA [1100 1 n] If (ZF=1) ST(0) <—ST(n) 4
Move if Equal
187

Cyrix Il

Cyrix Processors

FPU Instruction Clock Counts

Table 6-23. Cyrix 111 FPU Instruction Set Summary (Continued)

FPU INSTRUCTION OP CODE OPERATION g;ﬁfﬁ NOTES
FCMOVBE Floating Point Conditional DA [1101 0 n] If (CF=1or ZF=1) ST(0) <—ST(n) 4
Move if Below or Equal
FCMOVU Floating Point Conditional Move |[DA [1101 1 n] If (PF=1) ST(0) <—ST(n) 4
if Unordered
FCMOV NB Floating Point Conditional DB [11000n] If (CF=0) ST(0) <—ST(n) 4
Move if Not Below
FCMOV NE Floating Point Conditional DB [11001n] If (ZF=0) ST(0) <—ST(n) 4
Move if Not Equal
FCMOVNBE Floating Point Conditional DB [11010n] If (CF=0and ZF=0) ST(0) <—ST(n) 4
Move if Not Below or Equal
FCMOVNU Floating Point Conditional DB [11011n] If (DF=0) ST(0)<—ST(n) 4
Move if Not Unordered
FCOS Function Evaluation: Cos(x) D9 FF TOS <— COS(TOS) 92 - 141 |See
Note 1
FDECSTP Decrement Stack Pointer D9 F6 Decrement top of stack pointer 4
FDIV Floating Point Divide
Top of Stack DC[11111 n] ST(n) <— ST(n)/ TOS 24 -34
80-bit Register D8 [11110 n] TOS <— TOS/ ST(n) 24 -34
64-bit Real DC [mod 110 r/m] TOS <— TOS/M.DR 24-34
32-bit Real D8 [mod 110 r/m] TOS <— TOS/ M.SR 24-34
FDIVP Floating Point Divide, Pop DE [11111 n] ST(n) <— ST(n)/ TOS; then pop TOS 24-34
FDIVR Floating Point Divide Reversed
Top of Stack DC [11110 n] TOS <— ST(n)/ TOS 24 -34
80-bit Register D8 [11111 n] ST(n) <— TOS/ ST(n) 24 -34
64-bit Real DC [mod 111 r/m] TOS <— M.DR/TOS 24-34
32-bit Real D8 [mod 111 r/m] TOS <— M.SR/TOS 24-34
FDIVRP Floating Point Divide Reversed,Pop [DE [1111 0 n] ST(n) <— TOS/ ST(n); then pop TOS 24-34
FIDIV Floating Point Integer Divide
32-bit Integer DA [mod 110 r/m] TOS <— TOS/ M.SI 34-38
16-bit Integer DE [mod 110 r/m] TOS <— TOS/ M.WI 33-38
FIDIVR Floating Point Integer Divide
Reversed
32-bit Integer DA [mod 111 r/m] TOS <— M.SI/TOS 34-38
16-bit Integer DE [mod 111 r/m] TOS <— M.WI/TOS 33-38
FFREE Free Floating Point Register DD [11000 n] TAG(<— Empty 3
n)
FINCSTP Increment Stack Pointer D9 F Increment top of stack pointer 2
FINIT Initialize FPU (9B)DB E3 Wait theninitialize 8
FNINIT Initialize FPU DB E3 Initialize 6
FLD Load Data to FPU Reg.
Top of Stack D9 [11000 n| Push ST(n) onto stack 2
64-bit Real DD [mod 000 r/m] Push M.DR onto stack 2
32-bit Real D9 [mod 000 r/m] Push M.SR onto stack 2
FBLD Load Packed BCD Datato FPU Reg. [DF [mod 100 r/m] Push M.BCD onto stack 41 - 45
FILD Load Integer Data to FPU Reg.
64-bit Integer DF [mod 101 r/m] Push M.LI onto stack 4-8
32-bit Integer DB [mod 000 r/m] Push M.SI onto stack 4-6
16-bit Integer DF [mod 000 r/m] Push M.WI onto stack 3-6
188 Cyrix 111

