
i960® RM/RN I/O Processor
Developer’s Manual

July 1998

Order Number: 273158-001

i960® RM/RN I/O Processor Developer’s Manual

Information in this document is provided in connection with Intel products. No license, express or implied, by estoppel or otherwise, to any intellectual
property rights is granted by this document. Except as provided in Intel's Terms and Conditions of Sale for such products, Intel assumes no liability
whatsoever, and Intel disclaims any express or implied warranty, relating to sale and/or use of Intel products including liability or warranties relating to
fitness for a particular purpose, merchantability, or infringement of any patent, copyright or other intellectual property right. Intel products are not
intended for use in medical, life saving, or life sustaining applications.

Intel may make changes to specifications and product descriptions at any time, without notice.

Designers must not rely on the absence or characteristics of any features or instructions marked "reserved" or "undefined." Intel reserves these for
future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them.

The 80960RM/RN may contain design defects or errors known as errata which may cause the product to deviate from published specifications.
Current characterized errata are available on request.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.

Copies of documents which have an ordering number and are referenced in this document, or other Intel literature may be obtained by calling 1-800-
548-4725 or by visiting Intel's website at http://www.intel.com.

Copyright © Intel Corporation, 1998

*Third-party brands and names are the property of their respective owners.

i960® RM/RN I/O Processor Developer’s Manual iii

Contents
1 Introduction ...1-1

1.1 Intel’s i960® RM/RN I/O Processor ..1-1
1.2 i960® RM/RN I/O Processor Features..1-2

1.2.1 Intelligent I/O (I2O)...1-2
1.2.2 PCI-to-PCI Bridge Unit...1-2
1.2.3 Private PCI Device Support ...1-3
1.2.4 DMA Controller ..1-3
1.2.5 Address Translation Unit ...1-3
1.2.6 Messaging Unit ..1-3
1.2.7 Memory Controller ...1-3
1.2.8 I2C Bus Interface Unit ..1-4
1.2.9 Secondary PCI Arbitration Unit ..1-4
1.2.10 Performance Monitoring Unit ...1-4
1.2.11 Application Accelerator ..1-4
1.2.12 Bus Interface Unit ..1-5
1.2.13 Wind River Systems IxWorks* RTOS ..1-5

1.3 i960® Core Processor Features (80960JT) ..1-6
1.3.1 80960 Local Bus ..1-7
1.3.2 Timer Unit ..1-7
1.3.3 Priority Interrupt Controller...1-7
1.3.4 Faults and Debugging..1-8
1.3.5 On-Chip Cache and Data RAM ...1-8
1.3.6 Local Register Cache ..1-8
1.3.7 Test Features...1-8
1.3.8 Memory-Mapped Control Registers...1-9
1.3.9 Instructions, Data Types and Memory Addressing Modes1-9

1.4 About This Document ...1-9
1.4.1 Terminology ...1-10
1.4.2 Representing Numbers..1-10
1.4.3 Fields ...1-10
1.4.4 Specifying Bit and Signal Values ...1-11
1.4.5 Signal Name Conventions ...1-11
1.4.6 Solutions960® Program ...1-11
1.4.7 Related Documents ...1-12
1.4.8 Electronic Information ..1-12

2 Data Types and Memory Addressing Modes ...2-1

2.1 Data Types ...2-1
2.1.1 Word/Dword Notation ..2-2
2.1.2 Integers..2-2
2.1.3 Ordinals ...2-3
2.1.4 Bits and Bit Fields ..2-3
2.1.5 Triple and Quad Words..2-3
2.1.6 Register Data Alignment..2-3
2.1.7 Literals ...2-4

2.2 Bit and Byte Ordering in Memory ...2-4

iv i960® RM/RN I/O Processor Developer’s Manual

2.3 Memory Addressing Modes..2-4
2.3.1 Absolute...2-5
2.3.2 Register Indirect ..2-5
2.3.3 Index with Displacement..2-5
2.3.4 IP with Displacement ...2-6
2.3.5 Addressing Mode Examples..2-6

3 Programming Environment ...3-1

3.1 Overview ..3-1
3.2 Registers and Literals as Instruction Operands ...3-1

3.2.1 Global Registers ..3-3
3.2.2 Local Registers ..3-3
3.2.3 Register Scoreboarding ...3-4
3.2.4 Literals ...3-4
3.2.5 Register and Literal Addressing and Alignment.................................3-4

3.3 Memory-Mapped Control Registers (MMRs)..3-5
3.3.1 i960® Core Processor Function Memory-Mapped Registers.............3-6

3.3.1.1 Restrictions on Instructions that Access the i960® Core
Processor Memory-Mapped Registers3-6

3.3.1.2 Access Faults for i960® Core Processor MMRs...................3-7
3.3.2 i960® RM/RN I/O Processor Peripheral Memory-

Mapped Registers ...3-7
3.3.2.1 Accessing The Peripheral Memory-Mapped Registers3-8

3.4 Architecturally Defined Data Structures ...3-9
3.5 Memory Address Space ...3-10

3.5.1 Memory Requirements ..3-11
3.5.2 Data and Instruction Alignment in the Address Space3-12
3.5.3 Byte, Word and Bit Addressing..3-12
3.5.4 Internal Data RAM ...3-13
3.5.5 Instruction Cache...3-13
3.5.6 Data Cache..3-13

3.6 Processor-State Registers ...3-13
3.6.1 Instruction Pointer (IP) Register...3-13
3.6.2 Arithmetic Controls Register – AC...3-14

3.6.2.1 Initializing and Modifying the AC Register3-14
3.6.2.2 Condition Code (AC.cc) ..3-14

3.6.3 Process Controls Register – PC..3-16
3.6.3.1 Initializing and Modifying the PC Register3-17

3.6.4 Trace Controls (TC) Register...3-17
3.7 User-Supervisor Protection Model ...3-18

3.7.1 Supervisor Mode Resources ...3-18
3.7.2 Using the User-Supervisor Protection Model...................................3-18

4 Cache and On-Chip Data RAM ...4-1

4.1 Internal Data RAM..4-1
4.2 Local Register Cache ...4-2
4.3 Instruction Cache ...4-3

4.3.1 Enabling and Disabling the Instruction Cache...................................4-4
4.3.2 Operation While the Instruction Cache Is Disabled4-4
4.3.3 Loading and Locking Instructions in the Instruction Cache4-4
4.3.4 Instruction Cache Visibility...4-5

i960® RM/RN I/O Processor Developer’s Manual v

4.3.5 Instruction Cache Coherency ..4-5
4.4 Data Cache...4-5

4.4.1 Enabling and Disabling the Data Cache ..4-5
4.4.2 Multi-Word Data Accesses that Partially Hit the Data Cache4-6
4.4.3 Data Cache Fill Policy..4-6
4.4.4 Data Cache Write Policy..4-7
4.4.5 Data Cache Coherency and Non-Cacheable Accesses4-8
4.4.6 External I/O and Bus Masters and Cache Coherency4-8
4.4.7 Data Cache Visibility..4-8

5 Instruction Set Overview ..5-1

5.1 Instruction Formats...5-1
5.1.1 Assembly Language Format..5-1
5.1.2 Instruction Encoding Formats ..5-2
5.1.3 Instruction Operands ...5-3

5.2 Instruction Groups ..5-4
5.2.1 Data Movement ...5-5

5.2.1.1 Load and Store Instructions..5-5
5.2.1.2 Move ...5-6
5.2.1.3 Load Address..5-6

5.2.2 Select Conditional..5-6
5.2.3 Arithmetic...5-6

5.2.3.1 Add, Subtract, Multiply, Divide, Conditional Add,
Conditional Subtract ...5-7

5.2.3.2 Remainder and Modulo ..5-8
5.2.3.3 Shift, Rotate and Extended Shift...5-8
5.2.3.4 Extended Arithmetic..5-9

5.2.4 Logical ...5-9
5.2.5 Bit, Bit Field and Byte Operations..5-10

5.2.5.1 Bit Operations ...5-10
5.2.5.2 Bit Field Operations ..5-10
5.2.5.3 Byte Operations ..5-10

5.2.6 Comparison ...5-10
5.2.6.1 Compare and Conditional Compare5-11
5.2.6.2 Compare and Increment or Decrement5-11
5.2.6.3 Test Condition Codes ...5-12

5.2.7 Branch ...5-12
5.2.7.1 Unconditional Branch..5-13
5.2.7.2 Conditional Branch ...5-13
5.2.7.3 Compare and Branch..5-14

5.2.8 Call/Return...5-15
5.2.9 Faults ...5-16
5.2.10 Debug ..5-16
5.2.11 Atomic Instructions ..5-17
5.2.12 Processor Management...5-17

5.3 Performance Optimization ..5-18
5.3.1 Instruction Optimizations ...5-18

5.3.1.1 Load / Store Execution Model...5-18
5.3.1.2 Compare Operations ..5-18
5.3.1.3 Microcoded Instructions..5-18
5.3.1.4 Multiply-Divide Unit Instructions..5-19
5.3.1.5 Multi-Cycle Register Operations ...5-19

vi i960® RM/RN I/O Processor Developer’s Manual

5.3.1.6 Simple Control Transfer..5-19
5.3.1.7 Memory Instructions ...5-20
5.3.1.8 Unaligned Memory Accesses ...5-20

5.3.2 Miscellaneous Optimizations ...5-20
5.3.2.1 Masking of Integer Overflow ...5-20
5.3.2.2 Avoid Using PFP, SP, R3 As Destinations for MDU

Instructions ...5-20
5.3.2.3 Use Global Registers (g0 - g14) As Destinations for

MDU Instructions ..5-21
5.3.2.4 Execute in Imprecise Fault Mode5-21

5.3.3 Cache Control..5-21

6 Instruction Set Reference ..6-1

6.1 Notation ..6-1
6.1.1 Alphabetic Reference ..6-1
6.1.2 Mnemonic ..6-2
6.1.3 Format ...6-2
6.1.4 Description...6-2
6.1.5 Action...6-3
6.1.6 Faults...6-4
6.1.7 Example...6-4
6.1.8 Opcode and Instruction Format ...6-4
6.1.9 See Also ..6-4
6.1.10 Side Effects ...6-5
6.1.11 Notes ...6-5

6.2 Instructions ...6-6
6.2.1 ADD<cc> ...6-6
6.2.2 addc...6-8
6.2.3 addi, addo..6-9
6.2.4 alterbit ..6-10
6.2.5 and, andnot..6-11
6.2.6 atadd..6-12
6.2.7 atmod...6-13
6.2.8 b, bx...6-14
6.2.9 bal, balx ...6-15
6.2.10 bbc, bbs ...6-16
6.2.11 BRANCH<cc>..6-17
6.2.12 bswap ..6-19
6.2.13 call ...6-20
6.2.14 calls ...6-21
6.2.15 callx ...6-23
6.2.16 chkbit ...6-24
6.2.17 clrbit ...6-25
6.2.18 cmpdeci, cmpdeco...6-26
6.2.19 cmpinci, cmpinco ...6-27
6.2.20 COMPARE ..6-28
6.2.21 COMPARE AND BRANCH<cc>..6-30
6.2.22 concmpi, concmpo...6-32
6.2.23 dcctl ...6-33
6.2.24 divi, divo...6-39
6.2.25 ediv ..6-40

i960® RM/RN I/O Processor Developer’s Manual vii

6.2.26 emul ...6-41
6.2.27 eshro..6-42
6.2.28 extract ..6-43
6.2.29 FAULT<cc>..6-44
6.2.30 flushreg ..6-46
6.2.31 fmark..6-47
6.2.32 halt ...6-48
6.2.33 icctl...6-49
6.2.34 intctl ...6-55
6.2.35 intdis ..6-56
6.2.36 inten ...6-57
6.2.37 LOAD ...6-58
6.2.38 lda ..6-61
6.2.39 mark...6-62
6.2.40 modac ..6-63
6.2.41 modi ...6-64
6.2.42 modify ..6-65
6.2.43 modpc ..6-66
6.2.44 modtc ...6-67
6.2.45 MOVE ..6-68
6.2.46 muli, mulo ..6-70
6.2.47 nand...6-71
6.2.48 nor..6-72
6.2.49 not, notand...6-73
6.2.50 notbit ..6-74
6.2.51 notor...6-75
6.2.52 or, ornot ...6-76
6.2.53 remi, remo..6-77
6.2.54 ret...6-78
6.2.55 rotate..6-80
6.2.56 scanbit ...6-81
6.2.57 scanbyte ..6-82
6.2.58 SEL<cc> ..6-83
6.2.59 setbit ..6-84
6.2.60 SHIFT ..6-85
6.2.61 spanbit ...6-87
6.2.62 STORE ..6-88
6.2.63 subc ...6-91
6.2.64 SUB<cc>..6-92
6.2.65 subi, subo ..6-94
6.2.66 syncf ..6-95
6.2.67 sysctl ..6-96
6.2.68 TEST<cc>..6-100
6.2.69 xnor, xor...6-102

7 Procedure Calls ...7-1

7.1 Call and Return Mechanism ...7-2
7.1.1 Local Registers and the Procedure Stack ...7-3
7.1.2 Local Register and Stack Management...7-4

7.1.2.1 Frame Pointer ...7-4

viii i960® RM/RN I/O Processor Developer’s Manual

7.1.2.2 Stack Pointer ..7-4
7.1.2.3 Considerations When Pushing Data onto the Stack.............7-4
7.1.2.4 Considerations When Popping Data off the Stack................7-4
7.1.2.5 Previous Frame Pointer ..7-5
7.1.2.6 Return Type Field ...7-5
7.1.2.7 Return Instruction Pointer ...7-5

7.1.3 Call and Return Action...7-5
7.1.3.1 Call Operation...7-6
7.1.3.2 Return Operation ..7-6

7.1.4 Caching Local Register Sets ...7-7
7.1.4.1 Reserving Local Register Sets for High Priority Interrupts ...7-8

7.1.5 Mapping Local Registers to the Procedure Stack............................7-11
7.2 Modifying the PFP Register..7-11
7.3 Parameter Passing...7-12
7.4 Local Calls..7-13
7.5 System Calls ..7-14

7.5.1 System Procedure Table ...7-14
7.5.1.1 Procedure Entries ...7-15
7.5.1.2 Supervisor Stack Pointer ..7-16
7.5.1.3 Trace Control Bit...7-16

7.5.2 System Call to a Local Procedure ...7-16
7.5.3 System Call to a Supervisor Procedure...7-16

7.6 User and Supervisor Stacks...7-17
7.7 Interrupt and Fault Calls ...7-17
7.8 Returns...7-17
7.9 Branch-and-Link ...7-19

8 PCI and Peripheral Interrupt Controller Unit ...8-1

8.1 Overview ..8-1
8.1.1 The i960® RM/RN I/O Processor Core Interrupt Architecture8-2
8.1.2 Software Requirements For Interrupt Handling8-3
8.1.3 Interrupt Priority ...8-3
8.1.4 Interrupt Table ...8-4

8.1.4.1 Vector Entries ...8-5
8.1.4.2 Pending Interrupts ..8-5
8.1.4.3 Caching Portions of the Interrupt Table8-5

8.1.5 Interrupt Stack And Interrupt Record ...8-6
8.1.6 Posting Interrupts ..8-7

8.1.6.1 Posting Software Interrupts via sysctl...................................8-7
8.1.6.2 Posting Software Interrupts Directly in the Interrupt Table ...8-8
8.1.6.3 Posting External Interrupts ...8-8
8.1.6.4 Posting Hardware Interrupts ...8-8

8.1.7 Resolving Interrupt Priority ..8-8
8.1.8 Sampling Pending Interrupts in the Interrupt Table8-9
8.1.9 Saving the Interrupt Mask..8-11

8.2 The i960® Core Processor Interrupt Controller ..8-11
8.2.1 Interrupt Controller Dedicated Mode..8-13
8.2.2 Interrupt Detection ...8-13
8.2.3 Non-Maskable Interrupt (NMI#) ...8-14
8.2.4 Timer Interrupts ...8-15
8.2.5 Software Interrupts ..8-15

i960® RM/RN I/O Processor Developer’s Manual ix

8.2.6 Interrupt Operation Sequence ...8-15
8.2.7 Setting Up the Interrupt Controller ...8-16
8.2.8 Interrupt Service Routines ...8-16
8.2.9 Interrupt Context Switch ..8-17

8.2.9.1 Servicing An Interrupt From Executing State......................8-17
8.2.9.2 Servicing An Interrupt From Interrupted State8-18

8.3 PCI and Peripheral Interrupts ...8-18
8.3.1 Pin Descriptions...8-20
8.3.2 PCI Interrupt Routing ...8-21
8.3.3 Internal Peripheral Interrupt Routing..8-21

8.3.3.1 XINT6 Interrupt Sources ...8-21
8.3.3.2 XINT7 Interrupt Sources ...8-22
8.3.3.3 NMI# Interrupt Sources...8-23

8.3.4 PCI Outbound Doorbell Interrupts ...8-25
8.4 Default Status ...8-25

8.4.1 Interrupt Controller Register Access Requirements8-26
8.4.2 Optimizing Interrupt Performance..8-26
8.4.3 Interrupt Service Latency...8-27
8.4.4 Features to Improve Interrupt Performance.....................................8-28

8.4.4.1 Vector Caching Option..8-28
8.4.4.2 Caching Interrupt Routines and Reserving

Register Frames ...8-29
8.4.4.3 Caching the Interrupt Stack ..8-29

8.4.5 Base Interrupt Latency...8-29
8.4.6 Maximum Interrupt Latency ...8-30
8.4.7 Avoiding Certain Destinations for MDU Operations.........................8-32
8.4.8 Secondary PCI to Primary PCI Interrupt Routing Latency...............8-32

8.5 Register Definitions ..8-32
8.5.1 Interrupt Control Register (ICON) ..8-33
8.5.2 Interrupt Mapping Registers (IMAP0-IMAP2)8-34
8.5.3 Interrupt Pending (IPND) and Interrupt Mask (IMSK) Registers......8-36
8.5.4 PCI Interrupt Routing Select Register - PIRSR8-39
8.5.5 XINT6 Interrupt Status Register - X6ISR ...8-40
8.5.6 XINT7 Interrupt Status Register- X7ISR ..8-41
8.5.7 NMI Interrupt Status Register - NISR ..8-42

9 Faults ..9-1

9.1 Fault Handling Overview ..9-1
9.2 Fault Types...9-3
9.3 Fault Table..9-4
9.4 Stack Used in Fault Handling ...9-6
9.5 Fault Record ...9-6

9.5.1 Fault Record Description ...9-7
9.5.2 Fault Record Location..9-8

9.6 Multiple and Parallel Faults ..9-8
9.6.1 Multiple Non-Trace Faults on the Same Instruction...........................9-8
9.6.2 Multiple Trace Fault Conditions on the Same Instruction9-9
9.6.3 Multiple Trace and Non-Trace Fault Conditions on the

Same Instruction..9-9
9.6.4 Parallel Faults ..9-9

x i960® RM/RN I/O Processor Developer’s Manual

9.6.4.1 Faults on Multiple Instructions Executed in Parallel9-9
9.6.4.2 Fault Record for Parallel Faults ..9-10

9.6.5 Override Faults ..9-11
9.6.6 System Error..9-12

9.7 Fault Handling Procedures...9-12
9.7.1 Possible Fault Handling Procedure Actions.....................................9-12
9.7.2 Program Resumption Following a Fault...9-12

9.7.2.1 Faults Happening Before Instruction Execution..................9-13
9.7.2.2 Faults Happening During Instruction Execution..................9-13
9.7.2.3 Faults Happening After Instruction Execution.....................9-13

9.7.3 Return Instruction Pointer (RIP)...9-14
9.7.4 Returning to Point in Program Where Fault Occurred9-14
9.7.5 Returning to a Point in the Program Other Than Where the

Fault Occurred ...9-14
9.7.6 Fault Controls ..9-15

9.8 Fault Handling Action ...9-15
9.8.1 Local Fault Call ..9-16
9.8.2 System-Local Fault Call...9-16
9.8.3 System-Supervisor Fault Call ..9-17
9.8.4 Faults and Interrupts..9-17

9.9 Precise and Imprecise Faults ...9-18
9.9.1 Precise Faults..9-18
9.9.2 Imprecise Faults ..9-18
9.9.3 Asynchronous Faults ...9-18
9.9.4 No Imprecise Faults (AC.nif) Bit ..9-19
9.9.5 Controlling Fault Precision...9-19

9.10 Fault Reference..9-20
9.10.1 ARITHMETIC Faults ..9-21
9.10.2 CONSTRAINT Faults...9-22
9.10.3 OPERATION Faults...9-23
9.10.4 OVERRIDE Faults ...9-24
9.10.5 PARALLEL Faults..9-25
9.10.6 PROTECTION Faults ..9-26
9.10.7 TRACE Faults..9-27
9.10.8 TYPE Faults ..9-29

10 Tracing and Debugging ..10-1

10.1 Trace Controls..10-1
10.1.1 Trace Controls Register – TC..10-2
10.1.2 PC Trace Enable Bit and Trace-Fault-Pending Flag10-3

10.2 Trace Modes ..10-3
10.2.1 Instruction Trace..10-3
10.2.2 Branch Trace ...10-3
10.2.3 Call Trace ..10-4
10.2.4 Return Trace..10-4
10.2.5 Prereturn Trace ...10-4
10.2.6 Supervisor Trace ...10-4
10.2.7 Mark Trace ..10-5

10.2.7.1 Software Breakpoints..10-5
10.2.7.2 Hardware Breakpoints ..10-5

i960® RM/RN I/O Processor Developer’s Manual xi

10.2.7.3 Requesting Modification Rights to Hardware
Breakpoint Resources ..10-6

10.2.7.4 Breakpoint Control Register – BPCON...............................10-7
10.2.7.5 Data Address Breakpoint Registers – DABx10-9
10.2.7.6 Instruction Breakpoint Registers – IPBx10-10

10.3 Generating a Trace Fault..10-11
10.4 Handling Multiple Trace Events..10-11
10.5 Trace Fault Handling Procedure...10-11

10.5.1 Tracing and Interrupt Procedures ..10-12
10.5.2 Tracing on Calls and Returns ..10-12

10.5.2.1 Tracing on Explicit Call ...10-12
10.5.2.2 Tracing on Implicit Call ...10-13
10.5.2.3 Tracing on Return from Explicit Call10-14
10.5.2.4 Tracing on Return from Implicit Call: Fault Case10-14
10.5.2.5 Tracing on Return from Implicit Call: Interrupt Case.........10-14

11 Initialization and System Requirements ..11-1

11.1 Overview...11-1
11.1.1 Core Initialization ...11-1
11.1.2 General Initialization ..11-2

11.2 i960® RM/RN I/O Processor Initialization ...11-2
11.2.1 Initialization Modes ..11-2
11.2.2 Mode 0 Initialization ...11-3
11.2.3 Mode 1 Initialization ...11-3
11.2.4 Mode 2 Initialization ...11-3
11.2.5 Mode 3 (Default Mode) ..11-3
11.2.6 Secondary PCI Bus Arbitration Unit...11-5
11.2.7 Internal Bus Arbitration Unit...11-5
11.2.8 Reset State Operation ...11-5

11.3 i960® Core Processor Initialization...11-6
11.3.1 Self Test Function (STEST, FAIL#) ...11-7

11.3.1.1 The STEST Signal ..11-7
11.3.1.2 80960 Local Bus Confidence Test11-7
11.3.1.3 The Fail Signal (FAIL#)...11-7
11.3.1.4 IMI Alignment Check and Core Processor Error.................11-8
11.3.1.5 FAIL# Code...11-8

11.4 Initial Memory Image (IMI)..11-9
11.4.1 Initialization Boot Record (IBR)..11-11
11.4.2 Process Control Block – PRCB ...11-14
11.4.3 Process PRCB Flow ..11-16

11.4.3.1 AC Initial Image ..11-17
11.4.3.2 Fault Configuration Word..11-17
11.4.3.3 Instruction Cache Configuration Word..............................11-17
11.4.3.4 Register Cache Configuration Word11-17

11.4.4 Control Table ...11-18
11.5 Device Identification on Reset ..11-19
11.6 Reinitializing and Relocating Data Structures ..11-20

11.6.1 Output Clocks ..11-20

12 Core Processor and Internal Operation ...12-1

12.1 Core Processor Memory Attributes ..12-1
12.2 Physical Memory Attributes ..12-1

xii i960® RM/RN I/O Processor Developer’s Manual

12.2.1 PMCON Registers ...12-1
12.2.2 Bus Control Register – BCON ...12-3

12.3 Programming the Logical Memory Attributes ...12-4
12.3.1 Logical Memory Attributes ...12-4
12.3.2 Logical Memory Address Registers - LMADR0:112-5
12.3.3 Defining the Effective Range of a Logical Data Template12-7
12.3.4 Data Caching Enable...12-7
12.3.5 Enabling the Logical Memory Template ..12-7
12.3.6 Initialization..12-8
12.3.7 Boundary Conditions for Logical Memory Templates12-8

12.3.7.1 Internal Memory Locations and Peripheral MMRs..............12-8
12.3.7.2 Overlapping Logical Data Template Ranges12-8
12.3.7.3 Accesses Across LMT Boundaries12-8

12.3.8 Modifying the LMT Registers ...12-8
12.4 Bus Interface Unit...12-9

12.4.1 Overview..12-9
12.4.2 Addressing...12-11

12.4.2.1 Bus Width ..12-11
12.4.3 Multi-Transaction Timer ...12-11
12.4.4 Features ..12-11

12.4.4.1 Write Buffering ..12-11
12.4.4.2 Instruction Fetch Bypass ..12-12
12.4.4.3 Instruction Prefetch...12-12
12.4.4.4 Write Merging ...12-12
12.4.4.5 Atomic Accesses ..12-13

12.4.5 Interrupts and Error Conditions ...12-13
12.4.5.1 Master-Abort ...12-13
12.4.5.2 PCI Target-Abort...12-14
12.4.5.3 Internal Bus Target-Abort ...12-14

12.4.6 Register Definitions ...12-16
12.4.6.1 BIU Control Register - BIUCR ..12-16
12.4.6.2 BIU Interrupt Status Register - BIUISR.............................12-17

13 Memory Controller ..13-1

13.1 Overview ..13-1
13.1.1 Memory Controller Terminology ..13-2

13.2 Flash Memory Support ...13-3
13.2.1 Flash Memory Addressing...13-4
13.2.2 Flash Read Cycle ..13-5
13.2.3 Flash Write Cycle ..13-8

13.3 SDRAM Memory Support...13-9
13.3.1 SDRAM Sizes and Configurations...13-11

Address Register Programming Examples 13-12
13.3.2 SDRAM Addressing...13-13
13.3.3 32-bit Mode..13-14
13.3.4 Page Hit/Miss Determination ...13-14
13.3.5 SDRAM Commands ..13-17
13.3.6 SDRAM Initialization ..13-18

13.3.6.1 SDRAM Mode Programming ..13-19
13.3.6.2 SDRAM Read Cycle ...13-20
13.3.6.3 SDRAM Write Cycle ...13-24

i960® RM/RN I/O Processor Developer’s Manual xiii

13.3.6.4 SDRAM Refresh Cycle ...13-27
13.3.7 Error Correction and Detection ..13-29

13.3.7.1 ECC Generation ...13-29
13.3.7.2 ECC Generation for Partial Writes13-30
13.3.7.3 ECC Checking ..13-31
13.3.7.4 Scrubbing..13-32
13.3.7.5 ECC Disabled ...13-32
13.3.7.6 ECC Testing ...13-32

