
Release Date: April, 1997

Order Number: 272736-002

i960® Rx I/O Microprocessor
Developer’s Manual
The i960® Rx I/O Processor may contain design defects or errors known as errata
which may cause the product to deviate from published specifications. Such errata are
not covered by Intel’s warranty. Current characterized errata are available on request.



Information in this document is provided in connection with Intel products. No license, express or implied, by
estoppel or otherwise, to any intellectual property rights is granted by this document. Except as provided in Intel’s
Terms and Conditions of Sale for such products, Intel assumes no liability whatsoever, and Intel disclaims any
express or implied warranty, relating to sale and/or use of Intel products including liability or warranties relating to
fitness for a particular purpose, merchantability, or infringement of any patent, copyright or other intellectual
property right. Intel products are not intended for use in medical, life saving, or life sustaining applications. Intel
may make changes to specifications and product descriptions at any time, without notice.  Contact your local Intel
sales office or your distributor to obtain the latest specifications and before placing your product order.

Copies of documents which have an ordering number and are referenced in this document, or other Intel
literature, may be obtained from:

Intel Corporation
P.O. Box 7641
Mt. Prospect IL 60056-7641

or call 1-800-879-4683
or visit Intel’s website at http:\\www.intel.com

Copyright © Intel Corporation 1996, 1997.

* Third-party brands and names are the property of their respective owners.
ii April, 1997 272736-002



CONTENTS

CHAPTER 1
INTRODUCTION

1.1 INTEL’S i960® Rx I/O PROCESSOR............................................................................  1-1

1.2 i960® Rx I/O PROCESSOR FEATURES ......................................................................  1-2
1.2.1 Intelligent I/O (I2O) ..................................................................................................  1-2
1.2.2 PCI-to-PCI Bridge Unit ............................................................................................  1-3
1.2.3 Private PCI Device Support .....................................................................................  1-3
1.2.4 DMA Controller ........................................................................................................  1-3
1.2.5 Address Translation Unit .........................................................................................  1-3
1.2.6 Messaging Unit ........................................................................................................  1-3
1.2.7 Memory Controller ...................................................................................................  1-4
1.2.8 I2C Bus Interface Unit .............................................................................................  1-4
1.2.9 I/O APIC Bus Interface Unit .....................................................................................  1-4
1.2.10 Secondary PCI Arbitration Unit ...............................................................................  1-4
1.2.11 Wind River Systems IxWorks* RTOS ......................................................................  1-4

1.3 i960® CORE PROCESSOR FEATURES (80960JF) ....................................................  1-5
1.3.1 Burst Bus .................................................................................................................  1-6
1.3.2 Timer Unit ................................................................................................................  1-6
1.3.3 Priority Interrupt Controller ......................................................................................  1-7
1.3.4 Faults and Debugging .............................................................................................  1-7
1.3.5 On-Chip Cache and Data RAM ...............................................................................  1-7
1.3.6 Local Register Cache ..............................................................................................  1-7
1.3.7 Test Features ..........................................................................................................  1-7
1.3.8 Memory-Mapped Control Registers .........................................................................  1-8
1.3.9 Instructions, Data Types and Memory Addressing Modes ......................................  1-8

1.4 ABOUT THIS DOCUMENT...........................................................................................  1-9
1.4.1 Terminology .............................................................................................................  1-9
1.4.2 Representing Numbers ...........................................................................................  1-9
1.4.3 Fields .......................................................................................................................  1-9
1.4.4 Specifying Bit and Signal Values ...........................................................................  1-10
1.4.5 Signal Name Conventions .....................................................................................  1-10
1.4.6 Solutions960® Program ........................................................................................  1-10
iii

1.4.7 Additional Information Sources .............................................................................  1-11
1.4.8 Electronic Information ............................................................................................  1-11

1.5 STEPPING DIFFERENCES SUMMARY ....................................................................  1-12

CHAPTER 2
DATA TYPES AND MEMORY ADDRESSING MODES

2.1 DATA TYPES................................................................................................................  2-1
2.1.1 Word/Dword Notation ..............................................................................................  2-2
2.1.2 Integers ...................................................................................................................  2-2
2.1.3 Ordinals ...................................................................................................................  2-3
2.1.4 Bits and Bit Fields ....................................................................................................  2-3
2.1.5 Triple and Quad Words ...........................................................................................  2-4



CONTENTS

2.1.6 Register Data Alignment ..........................................................................................  2-4
2.1.7 Literals .....................................................................................................................  2-4

2.2 BIT AND BYTE ORDERING IN MEMORY....................................................................  2-4

2.3 MEMORY ADDRESSING MODES ...............................................................................  2-5
2.3.1 Absolute ...................................................................................................................  2-5
2.3.2 Register Indirect ......................................................................................................  2-6
2.3.3 Index with Displacement ..........................................................................................  2-6
2.3.4 IP with Displacement ...............................................................................................  2-7
2.3.5 Addressing Mode Examples ....................................................................................  2-7

CHAPTER 3
PROGRAMMING ENVIRONMENT

3.1 OVERVIEW ...................................................................................................................  3-1

3.2 REGISTERS AND LITERALS AS INSTRUCTION OPERANDS...................................  3-1
3.2.1 Global Registers ......................................................................................................  3-2
3.2.2 Local Registers ........................................................................................................  3-3
3.2.3 Register Scoreboarding ...........................................................................................  3-4
3.2.4 Literals .....................................................................................................................  3-4
3.2.5 Register and Literal Addressing and Alignment .......................................................  3-4

3.3 MEMORY-MAPPED CONTROL REGISTERS (MMRS) ...............................................  3-6
3.3.1 i960® Core Processor Function Memory-Mapped Registers ...................................  3-6

3.3.1.1 Restrictions on Instructions that Access the i960® Core Processor 
Memory-Mapped Registers ..............................................................................  3-6

3.3.1.2 Access Faults for i960® Core Processor MMRs ...............................................  3-7
3.3.2 i960® Rx I/O Processor Peripheral Memory-Mapped Registers ..............................  3-7

3.3.2.1 Accessing The Peripheral Memory-Mapped Registers ....................................  3-8

3.4 ARCHITECTURALLY DEFINED DATA STRUCTURES ...............................................  3-9

3.5 MEMORY ADDRESS SPACE.....................................................................................  3-10
3.5.1 Memory Requirements ..........................................................................................  3-12
3.5.2 Data and Instruction Alignment in the Address Space ..........................................  3-13
3.5.3 Byte, Word and Bit Addressing ..............................................................................  3-14
3.5.4 Internal Data RAM .................................................................................................  3-14
3.5.5 Instruction Cache ...................................................................................................  3-14
iv

3.5.6 Data Cache ............................................................................................................  3-14

3.6 PROCESSOR-STATE REGISTERS...........................................................................  3-15
3.6.1 Instruction Pointer (IP) Register ............................................................................  3-15
3.6.2 Arithmetic Controls Register – AC .........................................................................  3-16

3.6.2.1 Initializing and Modifying the AC Register ......................................................  3-16
3.6.2.2 Condition Code (AC.cc) ..................................................................................  3-17

3.6.3 Process Controls Register – PC ............................................................................  3-19
3.6.3.1 Initializing and Modifying the PC Register ......................................................  3-20

3.6.4 Trace Controls (TC) Register .................................................................................  3-21

3.7 USER-SUPERVISOR PROTECTION MODEL ...........................................................  3-21
3.7.1 Supervisor Mode Resources .................................................................................  3-21



CONTENTS

3.7.2 Using the User-Supervisor Protection Model ........................................................  3-22

CHAPTER 4
CACHE AND ON-CHIP DATA RAM

4.1 INTERNAL DATA RAM.................................................................................................  4-1

4.2 LOCAL REGISTER CACHE..........................................................................................  4-2

4.3 INSTRUCTION CACHE ................................................................................................  4-4
4.3.1 Enabling and Disabling the Instruction Cache .........................................................  4-5
4.3.2 Operation While the Instruction Cache Is Disabled .................................................  4-5
4.3.3 Loading and Locking Instructions in the Instruction Cache .....................................  4-5
4.3.4 Instruction Cache Visibility ......................................................................................  4-6
4.3.5 Instruction Cache Coherency ..................................................................................  4-6

4.4 DATA CACHE ...............................................................................................................  4-6
4.4.1 Enabling and Disabling the Data Cache ..................................................................  4-7
4.4.2 Multi-Word Data Accesses that Partially Hit the Data Cache ..................................  4-7
4.4.3 Data Cache Fill Policy .............................................................................................  4-8
4.4.4 Data Cache Write Policy .........................................................................................  4-8
4.4.5 Data Cache Coherency and Non-Cacheable Accesses ..........................................  4-9
4.4.6 External I/O and Bus Masters and Cache Coherency ...........................................  4-10
4.4.7 Data Cache Visibility .............................................................................................  4-10

CHAPTER 5
INSTRUCTION SET OVERVIEW

5.1 INSTRUCTION FORMATS ...........................................................................................  5-1
5.1.1 Assembly Language Format ...................................................................................  5-1
5.1.2 Instruction Encoding Formats ..................................................................................  5-2
5.1.3 Instruction Operands ...............................................................................................  5-3

5.2 INSTRUCTION GROUPS .............................................................................................  5-3
5.2.1 Data Movement .......................................................................................................  5-4

5.2.1.1 Load and Store Instructions .............................................................................  5-5
5.2.1.2 Move ................................................................................................................  5-6
5.2.1.3 Load Address ...................................................................................................  5-6

5.2.2 Select Conditional ...................................................................................................  5-6
v

5.2.3 Arithmetic ................................................................................................................  5-6
5.2.3.1 Add, Subtract, Multiply, Divide, Conditional Add, Conditional Subtract ............  5-7
5.2.3.2 Remainder and Modulo ....................................................................................  5-8
5.2.3.3 Shift, Rotate and Extended Shift ......................................................................  5-8
5.2.3.4 Extended Arithmetic .........................................................................................  5-9

5.2.4 Logical ...................................................................................................................  5-10
5.2.5 Bit, Bit Field and Byte Operations .........................................................................  5-10

5.2.5.1 Bit Operations ................................................................................................  5-10
5.2.5.2 Bit Field Operations ........................................................................................  5-11
5.2.5.3 Byte Operations .............................................................................................  5-11

5.2.6 Comparison ...........................................................................................................  5-11
5.2.6.1 Compare and Conditional Compare ...............................................................  5-11



CONTENTS

5.2.6.2 Compare and Increment or Decrement ..........................................................  5-12
5.2.6.3 Test Condition Codes .....................................................................................  5-12

5.2.7 Branch ...................................................................................................................  5-13
5.2.7.1 Unconditional Branch .....................................................................................  5-13
5.2.7.2 Conditional Branch .........................................................................................  5-14
5.2.7.3 Compare and Branch .....................................................................................  5-14

5.2.8 Call/Return .............................................................................................................  5-15
5.2.9 Faults .....................................................................................................................  5-16
5.2.10 Debug ....................................................................................................................  5-16
5.2.11 Atomic Instructions ................................................................................................  5-17
5.2.12 Processor Management ........................................................................................  5-17

5.3 PERFORMANCE OPTIMIZATION..............................................................................  5-18
5.3.1 Instruction Optimizations .......................................................................................  5-18

5.3.1.1 Load / Store Execution Model ........................................................................  5-18
5.3.1.2 Compare Operations ......................................................................................  5-19
5.3.1.3 Microcoded Instructions .................................................................................  5-19
5.3.1.4 Multiply-Divide Unit Instructions .....................................................................  5-19
5.3.1.5 Multi-Cycle Register Operations .....................................................................  5-19
5.3.1.6 Simple Control Transfer .................................................................................  5-20
5.3.1.7 Memory Instructions .......................................................................................  5-20
5.3.1.8 Unaligned Memory Accesses .........................................................................  5-21

5.3.2 Miscellaneous Optimizations .................................................................................  5-21
5.3.2.1 Masking of Integer Overflow ...........................................................................  5-21
5.3.2.2 Avoid Using PFP, SP, R3 As Destinations for MDU Instructions ...................  5-21
5.3.2.3 Use Global Registers (g0 - g14) As Destinations for MDU Instructions .........  5-21
5.3.2.4 Execute in Imprecise Fault Mode ...................................................................  5-22

5.3.3 Cache Control ........................................................................................................  5-22

CHAPTER 6
INSTRUCTION SET REFERENCE

6.1 NOTATION....................................................................................................................  6-1
6.1.1 Alphabetic Reference ..............................................................................................  6-1
6.1.2 Mnemonic ................................................................................................................  6-2
6.1.3 Format .....................................................................................................................  6-2
vi

6.1.4 Description ...............................................................................................................  6-3
6.1.5 Action .......................................................................................................................  6-3
6.1.6 Faults .......................................................................................................................  6-5
6.1.7 Example ...................................................................................................................  6-5
6.1.8 Opcode and Instruction Format ...............................................................................  6-5
6.1.9 See Also ..................................................................................................................  6-5
6.1.10 Side Effects .............................................................................................................  6-5
6.1.11 Notes .......................................................................................................................  6-5

6.2 INSTRUCTIONS............................................................................................................  6-5
6.2.1 ADD<cc> .................................................................................................................  6-6
6.2.2 addc .........................................................................................................................  6-9



CONTENTS

6.2.3 addi, addo ..............................................................................................................  6-10
6.2.4 alterbit ....................................................................................................................  6-11
6.2.5 and, andnot ...........................................................................................................  6-12
6.2.6 atadd .....................................................................................................................  6-13
6.2.7 atmod ....................................................................................................................  6-14
6.2.8 b, bx .......................................................................................................................  6-15
6.2.9 bal, balx .................................................................................................................  6-16
6.2.10 bbc, bbs .................................................................................................................  6-18
6.2.11 BRANCH<cc> .......................................................................................................  6-20
6.2.12 bswap ....................................................................................................................  6-22
6.2.13 call .........................................................................................................................  6-23
6.2.14 calls .......................................................................................................................  6-24
6.2.15 callx .......................................................................................................................  6-26
6.2.16 chkbit .....................................................................................................................  6-28
6.2.17 clrbit .......................................................................................................................  6-29
6.2.18 cmpdeci, cmpdeco ................................................................................................  6-30
6.2.19 cmpinci, cmpinco ...................................................................................................  6-31
6.2.20 COMPARE ............................................................................................................  6-32
6.2.21 COMPARE AND BRANCH<cc> ............................................................................  6-34
6.2.22 concmpi, concmpo ................................................................................................  6-37
6.2.23 dcctl .......................................................................................................................  6-39
6.2.24 divi, divo ................................................................................................................  6-45
6.2.25 ediv ........................................................................................................................  6-47
6.2.26 emul .......................................................................................................................  6-49
6.2.27 eshro .....................................................................................................................  6-50
6.2.28 extract ....................................................................................................................  6-51
6.2.29 FAULT<cc> ...........................................................................................................  6-52
6.2.30 flushreg ..................................................................................................................  6-54
6.2.31 fmark .....................................................................................................................  6-55
6.2.32 halt .........................................................................................................................  6-56
6.2.33 icctl ........................................................................................................................  6-58
6.2.34 intctl .......................................................................................................................  6-66
6.2.35 intdis ......................................................................................................................  6-68
vii

6.2.36 inten .......................................................................................................................  6-69
6.2.37 LOAD .....................................................................................................................  6-70
6.2.38 lda ..........................................................................................................................  6-73
6.2.39 mark ......................................................................................................................  6-74
6.2.40 modac ....................................................................................................................  6-75
6.2.41 modi .......................................................................................................................  6-76
6.2.42 modify ....................................................................................................................  6-77
6.2.43 modpc ....................................................................................................................  6-78
6.2.44 modtc .....................................................................................................................  6-80
6.2.45 MOVE ....................................................................................................................  6-81
6.2.46 muli, mulo ..............................................................................................................  6-84



CONTENTS

6.2.47 nand .......................................................................................................................  6-85
6.2.48 nor .........................................................................................................................  6-86
6.2.49 not, notand .............................................................................................................  6-87
6.2.50 notbit ......................................................................................................................  6-88
6.2.51 notor ......................................................................................................................  6-89
6.2.52 or, ornot .................................................................................................................  6-90
6.2.53 remi, remo .............................................................................................................  6-91
6.2.54 ret ..........................................................................................................................  6-92
6.2.55 rotate .....................................................................................................................  6-94
6.2.56 scanbit ...................................................................................................................  6-95
6.2.57 scanbyte ................................................................................................................  6-96
6.2.58 SEL<cc> ................................................................................................................  6-97
6.2.59 setbit ......................................................................................................................  6-99
6.2.60 SHIFT ..................................................................................................................  6-100
6.2.61 spanbit .................................................................................................................  6-103
6.2.62 STORE ................................................................................................................  6-104
6.2.63 subc .....................................................................................................................  6-108
6.2.64 SUB<cc> .............................................................................................................  6-109
6.2.65 subi, subo ............................................................................................................  6-112
6.2.66 syncf ....................................................................................................................  6-113
6.2.67 sysctl ....................................................................................................................  6-114
6.2.68 TEST<cc> ............................................................................................................  6-118
6.2.69 xnor, xor ...............................................................................................................  6-120

CHAPTER 7
PROCEDURE CALLS

7.1 CALL AND RETURN MECHANISM ..............................................................................  7-2
7.1.1 Local Registers and the Procedure Stack ...............................................................  7-2
7.1.2 Local Register and Stack Management ...................................................................  7-4

7.1.2.1 Frame Pointer ...................................................................................................  7-4
7.1.2.2 Stack Pointer ....................................................................................................  7-4
7.1.2.3 Considerations When Pushing Data onto the Stack ........................................  7-4
7.1.2.4 Considerations When Popping Data off the Stack ...........................................  7-5
viii

7.1.2.5 Previous Frame Pointer ....................................................................................  7-5
7.1.2.6 Return Type Field .............................................................................................  7-5
7.1.2.7 Return Instruction Pointer .................................................................................  7-5

7.1.3 Call and Return Action .............................................................................................  7-5
7.1.3.1 Call Operation ..................................................................................................  7-6
7.1.3.2 Return Operation ..............................................................................................  7-7

7.1.4 Caching Local Register Sets ...................................................................................  7-7
7.1.4.1 Reserving Local Register Sets for High Priority Interrupts ...............................  7-8

7.1.5 Mapping Local Registers to the Procedure Stack ..................................................  7-11

7.2 MODIFYING THE PFP REGISTER.............................................................................  7-11

7.3 PARAMETER PASSING .............................................................................................  7-12



CONTENTS

7.4 LOCAL CALLS ............................................................................................................  7-14

7.5 SYSTEM CALLS .........................................................................................................  7-15
7.5.1 System Procedure Table .......................................................................................  7-15

7.5.1.1 Procedure Entries ..........................................................................................  7-17
7.5.1.2 Supervisor Stack Pointer ................................................................................  7-17
7.5.1.3 Trace Control Bit ............................................................................................  7-17

7.5.2 System Call to a Local Procedure .........................................................................  7-18
7.5.3 System Call to a Supervisor Procedure .................................................................  7-18

7.6 USER AND SUPERVISOR STACKS..........................................................................  7-18

7.7 INTERRUPT AND FAULT CALLS ..............................................................................  7-19

7.8 RETURNS...................................................................................................................  7-20

7.9 BRANCH-AND-LINK ...................................................................................................  7-21

CHAPTER 8
INTERRUPTS

8.1 OVERVIEW...................................................................................................................  8-1
8.1.1 The i960® Rx I/O Processor Core Interrupt Architecture .........................................  8-2
8.1.2 Software Requirements For Interrupt Handling .......................................................  8-3
8.1.3 Interrupt Priority .......................................................................................................  8-3
8.1.4 Interrupt Table .........................................................................................................  8-4

8.1.4.1 Vector Entries ...................................................................................................  8-5
8.1.4.2 Pending Interrupts ............................................................................................  8-5
8.1.4.3 Caching Portions of the Interrupt Table ...........................................................  8-6

8.1.5 Interrupt Stack And Interrupt Record .......................................................................  8-6
8.1.6 Posting Interrupts ....................................................................................................  8-7

8.1.6.1 Posting Software Interrupts via sysctl ..............................................................  8-8
8.1.6.2 Posting Software Interrupts Directly in the Interrupt Table ...............................  8-9
8.1.6.3 Posting External Interrupts ...............................................................................  8-9
8.1.6.4 Posting Hardware Interrupts ..........................................................................  8-10

8.1.7 Resolving Interrupt Priority ....................................................................................  8-10
8.1.8 Sampling Pending Interrupts in the Interrupt Table ...............................................  8-10
8.1.9 Saving the Interrupt Mask .....................................................................................  8-12

8.2 THE i960® CORE PROCESSOR INTERRUPT CONTROLLER.................................  8-13
ix

8.2.1 Interrupt Controller Dedicated Mode .....................................................................  8-15
8.2.2 Interrupt Detection .................................................................................................  8-16
8.2.3 Non-Maskable Interrupt (NMI#) .............................................................................  8-17
8.2.4 Timer Interrupts .....................................................................................................  8-18
8.2.5 Software Interrupts ................................................................................................  8-18
8.2.6 Interrupt Operation Sequence ...............................................................................  8-18
8.2.7 Setting Up the Interrupt Controller .........................................................................  8-19
8.2.8 Interrupt Service Routines .....................................................................................  8-20
8.2.9 Interrupt Context Switch ........................................................................................  8-20

8.2.9.1 Servicing An Interrupt From Executing State .................................................  8-21
8.2.9.2 Servicing An Interrupt From Interrupted State ...............................................  8-22



CONTENTS

8.3 PCI AND PERIPHERAL INTERRUPTS ......................................................................  8-22
8.3.1 Pin Descriptions .....................................................................................................  8-25
8.3.2 PCI Interrupt Routing .............................................................................................  8-26
8.3.3 Internal Peripheral Interrupt Routing .....................................................................  8-26

8.3.3.1 XINT6 Interrupt Sources .................................................................................  8-27
8.3.3.2 XINT7 Interrupt Sources .................................................................................  8-27
8.3.3.3 NMI Interrupt Sources ....................................................................................  8-28

8.3.4 PCI Outbound Doorbell Interrupts .........................................................................  8-30

8.4 MEMORY-MAPPED CONTROL REGISTERS............................................................  8-31
8.4.1 PCI Interrupt Routing Select Register (PIRSR) .....................................................  8-32
8.4.2 Interrupt Control Register – ICON .........................................................................  8-34
8.4.3 Interrupt Mapping Registers – IMAP0-IMAP2 ........................................................  8-35
8.4.4 Interrupt Mask – IMSK and Interrupt Pending Registers – IPND ...........................  8-37
8.4.5 XINT6 Interrupt Status Register – X6ISR ..............................................................  8-39
8.4.6 XINT7 Interrupt Status Register – X7ISR ..............................................................  8-40
8.4.7 NMI Interrupt Status Register – NISR ....................................................................  8-41
8.4.8 Interrupt Controller Register Access Requirements ..............................................  8-43
8.4.9 Default and Reset Register Values .......................................................................  8-44

8.5 OPTIMIZING INTERRUPT PERFORMANCE.............................................................  8-44
8.5.1 Interrupt Service Latency .......................................................................................  8-46
8.5.2 Features to Improve Interrupt Performance ...........................................................  8-46

8.5.2.1 Vector Caching Option ...................................................................................  8-46
8.5.2.2 Caching Interrupt Routines and Reserving Register Frames .........................  8-47
8.5.2.3 Caching the Interrupt Stack ............................................................................  8-47

8.5.3 Base Interrupt Latency ..........................................................................................  8-48
8.5.4 Maximum Interrupt Latency ...................................................................................  8-48
8.5.5 Avoiding Certain Destinations for MDU Operations ...............................................  8-50
8.5.6 Secondary PCI to Primary PCI Interrupt Routing Latency .....................................  8-51

CHAPTER 9
FAULTS

9.1 FAULT HANDLING OVERVIEW ...................................................................................  9-1

9.2 FAULT TYPES ..............................................................................................................  9-3
x

9.3 FAULT TABLE...............................................................................................................  9-4

9.4 STACK USED IN FAULT HANDLING...........................................................................  9-6

9.5 FAULT RECORD...........................................................................................................  9-6
9.5.1 Fault Record Description .........................................................................................  9-7
9.5.2 Fault Record Location .............................................................................................  9-9

9.6 MULTIPLE AND PARALLEL FAULTS ..........................................................................  9-9
9.6.1 Multiple Non-Trace Faults on the Same Instruction ...............................................  9-10
9.6.2 Multiple Trace Fault Conditions on the Same Instruction ......................................  9-10
9.6.3 Multiple Trace and Non-Trace Fault Conditions on the Same Instruction .............  9-10
9.6.4 Parallel Faults ........................................................................................................  9-10

9.6.4.1 Faults on Multiple Instructions Executed in Parallel .......................................  9-11



CONTENTS

9.6.4.2 Fault Record for Parallel Faults ......................................................................  9-12
9.6.5 Override Faults ......................................................................................................  9-12
9.6.6 System Error .........................................................................................................  9-13

9.7 FAULT HANDLING PROCEDURES...........................................................................  9-13
9.7.1 Possible Fault Handling Procedure Actions ..........................................................  9-14
9.7.2 Program Resumption Following a Fault ................................................................  9-14

9.7.2.1 Faults Happening Before Instruction Execution .............................................  9-14
9.7.2.2 Faults Happening During Instruction Execution .............................................  9-15
9.7.2.3 Faults Happening After Instruction Execution ................................................  9-15

9.7.3 Return Instruction Pointer (RIP) ............................................................................  9-15
9.7.4 Returning to the Point in the Program Where the Fault Occurred .........................  9-16
9.7.5 Returning to a Point in the Program Other Than Where the Fault Occurred .........  9-16
9.7.6 Fault Controls ........................................................................................................  9-16

9.8 FAULT HANDLING ACTION.......................................................................................  9-17
9.8.1 Local Fault Call ......................................................................................................  9-18
9.8.2 System-Local Fault Call ........................................................................................  9-18
9.8.3 System-Supervisor Fault Call ................................................................................  9-18
9.8.4 Faults and Interrupts .............................................................................................  9-20

9.9 PRECISE AND IMPRECISE FAULTS ........................................................................  9-20
9.9.1 Precise Faults ........................................................................................................  9-20
9.9.2 Imprecise Faults ....................................................................................................  9-21
9.9.3 Asynchronous Faults .............................................................................................  9-21
9.9.4 No Imprecise Faults (AC.nif) Bit ............................................................................  9-21
9.9.5 Controlling Fault Precision ....................................................................................  9-21

9.10 FAULT REFERENCE..................................................................................................  9-22
9.10.1 ARITHMETIC Faults ..............................................................................................  9-24
9.10.2 CONSTRAINT Faults ............................................................................................  9-25
9.10.3 OPERATION Faults ..............................................................................................  9-26
9.10.4 OVERRIDE Faults .................................................................................................  9-28
9.10.5 PARALLEL Faults .................................................................................................  9-29
9.10.6 PROTECTION Faults ............................................................................................  9-30
9.10.7 TRACE Faults .......................................................................................................  9-31
9.10.8 TYPE Faults ..........................................................................................................  9-34
xi

CHAPTER 10
TRACING AND DEBUGGING

10.1 TRACE CONTROLS ...................................................................................................  10-1
10.1.1 Trace Controls Register – TC ................................................................................  10-2
10.1.2 PC Trace Enable Bit and Trace-Fault-Pending Flag .............................................  10-3

10.2 TRACE MODES..........................................................................................................  10-3
10.2.1 Instruction Trace ....................................................................................................  10-3
10.2.2 Branch Trace .........................................................................................................  10-4
10.2.3 Call Trace ..............................................................................................................  10-4
10.2.4 Return Trace .........................................................................................................  10-4



CONTENTS

10.2.5 Prereturn Trace .....................................................................................................  10-4
10.2.6 Supervisor Trace ...................................................................................................  10-5
10.2.7 Mark Trace ............................................................................................................  10-5

10.2.7.1 Software Breakpoints .....................................................................................  10-5
10.2.7.2 Hardware Breakpoints ....................................................................................  10-5
10.2.7.3 Requesting Modification Rights to Hardware Breakpoint Resources .............  10-6
10.2.7.4 Breakpoint Control Register – BPCON ...........................................................  10-8
10.2.7.5 Data Address Breakpoint Registers – DABx ..................................................  10-9
10.2.7.6 Instruction Breakpoint Registers – IPBx .......................................................  10-10

10.3 GENERATING A TRACE FAULT..............................................................................  10-11

10.4 HANDLING MULTIPLE TRACE EVENTS.................................................................  10-12

10.5 TRACE FAULT HANDLING PROCEDURE ..............................................................  10-12
10.5.1 Tracing and Interrupt Procedures ........................................................................  10-12
10.5.2 Tracing on Calls and Returns ..............................................................................  10-13

10.5.2.1 Tracing on Explicit Call .................................................................................  10-13
10.5.2.2 Tracing on Implicit Call .................................................................................  10-14
10.5.2.3 Tracing on Return from Explicit Call .............................................................  10-15
10.5.2.4 Tracing on Return from Implicit Call: Fault Case ..........................................  10-15
10.5.2.5 Tracing on Return from Implicit Call: Interrupt Case ....................................  10-15

CHAPTER 11
INITIALIZATION AND SYSTEM REQUIREMENTS

11.1 OVERVIEW .................................................................................................................  11-1
11.1.1 Core Initialization ...................................................................................................  11-1
11.1.2 General Initialization ..............................................................................................  11-2

11.2 80960Rx INITIALIZATION...........................................................................................  11-2
11.2.1 Initialization Modes ................................................................................................  11-2
11.2.2 Mode 0 Initialization ...............................................................................................  11-3
11.2.3 Mode 1 Initialization ...............................................................................................  11-3
11.2.4 Mode 2 Initialization ...............................................................................................  11-4
11.2.5 Mode 3 (Default Mode) ..........................................................................................  11-4
11.2.6 Secondary PCI Bus Arbitration Unit ......................................................................  11-6
11.2.7 Local Bus Arbitration Unit ......................................................................................  11-6
xii

11.2.8 Reset State Operation ...........................................................................................  11-6
11.2.8.1 i960® Rx I/O Processor Reset State Operation ..............................................  11-6
11.2.8.2 i960® Jx Core Processor Reset State Operation ...........................................  11-7

11.3 i960® CORE PROCESSOR INITIALIZATION.............................................................  11-7
11.3.1 Self Test Function (STEST, FAIL#) .......................................................................  11-9

11.3.1.1 The STEST Signal ..........................................................................................  11-9
11.3.1.2 Local Bus Confidence Test ............................................................................  11-9
11.3.1.3 The Fail Signal (FAIL#) ..................................................................................  11-9
11.3.1.4 IMI Alignment Check and Core Processor Error ..........................................  11-10
11.3.1.5 FAIL# Code ..................................................................................................  11-11

11.4 INITIAL MEMORY IMAGE (IMI) ................................................................................  11-11
11.4.1 Initialization Boot Record (IBR) ...........................................................................  11-14



CONTENTS

11.4.2 Process Control Block – PRCB ...........................................................................  11-17
11.4.3 Process PRCB Flow ............................................................................................  11-19

11.4.3.1 AC Initial Image ............................................................................................  11-20
11.4.3.2 Fault Configuration Word .............................................................................  11-20
11.4.3.3 Instruction Cache Configuration Word .........................................................  11-20
11.4.3.4 Register Cache Configuration Word ............................................................  11-20

11.4.4 Control Table .......................................................................................................  11-21

11.5 DEVICE IDENTIFICATION ON RESET....................................................................  11-23

11.6 REINITIALIZING AND RELOCATING DATA STRUCTURES ..................................  11-24

11.7 SYSTEM REQUIREMENTS......................................................................................  11-25
11.7.1 Clocking ...............................................................................................................  11-25
11.7.2 Output Clocks ......................................................................................................  11-25
11.7.3 Reset ...................................................................................................................  11-26
11.7.4 Power and Ground Requirements (VCC, VSS) .....................................................  11-27
11.7.5 Power and Ground Planes ..................................................................................  11-27
11.7.6 Decoupling Capacitors ........................................................................................  11-28
11.7.7 High Frequency Design Considerations ..............................................................  11-28
11.7.8 Line Termination ..................................................................................................  11-28
11.7.9 Latchup ................................................................................................................  11-30
11.7.10 Interference .........................................................................................................  11-30

CHAPTER 12
CORE PROCESSOR 
LOCAL BUS CONFIGURATION

12.1 MEMORY ATTRIBUTES.............................................................................................  12-1
12.1.1 Physical Memory Attributes ...................................................................................  12-1
12.1.2 Logical Memory Attributes .....................................................................................  12-2

12.2 PROGRAMMING THE PHYSICAL MEMORY ATTRIBUTES (PMCON REGISTERS) 12-3
12.2.1 Local Bus Width ....................................................................................................  12-5

12.3 PHYSICAL MEMORY ATTRIBUTES AT INITIALIZATION.........................................  12-5
12.3.1 Bus Control Register – BCON ...............................................................................  12-6

12.4 BOUNDARY CONDITIONS FOR PHYSICAL MEMORY REGIONS ..........................  12-6
12.4.1 Internal Memory Locations ....................................................................................  12-7
xiii

12.4.2 Bus Transactions Across Region Boundaries .......................................................  12-7
12.4.3 Modifying the PMCON Registers ...........................................................................  12-7

12.5 PROGRAMMING THE LOGICAL MEMORY ATTRIBUTES .......................................  12-8
12.5.1 Logical Memory Address Registers - LMADR0:1 ..................................................  12-8
12.5.2 Defining the Effective Range of a Logical Data Template ...................................  12-10
12.5.3 Data Caching Enable ..........................................................................................  12-10
12.5.4 Enabling the Logical Memory Template ..............................................................  12-11
12.5.5 Initialization ..........................................................................................................  12-11
12.5.6 Boundary Conditions for Logical Memory Templates ..........................................  12-11

12.5.6.1 Internal Memory Locations and Peripheral MMRs .......................................  12-11
12.5.6.2 Overlapping Logical Data Template Ranges ...............................................  12-11



CONTENTS

12.5.6.3 Accesses Across LMT Boundaries ...............................................................  12-12
12.5.7 Modifying the LMT Registers ...............................................................................  12-12

CHAPTER 13
LOCAL BUS

13.1 OVERVIEW .................................................................................................................  13-2
13.1.1 Bus Operation ........................................................................................................  13-3

13.2 BASIC BUS STATES ..................................................................................................  13-3

13.3 BUS SIGNAL TYPES ..................................................................................................  13-5
13.3.1 Clock Signal ...........................................................................................................  13-5
13.3.2 Address/Data Signal Definitions ............................................................................  13-5
13.3.3 Control/Status Signal Definitions ...........................................................................  13-5
13.3.4 Bus Width ..............................................................................................................  13-6
13.3.5 Basic Bus Accesses ..............................................................................................  13-8
13.3.6 Burst Transactions ...............................................................................................  13-10

13.3.6.1 i960® Core Processor Burst Transactions ....................................................  13-10
13.3.6.2 ATU and DMA Burst Transactions ...............................................................  13-17

13.3.7 Wait States ..........................................................................................................  13-18
13.3.7.1 Recovery States ...........................................................................................  13-21

13.4 BUS AND CONTROL SIGNALS DURING RECOVERY AND IDLE STATES ..........  13-23

13.5 ATOMIC BUS TRANSACTIONS...............................................................................  13-23

13.6 BUS ARBITRATION..................................................................................................  13-24
13.6.1 HOLD/HOLDA Protocol .......................................................................................  13-25

CHAPTER 14
MEMORY CONTROLLER

14.1 SUPPORTED MEMORY TYPES ................................................................................  14-1

14.2 THEORY OF OPERATION .........................................................................................  14-2

14.3 MEMORY CONTROLLER WAIT STATES..................................................................  14-3

14.4 ROM, SRAM AND FLASH CONTROL ........................................................................  14-4

14.5 MEMORY BANK PROGRAMMING REGISTERS.......................................................  14-7
14.5.1 Memory Bank Control Register - MBCR ................................................................  14-7
14.5.2 Memory Bank Base Address Registers - MBBAR0:1 ..........................................  14-10
xiv

14.5.3 Memory Bank Wait State Registers - MBRWS0:1, MBWWS0:1 .........................  14-11
14.5.3.1 Memory Bank Read Wait State Registers - MBRWS0:1 ..............................  14-11
14.5.3.2 Memory Bank Write Wait State Registers - MBWWS0:1 .............................  14-13

14.5.4 Memory Bank Waveforms ...................................................................................  14-14
14.5.5 Extending Memory Write Enable Signals ............................................................  14-18

14.6 DRAM CONTROL .....................................................................................................  14-19
14.6.1 DRAM Organization and Configuration ...............................................................  14-20
14.6.2 DRAM Addressing ...............................................................................................  14-24
14.6.3 DRAM Registers ..................................................................................................  14-24
14.6.4 DRAM Bank Control Register — DBCR ..............................................................  14-25
14.6.5 DRAM Base Address Register — DBAR .............................................................  14-27



CONTENTS

14.6.6 DRAM Read Wait State Register — DRWS ........................................................  14-28
14.6.7 DRAM Write Wait State Register — DWWS .......................................................  14-30
14.6.8 DRAM Refresh Interval Register — DRIR ...........................................................  14-32

14.7 ERROR CHECKING AND REPORTING ..................................................................  14-34
14.7.1 DRAM Parity Enable Register — DPER ..............................................................  14-35
14.7.2 Bus Monitor Enable Register — BMER ...............................................................  14-36
14.7.3 Memory Error Address Register — MEAR ..........................................................  14-37
14.7.4 Local Processor Interrupt Status Register — LPISR ...........................................  14-38

14.8 DRAM WAVEFORMS ...............................................................................................  14-39
14.8.1 Non-Interleaved Fast Page-Mode DRAM Waveform ..........................................  14-39
14.8.2 Interleaved FPM DRAM Waveform .....................................................................  14-40
14.8.3 EDO DRAM Waveform ........................................................................................  14-43
14.8.4 BEDO DRAM Waveform .....................................................................................  14-45

14.9 INITIALIZING DRAM DEVICES ................................................................................  14-47

14.10 OVERLAPPING MEMORY REGIONS......................................................................  14-48

CHAPTER 15
PCI-TO-PCI BRIDGE UNIT

15.1 OVERVIEW.................................................................................................................  15-1

15.2 THEORY OF OPERATION .........................................................................................  15-2

15.3 ARCHITECTURAL DESCRIPTION.............................................................................  15-3
15.3.1 Primary PCI Interface ............................................................................................  15-3
15.3.2 Secondary PCI Interface .......................................................................................  15-4
15.3.3 Buffers ...................................................................................................................  15-5
15.3.4 Configuration Registers .........................................................................................  15-5

15.4 CONFIGURATION ACCESSES..................................................................................  15-6
15.4.1 Private Configuration Commands (Type 0) on the Secondary Interface ...............  15-7
15.4.2 Special Cycles .......................................................................................................  15-8

15.5 ADDRESS DECODING...............................................................................................  15-9
15.5.1 I/O Address Space ..............................................................................................  15-10

15.5.1.1 Disabling the I/O Address Range .................................................................  15-10
15.5.1.2 ISA Mode .....................................................................................................  15-11
xv

15.5.2 Memory Address Space ......................................................................................  15-11
15.5.2.1 Disabling the Memory Address Range .........................................................  15-13

15.5.3 VGA Address Support .........................................................................................  15-13
15.5.3.1 VGA Compatible Addressing .......................................................................  15-13
15.5.3.2 VGA Palette Snooping .................................................................................  15-14

15.5.4 64-Bit Address Decoding - Dual Address Cycles ................................................  15-15
15.5.5 Private Address Space ........................................................................................  15-16
15.5.6 Address Decode Summary .................................................................................  15-16

15.6 BRIDGE OPERATION ..............................................................................................  15-22
15.6.1 PCI Interfaces ......................................................................................................  15-22
15.6.2 Claiming a PCI Transaction .................................................................................  15-23

15.6.2.1 Master Latency Timers .................................................................................  15-23



CONTENTS

15.6.2.2 Delayed Transactions ...................................................................................  15-23
15.6.2.3 Posted Transactions .....................................................................................  15-24

15.6.3 PCI Read Transactions .......................................................................................  15-24
15.6.4 PCI Write Transactions ........................................................................................  15-26

15.6.4.1 Delayed Write Transactions .........................................................................  15-27
15.6.4.2 Posted Write Transactions ...........................................................................  15-27
15.6.4.3 Memory Write Command ..............................................................................  15-28
15.6.4.4 Memory Write and Invalidate Command ......................................................  15-28
15.6.4.5 I/O Write Command ......................................................................................  15-29
15.6.4.6 Write Boundaries ..........................................................................................  15-29
15.6.4.7 Fast Back to Back Transactions ...................................................................  15-29

15.7 BUFFERS..................................................................................................................  15-29
15.7.1 Buffer Organization ..............................................................................................  15-30
15.7.2 Buffer Operation ..................................................................................................  15-30
15.7.3 Transaction Ordering Rules .................................................................................  15-30

15.8 BRIDGE DATA FLOW...............................................................................................  15-30
15.8.1 Downstream Delayed Read Transaction .............................................................  15-31
15.8.2 Downstream Delayed Write Transaction .............................................................  15-31
15.8.3 Downstream Posted Write Transaction ...............................................................  15-31
15.8.4 Definitions ............................................................................................................  15-31

15.9 EXCLUSIVE ACCESS ..............................................................................................  15-32

15.10 SYNCHRONIZATION EVENTS ................................................................................  15-33

15.11 PCI TRANSACTION TERMINATION ........................................................................  15-34

15.12 ERROR CONDITIONS ..............................................................................................  15-34
15.12.1 Address Parity Errors ..........................................................................................  15-34

15.12.1.1 Address Parity Errors on Primary Interface ..................................................  15-34
15.12.1.2 Address Parity Errors on Secondary Interface .............................................  15-35

15.12.2 Data Parity Errors ................................................................................................  15-35
15.12.2.1 Read Data Parity ..........................................................................................  15-35
15.12.2.2 Delayed Write Data Parity ............................................................................  15-35
15.12.2.3 Posted Write Data Parity ..............................................................................  15-36

15.12.3 Master-abort ........................................................................................................  15-36
15.12.4 Target-abort .........................................................................................................  15-37
xvi

15.12.5 SERR# Assertion .................................................................................................  15-38

15.13 REGISTER DEFINITIONS ........................................................................................  15-38
15.13.1 Vendor ID Register - VIDR ..................................................................................  15-41
15.13.2 Device ID Register - DIDR ...................................................................................  15-42
15.13.3 Primary Command Register - PCMDR ................................................................  15-42
15.13.4 Primary Status Register - PSR ............................................................................  15-44
15.13.5 Revision ID Register - RIDR ................................................................................  15-46
15.13.6 Class Code Register - CCR .................................................................................  15-46
15.13.7 Cacheline Size Register - CLSR ..........................................................................  15-47
15.13.8 Primary Latency Timer Register - PLTR ..............................................................  15-48
15.13.9 Header Type Register - HTR ...............................................................................  15-49



CONTENTS

15.13.10 Primary Bus Number Register - PBNR ................................................................  15-50
15.13.11 Secondary Bus Number Register - SBNR ...........................................................  15-50
15.13.12 Subordinate Bus Number Register - SubBNR .....................................................  15-51
15.13.13 Secondary Latency Timer Register - SLTR .........................................................  15-52
15.13.14 I/O Base Register - IOBR ....................................................................................  15-52
15.13.15 I/O Limit Register - IOLR .....................................................................................  15-53
15.13.16 Secondary Status Register - SSR .......................................................................  15-54
15.13.17 Memory Base Register - MBR .............................................................................  15-56
15.13.18 Memory Limit Register - MLR ..............................................................................  15-57
15.13.19 Prefetchable Memory Base Register - PMBR .....................................................  15-58
15.13.20 Prefetchable Memory Limit Register - PMLR ......................................................  15-59
15.13.21 Bridge Subsystem Vendor ID Register - BSVIR ..................................................  15-60
15.13.22 Bridge Subsystem ID Register - BSIR .................................................................  15-60
15.13.23 Bridge Control Register - BCR ............................................................................  15-61
15.13.24 Extended Bridge Control Register - EBCR ..........................................................  15-64
15.13.25 Secondary IDSEL Select Register - SISR ...........................................................  15-66
15.13.26 Primary Bridge Interrupt Status Register - PBISR ...............................................  15-68
15.13.27 Secondary Bridge Interrupt Status Register - SBISR ..........................................  15-69
15.13.28 Secondary Arbitration Control Register - SACR ..................................................  15-69
15.13.29 PCI Interrupt Routing Select Register - PIRSR ...................................................  15-70
15.13.30 Secondary I/O Base Register - SIOBR ...............................................................  15-70
15.13.31 Secondary I/O Limit Register - SIOLR .................................................................  15-71
15.13.32 Secondary Memory Base Register - SMBR ........................................................  15-72
15.13.33 Secondary Memory Limit Register - SMLR .........................................................  15-72
15.13.34 Secondary Decode Enable Register - SDER ......................................................  15-73

CHAPTER 16
ADDRESS TRANSLATION UNIT

16.1 OVERVIEW.................................................................................................................  16-2

16.2 ATU TRANSACTION QUEUES ..................................................................................  16-2
16.2.1 Address Queues ....................................................................................................  16-3
16.2.2 Data Queues .........................................................................................................  16-4

16.3 ATU ADDRESS TRANSLATION.................................................................................  16-4
xvii

16.3.1 Inbound Address Translation ................................................................................  16-5
16.3.2 Inbound Write Transaction ....................................................................................  16-9
16.3.3 Inbound Read Transaction ..................................................................................  16-10
16.3.4 Inbound Configuration Cycle Translation ............................................................  16-11
16.3.5 Discard Timers ....................................................................................................  16-11
16.3.6 Outbound Address Translation ............................................................................  16-11

16.3.6.1 Outbound Address Translation Windows .....................................................  16-12
16.3.6.2 Direct Addressing Window ...........................................................................  16-15

16.3.7 Outbound Write Transaction ...............................................................................  16-16
16.3.8 Outbound Read Transaction ...............................................................................  16-17
16.3.9 Private PCI Address Space / Outbound Configuration Cycle Translation ...........  16-18



CONTENTS

16.4 MESSAGING UNIT ...................................................................................................  16-19

16.5 EXPANSION ROM TRANSLATION UNIT.................................................................  16-19

16.6 ATU DATA FLOW ERROR CONDITIONS................................................................  16-20

16.7 REGISTER DEFINITIONS ........................................................................................  16-25
16.7.1 ATU Vendor ID Register - ATUVID ......................................................................  16-29
16.7.2 ATU Device ID Register - ATUDID ......................................................................  16-29
16.7.3 Primary ATU Command Register - PATUCMD ...................................................  16-30
16.7.4 Primary ATU Status Register - PATUSR .............................................................  16-31
16.7.5 ATU Revision ID Register - ATURID ...................................................................  16-32
16.7.6 ATU Class Code Register - ATUCCR .................................................................  16-32
16.7.7 ATU Cacheline Size Register - ATUCLSR ..........................................................  16-33
16.7.8 ATU Latency Timer Register - ATULT .................................................................  16-33
16.7.9 ATU Header Type Register - ATUHTR ................................................................  16-34
16.7.10 ATU BIST Register - ATUBISTR .........................................................................  16-35
16.7.11 Primary Inbound ATU Base Address Register - PIABAR ....................................  16-36
16.7.12 Determining Block Sizes for Base Address Registers .........................................  16-37
16.7.13 ATU Subsystem Vendor ID Register - ASVIR .....................................................  16-40
16.7.14 ATU Subsystem ID Register - ASIR ....................................................................  16-40
16.7.15 Expansion ROM Base Address Register - ERBAR .............................................  16-41
16.7.16 ATU Interrupt Line Register - ATUILR .................................................................  16-42
16.7.17 ATU Interrupt Pin Register - ATUIPR ..................................................................  16-43
16.7.18 ATU Minimum Grant Register - ATUMGNT .........................................................  16-44
16.7.19 ATU Maximum Latency Register - ATUMLAT .....................................................  16-45
16.7.20 Primary Inbound ATU Limit Register - PIALR ......................................................  16-46
16.7.21 Primary Inbound ATU Translate Value Register - PIATVR .................................  16-47
16.7.22 Secondary Inbound ATU Base Address Register - SIABAR ...............................  16-48
16.7.23 Secondary Inbound ATU Limit Register - SIALR .................................................  16-49
16.7.24 Secondary Inbound ATU Translate Value Register - SIATVR .............................  16-50
16.7.25 Primary Outbound Memory Window Value Register - POMWVR .......................  16-51
16.7.26 Primary Outbound I/O Window Value Register - POIOWVR ...............................  16-52
16.7.27 Primary Outbound DAC Window Value Register - PODWVR .............................  16-53
16.7.28 Primary Outbound Upper 64-bit DAC Register - POUDR ....................................  16-54
xviii

16.7.29 Secondary Outbound Memory Window Value Register - SOMWVR ...................  16-55
16.7.30 Secondary Outbound I/O Window Value Register - SOIOWVR ..........................  16-56
16.7.31 Expansion ROM Limit Register - ERLR ...............................................................  16-57
16.7.32 Expansion ROM Translate Value Register - ERTVR ...........................................  16-58
16.7.33 ATU Configuration Register - ATUCR .................................................................  16-58
16.7.34 Primary ATU Interrupt Status Register - PATUISR .............................................  16-61
16.7.35 Secondary ATU Interrupt Status Register - SATUISR .........................................  16-62
16.7.36 Secondary ATU Command Register - SATUCMD ..............................................  16-64
16.7.37 Secondary ATU Status Register - SATUSR ........................................................  16-65
16.7.38 Secondary Outbound DAC Window Value Register - SODWVR ........................  16-66
16.7.39 Secondary Outbound Upper 64-bit DAC Register - SOUDR ...............................  16-67



CONTENTS

16.7.40 Primary Outbound Configuration Cycle Address Register - POCCAR ................  16-68
16.7.41 Secondary Outbound Configuration Cycle Address Register - SOCCAR ...........  16-69
16.7.42 Primary Outbound Configuration Cycle Data Port - POCCDP ............................  16-70
16.7.43 Secondary Outbound Configuration Cycle Data Port - SOCCDP .......................  16-70

16.8 POWERUP/DEFAULT STATUS ...............................................................................  16-71

16.9 RESET MODES ........................................................................................................  16-71

CHAPTER 17
MESSAGING UNIT

17.1 OVERVIEW.................................................................................................................  17-1

17.2 MESSAGE REGISTERS.............................................................................................  17-2
17.2.1 Outbound Messages .............................................................................................  17-2
17.2.2 Inbound Messages ................................................................................................  17-3

17.3 DOORBELL REGISTERS...........................................................................................  17-3
17.3.1 Outbound Doorbells ..............................................................................................  17-3
17.3.2 Inbound Doorbells .................................................................................................  17-4

17.4 CIRCULAR QUEUES..................................................................................................  17-4
17.4.1 Inbound Post Queue .............................................................................................  17-8
17.4.2 Inbound Free Queue .............................................................................................  17-8
17.4.3 Outbound Post Queue ...........................................................................................  17-9
17.4.4 Outbound Free Queue ..........................................................................................  17-9

17.5 INDEX REGISTERS .................................................................................................  17-10

17.6 APIC REGISTERS ....................................................................................................  17-11

17.7 REGISTER DEFINITIONS ........................................................................................  17-12
17.7.1 APIC Register Select Register - ARSR ...............................................................  17-15
17.7.2 APIC Window Register - AWR ............................................................................  17-15
17.7.3 Inbound Message Registers - IMRx ....................................................................  17-16
17.7.4 Outbound Message Registers - OMRx ................................................................  17-17
17.7.5 Inbound Doorbell Register - IDR .........................................................................  17-18
17.7.6 Inbound Interrupt Status Register - IISR .............................................................  17-19
17.7.7 Inbound Interrupt Mask Register - IIMR ..............................................................  17-20
17.7.8 Outbound Doorbell Register - ODR .....................................................................  17-22
xix

17.7.9 Outbound Interrupt Status Register - OISR .........................................................  17-23
17.7.10 Outbound Interrupt Mask Register - OIMR ..........................................................  17-24
17.7.11 Messaging Unit Configuration Register - MUCR .................................................  17-26
17.7.12 Queue Base Address Register - QBAR ..............................................................  17-27
17.7.13 Inbound Free Head Pointer Register - IFHPR .....................................................  17-28
17.7.14 Inbound Free Tail Pointer Register - IFTPR ........................................................  17-29
17.7.15 Inbound Post Head Pointer Register - IPHPR .....................................................  17-30
17.7.16 Inbound Post Tail Pointer Register - IPTPR ........................................................  17-31
17.7.17 Outbound Free Head Pointer Register - OFHPR ................................................  17-32
17.7.18 Outbound Free Tail Pointer Register - OFTPR ...................................................  17-33
17.7.19 Outbound Post Head Pointer Register - OPHPR ................................................  17-34



CONTENTS

17.7.20 Outbound Post Tail Pointer Register - OPTPR ....................................................  17-35
17.7.21 Index Address Register - IAR ..............................................................................  17-36

CHAPTER 18
BUS ARBITRATION

18.1 OVERVIEW .................................................................................................................  18-1

18.2 LOCAL BUS ARBITRATION UNIT..............................................................................  18-2
18.2.1 Local Bus Arbitration Control Register - LBACR ...................................................  18-5
18.2.2 Removing Local Bus Ownership ...........................................................................  18-6
18.2.3 i960® Core Processor Bus Usage .........................................................................  18-7
18.2.4 External Bus Arbitration Support ...........................................................................  18-7
18.2.5 Local Bus Arbitration Latency Counter ..................................................................  18-7
18.2.6 Local Bus Arbitration Latency Counter Register – LBALCR ..................................  18-8
18.2.7 Local Bus Backoff ..................................................................................................  18-9

18.3 SECONDARY PCI ARBITRATION UNIT ....................................................................  18-9
18.3.1 Arbitration Signaling Protocol ..............................................................................  18-11
18.3.2 Secondary Arbitration Control Register - SACR ..................................................  18-11
18.3.3 Secondary Bus Arbitration Parking ......................................................................  18-12

18.4 INTERNAL ARBITRATION UNITS............................................................................  18-13
18.4.1 Internal Master Latency Timer .............................................................................  18-13

CHAPTER 19
TIMERS

19.1 TIMER REGISTERS....................................................................................................  19-2
19.1.1 Timer Mode Registers – TMR0:1 ...........................................................................  19-2

19.1.1.1 Bit 0 - Terminal Count Status Bit (TMRx.tc) ...................................................  19-3
19.1.1.2 Bit 1 - Timer Enable (TMRx.enable) ...............................................................  19-4
19.1.1.3 Bit 2 - Timer Auto Reload Enable (TMRx.reload) ...........................................  19-4
19.1.1.4 Bit 3 - Timer Register Supervisor Read/Write Control (TMRx.sup) ................  19-5
19.1.1.5 Bits 4, 5 - Timer Input Clock Select (TMRx.csel1:0) .......................................  19-5

19.1.2 Timer Count Register – TCR0:1 ............................................................................  19-5
19.1.3 Timer Reload Register – TRR0:1 ..........................................................................  19-6

19.2 TIMER OPERATION ...................................................................................................  19-7
xx

19.2.1 Basic Timer Operation ...........................................................................................  19-7
19.2.2 Load/Store Access Latency for Timer Registers ...................................................  19-8

19.3 TIMER INTERRUPTS ...............................................................................................  19-10

19.4 POWERUP/RESET INITIALIZATION........................................................................  19-10

19.5 UNCOMMON TCRx AND TRRx CONDITIONS........................................................  19-10

19.6 TIMER STATE DIAGRAM .........................................................................................  19-11

CHAPTER 20
DMA CONTROLLER

20.1 OVERVIEW .................................................................................................................  20-1

20.2 THEORY OF OPERATION .........................................................................................  20-2



CONTENTS

20.3 DMA TRANSFER........................................................................................................  20-4
20.3.1 Chain Descriptors ..................................................................................................  20-4
20.3.2 Initiating DMA Transfers ........................................................................................  20-7
20.3.3 Scatter Gather DMA Transfers ..............................................................................  20-7
20.3.4 Synchronizing a Program to Chained Transfers ....................................................  20-8
20.3.5 Appending to The End of a Chain .......................................................................  20-10

20.4 DEMAND MODE DMA ..............................................................................................  20-11

20.5 WAIT STATES INITIATED BY THE DMA CONTROLLER .......................................  20-11

20.6 DATA TRANSFERS..................................................................................................  20-20
20.6.1 PCI to Local Memory Transfers ...........................................................................  20-20
20.6.2 Local Memory to PCI Transfers ...........................................................................  20-21
20.6.3 Local Memory to PCI Transfers using Memory Write and Invalidate ..................  20-22
20.6.4 Exclusive Access .................................................................................................  20-23

20.7 REGISTER DEFINITIONS ........................................................................................  20-24
20.7.1 Channel Control Register - CCRx .......................................................................  20-25
20.7.2 Channel Status Register - CSRx .........................................................................  20-26
20.7.3 Descriptor Address Register - DARx ...................................................................  20-28
20.7.4 Next Descriptor Address Register - NDARx ........................................................  20-29
20.7.5 PCI Address Register - PADRx ...........................................................................  20-30
20.7.6 PCI Upper Address Register - PUADRx ..............................................................  20-31
20.7.7 80960 Local Address Register - LADRx ..............................................................  20-32
20.7.8 Byte Count Register - BCRx ................................................................................  20-33
20.7.9 Descriptor Control Register - DCRx ....................................................................  20-34

20.8 INTERRUPTS ...........................................................................................................  20-36

20.9 PACKING AND UNPACKING ...................................................................................  20-37

20.10 DMA CHANNEL PROGRAMMING EXAMPLES.......................................................  20-39
20.10.1 Software DMA Controller Initialization .................................................................  20-39
20.10.2 Software Start DMA Transfer ..............................................................................  20-39
20.10.3 Software Suspend Channel .................................................................................  20-39

CHAPTER 21
I2C BUS INTERFACE UNIT
xxi

21.1 OVERVIEW.................................................................................................................  21-1

21.2 THEORY OF OPERATION .........................................................................................  21-2

21.3 START AND STOP BUS STATES..............................................................................  21-4
21.3.1 START Condition ..................................................................................................  21-5
21.3.2 No START or STOP Condition ..............................................................................  21-5
21.3.3 STOP Condition ....................................................................................................  21-5

21.4 SERIAL CLOCK LINE (SCL) MANAGEMENT............................................................  21-6
21.4.1 SCL Clock Generation ...........................................................................................  21-6

21.5 DATA AND ADDRESSING MANAGEMENT...............................................................  21-7
21.5.1 Addressing a Slave Device ...................................................................................  21-8

21.6 ARBITRATION ............................................................................................................  21-9



CONTENTS

21.6.1 SCL Arbitration ......................................................................................................  21-9
21.6.2 SDA Arbitration ....................................................................................................  21-10

21.7 I2C ACKNOWLEDGE................................................................................................  21-11

21.8 I2C MASTER AND SLAVE OPERATIONS................................................................  21-13
21.8.1 Master Operations ...............................................................................................  21-14
21.8.2 Slave Operations .................................................................................................  21-15
21.8.3 General Call Address ..........................................................................................  21-16

21.9 THE I2C BUS UNIT AND RESET..............................................................................  21-18

21.10 I2C REGISTERS .......................................................................................................  21-18
21.10.1 I2C Control Register - ICR ...................................................................................  21-19
21.10.2 I2C Status Register- ISR ......................................................................................  21-22
21.10.3 I2C Slave Address Register – ISAR .....................................................................  21-25
21.10.4 I2C Data Buffer Register – IDBR .........................................................................  21-26
21.10.5 I2C Clock Count Register – ICCR ........................................................................  21-27

CHAPTER 22
I/O APIC BUS INTERFACE UNIT

22.1 OVERVIEW .................................................................................................................  22-1

22.2 THEORY OF OPERATION .........................................................................................  22-1

22.3 PHYSICAL CHARACTERISTICS OF AN APIC ..........................................................  22-2

22.4 I/O APIC EMULATION ................................................................................................  22-3

22.5 REGISTER DEFINITIONS ..........................................................................................  22-5
22.5.1 APIC ID Register - APIC ID ...................................................................................  22-6
22.5.2 APIC Arbitration Register - APIC ArbID .................................................................  22-7
22.5.3 EOI Vector Register - EVR ....................................................................................  22-8
22.5.4 Interrupt Message Register - IMR ..........................................................................  22-8
22.5.5 APIC Control/Status Register - APIC CSR ..........................................................  22-11

CHAPTER 23
TEST FEATURES

23.1 ON-CIRCUIT EMULATION (ONCE)............................................................................  23-1
23.1.1 Entering/Exiting ONCE Mode ................................................................................  23-1
xxii

23.1.2 ONCE Mode and Boundary-Scan (JTAG) are Incompatible .................................  23-2
23.1.3 How to use the Data Enable (DEN#) Signal with an In-Circuit Emulator ...............  23-2

23.1.3.1 DEN# Alternatives ..........................................................................................  23-3

23.2 BOUNDARY-SCAN (JTAG) ........................................................................................  23-3
23.2.1 Boundary-Scan Architecture ..................................................................................  23-4
23.2.2 TAP Pins ................................................................................................................  23-5
23.2.3 Instruction Register ................................................................................................  23-5

23.2.3.1 Boundary-Scan Instruction Set .......................................................................  23-6
23.2.4 TAP Test Data Registers .......................................................................................  23-8

23.2.4.1 Device Identification Register .........................................................................  23-8
23.2.4.2 Bypass Register .............................................................................................  23-9
23.2.4.3 RUNBIST Register .........................................................................................  23-9



CONTENTS

23.2.4.4 Boundary-Scan Register ................................................................................  23-9
23.2.5 TAP Controller .....................................................................................................  23-13

23.2.5.1 Test Logic Reset State .................................................................................  23-14
23.2.5.2 Run-Test/Idle State ......................................................................................  23-15
23.2.5.3 Select-DR-Scan State ..................................................................................  23-15
23.2.5.4 Capture-DR State .........................................................................................  23-15
23.2.5.5 Shift-DR State ..............................................................................................  23-15
23.2.5.6 Exit1-DR State .............................................................................................  23-16
23.2.5.7 Pause-DR State ...........................................................................................  23-16
23.2.5.8 Exit2-DR State .............................................................................................  23-16
23.2.5.9 Update-DR State ..........................................................................................  23-16
23.2.5.10 Select-IR Scan State ....................................................................................  23-17
23.2.5.11 Capture-IR State ..........................................................................................  23-17
23.2.5.12 Shift-IR State ................................................................................................  23-17
23.2.5.13 Exit1-IR State ...............................................................................................  23-17
23.2.5.14 Pause-IR State .............................................................................................  23-18
23.2.5.15 Exit2-IR State ...............................................................................................  23-18
23.2.5.16 Update-IR State ...........................................................................................  23-18

23.2.6 Boundary-Scan Example .....................................................................................  23-18

APPENDIX A
MACHINE-LEVEL INSTRUCTION FORMATS

A.1 GENERAL INSTRUCTION FORMAT...............................................................................  A-1

A.2 REG FORMAT .................................................................................................................  A-2

A.3 COBR FORMAT...............................................................................................................  A-3

A.4 CTRL FORMAT................................................................................................................  A-4

A.5 MEM FORMAT.................................................................................................................  A-4
A.5.1 MEMA Format Addressing ........................................................................................  A-5
A.5.2 MEMB Format Addressing ........................................................................................  A-6

APPENDIX B
OPCODES AND EXECUTION TIMES

B.1 INSTRUCTION REFERENCE BY OPCODE ...................................................................  B-1
xxiii

APPENDIX C
MEMORY-MAPPED REGISTERS

C.1 OVERVIEW ...................................................................................................................... C-1

C.2 SUPERVISOR SPACE FAMILY REGISTERS AND TABLES.......................................... C-1

C.3 PERIPHERAL MEMORY-MAPPED REGISTER ADDRESS SPACE .............................. C-5





FIGURES

Figure 1-1. i960® Rx I/O Processor Functional Block Diagram..............................................  1-1

Figure 1-2. 80960JF Core Processor Block Diagram.............................................................  1-5

Figure 2-1. Data Types and Ranges ......................................................................................  2-1

Figure 3-1. i960® Rx I/O Processor Programming Environment............................................  3-2

Figure 3-2. Local Memory Address Space...........................................................................  3-11

Figure 4-1. Internal Data RAM and Register Cache ..............................................................  4-2

Figure 5-1. Machine-Level Instruction Formats......................................................................  5-2

Figure 6-1. dcctl src1 and src/dst Formats ..........................................................................  6-40

Figure 6-2. Store Data Cache to Memory Output Format ....................................................  6-41

Figure 6-3. D-Cache Tag and Valid Bit Formats ..................................................................  6-41

Figure 6-4. icctl src1 and src/dst Formats ...........................................................................  6-59

Figure 6-5. Store Instruction Cache to Memory Output Format ...........................................  6-61

Figure 6-6. I-Cache Set Data, Tag and Valid Bit Formats....................................................  6-62

Figure 6-7. Src1 Operand Interpretation ............................................................................  6-114

Figure 6-8. src/dst Interpretation for Breakpoint Resource Request..................................  6-115

Figure 7-1. Procedure Stack Structure and Local Registers..................................................  7-3

Figure 7-2. Frame Spill...........................................................................................................  7-9

Figure 7-3. Frame Fill ...........................................................................................................  7-10

Figure 7-4. System Procedure Table ...................................................................................  7-16

Figure 8-1. Interrupt Handling Data Structures ......................................................................  8-2

Figure 8-2. Interrupt Table .....................................................................................................  8-4

Figure 8-3. Storage of an Interrupt Record on the Interrupt Stack .........................................  8-7

Figure 8-4. Interrupt Controller .............................................................................................  8-14

Figure 8-5. Interrupt Pin Vector Assignment ........................................................................  8-16

Figure 8-6. Interrupt Fast Sampling .....................................................................................  8-17

Figure 8-7. Interrupt Controller Connections for 80960RP 33/5.0 Volt.................................  8-23

Figure 8-8. Interrupt Controller Connections for 80960Rx 33/3.3 Volt .................................  8-24

Figure 8-9. Interrupt Service Flowchart ................................................................................  8-45

Figure 9-1. Fault-Handling Data Structures ...........................................................................  9-1

Figure 9-2. Fault Table and Fault Table Entries.....................................................................  9-5
xxv

Figure 9-3. Fault Record ........................................................................................................  9-8

Figure 9-4. Storage of the Fault Record on the Stack............................................................  9-9

Figure 11-1. Initialization Examples Flow Chart .....................................................................  11-5

Figure 11-2. Processor Initialization Flow ..............................................................................  11-8

Figure 11-3. FAIL# Timing ...................................................................................................  11-10

Figure 11-4. Initial Memory Image (IMI) and Process Control Block (PRCB) ......................  11-13

Figure 11-5. Control Table ...................................................................................................  11-22

Figure 11-6. VCCPLL Lowpass Filter .....................................................................................  11-27

Figure 11-7. Reducing Characteristic Impedance................................................................  11-28

Figure 11-8.  Series Termination..........................................................................................  11-29



FIGURES

Figure 11-9. AC Termination................................................................................................  11-30

Figure 11-10. Avoid Closed-Loop Signal Paths .....................................................................  11-31

Figure 12-1. PMCON and LMCON Example .........................................................................  12-3

Figure 13-1. The Local Bus....................................................................................................  13-1

Figure 13-2. Bus States with Arbitration ................................................................................  13-4

Figure 13-3. Data Width and Byte Encodings........................................................................  13-7

Figure 13-4. Non-Burst Read and Write Transactions Without Wait States, 32-Bit Bus........  13-9

Figure 13-5. i960® Core Processor Summary of Aligned and Unaligned Accesses 
(32-Bit Bus)......................................................................................................  13-13

Figure 13-6. i960® Core Processor Summary of Aligned and Unaligned Accesses
(32-Bit Bus) (Continued) 13-14

Figure 13-7. Burst Read and Write Transactions w/o Wait States, 8-bit Bus.......................  13-15

Figure 13-8. Burst Read and Write Transactions w/o Wait States, 32-bit Bus.....................  13-16

Figure 13-9. ATU or DMA 7-Word Unaligned Burst Transfer...............................................  13-18

Figure 13-10. Burst Write Transactions With 2,1,1,1 Wait States, 32-bit Bus........................  13-20

Figure 13-11. Burst Read/Write Transactions with 1,0 Wait States - 
Extra TR State on Read, 16-Bit Bus 13-22

Figure 13-12. The LOCK# Signal...........................................................................................  13-24

Figure 13-13. Arbitration Timing Diagram for a Bus Master...................................................  13-26

Figure 14-1. 80960Rx Processor Integrated Memory Controller ...........................................  14-1

Figure 14-2. Memory Controller Signal Overview ..................................................................  14-3

Figure 14-3. Bank0 32-Bit ROM or SRAM System ................................................................  14-5

Figure 14-4. Bank0 8-Bit ROM or SRAM System ..................................................................  14-6

Figure 14-5. 32-Bit Bus, Burst Flash Memory, Read Access with 2,1,1,1 Wait States ........  14-14

Figure 14-6. 32-Bit Bus, SRAM Write Access with 2,1,1,1, Wait States ..............................  14-15

Figure 14-7. 32-Bit Bus, SRAM Read Accesses with 0 Wait States ....................................  14-16

Figure 14-8. 32-Bit Bus, SRAM Write Access With 0 Wait States .......................................  14-17

Figure 14-9. 32-Bit Bus, Write Access with Extended MWE3:0#.........................................  14-18

Figure 14-10. Non-Interleaved, 32-Bit, Single Bank, DRAM System.....................................  14-21

Figure 14-11. Interleaved 32-Bit DRAM System, 1 Bank, 2 Leaves ......................................  14-22

Figure 14-12. DRAM Read Cycle Programmable Parameter Example .................................  14-28
xxvi

Figure 14-13. DRAM Write Cycle Programmable Parameter Example .................................  14-30

Figure 14-14. CAS#-Before-RAS# DRAM Refresh................................................................  14-32

Figure 14-15. FPM DRAM System Read Access, Non-Interleaved, 3,1,1,1, Wait States .....  14-39

Figure 14-16. FPM DRAM System Write Cycle .....................................................................  14-40

Figure 14-17. FPM DRAM System Read Access, Interleaved, 2,0,0,0 Wait States ..............  14-41

Figure 14-18. FPM DRAM System Write Access, Interleaved, 1,0,0,0 Wait States ..............  14-42

Figure 14-19. EDO DRAM System Read Access, 2,0,0,0, Wait States.................................  14-43

Figure 14-20. EDO DRAM System Write Access, 1,0,0,0 Wait States ..................................  14-44

Figure 14-21. BEDO DRAM System Read Access, 3,0,0,0, Wait States ..............................  14-45

Figure 14-22. BEDO DRAM System Write Access, 1,0,0,0 Wait States................................  14-46



FIGURES

Figure 14-23. BEDO WBCR Program Cycle ..........................................................................  14-47

Figure 15-1. Bridge Operation................................................................................................  15-2

Figure 15-2. PCI-to-PCI Bridge Unit Block Diagram ..............................................................  15-3

Figure 15-3. PCI Configuration Access Formats....................................................................  15-6

Figure 15-4. Secondary IDSEL Example ...............................................................................  15-9

Figure 15-5. ISA Mode Address Decode .............................................................................  15-11

Figure 15-6. Overlapping Memory Address Ranges ............................................................  15-12

Figure 15-7. VGA Compatible Addressing ...........................................................................  15-14

Figure 15-8. Bridge Lock Mechanism ..................................................................................  15-33

Figure 15-9. Bridge Configuration Register Space ..............................................................  15-39

Figure 16-1. Address Translation Unit (ATU) Block Diagram.................................................  16-1

Figure 16-2. ATU Transaction Queue Block Diagram............................................................  16-3

Figure 16-3. Inbound Address Detection ...............................................................................  16-6

Figure 16-4. Inbound Translation Example ............................................................................  16-8

Figure 16-5. 80960 Local Bus Memory Map - Outbound Translation Window.....................  16-13

Figure 16-6. Outbound Address Translation Windows ........................................................  16-15

Figure 16-7. Direct Addressing Window...............................................................................  16-16

Figure 16-8. ATU Configuration Space Header ...................................................................  16-26

Figure 17-1. Circular Queue Operation..................................................................................  17-7

Figure 17-2. PCI Memory Map.............................................................................................  17-13

Figure 17-3. Initialization Values Programmed by Software ................................................  17-35

Figure 18-1. Local Bus Arbitration Example...........................................................................  18-3

Figure 18-2. Secondary PCI Bus Arbitration Example .........................................................  18-10

Figure 19-1. Timer Functional Diagram .................................................................................  19-1

Figure 19-2. Timer Unit State Diagram ................................................................................  19-12

Figure 20-1. DMA Controller Block Diagram ..........................................................................  20-1

Figure 20-2. DMA Channel Block Diagram ............................................................................  20-3

Figure 20-3. DMA Chain Descriptor .......................................................................................  20-5

Figure 20-4. DMA Chaining Operation ...................................................................................  20-6

Figure 20-5. Example of Gather Chaining..............................................................................  20-8
xxvii

Figure 20-6. Synchronizing to Chained Transfers..................................................................  20-9

Figure 20-7. DMA - Aligned Write to Device, Wait States, Device Always Requesting .......  20-12

Figure 20-8. DMA - Aligned Write to Device, DMA Inserting Wait States, 
Device Always Requesting ..............................................................................  20-13

Figure 20-9. DMA - Aligned Read from Device, DMA Inserting Wait States, 
Device Always Requesting 20-14

Figure 20-10. DMA - Aligned Read from Device, Device Inserting Wait States, 
Device Always Requesting ..............................................................................  20-15

Figure 20-11. DMA - Aligned Write to Device, Zero Wait States, Device ends Transfer .......  20-16

Figure 20-12. DMA - Aligned Write to Device, Zero Wait States, Device ends Transfer .......  20-17

Figure 20-13. DMA - READ from Device, Wait States, Device ends Transfer .......................  20-18



FIGURES

Figure 20-14. DMA - Unaligned Read from Device, DMA Inserting Wait States, 
Device Always Requesting ..............................................................................  20-19

Figure 20-15. Optimization of an Unaligned DMA .................................................................  20-38

Figure 20-16. Software Example for Channel Initialization ....................................................  20-39

Figure 20-17. Software Example for Channel Suspend.........................................................  20-39

Figure 21-1. I2C Unit Block Diagram .....................................................................................  21-1

Figure 21-2. I2C Bus Configuration Example ........................................................................  21-3

Figure 21-3. Bit Transfer on the I2C Bus ...............................................................................  21-4

Figure 21-4. Start and Stop Conditions..................................................................................  21-4

Figure 21-5. Data Format of First Byte in Master Transaction ...............................................  21-8

Figure 21-6. Clock Synchronization During the Arbitration Procedure...................................  21-9

Figure 21-7. Arbitration Procedure of Two Masters .............................................................  21-10

Figure 21-8. Acknowledge on the I2C Bus...........................................................................  21-12

Figure 21-9. Master-Receiver Read from Slave-Transmitter ...............................................  21-14

Figure 21-10. Master-Receiver Read from Slave-Transmitter / Repeated Start / 
Master-Transmitter Write to Slave-Receiver 21-14

Figure 21-11. A Complete Data Transfer ...............................................................................  21-15

Figure 21-12. Master-Transmitter Write to Slave-Receiver....................................................  21-15

Figure 21-13. Master-Receiver Read to Slave-Transmitter ...................................................  21-16

Figure 21-14. Master-Receiver Read to Slave-Transmitter, Repeated START, 
Master-Transmitter Write to Slave-Receiver....................................................  21-16

Figure 21-15. General Call Address ......................................................................................  21-17

Figure 22-1. APIC System Interface ......................................................................................  22-2

Figure 22-2. I/O APIC Emulation Block Diagram ...................................................................  22-4

Figure 23-1. Test Access Port Block Diagram .......................................................................  23-4

Figure 23-2. TAP Controller State Diagram .........................................................................  23-14

Figure 23-3. Example Showing Typical JTAG Operations...................................................  23-20

Figure 23-4. Timing Diagram Illustrating the Loading of Instruction Register ......................  23-21

Figure 23-5. Timing Diagram Illustrating the Loading of Data Register ...............................  23-22

Figure A-1. Instruction Formats ..............................................................................................  A-1
xxviii



TABLES

Table 1-1. Stepping Differences Summary .........................................................................  1-12

Table 2-1. 80960 and PCI Architecture Data Word Notation Differences .............................  2-2

Table 2-2. Memory Addressing Modes .................................................................................  2-5

Table 3-1. Registers and Literals Used as Instruction Operands..........................................  3-3

Table 3-2. Allowable Register Operands ..............................................................................  3-5

Table 3-3. Data Structure Descriptions ...............................................................................  3-10

Table 3-4. Alignment of Data Structures in the Address Space..........................................  3-13

Table 3-5. Arithmetic Controls Register – AC .....................................................................  3-16

Table 3-6. Condition Codes for True or False Conditions...................................................  3-17

Table 3-7. Condition Codes for Equality and Inequality Conditions ....................................  3-17

Table 3-8. Condition Codes for Carry Out and Overflow ....................................................  3-17

Table 3-9. Process Controls Register – PC ........................................................................  3-19

Table 5-1. Instruction Encoding Formats (REG, COBR, CRTL, MEM).................................  5-2

Table 5-2. 80960Rx Instruction Set ......................................................................................  5-4

Table 5-3. Arithmetic Operations ..........................................................................................  5-7

Table 6-1. Pseudo-Code Symbol Definitions ........................................................................  6-3

Table 6-2. Faults Applicable to All Instructions .....................................................................  6-4

Table 6-3. Common Faulting Conditions ..............................................................................  6-4

Table 6-4. Condition Code Mask Descriptions......................................................................  6-6

Table 6-5. concmpo Example: Register Ordering and CC..................................................  6-38

Table 6-6. dcctl Operand Fields .........................................................................................  6-39

Table 6-7. dcctl Status Values and D-Cache Parameters...................................................  6-40

Table 6-8. icctl Operand Fields ..........................................................................................  6-58

Table 6-9. icctl Status Values and I-Cache Parameters .....................................................  6-60

Table 6-10. sysctl Field Definitions ....................................................................................  6-114

Table 6-11. Cache Mode Configuration ..............................................................................  6-115

Table 7-1. Encodings of Entry Type Field in System Procedure Table...............................  7-17

Table 7-2. Previous Frame Pointer Register – PFP............................................................  7-20

Table 7-3. Encoding of Return Status Field ........................................................................  7-21

Table 8-1. Interrupt Input Pin Descriptions .........................................................................  8-25
xxix

Table 8-2. PCI Interrupt Routing Summary for 80960RP 33/5.0 Volt .................................  8-26

Table 8-3. PCI Interrupt Routing Summary for 80960RP 33/3.3 Volt .................................  8-26

Table 8-4. XINT6 Interrupt Sources ....................................................................................  8-27

Table 8-5. XINT7 Interrupt Sources ....................................................................................  8-28

Table 8-6. NMI Interrupt Sources........................................................................................  8-29

Table 8-7. Interrupt Control Registers Memory-Mapped Addresses...................................  8-31

Table 8-8. PCI Interrupt Routing Select Register – PIRSR (80960RP 33/5.0 Volt) ............  8-32

Table 8-9. PCI Interrupt Routing Select Register – PIRSR (80960Rx 33/3.3 Volt).............  8-33

Table 8-10. Interrupt Control Register – ICON .....................................................................  8-34

Table 8-11. Interrupt Map Register 0 – IMAP0 .....................................................................  8-35



TABLES

Table 8-12. Interrupt Map Register 1 – IMAP1 .....................................................................  8-36

Table 8-13. Interrupt Map Register 2 – IMAP2 .....................................................................  8-36

Table 8-14. Interrupt Pending Register – IPND ....................................................................  8-37

Table 8-15. Interrupt Mask Register – IMSK ........................................................................  8-38

Table 8-16. XINT6 Interrupt Status Register – X6ISR ..........................................................  8-39

Table 8-17. XINT7 Interrupt Status Register – X7ISR ..........................................................  8-41

Table 8-18. NMI Interrupt Status Register – NISR ...............................................................  8-43

Table 8-19. Default Interrupt Routing and Status Values Summary .....................................  8-44

Table 8-20. Location of Cached Vectors in Internal RAM.....................................................  8-47

Table 8-21. Base Interrupt Latency ......................................................................................  8-48

Table 8-22. Worst-Case Interrupt Latency Controlled by divo to Destination r15.................  8-49

Table 8-23. Worst-Case Interrupt Latency Controlled by divo to Destination r3...................  8-49

Table 8-24. Worst-Case Interrupt Latency Controlled by calls .............................................  8-49

Table 8-25. Worst-Case Interrupt Latency When Delivering a Software Interrupt................  8-50

Table 8-26. Worst-Case Interrupt Latency Controlled by flushreg of One Stack Frame.......  8-50

Table 9-1. i960® Rx I/O Processor Fault Types and Subtypes.............................................  9-3

Table 9-2. Fault Control Bits and Masks.............................................................................  9-17

Table 10-1. 80960Rx Trace Controls Register – TC ............................................................  10-2

Table 10-2. src/dst Encoding ................................................................................................  10-7

Table 10-3. Breakpoint Control Register – BPCON..............................................................  10-8

Table 10-4.  Configuring the Data Address Breakpoint Registers – DABx...........................  10-8

Table 10-5. Programming the Data Address Breakpoint Modes – DABx .............................  10-9

Table 10-6. Data Address Breakpoint Register – DABx .....................................................  10-10

Table 10-7. Instruction Breakpoint Register – IPBx............................................................  10-10

Table 10-8. Instruction Breakpoint Modes ..........................................................................  10-11

Table 10-9. Tracing on Explicit Call ....................................................................................  10-13

Table 10-10. Tracing on Implicit Call ....................................................................................  10-14

Table 10-11. Tracing on Return from Explicit Call ................................................................  10-15

Table 11-1. Initialization Modes ............................................................................................  11-2

Table 11-2. Reset Values .....................................................................................................  11-6
xxx

Table 11-3. BIST Failure Codes .........................................................................................  11-11

Table 11-4. Non-BIST Failure Codes .................................................................................  11-11

Table 11-5. Initialization Boot Record .................................................................................  11-14

Table 11-6.  PMCON14_15 Register Bit Description in IBR...............................................  11-16

Table 11-7. PRCB Configuration ........................................................................................  11-17

Table 11-8.  Process Control Block Configuration Words...................................................  11-18

Table 11-9.  Processor Device ID Register - PDIDR ..........................................................  11-23

Table 11-10. i960® Core Processor Device ID Register - DEVICEID...................................  11-24

Table 12-1. PMCON Address Mapping ................................................................................  12-4

Table 12-2. Physical Memory Control Registers – PMCON0:15 ..........................................  12-5



TABLES

Table 12-3. Bus Control Register Bit Definitions – BCON ....................................................  12-6

Table 12-4. Logical Memory Address Registers – LMADR0:1..............................................  12-8

Table 12-5. Logical Memory Mask Registers – LMMR0:1 ....................................................  12-9

Table 12-6. Default Logical Memory Configuration Register – DLMCON.............................  12-9

Table 13-1. Differences Between 80960JF and 80960Rx Local Buses................................  13-2

Table 13-2. i960® Core Processor Natural Boundaries for Load and Store Accesses .......  13-11

Table 13-3. i960® Core Processor Summary of Byte Load and Store Accesses ...............  13-11

Table 13-4.  i960® Core Processor Summary of Short Word Load and 
Store Accesses 13-11

Table 13-5. i960® Core Processor Summary of n-Word Load and 
Store Accesses (n = 1, 2, 3, 4) ........................................................................  13-12

Table 14-1. ROM, SRAM and Flash Control Signals............................................................  14-4

Table 14-2. Memory Bank Register Summary ......................................................................  14-7

Table 14-3.  Memory Bank Control Register – MBCR ..........................................................  14-8

Table 14-4. Memory Bank Base Address Registers – MBBAR0:1 .....................................  14-10

Table 14-5. Memory Bank Read Wait States Register – MBRWS0:1.................................  14-12

Table 14-6. Memory Bank Write Wait States Register – MBWWS0:1 ................................  14-13

Table 14-7. Burst Flash Memory, Read Access Example Programming Summary............  14-14

Table 14-8. SRAM Write Access Example Programming Summary...................................  14-15

Table 14-9. SRAM Read Access Example Programming Summary ..................................  14-16

Table 14-10. SRAM Write Access Example Programming Summary...................................  14-17

Table 14-11. Write Access with Extended MWE3:0# Example Programming Summary......  14-18

Table 14-12. DRAM Control Signals.....................................................................................  14-19

Table 14-13. Supported DRAM Configurations ....................................................................  14-20

Table 14-14. Supported DRAM Configurations (Symmetric Addressing Only).....................  14-23

Table 14-15. MA11:0 Address Bits for Non-Interleaved/Interleaved.....................................  14-24

Table 14-16. DRAM Register Summary................................................................................  14-24

Table 14-17. DRAM Bank Control Register — DBCR ..........................................................  14-25

Table 14-18. DRAM Base Address Register — DBAR.........................................................  14-27

Table 14-19. DRAM Bank Read Wait State Register — DRWS ...........................................  14-29
xxxi

Table 14-20. DRAM Bank Write Wait State Register — DWWS ..........................................  14-31

Table 14-21. DRAM Refresh Interval Register — DRIR .......................................................  14-33

Table 14-22. Error Checking and Reporting Register Summary...........................................  14-34

Table 14-23. DRAM Parity Enable Register — DPER..........................................................  14-35

Table 14-24. Bus Monitor Enable Register — BMER ...........................................................  14-36

Table 14-25. Memory Error Address Register — MEAR ......................................................  14-37

Table 14-26. Local Processor Interrupt Status Register — LPISR .......................................  14-38

Table 14-27. FPM (Non-Interleaved) DRAM Example Programming Summary...................  14-39

Table 14-28. FPM (Interleaved) DRAM Example Programming Summary...........................  14-41

Table 14-29. EDO DRAM Example Programming Summary................................................  14-43

Table 14-30. BEDO DRAM Example Programming Summary .............................................  14-45



TABLES

Table 14-31. Memory Precedence .......................................................................................  14-48

Table 15-1. Private PCI Memory IDSEL Select Configurations ............................................  15-8

Table 15-2. VGA Palette Configurations.............................................................................  15-15

Table 15-3. Primary to Secondary Memory Address Decoding Summary .........................  15-17

Table 15-4. Primary to Secondary I/O Address Decoding Summary..................................  15-18

Table 15-5. Secondary to Primary Memory Address Decoding Summary .........................  15-19

Table 15-6. Secondary to Primary I/O Address Decoding Summary..................................  15-20

Table 15-7. PCI Commands ...............................................................................................  15-22

Table 15-8. Delayed Transactions vs. Posted Transactions ..............................................  15-24

Table 15-9. Prefetchable Memory Summary ......................................................................  15-25

Table 15-10. Memory Read Prefetch Size............................................................................  15-25

Table 15-11. Delayed Write Parity Error Summary...............................................................  15-36

Table 15-12. PCI to PCI Bridge Unit Register Summary ......................................................  15-40

Table 15-13. Vendor ID Register - VIDR ..............................................................................  15-41

Table 15-14. Device ID Register - DIDR...............................................................................  15-42

Table 15-15. Primary Command Register - PCMDR ............................................................  15-42

Table 15-16. Primary Status Register - PSR ........................................................................  15-44

Table 15-17. Revision ID Register - RIDR............................................................................  15-46

Table 15-18. Class Code Register - CCR.............................................................................  15-46

Table 15-19. Cacheline Size Register - CLSR .....................................................................  15-47

Table 15-20. Primary Latency Timer Register - PLTR..........................................................  15-48

Table 15-21. Header Type Register - HTR...........................................................................  15-49

Table 15-22. Primary Bus Number Register - PBNR............................................................  15-50

Table 15-23. Secondary Bus Number Register - SBNR .......................................................  15-50

Table 15-24. Subordinate Bus Number Register - SubBNR.................................................  15-51

Table 15-25. Secondary Latency Timer Register - SLTR.....................................................  15-52

Table 15-26. I/O Base Register - IOBR ................................................................................  15-53

Table 15-27. I/O Limit Register - IOLR .................................................................................  15-54

Table 15-28. Secondary Status Register - SSR ...................................................................  15-54

Table 15-29. Memory Base Register - MBR.........................................................................  15-56
xxxii

Table 15-30. Memory Limit Register - MLR..........................................................................  15-57

Table 15-31. Prefetchable Memory Base Register - PMBR .................................................  15-58

Table 15-32. Prefetchable Memory Limit Register - PMLR ..................................................  15-59

Table 15-33. Bridge Subsystem Vendor ID Register - BSVIR..............................................  15-60

Table 15-34. Bridge Subsystem ID Register - BSIR.............................................................  15-60

Table 15-35. Bridge Control Register - BCR ........................................................................  15-61

Table 15-36. Extended Bridge Control Register - EBCR......................................................  15-64

Table 15-37. Secondary IDSEL Select Register - SISR .......................................................  15-66

Table 15-38. Primary Bridge Interrupt Status Register - PBISR ...........................................  15-68

Table 15-39. Secondary Bridge Interrupt Status Register - SBISR ......................................  15-69



TABLES

Table 15-40. Secondary I/O Base Register - SIOBR ............................................................  15-70

Table 15-41. Secondary I/O Limit Register - SIOLR.............................................................  15-71

Table 15-42. Secondary Memory Base Register - SMBR.....................................................  15-72

Table 15-43. Secondary Memory Limit Register - SMLR......................................................  15-73

Table 15-44. Secondary Address Decode ............................................................................  15-73

Table 15-45. Secondary Decode Enable Register - SDER...................................................  15-74

Table 16-1. ATU Command Support ....................................................................................  16-5

Table 16-2. Inbound Write Error Conditions .......................................................................  16-21

Table 16-3. Inbound Read Error Conditions .......................................................................  16-21

Table 16-4. Outbound Write Error Conditions.....................................................................  16-21

Table 16-5. Outbound Read Error Conditions ....................................................................  16-22

Table 16-6. Primary ATU Error Reporting Summary ..........................................................  16-22

Table 16-7. Secondary ATU Error Reporting Summary......................................................  16-23

Table 16-8. ATU Configuration Space Register Summary .................................................  16-26

Table 16-9. ATU Vendor ID Register - ATUVID..................................................................  16-29

Table 16-10. ATU Device ID Register - ATUDID ..................................................................  16-29

Table 16-11. Primary ATU Command Register - PATUCMD ...............................................  16-30

Table 16-12. Primary ATU Status Register - PATUSR.........................................................  16-31

Table 16-13.  ATU Revision ID Register - ATURID ..............................................................  16-32

Table 16-14. ATU Class Code Register - ATUCCR..............................................................  16-32

Table 16-15. ATU Cacheline Size Register - ATUCLSR ......................................................  16-33

Table 16-16. ATU Latency Timer Register - ATULT.............................................................  16-33

Table 16-17. ATU Header Type Register - ATUHTR............................................................  16-34

Table 16-18. ATU BIST Register - ATUBISTR .....................................................................  16-35

Table 16-19. Primary Inbound ATU Base Address Register - PIABAR ................................  16-36

Table 16-20. Device Specific Instructions for Base Address Register..................................  16-37

Table 16-21. Memory Block Size Read Response ...............................................................  16-38

Table 16-22. Base Address and Limit Register Descriptions................................................  16-39

Table 16-23. ATU Subsystem Vendor ID Register - ASVIR .................................................  16-40

Table 16-24. ATU Subsystem ID Register - ASIR ................................................................  16-40
xxxiii

Table 16-25. Expansion ROM Base Address Register - ERBAR .........................................  16-41

Table 16-26. ATU Interrupt Line Register - ATUILR .............................................................  16-42

Table 16-27. ATU Interrupt Pin Register - ATUIPR ..............................................................  16-43

Table 16-28. ATU Minimum Grant Register - ATUMGNT.....................................................  16-44

Table 16-29. ATU Maximum Latency Register - ATUMLAT .................................................  16-45

Table 16-30. Primary Inbound ATU Limit Register - PIALR..................................................  16-46

Table 16-31. Primary Inbound ATU Translate Value Register - PIATVR..............................  16-47

Table 16-32. Secondary Inbound ATU Base Address Register - SIABAR ...........................  16-48

Table 16-33. Secondary Inbound ATU Limit Register - SIALR.............................................  16-49

Table 16-34. Secondary Inbound ATU Translate Value Register - SIATVR.........................  16-50



TABLES

Table 16-35. Primary Outbound Memory Window Value Register - POMWVR ...................  16-51

Table 16-36. Primary Outbound I/O Window Value Register - POIOWVR...........................  16-52

Table 16-37. Primary Outbound DAC Window Value Register - PODWVR .........................  16-53

Table 16-38. Primary Outbound Upper 64-bit DAC Register - POUDR................................  16-54

Table 16-39. Secondary Outbound Memory Window Value Register - SOMWVR...............  16-55

Table 16-40. Secondary Outbound I/O Window Value Register - SOIOWVR......................  16-56

Table 16-41. Expansion ROM Limit Register - ERLR...........................................................  16-57

Table 16-42. Expansion ROM Translate Value Register - ERTVR.......................................  16-58

Table 16-43. ATU Configuration Register - ATUCR .............................................................  16-58

Table 16-44. Primary ATU Interrupt Status Register - PATUISR .........................................  16-61

Table 16-45. Secondary ATU Interrupt Status Register - SATUISR.....................................  16-62

Table 16-46. Secondary ATU Command Register - SATUCMD ..........................................  16-64

Table 16-47. Secondary ATU Status Register - SATUSR....................................................  16-65

Table 16-48. Secondary Outbound DAC Window Value Register - SODWVR ....................  16-66

Table 16-49. Secondary Outbound Upper 64-bit DAC Register - SOUDR...........................  16-67

Table 16-50. Primary Outbound Configuration Cycle Address Register - POCCAR............  16-68

Table 16-51. Secondary Outbound Configuration Cycle Address Register - SOCCAR .......  16-69

Table 17-1. Messaging Unit (MU) Summary.........................................................................  17-2

Table 17-2. Queue Starting Addresses ................................................................................  17-5

Table 17-3. Circular Queue Summary ................................................................................  17-10

Table 17-4. Peripheral Memory-Mapped Register Summary .............................................  17-14

Table 17-5. APIC Register Select Register - ARSR ...........................................................  17-15

Table 17-6. APIC Window Register - AWR ........................................................................  17-16

Table 17-7. Inbound Message Register - IMRx ..................................................................  17-16

Table 17-8. Outbound Message Register - OMRx .............................................................  17-17

Table 17-9. Inbound Doorbell Register - IDR .....................................................................  17-18

Table 17-10. Inbound Interrupt Status Register - IISR .........................................................  17-19

Table 17-11. Inbound Interrupt Mask Register - IIMR ..........................................................  17-20

Table 17-12. Outbound Doorbell Register - ODR.................................................................  17-22

Table 17-13. Outbound Interrupt Status Register - OISR.....................................................  17-23
xxxiv

Table 17-14. Outbound Interrupt Mask Register - OIMR......................................................  17-24

Table 17-15. Messaging Unit Configuration Register - MUCR .............................................  17-26

Table 17-16. Queue Base Address Register - QBAR...........................................................  17-27

Table 17-17. Inbound Free Head Pointer Register - IFHPR.................................................  17-28

Table 17-18. Inbound Free Tail Pointer Register - IFTPR ....................................................  17-29

Table 17-19. Inbound Post Head Pointer Register - IPHPR.................................................  17-30

Table 17-20. Inbound Post Tail Pointer Register - IPTPR ....................................................  17-31

Table 17-21. Outbound Free Head Pointer Register - OFHPR ............................................  17-32

Table 17-22. Outbound Free Tail Pointer Register - OFTPR................................................  17-33

Table 17-23. Outbound Post Head Pointer Register - OPHPR ............................................  17-34



TABLES

Table 17-24. Outbound Post Tail Pointer Register - OPTPR................................................  17-35

Table 17-25. Index Address Register - IAR ..........................................................................  17-36

Table 18-1. Local Bus Masters .............................................................................................  18-2

Table 18-2. Programmed Priority Control .............................................................................  18-3

Table 18-3. Priority Programming for Local Bus Arbitration Example...................................  18-4

Table 18-4. Bus Arbitration Example – Three Bus Masters ..................................................  18-4

Table 18-5. Bus Arbitration Example – Six Bus Masters ......................................................  18-5

Table 18-6. Local Bus Arbitration Control Register – LBACR...............................................  18-5

Table 18-7. Local Bus Arbitration Latency Count Register – LBALCR .................................  18-8

Table 18-8. Priority Programming for Secondary PCI Bus Arbitration Example .................  18-10

Table 18-9. Secondary Arbitration Control Register - SACR ..............................................  18-12

Table 19-1. Timer Performance Ranges...............................................................................  19-2

Table 19-2. Timer Registers .................................................................................................  19-2

Table 19-3. Timer Mode Register – TMRx............................................................................  19-3

Table 19-4. Timer Input Clock (TCLOCK) Frequency Selection ...........................................  19-5

Table 19-5. Timer Count Register – TCRx............................................................................  19-6

Table 19-6. Timer Reload Register – TRRx..........................................................................  19-7

Table 19-7. Timer Mode Register Control Bit Summary .......................................................  19-8

Table 19-8. Timer Responses to Register Bit Settings .........................................................  19-9

Table 19-9. Timer Powerup Mode Settings ........................................................................  19-10

Table 19-10. Uncommon TMRx Control Bit Settings ............................................................  19-11

Table 20-1. DMA Registers...................................................................................................  20-4

Table 20-2. DMA Controller Register Summary..................................................................  20-24

Table 20-3. Channel Control Register - CCRx....................................................................  20-25

Table 20-4. Channel Status Register - CSRx .....................................................................  20-26

Table 20-5. Descriptor Address Register - DARx ...............................................................  20-28

Table 20-6. Next Descriptor Address Register - NDARx ....................................................  20-29

Table 20-7. PCI Address Register - PADRx .......................................................................  20-30

Table 20-8. PCI Upper Address Register - PUADRx..........................................................  20-31

Table 20-9. 80960 Local Address Register - LADRx ..........................................................  20-32
xxxv

Table 20-10. Byte Count Register - BCRx ............................................................................  20-33

Table 20-11. Descriptor Control Register - DCRx.................................................................  20-34

Table 20-12. PCI Commands ...............................................................................................  20-35

Table 20-13. DMA Interrupt Summary ..................................................................................  20-36

Table 21-1. I2C Bus Definitions.............................................................................................  21-2

Table 21-2. ICCR Programming Values ...............................................................................  21-6

Table 21-3. Operation Modes .............................................................................................  21-13

Table 21-4. General Call Address Second Byte Definitions................................................  21-17

Table 21-5. I2C Register Summary.....................................................................................  21-18

Table 21-6. I2C Control Register – ICR ..............................................................................  21-19



TABLES

Table 21-7. I2C Status Register – ISR................................................................................  21-22

Table 21-8. I2C Slave Address Register – ISAR ................................................................  21-25

Table 21-9. I2C Data Buffer Register – IDBR .....................................................................  21-26

Table 21-10. I2C Clock Count Register – ICCR....................................................................  21-27

Table 22-1. I/O APIC Bus Interface Unit Register Summary ................................................  22-5

Table 22-2. APIC ID Register – APIC ID ..............................................................................  22-6

Table 22-3. APIC Arbitration ID Register – APIC ArbID .......................................................  22-7

Table 22-4. EOI Vector Register – EVR ...............................................................................  22-8

Table 22-5. Interrupt Message Register – IMR.....................................................................  22-9

Table 22-6. APIC Control/Status Register – APIC CSR .....................................................  22-11

Table 23-1. TAP Controller Pin Definitions ...........................................................................  23-5

Table 23-2. Boundary-Scan Instruction Set ..........................................................................  23-6

Table 23-3. IEEE Instructions ...............................................................................................  23-7

Table 23-4. i960® Rx I/O Processor Boundary Scan Register Bit Order ............................  23-10

Table A-1. Instruction Field Descriptions ..............................................................................  A-2

Table A-2. Encoding of src1 and src2 in REG Format ..........................................................  A-3

Table A-3. Encoding of src/dst in REG Format .....................................................................  A-3

Table A-4. Encoding of src1 in COBR Format ......................................................................  A-3

Table A-5. Encoding of src2 in COBR Format ......................................................................  A-4

Table A-6. Addressing Modes for MEM Format Instructions.................................................  A-5

Table A-7. Encoding of Scale Field .......................................................................................  A-6

Table B-1. Miscellaneous Instruction Encoding Bits .............................................................  B-1

Table B-2. REG Format Instruction Encodings .....................................................................  B-2

Table B-3. COBR Format Instruction Encodings ..................................................................  B-6

Table B-4. CTRL Format Instruction Encodings ...................................................................  B-7

Table B-5. Cycle Counts for sysctl Operations ....................................................................  B-7

Table B-6. Cycle Counts for icctl Operations .......................................................................  B-8

Table B-7. Cycle Counts for dcctl Operations ......................................................................  B-8

Table B-8. Cycle Counts for intctl Operations ......................................................................  B-8

Table B-9. MEM Format Instruction Encodings ....................................................................  B-9
xxxvi

Table B-10. Addressing Mode Performance .........................................................................  B-10

Table C-1. Access Types ...................................................................................................... C-1

Table C-2. Supervisor Space Register Addresses ................................................................ C-2

Table C-3. Timer Registers ................................................................................................... C-4

Table C-4. 80960 Local Addresses Assigned to Integrated Peripherals ............................... C-5

Table C-5. Peripheral Memory-Mapped Register Locations ................................................. C-6



1
INTRODUCTION





1

ral
eds of
d in
idge,

A)

s up to
 32-bit
f the
CHAPTER 1
INTRODUCTION

1.1 INTEL’S i960 ® Rx I/O PROCESSOR

The i960 Rx I/O Processor integrates a high-performance 80960 “core” into a Periphe
Components Interconnect (PCI) functionality. This integrated processor addresses the ne
intelligent I/O applications and helps reduce intelligent I/O system costs. As indicate
Figure 1-1, the primary functional units include an i960 core processor, PCI to PCI bus br
PCI-to-80960 Address Translation Unit, Messaging Unit, Direct Memory Access (DM
Controller, Memory Controller, Secondary PCI bus Arbitration Unit, I2C Bus Interface Unit, and
APIC Bus Interface Unit.

The PCI Bus is an industry standard, high performance, low latency system bus that operate
132 Mbyte/sec. The PCI-to-PCI bridge provides a connection path between two independent
PCI buses and provides the ability to overcome PCI electrical loading limits. The addition o
i960 core processor brings intelligence to the PCI bus bridge.

i960® JF Core 
Processor

Local Memory

I2C Bus 
Interface Unit

Memory 
Controller

I2C Serial Bus

I/O APIC Bus 
Interface Unit

I/O APIC Bus

Address 
Translation 

Unit

Two DMA 
Channels

Address
Translation

Unit

One DMA 
Channel

Message 
Unit

 Local Bus

Primary ATU Secondary ATU

Internal Local 
Bus Arbiter
1-1

Figure 1-1.  i960® Rx I/O Processor Functional Block Diagram

PCI-to-PCI
Bridge Unit

Secondary 
PCI Arbiter

Secondary PCI Bus
Primary PCI Bus

Internal Primary 
PCI Arbiter

Internal Secondary
 PCI Arbiter



embers
on per
ystem
0Rx
mory-
sors.
ations
INTRODUCTION

1.2 i960® Rx I/O PROCESSOR FEATURES

The i960 Rx I/O Processor (“80960Rx”) combines the i960® JF processor with powerful new
features to create an intelligent I/O processor. This multi-function PCI device is fully compliant
with the PCI Local Bus Specification, revision 2.1. 80960Rx-specific features include:

Because the 80960Rx’s core processor is based upon the 80960JF, the two i960 family m
are object code compatible and can maintain a sustained execution rate of one instructi
clock. The 80960 local bus, a 32-bit multiplexed burst bus, is a high-speed interface to s
memory and I/O. A full complement of control signals simplifies the connection of the 8096
to external components. Physical and logical memory attributes are programmed via me
mapped control registers (MMRs), a feature not found on the i960 Kx, Sx or Cx proces
Physical and logical configuration registers enable the processor to operate with all combin
of bus width and data object alignment. See section 1.3, i960® CORE PROCESSOR FEATURES
(80960JF) (pg. 1-5) for more information. 

The subsections that follow briefly overview each feature. Refer to the appropriate chapter for full
technical descriptions. 

1.2.1 Intelligent I/O (I2O)

Addressing the software side of I/O, the i960 Rx I/O Processor supports the industry-standard
Intelligent I/O (I20) interface for PCI applications. This specification was formed by Intel and
industry leaders in hardware and software to create a standard interface that increases I/O

• Intelligent I/O (I2O) • I2C Bus Interface Unit

• PCI-to-PCI Bridge Unit • I/O APIC Bus Interface Unit

• Private PCI Device Support • Secondary PCI Arbitration Unit

• DMA Controller • Messaging Unit

• Address Translation Unit • Wind River Systems IxWorks* RTOS Compatibility

• Memory Controller
1-2

performance and decreases developer time-to-market. This specification provides a common I/O
device driver that is independent to both the specific controlled device and the host operating
system. The I20 architecture facilitates intelligent I/O subsystems by supporting message passing
between multiple independent processors. I20 provides a standard interface to which all peripheral
and network adapter card software can be developed, and remain compliant with popular network
operating systems. The I20 architecture improves performance by relieving the host of interrupt-
intensive I/O tasks. By providing a standard interface, new technologies can be implemented
quickly and uniformly.



1
. It is

arded
ocks).
960Rx
nfigu-

I bus
 Unit
to use
cles to

gents
wo for
 and
ions in

 local
s space.
e PCI
INTRODUCTION

1.2.2 PCI-to-PCI Bridge Unit

The PCI-to-PCI bridge unit (referred to as “bridge”) connects two independent PCI buses
fully compliant with the PCI-to-PCI Bridge Architecture Specification Revision 1.0 published by
the PCI Special Interest Group. It allows certain bus transactions on one PCI bus to be forw
to the other PCI bus. It allows fully independent PCI bus operation (e.g., independent cl
Dedicated data queues support high-performance bandwidth on the PCI buses. The 80
supports PCI 64-bit Dual Address Cycle (DAC) addressing. The bridge has dedicated PCI co
ration space that is accessible through the primary PCI bus. See CHAPTER 15, PCI-TO-PCI
BRIDGE UNIT.

1.2.3 Private PCI Device Support

A key 80960Rx feature is that it explicitly supports private PCI devices on the secondary PC
without being detected by PCI configuration software. The bridge and Address Translation
work together to hide private devices from PCI configuration cycles and allow these devices 
a private PCI address space. The Address Translation Unit uses normal PCI configuration cy
configure these devices.

1.2.4 DMA Controller

The DMA Controller allows low-latency, high-throughput data transfers between PCI bus a
and 80960 local memory. Three separate DMA channels accommodate data transfers: t
primary PCI bus, one for the secondary PCI bus. The DMA Controller supports chaining
unaligned data transfers. It is programmable through the i960 core processor only, and funct
synchronous mode only. See CHAPTER 20, DMA CONTROLLER.

1.2.5 Address Translation Unit

The Address Translation Unit (ATU) allows PCI transactions direct access to the 80960Rx
memory. The ATU supports transactions between PCI address space and 80960Rx addres
Address translation is controlled through programmable registers accessible from both th
1-3

interface and the i960 core processor. Dual access to registers allows flexibility in mapping the two
address spaces. See CHAPTER 16, ADDRESS TRANSLATION UNIT.

1.2.6 Messaging Unit

The Messaging Unit (MU) provides data transfer between the PCI system and the 80960Rx. It uses
interrupts to notify each system when new data arrives. The MU has four messaging mechanisms:
Message Registers, Doorbell Registers, Circular Queues and Index Registers. Each allows a host
processor or external PCI device and the 80960Rx to communicate through message passing and
interrupt generation. See CHAPTER 17, MESSAGING UNIT.



INTRODUCTION

1.2.7 Memory Controller

The Memory Controller allows direct control of external memory systems, including DRAM,
SRAM, ROM and flash. It provides a direct connect interface to memory that typically does not
require external logic. It features programmable chip selects, a wait state generator and byte parity.
External memory can be configured as PCI addressable memory or private 80960Rx memory. See
CHAPTER 14, MEMORY CONTROLLER.

1.2.8 I2C Bus Interface Unit

The I2C (Inter-Integrated Circuit) Bus Interface Unit allows the i960 core processor to serve as a
master and slave device residing on the I2C bus. The I2C unit uses a serial bus developed by
Philips Semiconductor* consisting of a two-pin interface. The bus allows the 80960Rx to interface
to other I2C peripherals and microcontrollers for system management functions. It requires a
minimum of hardware for an economical system to relay status and reliability information on the
I/O subsystem to an external device. See CHAPTER 21, I2C BUS INTERFACE UNIT. Also refer
to the document I2C Peripherals for Microcontrollers (Philips Semiconductor).

1.2.9 I/O APIC Bus Interface Unit

The I/O APIC Bus Interface Unit provides an interface to the three-wire Advanced Programmable
Interrupt Controller (APIC) bus that allows I/O APIC emulation in software. Interrupt messages
can be sent on the bus and EOI messages can be received. See CHAPTER 22, I/O APIC BUS
INTERFACE UNIT.

1.2.10 Secondary PCI Arbitration Unit

The Secondary PCI Arbitration Unit is the arbiter for the secondary PCI bus. It includes a fairness
algorithm with programmable priorities and six PCI request and grant signal pairs. This arbitration
unit can also be disabled to allow for external arbitration. See CHAPTER 18, BUS
ARBITRATION.
1-4

1.2.11 Wind River Systems IxWorks* RTOS

A key feature of the i960 Rx I/O Processor is Wind River System’s IxWorks* Real-Time
Operating System (RTOS). With clearly defined Application Program Interfaces (APIs), IxWorks
creates a user-friendly environment to write basic device drivers. IxWorks supports NOS-to-driver
independence, and allows multiple I/O software to co-exist reliably. In addition, developers get a
30-day evaluation copy of the Tornado* development environment. For more information, contact
your local Intel representative.



1

INTRODUCTION

1.3 i960® CORE PROCESSOR FEATURES (80960JF)

The processing power of the 80960Rx comes from the 80960JF processor core. The 80960JF is a
new, scalar implementation of the i960 core architecture. Figure 1-2 shows a block diagram of the
80960JF core processor.

Figure 1-2.  80960JF Core Processor Block Diagram

Factors that contribute to the 80960JF’s performance include:

Programmable

Bus Control Unit

Instruction Sequencer 

Physical Region
Configuration

Interrupt 
Port

1 Kbyte

Data RAM

Memory
Interface

Execution
Multiply
Divide Unit

Memory-Mapped 
Register Interface

Register File

SRC2 DESTSRC1

Address

ControlConstants

Generation
Unit

Address

32-bit Data

Bus Request
Queues

and

Two 32-Bit 
Timers

8-Set
Local Register Cache

PLL, Clocks,

Boundary ScanTAP

5

128

9

32

32-bit buses
address / data

Instruction Cache
4 Kbyte Two-Way Set Associative

2 Kbyte
Direct Mapped 

Data Cache

P_CLK/
S_CLK

Interrupt 
Controller

Three Independent 32-Bit SRC1, SRC2, and DEST Buses

Control
1-5

• Single-clock execution of most instructions

• Independent Multiply/Divide Unit

• Efficient instruction pipeline minimizes pipeline break latency

• Register and resource scoreboarding allow overlapped instruction execution

• 128-bit register bus speeds local register caching

• 4 Kbyte two-way set-associative, integrated instruction cache 

• 2 Kbyte direct-mapped, integrated data cache 

• 1 Kbyte integrated data RAM delivers zero wait state program data



mory
0 local

tion’s
ions.
gister.

ait

 first
rds of
INTRODUCTION

The i960 core processor operates out of its own 32-bit address space, which is independent of the
PCI address space. The 80960 local bus memory can be:

• Made visible to the PCI address space

• Kept private to the i960 core processor

• Allocated as a combination of the two

1.3.1 Burst Bus

A 32-bit high-performance bus controller interfaces the i960 core processor to external me
and peripherals. The Bus Control Unit fetches instructions and transfers data on the 8096
bus at the rate of up to four 32-bit words per six clock cycles.

NOTE: DMA and ATU accesses are limited to 32-bit wide memory regions. Also 
these units can burst up to a 2 Kbyte boundary with no alignment restric-
tions.

Users may configure the i960 core processor’s bus controller to match an applica
fundamental memory organization. Physical bus width is programmable for up to eight reg
Data caching is programmed through a group of logical memory templates and a defaults re
The Bus Control Unit’s features include:

• Multiplexed external bus minimizes pin count

• 32-, 16- and 8-bit bus widths simplify I/O interfaces

• External ready control for address-to-data, data-to-data and data-to-next-address w
state types

• Unaligned bus accesses performed transparently

• Three-deep load/store queue decouples the bus from the i960 core processor

For reliability, the 80960Rx conducts an internal self test upon reset. Before executing its
instruction, it performs a local bus confidence test by performing a checksum on the first wo
1-6

the Initialization Boot Record.

1.3.2 Timer Unit

As described in CHAPTER 19, TIMERS, The Timer Unit (TU) contains two independent 32-bit
timers that are capable of counting at software-defined clock rates and generating interrupts. Each
is programmed by use of the Timer Unit memory-mapped registers. The timers have a single-shot
mode and auto-reload capabilities for continuous operation. Each timer has an independent
interrupt request to the 80960Rx’s interrupt controller.



1

aking
 the

igured

rs are

rces on-
byte

s. The
ts to its
INTRODUCTION

1.3.3 Priority Interrupt Controller

CHAPTER 8, INTERRUPTS explains how low interrupt latency is critical to many embedded
applications. As part of its highly flexible interrupt mechanism, the 80960Rx exploits several
techniques to minimize latency:

• Interrupt vectors and interrupt handler routines can be reserved on-chip

• Register frames for high-priority interrupt handlers can be cached on-chip

• The interrupt stack can be placed in cacheable memory space

1.3.4 Faults and Debugging

The 80960Rx employs a comprehensive fault model. The processor responds to faults by m
implicit calls to fault handling routines. Specific information collected for each fault allows
fault handler to diagnose exceptions and recover appropriately.

The processor also has built-in debug capabilities. Via software, the 80960Rx may be conf
to detect as many as seven different trace event types. Alternatively, mark and fmark instructions
can generate trace events explicitly in the instruction stream. Hardware breakpoint registe
also available to trap on execution and data addresses. See CHAPTER 9, FAULTS.

1.3.5 On-Chip Cache and Data RAM

As discussed in CHAPTER 4, CACHE AND ON-CHIP DATA RAM, memory subsystems often
impose substantial wait state penalties. The 80960Rx integrates considerable storage resou
chip to decouple CPU execution from the external bus. The 80960Rx includes a 4 K
instruction cache, a 2 Kbyte data cache and 1 Kbyte data RAM.

1.3.6 Local Register Cache

The 80960Rx rapidly allocates and deallocates local register sets during context switche
processor needs to flush a register set to the stack only when it saves more than seven se
1-7

local register cache.

1.3.7 Test Features

The 80960Rx incorporates features that enhance the user’s ability to test both the processor and the
system to which it is attached. These features include ONCE (On-Circuit Emulation) mode and
IEEE Std. 1149.1 Boundary Scan (JTAG). See CHAPTER 23, TEST FEATURES.



mote
he test
nction

t can

ge of
. This

s. The

t data
INTRODUCTION

One of the boundary scan instructions, HIGHZ, forces the processor to float all its output pins
(ONCE mode). ONCE mode can also be initiated at reset without using the boundary scan
mechanism.

ONCE mode is useful for board-level testing. This feature allows a mounted 80960Rx to electri-
cally “remove” itself from a circuit board. This mode allows system-level testing where a re
tester, such as an In-Circuit Emulator (ICE) system, can exercise the processor system. T
logic does not interfere with component or system behavior and ensures that components fu
correctly, and also the connections between various components are correct.

The JTAG Boundary Scan feature is an alternative to conventional “bed-of-nails” testing. I
examine connections that might otherwise be inaccessible to a test system.

1.3.8 Memory-Mapped Control Registers

The 80960Rx is compliant with 80960 family architecture and has the added advanta
memory-mapped, internal control registers not found on the 80960Kx, Sx or Cx processors
feature provides software an interface to easily read and modify internal control registers.

Each memory-mapped, 32-bit register is accessed via regular memory-format instruction
processor ensures that these accesses do not generate external bus cycles. See CHAPTER 14,
MEMORY CONTROLLER. 

1.3.9 Instructions, Data Types and Memory Addressing Modes

As with all 80960 family processors, the 80960Rx instruction set supports several differen
types and formats:

• Bit

• Bit fields

• Integer (8-, 16-, 32-, 64-bit)

• Ordinal (8-, 16-, 32-, 64-bit unsigned integers)
1-8

• Triple word (96 bits)

• Quad word (128 bits)

Several chapters describe the i960 Rx I/O Processor instruction set, including:

• CHAPTER 3, PROGRAMMING ENVIRONMENT

• CHAPTER 5, INSTRUCTION SET OVERVIEW

• CHAPTER 6, INSTRUCTION SET REFERENCE



1

INTRODUCTION

1.4 ABOUT THIS DOCUMENT

The i960 Rx I/O Processor incorporates Peripheral Component Interconnect (PCI) functionality
with the i960 JF processor. As such, it is assumed that the reader has a working understanding of
the Peripheral Component Interconnect (PCI), PCI Local Bus Specification, revision 2.1, and the
i960 core processor. 

1.4.1 Terminology

In this document, the following terms are used:

• 80960Rx refers generically to the i960 Rx I/O Processor family. As of this printing, the
family includes the 80960RP 33/5.0, 80960RP 33/3.3, 80960RD 66/3.3. 

• 80960 local bus refers to the i960 Rx I/O Processor’s internal local bus, not the PCI local
bus.

• Primary and Secondary PCI buses are the i960 Rx I/O Processor’s internal PCI buses that
conform to PCI SIG specifications.

• i960 core processor refers to the i960 JF processor that is integrated into the 80960Rx.

• DWORD is a 32-bit data word.

• 80960 Local memory is a memory subsystem on the 80960 processor local bus.

The following terms are used primarily in CHAPTER 15, PCI-TO-PCI BRIDGE UNIT:

• Downstream — at or toward a PCI bus with a higher number (after configuration).

• Host processor — Processor located upstream from the i960 Rx I/O Processor.

• Local processor — i960 core processor within the i960 Rx I/O Processor.

• Upstream — At or toward a PCI bus with a lower number (after configuration).

1.4.2 Representing Numbers
1-9

Assume that all numbers are base 10 unless designated otherwise. In text, numbers in base 16 are
represented as “nnnH”, where the “H” signifies hexadecimal. In pseudocode descriptions,
hexadecimal numbers are represented in the form 0x1234ABCD. Binary numbers are not
explicitly identified and are assumed when bit operations or bit ranges are used.

1.4.3 Fields

A preserved field in a data structure is one that the processor does not use. Preserved fields can be
used by software; the processor does not modify such fields.



 signal
ludes
INTRODUCTION

A reserved field is a field that may be used by an implementation. When the initial value of a
reserved field is supplied by software, this value must be zero. Software should not modify
reserved fields or depend on any values in reserved fields.

A read only field can be read to return the current value. Writes to read only fields are treated as
no-op operations and do not change the current value or result in an error condition.

A read/clear field can also be read to return the current value. A write to a read/clear field with
the data value of 0 causes no change to the field. A write to a read/clear field with a data value of
1 causes the field to be cleared (reset to the value of 0). For example, when a read/clear field has a
value of F0H, and a data value of 55H is written, the resultant field is A0H.

A read/set field can also be read to return the current value. A write to a read/set field with the
data value of 0 causes no change to the field. A write to a read/set field with a data value of 1
causes the field to be set (set to the value of 1). For example, when a read/set field has a value of
F0H, and a data value of 55H is written, the resultant field is F5H.

1.4.4 Specifying Bit and Signal Values

The terms set and clear in this specification refer to bit values in register and data structures. When
a bit is set, its value is 1; when the bit is clear, its value is 0. Likewise, setting a bit means giving it
a value of 1 and clearing a bit means giving it a value of 0.

The terms assert and deassert refer to the logically active or inactive value of a signal or bit,
respectively.

1.4.5 Signal Name Conventions

All signal names use the PCI signal name convention of using the “#” symbol at the end of a
name to indicate that the signal’s active state occurs when it is at a low voltage. This inc
80960 processor-related signal names that normally use an overline. The absence of the “#”
symbol indicates that the signal’s active state occurs when it is at a high voltage.
1-10

1.4.6 Solutions960® Program

Intel’s Solutions960® program features a wide variety of development tools that support the i960
processor family. Many of these tools are developed by partner companies; some are developed by
Intel, such as profile-driven optimizing compilers. For more information on these products,
contact your local Intel representative.



1

INTRODUCTION

1.4.7 Additional Information Sources

Intel documentation is available from your Intel Sales Representative or Intel Literature Sales.

Intel Corporation
Literature Sales
P.O. Box 7641
Mt. Prospect IL 60056-7641
1-800-548-4725

1.4.8 Electronic Information

Document Title Order / Contact

i960® Rx I/O Processor Specification Update Intel Order # 272918

i960® RP  I/O Processor (33 MHz, 5.0 Volt version) data sheet Intel Order # 272737

i960® RP/RD  I/O Processor at 3.3 Volts data sheet Intel Order # 273001

i960 RP Processor: A Single-Chip Intelligent I/O Subsystem 
Technical Brief Intel Order # 272738

i960® Jx Microprocessor User’s Guide Intel Order # 272483

MultiProcessor Specification Intel Order # 242016

PCI Local Bus Specification, revision 2.1 PCI Special Interest Group 1-800-433-5177

PCI-to-PCI Bridge Architecture Specification Revision 1.0 PCI Special Interest Group 1-800-433-5177

PCI System Design Guide, Revision 1.0 PCI Special Interest Group 1-800-433-5177

I2C Peripherals for Microcontrollers Philips Semiconductor

I2C Bus and How to Use It (Including Specifications) Philips Semiconductor

I2C Peripherals for Microcontrollers (Including Fast Mode) Signetics

Intel’s World-Wide Web Home Page http://www.intel.com/
Wind River System’s IxWorks http://www.wrs.com/
I20 Special Interest Group Web Site http://www.i2osig.org/
1-11



INTRODUCTION

1.5 STEPPING DIFFERENCES SUMMARY

Table 1-1 identifies the sections in this document which contain information that is specific to an
individual stepping.

Table 1-1.  Stepping Differences Summary

Section Description Page

8.3 Interrupt Controller Connections for 80960RP 33/5.0 Volt 8-23

8.3 Interrupt Controller Connections for 80960Rx 33/3.3 Volt 8-24

8.3.2 PCI Interrupt Routing Summary for 80960RP 33/5.0 Volt 8-26

8.3.2 PCI Interrupt Routing Summary for 80960RP 33/3.3 Volt 8-26

8.4.1 PCI Interrupt Routing Select Register – PIRSR (80960RP 33/5.0 Volt) 8-32

8.4.1 PCI Interrupt Routing Select Register – PIRSR (80960Rx 33/3.3 Volt) 8-32

15.4.1 Private Configuration Commands (Type 0) on the Secondary Interface 15-7

15.4.2 Private PCI Memory IDSEL Select Configurations 15-8

15.13.25 Secondary IDSEL Select Register - SISR 15-66

16.7.12 Determining Block Sizes for Base Address Registers 16-37
1-12



2
DATA TYPES AND MEMORY 
ADDRESSING MODES





2

CHAPTER 2
DATA TYPES AND MEMORY ADDRESSING MODES

2.1 DATA TYPES

The instruction set references or produces several data lengths and formats. The i960® Rx I/O
processor supports the following data types: 

Figure 2-1 illustrates the class, data type and length of each type supported by i960 processors.

• Integer (signed 8, 16 and 32 bits) • Ordinal (unsigned integer 8, 16, and 32 bits)

• Long Word (64 bits) • Triple Word (96 bits)

• Quad Word (128 bits) • Bit Field

• Bit

Byte

Short

Word

Triple Word

Quad Word

8 
Bits

16
Bits

32
Bits

64
Bits

96
Bits

128
Bits

Numeric
(Integer)

Byte Integer
Short Integer

Integer

8 Bits
16 Bits

32 Bits

-27 to 27 -1
-215 to 215 -1

-231 to 231 -1

Bit Field

Length

LSB of
Bit Field

0

0

0

0

7

15

31

63

Class Data Type Length Range

0

0

95

127

031

Long
2-1

Figure 2-1.  Data Types and Ranges

Numeric
(Ordinal)

Non-Numeric

Byte Ordinal 

Short Ordinal

Ordinal

Bit

Bit Field

Triple Word

Quad Word

8 Bits 

16 Bits

32 Bits

1 Bit

1-32 Bits

96 Bits

128 Bits

0 to 28 -1

0 to 216 -1

0 to 232 -1

N/A

Long Word 64 Bits

Long Ordinal 64 Bits 0 to 264 - 1



 

rmat by
short

tructions

tion is

n
the 32-
DATA TYPES AND MEMORY ADDRESSING MODES

2.1.1 Word/Dword Notation

Data lengths, as described in the PCI Local Bus Specification, Revision 2.1, differs from the
conventions used for the 80960 architecture. See also Table 2-1:

• In the PCI specification the term word refers to a 16-bit block of data. 

• In this manual and other documentation relating to the i960 Rx I/O processor, the termword
refers to a 32-bit block of data.

2.1.2 Integers

Integers are signed whole numbers that are stored and operated on in two’s complement fo
the integer instructions. Most integer instructions operate on 32-bit integers. Byte and 
integers are referenced by the byte and short classes of the load, store and compare ins
only.

Integer load or store size (byte, short or word) determines how sign extension or data trunca
performed when data is moved between registers and memory. 

For instructions ldib (load integer byte) and ldis (load integer short), a byte or short word i
memory is considered a two’s complement value. The value is sign-extended and placed in 
bit register that is the destination for the load.

Table 2-1.  80960 and PCI Architecture Data Word Notation Differences

No. of Bits PCI Architecture 80960 Architecture

16 word short word or half word

32 doubleword or dword word

ldib
7AH is loaded into a register as 0000 007AH
2-2

Example 2-1.  Sign Extensions on Load Byte and Load Short

FAH is loaded into a register as FFFF FFFAH

ldis
05A5H is loaded into a register as 0000 05A5H

85A5H is loaded into a register as FFFF 85A5H



2

nt
arge to
tion is
TH-
 bit

d a

etic
 values,
l data
e

owever,
ses the
tes an
 this

fields
ber
 bit 0
DATA TYPES AND MEMORY ADDRESSING MODES

For instructions stib (store integer byte) and stis (store integer short), a 32-bit two’s compleme
number in a register is stored to memory as a byte or short word. When register data is too l
be stored as a byte or short word, the value is truncated and the integer overflow condi
signalled. When an overflow occurs, either an AC register flag is set or the ARI
METIC.INTEGER_OVERFLOW fault is generated, depending on the Integer Overflow Mask
(AC.om) in the AC register. CHAPTER 9, FAULTS describes the integer overflow fault.

For instructions ld (load word) and st (store word), data is moved directly between memory an
register with no sign extension or data truncation.

2.1.3 Ordinals

Ordinals or unsigned integer data types are stored and treated as positive binary values. Figure 2-1
shows the supported ordinal sizes.

The large number of instructions that perform logical, bit manipulation and unsigned arithm
operations reference 32-bit ordinal operands. When ordinals are used to represent Boolean
1 = TRUE and 0 = FALSE. Most extended arithmetic instructions reference the long ordina
type. Only load (ldob and ldos), store (stob and stos), and compare ordinal instructions referenc
the byte and short ordinal data types. 

Sign and sign extension are not considered when ordinal loads and stores are performed; h
the values may be zero-extended or truncated. A short word or byte load to a register cau
value loaded to be zero-extended to 32 bits. A short word or byte store to memory trunca
ordinal value in a register to fit the destination memory. No overflow condition is signalled in
case.

2.1.4 Bits and Bit Fields

The processor provides several instructions that perform operations on individual bits or bit 
within register operands. An individual bit is specified for a bit operation by giving its bit num
and register. Internal registers always follow little endian byte order; the least significant bit is
2-3

and the most significant bit is bit 31.

A bit field is any contiguous group of bits (up to 32 bits long) in a 32-bit register. Bit fields do not
span register boundaries. A bit field is defined by giving its length in bits (1-32) and the bit number
of its lowest numbered bit (0-31).

Loading and storing bit and bit-field data is normally performed using the ordinal load (ldo) and
store (sto) instructions. When an ldi instruction loads a bit or bit field value into a 32-bit register,
the processor appends sign extension bits. A byte or short store can signal an integer overflow
condition.



DATA TYPES AND MEMORY ADDRESSING MODES

2.1.5 Triple and Quad Words

Triple and quad words refer to consecutive words in memory or in registers. Triple- and quad-
word load, store and move instructions use these data types to accomplish block movements. No
data manipulation (sign extension, zero extension or truncation) is performed in these instructions.

Triple- and quad-word data types can be considered a superset of the other data types described.
Data in each word subset of a quad word is likely to be the operand or result of an ordinal, integer,
bit or bit field instruction.

2.1.6 Register Data Alignment

Several instructions operate on multiple-word operands. For example, the load-long instruction
(ldl) loads two words from memory into two consecutive registers. Here the register number for
the least significant word is automatically loaded into the next higher-numbered register.

In cases where an instruction specifies a register number, and multiple, consecutive registers are
implied, the register number must be even if two registers are accessed (e.g., g0, g2) and an
integral multiple of four if three or four registers are accessed (e.g., g0, g4). When a register
reference for a source value is not properly aligned, the registers that the processor writes to are
undefined.

The i960 Rx I/O processor does not require data alignment in external memory; the processor
hardware handles unaligned memory accesses automatically. Optionally, user software can
configure the processor to generate a fault on unaligned memory accesses.

2.1.7 Literals

The architecture defines a set of 32 literals that can be used as operands in many instructions.
These literals are ordinal (unsigned) values that range from 0 to 31 (5 bits). When a literal is used
as an operand, the processor expands it to 32 bits by adding leading zeros. If the instruction
requires an operand larger than 32 bits, the processor zero-extends the value to the operand size. If
a literal is used in an instruction that requires integer operands, the processor treats the literal as a
2-4

positive integer value.

2.2 BIT AND BYTE ORDERING IN MEMORY

All occurrences of numeric and non-numeric data types, except bits and bit fields, must start on a
byte boundary. Any data item occupying multiple bytes is stored as little endian. 



2g
 

r
e one
 bus

t from
vided:
DATA TYPES AND MEMORY ADDRESSING MODES

2.3 MEMORY ADDRESSING MODES

Nine modes are available for addressing operands in memory. Each addressing mode is used to
reference a byte location in the processor’s address space. Table 2-2 shows the memory addressin
modes and a brief description of each mode’s address elements and assembly code syntax.

See Table B-9., MEM Format Instruction Encodings (pg. B-9) for more on addressing modes. Fo
purposes of this memory addressing modes description, MEMA format instructions requir
word of memory and MEMB usually require two words and therefore consume twice the
bandwidth to read. Otherwise, both formats perform the same functions.

2.3.1 Absolute

Absolute addressing modes allow a memory location to be referenced directly as an offse
address 0H. At the instruction encoding level, two absolute addressing modes are pro

Table 2-2.  Memory Addressing Modes

Mode Description Assembler Syntax
Inst. 
Type

Absolute offset offset (smaller than 4096) exp MEMA

displacement displacement (larger than 4095) exp MEMB

Register Indirect abase (reg) MEMB

with offset abase + offset exp (reg) MEMA

with displacement abase + displacement exp (reg) MEMB

with index abase + (index*scale) (reg) [reg*scale] MEMB

with index and displacement abase + (index*scale) + displacement exp (reg) [reg*scale] MEMB

Index with displacement (index*scale) + displacement exp [reg*scale] MEMB

instruction pointer (IP) with 
displacement

IP + displacement + 8 exp (IP) MEMB

NOTE: reg is register, exp is an expression or symbolic label, and IP is the Instruction Pointer.
2-5

absolute offset and absolute displacement, depending on offset size.

• For the absolute offset addressing mode, the offset is an ordinal number ranging from 0 to
4095. The absolute offset addressing mode is encoded in the MEMA machine instruction
format.

• For the absolute displacement addressing mode, the offset value ranges from 0 to 232-1. The
absolute displacement addressing mode is encoded in the MEMB format.

Addressing modes and encoding instruction formats are described in CHAPTER 6,
INSTRUCTION SET REFERENCE.



ulation.

ase.

record
rst array

d in a
d 16.

 level
lute

ess.

ression
t-with-
e.

 and a
 at the
DATA TYPES AND MEMORY ADDRESSING MODES

At the assembly language level, the two absolute addressing modes use the same syntax.
Typically, development tools allow absolute addresses to be specified through arithmetic
expressions (e.g., x + 44) or symbolic labels. After evaluating an address specified with the
absolute addressing mode, the assembler converts the address into an offset or displacement and
selects the appropriate instruction encoding format and addressing mode.

2.3.2 Register Indirect

Register indirect addressing modes use a register’s 32-bit value as a base for address calc
The register value is referred to as the address base (designated “abase” in Table 2-2). Depending
on the addressing mode, an optional scaled index and offset can be added to this address b

Register indirect addressing modes are useful for addressing elements of an array or 
structure. When addressing array elements, the abase value provides the address of the fi
element. An offset (or displacement) selects a particular array element. 

In register-indirect-with-index addressing mode, the index is specified using a value containe
register. This index value is multiplied by a scale factor. Allowable factors are 1, 2, 4, 8 an
The register-indirect-with-index addressing mode is encoded in the MEMA format.

The two versions of register-indirect-with-offset addressing mode at the instruction encoding
are register-indirect-with-offset and register-indirect-with-displacement. As with abso
addressing modes, the mode selected depends on the size of the offset from the base addr

At the assembly language level, the assembler allows the offset to be specified with an exp
or symbolic label, then evaluates the address to determine whether to use register-indirec
offset (MEMA format) or register-indirect-with-displacement (MEMB format) addressing mod

Register-indirect-with-index-and-displacement addressing mode adds both a scaled index
displacement to the address base. There is only one version of this addressing mode
instruction encoding level, and it is encoded in the MEMB instruction format.

2.3.3 Index with Displacement
2-6

A scaled index can also be used with a displacement alone. Again, the index is contained in a
register and multiplied by a scaling constant before displacement is added. This mode uses MEMB
format.



2lus the
plemen-
address
. This

sembly

ocedure
ted by a
size is
DATA TYPES AND MEMORY ADDRESSING MODES

2.3.4 IP with Displacement

This addressing mode is used with load and store instructions to make them instruction pointer (IP)
relative. IP-with-displacement addressing mode references the next instruction’s address p
displacement plus a constant of 8. The constant is added because, in a typical processor im
tation, the address has incremented beyond the next instruction address at the time of 
calculation. The constant simplifies IP-with-displacement addressing mode implementation
mode uses MEMB format.

2.3.5 Addressing Mode Examples

The following examples show how i960 processor addressing modes are encoded in as
language. Example 2-2 shows addressing mode mnemonics. Example 2-3 illustrates the usefulness
of scaled index and scaled index plus displacement addressing modes. In this example, a pr
named array_op uses these addressing modes to fill two contiguous memory blocks separa
constant offset. A pointer to the top of the block is passed to the procedure in g0, the block 
passed in g1 and the fill data in g2. Refer to APPENDIX A, MACHINE-LEVEL INSTRUCTION
FORMATS.

st g4,xyz # Absolute; word from g4 stored at memory
# location designated with label xyz.

ldob (r3),r4 # Register indirect; ordinal byte from 
# memory location given in r3 loaded 
# into register r4 and zero extended.

stl g6,xyz(g5) # Register indirect with displacement; 
# double word from g6,g7 stored at memory
# location xyz + g5.

ldq (r8)[r9*4],r4 # Register indirect with index; quad-word
# beginning at memory location r8 + (r9
# scaled by 4) loaded into r4 through r7.

st g3,xyz(g4)[g5*2]# Register indirect with index and 
# displacement; word in g3 stored to mem
2-7

Example 2-2.  Addressing Mode Mnemonics

# location g4 + xyz + (g5 scaled by 2).
ldis xyz[r12*2],r13 # Index with displacement; load short 

# integer at memory location xyz + r12 
# into r13 and sign extended.

st r4,xyz(IP) # IP with displacement; store word in r4 
# at memory location IP + xyz + 8.



DATA TYPES AND MEMORY ADDRESSING MODES

Example 2-3.  Scaled Index and Scaled Index Plus Displacement Addressing Modes

array_op:
mov g0,r4 # Pointer to array is copied to r4.
subi 1,g1,r3 # Calculate index for the last array
b .I33 # element to be filled

.I34:
st g2,(r4)[r3*4] # Fill element at index
st g2,0x30(r4)[r3*4] # Fill element at index+constant offset
subi 1,r3,r3 # Decrement index

.I33:
cmpible 0,r3,.I34 # Store next array elements if
ret # index is not 0
2-8



3
PROGRAMMING
ENVIRONMENT





3l

ge and
e a
eneral-
or state

 part of
d faults

 load
l. The
truction
CHAPTER 3
PROGRAMMING ENVIRONMENT

This chapter describes the i960® Rx I/O processor’s programming environment including globa
and local registers, control registers, literals, processor-state registers and address space.

3.1 OVERVIEW

The i960 architecture defines a programming environment for program execution, data stora
data manipulation. Figure 3-1 shows the programming environment elements that includ
4 Gbyte (232 byte) flat address space, an instruction cache, a data cache, global and local g
purpose registers, a register cache, a set of literals, control registers and a set of process
registers. 

The processor includes several architecturally-defined data structures located in memory as
the programming environment. These data structures handle procedure calls, interrupts an
and provide configuration information at initialization. These data structures are:

3.2 REGISTERS AND LITERALS AS INSTRUCTION OPERANDS

With the exception of a few special instructions, the i960 Rx I/O processor uses only simple
and store instructions to access memory. All operations take place at the register leve
processor uses 16 global registers, 16 local registers and 32 literals (constants 0-31) as ins
operands.

• interrupt stack • control table • system procedure table

• local stack • fault table • process control block

• supervisor stack • interrupt table • initialization boot record
3-1

The global register numbers are g0 through g15; local register numbers are r0 through r15. Several
of these registers are used for dedicated functions. For example, register r0 is the previous frame
pointer, often referred to as pfp. i960 processor compilers and assemblers recognize only the
instruction operands listed in Table 3-1. Throughout this manual, the registers’ descriptive names,
numbers, operands and acronyms are used interchangeably, as dictated by context.



PROGRAMMING ENVIRONMENT

Figure 3-1.  i960® Rx I/O Processor Programming Environment

Architecturally
Defined 

Data Structures

FFFF FFFFH

Instruction 
Stream

Instruction
Execution

Processor State
Registers

Instruction 
Pointer

Arithmetic
Controls

Process
Controls

Trace 
Controls

Address Space

Sixteen 32-Bit 
Global Registers

Sixteen 32-Bit
Local Registers

g0
g15

r0

r15

Load Store

0000 0000H

Control Registers

Register Cache

Fetch

Instruction
Cache

 

r15
3-2

3.2.1 Global Registers

Global registers are general-purpose 32-bit data registers that provide temporary storage for a
program’s computational operands. These registers retain their contents across procedure
boundaries. As such, they provide a fast and efficient means of passing parameters between
procedures.



3

ers are
rogram
PROGRAMMING ENVIRONMENT

The i960 architecture supplies 16 global registers, designated g0 through g15. Register g15 is
reserved for the current Frame Pointer (FP), which contains the address of the first byte in the
current (topmost) stack frame in internal memory. See section 7.1, CALL AND RETURN
MECHANISM (pg. 7-2) for a description of the FP and procedure stack.

After the processor is reset, register g0 contains the i960 core processor device identification and
stepping information. g0 retains this information until it is written over by the user program. The
i960 core processor device identification and stepping information is also stored in the memory-
mapped DEVICEID register located at FF00 8710H. In addition, the i960 Rx I/O processor device
identification and stepping information is stored in the memory-mapped register located at
0000 17C0H.

3.2.2 Local Registers

The i960 architecture provides a separate set of 32-bit local data registers (r0 through r15) for each
active procedure. These registers provide storage for variables that are local to a procedure. Each
time a procedure is called, the processor allocates a new set of local registers and saves the calling
procedure’s local registers. When the application returns from the procedure, the local regist
released for the next procedure call. The processor performs local register management; a p
need not explicitly save and restore these registers.

Table 3-1.  Registers and Literals Used as Instruction Operands

Instruction Operand Register Name (number) Function Acronym

g0 - g14 global (g0-g14) general purpose

fp global (g15) frame pointer FP

pfp local (r0) previous frame pointer PFP

sp local (r1) stack pointer SP

rip local (r2) return instruction pointer RIP

r3 - r15 local (r3-r15) general purpose

0-31 literals
3-3

r3 through r15 are general purpose registers; r0 through r2 are reserved for special functions; r0
contains the Previous Frame Pointer (PFP); r1 contains the Stack Pointer (SP); r2 contains the
Return Instruction Pointer (RIP). These are discussed in CHAPTER 7, PROCEDURE CALLS.

The processor does not always clear or initialize the set of local registers assigned to a new
procedure. Also, the processor does not initialize the local register save area in the newly created
stack frame for the procedure. User software should not rely on the initial values of local registers.



PROGRAMMING ENVIRONMENT

3.2.3 Register Scoreboarding

Register scoreboarding maintains register coherency by preventing parallel execution units from
accessing registers for which there is an outstanding operation. When an instruction that targets a
destination register or group of registers executes, the processor sets a register-scoreboard bit to
indicate that this register or group of registers is being used in an operation. If the instructions that
follow do not require data from registers already in use, the processor can execute those instruc-
tions before the prior instruction execution completes.

Software can use this feature to execute one or more single-cycle instructions concurrently with a
multi-cycle instruction (e.g., multiply or divide). Example 3-1 shows a case where register score-
boarding prevents a subsequent instruction from executing. It also illustrates overlapping instruc-
tions that do not have register dependencies.

Example 3-1.  Register Scoreboarding

3.2.4 Literals

The architecture defines a set of 32 literals that can be used as operands in many instructions.
These literals are ordinal (unsigned) values that range from 0 to 31 (5 bits). When a literal is used
as an operand, the processor expands it to 32 bits by adding leading zeros. If the instruction
requires an operand larger than 32 bits, the processor zero-extends the value to the operand size. If
a literal is used in an instruction that requires integer operands, the processor treats the literal as a
positive integer value.

muli r4,r5,r6 # r6 is scoreboarded
addi r6,r7,r8 # addi must wait for the previous multiply

. # to complete

.

.
muli r4,r5,r10 # r10 is scoreboarded
and r6,r7,r8 # and instruction is executed concurrently with 
3-4

3.2.5 Register and Literal Addressing and Alignment

Several instructions operate on multiple-word operands. For example, the load long instruction
(ldl) loads two words from memory into two consecutive registers. The register for the less
significant word is specified in the instruction. The more significant word is automatically loaded
into the next higher-numbered register.



3

PROGRAMMING ENVIRONMENT

In cases where an instruction specifies a register number and multiple consecutive registers are
implied, the register number must be even if two registers are accessed (e.g., g0, g2) and an
integral multiple of 4 if three or four registers are accessed (e.g., g0, g4). If a register reference for
a source value is not properly aligned, the source value is undefined and an
OPERATION.INVALID_OPERAND fault is generated. If a register reference for a destination
value is not properly aligned, the registers to which the processor writes and the values written are
undefined. The processor then generates an OPERATION.INVALID_OPERAND fault. The
assembly language code in Example 3-2 shows an example of correct and incorrect register
alignment.

Example 3-2.  Register Alignment

Global registers, local registers and literals are used directly as instruction operands. Table 3-2 lists
instruction operands for each machine-level instruction format and the positions that can be filled
by each register or literal.

Table 3-2.  Allowable Register Operands

Operand1

Instruction 
Encoding

Operand Field Local Register Global Register Literal

REG src1
src2
src/dst (as src)
src/dst (as dst)
src/dst (as both)

X
X
X
X
X

X
X
X
X
X

X
X
X

MEM src/dst
abase

X
X

X
X

movl g3,g8 # Incorrect alignment - resulting value
. # in registers g8 and g9 is
. # unpredictable (non-aligned source)
.

movl g4,g8 # Correct alignment
3-5

index X X

COBR src1
src2
dst

X
X
X2

X
X
X2

X
X2

NOTES:
1. “X” denotes the register can be used as an operand in a particular instruction field.
2. The COBR destination operands apply only to TEST instructions.



PROGRAMMING ENVIRONMENT

3.3 MEMORY-MAPPED CONTROL REGISTERS (MMRs)

The i960 Rx I/O processor gives software the interface to easily read and modify internal control
registers. Each of these registers is accessed as a memory-mapped register with a unique memory
address. There are two distinct sets of memory-mapped registers on the 80960Rx. The first set
exists in the FF00 0000H through FFFF FFFFH address range and is used to control the i960 core
processor functions. The second set exists in the 0000 1000H through 0000 17FFH address range
and is used to control the 80960Rx integrated peripherals. The processor ensures that accesses to
MMRs do not generate external bus cycles.

3.3.1 i960® Core Processor Function Memory-Mapped Registers

Portions of the i960 Rx I/O processor address space (addresses FF00 0000H through
FFFF FFFFH) are reserved for memory-mapped registers. These memory-mapped registers are
accessed through word-operand memory instructions (atmod, atadd, sysctl, ld and st instruc-
tions) only. Accesses to this address space do not generate external bus cycles. The latency in
accessing each of these registers is one cycle.

Each register has an associated access mode (user and supervisor modes) and access type (read
and write accesses). Table C-2 and Table C-3 show all the memory-mapped registers and the
application modes of access. 

The registers are partitioned into user and supervisor spaces based on their addresses. Addresses
FF00 0000H through FF00 7FFFH are allocated to user space memory-mapped registers;
Addresses FF00 8000H to FFFF FFFFH are allocated to supervisor space registers.

3.3.1.1 Restrictions on Instructions that Access the i960® Core Processor
Memory-Mapped Registers

The majority of memory-mapped registers can be accessed by both load (ld) and store (st) instruc-
tions. However some registers have restrictions on the types of accesses they allow. To ensure
correct operation, the access type restrictions for each register should be followed. The access type
3-6

columns of Table C-2 and Table C-3 indicate the allowed access types for each register.

Unless otherwise indicated by its access type, the modification of a memory-mapped register by a
st instruction takes effect completely before the next instruction starts execution.

Some operations require an atomic-read-modify-write sequence to a register, most notably IPND
and IMSK. The atmod and atadd instructions provide a special mechanism to quickly modify the
IPND and IMSK registers in an atomic manner on the i960 Rx I/O processor. Do not use this
instruction on any other memory-mapped registers.



3
ssor’s
PROGRAMMING ENVIRONMENT

The sysctl instruction can also modify the contents of a memory-mapped register atomically; in
addition, sysctl is the only method to read the breakpoint registers on the i960 Rx I/O processor;
the breakpoints cannot be read using a ld instruction.

At initialization the control table is automatically loaded into the on-chip control registers. This
action simplifies the user’s start-up code by providing a transparent setup of the proce
peripherals. See CHAPTER 11, INITIALIZATION AND SYSTEM REQUIREMENTS.

3.3.1.2 Access Faults for i960® Core Processor MMRs

Memory-mapped registers are meant to be accessed only as aligned, word-size registers with
adherence to the appropriate access mode. Accessing these registers in any other way results in
faults or undefined operation. An access is performed using the following fault model:

1. The access must be a word-sized, word-aligned access; otherwise, the processor generates an
OPERATION.UNIMPLEMENTED fault.

2. If the access is a store in user mode to an implemented supervisor location, a
TYPE.MISMATCH fault occurs. It is unpredictable whether a store to an unimplemented
supervisor location causes a fault.

3. If the access is neither of the above, the access is attempted. Note that an MMR may
generate faults based on conditions specific to that MMR. (Example: trying to write the
timer registers in user mode when they have been allocated to supervisor mode only.)

4. When a store access to an MMR faults, the processor ensures that the store does not take
effect.

5. A load access of a reserved location returns an unpredictable value.

6. Avoid any store accesses to reserved locations. Such a store can result in undefined
operation of the processor if the location is in supervisor space.

Instruction fetches from the memory-mapped register space are not allowed and result in an
3-7

OPERATION.UNIMPLEMENTED fault. 

3.3.2 i960® Rx I/O Processor Peripheral Memory-Mapped Registers

The Peripheral Memory-Mapped Register (PMMR) interface gives software the ability to read and
modify internal control registers. Each of these 32-bit registers is accessed as a memory-mapped
register with a unique memory address, using regular memory-format instructions from the i960
core processor. See APPENDIX C, MEMORY-MAPPED REGISTERS. 



t be
in the

core

 other
cessing
PROGRAMMING ENVIRONMENT

The memory-mapped registers discussed in this chapter are specific to the i960 Rx I/O processor
only. They support the DMA controller, memory controller, PCI and peripheral interrupt
controller, messaging unit, local bus arbitration unit, PCI to PCI bridge unit, and PCI address
translation unit, I2C bus interface unit, and the APIC bus interface unit. This manual provides
chapters that fully describe each of these peripherals.

The PMMR interface (addresses 0000 1000H through 0000 17FFH) provides full accessibility
from the primary ATU, secondary ATU, and the i960 core processor. 

3.3.2.1 Accessing The Peripheral Memory-Mapped Registers

The PMMR interface is a slave device connected to the 80960 local bus. This interface accepts
data transactions that appear on the 80960 local bus from the Primary ATU, Secondary ATU, and
the i960 core processor. The PMMR interface allows these devices to perform read, write, or read-
modify-write transactions. 

The PMMR interface does not support multi-word burst accesses from any bus master. The
PMMR interface supports 32-bit bus width transactions only. Because of this, PMCON0:1 must
be configured as a 32-bit memory region for accesses that originate from the i960 core processor. 

The PMMR interface is byte addressable. For PMMR reads, all accesses are promoted to word
accesses and all data bytes are returned. The byte enables generated by the bus masters when
performing PMMR write cycles indicate which data bytes are valid on the internal 80960 local
bus. However, there may be requirements from the individual units that interface to the PMMR.
For example, when configuring the DMA channel’s control register, a full 32-bit write mus
performed to configure and restart the DMA channel. These restrictions are highlighted 
chapters describing the integrated peripheral units.

The PMMR interface supports the 80960 local bus atomic operations from the i960 
processor. The i960 core processor provides atmod (atomic modify) and atadd (atomic add)
instructions for atomic accesses to memory. When the 80960 processor executes an atmod or
atadd instruction, the LOCK# signal is asserted. The 80960 local bus is not granted to any
bus master until the LOCK# signal is deasserted. This prevents other bus masters from ac
3-8

the PMMR interface during a locked operation. 

All PMMR transactions are allowed from i960 core processor operating in either user mode or
supervisor mode. In addition, the PMMR does not provide any access fault to the i960 core
processor.

The following PMMR registers have read/write access from the 80960 local bus (for both the PCI
Bridge and ATU):

• Vendor ID register

• Device ID register



3
ocated

rs. For
eading

edures,

cord
 and

ers are

l table
ystem
s, only
 be in
RAM
PROGRAMMING ENVIRONMENT

• Revision ID register

• Class Code register

• Header Type register

• Bridge Subsystem ID register

• Bridge Subsystem Vendor ID register

For accesses through PCI configuration cycles, access is specified in the register definition l
in the appropriate chapter.

For PCI configuration read transactions, the PMMR returns a zero value for reserved registe
PCI configuration write transactions, the PMMR discards the data. For all other accesses, r
or writing a reserved register is undefined. See Table C-2 and Table C-3 for register memory
locations.

3.4 ARCHITECTURALLY DEFINED DATA STRUCTURES

The architecture defines a set of data structures including stacks, interfaces to system proc
interrupt handling procedures and fault handling procedures. Table 3-3 defines the data structures
and references other sections of this manual where detailed information can be found.

The i960 Rx I/O processor defines two initialization data structures: the Initialization Boot Re
(IBR) and the Process Control Block (PRCB). These structures provide initialization data
pointers to other data structures in memory. When the processor is initialized, these point
read from the initialization data structures and cached for internal use.

Pointers to the system procedure table, interrupt table, interrupt stack, fault table and contro
are specified in the processor control block. Supervisor stack location is specified in the s
procedure table. User stack location is specified in the user’s startup code. Of these structure
the system procedure table, fault table, control table and initialization data structures may
ROM; the interrupt table and stacks must be in RAM. The interrupt table must be located in 
to allow posting of software interrupts. 
3-9



ning
s as
PROGRAMMING ENVIRONMENT

3.5 MEMORY ADDRESS SPACE

The i960 Rx I/O processor’s local address space is byte-addressable with addresses run
contiguously from 0 to 232-1. Some memory space is reserved or assigned special function
shown in Figure 3-2.

Table 3-3.  Data Structure Descriptions

Structure (see section) Description

User and Supervisor Stacks

7.6, USER AND SUPERVISOR 
STACKS (pg. 7-18)

The processor uses these stacks when executing application code. 

Interrupt Stack

8.1.5, Interrupt Stack And Interrupt 
Record (pg. 8-6)

A separate interrupt stack is provided to ensure that interrupt handling 
does not interfere with application programs.

System Procedure Table

3.7, USER-SUPERVISOR 
PROTECTION MODEL (pg. 3-21)

7.5, SYSTEM CALLS (pg. 7-15)

Contains pointers to system procedures. Application code uses the 
system call instruction (calls) to access system procedures through 
this table. A system supervisor call switches execution mode from user 
mode to supervisor mode. When the processor switches modes, it also 
switches to the supervisor stack. 

Interrupt Table

8.1.4, Interrupt Table (pg. 8-4)

The interrupt table contains vectors (pointers) to interrupt handling 
procedures. When an interrupt is serviced, a particular interrupt table 
entry is specified. 

Fault Table

9.3, FAULT TABLE (pg. 9-4)

Contains pointers to fault handling procedures. When the processor 
detects a fault, it selects a particular entry in the fault table. The archi-
tecture does not require a separate fault handling stack. Instead, a 
fault handling procedure uses the supervisor stack, user stack or 
interrupt stack, depending on the processor execution mode in which 
the fault occurred and the type of call made to the fault handling 
procedure. 

Control Table

11.4.4, Control Table (pg. 11-21)

Contains on-chip control register values. Control table values are 
moved to on-chip registers at initialization or with sysctl.
3-10



3

PROGRAMMING ENVIRONMENT

Code/Data

Architecturally Defined Data Structures

External Memory

0000 0000H
Address

0000 0FFFH
0000 1000H

FF00 0000H

FFFF FFFFH

Reserved
Address
Space

FEFF FFFFH

FEFF FF60H
FEFF FF5FH

Initialization Boot Record (IBR)

0000 03FFH
0000 0400H

0000 17FFH
0000 1800H

FEFF FF30H
FEFF FF2FH

0000 2000H
0000 1FFFH

i960 Rx I/O Processor Reserved 

Peripheral Memory-mapped Registers

i960 Rx I/O Processor Reserved

Available for Data

Reserved Memory

i960 Core Processor 

 Register Space

NMI Vector
0000 0004H

0000 003FH
Internal 

Data RAM
0000 0040H

Optional Interrupt Vectors

Memory-Mapped
3-11

Figure 3-2.  Local Memory Address Space

Physical addresses can be mapped to read-write memory, read-only memory and memory-mapped
I/O. The architecture does not define a dedicated, addressable I/O space. There are no subdivisions
of the address space such as segments. For memory management, an external memory
management unit (MMU) may subdivide memory into pages or restrict access to certain areas of
memory to protect a kernel’s code, data and stack. However, the processor views this address
space as linear.



 by the

n 16-

s.

e
mmon

ations,
 read
ithin

must
on an
ion
cation.
nal
serts
PROGRAMMING ENVIRONMENT

An address in memory is a 32-bit value in the range 0H to FFFF FFFFH. Depending on the
instruction, an address can reference in memory a single byte, short word (2 bytes), word
(4 bytes), double word (8 bytes), triple word (12 bytes) or quad word (16 bytes). Refer to load and
store instruction descriptions in CHAPTER 6, INSTRUCTION SET REFERENCE for multiple-
byte addressing information.

3.5.1 Memory Requirements

The architecture requires that external memory have the following properties:

• Memory must be byte-addressable.

• Physical memory must not be mapped to reserved addresses that are specifically used
processor implementation.

• Memory must guarantee indivisible access (read or write) for addresses that fall withi
byte boundaries.

• Memory must guarantee atomic access for addresses that fall within 16-byte boundarie

The latter two capabilities, indivisible and atomic access, are required only when multipl
processors or other external agents, such as DMA or graphics controllers, share a co
memory.

indivisible access Guarantees that a processor, reading or writing a set of memory loc
complete the operation before another processor or external agent can
or write the same location. The processor requires indivisible access w
an aligned 16-byte block of memory.

atomic access A read-modify-write operation. Here the external memory system 
guarantee that once a processor begins a read-modify-write operation 
aligned, 16-byte block of memory it is allowed to complete the operat
before another processor or external agent can access to the same lo
An atomic memory system can be implemented by using the LOCK# sig
to qualify hold requests from external bus agents. The processor as
LOCK# for the duration of an atomic memory operation.
3-12

The upper 16 Mbytes of the address space (addresses FF00 0000H through FFFF FFFFH and
0000 1000H through 0000 017FFH) are reserved for implementation-specific functions. i960 Rx
I/O processor programs cannot use this address space except for accesses to memory-mapped
registers. The processor does not generate any external bus cycles to this memory. As shown in
Figure 3-2, part of the initialization boot record is located just below the i960 Rx I/O processor’s
reserved memory.



3

ndles a

cribed

 fault,

nfigu-
PROGRAMMING ENVIRONMENT

The i960 Rx I/O processor requires some special consideration when using the lower 1 Kbyte of
address space (addresses 0000H 03FFH). Loads and stores directed to these addresses access
internal memory; instruction fetches from these addresses are not allowed by the processor. See
section 4.1, INTERNAL DATA RAM (pg. 4-1). No external bus cycles are generated to this
address space.

3.5.2 Data and Instruction Alignment in the Address Space

Instructions, program data and architecturally defined data structures can be placed anywhere in
non-reserved address space while adhering to these alignment requirements:

• Align instructions on word boundaries.

• Align all architecturally defined data structures on the boundaries specified in Table 3-4.

• Align instruction operands for the atomic instructions (atadd, atmod) to word boundaries in
memory.

The i960 Rx I/O processor can perform unaligned load or store accesses. The processor ha
non-aligned load or store request by:

• Automatically servicing a non-aligned memory access with microcode assistance as des
in section 12.4.2, Bus Transactions Across Region Boundaries (pg. 12-7).

• After the access completes, the processor can generate an OPERATION.UNALIGNED
if directed to do so.

The method of handling faults is selected at initialization based on the value of the Fault Co
ration Word in the Process Control Block. See section 11.4.2, Process Control Block – PRCB
(pg. 11-17).

Table 3-4.  Alignment of Data Structures in the Address Space

Data Structure Alignment Boundary

System Procedure Table 4 byte
3-13

Interrupt Table 4 byte

Fault Table 4 byte

Control Table 16 byte

User Stack 16 byte

Supervisor Stack 16 byte

Interrupt Stack 16 byte

Process Control Block 16 byte

Initialization Boot Record Fixed at FEFF FF30H



 base
dresses.

ficant
ords,
 stored
ta that
t bit.

ed in
terrupt

s from
e cache
x I/O

sets of
PROGRAMMING ENVIRONMENT

3.5.3 Byte, Word and Bit Addressing

The processor provides instructions for moving data blocks of various lengths from memory to
registers (ld) and from registers to memory (st). Supported sizes for blocks are bytes, short words
(2 bytes), words (4 bytes), double words, triple words and quad words. For example, stl (store
long) stores an 8-byte (double word) data block in memory.

The most efficient way to move data blocks longer than 16 bytes is to move them in quad-word
increments, using quad-word instructions ldq and stq.

When a data block is stored in memory, the block’s least significant byte is stored at a
memory address and the more significant bytes are stored at successively higher byte ad
This method of ordering bytes in memory is referred to as “little endian” ordering.

When loading a byte, short word or word from memory to a register, the block’s least signi
bit is always loaded in register bit 0. When loading double words, triple words and quad w
the least significant word is stored in the base register. The more significant words are then
at successively higher-numbered registers. Individual bits can be addressed only in da
resides in a register: bit 0 in a register is the least significant bit, bit 31 is the most significan

3.5.4 Internal Data RAM

The i960 Rx I/O processor has 1 Kbyte of on-chip data RAM. Only data accesses are allow
this region. Portions of the data RAM can also be reserved for functions such as caching in
vectors. The internal RAM is fully described in CHAPTER 4, CACHE AND ON-CHIP DATA
RAM.

3.5.5 Instruction Cache

The instruction cache enhances performance by reducing the number of instruction fetche
external memory. The cache provides fast execution of cached code and loops of code in th
and also provides more bus bandwidth for data operations in external memory. The i960 R
processor instruction cache is a 4 Kbyte, two-way set associative cache, organized in two 
3-14

four-word lines.

3.5.6 Data Cache

The data cache on the i960 Rx I/O processor is a write-through 2-Kbyte direct-mapped cache. For
more information, see CHAPTER 4, CACHE AND ON-CHIP DATA RAM.



3

of the

de lets
sed with

lt, the
sually
PROGRAMMING ENVIRONMENT

3.6 PROCESSOR-STATE REGISTERS

The architecture defines four 32-bit registers that contain status and control information:

3.6.1 Instruction Pointer (IP) Register

The IP register contains the address of the instruction currently being executed. This address is
32 bits long; however, since instructions are required to be aligned on word boundaries in memory,
the IP’s two least-significant bits are always 0 (zero).

All i960 processor instructions are either one or two words long. The IP gives the address 
lowest-order byte of the first word of the instruction.

The IP register cannot be read directly. However, the IP-with-displacement addressing mo
software use the IP as an offset into the address space. This addressing mode can also be u
the lda (load address) instruction to read the current IP value.

When a break occurs in the instruction stream due to an interrupt, procedure call or fau
processor stores the IP of the next instruction to be executed in local register r2, which is u
referred to as the return IP or RIP register. Refer to CHAPTER 7, PROCEDURE CALLS for
further discussion.

• Instruction Pointer (IP) register • Arithmetic Controls (AC) register

• Process Controls (PC) register • Trace Controls (TC) register
3-15



 the
PROGRAMMING ENVIRONMENT

3.6.2 Arithmetic Controls Register – AC

The AC register (Table 3-5) contains condition code flags, integer overflow flag, mask bit and a 
bit that controls faulting on imprecise faults. Unused AC register bits are reserved.

3.6.2.1 Initializing and Modifying the AC Register

At initialization, the AC register is loaded from the Initial AC image field in the Process Control
Block. Set reserved bits to 0 in the AC Register Initial Image. Refer to CHAPTER 11, INITIAL-
IZATION AND SYSTEM REQUIREMENTS.

After initialization, software must not modify or depend on the AC register’s initial image in
PRCB. Software can use the modify arithmetic controls (modac) instruction to examine and/or

Table 3-5.  Arithmetic Controls Register – AC

28 24 20 16 12 8 4 031

 

Condition Code Bits - AC.cc

Integer-Overflow Flag - AC.of
(0) No Overflow
(1) Overflow

Integer Overflow Mask Bit - AC.om
(0) No Mask
(1) Mask

No-Imprecise-Faults Bit- AC.nif
(0) Some Faults are Imprecise
(1) All Faults are Precise

Reserved
(Initialize to 0)

c
c
0

c
c
1

c
c
2

o
m

n
i
f

o
f

3-16

modify any of the register bits. This instruction provides a mask operand that lets user software
limit access to the register’s specific bits or groups of bits, such as the reserved bits.

The processor automatically saves and restores the AC register when it services an interrupt or
handles a fault. The processor saves the current AC register state in an interrupt record or fault
record, then restores the register upon returning from the interrupt or fault handler.



3

n
nstruc-
 code

another

 than
 true

ssor
PROGRAMMING ENVIRONMENT

3.6.2.2 Condition Code (AC.cc)

The processor sets the AC register’s condition code flags (bits 0-2) to indicate the results of certai
instructions, such as compare instructions. Other instructions, such as conditional branch i
tions, examine these flags and perform functions as dictated by the state of the condition
flags. Once the processor sets the condition code flags, the flags remain unchanged until 
instruction executes that modifies the field.

Condition code flags show true/false conditions, inequalities (greater than, equal or less
conditions) or carry and overflow conditions for the extended arithmetic instructions. To show
or false conditions, the processor sets the flags as shown in Table 3-6. To show equality and
inequalities, the processor sets the condition code flags as shown in Table 3-7.

The term unordered is used when comparing floating point numbers. The i960 Rx I/O proce
does not implement on-chip floating point processing.

To show carry out and overflow, the processor sets the condition code flags as shown in Table 3-8.

Table 3-6.  Condition Codes for True or False Conditions

Condition Code Condition

0102 true

0002 false

Table 3-7.  Condition Codes for Equality and Inequality Conditions

Condition Code Condition

0002 unordered

0012 greater than

0102 equal

1002 less than
3-17

Table 3-8.  Condition Codes for Carry Out and Overflow

Condition Code Condition

01X2 carry out

0X12 overflow



PROGRAMMING ENVIRONMENT

Certain instructions, such as the branch-if instructions, use a 3-bit mask to evaluate the condition
code flags. For example, the branch-if-greater-or-equal instruction (bge) uses a mask of 0112 to
determine if the condition code is set to either greater-than or equal. Conditional instructions use
similar masks for the remaining conditions such as: greater-or-equal (0112), less-or-equal (1102)
and not-equal (1012). The mask is part of the instruction opcode; the instruction performs a
bitwise AND of the mask and condition code.

The AC register integer overflow flag (bit 8) and integer overflow mask bit (bit 12) are used in
conjunction with the ARITHMETIC.INTEGER_OVERFLOW fault. The mask bit disables fault
generation. When the fault is masked and integer overflow is encountered, the processor sets the
integer overflow flag instead of generating a fault. If the fault is not masked, the fault is allowed to
occur and the flag is not set.

Once the processor sets this flag, the flag remains set until the application software clears it. Refer
to the discussion of the ARITHMETIC.INTEGER_OVERFLOW fault in CHAPTER 9, FAULTS
for more information about the integer overflow mask bit and flag.

The no imprecise faults (AC.nif) bit (bit 15) determines whether or not faults are allowed to be
imprecise. If set, all faults are required to be precise; if clear, certain faults can be imprecise. See
section 9.9, PRECISE AND IMPRECISE FAULTS (pg. 9-20) for more information. 
3-18



3

rent
er

em call
n from

 the
PROGRAMMING ENVIRONMENT

3.6.3 Process Controls Register – PC

The PC register (Table 3-9) is used to control processor activity and show the processor’s cur
state. The PC register execution mode flag (bit 1) indicates that the processor is operating in eith
user mode (0) or supervisor mode (1). The processor automatically sets this flag on a syst
when a switch from user mode to supervisor mode occurs and it clears the flag on a retur
supervisor mode. (User and supervisor modes are described in section 3.7, USER-SUPERVISOR
PROTECTION MODEL (pg. 3-21).

PC register state flag (bit 13) indicates the processor state: executing (0) or interrupted (1). If

Table 3-9.  Process Controls Register – PC

28 24 20 16 12 8 4 031

 

Trace-Enable Bit - PC.te
(0) Globally disable trace faults
(1) Globally enable trace faults

Execution-Mode Flag - PC.em
(0) user mode
(1) supervisor mode

Trace-Fault-Pending - PC.tfp
(0) no fault pending
(1) fault pending

State Flag - PC.s
(0) executing
(1) interrupted

Priority Field - PC.p
(0-31) process priority

Reserved 

te
t

s
p pppp

4 3 2 1 0
f

m ep

(Do not modify)
3-19

processor is servicing an interrupt, its state is interrupted. Otherwise, the processor’s state is
executing. 

While in the interrupted state, the processor can receive and handle additional interrupts. When
nested interrupts occur, the processor remains in the interrupted state until all interrupts are
handled, then switches back to the executing state on the return from the initial interrupt procedure.



 or
ode,
 This
est).

e this

y or to
urrent
ual to
rocess

lobally
) or not

ler

ult

 in the

rupt or
PROGRAMMING ENVIRONMENT

The PC register priority field (bits 16 through 20) indicates the processor’s current executing
interrupted priority. The architecture defines a mechanism for prioritizing execution of c
servicing interrupts and servicing other implementation-dependent tasks or events.
mechanism defines 32 priority levels, ranging from 0 (the lowest priority level) to 31 (the high
The priority field always reflects the current priority of the processor. Software can chang
priority by use of the modpc instruction.

The processor uses the priority field to determine whether to service an interrupt immediatel
post the interrupt. The processor compares the priority of a requested interrupt with the c
process priority. When the interrupt priority is greater than the current process priority or eq
31, the interrupt is serviced; otherwise it is posted. When an interrupt is serviced, the p
priority field is automatically changed to reflect interrupt priority. See CHAPTER 8,
INTERRUPTS.

The PC register trace enable bit (bit 0) and trace fault pending flag (bit 10) control the tracing
function. The trace enable bit determines whether trace faults are globally enabled (1) or g
disabled (0). The trace fault pending flag indicates that a trace event has been detected (1
detected (0). The tracing functions are further described in CHAPTER 10, TRACING AND
DEBUGGING.

3.6.3.1 Initializing and Modifying the PC Register

Any of the following three methods can be used to change bits in the PC register:

• Modify process controls instruction (modpc)

• Alter the saved process controls prior to a return from an interrupt handler or fault hand

The modpc instruction reads and modifies the PC register directly. A TYPE.MISMATCH fa
results if software executes modpc in user mode with a non-zero mask. As with modac, modpc
provides a mask operand that can be used to limit access to specific bits or groups of bits
register. In user mode, software can use modpc to read the current PC register.

In the latter two methods, the interrupt or fault handler changes process controls in the inter
3-20

fault record that is saved on the stack. Upon return from the interrupt or fault handler, the modified
process controls are copied into the PC register. The processor must be in supervisor mode prior to
return for modified process controls to be copied into the PC register.

When process controls are changed as described above, the processor recognizes the changes
immediately except for one situation: if modpc is used to change the trace enable bit, the
processor may not recognize the change before the next four non-branch instructions are executed.



3

PROGRAMMING ENVIRONMENT

After initialization (hardware reset), the process controls reflect the following conditions:

When the processor is reinitialized with a sysctl reinitialize message, the PC register is not
changed.

Software should not use modpc to modify execution mode or trace fault state flags except under
special circumstances, such as in initialization code. Normally, execution mode is changed through
the call and return mechanism. See section 6.2.43, modpc (pg. 6-78) for more details.

3.6.4 Trace Controls (TC) Register

The TC register, in conjunction with the PC register, controls processor tracing facilities. It
contains trace mode enable bits and trace event flags that are used to enable specific tracing modes
and record trace events, respectively. Trace controls are described in CHAPTER 10, TRACING
AND DEBUGGING.

3.7 USER-SUPERVISOR PROTECTION MODEL

The processor can be in either of two execution modes: user or supervisor. The capability of a
separate user and supervisor execution mode creates a code and data protection mechanism
referred to as the user-supervisor protection model. This mechanism allows code, data and stack
for a kernel (or system executive) to reside in the same address space as code, data and stack for
the application. The mechanism restricts access to all or parts of the kernel by the application code.
This protection mechanism prevents application software from inadvertently altering the kernel.

3.7.1 Supervisor Mode Resources

• priority = 31 • execution mode = supervisor

• trace enable = disabled • state = interrupted

• no trace fault pending
3-21

Supervisor mode is a privileged mode that provides several additional capabilities over user mode.

• When the processor switches to supervisor mode, it also switches to the supervisor stack.
Switching to the supervisor stack helps maintain a kernel’s integrity. For example, it allows
access to system debugging software or a system monitor, even if an application’s program
destroys its own stack.



ns and
d trace
oller
odifi-
rs. A
n user

tomati-

ll (also
ystem
dure
ervisor
 a
cessor
edure

 

PROGRAMMING ENVIRONMENT

• In supervisor mode, the processor is allowed access to a set of supervisor-only functio
instructions. For example, the processor uses supervisor mode to handle interrupts an
faults. Operations that can modify interrupt controller behavior or reconfigure bus contr
characteristics can be performed only in supervisor mode. These functions include m
cation of control registers and internal data RAM that is dedicated to interrupt controlle
fault is generated if supervisor-only operations are attempted while the processor is i
mode. 

The PC register execution mode flag specifies processor execution mode. The processor au
cally sets and clears this flag when it switches between the two execution modes.

Note that all of these instructions return a TYPE.MISMATCH fault if executed in user mode.

3.7.2 Using the User-Supervisor Protection Model

A program switches from user mode to supervisor mode by making a system-supervisor ca
referred to as a supervisor call). A system-supervisor call is a call executed with the call-s
instruction (calls). With calls, the IP for the called procedure comes from the system proce
table. An entry in the system procedure table can specify an execution mode switch to sup
mode when the called procedure is executed. calls and the system procedure table thus provide
tightly controlled interface to procedures that can execute in supervisor mode. Once the pro
switches to supervisor mode, it remains in that mode until a return is performed to the proc
that caused the original mode switch.

• dcctl (data cache control) • inten (global interrupt enable)

• SFR as instruction operand • modpc (modify process controls w/ non-
zero mask)

• icctl (instruction cache control) • sysctl (system control)

• intctl (global interrupt enable and disable)
• Protected internal data RAM or Supervisor

MMR space write

• intdis (global interrupt disable) • Protected timer unit registers
3-22

Interrupts and faults can cause the processor to switch from user to supervisor mode. When the
processor handles an interrupt, it automatically switches to supervisor mode. However, it does not
switch to the supervisor stack. Instead, it switches to the interrupt stack. Fault table entries
determine if a particular fault transitions the processor from user to supervisor mode. 

If an application does not require a user-supervisor protection mechanism, the processor can
always execute in supervisor mode. At initialization, the processor is placed in supervisor mode
prior to executing the first instruction of the application code. The processor then remains in
supervisor mode indefinitely, as long as no action is taken to change execution mode to user mode.
The processor does not need a user stack in this case.



4
CACHE AND ON-CHIP DATA RAM





4

CHAPTER 4
CACHE AND ON-CHIP DATA RAM

This chapter describes the structure and user configuration of all forms of on-chip storage,
including caches (data, local register and instruction) and data RAM.

4.1 INTERNAL DATA RAM

Internal data RAM is mapped to the lower 1 Kbyte (0 to 03FFH) of the address space. Loads and
stores with target addresses in internal data RAM operate directly on the internal data RAM; no
external bus activity is generated. Data RAM allows time-critical data storage and retrieval without
dependence on external bus performance. Only data accesses are allowed to the internal data
RAM; instructions cannot be fetched from the internal data RAM. Instruction fetches directed to
the data RAM cause an OPERATION.UNIMPLEMENTED fault to occur.

Internal data RAM locations are never cached in the data cache. Logical Memory Template bits
controlling caching are ignored for data RAM accesses. 

Some internal data RAM locations are reserved for functions other than general data storage. The
first 64 bytes of data RAM may be used to cache interrupt vectors, which reduces latency for these
interrupts. The word at location 0000H is always reserved for the cached NMI vector. With the
exception of the cached NMI vector, other reserved portions of the data RAM can be used for data
storage when the alternate function is not used. All locations of the internal data RAM can be read
in both supervisor and user mode.

The first 64 bytes (0000H to 003FH) of internal RAM are always user-mode write-protected. This
portion of data RAM can be read while executing in user or supervisor mode; however, it can be
only modified in supervisor mode. This area can also be write-protected from supervisor mode
writes by setting the BCON.sirp bit. See section 12.3.1,  Bus Control Register – BCON (pg. 12-6).
4-1

Protecting this portion of the data RAM from user and supervisor rights preserves the interrupt
vectors that may be cached there. See section 8.5.2.1,  Vector Caching Option (pg. 8-46).



filing
to this
CACHE AND ON-CHIP DATA RAM

Figure 4-1.  Internal Data RAM and Register Cache

The remainder of the internal data RAM can always be written from supervisor mode. User mode
write protection is optionally selected for the rest of the data RAM (40H to 3FFH) by setting the
Bus Control Register RAM protection bit (BCON.irp). Writes to internal data RAM locations
while they are protected generate a TYPE.MISMATCH fault. See section 12.3.1,  Bus Control
Register – BCON (pg. 12-6) for the format of the BCON register.

New versions of i960 processor compilers take advantage of internal data RAM. Pro
compilers, such as those offered by Intel, can allocate the most frequently used variables in
RAM.

4.2 LOCAL REGISTER CACHE

The i960® Rx I/O processor provides fast storage of local registers for call and return operations
by using an internal local register cache (also known as a stack frame cache). Up to eight local

NMI
0000 0000H

Optional Interrupt Vectors

0000 0004H

0000 003FH

0000 03FFH

Available for Data
4-2

register sets can be contained in the cache before sets must be saved in external memory. The
register set is all the local registers (i.e., r0 through r15). The processor uses a 128-bit wide bus to
store local register sets quickly to the register cache. An integrated procedure call mechanism
saves the current local register set when a call is executed. A local register set is saved into a frame
in the local register cache, one frame per register set. When the eighth frame is saved, the oldest
set of local registers is flushed to the procedure stack in external memory, which frees one frame.

Section 7.1.4, Caching Local Register Sets (pg. 7-7) and section 7.1.5,  Mapping Local Registers
to the Procedure Stack (pg. 7-11) further discuss the relationship between the internal register
cache and the external procedure stack.



4

CACHE AND ON-CHIP DATA RAM

The branch-and-link (bal and balx) instructions do not cause the local registers to be stored.

The entire internal register cache contents can be copied to the external procedure stack through
the flushreg instruction. Section 6.2.30, flushreg (pg. 6-54) explains the instruction itself and
section 7.2,  MODIFYING THE PFP REGISTER (pg. 7-11) offers a practical example when
flushreg must be used.

To decrease interrupt latency, software can reserve a number of frames in the local register cache
solely for high priority interrupts (interrupted state and process priority greater than or equal to 28).
The remaining frames in the cache can be used by all code, including high-priority interrupts.
When a frame is reserved for high-priority interrupts, the local registers of the code interrupted by
a high-priority interrupt can be saved to the local register cache without causing a frame flush to
memory, providing the local register cache is not already full. Thus, the register allocation for the
implicit interrupt call does not incur the latency of a frame flush.

Software can reserve frames for high-priority interrupt code by writing bits 10 through 8 of the
register cache configuration word in the PRCB. This value indicates the number of free frames
within the register cache that can be used by high-priority interrupts only. Any attempt by non-
critical code to reduce the number of free frames below this value will result in a frame flush to
external memory. The free frame check is performed only when a frame is pushed, which occurs
only for an implicit or explicit call. The following pseudo-code illustrates the operation of the
register cache when a frame is pushed.
4-3



CACHE AND ON-CHIP DATA RAM

The valid range for the number of reserved free frames is 0 to 7. Setting the value to 0 reserves no
frames for exclusive use by high-priority interrupts. Setting the value to 1 reserves 1 frame for
high-priority interrupts and 6 frames to be shared by all code. Setting the value to 7 causes the
register cache to become disabled for non-critical code. If the number of reserved high-priority
frames exceeds the allocated size of the register cache, the entire cache is reserved for high-
priority interrupts. In that case, all low-priority interrupts and procedure calls cause frame spills to
external memory.