April 4, 2000 11:10 am

FPU Instruction Clock Counts 6

Table 6-23. Cyrix 111 FPU Instruction Set Summary (Continued)
FPU INSTRUCTION OP CODE OPERATION g;ﬁﬁﬁ NOTES
FLD1 Load Floating Const.= 1.0 D9 E8 Push 1.0 onto stack 4
FLDCW Load FPU Mode Control Register (D9 [mod 101 r/m] Ctl <— Memory 4
FLDENV Load FPU Environment D9 [mod 100 r/m] Word <— Memory 30
Env
Regs
FLDLZ2E Load Floating Const.= Log,(€) D9 EA Push Log,(€) onto stack 4
FLDL2T Load Floating Const.= Log,(10) D9 E9 Push Log,(10) onto stack 4
FLDLG2 Load Floating Const.= Log(2) D9 EC Push Log10(2) onto stack 4
FLDLN2 Load Floating Const.= Ln(2) D9 ED Push Logg(2) onto stack 4
FLDPI Load Floating Const.= p D9 EB Push p onto stack 4
FLDZ Load Floating Const.= 0.0 D9 EE Push 0.0 onto stack 4
FMUL Floating Point Multiply
Top of Stack DC[11001 n] ST(n) <— ST(n) "~ TOS 4-6
80-bit Register D8 [1100 1 n] TOS <— TOS ™ ST(n) 4-6
64-bit Real DC [mod 001 r/m] TOS <— TOS”™ M.DR 4-6
32-bit Real D8 [mod 001 r/m] TOS <— TOS™ M.SR 4-5
FMULP Floating Point Multiply & Pop DE [1100 1 n] ST(n) <— ST(n) " TOS; then pop TOS 4-6
FIMUL Floating Point Integer Multiply
32-bit Integer DA [mod 001 r/m] TOS <— TOS ™ M.SI 9-11
16-bit Integer DE [mod 001 r/m] TOS <— TOS™ M.WI 8-10
FNOP No Operation D9 DO No Operation 2
FPATAN Function Eval: Tan™ (y/x) D9 F3 ST(1) <— ATANI[ST(1)/ TOS]; then pop TOS 97 - 161 |See
FPREM Floating Point Remainder D9 B TOS <— Rem[TOS/ ST(1)] 82-91 |Note3
FPREM 1 Floating Point Remainder |EEE D9 BB TOS <— Rem[TOS/ ST(1)] 82-91
FPTAN Function Eval: Tan(x) D9 R2 TOS <— TAN(TOS); then push 1.0 onto stack |117 - 129
FRNDINT Round to Integer D9 FC TOS <— Round(TOS) 10-20 |See
Note 1
FRSTOR Load FPU Environment and Reg. (DD [mod 100 r/m] Restore state. 56 - 72
FSAVE Save FPU Environment and Reg (9B)DD[mod 110 Wait then save state. 57 - 67
FNSAVE Save FPU Environment and Reg [r/m] Save state. 55 - 65
DD [mod 110 r/m]
FSCALE Floating Multiply by 2" D9 FD TOS «— TOs” 25T 7-14
FSIN Function Evaluation: Sin(x) D9 FE TOS <— SIN(TOS) 76 - 140 |See
Note 1
FSINCOS Function Eval.: Sin(x)& Cos(x) D9 FB temp <— TOS; 145 - 161|See
TOS <— SIN(temp); then Note 1
push COS(temp) onto stack
FSQRT Floating Point Square Root D9 FA TOS <— Square Root of TOS 59 - 60
189

Cyrix Il

Cyrix Processors

FPU Instruction Clock Counts

Table 6-23. Cyrix 111 FPU Instruction Set Summary (Continued)

FPU INSTRUCTION OP CODE OPERATION i;ﬁfﬁ NOTES
FST Store FPU Register
Top of Stack DD [11010 n] ST(n) <— TOS 2
80-bit Real DB [mod 111 r/m] M.XR <— TOS 2
64-bit Real DD [mod 010 r/m] M.DR <— TOS 2
32-bit Real D9 [mod 010 r/m] M.SR <— TOS 2
FSTP Store FPU Register, Pop
Top of Stack DB [11011 n ST(n) <— TOS; then pop TOS 2
80-bit Real DB [mod 111 r/m] M.XR <— TOS; then pop TOS 2
64-bit Real DD [mod 011 r/m] M.DR <— TOS; then pop TOS 2
32-bit Real D9 [mod 011 r/m] M.SR <— TOS; then pop TOS 2
FBSTP Store BCD Data, Pop DF [mod 110 r/m] M.BC <— TOS; then pop TOS 57 - 63
FIST Store Integer FPU Register D
32-bit Integer DB [mod 010 r/m] <— TOS 8-13
16-bit Integer DF [mod 010 r/m] M.SI <— TOS 7-10
FISTP Store Integer FPU Register, Pop M.WI
64-bit Integer DF [mod 111 r/m] <— TOS; then pop TOS 10-13
32-bit Integer DB [mod 011 r/m] M.LI <— TOS; then pop TOS 8-13
16-bit Integer DF [mod 011 r/m] M.SI <— TOS; then pop TOS 7-10
M.WI
FSTCW Store FPU Mode Control Register |(9B)D9[mod 111 Wait <— Control Mode Register 5
FNSTCW Store FPU Mode Control Register |r/m] Mem- <— Control Mode Register 3
FSTENV Store FPU Environment D9 [mod 111 r/m] ory <— Env. Registers 14 - 24
FNSTENV Store FPU Environment (9B)D9[mod 110 Mem- <— Env. Registers 12-22
FSTSW Store FPU Status Register r/m] ory <— Status Register 6
FNSTSW Store FPU Status Register D9 [mod 110 r/m] Wait <— Status Register 4
FSTSW AX Store FPU Status Register to AX |(9B)DD[mod 111 Mem- <— Status Register 4
FNSTSW AX Store FPU Status Register to |r/m] ory <— Status Register 2
AX DD [mod 111 r/m] Mem-
(9B)DF EO ory
DF EO Wait
Mem-
ory
Mem-
ory
Wait
AX
AX
FSUB Floating Point Subtract
Top of Stack DC [11101 n] ST(n) <— ST(n) - TOS 4-7
80-bit Register D8 [11100 n] TOS <— TOS- ST(n) 4-7
64-bit Real DC [mod 100 r/m] TOS <— TOS- M.DR 4-7
32-bit Real D8 [mod 100 r/m] TOS <— TOS- M.SR 4-7
FSUBP Floating Point Subtract, Pop DE [11101 n] ST(n) <— ST(n) - TOS; then pop TOS 4-7