13.3.8 SDRAM Clocking ...13-33
13.4 Power Failure Mode ...13-34

13.4.1 Power Failure Sequence ...13-35
13.4.1.1 Power Failure Impact on the System................................13-35
13.4.1.2 System Assumptions ..13-35

13.4.2 Memory Controller Response to Reset..13-36
13.4.2.1 External Logic Required for Power Failure13-38

13.5 Interrupts/Error Conditions ...13-39
13.5.1 Single-Bit Error Detection ..13-40
13.5.2 Double-Bit/Nibble Error Detection..13-41
13.5.3 Overlapping Memory Regions ...13-41

13.6 Register Definitions ..13-42
13.6.1 SDRAM Initialization Register - SDIR..13-43
13.6.2 SDRAM Control Register - SDCR ...13-44
13.6.3 SDRAM Base Register - SDBR ...13-47
13.6.4 SDRAM Boundary Register 0 - SBR0 ...13-48
13.6.5 SDRAM Boundary Registers 1 - SBR1..13-49
13.6.6 ECC Control Register - ECCR...13-50
13.6.7 ECC Log Registers - ELOG0, ELOG1...13-51
13.6.8 ECC Address Registers - ECAR0, ECAR1....................................13-52
13.6.9 ECC Test Register - ECTST..13-53
13.6.10 Flash Base Register 0 - FEBR0...13-54
13.6.11 Flash Base Register 1 - FEBR1...13-55
13.6.12 Flash Bank Size Register 0 - FBSR0...13-56
13.6.13 Flash Bank Size Register 1 - FBSR1...13-57
13.6.14 Flash Wait States Registers - FWSR0, FWSR113-58
13.6.15 Memory Controller Interrupt Status Register - MCISR13-59
13.6.16 Refresh Frequency Register - RFR ...13-60

14 PCI-to-PCI Bridge ..14-1

14.1 Overview...14-1
14.2 Theory of Operation..14-2
14.3 Architectural Description...14-3

14.3.1 Primary PCI Interface ..14-4
14.3.2 Secondary PCI Interface..14-4
14.3.3 Upstream/Downstream Queues ..14-5
14.3.4 Configuration Registers ...14-6

14.4 Configuration Accesses..14-6
14.4.1 Type 0 Commands ..14-8
14.4.2 Type 1 Commands and Type 1 to Type 0 Conversions14-9
14.4.3 Type 1 to Type 1 Forwarding...14-10
14.4.4 Type 1 to Special Cycle Conversion..14-11
14.4.5 Private Type 0 Commands on the Secondary Interface14-11

xiv i960® RM/RN I/O Processor Developer’s Manual

14.4.6 Special Cycles ...14-13
14.5 Address Decoding ..14-14

14.5.1 I/O Address Space ..14-14
14.5.1.1 Disabling the I/O Address Range14-15
14.5.1.2 ISA Mode..14-15

14.5.2 Memory Address Space ..14-16
14.5.2.1 Burst Order ...14-17
14.5.2.2 Disabling the Memory Address Range14-17

14.5.3 64-Bit Address Decoding - Dual Address Cycles14-18
14.5.4 Private Address Space ..14-20
14.5.5 Secondary PCI to Messaging Unit Access14-20
14.5.6 Address Decode Summary..14-21

14.6 Bridge Operation ..14-23
14.6.1 PCI Interfaces..14-23

14.6.1.1 Primary Interface ..14-23
14.6.1.2 Secondary Interface..14-24

14.6.2 Claiming a PCI Transaction ...14-24
14.6.2.1 Latency Timers ...14-24
14.6.2.2 Delayed Transactions...14-25
14.6.2.3 Posted Transactions ...14-26

14.6.3 64-Bit Operation ..14-26
14.6.3.1 64-Bit Protocol ..14-27
14.6.3.2 64-Bit Operation with 32-Bit Targets.................................14-29

14.6.4 PCI Read Transactions ...14-31
14.6.4.1 Read Streaming..14-36
14.6.4.2 Read Boundary...14-36

14.6.5 PCI Write Transactions..14-37
14.6.5.1 Delayed Write Transactions..14-37
14.6.5.2 Posted Write Transactions..14-38
14.6.5.3 Memory Write Command..14-39
14.6.5.4 Memory Write and Invalidate Command14-39
14.6.5.5 I/O Write Command ..14-40
14.6.5.6 Write Boundary ...14-40
14.6.5.7 Qword Unaligned Memory Write Transactions14-41
14.6.5.8 Fast Back to Back Transactions14-41

14.7 Queue Architecture ..14-41
14.7.1 Queue Operation ...14-42

14.7.1.1 Upstream/Downstream Posted Memory Write
Queue Structures..14-43

14.7.1.2 Upstream/Downstream Delayed Read
Completion Queues ..14-44

14.7.1.3 Upstream/Downstream Delayed Write
Completion Queue..14-45

14.7.1.4 Upstream/Downstream Transaction Queues....................14-46
14.7.2 Transaction Ordering...14-46

14.8 Bridge Data Flow..14-49
14.8.1 Delayed Read Transaction ..14-49
14.8.2 Delayed Write Transaction ..14-50
14.8.3 Posted Write Transaction ..14-52

14.9 Exclusive Access..14-53
14.9.1 Secondary Interface Error Handling ..14-54

14.10 PCI Transaction Termination..14-55

i960® RM/RN I/O Processor Developer’s Manual xv

14.10.1 Termination as a Master (Initiator) ...14-55
14.10.1.1 Completion..14-55
14.10.1.2 Time-out..14-55
14.10.1.3 Time-out during Memory Write and Invalidate14-55
14.10.1.4 Master-Abort ...14-55

14.10.2 Termination as a Slave (Target) ..14-56
14.10.2.1 Retry ...14-56
14.10.2.2 Disconnect ..14-56
14.10.2.3 Target-Abort..14-57

14.11 Error Conditions..14-57
14.11.1 Address Parity Errors...14-57

14.11.1.1 Address Parity Errors on Primary Interface14-58
14.11.1.2 Address Parity Errors on Secondary Interface14-58

14.11.2 Data Parity Errors ..14-59
14.11.2.1 Read Data Parity ..14-59
14.11.2.2 Delayed Write Data Parity ..14-60
14.11.2.3 Posted Write Data Parity ..14-62

14.11.3 SERR# Assertion...14-64
14.11.4 Discard Timers...14-64
14.11.5 PCI-to-PCI Bridge Error Summary...14-65

14.12 Primary and Secondary Clocking ...14-68
14.13 Initialization and Reset Requirements ..14-68

14.13.1 Bridge Reset ..14-69
14.13.2 Configuring the Bridge ...14-69
14.13.3 64-Bit Bus Configuration..14-70

14.14 Powerup/Default States..14-70
14.15 Register Definitions ..14-70

14.15.1 Vendor Identification Register - VIDR..14-73
14.15.2 Device ID Register - DIDR...14-74
14.15.3 Primary Command Register - PCR..14-75
14.15.4 Primary Status Register - PSR ..14-76
14.15.5 Revision ID Register - RID...14-77
14.15.6 Class Code Register - CCR...14-77
14.15.7 Cacheline Size Register - CLSR..14-78
14.15.8 Primary Latency Timer Register - PLTR..14-79
14.15.9 Header Type Register - HTR ...14-80
14.15.10 Primary Bus Number Register - PBNR..14-81
14.15.11 Secondary Bus Number Register - SBNR14-82
14.15.12 Subordinate Bus Number Register - SubBNR...............................14-83
14.15.13 Secondary Latency Timer Register - SLTR14-84
14.15.14 I/O Base Register - IOBR ..14-85
14.15.15 I/O Limit Register - IOLR ...14-86
14.15.16 Secondary Status Register - SSR ...14-87
14.15.17 Memory Base Register - MBR ...14-88
14.15.18 Memory Limit Register - MLR ..14-89
14.15.19 Prefetchable Memory Base Register - PMBR14-90
14.15.20 Prefetchable Memory Limit Register - PMLR14-91
14.15.21 Bridge Subsystem Vendor ID Register - BSVIR14-92
14.15.22 Bridge Subsystem ID Register - BSIR ...14-92
14.15.23 Bridge Control Register - BCR...14-93
14.15.24 Extended Bridge Control Register - EBCR14-96

xvi i960® RM/RN I/O Processor Developer’s Manual

14.15.25 Secondary IDSEL Select Register - SISR14-99
14.15.26 Primary Bridge Interrupt Status Register - PBISR.......................14-101
14.15.27 Secondary Bridge Interrupt Status Register - SBISR14-102
14.15.28 Secondary Arbitration Control Register - SACR..........................14-103
14.15.29 PCI Interrupt Routing Select Register - PIRSR14-103
14.15.30 Secondary I/O Base Register - SIOBR..14-103
14.15.31 Secondary I/O Limit Register - SIOLR...14-104
14.15.32 Secondary Memory Base Register - SMBR14-105
14.15.33 Secondary Memory Limit Register - SMLR14-106
14.15.34 Secondary Decode Enable Register - SDER14-107
14.15.35 Queue Control Register - QCR..14-109

15 Address Translation Unit ...15-1

15.1 Overview ..15-1
15.2 ATU Address Translation ...15-3

15.2.1 Inbound Transactions ..15-5
15.2.1.1 Inbound Address Translation..15-5
15.2.1.2 Inbound Write Transaction..15-8
15.2.1.3 Inbound Read Transaction ...15-10
15.2.1.4 Inbound Configuration Cycle Translation..........................15-12
15.2.1.5 Discard Timers..15-13

15.2.2 Outbound Transactions ...15-13
15.2.2.1 Outbound Address Translation ...15-13
15.2.2.2 Outbound Address Translation Windows15-14
15.2.2.3 Direct Addressing Window..15-17
15.2.2.4 Outbound Write Transaction...15-18
15.2.2.5 Outbound Read Transaction...15-19

15.2.3 Private PCI Address Space / Outbound Configuration
Cycle Translation...15-20

15.2.4 PCI Multi-Function Device Swapping/Disabling.............................15-22
15.2.5 64-Bit PCI Operation ...15-22

15.2.5.1 64-Bit Protocol ..15-23
15.2.5.2 64-Bit Operation with 32-Bit Targets.................................15-25

15.3 Messaging Unit...15-27
15.4 Expansion ROM Translation Unit ...15-27
15.5 ATU Queue Architecture ..15-28

15.5.1 Inbound Queues ..15-28
15.5.1.1 Inbound Write Queue Structure ..15-28
15.5.1.2 Inbound Read Queues and Inbound

Transaction Queues ...15-29
15.5.1.3 Inbound Delayed Write Queue ...15-30

15.5.2 Outbound Queues ...15-31
15.5.3 Transaction Ordering...15-32

15.6 ATU Error Conditions ...15-35
15.6.1 Address Parity Errors on the PCI Interface....................................15-35
15.6.2 Data Parity Errors on the PCI Interface ...15-36

15.6.2.1 Outbound Read Data Parity Errors - Master.....................15-36
15.6.2.2 Outbound Write Data Parity Errors - Master.....................15-37
15.6.2.3 Inbound Read Data Parity Errors - Slave15-37
15.6.2.4 Inbound Write Data Parity Errors - Slave..........................15-37
15.6.2.5 Inbound Configuration Write Data Parity Errors - Slave ...15-38

15.6.3 Master Aborts on the PCI Interface ...15-39

i960® RM/RN I/O Processor Developer’s Manual xvii

15.6.4 Target Aborts on the PCI Interface ..15-39
15.6.5 SERR# Assertion and Detection..15-40
15.6.6 Internal Bus Error Conditions...15-41

15.6.6.1 Master Abort on the Internal Bus15-42
15.6.6.2 Target Abort on the Internal Bus.......................................15-43

15.6.7 ATU Error Summary ..15-44
15.7 Register Definitions ..15-47

15.7.1 ATU Vendor ID Register - ATUVID..15-51
15.7.2 ATU Device ID Register - ATUDID ..15-52
15.7.3 Primary ATU Command Register - PATUCMD15-53
15.7.4 Primary ATU Status Register - PATUSR.......................................15-54
15.7.5 ATU Revision ID Register - ATURID ...15-55
15.7.6 ATU Class Code Register - ATUCCR ...15-56
15.7.7 ATU Cacheline Size Register - ATUCLSR15-56
15.7.8 ATU Latency Timer Register - ATULT...15-57
15.7.9 ATU Header Type Register - ATUHTR..15-57
15.7.10 ATU BIST Register - ATUBISTR ...15-58
15.7.11 Primary Inbound ATU Base Address Register - PIABAR15-59
15.7.12 ATU Subsystem Vendor ID Register - ASVIR15-60
15.7.13 ATU Subsystem ID Register - ASIR ..15-60
15.7.14 Expansion ROM Base Address Register - ERBAR15-61
15.7.15 Determining Block Sizes for Base Address Registers15-62
15.7.16 ATU Interrupt Line Register - ATUILR ...15-63
15.7.17 ATU Interrupt Pin Register - ATUIPR ..15-64
15.7.18 ATU Minimum Grant Register - ATUMGNT...................................15-65
15.7.19 ATU Maximum Latency Register - ATUMLAT15-66
15.7.20 Primary Inbound ATU Limit Register - PIALR................................15-67
15.7.21 Primary Inbound ATU Translate Value Register - PIATVR15-68
15.7.22 Secondary Inbound ATU Base Address Register - SIABAR15-69
15.7.23 Secondary Inbound ATU Limit Register - SIALR...........................15-70
15.7.24 Secondary Inbound ATU Translate Value Register - SIATVR.......15-71
15.7.25 Primary Outbound Memory Window Value

Register - POMWVR..15-72
15.7.26 Primary Outbound I/O Window Value Register - POIOWVR.........15-73
15.7.27 Primary Outbound DAC Window Value Register - PODWVR15-74
15.7.28 Primary Outbound Upper 64-bit DAC Register - POUDR..............15-75
15.7.29 Secondary Outbound Memory Window Value

Register - SOMWVR..15-76
15.7.30 Secondary Outbound I/O Window Value Register - SOIOWVR15-77
15.7.31 Expansion ROM Limit Register - ERLR...15-78
15.7.32 Expansion ROM Translate Value Register - ERTVR.....................15-79
15.7.33 ATU Configuration Register - ATUCR ...15-80
15.7.34 Primary ATU Interrupt Status Register - PATUISR15-82
15.7.35 Secondary ATU Interrupt Status Register - SATUISR...................15-84
15.7.36 Secondary ATU Command Register - SATUCMD15-86
15.7.37 Secondary ATU Status Register - SATUSR15-87
15.7.38 Secondary Outbound DAC Window Value Register - SODWVR ..15-88
15.7.39 Secondary Outbound Upper 64-bit DAC Register - SOUDR.........15-89
15.7.40 Primary Outbound Configuration Cycle Address

Register - POCCAR...15-90

xviii i960® RM/RN I/O Processor Developer’s Manual

15.7.41 Secondary Outbound Configuration Cycle Address
Register - SOCCAR...15-91

15.7.42 Primary Outbound Configuration Cycle Data
Register - POCCDR...15-92

15.7.43 Secondary Outbound Configuration Cycle Data
Register - SOCCDR...15-93

15.7.44 Primary ATU Interrupt Mask Register - PATUIMR15-94
15.7.45 Secondary ATU Interrupt Mask Register - SATUIMR....................15-95

16 Messaging Unit ..16-1

16.1 Overview ..16-1
16.2 Theory of Operation ...16-1

16.2.1 Transaction Ordering...16-4
16.3 Message Registers...16-5

16.3.1 Outbound Messages ...16-5
16.3.2 Inbound Messages ..16-5

16.4 Doorbell Registers..16-6
16.4.1 Outbound Doorbells...16-6
16.4.2 Inbound Doorbells ...16-6

16.5 Circular Queues ...16-7
16.5.1 Inbound Free Queue ...16-11
16.5.2 Inbound Post Queue..16-11
16.5.3 Outbound Post Queue...16-12
16.5.4 Outbound Free Queue...16-13

16.6 Index Registers ..16-14
16.7 Messaging Unit Error Conditions..16-14
16.8 Register Definitions ..16-15

16.8.1 Inbound Message Register - IMRx ..16-17
16.8.2 Outbound Message Register - OMRx..16-17
16.8.3 Inbound Doorbell Register - IDR..16-18
16.8.4 Inbound Interrupt Status Register - IISR16-19
16.8.5 Inbound Interrupt Mask Register - IIMR...16-20
16.8.6 Outbound Doorbell Register - ODR...16-21
16.8.7 Outbound Interrupt Status Register - OISR...................................16-22
16.8.8 Outbound Interrupt Mask Register - OIMR....................................16-23
16.8.9 MU Configuration Register - MUCR ..16-24
16.8.10 Queue Base Address Register - QBAR...16-25
16.8.11 Inbound Free Head Pointer Register - IFHPR...............................16-26
16.8.12 Inbound Free Tail Pointer Register - IFTPR16-27
16.8.13 Inbound Post Head Pointer Register - IPHPR...............................16-28
16.8.14 Inbound Post Tail Pointer Register - IPTPR16-29
16.8.15 Outbound Free Head Pointer Register - OFHPR16-30
16.8.16 Outbound Free Tail Pointer Register - OFTPR..............................16-31
16.8.17 Outbound Post Head Pointer Register - OPHPR16-32
16.8.18 Outbound Post Tail Pointer Register - OPTPR..............................16-33
16.8.19 Index Address Register - IAR ..16-34

16.9 Power/Default Status..16-34

17 i960® RM/RN I/O Processor Arbitration ..17-1

17.1 Arbitration Overview ...17-1
17.2 PCI Arbiter Overview..17-2

i960® RM/RN I/O Processor Developer’s Manual xix

17.2.1 Theory of Operation...17-3
17.2.1.1 Priority Mechanism ...17-3
17.2.1.2 Arbitration Signalling Protocol...17-5
17.2.1.3 Secondary PCI Bus Arbitration Parking..............................17-7

17.2.2 Atomic Accesses ...17-7
17.2.3 Internal and Secondary PCI Arbiter Differences..............................17-8

17.2.3.1 Multi-Transaction Timer ..17-8
17.3 PCI Selector Operation...17-9

17.3.1 Primary PCI Bus Arbitration Parking..17-9
17.4 Master Latency Timer Operation ..17-9

17.4.1 Primary and Secondary PCI Master Latency Timers.......................17-9
17.4.2 Internal Master Latency Timer ...17-9

17.5 Reset Conditions ..17-10
17.5.1 S_REQ64# Control ..17-10

17.6 Register Definitions ..17-11
17.6.1 Secondary Arbitration Control Register - SACR17-12
17.6.2 Internal Arbitration Control Register - IACR...................................17-13
17.6.3 Master Latency Timer Register - MLTR...17-14
17.6.4 Multi-Transaction Timer Register - MTTR17-14

18 Timers ..18-1

18.1 Timer Registers ..18-2
18.1.1 Timer Mode Registers – TMR0:1...18-3

18.1.1.1 Bit 0 - Terminal Count Status Bit (TMRx.tc)........................18-3
18.1.1.2 Bit 1 - Timer Enable (TMRx.enable)18-4
18.1.1.3 Bit 2 - Timer Auto Reload Enable (TMRx.reload)18-4
18.1.1.4 Bit 3 - Timer Register Supervisor Read/Write

Control (TMRx.sup) ..18-5
18.1.1.5 Bits 4, 5 - Timer Input Clock Select (TMRx.csel1:0)18-5

18.1.2 Timer Count Register – TCR0:1 ..18-6
18.1.3 Timer Reload Register – TRR0:1 ..18-7

18.2 Timer Operation..18-8
18.2.1 Basic Timer Operation ...18-8
18.2.2 Load/Store Access Latency for Timer Registers18-9

18.3 Timer Interrupts ..18-10
18.4 Powerup/Reset Initialization ...18-10
18.5 Uncommon TCRx and TRRx Conditions..18-10
18.6 Timer State Diagram ..18-11

19 DMA Controller Unit ...19-1

19.1 Overview...19-1
19.2 Theory of Operation..19-2
19.3 DMA Transfer ...19-3

19.3.1 Chain Descriptors ..19-4
19.3.2 Initiating DMA Transfers ..19-6
19.3.3 Scatter Gather DMA Transfers ..19-7
19.3.4 Synchronizing a Program to Chained Transfers..............................19-8
19.3.5 Appending to The End of a Chain..19-9

19.4 64-bit Transfers on a 64-bit PCI Bus ..19-10
19.4.1 64-bit Operation with 64-bit Targets ..19-11
19.4.2 64-bit Operation with 32-bit Targets ..19-11

xx i960® RM/RN I/O Processor Developer’s Manual

19.4.3 64-bit Addressing...19-11
19.5 Data Transfers..19-12

19.5.1 PCI to Local Memory Transfers ...19-12
19.5.2 Local Memory to PCI Transfers: Memory Write Command...........19-12
19.5.3 Local Memory to PCI Transfers: Memory Write and

Invalidate Command...19-12
19.5.4 Exclusive Access...19-13

19.6 Data Queues ..19-13
19.7 Packing and Unpacking..19-13

19.7.1 64-bit Unaligned Data Transfers..19-14
19.7.2 64/32-bit Unaligned Data Transfers...19-15

19.8 Channel Priority..19-16
19.9 Programming Model State Diagram ...19-16
19.10 DMA Channel Programming Examples..19-17

19.10.1 Software DMA Controller Initialization ...19-17
19.10.2 Software Start DMA Transfer...19-17
19.10.3 Software Suspend Channel ...19-18

19.11 Interrupts ..19-18
19.12 Error Conditions ...19-19

19.12.1 PCI Errors ..19-19
19.12.2 Internal Bus Errors...19-20

19.13 Powerup/Default Status..19-21
19.14 Register Definitions ..19-21

19.14.1 Channel Control Register - CCR ...19-22
19.14.2 Channel Status Register - CSR...19-23
19.14.3 Next Descriptor Address Register - NDAR....................................19-25
19.14.4 Descriptor Address Register - DAR...19-26
19.14.5 Byte Count Register - BCR..19-27
19.14.6 PCI Address Register - PADR...19-28
19.14.7 PCI Upper Address Register - PUADR..19-29
19.14.8 Local Address Register - LADR...19-30
19.14.9 Descriptor Control Register - DCR ..19-31

20 Application Accelerator Unit ..20-1

20.1 Overview ..20-1
20.2 Theory of Operation ...20-2
20.3 Hardware-Assist XOR Unit ...20-3

20.3.1 Data Transfer...20-3
20.3.2 Chain Descriptor Format (4 Source Addresses)..............................20-3
20.3.3 Chain Descriptor Format (Eight Source Addresses)........................20-6
20.3.4 The Bitwise-XOR Algorithm...20-8
20.3.5 Initiating the XOR Operation..20-11
20.3.6 Scatter Gather Transfers ...20-12
20.3.7 Synchronizing a program to Chained operation20-12
20.3.8 Appending to The End of a Chain ...20-14

20.4 Store Queue ...20-14
20.5 Packing and Unpacking..20-15

20.5.1 64-bit Unaligned Data Transfers..20-15
20.6 Application Accelerator Unit Priority ...20-16
20.7 Programming Model State Diagram ...20-16

i960® RM/RN I/O Processor Developer’s Manual xxi

20.8 Programming the Application Accelerator Unit...20-17
20.8.1 Application Accelerator Unit Initialization.......................................20-17
20.8.2 Start XOR Transfer ..20-17
20.8.3 Suspend Application Accelerator Unit ...20-18

20.9 Interrupts ..20-18
20.9.1 Interrupts - Special Case (ADCR.dwe = 0)20-19

20.10 Error Conditions..20-19
20.11 Powerup/Default Status..20-20
20.12 Register Definitions ..20-20

20.12.1 Accelerator Control Register - ACR...20-21
20.12.2 Accelerator Status Register - ASR ..20-22
20.12.3 Accelerator Descriptor Address Register - ADAR20-23
20.12.4 Accelerator Next Descriptor Address Register - ANDAR20-24
20.12.5 80960 Source Address Register - SAR ...20-25
20.12.6 80960 Destination Address Register - DAR20-26
20.12.7 Accelerator Byte Count Register - ABCR20-27
20.12.8 Accelerator Descriptor Control Register - ADCR...........................20-28

21 Performance Monitoring Unit ...21-1

21.1 Overview...21-1
21.2 Theory of Operation..21-1

21.2.1 Global Time Stamp ..21-1
21.2.2 Programmable Event Counters ...21-2

21.2.2.1 Occurrence Events ...21-2
21.2.2.2 Duration Events ..21-3

21.2.3 Performance Monitoring ..21-3
21.3 Event Description ...21-4

21.3.1 Mode0: Performance Monitoring Disabled21-4
21.3.2 Mode1: Primary PCI bus and Internal Agents21-5

21.3.2.1 M1_PPCIBus_idle...21-5
21.3.2.2 M1_PPCIBus_data ...21-5
21.3.2.3 M1_PPCIBus_bridge_acq ..21-5
21.3.2.4 M1_PPCIBus_bridge_own..21-5
21.3.2.5 M1_PPCIBus_DMA0_acq ..21-5
21.3.2.6 M1_PPCIBus_DMA0_own..21-5
21.3.2.7 M1_PPCIBus_DMA1_acq ..21-6
21.3.2.8 M1_PPCIBus_DMA1_own..21-6
21.3.2.9 M1_PPCIBus_PATU_acq...21-6
21.3.2.10 M1_PPCIBus_PATU_own ..21-6
21.3.2.11 M1_PPCIBus_DMA0_gnt ...21-6
21.3.2.12 M1_PPCIBus_DMA1_gnt ...21-6
21.3.2.13 M1_PPCIBus_PATU_gnt..21-6
21.3.2.14 M1_PPCIBus_bridge_gnt ...21-7

21.3.3 Mode 2: Secondary PCI Bus and Internal Agents21-7
21.3.3.1 M2_SPCIBus_idle...21-7
21.3.3.2 M2_SPCIBus_data ...21-7
21.3.3.3 M2_SPCIBus_SATU_acq...21-7
21.3.3.4 M2_SPCIBus_SATU_own ..21-7
21.3.3.5 M2_SPCIBus_bridge_acq ..21-7
21.3.3.6 M2_SPCIBus_bridge_own..21-8
21.3.3.7 M2_SPCIBus_DMA2_acq ..21-8
21.3.3.8 M2_SPCIBus_DMA2_own..21-8

xxii i960® RM/RN I/O Processor Developer’s Manual

21.3.3.9 M2_SPCIBus_bridge_gnt ...21-8
21.3.3.10 M2_SPCIBus_SATU_gnt..21-8
21.3.3.11 M2_SPCIBus_DMA2_gnt ...21-8
21.3.3.12 M2_PPCIBus_idle...21-8
21.3.3.13 M2_PPCIBus_data ...21-9
21.3.3.14 M2_IBus_data...21-9