4.3 INSTRUCTION CACHE

The i960 Rx I/O processor features a 4-Kbyte, 2-way set-associative instruction cache (I-cache)
organized in lines of four 32-bit words. The cache provides fast execution of cached code and
loops of code and provides more bus bandwidth for data operations in external memory. To
optimize cache updates when branches or interrupts are executed, each word in the line has a
separate valid bit. When requested instructions are found in the cache, the instruction fetch time is
one cycle for up to four words. A mechanism to load and lock critical code within a way of the
cache is provided along with a mechanism to disable the cache. The cache is managed through the

Example 4-1.  Register Cache Operation

frames_for_non_critical = 7- RCW[11:8];
if (interrupt_request)

set_interrupt_handler_PC;
push_frame;
number_of_frames = number_of_frames + 1;
if (number_of_frames = 8) {

flush_register_frame(oldest_frame);
number_of_frames = number_of_frames - 1; }

else if ( number_of_frames = (frames_for_non_critical + 1) && 
             (PC.priority < 28 || PC.state != interrupted) ) {

 flush_register_frame(oldest_frame);
 number_of_frames = number_of_frames - 1; }
4-4

icctl or sysctl instruction. The sysctl instruction supports the instruction cache to maintain
compatibility with other i960 processor software. Using icctl is the preferred and more versatile
method for controlling the instruction cache on the i960 Rx I/O processor.

Cache misses cause the processor to issue a double-word or a quad-word fetch, based on the
location of the Instruction Pointer:

• If the IP is at word 0 or word 1 of a 16-byte block, a four-word fetch is initiated. 

• If the IP is at word 2 or word 3 of a 16-byte block, a two-word fetch is initiated. 



4

ration
t the

d

e
he is

ne tag

ions
er. No
n the
CACHE AND ON-CHIP DATA RAM

4.3.1 Enabling and Disabling the Instruction Cache

Enabling the instruction cache is controlled on reset or initialization by the instruction cache
configuration word in the Process Control Block (PRCB); see Table 11-8. When bit 16 in the
instruction cache configuration word is set, the instruction cache is disabled and all instruction
fetches are directed to external memory. Disabling the instruction cache is useful for tracing
execution in a software debug environment. 

The instruction cache remains disabled until one of three operations is performed:

• icctl is issued with the enable instruction cache operation (preferred method)

• sysctl is issued with the configure-instruction-cache message type and cache configu
mode other than disable cache (provides compatibility with other i960 processors; no
preferred method for i960 Rx I/O processor).

• The processor is reinitialized with a new value in the instruction cache configuration wor

4.3.2 Operation While the Instruction Cache Is Disabled

Disabling the instruction cache does not disable instruction buffering that may occur in th
instruction fetch unit. A four-word instruction buffer is always enabled, even when the cac
disabled. 

There is one tag and four word-valid bits associated with the buffer. Because there is only o
for the buffer, any “miss” within the buffer causes the following:

• All four words of the buffer are invalidated.

• A new tag value for the required instruction is loaded.

• The required instruction(s) are fetched from external memory.

Depending on the alignment of the “missed” instruction, either two or four words of instruct
are fetched and only the valid bits corresponding to the fetched words are set in the buff
external instruction fetches are generated until there is a “miss” within the buffer, even i
4-5

presence of forward and backward branches.

4.3.3 Loading and Locking Instructions in the Instruction Cache

The processor can be directed to load a block of instructions into the cache and then lock out all
normal updates to the cache. This cache load-and-lock mechanism is provided to minimize latency
on program control transfers to key operations such as interrupt service routines. The block size
that can be loaded and locked on the i960 Rx I/O processor is one way of the cache. 



CACHE AND ON-CHIP DATA RAM

An icctl or sysctl instruction is issued with a configure-instruction-cache message type to select
the load-and-lock mechanism. When the lock option is selected, the processor loads the cache
starting at an address specified as an operand to the instruction. 

4.3.4 Instruction Cache Visibility

Instruction cache status can be determined by issuing icctl with an instruction-cache status
message. To facilitate debugging, the instruction cache contents, instructions, tags and valid bits
can be written to memory. This is done by issuing icctl with the store cache operation.

4.3.5 Instruction Cache Coherency

The i960 Rx I/O processor does not snoop the bus to prevent instruction cache incoherency. The
cache does not detect modification to program memory by loads, stores or actions of other bus
masters. Several situations may require program memory modification, such as uploading code at
initialization or loading from a backplane bus or a disk drive. 

The application program is responsible for synchronizing its own code modification and cache
invalidation. In general, a program must ensure that modified code space is not accessed until
modification and cache-invalidate are completed. To achieve cache coherency, instruction cache
contents should be invalidated after code modification is complete. icctl invalidates the instruction
cache for the i960 Rx I/O processor. Alternately, i960 processor legacy software can use sysctl.

4.4 DATA CACHE

The i960 Rx I/O processor features a 2-Kbyte, direct-mapped cache that enhances performance by
reducing the number of data load and store accesses to external memory. The cache is write-
through and write-allocate. It has a line size of 4 words and each line in the cache has a valid bit.
To reduce fetch latency on cache misses, each word within a line also has a valid bit. Caches are
managed through the dcctl instruction.
4-6

User settings in the memory region configuration registers LMCON0-1 and DLMCON determine
the data accesses that are cacheable or non-cacheable based on memory region. 



4

n the
CACHE AND ON-CHIP DATA RAM

4.4.1 Enabling and Disabling the Data Cache

To cache data, two conditions must be met:

1. The data cache must be enabled. A dcctl instruction issued with an enable data cache
message enables the cache. On reset or initialization, the data cache is always disabled and
all valid bits are set to zero.

2. Data caching for a location must be enabled by the corresponding logical memory template,
or by the default logical memory template if no other template applies. See section 12.2,
PROGRAMMING THE PHYSICAL MEMORY ATTRIBUTES (PMCON REGISTERS)
(pg. 12-3) for more details on logical memory templates. 

When the data cache is disabled, all data fetches are directed to external memory. Disabling the
data cache is useful for debugging or monitoring a system. To disable the data cache, issue a dcctl
with a disable data cache message. The enable and disable status of the data cache and various
attributes of the cache can be determined by a dcctl issued with a data-cache status message.

4.4.2 Multi-Word Data Accesses that Partially Hit the Data Cache

The following applies only when data caching is enabled for an access.

For a multi-word load access (ldl, ldt, ldq) in which none of the requested words hit the data cache,
an external bus transaction is started to acquire all the words of the access. 

For a multi-word load access that partially hits the data cache, the processor may either:

• Load or reload all words of the access (even those that hit) from the external bus.

• Load only missing words from the external bus and interleave them with words found i
data cache.

The multi-word alignment determines which of the above methods is used:

• Naturally aligned multi-word accesses cause all words to be reloaded.
4-7

• An unaligned multi-word access causes only missing words to be loaded. 

When any words accessed with ldl, ldt, or ldq miss the data cache, every word accessed by that
load instruction is updated in the cache.

 Load Instruction Number of Updated Words

ldq 4 words

ldt 3 words

ldl 2 words



sor
 a data
 words.
 cache
t words

cessor
taining
CACHE AND ON-CHIP DATA RAM

In each case, the external bus accesses used to acquire the data may consist of none, one, or several
burst accesses based on the alignment of the data and the bus-width of the memory region that
contains the data. See Chapter 13, LOCAL BUS for more details.

A multi-word load access that completely hits in the data cache does not cause external bus
accesses.

For a multi-word store access (stl, stt, stq) an external bus transaction is started to write all words
of the access regardless if any or all words of the access hit the data cache. External bus accesses
used to write the data may consist of either one or several burst accesses based on data alignment
and the bus-width of the memory region that receives the data. The cache is also updated
accordingly as described earlier in this chapter. 

4.4.3 Data Cache Fill Policy

The i960 Rx I/O processor always uses a “natural” fill policy for cacheable loads. The proces
fetches only the amount of data that is requested by a load (i.e., a word, long word, etc.) on
cache miss. Exceptions are byte and short-word accesses, which are always promoted to
This allows a complete word to be brought into the cache and marked valid. When the data
is disabled and loads are done from a cacheable region, promotions from bytes and shor
still take place.

4.4.4 Data Cache Write Policy

The write policy determines what happens on cacheable writes (stores). The i960 Rx I/O pro
always uses a write-through policy. Stores are always seen on the external bus, thus main
coherency between the data cache and external memory.
4-8



4

CACHE AND ON-CHIP DATA RAM

The i960 Rx I/O processor always uses a write-allocate policy for data. For a cacheable location,
data is always written to the data cache regardless of whether the access is a hit or miss. The
following cases are relevant to consider:

1. In the case of a hit for a word or multi-word store, the appropriate line and word(s) are
updated with the data.

2. In the case of a miss for a word or multi-word store, a tag and cache line are allocated, if
needed, and the appropriate valid bits, line, and word(s) are updated.

3. In the case of byte or short-word data that hits a valid word in the cache, both the word in
cache and external memory are updated with the data; the cache word remains valid.

4. In the case of byte or short-word data that falls within a valid line but misses because the
appropriate word is invalid, both the word and external memory are updated with the data;
however, the cache word remains invalid.

5. In the case of byte or short-word data that does not fall within a valid line, the external
memory is updated with the data. For data writes less than a word, the data cache is not
updated; the tags and valid bits are not changed. 

A byte or short word is always invalid in the data cache since valid bits only apply to words. 

For cacheable stores that are equal to or greater than a word in length, cache tags and appropriate
valid bits are updated whenever data is written into the cache. Consider a word store that misses as
an example. The tag is always updated and its valid bit is set. The appropriate valid bit for that
word is always set and the other three valid bits are always cleared. If the word store hits the cache,
the tag bits remain unchanged. The valid bit for the stored word is set; all other valid bits are
unchanged. 

Cacheable stores that are less than a word in length are handled differently. Byte and short-word
stores that hit the cache (i.e., are contained in valid words within valid cache lines) do not change
the tag and valid bits. The processor writes the data into the cache and external memory as usual. A
byte or short-word store to an invalid word within a valid cache line leaves the word valid bit
cleared because the rest of the word is still invalid. In these two cases the processor simultaneously
writes the data into the cache and the external memory.
4-9

4.4.5 Data Cache Coherency and Non-Cacheable Accesses

The i960 Rx I/O processor ensures that the data cache is always kept coherent with accesses that it
initiates and performs. The most visible application of this requirement concerns non-cacheable
accesses discussed below. However, the processor does not provide data cache coherency for
accesses on the external bus that it did not initiate. Software is responsible for maintaining
coherency in a multi-processor environment.



 line is
. This
stem. A
a non-
ause the
che is
ically. 

hing is

 is no
ster can
ent data.

 non-
CACHE AND ON-CHIP DATA RAM

An access is defined as non-cacheable when any of the following is true: 

1. The access falls into an address range mapped by an enabled LMCON or DLMCON and the
data-caching enabled bit in the matching LMCON is clear.

2. The entire data cache is disabled.

3. The access is a read operation of the read-modify-write sequence performed by an atmod or
atadd instruction.

4. The access is an implicit read access to the interrupt table to post or deliver a software
interrupt.

If the memory location targeted by an atmod or atadd instruction is currently in the data cache, it
is invalidated.

If the address for a non-cacheable store matches a tag (“tag hit”), the corresponding cache
marked invalid. This is because the word is not actually updated with the value of the store
behavior ensures that the data cache never contains stale data in a single-processor sy
simple case illustrates the necessity of this behavior: a read of data previously stored by 
cacheable access must return the new value of the data, not the value in the cache. Bec
processor invalidates the appropriate word in the cache line on a store hit when the ca
disabled, coherency can be maintained when the data cache is enabled and disabled dynam

Data loads or stores invalidate the corresponding lines of the cache even when data cac
disabled. This behavior further ensures that the cache does not contain stale data.

4.4.6 External I/O and Bus Masters and Cache Coherency

The i960 Rx I/O processor implements a single processor coherency mechanism. There
hardware mechanism, such as bus snooping, to support multiprocessing. If another bus ma
change shared memory, there is no guarantee that the data cache contains the most rec
The user must manage such data coherency issues in software.

A suggested practice is to program the LMCON0-1 registers such that I/O regions are
4-10

cacheable. Partitioning the system in this fashion eliminates I/O as a source of coherency
problems. See section 12.2,  PROGRAMMING THE PHYSICAL MEMORY ATTRIBUTES
(PMCON REGISTERS) (pg. 12-3) for more information on this subject.

4.4.7 Data Cache Visibility

Data cache status can be determined by a dcctl instruction issued with a data-cache status
message. Data cache contents, data, tags and valid bits can be written to memory as an aid for
debugging. This operation is accomplished by a dcctl instruction issued with the dump cache
operand. See section 6.2.23,  dcctl (pg. 6-39) for more information. 



5
INSTRUCTION SET OVERVIEW





5
ly
 to use

e and

s. For
ly
rands,
CHAPTER 5
INSTRUCTION SET OVERVIEW

This chapter provides an overview of the i960® microprocessor family’s instruction set and i960®

Rx I/O processor-specific instruction set extensions. Also discussed are the assembly-language and
instruction-encoding formats, various instruction groups and each group’s instructions.

CHAPTER 6, INSTRUCTION SET REFERENCE describes each instruction, including assemb
language syntax, and the action taken when the instruction executes and examples of how
the instruction.

5.1 INSTRUCTION FORMATS

i960 Rx I/O processor instructions may be described in two formats: assembly languag
instruction encoding. The following subsections briefly describe these formats.

5.1.1 Assembly Language Format

Throughout this manual, instructions are referred to by their assembly language mnemonic
example, the add ordinal instruction is referred to as addo. Examples use Intel 80960 assemb
language syntax which consists of the instruction mnemonic followed by zero to three ope
separated by commas. In the following assembly language statement example for addo, ordinal
operands in global registers g5 and g9 are added together, and the result is stored in g7:

addo g5, g9, g7 # g7 = g9 + g5

In the assembly language listings in this chapter, registers are denoted as:

g global register r local register
# pound sign precedes a comment
5-1

All numbers used as literals or in address expressions are assumed to be decimal. Hexadecimal
numbers are denoted with a “0x” prefix (e.g., 0xffff0012). Several assembly language instruction
statement examples follow. Additional assembly language examples are given in section 2.3.5,
Addressing Mode Examples (pg. 2-7).

subi r3, r5, r6 #r6 = r5 - r3
setbit 13, g4, g5 #g5 = g4 with bit 13 set
lda 0xfab3, r12 #r12 = 0xfab3
ld (r4), g3 #g3 = memory location that r4 points to
st g10, (r6)[r7*2] #g10 = memory location that r6+2*r7 points to



code
of the
f four
INSTRUCTION SET OVERVIEW

5.1.2 Instruction Encoding Formats

All instructions are encoded in one 32-bit machine language instruction — an opword — which
must be word aligned in memory. An opword’s most significant eight bits contain the op
field. The opcode field determines the instruction to be performed and how the remainder 
machine language instruction is interpreted. Instructions are encoded in opwords in one o
formats (see Figure 5-1). For more information on instruction formats, see APPENDIX A,
MACHINE-LEVEL INSTRUCTION FORMATS.

Table 5-1.  Instruction Encoding Formats (REG, COBR, CRTL, MEM)

Instruction Type Format Description

register REG
Most instructions are encoded in this format. Used primarily for instructions 
which perform register-to-register operations. 

compare and 
branch

COBR
An encoding optimization which combines compare and branch operations into 
one opword. Other compare and branch operations are also provided as REG 
and CTRL format instructions.

control CTRL For branches and calls that do not depend on registers for address calculation. 

memory MEM

Used for referencing an operand which is a memory address. Load and store 
instructions — and some branch and call instructions — use this format. MEM 
format has two encodings: MEMA or MEMB. Usage depends upon the 
addressing mode selected. MEMB-formatted addressing modes use the word in 
memory immediately following the instruction opword as a 32-bit constant. 
MEMA format uses one word and MEMB uses two words.

031

OPCODE src/dst src2 OPCODE src1

031

OPCODE src2 displacementsrc1

031

REG

COBR
5-2

Figure 5-1.  Machine-Level Instruction Formats

 

OPCODE displacement

031

OPCODE src/dst Address Offset

CTRL

MEMA

MEMB

031

OPCODE src/dst Address Index

32-Bit displacement

Scale

Base

Base



5

ng

t

INSTRUCTION SET OVERVIEW

5.1.3 Instruction Operands

This section identifies and describes operands that can be used with the instruction formats.

5.2 INSTRUCTION GROUPS

The i960 processor instruction set can be categorized into the following functional groups shown
in Table 5-2. The actual number of instructions is greater than those shown in this list because, for
some operations, several unique instructions are provided to handle various operand sizes, data
types or branch conditions. The following sections provide an overview of the instructions in each
group. For detailed information about each instruction, refer to CHAPTER 6, INSTRUCTION
SET REFERENCE. 

Format Operand(s) Description
REG src1, src2, src/dst src1 and src2 can be global registers, local registers or literals.

src/dst is either a global or a local register.
CTRL displacement CTRL format is used for branch and call instructions.

displacement value indicates the target instruction of the
branch or call.

COBR src1, src2, displacement src1, src2 indicate values to be compared; displacement
indicates branch target. src1 can specify a global register,
local register or a literal. src2 can specify a global or local
register.

MEM src/dst, efa Specifies source or destination register and an effective
address (efa) formed by using the processor’s addressi
modes as described in section 2.3, MEMORY ADDRESSING
MODES (pg. 2-5). Registers specified in a MEM forma
instruction must be either a global or local register.
5-3



INSTRUCTION SET OVERVIEW

Table 5-2.  80960Rx Instruction Set

Data Movement Arithmetic Logical Bit, Bit Field and Byte

Load

Store

Move

*Conditional Select

Load Address

Add

Subtract

Multiply

Divide

Remainder

Modulo

Shift

Extended Shift

Extended Multiply

Extended Divide

Add with Carry

Subtract with Carry

*Conditional Add

*Conditional Subtract

Rotate

And

Not And

And Not

Or

Exclusive Or

Not Or

Or Not

Nor

Exclusive Nor

Not

Nand

Set Bit

Clear Bit

Not Bit

Alter Bit

Scan For Bit

Span Over Bit

Extract

Modify

Scan Byte for Equal

*Byte Swap

Comparison Branch Call/Return Fault

Compare

Conditional Compare

Compare and Increment

Compare and Decrement

Test Condition Code

Check Bit

Unconditional Branch

Conditional Branch

Compare and Branch

Call

Call Extended

Call System

Return

Branch and Link

Conditional Fault

Synchronize Faults

Debug Processor Management Atomic

Modify Trace Controls

Mark

Force Mark

Flush Local Registers

Modify Arithmetic 
Controls

Modify Process Controls

*Halt

System Control

Atomic Add

Atomic Modify
5-4

5.2.1 Data Movement

These instructions are used to move data from memory to global and local registers, from global
and local registers to memory, and between local and global registers.

*Cache Control

*Interrupt Control

* Denotes newer instructions that are NOT available on 80960CA/CF, 80960KA/KB and 80960SA/SB implementations.



5

INSTRUCTION SET OVERVIEW

Rules for register alignment must be followed when using load, store and move instructions that
move 8, 12 or 16 bytes at a time. See section 3.5, MEMORY ADDRESS SPACE (pg. 3-10) for
alignment requirements for code portability across implementations.

5.2.1.1 Load and Store Instructions

Load instructions copy bytes or words from memory to local or global registers or to a group of
registers. Each load instruction has a corresponding store instruction to memory bytes or words to
copy from a selected local or global register or group of registers. All load and store instructions
use the MEM format.

ld copies 4 bytes from memory into a register; ldl copies 8 bytes; ldt copies 12 bytes into
successive registers; ldq copies 16 bytes into successive registers.

st copies 4 bytes from a register into memory; stl copies 8 bytes; stt copies 12 bytes from
successive registers; stq copies 16 bytes from successive registers.

For ld, ldob, ldos, ldib and ldis, the instruction specifies a memory address and register; the
memory address value is copied into the register. The processor automatically extends byte and
short (half-word) operands to 32 bits according to data type. Ordinals are zero-extended; integers
are sign-extended.

For st, stob, stos, stib and stis, the instruction specifies a memory address and register; the
register value is copied into memory. For byte and short instructions, the processor automatically

ld load word st store word
ldob load ordinal byte stob store ordinal byte
ldos load ordinal short stos store ordinal short
ldib load integer byte stib store integer byte
ldis load integer short stis store integer short
ldl load long stl store long
ldt load triple stt store triple
ldq load quad stq store quad
5-5

reformats the source register’s 32-bit value for the shorter memory location. For stib and stis, this
reformatting can cause integer overflow when the register value is too large for the shorter memory
location. When integer overflow occurs, either an integer-overflow fault is generated or the
integer-overflow flag in the AC register is set, depending on the integer-overflow mask bit setting
in the AC register. 

For stob and stos, the processor truncates the register value and does not create a fault when
truncation resulted in the loss of significant bits.



ical

ctions
INSTRUCTION SET OVERVIEW

5.2.1.2 Move

Move instructions copy data from a local or global register or group of registers to another register
or group of registers. These instructions use the REG format.

5.2.1.3 Load Address

The Load Address instruction (lda) computes an effective address in the address space from an
operand presented in one of the addressing modes. lda is commonly used to load a constant into a
register. This instruction uses the MEM format and can operate upon local or global registers.

On the i960 Rx I/O processor, lda is useful for performing simple arithmetic operations. The
processor’s parallelism allows lda to execute in the same clock as another arithmetic or log
operation.

5.2.2 Select Conditional

Given the proper condition code bit settings in the Arithmetic Controls register, these instru
move one of two pieces of data from its source to the specified destination.

mov move word
movl move long word
movt move triple word
movq move quad word

selno Select Based on Unordered
selg Select Based on Greater
sele Select Based on Equal
selge Select Based on Greater or Equal
sell Select Based on Less
selne Select Based on Not Equal
selle Select Based on Less or Equal
5-6

5.2.3 Arithmetic

Table 5-3 lists arithmetic operations and data types for which the i960 Rx I/O processor provides
instructions. “X” in this table indicates that the microprocessor provides an instruction for the
specified operation and data type. All arithmetic operations are carried out on operands in registers
or literals. Refer to section 5.2.11, Atomic Instructions (pg. 5-17) for instructions which handle
specific requirements for in-place memory operations.

selo Select Based on Ordered



5

INSTRUCTION SET OVERVIEW

All arithmetic instructions use the REG format and can operate on local or global registers. The
following subsections describe arithmetic instructions for ordinal and integer data types.

5.2.3.1 Add, Subtract, Multiply, Divide, Conditional Add, Conditional Subtract

These instructions perform add, subtract, multiply or divide operations on integers and ordinals:

Table 5-3.  Arithmetic Operations

Arithmetic Operations
Data Types

Integer Ordinal

Add X X

Add with Carry X X

Conditional Add X X

Subtract X X

Subtract with Carry X X

Conditional Subtract X X

Multiply X X

Extended Multiply X

Divide X X

Extended Divide X

Remainder X X

Modulo X

Shift Left X X

Shift Right X X

Extended Shift Right X

Shift Right Dividing Integer X

NOTE: “X” indicates that an instruction is available for the specified operation and data type.

addi Add Integer
5-7

addo Add Ordinal
subi Subtract Integer
subo Subtract Ordinal
SUB<cc> Conditional Subtract
muli Multiply Integer
mulo Multiply Ordinal
divi Divide Integer
divo Divide Ordinal



INSTRUCTION SET OVERVIEW

addi, ADDI<cc>, subi, SUBI<cc>, muli and divi generate an integer-overflow fault when the
result is too large to fit in the 32-bit destination. divi and divo generate a zero-divide fault when
the divisor is zero.

5.2.3.2 Remainder and Modulo

These instructions divide one operand by another and retain the remainder of the operation:

The difference between the remainder and modulo instructions lies in the sign of the result. For
remi and remo, the result has the same sign as the dividend; for modi, the result has the same sign
as the divisor.

5.2.3.3 Shift, Rotate and Extended Shift

These shift instructions shift an operand a specified number of bits left or right:

Except for rotate, these instructions discard bits shifted beyond the register boundary.

shlo shifts zeros in from the least significant bit; shro shifts zeros in from the most significant bit.
These instructions are equivalent to mulo and divo by the power of 2, respectively.

remi remainder integer
remo remainder ordinal
modi modulo integer

shlo shift left ordinal
shro shift right ordinal
shli shift left integer
shri shift right integer
shrdi shift right dividing integer
rotate rotate left
eshro extended shift right ordinal
5-8

shli shifts zeros in from the least significant bit. When the shift operation results in an overflow,
an integer-overflow fault is generated (when enabled). The destination register is written with the
source shifted as much as possible without overflow and an integer-overflow fault is signaled.

shri performs a conventional arithmetic shift right operation by extending the sign bit. However,
when this instruction is used to divide a negative integer operand by the power of 2, it may
produce an incorrect quotient. (Discarding the bits shifted out has the effect of rounding the result
toward negative.)



5

uch
 to an
o the

erands

dition
 is set;

-bit)

en the
ple-
INSTRUCTION SET OVERVIEW

shrdi is provided for dividing integers by the power of 2. With this instruction, 1 is added to the
result when the bits shifted out are non-zero and the operand is negative, which produces the
correct result for negative operands. shli and shrdi are equivalent to muli and divi by the power of
2, respectively, except in cases where an overflow error occurs.

rotate rotates operand bits to the left (toward higher significance) by a specified number of bits.
Bits shifted beyond the register’s left boundary (bit 31) appear at the right boundary (bit 0).

The eshro instruction performs an ordinal right shift of a source register pair (64 bits) by as m
as 32 bits and stores the result in a single (32-bit) register. This instruction is equivalent
extended divide by a power of 2, which produces no remainder. The instruction is als
equivalent of a 64-bit extract of 32 bits.

5.2.3.4 Extended Arithmetic

These instructions support extended-precision arithmetic; i.e., arithmetic operations on op
greater than one word in length:

addc adds two word operands (literals or contained in registers) plus the AC Register con
code bit 1 (used here as a carry bit). When the result has a carry, bit 1 of the condition code
otherwise, it is cleared. This instruction’s description in CHAPTER 6, INSTRUCTION SET
REFERENCE gives an example of how this instruction can be used to add two long-word (64
operands together.

subc is similar to addc, except it is used to subtract extended-precision values. Although addc and
subc treat their operands as ordinals, the instructions also set bit 0 of the condition codes wh
operation would have resulted in an integer overflow condition. This facilitates a software im
mentation of extended integer arithmetic.

addc add ordinal with carry
subc subtract ordinal with carry
emul extended multiply
ediv extended divide
5-9

emul multiplies two ordinals (each contained in a register), producing a long ordinal result (stored
in two registers). ediv divides a long ordinal by an ordinal, producing an ordinal quotient and an
ordinal remainder (stored in two adjacent registers).



INSTRUCTION SET OVERVIEW

5.2.4 Logical

These instructions perform bitwise Boolean operations on the specified operands:

All logical instructions use the REG format and can operate on literals or local or global registers.

5.2.5 Bit, Bit Field and Byte Operations

These perform operations on a specified bit or bit field in an ordinal operand. All Bit, Bit Field and
Byte instructions use the REG format and can operate on literals or local or global registers.

5.2.5.1 Bit Operations

These instructions operate on a specified bit:

and src2 AND src1
notand (NOT src2) AND src1
andnot src2 AND (NOT src1)
xor src2 XOR src1
or src2 OR src1
nor NOT (src2 OR src1)
xnor src2 XNOR src1
not NOT src1
notor (NOT src2) or src1
ornot src2 or (NOT src1)
nand NOT (src2 AND src1)

setbit set bit
clrbit clear bit
notbit invert bit
alterbit alter bit
scanbit scan for bit
5-10

setbit, clrbit and notbit set, clear or complement (toggle) a specified bit in an ordinal.

alterbit alters the state of a specified bit in an ordinal according to the condition code. When the
condition code is 0102, the bit is set; when the condition code is 0002, the bit is cleared.

chkbit, described in section 5.2.6, Comparison (pg. 5-11), can be used to check the value of an
individual bit in an ordinal.

scanbit and spanbit find the most significant set bit or clear bit, respectively, in an ordinal.

spanbit span over bit



5

ibed in

egister
INSTRUCTION SET OVERVIEW

5.2.5.2 Bit Field Operations

The two bit field instructions are extract and modify.

extract converts a specified bit field, taken from an ordinal value, into an ordinal value. In essence,
this instruction shifts right a bit field in a register and fills in the bits to the left of the bit field with
zeros. (eshro also provides the equivalent of a 64-bit extract of 32 bits).

modify copies bits from one register into another register. Only masked bits in the destination
register are modified. modify is equivalent to a bit field move.

5.2.5.3 Byte Operations

scanbyte performs a byte-by-byte comparison of two ordinals to determine when any two corre-
sponding bytes are equal. The condition code is set based on the results of the comparison.
scanbyte uses the REG format and can specify literals or local or global registers as arguments. 

bswap alters the order of bytes in a word, reversing its “endianess.” 

5.2.6 Comparison

The processor provides several types of instructions for comparing two operands, as descr
the following subsections.

5.2.6.1 Compare and Conditional Compare

These instructions compare two operands then set the condition code bits in the AC r
according to the results of the comparison:

cmpi Compare Integer
cmpib Compare Integer Byte
cmpis Compare Integer Short
cmpo Compare Ordinal
5-11

These all use the REG format and can specify literals or local or global registers. The condition
code bits are set to indicate whether one operand is less than, equal to, or greater than the other
operand. See section 3.6.2, Arithmetic Controls Register – AC (pg. 3-16) for a description of the
condition codes for conditional operations.

concmpi Conditional Compare Integer
concmpo Conditional Compare Ordinal
chkbit Check Bit



ange

t the
on is

the bit

mpare

are an
e and
erative
INSTRUCTION SET OVERVIEW

cmpi and cmpo simply compare the two operands and set the condition code bits accordingly.
concmpi and concmpo first check the status of condition code bit 2:

• When not set, the operands are compared as with cmpi and cmpo. 

• When set, no comparison is performed and the condition code flags are not changed.

The conditional-compare instructions are provided specifically to optimize two-sided r
comparisons to check for the condition when A is between B and C (B ≤ A ≤ C). Here, a compare
instruction (cmpi or cmpo) checks one side of the range (A ≥ B) and a conditional compare
instruction (concmpi or concmpo) checks the other side (A ≤ C) according to the result of the
first comparison. The condition codes following the conditional comparison directly reflec
results of both comparison operations. Therefore, only one conditional branch instructi
required to act upon the range check; otherwise, two branches would be needed.

chkbit checks a specified bit in a register and sets the condition code flags according to 
state. The condition code is set to 0102 when the bit is set and 0002 otherwise.

5.2.6.2 Compare and Increment or Decrement

These instructions compare two operands, set the condition code bits according to the co
results, then increment or decrement one of the operands:

These all use the REG format and can specify literals or local or global registers. They 
architectural performance optimization which allows two register operations (e.g., compar
add) to execute in a single cycle. The intended use of these instructions is at the end of it
loops.

5.2.6.3 Test Condition Codes

cmpinci compare and increment integer
cmpinco compare and increment ordinal
cmpdeci compare and decrement integer
cmpdeco compare and decrement ordinal
5-12

These test instructions allow the state of the condition code flags to be tested:

teste test for equal
testne test for not equal
testl test for less
testle test for less or equal
testg test for greater
testge test for greater or equal
testo test for ordered
testno test for unordered



5

 of the
essing

al
ese
ffers.

e of
INSTRUCTION SET OVERVIEW

When the condition code matches the instruction-specified condition, a TRUE (0000 0001H) is
stored in a destination register; otherwise, a FALSE (0000 0000H) is stored. All use the COBR
format and can operate on local and global registers.

5.2.7 Branch

Branch instructions allow program flow direction to be changed by explicitly modifying the IP.
The processor provides three branch instruction types:

• unconditional branch

• conditional branch

• compare and branch

Most branch instructions specify the target IP by specifying a signed displacement to be added to
the current IP. Other branch instructions specify the target IP’s memory address, using one
processor’s addressing modes. This latter group of instructions is called extended addr
instructions (e.g., branch extended, branch-and-link extended).

5.2.7.1 Unconditional Branch

These instructions are used for unconditional branching: 

b and bal use the CTRL format. bx and balx use the MEM format and can specify local or glob
registers as operands. b and bx cause program execution to jump to the specified target IP. Th
two instructions perform the same function; however, their determination of the target IP di
The target IP of a b instruction is specified at link time as a relative displacement from the current
IP. The target IP of the bx instruction is the absolute address resulting from the instruction’s us

b Branch
bx Branch Extended
bal Branch and Link
balx Branch and Link Extended
5-13

a memory-addressing mode during execution.

bal and balx store the next instruction’s address in a specified register, then jump to the specified
target IP. (For bal, the RIP is automatically stored in register g14; for balx, the RIP location is
specified with an instruction operand.) As described in section 7.9, BRANCH-AND-LINK
(pg. 7-21), branch and link instructions provide a method of performing procedure calls that do not
use the processor’s integrated call/return mechanism. Here, the saved instruction address is used as
a return IP. Branch and link is generally used to call leaf procedures (that is, procedures that do not
call other procedures).

bx and balx can make use of any memory-addressing mode.



INSTRUCTION SET OVERVIEW

5.2.7.2 Conditional Branch

With conditional branch (BRANCH IF) instructions, the processor checks the AC register
condition code flags. When these flags match the value specified with the instruction, the
processor jumps to the target IP. These instructions use the displacement-plus-ip method of
specifying the target IP:

All use the CTRL format. bo and bno are used with real numbers. bno can also be used with the
result of a chkbit or scanbit instruction. Refer to section 3.6.2.2, Condition Code (AC.cc)
(pg. 3-17) for a discussion of the condition code for conditional operations.

5.2.7.3 Compare and Branch

These instructions compare two operands then branch according to the comparison result. Three
instruction subtypes are compare integer, compare ordinal and branch on bit:

be branch if equal/true
bne branch if not equal
bl branch if less
ble branch if less or equal
bg branch if greater
bge branch if greater or equal
bo branch if ordered
bno branch if unordered/false

cmpibe compare integer and branch if equal
cmpibne compare integer and branch if not equal
cmpibl compare integer and branch if less
cmpible compare integer and branch if less or equal 
cmpibg compare integer and branch if greater
cmpibge compare integer and branch if greater or equal
cmpibo compare integer and branch if ordered
5-14

cmpibno compare integer and branch if unordered 
cmpobe compare ordinal and branch if equal
cmpobne compare ordinal and branch if not equal 
cmpobl compare ordinal and branch if less
cmpoble compare ordinal and branch if less or equal
cmpobg compare ordinal and branch if greater
cmpobge compare ordinal and branch if greater or equal 
bbs check bit and branch if set
bbc check bit and branch if clear



5

ss.
signed
-bit
INSTRUCTION SET OVERVIEW

All use the COBR machine instruction format and can specify literals, local or global registers as
operands. With compare ordinal and branch (compob*) and compare integer and branch
(compib*) instructions, two operands are compared and the condition code bits are set as described
in section 5.2.6, Comparison (pg. 5-11). A conditional branch is then executed as with the
conditional branch (BRANCH IF) instructions.

With check bit and branch instructions (bbs, bbc), one operand specifies a bit to be checked in the
second operand. The condition code flags are set according to the state of the specified bit: 0102
(true) when the bit is set and 0002 (false) when the bit is clear. A conditional branch is then
executed according to condition code bit settings.

These instructions can be used to optimize execution performance time. When it is not possible to
separate adjacent compare and branch instructions from other unrelated instructions, replacing two
instructions with a single compare and branch instruction increases performance.

5.2.8 Call/Return

The i960 Rx I/O processor offers an on-chip call/return mechanism for making procedure calls.
Refer to section 7.1, CALL AND RETURN MECHANISM (pg. 7-2). The following instructions
support this mechanism:

call and ret use the CTRL machine-instruction format. callx uses the MEM format and can specify
local or global registers. calls uses the REG format and can specify local or global registers.

call and callx make local calls to procedures. A local call is a call that does not require a switch to
another stack. call and callx differ only in the method of specifying the target procedure’s addre
The target procedure of a call is determined at link time and is encoded in the opword as a 
displacement relative to the call IP. callx specifies the target procedure as an absolute 32

call call
callx call extended
calls call system
ret return
5-15

address calculated at run time using any one of the addressing modes. For both instructions, a new
set of local registers and a new stack frame are allocated for the called procedure.

calls is used to make calls to system procedures — procedures that provide a kernel or
system-executive service. This instruction operates similarly to call and callx, except that it gets its
target-procedure address from the system procedure table. An index number included as an
operand in the instruction provides an entry point into the procedure table.



rom

. Fault
on by
icitly

re the
INSTRUCTION SET OVERVIEW

Depending on the type of entry being pointed to in the system procedure table, calls can cause
either a system-supervisor call or a system-local call to be executed. A system-supervisor call is a
call to a system procedure that switches the processor to supervisor mode and switches to the
supervisor stack. A system-local call is a call to a system procedure that does not cause an
execution mode or stack change. Supervisor mode is described throughout CHAPTER 7,
PROCEDURE CALLS.

ret performs a return from a called procedure to the calling procedure (the procedure that made the
call). ret obtains its target IP (return IP) from linkage information that was saved for the calling
procedure. ret is used to return from all calls — including local and supervisor calls — and f
implicit calls to interrupt and fault handlers.

5.2.9 Faults

Generally, the processor generates faults automatically as the result of certain operations
handling procedures are then invoked to handle various fault types without explicit interventi
the currently running program. These conditional fault instructions permit a program to expl
generate a fault according to the state of the condition code flags. All use the CTRL format. 

syncf ensures that any faults that occur during the execution of prior instructions occur befo
instruction that follows the syncf. syncf uses the REG format and requires no operands.

5.2.10 Debug

faulte fault if equal
faultne fault if not equal
faultl fault if less
faultle fault if less or equal
faultg fault if greater
faultge fault if greater or equal
faulto fault if ordered
faultno fault if unordered
5-16

The processor supports debugging and monitoring of program activity through the use of trace
events. The following instructions support these debugging and monitoring tools:

modpc modify process controls
modtc modify trace controls
mark mark
fmark force mark



5

. An
r, but
ired to

hey are
xternal

 REG
INSTRUCTION SET OVERVIEW

These all use the REG format. Trace functions are controlled with bits in the Trace Control (TC)
register which enable or disable various types of tracing. Other TC register flags indicate when an
enabled trace event is detected. Refer to CHAPTER 10, TRACING AND DEBUGGING.

modtc permits trace controls to be modified. mark causes a breakpoint trace event to be generated
when breakpoint trace mode is enabled. fmark generates a breakpoint trace independent of the
state of the breakpoint trace mode bits.

Other instructions that are helpful in debugging include modpc and sysctl. modpc can
enable/disable trace fault generation. The sysctl instruction also provides control over breakpoint
trace event generation. This instruction is used, in part, to load and control the i960 Rx I/O
processor’s breakpoint registers.

5.2.11 Atomic Instructions

Atomic instructions perform an atomic read-modify-write operation on operands in memory
atomic operation is one in which other memory operations are forced to occur before or afte
not during, the accesses that comprise the atomic operation. These instructions are requ
enable synchronization between interrupt handlers and background tasks in any system. T
also particularly useful in systems where several agents — processors, coprocessors or e
logic — have access to the same system memory for communication.

The atomic instructions are atomic add (atadd) and atomic modify (atmod). atadd causes an
operand to be added to the value in the specified memory location. atmod causes bits in the
specified memory location to be modified under control of a mask. Both instructions use the
format and can specify literals or local or global registers as operands.

5.2.12 Processor Management

These instructions control processor-related functions:

modpc Modify the Process Controls register
flushreg Flush cached local register sets to memory
5-17

All use the REG format and can specify literals or local or global registers. 

modpc provides a method of reading and modifying PC register contents. Only programs
operating in supervisor mode may modify the PC register; however, any program may read it.

The processor provides a flush local registers instruction (flushreg) to save the contents of the
cached local registers to the stack. The flush local registers instruction automatically stores the
contents of all the local register sets — except the current set — in the register save area of their
associated stack frames.

modac Modify the Arithmetic Controls register



INSTRUCTION SET OVERVIEW

The modify arithmetic controls instruction (modac) allows the AC register contents to be copied
to a register and/or modified under the control of a mask. The AC register cannot be explicitly
addressed with any other instruction; however, it is implicitly accessed by instructions that use the
condition codes or set the integer overflow flag.

sysctl is used to configure the interrupt controller, breakpoint registers and instruction cache. It
also permits software to signal an interrupt or cause a processor reset and reinitialization. sysctl
may be executed only by programs operating in supervisor mode.

intctl, inten and intdis are used to enable and disable interrupts and to determine current interrupt
enable status.

5.3 PERFORMANCE OPTIMIZATION 

Performance optimization is categorized into two sections: instructions optimizations and miscel-
laneous optimizations.

5.3.1 Instruction Optimizations

Instruction optimizations are broken down by the instruction classification.

5.3.1.1 Load / Store Execution Model

Because the i960 Rx I/O processor has a 32-bit external data bus, multiple word accesses require
multiple cycles. The processor uses microcode to sequence the multi-word accesses. Because the
microcode can ensure that aligned multi-words are bursted together on the external bus, software
should not substitute multiple single-word instructions for one multi-word instruction for data that
is not likely to be in cache; i.e., one ldq provides better bus performance than four ld instructions.

Once a load is issued, the processor attempts to execute other instructions while the load is
outstanding. It is important to note that when the load misses the data cache, the processor does
5-18

not stall the issuing of subsequent instructions (other than stores) that do not depend on the load.

Software should avoid following a load with an instruction that depends on the result of the load.
For a load that hits the data cache, a one-cycle stall occurs when the instruction immediately after
the load requires the data. When the load fails to hit the data cache, the instruction depending on
the load is stalled until the outstanding load request is resolved.

Multiple, back-to-back load instructions do not stall the processor until the bus queue becomes
full.



5

INSTRUCTION SET OVERVIEW

The processor delays issuing a store instruction until all previously-issued load instructions
complete. This happens regardless of whether the store is dependent on the load. This ordering
between loads and stores ensures that the return data from a previous cache-read miss does not
overwrite the cache line updated by a subsequent store.

5.3.1.2 Compare Operations

Byte and short word data is more efficiently compared using the new byte and short compare
instructions (cmpob, cmpib, cmpos, cmpis), rather than shifting the data and using a word
compare instruction.

5.3.1.3 Microcoded Instructions

While the majority of instructions on the i960 Rx I/O processor are single cycle and are executed
directly by processor hardware, some require microcode emulation. Entry into a microcode routine
requires two cycles. Exit from microcode typically requires two cycles. For some routines, one
cycle of the exit process can execute in parallel with another instruction, thus saving one cycle of
execution time.

5.3.1.4 Multiply-Divide Unit Instructions

The Multiply-Divide Unit (MDU) performs a number of multi-cycle arithmetic operations. These
can range from 2 cycles for a 16-bitx32-bit mulo, 4 cycles for a 32-bitx32-bit mulo, to 30+ cycles
for an ediv.

Once issued, these MDU instructions are executed in parallel with other non-MDU instructions
that do not depend on the result of the MDU operation. Attempting to issue another MDU
instruction while a current MDU instruction is executing, stalls the processor until the first one
completes.

5.3.1.5 Multi-Cycle Register Operations
5-19

A few register operations can also take multiple cycles. The following instructions are performed
in microcode:

On the i960 Rx I/O processor, test<cc> dst is microcoded and takes many more cycles than
SEL<cc> 0,1,dst, which is executed in one cycle directly by processor hardware.

• bswap • extract • eshro • modify • movl • movt
• movq • shrdi • scanbit • spanbit • testno • testo
• testl • testle • teste • testne • testg • testge



INSTRUCTION SET OVERVIEW

Multi-register move operation execution time can be decreased at the expense of cache utilization
and code density by using mov the appropriate number of times instead of movl, movt and movq.

5.3.1.6 Simple Control Transfer

There is no branch look-ahead or branch prediction mechanism on the i960 Rx I/O processor.
Simple branch instructions take one cycle to execute, and one more cycle is needed to fetch the
target instruction if the branch is actually taken.

 b, bal, bno, bo, bl, ble, be, bne, bg, bge

One mode of the bx (branch-extended) instruction, bx (base), is also a simple branch and takes
one cycle to execute and one cycle to fetch the target. 

As a result, a bal(g14) or bx (g14) sequence provides a two-cycle call and return mechanism for
efficient leaf procedure implementation.

Compare-and-branch instructions have been optimized on the i960 Rx I/O processor. They require
two cycles to execute, and one more cycle to fetch the target instruction if the branch is actually
taken. The instructions are:

5.3.1.7 Memory Instructions

The i960 Rx I/O processor provides efficient support for naturally aligned byte, short, and word
accesses that use one of six optimized addressing modes. These accesses require only one to two
cycles to execute; additional cycles are needed for a load to return its data. 

 The byte, short and word memory instructions are:

 ldob, ldib, ldos, ldis, ld, lda stob, stib, stos, stis, st

• cmpobno •  cmpobo •  cmpobl •  cmpoble •  cmpobe •  cmpobne
•  cmpobg •  cmpobge • cmpibno •  cmpibo •  cmpibl •  cmpible
•  cmpibe • cmpibg • cmpibne • cmpibge • bbc •  bbs
5-20

The remainder of accesses require multiple cycles to execute. These include:

• Unaligned short, and word accesses 

• Byte, short, and word accesses that do not use one of the 6 optimized addressing modes

• Multi-word accesses 

The multi-word accesses are:

 ldl, ldt, ldq, stl, stt, stq



5

INSTRUCTION SET OVERVIEW

5.3.1.8 Unaligned Memory Accesses

Unaligned memory accesses are performed by microcode. Microcode sequences the access into
smaller aligned pieces and does any merging of data that is needed. As a result, these accesses are
not as efficient as aligned accesses. In addition, no bursting on the external bus is performed for
these accesses. Whenever possible, unaligned accesses should be avoided.

5.3.2 Miscellaneous Optimizations

5.3.2.1 Masking of Integer Overflow

The i960 core architecture inserts an implicit syncf before performing a call operation or
delivering an interrupt so that a fault handler can be dispatched first, when necessary. syncf can
require a number of cycles to complete when a multi-cycle integer-multiply (muli) or
integer-divide (divi) instruction is issued previously and integer-overflow faults are unmasked
(allowed to occur). Call performance and interrupt latency can be improved by masking
integer-overflow faults (AC.om = 1), which allows the implicit syncf to complete more quickly.

5.3.2.2 Avoid Using PFP, SP, R3 As Destinations for MDU Instructions

When performing a call operation or delivering an interrupt, the processor typically attempts to
push the first four local registers (pfp, sp, rip, and r3) onto the local register cache as early as
possible. Because of register-interlock, this operation is stalled until previous instructions return
their results to these registers. In most cases, this is not a problem; however, in the case of
multi-cycle instructions (divo, divi, ediv, modi, remo, and remi), the processor could be stalled
for many cycles waiting for the result and unable to proceed to the next step of call processing or
interrupt delivery.

Call performance and interrupt latency can be improved by avoiding the first four registers as the
destination for a MDU instruction. Generally, registers pfp, sp, and rip should be avoided; they are
used for procedure linking.
5-21

5.3.2.3 Use Global Registers (g0 - g14) As Destinations for MDU Instructions

Using the same rationale as in the previous item, call processing and interrupt performance are
improved even further by using global registers (g0-g14) as the destination for multi-cycle MDU
instructions. This is because there is no dependency between g0-g14 and implicit or explicit call
operations (i.e., global registers are not pushed onto the local register cache).



INSTRUCTION SET OVERVIEW

5.3.2.4 Execute in Imprecise Fault Mode

Significant performance improvement is possible by allowing imprecise faults (AC.nif = 0). In
precise fault mode (AC.nif = 1), the processor does not issue a new instruction until the previous
one completes. This ensures that a fault from the previous instruction is delivered before the next
instruction can begin execution. Imprecise fault mode allows new instructions to be issued before
previous ones complete, thus increasing the instruction issue rate. Many applications can tolerate
the imprecise fault reporting for the performance gain. A syncf can be used in imprecise fault
mode to isolate faults at desired points of execution when necessary.

5.3.3 Cache Control

The following instructions provide instruction and data cache control functions.

icctl and dcctl provide cache control functions including: enabling, disabling, loading and locking
(instruction cache only), invalidating, getting status and storing cache information out to memory.

icctl Instruction cache control
dcctl Data cache control
5-22



6
INSTRUCTION SET REFERENCE





6

p

s

CHAPTER 6
INSTRUCTION SET REFERENCE

This chapter provides detailed information about each instruction available to the i960® Rx I/O
processor. Instructions are listed alphabetically by assembly language mnemonic. Format and
notation used in this chapter are defined in section 6.1, NOTATION (pg. 6-1).

Information in this chapter is oriented toward programmers who write assembly language code for
the i960 Rx I/O processor. Information provided for each instruction includes:

Additional information about the instruction set can be found in the following chapters and
appendices in this manual:

• CHAPTER 5, INSTRUCTION SET OVERVIEW - Summarizes the instruction set by grou
and describes the assembly language instruction format.

• APPENDIX B, OPCODES AND EXECUTION TIMES - A quick-reference listing of
instruction encodings assists debugging with a logic analyzer.

• APPENDIX A, MACHINE-LEVEL INSTRUCTION FORMATS - Describes instruction set
opword encodings.

6.1 NOTATION

• Alphabetic listing of all instructions • Faults that can occur during execution

• Assembly language mnemonic, name and
format

• Action (or algorithm) and other side effect
of executing an instruction

• Description of the instruction’s operation • Assembly language example

• Related instructions• Opcode and instruction encoding format
6-1

In general, notation in this chapter is consistent with usage throughout the manual; however, there
are a few exceptions. Read the following subsections to understand notations that are specific to
this chapter.

6.1.1 Alphabetic Reference

Instructions are listed alphabetically by assembly language mnemonic. When several instructions
are related and fall together alphabetically, they are described as a group on a single page.



 (e.g.,
s, the

et are
dicate

s as to

tions.
ple-

each

rand

 When
d. An
INSTRUCTION SET REFERENCE

The instruction’s assembly language mnemonic is shown in bold at the top of the page
subc). Occasionally, it is not practical to list all mnemonics at the page top. In these case
name of the instruction group is shown in capital letters (e.g., BRANCH<cc> or FAULT<cc>).

The i960 Rx I/O processor-specific extensions to the i960 microprocessor instruction s
indicated in the header text for each such instruction. This type of notation is also used to in
new core architecture instructions. Sections describing new core instructions provide note
which i960-series processors do not implement these instructions.

Generally, instruction set extensions are not portable to other i960 processor implementa
Further, new core instructions are not typically portable to earlier i960 processor family im
mentations such as the i960 Kx microprocessors.

6.1.2 Mnemonic

The Mnemonic section gives the mnemonic (in boldface type) and instruction name for 
instruction covered on the page, for example:

subi Subtract Integer

This name is the actual assembly language instruction name recognized by assemblers.

6.1.3 Format

The Format section gives the instruction’s assembly language format and allowable ope
types. Format is given in two or three lines. The following is a two-line format example:

The first line gives the assembly language mnemonic (boldface type) and operands (italics).
the format is used for two or more instructions, an abbreviated form of the mnemonic is use
* (asterisk) at the end of the mnemonic indicates a variable: in the above example, sub* is either

sub* src1 src2 dst

reg/lit reg/lit reg
6-2

subi or subo. Capital letters indicate an instruction class. For example, ADD<cc> refers to the
class of conditional add instructions (e.g., addio, addig, addoo, addog).

Operand names are designed to describe operand function (e.g., src, len, mask).

The second line shows allowable entries for each operand. Notation is as follows:

reg Global (g0 ... g15) or local (r0 ... r15) register

lit Literal of the range 0 ... 31

disp Signed displacement of range (-222 ... 222 - 1)

mem Address defined with the full range of addressing modes



6

 also

irect
tion’s
cessor
r the

seudo-
guage
INSTRUCTION SET REFERENCE

In some cases, a third line is added to show register or memory location contents. For example, it
may be useful to know that a register is to contain an address. The notation used in this line is as
follows:

addr Address

efa Effective Address

6.1.4 Description

The Description section is a narrative description of the instruction’s function and operands. It
gives programming hints when appropriate.

6.1.5 Action

The Action section gives an algorithm written in a "C-like" pseudo-code that describes d
effects and possible side effects of executing an instruction. Algorithms document the instruc
net effect on the programming environment; they do not necessarily describe how the pro
actually implements the instruction. The following is an example of the action algorithm fo
alterbit instruction:

if ((AC.cc & 0102)==0)
dst = src2 & ~(2**(src1%32));

else
dst = src2 | 2**(src1%32);

Table 6-1 defines each abbreviation used in the instruction reference pseudo-code. The p
code has been written to comply as closely as possible with standard C programming lan
notation. Table 6-1 lists the pseudocode symbol definitions.

Table 6-1.  Pseudo-Code Symbol Definitions  (Sheet 1 of 2)

= Assignment

==, != Comparison: equal, not equal
6-3

<, > less than, greater than

<=, >= less than or equal to, greater than or equal to

<<, >> Logical Shift

** Exponentiation

&, && Bitwise AND, logical AND

|, || Bitwise OR, logical OR

^ Bitwise XOR

~ One’s Complement

% Modulo

+, - Addition, Subtraction



INSTRUCTION SET REFERENCE

* Multiplication (Integer or Ordinal)

/ Division (Integer or Ordinal)

# Comment delimiter

Table 6-2.  Faults Applicable to All Instructions

Fault Type Subtype Description

OPERATION UNIMPLEMENTED
An attempt to execute any instruction fetched from internal data 
RAM or a memory-mapped region causes an operation unimple-
mented fault.

TRACE

MARK
A Mark Trace Event is signaled after completion of an instruction for 
which there is a hardware breakpoint condition match. A Trace fault 
is generated when PC.mk is set.

INSTRUCTION
An Instruction Trace Event is signaled after instruction completion. A 
Trace fault is generated when both PC.te and TC.i=1.

Table 6-3.  Common Faulting Conditions

Fault Type Subtype Description

OPERATION

UNALIGNED
Any instruction that causes an unaligned memory access causes an 
operation aligned fault when unaligned faults are not masked in the fault 
configuration word in the Processor Control Block (PRCB).

INVALID_OPCODE
This fault is generated when the processor attempts to execute an 
instruction containing an undefined opcode or addressing mode.

INVALID_OPERAN
D

This fault is caused by a non-defined operand in a supervisor mode only 
instruction or by an operand reference to an unaligned long-, triple- or 
quad-register group.

UNIMPLEMENTED
This fault can occur due to an attempt to perform a non-word or 
unaligned access to a memory-mapped region or when attempting to 

Table 6-1.  Pseudo-Code Symbol Definitions  (Sheet 2 of 2)

= Assignment
6-4

fetch instructions from MMR space or internal data RAM.

Type MISMATCH

Any instruction that attempts to write to supervisor protected internal 
data RAM or a memory-mapped register in supervisor space while not in 
supervisor mode causes a TYPE.MISMATCH fault. This fault is also 
generated for any non-supervisor mode reference to an SFR.



6
.

ch

REG,

ically

 in the
INSTRUCTION SET REFERENCE

6.1.6 Faults

The Faults section lists faults that can be signaled as a direct result of instruction execution.
Table 6-2 shows the possible faulting conditions that are common to the entire instruction set and
could directly result from any instruction. These fault types are not included in the instruction
reference. Table 6-3 shows the possible faulting conditions that are common to large subsets of the
instruction set. When an instruction can generate a fault, it is noted in that instruction’s Faults
section. In these sections, “Standard” refers to the faults shown in Table 6-2 and Table 6-3.

6.1.7 Example

The Example section gives an assembly language example of an application of the instruction

6.1.8 Opcode and Instruction Format

The Opcode and Instruction Format section gives the opcode and instruction format for ea
instruction, for example:

subi 593H REG

The opcode is given in hexadecimal format. The format is one of four possible formats: 
COBR, CTRL and MEM. Refer to APPENDIX A, MACHINE-LEVEL INSTRUCTION
FORMATS for more information on the formats.

6.1.9 See Also

The See Also section gives the mnemonics of related instructions which are also alphabet
listed in this chapter.

6.1.10 Side Effects

This section indicates whether the instruction causes changes to the condition code bits
6-5

Arithmetic Controls.

6.1.11 Notes

This section provides additional information about an instruction such as whether it is
implemented in other i960 processor families. 

6.2 INSTRUCTIONS

The processor’s instructions are arranged alphabetically by instruction or instruction group.



INSTRUCTION SET REFERENCE

6.2.1 ADD<cc>

Mnemonic: addono Add Ordinal if Unordered
addog Add Ordinal if Greater
addoe Add Ordinal if Equal
addoge Add Ordinal if Greater or Equal
addol Add Ordinal if Less
addone Add Ordinal if Not Equal
addole Add Ordinal if Less or Equal
addoo Add Ordinal if Ordered
addino Add Integer if Unordered
addig Add Integer if Greater
addie Add Integer if Equal
addige Add Integer if Greater or Equal
addil Add Integer if Less
addine Add Integer if Not Equal
addile Add Integer if Less or Equal
addio Add Integer if Ordered

Format: add* src1, src2, dst
reg/lit reg/lit reg

Description: Conditionally adds src2 and src1 values and stores the result in dst based on
the AC register condition code. If for Unordered the condition code is 0, or if
for all other cases the logical AND of the condition code and the mask part of
the opcode is not 0, then the values are added and placed in the destination.
Otherwise the destination is left unchanged. Table 6-4 shows the condition
code mask for each instruction. The mask is in opcode bits 4-6.

Table 6-4.  Condition Code Mask Descriptions  (Sheet 1 of 2)

Instruction Mask Condition

addono
0002 Unordered
6-6

addino
addog

0012 Greater
addig
addoe

0102 Equal
addie
addoge

0112 Greater or equal
addige
addol

1002 Less
addil
addone

1012 Not equal
addine



6

INSTRUCTION SET REFERENCE

Action: addo<cc>:
if((mask & AC.cc) || (mask == AC.cc))

dst = (src1 + src2)[31:0];

addi<cc>:
if((mask & AC.cc) || (mask == AC.cc))
{

{ true_result = (src1 + src2);
dst = true_result[31:0];

}
if((true_result > (2**31) - 1) || (true_result < -2**31))

# Check for overflow
{ if(AC.om == 1)

AC.of = 1;
else

generate_fault(ARITHMETIC.OVERFLOW);
}

}

Faults: STANDARD Refer to section 6.1.6, Faults (pg. 6-5).
ARITHMETIC.OVERFLOW Occurs only with addi<cc>.

Example: # Assume (AC.cc AND 0012) ≠ 0.
addig r4, r8, r10     # r10 = r8 + r4

addole
1102 Less or equal

addile
addoo

1112 Ordered
addio

Table 6-4.  Condition Code Mask Descriptions  (Sheet 2 of 2)

Instruction Mask Condition
6-7

# Assume (AC.cc AND 1012) = 0.
addone r4, r8, r10    # r10 is not changed. 



INSTRUCTION SET REFERENCE

Opcode: addono 780H REG
addog 790H REG
addoe 7A0H REG
addoge 7B0H REG
addol 7C0H REG
addone 7D0H REG
addole 7E0H REG
addoo 7F0H REG
addino 781H REG
addig 791H REG
addie 7A1H REG
addige 7B1H REG
addil 7C1H REG
addine 7D1H REG
addile 7E1H REG
addio 7F1H REG

See Also: addc, SUB<cc>, addi, addo

Notes: This class of core instructions is not implemented on 80960Cx, Kx and Sx
processors.
6-8



6

INSTRUCTION SET REFERENCE

6.2.2 addc

Mnemonic: addc Add Ordinal With Carry

Format: addc src1, src2, dst
reg/lit reg/lit reg

Description: Adds src2 and src1 values and condition code bit 1 (used here as a carry-in)
and stores the result in dst. If ordinal addition results in a carry out, condition
code bit 1 is set; otherwise, bit 1 is cleared. If integer addition results in an
overflow, condition code bit 0 is set; otherwise, bit 0 is cleared. Regardless of
addition results, condition code bit 2 is always set to 0.

addc can be used for ordinal or integer arithmetic. addc does not distinguish
between ordinal and integer source operands. Instead, the processor evaluates
the result for both data types and sets condition code bits 0 and 1 accordingly.

An integer overflow fault is never signaled with this instruction.

Action: dst = (src1 + src2 + AC.cc[1])[31:0];
AC.cc[2:0] = 0002;
if((src2[31] == src1[31]) && (src2[31] != dst[31]))

AC.cc[0] = 1; # Set overflow bit.
AC.cc[1] = (src2 + src1 + AC.cc[1])[32]; # Carry out.

Faults: STANDARD Refer to section 6.1.6, Faults (pg. 6-5).

Example: # Example of double-precision arithmetic.
# Assume 64-bit source operands
# in g0,g1 and g2,g3
cmpo 1, 0 # Clears Bit 1 (carry bit) of

# the AC.cc.
addc g0, g2, g0 # Add low-order 32 bits:

# g0 = g2 + g0 + carry bit
addc g1, g3, g1 # Add high-order 32 bits:

# g1 = g3 + g1 + carry bit
# 64-bit result is in g0, g1.
6-9

Opcode: addc 5B0H REG

See Also: ADD<cc>, SUB<cc>

Side Effects: Sets the condition code in the arithmetic controls.



INSTRUCTION SET REFERENCE

6.2.3 addi, addo

Mnemonic: addo Add Ordinal
addi Add Integer

Format: add* src1, src2, dst
reg/lit reg/lit reg

Description: Adds src2 and src1 values and stores the result in dst. The binary results from
these two instructions are identical. The only difference is that addi can
signal an integer overflow.

Action: addo:
dst = (src2 +src1)[31:0];

addi:
true_result = (src1 + src2);
dst = true_result[31:0];
if((true_result > (2**31) - 1) || (true_result < -2**31)) # Check for overflow
{ if(AC.om == 1)

AC.of = 1;
else 

generate_fault(ARITHMETIC.OVERFLOW);
}

Faults: STANDARD Refer to section 6.1.6, Faults (pg. 6-5).
ARITHMETIC.OVERFLOW Occurs only with addi. 

Example: addi r4, g5, r9 # r9 = g5 + r4

Opcode: addo 590H REG
addi 591H REG

See Also: addc, subi, subo, subc, ADD<cc>
6-10



6

INSTRUCTION SET REFERENCE

6.2.4 alterbit

Mnemonic: alterbit Alter Bit

Format: alterbit bitpos, src, dst
reg/lit reg/lit reg

Description: Copies src value to dst with one bit altered. bitpos operand specifies bit to be
changed; condition code determines the value to which the bit is set. If
condition code is X1X2, bit 1 = 1, the selected bit is set; otherwise, it is
cleared. Typically this instruction is used to set the bitpos bit in the targ
register if the result of a compare instruction is the equal condition code
(0102).

Action: if((AC.cc & 0102)==0)
dst = src & ~(2**(bitpos%32));

else
dst = src | 2**(bitpos%32);

Faults: STANDARD Refer to section 6.1.6, Faults (pg. 6-5).

Example: # Assume AC.cc = 0102.
alterbit 24, g4,g9 # g9 = g4, with bit 24 set.

Opcode: alterbit 58FH REG

See Also: chkbit, clrbit, notbit, setbit
6-11



INSTRUCTION SET REFERENCE

6.2.5 and, andnot

Mnemonic: and And
andnot And Not

Format: and src1, src2, dst
reg/lit reg/lit reg

andnot src1, src2, dst
reg/lit reg/lit reg

Description: Performs a bitwise AND (and) or AND NOT (andnot) operation on src2 and
src1 values and stores result in dst. Note in the action expressions below,
src2 operand comes first, so that with andnot the expression is evaluated as:

{src2 and not (src1)}
rather than

{src1 and not (src2)}. 

Action: and:
dst = src2 & src1;

andnot:
dst = src2 & ~src1;

Faults: STANDARD Refer to section 6.1.6, Faults (pg. 6-5).

Example: and 0x7, g8, g2 # Put lower 3 bits of g8 in g2.
andnot 0x7, r12, r9 # Copy r12 to r9 with lower 

# three bits cleared.

Opcode: and 581H REG
andnot 582H REG

See Also: nand, nor, not, notand, notor, or, ornot, xnor, xor
6-12



6
is
INSTRUCTION SET REFERENCE

6.2.6 atadd

Mnemonic: atadd Atomic Add

Format: atadd addr, src, dst
reg reg/lit reg

Description: Adds src value (full word) to value in the memory location specified with
addr operand. This read-modify-write operation is performed on the actual
data in memory and never on a cached value on chip. Initial value from
memory is stored in dst.

Memory read and write are done atomically (i.e., other bus masters must be
prevented from accessing the word of memory containing the word specified
by src/dst operand until operation completes). See 3.5.1, Memory Require-
ments (pg. 3-12) or more information on atomic accesses.

Memory location in addr is the word’s first byte (LSB) address. Address 
automatically aligned to a word boundary. (Note that addr operand maps to
src1 operand of the REG format.)

Action: implicit_syncf();
tempa = addr & 0xFFFFFFFC;
temp = atomic_read(tempa);
atomic_write(tempa, temp+src);
dst = temp;

Faults: STANDARD Refer to section 6.1.6, Faults (pg. 6-5).

Example: atadd r8, r3, r11 # r8 contains the address of
# memory location.
# r11 = (r8)
# (r8) = r11 + r3.

Opcode: atadd 612H REG

See Also: atmod
6-13



.

INSTRUCTION SET REFERENCE

6.2.7 atmod

Mnemonic: atmod Atomic Modify

Format: atmod addr, mask, src/dst
reg reg/lit reg

Description: Copies the selected bits of src/dst value into memory location specified in
addr. The read-modify-write operation is performed on the actual data in
memory and never on a cached value on chip. Bits set in mask operand select
bits to be modified in memory. Initial value from memory is stored in src/dst.
See 3.5.1, Memory Requirements (pg. 3-12) for information on atomic
accesses.

Memory read and write are done atomically (i.e., other bus masters must be
prevented from accessing the word of memory containing the word specified
with the src/dst operand until operation completes).

Memory location in addr is the modified word’s first byte (LSB) address
Address is automatically aligned to a word boundary. 

Action: implicit_syncf();
tempa = addr & 0xFFFFFFFC;
tempb = atomic_read(tempa);
temp = (tempb &~ mask) | (src_dst & mask);
atomic_write(tempa, temp);
src_dst = tempb;

Faults: STANDARD Refer to section 6.1.6, Faults (pg. 6-5).

Example: atmod g5, g7, g10 # tempa = (g5)
# temp = (tempa andnot g7) or
# (g10 and g7)
# (g5) = temp
# g10 = tempa

Opcode: atmod 610H REG
6-14

See Also: atadd



6n’s

e
 is
o be
sing
 be
irect
INSTRUCTION SET REFERENCE

6.2.8 b, bx

Mnemonic: b Branch
bx Branch Extended

Format: b targ
disp

bx targ
mem

Description: Branches to the specified target. 

With the b instruction, IP specified with targ operand can be no farther than
-223 to (223- 4) bytes from current IP. When using the Intel i960 processor
assembler, targ operand must be a label which specifies target instructio
IP.

bx performs the same operation as b except the target instruction can b
farther than -223 to (223- 4) bytes from current IP. Here, the target operand
an effective address, which allows the full range of addressing modes t
used to specify target instruction’s IP. The “IP + displacement” addres
mode allows the instruction to be IP-relative. Indirect branching can
performed by placing target address in a register then using a register-ind
addressing mode.

Refer to 2.3, MEMORY ADDRESSING MODES (pg. 2-5) for information
on this subject.

Action: b, bx:
IP[31:2] = effective_address(targ[31:2]);
IP[1:0] = 0;

Faults: STANDARD Refer to section 6.1.6, Faults (pg. 6-5).

Example: b xyz # IP = xyz;
bx 1332 (ip) # IP = IP + 8 + 1332;
6-15

# this example uses IP-relative addressing

Opcode: b 08H CTRL
bx 84H MEM

See Also: bal, balx, BRANCH<cc>, COMPARE AND BRANCH<cc>, bbc, bbs



es its

d
ith
 is an

ed to
n to
ress
INSTRUCTION SET REFERENCE

6.2.9 bal, balx

Mnemonic: bal Branch and Link
balx Branch and Link Extended

Format: bal targ
disp

balx targ, dst
mem reg

Description: Stores address of instruction following bal or balx in a register then branches
to the instruction specified with the targ operand.

The bal and balx instructions are used to call leaf procedures (procedures
that do not call other procedures). The IP saved in the register provides a
return IP that the leaf procedure can branch to (using a b or bx instruction) to
perform a return from the procedure. Note that these instructions do not use
the processor’s call-and-return mechanism, so the calling procedure shar
local-register set with the called (leaf) procedure. 

With bal, address of next instruction is stored in register g14. targ operand
value can be no farther than -223 to (223- 4) bytes from current IP. When
using the Intel i960 processor assembler, targ must be a label which specifies
the target instruction’s IP.

balx performs same operation as bal except next instruction address is store
in dst (allowing the return IP to be stored in any available register). W
balx, the full address space can be accessed. Here, the target operand
effective address, which allows full range of addressing modes to be us
specify target IP. “IP + displacement” addressing mode allows instructio
be IP-relative. Indirect branching can be performed by placing target add
in a register and then using a register-indirect addressing mode.

See 2.3, MEMORY ADDRESSING MODES (pg. 2-5) for a complete
discussion of addressing modes available with memory-type operands.

Action: bal:
6-16

g14 = IP + 4;
IP[31:2] = effective_address(targ[31:2]);
IP[1:0] = 0;

balx:
dst = IP + instruction_length;
# Instruction_length = 4 or 8 depending on the addressing mode used.
IP[31:2] = effective_address(targ[31:2]); # Resume execution at new IP.
IP[1:0] = 0;

Faults: STANDARD Refer to section 6.1.6, Faults (pg. 6-5).



6

INSTRUCTION SET REFERENCE

Example: bal xyz # g14 = IP + 4
# IP = xyz

balx (g2), g4 # g4 = IP + 4
# IP = (g2)

Opcode: bal 0BH CTRL
balx 85H MEM

See Also: b, bx, BRANCH<cc>, COMPARE AND BRANCH<cc>, bbc, bbs
6-17



INSTRUCTION SET REFERENCE

6.2.10 bbc, bbs

Mnemonic: bbc Check Bit and Branch If Clear
bbs Check Bit and Branch If Set

Format: bb* bitpos, src, targ
reg/lit reg disp

Description: Checks bit (designated by bitpos) in src and sets AC register condition code
according to src value. The processor then performs conditional branch to
instruction specified with targ, based on condition code state.

For bbc, if selected bit in src is clear, the processor sets condition code to
0002 and branches to instruction specified by targ; otherwise, it sets
condition code to 0102 and goes to next instruction.

For bbs, if selected bit is set, the processor sets condition code to 0102 and
branches to targ; otherwise, it sets condition code to 0002 and goes to next
instruction. 

targ can be no farther than -212 to (212 - 4) bytes from current IP. When using
the Intel i960 processor assembler, targ must be a label which specifies target
instruction’s IP.

Action: bbs:
if((src & 2**(bitpos%32)) == 1)
{ AC.cc = 0102;

temp[31:2] = sign_extension(targ[12:2]);
IP[31:2] = IP[31:2] + temp[31:2];
IP[1:0] = 0;

}
else

AC.cc = 0002;

bbc:
if((src & 2**(bitpos%32)) == 0)
6-18

{ AC.cc = 0002;
temp[31:2] = sign_extension(targ[12:2]);
IP[31:2] = IP[31:2] + temp[31:2];
IP[1:0] = 0;

}
else

AC.cc = 0102;

Faults: STANDARD Refer to section 6.1.6, Faults (pg. 6-5).



6

INSTRUCTION SET REFERENCE

Example: # Assume bit 10 of r6 is clear.
bbc 10, r6, xyz # Bit 10 of r6 is checked

# and found clear:
# AC.cc = 000
# IP = xyz;

Opcode: bbc 30H COBR
bbs 37H COBR

See Also: chkbit, COMPARE AND BRANCH<cc>, BRANCH<cc>

Side Effects: Sets the condition code in the arithmetic controls.
6-19



INSTRUCTION SET REFERENCE

6.2.11 BRANCH<cc>

Mnemonic: be Branch If Equal
bne Branch If Not Equal
bl Branch If Less
ble Branch If Less Or Equal
bg Branch If Greater
bge Branch If Greater Or Equal
bo Branch If Ordered
bno Branch If Unordered

Format: b* targ
disp

Description: Branches to instruction specified with targ operand according to AC register
condition code state. 

For all branch<cc> instructions except bno, the processor branches to
instruction specified with targ, if the logical AND of condition code and
mask part of opcode is not zero. Otherwise, it goes to next instruction.

For bno, the processor branches to instruction specified with targ if the
condition code is zero. Otherwise, it goes to next instruction.

For instance, bno (unordered) can be used as a branch if false instruction
when coupled with chkbit. For bno, branch is taken if condition code equals
0002. be can be used as branch-if true instruction.

The targ operand value can be no farther than -223 to (223- 4) bytes from
current IP.

The following table shows condition code mask for each instruction. The
mask is in opcode bits 0-2.

Instruction Mask Condition

bno 0002 Unordered
6-20

bg 0012 Greater

be 0102 Equal

bge 0112 Greater or equal

bl 1002 Less

bne 1012 Not equal

ble 1102 Less or equal

bo 1112 Ordered



6

INSTRUCTION SET REFERENCE

Action: if((mask & AC.cc) || (mask == AC.cc))
{ temp[31:2] = sign_extension(targ[23:2]);

IP[31:2] = IP[31:2] + temp[31:2];
IP[1:0] = 0;

}

Faults: STANDARD Refer to section 6.1.6, Faults (pg. 6-5).

Example: # Assume (AC.cc AND 1002) ≠ 0
bl xyz # IP = xyz;

Opcode: be 12H CTRL
bne 15H CTRL
bl 14H CTRL
ble 16H CTRL
bg 11H CTRL
bge 13H CTRL
bo 17H CTRL
bno 10H CTRL

See Also: b, bx, bbc, bbs, COMPARE AND BRANCH<cc>, bal, balx, BRANCH<cc>
6-21



ors.
INSTRUCTION SET REFERENCE

6.2.12 bswap

Mnemonic: bswap Byte Swap

Format: bswap src1:src, src2:dst
reg/lit reg

Description: Alters the order of bytes in a word, reversing its “endianess.” 

Copies bytes 3:0 of src1 to src2 reversing order of the bytes. Byte 0 of src1
becomes byte 3 of src2, byte 1 of src1 becomes byte 2 of src2, etc.

Action: dst = (rotate_left(src 8) & 0x00FF00FF)
        +(rotate_left(src 24) & 0xFF00FF00);

Faults: STANDARD Refer to section 6.1.6, Faults (pg. 6-5).

Example: # g8 = 0x89ABCDEF
bswap g8, g10 # Reverse byte order.

# g10 now 0xEFCDAB89

Opcode: bswap 5ADH REG 

See Also: scanbyte, rotate

Notes: This core instruction is not implemented on Cx, Kx and Sx 80960 process
6-22



6

’s

n as

edure
alled

. 
INSTRUCTION SET REFERENCE

6.2.13 call

Mnemonic: call Call

Format: call targ
disp

Description: Calls a new procedure. targ operand specifies the IP of called procedure
first instruction. When using the Intel i960 processor assembler, targ must be
a label.

In executing this instruction, the processor performs a local call operatio
described in 7.1.3.1, Call Operation (pg. 7-6). As part of this operation, the
processor saves the set of local registers associated with the calling proc
and allocates a new set of local registers and a new stack frame for the c
procedure. Processor then goes to the instruction specified with targ and
begins execution.

targ can be no farther than -223 to (223 - 4) bytes from current IP.

Action: # Wait for any uncompleted instructions to finish.
implicit_syncf();
temp =  (SP + (SALIGN*16 - 1)) & ~(SALIGN*16 - 1)

# Round stack pointer to next boundary.
# SALIGN=1 on 80960Rx.       

RIP = IP; 
if (register_set_available)

allocate_new_frame( ); 
else

{ save_register_set( ); # Save register set in memory at its FP
allocate_new_frame( ); 

}
# Local register references now refer to new frame. 

IP[31:2] = effective_address(targ[31:2]);
IP[1:0] = 0;
PFP = FP; 
6-23

FP = temp; 
SP = temp + 64; 

Faults: STANDARD Refer to section 6.1.6, Faults (pg. 6-5).

Example: call xyz # IP = xyz

Opcode: call 09H CTRL

See Also: bal, calls, callx



g on
the

sters
s to
.

INSTRUCTION SET REFERENCE

6.2.14 calls

Mnemonic: calls Call System

Format: calls targ
reg/lit

Description: Calls a system procedure. The targ operand gives the number of the
procedure being called. For calls, the processor performs system call
operation described in 7.5, SYSTEM CALLS (pg. 7-15). targ provides an
index to a system procedure table entry from which the processor gets the
called procedure’s IP.

The called procedure can be a local or supervisor procedure, dependin
system procedure table entry type. If it is a supervisor procedure, 
processor switches to supervisor mode (if not already in this mode).

As part of this operation, processor also allocates a new set of local regi
and a new stack frame for called procedure. If the processor switche
supervisor mode, the new stack frame is created on the supervisor stack

Action: # Wait for any uncompleted instructions to finish.
implicit_syncf();
If (targ > 259) 

generate_fault(PROTECTION.LENGTH);
temp = get_sys_proc_entry(sptbase + 48 + 4*targ);
             # sptbase is address of supervisor procedure table.

 if (register_set_available)
      allocate_new_frame( );

else 
{ save_register_set( ); # Save a frame in memory at its FP.

          allocate_new_frame( );
             # Local register references now refer to new frame.

}
RIP = IP;
6-24

IP[31:2] = effective_address(temp[31:2]);
IP[1:0] = 0;
if ((temp.type == local) ||  (PC.em == supervisor))

{ # Local call or supervisor call from supervisor mode.
   tempa =  (SP + (SALIGN*16 - 1)) & ~(SALIGN*16 - 1)

# Round stack pointer to next boundary.
# SALIGN=1 on 80960Rx.       
temp.RRR = 0002;

}
else # Supervisor call from user mode.
{ tempa = SSP; # Get Supervisor Stack pointer.



6

INSTRUCTION SET REFERENCE

temp.RRR = 0102 | PC.te;  
 PC.em = supervisor;
 PC.te = temp.te;

}
PFP = FP;
PFP.rrr = temp.RRR;
FP = tempa;
SP = tempa + 64;

Faults: STANDARD Refer to section 6.1.6, Faults (pg. 6-5).
PROTECTION.LENGTH Specifies a procedure number greater than

259.

Example: calls r12 # IP = value obtained from
# procedure table for procedure
# number given in r12.

calls 3 # Call procedure 3.

Opcode: calls 660H REG

See Also: bal, call, callx, ret
6-25



.

 a
dure.

n be

ing
P +
ive.
r and

P; 
INSTRUCTION SET REFERENCE

6.2.15 callx

Mnemonic: callx Call Extended

Format: callx targ
mem

Description: Calls new procedure. targ specifies IP of called procedure’s first instruction

In executing callx, the processor performs a local call as described in 7.1.3.1,
Call Operation (pg. 7-6). As part of this operation, the processor allocates
new set of local registers and a new stack frame for the called proce
Processor then goes to the instruction specified with targ and begins
execution of new procedure.

callx performs the same operation as call except the target instruction ca
farther than -223 to (223 - 4) bytes from current IP.

The targ operand is a memory type, which allows the full range of address
modes to be used to specify the IP of the target instruction. The “I
displacement” addressing mode allows the instruction to be IP-relat
Indirect calls can be performed by placing the target address in a registe
then using one of the register-indirect addressing modes.

Refer to Chapter 2, DATA TYPES AND MEMORY ADDRESSING
MODES for more information.

Action: # Wait for any uncompleted instructions to finish; 
implicit_syncf();
   temp =  (SP + (SALIGN*16 - 1)) & ~(SALIGN*16 - 1)

# Round stack pointer to next boundary.
# SALIGN=1 on 80960Rx.       

RIP = IP; 
if (register_set_available)

allocate_new_frame( ); 
else

{ save_register_set( ); # Save register set in memory at its F
6-26

allocate_new_frame( ); 
}
# Local register references now refer to new frame. 

IP[31:2] = effective_address(targ[31:2]);
IP[1:0] = 0;
PFP = FP; 
FP = temp; 
SP = temp + 64; 

Faults: STANDARD Refer to section 6.1.6, Faults (pg. 6-5).



6

INSTRUCTION SET REFERENCE

Example: callx (g5) # IP = (g5), where the address in g5
# is the address of the new procedure.

Opcode: callx 86H MEM

See Also: bal, call, calls, ret
6-27



INSTRUCTION SET REFERENCE

6.2.16 chkbit

Mnemonic: chkbit Check Bit

Format: chkbit bitpos, src2
reg/lit reg/lit

Description: Checks bit in src2 designated by bitpos and sets condition code according to
value found. If bit is set, condition code is set to 0102; if bit is clear, condition
code is set to 0002.

Action: if (((src2 & 2**(bitpos % 32)) == 0) 
AC.cc = 0002; 

else
AC.cc = 0102;

Faults: STANDARD Refer to section 6.1.6, Faults (pg. 6-5).

Example: chkbit 13, g8 # Checks bit 13 in g8 and sets
# AC.cc according to the result.

Opcode: chkbit 5AEH REG

See Also: alterbit, clrbit, notbit, setbit, cmpi, cmpo

Side Effects: Sets the condition code in the arithmetic controls.
6-28



6

INSTRUCTION SET REFERENCE

6.2.17 clrbit

Mnemonic: clrbit Clear Bit

Format: clrbit bitpos, src, dst
reg/lit reg/lit reg

Description: Copies src value to dst with one bit cleared. bitpos operand specifies bit to be
cleared. 

Action: dst = src & ~(2**(bitpos%32)); 

Faults: STANDARD Refer to section 6.1.6, Faults (pg. 6-5).

Example: clrbit 23, g3, g6 # g6 = g3 with bit 23 cleared.

Opcode: clrbit 58CH REG

See Also: alterbit, chkbit, notbit, setbit
6-29



INSTRUCTION SET REFERENCE

6.2.18 cmpdeci, cmpdeco

Mnemonic: cmpdeci Compare and Decrement Integer
cmpdeco Compare and Decrement Ordinal

Format: cmpdec* src1, src2, dst
reg/lit reg/lit reg

Description: Compares src2 and src1 values and sets the condition code according to
comparison results. src2 is then decremented by one and result is stored in
dst. The following table shows condition code setting for the three possible
results of the comparison.

These instructions are intended for use in ending iterative loops. For
cmpdeci, integer overflow is ignored to allow looping down through the
minimum integer values. 

Action: if(src1 < src2)
AC.cc = 1002;

else if(src1 == src2)
AC.cc = 0102;

else
AC.cc = 0012;

dst = src2 -1; # Overflow suppressed for cmpdeci.

Faults: STANDARD Refer to section 6.1.6, Faults (pg. 6-5).

Example: cmpdeci 12, g7, g1 # Compares g7 with 12 and sets
# AC.cc to indicate the result
# g1 = g7 - 1.

Condition Code Comparison

1002 src1 < src2

0102 src1 = src2

0012 src1 > src2
6-30

Opcode: cmpdeci 5A7H REG
cmpdeco 5A6H REG

See Also: cmpinco, cmpo, cmpi, cmpinci, COMPARE AND BRANCH<cc>

Side Effects: Sets the condition code in the arithmetic controls.



6

INSTRUCTION SET REFERENCE

6.2.19 cmpinci, cmpinco

Mnemonic: cmpinci Compare and Increment Integer
cmpinco Compare and Increment Ordinal

Format: cmpinc* src1, src2, dst
reg/lit reg/lit reg

Description: Compares src2 and src1 values and sets the condition code according to
comparison results. src2 is then incremented by one and result is stored in dst.
The following table shows condition code settings for the three possible
comparison results.

These instructions are intended for use in ending iterative loops. For cmpinci,
integer overflow is ignored to allow looping up through the maximum integer
values. 

Action: if (src1 < src2)  
AC.cc = 1002; 

else if (src1 == src2)  
AC.cc = 0102; 

else
AC.cc = 0012;

dst = src2 + 1; # Overflow suppressed for cmpinci.

Faults: STANDARD Refer to section 6.1.6, Faults (pg. 6-5).

Example: cmpinco r8, g2, g9 # Compares the values in g2 
# and r8 and sets AC.cc to
# indicate the result:

Condition Code Comparison

1002 src1 < src2

0102 src1 = src2

0012 src1 > src2
6-31

# g9 = g2 + 1

Opcode: cmpinci 5A5H REG
cmpinco 5A4H REG

See Also: cmpdeco, cmpo, cmpi, cmpdeci, COMPARE AND BRANCH<cc>

Side Effects: Sets the condition code in the arithmetic controls.



INSTRUCTION SET REFERENCE

6.2.20 COMPARE

Mnemonic: cmpi Compare Integer
cmpib Compare Integer Byte
cmpis Compare Integer Short
cmpo Compare Ordinal
cmpob Compare Ordinal Byte
cmpos Compare Ordinal Short

Format: cmp* src1, src2
reg/lit reg/lit

Description: Compares src2 and src1 values and sets condition code according to
comparison results. The following table shows condition code settings for the
three possible comparison results.

cmpi* followed by a branch-if instruction is equivalent to a compare-integer-
and-branch instruction. The latter method of comparing and branching
produces more compact code; however, the former method can execute byte
and short compares without masking. The same is true for cmpo* and the
compare-ordinal-and-branch instructions.

Action: # For cmpo, cmpi, N = 31. 
# For cmpos, cmpis, N = 15.
# For cmpob, cmpib, N = 7.

if (src1[N:0] < src2[N:0])
AC.cc = 1002; 

else if (src1[N:0] == src2[N:0])

Condition Code Comparison

1002 src1 < src2

0102 src1 = src2

0012 src1 > src2
6-32

 AC.cc = 0102; 
else if (src1[N:0] > src2[N:0])

AC.cc = 0012; 

Faults: STANDARD Refer to section 6.1.6, Faults (pg. 6-5).



6

INSTRUCTION SET REFERENCE

Example: cmpo r9, 0x10 # Compares the value in r9 with 0x10
# and sets AC.cc to indicate the
# result.

bg xyz # Branches to xyz if the value of r9
# was greater than 0x10.

Opcode: cmpi 5A1H REG
cmpib 595H REG 
cmpis 597H REG
cmpo 5A0H REG
cmpob 594H REG
cmpos 596H REG

See Also: COMPARE AND BRANCH<cc>, cmpdeci, cmpdeco, cmpinci, cmpinco,
concmpi, concmpo

Side Effects: Sets the condition code in the arithmetic controls.

Notes: The core instructions cmpib, cmpis, compob and compos are not imple-
mented on i960 Cx, Kx and Sx processors.
6-33



INSTRUCTION SET REFERENCE

6.2.21 COMPARE AND BRANCH<cc>

Mnemonic: cmpibe Compare Integer and Branch If Equal
cmpibne Compare Integer and Branch If Not Equal
cmpibl Compare Integer and Branch If Less
cmpible Compare Integer and Branch If Less Or Equal
cmpibg Compare Integer and Branch If Greater
cmpibge Compare Integer and Branch If Greater Or Equal
cmpibo Compare Integer and Branch If Ordered
cmpibno Compare Integer and Branch If Not Ordered

cmpobe Compare Ordinal and Branch If Equal
cmpobne Compare Ordinal and Branch If Not Equal
cmpobl Compare Ordinal and Branch If Less
cmpoble Compare Ordinal and Branch If Less Or Equal 
cmpobg Compare Ordinal and Branch If Greater
cmpobge Compare Ordinal and Branch If Greater Or Equal 

Format: cmpib* src1, src2, targ
reg/lit reg disp

cmpob* src1, src2, targ
reg/lit reg disp

Description: Compares src2 and src1 values and sets AC register condition code
according to comparison results. If logical AND of condition code and mask
part of opcode is not zero, the processor branches to instruction specified
with targ; otherwise, the processor goes to next instruction.

targ can be no farther than -212 to (212 - 4) bytes from current IP. When using
the Intel i960 processor assembler, targ must be a label that specifies target
instruction’s IP.

Functions these instructions perform can be duplicated with a cmpi or cmpo
6-34

followed by a branch-if instruction, as described in section 6.2.20,
COMPARE (pg. 6-32).



6

INSTRUCTION SET REFERENCE

The following table shows the condition-code mask for each instruction. The
mask is in bits 0-2 of the opcode.

Action: if(src1 < src2)
AC.cc = 1002;

else if(src1 == src2)
AC.cc = 0102;

else
AC.cc = 0012;

if((mask && AC.cc) != 0002)
IP[31:2] = efa[31:2]; # Resume execution at the new IP.
IP[1:0] = 0;

Faults: STANDARD Refer to section 6.1.6, Faults (pg. 6-5).

Instruction Mask Branch Condition

cmpibno 0002 No Condition

cmpibg 0012 src1 > src2

cmpibe 0102 src1 = src2

cmpibge 0112 src1 ≥ src2

cmpibl 1002 src1 < src2

cmpibne 1012 src1 ≠ src2

cmpible 1102 src1 ≤ src2

cmpibo 1112 Any Condition

cmpobg 0012 src1 > src2

cmpobe 0102 src1 = src2

cmpobge 0112 src1 ≥ src2

cmpobl 1002 src1 < src2

cmpobne 1012 src1 ≠ src2

cmpoble 1102 src1 ≤ src2

cmpibo always branches; cmpibno never branches. 
6-35

Example: # Assume g3 < g9
cmpibl g3, g9, xyz # g9 is compared with g3;

# IP = xyz.
# assume 19 ≥ r7
cmpobge 19, r7, xyz # 19 is compared with r7;

# IP = xyz.



INSTRUCTION SET REFERENCE

Opcode: cmpibe 3AH COBR
cmpibne 3DH COBR
cmpibl 3CH COBR
cmpible 3EH COBR
cmpibg 39H COBR
cmpibge 3BH COBR
cmpibo 3FH COBR
cmpibno 38H COBR
cmpobe 32H COBR
cmpobne 35H COBR
cmpobl 34H COBR
cmpoble 36H COBR
cmpobg 31H COBR
cmpobge 33H COBR

See Also: BRANCH<cc>, cmpi, cmpo, bal, balx

Side Effects: Sets the condition code in the arithmetic controls.
6-36



6

INSTRUCTION SET REFERENCE

6.2.22 concmpi, concmpo

Mnemonic: concmpi Conditional Compare Integer
concmpo Conditional Compare Ordinal

Format: concmp* src1, src2
reg/lit reg/lit

Description: Compares src2 and src1 values if condition code bit 2 is not set. If
comparison is performed, condition code is set according to comparison
results. Otherwise, condition codes are not altered.

These instructions are provided to facilitate bounds checking by means of
two-sided range comparisons (e.g., is A between B and C?). They are
generally used after a compare instruction to test whether a value is
inclusively between two other values.

The example below illustrates this application by testing whether g3 value is
between g5 and g6 values, where g5 is assumed to be less than g6. First a
comparison (cmpo) of g3 and g6 is performed. If g3 is less than or equal to
g6 (i.e., condition code is either 0102 or 0012), a conditional comparison
(concmpo) of g3 and g5 is then performed. If g3 is greater than or equal to g5
(indicating that g3 is within the bounds of g5 and g6), condition code is set to
0102; otherwise, it is set to 0012.

Action: if (AC.cc != 1XX2) 
{ if(src1 <= src2) 

AC.cc = 0102;
else 

AC.cc  = 0012;
} 

Faults: STANDARD Refer to section 6.1.6, Faults (pg. 6-5).

Example: cmpo g6, g3 # Compares g6 and g3 
# and sets AC.cc.

concmpo g5, g3 # If AC.cc < 100  (g6 ≥ g3)
6-37

2
# g5 is compared with g3.

At this point, depending on the register ordering, the condition code is one of 
those listed on Table 6-5.



INSTRUCTION SET REFERENCE

Opcode: concmpi 5A3H REG
concmpo 5A2H REG

See Also: cmpo, cmpi, cmpdeci, cmpdeco, cmpinci, cmpinco, COMPARE AND
BRANCH<cc>

Side Effects: Sets the condition code in the arithmetic controls.

Table 6-5.  concmpo Example: Register Ordering and CC

Order CC

g5 < g6 < g3 1002

g5 < g6 = g3 0102

g5 < g3 < g6 0102

g5 = g3 < g6 0102

g3 < g5 < g6 0012
6-38



6

INSTRUCTION SET REFERENCE

6.2.23 dcctl

Mnemonic: dcctl Data-cache Control

Format: src1, src2, src/dst
reg/lit reg/lit reg

Description: Performs management and control of the data cache including disabling,
enabling, invalidating, ensuring coherency, getting status, and storing cache
contents to memory. Operations are indicated by the value of src1. src2 and
src/dst are also used by some operations. When needed by the operation, the
processor orders the effects of the operation with previous and subsequent
operations to ensure correct behavior.

Table 6-6.  dcctl Operand Fields

Function src1 src2 src/dst

Disable D-cache 0 NA NA

Enable D-cache 1 NA NA

Global invalidate 
D-cache

2 NA NA

Ensure cache 
coherency1 3 NA NA

Get D-cache status 4 NA
src: NA
dst: Receives 
D-cache status (see Figure 6-1).

Reserved 5 NA NA

Store D-cache to 
memory

6
Destination 
address for 
cache sets

src: D-cache set #’s to be stored 
(see Figure 6-1).

Reserved 7 NA NA

Quick invalidate 8 1 NA

Reserved 9 NA NA

1. Invalidates data cache on 80960Rx.
6-39



INSTRUCTION SET REFERENCE

Figure 6-1.  dcctl src1 and src/dst Formats

Table 6-7.  dcctl Status Values and D-Cache Parameters

Value Value on 80960Rx

bytes per atom 4

atoms per line 4

number of sets 128 (full)

8    7 031
src1 Format

28 27 16 15 12 8 4 031

 

src/dst Format for Data Cache Status

3711

Enabled = 1
Disabled = 0

# of Ways-1

031

src/dst Format for Store Data Cache Sets to Memory

16   15

Starting Set #Ending Set #

Function Type

log2 (# of Sets)
log2 (Atoms/Line)

log2 (Bytes/Atom)
6-40

number of ways 1 (Direct)

cache size 2-Kbytes(full) 

Status[0] (enable / disable) 0 or 1

Status[1:3] (reserved) 0

Status[7:4] (log2(bytes per atom)) 2

Status[11:8] (log2(atoms per line)) 2

Status[15:12] (log2(number of sets)) 7 (full)

Status[27:16] (number of ways - 1) 0



6

INSTRUCTION SET REFERENCE

Figure 6-2.  Store Data Cache to Memory Output Format

  0
Destination 
Address (DA)

Tag (Starting set) DA + 4H

Valid Bits (Starting set) DA + 8H

Word 0 DA + CH

Word 1 DA + 10H

Word 2 DA + 14H

Word 3 DA + 18H

 0 DA + 1CH

Tag (Starting set + 1) DA + 20H

Valid Bits (Starting set + 1) DA + 24H

. . . . . .

W
ay

 0
W

ay
 0

031

Actual Address Bits 31:11

80960Rx Cache Tag Format (2 Kbyte Cache)

21 20

031

Valid Bits Values

5

6-41

Figure 6-3.  D-Cache Tag and Valid Bit Formats

Valid Bit for Word 2 of current Set and Way

Valid Bit for Word 3 of current Set and Way

Valid Bit for Word 1 of current Set and Way

Tag Valid Bit for current Set and Way

Valid Bit for Word 0 of current Set and Way



INSTRUCTION SET REFERENCE

Action: if (PC.em != supervisor) 
generate_fault(TYPE.MISMATCH);

order_wrt(previous_operations);
switch (src1[7:0]) {

case 0: # Disable data cache.
disable_Dcache( );
break;

case 1: # Enable data cache.
enable_Dcache( );
break;

case 2: # Global invalidate data cache.
invalidate_Dcache( );
break;

case 3: # Ensure coherency of data cache with memory.
# Causes data cache to be invalidated on this processor.
ensure_Dcache_coherency( );
break;

case 4: # Get data cache status into src_dst.
if (Dcache_enabled) src_dst[0] = 1;
else src_dst[0] = 0;
# Atom is 4 bytes.
src_dst[7:4] = log2(bytes per atom);
# 4 atoms per line.
src_dst[11:8] = log2(atoms per line);
src_dst[15:12] = log2(number of sets);
src_dst[27:16] = number of ways-1; # in lines per set
# cache size = ([27:16]+1) << ([7:4] + [11:8] + [15:12]).
break;
6-42



6

INSTRUCTION SET REFERENCE

case 6: # Store data cache sets to memory pointed to by src2.
start = src_dst[15:0] # Starting set number.
end   = src_dst[31:16] # Ending set number. 

# (zero-origin).
if (end >= Dcache_max_sets) end = Dcache_max_sets - 1;
if (start > end) generate_fault

(OPERATION.INVALID_OPERAND);
memadr = src2; # Must be word-aligned.
if (0x3 & memadr! = 0)
generate_fault(OPERATION.INVALID_OPERAND)
for (set = start; set <= end; set++){ 

# Set_Data is described at end of this code flow.
 memory[memadr] = Set_Data[set];
 memadr += 4;
 for (way = 0; way < numb_ways; way++)

{memory[memadr] = tags[set][way];
 memadr += 4;
 memory[memadr] = valid_bits[set][way];
 memadr += 4;
for (word = 0; word < words_in_line; word++)

{memory[memadr] =
 Dcache_line[set][way][word];

  memadr += 4;
}
}

}
break;

default: # Reserved.
generate_fault(OPERATION.INVALID_OPERAND);
break;

}
order_wrt(subsequent_operations)

;

Faults: STANDARD Refer to section 6.1.6, Faults (pg. 6-5).
TYPE.MISMATCH Attempt to execute instruction while not in
6-43

supervisor mode.
OPERATION.INVALID_OPERAND

Example: # g0 = 6, g1 = 0x10000000,
# g2 = 0x001F0001

dcctl g0,g1,g2 # Store the status of D-cache
# sets 1-0x1F to memory starting
# at 0x10000000.

Opcode: dcctl 65CH REG 



INSTRUCTION SET REFERENCE

See Also: sysctl

Notes: DCCTL function 6 stores data-cache sets to a target range in external mem-
ory. For any memory location that is cached and also within the target range
for function 6, the corresponding word-valid bit will be cleared after function
6 completes to ensure data-cache coherency. Thus, dcctl function 6 can alter
the state of the cache after it completes, but only the word-valid bits. In all
cases, even when the cache sets to store to external memory overlap the
cache sets that map the target range in external memory, DCCTL function 6
always returns the state of the cache as it existed when the DCCTL was
issued.

This instruction is implemented on the 80960Rx, 80960Hx and 80960Jx pro-
cessor families only, and may or may not be implemented on future i960 pro-
cessors.
6-44



6

INSTRUCTION SET REFERENCE

6.2.24 divi, divo

Mnemonic: divi Divide Integer
divo Divide Ordinal

Format: div* src1, src2, dst
reg/lit reg/lit reg

Description: Divides src2 value by src1 value and stores the result in dst. Remainder is
discarded.

For divi, an integer-overflow fault can be signaled.

Action: divo:
if (src1 == 0) 
{ dst = undefined_value;

generate_fault (ARITHMETIC.ZERO_DIVIDE);
else

dst = src2/src1;

divi:
if (src1 == 0) 
{ dst = undefined_value;

generate_fault (ARITHMETIC.ZERO_DIVIDE);}
else if ((src2 == -2**31) && (src1 == -1)) 

{ dst = -2**31

if (AC.om == 1) 
AC.of  = 1;

else
generate_fault (ARITHMETIC.OVERFLOW);

}
else

dst  = src2 / src1; 

Faults: STANDARD Refer to Section 6.1.6 on page 6-5.
6-45

ARITHMETIC.ZERO_DIVIDE The src1 operand is 0. 
ARITHMETIC.OVERFLOW Result too large for destination register (divi

only). If overflow occurs and AC.om=1,
fault is suppressed and AC.of is set to 1.
Result’s least significant 32 bits are stored in
dst.

Example: divo r3, r8, r13 # r13 = r8/r3



INSTRUCTION SET REFERENCE

Opcode: divi 74BH REG
divo 70BH REG

See Also: ediv, mulo, muli, emul
6-46



6

ient.

.,

no
INSTRUCTION SET REFERENCE

6.2.25 ediv

Mnemonic: ediv Extended Divide

Format: ediv src1, src2, dst
reg/lit reg/lit reg

Description: Divides src2 by src1 and stores result in dst. The src2 value is a long ordinal
(64 bits) contained in two adjacent registers. src2 specifies the lower
numbered register which contains operand’s least significant bits. src2 must
be an even numbered register (i.e., g0, g2, ... or r4, r6, r8... ). src1 value is a
normal ordinal (i.e., 32 bits).

The result consists of a one-word remainder and a one-word quot
Remainder is stored in the register designated by dst; quotient is stored in the
next highest numbered register. dst must be an even numbered register (i.e
g0, g2, ... r4, r6, r8, ...).

This instruction performs ordinal arithmetic.

If this operation overflows (quotient or remainder do not fit in 32 bits), 
fault is raised and the result is undefined.

Action: if((reg_number(src2)%2 != 0) || (reg_number(dst)%2 != 0))
{ dst[0] = undefined_value;

dst[1] = undefined_value;
generate_fault (OPERATION.INVALID_OPERAND);

}
else if(src1 == 0)
{ dst[0] = undefined_value;

dst[1] = undefined_value;
generate_fault(ARITHMETIC.DIVIDE_ZERO);

}
else # Quotient
{ dst[1] = ((src2 + reg_value(src2[1]) * 2**32) / src1)[31:0];

#Remainder
6-47

dst[0] = (src2 + reg_value(src2[1]) * 2**32 
- ((src2 + reg_value(src2[1]) * 2**32 / src1) * src1);

}

Faults: STANDARD Refer to section 6.1.6, Faults (pg. 6-5).
ARITHMETIC.ZERO_DIVIDE The src1 operand is 0. 

Example: ediv g3, g4, g10 # g10 = remainder of g4,g5/g3
# g11 = quotient of g4,g5/g3



INSTRUCTION SET REFERENCE

Opcode: ediv 671H REG

See Also: emul, divi, divo
6-48



6

INSTRUCTION SET REFERENCE

6.2.26 emul

Mnemonic: emul Extended Multiply

Format: emul src1, src2, dst
reg/lit reg/lit reg

Description: Multiplies src2 by src1 and stores the result in dst. Result is a long ordinal (64
bits) stored in two adjacent registers. dst specifies lower numbered register,
which receives the result’s least significant bits. dst must be an even
numbered register (i.e., g0, g2, ... r4, r6, r8, ...).

This instruction performs ordinal arithmetic.

Action: if(reg_number(dst)%2 != 0)
{ dst[0] = undefined_value;

dst[1] = undefined_value;
generate_fault(OPERATION.INVALID_OPERAND);

}
else
{ dst[0] = (src1 * src2)[31:0];

dst[1] = (src1 * src2)[63:32];
}

Faults: STANDARD Refer to section 6.1.6, Faults (pg. 6-5).

Example: emul r4, r5, g2 # g2,g3 = r4 * r5.

Opcode: emul 670H REG

See Also: ediv, muli, mulo
6-49



d

its
INSTRUCTION SET REFERENCE

6.2.27 eshro

Mnemonic: eshro Extended Shift Right Ordinal

Format: eshro src1, src2, dst
reg/lit reg/lit reg

Description: Shifts src2 right by (src1 mod 32) places and stores the result in dst. Bits
shifted beyond the least-significant bit are discarded.

src2 value is a long ordinal (i.e., 64 bits) contained in two adjacent registers.
src2 operand specifies the lower numbered register, which contains
operand’s least significant bits. src2 operand must be an even numbere
register (i.e., r4, r6, r8, ... or g0, g2).

src1 operand is a single 32-bit register or literal where the lower 5 b
specify the number of places that the src2 operand is to be shifted.

The least significant 32 bits of the shift operation result are stored in dst.

Action: if(reg_number(src2)%2 != 0)
{ dst[0] = undefined_value;

dst[1] = undefined_value;
generate_fault(OPERATION.INVALID_OPERAND);

}
else

dst = shift_right((src2 + reg_value(src2[1]) * 2**32),(src1%32))[31:0];

Faults: STANDARD Refer to section 6.1.6, Faults (pg. 6-5).

Example: eshro g3, g4, g11 # g11 = g4,5 shifted right by
# (g3 MOD 32).

Opcode: eshro 5D8H REG

See Also: SHIFT, extract
6-50

Notes: This core instruction is not implemented on the Kx and Sx 80960 processors.



6

INSTRUCTION SET REFERENCE

6.2.28 extract

Mnemonic: extract Extract

Format: extract bitpos len src/dst
reg/lit reg/lit reg

Description: Shifts a specified bit field in src/dst right and zero fills bits to left of shifted
bit field. bitpos value specifies the least significant bit of the bit field to be
shifted; len value specifies bit field length.

Action: src_dst = (src_dst >> min(bitpos, 32))
& ~ (0xFFFFFFFF << len);

Faults: STANDARD Refer to section 6.1.6, Faults (pg. 6-5).

Example: extract 5, 12, g4 # g4 = g4 with bits 5 through
# 16 shifted right.

Opcode: extract 651H REG

See Also: modify
6-51



g
ault)

The
INSTRUCTION SET REFERENCE

6.2.29 FAULT<cc>

Mnemonic: faulte Fault If Equal
faultne Fault If Not Equal
faultl Fault If Less
faultle Fault If Less Or Equal
faultg Fault If Greater
faultge Fault If Greater Or Equal
faulto Fault If Ordered
faultno Fault If Not Ordered

Format: fault*

Description: Raises a constraint-range fault if the logical AND of the condition code and
opcode’s mask part is not zero. For faultno (unordered), fault is raised if
condition code is equal to 0002.

faulto and faultno are provided for use by implementations with a floatin
point coprocessor. They are used for compare and branch (or f
operations involving real numbers.

The following table shows the condition-code mask for each instruction. 
mask is opcode bits 0-2.

Instruction Mask Condition

faultno 0002 Unordered

faultg 0012 Greater

faulte 0102 Equal

faultge 0112 Greater or equal

faultl 1002 Less

faultne 1012 Not equal

faultle 1102 Less or equal

faulto 1112 Ordered
6-52

Action: For all except faultno:
if(mask && AC.cc != 0002)

generate_fault(CONSTRAINT.RANGE);

faultno:
if(AC.cc == 0002)

generate_fault(CONSTRAINT.RANGE);

Faults: STANDARD Refer to section 6.1.6, Faults (pg. 6-5).
CONSTRAINT.RANGE If condition being tested is true.



6

INSTRUCTION SET REFERENCE

Example: # Assume (AC.cc AND 1102)≠ 0002
faultle # Generate CONSTRAINT_RANGE fault

Opcode: faulte 1AH CTRL
faultne 1DH CTRL
faultl 1CH CTRL
faultle 1EH CTRL
faultg 19H CTRL
faultge 1BH CTRL
faulto 1FH CTRL
faultno 18H CTRL

See Also: BRANCH<cc>, TEST<cc>
6-53



le, a
eturn,
 at a
tack
e
me.

rupt
.
rupt
s

o its
t they
ister
INSTRUCTION SET REFERENCE

6.2.30 flushreg

Mnemonic: flushreg Flush Local Registers

Format: flushreg

Description: Copies the contents of every cached register set, except the current set, to its
associated stack frame in memory. The entire register cache is then marked
as purged (or invalid). On a return to a stack frame for which the local
registers are not cached, the processor reloads the locals from memory.

flushreg is provided to allow a debugger or application program to
circumvent the processor’s normal call/return mechanism. For examp
debugger may need to go back several frames in the stack on the next r
rather than using the normal return mechanism that returns one frame
time. Since the local registers of an unknown number of previous s
frames may be cached, a flushreg must be executed prior to modifying th
PFP to return to a frame other than the one directly below the current fra

To reduce interrupt latency, flushreg is abortable. If an interrupt of higher
priority than the current process is detected while flushreg is executing,
flushreg flushes at least one frame and aborts. After executing the inter
handler, the processor returns to the flushreg instruction and re-executes it
flushreg does not reflush any frames that were flushed before the inter
occurred. flushreg is not aborted by high priority interrupts if tracing i
enabled in the PC or if any faults are pending at the time of the interrupt.

Action: Each local cached register set except the current one is flushed t
associated stack frame in memory and marked as purged, meaning tha
are reloaded from memory if and when they become the current local reg
set.

Faults: STANDARD Refer to section 6.1.6, Faults (pg. 6-5).

Example: flushreg

Opcode: flushreg 66DH REG
6-54



6

INSTRUCTION SET REFERENCE

6.2.31 fmark

Mnemonic: fmark Force Mark

Format: fmark

Description: Generates a mark trace event. Causes a mark trace event to be generated,
regardless of mark trace mode flag setting, providing the trace enable bit, bit
0 in the Process Controls, is set. 

For more information on trace fault generation, refer to CHAPTER 10,
TRACING AND DEBUGGING.

Action: A mark trace event is generated, independent of the setting of the mark-trace-
mode flag. 

Faults: STANDARD Refer to section 6.1.6, Faults (pg. 6-5).
TRACE.MARK A TRACE.MARK fault is generated if

PC.te=1.

Example: # Assume PC.te = 1
fmark
# Mark trace event is generated at this point in the
# instruction stream.

Opcode: fmark 66CH REG

See Also: mark
6-55



INSTRUCTION SET REFERENCE

6.2.32 halt

Mnemonic: halt Halt CPU

Format: halt src1
reg/lit

Description: Causes the i960 core processor to enter HALT mode. Entry into Halt mode
allows the interrupt enable state to be conditionally changed based on the
value of src1.

The processor exits Halt mode on a hardware reset or upon receipt of an
interrupt that should be delivered based on the current process priority. After
executing the interrupt that forced the processor out of Halt mode, execution
resumes at the instruction immediately after the halt instruction. The
processor must be in supervisor mode to use this instruction.

Action: implicit_syncf;
if (PC.em != supervisor)
   generate_fault( TYPE.MISMATCH);
switch(src1) {

case 0: # Disable interrupts. set ICON.gie. 
global_interrupt_enable = true; break;

case 1: # Enable interrupts. clear ICON.gie. 
        global_interrupt_enable = false; break;

case 2: # Use the current interrupt enable state. 
break;

default:

src1 Operation

0 Disable interrupts and halt

1 Enable interrupts and halt

2 Use current interrupt enable state and halt
6-56

generate_fault( OPERATION.INVALID_OPERAND );
break;

}

ensure_bus_is_quiescient;
enter_HALT_mode;

Faults: STANDARD Refer to section 6.1.6, Faults (pg. 6-5).
TYPE.MISMATCH Attempt to execute instruction while not in

supervisor mode.



6

INSTRUCTION SET REFERENCE

Example: # ICON.gie = 1, g0 = 1, Interrupts disabled.
halt g0 # Enable interrupts and halt.

Opcode: halt 65DH REG

Notes: This instruction is implemented on the 80960Rx and 80960Jx processor fam-
ilies only, and may or may not be implemented on future i960 processors.
6-57



INSTRUCTION SET REFERENCE

6.2.33 icctl

Mnemonic: icctl Instruction-cache Control

Format: icctl src1, src2, src/dst
reg/lit reg/lit reg

Description: Performs management and control of the instruction cache including
disabling, enabling, invalidating, loading and locking, getting status, and
storing cache sets to memory. Operations are indicated by the value of src1.
Some operations also use src2 and src/dst. When needed by the operation,
the processor orders the effects of the operation with previous and
subsequent operations to ensure correct behavior. For specific function setup,
see the following tables and diagrams:

Table 6-8.  icctl Operand Fields

Function src1 src2 src/dst

Disable I-cache 0 NA NA

Enable I-cache 1 NA NA

Invalidate I-cache 2 NA NA

Load and lock
I-cache

3
src: Starting 
address of code to 
lock.

Number of blocks to lock.

Get I-cache status 4 NA
dst: Receives status (see 
Figure 6-4).

Get I-cache locking 
status

5 NA
dst: Receives status (see 
Figure 6-4)

Store I-cache sets 
to memory

6
Destination 
address for cache 
sets

src: I-cache set #’s to be stored 
(see Figure 6-4).
6-58



6

INSTRUCTION SET REFERENCE

8    7 031

Function Type

src1 Format

28 27 16 15 12 8 4 031

 

src/dst Format for I-cache Status

3711

Enabled = 1
Disabled = 0

log2 (# of Sets)

# of Ways-1

8    7 031

src/dst Format for I-cache Locking Status

24   23

# of Blocks that Lock Block Size in Words

031

src/dst Format for Store I-cache Sets to Memory

16   15

Starting Set #Ending Set #

# of Blocks that are Locked

log2 (Atoms/Line)
log2 (Bytes/Atom)
6-59

Figure 6-4.  icctl src1 and src/dst Formats

Reserved, 
(Initialize to 0)



INSTRUCTION SET REFERENCE

Table 6-9.  icctl Status Values and I-Cache Parameters

Value Value on i960RP CPU

bytes per atom 4

atoms per line 4

number of sets 128 

number of ways 2

cache size 4-Kbytes 

Status[0] (enable / disable) 0 or 1

Status[1:3] (reserved) 0

Status[7:4] (log2(bytes per atom)) 2

Status[11:8] (log2(atoms per line)) 2

Status[15:12] (log2(number of sets)) 7 

Status[27:16] (number of ways - 1) 1

Lock Status[7:0] (number of blocks that lock) 1

Lock Status[23:8] (block size in words) 512 

Lock Status[31:24] (number of blocks that are locked) 0 or 1
6-60



6

INSTRUCTION SET REFERENCE

Figure 6-5.  Store Instruction Cache to Memory Output Format

  Set_Data [Starting Set]
Destination 
Address (DA)

Tag (Starting set) DA + 4H

Valid Bits (Starting set) DA + 8H

Word 0 DA + CH

Word 1 DA + 10H

Word 2 DA + 14H

Word 3 DA + 18H

Tag (Starting set) DA + 1CH

Valid Bits (Starting set) DA + 20H

Word 0 DA + 24H

Word 1 DA + 28H

Word 2 DA + 2CH

Word 3 DA + 30H

Set_Data [Starting Set + 1] DA + 34H

Tag (Starting set + 1) DA + 38H

Valid Bits (Starting set + 1) DA + 3CH

. . . . . .

W
ay

 0
W

ay
 1

W
ay

 0
6-61



INSTRUCTION SET REFERENCE

0 = Way 0 is least recently used

031

Actual Address Bits 31:11

80960Rx Cache Tag Format (4 Kbyte Cache)

031

Set Data I-Cache Values

21 20

031

Valid Bits Values

5

I-Cache Set Data Value

Valid Bit for Word 2 of current Set and Way

Valid Bit for Word 3 of current Set and Way

Valid Bit for Word 1of current Set and Way

Tag Valid bit for current Set and Way

Valid Bit for Word 0 of current Set and Way

1 = Way 1 is least recently used
6-62

Figure 6-6.  I-Cache Set Data, Tag and Valid Bit Formats



6

INSTRUCTION SET REFERENCE

Action: if (PC.em != supervisor) 
generate_fault(TYPE.MISMATCH);

switch (src1[7:0]) {
case 0: # Disable instruction cache. 

disable_instruction_cache( );
break;

case 1: # Enable instruction cache. 
enable_instruction_cache( );
break;

case 2: # Globally invalidate instruction cache.
# Includes locked lines also.
invalidate_instruction_cache( );
unlock_icache( );
break;

case 3: # Load & Lock code into Instruction-Cache
# src_dst has number of contiguous blocks to lock.
# src2 has starting address of code to lock. 
# On the i960 RP, src2 is aligned to a quad word boundary

aligned_addr = src2 & 0xFFFFFFF0;
invalidate(I-cache); unlock(I-cache);
for (j = 0; j < src_dst; j++)

{ way = way_associated_with_block(j);
start = src2 + j*block_size;
end = start + block_size;
for (i = start; i < end; i=i+4)

{ set = set_associated_with(i);
word = word_associated_with(i);
Icache_line[set][way][word] =

 memory[i];
update_tag_n_valid_bits(set,way,word)

  lock_icache(set,way,word);
} } break;

case 4: # Get instruction cache status into src_dst. 
6-63

if (Icache_enabled) src_dst[0] = 1;
else src_dst[0] = 0;

# Atom is 4 bytes. 
   src_dst[7:4] = log2(bytes per atom);
# 4 atoms per line. 
   src_dst[11:8] = log2(atoms per line);
src_dst[15:12] = log2(number of sets);
src_dst[27:16] = number of ways-1; #in lines per set
# cache size = ([27:16]+1) << ([7:4] + [11:8] + [15:12]) 
break;



INSTRUCTION SET REFERENCE

case 5: # Get instruction cache locking status into dst. 
src_dst[7:0] = number_of_blocks_that_lock;
src_dst[23:8] = block_size_in_words;
src_dst[31:24] = number_of_blocks_that_are_locked;
break;

case 6: # Store instr cache sets to memory pointed to by src2.   
start = src_dst[15:0] # Starting set number    
end   = src_dst[31:16] # Ending set number 

# (zero-origin).
if (end >= Icache_max_sets) 

end = Icache_max_sets - 1;
if (start > end) 

generate_fault(OPERATION.INVALID_OPERAND);
memadr = src2; # Must be word-aligned.
if(0x3 & memadr != 0)

generate_fault(OPERATION.INVALID_OPERAND);
for (set = start; set <= end; set++){

 # Set_Data is described at end of this code flow. 
 memory[memadr] = Set_Data[set];
 memadr += 4;
 for (way = 0; way < numb_ways; way++)

{memory[memadr] = tags[set][way];
 memadr += 4;
 memory[memadr] = valid_bits[set][way];
 memadr += 4;
 for (word = 0; word < words_in_line;

 word++)
 {memory[memadr] =

 Icache_line[set][way][word];
  memadr += 4;
 } 
6-64

} } break;

default: # Reserved. 
generate_fault(OPERATION.INVALID_OPERAND);
break;}

Faults: STANDARD Refer to section 6.1.6, Faults (pg. 6-5).
TYPE.MISMATCH Attempt to execute instruction while not in

supervisor mode.



6

INSTRUCTION SET REFERENCE

Example: # g0 = 3, g1=0x10000000, g2=1
icctl g0,g1,g2 # Load and lock 1 block of cache

# (one way) with
# location of code at starting
# 0x10000000.

Opcode: icctl 65BH REG 

See Also: sysctl

Notes: This instruction is implemented on the 80960Rx, 80960Hx and 80960Jx pro-
cessor families only, and may or may not be implemented on future i960 pro-
cessors.
6-65



INSTRUCTION SET REFERENCE

6.2.34 intctl

Mnemonic: intctl Global Enable and Disable of Interrupts

Format: intctl src1 dst
reg/lit reg

Description: Globally enables, disables or returns the current status of interrupts
depending on the value of src1. Returns the previous interrupt enable state (1
for enabled or 0 for disabled) in dst. When the state of the global interrupt
enable is changed, the processor ensures that the new state is in full effect
before the instruction completes. (This instruction is implemented by manip-
ulating ICON.gie.)

Action: if (PC.em != supervisor) 
generate_fault(TYPE.MISMATCH);

old_interrupt_enable = global_interrupt_enable;
switch(src1) {

case 0: # Disable. Set ICON.gie to one.
globally_disable_interrupts;
global_interrupt_enable = false;
order_wrt(subsequent_instructions);
break;

case 1: # Enable.  Clear ICON.gie to zero.
globally_enable_interrupts;
global_interrupt_enable = true;
order_wrt(subsequent_instructions);
break;

   case 2: # Return status. Return ICON.gie 

src1 Value Operation

0 Disables interrupts

1 Enables interrupts

2 Returns current interrupt enable status
6-66

break;
default:

generate_fault(OPERATION.INVALID_OPERAND);
break;

}
if(old_interrupt_enable)

dst = 1;
else

dst = 0;

Faults: STANDARD Refer to section 6.1.6, Faults (pg. 6-5).



6

INSTRUCTION SET REFERENCE

TYPE.MISMATCH Attempt to execute instruction while not in
supervisor mode.

Example: # ICON.gie = 0, interrupts enabled
intctl 0, g4 # Disable interrupts (ICON.gie = 1)

# g4 = 1

Opcode: intctl 658H REG

See Also: intdis, inten

Notes: This instruction is implemented on the 80960Rx, 80960Hx and 80960Jx pro-
cessor families only, and may or may not be implemented on future i960 pro-
cessors.
6-67



INSTRUCTION SET REFERENCE

6.2.35 intdis

Mnemonic: intdis Global Interrupt Disable

Format: intdis

Description: Globally disables interrupts and ensures that the change takes effect before
the instruction completes. This operation is implemented by setting
ICON.gie to one.

Action: if (PC.em != supervisor) 
generate_fault(TYPE.MISMATCH);

# Implemented by setting ICON.gie to one. 
globally_disable_interrupts;
interrupt_enable = false;
order_wrt(subsequent_instructions);

Faults: STANDARD Refer to section 6.1.6, Faults (pg. 6-5).
TYPE.MISMATCH Attempt to execute instruction while not in

supervisor mode.

Example: # ICON.gie = 0, interrupts enabled
intdis # Disable interrupts. 

# ICON.gie = 1

Opcode: intdis 5B4H REG

See Also: intctl, inten

Notes: This instruction is implemented on the 80960Rx, 80960Hx and 80960Jx pro-
cessor families only, and may or may not be implemented on future i960 pro-
cessors.
6-68



6

INSTRUCTION SET REFERENCE

6.2.36 inten

Mnemonic: inten global interrupt enable

Format: inten

Description: Globally enables interrupts and ensures that the change takes effect before the
instruction completes. This operation is implemented by clearing ICON.gie to
zero.

Action: if (PC.em != supervisor) 
generate_fault(TYPE.MISMATCH);

# Implemented by clearing ICON.gie to zero. 
globally_enable_interrupts;
interrupt_enable = true;
order_wrt(subsequent_instructions);

Faults: STANDARD Refer to section 6.1.6, Faults (pg. 6-5).
TYPE.MISMATCH Attempt to execute instruction while not in

supervisor mode.

Example: # ICON.gie = 1, interrupts disabled.
inten # Enable interrupts.

# ICON.gie = 0

Opcode: inten 5B5H REG

See Also: intctl, intdis

Notes: This instruction is implemented on the 80960Rx, 80960Hx and 80960Jx pro-
cessor families only, and may or may not be implemented on future i960 pro-
cessors.
6-69



INSTRUCTION SET REFERENCE

6.2.37 LOAD

Mnemonic: ld Load
ldob Load Ordinal Byte
ldos Load Ordinal Short
ldib Load Integer Byte
ldis Load Integer Short
ldl Load Long
ldt Load Triple
ldq Load Quad

Format: ld*  src, dst
mem reg

Description: Copies byte or byte string from memory into a register or group of successive
registers.

The src operand specifies the address of first byte to be loaded. The full
range of addressing modes may be used in specifying src. Refer to Chapter 2,
DATA TYPES AND MEMORY ADDRESSING MODES for more infor-
mation.

dst specifies a register or the first (lowest numbered) register of successive
registers.

ldob and ldib load a byte and ldos and ldis load a half word and convert it to
a full 32-bit word. Data being loaded is sign-extended during integer loads
and zero-extended during ordinal loads.

ld, ldl, ldt and ldq instructions copy 4, 8, 12 and 16 bytes, respectively, from
memory into successive registers.

For ldl, dst must specify an even numbered register (i.e., g0, g2...). For ldt
and ldq, dst must specify a register number that is a multiple of four (i.e., g0,
g4, g8, g12, r4, r8, r12). Results are unpredictable if registers are not aligned
on the required boundary or if data extends beyond register g15 or r15 for ldl,
ldt or ldq.
6-70



6

INSTRUCTION SET REFERENCE

Action: ld:
dst = read_memory(effective_address)[31:0];
if((effective_address[1:0] != 002 ) && unaligned _fault_enabled)

generate_fault(OPERATION.UNALIGNED);

ldob:
dst[7:0] = read_memory(effective_address)[7:0];
dst[31:8] = 0x000000;

ldib:
dst[7:0] = read_memory(effective_address)[7:0];
if(dst[7] == 0)

dst[31:8] = 0x000000;
else

dst[31:8] = 0xFFFFFF;

ldos:
dst = read_memory(effective_address)[15:0];

# Order depends on endianism. 
dst[31:16] = 0x0000;
if((effective_address[0] != 02) && unaligned_fault_enabled)

generate_fault(OPERATION.UNALIGNED);

ldis:
dst[15:0] = read_memory(effective_address)[15:0];

# Order depends on endianism. 
if(dst[15] == 02)

dst[31:16] = 0x0000;
else

dst[31:16] = 0xFFFF;
if((effective_address[0] != 02) && unaligned_fault_enabled)

generate_fault(OPERATION.UNALIGNED);
6-71

ldl:
if((reg_number(dst) % 2) != 0)

generate_fault(OPERATION.INVALID_OPERAND);
# dst not modified.

else
{ dst = read_memory(effective_address)[31:0];

dst_+_1 = read_memory(effective_address_+_4)[31:0];
if((effective_address[2:0] != 0002) && unaligned_fault_enabled)

generate_fault(OPERATION.UNALIGNED);
}



INSTRUCTION SET REFERENCE

ldt:
if((reg_number(dst) % 4) != 0)

generate_fault(OPERATION.INVALID_OPERAND);
# dst not modified.

else
{ dst = read_memory(effective_adddress)[31:0];

dst_+_1 = read_memory(effective_adddress_+_4)[31:0];
dst_+_2 = read_memory(effective_adddress_+_8)[31:0];
if((effective_address[3:0] != 00002) && unaligned_fault_enabled)

generate_fault(OPERATION.UNALIGNED);
}

ldq:
if((reg_number(dst) % 4) != 0)

generate_fault(OPERATION.INVALID_OPERAND);
# dst not modified.

else
{ dst = read_memory(effective_adddress)[31:0];

# Order depends on endianism. 
dst_+_1 = read_memory(effective_adddress_+_4)[31:0];
dst_+_2 = read_memory(effective_adddress_+_8)[31:0];
dst_+_3 = read_memory(effective_adddress_+_12)[31:0];
if((effective_address[3:0] != 00002) && unaligned_fault_enabled)

generate_fault(OPERATION.UNALIGNED);
}

Faults: STANDARD Refer to section 6.1.6, Faults (pg. 6-5).
OPERATION.UNALIGNED
OPERATION.INVALID_OPERAND

Example: ldl 2450 (r3), r10 # r10, r11 = r3 + 2450 in
# memory

Opcode: ld 90H MEM
6-72

ldob 80H MEM
ldos 88H MEM
ldib C0H MEM
ldis C8H MEM
ldl 98H MEM
ldt A0H MEM
ldq B0H MEM

See Also: MOVE, STORE



6

INSTRUCTION SET REFERENCE

6.2.38 lda

Mnemonic: lda Load Address

Format: lda src, dst
mem reg
efa

Description: Computes the effective address specified with src and stores it in dst. The src
address is not checked for validity. Any addressing mode may be used to
calculate efa. 

An important application of this instruction is to load a constant longer than 5
bits into a register. (To load a register with a constant of 5 bits or less, mov
can be used with a literal as the src operand.) 

Action: dst = effective_address;

Faults: STANDARD Refer to section 6.1.6, Faults (pg. 6-5).

Example: lda 58 (g9), g1 # g1 = g9+58
lda 0x749, r8 # r8 = 0x749

Opcode: lda 8CH MEM
6-73



INSTRUCTION SET REFERENCE

6.2.39 mark

Mnemonic: mark Mark

Format: mark

Description: Generates mark trace fault if mark trace mode is enabled. Mark trace mode is
enabled if the PC register trace enable bit (bit 0) and the TC register mark
trace mode bit (bit 7) are set.

If mark trace mode is not enabled, mark behaves like a no-op.

For more information on trace fault generation, refer to CHAPTER 10,
TRACING AND DEBUGGING.

Action: if(PC.te && TC.mk)
generate_fault(TRACE.MARK)

Faults: STANDARD Refer to section 6.1.6, Faults (pg. 6-5).
TRACE.MARK Trace fault is generated if PC.te=1 and

TC.mk=1.

Example: # Assume that the mark trace mode is enabled.
ld xyz, r4
addi r4, r5, r6
mark
# Mark trace event is generated at this point in the
# instruction stream.

Opcode: mark 66BH REG

See Also: fmark, modpc, modtc 
6-74



6

INSTRUCTION SET REFERENCE

6.2.40 modac

Mnemonic: modac Modify AC

Format: modac mask, src, dst
reg/lit reg/lit reg

Description: Reads and modifies the AC register. src contains the value to be placed in the
AC register; mask specifies bits that may be changed. Only bits set in mask
are modified. Once the AC register is changed, its initial state is copied into
dst. 

Action: temp = AC;
AC = (src & mask) | (AC & ~mask);
dst = temp;

Faults: STANDARD Refer to section 6.1.6, Faults (pg. 6-5).

Example: modac g1, g9, g12 # AC = g9, masked by g1.
# g12 = initial value of AC. 

Opcode: modac 645H REG

See Also: modpc, modtc

Side Effects: Sets the condition code in the arithmetic controls. 
6-75



INSTRUCTION SET REFERENCE

6.2.41 modi

Mnemonic: modi Modulo Integer

Format: modi src1, src2, dst
reg/lit reg/lit reg

Description: Divides src2 by src1, where both are integers and stores the modulo
remainder of the result in dst. If the result is nonzero, dst has the same sign as
src1.

Action: if(src1 == 0)
{ dst = undefined_value;

generate_fault(ARITHMETIC.ZERO_DIVIDE);
}

dst = src2 - (src2/src1) * src1;
if((src2 *src1 < 0 ) && (dst != 0))

dst = dst + src1;

Faults: STANDARD See section 6.1.6, Faults (pg. 6-5).
ARITHMETIC.ZERO_DIVIDE The src1 operand is zero.

Example: modi r9, r2, r5 # r5 = modulo (r2/r9)

Opcode: modi 749H REG

See Also: divi, divo, remi, remo

Notes: modi generates the correct result (0) when computing -231 mod -1, although
the corresponding 32-bit division does overflow, it does not generate a fault.
6-76



6

INSTRUCTION SET REFERENCE

6.2.42 modify

Mnemonic: modify Modify

Format: modify mask, src, src/dst
reg/lit reg/lit reg

Description: Modifies selected bits in src/dst with bits from src. The mask operand selects
the bits to be modified: only bits set in the mask operand are modified in
src/dst.

Action: src_dst = (src & mask) | (src_dst & ~mask);

Faults: STANDARD Refer to section 6.1.6, Faults (pg. 6-5).

Example: modify g8, g10, r4 # r4 = g10 masked by g8.

Opcode: modify 650H REG

See Also: alterbit, extract
6-77



INSTRUCTION SET REFERENCE

6.2.43 modpc

Mnemonic: modpc Modify Process Controls

Format: modpc src, mask, src/dst
reg/lit reg/lit reg

Description: Reads and modifies the PC register as specified with mask and src/dst.
src/dst operand contains the value to be placed in the PC register; mask
operand specifies bits that may be changed. Only bits set in the mask are
modified. Once the PC register is changed, its initial value is copied into
src/dst. The src operand is a dummy operand that should specify a literal or
the same register as the mask operand.

The processor must be in supervisor mode to use this instruction with a non-
zero mask value. If mask=0, this instruction can be used to read the process
controls, without the processor being in supervisor mode.

If the action of this instruction lowers the processor priority, the processor
checks the interrupt table for pending interrupts.

When process controls are changed, the processor recognizes the changes
immediately except in one situation: if modpc is used to change the trace
enable bit, the processor may not recognize the change before the next four
non-branch instructions are executed. For more information see 3.6.3,
Process Controls Register – PC (pg. 3-19). 

Action: if(mask != 0)
{ if(PC.em != supervisor)

generate_fault(TYPE.MISMATCH);
temp = PC;
PC = (mask & src_dst) | (PC & ~mask);
src_dst = temp;
if(temp.priority > PC.priority)

check_pending_interrupts;
}

6-78

else
src_dst = PC;

Faults: STANDARD Refer to section 6.1.6, Faults (pg. 6-5).
TYPE.MISMATCH

Example: modpc g9, g9, g8 # process controls = g8
# masked by g9.

Opcode: modpc 655H REG



6

INSTRUCTION SET REFERENCE

See Also: modac, modtc

Notes: Since modpc does not switch stacks, it should not be used to switch the mode
of execution from supervisor to user (the supervisor stack can get corrupted in
this case). The call and return mechanism should be used instead. 
6-79



INSTRUCTION SET REFERENCE

6.2.44 modtc

Mnemonic: modtc Modify Trace Controls

Format: modtc mask, src2, dst
reg/lit reg/lit reg

Description: Reads and modifies TC register as specified with mask and src2. The src2
operand contains the value to be placed in the TC register; mask operand
specifies bits that may be changed. Only bits set in mask are modified. mask
must not enable modification of reserved bits. Once the TC register is
changed, its initial state is copied into dst.

The changed trace controls may take effect immediately or may be delayed.
If delayed, the changed trace controls may not take effect until after the first
non-branching instruction is fetched from memory or after four non-
branching instructions are executed.

For more information on the trace controls, refer to CHAPTER 9, FAULTS
and CHAPTER 10, TRACING AND DEBUGGING.

Action: mode_bits = 0x000000FE;
event_flags = 0X0F000000
temp = TC;
tempa = (event_flags & TC & mask) | (mode_bits & mask);
TC = (tempa & src2) | (TC & ~tempa);
dst = temp;

Faults: STANDARD Refer to section 6.1.6, Faults (pg. 6-5).

Example: modtc g12, g10, g2 # trace controls = g10 masked
# by g12; previous trace
# controls stored in g2.

Opcode: modtc 654H REG

See Also: modac, modpc
6-80



6

INSTRUCTION SET REFERENCE

6.2.45 MOVE

Mnemonic: mov Move
movl Move Long
movt Move Triple
movq Move Quad

Format: mov* src1, dst
reg/lit reg

Description: Copies the contents of one or more source registers (specified with src) to one
or more destination registers (specified with dst).

For movl, movt and movq, src1 and dst specify the first (lowest numbered)
register of several successive registers. src1 and dst registers must be even
numbered (e.g., g0, g2, ... or r4, r6, ...) for movl and an integral multiple of
four (e.g., g0, g4, ... or r4, r8, ...) for movt and movq.

The moved register values are unpredictable when: 1) the src and dst
operands overlap; 2) registers are not properly aligned.

Action: mov:
if(is_reg(src1))

dst = src1;
else
{ dst[4:0] = src1; #src1 is a 5-bit literal.

dst[31:5] = 0;
}
movl:
if((reg_num(src1)%2 != 0) || (reg_num(dst)%2 != 0))
{ dst = undefined_value;

dst_+_1 = undefined_value;
generate_fault(OPERATION.INVALID_OPERAND);

}
else if(is_reg(src1))
{ dst = src1;
6-81

dst_+_1 = src1_+_1;
}
else
{ dst[4:0] = src1; #src1 is a 5-bit literal.

dst[31:5] = 0;
dst_+_1[31:0] = 0;

}



INSTRUCTION SET REFERENCE

movt:
if((reg_num(src1)%4 != 0) || (reg_num(dst)%4 != 0))
{ dst = undefined_value;

dst_+_1 = undefined_value;
dst_+_2 = undefined_value;
generate_fault(OPERATION.INVALID_OPERAND);

}
else if(is_reg(src1))
{ dst = src1;

dst_+_1 = src1_+_1;
dst_+_2 = src1_+_2;

}
else
{ dst[4:0] = src1; #src1 is a 5-bit literal.

dst[31:5] = 0;
dst_+_1[31:0] = 0;
dst_+_2[31:0] = 0;

}
movq:
if((reg_num(src1)%4 != 0) || (reg_num(dst)%4 != 0))
{ dst = undefined_value;

dst_+_1 = undefined_value;
dst_+_2 = undefined_value;
dst_+_3 = undefined_value;
generate_fault(OPERATION.INVALID_OPERAND);

}
else if(is_reg(src1))
{ dst = src1;

dst_+_1 = src1_+_1;
dst_+_2 = src1_+_2;
dst_+_3 = src1_+_3;

}
else
6-82

{ dst[4:0] = src1; #src1 is a 5 bit literal.
dst[31:5] = 0;
dst_+_1[31:0] = 0;
dst_+_2[31:0] = 0;
dst_+_3[31:0] = 0;

}

Faults: STANDARD Refer to section 6.1.6, Faults (pg. 6-5).

Example: movt g8, r4 # r4, r5, r6 = g8, g9, g10



6

INSTRUCTION SET REFERENCE

Opcode: mov 5CCH REG
movl 5DCH REG
movt 5ECH REG
movq 5FCH REG

See Also: LOAD, STORE, lda 
6-83



INSTRUCTION SET REFERENCE

6.2.46 muli, mulo

Mnemonic: muli Multiply Integer
mulo Multiply Ordinal

Format: mul* src1, src2, dst
reg/lit reg/lit reg

Description: Multiplies the src2 value by the src1 value and stores the result in dst. The
binary results from these two instructions are identical. The only difference is
that muli can signal an integer overflow.

Action: mulo:
dst = (src2 * src1)[31:0];

muli:
true_result = (src1 * src2);
dst = true_result[31:0];
if((true_result > (2**31) - 1) || (true_result < -2**31)) # Check for overflow
{ if(AC.om == 1)

AC.of = 1;
else

generate_fault(ARITHMETIC.OVERFLOW);
}

Faults: STANDARD Refer to section 6.1.6, Faults (pg. 6-5).
ARITHMETIC.OVERFLOW Result is too large for destination register

(muli only). If a condition of overflow
occurs, the least significant 32 bits of the
result are stored in the destination register.

Example: muli r3, r4, r9 # r9 = r4 * r3

Opcode: muli 741H REG
mulo 701H REG

See Also: emul, ediv, divi, divo
6-84



6

INSTRUCTION SET REFERENCE

6.2.47 nand

Mnemonic: nand Nand

Format: nand src1, src2, dst
reg/lit reg/lit reg

Description: Performs a bitwise NAND operation on src2 and src1 values and stores the
result in dst.

Action: dst = ~src2 | ~src1;

Faults: STANDARD Refer to section 6.1.6, Faults (pg. 6-5).

Example: nand g5, r3, r7 # r7 = r3 NAND g5

Opcode: nand 58EH REG

See Also: and, andnot, nor, not, notand, notor, or, ornot, xnor, xor
6-85



INSTRUCTION SET REFERENCE

6.2.48 nor

Mnemonic: nor Nor

Format: nor src1, src2, dst
reg/lit reg/lit reg

Description: Performs a bitwise NOR operation on the src2 and src1 values and stores the
result in dst.

Action: dst = ~src2 & ~src1;

Faults: STANDARD Refer to section 6.1.6, Faults (pg. 6-5).

Example: nor g8, 28, r5 # r5 = 28 NOR g8

Opcode: nor 588H REG

See Also: and, andnot, nand, not, notand, notor, or, ornot, xnor, xor
6-86



6

INSTRUCTION SET REFERENCE

6.2.49 not, notand

Mnemonic: not Not
notand Not And

Format: not src1, dst
reg/lit reg

notand src1, src2, dst
reg/lit reg/lit reg

Description: Performs a bitwise NOT (not instruction) or NOT AND (notand instruction)
operation on the src2 and src1 values and stores the result in dst.

Action: not:
dst = ~src1;

notand:
dst = ~src2 & src1;

Faults: STANDARD Refer to section 6.1.6, Faults (pg. 6-5).

Example: not g2, g4 # g4 = NOT g2
notand r5, r6, r7 # r7 =  NOT r6 AND r5 

Opcode: not 58AH REG
notand 584H REG

See Also: and, andnot, nand, nor, notor, or, ornot, xnor, xor
6-87



INSTRUCTION SET REFERENCE

6.2.50 notbit

Mnemonic: notbit Not Bit

Format: notbit bitpos, src2, dst
reg/lit reg/lit reg

Description: Copies the src2 value to dst with one bit toggled. The bitpos operand
specifies the bit to be toggled. 

Action: dst = src2 ^ 2**(src1%32);

Faults: STANDARD Refer to section 6.1.6, Faults (pg. 6-5).

Example: notbit r3, r12, r7 # r7 = r12 with the bit
# specified in r3 toggled.

Opcode: notbit 580H REG

See Also: alterbit, chkbit, clrbit, setbit
6-88



6

INSTRUCTION SET REFERENCE

6.2.51 notor

Mnemonic: notor Not Or

Format: notor src1, src2, dst
reg/lit reg/lit reg

Description: Performs a bitwise NOTOR operation on src2 and src1 values and stores
result in dst.

Action: dst = ~src2 | src1;

Faults: STANDARD Refer to section 6.1.6, Faults (pg. 6-5).

Example: notor g12, g3, g6 # g6 = NOT g3 OR g12

Opcode: notor 58DH REG

See Also: and, andnot, nand, nor, not, notand, or, ornot, xnor, xor
6-89



INSTRUCTION SET REFERENCE

6.2.52 or, ornot

Mnemonic: or Or
ornot Or Not

Format: or src1, src2, dst
reg/lit reg/lit reg

ornot src1, src2, dst
reg/lit reg/lit reg

Description: Performs a bitwise OR (or instruction) or ORNOT (ornot instruction)
operation on the src2 and src1 values and stores the result in dst.

Action: or:
dst = src2 | src1;

ornot:
dst = src2 | ~src1;

Faults: STANDARD Refer to section 6.1.6, Faults (pg. 6-5).

Example: or 14, g9, g3 # g3 = g9 OR 14
ornot r3, r8, r11 # r11 = r8 OR NOT r3

Opcode: or 587H REG
ornot 58BH REG

See Also: and, andnot, nand, nor, not, notand, notor, xnor, xor
6-90



6

INSTRUCTION SET REFERENCE

6.2.53 remi, remo

Mnemonic: remi Remainder Integer
remo Remainder Ordinal

Format: rem* src1, src2, dst
reg/lit reg/lit reg

Description: Divides src2 by src1 and stores the remainder in dst. The sign of the result (if
nonzero) is the same as the sign of src2.

Action: remi, remo:
if(src1 == 0)

generate_fault(ARITHMETIC.ZERO_DIVIDE);
dst = src2 - (src2/src1)*src1;

Faults: STANDARD Refer to section 6.1.6, Faults (pg. 6-5).

ARITHMETIC.ZERO_DIVIDE The src1 operand is 0.

Example: remo r4, r5, r6 # r6 = r5 rem r4

Opcode: remi 748H REG
remo 708H REG

See Also: modi

Notes: remi produces the correct result (0) even when computing -231 remi -1, which
would cause the corresponding division to overflow, although no fault is gen-
erated.
6-91



 is
re’s
all

turn-
hese
re’s
6.2.54 ret

Mnemonic: ret Return

Format: ret

Description: Returns program control to the calling procedure. The current stack frame
(i.e., that of the called procedure) is deallocated and the FP is changed to
point to the calling procedure’s stack frame. Instruction execution
continued at the instruction pointed to by the RIP in the calling procedu
stack frame, which is the instruction immediately following the c
instruction.

As shown in the action statement below, the return-status field and prere
trace flag determine the action that the processor takes on the return. T
fields are contained in bits 0 through 3 of register r0 of the called procedu
local registers.

See CHAPTER 7, PROCEDURE CALLS for more on ret.

Action: implicit_syncf();
if(pfp.p && PC.te && TC.p)
{ pfp.p = 0;

generate_fault(TRACE.PRERETURN);
}
switch(return_status_field)
{

case 0002: #local return
get_FP_and_IP();
break;

case 0012: #fault return
tempa = memory(FP-16);
tempb = memory(FP-12);
get_FP_and_IP();
AC = tempb;
if(execution_mode == supervisor)
PC = tempa;
break;

case 0102: #supervisor return, trace on return disabled
if(execution_mode != supervisor)

get_FP_and_IP();
else
{ PC.te = 0;

execution_mode = user;
get_FP_and_IP();

}
break;



6

INSTRUCTION SET REFERENCE

case 0112: # supervisor return, trace on return enabled
if(execution_mode != supervisor)

get_FP_and_IP();
else
{ PC.te = 1;

execution_mode = user;
get_FP_and_IP();

}
break;

case 1002: #reserved -  unpredictable behavior
break;

case 1012: #reserved -  unpredictable behavior
break;

case 1102: #reserved -  unpredictable behavior
break;

case 1112: #interrupt return
tempa = memory(FP-16);
tempb = memory(FP-12);
get_FP_and_IP();
AC = tempb;
if(execution_mode == supervisor)

PC = tempa;
check_pending_interrupts();
break;

}

get_FP_and_IP()
{ FP =PFP;

free(current_register_set);
if(not_allocated(FP))

retrieve_from_memory(FP);
IP = RIP;

}

6-93

Faults:  STANDARD Refer to section 6.1.6, Faults (pg. 6-5).

Example: ret # Program control returns to
# context of calling procedure.

Opcode: ret 0AH CTRL

See Also: call, calls, callx



INSTRUCTION SET REFERENCE

6.2.55 rotate

Mnemonic: rotate Rotate

Format: rotate len, src2, dst
reg/lit reg/lit reg

Description: Copies src2 to dst and rotates the bits in the resulting dst operand to the left
(toward higher significance). Bits shifted off left end of word are inserted at
right end of word. The len operand specifies number of bits that the dst
operand is rotated.

This instruction can also be used to rotate bits to the right. The number of bits
the word is to be rotated right should be subtracted from 32 and the result
used as the len operand. 

Action: src2 is rotated by len mod 32. This value is stored in dst.

Faults:  STANDARD Refer to section 6.1.6, Faults (pg. 6-5).

Example: rotate 13, r8, r12 # r12 = r8 with bits rotated
# 13 bits to left.

Opcode: rotate 59DH REG

See Also: SHIFT, eshro
6-94



6

INSTRUCTION SET REFERENCE

6.2.56 scanbit

Mnemonic: scanbit Scan For Bit

Format: scanbit src1, dst
reg/lit reg

Description: Searches src1 for a set bit (1 bit). If a set bit is found, the bit number of the
most significant set bit is stored in the dst and the condition code is set to
0102. If src value is zero, all 1’s are stored in dst and condition code is set to
0002.

Action: dst = 0xFFFFFFFF;
AC.cc = 0002;
for(i = 31; i >= 0; i--)
{ if((src1 & 2**i) != 0)
{ dst = i;

AC.cc = 0102;
break;

}

}

Faults:  STANDARD Refer to section 6.1.6, Faults (pg. 6-5).

Example: # assume g8 is nonzero
scanbit g8, g10 # g10 = bit number of most-

# significant set bit in g8;
# AC.cc = 0102.

Opcode: scanbit 641H REG

See Also: spanbit, setbit

Side Effects: Sets the condition code in the arithmetic controls.
6-95



INSTRUCTION SET REFERENCE

6.2.57 scanbyte

Mnemonic: scanbyte Scan Byte Equal

Format: scanbyte src1, src2
reg/lit reg/lit

Description: Performs byte-by-byte comparison of src1 and src2 and sets condition code
to 0102 if any two corresponding bytes are equal. If no corresponding bytes
are equal, condition code is set to 0002.

Action: if((src1 & 0x000000FF) == (src2 & 0x000000FF)
|| (src1 & 0x0000FF00) == (src2 & 0x0000FF00)
|| (src1 & 0x00FF0000) == (src2 & 0x00FF0000)
|| (src1 & 0xFF000000) == (src2 & 0xFF000000))

AC.cc = 0102;
else

AC.cc = 0002;

Faults:  STANDARD Refer to section 6.1.6, Faults (pg. 6-5).

Example: # Assume r9 = 0x11AB1100
scanbyte 0x00AB0011, r9# AC.cc = 0102 

Opcode: scanbyte 5ACH REG

See Also: bswap

Side Effects: Sets the condition code in the arithmetic controls.
6-96



6

INSTRUCTION SET REFERENCE

6.2.58 SEL<cc>

Mnemonic: selno Select Based on Unordered
selg Select Based on Greater
sele Select Based on Equal
selge Select Based on Greater or Equal
sell Select Based on Less
selne Select Based on Not Equal
selle Select Based on Less or Equal
selo Select Based on Ordered

Format: sel* src1, src2, dst
reg/lit reg/lit reg

Description: Selects either src1 or src2 to be stored in dst based on the condition code bits
in the arithmetic controls. If for Unordered the condition code is 0, or if for
the other cases the logical AND of the condition code and the mask part of the
opcode is not zero, then the value of src2 is stored in the destination. Else, the
value of src1 is stored in the destination.

Action: if ((mask & AC.cc) || (mask == AC.cc))
dst = src2;

else

Instruction Mask Condition

selno 0002 Unordered

selg 0012 Greater 

sele 0102 Equal

selge 0112 Greater or equal

sell 1002 Less 

selne 1012 Not equal

selle 1102 Less or equal

selo 1112 Ordered
6-97

dst = src1;

Faults: STANDARD Refer to section 6.1.6, Faults (pg. 6-5).

Example: # AC.cc = 0102
sele g0,g1,g2 # g2 = g1

# AC.cc = 0012
sell g0,g1,g2 # g2 = g0



INSTRUCTION SET REFERENCE

Opcode: selno 784H REG
selg 794H REG
sele 7A4H REG
selge 7B4H REG
sell 7C4H REG
selne 7D4H REG
selle 7E4H REG
selo 7F4H REG

See Also: MOVE, TEST<cc>, cmpi, cmpo, SUB<cc>

Notes: These core instructions are not implemented on i960 Cx, Kx and Sx proces-
sors.
6-98



6

INSTRUCTION SET REFERENCE

6.2.59 setbit

Mnemonic: setbit Set Bit

Format: setbit bitpos, src, dst
reg/lit reg/lit reg

Description: Copies src value to dst with one bit set. bitpos specifies bit to be set.

Action: dst = src | (2**(bitpos%32)); 

Faults: STANDARD Refer to section 6.1.6, Faults (pg. 6-5).

Example: setbit 15, r9, r1 # r1 = r9 with bit 15 set. 

Opcode: setbit 583H REG

See Also: alterbit, chkbit, clrbit, notbit
6-99



INSTRUCTION SET REFERENCE

6.2.60 SHIFT 

Mnemonic: shlo Shift Left Ordinal
shro Shift Right Ordinal
shli Shift Left Integer
shri Shift Right Integer
shrdi Shift Right Dividing Integer

Format: sh* len, src, dst
reg/lit reg/lit reg

Description: Shifts src left or right by the number of bits indicated with the len operand
and stores the result in dst. Bits shifted beyond register boundary are
discarded. For values of len > 32, the processor interprets the value as 32.

shlo shifts zeros in from the least significant bit; shro shifts zeros in from the
most significant bit. These instructions are equivalent to mulo and divo by
the power of 2, respectively.

shli shifts zeros in from the least significant bit. An overflow fault is
generated if the bits shifted out are not the same as the most significant bit
(bit 31). If overflow occurs, dst will equal src shifted left as much as possible
without overflowing.

shri performs a conventional arithmetic shift-right operation by shifting in
the most significant bit (bit 31). When this instruction is used to divide a
negative integer operand by the power of 2, it produces an incorrect quotient
(discarding the bits shifted out has the effect of rounding the result toward
negative).

shrdi is provided for dividing integers by the power of 2. With this
instruction, 1 is added to the result if the bits shifted out are non-zero and the
src operand was negative, which produces the correct result for negative
operands.

shli and shrdi are equivalent to muli and divi by the power of 2.
6-100

Action: shlo:
if(src1 < 32)

dst = src * (2**len);
else

dst = 0;
shro:
if(src1 < 32)

dst = src / (2**len);
else

dst = 0;



6

INSTRUCTION SET REFERENCE

shli:
if(len > 32)

count = 32;
else

count = src1;
temp = src;
while((temp[31] == temp[30]) && (count > 0))
{ temp = (temp * 2)[31:0];

count = count - 1;
}
dst = temp;
if(count > 0)
{ if(AC.om == 1)

AC.of = 1;
else

generate_fault(ARITHMETIC.OVERFLOW);
}

shri:
if(len > 32)

count = 32;
else

count = src1;
temp = src;
while(count > 0)
{ temp = (temp >> 1)[31:0];

temp[31] = src[31];
count = count - 1;

}
dst = temp;

shrdi:
dst = src / (2**len);
6-101

Faults: STANDARD  Refer to section 6.1.6, Faults (pg. 6-5).
ARITHMETIC.OVERFLOW For shli.

Example: shli 13, g4, r6 # g6 = g4 shifted left 13 bits.

Opcode: shlo 59CH REG
shro 598H REG
shli 59EH REG
shri 59BH REG
shrdi 59AH REG



INSTRUCTION SET REFERENCE

See Also: divi, muli, rotate, eshro

Notes: shli and shrdi are identical to multiplications and divisions for all positive
and negative values of src2. shri is the conventional arithmetic right shift that
does not produce a correct quotient when src2 is negative. 
6-102



6

INSTRUCTION SET REFERENCE

6.2.61 spanbit

Mnemonic: spanbit Span Over Bit

Format: spanbit src, dst
reg/lit reg

Description: Searches src value for the most significant clear bit (0 bit). If a most
significant 0 bit is found, its bit number is stored in dst and condition code is
set to 0102. If src value is all 1’s, all 1’s are stored in dst and condition code is
set to 0002.

Action: dst = 0xFFFFFFFF;
AC.cc = 0002;
for(i = 31; i > = 0; i--)
{ if((src1 & 2**i) == 0))
{ dst = i;

AC.cc = 0102;
break;

}
}

Faults: STANDARD Refer to section 6.1.6, Faults (pg. 6-5).

Example: # Assume r2 is not 0xffffffff
spanbit r2, r9 # r9 = bit number of most-

# significant clear bit in r2;
# AC.cc = 0102

Opcode: spanbit 640H REG

See Also: scanbit

Side Effects: Sets the condition code in the arithmetic controls.
6-103



the
nted
is

ive

, r2,
of
INSTRUCTION SET REFERENCE

6.2.62 STORE

Mnemonic: st Store
stob Store Ordinal Byte
stos Store Ordinal Short
stib Store Integer Byte
stis Store Integer Short
stl Store Long
stt Store Triple
stq Store Quad

Format: st* src1, dst
reg mem

Description: Copies a byte or group of bytes from a register or group of registers to
memory. src specifies a register or the first (lowest numbered) register of
successive registers.

dst specifies the address of the memory location where the byte or first byte
or a group of bytes is to be stored. The full range of addressing modes may be
used in specifying dst. Refer to 2.3, MEMORY ADDRESSING MODES
(pg. 2-5) for a complete discussion.

stob and stib store a byte and stos and stis store a half word from the src
register’s low order bytes. Data for ordinal stores is truncated to fit 
destination width. If the data for integer stores cannot be represe
correctly in the destination width, an Arithmetic Integer Overflow fault 
signaled.

st, stl, stt and stq copy 4, 8, 12 and 16 bytes, respectively, from success
registers to memory.

For stl, src must specify an even numbered register (e.g., g0, g2, ... or r0
...). For stt and stq, src must specify a register number that is a multiple 
four (e.g., g0, g4, g8, ... or r0, r4, r8, ...).

Action: st:
6-104

if (illegal_write_to_on_chip_RAM)
generate_fault(TYPE.MISMATCH);

else if ((effective_address[1:0] != 002) && unaligned_fault_enabled) 
{store_to_memory(effective_address)[31:0]  = src1; 
generate_fault(OPERATION.UNALIGNED);}

else
store_to_memory(effective_address)[31:0] = src1; 

Action: stob:
if (illegal_write_to_on_chip_RAM_or_MMR)

generate_fault(TYPE.MISMATCH);



6

INSTRUCTION SET REFERENCE

else
store_to_memory(effective_address)[7:0] = src1[7:0];

stib:
if (illegal_write_to_on_chip_RAM_or_MMR)

generate_fault(TYPE.MISMATCH);
else if ((src1[31:8] != 0) && (src1[31:8] != 0xFFFFFF)) 

{ store_to_memory(effective_address)[7:0] = src1[7:0];
if (AC.om == 1)

AC.of = 1;
else

generate_fault(ARITHMETIC.OVERFLOW);
}

else
store_to_memory(effective_address)[7:0] = src1[7:0];

end if;

stos:
if (illegal_write_to_on_chip_RAM_or_MMR)

generate_fault(TYPE.MISMATCH);
else if ((effective_address[0] != 02) && unaligned_fault_enabled) 

{ store_to_memory(effective_address)[15:0] = src1[15:0];
generate_fault(OPERATION.UNALIGNED);

}
else

store_to_memory(effective_address)[15:0] = src1[15:0];

stis:
if (illegal_write_to_on_chip_RAM_or_MMR)

generate_fault(TYPE.MISMATCH);
else if ((effective_address[0] != 02) && unaligned_fault_enabled) 

{ store_to_memory(effective_address)[15:0] = src1[15:0];
generate_fault(OPERATION.UNALIGNED);
6-105

}
else if ((src1[31:16] != 0) && (src1[31:16] != 0xFFFF))

{ store_to_memory(effective_address)[15:0] = src1[15:0];
if (AC.om == 1)
AC.of = 1;

else
generate_fault(ARITHMETIC.OVERFLOW);

}
else

store_to_memory(effective_address)[15:0] = src1[15:0];



INSTRUCTION SET REFERENCE

stl:
if (illegal_write_to_on_chip_RAM_or_MMR)

generate_fault(TYPE.MISMATCH);
else if (reg_number(src1) % 2 != 0)

generate_fault(OPERATION.INVALID_OPERAND);
else if ((effective_address[2:0] != 0002) && unaligned_fault_enabled)

{ store_to_memory(effective_address)[31:0] = src1;
store_to_memory(effective_address + 4)[31:0] = src1_+_1;
generate_fault (OPERATION.UNALIGNED);

}
else

{ store_to_memory(effective_address)[31:0] = src1;
store_to_memory(effective_address + 4)[31:0] = src1_+_1;

}

stt:
if (illegal_write_to_on_chip_RAM_or_MMR)

generate_fault(TYPE.MISMATCH);
else if (reg_number(src1) % 4 != 0)

generate_fault(OPERATION.INVALID_OPERAND);
else if ((effective_address[3:0] != 00002) && unaligned_fault_enabled)

{ store_to_memory(effective_address)[31:0] = src1;
store_to_memory(effective_address + 4)[31:0] = src1_+_1;
store_to_memory(effective_address + 8)[31:0] = src1_+_2;
generate_fault (OPERATION.UNALIGNED);

}
else

{ store_to_memory(effective_address)[31:0] = src1;
store_to_memory(effective_address + 4)[31:0] = src1_+_1;
store_to_memory(effective_address + 8)[31:0] = src1_+_2;

}

stq:
6-106

if (illegal_write_to_on_chip_RAM_or_MMR)
generate_fault(TYPE.MISMATCH);

else if (reg_number(src1) % 4 != 0)
generate_fault(OPERATION.INVALID_OPERAND);

else if ((effective_address[3:0] != 00002) && unaligned_fault_enabled)
{ store_to_memory(effective_address)[31:0] = src1;

store_to_memory(effective_address + 4)[31:0] = src1_+_1;
store_to_memory(effective_address + 8)[31:0] = src1_+_2;
store_to_memory(effective_address + 12)[31:0] = src1_+_3;
generate_fault (OPERATION.UNALIGNED);

}



6

INSTRUCTION SET REFERENCE

else
{ store_to_memory(effective_address)[31:0] = src1;

store_to_memory(effective_address + 4)[31:0] = src1_+_1;
store_to_memory(effective_address + 8)[31:0] = src1_+_2;
store_to_memory(effective_address + 12)[31:0] = src1_+_3;

}

Faults: STANDARD  Refer to section 6.1.6, Faults (pg. 6-5).
ARITHMETIC.OVERFLOW For stib, stis.

Example: st g2, 1254 (g6) # Word beginning at offset
# 1254 + (g6) = g2.

Opcode: st 92H MEM
stob 82H MEM
stos 8AH MEM
stib C2H MEM
stis CAH MEM
stl 9AH MEM
stt A2H MEM
stq B2H MEM

See Also: LOAD, MOVE

Notes: illegal_write_to_on_chip_RAM is an implementation-dependent mechanism.
The mapping of register bits to memory(efa) depends on the endianism of the
memory region and is implementation-dependent.
6-107



INSTRUCTION SET REFERENCE

6.2.63 subc

Mnemonic: subc Subtract Ordinal With Carry

Format: subc src1, src2, dst
reg/lit reg/lit reg

Description: Subtracts src1 from src2, then subtracts the opposite of condition code bit 1
(used here as the carry bit) and stores the result in dst. If the ordinal
subtraction results in a carry, condition code bit 1 is set to 1, otherwise it is
set to 0.

This instruction can also be used for integer subtraction. Here, if integer
subtraction results in an overflow, condition code bit 0 is set.

subc does not distinguish between ordinals and integers: it sets condition
code bits 0 and 1 regardless of data type.

Action: dst = (src2 - src1 -1 + AC.cc[1])[31:0];
AC.cc[2:0] = 0002;
if((src2[31] == src1[31]) && (src2[31] != dst[31]))

AC.cc[0] = 1; # Overflow bit.
AC.cc[1] = (src2 - src1 -1 + AC.cc[1])[32]; # Carry out.

Faults: STANDARD  Refer to section 6.1.6, Faults (pg. 6-5).

Example: subc g5, g6, g7
# g7 = g6 - g5 - not(condition code bit 1)

Opcode: subc 5B2H REG

See Also: addc, addi, addo, subi, subo

Side Effects: Sets the condition code in the arithmetic controls.
6-108



6

INSTRUCTION SET REFERENCE

6.2.64 SUB<cc>

Mnemonic: subono Subtract Ordinal if Unordered
subog Subtract Ordinal if Greater
suboe Subtract Ordinal if Equal
suboge Subtract Ordinal if Greater or Equal
subol Subtract Ordinal if Less
subone Subtract Ordinal if Not Equal
subole Subtract Ordinal if Less or Equal
suboo Subtract Ordinal if Ordered
subino Subtract Integer if Unordered
subig Subtract Integer if Greater
subie Subtract Integer if Equal
subige Subtract Integer if Greater or Equal
subil Subtract Integer if Less
subine Subtract Integer if Not Equal
subile Subtract Integer if Less or Equal
subio Subtract Integer if Ordered

Format: sub* src1, src2, dst
reg/lit reg/lit reg

Description: Subtracts src1 from src2 conditionally based on the condition code bits in the
arithmetic controls.

If for Unordered the condition code is 0, or if for the other cases the logical
AND of the condition code and the mask part of the opcode is not zero; then
src1 is subtracted from src2 and the result stored in the destination.

Instruction Mask Condition

subono, subino 0002 Unordered

subog, subig 0012 Greater

suboe, subie 0102 Equal

suboge, subige 0112 Greater or equal
6-109

subol, subil 1002 Less

subone, subine 1012 Not equal 

subole, subile 1102 Less or equal

suboo, subio 1112 Ordered



INSTRUCTION SET REFERENCE

Action: SUBO<cc>:
if ((mask & AC.cc) || (mask == AC.cc))

dst = (src2 - src1)[31:0];

SUBI<cc>:
if ((mask & AC.cc) || (mask == AC.cc))
{

{ true_result = (src2 - src1);
dst = true_result[31:0];

}
if((true_result > (2**31) - 1) || (true_result < -2**31))

# Check for overflow
{ if (AC.om == 1)

AC.of  = 1;
else

generate_fault (ARITHMETIC.OVERFLOW);
}

}

Faults: STANDARD  Refer to section 6.1.6, Faults (pg. 6-5).
ARITHMETIC.OVERFLOW For the SUBI<cc> class. 

Example: # AC.cc = 0102
suboge g0,g1,g2 # g2 = g1 - g0

# AC.cc = 0012
subile g0,g1,g2 # g2 not modified

Opcode: subono 782H REG
subog 792H REG
suboe 7A2H REG
suboge 7B2H REG
subol 7C2H REG
subone 7D2H REG
6-110

subole 7E2H REG
suboo 7F2H REG
subino 783H REG
subig 793H REG
subie 7A3H REG
subige 7B3H REG
subil 7C3H REG
subine 7D3H REG
subile 7E3H REG
subio 7F3H REG



6

INSTRUCTION SET REFERENCE

See Also: subc, subi, subo, SEL<cc>, TEST<cc>

Notes: These core instructions are not implemented on 80960Cx, Kx and Sx proces-
sors.
6-111



INSTRUCTION SET REFERENCE

6.2.65 subi, subo

Mnemonic: subi Subtract Integer
subo Subtract Ordinal

Format: sub* src1, src2, dst
reg/lit reg/lit reg

Description: Subtracts src1 from src2 and stores the result in dst. The binary results from
these two instructions are identical. The only difference is that subi can
signal an integer overflow.

Action: subo:
dst = (src2 - src1)[31:0];

subi:
true_result = (src2 - src1);
dst = true_result[31:0];
if((true_result > (2**31) - 1) || (true_result < -2**31)) # Check for overflow
{ if(AC.om == 1)

AC.of = 1;
else

generate_fault(ARITHMETIC.OVERFLOW);
}

Faults: STANDARD  Refer to section 6.1.6, Faults (pg. 6-5).
ARITHMETIC.OVERFLOW For subi.

Example: subi g6, g9, g12 # g12 = g9 - g6

Opcode: subi 593H REG
subo 592H REG

See Also: addi, addo, subc, addc
6-112



6

INSTRUCTION SET REFERENCE

6.2.66 syncf

Mnemonic: syncf Synchronize Faults

Format: syncf

Description: Waits for all faults to be generated that are associated with any prior
uncompleted instructions.

Action: if(AC.nif == 1)
break;

else
wait_until_all_previous_instructions_in_flow_have_completed();
# This also means that all of the faults on these instructions have 
# been reported.

Faults: STANDARD Refer to section 6.1.6, Faults (pg. 6-5).

Example: ld xyz, g6
addi r6, r8, r8
syncf
and g6, 0xFFFF, g8
# The syncf instruction ensures that any faults
# that may occur during the execution of the
# ld and addi instructions occur before the
# and instruction is executed.

Opcode: syncf 66FH REG

See Also: mark, fmark
6-113



INSTRUCTION SET REFERENCE

6.2.67 sysctl

Mnemonic: sysctl System Control

Format: sysctl src1, src2, src/dst
reg/lit reg/lit reg

Description: Performs system management and control operations including requesting
software interrupts, invalidating the instruction cache, configuring the
instruction cache, processor reinitialization, modifying memory-mapped
registers, and acquiring breakpoint resource information. 

Processor control function specified by the message field of src1 is executed.
The type field of src1 is interpreted depending upon the command.
Remaining src1 bits are reserved. The src2 and src3 operands are also
interpreted depending upon the command.

Figure 6-7.  Src1 Operand Interpretation

Table 6-10.  sysctl Field Definitions

Message
src1 src2 src/dst

Type Field 1 Field 2 Field 3 Field 4

Request Interrupt 0x0 Vector Number N/U N/U N/U

Invalidate Cache 0x1 N/U N/U N/U N/U

Configure Instruction 
Cache

0x2
Cache Mode 
Configuration 

(See Table 6-11)
N/U

Cache load 
address

N/U

 Reinitialize 0x3 N/U N/U Starting IP PRCB Pointer

8    7 031 16   15

Message TypeField 2 Field 1
6-114

 

Modify Memory-
Mapped Control 
Register (MMR)

0x5 N/U
Lower 2 bytes 

of MMR address
Value to write Mask

Breakpoint Resource 
Request

0x6 N/U N/U N/U
Breakpoint info 

(See Figure 6-8)

NOTE: Sources and fields that are not used (designated N/U) are ignored.



6

INSTRUCTION SET REFERENCE

Figure 6-8.  src/dst Interpretation for Breakpoint Resource Request

Action: if (PC.em != supervisor) 
generate_fault(TYPE.MISMATCH);

order_wrt(previous_operations);
OPtype = (src1 & 0xff00) >> 8;
switch (OPtype) {
  case 0: # Signal Software Interrupt

vector_to_post = 0xff & src1;
priority_to_post = vector_to_post >> 3;
pend_ints_addr = interrupt_table_base + 4 + priority_to_post;
pend_priority = memory_read(interrupt_table_base,atomic_lock);
# Priority zero just recans Interrupt Table 
if (priority_to_post != 0)
   {pend_ints = memory_read(pend_ints_addr, non-cacheable)
    pend_ints[7 & vector] = 1;

Table 6-11.  Cache Mode Configuration

Mode Field Mode Description 80960Rx

0002 Normal cache enabled 4 Kbyte

XX12 Full cache disabled 4 Kbyte

1002 or 1102 
Load and lock one way of the 
cache

2 Kbyte

Reserved - Set to zero

4    331 8    7

# available 
instruction 
breakpoints

# available 
data 

breakpoints

0

6-115

    pend_priority[priority_to_post] = 1;
    memory_write(pend_ints_addr, pend_ints); }
memory_write(interrupt_table_base,pend_priority,atomic_unlock);
# Update internal software priority with highest priority interrupt
# from newly adjusted Pending Priorities word.  The current internal
# software priority is always replaced by the new, computed one. (If
# there is no bit set in pending_priorities word for the current
# internal one, then it is discarded by this action.)
if (pend_priority == 0)
       SW_Int_Priority = 0;
else { msb_set = scan_bit(pend_priority);



INSTRUCTION SET REFERENCE

       SW_Int_Priority = msb_set;   }

# Make sure change to internal software priority takes full effect
# before next instruction.
order_wrt(subsequent_operations);

break;
case 1: # Global Invalidate Instruction Cache 

invalidate_instruction_cache( );  
unlock_instruction_cache( );
break;

case 2: # Configure Instruction-Cache 
mode = src1 & 0xff;
if (mode & 1) disable_instruction_cache;
else switch (mode) {

case 0: enable_instruction_cache; break;
case 4,6: # Load & Lock code into I-Cache 

# All contiguous blocks are locked.
# Note:   block = way on 80960Rx. 
# src2 has starting address of code to lock.
# src2 is aligned to a quad word 
# boundary.
aligned_addr = src2 & 0xfffffff0;
invalidate(I-cache); unlock(I-cache);
for (j = 0; j < number_of_blocks_that_lock; j++)
{way = block_associated_with_block(j);
 start = src2 + j*block_size;
 end = start + block_size;
 for (i = start; i < end; i=i+4)

{ set = set_associated_with(i);
word = word_associated_with(i);
Icache_line[set][way][word] =

 memory[i];
update_tag_n_valid_bits(set,way,word)
6-116

  lock_icache(set,way,word);
} } break;

default:
generate_operation_invalid_operand_fault;

} break;
case 3: # Software Re-init 

disable(I_cache); invalidate(I_cache);
disable(D_cache); invalidate(D_cache);
Process_PRCB(dst);  # dst has ptr to new PRCB 
IP = src2;
break;



6

INSTRUCTION SET REFERENCE

case 5: # Modify One Memory-Mapped Control Register (MMR)
# src1[31:16] has lower 2 bytes of MMR address
# src2 has value to write; dst has mask.
# After operation, dst has old value of MMR
addr = (0xff00 << 16) | (src1 >> 16);
temp = memory[addr];
memory[addr] = (src2 & dst) | (temp & ~dst);
dst = temp;
break;

case 6: # Breakpoint Resource Request 
acquire_available_instr_breakpoints( );
dst[3:0] = number_of_available_instr_breakpoints;
acquire_available_data_breakpoints( );
dst[7:4] = number_of_available_data_breakpoints;
dst[31:8] = 0;
break;

default: # Reserved, fault occurs 
generate_fault(OPERATION.INVALID_OPERAND);
break;

}
order_wrt(subsequent_operations);

Faults: STANDARD Refer to section 6.1.6, Faults (pg. 6-5).

Example: ldconst 0x100,r6 # Set up message.
sysctl r6,r7,r8 # Invalidate I-cache.

# r7, r8 are not used.
ldconst 0x204, g0 # Set up message type and 

# cache configuration mode.
# Lock half cache.

ldconst 0x20000000,g2 # Starting address of code.
sysctl g0,g2,g2 # Execute Load and Lock.

Opcode: sysctl 659H REG 
6-117

See Also: dcctl, icctl

Notes: This instruction is implemented on 80960Rx, Hx, Jx and Cx processors, and
may or may not be implemented on future i960 processors.



INSTRUCTION SET REFERENCE

6.2.68 TEST<cc>

Mnemonic: teste Test For Equal
testne Test For Not Equal
testl Test For Less
testle Test For Less Or Equal
testg Test For Greater
testge Test For Greater Or Equal
testo Test For Ordered
testno Test For Not Ordered

Format: test* dst:src1
reg

Description: Stores a true (01H) in dst if the logical AND of the condition code and
opcode mask part is not zero. Otherwise, the instruction stores a false (00H)
in dst. For testno (Unordered), a true is stored if the condition code is 0002,
otherwise a false is stored. 

The following table shows the condition-code mask for each instruction. The
mask is in bits 0-2 of the opcode.

Action: For all TEST<cc> except testno:
if((mask & AC.cc) != 0002)

Instruction Mask Condition

testno 0002 Unordered

testg 0012 Greater

teste 0102 Equal

testge 0112 Greater or equal

testl 1002 Less

testne 1012 Not equal

testle 1102 Less or equal

testo 1112 Ordered
6-118

src1 = 1; #true value
else

src1 = 0; #false value

testno:
if(AC.cc == 0002)

src1 = 1; #true value
else

src1 = 0; #false value

Faults: STANDARD Refer to section 6.1.6, Faults (pg. 6-5).



6

INSTRUCTION SET REFERENCE

Example: # Assume AC.cc = 1002
testl g9 # g9 = 0x00000001

Opcode: teste 22H COBR
testne 25H COBR
testl 24H COBR
testle 26H COBR
testg 21H COBR
testge 23H COBR
testo 27H COBR
testno 20H COBR

See Also: cmpi, cmpdeci, cmpinci
6-119



INSTRUCTION SET REFERENCE

6.2.69 xnor, xor

Mnemonic: xnor Exclusive Nor
xor Exclusive Or

Format: xnor src1, src2, dst
reg/lit reg/lit reg

xor src1, src2, dst
reg/lit reg/lit reg

Description: Performs a bitwise XNOR (xnor instruction) or XOR (xor instruction)
operation on the src2 and src1 values and stores the result in dst.

Action: xnor:
dst = ~(src2 | src1) | (src2 & src1);

xor:
dst = (src2 | src1) & ~(src2 & src1);

Faults:  STANDARD Refer to section 6.1.6, Faults (pg. 6-5).

Example: xnor r3, r9, r12 # r12 = r9 XNOR r3
xor g1, g7, g4 # g4 = g7 XOR g1

Opcode: xnor 589H REG
xor 586H REG

See Also: and, andnot, nand, nor, not, notand, notor, or, ornot
6-120



7
PROCEDURE CALLS





7

t call

 calls,
gram

. The
re. On a

target
llocates
restored

coding
ll. Since
 with
ypical

 for
” of the
CHAPTER 7
PROCEDURE CALLS

This chapter describes mechanisms for making procedure calls, which include branch-and-link
instructions, built-in call and return mechanism, call instructions (call, callx, calls), return
instruction (ret) and call actions caused by interrupts and faults.

The i960® processor architecture supports two methods for making procedure calls:

• A RISC-style branch-and-link: a fast call best suited for calling procedures that do no
other procedures.

• An integrated call and return mechanism: a more versatile method for making procedure
providing a highly efficient means for managing a large number of registers and the pro
stack.

On a branch-and-link (bal, balx), the processor branches and saves a return IP in a register
called procedure uses the same set of registers and the same stack as the calling procedu
call (call, callx, calls) or when an interrupt or fault occurs, the processor also branches to a 
instruction and saves a return IP. Additionally, the processor saves the local registers and a
a new set of local registers and a new stack for the called procedure. The saved context is 
when the return instruction (ret) executes.

In many RISC architectures, a branch-and-link instruction is used as the base instruction for 
a procedure call. The user program then handles register and stack management for the ca
the i960 architecture provides a fully integrated call and return mechanism, coding calls
branch-and-link are not necessary. Additionally, the integrated call is much faster than t
RISC-coded calls.

The branch-and-link instruction in the i960 processor family, therefore, is used primarily
calling leaf procedures. Leaf procedures call no other procedures; they reside at the “leaves
call tree.
7-1

In the i960 architecture the integrated call and return mechanism is used in two ways:

•  explicit calls to procedures in a user’s program

•  implicit calls to interrupt and fault handlers

The remainder of this chapter explains the generalized call mechanism used for explicit and
implicit calls and call and return instructions.



n

ferred
o

ister set
 frame. 

cessor
 called
gisters.

located.
PROCEDURE CALLS

The processor performs two call actions:

local When a local call is made, execution mode remains unchanged and the stack
frame for the called procedure is placed on the local stack. The local stack refers
to the stack of the calling procedure. 

supervisor When a supervisor call is made from user mode, execution mode is switched to
supervisor and the stack frame for the called procedure is placed on the
supervisor stack.

When a supervisor call is issued from supervisor mode, the call degenerates into
a local call (i.e., no mode nor stack switch).

Explicit procedure calls can be made using several instructions. Local call instructions call and
callx perform a local call action. With call and callx, the called procedure’s IP is included as a
operand in the instruction.

A system call is made with calls. This instruction is similar to call and callx, except that the
processor obtains the called procedure’s IP from the system procedure table. A system call, when
executed, is directed to perform either the local or supervisor call action. These calls are re
to as system-local and system-supervisor calls, respectively. A system-supervisor call is als
referred to as a supervisor call.

7.1 CALL AND RETURN MECHANISM 

At any point in a program, the i960 processor has access to the global registers, a local reg
and the procedure stack. A subset of the stack allocated to the procedure is called the stack

• When a call executes, a new stack frame is allocated for the called procedure. The pro
also saves the current local register set, freeing these registers for use by the newly
procedure. In this way, every procedure has a unique stack and a unique set of local re

• When a return executes, the current local register set and current stack frame are deal
The previous local register set and previous stack frame are restored.
7-2

7.1.1 Local Registers and the Procedure Stack

The processor automatically allocates a set of 16 local registers for each procedure. Since local
registers are on-chip, they provide fast access storage for local variables. Of the 16 local registers,
13 are available for general use; r0, r1 and r2 are reserved for linkage information to tie procedures
together.



7

PROCEDURE CALLS

The processor does not always clear or initialize the set of local registers assigned to a new
procedure. Therefore, initial register contents are unpredictable. Also, because the processor does
not initialize the local register save area in the newly created stack frame for the procedure, its
contents are equally unpredictable.

The procedure stack can be located anywhere in the address space and grows from low addresses
to high addresses. It consists of contiguous frames, one frame for each active procedure. Local
registers for a procedure are assigned a save area in each stack frame (Figure 7-1). The procedure
stack, available to the user, begins after this save area.