190

Cyrix I

April 4, 2000 11:10 am

FPU Instruction Clock Counts 6

Table 6-23. Cyrix 111 FPU Instruction Set Summary (Continued)

FPU INSTRUCTION OP CODE OPERATION Eéﬁfﬁ NOTES
FSUBR Floating Point Subtract Reverse
Top of Stack DC [11100 n] TOS <— ST(n) - TOS 4-7
80-hit Register D8 [11101 n] ST(n) <— TOS - ST(n) 4-7
64-bit Real DC [mod 101 r/m] TOS <— M.DR-TOS 4-7
32-bit Real D8 [mod 101 r/m] TOS <— M.SR-TOS 4-7
FSUBRP Floating Point Subtract DE [11100 n] ST(n) <— TOS - ST(n); then pop TOS 4-7
Reverse Pop
FISUB Floating Point Integer Subtract
32-hit Integer DA [mod 100 r/m] TOS <— TOS-M.SI 14 - 29
16-bit Integer DE [mod 100 r/m] TOS <— TOS- M.WI 14 - 27
FISUBR Floating Point Integer Subtract
Reverse
32-bit Integer Reversed DA [mod 101 r/m] TOS <— M.SI-TOS 14 - 29
16-bit Integer Reversed DE [mod 101 r/m] TOS <— M.WI - TOS 14 - 27
FTST Test Top of Stack D9 E4 CCset by TOS- 0.0 4
FUCOM Unordered Compare DD [11100 n] CC set by TOS - ST(n) 4
FUCOMP Unordered Compare, Pop DD [11101 n] CC set by TOS - ST(n); then pop TOS 4
FUCOMPP Unordered Compare, DA E9 CC set by TOS - ST(I); then pop TOS and 4
Pop two elements ST(1)
FWAIT Wait 9B Wait for FPU not busy
FXAM Report Class of Operand D9 E5 CC <— Classof TOS 4
FXCH Exchange Register with TOS D9 [11001 n] TOS <— ST(n) Exchange
FXTRACT Extract Exponent D9 H4 temp <— TOS; 11-16
TOS <— exponent (temp); then
push significant (temp) onto stack
FLY2X Function Eval. y~ Log2(x) D9 F1 ST(1) <— ST(1) ~ Logy(TOS); then pop TOS 145 - 154
FLY2XP1 Function Eval. y~ Log2(x+1) D9 P ST(1) <— ST(1) ~ Log,(1+TOS); then pop TOS |131 - 133|See
Note 4
Cyrix Il 191

Cyrix Processors

FPU Instruction Clock Counts

FPU Instruction Summary Notes

All referencesto TOS and ST(n) refer to stack layout prior to execution.

Values popped off the stack are discarded.

A pop from the stack increments the top of stack pointer.

A push to the stack decrements the top of stack pointer.

Note 1:

For FCOS, FSIN, FSINCOS and FPTAN, time shown is for absolute value of TOS < 3p/4.
Add 90 clock counts for argument reduction if outside this range.

For FCOS, clock count is 141 if TOS < p/4 and clock count is 92 if p/4 < TOS> p/2.

For FSIN, clock count is 81 to 82 if absolute value of TOS <p/4.

Note 2:
For F2XM1, clock count is 92 if absolute value of TOS < 0.5.

Note 3:
For FPATAN, clock count is 97 if ST(1)/TOS < p/32.

Note 4:
For FYL2XP1, clock count is 170 if TOS is out of range and regular FYL2X iscalled.

Note 5:

The following opcodes are reserved by Cyrix:

D9D7, D9E2, D9E7, DDFC, DEDS8, DEDA, DEDC, DEDD, DEDE, DFFC.

If areserved opcode is executed, and unpredictable results may occur (exceptions are not generated).

192 Cyrix 1

April 4, 2000 11:10 am

Cyrix 1 Processor MM X Instruction Clock Counts 6

6.6 Cyrix 111 Processor MMX Instruc- unit executes the MM X instruction. If another
tion Clock Counts MM X instruction is encountered, the second

MMX instruction isplaced in the MM X queue.

The CPU isfunctionaly divided intothe FPU Up to four MM X instructions can be queued.
unit, and the integer unit. The FPU has been

extended to processes both MMX instructions ~ 6.6.1 MMX Clock Count Table
and floating point instructions in parallel with

the integer unit.

The clock counts for the MM X instructions are
listed in Table 6-25. (Page 6-194). The

For example, when the integer unit detects a abbreviations used in thistable arelisted in
MMX instruction, the instruction passestothe Table 6-22.