21.3.4 Mode 3: Secondary PCI Bus and External Agents21-9
21.3.4.1 M3_SPCIbus_idle ...21-9
21.3.4.2 M3_SPCIbus_data..21-9
21.3.4.3 M3_SPCIbus_IOP_acq...21-9
21.3.4.4 M3_SPCIbus_IOP_own..21-10
21.3.4.5 M3_SPCIbus_D0_acq ..21-10
21.3.4.6 M3_SPCIbus_D0_own ...21-10
21.3.4.7 M3_SPCIbus_D1_acq ..21-10
21.3.4.8 M3_SPCIbus_D1_own ...21-10
21.3.4.9 M3_SPCIbus_D2_acq ..21-10
21.3.4.10 M3_SPCIbus_D2_own ...21-10
21.3.4.11 M3_SPCIbus_IOP_gnt ...21-11
21.3.4.12 M3_SPCIbus_D0_gnt ...21-11
21.3.4.13 M3_SPCIbus_D1_gnt ...21-11
21.3.4.14 M3_SPCIbus_D2_gnt ...21-11

21.3.5 Mode 4: Secondary PCI Bus and External Agents21-11
21.3.5.1 M4_SPCIbus_idle ...21-11
21.3.5.2 M4_SPCIbus_data..21-12
21.3.5.3 M4_SPCIbus_D3_acq ..21-12
21.3.5.4 M4_SPCIbus_D3_own ...21-12
21.3.5.5 M4_SPCIbus_D4_acq ..21-12
21.3.5.6 M4_SPCIbus_D4_own ...21-12
21.3.5.7 M4_SPCIbus_D5_acq ..21-12
21.3.5.8 M4_SPCIbus_D5_own ...21-12
21.3.5.9 M4_SPCIbus_D3_gnt ...21-13
21.3.5.10 M4_SPCIbus_D4_gnt ...21-13
21.3.5.11 M4_SPCIbus_D5_gnt ...21-13
21.3.5.12 M4_SPCIbus_IOP_gnt ...21-13
21.3.5.13 M4_SPCIbus_IOP_acq...21-13
21.3.5.14 M4_SPCIbus_IOP_own..21-13

21.3.6 Mode 5: i960® RM/RN I/O Processor Internal Bus and
Agents Events ...21-14

21.3.6.1 M5_IBus_idle ..21-14
21.3.6.2 M5_IBus_data...21-14
21.3.6.3 M5_IBus_AAU_acq ..21-14
21.3.6.4 M5_IBus_AAU_own..21-14
21.3.6.5 M5_IBus_DMA0_acq..21-14
21.3.6.6 M5_IBus_DMA0_own...21-14
21.3.6.7 M5_IBus_DMA1_acq..21-15
21.3.6.8 M5_IBus_DMA1_own...21-15
21.3.6.9 M5_IBus_DMA2_acq..21-15
21.3.6.10 M5_IBus_DMA2_own...21-15
21.3.6.11 M5_IBus_AAU_gnt ...21-15
21.3.6.12 M5_IBus_DMA0_gnt...21-15
21.3.6.13 M5_IBus_DMA1_gnt...21-15
21.3.6.14 M5_IBus_DMA2_gnt...21-15

21.3.7 Mode 6: i960® RM/RN I/O Processor Internal Bus and
Agents Events ...21-16

i960® RM/RN I/O Processor Developer’s Manual xxiii

21.3.7.1 M6_IBus_core_acq...21-16
21.3.7.2 M6_IBus_core_own ..21-16
21.3.7.3 M6_IBus_PATU_acq ..21-16
21.3.7.4 M6_IBus_PATU_own ...21-16
21.3.7.5 M6_IBus_SATU_acq ..21-16
21.3.7.6 M6_IBus_SATU_own ...21-16
21.3.7.7 M6_IBus_PBOFF_time...21-17
21.3.7.8 M6_IBus_PBOFF_cnt ...21-17
21.3.7.9 M6_IBus_SBOFF_time...21-17
21.3.7.10 M6_IBus_SBOFF_cnt ...21-17
21.3.7.11 M6_IBus_PATU_gnt ...21-17
21.3.7.12 M6_IBus_SATU_gnt ...21-17
21.3.7.13 M6_IBus_core_gnt..21-17
21.3.7.14 M6_IBus_ATU_retries ..21-17

21.3.8 Mode 7: i960® RM/RN Processor Internal Bus, Secondary
PCI Bus and Primary PCI Bus Events ...21-18

21.3.8.1 M7_IBus_idle ..21-18
21.3.8.2 M7_IBus_data...21-18
21.3.8.3 M7_SPCIbus_idle ...21-18
21.3.8.4 M7_SPCIbus_data..21-18
21.3.8.5 M7_SPCIbus_IOP_own..21-18
21.3.8.6 M7_SPCIbus_D0_own ...21-19
21.3.8.7 M7_SPCIbus_D1_own ...21-19
21.3.8.8 M7_SPCIbus_D2_own ...21-19
21.3.8.9 M7_SPCIbus_D3_own ...21-19
21.3.8.10 M7_SPCIbus_D4_own ...21-19
21.3.8.11 M7_SPCIbus_D5_own ...21-19
21.3.8.12 M7_PPCIbus_IOP_own..21-19
21.3.8.13 M7_PPCIbus_idle ...21-19
21.3.8.14 M7_PPCIbus_data..21-19

21.4 Interrupts ..21-20
21.5 Reset Conditions ..21-20
21.6 Register Definitions ..21-20

21.6.1 Global Timer Mode Register (GTMR)..21-21
21.6.2 Event Select Register (ESR) ...21-22
21.6.3 Event Monitoring Interrupt Status Register (EMISR)21-23
21.6.4 Global Time Stamp Register (GTSR) ..21-24
21.6.5 Programmable Event Counter Register (PECRx)..........................21-25

22 I2C Bus Interface Unit ..22-1

22.1 Overview...22-1
22.2 Theory of Operation..22-1

22.2.1 Operational Blocks...22-2
22.2.2 I2C Bus Interface Modes..22-4
22.2.3 Start and Stop Bus States ...22-5

22.2.3.1 START Condition..22-6
22.2.3.2 No START or STOP Condition ...22-6
22.2.3.3 STOP Condition..22-6

22.3 I2C Bus Operation ..22-7
22.3.1 Serial Clock Line (SCL) Generation...22-7
22.3.2 Data and Addressing Management ...22-8

22.3.2.1 Addressing a Slave Device...22-9
22.3.3 I2C Acknowledge ...22-10

xxiv i960® RM/RN I/O Processor Developer’s Manual

22.3.4 Arbitration ..22-11
22.3.4.1 SCL Arbitration ...22-11
22.3.4.2 SDA Arbitration ...22-12

22.3.5 Master Operations ...22-13
22.3.6 Slave Operations ...22-16
22.3.7 General Call Address ..22-18

22.4 Slave Mode Programming Examples ...22-19
22.4.1 Initialize Unit ..22-19
22.4.2 Write 1 bytes as a slave ..22-19
22.4.3 Read 2 bytes as a Slave..22-19

22.5 Master Programming Examples ...22-20
22.5.1 Initialize Unit ..22-20
22.5.2 Write 1 byte as a master..22-20
22.5.3 Read 1 byte as a master ...22-20
22.5.4 Write 2 bytes and repeated start read 1 byte as a master.............22-21
22.5.5 Read 2 bytes as a Master - Send STOP using the Abort22-22

22.6 Glitch Suppression Logic..22-23
22.7 Reset Conditions ..22-23
22.8 Register Definitions ..22-23

22.8.1 I2C Control Register- ICR ..22-24
22.8.2 I2C Status Register- ISR..22-27
22.8.3 I2C Slave Address Register- ISAR ..22-29
22.8.4 I2C Data Buffer Register- IDBR ...22-30
22.8.5 I2C Clock Count Register- ICCR..22-31
22.8.6 I2C Bus Monitor Register- IBMR..22-32

23 Test Features ..23-1

23.1 On-Circuit Emulation (ONCE) ..23-1
23.1.1 Entering/Exiting ONCE Mode ..23-1
23.1.2 ONCE Mode and Boundary-Scan (JTAG) are Incompatible23-2

23.1.2.1 DEN# Alternatives ..23-2
23.2 Boundary-Scan (JTAG) ..23-2

23.2.1 Boundary-Scan Architecture..23-2
23.2.2 TAP Pins..23-3
23.2.3 Instruction Register..23-4

23.2.3.1 Boundary-Scan Instruction Set ...23-4
23.2.4 TAP Test Data Registers ...23-6

23.2.4.1 Device Identification Register ...23-6
23.2.4.2 Bypass Register..23-6
23.2.4.3 RUNBIST Register..23-6
23.2.4.4 Boundary-Scan Register...23-6

23.2.5 TAP Controller ...23-16
23.2.5.1 Test Logic Reset State ...23-17
23.2.5.2 Run-Test/Idle State...23-17
23.2.5.3 Select-DR-Scan State...23-17
23.2.5.4 Capture-DR State ...23-17
23.2.5.5 Shift-DR State...23-17
23.2.5.6 Exit1-DR State ..23-18
23.2.5.7 Pause-DR State..23-18
23.2.5.8 Exit2-DR State ..23-18
23.2.5.9 Update-DR State ..23-18

i960® RM/RN I/O Processor Developer’s Manual xxv

23.2.5.10 Select-IR Scan State ..23-18
23.2.5.11 Capture-IR State...23-19
23.2.5.12 Shift-IR State ..23-19
23.2.5.13 Exit1-IR State..23-19
23.2.5.14 Pause-IR State ...23-19
23.2.5.15 Exit2-IR State..23-19
23.2.5.16 Update-IR State ..23-19

23.2.6 Boundary-Scan Example ...23-20

24 Clocking and Reset ..24-1

24.1 Clocking Overview..24-1
24.1.1 Clocking Theory of Operation ..24-1
24.1.2 Clocking Region 1..24-2
24.1.3 Clocking Region 2..24-2
24.1.4 Clocking Region 3..24-3
24.1.5 Clocking Region Summary ..24-3

24.2 Reset Overview ..24-3
24.2.1 Primary PCI Reset ...24-5
24.2.2 Secondary PCI Reset ..24-6
24.2.3 Internal Bus Reset ...24-6

24.3 Reset Strapping Options ..24-7

A Machine-Level Instruction Formats .. A-1

A.1 General Instruction Format.. A-1
A.2 REG Format .. A-3
A.3 COBR Format.. A-4
A.4 CTRL Format... A-4
A.5 MEM Format.. A-5

A.5.1 MEMA Format Addressing.. A-6
A.5.2 MEMB Format Addressing.. A-6

B Opcodes and Execution Times .. B-1

B.1 Instruction Reference by Opcode .. B-1

C Memory-Mapped Registers .. C-1

C.1 Overview.. C-1
C.2 Supervisor Space Family Registers and Tables.. C-1
C.3 Peripheral Memory-Mapped Register Address Space .. C-4
C.4 Accessing The Peripheral Memory-Mapped Registers C-5
C.5 Architecturally Reserved Memory Space .. C-6
C.6 Peripheral Memory-Mapped Register Address Space .. C-7

Index .. index-1

xxvi i960® RM/RN I/O Processor Developer’s Manual

Figures

1-1 i960® RM/RN I/O Processor Functional Block Diagram.....................................1-1
1-2 80960JT Core Processor Block Diagram...1-6
2-1 Data Types and Ranges ..2-1
3-1 i960® RM/RN I/O Processor Programming Environment...................................3-2
3-2 Local Memory Address Space ...3-10
4-1 Internal Data RAM and Register Cache...4-1
5-1 Machine-Level Instruction Formats ..5-2
6-1 dcctl src1 and src/dst Formats ...6-34
6-2 Store Data Cache to Memory Output Format ..6-35
6-3 D-Cache Tag and Valid Bit Formats ..6-35
6-4 icctl src1 and src/dst Formats ..6-50
6-5 Store Instruction Cache to Memory Output Format ...6-51
6-6 I-Cache Set Data, Tag and Valid Bit Formats ..6-52
6-7 Src1 Operand Interpretation...6-96
6-8 src/dst Interpretation for Breakpoint Resource Request6-97
7-1 Procedure Stack Structure and Local Registers ..7-3
7-2 Frame Spill ...7-9
7-3 Frame Fill ...7-10
7-4 System Procedure Table..7-15
7-5 Previous Frame Pointer Register – PFP ..7-18
8-1 Interrupt Handling Data Structures...8-2
8-2 Interrupt Table..8-4
8-3 Storage of an Interrupt Record on the Interrupt Stack8-6
8-4 Interrupt Controller ...8-12
8-5 Interrupt Pin Vector Assignment ..8-13
8-6 Interrupt Fast Sampling..8-14
8-7 Interrupt Controller Connections ..8-19
8-8 Interrupt Service Flowchart ..8-27
9-1 Fault-Handling Data Structures..9-1
9-2 Fault Table and Fault Table Entries ...9-5
9-3 Fault Record...9-7
9-4 Storage of the Fault Record on the Stack ..9-8
11-1 Initialization Flow Chart ..11-4
11-2 Processor Initialization Flow...11-6
11-3 FAIL# Timing..11-8
11-4 Initial Memory Image (IMI) and Process Control Block (PRCB).....................11-10
11-5 Control Table..11-18
12-1 LMCON Example ...12-4
12-2 Core Processor/BIU Interface Block Diagram..12-9
12-3 Internal Block Diagram...12-10
13-1 4 Mbyte Flash Memory System..13-4
13-2 90 ns Flash Read Cycle ...13-6
13-3 60 ns Flash Burst Read Cycle..13-7
13-4 90 ns Flash Write Cycle ...13-8
13-5 Dual-Bank SDRAM Memory Subsystem..13-10
13-6 Logical Memory Image of a 16 Mbit SDRAM Memory Subsystem13-15
13-7 Logical Memory Image of a 64 Mbit SDRAM Memory Subsystem13-16
13-8 Supported SDRAM Mode Register Settings ..13-18

i960® RM/RN I/O Processor Developer’s Manual xxvii

13-9 SDRAM Initialization Sequence (controlled with software)13-19
13-10 SDRAM Read, 40 bytes, ECC Enabled, Page Hit..13-21
13-11 SDRAM Read, 40 bytes, ECC Enabled, Page Miss.......................................13-23
13-12 SDRAM Write, 40 bytes, ECC Enabled, Page Hit..13-25
13-13 SDRAM Write, 40 bytes, ECC Enabled, Page Miss.......................................13-26
13-14 Refresh Following a Read Cycle ..13-28
13-15 Sub 64-bit SDRAM Write (D1) ..13-30
13-16 SDRAM Clocking..13-33
13-17 Power Failure Sequence ..13-35
13-18 Power Failure State Machine ...13-36
13-19 Power Failure Sequence ..13-37
13-20 External Power Failure State Machine ...13-38
13-21 External Power Failure Logic in the System...13-38
14-1 PCI-to-PCI Bridge Unit Block Diagram...14-2
14-2 Bridge Operation ..14-3
14-3 PCI Configuration Access Formats ..14-7
14-4 Secondary IDSEL Example..14-13
14-5 ISA Mode Address Decode ..14-15
14-6 Overlapping Memory Address Ranges ..14-16
14-7 64-bit Dual Address Read Cycle ..14-19
14-8 PCI 64-Bit Transfer to a 64-Bit Target..14-28
14-9 64-Bit Write Request with 32-Bit Transfer ..14-30
14-10 Downstream Data Path Queue Completion ...14-47
14-11 Bridge Configuration Header Format ...14-71
14-12 Primary Status Register - PSR...14-76
15-1 ATU Block Diagram..15-2
15-2 ATU Queue Architecture Block Diagram..15-3
15-3 Inbound Address Detection ..15-6
15-4 Inbound Translation Example...15-7
15-5 80960 Memory Map - Outbound Translation Window....................................15-15
15-6 Outbound Address Translation Windows ...15-16
15-7 Direct Addressing Window ...15-17
15-8 PCI 64-Bit Transfer from a 64-Bit Target..15-24
15-9 64-Bit Write Request with 32-Bit Transfer ..15-26
15-10 Inbound Queue Completion ...15-34
15-11 ATU Interface Configuration Header Format..15-47
16-1 PCI Memory Map ...16-3
16-2 Overview of Circular Queue Operation ..16-8
16-3 Circular Queue Operation ..16-10
17-1 i960® RM/RN I/O Processor Arbitration Block Diagram...................................17-1
17-2 Secondary PCI Arbitration Example...17-3
17-3 Arbitration Between Two Masters ..17-5
17-4 BIU Back-to-Back Transactions with MTT enabled..17-8
18-1 Timer Functional Diagram ..18-1
18-2 Timer Unit State Diagram...18-11
19-1 DMA Controller...19-2
19-2 DMA Channel Block Diagram...19-2
19-3 DMA Chain Descriptor..19-4
19-4 DMA Chaining Operation ...19-5
19-5 Example of Gather Chaining ..19-7

xxviii i960® RM/RN I/O Processor Developer’s Manual

19-6 Synchronizing to Chained Transfers ..19-9
19-7 Optimization of an Unaligned DMA ..19-14
19-8 Optimization of an Unaligned DMA ..19-15
19-9 DMA Programming Model State Diagram..19-16
20-1 Application Accelerator Unit ...20-1
20-2 Application Accelerator Unit Block Diagram...20-2
20-3 Chain Descriptor Format ..20-4
20-4 XOR Chaining Operation ...20-5
20-5 Chain Descriptor Format for 8 Source Addresses (XOR Function)20-7
20-6 XOR Chaining Operation ...20-8
20-7 The Bit-wise XOR Algorithm ..20-9
20-8 Hardware Assist XOR Unit ...20-10
20-9 Example of Gather Chaining for Four Source Blocks20-12
20-10 Synchronizing to Chained XOR Operation...20-13
20-11 Optimization of an Unaligned Data Transfer ..20-15
20-12 Application Accelerator Unit Programming Model State Diagram..................20-16
22-1 I2C Bus Configuration Example ...22-2
22-2 I2C Bus Interface Unit Block Diagram ..22-3
22-3 Start and Stop Conditions ..22-6
22-4 START and STOP Conditions..22-7
22-5 Data Format of First Byte in Master Transaction ...22-9
22-6 Acknowledge on the I2C Bus ...22-10
22-7 Clock Synchronization During the Arbitration Procedure22-11
22-8 Arbitration Procedure of Two Masters..22-12
22-9 Master-Receiver Read from Slave-Transmitter..22-15
22-10 Master-Receiver Read from Slave-Transmitter / Repeated Start /

Master-Transmitter Write to Slave-Receiver ..22-15
22-11 A Complete Data Transfer ...22-15
22-12 Master-Transmitter Write to Slave-Receiver ..22-17
22-13 Master-Receiver Read to Slave-Transmitter ..22-17
22-14 Master-Receiver Read to Slave-Transmitter, Repeated START,

Master-Transmitter Write to Slave-Receiver ..22-17
22-15 General Call Address ...22-18
23-1 Test Access Port Block Diagram..23-3
23-2 TAP Controller State Diagram..23-16
23-3 Example Showing Typical JTAG Operations ...23-21
23-4 Timing Diagram Illustrating the Loading of Instruction Register.....................23-22
23-5 Timing Diagram Illustrating the Loading of Data Register..............................23-23
24-1 Clocking Regions Diagram...24-1
24-2 SDRAM Clocking Diagram...24-2
24-3 Reset Block Diagram ...24-4
A-1 Instruction Formats ... A-1
C-2 i960® RM/RN I/O Processor Address Space .. C-6

i960® RM/RN I/O Processor Developer’s Manual xxix

Tables

1-1 Additional Information Sources ..1-12
1-2 Electronic Information...1-12
2-1 80960 and PCI Architecture Data Word Notation Differences2-2
2-2 Memory Addressing Modes..2-4
3-1 Registers and Literals Used as Instruction Operands ..3-3
3-2 Allowable Register Operands...3-5
3-3 Data Structure Descriptions ...3-9
3-4 Alignment of Data Structures in the Address Space ..3-12
3-5 Arithmetic Controls Register – AC..3-14
3-6 Condition Codes for True or False Conditions ...3-15
3-7 Condition Codes for Equality and Inequality Conditions3-15
3-8 Condition Codes for Carry Out and Overflow...3-15
3-9 Process Controls Register – PC...3-16
4-1 Load Instruction Updates ...4-6
5-1 Instruction Encoding Formats (REG, COBR, CRTL, MEM)5-2
5-2 i960® RM/RN I/O Processor Instruction Set...5-4
5-3 Arithmetic Operations...5-7
6-1 Pseudo-Code Symbol Definitions...6-3
6-2 Faults Applicable to All Instructions..6-3
6-3 Common Faulting Conditions ...6-4
6-4 Condition Code Mask Descriptions ..6-6
6-5 concmpo Example: Register Ordering and CC ..6-32
6-6 dcctl Operand Fields ..6-33
6-7 dcctl Status Values and D-Cache Parameters ...6-34
6-8 icctl Operand Fields..6-49
6-9 icctl Status Values and I-Cache Parameters..6-51
6-10 sysctl Field Definitions..6-96
6-11 Cache Mode Configuration...6-96
7-1 Encodings of Entry Type Field in System Procedure Table7-15
7-2 Encoding of Return Status Field...7-18
8-1 Interrupt Input Pin Descriptions ..8-20
8-2 PCI Interrupt Routing Summary ...8-21
8-3 XINT6# Interrupt Sources...8-22
8-4 XINT7 Interrupt Sources...8-22
8-5 NMI Interrupt Sources ..8-24
8-6 Default Interrupt Routing and Status Values ..8-25
8-7 Location of Cached Vectors in Internal RAM ...8-28
8-8 Base Interrupt Latency ...8-29
8-9 Worst-Case Interrupt Latency Controlled by divo to Destination r158-30
8-10 Worst-Case Interrupt Latency Controlled by divo to Destination r38-30
8-11 Worst-Case Interrupt Latency Controlled by calls ..8-30
8-12 Worst-Case Interrupt Latency When Delivering a Software Interrupt8-31
8-13 Worst-Case Interrupt Latency Controlled by flushreg of One Stack Frame8-31
8-14 Interrupt Control Registers Addresses ...8-32
8-15 Interrupt Control (ICON) Register...8-33
8-16 Interrupt Map Register 0 (IMAP0) ..8-34
8-17 Interrupt Map Register 1 (IMAP1) ..8-35
8-18 Interrupt Map Register 2 (IMAP2) ..8-35

xxx i960® RM/RN I/O Processor Developer’s Manual

8-19 Interrupt Pending (IPND) Register ...8-37
8-20 Interrupt Mask (IMSK) Register..8-38
8-21 PCI Interrupt Routing Select Register (PIRSR)..8-39
8-22 XINT6 Interrupt Status Register- X6ISR ..8-40
8-23 XINT7 Interrupt Status Register- X7ISR ..8-41
8-24 NMI Interrupt Status Register- NISR..8-42
9-1 i960® RM/RN I/O Processor Fault Types and Subtypes....................................9-3
9-2 Fault Control Bits and Masks ...9-15
10-1 80960RM/RN Trace Controls Register – TC..10-2
10-2 src/dst Encoding...10-6
10-3 Breakpoint Control Register – BPCON ..10-7
10-4 Configuring the Data Address Breakpoint Registers – DABx10-8
10-5 Programming the Data Address Breakpoint Modes – DABx............................10-8
10-6 Data Address Breakpoint Register – DABx..10-9
10-7 Instruction Breakpoint Register – IPBx ..10-10
10-8 Instruction Breakpoint Modes...10-10
10-9 Tracing on Explicit Call...10-12
10-10 Tracing on Implicit Call ...10-13
10-11 Tracing on Return from Explicit Call...10-14
11-1 Initialization Modes...11-2
11-2 Reset Values..11-5
11-3 BIST Failure Codes..11-8
11-4 Non-BIST Failure Codes ..11-9
11-5 Initialization Boot Record ...11-11
11-6 PMCON14_15 Register Bit Description in IBR ..11-13
11-7 PRCB Configuration...11-14
11-8 Process Control Block Configuration Words ..11-15
11-9 Processor Device ID Register - PDIDR..11-19
11-10 i960® Core Processor Device ID Register - DEVICEID11-19
12-1 PMCON Address Mapping...12-1
12-2 Physical Memory Control Registers – PMCON0:15...12-2
12-3 Bus Control Register – BCON..12-3
12-4 Logical Memory Address Registers – LMADR0:1..12-5
12-5 Logical Memory Mask Registers – LMMR0:1 ..12-6
12-6 Default Logical Memory Configuration Register – DLMCON12-6
12-7 Bus Interface Unit Register Table ..12-16
12-8 BIU Control Register - BIUCR..12-16
12-9 BIU Interrupt Status Register - BIUISR ..12-17
13-1 Flash Interface Signals...13-3
13-2 Address Decoding for Flash Memory Space..13-5
13-3 Flash Wait State Profile Programming ...13-7
13-4 SDRAM Memory Configuration Options ..13-9
13-5 SDRAM Interface Signals ..13-9
13-6 Supported SDRAM Configurations ..13-11
13-7 SDRAM Address Register Definitions..13-11
13-8 Address Decoding for SDRAM Memory Space ...13-12
13-9 Programming Values for the SDRAM Boundary Registers (SBRx[5:0])13-12
13-10 SDRAM Address Translation for 16 Mbit Devices ...13-13
13-11 SDRAM Address Translation for 64 Mbit Devices ...13-13
13-12 SDRAM Commands...13-17

i960® RM/RN I/O Processor Developer’s Manual xxxi

13-13 Syndrome Decoding...13-31
13-14 MCU Error Response ...13-39
13-15 Overlapping Address Priorities...13-41
13-16 Memory Controller Register Reference..13-42
13-17 SDRAM Initialization Register - SDIR ..13-43
13-18 SDRAM Control Register - SDCR ..13-44
13-19 Drive Strength Programmability Options (16-Mbit SDRAM Technology)13-45
13-20 Drive Strength Programmability Options (64-Mbit SDRAM Technology)13-46
13-21 SDRAM Base Register - SDBR..13-47
13-22 SDRAM Boundary Register 0 - SBR0 ..13-48
13-23 SDRAM Boundary Registers - SBR1 ...13-49
13-24 ECC Control Register - ECCR ...13-50
13-25 ECC Log Registers - ELOG0, ELOG1 ...13-51
13-26 ECC Address Registers - ECAR0, ECAR1 ..13-52
13-27 ECC Test Register - ECTST ..13-53
13-28 Flash Base Register 0 - FEBR0 ...13-54
13-29 Flash Base Register 1 - FEBR1 ...13-55
13-30 Flash Bank Size Register 0 - FBSR0 ...13-56
13-31 Flash Bank Size Register 1 - FBSR1 ...13-57
13-32 Flash Wait State Registers - FWSR0, FWSR1 ..13-58
13-33 Memory Controller Interrupt Status Register - MCISR13-59
13-34 Refresh Frequency Register - RFR..13-60
14-1 PCI Configuration Command Access Formats...14-6
14-2 Bridge Configuration Cycle Handling Summary ...14-8
14-3 IDSEL mapping for Type 1 to Type 0 Conversions ..14-10
14-4 Public/Private PCI Memory IDSEL Select Configurations..............................14-12
14-5 Primary to Secondary Memory Address Decoding Summary14-21
14-6 Primary to Secondary I/O Address Decoding Summary14-21
14-7 Secondary to Primary Memory Address Decoding Summary14-22
14-8 Secondary to Primary I/O Address Decoding Summary14-22
14-9 PCI Commands ..14-23
14-10 Delayed Transactions vs. Posted Transactions ...14-26
14-11 Prefetchable and Non-Prefetchable Memory Summary.................................14-33
14-12 Downstream Memory Read Prefetch Size ...14-33
14-13 Upstream Memory Read Prefetch Size..14-34
14-14 Bridge Unit Queue..14-42
14-15 D_DRC Assignments ...14-44
14-16 U_DRC Assignments ...14-44
14-17 Bridge Transaction Ordering Rules ..14-46
14-18 Bridge Transaction Ordering and Priority Mechanism....................................14-48
14-19 LOCK# Operation State Definitions..14-53
14-20 PSR Error Reporting Summary ..14-65
14-21 SSR Error Reporting Summary ..14-67
14-22 64-Bit Configuration Options at Reset..14-70
14-23 PCI-to-PCI Bridge Register Table ..14-72
14-24 Vendor Identification Register - VIDR ..14-73
14-25 Device Identification Register - DIDR (80960RN) ..14-74
14-26 Device Identification Register - DIDR (80960RM)..14-74
14-27 Primary Command Register - PCR ..14-75
14-28 Revision Identification Register - RID...14-77