To increase procedure call speed, the architecture allows an implementation to cache the saved
local register sets on-chip. Thus, when a procedure call is made, the contents of the current set of
local registers often do not have to be written out to the save area in the stack frame in memory.
Refer to section 7.1.4, Caching Local Register Sets (pg. 7-7) and section 7.1.4.1, Reserving Local
Register Sets for High Priority Interrupts (pg. 7-8) for more about local registers and procedure
stack interrelations.

register
save area

Procedure Stack

Previous Frame Pointer (PFP) 

Stack Pointer (SP)

Return Instruction Pointer (RIP)

padding area

user allocated stack

Current Register Set

Previous Frame Pointer (PFP)

Stack Pointer (SP)

reserved for RIP

...

Frame Pointer (FP)

Previous 
Stack 

Frame

Current 
Stack

.

..

.

..

g0

g15

r0

r1

r2

r0

r1

r2

r15
7-3

Figure 7-1.  Procedure Stack Structure and Local Registers

user allocated stack

unused stack

stack growth
(toward higher addresses)

Frame.
.. r15



r g15,
not use

rding

e stack
 stack
cessor

r. This

 stack.
ction.

. In the
PROCEDURE CALLS

7.1.2 Local Register and Stack Management

Global register g15 (FP) and local registers r0 (PFP), r1 (SP) and r2 (RIP) contain information to
link procedures together and link local registers to the procedure stack (Figure 7-1). The following
subsections describe this linkage information.

7.1.2.1 Frame Pointer

The frame pointer is the current stack frame’s first byte address. It is stored in global registe
the frame pointer (FP) register. The FP register is always reserved for the frame pointer; do 
g15 for general storage. 

Stack frame alignment is defined for each implementation of the i960 processor family, acco
to an SALIGN parameter. In the i960® Rx I/O processor, stacks are aligned on 16-byte boundaries
(see Figure 7-1). When the processor needs to create a new frame on a procedure call, it adds a
padding area to the stack so that the new frame starts on a 16-byte boundary.

7.1.2.2 Stack Pointer

The stack pointer is the byte-aligned address of the stack frame’s next unused byte. Th
pointer value is stored in local register r1, the stack pointer (SP) register. The procedure
grows upward (i.e., toward higher addresses). When a stack frame is created, the pro
automatically adds 64 to the frame pointer value and stores the result in the SP registe
action creates the register save area in the stack frame for the local registers.

The program must modify the SP register value when data is stored or removed from the
The i960 architecture does not provide an explicit push or pop instruction to perform this a
This is typically done by adding the size of all pushes to the stack in one operation.

7.1.2.3 Considerations When Pushing Data onto the Stack

Care should be taken in writing to stack in the presence of unforeseen faults and interrupts
7-4

general case, to ensure that the data written to the stack is not corrupted by a fault or interrupt
record, the SP should be incremented first to allocate the space, and then the data should be written
to the allocated space:
mov sp,r4
addo 24,sp,sp
st data,(r4)

...
st data,20(r4)



7
 upper
 four

hen a
n the
anism

hanism
s. For
 RIP.
PROCEDURE CALLS

7.1.2.4 Considerations When Popping Data off the Stack

For reasons similar to those discussed in the previous section, care should be taken in reading the
stack in the presence of unforeseen faults and interrupts. In the general case, to ensure that data
about to be popped off the stack is not corrupted by a fault or interrupt record, the data should be
read first and then the sp should be decremented:
subo 24,sp,r4
ld 20(r4),rn

...
ld (r4),rn
mov r4,sp

7.1.2.5 Previous Frame Pointer

The previous frame pointer is the previous stack frame’s first byte address. This address’s
28 bits are stored in local register r0, the previous frame pointer (PFP) register. The
least-significant bits of the PFP are used to store the return type field. See Table 7-2 and Table 7-3
for more information on the PFP and the return-type field.

7.1.2.6 Return Type Field

PFP register bits 0 through 3 contain return type information for the calling procedure. W
procedure call is made — either explicit or implicit — the processor records the call type i
return type field. The processor then uses this information to select the proper return mech
when returning to the calling procedure. The use of this information is described in section 7.8,
RETURNS (pg. 7-20).

7.1.2.7 Return Instruction Pointer

The actual RIP register (r2) is reserved by the processor to support the call and return mec
and must not be used by software; the actual value of RIP is unpredictable at all time
example, an implicit procedure call (fault or interrupt) can occur at any time and modify the
7-5

An OPERATION.INVALID_OPERAND fault is generated when attempting to write the RIP.

The image of the RIP register in the stack frame is used by the processor to determine that frame’s
return instruction address. When a call is made, the processor saves the address of the instruction
after the call in the image of the RIP register in the calling frame.

7.1.3 Call and Return Action

To clarify how procedures are linked and how the local registers and stack are managed, the
following sections describe a general call and return operation and the operations performed with
the FP, SP, PFP and RIP registers.



reeing
 local

 PFP
hich

ointer
ate a

he new

stead

(SSP)

alled
PROCEDURE CALLS

The events for call and return operations are given in a logical order of operation. The i960 Rx I/O
processor can execute independent operations in parallel; therefore, many of these events execute
simultaneously. For example, to improve performance, the processor often begins prefetching of
the target instruction for the call or return before the operation is complete.

7.1.3.1 Call Operation

When a call, calls or callx instruction is executed or an implicit call is triggered:

1. The processor stores the instruction pointer for the instruction following the call in the
current stack’s RIP register (r2).

2. The current local registers — including the PFP, SP and RIP registers — are saved, f
these for use by the called procedure. The local registers are saved in the on-chip
register cache if space is available.

3. The frame pointer (g15) for the calling procedure is stored in the current stack’s
register (r0). The return type field in the PFP register is set according to the call type w
is performed. See section 7.8, RETURNS (pg. 7-20).

4. For a local or system-local call, a new stack frame is allocated by using the old stack p
value saved in step 2. This value is first rounded to the next 16-byte boundary to cre
new frame pointer, then stored in the FP register. Next, 64 bytes are added to create t
frame’s register save area. This value is stored in the SP register. 

For an interrupt call from user mode, the current interrupt stack pointer value is used in
of the value saved in step 2.

For a system-supervisor call from user mode, the current Supervisor Stack Pointer 
value is used instead of the value saved in step 2. 

5. The instruction pointer is loaded with the address of the first instruction in the c
procedure. The processor gets the new instruction pointer from the call, the system
7-6

procedure table, the interrupt table or the fault table, depending on the type of call executed.

Upon completion of these steps, the processor begins executing the called procedure. Sometime
before a return or nested call, the local register set is bound to the allocated stack frame.



7

r with

lly read
flushed
 stack

s. The
r

r sets
d from
ith a call

 must at
Because
 return

e cache
 cache.
PROCEDURE CALLS

7.1.3.2 Return Operation

A return from any call type — explicit or implicit — is always initiated with a return (ret)
instruction. On a return, the processor performs these operations:

1. The current stack frame and local registers are deallocated by loading the FP registe
the value of the PFP register.

2. The local registers for the return target procedure are retrieved. The registers are usua
from the local register cache; however, in some cases, these registers have been 
from register cache to memory and must be read directly from the save area in the
frame. 

3. The processor sets the instruction pointer to the value of the RIP register.

Upon completion of these steps, the processor executes the instruction to which it return
frames created before the ret instruction was executed will be overwritten by later implicit o
explicit call operations. 

7.1.4 Caching Local Register Sets

Actual implementations of the i960 architecture may cache some number of local registe
within the processor to improve performance. Local registers are typically saved and restore
the local register cache when calls and returns are executed. Other overhead associated w
or return is performed in parallel with this data movement. 

When the number of nested procedures exceeds local register cache size, local register sets
times be saved to (and restored from) their associated save areas in the procedure stack. 
these operations require access to external memory, this local cache miss affects call and
performance.

When a call is made and no frames are available in the register cache, a register set in th
must be saved to external memory to make room for the current set of local registers in the
7-7

See 4.2, LOCAL REGISTER CACHE (pg. 4-2). This action is referred to as a frame spill. The
oldest set of local registers stored in the cache is spilled to the associated local register save area in
the procedure stack. Figure 7-2 illustrates a call operation with and without a frame spill.

Similarly, when a return is made and the local register set for the target procedure is not available
in the cache, these local registers must be retrieved from the procedure stack in memory. This
operation is referred to as a frame fill. Figure 7-3 illustrates return operations with and without
frame fills.

The flushreg instruction, described in 6.2.30, flushreg (pg. 6-54), writes all local register sets
(except the current one) to their associated stack frames in memory. The register cache is then
invalidated, meaning that all flushed register sets are restored from their save areas in memory.



ter set,

alue of

ad

rrent

 local

mes
-inter-
or the

ble to
 by

s
hed to

s only

es no
PROCEDURE CALLS

For most programs, the existence of the multiple local register sets and their saving/restoring in the
stack frames should be transparent. However, there are some special cases:

• A store to the register save area in memory does not necessarily update a local regis
unless user software executes flushreg first.

• Reading from the register save area in memory does not necessarily return the current v
a local register set, unless user software executes flushreg first.

• There is no mechanism, including flushreg, to access the current local register set with a re
or write to memory.

• flushreg must be executed sometime before returning from the current frame if the cu
procedure modifies the PFP in register r0, or else the behavior of the ret instruction is not
predictable.

• The values of the local registers r2 to r15 in a new frame are undefined.

flushreg is commonly used in debuggers or fault handlers to gain access to all saved
registers. In this way, call history may be traced back through nested procedures.

7.1.4.1 Reserving Local Register Sets for High Priority Interrupts

To decrease interrupt latency for high priority interrupts, software can limit the number of fra
available to all remaining code. This includes code that is either in the executing state (non
rupted) or code that is in the interrupted state but has a process priority less than 28. F
purposes of discussion here, this remaining code will be referred to as non-critical code.
Specifying a limit for non-critical code ensures that some number of free frames are availa
high-priority interrupt service routines. Software can specify the limit for non-critical code
writing bits 10 through 8 of the register cache configuration word in the PRCB (see Table 11-8.,
Process Control Block Configuration Words (pg. 11-18). The value indicates how many frame
within the register cache may be used by non-critical code before a frame needs to be flus
external memory. The programmed limit is used only when a frame is pushed, which occur
for an implicit or explicit call. 

Allowed values of the programmed limit range from 0 to 7. Setting the value to 0 reserv
7-8

frames for high-priority interrupts. Setting the value to 7 causes the register cache to become
disabled for non-critical code. See section 11.4.2, Process Control Block – PRCB (pg. 11-17).



7

PROCEDURE CALLS

Local Register Cache 

 

Procedure Stack
(0 = Main, successive

numbers indicate nested 
procedure level)

user
stack 
space

reserved 
for local
register set n

local register 
set n stored
on procedure stack

Spill

call with no frame spill call with frame spill

1

0

2

1

Empty

3

2

1

4

3

2

1

0

1

0

n

2

3

4

5

6

8

6

5

4

3

2

3

4

5

6

7

8

n

Frame

(with no sets reserved for

high priority interrupts)

2

11

2

3

2

7 7

9

7-9

Figure 7-2.  Frame Spill

Current Local
Register Set

3 4 5

7 8 9

5

6

7

4

5

6

6

7

8



PROCEDURE CALLS

Frame
Fill

return with no frame fill return with frame fill

4

3

3 2

1

0

1

0

1

0

3

2 2

Procedure Stack
(0 = Main, successive

numbers indicate nested 
procedure level)

Local Register Cache
(With no sets reserved

Current Local
Register Set

for high priority interrupts)
Empty

Empty

Empty

Empty

Empty

Empty

Empty

Empty

Empty

Empty

Empty

Empty

Empty

Empty

Empty

Empty

Empty

Empty

Empty

Empty

Empty

Empty

Empty

4

3

2

7-10

Figure 7-3.  Frame Fill

user
stack 
space

reserved 
for local
register set n

local register 
set n stored
on procedure stack

n n



7

PROCEDURE CALLS

7.1.5 Mapping Local Registers to the Procedure Stack

Each local register set is mapped to a register save area of its respective frame in the procedure
stack (Figure 7-1). Saved local register sets are frequently cached on-chip rather than saved to
memory. This is not a write-through cache. Local register set contents are not saved automatically
to the save area in memory when the register set is cached. This would cause a significant
performance loss for call operations.

Also, no automatic update policy is implemented for the register cache. If the register save area in
memory for a cached register set is modified, there is no guarantee that the modification will be
reflected when the register set is restored. For a frame spill, the set must be flushed to memory
prior to the modification for the modification to be valid. 

The flushreg instruction causes the contents of all cached local register sets to be written (flushed)
to their associated stack frames in memory. The register cache is then invalidated, meaning that all
flushed register sets are restored from their save areas in memory. The current set of local registers
is not written to memory. flushreg is commonly used in debuggers or fault handlers to gain access
to all saved local registers. In this way, call history may be traced back through nested procedures.
flushreg is also used when implementing task switches in multitasking kernels. The procedure
stack is changed as part of the task switch. To change the procedure stack, flushreg is executed to
update the current procedure stack and invalidate all entries in the local register cache. Next, the
procedure stack is changed by directly modifying the FP and SP registers and executing a call
operation. After flushreg executes, the procedure stack may also be changed by modifying the
previous frame in memory and executing a return operation.

When a set of local registers is assigned to a new procedure, the processor may or may not clear or
initialize these registers. Therefore, initial register contents are unpredictable. Also, the processor
does not initialize the local register save area in the newly created stack frame for the procedure; its
contents are equally unpredictable.

7.2 MODIFYING THE PFP REGISTER
7-11

The FP must not be directly modified by user software or risk corrupting the local registers.
Instead, implement context switches by modifying the PFP. 

Modification of the PFP is typically for context switches; as part of the switch, the active
procedure changes the pointer to the frame that it will return to (previous frame pointer — PFP).
Great care should be taken in modifying the PFP. In the general case, a flushreg must be issued
before and after modifying the PFP when the local register cache is enabled (see Example 7-1).
This requirement ensures the correct operation of a context switch on all i960 processors in all
situations.



 and

 the

o the

 that
rn

che
e
 PFP

o

PROCEDURE CALLS

Example 7-1.  flushreg

The flushreg before the modification is necessary to ensure that the frame of the previous context
(mapped to 0x5000 in the example) is “spilled” to the proper external memory address
removed from the local register cache. If the flushreg before the modification was omitted, a
flushreg (or implicit frame spill due to an interrupt) after the modification of PFP would cause
frame of the previous context to be written to the wrong location in external memory.

The flushreg after the modification ensures that outstanding results are completely written t
PFP before a subsequent ret instruction can be executed. Recall that the ret instruction uses the
low-order 4 bits of the PFP to select which ret function to perform. Requiring the flushreg after
the PFP modification allows an i960 implementation to implement a simple mechanism
quickly selects the ret function at the time the ret instruction is issued and provides a faster retu
operation.

Note the flushreg after the modification will execute very quickly because the local register ca
has already been flushed by the flushreg before; only synchronization of the PFP will b
performed. i960 processor implementations may provide other mechanisms to ensure
synchronization in addition to flushreg, but a flushreg after a PFP modification is ensured t
work on all i960 processors.

7.3 PARAMETER PASSING

Parameters are passed between procedures in two ways:

# Do a context switch. 
# Assume PFP = 0x5000.
flushreg # Flush Frames to correct address. 
lda 0x8000,pfp
flushreg # Ensure that "ret" gets updated PFP. 
ret
7-12

value Parameters are passed directly to the calling procedure as part of the call and
return mechanism. This is the fastest method of passing parameters.

reference Parameters are stored in an argument list in memory and a pointer to the
argument list is passed in a global register. 

When passing parameters by value, the calling procedure stores the parameters to be passed in
global registers. Since the calling procedure and the called procedure share the global registers, the
called procedure has direct access to the parameters after the call.



7

 To do
rs. 

ue using
 passed
gnated
t block
ds the
 to an

 cache,
ister

uld be
meter
ruction
local

e must
 This is
 and a
PROCEDURE CALLS

When a procedure needs to pass more parameters than will fit in the global registers, they can be
passed by reference. Here, parameters are placed in an argument list and a pointer to the argument
list is placed in a global register.

The argument list can be stored anywhere in memory; however, a convenient place to store an
argument list is in the stack for a calling procedure. Space for the argument list is created by incre-
menting the SP register value. If the argument list is stored in the current stack, the argument list is
automatically deallocated when no longer needed. 

A procedure receives parameters from — and returns values to — other calling procedures.
this successfully and consistently, all procedures must agree on the use of the global registe

Parameter registers pass values into a function. Up to 12 parameters can be passed by val
the global registers. If the number of parameters exceeds 12, additional parameters are
using the calling procedure’s stack; a pointer to the argument list is passed in a pre-desi
register. Similarly, several registers are set aside for return arguments and a return argumen
pointer is defined to point to additional parameters. If the number of return arguments excee
available number of return argument registers, the calling procedure passes a pointer
argument list on its stack where the remaining return values will be placed. Example 7-2 illustrates
parameter passing by value and by reference.

Local registers are automatically saved when a call is made. Because of the local register
they are saved quickly and with no external bus traffic. The efficiency of the local reg
mechanism plays an important role in two cases when calls are made:

1. When a procedure is called which contains other calls, global parameter registers sho
moved to working local registers at the beginning of the procedure. In this way, para
registers are freed and nested calls are easily managed. The register move inst
necessary to perform this action is very fast; the working parameters — now in 
registers — are saved efficiently when nested calls are made. 

2. When other procedures are nested within an interrupt or fault procedure, the procedur
preserve all normally non-preserved parameter registers, such as the global registers.
necessary because the interrupt or fault occurs at any point in the user’s program
7-13

return from an interrupt or fault must restore the exact processor state. The interrupt or fault
procedure can move non-preserved global registers to local registers before the nested call.



cement
dure
.

PROCEDURE CALLS

Example 7-2.  Parameter Passing Code Example

7.4 LOCAL CALLS

A local call does not cause a stack switch. A local call can be made two ways:

• with the call and callx instructions; or

• with a system-local call as described in section 7.5, SYSTEM CALLS (pg. 7-15). 

call specifies the address of the called procedures as the IP plus a signed, 24-bit displa
(i.e., -223 to 223 - 4). callx allows any of the addressing modes to be used to specify the proce
address. The IP-with-displacement addressing mode allows full 32-bit IP-relative addressing

# Example of parameter passing . . .
# C-source:int a,b[10];
# a = proc1(a,1,’x’,&b[0]); 
# assembles to ...

mov r3,g0 # value of a
ldconst1,g1# value of 1
ldconst120,g2# value of “x”
lda 0x40(fp),g3# reference to b[10]
call _proc1
mov g0,r3 #save return value in “a”

.

.
_proc1:

movq g0,r4 # save parameters
.
. # other instructions in procedure
. # and nested calls

mov r3,g0 # load return parameter
ret
7-14

When a local call is made with a call or callx, the processor performs the same operation as
described in section 7.1.3.1, Call Operation (pg. 7-6). The target IP for the call is derived from the
instruction’s operands and the new stack frame is allocated on the current stack.



7

de

cedure

ing the

tion for

bility.
cedure
time the
 table
with a
 code.

 can be
ndling
in 

e up to
cedure
lds.
PROCEDURE CALLS

7.5 SYSTEM CALLS

A system call is a call made via the system procedure table. It can be used to make a system-local
call — similar to a local call made with call and callx in the sense that there is no stack nor mo
switch — or a system supervisor call. A system call is initiated with calls, which requires a
procedure number operand. The procedure number provides an index into the system pro
table, where the processor finds IPs for specific procedures.

Using an i960 processor language assembler, a system procedure is directly declared us
.sysproc directive. At link time, the optimized call directive, callj, is replaced with a calls when a
system procedure target is specified. (Refer to current i960 processor assembler documenta
a description of the .sysproc and callj directives.)

The system call mechanism offers two benefits. First, it supports application software porta
System calls are commonly used to call kernel services. By calling these services with a pro
number rather than a specific IP, applications software does not need to be changed each 
implementation of the kernel services is modified. Only the entries in the system procedure
must be changed. Second, the ability to switch to a different execution mode and stack 
system supervisor call allows kernel procedures and data to be insulated from applications
This benefit is further described in 3.7, USER-SUPERVISOR PROTECTION MODEL (pg. 3-21).

7.5.1 System Procedure Table

The system procedure table is a data structure for storing IPs to system procedures. These
procedures which software can access through (1) a system call or (2) the fault ha
mechanism. Using the system procedure table to store IPs for fault handling is described 9.1,
FAULT HANDLING OVERVIEW (pg. 9-1).

Figure 7-4 shows the system procedure table structure. It is 1088 bytes in length and can hav
260 procedure entries. At initialization, the processor caches a pointer to the system pro
table. This pointer is located in the PRCB. The following subsections describe this table’s fie
7-15



PROCEDURE CALLS

Figure 7-4.  System Procedure Table

Reserved
(Initialize to 0)

000H

008H

00CH

010H

02CH

034H

030H

038H

03CH

438H
43CH

Entry Type:
00 - Local
10-Supervisor

Trace
Control
Bit

031

Procedure Entry

Tsupervisor stack pointer base

procedure entry 2

procedure entry 1

procedure entry 0

procedure entry 259

.

.

.

Preserved

address

031 12
7-16



7

. Each
s field
 word
 two

type:
s

 the

f the
dary to

e PC
PROCEDURE CALLS

7.5.1.1 Procedure Entries

A procedure entry in the system procedure table specifies a procedure’s location and type
entry is one word in length and consists of an address (IP) field and a type field. The addres
gives the address of the first instruction of the target procedure. Since all instructions are
aligned, only the entry’s 30 most significant bits are used for the address. The entry’s
least-significant bits specify entry type. The procedure entry type field indicates call 
system-local call or system-supervisor call (Table 7-1). On a system call, the processor perform
different actions depending on the type of call selected. 

7.5.1.2 Supervisor Stack Pointer

When a system-supervisor call is made, the processor switches to a new stack called the supervisor
stack, if not already in supervisor mode. The processor gets a pointer to this stack from
supervisor stack pointer field in the system procedure table (Figure 7-4) during the reset initial-
ization sequence and caches the pointer internally. Only the 30 most significant bits o
supervisor stack pointer are given. The processor aligns this value to the next 16-byte boun
determine the first byte of the new stack frame.

7.5.1.3 Trace Control Bit

The trace control bit (byte 12, bit 0) specifies the new value of the trace enable bit in th

Table 7-1.  Encodings of Entry Type Field in System Procedure Table

Encoding Call Type

00 System-Local Call

01 Reserved1

10 System-Supervisor Call

11 Reserved1

1. Calls with reserved entry types have unpredictable behavior.
7-17

register (PC.te) when a system-supervisor call causes a switch from user mode to supervisor mode.
Setting this bit to 1 enables tracing in the supervisor mode; setting it to 0 disables tracing. The use
of this bit is described in section 10.1.2, PC Trace Enable Bit and Trace-Fault-Pending Flag
(pg. 10-3).



 on the

pe of
arget IP

A new
 

 in the
ontrol

 frames
riginal
PROCEDURE CALLS

7.5.2 System Call to a Local Procedure

When a calls instruction references an entry in the system procedure table with an entry type of
00, the processor executes a system-local call to the selected procedure. The action that the
processor performs is the same as described in section 7.1.3.1, Call Operation (pg. 7-6). The call’s
target IP is taken from the system procedure table and the new stack frame is allocated
current stack, and the processor does not switch to supervisor mode. The calls algorithm is
described in 6.2.14, calls (pg. 6-24).

7.5.3 System Call to a Supervisor Procedure

When a calls instruction references an entry in the system procedure table with an entry ty
102, the processor executes a system-supervisor call to the selected procedure. The call’s t
is taken from the system procedure table.

The processor performs the same action as described in section 7.1.3.1, Call Operation (pg. 7-6),
with the following exceptions:

• If the processor is in user mode, it switches to supervisor mode.

• If a mode switch occurs, SP is read from the Supervisor Stack Pointer (SSP) base. 
frame for the called procedure is placed at the location pointed to after alignment of SP.

• If no mode switch occurs, the new frame is allocated on the current stack.

• If a mode switch occurs, the state of the trace enable bit in the PC register is saved
return type field in the PFP register. The trace enable bit is then loaded from the trace c
bit in the system procedure table.

• If no mode switch occurs, the value 0002 (calls instruction) or 0012 (fault call) is saved in the
return type field of the pfp register.

When the processor switches to supervisor mode, it remains in that mode and creates new
on the supervisor stack until a return is performed from the procedure that caused the o
switch to supervisor mode. While in supervisor mode, either the local call instructions (call and
callx) or calls can be used to call procedures.
7-18

The user-supervisor protection model and its relationship to the supervisor call are described in
section 3.7, USER-SUPERVISOR PROTECTION MODEL (pg. 3-21). 

7.6 USER AND SUPERVISOR STACKS

When using the user-supervisor protection mechanism, the processor maintains separate stacks in
the address space. One of these stacks — the user stack — is for procedures executed in user
mode; the other stack — the supervisor stack — is for procedures executed in supervisor mode.



7

PROCEDURE CALLS

The user and supervisor stacks are identical in structure (Figure 7-1). The base stack pointer for the
supervisor stack is automatically read from the system procedure table and cached internally
during initialization. Each time a user-to-supervisor mode switch occurs, the cached supervisor
stack pointer base is used for the starting point of the new supervisor stack. The base stack pointer
for the user stack is usually created in the initialization code. See section 11.2, 80960Rx INITIAL-
IZATION (pg. 11-2). The base stack pointers must be aligned to a 16-byte boundary; otherwise,
the first frame pointer on the interrupt stack is rounded up to the previous 16-byte boundary. 

7.7 INTERRUPT AND FAULT CALLS

The architecture defines two types of implicit calls that make use of the call and return mechanism:
interrupt-handling procedure calls and fault-handling procedure calls. A call to an interrupt
procedure is similar to a system-supervisor call. Here, the processor obtains pointers to the
interrupt procedures through the interrupt table. The processor always switches to supervisor mode
on an interrupt procedure call.

A call to a fault procedure is similar to a system call. Fault procedure calls can be local calls or
supervisor calls. The processor obtains pointers to fault procedures through the fault table and
(optionally) through the system procedure table. 

When a fault call or interrupt call is made, a fault record or interrupt record is placed in the newly
generated stack frame for the call. These records hold the machine state and information to identify
the fault or interrupt. When a return from an interrupt or fault is executed, machine state is restored
from these records. See CHAPTER 8, INTERRUPTS and CHAPTER 9, FAULTS for more
information on the structure of the fault and interrupt records.
7-19



PROCEDURE CALLS

7.8 RETURNS

The return (ret) instruction provides a generalized return mechanism that can be used to return
from any procedure that was entered by call, calls, callx, an interrupt call or a fault call. When ret
executes, the processor uses the information from the return-type field in the PFP register
(Table 7-2) to determine the type of return action to take.

return-type field indicates the type of call which was made. Table 7-3 shows the return-type field
encoding for the various calls: local, supervisor, interrupt and fault.

trace-on-return flag (PFP.rt0 or bit 0 of the return-type field) stores the trace enable bit value
when an explicit system-supervisor call is made from user mode. When the call is made, the PC
register trace enable bit is saved as the trace-on-return flag and then replaced by the trace controls
bit in the system procedure table. On a return, the trace enable bit’s original value is restored. This
mechanism allows instruction tracing to be turned on or off when a supervisor mode switch
occurs. See section 10.5.2.1, Tracing on Explicit Call (pg. 10-13).

prereturn-trace flag (PFP.p) is used in conjunction with call-trace and prereturn-trace modes. If

Table 7-2.  Previous Frame Pointer Register – PFP

28 24 20 16 12 8 4 031

Return Status

a
4 p

r
t
2

r
t
1

r
t
0

Return-Type Field - PFP.rt

Pre-Return-Trace Flag - PFP.p

Previous Frame Pointer

Address-PFP.a

a
3
1

7-20

call-trace mode is enabled when a call is made, the processor sets the prereturn-trace flag;
otherwise it clears the flag. Then, if this flag is set and prereturn-trace mode is enabled, a prereturn
trace event is generated on a return, before any actions associated with the return operation are
performed. See section 10.2, TRACE MODES (pg. 10-3) for a discussion of interaction between
call-trace and prereturn-trace modes with the prereturn-trace flag.



7

ion’s
PROCEDURE CALLS

7.9 BRANCH-AND-LINK

A branch-and-link is executed using either the branch-and-link instruction (bal) or
branch-and-link-extended instruction (balx). When either instruction executes, the processor
branches to the first instruction of the called procedure (the target instruction), while saving a
return IP for the calling procedure in a register. The called procedure uses the same set of local
registers and stack frame as the calling procedure:

• For bal, the return IP is automatically saved in global register g14

• For balx, the return IP instruction is saved in a register specified by one of the instruct
operands

Table 7-3.  Encoding of Return Status Field 

Return Status 
Field

Call Type Return Action

000
Local call 
(system-local call or system-supervisor 
call made from supervisor mode)

Local return
(return to local stack; no mode switch)

001 Fault call Fault return

01t System-supervisor from user mode

Supervisor return
(return to user stack, mode switch to user 
mode, trace enable bit is replaced with the 
t1 bit stored in the PFP register on the call)

100 reserved 2

101 reserved2

110 reserved2

111 Interrupt call Interrupt return

NOTES:
1. “t” denotes the trace-on-return flag; used only for system supervisor calls which cause a user-to-super-

visor mode switch.
2. This return type results in unpredictable behavior.
7-21

A return from a branch-and-link is generally carried out with a bx (branch extended) instruction,
where the branch target is the address saved with the branch-and-link instruction. The
branch-and-link method of making procedure calls is recommended for calls to leaf procedures.
Leaf procedures typically call no other procedures. Branch-and-link is the fastest way to make a
call, providing the calling procedure does not require its own registers or stack frame.





8
INTERRUPTS





8

e
rupt

sor can
or with
amily,
m. To
x I/O

panies
ts an
kes an

ocessor
d to the

s state,
rogram
CHAPTER 8
INTERRUPTS

This chapter describes the i960® core processor architecture interrupt mechanism, the i960 Rx I/O
processor interrupt controller, peripheral interrupts and secondary PCI interrupt routing. Key
topics include the i960 Rx I/O processor’s facilities for requesting and posting interrupts, th
programmer’s interface to the on-chip interrupt controller, interrupt implementation, inter
latency and how to optimize interrupt performance.

8.1 OVERVIEW

An interrupt is an event that causes a temporary break in program execution so the proces
handle another task. Interrupts commonly request I/O services or synchronize the process
some external hardware activity. For interrupt handler portability across the i960 processor f
the architecture defines a consistent interrupt state and interrupt-priority-handling mechanis
manage and prioritize interrupt requests in parallel with processor execution, the i960 R
processor provides an on-chip programmable interrupt controller.

When the processor is redirected to service an interrupt, it uses a vector number that accom
the interrupt request to locate the vector entry in the interrupt table. From that entry, it ge
address to the first instruction of the selected interrupt procedure. The processor then ma
implicit call to that procedure.

When the interrupt call is made, the processor uses a dedicated interrupt stack. The pr
creates a new frame for the interrupt on this stack and a new set of local registers is allocate
interrupt procedure. The interrupted program’s current state is also saved.

Upon return from the interrupt procedure, the processor restores the interrupted program’
switches back to the stack that the processor was using prior to the interrupt and resumes p
8-1

execution.

Since interrupts are handled based on priority, requested interrupts are often saved for later service
rather than handled immediately. The mechanism for saving the interrupt is referred to as interrupt
posting. Interrupt posting is described in section 8.1.6, Posting Interrupts (pg. 8-7).

The i960 core architecture defines two data structures to support interrupt processing: the interrupt
table (see Figure 8-1) and interrupt stack. The interrupt table contains 248 vectors for interrupt
handling procedures (eight of which are reserved) and an area for posting software requested
interrupts. The interrupt stack prevents interrupt handling procedures from using the stack in use
by the application program. It also locates the interrupt stack in a different area of memory than the
user and supervisor stack (e.g., fast SRAM).



kable
ests
ts,
INTERRUPTS

Figure 8-1.  Interrupt Handling Data Structures

Requests for interrupt service come from many sources and are prioritized such that instruction
execution is redirected only when an interrupt request is of higher priority than that of the
executing task. On the i960 Rx I/O processor, interrupt requests may originate from external
hardware sources, internal peripherals or software. The i960 Rx I/O processor contains a number
of integrated peripherals which may generate interrupts, including:

The interrupt controller can also intercept external secondary PCI interrupts and forward them to
the primary PCI interrupt pins.

Interrupts are detected with the chip’s 8-bit interrupt port and with a dedicated Non-Mas
Interrupt (NMI#) input in the i960 core processor’s interrupt controller. Interrupt requ
originate from software by the sysctl instruction. To manage and prioritize all possible interrup

• DMA Channel 0 • Primary ATU

• DMA Channel 1 • Secondary ATU

• DMA Channel 2 • I2C Bus Interface Unit

• Bridge Primary Interface • APIC Bus Interface Unit

• Bridge Secondary Interface • Messaging Unit

• Timers 0 & 1 • Memory Controller

Interrupt 
InterruptTable 
Handling

Procedure

Interrupt
Request Interrupt Pointer

Memory

i960® Rx I/O 
Processor
8-2

the processor integrates an on-chip programmable interrupt controller. 

8.1.1 The i960® Rx I/O Processor Core Interrupt Architecture

The 80960Rx contains the same core interrupt architecture as many other 80960 family members.
Some of the core features include the interrupt record and stack, the way interrupts are posted, and
the way interrupt priorities are resolved. These basic architectural features are detailed in the
following sections.



8

items

ms are
m data

ight.
ointers
inters

n of a
rved;

ether

the

rrupt

at
INTERRUPTS

8.1.2 Software Requirements For Interrupt Handling

To use the processor’s interrupt handling facilities, user software must provide the following 
in memory:

• Interrupt Table

• Interrupt Handler Routines

• Interrupt Stack

These items are established in memory as part of the initialization procedure. Once these ite
present in memory and pointers to them have been entered in the appropriate syste
structures, the processor handles interrupts automatically and independently from software.

8.1.3 Interrupt Priority

Each procedure pointer’s priority is defined by dividing the procedure pointer number by e
Thus, at each priority level, there are eight possible procedure pointers (e.g., procedure p
8-15 have a priority of 1 and procedure pointers 246-255 have a priority of 31). Procedure po
0-7 cannot be used because a priority-0 interrupt would never successfully stop executio
program of any priority. In addition, procedure pointers 244-247 and 249-251 are rese
therefore, 241 procedure pointers are available to the user.

The processor compares its current priority with the interrupt request priority to determine wh
to service the interrupt immediately or to delay service:

• The interrupt is serviced immediately when its priority is higher than the priority of 
program or interrupt the processor is currently executing.

• The interrupt is posted as a pending interrupt (not serviced immediately) when the inte
priority is less than or equal to the processor’s current priority. 

See section 8.1.4.2, Pending Interrupts (pg. 8-5). When multiple interrupt requests are pending 
the same priority level, the request with the highest vector number is serviced first.
8-3

Priority-31 interrupts are handled as a special case. Even when the processor is executing at
priority level 31, a priority-31 interrupt will interrupt the processor. On the i960 Rx I/O processor,
the non-maskable interrupt (NMI#) interrupts priority-31 execution; no interrupt can interrupt an
NMI# handler.



ernally
INTERRUPTS

8.1.4 Interrupt Table

The interrupt table (see Figure 8-2) is 1028 bytes in length and can be located anywhere in the
non-reserved address space. It must be aligned on a word boundary. The processor reads a pointer
to the interrupt table byte 0 during initialization. The interrupt table must be located in RAM so
the processor can read and write the table’s pending interrupt section for software or ext
generated interrupts.

The interrupt table is divided into two sections: vector entries and pending interrupts. Each are
described in the subsections that follow.

000H

004H

020H

024H (Vector 8)

028H (Vector 9)

02CH (Vector 10)

3D0H (Vector 243)
3D4H (Vector 244)

3E4H (Vector 248)

3E8H (Vector 249)

3F0H (Vector 251)
3F4H (Vector 252)

400H (Vector 255)

Pending Priorities

Pending Interrupts

Entry 8

Entry 9

NMI# Vector

...

07831

...

Entry 252

Entry 255

...

Entry 243

Entry 10...

3E0H (Vector 247)
8-4

Figure 8-2.  Interrupt Table

X  X

Entry Type:
00  Normal

10  Target in Cache
01  Reserved1

Vector Entry

Instruction Pointer

Reserved (Initialize to 0)

Preserved

012

11  Reserved1

1Vector entries with a reserved 
type have unpredictable behavior.



8

d, the

errupt
3 and
umber
er 248
rs 0-7

NMI#
l data
this

t
bits are
should
m the

t be

 two

essor
ity is
INTERRUPTS

8.1.4.1 Vector Entries

A vector entry contains a specific interrupt handler’s address. When an interrupt is service
processor branches to the address specified by the vector entry.

Each interrupt is associated with an 8-bit vector number that points to a vector entry in the int
table. The vector entry section contains 248 word-length entries. Vector numbers 8-24
252-255 and their associated vector entries are used for conventional interrupts. Vector n
248 is the NMI# vector. Vector numbers 244-247 and 249-251 are reserved. Vector numb
and its associated vector entry is used for the non-maskable interrupt (NMI#). Vector numbe
cannot be used.

Vector entry 248 contains the NMI# handler address. When the processor is initialized, the 
vector located in the interrupt table is automatically read and stored in location 0H of interna
RAM. The NMI# vector is subsequently fetched from internal data RAM to improve 
interrupt’s performance.

The vector entry structure is given at the bottom of Figure 8-2. Each interrupt procedure mus
begin on a word boundary, so the processor assumes that the vector’s two least significant 
0. Bits 0 and 1 of an entry indicate entry type: type 00 indicates that the interrupt procedure 
be fetched normally; type 10 indicates that the interrupt procedure should be fetched fro
locked partition of the instruction cache. Refer to section 8.5.2.2, Caching Interrupt Routines and
Reserving Register Frames (pg. 8-47). The other possible entry types are reserved and must no
used.

8.1.4.2 Pending Interrupts

The pending interrupts section comprises the interrupt table’s first 36 bytes, divided into
fields: pending priorities (byte offset 0 through 3) and pending interrupts (4 through 35).

Each of the 32 bits in the pending priorities field indicate an interrupt priority. When the proc
posts a pending interrupt in the interrupt table, the bit corresponding to the interrupt’s prior
set; e.g., when an interrupt with a priority of 10 is posted in the interrupt table, bit 10 is set.
8-5

Each of the pending interrupts field’s 256 bits represent an interrupt procedure pointer. Byte offset
5 is for vectors 8 through 15, byte offset 6 is for vectors 16 through 23, and so on. Byte offset 4, the
first byte of the pending interrupts field, is reserved. When an interrupt is posted, its corresponding
bit in the pending interrupt field is set.

This encoding of the pending priority and pending interrupt fields permits the processor to first
check for any pending interrupts with a priority greater than the current program and then
determine the vector number of the interrupt with the highest priority.



terrupt
ed in

rocessor
 same
e
igher

re, in a
INTERRUPTS

8.1.4.3 Caching Portions of the Interrupt Table

The architecture allows all or part of the interrupt table to be cached internally to the processor.
The purpose of caching these fields is to reduce interrupt latency by allowing the processor to
access certain interrupt procedure pointers and the pending interrupt information without having
to make external memory accesses. The i960 Rx I/O processor caches the following:

• The value of the highest priority posted in the pending priorities field.

• A predefined subset of interrupt procedure pointers (entries from the interrupt table).

• Pending interrupts received from external interrupt pins.

This caching mechanism is non-transparent; the processor may modify fields in a cached in
table without modifying the same fields in the interrupt table itself. Vector caching is describ
section 8.5.2.1, Vector Caching Option (pg. 8-46).

8.1.5 Interrupt Stack And Interrupt Record

The interrupt stack can be located anywhere in the non-reserved address space. The p
obtains a pointer to the base of the stack during initialization. The interrupt stack has the
structure as the local procedure stack described in section 7.1.1, Local Registers and the Procedur
Stack (pg. 7-2). As with the local stack, the interrupt stack grows from lower addresses to h
addresses.

The processor saves the state of an interrupted program, or an interrupted interrupt procedu
record on the interrupt stack. Figure 8-3 shows the structure of this interrupt record.
8-6



8

INTERRUPTS

Figure 8-3.  Storage of an Interrupt Record on the Interrupt Stack

The interrupt record is always stored on the interrupt stack adjacent to the new frame that is created
for the interrupt handling procedure. It includes the state of the AC and PC registers at the time the
interrupt was serviced and the interrupt procedure pointer number used. Relative to the new frame
pointer (NFP), the saved AC register is located at address NFP-12, the saved PC register is located

Padding Area

Saved Arithmetic Controls Register

New Frame

NFP-8

NFP-16

NFP-12

NFP

Current Frame

FP

Saved Process Controls Register

Interrupt Stack
031

Current Stack
031 (Local, Supervisor, or Interrupt Stack)

Vector Number

Reserved

Stack
Growth

Interrupt 

Record

Optional Data 
(not used by 80960Rx Implementation)
8-7

at address NFP-16.

In the i960 Rx I/O processor, the stack is aligned to a 16-byte boundary. When the processor needs
to create a new frame on an interrupt call, it adds a padding area to the stack so that the new frame
starts on a 16-byte boundary.

8.1.6 Posting Interrupts

Interrupts are posted to the processor by a number of different mechanisms; these are described in
the following sections.



 

 

ee
edure
 See

quired

in the
upt.

ighest
INTERRUPTS

• Software interrupts: interrupts posted through the interrupt table, by software running on
the i960 Rx I/O processor.

• External Interrupts: interrupts posted through the interrupt table, by an external agent to
the i960 Rx I/O processor.

• Hardware interrupts: interrupts posted directly to the i960 Rx I/O processor through an 
implementation-dependent mechanism that may avoid using the interrupt table.

8.1.6.1 Posting Software Interrupts via sysctl

In the i960 Rx I/O processor, sysctl is typically used to request an interrupt in a program (s
Example 8-1). The request interrupt message type (00H) is selected and the interrupt proc
pointer number is specified in the least significant byte of the instruction operand.
section 6.2.67, sysctl (pg. 6-114) for a complete discussion of sysctl.

Example 8-1.  Using sysctl to Request an Interrupt

A literal can be used to post an interrupt with a vector number from 8 to 31. Here, the re
value of 00H in the second byte of a register operand is implied.

The action of the processor when it executes the sysctl instruction is as follows:

1. The processor performs an atomic write to the interrupt table and sets the bits 
pending-interrupts and pending-priorities fields that correspond to the requested interr

2. The processor updates the internal software priority register with the value of the h

ldconst 0x53,g5# Vector number 53H is loaded

# into byte 0 of register g5 and

# the value is zero extended into

# byte 1 of the register

sysctl g5, g5, g5# Vector number 53H is posted
8-8

pending priority from the interrupt table. This may be the priority of the interrupt that was
just posted.



8
gister’s

ng the
tware
terrupt
 is not

essor
INTERRUPTS

The interrupt controller continuously compares the following three values: software priority
register, current process priority, priority of the highest pending hardware-generated interrupt.
When the software priority register value is the highest of the three, the following actions occur:

1. The interrupt controller signals the core that a software-generated interrupt is to be serviced.

2. The core checks the interrupt table in memory, determines the vector number of the highest
priority pending interrupt and clears the pending-interrupts and pending-priorities bits in the
table that correspond to that interrupt.

3. The core detects the interrupt with the next highest priority that is posted in the interrupt
table (if any) and writes that value into the software priority register.

4. The core services the highest priority interrupt.

When more than one pending interrupt is posted in the interrupt table at the same interrupt priority,
the core handles the interrupt with the highest vector number first. The software priority register is
an internal register and, as such, is not visible to the user. The core only updates this re
value when sysctl requests an interrupt or when a software-generated interrupt is serviced. 

8.1.6.2 Posting Software Interrupts Directly in the Interrupt Table

In special cases within a single processor system, software can post interrupts by setti
desired pending-interrupt and pending-priorities bits directly. Direct posting requires that sof
ensure that no external I/O agents post a pending interrupt simultaneously, and that an in
cannot occur after one bit is set but before the other is set. Note, however, that this method
recommended.

8.1.6.3 Posting External Interrupts

An external agent posts (sets) a pending interrupt with vector “v” to the i960 Rx I/O proc
through the interrupt table by executing the following algorithm:
8-9

External_Agent_Posting:

x = atomic_read(pending_priorities); #synchronize; 
z = read(pending_interrupts[v/8]); 
x[v/8] = 1; 
z[v mod 8] = 1; 
write(pending_interrupts[v/8]) = z; 
atomic_write(pending_priorities) = x;

Generally, software cannot use this algorithm to post interrupts because there is no way for
software to have an atomic (locking) read/write span multiple instructions.



the
ore is
riority

y-31
riority

evel, the
hen

 first
e first
livered
INTERRUPTS

8.1.6.4 Posting Hardware Interrupts

Certain interrupts are posted directly to the processor by an implementation-dependent mechanism
that can bypass the interrupt table. This is often done for performance reasons.

8.1.7 Resolving Interrupt Priority

The interrupt controller continuously compares the processor’s priority to the priorities of 
highest-posted software interrupt and the highest-pending hardware interrupt. The c
interrupted when a pending interrupt request is higher than the processor priority or has a p
of 31. (Note that a priority-31 interrupt handler can be interrupted by another priorit
interrupt.) There are no priority-0 interrupts, since such an interrupt would never have a p
higher than the current process, and would therefore never be serviced.

In the event that both hardware and software requested interrupts are posted at the same l
hardware interrupt is delivered first while the software interrupt is left pending. As a result, w
both priority-31 hardware- and software-requested interrupts are pending, control is
transferred to the interrupt handler for the hardware-requested interrupt. However, before th
instruction of that handler can be executed, the pending software-requested interrupt is de
and control is transferred to the corresponding interrupt handler. 

Example 8-2.  Interrupt Resolution

/* Model used to resolve interrupts between execution of all macro instructions */
if (NMI#_pending && !block_NMI)
   { block_NMI = true;  /* Reset on return from NMI INTR handler */
     vecnum = 248; vector_addr = 0;
     PC.priority = 31;
     push_local_register_set();
     goto common_interrupt_process; }
if (ICON.gie == enabled) {
   expand_HW_int();
   temp = max(HW_Int_Priority, SW_Int_Priority);
   if (temp == 31 || temp > PC.priority)
      { PC.priority = temp;
        if (SW_Int_Priority > HW_Int_Priority) goto Deliver_SW_Int;
        else{ vecnum = HW_vecnum; goto Deliver_HW_Int;}
8-10

8.1.8 Sampling Pending Interrupts in the Interrupt Table

At specific points, the processor checks the interrupt table for pending interrupts posted. When
one is found, it is handled as if the interrupt occurred at that time. In the i960 Rx I/O processor, a
check for pending interrupts in the interrupt table is made when requesting a software interrupt
with sysctl or when servicing a software interrupt.

       }
    }



8

INTERRUPTS

When a check of the interrupt table is made, the following algorithm is used. Since the pending
interrupts may be cached, the check for pending interrupt operation may not involve any memory
operations. The algorithm uses synchronization because there may be multiple agents posting and
unposting interrupts. In the algorithm, w, x, y, and z are temporary registers within the processor.

Check_For_Pending_Interrupts:

x = read(pending_priorities); 

if(x == 0) return(); #nothing to do 

y = most_significant_bit(x); 

if(y != 31 && y <= current_priority) return(); 

x = atomic_read(pending_priorities); #synchronize 

if(x == 0) 

{atomic_write(pending_priorities) = x; 

 return();} #interrupts disappeared 

# (e.g., handled by another processor) 

y = most_significant_bit(x); #must be repeated 

if(y != 31 && y <= current_priority) 

{atomic_write(pending_priorities) = x; 

return();} #interrupt disappeared 

z = read(pending_interrupts[y]); #z is a byte 

if(z == 0)

{x[y] = 0; #false alarm, should not happen 

atomic_write(pending_priorities) = x; 

return();} 

else 

{w = most_significant_bit[z]; 

z[w] = 0; 

write(pending_interrupts[y]) = z; 

if(z == 0) x[y] = 0; #no others at this level 

atomic_write(pending_priorities) = x; 

take_interrupt();} 
8-11

The algorithm shows that the pending interrupts are marked by a bit in the Pending Interrupts
Field, and that the Pending Priorities Field is an optimization. The processor examines Pending
Interrupts only when the corresponding bit in Pending Priorities is set.

The steps prior to the atomic_read are another optimization. Note that these steps must be
repeated within the synchronized critical section, since another processor could have spotted and
accepted the same pending interrupt(s).



rupt
rce to
naled
terrupt
ster on

 of an
tware

. When
nable
INTERRUPTS

Use sysctl with a vector in the range 0 to 7 to force the core to check the interrupt table for
pending interrupts. When an external agent is posting interrupts to a shared interrupt table, use
sysctl periodically to guarantee recognition of pending interrupts posted in the table by the
external agent.

8.1.9 Saving the Interrupt Mask

Whenever an interrupt requested by the external interrupt pins or by the internal timers is serviced,
the IMSK register is automatically saved in register r3 of the new local register set allocated for
the interrupt handler. After the mask is saved, the IMSK register is optionally cleared. This masks
all interrupts except NMI#s while an interrupt is serviced. Since the IMSK register value is saved,
the interrupt procedure can restore the value before returning. The option of clearing the mask is
selected by programming the ICON register as described in section 8.4.2, Interrupt Control
Register – ICON (pg. 8-34).

Priority-31 interrupts are interrupted by other priority-31 interrupts. For level-activated inter
inputs, instructions within the interrupt handler are typically responsible for causing the sou
deactivate. If these priority-31 interrupts are not masked, another priority-31 interrupt is sig
and serviced before the handler can deactivate the source. The first instruction of the in
handling procedure is never reached, unless the option is selected to clear the IMSK regi
entry to the interrupt.

Another use of the mask is to lock out other interrupts when executing time-critical portions
interrupt handling procedure. All hardware-generated interrupts are masked until sof
explicitly replaces the mask.

The processor does not restore r3 to the IMSK register when the interrupt return is executed
the IMSK register is cleared, the interrupt handler must restore the IMSK register to e
interrupts after return from the handler. 
8-12



8

cting
re and
riority.

sted
INTERRUPTS

8.2 THE i960® CORE PROCESSOR INTERRUPT CONTROLLER

The i960 Rx I/O processor Interrupt Controller Unit (ICU) provides a flexible, low-latency means
for requesting and posting interrupts and minimizing the core’s interrupt handling burden. A
independently from the core, the interrupt controller posts interrupts requested by hardwa
software sources and compares the priorities of posted interrupts with the current process p

The interrupt controller provides the following features for managing hardware-reque
interrupts:

• Low latency, high throughput handling.

• Eight external interrupt pins.

• One non-maskable interrupt pin.

• Two internal timers sources.

• Peripheral interrupt sources.
8-13



INTERRUPTS

 

Interrupt Control

Register

Pending Interrupts

Interrupt Masks

Interrupt

Block

Selection

Interrupt

Block
Action

Clear
a Bit

Interrupt 

Pin Mode

NMI#
 Pending

NMI#S_INT[D:A]/XINT3:0#, XINT7:4#

Interrupt Pin to
Vector Map

AckVector

Processor

State
Software Interrupt 

Priority Register
Process Priority

Ack
Core

Vector

Interrupt Core

Global
Interrupt
Disable

Interrupt Detection
Block

TINT0 TINT1

Registers 0 to 2
8-14

Figure 8-4.  Interrupt Controller

(Internal)
(in PC)

Core accepts interrupt when:
* Processor not stopped
* Not executing a fault-call or 
* Interrupt-call action and
* Between instruction or
* At a resumption point

Core:
* Calls interrupt handlers
* Posts software interrupts
* Checks for software interrupts
* Handles all interrupt table access



8

INTERRUPTS

The user program interfaces to the interrupt controller with ten memory-mapped control registers.
The Interrupt Control Register (ICON) and Interrupt Map Control Registers (IMAP0-IMAP2)
provide configuration information. The Interrupt Pending Register (IPND) posts
hardware-requested interrupts. The Interrupt Mask Register (IMSK) selectively masks
hardware-requested interrupts. 

8.2.1 Interrupt Controller Dedicated Mode

The 80960Rx interrupt controller external pins are set up for dedicated mode operation, where
each external interrupt pin is assigned a vector number. Vector numbers that may be assigned to a
pin are those with the encoding PPPP 00102 (Figure 8-5), where bits marked P are programmed
with bits in the interrupt map (IMAP) registers. This encoding of programmable bits and preset bits
can designate 15 unique vector numbers, each with a unique, even-numbered priority. (Vector
0000 00102 is undefined; it has a priority of 0.)

Interrupts are posted in the interrupt pending (IPND) register. Single bits in the IPND register
correspond to each of the eight dedicated external interrupt inputs, or the two timer inputs to the
interrupt controller. The interrupt mask (IMSK) register selectively masks each of the interrupts.
Optionally, the IMSK register can be saved and cleared when an interrupt is serviced. This locks
out other hardware-generated interrupts until the mask is restored. See section 8.4,
MEMORY-MAPPED CONTROL REGISTERS (pg. 8-31) for a further description of the IMSK,
IPND and IMAP registers.

Interrupt vectors are assigned to timer inputs in the same way external pins are assigned vectors.
8-15



serted
ver, if
t until
are.
INTERRUPTS

 

Figure 8-5.  Interrupt Pin Vector Assignment

8.2.2 Interrupt Detection

The XINT7:0# pins use level-low detection. All of the interrupt pins use fast sampling. 

For low-level detection, the pin’s bit in the IPND register remains set as long as the pin is as
(low). The processor attempts to clear the IPND bit on entry into the interrupt handler. Howe
the active level on the pin is not removed at this time, the bit in the IPND register remains se
the source of the interrupt is deactivated and the IPND bit is explicitly cleared by softw

PPPP

PPPP

PPPP

PPPP

PPPP

PPPP

00102

00102

00102

00102

00102

00102

...
...

S_INTA#/XINT0#

XINT7#

TINT0

TINT1

...

8

4 LSB4 MSB

IMAP Control Registers Hard-wired Vector Offset

Highest Selected
Vector Number

S_INTB#/XINT1#

S_INTC#/XINT2#
8-16

Software may attempt to clear an interrupt pending bit before the active level on the corresponding
pin is removed. In this case, the active level on the interrupt pin causes the pending bit to remain
asserted. 

After the interrupt signal is deasserted, the handler then clears the interrupt pending bit for that
source before return from handler is executed. If the pending bit is not cleared, the interrupt is
re-entered after the return is executed.

Example 8-3 demonstrates how a level detect interrupt is typically handled. The example assumes
that the ld from address “timer_0,” deactivates the interrupt input.



8

INTERRUPTS

Example 8-3.  Return from a Level-detect Interrupt

Interrupt pins are asynchronous inputs. Setup or hold times relative to S_CLK are not needed to
ensure proper pin detection. Note in Figure 8-6, which shows how a signal is sampled using fast
sampling, that interrupt inputs are sampled once every two S_CLK cycles. For practical purposes,
this means that asynchronous interrupting devices must generate an interrupt signal that is asserted
for at least three S_CLK cycles. See your 80960Rx Data Sheet for setup and hold specifications
that guarantee detection of the interrupt on particular edges of S_CLK. These specifications are
useful in designs that use synchronous logic to generate interrupt signals to the processor. These
specification must also be used to calculate the minimum signal width, as shown in Figure 8-6. 

Figure 8-6.  Interrupt Fast Sampling

# Clear level-detect interrupts before return from handler
lda IPND_MMR, g1 # Get address of IPND Memory-Mapped Register
ld timer_0, g0 # Get timer value and clear TMRO
lda 0x1000, g2

wait:
mov 0, g3
atmod g1, g2, g3
bbs 0xC, g3, wait
ret # Return from handler

Denotes sampling clock edge. Interrupt pins are sampled one time for every two S_CLK (external bus clock) cycles.

S_CLK

XINT7:4#
(fast sampled)

* * * *

3 cycle min.

*

* 

S_INT[D:A]/XINT3:0#

Detect Interrupt
8-17

8.2.3 Non-Maskable Interrupt (NMI#)

The NMI# pin generates an interrupt for implementation of critical interrupt routines. Error
interrupts from the internal peripheral units also come into the i960 core through the NMI# pin.
NMI# provides an interrupt that cannot be masked and that has a priority of 31. The interrupt
vector for NMI# resides in the interrupt table as vector number 248. During initialization, the core
caches the vector for NMI# on-chip, to reduce NMI# latency. The NMI# vector is cached in
location 0H of internal data RAM. 



rupts
errupt
 The

rvice.

rrupt
rdware
on the

pin
 with
INTERRUPTS

The core immediately services NMI# requests. While servicing an NMI#, the core does not
respond to any other interrupt requests, even another NMI# request. The processor remains in this
non-interruptible state until any return-from-interrupt (in supervisor mode) occurs. An interrupt
request on the NMI# pin is always falling-edge detected. (Note that a return-from-interrupt in user
mode does not unblock NMI# events and should be avoided by software.)

8.2.4 Timer Interrupts

Each of the two timer units has an associated interrupt to allow the application to accept or post the
interrupt request. The timer interrupts are connected directly to the i960 Rx I/O processor interrupt
controller and are posted in the IPND register. These interrupts are set up through the timer control
registers described in CHAPTER 19, TIMERS.

8.2.5 Software Interrupts

The application program may use the sysctl instruction to request interrupt service. The vector
that sysctl requests is serviced immediately or posted in the interrupt table’s pending inter
section, depending upon the current processor priority and the request’s priority. The int
controller caches the priority of the highest priority interrupt posted in the interrupt table.
processor cannot request vector 248 (NMI#) as a software interrupt.

8.2.6 Interrupt Operation Sequence

The interrupt controller, microcode and core resources handle all stages of interrupt se
Interrupt service is handled in the following stages:

Requesting Interrupt — In the i960 Rx I/O processor, the programmable on-chip inte
controller transparently manages all interrupt requests. Interrupts are generated by ha
(external events) or software (the application program). Hardware requests are signaled 
8-bit external interrupt port (S_INT[D:A]/XINT3:0#, XINT7:4#), the non-maskable interrupt 
(NMI#) or the two timer channels. Software interrupts are signaled with the sysctl instruction
post-interrupt message type.
8-18

Posting Interrupts — When an interrupt is requested, the interrupt is either serviced immediately
or saved for later service, depending on the interrupt’s priority. Saving the interrupt for later
service is referred to as posting. Once posted, an interrupt becomes a pending interrupt. Hardware
and software interrupts are posted differently:

• Hardware interrupts are posted by setting the interrupt’s assigned bit in the interrupt pending
(IPND) memory mapped register

• Software interrupts are posted by setting the interrupt’s assigned bit in the interrupt table’s
pending priorities and pending interrupts fields



8

riority
igher

ndled
ecific

ts is
errupt
-chip

t, the
erform

 for

rocess
 never

mple

AM
 that
INTERRUPTS

Checking Pending Interrupts — The interrupt controller compares each pending interrupt’s p
with the current process priority. When process priority changes, posted interrupts of h
priority are then serviced. Comparing the process priority to posted interrupt priority is ha
differently for hardware and software interrupts. Each hardware interrupt is assigned a sp
priority when the processor is configured. The priority of all posted hardware interrup
continually compared to the current process priority. Software interrupts are posted in the int
table in external memory. The highest priority posted in this table is also saved in an on
software priority register; this register is continually compared to the current process priority.

Servicing Interrupts — When the process priority falls below that of any posted interrup
interrupt is serviced. The comparator signals the core to begin a microcode sequence to p
the interrupt context switch and branch to the first instruction of the interrupt routine.

Figure 8-4 illustrates interrupt controller function. For best performance, the interrupt flow
hardware interrupt sources is implemented entirely in hardware.

The comparator only signals the core when a posted interrupt is a higher priority than the p
priority. Because the comparator function is implemented in hardware, microcode cycles are
consumed unless an interrupt is serviced.

8.2.7 Setting Up the Interrupt Controller

This section provides an example of setting up the interrupt controller. The following exa
describes how the interrupt controller can be dynamically configured after initialization. 

Example 8-4 sets up the interrupt controller to fetch interrupt vectors from internal data R
rather than external memory. Initially the IMSK register is masked to allow for setup. A value
selects vector caching is loaded into the ICON register and the IMSK is unmasked.

Example 8-4.  Programming the Interrupt Controller for Vector Caching

# Example vector caching setup . . .
mov 0x0, g0
mov 0x00006000, g1
8-19

ld IMSK, g3 # mask, IMSK MMR at 0xFF008504
st g1,IMSK
st g1,ICON



 before

to the
es

tate or
terrupt
rrupted
hen the

d an
errupt
INTERRUPTS

8.2.8 Interrupt Service Routines

An interrupt handling procedure performs a specific action that is associated with a particular
interrupt procedure pointer. For example, one interrupt handler task might initiate a timer unit
request. The interrupt handler procedures can be located anywhere in the non-reserved address
space. Since instructions in the i960 Rx I/O processor architecture must be word-aligned, each
procedure must begin on a word boundary.

When an interrupt handling procedure is called, the processor allocates a new frame on the
interrupt stack and a set of local registers for the procedure. If not already in supervisor mode, the
processor always switches to supervisor mode while an interrupt is handled. It also saves the states
of the AC and PC registers for the interrupted program. 

The interrupt procedure shares the remainder of the execution environment resources (namely the
global registers and the address space) with the interrupted program. Thus, interrupt procedures
must preserve and restore the state of any resources shared with a non-cooperating program. For
example, an interrupt procedure that uses a global register that is not permanently allocated to it
should save the register’s contents before using the register and restore the contents
returning from the interrupt handler.

To reduce interrupt latency to critical interrupt routines, interrupt handlers may be locked in
instruction cache. See section 8.5.2.2, Caching Interrupt Routines and Reserving Register Fram
(pg. 8-47) for a complete description.

8.2.9 Interrupt Context Switch

When the processor services an interrupt, it automatically saves the interrupted program s
interrupt procedure and calls the interrupt handling procedure associated with the new in
request. When the interrupt handler completes, the processor automatically restores the inte
program state. The method used to service an interrupt depends on the processor state w
interrupt is received. 

• An executing-state interrupt — When the processor is executing a background task an
interrupt request is posted, the interrupt context switch must change stacks to the int
8-20

stack.

• An interrupted-state interrupt — When the processor is already executing an interrupt
handler, no stack switch is required since the interrupt stack is already in use.

The following subsections describe interrupt handling actions for executing-state and inter-
rupted-state interrupts. In both cases, it is assumed that the interrupt priority is higher than that of
the processor and thus is serviced immediately when the processor receives it.



8

INTERRUPTS

8.2.9.1 Servicing An Interrupt From Executing State

When the processor receives an interrupt while in the executing state (i.e., executing a program,
PC.s = 0), it performs the following actions to service the interrupt. This procedure is the same
regardless of whether the processor is in user or supervisor mode when the interrupt occurs. The
processor: 

1. Switches to the interrupt stack (see Figure 8-3). The interrupt stack pointer becomes the new
stack pointer for the processor.

2. Saves the current PC and AC in an interrupt record on the interrupt stack. The processor also
saves the interrupt procedure pointer number.

3. Allocates a new frame on the interrupt stack and loads the new frame pointer (NFP) in
global register g15. 

4. Sets the state flag in PC to interrupted (PC.s = 1), its execution mode to supervisor and its
priority to the priority of the interrupt. Setting the processor’s priority to that of the interrupt
ensures that lower priority interrupts cannot interrupt the servicing of the current interrupt. 

5. Clears the trace enable bit in PC. The interrupt is handled without raising trace faults. 

6. Sets the frame return status field pfp[2:0] to 1112. 

7. Performs a call operation as described in CHAPTER 7, PROCEDURE CALLS. The address
for the called procedure is specified in the interrupt table for the specified interrupt
procedure pointer. 

After completing the interrupt procedure, the processor: 

1. Copies the arithmetic controls field and the process controls field from the interrupt record
into the AC and PC, respectively. It therefore switches to the executing state and restores the
trace-enable bit to its value before the interrupt occurred. 
8-21

2. Deallocates the current stack frame and interrupt record from the interrupt stack and
switches to the stack it was using before servicing the interrupt. 

3. Performs a return operation as described in CHAPTER 7, PROCEDURE CALLS.

4. Resumes work on the program when all pending interrupts and trace faults are serviced.



 given
uting

er that
ually

route
 and
gister
l bus. 
INTERRUPTS

8.2.9.2 Servicing An Interrupt From Interrupted State

When the processor receives an interrupt while servicing another interrupt, and the new interrupt
has a higher priority than one being serviced, the current interrupt-handler routine is interrupted.
Here, the processor performs the same interrupt-servicing action as described in section 8.2.9.1 to
save the state of the interrupted interrupt-handler routine. The interrupt record is saved on the top
of the interrupt stack prior to the new frame that is created for use in servicing the new interrupt.
See Figure 8-3.

On the return from the current interrupt handler to the previous interrupt handler, the processor
de-allocates the current stack frame and interrupt record, and stays on the interrupt stack.

8.3 PCI AND PERIPHERAL INTERRUPTS

The PCI and peripheral portion of the interrupt controller has two functions:

• Internal Peripheral Interrupt Control

• PCI Interrupt Routing

The peripheral interrupt control mechanism consolidates a number of interrupt sources for a
internal peripheral into a single interrupt driven to the i960 core. In order to provide the exec
software with the knowledge of interrupt source, there is a memory-mapped status regist
describes the source of the interrupt. All of the internal peripheral interrupts are individ
enabled from their respective peripheral control registers. 

The PCI interrupt routing mechanism allows the host software (or 80960 software) to 
secondary PCI interrupts to either the i960 core or the P_INTA#, P_INTB#, P_INTC#,
P_INTD# output pins. This routing mechanism is controlled through a memory-mapped re
accessible from the primary PCI bridge configuration space or the i960 Rx I/O processor loca
8-22



8

INTERRUPTS

i960® Core 

XINT0#

XINT1#

XINT2#

XINT3#

XINT4#

XINT5#

XINT6#

XINT7#

NMI#

S_INTA#/XINT0#

XINT Select bit

M
U
X

S_INTB#/XINT1#

S_INTC#/XINT2#
M
U
X

S_INTD#/XINT3#
M
U
X

XINT4#

XINT5#

XINT6#

P_INTA# Output

 Message Unit Outbound Doorbell A
 Message Unit Outbound Doorbell B
 Message Unit Outbound Doorbell C
 Message Unit Outbound Doorbell D

I2C Bus Interface Unit Interrupt Pending
APIC Bus Interface Unit Interrupt Pending

Messaging Unit Inbound Interrupt Pending

i960® Rx I/O Processor

 In
te

rr
up

t
at

ch

P_INTB# Output

P_INTC# Output
P_INTD# Output

X
IN

T
6 

In
te

rr
up

t
La

tc
h

DMA Channel 0 Interrupt Pending
DMA Channel 1 Interrupt Pending
DMA Channel 2 Interrupt Pending

Processor

M
U
X

Messaging Unit
Outbound Interrupt Pending

M
U
X

Primary ATU Interrupt Pin Register
8-23

Figure 8-7.  Interrupt Controller Connections for 80960RP 33/5.0 Volt

XINT7#

NMI#

Local Processor Error

Primary ATU Error
Secondary ATU Error

Secondary PCI Bridge Interface Error
Primary PCI Bridge Interface Error

N
M

I I
nt

er
ru

pt
La

tc
h

X
IN

T
7 L

DMA Channel 0 Error

Primary ATU/Start BIST Interrupt Pending

DMA Channel 1 Error
DMA Channel 2 Error

Messaging Unit Error



INTERRUPTS

i960® Core 

XINT0#

XINT1#

XINT2#

XINT3#

XINT4#

XINT5#

XINT6#

XINT7#

NMI#

S_INTA#/XINT0#

XINT0 Select bit

M
U
X

S_INTB#/XINT1#

S_INTC#/XINT2#
M
U
X

S_INTD#/XINT3#
M
U
X

XINT4#

XINT5#

XINT6#

P_INTA# Output

I2C Bus Interface Unit Interrupt Pending
APIC Bus Interface Unit Interrupt Pending

Messaging Unit Inbound Interrupt Pending

i960® Rx I/O Processor

 In
te

rr
up

t
at

ch

P_INTB# Output

P_INTC# Output
P_INTD# Output

X
IN

T
6 

In
te

rr
up

t
La

tc
h

DMA Channel 0 Interrupt Pending
DMA Channel 1 Interrupt Pending
DMA Channel 2 Interrupt Pending

Processor

M
U
X

Messaging Unit
Outbound Interrupt Pending

M
U
X

XINT1 Select bit

XINT2 Select bit

XINT3 Select bit

Primary ATU Interrupt Pin Register

 Message Unit Outbound Doorbell A
 Message Unit Outbound Doorbell B
 Message Unit Outbound Doorbell C
 Message Unit Outbound Doorbell D
8-24

Figure 8-8.  Interrupt Controller Connections for 80960Rx 33/3.3 Volt

XINT7#

NMI#

Local Processor Error

Primary ATU Error
Secondary ATU Error

Secondary PCI Bridge Interface Error
Primary PCI Bridge Interface Error

N
M

I I
nt

er
ru

pt
La

tc
h

X
IN

T
7 L

DMA Channel 0 Error

Primary ATU/Start BIST Interrupt Pending

DMA Channel 1 Error
DMA Channel 2 Error

Messaging Unit Error



8

INTERRUPTS

8.3.1 Pin Descriptions

The i960 Rx I/O processor provides eight external interrupt pins and one non-maskable interrupt
pin for detecting external interrupt requests. The eight external pins are configured as dedicated
inputs, where each pin is capable of requesting a single interrupt, in some cases from several
different sources. The external interrupt input interface for the i960 Rx I/O processor consists of
the following pins:

Table 8-1.  Interrupt Input Pin Descriptions

Signal Description

S_INTA#/XINT0#

Can be directed to the P_INTA# output or the i960 core interrupt input XINT0#.

When routed to the P_INTA# output, this pin is shared with two internal interrupts. They 
are the interrupts from the Messaging Unit. When routed to the i960 core internal input 
XINT0#, this input is not shared.

S_INTB#/XINT1#

Can be directed to the P_INTB# output or the i960 core interrupt input XINT1#.

When routed to the P_INTB1# output, this pin is shared with two internal interrupts. They 
are the interrupts from the Messaging Unit. When routed to the i960 core internal input 
XINT1?#, this input is not shared.

S_INTC#/XINT2#

Can be directed to the P_INTC# output or the i960 core interrupt input XINT2#.

When routed to the P_INTC2# output, this pin is shared with two internal interrupts. They 
are the interrupts from the Messaging Unit. When routed to the i960 core internal input 
XINT2?#, this input is not shared.

S_INTD#/XINT3#

Can be directed to the P_INTD# output or the i960 core interrupt input XINT3#.

When routed to the P_INTD# output, this pin is shared with two internal interrupts. They 
are the interrupts from the Messaging Unit. When routed to the i960 core internal input 
XINT3#, this input is not shared.

XINT4# Always connected to the i960 core interrupt input XINT4#.

XINT5# Always connected to the i960 core interrupt input XINT5#.

XINT6#

Shared with three internal interrupts. They are the interrupts from each of the three internal 
DMA channels. All of the interrupts are directed to the i960 core interrupt input XINT6#. 
Software must read the XINT6 Interrupt Status Register to determine the exact source of 
the interrupt.
8-25

All pins in Table 8-1 are level-low activated. See section 8.2.2, Interrupt Detection (pg. 8-16).

XINT7#

Shared with four internal interrupts. They are the interrupts from the APIC Bus Interface 
Unit, the I2C Bus Interface Unit, the Primary ATU, and the Messaging Unit. All of the 
interrupts are directed to the i960 core interrupt input XINT7#. Software must read the 
XINT7 Interrupt Status Register to determine the exact source of the interrupt.

NMI#

Shared with eight internal interrupts. They include error interrupts from the local processor, 
primary PCI bridge interface, secondary PCI bridge interface, primary ATU, secondary 
ATU, and the three DMA channels. All of the interrupts are directed to the i960 core NMI# 
input. Software must read the NMI Interrupt Status Register to determine the exact source 
of the interrupt. NMI# is the highest priority interrupt recognized. This pin is synchronized 
internal to the i960 core.



INTERRUPTS

8.3.2 PCI Interrupt Routing

Four PCI interrupt inputs can be routed to either the i960 core interrupt inputs or to the PCI
interrupt output pins. This routing is controlled by the XINT Select bit in the PCI interrupt
Routing Select Register. See Table 8-3.

Table 8-2.  PCI Interrupt Routing Summary for 80960RP 33/5.0 Volt

XINT Select Bit Description

0 

S_INTA#/XINT0# Input Pin routed to i960 core processor XINT0# Input Pin

S_INTB#/XINT1# Input Pin routed to i960 core processor XINT1# Input Pin

S_INTC#/XINT2# Input Pin routed to i960 core processor XINT2# Input Pin

S_INTD#/XINT3# Input Pin routed to i960 core processor XINT3# Input Pin

1 

S_INTA#/XINT0# Input Pin routed to P_INTA# Output Pin

S_INTB#/XINT1# Input Pin routed to P_INTB# Output Pin

S_INTC#/XINT2# Input Pin routed to P_INTC# Output Pin

S_INTD#/XINT3# Input Pin routed to P_INTD# Output Pin

Table 8-3.  PCI Interrupt Routing Summary for 80960RP 33/3.3 Volt

PIRSR Select Bit Bit Value Description

bit 0 
0 S_INTA#/XINT0# Input Pin routed to i960 core processor XINT0# Input Pin

1 S_INTA#/XINT0# Input Pin routed to P_INTA# Output Pin

bit 1 
0 S_INTB#/XINT1# Input Pin routed to i960 core processor XINT1# Input Pin

1 S_INTB#/XINT1# Input Pin routed to P_INTB# Output Pin

bit 2 
0 S_INTC#/XINT2# Input Pin routed to i960 core processor XINT2# Input Pin

1 S_INTC#/XINT2# Input Pin routed to P_INTC# Output Pin

bit 3 
0 S_INTD#/XINT3# Input Pin routed to i960 core processor XINT3# Input Pin
8-26

8.3.3 Internal Peripheral Interrupt Routing

XINT6#, XINT7# and NMI# interrupt inputs on the i960 core receive inputs from multiple
internal interrupt sources. One internal latch before each of these three inputs provides the
necessary muxing of the different interrupt sources. Application software can determine which
peripheral unit caused an interrupt by reading the corresponding interrupt latch. More detail about
the exact cause of the interrupt can be determined by reading status from the peripheral unit.

1 S_INTD#/XINT3# Input Pin routed to P_INTD# Output Pin



8

60
read
g the

 Bus
lid
rupt to
core
 read
INTERRUPTS

8.3.3.1 XINT6 Interrupt Sources

The XINT6# interrupt of the i960 core receives interrupts from the external pin and the three DMA
channels. A DMA channel can cause an interrupt for a DMA End of Transfer interrupt or a DMA
End of Chain interrupt. See section 20.3, DMA TRANSFER (pg. 20-4) for details. A valid
interrupt from any of these sources sets the bit in the latch and outputs a level-sensitive interrupt to
the i960 core’s XINT6# input. The interrupt latch continues to drive an active low input to the i9
core interrupt input while an interrupt is present at the latch. The XINT6 interrupt latch is 
through the XINT6 Interrupt Status Register. The XINT6 interrupt latch is cleared by clearin
source of the interrupt at the internal peripheral or deasserting the XINT6# input.

The interrupt sources which drive the inputs to the XINT6 interrupt latch are detailed in Table 8-4

8.3.3.2 XINT7 Interrupt Sources

The XINT7# interrupt on the i960 core receives interrupts from the external pin, the APIC
Interface Unit, the I2C Bus Interface Unit, the Primary ATU, and the Messaging Unit. A va
interrupt from any of these sources sets the bit in the latch and outputs a level-sensitive inter
the i960 core XINT7# input. The interrupt latch drives an active low input to the i960 
interrupt input as long as an interrupt is present at the latch. The XINT7 interrupt latch is

Table 8-4.  XINT6 Interrupt Sources

Unit Interrupt Condition
Interrupt Status Interrupt MASK

Register Bit Register Bit

DMA Channel 0
End of Chain CSR0 08

DCR0 04
End of Transfer CSR0 09

DMA Channel 1
End of Chain CSR1 08

DCR1 04
End of Transfer CSR1 09

DMA Channel 2
End of Chain CSR2 08

DCR2 04
End of Transfer CSR2 09

XINT6# Pin External Source N/A N/A N/A N/A
8-27

through the XINT7 Interrupt Status Register. The XINT7 interrupt latch is cleared by clearing the
source of the interrupt at the internal peripheral or deasserting the XINT7# input pin.



INTERRUPTS

The interrupt sources which drive the inputs to the XINT7 interrupt latch are detailed in Table 8-5

8.3.3.3 NMI Interrupt Sources

The Non-Maskable Interrupt (NMI#) on the i960 core receives interrupts from the external pin, the

Table 8-5.  XINT7 Interrupt Sources 

Unit Interrupt Condition
Interrupt Status Interrupt MASK

Register Bit Register Bit

APIC Bus 
Interface Unit

APIC Message Sent APIC CSR 06 APIC CSR 05

EOI Message Received APIC CSR 14 APIC CSR 13

I2C Bus Interface 
Unit

Slave STOP Detected ISR 04 ICR 11

Arbitration Loss Detected ISR 05 ICR 12

IDBR Transmit Empty ISR 06 ICR 08

IDBR Receive Full ISR 07 ICR 09

Slave Address Detected ISR 09 ICR 13

Bus Error ISR 10 ICR 10

Messaging Unit

Inbound Message 0 
Interrupt

IISR 00 IIMR 00

Inbound Message 1 
Interrupt

IISR 01 IIMR 01

Inbound Doorbell Interrupt IISR 02 IIMR 02

Inbound Post Queue 
Interrupt

IISR 04 IIMR 04

Index Register Interrupt IISR 06 IIMR 06

APIC Register Select 
Interrupt

IISR 07 IIMR 07

APIC Window Interrupt IISR 08 IIMR 08

Primary ATU ATU BIST Start PATUISR 08 N/A N/A

XINT7# Pin External Source N/A N/A N/A N/A
8-28

primary and secondary ATUs, the primary and secondary bridge interfaces, the i960 core and each
of the three DMA channels. Each of the interrupts represents an error condition in the peripheral
unit. Several of these conditions can be masked through the Secondary Decode Enable Register. A
valid interrupt from any of these sources, when enabled, sets the bit in the latch and outputs an
edge-triggered interrupt to the i960 core NMI# input. The NMI interrupt latch is read through the
NMI Interrupt Status Register. The NMI interrupt latch is cleared by clearing the sources of all
interrupts at the internal peripherals. A new edge triggered interrupt is generated to the i960 core
only after all interrupt status bits have been simultaneously cleared.



8

INTERRUPTS

The interrupt sources which drive the inputs to the NMI interrupt latch are detailed in Table 8-6

Table 8-6.  NMI Interrupt Sources  (Sheet 1 of 2)

Unit Error Condition
Interrupt Status Interrupt MASK

Register Bit Register Bit

Primary PCI Bridge 
Interface

PCI Master Parity Error PBISR 00 SDER 06

PCI Target Abort (target) PBISR 01 SDER 07

PCI Target Abort (master) PBISR 02 SDER 08

PCI Master Abort PBISR 03 SDER 09

P_SERR# Asserted PBISR 04 SDER 10

Secondary PCI 
Bridge Interface

PCI Master Parity Error SBISR 00 SDER 11

PCI Target Abort (target) SBISR 01 SDER 12

PCI Target Abort (master) SBISR 02 SDER 13

PCI Master Abort SBISR 03 SDER 14

S_SERR# Asserted SBISR 04 SDER 15

Primary ATU

PCI Master Parity Error PATUISR 00 ATUCR 04

PCI Target Abort (target) PATUISR 01 ATUCR 04

PCI Target Abort (master) PATUISR 02 ATUCR 04

PCI Master Abort PATUISR 03 ATUCR 04

P_SERR# Asserted PATUISR 04 ATUCR 04

80960 Bus Fault PATUISR 05 N/A N/A

80960 Memory Fault PATUISR 06 N/A N/A

Secondary ATU

PCI Master Parity Error SATUISR 00 ATUCR 05

PCI Target Abort (target) SATUISR 01 ATUCR 05

PCI Target Abort (master) SATUISR 02 ATUCR 05

PCI Master Abort SATUISR 03 ATUCR 05

S_SERR# Asserted SATUISR 04 ATUCR 05

80960 Bus Fault SATUISR 05 N/A N/A

80960 Memory Fault SATUISR 06 N/A N/A
8-29

Messaging Unit

NMI Doorbell IISR 03 IIMR 03

Outbound Free Queue 
Overflow

IISR 05 IIMR 05

i960 Core 
Processor

80960 Local Bus Fault LPISR 05 N/A N/A

80960 Memory Fault LPISR 06 N/A N/A

DMA Channel 0

PCI Master Parity Error CSR0 0 PATUCMD 06

PCI Target Abort (master) CSR0 2 N/A N/A

PCI Master Abort CSR0 3 N/A N/A

80960 Bus Fault CSR0 5 N/A N/A

80960 Memory Fault CSR0 6 N/A N/A



INTERRUPTS

8.3.4 PCI Outbound Doorbell Interrupts

The i960 Rx I/O processor has the capability of generating interrupts on any of the four primary
PCI interrupt pins. This is done by setting a bit in the messaging unit Outbound Doorbell Port
Register. See CHAPTER 17, MESSAGING UNIT for details.

DMA Channel 1

PCI Master Parity Error CSR1 0 PATUCMD 06

PCI Target Abort (master) CSR1 2 N/A N/A

PCI Master Abort CSR1 3 N/A N/A

80960 Bus Fault CSR1 5 N/A N/A

80960 Memory Fault CSR1 6 N/A N/A

DMA Channel 2

PCI Master Parity Error CSR2 0 SATUCMD 06

PCI Target Abort (master) CSR2 2 SATUCMD 06

PCI Master Abort CSR2 3 SATUCMD 06

80960 Bus Fault CSR2 5 SATUCMD 06

80960 Memory Fault CSR2 6 SATUCMD 06

NMI# Pin External Source N/A N/A N/A N/A

Table 8-6.  NMI Interrupt Sources  (Sheet 2 of 2)

Unit Error Condition
Interrupt Status Interrupt MASK

Register Bit Register Bit
8-30



8

ontrol

cessed
ndary
onfigu-

cess
INTERRUPTS

8.4 MEMORY-MAPPED CONTROL REGISTERS

The programmer’s interface to the interrupt controller is through eleven memory-mapped c
registers. Table 8-7 describes these registers. 

All registers are visible to software as 80960Rx memory-mapped registers and can be ac
through the internal memory bus. The PCI Interrupt Routing Select Register and the Seco
Decode Enable Register are accessible from the internal memory bus and through the PCI c
ration register space of the PCI-to-PCI Bridge Unit (function #0). See CHAPTER 15, PCI-TO-PCI
BRIDGE UNIT for additional information regarding the PCI configuration cycles that can ac
these registers.

Table 8-7.  Interrupt Control Registers Memory-Mapped Addresses

Register Name Description Address

PIRSR PCI Interrupt Routing Select Register 0000 1050H

SDER Secondary Decode Enable Register 0000 105CH

NISR NMI Interrupt Status Register 0000 1700H

XINT7 XINT7 Interrupt Status Register 0000 1704H

XINT6 XINT6 Interrupt Status Register 0000 1708H

IPND Interrupt Pending Register FF00 8500H

IMSK Interrupt Mask Register FF00 8504H

ICON Interrupt Control Register FF00 8510H

IMAP0 Interrupt Map Register 0 FF00 8520H

IMAP1 Interrupt Map Register 1 FF00 8524H

IMAP2 Interrupt Map Register 2 FF00 8528H
8-31



INTERRUPTS

8.4.1 PCI Interrupt Routing Select Register (PIRSR)

The PCI Interrupt Routing Select Register (PIRSR) determines the routing of four of the external
interrupt pins. These interrupt pins consist of four secondary PCI interrupt inputs which are routed
to either the primary PCI interrupts or the i960 core interrupts. 

If the secondary PCI interrupt inputs are routed to the primary PCI interrupt pins, the i960 core
XINT3:0# inputs must be set inactive by setting bits 3-0 in the IMSK register to zero.

Table 8-8 and Table 8-9 show the bit definitions for programming the PCI Interrupt Routing
Select Register. The XINT Select bit defaults to a 0. 

Table 8-8.  PCI Interrupt Routing Select Register – PIRSR (80960RP 33/5.0 Volt)

LBA: 

PCI:

1050H

50H

Legend: NA = Not Accessible RO = Read Only
RV = Reserved PR = Preserved RW = Read/Write
RS = Read/Set RC = Read Clear
LBA = 80960 local bus address PCI = PCI Configuration Address Offset

Bit Default Description

31:01 0000 0000H Reserved. Initialize to 0.

00 02

XINT Select Bit - 
(1) Interrupts Routed To P_INTx# Pins
(0) Interrupts Routed To i960 core Interrupt Controller Input

PCI

LBA

28 24 20 16 12 8 4 031

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rw

rw
8-32



8

INTERRUPTS

Table 8-9.  PCI Interrupt Routing Select Register – PIRSR (80960Rx 33/3.3 Volt)

LBA: 

PCI:

1050H

50H

Legend: NA = Not Accessible RO = Read Only
RV = Reserved PR = Preserved RW = Read/Write
RS = Read/Set RC = Read Clear
LBA = 80960 local bus address PCI = PCI Configuration Address Offset

Bit Default Description

31:04 0000 000H Reserved. Initialize to 0.

03 02

XINT3 Select Bit - 
(1) Interrupts Routed To P_INTx# Pins
(0) Interrupts Routed To i960 core Interrupt Controller Input

02 02

XINT2 Select Bit - 
(1) Interrupts Routed To P_INTx# Pins
(0) Interrupts Routed To i960 core Interrupt Controller Input

01 02

XINT1 Select Bit - 
(1) Interrupts Routed To P_INTx# Pins
(0) Interrupts Routed To i960 core Interrupt Controller Input

00 02

XINT0 Select Bit - 
(1) Interrupts Routed To P_INTx# Pins
(0) Interrupts Routed To i960 core Interrupt Controller Input

PCI

LBA

28 24 20 16 12 8 4 031

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rw

rw

rw

rw

rw

rw

rw

rw
8-33



INTERRUPTS

8.4.2 Interrupt Control Register – ICON

The ICON register is a 32-bit memory-mapped control register, that sets up the interrupt
controller. Software can manipulate this register using the load/store type instructions. The ICON
register is also automatically loaded at initialization from the control table in external memory.
Table 8-10 describes the layout of the ICON register.

Table 8-10.  Interrupt Control Register – ICON

LBA: 

PCI:

8510H

NA

Legend: NA = Not Accessible RO = Read Only
RV = Reserved PR = Preserved RW = Read/Write
RS = Read/Set RC = Read Clear
LBA = 80960 local bus address PCI = PCI Configuration Address Offset

Bit Default Description

31:15

Default 
Value 

Loaded 
from Image 
in Control 

Table.

Reserved. Initialize to 0.

14 This bit must be set (1).

13
Vector Cache Enable - determines whether interrupt table vector entries are fetched 
from the interrupt table (bit clear) or from internal data RAM (bit set). Only vectors with 
the four least-significant bits equal to 00102 may be cached in internal data RAM. 

12:11

Mask Operation Field - determines the operation the core performs on the mask register 
when a hardware-generated interrupt is serviced. On an interrupt, the value in IMSK is 
copied to r3. IMSK is then either left unchanged (00) or cleared (01). IMSK is never 
cleared for NMI# or software interrupts.

10

Global Interrupts Disable - when set (1) this bit globally disables the i960 core interrupt 
inputs and the timer unit inputs. When clear (0) this bit globally enables the i960 core 
interrupt inputs and the timer unit inputs. This does not affect the NMI# input. This bit 
performs the same function as clearing the IMSK register. This bit is also changed 
indirectly by the instructions inten, intdis, intctl.

9:0 These bits must be cleared (0).

PCI

LBA

28 24 20 16 12 8 4 031

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

1 0 0 0 0 0 0 0 0 0 0
8-34



8

ignif-
er of
h 7

apping
ory. 
INTERRUPTS

8.4.3 Interrupt Mapping Registers – IMAP0-IMAP2

The IMAP registers (Table 8-11 through Table 8-13) are three 32-bit registers (IMAP0 through
IMAP2). These registers are used to program the vector number associated with the interrupt
source. IMAP0 and IMAP1 contain mapping information for the external interrupt pins (four bits
per pin). IMAP2 contains mapping information for the timer-interrupt inputs (four bits per
interrupt).

Each set of four bits contains a vector number’s four most-significant bits; the four least-s
icant bits are always 00102. In other words, each source can be programmed for a vector numb
PPPP 00102, where “P” indicates a programmable bit. For example, IMAP0 bits 4 throug
contain mapping information for the XINT1 pin. When these bits are set to 01102, the pin is
mapped to vector number 0110 00102 (or vector number 98).

Software can access the mapping registers using load/store type instructions. The m
registers are also automatically loaded at initialization from the control table in external mem

Table 8-11.  Interrupt Map Register 0 – IMAP0

LBA: 

PCI:

8520H

NA

Legend: NA = Not Accessible RO = Read Only
RV = Reserved PR = Preserved RW = Read/Write
RS = Read/Set RC = Read Clear
LBA = 80960 local bus address PCI = PCI Configuration Address Offset

Bit Default Description

31:15 Default 
Value 

Loaded 
from Image 
in Control 

Reserved. Initialize to 0.

15:12 External Interrupt 3 Field.

11:08 External Interrupt 2 Field.

07:04 External Interrupt 1 Field.

PCI

LBA

28 24 20 16 12 8 4 031

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na
8-35

Table.03:00 External Interrupt 0 Field.



INTERRUPTS

Table 8-12.  Interrupt Map Register 1 – IMAP1

LBA: 

PCI:

8524H

NA

Legend: NA = Not Accessible RO = Read Only
RV = Reserved PR = Preserved RW = Read/Write
RS = Read/Set RC = Read Clear
LBA = 80960 local bus address PCI = PCI Configuration Address Offset

Bit Default Description

31:15 Default 
Value 

Loaded 
from Image 
in Control 

Table.

Reserved. Initialize to 0.

15:12 External Interrupt 7 Field.

11:08 External Interrupt 6 Field.

07:04 External Interrupt 5 Field.

03:00 External Interrupt 4 Field.

Table 8-13.  Interrupt Map Register 2 – IMAP2

LBA: 

PCI:

8528H

NA

Legend: NA = Not Accessible RO = Read Only
RV = Reserved PR = Preserved RW = Read/Write
RS = Read/Set RC = Read Clear
LBA = 80960 local bus address PCI = PCI Configuration Address Offset

Bit Default Description

31:24 Default Reserved. Initialize to 0.

PCI

LBA

28 24 20 16 12 8 4 031

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

PCI

LBA

28 24 20 16 12 8 4 031

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na
8-36

Value 
Loaded 

from Image 
in Control 

Table.

23:20 Timer Interrupt 1 Field.

19:16 Timer Interrupt 0 Field.

15:00 Reserved. Initialize to 0.



8

INTERRUPTS

8.4.4 Interrupt Mask – IMSK and Interrupt Pending Registers – IPND

The IMSK and IPND registers are both memory-mapped registers. Bits 0 through 7 of these
registers are associated with the external interrupt pins (XINT0# - XINT7#) and bits 12 and 13 are
associated with the timer-interrupt inputs (TMR0 and TMR1). All other bits are reserved and
should be cleared at initialization. 

Table 8-14.  Interrupt Pending Register – IPND

LBA: 

PCI:

8500H

NA

Legend: NA = Not Accessible RO = Read Only
RV = Reserved PR = Preserved RW = Read/Write
RS = Read/Set RC = Read Clear
LBA = 80960 local bus address PCI = PCI Configuration Address Offset

Bit Default Description

31:14 XXXX XH Reserved. Initialize to 0.

13:12 XX2

Timer Interrupt Pending Bits - IPND.tip
(1) Pending Interrupt
(0) No Interrupt

11:08 XH Reserved. Initialize to 0.

07:00 XXH
External Interrupt Pending Bits - IPND.xip

(1) Pending Interrupt
(0) No Interrupt

PCI

LBA

28 24 20 16 12 8 4 031

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rw

na

rw

na

rv

na

rv

na

rv

na

rv

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na
8-37



INTERRUPTS

The IPND register posts interrupts originating from the eight external dedicated sources and the
two timer sources. Asserting one of these inputs latches a 1 into its associated bit in the IPND
register. The mask register provides a mechanism for masking individual bits in the IPND register.
An interrupt source is disabled when its associated mask bit is cleared (0).

When delivering a hardware interrupt, the interrupt controller conditionally clears IMSK based on
the value of the ICON.mo bit. Note that IMSK is never cleared for NMI# or software interrupt.

Although software can read and write IPND and IMSK using any memory-format instruction, it is
recommended that a read-modify-write operation using the atomic-modify instruction (atmod) be
used for reading and writing these registers. Executing an atmod on one of these registers causes
the interrupt controller to perform regular interrupt processing (including using or automatically

Table 8-15.  Interrupt Mask Register – IMSK

LBA: 

PCI:

8504H

NA

Legend: NA = Not Accessible RO = Read Only
RV = Reserved PR = Preserved RW = Read/Write
RS = Read/Set RC = Read Clear
LBA = 80960 local bus address PCI = PCI Configuration Address Offset

Bit Default Description

31:14 0000 0H Reserved. Initialize to 0.

13:12 002

Timer Interrupt Mask Bits - IMSK.tim
(1) Not Masked
(0) Masked

11:08 0H Reserved. Initialize to 0.

07:00 00H
External Interrupt Mask Bits - IMSK.xim

(1) Not Masked
(0) Masked

PCI

LBA

28 24 20 16 12 8 4 031

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rw

na

rw

na

rv

na

rv

na

rv

na

rv

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na
8-38

updating IPND and IMSK) either before or after, but, not during the read-modify-write operation
on that register. This requirement ensures that modifications to IPND and IMSK take effect
cleanly, completely, and at a well-defined point. Note that the processor does not assert the
LOCK# pin externally when executing an atomic instruction to IPND and IMSK.

When the processor core handles a pending interrupt, it attempts to clear the bit that is latched for
that interrupt in the IPND register before it begins servicing the interrupt. If that bit is associated
with an interrupt source that is programmed for level detection and the true level is still present,
the bit remains set. Because of this, the interrupt routine for a level-detected interrupt should clear
the external interrupt source and explicitly clear the IPND bit before return from the handler is
executed.



8

INTERRUPTS

An alternative method of posting interrupts in the IPND register, other than through the external
interrupt pins, is to set bits in the register directly using an atmod instruction. This operation has
the same effect as requesting an interrupt through the external interrupt pins. 

8.4.5 XINT6 Interrupt Status Register – X6ISR

The XINT6 Interrupt Status Register (X6ISR) shows the pending XINT6 interrupts. The source of
the XINT6 interrupt can be the internal peripheral devices connected through the XINT6 interrupt
latch or the external XINT6# interrupt pin. The interrupts which are connected to the XINT6 input
are detailed in Section 8.3.3, Internal Peripheral Interrupt Routing.

The X6ISR register is used to determine the source of an interrupt on the XINT6# input. All bits
within this register are defined as read-only. The bits within this register are cleared when the
source of the interrupt (status register source shown in Table 8-4) are cleared. X6ISR reflects the
current state of the input to the XINT6 interrupt latch.

Due to the asynchronous nature of the 80960Rx internal peripheral units, multiple interrupts can be
active when application software reads the X6ISR register. Application software must handle the
occurrence of multiple interrupts. In addition, software may subsequently read X6ISR to determine
when additional interrupts have occurred while processing the current interrupts. All interrupts
from X6ISR will be at the same priority level within the i960 core.

Table 8-16 details the X6ISR register.

Table 8-16.  XINT6 Interrupt Status Register – X6ISR (Sheet 1 of 2)

LBA: 1708H Legend: NA = Not Accessible RO = Read Only

PCI

LBA

28 24 20 16 12 8 4 031

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

ro

na

ro

na

ro

na

ro

na
8-39

PCI: NA RV = Reserved PR = Preserved RW = Read/Write
RS = Read/Set RC = Read Clear
LBA = 80960 local bus address PCI = PCI Configuration Address Offset

Bit Default Description

31:04 0000 000H Reserved.

03 02
External XINT6# Interrupt Pending - when set, an interrupt is pending on the external 
XINT6# input. When clear, no interrupt exists.



INTERRUPTS

8.4.6 XINT7 Interrupt Status Register – X7ISR

The XINT7 Interrupt Status Register (X7ISR) shows the pending XINT7 interrupts. The source of
the XINT7 interrupt can be the internal peripheral devices connected through the XINT7 interrupt
latch or the external XINT7# interrupt pin. The interrupts which are connected to the XINT7#
input are detailed in Section 8.3.3, Internal Peripheral Interrupt Routing.

The X7ISR register is used to determine the source of an interrupt on the XINT7# input. All bits
within this register are defined as read-only. The bits within this register are cleared when the
source of the interrupt (status register source shown in Table 8-5) are cleared. X7ISR reflects the
current state of the input to the XINT7 interrupt latch.

Due to the asynchronous nature of the 80960Rx internal peripheral units, multiple interrupts can
be active when the application software reads the X7ISR register. It is up to the application

02 02
DMA Channel 2 Interrupt Pending - when set, a DMA channel 2 interrupt is pending. 
When clear, no interrupt condition exists.

01 02
DMA Channel 1 Interrupt Pending - when set, a DMA channel 1 interrupt is pending. 
When clear, no interrupt condition exists.

00 02
DMA Channel 0 Interrupt Pending - when set, a DMA channel 0 interrupt is pending. 
When clear, no interrupt condition exists.

Table 8-16.  XINT6 Interrupt Status Register – X6ISR (Sheet 2 of 2)

LBA: 

PCI:

1708H

NA

Legend: NA = Not Accessible RO = Read Only
RV = Reserved PR = Preserved RW = Read/Write
RS = Read/Set RC = Read Clear
LBA = 80960 local bus address PCI = PCI Configuration Address Offset

Bit Default Description

PCI

LBA

28 24 20 16 12 8 4 031

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

ro

na

ro

na

ro

na

ro

na
8-40

software to handle the occurrence of multiple interrupts. In addition, software may subsequently
read X7ISR to determine when additional interrupts have occurred while processing the current
interrupts. All X7ISR interrupts will be at the same priority level within the i960 core.



8

INTERRUPTS

Table 8-16 details the definition of the X7ISR.

8.4.7 NMI Interrupt Status Register – NISR

The NMI Interrupt Status Register (NISR) shows the pending NMI interrupts. The source of the
NMI interrupt can be the internal peripheral devices connected through the NMI Interrupt Latch or
the external NMI# interrupt pin. The interrupts which are connected to the NMI# input are detailed

Table 8-17.  XINT7 Interrupt Status Register – X7ISR

LBA: 

PCI:

1704H

NA

Legend: NA = Not Accessible RO = Read Only
RV = Reserved PR = Preserved RW = Read/Write
RS = Read/Set RC = Read Clear
LBA = 80960 local bus address PCI = PCI Configuration Address Offset

Bit Default Description

31:05 0000 000H Reserved.

04 02
External XINT7# Interrupt Pending - when set, an interrupt is pending on the external 
XINT7# input. When clear, no interrupt exists.

03 02

Primary ATU/Start BIST Interrupt Pending - when set, the host processor has set the 
start BIST request in the ATUBISTR register. When clear, no start BIST interrupt is 
pending.

02 02
Inbound Doorbell Interrupt Pending - when set, an interrupt from the Inbound Doorbell 
Unit is pending. When clear, no interrupt is pending.

01 02
I2C Interrupt Pending - when set, an interrupt is from the I2C Bus Interface Unit is 
pending. When clear, no interrupt is pending.

00 02
APIC Interrupt Pending - when set, an interrupt from the APIC Bus Interface Unit is 
pending. When clear, no interrupt is pending.

PCI

LBA

28 24 20 16 12 8 4 031

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

ro

na

ro

na

ro

na

ro

na

ro

na
8-41

in Section 8.3.3, Internal Peripheral Interrupt Routing.

The NMI Interrupt Status Register is used to determine the source of an interrupt on the NMI#
input. All of the bits within the NISR are read-only. The bits within this register are cleared when
the source of the interrupt (status register source shown in Table 8-6) are cleared. NISR reflects the
current state of the input to the NMI Interrupt Latch. Note that although the NMI# input of the i960
core is edge triggered, the external NMI# input of the i960 Rx I/O processor requires a level input
and must be latched external to the i960 Rx I/O processor.



INTERRUPTS

Due to the asynchronous nature of the 80960Rx internal peripheral units, multiple interrupts can
be active when the application software reads the NISR register. It is up to the application software
to handle the occurrence of multiple interrupts. In addition, software must check the contents of
the NISR to ensure all NMI sources are cleared before returning from the NMI interrupt service
routine. All NISR interrupts will be at the same priority level within the i960 core.

Example 8-5.  Example Code - NMI Interrupt Handler Main Loop
/*  NMI Interrupt Handler */
volatile unsigned long int NISR;
do 

{ NISR = *NISR_reg_addr;
if (NISR & 1)

80960_core_error();
if (NISR & 2)

primary_atu_error();
if (NISR & 4)

secondary_atu_error();
if (NISR & 8)

primary_bridge_interface_error();
if (NISR & 16)

secondary_bridge_interface_error();
if (NISR & 32)

dma_channel_0_error();
if (NISR & 64)

dma_channel_1_error();
if (NISR & 128)

dma_channel_1_error();
if (NISR & 256)

messaging_unit_interrupt();
if (NISR & 512)

extnernal_nmi_interrupt();  }
while( !NISR );
return;
8-42



8

INTERRUPTS

Table 8-18 shows the bit definitions for reading the NMI interrupt status register.

Table 8-18.  NMI Interrupt Status Register – NISR

LBA: 

PCI:

1700H

NA

Legend: NA = Not Accessible RO = Read Only
RV = Reserved PR = Preserved RW = Read/Write
RS = Read/Set RC = Read Clear
LBA = 80960 local bus address PCI = PCI Configuration Address Offset

Bit Default Description

31:10 0000 00H Reserved.

09 02
External NMI# Interrupt - when set, an interrupt is pending on the external NMI# input. 
When clear, no interrupt exists.

08 02
Messaging Unit Interrupt - when set, an NMI interrupt or error exists in the Messaging 
Unit. When clear, no error exists.

07 02
DMA Channel 2 Error - when set, a PCI or local bus error condition exists within DMA 
channel. When clear, no error exists.

06 02
DMA Channel 1 Error - when set, a PCI or local bus error condition exists within DMA 
channel. When clear, no error exists.

05 02
DMA Channel 0 Error - when set, a PCI or local bus error condition exists within DMA 
channel. When clear, no error exists.

04 02
Secondary Bridge Error - when set, a PCI error condition exists within the secondary 
interface of the bridge. When clear, no error exists.

03 02
Primary Bridge Interface Error - when set, a PCI error condition exists within the primary 
interface of the bridge. When clear, no error exists.

02 02
Secondary ATU Error - when set, a PCI or local bus error condition exists within the 
secondary ATU. When clear, no error exists.

01 02
Primary ATU Error - when set, a PCI or local bus error condition exists within the 
primary ATU. When clear, no error exists.

PCI

LBA

28 24 20 16 12 8 4 031

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na
8-43

8.4.8 Interrupt Controller Register Access Requirements

A load instruction that accesses the IPND, IMSK, IMAP2:0 or ICON register has a latency of one
internal processor cycle. A store access to an interrupt register is synchronous with respect to the
next instruction; that is, the operation completes fully and all state changes take effect before the
next instruction begins execution.

00 02
i960 core Error - when set, an error condition caused by the i960 core exists within the 
internal memory controller. When clear, no error exists.



INTERRUPTS

Interrupts can be enabled and disabled quickly by the intdis and inten instructions, which take
four cycles each to execute. intctl takes a few cycles longer because it returns the previous
interrupt enable value. See CHAPTER 6, INSTRUCTION SET REFERENCE for more
information on these instructions.

8.4.9 Default and Reset Register Values

The interrupt logic is reset by the primary PCI reset signal or through software. Table 8-19 shows
the power-up and reset values. Refer to section 11.4, INITIAL MEMORY IMAGE (IMI)
(pg. 11-11) for more information on register values after reset.

Table 8-19.  Default Interrupt Routing and Status Values Summary

Register Default Value Description

PCI Interrupt Routing Select Register 0000 0000H

S_INTA#/XINT0# routed to the P_INTXA#

S_INTB#/XINT1# routed to the P_INTXB#

S_INTC#/XINT2# routed to the P_INTXC#

S_INTD#/XINT3# routed to the P_INTXD#

SDER Secondary Decode Enable Register 0000H All NMI# sources are enabled

NMI Interrupt Status Register 0000 0000H No interrupts set

XINT7 Interrupt Status Register 0000 0000H No interrupts set

XINT6 Interrupt Status Register 0000 0000H No interrupts set

IPND undefined
Software responsible for clearing this 
register before unmasking any interrupts

IMSK 0000 0000H All interrupts masked

ICON
Initial Image in 
Control Table

Set to user’s values

IMAP2:0
Initial Image in 
Control Table

Set to user’s values
8-44

8.5 OPTIMIZING INTERRUPT PERFORMANCE

Figure 8-9 depicts the path from interrupt source to interrupt service routine. This section
discusses interrupt performance in general and suggests techniques the application can use to get
the best interrupt performance.



8

INTERRUPTS

set bit in IPND

Dedicated Interrupt Non-Maskable Interrupt (NMI#)

is
int.prio

> PC.pr NO

YES

signal core to 
process interrupt

Software Interrupt

is
IMSK

ANDed with
IPND
= 0?

YES

get vector from 
IMAP register

NO
PC.s = 1

SIPR = 

get vector in field 1

set corresponding

New PC = 

state = interrupted (PC.s = 1)
mode = supervisor (PC.em = 1)

YES
software
interrupt

NO

store interrupt
record at FP - 16

pending bits in
interrupt table

interrupt priority

or = 31?

?

FP = SP aligned to 
next 16 byte boundary

+16

clear trace fault pending bit (TC.tfp)

clear trace enable bit (TC.te)

vector = 248

NO

YES

continue normal

operation

(Test for external

is

ICON.gid

= 0?

update SIPR with
next highest priority

read pending interrupt bits;
clear pending interrupt bits

in interrupt table,

 interrupts enabled)

(See if 
 Interrupt
Priority is 

(Test for
 interrupted
state)

Servicing
NMI#

already

YES

NO

greater than
process 
priority OR
at interrupt
priority=31)
8-45

Figure 8-9.  Interrupt Service Flowchart

YES
SP = interrupt
stack pointer

PFP = FP

get interrupt procedure pointer
SP = FP + 64
IP = interrupt procedure pointer

?

PFP[3:0] = 0111



tries in
 cached
r than

gisters
mming
8.5.1 Interrupt Service Latency

The established measure of interrupt performance is the time required to perform an interrupt task
switch, which is known as interrupt service latency. Latency is the time measured between
interrupt source activation and execution of the first instruction for the accompanying
interrupt-handling procedure.

Interrupt latency depends on interrupt controller configuration and the instruction being executed
at the time of the interrupt. The processor also has a number of cache options that reduce interrupt
latency. In the discussion that follows, interrupt latency is expressed as a number of bus clock
cycles.

8.5.2 Features to Improve Interrupt Performance

The i960 Rx I/O processor employs four methods to reduce interrupt latency:

• Caching interrupt vectors on-chip

• Caching of interrupt handling procedure code

• Reserving register frames in the local register cache

• Caching the interrupt stack in the data cache

8.5.2.1 Vector Caching Option

To reduce interrupt latency, the i960 Rx I/O processors cache some interrupt table vector en
internal data RAM. When the vector cache option is enabled and an interrupt request has a
vector to be serviced, the controller fetches the associated vector from internal RAM rathe
from the interrupt table in memory. 

Interrupts with a vector number with the four least-significant bits equal to 00102 can be cached.
Vectors that can be cached coincide with the vector numbers selected with the mapping re
and assigned to dedicated-mode inputs. The vector caching option is selected when progra
the ICON register; software must explicitly store the vector entries in internal RAM.
Since the internal RAM is mapped to the address space directly, this operation can be performed
using the core’s store instructions. Table 8-20 shows the required vector mapping to specific
locations in internal RAM. For example, the vector entry for vector number 18 must be stored at
RAM location 04H, and so on. 

The NMI# vector is also shown in Table 8-20. This vector is always cached in internal data RAM
at location 0000H. The processor automatically loads this location at initialization with the value
of vector number 248 in the interrupt table.



8

 limit
riority
le to
INTERRUPTS

8.5.2.2 Caching Interrupt Routines and Reserving Register Frames

The time required to fetch the first instructions of an interrupt-handling procedure affects interrupt
response time and throughput. The controller reduces this fetch time by caching interrupt
procedures or portions of procedures in the i960 Rx I/O processor’s instruction cache.

To decrease interrupt latency for high priority interrupts (priority 28 and above), software can
the number of frames in the local register cache available to code running at a lower p
(priority 27 and below). This ensures that some number of free frames are availab
high-priority interrupt service routines. See section 4.2, LOCAL REGISTER CACHE (pg. 4-2),

Table 8-20.  Location of Cached Vectors in Internal RAM

Vector Number (Binary) Vector Number (Decimal) Internal RAM Address

(NMI#) 248 0000H

0001 00102 18 0004H

0010 00102 34 0008H

0011 00102 50 000CH

0100 00102 66 0010H

0101 00102 82 0014H

0110 00102 98 0018H

0111 00102 114 001CH

1000 00102 130 0020H

1001 00102 146 0024H

1010 00102 162 0028H

1011 00102 178 002CH

1100 00102 194 0030H

1101 00102 210 0034H

1110 00102 226 0038H

1111 00102 242 003CH
8-47

for more details.

8.5.2.3 Caching the Interrupt Stack

By locating the interrupt stack in memory that can be cached by the data cache, the performance of
interrupt returns can be improved. This is because accesses to the interrupt record by the interrupt
return can be satisfied by the data cache. See section 12.2, PROGRAMMING THE PHYSICAL
MEMORY ATTRIBUTES (PMCON REGISTERS) (pg. 12-3) for details on how to enable data
caching for portions of memory.



suffi-
 For
Base

s.
INTERRUPTS

8.5.3 Base Interrupt Latency

In many applications, the processor’s instruction mix and cache configuration are known 
ciently well to use typical interrupt latency in calculations of overall system performance.
example, a timer interrupt may frequently trigger a task switch in a multi-tasking kernel. 
interrupt latency assumes the following:

• Single-cycle RISC instruction is interrupted.

• Frame flush does not occur.

• Bus queue is empty.

• Cached interrupt handler.

• No interaction of faults and interrupts (i.e., a stable system).

Table 8-21 shows the base latencies for all interrupt types, with varying vector caching option

8.5.4 Maximum Interrupt Latency

Table 8-21.  Base Interrupt Latency

Interrupt Type Vector Caching Enabled Typical 80960Rx Latency (Bus Clocks)

NMI# Yes 30

 XINT5:4#, TINT1:0
Yes 34

No 40+a

 XINT7:6# XINT3:0#
Yes 35

No 41+a

Software
Yes 68

No 69+a

NOTES:
1. a = MAX (0,N - 7)

where “N” is the number of bus cycles needed to perform a word load.
8-48

In real-time applications, worst-case interrupt latency must be considered for critical handling of
external events. For example, an interrupt from a mechanical subsystem may need service to
calculate servo loop parameters to maintain directional control. Determining worst-case latency
depends on knowledge of the processor’s instruction mix and operating environment as well as the
interrupt controller configuration. Excluding certain very long, uninterruptible instructions from
critical sections of code reduces worst-case interrupt latency to levels approaching the base
latency.



8

INTERRUPTS

The following tables present worst case interrupt latencies based on possible execution of divo
(r15 destination), divo (r3 destination), calls or flushreg instructions or software interrupt
detection. The assumptions for these tables are the same as for Table 8-21, except for instruction
execution.

Table 8-22.  Worst-Case Interrupt Latency Controlled by divo to Destination r15

Interrupt Type Vector Caching Enabled Worst 80960Rx Latency (Bus Clocks)1

NMI# Yes 43

XINT5:4#, TINT1:0
Yes 45

No 45+a

XINT7:6# XINT3:0#
Yes 46

No 46+a

NOTES:
1. a = MAX (0,N - 11), where “N” is the number of bus cycles needed to perform a word load.

Table 8-23.  Worst-Case Interrupt Latency Controlled by divo to Destination r3 

Interrupt Type Vector Caching Enabled Worst 80960Rx Latency (Bus Clocks)1

NMI# Yes 60

 XINT5:4#, TINT1:0
Yes 65

No 72+a

 XINT7:6# XINT3:0#
Yes 66

No 73+a

NOTES:
1. a = MAX (0,N - 7), where “N” is the number of bus cycles needed to perform a word load.

Table 8-24.  Worst-Case Interrupt Latency Controlled by calls 
8-49

Interrupt Type Vector Caching Enabled Worst 80960Rx Latency (Bus Clocks)1

NMI# Yes 54+a

 XINT5:4#, TINT1:0
Yes 58+a

No 66+a+b

 XINT7:6# XINT3:0#
Yes 59+a

No 67+a+b

NOTES:
1. a = MAX (0,N - 4)

b = MAX (0,N - 7)

where “N” is the number of bus cycles needed to perform a word load.



INTERRUPTS

8.5.5 Avoiding Certain Destinations for MDU Operations

Table 8-25.  Worst-Case Interrupt Latency When Delivering a Software Interrupt

Interrupt Type Vector Caching Enabled Worst 80960Rx Latency (Bus Clocks)

NMI# Yes 97

 XINT5:4#, TINT1:0
Yes 99

No 107+a

 XINT7:6# XINT3:0#
Yes 100

No 108+a

NOTES:
1. a = MAX (0,N - 7), where “N” is the number of bus cycles needed to perform a word load.

Table 8-26.  Worst-Case Interrupt Latency Controlled by flushreg of One Stack 
Frame

Interrupt Type
Vector Caching 

Enabled
Worst 80960Rx Latency (Bus Clocks)

NMI# Yes 78+a+b

 XINT5:4#, TINT1:0
Yes 82+a+b

No 89+a+b+c

 XINT7:6# XINT3:0#
Yes 83+a+b

No 90+a+b+c

NOTES:
1. a = MAX (0, M - 15)

b = MAX (0, M - 28)
c = MAX (0, N - 7)

where “M” is the number of bus cycles needed to perform a quad word store and “N” is the number of bus 
cycles needed to perform a word load. Interrupt latency increases rapidly as the number of flushed stack 
frames increases.
8-50

Typically, when delivering an interrupt, the processor attempts to push the first four local registers
(pfp, sp, rip, and r3) onto the local register cache as early as possible. Because of
register-interlock, this operation is stalled until previous instructions return their results to these
registers. In most cases, this is not a problem; however, in the case of instructions performed by
the Multiply/Divide Unit (divo, divi, ediv, modi, remo, and remi), the processor could be stalled
for many cycles waiting for the result and unable to proceed to the next step of interrupt delivery.

Interrupt latency can be improved by avoiding the first four local registers as the destination for a
Multiply/Divide Unit operation. (Registers pfp, sp, and rip should be avoided anyway for general
operations as these are used for procedure linking.)



8

INTERRUPTS

8.5.6 Secondary PCI to Primary PCI Interrupt Routing Latency

The interrupt routing logic accepts the changes to the routing control value written to the PIRSR
register one clock after the write has completed. There is a one clock delay from the time that the
interrupt is recognized on the input of the mux until the signal is driven either to the i960 core
interrupt controller or the PCI output interrupt pins.
8-51





9
FAULTS





9

nternal
 cause

h an

et of
 handle
CHAPTER 9
FAULTS

This chapter describes the i960® Rx I/O processor’s fault handling facilities. Subjects covered
include the fault handling data structures and fault handling mechanisms. See section 9.10,
FAULT REFERENCE (pg. 9-22) for detailed information on each fault type.

9.1 FAULT HANDLING OVERVIEW

The i960 processor architecture defines various conditions in code and/or the processor’s i
state that could cause the processor to deliver incorrect or inappropriate results or that could
it to choose an undesirable control path. These are called fault conditions. For example, the archi-
tecture defines faults for divide-by-zero and overflow conditions on integer calculations wit
inappropriate operand value.

As shown in Figure 9-1, the architecture defines a fault table, a system procedure table, a s
fault handling procedures and stacks (user stack, supervisor stack and interrupt stack) to
processor-generated faults.

Processor

Fault

Fault Fault

Supervisor
System

Table

Procedure 
Table

Handling
Procedures

Stack
9-1

Figure 9-1.  Fault-Handling Data Structures

User Stack



er to

 to the

on on

h the

edure.
FAULTS

The fault table contains pointers to fault handling procedures. The system procedure table
optionally provides an interface to any fault handling procedure and allows faults to be handled in
supervisor mode. Stack frames for fault handling procedures are created on either the user or
supervisor stack, depending on the mode in which the fault is handled. When the processor is in
the interrupted state, the processor uses the interrupt stack.

Once these data structures and the code for the fault procedures are established in memory, the
processor handles faults automatically and independently from application software. 

The processor can detect a fault at any time while executing instructions, whether from a program,
interrupt handling procedure or fault handling procedure. When a fault occurs, the processor
determines the fault type and selects a corresponding fault handling procedure from the fault table.
It then invokes the fault handling procedure by means of an implicit call. As described later in this
chapter, the fault handler call can be:

• A local call (call-extended operation)

• A system-local call (local call through the system procedure table)

• A system-supervisor call (supervisor call through the system procedure table)

A normal fault condition is handled by the processor in the following manner:

• The current local registers are saved and cached on-chip. 

• PFP = FP and the value 001 is written to the Return Type Field (Fault Call). Ref
section 7.8, RETURNS (pg. 7-20) for more information.

• When the fault call is a system-supervisor call from user mode, the processor switches
supervisor stack; otherwise, SP is re-aligned on the current stack. 

• The processor writes the fault record on the new stack. This record includes informati
the fault and the processor’s state when the fault was generated. 

• The Instruction Pointer (IP) of the first instruction of the fault handler is accessed throug
fault table or through the system procedure table (for system fault calls).

After the fault record is created, the processor executes the selected fault handling proc
9-2

When a fault is recoverable (i.e., the program can be resumed after handling the fault) the Return
Instruction Pointer (RIP) is defined for the fault being serviced (see section 9.10, FAULT
REFERENCE (pg. 9-22), and the processor resumes execution at the RIP upon return from the
fault handler. When the RIP is undefined, the fault handling procedure can create one by using the
flushreg instruction followed by a modification of the RIP in the previous frame. The fault
handler can also call a debug monitor or reset the processor instead of resuming prior execution. 

This procedure call mechanism also handles faults that occur:

• While the processor is servicing an interrupt

• While the processor is servicing another fault



9

FAULTS

9.2 FAULT TYPES

The i960 architecture defines a basic set of faults that are categorized by type and subtype. Each
fault has a unique type and subtype number. When the processor detects a fault, it records the fault
type and subtype numbers in the fault record. It then uses the type number to select the fault
handling procedure. 

The fault handling procedure can optionally use the subtype number to select a specific fault
handling action. The i960 Rx I/O processor recognizes i960 architecture-defined faults and a new
fault subtype for detecting unaligned memory accesses. Table 9-1 lists all faults that the i960 Rx
I/O processor detects, arranged by type and subtype. Text that follows the table gives column
definitions.

Table 9-1.  i960® Rx I/O Processor Fault Types and Subtypes 

Fault Type Fault Subtype Fault Record

Number Name
Number or 
Bit Position

Name

0H PARALLEL NA NA
see section 9.6.4, Parallel 
Faults (pg. 9-10)

1H TRACE

Bit 1

Bit 2

Bit 3

Bit 4

Bit 5

Bit 6

Bit 7

INSTRUCTION 

BRANCH 

CALL 

RETURN 

PRERETURN 

SUPERVISOR 

MARK/BREAKPOINT

0001 0002H

0001 0004H

0001 0008H

0001 0010H

0001 0020H

0001 0040H

0001 0080H

2H OPERATION

1H

2H

3H

4H

INVALID_OPCODE

UNIMPLEMENTED

UNALIGNED

INVALID_OPERAND

0002 0001H

0002 0002H

0002 0003H

0002 0004H

1H INTEGER_OVERFLOW 0003 0001H
9-3

3H ARITHMETIC
2H ZERO-DIVIDE 0003 0002H

4H Reserved

5H CONSTRAINT 1H RANGE 0005 0001H

6H Reserved

7H PROTECTION Bit 1 LENGTH 0007 0002H

8H - 9H Reserved

AH TYPE 1H MISMATCH 000A 0001H

BH - FH Reserved



 (2) as
 of
 more

 are
ault

fault

l fault
 those
mbers.
4H is
y 4H

n be
btains a

ses the
 to the
dling
FAULTS

In Table 9-1:

• The first (left-most) column contains the fault type numbers in hexadecimal.

• The second column shows the fault type name.

• The third column gives the fault subtype number as either: (1) a hexadecimal number or
a bit position in the fault record’s 8-bit fault subtype field. The bit position method
indicating a fault subtype is used for certain faults (such as trace faults) in which two or
fault subtypes may occur simultaneously.

• The fourth column gives the fault subtype name. For convenience, individual faults
referenced by their fault-subtype names. Thus an OPERATION.INVALID_OPERAND f
is referred to as an INVALID_OPERAND fault; an ARITHMETIC.INTEGER_OVERFLOW
fault is referred to as an INTEGER_OVERFLOW fault.

• The fifth column shows the encoding of the word in the fault record that contains the 
type and fault subtype numbers.

Other i960 processor family members may provide extensions that recognize additiona
conditions. Fault type and subtype encoding allows all faults to be included in the fault table:
that are common to all i960 processors and those that are specific to one or more family me
The fault types are used consistently for all family members. For example, Fault Type 
reserved for floating point faults. Any i960 processor with floating point operations uses Entr
to store the pointer to the floating point fault handling procedure.

9.3 FAULT TABLE

The fault table (Figure 9-2) is the processor’s pathway to the fault handling procedures. It ca
located anywhere in the address space. From the Process Control Block, the processor o
pointer to the fault table during initialization.

The fault table contains one entry for each fault type. When a fault occurs, the processor u
fault type to select an entry in the fault table. From this entry, the processor obtains a pointer
fault handling procedure for the type of fault that occurred. Once called, a fault han
9-4

procedure has the option of reading the fault subtype or subtypes from the fault record when
determining the appropriate fault recovery action.



9

FAULTS

31 0

TYPE Fault Entry

PROTECTION Fault Entry

CONSTRAINT Fault Entry

ARITHMETIC Fault Entry

OPERATION Fault Entry

TRACE Fault Entry

PARALLEL/OVERRIDE Fault Entry

Local-Call Entry

Fault-Handler Procedure Address

System-Call Entry

Fault-Handler Procedure Number

0000 027FH

n

n+4

n

n+4

012

0

01

00H

08H

10H

18H

20H

28H

30H

38H

40H

48H

50H

FCH

0

31

31

Fault Table

012
9-5

Figure 9-2.  Fault Table and Fault Table Entries

Reserved (Initialize to 0)



) and

 three

a fault,
e fault

nerated
essor

he
of an
y is
 not

 must
H.
ling
that
m
visor
FAULTS

As indicated in Figure 9-2, two fault table entry types are allowed: local-call entry and system-call
entry. Each is two words in length. The entry type field (bits 0 and 1 of the entry’s first word
the value in the entry’s second word determine the entry type.

Other entry types (012 and 112) are reserved and have unpredictable behavior. 

To summarize, a fault handling procedure can be invoked through the fault table in any of
ways: a local call, a system-local call or a system-supervisor call.

9.4 STACK USED IN FAULT HANDLING

The i960 architecture does not define a dedicated fault handling stack. Instead, to handle 
the processor uses either the user, interrupt or supervisor stack, whichever is active when th
is generated. There is, however, one exception: if the user stack is active when a fault is ge
and the fault handling procedure is called with an implicit system supervisor call, the proc
switches to the supervisor stack to handle the fault.

9.5 FAULT RECORD

local-call entry
(type 002)

Provides an instruction pointer for the fault handling procedure. T
processor uses this entry to invoke the specified procedure by means 
implicit local-call operation. The second word of a local procedure entr
reserved. It must be set to zero when the fault table is created and
accessed after that.

system-call entry
(type 102)

Provides a procedure number in the system procedure table. This entry
have an entry type of 102 and a value in the second word of 0000 027F
Using this entry, the processor invokes the specified fault hand
procedure by means of an implicit call-system operation similar to 
performed for the calls instruction. A fault handling procedure in the syste
procedure table can be called with a system-local call or a system-super
call, depending on the entry type in the system-procedure table.
9-6

When a fault occurs, the processor records information about the fault in a fault record in memory.
The fault handling procedure uses the information in the fault record to correct or recover from the
fault condition and, if possible, resume program execution. The fault record is stored on the same
stack that the fault handling procedure will use to handle the fault.



9

btype
ields,
 that

pective
e fault

e fault
nding

raph for
FAULTS

9.5.1 Fault Record Description

Figure 9-3 shows the fault record’s structure. In this record, the fault’s type number and su
number (or bit positions for multiple subtypes) are stored in the fault type and subtype f
respectively. The Address of Faulting Instruction Field contains the IP of the instruction
caused the processor to fault.

When a fault is generated, the existing PC and AC register contents are stored in their res
fault record fields. The processor uses this information to resume program execution after th
is handled. 

The Resumption Field is used to store information about a pending trace fault. When a trac
and a non-trace fault occur simultaneously, the non-trace fault is serviced first and the pe
trace may be lost depending on the non-trace fault encountered. The Trace Reporting parag
each fault specifies whether the pending trace is kept or lost.
9-7



FAULTS

031

Process Controls

Address of Faulting Instruction (n)

NFP-20

NFP-16

NFP-12

NFP-8

OTYPE OSUBTYPE OFLAGS 

Arithmetic Controls

FTYPE (N) FSUBTYPE (N)FFLAGS (N)

Override Fault Data

Fault Ddata

NFP-96

NFP-88

NFP-84

NFP-76

NFP-72

NFP-68

NFP-64

NFP-52

NFP-48

NFP-44

NFP-32

FTYPE (1) FSUBTYPE (1)

Resumption InformationN

Fault Data

Is
80

96
0 

Lo
ca

l
B

us
 A

dd
re

ss

W
as

80
96

0 
Lo

ca
l

B
us

 A
dd

re
ss

NFP-64

NFP-4-n*32

NFP-8-n*32

NFP-12-n*32

NFP-20-n*32

NFP-24-n*32

NFP-(n+1)*32
9-8

Figure 9-3.  Fault Record

Reserved

NFP-4Address of Faulting Instruction (1)

28 24 20 16 12 8 4 031

NOTES: “NFP” means “New Frame Pointer”



9

FAULTS

9.5.2 Fault Record Location

The fault record is stored on the stack that the processor uses to execute the fault handling
procedure. As shown in Figure 9-4, this stack can be the user stack, supervisor stack or interrupt
stack. The fault record begins at byte address NFP-1. NFP refers to the new frame pointer that is
computed by adding the memory size allocated for padding and the fault record to the new stack
pointer (NSP). The processor rounds the FP to the next 16-byte boundary and then allocates 80
bytes for the fault record. 

Current Frame

Padding Area

Fault Record

New Frame

NSP1

NFP-4

NFP

FP

SP

031

Fault 
Record

Stack
Growth

Local Stack or Supervisor Stack2

Current Stack
(User, Supervisor, or Interrupt Stack)

031

NOTES:
1. If the call to the fault handler procedure does not require a stack switch, the new stack pointer (NSP) is the same as SP.
2. If the processor is in user mode and the fault handler procedure is called with a system supervisor call, the processor

switches to the supervisor stack.
9-9

Figure 9-4.  Storage of the Fault Record on the Stack

9.6 MULTIPLE AND PARALLEL FAULTS

Multiple fault conditions can occur during a single instruction execution and during multiple
instruction execution when the instructions are executed by different units within the processor.
The following sections describe how faults are handled under these conditions.



 in the

 not
FAULTS

9.6.1 Multiple Non-Trace Faults on the Same Instruction

Multiple fault conditions can occur during a single instruction execution. For example, an
instruction can have an invalid operand and unaligned address. When this situation occurs, the
processor is required to recognize and generate at least one of the fault conditions. The processor
may not detect all fault conditions and will report only one detected non-trace fault on a single
instruction.

In a multiple fault situation, the reported fault condition is left to the implementation. 

9.6.2 Multiple Trace Fault Conditions on the Same Instruction

Trace faults on different instructions cannot happen concurrently, because trace faults are precise
(see section 9.9, PRECISE AND IMPRECISE FAULTS (pg. 9-20)). Multiple trace fault
conditions on the same instruction are reported in a single trace fault record (with the exception of
prereturn trace, which always happens alone). To support multiple fault reporting, the trace fault
uses bit positions in the fault-subtype field to indicate occurrences of multiple faults of the same
type (see Table 9-1).

9.6.3 Multiple Trace and Non-Trace Fault Conditions on the Same Instruction

The execution of a single instruction can create one or more trace fault conditions in addition to
multiple non-trace fault conditions. When this occurs:

• The pending trace is dismissed if any of the non trace faults dismisses it, as mentioned
“Trace Reporting” paragraph for that fault in section 9.10, FAULT REFERENCE (pg. 9-22).

• The processor services one of the non trace faults.

• Finally, the trace is serviced upon return from the non-trace fault handler if it was
dismissed in step 1.

9.6.4 Parallel Faults
9-10

The i960 Rx I/O processor exploits the architecture’s tolerance of out-of-order instruction
execution by issuing instructions to independent execution units on the chip. The following
subsections describe how the processor handles faults in this environment.



9

FAULTS

9.6.4.1 Faults on Multiple Instructions Executed in Parallel

When AC.nif=0, imprecise faults relative to different instructions executing in parallel may be
reported in a single parallel fault record. For these conditions, the processor calls a unique fault
handler, the PARALLEL fault handler (see section 9.9.4, No Imprecise Faults (AC.nif) Bit
(pg. 9-21)). This mechanism allows instructions that can fault to be executed in parallel with other
instructions or out of order. 

In parallel fault situations, the processor saves the fault type and subtype of the second and
subsequent faults detected in the optional section of the fault record. The optional section is the
area below NFP-64 where the fault records for each of the parallel faults that occurred are stored.
The fault handling procedure for parallel faults can then analyze the fault record and handle the
faults. The fault record for parallel faults is described in the next section.

When the RIP is undefined for at least one of the faults found in the parallel fault record, then the
RIP of the parallel fault handler is undefined. In this case, the parallel fault handling procedure can
either create a RIP and return or call a debug monitor to analyze the faults.

When the RIP is defined for all faults found in the fault record, then it will point to the next
instruction not yet executed. The parallel fault handler can simply return to the next instruction not
yet executed with a ret instruction.

Consider the following code example, where the muli and the addi instructions both have overflow
conditions. AC.om=0, AC.nif = 0, and both instructions are in the instruction cache at the time of
their execution. The addi and muli are allowed to execute in parallel because AC.nif = 0 and the
faults that these instructions can generate (ARITHMETIC) are imprecise.

The fault on the addi is detected before the fault on the muli because the muli takes longer to
execute. The fault call synchronizes faults on the way to the overflow fault handler for the addi
instruction (see section 9.9.5, Controlling Fault Precision (pg. 9-21)), which is when the muli fault

muli g2, g4, g6;
addi g8, g9, g10; # results in integer overflow
9-11

is detected. The processor builds a parallel fault record with information relative to both faults and
calls the parallel fault handler. In the fault handler, ARITHMETIC faults may be recovered by
storing the desired result of the instruction in the proper destination register and setting the AC.of
flag (optional) to indicate that an overflow occurred. A ret at the end of the parallel fault handler
routine will then return to the next instruction not yet executed in the program flow.

On the i960 Rx I/O processor, the muli overflow fault is the only fault that can happen with a
delay. Therefore, parallel fault records can report a maximum of 2 faults, one of which must be a
muli ARITHMETIC.INTEGER_OVERFLOW fault.



dling
r

tional
hese
P-68.
ss-of-
ccur,

or the
d one

rvice a
FAULTS

A parallel fault handler must be accessed through a system-supervisor call. Local and system-local
parallel fault handlers are not supported by the architecture and have unpredictable behavior.
Tracing is disabled upon entry into the parallel fault handler (PC.te is cleared). It is restored upon
return from the handler. To prevent infinite internal loops, the parallel fault handler should not set
PC.te.

9.6.4.2 Fault Record for Parallel Faults

When parallel faults occur, the processor selects one of the faults and records it in the first 16
bytes of the fault record as described in section 9.5.1, Fault Record Description (pg. 9-7). The
remaining parallel faults are written to the fault record’s optional section, and the fault han
procedure for parallel faults is invoked. Figure 9-3 shows the structure of the fault record fo
parallel faults.

The OType/OSubtype word at NFP - 20 contains the number of parallel faults. The op
section also contains a 32-byte parallel fault record for each additional parallel fault. T
parallel fault records are stored incrementally in the fault record starting at byte offset NF
The fault record for each additional fault contains only the fault type, fault subtype, addre
faulting-instruction and the optional fault section. (For example, when two parallel faults o
the fault record for the second fault is located from NFP-96 to NFP-65.)

For the second fault recorded (n=2), the relationship (NFP-8-(n * 32)) reduces to NFP-72. F
i960 Rx I/O processor, a maximum of two faults are reported in the parallel fault record, an
of them must be the ARITHMETIC.INTEGER_OVERFLOW fault on a muli instruction.

9.6.5 Override Faults

The i960 Rx I/O processor can detect a fault condition while the processor is preparing to se
previously detected fault. When this occurs, it is called an override condition. This section
describes this condition and how the processor handles it.

A normal fault condition is handled by the processor in the following manner:
9-12

• The current local registers are saved and cached on-chip. 

• PFP = FP and the value 001 is written to the Return Type Field (Fault Call). Refer to
section 7.8, RETURNS (pg. 7-20) for more information.

• When the fault call is a system-supervisor call from user mode, the processor switches to the
supervisor stack; otherwise, SP is re-aligned on the current stack. 

• The processor writes the fault record on the new stack. 

• The IP of the first instruction of the fault handler is accessed through the fault table or through
the system procedure table (for system fault calls).



9

ssful.
ethod

es the
fault,
-data

 the

ndling

 to a
ide fault

ystem-
ictable
. It is
ndler

arallel
cessor

ndling
FAULTS

A fault that occurs during any of the above actions is called an override fault. In response to this
condition, the processor does the following:

• Switches the execution mode to supervisor.

• Selects the override condition that shows that the writing of the fault record was unsucce
If no such fault exists, the processor selects one of the other fault conditions. This m
ensures that the fault handler has information regarding the fault record write.

• Saves information pertaining to the override condition selected. The fault record describ
first fault as described previously. Field OType contains the fault type of the second 
field OSubtype contains the fault subtype of the second fault and field override-fault
contains what would normally be the fault data field for the second fault type. 

• Attempts to access the IP of the first instruction in the override fault handler through
system procedure table.

It should be noted that a fault that occurs while the processor is actually executing a fault ha
procedure is not an override fault.

The override fault entry is entry 0. When the override fault entry in the fault table points
location beyond the system procedure table, the processor enters system error mode. Overr
conditions include: PROTECTION and OPERATION.UNIMPLEMENTED faults.

An override fault handler must be accessed through a system-supervisor call. Local and s
local override fault handlers are not supported by the architecture and have an unpred
behavior. Tracing is disabled upon entry into the override fault handler (PC.te is cleared)
restored upon return from the handler. To prevent infinite internal loops, the override fault ha
should not set PC.te.

9.6.6 System Error

When a fault is detected while the processor is in the process of servicing an override or p
fault, the processor enters the system error state. Note that “servicing” indicates that the pro
has detected the override or parallel fault, but has not begun executing the fault ha
9-13

procedure. This type of error causes the processor to enter a system error state. In this state, the
processor uses only one read bus transaction to signal the fail code message; the address of the bus
transaction is the fail code itself. See section 11.3.1.5, FAIL# Code (pg. 11-11).

9.7 FAULT HANDLING PROCEDURES

The fault handling procedures can be located anywhere in the address space except within the on-
chip data RAM or MMR space. Each procedure must begin on a word boundary. The processor
can execute the procedure in user or supervisor mode, depending on the fault table entry type.



ork on
a 

e can
n (or

 state

y is to

ulting
FAULTS

9.7.1 Possible Fault Handling Procedure Actions

The processor allows easy recovery from many faults that occur. When fault recovery is possible,
the processor’s fault handling mechanism allows the processor to automatically resume w
the program or pending interrupt when the fault occurred. Resumption is initiated with ret
instruction in the fault handling procedure.

When recovery from the fault is not possible or not desirable, the fault handling procedur
take one of the following actions, depending on the nature and severity of the fault conditio
conditions, in the case of multiple faults):

• Return to a point in the program or interrupt code other than the point of the fault.

• Call a debug monitor.

• Perform processor or system shutdown with or without explicitly saving the processor
and fault information.

When working with the processor at the development level, a common fault handling strateg
save the fault and processor state information and call a debugging tool such as a monitor. 

9.7.2 Program Resumption Following a Fault

Because of the wide variety of faults, they can occur at different times with respect to the fa
instruction:

• Before execution of the faulting instruction (e.g., fetch from on-chip RAM)

• During instruction execution (e.g., integer overflow)

• Immediately following execution (e.g., trace)

9.7.2.1 Faults Happening Before Instruction Execution

The following fault types occur before instruction execution:

• ARITHMETIC.ZERO_DIVIDE
9-14

• TYPE.MISMATCH

• PROTECTION.LENGTH

• All OPERATION subtypes except UNALIGNED

For these faults, the contents of a destination register are lost, and memory is not updated. The RIP
is defined for the ARITHMETIC.ZERO_DIVIDE fault only. In some cases the fault occurs before
the faulting instruction is executed, the faulting instruction may be fixed and re-executed upon
return from the fault handling procedure. 



9

lting

 be
after the
tored
ers, the

turn to

w is
FAULTS

9.7.2.2 Faults Happening During Instruction Execution

The following fault types occur during instruction execution:

• CONSTRAINT.RANGE

• OPERATION.UNALIGNED

• ARITHMETIC.INTEGER_OVERFLOW

For these faults, the fault handler must explicitly modify the RIP to return to the fau
application (except for ARITHMETIC.INTEGER_OVERFLOW). 

When a fault occurs during or after execution of the faulting instruction, the fault may
accompanied by a program state change such that program execution cannot be resumed 
fault is handled. For example, when an integer overflow fault occurs, the overflow value is s
in the destination. When the destination register is the same as one of the source regist
source value is lost, making it impossible to re-execute the faulting instruction.

9.7.2.3 Faults Happening After Instruction Execution

For these faults, the Return Instruction Pointer (RIP) is defined and the fault handler can re
the next instruction in the flow:

• TRACE

• ARITHMETIC.INTEGER_OVERFLOW

In general, resumption of program execution with no changes in the program’s control flo
possible with the following fault types or subtypes:

• All TRACE Subtypes

The effect of specific fault types on a program is defined in section 9.10, FAULT REFERENCE
(pg. 9-22) under the heading Program State Changes.
9-15

9.7.3 Return Instruction Pointer (RIP)

When a fault handling procedure is called, a Return Instruction Pointer (RIP) is saved in the image
of the RIP in the faulting frame. The RIP can be accessed at address PFP+8 while executing the
fault handler after a flushreg. The RIP in the previous frame points to an instruction where
program execution can be resumed with no break in the program’s control flow. It generally points
to the faulting instruction or to the next instruction to be executed. In some instances, however, the
RIP is undefined. RIP content for each fault is described in section 9.10, FAULT REFERENCE
(pg. 9-22).



 the

losely
FAULTS

9.7.4 Returning to the Point in the Program Where the Fault Occurred

As described in section 9.7.2, Program Resumption Following a Fault (pg. 9-14), most faults can
be handled such that program control flow is not affected. In this case, the processor allows a
program to be resumed at the point where the fault occurred, following a return from a fault
handling procedure (initiated with a ret instruction). The resumption mechanism used here is
similar to that provided for returning from an interrupt handler.

Also, to restore the PC register from the fault record upon return from the fault handler, the fault
handling procedure must be executed in supervisor mode either by using a supervisor call or by
running the program in supervisor mode. See the pseudocode in section 6.2.54, ret (pg. 6-92).

9.7.5 Returning to a Point in the Program Other Than Where the Fault 
Occurred

A fault handling procedure can also return to a point in the program other than where the fault
occurred. To do this, the fault procedure must alter the RIP. To do this reliably, the fault handling
procedure should perform the following steps:

1. Flush the local register sets to the stack with a flushreg instruction.

2. Modify the RIP in the previous frame.

3. Clear the trace-fault-pending flag in the fault record’s process controls field before
return (optional).

4. Execute a return with the ret instruction.

Use this technique carefully and only in situations where the fault handling procedure is c
coupled with the application program. 

9.7.6 Fault Controls
9-16

For certain fault types and subtypes, the processor employs register mask bits or flags that
determine whether or not a fault is generated when a fault condition occurs. Table 9-2 summarizes
these flags and masks, the data structures in which they are located, and the fault subtypes they
affect.

The integer overflow mask bit inhibits the generation of integer overflow faults. The use of this
mask is discussed in section 9.10, FAULT REFERENCE (pg. 9-22).

The Arithmetic Controls no imprecise faults (AC.nif) bit controls the synchronizing of faults for a
category of faults called imprecise faults. The function of this bit is described in section 9.9,
PRECISE AND IMPRECISE FAULTS (pg. 9-20).



9

FAULTS

TC register trace mode bits and the PC register trace enable bit support trace faults. Trace mode
bits enable trace modes; the trace enable bit (PC.te) enables trace fault generation. The use of these
bits is described in the trace faults description in section 9.10, FAULT REFERENCE (pg. 9-22).
Further discussion of these flags is provided in CHAPTER 10, TRACING AND DEBUGGING.

The unaligned fault mask bit is located in the process control block (PRCB), which is read from the
fault configuration word (located at address PRCB pointer + 0CH) during initialization. It controls
whether unaligned memory accesses generate a fault. See section 12.4.2, Bus Transactions Across
Region Boundaries (pg. 12-7).

9.8 FAULT HANDLING ACTION

Once a fault occurs, the processor saves the program state, calls the fault handling procedure and,
if possible, restores the program state when the fault recovery action completes. No software other
than the fault handling procedures is required to support this activity.

Three types of implicit procedure calls can be used to invoke the fault handling procedure: a local
call, a system-local call and a system-supervisor call.

The following subsections describe actions the processor takes while handling faults. It is not

Table 9-2.  Fault Control Bits and Masks

Flag or Mask Name Location Faults Affected

Integer Overflow Mask Bit Arithmetic Controls (AC) Register INTEGER_OVERFLOW

No Imprecise Faults Bit Arithmetic Controls (AC) Register All Imprecise Faults

Trace Enable Bit Process Controls (PC) Register All TRACE Faults

Trace Mode Trace Controls (TC) Register
All TRACE Faults except hardware 
breakpoint traces and fmark

Unaligned Fault Mask Process Control Block (PRCB) UNALIGNED Fault
9-17

necessary to read these sections to use the fault handling mechanism or to write a fault handling
procedure. This discussion is provided for those readers who wish to know the details of the fault
handling mechanism.



 be the

. (See

 from

 of the

e fault

 the
rocess

 (entry
 a local
dure's
FAULTS

9.8.1 Local Fault Call

When the selected fault handler entry in the fault table is an entry type 0002 (a local procedure),
the processor operates as described in section 7.1.3.1, Call Operation (pg. 7-6), with the following
exceptions:

• A new frame is created on the stack that the processor is currently using. The stack can
user stack, supervisor stack or interrupt stack.

• The fault record is copied into the area allocated for it in the stack, beginning at NFP-1
Figure 9-4.)

• The processor gets the IP for the first instruction in the called fault handling procedure
the fault table.

• The processor stores the fault return code (0012) in the PFP return type field.

When the fault handling procedure is not able to perform a recovery action, it performs one
actions described in section 9.7.2, Program Resumption Following a Fault (pg. 9-14).

When the handler action results in recovery from the fault, a ret instruction in the fault handling
procedure allows processor control to return to the program that was executing when th
occurred. Upon return, the processor performs the action described in section 7.1.3.2, Return
Operation (pg. 7-7), except that the arithmetic controls field from the fault record is copied into
AC register. When the processor is in user mode before execution of the return, the p
controls field from the fault record is not copied back to the PC register.

9.8.2 System-Local Fault Call

When the fault handler selects an entry for a local procedure in the system procedure table
type 102), the processor performs the same action as is described in the previous section for
fault call or return. The only difference is that the processor gets the fault handling proce
address from the system procedure table rather than from the fault table. 

9.8.3 System-Supervisor Fault Call
9-18

When the fault handler selects an entry for a supervisor procedure in the system procedure table,
the processor performs the same action described in section 7.1.3.1, Call Operation (pg. 7-6), with
the following exceptions:

• When the fault occurs while in user mode, the processor switches to supervisor mode, reads
the supervisor stack pointer from the system procedure table and switches to the supervisor
stack. A new frame is then created on the supervisor stack.



9

on the
 fault

andler
r mode

ing at

 the

n
edure
lt is a

bed in

edure
. The

en the
om the

 fault
led at

ols done
FAULTS

• When the fault occurs while in supervisor mode, the processor creates a new frame 
current stack. When the processor is executing a supervisor procedure when the
occurred, the current stack is the supervisor stack; when it is executing an interrupt h
procedure, the current stack is the interrupt stack. (The processor switches to superviso
when handling interrupts.)

• The fault record is copied into the area allocated for it in the new stack frame, beginn
NFP-1. (See Figure 9-4.)

• The processor gets the IP for the first instruction of the fault handling procedure from
system procedure table (using the index provided in the fault table entry).

• The processor stores the fault return code (0012) in the PFP register return type field. Whe
the fault is not a trace, parallel or override fault, it copies the state of the system proc
table trace control flag (byte 12, bit 0) into the PC register trace enable bit. When the fau
trace, parallel or override fault, the trace enable bit is cleared. 

On a return from the fault handling procedure, the processor performs the action descri
section 7.1.3.2, Return Operation (pg. 7-7) with the addition of the following:

• The fault record arithmetic controls field is copied into the AC register. 

• When the processor is in supervisor mode prior to the return from the fault handling proc
(which it should be), the fault record process controls field is copied into the PC register
mode is then switched back to user, if it was in user mode before the call. 

• The processor switches back to the stack it was using when the fault occurred. (Wh
processor was in user mode when the fault occurred, this operation causes a switch fr
supervisor stack to the user stack.)

• When the trace-fault-pending flag and trace enable bits are set in the PC field of the
record, the trace fault on the instruction at the origin of the supervisor fault call is hand
this time.

The user should note that PC register restoration causes any changes to the process contr
by the fault handling procedure to be lost.
9-19



t
r.

lts are
onize

ch.

ate a

ot to
FAULTS

9.8.4 Faults and Interrupts

When an interrupt occurs during an instruction that will fault, an instruction that has already
faulted, or fault handling procedure selection, the processor: 

1. Completes the selection of the fault handling procedure.

2. Creates the fault record. 

3. Services the interrupt just prior to executing the first instruction of the fault handling
procedure. 

4. Handles the fault upon return from the interrupt. 

Handling the interrupt before the fault reduces interrupt latency.

9.9 PRECISE AND IMPRECISE FAULTS

As described in section 9.10.5, PARALLEL Faults (pg. 9-29), the i960 architecture — to suppor
parallel and out-of-order instruction execution — allows some faults to be generated togethe

The processor provides two mechanisms for controlling the circumstances under which fau
generated: the AC register no-imprecise-faults bit (AC.nif) and the instructions that synchr
faults. See section 9.9.5, Controlling Fault Precision (pg. 9-21) for more information. Faults are
categorized as precise, imprecise and asynchronous. The following subsections describe ea

9.9.1 Precise Faults

A fault is precise if it meets all of the following conditions:

• The faulting instruction is the earliest instruction in the instruction issue order to gener
fault.

• All instructions after the faulting instruction, in instruction issue order, are guaranteed n
9-20

have executed.

TRACE and PROTECTION.LENGTH faults are always precise. Precise faults cannot be found in
parallel records with other precise or imprecise faults.



9

FAULTS

9.9.2 Imprecise Faults

Faults that do not meet all of the requirements for precise faults are considered imprecise. For
imprecise faults, the state of execution of instructions surrounding the faulting instruction may be
unpredictable. When instructions are executed out of order and an imprecise fault occurs, it may
not be possible to access the source operands of the instruction. This is because they may have
been modified by subsequent instructions executed out of order. However, the RIP of some
imprecise faults (e.g., ARITHMETIC) points to the next instruction that has not yet executed and
guarantees the return from the fault handler to the original flow of execution. Faults that the archi-
tecture allows to be imprecise are OPERATION, CONSTRAINT, ARITHMETIC and TYPE.

9.9.3 Asynchronous Faults

Asynchronous faults are those whose occurrence has no direct relationship to the instruction
pointer. This group includes MACHINE faults, which are not implemented on the 80960Rx. 

9.9.4 No Imprecise Faults (AC.nif) Bit

The Arithmetic Controls no imprecise faults (AC.nif) bit controls imprecise fault generation. When
AC.nif is set, out of order instruction execution is disabled and all faults generated are precise.
Therefore, setting this bit will reduce processor performance. When AC.nif is clear, several
imprecise faults may be reported together in a parallel fault record. Precise faults can never be
found in parallel fault records, thus only more than one imprecise fault occurring concurrently with
AC.nif = 0 can produce a parallel fault.

Compiled code should execute with the AC.nif bit clear, using syncf where necessary to ensure
that faults occur in order. In this mode, imprecise faults are considered to be catastrophic errors
from which recovery is not needed. This also allows the processor to take advantage of internal
pipelining, which can speed up processing time. When only precise faults are allowed, the
processor must restrict the use of pipelining to prevent imprecise faults.

The AC.nif bit should be set if recovery from one or more imprecise faults is required. For
9-21

example, the AC.nif bit should be set if a program needs to handle and recover from unmasked
integer-overflow faults and the fault handling procedure cannot be closely coupled with the
application to perform imprecise fault recovery.

9.9.5 Controlling Fault Precision

The syncf instruction forces the processor to complete execution of all instructions that occur prior
to syncf and to generate all faults before it begins work on instructions that occur after syncf. This
instruction has two uses:

• It forces faults to be precise when the AC.nif bit is clear.



f code

 or

hat is
 fault

ield

fault

ach

 the
d. In
n
h

am

RIP
uted
FAULTS

• It ensures that all instructions are complete and all faults are generated in one block o
before executing another block of code.

The implicit fault call operation synchronizes all faults. In addition, the following instructions
operations perform synchronization of all faults except MACHINE.PARITY:

• Call and return operations including call, callx, calls and ret instructions, plus the implicit
interrupt and fault call operations.

• Atomic operations including atadd and atmod.

9.10 FAULT REFERENCE

This section describes each fault type and subtype and gives detailed information about w
stored in the various fields of the fault record. The section is organized alphabetically by
type. The following paragraphs describe the information that is provided for each fault type.

Fault Type: Gives the number that appears in the fault record fault-type f
when the fault is generated. 

Fault Subtype: Lists the fault subtypes and the number associated with each 
subtype.

Function: Describes the purpose and handling of the fault type and e
subtype. 

RIP: Describes the value saved in the image of the RIP register in
stack frame that the processor was using when the fault occurre
the RIP definitions, “next instruction” refers to the instructio
directly after the faulting instruction or to an instruction to whic
the processor can logically return when resuming progr
execution.

Note that the discussions of many fault types specify that the 
contains the address of the instruction that would have exec
9-22

next had the fault not occurred. 

Fault IP: Describes the contents of the fault record’s fault instruction pointer
field, typically the faulting instruction’s IP.

Fault Data: Describes any values stored in the fault record’s fault data field.

Class: Indicates if a fault is precise or imprecise.

Program State Changes: Describes the process state changes that would prevent re-
executing the faulting instruction if applicable.



9

FAULTS

Trace Reporting: Relates whether a trace fault (other than PRERET) can be detected
on the faulting instruction, also if and when the fault is serviced.

Notes: Additional information specific to particular implementations of the
i960 architecture.
9-23



s 

ro.

ad
FAULTS

9.10.1 ARITHMETIC Faults

Fault Type: 3H

Fault Subtype: Number Name
0H Reserved
1H INTEGER_OVERFLOW
2H ZERO_DIVIDE
3H-FH Reserved

Function: Indicates a problem with an operand or the result of an arithmetic
instruction. An INTEGER_OVERFLOW fault is generated when
the result of an integer instruction overflows its destination and the
AC register integer overflow mask is cleared. Here, the result’n
least significant bits are stored in the destination, where n is
destination size. Instructions that generate this fault are:

An ARITHMETIC.ZERO_DIVIDE fault is generated when the
divisor operand of an ordinal- or integer-divide instruction is ze
Instructions that generate this fault are:

RIP: IP of the instruction that would have executed next if the fault h
not occurred.

Fault IP: IP of the faulting instruction.

Class: Imprecise.

addi subi stis

stib shli ADDI<cc>

muli divi SUBI<cc>

divo divi

ediv remi

remo modi
9-24

Program State Changes: Faults may be imprecise when executing with the AC.nif bit
cleared. INTEGER_OVERFLOW and ZERO_DIVIDE faults may
not be recoverable because the result is stored in the destination
before the fault is generated (e.g., the faulting instruction cannot be
re-executed if the destination register was also a source register for
the instruction). 

Trace Reporting: The trace is reported upon return from the arithmetic fault handler.



9
ese
e
d. 
FAULTS

9.10.2 CONSTRAINT Faults

Fault Type: 5H

Fault Subtype: Number Name
0H Reserved
1H RANGE
2H-FH Reserved

Function: Indicates the program or procedure violated an architectural
constraint.

A CONSTRAINT.RANGE fault is generated when a FAULT<cc>
instruction is executed and the AC register condition code field
matches the condition required by the instruction.

RIP: No defined value.

Fault IP: Faulting instruction.

Class: Imprecise.

Program State Changes: These faults may be imprecise when executing with the AC.nif bit
cleared. No changes in the program’s control flow accompany th
faults. A CONSTRAINT.RANGE fault is generated after th
FAULT<cc> instruction executes. The program state is not affecte

Trace Reporting: Serviced upon return from the Constraint fault handler.
9-25



FAULTS

9.10.3 OPERATION Faults

Fault Type: 2H

Fault Subtype: Number Name
0H Reserved
1H INVALID_OPCODE
2H UNIMPLEMENTED
3H UNALIGNED 
4H INVALID_OPERAND
5H - FH Reserved

Function: Indicates the processor cannot execute the current instruction
because of invalid instruction syntax or operand semantics. 

An INVALID_OPCODE fault is generated when the processor
attempts to execute an instruction containing an undefined opcode
or addressing mode. 

An UNIMPLEMENTED fault is generated when the processor
attempts to execute an instruction fetched from on-chip data RAM,
or when a non-word or unaligned access to a memory-mapped
region is performed, or when attempting to write memory-mapped
region 0xFF0084XX when rights have not been granted.

An UNALIGNED fault is generated when the following conditions
are present: (1) the processor attempts to access an unaligned word
or group of words in non-MMR memory; and (2) the fault is
enabled by the unaligned-fault mask bit in the PRCB fault configu-
ration word. 

An INVALID_OPERAND fault is generated when the processor
attempts to execute an instruction that has one or more operands
having special requirements that are not satisfied. This fault is
generated when specifying a non-defined sysctl, icctl, dcctl or
intctl command, or referencing an unaligned long-, triple- or quad-
9-26

register group, or by referencing an undefined register, or by
writing to the RIP register (r2).

RIP: No defined value.

Fault IP: Address of the faulting instruction.

Fault Data: When an UNALIGNED fault is signaled, the effective address of
the unaligned access is placed in the fault record’s optional data
section, beginning at address NFP-24. This address is useful to
debug a program that is making unintentional unaligned accesses.

Class: Imprecise.



9

FAULTS

Program State Changes: For the INVALID_OPCODE and UNIMPLEMENTED faults
(case: store to MMR), the destination of the faulting instruction is
not modified. (For the UNALIGNED fault, the memory operation
completes correctly before the fault is reported.) In all other cases,
the destination is undefined.

Trace Reporting: OPERATION.UNALIGNED fault: the trace is reported upon return
from the OPERATION fault handler.
All other subtypes: the trace event is lost.

Note: OPERATION.UNALIGNED fault is not implemented on i960 Kx
and Sx CPUs.
9-27



FAULTS

9.10.4 OVERRIDE Faults

Fault Type: Fault table entry = 10H 

The fault type in the fault record on the stack equals the fault type
of the initial fault. The fault type in the internal registers equals the
fault type of the additional fault detected while attempting to
service the initial fault.

Fault Subtype: The fault subtype in the fault record on the stack equals the fault
subtype of the initial fault. The fault subtype in the internal registers
equals the fault subtype of the additional fault detected while
attempting to service the initial fault.

Fault OType: The fault type of the additional fault detected while attempting to
deliver the program fault.

Fault OSubtype: The fault subtype of the additional fault detected while attempting
to deliver the program fault.

Function: The override fault handler must be accessed through a system-
supervisor call. Local and system-local override fault handlers are
not supported and have an unpredictable behavior. Tracing is
disabled upon entry into the override fault handler (PC.te is
cleared). It is restored upon return from the handler. To prevent
infinite internal loops, the override fault handler should not set
PC.te.

Trace Reporting: Same behavior as if the override condition had not existed. Refer to
the description of the original program fault.
9-28



9

FAULTS

9.10.5 PARALLEL Faults

Fault Type: Fault table entry = 0H
Fault type in fault record = fault type of one of the parallel faults.

Fault Subtype: Fault subtype of one of the parallel faults.

Fault OType: 0H

Fault OSubtype: Number of parallel faults.

Function: See section 9.6.4, Parallel Faults (pg. 9-10) for a complete
description of parallel faults. When the AC.nif=0, the architecture
permits the processor to execute instructions in parallel and out-of-
order by different execution units. When an imprecise fault occurs
in any of these units, it is not possible to stop the execution of those
instructions after the faulting instruction. It is also possible that
more than one fault is detected from different instructions almost at
the same time.

When there is more than one outstanding fault at the point when all
execution units terminate, a parallel fault situation arises. The fault
record of parallel faults contains the fault information of all faults
that occurred in parallel. The number of parallel faults is indicated
in the Parallel Faults Field (NFP-20). See Figure 9-3. The maximum
size of the fault record is implementation dependent and depends on
the number of parallel and pipeline execution units in the specific
implementation.

The parallel fault handler must be accessed through a system-
supervisor call. Local and system-local parallel fault handlers are
not supported by the i960 processor and have an unpredictable
behavior. Tracing is disabled upon entry into the parallel fault
handler (PC.te is cleared). It is restored upon return from the
handler. To prevent infinite internal loops, the parallel fault handler
9-29

should not set PC.te.

RIP: When all parallel fault types allow a RIP to be defined, the RIP is
the next instruction in the flow of execution, otherwise it is
undefined.

Fault IP: IP of one of the faulting instructions.

Class: Imprecise.

Program State Changes: State changes associated with all the parallel faults.

Trace Reporting: If all parallel fault types allow for a resumption trace, then a trace is
reported upon return from the parallel fault handler, or else it is lost.



FAULTS

9.10.6 PROTECTION Faults

Fault Type: 7H

Fault Subtype: Number Name
Bit 0 Reserved
Bit 1 LENGTH 
Bit 2-7 Reserved 

Function: Indicates that a program or procedure is attempting to perform an
illegal operation that the architecture protects against.

A PROTECTION.LENGTH fault is generated when the index
operand, used in a calls instruction, points to an entry beyond the
extent of the system procedure table.

RIP: IP of the faulting instruction.

IP of the faulting instruction.

Fault IP: LENGTH: IP of the faulting instruction.

Class: Imprecise. (PROTECTION.LENGTH is precise even though the
PROTECTION fault class is imprecise.)

Program State Changes: LENGTH: The instruction does not execute.

Trace Reporting: PROTECTION.LENGTH: The trace event is lost.
9-30



9

FAULTS

9.10.7 TRACE Faults

Fault Type: 1H

Fault Subtype: Number Name
Bit 0 Reserved
Bit 1 INSTRUCTION 
Bit 2 BRANCH 
Bit 3 CALL 
Bit 4 RETURN 
Bit 5 PRERETURN 
Bit 6 SUPERVISOR 
Bit 7 MARK/BREAKPOINT 

Function: Indicates the processor detected one or more trace events. The event
tracing mechanism is described in CHAPTER 10, TRACING AND
DEBUGGING.

A trace event is the occurrence of a particular instruction or
instruction type in the instruction stream. The processor recognizes
seven different trace events: instruction, branch, call, return,
prereturn, supervisor, mark. It detects these events only if the TC
register mode bit is set for the event. If the PC register trace enable
bit is also set, the processor generates a fault when a trace event is
detected.

A TRACE fault is generated following the instruction that causes a
trace event (or prior to the instruction for the prereturn trace event).
The following trace modes are available:

INSTRUCTION Generates a trace event following every
instruction.

BRANCH Generates a trace event following any
branch instruction when the branch is
taken (a branch trace event does not
9-31

occur on branch-and-link or call
instructions).

CALL Generates a trace event following any
call or branch-and-link instruction or an
implicit fault call.

RETURN Generates a trace event following a ret.



FAULTS

PRERETURN Generates a trace event prior to any ret
instruction, provided the PFP register
prereturn trace flag is set (the processor
sets the flag automatically when a call
trace is serviced). A prereturn trace
fault is always generated alone.

SUPERVISOR Generates a trace event following any
calls instruction that references a
supervisor procedure entry in the
system procedure table and on a return
from a supervisor procedure where the
return status type in the PFP register is
0102 or 0112.

MARK/BREAKPOINT Generates a trace event following the
mark instruction. The MARK fault
subtype bit, however, is used to
indicate a match of the instruction-
address breakpoint register or the data-
address breakpoint register as well as
the fmark and mark instructions.

A TRACE fault subtype bit is associated with each mode. Multiple
fault subtypes can occur simultaneously; all trace fault conditions
detected on one instruction (except prereturn) are reported in one
single trace fault, with the fault subtype bit set for each subtype that
occurs. The prereturn trace is always reported alone.

When a fault type other than a TRACE fault is generated during
execution of an instruction that causes a trace event, the non-trace
fault is handled before the trace fault. An exception is the prereturn-
trace fault, which occurs before the processor detects a non-trace
fault and is handled first.
9-32

Similarly, if an interrupt occurs during an instruction that causes a
trace event, the interrupt is serviced before the TRACE fault is
handled. Again, the TRACE.PRERETURN fault is different. Since
it is generated before the instruction, it is handled before any
interrupt that occurs during instruction execution.



9

FAULTS

A trace fault handler must be accessed through a system-supervisor
call (it must be a supervisor procedure in the system procedure
table). Local and system-local trace fault handlers are not supported
by the architecture and may have unpredictable behavior. Tracing is
automatically disabled when entering the trace fault handler and is
restored upon return from the trace fault handler. The trace fault
handler should not modify PC.te.

RIP: Instruction immediately following the instruction traced, in
instruction issue order, except for PRERETURN. For
PRERETURN, the RIP is the return instruction traced.

Fault IP: IP of the faulting instruction for all except prereturn trace and call
trace (on implicit fault calls), for which the fault IP field is
undefined.

Class: Precise.

Program State Changes: All trace faults except PRERETURN are serviced after the
execution of the faulting instruction. The processor returns to the
instruction immediately following the instruction traced, in
instruction issue order. For PRERETURN, the return is traced
before it executes. The processor re-executes the return instruction
after completion of the PRERETURN trace fault handler.
9-33



ile
the

n

e
sirp

om

er
FAULTS

9.10.8 TYPE Faults

Fault Type: AH

Fault Subtype: Number Name
0H Reserved
1H MISMATCH
2H-FH Reserved

Function: Indicates a program or procedure attempted to perform an illegal
operation on an architecture-defined data type or a typed data
structure. 

A TYPE.MISMATCH fault is generated when attempts are made
to:

• Execute a privileged (supervisor-mode only) instruction wh
the processor is in user mode. Privileged instructions on 
i960 Rx I/O processor are:

• Write to on-chip data RAM while the processor is i
supervisor-only write mode and BCON.irp is set.

• Write to the first 64 bytes of on-chip data RAM while th
processor is in either user or supervisor mode and BCON.
is set.

• Write to memory-mapped registers in supervisor space fr
user mode.

• Write to timer registers while in user mode, when tim
registers are protected against user-mode writes.

modpc intctl
sysctl inten
icctl intdis
dcctl
9-34

RIP: No defined value.

Fault IP: IP of the faulting instruction.

Class: Imprecise.

Program State Changes: The fault happens before execution of the instruction. Machine
state is not changed.

Trace Reporting: The trace event is lost. 



10
TRACING AND DEBUGGING





10

vent
cuting a
ticular

akes an
 call
d. This
 during

ode bits

e trace
resses,
s.

ures,
wing

cing in
CHAPTER 10
TRACING AND DEBUGGING

This chapter describes the i960® Rx I/O processor’s facilities for runtime activity monitoring. The
i960 architecture provides facilities for monitoring processor activity through trace e
generation. A trace event indicates a condition where the processor has just completed exe
particular instruction or a type of instruction or where the processor is about to execute a par
instruction. When the processor detects a trace event, it generates a trace fault and m
implicit call to the fault handling procedure for trace faults. This procedure can, in turn,
debugging software to display or analyze the processor state when the trace event occurre
analysis can be used to locate software or hardware bugs or for general system monitoring
program development.

Tracing is enabled by the process controls (PC) register trace enable bit and a set of trace m
in the trace controls (TC) register. Alternatively, the mark and fmark instructions can be used to
generate trace events explicitly in the instruction stream.

The i960 Rx I/O processor also provides four hardware breakpoint registers that generat
events and trace faults. Two registers are dedicated to trapping on instruction execution add
while the remaining two registers can trap on the addresses of various types of data accesse

10.1 TRACE CONTROLS

To use the architecture’s tracing facilities, software must provide trace fault handling proced
perhaps interfaced with a debugging monitor. Software must also manipulate the follo
registers and control bits to enable the various tracing modes and enable or disable tra
general.

• TC register mode bits • PC register trace enable bit
10-1

These controls are described in the following subsections.

• DAB0-DAB1 registers’ address field and 
enable bit (in the control table)

• PFP register return status field prereturn trace 
flag (bit 3)

• System procedure table supervisor-stack-
pointer field trace control bit

• BPCON register breakpoint mode bits and 
enable bits (in the control table)

• IPB0-IPB1 registers’ address field 
(in the control table)



TRACING AND DEBUGGING

10.1.1 Trace Controls Register – TC

The TC register (Table 10-1) allows software to define conditions that generate trace events.

The TC register contains mode bits and event flags. Mode bits define a set of tracing conditions
that the processor can detect. For example, when the call-trace mode bit is set, the processor
generates a trace event when a call or branch-and-link operation executes. See section 10.2
(pg. 10-3). The processor uses event flags to monitor which breakpoint trace events are generated.

Table 10-1.  80960Rx  Trace Controls Register – TC

28 24 20 16

12 8 4 0

31

Trace Mode Bits
Instruction Trace Mode - TC.i
Branch Trace Mode - TC.b
Call Trace Mode -TC.c

Pre-Return Trace Mode - TC.p
Supervisor Trace Mode - TC.s
Mark Trace Mode - TC.mk

Return Trace Mode - TC.r

ibcrpsm
k

Reserved

Hardware Breakpoint Event Flags
Instruction-Address Breakpoint 0 - TC.i0f
Instruction-Address Breakpoint 1 - TC.i1f
Data-Address Breakpoint 0 - TC.d0f
Data-Address Breakpoint 1 - TC.d1f

i
0
f

i
1
f

d
0
f

d
1
f

10-2

A special instruction, modify-trace-controls (modtc), allows software to modify the TC register.
On initialization, the TC register is read from the Control Table. modtc can then be used to set or
clear trace mode bits as required. Updating TC mode bits may take up to four non-branching
instructions to take effect. Software can access the breakpoint event flags using modtc. The
processor automatically sets and clears these flags as part of its trace handling mechanism: the
breakpoint event flag corresponding to the trace being serviced is set in the TC while servicing a
breakpoint trace fault; the TC event flags are cleared upon return from the trace fault handler.
When the program is not in a trace fault handler, or when the trace is not for breakpoints, the TC
event bits are clear. On the i960 Rx I/O processor, TC register bits 0, 8 through 23 and 28 through
31 are reserved. Software must initialize these bits to zero and cannot modify them afterwards.



10

nerates

e trace
hat the

ct.

mber
.g., non-
ing on
ecord

enabled
ll-trace
TRACING AND DEBUGGING

10.1.2 PC Trace Enable Bit and Trace-Fault-Pending Flag

The Process Controls (PC) register trace enable bit and the trace-fault-pending flag in the PC field
of the fault record control tracing (see section 3.6.3, Process Controls Register – PC (pg. 3-19)).
The trace enable bit enables the processor’s tracing facilities; when set, the processor ge
trace faults on all trace events.

Typically, software selects the trace modes to be used through the TC register. It then sets th
enable bit to begin tracing. This bit is also altered as part of some call and return operations t
processor performs as described in section 10.5.2, Tracing on Calls and Returns (pg. 10-13).

The update of PC.te through modpc may take up to four non-branching instructions to take effe
The update of PC.te through call and return operations is immediate.

The trace-fault-pending flag, in the PC field of the fault record, allows the processor to reme
to service a trace fault when a trace event is detected at the same time as another event (e
trace fault, interrupt). The non-trace fault event is serviced before the trace fault, and depend
the event type and execution mode, the trace-fault-pending flag in the PC field of the fault r
may be used to generate a fault upon return from the non-trace fault event (see section 10.5.2.4,
Tracing on Return from Implicit Call: Fault Case (pg. 10-15)).

10.2 TRACE MODES

This section defines trace modes enabled through the TC register. These modes can be 
individually or several modes can be enabled at once. Some modes overlap, such as ca
mode and supervisor-trace mode.

See section 10.4, HANDLING MULTIPLE TRACE EVENTS (pg. 10-12) for a description of
processor function when multiple trace events occur.

• Instruction trace • Branch trace • Mark trace • Prereturn trace

• Call trace • Return trace • Supervisor trace
10-3

10.2.1 Instruction Trace

When the instruction-trace mode is enabled in TC (TC.i = 1) and tracing is enabled in PC
(PC.te = 1), the processor generates an instruction-trace fault immediately after an instruction is
executed. A debug monitor can use this mode (TC.i = 1, PC.te = 1) to single-step the processor.



TRACING AND DEBUGGING

10.2.2 Branch Trace

When the branch-trace mode is enabled in TC (TC.b = 1) and PC.te is set, the processor generates
a branch-trace fault immediately after a branch instruction executes, if the branch is taken. A
branch-trace event is not generated for conditional-branch instructions that do not branch, branch-
and-link instructions, and call-and-return instructions.

10.2.3 Call Trace

When the call-trace mode is enabled in TC (TC.c = 1) and PC.te is set after the call operation, the
processor generates a call-trace fault when a call instruction (call, callx or calls) or a branch-and-
link instruction (bal or balx) executes. See section 10.5.2.1, Tracing on Explicit Call (pg. 10-13)
for a detailed description of call tracing on explicit instructions. Interrupt calls are never traced.

An implicit call to a fault handler also generates a call trace if TC.c and PC.te are set after the call.
Refer to section 10.5.2.2, Tracing on Implicit Call (pg. 10-14) for a complete description of this
case.

When the processor services a trace fault, it sets the prereturn-trace flag (PFP register bit 3) in the
new frame created by the call operation or in the current frame if a branch-and-link operation was
performed. The processor uses this flag to determine whether or not to signal a prereturn-trace
event on a ret instruction.

10.2.4 Return Trace

When the return-trace mode is enabled in TC and PC.te is set after the return instruction, the
processor generates a return-trace fault for a return from explicit call (PFP.rrr = 000 or
PFP.rrr = 01x). See section 10.5.2.3, Tracing on Return from Explicit Call (pg. 10-15).

A return from fault may be traced and a return from interrupt cannot. See section 10.5.2.4, Tracing
on Return from Implicit Call: Fault Case (pg. 10-15) and section 10.5.2.5, Tracing on Return from
Implicit Call: Interrupt Case (pg. 10-15) for details.
10-4

10.2.5 Prereturn Trace

When the TC prereturn-trace mode, the PC.te, and the PFP prereturn-trace flag (PFP.p) are set, the
processor generates a prereturn-trace fault prior to executing a ret execution. The dependence on
PFP.p implies that prereturn tracing cannot be used without enabling call tracing. The processor
sets PFP.p whenever it services a call-trace fault (as described above) for call-trace mode. 



10

 for

0

 within

ith the
it
 or the

ction
ark trace
ace
C.te is
TRACING AND DEBUGGING

If another trace event occurs at the same time as the prereturn-trace event, the processor generates
a fault on the non-prereturn-trace event first. Then, on a return from that fault handler, it generates
a fault on the prereturn-trace event. The prereturn trace is the only trace event that can cause two
successive trace faults to be generated between instruction boundaries.

10.2.6 Supervisor Trace

When supervisor-trace mode is enabled in TC and PC.te is set, the processor generates a
supervisor-trace fault after either of the following:

• A call-system instruction (calls) executes from user mode and the procedure table entry is
a system-supervisor call.

• A ret instruction executes from supervisor mode and the return-type field is set to 012 or
0112 (i.e., return from calls).

This trace mode allows a debugging program to determine kernel-procedure call boundaries
the instruction stream. 

10.2.7 Mark Trace

Mark trace mode allows trace faults to be generated at places other than those specified w
other trace modes, using the mark instruction. It should be noted that the MARK fault subtype b
in the fault record is used to indicate a match of the instruction-address breakpoint registers
data-address breakpoint registers as well as the fmark and mark instructions.

10.2.7.1 Software Breakpoints

mark and fmark allow breakpoint trace faults to be generated at specific points in the instru
stream. When mark trace mode is enabled and PC.te is set, the processor generates a m
fault any time it encounters a mark instruction. fmark causes the processor to generate a mark tr
fault regardless of whether or not mark trace mode is enabled, provided PC.te is set. If P
clear, mark and fmark behave like no-ops.
10-5

10.2.7.2 Hardware Breakpoints

The hardware breakpoint registers are provided to enable generation of trace faults on instruction
execution and data access.

The i960 Rx I/O processor implements two instruction and two data address breakpoint registers,
denoted IPB0, IPB1, DAB0 and DAB1. The instruction and data address breakpoint registers are
32-bit registers. The instruction breakpoint registers cause a break after execution of the target
instruction. The DABx registers cause a break after the memory access has been issued to the bus
controller.



TRACING AND DEBUGGING

Hardware breakpoint registers may be armed or disarmed. When the registers are armed, hardware
breakpoints can generate an architectural trace fault. When the registers are disarmed, no action
occurs, and execution continues normally. Since instructions are always word aligned, the two
low-order bits of the IPBx registers act as control bits. Control bits for the DABx registers reside
in the Breakpoint Control (BPCON) register. BPCON enables the data address breakpoint
registers, and sets the specific modes of these registers. Hardware breakpoints are globally enabled
by the process controls trace enable bit (PC.te).

The IPBx, DABx, and BPCON registers may be accessed using normal load and store instructions
(except for loads from IPBx register). The application must be in supervisor mode for a legal
access to occur. See section 3.3, MEMORY-MAPPED CONTROL REGISTERS (MMRs)
(pg. 3-6) for more information on the address for each register.

Applications must request modification rights to the hardware breakpoint resources, before
attempting to modify these resources. Rights are requested by executing the sysctl instruction, as
described in the following section.

10.2.7.3 Requesting Modification Rights to Hardware Breakpoint Resources

Application code must always first request and acquire modification rights to the hardware
breakpoint resources before any attempt is made to modify them. This mechanism is employed to
eliminate simultaneous usage of breakpoint resources by emulation tools and application code. An
emulation tool exercises supervisor control over breakpoint resource allocation. If the emulator
retains control of breakpoint resources, none are available for application code. If an emulation
tool is not being used in conjunction with the device, modification rights to breakpoint resources
will be granted to the application. The emulation tool may relinquish control of breakpoint
resources to the application.

If the application attempts to modify the breakpoint or breakpoint control (BPCON) registers
without first obtaining rights, an OPERATION.UNIMPLEMENTED fault will be generated. In
this case, the breakpoint resource will not be modified, whether accessed through a sysctl
instruction or as a memory-mapped register.
10-6



10
TRACING AND DEBUGGING

Application code requests modification rights by executing the sysctl instruction and issuing the
Breakpoint Resource Request message (src1.Message_Type = 06H). In response, the current
available breakpoint resources will be returned as the src/dst parameter (src/dst must be a register).
The src2 parameter is not used. Results returned in the src/dst parameter must be interpreted as
shown in Table 10-2.

The following code sample illustrates the execution of the breakpoint resource request.

ldconst 0x600, r4 # Load the Breakpoint Resource 
# Request message type into r4.

sysctl r4, r4, r4 # Issue the request.

Assume in this example that after execution of the sysctl instruction, the value of r4 is
0000 0022H. This indicates that the application has gained modification rights to both instruction
and both data address breakpoint registers. If the value returned is zero, the application has not
gained the rights to the breakpoint resources.

Because the i960 Rx I/O processor does not initialize the breakpoint registers from the control
table during initialization (as i960 Cx processors do), the application must explicitly initialize the
breakpoint registers in order to use them once modification rights have been granted by the sysctl
instruction.

Table 10-2.  src/dst Encoding

src/dst 7:4 src/dst 3:0

Number of Available Data Address Breakpoints Number of Available Instruction Breakpoints

NOTE: src/dst 31:8 are reserved and will always return zeroes.
10-7



TRACING AND DEBUGGING

10.2.7.4 Breakpoint Control Register – BPCON

The format of the BPCON registers are shown in Table 10-3 and Table 10-6. Each breakpoint has
four control bits associated with it: two mode and two enable bits. The enable bits (DABx.e0,
DABx.e1) in BPCON act to enable or disable the data address breakpoints, while the mode bits
(DABx.m0, DABx.m1) dictate which type of access will generate a break event.

Programming the BPCON register is summarized in Table 10-4 and Table 10-5.

Table 10-3.  Breakpoint Control Register – BPCON

LBA: 

PCI:

8440H

NA

Legend: NA = Not Accessible RO = Read Only
RV = Reserved PR = Preserved RW = Read/Write
RS = Read/Set RC = Read Clear
LBA = 80960 local bus address PCI = PCI Configuration Address Offset

Bit Default Description

31:24 00H Reserved. Initialize to 0.

23 02 DAB1 Breakpoint Mode Control Bit: DAB1.m1

22 02 DAB1 Breakpoint Mode Control Bit: DAB1.m0

21 02 DAB1 Breakpoint Enable Control Bit: DAB1.e1

20 02 DAB1 Breakpoint Enable Control Bit: DAB1.e0

19 02 DAB0 Breakpoint Mode Control Bit: DAB0.m1

18 02 DAB0 Breakpoint Mode Control Bit: DAB0.m0

17 02 DAB0 Breakpoint Enable Control Bit: DAB0.e1

16 02 DAB0 Breakpoint Enable Control Bit: DAB0.e0

15:00 0000H Reserved. Initialize to 0.