FPU unit for execution. The integer unit con-

tinues to execute instructions while the FPU

Table 6-24. MM X Clock Count Table Abbreviations

ABBREVIATION MEANING
<---- Result written
[11 mmreg] Binary or binary groups of digits
mm One of eight 64-bit MM X registers
reg A general purpose register
<--sat-- If required, the resultant datais saturated to remain in the associated data range
<--move-- Source data is moved to result location
[byte] Eight 8-bit bytes are processed in parallel
[word] Four 16-bit word are processed in parallel
[dword] Two 32-bit double words are processed in parallel
[qword] One 64-bit quad word is processed
[sign xxx] The byte, word, double word or quad word most significant bit isasign bit
mm1, mm2 MMX register 1, MMX register 2
mod r/m Mod and r/m byte encoding (page 6-6 of this manual)
pack Source datais truncated or saturated to next smaller data size, then concatenated.
Pack two double words from source and two double words from destination into four
packdw words in destination register.
Pack four words from source and four words from destination into eight bytesin desti-
packwhb . .
nation register.

Cyrix Il

193

Cyrix Processors

Cyrix 11 Processor MM X Instruction

Table 6-25. Cyrix Il Processor MM X Instruction Set Clock Count Summary

Memory to Register

CLOCK
MMX INSTRUCTIONS OPCODE OPERATION COUNT
RS
EMM SEmpty MMX State OF77 Tag Word <--- FFFFh (empties the floating point tag word) 1/1
MOV D Move Doubleword
Register to MM X Register OF6E [11 mm reg] MMX reg [qword] <--move, zero extend-- reg [dword] 1/1
MMX Register to Register OF7E [11 mm reg] reg [qword] <--move-- MMX reg [low dword] 5/1
Memory to MM X Register OF6E [mod mm r/m] MMX regr{qword] <--move, zero extend-- memory[dword] 1/1
MMX Register to Memory OF7E [mod mm r/m] Memory [dword] <--move-- MM X reg [low dword] 1/1
MOV Q Move Quardword
MM X Register 2to MMX Register 1 OF6F [11 mm1 mm2] [MMX reg 1[gword] <--move-- MMX reg 2 [qword] 1/1
MMX Register 1to MMX Register 2 OF7F [11 mm1 mm2] MMX reg 2 [qword] <--move-- MMX reg 1 [qword] 1/1
Memory to MM X Register OF6F [mod mm r/m] MMX reg [qword] <--move-- memory[gword] 1
MM X Register to Memory OF7F [mod mm r/m] Memory [qword] <--move-- MMX reg [qword] 171
PACKSSDW Pack Dword with Signed Satura-
tion 0F6B [11 mm1 mm2] [MMX reg1[qword] <--packdw, signed sat-- MMX reg 2, MMX reg 1 1
MMX Register 2to MMX Register 1 0OF6B [mod mm r/m] MMX reg [qword] <--packdw, signed sat-- memory, MMX reg 171
Memory to MM X Register
PACKSSWB Pack Word with Signed Satura-
tion 0F63 [11 mm1 mm2] MMX reg 1 [qword] <--packwb, signed sat-- MM X reg 2, MMX reg 1 1/1
MMX Register 2to MMX Register 1 0F63 [mod mm r/m] MMX reg [qword] <--packwb, signed sat-- memory, MMX reg 1/1
Memory to MM X Register
PACKUSWB Pack Word with Unsigned Satu-
ration 0F67 [11 mm1 mm2] MMX reg 1 [qword] <--packwhb, unsigned sat-- MM X reg 2, MMX reg 1 1/1
MM X Register 2to MMX Register 1 0F67 [mod mm r/m] IMMX reg [qword] <--packwb, unsigned sat-- memory, MMX reg 1/1
Memory to MM X Register
PADDB Packed Add Byte with Wrap-Around
MM X Register 2 to MMX Register 1 OFFC [11 mm1 mm2] [MMX reg1[byte] <--- MMX reg 1 [byte] + MMX reg 2 [byte] 11
Memory to MM X Register OFFC [mod mm r/m] MMX reg[byte] <---- memory [byte] + MMX reg [byte] 1/1
PADDD Packed Add Dword with
IWrap-Around OFFE [11 mm1 mm2] MMX reg 1[sign dword] <---- MMX reg 1 [sign dword] + MMX reg 2 [sign dword] 1/1
MM X Register 2to MMX Register 1 OFFE [mod mm r/m] [MMX reg [sign dword] <---- memory [sign dword] + MMX reg [sign dword] 1/1
Memory to MM X Register
PADDSB Packed Add Signed Byte with Satu-
ration OFEC [11 mm1 mm2] [MMX reg1[signbyte] <--sat-- MMX reg 1 [sign byte] + MMX reg 2 [sign byte] 1/1
MMX Register 2 to MMX Registerl OFEC [mod mm r/m] [MMX reg[sign byte] <--sat-- memory [sign byte] + MMX reg [sign byte] 171
Memory to Register
PADDSW Packed Add Signed Word with Sat-
uration OFED [11 mm1 mm2] [MMX reg1[signword] <--sat-- MMX reg 1 [signword] + MMX reg 2 [sign word] 11
MMX Register 2 to MMX Registerl OFED [mod mmr/m] [MMX reg[signword] <--sat-- memory [sign word] + MMX reg [sign word] 1
Memory to Register
PADDUSB Add Unsigned Byte with Satura-
tion OFDC [11 mm1 mm2] [MMX reg 1 [byte] <--sat-- MMX reg 1 [byte] + MMX reg 2 [byte] 1/1
MM X Register 2to MM X Registerl OFDC [mod mm r/m] [MMX reg [byte] <--sat-- memory [byte] + MMX reg [byte] 1/1