xxxii i960® RM/RN I/O Processor Developer’s Manual

14-29 Class Code Register - CCR ...14-77
14-30 Cacheline Size Register - CLSR ..14-78
14-31 Primary Latency Timer Register- PLTR ...14-79
14-32 Header Type Register- HTR ..14-80
14-33 Primary Bus Number Register- PBNR ...14-81
14-34 Secondary Bus Number Register - SBNR ...14-82
14-35 Subordinate Bus Number Register - SubBNR ...14-83
14-36 Secondary Latency Timer Register - SLTR ...14-84
14-37 I/O Base Register - IOBR...14-85
14-38 I/O Limit Register - IOLR..14-86
14-39 Secondary Status Register - SSR..14-87
14-40 Memory Base Register - MBR ...14-88
14-41 Memory Limit Register - MLR ..14-89
14-42 Prefetchable Memory Base Register - PMBR..14-90
14-43 Prefetchable Memory Limit Register - PMLR...14-91
14-44 Bridge Subsystem Vendor ID Register - BSVIR ..14-92
14-45 Bridge Subsystem ID Register - BSIR ...14-92
14-46 Bridge Control Register - BCR ...14-93
14-47 Extended Bridge Control Register - EBCR ..14-96
14-48 Secondary IDSEL Select Register - SISR..14-99
14-49 Primary Bridge Interrupt Status Register - PBISR14-101
14-50 Secondary Bridge Interrupt Status Register - SBISR...................................14-102
14-51 Secondary I/O Base Register - SIOBR ..14-103
14-52 Secondary I/O Limit Register - SIOLR ...14-104
14-53 Secondary Memory Base Register - SMBR...14-105
14-54 Secondary Memory Limit Register - SMLR..14-106
14-55 Secondary Decode Enable Register - SDER...14-107
14-56 Queue Control Register- QCR ...14-109
15-1 ATU Command Support...15-4
15-2 Outbound Read Prefetch Sizes..15-19
15-3 PCI Multi-Function Device Swapping/Disabling Summary.............................15-22
15-4 Inbound Queues...15-28
15-5 Inbound Read Prefetch Data Sizes..15-30
15-6 Outbound Queues..15-31
15-7 ATU Inbound Data Flow Ordering Rules..15-32
15-8 ATU Outbound Data Flow Ordering Rules...15-32
15-9 Address Parity Errors on PCI Interface ..15-35
15-10 Outbound Read Data Parity Errors - Master ..15-36
15-11 Outbound Write Data Parity Errors - Master ..15-37
15-12 Inbound Write Data Parity Errors - Slave ...15-37
15-13 Master Aborts on the PCI Interface..15-39
15-14 Target Abort Signaled on the PCI Interface ...15-39
15-15 Target Abort Detected on the PCI Interface...15-40
15-16 SERR# Asserted by PCI Interface ...15-41
15-17 SERR# Detected by PCI Interface ...15-41
15-18 Master Abort Detected by Internal Master Interface During

Inbound Write..15-42
15-19 Master Abort Detected by Internal Master Interface During

Inbound Read..15-42

i960® RM/RN I/O Processor Developer’s Manual xxxiii

15-20 Target Abort Detected by Internal Master Interface During
Inbound Write ..15-43

15-21 Target Abort Detected by Internal Master Interface During
Inbound Read..15-44

15-22 Primary ATU Error Reporting Summary - PCI Interface................................15-44
15-23 Secondary ATU Error Reporting Summary - PCI Interface...........................15-45
15-24 Primary ATU Error Reporting Summary - Internal Bus Interface15-46
15-25 Secondary ATU Error Reporting Summary - Internal Bus Interface..............15-46
15-26 Address Translation Unit Registers..15-48
15-27 ATU PCI Configuration Register Space ...15-50
15-28 ATU Vendor ID Register - ATUVID ..15-51
15-29 Device ID Register - DID (80960RN) ...15-52
15-30 Device ID Register - DID (80960RM) ...15-52
15-31 Primary ATU Command Register - PATUCMD..15-53
15-32 Primary ATU Status Register - PATUSR ...15-54
15-33 ATU Revision ID Register - ATURID..15-55
15-34 ATU Class Code Register - ATUCCR ..15-56
15-35 ATU Cacheline Size Register - ATUCLSR...15-56
15-36 ATU Latency Timer Register - ATULT ...15-57
15-37 ATU Header Type Register - ATUHTR ..15-57
15-38 ATU BIST Register - ATUBISTR..15-58
15-39 Primary Inbound ATU Base Address - PIABAR ..15-59
15-40 ATU Subsystem Vendor ID Register - ASVIR..15-60
15-41 ATU Subsystem ID Register - ASIR...15-60
15-42 Expansion ROM Base Address Register -ERBAR...15-61
15-43 Memory Block Size Read Response Table..15-62
15-44 ATU Base Registers and Associated Limit Registers15-62
15-45 ATU Interrupt Line Register - ATUILR..15-63
15-46 ATU Interrupt Pin Register - ATUIPR...15-64
15-47 ATU Minimum Grant Register - ATUMGNT ...15-65
15-48 ATU Maximum Latency Register - ATUMLAT..15-66
15-49 Primary Inbound ATU Limit Register - PIALR ..15-67
15-50 Primary Inbound ATU Translate Value Register - PIATVR15-68
15-51 Secondary Inbound ATU Base Address Register - SIABAR..........................15-69
15-52 Secondary Inbound ATU Limit Register - SIALR ...15-70
15-53 Secondary Inbound Translate ATU Value Register - SIATVR15-71
15-54 Primary Outbound Memory Window Value Register - POMWVR15-72
15-55 Primary Outbound I/O Window Value Register - POIOWVR15-73
15-56 Primary Outbound DAC Window Value Register - PODWVR........................15-74
15-57 Primary Outbound Upper 64-bit DAC Register - POUDR15-75
15-58 Secondary Outbound Memory Window Value Register - SOMWVR15-76
15-59 Secondary Outbound I/O Window Value Register - SOIOWVR.....................15-77
15-60 Expansion ROM Limit Register - ERLR ...15-78
15-61 Expansion ROM Translate Value Register - ERTVR15-79
15-62 ATU Configuration Register - ATUCR..15-80
15-63 Primary ATU Interrupt Status Register - PATUISR ..15-82
15-64 Secondary ATU Interrupt Status Register - SATUISR15-84
15-65 Secondary ATU Command Register - SATUCMD ...15-86
15-66 Secondary ATU Status Register - SATUSR...15-87
15-67 Secondary Outbound DAC Window Value Register - SODWVR15-88

xxxiv i960® RM/RN I/O Processor Developer’s Manual

15-68 Secondary Outbound Upper 64-bit DAC Register - SOUDR15-89
15-69 Primary Outbound Configuration Cycle Address Register - POCCAR15-90
15-70 Secondary Outbound Configuration Cycle Address Register - SOCCAR......15-91
15-71 Primary Outbound Configuration Cycle Data Register - POCCDR................15-92
15-72 Secondary Outbound Configuration Cycle Data Register - SOCCDR15-93
15-73 Primary ATU Interrupt Mask Register - PATUIMR...15-94
15-74 Secondary ATU Interrupt Mask Register - SATUIMR15-95
16-1 MU Summary ...16-4
16-2 Circular Queue Ordering Requirements...16-4
16-3 Circular Queue Summary...16-7
16-4 Queue Starting Addresses ...16-9
16-5 Circular Queue Summary...16-13
16-6 Message Unit Register Table...16-16
16-7 Inbound Message Register - IMRx...16-17
16-8 Outbound Message Register - OMRx ..16-17
16-9 Inbound Doorbell Register - IDR ..16-18
16-10 Inbound Interrupt Status Register - IISR ..16-19
16-11 Inbound Interrupt Mask Register - IIMR ...16-20
16-12 Outbound Doorbell Register - ODR ...16-21
16-13 Outbound Interrupt Status Register - OISR ...16-22
16-14 Outbound Interrupt Mask Register - OIMR ..16-23
16-15 MU Configuration Register - MUCR...16-24
16-16 Queue Base Address Register - QBAR ...16-25
16-17 Inbound Free Head Pointer Register - IFHPR ...16-26
16-18 Inbound Free Tail Pointer Register - IFTPR...16-27
16-19 Inbound Post Head Pointer Register - IPHPR ...16-28
16-20 Inbound Post Tail Pointer Register - IPTPR...16-29
16-21 Outbound Free Head Pointer Register - OFHPR...16-30
16-22 Outbound Free Tail Pointer Register - OFTPR ..16-31
16-23 Outbound Post Head Pointer Register - OPHPR...16-32
16-24 Outbound Post Tail Pointer Register - OPTPR ..16-33
16-25 Index Address Register - IAR...16-34
17-1 Bus Master / Programmed Priorities ..17-3
17-2 Bus Arbitration Example – Three Bus Masters ..17-4
17-3 Bus Arbitration Example – Six Bus Masters...17-5
17-4 Arbitration Flow ..17-7
17-5 Arbitration Block and Reset Signals...17-10
17-6 Secondary Arbiter Register Table ..17-11
17-7 Secondary Arbitration Control Register - SACR ..17-12
17-8 2-Bit Priorities...17-12
17-9 Internal Arbitration Control Register - IACR ...17-13
17-10 Master Latency Timer Register - MLTR ...17-14
17-11 Multi-Transaction Timer Register - MTTR..17-14
18-1 Timer Performance Ranges ...18-1
18-2 Timer Registers..18-2
18-3 Timer Mode Register – TMRx ..18-3
18-4 Timer Input Clock (TCLOCK) Frequency Selection ...18-5
18-5 Timer Count Register – TCRx..18-6
18-6 Timer Reload Register – TRRx ..18-7
18-7 Timer Mode Register Control Bit Summary ...18-8

i960® RM/RN I/O Processor Developer’s Manual xxxv

18-8 Timer Responses to Register Bit Settings..18-9
18-9 Timer Powerup Mode Settings ...18-10
18-10 Uncommon TMRx Control Bit Settings...18-10
19-1 DMA Registers ...19-3
19-2 DMA Interrupt Summary...19-18
19-3 DMA Controller Unit Registers ...19-21
19-4 Channel Control Register - CCR ..19-22
19-5 Channel Status Register - CSR..19-23
19-6 Next Descriptor Address Register - NDAR...19-25
19-7 Descriptor Address Register - DAR..19-26
19-8 Byte Count Register - BCR ..19-27
19-9 PCI Address Register - PADR..19-28
19-10 PCI Upper Address Register - PUADR ..19-29
19-11 Local Address Register - LADR ...19-30
19-12 Descriptor Control Register - DCR ...19-31
19-13 PCI Commands ..19-32
20-1 Register Description ...20-3
20-2 Application Accelerator Unit Interrupt Summary ..20-18
20-3 AAU Interrupts - Special Case ...20-19
20-4 Application Accelerator Unit Registers ...20-20
20-5 Accelerator Control Register - ACR ...20-21
20-6 Accelerator Status Register - ASR ...20-22
20-7 Accelerator Descriptor Address Register - ADAR ..20-23
20-8 Accelerator Next Descriptor Address Register - ANDAR20-24
20-9 80960 Source Address Register - SARx ..20-25
20-10 80960 Destination Address Register - DAR ...20-26
20-11 Accelerator Byte Count Register - ABCR...20-27
20-12 Accelerator Descriptor Control Register - ADCR ...20-28
21-1 Occurrence Events...21-2
21-2 Duration Events..21-3
21-3 Relationship between the Monitored mode and Monitored Interface21-3
21-4 Event Monitor Register Table...21-20
21-5 Global Timer Mode Register (GTMR) ..21-21
21-6 Event Select Register (ESR) ..21-22
21-7 Event Monitoring Interrupt Status Register - EMISR......................................21-23
21-8 Global Time Stamp Register - GTSR ...21-24
21-9 Programmable Event Counter Register - PECRx ..21-25
22-1 I2C Bus Definitions ...22-1
22-2 Modes of Operation..22-4
22-3 START and STOP Bit Definitions...22-5
22-4 ICCR Programming Values ..22-7
22-5 Master Transactions...22-13
22-6 Slave Transactions...22-16
22-7 General Call Address Second Byte Definitions ..22-18
22-8 I2C Register Summary Table ...22-23
22-9 I2C Control Register - ICR..22-24
22-10 I2C Status Register - ISR ...22-27
22-11 I2C Slave Address Register - ISAR ..22-29
22-12 I2C Data Buffer Register - IDBR...22-30
22-13 I2C Clock Count Register - ICCR ...22-31

xxxvi i960® RM/RN I/O Processor Developer’s Manual

22-14 I2C Bus Monitor Register - IBMR ...22-32
23-1 TAP Controller Pin Definitions..23-3
23-2 Boundary-Scan Instruction Set ..23-4
23-3 IEEE Instructions..23-5
23-4 i960® RM/RN I/O Processor Boundary Scan Register Bit Order23-7
24-1 Clock Pin Summary..24-3
24-2 Clock Region Summary ...24-3
24-3 Configuration Modes ..24-7
A-1 Instruction Field Descriptions .. A-2
A-2 Encoding of src1 and src2 in REG Format.. A-3
A-3 Encoding of src/dst in REG Format... A-3
A-4 Encoding of src1 in COBR Format.. A-4
A-5 Encoding of src2 in COBR Format.. A-4
A-6 Addressing Modes for MEM Format Instructions .. A-5
A-7 Encoding of Scale Field .. A-6
B-1 Miscellaneous Instruction Encoding Bits... B-1
B-2 REG Format Instruction Encodings... B-2
B-3 COBR Format Instruction Encodings .. B-6
B-4 CTRL Format Instruction Encodings ... B-7
B-5 Cycle Counts for sysctl Operations ... B-8
B-6 Cycle Counts for icctl Operations.. B-8
B-7 Cycle Counts for dcctl Operations... B-8
B-8 Cycle Counts for intctl Operations... B-8
B-9 MEM Format Instruction Encodings .. B-9
B-10 Addressing Mode Performance... B-10
C-1 Access Types.. C-1
C-2 Supervisor Space Register Addresses ... C-2
C-3 Timer Registers... C-4
C-5 80960 Internal Addresses Assigned to Integrated Peripherals C-7
C-6 Peripheral Memory-Mapped Register Locations... C-8

 of

,

-PCI
ility to
ence
Introduction 1

1.1 Intel’s i960 ® RM/RN I/O Processor

The i960 RM/RN I/O processor integrates a high-performance 80960 “core” into a Peripheral
Components Interconnect (PCI) functionality. This integrated processor addresses the needs
intelligent I/O applications and helps reduce intelligent I/O system costs. As indicated in
Figure 1-1, the primary functional units include an i960 core processor, PCI to PCI bus bridge
Address Translation Unit, Messaging Unit, Direct Memory Access (DMA) Controller, Memory
Controller, Secondary PCI bus Arbitration Unit, I2C Bus Interface Unit, Application Accelerator
Unit, Performance Monitoring Unit and Bus Interface Unit.

The PCI Bus is an industry standard, high performance, low latency system bus. The PCI-to
bridge provides a connection path between two independent PCI buses and provides the ab
overcome PCI electrical loading limits. The addition of the i960 core processor brings intellig
to the PCI bus bridge.

Figure 1-1. i960® RM/RN I/O Processor Functional Block Diagram

PCI-to-PCI
Bridge

80960 Core
Processor

Secondary
PCI Arbitration

Unit

64-bit/32-bit Secondary PCI Bus64-bit/32-bit Primary PCI Bus

64-bit Internal Bus

Local Memory

I2C Bus
Interface

Address
Translation

Unit

 Memory
Controller Internal

Arbitration

Two DMA
Channels

I2C Serial Bus

i960® RM/RN I/O Processor

Address
Translation

Unit

One DMA
Channel

Application
Accelerator

Messaging
Unit

Bus Interface
Unit

Performance
Monitoring

Unit

(SDRAM, Flash)
i960® RM/RN I/O Processor Developer’s Manual 1-1

Introduction

truction
d
med

r full

n I/O
g
sing
al
twork

fully

e other
ata
CI
e that
1.2 i960® RM/RN I/O Processor Features

The i960 RM/RN I/O processor (“80960RM/RN”) combines the i960® JT processor with powerful
new features to create an intelligent I/O processor. This multi-function PCI device is fully compliant
with the PCI Local Bus Specification, Revision 2.1. 80960RM/RN-specific features include:

Because the 80960RM/RN’s core processor is based upon the 80960JT, the two i960 family
members are object code compatible and can maintain a sustained execution rate of one ins
per clock. The 80960 local bus, a 32-bit multiplexed burst bus, is connected to the high-spee
internal bus through a Bus Interface Unit. Physical and logical memory attributes are program
via memory-mapped control registers (MMRs). See Section 1.3, “i960® Core Processor Features
(80960JT)” on page 1-6 for more information.

The subsections that follow briefly overview each feature. Refer to the appropriate chapter fo
technical descriptions.

1.2.1 Intelligent I/O (I2O)

Addressing the software side of I/O, the i960 RM/RN I/O processor supports the industry-standard
Intelligent I/O (I20) interface for PCI applications. This specification was formed by Intel and
industry leaders in hardware and software to create a standard interface that increases I/O
performance and decreases developer time-to-market. This specification provides a commo
device driver that is independent to both the specific controlled device and the host operatin
system. The I20 architecture facilitates intelligent I/O subsystems by supporting message pas
between multiple independent processors. I20 provides a standard interface to which all peripher
and network adapter card software can be developed, and remain compliant with popular ne
operating systems. The I20 architecture improves performance by relieving the host of
interrupt-intensive I/O tasks. By providing a standard interface, new technologies can be
implemented quickly and uniformly.

1.2.2 PCI-to-PCI Bridge Unit

The PCI-to-PCI bridge unit (referred to as “bridge”) connects two independent PCI buses. It is
compliant with the PCI-to-PCI Bridge Architecture Specification Revision 1.0 published by the PCI
Special Interest Group. It allows certain bus transactions on one PCI bus to be forwarded to th
PCI bus. It allows fully independent PCI bus operation (e.g., independent clocks). Dedicated d
queues support high-performance bandwidth on the PCI buses. The 80960RM/RN supports P
64-bit Dual Address Cycle (DAC) addressing. The bridge has dedicated PCI configuration spac
is accessible through the primary PCI bus. See Chapter 14, “PCI-to-PCI Bridge”.

• Intelligent I/O (I2O) • I2C Bus Interface Unit

• PCI-to-PCI Bridge • Secondary PCI Arbitration Unit

• Private PCI Device Support • Performance Monitoring Unit

• DMA Controller Unit • Application Accelerator Unit

• Address Translation Unit • Bus Interface Unit

• Messaging Unit • Wind River Systems IxWorks* RTOS Compatibility

• Memory Controller
1-2 i960® RM/RN I/O Processor Developer’s Manual

Introduction

N

 from
 in

RN. It

,
re
rror

sable
1.2.3 Private PCI Device Support

A key 80960RM/RN feature is that it explicitly supports private PCI devices on the secondary PCI
bus without being detected by PCI configuration software. The bridge and Address Translation
Unit work together to hide private devices from PCI configuration cycles and allow these devices
to use a private PCI address space. The Address Translation Unit uses normal PCI configuration
cycles to configure these devices.

1.2.4 DMA Controller

The DMA Controller allows low-latency, high-throughput data transfers between PCI bus agents
and 80960 local memory. Three separate DMA channels accommodate data transfers: two for the
primary PCI bus, one for the secondary PCI bus. The DMA Controller supports chaining and
unaligned data transfers. It is programmable through the i960 core processor only. See Chapter 19,
“DMA Controller Unit”.

1.2.5 Address Translation Unit

The Address Translation Unit (ATU) allows PCI transactions direct access to the 80960RM/R
local memory. The ATU supports transactions between PCI address space and 80960RM/RN
address space. Address translation is controlled through programmable registers accessible
both the PCI interface and the i960 core processor. Dual access to registers allows flexibility
mapping the two address spaces. See Chapter 15, “Address Translation Unit”.

1.2.6 Messaging Unit

The Messaging Unit (MU) provides data transfer between the PCI system and the 80960RM/
uses interrupts to notify each system when new data arrives. The MU has four messaging
mechanisms:

• Message Registers

• Doorbell Registers

• Circular Queues

• Index Registers

Each allows a host processor or external PCI device and the 80960RM/RN to communicate
through message passing and interrupt generation. See Chapter 16, “Messaging Unit”.

1.2.7 Memory Controller

The Memory Controller allows direct control of external memory systems, including SDRAM
ROM and flash. It provides a direct connect interface to memory that typically does not requi
external logic. It features programmable chip selects, a wait state generator, ECC single-bit e
correction and double-bit error detection. External memory can be configured as PCI addres
memory or private 80960RM/RN memory. See Chapter 13, “Memory Controller”.
i960® RM/RN I/O Processor Developer’s Manual 1-3

Introduction

ness

t can
1.2.8 I2C Bus Interface Unit

The I2C (Inter-Integrated Circuit) Bus Interface Unit allows the i960 core processor to serve as a
master and slave device residing on the I2C bus. The I2C unit uses a serial bus developed by Philips
Semiconductor consisting of a two-pin interface. The bus allows the 80960RM/RN to interface to
other I2C peripherals and microcontrollers for system management functions. It requires a
minimum of hardware for an economical system to relay status and reliability information on the
I/O subsystem to an external device. See Chapter 22, “I2C Bus Interface Unit”. Also refer to the
document I2C Peripherals for Microcontrollers (Philips Semiconductor).

1.2.9 Secondary PCI Arbitration Unit

The Secondary PCI Arbitration Unit is the arbiter for the secondary PCI bus. It includes a fair
algorithm with programmable priorities and six PCI request and grant signal pairs. See Chapter 17,
“i960® RM/RN I/O Processor Arbitration”.

1.2.10 Performance Monitoring Unit

The Performance Monitoring Unit (PMON) is used to gather performance measurements tha
be used to refine code for improved system level performance. The PMON consists of:

• One dedicated Global Time Stamp Counter

• Fourteen programmable Event Counters

The PMON contains eight different modes which can be used to measure occurrence and duration
events on the primary PCI bus, the secondary PCI bus, and the internal bus.

1.2.11 Application Accelerator

The Application Accelerator Unit (AAU) provides low-latency, high-throughput data transfer
between the AAU and the 80960 local memory. It executes data transfers to and from 80960 local
memory and has a programmable interface.

The AAU can perform the following functions:

• Transfers data (reads) from 80960 local memory through the MCU

• Performs an optional XOR operation

• Transfers data (writes) to 80960 local memory through the MCU

The AAU can perform an XOR of up to eight 128-byte pieces of data and write the result to a
single destination. It can also be used without the XOR as a local memory to local memory DMA.
1-4 i960® RM/RN I/O Processor Developer’s Manual

Introduction

rks
river
et a
ntact
1.2.12 Bus Interface Unit

The Bus Interface Unit (BIU) interfaces the 32-bit, 100 MHz 80960 local bus to the 64-bit, 66 MHz
internal bus which contains external memory and peripherals. The BIU forwards core processor bus
accesses to the internal bus, and is responsible for their completion. No address translation is
performed.

The BIU has several address/data buffers:

• Write Buffer - stores 1 address & 16 bytes of data

• Read Buffer - stores 16 bytes of data

• Prefetch Buffer - stores 16 bytes of instructions

The BIU has two optional features that can increase overall performance. The BIU can extend core
processor instruction fetches by 16 bytes and store the additional bytes in a prefetch buffer. Under
special conditions, the BIU can merge two sequential write accesses into one 64-bit internal bus access.

1.2.13 Wind River Systems IxWorks* RTOS

A key feature of the i960 RM/RN I/O processor is Wind River System’s IxWorks* Real-Time
Operating System (RTOS). With clearly defined Application Program Interfaces (APIs), IxWo
creates a user-friendly environment to write basic device drivers. IxWorks supports NOS-to-d
independence, and allows multiple I/O software to co-exist reliably. In addition, developers g
30-day evaluation copy of the Tornado* development environment. For more information, co
your local Intel representative.
i960® RM/RN I/O Processor Developer’s Manual 1-5

Introduction
1.3 i960® Core Processor Features (80960JT)

The processing power of the 80960RM/RN comes from the 80960JT processor core. The 80960JT
is a new, scalar implementation of the i960 core architecture. Figure 1-2 shows a block diagram of
the 80960JT core processor.

Factors that contribute to the 80960JT’s performance include:

• Single-clock execution of most instructions

• Independent Multiply/Divide Unit

• Efficient instruction pipeline minimizes pipeline break latency

• Register and resource scoreboarding allow overlapped instruction execution

• 128-bit register bus speeds local register caching

• 16 Kbyte two-way set-associative, integrated instruction cache

• 4 Kbyte direct-mapped, integrated data cache

• 1 Kbyte integrated data RAM delivers zero wait state program data

The i960 core processor operates out of its own memory space located on the internal bus, which is
independent of the PCI address space. The 80960 local memory can be:

• Made visible to the PCI address space

• Kept private to the i960 core processor

• Allocated as a combination of the two

Figure 1-2. 80960JT Core Processor Block Diagram

Programmable

Bus Control Unit

Address/

Instruction Sequencer

Physical Region
Configuration

Interrupt
Port

1 Kbyte

Data RAM

Memory
Interface

Execution
Multiply

Unit
Divide Unit

Memory-Mapped
Register Interface

Global / Local
Register File

SRC2 DESTSRC1

Address

ControlConstants

Generation
Unit

Address

32-bit Data

Bus Request
Queues

and

Two 32-Bit
Timers

8-Set
Local Register Cache

S
R

C
1

S
R

C
2

D
E

S
T

PLL, Clocks,

Boundary Scan

Controller

TAP

5

128

S
R

C
1

S
R

C
2

D
E

S
T

S
R

C
1

D
E

S
T

9

32

32-bit buses
address / data

Instruction Cache
16 Kbyte Two-Way Set Associative

4 Kbyte
Direct Mapped

Data Cache

P_CLK/
S_CLK

Interrupt
Controller

Control

 Three Independent 32-Bit SRC1, SRC2, and DEST Buses
1-6 i960® RM/RN I/O Processor Developer’s Manual

Introduction

. Each
-shot

1.3.1 80960 Local Bus

The 100 MHz 80960 local bus exists between the 80960 core processor and the Bus Interface Unit
(BIU). The local bus features a 32-bit high performance bus controller which fetches instructions
and transfers data at a rate of up to four 32-bit words per six clock cycles. The 80960 local bus
controller’s features include:

• Unaligned bus accesses performed transparently

• Three-deep load/store queue decouples the bus from the i960 core processor

• Data caching programmable by region

1.3.2 Timer Unit

As described in Chapter 18, “Timers”, The Timer Unit (TU) contains two independent 32-bit
timers that are capable of counting at software-defined clock rates and generating interrupts
is programmed by use of the Timer Unit memory-mapped registers. The timers have a single
mode and auto-reload capabilities for continuous operation. Each timer has an independent
interrupt request to the 80960RM/RN’s interrupt controller.