PCI

LBA

28 24 20 16 12 8 4 031

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na
10-8

Table 10-4.   Configuring the Data Address Breakpoint Registers – DABx

PC.te DABx.e1 DABx.e0 Description

0 X X No action. With PC.te clear, breakpoints are globally disabled.

X 0 0 No action. DABx is disabled.

1 0 1 Reserved.

1 1 0 Reserved.

1 1 1 Generate a Trace Fault.

NOTE:“X” = don’t care. Reserved combinations must not be used.



10

ified by
 are

n
 occurs
 address

a value
TRACING AND DEBUGGING

The mode bits of BPCON control the type of access that generates a fault, trace message, or break
event, as summarized in Table 10-5.

10.2.7.5 Data Address Breakpoint Registers – DABx

The format for the Data Address Breakpoint (DAB) registers is shown in Table 10-6. Each
breakpoint register contains a 32-bit address of a byte to match on.

A breakpoint is triggered when both a data access’s type and address matches that spec
BPCON and the appropriate DAB register. The mode bits for each DAB register, which
contained in BPCON (see section 10.2.7.4), qualify the access types that DAB will match. A
access-type match selects that DAB register to perform address checking. An address match
when the byte address of any of the bytes referenced by the data access matches the byte
contained within a selected DAB.

Consider the following example. DAB0 is enabled to break on any data read access and has 
of 100FH. Any of the following instructions will cause the DAB0 breakpoint to be triggered:

ldob 0x100f,r8
ldos 0x100e,r8
ld 0x100c,r8
ld 0x100d,r8 /* even unaligned accesses */
ldl 0x1008,r8
ldq 0x1000,r8

Table 10-5.  Programming the Data Address Breakpoint Modes – DABx

DABx.m1 DABx.m0 Mode

0 0 Break on Data Write Access Only.

0 1 Break on Data Read or Data Write Access.

1 0 Break on Data Read Access.

1 1 Break on Data Read or Data Write Access.
10-9

Note that the instruction:
ldt 0x1000,r8

does not cause the breakpoint to be triggered because byte 100FH is not referenced by the triple
word access.

Data address breakpoints can be set to break on any data read, any data write, or any data read or
data write access. All accesses qualify for checking. These include explicit load and store instruc-
tions, and implicit data accesses performed by other instructions and normal processor operations.



TRACING AND DEBUGGING

For data accesses to the memory-mapped control register space, it is unpredictable whether
breakpoint traces are generated when the access matches the breakpoints and also results in an
OPERATION fault or TYPE.MISMATCH fault. The OPERATION or TYPE.MISMATCH fault
will always be reported in this case.

10.2.7.6 Instruction Breakpoint Registers – IPBx

The format for the instruction breakpoint registers is given in Table 10-7. The upper thirty bits of
the IPBx register contain the word-aligned instruction address on which to break. The two low-
order bits indicate the action to take upon an address match.

Table 10-6.  Data Address Breakpoint Register – DABx

LBA: 

PCI:

Ch 0-8420H
Ch 1-8424H

NA

Legend: NA = Not Accessible RO = Read Only
RV = Reserved PR = Preserved RW = Read/Write
RS = Read/Set RC = Read Clear
LBA = 80960 local bus address PCI = PCI Configuration Address Offset

Bit Default Description

31:00 0000 0000H Data Address.

Table 10-7.  Instruction Breakpoint Register – IPBx

PCI

LBA

28 24 20 16 12 8 4 031

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

PCI

LBA

28 24 20 16 12 8 4 031

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na
10-10

Programming the instruction breakpoint register modes is shown in Table 10-8

LBA: 

PCI:

Ch 0-8400H
Ch 1-8404H

NA

Legend: NA = Not Accessible RO = Read Only
RV = Reserved PR = Preserved RW = Read/Write
RS = Read/Set RC = Read Clear
LBA = 80960 local bus address PCI = PCI Configuration Address Offset

Bit Default Description

31:02 0000 0000H Instruction Address.

01 02 IPBX Mode: IPB1

00 02 IPBX Mode: IPB0



10

se of a
TRACING AND DEBUGGING

On the i960 Rx I/O processor, the instruction breakpoint memory-mapped registers can be read by
using the sysctl instruction only. They can be modified by sysctl or by a word-length store
instruction.

Storing directly to an IP breakpoint register may cause unexpected results if tracing is enabled.
Any instructions in the superscalar template of a store operation that updates an IPB and any
instructions in the subsequent superscalar template may trigger on the new or old value of the
breakpoint register. The IP in the fault record may be that of the instruction that caused the
breakpoint or may be the new value of the IPB register. The return IP in the fault record will
always be correct.

If it is necessary to avoid this condition, use the modify memory-mapped control register operation
of the sysctl instruction to update the IPB registers. 

10.3 GENERATING A TRACE FAULT

To summarize the information presented in the previous sections, the processor services a trace
fault when PC.te is set and the processor detects any of the following conditions:

• An instruction included in a trace mode group executes or is about to execute (in the ca
prereturn trace event) and the trace mode for that instruction is enabled.

Table 10-8.  Instruction Breakpoint Modes

PC.te IPBx.m1 IPBx.m0 Action

0 X X No action. Globally disabled.

X 0 0 No action. IPBx disabled.

1 0 1 Reserved.

1 1 0 Reserved.

1 1 1 Generate a Trace Fault.

NOTE: “X” = don’t care. Reserved combinations must not be used.
10-11

• A fault call operation executes and the call-trace mode is enabled.

• A mark instruction executes and the breakpoint-trace mode is enabled.

• An fmark instruction executes.

• The processor executes an instruction at an IP matching an enabled instruction address
breakpoint (IPB) register.

• The processor issues a memory access matching the conditions of an enabled data address
breakpoint (DAB) register.



TRACING AND DEBUGGING

10.4 HANDLING MULTIPLE TRACE EVENTS

With the exception of a prereturn trace event, which is always reported alone, it is possible for a
combination of trace events to be reported in the same fault record. The processor may not report
all events; however, it will always report a supervisor event and it will always signal at least one
event.

If the processor reports prereturn trace and other trace types at the same time, it reports the other
trace types in a single trace fault record first, and then services the prereturn trace fault upon return
from the other trace fault.

10.5 TRACE FAULT HANDLING PROCEDURE

The processor calls the trace fault handling procedure when it detects a trace event. See
section 9.7, FAULT HANDLING PROCEDURES (pg. 9-13) for general requirements for fault
handling procedures. A trace fault handler must be invoked with an implicit system-supervisor
call, this differs from other fault handling procedures. When the call is made, the processor clears
the PC register trace enable bit (PC.te), disabling trace faults in the trace fault handler. Recall that
for all other implicit or explicit system-supervisor calls, the processor replaces the trace enable bit
with the system procedure table trace control bit. Clearing PC.te ensures that tracing is turned off
when a trace fault handling procedure is being executed, thus preventing an endless loop of trace
fault handling calls.

The processor calls the trace fault handling procedure when it detects a trace event. See
section 9.7, FAULT HANDLING PROCEDURES (pg. 9-13) for general requirements for fault
handling procedures.

The trace fault handling procedure is involved in a specific way and is handled differently than
other faults. A trace fault handler must be invoked with an implicit system-supervisor call. When
the call is made, the PC register trace enable bit is cleared. This disables trace faults in the trace
fault handler. Recall that for all other implicit or explicit system-supervisor calls the trace enable
bit is replaced with the system procedure table trace control bit. The exception handling of trace
10-12

enable for trace faults ensures that tracing is turned off when a trace fault handling procedure is
being executed. This is necessary to prevent an endless loop of trace fault handling calls.

10.5.1 Tracing and Interrupt Procedures

When the processor invokes an interrupt handling procedure to service an interrupt, it disables
tracing. It does this by saving the PC register’s current state in the interrupt record, then clearing
the PC register trace enable bit.



10
TRACING AND DEBUGGING

On returning from the interrupt handling procedure, the processor restores the PC register to the
state it was in prior to handling the interrupt, which restores the trace enable bit. See
section 10.5.2.2, Tracing on Implicit Call (pg. 10-14) and section 10.5.2.5, Tracing on Return from
Implicit Call: Interrupt Case (pg. 10-15) for detailed descriptions of tracing on calls and returns
from interrupts.

10.5.2 Tracing on Calls and Returns

During call and return operations, the trace enable flag (PC.te) may be altered. This section
discusses how tracing is handled on explicit and implicit calls and returns.

Since all trace faults (except prereturn) are serviced after execution of the traced instruction,
tracing on calls and returns is controlled by the PC.te in effect after the call or the return.

10.5.2.1 Tracing on Explicit Call

Tracing an explicit call happens before execution of the first instruction of the procedure called.

Tracing is not modified by using a call or callx instruction. Further, tracing is not modified by
using a calls instruction from supervisor mode. When calls is issued from user mode, PC.te is read
from the supervisor stack pointer trace enable bit (SSP.te) of the system procedure table, which is
cached on chip during initialization. The trace enable bit in effect before the calls is stored in the
new PFP[0] bit and is restored upon return from the routine (see section 10.5.2.3, Tracing on
Return from Explicit Call (pg. 10-15)). The calls instruction and all instructions of the procedure
called are traced according to the new PC.te. 

Table 10-9.  Tracing on Explicit Call

Call
Type

Calling Procedure 
Trace Enable

Calling Procedure 
Mode

Saved PFP.rt2:0
Called Procedure 
Trace Enable Bit

call, callx PC.te user or supervisor 0002 PC.te

calls PC.te supervisor 0002 PC.te
10-13

calls PC.te user
01t2

Stores PC.te into 
bit 0 of PFP.rt2:0

SSP.te

Refer to Table 7-3., Encoding of Return Status Field (pg. 7-21).



s a

ced if
d from
ecution
 fault
TRACING AND DEBUGGING

10.5.2.2 Tracing on Implicit Call

Tracing on an implicit call happens before execution of the first instruction of the non-trace fault
handler called. Table 10-10 summarizes all cases of tracing on implicit call. In the table, “a” i
bit variable that symbolizes the trace enable bit in PC.

Table 10-10 summarizes all cases.

Tracing is not altered on the way to a local or a system-local fault handler, so the call is tra
PC.te and TC.c are set before the call. For an implicit system-supervisor call, PC.te is rea
the Supervisor Stack Pointer enable bit (SSP.te). The trace on the call is serviced before ex
of the first instruction of the non-trace fault handler (tracing is disabled on the way to a trace

1. * On i960® Rx I/O processor, all faults except parallel/override and trace faults.

2. “a” and “x” are bit variables.

Table 10-10.  Tracing on Implicit Call 

Call
Type

System 
Procedure 
Table Entry

Previous Frame 
Pointer Return 

Status 
(PFP.rt2:0)

Source
PC.te

Target
PC.te

PC.te Value 
Used for 

Traces on 
Implicit Call

00-Fault1 N.A. 001 a2 a a

10-Fault1 00 001 a a a

10-Fault1 10 001 a SSP.te SSP.te

00-Parallel/Override Fault

00-Trace Fault
x2 Type of trace fault not supported

10-Parallel/Override Fault

10-Trace Fault
00 Type of trace fault not supported

10-Parallel/Override Fault

10-Trace Fault
10 001 a 0 0

Interrupt N.A. 111 a 0 0
10-14

handler).

On the i960 Rx I/O processor, the parallel/override fault handler must be accessed through a
system-supervisor call. Tracing is disabled on the way to the parallel/override fault handler.

The only type of trace fault handler supported is the system-supervisor type. Tracing is disabled on
the way to the trace fault handler.

Tracing is disabled by the processor on the way to an interrupt handler, so an interrupt call is never
traced.



10

quent

 as the
, the
e trace
P-16).

 on the

pletes
TRACING AND DEBUGGING

Note that the Fault IP field of the fault record is not defined when tracing a fault call, because there
is no instruction pointer associated with an implicit call.

10.5.2.3 Tracing on Return from Explicit Call

Table 10-11 shows all cases.

For a return from local call (return type 000), tracing is not modified. For a return from system call
(return type 01a, with PC.te equal to “a” before the call), tracing of the return and subse
instructions is controlled by “a”, which is restored in the PC.te during execution of the return.

10.5.2.4 Tracing on Return from Implicit Call: Fault Case

When the processor detects several fault conditions on the same instruction (referred to
“target”), the non-trace fault is serviced first. Upon return from the non-trace fault handler
processor services a trace fault on the target if in supervisor mode before the return and if th
enable and trace-fault-pending flags are set in the PC field of the non-trace fault record (at F

If the processor is in user mode before the return, tracing is not altered. The pending trace
target instruction is lost, and the return is traced according to the current PC.te. 

10.5.2.5 Tracing on Return from Implicit Call: Interrupt Case

When an interrupt and a trace fault are reported on the same instruction, the instruction com

Table 10-11.  Tracing on Return from Explicit Call

PFP.rt2:0 Execution Mode PC.em Trace Enable Used for Trace on Return

0002 user or supervisor PC.te

01a2 user PC.te

01a2 supervisor t2 (from PFP.r2:0)

Refer to Table 7-3., Encoding of Return Status Field (pg. 7-21).
10-15

and then the interrupt is serviced. Upon return from the interrupt, the trace fault is serviced if the
interrupt handler did not switch to user mode. On the i960 Rx I/O processor, the interrupt handler
returns directly to the trace fault handler.

If the interrupt return is executed from user mode, the PC register is not restored and tracing of the
return occurs according to the PC.te and TC.modes bit fields. 





11
INITIALIZATION AND SYSTEM 
REQUIREMENTS





11

lock —

on of
s are
eafter
 when

tion.
here is
ptions

Image
CHAPTER 11
INITIALIZATION AND SYSTEM REQUIREMENTS

This chapter describes the steps that the i960® Rx I/O processor performs during initialization.
Discussed are the reset modes, the reset state and built-in self test (BIST) features. This chapter
also describes the processor’s basic system requirements — including power, ground and c
and concludes with some general guidelines for high-speed circuit board design. 

11.1 OVERVIEW

The i960 Rx I/O processor initialization can basically be separated into two steps: initializati
the i960 core processor and initialization of all of the other units. Four initialization mode
available; the selected mode is determined by the values of the D/C#/RST_MODE# (her
called RST_MODE#) and RETRY signals when P_RST# is asserted. These modes dictate
the i960 core processor initializes and when the primary PCI interface accepts transactions.

Many of the i960 Rx I/O processor’s functional units require initialization before system opera
The order in which they are initialized is important and is dependent on the system design. T
no one single initialization process for the i960 Rx I/O processor. Instead, there are several o
that may be considered.

NOTE: Sample initialization code, technical notes and other developer resources 
are available on the Intel World Wide Web site at: http://www.intel.com.

11.1.1 Core Initialization

When the i960 core processor initialization begins, the processor uses an Initial Memory 
(IMI) to establish its state. The IMI includes:
11-1

• Initialization Boot Record (IBR) – contains the addresses of the first instruction of the user’s
code and the PRCB.

• Process Control Block (PRCB) – contains pointers to system data structures; also contains
information used to configure the processor at initialization.

• System data structures – the processor caches several data structure pointers internally at
initialization.

Software can reinitialize the processor. When a reinitialization takes place, a new PRCB and reini-
tialization instruction pointer are specified. Reinitialization is useful for relocating data structures
from ROM to RAM after initialization.



INITIALIZATION AND SYSTEM REQUIREMENTS

11.1.2 General Initialization

The i960 Rx I/O processor supports several facilities to assist in system testing and start-up
diagnostics. ONCE mode electrically removes the processor from a system. This feature is useful
for system-level testing where a remote tester exercises the processor system. The i960 Rx I/O
processor also supports JTAG boundary scan (see CHAPTER 23, TEST FEATURES). During
initialization, the processor performs an internal functional self test and local bus self test. These
features are useful for system diagnostics to ensure basic CPU and system bus functionality.

The processor is designed to minimize the requirements of its external system. It requires an input
clock (S_CLK) and clean power and ground connections (VSS and VC C). Since the processor can
operate at a high frequency, the external system must be designed with considerations to reduce
induced noise on signals, power and ground.

11.2 80960Rx INITIALIZATION

Several functional units within the i960 Rx I/O processor must be initialized before system
operation. These are the PCI-to-PCI Bridge, Address Translation Unit (ATU), i960 core
processor, Memory Controller, and Secondary PCI Bus Arbiter. The order in which they are
initialized is dependent on how the 80960Rx is used in the system. The initialization process
begins when the Primary PCI Bus Reset signal (P_RST#) is asserted.

11.2.1 Initialization Modes

The initialization process is generally controlled through either an external host processor or the
i960 core processor. Based on this assumption, there are four initialization modes.

The mode is determined by the value of the RST_MODE# and RETRY signals, described in the
next sections. Table 11-1 describes the relationship between the RST_MODE# and RETRY signal
values and the initialization mode.
11-2

Table 11-1.  Initialization Modes

RST_MODE# RETRY
Initialization 

Mode
Primary PCI Interface

i960 Core 
Processor

0 0 Mode 0 Accepts Transactions Held in Reset

0 1 Mode 1 Retries All Configuration Transactions Held in Reset

1 0 Mode 2 Accepts Transactions Initializes

1 1 Mode 3 (default) Retries All Configuration Transactions Initializes



11
INITIALIZATION AND SYSTEM REQUIREMENTS

The RST_MODE# signal is sampled on the rising edge of P_RST#. The inverse value of this
signal is then written to the Core Processor Reset bit in the Extended Bridge Control Register
(EBCR). See CHAPTER 15, PCI-TO-PCI BRIDGE UNIT. When RST_MODE# is active and
P_RST# is asserted, the i960 core processor is held in reset until P_RST# is deasserted. The i960
core processor reset is released when the reset bit in EBCR is cleared. When RST_MODE# is
inactive and P_RST# is asserted, the i960 core processor is reset. The i960 core processor then
begins its normal initialization sequence when P_RST# is deasserted.

The RETRY signal is sampled on the rising edge of P_RST#. The value of this signal is written to
the Configuration Cycle Disable bit in the EBCR. When RETRY is active and P_RST# is de-
asserted, the 80960Rx signals a Retry on all PCI configuration cycles it receives on the primary
PCI bus. When RETRY is inactive and P_RST# is de-asserted, the 80960Rx accepts PCI configu-
ration cycles on the primary PCI bus.

Figure 11-1 shows a flow chart of the initialization process.

11.2.2 Mode 0 Initialization

Mode 0 allows a host processor to configure the 80960Rx peripherals while the i960 core
processor is held in reset. The host processor configures the PCI-to-PCI Bridge by assigning bus
numbers, allocating PCI address space, and assigning IRQ numbers. The memory controller and
ATU can also be initialized by the host processor. Program code for the i960 core processor may
be downloaded into local memory by the host processor.

The host processor clears the 80960 reset signal by clearing the Core Processor Reset bit in the
EBCR. This deasserts the internal reset signal on the i960 core processor and the processor begins
its initialization process.

11.2.3 Mode 1 Initialization

Mode 1 allows an external agent to initialize the i960 Rx I/O processor. When P_RST# is asserted,
the i960 core processor is held in reset and the host processor is prevented from initializing the
11-3

PCI-to-PCI Bridge. 

In this mode, an external agent has the opportunity to initialize the 80960Rx peripherals. The
external agent may either clear the reset condition on the i960 core processor by clearing the Core
Processor Reset bit in the EBCR or enable the PCI-to-PCI Bridge to be begin receiving configu-
ration cycles by clearing the Configuration Cycle Disable bit in the EBCR.



INITIALIZATION AND SYSTEM REQUIREMENTS

11.2.4 Mode 2 Initialization

Mode 2 allows configuration cycles on the Bridge at any time and allows the i960 core processor
to initialize after reset. Mode 2 allows each unit of the 80960Rx to be initialized in its own
manner. All units are reset when the P_RST# signal is asserted. Each unit returns to its default
state. Be aware that race conditions may exist between 80960 operation after reset and PCI config-
uration.

11.2.5 Mode 3 (Default Mode)

Mode 3 allows the i960 core processor to initialize and control the initialization process before the
host processor is allowed to configure the 80960Rx peripherals. During this time, the primary PCI
interface signals a Retry on all configuration cycles it receives until the i960 core processor clears
the Configuration Cycle Disable bit in the EBCR. This option is only available when an initial-
ization ROM is used.

By allowing the i960 core processor to control the initialization process, it is possible to initialize
the PCI configuration registers to values other than the default power-up values. Certain PCI
configuration registers that are read only through PCI configuration cycles are read/write from the
i960 core processor. This allows the programmer to customize the way the 80960Rx appears to the
PCI configuration software.
11-4



11
INITIALIZATION AND SYSTEM REQUIREMENTS

RST_MODE# 
Asserted?

Host configures 
Bridge

80960 Core 
Initialization

80960 configures 
Private PCI 

Devices
(if any)

Host configures 
ATU

Host configures
Memory 

Controller

Host downloads 
80960 Code

(if any)

Enable Bridge 
(Clear Config 
Disable Bit 

NOYES

Start

Host clears 
80960 Reset Bit 

in EBCR

80960 configures 
ATU

P_RST# signal 
asserted

Host 
processor 
prevented 
from 
configuring 
PCI-to-PCI 
Bridge Unit 

and the 
ATU

 80960
Core

held in
reset

NO

• 80960 Core 
Initialization

• Bridge 
Initialization

• Memory 
Controller
Initialization

• ATU Initializa-
tion

RETRY 
Asserted?

RETRY 
Asserted?

NOYES YES

• 80960 Core 
Initialization

• Bridge Initializa-
tion

80960 configures
Bridge

(if needed)

External agent
enables Bridge or
clears 80960 reset

Mode 3Mode 2Mode 1Mode 0

• Memory Con-
troller 
Initialization

• ATU Initializa-
tion
11-5

Figure 11-1.  Initialization Examples Flow Chart

80960 Core 
Initialization

EBCR)

End

Host
configures 

Bridge



INITIALIZATION AND SYSTEM REQUIREMENTS

11.2.6 Secondary PCI Bus Arbitration Unit

The Secondary PCI Bus Arbiter is enabled or disabled after reset, depending on the value of the
S_REQ5#/S_ARB_EN signal. When S_REQ5#/S_ARB_EN is low on the rising edge of P_RST#,
the secondary arbiter is disabled. When S_REQ5#/S_ARB_EN is high on the rising edge of
P_RST#, the secondary arbiter is enabled. After reset, all devices are set to low priority, except for
the secondary PCI interface of the PCI-to-PCI bridge, which is set to high priority.

The secondary bus arbiter is reset by the S_RST# signal on the secondary interface. Whenever the
secondary bus is reset, the secondary arbiter is reset moving all devices to their programmed
priority levels and starting the round robin arbitration sequence on the lowest number device at
each priority level.

The Secondary Arbitration Control Register is reset to a value of 0000 2AA8H. This assigns the
lowest priority to all external devices and assigns the secondary interface to the highest priority
level.

11.2.7 Local Bus Arbitration Unit

The internal local bus arbitration logic is reset by the P_RST# signal. The reset values of the
registers are shown in Table 11-2. All of the bus masters are initialized to the highest priority.
None of the devices are disabled at powerup.

11.2.8 Reset State Operation

The 80960Rx has two reset conditions:

Table 11-2.  Reset Values

Local Arbitration Register Reset Value Note

Local Bus Arbitration Control Register (LBACR) 0000 0000H All Bus Masters Enabled

Local Bus Arbitration Latency Count Register (LBALCR) 0000 0FFFH Maximum Count Value
11-6

• P_RST#

• L_RST#

each is described in detail in the following sections.

11.2.8.1 i960® Rx I/O Processor Reset State Operation

The P_RST# signal, when asserted, causes the i960 Rx I/O processor to enter the reset state. All
external signals go to a defined state, internal logic is initialized, and certain registers are set to
defined values. P_RST# is a level-sensitive, asynchronous input.



11

dicated

the reset
INITIALIZATION AND SYSTEM REQUIREMENTS

P_RST# must be asserted when power is applied to the processor. The processor then stabilizes in
the reset state. This power-up reset is referred to as cold reset. To ensure that all internal logic has
stabilized in the reset state, a valid input clock (S_CLK) and VCC must be present and stable for a
specified time before P_RST# can be deasserted.

The processor may also be cycled through the reset state after execution has started. This is
referred to as warm reset. For a warm reset, P_RST# must be asserted for a minimum number of
clock cycles. Specifications for a cold and warm reset can be found in the 80960RP/RD Intelligent
I/O Microprocessor Data Sheets.

While the processor’s P_RST# signal is asserted, output signals are driven to the states as in
in Table 11-2. User software cannot reset the entire i960 Rx I/O processor; however, the sysctl
instruction can reset the i960 core processor. The P_RST# signal must be asserted to enter 
state. See section 11.6, Reinitializing and Relocating Data Structures (pg. 11-24).

11.2.8.2 i960® Jx Core Processor Reset State Operation

The L_RST# signal, when asserted, causes the i960 core processor to enter the reset state. All core
signals go to a defined state, internal core logic is initialized, and certain registers are set to defined
values.

L_RST# is asserted in the EBCR when the ATU and DMA have indicated that they are off the PCI
bus. L_RST# also asserts when P_RST# asserts.

L_RST# asserts after P_RST# is asserted. L_RST# deasserts after P_RST# deasserts.

11.3 i960® CORE PROCESSOR INITIALIZATION

Initialization describes the mechanism that the processor uses to establish its initial state and begin
instruction execution. When i960 core processor initialization begins, the processor automatically
configures itself with information specified in the IMI and performs its built-in self test based on
the sampling of the STEST signal. The processor then branches to the first instruction of user code.
11-7

See Figure 11-2 for a flow chart of i960 core processor initialization.

The objective of the initialization sequence is to provide a complete, working initial state when the
first user instruction executes. The user’s startup code needs only to perform several basic
functions to place the processor in a configuration for executing application code.



INITIALIZATION AND SYSTEM REQUIREMENTS

Executing Program

P_RST#
Asserted

?

Hardware Reset

Reset State

YES

Assert FAIL# Signal

STEST
Asserted 

?

Perform Built-In

Built-In
Self Test Pass

?

NO

STOP

Deassert FAIL# Signal 

Configure Registers
Setup Bus Controller

Assert FAIL# Signal 

sysctl
Reinitialize

?

Software Reinitialization

Process PRCB
Contents

Cache NMI Vector from
Vector Location 248 in

Interrupt Table

Load Control Registers
with the Data in the

Control Table

Execute User Code
Branch to Start-up

NO

NO

Drive Fail Code
on Address/Data Pins

 Self Test

Reset
Mode 2 or 3

?

Bit in EBCR Cleared

NO

YES

NO

YES

YES

YES
11-8

Figure 11-2.  Processor Initialization Flow

Bus Confidence Self-

Checksum = 0
NO

Deassert FAIL# Signal 

?

Test: compute Checksum 

YES



11

uring a

en the
. The

ended

EST is

cal bus
s a
INITIALIZATION AND SYSTEM REQUIREMENTS

11.3.1 Self Test Function (STEST, FAIL#)

As part of initialization, the i960 Rx I/O processor executes a local bus confidence self test, an
alignment check for data structures within the initial memory image (IMI), and optionally, a built-
in self test program. The self test (STEST) signal enables or disables built-in self test. The FAIL#
signal indicates that the self tests failed by asserting FAIL#. During normal operations the FAIL#
signal can be asserted when a core processor error is detected. The following subsections further
describe these signal functions.

Built-in self test checks basic functionality of internal data paths, registers and memory arrays on-
chip. Built-in self test is not intended to be a full validation of processor functionality; it is intended
to detect catastrophic internal failures and complement a user’s system diagnostics by ens
confidence level in the processor before any system diagnostics are executed.

11.3.1.1 The STEST Signal

The STEST signal enables and disables Built-In Self Test (BIST). BIST can be disabled wh
initialization time needs to be minimized or when diagnostics are simply not necessary
STEST signal is sampled under the following conditions:

• On the rising edge P_RST#

• On the rising edge of reset mode (RST_MODE#), if used. 

• On the rising edge of a local bus reset (initiated after the Reset Local Bus bit in the Ext
Bridge Control Register (EBCR) is set).

When STEST is asserted, the i960 core processor executes the built-in self test. When ST
deasserted, the i960 core processor bypasses built-in self test. 

11.3.1.2 Local Bus Confidence Test

The local bus confidence test is always performed regardless of STEST signal value. The lo
confidence test reads eight words from the Initialization Boot Record (IBR) and perform
11-9

checksum on the words and the constant FFF FFFFH. The test passes only when the processor
calculates a sum of zero (0). The test can detect catastrophic bus failures such as external address,
data or control lines that are stuck, shorted or open.

11.3.1.3 The Fail Signal (FAIL#)

The FAIL# signal signals errors in either the built-in self test or the bus confidence self test. FAIL#
is asserted (low) for each self test (Figure 11-3):

• When any test fails, the FAIL# signal remains asserted, a fail code message is driven onto the
address bus, and the processor stops execution at the point of failure.



 reset
xecute;
# is

t the
 word
y data

n of an
on.
INITIALIZATION AND SYSTEM REQUIREMENTS

• When a core processor error occurs, FAIL# is also asserted. See section 11.3.1.4, IMI
Alignment Check and Core Processor Error (pg. 11-10) for details.

• When the test passes, FAIL# is deasserted.

When FAIL# stays asserted, the only way to resume normal operation is to perform a
operation. When the STEST signal is used to disable the built-in self test, the test does not e
however, FAIL# still asserts at the point where the built-in self test would occur. FAIL
deasserted after the bus confidence test passes. In Figure 11-3, all transitions on the FAIL# signal
are relative to S_CLK as described in the 80960RP/RD Intelligent I/O Microprocessor Data
Sheets.

Figure 11-3.  FAIL# Timing

11.3.1.4 IMI Alignment Check and Core Processor Error

The alignment check during initialization for data structures within the IMI ensures tha
PRCB, control table, interrupt table, system-procedure table, and fault table are aligned to
boundaries. Normal processor operation is not possible without the alignment of these ke
structures. The alignment check is one case where a core processor error could occur.

The other case of core processor error can occur during regular operation when generatio
override fault incurs a fault. The sequence of events leading up to this case is quite uncomm

FAIL#

~414,000 Cycles

26 Cycles

FAIL FAIL

PASS PASS

Built-In Self-Test Status
Bus Confidence 

  132 Cycles

Built-In Self-Test Local Bus Confidence Test

Test Status

Cycles = Number of S_CLK Periods

80960 Core
    Reset
11-10

When a core processor error is detected, the FAIL# signal is asserted, a fail code message is driven
onto the address bus, and the processor stops execution at the point of failure. The only way to
resume normal operation of the processor is to perform a reset operation. Because core processor
error generation can occur sometime after the BUS confidence test and even after initialization
during normal processor operation, the FAIL# signal is a logic one before the detection of a Core
PROCESSOR Error.



11
INITIALIZATION AND SYSTEM REQUIREMENTS

11.3.1.5 FAIL# Code

The processor uses only one read bus transaction to signal the fail code message; the address of the
bus transaction is the fail code itself. The fail code is of the form: 0xFEFFFFnn; bits 6 to 0 contain
a mask recording the possible failures. Bit 7, when one, indicates the mask contains failures from
Built-In Self-Test (BIST); when zero, the mask indicates other failures. The fail codes are shown
in Table 11-3 and Table 11-4. 

 

Table 11-3.  BIST Failure Codes

Bit When Set

7 Set to one for BIST failure

6 On-chip Data-RAM failure detected by BIST

5 Internal Microcode ROM failure detected by BIST

4 I-cache failure detected by BIST

3 D-cache failure detected by BIST

2 Local-register cache or processor core failure detected by BIST

1 Always Zero

0 Always Zero

Table 11-4.  Non-BIST Failure Codes

Bit When Set

7 Set to zero for non-BIST failure

6 Always One; this bit does not indicate a failure

5 Always One; this bit does not indicate a failure

4 A data structure within the IMI is not aligned to a word boundary

3 A core processor error during normal operation has occurred

2 The Bus Confidence test has failed

1 Always Zero
11-11

11.4 INITIAL MEMORY IMAGE (IMI)

The IMI comprises the minimum set of data structures that the processor needs to initialize. As
shown in Figure 11-4, these structures are: the initialization boot record (IBR), process control
block (PRCB) and system data structures. The IBR is located at a fixed address in memory. The
other components are referenced directly or indirectly by pointers in the IBR and the PRCB. The
IMI performs three functions for the processor:

0 Always Zero



d after

e data
 usually
space.

terrupt
served

 these
of these

stem
emory-

stem
ddress is
INITIALIZATION AND SYSTEM REQUIREMENTS

• Provides initial configuration information for the core and integrated peripherals.

• Provides pointers to the system data structures and the first instruction to be execute
processor initialization.

• Provides checksum words that the processor uses in its self test routine at startup.

Several data structures are typically included as part of the IMI because values in thes
structures are accessed by the processor during initialization. These data structures are
programmed in the systems’s boot ROM, located in memory region 14_15 of the address 
The required data structures are:

• PRCB

• IBR

• System procedure table

• Control table

• Interrupt table

• Fault table

To ensure proper processor operation, the PRCB, system procedure table, control table, in
table, and fault table must not be located in architecturally reserved memory – addresses re
for on-chip Data RAM and addresses at and above FEFF FF60H. In addition, each of
structures must start at a word-aligned address; a core processor error occurs when any 
structures are not word-aligned. See section 11.3.1.3, The Fail Signal (FAIL#) (pg. 11-9).

At initialization, the processor loads the Supervisor Stack Pointer (SSP) from the sy
procedure table, aligns it to a 16-byte boundary, and caches the pointer in the SSP m
mapped control register — see section 3.3, MEMORY-MAPPED CONTROL REGISTERS
(MMRs) (pg. 3-6). Recall that the supervisor stack pointer is located in the preamble of the sy
procedure table at byte offset 12 from the base address. The system procedure table base a
programmed in the PRCB. Consult section 7.5.1, System Procedure Table (pg. 7-15) for the
format of the system procedure table.
11-12

At initialization, the NMI vector is loaded from the interrupt table and saved at location
0000 0000H of the internal data RAM. The interrupt table is typically programmed in the boot
ROM and then relocated to internal RAM by reinitializing the processor.

The fault table is typically located in boot ROM. When it is necessary to locate the fault table in
RAM, the processor must be reinitialized.

The remaining data structures that an application may need are the user stack, supervisor stack and
interrupt stack. These stacks must be located in the 80960Rx’s local bus RAM.



11
INITIALIZATION AND SYSTEM REQUIREMENTS

FEFF FF30H

FEFF FF40H

FEFF FF44H

FEFF FF48H

FEFF FF5CH

PMCON

First Instruction
Pointer

PRCB Pointer

6 Check Words
(For Local Bus

Self-Test)

Address

User Code:

Process Control Block (PRCB)

Fault Table Base Address

Control Table Base Address

AC Register Initial Image

Fault Configuration Word

Interrupt Table Base Address

System Procedure
Table Base Address

Reserved

Interrupt Stack Pointer

Instruction Cache
Configuration Word

Register Cache 

Control Table

Interrupt Table

System Procedure Table

Fixed Data Structures Relocatable Data Structures

Configuration Word

FEFF FF34H

FEFF FF38H

FEFF FF3CH

Byte 0
PMCON
Byte 1
PMCON
Byte 2
PMCON
Byte 3

Init. Boot Record (IBR)

Confidence
11-13

Figure 11-4.  Initial Memory Image (IMI) and Process Control Block (PRCB)

Other Architecturally
Defined Data

Structures (not 
required as part of IMI)



INITIALIZATION AND SYSTEM REQUIREMENTS

11.4.1 Initialization Boot Record (IBR)

The initialization boot record (IBR) is the primary data structure required to initialize the 80960Rx
processor. The IBR is a 12-word structure which must be located at address FEFF FF30H (see
Table 11-5). The IBR is made up of four components: the initial bus configuration data, the first
instruction pointer, the PRCB pointer and the bus confidence test checksum data.

When the processor reads the IMI during initialization, it must know the bus characteristics of
external memory where the IMI is located. Specifically, it must know the bus width and endianism
for the remainder of the IMI. At initialization, the processor sets the PMCON register to an 8-bit
bus width. The processor then needs to form the initial DLMCON and PMCON14_15 registers so

Table 11-5.  Initialization Boot Record

Byte Physical Address Description

FEFF FF30H PMCON14_15, byte 0

FEFF FF31H to FEFF FF33H Reserved

FEFF FF34H PMCON14_15, byte 1

FEFF FF35H to FEFF FF37H Reserved

FEFF FF38H PMCON14_15, byte 2

FEFF FF39H to FEFF FF3BH Reserved

FEFF FF3CH PMCON14_15, byte 3

FEFF FF3DH to FEFF FF3FH Reserved

FEFF FF40H to FEFF FF43H First Instruction Pointer

FEFF FF44H to FEFF FF47H PRCB Pointer

FEFF FF48H to FEFF FF4BH Local Bus Confidence Self-Test Check Word 0

FEFF FF4CH to FEFF FF4FH Local Bus Confidence Self-Test Check Word 1

FEFF FF50H to FEFF FF53H Local Bus Confidence Self-Test Check Word 2

FEFF FF54H to FEFF FF57H Local Bus Confidence Self-Test Check Word 3

FEFF FF58H to FEFF FF5BH Local Bus Confidence Self-Test Check Word 4

FEFF FF5CH to FEFF FF5FH Local Bus Confidence Self-Test Check Word 5
11-14

that the memory containing the IBR can be accessed correctly. The lowest-order byte of each of
the IBR’s first 4 words are used to form the register values. On the i960 Rx I/O processor, the
bytes at FEFF FF30H and FEFF FF34H are not needed, so the processor starts fetching at address
FEFF FF38. The loading of these registers is shown in the pseudo-code flow in Example 11-1.



11
INITIALIZATION AND SYSTEM REQUIREMENTS

Example 11-1.  Processor Initialization Pseudocode Flow 

Processor_Initialization_flow()
          
{       FAIL_pin = true;
        restore_full_cache_mode; disable(I_cache); invalidate(I_cache); 
        disable(D_cache); invalidate(D_cache);
        BCON.ctv = 0; /* Selects PMCON14_15 to control all accesses */ 
        PMCON14_15 = 0; /* Selects 8-bit bus width */
          
/** Exit Reset State & Start_Init **/
        if (STEST_ON_RISING_EDGE_OF_RESET)
                status = BIST();  /* BIST does not return if it fails */
        FAIL_pin = false;
        PC = 0x001f2002;     /* PC.Priority = 31, PC.em = Supervisor,*/
                             /* PC.te = 0; PC.State = Interrupted    */
        ibr_ptr = 0xfeffff30;    /* ibr_ptr used to fetch IBR words  */
          
/* Read PMCON14_15 image in IBR */
FAIL_pin = true;                IMSK = 0;
DLMCON.dcen = 0;        LMMR0.lmte = 0; LMMR1.lmte = 0; 
PMCON14_15[byte2] = 0xc0 & memory[ibr_ptr +8]; 
          
/*Compute CheckSum on Boot Record */ 
carry = 0;      CheckSum = 0xffffffff;
for( i = 6; i>0; i--)        /* carry is carry out from previous add*/
        CheckSum = memory[ibr_ptr + 24 + i*4] + CheckSum + carry;
prcb_ptr = memory[ibr_ptr + 0x14];
IP = memory[prcb_ptr + 4];
CheckSum = prcb_ptr + IP + CheckSum + carry; 
if(CheckSum != 0)
        {fail_msg = 0xfeffff64;         /* Fail BUS Confidence Test */ 
        dummy = memory[fail_msg];  /* Do load with address = fail_msg */ 
        for(;;);                   /* loop forever with FAIL pin true */ 
        }
else    FAIL_pin = false;
          
/* Process PRCB and Control Table */ 
11-15

prcb_ptr = memory[ibr_ptr + 0x14];
Process_PRCB(prcb_ptr);      /* See Process PRCB Section for Details */
          
Destroy_Global_&_Local_Register_Values();  /*Previous values of Global   
                                                and Local Registers are  
                                                Destroyed during         
                                        initialization and software re- 
                                                initialization*/
g0 = 80960core_device_ID;
return;                 /* Execute First Instruction */
          
}



ointer
s. The
INITIALIZATION AND SYSTEM REQUIREMENTS

The processor initializes the DLMCON.dcen bit to 0 to disable data caching. The remainder of the
assembled word is used to initialize PMCON14_15. In conjunction with this step, the processor
clears the bus control table valid bit (BCON.ctv), to ensure for the remainder of initialization that
every bus request issued takes configuration information from the PMCON14_15 register,
regardless of the memory region associated with the request. At a later point in initialization, the
processor loads the remainder of the memory region configuration table from the external control
table. The Bus Configuration (BCON) register is also loaded at this time. The control table valid
(BCON.ctv) bit is then set in the control table to validate the PMCON registers after they are
loaded. In this way, the bus controller is completely configured during initialization. (See
CHAPTER 13, LOCAL BUS for a complete discussion of memory regions and configuring the
bus controller.)

After the local bus configuration data is loaded and the new bus configuration is in place, the
processor loads the remainder of the IBR which consists of the first instruction pointer, the PRCB
pointer and six checksum words. The PRCB pointer and the first instruction pointer are internally
cached. The six checksum words — along with the PRCB pointer and the first instruction p
— are used in a checksum calculation which implements a confidence test of the local bu
checksum calculation is shown in the pseudo-code flow in Example 11-2. When the checksum
calculation equals zero, then the confidence test of the local bus passes.

Table 11-6 further describes the IBR organization.

Table 11-6.   PMCON14_15 Register Bit Description in IBR

LBA: 

PCI:

8638H

NA

Legend: NA = Not Accessible RO = Read Only
RV = Reserved PR = Preserved RW = Read/Write
RS = Read/Set RC = Read Clear
LBA = 80960 Local Bus Address PCI = PCI Configuration Address Offset

PCI

LBA

28 24 20 16 12 8 4 031

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rw

na

rw

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na
11-16

Bit Default Description

31:24 00H Reserved. Initialize to 0.

23:22 002

Local Bus Width (BW)
(00) 8-bit
(01) 16-bit
(10) 32-bit
(11) Reserved

21:00 00 0000H Reserved. Initialize to 0.



11
INITIALIZATION AND SYSTEM REQUIREMENTS

11.4.2 Process Control Block – PRCB

The PRCB contains base addresses for system data structures and initial configuration information
for the i960 core processor. The base addresses are accessed from these internal registers. The
registers are accessible to the users through the memory mapped interface. Upon reset or reinitial-
ization, the registers are initialized. The PRCB format is shown in Table 11-7.

The initial configuration information is programmed in the arithmetic controls register (AC) initial
image, the fault configuration word, the instruction cache configuration word, and the register
cache configuration word. Table 11-8 show these configuration words.

Table 11-7.  PRCB Configuration

Physical Address Description

PRCB POINTER + 00H Fault Table Base Address

PRCB POINTER + 04H Control Table Base Address

PRCB POINTER + 08H AC Register Initial Image

PRCB POINTER + 0CH Fault Configuration Word

PRCB POINTER + 10H Interrupt Table Base Address

PRCB POINTER + 14H System Procedure Table Base Address

PRCB POINTER + 18H Reserved

PRCB POINTER + 1CH Interrupt Stack Pointer

PRCB POINTER + 20H Instruction Cache Configuration Word

PRCB POINTER + 24H Register Cache Configuration Word
11-17



INITIALIZATION AND SYSTEM REQUIREMENTS

Table 11-8.   Process Control Block Configuration Words

28 24 20 16 12 8 4 031

28 24 20 16

12 8 4 0

31

AC Register Initial Image

Condition Code Bits - AC.cc

Integer-Overflow Flag - AC.of
(0) no overflow
(1) overflow

Integer Overflow Mask Bit - AC.om
(0) enable overflow faults
(1) mask overflow faults

No-Imprecise-Faults Bit - AC.nif
(0) allow imprecise fault conditions
(1) prevent imprecise fault conditions

Disable Instruction Cache

Instruction Cache Configuration Word

(0) enable cache
(1) disable cache

Mask Non-Aligned Bus Request Fault
(0) enable the fault
(1) mask the fault

c
c
0

c
c
1

c
c
2

o
f

o
m

n
i
f

12 8 4 028 24 20 1631

Fault Configuration Word

Offset 08H

Offset 0CH

Offset 20H
11-18

Reserved
F_CR076A

Register Cache Configuration Word

Number of Frames Reserved for High Priority Interrupts

(Initialize to 0)

28 24 20 16 12 8 4 031

Offset 24H



11
INITIALIZATION AND SYSTEM REQUIREMENTS

11.4.3 Process PRCB Flow

The following pseudo-code flow illustrates the processing of the PRCB. Note that this flow is used
for both initialization and reinitialization (through sysctl).

Example 11-2.  PRCB Processing Pseudo-code Flow 

Process_PRCB(prcb_ptr)
{       PRCB_mmr = prcb_ptr;
        reset_state(data_ram);  /* It is unpredictable whether the   */
                                /* Data RAM keeps its prior contents */
        fault_table  =  memory[PRCB_mmr];
        ctrl_table   =  memory[PRCB_mmr+0x4]; 
        AC           =  memory[PRCB_mmr+0x8]; 
        fault_config =  memory[PRCB_mmr+0xc]; 
        if (1 & (fault_config >> 30))   
generate_fault_on_unaligned_access = false;
        else    generate_fault_on_unaligned_access = true;
          
/** Load Interrupt Table Pointer **/
        Reset_block_NMI;
        interrupt_table =  memory[PRCB_mmr+0x10];
          
/** Load System Procedure Table Pointer **/
        sysproc = memory[PRCB_mmr+0x14];
          
/** Initialize ISP, FP, SP, and PFP **/
        ISP_mmr =  memory[PRCB_mmr+0x1c];
        FP      = ISP_mmr;
        SP      = FP + 64;
        PFP     = FP;
          
/** Initialize Instruction Cache **/
        ICCW = memory[PRCB_mmr+0x20];
        if (1 & (ICCW >> 16) ) enable(I_cache);
          
/** Cache NMI Vector Entry in Data RAM**/
        memory[0] = memory[interrupt_table + (248*4) + 4];
          
/** Process System Procedure Table **/
        temp    = memory[sysproc+0xc];
        SSP_mmr = (~0x3) & temp;
        SSP.te  = 1 & temp;
          
/** Configure Local Register Cache **/
        programmed_limit = (7 & (memory[PRCB_mmr+0x24] >> 8) ); 
11-19

        config_reg_cache( programmed_limit );
          
/** Load_control_table. Note breakpoints and BPCON are excluded here **/
        load_control_table(ctrl_table+0x10 , ctrl_table+0x58);  
                  /* Load ctrl_table+0x10  through ctrl_table+0x58 */
        load_control_table(ctrl_table+0x68 , ctrl_table+0x6c);
                /* Load ctrl_table+0x68  through ctrl_table+0x6C */
        IBP0 = 0x0; IBP1 = 0x0; DAB0 = 0x0; DAB1 = 0x0; 
          
/** Initialize Timers **/
        TMR0.tc   = 0; TMR1.tc   = 0; TMR0.enable = 0; TMR1.enable = 0; 
        TMR0.sup  = 0; TMR1.sup  = 0; TMR0.reload = 0; TMR1.reload = 0; 
        TMR0.csel = 0; TMR1.csel = 0;
          
        return;



nd thus
s.

n an
ocessor
ther it

erated
fter an

led at
ache
ction

rd

ration
INITIALIZATION AND SYSTEM REQUIREMENTS

11.4.3.1 AC Initial Image

The AC initial image is loaded into the on-chip AC register during initialization. The AC initial
image allows the initial value of the overflow mask, no imprecise faults bit and condition code bits
to be selected at initialization.

The AC initial image condition code bits can be used to specify the source of an initialization or
reinitialization when a single instruction entry point to the user start-up code is desirable. This is
accomplished by programming the condition code in the AC initial image to a different value for
each different entry point. The user start-up code can detect the condition code values — a
the source of the reinitialization — by using the compare or compare-and-branch instruction

11.4.3.2 Fault Configuration Word

The fault configuration word allows the operation-unaligned fault to be masked whe
unaligned memory request is issued. When an unaligned access is encountered, the pr
always performs the access. After performing the access, the processor determines whe
should generate a fault. When bit 30 in the fault configuration word is set, a fault is not gen
after an unaligned memory request is performed. When bit 30 is clear, a fault is generated a
unaligned memory request is performed.

11.4.3.3 Instruction Cache Configuration Word

The instruction cache configuration word allows the instruction cache to be enabled or disab
initialization. When bit 16 in the instruction cache configuration word is set, the instruction c
is disabled and all instruction fetches are directed to external memory. Disabling the instru
cache is useful for tracing execution in a software debug environment. 

The instruction cache remains disabled until the following operations:

• The processor is reinitialized with a new value in the instruction cache configuration wo

• icctl is issued with the enable instruction cache operation

• sysctl is issued with the configure instruction cache message type and a cache configu
11-20

mode other than disable cache.

11.4.3.4 Register Cache Configuration Word

The register cache configuration word specifies the number of free frames in the local register
cache that can be used by critical code (i.e., code that is in the interrupted state and has a process
priority greater than or equal to 28).

The register cache and the configuration word are explained further in section 4.2, LOCAL
REGISTER CACHE (pg. 4-2).



11
INITIALIZATION AND SYSTEM REQUIREMENTS

11.4.4 Control Table

The control table is the data structure that contains the on-chip control registers values. It is
automatically loaded during initialization and must be completely constructed in the IMI.
Figure 11-5 shows the Control Table format.

For register bit definitions of the on-chip control table registers, see the following:

• IMAP — Table 8-11 through Table 8-13, Interrupt Map Register 2 – IMAP2 (pg. 8-36)

• ICON — Table 8-10. Interrupt Control Register – ICON (pg. 8-34)

• PMCON — Table 12-2. Physical Memory Control Registers – PMCON0:15 (pg. 12-5)

• TC — Table 10-1. 80960Rx Trace Controls Register – TC (pg. 10-2)

• BCON — Table 12-3. Bus Control Register Bit Definitions – BCON (pg. 12-6) 
11-21



INITIALIZATION AND SYSTEM REQUIREMENTS

031

00H

04H

08H

0CH

10H

14H

18H

1CH

20H

24H

28H

2CH

30H

34H

38H

3CH

40H

44H

48H

4CH

50H

54H

58H

5CH

Interrupt Map 0 (IMAP0)

Interrupt Map 1 (IMAP1)

Interrupt Map 2 (IMAP2)

Interrupt Configuration (ICON)

Physical Memory Region 0:1 Configuration (PMCON0_1)

Physical Memory Region 2:3 Configuration (PMCON2_3)

Physical Memory Region 4:5 Configuration (PMCON4_5)

Physical Memory Region 6:7 Configuration (PMCON6_7)

Physical Memory Region 8:9 Configuration (PMCON8_9)

Physical Memory Region 10:11 Configuration (PMCON10_11

Physical Memory Region 12:13 Configuration (PMCON12_13)

Physical Memory Region 14:15 Configuration (PMCON14_15)

Reserved (Initialize to 0)

Reserved (Initialize to 0)

Reserved (Initialize to 0)

Reserved (Initialize to 0)

Reserved (Initialize to 0)

Reserved (Initialize to 0)

Reserved (Initialize to 0)

Reserved (Initialize to 0)

Reserved (Initialize to 0)

Reserved (Initialize to 0)

Reserved (Initialize to 0)

Reserved (Initialize to 0)
11-22

Figure 11-5.  Control Table

6CH

64H

68H

60H

Bus Configuration Control (BCON)

Trace Controls (TC)

Reserved (Initialize to 0)

Reserved (Initialize to 0)



11
INITIALIZATION AND SYSTEM REQUIREMENTS

11.5 DEVICE IDENTIFICATION ON RESET

During the manufacturing process, values characterizing the i960 Rx I/O processor type and
stepping are programmed into the memory-mapped registers. The i960 Rx I/O processor contains
two read-only device ID MMRs. One holds the Processor Device ID (PDIDR) and the other holds
the i960 Core Processor Device ID (DEVICEID).

The device identification values are compliant with the IEEE 1149.1 specification and Intel
standards. Table 11-9 and Table 11-10 describe the fields of the two Device IDs.

NOTE: The values programmed into this registers varies with stepping. Refer to the i960® Rx I/O Proces-

Table 11-9.   Processor Device ID Register - PDIDR

LBA: 

PCI:

1710H

NA

Legend: NA = Not Accessible RO = Read Only
RV = Reserved PR = Preserved RW = Read/Write
RS = Read/Set RC = Read Clear
LBA = 80960 Local Bus Address PCI = PCI Configuration Address Offset

Bit Default Description

31:28 X Version - Indicates stepping changes. 

27 X
VCC - Indicates device voltage type.

0=5.0V
1=3.3V

26:21 X Product Type - Indicates the generation or “family member”.

20:17 X Generation Type - Indicates the generation of the device.

16:12 X Model Type - Indicates member within a series and specific model information.

11:01 X
Manufacturer ID - Indicates manufacturer ID assigned by IEEE.
0000 0001 001=Intel Corporation

0 1 Constant

PCI

LBA

28 24 20 16 12 8 4 031

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na
11-23

sor Specification Update (272918) for the correct value



INITIALIZATION AND SYSTEM REQUIREMENTS

NOTE: The values programmed into this registers varies with stepping. Refer to the i960® Rx I/O Proces-
sor Specification Update (272918) for the correct value

11.6 Reinitializing and Relocating Data Structures

Reinitialization can reconfigure the processor and change pointers to data structures. The
processor is reinitialized by issuing the sysctl instruction with the reinitialize processor message
type. See 6.2.67, sysctl (pg. 6-114) for a description of sysctl.) The reinitialization instruction
pointer and a new PRCB pointer are specified as operands to the sysctl instruction. When the

Table 11-10.  i960® Core Processor Device ID Register - DEVICEID

LBA: 

PCI:

FF00 8710H

NA

Legend: NA = Not Accessible RO = Read Only
RV = Reserved PR = Preserved RW = Read/Write
RS = Read/Set RC = Read Clear
LBA = 80960 Local Bus Address PCI = PCI Configuration Address Offset

Bit Default Description

31:28 X Version - Indicates stepping changes.

27 X
VCC - Indicates device voltage type.

0=5.0V
1=3.3V

26:21 X Product Type - Indicates the generation or “family member”.

20:17 X Generation Type - Indicates the generation of the device.

16:12 X Model Type - Indicates member within a series and specific model information.

11:01 X
Manufacturer ID - Indicates manufacturer ID assigned by IEEE.
0000 0001 001=Intel Corporation

0 1 Constant

PCI

LBA

28 24 20 16 12 8 4 031

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na
11-24

processor is reinitialized, the fields in the newly specified PRCB are loaded as described in
section 11.4.2, Process Control Block – PRCB (pg. 11-17). 

Reinitialization is useful for relocating data structures to RAM after initialization. The interrupt
table must be located in RAM: to post software-generated interrupts, the processor writes to the
pending priorities and pending interrupts fields in this table. It may also be necessary to relocate
the control table to RAM: it must be in RAM when the control register values are to be changed by
user code. In some systems, it is necessary to relocate other data structures (fault table and system
procedure table) to RAM because of unsatisfactory load performance from ROM. 



11

e i960
 to the

 their

ings

s an
 the

lock
heets.
INITIALIZATION AND SYSTEM REQUIREMENTS

After initialization, the software is responsible for copying data structures from ROM into RAM.
The processor is then reinitialized with a new PRCB which contains the base addresses of the new
data structures in RAM.

The processor caches the following pointers during its initialization. To modify these data
structures, a software re-initialization is needed. 

• Interrupt Table Address

• Fault Table Address

• System Procedure Table Address

• Control Table Address

11.7 SYSTEM REQUIREMENTS

The following sections discuss generic hardware requirements for a system built around th
Rx I/O processor. This section describes electrical characteristics of the processor’s interface
external circuit, including the S_CLK, P_RST#, STEST, FAIL#, ONCE#, VSS  and VCC  signals.
Specific signal functions for the external bus signals and interrupt inputs are discussed in
respective sections in this manual. 

11.7.1 Clocking

The i960 Rx I/O processor has a single clock input (S_CLK) for control. All input/output tim
are relative to S_CLK.

The range of operation for all PCI clocks is 0 to 33 MHz. The i960 Rx I/O processor ha
internal PLL that limits the range of processor clock operation from 16 MHz to 33 MHz. When
minimum frequency is not met, the internal status of the processor is not guaranteed.

The clock input is designed to be driven by most common TTL crystal clock oscillators. The c
input must be free of noise and conform with the specifications listed in the 80960Rx Data S
11-25

S_CLK input capacitance is minimal; for this reason, it may be necessary to terminate the S_CLK
circuit board traces at the processor to reduce overshoot and undershoot.

11.7.2 Output Clocks

The i960 Rx I/O processor supports an I2C bus interface. The output clock frequency for I2C
operation is 100 KHz or 400 KHz. This clock is generated from the i960 core processor clock. To
use the I2C interface, a clock divider value must be written into the I2C Clock Count Register. See
section 21.10.5, I2C Clock Count Register – ICCR (pg. 21-27).



bus by

c-

 

 

 core
alt all
e
et local
r Reset
INITIALIZATION AND SYSTEM REQUIREMENTS

11.7.3 Reset

There are multiple ways to reset the i960 Rx I/O processor. Reset is controlled either through
external signals or control registers.

When the primary PCI bus reset signal P_RST# is asserted, the i960 Rx I/O processor:

• Asserts the secondary PCI bus reset signal S_RST#. 

• Resets the i960 core processor and the local bus.

• Resets all internal units, including the PCI-to-PCI bridge unit. 

• Asserts local bus reset.

Reset is also available through the Bridge Control registers in the PCI to PCI Bridge Unit:

• The Secondary Bus Reset bit in the Bridge Control Register resets the secondary PCI 
asserting the secondary PCI reset signal S_RST#.

- The PCI to PCI Bridge Unit resets its posting buffers and address queues and the se
ondary PCI bus interface, but not the PCI configuration registers or its primary PCI 
interface.

- DMA Channel 2 immediately halts any PCI transactions and gracefully completes 
any local bus transactions. It then returns to an idle state. DMA Channel 2 does not
begin any new transfers until the Secondary Bus Reset bit is cleared.

- Secondary ATU immediately halts any PCI transactions and gracefully completes 
any local bus transactions. The i960 core processor is released from back-off, when
necessary. The Secondary ATU does not accept any new i960 core processor 
requests until the Secondary Bus Reset bit is cleared.

- The software must clear this bit.

• The Reset Local Bus bit in the Extended Bridge Control Register (EBCR) resets the i960
processor and all units on the local bus. Before reset, the DMA channels and the ATUs h
PCI bus transactions. Software must ensure that the I2C bus and the APIC bus are idle befor
the reset occurs. The i960 core processor may or may not be held in reset when the res
bus bit is cleared by software. This depends on the default value of the Core Processo
11-26

bit in the EBCR. The local bus reset does not reset the PCI-to-PCI bridge unit or its configu-
ration registers. All other configuration registers are reset.

See CHAPTER 15, PCI-TO-PCI BRIDGE UNIT for a full description of the Bridge Control
Register and the Extended Bridge Control Register.



11

power
essor’s

ive bus

s. The

. Justi-

)

INITIALIZATION AND SYSTEM REQUIREMENTS

11.7.4 Power and Ground Requirements (VCC, VS S)

The large number of VS S and VCC signal effectively reduces the impedance of power and ground
connections to the chip and reduces transient noise induced by current surges. The i960 Rx I/O
processor is implemented in CHMOS IV technology. Unlike NMOS processes, power dissipation
in the CHMOS process is due to capacitive charging and discharging on-chip and in the
processor’s output buffers; there is almost no DC power component. The nature of this 
consumption results in current surges when capacitors charge and discharge. The proc
power consumption depends mostly on frequency. It also depends on voltage and capacit
load (see the 80960Rx Data Sheets).

To reduce clock skew internal to the i960 Rx I/O processor, the VC CP LL pins for the Phase Lock
Loop (PLL) circuits are isolated on the pinout. The lowpass filter, as shown in Figure 11-6,
reduces noise induced clock jitter and its effects on timing relationships in system design
0.01µF capacitor must be of the type X7R and the node connecting VCC PLL must be as short as
possible.

Figure 11-6.  VCCPLL Lowpass Filter

11.7.5 Power and Ground Planes

Power and ground planes must be used in i960 Rx I/O processor systems to minimize noise
fication for these power and ground planes is the same as for multiple VS S and VCC  pins. Power
and ground lines have inherent inductance and capacitance; therefore, an impedance Z=(L/C1/2. 

100

VCC
(Board Plane)

VCCPLL
(On i960® Rx processors)

Ω

0.01 µF 
11-27

Total characteristic impedance for the power supply can be reduced by adding more lines. This
effect is illustrated in Figure 11-7, which shows that two lines in parallel have half the impedance
of one. Ideally, a plane, an infinite number of parallel lines, results in the lowest impedance.
Fabricate power and ground planes with a 1 oz. copper for outer layers and 0.5 oz. copper for inner
layers.

All power and ground pins must be connected to the planes. Ideally, the i960 Rx I/O processor
should be located at the center of the board to take full advantage of these planes, simplify layout
and reduce noise.



INITIALIZATION AND SYSTEM REQUIREMENTS

Figure 11-7.  Reducing Characteristic Impedance

11.7.6 Decoupling Capacitors

Decoupling capacitors placed across the processor between VC C and VSS reduce voltage spikes by
supplying the extra current needed during switching. Place these capacitors close to the device
because connection line inductance negates their effect. Also, for this reason, the capacitors should
be low inductance. Chip capacitors (surface mount) exhibit lower inductance.

11.7.7 High Frequency Design Considerations

At high signal frequencies and/or with fast edge rates, the transmission line properties of signal
paths in a circuit must be considered. Transmission line effects and crosstalk become significant in
comparison to the signals. These errors can be transient and therefore difficult to debug. In this
section, some high-frequency design issues are discussed; for more information, consult a
reference on high-frequency design.

Z0 = L0

C0

Z0 = 
L0

2
2C0

= 1/2

L0

C0

C0

C0

L0

L0

L0

C0
11-28

11.7.8 Line Termination

Input voltage level violations are usually due to voltage spikes that raise input voltage levels above
the maximum limit (overshoot) and below the minimum limit (undershoot). These voltage levels
can cause excess current on input gates, resulting in permanent damage to the device. Even when
no damage occurs, many devices are not guaranteed to function as specified when input voltage
levels are exceeded.



11

 output
INITIALIZATION AND SYSTEM REQUIREMENTS

Signal lines are terminated to minimize signal reflections and prevent overshoot and undershoot.
Terminate the line when the round-trip signal path delay is greater than signal rise or fall time.
When the line is not terminated, the signal reaches its high or low level before reflections have
time to dissipate and overshoot or undershoot occurs.

For the i960 Rx I/O processor, two termination methods are recommended: AC and series. An AC
termination matches the impedance of the trace, there by eliminating reflections due to the
impedance mismatch.

Series termination decreases current flow in the signal path by adding a series resistor as shown in
Figure 11-8. The resistor increases signal rise and fall times so that the change in current occurs
over a longer period of time. Because the amount of voltage overshoot and undershoot depends on
the change in current over time (V = L di/dt), the increased time reduces overshoot and undershoot.
Place the series resistor as close as possible to the signal source. AC termination is effective in
reducing signal reflection (ringing). This termination is accomplished by adding an RC
combination at the signal’s farthest destination (Figure 11-9). While the termination provides no
DC load, the RC combination damps signal transients.

Selection of termination methods and values is dependent upon many variables, such as
buffer impedance, board trace impedance and input impedance.

A C

Source

RS

B

11-29

Figure 11-8.   Series Termination



ggered
come

x I/O
INITIALIZATION AND SYSTEM REQUIREMENTS

Figure 11-9.  AC Termination

11.7.9 Latchup

Latchup is a condition in a CMOS circuit in which VC C becomes shorted to VSS . Intel’s CMOS IV
processes are immune to latchup under normal operation conditions. Latchup can be tri
when the voltage limits on I/O pins are exceeded, causing internal PN junctions to be
forward biased. 

The following guidelines help prevent latchup:

• Observe the maximum rating for input voltage on I/O pins.

• Never apply power to an i960 Rx I/O processor signal or a device connected to an i960 R
processor signal before applying power to the i960 Rx I/O processor itself.

A C

Source

B

C

R

11-30

• Prevent overshoot and undershoot on I/O pins by adding line termination and by designing to
reduce noise and reflection on signal lines.

11.7.10 Interference

Interference is the result of electrical activity in one conductor that causes transient voltages to
appear in another conductor. Interference increases with the following factors:

• Frequency Interference is the result of changing currents and voltages. The more frequent the
changes, the greater the interference. 



11

whose

inter-

. The
nsient

of the

of the

s 
INITIALIZATION AND SYSTEM REQUIREMENTS

• Closeness-of-conductors Interference is due to electromagnetic and electrostatic fields 
effects are weaker further from the source.

Two types of interference must be considered in high frequency circuits: electromagnetic 
ference (EMI) and electrostatic interference (ESI).

EMI is caused by the magnetic field that exists around any current-carrying conductor
magnetic flux from one conductor can induce current in another conductor, resulting in tra
voltage. Several precautions can minimize EMI:

• Run ground lines between two adjacent lines wherever they traverse a long section 
circuit board. The ground line should be grounded at both ends.

• Run ground lines between the lines of an address bus or a data bus when either 
following conditions exist:

- The bus is on an external layer of the board.

- The bus is on an internal layer but not sandwiched between power and ground plane
that are at most 10 mils away.

A

CB
11-31

Figure 11-10.  Avoid Closed-Loop Signal Paths

ESI is caused by the capacitive coupling of two adjacent conductors. The conductors act as the
plates of a capacitor; a charge built up on one induces the opposite charge on the other.

The following steps reduce ESI:

• Separate signal lines so that capacitive coupling becomes negligible.

• Run a ground line between two lines to cancel the electrostatic fields.





12
CORE PROCESSOR LOCAL BUS 
CONFIGURATION





12

col
 BCU
gical
CHAPTER 12
CORE PROCESSOR

LOCAL BUS CONFIGURATION

This chapter provides information on setting the memory-mapped registers that configure the local
memory bus. Topics include setting address ranges for different types of memory and configuring
the bus width. This chapter also details enabling/disabling data caching for a memory region.

12.1 MEMORY ATTRIBUTES

Every location in memory has associated physical and logical attributes. For example, a specific
location may have the following attributes:

• Physical: Memory is an 8-bit wide ROM

• Logical: Data is non-cacheable

In the example above, physical attributes correspond to those parameters that indicate how to
physically access the data. The BCU uses physical attributes to determine the local bus proto
and signal pins to use when controlling the memory subsystem. The logical attributes tell the
how to interpret, format and control interaction of on-chip data caches. The physical and lo
attributes for an individual location are independently programmable.

12.1.1 Physical Memory Attributes

The only programmable physical memory attribute for the i960® Rx I/O processor is the local bus
width, which can be 8-, 16- or 32-bits wide.

For the purposes of assigning memory attributes, the physical address space is partitioned into 8
fixed 512 Mbyte regions determined by the upper three address bits. The regions are numbered as
12-1

8 paired sections for consistency with other i960 processor implementations. Region 0_1 maps to
addresses 0000 0000H to 1FFF FFFFH and region 14_15 maps to addresses E000 0000H to
FFFF FFFFH. The physical memory attributes for each region are programmable through the
PMCON registers. The PMCON registers are loaded from the Control Table. The i960 Rx I/O
processor provides one PMCON register for each region. The descriptions of the PMCON registers
and instructions on programming them are found in section 12.2, PROGRAMMING THE
PHYSICAL MEMORY ATTRIBUTES (PMCON REGISTERS) (pg. 12-3).



ess (on
emory
ister

r

CORE PROCESSOR LOCAL BUS CONFIGURATION

12.1.2 Logical Memory Attributes

The i960 Rx I/O processor provides a mechanism for defining two Logical Memory Templates
(LMTs). An LMT may be used to specify whether a section (or subset) of a physical memory
subsystem connected to the BCU (e.g., DRAM, SRAM) is cacheable or non-cacheable in the on-
chip data cache.

There are typically several different LMTs defined within a single memory subsystem. For
example, data within one area of DRAM may be non-cacheable while data in another area is
cacheable. Figure 12-1 shows the use of the Control Table (PMCON registers) with logical
memory templates for a single DRAM region in a typical application.

Each logical memory template is defined by programming Logical Memory Configuration
(LMCON) registers. An LMCON register pair defines a data template for areas of memory that
have common logical attributes. The i960 Rx I/O processor has two pairs of LMCON registers —
defining two separate templates. The extent of each data template is described by an addr
4 Kbyte boundaries) and an address mask. The address is programmed in the Logical M
Address register (LMADR). The mask is programmed in the Logical Memory Mask reg
(LMMSK). These two registers constitute the LMCON register pair.

The Default Logical Memory Configuration (DLMCON) register provides configuration data fo
areas of memory that do not fall within one of the two logical data templates. 

The LMCON registers and their programming are described in section 12.5, PROGRAMMING
THE LOGICAL MEMORY ATTRIBUTES (pg. 12-8).
12-2



12
CORE PROCESSOR LOCAL BUS CONFIGURATION

PMCON Registers

Region 14_15

Region 12_13

Region 10_11

Region 8_9

Region 6_7

Region 4_5

Region 2_3

Region 0_1

8000 0000H

FFFF FFFFH

Physical
Regions 10_11 

0000 0000H

Logical Memory
Templates
(LMCON)

LMADR0

LMMAR0

LMADR1

LMMAR1

Non-Cacheable

Physical
Region 8_9

Physical
Regions 0_1 

9FFF FFFFH

Non-Cacheable

32-bit wide
DRAM

Note: The DLMCON maps the remaining memory as cacheable.

 to 14_15

to 6_7
12-3

Figure 12-1.  PMCON and LMCON Example

12.2 PROGRAMMING THE PHYSICAL MEMORY ATTRIBUTES (PMCON 
REGISTERS)

The Physical Memory Configuration registers, PMCON0_1 to PMCON14_15, are shown in
Table 12-2. The PMCON registers reside within memory-mapped control register space. Each
PMCON register controls one 512-Mbyte region of memory according to the mapping shown in
Table 12-1.



CORE PROCESSOR LOCAL BUS CONFIGURATION

Table 12-1.  PMCON Address Mapping 

Register
(Control Table Entry)

Region Controlled Required Bus Width

Physical Memory Control 
Register 0 – PMCON0_1

0000 0000H to 0FFF FFFFH
and

1000 0000H to 1FFF FFFFH

32 bits - 80960Rx Peripheral Memory-
Mapped Registers

Physical Memory Control 
Register 1 – PMCON2_3

2000 0000H to 2FFF FFFFH
and

3000 0000H to 3FFF FFFFH
Application dependent1

Physical Memory Control 
Register 2 – PMCON4_5

4000 0000H to 4FFF FFFFH
and

5000 0000H to 5FFF FFFFH
Application dependent1

Physical Memory Control 
Register 3 – PMCON6_7

6000 0000H to 6FFF FFFFH
and

7000 0000H to 7FFF FFFFH
Application dependent1

Physical Memory Control 
Register 4 – PMCON8_9

8000 0000H to 8FFF FFFFH
and

9000 0000H to 9FFF FFFFH

32 bits - 80960Rx 
outbound ATU translation windows2 

(See Figure 16-5., 80960 Local Bus 
Memory Map - Outbound Translation 

Window (pg. 16-13))

Physical Memory Control 
Register 5 – PMCON10_11

A000 0000H to AFFF FFFFH
and

B000 0000H to BFFF FFFFH
Application dependent2

Physical Memory Control 
Register 6 – PMCON12_13

C000 0000H to CFFF FFFFH
and

D000 0000H to DFFF FFFFH
Application dependent2

Physical Memory Control 
Register 7 – PMCON14_15

E000 0000H to EFFF FFFFH
and

F000 0000H to FFFF FFFFH
Application dependent2

NOTES:

1. When direct addressing mode is enabled (bit 8 of the ATUCR), the region must be programmed to 32-bits 
wide. When disabled, the peripherals/memory connected to this region define the bus width to be 
programmed.
12-4

2. The user peripheral/memory connected to this region defines the bus width to be programmed.



12
CORE PROCESSOR LOCAL BUS CONFIGURATION

12.2.1 Local Bus Width

The local bus width for a region is controlled by the PMCON register. The operation of the i960
Rx I/O processor with different local bus width programming options is described in
section 13.3.4, Bus Width (pg. 13-6).

12.3 PHYSICAL MEMORY ATTRIBUTES AT INITIALIZATION

All eight PMCON registers are loaded automatically during system initialization. The initial values
are stored in the Control Table in the Initialization Boot Record [see 11.4, INITIAL MEMORY

Table 12-2.  Physical Memory Control Registers – PMCON0:15

LBA: 

PCI:

see Table 12-1

NA

Legend: NA = Not Accessible RO = Read Only
RV = Reserved PR = Preserved RW = Read/Write
RS = Read/Set RC = Read Clear
LBA = 80960 Local Bus Address PCI = PCI Configuration Address Offset

Bit Default Description

31:24 00H Reserved. Initialize to 0.

23:22 002

Bus Width

Selects the local bus width for a region:
(00) = 8-bit
(01) = 16-bit
(10) = 32-bit bus
(11) = reserved (do not use)

21:00 00 0000H Reserved. Initialize to 0.

PCI

LBA

28 24 20 16 12 8 4 031

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rw

na

rw

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na
12-5

IMAGE (IMI) (pg. 11-11)].



CORE PROCESSOR LOCAL BUS CONFIGURATION

12.3.1 Bus Control Register – BCON

Immediately after a hardware reset, the PMCON register contents are marked invalid in the Bus
Control (BCON) register. When the PMCON entries are marked invalid in BCON, the BCU uses
the parameters in PMCON14_15 for all regions. On a hardware reset, PMCON14_15 is automati-
cally cleared. This operation configures all regions to an 8-bit bus width. Subsequently, the
processor loads all PMCON registers from the Control Table. The processor then loads BCON
from the Control Table. When bit 2 of BCON is clear, PMCON14_15 remains in use for all local
bus accesses. When bit 2 of BCON is set, the region table is valid and the BCU uses the
programmed PMCON values for each region.

Table 12-3.  Bus Control Register Bit Definitions – BCON

LBA: 

PCI:

86FCH

NA

Legend: NA = Not Accessible RO = Read Only
RV = Reserved PR = Preserved RW = Read/Write
RS = Read/Set RC = Read Clear
LBA = 80960 Local Bus Address PCI = PCI Configuration Address Offset

Bit Default Description

31:03 0000 0000H Reserved.

02 02

Configuration Entries in Control Table Valid)
(0) = PMCON entries not valid, default to PMCON14_15 setting
(1) = PMCON entries valid

01 02

Internal RAM Protection
(0) = Internal data RAM not protected from user mode writes
(1) = Internal data RAM protected from user mode write

00 02

Supervisor Internal RAM Protection
(0) = First 64 bytes not protected from supervisor mode write

PCI

LBA

28 24 20 16 12 8 4 031

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rw

na

rw

na

rw

na
12-6

12.4 BOUNDARY CONDITIONS FOR PHYSICAL MEMORY REGIONS

The following sections describe the operation of the PMCON registers during conditions other
than “normal” accesses.

(1) = First 64 bytes protected from supervisor mode writes



12

aining

 cross
for the
aining

ess is
CORE PROCESSOR LOCAL BUS CONFIGURATION

12.4.1 Internal Memory Locations

The PMCON registers are ignored during accesses to internal memory or i960 core processor
memory-mapped registers. The processor performs those accesses over 32-bit buses, except for
local register cache accesses. The register bus is 128 bits wide.

12.4.2 Bus Transactions Across Region Boundaries

An unaligned bus request that spans region boundaries uses the PMCON settings of both regions.
Accesses that lie in the first region use that region’s PMCON parameters, and the rem
accesses use the second region’s PMCON parameters.

For example, an unaligned quad word load/store beginning at address 1FFF FFFEH would
boundaries from region 0_1 to 2_3. The physical parameters for region 0_1 would be used 
first 2-byte access and the physical parameters for region 2_3 would be used for the rem
access.

12.4.3 Modifying the PMCON Registers

An application can modify the value of a PMCON register by using the st or sysctl instruction.
When a st or sysctl instruction is issued when an access is in progress, the current acc
completed before the modification takes effect.
12-7



CORE PROCESSOR LOCAL BUS CONFIGURATION

12.5 PROGRAMMING THE LOGICAL MEMORY ATTRIBUTES

Bit field definitions for Logical Memory Address Registers - LMADR1:0 and LMMR1:0 registers
are shown in Table 12-4. LMCON registers reside within the i960 core processor memory-
mapped control register space. (See APPENDIX C, MEMORY-MAPPED REGISTERS.)

12.5.1 Logical Memory Address Registers - LMADR0:1

The LMADR1:0 registers define the address for the logical data templates and template caching.

Table 12-4.  Logical Memory Address Registers – LMADR0:1

LBA: 

PCI:

CH0-8108H
CH1-8110H

NA

Legend: NA = Not Accessible RO = Read Only
RV = Reserved PR = Preserved RW = Read/Write
RS = Read/Set RC = Read Clear
LBA = 80960 Local Bus Address PCI = PCI Configuration Address Offset

Bit Default Description

31:12 0000 0H
Template Starting Address - Defines upper 20 bits for the address of a logical data 
template. The lower 12 bits are fixed at zero. The starting address is modulo 4 Kbytes.

11:02 000H Reserved.

01 02

Data Cache Enable - Controls data caching for the template.
(0) = Data caching disabled
(1) = Data caching enabled

Instruction caching is never affected by this bit.

00 02 Reserved.

PCI

LBA

28 24 20 16 12 8 4 031

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rw

na

rv

na
12-8



12
CORE PROCESSOR LOCAL BUS CONFIGURATION

The Default Logical Memory Configuration (DLMCON) register is shown in Table 12-6. The
BCU uses the parameters in the DLMCON register when the current access does not fall within
one of the two logical memory templates (LMTs). 

Table 12-5.  Logical Memory Mask Registers – LMMR0:1

LBA: 

PCI:

CH0-810CH
CH1-8114H

NA

Legend: NA = Not Accessible RO = Read Only
RV = Reserved PR = Preserved RW = Read/Write
RS = Read/Set RC = Read Clear
LBA = 80960 Local Bus Address PCI = PCI Configuration Address Offset

Bit Default Description

31:12 0000 0H

Template Address Mask - Defines upper 20 bits for the address mask for a logical 
memory template. The lower 12 bits are fixed at zero (MA).

(0) = Mask
(1) = Do not mask

11:01 000H Reserved.

00 02

Logical Memory Template Enabled - Enables/disables logical memory template.
(0) = LMT disable
(1) = LMT enabled

Table 12-6.  Default Logical Memory Configuration Register – DLMCON

LBA: 8100H Legend: NA = Not Accessible RO = Read Only

PCI

LBA

28 24 20 16 12 8 4 031

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rw

na

PCI

LBA

28 24 20 16 12 8 4 031

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rw

na

rv

na
12-9

PCI: NA RV = Reserved PR = Preserved RW = Read/Write
RS = Read/Set RC = Read Clear
LBA = 80960 Local Bus Address PCI = PCI Configuration Address Offset

Bit Default Description

31:02 0000 0000H Reserved.

01 02

Data Cache Enable - Controls data caching for areas not within other logical memory 
templates.

(0) = Data caching disabled
(1) = Write-through caching enabled

Instruction caching is never affected by this bit.

00 02 Reserved.



ress
rces a
late.

ss bits
ify the

ddress
m the

 by
, each
with
CORE PROCESSOR LOCAL BUS CONFIGURATION

12.5.2 Defining the Effective Range of a Logical Data Template

For each logical data template, an LMADRx register sets the base address using the bits 31:12.
The LMMR register sets the address mask using the bits 31:12. The effective address range for a
logical data template is defined by using bits 31:12 in the LMADRx register and bits 31:12 in the
LMMRx register.

For each access, only those address bits in the range 31:12 marked as unmasked (defined by bits
MA31:12 in the LMMRx register), are compared against bits 31:12 in the LMMRx register. When
all of the unmasked bits of the address match bits 31:12 of the LMMRx register, then the address
falls within the memory region governed by “x” logical memory template. The lower 12 add
bits are not compared and are thus considered masked bits or “don’t care” bits. This fo
minimum 4 Kbyte boundary on a memory region governed by a logical memory temp
Logically, the operation is as follows:

(EFA31:12 xnor LMADRx31:12) or (not LMMRx31:12)

Where EFA31:12 is the effective address for a bus access. Only when all compared addre
match is the logical data template used for the current access. Two examples help clar
operation of the address comparators.

• Create a template 64 Kbytes in length beginning at address 0010 0000H and ending at a
0010 FFFFH. Determine the form of the candidate address to match and then progra
LMADR and LMMR registers:

Candidate Address is of form:0010 XXXX
LMADR <31:12> should be: 0010 0...
LMMR <31:12> should be: FFFF 0...

• Multiple data templates can be created from a single LMADRxLMMRx register pair
aliasing effective addresses. For example, to create sixteen 64 Kbyte templates
beginning on modulo 1 Mbyte boundaries starting at 0000 0000H and ending 
00F0 0000H, the registers are programmed as follows:
12-10

Candidate Address is of form:00X0 XXXX
LMADR <31:12> should be: 0000 0...
LMMR <31:12> should be: FF0F 0...

12.5.3 Data Caching Enable

Enabling and disabling data caching for an LMT is controlled via the bit 0 in the LMADR register.
Likewise, the bit 1 in the DLMCON enables and disables data-caching for regions of memory that
are not covered by the LMCON registers.



12

gisters.
 data
rough
d as

esses
CORE PROCESSOR LOCAL BUS CONFIGURATION

Disabling a memory range does not exclude an address range from being cacheable. For cacheable
ranges, the BCU promotes all sub-word accesses to word accesses.

12.5.4 Enabling the Logical Memory Template

LMMRx bit 0 activates the logical data template in the LMMR register for the programmed range.

12.5.5 Initialization

Immediately following a hardware reset, all LMTs are disabled. The bit 0 in each of the LMMR
registers is cleared (0) and all other bits are undefined. Also the Default Logical Memory Control
register Data Caching Enable (LMADRx bit 1) is cleared (Data Caching Disabled). Application
software may initialize and enable the logical memory template after hardware reset. The registers
are not modified by software initialization.

12.5.6 Boundary Conditions for Logical Memory Templates

The following sections describe the operation of the LMT registers during conditions other than
“normal” accesses. See CHAPTER 4, CACHE AND ON-CHIP DATA RAM for a treatment of
data cache coherency when modifying an LMT.

12.5.6.1 Internal Memory Locations and Peripheral MMRs

The LMT registers are not used during accesses to i960 core processor memory-mapped re
Internal data RAM locations are never cached; LMT bits controlling caching are ignored for
RAM accesses. The i960 Rx I/O processor peripheral MMRs, (addresses 0000 1000H th
0000 17FFH) and the ATU windows (8000 0000H through 9001 FFFFH) should be define
non-cacheable. Further, if direct addressing is enabled (bit 8 of the ATUCR) addr
0000 0000H through 7FFF FFFFH should be defined as non-cacheable.

12.5.6.2 Overlapping Logical Data Template Ranges
12-11

Logical data templates that specify overlapping ranges are not allowed. When an access is
attempted that matches more than one enabled LMT range, the operation of the access becomes
undefined.

To establish different logical memory attributes for the same address range, program non-
overlapping logical ranges, then use partial physical address decoding.



CORE PROCESSOR LOCAL BUS CONFIGURATION

12.5.6.3 Accesses Across LMT Boundaries

Accesses that cross LMT boundaries should be avoided. These accesses are unaligned and broken
into a number of smaller aligned accesses, which reside in one or the other LMT, but not both.
Each smaller access is completed using the parameters of the LMT in which it resides.

12.5.7 Modifying the LMT Registers

An LMT register can be modified using st or sysctl instructions. Both instructions ensure data
cache coherency and order the modification with previous and subsequent data accesses.
12-12



13
LOCAL BUS





13

typical
CHAPTER 13
LOCAL BUS

This chapter describes the bus interface of the i960® Rx I/O processor. It explains the following:

• Bus states and their relationship to each other

• Bus signals, which consist of address/data, control/status 

• Read, write, burst and atomic bus transactions

• Related bus functions such as arbitration

This chapter also serves as a starting point for the hardware designer when interfacing 
peripheral devices to the i960 Rx I/O processor’s address/data bus.

For information on programmable bus configuration, refer to CHAPTER 12, CORE PROCESSOR
LOCAL BUS CONFIGURATION.

80960 Core 
Processor

 Memory
Controller

MA11:0 + CTRL

80960 Core Processor Local Bus 
13-1

Figure 13-1.  The Local Bus

Address
Translation

Units
Three DMA 
Channels

AD31:0 + CTRL



LK);

tion-
LOCAL BUS

13.1 OVERVIEW

The local bus is the data communication path between the various components of an i960 Rx I/O
processor hardware system. It allows the processor to fetch instructions, manipulate data and
interact with its I/O environment. To perform these tasks at high bandwidth, the processor features
a burst transfer capability which allows successive 32-bit data transfers.

The local bus is controlled by the on-chip bus masters: the i960 core processor, the ATUs and
DMA units. While the i960 core processor is limited to a burst length of four transfers, the ATUs
and DMA units can burst up to naturally aligned 2 Kbyte boundaries.

The address/data path is multiplexed for economy, and bus width is programmable to 8-, 16- and
32-bit widths for i960 core processor accesses. The ATU and DMA units are limited to 32-bit bus
widths. The processor has dedicated control signals for external address latches, buffers and data
transceivers. In addition, the processor uses other signals to communicate with alternate bus
masters. All bus transactions are synchronized with the processor’s clock input (S_C
therefore, the memory system control logic can be implemented as state machines.

Users who are familiar with i960 JF processor should note the following differences in func
ality between the i960 JF processor and the i960 Rx I/O processor. See Table 13-1. 

Table 13-1.  Differences Between 80960JF and 80960Rx Local Buses

Topic 80960JF 80960Rx

HOLD function HOLD recognized during reset. HOLD not recognized during reset.

Burst access limits Four-word burst
i960 core processor: Four-word burst

DMA units and ATU: 2 Kbyte

Data byte order Supports big and little endian byte order. Supports little endian byte order only.

BSTAT signal
Uses BSTAT to provide bus status 
information. 

BSTAT signal not present. 

A3:2 signal
A3:2 increments addresses during burst 
accesses.

A3:2 not present. 
13-2

Bus width Supports 8-, 16- or 32-bits bus widths

Peripherals that only interface to the 
i960 core processor can use 8-, 16 or 
32-bit bus widths.

Peripherals interfaced to the DMA units 
and ATUs must use 32-bit bus widths.

Bus alignment
Unaligned accesses broken up by 
microcode into aligned accesses.

i960 core processor: unaligned 
accesses broken up by microcode into 
aligned accesses. 

DMA units and ATU: No alignment 
restrictions.



13

sible.

ta from
ta to

e) and
 each
fers per
gth, the

t bus

when

ata
gnal
long as
LOCAL BUS

13.1.1 Bus Operation

The terms request, access and transfer are used to describe bus operations. The processor’s bus
control unit decouples bus activity from instruction execution in the core as much as pos
When a load or store instruction or instruction prefetch is issued, a bus request is generated in the
bus control unit. The bus control unit independently processes the request and retrieves da
memory for load instructions and instruction prefetches. The bus control unit delivers da
memory for store instructions.

A bus access is defined as a bus transaction bounded by the assertion of ADS# (address strob
de-assertion of BLAST# (burst last) signals, which are outputs from the processor. During
transfer, the processor either reads data or drives data on the bus. The number of trans
access and the number of accesses per request is governed by the requested data len
programmed width of the bus and the alignment of the address. 

13.2 BASIC BUS STATES

The bus has five basic bus states: idle (TI), address (TA), wait/data (TW/TD), recovery (TR), and
hold (TH). During system operation, the processor continuously enters and exits differen
states.

The bus occupies the idle (TI) state when no address/data transactions are in progress and 
P_RST# is asserted.   When the processor needs to initiate a bus access, it enters the TA state to
transmit the address.

Following a TA state, the bus enters the TW/TD state to transmit or receive data on the address/d
lines. Assertion of the LRDYRCV# (Local Ready Recover) or RDYRCV# (Ready/Recover) si
indicates completion of each transfer. When data is not ready, the processor can wait as 
necessary for the memory or I/O device to respond. 

In the case of a burst transaction, the bus exits the TD state and re-enters the TD/TW state to transfer
the next data word. The processor asserts the BLAST# signal during the last TW/TD states of an
13-3

access. Once all data words transfer in a burst access, the bus enters the recovery (TR) state to
allow devices on the bus to recover.

The processor remains in the TR state until LRDYRCV# or RDYRCV# is deasserted. When the
recovery state completes, the bus enters the TI state when no new accesses are required. When an
access is pending, the bus enters the TA state to transmit the new address.



LOCAL BUS

TI — Idle state
TA — address state
TW / TD — Wait/data state
TR — Recovery state
TH — Hold state
TO — ONCE state

READY— RDYRCV# asserted
NOT READY— LRDYRCV#/RDYRCV# not asserted
BURST— BLAST# not asserted
NO BURST— BLAST# asserted
RECOVERED—LRDYRCV#/ RDYRCV# not asserted
NOT RECOVERED— LRDYRCV#/RDYRCV# asserted
REQUEST PENDING— New transaction

NO REQUEST— No new transaction
HOLD— Hold request asserted
NO HOLD— Hold request not asserted
LOCKED— Atomic execution (atadd, atmod) in progress
NOT LOCKED— No atomic execution in progress
RESET— RESET# asserted
ONCE— ONCE# asserted

TW/TD

TR

TH

TI

TA

NOT 
RECOVERED

READY AND
 NO BURST 

HOLD AND 
NOT LOCKED

HOLD

RECOVERED AND 
NO REQUEST AND 

(NO HOLD OR 
LOCKED)

RECOVERED 
AND REQUEST 
PENDING AND 
(NO HOLD OR 

LOCKED)

NO REQUEST 
AND NO HOLD

TO RESET

ONCE & RESET 
DEASSERTION

RECOVERED AND 
HOLD AND NOT 

LOCKED

REQUEST 
PENDING 

AND NO HOLD

REQUEST PENDING 
AND (NO HOLD OR 

LOCKED)

NO REQUEST 
AND (NO HOLD 
OR LOCKED)

(READY AND BURST) 
OR NOT READY
13-4

Figure 13-2.  Bus States with Arbitration



13
LOCAL BUS

13.3 BUS SIGNAL TYPES

Bus signals consist of three groups: address/data, control/status and bus arbitration. A detailed
description of all signals can be found in the 80960RP/RD Intelligent I/O Microprocessor Data
Sheets.

13.3.1 Clock Signal

The S_CLK input signal is the reference for all i960 Rx I/O processor signal timing relationships.
Transitions on the AD31:0, ADS#, BE3:0#, WIDTH/HLTD1:0, D/C#, W/R#, DEN#, BLAST#,
LRDYRCV# or RDYRCV#, LOCK#/ONCE#, HOLD, and HOLDA signals are always measured
directly from the rising edge of S_CLK. The processor asserts ALE directly from the rising
S_CLK edge at the beginning of a TA state but deasserts them approximately half way through the
state instead of the next rising S_CLK edge. All transitions on DT/R# are also referenced to a point
halfway through the TA state instead of rising S_CLK edges.

13.3.2 Address/Data Signal Definitions

The address/data signal group consists of 32 lines. These signals multiplex within the processor to
serve a dual purpose. During TA, the processor drives AD31:2 with the address of the bus access.
At all other times, these lines are defined to contain data. AD1:0 denote burst size during TA and
data during other states.

The processor routinely performs data transfers less than 32 bits wide for i960 core processor
accesses. When the programmed bus width is 32 bits and transfers are 16- or 8-bit, then during
write cycles the processor replicates the data being driven on the unused address/data signals.
When the programmed bus width is 16 or 8 bits, then during write cycles the processor continues
driving address on any unused address/data signals.

Whenever the programmed bus width is less than 32 bits, additional demultiplexed address bits are
available on unused byte enable signals. See section 13.3.4, Bus Width (pg. 13-6). These signals
increment during burst accesses. The memory controller increments the addresses during bursts.
13-5

See CHAPTER 14, MEMORY CONTROLLER for more information.

13.3.3 Control/Status Signal Definitions

The control/status signals control data buffers and address latches or furnish information useful to
external chip-select generation logic. All output control/status signals are three-state.

Bus accesses begin with the assertion of ADS# (address/data status) during a TA state. External
decoding logic typically uses ADS# to qualify a valid address at the rising clock edge at the end of
TA. The processor pulses ALE (address latch enable) active high for one half clock during TA to
latch the multiplexed address on AD31:2 in external address latches. 



mory
med

 a data
s the
nge

stem to
is used

N# is

sfer to a
 of an

# or

ation
for
ng the
LOCAL BUS

The byte enable (BE3:0#) signals denote which bytes on the 32-bit data bus transfers data during
an access. The processor asserts byte enables during TA and deasserts them during TR. When the
data bus is configured for 16 bits, two byte enables become byte high enable and byte low enable
and an additional address bit A1 is provided. When the bus is configured for 8 bits, there are no
byte enables, but additional address bits A1:0 are provided. Note that the processor always drives
byte enable signals to logical 1’s during the TR state, even when they are used as addresses.

The WIDTH1:0, D/C# and W/R# signals yield useful bus access information for external me
and I/O controllers. The WIDTH1:0 signals denote the i960 core processor’s program
physical memory attributes. The data/code signal D/C#, indicates whether an access is
transaction (1) or an instruction transaction (0). The write/read signal W/R#, indicate
direction of data flow relative to the i960 Rx I/O processor. WIDTH1:0, D/C# and W/R# cha
state as needed during the TA state.

DT/R# and DEN# signals control data transceivers. Data transceivers may be used in a sy
isolate a memory subsystem or control loading on data lines. DT/R# (data transmit/receive) 
to control transceiver direction. In the second half of the TA state, it transitions high for write
cycles or low for read cycles. DEN# (data enable) is used to enable the transceivers. DE
asserted during the first TW/TD state of a bus access and deasserted during TR. DT/R# and DEN#
timings ensure that DT/R# does not change state when DEN# is asserted.

A bus access may be either non-burst or burst. A non-burst access ends after one data tran
single location. The processor asserts BLAST# (burst last) to indicate the last data cycle
access in both burst and non-burst situations.

All i960 Rx I/O processor wait states to the local bus are controlled by either LRDYRCV
RDYRCV#. See section 13.3.7.1, Recovery States (pg. 13-21) for a description of these signals.

13.3.4 Bus Width

Each region’s data bus width is programmed in a Physical Memory Region Configur
(PMCON) register (see Chapter 12). The processor allows an 8-, 16- or 32-bit data bus width 
each region. The processor places 8- and 16-bit data on low-order data signals, simplifyi
13-6

interface to narrow bus external devices. As shown in Figure 13-3, 8-bit data is placed on lines
AD7:0; 16-bit data is placed on lines AD15:0; 32-bit data is placed on lines AD31:0. The
processor encodes bus width on the WIDTH1:0 signals so that external logic may enable the bus
correctly. Note that DMA and ATU accesses are limited to 32-bit wide memory regions.



13

ignal

 select

BR)
LOCAL BUS

Figure 13-3.  Data Width and Byte Encodings

Depending on the programmed bus width, the byte enable signals provide either data enables or
low-order address lines:

• 8-bit region: BE0:1# provide the byte address (A0, A1). BE3:2# are not used.

• 16-bit region: BE1# provides the short-word address (A1); BE3# is the byte high enable s
(BHE#); BE0# is the byte low enable signal (BLE#). BE2# is not used.

• 32-bit region: byte enables are not encoded as address signals. Byte enables BE3:0#
bytes 0 through 3 of the 32-bit words addressed by AD31:2.

During initialization, the bus configuration data is read from the Initialization Boot Record (I

AD31:24

AD23:16

AD15:8

AD7:0

A0

A1

BE3:0

A1

BHE BLE

BE1BE1BE0 BE3 BE0 BE3 BE2 BE1 BE0

32 - Bit16 - Bit8 - Bit
13-7

assuming an 8-bit bus width; however, the IBR can be in 8-bit, 16-bit or 32-bit physical memory.
BE3:2# are defined as “1” so that reading the bus configuration data works for all bus widths.
Since these byte enables are ignored for actual 8-bit memory, they can be permanently defined this
way for ease of implementation.

The i960 Rx I/O processor drives determinate values on all address/data signals during TW/TD
write operation states. For an 8-bit bus, the processor continues to drive address on unused data
signals AD31:8. For a 16-bit bus, the processor continues to drive address on unused data signals
AD31:16. However, when the processor does not use the entire bus width because of data width or
misalignment (i.e., 8-bit write on a 16- or 32-bit bus or a 16-bit write on a 32-bit bus), data is
replicated on those unused portions of the bus.



LOCAL BUS

13.3.5 Basic Bus Accesses

The basic transaction is a read or write of one data word. The first half of Figure 13-4 shows a
typical timing diagram for a non-burst, 32-bit read transaction. For simplicity, no wait states are
shown.

During the TA state, the i960 Rx I/O processor transmits the address on the address/data lines. In
the figure, the SIZE bits (AD1:0) specify a single word transaction and WIDTH1:0 indicate a
32-bit wide access. For DMA and ATU accesses to the local bus, SIZE is not valid. The processor
asserts ALE to latch the address and drives ADS# low to denote the start of the cycle. BE3:0#
specify which bytes the processor uses to read the data word. The processor brings W/R# low to
denote a read operation and drives D/C# to the proper state. For data transceivers, DT/R# goes low
to define the input direction. 

During the TW/TD state, the processor deasserts ADS# and asserts DEN# to enable any data trans-
ceivers. Since this is a non-burst transaction, the processor asserts BLAST# to signify the last
transfer of a transaction. Figure 13-4 shows LRDYRCV#/RDYRCV# asserted, so this state is a
data state and the processor latches data on a rising S_CLK edge. RDYRCV# is asserted by
external logic.

The TR state follows the TW/TD state. This allows the system components adequate time to
remove their outputs from the bus before the processor drives the next address on the address/data
lines. During the TR state, BLAST#, BE3:0# and DEN# are inactive. W/R# and DT/R# hold their
previous values. The figure indicates a logical high for the LRDYRCV#/RDYRCV# signal, so
there is only one recovery state.

After a read, notice that the address/data bus goes to an invalid state during TI. The processor
drives valid logic levels on the address/data bus instead of allowing it to float. See section 13.4,
BUS AND CONTROL SIGNALS DURING RECOVERY AND IDLE STATES (pg. 13-23) for
the values that are driven during TI.
13-8



13
LOCAL BUS

AD31:0

ALE

ADS#

BE3:0#

WIDTH1:0

D/C#

W/R#

DT/R#

BLAST#

ADDR
D
In Invalid ADDR

10 10

TA TD TR TI TI TA TD TR TI TI

Read Idle Write Idle

S_CLK

D
Out
13-9

Figure 13-4.  Non-Burst Read and Write Transactions Without Wait States, 32-Bit Bus

DEN#

LRDYRCV#/RDYRCV#



LOCAL BUS

Figure 13-4 also shows a typical timing diagram for a non-burst, 32-bit write transaction. For the
write operation, W/R# and DT/R# are high to denote the direction of the data flow. The D/C#
signal is high since instruction code cannot be written. During the TW/TD state, the processor
drives data on the bus, waiting to sample LRDYRCV#/RDYRCV# low to terminate the transfer.
The figure shows LRDYRCV#/RDYRCV# asserted, so this state is a data state and the processor
enters the recovery state. RDYRCV# is asserted by external logic.

At the end of a write, notice that the write data is driven during TR and any subsequent TI states.
After a write, the processor drives write data until the next TA state. See section 13.4, BUS AND
CONTROL SIGNALS DURING RECOVERY AND IDLE STATES (pg. 13-23) for details.

13.3.6 Burst Transactions

A burst access is an address cycle followed by multiple data transfers. The i960 Rx I/O processor
uses burst transactions to optimize local bus bandwidth. Burst transactions can be initiated by the
i960 core processor, the ATUs and the DMA units. Burst transactions initiated by the i960 core
processor have the same burst length and alignment rules as the i960 JF processor. However, burst
transactions initiated by the ATUs and DMA units to the local bus have been further optimized to
increase bandwidth by supporting much greater burst transfer lengths (up to 2K) and have added
hardware support for optimized unaligned transfers. 

When interfacing devices to the local bus that are accessed by on-chip i960 core processor only,
the same burst length and alignment rules from the i960 JF processor apply. If devices connected
to the local bus are targeted by either the ATUs or the DMA units, those device must support the
additional local bus optimizations added by those units. 

13.3.6.1 i960® Core Processor Burst Transactions

The maximum i960 core processor burst size is four data transfers, independent of bus width.
These transfers are used by the i960 core processor for instruction fetching and accessing system
data structures (i.e., load and store instructions). For an 8- and 16-bit bus widths, this means that
some bus requests may result in multiple burst accesses. For example, a quad word load request
13-10

(ldq instructions) to an 8-bit data region results in four 4-byte burst accesses. 

For the i960 core processor, the burst accesses on the local bus are always aligned, meaning that
byte lanes always carry valid data for each burst transfer (BE3:0# asserted). Table 13-2
summarizes the natural boundaries for load and store accesses from the i960 core processor. 

When processing unaligned data requests from the i960 core processor, the Bus Control Unit
breaks these accesses into a series of aligned burst accesses. The alignment rules for load and store
requests are based on address offsets from natural data boundaries. Table 13-3 through Table 13-5
list all possible combinations of bus accesses resulting from aligned and unaligned requests.
Figure 13-5 and Figure 13-6 depict the combinations for 32-bit buses.



13
LOCAL BUS

The Process Control Block (PRCB) fault configuration word can configure the i960 core processor
to handle unaligned accesses non-transparently by generating an OPERATION.UNALIGNED
fault after executing any unaligned accesses. See section 11.4.2, Process Control Block – PRCB
(pg. 11-17).

Table 13-2.  i960® Core Processor Natural Boundaries for Load and Store Accesses

Data Width Natural Boundary (Bytes)

Byte 1

Short Word 2

Word 4

Double Word 8

Triple Word 16

Quad Word 16

Table 13-3.  i960® Core Processor Summary of Byte Load and Store Accesses

Address Offset from 
Natural Boundary 

(in Bytes)

Accesses on 8-Bit Bus 
(WIDTH1:0=00)

Accesses on 16 Bit Bus 
(WIDTH1:0=01)

Accesses on 32 Bit Bus 
(WIDTH1:0=10)

+0 (aligned) byte access byte access byte access

Table 13-4.   i960® Core Processor Summary of Short Word Load and Store 
Accesses

Address Offset from 
Natural Boundary 

(in Bytes)

Accesses on 8-Bit Bus 
(WIDTH1:0=00)

Accesses on 16 Bit Bus 
(WIDTH1:0=01)

Accesses on 32 Bit Bus 
(WIDTH1:0=10)

+0 (aligned) burst of 2 bytes short-word access short-word access

+1 2 byte accesses 2 byte accesses 2 byte accesses
13-11



LOCAL BUS

Table 13-5.  i960® Core Processor 
Summary of n-Word Load and Store Accesses (n = 1, 2, 3, 4)

Address Offset 
from Natural 

Boundary in Bytes

Accesses on 8-Bit Bus 
(WIDTH1:0=00)

Accesses on 16 Bit Bus 
(WIDTH1:0=01)

Accesses on 32 Bit 
Bus (WIDTH1:0=10)

+0 (aligned) 
(n =1, 2, 3, 4)

• n burst(s) of 4 bytes • case n=1:
burst of 2 short words

• case n=2:
burst of 4 short words

• case n=3:
burst of 4 short words
burst of 2 short words

• case n=4:
2 bursts of 4 short words

• burst of n word(s)

+1 (n =1, 2, 3, 4)
+5 (n = 2, 3, 4)
+9 (n = 3, 4)
+13 (n = 3, 4)

• byte access
• burst of 2 bytes
• n-1 burst(s) of 4 bytes
• byte access

• byte access
• short-word access
• n-1 burst(s) of 2 short words
• byte access

• byte access
• short-word access
• n-1 word access(es)
• byte access

+2 (n =1, 2, 3, 4)
+6 (n = 2, 3, 4)
+10 (n = 3, 4)
+14 (n = 3, 4)

• burst of 2 bytes
• n-1 burst(s) of 4 bytes
• burst of 2 bytes

• short-word access
• n-1 burst(s) of 2 short words
• short-word access

• short-word access
• n-1 word access(es)
• short-word access

+3 (n =1, 2, 3, 4)
+7 (n = 2, 3, 4)
+11 (n = 3, 4)
+15 (n = 3, 4)

• byte access
• n-1 burst(s) of 4 bytes
• burst of 2 bytes
• byte access

•  byte access
• n-1 burst(s) of 2 short words
• short-word access
• byte access

• byte access
• n-1 word access(es)
• short-word access
• byte access

+4 (n = 2, 3, 4)
+8 (n = 3, 4)
+12 (n = 3, 4)

• n burst(s) of 4 bytes • n burst(s) of 2 short words • n word access(es)
13-12



13
LOCAL BUS

0 4 8 12 16 20 24

0 1 2 3 4 5 6

Short-Word
Load/Store

Word
Load/Store

Double-Word
Load/Store

Byte, Byte Accesses

Short Access (Aligned)

Short Access (Aligned)

Byte, Byte Accesses

Word Access (Aligned)

Byte, Short, Byte, Accesses

Short, Short Accesses

Byte, Short, Byte Accesses

Byte Offset

Word Offset

One Double-Word Burst (Aligned)

Byte, Short, Word, Byte Accesses

Short, Word, Short Accesses

Byte, Word, Short, Byte Accesses

Word, Word Accesses
13-13

Figure 13-5.  i960® Core Processor Summary of Aligned and Unaligned Accesses 
(32-Bit Bus)

One Double-Word 
Burst (Aligned)



LOCAL BUS

0 4 8 12 16 20 24

0 1 2 3 4 5 6

Triple-Word
Load/Store

Quad-Word
Load/Store

Word, Word, 
Word Accesses

Word,

Word,
Word,

Word, Word, Word,
Word Accesses

Byte Offset

Word Offset

One Three-Word
 Burst (Aligned)

Byte, Short, Word,
 Word, Byte Accesses

 Short Accesses
Short, Word, Word,

Byte, Word, Word,
Short, Byte Accesses

Word, Word, 
Word Accesses

One Four-Word
Burst (Aligned)

Byte, Short, Word, Word,
Word, Byte Accesses

Short, Word, Word, Word,
Short Accesses

Byte, Word, Word, Word, 
Short, Byte Accesses

Accesses

Word, 
Word 

Word, 
13-14

Figure 13-6.  i960® Core Processor Summary of Aligned and Unaligned Accesses
(32-Bit Bus) (Continued)

Accesses
Word,



13
LOCAL BUS

ADDR D D ADDR DATA DATA DATAAD31:0

ALE

ADS#

BE1#/A1#

WIDTH1:0

D/C#

W/R#

BLAST#

DT/R#

DEN#

TA TD TD TR TA TD TD TD TD TR

00 01 10 11

00 00

BE0#/A0#

In In Out OutOut

00 or 10 01 or
 11

S_CLK

DATA
Out
13-15

Figure 13-7.  Burst Read and Write Transactions w/o Wait States, 8-bit Bus

LRDYRCV#/RDYRCV#



LOCAL BUS

ADDR D D ADDR DATA DATA DATA

1 0 1 0

AD31:0

ALE

ADS#

BE3:0#

WIDTH1:0

D/C#

W/R#

BLAST#

DT/R#

DEN#

LRDYRCV#/RDYRCV#

TA TD TD TR TA TD TD TD TD TR

In In Out Out Out

S_CLK

DATA
Out
13-16

Figure 13-8.  Burst Read and Write Transactions w/o Wait States, 32-bit Bus



13
LOCAL BUS

13.3.6.2 ATU and DMA Burst Transactions

While the i960 core processor generates local bus accesses in response to data requests (LD and ST
instructions) or instruction prefetching, the ATU and DMA units generate local bus accesses to
move large blocks of data to and from the PCI buses. For most i960 Rx I/O processor applications,
these burst accesses are translated by the on-chip memory controller directly to either DRAM or
SRAM. However, it is possible for the DMA or ATU units to access external peripherals
connected to the local bus.

To facilitate these large transfers, these units burst transfers up to naturally aligned 2K boundaries
to the local bus. Because of this, the SIZE value driven on the AD1:0 signals during the TA state is
invalid. The cycle still begins with ADS# and ends with BLAST#.

The ATU and DMA units also do not break unaligned burst accesses into aligned accesses. For
i960 core burst accesses, BE3:0# are unconditionally asserted for both reads and writes because the
transfers are aligned. For the ATU and DMA unit write cycles, BE3:0# can change for each data
transfer during a burst access to optimize the alignment. Figure 13-9 shows a seven-word burst
write from either the DMA or ATU units that is offset from the word boundary by one byte. The
transfer requires 8 burst data transfers, with 3 bytes valid for the first burst transfer, and one byte
valid for the last transfer.
13-17



LOCAL BUS

Figure 13-9.  ATU or DMA 7-Word Unaligned Burst Transfer

ADDR
DATA DATA DATA

1 0 1 0

AD31:0

ALE

ADS#

BE3:0#

WIDTH1:0

BLAST#

DT/R#

LRDYRCV#/RDYRCV#

TA TD TD TD TD TD TD TD TD TR

Out Out Out

S_CLK

DATA
Out

DATA
Out

DATA
Out

DATA
Out

0001 1110

DEN#

DATA
Out
13-18

13.3.7 Wait States

Wait states lengthen the processor’s bus cycles, allowing data transfers with slow memory and I/O
devices. The i960 Rx I/O processor supports three types of wait states: address-to-data,
data-to-data and turnaround or recovery. All three types are controlled through the processor’s
LRDYRCV#/RDYRCV# signal. RDYRCV# is a synchronous input.



13

ough

e
transfer

ait

,
r
ith
l is
e to be

 two
LOCAL BUS

The processor’s bus states follow the state diagram in Figure 13-2. After the TA state, the processor
enters the TW/TD state to perform a data transfer. When the memory (or I/O) system is fast en
to allow the transfer to complete during this clock (i.e., “ready”), LRDYRCV#/ is asserted. The
processor samples LRDYRCV#/RDYRCV# low on the next rising clock edge, completing th
transfer; the state is a data state. When the memory system is too slow to complete the 
during this clock, LRDYRCV#/RDYRCV# is driven high and the state is an address-to-data w
state. Additional wait states may be inserted in similar fashion.

When the bus transaction is a burst, the processor re-enters the TW/TD state after the first data
transfer. The processor continues to sample LRDYRCV#/RDYRCV# on each rising clock edge
adding a data-to-data wait state when LRDYRCV#/RDYRCV# is high and completing a transfe
when LRDYRCV#/RDYRCV# is low. The process continues until all transfers are finished, w
LRDYRCV#/RDYRCV# assertion denoting every data acquisition. The LRDYRCV# signa
generated internally by the 80960Rx for accesses by the memory controller and does not hav
generated externally.

Figure 13-10 illustrates a quad word burst write transaction with wait states. There are
address-to-data wait states single data-to-data wait states between transfers.
13-19



LOCAL BUS

ADDR DATA

1 0

DATA DATAAD31:0

ALE

ADS#

BE3:0#

WIDTH1:0

D/C#

W/R#

BLAST#

DT/R#

TA TW TW TD TW TD TW TD TW TD TR

Out Out Out

S_CLK

DATA
Out
13-20

Figure 13-10.  Burst Write Transactions With 2,1,1,1 Wait States, 32-bit Bus

DEN#

LRDYRCV#/RDYRCV#



13

es are
except
x I/O

rly. Be
 logic
tates).

tra
LOCAL BUS

13.3.7.1 Recovery States

The state following the last data transfer of an access is a recovery (TR) state. By default, i960 Rx
I/O processor bus transactions have one recovery state. External logic can cause additional
recovery states to be inserted by driving the LRDYRCV#/RDYRCV# signal low at the end of TR. 

Recovery wait states are an important feature of the i960 Rx I/O processor because it employs a
multiplexed bus. Slow memory and I/O devices often need a long time to turn off their output
drivers on read accesses before the microprocessor drives the address for the next bus access.
Recovery wait states are also useful to force a delay between back-to-back accesses to I/O devices
with their own specific access recovery requirements.

System ready logic is often described as normally-ready or normally-not-ready. Normally-ready
logic asserts a microprocessor’s input signal during all bus states, except when wait stat
desired. Normally-not-ready logic deasserts a processor’s input signal during all bus states, 
when the processor is ready. The subtle nomenclature distinction is important for i960 R
processor systems because the active sense of the LRDYRCV#/RDYRCV# signal reverses for
recovery states. 

• During the TR state, logic 0 means “continue to recover” or “not ready”

• for TW/TD states, logic 0 means “ready”

Logic must assure “ready” and “not recover” are generated to terminate an access prope
certain to not hang the processor with endless recovery states. Conventional ready
implemented as normally-not-ready operates correctly (but without adding turnaround wait s

Figure 13-11 is a timing waveform of a read cycle followed by a write cycle, with an ex
recovery state inserted into the read cycle.
13-21



LOCAL BUS

ADDR D D
ADDR

DATA
AD31:0

ALE

ADS#

BE3#/BHE#

WIDTH1:0

D/C#

W/R#

BLAST#

DT/R#

TW TD TD TR TR TA TW TD TD TRTA

BE0#/BLE#

BE1#/A1

01 01

0 1 0 1

OutInIn

S_CLK

DATA
Out
13-22

Figure 13-11.  Burst Read/Write Transactions with 1,0 Wait States - 
Extra TR State on Read, 16-Bit Bus

DEN#

LRDYRCV#/RDYRCV#



13
LOCAL BUS

13.4 BUS AND CONTROL SIGNALS DURING RECOVERY AND IDLE STATES

Valid bus transactions are bounded by ADS# going active at the beginning of TA states and
BLAST# going inactive at the beginning of TR states. During TR and TI states, bus and control
signal logic levels are defined in such a way as to avoid unnecessary signal transitions that waste
power. In all cases, the bus and control signals are completely quiet for instruction fetches and data
loads that are cache hits.

When the last bus cycle is a read, the address/data bus floats during all TR states. When the last bus
cycle is a write, the address/data bus freezes during TR states. The processor drives control signals
such as ALE, ADS#, BLAST# and DEN# to their inactive states during TR. Byte enables BE3:0#
are always driven to logic high during TR, even when the processor uses them under alternate
definitions. Outputs without clearly defined active/inactive states such as WIDTH/HLTD1:0,
D/C#, W/R# and DT/R# freeze during TR.

When the bus enters the TI state, the bus and control signals also freeze to inactive states. The exact
states of the address/data signals depend on how the processor enters the TI state. When the
processor enters TI from a TR ending a write cycle, the processor continues driving data on
AD31:0. When the processor enters TI from a read cycle or from a TH state, AD31:4 are driven
with the upper 28 bits of the read address. The processor usually drives AD1:0 with the last SIZE
information. In cases where the core cancels a previously issued bus request, AD1:0 are indeter-
minate.

13.5 ATOMIC BUS TRANSACTIONS

The atomic instructions, atadd and atmod, consist of a load and store request to the same memory
location. Atomic instructions require indivisible, read-modify-write access to memory. That is,
another bus agent must not access the target of the atomic instruction between read and write
cycles. Atomic instructions are necessary to implement software semaphores.

For atomic bus accesses, the i960 Rx I/O processor asserts the LOCK# signal during the first TA of
the read operation and deasserts LOCK# in the last data transfer of the write operation. LOCK# is
13-23

deasserted at the same clock edge that BLAST# is asserted. The i960 Rx I/O processor does not
assert LOCK# except while a read-modify-write operation is in progress. While LOCK# is
asserted, the processor can perform other, non-atomic, accesses such as fetches. However, the i960
Rx I/O processor does not acknowledge HOLD requests. This behavior is an enhancement over
earlier i960 microprocessors. Figure 13-12 illustrates locked read/write accesses associated with an
atomic instruction.

Note that LOCK# is only valid during i960 core processor accesses to external memory. Atomic
accesses to the outbound ATU windows or ATU address space while direct addressing is enabled
are not supported.



LOCAL BUS

Figure 13-12.  The LOCK# Signal

AD31:0#

ADS#

W/R#

BLAST#

ALE#

TA TD TI TITR TI TA TD TR

LOCK#

LRDYRCV#/RDYRCV#

Addr Invalid Addr
D
In

~ ~
~ ~

~ ~
~ ~

~ ~
~ ~

~ ~
~ ~

~ ~
~ ~

S_CLK

DATA
Out
13-24

13.6 BUS ARBITRATION

The i960 Rx I/O processor can share the bus with other bus masters, using its built-in arbitration
protocol. The protocol assumes two bus masters: a default bus master (typically the i960 Rx I/O
processor) that controls the bus and another that requests bus control when it performs an
operation. More than two bus masters may exist on the bus, but this configuration requires
external arbitration logic. External bus masters do not have access to the 80960Rx ’s internal local
bus. Therefore, an external bus master cannot access any of the 80960Rx’s internal peripherals
(e.g., the Memory Controller, the i960 core, etc.).

Two processor signal signals comprise the bus arbitration signal group.



13
LOCAL BUS

13.6.1 HOLD/HOLDA Protocol

In most cases, the i960 Rx I/O processor controls the bus; an I/O peripheral (e.g., a communica-
tions controller) requests bus control. The processor and I/O peripheral device exchange bus
control with two signals, HOLD and HOLDA.

HOLD is an i960 Rx I/O processor synchronous input signal which indicates that the alternate
master needs the bus. HOLD may be asserted at any time so long as the transition meets the
processor setup and hold requirements. HOLDA (hold acknowledge) is the processor output which
indicates surrender of the bus. When the i960 Rx I/O processor asserts HOLDA, it enters the Hold
state (see Figure 13-2). When the last bus state was TI or the last TR of a bus transaction, the
processor is guaranteed to assert HOLDA and float the bus on the same clock edge in which it
recognizes HOLD. Similarly, the processor deasserts HOLDA on the same edge in which it
recognizes the deassertion of HOLD. Thus, bus latency is no longer than it takes the processor to
finish any bus access in progress.

When the bus is in hold and the i960 Rx I/O processor needs to regain the bus to perform a trans-
action, the processor does not deassert HOLDA. 

Unaligned load and store bus requests are broken into multiple accesses and the processor can
relinquish the bus between those transactions. When the alternate bus master gives control of the
bus back to the i960 Rx I/O processor, the processor immediately enters a TA state to continue
those accesses and respond to any other bus requests. When no requests are pending, the processor
enters the idle state.

Figure 13-13 illustrates a HOLD/HOLDA arbitration sequence.

NOTE: External bus masters do not have access to the i960 Rx I/O processor 
internal, local bus. Therefore, an external bus master can not access any of 
the i960 Rx I/O processor internal peripherals (e.g., memory controller, i960 
core processor, and memory-mapped registers).
13-25



LOCAL BUS

Figure 13-13.  Arbitration Timing Diagram for a Bus Master

The 80960Rx arbitration logic enables external bus masters to control 80960Rx local bus. The
Local Bus Arbitration Unit maintains the basic 80960Rx protocol for the HOLD/HOLDA except
that the 80960Rx processor will not respond to the assertion of the HOLD signal (i.e., assert the
HOLDA signal) during reset. This includes Processor Reset and Local Bus Reset.

Valid

Outputs:
AD31:0, ALE,

ADS#, BE3:0#,
WIDTH/HLTD1:0,

D/C#, W/R#,
DT/R#, DEN#,

BLAST#, LOCK#

HOLD

HOLDA

∼ ∼
∼ ∼

∼ ∼
∼ ∼

∼ ∼
∼ ∼

∼ ∼
∼ ∼

∼ ∼

TI or TR TH TH TI or TA

S_CLK

Valid
13-26



14
MEMORY CONTROLLER





14

s for
CHAPTER 14
MEMORY CONTROLLER

This chapter describes the i960® Rx I/O processor’s integrated memory controller, including the
supported memory types and theory of operation. This chapter also provides guideline
connecting the memory controller to SRAM/ROM and DRAM systems. Figure 14-1 provides an
overview of the i960 Rx I/O processor’s integrated memory controller. 

Figure 14-1.  80960Rx Processor Integrated Memory Controller

14.1 SUPPORTED MEMORY TYPES

Memory 
 

 

Controller 

i960 Core Processor Local Bus

Parity

Memory Control

Memory Address Bus

Primary Address
Translation

Unit
 

Secondary
Address

Translation Unit

DMA
Controller

i960 Core 
Processor

Address/Data

Control
14-1

The i960 Rx I/O processor integrates a memory controller to provide a direct interface with a
memory system. The memory controller supports:

• Two independent memory banks of SRAM/ROM. Each bank can contain up to 16 Mbytes of
8- or 32-bit SRAM/ROM.

• Up to 256 Mbytes of 32-bit or 36-bit (32-bit memory data plus 4 parity bits) of:

- Fast Page-Mode (FPM) Interleaved DRAM

- Non-Interleaved DRAM

- Extended Data Out (EDO) DRAM

- Burst Extended Data Out (BEDO) DRAM



 of the
 on the
ry array.
ntroller

ns. The
ied by

ed. For
dress
ment a

 and
signals
s to the
MEMORY CONTROLLER

For a DRAM array, the memory controller generates row-address strobes (RAS3:0#), column-
address strobes (CAS7:0#), write enables (DWE1:0#) and 12-bit multiplexed addresses
(MA11:0). For interleaved DRAM, the DRAM address-latch enables (DALE1:0) and LEAF1:0#
signals provide address and data latching.

Byte-wide data parity is supported for DRAM systems. Once enabled, the memory controller
provides parity checking for all reads from memory. A parity error generates an error signal,
which may be used for fault isolation.

The memory controller supports two banks of SRAM, ROM or Flash memory. Each bank
supports from 64 Kbytes to 16 Mbytes of memory and can be configured independently for 8-bit
or 32-bit wide memory. The memory controller also provides chip enables (CE1:0#), memory
write enables (MWE3:0#) and an incrementing burst address for SRAM/ROM. The memory
controller supports 0 wait-state performance for both read and write transactions.

14.2 THEORY OF OPERATION

The memory controller translates the i960 core processor’s burst access protocol to that
memory being addressed. The memory controller decodes local bus addresses presented
internal address/data bus, and generates the proper address and control signals to the memo
Burst accesses generated by local-bus masters provide the first address. The memory co
provides incremental addresses that are presented to the memory array on the MA11:0 pi
address increments until either the cycle has completed by the local-bus master, signif
asserting the BLAST# signal, or a local bus parity error for a DRAM read cycle occurs. 

The address presented on the MA11:0 bus depends on the type of memory bank address
DRAM, the MA11:0 pins provide the multiplexed row and column address. The column ad
increments to the nearest 2 Kbyte address boundary. on-chip bus master must imple
2 Kbyte address boundary to prevent bursts from crossing a DRAM page. For both SRAM
Flash/ROM banks, the MA11:0 bus is based on the address presented on the AD13:2 
during the address phase. For burst data, the memory controller increments the addres
nearest 2 Kbyte boundary. 
14-2

Configuration registers select characteristics associated with each type of memory used in a
system. The memory controller configuration registers are located in the address range
0000 1500H to 0000 15FFH. The memory-mapped registers are summarized in APPENDIX C,
MEMORY-MAPPED REGISTERS. Once configured, the memory controller responds to
addresses within an address range by issuing the appropriate memory-interface and bus-control
signals.

Byte wide data parity generation and checking can be enabled for DRAM arrays. Parity checking
provides a memory fault error upon detection of a parity error. The faulting word address is
captured in a register.



14
MEMORY CONTROLLER

The memory controller provides hardware DRAM refresh for CAS#-before-RAS# refresh cycles.
It also provides hardware support for detecting address ranges that do not return an external
RDYRCV# signal. This mechanism detects accesses to undefined address ranges. Upon detection
of an error, the memory controller generates an internal LRDYRCV# signal to complete the bus
accesses and optionally generates a bus fault signal.

Figure 14-2 shows the interface signals. Refer to the 80960RP/RD Intelligent I/O Microprocessor
Data Sheets for a complete description.

Bus

AD31:0

ALE

ADS#

DEN# 

W/R#

WIDTH1:0#

D/C#

LRDYRCV# 

BLAST# 

MWE3:0#

CAS7:0#

RAS3:0#

DWE1:0#

LEAF1:0#

MA11:0

DP3:0

RDYRCV#

Memory
Controller

S_CLK# P_RST#

CE1:0#

Memory

(System)

BE3:0# 

(Internal Local)

i960 Core Processor 
Internal Bus

Memory
System Bus

WAIT# 

DALE1:0

Local
Processor

Fault
FaultFault

LRDYRCV# 
14-3

Figure 14-2.  Memory Controller Signal Overview

14.3 Memory Controller Wait States

The memory controller generates the number of wait states programmed into the memory
controller registers for controlling the signals connected to the memory arrays, see Section 14.5.3
on page 14-11. In addition, the WAIT# signal generated by the DMA unit (except the i960 core
processor) indicates when additional wait states are required during a memory access. See
Chapter 20, DMA CONTROLLER for more information on WAIT#.



MEMORY CONTROLLER

14.4 ROM, SRAM and FLASH CONTROL

The memory controller supports two independent banks of ROM, SRAM, or Flash devices.
Devices that use these memory banks may be organized as 8-bit or 32-bit wide memory. Each
SRAM/ROM bank has a window of addresses that can be programmed to respond to any 80960
local bus address. Memory banks must not overlap with reserved addresses. See section 14.10,
OVERLAPPING MEMORY REGIONS (pg. 14-48). The memory controller asserts the chip
enable signals (CE1:0#) when the address on the 80960Rx local bus falls within the programmed
window for the SRAM/ROM bank. The SRAM/ROM banks have independent control to support
different memory types in each bank. The memory write enable signals, MWE3:0#, provide the
write strobes for the selected memory bank. Connecting SRAM/ROM to the memory controller
requires a combination of memory controller signals and local bus signals. Table 14-1 summarizes
the memory controller signals and the local bus signals used when connecting SRAM/ROM to the
memory banks.

Table 14-1.  ROM, SRAM and Flash Control Signals

Source Signal Name Description

Memory Controller MA11:0 Demultiplexed A13:2

MWE3:0# Memory write enable signifying valid data

• MWE3# - Data valid on D31:24 

• MWE2# - Data valid on D23:16 

• MWE1# - Data valid on D15:08 

• MWE0# - Data valid on D07:00 

CE1:0# Chip Enable:

• CE1# - Memory Bank 1 Chip Enable

• CE0# - Memory Bank 0 Chip Enable

80960Rx Local Bus AD31:0 Multiplexed Address/Data Bus

W/R# Specifies the access is a Read or Write transaction

BE1:0# Byte Enables - used for 8-bit memory only

• BE1# - Becomes A1

• BE0# - Becomes A0
14-4

For memory accesses that fall within the address windows for memory banks 0 and 1, the MA11:0
pins are translated to address bits during the address cycle. For 32-bit wide memory, the MA11:0
pins latch the address and provide a incrementing address during burst data accesses. The MA11:0
increments for burst data transfers up to a 2 Kbyte Page size boundary.

Eight-bit wide memory has a maximum burst count of four accesses. The incrementing burst
address is presented on the BE1:0# pins, which translate to A1:0.

ALE Indicates Address Valid during an address cycle



14
MEMORY CONTROLLER

Figure 14-3 shows an example of a 2 Mbyte, 32-bit ROM or SRAM system connected to memory
bank 0.

AD7:0

AD15:8

AD23:16

AD31:24
AD31:0

CE0#

W/R#
MWE3#

MWE2#

MA11:0

LATCH
AD20:14

ALE A20:14

MWE1#

MWE0#

512K x 8BE1:0

D7:0

D7:0

D7:0

CE#
OE#
WE#

CE#
OE#
WE#

CE#
OE#
WE#

CE#
OE#
WE#

A20:14
A13:2

A20:14
A13:2

A20:14
A13:2

512K x 8

512K x 8

512K x 8

A1:0

A1:0

A1:0
14-5

Figure 14-3.  Bank0 32-Bit ROM or SRAM System

D7:0

A20:14
A13:2

A1:0



e

MEMORY CONTROLLER

Figure 14-4 shows an example of an 1 Mbyte, 8-bit ROM or SRAM system connected to memory
bank 0.

Figure 14-4.  Bank0 8-Bit ROM or SRAM System

During ROM, SRAM and Flash memory accesses, the memory controller generates the incre-
menting address bits in conjunction with the control signals. The lower twelve bits of the address
are generated on the MA11:0 memory address bus, and the upper address bits are generated on the
AD31:14 multiplexed address/data bus. When addressing 8-bit memory, BE1# becomes A1 and
BE0# becomes A0 as shown in Figure 14-4. Since the memory controller only latches A13:2,
external logic must use ALE to latch the upper address bit during an address cycle. The CE1:0#
signals provide unique chip enables that are used to select the device and activate its control logic
during a memory access.

The write enable signals, MWE3:0#, select the byte lanes used during memory write accesses.
During a memory write access, the appropriate combination of MWE3:0# and CE1:0# are asserted
for the data cycle. The W/R# signal from the processor is driven high preventing the memory
output from being enabled onto the address/data bus. During a memory read access, the MWE3:0#
signals remain high while the appropriate CE1:0# is driven low by the memory controller. The
W/R# signal from the processor is also driven low enabling the device’s output onto th

AD7:0

CE0#
W/R#

MWE0#

A19:14

MA11:0

BE1#
BE0#

EXTERNAL
AD19:14

ALE
LATCH

CE#
OE#
WE#

A19:14
A13:2

D7:0

A1
A0

1M x 8
14-6

address/data bus.

The MWE3:0# signals may be used to select individual byte-wide Flash memory devices during
programming without the use of external logic. The memory write enable bit allows the memory
controller to assert MWE3:0# during write cycles. This bit is controlled in the Memory Bank
Control Register (MBCR) shown in Figure 14-3. If either memory bank 0 or 1 is used for SRAM,
the memory write enable bit must be set to enable the assertion of the MWE3:0# signals for
memory write transactions.



14
MEMORY CONTROLLER

14.5 MEMORY BANK PROGRAMMING REGISTERS 

Seven memory-mapped registers provide independent control of memory banks 0 and 1:

Refer to APPENDIX C, MEMORY-MAPPED REGISTERS for the memory-mapped registers
address mappings.

14.5.1 Memory Bank Control Register - MBCR

The Memory Bank Control Register (MBCR) specifies parameters that dictate the memory
controller operating environment for the two memory banks. The MBCR should be programmed
after initializing the other memory bank registers. Table 14-3 shows the register format for the
MBCR. The memory bank enable bits should be disabled prior to modifying the memory bank
base address and wait state registers. 

Memory Bank 0 initializes to an enabled state on the rising edge of P_RST# to support a Boot
ROM for the i960 core processor. Bank size, wait state profiles and memory enables initialize to
the maximum programmable values. Once the i960 core processor begins code execution, software
should re-program the memory controller for the actual bank size and wait state profiles for the

Table 14-2.  Memory Bank Register Summary 

Section Register Name, Acronym Page
Size 
(Bits)

Channel
80960 Local 
Bus Address

PCI 
Config 
Addr 

Offset

14.5.1 Memory Bank Control Register - MBCR 14-7 32 0000 1500H NA

14.5.2 Memory Bank Base Address Registers - 
MBBAR0:1

14-10 32
0
1

0000 1504H
0000 1510H

NA

14.5.3.1 Memory Bank Read Wait State Registers - 
MBRWS0:1

14-11 32
0
1

0000 1508H
0000 1514H

NA

14.5.3.2 Memory Bank Write Wait State Registers - 
MBWWS0:1

14-13 32
0
1

 0000 150CH
0000 1518H

NA
14-7

physical memory connected. Refer to section 14.5.2, Memory Bank Base Address Registers -
MBBAR0:1 (pg. 14-10) for additional information.



MEMORY CONTROLLER

Table 14-3.   Memory Bank Control Register – MBCR  (Sheet 1 of 2)

LBA: 

PCI:

1500H

NA

Legend: NA = Not Accessible RO = Read Only
RV = Reserved PR = Preserved RW = Read/Write
RS = Read/Set RC = Read Clear
LBA = 80960 Local Bus Address PCI = PCI Configuration Address Offset

Bit Default Description

31:24 00H Reserved

23:20 0H

Memory Bank 1 Size Field - This bit field contains the total block size of memory 
connected to memory bank 1. Memory may be ROM, SRAM or Flash with the size 
ranging from 64 Kbytes to16 Mbytes. Each bank may be organized as 8- or 32-bit wide 
memory, but must consist of a uniform memory type.
0000 64 Kbytes
0001 128 Kbytes
0010 256 Kbytes
0011 512 Kbytes
0100 1 Mbyte
0101 2 Mbytes
0110 4 Mbyte
0111 8 Mbytes
1xxx 16 Mbytes

19 02 Reserved

18 02

Memory Bank 1 Extended MWE3:0# Bit - This bit field enables or disables extending 
the deassertion period for the MWE3:0# signal during burst write cycles. The bit also 
enables one clock of MA11:0 and BE1:0 hold time relative to the rising edge of MWE# 
during writes to this region.

When cleared (0), deassertion period is one-half of a CLKIN period.

When set (1), the deassertion period is extended by the wait state profile defined in the 
MBWWS1 registers in addition to the one-half clock in period. Also when set, the MA11:0 

PCI

LBA

28 24 20 16 12 8 4 031

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rw

na

rw

na

rw

na

rw

na

rv

na

rw

na

rw

na

rw

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rw

na

rw

na

rw

na

rw

na

rv

na

rw

na

rw

na

rw

na
14-8

and BE1:0 keep their current state for one clock after MWE3:0# are deasserted. This also 
adds an extra wait state. MWE wait states can be calculated by the following:

Address or Data Wait States = (tWWX * 2) + 1 
where tWWX = tWWA or tWWD

17 02

Memory Bank 1 Write Enable Bit - This bit enables or disables the MWE3:0# signals 
during write cycles to memory bank 1. 

When cleared (0), the MWE3:0# is not asserted during write cycles to memory bank 1. 

When set (1), the MWE3:0# signals is asserted during write cycles to memory bank 1.



14
MEMORY CONTROLLER

16 02

Memory Bank 1 Enable Bit - enables or disables CE1# for memory bank 1.

When cleared (0), the memory controller does not assert CE1#. 

When set (1), memory controller decodes local bus addresses and asserts CE1# when 
local bus address falls within the window of address programmed into MBBAR1 in 
conjunction with memory bank 1 size control bits.

15:08 00H Reserved

07:04 0H

Memory Bank 0 Size Field - contains the total block size of memory connected to 
memory bank 0. Memory connected may be ROM, SRAM or Flash memory; size may 
range from 64 Kbytes to 16 Mbytes. Each bank may be organized as 8 or 32 bit wide 
memory, and must consist of a uniform memory type. See Memory Bank 1 Size Field for 
block size settings.

03 02 Reserved

02 02

Memory Bank 0 Extended MWE3:0# Bit - This bit field enables or disables extending 
the deassertion period for the MWE3:0# signal during burst write cycles. The bit also 
enables one clock of MA11:0 and BE1:0 hold time relative to the rising edge of MWE# 
during writes to this region.

When cleared (0), deassertion period is one-half of a CLKIN period.

When set (1), the deassertion period is extended by the wait state profile defined in the 
MBWWS0 registers in addition to the one-half clock in period. Also when set, the MA11:0 
and BE1:0 keep their current state for one clock after MWE3:0# are deasserted. This also 
adds an extra wait state. MWE wait states can be calculated by the following:

Address or Data Wait States = (tWWX * 2) + 1

Table 14-3.   Memory Bank Control Register – MBCR  (Sheet 2 of 2)

LBA: 

PCI:

1500H

NA

Legend: NA = Not Accessible RO = Read Only
RV = Reserved PR = Preserved RW = Read/Write
RS = Read/Set RC = Read Clear
LBA = 80960 Local Bus Address PCI = PCI Configuration Address Offset

Bit Default Description

PCI

LBA

28 24 20 16 12 8 4 031

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rw

na

rw

na

rw

na

rw

na

rv

na

rw

na

rw

na

rw

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rw

na

rw

na

rw

na

rw

na

rv

na

rw

na

rw

na

rw

na
14-9

where tWWX = tWWA or tWWD

01 02

Memory Bank 0 Write Enable Bit - This bit enables or disables the MWE3:0# signals 
during write cycles to memory bank 0. 

When cleared (0), the MWE3:0# is not asserted during write cycles to memory bank 0. 

When set (1), the MWE3:0# signals is asserted during write cycles to memory bank 0.

00 12

Memory Bank 0 Enable Bit - enables or disables CE0# for memory bank 0.

When cleared (0), the memory controller does not assert the CE0#. 

When set (1), the memory controller decodes the local bus addresses and asserts CE0# 
when the local bus address falls within the window of addresses programmed into the 
MBBAR0 in conjunction with the memory bank 0 size control bits.

Memory Bank 0 defaults as enabled. This memory bank should be used for connecting 
boot ROM for booting the i960 core processor.



MEMORY CONTROLLER

14.5.2 Memory Bank Base Address Registers - MBBAR0:1

The memory bank base addresses are programmed through the Memory Bank Base Address
Registers (MBBAR0:1). The base address for each memory bank must be on an address boundary
equal to its size. For example, a memory bank size of 1 Mbyte must have a starting address located
on a 1 Mbyte address boundary. The MBBARx register definitions are shown in Table 14-4.

The Initialization Boot Record (IBR) is the primary data structure required to initialize the i960
core processor and must be located at address FEFF FF30H. Since the processor must access the
IBR before the memory controller has been configured, a bank base address of FE00 0000H and a
bank size of 16 Mbytes are used by default for Memory Bank 0. These values result in an address
decode range of FE00 0000H to FEFF FFFFH for memory bank 0 when the memory controller is
reset. For the i960 core processor to boot from ROM or Flash memory, the memory devices must
use Memory Bank 0 and its associated chip enable signal, CE0#. The default address is used by

Table 14-4.  Memory Bank Base Address Registers – MBBAR0:1

LBA: 

PCI:

CH0-1504H
CH1-1510H

04H

Legend: NA = Not Accessible RO = Read Only
RV = Reserved PR = Preserved RW = Read/Write
RS = Read/Set RC = Read Clear
LBA = 80960 Local Bus Address PCI = PCI Configuration Address Offset

Bit Default Description

31:16
FE00H (Bank 0)

0000H (Bank 1)

Memory Bank 0/1 Base Address - These bits define the base address to which the 
memory bank responds when addressed from the local bus. The default base 
address for memory bank 0 is FE00 0000H with a bank size of 16 Mbytes used to 
address the Initialization Boot Record table for booting the i960 core processor.

15:0 0000H Reserved

PCI

LBA

28 24 20 16 12 8 4 031

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na
14-10

the memory controller for address decoding until it is configured by programming the Memory
Bank 0 Base Address Register and Memory Bank 0 Size with the ROM bank base address and size
information, respectively.

NOTE: The i960 core processor does not generate external bus cycles for transac-
tions within the address range of 0 to 0000 03FFH or FF00 0000H to
FFFF FFFFH. These address ranges are reserved by the processor for
internal data RAM and memory-mapped registers, respectively. The
memory bank base address registers should not be programmed with a
value within these reserved address ranges.



14

nts of
ded to
dently

 60 to
mory

 Read
MEMORY CONTROLLER

14.5.3 Memory Bank Wait State Registers - MBRWS0:1, MBWWS0:1

Bus cycle timing for ROM, SRAM and Flash memory accesses are programmed through the
internal wait-state registers (see Table 14-2 for register summaries): 

• Memory Bank 0 Read Wait States Register (MBRWS0)

• Memory Bank 1 Read Wait States Register (MBRWS1)

• Memory Bank 0 Write Wait States Register (MBWWS0)

• Memory Bank 1 Write Wait States Register (MBWWS1)

The number of wait states for each access in a bus cycle is programmed in 1x increme
S_CLK. The i960 core processor requires one recovery cycle, but it may need to be exten
accommodate slower memory devices. Each memory bank contains registers to indepen
program the read and write wait states. The programmable values support:

• Address-to-Data wait states

• Data-to-Data wait states

• Data-to-Address wait states (i.e., turnaround cycles)

The programmable range of values is sufficient to support memory access cycle times from
200 ns while operating the processor at 25 or 33 MHz. The register definitions for the me
bank read wait states registers are shown in Figure 14-3.

14.5.3.1 Memory Bank Read Wait State Registers - MBRWS0:1

The Memory Bank Read Wait State Register (MBRWS) describes the wait states during
cycles.
14-11



MEMORY CONTROLLER

Table 14-5.  Memory Bank Read Wait States Register – MBRWS0:1

LBA: 

PCI:

Bank 0 = 1508H
Bank 1 = 1514H
N/A

Legend: NA = Not Accessible RO = Read Only
RV = Reserved PR = Preserved RW = Read/Write
RS = Read/Set RC = Read Clear
LBA = 80960 Local Bus Address PCI = PCI Configuration Address Offset

Bit Default Description

31:19 0000H Reserved

18:16 1112

Read Cycle Address-to-First Data Wait States (tWRA) - This bit field 
represents the number of wait states between address and the first data for read 
transactions. The bit field is encoded as:

000  0 Address-to-Data wait states

001  1 Address-to-Data wait state

010  2 Address-to-Data wait states

011  3 Address-to-Data wait states

100  4 Address-to-Data wait states

101  5 Address-to-Data wait states

110  6 Address-to-Data wait states

111  7 Address-to-Data wait states

15:11 00H Reserved

10:8 1112

Read Cycle Data-to-Data Wait states (tWRD) - This bit field represents the 
number of wait states between burst Data to Data for read transactions. The bit 
field encodings are the same as those shown for Read Cycle Address-to-First 
Data Wait States (tWRA).

7:3 00H Reserved

Read Cycle Additional Recovery Cycles (tWRR) - The local bus defines one 
recovery cycle between the last data and the next address. This bit field 
represents the number of additional recovery cycles between the last data and 

PCI

LBA

28 24 20 16 12 8 4 031

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rw

na

rw

na

rw

na

rv

na

rv

na

rv

na

rv

na

rv

na

rw

na

rw

na

rw

na

rv

na

rv

na

rv

na

rv

na

rv

na

rw

na

rw

na

rw

na
14-12

2:0 1112

the next address after completing a for read transactions. The bit field is 
encoded as:

000  0 additional recovery cycles

001  1 additional recovery cycle

010  2 additional recovery cycles

011  3 additional recovery cycles

100  4 additional recovery cycles

101  5 additional recovery cycles

110  6 additional recovery cycles

111  7 additional recovery cycles



14
MEMORY CONTROLLER

14.5.3.2 Memory Bank Write Wait State Registers - MBWWS0:1

The Memory Bank Write Wait State Register (MBWWS) describes wait states during write cycles.

Table 14-6.  Memory Bank Write Wait States Register – MBWWS0:1 

LBA: 

PCI:

Bank 0 = 150CH
Bank 1 = 1518H
N/A

Legend: NA = Not Accessible RO = Read Only
RV = Reserved PR = Preserved RW = Read/Write
RS = Read/Set RC = Read Clear
LBA = 80960 Local Bus Address PCI = PCI Configuration Address Offset

Bit Default Description

31:19 0000H Reserved

18:16 1112

Write Cycle Address-to-First Data Wait States (tWWA) - This bit field 
represents the number of wait states between address and the first data for write 
transactions. Encoded as follows:
000  0 Address-to-Data wait states
001  1 Address-to-Data wait state
010  2 Address-to-Data wait states
011  3 Address-to-Data wait states
100  4 Address-to-Data wait states
101  5 Address-to-Data wait states
110  6 Address-to-Data wait states
111  7 Address-to-Data wait states

15:11 00H Reserved

10:8 1112

Write Cycle Data-to-Data Wait States (tWWD) - This bit field represents the 
number of wait states between burst Data to Data for write transactions. Bit field 
encodings are the same as those shown for Write Cycle Address-to-First Data 
Wait States (tWWA)

7:3 00H Reserved
Write Cycle Additional Recovery Cycles (tWWR) - The local bus defines one 

PCI

LBA

28 24 20 16 12 8 4 031

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rw

na

rw

na

rw

na

rv

na

rv

na

rv

na

rv

na

rv

na

rw

na

rw

na

rw

na

rv

na

rv

na

rv

na

rv

na

rv

na

rw

na

rw

na

rw

na
14-13

2:0 1112

recovery cycle between the last data and the next address. This bit field 
represents the number of additional recovery cycles between the last data and 
the next address after completing a for write transactions. The bit field is encoded 
as follows:
000  0 additional recovery cycles
001  1 additional recovery cycle
010  2 additional recovery cycles
011  3 additional recovery cycles
100  4 additional recovery cycles
101  5 additional recovery cycles
110  6 additional recovery cycles
111  7 additional recovery cycles



MEMORY CONTROLLER

14.5.4 Memory Bank Waveforms

Programming the wait states for each of the bus cycles allows the memory controller to support
SRAM, ROM and Flash memory. Figure 14-5 shows a burst read transaction with a wait state
profile of 2,1,1,1.

Table 14-7.  Burst Flash Memory, Read Access Example Programming Summary

Timing Symbol Programmed Value Cycles

tWRA 022 2

tWRD 012 1

tWRR 002 0

W/R#

MA11:0

S_CLK

TA TW TW TD TW TD TW TD TW TD TR TI

LRDYRCV#

AD31:0

CE0#

ADDR

ADDR ADDR ADDR ADDR

DATA
IN

DATA
IN

DATA
IN

DATA
IN
14-14

Figure 14-5.  32-Bit Bus, Burst Flash Memory, Read Access with 2,1,1,1 Wait States

MWE3:0#



14
MEMORY CONTROLLER

Figure 14-6 represents a burst write transaction to Flash memory with a wait state profile of
2,1,1,1. The Extended MWE3:0# control bit in the MBCR is cleared in this example.

Table 14-8.  SRAM Write Access Example Programming Summary

Timing Symbol Programmed Value Cycles

tWWA 022 2

tWWD 012 1

tWWR 002 0

W/R#

MA11:0

S_CLK

TA TW TW TD TW TD TW TD TW TD TR TI

LRDYRCV#

AD31:0

MWE3:0#

CE0#

Addr
Data
Out

Data
Out

Data
Out

Data
Out

Addr Addr Addr Addr
14-15

Figure 14-6.  32-Bit Bus, SRAM Write Access with 2,1,1,1, Wait States



MEMORY CONTROLLER

Programming the wait states for each of the bus cycles allows the memory controller to support
burst transactions with SRAMs. Figure 14-7 shows a read transaction with 0 wait state SRAM.

Figure 14-7.  32-Bit Bus, SRAM Read Accesses with 0 Wait States

Table 14-9.  SRAM Read Access Example Programming Summary

Timing Symbol Programmed Value Cycles

tWRA 002 0

tWRD 002 0

tWRR 002 0

TA TD TD TD TD TR

ADDR ADDRADDRADDR

S_CLK

CE[1]#

MA[11:0]

AD[31:0]

MWE[3:0]#

ADDR D
IN

D
IN

D
IN IN

D

14-16



14
MEMORY CONTROLLER

Figure 14-8 represents a 0 wait state write transaction from SRAM.

Figure 14-8.  32-Bit Bus, SRAM Write Access With 0 Wait States

Table 14-10.  SRAM Write Access Example Programming Summary

Timing Symbol Programmed Value Cycles

tWWA 002 0

tWWD 002 0

tWWR 002 0

TA TD TD TD TD TR

ADDR ADDRADDRADDR

S_CLK

CE[1]#

MA[11:0]

AD[31:0]

MWE3:0#

ADDR D
OUT

D
OUT

D
OUT

D
OUT

D
OUT
14-17



MEMORY CONTROLLER

14.5.5 Extending Memory Write Enable Signals

The extended MWE3:0# write enable control bit in the MBCR allows the MWE3:0# to be
extended during the deassertion period between burst data accesses. In addition, the LRDYRCV#
signal assertion is delayed. The characteristics of the other memory controller signals remain the
same. Figure 14-9 shows a 2-word burst of an extended MWE3:0# write cycle.

Table 14-11.  Write Access with Extended MWE3:0# Example Programming Summary

Timing Symbol Programmed Value Cycles

tWWA 022 5

tWWD 012 3

tWWR 002 1

TA TW TW TW TW TW

S_CLK

W/R#

BLAST#

ADS#

AD31:0

CE1#

MA11:0 ADDR

ADDR Data
Out

ADDR

TD TW TW TW TD TR

Data
Out
14-18

Figure 14-9.  32-Bit Bus, Write Access with Extended MWE3:0#

MWE3:0#

LRDYRCV#/

BE3:0#

RDYRCV#



14
MEMORY CONTROLLER

14.6 DRAM CONTROL

The DRAM bank may be organized as 32-bit without parity or 36-bit with parity. The memory
controller provides a direct interface for a minimum of 1 Mbyte and a maximum of 256 Mbytes of
DRAM by generating the signals shown in Table 14-12.

Table 14-12.  DRAM Control Signals

Signal Name Source Description

MA11:0 Memory 
Controller

Memory Address Bus - Specifies address path to the DRAM.

DP3:0 Memory 
Controller

DRAM Data Parity, DP3:0 - Specifies the byte wide parity bit for data transfers:

• DP3 - Parity value for data on AD31:24

• DP2 - Parity value for data on AD23:16

• DP1 - Parity value for data on AD15:8

• DP0 - Parity value for data on AD7:0

DALE1:0 Memory 
Controller

DRAM Address Latch Enable:

DALE1:0 - Specifies address valid during an address cycle.

DWE1:0# Memory 
Controller

DRAM Write Enable:

DWE1:0# - Write Cycle. Individual byte enables during write cycles are 
controlled with the individual CAS7:0# signals.

For non-interleaved operation, these signals are identical and can be used 
interchangeably.

CAS7:0# Memory 
Controller

Column Address Strobe. Indicates the presence of a valid column address on 
the memory address bus MA11:0.

RAS3:0# Memory 
Controller

Row Address Strobe. Indicates the presence of a valid row address on the 
memory address bus MA11:0.

LEAF1:0# Memory 
Controller

LEAF OE# control. For non-interleaved DRAM, LEAF1:0# controls the OE#. 
For interleaved DRAM, the LEAF1:0# signals control the OE# data latches.

For non-interleaved operation, these signals are identical and can be used 
interchangeably.

AD31:0 Local Bus Multiplexed Address/Data Bus. Data path to and from the DRAM.
14-19

The memory controller supports from one to four banks of DRAM organized as 32 or 36 bits wide.
The memory banks may be configured as non-interleaved or two-way interleaved. The memory
controller supports three different types of DRAM: Fast Page-Mode (FPM), Extended Data Out
(EDO) and Burst Extended Data Out (BEDO). Interleaved Fast Page-Mode DRAM is also
supported. DRAM refresh is supported through the programmable DRAM refresh counter.



MEMORY CONTROLLER

14.6.1 DRAM Organization and Configuration

The memory controller provides a programmable address window for DRAM that decodes local
bus addresses and drives the corresponding DRAM control signals. The address window is
programmed through the memory controller memory-mapped registers. Additional memory-
mapped registers control timings for different speed ratings of DRAM, DRAM bank sizes, DRAM
types, DRAM initialization, and DRAM organization.

To prevent bursts from crossing a DRAM page, the maximum burst size for a single data transfer
cycle to the memory controller is 2 Kbytes. On-chip bus masters accessing the memory controller
are required to adhere to the 2 Kbyte address boundary. The 80960Rx closes the DRAM Page.
RAS# deasserts during the first recovery cycle and stays deasserted through ADS#.

DRAM organization is programmable through control bits in the DRAM Bank Control Register
(DBCR). The memory controller provides support for up to four banks of non-interleaved DRAM.
Up to two banks of non-interleaved DRAM can be connected with each bank containing two
leaves. Table 14-13 summarizes the supported DRAM organization and type.

Table 14-13.  Supported DRAM Configurations

Interleaved DRAM
(Fast Page-mode DRAM Only)

Non-Interleaved DRAM
(FPM, EDO or BEDO DRAM)

1 Bank (2 leaves) 1 Bank

2 Banks (4 leaves)
2 Banks

4 Banks
14-20



14
MEMORY CONTROLLER

An example of a single 16 Mbyte bank of DRAM, organized as 32-bit non-interleaved, is shown in
Figure 14-10. As shown, the 80960Rx is a direct connect to the non-interleaved memory
subsystem (no additional logic is required).

Figure 14-10.  Non-Interleaved, 32-Bit, Single Bank, DRAM System

MA11:0

AD31:0

CAS0#
CAS1#
CAS2#
CAS3#
CAS4#
CAS5#
CAS6#
CAS7#

RAS0#
RAS1#
RAS2#
RAS3#

DWE0#
DWE1#

LEAF1#
LEAF0#

DRAM Controller

MA11:0

D31:0

CAS0#
CAS1#
CAS2#
CAS3#

RAS0#

WE#

OE#

1 DRAM Bank
Non- Interleaved

8 x (4M x 4)
14-21



MEMORY CONTROLLER

Figure 14-11 shows a sample memory system using 32-bit interleaved DRAM. The memory
controller provides eight CAS# signals for the support of interleaved memory. The CAS3:0#
signals provide the byte selection for one leaf, while CAS7:4# provide for the second leaf. It is
necessary to control external buffer output enables during read transactions in an interleaved
memory system. Two signals, LEAF1:0#, are provided to control the multiplexing of data from
each memory leaf onto the processor address/data bus. These signals are tied to the OE# pins of
the data transceivers in an interleaved memory array. In a non-interleaved memory array, the OE#
pins are typically tied to signal ground. Standard DRAM device sizes from 1 Mbit to 64 Mbit are
supported without the use of external logic to generate control signals. Two identical write enable
signals, DWE1:0#, are provided to control the WE# input of DRAM devices during read and write
transactions.

MA11:0

AD31:0

CAS0#
CAS1#
CAS2#
CAS3#
CAS4#
CAS5#
CAS6#
CAS7#

RAS0#
RAS1#
RAS2#
RAS3#

DWE0#
DWE1#

LEAF1#
LEAF0#

DRAM Controller

1 Leaf - Even
8 x (4M x 4)

DALE0
DALE1

1 Leaf - Odd
8 x (4M x 4)

MA11:0

D31:0

CAS0#
CAS1#
CAS2#
CAS3#

RAS0#

WE#

OE#

A15:0 B15:0

LE
OE#

W/R#

B31:0 A31:0

OE#
DIR

Data Transceiver

Address Latch

Address Latch
14-22

Figure 14-11.  Interleaved 32-Bit DRAM System, 1 Bank, 2 Leaves

A15:0 B15:0

LE
OE#

MA11:0

D31:0

CAS0#
CAS1#
CAS2#
CAS3#

RAS0#

WE#

OE#

B31:0 A31:0

DIR
OE#

Data Transceiver



14
MEMORY CONTROLLER

The DRAM types supported include 1-, 4-, 16- and 64-Mbit devices. These memory types are
supported without the use of external logic to generate control signals. The arrangement for each
technology is summarized in Table 14-14.

Table 14-14.  Supported DRAM Configurations (Symmetric Addressing Only)

DRAM 
Technology

DRAM 
Arrangement

Address Size
(in Bits) Bank / 

Leaf Size1

Non-Interleaved DRAM 
(in Mbytes)

Interleaved DRAM 
(in Mbytes)

Row Col. Min. Max. Min. Max.

1 Mbit
1M x 1 10 10 4 4 16 8 16

256K x 4 9 9 1 1 4 2 4

4 Mbit

4M x 1 11 11 16 16 64 32 64

1M x 4 10 10 4 4 16 8 16

256K x 16 9 9 1 1 4 2 4

16 Mbit

16M x 1 12 12 64 64 256 128 256

4M x 4 11 11 16 16 64 32 64

1M x 16 10 10 4 4 16 8 16

64 Mbit
16M x 4 12 12 64 64 256 128 256

4M x 16 11 11 16 16 64 32 64

1. Every bank (or leaf) must use the same memory type. Mixed combinations of FPM, EDO, or BEDO are
not permitted. The DRAM bank size must also remain the same among banks (or leaves).
14-23



MEMORY CONTROLLER

14.6.2 DRAM Addressing

The memory controller drives the DRAM address on the MA11:0 pins. This multiplexed address
is ordered to support 1 through 64 Mbyte DRAM arrays. Table 14-15 shows the address bits that
are presented on the MA11:0 pins during the row and column address cycle. The ordering depends
on the arrangement of the DRAM arrays, either non-interleaved or interleaved.

14.6.3 DRAM Registers

The DRAM controller provides registers for configuring and controlling DRAM. Six memory-
mapped registers control the memory controller for independent operation:

Table 14-15.  MA11:0 Address Bits for Non-Interleaved/Interleaved

MA Bit
Non-Interleaved Interleaved

Row Column Row Column

0 11 2 11 10

1 12 3 12 3

2 13 4 13 4

3 14 5 14 5

4 15 6 15 6

5 16 7 16 7

6 17 8 17 8

7 18 9 18 9

8 19 10 19 20

9 21 20 21 22

10 23 22 23 24

11 25 24 25 26

Table 14-16.  DRAM Register Summary 

PCI 
14-24

Section Section, Register Name, Acronym Page
Size 
(Bits)

80960 Local 
Bus Address

Config 
Addr 

Offset

14.6.4 DRAM Bank Control Register — DBCR 14-25 32 0000 151CH N/A

14.6.5 DRAM Base Address Register — DBAR 14-27 32 0000 1520H N/A

14.6.6 DRAM Read Wait State Register — DRWS 14-28 32 0000 1524H N/A

14.6.7 DRAM Write Wait State Register — DWWS 14-30 32 0000 1528H N/A

14.6.8 DRAM Refresh Interval Register — DRIR 14-32 32 0000 152CH N/A

14.7.1 DRAM Parity Enable Register — DPER 14-35 32 0000 1530H N/A



14
MEMORY CONTROLLER

14.6.4 DRAM Bank Control Register — DBCR

The DRAM Bank Control Register (DBCR) specifies the parameters used to control the DRAM
banks. The DBCR should be programmed after initializing the other DRAM registers.
Figure 14-17 shows the register format for the DBCR. This register can be read or written at any
time. The DRAM bank enable bits should be disabled prior to modifying the DRAM bank base
address and wait-state registers.

Table 14-17.  DRAM Bank Control Register — DBCR  (Sheet 1 of 2)

LBA: 

PCI:

151CH

N/A

Legend: NA = Not Accessible RO = Read Only
RV = Reserved PR = Preserved RW = Read/Write
RS = Read/Set RC = Read Clear
LBA = 80960 Local Bus Address PCI = PCI Configuration Address Offset

Bit Default Description

31:12 0000 0H Reserved

11 02

MA11:0 High-Drive Enable Bit - This bit controls the MA11:0 output.

When clear (0) MA11:0 has normal output buffer drive strength.

When set (1) MA11:0 has higher output buffer drive strength.

10 02

CAS7:0# High-Drive Enable Bit - This bit controls the CAS7:0# output.

When clear (0) the CAS7:0# has normal output buffer drive strength.

When set (1) the CAS7:0# has higher output buffer drive strength.

9 02

RAS3:0# High-Drive Enable Bit - This bit controls the RAS3:0# output.

When clear (0) the RAS3:0# has normal output buffer drive strength.

When set (1) the RAS3:0# has higher output buffer drive strength.

8 02

DWE1:0# High-Drive Enable Bit - This bit controls the DWE1:0# output.

When clear (0) the DWE1:0# has normal output buffer drive strength.

PCI

LBA

28 24 20 16 12 8 4 031

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na
14-25

When set (1) the DWE1:0# has higher output buffer drive strength.



MEMORY CONTROLLER

7:3 0H

DRAM Bank Type/Arrangement Field - This bit field contains the DRAM type and 
block size of memory connected. The memory connect may be FPM, EDO, or BEDO 
DRAM. Each bank must be organized as 32-bit wide memory and must consist of a 
uniform memory type.

000 00  Fast Page-Mode DRAM, 1 Bank

000 01  Fast Page-Mode DRAM, 2 Banks

000 1x  Fast Page-Mode DRAM, 4 Banks

001 x0  Fast Page-Mode DRAM, Interleaved, 1 Bank

001 x1  Fast Page-Mode DRAM, Interleaved, 2 Banks

010 00  Extended Data Out (EDO) DRAM, 1 Bank

010 01  Extended Data Out (EDO) DRAM, 2 Banks

010 1x  Extended Data Out (EDO) DRAM, 4 Banks

1xx 00  Burst Extended Data Out (BEDO) DRAM, 1 Bank

1xx 01  Burst Extended Data Out (BEDO) DRAM, 2 Banks

1xx 1x  Burst Extended Data Out (BEDO) DRAM, 4 Banks

2:1 002

DRAM Bank/Leaf Size - This bit field defines the bank size of DRAM connected for 
non-interleaved mode. For Interleaved DRAM, this bit field defines the leaf size.

00  1 Mbyte DRAM per bank/leaf

01  4 Mbytes DRAM per bank/leaf

10  16 Mbytes DRAM per bank/leaf

11  64 Mbytes DRAM per bank/leaf

Table 14-17.  DRAM Bank Control Register — DBCR  (Sheet 2 of 2)

LBA: 

PCI:

151CH

N/A

Legend: NA = Not Accessible RO = Read Only
RV = Reserved PR = Preserved RW = Read/Write
RS = Read/Set RC = Read Clear
LBA = 80960 Local Bus Address PCI = PCI Configuration Address Offset

Bit Default Description

PCI

LBA

28 24 20 16 12 8 4 031

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na
14-26

0 02

DRAM Bank Enable Bit - This bit enables or disables the DRAM bank.

When cleared (0), the memory controller does not assert the DRAM control signals. 

When set (1), the memory controller decodes the local bus addresses and assert the 
DRAM control signals when the local bus address falls within the window of address 
programmed into the DBAR0.



14
MEMORY CONTROLLER

14.6.5 DRAM Base Address Register — DBAR

The DRAM Base Address Register (DBAR) stores the base address for the DRAM. This address
must be on an address boundary equal to the total size of the DRAM. For example, a 4 Mbyte
DRAM bank must have a starting address located on a 4 Mbyte address boundary. The register
definition is shown in Figure 14-18.

On memory controller reset, the default DRAM base address is indeterminate until it is overwritten
by programming DBAR. Since the DRAM bank is disabled at reset, this causes no addressing
conflict with the internal data RAM.

NOTE: The i960 core processor does not generate external bus cycles for transac-
tions within the address range of 0 to 0000 03FFH or FF00 0000H to
FFFF FFFFH. The processor reserves these address ranges for internal data
RAM and memory-mapped registers, respectively. Do not program the
DRAM base address register with a value within these reserved address

Table 14-18.  DRAM Base Address Register — DBAR

LBA: 

PCI:

1520H

N/A

Legend: NA = Not Accessible RO = Read Only
RV = Reserved PR = Preserved RW = Read/Write
RS = Read/Set RC = Read Clear
LBA = 80960 Local Bus Address PCI = PCI Configuration Address Offset

Bit Default Description

31:20 000H
DRAM Bank Base Address - These bits define the upper 12 bits of the base address the 
DRAM bank responds to when addressed from the local bus.

19:00 0 0000H Reserved

PCI

LBA

28 24 20 16 12 8 4 031

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na
14-27

ranges.



MEMORY CONTROLLER

14.6.6 DRAM Read Wait State Register — DRWS

The bus cycle timing for DRAM read accesses is programmed through the DRAM Read Wait
States Register (DRWS). The software programs the number of wait states for each access in a bus
cycle in 1x increments of S_CLK. The symbols tRRC, tRCP and tRRCV, which represent the number
of wait states programmed for the address, data and recovery cycles for read transfers, are shown
in Figure 14-12. The register definitions for the DRAM Bank Read Wait States Register are
shown in Table 14-19. The number of tRRC, tRCP and tRRCV wait states is encoded in two-bit
fields, which are also shown in Table 14-19.

S_CLK

RAS#

MA11:0

TA TW TW TW TD TW TD TW TD TR TR TA

COL COL COLCOLROW

CAS#

ADS#

ROW

LRDYRCV#

BLAST#

tRRC

tRRCV

tRCP tRCP tRCP
14-28

Figure 14-12.  DRAM Read Cycle Programmable Parameter Example

Programmed tRRC = 01

Programmed tRCP = 00

Programmed tRRCV = 01; Total Recovery Cycles = tRRCV + 1



14
MEMORY CONTROLLER

Table 14-19.  DRAM Bank Read Wait State Register — DRWS

LBA: 

PCI:

1524H

N/A

Legend: NA = Not Accessible RO = Read Only
RV = Reserved PR = Preserved RW = Read/Write
RS = Read/Set RC = Read Clear
LBA = 80960 Local Bus Address PCI = PCI Configuration Address Offset

Bit Default Description

31:18 0000H Reserved

17:16 002

DRAM Read cycle RAS-to-CAS delay (tRRC) - This field affects the number of cycles 
between the assertion of RAS3:0# and the assertion of CAS7:0#.

FPM EDO BEDO

00  1.5 cycles 1 cycles 1 cycles
01  2.5 cycles 2 cycles 2 cycles
10  3.5 cycles 3 cycles 3 cycles
11  4.5 cycles 4 cycles 4 cycles

15:10 00H Reserved

9:8 002

DRAM Read cycle CAS pulse width (tRCP) - This field affects the number of cycles that 
CAS7:0# is asserted.

Fast Page-Mode DRAM:

0x  1.5 cycles (defaults to 1.5 for FPM DRAM)
10  2.5 cycles
11  3.5 cycles

EDO DRAM and BEDO DRAM (this parameter is fixed for EDO or BEDO DRAM types): 

xx  0.5 cycles

7:2 00H Reserved

1:0 00

DRAM Read cycle additional recovery wait states (tRRCv) - These are the number of 
extra wait states that are inserted at the end of a DRAM transaction. The purpose is to 
increase the RAS precharge time for the DRAM (tRP).

00  0 additional recovery cycles

PCI

LBA

28 24 20 16 12 8 4 031

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rw

na

rw

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rw

na

rw

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rw

na

rw

na
14-29

2
01  1 additional recovery cycle
10  2 additional recovery cycles
11  3 additional recovery cycles



MEMORY CONTROLLER

14.6.7 DRAM Write Wait State Register — DWWS

The bus cycle timing for DRAM write accesses is programmed through the DRAM Write Wait
States register (DWWS). The software programs the number of wait states for each access in a bus
cycle in 1x increments of S_CLK. The symbols tWRC, tWCP and tWRCV, which represent the
number of wait states programmed for the address, data and recovery cycles for write transactions,
are shown in Figure 14-13. The number of tWRC, tWCP and tWRCV wait states is encoded in two-bit
fields as shown in Table 14-20.

S_CLK

RAS#

MA11:0

TA TW TW TW TD TW TD TR TR

WRITE CAS#

ADS#

LRDYRCV#

TATD

AD31:0

COL COLCOLROW ROW

DA D D A

tWRC tWCP tWCP tWCP

tWRCV
14-30

Figure 14-13.  DRAM Write Cycle Programmable Parameter Example

BLAST#

Programmed tWRC = 00

Programmed tWCP = 00

Programmed tWRCV = 01; Total Recovery Cycles = tWRCV + 1



14
MEMORY CONTROLLER

Table 14-20.  DRAM Bank Write Wait State Register — DWWS

LBA: 

PCI:

1528H

N/A

Legend: NA = Not Accessible RO = Read Only
RV = Reserved PR = Preserved RW = Read/Write
RS = Read/Set RC = Read Clear
LBA = 80960 Local Bus Address PCI = PCI Configuration Address Offset

Bit Default Description

31:18 0000H Reserved

17:16 002

DRAM Write cycle RAS-to-CAS delay (tWRC) - This field affects the number of cycles 
between the assertion of RAS3:0# and the assertion of CAS7:0#.

FPM EDO BEDO

00  1.5 cycles 1 cycles 1 cycles
01  2.5 cycles 2 cycles 2 cycles
10  3.5 cycles 3 cycles 3 cycles
11  4.5 cycles 4 cycles 4 cycles

15:10 00H Reserved

9:8 002

DRAM Write cycle CAS pulse width (tWCP) - This field affects the number of cycles that 
CAS7:0# is asserted.

Fast Page-Mode DRAM:

0x 1.5 cycles (defaults to 1.5 for FPM DRAM)
10 2.5 cycles
11 3.5 cycles

EDO DRAM and BEDO DRAM: 

xx  0.5 cycles

7:2 00H Reserved

1:0 00

DRAM Write cycle additional recovery wait states (tWRCV) - The number of extra wait 
states inserted at the end of a DRAM transaction. The purpose is to increase RAS 
precharge time for DRAM (tRP).

00  0 additional recovery cycles

PCI

LBA

28 24 20 16 12 8 4 031

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rw

na

rw

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rw

na

rw

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rw

na

rw

na
14-31

2
01  1 additional recovery cycle
10  2 additional recovery cycles
11  3 additional recovery cycles



sfers
MEMORY CONTROLLER

14.6.8 DRAM Refresh Interval Register — DRIR

The memory controller supports CAS# Before RAS# (CBR) refresh cycles for DRAM devices.
Figure 14-14 shows an example of a typical CBR refresh cycle.

Figure 14-14.  CAS#-Before-RAS# DRAM Refresh

The internal DRAM Refresh Interval Register (DRIR) (Table 14-21) provides the time delay
between DRAM refresh cycles and is programmed in increments of S_CLK. The value
programmed is determined as follows: 

Programmed Value = (DRAM Refresh Cycle Rate x Input Clock Frequency)

The register provides ten bits for the programmed value that corresponds to a time delay range of
0 to 34.1 µs at 33 MHz.

The DRAM controller performs hidden refreshes which can occur in the middle of burst tran
on the local bus.

S_CLK

RAS3:0#

CAS7:0#
14-32



14

MHz

ally
sing a

 refresh
 120
MEMORY CONTROLLER

Using a standard DRAM refresh cycle rate of 15.625 µs, the programmed value for a 33
clock is calculated as follows:

 DRAM Refresh Interval = (15.625 µs x 33 MHz) = 516 = 0x0000 0204

An initial pause of 100 to 200 µs after power-up followed by eight RAS3:0# cycles is typic
required before proper DRAM device operation is assured. This requirement is satisfied by u
200 µs delay between memory system power-up and memory controller reset, and a default
interval of approximately 3.6 µs. The default value in the DRAM Refresh Interval Register is
or 0000 0078H, which is 4.8 µs with a 25 MHz clock or 3.6 µs with a 33 MHz clock.

Table 14-21.  DRAM Refresh Interval Register — DRIR

LBA: 

PCI:

152CH

N/A

Legend: NA = Not Accessible RO = Read Only
RV = Reserved PR = Preserved RW = Read/Write
RS = Read/Set RC = Read Clear
LBA = 80960 Local Bus Address PCI = PCI Configuration Address Offset

Bit Default Description

31:17 0000H Reserved

16 0

DRAM Refresh Disable Bit - This bit disables the DRAM refresh cycles from occurring.

When cleared (0) the DRAM refresh counter decrements the value found in the DRAM 
refresh interval value field until a zero value is reached. At that time, the DRAM refresh 
initiates a CBR cycle.

When set (1) the DRAM refresh counter is disabled and does not generate any CBR cycles.

15:10 00H Reserved

9:00 78H
DRAM Refresh Interval Value - This bit field defines the number of 1x S_CLK cycles 
between generating refresh cycles. The DRAM refresh interval defaults to a value that 
meets the minimum interval typically used with the DRAM types supported on the 80960Rx.

PCI

LBA

28 24 20 16 12 8 4 031

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rw

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na
14-33



MEMORY CONTROLLER

14.7 ERROR CHECKING AND REPORTING

The memory controller provides two mechanisms for reporting error conditions. The first is
DRAM parity and the second is a bus monitor used to detect invalid local bus addresses and when
no RDYRCV# signal is returned to signify valid data.

Table 14-22.  Error Checking and Reporting Register Summary 

Section Section, Register Name, Acronym Page
Size 
(Bits)

80960 Local 
Bus Address

PCI 
Config 
Addr 

Offset

14.7.1 DRAM Parity Enable Register — DPER 14-35 32 0000 1530H N/A

14.7.2 Bus Monitor Enable Register — BMER 14-36 32 0000 1534CH N/A

14.7.3 Memory Error Address Register — MEAR 14-37 32 0000 1538H N/A

14.7.4 Local Processor Interrupt Status Register — LPISR 14-38 32 0000 153CH N/A
14-34



14
MEMORY CONTROLLER

14.7.1 DRAM Parity Enable Register — DPER

The use of parity is programmable through the DRAM Parity Enable Register (DPER), shown in
Figure 14-23. When data parity is enabled, the memory controller generates a parity bit for each
byte written to DRAM, and presents it to the parity bus DP3:0. Parity is checked on all DRAM
read accesses when enabled.

Upon detection of a parity error, the 30-bit address of the faulty memory location is latched and
stored in the Memory Error Address Register (MEAR), Table 14-25. The memory controller
detects parity errors for any on-chip bus master. These include the primary ATU, secondary ATU,
DMA channel 0, 1 or 2 and the i960 core processor. Upon detecting a parity error, the faulty

Table 14-23.  DRAM Parity Enable Register — DPER

LBA: 

PCI:

1530H

N/A

Legend: NA = Not Accessible RO = Read Only
RV = Reserved PR = Preserved RW = Read/Write
RS = Read/Set RC = Read Clear
LBA = 80960 Local Bus Address PCI = PCI Configuration Address Offset

Bit Default Description

31:2 0000 0000H Reserved

1 02

DRAM Parity Polarity Bit - This bit defines the parity polarity.

When clear (0) Even Parity Checking and Generation are performed

When set (1) Odd Parity Checking and Generation are performed.

0 02

DRAM Parity Enable Bit - This bit enables parity checking and generation.

When clear (0) Parity Checking and Generation is disabled.

When set (1) Parity Checking and Generation is enabled and an interrupt is generated 
upon detecting a parity error.

PCI

LBA

28 24 20 16 12 8 4 031

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rw

na

rw

na
14-35

address is latched and an interrupt is generated. The memory controller detects when the i960 core
processor is the bus master and sets the parity error status bit in the local processor status register
and generates an NMI#. When the i960 core processor is not the bus master, the memory controller
notifies the other bus masters of the error condition. The bus masters then latch the error and
generate an NMI# to the i960 core processor. 



MEMORY CONTROLLER

14.7.2 Bus Monitor Enable Register — BMER

The memory controller bus monitor examines all bus accesses to any memory region configured
for an external ready. When RDYRCV# is not returned to terminate an access, the processor stalls.
Under normal conditions, however, the application can enable or disable the interrupt generated to
the i960 core processor from the memory controller. When the valid data is not returned within
127 S_CLK periods, the memory controller asserts the ready signal, LRDYRCV#, which
terminates the current data cycle. When the bus monitor interrupt enable bit in the bus monitor
enable register is set, the Memory Controller also asserts a bus fault signal to the on-chip bus
masters when the timer expires. The on-chip bus master generates an interrupt to the i960 core
processor when it receives the bus fault signal. The memory controller is responsible for
generating the interrupt when the i960 core processor is the bus master.

The external bus monitor is enabled by programming the Bus Monitor Enable Register (BMER) as
shown in Table 14-24. On memory controller reset, the bus monitor interrupt is disabled.

Table 14-24.  Bus Monitor Enable Register — BMER

LBA: 

PCI:

1534H

N/A

Legend: NA = Not Accessible RO = Read Only
RV = Reserved PR = Preserved RW = Read/Write
RS = Read/Set RC = Read Clear
LBA = 80960 Local Bus Address PCI = PCI Configuration Address Offset

Bit Default Description

31:1 0000 0000H Reserved

Bus Monitor Interrupt Enable Bit - This bit enables the assertion of the bus fault to bus 
masters when the bus monitor timer expires. It also enables the generation of an 
interrupt to the i960 core processor when the bus monitor timer expires and the bus 
master is the i960 core processor.

PCI

LBA

28 24 20 16 12 8 4 031

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rw

na
14-36

0 02 When clear (0), the memory controller does not signal a bus fault to any bus master and 
does not generate an NMI interrupt to the i960 core processor.

When set (1) the Memory Controller signals a bus fault to all bus masters when the bus 
monitor timer expires and generates an NMI interrupt to the i960 core processor when 
the core processor is the bus master.



14
MEMORY CONTROLLER

14.7.3 Memory Error Address Register — MEAR

Upon detecting a parity error or bus fault condition, the 30-bit address that generates the fault is
latched in the Memory Error Address Register (MEAR). Interrupt service routines can generate
individual bus cycles to determine the exact byte address that generated the error condition. The
MEAR retains the address until the i960 core processor clears the respective status bit in the local
processor status register, primary or secondary ATU status register or in the DMA channel status
register(s). When multiple errors occur, the MEAR register preserves the first address that
generated the error, however, multiple error status bits may be set.

Table 14-25.  Memory Error Address Register — MEAR

LBA: 

PCI:

1538H

N/A

Legend: NA = Not Accessible RO = Read Only
RV = Reserved PR = Preserved RW = Read/Write
RS = Read/Set RC = Read Clear
LBA = 80960 Local Bus Address PCI = PCI Configuration Address Offset

Bit Default Description

31:02 0000 0000H

Memory Error Address Field - These bits define the upper 30 bits of local bus address 
that generated either a parity error or a bus fault condition. Clearing the error status bits 
in the local processor status register for i960 core processor errors allows the MEAR to 
latch new error addresses. When the DMA units or the ATUs generate the error, status 
bits in their respective status registers must be cleared to allow the MEAR to latch new 
error addresses.

01:00 002 Reserved

PCI

LBA

28 24 20 16 12 8 4 031

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

rv

na

rv

na
14-37



MEMORY CONTROLLER

14.7.4 Local Processor Interrupt Status Register — LPISR

Upon detecting a parity error or bus fault condition, when the core was local bus master, the
memory controller sets the corresponding bit within the Local Processor Interrupt Status Register
(LPISR). This register is used as a status for the i960 core processor to differentiate between the
two error conditions. Clearing the status bit within the LPISR register clears the memory
controller interrupt and allows additional memory controller interrupts to be generated. The
interrupt is cleared by writing a 1 to the respective interrupt status bit.

Table 14-26.  Local Processor Interrupt Status Register — LPISR

LBA: 

PCI:

153CH

N/A

Legend: NA = Not Accessible RO = Read Only
RV = Reserved PR = Preserved RW = Read/Write
RS = Read/Set RC = Read Clear
LBA = 80960 Local Bus Address PCI = PCI Configuration Address Offset

Bit Default Description

31:7 0000 000H Reserved

6 02

Memory Fault Interrupt Status Bit - This bit signifies a memory fault error condition 
occurred, when the core was local bus master.

When cleared (0) no memory fault (parity error) interrupt generated.

When set (1) a memory fault (parity error) interrupt is pending.

5 02

Local Bus Fault Interrupt Status Bit - This bit signifies a local bus fault error condition 
occurred, when the core was local bus master.

When cleared (0) no local bus fault interrupt generated.

When set (1) a local bus fault interrupt is pending.