194

Cyrix I

April 4, 2000 11:10 am

Cyrix 1 Processor MM X Instruction Clock Counts 6

Table 6-25. Cyrix Il Processor MM X Instruction Set Clock Count Summary (Continued)

IMMX reg [byte] <--00h--if memory[byte] NOT > MMX reg [byte]

CLOCK
MMX INSTRUCTIONS OPCODE OPERATION COUNT
HROUGHPUT

PADDUSW Add Unsigned Word with Satura-
tion OFDD [11 mm1 mm2] [MMX reg 1[word] <--sa-- MMX reg 1[word] + MMX reg 2 [word] 1/1
MMX Register 2to MM X Registerl OFDD [mod mm r/m] [MMX reg [word] <--sat-- memory [word] + MMX reg [word] 1/1
Memory to Register
PADDW Packed Add Word with Wrap-Around
MMX Register 2 to MMX Registerl OFFD [11 mm1 mm2] [MMX reg1[word] <---- MMX reg 1[word] + MMX reg 2 [word] 11
Memory to MM X Register OFFD [mod mm r/m] MMX reg [word] <---- memory [word] + MMX reg [word] 11
PAND Bitwise Logical AND
MMX Register 2to MMX Registerl OFDB [11 mm1 mm2] [MMX Reg1[gqword] <--logic AND-- MMX Reg 1 [qword], MMX Reg 2 [qword] 11
Memory to MM X Register OFDB [mod mm r/m] [MMX Reg [qword] <--logic AND-- memory[qword], MMX Reg [qword] 11
PANDN Bitwise Logical AND NOT
MMX Register 2to MMX Registerl OFDF [11 mm1 mm2] |MMX Reg1[qword] <--logic AND -- NOT MMX Reg 1 [qword], MMX Reg 2 [qword] 11
Memory to MM X Register OFDF [mod mm r/m] [MMX Reg[qword] <--logic AND-- NOT MMX Reg[qword], Memory[qword] U1
PCM PEQB Packed Byte Compare for Equality
MM X Register 2 with MM X Registerl 0F74 [11 mm1 mm2] MMX reg 1 [byte] <--FFh-- if MMX reg 1 [byte] = MMX reg 2 [byte] 11

MMX reg 1 [byte]<--00h-- if MM X reg 1 [byte] NOT = MMX reg 2 [byte]
Memory with MM X Register 0F74 [mod mm r/m] MMX reg [byte] <--FFh-- if memory[byte] = MMX reg [byte] 1

MMX reg [byte] <--00h--if memory[byte] NOT = MMX reg [byte]
PCM PEQD Packed Dword Compare for
Equality 0F76 [11 mm1 mm2] IMMX reg 1 [dword] <--FFFF FFFFh-- if MMX reg 1 [dword] = MMX reg 2 [dword] 1/1
MMX Register 2 with MM X Registerl MMX reg 1 [dword]<--0000 0000h--if MMX reg 1[dword] NOT = MMX reg 2 [dword]

0OF76 [mod mm r/m] MMX reg [dword] <--FFFF FFFFh--if memory[dword] = MMX reg [dword] U1
Memory with MM X Register IMMX reg [dword] <--0000 0000h--if memory[dword] NOT = MMX reg [dword]
PCMPEQW Packed Word Comparefor Equal-
ity OF75 [11 mm1 mm2] MMX reg 1 [word] <--FFFFh--if MMX reg 1 [word] = MMX reg 2 [word] 1/1
MMX Register 2 with MM X Registerl IMMX reg 1 [word]<--0000h--if MMX reg 1 [word] NOT = MMX reg 2 [word]
OF75 [mod mm r/m] MMX reg [word] <--FFFFh--if memory[word] = MMX reg [word] U1

Memory with MM X Register IMMX reg [word] <--0000h--if memory[word] NOT = MMX reg [word]
PCMPGTB Pack Compare Greater Than Byte
MMX Register 2 to MMX Registerl 0F64 [11 mm1 mm2] [MMX reg1[byte] <--FFh--if MMX reg 1 [byte] > MMX reg 2 [byte] 1/1

MMX reg 1 [byte]<--00h--if MM X reg 1 [byte] NOT > MMX reg 2 [byte]
Memory with MM X Register 0F64 [mod mm r/m] MMX reg [byte] <--FFh--if memory[byte] > MMX reg [byte] U1

Cyrix Il

195

Cyrix Processors

Cyrix 11 Processor MM X Instruction

Table 6-25. Cyrix Il Processor MM X Instruction Set Clock Count Summary (Continued)

CLOCK
MMX INSTRUCTIONS OPCODE OPERATION COUNT
HROUGHPUT

PCMPGTD Pack Compare Greater Than
Dword 0F66 [11 mm1 mm2] MMX reg 1 [dword] <--FFFF FFFFh-- if MMX reg 1 [dword] > MMX reg 2 [dword] 11
MMX Register 2to MM X Registerl MMX reg 1 [dword]<--0000 0000h--if MMX reg 1 [dword]NOT > MM X reg 2 [dword]