1.3.3 Priority Interrupt Controller

Chapter 8, “PCI and Peripheral Interrupt Controller Unit” explains how low interrupt latency is
critical to many embedded applications. As part of its highly flexible interrupt mechanism, the
80960RM/RN exploits several techniques to minimize latency:

• Interrupt vectors and interrupt handler routines can be reserved on-chip

• Register frames for high-priority interrupt handlers can be cached on-chip

• The interrupt stack can be placed in cacheable memory space
i960® RM/RN I/O Processor Developer’s Manual 1-7

Introduction

s
byte

s. The
 to its

ssor
mode

a
onent
s

an

 first
ds of
1.3.4 Faults and Debugging

The 80960RM/RN employs a comprehensive fault model. The processor responds to faults by
making implicit calls to fault handling routines. Specific information collected for each fault allows
the fault handler to diagnose exceptions and recover appropriately.

The processor also has built-in debug capabilities. Via software, the 80960RM/RN may be
configured to detect as many as seven different trace event types. Alternatively, mark and fmark
instructions can generate trace events explicitly in the instruction stream. Hardware breakpoint
registers are also available to trap on execution and data addresses. See Chapter 9, “Faults”.

1.3.5 On-Chip Cache and Data RAM

As discussed in Chapter 4, “Cache and On-Chip Data RAM”, memory subsystems often impose
substantial wait state penalties. The 80960RM/RN integrates considerable storage resource
on-chip to decouple CPU execution from the external bus. The 80960RM/RN includes a 16 K
instruction cache, a 4 Kbyte data cache and 1 Kbyte data RAM.

1.3.6 Local Register Cache

The 80960RM/RN rapidly allocates and deallocates local register sets during context switche
processor needs to flush a register set to the stack only when it saves more than seven sets
local register cache.

1.3.7 Test Features

The 80960RM/RN incorporates features that enhance the user’s ability to test both the proce
and the system to which it is attached. These features include ONCE (On-Circuit Emulation)
and IEEE Std. 1149.1 Boundary Scan (JTAG). See Chapter 23, “Test Features”.

One of the boundary scan instructions, HIGHZ, forces the processor to float all its output pins
(ONCE mode). ONCE mode can also be initiated at reset without using the boundary scan
mechanism.

ONCE mode is useful for board-level testing. This feature allows a mounted 80960RM/RN to
electrically “remove” itself from a circuit board. This mode allows system-level testing where
remote tester can exercise the processor system. The test logic does not interfere with comp
or system behavior and ensures that components function correctly, and also the connection
between various components are correct.

The JTAG Boundary Scan feature is an alternative to conventional “bed-of-nails” testing. It c
examine connections that might otherwise be inaccessible to a test system.

For reliability, the 80960RM/RN conducts an internal self test upon reset. Before executing its
instruction, it performs a local bus confidence test by performing a checksum on the first wor
the Initialization Boot Record.
1-8 i960® RM/RN I/O Processor Developer’s Manual

Introduction

nt

1.3.8 Memory-Mapped Control Registers

The 80960RM/RN is compliant with 80960 family architecture and has the added advantage of
memory-mapped, internal control registers not found on the 80960Kx, Sx or Cx processors. This
feature provides software an interface to easily read and modify internal control registers.

Each memory-mapped, 32-bit register is accessed via regular memory-format instructions. The
processor ensures that these accesses do not generate external bus cycles. See Chapter 13,
“Memory Controller”.

1.3.9 Instructions, Data Types and Memory Addressing Modes

As with all 80960 family processors, the 80960RM/RN instruction set supports several differe
data types and formats:

• Bit

• Bit fields

• Integer (8-, 16-, 32-, 64-bit)

• Ordinal (8-, 16-, 32-, 64-bit unsigned integers)

• Triple word (96 bits)

• Quad word (128 bits)

Several chapters describe the i960 RM/RN I/O processor instruction set, including:

• Chapter 3, “Programming Environment”

• Chapter 5, “Instruction Set Overview”

• Chapter 6, “Instruction Set Reference”

1.4 About This Document

The i960 RM/RN I/O processor incorporates Peripheral Component Interconnect (PCI)
functionality with the i960 JT processor. As such, it is assumed that the reader has a working
understanding of the Peripheral Component Interconnect (PCI), PCI Local Bus Specification,
Revision 2.1, and the i960 core processor.
i960® RM/RN I/O Processor Developer’s Manual 1-9

Introduction

 16 are

licitly

can be
1.4.1 Terminology

In this document, the following terms are used:

• 80960RM/RN refers generically to the i960 RM/RN I/O processor family. As of this printing,
the family includes the 32-bit PCI 80960RM and the 64-bit 80960RN.

• 80960 internal bus refers to the i960 RM/RN I/O processor’s internal local bus, not the PCI
local bus.

• 80960 core local bus refers to the 80960JT bus, between the core processor and the BIU.

• Primary and Secondary PCI buses are the i960 RM/RN I/O processor’s internal PCI buses that
conform to PCI Special Interest Group specifications.

• i960 core processor refers to the i960 JT processor that is integrated into the 80960RM/RN.

• DWORD is a 32-bit data word.

• 80960 Local memory is a memory subsystem on the 80960RM/RN internal bus.

The following terms are used primarily in Chapter 14, “PCI-to-PCI Bridge”:

• Downstream — at or toward a PCI bus with a higher number (after configuration).

• Host processor — Processor located upstream from the i960 RM/RN I/O processor.

• Local processor — i960 core processor within the i960 RM/RN I/O processor.

• Upstream — At or toward a PCI bus with a lower number (after configuration).

1.4.2 Representing Numbers

Assume that all numbers are base 10 unless designated otherwise. In text, numbers in base
represented as “nnnH”, where the “H” signifies hexadecimal. In pseudocode descriptions,
hexadecimal numbers are represented in the form 0x1234ABCD. Binary numbers are not exp
identified and are assumed when bit operations or bit ranges are used.

1.4.3 Fields

A preserved field in a data structure is one that the processor does not use. Preserved fields
used by software; the processor does not modify such fields.

A reserved field is a field that may be used by an implementation. When the initial value of a
reserved field is supplied by software, this value must be zero. Software should not modify
reserved fields or depend on any values in reserved fields.

A read only field can be read to return the current value. Writes to read only fields are treated as
no-op operations and do not change the current value or result in an error condition.

A read/clear field can also be read to return the current value. A write to a read/clear field with the
data value of 0 causes no change to the field. A write to a read/clear field with a data value of 1
causes the field to be cleared (reset to the value of 0). For example, when a read/clear field has a
value of F0H, and a data value of 55H is written, the resultant field is A0H.
1-10 i960® RM/RN I/O Processor Developer’s Manual

Introduction

signal
s

A read/set field can also be read to return the current value. A write to a read/set field with the data
value of 0 causes no change to the field. A write to a read/set field with a data value of 1 causes the
field to be set (set to the value of 1). For example, when a read/set field has a value of F0H, and a
data value of 55H is written, the resultant field is F5H.

1.4.4 Specifying Bit and Signal Values

The terms set and clear in this specification refer to bit values in register and data structures. When
a bit is set, its value is 1; when the bit is clear, its value is 0. Likewise, setting a bit means giving it
a value of 1 and clearing a bit means giving it a value of 0.

The terms assert and deassert refer to the logically active or inactive value of a signal or bit, respectively.

1.4.5 Signal Name Conventions

All signal names use the PCI signal name convention of using the “#” symbol at the end of a
name to indicate that the signal’s active state occurs when it is at a low voltage. This include
80960 processor-related signal names that normally use an overline. The absence of the “#” symbol
indicates that the signal’s active state occurs when it is at a high voltage level.

1.4.6 Solutions960® Program

Intel’s Solutions960® program features a wide variety of development tools that support the i960

processor family. Many of these tools are developed by partner companies; some are developed by
Intel, such as profile-driven optimizing compilers. For more information on these products, contact
your local Intel representative.
i960® RM/RN I/O Processor Developer’s Manual 1-11

Introduction
1.4.7 Related Documents

Intel documentation is available from your Intel Sales Representative or Intel Literature Sales.

Intel Corporation
Literature Sales
P.O. Box 5937
Denver, CO 80217-9808
1-800-548-4725

1.4.8 Electronic Information

Intel’s documentation and other information ia available from Intel’s website (Table 1-2).

Table 1-1. Additional Information Sources

Document Title Order / Contact

i960® RM/RN I/O Processor Specification Update Intel Order # 273164

i960® RM I/O Processor Data Sheet Intel Order # 273156

i960® RN I/O Processor Data Sheet Intel Order # 273157

i960® Jx Microprocessor Developer’s Manual Intel Order # 272483

IQ80960RM/RN Evaluation Board Manual Intel Order # 273160

i960® RM/RN I/O Processor Design Guide Intel Order # 273139

PCI Local Bus Specification, Revision 2.1 PCI Special Interest Group 1-800-433-5177

PCI-to-PCI Bridge Architecture Specification, Revision 1.0 PCI Special Interest Group 1-800-433-5177

PCI System Design Guide, Revision 1.0 PCI Special Interest Group 1-800-433-5177

I2C Peripherals for Microcontrollers Philips Semiconductor

I2C Bus and How to Use It (Including Specifications) Philips Semiconductor

I2C Peripherals for Microcontrollers (Including Fast Mode) Signetics

New DRAM Technologies by Steven Przybylski Book Store

IEEE 1149.1 Standard Test Access Port and Boundary-Scan
Architecture

Institute of Electrical and Electronics
Engineers Inc.
345 E. 47th St.
New York, NY 10017

Table 1-2. Electronic Information

Information Source URL

Intel’s World-Wide Web Home Page http://www.intel.com/

Wind River System’s IxWorks http://www.wrs.com/

I20 Special Interest Group Web Site http://www.i2osig.org/
1-12 i960® RM/RN I/O Processor Developer’s Manual

Data Types and Memory Addressing
Modes 2

2.1 Data Types

The instruction set references or produces several data lengths and formats. The i960® RM/RN I/O
processor supports the following data types:

Figure 2-1 illustrates the class, data type and length of each type supported by i960 processors.

• Integer (signed 8, 16 and 32 bits) • Ordinal (unsigned integer 8, 16, and 32 bits)

• Long Word (64 bits) • Triple Word (96 bits)

• Quad Word (128 bits) • Bit Field

• Bit

Figure 2-1. Data Types and Ranges

Byte

Short

Word

Triple Word

Quad Word

8
Bits

16
Bits

32
Bits

64
Bits

96
Bits

128
Bits

Numeric
(Integer)

Numeric
(Ordinal)

Non-Numeric

Byte Integer
Short Integer

Integer

Byte Ordinal

Short Ordinal

Ordinal

Bit

Bit Field

Triple Word

Quad Word

8 Bits
16 Bits

32 Bits

8 Bits

16 Bits

32 Bits

1 Bit

1-32 Bits

96 Bits

128 Bits

-27 to 27 -1
-215 to 215 -1

-231 to 231 -1

0 to 28 -1

0 to 216 -1

0 to 232 -1

N/A

Bit Field

Length

LSB of
Bit Field

0

0

0

0

7

15

31

63

Class Data Type Length Range

0

0

95

127

031

Long Word 64 Bits

Long

Long Ordinal 64 Bits 0 to 264 - 1
i960® RM/RN I/O Processor Developer’s Manual 2-1

Data Types and Memory Addressing Modes

t by the
rs are

tion is

the

rge to

 a
2.1.1 Word/Dword Notation

Data lengths, as described in the PCI Local Bus Specification Revision 2.1, differ from the
conventions used for the 80960 architecture. See also Table 2-1:

• In the PCI specification the term word refers to a 16-bit block of data.

• In this manual and other documentation relating to the i960 RM/RN I/O processor, the term
word refers to a 32-bit block of data.

2.1.2 Integers

Integers are signed whole numbers that are stored and operated on in two’s complement forma
integer instructions. Most integer instructions operate on 32-bit integers. Byte and short intege
referenced by the byte and short classes of the load, store and compare instructions only.

Integer load or store size (byte, short or word) determines how sign extension or data trunca
performed when data is moved between registers and memory.

For instructions ldib (load integer byte) and ldis (load integer short), a byte or short word in
memory is considered a two’s complement value. The value is sign-extended and placed in
32-bit register that is the destination for the load.

For instructions stib (store integer byte) and stis (store integer short), a 32-bit two’s complement
number in a register is stored to memory as a byte or short word. When register data is too la
be stored as a byte or short word, the value is truncated and the integer overflow condition is
signalled. When an overflow occurs, either an AC register flag is set or the
ARITHMETIC.INTEGER_OVERFLOW fault is generated, depending on the Integer Overflow
Mask bit (AC.om) in the AC register. Chapter 9, “Faults” describes the integer overflow fault.

For instructions ld (load word) and st (store word), data is moved directly between memory and
register with no sign extension or data truncation.

Table 2-1. 80960 and PCI Architecture Data Word Notation Differences

No. of Bits PCI Architecture 80960 Architecture

16 word short word or half word

32 doubleword or dword word

Example 2-1. Sign Extensions on Load Byte and Load Short

ldib

7AH is loaded into a register as 0000 007AH

FAH is loaded into a register as FFFF FFFAH

ldis

05A5H is loaded into a register as 0000 05A5H

85A5H is loaded into a register as FFFF 85A5H
2-2 i960® RM/RN I/O Processor Developer’s Manual

Data Types and Memory Addressing Modes
2.1.3 Ordinals

Ordinals or unsigned integer data types are stored and treated as positive binary values. Figure 2-1
shows the supported ordinal sizes.

The large number of instructions that perform logical, bit manipulation and unsigned arithmetic
operations reference 32-bit ordinal operands. When ordinals are used to represent Boolean values,
1 = TRUE and 0 = FALSE. Most extended arithmetic instructions reference the long ordinal data
type. Only load (ldob and ldos), store (stob and stos), and compare ordinal instructions reference
the byte and short ordinal data types.

Sign and sign extension are not considered when ordinal loads and stores are performed; however, the
values may be zero-extended or truncated. A short word or byte load to a register causes the value
loaded to be zero-extended to 32 bits. A short word or byte store to memory truncates an ordinal value
in a register to fit the destination memory. No overflow condition is signalled in this case.

2.1.4 Bits and Bit Fields

The processor provides several instructions that perform operations on individual bits or bit fields
within register operands. An individual bit is specified for a bit operation by giving its bit number
and register. Internal registers always follow little endian byte order; the least significant bit is bit 0
and the most significant bit is bit 31.

A bit field is any contiguous group of bits (up to 32 bits long) in a 32-bit register. Bit fields do not
span register boundaries. A bit field is defined by giving its length in bits (1-32) and the bit number
of its lowest numbered bit (0-31).

Loading and storing bit and bit-field data is normally performed using the ordinal load (ldo) and store
(sto) instructions. When an ldi instruction loads a bit or bit field value into a 32-bit register, the
processor appends sign extension bits. A byte or short store can signal an integer overflow condition.

2.1.5 Triple and Quad Words

Triple and quad words refer to consecutive words in memory or in registers. Triple- and quad-word
load, store and move instructions use these data types to accomplish block movements. No data
manipulation (sign extension, zero extension or truncation) is performed in these instructions.

Triple- and quad-word data types can be considered a superset of the other data types described.
Data in each word subset of a quad word is likely to be the operand or result of an ordinal, integer,
bit or bit field instruction.

2.1.6 Register Data Alignment

Several instructions operate on multiple-word operands. For example, the load-long instruction
(ldl) loads two words from memory into two consecutive registers. Here the register number for the
least significant word is automatically loaded into the next higher-numbered register.

In cases where an instruction specifies a register number, and multiple, consecutive registers are
implied, the register number must be even if two registers are accessed (e.g., g0, g2) and an integral
multiple of four if three or four registers are accessed (e.g., g0, g4). When a register reference for a
source value is not properly aligned, the registers that the processor writes to are undefined.

The i960 RM/RN I/O processor does not require data alignment in external memory; the processor
hardware handles unaligned memory accesses automatically. Optionally, user software can
configure the processor to generate a fault on unaligned memory accesses.
i960® RM/RN I/O Processor Developer’s Manual 2-3

Data Types and Memory Addressing Modes

ire
 bus
2.1.7 Literals

The architecture defines a set of 32 literals that can be used as operands in many instructions. These
literals are ordinal (unsigned) values that range from 0 to 31 (5 bits). When a literal is used as an
operand, the processor expands it to 32 bits by adding leading zeros. If the instruction requires an
operand larger than 32 bits, the processor zero-extends the value to the operand size. If a literal is
used in an instruction that requires integer operands, the processor treats the literal as a positive
integer value.

2.2 Bit and Byte Ordering in Memory

All occurrences of numeric and non-numeric data types, except bits and bit fields, must start on a
byte boundary. Any data item occupying multiple bytes is stored as little endian.

2.3 Memory Addressing Modes

Nine modes are available for addressing operands in memory. Each addressing mode is used to
reference a byte location in the processor’s address space. Table 2-2 shows the memory addressing
modes and a brief description of each mode’s address elements and assembly code syntax.

See Table B-9 “MEM Format Instruction Encodings” on page B-9 for more on addressing modes.
For purposes of this memory addressing modes description, MEMA format instructions requ
one word of memory and MEMB usually require two words and therefore consume twice the
bandwidth to read. Otherwise, both formats perform the same functions.

Table 2-2. Memory Addressing Modes

Mode Description Assembler Syntax Inst.
Type

Absolute offset offset (smaller than 4096) exp MEMA

displacement displacement (larger than 4095) exp MEMB

Register Indirect abase (reg) MEMB

with offset abase + offset exp (reg) MEMA

with displacement abase + displacement exp (reg) MEMB

with index abase + (index*scale) (reg) [reg*scale] MEMB

with index and displacement abase + (index*scale) + displacement exp (reg) [reg*scale] MEMB

Index with displacement (index*scale) + displacement exp [reg*scale] MEMB

instruction pointer (IP) with
displacement IP + displacement + 8 exp (IP) MEMB

NOTE: reg is register, exp is an expression or symbolic label, and IP is the Instruction Pointer.
2-4 i960® RM/RN I/O Processor Developer’s Manual

Data Types and Memory Addressing Modes

pically,
(e.g.,
g
ropriate

lation.

ase.

t array

d in a
6.

 level

ss.

ession

d a

egister
mat.
2.3.1 Absolute

Absolute addressing modes allow a memory location to be referenced directly as an offset from
address 0H. At the instruction encoding level, two absolute addressing modes are provided:
absolute offset and absolute displacement, depending on offset size.

• For the absolute offset addressing mode, the offset is an ordinal number ranging from 0 to 4095.
The absolute offset addressing mode is encoded in the MEMA machine instruction format.

• For the absolute displacement addressing mode, the offset value ranges from 0 to 232-1. The
absolute displacement addressing mode is encoded in the MEMB format.

Addressing modes and encoding instruction formats are described in Chapter 6, “Instruction Set
Reference”.

At the assembly language level, the two absolute addressing modes use the same syntax. Ty
development tools allow absolute addresses to be specified through arithmetic expressions
x + 44) or symbolic labels. After evaluating an address specified with the absolute addressin
mode, the assembler converts the address into an offset or displacement and selects the app
instruction encoding format and addressing mode.

2.3.2 Register Indirect

Register indirect addressing modes use a register’s 32-bit value as a base for address calcu
The register value is referred to as the address base (designated “abase” in Table 2-2). Depending
on the addressing mode, an optional scaled index and offset can be added to this address b

Register indirect addressing modes are useful for addressing elements of an array or record
structure. When addressing array elements, the abase value provides the address of the firs
element. An offset (or displacement) selects a particular array element.

In register-indirect-with-index addressing mode, the index is specified using a value containe
register. This index value is multiplied by a scale factor. Allowable factors are 1, 2, 4, 8 and 1
The register-indirect-with-index addressing mode is encoded in the MEMA format.

The two versions of register-indirect-with-offset addressing mode at the instruction encoding
are register-indirect-with-offset and register-indirect-with-displacement. As with absolute
addressing modes, the mode selected depends on the size of the offset from the base addre

At the assembly language level, the assembler allows the offset to be specified with an expr
or symbolic label, then evaluates the address to determine whether to use
register-indirect-with-offset (MEMA format) or register-indirect-with-displacement (MEMB
format) addressing mode.

Register-indirect-with-index-and-displacement addressing mode adds both a scaled index an
displacement to the address base. There is only one version of this addressing mode at the
instruction encoding level, and it is encoded in the MEMB instruction format.

2.3.3 Index with Displacement

A scaled index can also be used with a displacement alone. Again, the index is contained in a r
and multiplied by a scaling constant before displacement is added. This mode uses MEMB for
i960® RM/RN I/O Processor Developer’s Manual 2-5

Data Types and Memory Addressing Modes

s the

e of

nguage.

d
stant
in g1
2.3.4 IP with Displacement

This addressing mode is used with load and store instructions to make them instruction pointer (IP)
relative. IP-with-displacement addressing mode references the next instruction’s address plu
displacement plus a constant of 8. The constant is added because, in a typical processor
implementation, the address has incremented beyond the next instruction address at the tim
address calculation. The constant simplifies IP-with-displacement addressing mode
implementation. This mode uses MEMB format.

2.3.5 Addressing Mode Examples

The following examples show how i960 processor addressing modes are encoded in assembly la
Example 2-2 shows addressing mode mnemonics. Example 2-3 illustrates the usefulness of scaled
index and scaled index plus displacement addressing modes. In this example, a procedure name
array_op uses these addressing modes to fill two contiguous memory blocks separated by a con
offset. A pointer to the top of the block is passed to the procedure in g0, the block size is passed
and the fill data in g2. Refer to Appendix A, “Machine-Level Instruction Formats”.

Example 2-2. Addressing Mode Mnemonics

st g4,xyz # Absolute; word from g4 stored at memory

location designated with label xyz.

ldob (r3),r4 # Register indirect; ordinal byte from

memory location given in r3 loaded

into register r4 and zero extended.

stl g6,xyz(g5) # Register indirect with displacement;

double word from g6,g7 stored at memory

location xyz + g5.

ldq (r8)[r9*4],r4 # Register indirect with index; quad-word

beginning at memory location r8 + (r9

scaled by 4) loaded into r4 through r7.

st g3,xyz(g4)[g5*2] # Register indirect with index and

displacement; word in g3 stored to mem

location g4 + xyz + (g5 scaled by 2).

ldis xyz[r12*2],r13 # Index with displacement; load short

integer at memory location xyz + r12

into r13 and sign extended.

st r4,xyz(IP) # IP with displacement; store word in r4

at memory location IP + xyz + 8.

Example 2-3. Scaled Index and Scaled Index Plus Displacement Addressing Modes

array_op:

mov g0,r4 # Pointer to array is copied to r4.

subi 1,g1,r3 # Calculate index for the last array

b .I33 # element to be filled

.I34:

st g2,(r4)[r3*4] # Fill element at index

st g2,0x30(r4)[r3*4] # Fill element at index+constant offset

subi 1,r3,r3 # Decrement index

.I33:

cmpible 0,r3,.I34 # Store next array elements if

ret # index is not 0
2-6 i960® RM/RN I/O Processor Developer’s Manual

ace.

e and

cessor

part of
 faults

 load
cessor

nds.

everal
rame

s,
Programming Environment 3

This chapter describes the i960® RM/RN I/O processor’s programming environment including
global and local registers, control registers, literals, processor-state registers and address sp

3.1 Overview

The i960 architecture defines a programming environment for program execution, data storag
data manipulation. Figure 3-1 shows the programming environment elements that include a
4 Gbyte (232 byte) flat address space, an instruction cache, a data cache, global and local
general-purpose registers, a register cache, a set of literals, control registers and a set of pro
state registers.

The processor includes several architecturally-defined data structures located in memory as
the programming environment. These data structures handle procedure calls, interrupts and
and provide configuration information at initialization. These data structures are:

3.2 Registers and Literals as Instruction Operands

With the exception of a few special instructions, the i960 RM/RN I/O processor uses only simple
and store instructions to access memory. All operations take place at the register level. The pro
uses 16 global registers, 16 local registers and 32 literals (constants 0-31) as instruction opera

The global register numbers are g0 through g15; local register numbers are r0 through r15. S
of these registers are used for dedicated functions. For example, register r0 is the previous f
pointer, often referred to as pfp. i960 processor compilers and assemblers recognize only the
instruction operands listed in Table 3-1. Throughout this manual, the registers’ descriptive name
numbers, operands and acronyms are used interchangeably, as dictated by context.

• interrupt stack • control table • system procedure table

• local stack • fault table • process control block

• supervisor stack • interrupt table • initialization boot record
i960® RM/RN I/O Processor Developer’s Manual 3-1

Programming Environment
Figure 3-1. i960® RM/RN I/O Processor Programming Environment

Architecturally

Defined

Data Structures

FFFF FFFFH

Instruction
Stream

Instruction

Execution

Processor State

Registers

Instruction
Pointer

Arithmetic
Controls

Process
Controls

Trace
Controls

Address Space

Sixteen 32-Bit
Global Registers

Sixteen 32-Bit
Local Registers

g0
g15

r0

r15

Load Store

0000 0000H

Control Registers

Register Cache

Fetch

Instruction

Cache

r15
3-2 i960® RM/RN I/O Processor Developer’s Manual

Programming Environment

ndaries.

is
e

 and
he

ister

r each
 Each
 calling
rs are

rogram

; r0
he

eated
isters.
3.2.1 Global Registers

Global registers are general-purpose 32-bit data registers that provide temporary storage for a
program’s computational operands. These registers retain their contents across procedure bou
As such, they provide a fast and efficient means of passing parameters between procedures.

The i960 architecture supplies 16 global registers, designated g0 through g15. Register g15
reserved for the current Frame Pointer (FP), which contains the address of the first byte in th
current (topmost) stack frame in internal memory. See Section 7.1, “Call and Return Mechanism”
on page 7-2) for a description of the FP and procedure stack.

After the processor is reset, register g0 contains the i960 core processor device identification
stepping information. g0 retains this information until it is written over by the user program. T
i960 core processor device identification and stepping information is also stored in the
memory-mapped DEVICEID register located at FF00 8710H. In addition, the i960 RM/RN I/O
processor device identification and stepping information is stored in the memory-mapped reg
located at 0000 1710H.