4:0 00H Reserved

PCI

LBA

28 24 20 16 12 8 4 031

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rc

na

rc

na

rv

na

rv

na

rv

na

rv

na

rv

na
14-38



14
MEMORY CONTROLLER

14.8 DRAM WAVEFORMS

Waveforms showing FPM, EDO and BEDO DRAM read and write cycles are contained in the
following sections. Also included are interleaved and non-interleaved FPM examples.

14.8.1 Non-Interleaved Fast Page-Mode DRAM Waveform

Figure 14-15 and Figure 14-16 represent non-interleaved FPM DRAM system read and write cycle
waveforms. The programmed timings used in these two examples are shown in Table 14-27.

Table 14-27.  FPM (Non-Interleaved) DRAM Example Programming Summary

Timing Symbol Programmed Value Cycles

tRRC 012 2.5

tRCP 002 1.5

tRRCV 002 0

tWRC 002 1.5

tWCP 002 1.5

tWRCV 012 1

S_CLK

RAS#

MA[11:0]

TA TW TW TW TD TW TD TW TD TW TD TR

COL COL COLCOLROW
14-39

Figure 14-15.  FPM DRAM System Read Access, Non-Interleaved, 3,1,1,1, Wait States

AD31:0

CAS#

D D D DADDR



ystem.
 the
MEMORY CONTROLLER

Figure 14-16.  FPM DRAM System Write Cycle

14.8.2 Interleaved FPM DRAM Waveform

The memory banks may be configured as an interleaved memory region consisting of up to two
banks, where each bank contains two leaves of DRAM. The maximum interleaved configuration
is 256 Mbytes organized as two leaves with each leaf containing two banks of DRAM. The
memory controller provides eight CAS7:0# signals for the support of interleaved memory:

• CAS3:0# signals provide the byte selection for leaf 0

• CAS7:4# signals provide byte selection for leaf 1

It is necessary to control output enables during read transactions in an interleaved memory s
Two signals, LEAF1:0#, control the multiplexing of data from each memory leaf onto

S_CLK

RAS#

MA[11:0]

CAS#

AD[31:0]

TA TW TD TW TD TW TD TW TD TR

COL COL COLCOLROW

DATA
OUT

DATA
OUT

DATA
OUT

DATA
OUT

TR

ADDR
14-40

processor address/data bus. These signals may be tied to the OE# pins of the DRAM devices in an
interleaved memory array. The LEAF1:0# signals are generated when the DRAM type selected is
FPM, interleaved in the DBCR. Refer to section 14.6.4, DRAM Bank Control Register — DBCR
(pg. 14-25). 

The QA31:0 and QB31:0 signals refer to the even and odd leaf (respectively) data transceiver
outputs between the DRAM and the 80960Rx. For an interleaved DRAM system, Figure 14-17
and Figure 14-18 represent typical read and write transactions. The programmed timings used in
the examples are shown in Table 14-28.



14
MEMORY CONTROLLER

Table 14-28.  FPM (Interleaved) DRAM Example Programming Summary

Timing Symbol Programmed Value Cycles

tRRC 002 1.5

tRCP 002 1.5

tRRCV 002 0

tWRC 002 1.5

tWCP 002 1.5

tWRCV 012 1

S_CLK

RAS[n]#

MA[11:0]

AD[31:0]

TA TW TW TD TD TD TD

COLROW

RAS [n+1#]

DALE[0]

CAS[3:0]#

DALE[1]

D
IN

D
IN

D
IN

D
IN

LEAF[0]#

COL

TR

ADDR
14-41

Figure 14-17.  FPM DRAM System Read Access, Interleaved, 2,0,0,0 Wait States

DWE[1:0]#

CAS[7:4]#

LEAF[1]#



MEMORY CONTROLLER

S_CLK

RAS[n]#

MA[11:0]

AD[31:0]

TA TW TD TD TD TD TR

COLROW

DWE[1:0]#

DALE[0]

CAS[3:0]#

DALE[1]

CAS[7:4]#

LEAF[0]#

LEAF[1]#

ADDR
D

OUT
D

OUT
D

OUT
D

OUT

TR

COL

RAS[n+1]#
14-42

Figure 14-18.  FPM DRAM System Write Access, Interleaved, 1,0,0,0 Wait States



14
MEMORY CONTROLLER

14.8.3 EDO DRAM Waveform

Figure 14-19 and Figure 14-20 represent EDO DRAM system read and write cycle waveforms.
The programmed timings are shown in Table 14-29.

Table 14-29.  EDO DRAM Example Programming Summary

Timing Symbol Programmed Value Cycles

tRRC 012 2

tRCP Fixed at 002 for EDO DRAM 0.5

tRRCV 002 0

tWRC 002 1.5

tWCP Fixed at 002 for EDO DRAM 0.5

tWRCV 002 0

S_CLK

RAS#

MA[11:0]

AD[31:0]

TA TW TW TD TD TD TD TR

COL COL COLCOLROW

CAS#

DADDR IN
D
IN

D
IN

D
IN
14-43

Figure 14-19.  EDO DRAM System Read Access, 2,0,0,0, Wait States



MEMORY CONTROLLER

Figure 14-20.  EDO DRAM System Write Access, 1,0,0,0 Wait States

TA TW TD TD TD TD TR

COL COL COLCOLROW

D

S_CLK

RAS#

MA[11:0]

AD[31:0]

CAS#

ADDR OUT
D

OUT
D

OUT
D

OUT
14-44



14
MEMORY CONTROLLER

14.8.4 BEDO DRAM Waveform

Figure 14-21 and Figure 14-22 represent BEDO DRAM system read and write cycle waveforms.
The programmed timings for these examples are shown in Table 14-30.

Table 14-30.  BEDO DRAM Example Programming Summary

Timing Symbol Programmed Value Cycles

tRRC 012 2

tRCP Fixed at 002 for BEDO DRAM 0.5

tRRCV 002 0

tWRC 002 1.5

tWCP Fixed at 002 for BEDO DRAM 0.5

tWRCV 002 0

TA TW TW TD TD TD TD

S_CLK

RAS#

AD[31:0]

CAS#

TW

COLCOL COL COLROWMA[11:0]

TR

COL

ADDR
D
IN

D
IN

D
IN

D
IN
14-45

Figure 14-21.  BEDO DRAM System Read Access, 3,0,0,0, Wait States



MEMORY CONTROLLER

Figure 14-22.  BEDO DRAM System Write Access, 1,0,0,0 Wait States

TA TW TD TD TD TD TR

COL COL COLCOLROW

D D D D

S_CLK

RAS#

MA[11:0]

AD[31:0]

WRITE CAS#

ADDR OUT OUT OUT OUT
14-46



14
MEMORY CONTROLLER

14.9 INITIALIZING DRAM DEVICES

All three DRAM types, FPM, EDO and BEDO require a minimum of eight CAS# Before RAS#
cycles prior to the first memory access. In addition, BEDO devices require programming the
device to place the DRAM array in linear or interleave burst mode.

To satisfy the initialization cycles required by all three DRAM types, the memory controller uses
the refresh counter to generate the CBR (CAS# before RAS#) cycles. The application must wait
until at least eight CBR cycles have been performed prior to the first access.

BEDO DRAM requires an additional programming cycle to specify the burst mode. This
programming cycle is initiated when the DBCR register is programmed with a value selecting the
BEDO DRAM type. Once the DBCR register has been written, the WCBR is initiated. One CBR
cycle must be performed after the WCBR (CAS# before RAS# with WE# held low) cycle for the
BEDO DRAMs to exit the programming mode. Figure 14-23 shows the WBCR cycle generated by
the memory controller.

CLK

RAS3:0#

CAS7:0#

MA11:0 0000 0010 00002

DWE1:0#
14-47

Figure 14-23.  BEDO WBCR Program Cycle

The value placed on the MA11:0 bus programs the BEDO DRAM. MA0 determines the burst
mode. The memory controller programs the BEDO DRAM for linear burst mode. The delay period
before the DRAM access is a combination of eight CBR cycles, programming the DRAM
controller, and one additional CBR cycle.



MEMORY CONTROLLER

14.10 OVERLAPPING MEMORY REGIONS

Applications can program the address windows for which the memory controller decodes and
generates memory cycles. However, certain address within the local bus address space are
reserved for memory-mapped registers and ATU-outbound translation. Memory windows can be
inadvertently programmed such that they overlap the reserved address space and other memory
controller windows. Table 14-31 summarizes memory precedence used when this overlapping
occurs.

Table 14-31.  Memory Precedence

Priority Address Region

Highest Memory-Mapped Register Address Space

Primary Outbound Address Translation Unit Address Space

Secondary Outbound Address Translation Unit Address Space

DRAM Address Space

Memory Bank 0 Address Space

Lowest Memory Bank 1 Address Space
14-48



15
PCI-TO-PCI BRIDGE UNIT





f ten
i-
o-PCI
ations

rimary
er PCI

ations

ry PCI

ed in
CHAPTER 15
PCI-TO-PCI BRIDGE UNIT

15.1 OVERVIEW

The PCI-to-PCI bridge unit “extends” the PCI bus beyond its limited physical constraint o
electrical PCI loads. The bridge unit uses hierarchical buses — each bus in the hierarchy is electr
cally a separate entity yet all buses within the hierarchy are logically one bus. The PCI-t
bridge unit does not increase the bandwidth of a PCI bus, it only extends that bus for applic
requiring more I/O components than PCI electrical specifications allow.

The bridge unit provides a connection path between two independent PCI buses. Its p
function is to allow transactions between a master on one PCI bus and a target on the oth
bus. The PCI-to-PCI bridge unit’s features include:

• Full compliance to the PCI Local Bus Specification, revision 2.1

• Full compliance to the PCI-to-PCI Bridge Architecture Specification, revision 1.0

• Independent 32-bit primary and secondary PCI buses with support for concurrent oper
in either direction

• Separate memory and I/O address spaces on the bridge’s secondary side

• Two 64-byte posting buffers for both upstream and downstream transactions

• VGA palette snooping and VGA compatible addressing on the secondary bus

In addition, the PCI-to-PCI bridge unit supports:

• 64-bit addressing mode from the secondary PCI interface

• Private device configuration and address space for private PCI devices on the seconda
bus

• A “special mode” for positive decoding on the primary and secondary interfaces, describ
15-1

15
Section 15.5, ”ADDRESS DECODING” (pg. 15-9)



nd I/O
 primary

o the

in the
ace to the

ide of
terface
 to PCI
PCI-TO-PCI BRIDGE UNIT

15.2 THEORY OF OPERATION

The bridge unit operates as an address filter between the primary and the secondary PCI buses.
PCI supports three separate address spaces:

• 4 Gbyte memory address space

• 64 Kbyte I/O address space (with 16-bit addressing)

• Separate configuration space

A PCI-to-PCI bridge is programmed with a contiguous range of addresses in the memory a
address spaces, which then become the secondary PCI address space. Any address on the
side which falls within the programmed secondary space is forwarded from the primary t
secondary side. The bridge ignores addresses outside the secondary space.

The secondary side works in reverse of the primary side: it ignores addresses with
programmed secondary address space and forwards addresses outside the secondary sp
primary side as illustrated in Figure 15-1.

The PCI-to-PCI bridge’s primary and secondary interfaces each implement PCI Local Bus Specifi-
cation, revision 2.1-compliant master and target devices. A PCI transaction initiated on one s
the bridge addresses the initiating bus bridge interface as a target; the target bus in
operating as a master device completes the transaction. The bridge is logically transparent
devices on either side.

Transactions 
forwarded upstream 
to the Primary PCI 

Bus

Primary PCI Address Space

0000 0000H 0000 0000H

Secondary PCI Address Space

Valid 
Primary PCI 
Addresses Secondary PCI addresses

remain on the Secondary 
PCI Bus and are never

forwarded upstream

Valid Valid 
Transactions forwarded 
15-2

Figure 15-1.  Bridge Operation

FFFF FFFFH FFFF FFFFH

Valid 
Primary PCI 
Addresses

Transactions 
forwarded upstream 
to the Primary PCI 

Bus

Secondary 
PCI Addresses

Secondary 
PCI Addresses

downstream to the 
Secondary PCI Bus



the
PCI-TO-PCI BRIDGE UNIT

15.3 ARCHITECTURAL DESCRIPTION

Figure 15-2 identifies the PCI-to-PCI bridge unit’s four major functional blocks. Refer to 
following sections for a functional overview:

• 15.3.1, Primary PCI Interface (pg. 15-3)

• 15.3.2, Secondary PCI Interface (pg. 15-4)

• 15.3.3, Buffers (pg. 15-5)

• 15.3.4, Configuration Registers (pg. 15-5)

S
ec

on
da

ry
 P

C
I I

n
te

rf
ac

e

P
rim

ar
y 

P
C

I I
nt

e
rf

ac
e

Bridge Configuration
Registers

DPWB
64 Bytes

UDRB
64 Bytes

DDWB
4 Bytes

UPWB
64 Bytes

DDRB
64 Bytes

UDWB
4 Bytes

UDRB - Upstream Delayed Read Buffer
UPWB - Upstream Posted Write Buffer
UDWB - UPstream Delayed Write Buffer

DPWB - Downstream Posted Write Buffer
DDWB - Downstream Delayed Write Buffer
DDRB - Downstream Delayed Read Buffer

Upstream Transaction Buffers Downstream Transaction Buffers
15-3

15
Figure 15-2.  PCI-to-PCI Bridge Unit Block Diagram

15.3.1 Primary PCI Interface

The primary PCI interface functions as either a target or initiator of a PCI bus transaction.
Typically, the primary PCI interface connects to the PCI side of a Host/PCI bridge, which is
usually the lowest numbered PCI bus in a system hierarchy. The primary interface consists of:

• 50 signal pins (mandatory; as defined in the PCI-to-PCI Bridge Architecture Specification,
revision 1.0)

• Four interrupt pins (optional)



ed to
 to the
e PCI
onto the

oding

ace. It
 with a
 of the

n

within
 to the
PCI-TO-PCI BRIDGE UNIT

Refer to the PCI Local Bus Specification, revision 2.1 for a complete description of individual pin
functionality.

The primary PCI interface implements both an initiator (master) and a target (slave) PCI device.
When a transaction is initiated on the secondary bus, that needs to be completed on the primary
bus, the primary master state machine completes the transaction (write or read) as if it was the
initiating device. The primary PCI interface — as a PCI target for transactions that ne
complete on the secondary bus — accepts the transaction and forwards the request
secondary side. As a target, the primary PCI interface uses positive decoding to claim th
transaction addressed within the bridge address space and then forwards the transaction 
secondary master interface.

The primary PCI interface is responsible for all PCI command interpretation, address dec
and error handling. It also performs PCI configuration for:

• primary and secondary interfaces

• interrupt routing logic - described in section 8.3.3, Internal Peripheral Interrupt Routing
(pg. 8-26)

• secondary PCI bus arbitration - described in CHAPTER 18, BUS ARBITRATION

Configuration space registers support these functions.

15.3.2 Secondary PCI Interface

The secondary PCI interface functions in almost the same manner as the primary interf
consists of both a PCI master and a PCI slave device and implements the “second” PCI bus
new set of PCI electrical loads for use by the system. The secondary PCI interface consists
mandatory 50 pins and four optional interrupt pins. Note that S_RST# is an output instead of a
input on the secondary side.

• As a slave (target), the secondary PCI interface claims PCI transactions that do not fit 
the bridge’s secondary memory or I/O address space and forwards them up the bridge
master on the primary side.
15-4

• As a master (initiator), the secondary PCI interface completes transactions initiated on the
primary side.

The secondary PCI interface uses inverse decoding of the bridge address registers and only
forwards addresses within the primary address space across the bridge.

The secondary PCI interface implements a separate address space for private PCI devices on the
secondary bus, where it ignores and does not forward a range of primary addresses that the i960
core processor defines at configuration time. Support for private PCI devices is discussed in
section 15.4, CONFIGURATION ACCESSES (pg. 15-6).



d and
behalf
ith a

ing on
PCI-TO-PCI BRIDGE UNIT

The secondary PCI interface optionally claims Dual Address Caches (DACs) on the secondary PCI
interface.

As a special mode of operation, the secondary PCI interface performs positive address decoding
based upon its own set of memory and I/O address registers. This mode of operation is enabled
through the Secondary Decode Enable Register (SDER). Once this mode is enabled, the standard
inverse decoding mechanism of the bridge address registers is disabled.

15.3.3 Buffers

The PCI-to-PCI bridge unit implements six buffers which hide the latency incurred in the
arbitration and acquisition of a PCI target during read and write transactions. Three downstream
buffers are for data flow from the primary interface to the secondary interface. Three upstream
buffers are for data flow from the secondary interface to the primary interface. The upstream and
downstream buffers are:

• Posted Write Buffer (64 bytes)

• Delayed Write Buffer (4 bytes)

• Delayed Read Buffer (64 bytes)

The bridge supports both Delayed and Posted transactions:

• In a Delayed transaction, the information required to complete the transaction is latche
the transaction is terminated with a Retry. The bridge then performs the transaction on 
of the initiator. The initiator must repeat the original transaction that was terminated w
Retry to complete the transaction.

• In a Posted transaction, the transaction completes on the initiating bus before complet
the target bus.

Refer to section 15.6, BRIDGE OPERATION (pg. 15-22) for information about Delayed and
Posted transactions; refer to section 15.7, BUFFERS (pg. 15-29) for more information about
posting buffers.
15-5

15
15.3.4 Configuration Registers

The configuration registers hold all the necessary address decode, error condition and status
information for both sides of the bridge. All PCI devices implement a separate configuration
address space and configuration registers. The PCI Local Bus Specification, revision 2.1 requires a
256-byte configuration space, and the first 64 bytes must adhere to a predefined header format.
The PCI-to-PCI bridge contains additional configuration registers. Refer to section 15.13,
REGISTER DEFINITIONS (pg. 15-38) for full description.



n
es the
to-PCI

 Type

 in the

mand.
ration
ss bits
PCI-TO-PCI BRIDGE UNIT

The bridge configuration header formats’ first 16 bytes, implement the common configuratio
registers which all PCI devices require. The read-only Header Type Register value defin
format for the remaining 48 bytes in the header and returns an 81H which defines a PCI-
bridge and multifunction PCI device.

Devices on the primary bus can only access the PCI-to-PCI bridge configuration space with
0 configuration commands. Devices on the secondary PCI bus cannot access bridge configuration
space with PCI configuration cycles.

15.4 CONFIGURATION ACCESSES

The i960 Rx I/O processor supports configuration access commands and types as defined
PCI Local Bus Specification, revision 2.1. The various command types supported are:

• Type 0 configuration commands

• Type 1 configuration commands and Type 1 to Type 0 Conversions

• Type 1 to Type 1 Forwarding

• Type 1 to Special Cycle Conversion

Address encoding during a configuration command distinguishes the target of the com
Figure 15-3 shows the various address encodings associated with each PCI configu
command type. Type 0 and Type 1 configuration commands are distinguished by addre
AD1:0.

Function
Number 00

Register
NumberReserved

31 10 278 0111

Type 0 Command Format

Register

31 10 278 0111

Bus

23 1524 16
15-6

Figure 15-3.  PCI Configuration Access Formats

On the primary interface, the bridge ignores or accepts Type 0 configuration commands,
depending on the value of the P_IDSEL input. A Type 1 configuration command on the primary
interface may be ignored, forwarded downstream unaltered, converted to a Type 0 command on
the secondary interface, or converted to a special cycle on the secondary interface.

Function
Number 10NumberReserved

Type 1 Command Format

Device
NumberNumber



fig-
nfigu-
evices
to the

efore, the

target
nique

 five
rved for

egister
.0 and
 the

0 and
d for the
PCI-TO-PCI BRIDGE UNIT

On the secondary interface, Type 1 configuration write command may be ignored, forwarded
upstream under certain conditions, or converted to a special cycle on the primary interface. The
bridge cannot convert a Type 1 configuration command on the secondary side to a Type 0 on the
primary side. The bridge ignores configuration reads and Type 0 configuration writes on the
secondary interface.

The primary interface accepts configuration commands only when the Extended Bridge Command
Register (EBCR) Configuration Cycle Disable bit is cleared. When the Configuration Cycle
Disable bit is set, the primary PCI interface signals a Retry on all Type 1 and Type 0 configuration
commands.

15.4.1 Private Configuration Commands (Type 0) on the Secondary Interface

The i960 Rx I/O processor’s Address Translation Unit can generate Type 0 read and write con
uration commands on the secondary interface which are not originally initiated as Type 1 co
ration commands on the primary bus. Type 0 configuration commands must configure PCI d
on the secondary bus which reside in private PCI address space. All devices mapped in
private address space are not part of the standard secondary PCI address space and, ther
system host processor cannot configure these devices.

For Type 0 configuration commands on the secondary interface, S_AD31:11 select the 
device’s IDSEL input. In Type 1 to Type 0 conversions, P_AD15:11 are decoded to assert a u
address line from S_AD31:16 on the secondary interface as described in Section 15.4.2, Special
Cycles. This leaves S_AD15:11 on the secondary interface open for a possibility of up to
address lines for IDSEL assertion of private PCI devices. These five address lines are rese
private PCI devices on the secondary PCI bus.

When more than five unique address lines are required, the Secondary IDSEL Select R
(SISR) can be programmed to block secondary addresses (S_AD20:16 for 80960RP 33/5
S_AD25:16 for 80960RP 33/3.3) from being used during Type 1 to Type 0 conversions from
primary interface. By setting the appropriate SISR register bits (bits 4:0 for 80960RP 33/5.
bits 9:0 for 80960RP 33/3.3), the associated address line can be forced to remain deasserte
P_AD15:11 encodings of (000002 - 010002 for 80960RP 33/5.0 and 000002 - 0100102 for
15-7

15
80960RP 33/3.3) and therefore is free to be used as an IDSEL select line for private secondary PCI
devices.

Table 15-1 shows the possible configurations of S_AD31:11 for private Type 0 configuration
commands on the secondary interface. For example, when SISR Bit 0 is set, S_AD16 is never
asserted during a Type 1 to Type 0 conversion. Only the Address Translation Unit can assert this
signal.



PCI-TO-PCI BRIDGE UNIT

When the primary interface receives a Type 1 configuration command which specifies one of the
S_AD address lines reserved for private PCI devices, the bridge performs the Type 1 to Type 0
conversion, but does not assert the reserved S_AD address line. The Type 0 configuration
command is then ignored on the secondary PCI bus.

By using the SISR register and the five reserved address lines, a total of (10 for 80960RP 33/5.0
and 15 for 80960RP 33/3.3) IDSEL signals are available for private PCI devices.

Figure 15-4 shows an example of connecting S_AD lines to IDSEL inputs of PCI devices and
private PCI devices.

15.4.2 Special Cycles

Except for conversion cycles, the bridge unit neither initiates nor accepts PCI special cycle
commands on either interface.

Table 15-1.  Private PCI Memory IDSEL Select Configurations 

Secondary Addresses AD31:11
Secondary IDSEL Select 

Register Bits 9 - 0 for 
80960RP 33/3.3

Use

0000 0000 0000 0000 0000 12 XXXXX XXXXX2

Reserved for private PCI devices

0000 0000 0000 0000 0001 02 XXXXX XXXXX2

0000 0000 0000 0000 0010 02 XXXXX XXXXX2

0000 0000 0000 0000 0100 02 XXXXX XXXXX2

0000 0000 0000 0000 1000 02 XXXXX XXXXX2

0000 0000 0000 0001 0000 02 XXXXX XXXX12

Can be used for 
private PCI devices 

only when the 

5.0 V

3.3 V

0000 0000 0000 0010 0000 02 XXXXX XXX1X2

0000 0000 0000 0100 0000 02 XXXXX XX1XX2

0000 0000 0000 1000 0000 02 XXXXX X1XXX2

0000 0000 0001 0000 0000 02 XXXXX 1XXXX2
15-8

associated bit in 
SISR is set

0000 0000 0010 0000 0000 02 XXXX1 XXXXX2

3.3 V
ONLY

0000 0000 0100 0000 0000 02 XXX1X XXXXX2

0000 0000 1000 0000 0000 02 XX1XX XXXXX2

0000 0001 0000 0000 0000 02 X1XXX XXXXX2

0000 0010 0000 0000 0000 02 1XXXX XXXXX2

NOTES:

1. X = Don’t Care



e uses a
PCI-TO-PCI BRIDGE UNIT

Figure 15-4.  Secondary IDSEL Example

15.5 ADDRESS DECODING

The i960 Rx I/O processor provides three separate address ranges for determining which memory
and I/O addresses are forwarded in either direction across the i960 Rx I/O processor’s bridge: two
address ranges for memory transactions, one address range for I/O transactions. The bridg
base address register and limit register to implement an address range.

S_AD12

S_AD14
S_AD13

S_AD15

S_AD11

S_AD28

S_AD30
S_AD29

S_AD31

S_AD22

S_AD24
S_AD23

S_AD25
S_AD26
S_AD27

S_AD16

S_AD18
S_AD17

S_AD19
S_AD20
S_AD21

IDSEL

PCI Device PCI Device PCI Device
Private or

IDSEL IDSEL

PCI Device
Private

IDSEL

PCI-to-PCI
Bridge

P
C

I

Private

Private

* These S_AD lines can be either PCI or private
depending on the SISR register. For example, S_AD16 can
be used as a private PCI device only when SISR bit 0 is set.

Private or

5.0 V 3.3 V

P
ri

va
te

P
riv

at
e 

o
r 

P
C

I*
P

C
I

or PCI*
15-9

15In addition to the memory and I/O space, the bridge unit supports an ISA compatibility mode and
support for VGA graphics devices on the secondary interface.

The Secondary Decode Enable Register (SDER) can also modify standard bridge unit address
decoding. It can enable the secondary bridge interface to use positive address decoding and disable
the standard inverse address decoding that the PCI-to-PCI bridges use. This is known as the
Special Mode of operation. 



her the
PCI-TO-PCI BRIDGE UNIT

15.5.1 I/O Address Space

The PCI-to-PCI bridge unit implements one programmable address range for PCI I/O transactions.
A continuous I/O address space is defined by the I/O Base Register (IOBR) and the I/O Limit
Register (IOLR) in the bridge configuration space. 

The bridge unit forwards from the primary to secondary interface an I/O transaction that has an
address within the address range defined (inclusively) by the IOBR and the IOLR.

When an I/O read or write transaction is present on the secondary bus, the bridge unit forwards it
to the primary interface when the address is outside the address range defined by IOBR and IOLR.

The i960 Rx I/O processor only supports 16-bit addresses for I/O transactions and therefore any
I/O transaction with an address greater than 64 Kbytes is not forwarded over either interface.

The following registers and configuration bits control bridge response to I/O transactions:

• Primary Command Register (PCMDR)

- VGA Palette Snoop Enable bit

- Bus Master Enable bit

- I/O Space Enable bit

• Bridge Control Register (BCR)

- VGA Enable bit

- ISA Enable bit

• Secondary Decode Enable Register (SDER)

- Secondary Positive I/O Decode Enable bit

15.5.1.1 Disabling the I/O Address Range

The I/O address range can be disabled for primary to secondary transactions by using eit
I/O Enable bit or the I/O Base and Limit Registers.
15-10

• When the I/O Limit Register (IOLR) is programmed to a value less than or equal to the I/O
Base Register (IOBR), the i960 Rx I/O processor does not forward any transactions from the
primary to the secondary. All I/O transactions from the secondary to the primary are
forwarded upstream through the bridge.

• When positive I/O decoding is enabled on the secondary interface, setting the SIOLR less
than or equal to the SIBLR or setting the Secondary Positive I/O Decode Enable bit disables
the I/O address range in the same manner as the primary interface. Disabling the secondary
I/O address range in this way (with positive I/O decoding from the secondary interface
enabled) results in no I/O transactions being forwarded over either PCI interface.



rface

haves

rds
ich the

ridge
0H) of
de the
 of each

ndary
ositive
PCI-TO-PCI BRIDGE UNIT

• When the I/O Enable bit is cleared (0), neither the primary or the secondary PCI Inte
claims I/O transactions.

• When the I/O Enable bit is set (1), neither the primary or the secondary PCI Interface be
as described earlier.

15.5.1.2 ISA Mode

The Bridge Control Register (BCR) ISA Enable bit provides ISA-”awareness” for ISA I/O ca
on subordinate PCI buses. ISA Mode only affects I/O addresses within the address range wh
IOBR and IOLR registers define. When ISA Mode is enabled (ISA Enable bit is set), the b
filters out and does not forward I/O transactions with addresses in the upper 768 bytes (30
each naturally aligned 1 Kbyte block. I/O transactions on the secondary bus inversely deco
ISA addresses and therefore forward I/O transactions with addresses in the upper 768 bytes
naturally aligned 1 Kbyte block.

ISA Mode addressing is not supported in conjunction with positive decoding on the seco
interface. I/O address decoding with the ISA Enable bit set in the BCR and the Secondary P
I/O Decode Enable bit set in the SDER is indeterminate.

000H - 0FFH

400H - 4FFH

800H - 8FFH

C00H - CFFH

Primary 
Interface

Secondary 
Interface

1 Kbyte 
Block

D00H - FFFH

900H - BFFH

500H - 7FFH

100H - 3FFH
15-11

15Figure 15-5.  ISA Mode Address Decode

15.5.2 Memory Address Space

The mechanism for claiming and forwarding all PCI memory transactions complies with the PCI-
to-PCI Bridge Architecture Specification, revision 1.0.



y the
PCI-TO-PCI BRIDGE UNIT

The PCI-to-PCI bridge unit supports two separate address ranges for forwarding memory accesses
downstream. The Memory Base Register (MBR) and the Memory Limit Register (MLR) define
one address range and the Prefetchable Memory Base Register (PMBR) and the Prefetchable
Memory Limit Register (PMLR) define the other address range. When the two register pairs
overlap, one address range results that is the summation of both registers combined (Figure 15-6)
with the prefetchable range having priority over bridge read transaction response.

The prefetchable address range maps memory address ranges of devices that are prefetchable. Both
register pairs determine when the bridge forwards Memory Read, Memory Read Line, Memory Read
Multiple, Memory Write, and Memory Write and Invalidate transactions across the bridge.

Figure 15-6.  Overlapping Memory Address Ranges

The bridge’s response to memory transactions on either interface may be modified b
following register bits from the bridge configuration space:

• Primary Command Register (PCMD)

- Bus Master Enable bit

MBR Address

PMBR Address

Range

Range

Combined Address
Range

80960 Private Memory
Address Range

Overlapping 
Memory Address
Range
15-12

- Memory Enable bit

• Bridge Control Register (BCR)

- VGA Enable bit

• Secondary Decode Enable Register (SDER)

- Secondary Positive Memory Decode Enable bit



ory
ed to
cessor
ctions

R less
le bit

erface

rface

e can
e. The
 snoop

uffer
mand
 VGA
ses are
PCI-TO-PCI BRIDGE UNIT

15.5.2.1 Disabling the Memory Address Range

The Memory address range can be disabled for primary to secondary transactions by using either
the Memory Enable bit or the MBR-MLR and PMBR-PMLR register pairs.

• When the Memory Limit Register (MLR) is programmed to a value less than the Mem
Base Register (MBR) and the Prefetchable Memory Limit Register (PMLR) is programm
a value less than the Prefetchable Memory Base Register (PMBR), the i960 Rx I/O pro
does not forward any transactions from the primary to the secondary. All Memory transa
from the secondary to the primary are forwarded upstream through the bridge.

• When positive Memory decoding is enabled on the secondary interface, setting the SML
than or equal to the SMBR or setting the Secondary Positive Memory Decode Enab
disables the Memory address range in the same manner as the primary interface.

• When the Memory Enable bit is cleared (0), neither the primary or the secondary PCI Int
claims I/O transactions.

• When the Memory Enable bit is set (1), neither the primary or the secondary PCI Inte
behaves as described in previous bullets.

15.5.3 VGA Address Support

To support a VGA device on a downstream bus from the i960 Rx I/O processor, the bridg
recognize and forward VGA addresses on the primary interface to the secondary interfac
i960 Rx I/O processor’s bridge unit also supports the downstream graphics device need to
VGA palette accesses on the primary bus.

15.5.3.1 VGA Compatible Addressing

VGA addressing support allows the i960 Rx I/O processor to support VGA frame b
addressing and VGA register addressing. When the VGA Enable bit is set in the Bridge Com
Register, the i960 Rx I/O processor bridge unit positively decodes memory accesses to a
frame buffer and I/O accesses to VGA registers on a secondary bus. The following addres
15-13

15

positively decoded on the primary interface when the VGA Enable bit is set:

• VGA memory accesses - 0A0000H - 0BFFFFH

• VGA I/O accesses - AD9:0 = 3B0H - 3BBH and 3C0H - 3DFH. These addresses are inclusive
of ISA aliasing since AD15:10 are not decoded for VGA I/O accesses

When the VGA Enable bit is set, VGA compatible addressing is not dependent on the address
ranges programmed into the MBR/MLR and PMBR/PMLR register pairs for memory or the
IOBR/IOLR register pair. Regardless of the defined address ranges, addresses are forwarded from
primary to secondary and blocked from secondary to primary. In addition, VGA compatible
addressing is not dependent on the ISA enable bit or the VGA Palette Snoop bit.



PCI-TO-PCI BRIDGE UNIT

Figure 15-7.  VGA Compatible Addressing

15.5.3.2 VGA Palette Snooping

VGA I/O DecodingVGA Memory Decoding

Primary Secondary Primary Secondary

. . . .

0A 0000H

0B FFFFH

Memory Base
Address Range

Prefetchable

Memory Base

Address Range

3B0H-3BBH

3C0H-3DFH

7B0H-7BBH

7C0H-7DFH

BB0H-BBBH

BC0H-BDFH

I/O Base
Address Range
15-14

VGA palette snooping mechanism is defined for: 

• VGA compatible devices

• subtractive decoding bridges (expansion bridges, such as PCI to EISA)

• PCI-to-PCI bridge

• non-VGA compatible graphics devices

VGA palette addresses are defined as the following addresses:

• AD9:0 = 3C6H, 3C8H, and 3C9H (inclusive of ISA aliases since AD15:10 are not decoded).



es.

of the

phics

ister

ondary
 clock
PCI-TO-PCI BRIDGE UNIT

The full VGA snooping mechanism for a PCI VGA devices is described on the PCI Local Bus
Specification, revision 2.1 and the PCI-to-PCI Bridge Architecture Specification, revision 1.0.

As shown in Table 15-2, the bridge unit supports three modes of palette accesses:

1. Ignore palette accesses - when there are no graphics devices downstream of the i960 Rx I/O
processor’s primary interface that need to snoop or respond to VGA palette access cycl

2. Positively decode and forward palette writes - when graphics agents downstream 
bridge need to respond or snoop palette writes.

3. Positively decode and forward palette reads and writes - when VGA-compatible gra
agents downstream are being used.

The Bridge Control Register (BCR) VGA Enable bit and the Primary Command Reg
(PCMDR) VGA Snoop Enable bit control the bridge unit’s response to palette accesses.

Many restrictions apply to VGA Palette Snooping in a PCI system. Refer to the PCI-to-PCI Bridge
Architecture Specification, revision 1.0 for complete details.

15.5.4 64-Bit Address Decoding - Dual Address Cycles

The bridge unit supports the dual address cycle command for 64-bit addressing on the sec
interface only. The bridge unit uses medium decode timing (assert DEVSEL# on the second

Table 15-2.  VGA Palette Configurations

VGA Enable Bit
VGA Snoop 
Enable Bit

Bridge’s Response to Palette Accesses

0 0 ignore all palette accesses

0 1 positively decode palette writes and ignore palette reads

1 X positively decode palette writes and reads
15-15

15

after the second address in a DAC cycle) for claiming dual address cycle commands.

The bridge unit decodes and forwards all dual address cycles from the secondary to the primary
interface regardless of the address ranges defined in the MBR/MLR and PMBR/PMLR register
pairs. 

The PCMDR’s Master Enable bit controls the use of DAC cycles on the secondary interface. This
bit must be set for the primary interface to master PCI transactions. Claiming of DAC cycles can
be disabled by modifying the Extended Bridge Control Register’s DAC cycle disable bit.



y PCI

ry Base
o, the
et. See

ed into
rol bits

and the

-”)

en the

dary
PCI-TO-PCI BRIDGE UNIT

15.5.5 Private Address Space

The bridge supports private address space by not claiming and forwarding private Memory
addresses on the secondary PCI bus. Private addresses are only supported on the secondary PCI
bus. The bridge does not claim the following transactions:

• Inbound transactions from private secondary PCI devices to the secondary ATU

• Outbound transactions from the secondary ATU or DMA channel 2 to private secondar
devices

• Transactions between two private devices

For transactions between private devices, application code must use the Secondary Memo
Register and Secondary Memory Limit Register to define a private address range. Als
Private Memory Space Enable bit in the Secondary Decode Enable Register must be s
section 15.13.34, Secondary Decode Enable Register - SDER (pg. 15-73).

15.5.6 Address Decode Summary

Tables in this section summarize the address decode options. Each pair of tables is divid
one Memory transaction table and one I/O transaction table. The tables list the various cont
and the potential address ranges.

The response for the address, noted in each table entry, is determined by the control bits 
address range into which the address falls, and may be one of:

• Forward the transaction across the Bridge

• Ignore the transaction and do not forward across the Bridge

• Range is not valid; the response is determined by another address range (denoted as “

It is assumed that the Memory and I/O Base and Limit address ranges are only valid wh
Limit is greater than or equal to the Base.

Table 15-3 is a summary of the Memory address decoding rules for Primary to Secon
15-16

Memory transactions. Note that the VGA Memory range is independent of the MBR/MLR and
PMBR/PMLR ranges and is only valid when the VGA Enable bit is set and the Memory Enable bit
is set.



PCI-TO-PCI BRIDGE UNIT

Table 15-4 is a summary of the I/O address decoding rules for Primary to Secondary I/O transac-
tions.

The I/O Enable bit must be set to forward any I/O transactions. To be in the ISA range or the VGA
Palette Snoop range, the address must also fall in the IOBR/IOLR range. The ISA range covers the
complete IOBR/IOLR range. The VGA I/O range is independent of the IOBR/IOLR range.

When the Secondary Positive Memory Decode Enable bit is clear, then the secondary interface
must ignore the SMBR/SMLR range. When either the Secondary Positive Memory Decode Enable
bit or the Secondary Positive I/O Decode Enable bit is set, then inverse decoding is disabled
(except when the Private Address Space Enable bit is set; see next paragraph).

The SDER Private Address Space Enable bit can disable forwarding of the SMBR/SMLR range
and override the Secondary Positive Memory Decode Enable and Secondary Positive I/O Decode
Enable bits. When the Private Address Space Enable bit is set, the Secondary Positive Memory
Decode Enable and Secondary Positive I/O Decode Enable bits are ignored.

Table 15-3.  Primary to Secondary Memory Address Decoding Summary

Memory 
Enable 

bit

VGA 
Enable 

bit

Primary to Secondary

In MBR/MLR range In PMBR/PMLR range In VGA 
Memory range

Outside all 
valid ranges

0 0 Ignore Ignore - Ignore

0 1 Ignore Ignore - Ignore

1 0 Forward Forward - Ignore

1 1 Forward Forward Forward Ignore

NOTES:

1. Usage of “Forward”, “Ignore”, and “dash” are defined as follows:

• Forward the transaction across the Bridge

• Ignore the transaction and do not forward across the Bridge

• Range is not valid; the response is determined by another address range (denoted as “-”)
15-17

15



PCI-TO-PCI BRIDGE UNIT

Table 15-3 is a summary of the address decoding rules for Secondary to Primary Memory transac-
tions.

Table 15-4.  Primary to Secondary I/O Address Decoding Summary 

I/O 
Enable 

bit

ISA 
Mode 

bit

VGA 
Enable 

bit

VGA 
Palette 
Snoop 

bit

Primary to Secondary1

In
IOBR/IOLR 

range

In 
VGA I/O 
range

In 
VGA 

Palette 
range

In ISA 
range 

(Lower 256 
bytes)

In ISA 
range 

(Upper 768 
bytes)

Outside 
all valid 
ranges

0 X X X Ignore

1 0 0 0 Forward - - - - Ignore

1 0 0 1 Forward -

Forward 
Writes;
Ignore 
Reads

- - Ignore

1 0 1 0 Forward Forward Forward - - Ignore

1 0 1 1 Forward Forward Forward - - Ignore

1 1 0 0 - - - Forward Ignore Ignore

1 1 0 1 - -

Forward 
Writes;
Ignore 
Reads

Forward Ignore Ignore

1 1 1 0 - Forward Forward Forward Ignore Ignore

1 1 1 1 - Forward Forward Forward Ignore Ignore

NOTES:

1. Usage of “Forward”, “Ignore”, and “dash” are defined as follows:

• Forward the transaction across the Bridge

• Ignore the transaction and do not forward across the Bridge

• Range is not valid; the response is determined by another address range (denoted as “-”)
15-18



PCI-TO-PCI BRIDGE UNIT

Table 15-5.  Secondary to Primary Memory Address Decoding Summary

M
as

te
r 

E
na

bl
e 

bi
t

P
riv

at
e 

A
dd

re
ss

 S
pa

ce
 

E
na

bl
e 

bi
t

S
ec

on
da

ry
 P

os
iti

ve
 

I/O
 D

ec
od

e 
E

na
bl

e 
bi

t

S
ec

on
da

ry
 P

os
iti

ve
 

M
em

or
y 

D
ec

od
e

E
na

bl
e 

bi
t

M
em

 E
na

bl
e 

bi
t

V
G

A
 E

na
bl

e 
bi

t

Secondary to Primary

In
 M

B
R

/M
LR

 r
an

ge

In
 P

M
B

R
/

P
M

LR
 r

an
ge

In
 V

G
A

 
M

em
or

y 
ra

ng
e

In
 A

T
U

 In
b

ou
nd

A
dd

re
ss

 r
an

ge

In
 S

M
B

R
/

S
M

LR
 r

an
ge

O
ut

si
de

 a
ll 

va
lid

 r
an

ge
s

0 X X X X X Ignore

1 0 0 0 0 0 - - - Ignore - Forward

1 0 0 0 0 1 - - - Ignore - Forward

1 0 0 0 1 0 Ignore Ignore - Ignore - Forward

1 0 0 0 1 1 Ignore Ignore Ignore Ignore - Forward

1 0 X 1 0 0 - - - Ignore Forward Ignore

1 0 X 1 0 1 - - - Ignore Forward Ignore

1 0 X 1 1 0 - - - Ignore Forward Ignore

1 0 X 1 1 1 - - Ignore Ignore Forward Ignore

1 0 1 0 0 0 - - - Ignore - Ignore

1 0 1 0 0 1 - - - Ignore - Ignore

1 0 1 0 1 0 - - - Ignore - Ignore

1 0 1 0 1 1 - - - Ignore - Ignore

1 1 X X 0 0 - - - Ignore Ignore Forward

1 1 X X 0 1 - - - Ignore Ignore Forward

1 1 X X 1 0 Ignore Ignore - Ignore Ignore Forward

1 1 X X 1 1 Ignore Ignore Ignore Ignore Ignore Forward

1. Usage of “Forward”, “Ignore”, and “dash” are defined as follows:

• Forward the transaction across the Bridge

• Ignore the transaction and do not forward across the Bridge
15-19

15
Table 15-4 summarizes the I/O address decoding rules for Secondary to Primary I/O transactions.
The ISA Enable only pertains to the IOBR/IOLR range and never the SIOBR/SIOLR range. Also,
when the IOBR/IOLR range overlaps with the SIOBR/SIOLR range and a conflict exists, the
bridge ignores the transaction.

The bridge ignores all VGA palette accesses on the secondary PCI bus when the VGA Palette
Snoop Enable bit is set.

• Range is not valid; the response is determined by another address range (denoted as “-”)



PCI-TO-PCI BRIDGE UNIT

Table 15-6.  Secondary to Primary I/O Address Decoding Summary (Sheet 1 of 2)

M
as

te
r

E
n

ab
le

S
ec

o
n

d
ar

y 
P

o
si

ti
ve

 
M

em
o

ry
 D

ec
o

d
e 

S
ec

o
n

d
ar

y 
P

o
si

ti
ve

 
I/O

 D
ec

o
d

e 

I/O
 E

n
ab

le
 b

it

IS
A

M
o

d
e 

b
it

V
G

A
E

n
ab

le

Secondary to Primary

In
 IO

B
R

/
IO

L
R

 r
an

g
e

In
 IS

A
 r

an
g

e 
(L

o
w

er
 2

56
 b

yt
es

)

In
 IS

A
 r

an
g

e
(U

p
p

er
 7

68
 b

yt
es

)

In
 V

G
A

 I/
O

 r
an

g
e

In
 S

IO
B

R
/

S
IO

L
R

 r
an

g
e

O
u

ts
id

e 
al

l 
va

lid
 r

an
g

es

0 X X X X X Ignore

1 0 0 0 0 0 - - - - - Forward

1 0 0 0 0 1 - - - - - Forward

1 0 0 0 1 0 - - - - - Forward

1 0 0 0 1 1 - - - - - Forward

1 0 0 1 0 0 Ignore - - - - Forward

1 0 0 1 0 1 Ignore - - Ignore - Forward

1 0 0 1 1 0 - Ignore Forward - - Forward

1 0 0 1 1 1 - Ignore Forward Ignore - Forward

1 X 1 0 0 0 - - - - Forward Ignore

1 X 1 0 0 1 - - - - Forward Ignore

1 X 1 0 1 0 - - - - Forward Ignore

1 X 1 0 1 1 - - - - Forward Ignore

1 X 1 1 0 0 Ignore - - - Forward Ignore

1 X 1 1 0 1 Ignore - - Ignore Forward Ignore

NOTES:

1. Usage of “Forward”, “Ignore”, and “dash” are defined as follows:

• Forward the transaction across the Bridge

• Ignore the transaction and do not forward across the Bridge

• Range is not valid; the response is determined by another address range (denoted as “-”)
15-20



PCI-TO-PCI BRIDGE UNIT

1 X 1 1 1 0 - Ignore Forward - Forward Ignore

1 X 1 1 1 1 - Ignore Forward Ignore Forward Ignore

1 1 0 0 0 0 - - - - - Ignore

1 1 0 0 0 1 - - - - - Ignore

1 1 0 0 1 0 - - - - - Ignore

1 1 0 0 1 1 - - - - - Ignore

1 1 0 1 0 0 Ignore - - - - Ignore

1 1 0 1 0 1 Ignore - - Ignore - Ignore

1 1 0 1 1 0 - Ignore Forward - - Ignore

1 1 0 1 1 1 - Ignore Forward Ignore - Ignore

Table 15-6.  Secondary to Primary I/O Address Decoding Summary (Sheet 2 of 2)

M
as

te
r

E
n

ab
le

S
ec

o
n

d
ar

y 
P

o
si

ti
ve

 
M

em
o

ry
 D

ec
o

d
e 

S
ec

o
n

d
ar

y 
P

o
si

ti
ve

 
I/O

 D
ec

o
d

e 

I/O
 E

n
ab

le
 b

it

IS
A

M
o

d
e 

b
it

V
G

A
E

n
ab

le

Secondary to Primary

In
 IO

B
R

/
IO

L
R

 r
an

g
e

In
 IS

A
 r

an
g

e 
(L

o
w

er
 2

56
 b

yt
es

)

In
 IS

A
 r

an
g

e
(U

p
p

er
 7

68
 b

yt
es

)

In
 V

G
A

 I/
O

 r
an

g
e

In
 S

IO
B

R
/

S
IO

L
R

 r
an

g
e

O
u

ts
id

e 
al

l 
va

lid
 r

an
g

es

NOTES:

1. Usage of “Forward”, “Ignore”, and “dash” are defined as follows:

• Forward the transaction across the Bridge

• Ignore the transaction and do not forward across the Bridge

• Range is not valid; the response is determined by another address range (denoted as “-”)
15-21

15



on

event
 both
PCI-TO-PCI BRIDGE UNIT

15.6 BRIDGE OPERATION

The i960 Rx I/O processor’s bridge unit can forward various memory, I/O and configurati
commands from one PCI interface to the other PCI interface. Table 15-7 defines the PCI
commands which the PCI-to-PCI bridge unit, and its two PCI interfaces, support. To pr
deadlock, the bridge gives priority to the primary interface for simultaneous transactions on
interfaces.

15.6.1 PCI Interfaces

Table 15-7.  PCI Commands 

C/BE# PCI Command
Initiator: Primary Bus

Target: Secondary Bus
Initiator: Secondary Bus

Target: Primary Bus

00002 Interrupt Acknowledge Ignore Ignore

00012 Special Cycle Ignore Ignore

00102 I/O Read Forward Forward

00112 I/O Write Forward Forward

01002 Reserved Ignore Ignore

01012 Reserved Ignore Ignore

01102 Memory Read Forward Forward

01112 Memory Write Forward Forward

10002 Reserved Ignore Ignore

10012 Reserved Ignore Ignore

10102 Configuration Read Forward Ignore

10112 Configuration Write Forward Forward

11002 Memory Read Multiple Forward Forward

11012 Dual Address Cycle Ignore Forward

11102 Memory Read Line Forward Forward

11112 Memory Write and Invalidate Forward Forward
15-22

The bridge unit consists of a primary and secondary PCI interface between the two PCI buses
which the i960 Rx I/O processor interconnects:

• The primary interface connects to the lower numbered PCI bus

• The secondary interface connects to the higher numbered PCI bus

When the primary bus initiates a transaction and the bridge claims the transaction, the primary
interface becomes the PCI target device; the secondary interface becomes the initiating device for
the true PCI target on the secondary bus. The primary is the initiating bus; the secondary is the
target bus. The sequence is reversed for transactions initiated on the secondary bus.



s in
 Timer

atency
 slice
ed to
 are
tween

y PCI
ctions

emory
elayed
Posting

ans-

sac-
PCI-TO-PCI BRIDGE UNIT

15.6.2 Claiming a PCI Transaction

The PCI-to-PCI bridge unit complies with PCI Local Bus Specification, revision 2.1 and the PCI-
to-PCI Bridge Architecture Specification, revision 1.0. Refer to the PCI Local Bus Specification,
revision 2.1 for full details on transaction claiming.

15.6.2.1 Master Latency Timers

Two Master latency timers (MLT) are programmed to limit one master’s ownership of a PCI bu
the presence of other bus masters. These timers are controlled via the Primary Latency
Register (PLTR) and the Secondary Latency Timer Register (SLTR).

These registers define the maximum count and granularity of the primary and secondary l
timers. Each register is 8 bits wide; this allows each interface to “own” its PCI bus for a time
of up to 248 PCI clocks. The PLTR and SLTR lower three bits (02 through 00) are hardwir
0002 which forces a minimum timer granularity of 8 PCI clocks. The register’s upper five bits
programmable; each PCI interface can be independently programmed to a value be
111110002 and 000000002 which results in a timer count of 0 to 248.

15.6.2.2 Delayed Transactions

A delayed transaction is a mechanism for processing PCI transactions in high initial latenc
targets, such as PCI-to-PCI bridges, thereby improving overall bus efficiency. All PCI transa
(except for Special Cycle) can complete as a Delayed transaction.

The bridge processes all transactions as Delayed transactions, except for the transactions M
Write and Memory Write and Invalidate. These two transactions are processed as either D
transactions or as Posted transactions, based on the Extended Bridge Control Register 
Disable bit:

• When the Posting Disable bit is clear, Memory Write and Memory Write and Invalidate tr
actions are processed as Posted transactions.

• When the Posting Disable bit is set, Memory Write and Memory Write and Invalidate tran
15-23

15
tions are processed as Delayed transactions.

In a Delayed transaction, the bridge latches the address, command, and byte enable information
required to complete the transaction and the initiator is signaled a Retry. For writes, the latched
information includes the data to be written. The bridge performs the request on the target bus on
behalf of the initiator. For reads, the returning data and the target response is stored in the bridge
posting buffers. For writes, only the target response is recorded. The original initiator must then
repeat the original request to complete the transaction.



he read
rrently

tch on

 on PCI

 whether
PCI-TO-PCI BRIDGE UNIT

15.6.2.3 Posted Transactions

In a Posted transaction, the bridge stores the data in a posting buffer and signals a termination
other than Retry. Once the bridge acquires the target bus, it completes the request.

Table 15-8 summarizes the differences between Delayed and Posted transactions.

15.6.3 PCI Read Transactions

The i960 Rx I/O processor supports memory read and I/O read transactions from both sides of the
bridge. The bridge implements Delayed read transactions to meet initial transaction latency require-
ments. Delayed Requests are accepted as new requests when all the following conditions apply:

• New Read requests are accepted 4 cycles after the read buffer becomes available. T
buffer is available if there are no delayed read requests, or delayed read completion cu
in the queue for a given direction.

• Reads are completed 4 cycles after (4 or 8 DWORDS) are in the read buffer and a ma
the address command Command/Byte Enable lines.

The amount of data that the bridge reads on the target bus and stores in the buffer depends
command type and whether the memory address space is prefetchable or not.

Whether the memory address space is prefetchable or not depends on the command type and
the transaction is being forwarded downstream or upstream. See Table 15-9 for a summary. For

Table 15-8.  Delayed Transactions vs. Posted Transactions

Delayed Transaction Posted Transaction

For all PCI commands (except Special Cycle)
For Memory Write, Memory Write and Invalidate 
commands only

Requires repeated request Does not require repeated request

Completes on target bus before initiating bus Completes on initiating bus before target bus

Less efficient for writes More efficient for writes
15-24

downstream transactions, the address range (MBR-MBLR or PMBR-PMLR) used to claim the
address determines whether the memory is prefetchable or not. See Section 15.5.2, Memory
Address Space. For DAC commands on the secondary PCI bus, the bridge treats the memory as
prefetchable.

For Memory Read commands on the secondary PCI bus, the bridge treats the memory as
prefetchable or non-prefetchable depending on the Extended Bridge Control Register Upstream
Prefetchable Memory Enable bit: when set, upstream memory is prefetchable. This bit controls the
type of memory for Memory Read commands only.



PCI-TO-PCI BRIDGE UNIT

For Memory Read Line and Memory Read Multiple commands on the secondary PCI bus, the
bridge treats the memory as prefetchable.

When the memory space is prefetchable, the bridge reads and stores data up to an 8 DWORD
boundary for a Memory Read or Memory Read Line command and attempts to fill the complete
buffer for a Memory Read Multiple command. For Memory Read commands, the bridge acquires
the target bus to stream data through the read buffers. See Table 15-10 for the amount of data read
for Memory commands. Streaming is more likely to occur with proper use of the Memory Read
Multiple command.

The bridge does not prefetch past a 4 Kbyte address boundary. This prevents a prefetchable access
from crossing the boundary from a prefetchable range into a non-prefetchable range. When the
4 Kbyte address boundary is reached, the bridge signals a Disconnect on the target bus.

I/O Read commands and Configuration Read commands are limited to one PCI data phase. The
bridge reads and stores up to 1 DWORD for I/O Read commands and Configuration Read
commands. The bridge signals a Disconnect to the initiator when it requests more than one
DWORD for an I/O Read or Configuration Read command.

Table 15-9.  Prefetchable Memory Summary

PCI Command Downstream Upstream

Memory Read Depends on Address Range
Depends on Upstream Prefetchable 

Memory Enable bit in EBCR

Memory Read Line Prefetchable Prefetchable

Memory Read Multiple Prefetchable Prefetchable

DAC N/A Prefetchable

Table 15-10.  Memory Read Prefetch Size

Prefetchable Non-Prefetchable 
15-25

15

The bridge terminates the Delayed Completion transaction with:

• Completion termination when the transaction on the target bus terminated normally.

• Master-abort termination or Completion termination when the transaction on the target bus
terminated with Master-abort. See section 15.12.1, Address Parity Errors (pg. 15-34).

Command
Memory Address Space Memory Address Space

Memory Read Up to 8 DWORDs 1 DWORD

Memory Read Line Up to 8 DWORDs Up to 8 DWORDs

Memory Read Multiple Fill the buffer Fill the buffer



abort.

ect.

ested
t
en the

y Read
ber of
s from
d the
the

mory
pletion
us, the

tiates
Time-

nals a

es of
PCI-TO-PCI BRIDGE UNIT

• Target-abort termination when the transaction on the target bus terminated with Target-

• Disconnect termination when the transaction on the target bus terminated with Disconn

Any additional data words the bridge reads from the target — which are not ultimately requ
by the initiator — are discarded. The bridge does not follow the termination rules above when i
reads more data than is requested. The bridge terminates with Completion termination wh
initiator requests less data words than the bridge read from the target.

When the expected number of data transfers are not received from the target for a Memor
Line command or a Memory Read Multiple command, the bridge performs the same num
data transfers to the initiator during the Delayed Read Completion transaction as it receive
the target. For example, if the Cacheline Size Register is programmed to 8 DWORDs an
target only delivers 4 DWORDs, the bridge delivers 4 DWORDs to the initiator during 
Delayed Read Completion transaction.

When the read transaction is a Memory Read Multiple command to a prefetchable me
address space, the bridge attempts to acquire the target bus during the Delayed Com
transaction to stream data across the bridge. When successful in acquiring the target b
bridge transfers additional data words to the initiator. This continues until the target ini
termination (Disconnect or Target-abort), the bridge initiates termination on the target bus (
out) or the initiator terminates the transaction.

The bridge only supports the linear incrementing burst mode for Memory commands and sig
Disconnect to the initiator after the transfer of the first DWORD when the burst mode is not linear
incrementing.

NOTE: For Reads, the initiator must repeat the transaction with exactly the same 
address, byte enables, and command. Otherwise, the bridge treats the 
transaction as a new request which results in a livelock condition.

15.6.4 PCI Write Transactions

The i960 Rx I/O processor supports memory write and I/O write transactions from both sid
15-26

the bridge unit. Memory write transactions are claimed when they are within the MBR/MLR or
PMBR/PMLR address pairs on the primary bus and outside the register pairs on the secondary
bus. I/O Write transactions are claimed when they are within the IOBR/IOLR write transactions
on the primary bus and outside the address pair on the secondary bus.

The bridge supports both posted and delayed write transactions for memory transactions. I/O write
and configuration write transactions are always delayed transactions. The Extended Bridge
Control Register (EBCR) Posting Disable bit determines the transaction:

• When cleared, posting can occur from either bridge interface.

• When set, all write transactions are processed as delayed transactions.



bit is

 to the
tion is

epeated
, byte
 to the

abort.

bort.

ct.

uses a
PCI-TO-PCI BRIDGE UNIT

15.6.4.1 Delayed Write Transactions

Delayed write transactions are limited to one data cycle and are used for:

• I/O Writes

• Configuration Writes

• All memory writes when the Extended Bridge Control Register (EBCR) Posting Disable 
set; the bridge limits all write commands to one PCI data phase.

When the target bus is obtained, the bridge propagates the write data from the initiating bus
target bus. The bridge keeps the request information in a posting buffer. The request informa
the address, command, byte enables, parity (when enabled), and data.

Once the write data is successfully transferred to the target, the bridge can now accept the r
write command from the original initiator. The bridge must match the address, command
enables, parity (when parity is enabled), and data to signal a termination other than Retry
initiator. It uses:

• Completion termination when the transaction on the target bus terminates normally.

• Master-abort termination when the transaction on the target bus terminated with Master-

• Target-abort termination when the transaction on the target bus terminated with Target-a

• Disconnect termination when the transaction on the target bus terminated with Disconne

NOTE: For Writes, the initiator must repeat the transaction with exactly the same 
address, byte enables, command, parity, and data. Otherwise, the bridge 
treats the transaction as a new request which results in a livelock 
condition.

When a parity error occurs during the Delayed Write Request transaction, the bridge ca
deadlock unless the repeated transaction has the same parity error.

15.6.4.2 Posted Write Transactions
15-27

15In a posted write transaction, the bridge accepts the write data and asserts TRDY# to the initiating
bus before the data is transferred to target interface for writing to the target bus.

For posted write transactions, the initiator can transfer a maximum of 16 DWORDs to the bridge
unit while the bridge attempts to obtain access to the target bus. When the bridge has not yet
acquired the target bus and received a TRDY# from the target, and the bridge posted write buffer
becomes full, the bridge signals a Disconnect to the initiator on the last word that fills the posting
buffer.



uffers
iginal
iating
DY#
clock
# to

ptying

write
s only
 target
fer.

and
ine Size

target
PCI-TO-PCI BRIDGE UNIT

When the bridge unit can transfer data before the buffers fill, the initiator continues to transfer
write data. This continues until:

• The target initiates termination (Disconnect or Target-abort)

• The bridge initiates termination on the target bus (Time-out)

• The initiator completes the required number of write transfers

When the target bus transaction terminates while the initiator is still transferring data, the b
fill and a Disconnect would occur in the same situation as when the initiator started the or
transaction. In addition, the posted write buffers must signal a Disconnect when the init
interface signals a TRDY# on the initiating interface and is unable to signal the next TR
within 8 PCI clocks on the initiating interface. The Disconnect is signaled after the seventh 
after the last TRDY#, unless the bridge determines it cannot meet the eight-clock TRDY
TRDY# specification. In this case, the Disconnect is signaled earlier.

The bridge unit supports simultaneous write posting in both directions across the bridge. Em
the posting buffers has priority over initiating a new transaction on a target bus.

15.6.4.3 Memory Write Command

The Extended Bridge Control Register’s Posting Disable bit determines whether Memory 
transactions are either posted or delayed transactions. Delayed Memory Write command
transfer one PCI data phase. This means FRAME# is only asserted for one clock on the
interface and that the initiating interface signals a target Disconnect after the first data trans

15.6.4.4 Memory Write and Invalidate Command

The Memory Write and Invalidate (MWI) command is identical to the Memory Write comm
except it guarantees a minimum transfer of at least one cacheline, as defined by the Cachel
Register (CLSR).

When the bridge accepts a MWI command which is terminated with a Disconnect by the 
15-28

before the entire cacheline transfers, the bridge uses a Memory Write command to complete the
transaction. When the transaction is still in progress, the bridge is free to disconnect the initiator
with a target Disconnect on the initiating bus. The bridge unit takes no further action; no error is
reported.

The bridge unit also converts a MWI command to a Memory Write command when:

• the CLSR is programmed to a value of zero and the cacheline size is unknown

• the Cacheline Size Register is programmed to a value greater than 16 DWORDs (size of
posting buffer)



 which

 write
nals a
ernal

he fast

Posted
PCI-TO-PCI BRIDGE UNIT

Refer to the PCI Local Bus Specification, revision 2.1 for the full details of a Memory Write and
Invalidate command.

When posting is disabled, the bridge prohibits the MWI command to appear on the target bus. The
bridge converts the MWI to a Memory Write and only allows one PCI data phase on the target bus.

15.6.4.5 I/O Write Command

All I/O Write transactions are processed as Delayed transactions. The i960 Rx I/O processor is
restricted to 16-bit addressing for I/O transactions.

• On the primary bus, the bridge claims any transaction inside the 16-bit address range
the I/O Base and I/O Limit registers define.

• On the secondary bus, the bridge claims any transaction outside the address range.

15.6.4.6 Write Boundaries

The PCI-to-PCI bridge unit imposes a naturally-aligned 4096 byte write boundary for posted
transactions only. When the bridge unit detects a write boundary, the initiating interface sig
Disconnect to the initiator and completes delivery of the write data still retained in the int
posting buffers to the target interface.

15.6.4.7 Fast Back to Back Transactions

The i960 Rx I/O processor bridge unit does not generate fast back to back transactions. T
back to back enable bits in the BCR and PCMDR, when set, are ignored.

15.7 BUFFERS

The PCI to PCI bridge unit has six buffers that are used for both Delayed transactions and 
transactions. The downstream and upstream posting buffers are:
15-29

15
• Posted Write Buffer

• Delayed Write Buffer

• Delayed Read Buffer

The upstream and downstream buffers can be used simultaneously. Hence, transactions to opposite
interfaces can occur on both PCI interfaces at the same time. Extra PCI clocks are not required to
move data from one entry in the buffer to the next.

NOTE: The i960 Rx I/O processor has no special logic to flush the buffers before 
PCI interrupts are delivered.



 two
e clear

rces all

adlock
s the

 time),

 time)
PCI-TO-PCI BRIDGE UNIT

15.7.1 Buffer Organization

Each Posted Write Buffer can hold one Posted Write transaction with up to 64 bytes of data. The
buffer is organized as 16 entries of 4 bytes each (16 DWORDs).

Each Delayed Write Buffer can hold one Delayed Write Request or one Delayed Write
Completion transaction with up to 4 bytes of data.

Each Delayed Read Buffer can hold one Delayed Read Request or one Delayed Read Completion
with up to 64 bytes of data.

Associated with each buffer is an address register and a set of tag bits and valid bits.

15.7.2 Buffer Operation

The buffers help the bridge achieve the full PCI bandwidth and “hide” the latency of acquiring
PCI buses for every transaction crossing the bridge. The EBCR Posting Disable bit must b
for Posted Write Buffers to post write transactions.

As a default reset state, the buffers are marked invalid. Any subsequent PCI reset event fo
buffers to be cleared by being marked invalid.

15.7.3 Transaction Ordering Rules

Since the bridge can process multiple transactions, it maintains proper ordering to avoid de
conditions and improve throughput. Given the buffer organization, the bridge support
following transactions in each direction:

• Up to one Posted Memory Write, and/or

• Up to one Delayed Read Request or one Delayed Read Completion (but not both at one
and/or

• Up to one Delayed Write Request or one Delayed Write Completion (but not both at one
15-30

The bridge completes request transactions in the order received. The mechanism complies with the
PCI transaction ordering rules in the PCI Local Bus Specification, revision 2.1.

15.8 BRIDGE DATA FLOW

The PCI-to-PCI Bridge of the i960 Rx I/O processor supports transactions from both PCI buses.
This section identifies variations of upstream and downstream transactions:

• downstream transactions are initiated on the primary PCI bus and targeted at an agent on the
secondary PCI bus



on the

 and is
ocessed
rwards
ary PCI
ta.

and is
 delayed
ta are
Buffer
dress

and is
ted trans-
ed from
ridge
PCI-TO-PCI BRIDGE UNIT

• upstream transactions are initiated on the secondary PCI bus and targeted at an agent 
primary PCI bus

The following sections describe:

• Downstream Delayed Read transaction

• Downstream Delayed Write transaction

• Downstream Posted Write transaction

15.8.1 Downstream Delayed Read Transaction

A downstream delayed read transaction is initiated by a PCI master on the primary PCI bus
targeted at a PCI agent on the secondary PCI bus. All downstream read transactions are pr
as delayed read transactions. The bridge’s PCI interface claims the read transaction and fo
the read request through to the secondary PCI bus, then returns the read data to the prim
bus. The Delayed Read Buffer (DRB) contains the downstream PCI address and the read da

15.8.2 Downstream Delayed Write Transaction

A downstream delayed write transaction is initiated by an agent on the primary PCI bus 
targeted at a PCI agent on the secondary PCI bus. All write transactions are processed as
write transactions when posting is disabled. The downstream write address and write da
propagated from the primary PCI bus to the secondary PCI bus through the Delayed Write 
(DWB). The Bridge claims any PCI write transaction when the PCI address is within the ad
window defined by a Base/Limit register pair.

15.8.3 Downstream Posted Write Transaction

A downstream posted write transaction is initiated by a PCI master on the primary PCI bus 
targeted at a PCI agent on the secondary PCI bus. Write transactions are processed as pos
actions when posting is enabled. The downstream write address and write data are propagat
the primary PCI bus to the secondary PCI bus through the Posted Write Buffer (PWB). The B
15-31

15
claims any PCI write transaction when the PCI address is within the address window defined by a
Base/Limit register pair.

15.8.4 Definitions

The Bridge data flow uses the following terms and abbreviations:

• PWB - Posted Write Buffer. Each buffer holds up to 16 DWORDs (64 bytes) and the
associated write address. The downstream Posted Write Buffer holds data moving
downstream and the upstream Post Write Buffer holds data moving upstream.



 the

the

ange
w is

us.

rface)

 bus.

n the
 are

ueued

nd the
slave.
ad or

ased
 either
After
PCI-TO-PCI BRIDGE UNIT

• DRB - Delayed Read Buffer. Each buffer holds up to 16 DWORDs (64 bytes) and
associated read address.

• DWB - Delayed Write Buffer. Each buffer holds up to 1 DWORD (4 bytes) and 
associated write address.

• Inside Window - This refers to whether or not an address on the PCI bus is within the r
window defined by a Base and Limit register pair. A PCI address inside the windo
claimed by the bridge PCI interface.

• PCI Cycle Complete - Refers to the normal termination of a PCI transaction on the PCI b

15.9 EXCLUSIVE ACCESS

The bridge unit supports the PCI exclusive access mechanism (initiated on the primary inte
using the PCI LOCK# signal. The bridge lock mechanism works with 4 states:

• Free: No lock transactions from a primary master have been detected on the primary
Transactions flow upstream and downstream freely through the bridge.

• To Be Locked: Entered into when a downstream read request (DRR) is accepted o
primary interface with P_LOCK# active. All new requests on both sides of the bridge
retried while the bridge attempts to complete all pending transactions (unlocked) enq
prior to the locked read request.

• Locked: Entered into once all unlocked transactions have cleared the bridge queues a
secondary bridge interface has established a lock (with S_LOCK#) with a secondary 
All upstream traffic is retried during this state and only downstream transactions (re
write) from the lock master on the primary interface are accepted.

• To be Unlocked: Entered into when the lock master on the primary interface has rele
P_LOCK# (or during error states). The bridge does not accept any new requests on
interface while waiting to complete any pending locked downstream PMW transactions. 
completing the locked transaction, the bridge releases S_LOCK# and moves to the Free state.

See Figure 15-8 for a state diagram of the bridge lock mechanism.
15-32

The bridge establishes itself as a locked target during a DRR when P_LOCK# is de-asserted in the
address phase and asserted in the clock cycle after the address phase. The PCI master must release
P_LOCK# since it was signaled a Retry by the bridge. The bridge attempts to establish a master-
target lock with the target on the secondary bus (according to the states defined above).

When locked, the bridge signals a Retry to any other master (besides the lock master) on the
primary bus and does not accept transactions moving upstream from secondary masters.



PCI-TO-PCI BRIDGE UNIT

Figure 15-8.  Bridge Lock Mechanism

15.10 SYNCHRONIZATION EVENTS

Bridge synchronization is enforced for the following events:

• I/O read

• I/O write

All Locked Transactions
Drained From Upstream/
Downstream Bridge Queues

Downstream Read
Request (DRR) Accepted

Read Completed (DRC)
on Secondary PCI Bus

Primary Master Releases
LOCK# on Primary PCI Bus

Master or Target
Abort on Secondary
PCI Bus

Free

To_Be_Locked

Locked

T0_Be_Locked
15-33

15
• configuration read

• configuration write

• memory read following a memory write

• read of bridge configuration registers through the 80960 memory-mapped registers

• write of bridge configuration register through the 80960 memory-mapped registers



e unit’s

ccept
iate a

en an
 error
arget,
PCI

th the
. This

ridge

ing a
action

ion the
PCI-TO-PCI BRIDGE UNIT

When either event occurs, the bridge ensures that the posting buffers in both directions are clear
before the event continues. For PCI transactions, the bridge signals a Retry on the initiating
interface while the bridge clears the posting buffers by completing the current transaction within
the buffers. When the posting buffers are clear, transactions can be accepted on the bridg
initiating interface.

When a bridge configuration register is being read from or written to, the bridge does not a
new transactions. The bridge unit signals a Retry to any PCI master attempting to init
transaction on either PCI bus.

15.11 PCI TRANSACTION TERMINATION

As a PCI master (initiator), a device can terminate a transaction when it is complete or wh
error condition occurs. As a slave (target), a PCI device can only terminate when an
condition occurs. While transaction termination can be initiated by either a master or a t
ultimately it is up to the master to bring a PCI transaction to an orderly conclusion. All 
transaction termination mechanisms are consistent with the PCI Local Bus Specification,
revision 2.1.

15.12 ERROR CONDITIONS

The PCI-to-PCI bridge unit implements parity generation and parity error detection on bo
primary and secondary PCI interfaces and passes that information to the primary interface
enables the parity error recovery mechanisms outlined in the PCI Local Bus Specification,
revision 2.1 without special considerations for a bridge. The following sections detail the b
unit response to parity errors on both interfaces.

15.12.1 Address Parity Errors

When the bridge — as a target on the initiating interface — detects a parity error before claim
cycle, the bridge does not claim the cycle (not assert DEVSEL#) and terminates the trans
with the Master-abort mechanism. When the bridge detects a parity error during a transact
15-34

primary and secondary interfaces handle the error in different manners.

15.12.1.1 Address Parity Errors on Primary Interface

When an address parity error occurs on the primary interface, the i960 Rx I/O processor:

• asserts P_SERR# on the primary interface (when the PCMDR P_SERR# Enable bit and the
Parity Error Response Enable bit are enabled)

• sets the Signaled SERR# bit in the PSR (when the PCMDR P_SERR# Enable bit is enabled)

• sets the Detected Parity Error bit in the PSR



, Parity

bled)

 to the

ring a
g read

since
mmand

of the
abled
onse
ty. The
 bus.

 PSR if
rity is
PCI-TO-PCI BRIDGE UNIT

15.12.1.2 Address Parity Errors on Secondary Interface

When an address parity error occurs on the secondary interface, the i960 Rx I/O processor:

• asserts P_SERR# on the primary interface (when enabled by the P_SERR# Enable bit
Error Response Enable bit in the PCMDR and the S_SERR# enable bit in the BCR)

• sets the Signaled SERR# bit in the PSR (when P_SERR# Enable bit in the PCMDR is ena

• sets the Detected Parity Error bit in the SSR

15.12.2 Data Parity Errors

When the bridge unit detects a data parity error, the bad data and bad parity is passed
opposite interface. This enables the parity error recovery mechanisms outlined in the PCI Local
Bus Specification, revision 2.1 without special consideration for the bridge in the datapath.

15.12.2.1 Read Data Parity

The PCI-to-PCI bridge unit passes bad data and bad parity to the initiating interface du
delayed read transaction that crosses the bridge. The following situations are possible durin
transactions that contain data parity errors.

Parity error during delayed read request (DRR) on the initiating bus: This is not possible 
there is no data transferred when the initiating interface of the bridge latches the address/co
to initiate a delayed read transaction.

Parity error during delayed read completion (DRC) on the target bus: The target interface 
bridge detects a data parity error when data is being driven from the PCI slave. If parity is en
(by the PCMDR Parity Checking Enable bit for the primary interface or the BCR Parity Resp
Enable for the secondary interface) the interface drives PERR# in response to the bad pari
bad data and parity are delivered to the initiating interface during the DRC on the initiating
The target interface sets the Detected Parity Error and the Data Parity Detected bits in the
the target interface is the primary, or the SSR if the target interface is the secondary. If pa
15-35

15
disabled for the target interface, the bridge does not assert PERR#, but continues to set the
Detected Parity Error bit in the corresponding status register.

Parity error during the delayed completion (DRC) on the initiating bus: This can occur in response
to a parity error on the target bus or independent of the target bus transaction. If the PCI master
asserts PERR#, the bridge sets the Detected Parity error bit in the corresponding interface status
register (PSR for primary or SSR for secondary).

15.12.2.2 Delayed Write Data Parity

Table 15-11 summarizes the bridge response to a data parity error on Delayed Write transactions.



write
ad data
bled).

and the
SSR).

error is
ty error

 to
PCI-TO-PCI BRIDGE UNIT

The bridge only reports parity errors on Delayed Write transactions on the initiating bus. It sets the
Detected Parity Error bit in the PSR when the primary bus is the initiating bus or the SSR when the
secondary bus is the initiating bus.

When PERR# is detected on the target bus, the bridge unit sets the Data Parity Detected bit (when
enabled) in the status register corresponding to the target interface (PSR or SSR).

15.12.2.3 Posted Write Data Parity

When a data parity error is detected by the bridge’s initiating interface during a posted 
transaction that crosses the bridge, it asserts PERR# on the initiating bus and retains the b
and parity in its posting buffers. The bridge sets the Detected Parity Error bit (when ena
When the write data is transferred on the target bus, the transaction target asserts PERR# on the
target bus. When the target asserts PERR#, the bridge sets the Data Parity Detected bit 
Detected Parity Error bit in the status register corresponding to the target interface (PSR or 

When the bridge does not detect a data parity error on the initiating bus and a data parity 
detected on the target bus, the transaction master cannot determine when a data pari
occurred. However, when the SERR# Enable bit is set, the bridge propagates the error upstream

Table 15-11.  Delayed Write Parity Error Summary 

Transaction
Parity Error Detected

Error Reporting Disabled
Parity Error Detected

Error Reporting Enabled

Initial Delayed Write Request on 
the Initiating Bus

Signal Retry to initiator
Assert TRDY#, Report Parity Error; 
Assert PERR#, Discard write data.

Repeated Delayed Write 
Request on the Initiating Bus

Signal Retry to initiator
Assert TRDY#, Report Parity Error; 
Assert PERR#, Discard write data.

Target Bus Data Transfer
Store the write data; Do not report 
Parity Error

Discard write data.

Delayed Write Completion on 
the Initiating Bus

Assert TRDY#, Complete the 
transaction

Not Valid.
15-36

the primary interface, asserting P_SERR# on the primary bus. The bridge also sets the PSR
Signaled System Error bit. The Detected Parity Error in the status register corresponding to the
initiating bus (PSR or SSR) is not set since the initiating interface did not detect the parity error.

15.12.3 Master-abort

A Master-abort occurs when no target responds with a DEVSEL# within five clocks after the
assertion of FRAME#. The i960 Rx I/O processor bridge unit has two mechanisms for handling
Master-aborts.



-abort

r-abort

elayed
e bridge
tion that
 asserts
 write
n the

bridge
on the
SR or

and the
PCI-TO-PCI BRIDGE UNIT

When a read transaction crosses the bridge in the Master Abort Mode bit clear mode and the target
interface signals a Master-abort, the bridge terminates normally (with TRDY#) on the initiating
interface.

When a write transaction crosses the bridge and the target interface signals a Master-abort, the
bridge completes the transaction normally on the initiating interface and discards the write data on
the target interface. In both cases, the bridge:

• Sets the Primary Status Register (PSR) Received Master Abort bit when the Master
occurred on the primary interface

• Sets the Secondary Status Register (SSR) Received Master Abort bit when the Maste
occurred on the secondary interface

When the Master Abort Mode bit is set, the bridge signals a Master-abort to the initiator of a d
read or write transaction when that transaction causes a Master-abort on the target bus. Th
sets the corresponding Received Master Abort bit as in the previous case. When the transac
caused the Master-abort on the target interface was a posted write transaction, the bridge
P_SERR# on the primary interface (when enabled). The bridge terminates the posted
transaction on the initiating interface with a Disconnect (assuming the write is still occurring) o
target interface.

A Master-abort is not signaled during a Special Cycle transaction from either interface.

15.12.4 Target-abort

A Target-abort occurs when STOP# is asserted and DEVSEL# is deasserted.

For all transactions crossing the bridge (except posted writes; see next paragraph) the 
signals a Target-abort to the initiator on the initiating bus when one is received by the bridge 
target bus. The bridge sets the Target Abort (target) bit in the target bus’s status register (P
SSR) and the Target Abort (master) bit in the initiating bus’s status register.

When the bridge detects a Target-abort during a posted write transaction on the target bus 
15-37

15

write is still in progress on the initiating bus, the bridge signals a Target-abort to the initiator on the
initiating bus. The bridge sets the Target Abort (target) bit in the target bus’s status register (PSR
or SSR) and the Target Abort (master) bit in the initiating bus’s status register.

In instances where the posted write transaction on the initiating interface is complete, the bridge
asserts P_SERR# (when enabled) on the primary interface, which indicates a system error. The
bridge also sets the Target Abort (target) bit in the target bus’s status register (PSR or SSR) and the
Target Abort (master) bit in the initiating bus’s status register.



PCI-TO-PCI BRIDGE UNIT

15.12.5 SERR# Assertion

When S_SERR# is asserted on the secondary interface, the bridge asserts P_SERR# on the
primary interface (when enabled by SERR# Enable bit) to propagate the error upstream. The
bridge also sets the Received System Error bit in the SSR.

15.13 REGISTER DEFINITIONS

The configuration space consists of 8, 16, 24, and 32-bit registers arranged in a predefined format.
Configuration registers are accessed through Type 0 Configuration Read and Write commands on
the primary side and through i960 Rx I/O processor local bus commands.

The i960 Rx I/O processor is a multifunction PCI device. The PCI-to-PCI bridge unit is function
zero; the Address Translation Unit is function one. Both functions have separate configuration
space. Refer to CHAPTER 16, ADDRESS TRANSLATION UNIT, for definition of the ATU
(function one) configuration register.

Figure 15-9 describes the entire bridge PCI configuration space. As stated, a Type 0 configuration
command on the primary side with an active IDSEL or a memory-mapped i960 core processor
access must read or write these registers. The format for registers with offsets up to 3FH are
defined in the PCI-to-PCI Bridge Architecture Specification, revision 1.0. Registers with offsets
greater than 3FH are implementation-specific to the i960 Rx I/O processor.

Unless otherwise noted, all registers adhere to the definitions found in the PCI Local Bus Specifi-
cation, revision 2.1 and the PCI-to-PCI Bridge Architecture Specification, revision 1.0.

The i960 core processor also has access to the bridge configuration space. As a result, certain
configuration registers can be initialized before PCI configuration begins. The i960 core processor
reads and writes the bridge configuration space as memory-mapped registers. Read and Write
access capabilities from the PCI Type 0 configuration command and the i960 core processor are
detailed in the figure for each register. Refer to the individual register legends for definition of
access rights.
15-38

P_RST# signal assertion on the primary side affects the state of most registers contained within
the bridge configuration space. Unless otherwise noted, all bits and registers return to their stated
default state value upon primary reset. The secondary S_RST# output’s reset state does not affect
the bridge register state, unless otherwise noted.



PCI-TO-PCI BRIDGE UNIT

Vendor IDDevice ID 

Primary Status Primary Command

Class Code
Revision

Header
Type

Cacheline
Size

Secondary
Latency Timer

Subordinate
Bus Number

Secondary
Bus Number

Primary
Bus Number

Secondary Status I/O Limit I/O BASE

Memory Limit Memory Base

Prefetchable
Memory Limit

Prefetchable
Memory Base

Bridge Control

Reserved

Extended Bridge ControlSecondary IDSEL Select

Primary
Latency Timer

00H

04H

08H

0CH

10H

14H

18H

1CH

20H

24H

28H

2CH

30H

34H

38H

3CH

40H

Bridge Configuration Header PCI
Config Addr

ID

PCI-to-PCI
Bridge 

Primary Bridge Interrupt Status 44H

Reserved

Reserved

Reserved

Reserved

Bridge Subsystem
Bridge Subsystem ID

Reserved

Vendor ID

Offset
15-39

15

Figure 15-9.  Bridge Configuration Register Space

Secondary Arbitration Control 4CH

PCI Interrupt Routing Select 50H

54HSecondary Secondary

Secondary Secondary 
I/O Limit I/O BASE

Memory Limit Memory Base

Secondary 
Decode Enable

58H

5CH

i960® RxSecondary Bridge Interrupt Status 48H

Reserved

Reserved

I/O Processor
Specification



PCI-TO-PCI BRIDGE UNIT

Table 15-12.  PCI to PCI Bridge Unit Register Summary  (Sheet 1 of 2)

Section Register Name, Acronym Page
Size 
(Bits)

80960 Local 
Bus Address

PCI 
Config 
Addr 
Offset

15.13.1 Vendor ID Register - VIDR 15-41 16 0000 1000H 00H

15.13.2 Device ID Register - DIDR 15-42 16 0000 1002H 02H

15.13.3 Primary Command Register - PCMDR 15-42 16 0000 1004H 04H

15.13.4 Primary Status Register - PSR 15-44 16 0000 1006H 06H

15.13.5 Revision ID Register - RIDR 15-46 8 0000 1008H 08H

15.13.6 Class Code Register - CCR 15-46 24 0000 1009H 09H

15.13.7 Cacheline Size Register - CLSR 15-47 8 0000 100CH 0CH

15.13.8 Primary Latency Timer Register - PLTR 15-48 8 0000 100DH 0DH

15.13.9 Header Type Register - HTR 15-49 8 0000 100EH 0EH

Reserved x
0000 100FH

through 
0000 1017H

0FH
through 

17H

15.13.10 Primary Bus Number Register - PBNR 15-50 8 0000 1018H 18H

15.13.11 Secondary Bus Number Register - SBNR 15-50 8 0000 1019H 19H

15.13.12 Subordinate Bus Number Register - SubBNR 15-51 8 0000 101AH 1AH

15.13.13 Secondary Latency Timer Register - SLTR 15-52 8 0000 101BH 1BH

15.13.14 I/O Base Register - IOBR 15-52 8 0000 101CH 1CH

15.13.15 I/O Limit Register - IOLR 15-53 8 0000 101DH 1DH

15.13.16 Secondary Status Register - SSR 15-54 16 0000 101EH 1EH

15.13.17 Memory Base Register - MBR 15-56 16 0000 1020H 20H

15.13.18 Memory Limit Register - MLR 15-57 16 0000 1022H 22H

15.13.19 Prefetchable Memory Base Register - PMBR 15-58 16 0000 1024H 24H

15.13.20 Prefetchable Memory Limit Register - PMLR 15-59 16 0000 1026H 26H

Reserved x
0000 1028H 

through 
28H

through
15-40

0000 1033H 33H

15.13.21 Bridge Subsystem Vendor ID Register - BSVIR 15-60 16 0000 1034H 34H

15.13.22 Bridge Subsystem ID Register - BSIR 15-60 16 0000 1036H 36H

Reserved x
0000 1038H 

through 
0000 103DH

38H
through 

3DH

15.13.23 Bridge Control Register - BCR 15-61 16 0000 103EH 3EH

15.13.24 Extended Bridge Control Register - EBCR 15-64 16 0000 1040H 40H

15.13.25 Secondary IDSEL Select Register - SISR 15-66 16 0000 1042H 42H

15.13.26 Primary Bridge Interrupt Status Register - PBISR 15-68 32 0000 1044H 44H

15.13.27 Secondary Bridge Interrupt Status Register - SBISR 15-69 32 0000 1048H 48H



PCI-TO-PCI BRIDGE UNIT

15.13.1 Vendor ID Register - VIDR

Vendor ID Register bits adhere to the definitions in the PCI Local Bus Specification, revision 2.1.

15.13.28 Secondary Arbitration Control Register - SACR 15-69 32 0000 104CH 4CH

15.13.29 PCI Interrupt Routing Select Register - PIRSR 15-70 32 0000 1050H 50H

15.13.30 Secondary I/O Base Register - SIOBR 15-70 8 0000 1054H 54H

15.13.31 Secondary I/O Limit Register - SIOLR 15-71 8 0000 1055H 55H

Reserved x
0000 1056H

through 
0000 1057H

56H
through

57H

15.13.32 Secondary Memory Base Register - SMBR 15-72 16 0000 1058H 58H

15.13.33 Secondary Memory Limit Register - SMLR 15-72 16 0000 105AH 5AH

15.13.34 Secondary Decode Enable Register - SDER 15-73 16 0000 105CH 5CH

Reserved x
0000 105EH

through 
0000 105FH

5EH
through

5FH

Table 15-13.  Vendor ID Register - VIDR

LBA: 1000H Legend: NA = Not Accessible RO = Read Only
RV = Reserved PR = Preserved RW = Read/Write

Table 15-12.  PCI to PCI Bridge Unit Register Summary  (Sheet 2 of 2)

Section Register Name, Acronym Page
Size 
(Bits)

80960 Local 
Bus Address

PCI 
Config 
Addr 
Offset

PCI

LBA

15 12 8 4 0

1 0 0 0 0 0 0 0 1 0 0 0 0 1 1 0

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

ro ro ro ro ro ro ro ro ro ro ro ro ro ro ro ro
15-41

15

PCI: 00H
RS = Read/Set RC = Read Clear
LBA = 80960 local bus address PCI = PCI Configuration Address Offset

Bit Default Description

15:0 8086H
Vendor ID - This is a 16-bit value assigned to Intel. This register, combined with the DIDR, 
uniquely identify the PCI device.



PCI-TO-PCI BRIDGE UNIT

15.13.2 Device ID Register - DIDR

Device ID Register bits adhere to the definitions in the PCI Local Bus Specification, revision 2.1.

15.13.3 Primary Command Register - PCMDR

Primary Command Register bits adhere to the definitions in the PCI Local Bus Specification,
revision 2.1 and, in most cases, affects PCI-to-PCI bridge’s primary interface behavior.

Table 15-14.  Device ID Register - DIDR

LBA: 

PCI:

1002H

02H

Legend: NA = Not Accessible RO = Read Only
RV = Reserved PR = Preserved RW = Read/Write
RS = Read/Set RC = Read Clear
LBA = 80960 local bus address PCI = PCI Configuration Address Offset

Bit Default Description

15:00 0960H Device ID - This is a 16-bit value assigned to the i960 Rx I/O processor.

Table 15-15.  Primary Command Register - PCMDR  (Sheet 1 of 2)

LBA: 

PCI:

1004H

04H

Legend: NA = Not Accessible RO = Read Only
RV = Reserved PR = Preserved RW = Read/Write

PCI

LBA

15 12 8 4 0

0 0 0 0 1 0 0 1 0 1 1 0 0 0 0 0

ro ro ro ro ro ro ro ro ro ro ro ro ro ro ro ro

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

PCI

LBA

15 12 8 4 0

0 0

rv rv rv rv rv rv ro rw rv rw rw ro ro rw rw rw

rv rv rv rv rv rv ro rw rv rw rw ro ro rw rw rw
15-42

RS = Read/Set RC = Read Clear
LBA = 80960 local bus address PCI = PCI Configuration Address Offset

Bit Default Description

15:10 00H Reserved

09 02 Fast Back to Back Enable - This bit is ignored.

08 02

P_SERR# Enable - When cleared, the i960 Rx I/O processor cannot assert P_SERR# on 
its primary interface.

0= Prevent P_SERR# assertion

1= Allow P_SERR# assertion



PCI-TO-PCI BRIDGE UNIT

07 02
Wait Cycle Control - controls address/data stepping. Not implemented and a reserved bit 
field. Reserved. Always cleared.

06 02

Parity Checking Enable - When set, the bridge must take normal action when a parity error 
is detected.

0=disable

1=enable

05 02

VGA Palette Snoop Enable - When set, I/O writes with address bits AD9:0 = 3C6H, 3C8H, 
and 3C9H are positively decoded on the primary interface and forwarded to the secondary 
interface and must not be forwarded from secondary to primary. VGA palette snooping is 
independent of the address range programmed into the I/O base and limit registers and the 
ISA Enable bit. It is dependent on the I/O Enable bit in the PCMD. Refer to VGA section for 
further details.

04 02

Memory Write and Invalidate Enable - Not applicable. A PCI-to-PCI bridge does not initiate 
MWI commands, only forwards them on behalf of a PCI master. The PCI master has 
control to determine which type of write command to use. Setting or learning this bit does 
not effect the functionality of MWI commands across the bridge.

03 02
Special Cycle Enable - Read only; always cleared. 

0=SC transactions are not supported.

02 02

Bus Master Enable - Must be set for the primary interface to act as a PCI bus master on 
behalf of the secondary interface. This bit does not affect the bridge’s ability to forward or 
convert configuration commands.

When cleared, all secondary transactions must be disabled.

Table 15-15.  Primary Command Register - PCMDR  (Sheet 2 of 2)

LBA: 

PCI:

1004H

04H

Legend: NA = Not Accessible RO = Read Only
RV = Reserved PR = Preserved RW = Read/Write
RS = Read/Set RC = Read Clear
LBA = 80960 local bus address PCI = PCI Configuration Address Offset

Bit Default Description

PCI

LBA

15 12 8 4 0

0 0

rv rv rv rv rv rv ro rw rv rw rw ro ro rw rw rw

rv rv rv rv rv rv ro rw rv rw rw ro ro rw rw rw
15-43

1501 02

Memory Space Enable - Controls the bridges response to both memory-mapped I/O and 
prefetchable memory accesses. When cleared, the bridge does not respond to any memory 
access on the primary side.

00 02
I/O Space Enable - Controls the bridges response to I/O transactions on the primary side. 
When cleared, the bridge does not respond to any I/O transaction on the primary side.



PCI-TO-PCI BRIDGE UNIT

15.13.4 Primary Status Register - PSR

Primary Status Register bits adhere to the definitions in the PCI Local Bus Specification,
revision 2.1 but only apply to the primary interface. The Read/Clear bits can only be set by the
internal hardware and are cleared by either writing a 12 to the register or by a reset condition.

Table 15-16.  Primary Status Register - PSR  (Sheet 1 of 2)

LBA: 

PCI:

1006H

06H

Legend: NA = Not Accessible RO = Read Only
RV = Reserved PR = Preserved RW = Read/Write
RS = Read/Set RC = Read Clear
LBA = 80960 local bus address PCI = PCI Configuration Address Offset

Bit Default Description

15 02

Detected Parity Error

0 = No Detected Parity Error
1 = The bridge sets this bit when a parity error is detected on the primary bus even when 
parity handling is disabled.

14 02

Signaled System Error -

0 = No System Error
1 = The bridge sets this bit when P_SERR# is asserted on the primary bus.

13 02

Master Abort - 

0 = No Master Abort
1 = The bridge sets this bit when a transaction initiated by the bridge on the primary bus 
(except Special Cycles) terminates with a Master-abort.

12 02

Target Abort (master) - 

0 = No target abort
1 = The bridge sets this bit when a transaction initiated by the primary interface terminates 
with a Target-abort.

PCI

LBA

15 12 8 4 0

0 1 1 0 0

rc rc rc rc rc ro ro rc ro ro ro rv rv rv rv rv

rc rc rc rc rc ro ro rc ro ro ro rv rv rv rv rv
15-44

11 02

Target Abort (target) - 

0 = No target abort
1 = The bridge sets this bit when the bridge, acting as a target, terminates the transaction 
on the primary bus with a Target-abort.

10:09 012
DEVSEL# Timing -
01 = Primary interface uses Medium Decode timing.



PCI-TO-PCI BRIDGE UNIT

08 02

Data Parity Error Detected - 

0 = No data parity error
1 = The bridge sets this bit when:

• the bridge asserted P_PERR# (or saw asserted) on the primary bus

• the bridge was transaction master when error occurred

• the Parity Checking Enable bit is set

07 12
Fast Back-to-Back Capable - Read only; always set. 

1 = The primary interface can accept Fast Back-to-Back transactions as a target.

06 02
User-Definable Features (UDF) Support - Read only; always cleared.

0= User Definable Features are not supported

05 02
66 MHz Capable - Read only; always cleared. 

0= 33 MHz operation is supported

04:00 00H Reserved

Table 15-16.  Primary Status Register - PSR  (Sheet 2 of 2)

LBA: 

PCI:

1006H

06H

Legend: NA = Not Accessible RO = Read Only
RV = Reserved PR = Preserved RW = Read/Write
RS = Read/Set RC = Read Clear
LBA = 80960 local bus address PCI = PCI Configuration Address Offset

PCI

LBA

15 12 8 4 0

0 1 1 0 0

rc rc rc rc rc ro ro rc ro ro ro rv rv rv rv rv

rc rc rc rc rc ro ro rc ro ro ro rv rv rv rv rv
15-45

15



PCI-TO-PCI BRIDGE UNIT

15.13.5 Revision ID Register - RIDR

Revision ID Register bits adhere to definitions in the PCI Local Bus Specification, revision 2.1.

15.13.6 Class Code Register - CCR

The Class Code Register bits adhere to the definitions in the PCI Local Bus Specification,
revision 2.1. Auto configuration software uses this register to determine the function type present
in the PCI device.

1. These are the currently specified devices in stepping, refer to the data sheet and specification update 
for the latest valid values.

Table 15-17.  Revision ID Register - RIDR

LBA: 

PCI:

1008H

08H

Legend: NA = Not Accessible RO = Read Only
RV = Reserved PR = Preserved RW = Read/Write
RS = Read/Set RC = Read Clear
LBA = 80960 local bus address PCI = PCI Configuration Address Offset

Bit Default Description

07:00 01H Revision ID - Identifies the i960 Rx I/O processor’s revision number.1

Table 15-18.  Class Code Register - CCR 

PCI

LBA

7 4 0

0 0 0 0 0 0 0 1

rw rw rw rw rw rw rw rw

ro ro ro ro ro ro ro ro

LBA

23 20 16 12 8 4 0

0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 00 0 0 0 0 1 1 0

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw
15-46

LBA: 

PCI:

1009H

09H

Legend: NA = Not Accessible RO = Read Only
RV = Reserved PR = Preserved RW = Read/Write
RS = Read/Set RC = Read Clear
LBA = 80960 local bus address PCI = PCI Configuration Address Offset

Bit Default Description

23:16 06H Base Class - Bridge Device

15:08 04H Sub Class - PCI-to-PCI Bridge Device

07:00 00H
Programming Interface - Consistent with PCI-to-PCI Bridge Architecture Specification, 
revision 1.0.

PCI ro ro ro ro ro ro ro ro ro ro ro ro ro ro ro ro ro ro ro ro ro ro ro ro



PCI-TO-PCI BRIDGE UNIT

15.13.7 Cacheline Size Register - CLSR

Cacheline Size Register bits adhere to the definitions in the PCI Local Bus Specification,
revision 2.1 and apply to both sides of the bridge. It is programmed with the system cacheline size
in DWORDs (32-bit quantities). The Cacheline Size is restricted to either 8 or 16 DWORDs. When
a value other than 8 or 16 is written to the Cacheline Size Register, the Bridge returns a “0”.

Table 15-19.  Cacheline Size Register - CLSR

LBA: 

PCI:

100CH

0CH

Legend: NA = Not Accessible RO = Read Only
RV = Reserved PR = Preserved RW = Read/Write
RS = Read/Set RC = Read Clear
LBA = 80960 local bus address PCI = PCI Configuration Address Offset

Bit Default Description

07:05 0002 Must be clear (0).

04:03 002

Cacheline size in DWORDs. Cacheline size is restricted to either 8 or 16 DWORDs.

00 = 0 DWORDS
01 = 8 DWORDS
10 = 16 DWORDS
11 = treated as 0 DWORDS

02:00 0002
Cacheline Size Granularity - Giving a programmable granularity of DWORDs for the 
Cacheline Size. Must be clear (0).

PCI

LBA

7 4 0

0 0 0 0 0 0

rw rw rw rw rw rw rw rw

rw rw rw rw rw rw rw rw
15-47

15



PCI-TO-PCI BRIDGE UNIT

15.13.8 Primary Latency Timer Register - PLTR

Primary Latency Timer Register (PLTR) bits adhere to the definitions in the PCI Local Bus Speci-
fication, revision 2.1 and apply to the primary side only. When the timer counts down to zero, the
bridge must terminate the transaction when GNT# is deasserted.

Table 15-20.  Primary Latency Timer Register - PLTR

LBA: 

PCI:

100DH

0DH

Legend: NA = Not Accessible RO = Read Only
RV = Reserved PR = Preserved RW = Read/Write
RS = Read/Set RC = Read Clear
LBA = 80960 local bus address PCI = PCI Configuration Address Offset

Bit Default Description

07:03 00H
Programmable Latency Timer - Varies the latency timer for the primary interface from 0 to 
248 clocks.

02:00 0002
Latency Timer Granularity - Read only; giving a programmable granularity of 8 clocks for 
the Latency Timer.

PCI

LBA

7 4 0

0 0 0

rw rw rw rw rw ro ro ro

rw rw rw rw rw ro ro ro
15-48



PCI-TO-PCI BRIDGE UNIT

15.13.9 Header Type Register - HTR

Header Type Register bits adhere to the definitions in the PCI Local Bus Specification,
revision 2.1. This register indicates the layout of bytes 10H to 3FH in the bridge configuration
space. The MSB indicates whether or not the device is multi-function; defined as a 1 for multi-
function in the PCI-to-PCI Bridge Architecture Specification, revision 1.0.

Table 15-21.  Header Type Register - HTR 

LBA: 

PCI:

100EH

0EH

Legend: NA = Not Accessible RO = Read Only
RV = Reserved PR = Preserved RW = Read/Write
RS = Read/Set RC = Read Clear
LBA = 80960 local bus address PCI = PCI Configuration Address Offset

Bit Default Description

07 12

Single-Function/Multi-Function Device - This bit identifies the i960 Rx I/O processor as a 
multi-function PCI device.

0= Single-Function Device

1= Multi-Function Device

06:00 1H
PCI Header Type - System initialization code reads this bit field to determine PCI header 
type. The i960 Rx I/O processor has a PCI-to-PCI bridge header as defined in PCI-to-PCI 
Bridge Architecture Specification, revision 1.0.

PCI

LBA

7 4 0

1 0 0 0 0 0 0 1

ro ro ro ro ro ro ro ro

rw rw rw rw rw rw rw rw
15-49

15



codes
l Cycle

gister
e and
PCI-TO-PCI BRIDGE UNIT

15.13.10 Primary Bus Number Register - PBNR

Primary Bus Number Register bits adhere to the definitions in the PCI Local Bus Specification,
revision 2.1. Use this register to record the primary interface’s bus number. This register de
Type 1 configuration transactions on the secondary interface that are converted to Specia
transactions on the primary interface.

15.13.11 Secondary Bus Number Register - SBNR

Secondary Bus Number Register bits adhere to the definitions in the PCI Local Bus Specification,
revision 2.1. Use this register to record the secondary interface’s bus number. This re
determines when to respond to Type 1 configuration commands on the primary interfac
convert them to Type 0 commands on the secondary interface.

Table 15-22.  Primary Bus Number Register - PBNR

LBA: 

PCI:

1018H

18H

Legend: NA = Not Accessible RO = Read Only
RV = Reserved PR = Preserved RW = Read/Write
RS = Read/Set RC = Read Clear
LBA = 80960 local bus address PCI = PCI Configuration Address Offset

Bit Default Description

07:00 00H Primary Bus Number - Programmed with the bridge’s primary interface PCI bus number.

Table 15-23.  Secondary Bus Number Register - SBNR

PCI

LBA

7 4 0

rw rw rw rw rw rw rw rw

rw rw rw rw rw rw rw rw

LBA

7 4 0

rw rw rw rw rw rw rw rw
15-50

LBA: 

PCI:

1019H

19H

Legend: NA = Not Accessible RO = Read Only
RV = Reserved PR = Preserved RW = Read/Write
RS = Read/Set RC = Read Clear
LBA = 80960 local bus address PCI = PCI Configuration Address Offset

Bit Default Description

07:00 00H
Secondary Bus Number - This field is programmed with the bridge’s secondary interface 
PCI bus number.

PCI rw rw rw rw rw rw rw rw



ndary
hen to
ondary
PCI-TO-PCI BRIDGE UNIT

15.13.12 Subordinate Bus Number Register - SubBNR

Subordinate Bus Number Register bits adhere to the definitions in the PCI Local Bus Specification,
revision 2.1. Use this register to record the highest numbered PCI bus on the bridge’s seco
interface. This register is used in conjunction with the secondary bus number to determine w
respond to Type 1 configuration commands on the primary bus and pass them on to the sec
interface.

Table 15-24.  Subordinate Bus Number Register - SubBNR

LBA: 

PCI:

101AH

1AH

Legend: NA = Not Accessible RO = Read Only
RV = Reserved PR = Preserved RW = Read/Write
RS = Read/Set RC = Read Clear
LBA = 80960 local bus address PCI = PCI Configuration Address Offset

Bit Default Description

07:00 00H
Subordinate Bus Number - This field is programmed with the highest numbered PCI bus 
which exists on the bridge’s secondary interface.

PCI

LBA

7 4 0

rw rw rw rw rw rw rw rw

rw rw rw rw rw rw rw rw
15-51

15



 is set.
s four

ange to
PCI-TO-PCI BRIDGE UNIT

15.13.13 Secondary Latency Timer Register - SLTR

Secondary Latency Timer Register bits adhere to the definitions in the PCI Local Bus Specifi-
cation, revision 2.1 and apply to the secondary interface only. When the timer counts down to
zero, the bridge must terminate the transaction when the GNT# signal is deasserted.

15.13.14 I/O Base Register - IOBR

The I/O Base Register bits adhere to the definitions in the PCI Local Bus Specification,
revision 2.1. The I/O Base Register defines the bottom address (inclusive) of an address range that
is used to determine when to forward I/O transactions from one bridge side to the other. It is
programmed with a valid value before the Bridge Command Register’s I/O Space Enable bit
The bridge only supports 16-bit addressing; this is indicated by a value of 0H in the register’
least significant bits. The upper four bits are programmed with AD15:12 for the bottom of the
address range. The base address’ AD11:0 is always 000H, which forces the I/O address r

Table 15-25.  Secondary Latency Timer Register - SLTR

LBA: 

PCI:

101BH

1BH

Legend: NA = Not Accessible RO = Read Only
RV = Reserved PR = Preserved RW = Read/Write
RS = Read/Set RC = Read Clear
LBA = 80960 local bus address PCI = PCI Configuration Address Offset

Bit Default Description

07:03 00H
Programmable Latency Timer - Varies the latency timer for the secondary interface from 0 
to 248 clocks.

02:00 0002
Latency Timer Granularity - Read only; giving a programmable granularity of 8 clocks for 
the Latency Timer.

PCI

LBA

7 4 0

0 0 0

rw rw rw rw rw ro ro ro

rw rw rw rw rw ro ro ro
15-52

be 4 Kbyte aligned.

For address decoding, the bridge assumes that AD31:16, the upper 16 address bits of the I/O
address, are zero. The bridge must still perform the address decode on the full 32 bits of address
per PCI Local Bus Specification, revision 2.1 and check that the upper 16 bits are equal to 0000H.

The I/O address range (defined by the IOBR in conjunction with the IOLR) is modified by the
Bridge Control Register (BCR) ISA Enable bit. When set, the primary side does not accept I/O
addresses in the range X400H - XFFFH, even when the address falls within the defined I/O
address range.



PCI-TO-PCI BRIDGE UNIT

The I/O address range defined by the IOBR/IOLR register pair does not perform inverse decoding
of the register pair on the secondary interface when the Secondary Positive I/O Decode Enable bit
is set in the Secondary Decode Enable Register (SDER).

15.13.15 I/O Limit Register - IOLR

The I/O Limit Register bits adhere to the definitions in the PCI Local Bus Specification,
revision 2.1. The I/O Limit Register defines the upper address (inclusive) of an address range that
the bridge uses to determine when to forward I/O transactions from one side to the other. 

The application program must specify a valid value greater than or equal to the IOBR before the
Bridge Command Register I/O Space Enable bit is set.

When the IOBR value is greater than the IOLR value, I/O cycles on either side of the bridge are
indeterminate. The bridge only supports 16 bit addressing which is indicated by a value of 0H in
the four least significant bits of the register. The upper four bits are programmed with AD15:12 for

Table 15-26.  I/O Base Register - IOBR

LBA: 

PCI:

101CH

1CH

Legend: NA = Not Accessible RO = Read Only
RV = Reserved PR = Preserved RW = Read/Write
RS = Read/Set RC = Read Clear
LBA = 80960 local bus address PCI = PCI Configuration Address Offset

Bit Default Description

07:04 0H I/O Base Address - These four bits correspond to address bits AD15:12.

03:00 0H
I/O Addressing Capability - The value of 0H signifies that the bridge only supports 16-bit I/O 
addressing.

PCI

LBA

7 4 0

0 0 0 0

rw rw rw rw ro ro ro ro

rw rw rw rw ro ro ro ro
15-53

15
the top of the address range. AD11:0 of the base address is always FFFH, which forces a 4 Kbyte
I/O range granularity.

For address decoding, the bridge assumes that AD31:16, the upper 16 address bits of the I/O
address, are zero. The bridge must still perform the address decode on the full 32 bits of address
per PCI Local Bus Specification, revision 2.1 and check that the upper 16 bits are equal to 0000H.



bits
PCI-TO-PCI BRIDGE UNIT

The I/O address range (defined by the IOBR in conjunction with the IOLR) is modified by the
Bridge Control Register ISA Enable bit. When set, the primary side does not accept I/O addresses
in the range X400H - XFFFH, even when the address falls within the defined I/O address range.

15.13.16 Secondary Status Register - SSR

Secondary Status Register bits adhere to the definitions in the PCI-to-PCI Bridge Architecture
Specification, revision 1.0 and apply to the bridge’s secondary interface only. The Read/Clear 
can only be set by the internal hardware and are cleared by either writing a 12 to the register or by
a reset condition.

Table 15-27.  I/O Limit Register - IOLR

LBA: 

PCI:

101DH

1DH

Legend: NA = Not Accessible RO = Read Only
RV = Reserved PR = Preserved RW = Read/Write
RS = Read/Set RC = Read Clear
LBA = 80960 local bus address PCI = PCI Configuration Address Offset

Bit Default Description

07:04 0H
I/O Limit Address - This field is programmed with AD15:12 of the top of the I/O address 
range to be passed down the hierarchy by the bridge.

03:00 0H
I/O Addressing Capability - The value of 0H signifies that the bridge only supports 16 bit I/O 
addressing.

Table 15-28.  Secondary Status Register - SSR  (Sheet 1 of 2)

PCI

LBA

7 4 0

rw

rw

rw

rw

rw

rw

rw

rw

ro

ro

ro

ro

ro

ro

ro

ro

0 0 0 0

LBA

15 12 8 4 0

rc rc rc rc rc ro ro rc ro ro ro rv rv rv rv rv
15-54

LBA: 

PCI:

101EH

1EH

Legend: NA = Not Accessible RO = Read Only
RV = Reserved PR = Preserved RW = Read/Write
RS = Read/Set RC = Read Clear
LBA = 80960 local bus address PCI = PCI Configuration Address Offset

Bit Default Description

15 02
Detected Parity Error - The bridge sets this bit when a parity error is detected on the 
secondary bus even when parity handling is disabled.

PCI rc rc rc rc rc ro ro rc ro ro ro rv rv rv rv rv

0 1 1 0 0



PCI-TO-PCI BRIDGE UNIT

14 02
Received SERR# - When set indicates that the bridge detected S_SERR# on the 
secondary interface.

13 02
Master Abort - The bridge sets this bit when a transaction initiated by the secondary 
interface (except Special Cycles) ends in Master-abort

12 02
Target Abort (master) - The bridge sets this bit when a transaction initiated by the 
secondary interface ends in a Target-abort.

11 02
Target Abort (target) - The bridge sets this bit when the secondary interface, acting as a 
target, terminates a transaction with a Target-abort.

10:09 012 DEVSEL# Timing - Medium Decode Timing for the secondary interface.

08 02

Data Parity Error Detected - 

0 = No data parity error

1 = The bridge sets this bit when:

• the bridge asserted S_PERR# (or saw asserted) on the secondary bus

• the bridge was transaction master when error occurred

• the Parity Checking Enable bit is set in the BCR

07 12
Fast Back-to-Back Capable - Read only; always set. 

1 = The secondary interface can accept Fast Back-to-Back transactions as a target.

06 02
User-Definable Features (UDF) Support - Read only; always cleared.

0= User Definable Features are not supported.

05 0
66 MHz Capable - Read only; always cleared.

Table 15-28.  Secondary Status Register - SSR  (Sheet 2 of 2)

LBA: 

PCI:

101EH

1EH

Legend: NA = Not Accessible RO = Read Only
RV = Reserved PR = Preserved RW = Read/Write
RS = Read/Set RC = Read Clear
LBA = 80960 local bus address PCI = PCI Configuration Address Offset

Bit Default Description

PCI

LBA

15 12 8 4 0

rc

rc

rc

rc

rc

rc

rc

rc

rc

rc

ro

ro

ro

ro

rc

rc

ro

ro

ro

ro

ro

ro

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

0 1 1 0 0
15-55

15

2 0= 33 MHz operation is supported

04:00 00H Reserved



PCI-TO-PCI BRIDGE UNIT

15.13.17 Memory Base Register - MBR

Memory Base Register bits adhere to the definitions in the PCI Local Bus Specification,
revision 2.1. The Memory Base Register defines the bottom address (inclusive) of a memory-
mapped I/O address range that is used to determine when to forward memory transactions from
one bridge side to the other. The Memory Base Register must be programmed before the Bridge
Command Register Memory Space Enable bit is set. The upper 12 bits correspond to AD31:20 of
32 bit addresses. For address decoding, the bridge assumes that AD19:0, the lower 20 address bits
of the memory base address, are zero. This means that the bottom of the defined address range is
aligned on a 1 Mbyte boundary.

The memory address range defined by the MBR/MLR register pair does not perform inverse
decoding of the register pair on the secondary interface when the Secondary Positive I/O Decode
Enable bit is set in the Secondary Decode Enable Register (SDER).

Table 15-29.  Memory Base Register - MBR

LBA: 

PCI:

1020H

20H

Legend: NA = Not Accessible RO = Read Only
RV = Reserved PR = Preserved RW = Read/Write
RS = Read/Set RC = Read Clear
LBA = 80960 local bus address PCI = PCI Configuration Address Offset

Bit Default Description

15:04 000H
Memory Base Address - This field is programmed with AD31:20 of the bottom of the 
memory address range to be passed down the hierarchy by the bridge. 

03:00 0H Reserved

PCI

LBA

15 12 8 4 0

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rv

rv

rv

rv

rv

rv

rv

rv
15-56



PCI-TO-PCI BRIDGE UNIT

15.13.18 Memory Limit Register - MLR

The Memory Limit Register bits adhere to the definitions in the PCI Local Bus Specification,
revision 2.1. The Memory Limit Register defines the upper address (inclusive) of a memory-
mapped I/O address range that is used to determine when to forward memory transactions from
one bridge side to the other. The Memory Limit Register must be programmed to a value greater
than or equal to the MBR before the Bridge Command Register Memory Space Enable bit is set.
When the MLR value is not greater than or equal to the value of the MBR once the Memory Space
Enable bit is set, memory transactions on either side of the bridge are indeterminate. The upper
12 bits correspond to AD31:20 of 32 bit addresses. For address decoding, the bridge assumes that
AD19:0 (lower 20 bits of the memory base address) are FFFFFH. This forces a 1 Mbyte
granularity on the memory address range.

Table 15-30.  Memory Limit Register - MLR

LBA: 

PCI:

1022H

22H

Legend: NA = Not Accessible RO = Read Only
RV = Reserved PR = Preserved RW = Read/Write
RS = Read/Set RC = Read Clear
LBA = 80960 local bus address PCI = PCI Configuration Address Offset

Bit Default Description

15:04 000H
Memory Limit Address - This field is programmed with AD31:20 of the top of the memory 
address range to be passed down the hierarchy by the bridge. 

03:00 0H Reserved

PCI

LBA

15 12 8 4 0

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rv

rv

rv

rv

rv

rv

rv

rv
15-57

15



PCI-TO-PCI BRIDGE UNIT

15.13.19 Prefetchable Memory Base Register - PMBR

The Prefetchable Memory Base Register bits adhere to the definitions in the PCI Local Bus Speci-
fication, revision 2.1. The Prefetchable Memory Base Register defines the bottom address
(inclusive) of a memory-mapped I/O address range that is used to determine when to forward
memory transactions from one bridge side to the other. The Prefetchable Memory Base Register
must be programmed before the Bridge Command Register Memory Space Enable bit is set. The
upper 12 bits correspond to AD31:20 of 32 bit addresses. For address decoding, the bridge
assumes that AD19:0, the lower 20 address bits of the memory base address, are zero. This means
that the bottom of the defined address range is aligned on a 1 Mbyte boundary.

Table 15-31.  Prefetchable Memory Base Register - PMBR

LBA: 

PCI:

1024H

24H

Legend: NA = Not Accessible RO = Read Only
RV = Reserved PR = Preserved RW = Read/Write
RS = Read/Set RC = Read Clear
LBA = 80960 local bus address PCI = PCI Configuration Address Offset

Bit Default Description

15:04 000H
Prefetchable Memory Base Address - This field is programmed with AD31:20 of the bottom 
of the memory address range to be passed down the hierarchy by the bridge. 

03:00 0H Reserved

PCI

LBA

15 12 8 4 0

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rv

rv

rv

rv

rv

rv

rv

rv
15-58



PCI-TO-PCI BRIDGE UNIT

15.13.20 Prefetchable Memory Limit Register - PMLR

The Prefetchable Memory Limit Register bits adhere to the definitions in the PCI Local Bus Speci-
fication, revision 2.1. The Prefetchable Memory Limit Register defines the upper address
(inclusive) of a memory-mapped I/O address range that is used to determine when to forward
memory transactions from one bridge side to the other. The Prefetchable Memory Limit Register
must be programmed to a value greater than or equal to the PMBR before the Bridge Command
Register Memory Space Enable bit is set. When the PMLR value is not greater than or equal to the
value of the PMBR once the Memory Space Enable bit is set, memory transactions on either bridge
side are indeterminate. The upper 12 bits correspond to AD31:20 of 32 bit addresses. For address
decoding, the bridge assumes that AD19:0, the lower 20 bits of the memory base address, are
FFFFFH. This forces a 1 Mbyte granularity on the memory address range.

Table 15-32.  Prefetchable Memory Limit Register - PMLR

LBA: 

PCI:

1026H

26H

Legend: NA = Not Accessible RO = Read Only
RV = Reserved PR = Preserved RW = Read/Write
RS = Read/Set RC = Read Clear
LBA = 80960 local bus address PCI = PCI Configuration Address Offset

Bit Default Description

15:04 000H
Prefetchable Memory Limit Address - This field is programmed with AD31:20 of the top of 
the memory address range to be passed down the hierarchy by the bridge. 

03:00 0H Reserved

PCI

LBA

15 12 8 4 0

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rv

rv

rv

rv

rv

rv

rv

rv
15-59

15



PCI-TO-PCI BRIDGE UNIT

15.13.21 Bridge Subsystem Vendor ID Register - BSVIR 

The Bridge Subsystem Vendor ID Register bits adhere to the definitions in the PCI Local Bus
Specification, revision 2.1.

15.13.22 Bridge Subsystem ID Register - BSIR 

The Bridge Subsystem ID Register bits adhere to the definitions in the PCI Local Bus Specifi-
cation, revision 2.1.

Table 15-33.  Bridge Subsystem Vendor ID Register - BSVIR

LBA: 

PCI:

1034H

34H

Legend: NA = Not Accessible RO = Read Only
RV = Reserved PR = Preserved RW = Read/Write
RS = Read/Set RC = Read Clear
LBA = 80960 local bus address PCI = PCI Configuration Address Offset

Bit Default Description

15:00 0000H
Bridge Subsystem Vendor ID - This register is used to uniquely identify the vendor of the 
add-in board or subsystem

Table 15-34.  Bridge Subsystem ID Register - BSIR

PCI

LBA

15 12 8 4 0

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

PCI

LBA

15 12 8 4 0

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro
15-60

LBA: 

PCI:

1036H

36H

Legend: NA = Not Accessible RO = Read Only
RV = Reserved PR = Preserved RW = Read/Write
RS = Read/Set RC = Read Clear
LBA = 80960 local bus address PCI = PCI Configuration Address Offset

Bit Default Description

15:00 0000H
Bridge Subsystem ID - This register is used to uniquely identify the add-in board or 
subsystem



PCI-TO-PCI BRIDGE UNIT

15.13.23 Bridge Control Register - BCR

The Bridge Control Register bits adhere to the definitions in the PCI Local Bus Specification,
revision 2.1. The Bridge Control Register bits provide extensions to the Command Register that
are specific to PCI-to-PCI bridges. The Bridge Control Register provides many of the same
controls for the secondary interface that are provided by the Command register for the primary
interface. Some bits affect the operation of both bridge interfaces.

Table 15-35.  Bridge Control Register - BCR (Sheet 1 of 3)

LBA: 

PCI:

103EH

3EH

Legend: NA = Not Accessible RO = Read Only
RV = Reserved PR = Preserved RW = Read/Write
RS = Read/Set RC = Read Clear
LBA = 80960 local bus address PCI = PCI Configuration Address Offset

Bit Default Description

15:12 0H Reserved

111 02

Discard Timer SERR# Enable - This bit enables the assertion of SERR# for all 
discard timers.

0 - SERR# is not asserted when any discard timer expires. 

1 - SERR# is asserted on the bus where the delayed request was initiated when 
the discard timer expires.

101 02

Discard Timer Status - This bit indicates the status of the four discard timers.

0 - no discard timers have expired.

1 - at least one of the four discard timers has expired.

091 02

Secondary Discard Timer Value - This bit controls the timeout value for the 
secondary delayed read and delayed write discard timers.

0 - the timeout value is 2**15 clocks. 

PCI

LBA

15 12 8 4 0

rv

rv

rv

rv

rv

rv

rv

rv

rw

rw

rc

rc

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rv

rv

rw

rw

rw

rw

rw

rw

rw

rw
15-61

15

1 - the timeout value is 2**10 clocks.

081 02

Primary Discard Timer Value - This bit controls the timeout value for the 
secondary delayed read and delayed write discard timers. 

0 - the timeout value is 2**15 clocks. 

1 - the timeout value is 2**10 clocks.

07 02 Fast Back to Back Enable - This bit is ignored.



PCI-TO-PCI BRIDGE UNIT

06 02

Secondary Bus Reset - This bit controls the secondary bus S_RST# signal. 
When set, 

• The PCI to PCI Bridge Unit resets all upstream and downstream buffers and 
address queues as well as the secondary PCI bus interface. The Bridge PCI 
configuration registers are not reset. The primary PCI bus interface retries all 
transactions — except Type 0 configuration transactions — until this bit is 
cleared.

• DMA Channel 2 immediately halts any PCI transactions and returns to an 
idle state. DMA Channel 2 does not begin any new transfers until the 
Secondary Bus Reset bit is cleared.

• Secondary ATU immediately halts all PCI transactions and completes all 
local bus transactions and its registers are reset. The 80960 core processor 
is released from bus backoff, if necessary. The Secondary ATU does not 
accept new 80960 core processor requests until the Secondary Bus Reset 
bit is cleared.

When this bit is cleared, the S_RST# signal is deasserted. Software must clear 
this bit.

051 02

Master Abort Mode - This bit controls the PCI-to-PCI bridge when a Master-abort 
termination occurs on either interface when the bridge is the master.

When cleared, reads return all ones and write data is accepted by the bridge and 
dropped.

When set, the bridge signals Master-abort to the requesting master when the 
corresponding transaction on the other side of the bridge terminates with a 

Table 15-35.  Bridge Control Register - BCR (Sheet 2 of 3)

LBA: 

PCI:

103EH

3EH

Legend: NA = Not Accessible RO = Read Only
RV = Reserved PR = Preserved RW = Read/Write
RS = Read/Set RC = Read Clear
LBA = 80960 local bus address PCI = PCI Configuration Address Offset

Bit Default Description

PCI

LBA

15 12 8 4 0

rv

rv

rv

rv

rv

rv

rv

rv

rw

rw

rc

rc

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rv

rv

rw

rw

rw

rw

rw

rw

rw

rw
15-62

Master-abort and the transaction is not yet concluded (reads and non-posted 
writes). When the bit is set and the transaction on the requesting interface has 
completed (posted writes) the bridge must assert SERR# on the primary 
interface (providing the function is enabled).

04 02 Reserved



PCI-TO-PCI BRIDGE UNIT

03 02

VGA Enable - This bit modifies the response by the bridge to VGA compatible 
addresses. When set, the bridge will positively decode and forward the following 
accesses from the primary to secondary interface (and block the forwarding of 
accesses from the secondary to primary interface):

- Memory accesses where the range is 0A0000H - 0BFFFFH

- I/O accesses where AD9:0 are in the range 3B0H - 3BBH and 3C0H - 3DFH 
(inclusive of ISA addresses - AD15:10 not decoded).

VGA address forwarding (and blocking) is independent of the address ranges 
defined in the memory base registers and the I/O base register. It is also 
independent of the ISA Enable bit and the VGA Palette Snoop Enable bit. 
However, VGA address forwarding (and blocking) is dependent on the state of 
the I/O Enable bit and Memory Enable bit. 

When cleared, the bridge will not forward (or block) any VGA addresses.

02

Varies with external 
state of RETRY pin 
at primary PCI bus 

reset

ISA Enable - This bit modifies the bridges response to ISA I/O addresses. This 
only applies to I/O addresses that are defined by the bridge in IOBR and IOLR 
and are also in the first 64 Kbytes of PCI address space (0000 0000H - 
0000 FFFFH)

When set, the bridge will not forward from primary to secondary and I/O transac-
tions addressing the last 768 bytes in each 1 Kbyte block. In the opposite 
direction, I/O transactions will be forwarded up the bridge if the address the last 
768 bytes in each 1 Kbyte block.

Varies with external 
SERR# Enable - This bit controls the forwarding of secondary interface 

Table 15-35.  Bridge Control Register - BCR (Sheet 3 of 3)

LBA: 

PCI:

103EH

3EH

Legend: NA = Not Accessible RO = Read Only
RV = Reserved PR = Preserved RW = Read/Write
RS = Read/Set RC = Read Clear
LBA = 80960 local bus address PCI = PCI Configuration Address Offset

Bit Default Description

PCI

LBA

15 12 8 4 0

rv

rv

rv

rv

rv

rv

rv

rv

rw

rw

rc

rc

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rv

rv

rw

rw

rw

rw

rw

rw

rw

rw
15-63

15

1. Bits 11-8 and 5 are not part of PCI Local Bus Specification, revision 2.1 and PCI-to-PCI Bridge 
Architecture Specification, revision 1.0.

01
state of 

RST_MODE# pin 
at primary PCI bus 

reset

S_SERR# assertions to the primary interface. When the SERR# Enable bit in the 
PCMDR register is set and the bridge detects the assertion of S_SERR# on the 
secondary bus, it asserts P_SERR# on the primary interface.

00 02

Parity Error Response Enable - This bit controls the response to parity errors on 
the secondary interface. When this bit is clear, all address and data parity errors 
on the secondary interface are ignored. When this bit is set, detection and 
reporting of all parity errors on the secondary interface is enabled. Correct parity 
must be generated even when parity error reporting is disabled.



PCI-TO-PCI BRIDGE UNIT

15.13.24 Extended Bridge Control Register - EBCR

The Extended Bridge Control Register is used to control the extended functionality the bridge
implements over the base PCI-to-PCI Bridge Architecture Specification, revision 1.0. It has
enable/disable bits for the bridge’s extended functionality.

Table 15-36.  Extended Bridge Control Register - EBCR  (Sheet 1 of 2)

LBA: 

PCI:

1040H

40H

Legend: NA = Not Accessible RO = Read Only
RV = Reserved PR = Preserved RW = Read/Write
RS = Read/Set RC = Read Clear
LBA = 80960 local bus address PCI = PCI Configuration Address Offset

Bit Default Description

15:07 000H Reserved

06 02
DAC Cycle Enable - When set, DAC cycles are disabled.

When clear, DAC cycles are enabled on the secondary PCI bridge interface.

05 02

Reset Local Bus - When set, the i960 core processor and all units on the local 
bus are reset. The PCI to PCI Bridge Unit is not reset. The i960 Rx I/O 
processor hardware clears this bit after the reset operation completes.

04 02 Reserved

03 02

Upstream Prefetchable Memory Enable - This bit only affects the Memory Read 
command on the secondary PCI bus.

When set, the Bridge assumes that upstream Memory Read commands are to 
prefetchable memory. 

When clear, the Bridge assumes that upstream Memory Read commands are to 
non-prefetchable memory. 

Configuration Cycle Retry - When set, the primary PCI interface of the i960 Rx 
I/O processor responds to all configuration cycles with a Retry condition. When 

PCI

LBA

15 12 8 4 0

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rw

rw

rw

rw

rv

rv

rw

rw

rw

rw

rw

rw

rw

rw
15-64

02

Varies with external 
state of RETRY pin 
at primary PCI bus 

reset

clear, the i960 Rx I/O processor responds to the appropriate configuration 
cycles.

This bit’s default condition is based on the external state of the RETRY pin at 
the rising edge of P_RST#. When the external state of the pin is high, the bit is 
set. When the external state of the pin is low, the pin is cleared.

01

Varies with external 
state of 

RST_MODE# pin 
at primary PCI bus 

reset

Core Processor Reset - set by the hardware when either P_RST# is asserted or 
the Reset Local Bus bit in the EBCR is set. When set, the i960 core processor is 
being held in reset. Software cannot set this bit. Software must clear this bit to 
deassert 80960 processor reset.

This bit’s default condition is based on the external state of the RST_MODE# 
pin at the rising edge of P_RST#. When the external state of the pin is low, the 
bit is set. When the external state of the pin is high, the bit is cleared.



PCI-TO-PCI BRIDGE UNIT

00 02

Posting Disable - When set, the bridge cannot post write transactions from 
either bridge interface. All transactions are processed as Delayed transactions. 
When clear, the bridge can post write transactions.

Table 15-36.  Extended Bridge Control Register - EBCR  (Sheet 2 of 2)

LBA: 

PCI:

1040H

40H

Legend: NA = Not Accessible RO = Read Only
RV = Reserved PR = Preserved RW = Read/Write
RS = Read/Set RC = Read Clear
LBA = 80960 local bus address PCI = PCI Configuration Address Offset

Bit Default Description

PCI

LBA

15 12 8 4 0

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rw

rw

rw

rw

rv

rv

rw

rw

rw

rw

rw

rw

rw

rw
15-65

15



PCI-TO-PCI BRIDGE UNIT

15.13.25 Secondary IDSEL Select Register - SISR

The Secondary IDSEL Select Register controls the usage of S_AD20:16 for 80960RP 33/5.0 and
S_AD25:16 for 80960RP 33/3.3 in Type 1 to Type 0 conversions from the primary to secondary
interface. In default operation, a unique encoding on primary addresses P_AD15:11 results in the
assertion of one bit on the secondary address bus S_AD31:16 during a Type 1 to Type 0
conversion. See section 15.4.2, Special Cycles (pg. 15-8). This is used for the assertion of IDSEL
on the device being targeted by the Type 0 configuration command. This register enables the use
of secondary address bits (S_AD20:16 for 80960RP 33/5.0 and S_AD25:16 for 80960RP 33/3.3)
to configure private PCI devices by forcing secondary address bits (S_AD20:16 for
80960RP 33/5.0 and S_AD25:16 for 80960RP 33/3.3) to all zeros during Type 1 to Type 0
conversions, regardless of the state of primary addresses P_AD15:11 (device number in Type 1
configuration command).

Before any address bit within S_AD20:16 can be used for private secondary PCI devices, the i960
core processor must guarantee that the corresponding bit in the SISR register is set before the host
tries to configure the hierarchical PCI buses.

Table 15-37.  Secondary IDSEL Select Register - SISR  (Sheet 1 of 2)

LBA: 

PCI:

1042H

42H

Legend: NA = Not Accessible RO = Read Only
RV = Reserved PR = Preserved RW = Read/Write
RS = Read/Set RC = Read Clear
LBA = 80960 local bus address PCI = PCI Configuration Address Offset

Bit Default Description

15:10 00H Reserved

091 0
AD25 - IDSEL Disable - When set, AD25 is deasserted for any possible Type 1 to Type 0 
conversion. When clear, AD25 is asserted when primary addresses AD15:11 = 01001  

PCI

LBA

15 12 8 4 0

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw
15-66

2 2
during a Type 1 to Type 0 conversion.

081 02

AD24 - IDSEL Disable - When set, AD24 is deasserted for any possible Type 1 to Type 0 
conversion. When clear, AD24 is asserted when primary addresses AD15:11 = 010002 
during a Type 1 to Type 0 conversion.

071 02

AD23 - IDSEL Disable - When set, AD23 is deasserted for any possible Type 1 to Type 0 
conversion. When clear, AD23 is asserted when primary addresses AD15:11 = 001112 
during a Type 1 to Type 0 conversion.

061 02

AD22 - IDSEL Disable - When set, AD22 is deasserted for any possible Type 1 to Type 0 
conversion. When clear, AD22 is asserted when primary addresses AD15:11 = 001102 
during a Type 1 to Type 0 conversion.



PCI-TO-PCI BRIDGE UNIT

1. This bit is available on 3.3 V devices only (not on 5.0 Volt devices).

051 02

AD21 - IDSEL Disable - When set, AD21 is deasserted for any possible Type 1 to Type 0 
conversion. When clear, AD21 is asserted when primary addresses AD15:11 = 001012 
during a Type 1 to Type 0 conversion.

04 02

AD20 - IDSEL Disable - When set, AD20 is deasserted for any possible Type 1 to Type 0 
conversion. When clear, AD20 is asserted when primary addresses AD15:11 = 001002 
during a Type 1 to Type 0 conversion.

03 02

AD19 - IDSEL Disable - When set, AD19 is deasserted for any possible Type 1 to Type 0 
conversion. When clear, AD19 is asserted when primary addresses AD15:11 = 000112 
during a Type 1 to Type 0 conversion.

02 02

AD18 - IDSEL Disable - When set, AD18 is deasserted for any possible Type 1 to Type 0 
conversion. When clear, AD18 is asserted when primary addresses AD15:11 = 000102 
during a Type 1 to Type 0 conversion.

01 02

AD17 - IDSEL Disable - When set, AD17 is deasserted for any possible Type 1 to Type 0 
conversion. When clear, AD17 is asserted when primary addresses AD15:11 = 000012 
during a Type 1 to Type 0 conversion.

00 02

AD16 - IDSEL Disable - When set, AD16 is deasserted for any possible Type 1 to Type 0 
conversion. When clear, AD16 is asserted when primary addresses AD15:11 = 000002 
during a Type 1 to Type 0 conversion.

Table 15-37.  Secondary IDSEL Select Register - SISR  (Sheet 2 of 2)

LBA: 

PCI:

1042H

42H

Legend: NA = Not Accessible RO = Read Only
RV = Reserved PR = Preserved RW = Read/Write
RS = Read/Set RC = Read Clear
LBA = 80960 local bus address PCI = PCI Configuration Address Offset

Bit Default Description

PCI

LBA

15 12 8 4 0

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw
15-67

15



PCI-TO-PCI BRIDGE UNIT

15.13.26 Primary Bridge Interrupt Status Register - PBISR

The Primary Bridge Interrupt Status Register is used to notify the i960 core processor of the
source of a Primary Bridge interface interrupt. In addition, this register is written to clear the
source of the interrupt to the interrupt unit of the i960 Rx I/O processor.

Bits 4:0 are a direct reflection of bit 8 and bits 14:11 (respectively) of the Primary Status Register
(these bits are set at the same time by hardware but need to be cleared independently). The
conditions that result in a Primary Bridge interrupt are cleared by writing a 1 to the appropriate
bits in this register.

Table 15-38.  Primary Bridge Interrupt Status Register - PBISR

LBA: 

PCI:

1044H

44H

Legend: NA = Not Accessible RO = Read Only
RV = Reserved PR = Preserved RW = Read/Write
RS = Read/Set RC = Read Clear
LBA = 80960 local bus address PCI = PCI Configuration Address Offset

Bit Default Description

31:05 0000 000H Reserved

04 02 P_SERR# Detected - set when P_SERR# is detected on the primary PCI bus.

03 02
PCI Master Abort - set when a transaction initiated by the primary master interface ends 
in a Master-abort. 

02 02
PCI Target Abort (master) - set when a transaction initiated by the primary master 
interface ends in a Master-abort. 

01 02
PCI Target Abort (target) - set when the primary interface, acting as a target, terminates 
the transaction on the PCI bus with a target abort. 

PCI Master Parity Error - The primary interface sets this bit when three conditions are 
met:

PCI

LBA

28 24 20 16 12 8 4 031

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rc

rc

rc

rc

rc

rc

rc

rc

rc

rc
15-68

00 02
1) the bus agent asserted S_PERR# itself or observed S_PERR# asserted

2) the agent setting the bit acted as the bus master for the operation in which the error 
occurred

3) the parity error response bit (bridge control register) is set



PCI-TO-PCI BRIDGE UNIT

15.13.27 Secondary Bridge Interrupt Status Register - SBISR

The Secondary Bridge Interrupt Status Register is used to notify the i960 core processor of the
source of a Secondary Bridge interface interrupt. In addition, this register is written to clear the
source of the interrupt to the interrupt unit of the i960 Rx I/O processor.

Bits 4:0 are a direct reflection of bit 8 and bits 14:11 (respectively) of the Secondary Status
Register (these bits are set at the same time by hardware but need to be cleared independently). The
conditions that result in a Secondary Bridge interrupt are cleared by writing a 1 to the appropriate
bits in this register.

Table 15-39.  Secondary Bridge Interrupt Status Register - SBISR

LBA: 

PCI:

1048H

48H

Legend: NA = Not Accessible RO = Read Only
RV = Reserved PR = Preserved RW = Read/Write
RS = Read/Set RC = Read Clear
LBA = 80960 local bus address PCI = PCI Configuration Address Offset

Bit Default Description

31:05 0000 000H Reserved

04 02 S_SERR# Asserted - set when S_SERR# is asserted on the secondary PCI bus.

03 02
PCI Master Abort - set when a transaction initiated by the secondary master interface 
ends in a Master-abort. 

02 02
PCI Target Abort (master) - set when a transaction initiated by the secondary master 
interface ends in a Master-abort. 

01 02
PCI Target Abort (target) - set when the secondary interface, acting as a target, 
terminates the transaction on the PCI bus with a target abort. 

PCI Master Parity Error - The secondary interface sets this bit when three conditions are 
met:

PCI

LBA

28 24 20 16 12 8 4 031

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rc

rc

rc

rc

rc

rc

rc

rc

rc

rc
15-69

15

15.13.28 Secondary Arbitration Control Register - SACR

See CHAPTER 18, BUS ARBITRATION, for a description of the Secondary Arbitration Control
Register.

00 02
1) the bus agent asserted P_PERR# itself or observed P_PERR# asserted

2) the agent setting the bit acted as the bus master for the operation in which the error 
occurred

3) the parity error response bit (command register) is set



PCI-TO-PCI BRIDGE UNIT

15.13.29 PCI Interrupt Routing Select Register - PIRSR

Refer to CHAPTER 8, INTERRUPTS for a description of the PCI Interrupt Routing Select
Register.

15.13.30 Secondary I/O Base Register - SIOBR

The Secondary I/O Base Register bits are used when the secondary PCI interface is enabled for
positive decoding. The Secondary I/O Base Register defines the bottom address (inclusive) of a
positively decoded address range that is used to determine when to forward I/O transactions from
the secondary interface to the primary interface. It must be programmed with a valid value before
the Secondary Decode Enable Register (SDER) is set. The bridge only supports 16-bit addressing
which is indicated by a value of 0H in the four least significant bits of the register. The upper four
bits are programmed with S_AD15:12 for the bottom of the address range. S_AD11:0 of the base
address is always 000H forcing the secondary I/O address range to be 4 Kbyte aligned.

For address decoding, the bridge assumes that S_AD31:16, the upper 16 address bits of the I/O
address, are zero. The bridge must still perform the address decode on the full 32 bits of address
per PCI Local Bus Specification, revision 2.1 and check that the upper 16 bits are equal to 0000H.

The positive secondary I/O address range (defined by the SIOBR in conjunction with the SIOLR)
is not affected by the state of the ISA Enable bit in the Bridge Control Register (BCR).

Table 15-40.  Secondary I/O Base Register - SIOBR

LBA: 

PCI:

1054H

54H

Legend: NA = Not Accessible RO = Read Only
RV = Reserved PR = Preserved RW = Read/Write
RS = Read/Set RC = Read Clear

PCI

LBA

7 4 0

rw rw rw rw ro ro ro ro

0 0 0 0

rw rw rw rw ro ro ro ro
15-70

LBA = 80960 local bus address PCI = PCI Configuration Address Offset

Bit Default Description

07:04 0H
Secondary I/O Base Address - This field is programmed with S_AD15:12 of the bottom of 
the positively decoded secondary I/O address range to be passed from the secondary to 
the primary side. 

03:00 0H
I/O Addressing Capability - A value of 0H signifies that the bridge only supports 16 bit I/O 
addressing.



PCI-TO-PCI BRIDGE UNIT

15.13.31 Secondary I/O Limit Register - SIOLR

The Secondary I/O Limit Register bits are used when the secondary PCI interface is enabled for
positive decoding. The Secondary I/O Limit Register defines the upper address (inclusive) of a
positively decoded secondary address range that is used to determine when to forward I/O transac-
tions from the secondary to primary interface. It must be programmed with a valid value greater
than or equal to the SIOBR before the I/O Space Enable bit in the Bridge Command Register and
the Secondary Positive I/O Decode Enable bit in the Secondary Decode Enable Register (SDER)
are set. When the SIOBR value is greater than the SIOLR value, I/O cycles forwarded from the
secondary to primary interface (positively decoded) are undefined. The bridge only supports 16 bit
addressing which is indicated by a value of 0H in the four least significant bits of the register. The
upper four bits are programmed with S_AD15:12 for the top of the address range. S_AD11:0 of the
base address is always FFFH forcing a 4 Kbyte I/O range granularity.

For address decoding, the bridge assumes that S_AD31:16, the upper 16 address bits of the I/O
address, are zero. The bridge must still perform the address decode on the full 32 bits of address
per PCI Local Bus Specification, revision 2.1 and check that the upper 16 bits are equal to 0000H.

The Secondary I/O address range (defined by the SIOBR in conjunction with the SIOLR) is not
modified by the Bridge Control Register ISA Enable bit.

Table 15-41.  Secondary I/O Limit Register - SIOLR

LBA: 

PCI:

1055H

55H

Legend: NA = Not Accessible RO = Read Only
RV = Reserved PR = Preserved RW = Read/Write
RS = Read/Set RC = Read Clear
LBA = 80960 local bus address PCI = PCI Configuration Address Offset

Bit Default Description

PCI

LBA

7 4 0

rw rw rw rw ro ro ro ro

0 0 0 0

rw rw rw rw ro ro ro ro
15-71

15
07:04 0H

Secondary I/O Limit Address - This field is programmed with S_AD15:12 of the top of the 
positively decoded I/O address range to be passed from the secondary to primary interface. 

03:00 0H
Secondary I/O Addressing Capability - The value of 0H signifies that the bridge only 
supports 16-bit I/O addressing.



PCI-TO-PCI BRIDGE UNIT

15.13.32 Secondary Memory Base Register - SMBR

The Secondary Memory Base Register bits are used when the secondary interface is enabled for
positive address decoding. They are also used to define a private address space on the secondary
PCI bus when the Private Memory Space Enable bit is set in the SDER. The Secondary Memory
Base Register defines the bottom address (inclusive) of a memory-mapped address range that is
used to determine when to forward transactions from the secondary to primary interface. The
Secondary Memory Base Register must be programmed with a valid value before the Secondary
Positive Memory Decode Enable bit in the SDER is set. The upper 12 bits correspond to
S_AD31:20 of 32 bit addresses. For address decoding, the bridge assumes that S_AD19:0, the
lower 20 address bits of the memory base address, are zero. This means that the bottom of the
defined address range is aligned on a 1 Mbyte boundary.

15.13.33 Secondary Memory Limit Register - SMLR

Table 15-42.  Secondary Memory Base Register - SMBR

LBA: 

PCI:

1058H

58H

Legend: NA = Not Accessible RO = Read Only
RV = Reserved PR = Preserved RW = Read/Write
RS = Read/Set RC = Read Clear
LBA = 80960 local bus address PCI = PCI Configuration Address Offset

Bit Default Description

15:04 000H
Secondary Memory Base Address - This field is programmed with S_AD31:20 of the 
bottom of the positively decoded secondary memory address range to be passed from the 
secondary to primary interface. 

03:00 0H Reserved

PCI

LBA

15 12 8 4 0

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rv

rv

rv

rv

rv

rv

rv

rv
15-72

The Secondary Memory Limit Register bits are used when the secondary interface is enabled for
positive address decoding. They are also used to define a private memory space on the secondary
PCI bus, when the Private Memory Space Enable bit is set in the SDER. The Secondary Memory
Limit Register defines the upper address (inclusive) of a memory-mapped address range that is
used to determine when to forward transactions from the secondary to primary interface. The
Secondary Memory Limit Register must be programmed to a value greater than or equal to the
SMBR before the Private Memory Space Enable bit and the Secondary Positive Memory Decode
Enable bit in the SDER are set. When the SMLR value is not greater than or equal to the SMBR



PCI-TO-PCI BRIDGE UNIT

value, once the Memory Space Enable bit or Secondary Memory Enable bit are set, positively
decoded memory transactions from the secondary to the primary are indeterminate. The upper 12
bits correspond to S_AD31:20 of 32 bit addresses. For address decoding, the bridge assumes that
S_AD19:0, the lower 20 address bits of the secondary memory base address, are FFFFFH. This
forces a 1 Mbyte granularity on the memory address range.

15.13.34 Secondary Decode Enable Register - SDER

The Secondary Decode Enable Register is used to control the address decode functions on the
secondary PCI interface of the bridge unit. The Secondary Positive I/O Decode Enable bit, when
set, causes the bridge to decode and claim transactions within the address range defined by the
SIOBR/SIOLR address pair and forward them through the bridge unit. The Secondary Positive
Memory Decode Enable bit has the same function as the Secondary Positive I/O Decode Enable bit
but works with the SMBR/SMLR address range. Setting either of these bits disables all inverse
decoding on the secondary interface.

Table 15-43.  Secondary Memory Limit Register - SMLR

LBA: 

PCI:

105AH

5AH

Legend: NA = Not Accessible RO = Read Only
RV = Reserved PR = Preserved RW = Read/Write
RS = Read/Set RC = Read Clear
LBA = 80960 local bus address PCI = PCI Configuration Address Offset

Bit Default Description

15:04 000H
Secondary Memory Limit Address - This field is programmed with S_AD31:20 of the top of 
the secondary memory address range to be passed from the secondary to primary side. 

03:00 0H Reserved

PCI

LBA

15 12 8 4 0

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rv

rv

rv

rv

rv

rv

rv

rv
15-73

15
Table 15-44.  Secondary Address Decode (Sheet 1 of 2)

Private Memory 
Space Enable

Secondary 
Positive Memory 

Enable bit

Secondary 
Positive I/O 
Enable bit

Secondary Decode

0 0 0 Inverse Decoding (default)

0 0 1 Secondary Positive I/O Decoding only



PCI-TO-PCI BRIDGE UNIT

The Private Memory Space Enable bit enables the creation of a private memory space on the
secondary PCI bus. This bit is used in conjunction with the SMBR/SMLR registers. When set, the
bridge ignores transactions with addresses within the SMBR/SMLR address range. It also disables
secondary positive decode.

Bits 15 through 4 of the Secondary Decode Enable Register (SDER) can be used to mask sources
of NMI# from the bridge. When set to 1, the source of NMI# is masked. When cleared to 0, the
source of NMI# is enabled.

0 1 0 Secondary Positive Memory Decoding only

0 1 1
Secondary Positive I/O Decoding and 
Secondary Positive Memory Decoding

1 X X
Inverse Decoding and SMBR/SMLR address 

pair define a private address space

Table 15-45.  Secondary Decode Enable Register - SDER  (Sheet 1 of 2)

LBA: 

PCI:

105CH

5CH

Legend: NA = Not Accessible RO = Read Only
RV = Reserved PR = Preserved RW = Read/Write
RS = Read/Set RC = Read Clear
LBA = 80960 local bus address PCI = PCI Configuration Address Offset

Bit Default Description

S_SERR# Detected Interrupt Mask - When set, detecting S_SERR# on the secondary 

Table 15-44.  Secondary Address Decode (Sheet 2 of 2)

Private Memory 
Space Enable

Secondary 
Positive Memory 

Enable bit

Secondary 
Positive I/O 
Enable bit

Secondary Decode

PCI

LBA

15 12 8 4 0

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rv

rv

rv

rv

rv

rv

rw

rw

rw

rw

rw

rw
15-74

151 12 interface resulting in bit 14 of the SSR being set will not result in bit 4 of the SBISR being 
set. When clear, an error that sets bit 14 of the SSR will cause bit 4 of the SBISR to be set

14 12

Secondary PCI Master Abort Interrupt Mask - When set, a master abort error resulting in 
bit 13 of the SSR being set will not result in bit 3 of the SBISR being set. When clear, an 
error that sets bit 13 of the SSR will cause bit 3 of the SBISR to be set.

13 12

Secondary PCI Target Abort (Master) Interrupt Mask- When set, a target abort error 
resulting in bit 12 of the SSR being set will not result in bit 2 of the SBISR being set. When 
clear, an error that sets bit 12 of the SSR will cause bit 2 of the SBISR to be set.

12 12

Secondary PCI Target Abort (Target) Interrupt Mask - When set, a target abort error 
resulting in bit 11 of the SSR being set will not result in bit 1 of the SBISR being set. When 
clear, an error that sets bit 11 of the SSR will cause bit 1 of the SBISR to be set.



PCI-TO-PCI BRIDGE UNIT

11 12

Secondary PCI Master Parity Error Interrupt Mask - When set a parity error resulting in bit 
8 of the SSR being set will not result in bit 0 of the SBISR being set. When clear, an error 
that sets bit 8 of the SSR will cause bit 0 of the SBISR to be set. 

10 12

P_SERR# Asserted Interrupt Mask - When set, detecting or asserting P_SERR# on the 
primary interface resulting in bit 14 of the PSR being set will not result in bit 4 of the PBISR 
being set. When clear, an error that sets bit 14 of the PSR will cause bit 4 of the PBISR to 
be set.

09 12

Primary PCI Master Abort Interrupt Mask - When set, a master abort error resulting in bit 
13 of the PSR being set will not result in bit 3 of the PBISR being set. When clear, an error 
that sets bit 13 of the PSR will cause bit 3 of the PBISR to be set.

08 12

Primary PCI Target Abort (Master) Interrupt Mask- When set, a target abort error resulting 
in bit 12 of the PSR being set will not result in bit 2 of the PBISR being set. When clear, an 
error that sets bit 12 of the PSR will cause bit 2 of the PBISR to be set.

07 12

Primary PCI Target Abort (Target) Interrupt Mask - When set, a target abort error resulting 
in bit 11 of the PSR being set will not result in bit 1 of the PBISR being set. When clear, an 
error that sets bit 11 of the PSR will cause bit 1 of the PBISR to be set.

06 12

Primary PCI Master Parity Error Interrupt Mask - When set a parity error resulting in bit 8 of 
the PSR being set will not result in bit 0 of the PBISR being set. When clear, an error that 
sets bit 8 of the PSR will cause bit 0 of the PBISR to be set. 

05:03 0002 Reserved.

02 02

Private Memory Space Enable - when set, this bit disables Bridge forwarding of addresses 
in the SMBR/SMLR address range. This creates a private memory space on the 

Table 15-45.  Secondary Decode Enable Register - SDER  (Sheet 2 of 2)

LBA: 

PCI:

105CH

5CH

Legend: NA = Not Accessible RO = Read Only
RV = Reserved PR = Preserved RW = Read/Write
RS = Read/Set RC = Read Clear
LBA = 80960 local bus address PCI = PCI Configuration Address Offset

Bit Default Description

PCI

LBA

15 12 8 4 0

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rv

rv

rv

rv

rv

rv

rw

rw

rw

rw

rw

rw
15-75

15

1. Bits 15:06 do not exist for 5.0 Volt device.

secondary PCI bus for peer to peer transactions.

01 02

Secondary Positive Memory Decode Enable - when set, this bit enables the secondary 
interface of the bridge unit to positively decode memory addresses on the secondary bus. 
Addresses within the SMBR/SMLR address range are forwarded through the bridge. 
Inverse decoding is disabled.

00 02

Secondary Positive I/O Decode Enable - when set, this bit enables the secondary interface 
of the bridge unit to positively decode I/O addresses on the secondary bus. Addresses 
within the SIOBR/SIOLR address pair are forwarded through the bridge. Inverse decoding 
is disabled.





16
ADDRESS TRANSLATION UNIT





CHAPTER 16
ADDRESS TRANSLATION UNIT

The Address Translation Unit (ATU) is the interface between the PCI buses and the 80960 local
bus. This chapter describes ATU operation modes, setup, and interface.

Primary PCI Bus

PCI to PCI Bridge

80
96

0 
Lo

ca
l B

us
 In

te
rf

ac
e

M
a

st
e

r/
S

la
ve

 P
C

I 

80960 Local Bus

Primary Address 
Translation Unit

B
us

 In
te

rf
a

ce

Messaging Unit

PRIMARY ADDRESS TRANSLATION UNIT

Expansion ROM 
Translation Unit
16-1

16

Figure 16-1.  Address Translation Unit (ATU) Block Diagram

Secondary PCI Bus

M
a

st
er

/S
la

ve
 P

C
I 

Secondary Address 
Translation Unit

B
us

 In
te

rf
a

ce

SECONDARY ADDRESS TRANSLATION UNIT



960
bed in

l bus.

0 local

 these

ted at
e
ansac-

ter) to
tbound

the data

posite
MA
ADDRESS TRANSLATION UNIT

16.1 OVERVIEW

As indicated in Figure 16-1, the ATU — the interface between the PCI bus and the on-chip 80
local bus — consists of two address translation units and the Messaging Unit (MU); descri
CHAPTER 17, MESSAGING UNIT. The MU allows the system processor and the i960® Rx I/O
processor to transfer control information.

The ATUs support both inbound and outbound address translation. The ATUs are:

• Primary ATU — provides direct access between the primary PCI bus and the 80960 loca
The primary ATU and MU share PCI address space.

• Secondary ATU — provides direct access between the secondary PCI bus and the 8096
bus.

Both ATUs and the MU appear as a single PCI device on the primary PCI bus. Collectively,
units are the second PCI function (Function 1) in the multifunction PCI device.

Transactions initiated on a PCI bus and targeted at the 80960 local bus are referred to as inbound
transactions (PCI to 80960 local bus); transactions initiated on the 80960 local bus and targe
a PCI bus are referred to as outbound transactions (80960 local bus to PCI). The ATUs handl
multiple inbound PCI transactions; they can simultaneously process PCI read and write tr
tions using both primary and secondary ATUs.

During inbound transactions, the ATU converts PCI addresses (initiated by a PCI bus mas
80960 local bus addresses and initiates the data transfer on the 80960 local bus. During ou
transactions, the ATU converts 80960 local bus addresses to PCI addresses and initiates 
transfer on the respective PCI bus.

The ATUs do not support outbound transactions generated by the DMA controller or the op
ATU. The ATUs also do not claim PCI transactions from the PCI-to-PCI bridge or the D
controller, unless the Secondary Messaging Unit access enable (bit 12) is set.

16.2 ATU TRANSACTION QUEUES
16-2

ATU operation and performance depends on the queueing mechanism implemented between the
local bus interface and PCI bus interface. As indicated in Figure 16-2, the ATU transaction queues
consist of three address queues and two data queues; each are described in the following subsections.



e of the
ADDRESS TRANSLATION UNIT

Figure 16-2.  ATU Transaction Queue Block Diagram

16.2.1 Address Queues

As indicated in Figure 16-2, ATU transaction queues contain three separate address queues:

• Inbound Delayed Read Address Queue (IDRAQ)

• Inbound Address Queue (IAQ)

• Outbound Address Queue (OAQ)

These queues, each of which hold a single 32-bit address, forward transactions from one sid
queue structure to the other.

80960 
Local Bus

Primary or
Secondary

Outbound Data Queue (ODQ)

Outbound Address Queue (OAQ)

M

A

S

T

E

R

/

S

L

A

V

E

Inbound Data Queue (IDQ)

Inbound Address Queue (IAQ)

Inbound Delayed Read Address Queue (IDRAQ)

M

A

S

T

E

R

/

S

L

A

V

E

PCI Bus
16-3

16

The ATU PCI interface uses IDRAQ for inbound read operations and IAQ for write operations.
The 32-bit PCI address is latched into the inbound address queues and translated to the 80960 local
bus address and driven onto the local bus by the ATU local bus interface. 

The ATU local bus interface uses OAQ for outbound read and write operations. The 32-bit 80960
local address is latched into the OAQ and translated to a PCI address and driven onto the PCI bus
by the ATU PCI interface.



PCI
ound
 PCI

ditions

im and

l bus.
g any
en the

CI bus
ADDRESS TRANSLATION UNIT

The address queue is always initialized by the initiating bus and cleared by the target bus under
normal termination. The address queue is also cleared by a bus when an error has occurred on that
bus. This effectively cancels the transaction and clears the queue, allowing a new transaction to be
initiated.

16.2.2 Data Queues

The ATU transaction queue contains two separate data queues:

• Inbound Data Queue (IDQ)

• Outbound Data Queue (ODQ)

Each 64-byte queue is arranged in a 16 x 32-bit (1 DWORD) configuration. The ATU 
interface uses the IDQ to hold inbound write data; the ATU local bus uses IDQ to return outb
read data. The ATU local bus interface uses ODQ for outbound write data and the ATU
interface to return inbound read data. Data in the queues is invalidated only on error con
(see Section 16.6).

16.3 ATU ADDRESS TRANSLATION

The ATUs implement an address windowing scheme to determine which addresses to cla
translate to the appropriate bus.

• The address windowing mechanism for inbound translation is described in Section 16.3.1,
Inbound Address Translation (pg. 16-5)

• The address windowing mechanism for outbound translation is described in Section 16.3.6,
Outbound Address Translation (pg. 16-11)

The primary ATU contains a data path between the primary PCI bus and 80960 loca
Connecting the primary ATU in this manner enables data transfers to occur without requirin
resources on the secondary PCI bus. The secondary ATU contains a data path betwe
secondary PCI bus and the 80960 local bus. The secondary ATU allows secondary P
16-4

masters to directly access the 80960 local bus and memory. These transactions are initiated by a
secondary bus master and do not require any bandwidth on the primary PCI bus.

The ATU units allow for recognition and generation of multiple PCI cycle types. Table 16-1
shows the PCI commands supported by both inbound and outbound ATUs. The type of operation
seen by the inbound ATUs is determined by the PCI master (on either primary or secondary bus)
who initiates the transaction. Claiming an inbound transaction depends on the address being
within the programmed inbound translation window. The type of transaction used by the outbound
ATUs is determined by the 80960 local address and the fixed outbound windowing scheme. See
Section 16.3.6, Outbound Address Translation (pg. 16-11) for the full details on outbound PCI
cycle selection.



ADDRESS TRANSLATION UNIT

Both ATUs support the 64-bit addressing extension specified by the PCI Local Bus Specification,
revision 2.1. This 64-bit addressing extension is for outbound data transactions only (i.e., data
transfers initiated by the i960 core processor).

Neither ATU supports exclusive access using the PCI LOCK# signal. To achieve exclusive access,
use a software protocol or the Messaging Unit.

The ATUs do not guarantee atomicity when performing atomic accesses using 80960 atomic
instructions (atmod, atadd, etc.).

16.3.1 Inbound Address Translation

The ATUs allow PCI bus masters to directly access the 80960 local bus. These PCI bus masters
can read or write i960 Rx I/O processor memory-mapped registers or 80960 local memory space.

Table 16-1.  ATU Command Support

PCI Command Type
Claimed on

Inbound Transactions
Generated by

Outbound Transactions

Interrupt Acknowledge No No

Special Cycle No No

I/O Read No Yes

I/O Write No Yes

Memory Read Yes Yes

Memory Write Yes Yes

Memory Write and Invalidate Yes No

Memory Read Line Yes No

Memory Read Multiple Yes No

Configuration Read Yes Yes

Configuration Write Yes Yes

Dual Address Cycle No Yes
16-5

16

The transactions where PCI bus masters are accessing the 80960 local bus are called inbound
transactions. Inbound translation involves two steps:

1. Address Detection.

• Determine when the 32-bit PCI address is within the address window defined for 
the inbound ATU (primary or secondary).

• Claim the PCI transaction with medium DEVSEL# timing.

2. Address Translation.

• Translate the 32-bit PCI address to a 32-bit 80960 local bus address.



bound
 by both

ister and

s.
ADDRESS TRANSLATION UNIT

The ATUs use the following registers in inbound address translation:

• Inbound ATU Base Address Register

• Inbound ATU Limit Register

• Inbound ATU Translate Value Register

See Section 16.7, REGISTER DEFINITIONS (pg. 16-25) for details on inbound translation
register definition and programming constraints.

By convention, primary inbound ATU addresses are primary PCI addresses; secondary in
ATU addresses are secondary PCI addresses. In the event that an address can be claimed
the ATU and the bridge, the inbound ATU PCI interface has priority.

Inbound address detection is determined from the 32-bit PCI address, the base address reg
the limit register. The algorithm for detection is:

When PCI_Address & Limit_Register == Base_Register
the PCI Address is claimed by the Inbound ATU

Figure 16-3 shows an example of inbound address detection and inbound translation window

PCI Address

Space

Base_Register

Base_Register + Limit_Register

Inbound Translation

Address is claimed

Window

Address is not claimed
16-6

Figure 16-3.  Inbound Address Detection

The incoming 32-bit PCI address is bitwise ANDed with the associated inbound limit register.
When the result matches the base register, the inbound PCI address is detected as being within the
inbound translation window and is claimed by the ATU.

NOTE: The first 4 Kbytes of the primary ATU’s inbound address translation 
window are reserved for the Messaging Unit. See Section 16.4, 
MESSAGING UNIT (pg. 16-19).

Address is not claimed



ADDRESS TRANSLATION UNIT

Once the transaction is claimed, the address within the Inbound Address Queue (IAQ) must be
translated from a 32-bit PCI address to a 32-bit 80960 local bus address. The algorithm is:

80960_Address = (PCI_Address & ~Limit_Register) | Translate_Register

The incoming 32-bit PCI address is first bitwise ANDed with the bitwise inverse of the limit
register. This result is bitwise ORed with the translate value register and the result is the 80960
local address. The translate value register must be aligned on the limit register boundary. For
example, if the limit register is 8 Mbytes, the translate value register must point to an 8 Mbyte
boundary on the 80960 local bus. This translation mechanism is used for all inbound memory read
and write commands excluding inbound configuration read and writes. Inbound configuration
cycle translation is described in Section 16.3.4 (pg. 16-11). Address aliasing of multiple PCI
addresses to the same physical 80960 local bus address can be prevented by programming the
inbound limit register on boundaries matching the associated limit register, but this is only
enforced through application programming.

For inbound memory transactions, the only burst order supported is Linear Incrementing. For any
other burst order, the ATU signals a Disconnect after the first data phase.

For inbound address translation, the physical memory attribute for the 80960 local bus must be
32-bits wide. See Section 12.1.1 (pg. 12-1). The only exception is the expansion ROM window can
be in 8-bit wide memory.

Figure 16-4 shows an inbound translation example. This example would hold true for an inbound
transaction from either the primary or secondary PCI bus.
16-7

16



ADDRESS TRANSLATION UNIT

0000 0000H

FFFF FFFFH

0000 0000H

FFFF FFFFH

Base_Register = 3A00 0000H

Limit_Register = FF80 0000H

Inbound Translation
Window

Inbound Translation Window ranges from 

Translate_Register = C100 0000H

PCI Address 
Space

80960 Local Bus Address 
Space

Address Detection
PCI_Address & Limit_Register == Base_Register
3A45 012CH & FF80 0000H == 3A00 0000H

3A45 012CH

PCI_Address is in the Inbound Translation Window

Address Translation
80960_Address = (PCI_Address & ~Limit_Register) | Translate_Register

C145 012CH

Register Values

3A7F FFFFH

3A00 0000H

C100 0000H

C17F FFFFH

(8 Mbyte limit value)
16-8

Figure 16-4.  Inbound Translation Example

80960_Address = (3A45 012CH & 007F FFFFH) | C100 0000H
80960_Address =C145 012CH

3A00 0000H to 3A7F FFFFH (8 Mbytes)



und
er.

s the
s, the

store it

r.

s aware
l bus.

e IAQ.

ion by
 trans-

d the

wing
ADDRESS TRANSLATION UNIT

16.3.2 Inbound Write Transaction

An inbound write transaction is initiated by a PCI master (on either the primary or secondary PCI
bus) and is targeted at either 80960 local memory or an 80960 local bus memory-mapped register.
Data flow for an inbound write transaction on the PCI bus is summarized as:

• The ATU claims the PCI write transaction when the PCI address is within the inbo
translation window defined by the ATU Inbound Base Register and Inbound Limit Regist

• When no transaction is currently in the IAQ or inbound data queue (IDQ), the ATU latche
PCI address into the IAQ. When an inbound write transaction is currently in progres
ATU does not latch the PCI address and signals a Retry to the initiator.

• Once the PCI address is in the IAQ, the PCI interface can start accepting write data and 
in the IDQ. 

• The PCI interface continues to accept write data until one of the following is true:

- The initiator completes the transaction.

- The IDQ becomes full. In this case, the PCI interface signals a Disconnect to the initiato

Once the PCI interface places a PCI address in the IAQ, the ATU’s local bus interface become
of the inbound write. The ATU local bus interface completes the inbound write on the 80960 loca

Data flow for the inbound write transaction on the 80960 local bus is summarized as:

• The ATU local bus interface requests the 80960 local bus when a PCI address appears in th

• When the 80960 local bus is granted, the local bus interface initiates the write transact
driving the translated address onto the 80960 local bus. For details on inbound address
lation, see Section 16.3, ATU ADDRESS TRANSLATION (pg. 16-4).

• Write data is transferred from the IDQ to the 80960 local bus when data is available an
local bus interface retains local bus ownership. 

• The local bus interface stops transferring data to the local bus when one of the follo
conditions becomes true:

- The local bus interface loses bus ownership and the IDQ still has data. In this case, 
16-9

16

the local bus interface removes REQ and immediately starts requesting the internal 
local bus again.

- The Memory Controller signals a Bus Fault. In this case, the local bus interface 
aborts the inbound write transaction and clears the IAQ and IDQ.

- The IDQ becomes empty while the transaction on the PCI bus is in progress, but held 
in wait states. In this case, the local bus interface goes idle and is requested again 
when data is received in the IDQ.

- The IDQ becomes empty and the PCI transaction has completed. The IAQ is cleared, 
in this case, and the local bus interface goes idle. The IAQ and IDQ are now ready for 
a new transaction.



 to
- and

terface
us and
he read
arized

ound

nd a

 

f the

r.

e 
ADDRESS TRANSLATION UNIT

16.3.3 Inbound Read Transaction

An inbound read transaction is initiated by a PCI master (on either the primary or secondary PCI
bus) and is targeted at either 80960 local memory or an 80960 local bus memory-mapped register.
The read transaction is propagated through the inbound delayed read address queue (IDRAQ) and
read data is returned through the outbound data queue (ODQ).

Data for all inbound ATU read transactions is implicitly prefetchable as defined in the PCI Local
Bus Specification, revision 2.1. The Inbound ATU Base Address Register’s Bit 3 is hardwired
one (1) defining the memory space as prefetchable. The ATU prefetches on both single
multi-word read transactions.

All inbound read transactions are processed as delayed read transactions. The ATU’s PCI in
claims the read transaction and forwards the read request through to the 80960 local b
returns the read data to the PCI bus. The IDRAQ contains inbound PCI read address and t
data is stored in the ODQ. Data flow for an inbound read transaction on the PCI bus is summ
in the following statements:

• The ATU claims the PCI read transaction when the PCI address is within the inb
translation window defined by ATU Inbound Base Register and Inbound Limit Register.

• When no transaction is currently in the IDRAQ, the PCI address is latched into IDRAQ a
Retry is signalled to the initiator. 

- When the IDRAQ is full: the PCI address, command, and byte enables match those
from a previous transaction, and the ODQ contains read data, start returning read 
data to the initiator.

- When the IDRAQ is full and the PCI address, command, and byte enables do not 
match: signal a Retry to the initiator and do not latch any transaction information. 

• Once read data is driven onto the PCI bus from the ODQ, it continues until one o
following is true:

- The initiator completes the PCI transaction.

- A local bus error was detected. In this case, a Target-abort is signaled to the initiato

- The ODQ becomes empty. In this case, the PCI interface signals a Disconnect to th
16-10

initiator.



alue
). 

core

ary bus.
e cycle
ort two
ADDRESS TRANSLATION UNIT

16.3.4 Inbound Configuration Cycle Translation

The ATU only accepts Type 0 configuration cycles with a function number of one (the bridge unit
is function 0 in the i960 Rx I/O processor). 

Both primary and secondary ATUs share the same PCI configuration space. This configuration
space can be accessed using PCI configuration cycles from both the primary and secondary PCI
buses using function 1 configuration space. All inbound configuration cycles are processed as
delayed transactions.

16.3.5 Discard Timers

The ATUs implement discard timers for inbound delayed transactions. These timers prevent
deadlocks when the initiator of a retried delayed transaction fails to complete the transaction within
210 or 215 PCI clock cycles. The timer starts counting when the delayed request becomes a delayed
completion by completing on the destination bus. When the originating master on the initiating bus
has not completed the transaction before the timer expires, the completion transaction is discarded.

Discard timer values are controlled by the Bridge Control Register’s Primary Discard Timer V
bit (for the primary ATU) and the Secondary Discard Timer Value bit (for the secondary ATU

16.3.6 Outbound Address Translation

In addition to providing the mechanism for inbound translation, the ATUs translate i960 
processor-initiated cycles to the PCI bus. This is known as outbound address translation.
Outbound transactions are processor reads or writes targeted at the PCI primary or second
The ATU local bus slave interface claims 80960 local bus address cycles and completes th
on the PCI bus on behalf the i960 core processor. The primary and secondary ATUs supp
different outbound translation modes:

• Address Translation Windows

• Direct Addressing Window
16-11

16

Figure 16-5 shows a i960 Rx I/O processor memory map with all reserved address locations
highlighted. The outbound translation windows exist from 8000 0000H to 9001 FFFFH. This is a
256 Mbyte window and a 128 Kbyte window which are equally divided between the primary and
secondary ATUs. The outbound direct addressing window is from 0000 2000H to 7FFF FFFFH.
Both outbound schemes are described in the following subsections.

Outbound address translation is disabled for the Primary ATU when the Bus Master Enable bit in
the Primary ATU Command Register is clear and is disabled for the Secondary ATU when the Bus
Master Enable bit in the Secondary ATU Command Register is clear. When the Bus Master Enable



 the
ADDRESS TRANSLATION UNIT

bit is clear or the Outbound ATU Enable (bits 1:2 of the ATUCR) are clear, the ATUs do not
claim any i960 core processor accesses. These unclaimed accesses may cause a Bus Monitor
time-out to occur. For outbound memory transactions, the only burst order supported is Linear
Incrementing.

16.3.6.1 Outbound Address Translation Windows

Inbound translation involves a programmable inbound translation window consisting of a base and
limit register and a value register for PCI to 80960 translation. The outbound address translation
windows use a similar methodology except that the outbound translation windows are fixed in
80960 local bus address space; this removes the need for base and limit registers.

Figure 16-6 illustrates the outbound address translation windows. Each ATU has three windows.
Two are 64 Mbyte and one is 64 Kbyte. The primary outbound memory and DAC translation
windows range from 8000 0000H to 87FF FFFFH (2 x 64 Mbyte) and the secondary outbound
memory and DAC translation windows range from 8800 0000H to 8FFF FFFFH (2 x 64 Mbyte).
After these four windows, the primary and secondary outbound I/O windows range from
9000 0000H to 9001 FFFFH (2 x 64 Kbyte). When the secondary PCI Boot Mode (bit 11 in
ATUCR) is set, the Secondary ATU claims all 80960 local bus accesses with addresses in the
range FE00 0000 to FFFF FFFF.

Each memory and DAC window are 64 Mbytes and each I/O window is 64 Kbytes. An 80960
local bus cycle with an address within one outbound window initiates a read or write cycle on the
targeted PCI bus. The PCI cycle type depends on which translation window the local bus cycle
“hits”. The read or write decision is based on the 80960 local bus cycle type. 

Each ATU has a window dedicated to the following outbound PCI transaction types in
outbound address translation window:

• Memory reads and writes - Memory Window 

• I/O reads and writes - I/O Window 

• Dual Address Cycle reads and writes - DAC Window
16-12

Refer to Figure 16-6 for the sub-window addresses involved in primary and secondary outbound
translation.

The windowing scheme means:

• a processor read cycle that addresses a Memory Window is a Memory Read on the PCI bus 

• a processor write cycle that addresses the I/O Window is an I/O Write on the PCI bus

Memory Write and Invalidate (MWI), Memory Read Line, and Memory Read Multiple
commands are not supported in outbound ATU transactions.



ADDRESS TRANSLATION UNIT

0000 0000H

0000 0400H

0000 1000H

0000 2000H

8000 0000H

FEFF FF2FH

FEFF FF60H

FF00 0000H

ATU Outbound

9002 0000H

External Memory
Code/Data

ATU Outbound
Translation Windows

80960 Local Bus Address

Direct Addressing
Window

Internal Data RAM

Reserved

Peripheral Memory
Mapped Registers

Reserved

Initialization Boot Record (IBR)
16-13

16
Figure 16-5.  80960 Local Bus Memory Map - Outbound Translation Window

FFFF FFFFH

i960 Core Processor Memory-
Mapped Register Space



y and

h the
ith the
s. The
ound
r I/O

hich
ing the
 only

ot word
ADDRESS TRANSLATION UNIT

The translation portion of outbound ATU transactions is accomplished with a value register in the
same manner as inbound translations. The outbound upper 64-bit Dual Address Cycle (DAC)
registers are for DAC commands and contain the high order 32-bits of a dual cycle 64-bit address
directly with no translation. Both ATUs use the following registers in outbound address trans-
lation:

• Outbound Memory Window Value Register

• Outbound I/O Window Value Register

• Outbound DAC Window Value Register

• Outbound Upper 64-Bit DAC Register

• Outbound Configuration Cycle Address Register

See Section 16.7, ”REGISTER DEFINITIONS” (pg. 16-25) for details on outbound translation
register definition and programming constraints.

The translation algorithm used, as stated, is very similar to inbound translation. For memor
DAC transactions, the algorithm is:

PCI_Address = (80960_Address & 03FF FFFFH) | Translate_Register

For memory and DAC transactions, the 80960 local bus address is bitwise ANDed wit
inverse of 64 Mbytes which clears the upper 6 bits of address. The result is bitwise ORed w
outbound window value register to create the primary or secondary low 32-bit PCI addres
upper 32-bit of address for the PCI DAC read/write cycle comes from the Primary Outb
Upper 64-bit DAC Register and the Secondary Outbound Upper 64-bit DAC Register. Fo
transactions, the algorithm is:

PCI_Address = (80960_Address & 0000 FFFFH) | Translate_Register

For I/O transactions, the local address is bitwise ANDed with the inverse of 64 Kbytes w
clears the upper 16 bits of address. Address aliasing can be prevented by programm
outbound window value registers on boundaries equivalent to the window’s length, but this is
enforced through application programming. PCI I/O addresses are byte addresses and n
16-14

addresses. The PCI I/O address’s two least significant bits are determined by byte enables that the
processor issues. For example, when the i960 core processor performs a 2-byte write and
generates byte enables of 00112, the ATU sets the two least significant bits of PCI I/O address
to 102.

NOTE: When the i960 core processor’s data cache is enabled for accesses to the 
Outbound I/O Window, the byte enables generated by the i960 core 
processor are always 00 2 for Byte and Short accesses.



ADDRESS TRANSLATION UNIT

Figure 16-6.  Outbound Address Translation Windows

8000 0000H

ATU Outbound
Memory and DAC Cycle

 ATU Outbound
I/O Cycle

9001 FFFFH

8400 0000H

8800 0000H

83FF FFFFH

87FF FFFFH

8BFF FFFFH

9000 0000H

9001 0000H

9000 FFFFH

Primary Memory Window

Primary DAC Window

Secondary Memory Window

Primary I/O Window

Secondary I/O Window

64 Mbytes

64 Kbytes

8C00 0000H

8FFF FFFFH

Secondary DAC Window

Translation Windows

Translation Windows

80960 Local Bus Address
16-15

16

16.3.6.2 Direct Addressing Window

The second method used by outbound cycles from the i960 core processor to the PCI bus is with
the direct addressing window. This is a window of addresses in 80960 local bus address space that
act in the same manner as the outbound translation windows without the translation. An i960 core
processor read or write to a local bus address within the direct addressing window initiates a read
or write on the PCI bus with the same address as used on the local bus. Figure 16-7 shows an
example of an outbound write that is through the direct addressing window.

Direct Addressing is limited to PCI memory read and writes only. I/O cycles, DAC cycles, MWI,
Memory Read Line, and Memory Read Multiple commands are not supported with direct
addressing.



ssor’s
cycles
d. The
ress

dow.
.

h the
nsac-
I bus.
ADDRESS TRANSLATION UNIT

Figure 16-7.  Direct Addressing Window

The direct addressing window address range is fixed in the lower 2 Gbytes of the 80960 local bus
address space — except for the first 8 Kbytes which is reserved for the i960 core proce
internal data RAM and i960 core processor memory-mapped registers. 80960 local bus 
with an address from 0000 2000H to 7FFF FFFCH are forwarded to a PCI bus, when enable
primary PCI bus is the default bus for direct addressing. The following bits within the Add
Translation Unit Configuration Register (ATUCR) affect direct addressing operation:

• ATUCR Direct Addressing Enable bit - when set, enables the direct addressing win
When clear, addresses within the direct addressing window are not claimed by the ATU

• ATUCR Secondary Direct Addressing Select bit - when clear, all transactions throug
direct addressing window are to the primary ATU and primary PCI bus. When set, all tra
tions through the direct addressing window are to the secondary ATU and secondary PC

0000 2000H

7FFF FFFFH

Direct Addressing Window

80960 Local Bus Address Space

Address 6000 1008H

Local Bus Write
with address

PCI Write Cycle
with address
6000 1008H6000 1008H

7FFF FFFFH

0000 2000H
16-16

16.3.7 Outbound Write Transaction

An outbound write transaction is initiated by the i960 core processor and is targeted at a PCI slave
on either the primary or secondary PCI buses. The outbound write address and write data are
propagated from the 80960 local bus to a PCI bus through the OAQ and the ODQ.

The ATU’s slave local bus interface claims the write transaction and forwards the write data
through to the targeted PCI bus. Data flow for an outbound write transaction on the 80960 local
bus is summarized in the following statements:



 when
Q are

nto the

nit to
ODQ
to idle

bound

I slave
gh the

(IDQ).

ugh to
d read

ddress
ress is
und

sserts
ckoff

ut into
off is
 and has
ADDRESS TRANSLATION UNIT

• The ATU local bus interface latches the address from the 80960 local bus into the OAQ
that address is inside one of the outbound translate windows and the OAQ and OD
empty.

• Once the outbound address is latched, the local bus interface stores the write data i
ODQ until the local bus transaction completes.

• When the OAQ or the ODQ are not available, the ATU signals the internal arbitration u
assert an i960 core processor backoff. Backoff remains active until the OAQ and 
become available. When backoff is deasserted, the local bus slave interface returns 
while the backoff logic re-initiates the local bus transaction. 

• 80960Rx software must ensure that the upper 32 bits of a DAC are non-zero during out
DAC window accesses.

16.3.8 Outbound Read Transaction

An outbound read transaction is initiated by the i960 core processor and is targeted at a PC
on either the primary or secondary PCI buses. The read transaction is propagated throu
outbound address queue (OAQ) and read data is returned through the inbound data queue 

The ATU’s local bus interface claims the read transaction and forwards the read request thro
the PCI bus and returns the read data to the 80960 local bus. The data flow for an outboun
transaction on the local bus is summarized in the following statements:

• The ATU local bus interface latches the 80960 local bus address on the bus when the a
is inside an outbound address translation window and the OAQ is empty. When the add
inside an outbound translation window but the OAQ is not empty (previous outbo
transaction in progress), the local bus interface notifies the internal arbiter, which a
backoff. The processor stays in backoff until the OAQ becomes empty, at which time ba
is deasserted. 