0F66 [mod mm r/m] MMX reg [dword)] <--FFFF FFFFh--if memory[dword] > MMX reg [dword] 1
Memory with MM X Register IMMX reg [dword] <--0000 0000h--if memory[dword] NOT >MMX reg [dword]
PCMPGTW Pack Compare Greater Than 0F65 [11 mm1 mm2] [MMX reg 1[word] <--FFFFh--if MMX reg 1 [word] > MMX reg 2 [word] 1/1
Word MMX reg 1 [word]<--0000h--if MMX reg 1 [word] NOT > MMX reg 2 [word]
MM X Register 2to MM X Registerl 0F65 [mod mm r/m] MMX reg [word] <--FFFFh--if memory[word] > MMX reg [word] 1/1

MMX reg [word] <--0000h--if memory[word] NOT >MMX reg [word]
Memory with MM X Register
PMADDWND Packed Multiply and Add
MMX Register 2to MMX Register 1 OFF5[11 mm1 mm2] |MMX reg1[dword] <--add--[dword]<---- MMX reg 1 [sign word[*MMX reg 2[sign 2/1
Memory to MM X Register OFF5 [mod mm r/m] ord] 2/1
MMX reg 1 [dword] <--add--[dword] <---- memory[sign word] * Memory[sign word]

PMULHW Packed Multiply High
MMX Register 2to MM X Registerl OFES5 [11 mm1 mm2] MMX reg 1 [word] <--upper bits-- MMX reg 1 [sign word] * MMX reg 2 [sign word] 2/1
Memory to MM X Register OFES5 [mod mm r/m] MMX reg 1 [word] <--upper bits- memory [sign word] * Memory [signword] 2/1
PMULLW Packed Multiply Low
MMX Register 2to MM X Registerl OFD5 [11 mm1 mm2] [MMX reg 1 [word] <--lower bits- MMX reg 1 [signword] * MMX reg 2 [sign word] 2/1
Memory to MM X Register OFD5 [mod mm r/m] MMX reg 1 [word] <--lower bits-- memory [sign word] * Memory [sign word] 2/1
POR Bitwise OR
MM X Register 2to MM X Registerl OFEB [11 mm1 mm2] [MMX Reg 1 [qword] <--logic OR-- MMX Reg 1 [qword], MMX Reg 2 [qword] 1/1
Memory to MM X Register OFEB [mod mm r/m] [MMX Reg[gword] <--logic OR-- MMX Reg [qword], memory[gqword] 1/1
PSL LD Packed Shift Left Logical Dword
MMX Register 1 by MMX Register 2 OFF2 [11 mm1 mm2] [MMX reg 1 [dword] <--shiftleft, shifting in zeroesby MMX reg 2 [dword]-- 1/1
MMX Register by Memory OFF2 [mod mm r/m] IMMX reg [dword] <--shift Ift, shifting in zeroesby memory[dword]-- 1/1
MMX Register by Immediate OF72[11 110 mm] # IMMX reg [dword] <--shift left, shifting in zeroes by [im byte]-- 1/1
PSL L Q Packed Shift Left Logical Qword
MMX Register 1 by MMX Register 2 OFF3 [11 mm1 mm2] MMX reg 1 [qword] <--shift left, shifting in zeroesby MMX reg 2 [qword]-- 1/1
MMX Register by Memory OFF3 [mod mm r/m] MMX reg [qword] <--shift Ieft, shifting in zeroes by [qword)]-- 171
MM X Register by Immediate OF73 [11 110 mm] # [MMX reg[qword] <--shift left, shifting in zeroes by [im byte]-- 171
PSLLW Packed Shift Left Logical Word
MM X Register 1 by MMX Register 2 OFF1[11 mm1 mm2] [MMX reg1[word] <--shiftleft, shiftingin zeroesby MMX reg 2 [word]-- 1
MM X Register by Memory OFF1 [mod mm r/m] MMX reg [word] <--shift left, shifting in zeroesby memory[word]-- 11
MM X Register by Immediate OF71[11 110mm)] # MMX reg [word] <--shift left, shifting in zeroesby [im byte]-- 1
PSRAD Packed Shift Right Arithmetic Dword
MMX Register 1 by MMX Register 2 OFE2 [11 mm1 mm2] MMX reg 1 [dword)] <--arith shift right, shifting in zeroesby MMX reg 2 [dword--] 1/1
MMX Register by Memory OFE2 [mod mm r/m] IMMX reg [dword] <--arith shift right, shifting in zeroesby memory[dword]-- 1/1
MMX Register by Immediate OF72 [11 100 mm] # MMX reg [dword] <--arith shift right, shifting in zeroes by [im byte]-- 1/1
PSRAW Packed Shift Right Arithmetic Word
MMX Register 1 by MMX Register 2 OFE1[11 mm1 mm2] MMX reg 1 [word] <--arith shift right, shifting in zeroesby MMX reg 2 [word]-- 1/1
MMX Register by Memory OFE1 [mod mm r/m] MMX reg [word] <--arith shift right, shifting in zeroesby memory[word--] 1/1
MMX Register by Immediate OF71[11 100 mm] # MMX reg [word] <--arith shift right, shifting in zeroes by [im byte]-- 1/1

196

Cyrix I

April 4, 2000 11:10 am

Cyrix 1 Processor MM X Instruction Clock Counts 6

Table 6-25. Cyrix Il Processor MM X Instruction Set Clock Count Summary (Continued)