3.2.2 Local Registers

The i960 architecture provides a separate set of 32-bit local data registers (r0 through r15) fo
active procedure. These registers provide storage for variables that are local to a procedure.
time a procedure is called, the processor allocates a new set of local registers and saves the
procedure’s local registers. When the application returns from the procedure, the local registe
released for the next procedure call. The processor performs local register management; a p
need not explicitly save and restore these registers.

r3 through r15 are general purpose registers; r0 through r2 are reserved for special functions
contains the Previous Frame Pointer (PFP); r1 contains the Stack Pointer (SP); r2 contains t
Return Instruction Pointer (RIP). These are discussed in Chapter 7, “Procedure Calls”.

The processor does not always clear or initialize the set of local registers assigned to a new
procedure. Also, the processor does not initialize the local register save area in the newly cr
stack frame for the procedure. User software should not rely on the initial values of local reg

Table 3-1. Registers and Literals Used as Instruction Operands

Instruction Operand Register Name (number) Function Acronym

g0 - g14 global (g0-g14) general purpose

fp global (g15) frame pointer FP

pfp local (r0) previous frame pointer PFP

sp local (r1) stack pointer SP

rip local (r2) return instruction pointer RIP

r3 - r15 local (r3-r15) general purpose

0-31 literals
i960® RM/RN I/O Processor Developer’s Manual 3-3

Programming Environment
3.2.3 Register Scoreboarding

Register scoreboarding maintains register coherency by preventing parallel execution units from
accessing registers for which there is an outstanding operation. When an instruction that targets a
destination register or group of registers executes, the processor sets a register-scoreboard bit to
indicate that this register or group of registers is being used in an operation. If the instructions that
follow do not require data from registers already in use, the processor can execute those
instructions before the prior instruction execution completes.

Software can use this feature to execute one or more single-cycle instructions concurrently with a
multi-cycle instruction (e.g., multiply or divide). Example 3-1 shows a case where register
scoreboarding prevents a subsequent instruction from executing. It also illustrates overlapping
instructions that do not have register dependencies.

3.2.4 Literals

The architecture defines a set of 32 literals that can be used as operands in many instructions. These
literals are ordinal (unsigned) values that range from 0 to 31 (5 bits). When a literal is used as an
operand, the processor expands it to 32 bits by adding leading zeros. If the instruction requires an
operand larger than 32 bits, the processor zero-extends the value to the operand size. If a literal is
used in an instruction that requires integer operands, the processor treats the literal as a positive
integer value.

3.2.5 Register and Literal Addressing and Alignment

Several instructions operate on multiple-word operands. For example, the load long instruction
(ldl) loads two words from memory into two consecutive registers. The register for the less
significant word is specified in the instruction. The more significant word is automatically loaded
into the next higher-numbered register.

In cases where an instruction specifies a register number and multiple consecutive registers are
implied, the register number must be even if two registers are accessed (e.g., g0, g2) and an integral
multiple of 4 if three or four registers are accessed (e.g., g0, g4). If a register reference for a source
value is not properly aligned, the source value is undefined and an
OPERATION.INVALID_OPERAND fault is generated. If a register reference for a destination value
is not properly aligned, the registers to which the processor writes and the values written are undefined.
The processor then generates an OPERATION.INVALID_OPERAND fault. The assembly language
code in Example 3-2 shows an example of correct and incorrect register alignment.

Example 3-1. Register Scoreboarding

muli r4,r5,r6 # r6 is scoreboarded

addi r6,r7,r8 # addi must wait for the previous multiply

. # to complete

.

.

muli r4,r5,r10 # r10 is scoreboarded

and r6,r7,r8 # and instruction is executed concurrently with multiply
3-4 i960® RM/RN I/O Processor Developer’s Manual

Programming Environment
Global registers, local registers and literals are used directly as instruction operands. Table 3-2 lists
instruction operands for each machine-level instruction format and the positions that can be filled
by each register or literal.

3.3 Memory-Mapped Control Registers (MMRs)

The i960 RM/RN I/O processor gives software the interface to easily read and modify internal
control registers. Each of these registers is accessed as a memory-mapped register with a unique
memory address. There are two distinct sets of memory-mapped registers on the i960 RM/RN I/O
processor. The first set exists in the FF00 0000H through FFFF FFFFH address range and is used
to control the i960 core processor functions. The second set exists in the 0000 1000H through
0000 18FFH address range and is used to control the i960 RM/RN I/O processor integrated
peripherals. The processor ensures that accesses to MMRs do not generate external bus cycles.

Example 3-2. Register Alignment

movl g3,g8 # Incorrect alignment - resulting value

. # in registers g8 and g9 is

. # unpredictable (non-aligned source)

.

movl g4,g8 # Correct alignment

Table 3-2. Allowable Register Operands

Operand1

Instruction
Encoding Operand Field Local Register Global Register Literal

REG

src1
src2
src/dst (as src)
src/dst (as dst)
src/dst (as both)

X
X
X
X
X

X
X
X
X
X

X
X
X

MEM
src/dst
abase
index

X
X
X

X
X
X

COBR
src1
src2
dst

X
X
X2

X
X
X2

X
X2

NOTES:
1. “X” denotes the register can be used as an operand in a particular instruction field.
2. The COBR destination operands apply only to TEST instructions.
i960® RM/RN I/O Processor Developer’s Manual 3-5

Programming Environment

3.3.1 i960® Core Processor Function Memory-Mapped Registers

Portions of the i960 RM/RN I/O processor address space (addresses FF00 0000H through
FFFF FFFFH) are reserved for memory-mapped registers. These memory-mapped registers are
accessed through word-operand memory instructions (atmod, atadd, sysctl, ld and st instructions)
only. Accesses to this address space do not generate external bus cycles. The latency in accessing
each of these registers is one cycle.

Each register has an associated access mode (user and supervisor modes) and access type (read and
write accesses). Table C-2 and Table C-3 show all the memory-mapped registers.

The registers are partitioned into user and supervisor spaces based on their addresses. Addresses
FF00 0000H through FF00 7FFFH are allocated to user space memory-mapped registers;
Addresses FF00 8000H to FFFF FFFFH are allocated to supervisor space registers.

3.3.1.1 Restrictions on Instructions that Access the i960® Core Processor
Memory-Mapped Registers

The majority of memory-mapped registers can be accessed by both load (ld) and store (st)
instructions. However some registers have restrictions on the types of accesses they allow. To
ensure correct operation, the access type restrictions for each register should be followed. The
access type columns of Table C-2 and Table C-3 indicate the allowed access types for each register.

Unless otherwise indicated by its access type, the modification of a memory-mapped register by a
st instruction takes effect completely before the next instruction starts execution.

Some operations require an atomic-read-modify-write sequence to a register, most notably IPND
and IMSK. The atmod and atadd instructions provide a special mechanism to quickly modify the
IPND and IMSK registers in an atomic manner on the i960 RM/RN I/O processor. Do not use this
instruction on any other memory-mapped registers.

The sysctl instruction can also modify the contents of a memory-mapped register atomically; in
addition, sysctl is the only method to read the breakpoint registers on the i960 RM/RN I/O
processor; the breakpoints cannot be read using a ld instruction.

At initialization the control table is automatically loaded into the on-chip control registers. This
action simplifies the user’s start-up code by providing a transparent setup of the processor’s
peripherals. See Chapter 11, “Initialization and System Requirements”.
3-6 i960® RM/RN I/O Processor Developer’s Manual

Programming Environment

rrupt
ation
 This

y
3.3.1.2 Access Faults for i960® Core Processor MMRs

Memory-mapped registers are meant to be accessed only as aligned, word-size registers with
adherence to the appropriate access mode. Accessing these registers in any other way results in
faults or undefined operation. An access is performed using the following fault model:

1. The access must be a word-sized, word-aligned access; otherwise, the processor generates an
OPERATION.UNIMPLEMENTED fault.

2. If the access is a store in user mode to an implemented supervisor location, a
TYPE.MISMATCH fault occurs. It is unpredictable whether a store to an unimplemented
supervisor location causes a fault.

3. If the access is neither of the above, the access is attempted. Note that an MMR may generate
faults based on conditions specific to that MMR. (Example: trying to write the timer registers
in user mode when they have been allocated to supervisor mode only.)

4. When a store access to an MMR faults, the processor ensures that the store does not take
effect.

5. A load access of a reserved location returns an unpredictable value.

6. Avoid any store accesses to reserved locations. Such a store can result in undefined operation
of the processor if the location is in supervisor space.

Instruction fetches from the memory-mapped register space are not allowed and result in an
OPERATION.UNIMPLEMENTED fault.

3.3.2 i960® RM/RN I/O Processor Peripheral Memory-Mapped
Registers

The Peripheral Memory-Mapped Register (PMMR) interface gives software the ability to read and
modify internal control registers. Each of these 32-bit registers is accessed as a memory-mapped
register with a unique memory address, using regular memory-format instructions from the i960
core processor. See Appendix C, “Memory-Mapped Registers”.

The memory-mapped registers discussed in this chapter are specific to the i960 RM/RN I/O
processor only. They support the DMA controller, memory controller, PCI and peripheral inte
controller, messaging unit, internal arbitration unit, PCI to PCI bridge unit, PCI address transl
unit, I2C bus interface unit, performance monitoring unit, and the application accelerator unit.
manual provides chapters that fully describe each of these peripherals.

The PMMR interface (addresses 0000 1000H through 0000 18FFH) provides full accessibilit
from the primary ATU, secondary ATU, and the i960 core processor.
i960® RM/RN I/O Processor Developer’s Manual 3-7

Programming Environment

e

 other
ssing

cessor.

the
3.3.2.1 Accessing The Peripheral Memory-Mapped Registers

The PMMR interface is a slave device connected to the 80960 internal bus. This interface accepts
data transactions that appear on the 80960 internal bus from the Primary ATU, Secondary ATU,
and the i960 core processor. The PMMR interface allows these devices to perform read, write, or
read-modify-write transactions.

The PMMR interface does not support multi-word burst accesses from any bus master. The PMMR
interface supports 32-bit bus width transactions only. Because of this, PMCON0:1 must be
configured as a 32-bit memory region for accesses that originate from the i960 core processor.

The PMMR interface is byte addressable. For PMMR reads, all accesses are promoted to word
accesses and all data bytes are returned. The byte enables generated by the bus masters when
performing PMMR write cycles indicate which data bytes are valid on the 80960 internal bus.
However, there may be requirements from the individual units that interface to the PMMR. For
example, when configuring the DMA channel’s control register, a full 32-bit write must be
performed to configure and restart the DMA channel. These restrictions are highlighted in th
chapters describing the integrated peripheral units.

The PMMR interface supports the 80960 internal bus atomic operations from the i960 core
processor. The i960 core processor provides atmod (atomic modify) and atadd (atomic add)
instructions for atomic accesses to memory. When the 80960 processor executes an atmod or
atadd instruction, the LOCK# signal is asserted. The 80960 internal bus is not granted to any
bus master until the LOCK# signal is deasserted. This prevents other bus masters from acce
the PMMR interface during a locked operation.

All PMMR transactions are allowed from i960 core processor operating in either user mode or
supervisor mode. In addition, the PMMR does not provide any access fault to the i960 core pro

The following PMMR registers have read/write access from the 80960 internal bus (for both
PCI Bridge and ATU):

• Vendor ID register

• Device ID register

• Revision ID register

• Class Code register

• Header Type register

• Bridge Subsystem ID register

• Bridge Subsystem Vendor ID register

For accesses through PCI configuration cycles, access is specified in the register definition located
in the appropriate chapter.

For PCI configuration read transactions, the PMMR returns a zero value for reserved registers. For PCI
configuration write transactions, the PMMR discards the data. For all other accesses, reading or writing
a reserved register is undefined. See Table C-2 and Table C-3 for register memory locations.
3-8 i960® RM/RN I/O Processor Developer’s Manual

Programming Environment

s, only
 in

RAM
3.4 Architecturally Defined Data Structures

The architecture defines a set of data structures including stacks, interfaces to system procedures,
interrupt handling procedures and fault handling procedures. Table 3-3 defines the data structures
and references other sections of this manual where detailed information can be found.

The i960 RM/RN I/O processor defines two initialization data structures: the Initialization Boot
Record (IBR) and the Process Control Block (PRCB). These structures provide initialization data
and pointers to other data structures in memory. When the processor is initialized, these pointers
are read from the initialization data structures and cached for internal use.

Pointers to the system procedure table, interrupt table, interrupt stack, fault table and control table
are specified in the processor control block. Supervisor stack location is specified in the system
procedure table. User stack location is specified in the user’s startup code. Of these structure
the system procedure table, fault table, control table and initialization data structures may be
ROM; the interrupt table and stacks must be in RAM. The interrupt table must be located in
to allow posting of software interrupts.

Table 3-3. Data Structure Descriptions

Structure Description

User and Supervisor Stacks

Section 7.6, “User and Supervisor
Stacks” on page 7-17

The processor uses these stacks when executing application code.

Interrupt Stack

Section 8.1.5, “Interrupt Stack And
Interrupt Record” on page 8-6

A separate interrupt stack is provided to ensure that interrupt handling
does not interfere with application programs.

System Procedure Table

Section 3.7, “User-Supervisor
Protection Model” on page 3-18

Section 7.5, “System Calls” on
page 7-14

Contains pointers to system procedures. Application code uses the
system call instruction (calls) to access system procedures through
this table. A system supervisor call switches execution mode from
user mode to supervisor mode. When the processor switches modes,
it also switches to the supervisor stack.

Interrupt Table

Section 8.1.4, “Interrupt Table” on
page 8-4

The interrupt table contains vectors (pointers) to interrupt handling
procedures. When an interrupt is serviced, a particular interrupt table
entry is specified.

Fault Table

Section 9.3, “Fault Table” on
page 9-4

Contains pointers to fault handling procedures. When the processor
detects a fault, it selects a particular entry in the fault table. The
architecture does not require a separate fault handling stack. Instead,
a fault handling procedure uses the supervisor stack, user stack or
interrupt stack, depending on the processor execution mode in which
the fault occurred and the type of call made to the fault handling
procedure.

Control Table

Section 11.4.4, “Control Table” on
page 11-18

Contains on-chip control register values. Control table values are
moved to on-chip registers at initialization or with sysctl.
i960® RM/RN I/O Processor Developer’s Manual 3-9

Programming Environment

ing
s

pped
isions of
ment unit
ect a

ction,
ord

ptions
3.5 Memory Address Space

The i960 RM/RN I/O processor’s local address space is byte-addressable with addresses runn
contiguously from 0 to 232-1. Some memory space is reserved or assigned special functions a
shown in Figure 3-2.

Physical addresses can be mapped to read-write memory, read-only memory and memory-ma
I/O. The architecture does not define a dedicated, addressable I/O space. There are no subdiv
the address space such as segments. For memory management, an external memory manage
(MMU) may subdivide memory into pages or restrict access to certain areas of memory to prot
kernel’s code, data and stack. However, the processor views this address space as linear.

An address in memory is a 32-bit value in the range 0H to FFFF FFFFH. Depending on the instru
an address can reference in memory a single byte, short word (2 bytes), word (4 bytes), double w
(8 bytes), triple word (12 bytes) or quad word (16 bytes). Refer to load and store instruction descri
in Chapter 6, “Instruction Set Reference” for multiple-byte addressing information.

Figure 3-2. Local Memory Address Space

Code/Data

Architecturally Defined Data Structures

External Memory

0000 0000H
Address

0000 0FFFH
0000 1000H

FF00 0000H

FFFF FFFFH

Reserved
Address
Space

FEFF FFFFH

FEFF FF60H
FEFF FF5FH

Initialization Boot Record (IBR)

0000 03FFH
0000 0400H

0000 17FFH
0000 1800H

FEFF FF30H
FEFF FF2FH

0000 2000H
0000 1FFFH

i960® RM/RN I/O Processor Reserved

Peripheral Memory-mapped Registers

i960® RM/RN I/O Processor Reserved

Available for Data

Reserved Memory

i960® Core Processor

 Register Space

NMI Vector
0000 0004H

0000 003FH
Internal

Data RAM
0000 0040H

Optional Interrupt Vectors

Memory-Mapped
3-10 i960® RM/RN I/O Processor Developer’s Manual

Programming Environment

Kbyte
access
 See
ess
3.5.1 Memory Requirements

The architecture requires that external memory have the following properties:

• Memory must be byte-addressable.

• Physical memory must not be mapped to reserved addresses that are specifically used by the
processor implementation.

• Memory must guarantee indivisible access (read or write) for addresses that fall within 16-byte
boundaries.

• Memory must guarantee atomic access for addresses that fall within 16-byte boundaries.

The latter two capabilities, indivisible and atomic access, are required only when multiple
processors or other external agents, such as DMA or graphics controllers, share a common
memory.

indivisible access Guarantees that a processor, reading or writing a set of memory
locations, complete the operation before another processor or external
agent can read or write the same location. The processor requires
indivisible access within an aligned 16-byte block of memory.

atomic access A read-modify-write operation. Here the external memory system must
guarantee that once a processor begins a read-modify-write operation on
an aligned, 16-byte block of memory it is allowed to complete the
operation before another processor or external agent can access to the
same location. An atomic memory system can be implemented by using
the LOCK# signal to qualify hold requests from external bus agents. The
processor asserts LOCK# for the duration of an atomic memory
operation.

The upper 16 Mbytes of the address space (addresses FF00 0000H through FFFF FFFFH and
0000 1000H through 0000 018FFH) are reserved for implementation-specific functions. i960
RM/RN I/O processor programs cannot use this address space except for accesses to
memory-mapped registers. The processor does not generate any external bus cycles to this
memory. As shown in Figure 3-2, part of the initialization boot record is located just below the i960
RM/RN I/O processor’s reserved memory.

The i960 RM/RN I/O processor requires some special consideration when using the lower 1
of address space (addresses 0000H 03FFH). Loads and stores directed to these addresses
internal memory; instruction fetches from these addresses are not allowed by the processor.
Section 4.1, “Internal Data RAM” on page 4-1. No external bus cycles are generated to this addr
space.
i960® RM/RN I/O Processor Developer’s Manual 3-11

Programming Environment

to
s

rd

sses.

ant
s, the
d at
sides
3.5.2 Data and Instruction Alignment in the Address Space

Instructions, program data and architecturally defined data structures can be placed anywhere in
non-reserved address space while adhering to these alignment requirements:

• Align instructions on word boundaries.

• Align all architecturally defined data structures on the boundaries specified in Table 3-4.

• Align instruction operands for the atomic instructions (atadd, atmod) to word boundaries in memory.

The i960 RM/RN I/O processor can perform unaligned load or store accesses. The processor
handles a non-aligned load or store request by:

• After the access completes, the processor can generate an OPERATION.UNALIGNED fault,
if directed to do so.

The method of handling faults is selected at initialization based on the value of the Fault
Configuration Word in the Process Control Block. See Section 11.4.2, “Process Control Block –
PRCB” on page 11-14.

3.5.3 Byte, Word and Bit Addressing

The processor provides instructions for moving data blocks of various lengths from memory
registers (ld) and from registers to memory (st). Supported sizes for blocks are bytes, short word
(2 bytes), words (4 bytes), double words, triple words and quad words. For example, stl (store
long) stores an 8-byte (double word) data block in memory.

The most efficient way to move data blocks longer than 16 bytes is to move them in quad-wo
increments, using quad-word instructions ldq and stq.

When a data block is stored in memory, the block’s least significant byte is stored at a base
memory address and the more significant bytes are stored at successively higher byte addre
This method of ordering bytes in memory is referred to as “little endian” ordering.

When loading a byte, short word or word from memory to a register, the block’s least signific
bit is always loaded in register bit 0. When loading double words, triple words and quad word
least significant word is stored in the base register. The more significant words are then store
successively higher-numbered registers. Individual bits can be addressed only in data that re
in a register: bit 0 in a register is the least significant bit, bit 31 is the most significant bit.

Table 3-4. Alignment of Data Structures in the Address Space

Data Structure Alignment Boundary

System Procedure Table 4 byte

Interrupt Table 4 byte

Fault Table 4 byte

Control Table 16 byte

User Stack 16 byte

Supervisor Stack 16 byte

Interrupt Stack 16 byte

Process Control Block 16 byte

Initialization Boot Record Fixed at FEFF FF30H
3-12 i960® RM/RN I/O Processor Developer’s Manual

Programming Environment

from
 cache
/RN
o sets

ache.

s is
mory,

 the

 lets
sed with

cessor
 as the
3.5.4 Internal Data RAM

The i960 RM/RN I/O processor has 1 Kbyte of on-chip data RAM. Only data accesses are allowed in
this region. Portions of the data RAM can also be reserved for functions such as caching interrupt
vectors. The internal RAM is fully described in Chapter 4, “Cache and On-Chip Data RAM”.

3.5.5 Instruction Cache

The instruction cache enhances performance by reducing the number of instruction fetches
external memory. The cache provides fast execution of cached code and loops of code in the
and also provides more bus bandwidth for data operations in external memory. The i960 RM
I/O processor instruction cache is a 16-Kbyte, two-way set associative cache, organized in tw
of four-word lines.

3.5.6 Data Cache

The data cache on the i960 RM/RN I/O processor is a write-through 4-Kbyte direct-mapped c
For more information, see Chapter 4, “Cache and On-Chip Data RAM”.

3.6 Processor-State Registers

The architecture defines four 32-bit registers that contain status and control information:

3.6.1 Instruction Pointer (IP) Register

The IP register contains the address of the instruction currently being executed. This addres
32 bits long; however, since instructions are required to be aligned on word boundaries in me
the IP’s two least-significant bits are always 0 (zero).

All i960 processor instructions are either one or two words long. The IP gives the address of
lowest-order byte of the first word of the instruction.

The IP register cannot be read directly. However, the IP-with-displacement addressing mode
software use the IP as an offset into the address space. This addressing mode can also be u
the lda (load address) instruction to read the current IP value.

When a break occurs in the instruction stream due to an interrupt, procedure call or fault, the pro
stores the IP of the next instruction to be executed in local register r2, which is usually referred to
return IP or RIP register. Refer to Chapter 7, “Procedure Calls” for further discussion.

• Instruction Pointer (IP) register • Arithmetic Controls (AC) register

• Process Controls (PC) register • Trace Controls (TC) register
i960® RM/RN I/O Processor Developer’s Manual 3-13

Programming Environment

e

re

t or
ult

ion
til

 true
3.6.2 Arithmetic Controls Register – AC

The AC register (Table 3-5) contains condition code flags, integer overflow flag, mask bit and a bit
that controls faulting on imprecise faults. Unused AC register bits are reserved.

3.6.2.1 Initializing and Modifying the AC Register

At initialization, the AC register is loaded from the Initial AC image field in the Process Control
Block. Set reserved bits to 0 in the AC Register Initial Image. Refer to Chapter 11, “Initialization
and System Requirements”.

After initialization, software must not modify or depend on the AC register’s initial image in th
PRCB. Software can use the modify arithmetic controls (modac) instruction to examine and/or
modify any of the register bits. This instruction provides a mask operand that lets user softwa
limit access to the register’s specific bits or groups of bits, such as the reserved bits.

The processor automatically saves and restores the AC register when it services an interrup
handles a fault. The processor saves the current AC register state in an interrupt record or fa
record, then restores the register upon returning from the interrupt or fault handler.

3.6.2.2 Condition Code (AC.cc)

The processor sets the AC register’s condition code flags (bits 0-2) to indicate the results of certain
instructions, such as compare instructions. Other instructions, such as conditional branch
instructions, examine these flags and perform functions as dictated by the state of the condit
code flags. Once the processor sets the condition code flags, the flags remain unchanged un
another instruction executes that modifies the field.

Condition code flags show true/false conditions, inequalities (greater than, equal or less than
conditions) or carry and overflow conditions for the extended arithmetic instructions. To show
or false conditions, the processor sets the flags as shown in Table 3-6. To show equality and
inequalities, the processor sets the condition code flags as shown in Table 3-7.

Table 3-5. Arithmetic Controls Register – AC

28 24 20 16 12 8 4 031

Condition Code Bits - AC.cc

Integer-Overflow Flag - AC.of
(0) No Overflow
(1) Overflow

Integer Overflow Mask Bit - AC.om
(0) No Mask
(1) Mask

No-Imprecise-Faults Bit- AC.nif
(0) Some Faults are Imprecise
(1) All Faults are Precise

Reserved
(Initialize to 0)

c
c
0

c
c
1

c
c
2

o
m

n
i
f

o
f

3-14 i960® RM/RN I/O Processor Developer’s Manual

Programming Environment

 See
The term unordered is used when comparing floating point numbers. The i960 RM/RN I/O
processor does not implement on-chip floating point processing.

To show carry out and overflow, the processor sets the condition code flags as shown in Table 3-8.

Certain instructions, such as the branch-if instructions, use a 3-bit mask to evaluate the condition
code flags. For example, the branch-if-greater-or-equal instruction (bge) uses a mask of 0112 to
determine if the condition code is set to either greater-than or equal. Conditional instructions use
similar masks for the remaining conditions such as: greater-or-equal (0112), less-or-equal (1102)
and not-equal (1012). The mask is part of the instruction opcode; the instruction performs a bitwise
AND of the mask and condition code.

The AC register integer overflow flag (bit 8) and integer overflow mask bit (bit 12) are used in
conjunction with the ARITHMETIC.INTEGER_OVERFLOW fault. The mask bit disables fault
generation. When the fault is masked and integer overflow is encountered, the processor sets the
integer overflow flag instead of generating a fault. If the fault is not masked, the fault is allowed to
occur and the flag is not set.

Once the processor sets this flag, the flag remains set until the application software clears it. Refer
to the discussion of the ARITHMETIC.INTEGER_OVERFLOW fault in Chapter 9, “Faults” for
more information about the integer overflow mask bit and flag.

The no imprecise faults (AC.nif) bit (bit 15) determines whether or not faults are allowed to be
imprecise. If set, all faults are required to be precise; if clear, certain faults can be imprecise.
Section 9.9, “Precise and Imprecise Faults” on page 9-18 for more information.

Table 3-6. Condition Codes for True or False Conditions

Condition Code Condition

0102 true

0002 false

Table 3-7. Condition Codes for Equality and Inequality Conditions

Condition Code Condition

0002 unordered

0012 greater than

0102 equal

1002 less than

Table 3-8. Condition Codes for Carry Out and Overflow

Condition Code Condition

01X2 carry out

0X12 overflow
i960® RM/RN I/O Processor Developer’s Manual 3-15

Programming Environment

tate.
ode
itch
. (User

cuting.

en

edure.

pted
 and
ls,

rent

 post

errupt
tically
3.6.3 Process Controls Register – PC

The PC register (Table 3-9) is used to control processor activity and show the processor’s current s
The PC register execution mode flag (bit 1) indicates that the processor is operating in either user m
(0) or supervisor mode (1). The processor automatically sets this flag on a system call when a sw
from user mode to supervisor mode occurs and it clears the flag on a return from supervisor mode
and supervisor modes are described in Section 3.7, “User-Supervisor Protection Model” on
page 3-18.