• Once the outbound local address is latched into the OAQ, the i960 core processor is p
backoff to give the delayed read transaction time to complete on the PCI bus. Back
deasserted when the PCI interface has completed reading the requested amount of data
16-17

16

put the data into the IDQ. A PCI error cancels backoff and causes the outbound read request to
return FFFF FFFFH to the i960 core processor.

• If the PCI Read transaction is disconnected and an inbound write transaction occurs, then
return any data to the local bus and allow the inbound write transaction to complete. The
outbound read transaction will resume after the inbound write transaction completes.

• Once the transaction completes on the PCI bus, the local interface starts reading data from the
IDQ. This continues until the IDQ is empty and the local bus operation completes.

• 80960Rx software must ensure that the upper 32 bits of a DAC are non-zero during outbound
DAC window accesses.



address
ls within
rd these
space:

ide the
U claims

I bus.

space,
 Bus

e unit
to the
rface.
ondary
 valid
red by

vices.
les.
olves
ADDRESS TRANSLATION UNIT

16.3.9 Private PCI Address Space / Outbound Configuration Cycle Translation

The secondary ATU contains special support for creating private address spaces on the secondary
PCI bus. A private address space is defined as a range of secondary PCI bus addresses which are
not part of the secondary PCI address space as defined by the bridge and are also not part of the
primary PCI address space. Private address space can be considered a “hole” in the PCI 
space that is only supported on the secondary PCI bus. Private address space generally fal
the primary PCI address space and requires special bridge support so that it does not forwa
addresses. The i960 Rx I/O processor has several mechanisms to support private address 

• Inbound transactions from private devices to the secondary ATU.

• Outbound transactions from the secondary ATU and DMA channel 2 to private devices.

• Outbound configuration cycles to private devices.

• Hiding private devices from PCI Type 0 configuration cycles. (See CHAPTER 15,
PCI-TO-PCI BRIDGE UNIT for more details.)

For inbound transactions from private devices, the secondary ATU can be configured outs
valid secondary PCI address space; this creates private address space. The secondary AT
private addresses and prevents the bridge from forwarding them upstream to the primary PC

For outbound transactions from the secondary ATU or DMA channel 2 to a private address 
the PCI to PCI bridge does not claim the transaction unless the ATUCR’s Secondary
Messaging Unit Access Enable bit (bit 12) is set. When this bit is set, the PCI-to-PCI Bridg
can forward a transaction from the secondary PCI interface, through the bridge, and 
Messaging Unit (first 4 Kbytes of the PATU inbound address space) on the primary PCI inte
For correct operation, the transaction must be a valid bridge address (claimed by sec
interface of the bridge and forwarded to the primary interface of the bridge) as well as a
Messaging Unit address. When clear, the Messaging Unit cannot claim a transaction maste
the primary interface of the bridge.

Outbound configuration cycles — secondary and primary — can support private PCI de
Outbound ATUs provide a port programming model for outbound configuration cyc
Performing an outbound configuration cycle to either the primary or secondary PCI bus inv
16-18

up to two 80960 local bus cycles:

1) Writing the Outbound Configuration Cycle Address Register (primary or secondary) with the
PCI address used during the configuration cycle. See the PCI Local Bus Specification,
revision 2.1 for information regarding configuration address cycle formats. This i960 core
processor cycle enables the transaction.



ADDRESS TRANSLATION UNIT

2) Writing or reading the Outbound Configuration Cycle Data Register (primary or secondary).
The i960 core processor cycle initiates the transaction. A read causes a configuration cycle
read to the primary or secondary PCI bus with the address in the outbound configuration cycle
address register. Similarly, a write initiates a configuration cycle write to the primary or
secondary PCI bus with the write data from the second processor cycle. Configuration cycles
are non-burst and restricted to a single word cycle.

Section 16.7, REGISTER DEFINITIONS (pg. 16-25) describes the outbound configuration cycle
address and data register definitions and programming constraints.

NOTE: Outbound configuration cycle data registers are not physical registers. 
They are an 80960 local bus memory mapped address used to initiate a 
transaction with the address in the associated address register. 
Reads/writes to these registers return data from the PCI bus — not from the 
register. Outbound configuration cycles use address stepping and may 
delay the assertion of FRAME#.

16.4 MESSAGING UNIT

The Messaging Unit (MU) transfers data between the PCI system and the i960 Rx I/O processor
and notifies the respective system when new data arrives. The MU is described in CHAPTER 17,
MESSAGING UNIT.

The primary PCI window for messaging transactions is always the first 4 Kbytes of the inbound
translation window defined by the Primary Inbound ATU Base Address Register (PIABAR) and
the Primary Inbound ATU Limit Register (PIALR).

16.5 EXPANSION ROM TRANSLATION UNIT

The primary inbound ATU supports one address range (defined by a base/limit register pair) used
for containing the Expansion ROM. Refer to the PCI Local Bus Specification, revision 2.1 for
16-19

16

details on Expansion ROM format and usage.

During a powerup sequence, initialization code from Expansion ROM is executed once by the host
processor to initialize the associated device. The code can be discarded once executed. Expansion
ROM registers are described in Section 16.7.15 (pg. 16-41), Section 16.7.31 (pg. 16-57), and
Section 16.7.32 (pg. 16-58).



ADDRESS TRANSLATION UNIT

The inbound primary ATU supports an inbound Expansion ROM window which works like the
inbound translation window. A read from the expansion ROM window is forwarded to the 80960 local
bus and to the Memory Controller. Writes through the Expansion ROM window are not supported. The
address translation algorithm is the same as in inbound translation; see Section 16.3.1, Inbound
Address Translation (pg. 16-5). Two ROM widths are supported: 8- and 32-bit. When the Expansion
ROM is 32 bits wide (Expansion ROM Width bit is set in the ATUCR), the inbound ATU uses
standard 32-bit accesses on the local bus as if it was reading from any 32-bit memory.

16.6 ATU DATA FLOW ERROR CONDITIONS

PCI and 80960 local bus error conditions cause the ATU state machines to exit normal operation
and return to idle states. Error conditions on one side of the ATU are propagated to the other side
of the ATU and have different effects depending on the error. Error conditions and their effects are
described in the following sections.

PCI bus error conditions and the action taken on the bus are defined within the PCI Local Bus
Specification, revision 2.1. The ATU adheres to the error conditions defined within the PCI speci-
fication for both master and slave operation. Error conditions on the 80960 local bus are caused by
the propagation of an error from the Memory Controller. See CHAPTER 14, MEMORY
CONTROLLER for details on memory controller error conditions. All actions on the PCI Bus for
error situations are dependent on the error control bits found in the Primary ATU and Secondary
ATU Command Registers. See Section 16.7, REGISTER DEFINITIONS (pg. 16-25).

Table 16-2 through Table 16-5 assume that all error reporting is enabled through the appropriate
command and status registers (unless otherwise noted). Refer to the PCI Local Bus Specification,
revision 2.1 for details on the complete action a PCI master and slave interface needs to take for
parity error events.

When the ATU detects the assertion of P_SERR# on the primary PCI bus and the Primary SERR
Interrupt Enable bit in the ATU Configuration Register (ATUCR) is set, the ATU signals an NMI#
interrupt to the i960 core processor. Likewise, when the ATU detects the assertion of the
S_SERR# signal on the secondary PCI bus and the Secondary SERR Interrupt Enable bit in the
16-20

ATUCR is set, the ATU signals an NMI# interrupt to the i960 core processor. 



ADDRESS TRANSLATION UNIT

Table 16-2.  Inbound Write Error Conditions

Bus & State 
Machine

Error Condition Effect on PCI Bus Effect on 80960 Local Bus

PCI Slave

Address Parity Error
• SERR# asserted

• PCI Master Abort

• No effect

• Transaction never 
propagated to local bus

Data Parity Error

• PERR# asserted

• IAQ Cleared

• PCI Disconnect

• Data in IDQ completed

Local Bus 
Master

80960Rx Memory 
Controller Fault

• PERR# asserted when 
transaction is still in 
progress or...
SERR# asserted after 
transaction completes on 
PCI bus, if not in progress

• IAQ cleared

• i960 core processor is 
interrupted with NMI#

• IDQ cleared

Table 16-3.  Inbound Read Error Conditions

Bus & State 
Machine

Error Condition Effect on PCI Bus Effect on 80960 Local Bus

PCI Slave Address Parity Error
• SERR# asserted

• PCI Master Abort

• No effect 

• Transaction never 
propagated to local bus

Local Bus 
Master

80960Rx Memory 
Controller Parity Error

• ATU interface drives bad 
data, causes bad parity

• Error condition 
determined by PCI 
master

• i960 core processor is 
interrupted with NMI#

80960Rx Memory 
Controller Fault

• PCI Target Abort
• i960 core processor is 

interrupted with NMI# 
16-21

16

Table 16-4.  Outbound Write Error Conditions

Bus & State 
Machine

Error Condition Effect on PCI Bus Effect on 80960 Local Bus

PCI Master

No DEVSEL#
• PCI Master 

Abort • i960 core processor is interrupted with NMI# if 
the ATU PCI Error Interrupt Enable bit is set in 
the ATUCR. The data in the OWQ is 
discarded.

Data Parity Error
• PERR# 

detected

PCI Target Abort
• PCI Target 

Abort



ADDRESS TRANSLATION UNIT

The following two tables (Table 16-6 and Table 16-7) summarize the ATU error reporting for PCI
bus errors and local bus errors. The tables assume that all error reporting is enabled through the
appropriate command and status registers (unless otherwise noted). The Primary and Secondary
ATU Status Registers record PCI bus errors. Note that the SERR# Asserted bit in the Status
Register is set only when the SERR# Enable bit in the Command Register is set. The Primary and
Secondary ATU Interrupt Status Registers record i960 core processor interrupt status information.

Table 16-5.  Outbound Read Error Conditions

Bus & State 
Machine

Error Condition Effect on PCI Bus Effect on 80960 Local Bus

PCI Master

No DEVSEL#
• PCI Master 

Abort
• i960 core processor is interrupted with NMI# 

if the ATU PCI Error Interrupt Enable bit is set 
in the ATUCR

• A false data value is returned to the 
processor to allow the cycle to complete. 
FFH is returned for every byte read on the 
local bus

Data Parity Error
• PERR# 

asserted

PCI Target Abort
• PCI Target 

Abort

Table 16-6.  Primary ATU Error Reporting Summary  (Sheet 1 of 2)

Error Condition
Primary ATU Status Register

(PATUSR)
Primary ATU Interrupt Status 

Register (PATUISR)

NMI# 
Interrupt?
(if enabled)

Inbound Write
PCI Address Parity 
Error

Parity Error bit (bit 15) set
P_SERR# Asserted bit (bit 14) set

P_SERR# Detected bit (bit 4) set Yes

Inbound Write
PCI Data Parity 
Error

Parity Error bit (bit 15) set No

Inbound Write
Local Bus Fault

P_SERR# Asserted bit (bit 14) set
P_SERR# Detected bit (bit 4) set
80960 local bus address Fault (bit 
5) set

Yes
16-22

Inbound Read
PCI Address Parity 
Error

Parity Error bit (bit 15) set
P_SERR# Asserted bit (bit 14) set

P_SERR# Detected bit (bit 4) set Yes

Inbound Read
Local Bus Data 
Parity Error

80960 local bus memory Fault bit 
(bit 6) set

Yes

Inbound Read
Local Bus Fault

Target Abort (Target) (bit 11) set
80960 local bus address Fault (bit 
5) set

Yes

Outbound Write
PCI Master Abort

Master Abort bit (bit 13) set PCI Master Abort bit (bit 3) set Yes



ADDRESS TRANSLATION UNIT

Outbound Write
PCI Data Parity 
Error

Master Parity Error (bit 8) set,
Parity Error (bit 15) is set

PCI Master Parity Error bit (bit 0) set Yes

Outbound Write
PCI Target Abort

Target Abort (Master) (bit 12) set PCI Target Abort (Master) (bit 2) set Yes

Outbound Read
PCI Master Abort

Master Abort bit (bit 13) set PCI Master Abort bit (bit3) set Yes

Outbound Read
PCI Data Parity 
Error

Parity Error bit (bit 15) set
Master Parity Error (bit 8) set

PCI Master Parity Error (bit 0) set Yes

Outbound Read
PCI Target Abort

Target Abort (Master) (bit 12) set PCI Target Abort (Master) (bit 2) set Yes

P_SERR# Detected P_SERR# Detected bit (bit 4) set Yes

Table 16-7.  Secondary ATU Error Reporting Summary  (Sheet 1 of 2)

Error Condition
Secondary ATU Status Register

(SATUSR)
Secondary ATU Interrupt Status 

Register (SATUISR)

NMI# 
Interrupt?

(if enabled)

Inbound Write
PCI Address Parity 

Error

Parity Error bit (bit 15) set
S_SERR# Asserted bit (bit 14) set

S_SERR# Detected bit (bit 4) set Yes

Inbound Write
PCI Data Parity Error

Parity Error bit (bit 15) set No

Inbound Write
Local Bus Fault

S_SERR# Asserted bit (bit 14) set
S_SERR# Detected bit (bit 4) set
80960 local bus address Fault (bit 5) 
set

Yes

Inbound Read
Parity Error bit (bit 15) set

Table 16-6.  Primary ATU Error Reporting Summary  (Sheet 2 of 2)

Error Condition
Primary ATU Status Register

(PATUSR)
Primary ATU Interrupt Status 

Register (PATUISR)

NMI# 
Interrupt?
(if enabled)
16-23

16

PCI Address Parity 
Error

S_SERR# Asserted bit (bit 14) set
S_SERR# Detected bit (bit 4) set Yes

Inbound Read
Local Bus Data Parity 

Error

80960 local bus memory Fault bit 
(bit 6) set

Yes

Inbound Read
Local Bus Fault

Target Abort (Target) (bit 11) set
80960 local bus address Fault (bit 5) 
set

Yes

Outbound Write
PCI Master Abort

Master Abort bit (bit 13) set PCI Master Abort bit (bit 3) set Yes



ADDRESS TRANSLATION UNIT

Outbound Write
PCI Data Parity Error

Master Parity Error (bit 8) set,
Parity Error (bit 15) is set

PCI Master Parity Error bit (bit 0) set Yes

Outbound Write
PCI Target Abort

Target Abort (Master) (bit 12) set PCI Target Abort (Master) (bit 2) set Yes

Outbound Read
PCI Master Abort

Master Abort bit (bit 13) set PCI Master Abort bit (bit3) set Yes

Outbound Read
PCI Data Parity Error

Parity Error bit (bit 15) set
Master Parity Error (bit 8) set

PCI Master Parity Error (bit 0) set Yes

Outbound Read
PCI Target Abort

Target Abort (Master) (bit 12) set PCI Target Abort (Master) (bit 2) set Yes

S_SERR# Detected S_SERR# Detected bit (bit 4) set Yes

Table 16-7.  Secondary ATU Error Reporting Summary  (Sheet 2 of 2)

Error Condition
Secondary ATU Status Register

(SATUSR)
Secondary ATU Interrupt Status 

Register (SATUISR)

NMI# 
Interrupt?

(if enabled)
16-24



ADDRESS TRANSLATION UNIT

16.7 REGISTER DEFINITIONS

Every PCI device implements its own separate configuration address space and configuration
registers. The PCI Local Bus Specification, revision 2.1 requires that configuration space be
256 bytes, and the first 64 bytes must adhere to a predefined header format.

Figure 16-8 defines the format for the first 64 bytes of the header. The additional 182 bytes of the
configuration space is defined as the ATU extended configuration space. ATU configuration space
is function number one of the i960 Rx I/O processor multifunction PCI device.

Beyond the required 64 byte header format, ATU configuration space implements extended
register space in support of the units functionality. Refer to the PCI Local Bus Specification,
revision 2.1 for details on accessing and programming configuration register space.

The following sections describe the ATU and Expansion ROM configuration registers. Configu-
ration space consists of 8, 16, 24, and 32-bit registers arranged in a predefined format. Each
register is described in functionality, access type (read/write, read/clear, read only) and reset
default condition.

See CHAPTER 1, INTRODUCTION for a description of reserved, read only, and read/clear. All
registers adhere to the definitions found in the PCI Local Bus Specification, revision 2.1 unless
otherwise noted.

NOTE: Each configuration register’s access type is individually defined for PCI 
configuration accesses. Some PCI read-only configuration registers have 
read/write capability from the i960 core processor. See also APPENDIX C, 
MEMORY-MAPPED REGISTERS.
16-25

16



ADDRESS TRANSLATION UNIT

Figure 16-8.  ATU Configuration Space Header

 

ATU Configuration Space Header

PCI 
Config 
Addr 

Offset

ATU Device ID ATU Vendor ID 00H

Primary ATU Status Primary ATU Command 04H

ATU Class Code ATU Revision ID 08H

ATU BIST ATU Header Type ATU Latency Timer ATU Cacheline Size 0CH

Primary Inbound ATU Base Address 10H

14H

18H

Reserved
1CH

20H

24H

28H

ATU Subsystem ID ATU Subsystem Vendor ID 2CH

Expansion ROM Base Address 30H

34H
Reserved

38H

ATU Max. Latency ATU Minimum Grant ATU Interrupt Pin ATU Interrupt Line 3CH

Table 16-8.  ATU Configuration Space Register Summary  (Sheet 1 of 3)

Section Register Name and Acronym Page
 Size
(Bits)

80960 Local 
Bus 

Address

PCI 
Config
Addr 
Offset
16-26

16.7.1 ATU Vendor ID Register - ATUVID 16-29 16 0000 1200H 00H

16.7.2 ATU Device ID Register - ATUDID 16-29 16 0000 1202H 02H

16.7.3 Primary ATU Command Register - PATUCMD 16-30 16 0000 1204H 04H

16.7.4 Primary ATU Status Register - PATUSR 16-31 16 0000 1206H 06H

16.7.5 ATU Revision ID Register - ATURID 16-32 8 0000 1208H 08H

16.7.6 ATU Class Code Register - ATUCCR 16-32 24 0000 1209H 09H

16.7.7 ATU Cacheline Size Register - ATUCLSR 16-33 8 0000 120CH 0CH

16.7.8 ATU Latency Timer Register - ATULT 16-33 8 0000 120DH 0DH

16.7.9 ATU Header Type Register - ATUHTR 16-34 8 0000 120EH 0EH

16.7.10 ATU BIST Register - ATUBISTR 16-35 8 0000 120FH 0FH



ADDRESS TRANSLATION UNIT

16.7.11 Primary Inbound ATU Base Address Register - PIABAR 16-36 32 0000 1210H 10H

Reserved

32 0000 1214H 14H

32 0000 1218H 18H

32 0000 121CH 1CH

32 0000 1220H 20H

32 0000 1224H 24H

32 0000 1228H 28H

16.7.13 ATU Subsystem Vendor ID Register - ASVIR 16-40 16 0000 122CH 2CH

16.7.14 ATU Subsystem ID Register - ASIR 16-40 16 0000 122EH 2EH

16.7.15 Expansion ROM Base Address Register - ERBAR 16-41 32 0000 1230H 30H

Reserved
32 0000 1234H 34H

32 0000 1238H 38H

16.7.16 ATU Interrupt Line Register - ATUILR 16-42 8 0000 123CH 3CH

16.7.17 ATU Interrupt Pin Register - ATUIPR 16-43 8 0000 123DH 3DH

16.7.18 ATU Minimum Grant Register - ATUMGNT 16-44 8 0000 123EH 3EH

16.7.19 ATU Maximum Latency Register - ATUMLAT 16-45 8 0000 123FH 3FH

16.7.20 Primary Inbound ATU Limit Register - PIALR 16-46 32 0000 1240H 40H

16.7.21 Primary Inbound ATU Translate Value Register - PIATVR 16-47 32 0000 1244H 44H

16.7.22 Secondary Inbound ATU Base Address Register - SIABAR 16-48 32 0000 1248H 48H

16.7.23 Secondary Inbound ATU Limit Register - SIALR 16-49 32 0000 124CH 4CH

16.7.24 Secondary Inbound ATU Translate Value Register - SIATVR 16-50 32 0000 1250H 50H

16.7.25 Primary Outbound Memory Window Value Register - POMWVR 16-51 32 0000 1254H 54H

Reserved 32 0000 1258H 58H

16.7.26 Primary Outbound I/O Window Value Register - POIOWVR 16-52 32 0000 125CH 5CH

16.7.27 Primary Outbound DAC Window Value Register - PODWVR 16-53 32 0000 1260H 60H

Table 16-8.  ATU Configuration Space Register Summary  (Sheet 2 of 3)

Section Register Name and Acronym Page
 Size
(Bits)

80960 Local 
Bus 

Address

PCI 
Config
Addr 

Offset
16-27

16

16.7.28 Primary Outbound Upper 64-bit DAC Register - POUDR 16-54 32 0000 1264H 64H

16.7.29
Secondary Outbound Memory Window Value Register - 
SOMWVR

16-55 32
0000 1268H

68H

16.7.30 Secondary Outbound I/O Window Value Register - SOIOWVR 16-56 32 0000 126CH 6CH

Reserved 32 0000 1270H 70H

16.7.31 Expansion ROM Limit Register - ERLR 16-57 32 0000 1274H 74H

16.7.32 Expansion ROM Translate Value Register - ERTVR 16-58 32 0000 1278H 78H

Reserved

32 0000 127CH 7CH

32 0000 1280H 80H

32 0000 1284H 84H



ADDRESS TRANSLATION UNIT

16.7.33 ATU Configuration Register - ATUCR 16-58 32 0000 1288H 88H

Reserved 32 0000 128CH 8CH

16.7.34 Primary ATU Interrupt Status Register - PATUISR 16-61 32 0000 1290H 90H

16.7.35 Secondary ATU Interrupt Status Register - SATUISR 16-62 32 0000 1294H 94H

16.7.36 Secondary ATU Command Register - SATUCMD 16-64 16 0000 1298H 98H

16.7.37 Secondary ATU Status Register - SATUSR 16-65 16 0000 129AH 9AH

16.7.38 Secondary Outbound DAC Window Value Register - SODWVR 16-66 32 0000 129CH 9CH

16.7.39 Secondary Outbound Upper 64-bit DAC Register - SOUDR 16-67 32 0000 12A0H A0H

16.7.40
Primary Outbound Configuration Cycle Address Register - 
POCCAR

16-68 32
0000 12A4H

A4H

16.7.41
Secondary Outbound Configuration Cycle Address Register - 
SOCCAR

16-69 32
0000 12A8H

A8H

16.7.42 Primary Outbound Configuration Cycle Data Port - POCCDP 16-70 32 0000 12ACH ACH

16.7.43 Secondary Outbound Configuration Cycle Data Port - SOCCDP 16-70 32 0000 12B0H B0H

Reserved
0000 12B4H through 

0000 12FFH

Table 16-8.  ATU Configuration Space Register Summary  (Sheet 3 of 3)

Section Register Name and Acronym Page
 Size
(Bits)

80960 Local 
Bus 

Address

PCI 
Config
Addr 
Offset
16-28



ADDRESS TRANSLATION UNIT

16.7.1 ATU Vendor ID Register - ATUVID

The ATU Vendor ID Register bit definitions adhere to PCI Local Bus Specification, revision 2.1.

16.7.2 ATU Device ID Register - ATUDID

ATU Device ID Register bit definitions adhere to PCI Local Bus Specification, revision 2.1.

Table 16-9.  ATU Vendor ID Register - ATUVID

LBA: 

PCI:

1200H

00H

Legend: NA = Not Accessible RO = Read Only
RV = Reserved PR = Preserved RW = Read/Write
RS = Read/Set RC = Read Clear
LBA = 80960 Local Bus Address PCI = PCI Configuration Address Offset

Bit Default Description

15:00 8086H ATU Vendor ID - This is a 16-bit value assigned to Intel. This register, combined with the 
DID, uniquely identify the PCI device. Access type is Read/Write to allow the i960 core 
processor to configure the register as a different vendor ID to simulate the interface of a 
standard mechanism currently used by existing application software.

Table 16-10.  ATU Device ID Register - ATUDID

PCI

LBA

15 12 8 4 0

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

PCI

LBA

15 12 8 4 0

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro
16-29

16

LBA: 

PCI:

1202H

02H

Legend: NA = Not Accessible RO = Read Only
RV = Reserved PR = Preserved RW = Read/Write
RS = Read/Set RC = Read Clear
LBA = 80960 Local Bus Address PCI = PCI Configuration Address Offset

Bit Default Description

15:00 1960H ATU Device ID - This is a 16-bit value assigned to the ATU and MU. This ID, combined with 
the ATUVID, uniquely identify the PCI device.



ADDRESS TRANSLATION UNIT

16.7.3 Primary ATU Command Register - PATUCMD

ATU Command Register bit definitions adhere to PCI Local Bus Specification, revision 2.1 and,
in most cases, affect the behavior of the primary ATU.

Table 16-11.  Primary ATU Command Register - PATUCMD

LBA: 

PCI:

1204H

04H

Legend: NA = Not Accessible RO = Read Only
RV = Reserved PR = Preserved RW = Read/Write
RS = Read/Set RC = Read Clear
LBA = 80960 Local Bus Address PCI = PCI Configuration Address Offset

Bit Default Description

15:10 00H Reserved.

09 02 Fast Back to Back Enable - When cleared, the ATU primary interface is not allowed to 
generate fast back-to-back cycles on its bus.

08 02 P_SERR# Enable - When cleared, the ATU primary interface is not allowed to assert 
P_SERR# on the PCI interface.

07 02 Wait Cycle Control - controls address/data stepping. Not implemented and a reserved bit 
field.

06 02 Parity Checking Enable - When set, the primary ATU and DMA channels 0 and 1 take 
normal action when a parity error is detected. When cleared, parity checking is disabled.

05 02 VGA Palette Snoop Enable - The primary ATU interface does not support I/O writes and 
therefore, does not perform VGA pallet snooping.

04 02 Memory Write and Invalidate Enable - When set, DMA channels 0 and 1 may generate 
MWI commands. When clear, DMA channels 0 and 1 use Memory Write commands 
instead of MWI.

03 02 Special Cycle Enable - The ATU interface does not respond to special cycle commands in 
any way. Not applicable. Not implemented and a reserved bit field

PCI

LBA

15 12 8 4 0

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rw

rw

rw

rw

ro

ro

rw

rw

ro

ro

rw

rw

ro

ro

rw

rw

rw

rw

ro

ro

0 0 0 0
16-30

02 02 Bus Master Enable - The primary ATU interface can act as a master on the PCI bus. When 
cleared, disables the primary ATU from generating PCI accesses. When set, allows the 
primary ATU to behave as a PCI bus master.

This enable bit also controls DMA channels 0 and 1 master interface. The bit must be set 
before initiating a DMA transfer on the PCI bus.

01 02 Memory Enable - Controls the primary ATU interface’s response to PCI memory 
addresses. When cleared, the ATU interface does not respond to any memory access on 
the PCI bus.

00 02 I/O Space Enable - Controls the ATU interface response to I/O transactions on the primary 
side. The primary ATU does not support I/O space.



ADDRESS TRANSLATION UNIT

16.7.4 Primary ATU Status Register - PATUSR

The Primary ATU Status Register bits adhere to the PCI Local Bus Specification, revision 2.1
definitions. The read/clear bits can only be set by internal hardware and are cleared by either a
reset condition or by writing a 12 to the bit to be cleared.

Table 16-12.  Primary ATU Status Register - PATUSR 

LBA: 

PCI:

1206H

06H

Legend: NA = Not Accessible RO = Read Only
RV = Reserved PR = Preserved RW = Read/Write
RS = Read/Set RC = Read Clear
LBA = 80960 Local Bus Address PCI = PCI Configuration Address Offset

Bit Default Description

15 02 Parity Error - set when a parity error is detected on the primary PCI bus even when the 
PATUCMD register’s Parity Checking Enable bit is cleared.

14 02 P_SERR# Asserted - set when P_SERR# is asserted on the PCI bus.

13 02 Master Abort - set when a transaction initiated by the primary ATU master interface ends in 
a Master-abort.

12 02 Target Abort (master) - set when a transaction initiated by the primary ATU master interface 
ends in a target abort.

11 02 Target Abort (target) - set when the primary ATU interface, acting as a target, terminates 
the transaction on the primary PCI bus with a target abort.

10:09 012 DEVSEL# Timing - These bits are read-only and define medium DEVSEL# timing for a 
target device (except configuration accesses).

08 02 Master Parity Error - The primary ATU interface sets this bit when three conditions are met:

1) bus agent asserted S_PERR# itself or observed S_PERR# asserted

2) agent setting the bit acted as the bus master for the operation in which the error occurred

PCI

LBA

15 12 8 4 0

rc

rc

rc

rc

rc

rc

rc

rc

rc

rc

ro

ro

ro

ro

rc

rc

ro

ro

ro

ro

ro

ro

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

0 1 1 0 0
16-31

16

3) PATUCMD register’s Parity Checking Enable bit is set

07 12 Fast Back-to-Back - The ATU/Messaging Unit interface is capable of accepting fast 
back-to-back transactions when the transactions are not to the same target. 

06 02 UDF Supported - User Definable Features are not supported.

05 02 66 MHz Capable - 66 MHz operation is not supported.

04:00 00H Reserved.



ADDRESS TRANSLATION UNIT

16.7.5 ATU Revision ID Register - ATURID 

Revision ID Register bit definitions adhere to PCI Local Bus Specification, revision 2.1.

16.7.6 ATU Class Code Register - ATUCCR

Class Code Register bit definitions adhere to PCI Local Bus Specification, revision 2.1. Auto
configuration software reads this register to determine the PCI device function.

1. These numbers vary with stepping, refer to the i960® Rx I/O Processor Specification Update (272918) 
for the correct value.

Table 16-13.   ATU Revision ID Register - ATURID

LBA: 

PCI:

1208H

08H

Legend: NA = Not Accessible RO = Read Only
RV = Reserved PR = Preserved RW = Read/Write
RS = Read/Set RC = Read Clear
LBA = 80960 Local Bus Address PCI = PCI Configuration Address Offset

Bit Default Description

07:00 XXH ATU Revision - Identifies the i960 Rx I/O processor’s revision number.1

Table 16-14.  ATU Class Code Register - ATUCCR 

PCI

LBA

7 4 0

rw rw rw rw rw rw rw rw

ro ro ro ro ro ro ro ro

LBA

23 20 16 12 8 4 0

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw
16-32

LBA: 

PCI:

1209H

09H

Legend: NA = Not Accessible RO = Read Only
RV = Reserved PR = Preserved RW = Read/Write
RS = Read/Set RC = Read Clear
LBA = 80960 Local Bus Address PCI = PCI Configuration Address Offset

Bit Default Description

23:16 05H Base Class - Memory Controller

15:08 80H Sub Class - Other Memory Controller

07:00 00H Programming Interface - None defined

PCI ro ro ro ro ro ro ro ro ro ro ro ro ro ro ro ro ro ro ro ro ro ro ro ro



PCI
ADDRESS TRANSLATION UNIT

16.7.7 ATU Cacheline Size Register - ATUCLSR 

Cacheline Size Register bit definitions adhere to PCI Local Bus Specification, revision 2.1. This
register is programmed with the system cacheline size in DWORDs (32-bit words). Cacheline Size
is restricted to either 8 or 16 DWORDs; the ATU interprets any other value as “0”.

16.7.8 ATU Latency Timer Register - ATULT 

ATU Latency Timer Register bit definitions apply to both the primary and secondary 
interfaces.

Table 16-15.  ATU Cacheline Size Register - ATUCLSR

LBA: 

PCI:

120CH

0CH

Legend: NA = Not Accessible RO = Read Only
RV = Reserved PR = Preserved RW = Read/Write
RS = Read/Set RC = Read Clear
LBA = 80960 Local Bus Address PCI = PCI Configuration Address Offset

Bit Default Description

07:00 00H ATU Cacheline Size - specifies the system cacheline size in DWORDs. Cacheline size is 
restricted to either 8 or 16 DWORDs.

Table 16-16.  ATU Latency Timer Register - ATULT

PCI

LBA

7 4 0

rw rw rw rw rw rw rw rw

rw rw rw rw rw rw rw rw

LBA

7 4 0

0 0 0

rw rw rw rw rw ro ro ro
16-33

16

LBA: 

PCI:

120DH

0DH

Legend: NA = Not Accessible RO = Read Only
RV = Reserved PR = Preserved RW = Read/Write
RS = Read/Set RC = Read Clear
LBA = 80960 Local Bus Address PCI = PCI Configuration Address Offset

Bit Default Description

07:03 0H Programmable Latency Timer - This field varies the latency timer for the primary interface 
from 0 to 248 clocks, in increments of eight clocks.

02:00 0002 Latency Timer Granularity - These Bits are read only giving a programmable granularity of 
8 clocks for the latency timer.

PCI rw rw rw rw rw ro ro ro



ADDRESS TRANSLATION UNIT

16.7.9 ATU Header Type Register - ATUHTR

Header Type Register bit definitions adhere to PCI Local Bus Specification, revision 2.1. This
register indicates the layout of ATU and Messaging Unit register configuration space bytes 10H to
3FH. The MSB indicates whether or not the device is multifunction.

Table 16-17.  ATU Header Type Register - ATUHTR 

LBA: 

PCI:

120EH

0EH

Legend: NA = Not Accessible RO = Read Only
RV = Reserved PR = Preserved RW = Read/Write
RS = Read/Set RC = Read Clear
LBA = 80960 Local Bus Address PCI = PCI Configuration Address Offset

Bit Default Description

07 12 Single Function/Multi-Function Device - Identifies the ATU is a multifunction PCI device.
1=multifunction device.

06:00 0H PCI Header Type - This bit field indicates the type of PCI header implemented. The ATU 
interface header conforms to PCI Local Bus Specification, revision 2.1. Type 00H configu-
ration space header definition.

PCI

LBA

7 4 0

rw rw rw rw rw rw rw rw

ro ro ro ro ro ro ro ro
16-34



ADDRESS TRANSLATION UNIT

16.7.10 ATU BIST Register - ATUBISTR

The ATU BIST Register controls the functions the i960 core processor performs when BIST is
initiated. This register is the interface between the host processor requesting BIST functions and
the i960 core processor replying with the results from the software implementation of BIST
functionality.

Table 16-18.  ATU BIST Register - ATUBISTR 

LBA: 

PCI:

120FH

0FH

Legend: NA = Not Accessible RO = Read Only
RV = Reserved PR = Preserved RW = Read/Write
RS = Read/Set RC = Read Clear
LBA = 80960 Local Bus Address PCI = PCI Configuration Address Offset

Bit Default Description

07 X2 BIST Capable - This bit value is always equal to the ATUCR ATU BIST Interrupt Enable bit. 
See Section 16.7.33, ATU Configuration Register - ATUCR

06 02 Start BIST - When the ATUCR BIST Interrupt Enable bit is set:

• Setting this bit generates an interrupt to the i960 core processor to perform a software 
BIST function. The i960 core processor clears this bit when the BIST software has 
completed with the BIST results found in ATUBISTR register bits [3:0].

When the ATUCR BIST Interrupt Enable bit is clear:

• Setting this bit does not generate an interrupt to the i960 core processor and no BIST 
functions are performed. The i960 core processor does not clear this bit.

05:04 002 Reserved.

03:00 0H BIST Completion Code - when the ATUCR BIST Interrupt Enable bit is set and the 
ATUBISTR Start BIST bit is set (bit 6):

• The i960 core processor places the results of the software BIST in these bits. A 
nonzero value indicates a device-specific error.

PCI

LBA

7 4 0

x

ro rw rv rv rw rw rw rw

ro rw rv rv rw rw rw rw
16-35

16



ADDRESS TRANSLATION UNIT

16.7.11 Primary Inbound ATU Base Address Register - PIABAR

The Primary Inbound ATU Base Address Register (PIABAR) defines the block of memory
addresses where the primary inbound translation window begins. The inbound ATU decodes and
forwards the bus request to the 80960 local bus with a translated address to map into 80960 local
memory. The PIABAR defines the base address and describes the required memory block size; see
section 16.7.12.

The first 4 Kbytes of memory defined by the PIABAR and the PIALAR is reserved for the
Messaging Unit.

The programmed value within the base address register must comply with the PCI programming
requirements for address alignment. Refer to the PCI Local Bus Specification, revision 2.1 for
additional information on programming base address registers.

Table 16-19.  Primary Inbound ATU Base Address Register - PIABAR

LBA: 

PCI:

1210H

10H

Legend: NA = Not Accessible RO = Read Only
RV = Reserved PR = Preserved RW = Read/Write
RS = Read/Set RC = Read Clear
LBA = 80960 Local Bus Address PCI = PCI Configuration Address Offset

Bit Default Description

31:12 0000 0H Primary Translation Base Address - These bits define the actual location the Primary 
translation function is to respond to when addressed from the PCI bus.

11:04 00H Reserved.

03 12 Prefetchable Indicator - Defines the memory spaces as prefetchable.

02:01 002 Address Type - These bits define where the block of memory can be located. The base 

PCI

LBA

28 24 20 16 12 8 4 031

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

ro

ro

ro

ro

ro

ro

ro

ro

1 0 0 0
16-36

address must be located anywhere in the first 4 Gbyte of address space (lower 32 bits of 
address).

00 02 Memory Space Indicator - This bit field describes memory or I/O space base address. the 
primary ATU does not occupy I/O space, thus this bit must be zero.



ADDRESS TRANSLATION UNIT

16.7.12 Determining Block Sizes for Base Address Registers

The Primary and Secondary Inbound ATU Base Address Registers and Expansion ROM Base Address
Register use their associated limit registers for defining the defining the requested address space size.
The requested address size and type can be determined by writing to a base address register, and then
reading back from the register. Table 16-20 describes the device specific values used to determine the
memory block size. By scanning the returned value from the least-significant bit of the base address
register in ascending order, the programmer can determine the required address space size. The
binary-weighted value of the first one bit found indicates the required amount of space. Table 16-20
describes the relationship between the values read back and the byte sizes the base address register
requires.

Table 16-20.  Device Specific Instructions for Base Address Register (Sheet 1 of 2)

Device Part 
Number

Value 
Written to the 

BAR
Effect of writing the value to the Base Address Register

80960RP 33/5.0 A-0 FFFF FFFFH

The first read after a write of FFFF FFFFH to the base address 
register is directed to the limit register. The data returned on 
subsequent reads from the base address register is the contents 
of the base address register — not the contents of the corre-
sponding limit register. If any other value is written to the base 
address register, that value is programmed into the base address 
register.

When determining block size requirements, reading to or writing 
from the base address register must be using 32-bit configuration 
cycles. However, configuration cycles not used to determine block 
size requirements can be performed as 8-, 16-, or 32-bit 
accesses.

The first read after a write of FFFF FFFEH or FFFF FFFFH to the 
base address register is directed to the limit register. The data 
returned on subsequent reads from the register is the contents of 
the base address register — not the contents of the corre-
16-37

16

80960RP 33/5.0 A-1

FFFF FFFEH

or

FFFF FFFFH

sponding limit register. If any other value is written to the base 
address register, that value is programmed into the base address 
register.

When determining block size requirements, reading to or writing 
from the base address register must be using 32-bit configuration 
cycles. However, configuration cycles not used to determine block 
size requirements can be performed as 8-, 16-, or 32-bit 
accesses.



ADDRESS TRANSLATION UNIT

80960RP 33/3.3 A-0

80960RD 66/3.3 A-0

FFFF FFFEH

or

FFFF FFFFH

The read after a write of FFFF FFFEH or FFFF FFFFH to the 
base address register is directed to the limit register. The data 
returned on subsequent reads from the base address register 
returns the limit register contents until the base address register is 
rewritten with a value other than FFFF FFFEH or FFFF FFFFH. If 
any other value is written to the base address register, that value 
is programmed into the base address register.

When determining block size requirements, reading to or writing 
from the base address register must be using 32-bit configuration 
cycles. However, configuration cycles not used to determine block 
size requirements can be performed as 8-, 16-, or 32-bit 
accesses.

80960RP 33/3.3 B-0

80960RD 66/3.3 B-0

FFFF FFFEH

or

FFFF FFFFH

The limit register is a bitwise enable of the base address register. 
When any limit register bits are set to a 1, the corresponding bit in 
the base register is enabled as read/write. Once the base address 
register is enabled through the limit register, all 1’s can be written 
to the base register as described in Section 6.2.5.1 of the PCI 
Local Bus Specification, revision 2.1. Reading the base address 
register after ones are written to the base address register yields 
the memory block size requirement. Values used for programming 
the limit register should be similar to those listed in Table 16-21.

Any access to the base address register can be performed as on 
8-, 16-, or 32-bit access.

Table 16-21.  Memory Block Size Read Response (Sheet 1 of 2)

Response After Writing all 1s to
the Base Address Register

Block Size

FFFF F000H 4 Kbytes

Table 16-20.  Device Specific Instructions for Base Address Register (Sheet 2 of 2)

Device Part 
Number

Value 
Written to the 

BAR
Effect of writing the value to the Base Address Register
16-38

FFFF E000H 8 Kbytes

FFFF C000H 16 Kbytes

FFFF 8000H 32 Kbytes

FFFF 0000H 64 Kbytes

FFFE 0000H 128 Kbytes

FFFC 0000H 256 Kbytes

FFF8 0000H 512 Kbytes

FFF0 0000H 1 Mbytes

FFE0 0000H 2 Mbytes



ADDRESS TRANSLATION UNIT

As an example, assume that FFFF FFFFH is written to the ATU Primary Inbound Base Address
Register (PIABAR) and the value read back is FFF0 0004H. Bit zero is a zero, so the device
requires memory address space. Bits 2:1 are 002, so the memory can be located anywhere within
32-bit address space (4 Gbytes). Bit three is one, so the memory does support prefetching.
Scanning upwards starting at bit four, bit twenty is the first one bit found. The binary-weighted
value of this bit is 1,048,576, indicated that the device requires 1 Mbyte of memory space.

FFC0 0000H 4 Mbytes

FF80 0000H 8 Mbytes

FF00 0000H 16 Mbytes

FE00 0000H 32 Mbytes

FC00 0000H 64 Mbytes

F800 0000H 128 Mbytes

F000 0000H 256 Mbytes

E000 0000H 512 Mbytes

C000 0000H 1 Gbytes

8000 0000H 2 Gbytes

0000 0000H
Register Not Implemented, No 

address space required.

Table 16-22.  Base Address and Limit Register Descriptions

Base Address Register Limit Register Description

Primary Inbound ATU 
Base Address Register

Primary Inbound ATU 
Limit Register

Defines the inbound translation window from the 
primary PCI bus.

Secondary Inbound ATU Secondary Inbound ATU Defines the inbound translation window from the 

Table 16-21.  Memory Block Size Read Response (Sheet 2 of 2)

Response After Writing all 1s to
the Base Address Register

Block Size
16-39

16

Base Address Register Limit Register secondary PCI bus.

Expansion ROM Base 
Address Register

Expansion ROM Limit 
Register

Defines the window of addresses used by a primary 
bus master for reading from an expansion ROM.



ADDRESS TRANSLATION UNIT

16.7.13 ATU Subsystem Vendor ID Register - ASVIR 

ATU Subsystem Vendor ID Register bit definitions adhere to PCI Local Bus Specification,
revision 2.1.

16.7.14 ATU Subsystem ID Register - ASIR

ATU Subsystem ID Register bit definitions adhere to PCI Local Bus Specification, revision 2.1.

Table 16-23.  ATU Subsystem Vendor ID Register - ASVIR

LBA: 

PCI:

122CH

2CH

Legend: NA = Not Accessible RO = Read Only
RV = Reserved PR = Preserved RW = Read/Write
RS = Read/Set RC = Read Clear
LBA = 80960 Local Bus Address PCI = PCI Configuration Address Offset

Bit Default Description

15:00 0000H Subsystem Vendor ID - This register uniquely identifies the add-in board or subsystem 
vendor.

Table 16-24.  ATU Subsystem ID Register - ASIR

PCI

LBA

15 12 8 4 0

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

PCI

LBA

15 12 8 4 0

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro
16-40

LBA: 

PCI:

122EH

2EH

Legend: NA = Not Accessible RO = Read Only
RV = Reserved PR = Preserved RW = Read/Write
RS = Read/Set RC = Read Clear
LBA = 80960 Local Bus Address PCI = PCI Configuration Address Offset

Bit Default Description

15:00 0000H Subsystem ID - uniquely identifies the add-in board or subsystem



 PCI

ers.
ADDRESS TRANSLATION UNIT

16.7.15 Expansion ROM Base Address Register - ERBAR

The Expansion ROM Base Address Register defines the block of memory addresses used for
containing the Expansion ROM. It permits the inclusion of multiple code images, allowing the
device to be initialized. The code image supplied consists of either executable code or an
interpreted code. Each code image must start on a 512 byte boundary and each must contain the
PCI Expansion ROM header. Image placement in ROM space depends on the length of code
images which precede it within ROM. ERBAR defines the base address and describes the required
memory block size; see Section 16.7.12 (pg. 16-37). Expansion ROM address space (limit size)
can be a minimum of 4 Kbytes or a maximum of 16 Mbytes.

The Expansion ROM Base Address Register’s programmed value must comply with the
programming requirements for address alignment. Refer to the PCI Local Bus Specification,
revision 2.1 for additional information on programming Expansion ROM base address regist

Table 16-25.  Expansion ROM Base Address Register - ERBAR

LBA: 

PCI:

1230H

30H

Legend: NA = Not Accessible RO = Read Only
RV = Reserved PR = Preserved RW = Read/Write
RS = Read/Set RC = Read Clear
LBA = 80960 Local Bus Address PCI = PCI Configuration Address Offset

Bit Default Description

31:12 0000 0H Expansion ROM Base Address - These bits define the actual location where the Expansion 
ROM address window resides when addressed from the primary PCI bus on any 2 Kbyte 
boundary.

11:01 000H Reserved

00 02 Address Decode Enable - This bit field shows the ROM address decoder is enabled or 

PCI

LBA

28 24 20 16 12 8 4 031

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rw

rw
16-41

16

disabled. When cleared, indicates the address decoder is disabled.



pt line
sts for
ADDRESS TRANSLATION UNIT

16.7.16 ATU Interrupt Line Register - ATUILR 

ATU Interrupt Line Register bit definitions adhere to PCI Local Bus Specification, revision 2.1.
This register identifies the system interrupt controller’s interrupt request lines which connect to the
device’s PCI interrupt request lines (as specified in the interrupt pin register).

In a PC environment, for example, the register values and corresponding connections are:

• 00H - 0FH: correspond to IRQ0 through IRQ15

• 10H - FEH: reserved

• FFH: “unknown” or “no connection”

The operating system or device driver can examine each device’s interrupt pin and interru
register to determine which system interrupt request line the device uses to issue reque
service.

Table 16-26.  ATU Interrupt Line Register - ATUILR

LBA: 

PCI:

123CH

3CH

Legend: NA = Not Accessible RO = Read Only
RV = Reserved PR = Preserved RW = Read/Write
RS = Read/Set RC = Read Clear
LBA = 80960 Local Bus Address PCI = PCI Configuration Address Offset

Bit Default Description

07:00 FFH Interrupt Assigned - system-assigned value identifies which system interrupt controller’s 
interrupt request line connects to the device's PCI interrupt request lines (as specified in the 
interrupt pin register).

PCI

LBA

7 4 0

rw rw rw rw rw rw rw rw

rw rw rw rw rw rw rw rw
16-42



ADDRESS TRANSLATION UNIT

16.7.17 ATU Interrupt Pin Register - ATUIPR 

ATU Interrupt Pin Register bit definitions adhere to PCI Local Bus Specification, revision 2.1.
This register identifies the interrupt pin the ATU and Messaging Unit interface uses. The i960 Rx
I/O processor is a PCI multifunction device and, as such, can generate more than one interrupt
output. The interrupt output is for the Messaging Unit on P_INTA#, P_INTB#, P_INTC#, or
P_INTD#. The i960 core processor modifies the pin register to match the PCI interrupts which the
Messaging Unit generates.

Table 16-27.  ATU Interrupt Pin Register - ATUIPR

LBA: 

PCI:

123DH

3DH

Legend: NA = Not Accessible RO = Read Only
RV = Reserved PR = Preserved RW = Read/Write
RS = Read/Set RC = Read Clear
LBA = 80960 Local Bus Address PCI = PCI Configuration Address Offset

Bit Default Description

07:03 00H Reserved.

02:00 0012 Interrupt Used - Selects the interrupt pin the ATU interface uses.

001 - INTA# used
010 - INTB# used
011 - INTC# used
100 - INTD# used

All other values have the effect of disabling the ATU interface interrupt.

PCI

LBA

7 4 0

rv rv rv rv rv rw rw rw

rv rv rv rv rv ro ro ro
16-43

16



ster’s
mmed

CI bus
ADDRESS TRANSLATION UNIT

16.7.18 ATU Minimum Grant Register - ATUMGNT 

ATU Minimum Grant Register bit definitions adhere to PCI Local Bus Specification, revision 2.1.
This register specifies the burst period the device requires in increments of 8 PCI clocks.

This register and the ATU Maximum Latency register are information-only registers which the
configuration uses to determine frequency (how often) and duration (how long) of a bus ma
access to the PCI bus. This information is useful when determining the values to be progra
into the bus master latency timers and in programming the algorithm to be used by the P
arbiter.

Table 16-28.  ATU Minimum Grant Register - ATUMGNT

LBA: 

PCI:

123EH

3EH

Legend: NA = Not Accessible RO = Read Only
RV = Reserved PR = Preserved RW = Read/Write
RS = Read/Set RC = Read Clear
LBA = 80960 Local Bus Address PCI = PCI Configuration Address Offset

Bit Default Description

07:00 00H
This register specifies how long a burst period the device needs in increments of 8 PCI 
clocks. A zero value indicates the device has no stringent requirement.

PCI

LBA

7 4 0

rw rw rw rw rw rw rw rw

ro ro ro ro ro ro ro ro
16-44



ADDRESS TRANSLATION UNIT

16.7.19 ATU Maximum Latency Register - ATUMLAT

ATU Maximum Latency Register bit definitions adhere to PCI Local Bus Specification,
revision 2.1. This register specifies how often the device needs to access the PCI bus in increments
of 8 PCI clocks.

This register and the Minimum Grant Register are information-only registers which the configu-
ration uses to determine how often a bus master typically requires access to the PCI bus and the
duration of a typical transfer when it does acquire the bus. This information is useful in
determining the values to be programmed into the bus master latency timers and in programming
the algorithm to be used by the PCI bus arbiter.

Table 16-29.  ATU Maximum Latency Register - ATUMLAT

LBA: 

PCI:

123FH

3FH

Legend: NA = Not Accessible RO = Read Only
RV = Reserved PR = Preserved RW = Read/Write
RS = Read/Set RC = Read Clear
LBA = 80960 Local Bus Address PCI = PCI Configuration Address Offset

Bit Default Description

07:00 00H
Specifies frequency (how often) the device needs to access the PCI bus in increments of 
8 PCI clocks. A zero value indicates the device has no stringent requirement.

PCI

LBA

7 4 0

rw rw rw rw rw rw rw rw

ro ro ro ro ro ro ro ro
16-45

16



dress
sed in
ADDRESS TRANSLATION UNIT

16.7.20 Primary Inbound ATU Limit Register - PIALR

Primary inbound address translation occurs for data transfers occurring from the PCI bus
(originated from the primary PCI bus) to the 80960 local bus. The address translation block
converts PCI addresses to 80960 local bus addresses. 

All data transfers are directly translated; thus, the bus master which initiates the transfer breaks
unaligned transfers into multiple data transfers. Byte enables specify valid data paths.

The primary inbound translation base address is specified in Section 16.7.11 (pg. 16-36). When
determining block size requirements — as described in Section 16.7.12 (pg. 16-37) — the primary
translation limit register provides the block size requirements for the primary base ad
register. The remaining registers used for performing address translation are discus
Section 16.3.1 (pg. 16-5).

Table 16-30.  Primary Inbound ATU Limit Register - PIALR

LBA: 

PCI:

1240H

40H

Legend: NA = Not Accessible RO = Read Only
RV = Reserved PR = Preserved RW = Read/Write
RS = Read/Set RC = Read Clear
LBA = 80960 Local Bus Address PCI = PCI Configuration Address Offset

Bit Default Description

31:12 FFFF FH
Primary Inbound Translation Limit - This value (Table 16-22) determines the memory block 
size required for the primary ATU translation unit.

11:00 000H Reserved

PCI

LBA

28 24 20 16 12 8 4 031

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv
16-46



ADDRESS TRANSLATION UNIT

16.7.21 Primary Inbound ATU Translate Value Register - PIATVR

The Primary Inbound ATU Translate Value Register (PIATVR) contains the local address used to
convert primary PCI bus addresses. The converted address is driven on the local bus as a result of
primary inbound ATU address translation.

Table 16-31.  Primary Inbound ATU Translate Value Register - PIATVR

LBA: 

PCI:

1244H

44H

Legend: NA = Not Accessible RO = Read Only
RV = Reserved PR = Preserved RW = Read/Write
RS = Read/Set RC = Read Clear
LBA = 80960 Local Bus Address PCI = PCI Configuration Address Offset

Bit Default Description

31:02 0001 000H

Primary Inbound ATU Translation Value - This value is used to convert the primary PCI 
address to local addresses. This value must be word-aligned on the 80960 local bus. 
The default address allows the ATU to access the internal 80960 local bus 
memory-mapped registers.

01:00 002 Reserved.

PCI

LBA

28 24 20 16 12 8 4 031

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rv

rv

rv

rv
16-47

16



ADDRESS TRANSLATION UNIT

16.7.22 Secondary Inbound ATU Base Address Register - SIABAR

The Secondary Inbound ATU Base Address Register (SIABAR) defines the block of memory
addresses where the secondary inbound translation window begins. The inbound ATU decodes
and forwards the bus request to the 80960 local bus with a translated address to map into the
80960 local memory. The SIABAR defines the base address and describes the required memory
block size; see Section 16.7.12, Determining Block Sizes for Base Address Registers (pg. 16-37).

The effects on the base address register are that when a value of FFFF FFFFH or FFFF FFFEH is
written to the SIABAR, the next read from the register returns data from the Secondary Inbound
ATU Limit Register (SIALR) and not the SIABAR.

Table 16-32.  Secondary Inbound ATU Base Address Register - SIABAR

LBA: 

PCI:

1248H

48H

Legend: NA = Not Accessible RO = Read Only
RV = Reserved PR = Preserved RW = Read/Write
RS = Read/Set RC = Read Clear
LBA = 80960 Local Bus Address PCI = PCI Configuration Address Offset

Bit Default Description

31:12 0000 0H Secondary Translation Base Address - These bits define the actual location to which the 
Secondary Translation function responds when addressed from the secondary PCI bus.

11:04 00H Reserved.

03 12 Prefetchable Indicator - Defines the memory spaces as prefetchable.

02:01 002 Address Type - These bits define where the block of memory can be located. The base 
address must be located anywhere in the first 4 Gbyte of address space (lower 32-bits of 
address).

00 02 Memory Space Indicator - This bit field describes memory or I/O space base address. 

PCI

LBA

28 24 20 16 12 8 4 031

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

ro

ro

ro

ro

ro

ro

ro

ro

1 0 0 0
16-48

The secondary ATU does not occupy I/O space; thus, this bit must be zero.



ADDRESS TRANSLATION UNIT

16.7.23 Secondary Inbound ATU Limit Register - SIALR

Secondary inbound address translation occurs for data transfers occurring from the secondary PCI
bus to the 80960 local bus. The address translation block converts the PCI addresses to 80960 local
bus address. All data transfers are directly translated; thus, the bus master initiating the data
transfers breaks unaligned transfers into multiple data transfers. The byte enables specify which
data paths are valid.

The secondary translation base address is specified in Section 16.7.22, Secondary Inbound ATU
Base Address Register - SIABAR (pg. 16-48). When determining the block size requirements as
described in Section 16.7.12, Determining Block Sizes for Base Address Registers (pg. 16-37), the
secondary limit register provides the block size requirements for the secondary base address
register. The remaining registers used for performing address translation are discussed in
Section 16.3.1, Inbound Address Translation (pg. 16-5).

The default value of FFFF F000H is a 4 Kbyte memory block size.

Table 16-33.  Secondary Inbound ATU Limit Register - SIALR

LBA: 

PCI:

124CH

4CH

Legend: NA = Not Accessible RO = Read Only
RV = Reserved PR = Preserved RW = Read/Write
RS = Read/Set RC = Read Clear
LBA = 80960 Local Bus Address PCI = PCI Configuration Address Offset

Bit Default Description

31:12 FFFF FH Secondary Inbound ATU Limit - This value (Table 16-22) determines the memory block 
size required for the secondary ATU translation unit.

11:00 000H Reserved

PCI

LBA

28 24 20 16 12 8 4 031

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv
16-49

16



ADDRESS TRANSLATION UNIT

16.7.24 Secondary Inbound ATU Translate Value Register - SIATVR

The Secondary Inbound ATU Translate Value Register (SIATVR) contains the 80960 local
address used to convert the secondary PCI bus address to a local address. This address is driven on
the 80960 local bus as a result of secondary inbound ATU address translation.

Table 16-34.  Secondary Inbound ATU Translate Value Register - SIATVR

LBA: 

PCI:

1250H

50H

Legend: NA = Not Accessible RO = Read Only
RV = Reserved PR = Preserved RW = Read/Write
RS = Read/Set RC = Read Clear
LBA = 80960 Local Bus Address PCI = PCI Configuration Address Offset

Bit Default Description

31:02 0000 1000H Secondary Inbound ATU Translate Value - Used to convert the secondary PCI address 
to a local address. The secondary inbound address translation value must be word 
aligned on the 80960 local bus. The default address allows the translation unit access to 
the internal i960 Rx I/O processor memory-mapped registers.

01:00 002 Reserved.

PCI

LBA

28 24 20 16 12 8 4 031

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rv

rv

rv

rv
16-50



ADDRESS TRANSLATION UNIT

16.7.25 Primary Outbound Memory Window Value Register - POMWVR

The Primary Outbound Memory Window Value Register (POMWVR) contains the primary PCI
address used to convert 80960 local addresses for outbound transactions. This address is driven on
the primary PCI bus as a result of primary outbound ATU address translation. See Section 16.3.6
(pg. 16-11) for details on outbound address translation. 

Primary memory window 0 is from 80960 local bus address 8000 0000H to 83FF FFFFH with the
fixed length of 64 Mbytes.

Table 16-35.  Primary Outbound Memory Window Value Register - POMWVR

LBA: 

PCI:

1254H

54H

Legend: NA = Not Accessible RO = Read Only
RV = Reserved PR = Preserved RW = Read/Write
RS = Read/Set RC = Read Clear
LBA = 80960 Local Bus Address PCI = PCI Configuration Address Offset

Bit Default Description

31:02 0000 0000H Primary Outbound MW Value - Used to convert 80960 local addresses to PCI 
addresses.

01:00 002 Burst Order - This bit field shows the address sequence during a memory burst. Only 
linear incrementing mode is supported.

PCI

LBA

28 24 20 16 12 8 4 031

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

ro

ro

ro

ro

0 0
16-51

16



ADDRESS TRANSLATION UNIT

16.7.26 Primary Outbound I/O Window Value Register - POIOWVR

The Primary Outbound I/O Window Value Register (POIOWVR) contains the primary PCI I/O
address used to convert the local bus access to a PCI address. This address is driven on the primary
PCI bus as a result of primary outbound ATU address translation. See Section 16.3.6, Outbound
Address Translation (pg. 16-11) for details on outbound address translation.

The primary I/O window is from 80960 local bus address 9000 0000H to 9000 FFFFH with a
fixed length of 64 Kbytes.

Table 16-36.  Primary Outbound I/O Window Value Register - POIOWVR

LBA: 

PCI:

125CH

5CH

Legend: NA = Not Accessible RO = Read Only
RV = Reserved PR = Preserved RW = Read/Write
RS = Read/Set RC = Read Clear
LBA = 80960 Local Bus Address PCI = PCI Configuration Address Offset

Bit Default Description

31:02 0000 0000H Primary Outbound I/O Window Value - Used to convert local addresses to PCI 
addresses.

01:00 002 Reserved.

PCI

LBA

28 24 20 16 12 8 4 031

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rv

rv

rv

rv
16-52



ADDRESS TRANSLATION UNIT

16.7.27 Primary Outbound DAC Window Value Register - PODWVR

The Primary Outbound DAC Window Value Register (PODWVR) contains the primary PCI DAC
address used to convert an 80960 local address. This address is driven on the primary PCI bus as a
result of primary outbound ATU address translation. See Section 16.3.6, Outbound Address
Translation for details on outbound address translation. This register is used in conjunction with
the Primary Outbound Upper 64-Bit DAC Register. The primary DAC window is from 80960
local bus address 8400 0000H to 87FF FFFFH with the fixed length of 64 Mbytes.

Table 16-37.  Primary Outbound DAC Window Value Register - PODWVR

LBA: 

PCI:

1260H

60H

Legend: NA = Not Accessible RO = Read Only
RV = Reserved PR = Preserved RW = Read/Write
RS = Read/Set RC = Read Clear
LBA = 80960 Local Bus Address PCI = PCI Configuration Address Offset

Bit Default Description

31:02 0000 0000H Primary Outbound DAC Window Value - This value the primary ATU uses to convert 
80960 local addresses to PCI addresses.

01:00 002 Burst Order - This bit field shows the address sequence during a memory burst. Only 
linear incrementing mode is supported.

PCI

LBA

28 24 20 16 12 8 4 031

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

ro

ro

ro

ro

0 0
16-53

16



ADDRESS TRANSLATION UNIT

16.7.28 Primary Outbound Upper 64-bit DAC Register - POUDR

The Primary Outbound Upper 64-bit DAC Register (POUDR) defines the upper 32-bits of address
used during a dual address cycle. This enables the primary outbound ATU to directly address
anywhere within the 64 bit host address space.

Table 16-38.  Primary Outbound Upper 64-bit DAC Register - POUDR

LBA: 

PCI:

1264H

64H

Legend: NA = Not Accessible RO = Read Only
RV = Reserved PR = Preserved RW = Read/Write
RS = Read/Set RC = Read Clear
LBA = 80960 Local Bus Address PCI = PCI Configuration Address Offset

Bit Default Description

31:00 0000 0000H These bits define the upper 32-bits of address driven during the dual address cycle 
(DAC).

PCI

LBA

28 24 20 16 12 8 4 031

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw
16-54



ADDRESS TRANSLATION UNIT

16.7.29 Secondary Outbound Memory Window Value Register - SOMWVR

The Secondary Outbound Memory Window Value Register (SOMWVR) contains the secondary
PCI address used to convert 80960 local addresses for outbound transactions. This address is
driven on the secondary PCI bus as a result of secondary outbound ATU address translation. See
Section 16.3.6, Outbound Address Translation (pg. 16-11) for details on outbound address trans-
lation. The secondary memory window is from 80960 local bus address 8800 0000H to
8BFF FFFFH with the fixed length of 64 Mbytes.

Table 16-39.  Secondary Outbound Memory Window Value Register - SOMWVR

LBA: 

PCI:

1268H

68H

Legend: NA = Not Accessible RO = Read Only
RV = Reserved PR = Preserved RW = Read/Write
RS = Read/Set RC = Read Clear
LBA = 80960 Local Bus Address PCI = PCI Configuration Address Offset

Bit Default Description

31:02 0000 0000H Secondary Outbound Memory Window Value - Used to convert 80960 local addresses 
to PCI addresses.

01:00 002 Burst Order - This bit field shows the address sequence during a memory burst. Only 
linear incrementing mode is supported.

PCI

LBA

28 24 20 16 12 8 4 031

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

ro

ro

ro

ro

0 0
16-55

16



ADDRESS TRANSLATION UNIT

16.7.30 Secondary Outbound I/O Window Value Register - SOIOWVR

The Secondary Outbound I/O Window Value Register (SOIOWVR) contains the secondary PCI
I/O address used to convert 80960 local addresses. This address is driven on the secondary PCI
bus as a result of secondary outbound ATU address translation. See Section 16.3.6, Outbound
Address Translation for details on outbound address translation. 

When the Secondary PCI Boot Mode bit in the ATUCR is set, this register translates local
addresses that access the region of FE00 0000H to FFFF FFFFH. When clear, this register
translates local addresses that access the secondary I/O window from 9001 0000H to
9001 FFFFH.

Table 16-40.  Secondary Outbound I/O Window Value Register - SOIOWVR

LBA: 

PCI:

126CH

6CH

Legend: NA = Not Accessible RO = Read Only
RV = Reserved PR = Preserved RW = Read/Write
RS = Read/Set RC = Read Clear
LBA = 80960 Local Bus Address PCI = PCI Configuration Address Offset

Bit Default Description

31:02 0000 0000H Secondary Outbound I/O Window Value - Used to convert local addresses to PCI 
addresses.

01:00 002 Reserved.

PCI

LBA

28 24 20 16 12 8 4 031

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rv

rv

rv

rv
16-56



ion
dress
ADDRESS TRANSLATION UNIT

16.7.31 Expansion ROM Limit Register - ERLR

The Expansion ROM Limit Register (ERLR) defines the block size of addresses the primary ATU
defines as Expansion ROM address space. The block size is programmed by writing a value into
the ERLR from the i960 core processor. The possible programmed values range from 4 Kbytes
(FFFF F000H) to 16 Mbytes (FF00 0000H).

The Expansion ROM base address is specified in Section 16.7.15, ”Expansion ROM Base Address
Register - ERBAR” (pg. 16-41). When determining the block size requirements, the Expans
ROM Limit Register provides the block size requirements for the Expansion ROM Base Ad
Register.

Table 16-41.  Expansion ROM Limit Register - ERLR

LBA: 

PCI:

1274H

74H

Legend: NA = Not Accessible RO = Read Only
RV = Reserved PR = Preserved RW = Read/Write
RS = Read/Set RC = Read Clear
LBA = 80960 Local Bus Address PCI = PCI Configuration Address Offset

Bit Default Description

31:12 0000 0H Expansion ROM Limit - Block size of memory required for the Expansion ROM 
translation unit. Default value is 0, which indicates no expansion ROM address space.

11:00 000H Reserved.

PCI

LBA

28 24 20 16 12 8 4 031

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv
16-57

16



ADDRESS TRANSLATION UNIT

16.7.32 Expansion ROM Translate Value Register - ERTVR

The Expansion ROM Translate Value Register contains the 80960 local bus address which the
primary ATU converts the primary PCI bus access. This address is driven on the 80960 local bus
address as a result of primary Expansion ROM address translation.

16.7.33 ATU Configuration Register - ATUCR

The ATU Configuration Register contains the control bits to enable and disable the interrupts
generated by the ATU. This register also controls the outbound address translation from both the
primary and secondary outbound translation units and contains a bit for Expansion ROM width.

Table 16-42.  Expansion ROM Translate Value Register - ERTVR

LBA: 

PCI:

1278H

78H

Legend: NA = Not Accessible RO = Read Only
RV = Reserved PR = Preserved RW = Read/Write
RS = Read/Set RC = Read Clear
LBA = 80960 Local Bus Address PCI = PCI Configuration Address Offset

Bit Default Description

31:02 0000 0000H Expansion ROM 80960 Translation Value - Used to convert PCI addresses to 80960 
local addresses for Expansion ROM accesses. The Expansion ROM address translation 
value must be word aligned on the 80960 local bus.

01:00 002 Reserved.

Table 16-43.  ATU Configuration Register - ATUCR  (Sheet 1 of 3)

PCI

LBA

28 24 20 16 12 8 4 031

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rv

rv

rv

rv
16-58

LBA: 

PCI:

1288H

88H

Legend: NA = Not Accessible RO = Read Only
RV = Reserved PR = Preserved RW = Read/Write
RS = Read/Set RC = Read Clear
LBA = 80960 Local Bus Address PCI = PCI Configuration Address Offset

Bit Default Description

31:13 0000H Reserved.

PCI

LBA

28 24 20 16 12 8 4 031

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rv

rv



ADDRESS TRANSLATION UNIT

12 02 Secondary Bus, Messaging Unit Access Enable - When set, the PCI-to-PCI Bridge unit 
can forward a transaction from the secondary PCI interface, through the bridge, and to 
the Messaging Unit (first 4 Kbytes of the primary ATU inbound address space) on the 
primary PCI interface. For correct operation, the transaction must be a valid bridge 
address (claimed by secondary interface of the bridge and forwarded to the primary 
interface of the bridge) as well as a valid Messaging Unit address. When clear, the 
Messaging Unit cannot claim a transaction mastered by the primary interface of the 
bridge.

11 02 Secondary PCI Boot Mode - When set, the secondary ATU claims all local bus 
accesses with addresses in the range FE00 0000H to FFFF FFFFH. This allows the 
i960 core processor to boot from the secondary PCI bus. The translation algorithm uses 
the Secondary Outbound I/O Window Value Register in this mode.

10 02 Secondary SERR Interrupt Enable - When set, the i960 core processor receives an 
NMI# when the Primary ATU detects that S_SERR# was asserted. When clear, no 
interrupt is sent.

09 02 Primary SERR Interrupt Enable - When set, the i960 core processor receives an NMI# 
when the Primary ATU detects that S_SERR# was asserted. When clear, no interrupt is 
sent.

08 02 Direct Addressing Enable - When set, enables direct addressing through the ATUs. 
Local bus cycles with an address between 0000 1000H and 7FFF FFFFH are automati-
cally forwarded to the PCI bus with no address translation. The ATU which claims the 
direct addressing transaction depends on the Secondary Direct Addressing Select bit 
state.

Table 16-43.  ATU Configuration Register - ATUCR  (Sheet 2 of 3)

LBA: 

PCI:

1288H

88H

Legend: NA = Not Accessible RO = Read Only
RV = Reserved PR = Preserved RW = Read/Write
RS = Read/Set RC = Read Clear
LBA = 80960 Local Bus Address PCI = PCI Configuration Address Offset

Bit Default Description

PCI

LBA

28 24 20 16 12 8 4 031

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rv

rv
16-59

16

07 02 Secondary Direct Addressing Select - When set, results in direct addressing outbound 
transactions to be forwarded through the secondary ATU to the secondary PCI bus. 
When clear, direct addressing uses the primary ATU and the primary PCI bus. The 
Direct Addressing Enable bit must be set to enable direct addressing.

06 02 Expansion ROM Width - When clear, this bit signifies that an 8-bit Expansion ROM is 
being used. When set, this bit signifies that 32-bit Expansion ROM is in use. Used in 
conjunction with the ERBAR address decode enable (bit 0).

05 02 Secondary ATU PCI Error Interrupt Enable - This bit acts as a mask for Secondary ATU 
Interrupt Status Register bits 4:0. When set, enables an interrupt to the i960 core 
processor when any of these bits are set in the SATUISR. When cleared, disables the 
interrupt.



ADDRESS TRANSLATION UNIT

04 02 Primary ATU PCI Error Interrupt Enable - This bit acts as a mask for Primary ATU 
Interrupt Status Register bits 4:0. When set, enables an interrupt to the i960 core 
processor when any of these bits are set in the PATUISR. When cleared, disables the 
interrupt.

03 02 ATU BIST Interrupt Enable - When set, enables an interrupt to the i960 core processor 
when the start BIST bit is set in the ATUBISTR register. This bit is also reflected as the 
BIST Capable bit 7 in the ATUBISTR register.

02 02 Secondary Outbound ATU Enable - When set, enables the secondary outbound 
address translation unit. When cleared, disables the secondary outbound ATU.

01 02 Primary Outbound ATU Enable - When set, enables the primary outbound address 
translation unit. When cleared, disables the primary outbound ATU.

00 02 Reserved.

Table 16-43.  ATU Configuration Register - ATUCR  (Sheet 3 of 3)

LBA: 

PCI:

1288H

88H

Legend: NA = Not Accessible RO = Read Only
RV = Reserved PR = Preserved RW = Read/Write
RS = Read/Set RC = Read Clear
LBA = 80960 Local Bus Address PCI = PCI Configuration Address Offset

Bit Default Description

PCI

LBA

28 24 20 16 12 8 4 031

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rv

rv
16-60



ADDRESS TRANSLATION UNIT

16.7.34 Primary ATU Interrupt Status Register - PATUISR

The Primary ATU Interrupt Status Register notifies the i960 core processor of the Primary ATU
interrupt source. Writes to this register clear the source of the interrupt. All register bits are Read
Only from PCI and Read/Clear from the local bus.

Bits 4:0 are a direct reflection of Primary ATU Status Register bit 8 and bits 14:11 (respectively).
These bits are set at the same time by hardware but need to be cleared independently. Bits 6:5 are
set by an error associated with the Memory Controller. Bit 8 is for software BIST. The conditions
that result in a Primary ATU interrupt are cleared when the appropriate bits in this register are
set (=1). 

Table 16-44.  Primary ATU Interrupt Status Register - PATUISR  (Sheet 1 of 2)

LBA: 

PCI:

1290H

90H

Legend: NA = Not Accessible RO = Read Only
RV = Reserved PR = Preserved RW = Read/Write
RS = Read/Set RC = Read Clear
LBA = 80960 Local Bus Address PCI = PCI Configuration Address Offset

Bit Default Description

31:09 0000 00H Reserved.

08 02 ATU BIST Interrupt - When set, the host processor has set the start BIST, ATUBISTR 
register bit 6, and the ATU BIST interrupt enable, ATUCR register bit 12, is enabled. The 
i960 core processor can initiate the software BIST and store the result in ATUBISTR 
register bits 3:0. 

07 02 Reserved.

06 02 80960 local bus memory Fault - set when the Memory Controller detects a Memory 
Fault and the Primary ATU was the master for the transaction.

PCI

LBA

28 24 20 16 12 8 4 031

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rc

ro

rv

rv

rc

ro

rc

ro

rc

ro

rc

ro

rc

ro

rc

ro

rc

ro
16-61

16

05 02 80960 local bus address Fault - set when the Memory Controller detects a Bus Fault 
and the Primary ATU was the master for the transaction.

04 02 P_SERR# Asserted - set when P_SERR# is asserted on the PCI bus.

03 02 PCI Master Abort - set when a transaction initiated by the ATU master interface ends in 
a Master-abort. 

02 02 PCI Target Abort (master) - set when a transaction initiated by the ATU master interface 
ends in a Target Abort. 

01 02 PCI Target Abort (target) - set when the ATU interface, acting as a target, terminates the 
transaction on the PCI bus with a target abort.



ocal

n this
ADDRESS TRANSLATION UNIT

16.7.35 Secondary ATU Interrupt Status Register - SATUISR

The Secondary ATU Interrupt Status Register notifies the i960 core processor of the Secondary
ATU interrupt source. This register is written to clear the interrupt source to the i960 core
processor’s interrupt unit. All register bits are Read Only from PCI and Read/Clear from the l
bus.

Conditions that result in a Secondary ATU interrupt are cleared when the appropriate bit i
register are set (=1).

00 02 PCI Master Parity Error - The ATU interface sets this bit when three conditions are met:

• bus agent asserted S_PERR# or observed S_PERR# asserted

• agent setting the bit acted as the bus master for the operation in which the error 
occurred

• Parity Checking Enable bit is set (in the Primary ATU Command Register)

Table 16-45.  Secondary ATU Interrupt Status Register - SATUISR (Sheet 1 of 2)

Table 16-44.  Primary ATU Interrupt Status Register - PATUISR  (Sheet 2 of 2)

LBA: 

PCI:

1290H

90H

Legend: NA = Not Accessible RO = Read Only
RV = Reserved PR = Preserved RW = Read/Write
RS = Read/Set RC = Read Clear
LBA = 80960 Local Bus Address PCI = PCI Configuration Address Offset

Bit Default Description

PCI

LBA

28 24 20 16 12 8 4 031

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rc

ro

rv

rv

rc

ro

rc

ro

rc

ro

rc

ro

rc

ro

rc

ro

rc

ro

LBA

28 24 20 16 12 8 4 031

rv rv rv rv rv rv rv rv rv rv rv rv rv rv rv rv rv rv rv rv rv rv rv rv rv rc rc rc rc rc rc rc
16-62

LBA: 

PCI:

1294H

94H

Legend: NA = Not Accessible RO = Read Only
RV = Reserved PR = Preserved RW = Read/Write
RS = Read/Set RC = Read Clear
LBA = 80960 Local Bus Address PCI = PCI Configuration Address Offset

Bit Default Description

31:07 0000 000H Reserved.

06 02 80960 local bus memory Fault - set when the Memory Controller detects a Memory 
Fault and the Secondary ATU was the master for the transaction.

PCI rv rv rv rv rv rv rv rv rv rv rv rv rv rv rv rv rv rv rv rv rv rv rv rv rv ro ro ro ro ro ro ro



ADDRESS TRANSLATION UNIT

05 02 80960 local bus address Fault - set when the Memory Controller detects a Bus Fault 
and the Secondary ATU was the master for the transaction.

04 02 S_SERR# Asserted - set when P_SERR# is asserted on the secondary PCI bus.

03 02 PCI Master Abort - set when a transaction initiated by the ATU master interface ends in 
a Master-abort. 

02 02 PCI Target Abort (master) - set when a transaction initiated by the ATU master interface 
ends in a Target Abort. 

01 02 PCI Target Abort (target) - set when the ATU interface, acting as a target, terminates the 
transaction on the PCI bus with a Target Abort.

00 02 PCI Master Parity Error - The secondary ATU interface sets this bit when three 
conditions are met:

• bus agent asserted S_PERR# or observed S_PERR# asserted

• agent setting the bit acted as the bus master for the operation in which the error 
occurred

• Parity Checking Enable bit is set (in the Secondary ATU Command Register)

Table 16-45.  Secondary ATU Interrupt Status Register - SATUISR (Sheet 2 of 2)

LBA: 

PCI:

1294H

94H

Legend: NA = Not Accessible RO = Read Only
RV = Reserved PR = Preserved RW = Read/Write
RS = Read/Set RC = Read Clear
LBA = 80960 Local Bus Address PCI = PCI Configuration Address Offset

Bit Default Description

PCI

LBA

28 24 20 16 12 8 4 031

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rc

ro

rc

ro

rc

ro

rc

ro

rc

ro

rc

ro

rc

ro
16-63

16



ADDRESS TRANSLATION UNIT

16.7.36 Secondary ATU Command Register - SATUCMD 

The Secondary ATU Command Register bit definitions adhere to PCI Local Bus Specification,
revision 2.1 and, in most cases, affect the secondary PCI bus device behavior.

Table 16-46.  Secondary ATU Command Register - SATUCMD

LBA: 

PCI:

1298H

98H

Legend: NA = Not Accessible RO = Read Only
RV = Reserved PR = Preserved RW = Read/Write
RS = Read/Set RC = Read Clear
LBA = 80960 Local Bus Address PCI = PCI Configuration Address Offset

Bit Default Description

15:10 00H Reserved.

09 02 Fast Back to Back Enable - When cleared, the secondary ATU interface is not allowed 
to generate fast back-to-back cycles on its bus.

08 02 S_SERR# Enable - When cleared, the secondary ATU interface is not allowed to assert 
S_SERR# on the PCI interface.

07 02 Wait Cycle Control - controls address/data stepping. Not implemented and a reserved 
bit field.

06 02 Parity Checking Enable - When set, the secondary ATU and DMA channel 2 must take 
normal action when a parity error is detected. When cleared, parity checking is disabled.

05 02 VGA Palette Snoop Enable - The secondary ATU interface does not support I/O writes 
and therefore, does not perform VGA palette snooping.

04 02 Memory Write and Invalidate Enable - When set, DMA channel 2 may generate MWI 
commands. When clear, DMA channel 2 must use Memory Write commands instead of 
MWI.

03 02 Special Cycle Enable - The ATU interface does not respond to special cycle commands 
in any way. Not applicable. Not implemented and a reserved bit field.

PCI

LBA

15 12 8 4 0

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rw

rw

rw

rw

ro

ro

rw

rw

ro

ro

rw

rw

ro

ro

rw

rw

rw

rw

ro

ro

0 0 0 0
16-64

02 02 Bus Master Enable - The secondary ATU interface can act as a master on the PCI bus. 
When cleared, disables the secondary ATU from generating PCI accesses. When set, 
allows the secondary ATU to behave as a bus master.

This enable bit also controls the DMA channel 2 master interface. The bit must be set 
before initiating an DMA transfer on the PCI bus.

01 02 Memory Enable - Controls the secondary ATU interface’s response to PCI memory 
addresses. When cleared, the ATU interface does not respond to any memory access 
on the PCI bus.

00 02 I/O Space Enable - Controls the ATU interface response to I/O transactions on the 
primary side. Not implemented. The secondary ATU does not support I/O space.



ADDRESS TRANSLATION UNIT

16.7.37 Secondary ATU Status Register - SATUSR

Secondary ATU Status Register bit definitions adhere to PCI Local Bus Specification, revision 2.1
for configuration space device status. The read/clear bits can only be set by the internal hardware
and are cleared by either a reset condition or by writing a 12 to be cleared.

Table 16-47.  Secondary ATU Status Register - SATUSR

LBA: 

PCI:

129AH

9AH

Legend: NA = Not Accessible RO = Read Only
RV = Reserved PR = Preserved RW = Read/Write
RS = Read/Set RC = Read Clear
LBA = 80960 Local Bus Address PCI = PCI Configuration Address Offset

Bit Default Description

15 02

Parity Error - set when a parity error is detected on the secondary PCI bus even when the 
SATUCMD Register’s Parity Checking Enable bit is clear.

0 - no parity error detected
1 - parity error detected

14 02

S_SERR# Asserted - set when the Secondary ATU asserted S_SERR# on the PCI bus.

0 - S_SERR# no asserted
1 - S_SERR# asserted

13:00 0000H Reserved.

PCI

LBA

15 12 8 4 0

rc

rc

rc

rc

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv
16-65

16



ADDRESS TRANSLATION UNIT

16.7.38 Secondary Outbound DAC Window Value Register - SODWVR

The Secondary Outbound DAC Window Value Register (SODWVR) contains the secondary PCI
DAC address used to convert an 80960 local address. This address is driven on the secondary PCI
bus as a result of secondary outbound ATU address translation. See Section 16.3.6, Outbound
Address Translation (pg. 16-11) for details on outbound address translation. This register is used
in conjunction with the Secondary Outbound Upper 64-Bit DAC Register.

The secondary DAC window is from 80960 local bus address 8C00 0000H to 8FFF FFFFH with
the fixed length of 64 Mbytes.

Table 16-48.  Secondary Outbound DAC Window Value Register - SODWVR

LBA: 

PCI:

129CH

9CH

Legend: NA = Not Accessible RO = Read Only
RV = Reserved PR = Preserved RW = Read/Write
RS = Read/Set RC = Read Clear
LBA = 80960 Local Bus Address PCI = PCI Configuration Address Offset

Bit Default Description

31:02 0000 0000H Secondary Outbound DAC Window Value - The secondary ATU converts 80960 local 
addresses to PCI addresses.

01:00 002 Burst Order - This bit field shows the address sequence during a memory burst.
00=linear incrementing mode.

PCI

LBA

28 24 20 16 12 8 4 031

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

ro

ro

ro

ro

0 0
16-66



ADDRESS TRANSLATION UNIT

16.7.39 Secondary Outbound Upper 64-bit DAC Register - SOUDR

The Secondary Outbound Upper 64-bit DAC Register (SOUDR) defines the upper 32 address bits
used during a dual address cycle. This enables the secondary outbound ATU to directly address
anywhere within the 64-bit host address space.

Table 16-49.  Secondary Outbound Upper 64-bit DAC Register - SOUDR

LBA: 

PCI:

12A0H

A0H

Legend: NA = Not Accessible RO = Read Only
RV = Reserved PR = Preserved RW = Read/Write
RS = Read/Set RC = Read Clear
LBA = 80960 Local Bus Address PCI = PCI Configuration Address Offset

Bit Default Description

31:00 0000 0000H Secondary Outbound Upper 64-bit DAC Address - These bits define the upper 32 
address bits driven during the dual address cycle (DAC).

PCI

LBA

28 24 20 16 12 8 4 031

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw
16-67

16



ADDRESS TRANSLATION UNIT

16.7.40 Primary Outbound Configuration Cycle Address Register - POCCAR

The Primary Outbound Configuration Cycle Address Register holds the 32-bit PCI configuration
cycle address. The i960 core processor writes the PCI configuration cycles address that enables the
primary outbound configuration read or write. The i960 core processor performs a read or write to
the Primary Outbound Configuration Cycle Data Port to initiate the configuration cycle on the
primary PCI bus.

The value programmed into these registers is not a byte address. See the PCI Local Bus Specifi-
cation, revision 2.1 for information regarding configuration address cycle formats.

Table 16-50.  Primary Outbound Configuration Cycle Address Register - POCCAR

LBA: 

PCI:

12A4H

A4H

Legend: NA = Not Accessible RO = Read Only
RV = Reserved PR = Preserved RW = Read/Write
RS = Read/Set RC = Read Clear
LBA = 80960 Local Bus Address PCI = PCI Configuration Address Offset

Bit Default Description

31:00 0000 0000H Primary Configuration Cycle Address - These bits define the 32-bit PCI address used 
during an outbound configuration read or write cycle.

PCI

LBA

28 24 20 16 12 8 4 031

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro
16-68



ADDRESS TRANSLATION UNIT

16.7.41 Secondary Outbound Configuration Cycle Address Register - SOCCAR

The Secondary Outbound Configuration Cycle Address Register holds the 32-bit PCI configu-
ration cycle address. The i960 core processor writes the PCI configuration cycles address that
enables the secondary outbound configuration read or write. The i960 core processor performs a
read or write to the Secondary Outbound Configuration Cycle Data Port to initiate the configu-
ration cycle on the secondary PCI bus.

The value programmed into these registers is not a byte address. See the PCI Local Bus Specifi-
cation, revision 2.1 for information regarding configuration address cycle formats.

Table 16-51.  Secondary Outbound Configuration Cycle Address Register - 
SOCCAR

LBA: 

PCI:

12A8H

A8H

Legend: NA = Not Accessible RO = Read Only
RV = Reserved PR = Preserved RW = Read/Write
RS = Read/Set RC = Read Clear
LBA = 80960 Local Bus Address PCI = PCI Configuration Address Offset

Bit Default Description

31:00 0000 0000H Secondary Configuration Cycle Address - These bits define the 32-bit PCI address used 
during an outbound configuration read or write cycle.

PCI

LBA

28 24 20 16 12 8 4 031

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro
16-69

16



rectly

and is

ed value

ite on
ess not
dress to

ssed in
ADDRESS TRANSLATION UNIT

16.7.42 Primary Outbound Configuration Cycle Data Port - POCCDP

The Primary Outbound Configuration Cycle Data Port initiates a configuration read or write on
the primary PCI bus. The register is logical rather than physical meaning that it is an address not a
register. The i960 core processor reads or writes the data registers memory-mapped address to
initiate the configuration cycle on the PCI bus with the address found in the POCCAR. 

The configuration cycle generated on the PCI bus enables the same bytes which are accessed in
the corresponding data register. For example, a read of all 32 bits of this data register generates a
4-byte configuration read cycle on the primary PCI bus of the addressed configuration register.
Also, a write of byte 2 (bits 23:16) of this data register generates a single byte configuration write
cycle of byte 2 of the addressed configuration register. Similar actions take place for short
accesses.

• For a configuration write, the data is latched from the 80960 local bus and forwarded di
to the ATU ODQ.

• For a read, the data is returned directly from the ATU IDQ to the i960 core processor 
never actually entered into the data register (which does not physically exist).

The POCCDP is only useful from 80960 local bus address space and appears as a reserv
within the ATU configuration space. The 80960 local bus address is 12ACH.

NOTE: This port should never be accessed by PCI Function 1 cycles or ATU 
inbound transactions.

16.7.43 Secondary Outbound Configuration Cycle Data Port - SOCCDP

The Secondary Outbound Configuration Cycle Data Port initiates a configuration read or wr
the secondary PCI bus. The register is logical rather than physical meaning that it is an addr
a register. The i960 core processor reads or writes the data registers memory-mapped ad
initiate the configuration cycle on the PCI bus with the address found in the SOCCAR. 

The configuration cycle generated on the PCI bus enables the same bytes which are acce
16-70

the corresponding data register. For example, a read of all 32 bits of this data register generates a
4-byte configuration read cycle on the secondary PCI bus of the addressed configuration register.
Also, a write of byte 2 (bits 23:16) of this data register generates a single byte configuration write
cycle of byte 2 of the addressed configuration register. Similar actions take place for short
accesses.

• For a configuration write, the data is latched from the 80960 local bus and forwarded directly
to the ATU ODQ. 

• For a read, the data is returned directly from the ATU IDQ to the i960 core processor and is
never actually entered into the data register (which does not physically exist).



ADDRESS TRANSLATION UNIT

NOTE: This port should never be accessed by PCI Function 1 cycles or ATU 
inbound transactions.

The SOCCDP is only useful from 80960 local bus address space and appears as a reserved value
within the ATU configuration space. The 80960 local bus address is 12B0H.

16.8 POWERUP/DEFAULT STATUS

The default/powerup values for all registers are shown within each register description.

16.9 RESET MODES

See sections Section 15.13.23, Bridge Control Register - BCR and Section 15.13.24, Extended
Bridge Control Register - EBCR.
16-71

16





17
MESSAGING UNIT





e

e

ing
sages.

nerated

I
gister
CHAPTER 17
MESSAGING UNIT

This chapter describes the operation of the Messaging Unit (MU). The MU is the communications
path between the host operating system and the I/O subsystem.

17.1 OVERVIEW

The MU sends and receives messages; it transfers data between the PCI system and the i960 core
processor and notifies the respective system when new data arrives due to an interrupt. The MU
has five messaging mechanisms. Each allows a host processor or external PCI agent and the
i960®Rx I/O processor to communicate through message passing and interrupt generation. Each
mechanism and corresponding sections are summarized as:

• Section 17.2, MESSAGE REGISTERS (pg. 17-2). Each of four registers hold a 32-bit valu
and generate an interrupt when any value is written.

• Section 17.3, DOORBELL REGISTERS (pg. 17-3). These two registers support softwar
interrupts. Interrupts are generated when a Doorbell Register bit is set.

• Section 17.4, CIRCULAR QUEUES (pg. 17-4). The circular queues comply with the
industry-standard Intelligent I/O (I2O) interface for PCI applications. This message pass
scheme uses four circular queues: two for inbound messages, two for outbound mes
Circular queues are implemented in i960 Rx I/O processor local memory.

• Section 17.5, INDEX REGISTERS (pg. 17-10). These use a portion of the i960 Rx I/O
processor local memory to implement a large set of message registers. Interrupts are ge
when an Index Registers is written. The address of the register written is captured.

• Section 17.6, APIC REGISTERS (pg. 17-11). These two registers provide an external PC
interface for accessing I/O APIC Registers. Interrupts are generated when the APIC Re
Select Register is written.
17-1

17

Interrupt status for all interrupts is recorded in the Inbound Interrupt Status Register and Outbound
Interrupt Status Register. Any MU-generated interrupt can be masked.

The MU uses the first 4 Kbytes of the primary inbound translation window in the Primary Address
Translation Unit (PATU). This PCI address window is used for PCI transactions that access the
i960 Rx I/O processor’s local memory. The primary inbound translation window’s PCI address is
contained in the Primary Inbound ATU Base Address Register. See Section 16.3, ATU ADDRESS
TRANSLATION (pg. 16-4) for more details on inbound ATU addressing.



essor.

cessor.

egister.
MESSAGING UNIT

From the PCI perspective, the MU is part of the Primary Address Translation Unit. The MU uses
the PCI configuration registers of the Primary ATU for control and status information. The MU
observes all PCI control bits in the Primary ATU Command Register and ATU Configuration
Register. The MU reports all PCI errors in the Primary ATU Status Register.

Table 17-1 summarizes the five MU mechanisms.

17.2 MESSAGE REGISTERS

The i960 Rx I/O processor uses the message registers to send and receive messages. When written,
these registers may cause an interrupt to be generated to either the i960 core processor or the PCI
interrupt signals.

• Inbound messages are sent by the host processor and received by the i960 Rx I/O proc

• Outbound messages are sent by the i960 Rx I/O processor and received by the host pro

The interrupt status for outbound messages is recorded in the Outbound Interrupt Status R
Interrupt status for inbound messages is recorded in the Inbound Interrupt Status Register.

Table 17-1.  Messaging Unit (MU) Summary

Mechanism Quantity
Assert PCI Interrupt 

Signals?
Generate i960 Core 

Processor Interrupt?

Message Registers
Two Inbound No Optional

Two Outbound Yes No

Doorbell Registers
One Inbound No Optional

One Outbound Yes No

Circular Queues Four Circular Queues Under certain conditions Under certain conditions

Index Registers 1004 32-bit Memory Locations No Optional

APIC Registers
One Register Select No Yes

One Window No Yes
17-2

17.2.1 Outbound Messages

The MU contains two outbound message registers. When an outbound message register is written
by the i960 core processor, an interrupt may be generated on the P_INTA#, P_INTB#, P_INTC#,
or P_INTD# interrupt pins. The interrupt pin used is determined by the value programmed in the
ATU Interrupt Pin Register (See CHAPTER 16, ADDRESS TRANSLATION UNIT).



pt.

 i960
MESSAGING UNIT

The PCI interrupt is recorded in the Outbound Interrupt Status Register. The interrupt causes the
Outbound Message Interrupt bit to be set in the Outbound Interrupt Status Register. This is a
Read/Clear bit that is set by MU hardware and cleared by software.

The interrupt is cleared when an external PCI agent writes a value of 1 to the Outbound Message
Interrupt bit in the Outbound Interrupt Status Register to clear the bit (via a PCI configuration
cycle). 

The interrupt may be masked by the Mask bits in the Outbound Interrupt Mask Register. 

17.2.2 Inbound Messages

The MU contains two inbound message registers. When an inbound message register is written by
an external PCI agent, an interrupt may be generated to the i960 core processor. The interrupt may
be masked by the Mask bits in the Inbound Interrupt Mask Register.

The i960 core processor interrupt is recorded in the Inbound Interrupt Status Register. The
interrupt causes the Inbound Message Interrupt bit to be set in the Inbound Interrupt Status
Register. This is a Read/Clear bit set by the MU.

The interrupt is cleared when the i960 core processor sets (=1) the Inbound Message Interrupt bit
in the Inbound Interrupt Status Register.

17.3 DOORBELL REGISTERS

The two doorbell registers generate interrupts when their bits are set. The registers, described in
the following subsections, are:

• Outbound Doorbell Register — allows the i960 core processor to generate a PCI interru

• Inbound Doorbell Register — allows external PCI agents to generate interrupts to the
core processor.
17-3

17

17.3.1 Outbound Doorbells

The i960 core processor generates an interrupt by setting bits in the Outbound Doorbell Register
and external PCI agents clear the interrupt by also setting bits in the same register.

When the Outbound Doorbell Register is written by the i960 core processor, an interrupt may be
generated on the P_INTA#, P_INTB#, P_INTC#, or P_INTD# interrupt pins. An interrupt is
generated when any doorbell register bits are set. The i960 core processor clearing (writing a 0 to)
any bit, does not change the value of that bit and does not cause an interrupt to be generated. Once
a bit is set in the Outbound Doorbell Register, it cannot be cleared by the i960 core processor.



 Mask
s only
.

orbell
lear the

ay be
bits are
bit and
ister, it

rrupt
terrupt
bound

bound
es not
MESSAGING UNIT

The PCI interrupt pin used is determined by the value programmed in the ATU Interrupt Pin
Register (See CHAPTER 16, ADDRESS TRANSLATION UNIT). The interrupt is recorded in
the Outbound Interrupt Status Register.

The interrupt may be masked by the Outbound Interrupt Mask Register’s Mask bits. When a
bit is set, no interrupt is generated for that bit. The Outbound Interrupt Mask Register affect
the generation of the interrupt and not the values written to the Outbound Doorbell Register

The interrupt is cleared when an external PCI agent writes a 1 to the bits in the Outbound Do
Register that are set. Clearing a bit does not change the value of that bit and does not c
interrupt. 

17.3.2 Inbound Doorbells

When the Inbound Doorbell Register is written by an external PCI agent, an interrupt m
generated to the i960 core processor. An interrupt is generated when any doorbell register 
set. An external PCI agent clearing (write a 0 to) any bit, does not change the value of that 
does not cause an interrupt to be generated. Once a bit is set in the Inbound Doorbell Reg
cannot be cleared by any external PCI agent.

The interrupt is recorded in the Inbound Interrupt Status Register.

The interrupt may be masked by the Inbound Doorbell Interrupt Mask bit in the Inbound Inte
Mask Register. When a mask bit is set, no interrupt is generated for that bit. The Inbound In
Mask Register affects only the generation of the interrupt and not the values written to the In
Doorbell Register.

One bit in the Inbound Doorbell Register is reserved for an NMI interrupt.

The interrupt is cleared when the i960 core processor writes a value of 1 to the bits in the In
Doorbell Register that are set. Clearing a bit does not change the value of that bit and do
clear the interrupt.
17-4

17.4 CIRCULAR QUEUES

The MU has four circular queues: two inbound and two outbound. Messages are either posted or
free. As related to these circular queues, inbound and outbound refer to the direction of message
flow.

Inbound messages are either:

• posted: messages from other processors that the i960 core processor must process

• free: (empty) messages that other processors can reuse



e queue
r posts
 with the

Rx I/O
or. The

sage and,
e host

d queue

 Queue

d Post

y. The
). Each
 queue

 four
emory

 by the
MESSAGING UNIT

Outbound messages are either:

• posted: messages from the i960 core processor which other processors must process

• free: (empty) messages that the i960 core processor can reuse

The two outbound queues allow the i960 core processor to post outbound messages in on
and receive free messages returning from the host processor. The i960 core processo
outbound messages; the host processor receives the posted message and, when finished
message, places it back on the outbound free queue for reuse by the i960 core processor.

The two inbound queues allow the host processor to post inbound messages for the i960 
processor in one queue and receive free messages returning from the i960 Rx I/O process
host processor posts inbound messages; the i960 core processor receives the posted mes
when finished with the message, places it back on the inbound free queue for reuse by th
processor.

The circular queues are accessed by external PCI agents through the inbound and outboun
port locations in the PCI address space:

• The Inbound Queue Port, when read by an external PCI agent, returns the Inbound Free
data. When written, the data is placed on the Inbound Post Queue.

• The Outbound Queue Port, when read by an external PCI agent, returns the Outboun
Queue data. When written, the data is placed on the Outbound Free Queue.

Data storage for circular queues must be allocated in i960 Rx I/O processor local memor
circular queues base address is contained in the Queue Base Address Register (QBAR
queue entry is a 32-bit data value. Each read or write of the queue may access only one
entry. Multi-word and sub-word accesses are not allowed.

Circular queue size ranges from 4 K entries (16 Kbytes) to 64 K entries (256 Kbytes). All
queues must be the same size and must be contiguous. Therefore, the total amount of local m
needed by the circular queues ranges from 64 Kbytes to 1 Mbytes. Queue size is determined
MUCR Queue Size field; see Section 17.7.11 (pg. 17-26).
17-5

17

Starting addresses of each queue is based on the Queue Base Address and the Queue Size field. See
Table 17-2.

Table 17-2.  Queue Starting Addresses

Queue Starting Address

Inbound Free Queue QBAR

Inbound Post Queue QBAR + Queue Size

Outbound Post Queue QBAR + 2 * Queue Size

Outbound Free Queue QBAR + 3 * Queue Size



MESSAGING UNIT

Each circular queue has a head pointer and a tail pointer. The pointers are offsets from the Queue
Base Address. Writes to a queue occur at the head of the queue and reads occur from the tail. The
head and tail pointers are incremented by either the i960 core processor or MU hardware. Which
unit maintains the pointer is determined by the writer of the queue. The pointers are incremented
after the queue access. Both pointers wrap around to the first address of the circular queue when
they reach the circular queue size.

The MU generates an interrupt to the i960 core processor and, under certain conditions, generates
a PCI interrupt. In general, when a Post queue is written, an interrupt is generated to notify the
receiver that a message was posted.

The MU only prevents queue overflows for the Outbound Free Queue. For the Outbound Free
Queue, an NMI interrupt to the i960 core processor is generated when the head pointer equals the
tail pointer and the queue is full to notify software of the error condition. Software must manage
the circular queues to prevent overflow conditions.

Figure 17-1 diagrams the Circular Queue usage.
17-6



MESSAGING UNIT

High Address Memory

Head PointerIncremented by 

Incremented by 

Tail Pointer

i960® core processor

Read

Write

Read

Write
Head PointerIncremented by 

Incremented by 

Tail Pointer

Head PointerIncremented by 

Incremented by

Tail Pointer

Head PointerIncremented by 
Tail Pointer

External PCI Agent

i960® core processor

Read

Write

Read

Write

Outbound Queue 

Inbound Queue 

Port

Port

i960 core processor

i960 core processor

hardware

hardware

i960 core processor

i960 core processor

hardware

External PCI Agent

Outbound

Free

Outbound

Post

Inbound

Post

Inbound

Free
17-7

17Figure 17-1.  Circular Queue Operation

i960® Rx I/O Processor Local Memory

Incremented by hardware
Low Address Memory



cates
r. The

mory
sses the

the data
 i960

xternal
itten to
e. The
MESSAGING UNIT

17.4.1 Inbound Post Queue

The Inbound Post Queue holds posted messages from external PCI masters for the i960 core
processor to process. This queue is read from the queue tail by the i960 core processor. It is written
to the queue head by external PCI agents. The tail pointer is maintained by the i960 core
processor. The head pointer is maintained by MU hardware.

For a PCI write transaction that accesses the Inbound Queue Port, the MU writes the data to the
local memory location pointed by the Inbound Post Head Pointer Register. The local memory
address is Queue Base Register + Inbound Post Head Pointer Register.

When the data written to the Inbound Queue Port is written to local memory, the MU increments
the Inbound Post Head Pointer Register.

An i960 core processor interrupt is generated when the Inbound Post Head Pointer Register is
written. The Inbound Interrupt Status Register’s Inbound Post Queue Interrupt bit indi
interrupt status. The interrupt is cleared when the Inbound Post Queue Interrupt bit is clea
interrupt can be masked by the Inbound Interrupt Mask Register.

From the time that the PCI write transaction is received until the data is written in local me
and the Inbound Post Head Pointer Register is incremented, any PCI transaction that acce
Inbound Queue Port is signalled a Retry.

The i960 core processor may read messages from the Inbound Post Queue by reading 
from the local memory location pointed to by the inbound Post Tail Pointer Register. The
core processor must then increment the Inbound Post Tail Pointer Register.

17.4.2 Inbound Free Queue

The Inbound Free Queue holds free inbound messages from the i960 core processor for e
PCI masters to use. This queue is read from the queue tail by external PCI agents. It is wr
the queue head by the i960 core processor. The tail pointer is maintained by MU hardwar
head pointer is maintained by the i960 core processor.
17-8

For a PCI read transaction that accesses the Inbound Queue Port, the MU reads data at the local
memory location pointed by the Inbound Free Tail Pointer. The local memory address is Queue
Base Address Register + Inbound Free Tail Pointer Register.

• When the queue is not empty (head and tail pointers are not equal), the data is returned and
the MU increments the value in the Inbound Free Tail Pointer Register.

• When the queue is empty (head and tail pointers are equal), the value of -1 (FFFF FFFFH) is
returned. 



and the

FH) is

to the
. The
gister

and tail
ntries to

 data to
t then
MESSAGING UNIT

The i960 core processor may place messages in the Inbound Free Queue by writing the data to the
local memory location pointed to by the head pointer. The local memory address is Queue Base
Address Register + Inbound Free Head Pointer Register. The processor must then increment the
Inbound Free Head Pointer Register.

17.4.3 Outbound Post Queue

The Outbound Post Queue holds outbound posted messages from the i960 core processor for other
processors to process. This queue is read from the queue tail by external PCI agents. It is written to
the queue head by the i960 core processor. The tail pointer is maintained by MU hardware. The
head pointer is maintained by the i960 core processor.

For a PCI read transaction that accesses the Outbound Queue Port, the MU reads data at the local
memory location pointed by the Outbound Post Tail Pointer. The local memory address is Queue
Base Address Register + Outbound Post Tail Pointer Register. 

• When the queue is not empty (head and tail pointers are not equal), the data is returned 
MU increments the value in the Outbound Post Tail Pointer Register.

• When the queue is empty (head and tail pointers are equal), the value of -1 (FFFF FFF
returned.

A PCI interrupt is generated while the Outbound Post Head Pointer Register is not equal 
Outbound Post Tail Pointer Register. When they are equal, no interrupt is generated
Outbound Post Queue Interrupt bit in the Outbound Interrupt Status Register indicates re
comparison status and, therefore, interrupt status. The interrupt is cleared when the head 
pointers become equal. This occurs when the external PCI agent reads enough queue e
empty the queue. The interrupt can be masked by the Outbound Interrupt Mask Register.

The i960 core processor may place messages in the Outbound Post Queue by writing the
the local memory location pointed to by the head pointer. The i960 core processor mus
increment the Outbound Post Head Pointer Register.
17-9

17

17.4.4 Outbound Free Queue

The Outbound Free Queue holds free messages from other processors for the i960 core processor
to use. This queue is read from the queue tail by the i960 core processor. It is written to the queue
head by external PCI agents. The tail pointer is maintained by the i960 core processor. The head
pointer is maintained by MU hardware.

For a PCI write transaction that accesses the Outbound Queue Port, the MU writes data to the local
memory location pointed by the Outbound Free Head Pointer Register. 

When data written to the Outbound Queue Port is written to local memory, MU hardware
increments the Outbound Free Head Pointer Register.



MESSAGING UNIT

When the head pointer and the tail pointer become equal and the queue is full, the MU signals an
NMI interrupt to the i960 core processor. This interrupt is recorded in the Inbound Interrupt Status
Register.

From the time that the PCI write transaction is received until the data is written in local memory
and the Outbound Free Head Pointer Register is incremented, any PCI transaction that accesses
the Inbound Queue Port is signalled a Retry.

The i960 core processor may read messages from the Outbound Free Queue by reading the data
from the local memory location pointed to by the tail pointer. The processor must then increment
the Outbound Free Tail Pointer Register.

17.5 INDEX REGISTERS

The Index Registers are a set of 1004 registers that, when written by an external PCI agent,
generate an interrupt to the i960 core processor. These registers are for inbound messages only.

Table 17-3.  Circular Queue Summary 

Queue Name PCI Port
Generate

PCI Interrupt?

Generate
i960® Core 
Processor 
Interrupt?

Head Pointer
maintained by

Tail Pointer
maintained by

Inbound 
Post Queue Inbound 

Queue Port

No
Yes, when 

queue is written
MU hardware

i960 core 
processor

Inbound 
Free Queue

No No
i960 core 
processor

MU hardware

Outbound 
Post Queue

Outbound
Queue Port

Yes, when 
queue is not 

empty
No

i960 core 
processor

MU hardware

Outbound 
Free Queue

No
Yes, when the 

queue 
overflows

MU hardware
i960 core 
processor
17-10

The interrupt is recorded in the Inbound Interrupt Status Register.

Index Register storage is allocated from i960 Rx I/O processor local memory. PCI write accesses
to Index Registers write the data to local memory. PCI read accesses to Index Registers read the
data from local memory. Local memory for Index Registers ranges from Primary Inbound ATU
Translate Value Register + 050H to Primary Inbound ATU Translate Value Register + FFFH.
CHAPTER 16, ADDRESS TRANSLATION UNIT describes how PCI addresses are translated to
local memory addresses.



d, the
ss.

use an

 APIC
ndow
 core

nce to
 APIC

et and
 APIC
ed by
bit.

n the
 core
Status

access
rated
MESSAGING UNIT

The first write access address is stored in the Index Address Register. This register is written
during the earliest write access and provides a means to determine which Index Register was
written. Once updated by the MU, the Index Address Register is not updated until the Inbound
Interrupt Status Register’s Index Register Interrupt bit is cleared. When the interrupt is cleare
Index Address Register is re-enabled and stores the next Index Register write access addre

Writes by the i960 core processor to local memory used by the Index Registers do not ca
interrupt and do not update the Index Address Register.

17.6 APIC REGISTERS

The two APIC Registers are APIC Register Select Register and APIC Window Register. The
Register Select Register selects which APIC I/O Unit Register appears in the APIC Wi
Register. A write to the APIC Register Select Register generates an interrupt to the i960
processor. APIC emulation software updates the APIC Window Register contents.

To prevent multiple accesses to APIC registers before APIC emulation software has a cha
update the register contents, the MU implements a hardware interlock for PCI accesses to
Registers.

When the APIC Register Select Register is written during a PCI transaction, the interlock is s
the i960 core processor is signaled an interrupt. All subsequent PCI accesses to either
Register are signalled a Retry until the interlock is cleared. The interlock must be clear
software, by clearing the Inbound Interrupt Status Register’s APIC Register Select Interrupt 

The same interlock mechanism applies to PCI writes to the APIC Window Register. Whe
APIC Window Register is written during a PCI transaction, the interlock is set and the i960
processor is signaled an interrupt. The interlock is cleared by clearing the Inbound Interrupt 
Register’s APIC Window Interrupt bit.

The interlock mechanism is enabled regardless of whether the APIC is enabled. Do not 
either of the two APIC registers if the APIC is disabled, otherwise, the interrupt is never gene
17-11

17

and the PCI bus deadlocks.

The interlock mechanism is enabled only when the APIC unit is enabled by setting the APIC bus
interface enable bit in the APIC Control Status Register.

The i960 core processor must clear the interrupt bit to allow a retried PCI master to complete its
transaction.



w.
MESSAGING UNIT

17.7 REGISTER DEFINITIONS

Figure 17-2 shows the PCI memory map and identifies the first 4 Kbytes of ATU Primary Inbound
PCI address space. Registers in Table 17-4 are located in primary PCI address space and
Peripheral Memory-Mapped Register (PMMR) address space. They are accessible through
primary PCI bus transactions and i960 core processor bus accesses. In primary PCI address space,
they are mapped into the first 80 bytes of the Primary ATU’s primary inbound address windo
17-12



MESSAGING UNIT

Inbound Message Register 0

Inbound Message Register 1

Outbound Message Register 0

Outbound Message Register 1

Inbound Doorbell Register

Inbound Interrupt Status Register

Inbound Interrupt Mask Register

Outbound Doorbell Register

4 Message Registers

i960® Rx Processor Local Memory

0000H

0004H

0008H

000CH

0010H

001CH

0018H

0014H

0020H

First 4 Kbytes of the ATU Primary Inbound PCI Address Space

APIC Register Select Register

reserved

APIC Window Register

reserved

0024H

0028H

002CH

2 APIC Registers

Outbound Interrupt Status Register

Outbound Interrupt Mask Register

reserved

reserved

2 Doorbell Registers and

0034H

0038H

003CH

0040H Inbound Queue Port

Outbound Queue Port

reserved

reserved

2 Queue Ports
0044H

0048H

004CH

0050H

0030H

4 Interrupt Registers
17-13

17
Figure 17-2.  PCI Memory Map

0FFCH

1004 Index Registers



MESSAGING UNIT

Registers in Table 17-4 are located in Peripheral Memory-Mapped Register (PMMR) address
space as described in APPENDIX C, MEMORY-MAPPED REGISTERS. Reading or writing a
register that is reserved is undefined.

Table 17-4.  Peripheral Memory-Mapped Register Summary 

Section Register Name, Acronym Page
Size 
(Bits)

80960 Local 
Bus Address

PCI 
Config 
Addr 
Offset

17.7.1 APIC Register Select Register - ARSR 17-15 32 0000 1300H NA

17.7.2 APIC Window Register - AWR 17-15 32 0000 1308H NA

17.7.3 Inbound Message Registers - IMRx 17-16 32
0 - 0000 1310H
1 - 0000 1314H

NA

17.7.4 Outbound Message Registers - OMRx 17-17 32
0 - 0000 1318H
1- 0000 131CH

NA

17.7.5 Inbound Doorbell Register - IDR 17-18 32 0000 1320H NA

17.7.6 Inbound Interrupt Status Register - IISR 17-19 32 0000 1324H NA

17.7.7 Inbound Interrupt Mask Register - IIMR 17-20 32 0000 1328H NA

17.7.8 Outbound Doorbell Register - ODR 17-22 32 0000 132CH NA

17.7.9 Outbound Interrupt Status Register - OISR 17-23 32 0000 1330H NA

17.7.10 Outbound Interrupt Mask Register - OIMR 17-24 32 0000 1334H NA

17.7.11 Messaging Unit Configuration Register - MUCR 17-26 32 0000 1350H NA

17.7.12 Queue Base Address Register - QBAR 17-27 32 0000 1354H NA

17.7.13 Inbound Free Head Pointer Register - IFHPR 17-28 32 0000 1360H NA

17.7.14 Inbound Free Tail Pointer Register - IFTPR 17-29 32 0000 1364H NA

17.7.15 Inbound Post Head Pointer Register - IPHPR 17-30 32 0000 1368H NA

17.7.16 Inbound Post Tail Pointer Register - IPTPR 17-31 32 0000 136CH NA

17.7.17 Outbound Free Head Pointer Register - OFHPR 17-32 32 0000 1370H NA

17.7.18 Outbound Free Tail Pointer Register - OFTPR 17-33 32 0000 1374H NA

17.7.19 Outbound Post Head Pointer Register - OPHPR 17-34 32 0000 1378H NA

17.7.20 Outbound Post Tail Pointer Register - OPTPR 17-35 32 0000 137CH NA
17-14

17.7.21 Index Address Register - IAR 17-36 32 0000 1380H NA



MESSAGING UNIT

17.7.1 APIC Register Select Register - ARSR

The APIC Register Select Register (ARSR) selects the I/O APIC Register which appears in the
APIC Window Register. A write to the APIC Register Select Register generates an interrupt to the
i960 core processor.

When the APIC Register Select Register is written, an interlock is set and the i960 core processor
is signaled an interrupt. All subsequent PCI accesses to this register are signalled a Retry until the
interlock is cleared. The interlock is cleared by clearing the APIC Register Select Interrupt bit in
the Inbound Interrupt Status Register. The interlock is disabled/enabled by the APIC Bus Interface
Enable bit in the APIC Control / Status Register.

17.7.2 APIC Window Register - AWR

The APIC Window Register (AWR) contains the APIC I/O Unit Register value selected by the
APIC Register Select Register. I/O APIC emulation software is responsible for reading or writing
this register after the APIC Register Select Register is written. A write to the APIC Window
Register causes an interrupt to be generated to the i960 core processor.

Table 17-5.  APIC Register Select Register - ARSR 

LBA: 

PCI:

1300H

NA

Legend: NA = Not Accessible RO = Read Only
RV = Reserved PR = Preserved RW = Read/Write
RS = Read/Set RC = Read Clear
LBA = 80960 Local Bus Address PCI = PCI Configuration Address Offset

Bit Default Description

31:00 0000 0000H Register Select - contains the I/O APIC Register address.

PCI

LBA

28 24 20 16 12 8 4 031

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na
17-15

17

When the APIC Window Register is written, an interlock is set and the i960 core processor is
signaled an interrupt. All subsequent PCI accesses to this register are signalled a Retry until the
interlock is cleared. The interlock is cleared by clearing the APIC Window Interrupt bit in the
Inbound Interrupt Status Register. The interlock is disabled/enabled by the APIC Bus Interface
Enable bit in the APIC Control / Status Register.



essage
MESSAGING UNIT

17.7.3 Inbound Message Registers - IMRx

The two Inbound Message Registers are IMR0 and IMR1. When IMR registers are written, an
interrupt to the i960 core processor is generated. The interrupt is recorded in the Inbound Interrupt
Status Register and may be masked by the Inbound Interrupt Mask Register’s Inbound M
Interrupt Mask bit.

Table 17-6.  APIC Window Register - AWR

LBA: 

PCI:

1308H

NA

Legend: NA = Not Accessible RO = Read Only
RV = Reserved PR = Preserved RW = Read/Write
RS = Read/Set RC = Read Clear
LBA = 80960 Local Bus Address PCI = PCI Configuration Address Offset

Bit Default Description

31:00 0000 0000H Window - contains I/O APIC Register contents.

Table 17-7.  Inbound Message Register - IMRx

LBA: 

PCI:

CH. 0 = 1310H
CH. 1 = 1314H

NA

Legend: NA = Not Accessible RO = Read Only
RV = Reserved PR = Preserved RW = Read/Write
RS = Read/Set RC = Read Clear

PCI

LBA

28 24 20 16 12 8 4 031

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

PCI

LBA

28 24 20 16 12 8 4 031

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na
17-16

LBA = 80960 Local Bus Address PCI = PCI Configuration Address Offset

Bit Default Description

31:00 0000 0000H
Inbound Message - This 32-bit message is written by an external PCI agent. When 
written, an interrupt to the i960 core processor is generated.



MESSAGING UNIT

17.7.4 Outbound Message Registers - OMRx

The two Outbound Message Registers are OMR0 and OMR1. When an OMR register is written, a
PCI interrupt is generated. The interrupt is recorded in the Outbound Interrupt Status Register and
may be masked by the Outbound Message Interrupt Mask bit in the Outbound Interrupt Mask
Register.

Table 17-8.  Outbound Message Register - OMRx

LBA: 

PCI:

CH. 0 = 1318H
CH. 1 = 131CH

NA

Legend: NA = Not Accessible RO = Read Only
RV = Reserved PR = Preserved RW = Read/Write
RS = Read/Set RC = Read Clear
LBA = 80960 Local Bus Address PCI = PCI Configuration Address Offset

Bit Default Description

31:00 0000 0000H
Outbound Message - This is 32-bit message written by the i960 core processor. 
When written, an interrupt is generated on the PCI Interrupt pin determined by the 
ATU Interrupt Pin Register.

PCI

LBA

28 24 20 16 12 8 4 031

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na
17-17

17



rrupt
ound
e set
fer to
MESSAGING UNIT

17.7.5 Inbound Doorbell Register - IDR

The Inbound Doorbell Register (IDR) is used to generate interrupts to the i960 core processor. Bit
31 is reserved for generating an NMI interrupt. When bit 31 is set, an NMI interrupt is generated to
the NMI interrupt latch. All other bits, when set, cause the i960 core processor’s XINT7 inte
line to assert from the XINT7 interrupt latch, when the interrupt is not masked by the Inb
Interrupt Mask Register’s Inbound Doorbell Interrupt Mask bit. IDR register bits can only b
by an external PCI agent and can only be cleared by the i960 core processor. Re
Section 8.3.3, Internal Peripheral Interrupt Routing (pg. 8-26).

Table 17-9.  Inbound Doorbell Register - IDR

LBA: 

PCI:

1320H

NA

Legend: NA = Not Accessible RO = Read Only
RV = Reserved PR = Preserved RW = Read/Write
RS = Read/Set RC = Read Clear
LBA = 80960 Local Bus Address PCI = PCI Configuration Address Offset

Bit Default Description

31 02 NMI Interrupt - Generate an NMI Interrupt to the i960 core processor.

30:00 0000 000H
XINT7 Interrupt - When any bit is set, generate an XINT7 interrupt to the i960 core 
processor. When all bits are clear, do not generate an XINT7 interrupt.

PCI

LBA

28 24 20 16 12 8 4 031

rc

na

rc

na

rc

na

rc

na

rc

na

rc

na

rc

na

rc

na

rc

na

rc

na

rc

na

rc

na

rc

na

rc

na

rc

na

rc

na

rc

na

rc

na

rc

na

rc

na

rc

na

rc

na

rc

na

rc

na

rc

na

rc

na

rc

na

rc

na

rc

na

rc

na

rc

na

rc

na
17-18



rrupt
rupt;
n the
bound
t must
MESSAGING UNIT

17.7.6 Inbound Interrupt Status Register - IISR

The Inbound Interrupt Status Register (IISR) contains hardware interrupt status. It records the
status of i960 core processor interrupts generated by the Message Registers, Doorbell Registers,
and the Circular Queues. All interrupts are routed to the i960 core processor’s XINT7 inte
input, except for the NMI Doorbell Interrupt and the Outbound Free Queue Overflow inter
these two are routed to the NMI interrupt input. The generation of interrupts recorded i
Inbound Interrupt Status Register may be masked by setting the corresponding bit in the In
Interrupt Mask Register. Some bits in this register are Read Only. For those bits, the interrup
be cleared through another register.

Table 17-10.  Inbound Interrupt Status Register - IISR  (Sheet 1 of 2)

LBA: 

PCI:

1324H

NA

Legend: NA = Not Accessible RO = Read Only
RV = Reserved PR = Preserved RW = Read/Write
RS = Read/Set RC = Read Clear
LBA = 80960 Local Bus Address PCI = PCI Configuration Address Offset

Bit Default Description

31:09 0000 00H Reserved.

08 02
APIC Window Interrupt - set by MU hardware when the APIC Window Register is written 
by a PCI transaction.

07 02
APIC Register Select Interrupt - set by MU hardware when the APIC Register Select 
Register is written by a PCI transaction.

06 02
Index Register Interrupt - set by MU hardware when an Index Register is written by a 
PCI transaction.

05 02

Outbound Free Queue Overflow Interrupt - set when the Outbound Free Head Pointer 
becomes equal to the Tail Pointer and the queue is full. An NMI interrupt is generated 

PCI

LBA

28 24 20 16 12 8 4 031

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rc

na

rc

na

rc

na

rc

na

rc

na

ro

na

ro

na

rc

na

rc

na
17-19

17

for this condition.

04 02
Inbound Post Queue Interrupt - set by MU hardware when the Inbound Post Queue has 
been written.

03 02

NMI Doorbell Interrupt - set when the Inbound Doorbell Register NMI Interrupt is set. To 
clear this bit (and the interrupt), the Inbound Doorbell Register NMI Interrupt bit in the 
Inbound Doorbell Register must be clear.

02 02

Inbound Doorbell Interrupt - set when at least one XINT7 Interrupt bit in the Inbound 
Doorbell Register is set. To clear this bit (and the interrupt), the XINT7 Interrupt bits in 
the Inbound Doorbell Register must all be clear.

01 02
Inbound Message 1 Interrupt - set when the Inbound Message 1 Register has been 
written.



MESSAGING UNIT

17.7.7 Inbound Interrupt Mask Register - IIMR

The Inbound Interrupt Mask Register (IIMR) provides the ability to mask i960 core processor
interrupts that the MU generates. Each Mask register bit corresponds to an interrupt bit in the
Inbound Interrupt Status Register.

Setting or clearing bits in this register does not affect the Inbound Interrupt Status Register. They
only affect i960 core processor interrupt generation.

00 02
Inbound Message 0 Interrupt - set when the Inbound Message 0 Register has been 
written.

Table 17-11.  Inbound Interrupt Mask Register - IIMR  (Sheet 1 of 2)

LBA: 1328H Legend: NA = Not Accessible RO = Read Only

Table 17-10.  Inbound Interrupt Status Register - IISR  (Sheet 2 of 2)

LBA: 

PCI:

1324H

NA

Legend: NA = Not Accessible RO = Read Only
RV = Reserved PR = Preserved RW = Read/Write
RS = Read/Set RC = Read Clear
LBA = 80960 Local Bus Address PCI = PCI Configuration Address Offset

Bit Default Description

PCI

LBA

28 24 20 16 12 8 4 031

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rc

na

rc

na

rc

na

rc

na

rc

na

ro

na

ro

na

rc

na

rc

na

PCI

LBA

28 24 20 16 12 8 4 031

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na
17-20

PCI: NA RV = Reserved PR = Preserved RW = Read/Write
RS = Read/Set RC = Read Clear
LBA = 80960 Local Bus Address PCI = PCI Configuration Address Offset

Bit Default Description

31:09 0000 00H Reserved.

08 02
APIC Window Interrupt Mask - When set, this bit masks the interrupt generated by MU 
hardware when the APIC Window Register is written to by a PCI transaction.

07 02

APIC Register Select Interrupt Mask - When set this bit masks the interrupt generated 
by MU hardware when the APIC Register Select Register is written to by a PCI trans-
action.



MESSAGING UNIT

06 02
Index Register Interrupt Mask - When set, this bit masks the interrupt generated by MU 
hardware when an Index Register has been written after a PCI transaction.

05 02

Outbound Free Queue Overflow Interrupt Mask - When set, this bit masks the NMI 
interrupt generated when the Outbound Free Head Pointer becomes equal to the Tail 
Pointer and the queue is full.

04 02
Inbound Post Queue Interrupt Mask - When set, this bit masks the interrupt generated 
by MU hardware when the Inbound Post Queue has been written.

03 02
NMI Doorbell Interrupt Mask - When set, this bit masks the NMI Interrupt when the 
Inbound Doorbell Register NMI Interrupt bit is set.

02 02
Inbound Doorbell Interrupt Mask - When set, this bit masks the interrupt generated when 
at least one XINT7 Interrupt bit in the Inbound Doorbell Register is set.

01 02
Inbound Message 1 Interrupt Mask - When set, this bit masks the Inbound Message 0 
Interrupt generated by a write to the Inbound Message 0 Register.

00 02
Inbound Message 0 Interrupt Mask - When set, this bit masks the Inbound Message 0 
Interrupt generated by a write to the Inbound Message 0 Register.

Table 17-11.  Inbound Interrupt Mask Register - IIMR  (Sheet 2 of 2)

LBA: 

PCI:

1328H

NA

Legend: NA = Not Accessible RO = Read Only
RV = Reserved PR = Preserved RW = Read/Write
RS = Read/Set RC = Read Clear
LBA = 80960 Local Bus Address PCI = PCI Configuration Address Offset

Bit Default Description

PCI

LBA

28 24 20 16 12 8 4 031

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na
17-21

17



MESSAGING UNIT

17.7.8 Outbound Doorbell Register - ODR

The Outbound Doorbell Register (ODR) allows software interrupt generation. It allows the i960
core processor to generate PCI interrupts to the host processor by writing to the Software Interrupt
bits or to a specific PCI interrupt bit. PCI interrupt generation through the Outbound Doorbell
Register may be masked by setting the Outbound Doorbell Interrupt Mask bit in the Outbound
Interrupt Mask Register.

Software Interrupt bits in this register can only be set by the i960 core processor and can only be
cleared by an external PCI agent.

Table 17-12.  Outbound Doorbell Register - ODR

LBA: 

PCI:

132CH

NA

Legend: NA = Not Accessible RO = Read Only
RV = Reserved PR = Preserved RW = Read/Write
RS = Read/Set RC = Read Clear
LBA = 80960 Local Bus Address PCI = PCI Configuration Address Offset

Bit Default Description

31 02
PCI Interrupt D - When set, this bit causes P_INTD# to assert. 
When cleared, P_INTD# deasserts.

30 02
PCI Interrupt C - When set, this bit causes P_INTC# to assert.
When cleared, P_INTC# deasserts.

29 02
PCI Interrupt B- When set, this bit causes P_INTB# to assert.
When cleared, P_INTB# deasserts.

28 02
PCI Interrupt A- When set, this bit causes P_INTA# to assert.
When cleared, P_INTA# deasserts.

27:00 0000 000H
Software Interrupt - When any bit is set, generate a PCI interrupt. The PCI interrupt pin 
used is determined by the ATU Interrupt Pin Register. When all bits are clear, do not 

PCI

LBA

28 24 20 16 12 8 4 031

rs rs rs rs rs rs rs rs rs rs rs rs rs rs rs rs rs rs rs rs rs rs rs rs rs rs rs rs rs rs rs rs

na na na na na na na na na na na na na na na na na na na na na na na na na na na na na na na na
17-22

generate a PCI interrupt.



he
ked by
gister
MESSAGING UNIT

17.7.9 Outbound Interrupt Status Register - OISR

The Outbound Interrupt Status Register (OISR) contains hardware interrupt status. It records the
status of PCI interrupts generated by the Message Registers, Doorbell Registers, and the Circular
Queues. All interrupts are routed to the PCI interrupt pin selected by the ATU Interrupt Pin
Register (ATUIPR), except the PCI Interrupt “X” interrupts which are individually routed. T
PCI interrupt generation recorded in the Outbound Interrupt Status Register may be mas
setting the corresponding bit in the Outbound Interrupt Mask Register. Some bits in this re
are Read Only; for these bits, the interrupt must be cleared through another register.

Table 17-13.  Outbound Interrupt Status Register - OISR 

LBA: 

PCI:

1330H

NA

Legend: NA = Not Accessible RO = Read Only
RV = Reserved PR = Preserved RW = Read/Write
RS = Read/Set RC = Read Clear
LBA = 80960 Local Bus Address PCI = PCI Configuration Address Offset

Bit Default Description

31:08 0000 00H Reserved.

07 02

PCI Interrupt D - set when the PCI Interrupt D bit is set in the Outbound Doorbell 
Register. To clear this bit (and the interrupt), the PCI Interrupt D bit in the Outbound 
Doorbell Register must be cleared.

06 02

PCI Interrupt C - set when the PCI Interrupt C bit is set in the Outbound Doorbell 
Register. To clear this bit (and the interrupt), the PCI Interrupt C bit in the Outbound 
Doorbell Register must be cleared.

05 02

PCI Interrupt B - set when the PCI Interrupt B bit is set in the Outbound Doorbell 
Register. To clear this bit (and the interrupt), the PCI Interrupt B bit in the Outbound 
Doorbell Register must be cleared.

PCI Interrupt A - set when the PCI Interrupt A bit is set in the Outbound Doorbell 

PCI

LBA

28 24 20 16 12 8 4 031

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na
17-23

17

04 02 Register. To clear this bit (and the interrupt), the PCI Interrupt A bit in the Outbound 
Doorbell Register must be cleared.

03 02

Outbound Post Queue Interrupt - set when the Outbound Post Head Pointer Register 
does not equal the Outbound Post Tail Pointer Register. This bit is cleared when the 
Outbound Post Head Pointer Register equals the Outbound Post Tail Pointer Register.

02 02

Outbound Doorbell Interrupt - set when at least one Software Interrupt bit in the 
Outbound Doorbell Register is set. To clear this bit (and the interrupt), Software Interrupt 
bits in the Outbound Doorbell Register must all be clear.

01 02
Outbound Message 1 Interrupt - set by the MU when the Outbound Message 1 Register 
is written. Clearing this bit clears the interrupt.

00 02
Outbound Message 0 Interrupt - set by the MU when the Outbound Message 0 Register 
is written. Clearing this bit clears the interrupt.



MESSAGING UNIT

17.7.10 Outbound Interrupt Mask Register - OIMR

The Outbound Interrupt Mask Register (OIMR) provides the ability to mask outbound PCI
interrupts that the MU generates. Each mask register bit corresponds to a hardware interrupt bit in
the Outbound Interrupt Status Register. When the bit is set, the PCI interrupt is not generated.
When the bit is clear, the interrupt is allowed to be generated.

Setting or clearing bits in this register does not affect the Outbound Interrupt Status Register; they
only affect PCI interrupt generation.

Table 17-14.  Outbound Interrupt Mask Register - OIMR  (Sheet 1 of 2)

LBA: 

PCI:

1334H

NA

Legend: NA = Not Accessible RO = Read Only
RV = Reserved PR = Preserved RW = Read/Write
RS = Read/Set RC = Read Clear
LBA = 80960 Local Bus Address PCI = PCI Configuration Address Offset

Bit Default Description

31:08 0000 00H Reserved.

07 02

PCI Interrupt D Mask - When set, this bit masks the PCI Interrupt D signal when the PCI 
Interrupt D bit in the in the Outbound Doorbell Register is set.

0 - allow interrupt to be generated
1 - do not allow interrupt to be generated

06 02

PCI Interrupt C Mask - When set, this bit masks the PCI Interrupt C signal when the PCI 
Interrupt C bit in the in the Outbound Doorbell Register is set.

0 - allow interrupt to be generated
1 - do not allow interrupt to be generated

PCI Interrupt B Mask - When set, this bit masks the PCI Interrupt B signal when the PCI 
Interrupt B bit in the in the Outbound Doorbell Register is set.

PCI

LBA

28 24 20 16 12 8 4 031

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na
17-24

05 02
0 - allow interrupt to be generated
1 - do not allow interrupt to be generated

04 02

PCI Interrupt A Mask - When set, this bit masks the PCI Interrupt A signal when the PCI 
Interrupt A bit in the in the Outbound Doorbell Register is set.

0 - allow interrupt to be generated
1 - do not allow interrupt to be generated

03 02

Outbound Post Queue Interrupt Mask - When set, this bit masks the PCI interrupt 
generated when the Outbound Post Head Pointer Register does not equal the 
Outbound Post Tail Pointer Register.

0 - allow interrupt to be generated
1 - do not allow interrupt to be generated



MESSAGING UNIT

02 02

Outbound Doorbell Interrupt Mask - When set, this bit masks the Software Interrupt 
generated by the Outbound Doorbell Register.

0 - allow interrupt to be generated
1 - do not allow interrupt to be generated

01 02

Outbound Message 1 Interrupt Mask - When set, this bit masks the Outbound Message 
1 Interrupt generated by a write to the Outbound Message 1 Register.

0 - allow interrupt to be generated
1 - do not allow interrupt to be generated

00 02

Outbound Message 0 Interrupt Mask- When set, this bit masks the Outbound Message 
0 Interrupt generated by a write to the Outbound Message 0 Register.

0 - allow interrupt to be generated
1 - do not allow interrupt to be generated

Table 17-14.  Outbound Interrupt Mask Register - OIMR  (Sheet 2 of 2)

LBA: 

PCI:

1334H

NA

Legend: NA = Not Accessible RO = Read Only
RV = Reserved PR = Preserved RW = Read/Write
RS = Read/Set RC = Read Clear
LBA = 80960 Local Bus Address PCI = PCI Configuration Address Offset

Bit Default Description

PCI

LBA

28 24 20 16 12 8 4 031

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na
17-25

17



MESSAGING UNIT

17.7.11 Messaging Unit Configuration Register - MUCR

The Messaging Unit Configuration Register (MUCR) contains Circular Queue Enable bit and the
size of one of the four Circular Queues. The Circular Queues are disabled at reset to allow the
software to initialize the head and tail pointer registers before any PCI accesses to the Queue Ports
occur. Each Circular Queue may range from 4 Kbyte entries (16 Kbytes) to 64 Kbyte entries
(256 Kbytes).

Table 17-15.  Messaging Unit Configuration Register - MUCR 

LBA: 

PCI:

1350H

NA

Legend: NA = Not Accessible RO = Read Only
RV = Reserved PR = Preserved RW = Read/Write
RS = Read/Set RC = Read Clear
LBA = 80960 Local Bus Address PCI = PCI Configuration Address Offset

Bit Default Description

31:05 0000 00H Reserved.

00 02

Circular Queue Enable - This bit enables or disables the Circular Queues. When clear, 
Circular Queues are disabled. The MU accepts PCI accesses to the Circular Queue 
Ports; the MU ignores data for Writes and returns FFFF FFFFH for Reads. When set, 
Circular Queues are enabled.

05:01 1H

Circular Queue Size - This field determines the size of each Circular Queue. All four 
queues are the same size.

Circular Queue Size:

• (000012) 4K entries (16 Kbytes)

• (000102) 8K entries (32 Kbytes)

• (001002) 16K entries (64 Kbytes)

• (010002) 32K entries (128 Kbytes)

PCI

LBA

28 24 20 16 12 8 4 031

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na
17-26

• (100002) 64K entries (256 Kbytes)



MESSAGING UNIT

17.7.12 Queue Base Address Register - QBAR

The Queue Base Address Register (QBAR) contains the Circular Queue local memory address.
The base address must be located on a 1 Mbyte address boundary. 

All Circular Queue head and tail pointers are based on the QBAR. Writing to the upper 12 bits of
the head and tail pointer register does not affect the Queue Base Address in the QBAR.

Table 17-16.  Queue Base Address Register - QBAR

LBA: 

PCI:

1354H

NA

Legend: NA = Not Accessible RO = Read Only
RV = Reserved PR = Preserved RW = Read/Write
RS = Read/Set RC = Read Clear
LBA = 80960 Local Bus Address PCI = PCI Configuration Address Offset

Bit Default Description

31:20 000H Queue Base Address - circular queue local memory address.

19:00 0 0000H Reserved.

PCI

LBA

28 24 20 16 12 8 4 031

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na
17-27

17



MESSAGING UNIT

17.7.13 Inbound Free Head Pointer Register - IFHPR

The Inbound Free Head Pointer Register (IFHPR) contains the local memory offset from the
Queue Base Address of the head pointer for the Inbound Free Queue. The Head Pointer must be
aligned on a word address boundary. This register is maintained by software. When read, the
Queue Base Address is provided in the upper 12 bits of this register. 

Table 17-17.  Inbound Free Head Pointer Register - IFHPR

LBA: 

PCI:

1360H

NA

Legend: NA = Not Accessible RO = Read Only
RV = Reserved PR = Preserved RW = Read/Write
RS = Read/Set RC = Read Clear
LBA = 80960 Local Bus Address PCI = PCI Configuration Address Offset

Bit Default Description

31:20 000H Queue Base Address - local memory address of the Circular Queues.

19:02 0000 0H
Inbound Free Head Pointer - Local memory offset of the head pointer for the Inbound 
Free Queue.

01:00 002 Reserved.

PCI

LBA

28 24 20 16 12 8 4 031

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rv

na

rv

na
17-28



MESSAGING UNIT

17.7.14 Inbound Free Tail Pointer Register - IFTPR

The Inbound Free Tail Pointer Register (IFTPR) contains the local memory offset from the Queue
Base Address of the tail pointer for the Inbound Free Queue. The Tail Pointer must be aligned on a
word address boundary. When read, the Queue Base Address is provided in the upper 12 bits of
this register. 

Table 17-18.  Inbound Free Tail Pointer Register - IFTPR

LBA: 

PCI:

1364H

NA

Legend: NA = Not Accessible RO = Read Only
RV = Reserved PR = Preserved RW = Read/Write
RS = Read/Set RC = Read Clear
LBA = 80960 Local Bus Address PCI = PCI Configuration Address Offset

Bit Default Description

31:20 000H Queue Base Address - local memory address of the Circular Queues.

19:02 0000 0H
Inbound Free Tail Pointer - Local memory offset of the tail pointer for the Inbound Free 
Queue.

01:00 002 Reserved.

PCI

LBA

28 24 20 16 12 8 4 031

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rv

na

rv

na
17-29

17



MESSAGING UNIT

17.7.15 Inbound Post Head Pointer Register - IPHPR

The Inbound Post Head Pointer Register (IPHPR) contains the local memory offset from the
Queue Base Address of the head pointer for the Inbound Post Queue. The Head Pointer must be
aligned on a word address boundary. When read, the Queue Base Address is provided in the upper
12 bits of this register. 

Table 17-19.  Inbound Post Head Pointer Register - IPHPR

LBA: 

PCI:

1368H

NA

Legend: NA = Not Accessible RO = Read Only
RV = Reserved PR = Preserved RW = Read/Write
RS = Read/Set RC = Read Clear
LBA = 80960 Local Bus Address PCI = PCI Configuration Address Offset

Bit Default Description

31:20 000H Reserved

19:02 0000 0H
Inbound Post Head Pointer - Local memory offset of the head pointer for the Inbound 
Post Queue.

01:00 002 Reserved.

PCI

LBA

28 24 20 16 12 8 4 031

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rv

na

rv

na
17-30



MESSAGING UNIT

17.7.16 Inbound Post Tail Pointer Register - IPTPR

The Inbound Post Tail Pointer Register (IPTPR) contains the local memory offset from the Queue
Base Address of the tail pointer for the Inbound Post Queue. The Tail Pointer must be aligned on a
word address boundary. When read, the Queue Base Address is provided in the upper 12 bits of
this register. 

Table 17-20.  Inbound Post Tail Pointer Register - IPTPR

LBA: 

PCI:

136CH

NA

Legend: NA = Not Accessible RO = Read Only
RV = Reserved PR = Preserved RW = Read/Write
RS = Read/Set RC = Read Clear
LBA = 80960 Local Bus Address PCI = PCI Configuration Address Offset

Bit Default Description

31:20 000H Reserved

19:02 0000 0H
Inbound Post Tail Pointer - Local memory offset of the tail pointer for the Inbound Post 
Queue.

01:00 002 Reserved.

PCI

LBA

28 24 20 16 12 8 4 031

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rv

na

rv

na
17-31

17



17.7.17 Outbound Free Head Pointer Register - OFHPR

The Outbound Free Head Pointer Register (OFHPR) contains the local memory offset from the
Queue Base Address of the head pointer for the Outbound Free Queue. The Head Pointer must be
aligned on a word address boundary. This register is maintained by software. When read, the
Queue Base Address is provided in the upper 12 bits of this register. 

Table 17-21.  Outbound Free Head Pointer Register - OFHPR

LBA: 

PCI:

1370H

NA

Legend: NA = Not Accessible RO = Read Only
RV = Reserved PR = Preserved RW = Read/Write
RS = Read/Set RC = Read Clear
LBA = 80960 Local Bus Address PCI = PCI Configuration Address Offset

Bit Default Description

31:20 000H Queue Base Address - local memory address of the Circular Queues.

19:02 0000 0H
Outbound Free Head Pointer - Local memory offset of the head pointer for the 
Outbound Free Queue.

01:00 002 Reserved.

PCI

LBA

28 24 20 16 12 8 4 031

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rv

na

rv

na



MESSAGING UNIT

17.7.18 Outbound Free Tail Pointer Register - OFTPR

The Outbound Free Tail Pointer Register (OFTPR) contains the local memory offset from the
Queue Base Address of the tail pointer for the Outbound Free Queue. The Tail Pointer must be
aligned on a word address boundary. When read, the Queue Base Address is provided in the upper
12 bits of this register.

Table 17-22.  Outbound Free Tail Pointer Register - OFTPR

LBA: 

PCI:

1374H

NA

Legend: NA = Not Accessible RO = Read Only
RV = Reserved PR = Preserved RW = Read/Write
RS = Read/Set RC = Read Clear
LBA = 80960 Local Bus Address PCI = PCI Configuration Address Offset

Bit Default Description

31:20 000H Queue Base Address - local memory address of the Circular Queues.

19:02 0000 0H
Outbound Free Tail Pointer - Local memory offset of the tail pointer for the Outbound 
Free Queue.

01:00 002 Reserved.

PCI

LBA

28 24 20 16 12 8 4 031

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rv

na

rv

na
17-33

17



MESSAGING UNIT

17.7.19 Outbound Post Head Pointer Register - OPHPR

The Outbound Post Head Pointer Register (OPHPR) contains the local memory offset from the
Queue Base Address of the head pointer for the Outbound Post Queue. The Head Pointer must be
aligned on a word address boundary. When read, the Queue Base Address is provided in the upper
12 bits of this register. 

Table 17-23.  Outbound Post Head Pointer Register - OPHPR

LBA: 

PCI:

1378H

NA

Legend: NA = Not Accessible RO = Read Only
RV = Reserved PR = Preserved RW = Read/Write
RS = Read/Set RC = Read Clear
LBA = 80960 Local Bus Address PCI = PCI Configuration Address Offset

Bit Default Description

31:20 000H Queue Base Address - local memory address of the Circular Queues.

19:02 000 0H
Outbound Post Head Pointer - Local memory offset of the head pointer for the Outbound 
Post Queue.

01:00 002 Reserved.

PCI

LBA

28 24 20 16 12 8 4 031

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rv

na

rv

na
17-34



MESSAGING UNIT

17.7.20 Outbound Post Tail Pointer Register - OPTPR

The Outbound Post Tail Pointer Register (OPTPR) contains the local memory offset from the
Queue Base Address of the tail pointer for the Outbound Post Queue. The Tail Pointer must be
aligned on a word address boundary. When read, the Queue Base Address is provided in the upper
12 bits of this register. 

Table 17-24.  Outbound Post Tail Pointer Register - OPTPR

LBA: 

PCI:

137CH

NA

Legend: NA = Not Accessible RO = Read Only
RV = Reserved PR = Preserved RW = Read/Write
RS = Read/Set RC = Read Clear
LBA = 80960 Local Bus Address PCI = PCI Configuration Address Offset

Bit Default Description

31:20 000H Queue Base Address - local memory address of the Circular Queues.

19:02 0000 0H
Outbound Post Tail Pointer - Local memory offset of the tail pointer for the Outbound 
Post Queue.

01:00 002 Reserved.

PCI

LBA

28 24 20 16 12 8 4 031

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rv

na

rv

na

Queue 
Offset 

Registers

4K 
Entries
Qsize

8K 
Entries 
Qsize

16K 
Entries 
Qsize

32K 
Entries 
Qsize

64K 
Entries 
Qsize

IFHPR

IFTPR
0 0 0 0 0

IPHPR
4000H 8000H 10000H 20000H 40000H

Inbound
Free

Queue

Inbound

QBAR

Local Memory
17-35

17

Figure 17-3.  Initialization Values Programmed by Software

IPTPR

OPHPR

OPTPR
8000H 10000H 20000H 40000H 80000H

OFHPR

OFTPR
C000H 18000H 30000H 60000H C0000H

Outbound
Post

Queue

Post
Queue

Outbound
Free

Queue
Address =
(QBAR+4 x Qsize)



red.

ding the
MESSAGING UNIT

17.7.21 Index Address Register - IAR

The Index Address Register (IAR) contains the offset of the least recently accessed Index
Register. The MU writes to this register when the Index Registers are written by a PCI agent. The
register is not updated until the Inbound Interrupt Status Register’s Index Interrupt bit is clea

The local memory address of the Index Register least recently accessed is computed by ad
Index Address Register to the Primary Inbound ATU Translate Value Register.

Table 17-25.  Index Address Register - IAR

LBA: 

PCI:

1380H

NA

Legend: NA = Not Accessible RO = Read Only
RV = Reserved PR = Preserved RW = Read/Write
RS = Read/Set RC = Read Clear
LBA = 80960 Local Bus Address PCI = PCI Configuration Address Offset

Bit Default Description

31:12 0000 0H Reserved.

11:00 000H
Index Address - contains the local memory offset of the Index Register written (050H to 
FFCH)

PCI

LBA

28 24 20 16 12 8 4 031

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na
17-36



18
BUS ARBITRATION





re is a
al bus
CHAPTER 18
BUS ARBITRATION

This chapter describes the bus arbitration units of the i960® Rx I/O processor. The four arbitration
units include: the internal local bus arbiter, the secondary PCI bus arbiter for external secondary
PCI bus masters, the primary PCI bus arbiter for internal PCI bus masters, and the secondary PCI
bus arbiter for internal secondary PCI bus masters.

Some of the other topics discussed in this chapter include: the priority mechanism used in all of the
arbitration units, the memory-mapped registers used in programming the arbitration units, local
bus backoff, secondary bus arbitration parking.

CHAPTER 1, INTRODUCTION contains a block diagram of the i960 Rx I/O processor in
Figure 1-2, which shows the four arbitration units.

18.1 OVERVIEW

The i960 Rx I/O processor requires an arbitration mechanism to control 80960 local bus
ownership. Bus masters connected to the local bus consist of: 

• Three DMA channels

• Primary PCI address translation unit

• Secondary PCI address translation unit

• i960 core processor

• External bus masters 

The local bus arbitration unit is responsible for granting the local bus to a bus master. The
programmable 12-bit counter to limit the amount of time a bus master has control of the loc
18-1

18

and to dictate when a bus master must relinquish ownership when other bus masters are requesting
the local bus. 

The secondary PCI bus arbiter supports:

• Six external PCI bus masters

• Current owner of the i960 Rx I/O processor secondary bus interface, granted by the internal
secondary PCI bus arbiter

The PCI local bus specification defines the handshaking protocol for each bus master when granted
ownership of the secondary PCI bus by the secondary PCI bus arbiter.



BUS ARBITRATION

In addition to the local bus arbiter and the secondary PCI bus arbiter, the i960 Rx I/O processor
contains two internal PCI arbitration units. The primary internal arbitration unit controls access to
the internal primary PCI bus. Arbitration occurs for the primary PCI bus between the primary
ATU, DMA channels 0 and 1, and the primary interface of the PCI-to-PCI bridge unit. The
secondary internal arbitration unit controls access to the internal secondary PCI bus. Arbitration
occurs for the secondary PCI bus between the secondary ATU, DMA channel 2, and the secondary
interface of the PCI-to-PCI bridge unit. Both internal PCI arbitration units function in a similar
manner. The internal arbiters are not programmable.

18.2 LOCAL BUS ARBITRATION UNIT

The 80960 local bus arbitration unit supports up to seven local bus masters. Table 18-1 shows the
seven bus masters. Each master can be disabled or programmed to one of three priority levels. The
Local Bus Arbitration Control Register (LBACR), programmed by application software, sets the
priorities for each of the bus masters. Each priority level uses a round-robin algorithm to guarantee
that each device has a chance at bus ownership. When one device has finished, the next device,
assuming one is currently requesting the bus, is granted ownership. 

When a bus master requests the local bus, the arbiter first obtains control of the local bus from the
i960 core processor or the current bus owner, based on the programmed priority and the current
local bus arbitration latency counter value. The arbiter then grants the local bus to the requesting
bus master by returning the respective internal GNT# signal. 

When there are no masters requesting the local bus, the local bus arbiter parks the local bus with
the i960 core processor. The local bus arbitration latency counter is reset each time a master is
granted the local bus, with the exception of when the bus is being parked. When the arbiter parks
the bus by granting ownership to the processor, the local bus arbitration latency counter is not
reset.

Table 18-1.  Local Bus Masters

Bus Master
18-2

i960 Core Processor (Parked Master)

DMA Channel 0

DMA Channel 1

DMA Channel 2

Primary ATU (for inbound transactions)

Secondary ATU (for inbound transactions)

External Local Bus Device



BUS ARBITRATION

The initial priority for each bus master is programmable by software. While running, the arbiter
promotes and demotes the bus masters using the round robin scheme shown in Figure 18-1. After a
device relinquishes control of the bus, it returns to its initial programmed priority. Table 18-2
shows the 2-bit values that correspond to each priority level.

The arbitration scheme supports three levels of round-robin arbitration. The three levels define a
low, medium and high priority. Using the round-robin mechanism ensures there is a winner for
each priority level. To enforce the concept of fairness, a slot is reserved for the winner of each
priority level (except the highest) in the next highest priority. When the winner of a priority level is
not granted the bus during that particular arbitration sequence, it is promoted to the next highest
level of priority. Once its bus ownership is removed, the device is reset to its initially programmed
priority and may start arbitration once again. Figure 18-1 and Table 18-3 show the three priority
levels and the reserved slots for the promoted requestor.

Table 18-2.  Programmed Priority Control

2-Bit Programmed Value Priority Level

002 High Priority

012 Medium Priority

102 Low Priority

112 Disabled

Primary
ATU

Priority 012
Winner

Secondary
ATU

DMA Channel 0

Priority 102
Winner

External Local
Bus Master

Priority 002

Priority 012

Highest Priority

Medium Priority
18-3

18Figure 18-1.  Local Bus Arbitration Example

DMA Channel 1

DMA Channel 2

i960 Core
Processor

Priority 102

Lowest Priority



BUS ARBITRATION

Table 18-4 is an example of bus arbitration, with three bus masters. Each of the bus masters is
constantly requesting the bus, and each is at a different priority level. The top row of the table lists
the current bus master/winner of the highest priority group. The three rows labeled as high,
medium and low represent the actual priority levels that devices are currently at based on either
their initial programmed priority or promotion through the levels. For example, device C starts out
at low priority. Because it is the only device at this priority, it is the winner at low priority and is
promoted to medium priority. Later it wins at medium priority (against device B) and is promoted
to high priority where it wins the level (against device A) and the bus. Device C is then put back at
its programmed priority of low and starts the whole cycle over.

Table 18-3.  Priority Programming for Local Bus Arbitration Example

Bus Master Programmed Priority

Primary ATU High - 002
Secondary ATU Medium - 012
DMA Channel 0 Medium - 012

External Bus Master Medium - 012
DMA Channel 1 Low - 102
DMA Channel 2 Low - 102

i960 Core Processor Low - 102

Table 18-4.  Bus Arbitration Example – Three Bus Masters

Priority 
Level

Initial 
State

Winning Bus Master

A B A C A B A C

High A B A C A B A C A

Medium B C C B B – C B B

Low C –  –  –  – C  –  –  –

NOTE: In this example, all bus masters are continually requesting the bus.
18-4

The winning bus master pattern for the bus arbitration example in Table 18-4 would continue on
as follows: ABACABACABACABAC.

Table 18-5 is an example of bus arbitration, with six bus masters. Each of the bus masters is
constantly requesting the bus, and there are two masters programmed at each different priority
level. The top row of the table lists the current bus master/winner of the highest priority group.
The three rows labeled as high, medium and low represent the actual priority levels that devices
are currently at based on either their initial programmed priority or promotion through the levels.



BUS ARBITRATION

The winning bus master pattern for the bus arbitration example in Table 18-5 would continue on as
follows: ABCABDABFABCABDABEABCABDABF.

18.2.1 Local Bus Arbitration Control Register - LBACR

The Local Bus Arbitration Control Register (LBACR - Table 18-6) sets the arbitration priority of
each device that uses the local bus. This register is accessible only from the 80960 processor bus.
Each device is given a 2-bit priority. At reset, all devices default to 002, high priority, which results
in a simple round-robin for all local bus masters. As devices are promoted up through the priority
levels in the internal arbitration scheme, the LBACR does not change to reflect the current priority
of a device. It always contains the device’s programmed priority.

Table 18-5.  Bus Arbitration Example – Six Bus Masters

Priority 
Level

Initial 
State 

Winning Bus Master

A B C A B D A B E

High AB BC AC AB BD AD AB BE AE AB

Medium CD DE DE DE CE CE CE CDF CDF CDF

Low EF F F F F F F  –  –  –

NOTE: In this example, all bus masters are continually requesting the bus.

Table 18-6.  Local Bus Arbitration Control Register – LBACR  (Sheet 1 of 2)

LBA: 

PCI:

1600H

NA

Legend: NA = Not Accessible RO = Read Only
RV = Reserved PR = Preserved RW = Read/Write

PCI

LBA

28 24 20 16 12 8 4 031

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na
18-5

18

RS = Read/Set RC = Read Clear
LBA = 80960 Local Bus Address PCI = PCI Configuration Address Offset

Bits Default Description

31:14 0000 0H Reserved.

13:12 002
External Bus Master Priority

Note: Programming 112 (disabled) is not allowed for this bus master.

11:10 002 Primary ATU Priority

09:08 002 Secondary ATU Priority

07:06 002 DMA Channel 2 Priority



for a
#, it

 After

ner at
ip is
BUS ARBITRATION

18.2.2 Removing Local Bus Ownership

With the exception of an external bus master currently owning the bus, the arbiter only removes
GNT# to the current bus owner if the local bus arbitration latency counter has expired or the
current bus owner removes its REQ#. When GNT# is removed, the bus master must get off the bus
by removing its REQ#. See section 18.2.4, “External Bus Arbitration Support” (pg. 18-7) for more
information on external bus masters.

When the current local bus owner relinquishes ownership, it removes its REQ# output 
minimum of one local bus clock. Once the arbiter detects the current owner’s inactive REQ
grants the local bus to the next local bus winner by activating the appropriate GNT# signal.
the one clock deassertion, the previous local bus master is free to reassert its REQ# signal.

When a local bus master has completed its transaction, it removes the REQ# signal to the arbiter,
regardless of the remaining count in the LBALCR. The arbiter is free to assign a new bus ow
this time. The LBALCR is reloaded with a new count value whenever new bus ownersh

05:04 002 DMA Channel 1 Priority

03:02 002 DMA Channel 0 Priority

01:00 002 i960 Core Processor Priority

Table 18-6.  Local Bus Arbitration Control Register – LBACR  (Sheet 2 of 2)

LBA: 

PCI:

1600H

NA

Legend: NA = Not Accessible RO = Read Only
RV = Reserved PR = Preserved RW = Read/Write
RS = Read/Set RC = Read Clear
LBA = 80960 Local Bus Address PCI = PCI Configuration Address Offset

Bits Default Description

PCI

LBA

28 24 20 16 12 8 4 031

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na
18-6

assigned, except when the bus is parked with the i960 core processor.

Due to the buffering capability within the DMA Controller and ATUs, data transfers to the PCI
bus may continue. This means that ownership of a PCI bus may continue after ownership of the
local bus has been lost, since ownership of the local bus and the PCI bus are independent.

When a DMA channel is performing a PCI memory write and invalidate transaction, the DMA
channel does not relinquish the local bus until it has transferred a full cache line into its internal
buffer. This means the DMA channel only relinquishes the bus on host system cache line aligned
boundaries, regardless of the state of the internal GNT# signal and the LBALCR.



f the on-
cessor

ol the
er to
ternal

rbiter
at the
 core

riod
 12-bit
or clock
BUS ARBITRATION

18.2.3 i960® Core Processor Bus Usage

The i960 core processor releases control of the local bus, when the latency timer times out, under
the following conditions:

• After completing a data access

• After completing an instruction fetch access

• After completing an atomic access (read-modify-write)

Since software has no control over when the processor needs the bus, it should make use o
chip instruction cache, data cache, and internal data RAM to help reduce the number of pro
bus requests.

18.2.4 External Bus Arbitration Support

External bus masters may be used on the local bus by adding external logic to contr
HOLD/HOLDA mechanism. The i960 Rx I/O processor allows for one external bus mast
participate in the fairness algorithm. Multiple bus masters require external logic to treat all ex
devices as a single bus master.

The 80960 arbitration logic supports external bus masters to control local bus. The a
maintains the standard HOLD/HOLDA protocol used on previous 80960 processors except th
i960 Rx I/O processor does not respond to the HOLD signal (i.e., assert HOLDA) while the
processor is in reset. Refer to section 13.6.1, “HOLD/HOLDA Protocol” (pg. 13-25) for a
complete description of the HOLD/HOLDA interface for external bus masters.

18.2.5 Local Bus Arbitration Latency Counter

The Local Bus Arbitration Latency Counter Register (LBALCR) value sets the minimum pe
that the active bus master has control of the local bus. This register’s value is loaded into the
counter each time the arbiter grants the local bus. The counter decrements on each process
until it reaches zero. When the counter reaches zero, two possible scenarios may occur:
18-7

18

• When a high-priority request is pending, the arbiter notifies the existing bus master and waits
for the pending request to be removed (signifying the completion of the current data transfer).
The programmed count value is reloaded into the LBALCR and the pending request is granted
control of the local bus. 



us, the
clock
 a bus
-assert.
n the
sts, the

en the
or, is
BUS ARBITRATION

• When no pending requestsare pending and the current bus master still needs the b
arbiter continues to grant the current bus master control of the local bus. Every 
thereafter, the arbiter continues checking for pending bus requests. Upon recognizing
request the arbiter notifies the bus master and waits for the current bus request to de
The arbiter then grants the pending bus master control and reloads the LBALCR. Whe
current bus master completes its transaction and there are no outstanding bus reque
arbiter parks the local bus on the i960 core processor. The LBALCR is not reloaded wh
bus is parked. It is not reloaded until a bus master, including the i960 core process
granted the bus.

Table 18-7 shows the bit definitions for the local bus arbitration latency counter register.

18.2.6 Local Bus Arbitration Latency Counter Register – LBALCR

The Local Bus Arbitration Latency Counter Register (LBALCR) value sets the minimum period
that the active bus master has control of the local bus.

LBALCR is a read/write register accessible through a memory-mapped interface from the local
bus. The maximum value programmable is 0000 0FFFH. The minimum value programmable
(0000 0000H) could result in the local bus being reassigned on every clock. When reading the
LBALCR, the value returned is the programmed value, not the current count value.

Table 18-7.  Local Bus Arbitration Latency Count Register – LBALCR

LBA: 

PCI:

1604H

NA

Legend: NA = Not Accessible RO = Read Only
RV = Reserved PR = Preserved RW = Read/Write
RS = Read/Set RC = Read Clear

PCI

LBA

28 24 20 16 12 8 4 031

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na
18-8

LBA = 80960 Local Bus Address PCI = PCI Configuration Address Offset

Bit Default Description

31:12 0000 0H Reserved.

11:00 FFFH Local Bus Arbitration Counter



eue is
 new
ssor is
value
l bus
isition,

ary bus
led. A
es for

biter
BUS ARBITRATION

18.2.7 Local Bus Backoff 

The i960 Rx I/O processor backoff unit prevents deadlocks that occur when an i960 core processor
outbound transaction through an ATU occurs simultaneously with an inbound ATU transaction
and both transactions require the same resources. When backoff is required, the backoff unit three-
states the address/data bus and the necessary bus control signals (as in HOLD/HOLDA assertion)
to electrically remove the processor from the bus. The backoff unit simulates a cycle completion
by asserting BLAST# on the cycle following the address phase.

The i960 core processor always backs off under the following situations:

• Outbound configuration read to the ATU

• Outbound memory read to the ATU

• Outbound I/O Read to the ATU

• Any transaction (read or write) to a busy ATU

A busy ATU is one that is currently processing an inbound transaction (inbound address qu
valid). When backoff occurs, the 12-bit arbitration counter is reset and is reloaded with a
count when the local bus is granted to another bus master. When the i960 Rx I/O proce
removed from backoff, the 12-bit arbitration counter is reset to a full count regardless of its 
when backoff occurred. In addition, the processor moves to the highest priority in the loca
arbitration sequence for the purposes of reacquiring the bus after backoff. After bus re-acqu
the processor returns to its preprogrammed priority. 

18.3 SECONDARY PCI ARBITRATION UNIT

The secondary bus arbiter supports up to six secondary bus masters plus the second
interface itself. Each request can be programmed to one of three priority levels or be disab
memory mapped control register, programmed by the application software, sets the prioriti
each of the bus masters. Each priority level is handled in a round-robin fashion. 

The initial priority for each bus master is programmable by software. While running, the ar
18-9

18

promotes and demotes the bus masters using the round-robin scheme shown in Figure 18-2. After a
device relinquishes control of the bus, it returns to its initial programmed priority. Table 18-2
shows the 2-bit values that correspond to each priority level.

The round-robin arbitration scheme supports three levels of round-robin arbitration. The three
levels define a low, medium and high priority. Using the round-robin mechanism ensures there is a
winner for each priority level. To enforce the concept of fairness, a slot is reserved for the winner
of each priority level (except the highest) in the next highest priority. When the winner of a priority
level is not granted the bus during that particular arbitration sequence, it is promoted to the next



 timer
BUS ARBITRATION

highest level of priority. Once its bus ownership is removed, the device is reset to its initially
programmed priority and may start arbitration once again. Figure 18-2 and Table 18-8 show the
three priority levels and the reserved slots for the promoted requestor. Refer to Table 18-4., Bus
Arbitration Example – Three Bus Masters (pg. 18-4) and Table 18-5., Bus Arbitration Example –
Six Bus Masters (pg. 18-5) for examples of the arbitration algorithm.

Each master on the secondary PCI bus is required to implement a latency timer. The
determines the maximum period that the master is allowed to retain ownership of the bus.

Figure 18-2.  Secondary PCI Bus Arbitration Example

Secondary
PCI Interface

Priority 012
Winner

Priority 102
Winner

Device
0

Priority 002

Priority 012

Priority 102

Device
4

Device
3

Device
1

Device
2

Device
5

Priority 112

Highest Priority

Medium Priority

Lowest Priority

Disabled
18-10

Table 18-8.  Priority Programming for Secondary PCI Bus Arbitration Example

Bus Master Programmed Priority

Secondary Interface High - 002

Device 0 Medium - 012

Device 3 Medium - 012

Device 1 Medium - 012

Device 4 Low - 102

Device 2 Low - 102

Device 5 Disabled - 112



sure its
T# is
sserted

d and

 not in
T# and

nother

vice

itration
clear,
amples
#, the
rising
BUS ARBITRATION

18.3.1 Arbitration Signaling Protocol

An agent requests the bus by asserting its REQ# output. Agents must only use REQ# to signal a
true need for the bus, not to reserve the bus. When the secondary arbiter determines an agent may
use the bus, it asserts the agent’s GNT# input.

The secondary arbiter may deassert an agent’s GNT# on any PCI clock. An agent must en
GNT# is asserted on the clock edge where it wants to start a transaction. When GN
deasserted, the transaction must not proceed. Once GNT# is asserted, it may be dea
according to the following rules:

• When GNT# is deasserted and FRAME# is asserted, the bus transaction is vali
continues.

• One GNT# can be deasserted coincident with another GNT# being asserted if the bus is
the IDLE state. Otherwise, a one clock delay is added between the deassertion of a GN
the assertion of the next GNT#. This prevents contention on the AD bus.

• While FRAME# is deasserted, GNT# may be deasserted any time in order to service a
master, or in response to the associated REQ# being deasserted.

18.3.2 Secondary Arbitration Control Register - SACR

The Secondary Arbitration Control Register (SACR) sets the arbitration priority of each de
that uses the secondary PCI bus. Each device is given a 2-bit priority as shown in Table 18-2. The
SACR register is located in the PCI-to-PCI bridge configuration space.

The SACR register also contains the Secondary Arbiter Status bit for the secondary bus arb
unit. This bit is set at reset by sampling the S_REQ5#/S_ARB_EN signal. When this bit is 
the secondary bus arbiter is disabled and the bridge drives S_REQ# on S_GNT0# and s
S_GNT# on S_REQ0#. When S_REQ5#/S_ARB_EN is high on the rising edge of P_RST
internal secondary arbitration unit is enabled. When S_REQ5#/S_ARB_EN is low on the 
edge of P_RST#, the internal secondary arbitration unit is disabled.
18-11

18



BUS ARBITRATION

18.3.3 Secondary Bus Arbitration Parking

1. This bit is Read Only from BOTH the PCI interface and the 80960 local bus. This is unlike other Read Only 
bits which are read only from the PCI interface, and Read/Write from the 80960 local bus.

Table 18-9.  Secondary Arbitration Control Register - SACR 

LBA: 

PCI:

104CH

4CH

Legend: NA = Not Accessible RO = Read Only
RV = Reserved PR = Preserved RW = Read/Write
RS = Read/Set RC = Read Clear
LBA = 80960 Local Bus Address PCI = PCI Configuration Address Offset

Bits Default Description

31:17 0000H Reserved.

161

Based on 
S_REQ5#/S
_ARB_EN 
signal at 

reset

Secondary Arbiter Enable

0 = Disabled
1 = Enabled

15:14 002 Reserved.

13:12 002 Device 5 Priority

11:10 002 Device 4 Priority

09:08 002 Device 3 Priority

07:06 002 Device 2 Priority

05:04 002 Device 1 Priority

03:02 002 Device 0 Priority

01:00 002 Secondary PCI Interface Priority (Bridge, DMA Channel 2, or Secondary ATU)

NOTES:

PCI

LBA

28 24 20 16 12 8 4 031

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

ro

ro

rv

na

rv

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na
18-12

Arbitration parking occurs when the internal arbitration unit asserts GNT# to a selected PCI bus
agent, when no agent is currently using or requesting the bus. The i960 Rx I/O processor’s internal
arbitration unit parks the secondary bus with the secondary PCI interface when no other agent is
requesting the bus. This maximizes the performance of primary to secondary bus transactions by
allowing downstream transactions without the secondary bus asserting REQ# internally and
waiting for the return of GNT#.



hes the
ter that
e that
itiated

ternal
ing

ice on
BUS ARBITRATION

In the situation where the secondary bus is parked at the i960 Rx I/O processor secondary PCI
interface, the bridge asserts S_AD31:00, S_C/BE3:0# and one clock later S_PAR to prevent the
PCI bus from floating. The secondary interface asserts these signals within two to three (for PAR)
PCI clocks. Refer to the PCI Local Bus Specification Revision 2.1. 

When the bus is parked at the secondary interface and in an IDLE state, it loses the bus when the
arbiter asserts another agent’s GNT#. The parked agent (the secondary interface) relinquis
bus and deassert its address and command signals in 1 PCI clock and parity 1 PCI clock af
(1-2 clocks total). When the arbiter removes the secondary bus internal GNT# at the same tim
the secondary interface drives FRAME# on the bus, the secondary interface completes the in
bus transaction. 

18.4 INTERNAL ARBITRATION UNITS

The i960 Rx I/O processor contains two internal arbitration units that control access to the in
PCI buses within the device. The Primary Internal PCI Arbitration Unit arbitrates for the follow
internal units:

• Primary Bridge Interface

• Primary ATU

• DMA Channel 0, DMA Channel 1

The Secondary Internal PCI Arbitration Unit arbitrates for the following internal units:

• Secondary Bridge Interface

• Secondary ATU

• DMA Channel 2

Each internal PCI arbitration unit uses a fixed round-robin arbitration scheme with each dev
a bus having equal priority. 
18-13

18

18.4.1 Internal Master Latency Timer

Each PCI interface of the i960 Rx I/O processor (primary and secondary) contains a Master
Latency Timer (MLT) for use by the internal resources when they are acting as PCI bus masters.
Both ATUs, the DMA channels, and the bridge interfaces use an MLT. MLT usage is explained in
the PCI Local Bus Specification Revision 2.1. As defined by the PCI specification, a PCI bus
master must release bus ownership when it has lost grant and its MLT has expired. The internal
PCI arbitration unit extends this concept by adding all of the internal bus master resources to the
arbitration equation and is therefore capable of removing the current bus master when its MLT has
expired. 



BUS ARBITRATION

Each internal bus master may lose its grant based on whether an external bus master wants the bus
(external grant inactive) or whether an internal bus master wants the bus (internal grant inactive
while external grant still active). Each bus master must relinquish the bus when an external device
or one of the internal resources requests the bus. 
18-14



19
TIMERS





t unit
.

CHAPTER 19
TIMERS

This chapter describes the i960® Rx I/O processor dual, independent 32-bit timers. Topics include
timer registers (TMRx, TCRx and TRRx), timer operation, timer interrupts, and timer register
values at initialization.

Each timer is programmed by the timer registers. These registers are memory-mapped within the
processor, addressable on 32-bit boundaries. When enabled, a timer decrements the user-defined
count value with each Timer Clock (TCLOCK) cycle. The countdown rate is also user-config-
urable to be equal to the bus clock frequency, or the bus clock rate divided by 2, 4 or 8. The timers
can be programmed to either stop when the count value reaches zero (single-shot mode) or run
continuously (auto-reload mode). When a timer’s count reaches zero, the timer’s interrup
signals the processor’s interrupt controller. Figure 19-1 shows a diagram of the timer functions
See also Figure 19-2 for the Timer Unit state diagram.

Address
Detect

Timer Mode Register

Timer Count Register
32-bit Counter

32-bit Compare 
Against Zero

Clock Unit Bus
Clock

Internal
CPU
Bus

Timer Reload Register

Selected Clock

32-bit Register
19-1

19
Figure 19-1.  Timer Functional Diagram

Interrupt Unit

Fault
Output

User/ Interrupt
Output

Terminal Count 

Supervisor
Status



rrent
TIMERS

19.1 TIMER REGISTERS

As shown in Table 19-2, each timer has three memory-mapped registers:

• Timer Mode Register - programs the specific mode of operation or indicates the cu
programmed status of the timer. This register is described in section 19.1.1, Timer Mode
Registers – TMR0:1 (pg. 19-2).

• Timer Count Register - contains the timer’s current count. See section 19.1.2, Timer Count
Register – TCR0:1 (pg. 19-5).

• Timer Reload Register - contains the timer’s reload count. See section 19.1.3, Timer Reload
Register – TRR0:1 (pg. 19-6).

Table 19-1.  Timer Performance Ranges

Bus Frequency (MHz) Max Resolution (ns) Max Range (mins)

40 25 14.3

33 30.3 17.4

25 40 22.9

20 50 28.6

16 62.5 35.8

Table 19-2.  Timer Registers

Timer Unit Register Acronym Register Name

Timer 0

TMR0 Timer Mode Register 0

TCR0 Timer Count Register 0

TRR0 Timer Reload Register 0

Timer 1

TMR1 Timer Mode Register 1

TCR1 Timer Count Register 1
19-2

For register memory locations, see Table C-3., Timer Registers (pg. C-4).

19.1.1 Timer Mode Registers – TMR0:1

The Timer Mode Register (TMRx) lets the user program the mode of operation and determine the
current status of the timer. TMRx bits are described in the subsections following Table 19-3 and
are summarized in Table 19-7.

TRR1 Timer Reload Register 1



TIMERS

19.1.1.1 Bit 0 - Terminal Count Status Bit (TMRx.tc)

The TMRx.tc bit is set when the Timer Count Register (TCRx) decrements to 0 and bit 2

Table 19-3.  Timer Mode Register – TMRx

LBA: 

PCI:

CH 0-0308H
CH 1-0318H

NA

Legend: NA = Not Accessible RO = Read Only
RV = Reserved PR = Preserved RW = Read/Write
RS = Read/Set RC = Read Clear
LBA = 80960 Local Bus Address PCI = PCI Configuration Address Offset

Bit Default Description

31:06 0000 000H Reserved. Initialize to 0.

05:04 002 Timer Input Clock Selects - TMRx.csel1:0
(00) 1:1 Timer Clock = Bus Clock
(01) 2:1 Timer Clock = Bus Clock / 2
(10) 4:1 Timer Clock = Bus Clock / 4
(11) 8:1 Timer Clock = Bus Clock / 8 

03 02 Timer Register Supervisor Write Control - TMRx.sup
 (0) Supervisor and User Mode Write Enabled
 (1) Supervisor Mode Only Write Enabled

02 02 Timer Auto Reload Enable - TMRx.reload
(0) Auto Reload Disabled
(1) Auto Reload Enabled

01 02 Timer Enable - TMRx.enable 
(0) Disabled
(1) Enabled

00 02 Terminal Count Status - TMRx.tc
(0) No Terminal Count 
(1) Terminal Count 

PCI

LBA

28 24 20 16 12 8 4 031

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na
19-3

19

(TMRx.reload) is not set for a timer. The TMRx.tc bit allows applications to monitor timer status
through software instead of interrupts. TMRx.tc remains set until software accesses (reads or
writes) the TMRx. The access clears TMRx.tc. The timer ignores any value specified for TMRx.tc
in a write request.

When auto-reload is selected for a timer and the timer is enabled, the TMRx.tc bit status is unpre-
dictable. Software should not rely on the value of the TMRx.tc bit when auto-reload is enabled. 

The processor also clears the TMRx.tc bit upon hardware or software reset. Refer to section 11.2,
80960Rx INITIALIZATION (pg. 11-2).



lock
ct

ero.

ocessor

ode.

hen

t on
TIMERS

19.1.1.2 Bit 1 - Timer Enable (TMRx.enable)

The TMRx.enable bit allows user software to control the timer’s RUN/STOP status. When:

TMRx.enable = 1 The Timer Count Register (TCRx) value decrements every Timer C
(TCLOCK) cycle. TCLOCK is determined by the Timer Input Clock Sele
(TMRx.csel bits 0-1). See section 19.1.1.5. When TMRx.reload=0, the
timer automatically clears TMRx.enable when the count reaches z
When TMRx.reload=1, the bit remains set. See section 19.1.1.3.

TMRx.enable = 0 The timer is disabled and ignores all input transitions.

User software sets this bit. Once started, the timer continues to run, regardless of other pr
activity.  Three events can stop the timer:

• User software explicitly clearing this bit (i.e., TMRx.enable = 0).

• TCRx value decrements to 0, and the Timer Auto Reload Enable (TMRx.reload) bit = 0.

• Hardware or software reset. Refer to section 11.2, 80960Rx INITIALIZATION  (pg. 11-2).

19.1.1.3 Bit 2 - Timer Auto Reload Enable (TMRx.reload)

The TMRx.reload bit determines whether the timer runs continuously or in single-shot m
When TCRx = 0 and TMRx.enable = 1 and:

TMRx.reload = 1 The timer runs continuously. The processor: 

1. Automatically loads TCRx with the value in the Timer Reload Register (TRRx), w
TCRx value decrements to 0.

2. Decrements TCRx until it equals 0 again. 

Steps 1 and 2 repeat until software clears TMRx bits 1 or 2. 

TMRx.reload = 0 The timer runs until the Timer Count Register = 0. TRRx has no effec
the timer. 
19-4

User software sets this bit. When TMRx.enable and TMRx.reload are set and TRRx does not equal
0, the timer continues to run in auto-reload mode, regardless of other processor activity.  Two
events can stop the timer: 

• User software explicitly clearing either TMRx.enable or TMRx.reload.

• Hardware or software reset.

The processor clears this bit upon hardware or software reset.



 read

ode

 

. See
its
ncy. 
TIMERS

19.1.1.4 Bit 3 - Timer Register Supervisor Read/Write Control (TMRx.sup)

The TMRx.sup bit enables or disables user mode writes to the timer registers (TMRx, TCRx,
TRRx). Supervisor mode writes are allowed regardless of this bit’s condition. Software can
these registers from either mode. 

When:

TMRx.sup = 1 The timer generates a TYPE.MISMATCH fault when a user mode task
attempts a write to any of the timer registers; however, supervisor m
writes are allowed.

TMRx.sup = 0 The timer registers can be written from either user or supervisor mode.

The processor clears TMRx.sup upon hardware or software reset. Refer to section 11.2, 80960Rx
INITIALIZATION  (pg. 11-2). 

19.1.1.5 Bits 4, 5 - Timer Input Clock Select (TMRx.csel1:0)

User software programs the TMRx.csel bits to select the Timer Clock (TCLOCK) frequency
Table 19-4. As shown in Figure 19-1, the bus clock is an input to the timer clock unit. These b
allow the application to specify whether TCLOCK runs at or slower than the bus clock freque

The processor clears these bits upon hardware or software reset (TCLOCK = Bus Clock). 

Table 19-4.  Timer Input Clock (TCLOCK) Frequency Selection

Bit 5
TMRx.csel1

Bit 4
TMRx.csel0

Timer Clock (TCLOCK)

0 0 Timer Clock = Bus Clock

0 1 Timer Clock = Bus Clock / 2

1 0 Timer Clock = Bus Clock / 4

1 1 Timer Clock = Bus Clock / 8
19-5

19

19.1.2 Timer Count Register – TCR0:1

The Timer Count Register (TCRx) is a 32-bit register that contains the timer’s current count. The
register value decrements with each timer clock tick. When this register value decrements to zero
(terminal count), a timer interrupt is generated. When TMRx.reload is not set for the timer, the
status bit in the timer mode register (TMRx.tc) is set and remains set until the TMRx register is
accessed. Table 19-5 shows the timer count register.



d
 (1),

ng a
TIMERS

The valid programmable range is from 1H to FFFF FFFFH. Avoid programming TCRx to 0 as it
will have varying results as described in section 19.5, UNCOMMON TCRx AND TRRx
CONDITIONS (pg. 19-10).

User software can read or write TCRx whether the timer is running or stopped. Bit 3 of TMRx
determines user read/write control (see section 19.1.1.4). The TCRx value is undefined after
hardware or software reset.

19.1.3 Timer Reload Register – TRR0:1

The Timer Reload Register (TRRx; Table 19-6) is a 32-bit register that contains the timer’s reloa
count. The timer loads the reload count value into TCRx when TMRx.reload is set
TMRx.enable is set (1) and TCRx equals zero.