CLOCK
MMX INSTRUCTIONS OPCODE OPERATION COUNT
FTHROUGHAUT
PSRL D Packed Shift Right Logical Dword
MMX Register 1 by MMX Register 2 OFD2 [11 mm1 mm2] |MMX reg1[dword] <--shift right, shiftingin zeroesby MMX reg 2 [dword]-- 1/1
MM X Register by Memory 0OFD2 [mod mm r/m] IMMX reg [dword] <--shift right, shifting in zeroesby memory[dword]-- 1/1
MMX Register by Immediate OF72[11 010 mm] # IMMX reg [dword] <--shift right, shifting in zeroes by [im byte]-- 1/1
PSRL Q Packed Shift Right Logical Qword
MMX Register 1 by MMX Register 2 OFD3[11 mml1 mm2] [MMX reg1[qword] <--shift right, shiftingin zeroesby MMX reg 2 [qword] 1/1
MM X Register by Memory OFD3 [mod mm r/m] MMX reg [qword] <--shift right, shifting in zeroesby memory[qword] 1
MM X Register by Immediate 0F73 [11 010 mm] # IMMX reg [qword)] <--shift right, shifting in zeroesby [im byte] 1/1
PSRLW Packed Shift Right Logical Word
MMX Register 1 by MMX Register 2 OFD1 [11 mm1 mm2] MMX reg 1 [word] <--shift right, shifting in zeroesby MMX reg 2 [word] 1/1
MMX Register by Memory OFD1 [mod mm r/m] MMX reg [word] <--shift right, shifting in zeroesby memory[word] 1/1
MMX Register by Immediate OF71[11 010 mm] # MMX reg [word] <--shift right, shiftingin zeroesby imm[word] 1/1
PSUBB Subtract Byte With Wrap-Around
MMX Register 2to MMX Registerl OFF8 [11 mm1 mm2] [MMX reg1[byte] <--- MMX reg 1 [byte] subtract MMX reg 2 [byte] 1/1
Memory to MM X Register OFF8 [mod mm r/m] IMMX reg [byte] <---- MMX reg [byte] subtract memory [byte] 1/1
PSUBD Subtract Dword With Wrap-Around
MMX Register 2 to MMX Registerl OFFA [11 mm1 mm2] [MMXreg1[dword] <---- MMX reg 1 [dword] subtract MMX reg 2 [dword] 1/1
Memory to MM X Register OFFA [mod mm r/m] IMMX reg [dword] <---- MMX reg [dword] subtract memory [dword] 1/1
PSUBSB Subtract Byte Signed With Saturation
MMX Register 2to MM X Registerl OFE8 [11 mm1 mm2] MMX reg 1[sign byte] <--sat-- MMX reg 1 [sign byte] subtract MMX reg 2 [sign byte] 1/1
Memory to MM X Register OFE8 [mod mm r/m] IMMX reg [sign byte] <--sat-- MMX reg [sign byte] subtract memory [sign byte] 1/1
PSUBSW Subtract Word Signed With Satura-
tion OFE9 [11 mm1 mm2] MMX reg 1 [sign word] <--sa--MMX reg 1 [sign word)] subtract MM X reg 2 [sign word] 1/1
MMX Register 2 to MMX Registerl OFE9 [mod mm r/m] MMX reg [sign word] <--sat-- MMX reg [sign word)] subtract memory [signword] 171
Memory to MM X Register
PSUBUSB Subtract Byte Unsigned With Satu-
ration OFD8 [11 mm1 mm2] [MMX reg 1[byte] <-sat-- MMX reg 1 [byte] subtract MMX reg 2 [byte] 1/1
MMX Register 2 to MMX Registerl OFD8 [11 mm reg] IMMX reg [byte] <--sat-- MMX reg [byte] subtract memory [byte] 1/1
Memory to MM X Register
PSUBUSW Subtract Word Unsigned With Sat-
uration OFD9 [11 mm1 mm2] MMX reg 1 [word] <--sat-- MMX reg 1 [word] subtract MMX reg 2 [word] 1/1
MMX Register 2to MM X Registerl OFD9 [11 mm reg] MMX reg [word)] <--sat-- MMX reg [word] subtract memory [word] 1/1
Memory to MM X Register
PSUBW Subtract Word With Wrap-Around
MMX Register 2to MM X Registerl OFF9 [11 mm1 mm2] [MMXreg1[word] <---- MMX reg 1 [word] subtract MMX reg 2 [word] 1/1
Memory to MM X Register OFF9 [mod mm r/m] IMMX reg [word] <---- MMX reg [word] subtract memory [word] 1/1
PUNPCKHBW Unpack High Packed Byte
Data to Packed Words
MMX Register 2 to MMX Registerl 0F68 [11 mm1 mm2] [MMX reg 1 [byte] <-interleave- MMX reg 1[up byte], MMX reg 2 [up byte] 1/1
Memory to MM X Register 0F68 [11 mm reg] MMX reg [byte] <--interleave-- memory [up byte], MMX reg [up byte] 1/1
PUNPCKHDQ Unpack High Packed Dword
Data to Qword
MM X Register 2to MM X Registerl OF6A [11 mm1 mm2] [MMX reg 1 [dword] <--interleave-- MMX reg 1 [up dword], MMX reg 2 [up dword] 1/1
Memory to MM X Register OF6A [11 mm reg] MMX reg [dword] <--interleave-- memory [up dword], MMX reg [up dword] 1/1