PC register state flag (bit 13) indicates the processor state: executing (0) or interrupted (1). If the
processor is servicing an interrupt, its state is interrupted. Otherwise, the processor’s state is exe

While in the interrupted state, the processor can receive and handle additional interrupts. Wh
nested interrupts occur, the processor remains in the interrupted state until all interrupts are
handled, then switches back to the executing state on the return from the initial interrupt proc

The PC register priority field (bits 16 through 20) indicates the processor’s current executing or interru
priority. The architecture defines a mechanism for prioritizing execution of code, servicing interrupts
servicing other implementation-dependent tasks or events. This mechanism defines 32 priority leve
ranging from 0 (the lowest priority level) to 31 (the highest). The priority field always reflects the cur
priority of the processor. Software can change this priority by use of the modpc instruction.

The processor uses the priority field to determine whether to service an interrupt immediately or to
the interrupt. The processor compares the priority of a requested interrupt with the current process
priority. When the interrupt priority is greater than the current process priority or equal to 31, the int
is serviced; otherwise it is posted. When an interrupt is serviced, the process priority field is automa
changed to reflect interrupt priority. See Chapter 8, “PCI and Peripheral Interrupt Controller Unit”.

Table 3-9. Process Controls Register – PC

28 24 20 16 12 8 4 031

Trace-Enable Bit - PC.te
(0) Globally disable trace faults
(1) Globally enable trace faults

Execution-Mode Flag - PC.em
(0) user mode
(1) supervisor mode

Trace-Fault-Pending - PC.tfp
(0) no fault pending
(1) fault pending

State Flag - PC.s
(0) executing
(1) interrupted

Priority Field - PC.p
(0-31) process priority

Reserved

te
t

s
p pppp

4 3 2 1 0
f

m ep

(Do not modify)
3-16 i960® RM/RN I/O Processor Developer’s Manual

Programming Environment

 modes
The PC register trace enable bit (bit 0) and trace fault pending flag (bit 10) control the tracing function.
The trace enable bit determines whether trace faults are globally enabled (1) or globally disabled (0).
The trace fault pending flag indicates that a trace event has been detected (1) or not detected (0). The
tracing functions are further described in Chapter 10, “Tracing and Debugging”.

3.6.3.1 Initializing and Modifying the PC Register

Any of the following three methods can be used to change bits in the PC register:

• Modify process controls instruction (modpc)

• Alter the saved process controls prior to a return from an interrupt handler or fault handler

The modpc instruction reads and modifies the PC register directly. A TYPE.MISMATCH fault
results if software executes modpc in user mode with a non-zero mask. As with modac, modpc
provides a mask operand that can be used to limit access to specific bits or groups of bits in the
register. In user mode, software can use modpc to read the current PC register.

In the latter two methods, the interrupt or fault handler changes process controls in the interrupt or
fault record that is saved on the stack. Upon return from the interrupt or fault handler, the modified
process controls are copied into the PC register. The processor must be in supervisor mode prior to
return for modified process controls to be copied into the PC register.

When process controls are changed as described above, the processor recognizes the changes
immediately except for one situation: if modpc is used to change the trace enable bit, the processor
may not recognize the change before the next four non-branch instructions are executed.

After initialization (hardware reset), the process controls reflect the following conditions:

When the processor is reinitialized with a sysctl reinitialize message, the PC register is not changed.

Software should not use modpc to modify execution mode or trace fault state flags except under
special circumstances, such as in initialization code. Normally, execution mode is changed through
the call and return mechanism. See Section 6.2.43, “modpc” on page 6-66 for more details.

3.6.4 Trace Controls (TC) Register

The TC register, in conjunction with the PC register, controls processor tracing facilities. It
contains trace mode enable bits and trace event flags that are used to enable specific tracing
and record trace events, respectively. Trace controls are described in Chapter 10, “Tracing and
Debugging”.

• priority = 31 • execution mode = supervisor

• trace enable = disabled • state = interrupted

• no trace fault pending
i960® RM/RN I/O Processor Developer’s Manual 3-17

Programming Environment

s
am
3.7 User-Supervisor Protection Model

The processor can be in either of two execution modes: user or supervisor. The capability of a
separate user and supervisor execution mode creates a code and data protection mechanism
referred to as the user-supervisor protection model. This mechanism allows code, data and stack
for a kernel (or system executive) to reside in the same address space as code, data and stack for the
application. The mechanism restricts access to all or parts of the kernel by the application code.
This protection mechanism prevents application software from inadvertently altering the kernel.

3.7.1 Supervisor Mode Resources

Supervisor mode is a privileged mode that provides several additional capabilities over user mode.

• When the processor switches to supervisor mode, it also switches to the supervisor stack.
Switching to the supervisor stack helps maintain a kernel’s integrity. For example, it allow
access to system debugging software or a system monitor, even if an application’s progr
destroys its own stack.

• In supervisor mode, the processor is allowed access to a set of supervisor-only functions and
instructions. For example, the processor uses supervisor mode to handle interrupts and trace
faults. Operations that can modify interrupt controller behavior or reconfigure bus controller
characteristics can be performed only in supervisor mode. These functions include
modification of control registers and internal data RAM that is dedicated to interrupt
controllers. A fault is generated if supervisor-only operations are attempted while the
processor is in user mode.

The PC register execution mode flag specifies processor execution mode. The processor
automatically sets and clears this flag when it switches between the two execution modes.

Note that all of these instructions return a TYPE.MISMATCH fault if executed in user mode.

3.7.2 Using the User-Supervisor Protection Model

A program switches from user mode to supervisor mode by making a system-supervisor call (also
referred to as a supervisor call). A system-supervisor call is a call executed with the call-system
instruction (calls). With calls, the IP for the called procedure comes from the system procedure
table. An entry in the system procedure table can specify an execution mode switch to supervisor
mode when the called procedure is executed. calls and the system procedure table thus provide a
tightly controlled interface to procedures that can execute in supervisor mode. Once the processor
switches to supervisor mode, it remains in that mode until a return is performed to the procedure
that caused the original mode switch.

• dcctl (data cache control) • inten (global interrupt enable)

• Protected timer unit registers • modpc (modify process controls w/
non-zero mask)

• icctl (instruction cache control) • sysctl (system control)

• intctl (global interrupt enable and disable) • Protected internal data RAM or Supervisor
MMR space write

• intdis (global interrupt disable)
3-18 i960® RM/RN I/O Processor Developer’s Manual

Programming Environment
Interrupts and faults can cause the processor to switch from user to supervisor mode. When the
processor handles an interrupt, it automatically switches to supervisor mode. However, it does not
switch to the supervisor stack. Instead, it switches to the interrupt stack. Fault table entries
determine if a particular fault transitions the processor from user to supervisor mode.

If an application does not require a user-supervisor protection mechanism, the processor can
always execute in supervisor mode. At initialization, the processor is placed in supervisor mode
prior to executing the first instruction of the application code. The processor then remains in
supervisor mode indefinitely, as long as no action is taken to change execution mode to user mode.
The processor does not need a user stack in this case.
i960® RM/RN I/O Processor Developer’s Manual 3-19

Cache and On-Chip Data RAM 4

This chapter describes the structure and user configuration of all forms of on-chip storage,
including caches (data, local register and instruction) and data RAM.

4.1 Internal Data RAM

Internal data RAM is mapped to the lower 1 Kbyte (0 to 03FFH) of the address space. Loads and
stores with target addresses in internal data RAM operate directly on the internal data RAM; no
external bus activity is generated. Data RAM allows time-critical data storage and retrieval without
dependence on external bus performance. Only data accesses are allowed to the internal data RAM;
instructions cannot be fetched from the internal data RAM. Instruction fetches directed to the data
RAM cause an OPERATION.UNIMPLEMENTED fault to occur.

Internal data RAM locations are never cached in the data cache. Logical Memory Template bits
controlling caching are ignored for data RAM accesses.

Some internal data RAM locations are reserved for functions other than general data storage. The
first 64 bytes of data RAM may be used to cache interrupt vectors, which reduces latency for these
interrupts. The word at location 0000H is always reserved for the cached NMI vector. With the
exception of the cached NMI vector, other reserved portions of the data RAM can be used for data
storage when the alternate function is not used. All locations of the internal data RAM can be read
in both supervisor and user mode.

The first 64 bytes (0000H to 003FH) of internal RAM are always user-mode write-protected. This
portion of data RAM can be read while executing in user or supervisor mode; however, it can be only
modified in supervisor mode. This area can also be write-protected from supervisor mode writes by
setting the BCON.sirp bit. See Section 12.2.2, “Bus Control Register – BCON” on page 12-3.
Protecting this portion of the data RAM from user and supervisor rights preserves the interrupt
vectors that may be cached there. See Section 8.4.4.1, “Vector Caching Option” on page 8-28.

Figure 4-1. Internal Data RAM and Register Cache

NMI
0000 0000H

Optional Interrupt Vectors

0000 0004H

0000 003FH

0000 03FFH

Available for Data
i960® RM/RN I/O Processor Developer’s Manual 4-1

Cache and On-Chip Data RAM

ilers,

al

ugh the

cache
 28).

.
d by

h to
 the

e
es

h to
curs
The remainder of the internal data RAM can always be written from supervisor mode. User mode
write protection is optionally selected for the rest of the data RAM (40H to 3FFH) by setting the
Bus Control Register RAM protection bit (BCON.irp). Writes to internal data RAM locations
while they are protected generate a TYPE.MISMATCH fault. See Section 12.2.2, “Bus Control
Register – BCON” on page 12-3 for the format of the BCON register.

New versions of i960 processor compilers take advantage of internal data RAM. Profiling comp
such as those offered by Intel, can allocate the most frequently used variables into this RAM.

4.2 Local Register Cache

The i960® Rx I/O processor provides fast storage of local registers for call and return operations by
using an internal local register cache (also known as a stack frame cache). Up to eight local register
sets can be contained in the cache before sets must be saved in external memory. The register set is
all the local registers (i.e., r0 through r15). The processor uses a 128-bit wide bus to store local
register sets quickly to the register cache. An integrated procedure call mechanism saves the
current local register set when a call is executed. A local register set is saved into a frame in the
local register cache, one frame per register set. When the eighth frame is saved, the oldest set of
local registers is flushed to the procedure stack in external memory, which frees one frame.

Section 7.1.4, “Caching Local Register Sets” on page 7-7 and Section 7.1.5, “Mapping Local
Registers to the Procedure Stack” on page 7-11 further discuss the relationship between the intern
register cache and the external procedure stack.

The branch-and-link (bal and balx) instructions do not cause the local registers to be stored.

The entire internal register cache contents can be copied to the external procedure stack thro
flushreg instruction. Section 6.2.30, “flushreg” on page 6-46 explains the instruction itself and
Section 7.2, “Modifying the PFP Register” on page 7-11 offers a practical example when flushreg
must be used.

To decrease interrupt latency, software can reserve a number of frames in the local register
solely for high priority interrupts (interrupted state and process priority greater than or equal to
The remaining frames in the cache can be used by all code, including high-priority interrupts
When a frame is reserved for high-priority interrupts, the local registers of the code interrupte
a high-priority interrupt can be saved to the local register cache without causing a frame flus
memory, providing the local register cache is not already full. Thus, the register allocation for
implicit interrupt call does not incur the latency of a frame flush.

Software can reserve frames for high-priority interrupt code by writing bits 10 through 8 of th
register cache configuration word in the PRCB. This value indicates the number of free fram
within the register cache that can be used by high-priority interrupts only. Any attempt by
non-critical code to reduce the number of free frames below this value results in a frame flus
external memory. The free frame check is performed only when a frame is pushed, which oc
only for an implicit or explicit call. The following pseudo-code illustrates the operation of the
register cache when a frame is pushed.
4-2 i960® RM/RN I/O Processor Developer’s Manual

Cache and On-Chip Data RAM
The valid range for the number of reserved free frames is 0 to 7. Setting the value to 0 reserves no
frames for exclusive use by high-priority interrupts. Setting the value to 1 reserves 1 frame for
high-priority interrupts and 6 frames to be shared by all code. Setting the value to 7 causes the register
cache to become disabled for non-critical code. If the number of reserved high-priority frames exceeds
the allocated size of the register cache, the entire cache is reserved for high-priority interrupts. In that
case, all low-priority interrupts and procedure calls cause frame spills to external memory.

4.3 Instruction Cache

The i960 RM/RN I/O processor features a 16-Kbyte, 2-way set-associative instruction cache
(I-cache) organized in lines of four 32-bit words. The cache provides fast execution of cached code
and loops of code and provides more bus bandwidth for data operations in external memory. To
optimize cache updates when branches or interrupts are executed, each word in the line has a
separate valid bit. When requested instructions are found in the cache, the instruction fetch time is
one cycle for up to four words. A mechanism to load and lock critical code within a way of the
cache is provided along with a mechanism to disable the cache. The cache is managed through the
icctl or sysctl instruction. The sysctl instruction supports the instruction cache to maintain
compatibility with other i960 processor software. Using icctl is the preferred and more versatile
method for controlling the instruction cache on the i960 RM/RN I/O processor.

Cache misses cause the processor to issue a double-word or a quad-word fetch, based on the
location of the Instruction Pointer:

• If the IP is at word 0 or word 1 of a 16-byte block, a four-word fetch is initiated.

• If the IP is at word 2 or word 3 of a 16-byte block, a two-word fetch is initiated.

Example 4-1. Register Cache Operation

frames_for_non_critical = 7- RCW[11:8];

if (interrupt_request)

set_interrupt_handler_PC;

push_frame;

number_of_frames = number_of_frames + 1;

if (number_of_frames = 8) {

flush_register_frame(oldest_frame);

number_of_frames = number_of_frames - 1; }

else if (number_of_frames = (frames_for_non_critical + 1) &&

(PC.priority < 28 || PC.state != interrupted)) {

 flush_register_frame(oldest_frame);

 number_of_frames = number_of_frames - 1; }
i960® RM/RN I/O Processor Developer’s Manual 4-3

Cache and On-Chip Data RAM

ory.
nt.

ns
o

t all
tency

size

ect
he
4.3.1 Enabling and Disabling the Instruction Cache

Enabling the instruction cache is controlled on reset or initialization by the instruction cache
configuration word in the Process Control Block (PRCB); see Table 11-8 “Process Control Block
Configuration Words” on page 11-15. When bit 16 in the instruction cache configuration word is
set, the instruction cache is disabled and all instruction fetches are directed to external mem
Disabling the instruction cache is useful for tracing execution in a software debug environme

The instruction cache remains disabled until one of three operations is performed:

• icctl is issued with the enable instruction cache operation (preferred method)

• sysctl is issued with the configure-instruction-cache message type and cache configuration
mode other than disable cache (provides compatibility with other i960 processors; not the
preferred method for i960 RM/RN I/O processor).

• The processor is reinitialized with a new value in the instruction cache configuration word

4.3.2 Operation While the Instruction Cache Is Disabled

Disabling the instruction cache does not disable instruction buffering that may occur in the
instruction fetch unit. A four-word instruction buffer is always enabled, even when the cache is
disabled.

There is one tag and four word-valid bits associated with the buffer. Because there is only one tag
for the buffer, any “miss” within the buffer causes the following:

• All four words of the buffer are invalidated.

• A new tag value for the required instruction is loaded.

• The required instruction(s) are fetched from external memory.

Depending on the alignment of the “missed” instruction, either two or four words of instructio
are fetched and only the valid bits corresponding to the fetched words are set in the buffer. N
external instruction fetches are generated until there is a “miss” within the buffer, even in the
presence of forward and backward branches.

4.3.3 Loading and Locking Instructions in the Instruction Cache

The processor can be directed to load a block of instructions into the cache and then lock ou
normal updates to the cache. This cache load-and-lock mechanism is provided to minimize la
on program control transfers to key operations such as interrupt service routines. The block
that can be loaded and locked on the i960 RM/RN I/O processor is one way of the cache.

An icctl or sysctl instruction is issued with a configure-instruction-cache message type to sel
the load-and-lock mechanism. When the lock option is selected, the processor loads the cac
starting at an address specified as an operand to the instruction.
4-4 i960® RM/RN I/O Processor Developer’s Manual

Cache and On-Chip Data RAM

 the
a
rious
4.3.4 Instruction Cache Visibility

Instruction cache status can be determined by issuing icctl with an instruction-cache status
message. To facilitate debugging, the instruction cache contents, instructions, tags and valid bits
can be written to memory. This is done by issuing icctl with the store cache operation.

4.3.5 Instruction Cache Coherency

The i960 RM/RN I/O processor does not snoop the bus to prevent instruction cache incoherency.
The cache does not detect modification to program memory by loads, stores or actions of other bus
masters. Several situations may require program memory modification, such as uploading code at
initialization or loading from a backplane bus or a disk drive.

The application program is responsible for synchronizing its own code modification and cache
invalidation. In general, a program must ensure that modified code space is not accessed until
modification and cache-invalidate are completed. To achieve cache coherency, instruction cache
contents should be invalidated after code modification is complete. icctl invalidates the instruction
cache for the i960 RM/RN I/O processor. Alternatively, i960 processor legacy software can use
sysctl.

4.4 Data Cache

The i960 RM/RN I/O processor features a 4-Kbyte, direct-mapped cache that enhances
performance by reducing the number of data load and store accesses to external memory. The
cache is write-through and write-allocate. It has a line size of 4 words and each line in the cache has
a valid bit. To reduce fetch latency on cache misses, each word within a line also has a valid bit.
Caches are managed through the dcctl instruction.

User settings in the memory region configuration registers LMCON0-1 and DLMCON determine
the data accesses that are cacheable or non-cacheable based on memory region.

4.4.1 Enabling and Disabling the Data Cache

To cache data, two conditions must be met:

1. The data cache must be enabled. A dcctl instruction issued with an enable data cache message
enables the cache. On reset or initialization, the data cache is always disabled and all valid bits
are set to zero.

2. Data caching for a location must be enabled by the corresponding logical memory template, or
by the default logical memory template if no other template applies. See Section 12.2.1,
“PMCON Registers” on page 12-1 for more details on logical memory templates.

When the data cache is disabled, all data fetches are directed to external memory. Disabling
data cache is useful for debugging or monitoring a system. To disable the data cache, issue dcctl
with a disable data cache message. The enable and disable status of the data cache and va
attributes of the cache can be determined by a dcctl issued with a data-cache status message.
i960® RM/RN I/O Processor Developer’s Manual 4-5

Cache and On-Chip Data RAM

ccesses.

ds
cesses
nment

, etc.)
oted to

e data
hort
4.4.2 Multi-Word Data Accesses that Partially Hit the Data Cache

The following applies only when data caching is enabled for an access.

For a multi-word load access (ldl, ldt, ldq) in which none of the requested words hit the data cache,
an external bus transaction is started to acquire all the words of the access.

For a multi-word load access that partially hits the data cache, the processor may either:

• Load or reload all words of the access (even those that hit) from the external bus.

• Load only missing words from the external bus and interleave them with words found in the
data cache.

The multi-word alignment determines which of the above methods is used:

• Naturally aligned multi-word accesses cause all words to be reloaded.

• An unaligned multi-word access causes only missing words to be loaded.

When any words (Table 4-1) accessed with ldl, ldt, or ldq miss the data cache, every word accessed
by that load instruction is updated in the cache.

In each case, the external bus accesses used to acquire the data may consist of none, one, or several
burst accesses based on the alignment of the data and the bus-width of the memory region that
contains the data. See Chapter 12, “Core Processor and Internal Operation” for more details.

A multi-word load access that completely hits in the data cache does not cause external bus a

For a multi-word store access (stl, stt, stq) an external bus transaction is started to write all wor
of the access regardless if any or all words of the access hit the data cache. External bus ac
used to write the data may consist of either one or several burst accesses based on data alig
and the bus-width of the memory region that receives the data. The cache is also updated
accordingly as described earlier in this chapter.

4.4.3 Data Cache Fill Policy

The i960 RM/RN I/O processor always uses a “natural” fill policy for cacheable loads. The
processor fetches only the amount of data that is requested by a load (i.e., a word, long word
on a data cache miss. Exceptions are byte and short-word accesses, which are always prom
words. This allows a complete word to be brought into the cache and marked valid. When th
cache is disabled and loads are done from a cacheable region, promotions from bytes and s
words still take place.

Table 4-1. Load Instruction Updates

 Load Instruction Number of Updated Words

ldq 4 words

ldt 3 words

ldl 2 words
4-6 i960® RM/RN I/O Processor Developer’s Manual

Cache and On-Chip Data RAM
4.4.4 Data Cache Write Policy

The write policy determines the action taken on cacheable writes (stores). The i960 RM/RN I/O
processor always uses a write-through policy. Stores are always seen on the external bus, thus
maintaining coherency between the data cache and external memory.

The i960 RM/RN I/O processor always uses a write-allocate policy for data. For a cacheable
location, data is always written to the data cache regardless of whether the access is a hit or miss.
The following cases are relevant to consider:

1. In the case of a hit for a word or multi-word store, the appropriate line and word(s) are updated
with the data.

2. In the case of a miss for a word or multi-word store, a tag and cache line are allocated, if
needed, and the appropriate valid bits, line, and word(s) are updated.

3. In the case of byte or short-word data that hits a valid word in the cache, both the word in
cache and external memory are updated with the data; the cache word remains valid.

4. In the case of byte or short-word data that falls within a valid line but misses because the
appropriate word is invalid, both the word and external memory are updated with the data;
however, the cache word remains invalid.

5. In the case of byte or short-word data that does not fall within a valid line, the external
memory is updated with the data. For data writes less than a word, the data cache is not
updated; the tags and valid bits are not changed.

A byte or short word is always invalid in the data cache since valid bits only apply to words.

For cacheable stores that are equal to or greater than a word in length, cache tags and appropriate
valid bits are updated whenever data is written into the cache. Consider a word store that misses as an
example. The tag is always updated and its valid bit is set. The appropriate valid bit for that word is
always set and the other three valid bits are always cleared. If the word store hits the cache, the tag
bits remain unchanged. The valid bit for the stored word is set; all other valid bits are unchanged.

Cacheable stores that are less than a word in length are handled differently. Byte and short-word
stores that hit the cache (i.e., are contained in valid words within valid cache lines) do not change
the tag and valid bits. The processor writes the data into the cache and external memory as usual. A
byte or short-word store to an invalid word within a valid cache line leaves the word valid bit
cleared because the rest of the word is still invalid. In these two cases the processor simultaneously
writes the data into the cache and the external memory.
i960® RM/RN I/O Processor Developer’s Manual 4-7

Cache and On-Chip Data RAM

ine is
This
. A

ause the

ically.

 is

 is no
ter can
ata. The

y

ge.
ging.

4.4.5 Data Cache Coherency and Non-Cacheable Accesses

The i960 RM/RN I/O processor ensures that the data cache is always kept coherent with accesses
that it initiates and performs. The most visible application of this requirement concerns
non-cacheable accesses discussed below. However, the processor does not provide data cache
coherency for accesses on the external bus that it did not initiate. Software is responsible for
maintaining coherency in a multi-processor environment.

An access is defined as non-cacheable when any of the following is true:

1. The access falls into an address range mapped by an enabled LMCON or DLMCON and the
data-caching enabled bit in the matching LMCON is clear.

2. The entire data cache is disabled.

3. The access is a read operation of the read-modify-write sequence performed by an atmod or
atadd instruction.

4. The access is an implicit read access to the interrupt table to post or deliver a software interrupt.

If the memory location targeted by an atmod or atadd instruction is currently in the data cache, it
is invalidated.

If the address for a non-cacheable store matches a tag (“tag hit”), the corresponding cache l
marked invalid. This is because the word is not actually updated with the value of the store.
behavior ensures that the data cache never contains stale data in a single-processor system
simple case illustrates the necessity of this behavior: a read of data previously stored by a
non-cacheable access must return the new value of the data, not the value in the cache. Bec
processor invalidates the appropriate word in the cache line on a store hit when the cache is
disabled, coherency can be maintained when the data cache is enabled and disabled dynam

Data loads or stores invalidate the corresponding lines of the cache even when data caching
disabled. This behavior further ensures that the cache does not contain stale data.

4.4.6 External I/O and Bus Masters and Cache Coherency

The i960 RM/RN I/O processor implements a single processor coherency mechanism. There
hardware mechanism, such as bus snooping, to support multiprocessing. If another bus mas
change shared memory, there is no guarantee that the data cache contains the most recent d
user must manage such data coherency issues in software.

A suggested practice is to program the LMCON0-1 registers such that I/O regions are
non-cacheable. Partitioning the system in this fashion eliminates I/O as a source of coherenc
problems. See Section 12.2.1, “PMCON Registers” on page 12-1 for more information on this
subject.

4.4.7 Data Cache Visibility

Data cache status can be determined by a dcctl instruction issued with a data-cache status messa
Data cache contents, data, tags and valid bits can be written to memory as an aid for debug
This operation is accomplished by a dcctl instruction issued with the dump cache operand. See
Section 6.2.23, “dcctl” on page 6-33 for more information.
4-8 i960® RM/RN I/O Processor Developer’s Manual

roup’s

 and

. For

nds,

imal

Instruction Set Overview 5

This chapter provides an overview of the i960® microprocessor family’s instruction set and i960
RM/RN I/O processor-specific instruction set extensions. Also discussed are the
assembly-language and instruction-encoding formats, various instruction groups and each g
instructions.

Chapter 6, “Instruction Set Reference” describes each instruction, including assembly language
syntax, and the action taken when the instruction executes and examples of how to use the
instruction.

5.1 Instruction Formats

i960 RM/RN I/O processor instructions may be described in two formats: assembly language
instruction encoding. The following subsections briefly describe these formats.

5.1.1 Assembly Language Format

Throughout this manual, instructions are referred to by their assembly language mnemonics
example, the add ordinal instruction is referred to as addo. Examples use Intel 80960 assembly
language syntax which consists of the instruction mnemonic followed by zero to three opera
separated by commas. In the following assembly language statement example for addo, ordinal
operands in global registers g5 and g9 are added together, and the result is stored in g7:

addo g5, g9, g7 # g7 = g9 + g5

In the assembly language listings in this chapter, registers are denoted as:

All numbers used as literals or in address expressions are assumed to be decimal. Hexadec
numbers are denoted with a “0x” prefix (e.g., 0xffff0012). Several assembly language instruction
statement examples follow. Additional assembly language examples are given in Section 2.3.5,
“Addressing Mode Examples” on page 2-6.

g global register r local register

pound sign precedes a comment

subi r3, r5, r6 #r6 = r5 - r3
setbit 13, g4, g5 #g5 = g4 with bit 13 set
lda 0xfab3, r12 #r12 = 0xfab3
ld (r4), g3 #g3 = memory location that r4 points to
st g10, (r6)[r7*2] #g10 = memory location that r6+2*r7 points to
i960® RM/RN I/O Processor Developer’s Manual 5-1

Instruction Set Overview

field.
chine

s (see
5.1.2 Instruction Encoding Formats

All instructions are encoded in one 32-bit machine language instruction — an opword — which
must be word aligned in memory. An opword’s most significant eight bits contain the opcode
The opcode field determines the instruction to be performed and how the remainder of the ma
language instruction is interpreted. Instructions are encoded in opwords in one of four format
Figure 5-1). For more information on instruction formats, see Appendix A, “Machine-Level
Instruction Formats”.