As with TCRx, the valid programmable range is from 1H to FFFF FFFFH. Avoid programmi
value of 0, as it may prevent TINTx from asserting continuously. (See section 19.5,
UNCOMMON TCRx AND TRRx CONDITIONS (pg. 19-10) for more information.)

Table 19-5.  Timer Count Register – TCRx

LBA: 

PCI:

CH 0-0304H
CH 1-0314H

na

Legend: NA = Not Accessible RO = Read Only
RV = Reserved PR = Preserved RW = Read/Write
RS = Read/Set RC = Read Clear
LBA = 80960 Local Bus Address PCI = PCI Configuration Address Offset

Bit Default Description

31:00 0000 0000H Timer Count Value - TCRx.d31:0

PCI

LBA

28 24 20 16 12 8 4 031

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na
19-6

User software can access TRRx whether the timer is running or stopped. Bit 3 of TMRx
determines read/write control (see section 19.1.1.4, Bit 3 - Timer Register Supervisor Read/Write
Control (TMRx.sup) (pg. 19-5)). TRRx value is undefined after hardware or software reset.



TIMERS

19.2 TIMER OPERATION

This section summarizes timer operation and describes load/store access latency for the timer
registers.

19.2.1 Basic Timer Operation

Each timer has a programmable enable bit in its control register (TMRx.enable) to start and stop
counting. The supervisor (TMRx.sup) bit controls write access to the enable bit. This allows the
programmer to prevent user mode tasks from enabling or disabling the timer. Once the timer is
enabled, the value stored in the Timer Count Register (TCRx) decrements every Timer Clock
(TCLOCK) cycle. TCLOCK is determined by the Timer Input Clock Select (TMRx.csel) bit
setting. The countdown rate can be set to equal the bus clock frequency, or the bus clock rate
divided by 2, 4 or 8. Setting TCLOCK to a slower rate lets the user specify a longer count period
with the same 32-bit TCRx value.

Software can read or write the TCRx value whether the timer is running or stopped. This lets the
user monitor the count without using hardware interrupts. The TMRx.sup bit lets the programmer

Table 19-6.  Timer Reload Register – TRRx

LBA: 

PCI:

CH 0-0300H
CH 1-0310H

NA

Legend: NA = Not Accessible RO = Read Only
RV = Reserved PR = Preserved RW = Read/Write
RS = Read/Set RC = Read Clear
LBA = 80960 Local Bus Address PCI = PCI Configuration Address Offset

Bit Default Description

31:00 0000 0000H Timer Auto-Reload Value - TRRx.d31:0

PCI

LBA

28 24 20 16 12 8 4 031

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na
19-7

19

allow or prevent user mode writes to TCRx, TMRx and TRRx.

When the TCRx value decrements to zero, the unit’s interrupt request signals the processor’s
interrupt controller. See section 19.3, TIMER INTERRUPTS (pg. 19-10) for more information.
The timer checks the value of the timer reload bit (TMRx.reload) setting. When TMRx.reload. = 1,
the processor: 

• Automatically reloads TCRx with the value in the Timer Reload Register (TRRx).

• Decrements TCRx until it equals 0 again. 

This process repeats until software clears TMRx.reload or TMR.enable. 



TIMERS

When TMRx.reload = 0, the timer stops running and sets the terminal count bit (TMRx.tc). This
bit remains set until user software reads or writes the TMRx register. Either access type clears the
bit. The timer ignores any value specified for TMRx.tc in a write request.

19.2.2 Load/Store Access Latency for Timer Registers

As with all other load accesses from internal memory-mapped registers, a load instruction that
accesses a timer register has a latency of one internal processor cycle. With one exception, a store
access to a timer register completes and all state changes take effect before the next instruction
begins execution. The exception to this is when disabling a timer. Latency associated with the
disabling action is such that a timer interrupt may be posted immediately after the disabling
instruction completes. This can occur when the timer is near zero as the store to TMRx occurs. In
this case, the timer interrupt is posted immediately after the store to TMRx completes and before

Table 19-7.  Timer Mode Register Control Bit Summary

B
it

 3
(T

M
R

x.
su

p
)

T
R

R
x

T
C

R
x

B
it

 2
(T

M
R

x.
re

lo
ad

)

B
it

 1
(T

M
R

x.
en

ab
le

)

Action

X X X X 0 Timer disabled.

X X N 0 1 Timer enabled, TMRx.enable is cleared when TCRx decrements to zero.

X N N 1 1
Timer and auto reload enabled,TMRx.enable remains set when TCRx=0. 
When TCRx=0, TCRx equals the TRRx value.

0 X X X X No faults for user mode writes are generated.

1 X X X X TYPE.MISMATCH fault generated on user mode write.

Notes: X = don’t care

N = a number between 1H and FFFF FFFFH
19-8

the next instruction can execute. Table 19-8 summarizes the timer access and response timings.
Refer also to the individual register descriptions for details.

Note that the processor may delay the actual issuing of the load or store operation due to previous
instruction activity and resource availability of processor functional units. 

The processor ensures that the TMRx.tc bit is cleared within one bus clock after a load or store
instruction accesses TMRx. 



TIMERS

Table 19-8.  Timer Responses to Register Bit Settings 

 Name Status Action

(TMRx.tc)

Terminal Count
Bit 0

READ
Timer clears this bit when user software accesses TMRx. This bit can be set 1 
bus clock later. The timer sets this bit within 1 bus clock of TCRx reaching zero 
when TMRx.reload=0. 

WRITE
Timer clears this bit within 1 bus clock after the software accesses TMRx. The 
timer ignores any value specified for TMRx.tc in a write request.

(TMRx.enable)

Timer Enable
Bit 1

READ Bit is available 1 bus clock after executing a read instruction from TMRx.

WRITE
Writing a ‘1’ enables the bus clock to decrement TCRx within 1 bus clock after 
executing a store instruction to TMRx.

(TMRx.reload)

Timer Auto Reload 
Enable 

Bit 2

READ Bit is available 1 bus clock after executing a read instruction from TMRx.

WRITE
Writing a ‘1’ enables the reload capability within 1 bus clock after the store 
instruction to TMRx has executed. The timer loads TRRx data into TCRx and 
decrements this value during the next bus clock cycle. 

(TMRx.sup)

Timer Register 
Supervisor Write 

Control
Bit 3

READ Bit is available 1 bus clock after executing a read instruction from TMRx.

WRITE
Writing a ‘1’ locks out user mode writes within 1 bus clock after the store 
instruction executes to TMRx. Upon detecting a user mode write the timer 
generates a TYPE.MISMATCH fault. 

(TMRx.csel1:0)

Timer Input Clock 
Select

Bits 4-5

READ
Bits are available 1 bus clock after executing a read instruction from 
TMRx.csel1:0 bit(s).

WRITE
The timer re-synchronizes the clock cycle used to decrement TCRx within one 
bus clock cycle after executing a store instruction to TMRx.csel1:0 bit(s).

(TCRx.d31:0)

Timer Count 
Register

READ
The current TCRx count value is available within 1 bus clock cycle after 
executing a read instruction from TCRx. When the timer is running, the pre-
decremented value is returned as the current value.

The value written to TCRx becomes the active value within 1 bus clock cycle. 
19-9

19

WRITE When the timer is running, the value written is decremented in the current clock 
cycle.

(TRRx.d31:0)

Timer Reload 
Register

READ

The current TRRx count value is available within 1 bus clock after executing a 
read instruction from TRRx. When the timer is transferring the TRRx count into 
TCRx in the current count cycle, the timer returns the new TCRx count value to 
the executing read instruction.

WRITE
The value written to TRRx becomes the active value stored in TRRx within 1 
bus clock cycle. When the timer is transferring the TRRx value into the TCRx, 
data written to TRRx is also transferred into TCRx.



TIMERS

19.3 TIMER INTERRUPTS

Each timer is the source for one interrupt. When a timer detects a zero count in its TCRx, the timer
generates an internal edge-detected Timer Interrupt signal (TINTx) to the interrupt controller, and
the interrupt-pending (IPND.tipx) bit is set in the interrupt controller. Each timer interrupt can be
selectively masked in the Interrupt Mask (IMSK) register or handled as a dedicated hardware-
requested interrupt. Refer to CHAPTER 8, INTERRUPTS for a description of hardware-requested
interrupts.

When the interrupt is disabled after a request is generated, but before a pending interrupt is
serviced, the interrupt request is still active (the Interrupt Controller latches the request). When a
timer generates a second interrupt request before the CPU services the first interrupt request, the
second request may be lost.

When auto-reload is enabled for a timer, the timer continues to decrement the value in TCRx even
after entry into the timer interrupt handler.

19.4 POWERUP/RESET INITIALIZATION

Upon power up, external hardware reset or software reset (sysctl), the timer registers are
initialized to the values shown in Table 19-9.

Table 19-9.  Timer Powerup Mode Settings 

Mode/Control Bit Notes

TMRx.tc = 0 No terminal count

TMRx.enable = 0 Prevents counting and assertion of TINTx

TMRx.reload = 0 Single terminal count mode

TMRx.sup = 0 Supervisor or user mode access

TMRx.csel1:0 = 0 Timer Clock = Bus Clock

TCRx.d31:0 = 0 Undefined
19-10

19.5 UNCOMMON TCRx AND TRRx CONDITIONS 

Table 19-7 summarizes the most common settings for programming the timer registers. Under
certain conditions, however, it may be useful to set the Timer Count Register or the Timer Reload
Register to zero before enabling the timer. Table 19-10 details the conditions and results when
these conditions are set.

TRRx.d31:0 = 0 Undefined

TINTx output Deasserted



TIMERS

19.6 TIMER STATE DIAGRAM

Figure 19-2 shows the common states of the Timer Unit. For uncommon conditions see
section 19.5, UNCOMMON TCRx AND TRRx CONDITIONS.

Table 19-10.  Uncommon TMRx Control Bit Settings

TRRx TCRx
Bit 2

(TMRx.reload)

Bit 1
(TMRx.enable)

Action

X 0 0 1 TMRx.tc and TINTx set, TMR.enable cleared

0 0 1 1
Timer and auto reload enabled, TINTx not 
generated and timer enable remains set.

0 N 1 1
Timer and auto reload enabled. TINT.x set 
when TCRx=0. The timer remains enabled but 
further TINTx’s are not generated.

N 0 1 1

Timer and auto reload enabled, TINTx not set 
initially, TCRx = TRRx, TINTx set when TCRx 
has completely decremented the value it 
loaded from TRRx. TMRx.enable remains set.

NOTE: 
X = don’t care

N = a number between 1H and FFFF FFFFH
19-11

19



TIMERS

Hardware/Software Reset 

TMRx.enable = 0
TMRx.reload = 0
TMRx.sup = 0
TMRx.csel1:0 = 0

IDLE 
Bus Clock or
SW Read

SW Write (TMRx.enable = 1)

TMRx.enable = 1
TMRx.reload =user value
TMRx.sup = user value
TMRx.csel1:0 = user value

TCRx
Decrement

Clock Unit Tick

SW Write TCRx = 0

 and TCRx != 0

TC = 1

IPND.tip = 0

TC = 0TMRx.reload =user valueTMRx.enable = 1

SW Write
(TMRx.enable = 0)

Initial TCRx
Check

TCRx != 0

SW Read

See section 19.5, UNCOMMON 
TCRx AND TRRx CONDITIONS 
(pg. 19-10)

TCRx = 0
19-12

Figure 19-2.  Timer Unit State Diagram

IPND.tip = 1

TC Detected

Bus Clock

SW Read SW Read/Write & Reload = 0

Reload = 1

TCRx = TRRx

TMRx.enable = 1
TMRx.enable = 0

State
TC = 0

TMRx.sup = user value
TMRx.csel1:0 = user valueTMRx.enable = 0

SW Write



20
DMA CONTROLLER





20

CHAPTER 20

DMA CONTROLLER

This chapter describes the integrated Direct Memory Access (DMA) Controller, including the
operation modes, setup, external interface, registers and interrupts.

20.1 OVERVIEW

The DMA Controller provides low-latency, high-throughput data transfer capability. The DMA
Controller optimizes block transfers of data between the PCI bus and 80960 local bus memory.
The DMA is an initiator on the PCI bus with PCI burst capabilities to provide a maximum
throughput of 132 Mbytes/sec at 33 MHz.

Each channel contains a 64-byte data queue. This queue temporarily holds data to increase data
transfer performance in both directions.

Figure 20-1 shows the DMA channel to PCI bus connections.

Primary PCI Bus

PCI to PCI Bridge

80960 

DMA Channel 0

DMA Channel 1

Local Bus
20-1

Figure 20-1.  DMA Controller Block Diagram

Secondary PCI Bus

DMA Channel 2



I Dual

emory.

0 local

ssert a
n, the
nly
DMA CONTROLLER

The DMA Controller hardware executes data transfers and provides the programming interface.
Features include:

• Three Independent Channels

• Memory Controller Interface

• 32-bit addressing range on the 80960 local bus

• 64-bit addressing range on the primary and secondary PCI interfaces by using PC
Address Cycle (DAC)

• Independent PCI interfaces to the primary and secondary PCI buses

• Hardware support for unaligned data transfers for both the PCI bus and 80960 local bus

• Full 132 Mbyte/sec burst support for both the PCI bus and 80960 local bus

• Direct addressing to and from the PCI bus

• Fully programmable from the i960 core processor

• Support for automatic data chaining for gathering and scattering of data blocks

• Demand Mode Support for 32 bit external devices on DMA channel 0

20.2 THEORY OF OPERATION

The DMA Controller provides three channels of high throughput PCI-to-memory transfers: 

• Channels 0 and 1 transfer data blocks between the primary PCI bus and 80960 local m
Channel 0 also supports demand-mode transfers.

• Channel 2 transfers blocks of data between the secondary PCI bus and the 8096
memory.

Channel 0’s additional support for demand mode operation enables an external device to a
DMA request signal and provide the data for a DMA transfer. During demand mode operatio
DMA controller supports the full 132 Mbytes/sec data throughput. The DMA Controller o
20-2

supports 32-bit wide external 80960 local bus widths.

Each channel has a PCI bus interface and an 80960 local bus interface. Figure 20-2 shows the
block diagram for one DMA Controller channel. Each channel also has an independent bus
request/grant signal pair to the 80960 local bus arbitration to decide which local bus master has
access to the 80960 local bus.



20
DMA CONTROLLER

Figure 20-2.  DMA Channel Block Diagram

Each DMA channel uses direct addressing for both the PCI bus and the 80960 local bus. It supports
data transfers to and from the full 64-bit PCI bus address range. This includes 64-bit addressing
using PCI DAC command. Each DMA channel provides a special register which contains the
upper 32 address bits for the 64-bit address. The DMA channels do not support data transfers that
cross a 32-bit address boundary. The PCI interface and the 80960 local bus interface support
2 Kbyte burst lengths. The DMA Unit rearbitrates for the 80960 local bus at 2 Kbyte boundaries.

The DMA channel programming interface is accessible from the 80960 local bus through a
memory-mapped register interface. Each DMA channel is programmed independently and has its
own set of registers. A DMA transfer is configured by writing the source address, destination

80960 

 Data Queue

DMA Channel
Packing/

Unpacking 
Unit

PCI Bus

Channel Control Register

Control Registers

Channel Status Register

Descriptor Address Register

Next Descriptor Address Register
PCI Address Register

PCI Upper Address Register
80960 Local Address Register

Byte Count Register

Descriptor Control Register

80960 Local
Bus Interface

Local Bus

Master PCI
Bus Interface
20-3

address, number of bytes to transfer, and various control information into a chain descriptor in
80960 local memory. Chain descriptors are described in detail in section 20.3, DMA TRANSFER. 

Each DMA channel supports chaining. Chain descriptors describe one DMA transfer and can be
linked together in 80960 local memory to form a linked list. Each chain descriptor contains all the
necessary information for transferring a block of data in addition to a pointer to the next chain
descriptor. End of chain is indicated when the pointer is zero.

Each DMA channel contains a hardware data packing and unpacking unit. This unit enables data
transfers from or to unaligned addresses in either the PCI address space or the 80960 local address
space. All combinations of unaligned data are supported with the packing and unpacking unit.



DMA CONTROLLER

20.3 DMA TRANSFER

A DMA transfer is a block move of data from one memory address space to another. DMA
transfers are configured and initiated through a set of memory-mapped registers, and one or more
chain descriptors located in local memory. Table 20-1 identifies the registers; see also
section 20.7, REGISTER DEFINITIONS. A DMA transfer is defined by the source address,
destination address, number of bytes to transfer, and control values. These values are loaded into
the chain descriptor before a DMA transfer begins.

20.3.1 Chain Descriptors

All DMA transfers are controlled by chain descriptors located in local memory. A chain descriptor
contains the necessary information to complete one data transfer. A single DMA transfer has only
one chain descriptor in memory. Chain descriptors can be linked together to form more complex
DMA operations.

To perform a DMA transfer, one or more chain descriptors must first be written to 80960 local
memory. Figure 20-3 shows the format of an individual chain descriptor. Every descriptor requires

Table 20-1.  DMA Registers

Register Abbreviation Description

Channel Control Register CCR Channel Control Word

Channel Status Register CSR Channel Status Word

Descriptor Address Register DAR Address of Current Chain Descriptor

Next Descriptor Address Register NDAR Address of Next Chain Descriptor

PCI Address Register PADR Lower 32-bit PCI Address of Source/Destination

PCI Upper Address Register PUADR Upper 32-bit PCI Address of Source/Destination

80960 Local Address Register LADR 80960 Local Bus Address of Source/Destination

Byte Count Register BCR Number of Bytes to transfer

Descriptor Control Register DCR Chain Descriptor Control Word
20-4

six contiguous words in 80960 local bus memory and is required to be aligned on an 8-word
boundary. All six words are required.



20

 zero
dress
el may

nerated

ress is
nored

ven on

nsfer.
DMA CONTROLLER

Figure 20-3.  DMA Chain Descriptor

Each chain descriptor word is analogous to control register values. Bit definitions for chain
descriptor words are the same as for the DMA control registers. 

• The first word is the 80960 local bus memory address of the next chain descriptor. A
value specifies the end of chain. This value is loaded into the Next Descriptor Ad
Register. Because chain descriptors must be aligned on an 8-word boundary, the chann
ignore bits 04:00 of this address.

• The second word is the lower 32-bit PCI source/destination address. This address is ge
on the PCI bus. This value is loaded into the PCI Address Register.

• The third word is the upper 32-bit PCI source/destination address, if needed. This add
used during Dual Address Cycles for driving 64-bit PCI addresses. The address is ig
when DAC is disabled. This value is loaded into the PCI Upper Address Register.

• The fourth word is the 80960 local bus source/destination address. This address is dri
the 80960 local bus. This value is loaded into the 80960 Local Address Register.

• The fifth word is the Byte Count value. This value determines the number of bytes to tra

Next Descriptor Address (NDA)

80960 Local Address (LAD)

Descriptor Control (DC)

Byte Count (BC)

PCI Upper Address [63:32] (PUAD)

PCI Address [31:0] (PAD) Lower 32-bit PCI Source/Destination Address

Descriptor Control

Address of Next Chain Descriptor

Upper 32-bit PCI Source/Destination Address

Number of Bytes to Transfer

80960 Local Bus Address

Chain Descriptor in 80960 Memory Description
20-5

This value is loaded into the Byte Count Register.

• The sixth word is the Descriptor Control word. This word configures the DMA channel for
one DMA transfer. It contains the PCI command type, which determines data transfer
direction. This value is loaded into the Descriptor Control Register.

There are no data alignment requirements for either the PCI address or the 80960 local bus address.
However, maximum performance is obtained from aligned transfers, especially small transfers.
See section 20.9, PACKING AND UNPACKING (pg. 20-37).



DMA CONTROLLER

A series of chain descriptors can be built in local memory to transfer data between the PCI buses
and 80960 local bus. For example, the application can build multiple chain descriptors to transfer
many blocks of data which have different source addresses within local memory. When the
multiple chain descriptors are built in 80960 local bus memory, the application can link each chain
descriptor using the Next Descriptor Address in the chain descriptor. This address logically links
the chain descriptors together. This allows the application to build a list of DMA transfers which
may not require the i960 core processor until all DMA transfers are complete. Figure 20-4 shows a
list of DMA transfers built in external memory and how they are linked together.

Next Descriptor Address (NDA)

80960 Local Bus Address (LAD)

Descriptor Address Register DMA Controller Register

Linked Descriptors In Local Memory

Buffer Transfers

First 
Buffer

Transfer

Second
Buffer 

Transfer

...

Descriptor Control (DC)

Byte Count (BC)

PCI Upper Address [63:32] (PUAD)

PCI Address [31:0] (PAD)

Next Descriptor Address (NDA)

80960 Local Bus Address (LAD)

Descriptor Control (DC)

Byte Count (BC)

PCI Upper Address [63:32] (PUAD)

PCI Address [31:0] (PAD)
20-6

Figure 20-4.  DMA Chaining Operation

Nth
Buffer

Transfer

End of Chain
(Null Value Detected)Next Descriptor Address (NDA)

80960 Local Bus Address (LAD)

Descriptor Control (DC)

Byte Count (BC)

PCI Upper Address [63:32] (PUAD)

PCI Address [31:0] (PAD)



20

is bit
ith a

ister.

 is the
CCR

tained
s into

ns the
r now

hich
ding

annel
ansfer

aining
t chain
DMA CONTROLLER

20.3.2 Initiating DMA Transfers

A DMA transfer is started by first building one or more chain descriptors in 80960 local memory.
Each chain descriptor takes the form shown in Figure 20-3. The chain descriptors are required to
be aligned on an 8-word boundary in 80960 local memory. The following steps describe new
DMA transfer initiation:

1. The channel must be inactive prior to starting a DMA transfer. This can be checked by
software by reading the Channel Status Register’s (CSR) Channel Active bit. When th
is clear, the channel is inactive. When this bit is set, the channel is currently active w
DMA transfer.

2. Software writes the first chain descriptor’s address to the Next Descriptor Address Reg

3. Software sets the Channel Control Register’s (CCR) Channel Enable bit. Because this
start of a new DMA transfer and not the resumption of a previous DMA transfer, the 
Chain Resume bit should be clear.

4. The channel starts the DMA transfer by reading the chain descriptor at the address con
in the Next Descriptor Address Register. The channel loads the chain descriptor value
the CCRs and begins data transfer. The Descriptor Address Register now contai
address of the chain descriptor just read and the Next Descriptor Address Registe
contains the Next Descriptor Address from the chain descriptor just read.

The last descriptor in the DMA chain list has zero in the next descriptor address field, w
identifies it as the last chain descriptor. The NULL value notifies the DMA channel to stop rea
chain descriptors from memory.

Once a DMA transfer is active, it may be temporarily suspended by clearing the CCR Ch
Enable bit. Note that this does not abort the DMA transfer; the channel resumes the DMA tr
when the Channel Enable bit is set.

When descriptors are read from external memory, bus latency and memory speed affect ch
latency. Chaining latency is defined as the time required for the channel to access the nex
descriptor plus the time required to set up for the next DMA transfer. 
20-7

20.3.3 Scatter Gather DMA Transfers

The DMA Controller can be used to perform typical scatter gather data transfers. This consists of
programming the chain descriptors to gather the data which may be located in non-contiguous
blocks of memory. The chain descriptor specifies the destination location such that once the data
has been transferred, the data is contiguous in memory. Figure 20-5 shows how the destination
pointers can gather data.



nd the
ter’s
rupt is
DMA CONTROLLER

Figure 20-5.  Example of Gather Chaining

20.3.4 Synchronizing a Program to Chained Transfers

Chained DMA transfers can be synchronized to a program executing on the i960 core processor
through the use of processor interrupts. The channel generates an interrupt to the i960 core
processor under certain conditions. They are:

• Interrupt & Continue - The channel completes the data transfer for a chain descriptor a
Next Descriptor Address Register is non-zero. When the Descriptor Control Regis
Interrupt Enable bit is set, an interrupt is generated to the i960 core processor. This inter

source buffers

PAD = PCI Address
NDA = Next Descriptor Address

PUAD = PCI Upper Address

DC = Descriptor Control

...

...

...

destination 
bufferPAD

LAD = 80960 Local Address
BC = Byte Count

End of Chain
Null Value Detected

PUAD LAD BC DCNDA

PAD PUAD LAD BC DCNDA

PAD PUAD LAD BC DCNDA

PAD PUAD LAD BC DCNDA
20-8

for synchronization purposes only. The channel sets the CSR’s End Of Descriptor Interrupt
flag. Since it is not the last chain descriptor in the list, the DMA channel starts to process the
next chain descriptor without requiring any processor interaction.

• End of Chain - The DMA channel completes the data transfer for a DMA chain descriptor and
the Next Descriptor Address Register is zero specifying end of chain. When the Descriptor
Control Register’s Interrupt Enable bit is set, an interrupt is generated to the i960 core
processor. The channel sets the CSR’s End Of Chain Interrupt flag.

• Error - An error condition occurs during a DMA transfer. The channel halts operation on the
current chain descriptor and does not proceed to the next chain descriptor.



20
le bit.

or the
rrupt

th the

ram
 to the

s an
.

DMA CONTROLLER

Each chain descriptor can independently set the Descriptor Control Register’s Interrupt Enab
This bit enables an independent channel interrupt upon completion of the data transfer f
chain descriptor. This bit can be set or clear within each chain descriptor. Control of inte
generation within each descriptor aids in the synchronization of the executing software wi
DMA transfers. 

Figure 20-6 shows two examples of program synchronization. The left column shows prog
synchronization based on individual chain descriptors. Descriptor 1A generated an interrupt
processor, while descriptor 2A did not because the Interrupt Enable bit was clear. The last
descriptor nA, generated an interrupt to signify end of chain is reached. The right column show
example where the interrupt was generated on the last descriptor signifying the end of chain

Descriptor 1B

Descriptor 2A

Descriptor 2B

...

..

Descriptor 1A

chain descriptorschain descriptors

interrupt procedure

...
RET

interrupt procedure

Descriptor nB

...

Independent Interrupt after Completing any Descriptor Interrupt after Completing Last Descriptor

No Interrupt on this Descriptor

Optional interrupt
generated to 
20-9

Figure 20-6.  Synchronizing to Chained Transfers

.
RET

...
RET

interrupt procedure

Descriptor nA



chain

in the
he new
is

pletion
riptor
r. The
hannel
ext

is new
ro, the

n this
e

 case,
hannel
DMA CONTROLLER

20.3.5 Appending to The End of a Chain

Once the channel starts processing a chain of DMA descriptors, application software may need to
append a chain descriptor to the current chain without interrupting the transfer in progress. This
action is controlled by the CCR Chain Resume bit.

The channel reads the entire chain descriptor each time the channel completes a chain descriptor
and the Next Descriptor Address Register is non-zero.

• The Next Descriptor Address Register always contains the address of the next 
descriptor to be read

• The Descriptor Address Register always contains the current chain descriptor’s address

The procedure for appending chains requires software to find the last chain descriptor 
current chain and change the Next Descriptor Address in that descriptor to the address of t
chain. Software then sets the CCR’s Chain Resume bit for the channel — whether the channel 
active or not.

The channel examines the CCR’s Chain Resume bit when the channel is idle or upon com
of a chain of DMA transfers. When this bit is set, the channel re-reads the Next Desc
Address of the current chain descriptor and loads it into the Next Descriptor Address Registe
current chain descriptor’s address is contained in the Descriptor Address Register. The c
clears the Chain Resume bit and examines the Next Descriptor Address Register. When the N
Descriptor Address Register is not zero, the channel reads the chain descriptor using th
address and begins a new DMA transfer. When the Next Descriptor Address Register is ze
channel remains or returns to idle.

Three cases to consider when appending a chain descriptor are:

1. The channel completes a DMA transfer and it is not the last descriptor in the chain. I
case, the channel clears the Chain Resume bit and reads the next chain descriptor. Th
appended descriptor is read when the channel reaches the end of the original chain.

2. The channel completes a DMA transfer and it is the last descriptor in the chain. In this
the channel examines the state of the Chain Resume bit. When the bit is set, the c
20-10

re-reads the current descriptor to get the appended chain descriptor’s address, placed there
by software. When the bit is clear, the channel returns to idle.

3. The channel is idle. In this case, the channel examines the Chain Resume bit state when the
CCR is written. When the bit is set, the channel re-reads the last descriptor from the
most-recent chain to get the appended chain descriptor placed there by the software.



20

ave a
nal is
ternal

PCI
erted;
sert
DMA CONTROLLER

20.4 DEMAND MODE DMA

DMA controller Channel 0 provides a two pin interface which supports DMA transfers to and from
32-bit external devices on the 80960 local bus. This interface consists of a DREQ# pin which the
external device asserts signifying there is new data to transfer or it has available buffers for DMA
transfers into the device. The second pin, DACK#, is driven by the DMA controller to notify the
device that it can receive additional data or it has data to send to the device.

The demand mode DMA transfers requires the 32-bit external device to be connected to the 80960
local bus and have the ability to support the 80960 local bus control signals through a direct
interface or custom external logic. The waveforms shown in Figure 20-7 through Figure 20-14
describe the control signal interface using the DREQ# and DACK# pins. 

The Demand Mode Enable bit in the Descriptor Control Register (refer to section 20.7.9) for
channel 0 enables demand mode transfers. When demand mode is enabled, the 80960 Address
Increment Hold Enable bit in the Descriptor Control Register allows the application programmer
to program the 80960 local bus address in DMA channel 0 to a fixed value. When this bit is set, the
channel holds the 80960 local bus address to the same value on every burst transfer. The external
device is responsible for internally keeping track of the data transfer address. Typically, holding
the 80960 local bus address is used for data transfers to a port, which may contain a deep FIFO to
buffer the data. The address increment hold is only available on DMA controller channel 0.

20.5 WAIT STATES INITIATED BY THE DMA CONTROLLER

The PCI bus allows PCI master and PCI slave devices to insert wait states during a burst transfer.
This is done through the PCI control signals P_IRDY# and P_TRDY#. These signals can change
the PCI bus’s data throughput characteristics. This, in turn, requires all DMA Channels to h
similar control signal to notify the external device of the change in data rate. The WAIT# sig
generated by the DMA Controller to insert wait states in the data stream between the ex
device and the DMA controller. WAIT#, for the 80960 local bus, is similar in function to the 
bus’ IRDY# signal. It may assert at any time when DEN# is asserted and BLAST# is not ass
and as long as WAIT# is asserted, LRDYRCV#/RDYRCV# is a don’t care. WAIT# will not as
20-11

when the 80960 local bus is idle. This WAIT# signal is also shown in Figure 20-7 through
Figure 20-14.



DMA CONTROLLER

TA TD TD TD TD TD TD TD

S_CLK

DREQ#

DACK#

AD[31:0]

ADS#

DEN#/

RDYRCV#/

WAIT#

BLAST#

TD TD TD TD TD TD TD TD TD TR

CS1#

LRDYRCV#

W/R#

A D D D D D D D D D D D D D D D D

TI

NOTE:

*

20-12

Figure 20-7.  DMA - Aligned Write to Device, Wait States, Device Always Requesting

* DMA transfers one queue of data



20
DMA CONTROLLER

TA TD TD TD TD TW TD

S_CLK

DREQ#

DACK#

AD[31:0]

ADS#

DEN#/

RDYRCV#/

WAIT#

BLAST#

TW TD TW TD TR TI

CS1#

LRDYRCV#

*

A D D D D D D

**

D

BE3:0#
20-13

Figure 20-8.  DMA - Aligned Write to Device, DMA Inserting Wait States, Device Always 
Requesting

W/R#

NOTE:
* DMA transfer ended - Lost PCI Bus Grant
** Wait states inserted by DMA controller after the queue was drained

(data may be streaming in from the PCI bus with wait states). 



DMA CONTROLLER

TA TD TD TD TD TD TW TD

S_CLK

DREQ#

DACK#

AD[31:0]

ADS#

DEN#/

RDYRCV#/

WAIT#

BLAST#

TW TD TW TD TR

CS1#

LRDYRCV#

A D D D D D D D D

*

BE3:0#
20-14

Figure 20-9.  DMA - Aligned Read from Device, DMA Inserting Wait States, Device Always 
Requesting

W/R#

NOTE:
* Wait states inserted by the DMA controller after the queue filled
(data may be streaming on the PCI bus with wait states). 



20
DMA CONTROLLER

TA TW TD TW TD TW TD

S_CLK

DREQ#

DACK#

AD[31:0]

ADS#

DEN#/

RDYRCV#/

WAIT#

BLAST#

TW TD TW TD TR TI

CS1#

LRDYRCV#

*

A D D D D D

BE3:0#
20-15

Figure 20-10.  DMA - Aligned Read from Device, Device Inserting Wait States, Device Always 
Requesting

W/R#

NOTE:
* Wait states inserted by memory controller (LRDYRCV#) - 
using memory bank #1 for connecting the peripheral device
OR
Wait states inserted by an external memory controller and driving RDYRCV#



DMA CONTROLLER

TD TD TD TD TD TD TD TR

S_CLKIN

DREQ#

DACK#

AD[31:0]

DEN#/

RDYRCV#/

WAIT#

BLAST#

TI

CS1#

LRDYRCV#

W/R#

D D D D D D D

NOTE:

*

20-16

Figure 20-11.  DMA - Aligned Write to Device, Zero Wait States, Device ends Transfer

* DMA channel end transfer - DMA queue empty 
and lost PCI Bus Grant (only one data transfer after deasserting DREQ#)



20
DMA CONTROLLER

TD TD TD TD TD TD TD TR

S_CLK

DREQ#

DACK#

AD[31:0]

DEN#/

RDYRCV#/

WAIT#

BLAST#

TI

CS1#

LRDYRCV#

W/R#

D D D D D D D

NOTE:

*

TD

D

20-17

Figure 20-12.  DMA - Aligned Write to Device, Zero Wait States, Device ends Transfer

* Device ends transfer by deasserting DREQ#
(maximum 2 data transfers)



DMA CONTROLLER

TD TW TW TD TW TW TR

S_CLK

DREQ#

DACK#

AD[31:0]

DEN#/

RDYRCV#/

WAIT#

BLAST#

CS1#

LRDYRCV#

W/R#

NOTE:

*

TD

D D D

**

TA
20-18

Figure 20-13.  DMA - READ from Device, Wait States, Device ends Transfer

* Device ends transfer by deasserting DREQ#

** Wait states inserted by DMA channel after queue filled
 (data may be streaming on the PCI bus with wait states).

(only 1 data transfer).



20
DMA CONTROLLER

TA TW TD TD TD TD TW TD

S_CLK

DREQ#

DACK#

AD[31:0]

ADS#

DEN#/

RDYRCV#/

WAIT#

BLAST#

TW TD TW TD TR

CS1#

LRDYRCV#

A D D D D D D D

*

BE3:0# **Last Cycle Valid
Data PathData Path

**First Cycle Valid
Data PathData Path

BE3:0 = 00002
20-19

Figure 20-14.  DMA - Unaligned Read from Device, DMA Inserting Wait States, Device Always 
Requesting

NOTE:
*  Wait states inserted by the DMA controller after the queue filled 

W/R#

** For First and Last Cycle Valid Data Path bit settings.          
(data may be streaming on the PCI bus with wait states).



al bus

ce for
 Read

 larger
 block
quests.

RD in

80960
om the

hes a
 data
DMA CONTROLLER

20.6 DATA TRANSFERS

The DMA controller is optimized to perform data transfers between the PCI bus and local memory.
The DMA channels issue both read and write accesses to the PCI bus and the 80960 local bus. The
DMA channels have bus mastering capabilities only. The same condition applies to the 80960 local
bus interface. These transfers are summarized in the following sections.

20.6.1 PCI to Local Memory Transfers

PCI to local memory transfers perform read cycles on the PCI bus and place the data into the
DMA channel queues. Once the first data is placed into the queue, the DMA channel’s loc
interface requests the local bus and drains the queue by writing the data to local memory. 

Application software can use the various PCI command types to improve system performan
these transfers. The three defined PCI read commands include: Memory Read, Memory
Line, and Memory Read Multiple. Refer to the PCI Local Bus Specification, revision 2.1 for full
PCI command descriptions.

For example, a Memory Read Multiple command can be programmed when the block size is
than a cache line. This notifies the PCI target that the DMA channel intends to transfer a large
of data and the target should try to read ahead and anticipate the DMA controller read re
Application software can select which command type is best to satisfy system requirements.

The following describes a DMA transfer from the PCI bus to the 80960 local memory:

• The DMA channel requests the PCI bus. Once the DMA channel has at least one WO
the queue, it asserts the request for the 80960 local bus.

• The DMA channel reads data from the PCI bus and fills the channel queue. When the 
local bus has not been granted and the queues become full, it removes the request fr
PCI bus and continue to request the 80960 local bus.

• When the DMA channel reaches a byte count of zero while filling the queues or reac
queue full condition before acquiring the 80960 local bus, the DMA channel ends the
transfer on the PCI bus, and removes the request for the PCI bus.
20-20

• When the DMA channel acquires the 80960 local bus while filling the queues, the DMA
channel transfers data from the channel queue to local memory. At the same time, the DMA
channel continues to request data on the PCI bus. This continues until one of four conditions
occur:

- loss of PCI bus ownership

- loss of 80960 local bus ownership

- PCI bus error condition

- 80960 local bus error condition



20

gress,

fer in

 corre-
.

to the
I bus

rite,
pes to

restric-
width.
te and

t one
DMA CONTROLLER

- When the DMA channel reaches a 2 Kbyte address boundary, the DMA controller 
stops the current 80960 local bus transaction

NOTE: The loss of ownership on the PCI bus is determined by ATU latency timer 
expiration and the removal of the PCI grant signal. Loss of ownership on 
the 80960 local bus is determined solely by the removal of the grant signal.

• Upon losing the PCI bus, the DMA channel completes the current data transfer in pro
terminates gracefully and removes the request on the 80960 local bus.

• Upon losing the 80960 local bus, the DMA channel completes the current data trans
progress, terminates gracefully and removes the request on the PCI bus.

• Error conditions on either bus terminates data transfers on both interfaces, sets the
sponding bit in the status register, and generates an interrupt to the i960 core processor

20.6.2 Local Memory to PCI Transfers

Local memory to PCI transfers perform read cycles on the local bus and place the data in
DMA channel queues. Once the first data is placed into the queue, the DMA channel’s PC
interface requests the PCI bus and drains the queue by writing data to the PCI bus.

Local memory to PCI transfers can generate two different PCI write commands: Memory W
and Memory Write and Invalidate. The application software can use these PCI command ty
improve system performance for these types of transfers.

Memory Write commands can be used for all data transfers to the PCI bus. There are no 
tions for these transfers and both bus interfaces are optimized for full 132 Mbytes/sec band
However, the PCI target may provide better system performance by using the Memory Wri
Invalidate command.

The following describes a DMA transfer from 80960 local memory to the PCI bus:

• The DMA channel requests the 80960 local bus. Once the DMA channel has at leas
WORD in the queue, it asserts the request for the PCI bus. 
20-21

• The DMA channel reads data from local memory and fills the channel queue. If the PCI bus
has not been granted and the queues become full, it removes the request from the 80960 local
bus and continues to request the PCI bus. When the DMA channel reaches a 2 Kbyte address
boundary, the DMA controller stops the current local bus transaction.

• When the DMA channel reaches a byte count of zero while filling the queues or reaches a
queue full condition before acquiring the PCI bus, the DMA channel ends the data transfer and
removes the request for the 80960 local bus.



nnel
annel

tions
dition,

nsfer
and

 local
data
e Size

corre-

stem

I bus
ent the
ns
 the
DMA CONTROLLER

• When the DMA channel acquires the PCI bus while filling the queues, the DMA cha
transfers data from the channel queue to the PCI bus. At the same time, the DMA ch
continues requesting data from local memory. This continues until one of four condi
occur: loss of PCI bus ownership, loss of 80960 local bus ownership, PCI bus error con
80960 local bus error condition.

NOTE: The loss of PCI bus ownership is determined by the ATU latency timer 
expiration and the removal of the PCI grant signal. Loss of 80960 local bus 
ownership is determined by the local arbitration described in CHAPTER 18, 
BUS ARBITRATION.

• Upon losing the PCI or 80960 local bus, the DMA channel completes the current data tra
in progress and terminates gracefully. The only exception is for the Memory Write 
Invalidate cycle type. The DMA channel meets the requirements specified by the PCI
bus specification. For Memory Write and Invalidate, the DMA channel continues 
transfers until reaching the next cacheline size boundary specified by the ATU Cachelin
Register. 

• Error conditions on either bus terminate data transfers on both interfaces, sets the 
sponding status register bit, and generates an interrupt to the i960 core processor.

20.6.3 Local Memory to PCI Transfers using Memory Write and Invalidate

The second mechanism for performing local memory to PCI transfers may improve sy
performance based on the PCI target capabilities.

NOTE: Using the Memory Write and Invalidate (MWI) command improves system 
performance when the target is cacheable memory.

The DMA channel attempts to use the Memory Write and Invalidate command on the PC
when programmed by application software. However, a number of circumstances may prev
DMA channel from actually initiating the MWI command. If any of the following three conditio
are not met, the channel converts the MWI command to a Memory Write command for
complete DMA transfer:
20-22

1. The ATU Cacheline Size Register (ATUCLSR), located in ATU configuration space, must
have a valid value other than zero. This register is programmed by host software.

2. The ATUCLSR must have a legal value which is less than or equal to the number of queue
entries in the DMA channel queue. (The channel must guarantee an entire cache line can be
transferred during an MWI bus transaction).

3. The Memory Write and Invalidate Enable bit must be set in either the:

3.1. For Channels 0 and 1: Primary ATU Command Register

3.2. For Channel 2: Secondary ATU Command Register



20
DMA CONTROLLER

When the above conditions are met, the DMA channel provides full Memory Write and Invalidate
support. For example, to transfer an 80 byte block to a PCI address of 8001CH while the
ATUCLSR is 8 DWORDs, the DMA channel performs three PCI transactions:

1. Transfer of 4 bytes at address 8001CH using the Memory Write command.

2. Transfer of 64 bytes at address 80020H using the MWI command.

3. Transfer of 12 bytes at address 80060H using the Memory Write command.

20.6.4 Exclusive Access

The DMA Controller does not support exclusive access through the PCI LOCK# signal.
20-23



DMA CONTROLLER

20.7 REGISTER DEFINITIONS

The DMA controller contains registers for controlling each channel. Each channel has nine
memory-mapped control registers for independent operation. The CCR, CSR, and the Next
Descriptor Address Registers have a read/write access. All other DMA registers are read-only and
are loaded with new values from the chain descriptor when the channel reads a chain descriptor
from memory.

Table 20-2.  DMA Controller Register Summary 

Section Register Name - Acronym Page
Size 
(Bits)

DMA
Channel

80960
Local Bus
Address

PCI 
Config
Addr 
Offset

20.7.1 Channel Control Register - CCRx 20-25 32
0
1
2

0000 1400H
0000 1440H
0000 1480H

NA

20.7.2 Channel Status Register - CSRx 20-26 32
0
1
2

0000 1404H
0000 1444H
0000 1484H

NA

20.7.3 Descriptor Address Register - DARx 20-28 32
0
1
2

0000 140CH
0000 144CH
0000 148CH

NA

20.7.4 Next Descriptor Address Register - NDARx 20-29 32
0
1
2

0000 1410H
0000 1450H
0000 1490H

NA

20.7.5 PCI Address Register - PADRx 20-30 32
0
1
2

0000 1414H
0000 1454H
0000 1494H

NA

20.7.6 PCI Upper Address Register - PUADRx 20-31 32
0
1
2

0000 1418H
0000 1458H
0000 1498H

NA

20.7.7 80960 Local Address Register - LADRx 20-32 32
0
1
2

0000 141CH
0000 145CH
0000 149CH

NA
20-24

20.7.8 Byte Count Register - BCRx 20-33 32
0
1
2

0000 1420H
0000 1460H
0000 14A0H

NA

20.7.9 Descriptor Control Register - DCRx 20-34 32
0
1
2

0000 1424H
0000 1464H
0000 14A4H

NA



20
DMA CONTROLLER

20.7.1 Channel Control Register - CCRx

The Channel Control Register (CCR) specifies parameters that dictate the overall channel
operating environment. The CCR should be initialized prior to any other DMA register following a
system reset. This register can be read or written while the DMA channel is active.

Table 20-3.  Channel Control Register - CCRx

LBA: 

PCI:

CH.0-1400H
CH.1-1440H
CH.2-1480H

NA

Legend: NA = Not Accessible RO = Read Only
RV = Reserved PR = Preserved RW = Read/Write
RS = Read/Set RC = Read Clear
LBA = 80960 Local Bus Address PCI = PCI Configuration Address Offset

Bit Default Description

31:02 0000 0000H Reserved.

01 02

Chain Resume - when set, causes the channel to resume chaining by re-reading the 
current descriptor located at the address in the Descriptor Address Register when the 
channel is idle (Channel Active bit in the CSR is clear) or when the channel completes a 
DMA transfer. This bit is cleared by the hardware when either:

• The channel completes a DMA transfer and the Next Descriptor Address Register is 
zero. In this case, the channel proceeds to the next descriptor in the chain.

• The channel re-reads the chain descriptor located at the address in the Descriptor 
Address Register and loads the Next Descriptor Address of that descriptor into the 
Next Descriptor Address Register

00 02

Channel Enable - When set, the channel enables DMA transfers. When clear, the 
channel disables DMA transfers. Clearing this bit when the channel is active 
immediately suspends the current DMA transfer by halting all local bus transactions. 
The PCI interface may continue with the current transfer until the data queue either fills 
or empties. The channel does not initiate any new DMA transfers when this bit is 
cleared. Data held in queues remains valid. Setting this bit after the channel is 

PCI

LBA

28 24 20 16 12 8 4 031

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rw

na

rw

na
20-25

suspended causes the channel to resume the DMA transfer.

The Channel Enable bit works in conjunction with the Bus Master Enable bit of the 
Primary ATU Command Register for DMA Channel 0 and 1 and with the Bus Master 
Enable bit of the Secondary ATU Command Register for DMA Channel 2. The 
respective Bus Master Enable bit must be set for the DMA channel to start a transaction 
on the PCI bus.



DMA CONTROLLER

20.7.2 Channel Status Register - CSRx

The Channel Status Register (CSRx) contain status flags that indicate the channel status (see
Table 20-4). This register is typically read by software to examine the source of an interrupt. See
section 20.8, INTERRUPTS (pg. 20-36) for a description of DMA channel interrupts.

When a DMA error occurs, application software should check the status of Channel Active flag
before processing the interrupt. It is possible that the channel may still be completing any
outstanding PCI transactions.

Table 20-4.  Channel Status Register - CSRx  (Sheet 1 of 2)

LBA: 

PCI:

CH.0-1404H
CH.1-1444H
CH.2-1484H

NA

Legend: NA = Not Accessible RO = Read Only
RV = Reserved PR = Preserved RW = Read/Write
RS = Read/Set RC = Read Clear
LBA = 80960 Local Bus Address PCI = PCI Configuration Address Offset

Bit Default Description

31:11 0000 00H Reserved.

10 02

Channel Active Flag - indicates the channel is either active (in use) or inactive 
(available). When set, indicates the channel is in use and actively performing DMA data 
transfers. When clear, indicates the channel is inactive and available to be configured to 
transfer data. The channel clears the Channel Active flag when the previously 
configured DMA transfer completes as a result of:

• byte count reached zero and last chain descriptor is encountered (NULL value 
detected for Next Descriptor Address in chain descriptor)

• PCI Master-abort occurred on the PCI interface

• PCI Target-abort occurred on the PCI interface

• PCI parity error occurred on the PCI interface

PCI

LBA

28 24 20 16 12 8 4 031

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

ro

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

ro

na

rc

na

rc

na

rv

na

rc

na

rc

na

rv

na

rc

na

rc

na

rv

na

rc

na
20-26

• 80960 parity error signalled from the Memory Controller

• 80960 local bus fault signalled from the Memory Controller

The Channel Active flag is set when a Chain Descriptor is read from memory.

09 02

End of Transfer Interrupt Flag - set when the channel has signalled an interrupt to the 
i960 core processor after successfully completing an error-free DMA transfer but it is not 
the last descriptor in a chain.

08 02

End of Chain Interrupt Flag - set when the channel has signalled an interrupt to the i960 
core processor after successfully completing an error-free DMA transfer that is the last 
of a chain.

07 02 Reserved.



20
DMA CONTROLLER

06 02

80960 Memory Fault Error Flag - set when the channel detects a parity error when 
reading data from the 80960 local bus or when reading the Chain Descriptor or NDAR 
value. The Memory Controller verifies data parity (when enabled) on memory reads from 
the 80960 local bus and notifies the DMA Controller upon detecting invalid parity.

05 02

80960 local bus Fault Error Flag - set when the channel detects a Bus Fault when 
attempting to read or write data to the 80960 local bus or when reading the Chain 
Descriptor or NDAR value.

04 02 Reserved.

03 02
PCI Master Abort Flag - set when the channel has initiated a transaction on the PCI bus 
and has detected a Master-abort.

02 02
PCI Target Abort Flag - set when the channel has initiated a transaction on the PCI bus 
and has detected a Target-abort.

01 02 Reserved.

00 02

PCI Parity Error Flag - is set when the following three conditions are met:

• DMA channel asserted PERR# or has observed PERR# asserted

• DMA channel was the master for the transaction in which the error occurred

• Parity Checking Enable bit is in the PATUCMD is set (for channel 0 and 1) or in the 
SATUCMD (for channel 2)

Table 20-4.  Channel Status Register - CSRx  (Sheet 2 of 2)

LBA: 

PCI:

CH.0-1404H
CH.1-1444H
CH.2-1484H

NA

Legend: NA = Not Accessible RO = Read Only
RV = Reserved PR = Preserved RW = Read/Write
RS = Read/Set RC = Read Clear
LBA = 80960 Local Bus Address PCI = PCI Configuration Address Offset

Bit Default Description

PCI

LBA

28 24 20 16 12 8 4 031

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

ro

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

ro

na

rc

na

rc

na

rv

na

rc

na

rc

na

rv

na

rc

na

rc

na

rv

na

rc

na
20-27



s
a new
 word
DMA CONTROLLER

20.7.3 Descriptor Address Register - DARx

The Descriptor Address Register (DARx, Table 20-5) contains the current chain descriptor’
address in 80960 local memory for a DMA transfer. This read-only register is loaded when 
chain descriptor is read. All chain descriptors are required to be aligned on an eight 32-bit
boundary.

Table 20-5.  Descriptor Address Register - DARx

LBA: 

PCI:

CH.0-140CH
CH.1-144CH
CH.2-148CH

NA

Legend: NA = Not Accessible RO = Read Only
RV = Reserved PR = Preserved RW = Read/Write
RS = Read/Set RC = Read Clear
LBA = 80960 Local Bus Address PCI = PCI Configuration Address Offset

Bit Default Description

31:05 0000 000H
Current Descriptor Address - 80960 local bus memory address of the current chain 
descriptor that was read by the channel.

04:00 00H Reserved.

PCI

LBA

28 24 20 16 12 8 4 031

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

rv

na

rv

na

rv

na

rv

na

rv

na
20-28



20

annel
DMA CONTROLLER

20.7.4 Next Descriptor Address Register - NDARx

The Next Descriptor Address Register (NDARx, see Table 20-6) contains the address of the next
chain descriptor in 80960 local memory for a DMA transfer. When starting a DMA transfer, this
register contains the first chain descriptor’s address. 

All chain descriptors are required to be aligned on an eight 32-bit word boundary. The ch
may set bits 04:00 to zero when loading this register.

NOTE: The CCR Channel Enable bit and CSR Channel Active bit must both be clear 
prior to writing the Next Descriptor Address Register. Writing a value to this 
register while the channel is active may result in undefined behavior.

Table 20-6.  Next Descriptor Address Register - NDARx

LBA: 

PCI:

CH.0-1410H
CH.1-1450H
CH.2-1490H

NA

Legend: NA = Not Accessible RO = Read Only
RV = Reserved PR = Preserved RW = Read/Write
RS = Read/Set RC = Read Clear
LBA = 80960 Local Bus Address PCI = PCI Configuration Address Offset

Bit Default Description

31:05 0000 000H
Next Descriptor Address - 80960 local bus memory address of the next chain descriptor 
to be read by the channel.

04:00 00H Reserved.

PCI

LBA

28 24 20 16 12 8 4 031

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rv

na

rv

na

rv

na

rv

na

rv

na
20-29



is read

.

DMA CONTROLLER

20.7.5 PCI Address Register - PADRx

The PCI Address Register (PADR, Table 20-7) contains the 32-bit PCI address for SAC cycles or
the lower 32-bit PCI address of a 64-bit PCI address for DAC cycles. This address is the DMA
transfer’s source or destination. This read-only register is loaded when a chain descriptor 
from memory.

The channel drives PAD1:0 or SAD1:0 to a value of 002 indicating linear or sequential addressing
Refer to the PCI Local Bus Specification, revision 2.1 for additional information.

NOTE: Application software must not program the channel to transfer data across 
a 4 Gbyte boundary (i.e., the lower 32-bit address must not increment past 
the maximum address of FFFF FFFFH). The channel does not notify the 
application of this condition.

Table 20-7.  PCI Address Register - PADRx

LBA: 

PCI:

CH.0-1414H
CH.1-1454H
CH.2-1494H

NA

Legend: NA = Not Accessible RO = Read Only
RV = Reserved PR = Preserved RW = Read/Write
RS = Read/Set RC = Read Clear
LBA = 80960 Local Bus Address PCI = PCI Configuration Address Offset

Bit Default Description

31:00 0000 0000H PCI Address - is the PCI source/destination address.

PCI

LBA

28 24 20 16 12 8 4 031

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na
20-30



20
DMA CONTROLLER

20.7.6 PCI Upper Address Register - PUADRx

The PCI Upper Address Register (PUADRx, Table 20-8) contains the upper 32-bit address of a
64-bit address. This register is read-only and is loaded when a chain descriptor is read from
memory.

Table 20-8.  PCI Upper Address Register - PUADRx

LBA: 

PCI:

CH.0-1418H
CH.1-1458H
CH.2-1498H

NA

Legend: NA = Not Accessible RO = Read Only
RV = Reserved PR = Preserved RW = Read/Write
RS = Read/Set RC = Read Clear
LBA = 80960 Local Bus Address PCI = PCI Configuration Address Offset

Bit Default Description

31:00 0000 0000H PCI Upper Address - is the PCI source/destination upper address.

PCI

LBA

28 24 20 16 12 8 4 031

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na
20-31



DMA CONTROLLER

20.7.7 80960 Local Address Register - LADRx

The 80960 Local Address Register (LADRx, Table 20-9) contains the 32-bit 80960 local bus
address. The 80960 local bus address space is a 32-bit, byte addressable address space. This
register is read-only and is loaded when a chain descriptor is read from memory.

NOTE: Access to the Peripheral Memory-Mapped Registers through a DMA 
transfer is not allowed. Do not program LADRx with values less than 
1800H; this address space is reserved. Hardware must ensure that local 
bus accesses to this space are properly terminated.

Table 20-9.  80960 Local Address Register - LADRx

LBA: 

PCI:

CH.0-141CH
CH.1-145CH
CH.2-149CH

NA

Legend: NA = Not Accessible RO = Read Only
RV = Reserved PR = Preserved RW = Read/Write
RS = Read/Set RC = Read Clear
LBA = 80960 Local Bus Address PCI = PCI Configuration Address Offset

Bit Default Description

31:00 0000 0000H 80960 local bus address - the 80960 local bus source/destination address.

PCI

LBA

28 24 20 16 12 8 4 031

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na
20-32



20

ents by
DMA CONTROLLER

20.7.8 Byte Count Register - BCRx

The Byte Count Register contains the number of bytes to transfer for a DMA transfer. This is a
read-only register that is loaded from the Byte Count word in a chain descriptor. It allows for a
maximum DMA transfer of 16 Mbytes. A value of zero is a valid byte count and results in no data
words being transferred and no cycles generated on either the PCI bus or the 80960 local bus.

When the i960 core processor reads this register, it contains the number of bytes left to transfer on
the 80960 local bus. The channel’s data queue may contain valid data. This register decrem
1, 2, 3 or 4 for each successful operand transfer from the source to destination locations. 

• When the operand size is byte, the register byte count decrements by 1

• When the operand is a 2-byte transfer, the byte count decrements by 2

• When the operand is a 3-byte transfer, the byte count decrements by 3

• When the operand is a word (32-bit data) the byte count decrements by 4

NOTE: The byte count value is not required to be aligned to a 32-bit word boundary
(i.e., the byte count value can be a word aligned, short aligned, or byte 
aligned).

Table 20-10.  Byte Count Register - BCRx

LBA: 

PCI:

CH.0-1420H
CH.1-1460H
CH.2-14A0H

NA

Legend: NA = Not Accessible RO = Read Only
RV = Reserved PR = Preserved RW = Read/Write
RS = Read/Set RC = Read Clear
LBA = 80960 Local Bus Address PCI = PCI Configuration Address Offset

PCI

LBA

28 24 20 16 12 8 4 031

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na
20-33

Bit Default Description

31:24 00H Reserved

23:00 00 0000H Byte Count - is the number of bytes to transfer for a DMA transfer.



DMA CONTROLLER

20.7.9 Descriptor Control Register - DCRx

The Descriptor Control Register (DCR, Table 20-11) contains control values for the DMA transfer
on a per-chain descriptor basis. These values may vary from chain descriptor to chain descriptor.

Table 20-12 lists the PCI commands that are supported and not supported for DCR bits 3:0.

Table 20-11.  Descriptor Control Register - DCRx

LBA: 

PCI:

CH.0-1424H
CH.1-1464H
CH.2-14A4H

NA

Legend: NA = Not Accessible RO = Read Only
RV = Reserved PR = Preserved RW = Read/Write
RS = Read/Set RC = Read Clear
LBA = 80960 Local Bus Address PCI = PCI Configuration Address Offset

Bit Default Description

31:08 0000 00H Reserved

07 02

80960 local bus address Increment Hold Enable - instructs DMA Channel 0 to hold the 
80960 local bus address at a fixed value. This bit works in conjunction with demand 
mode DMA (section 20.4) and is ignored when the Demand Mode Enable bit is clear. 
When set, Channel 0 holds the 80960 local bus address to the fixed value in the 80960 
Local Address Register. When clear, Channel 0 increments the 80960 local bus address 
on every byte transferred.

06 02

Demand Mode Enable - enables DMA Channel 0 to use the demand mode DMA 
interface for data transfers between an external device on the 80960 local bus and the 
PCI bus. When set, Channel 0 samples DREQ# to determine when the external device 
has data to transfer. When the channel is ready to transfer data, it asserts DACK# to 
notify the transfer is in progress. Refer to section 20.4, DEMAND MODE DMA. When 
clear, demand mode DMA transfers are disabled.

Dual Address Cycle Enable - determines the address cycle type generated on the PCI 

PCI

LBA

28 24 20 16 12 8 4 031

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na
20-34

05 02

bus. When set, the channel uses Dual Address Cycle (DAC) to transfer a 64-bit address. 
When clear, the channel uses Single Address Cycle (SAC) to transfer a 32-bit address. 
For DAC, the PCI Address Register (PADRx) contains the lower 32-bit address used on 
the first address cycle. The PCI Upper Address Register (PUADRx) contains the upper 
32 bits address cycle used on the second address cycle. The upper 32 bit address of a 
DAC transaction is required to be non-zero.

04 02
Interrupt Enable - when set, the channel generates an interrupt to the i960 core 
processor upon completion of this DMA transfer. When clear, no interrupt is generated.

03:00 0H

PCI Command - determines PCI bus command type on the PCI bus for this DMA 
transfer. This value is used directly for the PCI bus command; e.g., when PCI Command 
is 00002, the PCI Command is 00002, a reserved command type. See Table 20-12. 
Hardware does not check for reserved or unsupported command types.



20
DMA CONTROLLER

Table 20-12.  PCI Commands

C/BE3:0# PCI Command Type Description

00002 Reserved Not Supported

00012 Reserved Not Supported

00102 I/O Read Not Supported

00112 I/O Write Not Supported

01002 Reserved Not Supported

01012 Reserved Not Supported

01102 Memory Read Memory Read of less than one cacheline

01112 Memory Write Memory Write

10002 Reserved Not Supported

10012 Reserved Not Supported

10102 Configuration Read Not Supported

10112 Configuration Write Not Supported

11002 Memory Read Multiple Memory Read of more than one cacheline

11012 Reserved Not Supported

11102 Memory Read Line Memory Read of one cacheline

11112 Memory Write and Invalidate Memory Write which guarantees the transfer of a 
complete cache line during the current transaction
20-35



errupt
output

tatus
DMA CONTROLLER

20.8 INTERRUPTS

Each channel can generate an interrupt to the i960 core processor. The Descriptor Control
Register’s Interrupt Enable bit (DCRx.ie) determines when the channel generates an int
upon successful error-free completion of a DMA transfer. Each channel has one interrupt 
connected to the PCI and Peripheral Interrupt Controller described in CHAPTER 8,
INTERRUPTS. Table 20-13 summarizes the conditions when interrupts are generated and s
flags found in the Channel Status Register (CSRx).

Table 20-13.  DMA Interrupt Summary

Interrupt 
Condition

Channel Status Flags
Interrupt 

Generated?

A
ct

iv
e

E
n

d
 o

f 
D

es
cr

ip
to

r

E
n

d
 o

f 
C

h
ai

n

P
C

I M
as

te
r 

A
b

o
rt

P
C

I T
ar

g
et

 
A

b
o

rt

P
C

I P
ar

it
y 

E
rr

o
r

L
o

ca
l B

u
s 

P
ar

it
y 

E
rr

o
r

L
o

ca
l B

u
s 

F
au

lt
 E

rr
o

r

D
C

R
.ie

 S
et

D
C

R
.ie

 C
le

ar

Byte count == 0 &&
NDARx != NULL
(End of Transfer)

1 1 0 0 0 0 0 0 Y N

Byte Count == 0 
&&

NDARx == NULL
(End of Chain)

0 0 1 0 0 0 0 0 Y N

PCI Master-abort 0 0 0 1 0 0 0 0 Y Y

PCI Target-abort 0 0 0 0 1 0 0 0 Y Y

PCI Parity Error 0 0 0 0 0 1 0 0 Y Y

Local Bus Parity 
Error

0 0 0 0 0 0 1 0 Y Y

Local Bus Fault 
Error

0 0 0 0 0 0 0 1 Y Y
20-36

When abort or error interrupt conditions occur, the channel terminates data transfers for the
current chain descriptor and clears the CSR Channel Active flag. The channel invalidates or clears
any data in the channel data queues and does not read any new chain descriptors. The channel
signals an interrupt to the i960 core processor and stops. The channel sets the appropriate error
flag in the CSR. For PCI errors, the channel takes the appropriate actions on the PCI bus specified
by the control bits found in the ATU Control Register (ATUCR). During an MWI transaction, the
channel completes the cache line transfer before stopping. Refer to CHAPTER 16, ADDRESS
TRANSLATION UNIT for additional information on the PCI error conditions.

The channel cannot restart a DMA transfer after an error condition. Software must configure the
channel to complete the remaining transfers, if any.



20
DMA CONTROLLER

For local bus parity errors, data with incorrect parity is never transferred to the PCI bus. For PCI
parity errors, data with incorrect parity is never transferred to the local memory.

When a Memory Fault Error or Bus Fault Error occurs while reading the Chain Descriptor or Next
Descriptor Address, the channel sets the appropriate CSR error flag, loads the CCRs (if possible),
and stops.

NOTE: The channel never reports an End of Descriptor Interrupt or End of Chain 
Interrupt along with any PCI error condition. End of Descriptor Interrupt and 
End of Chain Interrupt can only be reported in the CSR when the DMA 
transfer completes without any reportable errors. However, multiple error 
conditions may occur and be reported together. Also, because the channel 
does not stop after reporting the End of Descriptor Interrupt, the End of 
Chain Interrupt or local bus errors may occur before the End of Descriptor 
Interrupt is acknowledged and cleared.

20.9 PACKING AND UNPACKING

Each channel contains a data hardware packing and unpacking unit to support unaligned data
transfers between the source and destination busses. The packing unit optimizes data transfers to
and from 32-bit memory. The channel reformats data words for the correct bus data path. When the
channel must pack or unpack data, the data is held internally to the channel and does not need to be
re-read.
20-37



DMA CONTROLLER

Figure 20-15.  Optimization of an Unaligned DMA

1

12

2

3

3

4

4

5

5

6

6

7

7

8

8

9

9

1011

11

12

12

ADDRESS

A000 0200H

A000 0204H

A000 0208H

A000 020CH

4001 0300H

4001 0304H

4001 0308H

4001 030CH

Source
Bus

Destination
Bus

LSB
MSB

Memory

Byte Number

10
10

Bus Operation

word load @ A0000200
word load @ A0000204
word load @ A0000208
word load @ A000020C

byte store @ 40010303
word store @40010304
word store @40010308
3-byte store @ 4001030C

SOURCE DESTINATION

CCR

PADR

PUADR

LADR

BCR

DCR

Programmed Values

0000 0001H

A000 0201H

0000 0000H

4001 0303H

0000 000CH

0000 0006H

(PCI Bus)

(Local Bus)
20-38



20

tion

h time
er.

bility to
eration
n in
DMA CONTROLLER

20.10 DMA CHANNEL PROGRAMMING EXAMPLES

Software is required for each of the following DMA channel functions:

• Channel initialization

• Start DMA transfer

• Suspend channel

Examples for each function is shown in the following sections as pseudocode.

20.10.1 Software DMA Controller Initialization

The DMA Controller has independent control of interrupts, enables, and control. Initializa
consists of virtually no overhead as shown in Figure 20-16.

Figure 20-16.  Software Example for Channel Initialization

20.10.2 Software Start DMA Transfer

The DMA channel control register provides independent control per channel based on eac
the DMA channel is configured. This provides the most flexibility to the application programm

20.10.3 Software Suspend Channel

The channel may need to be suspended for various reasons. The channel provides the a
suspend the channel state without losing the current status. The channel resumes DMA op
without requiring the software to save the channel configuration. The example show
Figure 20-17 describes the pseudocode for suspending channel 0.

CCR0 = 0x0000 0000 ; Disable channel
Call setup_channel
20-39

Figure 20-17.  Software Example for Channel Suspend

CCR0 = 0x0000 0000; Suspend Channel 0

Channel suspended.....

CCR0 = 0x0000 0001; Resume Channel 0





21
I2C BUS INTERFACE UNIT





21
CHAPTER 21
I2C BUS INTERFACE UNIT

This chapter describes the I2C (Inter-Integrated Circuit) bus interface unit of the i960® Rx I/O
processor, including the operation modes and setup. Throughout this manual, this peripheral is
referred to as the I2C unit.

Figure 21-1 shows a block diagram of the I2C unit and its interface to the 80960 local bus. 

80960 
i960Rx 

Core

SDA

SCL

I2C Bus Interrupt (XINT7#)

Shift 

Register

Memory-Mapped

Registers

I2C Control Register (ICR)

I2C Status Register (ISR)

I2C Slave Address Register (ISAR)

I2C Clock Count Register (ICCR)

I2C Data Buffer Register (IDBR)

Local Bus

I2C Bus Interface
Unit
21-1

Figure 21-1.  I2C Unit Block Diagram

21.1 OVERVIEW

The I2C bus allows the i960 Rx I/O processor to interface to other I2C peripherals and microcon-
trollers for system management functions. The serial bus requires hardware and software to create
an economical system for relaying status and reliability information from the i960 Rx I/O
processor subsystem to an external device.



on the

he I
e and
nd
I2C BUS INTERFACE UNIT

Data transfers to and from the I2C bus via a buffered interface. Control and status information are
relayed through a set of 80960 memory-mapped registers. An interrupt mechanism notifies the
i960 Rx I/O processor of I2C activity. Refer to any of the following sources for details on I2C bus
operation:

• I2C Peripheral for Microcontrollers – Philips Semiconductor

• I2C Bus and How to Use It (Including Specifications) – Philips Semiconductor

• I2C Peripherals for Microcontrollers (Including Fast Mode) – Signetics

The I2C unit allows the i960 Rx I/O processor to serve as a master or slave device residing 
I2C bus. The I2C unit consists of: 

• A Serial Data/Address (SDA) pin for input and output functions.

• A Serial Clock Line (SCL) pin for reference and control of the I2C bus

• An 8-bit buffer for passing data to and from the i960 Rx I/O processor

• A shift register for parallel/serial data conversions

• A set of control and status registers

• A dedicated interrupt to inform the i960 Rx I/O processor of activity on the I2C bus

21.2 THEORY OF OPERATION

The I2C bus defines a complete serial protocol for passing information between agents on t2C
bus using only a two pin interface. The interface consists of a Serial Data/Address (SDA) lin
a Serial Clock Line (SCL). Each device on the I2C bus is recognized by a unique 7-bit address a
can operate as a transmitter or as a receiver. In addition to transmitter and receiver, the I2C bus
uses the concept of master and slave. Table 21-1 defines terms used in this chapter.

Table 21-1.  I2C Bus Definitions 

I2C Device Definition
21-2

Transmitter Sends data to the I2C bus.

Receiver Receives data from the I2C bus.

Master Initiates a transfer, generates the clock signal, and terminates the transactions.

Slave The device addressed by a master.

Multi-master
More than one master can attempt to control the bus at the same time without corrupting 
the message.

Arbitration
Procedure to ensure that, when more than one master simultaneously tries to control the 
bus, only one is allowed. This procedure ensures that messages are not corrupted.



21
I2C BUS INTERFACE UNIT

As an example of I2C bus operation, consider the case of an i960 Rx I/O processor acting as a
master on the bus (see Figure 21-2). The i960 Rx I/O processor, as a master, addresses an
EEPROM as a slave to receive data. The i960 Rx I/O processor is a master-transmitter and the
EEPROM is a slave-receiver. When the i960 Rx I/O processor reads data, the i960 Rx I/O
processor is a master-receiver and the EEPROM is a slave-transmitter. In both cases, the master
generates the clock, initiates the transaction and terminates it.

Figure 21-2.  I2C Bus Configuration Example

The I2C bus allows for a multi-master system, which means more than one device can initiate data
transfers at the same time. To support this feature, the I2C bus arbitration relies on the wired-AND
connection of all I2C interfaces to the I2C bus. Two masters can drive the bus simultaneously
provided they are driving identical data. The first master to go high when other produces a low
signal on the SDL line loses the arbitration. The SCL line consists of a synchronized combination
of clocks generated by the masters using the wired-AND connection to the SCL line. 

The I2C bus serial operation uses an open-drain wired-AND bus structure, which allows multiple
devices to drive the bus lines and to communicate status about events such as arbitration, wait
states, error conditions and so on. For example, when a master drives the clock (SCL) line during a
data transfer, it transfers a bit on every instance that the clock is high (see Figure 21-3). When the

Micro - 
Controller

Gate 
Array

EEPROM i960®  Rx

SCL 

SDA 

Processor
21-3

slave is unable to accept or drive data at the rate that the master is requesting, the slave can hold the
clock line low between the high states to insert a wait interval. The master’s clock can only be
altered by a slow slave peripheral keeping the clock line low or by another master during
arbitration. For more information on multi-master support, see Section 21.6, ARBITRATION
(pg. 21-9).

The I2C unit supports both fast mode operation at 400 Kbits/sec and standard mode at
100 Kbits/sec. Fast mode logic levels, formats, capacitive loading and protocols function the same
in both modes. Refer to I2C Peripheral for Microcontrollers by Philips Semiconductor for details.
I2C unit does not support I2C 10-bit addressing or CBUS.



TOP
I2C BUS INTERFACE UNIT

Figure 21-3.  Bit Transfer on the I2C Bus

21.3 START AND STOP BUS STATES

The i960 Rx I/O processor uses the START and STOP bits (bits 1:0) in the ICR (Table 21-6) to:

• Initiate a START condition on the I2C bus.

• Enable data chaining (repeated START).

• Initiate a STOP condition on the I2C bus.

Figure 21-4 shows the relationship between the SDA and SCL lines for a START and S
condition.

SDA

Data Line 

SCL

Data Valid 
Stable:

Change
of Data
Allowed 

∼ ∼
∼ ∼

∼ ∼

SDA

∼ ∼
∼ ∼
21-4

Figure 21-4.  Start and Stop Conditions

SCL

Start Condition 
 

∼ ∼

Stop Condition 
 



21
t
nters
rite or a

 and the

es

r the
R the
ars the
ated

s the
TART
I2C BUS INTERFACE UNIT

21.3.1 START Condition

The START condition (bits 1:0 of the ICR set to 012) initiates a master transaction or repeated
START. Software must load the target slave address and the R/W# bit in the IDBR (Table 21-9.,
I2C Data Buffer Register – IDBR (pg. 21-26)) before setting the START ICR bit (see Figure 21-4).
The START and the IDBR contents are transmitted on the I2C bus when the ICR transfer byte bi
is set. The I2C bus stays in master-transmit mode when a write is requested or e
master-receive mode when a read is requested. For a repeated start (a change in read or w
change in the target slave address), the IDBR contains the updated target slave address
R/W# bit. This enables multiple transfers to different slaves without giving up the bus.

The START condition is not cleared by the I2C unit when arbitration is lost. While initiating a
START and the arbitration is lost, the I2C unit may re-attempt the START when the bus becom
free - see section 21.6.2, SDA Arbitration (pg. 21-10). See section 21.6, ARBITRATION
(pg. 21-9) for details on how the I2C unit functions under those circumstances.

21.3.2 No START or STOP Condition

The START or STOP condition (bits 1:0 of the ICR set to 002) is used in master-transmit mode
while the i960 Rx I/O processor is transmitting multiple data bytes (see Figure 21-4). When the
IDBR buffer empty interrupt occurs, software clears the IDBR transmit empty bit to clea
interrupt. The software then initiates the repeated START as a master, by writing to the IDB
target slave address and the R/W# bit. The software then sets the START bit in the ICR, cle
STOP bit, and disables the Arbitration Loss Interrupt bit in the ICR. To initiate the repe
START the software sets the transfer byte bit. The I2C unit then waits for the IDBR transmit empty
interrupt in the ISR.

The software writes a new byte to the IDBR and sets the Transfer Byte ICR bit, which initiate
new byte transmission. This continues until the software sets the START or STOP bit. The S
and STOP bits in the ICR are not automatically cleared by the I2C unit after the transmission of a
START, STOP or repeated START.

After each byte transfer (including the Ack/Nack bit) the I2C unit holds the SCL line low (inserting
21-5

wait states) until the transfer byte bit in the ICR is set. This action notifies the I2C unit to release
the SCL line and allow the next information transfer to proceed.

21.3.3 STOP Condition

The STOP condition (bits 1:0 of the ICR set to 102) terminates a data transfer. In master-transmit
mode, the software must write the last databyte to be transferred to the IDBR. The STOP bit and
the transfer byte bit in the ICR must be set to initiate the last byte transfer (see Figure 21-4). In
master-receive mode, to initiate the last transfer the i960 Rx I/O processor must set the Ack/Nack
bit, the STOP bit, and the transfer byte bit in the ICR. Software must clear the STOP bit after it is
transmitted. 



of the
ing

When

g I
I2C BUS INTERFACE UNIT

21.4 SERIAL CLOCK LINE (SCL) MANAGEMENT

The i960 Rx I/O processor’s I2C clock (SCL) is programmed via the I2C Clock Count Register
(ICCR). The following subsections describe how the SCL works and is programmed.

21.4.1 SCL Clock Generation

The i960 Rx I/O processor’s I2C unit is required to generate the I2C clock output when in master
mode (either receive or transmit). SCL clock generation is accomplished through the use 
ICCR value, which is programmed at initialization. The ICCR value is used in the follow
equation to determine the SCL transition period:

SCL Transition Period = 
ICCR Decimal Value * i960 Rx I/O Processor Local Bus Clock Period

The SCL transition period is the amount of time the clock spends in the high or low state. 
wait states are inserted or synchronization with another master is necessary, the I2C unit performs
the necessary clock synchronization. The ICCR provides a simple method for determinin2C
clock frequencies. Table 21-2 details sample programming values for the ICCR.

Programming a value less than 1EH results in undefined behavior.

Table 21-2.  ICCR Programming Values

ICCR Value
i960 Rx I/O 

Processor Local 
Bus Frequency

SCL 
Transition 

Period

I2C Clock Frequency =
[1/(SCL Transition Per. * 2)]

001010102 2AH 42 33 MHz 1.27 µs 392.86 KHz

101001112 A7H 167 33 MHz 5.06 µs 98.88 KHz

001000002 20H 32 25 MHz 1.28 µs 390.63 KHz

011111012 7DH 125 25 MHz 5.00 µs 100.00 KHz
21-6



21

, the
yte

ate a
ent. 

et. 

ed on

n the

e full

tes. 
I2C BUS INTERFACE UNIT

21.5 DATA AND ADDRESSING MANAGEMENT

Data and slave addressing is managed via the I2C Data Buffer Register (IDBR) and the I2C Slave
Address Register (ISAR). The IDBR (see Table 21-9., I2C Data Buffer Register – IDBR
(pg. 21-26)) contains data or a slave address and R/W# bit (Figure 21-5). The ISAR contains the
i960 Rx I/O processor’s programmable slave address. Data coming into the I2C unit shift register is
acknowledged and placed into the IDBR after a full byte is received. To transmit data
processor writes to the IDBR, and the I2C unit passes this onto the serial bus when the transfer b
bit in the ICR is set. See section 21.10.1, I2C Control Register - ICR (pg. 21-19).

When the I2C unit is in transmit mode (master or slave):

1. Software writes data to the IDBR over the 80960 local bus. This typically occurs to initi
master transaction or to send the next data byte, after the IDBR transmit empty bit is s

2. The I2C unit transmits the data from the IDBR when the transfer byte bit in the ICR is s

3. When enabled, an IDBR transmit empty interrupt is signaled when a byte is transferr
the I2C bus and the acknowledge cycle is complete. 

4. When the I2C bus is ready to transfer the next byte before the processor has writte
IDBR (and a STOP condition is not in place), the I2C unit inserts wait states until the
processor writes a new value into the IDBR and sets the ICR transfer byte bit. 

When the I2C unit is in receive mode (master or slave):

1. The processor reads the IDBR data over the 80960 local bus after the IDBR receiv
interrupt is signaled. 

2. The I2C unit transfers data from the shift register to the IDBR after the Ack cycle comple

3. The I2C unit inserts wait states until the IDBR is read. Refer to section 21.7, I2C
ACKNOWLEDGE (pg. 21-11) for acknowledge pulse information in receiver mode. 

2

21-7

4. After the processor reads the IDBR, the IC unit sets the ICR’s Ack/Nack Control bit and the
transfer byte bit, allowing the next byte transfer to proceed. 



I2C BUS INTERFACE UNIT

21.5.1 Addressing a Slave Device

As a master device, the I2C unit must compose and send the first byte of a transaction. This byte
consists of the slave address for the intended device and a R/W# bit for transaction definition. The
slave address and the R/W# bit are written to the IDBR (see Figure 21-5). 

Figure 21-5.  Data Format of First Byte in Master Transaction

The first byte transmission must be followed by an Ack pulse from the addressed slave. When the
transaction is a write, the I2C unit remains in master-transmit mode and the addressed slave device
stays in slave-receive mode. When the transaction is a read, the I2C unit transitions to
master-receive mode immediately following the Ack and the addressed slave device transitions to
slave-transmit mode. When a Nack is returned, the I2C unit aborts the transaction by automatically
sending a STOP and setting the ISR bus error bit.

When the I2C unit is enabled and idle (no bus activity), it stays in slave-receive mode and
monitors the I2C bus for a START signal. Upon detecting a START pulse, the I2C unit reads the
first seven bits and compares them to those in the I2C Slave Address Register (ISAR) and the
general call address (00H). When the bits match those of the ISAR register, the I2C unit reads the
eighth bit (R/W# bit) and transmits an Ack pulse. The I2C unit either remains in slave-receive

4 0

7-Bit I2C Slave Address

7

Read/Write Transaction

MSB LSB

(0) Write
(1) Read
21-8

mode (R/W# = 0) or transitions to slave-transmit mode (R/W# = 1). See section 21.8.3, General
Call Address (pg. 21-16) for actions when a general call address is detected.



21

o hold

master
 in a
L line
I2C BUS INTERFACE UNIT

21.6 ARBITRATION

Arbitration on the I2C bus is required due to the multi-master capabilities of the I2C bus.
Arbitration is used when two or more masters simultaneously generate a START condition within
the minimum I2C hold time of the START condition. The following sections describe the
arbitration on the SCL and SDA lines.

21.6.1 SCL Arbitration

Each master on the I2C bus generates its own clock on the SCL line for data transfers. With
masters generating their own clocks, clocks with different frequencies may be connected to the
SCL line. Since data is valid when the clock is in the high period, a defined clock synchronization
procedure is needed during bit-by-bit arbitration.

Clock synchronization is accomplished by using the wired-AND connection of the I2C interfaces
to the SCL line. When a master’s clock transitions from high to low, this causes the master t
down the SCL line for its associated period (see Figure 21-6). The low to high transition of the
clock may not change when another master has not completed its period. Therefore, the 
with the longest low period holds down the SCL line. Masters with shorter periods are held
high wait-state during this time. Once the master with the longest period completes, the SC
transitions to the high state, masters with the shorter periods can continue the data cycle.

CLK1

Wait
State 

Start Counting 
High Period 

CLK1

The first master to complete its
high period pulls the SCL line low.
21-9

Figure 21-6.  Clock Synchronization During the Arbitration Procedure

SCL

The master with the longest clock
period holds the SCL line low.



I2C BUS INTERFACE UNIT

21.6.2 SDA Arbitration

Arbitration on the SDA line can continue for a long period starting with the address and R/W# bits
and continuing with the data bits. Figure 21-7 shows the arbitration procedure for two masters
(more than two may be involved depending on how many masters are connected to the bus). When
the address bit and the R/W# are the same, the arbitration moves to the data. Due to the
wired-AND nature of the I2C bus, no data is lost when both (or all) masters are outputting the
same bus states. When the address, R/W# bit, or data is different, the master that output the first
high data bit loses arbitration and shuts its data drivers off. When the I2C unit loses arbitration, it
shuts off the SDA or SCL drivers for the remainder of the byte transfer, sets the arbitration loss
detected ISR bit, then returns to idle (Slave-Receive) mode. 

SDA

SCL

Data 1

Data 2

Transmitter 1 Leaves Arbitration 
Data 1 SDA 
21-10

Figure 21-7.  Arbitration Procedure of Two Masters

When the I2C unit loses arbitration during transmission of the seven address bits and the i960 Rx
I/O processor is not being addressed as a slave device, the I2C unit resends the address when the
I2C bus becomes free. This is possible because the IDBR and ICR registers are not overwritten
when arbitration is lost.

When the arbitration loss is to due to another bus master addressing the i960 Rx I/O processor as a
slave device, the I2C unit switches to slave-receive mode and the original data in the I2C data
buffer register is overwritten. Software is responsible for clearing the start and reinitiating the
master transaction at a later time.



21

t slave
I2C BUS INTERFACE UNIT

NOTE: Software must not allow the I2C unit to write to its own slave address. This 
can cause the I2C bus to enter an indeterminate state.

Boundary conditions exist for arbitration when an arbitration process is in progress and a repeated
START or STOP condition is transmitted on the I2C bus. To prevent errors, the I2C unit, acting as
a master, provides for the following sequences:

• No arbitration takes place between a repeated START condition and a data bit

• No arbitration takes place between a data bit and a STOP condition

• No arbitration takes place between a repeated START condition and a STOP condition

These situations arise only when different masters write the same data to the same targe
simultaneously and arbitration is not resolved after the first data byte transfer. 

NOTE: Typically software protocol is responsible for ensuring arbitration is lost 
soon after the transaction begins. For example, the protocol might insist 
that all masters transmit their I2C address as the first data byte of any 
transaction ensuring arbitration is ended. A restart is then sent to begin a 
valid data transfer (the slave can then discard the master’s address).

21.7 I2C ACKNOWLEDGE

Every I2C byte transfer must be accompanied by an acknowledge pulse, which is always generated
by the receiver (master or slave). The transmitter must release the SDA line for the receiver to
transmit the acknowledge pulse (see Figure 21-8).

In master-transmit mode, when the target slave receiver device cannot generate the acknowledge
pulse, the SDA line remains high. This lack of acknowledge (Nack) causes the I2C unit to set the
bus error detected bit in the ISR and generate the associated interrupt (when enabled). The I2C unit
aborts the transaction by generating a STOP automatically. 

In master-receive mode, the I2C unit signals the slave-transmitter to stop sending data by using the
21-11

negative acknowledge (Nack). The Ack/Nack bit value driven by the I2C bus is controlled by the
Ack/Nack control bit in the ICR. The bus error detected bit in the ISR is not set for a
master-receive mode Nack (as required by the I2C bus protocol). When the transmit bit is set in the
ICR, the I2C unit automatically transmits the Ack pulse, based on the Ack/Nack control bit, after
receiving each byte from the serial bus. Before receiving the last byte, software must set the
Ack/Nack Control bit to Nack. Nack is then sent after the next byte is received to indicate the last
byte.



et until
I2C BUS INTERFACE UNIT

In slave mode, the I2C unit automatically acknowledges its own slave address, independent of the
Ack/Nack control bit setting in the ICR. As a slave-receiver, an Ack response is automatically
given to a data byte, independent of the Ack/Nack control bit setting in the ICR. The I2C unit
sends the Ack value after receiving the eighth data bit of the byte. 

In slave-transmit mode, receiving a Nack from the master indicates the last byte is transferred. The
master then sends either a STOP or repeated START. The ISR’s unit busy bit (2) remains s
a STOP or repeated START is received.

Figure 21-8.  Acknowledge on the I2C Bus

1 2-7 8 9
SCL from 

Master

Data Output 
by Receiver 

Data Output 
by Transmitter 

Clock Pulse 
for Acknowledge

SDA released 

SDA pulled low
by Receiver (ACK)

Start Condition 

∼ ∼
∼ ∼

∼ ∼
∼ ∼

(SDA)

(SDA)

Cycles
21-12



21
I2C BUS INTERFACE UNIT

21.8 I2C MASTER AND SLAVE OPERATIONS

The I2C unit can be in different modes of operation to accomplish a transfer. Table 21-3
summarizes the different modes.

The I2C unit enable bit (6) in the ICR must be set and the reset bit (14) cleared before the I2C unit
may act as a master or slave device. When the I2C unit is in an idle mode (neither receiving or
transmitting serial data), the unit defaults to slave-receive mode. This allows the interface to
monitor the bus and receive any slave addresses that might be intended for the i960 Rx I/O
processor. 

The I2C unit transfers in 1-byte increments. A data transfer on the I2C bus always follows the
sequence:

Table 21-3.  Operation Modes

Mode Definition

Master - Transmit

• Used for a write operation on the bus. 

• I2C unit sends the data.

• I2C unit is responsible for clocking.

• Slave device must be in slave-receive mode.

Master - Receive

• Used for a read operation on the bus.

• I2C unit receives the data.

• I2C unit is responsible for clocking.

• Slave device must be in slave-transmit mode.

Slave - Transmit

• Used for a write operation on the bus.

• I2C unit sends the data.

• Master device must be in master-receive mode.

Slave - Receive

(default)

• Used for a read operation on the bus.

• I2C unit receives the data.

• Master device must be in master-transmit mode.
21-13

1) START

2) 7-bit slave address

3) R/W# bit

4) Acknowledge

5) 8 bits of data

6) Acknowledge or No Acknowledge (NACK)

7) Repeat of step 5 and 6 for required number of bytes

8) STOP condition or a repeated START (for repeated START repeat steps 1-8)



e R/W#
ta is
I/O
mit
s to
 (see

-
g (see
r.
I2C BUS INTERFACE UNIT

21.8.1 Master Operations

When software initiates a read or write on the I2C bus, the I2C unit transitions from the default
slave-receive mode to master-transmit mode. The start pulse is sent followed by the 7-bit slave
address and the R/W bit. After the master receives an acknowledge, the I2C unit has the option of
being one of two master modes: 

• Master-Transmit — The i960 Rx I/O processor writes data

• Master-Receive — The i960 Rx I/O processor reads data

The i960 Rx I/O processor sets up a master transaction by writing to the slave address and th
bit to the IDBR. To initiate this transaction, the START bit and the TRANSMIT bit are set. Da
read and written from the I2C unit through the memory-mapped registers. When the i960 Rx 
processor needs to read data, the I2C unit transitions from slave-receive mode to master-trans
mode to transmit the start address and immediately following the ACK pulse transition
master-receive mode to wait for the reception of the read data from the slave device
Figure 21-9). It is also possible to have multiple transactions during an I2C operation such as transi
tioning from master-receive to master-transmit through a repeated start or Data Chainin
Figure 21-10). Figure 21-11 shows the wave forms of SDA and SCL for a complete data transfe

Figure 21-9.  Master-Receiver Read from Slave-Transmitter

Master to Slave Slave to Master

START Slave Address
R/W#

1 ACK
Data
Byte ACK

Data
Byte STOP

N Bytes + ACK

ACK

Default
Slave-Receive

Mode

First Byte Read
21-14

Figure 21-10.  Master-Receiver Read from Slave-Transmitter / Repeated Start / Master-Trans-
mitter Write to Slave-Receiver

START
Slave R/W

1 ACK
Data
Byte ACK

Data
Byte

N Bytes + ACK

Read

ACK Sr
Slave R/W

0 ACK
Data
Byte ACK

Data
Byte STOP

N Bytes + ACK

Write

ACKAddress Address

Master to Slave Slave to Master

Repeated
Start

Data Chaining



21
I2C BUS INTERFACE UNIT

Figure 21-11.  A Complete Data Transfer

The i960 Rx I/O processor initiates a master transaction by writing to the ICR register. Table 21-4.,
General Call Address Second Byte Definitions (pg. 21-17) describes the I2C unit responsibilities
as a master device.

21.8.2 Slave Operations

Figure 21-12 through Figure 21-14 are examples of I2C transactions. These show the relationships
between master and slave devices.

SDA

SCL

Start
Condition

Address R/W ACK Data ACK Data

1-7 8 9 8 9891-7 1-7

ACK Stop
Condition

∼ ∼
∼ ∼

∼ ∼

∼ ∼
∼ ∼

∼ ∼

∼ ∼
∼ ∼

∼ ∼

START Slave Address
R/W#

0 ACK
Data
Byte ACK

Data
Byte STOP

N Bytes + ACKWrite

ACK

First Byte
21-15

Figure 21-12.  Master-Transmitter Write to Slave-Receiver

Master to Slave Slave to Master



I2C BUS INTERFACE UNIT

Figure 21-13.  Master-Receiver Read to Slave-Transmitter

Figure 21-14.  Master-Receiver Read to Slave-Transmitter, Repeated START, Master-Trans-
mitter Write to Slave-Receiver

21.8.3 General Call Address

Master to Slave Slave to Master

START Slave Address
R/W#

1 ACK
Data
Byte ACK

Data
Byte STOP

N Bytes + ACKRead

ACK#

Default
Slave-Receive

Mode

First Byte

START
Slave R/W#

1 ACK
Data
Byte ACK

Data
Byte

N Bytes + ACKRead

ACK SR
Slave R/W#

0 ACK
Data
Byte ACK

Data
Byte STOP

N Bytes + ACKWrite

ACKAddress Address

Master to Slave Slave to Master

Repeated
START

Data Chaining
21-16

The I2C unit supports both sending and receiving general call address transfers on the I2C bus.
When sending a general call message from the I2C unit, software must set the general call disable
bit in the ICR to keep the I2C unit from responding as a slave. Failure to do this causes the I2C Bus
to enter an indeterminate state.



21

he I
I2C BUS INTERFACE UNIT

A general call address is defined as a transaction with a slave address of 00H. When a device
requires the data from a general call address, it Acks the transaction and stays in slave-receiver
mode. Otherwise, the device can ignore the general call address. The second and following bytes
of a general call transaction are acknowledged by every device using it on the bus. Any device not
using these bytes must not Ack. The meaning of a general call address is defined in the second byte
sent by the master-transmitter. Figure 21-15 shows a general call address transaction. The least
significant bit of the second byte defines the transaction. Table 21-4., General Call Address Second
Byte Definitions (pg. 21-17) shows the valid values and definitions when B = 0.

When the i960 Rx I/O processor is acting as a slave, and the I2C unit receives a general call address
and the ICR general call disable bit is clear the I2C unit:

• Sets the ISR general call address detected bit.

• Sets the ISR slave address detected bit.

• Signals an interrupt (when enabled) to the i960 Rx I/O processor. 

When the I2C unit receives a general call address and the ICR general call disable bit is set, t2C
unit will ignore the general call address. 

Figure 21-15.  General Call Address 

Table 21-4.  General Call Address Second Byte Definitions

Master to Slave Slave to Master

START 00000000 ACK
Data
Byte ACK

Data
Byte STOP

N Bytes + ACK

Least Significant Bit of Master Address

ACK

Second Byte

Second Byte 0 ACK

First Byte

Defines Transaction
21-17

Least Significant Bit 
of Second Byte

(B)
Second Byte Value Definition

0 06H
2-byte transaction where the second byte tells the slave to 
reset and then store this value in the programmable part of 
their slave address. 

0 04H
2-byte transaction where the second byte tells the slave to 
store this value in the programmable part of their slave 
address. No reset.



ngs.
I2C BUS INTERFACE UNIT

21.9 THE I2C BUS UNIT AND RESET

The I2C unit is reset by the local bus reset signal that is active when P_RST# is asserted or when
reset local bus bit in EBCR is set. Software is responsible for ensuring the I2C unit is not busy
(unit busy is clear) before asserting reset. Software is also responsible for ensuring the I2C bus is
idle when the unit is enabled after reset. When directed to reset, the I2C unit must return to its
default reset condition with the exception of the ISAR. ISAR is not affected by a reset.

When the unit reset bit in the ICR is set, only the i960 Rx I/O processor I2C unit resets, the
associated I2C MMRs remain intact. When resetting the I2C unit with the ICR’s unit reset, use the
following guidelines:

1. In the ICR register, set the reset bit and clear the remainder of the register

2. Clear the ISR register

3. Clear reset in the ICR

21.10 I2C REGISTERS

Table 21-5 identifies all I2C unit registers. Subsections identify all registers and define bit setti

Table 21-5.  I2C Register Summary 

Section Register Name, Acronym Page
Size 
(Bits)

80960 Local 
Bus Address

PCI 
Config 
Addr 

Offset

21.10.1 I2C Control Register - ICR 21-19 32 0000 1680H NA

21.10.2 I2C Status Register- ISR 21-22 32 0000 1684H NA

21.10.3 I2C Slave Address Register – ISAR 21-25 32 0000 1688H NA

21.10.4 I2C Data Buffer Register – IDBR 21-26 32 0000 168CH NA

21.10.5 I2C Clock Count Register – ICCR 21-27 32 0000 1690H NA
21-18



21
I2C BUS INTERFACE UNIT

21.10.1 I2C Control Register - ICR

The i960 Rx I/O processor uses the bits in the I2C Control Register (ICR) to control the I2C unit. 

Table 21-6.  I2C Control Register – ICR (Sheet 1 of 3)

LBA: 

PCI:

1680H

NA

Legend: NA = Not Accessible RO = Read Only
RV = Reserved PR = Preserved RW = Read/Write
RS = Read/Set RC = Read Clear
LBA = 80960 local bus address PCI = PCI Configuration Address Offset

Bit Default Description

31:15 0000 0H Reserved

14 02

Unit Reset:

1 = Reset the i960 Rx I/O processor I2C unit only. 
0 = No reset.

13 02

Slave Address Detected Interrupt Enable:

1 = Enables the I2C unit to signal an interrupt to the i960 Rx I/O processor upon 
detecting a slave address match or a general call address. 
0 = Disable interrupt.

12 02

Arbitration Loss Detected Interrupt Enable:

1 = Enables the I2C unit to signal an interrupt upon losing arbitration while in master 
mode. 

0 = Disable interrupt. 

11 02

Slave STOP Detected Interrupt Enable:

1 = Enables the I2C unit to signal an interrupt when it detects a STOP condition while in 
slave mode. 

0 = Disable interrupt.

PCI

LBA

28 24 20 16 12 8 4 031

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na
21-19

10 02

Bus Error Interrupt Enable:

1 = Enables the I2C unit to signal an interrupt for the following I2C bus errors:

• As a master transmitter, no Ack was detected after a byte was sent.

• As a slave receiver, the I2C unit generated a Nack pulse.

Note: Software is must guarantee that misplaced START and STOP conditions do not 
occur. See section 13.6.

0 = Disable interrupt.

09 02

IDBR Receive Full Interrupt Enable:

1 = Enables the I2C unit to signal an interrupt to the i960 Rx I/O processor when the 
IDBR has received a data byte from the I2C bus. 

0 = Disable interrupt. 



I2C BUS INTERFACE UNIT

08 02

IDBR Transmit Empty Interrupt Enable:

1 = Enables the I2C unit to signal an interrupt to the i960 Rx I/O processor after trans-
mitting a byte onto the I2C bus. 

0 = Disable interrupt. 

07 02

General Call Interrupt Disable:

1 = Disables I2C unit response to general call messages as a slave. 

0 = Enables the I2C unit to respond to general call messages. 

This bit must be set when sending a master mode general call message from the I2C 
unit.

06 02

I2C Unit Enable:

1 = Enables the I2C unit (defaults to slave-receive mode). 

0 = Disables the unit and does not master any transactions or respond to any slave 
transactions. 

Software must guarantee the I2C bus is idle before setting this bit.

05 02

SCL Enable:

1 = Enables the I2C clock output for master mode operation. The ICCR (see section 
21.10.5) must be programmed with a valid value before setting this bit. 

0 = Disables the I2C unit from driving the SCL line.

Master Abort: used by the I2C unit when in master mode to generate a STOP without 
transmitting another data byte. 

Table 21-6.  I2C Control Register – ICR (Sheet 2 of 3)

LBA: 

PCI:

1680H

NA

Legend: NA = Not Accessible RO = Read Only
RV = Reserved PR = Preserved RW = Read/Write
RS = Read/Set RC = Read Clear
LBA = 80960 local bus address PCI = PCI Configuration Address Offset

Bit Default Description

PCI

LBA

28 24 20 16 12 8 4 031

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na
21-20

04 02

1 = The I2C unit sends STOP without data transmission. 

0 = The I2C unit transmits STOP using the STOP ICR bit only. 

When in Master transmit mode, after transmitting a data byte, the ICR’s transfer byte bit 
is clear and IDBR transmit empty bit is set. When no more data bytes need to be sent, 
setting master abort bit sends the STOP. The transfer byte bit (03) must remain clear.

In master-receive mode, when a Nack is sent without a STOP (STOP ICR bit was not 
set) and the i960 Rx I/O processor does not send a repeated START, setting this bit 
sends the STOP. Once again, the transfer byte bit (03) must remain clear.



21
I2C BUS INTERFACE UNIT

03 02

Transfer Byte: used to send/receive a byte on the I2C bus. 

1 = send/receive a byte. 

0 = cleared by I2C unit when the byte is sent/received. 

The i960 Rx I/O processor can monitor this bit to determine when the byte transfer has 
completed. In master or slave mode, after each byte transfer including Ack/Nack bit, the 
I2C unit holds the SCL line low (inserting wait states) until the transfer byte bit is set. 

02 02

Ack/Nack Control: defines the type of Ack pulse sent by the I2C unit when in master or 
slave receive mode. 

1 = The I2C unit sends a negative Ack (Nack) after receiving a data byte. 

0 = The I2C unit sends an Ack pulse after receiving a data byte. 

The I2C unit automatically sends an Ack pulse when responding to its slave address, 
independent of the Ack/Nack control bit setting.

01 02

STOP: used to initiate a STOP condition after transferring the next data byte on the I2C 
bus when in master mode. In master-receive mode, the Ack/Nack control bit must be set 
in conjunction with this bit. See section 21.3. for more details on the STOP state.

1 = Send a STOP

0 = Do not send a STOP

00 02

START: used to initiate a START condition to the I2C unit when in master mode. See 
section 21.3. for more details on the START state.

1 = Send a START

0 = Do not send a START

Table 21-6.  I2C Control Register – ICR (Sheet 3 of 3)

LBA: 

PCI:

1680H

NA

Legend: NA = Not Accessible RO = Read Only
RV = Reserved PR = Preserved RW = Read/Write
RS = Read/Set RC = Read Clear
LBA = 80960 local bus address PCI = PCI Configuration Address Offset

Bit Default Description

PCI

LBA

28 24 20 16 12 8 4 031

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na
21-21



I2C BUS INTERFACE UNIT

21.10.2 I2C Status Register- ISR

I2C interrupts are signaled through XINT7# and the XINT7 Interrupt Status Register (X7ISR),
which shows the pending XINT7 interrupts (see CHAPTER 8, INTERRUPTS). XINT7# is set by
the I2C Interrupt Status Register (ISR). Software uses the ISR bits to check the status of the I2C
unit and bus. ISR bits (bits 5-9) are updated after the Ack/Nack bit has completed on the I2C bus.
The ISR is also used to clear interrupts signaled from the I2C unit. They are:

• IDBR receive full

• IDBR transmit empty

• slave address detected

• bus error detected

• STOP condition detect

• arbitration lost

Table 21-7.  I2C Status Register – ISR (Sheet 1 of 3)

LBA: 

PCI:

1684H

NA

Legend: NA = Not Accessible RO = Read Only
RV = Reserved PR = Preserved RW = Read/Write
RS = Read/Set RC = Read Clear
LBA = 80960 local bus address PCI = PCI Configuration Address Offset

Bit Default Description

31:11 0000 00H Reserved

Bus Error Detected:

1 = The I2C unit sets this bit when it detects one of the following error conditions:

• As a master transmitter, no Ack was detected on the interface after a byte was sent.

PCI

LBA

28 24 20 16 12 8 4 031

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rc

na

rc

na

rc

na

rc

na

rc

na

rc

na

rc

na

ro

na

ro

na

ro

na

ro

na
21-22

10 02
• As a slave receiver, the I2C unit generates a Nack pulse.

Note: When an error occurs, I2C bus transactions continue. Software must guarantee 
that misplaced START and STOP conditions do not occur. See section 21.6, 
ARBITRATION (pg. 21-9).

0 = no error detected.

09 02

Slave Address Detected:

1 = I2C unit detected a 7-bit address that matches the general call address or ISAR. An 
interrupt is signaled when enabled in the ICR. 

0 = No slave address detected. 



21
I2C BUS INTERFACE UNIT

08 02

General Call Address Detected:

1 = I2C unit received a general call address. An interrupt is signaled when enabled in the 
ICR.

0 = No general call address received.

07 02

IDBR Receive Full:

1 = The IDBR register received a new data byte from the I2C bus. An interrupt is 
signaled when enabled in the ICR. 

0 = The IDBR has not received a new data byte or the I2C unit is idle.

06 02

IDBR Transmit Empty:

1 = The I2C unit has finished transmitting a data byte on the I2C bus. An interrupt is 
signaled when enabled in the ICR.

0 = The data byte is still being transmitted.

05 02

Arbitration Loss Detected: used during multi-master operation. 

1 = Set when the I2C unit loses arbitration. 

0= Cleared when arbitration is won or never took place.

04 02

Slave STOP Detected: 

1 = Set when the I2C unit detects a STOP while in slave-receive or slave-transmit mode. 

0 = No STOP detected.

I2C Bus Busy: 

1 = Set when the I2C bus is busy but the i960 Rx I/O processor’s I2C unit is not involved 

Table 21-7.  I2C Status Register – ISR (Sheet 2 of 3)

LBA: 

PCI:

1684H

NA

Legend: NA = Not Accessible RO = Read Only
RV = Reserved PR = Preserved RW = Read/Write
RS = Read/Set RC = Read Clear
LBA = 80960 local bus address PCI = PCI Configuration Address Offset

Bit Default Description

PCI

LBA

28 24 20 16 12 8 4 031

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rc

na

rc

na

rc

na

rc

na

rc

na

rc

na

rc

na

ro

na

ro

na

ro

na

ro

na
21-23

03 02 in the transaction. 

0 = I2C bus is idle or the I2C unit is using the bus (i.e., unit busy).

02 02

Unit Busy: 

1 = Set when the i960 Rx I/O processor’s I2C unit is busy. This is defined as the time 
between the first START and STOP. 

0 = I2C unit not busy.



I2C BUS INTERFACE UNIT

01 02

Ack/Nack Status: 

1 = The I2C unit received a Nack. 

0 = The I2C unit received an Ack on the bus. 

This bit is used in slave transmit mode to determine when the byte transferred is the last 
one. This bit is updated after each byte and Ack/Nack information is received.

00 02

R/W Mode: 

1 = The I2C unit is in receive mode. 

0 = The I2C unit is in transmit mode. 

This is the R/W# received after a slave address match. It is automatically cleared by 
hardware after a stop state.

Table 21-7.  I2C Status Register – ISR (Sheet 3 of 3)

LBA: 

PCI:

1684H

NA

Legend: NA = Not Accessible RO = Read Only
RV = Reserved PR = Preserved RW = Read/Write
RS = Read/Set RC = Read Clear
LBA = 80960 local bus address PCI = PCI Configuration Address Offset

Bit Default Description

PCI

LBA

28 24 20 16 12 8 4 031

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rc

na

rc

na

rc

na

rc

na

rc

na

rc

na

rc

na

ro

na

ro

na

ro

na

ro

na
21-24



21by the
o

 I
x I/O
I2C BUS INTERFACE UNIT

21.10.3 I2C Slave Address Register – ISAR

The I2C Slave Address Register (see Table 21-8) defines the I2C unit’s 7-bit slave address to which
the i960 Rx I/O processor responds when in slave-receive mode. This register is written 
i960 Rx I/O processor before enabling I2C operations. The register is fully programmable (n
address is assigned to the I2C unit) so it can be set to a value other than those of hard-wired2C
slave peripherals that might exist in the system. The ISAR is not affected by the i960 R
processor being reset. The ISAR register default value is 00H.

Table 21-8.  I2C Slave Address Register – ISAR

LBA: 

PCI:

1688H

NA

Legend: NA = Not Accessible RO = Read Only
RV = Reserved PR = Preserved RW = Read/Write
RS = Read/Set RC = Read Clear
LBA = 80960 local bus address PCI = PCI Configuration Address Offset

Bit Default Description

31:07 0000 000H Reserved

06:00 0H
I2C Slave Address: The 7-bit address to which the I2C unit responds when in 
slave-receive mode.

PCI

LBA

28 24 20 16 12 8 4 031

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na
21-25



21.10.4 I2C Data Buffer Register – IDBR

The IDBR (see Table 21-9) receives and sends data and transmits the slave address for the
intended slave. The IDBR register defaults to 00H after reset. 

Table 21-9.  I2C Data Buffer Register – IDBR

LBA: 

PCI:

168CH

NA

Legend: NA = Not Accessible RO = Read Only
RV = Reserved PR = Preserved RW = Read/Write
RS = Read/Set RC = Read Clear
LBA = 80960 local bus address PCI = PCI Configuration Address Offset

Bit Default Description

31:08 0000 00H Reserved

07:00 00H I2C Data Buffer: Buffer for I2C bus send/receive data.

PCI

LBA

28 24 20 16 12 8 4 031

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na



21
I2C BUS INTERFACE UNIT

21.10.5 I2C Clock Count Register – ICCR

The I2C Clock Count Register (ICCR) defines the multiplier used to generate the I2C SCL clock.
This register is used with an internal 8-bit down counter. When the SCL enable bit in the ICR is
set, this counter decrements from the programmed ICCR value to zero, then resets to the
programmed ICCR value and begins to decrement again. This continues until the SCL enable bit in
the ICR is cleared. Each time the counter reaches zero, the SCL line transitions from low to high or
vice versa, depending on the current state. This creates the I2C clock output used during I2C master
operations.

Changing this register while the SCL enable bit is set results in undefined behavior.

Table 21-10.  I 2C Clock Count Register – ICCR

LBA: 

PCI:

1690H

NA

Legend: NA = Not Accessible RO = Read Only
RV = Reserved PR = Preserved RW = Read/Write
RS = Read/Set RC = Read Clear
LBA = 80960 local bus address PCI = PCI Configuration Address Offset

Bit Default Description

31:08 0000 00H Reserved

07:00 00H
I2C Clock Count: 8 bit count value used to generate an I2C clock from the i960 Rx I/O 
processor local bus clock.

PCI

LBA

28 24 20 16 12 8 4 031

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na
21-27





22
I/O APIC BUS INTERFACE UNIT





22

pro-
 a

s two

IC bus
sor can

 core

 that
icate
CHAPTER 22
I/O APIC BUS INTERFACE UNIT

This chapter details the operation modes, setup and implementation of the i960® Rx I/O
processor’s I/O Advanced Peripheral Interrupt Controller (APIC) Bus Interface Unit.

22.1 Overview

The APIC interrupt architecture is specified as the interrupt architecture for all Intel Multi
cessor Specification* (MPS) compatible systems. The APIC Bus Interface Unit provides
mechanism for communication between the local bus and the 3-wire APIC bus. It provide
basic functions:

• It gives the i960 core processor the ability to send an interrupt message out onto the AP
and optionally be interrupted when the message has been sent. The i960 core proces
then read the resulting status of the message transmission to check for errors.

• It can also receive EOI messages from the APIC bus and optionally interrupt the i960
processor to inform it that an EOI vector is available.

22.2 Theory of Operation

Structurally, the APIC partitions into two portions (Figure 22-1):

• One residing in the I/O Subsystem.

• One residing in the Host CPU.

The portion that resides in the I/O subsystem is known as I/O APIC Unit and the portion
resides in the CPU is known as Local APIC Unit. The local APIC and the I/O APIC commun
22-1

over a dedicated APIC bus.

The I/O APIC Unit provides the interrupt input pins on which I/O devices send interrupts into the
system in the form of an edge or a level detect. The I/O APIC also contains a Redirection Table
with an entry for each interrupt input pin.

* Intel MultiProcessor Specification, Order Number 242016



I/O APIC BUS INTERFACE UNIT

Figure 22-1.  APIC System Interface

22.3 Physical Characteristics of an APIC

The APIC bus is a 3-wire synchronous bus connecting all APICs (I/O and Local units). Two of
these wires (PICD0, PICD1) are used for data transmission, and one wire is a clock (PICCLK).
For bus arbitration, the APIC uses only one of the data wires (Figure 22-1).

The bus is logically a wire-OR and electrically an open-drain connection providing arbitration for
both bus use and for lowest priority interrupt delivery. Being open-drain, the bus is run at a
nominal speed such that design-specific termination tuning is not required. Furthermore, each
APIC receiving a message or participating in an arbitration must be given enough time in a single
bus cycle to latch the bus and perform some simple logic operations on the latched information in

I/O APIC

Local APIC

CPU

Local APIC

CPU

80960Rx
Processor

I/O APIC

I/O Chip Set

I/O APIC

Other I/O Chip

PICD0

PICD1

PICCLK

Local

Interrupts

Local

Interrupts

CPU VCC

APIC Clock
Generator
22-2

order to determine whether the next drive cycle must be inhibited. The maximum APIC bus speed
is 16 MHz.

All values mentioned in the protocol description are logical values; i.e. “Bus Driven” is logical 1
and “Bus Not Driven” is logical 0. The electrical values are 0 for logical one and 1 for
logical zero.



22

d acts
rrupt

level.
Each
pt on
terrupt
ct that
ssage

are

n APIC
errupt
rface
n Table
ram in
I/O APIC BUS INTERFACE UNIT

22.4 I/O APIC EMULATION

A basic I/O APIC Unit is emulated by the i960 Rx I/O processor with the APIC Bus Interface Unit
and emulation software. APIC unit consists of:

• A set of interrupt input pins

• Interrupt Redirection Table

• An I/O APIC bus interface unit for sending and receiving APIC messages from the APIC
bus

The I/O APIC bus interface unit is a dedicated hardware unit in the i960 Rx I/O processor an
as an interface from the 80960 local bus to the APIC bus. The I/O APIC Unit provides the inte
input pins on which I/O devices inject interrupts into the system in the form of an edge or a 
The I/O APIC also contains a Redirection Table with an entry for each interrupt input pin. 
entry in the Redirection Table can be individually programmed to indicate whether an interru
the pin is recognized as either an edge or a level; what vector and also what priority the in
has; and which of all possible processors should service the interrupt and how to sele
processor (statically or dynamically). The information in the table is used to broadcast a me
to all Local APIC units. Overall control of the I/O APIC is handled by emulation softw
executing within the i960 Rx I/O processor. 

When the i960 core processor receives an interrupt that it determines should be sent as a
message, the emulation software looks up the information related to that interrupt in the Int
Redirection Table stored in local memory and writes that information to the APIC Bus Inte
Unit which then sends the correct message on the APIC bus. The contents of the Redirectio
are under software control and defaults to a disabled state upon reset. The block diag
Figure 22-2 shows how an I/O APIC Unit can be emulated in a i960 Rx I/O processor.
22-3



I/O APIC BUS INTERFACE UNIT

Figure 22-2.  I/O APIC Emulation Block Diagram

The I/O Register Select Register and I/O Window Register are the only registers directly visible to
the host software in the APIC architecture. These two registers are implemented in the Messaging
Unit. The APIC Bus Interface Unit also has a set of Memory-mapped Registers (MMR) for trans-
ferring and receiving data over the APIC bus. 

When the APIC register select register in the messaging unit is written, an interrupt is asserted to
the i960 Rx I/O processor and the messaging unit locks out all other PCI accesses to the two
messaging unit APIC registers. The emulation software then reads the logical APIC register at the

i960 Core Processor

PCI and Peripheral Interrupt

DEST MODE VECTOR

I/O Redirection Table

External Memory

APIC Window Register

APIC Register Select Register

I/O APIC Bus Interface Unit

APIC Bus

80
96

0 
Lo

ca
l B

u
s

Messaging Unit

In
te

rr
u

p
ts

Controller

EOI Messages
22-4

offset contained in the APIC register select register (as defined by the APIC Architecture - not the
local bus address mapping) and stores the value back into the APIC window register. The
emulation software then clears the interrupt and the messaging unit releases the interlock
mechanism to allow additional accesses to the APIC registers. The emulation software must also
keep the value of the APIC window register updated when the redirection table changes due to
interrupt activity.

When the APIC Window Register is written, an interrupt is asserted to the i960 core processor and
the Messaging Unit locks out all other PCI accesses to the two Messaging Unit APIC registers.
The emulation software reads the values of the APIC Register Select Register and APIC Window
Register, updates the appropriate register and then clears the interrupt to release the interlock. 



22
I/O APIC BUS INTERFACE UNIT

22.5 REGISTER DEFINITIONS

The APIC bus interface unit implements five registers that are mapped into local bus memory
address space.

See APPENDIX C, MEMORY-MAPPED REGISTERS for details on where these registers are
mapped. Two related registers from the messaging unit are:

• 17.7.1, APIC Register Select Register - ARSR (pg. 17-15) 

• 17.7.2, APIC Window Register - AWR (pg. 17-15)

Table 22-1.  I/O APIC Bus Interface Unit Register Summary 

Section Register Name, Acronym Page
Size 
(Bits)

80960 Local 
Bus Address

PCI 
Config 
Addr 

Offset

22.5.1 APIC ID Register - APIC ID 22-6 32 0000 1780H NA

22.5.2 APIC Arbitration Register - APIC ArbID 22-7 32 0000 1784H NA

22.5.3 EOI Vector Register - EVR 22-8 32 0000 1788H NA

22.5.4 Interrupt Message Register - IMR 22-8 32 0000 178CH NA

22.5.5 APIC Control/Status Register - APIC CSR 22-11 32 0000 1790H NA
22-5



I/O APIC BUS INTERFACE UNIT

22.5.1 APIC ID Register - APIC ID

Each APIC unit has a register that contains the unit’s APIC ID. The ID serves as a physical name
of the APIC unit. All APIC units using the APIC bus must have a unique four bit APIC ID. The
APIC bus arbitration ID for the I/O unit is derived from its APIC ID. The APIC architecture
allows for an 8 bit APIC ID but the APIC Bus is limited to 4 bits by its arbitration scheme. The
APIC ID is read-write by software and must be programmed to a valid ID value before using the
APIC bus for message transmission.

Table 22-2.  APIC ID Register – APIC ID 

LBA: 

PCI:

1780H

NA

Legend: NA = Not Accessible RO = Read Only
RV = Reserved PR = Preserved RW = Read/Write
RS = Read/Set RC = Read Clear
LBA = 80960 Local Bus Address PCI = PCI Configuration Address Offset

Bit Default Description

31:04 0000 000H Reserved

03:00 0H APIC ID - Unique APIC ID for the APIC bus interface unit.

PCI

LBA

28 24 20 16 12 8 4 031

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

v

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rw

na

rw

na

rw

na

rw

na
22-6



22

ated
I/O APIC BUS INTERFACE UNIT

22.5.2 APIC Arbitration Register - APIC ArbID

The APIC Arbitration register (APIC ArbID) contains the current bus arbitration priority for the
APIC bus interface register. It is written when the APIC ID register is written. It must be loaded
with the new APIC ID value by the emulation software whenever APIC ID register is written. This
register is valid only for those I/O APIC units that are directly connected to the APIC bus. When
the I/O APIC is not connected to the APIC bus, this register returns the I/O APIC ID. A rotating
priority scheme is used for APIC bus arbitration. The winner of the arbitration becomes the lowest
priority agent and assumes an arbitration ID of 0.

When an APIC bus message successfully completes, all other agents, except the agent whose
arbitration ID is 15, increments their arbitration IDs by one. The agent whose ID was 15 takes the
winner’s arbitration ID and increments it by one. Arbitration IDs are changed (incremented or
assumed) only for messages that are transmitted successfully (except in the case of lowest priority
local unit messages where arbitration ID is changed even when message was not successfully
transmitted). A message is transmitted successfully when no CS error or acceptance error was
reported for that message. I/O APIC arbitration ID register is always loaded with I/O APIC ID
during a “level triggered INIT with deassert” message. The APIC Arbitration register is upd
after the status 1 cycle. It determines the new Arb ID according to the following priorities:

• Write of the APIC ID Register. (ArbID = APICID)

• Successful INIT message. (ArbID = APICID)

• Successful message and Arb ID is the same as the winner ID. (ArbID = 0)

• Successful message and Arb ID = 1111. (ArbID = WinnerID + 1)

• Successful message. (ArbID = ArbID + 1)

• Otherwise, ArbID remains the same.

Table 22-3.  APIC Arbitration ID Register – APIC ArbID

LBA

28 24 20 16 12 8 4 031

rv rv rv rv rv rv rv rv rv rv rv rv rv rv rv rv rv rv rv rv rv rv rv rv rv rv rv rv ro ro ro ro
22-7

LBA: 

PCI:

1784H

NA

Legend: NA = Not Accessible RO = Read Only
RV = Reserved PR = Preserved RW = Read/Write
RS = Read/Set RC = Read Clear
LBA = 80960 Local Bus Address PCI = PCI Configuration Address Offset

Bit Default Description

31:04 0000 000H Reserved

03:00 0H APIC Arbitration ID - Current bus arbitration priority for the APIC bus interface unit.

PCI na na na na na na na na na na na na na na na na na na na na na na na na na na na na na na na na



I/O APIC BUS INTERFACE UNIT

22.5.3 EOI Vector Register - EVR

The EOI Vector Register (EVR) is a read-write register although it is not written by the emulation
software in normal operation. It is set to the EOI Vector by the APIC bus interface unit when an
EOI message is received on the APIC bus. 

To ensure that the value read is valid, the EOI flow control bit should be set and the EOI received
bit should indicate that an EOI has been received. When the EOI flow control bit is not set, another
EOI could be received just as the EVR is being read resulting in corrupt read data. When the value
of the EOI vector is not important, then this is not an issue.

The data read from the APIC bus is only written into the EVR register when the checksum was
OK (Status0) and an Accept status was written (Status1).

22.5.4 Interrupt Message Register - IMR

The Interrupt Message Register (IMR - Table 22-5) is a 32-bit register used to provide the data to

Table 22-4.  EOI Vector Register – EVR

LBA: 

PCI:

1788H

NA

Legend: NA = Not Accessible RO = Read Only
RV = Reserved PR = Preserved RW = Read/Write
RS = Read/Set RC = Read Clear
LBA = 80960 Local Bus Address PCI = PCI Configuration Address Offset

Bit Default Description

31:08 0000 00H Reserved

07:00 00H EOI Vector - EOI Vector received from the APIC Bus.

PCI

LBA

28 24 20 16 12 8 4 031

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

ro

na

ro

na

ro

na

ro

na

rw

na

rw

na

rw

na

rw

na
22-8

be sent in the APIC interrupt message. To the APIC Bus Interface Unit, the IMR register is a data
register, holding data that may need to be sent on the APIC bus.



22
I/O APIC BUS INTERFACE UNIT

IMR fields have a 1-to-1 correspondence with the fields defined for the APIC redirection table
entries and the bits sent in the APIC interrupt message itself. This register should only be written
when the send message bit and message sent bit in the APIC CSR indicate that the APIC send unit
is Idle. When emulation software aborts a message by clearing the send message bit before the
message sent bit is set, the emulation software should wait for at least 30 APIC clocks (1.8 ms at
16 MHz) before attempting to write a new value to the IMR.

Table 22-5.  Interrupt Message Register – IMR  (Sheet 1 of 2)

LBA: 

PCI:

178CH

NA

Legend: NA = Not Accessible RO = Read Only
RV = Reserved PR = Preserved RW = Read/Write
RS = Read/Set RC = Read Clear
LBA = 80960 Local Bus Address PCI = PCI Configuration Address Offset

Bit Default Description

31:24 00H

Destination - contains an APIC ID or destination address. When the destination mode of 
this entry is physical mode, then the bits 27:24 contain an APIC ID. When logical mode, 
then the destination field potentially defines a set of processors. Bits 31:24 of the 
destination field specify the logical destination address.

23:16 00H Reserved

15 02

Trigger Mode - indicates the type of signal on the interrupt pin that triggers an interrupt. 
A value of 0 means the input is edge sensitive and a value of 1 means the input is level 
sensitive.

14 02

Level - only used when delivery mode is set to INIT (101). When the delivery mode is 
not set to INIT, this bit must be set to 0. The meaning for INIT is:

• 0 - INIT deasserted

• 1 - INIT asserted

13:12 002 Reserved

Destination Mode - determines the interpretation of the destination field:

PCI

LBA

28 24 20 16 12 8 4 031

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rw

na

rw

na

rv

na

rv

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na
22-9

11 02

• 0 (Physical Mode): a destination APIC is identified by its ID. Bits 24 through 27 of 
the destination field specify the 4-bit APIC ID.

• 1 (Logical Mode): destinations are identified by matching on logical destination 
under the control of the destination format register and logical destination register in 
each local APIC. Bits 24 through 31 (8 MSB) of the destination field specify the 8-bit 
APIC ID



I/O APIC BUS INTERFACE UNIT

10:08 0002

Delivery Mode - a 3-bit field that specifies how the APICs listed in the destination field 
should act upon reception of this signal. Note that certain delivery modes only operates 
as intended when used in conjunction with a specific trigger mode. These restrictions 
are indicated in the table below for each delivery mode.

• 0002 (Fixed): Delivers the signal on the INTR signal of all processor cores listed in 
the destination. trigger mode for “fixed” delivery mode can be edge or level.

• 0012 (Lowest Priority Local Unit): Delivers the signal on the INTR signal of the 
processor core that is executing at the lowest priority among all the processors 
listed in the destination. trigger mode for “lowest priority” delivery mode can be 
edge or level.

• 0102 System Management Interrupt (SMI): A delivery mode equal to “SMI” requires 
an “edge” trigger mode. The vector information is ignored but must be programmed 
to all zeroes for future compatibility.

• 1002 (NMI): Delivers the signal on the NMI signal of all processor cores listed in the 
destination; vector information is ignored. “NMI” is treated as an edge-triggered 
interrupt even when programmed as a level-triggered interrupt.

• 1012 (INIT): Delivers the signal to all processor cores listed in the destination by 
asserting the INIT signal. All addressed local APICs assume their INIT state. INIT is 
always treated as an edge-triggered interrupt even when programmed otherwise.

• 1112 (ExtINT): Delivers the signal to the INTR signal of all processor cores listed in 
the destination as an interrupt that originated in an externally connected (8259A-
compatible) interrupt controller. The INTA cycle that corresponds to this ExtINT 
delivery is routed to the external controller that is expected to supply the vector. A 

Table 22-5.  Interrupt Message Register – IMR  (Sheet 2 of 2)

LBA: 

PCI:

178CH

NA

Legend: NA = Not Accessible RO = Read Only
RV = Reserved PR = Preserved RW = Read/Write
RS = Read/Set RC = Read Clear
LBA = 80960 Local Bus Address PCI = PCI Configuration Address Offset

Bit Default Description

PCI

LBA

28 24 20 16 12 8 4 031

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rw

na

rw

na

rv

na

rv

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na
22-10

delivery mode of “ExtINT” requires an “edge” trigger mode.

07:00 00H
Vector - the interrupt vector for this interrupt. Vector values range between 10H and 
FEH.



22
I/O APIC BUS INTERFACE UNIT

22.5.5 APIC Control/Status Register - APIC CSR

The APIC Control/Status Register (APIC CSR - Table 22-6) is used to control and monitor the
status of the APIC bus interface unit. The lower byte is used for sending APIC interrupt messages
and the upper byte is used for receiving APIC EOI messages. When the i960 core processor tries to
update this register at the same time the APIC Bus Interface Unit is updating the register, the Unit
update has precedence.

Table 22-6.  APIC Control/Status Register – APIC CSR  (Sheet 1 of 2)

LBA: 

PCI:

1790H

NA

Legend: NA = Not Accessible RO = Read Only
RV = Reserved PR = Preserved RW = Read/Write
RS = Read/Set RC = Read Clear
LBA = 80960 Local Bus Address PCI = PCI Configuration Address Offset

Bit Default Description

31:16 0000H Reserved

15 02

EOI Flow Control - Determines whether or not to accept an EOI message from the APIC 
bus. 

• 0 - The APIC bus interface unit always accepts an EOI message. 

• 1 - The unit waits for the i960 Rx I/O processor to process the previous EOI before 
accepting another. 

See Table 22-4., EOI Vector Register – EVR (pg. 22-8).

14 02
EOI Received - Used to indicate that an APIC EOI message has been received. This is 
a read/clear bit.

13 02

EOI Interrupt Enable:

• 0 - An APIC EOI does not interrupt the i960 Rx I/O processor.

• 1 - An APIC EOI can interrupt the i960 Rx I/O processor.

PCI

LBA

28 24 20 16 12 8 4 031

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rw

na

rc

na

rw

na

rw

na

rv

na

rv

na

rw

na

ro

na

rw

na

rc

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na
22-11

12 02

APIC Bus Interface Enable - controls the pin multiplexers for the APIC bus pins.

• 0 - The APIC pins are disabled. 

• 1 - The APIC bus are enabled.

11:10 002 Reserved

09 02

APIC Bus Interface Unit Reset:

• 0 - The APIC unit is not reset.

• 1 - The APIC unit is reset.

The APIC PMMR registers are not reset.



I/O APIC BUS INTERFACE UNIT

08 02

PICCLK Active - used by software to determine when the APIC Bus Interface Unit is 
connected to an APIC bus.

• 0 - No PICCLK is present.

• 1 - The PICCLK input is active (i.e. has toggled at least 3 times since reset was 
deasserted).

07 02

Send Message - tells the APIC bus interface unit to take the information in the IMR and 
send an interrupt message on the APIC bus. The APIC Bus Interface attempts to send a 
message whenever this bit is set and the message sent bit is reset.

06 02
Message Sent - indicates when an APIC interrupt message is sent. To ensure that it 
was received by a local APIC, the status field must be checked.

05 02

Message Sent Interrupt Enable:

• 0 - The APIC bus interface does not interrupt the i960 Rx I/O processor after 
sending the message.

• 1 - The APIC bus interface interrupts the i960 Rx I/O processor

• after the message sent interrupt. 

04:00 0H

APIC Message Status - Are read/write for testability but are normally just set by the 
APIC bus interface unit after sending an APIC interrupt message. Bits 3:2 are status0 
and bits 1:0 are status1. Bit 4 is set when an error on status2 occurs during a lowest 
priority local unit arbitration message. Cleared for all other messages.

Table 22-6.  APIC Control/Status Register – APIC CSR  (Sheet 2 of 2)

LBA: 

PCI:

1790H

NA

Legend: NA = Not Accessible RO = Read Only
RV = Reserved PR = Preserved RW = Read/Write
RS = Read/Set RC = Read Clear
LBA = 80960 Local Bus Address PCI = PCI Configuration Address Offset

Bit Default Description

PCI

LBA

28 24 20 16 12 8 4 031

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rw

na

rc

na

rw

na

rw

na

rv

na

rv

na

rw

na

ro

na

rw

na

rc

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na
22-12



23
TEST FEATURES





23

re a
 a high
stors
 power
ved, a
cessor

. (The
r enters
SET#
CHAPTER 23
TEST FEATURES

This chapter describes the i960® Rx I/O processor test features, including ONCE (On-Circuit
Emulation) and boundary-scan (JTAG). Together these two features create a powerful
environment for design debug and fault diagnosis.

23.1 ON-CIRCUIT EMULATION (ONCE)

On-circuit emulation aids board-level testing. This feature allows a mounted i960 Rx I/O processor
to electrically “remove” itself from a circuit board. This allows for system-level testing whe
remote tester exercises the processor system. In ONCE mode, the processor presents
impedance on every pin, except for the JTAG test data Output (TDO). All pullup transi
present on input pins are also disabled and internal clocks stop. In this state the processor’s
demands on the circuit board are nearly eliminated. Once the processor is electrically remo
functional tester such as an In-Circuit Emulator (ICE) system can emulate the mounted pro
and execute a test of the i960 Rx I/O processor system.

NOTE: Do not use ONCE mode with boundary-scan (JTAG). See section 23.1.2, 
ONCE Mode and Boundary-Scan (JTAG) are Incompatible (pg. 23-2).

23.1.1 Entering/Exiting ONCE Mode

The ONCE# pin, in concert with the RESET# pin, invokes ONCE mode. 

To invoke ONCE mode, assert the ONCE# pin (low) while the processor is in the reset state
processor recognizes the ONCE# pin signal only while RESET# is asserted.) The processo
ONCE mode immediately. The rising edge of RESET# latches the ONCE# pin state until RE
goes true again. 
23-1

Enter ONCE mode by asserting the following sequence with an external tester:

1. Drive the ONCE# pin low (overcoming the internal pull-up resistor).

2. Initiate a normal reset cycle.

3. After the RESET# pin goes high again, the ONCE# pin can be deasserted.

Exit ONCE mode, by performing a normal reset with the RESET# pin while holding the ONCE#
pin high. A power off-on cycle is not necessary to exit ONCE mode.



n,
action.
TEST FEATURES

See the 80960RP/RD Intelligent I/O Microprocessor Data Sheets (Intel Literature order #272737)
for specific timing of the ONCE# pin and the characteristics of the on-circuit emulation mode.

23.1.2 ONCE Mode and Boundary-Scan (JTAG) are Incompatible

Permanent damage can occur when an in-circuit emulator is used concurrently with
boundary-scan (JTAG). Do not use any system that relies on ONCE mode when using
boundary-scan. Signal contentions and resultant damage may occur if an external system, such as
an emulator development system, invokes ONCE mode and manipulates the i960 Rx I/O
processor signals while JTAG is active.

Since the i960 Rx I/O processor i960 Rx I/O processor complies fully with IEEE Std. 1149.1,
JTAG boundary-scan instructions always override ONCE mode. While ONCE mode intends to
disable all processor outputs so an external emulator can drive them, JTAG boundary-scan can
enable those outputs, causing contention with the external emulator.

To avoid damage, and as a general design rule, force TRST# low to disable boundary-scan
whenever ONCE mode is active. 

23.1.3 How to use the Data Enable (DEN#) Signal with an In-Circuit Emulator

When using an ICE in an 80960Rx system, the use of the Data Enable signal (DEN#) is not
recommended. This section describes how DEN# operates and a recommended solution for using
it with an In-Circuit Emulator (ICE).

DEN# Operation: When asserted, DEN# indicates data transfer cycles during a bus access. DEN#
asserts at the start of the first data cycle in a bus access and de-asserts at the end of the last data
cycle. DEN# can be used in conjunction with DT/R# to provide control for data transceivers
connected to the data bus.

Using DEN# with an In-Circuit Emulator: For ICE users, it is not recommended to use the
80960Rx’s DEN# signal directly to transceivers. When executing an ICE microcode transactio
the expected behavior is that DEN# would remain de-asserted during the entire trans
23-2

However, DEN# asserts as described above. If the design uses DEN# to enable transceivers, the
transceivers will be enabled. This may result in bus contention.

The use of DEN# in 80960Jx designs was possible because the 80960Jx was on a “POD”. The
POD was cabled to the target board where it plugged in to a socket. The POD masks out DEN#
during ICE microcode transactions. The 80960Rx’s package does not allow the use of a POD;
consequently, the ICE signals connect directly to the target system and the DEN# signal cannot be
masked.



23

s and
 when
.

ort and
rrectly,
printed
TEST FEATURES

23.1.3.1 DEN# Alternatives

To use an ICE with your 80960Rx design, alternatives to DEN# are: 

• Ground the OE# pin of the transceiver

• Re-create a DEN# signal with the circuit shown below

The circuit asserts T_DEN# (Q#) at the start of the first data cycle when ADS# assert
BLAST# and LRDYRCV# de-asserts. T_DEN# deasserts at the end of the last data cycle
ADS# de-asserts and BLAST# and LRDYRCV# assert. During RESET, T_DEN# de-asserts

Equivalent components may be used in place of the components shown.

23.2 BOUNDARY-SCAN (JTAG)

The i960 Rx I/O processor provides test features compliant to IEEE standard test access p
boundary-scan architecture (IEEE Std. 1149.1). JTAG ensures that components function co
connections between components are correct, and components interact correctly on the 

80960Rx

ADS#

S_CLK

BLAST#

LRDYRCV#

P_RST#

SN74F04

VCC

J Q

K Q

SN74F109

SN74F32

CLR

T_DEN#

SET
23-3

circuit board.

To date, the i960 Hx, Jx and Rx processors implement IEEE 1149.1 standard test access port and
boundary-scan architecture, and i960 Kx, Sx and Cx processors do not. For information about
using JTAG in a design, refer to IEEE Std. 1149.1 (available from the Institute of Electrical and
Electronics Engineers Inc., 345 E. 47th St., New York, NY 10017).

NOTE: Do not use ONCE mode with boundary-scan (JTAG). See section 23.1.2, 
ONCE Mode and Boundary-Scan (JTAG) are Incompatible (pg. 23-2).



TEST FEATURES

23.2.1 Boundary-Scan Architecture

Boundary-scan test logic consists of a boundary-scan register and support logic. These are
accessed through a Test Access Port (TAP). The TAP provides a simple serial interface that allows
all processor signal pins to be driven and/or sampled, thereby providing direct control and
monitoring of processor pins at the system level.

This mode of operation is valuable for design debugging and fault diagnosis since it permits
examination of connections not normally accessible to the test system. The following subsections
describe the boundary-scan test logic elements: TAP pins, instruction register, test data registers
and TAP controller. Figure 23-1 illustrates how these pieces fit together to form the JTAG unit.

 Boundary-Scan Register

Device ID Register

RUNBIST Register

TDO

TDI

 Bypass Register

Control and Clock Signals

 Instruction
Register

. . .

 Processor System Pins TAP Pins

TMS
TAP

 Controller
23-4

Figure 23-1.  Test Access Port Block Diagram

TRST#

TCK



23

ns
ed in
s. 

e Test
 to be
TEST FEATURES

23.2.2 TAP Pins

The i960 Rx I/O processor’s TAP pins form a serial port composed of four input connectio
(TMS, TCK, TRST# and TDI) and one output connection (TDO). These pins are describ
Table 23-1. The TAP pins provide access to the instruction register and the test data register

23.2.3 Instruction Register

The Instruction Register (IR) holds instruction codes. These codes are shifted in through th
Data Input (TDI) pin. The instruction codes are used to select the specific test operation
performed and the test data register to be accessed.

Table 23-1.  TAP Controller Pin Definitions 

Pin 
Name

Type Definition

TCK Input
Test Clock provides the clock for the JTAG logic. The JTAG test logic retains its state indef-
initely when TCK is stopped at “0” or “1”. 

TMS Input
Test Mode is decoded by the TAP controller state machine to control test operations. TMS 
is sampled by the test logic on the rising edge of TCK. TMS is pulled high internally when 
not driven. 

 TDI Input

Test Data Input is the serial port where test instructions and data is received by the test 
logic. Signals presented at TDI are sampled into the test logic on the rising edge of TCK. 
TDI is pulled high internally when not driven. Data shifted into TDI is not inverted on its way 
to the TDO input.

TDO Output
Test Data Output is the serial output for test instructions and data from the JTAG test logic. 
Changes in the state of TDO occur only on the falling edge of TCK. The TDO output is 
active only during data shifting (SHDR or SHIR); it is inactive (high-Z) at all other times. 

TRST# Input

Test Reset provides for an asynchronous initialization of the TAP controller. Asserting a 
logic “0” on this pin puts the TAP controller state machine and all other test logic on the 
processor in the Test-Logic-Reset (initial) state. TRST# is pulled high internally when not 
driven.

Note: The system must ensure that TRST# is asserted after power-up in order to put the 
TAP controller in a known state. Failure to do so may cause improper processor operation. 
23-5

The instruction register is a parallel-loadable, master/slave-configured 4-bit wide, serial-shift
register with latched outputs. Data is shifted into and out of the IR serially through the TDI pin
clocked by the rising edge of TCK when the TAP controller is in the Shift_IR state. The shifted-in
instruction becomes active upon latching from the master stage to the slave stage in the Update_IR
state. At that time the IR outputs along with the TAP finite state machine outputs are decoded to
select and control the test data register selected by that instruction. Upon latching, all actions
caused by any previous instructions will terminate.



e

TEST FEATURES

The instruction determines the test to be performed, the test data register to be accessed, or both
(see Table 23-2). The IR is four bits wide. When the IR is selected in the Shift_IR state, the most
significant bit is connected to TDI, and the least significant bit is connected to TDO. The value
presented on the TDI pin is shifted into the IR on each rising edge of TCK, as long as the TAP
controller remains in the Shift_IR state. When the TAP controller changes to the Capture_IR state,
fixed parallel data (00012) is captured. During Shift_IR, when a new instruction is shifted in
through TDI, the value 00012 is always shifted out through TDO, least significant bit first. This
helps identify instructions in a long chain of serial data from several devices.

Upon activation of the TRST# reset pin, the latched instruction asynchronously changes to the
idcode instruction. When the TAP controller moves into the Test_Logic_Reset state other than by
reset activation, the opcode changes as TDI is shifts, and becomes active on the falling edge of
TCK. See Figure 23-4 for an example of loading the instruction register.

23.2.3.1 Boundary-Scan Instruction Set

The i960 Rx I/O processor supports three mandatory boundary-scan instructions (bypass,
sample/preload and extest) plus four additional public instructions (idcode, clamp, highz and
runbist). Table 23-2 lists the i960 Rx I/O processor’s boundary-scan instruction codes. Thos
codes listed as “not used” or “private” should not be used.

Table 23-2.  Boundary-Scan Instruction Set

Instruction Code Instruction Name Instruction Code Instruction Name

00002 extest 10002 highz

00012 sample/preload 10012 not used

00102 idcode 10102 not used

00112 not used 10112 private

01002 clamp 11002 private

01012 not used 11012 not used

01102 not used 11102 not used

0111 runbist 1111 bypass
23-6

2 2



23
TEST FEATURES

Table 23-3.  IEEE Instructions  (Sheet 1 of 2)

Instruction / 
Requisite

Opcode Description

extest

IEEE 1149.1

Required

00002

extest initiates testing of external circuitry, typically board-level intercon-
nects and off chip circuitry. extest connects the boundary-scan register 
between TDI and TDO in the Shift_DR state only. When extest is selected, 
all output signal pin values are driven by values shifted into the 
boundary-scan register and may change only on the falling edge of TCK in 
the Update_DR state. Also, when extest is selected, all system input pin 
states must be loaded into the boundary-scan register on the rising-edge of 
TCK in the Capture_DR state. Values shifted into input latches in the 
boundary-scan register are never used by the processor’s internal logic.

sample/
preload

IEEE 1149.1

Required

00012

sample/preload performs two functions:

• When the TAP controller is in the Capture-DR state, the sample 
instruction occurs on the rising edge of TCK and provides a snapshot of 
the component’s normal operation without interfering with that normal 
operation. The instruction causes boundary-scan register cells 
associated with outputs to sample the value being driven by or to the 
processor.

• When the TAP controller is in the Update-DR state, the preload 
instruction occurs on the falling edge of TCK. This instruction causes 
the transfer of data held in the boundary-scan cells to the slave register 
cells. Typically the slave latched data is applied to the system outputs 
via the extest instruction.

idcode

IEEE 1149.1

Optional

00102

idcode is used in conjunction with the device identification register. It 
connects the device identification register between TDI and TDO in the 
Shift_DR state. When selected, idcode parallel-loads the hard-wired identi-
fication code (32 bits) into the device identification register on the rising 
edge of TCK in the Capture_DR state.

NOTE: The device identification register is not altered by data being shifted 
in on TDI.

runbist selects the one-bit RUNBIST register, loads a value of 1 into it and 
connects it to TDO. It also initiates the processor’s built-in self test (BIST) 
feature which is able to detect approximately 82% of all the possible stuck-at 
faults on the device. The processor AC/DC specifications for VCC and 
23-7

runbist

i960 Rx I/O 
processor 
Optional

01112

CLKIN must be met and RESET# must be de-asserted prior to executing 
runbist.

After loading runbist instruction code into the instruction register, the TAP 
controller must be placed in the Run-Test/Idle state. BIST begins on the first 
rising edge of TCK after the Run-Test/Idle state is entered. The TAP 
controller must remain in the Run-Test/Idle state until BIST is completed. 
runbist requires approximately 414,000 core cycles to complete BIST and 
report the result to the RUNBIST register. The results are stored in bit 0 of 
the RUNBIST register. After the report completes, the value in the RUNBIST 
register is shifted out on TDO during the Shift-DR state. A value of 0 being 
shifted out on TDO indicates BIST completed successfully. A value of 1 
indicates a failure occurred. After BIST completes, the processor must be 
cycled through the reset state to resume normal operation.



t bit.
ister

d from
. See
TEST FEATURES

23.2.4 TAP Test Data Registers

The i960 Rx I/O processor contains four test data registers (device identification, bypass,
RUNBIST and boundary-scan). Each test data register selected by the TAP controller is connected
serially between TDI and TDO. TDI is connected to the test data register’s most significan
TDO is connected to the least significant bit. Data is shifted one bit position within the reg
towards TDO on each rising edge of TCK. While any register is selected, data is transferre
TDI to TDO without inversion. The following sections describe each of the test data registers
Figure 23-5 for an example of loading the data register.

bypass

IEEE 1149.1

Required

11112

bypass instruction selects the one-bit bypass register between TDI and 
TDO pins while in SHIFT_DR state, effectively bypassing the processor’s 
test logic. 02 is captured in the CAPTURE_DR state. This is the only 
instruction that accesses the bypass register. While this instruction is in 
effect, all other test data registers have no effect on system operation. Test 
data registers with both test and system functionality perform their system 
functions when this instruction is selected.

highz 10002

Executing highz generates a signal that is read on the rising-edge of 
RESET#. When this signal is found asserted, the device is put into the 
ONCE mode (all output pins are floated). Also, when this instruction is 
active, the Bypass register is connected between TDI and TDO. This 
register can be accessed via the JTAG Test-Access Port throughout the 
device operation. Access to the Bypass register can also be obtained with 
the bypass instruction. highz provides an alternate method of entering 
ONCE mode.

clamp 01002

clamp instruction allows the state of the signals driven from the i960 Jx 
processor pins to be determined from the boundary-scan register while the 
BYPASS register is selected as the serial path between TDI and TDO. 
Signals driven from the component pins will not change while the clamp 
instruction is selected.

Table 23-3.  IEEE Instructions  (Sheet 2 of 2)

Instruction / 
Requisite

Opcode Description
23-8

23.2.4.1 Device Identification Register

The device identification register is a 32-bit register containing the manufacturer’s identification
code, part number code, version code and other information in the format shown in the
80960RP/RD Intelligent I/O Microprocessor Data Sheets. The format of the register is discussed
in section 11.5, DEVICE IDENTIFICATION ON RESET (pg. 11-23). The identification register
is selected only by the idcode instruction. When the TAP controller’s Test_Logic_Reset state is
entered, idcode is asynchronously loaded into the instruction register. The device identification
register loads the fixed parallel input value in the Capture_DR state.



23
ssor’s
 reset

hen

d the

 cells
 “0”

ed in
on-chip

. Data
 output
TEST FEATURES

23.2.4.2 Bypass Register

The required bypass register, a one-bit shift register, provides the shortest path between TDI and
TDO when a bypass instruction is in effect. This allows rapid movement of test data to and from
other components on the board. This path can be selected when no test operation is being
performed on the processor.

23.2.4.3 RUNBIST Register

The RUNBIST register, a one-bit register, contains the result of the execution of the proce
BIST routine. After the built-in self-test completes, the processor must be cycled through the
state to resume normal operation. See section 11.3.1, Self Test Function (STEST, FAIL#)
(pg. 11-9) for details of the built-in self test algorithm. The processor runs the BIST routine w
the TAP controller enters the Test_Logic_Reset state while the runbist instruction is selected.

23.2.4.4 Boundary-Scan Register

The boundary-scan register contains a cell for each pin as well as control cells for I/O an
HIGHZ pin. 

Table 23-4 shows the bit order of the i960 Rx I/O processor boundary-scan register. All table
that contain “Control” select the direction of bidirectional pins or HIGHZ output pins. When a
is loaded into the control cell, the associated pin(s) are HIGHZ or selected as input. 

The boundary-scan register is a required set of serial-shiftable register cells, configur
master/slave stages and connected between each of the i960 Rx I/O processor’s pins and 
system logic. The VCC, VSS and JTAG pins are NOT in the boundary-scan chain.

The boundary-scan register cells are dedicated logic and do not have any system function
may be loaded into the boundary-scan register master cells from the device input pins and
pin-drivers in parallel by the mandatory sample/preload and extest instructions. Parallel loading
takes place on the rising edge of TCK in the Capture_DR state.
23-9

Data may be scanned into the boundary-scan register serially via the TDI serial input pin, clocked
by the rising edge of TCK in the Shift_DR state. When the required data has been loaded into the
master-cell stages, it can be driven into the system logic at input pins or onto the output pins on the
falling edge of TCK in the Update_DR state. Data may also be shifted out of the boundary-scan
register by means of the TDO serial output pin at the falling edge of TCK.



TEST FEATURES

Table 23-4.  i960® Rx I/O Processor Boundary Scan Register Bit Order  (Sheet 1 of 3)

Bit Signal Input/Output Bit Signal Input/Output

0 BLAST# I/O 133 control enable cell
1 DEN# I/O 134 control enable cell
2 DT/R# O 135 control enable cell
3 W/R# I/O 136 control enable cell
4 BE#(0) I/O 137 P_AD(31) I/O
5 BE#(1) I/O 138 P_AD(30) I/O
6 control enable cell 139 P_AD(29) I/O
7 control enable cell 140 P_AD(28) I/O
8 control enable cell 141 P_AD(27) I/O
9 BE#(2) I/O 142 P_AD(26) I/O
10 BE#(3) I/O 143 P_AD(25) I/O
11 ADS# I/O 144 P_AD(24) I/O
12 ALE O 145 P_C/BE#(3) I/O
13 LRDYRCV# O 146 control enable cell
14 RDYRCV# I/O 147 P_IDSEL I
15 control enable cell 148 P_AD(23) I/O
16 AD(0) I/O 149 P_AD(22) I/O
17 AD(1) I/O 150 P_AD(21) I/O
18 AD(2) I/O 151 P_AD(20) I/O
19 AD(3) I/O 152 P_AD(19) I/O
20 AD(4) I/O 153 P_AD(18) I/O
21 AD(5) I/O 154 P_AD(17) I/O
22 AD(6) I/O 155 P_AD(16) I/O
23 AD(7) I/O 156 control enable cell
24 AD(8) I/O 157 control enable cell
25 AD(9) I/O 158 P_C/BE#(2) I/O
26 AD(10) I/O 159 P_FRAME# I/O
27 AD(11) I/O 160 control enable cell
28 AD(12) I/O 161 control enable cell
29 AD(13) I/O 162 P_IRDY# I/O
30 AD(14) I/O 163 P_TRDY# I/O
31 AD(15) I/O 164 P_DEVSEL# I/O
32 control enable cell 165 P_STOP# I/O
23-10

33 AD(16) I/O 166 P_LOCK# I
34 AD(17) I/O 167 P_PERR# I/O
35 AD(18) I/O 168 P_SERR# O
36 AD(19) I/O 169 P_PAR I/O
37 AD(20) I/O 170 P_C/BE#(1) I/O
38 AD(21) I/O 171 control enable cell
39 AD(22) I/O 172 control enable cell
40 AD(23) I/O 173 control enable cell
41 AD(24) I/O 174 P_AD(15) I/O
42 AD(25) I/O 175 P_AD(14) I/O
43 AD(26) I/O 176 P_AD(13) I/O
44 AD(27) I/O 177 P_AD(12) I/O



23
TEST FEATURES

45 AD(28) I/O 178 P_AD(11) I/O
46 AD(29) I/O 179 P_AD(10) I/O
47 AD(30) I/O 180 P_AD(9) I/O
48 AD(31) I/O 181 P_AD(8) I/O
49 control enable cell 182 control enable cell
50 MA(0) O 183 P_C/BE#(0) I/O
51 MA(1) O 184 P_AD(7) I/O
52 MA(2) O 185 P_AD(6) I/O
53 MA(3) O 186 P_AD(5) I/O
54 MA(4) O 187 P_AD(4) I/O
55 MA(5) O 188 P_AD(3) I/O
56 MA(6) O 189 P_AD(2) I/O
57 MA(7) O 190 P_AD(1) I/O
58 MA(8) O 191 P_AD(0) I/O
59 MA(9) O 192 S_AD(0) I/O
60 MA(10) O 193 S_AD(1) I/O
61 MA(11) O 194 S_AD(2) I/O
62 control enable cell 195 S_AD(3) I/O
63 DP(0) I/O 196 S_AD(4) I/O
64 DP(1) I/O 197 S_AD(5) I/O
65 DP(2) I/O 198 S_AD(6) I/O
66 DP(3) I/O 199 S_AD(7) I/O
67 RAS#(0) I/O 200 control enable cell
68 RAS#(1) I/O 201 S_C/BE#(0) I/O
69 RAS#(2) I/O 202 S_AD(8) I/O
70 RAS#(3) I/O 203 S_AD(9) I/O
71 CAS#(0) I/O 204 S_AD(10) I/O
72 CAS#(1) I/O 205 S_AD(11) I/O
73 CAS#(2) I/O 206 S_AD(12) I/O
74 CAS#(3) I/O 207 S_AD(13) I/O
75 CAS#(4) I/O 208 S_AD(14) I/O
76 CAS#(5) I/O 209 S_AD(15) I/O
77 CAS#(6) I/O 210 S_C/BE#(1) I/O

Table 23-4.  i960® Rx I/O Processor Boundary Scan Register Bit Order  (Sheet 2 of 3)

Bit Signal Input/Output Bit Signal Input/Output
23-11

78 CAS#(7) I/O 211 S_PAR I/O
79 MWE#(0) O 212 S_SERR# I/O
80 MWE#(1) O 213 control enable cell
81 MWE#(2) O 214 control enable cell
82 MWE#(3) O 215 control enable cell
83 DWE#(0) O 216 S_PERR# I/O
84 DWE#(1) O 217 S_LOCK# I/O
85 CE#(0) O 218 S_STOP# I/O
86 CE#(1) O 219 S_DEVSEL# I/O
87 LEAF#(0) O 220 S_TRDY# I/O
88 LEAF#(1) O 221 S_IRDY# I/O
89 DALE(0) O 222 S_FRAME# I/O



TEST FEATURES

90 DALE(1) O 223 S_C/BE#(2) I/O
91 WAIT# I/O 224 control enable cell
92 S_INTA/XINT#0 I 225 control enable cell
93 S_INTB/XINT#1 I 226 control enable cell
94 S_INTC/XINT#2 I 227 control enable cell
95 S_INTD/XINT#3 I 228 control enable cell
96 control enable cell 229 S_AD(16) I/O
97 XINT#4 I 230 S_AD(17) I/O
98 XINT#5 I 231 S_AD(18) I/O
99 XINT#6 I 232 S_AD(19) I/O
100 XINT#7 I 233 S_AD(20) I/O
101 NMI# I 234 S_AD(21) I/O
102 control enable cell 235 S_AD(22) I/O
103 control enable cell 236 S_AD(23) I/O
104 control enable cell 237 control enable cell
105 control enable cell 238 S_IDSEL I
106 PICD(0) I/O 239 S_C/BE#(3) I/O
107 PICD(1) I/O 240 S_AD(24) I/O
108 PICCLK I 241 S_AD(25) I/O
109 SCL I/O 242 S_AD(26) I/O
110 SDA I/O 243 S_AD(27) I/O
111 HOLDA O 244 S_AD(28) I/O
112 HOLD I 245 S_AD(29) I/O
113 DACK# O 246 S_AD(30) I/O
114 DREQ# I 247 S_AD(31) I/O
115 STEST I 248 S_RST# O
116 LOCK#/ONCE# I/O 249 S_REQ0/S_GNT# I
117 D/C#/RST_MODE# I/O 250 S_GNT0/S_REQ# O
118 FAIL# O 251 S_REQ#(0) I
119 WIDTH/HLTD0/SYNC I/O 252 S_GNT#(0) O
120 WIDTH/HLTD1/RETRY I/O 253 S_REQ#(1) I
121 LRST# O 254 S_GNT#(1) O
122 control enable cell 255 S_REQ#(2) I

Table 23-4.  i960® Rx I/O Processor Boundary Scan Register Bit Order  (Sheet 3 of 3)

Bit Signal Input/Output Bit Signal Input/Output
23-12

123 control enable cell 256 S_GNT#(2) O
124 P_INTA# O 257 control enable cell
125 P_INTB# O 258 control enable cell
126 P_INTC# O 259 S_CLK I
127 P_INTD# O 260 S_REQ#(3) I
128 P_RST# I 261 S_GNT#(3) O
129 P_CLK I 262 S_REQ#(4) I
130 P_GNT# I 263 S_GNT#(4) O
131 P_REQ# O 133 control enable cell
132 control enable cell 134 control enable cell



23
TEST FEATURES

23.2.5 TAP Controller

The TAP (Test Access Port) controller is a 16-state synchronous finite state machine that controls
the sequence of test logic operations. The TAP can be controlled via a bus master. The bus master
can be either automatic test equipment or a component (i.e., PLD) that interfaces to the TAP. The
TAP controller changes state only in response to a rising edge of TCK. The value of the test mode
state (TMS) input signal at a rising edge of TCK controls the sequence of state changes. The TAP
controller is initialized after power-up by applying a low to the TRST# pin. In addition, the TAP
controller can be initialized by applying a high signal level on the TMS input for a minimum of
five TCK periods. See Figure 23-2 for the state diagram of the TAP controller. An uninitialized
TAP controller can result in erratic processor behavior even when there is no intention to use the
JTAG portion of the processor.

The behavior of the TAP controller and other test logic in each controller state is described in the
following subsections. For greater detail on the state machine and the public instructions, refer to
the IEEE 1149.1 Standard Test Access Port and Boundary-Scan Architecture document (available
from the IEEE).
23-13



TEST FEATURES

Figure 23-2.  TAP Controller State Diagram

23.2.5.1 Test Logic Reset State

CAPTURE - IR

SHIFT - IR

EXIT1 - IR

PAUSE - IR

EXIT2 - IR

UPDATE - IR

SELECT-
IR - SCAN

CAPTURE - DR

SHIFT - DR

EXIT1 - DR

PAUSE - DR

EXIT2 - DR

UPDATE - DR

SELECT-
DR - SCAN

1

1

1

1

1

1

1

1

TEST - LOGIC - 
RESET

RUN - TEST /
IDLE

1

1

1

1

1

1

1

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

NOTE: ALL STATE TRANSITIONS ARE BASED ON THE VALUE OF TMS.

TRST# = 0 
23-14

In this state, test logic is disabled to allow normal operation of the i960 Rx I/O processor. Upon
entering the Test_Logic_Reset state, the device identification register is loaded. No matter what
the present state of the controller, it enters Test-Logic-Reset state when the TMS input is held high
(12) for at least five rising edges of TCK. The controller remains in this state while TMS is high.
The TAP controller is also forced to enter this state asynchronously by asserting TRST#.

When the controller exits the Test-Logic-Reset controller state as a result of an erroneous low
signal on the TMS line at the time of a rising edge on TCK (for example, a glitch due to external
interference), it returns to the Test-Logic-Reset state following three rising edges of TCK with the
TMS line at the intended high logic level.



23
TEST FEATURES

23.2.5.2 Run-Test/Idle State

The TAP controller enters the Run-Test/Idle state between scan operations. The controller remains
in this state as long as TMS is held low. When the runbist instruction is selected, it executes during
the Run-Test/Idle state and the result is reported in the RUNBIST register. Instructions that do not
call functions generate no activity in the test logic while the controller is in this state. The
instruction register and all test data registers retain their current state. When TMS is high on the
rising edge of TCK, the controller moves to the Select-DR-Scan state. The instruction register does
not change while the TAP controller is in this state.

23.2.5.3 Select-DR-Scan State

The Select-DR-Scan state is a transitional controller state. While in the Select-DR-Scan state, the
test data registers selected by the current instruction retain their previous states. When TMS is held
low on the rising edge of TCK, the controller moves into the Capture-DR state. When TMS is held
high on the rising edge of TCK, the controller moves into the Select-IR-Scan state. See
Section 23.2.5.10, Select-IR Scan State (pg. 23-17). The instruction register does not change while
the TAP controller is in this state.

23.2.5.4 Capture-DR State

In this state, the selected test data register is loaded with its parallel value on the rising edge of
TCK. When the controller is in the Capture-DR state and the current instruction is sample/preload,
the boundary-scan register captures input pin data on the rising edge of TCK. Test data registers
that do not have a parallel input are not changed. The boundary-scan registers cannot be updated
from the parallel inputs any other way. The instruction register does not change while the TAP
controller is in this state.

When TMS is high on the rising edge of TCK, the controller enters the Exit1-DR state. When TMS
is low on the rising edge of TCK, the controller enters the Shift-DR state.

23.2.5.5 Shift-DR State
23-15

In the Shift-DR state, the test data register selected by the current instruction shifts data one bit
position nearer to the TDO serial output on each rising edge of TCK. All other test data registers
retain their previous values during this state. 

The instruction register does not change while the TAP controller is in this state.

When TMS is high on the rising edge of TCK, the controller enters the Exit1-DR state. When TMS
is low on the rising edge of TCK, the controller remains in the Shift-DR state.



TEST FEATURES

23.2.5.6 Exit1-DR State

Exit1-DR is a temporary controller state. When the TAP controller is in the Exit1-DR state and
TMS is held high on the rising edge of TCK, the controller enters the Update-DR state, which
terminates the scanning process. When TMS is held low on the rising edge of TCK, the controller
enters the Pause-DR state.

The instruction register does not change while the TAP controller is in this state. All test data
registers selected by the current instruction retain their previous value during this state.

23.2.5.7 Pause-DR State

The Pause-DR state allows the test controller to temporarily halt the shifting of data through the
test data register in the serial path between TDI and TDO. The test data register selected by the
current instruction retains its previous value during this state. The instruction register does not
change in this state.

The controller remains in this state as long as TMS is low. When TMS is high on the rising edge of
TCK, the controller moves to the Exit2-DR state.

23.2.5.8 Exit2-DR State

Exit2-DR is a temporary state. When TMS is held high on the rising edge of TCK, the controller
enters the Update-DR state, which terminates the scanning process. When TMS is held low on the
rising edge of TCK, the controller re-enters the Shift-DR state.

The instruction register does not change while the TAP controller is in this state. All test data
registers selected by the current instruction retain their previous value during this state.

23.2.5.9 Update-DR State

The boundary-scan register is provided with a latched parallel output. This output prevents
23-16

changes at the parallel output while data is shifted in response to the extest, sample/preload instruc-
tions. When the boundary-scan register is selected while the TAP controller is in the Update-DR
state, data is latched onto the boundary-scan register’s parallel output from the shift-register path
on the falling edge of TCK. The data held at the latched parallel output does not change unless the
controller is in this state.

While the TAP controller is in this state, all of the test data register’s shift-register bit positions
selected by the current instruction retain their previous values. The instruction register does not
change while the TAP controller is in this state.



23
TEST FEATURES

When the TAP controller is in this state and TMS is held high on the rising edge of TCK, the
controller re-enters the Select-DR-Scan state. When TMS is held low on the rising edge of TCK,
the controller re-enters the Run-Test/Idle state.

23.2.5.10 Select-IR Scan State

Select-IR is a temporary controller state. The test data registers selected by the current instruction
retain their previous states. In this state, when TMS is held low on the rising edge of TCK, the
controller enters the Capture-IR state and a scan sequence for the instruction register is initiated.
When TMS is held high on the rising edge of TCK, the controller re-enters the Test-Logic-Reset
state. The instruction register does not change in this state.

23.2.5.11 Capture-IR State

When the controller is in the Capture-IR state, the shift register contained in the instruction register
appends the instruction with the fixed value 012 on the rising edge of TCK.

The test data register selected by the current instruction retains its previous value during this state.
The instruction does not change in this state. While in this state, holding TMS high on the rising
edge of TCK causes the controller to enter the Exit1-IR state. When TMS is held low on the rising
edge of TCK, the controller enters the Shift-IR state.

23.2.5.12 Shift-IR State

When the controller is in this state, the shift register contained in the instruction register is
connected between TDI and TDO and shifts data one bit position nearer to its serial output on each
rising edge of TCK. The test data register selected by the current instruction retains its previous
value during this state. The instruction register does not change.

When TMS is held high on the rising edge of TCK, the controller enters the Exit1-IR state. When
TMS is held low on the rising edge of TCK, the controller remains in the Shift-IR state.
23-17

23.2.5.13 Exit1-IR State

This is a temporary state. When TMS is held high on the rising edge of TCK, the controller enters
the Update-IR state, which terminates the scanning process. When TMS is held low on the rising
edge of TCK, the controller enters the Pause-IR state.

The test data register selected by the current instruction retains its previous value during this state. 

The instruction does not change and the instruction register retains its state.



TEST FEATURES

23.2.5.14 Pause-IR State

The Pause-IR state allows the test controller to temporarily halt the shifting of data through the
instruction register. The test data registers selected by the current instruction retain their previous
values during this state. The instruction does not change and the instruction register retains its
state.

The controller remains in this state as long as TMS is held low. When TMS is high on the rising
edges of TCK, the controller enters the Exit2-IR state.

23.2.5.15 Exit2-IR State

This is a temporary state. When TMS is held high on the rising edge of TCK, the controller enters
the Update-IR state, which terminates the scanning process. When TMS is held low on the rising
edge of TCK, the controller re-enters the Shift-IR state.

This test data register selected by the current instruction retains its previous value during this state.
The instruction does not change and the instruction register retains its state.

23.2.5.16 Update-IR State

The instruction shifted into the instruction register is latched onto the parallel output from the
shift-register path on the falling edge of TCK. Once latched, the new instruction becomes the
current instruction. Test data registers selected by the current instruction retain their previous
values.

When TMS is held high on the rising edge of TCK, the controller re-enters the Select-DR-Scan
state. When TMS is held low on the rising edge of TCK, the controller re-enters the Run-Test/Idle
state.

23.2.6 Boundary-Scan Example
23-18

The following example describes two command actions. The example assumes the TAP controller
starts in the Test-Logic-Reset state. The TAP controller then loads and executes a new instruction.
See Figure 23-3 for an illustration of the waveforms involved in this example. The steps are:

1. Load the sample/preload instruction into the instruction register:

1.1. Use TMS to select the Shift-IR state. While in the Shift-IR state, shift in the new 
instruction, least significant byte first. 

1.2. Use the Shift-IR state four times to read the least- through most-significant instruction 
bits into the instruction register (one does not care what old instruction is being 
shifted out of the TDO pin).



23
TEST FEATURES

1.3. Enter the Update-IR state to make the instruction take effect.

2. Capture pin data and shift the data out through the TDO pin:

2.1. Use TMS to select the Select-DR-Scan state.

2.2. Transition the TAP controller to the Capture-DR state to latch pin data in the 
boundary-scan register cells.

2.3. Enter and stay in the Shift-DR state for 110 TCK cycles. These TDO values are 
compared against expected data to determine if component operation and connection 
are correct. Record the TDO values after each cycle. New serial data enters the 
boundary-scan register through the TDI pin, while old data is scanned out.

2.4. Pass through the Exit1-DR state to the Update-DR state. Here boundary-scan data to 
be driven out of the system output pins is latched and driven.

2.5. Transition back to the Select-DR state to begin another iteration.

This example does not use Pause states. These states allow software to pause the JTAG state
machine to accommodate slow board-level data paths. The Pause states allow indefinite interrup-
tions in the shifting while the external tester performs other tasks.

The old instruction was abcd in the example. The original instruction register value becomes the
ID code since the example starts from the reset state. Other times it represents the previous opcode.
The new instruction opcode is 00012 (sample/preload). All pins are captured into the serial
boundary-scan register and the values are output to the TDO pin.

The TCK signal at the top of the diagram shows a continuous pulse train. In many designs,
however, TCK is more irregular. In such cases, software controls TCK by writing to a port bit.
Software writes the TMS and TDI signals and toggles the clock high. Typically, software drives
TCK low quickly. The program monitors the TDO pin values as they are shifted out.
23-19



TEST FEATURES

1 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00

TCK

TMS

Don’t Care Don’t Care

New Inst = 00012Old Inst = abcd

Don’t Care

Boundary-Scan Reg. Instruction Register 

TDI

Parallel Out

IR Shift Reg

Register 

TDO

Selected 

DR Shift Reg 
  (n bits long) 

4 bits long

d c b a 0 0 0 0 0 0 n n n
P P P P P P P P P

n
P

0
0
0

1
0
0
1

0
1
0
0

0
0
1
0

0
0
0
0

1

01

0 0 0

1 1 1

1

111

Of IR

∼∼
∼∼

∼∼
∼∼

∼∼
∼∼

∼∼

0
P

∼∼
∼∼

∼∼
∼∼

∼∼
∼∼

∼∼
23-20

Figure 23-3.  Example Showing Typical JTAG Operations

0 1 2 3 4 5 -4 -3 -2 -1

R
E

S
E

T

S
E

LE
C

T
 D

R
 S

C
A

N
 

S
E

LE
C

T
 IR

 S
C

A
N

C
A

P
T

U
R

E
 IR

S
H

IF
T

 IR
S

H
IF

T
 IR

E
X

IT
1

 IR
S

H
IF

T
 IR

S
H

IF
T

 IR

R
E

S
E

T
R

U
N

 T
E

S
T

/ I
D

LE

U
P

D
A

T
E

 IR
S

E
LE

C
T

 D
R

 S
C

A
N

C
A

P
T

U
R

E
 D

R
S

H
IF

T
 D

R
S

H
IF

T
 D

R
S

H
IF

T
 D

R
S

H
IF

T
 D

R
S

H
IF

T
 D

R
S

H
IF

T
 D

R

S
H

IF
T

 D
R

S
H

IF
T

 D
R

S
H

IF
T

 D
R

S
H

IF
T

 D
R

S
H

IF
T

 D
R

U
P

D
A

T
E

 D
R

R
U

N
 T

E
S

T
/ID

LE
R

U
N

 T
E

S
T

/ID
LE

R
U

N
 T

E
S

T
/ID

LE
R

U
N

 T
E

S
T

/ID
LE

S
H

IF
T

 D
R

E
X

IT
1

 D
R

R
E

S
E

T
R

E
S

E
T

R
E

S
E

T

6

∼∼



23
TEST FEATURES

Figure 23-4.  Timing Diagram Illustrating the Loading of Instruction Register

TCK

TMS

Controller State

TDI

Data input to IR

IR shift-register

Parallel output of IR

Data input to TDR

TDR shift-register

Parallel output of TDR

Register selected

TDO enable

TDO

T
est-Logic-R

eset

E
xit1 - IR

S
hift - IR

C
apture - IR

S
elect - IR

 - S
can

S
elect - D

R
 - S

can

R
un - T

est / Idle

P
ause - IR

E
xit2 - IR

S
hift - IR

E
xit1 - IR

U
pdate - IR

R
un - R

est / Idle

InactiveActiveInactiveInactive Act

Old Data

= Don’t care or undefined

New InstructionID Code

Instruction Register
23-21



TEST FEATURES

Figure 23-5.  Timing Diagram Illustrating the Loading of Data Register

TCK

TMS

Controller State

TDI

Data input to IR

IR shift-register

Parallel output of IR

Data input to TDR

TDR shift-register

Parallel output of TDR

Register Selected

TDO enable

TDO

T
est-Logic-R

eset

E
xit1 - D

R

S
hift - D

R

C
apture - D

R

S
elect - D

R
 - S

can

R
un - T

est / Idle

P
ause - D

R

E
xit2 - D

R

S
hift - D

R

E
xit1 - D

R

U
pdate - D

R

R
un - R

est / Idle

INACTIVEACTIVEINACTIVEINACTIVE

NEW DATA

INSTRUCTION ID CODE

TEST DATA REGISTER

= Don’t care or undefined

S
elect - D

R
 - S

can

OLD DATA

ACT.

S
elect - IR

 - S
can
23-22



A
MACHINE-LEVEL
INSTRUCTION FORMATS





A

EM
s an
rmat’s
APPENDIX A
MACHINE-LEVEL INSTRUCTION FORMATS

This appendix describes the encoding format for instructions used by the i960 processors. Included
is a description of the four instruction formats and how the addressing modes relate to these
formats. Refer also to APPENDIX B, OPCODES AND EXECUTION TIMES.

A.1 GENERAL INSTRUCTION FORMAT

The i960 architecture defines four basic instruction encoding formats: REG, COBR, CTRL and
MEM (see Figure A-1). Each instruction uses one of these formats, which is defined by the
instruction’s opcode field. All instructions are one word long and begin on word boundaries. M
format instructions are encoded in one of two sub-formats: MEMA or MEMB. MEMB support
optional second word to hold a displacement value. The following sections describe each fo
instruction word fields.

28 24 20 16 12 8 4 031

 MMMOpcode src/dst src2 Opcode src1

28 24 20 16 12 8 4 031

 SOpcode src2 displacement Tsrc1

28 24 20 16 12 8 4 031

 0Opcode displacement
T

28 24 20 16 12 8 4 031

 
Opcode src/dst abase Offset

0

REG

COBR

CTRL

MEMA

3 2 1

M
1

(5 bits)(5 bits)(5 bits) (4 bits)(8 bits)

(8 bits) (5 bits) (5 bits) (11 bits)

(8 bits) (22 bits)

(8 bits)

2

S
2

S
1

X

A-1

Figure A-1.  Instruction Formats

 

MODE

MEMB

28 24 20 16 12 8 4 031

 Opcode src/dst abase Index
001

Optional Displacement

Scale

(5 bits) (5 bits) (12 bits)

(8 bits) (5 bits) (5 bits) (3 bits) (5 bits)
X X X



tween
MACHINE-LEVEL INSTRUCTION FORMATS

When a particular instruction is defined as not using a particular field, the field is ignored. 

A.2 REG FORMAT

REG format is used for operations performed on data contained in registers. Most of the i960
processor family’s instructions use this format.

The opcode for the REG instructions is 12 bits long (three hexadecimal digits) and is split be

Table A-1.  Instruction Field Descriptions

Instruction Field Description

Opcode 
The opcode of the instruction. Opcode encodings are defined in section 6.1.8, Opcode 
and Instruction Format (pg. 6-5).

src1 
An input to the instruction. This field specifies a value or address. In one case of the 
COBR format, this field is used to specify a register in which a result is stored.

src2 An input to the instruction. This field specifies a value or address.

src/dst 
Depending on the instruction, this field can be (1) an input value or address, (2) the 
register where the result is stored, or (3) both of the above.

abase A register whose value is used in computing a memory address.

INDEX A register whose value is used in computing a memory address.

displacement A signed two’s complement number.

Offset An unsigned positive number.

Optional Displacement A signed two’s complement number used in the two-word MEMB format.

MODE 
A specification of how a memory address for an operand is computed and, for MEMB, 
specifies whether the instruction contains a second word to be used as a 
displacement.

SCALE 
A specification of how a register’s contents are multiplied for certain addressing 
modes (i.e., for indexing).

M1, M2, M3
These fields further define the meaning of the src1, src2, and src/dst fields respec-
tively as shown in Table A-3.
A-2

bits 7 through 10 and bits 24 through 31. For example, the addi opcode is 591H. Here, bits 24
through 31 contain 59H and bits 7 through 10 contain 1H.

src1 and src2 fields specify the instruction’s source operands. Operands can be globa or local
registers or literals. Mode bits (M1 for src1 and M2 for src2) and the instruction type determine
what an operand specifies. Table A-3 shows this relationship.



A

MACHINE-LEVEL INSTRUCTION FORMATS

The src/dst field can specify a source operand, a destination operand or both, depending on the
instruction. Here again, mode bit M3 determines how this field is used. If M3 is clear, the src/dst
operand is a global or local register that is encoded as shown in Table A-3. If M3 is set, the src/dst
operand can be used as a source-only operand that is a literal.

When a literal is specified, it is always an unsigned 5-bit value that is zero-extended to a 32-bit
value and used as the operand. When the instruction defines an operand to be larger than 32 bits,
values specified by literals are zero-extended to the operand size.

A.3 COBR FORMAT

The COBR format is used primarily for compare-and-branch instructions. The test-if instructions
also use the COBR format. The COBR opcode field is eight bits (two hexadecimal digits). 

The src1 and src2 fields specify source operands for the instruction. The src1 field can specify
either a global or local register or a literal as determined by mode bit M1. The src2 field can only

Table A-2.  Encoding of src1 and src2 in REG Format

M1 or M2
Src1 or Src2 Operand 

Value
Register Number Literal Value

0
00000 ... 01111 r0 ... r15 NA

10000 ... 11111 g0 ... g15 NA

1 00000 ... 11111 NA 0 ... 31

Table A-3.  Encoding of src/dst in REG Format

M3 src/dst src Only dst Only

0
g0 ... g15 
r0 ... r15

g0 ... g15 
r0 ... r15

g0 ... g15 
r0 ... r15

1 Reserved Reserved reserved
A-3

specify a global or local register. Table A-4 shows the M1, src1 relationship and Table A-5 shows
the S2, src2 relationship.

Table A-4.  Encoding of src1 in COBR Format

M1 src1

0 g0 ... g15
r0 ... r15

1 Literal



ord
o which
n range
 the
s the

COBR
two’s

These
e

MACHINE-LEVEL INSTRUCTION FORMATS

The displacement field contains a signed two’s complement number that specifies a w
displacement. The processor uses this value to compute the address of a target instruction t
the processor branches as a result of the comparison. The displacement field’s value ca
from -210 to 210 -1. To determine the target instruction’s IP, the processor converts
displacement value to a byte displacement (i.e., multiplies the value by 4). It then add
resulting byte displacement to the IP of the current instruction.

A.4 CTRL FORMAT

The CTRL format is used for instructions that branch to a new IP, including the BRANCH<cc>,
bal and call instructions. Note that balx, bx and callx do not use this format. ret also uses the
CTRL format. The CTRL opcode field is eight bits (two hexadecimal digits).

A branch target address is specified with the displacement field in the same manner as 
format instructions. The displacement field specifies a word displacement as a signed, 
complement number in the range -221 to 221-1. The processor ignores the ret instruction’s
displacement field.

A.5 MEM FORMAT

The MEM format is used for instructions that require a memory address to be computed. 
instructions include the LOAD, STORE and lda instructions. Also, the extended versions of th
branch, branch-and-link and call instructions (bx, balx and callx) use this format.

Table A-5.  Encoding of src2 in COBR Format

S2 src2

0
g0 ... g15
r0 ... r15

1 reserved
A-4

The two MEM-format encodings are MEMA and MEMB. MEMB can optionally add a 32-bit
displacement (contained in a second word) to the instruction. Bit 12 of the instruction’s first word
determines whether MEMA (clear) or MEMB (set) is used.

The opcode field is eight bits long for either encoding. The src/dst field specifies a global or local
register. For load instructions, src/dst specifies the destination register for a word loaded into the
processor from memory or, for operands larger than one word, the first of successive destination
registers. For store instructions, this field specifies the register or group of registers that contain
the source operand to be stored in memory.



A

MACHINE-LEVEL INSTRUCTION FORMATS

The mode field determines the address mode used for the instruction. Table A-6 summarizes the
addressing modes for the two MEM-format encodings. Fields used in these addressing modes are
described in the following sections.

A.5.1 MEMA Format Addressing

The MEMA format provides two addressing modes:

• Absolute offset

• Register indirect with offset

Table A-6.  Addressing Modes for MEM Format Instructions

Format MODE Addressing Mode Address Computation
# of Instr 
Words

MEMA
00 Absolute Offset offset 1

10 Register Indirect with Offset (abase) + offset 1

MEMB

0100 Register Indirect (abase) 1

0101 IP with Displacement (IP) + displacement + 8 2

0110 Reserved reserved NA

0111 Register Indirect with Index (abase) + (index) * 2scale 1

1100 Absolute Displacement displacement 2

1101
Register Indirect with 
Displacement

(abase) + displacement 2

1110 Index with Displacement (index) * 2scale + displacement 2

1111
Register Indirect with Index and 
Displacement

(abase) + (index) * 2scale + displacement 2

NOTES:
1. In these address computations, a field in parentheses indicates that the value in the specified register is

used in the computation. 
2. Usage of a reserved encoding may cause generation of an OPERATION.INVALID_OPCODE fault.
A-5

The offset field specifies an unsigned byte offset from 0 to 4096. The abase field specifies a global
or local register that contains an address in memory.

For the absolute-offset addressing mode (MODE = 00), the processor interprets the offset field as
an offset from byte 0 of the current process address space; the abase field is ignored. Using this
addressing mode along with the lda instruction allows a constant in the range 0 to 4096 to be
loaded into a register.



MACHINE-LEVEL INSTRUCTION FORMATS

For the register-indirect-with-offset addressing mode (MODE = 10), offset field value is added to
the address in the abase register. Clearing the offset value creates a register indirect addressing
mode; however, this operation can generally be carried out faster by using the MEMB version of
this addressing mode.

A.5.2 MEMB Format Addressing

The MEMB format provides the following seven addressing modes:

The abase and index fields specify local or global registers, the contents of which are used in
address computation. When the index field is used in an addressing mode, the processor automati-
cally scales the index register value by the amount specified in the SCALE field. Table A-7 gives
the encoding of the scale field. The optional displacement field is contained in the word following
the instruction word. The displacement is a 32-bit signed two’s complement value.