Cyrix Il

197

Cyrix Processors

Cyrix 11 Processor MM X Instruction

Table 6-25. Cyrix Il Processor MM X Instruction Set Clock Count Summary (Continued)

CLOCK
MMX INSTRUCTIONS OPCODE OPERATION COUNT
HROUGHPUT
PUNPCKHWD Unpack High Packed Word
Data to Packed Dwords
MMX Register 2to MM X Registerl 0F69 [11 mm1 mm2] MMX reg 1 [word] <--interleave-- MMX reg 1 [up word], MMX reg 2 [up word] 1/1
Memory to MM X Register 0F69 [11 mm reg] MMX reg [word] <--interleave-- memory [up word], MMX reg [up word] 1/1
PUNPCKLBW Unpack Low Packed Byte
Data to Packed Words
MMX Register 2 to MMX Registerl OF60 [11 mm1 mm2] [MMX reg1[word] <-interleave-- MMX reg 1 [low byte], MMX reg 2 [low byte] 1
Memory to MM X Register OF60 [11 mm reg] MMX reg [word] <--interleave-- memory [low byte], MMX reg [low byte] 1/1
PUNPCKLDQ Unpack Low Packed Dword
Data to Qword
MMX Register 2to MMX Registerl 0F62 [11 mm1 mm2] MMX reg 1 [word] <--interleave-- MMX reg 1 [low dword], MMX reg 2 [low dword] 1/1
Memory to MM X Register 0F62 [11 mm reg] MMX reg [word] <--interleave-- memory [low dword], MMX reg [low dword] 1/1
PUNPCKLWD Unpack Low Packed Word
Data to Packed Dwords
MMX Register 2to MM X Registerl 0F61 [11 mm1 mm2] MMX reg 1 [word] <--interleave-- MMX reg 1 [low word], MMX reg 2 [low word] 1/1
Memory to MM X Register OF61 [11 mm reg] MMX reg [word] <--interleave-- memory [low word], MMX reg [low word] 1/1
PXOR Bitwise XOR
MM X Register 2to MM X Registerl OFEF [11 mm1 mm2] [MMX Reg1[qword] <--logic exclusve OR-- MMX Reg 1 [qword], MMX Reg 2 [qword] 11
Memory to MM X Register OFEF [11 mm reg] MMX Reg [qword] <--logic exclusive OR-- memory[gword], MMX Reg [qword] 1

198 Cyrix 11

Cyrix Processors

Cyrix 111 Processor 3DNow! Clock Counts

6.7

Cyrix 11 Processor 3DNow! Clock The integer unit continues to execute instruc-
Counts tions while the FPU unit executes the 3DNow!

instruction.

The CPU isfunctionally divided into the FPU
unit, and the integer unit. The FPU has been 6.7.1 3DNow! Clock Count Table
extended to processes both MM X, and

3DNow! instructions in addition to floating
point instructions in parallel with the integer

unit.

The clock countsfor the MM X instructions are
listed in Table 6-25. (Page 6-194). The

abbreviations used in thistable arelisted in

Table 6-22.

For example, when the integer unit detects a
3DNow! instruction, the instruction passes to
the FPU unit for execution.

Table 6-24. 3DNow! Clock Count Table Abbreviations

Operation Function OS[l)J??i?(e Delay Thoughput
PF2ID Packed FP to 32-bit Integer 1Dh 3 1
PFACC Packed FP Accumulate AEh 3 1
PFCMPEQ Packed FP Comparison, Equal BOh 3 1
PFCMPGE |Packed FP Comparison, Greater or Equal 90h 3 1
PFCMPGT Packed FP Comparison, Greater AOh 3 1
PFMAX Packed FP Maximum Adh 2 1
PFMIN Packed FP Minimum 94h 2 1
PFMUL Packed FP Multiplication B4h 3 1
PFRCP Packed FP Reciproca Approximation 96h 5 3
PFRSQRT Packed FP Reciprocal Square Root Approximation 97h 5 3
PFSUB Packed FP Subtraction 9Ah 3 1
PFSUBR Packed FP Reverse Subtraction AAh 3 1
PI2FD Packed 32-bit Integer to FP Conversion 0Dh 3 1
FEMMS Empty MX/3DNow! State OEh 1 1
PAVGUSB Packed 8-bit Unsigned Integer Averaging BFh 1 1
PFADD Packed FP Addition 9Eh 3 1
PFRCPIT1 Packed FP Reciprocal First Iteration Step A6h 1 1
PFRSQIT1 Packed FP Reciprocal Square Root First Iteration Step A7h 1 1
PFRCPIT2 Packed FP Reciprocal/Reciprocal Square Root Second Iteration Step B6h 1 1
PMULHRW | Packed 16-bit Integer Multiply with rounding B7h 2 1
PREFETCH | Not required, functions as NOP 0ODh 1 1

199 Cyrix 1

Cyrix Processors

Cyrix 111 Processor 3DNow! Clock Counts

200 Cyrix 11