• absolute displacement • register indirect

• register indirect with displacement • register indirect with displacement

• register indirect with index and
displacement

• index with displacement

• IP with displacement

Table A-7.  Encoding of Scale Field

Scale Scale Factor (Multiplier)

000 1

001 2

010 4

011 8

100 16

101 to 111 Reserved
A-6

For the IP with displacement mode, the value of the displacement field plus eight is added to the
address of the current instruction.

NOTE: 
Usage of a reserved encoding causes an unpredictable result.



B
OPCODES AND EXECUTION 
TIMES





B

APPENDIX B
OPCODES AND EXECUTION TIMES

B.1 INSTRUCTION REFERENCE BY OPCODE

This section lists the instruction encoding for each i960 Rx processor instruction. Instructions are
grouped by instruction format and listed by opcode within each format. 

Table B-1.  Miscellaneous Instruction Encoding Bits

M3 M2 M1 S2 S1 T Description

REG Format

x x 0 x 0 — src1 is a global or local register

x x 1 x 0 — src1 is a literal

x x 0 x 1 — reserved

x x 1 x 1 — reserved

x 0 x 0 x — src2 is a global or local register

x 1 x 0 x — src2 is a literal

x 0 x 1 x — reserved

x 1 x 1 x — reserved

0 x x x x — src/dst is a global or local register

1 x x x x —
src/dst is a literal when used as a source. M3 may not be 1 when 
src/dst is used as a destination only or is used both as a source and 
destination in an instruction (atmod, modify, extract, modpc).

COBR Format

— — 0 0 — x src1, src2 and dst are global or local registers

— — 1 0 — x src1 is a literal, src2 and dst are global or local registers

— — 0 1 — x reserved

— — 1 1 — x0 reserved
B-1



OPCODES AND EXECUTION TIMES

Table B-2.  REG Format Instruction Encodings  (Sheet 1 of 4)

O
p

co
d

e

M
n

em
o

n
ic

C
yc

le
s 

to
 E

xe
cu

te
 

O
p

co
d

e
 (

11
 -

 4
)

sr
c/

ds
t

sr
c2

M
od

e

O
p

co
d

e
 (

3-
0)

S
p

ec
ia

l
 F

la
g

s

sr
c1

31........  24 23 ..19 18 ..14 13 12 11 10 .. 7 6 5 4 ..... 0
58:0 notbit 1 0101 1000 dst src M3 M2 M1 0000 S2 S1 bitpos

58:1 and 1 0101 1000 dst src2 M3 M2 M1 0001 S2 S1 src1

58:2 andnot 1 0101 1000 dst src2 M3 M2 M1 0010 S2 S1 src1

58:3 setbit 1 0101 1000 dst src M3 M2 M1 0011 S2 S1 bitpos

58:4 notand 1 0101 1000 dst src2 M3 M2 M1 0100 S2 S1 src1

58:6 xor 1 0101 1000 dst src2 M3 M2 M1 0110 S2 S1 src1

58:7 or 1 0101 1000 dst src2 M3 M2 M1 0111 S2 S1 src1

58:8 nor 1 0101 1000 dst src2 M3 M2 M1 1000 S2 S1 src1

58:9 xnor 1 0101 1000 dst src2 M3 M2 M1 1001 S2 S1 src1

58:A not 1 0101 1000 dst M3 M2 M1 1010 S2 S1 src

58:B ornot 1 0101 1000 dst src2 M3 M2 M1 1011 S2 S1 src1

58:C clrbit 1 0101 1000 dst src M3 M2 M1 1100 S2 S1 bitpos

58:D notor 1 0101 1000 dst src2 M3 M2 M1 1101 S2 S1 src1

58:E nand 1 0101 1000 dst src2 M3 M2 M1 1110 S2 S1 src1

58:F alterbit 1 0101 1000 dst src M3 M2 M1 1111 S2 S1 bitpos

59:0 addo 1 0101 1001 dst src2 M3 M2 M1 0000 S2 S1 src1

59:1 addi 1 0101 1001 dst src2 M3 M2 M1 0001 S2 S1 src1

59:2 subo 1 0101 1001 dst src2 M3 M2 M1 0010 S2 S1 src1

59:3 subi 1 0101 1001 dst src2 M3 M2 M1 0011 S2 S1 src1

59:4 cmpob 1 0101 1001 src2 M3 M2 M1 0100 S2 S1 src1

59:5 cmpib 1 0101 1001 src2 M3 M2 M1 0101 S2 S1 src1

59:6 cmpos 1 0101 1001 src2 M3 M2  M1 0110 S2 S1 src1
B-2

59:7 cmpis 1 0101 1001 src2 M3 M2 M1 0111 S2 S1 src1

59:8 shro 1 0101 1001 dst src M3 M2 M1 1000 S2 S1 len

59:A shrdi 6 0101 1001 dst src M3 M2 M1 1010 S2 S1 len

59:B shri 1 0101 1001 dst src M3 M2 M1 1011 S2 S1 len

59:C shlo 1 0101 1001 dst src M3 M2 M1 1100 S2 S1 len

59:D rotate 1 0101 1001 dst src M3 M2 M1 1101 S2 S1 len

59:E shli 1 0101 1001 dst src M3 M2 M1 1110 S2 S1 len

5A:0 cmpo 1 0101 1010 src2 M3 M2 M1 0000 S2 S1 src1

5A:1 cmpi 1 0101 1010 src2 M3 M2 M1 0001 S2 S1 src1

5A:2 concmpo 1 0101 1010 src2 M3 M2 M1 0010 S2 S1 src1

1. Execution time based on function performed by instruction.



B

OPCODES AND EXECUTION TIMES

5A:3 concmpi 1 0101 1010 src2 M3 M2 M1 0011 S2 S1 src1

5A:4 cmpinco 1 0101 1010 dst src2 M3 M2 M1 0100 S2 S1 src1

5A:5 cmpinci 1 0101 1010 dst src2 M3 M2 M1 0101 S2 S1 src1

5A:6 cmpdeco 1 0101 1010 dst src2 M3 M2 M1 0110 S2 S1 src1

5A:7 cmpdeci 1 0101 1010 dst src2 M3 M2 M1 0111 S2 S1 src1

5A:C scanbyte 1 0101 1010 src2 M3 M2 M1 1100 S2 S1 src1

5A:D bswap 10 0101 1010 dst M3 M2 M1 1101 S2 S1 src1

5A:E chkbit 1 0101 1010 src M3 M2 M1 1110 S2 S1 bitpos

5B:0 addc 1 0101 1011 dst src2 M3 M2 M1 0000 S2 S1 src1

5B:2 subc 1 0101 1011 dst src2 M3 M2 M1 0010 S2 S1 src1

5B:4 intdis 4 0101 1011 M3 M2 M1 0100 S2 S1

5B:5 inten 4 0101 1011 M3 M2 M1 0101 S2 S1

5C:C mov 1 0101 1100 dst M3 M2 M1 1100 S2 S1 src

5D:8 eshro 11 0101 1101 dst src2 M3 M2 M1 1000 S2 S1 src1

5D:C movl 4 0101 1101 dst M3 M2 M1 1100 S2 S1 src

5E:C movt 5 0101 1110 dst M3 M2 M1 1100 S2 S1 src

5F:C movq 6 0101 1111 dst M3 M2 M1 1100 S2 S1 src

61:0 atmod 24 0110 0010 dst src2 M3 M2 M1 0000 S2 S1 src1

61:2 atadd 24 0110 0010 dst src2 M3 M2 M1 0010 S2 S1 src1

64:0 spanbit 6 0110 0100 dst M3 M2 M1 0000 S2 S1 src

64:1 scanbit 5 0110 0100 dst M3 M2 M1 0001 S2 S1 src

64:5 modac 10 0110 0100 mask src M3 M2 M1 0101 S2 S1 dst

65:0 modify 6 0110 0101 src/dst src M3 M2 M1 0000 S2 S1 mask

Table B-2.  REG Format Instruction Encodings  (Sheet 2 of 4)

O
p

co
d

e

M
n

em
o

n
ic

C
yc

le
s 

to
 E

xe
cu

te
 

O
p

co
d

e
 (

11
 -

 4
)

sr
c/

ds
t

sr
c2

M
o

d
e

O
p

co
d

e
 (

3-
0)

S
p

ec
ia

l
 F

la
g

s

sr
c1

31 ........ 24 23 .. 19 18 . 14 13 12 11 10 ..7 6 5 4 ...... 0
B-3

65:1 extract 7 0110 0101 src/dst len M3 M2 M1 0001 S2 S1 bitpos

65:4 modtc 10 0110 0101 mask src M3 M2 M1 0100 S2 S1 dst

65:5 modpc 17 0110 0101 src/dst mask M3 M2 M1 0101 S2 S1 src

65:8 intctl 12-16 0110 0101 dst M3 M2 M1 1000 S2 S1 src1

65:9 sysctl 10-
1001 0110 0101 src/dst src2 M3 M2 M1 1001 S2 S1 src1

65:B icctl 10-
1001 0110 0101 src/dst src2 M3 M2 M1 1011 S2 S1 src1

65:C dcctl 10-
1001 0110 0101 src/dst src2 M3 M2 M1 1100 S2 S1 src1

1. Execution time based on function performed by instruction.



OPCODES AND EXECUTION TIMES

65:D halt ∞ 0110 0101 M3 M2 M1 1101 S2 S1 src1

66:0 calls 30 0110 0110 M3 M2 M1 0000 S2 S1 src

66:B mark 8 0110 0110 M3 M2 M1 1011 S2 S1

66:C fmark 8 0110 0110 M3 M2 M1 1100 S2 S1

66:D flushreg 15 0110 0110 M3 M2 M1 1101 S2 S1

66:F syncf 4 0110 0110 M3 M2 M1 1111 S2 S1

67:0 emul 7 0110 0111 dst src2 M3 M2 M1 0000 S2 S1 src1

67:1 ediv 40 0110 0111 dst src2 M3 M2 M1 0001 S2 S1 src1

70:1 mulo 2-4 0111 0000 dst src2 M3 M2 M1 0001 S2 S1 src1

70:8 remo 40 0111 0000 dst src2 M3 M2 M1 1000 S2 S1 src1

70:B divo 40 0111 0000 dst src2 M3 M2 M1 1011 S2 S1 src1

74:1 muli 2-4 0111 0100 dst src2 M3 M2 M1 0001 S2 S1 src1

74:8 remi 40 0111 0100 dst src2 M3 M2 M1 1000 S2 S1 src1

74:9 modi 40 0111 0100 dst src2 M3 M2 M1 1001 S2 S1 src1

74:B divi 40 0111 0100 dst src2 M3 M2 M1 1011 S2 S1 src1

78:0 addono 1 0111 1000 dst src2 M3 M2 M1 0000 S2 S1 src1

78:1 addino 1 0111 1000 dst src2 M3 M2 M1 0001 S2 S1 src1

78:2 subono 1 0111 1000 dst src2 M3 M2 M1 0010 S2 S1 src1

78:3 subino 1 0111 1000 dst src2 M3 M2 M1 0011 S2 S1 src1

78:4 selno 1 0111 1000 dst src2 M3 M2 M1 0100 S2 S1 src1

79:0 addog 1 0111 1001 dst src2 M3 M2 M1 0000 S2 S1 src1

79:1 addig 1 0111 1001 dst src2 M3 M2 M1 0001 S2 S1 src1

79:2 subog 1 0111 1001 dst src2 M3 M2 M1 0010 S2 S1 src1

Table B-2.  REG Format Instruction Encodings  (Sheet 3 of 4)

O
p

co
d

e

M
n

em
o

n
ic

C
yc

le
s 

to
 E

xe
cu

te
 

O
p

co
d

e
 (

11
 -

 4
)

sr
c/

ds
t

sr
c2

M
o

d
e

O
p

co
d

e
 (

3-
0)

S
p

ec
ia

l
 F

la
g

s

sr
c1

31........  24 23 ..19 18 ..14 13 12 11 10 .. 7 6 5 4 ..... 0
B-4

79:3 subig 1 0111 1001 dst src2 M3 M2 M1 0011 S2 S1 src1

79:4 selg 1 0111 1001 dst src2 M3 M2 M1 0100 S2 S1 src1

7A:0 addoe 1 0111 1010 dst src2 M3 M2 M1 0000 S2 S1 src1

7A:1 addie 1 0111 1010 dst src2 M3 M2 M1 0001 S2 S1 src1

7A:2 suboe 1 0111 1010 dst src2 M3 M2 M1 0010 S2 S1 src1

7A:3 subie 1 0111 1010 dst src2 M3 M2 M1 0011 S2 S1 src1

7A:4 sele 1 0111 1010 dst src2 M3 M2 M1 0100 S2 S1 src1

7B:0 addoge 1 0111 1011 dst src2 M3 M2 M1 0000 S2 S1 src1

7B:1 addige 1 0111 1011 dst src2 M3 M2 M1 0001 S2 S1 src1

7B:2 suboge 1 0111 1011 dst src2 M3 M2 M1 0010 S2 S1 src1

1. Execution time based on function performed by instruction.



B

OPCODES AND EXECUTION TIMES

7B:3 subige 1 0111 1011 dst src2 M3 M2 M1 0011 S2 S1 src1

7B:4 selge 1 0111 1011 dst src2 M3 M2 M1 0100 S2 S1 src1

7C:0 addol 1 0111 1100 dst src2 M3 M2 M1 0000 S2 S1 src1

7C:1 addil 1 0111 1100 dst src2 M3 M2 M1 0001 S2 S1 src1

7C:2 subol 1 0111 1100 dst src2 M3 M2 M1 0010 S2 S1 src1

7C:3 subil 1 0111 1100 dst src2 M3 M2 M1 0011 S2 S1 src1

7C:4 sell 1 0111 1100 dst src2 M3 M2 M1 0100 S2 S1 src1

7D:0 addone 1 0111 1101 dst src2 M3 M2 M1 0000 S2 S1 src1

7D:1 addine 1 0111 1101 dst src2 M3 M2 M1 0001 S2 S1 src1

7D:2 subone 1 0111 1101 dst src2 M3 M2 M1 0010 S2 S1 src1

7D:3 subine 1 0111 1101 dst src2 M3 M2 M1 0011 S2 S1 src1

7D:4 selne 1 0111 1101 dst src2 M3 M2 M1 0100 S2 S1 src1

7E:0 addole 1 0111 1110 dst src2 M3 M2 M1 0000 S2 S1 src1

7E:1 addile 1 0111 1110 dst src2 M3 M2 M1 0001 S2 S1 src1

7E:2 subole 1 0111 1110 dst src2 M3 M2 M1 0010 S2 S1 src1

7E:3 subile 1 0111 1110 dst src2 M3 M2 M1 0011 S2 S1 src1

7E:4 selle 1 0111 1110 dst src2 M3 M2 M1 0100 S2 S1 src1

7F:0 addoo 1 0111 1111 dst src2 M3 M2 M1 0000 S2 S1 src1

7F:1 addio 1 0111 1111 dst src2 M3 M2 M1 0001 S2 S1 src1

7F:2 suboo 1 0111 1111 dst src2 M3 M2 M1 0010 S2 S1 src1

7F:3 subio 1 0111 1111 dst src2 M3 M2 M1 0011 S2 S1 src1

7F:4 sello 1 0111 1111 dst src2 M3 M2 M1 0100 S2 S1 src1

Table B-2.  REG Format Instruction Encodings  (Sheet 4 of 4)

O
p

co
d

e

M
n

em
o

n
ic

C
yc

le
s 

to
 E

xe
cu

te
 

O
p

co
d

e
 (

11
 -

 4
)

sr
c/

ds
t

sr
c2

M
o

d
e

O
p

co
d

e
 (

3-
0)

S
p

ec
ia

l
 F

la
g

s

sr
c1

31 ........ 24 23 .. 19 18 . 14 13 12 11 10 ..7 6 5 4 ...... 0

1. Execution time based on function performed by instruction.
B-5



OPCODES AND EXECUTION TIMES

 

Table B-3.  COBR Format Instruction Encodings 

O
p

co
d

e

M
n

em
o

n
ic

C
yc

le
s 

to
 E

xe
cu

te

O
p

co
d

e

sr
c1

sr
c2 M

D
is

p
la

ce
m

en
t

T S
2

31......... 24 23 .  19 18... 14 13 12 .......2 1 0
20 testno 4 0010 0000 dst M1 T S2
21 testg 4 0010 0001 dst M1 T S2
22 teste 4 0010 0010 dst M1 T S2
23 testge 4 0010 0011 dst M1 T S2
24 testl 4 0010 0100 dst M1 T S2
25 testne 4 0010 0101 dst M1 T S2
26 testle 4 0010 0110 dst M1 T S2
27 testo 4 0010 0111 dst M1 T S2
30 bbc 2 + 11 0011 0000 bitpos src M1 targ T S2
31 cmpobg 2 + 1 0011 0001 src1 src2 M1 targ T S2
32 cmpobe 2 + 1 0011 0010 src1 src2 M1 targ T S2
33 cmpobge 2 + 1 0011 0011 src1 src2 M1 targ T S2
34 cmpobl 2 + 1 0011 0100 src1 src2 M1 targ T S2
35 cmpobne 2 + 1 0011 0101 src1 src2 M1 targ T S2
36 cmpoble 2 + 1 0011 0110 src1 src2 M1 targ T S2
37 bbs 2 + 1 0011 0111 bitpos src M1 targ T S2
38 cmpibno 2 + 1 0011 1000 src1 src2 M1 targ T S2
39 cmpibg 2 + 1 0011 1001 src1 src2 M1 targ T S2
3A cmpibe 2 + 1 0011 1010 src1 src2 M1 targ T S2
3B cmpibge 2 + 1 0011 1011 src1 src2 M1 targ T S2
3C cmpibl 2 + 1 0011 1100 src1 src2 M1 targ T S2
3D cmpibne 2 + 1 0011 1101 src1 src2 M1 targ T S2
B-6

3E cmpible 2 + 1 0011 1110 src1 src2 M1 targ T S2
3F cmpibo 2 + 1 0011 1111 src1 src2 M1 targ T S2

1. Indicates that 2 cycles are required to execute the instruction plus an additional cycle to fetch the TA get 
instruction when the branch is taken.



B

OPCODES AND EXECUTION TIMES

Table B-4.  CTRL Format Instruction Encodings 
O

p
co

d
e

M
n

em
o

n
ic

C
yc

le
s 

to
 

E
xe

cu
te

O
p

co
d

e

di
sp

la
ce

m
en

t

T 0

31............24 23...........2 1 0

08 b 1 + 11 0000 1000 targ T 0
09 call 7 0000 1001 targ T 0
0A ret 6 0000 1010 T 0
0B bal 1 + 1 0000 1011 targ T 0
10 bno 1 + 1 0001 0000 targ T 0
11 bg 1 + 1 0001 0001 targ T 0
12 be 1 + 1 0001 0010 targ T 0
13 bge 1 + 1 0001 0011 targ T 0
14 bl 1 + 1 0001 0100 targ T 0
15 bne 1 + 1 0001 0101 targ T 0
16 ble 1 + 1 0001 0110 targ T 0
17 bo 1 + 1 0001 0111 targ T 0
18 faultno 13 0001 1000 T 0
19 faultg 13 0001 1001 T 0
1A faulte 13 0001 1010 T 0
1B faultge 13 0001 1011 T 0
1C faultl 13 0001 1100 T 0
1D faultne 13 0001 1101 T 0
1E faultle 13 0001 1110 T 0
1F faulto 13 0001 1111 T 0

1. Indicates that 2 cycles are required to execute the instruction plus an additional cycle to fetch the target 
instruction when the branch is taken.

Table B-5.  Cycle Counts for sysctl Operations
B-7

Operation Cycles to Execute

Post Interrupt 20

Purge I-cache 19

Enable I-cache 20

Disable I-cache 22

Software Reset 329+bus

Load Control Register Group 26

Request Breakpoint Resource 21-22



OPCODES AND EXECUTION TIMES

Table B-6.  Cycle Counts for icctl Operations

Operation Cycles to Execute

Disable I-cache 18

Enable I-cache 16

Invalidate I-cache 18

Load and Lock I-cache 5193

I-cache Status Request 21

I-cache Locking Status 20

Table B-7.  Cycle Counts for dcctl Operations

Operation Cycles to Execute

Disable D-cache 18

Enable D-cache 18

Invalidate D-cache 19

Load and Lock D-cache 19

D-cache Status Request 16

Quick Invalidate D-cache 14

Table B-8.  Cycle Counts for intctl Operations

Operation Cycles to Execute

Disable Interrupts 13

Enable Interrupts 13

Interrupt Status Request 8
B-8



B

OPCODES AND EXECUTION TIMES

Table B-9.  MEM Format Instruction Encodings

31 ........24 23 ...19 18 .......14 13....... 12 11.................................................. 0
Opcode src/dst ABASE Mode Offset

31 ....... 24 23 ...19 18 ....... 14 13....... 12..11 ....... 10 9....... 7 6 .. 5 4 ....... 0
Opcode src/dst ABASE Mode Scale 00 Index

Displacement
Effective Address
efa =                 offset opcode dst 0 0 offset

offset(reg) opcode dst reg 1 0 offset

(reg) opcode dst reg 0 1 0 0 00

disp + 8 (IP) opcode dst 0 1 0 1 00
displacement

(reg1)[reg2 * scale] opcode dst reg1 0 1 1 1 scale 00 reg2

disp opcode dst 1 1 0 0 00
displacement

disp(reg) opcode dst reg 1 1 0 1 00
displacement

disp[reg * scale] opcode dst 1 1 1 0 scale 00 reg
displacement

disp(reg1)[reg2*scale] opcode dst reg1 1 1 1 1 scale 00 reg2
displacement

Opcode Mnemonic
Cycles to 
Execute

Opcode Mnemonic
Cycles to 
Execute

80 ldob 9A stl

82 stob A0 ldt
B-9

84 bx 4-7 A2 stt

85 balx 5-8

86 callx 9-12 B0 ldq

88 ldos B2 stq

8A stos C0 ldib

8C lda C2 stib

90 ld C8 ldis

92 st CA stis

98 ldl

1. The number of cycles required to execute these instructions is based on the addressing mode used (see Table B-10).



OPCODES AND EXECUTION TIMES

Table B-10.  Addressing Mode Performance

Mode Assembler Syntax
Memory 
Format

Number of 
Instruction 

words

Cycles to 
Execute

Absolute Offset exp MEMA 1 1 

Absolute Displacement exp MEMB 2 2

Register Indirect (reg) MEMB 1 1 

Register Indirect with Offset exp(reg) MEMA 1 1 

Register Indirect with Displacement exp(reg) MEMB 2 2 

Index with Displacement exp[reg*scale] MEMB 2  2 

Register Indirect with Index (reg)[reg*scale] MEMB 1  6 

Register Indirect with Index + 
Displacement

exp(reg)[reg*scale] MEMB 2 6 

Instruction Pointer with 
Displacement

exp(IP) MEMB 2 6 
B-10



C
MEMORY-MAPPED REGISTERS





C

APPENDIX C
MEMORY-MAPPED REGISTERS

This chapter describes the memory-mapped registers for the integrated peripherals.

C.1 OVERVIEW

The Peripheral Memory-Mapped Register (PMMR) interface gives software the ability to read and
modify internal control registers. Each register is accessed as a memory-mapped 32-bit register
with a unique memory address. Access is accomplished through regular memory-format instruc-
tions from the i960 core processor. These memory-mapped registers are specific to the i960® Rx
I/O processor only.

C.2 SUPERVISOR SPACE FAMILY REGISTERS AND TABLES

Table C-1.  Access Types 

Access Type Description

R Read Read (ld instruction) accesses are allowed.

RO Read Only Only Read (ld instruction) accesses are allowed. Write (st instruction) 
accesses are ignored.

W Write Write (st instruction) accesses allowed.

R/W Read/Write ld, st, and sysctl instructions are allowed access.

WwG Write when
Granted

Writing or Modifying (through a st or sysctl instruction) the register is only 
allowed when modification-rights to the register have been granted. An 
OPERATION.UNIMPLEMENTED fault occurs if an attempt is made to write 
the register before rights are granted. section 10.2.7.2, Hardware Breakpoints 
(pg. 10-5) for details about getting modification rights to breakpoint registers.

Sysctl-RwG sysctl
Read when 

The value of the register can only be read by executing a sysctl instruction 
issued with the modify memory-mapped register message type. Modification 
C-1

Granted rights to the register must be granted first or an OPERATION.UNIMPLE-
MENTED fault occurs when the sysctl is executed. A ld instruction to the 
register returns unpredictable results.

AtMod atmod
update

Register can be updated quickly through the atmod instruction. The atmod 
ensures correct operation by performing the update of the register in an 
atomic manner which provides synchronization with previous and subsequent 
operations. This is a faster update mechanism than sysctl and is optimized 
for a few special registers.



MEMORY-MAPPED REGISTERS

Table C-2.  Supervisor Space Register Addresses (Sheet 1 of 2)

Section Register Name - Acronym Page
80960 Local 
Bus Address

Reserved —
FF00 8000H

to
FF00 80FFH

12.5.1 Default Logical Memory Configuration Register – DLMCON 12-9 FF00 8100H

Reserved — FF00 8104H

12.5.1 Logical Memory Address Registers – LMADR0:1 - 0 12-8 FF00 8108H

12.5.1 Logical Memory Mask Registers – LMMR0:1 - 0 12-9 FF00 810CH

12.5.1 Logical Memory Address Registers – LMADR0:1 - 1 12-8 FF00 8110H

12.5.1 Logical Memory Mask Registers – LMMR0:1 - 1 12-9 FF00 8114H

Reserved —
FF00 8118H

to
FF00 83FFH

10.2.7.6 Instruction Breakpoint Register – IPBx 10-10
FF00 8400H

to
FF00 8404H

Reserved —
FF00 8408H

to
FF00 841FH

10.2.7.5 Data Address Breakpoint Register – DABx 10-10
FF00 8420H

to
FF00 8424H

Reserved —
FF00 8428H

to
FF00 843FH

10.2.7.4 Breakpoint Control Register – BPCON 10-8 FF00 8440H

Reserved —
FF00 8444H

to
FF00 84FFH

8.4.4 Interrupt Pending Register – IPND 8-37 FF00 8500H

8.4.4 Interrupt Mask Register – IMSK 8-38 FF00 8504H
C-2

Reserved —
FF00 8508H

to
FF00 850FH

8.4.2 Interrupt Control Register – ICON 8-34 FF00 8510H

Reserved —
FF00 8514H

to
FF00 851FH

8.4.3 Interrupt Map Register 0 – IMAP0 8-35 FF00 8520H

8.4.3 Interrupt Map Register 1 – IMAP1 8-36 FF00 8524H

8.4.3 Interrupt Map Register 2 – IMAP2 8-36 FF00 8528H



C

MEMORY-MAPPED REGISTERS

Reserved —
FF00 852CH

through
FF00 85FFH

12.2 Physical Memory Control Register 0 – PMCON0_1 12-5 FF00 8600H

Reserved — FF00 8604H

12.2 Physical Memory Control Register 1 – PMCON2_3 12-4 FF00 8608H

Reserved — FF00 860CH

12.2 Physical Memory Control Register 2 – PMCON4_5 12-4 FF00 8610H

Reserved — FF00 8614H

12.2 Physical Memory Control Register 3 – PMCON6_7 12-4 FF00 8618H

Reserved — FF00 861CH

12.2 Physical Memory Control Register 4 – PMCON8_9 12-4 FF00 8620H

Reserved — FF00 8624H

12.2 Physical Memory Control Register 5 – PMCON10_11 12-4 FF00 8628H

Reserved — FF00 862CH

12.2 Physical Memory Control Register 6 – PMCON12_13 12-4 FF00 8630H

Reserved — FF00 8634H

11.4.1
12.2

PMCON14_15 Register Bit Description in IBR
Physical Memory Control Register 7 – PMCON14_15

11-16,
12-5

FF00 8638H

Reserved —
FF00 863CH

through
FF00 86F8H

12.3.1 Bus Control Register Bit Definitions – BCON 12-6 FF00 86FCH

11.4.2 Process Control Block – PRCB 11-18 FF00 8700H

8.1.5 Interrupt Stack And Interrupt Record 8-6 FF00 8704H

3.4 Supervisor Stack Pointer 3-9 FF00 8708H

Reserved — FF00 870CH

11.5 Processor Device ID Register - PDIDR 11-23 FF00 8710H

11.5 i960® Core Processor Device ID Register - DEVICEID 11-24 FF00 8710H

FF00 8714H

Table C-2.  Supervisor Space Register Addresses (Sheet 2 of 2)

Section Register Name - Acronym Page
80960 Local 
Bus Address
C-3

Reserved — through
FFFF FFFFH



MEMORY-MAPPED REGISTERS

Table C-3.  Timer Registers

Section Register Name Page
80960 Local 
Bus Address

Reserved
FF00 0000H

to
FF00 02FFH

19.1.3 Timer Reload Register – TRRx - 0 19-7 FF00 0300H

19.1.2 Timer Count Register – TCRx - 0 19-6 FF00 0304H

19.1.1 Timer Mode Register – TMRx - 0 19-3 FF00 0308H

Reserved FF00 030CH

19.1.3 Timer Reload Register – TRRx - 1 19-7 FF00 0310H

19.1.2 Timer Count Register – TCRx - 1 19-6 FF00 0314H

19.1.1 Timer Mode Register – TMRx - 1 19-3 FF00 0318H

Reserved
FF00 031CH

to
FF00 7FFFH
C-4



C

MEMORY-MAPPED REGISTERS

C.3 PERIPHERAL MEMORY-MAPPED REGISTER ADDRESS SPACE

The PMMR address space is divided to support the integrated peripherals on the i960 Rx I/O
processor. Table C-4 provides a summary of all of the PMMR registers.

They support the DMA Controller, Memory Controller, PCI And Peripheral Interrupt Controller,
Messaging Unit, Local Bus Arbitration Unit, PCI-to-PCI Bridge Unit, and PCI Address
Translation Unit, I2C Bus Interface Unit, and the APIC Bus Interface Unit.

Portions of the i960 core processor address space are already reserved by the i960 core processor.
Addresses 0000 0000H through 0000 03FFH are reserved for the processor internal data RAM.
This memory is dedicated to the i960 core processor only and inaccessible from local bus masters.
Addresses FF00 0000H through FFFF FFFFH are reserved for the processor specific memory-
mapped registers. Accesses to this address space do not generate external bus cycles.

The PMMR interface provides full accessibility from the Primary ATU, Secondary ATU, and the
i960 core processor. Addresses 0000 0800H through 0000 0FFFH are allocated to the PMMR
interface. 

Table C-4.  80960 Local Addresses Assigned to Integrated Peripherals

Integrated Peripheral 80960 Address Block

PCI-to-PCI Bridge Unit 0000 1000H through 0000 10FFH

Reserved 0000 1100H through 0000 11FFH

Address Translation Unit 0000 1200H through 0000 12FFH

Messaging Unit 0000 1300H through 0000 13FFH

DMA Controller 0000 1400H through 0000 14FFH

Memory Controller 0000 1500H through 0000 15FFH

Local Bus Arbitration Unit 0000 1600H through 0000 167FH

I2C Bus Interface Unit 0000 1680H through 0000 16FFH

PCI And Peripheral Interrupt Controller 0000 1700H through 0000 177FH

APIC Bus Interface Unit 0000 1780H through 0000 17FFH
C-5



MEMORY-MAPPED REGISTERS

Table C-5 shows all i960 Rx I/O processor integrated peripheral memory-mapped registers and
their 80960 local bus addresses.

Table C-5.  Peripheral Memory-Mapped Register Locations  (Sheet 1 of 7)

Section Register Name - Acronym Page
 Size
(Bits)

80960 Local 
Bus Addr

PCI 
Conf 

Address 
Offset

15.13.1 Vendor ID Register - VIDR 15-41 16 0000 1000H 00H

15.13.2 Device ID Register - DIDR 15-42 16 0000 1002H 02H

15.13.3 Primary Command Register - PCMDR 15-42 16 0000 1004H 04H

15.13.4 Primary Status Register - PSR 15-44 16 0000 1006H 06H

15.13.5 Revision ID Register - RIDR 15-46 8 0000 1008H 08H

15.13.6 Class Code Register - CCR 15-46 24 0000 1009H 09H

15.13.7 Cacheline Size Register - CLSR 15-47 8 0000 100CH 0CH

15.13.8 Primary Latency Timer Register - PLTR 15-48 8 0000 100DH 0DH

15.13.9 Header Type Register - HTR 15-49 8 0000 100EH 0EH

Reserved
0000 100FH

through 
0000 1017H

0FH 
through 

17H

15.13.10 Primary Bus Number Register - PBNR 15-50 8 0000 1018H 18H

15.13.11 Secondary Bus Number Register - SBNR 15-50 8 0000 1019H 19H

15.13.12 Subordinate Bus Number Register - SubBNR 15-51 8 0000 101AH 1AH

15.13.13 Secondary Latency Timer Register - SLTR 15-52 8 0000 101BH 1BH

15.13.14 I/O Base Register - IOBR 15-53 8 0000 101CH 1CH

15.13.15 I/O Limit Register - IOLR 15-54 8 0000 101DH 1DH

15.13.16 Secondary Status Register - SSR 15-54 16 0000 101EH 1EH

15.13.17 Memory Base Register - MBR 15-56 16 0000 1020H 20H

15.13.18 Memory Limit Register - MLR 15-57 16 0000 1022H 22H

15.13.19 Prefetchable Memory Base Register - PMBR 15-58 16 0000 1024H 24H
C-6

15.13.20 Prefetchable Memory Limit Register - PMLR 15-59 16 0000 1026H 26H

Reserved
0000 1028H 

through 
0000 1033H

28H
through

33H

15.13.21 Bridge Subsystem Vendor ID Register - BSVIR 15-60 16 0000 1034H 34H

15.13.22 Bridge Subsystem ID Register - BSIR 15-60 16 0000 1036H 36H

Reserved
0000 1038H 

through 
0000 103DH

38H
through 

3DH

15.13.23 Bridge Control Register - BCR 15-61 16 0000 103EH 3EH

15.13.24 Extended Bridge Control Register - EBCR 15-64 16 0000 1040H 40H



C

MEMORY-MAPPED REGISTERS

15.13.25 Secondary IDSEL Select Register - SISR 15-66 16 0000 1042H 42H

15.13.26 Primary Bridge Interrupt Status Register - PBISR 15-68 32 0000 1044H 44H

15.13.27 Secondary Bridge Interrupt Status Register - SBISR 15-69 32 0000 1048H 48H

15.13.28 Secondary Arbitration Control Register - SACR 18-12 32 0000 104CH 4CH

15.13.29
PCI Interrupt Routing Select Register – PIRSR 
(80960RP 33/5.0 Volt)

8-32 32 0000 1050H 50H

15.13.29
PCI Interrupt Routing Select Register – PIRSR (80960Rx 
33/3.3 Volt)

8-33 32 0000 1050H 50H

15.13.30 Secondary I/O Base Register - SIOBR 15-70 8 0000 1054H 54H

15.13.31 Secondary I/O Limit Register - SIOLR 15-71 8 0000 1055H 55H

Reserved 0000 1056H 56H

15.13.32 Secondary Memory Base Register - SMBR 15-72 16 0000 1058H 58H

15.13.33 Secondary Memory Limit Register - SMLR 15-73 16 0000 105AH 5AH

15.13.34 Secondary Decode Enable Register - SDER 15-74 16 0000 105CH 5CH

Reserved
0000 105EH

through
0000 11FFH

5EH
through 

FFH

16.7.1 ATU Vendor ID Register - ATUVID 16-29 16 0000 1200H 00H

16.7.2 ATU Device ID Register - ATUDID 16-29 16 0000 1202H 02H

16.7.3 Primary ATU Command Register - PATUCMD 16-30 16 0000 1204H 04H

16.7.4 Primary ATU Status Register - PATUSR 16-31 16 0000 1206H 06H

16.7.5 ATU Revision ID Register - ATURID 16-32 8 0000 1208H 08H

16.7.6 ATU Class Code Register - ATUCCR 16-32 24 0000 1209H 09H

16.7.7 ATU Cacheline Size Register - ATUCLSR 16-33 8 0000 120CH 0CH

16.7.8 ATU Latency Timer Register - ATULT 16-33 8 0000 120DH 0DH

16.7.9 ATU Header Type Register - ATUHTR 16-34 8 0000 120EH 0EH

Table C-5.  Peripheral Memory-Mapped Register Locations  (Sheet 2 of 7)

Section Register Name - Acronym Page
 Size
(Bits)

80960 Local 
Bus Addr

PCI 
Conf 

Address 
Offset
C-7

16.7.10 ATU BIST Register - ATUBISTR 16-35 8 0000 120FH 0FH

16.7.11 Primary Inbound ATU Base Address Register - PIABAR 16-36 32 0000 1210H 10H

Reserved
0000 1214H

through
0000 122BH

14H
through

2BH

16.7.13 ATU Subsystem Vendor ID Register - ASVIR 16-40 16 0000 122CH 2CH

16.7.14 ATU Subsystem ID Register - ASIR 16-40 16 0000 122EH 2EH

16.7.15 Expansion ROM Base Address Register - ERBAR 16-41 32 0000 1230H 30H

Reserved
0000 1234H

through
0000 123BH

34H
through

3BH



MEMORY-MAPPED REGISTERS

16.7.16 ATU Interrupt Line Register - ATUILR 16-42 8 0000 123CH 3CH

16.7.17 ATU Interrupt Pin Register - ATUIPR 16-43 8 0000 123DH 3DH

16.7.18 ATU Minimum Grant Register - ATUMGNT 16-44 8 0000 123EH 3EH

16.7.19 ATU Maximum Latency Register - ATUMLAT 16-45 8 0000 123FH 3FH

16.7.20 Primary Inbound ATU Limit Register - PIALR 16-46 32 0000 1240H 40H

16.7.21 Primary Inbound ATU Translate Value Register - PIATVR 16-47 32 0000 1244H 44H

16.7.22 Secondary Inbound ATU Base Address Register - SIABAR 16-48 32 0000 1248H 48H

16.7.23 Secondary Inbound ATU Limit Register - SIALR 16-49 32 0000 124CH 4CH

16.7.24
Secondary Inbound ATU Translate Value Register - 
SIATVR

16-50 32 0000 1250H 50H

16.7.25
Primary Outbound Memory Window Value Register - 
POMWVR

16-51 32 0000 1254H 54H

Reserved 0000 1258H 58H

16.7.26 Primary Outbound I/O Window Value Register - POIOWVR 16-52 32 0000 125CH 5CH

16.7.27
Primary Outbound DAC Window Value Register - 
PODWVR

16-53 32 0000 1260H 60H

16.7.28 Primary Outbound Upper 64-bit DAC Register - POUDR 16-54 32 0000 1264H 64H

16.7.29
Secondary Outbound Memory Window Value Register - 
SOMWVR

16-55 32 0000 1268H 68H

16.7.30
Secondary Outbound I/O Window Value Register - 
SOIOWVR

16-56 32 0000 126CH 6CH

Reserved 0000 1270H 70H

16.7.31 Expansion ROM Limit Register - ERLR 16-57 32 0000 1274H 74H

16.7.32 Expansion ROM Translate Value Register - ERTVR 16-58 32 0000 1278H 78H

Reserved
0000 127CH

through
0000 1287H

7CH
through
877H

Table C-5.  Peripheral Memory-Mapped Register Locations  (Sheet 3 of 7)

Section Register Name - Acronym Page
 Size
(Bits)

80960 Local 
Bus Addr

PCI 
Conf 

Address 
Offset
C-8

16.7.33 ATU Configuration Register - ATUCR 16-58 32 0000 1288H 88H

Reserved 0000 128CH 8CH

16.7.34 Primary ATU Interrupt Status Register - PATUISR 16-61 32 0000 1290H 90H

16.7.35 Secondary ATU Interrupt Status Register - SATUISR 16-62 32 0000 1294H 94H

16.7.36 Secondary ATU Command Register - SATUCMD 16-64 16 0000 1298H 98H

16.7.37 Secondary ATU Status Register - SATUSR 16-65 16 0000 129AH 9AH

16.7.38
Secondary Outbound DAC Window Value Register - 
SODWVR

16-66 32 0000 129CH 9CH

16.7.39 Secondary Outbound Upper 64-bit DAC Register - SOUDR 16-67 32 0000 12A0H A0H



C

MEMORY-MAPPED REGISTERS

16.7.40
Primary Outbound Configuration Cycle Address Register - 
POCCAR

16-68 32 0000 12A4H A4H

16.7.41
Secondary Outbound Configuration Cycle Address 
Register - SOCCAR

16-69 32 0000 12A8H A8H

16.7.42
Primary Outbound Configuration Cycle Data Port - 
POCCDP

16-70 32
0000 

12ACH
Reserved

16.7.43
Secondary Outbound Configuration Cycle Data Port - 
SOCCDP

16-70 32 0000 12B0H Reserved

Reserved
0000 12B4H

through
0000 12FFH

2DH
through

FFH

17.7.1 APIC Register Select Register - ARSR 17-15 32 0000 1300H Available 
through 
Primary 

ATU 
Inbound 
Translati

on 
Window 
or must 
translate 

PCI 
address 
to the 
80960 

Memory-
Mapped 
Address

Reserved 0000 1304H

17.7.2 APIC Window Register - AWR 17-16 32 0000 1308H

Reserved 0000 130CH

17.7.3 Inbound Message Register - IMRx - 0 17-16 32 0000 1310H

17.7.3 Inbound Message Register - IMRx - 1 17-16 32 0000 1314H

17.7.4 Outbound Message Register - OMRx - 0 17-17 32 0000 1318H

17.7.4 Outbound Message Register - OMRx - 1 17-17 32 0000 131CH

17.7.5 Inbound Doorbell Register - IDR 17-18 32 0000 1320H

17.7.6 Inbound Interrupt Status Register - IISR 17-19 32 0000 1324H

17.7.7 Inbound Interrupt Mask Register - IIMR 17-20 32 0000 1328H

17.7.8 Outbound Doorbell Register - ODR 17-22 32 0000 132CH

17.7.9 Outbound Interrupt Status Register - OISR 17-23 32 0000 1330H

17.7.10 Outbound Interrupt Mask Register - OIMR 17-24 32 0000 1334H

Reserved
0000 1338H

through

Table C-5.  Peripheral Memory-Mapped Register Locations  (Sheet 4 of 7)

Section Register Name - Acronym Page
 Size
(Bits)

80960 Local 
Bus Addr

PCI 
Conf 

Address 
Offset
C-9

0000 134FH Must 
Translate

 PCI 
address 
to the 
80960 

Memory-
Mapped 
Address

17.7.11 Messaging Unit Configuration Register - MUCR 17-26 32 0000 1350H

17.7.12 Queue Base Address Register - QBAR 17-27 32 0000 1354H

Reserved
0000 1358H

through
0000 135CH

17.7.13 Inbound Free Head Pointer Register - IFHPR 17-28 32 0000 1360H

17.7.14 Inbound Free Tail Pointer Register - IFTPR 17-29 32 0000 1364H

17.7.15 Inbound Post Head Pointer Register - IPHPR 17-30 32 0000 1368H



MEMORY-MAPPED REGISTERS

17.7.16 Inbound Post Tail Pointer Register - IPTPR 17-31 32 0000 136CH

Must 
Translate

 PCI 
address 
to the 
80960 

Memory-
Mapped 
Address

17.7.17 Outbound Free Head Pointer Register - OFHPR 17-32 32 0000 1370H

17.7.18 Outbound Free Tail Pointer Register - OFTPR 17-33 32 0000 1374H

17.7.19 Outbound Post Head Pointer Register - OPHPR 17-34 32 0000 1378H

17.7.20 Outbound Post Tail Pointer Register - OPTPR 17-35 32 0000 137CH

17.7.21 Index Address Register - IAR 17-36 32 0000 1380H

Reserved
0000 1384H 

through
0000 13FFH

20.7.1 Channel Control Register - CCRx - 0 20-25 32 0000 1400H

20.7.2 Channel Status Register - CSRx - 0 20-26 32 0000 1404H

Reserved 0000 1408H

20.7.3 Descriptor Address Register - DARx - 0 20-28 32 0000 140CH

20.7.4 Next Descriptor Address Register - NDARx - 0 20-29 32 0000 1410H

20.7.5 PCI Address Register - PADRx - 0 20-30 32 0000 1414H

20.7.6 PCI Upper Address Register - PUADRx - 0 20-31 32 0000 1418H

20.7.7 80960 Local Address Register - LADRx - 0 20-32 32 0000 141CH

20.7.8 Byte Count Register - BCRx - 0 20-33 32 0000 1420H

20.7.9 Descriptor Control Register - DCRx - 0 20-34 32 0000 1424H

Reserved
0000 1428H 

through
0000 143FH

20.7.1 Channel Control Register - CCRx - 1 20-25 32 0000 1440H

20.7.2 Channel Status Register - CSRx - 1 20-26 32 0000 1444H

Reserved 0000 1448H

20.7.3 Descriptor Address Register - DARx - 1 20-28 32 0000 144CH

Table C-5.  Peripheral Memory-Mapped Register Locations  (Sheet 5 of 7)

Section Register Name - Acronym Page
 Size
(Bits)

80960 Local 
Bus Addr

PCI 
Conf 

Address 
Offset
C-10

20.7.4 Next Descriptor Address Register - NDARx - 1 20-29 32 0000 1450H

20.7.5 PCI Address Register - PADRx - 1 20-30 32 0000 1454H

20.7.6 PCI Upper Address Register - PUADRx - 1 20-31 32 0000 1458H

20.7.7 80960 Local Address Register - LADRx - 1 20-32 32 0000 145CH

20.7.8 Byte Count Register - BCRx - 1 20-33 32 0000 1460H

20.7.9 Descriptor Control Register - DCRx - 1 20-34 32 0000 1464H

Reserved
0000 1468H 

through
0000 147FH

20.7.1 Channel Control Register - CCRx - 2 20-25 32 0000 1480H

20.7.2 Channel Status Register - CSRx - 2 20-26 32 0000 1484H



C

MEMORY-MAPPED REGISTERS

Reserved 0000 1488H

Must 
Translate

 PCI 
address 
to the 
80960 

Memory-
Mapped 
Address

20.7.3 Descriptor Address Register - DARx - 2 20-28 32 0000 148CH

20.7.4 Next Descriptor Address Register - NDARx - 2 20-29 32 0000 1490H

20.7.5 PCI Address Register - PADRx - 2 20-30 32 0000 1494H

20.7.6 PCI Upper Address Register - PUADRx - 2 20-31 32 0000 1498H

20.7.7 80960 Local Address Register - LADRx - 2 20-32 32 0000 149CH

20.7.8 Byte Count Register - BCRx - 2 20-33 32 0000 14A0H

20.7.9 Descriptor Control Register - DCRx - 2 20-34 32 0000 14A4H

Reserved x x
0000 14A8H

through
0000 14FFH

14.5.1 Memory Bank Control Register – MBCR 14-8 32 0000 1500H

14.5.2 Memory Bank Base Address Registers – MBBAR0:1 - 0 14-10 32 0000 1504H

14.5.3.1 Memory Bank Read Wait States Register – MBRWS0:1 - 0 14-12 32 0000 1508H

14.5.3.2 Memory Bank Write Wait States Register – MBWWS0:1 - 0 14-13 32 0000 150CH

14.5.2 Memory Bank Base Address Registers – MBBAR0:1 - 1 14-10 32 0000 1510H

14.5.3.1 Memory Bank Read Wait States Register – MBRWS0:1 - 1 14-12 32 0000 1514H

14.5.3.2 Memory Bank Write Wait States Register – MBWWS0:1 - 1 14-13 32 0000 1518H

14.6.4 DRAM Bank Control Register — DBCR 14-25 32 0000 151CH

14.6.5 DRAM Base Address Register — DBAR 14-27 32 0000 1520H

14.6.6 DRAM Bank Read Wait State Register — DRWS 14-29 32 0000 1524H

14.6.7 DRAM Bank Write Wait State Register — DWWS 14-31 32 0000 1528H

14.6.8 DRAM Refresh Interval Register — DRIR 14-33 32 0000 152CH

14.7.1 DRAM Parity Enable Register — DPER 14-35 32 0000 1530H

14.7.2 Bus Monitor Enable Register — BMER 14-36 32 0000 1534H

14.7.3 Memory Error Address Register — MEAR 14-37 32 0000 1538H

Table C-5.  Peripheral Memory-Mapped Register Locations  (Sheet 6 of 7)

Section Register Name - Acronym Page
 Size
(Bits)

80960 Local 
Bus Addr

PCI 
Conf 

Address 
Offset
C-11

14.7.4 Local Processor Interrupt Status Register — LPISR 14-38 32 0000 153CH

Reserved x x
0000 1540H 

through
0000 15FFH

18.2.1 Local Bus Arbitration Control Register – LBACR 18-5 32 0000 1600H

18.2.6 Local Bus Arbitration Latency Count Register – LBALCR 18-8 32 0000 1604H 



MEMORY-MAPPED REGISTERS

Reserved x x
0000 1608H 

through
0000 167FH

Must 
Translate

 PCI 
address 
to the 
80960 

Memory-
Mapped 
Address

21.10.1 I2C Control Register – ICR 21-19 32 0000 1680H

21.10.2 I2C Status Register – ISR 21-22 32 0000 1684H

21.10.3 I2C Slave Address Register – ISAR 21-25 32 0000 1688H

21.10.4 I2C Data Buffer Register – IDBR 21-26 32 0000 168CH

21.10.5 I2C Clock Count Register – ICCR 21-27 32 0000 1690H

Reserved x x
0000 1694H

through
0000 16FFH

8.4.7 NMI Interrupt Status Register – NISR 8-43 32 0000 1700H

8.4.5 XINT6 Interrupt Status Register – X6ISR 8-39 32 0000 1704H

8.4.6 XINT6 Interrupt Status Register – X6ISR 8-39 32 0000 1708H

8.4.1
PCI Interrupt Routing Select Register – PIRSR 
(80960RP 33/5.0 Volt)

8-32 32
See PCI-to-
PCI Bridge 
Configu-

ration 
Space (0000 

1050H)

8.4.1
PCI Interrupt Routing Select Register – PIRSR (80960Rx 
33/3.3 Volt)

8-33 32

11.5 Processor Device ID Register - PDIDR 11-23 32 0000 1710H

Reserved x x
0000 1714H

through
0000 177FH

22.5.1 APIC ID Register – APIC ID 22-6 32 0000 1780H

22.5.2 APIC Arbitration ID Register – APIC ArbID 22-7 32 0000 1784H

22.5.3 EOI Vector Register – EVR 22-8 32 0000 1788H

22.5.4 Interrupt Message Register – IMR 22-9 32 0000 178CH

Table C-5.  Peripheral Memory-Mapped Register Locations  (Sheet 7 of 7)

Section Register Name - Acronym Page
 Size
(Bits)

80960 Local 
Bus Addr

PCI 
Conf 

Address 
Offset
C-12

22.5.5 APIC Control/Status Register – APIC CSR 22-11 32 0000 1790H

Reserved x x
0000 1794H

through
0000 17FFH



INDEX





IN
D

E
X

INDEX

A
absolute

displacement addressing mode 2-5
memory addressing mode 2-5
offset addressing mode 2-5

AC 3-16
AC register, see Arithmetic Controls (AC) register
access faults 3-7
access types

restrictions 3-6
ADD 6-6

add
conditional instructions 6-6
integer instruction 6-10
ordinal instruction 6-10
ordinal with carry instruction 6-9

addc 6-9
addi 6-10
addie 6-6
addig 6-6
addige 6-6
addil 6-6
addile 6-6
addine 6-6
addino 6-6
addio 6-6
addo 6-10
addoe 6-6
addog 6-6
addoge 6-6
addol 6-6
addole 6-6

inbound write transaction 16-9
initialization 11-2
outbound address translation 16-11, 16-12
outbound read transaction 16-17
outbound write transaction 16-16
Primary inbound address translation 16-46
private address spaces 16-18
queueing mechanism 16-2
register definitions 16-25
Secondary inbound address translation 16-49

Address Translation Unit (ATU)
overview 16-1

addressing mode
examples 2-7
register indirect 2-6

addressing registers and literals 3-4
Advanced Programmable Interrupt Controller 

(APIC) bus 1-4
alignment, registers and literals 3-4
alterbit 6-11
and 6-12
andnot 6-12
APIC ArbID 22-7
APIC Arbitration ID Register – APIC ArbID 22-7
APIC Bus Interface Unit 1-4
APIC Control/Status Register – APIC CSR 22-11
APIC CSR 22-11
APIC ID 22-6
APIC ID Register – APIC ID 22-6
APIC Register Select Register - ARSR 17-15
APIC Window Register - AWR 17-16
argument list 7-13
Arithmetic Controls (AC) register 3-16
Index-1

addone 6-6
addono 6-6
addoo 6-6
Address Translation Unit 1-3

address queues 16-3
data queues 16-4
direct addressing window 16-15
discard timers 16-11
error conditions 16-20
Expansion ROM 16-19
inbound read transaction 16-10

condition code flags 3-17
initialization 3-16
integer overflow flag 3-18
integer overflow mask bit 3-18
no imprecise faults bit 3-18

Arithmetic Controls Register - AC 3-16
arithmetic instructions 5-6

add, subtract, multiply or divide 5-7
extended-precision instructions 5-9
remainder and modulo instructions 5-8
shift and rotate instructions 5-8



INDEX

arithmetic operations and data types 5-7
ARSR 17-15
ASIR 16-40
assert (defined) 1-10
ASVIR 16-40
atadd 3-13, 4-10, 6-13
atmod 3-13, 4-10, 6-14, C-1
atomic access 3-12
atomic add instruction 6-13
atomic instructions 5-17
Atomic instructions (LOCK signal) 13-23
atomic modify instruction 6-14
atomic operations 13-23
atomic-read-modify-write sequence 3-6
ATU

Error conditions 16-20
Expansion ROM Translation Unit 16-19
header format for PCI interface configuration 

16-25
IAQ 16-3
IDQ 16-4
inbound address translation 16-5
initialization 11-2
Messaging Unit interaction 16-19
OAQ 16-3
ODQ 16-4
overview 16-2
transaction queues 16-2
translating in/outbound address 16-4

ATU BIST Register - ATUBISTR 16-35
ATU Cacheline Size Register - ATUCLSR 16-33
ATU Class Code Register - ATUCCR 16-32
ATU Configuration Register - ATUCR 16-58

ATU Subsystem ID Register - ASIR 16-40
ATU Subsystem Vendor ID Register - ASVIR 

16-40
ATU Vendor ID Register - ATUVID 16-29
ATUBISTR 16-35
ATUCCR 16-32
ATUCLSR 16-33
ATUCR 16-58
ATUDID 16-29
ATUHTR 16-34
ATUILR 16-42
ATUIPR 16-43
ATULT 16-33
ATUMGNT 16-44
ATUMLAT 16-45
ATURID 16-32
ATUVID 16-29
AWR 17-16

B
b 6-15
backoff unit 18-9
bal 6-16
balx 6-16
basic bus states 13-3
bbc 6-18
bbs 6-18
BCON 12-6
BCON register 12-6
BCR 15-10, 15-12, 15-15, 15-52, 15-61, 15-70
BCRx 20-33
be 6-20
bg 6-20
Index-2

ATU Device ID Register - ATUDID 16-29
ATU Header Type Register - ATUHTR 16-34
ATU Interrupt Line Register - ATUILR 16-42
ATU Interrupt Pin Register - ATUIPR 16-43
ATU Latency Timer Register - ATULT 16-33
ATU Maximum Latency Register 16-45
ATU Maximum Latency Register - ATUMLAT 

16-45
ATU Minimum Grant Register 16-44
ATU Minimum Grant Register - ATUMGNT 16-44
ATU Revision ID Register - ATURID 16-32

bge 3-18, 6-20
Big endian 12-11
bit field instructions 5-11
bit instructions 5-10
bits

clear 1-10
set 1-10

bits and bit fields 2-3
bl 6-20
ble 6-20
BMER 14-36



IN
D

E
X

INDEX

bne 6-20
bno 6-20
bo 6-20
boundary conditions

internal memory locations 12-11
internal memory-mapped locations 12-7
LMT boundaries 12-12
logical data template ranges 12-11

boundary-scan (JTAG) 23-1
architecture 23-3
test logic 23-4

Boundary-Scan Register 23-9
boundary-scan register 23-9
BPCON 10-8
branch

and link extended instruction 6-16
and link instruction 6-16
check bit and branch if clear set instruction 6-18
check bit and branch if set instruction 6-18
conditional instructions 6-20
extended instruction 6-15
instruction 6-15

branch instructions, overview 5-13
compare and branch instructions 5-14
conditional branch instructions 5-14
unconditional branch instructions 5-13

branch-and-link 7-1
returning from 7-21

branch-and-link instruction 7-1
branch-if-greater-or-equal instruction 3-18
breakpoint

resource request message 10-7
Breakpoint Control (BPCON) register 10-8

built-in self test 11-7
burst order (liner incrementing) 16-7
bus confidence self test 11-9
Bus Control (BCON) register 12-6

BCON.irp bit 4-2
BCON.sirp bit 4-1

Bus Control Register Bit Definitions - BCON 12-6
Bus Controller

boundary conditions 12-6
logical memory attributes 12-2
memory attributes 12-1
physical memory attributes 12-1

Bus Controller Unit (BCU)
bus width 12-5
PMCON initialization 12-5

bus controller unit (BCU) 13-3
bus master

arbitration timing diagram 13-26
Bus Monitor Enable Register - BMER 14-36
bus signal groups 13-5
bus snooping 4-6, 4-10
bus states with arbitration 13-4
bus transactions

basic read 13-8
basic write 13-10
bus width 13-6
data width 13-7

bus width
programming with PMCON register 12-5

bx 6-15
bypass register 23-9
Byte Count Register - BCRx 20-33
byte instructions 5-11
Index-3

programming 10-8
Breakpoint Control Register - BPCON 10-8
Bridge Control Register 15-10, 15-15, 15-52, 

15-61, 15-70
Bridge Control Register - BCR 15-61
Bridge Subsystem ID Register - BSIR 15-60
Bridge Subsystem Vendor ID Register - BSVIR 

15-60
BSIR 15-60
BSVIR 15-60
bswap 6-22

byte swap instruction 6-22

C
cache



INDEX

data
cache coherency and non-cacheable accesses 
4-9
described 4-6
enabling and disabling 4-7
fill policy 4-8
partial-hit multi-word data accesses 4-7
visibility 4-10
write policy 4-8

instruction
enabling and disabling 4-5
loading and locking instruction 4-5
visibility 4-6

load-and-lock mechanism 4-5
local register 4-2
stack frame 4-2

cacheable writes (stores) 4-8
Cacheline Size Register 15-28, 15-47
Cacheline Size Register - CLSR 15-47
caching of interrupt-handling procedure 8-47
caching of local register sets

frame fills 7-7
frame spills 7-7
mapping to the procedure stack 7-11
updating the register cache 7-11

call
extended instruction 6-26
instruction 6-23
system instruction 6-24

call 6-23, 7-2, 7-6
call and return instructions 5-15
call and return mechanism 7-1, 7-2

explicit calls 7-1
implicit calls 7-1

return operation 7-7
calls 3-22, 6-24, 7-2, 7-6
call-trace mode 10-3
callx 6-26, 7-2, 7-6
carry conditions 3-17
CCR 15-46
CCRx 20-25
Channel Control Register - CCRx 20-25
Channel Status Register - CSRx 20-26
check bit instruction 6-28
chkbit 6-28
Class Code Register 15-46
Class Code Register - CCR 15-46
clear bit instruction 6-29
clear bits 1-10
clrbit 6-29
CLSR 15-28, 15-47
cmpdeci 6-30
cmpdeco 6-30
cmpi 5-11, 6-32
cmpib 5-11
cmpibe 6-34
cmpibg 6-34
cmpibge 6-34
cmpibl 6-34
cmpible 6-34
cmpibne 6-34
cmpibno 6-34
cmpibo 6-34
cmpinci 6-31
cmpinco 6-31
cmpis 5-11
cmpo 5-11, 6-32
Index-4

local register cache 7-3
local registers 7-2
procedure stack 7-3
register and stack management 7-4

frame pointer 7-4
previous frame pointer 7-5
return type field 7-5
stack pointer 7-4

stack frame 7-2
call and return operations 7-5

call operation 7-6

cmpobe 6-34
cmpobg 6-34
cmpobge 6-34
cmpobl 6-34
cmpoble 6-34
cmpobne 6-34
cold reset 11-7
compare

and branch conditional instructions 6-34
and conditional compare instructions 5-11
and decrement integer instruction 6-30



IN
D

E
X

INDEX

and decrement ordinal instruction 6-30
and increment integer instruction 6-31
and increment ordinal instruction 6-31
integer conditional instruction 6-37
integer instruction 6-32
ordinal conditional instruction 6-37
ordinal instruction 6-32

comparison instructions, overview
compare and increment or decrement instructions 

5-12
test condition instructions 5-12

concmpi 6-37
concmpo 6-37
conditional branch instructions 3-17
conditional fault instructions 5-16
control registers 3-1, 3-7

memory-mapped 3-6
control table 3-1, 3-7, 3-10

alignment 3-13
CSRx 20-26

D
DABx 10-10
DAC 1-3
DARx 20-28
Data Address Breakpoint (DAB) registers 10-9

programming 10-9
Data Address Breakpoint Register - DABx 10-10
data alignment in external memory 3-13
data cache

cache coherency and non-cacheable accesses 4-9
coherency

I/O and bus masters 4-10

data register
timing diagram 23-22

data structures
control table 3-1, 3-7, 3-10
fault table 3-1, 3-10
Initialization Boot Record (IBR) 3-1, 3-9
interrupt stack 3-1, 3-10
interrupt table 3-1, 3-10
literals 3-4
local stack 3-1
Process Control Block (PRCB) 3-1, 3-9
supervisor stack 3-1, 3-10
system procedure table 3-1, 3-10
user stack 3-10

data types
bits and bit fields 2-3
integers 2-2
literals 2-4
ordinals 2-3
supported 2-1
triple and quad words 2-4

DBAR 14-27
DBCR 14-25
dcctl 3-22, 4-6, 4-7, 4-10, 6-39
DCRx 20-34
debug

overview 10-1
debug instructions 5-16
decoupling capacitors 11-28
Default Logical Memory Configuration (DLMCON) 

register 12-2
Default Logical Memory Configuration Register - 

DLMCON 12-9
Index-5

control instruction 6-39
described 4-6
enabling and disabling 4-7
fill policy 4-8
partial-hit multi-word data accesses 4-7
visibility 4-10
write policy 4-8

data movement instructions 5-4
load address instruction 5-6
load instructions 5-5
move instructions 5-6

Delayed 15-23
Delayed transaction 15-5
Descriptor Address Register - DARx 20-28
Descriptor Control Register - DCRx 20-34
design considerations

high frequency 11-28
interference 11-30
latchup 11-30
line termination 11-28

Device ID register 23-8
Device ID Register - DIDR 15-42



INDEX

device identification register 23-8
DEVICEID 11-24
DEVICEID register location 3-3
DEVSEL# 15-34, 15-36, 15-37, 15-55
DEVSEL# Timing 15-44
DIDR 15-42
divi 6-45
divide integer instruction 6-45
divide ordinal instruction 6-45
divo 6-45
DLMCON 12-9
DLMCON registers
DMA 20-1
downstream (defined) 1-9
DPER 14-35
DRAM Bank Control Register - DBCR 14-25
DRAM Bank Read Wait State Register - DRWS 

14-29
DRAM Bank Write Wait State Register - DWWS 

14-31
DRAM Base Address Register - DBAR 14-27
DRAM Parity Enable Register - DPER 14-35
DRAM Read Wait States Register (DRWS) 14-28
DRAM Refresh Interval Register - DRIR 14-33
DRAM Refresh Interval Register (DRIR) 14-32
DRAM Write Wait States register (DWWS) 14-30
DRIR 14-33
DRWS 14-29
Dual Address Cycle addressing 1-3
DWORD (defined) 1-9
DWWS 14-31

E

EVR 22-8
Expansion ROM 16-19
Expansion ROM Base Address Register - ERBAR 

16-41
Expansion ROM Limit Register - ERLR 16-57
Expansion ROM Translate Value Register - ERTVR 

16-58
Expansion ROM Translation Unit 16-19
explicit calls 7-1
extended addressing instructions 5-13
Extended Bridge Command Register 15-7
Extended Bridge Control Register 15-26, 15-27, 

15-64
Extended Bridge Control Register - EBCR 15-64
extended divide instruction 6-47
extended multiply instruction 6-49
extended shift right ordinal instruction 6-50
external memory requirements 3-12
extract 6-51

F
FAIL# pin 11-9
fault

OPERATION.UNIMPLEMENTED 4-1
fault conditional instructions 6-52
fault conditions 9-1
fault handling

data structures 9-1
fault record 9-2, 9-6
fault table 9-2, 9-4
fault type and subtype numbers 9-3
fault types 9-4
local calls 9-2
Index-6

EBCR 15-26, 15-27, 15-64
edge-triggered interrupt 8-28
ediv 6-47
electromagnetic interference (EMI) 11-31
electrostatic interference (ESI) 11-31
emul 6-49
EOI Vector Register - EVR 22-8
ERBAR 16-41
ERLR 16-57
ERTVR 16-58
eshro 6-50

multiple fault conditions 9-9
procedure invocation 9-6
return instruction pointer (RIP) 9-15
stack usage 9-6
supervisor stack 9-2
system procedure table 9-2
system-local calls 9-2
system-supervisor calls 9-2
user stack 9-2

fault record 9-6
address-of-faulting-instruction field 9-7



IN
D

E
X

INDEX

fault subtype field 9-7
location 9-6, 9-9
structure 9-7

fault table 3-1, 3-10, 9-4
alignment 3-13
local-call entry 9-6
location 9-4
system-call entry 9-6

fault type and subtype numbers 9-3
fault types 9-4
faulte 6-52
faultg 6-52
faultge 6-52
faultl 6-52
faultle 6-52
faultne 6-52
faultno 6-52
faulto 6-52
faults

AC.nif bit 9-22
access 3-7
ARITHMETIC.INTEGER_OVERFLOW 6-91
ARITHMETIC.OVERFLOW 6-7, 6-10, 6-45, 

6-84, 6-101, 6-107, 6-112
ARITHMETIC.ZERO_DIVIDE 6-45, 6-47, 

6-76, 6-91
CONSTRAINT.RANGE 6-52
controlling precision of (syncf) 9-21
imprecise 5-22
OPERATION.INVALID_OPERAND 6-43
PROTECTION.LENGTH 6-25
TRACE.MARK 6-55, 6-74
TYPE.MISMATCH 6-43, 6-56, 6-64, 6-67, 

force mark instruction 6-55
FP, see Frame Pointer
frame fills 7-7
Frame Pointer (FP) 7-4

location 3-3
frame spills 7-7
FRAME# 15-28, 15-36
function 0 16-11

G
global registers 3-1, 3-2
GNT# 15-48
GNT# signal 15-52

H
halt 6-56
halt CPU instruction 6-56
hardware breakpoint resources 10-5

requesting access privilege 10-6
Header Type Register 15-6, 15-49
Header Type Register - HTR 15-49
hexadecimal numbering (defined) 1-9
hierarchical buses 15-1
high priority interrupts 4-3
Host processor (defined) 1-9
HTR 15-49

I
I/O address registers 15-5
I/O address space 15-2
I/O Base and Limit Registers 15-10
I/O Base Register 15-52
I/O Base Register - IOBR 15-52, 15-53
I/O Base Register (IOBR) 15-10
Index-7

6-68, 6-69, 6-78
fields

preserved 1-9
read only 1-10
read/clear 1-10
read/set 1-10
reserved 1-10

floating point 3-17
flush local registers instruction 6-54
flushreg 6-54, 7-11
fmark 6-55

I/O Enable bit 15-10
I/O Limit Register 15-53
I/O Limit Register - IOLR 15-53, 15-54
I/O Limit Register (IOLR) 15-10
I2C Clock Count Register - ICCR 21-27
I2C Control Register - ICR 21-19
I2C Data Buffer Register - IDBR 21-26
I2C interface unit 21-1
I2C Slave Address Register - ISAR 21-25
I2C Status Register - ISR 21-22
i960 core processor (defined) 1-9



INDEX

i960 Core Processor Device ID Register - 
DEVICEID 11-24

IAR 17-36
IBR 11-16, 14-10
IBR, see initialization boot record
ICCR 21-27
icctl 3-22, 4-4, 4-5, 4-6
ICON 8-34
ICR 21-19
IDBR 21-26
IDR 17-18
IDSEL 15-7, 15-8
IEEE Standard Test Access Port 23-3
IEEE Std. 1149.1 23-3
IFHPR 17-28
IFTPR 17-29
IIMR 17-20
IISR 17-19
IMAP0 8-35
IMAP1 8-36
IMAP2 8-36
IMI 11-1, 11-11
implicit calls 7-1, 9-2
imprecise faults 5-22
IMR 22-9
IMRx 17-16
IMSK 8-38
Inbound Address Queue (IAQ) 16-3
inbound address translation 16-5
Inbound Data Queue (IDQ) 16-4
Inbound Delayed Read Address Queue (IDRAQ) 

16-3
Inbound Doorbell Register - IDR 17-18

inequalities (greater than, equal or less than) 
conditions 3-17

Initial Memory Image (IMI) 11-1, 11-11
initialization 11-7

hardware requirements 11-25
power and ground 11-27
software 6-114

Initialization Boot Record (IBR) 3-1, 3-9, 11-1, 
11-14, 11-16

alignment 3-13
initialization data structures 3-9
initialization requirements

control table 11-22
data structures 11-12
Process Control Block 11-17

instruction breakpoint modes
programming 10-11

Instruction Breakpoint Register - IPBx 10-10
instruction cache 3-14

coherency 4-6
configuration 3-14
enabling and disabling 4-5, 11-20
locking instructions 4-5
overview 4-4
visibility 4-6

instruction formats 5-3
assembly language format 5-1
instruction encoding format 5-2

instruction optimizations 5-18
Instruction Pointer (IP) register 3-15
Instruction Register (IR) 23-5

timing diagram 23-21
Instruction set
Index-8

Inbound Free Head Pointer Register - IFHPR 17-28
Inbound Free Tail Pointer Register - IFTPR 17-29
Inbound Interrupt Mask Register - IIMR 17-20
Inbound Interrupt Status Register - IISR 17-19
Inbound Message Register - IMRx 17-16
Inbound Post Head Pointer Register - IPHPR 17-30
Inbound Post Tail Pointer Register - IPTPR 17-31
Index Address Register - IAR 17-36
index with displacement addressing mode 2-6
indivisible access 3-12

atmod C-1
sysctl C-1

instruction set
 6-6

ADD 6-6

addc 6-9
addi 6-10
addie 6-6
addig 6-6
addige 6-6
addil 6-6



IN
D

E
X

INDEX

addile 6-6
addine 6-6
addino 6-6
addo 6-10
addoe 6-6
addog 6-6
addoge 6-6
addol 6-6
addole 6-6
addone 6-6
addono 6-6
addoo 6-6
alterbit 6-11
and 6-12
andnot 6-12
atadd 3-13, 4-10, 6-13
atmod 3-13, 4-10, 6-14
b 6-15
bal 6-16
balx 6-16
bbc 6-18
bbs 6-18
be 6-20
bg 6-20
bge 3-18, 6-20
bl 6-20
ble 6-20
bne 6-20
bno 6-20
bo 6-20
bswap 6-22
bx 6-15
call 6-23, 7-2, 7-6

cmpibl 6-34
cmpible 6-34
cmpibne 6-34
cmpibno 6-34
cmpibo 6-34
cmpinci 6-31
cmpinco 6-31
cmpis 5-11
cmpo 5-11, 6-32
cmpobe 6-34
cmpobg 6-34
cmpobge 6-34
cmpobl 6-34
cmpoble 6-34
cmpobne 6-34
concmpi 6-37
concmpo 6-37
dcctl 3-22, 4-6, 4-7, 4-10, 6-39
divi 6-45
divo 6-45
ediv 6-47
emul 6-49
eshro 6-50
extract 6-51
faulte 6-52
faultg 6-52
faultge 6-52
faultl 6-52
faultle 6-52
faultne 6-52
faultno 6-52
faulto 6-52
flushreg 6-54
Index-9

calls 3-22, 6-24, 7-2, 7-6
callx 6-26, 7-2, 7-6
chkbit 6-28
clrbit 6-29
cmpdeci 6-30
cmpdeco 6-30
cmpi 5-11, 6-32
cmpib 5-11
cmpibe 6-34
cmpibg 6-34
cmpibge 6-34

fmark 6-55
halt 6-56
icctl 3-22, 4-4, 4-5, 4-6
intctl 3-22, 6-66
intdis 3-22, 6-68
inten 3-22, 6-69
ld 2-3, 3-14, 6-70
lda 6-73
ldib 2-2, 6-70
ldis 2-2, 6-70
ldl 3-4, 4-7, 6-70



INDEX

ldob 2-3, 6-70
ldos 2-3, 6-70
ldq 3-14, 4-7, 6-70
ldt 4-7, 6-70
mark 6-74
modac 3-16, 6-75
modi 6-76
modify 6-77
modpc 3-20, 3-22, 6-78, 10-3
modtc 6-80, 10-2
mov 6-81
movl 6-81
movq 6-81
movt 6-81
muli 6-84
mulo 6-84
nand 6-85
nor 6-86
not 6-87
notand 6-87
notbit 6-88
notor 6-89
or 6-90
ornot 6-90
remi 6-91
remo 6-91
ret 6-92
rotate 6-94
scanbit 6-95
scanbyte 6-96
sele 5-6, 6-97
selg 5-6, 6-97
selge 5-6, 6-97

spanbit 6-103
st 2-3, 3-14, 6-104
stib 2-3, 6-104
stis 2-3, 6-104
stl 3-14, 4-8, 6-104
stob 2-3, 6-104
stos 2-3
stq 3-14, 4-8, 6-104
stt 4-8, 6-104
subc 6-108
subi 6-112
subie 6-109
subig 6-109
subige 6-109
subil 6-109
subile 6-109
subine 6-109
subino 6-109
subio 6-109
subo 6-112
suboe 6-109
subog 6-109
suboge 6-109
subol 6-109
subole 6-109
subone 6-109
subono 6-109
suboo 6-109
syncf 6-113, 9-21
sysctl 3-22, 4-4, 4-5, 4-6, 6-114, 10-6
teste 6-118
testg 6-118
testge 6-118
Index-10

sell 5-6, 6-97
selle 5-6, 6-97
selne 5-6, 6-97
selno 5-6, 6-97
selo 5-6, 6-97
setbit 6-99
shli 6-100
shlo 6-100
shrdi 6-100
shri 6-100
shro 6-100

testl 6-118
testle 6-118
testne 6-118
testno 6-118
testo 6-118
xnor 6-120
xor 6-120

instruction set functional groups 5-3
Instruction Trace Event 6-4
Instructions

TRISTATE 23-8



IN
D

E
X

INDEX

instructions
conditional branch 3-17

instruction-trace mode 10-3
INTA#/XINT0# 8-25, 8-44
INTB#/XINT1# 8-25, 8-44
INTC#/XINT2# 8-25, 8-44
intctl 3-22, 6-66
INTD#/XINT3# 8-25, 8-44
intdis 3-22, 6-68
integer flow masking 5-21
integers 2-2

data truncation 2-2
sign extension 2-2

Integrated Memory Controller 1-4
Intelligent I/O (I20) interface for PCI applications 

17-1
inten 3-22, 6-69
Inter-Integrated Circuit Bus Interface Unit 1-4
internal data RAM 4-1

modification 4-1
size 4-1

internal self test program 11-9
interrupt

timer 8-18
Interrupt Control (ICON) register

memory-mapped addresses 8-31
Interrupt Control Register - ICON 8-34
interrupt controller 8-1

configuration 8-19
overview 8-13
program interface 8-15
programmer interface 8-31
setup 8-19

Interrupt Map Register 0 - IMAP0 8-35
Interrupt Map Register 1 - IMAP1 8-36
Interrupt Map Register 2 - IMAP2 8-36
Interrupt Mapping (IMAP0-IMAP2) registers 8-35
interrupt mask

saving 8-12
Interrupt Mask (IMSK) register 8-37
Interrupt Mask Register - IMSK 8-38
Interrupt Message Register - IMR 22-9
Interrupt Pending (IPND) register 8-37

atomic-read-modify-write sequence 3-6
Interrupt Pending Register - IPND 8-37
interrupt performance

caching of interrupt-handling 8-47
interrupt stack 8-47
local register cache 8-47

interrupt posting 8-1
interrupt procedure pointer 8-5
interrupt record 8-7

location 8-7
interrupt requests

sysctl 8-8
interrupt routing logic 15-4
interrupt sequencing of operations 8-18
interrupt service latency 8-46
interrupt stack 3-1, 3-10, 8-6, 8-47

alignment 3-13
structure 8-6

interrupt table 3-1, 3-10, 8-4
alignment 3-13, 8-4
caching mechanism 8-6
location 8-4
pending interrupts 8-5
Index-11

interrupt handling procedures 8-20
AC and PC registers 8-20
address space 8-20
global registers 8-20
instruction cache 8-20
interrupt stack 8-20
local registers 8-20
location 8-20
supervisor mode 8-20

Interrupt Mack (IMSK) register
atomic-read-modify-write sequence 3-6

vector entries 8-5
interrupt vectors

caching 4-1
interrupts

dedicated mode posting 8-15
executing-state 8-20
function 8-1
global disable instruction 6-68
global enable and disable instruction 6-66
global enable instruction 6-69
high priority 4-3



INDEX

internal RAM 8-46
interrupt context switch 8-20
interrupt handling procedures 8-20
interrupt record 8-7
interrupt stack 8-6
interrupt table 8-4
interrupted-state 8-20
masking hardware interrupts 8-12
Non-Maskable Interrupt (NMI) 8-3, 8-17
overview 8-1
physical characteristics 8-25
posting 8-1
priority handling 8-10
priority-31 interrupts 8-3, 8-12
programmable options 8-16
restoring r3 8-12
servicing 8-3
sysctl 8-18
vector caching 8-46

Invalidate 15-12
IOBR 15-10, 15-52, 15-53
IOLR 15-10, 15-53, 15-54
IP register, see Instruction Pointer (IP) register
IP with displacement addressing mode 2-7
IPBx 10-10
IPHPR 17-30
IPND 8-37
IPTPR 17-31
ISA I/O cards 15-11
ISA Mode 15-11
ISAR 21-25
ISR 21-22
IxWorks (Wind River Systems RTOS) 1-4

lda 6-73
ldib 2-2, 6-70
ldis 2-2, 6-70
ldl 3-4, 4-7, 6-70
ldob 2-3, 6-70
ldos 2-3, 6-70
ldq 3-14, 4-7, 6-70
ldt 4-7, 6-70
leaf procedures 7-1
level-sensitive interrupt 8-27
Linear Incrementing 16-12
Linear Incrementing burst order 16-7
literal addressing and alignment 3-5
literals 2-4, 3-1, 3-4

addressing 3-4
Little endian 12-11
little endian byte order 3-14
LMADR register
LMADR0

1 12-8
LMCON registers
LMMR0

1 12-9
load address instruction 6-73
load instructions 5-5, 6-70
load-and-lock mechanism 4-5
local bus (defined) 1-9
Local Bus Arbitration Control Register - LBACR 

18-5
Local Bus Arbitration Latency Count Register - 

LBALCR 18-8
local calls 7-2, 7-14, 9-2

call 7-2
Index-12

IxWorks Real-Time Operating System (RTOS) 1-4

J
JTAG (boundary-scan) 23-1

L
LADRx 20-32
latency timers (LT) 15-23
LBACR 18-5
LBALCR 18-8
ld 2-3, 3-14, 6-70

callx 7-2
Local memory (defined) 1-9
Local processor (defined) 1-9
Local Processor Interrupt Status Register - LPISR 

14-38
local register cache 7-3

overview 4-2
local registers 3-1, 7-2

allocation 3-3, 7-2
management 3-3
usage 7-2



IN
D

E
X

INDEX

local stack 3-1
logical data templates

effective range 12-10
logical instructions 5-10
Logical Memory Address (LMADR) register 12-2
Logical Memory Address (LMADR) registers

programming 12-8
Logical Memory Address Registers - LMADR0

1 12-8
Logical Memory Configuration (LMCON) registers 

12-2
Logical Memory Mask (LMMR) registers

programming 12-8
Logical Memory Mask Registers - LMMR0

1 12-9
Logical Memory Template registers (LMTs)

modifying 12-12
Logical Memory Templates (LMTs)

accesses across boundaries 12-12
boundary conditions 12-11
enabling 12-11
enabling and disabling data caching 12-10
overlapping ranges 12-11
values after reset 12-11

LPISR 14-38

M
mark 6-74
Mark Trace Event 6-4
MBBAR0

1 14-10
MBCR 14-8
MBR 15-12, 15-13, 15-56

external memory requirements 3-12
atomic access 3-12
data alignment 3-13
data block sizes 3-14
data block storage 3-14
indivisible access 3-12
instruction alignment in external memory 
3-13
little endian byte order 3-14
reserved memory 3-12

location 3-11
management 3-11

memory addressing modes
absolute 2-5
examples 2-7
index with displacement 2-6
IP with displacement 2-7
register indirect 2-6

Memory Bank 0 Read Wait States Register 
(MBRWS0) 14-11

Memory Bank 0 Write Wait States Register 
(MBWWS0) 14-11

Memory Bank 1 Read Wait States Register 
(MBRWS1) 14-11

Memory Bank 1 Write Wait States Register 
(MBWWS1) 14-11

Memory Bank Base Address Registers - MBBAR0
1 14-10

Memory Bank Control Register - MBCR 14-8
Memory Bank Control Register (MBCR) 14-7
Memory Bank Read Wait States Register - 

MBRWS0
1 14-12

Memory Bank Write Wait States Register - 
Index-13

MBRWS0
1 14-12

MBWWS0
1 14-13

MEAR 14-37
memory address registers 15-5
memory address space 3-1

MBWWS0
1 14-13

Memory Base Register 15-12, 15-13, 15-56
Memory Base Register - MBR 15-56
memory controller

overview 14-1
theory of operation 14-2

Memory Enable bit 15-12
Memory Error Address Register - MEAR 14-37
Memory Limit Register 15-12, 15-13, 15-57
Memory Limit Register - MLR 15-57



INDEX

Memory Read 15-12
Memory Read Line 15-12
Memory Read Multiple 15-12
Memory Space Enable bit 15-56, 15-57, 15-58
Memory Write 15-12
Memory Write and Invalidate 15-28
memory-mapped control registers 3-6
Memory-Mapped Registers (MMR) 3-6, 3-12
Messaging Unit Configuration Register - MUCR 

17-26
MLR 15-12, 15-13, 15-57
MMR, see Memory-Mapped Registers (MMR)
modac 3-16, 6-75
modi 6-76
modify 6-77
modify arithmetic controls instruction 6-75
modify process controls instruction 6-78
modify trace controls instruction 6-80, 10-2
modpc 3-20, 3-22, 6-78, 10-3
modtc 6-80, 10-2
modulo integer instruction 6-76
mov 6-81
move instructions 6-81
movl 6-81
movq 6-81
movt 6-81
MU

how used with ATU 16-19
MUCR 17-26
muli 6-84
mulo 6-84
multiple fault conditions 9-9
multiply integer instruction 6-84

Non-Maskable Interrupt (NMI) 8-3
nor 6-86
not 6-87
notand 6-87
notbit 6-88
notor 6-89

O
ODR 17-22
OFHPR 17-32
OFTPR 17-33
OIMR 17-24
OISR 17-23
OMRx 17-17
On-Circuit Emulation (ONCE) mode 11-1, 11-2, 

23-1
OPERATION.UNIMPLEMENTED 4-1
OPHPR 17-34
OPTPR 17-35
or 6-90
ordinals 2-3

sign and sign extension 2-3
ornot 6-90
Outbound Address Queue (OAQ) 16-3
Outbound Data Queue (ODQ) 16-4
Outbound Doorbell Register - ODR 17-22
Outbound Free Head Pointer Register - OFHPR 

17-32
Outbound Free Tail Pointer Register - OFTPR 

17-33
Outbound Interrupt Mask Register - OIMR 17-24
Outbound Interrupt Status Register - OISR 17-23
Outbound Message Register - OMRx 17-17
Index-14

multiply ordinal instruction 6-84

N
nand 6-85
NDARx 20-29
Next Descriptor Address Register - NDARx 20-29
NISR 8-41, 8-43
NMI Interrupt Status Register 8-41, 8-43
NMI Interrupt Status Register - NISR 8-43
NMI# 8-25, 8-26, 8-41
No Imprecise Faults (AC.nif) bit 9-16, 9-21

Outbound Post Head Pointer Register - OPHPR 
17-34

Outbound Post Tail Pointer Register - OPTPR 
17-35

overflow conditions 3-17

P
P_INTA# 8-22
P_INTB# 8-22
P_INTC# 8-22
P_INTD# 8-22
P_PERR# 15-45, 15-55



IN
D

E
X

INDEX

P_RST# 11-2, 11-3, 11-4, 15-38
P_SERR# 8-29, 15-34, 15-35, 15-36, 15-37, 

15-38, 15-42, 15-44, 15-68
PADRx 20-30
parameter passing 7-12

argument list 7-13
by reference 7-12
by value 7-12

PATUCMD 16-30
PATUISR 16-61
PATUSR 16-31
PBISR 15-68
PBNR 15-50
PC 3-19
PC register, see Process Controls (PC) register
PCI Address Register - PADRx 20-30
PCI bridge 15-2
PCI Bus 15-1
PCI configuration 15-4
PCI function 0 16-11
PCI Interrupt Routing Select Register 8-32, 15-70
PCI Interrupt Routing Select Register - PIRSR 

(80960RP 33/5.0 Volt) 8-32
PCI Interrupt Routing Select Register - PIRSR 

(80960Rx 33/3.3 Volt) 8-33
PCI master 15-4
PCI slave 15-4
PCI Upper Address Register - PUADRx 20-31
PCI-to-PCI Bridge 1-3, 15-5

initialization 11-2
PCI-to-PCI bridge 15-2

64-bit addressing 15-15
address decoding 15-9

Memory Write and Invalidate command 15-29
PCI commands 15-22
PCI exclusive access 15-32
PCI interface 15-22
posted transaction 15-24
posted write transactions 15-27
posting buffers 15-29
primary PCI interface 15-3
private address space 15-16
read transactions 15-24
registers 15-38
secondary PCI interface 15-4
special cycle commands 15-8
synchronization 15-33
terms and abbreviations 15-31
Type 0 commands 15-7
upstream and downstream transactions 15-30
VGA addresses 15-13
VGA palette snooping 15-14
write transactions 15-26

PCI-to-PCI Bridge Architecture Revision 1.0 Speci-
fication 15-1

PCI-to-PCI Bridge Unit
special mode 15-5

PCI-to-PCI bridge unit 15-10
PCMD 15-10, 15-12
PCMDR 15-15, 15-42
PDIDR 11-23
pending interrupts 8-5

encoding 8-5
interrupt procedure pointer 8-5
pending priorities field 8-5

performance optimization 5-18
Index-15

buffers 15-5
claiming a transaction 15-23
configuration access commands 15-6
configuration registers 15-5
delayed transaction 15-23
delayed write transactions 15-27
errors 15-34
I/O address space 15-10
I/O Write 15-29
ISA I/O cards 15-11
latency 15-23

PERR# 15-36
PFP 7-20
Philips Corporation 1-4
Physical Memory Configuration (PMCON) registers 

12-1
application modification 12-7
initial values 12-5

Physical Memory Control Registers - PMCON0
15 12-5

PIABAR 16-36
PIALR 16-46



INDEX

PIATVR 16-47
PIRSR 8-32, 8-33
PLTR 15-48
PMBR 15-12, 15-13, 15-58
PMCON registers
PMCON0

15 12-5
PMCON14_15 Register Bit Description in IBR 

11-16
PMLR 15-12, 15-13, 15-59
POCCAR 16-68
POCCDP 16-70
PODWVR 16-53
POIOWVR 16-52
POMWVR 16-51
Posted transaction 15-5
POUDR 16-54
power and ground planes 11-27
powerup/reset initialization

timer powerup 19-10
PRCB 11-18
PRCB, see Processor Control Block (PRCB)
Prefetchable Limit Register 15-12
Prefetchable Memory Base Register 15-12, 15-13, 

15-58
Prefetchable Memory Base Register - PMBR 

15-58, 15-59
Prefetchable Memory Limit Register 15-13, 15-59
Prefetchable Memory Limit Register - PMLR 15-59
prereturn-trace mode 10-4
preserved fields 1-9
Previous Frame Pointer (PFP) 3-1, 7-4, 7-5

location 3-3

Primary Command Register 15-10, 15-15
Primary Command Register - PCMDR 15-42
Primary Inbound ATU Base Address Register - 

PIABAR 16-36
Primary Inbound ATU Limit Register - PIALR 

16-46
Primary Inbound ATU Translate Value Register - 

PIATVR 16-47
primary interface 15-4
Primary Latency Timer Register - PLTR 15-48
Primary Outbound Configuration Cycle Address 

Register - POCCAR 16-68
Primary Outbound Configuration Cycle Data Port - 

POCCDP 16-70
Primary Outbound DAC Window Value Register - 

PODWVR 16-53
Primary Outbound I/O Window Value Register - 

POIOWVR 16-52
Primary Outbound Memory Window Value Register 

- POMWVR 16-51
Primary Outbound Upper 64-bit DAC Register - 

POUDR 16-54
Primary PCI Bus Reset signal 11-2
Primary Status Register 15-37
Primary Status Register - PSR 15-44
priority-31 interrupts 8-3, 8-12
procedure calls

branch-and-link 7-1
call and return mechanism 7-1
leaf procedures 7-1

procedure stack 7-3
growth 7-3

Process Control Block (PRCB) 3-1, 3-9, 4-5, 
Index-16

Previous Frame Pointer Register - PFP 7-20
Primary and Secondary PCI buses (defined) 1-9
Primary ATU Command Register - PATUCMD 

16-30
Primary ATU Interrupt Status Register - PATUISR 

16-61
Primary ATU Status Register - PATUSR 16-31
Primary Bridge Interrupt Status Register - PBISR 

15-68
Primary Bus Number Register 15-50
Primary Bus Number Register - PBNR 15-50

11-1, 11-17
alignment 3-13
configuration 11-17
register cache configuration word 11-20

Process Control Block AC Register Initial Image 
11-18

Process Control Register - PC 3-19
Process Controls (PC) register

execution mode flag 3-19
initialization 3-21
modification 3-20
modpc 3-20



IN
D

E
X

INDEX

priority field 3-20
processor state flag 3-19
trace enable bit 3-20
trace fault pending flag 3-20

Processor Device ID Register - PDIDR 11-23
processor management instructions 5-17
processor state registers 3-1, 3-15

Arithmetic Controls (AC) register 3-16
Instruction Pointer (IP) register 3-15
Process Controls (PC) register 3-19
Trace Controls (TC) register 3-21

programming
logical memory attributes 12-11

PRSR 15-70
PSR 15-37, 15-44
PUADRx 20-31

Q
QBAR 17-27
Queue Base Address Register - QBAR 17-27

R
RAM 3-9

internal data
described 4-1

read only fields 1-10
read/clear fields 1-10
read/set fields 1-10
region boundaries

bus transactions across 12-7
register

addressing 3-4
addressing and alignment 3-5

indirect addressing mode
register-indirect-with-displacement 2-6
register-indirect-with-index 2-6
register-indirect-with-index-and-displacemen
t 2-6
register-indirect-with-offset 2-6

Interrupt Control (ICON) 8-31
Interrupt Mapping (IMAP0-IMAP2) 8-35
Interrupt Mask (IMSK) 8-37
Interrupt Pending (IPND) 8-37
local

allocation 3-3
management 3-3

processor-state 3-15
scoreboarding

example 3-4
TCRx 19-5

Registers
80960 Local Address Register - LADRx 20-32
80960RxJx Trace Controls Register - TC 10-2
APIC Arbitration ID Register – APIC ArbID 22-7
APIC Control/Status Register – APIC CSR 22-11
APIC ID Register – APIC ID 22-6
APIC Register Select Register - ARSR 17-15
APIC Window Register - AWR 17-16
Arithmetic Controls Register - AC 3-16
ATU BIST Register - ATUBISTR 16-35
ATU Cacheline Size Register - ATUCLSR 16-33
ATU Class Code Register - ATUCCR 16-32
ATU Configuration Register - ATUCR 16-58
ATU Device ID Register - ATUDID 16-29
ATU Header Type Register - ATUHTR 16-34
ATU Interrupt Line Register - ATUILR 16-42
Index-17

boundary-scan 23-9
Breakpoint Control (BPCON) 10-8
cache 4-2
control 3-7

memory-mapped 3-6
DEVICEID

memory location 3-3
global 3-2

ATU Interrupt Pin Register - ATUIPR 16-43
ATU Latency Timer Register - ATULT 16-33
ATU Maximum Latency Register - ATUMLAT 

16-45
ATU Minimum Grant Register - ATUMGNT 

16-44
ATU Revision ID Register - ATURID 16-32
ATU Subsystem ID Register - ASIR 16-40
ATU Subsystem Vendor ID Register - ASVIR 

16-40
ATU Vendor ID Register - ATUVID 16-29
Boundary-Scan 23-9



INDEX

Breakpoint Control Register - BPCON 10-8
Bridge Control Register - BCR 15-61
Bridge Subsystem ID Register - BSIR 15-60
Bridge Subsystem Vendor ID Register - BSVIR 

15-60
Bus Control Register Bit Definitions - BCON 

12-6
Bus Monitor Enable Register - BMER 14-36
bypass 23-9
Byte Count Register - BCRx 20-33
Cacheline Size Register - CLSR 15-47
Channel Control Register - CCRx 20-25
Channel Status Register - CSRx 20-26
Data Address Breakpoint Register - DABx 10-10
Default Logical Memory Configuration Register - 

DLMCON 12-9
Descriptor Address Register - DARx 20-28
Descriptor Control Register - DCRx 20-34
Device ID Register - DIDR 15-42
DRAM Bank Control Register - DBCR 14-25
DRAM Bank Read Wait State Register - DRWS 

14-29
DRAM Bank Write Wait State Register - DWWS 

14-31
DRAM Base Address Register - DBAR 14-27
DRAM Parity Enable Register - DPER 14-35
DRAM Refresh Interval Register - DRIR 14-33
EOI Vector Register - EVR 22-8
Expansion ROM Base Address Register - ERBAR 

16-41
Expansion ROM Limit Register - ERLR 16-57
Expansion ROM Translate Value Register - 

ERTVR 16-58

Inbound Doorbell Register - IDR 17-18
Inbound Free Head Pointer Register - IFHPR 

17-28
Inbound Free Tail Pointer Register - IFTPR 17-29
Inbound Interrupt Mask Register - IIMR 17-20
Inbound Interrupt Status Register - IISR 17-19
Inbound Message Register - IMRx 17-16
Inbound Post Head Pointer Register - IPHPR 

17-30
Inbound Post Tail Pointer Register - IPTPR 17-31
Index Address Register - IAR 17-36
Instruction Breakpoint Register - IPBx 10-10
Interrupt Control Register - ICON 8-34
Interrupt Map Register 0 - IMAP0 8-35
Interrupt Map Register 1 - IMAP1 8-36
Interrupt Map Register 2 - IMAP2 8-36
Interrupt Mask Register - IMSK 8-38
Interrupt Message Register - IMR 22-9
Interrupt Pending Register - IPND 8-37
Local Bus Arbitration Control Register - LBACR 

18-5
Local Bus Arbitration Latency Count Register - 

LBALCR 18-8
Local Processor Interrupt Status Register - LPISR 

14-38
Logical Memory Address Registers - LMADR0

1 12-8
Logical Memory Mask Registers - LMMR0

1 12-9
Memory Bank Base Address Registers - MBBAR0

1 14-10
Memory Bank Control Register - MBCR 14-8
Memory Bank Read Wait States Register - 
Index-18

Extended Bridge Control Register - EBCR 15-64
Header Type Register - HTR 15-49
I/O Base Register - IOBR 15-53
I/O Limit Register - IOLR 15-54
I2C Clock Count Register - ICCR 21-27
I2C Control Register - ICR 21-19
I2C Data Buffer Register - IDBR 21-26
I2C Slave Address Register - ISAR 21-25
I2C Status Register - ISR 21-22
i960 Core Processor Device ID Register - 

DEVICEID 11-24

MBRWS0
1 14-12

Memory Bank Write Wait States Register - 
MBWWS0

1 14-13
Memory Base Register - MBR 15-56
Memory Error Address Register - MEAR 14-37
Memory Limit Register - MLR 15-57
Messaging Unit Configuration Register - MUCR 

17-26
Next Descriptor Address Register - NDARx 

20-29



IN
D

E
X

INDEX

NMI Interrupt Status Register - NISR 8-43
Outbound Doorbell Register - ODR 17-22
Outbound Free Head Pointer Register - OFHPR 

17-32
Outbound Free Tail Pointer Register - OFTPR 

17-33
Outbound Interrupt Mask Register - OIMR 17-24
Outbound Interrupt Status Register - OISR 17-23
Outbound Message Register - OMRx 17-17
Outbound Post Head Pointer Register - OPHPR 

17-34
Outbound Post Tail Pointer Register - OPTPR 

17-35
PCI Address Register - PADRx 20-30
PCI Interrupt Routing Select Register - PIRSR 

(80960RP 33/5.0 Volt) 8-32
PCI Interrupt Routing Select Register - PIRSR 

(80960Rx 33/3.3 Volt) 8-33
PCI Upper Address Register - PUADRx 20-31
Physical Memory Control Registers - PMCON0

15 12-5
PMCON14_15 Register Bit Description in IBR 

11-16
Prefetchable Memory Base Register - PMBR 

15-58
Prefetchable Memory Limit Register - PMLR 

15-59
Primary ATU Command Register - PATUCMD 

16-30
Primary ATU Interrupt Status Register - 

PATUISR 16-61
Primary ATU Status Register - PATUSR 16-31
Primary Bridge Interrupt Status Register - PBISR 

15-68

Primary Outbound DAC Window Value Register - 
PODWVR 16-53

Primary Outbound I/O Window Value Register - 
POIOWVR 16-52

Primary Outbound Memory Window Value 
Register - POMWVR 16-51

Primary Outbound Upper 64-bit DAC Register - 
POUDR 16-54

Primary Status Register - PSR 15-44
Process Control Block AC Register Initial Image 

11-18
Process Control Register - PC 3-19
Processor Device ID Register - PDIDR 11-23
Queue Base Address Register - QBAR 17-27
Revision ID Register - RIDR 15-46
RUNBIST 23-9
Secondary Arbitration Control Register - SACR 

18-12
Secondary ATU Command Register - SATUCMD 

16-64
Secondary ATU Interrupt Status Register - 

SATUISR 16-62
Secondary ATU Status Register - SATUSR 16-65
Secondary Bridge Interrupt Status Register - 

SBISR 15-69
Secondary Bus Number Register - SBNR 15-50
Secondary Decode Enable Register - SDER 15-74
Secondary I/O Base Register - SIOBR 15-70
Secondary I/O Limit Register - SIOLR 15-71
Secondary IDSEL Select Register - SISR 15-66
Secondary Inbound ATU Base Address Register - 

SIABAR 16-48
Secondary Inbound ATU Limit Register - SIALR 

16-49
Index-19

Primary Bus Number Register - PBNR 15-50
Primary Command Register - PCMDR 15-42
Primary Inbound ATU Base Address Register - 

PIABAR 16-36
Primary Inbound ATU Limit Register - PIALR 

16-46
Primary Inbound ATU Translate Value Register - 

PIATVR 16-47
Primary Latency Timer Register - PLTR 15-48
Primary Outbound Configuration Cycle Address 

Register - POCCAR 16-68

Secondary Inbound ATU Translate Value Register 
- SIATVR 16-50

Secondary Latency Timer Register - SLTR 15-52
Secondary Memory Base Register - SMBR 15-72
Secondary Memory Limit Register - SMLR 15-73
Secondary Outbound Configuration Cycle 

Address Register - SOCCAR 16-69
Secondary Outbound DAC Window Value 

Register - SODWVR 16-66
Secondary Outbound I/O Window Value Register 

- SOIOWVR 16-56



INDEX

Secondary Outbound Memory Window Value 
Register - SOMWVR 16-55

Secondary Outbound Upper 64-bit DAC Register - 
SOUDR 16-67

Secondary Status Register - SSR 15-54
Subordinate Bus Number Register - SubBNR 

15-51
Timer Count Register - TCRx 19-6
Timer Mode Register - TMRx 19-3
Timer Reload Register - TRRx 19-7
Vendor ID Register - VIDR 15-41
XINT6 Interrupt Status Register - X6ISR 8-39
XINT7 Interrupt Status Register - X7ISR 8-41

registers
Logical Memory Templates (LMTs) 12-11

re-initialization
software 6-114

remainder integer instruction 6-91
remainder ordinal instruction 6-91
remi 6-91
remo 6-91
reserved fields 1-10
reserving frames in the local register cache 8-47
reset state 11-6, 11-7
ret 6-92
Retry 15-5
Return Instruction Pointer (RIP) 7-4

location 3-3
return operation 7-7
return type field 7-5
Revision ID Register - RIDR 15-46
RIDR 15-46
RIP, see Return Instruction Pointer (RIP)

SACR 15-69, 18-12
SATUCMD 16-64
SATUISR 16-62
SATUSR 16-65
SBISR 15-69
SBNR 15-50
scanbit 6-95
scanbyte 6-96
SCL 21-2, 21-6
SDA 21-2
SDER 15-5, 15-9, 15-10, 15-12, 15-53, 15-56, 

15-71, 15-74
Secondary Arbitration Control Register 15-69
Secondary Arbitration Control Register - SACR 

18-12
Secondary ATU Command Register - SATUCMD 

16-64
Secondary ATU Interrupt Status Register - 

SATUISR 16-62
Secondary ATU Status Register - SATUSR 16-65
Secondary Bridge Interrupt Status Register 15-69
Secondary Bridge Interrupt Status Register - SBISR 

15-69
Secondary Bus Number Register 15-50
Secondary Bus Number Register - SBNR 15-50
Secondary Decode Enable Register 15-5, 15-9, 

15-10, 15-12, 15-53, 15-56, 15-71
Secondary Decode Enable Register - SDER 15-73, 

15-74
Secondary I/O Base Register 15-70
Secondary I/O Base Register - SIOBR 15-70
Secondary I/O Limit Register 15-71
Secondary I/O Limit Register - SIOLR 15-71
Index-20

ROM 3-9
ROM Bank Wait States Register 14-11
rotate 6-94
RST_MODE 11-2, 11-3
RTOS 1-4
Run Built-In Self-Test (RUNBIST) register 23-9
RUNBIST register 23-9

S
S_AD 15-8
S_SERR# 15-38, 15-55

Secondary I/O Positive Decode Enable bit 15-10
Secondary IDSEL Select Register 15-66
Secondary IDSEL Select Register - SISR 15-66
Secondary Inbound ATU Base Address Register - 

SIABAR 16-48
Secondary Inbound ATU Base Address Register 

(SIABAR) 16-48
Secondary Inbound ATU Limit Register - SIALR 

16-49
Secondary Inbound ATU Translate Value Register - 

SIATVR 16-50



IN
D

E
X

INDEX

Secondary Inbound ATU Translate Value Register 
(SIATVR) 16-50

secondary interface 15-4
Secondary Latency Timer Register 15-52
Secondary Latency Timer Register - SLTR 15-52
Secondary Memory Base Register 15-72
Secondary Memory Base Register - SMBR 15-72
Secondary Memory Limit Register 15-72
Secondary Memory Limit Register - SMLR 15-72, 

15-73
Secondary Outbound Configuration Cycle Address 

Register - SOCCAR 16-69
Secondary Outbound Configuration Cycle Data Port 

- SOCCDP 16-70
Secondary Outbound DAC Window Value Register 

- SODWVR 16-66
Secondary Outbound I/O Window Value Register - 

SOIOWVR 16-56
Secondary Outbound Memory Window Value 

Register - SOMWVR 16-55
Secondary Outbound Upper 64-bit DAC Register - 

SOUDR 16-67
Secondary PCI Bus Arbiter

initialization 11-2
secondary PCI bus arbitration 15-4
Secondary Positive Memory Decode Enable bit 

15-12
Secondary Status Register 15-37, 15-54
Secondary Status Register - SSR 15-54
sele 5-6, 6-97
select based on equal instruction 5-6
select based on less or equal instruction 5-6
select based on not equal instruction 5-6

Serial Data/Address (SDA) 21-2
SERR# 15-34, 15-35, 15-36, 15-55
SERR# bit 15-34, 15-35
SERR# Enable 15-42
SERR# Enable bit 15-34
set bits 1-10
setbit 6-99
shift instructions 6-100
shli 6-100
shlo 6-100
shrdi 6-100
shri 6-100
shro 6-100
SIABAR 16-48
SIALR 16-49
SIATVR 16-50
sign extension

integers 2-2
ordinals 2-3

Signal 1-10
single processor as bus master 13-25
SIOBR 15-70
SIOLR 15-70, 15-71
SISR 15-66
SISR register 15-8
SLTR 15-52
SMBR 15-72
SMLR 15-72, 15-73
SOCCAR 16-69
SOCCDP 16-70
SODWVR 16-66
software re-initialization 6-114
SOIOWVR 16-56
Index-21

select based on ordered instruction 5-6
Select Based on Unordered 5-6
self test (STEST) pin 11-9
selg 5-6, 6-97
selge 5-6, 6-97
sell 5-6, 6-97
selle 5-6, 6-97
selne 5-6, 6-97
selno 5-6, 6-97
selo 5-6, 6-97
Serial Clock Line (SCL) 21-2

SOMWVR 16-55
SOUDR 16-67
SP, see Stack Pointer
spanbit 6-103
special mode 15-5
src/dst parameter encodings 10-7
SSR 15-37, 15-54
st 2-3, 3-14, 6-104
stack frame

allocation 7-2
stack frame cache 4-2



INDEX

Stack Pointer (SP) 7-4
location 3-3

stacks 3-9
STEST 11-9
stib 2-3, 6-104
stis 2-3, 6-104
stl 3-14, 4-8, 6-104
stob 2-3, 6-104
STOP# 15-37
store instructions 5-5, 6-104
stos 2-3
stq 3-14, 4-8, 6-104
stt 4-8, 6-104
SubBNR 15-51
subc 6-108
subi 6-112
subie 6-109
subig 6-109
subige 6-109
subil 6-109
subile 6-109
subine 6-109
subino 6-109
subio 6-109
subo 6-112
suboe 6-109
subog 6-109
suboge 6-109
subol 6-109
subole 6-109
subone 6-109
subono 6-109
suboo 6-109

supervisor stack 3-1, 3-10
alignment 3-13

supervisor-trace mode 10-3
syncf 6-113, 9-21
synchronize faults instruction 6-113
sysctl 3-22, 4-4, 4-5, 4-6, 6-114, 10-6, C-1
system calls 7-2, 7-15

calls 7-2
system-local 7-2, 9-2
system-supervisor 7-2, 9-2

system control instruction 6-114
system procedure table 3-1, 3-10

alignment 3-13

T
TAP Test Data Registers 23-8
TC 10-2
TCRx 19-6
Test Access Port (TAP) controller 23-13

block diagram 23-4
state diagram 23-14

Test Data Input (TDI) pin 23-5
test features 23-3
test instructions 6-118
Test Mode Select (TMS) line 23-13
teste 6-118
testg 6-118
testge 6-118
testl 6-118
testle 6-118
testne 6-118
testno 6-118
testo 6-118
Index-22

Subordinate Bus Number Register 15-51
Subordinate Bus Number Register - SubBNR 15-51
subtract

conditional instructions 6-109
integer instruction 6-112
ordinal instruction 6-112
ordinal with carry instruction 6-108

supervisor calls 7-2
supervisor mode resources 3-21
supervisor space family registers and tables C-1, 

C-2

timer
interrupts 8-18
memory-mapped addresses 19-2

Timer Count Register - TCRx 19-6
Timer Count Register (TCRx) 19-5
Timer Mode Register

timer mode control bit summary 19-8
Timer Mode Register - TMRx 19-3
Timer Mode Register (TMRx)

terminal count 19-3
timer clock encodings 19-5



IN
D

E
X

INDEX

Timer Reload Register - TRRx 19-7
TMRx 19-3
Trace Controls (TC) register 3-21, 10-2
trace events 10-1

hardware breakpoint registers 10-1
mark and fmark 10-1
PC and TC registers 10-1

trace-fault-pending flag 10-3
TRDY# 15-28, 15-37
TRISTATE 23-8
TRRx 19-7
true/false conditions 3-17

U
unordered numbers 3-17
Upstream (defined) 1-9
user space family registers and tables C-4
user stack 3-10

alignment 3-13
user supervisor protection model 3-21

supervisor mode resources 3-21
usage 3-22

V
vector entries 8-5

structure 8-5
Vendor ID Register - VIDR 15-41
VGA address support 15-13
VGA compatible addressing 15-1
VGA Enable bit 15-12
VGA palette snooping 15-1, 15-14
VIDR 15-41

W

XINT5# 8-25
XINT6 Interrupt Status Register 8-39
XINT6 Interrupt Status Register - X6ISR 8-39
XINT6# 8-25, 8-26
XINT7 Interrupt Status Register 8-40, 8-41
XINT7 Interrupt Status Register - X7ISR 8-41
XINT7# 8-25, 8-26, 8-27, 8-40
xnor 6-120
xor 6-120
Index-23

warm reset 11-7
Word/Data Word notation conventions 2-2
words

triple and quad 2-4

X
X6ISR 8-39
X7ISR 8-40, 8-41
XINT3

0# 8-32
XINT4# 8-25




	i960® Rx I/O Microprocessor Developer’s Manual
	Copyright Page
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	CHAPTER 1 INTRODUCTION
	1.1 INTEL’S i960® Rx I/O PROCESSOR
	Figure 1�1. i960® Rx I/O Processor Functional Bloc...

	1.2 i960® Rx I/O PROCESSOR FEATURES
	1.2.1 Intelligent I/O (I2O)
	1.2.2 PCI-to-PCI Bridge Unit
	1.2.3 Private PCI Device Support
	1.2.4 DMA Controller
	1.2.5 Address Translation Unit
	1.2.6 Messaging Unit
	1.2.7 Memory Controller
	1.2.8 I2C Bus Interface Unit
	1.2.9 I/O APIC Bus Interface Unit
	1.2.10 Secondary PCI Arbitration Unit
	1.2.11 Wind River Systems IxWorks* RTOS

	1.3 i960® CORE PROCESSOR FEATURES (80960JF)
	Figure 1�2. 80960JF Core Processor Block Diagram
	1.3.1 Burst Bus
	1.3.2 Timer Unit
	1.3.3 Priority Interrupt Controller
	1.3.4 Faults and Debugging
	1.3.5 On-Chip Cache and Data RAM
	1.3.6 Local Register Cache
	1.3.7 Test Features
	1.3.8 Memory-Mapped Control Registers
	1.3.9 Instructions, Data Types and Memory Addressi...

	1.4 ABOUT THIS DOCUMENT
	1.4.1 Terminology
	1.4.2 Representing Numbers
	1.4.3 Fields
	1.4.4 Specifying Bit and Signal Values
	1.4.5 Signal Name Conventions
	1.4.6 Solutions960® Program
	1.4.7 Additional Information Sources
	1.4.8 Electronic Information

	1.5 STEPPING DIFFERENCES SUMMARY
	Table 1�1. Stepping Differences Summary


	CHAPTER 2 DATA TYPES AND MEMORY ADDRESSING MODES
	2.1 DATA TYPES
	Figure 2�1. Data Types and Ranges
	2.1.1 Word/Dword Notation
	Table 2�1. 80960 and PCI Architecture Data Word No...

	2.1.2 Integers
	Example 2�1. Sign Extensions on Load Byte and Load...

	2.1.3 Ordinals
	2.1.4 Bits and Bit Fields
	2.1.5 Triple and Quad Words
	2.1.6 Register Data Alignment
	2.1.7 Literals

	2.2 BIT AND BYTE ORDERING IN MEMORY
	2.3 MEMORY ADDRESSING MODES
	Table 2�2. Memory Addressing Modes
	2.3.1 Absolute
	2.3.2 Register Indirect
	2.3.3 Index with Displacement
	2.3.4 IP with Displacement
	2.3.5 Addressing Mode Examples
	Example 2�2. Addressing Mode Mnemonics
	Example 2�3. Scaled Index and Scaled Index Plus Di...



	CHAPTER 3 PROGRAMMING ENVIRONMENT
	3.1 OVERVIEW
	3.2 REGISTERS AND LITERALS AS INSTRUCTION OPERANDS...
	Figure 3�1. i960® Rx I/O Processor Programming Env...
	3.2.1 Global Registers
	Table 3�1. Registers and Literals Used as Instruct...

	3.2.2 Local Registers
	3.2.3 Register Scoreboarding
	Example 3�1. Register Scoreboarding

	3.2.4 Literals
	3.2.5 Register and Literal Addressing and Alignmen...
	Example 3�2. Register Alignment
	Table 3�2. Allowable Register Operands


	3.3 MEMORY-MAPPED CONTROL REGISTERS (MMRs)
	3.3.1 i960® Core Processor Function Memory-Mapped ...
	3.3.1.1 Restrictions on Instructions that Access t...
	3.3.1.2 Access Faults for i960® Core Processor MMR...

	3.3.2 i960® Rx I/O Processor Peripheral Memory-Map...
	3.3.2.1 Accessing The Peripheral Memory-Mapped Reg...


	3.4 ARCHITECTURALLY DEFINED DATA STRUCTURES
	Table 3�3. Data Structure Descriptions

	3.5 MEMORY ADDRESS SPACE
	Figure 3�2. Local Memory Address Space
	3.5.1 Memory Requirements
	3.5.2 Data and Instruction Alignment in the Addres...
	Table 3�4. Alignment of Data Structures in the Add...

	3.5.3 Byte, Word and Bit Addressing
	3.5.4 Internal Data RAM
	3.5.5 Instruction Cache
	3.5.6 Data Cache

	3.6 PROCESSOR-STATE REGISTERS
	3.6.1 Instruction Pointer (IP) Register
	3.6.2 Arithmetic Controls Register – AC
	Table 3-5. Arithmetic Controls Register – AC�
	3.6.2.1 Initializing and Modifying the AC Register...
	3.6.2.2 Condition Code (AC.cc)
	Table 3�6. Condition Codes for True or False Condi...
	Table 3�7. Condition Codes for Equality and Inequa...
	Table 3�8. Condition Codes for Carry Out and Overf...


	3.6.3 Process Controls Register – PC
	Table 3-9. Process Controls Register – PC�
	3.6.3.1 Initializing and Modifying the PC Register...

	3.6.4 Trace Controls (TC) Register

	3.7 USER-SUPERVISOR PROTECTION MODEL
	3.7.1 Supervisor Mode Resources
	3.7.2 Using the User-Supervisor Protection Model


	CHAPTER 4 CACHE AND ON-CHIP DATA RAM
	4.1 INTERNAL DATA RAM
	Figure 4�1. Internal Data RAM and Register Cache

	4.2 LOCAL REGISTER CACHE
	Example 4�1. Register Cache Operation

	4.3 INSTRUCTION CACHE
	4.3.1 Enabling and Disabling the Instruction Cache...
	4.3.2 Operation While the Instruction Cache Is Dis...
	4.3.3 Loading and Locking Instructions in the Inst...
	4.3.4 Instruction Cache Visibility
	4.3.5 Instruction Cache Coherency

	4.4 DATA CACHE
	4.4.1 Enabling and Disabling the Data Cache
	4.4.2 Multi-Word Data Accesses that Partially Hit ...
	4.4.3 Data Cache Fill Policy
	4.4.4 Data Cache Write Policy
	4.4.5 Data Cache Coherency and Non-Cacheable Acces...
	4.4.6 External I/O and Bus Masters and Cache Coher...
	4.4.7 Data Cache Visibility


	CHAPTER 5 INSTRUCTION SET OVERVIEW
	5.1 INSTRUCTION FORMATS
	5.1.1 Assembly Language Format
	5.1.2 Instruction Encoding Formats
	Table 5�1. Instruction Encoding Formats (REG, COBR...
	Figure 5�1. Machine-Level Instruction Formats

	5.1.3 Instruction Operands

	5.2 INSTRUCTION GROUPS
	Table 5�2. 80960Rx Instruction Set
	5.2.1 Data Movement
	5.2.1.1 Load and Store Instructions
	5.2.1.2 Move
	5.2.1.3 Load Address

	5.2.2 Select Conditional
	5.2.3 Arithmetic
	Table 5�3. Arithmetic Operations
	5.2.3.1 Add, Subtract, Multiply, Divide, Condition...
	5.2.3.2 Remainder and Modulo
	5.2.3.3 Shift, Rotate and Extended Shift
	5.2.3.4 Extended Arithmetic

	5.2.4 Logical
	5.2.5 Bit, Bit Field and Byte Operations
	5.2.5.1 Bit Operations
	5.2.5.2 Bit Field Operations
	5.2.5.3 Byte Operations

	5.2.6 Comparison
	5.2.6.1 Compare and Conditional Compare
	5.2.6.2 Compare and Increment or Decrement
	5.2.6.3 Test Condition Codes

	5.2.7 Branch
	5.2.7.1 Unconditional Branch
	5.2.7.2 Conditional Branch
	5.2.7.3 Compare and Branch

	5.2.8 Call/Return
	5.2.9 Faults
	5.2.10 Debug
	5.2.11 Atomic Instructions
	5.2.12 Processor Management

	5.3 PERFORMANCE OPTIMIZATION
	5.3.1 Instruction Optimizations
	5.3.1.1 Load / Store Execution Model
	5.3.1.2 Compare Operations
	5.3.1.3 Microcoded Instructions
	5.3.1.4 Multiply-Divide Unit Instructions
	5.3.1.5 Multi-Cycle Register Operations
	5.3.1.6 Simple Control Transfer
	5.3.1.7 Memory Instructions
	5.3.1.8 Unaligned Memory Accesses

	5.3.2 Miscellaneous Optimizations
	5.3.2.1 Masking of Integer Overflow
	5.3.2.2 Avoid Using PFP, SP, R3 As Destinations fo...
	5.3.2.3 Use Global Registers (g0 - g14) As Destina...
	5.3.2.4 Execute in Imprecise Fault Mode

	5.3.3 Cache Control


	CHAPTER 6 INSTRUCTION SET REFERENCE
	6.1 NOTATION
	6.1.1 Alphabetic Reference
	6.1.2 Mnemonic
	6.1.3 Format
	6.1.4 Description
	6.1.5 Action
	Table 6�1. Pseudo-Code Symbol Definitions (Sheet 2...
	Table 6�2. Faults Applicable to All Instructions
	Table 6�3. Common Faulting Conditions

	6.1.6 Faults
	6.1.7 Example
	6.1.8 Opcode and Instruction Format
	6.1.9 See Also
	6.1.10 Side Effects
	6.1.11 Notes

	6.2 INSTRUCTIONS
	6.2.1 ADD<cc>
	Table 6�4. Condition Code Mask Descriptions (Sheet...

	6.2.2 addc
	6.2.3 addi, addo
	6.2.4 alterbit
	6.2.5 and, andnot
	6.2.6 atadd
	6.2.7 atmod
	6.2.8 b, bx
	6.2.9 bal, balx
	6.2.10 bbc, bbs
	6.2.11 BRANCH<cc>
	6.2.12 bswap
	6.2.13 call
	6.2.14 calls
	6.2.15 callx
	6.2.16 chkbit
	6.2.17 clrbit
	6.2.18 cmpdeci, cmpdeco
	6.2.19 cmpinci, cmpinco
	6.2.20 COMPARE
	6.2.21 COMPARE AND BRANCH<cc>
	6.2.22 concmpi, concmpo
	Table 6�5. concmpo Example: Register Ordering and ...

	6.2.23 dcctl
	Table 6�6. dcctl Operand Fields
	Figure 6�1. dcctl src1 and src/dst Formats
	Table 6�7. dcctl Status Values and D-Cache Paramet...
	Figure 6�2. Store Data Cache to Memory Output Form...
	Figure 6�3. D-Cache Tag and Valid Bit Formats

	6.2.24 divi, divo
	6.2.25 ediv
	6.2.26 emul
	6.2.27 eshro
	6.2.28 extract
	6.2.29 FAULT<cc>
	6.2.30 flushreg
	6.2.31 fmark
	6.2.32 halt
	6.2.33 icctl
	Table 6�8. icctl Operand Fields
	Figure 6�4. icctl src1 and src/dst Formats
	Table 6�9. icctl Status Values and I-Cache Paramet...
	Figure 6�5. Store Instruction Cache to Memory Outp...
	Figure 6�6. I-Cache Set Data, Tag and Valid Bit Fo...

	6.2.34 intctl
	6.2.35 intdis
	6.2.36 inten
	6.2.37 LOAD
	6.2.38 lda
	6.2.39 mark
	6.2.40 modac
	6.2.41 modi
	6.2.42 modify
	6.2.43 modpc
	6.2.44 modtc
	6.2.45 MOVE
	6.2.46 muli, mulo
	6.2.47 nand
	6.2.48 nor
	6.2.49 not, notand
	6.2.50 notbit
	6.2.51 notor
	6.2.52 or, ornot
	6.2.53 remi, remo
	6.2.54 ret
	6.2.55 rotate
	6.2.56 scanbit
	6.2.57 scanbyte
	6.2.58 SEL<cc>
	6.2.59 setbit
	6.2.60 SHIFT
	6.2.61 spanbit
	6.2.62 STORE
	6.2.63 subc
	6.2.64 SUB<cc>
	6.2.65 subi, subo
	6.2.66 syncf
	6.2.67 sysctl
	Figure 6�7. Src1 Operand Interpretation
	Table 6�10. sysctl Field Definitions
	Table 6�11. Cache Mode Configuration
	Figure 6�8. src/dst Interpretation for Breakpoint ...

	6.2.68 TEST<cc>
	6.2.69 xnor, xor


	CHAPTER 7 PROCEDURE CALLS
	7.1 CALL AND RETURN MECHANISM
	7.1.1 Local Registers and the Procedure Stack
	Figure 7�1. Procedure Stack Structure and Local Re...

	7.1.2 Local Register and Stack Management
	7.1.2.1 Frame Pointer
	7.1.2.2 Stack Pointer
	7.1.2.3 Considerations When Pushing Data onto the ...
	7.1.2.4 Considerations When Popping Data off the S...
	7.1.2.5 Previous Frame Pointer
	7.1.2.6 Return Type Field
	7.1.2.7 Return Instruction Pointer

	7.1.3 Call and Return Action
	7.1.3.1 Call Operation
	7.1.3.2 Return Operation

	7.1.4 Caching Local Register Sets
	7.1.4.1 Reserving Local Register Sets for High Pri...
	Figure 7�2. Frame Spill
	Figure 7�3. Frame Fill


	7.1.5 Mapping Local Registers to the Procedure Sta...

	7.2 MODIFYING THE PFP REGISTER
	Example 7�1. flushreg

	7.3 PARAMETER PASSING
	Example 7�2. Parameter Passing Code Example

	7.4 LOCAL CALLS
	7.5 SYSTEM CALLS
	7.5.1 System Procedure Table
	Figure 7�4. System Procedure Table
	7.5.1.1 Procedure Entries
	Table 7�1. Encodings of Entry Type Field in System...

	7.5.1.2 Supervisor Stack Pointer
	7.5.1.3 Trace Control Bit

	7.5.2 System Call to a Local Procedure
	7.5.3 System Call to a Supervisor Procedure

	7.6 USER AND SUPERVISOR STACKS
	7.7 INTERRUPT AND FAULT CALLS
	7.8 RETURNS
	Table 7-2. Previous Frame Pointer Register – PFP
	Table 7�3. Encoding of Return Status Field �

	7.9 BRANCH-AND-LINK

	CHAPTER 8 INTERRUPTS
	8.1 OVERVIEW
	Figure 8�1. Interrupt Handling Data Structures
	8.1.1 The i960® Rx I/O Processor Core Interrupt Ar...
	8.1.2 Software Requirements For Interrupt Handling...
	8.1.3 Interrupt Priority
	8.1.4 Interrupt Table
	Figure 8�2. Interrupt Table
	8.1.4.1 Vector Entries
	8.1.4.2 Pending Interrupts
	8.1.4.3 Caching Portions of the Interrupt Table

	8.1.5 Interrupt Stack And Interrupt Record
	Figure 8�3. Storage of an Interrupt Record on the ...

	8.1.6 Posting Interrupts
	8.1.6.1 Posting Software Interrupts via sysctl
	Example 8�1. Using sysctl to Request an Interrupt

	8.1.6.2 Posting Software Interrupts Directly in th...
	8.1.6.3 Posting External Interrupts
	8.1.6.4 Posting Hardware Interrupts

	8.1.7 Resolving Interrupt Priority
	Example 8�2. Interrupt Resolution

	8.1.8 Sampling Pending Interrupts in the Interrupt...
	8.1.9 Saving the Interrupt Mask

	8.2 THE i960® CORE PROCESSOR INTERRUPT CONTROLLER
	Figure 8�4. Interrupt Controller
	8.2.1 Interrupt Controller Dedicated Mode
	Figure 8�5. Interrupt Pin Vector Assignment

	8.2.2 Interrupt Detection
	Example 8�3. Return from a Level-detect Interrupt
	Figure 8�6. Interrupt Fast Sampling

	8.2.3 Non-Maskable Interrupt (NMI#)
	8.2.4 Timer Interrupts
	8.2.5 Software Interrupts
	8.2.6 Interrupt Operation Sequence
	8.2.7 Setting Up the Interrupt Controller
	Example 8�4. Programming the Interrupt Controller ...

	8.2.8 Interrupt Service Routines
	8.2.9 Interrupt Context Switch
	8.2.9.1 Servicing An Interrupt From Executing Stat...
	8.2.9.2 Servicing An Interrupt From Interrupted St...


	8.3 PCI AND PERIPHERAL INTERRUPTS
	Figure 8�7. Interrupt Controller Connections for 8...
	Figure 8�8. Interrupt Controller Connections for 8...
	8.3.1 Pin Descriptions
	Table 8�1. Interrupt Input Pin Descriptions

	8.3.2 PCI Interrupt Routing
	Table 8�2. PCI Interrupt Routing Summary for 80960...
	Table 8�3. PCI Interrupt Routing Summary for 80960...

	8.3.3 Internal Peripheral Interrupt Routing
	8.3.3.1 XINT6 Interrupt Sources
	Table 8�4. XINT6 Interrupt Sources

	8.3.3.2 XINT7 Interrupt Sources
	Table 8�5. XINT7 Interrupt Sources �

	8.3.3.3 NMI Interrupt Sources
	Table 8�6. NMI Interrupt Sources (Sheet 2 of 2)


	8.3.4 PCI Outbound Doorbell Interrupts

	8.4 MEMORY-MAPPED CONTROL REGISTERS
	Table 8�7. Interrupt Control Registers Memory-Mapp...
	8.4.1 PCI Interrupt Routing Select Register (PIRSR...
	Table 8�8. PCI Interrupt Routing Select Register –...
	Table 8�9. PCI Interrupt Routing Select Register –...

	8.4.2 Interrupt Control Register – ICON
	Table 8�10. Interrupt Control Register – ICON

	8.4.3 Interrupt Mapping Registers – IMAP0-IMAP2
	Table 8�11. Interrupt Map Register 0 – IMAP0�
	Table 8�12. Interrupt Map Register 1 – IMAP1�
	Table 8�13. Interrupt Map Register 2 – IMAP2�

	8.4.4 Interrupt Mask – IMSK and Interrupt Pending ...
	Table 8�14. Interrupt Pending Register – IPND�
	Table 8�15. Interrupt Mask Register – IMSK�

	8.4.5 XINT6 Interrupt Status Register – X6ISR
	Table 8�16. XINT6 Interrupt Status Register – X6IS...

	8.4.6 XINT7 Interrupt Status Register – X7ISR
	Table 8�17. XINT7 Interrupt Status Register – X7IS...

	8.4.7 NMI Interrupt Status Register – NISR
	Example 8�5. Example Code - NMI Interrupt Handler ...
	Table 8�18. NMI Interrupt Status Register – NISR�

	8.4.8 Interrupt Controller Register Access Require...
	8.4.9 Default and Reset Register Values
	Table 8�19. Default Interrupt Routing and Status V...


	8.5 OPTIMIZING INTERRUPT PERFORMANCE
	Figure 8�9. Interrupt Service Flowchart
	8.5.1 Interrupt Service Latency
	8.5.2 Features to Improve Interrupt Performance
	8.5.2.1 Vector Caching Option
	Table 8�20. Location of Cached Vectors in Internal...

	8.5.2.2 Caching Interrupt Routines and Reserving R...
	8.5.2.3 Caching the Interrupt Stack

	8.5.3 Base Interrupt Latency
	Table 8�21. Base Interrupt Latency

	8.5.4 Maximum Interrupt Latency
	Table 8�22. Worst-Case Interrupt Latency Controlle...
	Table 8�23. Worst-Case Interrupt Latency Controlle...
	Table 8�24. Worst-Case Interrupt Latency Controlle...
	Table 8�25. Worst-Case Interrupt Latency When Deli...
	Table 8�26. Worst-Case Interrupt Latency Controlle...

	8.5.5 Avoiding Certain Destinations for MDU Operat...
	8.5.6 Secondary PCI to Primary PCI Interrupt Routi...


	CHAPTER 9 FAULTS
	9.1 FAULT HANDLING OVERVIEW
	Figure 9�1. Fault-Handling Data Structures

	9.2 FAULT TYPES
	Table 9�1. i960® Rx I/O Processor Fault Types and ...

	9.3 FAULT TABLE
	Figure 9�2. Fault Table and Fault Table Entries

	9.4 STACK USED IN FAULT HANDLING
	9.5 FAULT RECORD
	9.5.1 Fault Record Description
	Figure 9�3. Fault Record

	9.5.2 Fault Record Location
	Figure 9�4. Storage of the Fault Record on the Sta...


	9.6 MULTIPLE AND PARALLEL FAULTS
	9.6.1 Multiple Non-Trace Faults on the Same Instru...
	9.6.2 Multiple Trace Fault Conditions on the Same ...
	9.6.3 Multiple Trace and Non-Trace Fault Condition...
	9.6.4 Parallel Faults
	9.6.4.1 Faults on Multiple Instructions Executed i...
	9.6.4.2 Fault Record for Parallel Faults

	9.6.5 Override Faults
	9.6.6 System Error

	9.7 FAULT HANDLING PROCEDURES
	9.7.1 Possible Fault Handling Procedure Actions
	9.7.2 Program Resumption Following a Fault
	9.7.2.1 Faults Happening Before Instruction Execut...
	9.7.2.2 Faults Happening During Instruction Execut...
	9.7.2.3 Faults Happening After Instruction Executi...

	9.7.3 Return Instruction Pointer (RIP)
	9.7.4 Returning to the Point in the Program Where ...
	9.7.5 Returning to a Point in the Program Other Th...
	9.7.6 Fault Controls
	Table 9�2. Fault Control Bits and Masks


	9.8 FAULT HANDLING ACTION
	9.8.1 Local Fault Call
	9.8.2 System-Local Fault Call
	9.8.3 System-Supervisor Fault Call
	9.8.4 Faults and Interrupts

	9.9 PRECISE AND IMPRECISE FAULTS
	9.9.1 Precise Faults
	9.9.2 Imprecise Faults
	9.9.3 Asynchronous Faults
	9.9.4 No Imprecise Faults (AC.nif) Bit
	9.9.5 Controlling Fault Precision

	9.10 FAULT REFERENCE
	9.10.1 ARITHMETIC Faults
	9.10.2 CONSTRAINT Faults
	9.10.3 OPERATION Faults
	9.10.4 OVERRIDE Faults
	9.10.5 PARALLEL Faults
	9.10.6 PROTECTION Faults
	9.10.7 TRACE Faults
	9.10.8 TYPE Faults


	CHAPTER 10 TRACING AND DEBUGGING
	10.1 TRACE CONTROLS
	10.1.1 Trace Controls Register – TC
	Table 10�1. 80960Rx Trace Controls Register – TC

	10.1.2 PC Trace Enable Bit and Trace-Fault-Pending...

	10.2 TRACE MODES
	10.2.1 Instruction Trace
	10.2.2 Branch Trace
	10.2.3 Call Trace
	10.2.4 Return Trace
	10.2.5 Prereturn Trace
	10.2.6 Supervisor Trace
	10.2.7 Mark Trace
	10.2.7.1 Software Breakpoints
	10.2.7.2 Hardware Breakpoints
	10.2.7.3 Requesting Modification Rights to Hardwar...
	Table 10�2. src/dst Encoding

	10.2.7.4 Breakpoint Control Register – BPCON
	Table 10�3. Breakpoint Control Register – BPCON
	Table 10�4. Configuring the Data Address Breakpoin...
	Table 10�5. Programming the Data Address Breakpoin...

	10.2.7.5 Data Address Breakpoint Registers – DABx
	Table 10�6. Data Address Breakpoint Register – DAB...

	10.2.7.6 Instruction Breakpoint Registers – IPBx
	Table 10�7. Instruction Breakpoint Register – IPBx...
	Table 10�8. Instruction Breakpoint Modes



	10.3 GENERATING A TRACE FAULT
	10.4 HANDLING MULTIPLE TRACE EVENTS
	10.5 TRACE FAULT HANDLING PROCEDURE
	10.5.1 Tracing and Interrupt Procedures
	10.5.2 Tracing on Calls and Returns
	10.5.2.1 Tracing on Explicit Call
	Table 10�9. Tracing on Explicit Call

	10.5.2.2 Tracing on Implicit Call
	Table 10�10. Tracing on Implicit Call �

	10.5.2.3 Tracing on Return from Explicit Call
	Table 10�11. Tracing on Return from Explicit Call

	10.5.2.4 Tracing on Return from Implicit Call: Fau...
	10.5.2.5 Tracing on Return from Implicit Call: Int...



	CHAPTER 11 INITIALIZATION AND SYSTEM REQUIREMENTS
	11.1 OVERVIEW
	11.1.1 Core Initialization
	11.1.2 General Initialization

	11.2 80960Rx INITIALIZATION
	11.2.1 Initialization Modes
	Table 11�1. Initialization Modes

	11.2.2 Mode 0 Initialization
	11.2.3 Mode 1 Initialization
	11.2.4 Mode 2 Initialization
	11.2.5 Mode 3 (Default Mode)
	Figure 11�1. Initialization Examples Flow Chart

	11.2.6 Secondary PCI Bus Arbitration Unit
	11.2.7 Local Bus Arbitration Unit
	Table 11�2. Reset Values

	11.2.8 Reset State Operation
	11.2.8.1 i960® Rx I/O Processor Reset State Operat...
	11.2.8.2 i960® Jx Core Processor Reset State Opera...


	11.3 i960® CORE PROCESSOR INITIALIZATION
	Figure 11�2. Processor Initialization Flow
	11.3.1 Self Test Function (STEST, FAIL#)
	11.3.1.1 The STEST Signal
	11.3.1.2 Local Bus Confidence Test
	11.3.1.3 The Fail Signal (FAIL#)
	Figure 11�3. FAIL# Timing

	11.3.1.4 IMI Alignment Check and Core Processor Er...
	11.3.1.5 FAIL# Code
	Table 11�3. BIST Failure Codes
	Table 11�4. Non-BIST Failure Codes



	11.4 INITIAL MEMORY IMAGE (IMI)
	Figure 11�4. Initial Memory Image (IMI) and Proces...
	11.4.1 Initialization Boot Record (IBR)
	Table 11�5. Initialization Boot Record
	Example 11�1. Processor Initialization Pseudocode ...
	Table 11-6. PMCON14_15 Register Bit Description in...

	11.4.2 Process Control Block – PRCB
	Table 11�7. PRCB Configuration
	Table 11-8. Process Control Block Configuration Wo...

	11.4.3 Process PRCB Flow
	Example 11�2. PRCB Processing Pseudo-code Flow �
	11.4.3.1 AC Initial Image
	11.4.3.2 Fault Configuration Word
	11.4.3.3 Instruction Cache Configuration Word
	11.4.3.4 Register Cache Configuration Word

	11.4.4 Control Table
	Figure 11�5. Control Table


	11.5 DEVICE IDENTIFICATION ON RESET
	Table 11-9. Processor Device ID Register - PDIDR�
	Table 11-10. i960® Core Processor Device ID Regist...

	11.6 Reinitializing and Relocating Data Structures...
	11.7 SYSTEM REQUIREMENTS
	11.7.1 Clocking
	11.7.2 Output Clocks
	11.7.3 Reset
	11.7.4 Power and Ground Requirements (VCC, VSS)
	Figure 11�6. VCCPLL Lowpass Filter

	11.7.5 Power and Ground Planes
	Figure 11�7. Reducing Characteristic Impedance

	11.7.6 Decoupling Capacitors
	11.7.7 High Frequency Design Considerations
	11.7.8 Line Termination
	Figure 11�8. Series Termination
	Figure 11�9. AC Termination

	11.7.9 Latchup
	11.7.10 Interference
	Figure 11�10. Avoid Closed-Loop Signal Paths



	CHAPTER 12 CORE PROCESSOR LOCAL BUS CONFIGURATION
	12.1 MEMORY ATTRIBUTES
	12.1.1 Physical Memory Attributes
	12.1.2 Logical Memory Attributes
	Figure 12�1. PMCON and LMCON Example


	12.2 PROGRAMMING THE PHYSICAL MEMORY ATTRIBUTES (P...
	Table 12�1. PMCON Address Mapping �
	Table 12-2. Physical Memory Control Registers – PM...
	12.2.1 Local Bus Width

	12.3 PHYSICAL MEMORY ATTRIBUTES AT INITIALIZATION
	12.3.1 Bus Control Register – BCON
	Table 12-3. Bus Control Register Bit Definitions –...


	12.4 BOUNDARY CONDITIONS FOR PHYSICAL MEMORY REGIO...
	12.4.1 Internal Memory Locations
	12.4.2 Bus Transactions Across Region Boundaries
	12.4.3 Modifying the PMCON Registers

	12.5 PROGRAMMING THE LOGICAL MEMORY ATTRIBUTES
	12.5.1 Logical Memory Address Registers - LMADR0:1...
	Table 12-4. Logical Memory Address Registers – LMA...
	Table 12-5. Logical Memory Mask Registers – LMMR0:...
	Table 12-6. Default Logical Memory Configuration R...

	12.5.2 Defining the Effective Range of a Logical D...
	12.5.3 Data Caching Enable
	12.5.4 Enabling the Logical Memory Template
	12.5.5 Initialization
	12.5.6 Boundary Conditions for Logical Memory Temp...
	12.5.6.1 Internal Memory Locations and Peripheral ...
	12.5.6.2 Overlapping Logical Data Template Ranges
	12.5.6.3 Accesses Across LMT Boundaries

	12.5.7 Modifying the LMT Registers


	CHAPTER 13 LOCAL BUS
	Figure 13�1. The Local Bus
	13.1 OVERVIEW
	Table 13�1. Differences Between 80960JF and 80960R...
	13.1.1 Bus Operation

	13.2 BASIC BUS STATES
	Figure 13�2. Bus States with Arbitration

	13.3 BUS SIGNAL TYPES
	13.3.1 Clock Signal
	13.3.2 Address/Data Signal Definitions
	13.3.3 Control/Status Signal Definitions
	13.3.4 Bus Width
	Figure 13�3. Data Width and Byte Encodings

	13.3.5 Basic Bus Accesses
	Figure 13�4. Non-Burst Read and Write Transactions...

	13.3.6 Burst Transactions
	13.3.6.1 i960® Core Processor Burst Transactions
	Table 13�2. i960® Core Processor Natural Boundarie...
	Table 13�3. i960® Core Processor Summary of Byte L...
	Table 13�4. i960® Core Processor Summary of Short ...
	Table 13�5. i960® Core Processor Summary of n-Word...
	Figure 13�5. i960® Core Processor Summary of Align...
	Figure 13�6. i960® Core Processor Summary of Align...
	Figure 13�7. Burst Read and Write Transactions w/o...
	Figure 13�8. Burst Read and Write Transactions w/o...

	13.3.6.2 ATU and DMA Burst Transactions
	Figure 13�9. ATU or DMA 7-Word Unaligned Burst Tra...


	13.3.7 Wait States
	Figure 13�10. Burst Write Transactions With 2,1,1,...
	13.3.7.1 Recovery States
	Figure 13�11. Burst Read/Write Transactions with 1...



	13.4 BUS AND CONTROL SIGNALS DURING RECOVERY AND I...
	13.5 ATOMIC BUS TRANSACTIONS
	Figure 13�12. The LOCK# Signal

	13.6 BUS ARBITRATION
	13.6.1 HOLD/HOLDA Protocol
	Figure 13�13. Arbitration Timing Diagram for a Bus...



	CHAPTER 14 MEMORY CONTROLLER
	Figure 14�1. 80960Rx Processor Integrated Memory C...
	14.1 SUPPORTED MEMORY TYPES
	14.2 THEORY OF OPERATION
	Figure 14�2. Memory Controller Signal Overview

	14.3 Memory Controller Wait States
	14.4 ROM, SRAM and FLASH CONTROL
	Table 14�1. ROM, SRAM and Flash Control Signals
	Figure 14�3. Bank0 32-Bit ROM or SRAM System
	Figure 14�4. Bank0 8-Bit ROM or SRAM System

	14.5 MEMORY BANK PROGRAMMING REGISTERS
	Table 14�2. Memory Bank Register Summary �
	14.5.1 Memory Bank Control Register - MBCR
	Table 14�3. Memory Bank Control Register – MBCR (S...

	14.5.2 Memory Bank Base Address Registers - MBBAR0...
	Table 14�4. Memory Bank Base Address Registers – M...

	14.5.3 Memory Bank Wait State Registers - MBRWS0:1...
	14.5.3.1 Memory Bank Read Wait State Registers - M...
	Table 14�5. Memory Bank Read Wait States Register ...

	14.5.3.2 Memory Bank Write Wait State Registers - ...
	Table 14�6. Memory Bank Write Wait States Register...


	14.5.4 Memory Bank Waveforms
	Table 14�7. Burst Flash Memory, Read Access Exampl...
	Figure 14�5. 32-Bit Bus, Burst Flash Memory, Read ...
	Table 14�8. SRAM Write Access Example Programming ...
	Figure 14�6. 32-Bit Bus, SRAM Write Access with 2,...
	Table 14�9. SRAM Read Access Example Programming S...
	Figure 14�7. 32-Bit Bus, SRAM Read Accesses with 0...
	Table 14�10. SRAM Write Access Example Programming...
	Figure 14�8. 32-Bit Bus, SRAM Write Access With 0 ...

	14.5.5 Extending Memory Write Enable Signals
	Table 14�11. Write Access with Extended MWE3:0# Ex...
	Figure 14�9. 32-Bit Bus, Write Access with Extende...


	14.6 DRAM CONTROL
	Table 14�12. DRAM Control Signals
	14.6.1 DRAM Organization and Configuration
	Table 14�13. Supported DRAM Configurations
	Figure 14�10. Non-Interleaved, 32-Bit, Single Bank...
	Figure 14�11. Interleaved 32-Bit DRAM System, 1 Ba...
	Table 14�14. Supported DRAM Configurations (Symmet...

	14.6.2 DRAM Addressing
	Table 14�15. MA11:0 Address Bits for Non-Interleav...

	14.6.3 DRAM Registers
	Table 14�16. DRAM Register Summary �

	14.6.4 DRAM Bank Control Register — DBCR
	Table 14�17. DRAM Bank Control Register — DBCR (Sh...

	14.6.5 DRAM Base Address Register — DBAR
	Table 14�18. DRAM Base Address Register — DBAR

	14.6.6 DRAM Read Wait State Register — DRWS
	Figure 14�12. DRAM Read Cycle Programmable Paramet...
	Table 14�19. DRAM Bank Read Wait State Register — ...

	14.6.7 DRAM Write Wait State Register — DWWS
	Figure 14�13. DRAM Write Cycle Programmable Parame...
	Table 14�20. DRAM Bank Write Wait State Register —...

	14.6.8 DRAM Refresh Interval Register — DRIR
	Figure 14�14. CAS#-Before-RAS# DRAM Refresh
	Table 14�21. DRAM Refresh Interval Register — DRIR...


	14.7 ERROR CHECKING AND REPORTING
	Table 14�22. Error Checking and Reporting Register...
	14.7.1 DRAM Parity Enable Register — DPER
	Table 14�23. DRAM Parity Enable Register — DPER

	14.7.2 Bus Monitor Enable Register — BMER
	Table 14�24. Bus Monitor Enable Register — BMER

	14.7.3 Memory Error Address Register — MEAR
	Table 14�25. Memory Error Address Register — MEAR

	14.7.4 Local Processor Interrupt Status Register —...
	Table 14�26. Local Processor Interrupt Status Regi...


	14.8 DRAM WAVEFORMS
	14.8.1 Non-Interleaved Fast Page-Mode DRAM Wavefor...
	Table 14�27. FPM (Non-Interleaved) DRAM Example Pr...
	Figure 14�15. FPM DRAM System Read Access, Non-Int...
	Figure 14�16. FPM DRAM System Write Cycle

	14.8.2 Interleaved FPM DRAM Waveform
	Table 14�28. FPM (Interleaved) DRAM Example Progra...
	Figure 14�17. FPM DRAM System Read Access, Interle...
	Figure 14�18. FPM DRAM System Write Access, Interl...

	14.8.3 EDO DRAM Waveform
	Table 14�29. EDO DRAM Example Programming Summary
	Figure 14�19. EDO DRAM System Read Access, 2,0,0,0...
	Figure 14�20. EDO DRAM System Write Access, 1,0,0,...

	14.8.4 BEDO DRAM Waveform
	Table 14�30. BEDO DRAM Example Programming Summary...
	Figure 14�21. BEDO DRAM System Read Access, 3,0,0,...
	Figure 14�22. BEDO DRAM System Write Access, 1,0,0...


	14.9 INITIALIZING DRAM DEVICES
	Figure 14�23. BEDO WBCR Program Cycle

	14.10 OVERLAPPING MEMORY REGIONS
	Table 14�31. Memory Precedence


	CHAPTER 15 PCI-TO-PCI BRIDGE UNIT
	15.1 OVERVIEW
	15.2 THEORY OF OPERATION
	Figure 15�1. Bridge Operation

	15.3 ARCHITECTURAL DESCRIPTION
	Figure 15�2. PCI-to-PCI Bridge Unit Block Diagram
	15.3.1 Primary PCI Interface
	15.3.2 Secondary PCI Interface
	15.3.3 Buffers
	15.3.4 Configuration Registers

	15.4 CONFIGURATION ACCESSES
	Figure 15�3. PCI Configuration Access Formats
	15.4.1 Private Configuration Commands (Type 0) on ...
	15.4.2 Special Cycles
	Table 15�1. Private PCI Memory IDSEL Select Config...
	Figure 15�4. Secondary IDSEL Example


	15.5 ADDRESS DECODING
	15.5.1 I/O Address Space
	15.5.1.1 Disabling the I/O Address Range
	15.5.1.2 ISA Mode
	Figure 15�5. ISA Mode Address Decode


	15.5.2 Memory Address Space
	Figure 15�6. Overlapping Memory Address Ranges
	15.5.2.1 Disabling the Memory Address Range

	15.5.3 VGA Address Support
	15.5.3.1 VGA Compatible Addressing
	Figure 15�7. VGA Compatible Addressing

	15.5.3.2 VGA Palette Snooping
	Table 15�2. VGA Palette Configurations


	15.5.4 64-Bit Address Decoding - Dual Address Cycl...
	15.5.5 Private Address Space
	15.5.6 Address Decode Summary
	Table 15�3. Primary to Secondary Memory Address De...
	Table 15�4. Primary to Secondary I/O Address Decod...
	Table 15�5. Secondary to Primary Memory Address De...
	Table 15�6. Secondary to Primary I/O Address Decod...


	15.6 BRIDGE OPERATION
	Table 15�7. PCI Commands �
	15.6.1 PCI Interfaces
	15.6.2 Claiming a PCI Transaction
	15.6.2.1 Master Latency Timers
	15.6.2.2 Delayed Transactions
	15.6.2.3 Posted Transactions
	Table 15�8. Delayed Transactions vs. Posted Transa...


	15.6.3 PCI Read Transactions
	Table 15�9. Prefetchable Memory Summary
	Table 15�10. Memory Read Prefetch Size

	15.6.4 PCI Write Transactions
	15.6.4.1 Delayed Write Transactions
	15.6.4.2 Posted Write Transactions
	15.6.4.3 Memory Write Command
	15.6.4.4 Memory Write and Invalidate Command
	15.6.4.5 I/O Write Command
	15.6.4.6 Write Boundaries
	15.6.4.7 Fast Back to Back Transactions


	15.7 BUFFERS
	15.7.1 Buffer Organization
	15.7.2 Buffer Operation
	15.7.3 Transaction Ordering Rules

	15.8 BRIDGE DATA FLOW
	15.8.1 Downstream Delayed Read Transaction
	15.8.2 Downstream Delayed Write Transaction
	15.8.3 Downstream Posted Write Transaction
	15.8.4 Definitions

	15.9 EXCLUSIVE ACCESS
	Figure 15�8. Bridge Lock Mechanism

	15.10 SYNCHRONIZATION EVENTS
	15.11 PCI TRANSACTION TERMINATION
	15.12 ERROR CONDITIONS
	15.12.1 Address Parity Errors
	15.12.1.1 Address Parity Errors on Primary Interfa...
	15.12.1.2 Address Parity Errors on Secondary Inter...

	15.12.2 Data Parity Errors
	15.12.2.1 Read Data Parity
	15.12.2.2 Delayed Write Data Parity
	Table 15�11. Delayed Write Parity Error Summary �

	15.12.2.3 Posted Write Data Parity

	15.12.3 Master-abort
	15.12.4 Target-abort
	15.12.5 SERR# Assertion

	15.13 REGISTER DEFINITIONS
	Figure 15�9. Bridge Configuration Register Space
	Table 15�12. PCI to PCI Bridge Unit Register Summa...
	15.13.1 Vendor ID Register - VIDR
	Table 15�13. Vendor ID Register - VIDR

	15.13.2 Device ID Register - DIDR
	Table 15�14. Device ID Register - DIDR

	15.13.3 Primary Command Register - PCMDR
	Table 15�15. Primary Command Register - PCMDR (She...

	15.13.4 Primary Status Register - PSR
	Table 15�16. Primary Status Register - PSR (Sheet ...

	15.13.5 Revision ID Register - RIDR
	Table 15�17. Revision ID Register - RIDR

	15.13.6 Class Code Register - CCR
	Table 15�18. Class Code Register - CCR �

	15.13.7 Cacheline Size Register - CLSR
	Table 15�19. Cacheline Size Register - CLSR

	15.13.8 Primary Latency Timer Register - PLTR
	Table 15�20. Primary Latency Timer Register - PLTR...

	15.13.9 Header Type Register - HTR
	Table 15�21. Header Type Register - HTR �

	15.13.10 Primary Bus Number Register - PBNR
	Table 15�22. Primary Bus Number Register - PBNR

	15.13.11 Secondary Bus Number Register - SBNR
	Table 15�23. Secondary Bus Number Register - SBNR

	15.13.12 Subordinate Bus Number Register - SubBNR
	Table 15�24. Subordinate Bus Number Register - Sub...

	15.13.13 Secondary Latency Timer Register - SLTR
	Table 15�25. Secondary Latency Timer Register - SL...

	15.13.14 I/O Base Register - IOBR
	Table 15�26. I/O Base Register - IOBR

	15.13.15 I/O Limit Register - IOLR
	Table 15�27. I/O Limit Register - IOLR

	15.13.16 Secondary Status Register - SSR
	Table 15�28. Secondary Status Register - SSR (Shee...

	15.13.17 Memory Base Register - MBR
	Table 15�29. Memory Base Register - MBR

	15.13.18 Memory Limit Register - MLR
	Table 15�30. Memory Limit Register - MLR

	15.13.19 Prefetchable Memory Base Register - PMBR
	Table 15�31. Prefetchable Memory Base Register - P...

	15.13.20 Prefetchable Memory Limit Register - PMLR...
	Table 15�32. Prefetchable Memory Limit Register - ...

	15.13.21 Bridge Subsystem Vendor ID Register - BSV...
	Table 15�33. Bridge Subsystem Vendor ID Register -...

	15.13.22 Bridge Subsystem ID Register - BSIR
	Table 15�34. Bridge Subsystem ID Register - BSIR

	15.13.23 Bridge Control Register - BCR
	Table 15�35. Bridge Control Register - BCR (Sheet ...

	15.13.24 Extended Bridge Control Register - EBCR
	Table 15�36. Extended Bridge Control Register - EB...

	15.13.25 Secondary IDSEL Select Register - SISR
	Table 15�37. Secondary IDSEL Select Register - SIS...

	15.13.26 Primary Bridge Interrupt Status Register ...
	Table 15�38. Primary Bridge Interrupt Status Regis...

	15.13.27 Secondary Bridge Interrupt Status Registe...
	Table 15�39. Secondary Bridge Interrupt Status Reg...

	15.13.28 Secondary Arbitration Control Register - ...
	15.13.29 PCI Interrupt Routing Select Register - P...
	15.13.30 Secondary I/O Base Register - SIOBR
	Table 15�40. Secondary I/O Base Register - SIOBR

	15.13.31 Secondary I/O Limit Register - SIOLR
	Table 15�41. Secondary I/O Limit Register - SIOLR

	15.13.32 Secondary Memory Base Register - SMBR
	Table 15�42. Secondary Memory Base Register - SMBR...

	15.13.33 Secondary Memory Limit Register - SMLR
	Table 15�43. Secondary Memory Limit Register - SML...

	15.13.34 Secondary Decode Enable Register - SDER
	Table 15�44. Secondary Address Decode (Sheet 2 of ...
	Table 15�45. Secondary Decode Enable Register - SD...



	CHAPTER 16 ADDRESS TRANSLATION UNIT
	Figure 16�1. Address Translation Unit (ATU) Block ...
	16.1 OVERVIEW
	16.2 ATU TRANSACTION QUEUES
	Figure 16�2. ATU Transaction Queue Block Diagram
	16.2.1 Address Queues
	16.2.2 Data Queues

	16.3 ATU ADDRESS TRANSLATION
	Table 16�1. ATU Command Support
	16.3.1 Inbound Address Translation
	Figure 16�3. Inbound Address Detection
	Figure 16�4. Inbound Translation Example

	16.3.2 Inbound Write Transaction
	16.3.3 Inbound Read Transaction
	16.3.4 Inbound Configuration Cycle Translation
	16.3.5 Discard Timers
	16.3.6 Outbound Address Translation
	16.3.6.1 Outbound Address Translation Windows
	Figure 16�5. 80960 Local Bus Memory Map - Outbound...
	Figure 16�6. Outbound Address Translation Windows

	16.3.6.2 Direct Addressing Window
	Figure 16�7. Direct Addressing Window


	16.3.7 Outbound Write Transaction
	16.3.8 Outbound Read Transaction
	16.3.9 Private PCI Address Space / Outbound Config...

	16.4 MESSAGING UNIT
	16.5 EXPANSION ROM TRANSLATION UNIT
	16.6 ATU DATA FLOW ERROR CONDITIONS
	Table 16�2. Inbound Write Error Conditions
	Table 16�3. Inbound Read Error Conditions
	Table 16�4. Outbound Write Error Conditions
	Table 16�5. Outbound Read Error Conditions
	Table 16�6. Primary ATU Error Reporting Summary (S...
	Table 16�7. Secondary ATU Error Reporting Summary ...

	16.7 REGISTER DEFINITIONS
	Figure 16�8. ATU Configuration Space Header
	Table 16�8. ATU Configuration Space Register Summa...
	16.7.1 ATU Vendor ID Register - ATUVID
	Table 16�9. ATU Vendor ID Register - ATUVID

	16.7.2 ATU Device ID Register - ATUDID
	Table 16�10. ATU Device ID Register - ATUDID

	16.7.3 Primary ATU Command Register - PATUCMD
	Table 16�11. Primary ATU Command Register - PATUCM...

	16.7.4 Primary ATU Status Register - PATUSR
	Table 16�12. Primary ATU Status Register - PATUSR ...

	16.7.5 ATU Revision ID Register - ATURID
	Table 16�13. ATU Revision ID Register - ATURID

	16.7.6 ATU Class Code Register - ATUCCR
	Table 16�14. ATU Class Code Register - ATUCCR

	16.7.7 ATU Cacheline Size Register - ATUCLSR
	Table 16�15. ATU Cacheline Size Register - ATUCLSR...

	16.7.8 ATU Latency Timer Register - ATULT
	Table 16�16. ATU Latency Timer Register - ATULT

	16.7.9 ATU Header Type Register - ATUHTR
	Table 16�17. ATU Header Type Register - ATUHTR

	16.7.10 ATU BIST Register - ATUBISTR
	Table 16�18. ATU BIST Register - ATUBISTR �

	16.7.11 Primary Inbound ATU Base Address Register ...
	Table 16�19. Primary Inbound ATU Base Address Regi...

	16.7.12 Determining Block Sizes for Base Address R...
	Table 16�20. Device Specific Instructions for Base...
	Table 16-21. Memory Block Size Read Response (Shee...
	Table 16�22. Base Address and Limit Register Descr...

	16.7.13 ATU Subsystem Vendor ID Register - ASVIR
	Table 16�23. ATU Subsystem Vendor ID Register - AS...

	16.7.14 ATU Subsystem ID Register - ASIR
	Table 16�24. ATU Subsystem ID Register - ASIR

	16.7.15 Expansion ROM Base Address Register - ERBA...
	Table 16�25. Expansion ROM Base Address Register -...

	16.7.16 ATU Interrupt Line Register - ATUILR
	Table 16�26. ATU Interrupt Line Register - ATUILR

	16.7.17 ATU Interrupt Pin Register - ATUIPR
	Table 16�27. ATU Interrupt Pin Register - ATUIPR

	16.7.18 ATU Minimum Grant Register - ATUMGNT
	Table 16�28. ATU Minimum Grant Register - ATUMGNT

	16.7.19 ATU Maximum Latency Register - ATUMLAT
	Table 16�29. ATU Maximum Latency Register - ATUMLA...

	16.7.20 Primary Inbound ATU Limit Register - PIALR...
	Table 16�30. Primary Inbound ATU Limit Register - ...

	16.7.21 Primary Inbound ATU Translate Value Regist...
	Table 16�31. Primary Inbound ATU Translate Value R...

	16.7.22 Secondary Inbound ATU Base Address Registe...
	Table 16�32. Secondary Inbound ATU Base Address Re...

	16.7.23 Secondary Inbound ATU Limit Register - SIA...
	Table 16�33. Secondary Inbound ATU Limit Register ...

	16.7.24 Secondary Inbound ATU Translate Value Regi...
	Table 16�34. Secondary Inbound ATU Translate Value...

	16.7.25 Primary Outbound Memory Window Value Regis...
	Table 16�35. Primary Outbound Memory Window Value ...

	16.7.26 Primary Outbound I/O Window Value Register...
	Table 16�36. Primary Outbound I/O Window Value Reg...

	16.7.27 Primary Outbound DAC Window Value Register...
	Table 16�37. Primary Outbound DAC Window Value Reg...

	16.7.28 Primary Outbound Upper 64-bit DAC Register...
	Table 16�38. Primary Outbound Upper 64-bit DAC Reg...

	16.7.29 Secondary Outbound Memory Window Value Reg...
	Table 16�39. Secondary Outbound Memory Window Valu...

	16.7.30 Secondary Outbound I/O Window Value Regist...
	Table 16�40. Secondary Outbound I/O Window Value R...

	16.7.31 Expansion ROM Limit Register - ERLR
	Table 16�41. Expansion ROM Limit Register - ERLR

	16.7.32 Expansion ROM Translate Value Register - E...
	Table 16�42. Expansion ROM Translate Value Registe...

	16.7.33 ATU Configuration Register - ATUCR
	Table 16�43. ATU Configuration Register - ATUCR (S...

	16.7.34 Primary ATU Interrupt Status Register - PA...
	Table 16�44. Primary ATU Interrupt Status Register...

	16.7.35 Secondary ATU Interrupt Status Register - ...
	Table 16�45. Secondary ATU Interrupt Status Regist...

	16.7.36 Secondary ATU Command Register - SATUCMD
	Table 16�46. Secondary ATU Command Register - SATU...

	16.7.37 Secondary ATU Status Register - SATUSR
	Table 16�47. Secondary ATU Status Register - SATUS...

	16.7.38 Secondary Outbound DAC Window Value Regist...
	Table 16�48. Secondary Outbound DAC Window Value R...

	16.7.39 Secondary Outbound Upper 64-bit DAC Regist...
	Table 16�49. Secondary Outbound Upper 64-bit DAC R...

	16.7.40 Primary Outbound Configuration Cycle Addre...
	Table 16�50. Primary Outbound Configuration Cycle ...

	16.7.41 Secondary Outbound Configuration Cycle Add...
	Table 16�51. Secondary Outbound Configuration Cycl...

	16.7.42 Primary Outbound Configuration Cycle Data ...
	16.7.43 Secondary Outbound Configuration Cycle Dat...

	16.8 POWERUP/DEFAULT STATUS
	16.9 RESET MODES

	CHAPTER 17 MESSAGING UNIT
	17.1 OVERVIEW
	Table 17�1. Messaging Unit (MU) Summary

	17.2 MESSAGE REGISTERS
	17.2.1 Outbound Messages
	17.2.2 Inbound Messages

	17.3 DOORBELL REGISTERS
	17.3.1 Outbound Doorbells
	17.3.2 Inbound Doorbells

	17.4 CIRCULAR QUEUES
	Table 17�2. Queue Starting Addresses
	Figure 17�1. Circular Queue Operation
	17.4.1 Inbound Post Queue
	17.4.2 Inbound Free Queue
	17.4.3 Outbound Post Queue
	17.4.4 Outbound Free Queue
	Table 17�3. Circular Queue Summary �


	17.5 INDEX REGISTERS
	17.6 APIC REGISTERS
	17.7 REGISTER DEFINITIONS
	Figure 17-2. PCI Memory Map
	Table 17�4. Peripheral Memory-Mapped Register Summ...
	17.7.1 APIC Register Select Register - ARSR
	Table 17�5. APIC Register Select Register - ARSR �...

	17.7.2 APIC Window Register - AWR
	Table 17�6. APIC Window Register - AWR

	17.7.3 Inbound Message Registers - IMRx
	Table 17�7. Inbound Message Register - IMRx

	17.7.4 Outbound Message Registers - OMRx
	Table 17�8. Outbound Message Register - OMRx

	17.7.5 Inbound Doorbell Register - IDR
	Table 17�9. Inbound Doorbell Register - IDR

	17.7.6 Inbound Interrupt Status Register - IISR
	Table 17�10. Inbound Interrupt Status Register - I...

	17.7.7 Inbound Interrupt Mask Register - IIMR
	Table 17�11. Inbound Interrupt Mask Register - IIM...

	17.7.8 Outbound Doorbell Register - ODR
	Table 17�12. Outbound Doorbell Register - ODR

	17.7.9 Outbound Interrupt Status Register - OISR
	Table 17�13. Outbound Interrupt Status Register - ...

	17.7.10 Outbound Interrupt Mask Register - OIMR
	Table 17�14. Outbound Interrupt Mask Register - OI...

	17.7.11 Messaging Unit Configuration Register - MU...
	Table 17�15. Messaging Unit Configuration Register...

	17.7.12 Queue Base Address Register - QBAR
	Table 17�16. Queue Base Address Register - QBAR

	17.7.13 Inbound Free Head Pointer Register - IFHPR...
	Table 17�17. Inbound Free Head Pointer Register - ...

	17.7.14 Inbound Free Tail Pointer Register - IFTPR...
	Table 17�18. Inbound Free Tail Pointer Register - ...

	17.7.15 Inbound Post Head Pointer Register - IPHPR...
	Table 17�19. Inbound Post Head Pointer Register - ...

	17.7.16 Inbound Post Tail Pointer Register - IPTPR...
	Table 17�20. Inbound Post Tail Pointer Register - ...

	17.7.17 Outbound Free Head Pointer Register - OFHP...
	Table 17�21. Outbound Free Head Pointer Register -...

	17.7.18 Outbound Free Tail Pointer Register - OFTP...
	Table 17�22. Outbound Free Tail Pointer Register -...

	17.7.19 Outbound Post Head Pointer Register - OPHP...
	Table 17�23. Outbound Post Head Pointer Register -...

	17.7.20 Outbound Post Tail Pointer Register - OPTP...
	Table 17�24. Outbound Post Tail Pointer Register -...
	Figure 17�3. Initialization Values Programmed by S...

	17.7.21 Index Address Register - IAR
	Table 17�25. Index Address Register - IAR



	CHAPTER 18 BUS ARBITRATION
	18.1 OVERVIEW
	18.2 LOCAL BUS ARBITRATION UNIT
	Table 18�1. Local Bus Masters
	Table 18�2. Programmed Priority Control
	Figure 18�1. Local Bus Arbitration Example
	Table 18�3. Priority Programming for Local Bus Arb...
	Table 18�4. Bus Arbitration Example – Three Bus Ma...
	Table 18�5. Bus Arbitration Example – Six Bus Mast...
	18.2.1 Local Bus Arbitration Control Register - LB...
	Table 18�6. Local Bus Arbitration Control Register...

	18.2.2 Removing Local Bus Ownership
	18.2.3 i960® Core Processor Bus Usage
	18.2.4 External Bus Arbitration Support
	18.2.5 Local Bus Arbitration Latency Counter
	18.2.6 Local Bus Arbitration Latency Counter Regis...
	Table 18�7. Local Bus Arbitration Latency Count Re...

	18.2.7 Local Bus Backoff

	18.3 SECONDARY PCI ARBITRATION UNIT
	Figure 18�2. Secondary PCI Bus Arbitration Example...
	Table 18�8. Priority Programming for Secondary PCI...
	18.3.1 Arbitration Signaling Protocol
	18.3.2 Secondary Arbitration Control Register - SA...
	Table 18�9. Secondary Arbitration Control Register...

	18.3.3 Secondary Bus Arbitration Parking

	18.4 INTERNAL ARBITRATION UNITS
	18.4.1 Internal Master Latency Timer


	CHAPTER 19 TIMERS
	Figure 19�1. Timer Functional Diagram
	Table 19�1. Timer Performance Ranges
	19.1 TIMER REGISTERS
	Table 19�2. Timer Registers
	19.1.1 Timer Mode Registers – TMR0:1
	Table 19-3. Timer Mode Register – TMRx
	19.1.1.1 Bit 0 - Terminal Count Status Bit (TMRx.t...
	19.1.1.2 Bit 1 - Timer Enable (TMRx.enable)
	19.1.1.3 Bit 2 - Timer Auto Reload Enable (TMRx.re...
	19.1.1.4 Bit 3 - Timer Register Supervisor Read/Wr...
	19.1.1.5 Bits 4, 5 - Timer Input Clock Select (TMR...
	Table 19�4. Timer Input Clock (TCLOCK) Frequency S...


	19.1.2 Timer Count Register – TCR0:1
	Table 19-5. Timer Count Register – TCRx

	19.1.3 Timer Reload Register – TRR0:1
	Table 19-6. Timer Reload Register – TRRx


	19.2 TIMER OPERATION
	19.2.1 Basic Timer Operation
	Table 19�7. Timer Mode Register Control Bit Summar...

	19.2.2 Load/Store Access Latency for Timer Registe...
	Table 19�8. Timer Responses to Register Bit Settin...


	19.3 TIMER INTERRUPTS
	19.4 POWERUP/RESET INITIALIZATION
	Table 19�9. Timer Powerup Mode Settings

	19.5 UNCOMMON TCRX AND TRRX CONDITIONS
	Table 19�10. Uncommon TMRx Control Bit Settings�

	19.6 TIMER STATE DIAGRAM
	Figure 19�2. Timer Unit State Diagram


	CHAPTER 20 DMA CONTROLLER
	20.1 OVERVIEW
	Figure 20�1. DMA Controller Block Diagram

	20.2 THEORY OF OPERATION
	Figure 20�2. DMA Channel Block Diagram

	20.3 DMA TRANSFER
	Table 20�1. DMA Registers
	20.3.1 Chain Descriptors
	Figure 20�3. DMA Chain Descriptor
	Figure 20�4. DMA Chaining Operation

	20.3.2 Initiating DMA Transfers
	20.3.3 Scatter Gather DMA Transfers
	Figure 20�5. Example of Gather Chaining

	20.3.4 Synchronizing a Program to Chained Transfer...
	Figure 20�6. Synchronizing to Chained Transfers

	20.3.5 Appending to The End of a Chain

	20.4 DEMAND MODE DMA
	20.5 WAIT STATES INITIATED BY THE DMA CONTROLLER
	Figure 20�7. DMA - Aligned Write to Device, Wait S...
	Figure 20�8. DMA - Aligned Write to Device, DMA In...
	Figure 20�9. DMA - Aligned Read from Device, DMA I...
	Figure 20�10. DMA - Aligned Read from Device, Devi...
	Figure 20�11. DMA - Aligned Write to Device, Zero ...
	Figure 20�12. DMA - Aligned Write to Device, Zero ...
	Figure 20�13. DMA - READ from Device, Wait States,...
	Figure 20�14. DMA - Unaligned Read from Device, DM...

	20.6 DATA TRANSFERS
	20.6.1 PCI to Local Memory Transfers
	20.6.2 Local Memory to PCI Transfers
	20.6.3 Local Memory to PCI Transfers using Memory ...
	20.6.4 Exclusive Access

	20.7 REGISTER DEFINITIONS
	Table 20�2. DMA Controller Register Summary �
	20.7.1 Channel Control Register - CCRx
	Table 20-3. Channel Control Register - CCRx

	20.7.2 Channel Status Register - CSRx
	Table 20�4. Channel Status Register - CSRx (Sheet ...

	20.7.3 Descriptor Address Register - DARx
	Table 20�5. Descriptor Address Register - DARx

	20.7.4 Next Descriptor Address Register - NDARx
	Table 20�6. Next Descriptor Address Register - NDA...

	20.7.5 PCI Address Register - PADRx
	Table 20�7. PCI Address Register - PADRx

	20.7.6 PCI Upper Address Register - PUADRx
	Table 20�8. PCI Upper Address Register - PUADRx

	20.7.7 80960 Local Address Register - LADRx
	Table 20�9. 80960 Local Address Register - LADRx

	20.7.8 Byte Count Register - BCRx
	Table 20�10. Byte Count Register - BCRx

	20.7.9 Descriptor Control Register - DCRx
	Table 20�11. Descriptor Control Register - DCRx
	Table 20�12. PCI Commands


	20.8 INTERRUPTS
	Table 20�13. DMA Interrupt Summary

	20.9 PACKING AND UNPACKING
	Figure 20�15. Optimization of an Unaligned DMA

	20.10 DMA CHANNEL PROGRAMMING EXAMPLES
	20.10.1 Software DMA Controller Initialization
	Figure 20�16. Software Example for Channel Initial...

	20.10.2 Software Start DMA Transfer
	20.10.3 Software Suspend Channel
	Figure 20�17. Software Example for Channel Suspend...



	CHAPTER 21 I2C BUS INTERFACE UNIT
	Figure 21�1. I2C Unit Block Diagram
	21.1 OVERVIEW
	21.2 THEORY OF OPERATION
	Table 21�1. I2C Bus Definitions �
	Figure 21�2. I2C Bus Configuration Example
	Figure 21�3. Bit Transfer on the I2C Bus

	21.3 START AND STOP BUS STATES
	Figure 21�4. Start and Stop Conditions
	21.3.1 START Condition
	21.3.2 No START or STOP Condition
	21.3.3 STOP Condition

	21.4 SERIAL CLOCK LINE (SCL) MANAGEMENT
	21.4.1 SCL Clock Generation
	Table 21�2. ICCR Programming Values


	21.5 DATA AND ADDRESSING MANAGEMENT
	21.5.1 Addressing a Slave Device
	Figure 21�5. Data Format of First Byte in Master T...


	21.6 ARBITRATION
	21.6.1 SCL Arbitration
	Figure 21�6. Clock Synchronization During the Arbi...

	21.6.2 SDA Arbitration
	Figure 21�7. Arbitration Procedure of Two Masters


	21.7 I2C ACKNOWLEDGE
	Figure 21�8. Acknowledge on the I2C Bus

	21.8 I2C MASTER AND SLAVE OPERATIONS
	Table 21�3. Operation Modes
	21.8.1 Master Operations
	Figure 21�9. Master-Receiver Read from Slave-Trans...
	Figure 21�10. Master-Receiver Read from Slave-Tran...
	Figure 21�11. A Complete Data Transfer

	21.8.2 Slave Operations
	Figure 21�12. Master-Transmitter Write to Slave-Re...
	Figure 21�13. Master-Receiver Read to Slave-Transm...
	Figure 21�14. Master-Receiver Read to Slave-Transm...

	21.8.3 General Call Address
	Figure 21�15. General Call Address
	Table 21�4. General Call Address Second Byte Defin...


	21.9 THE I2C BUS UNIT AND RESET
	21.10 I2C REGISTERS
	Table 21�5. I2C Register Summary �
	21.10.1 I2C Control Register - ICR
	Table 21�6. I2C Control Register – ICR (Sheet 3 of...

	21.10.2 I2C Status Register- ISR
	Table 21�7. I2C Status Register – ISR (Sheet 3 of ...

	21.10.3 I2C Slave Address Register – ISAR
	Table 21�8. I2C Slave Address Register – ISAR

	21.10.4 I2C Data Buffer Register – IDBR
	Table 21�9. I2C Data Buffer Register – IDBR

	21.10.5 I2C Clock Count Register – ICCR
	Table 21�10. I2C Clock Count Register – ICCR



	CHAPTER 22 I/O APIC BUS INTERFACE UNIT
	22.1 Overview
	22.2 Theory of Operation
	Figure 22�1. APIC System Interface

	22.3 Physical Characteristics of an APIC
	22.4 I/O APIC EMULATION
	Figure 22�2. I/O APIC Emulation Block Diagram

	22.5 REGISTER DEFINITIONS
	Table 22�1. I/O APIC Bus Interface Unit Register S...
	22.5.1 APIC ID Register - APIC ID
	Table 22�2. APIC ID Register – APIC ID

	22.5.2 APIC Arbitration Register - APIC ArbID
	Table 22�3. APIC Arbitration ID Register – APIC Ar...

	22.5.3 EOI Vector Register - EVR
	Table 22�4. EOI Vector Register – EVR

	22.5.4 Interrupt Message Register - IMR
	Table 22�5. Interrupt Message Register – IMR (Shee...

	22.5.5 APIC Control/Status Register - APIC CSR
	Table 22�6. APIC Control/Status Register – APIC CS...



	CHAPTER 23 TEST FEATURES
	23.1 ON-CIRCUIT EMULATION (ONCE)
	23.1.1 Entering/Exiting ONCE Mode
	23.1.2 ONCE Mode and Boundary-Scan (JTAG) are Inco...
	23.1.3 How to use the Data Enable (DEN#) Signal wi...
	23.1.3.1 DEN# Alternatives


	23.2 BOUNDARY-SCAN (JTAG)
	23.2.1 Boundary-Scan Architecture
	Figure 23�1. Test Access Port Block Diagram

	23.2.2 TAP Pins
	Table 23�1. TAP Controller Pin Definitions �

	23.2.3 Instruction Register
	23.2.3.1 Boundary-Scan Instruction Set
	Table 23�2. Boundary-Scan Instruction Set
	Table 23�3. IEEE Instructions (Sheet 2 of 2)


	23.2.4 TAP Test Data Registers
	23.2.4.1 Device Identification Register
	23.2.4.2 Bypass Register
	23.2.4.3 RUNBIST Register
	23.2.4.4 Boundary-Scan Register
	Table 23�4. i960® Rx I/O Processor Boundary Scan R...


	23.2.5 TAP Controller
	Figure 23�2. TAP Controller State Diagram
	23.2.5.1 Test Logic Reset State
	23.2.5.2 Run-Test/Idle State
	23.2.5.3 Select-DR-Scan State
	23.2.5.4 Capture-DR State
	23.2.5.5 Shift-DR State
	23.2.5.6 Exit1-DR State
	23.2.5.7 Pause-DR State
	23.2.5.8 Exit2-DR State
	23.2.5.9 Update-DR State
	23.2.5.10 Select-IR Scan State
	23.2.5.11 Capture-IR State
	23.2.5.12 Shift-IR State
	23.2.5.13 Exit1-IR State
	23.2.5.14 Pause-IR State
	23.2.5.15 Exit2-IR State
	23.2.5.16 Update-IR State

	23.2.6 Boundary-Scan Example
	Figure 23�3. Example Showing Typical JTAG Operatio...
	Figure 23�4. Timing Diagram Illustrating the Loadi...
	Figure 23�5. Timing Diagram Illustrating the Loadi...



	APPENDIX A MACHINE-LEVEL INSTRUCTION FORMATS
	A.1 GENERAL INSTRUCTION FORMAT
	Figure A-1. Instruction Formats
	Table A�1. Instruction Field Descriptions

	A.2 REG FORMAT
	Table A�2. Encoding of src1 and src2 in REG Format...
	Table A�3. Encoding of src/dst in REG Format

	A.3 COBR FORMAT
	Table A�4. Encoding of src1 in COBR Format
	Table A�5. Encoding of src2 in COBR Format

	A.4 CTRL FORMAT
	A.5 MEM FORMAT
	Table A�6. Addressing Modes for MEM Format Instruc...
	A.5.1 MEMA Format Addressing
	A.5.2 MEMB Format Addressing
	Table A�7. Encoding of Scale Field



	APPENDIX B OPCODES AND EXECUTION TIMES
	B.1 INSTRUCTION REFERENCE BY OPCODE
	Table B�1. Miscellaneous Instruction Encoding Bits...
	Table B�2. REG Format Instruction Encodings (Sheet...
	Table B�3. COBR Format Instruction Encodings �
	Table B�4. CTRL Format Instruction Encodings �
	Table B�5. Cycle Counts for sysctl Operations
	Table B�6. Cycle Counts for icctl Operations
	Table B�7. Cycle Counts for dcctl Operations
	Table B�8. Cycle Counts for intctl Operations
	Table B�9. MEM Format Instruction Encodings
	Table B�10. Addressing Mode Performance


	APPENDIX C MEMORY-MAPPED REGISTERS
	C.1 OVERVIEW
	C.2 SUPERVISOR SPACE FAMILY REGISTERS AND TABLES
	Table C�1. Access Types �
	Table C�2. Supervisor Space Register Addresses (Sh...
	Table C�3. Timer Registers�

	C.3 PERIPHERAL MEMORY-MAPPED REGISTER ADDRESS SPAC...
	Table C�4. 80960 Local Addresses Assigned to Integ...
	Table C�5. Peripheral Memory-Mapped Register Locat...