Table 5-1. Instruction Encoding Formats (REG, COBR, CRTL, MEM)

Instruction Type Format Description

register REG Most instructions are encoded in this format. Used primarily for instructions
which perform register-to-register operations.

compare and
branch COBR

An encoding optimization which combines compare and branch operations into
one opword. Other compare and branch operations are also provided as REG
and CTRL format instructions.

control CTRL For branches and calls that do not depend on registers for address calculation.

memory MEM

Used for referencing an operand which is a memory address. Load and store
instructions — and some branch and call instructions — use this format. MEM
format has two encodings: MEMA or MEMB. Usage depends upon the
addressing mode selected. MEMB-formatted addressing modes use the word
in memory immediately following the instruction opword as a 32-bit constant.
MEMA format uses one word and MEMB uses two words.

Figure 5-1. Machine-Level Instruction Formats

031

OPCODE src/dst src2 OPCODE src1

031

OPCODE src2 displacementsrc1

031

OPCODE displacement

031

OPCODE src/dst Address Offset

REG

COBR

CTRL

MEMA

MEMB

031

OPCODE src/dst Address Index

32-Bit displacement

Scale

Base

Base
5-2 i960® RM/RN I/O Processor Developer’s Manual

Instruction Set Overview
5.1.3 Instruction Operands

This section identifies and describes operands that can be used with the instruction formats.

Format Operand(s) Description

REG src1, src2, src/dst src1 and src2 can be global registers, local registers or
literals. src/dst is either a global or a local register.

CTRL displacement CTRL format is used for branch and call instructions.
displacement value indicates the target instruction of the
branch or call.

COBR src1, src2,
displacement

src1, src2 indicate values to be compared; displacement
indicates branch target. src1 can specify a global register,
local register or a literal. src2 can specify a global or local
register.

MEM src/dst, efa Specifies source or destination register and an effective
address (efa) formed by using the processor’s addressing
modes as described in Section 2.3, “Memory Addressing
Modes” on page 2-4. Registers specified in a MEM format
instruction must be either a global or local register.
i960® RM/RN I/O Processor Developer’s Manual 5-3

Instruction Set Overview
5.2 Instruction Groups

The i960 processor instruction set can be categorized into the following functional groups shown in
Table 5-2. The actual number of instructions is greater than those shown in this list because, for
some operations, several unique instructions are provided to handle various operand sizes, data
types or branch conditions. The following sections provide an overview of the instructions in each
group. For detailed information about each instruction, refer to Chapter 6, “Instruction Set
Reference”.

Table 5-2. i960® RM/RN I/O Processor Instruction Set

Data Movement Arithmetic Logical Bit, Bit Field and Byte

Load

Store

Move

*Conditional Select

Load Address

Add

Subtract

Multiply

Divide

Remainder

Modulo

Shift

Extended Shift

Extended Multiply

Extended Divide

Add with Carry

Subtract with Carry

*Conditional Add

*Conditional Subtract

Rotate

And

Not And

And Not

Or

Exclusive Or

Not Or

Or Not

Nor

Exclusive Nor

Not

Nand

Set Bit

Clear Bit

Not Bit

Alter Bit

Scan For Bit

Span Over Bit

Extract

Modify

Scan Byte for Equal

*Byte Swap

Comparison Branch Call/Return Fault

Compare

Conditional Compare

Compare and Increment

Compare and Decrement

Test Condition Code

Check Bit

Unconditional Branch

Conditional Branch

Compare and Branch

Call

Call Extended

Call System

Return

Branch and Link

Conditional Fault

Synchronize Faults

Debug Processor
Management Atomic

Modify Trace Controls

Mark

Force Mark

Flush Local Registers

Modify Arithmetic
Controls

Modify Process Controls

*Halt

System Control

*Cache Control

*Interrupt Control

Atomic Add

Atomic Modify

* Denotes newer instructions that are NOT available on 80960CA/CF, 80960KA/KB and 80960SA/SB implementations.
5-4 i960® RM/RN I/O Processor Developer’s Manual

Instruction Set Overview

 of
rds to
ons

and
gers

cally

mory

tting

n
5.2.1 Data Movement

These instructions are used to move data from memory to global and local registers, from global
and local registers to memory, and between local and global registers.

Rules for register alignment must be followed when using load, store and move instructions that
move 8, 12 or 16 bytes at a time. See Section 3.5, “Memory Address Space” on page 3-10 for
alignment requirements for code portability across implementations.

5.2.1.1 Load and Store Instructions

Load instructions copy bytes or words from memory to local or global registers or to a group
registers. Each load instruction has a corresponding store instruction to memory bytes or wo
copy from a selected local or global register or group of registers. All load and store instructi
use the MEM format.

ld copies 4 bytes from memory into a register; ldl copies 8 bytes; ldt copies 12 bytes into
successive registers; ldq copies 16 bytes into successive registers.

st copies 4 bytes from a register into memory; stl copies 8 bytes; stt copies 12 bytes from
successive registers; stq copies 16 bytes from successive registers.

For ld, ldob, ldos, ldib and ldis, the instruction specifies a memory address and register; the
memory address value is copied into the register. The processor automatically extends byte
short (half-word) operands to 32 bits according to data type. Ordinals are zero-extended; inte
are sign-extended.

For st, stob, stos, stib and stis, the instruction specifies a memory address and register; the
register value is copied into memory. For byte and short instructions, the processor automati
reformats the source register’s 32-bit value for the shorter memory location. For stib and stis, this
reformatting can cause integer overflow when the register value is too large for the shorter me
location. When integer overflow occurs, either an integer-overflow fault is generated or the
integer-overflow flag in the AC register is set, depending on the integer-overflow mask bit se
in the AC register.

For stob and stos, the processor truncates the register value and does not create a fault whe
truncation resulted in the loss of significant bits.

ld load word st store word

ldob load ordinal byte stob store ordinal byte

ldos load ordinal short stos store ordinal short

ldib load integer byte stib store integer byte

ldis load integer short stis store integer short

ldl load long stl store long

ldt load triple stt store triple

ldq load quad stq store quad
i960® RM/RN I/O Processor Developer’s Manual 5-5

Instruction Set Overview

tions

n for
n

he
5.2.1.2 Move

Move instructions copy data from a local or global register or group of registers to another register
or group of registers. These instructions use the REG format.

5.2.1.3 Load Address

The Load Address instruction (lda) computes an effective address in the address space from an
operand presented in one of the addressing modes. lda is commonly used to load a constant into a
register. This instruction uses the MEM format and can operate upon local or global registers.

On the i960 RM/RN I/O processor, lda is useful for performing simple arithmetic operations. The
processor’s parallelism allows lda to execute in the same clock as another arithmetic or logical
operation.

5.2.2 Select Conditional

Given the proper condition code bit settings in the Arithmetic Controls register, these instruc
move one of two pieces of data from its source to the specified destination.

5.2.3 Arithmetic

Table 5-3 lists arithmetic operations and data types for which the i960 RM/RN I/O processor
provides instructions. “X” in this table indicates that the microprocessor provides an instructio
the specified operation and data type. All arithmetic operations are carried out on operands i
registers or literals. Refer to Section 5.2.11, “Atomic Instructions” on page 5-17 for instructions
which handle specific requirements for in-place memory operations.

All arithmetic instructions use the REG format and can operate on local or global registers. T
following subsections describe arithmetic instructions for ordinal and integer data types.

mov move word
movl move long word
movt move triple word
movq move quad word

selno Select Based on Unordered

selg Select Based on Greater

sele Select Based on Equal

selge Select Based on Greater or Equal

sell Select Based on Less

selne Select Based on Not Equal

selle Select Based on Less or Equal

selo Select Based on Ordered
5-6 i960® RM/RN I/O Processor Developer’s Manual

Instruction Set Overview
5.2.3.1 Add, Subtract, Multiply, Divide, Conditional Add, Conditional Subtract

These instructions perform add, subtract, multiply or divide operations on integers and ordinals:

addi, ADDI<cc>, subi, SUBI<cc>, muli and divi generate an integer-overflow fault when the
result is too large to fit in the 32-bit destination. divi and divo generate a zero-divide fault when
the divisor is zero.

Table 5-3. Arithmetic Operations

Arithmetic Operations
Data Types

Integer Ordinal

Add X X

Add with Carry X X

Conditional Add X X

Subtract X X

Subtract with Carry X X

Conditional Subtract X X

Multiply X X

Extended Multiply X

Divide X X

Extended Divide X

Remainder X X

Modulo X

Shift Left X X

Shift Right X X

Extended Shift Right X

Shift Right Dividing Integer X

NOTE: “X” indicates that an instruction is available for the specified operation and data type.

addi Add Integer

addo Add Ordinal

subi Subtract Integer

subo Subtract Ordinal

SUB<cc> Conditional Subtract

muli Multiply Integer

mulo Multiply Ordinal

divi Divide Integer

divo Divide Ordinal
i960® RM/RN I/O Processor Developer’s Manual 5-7

Instruction Set Overview

uch

5.2.3.2 Remainder and Modulo

These instructions divide one operand by another and retain the remainder of the operation:

The difference between the remainder and modulo instructions lies in the sign of the result. For
remi and remo, the result has the same sign as the dividend; for modi, the result has the same
sign as the divisor.

5.2.3.3 Shift, Rotate and Extended Shift

These shift instructions shift an operand a specified number of bits left or right:

Except for rotate, these instructions discard bits shifted beyond the register boundary.

shlo shifts zeros in from the least significant bit; shro shifts zeros in from the most significant bit.
These instructions are equivalent to mulo and divo by the power of 2, respectively.

shli shifts zeros in from the least significant bit. When the shift operation results in an overflow, an
integer-overflow fault is generated (when enabled). The destination register is written with the
source shifted as much as possible without overflow and an integer-overflow fault is signaled.

shri performs a conventional arithmetic shift right operation by extending the sign bit. However,
when this instruction is used to divide a negative integer operand by the power of 2, it may produce
an incorrect quotient. (Discarding the bits shifted out has the effect of rounding the result toward
negative.)

shrdi is provided for dividing integers by the power of 2. With this instruction, 1 is added to the
result when the bits shifted out are non-zero and the operand is negative, which produces the
correct result for negative operands. shli and shrdi are equivalent to muli and divi by the power
of 2, respectively, except in cases where an overflow error occurs.

rotate rotates operand bits to the left (toward higher significance) by a specified number of bits.
Bits shifted beyond the register’s left boundary (bit 31) appear at the right boundary (bit 0).

The eshro instruction performs an ordinal right shift of a source register pair (64 bits) by as m
as 32 bits and stores the result in a single (32-bit) register. This instruction is equivalent to an
extended divide by a power of 2, which produces no remainder. The instruction is also the
equivalent of a 64-bit extract of 32 bits.

remi remainder integer

remo remainder ordinal

modi modulo integer

shlo shift left ordinal

shro shift right ordinal

shli shift left integer

shri shift right integer

shrdi shift right dividing integer

rotate rotate left

eshro extended shift right ordinal
5-8 i960® RM/RN I/O Processor Developer’s Manual

Instruction Set Overview

s

ored
n

ters.
5.2.3.4 Extended Arithmetic

These instructions support extended-precision arithmetic; (i.e., arithmetic operations on operands
greater than one word in length):

addc adds two word operands (literals or contained in registers) plus the AC Register condition
code bit 1 (used here as a carry bit). When the result has a carry, bit 1 of the condition code is set;
otherwise, it is cleared. This instruction’s description in Chapter 6, “Instruction Set Reference”
gives an example of how this instruction can be used to add two long-word (64-bit) operands
together.

subc is similar to addc, except it is used to subtract extended-precision values. Although addc
and subc treat their operands as ordinals, the instructions also set bit 0 of the condition code
when the operation would have resulted in an integer overflow condition. This facilitates a
software implementation of extended integer arithmetic.

emul multiplies two ordinals (each contained in a register), producing a long ordinal result (st
in two registers). ediv divides a long ordinal by an ordinal, producing an ordinal quotient and a
ordinal remainder (stored in two adjacent registers).

5.2.4 Logical

These instructions perform bitwise Boolean operations on the specified operands:

All logical instructions use the REG format and can operate on literals or local or global regis

addc add ordinal with carry

subc subtract ordinal with carry

emul extended multiply

ediv extended divide

and src2 AND src1

notand (NOT src2) AND src1

andnot src2 AND (NOT src1)

xor src2 XOR src1

or src2 OR src1

nor NOT (src2 OR src1)

xnor src2 XNOR src1

not NOT src1

notor (NOT src2) or src1

ornot src2 or (NOT src1)

nand NOT (src2 AND src1)
i960® RM/RN I/O Processor Developer’s Manual 5-9

Instruction Set Overview

f

 bit

n

ison.
ents.

ed in
5.2.5 Bit, Bit Field and Byte Operations

These perform operations on a specified bit or bit field in an ordinal operand. All Bit, Bit Field and
Byte instructions use the REG format and can operate on literals or local or global registers.

5.2.5.1 Bit Operations

These instructions operate on a specified bit:

setbit, clrbit and notbit set, clear or complement (toggle) a specified bit in an ordinal.

alterbit alters the state of a specified bit in an ordinal according to the condition code. When the
condition code is 0102, the bit is set; when the condition code is 0002, the bit is cleared.

chkbit, described in Section 5.2.6, “Comparison” on page 5-10, can be used to check the value o
an individual bit in an ordinal.

scanbit and spanbit find the most significant set bit or clear bit, respectively, in an ordinal.

5.2.5.2 Bit Field Operations

The two bit field instructions are extract and modify.

extract converts a specified bit field, taken from an ordinal value, into an ordinal value. In
essence, this instruction shifts right a bit field in a register and fills in the bits to the left of the
field with zeros. (eshro also provides the equivalent of a 64-bit extract of 32 bits).

modify copies bits from one register into another register. Only masked bits in the destinatio
register are modified. modify is equivalent to a bit field move.

5.2.5.3 Byte Operations

scanbyte performs a byte-by-byte comparison of two ordinals to determine when any two
corresponding bytes are equal. The condition code is set based on the results of the compar
scanbyte uses the REG format and can specify literals or local or global registers as argum

bswap alters the order of bytes in a word, reversing its “endianess.”

5.2.6 Comparison

The processor provides several types of instructions for comparing two operands, as describ
the following subsections.

setbit set bit

clrbit clear bit

notbit invert bit

alterbit alter bit

scanbit scan for bit

spanbit span over bit
5-10 i960® RM/RN I/O Processor Developer’s Manual

Instruction Set Overview

ly.
5.2.6.1 Compare and Conditional Compare

These instructions compare two operands then set the condition code bits in the AC register
according to the results of the comparison:

These all use the REG format and can specify literals or local or global registers. The condition
code bits are set to indicate whether one operand is less than, equal to, or greater than the other
operand. See Section 3.6.2, “Arithmetic Controls Register – AC” on page 3-14 for a description of
the condition codes for conditional operations.

cmpi and cmpo simply compare the two operands and set the condition code bits according
concmpi and concmpo first check the status of condition code bit 2:

• When not set, the operands are compared as with cmpi and cmpo.

• When set, no comparison is performed and the condition code flags are not changed.

The conditional-compare instructions are provided specifically to optimize two-sided range
comparisons to check for the condition when A is between B and C (B ≤ A ≤ C). Here, a compare
instruction (cmpi or cmpo) checks one side of the range (A ≥ B) and a conditional compare
instruction (concmpi or concmpo) checks the other side (A ≤ C) according to the result of the
first comparison. The condition codes following the conditional comparison directly reflect the
results of both comparison operations. Therefore, only one conditional branch instruction is
required to act upon the range check; otherwise, two branches would be needed.

chkbit checks a specified bit in a register and sets the condition code flags according to the bit
state. The condition code is set to 0102 when the bit is set and 0002 otherwise.

5.2.6.2 Compare and Increment or Decrement

These instructions compare two operands, set the condition code bits according to the compare
results, then increment or decrement one of the operands:

These all use the REG format and can specify literals or local or global registers. They are an
architectural performance optimization which allows two register operations (e.g., compare and add)
to execute in a single cycle. The intended use of these instructions is at the end of iterative loops.

cmpi Compare Integer

cmpib Compare Integer Byte

cmpis Compare Integer Short

cmpo Compare Ordinal

concmpi Conditional Compare Integer

concmpo Conditional Compare Ordinal

chkbit Check Bit

cmpinci compare and increment integer

cmpinco compare and increment ordinal

cmpdeci compare and decrement integer

cmpdeco compare and decrement ordinal
i960® RM/RN I/O Processor Developer’s Manual 5-11

Instruction Set Overview

f the
g
5.2.6.3 Test Condition Codes

These test instructions allow the state of the condition code flags to be tested:

When the condition code matches the instruction-specified condition, a TRUE (0000 0001H) is
stored in a destination register; otherwise, a FALSE (0000 0000H) is stored. All use the COBR
format and can operate on local and global registers.

5.2.7 Branch

Branch instructions allow program flow direction to be changed by explicitly modifying the IP.
The processor provides three branch instruction types:

• unconditional branch

• conditional branch

• compare and branch

Most branch instructions specify the target IP by specifying a signed displacement to be added to
the current IP. Other branch instructions specify the target IP’s memory address, using one o
processor’s addressing modes. This latter group of instructions is called extended addressin
instructions (e.g., branch extended, branch-and-link extended).

teste test for equal

testne test for not equal

testl test for less

testle test for less or equal

testg test for greater

testge test for greater or equal

testo test for ordered

testno test for unordered
5-12 i960® RM/RN I/O Processor Developer’s Manual

Instruction Set Overview

e of

ified

 not
 used as
do not

essor

5.2.7.1 Unconditional Branch

These instructions are used for unconditional branching:

b and bal use the CTRL format. bx and balx use the MEM format and can specify local or global
registers as operands. b and bx cause program execution to jump to the specified target IP. These
two instructions perform the same function; however, their determination of the target IP differs.
The target IP of a b instruction is specified at link time as a relative displacement from the current
IP. The target IP of the bx instruction is the absolute address resulting from the instruction’s us
a memory-addressing mode during execution.

bal and balx store the next instruction’s address in a specified register, then jump to the spec
target IP. (For bal, the RIP is automatically stored in register g14; for balx, the RIP location is
specified with an instruction operand.) As described in Section 7.9, “Branch-and-Link” on
page 7-19, branch and link instructions provide a method of performing procedure calls that do
use the processor’s integrated call/return mechanism. Here, the saved instruction address is
a return IP. Branch and link is generally used to call leaf procedures (that is, procedures that
call other procedures).

bx and balx can make use of any memory-addressing mode.

5.2.7.2 Conditional Branch

With conditional branch (BRANCH IF) instructions, the processor checks the AC register
condition code flags. When these flags match the value specified with the instruction, the proc
jumps to the target IP. These instructions use the displacement-plus-ip method of specifying the
target IP:

All use the CTRL format. bo and bno are used with real numbers. bno can also be used with the
result of a chkbit or scanbit instruction. Refer to Section 3.6.2.2, “Condition Code (AC.cc)” on
page 3-14 for a discussion of the condition code for conditional operations.

b Branch

bx Branch Extended

bal Branch and Link

balx Branch and Link Extended

be branch if equal/true

bne branch if not equal

bl branch if less

ble branch if less or equal

bg branch if greater

bge branch if greater or equal

bo branch if ordered

bno branch if unordered/false
i960® RM/RN I/O Processor Developer’s Manual 5-13

Instruction Set Overview

he
010

ible to
ng two
5.2.7.3 Compare and Branch

These instructions compare two operands then branch according to the comparison result. Three
instruction subtypes are compare integer, compare ordinal and branch on bit:

All use the COBR machine instruction format and can specify literals, local or global registers as
operands. With compare ordinal and branch (compob*) and compare integer and branch
(compib*) instructions, two operands are compared and the condition code bits are set as
described in Section 5.2.6, “Comparison” on page 5-10. A conditional branch is then executed as
with the conditional branch (BRANCH IF) instructions.

With check bit and branch instructions (bbs, bbc), one operand specifies a bit to be checked in t
second operand. The condition code flags are set according to the state of the specified bit: 2
(true) when the bit is set and 0002 (false) when the bit is clear. A conditional branch is then
executed according to condition code bit settings.

These instructions can be used to optimize execution performance time. When it is not poss
separate adjacent compare and branch instructions from other unrelated instructions, replaci
instructions with a single compare and branch instruction increases performance.

cmpibe compare integer and branch if equal

cmpibne compare integer and branch if not equal

cmpibl compare integer and branch if less

cmpible compare integer and branch if less or equal

cmpibg compare integer and branch if greater

cmpibge compare integer and branch if greater or equal

cmpibo compare integer and branch if ordered

cmpibno compare integer and branch if unordered

cmpobe compare ordinal and branch if equal

cmpobne compare ordinal and branch if not equal

cmpobl compare ordinal and branch if less

cmpoble compare ordinal and branch if less or equal

cmpobg compare ordinal and branch if greater

cmpobge compare ordinal and branch if greater or equal

bbs check bit and branch if set

bbc check bit and branch if clear
5-14 i960® RM/RN I/O Processor Developer’s Manual

Instruction Set Overview

ch to
ss.
igned

, a new

 an

ll is a
he

de the
g
m
5.2.8 Call/Return

The i960 RM/RN I/O processor offers an on-chip call/return mechanism for making procedure
calls. Refer to Section 7.1, “Call and Return Mechanism” on page 7-2. The following instructions
support this mechanism:

call and ret use the CTRL machine-instruction format. callx uses the MEM format and can
specify local or global registers. calls uses the REG format and can specify local or global
registers.

call and callx make local calls to procedures. A local call is a call that does not require a swit
another stack. call and callx differ only in the method of specifying the target procedure’s addre
The target procedure of a call is determined at link time and is encoded in the opword as a s
displacement relative to the call IP. callx specifies the target procedure as an absolute 32-bit
address calculated at run time using any one of the addressing modes. For both instructions
set of local registers and a new stack frame are allocated for the called procedure.

calls is used to make calls to system procedures — procedures that provide a kernel or
system-executive service. This instruction operates similarly to call and callx, except that it gets
its target-procedure address from the system procedure table. An index number included as
operand in the instruction provides an entry point into the procedure table.

Depending on the type of entry being pointed to in the system procedure table, calls can cause
either a system-supervisor call or a system-local call to be executed. A system-supervisor ca
call to a system procedure that switches the processor to supervisor mode and switches to t
supervisor stack. A system-local call is a call to a system procedure that does not cause an
execution mode or stack change. Supervisor mode is described throughout Chapter 7, “Procedure
Calls”.

ret performs a return from a called procedure to the calling procedure (the procedure that ma
call). ret obtains its target IP (return IP) from linkage information that was saved for the callin
procedure. ret is used to return from all calls — including local and supervisor calls — and fro
implicit calls to interrupt and fault handlers.

call call

callx call extended

calls call system

ret return
i960® RM/RN I/O Processor Developer’s Manual 5-15

Instruction Set Overview

nt

t
/O
5.2.9 Faults

Generally, the processor generates faults automatically as the result of certain operations. Fault
handling procedures are then invoked to handle various fault types without explicit intervention by
the currently running program. These conditional fault instructions permit a program to explicitly
generate a fault according to the state of the condition code flags. All use the CTRL format.

syncf ensures that any faults that occur during the execution of prior instructions occur before the
instruction that follows the syncf. syncf uses the REG format and requires no operands.

5.2.10 Debug

The processor supports debugging and monitoring of program activity through the use of trace
events. The following instructions support these debugging and monitoring tools:

These all use the REG format. Trace functions are controlled with bits in the Trace Control (TC)
register which enable or disable various types of tracing. Other TC register flags indicate when an
enabled trace event is detected. Refer to Chapter 10, “Tracing and Debugging”.

modtc permits trace controls to be modified. mark causes a breakpoint trace event to be
generated when breakpoint trace mode is enabled. fmark generates a breakpoint trace independe
of the state of the breakpoint trace mode bits.

Other instructions that are helpful in debugging include modpc and sysctl. modpc can
enable/disable trace fault generation. The sysctl instruction also provides control over breakpoin
trace event generation. This instruction is used, in part, to load and control the i960 RM/RN I
processor’s breakpoint registers.

faulte fault if equal

faultne fault if not equal

faultl fault if less

faultle fault if less or equal

faultg fault if greater

faultge fault if greater or equal

faulto fault if ordered

faultno fault if unordered

modpc modify process controls

modtc modify trace controls

mark mark

fmark force mark
5-16 i960® RM/RN I/O Processor Developer’s Manual

Instruction Set Overview

rnal

REG

t.

he
their

y
e the

. It
5.2.11 Atomic Instructions

Atomic instructions perform an atomic read-modify-write operation on operands in memory. An
atomic operation is one in which other memory operations are forced to occur before or after, but
not during, the accesses that comprise the atomic operation. These instructions are required to
enable synchronization between interrupt handlers and background tasks in any system. They are
also particularly useful in systems where several agents — processors, coprocessors or exte
logic — have access to the same system memory for communication.

The atomic instructions are atomic add (atadd) and atomic modify (atmod). atadd causes an
operand to be added to the value in the specified memory location. atmod causes bits in the
specified memory location to be modified under control of a mask. Both instructions use the
format and can specify literals or local or global registers as operands.

5.2.12 Processor Management

These instructions control processor-related functions:

All use the REG format and can specify literals or local or global registers.

modpc provides a method of reading and modifying PC register contents. Only programs
operating in supervisor mode may modify the PC register; however, any program may read i

The processor provides a flush local registers instruction (flushreg) to save the contents of the
cached local registers to the stack. The flush local registers instruction automatically stores t
contents of all the local register sets — except the current set — in the register save area of
associated stack frames.

The modify arithmetic controls instruction (modac) allows the AC register contents to be copied
to a register and/or modified under the control of a mask. The AC register cannot be explicitl
addressed with any other instruction; however, it is implicitly accessed by instructions that us
condition codes or set the integer overflow flag.

sysctl is used to configure the interrupt controller, breakpoint registers and instruction cache
also permits software to signal an interrupt or cause a processor reset and reinitialization. sysctl
may be executed only by programs operating in supervisor mode.

intctl, inten and intdis are used to enable and disable interrupts and to determine current
interrupt enable status.

modpc Modify the Process Controls register

flushreg Flush cached local register sets to memory

modac Modify the Arithmetic Controls register
i960® RM/RN I/O Processor Developer’s Manual 5-17

Instruction Set Overview
5.3 Performance Optimization

Performance optimization is categorized into two sections: instructions optimizations and
miscellaneous optimizations.

5.3.1 Instruction Optimizations

Instruction optimizations are broken down by the instruction classification.

5.3.1.1 Load / Store Execution Model

Because the i960 RM/RN I/O processor has a 32-bit external data bus, multiple word accesses
require multiple cycles. The processor uses microcode to sequence the multi-word accesses.
Because the microcode can ensure that aligned multi-words are bursted together on the external
bus, software should not substitute multiple single-word instructions for one multi-word instruction
for data that is not likely to be in cache; (i.e., one ldq provides better bus performance than four ld
instructions).

Once a load is issued, the processor attempts to execute other instructions while the load is
outstanding. It is important to note that when the load misses the data cache, the processor does not
stall the issuing of subsequent instructions (other than stores) that do not depend on the load.

Software should avoid following a load with an instruction that depends on the result of the load.
For a load that hits the data cache, a one-cycle stall occurs when the instruction immediately after
the load requires the data. When the load fails to hit the data cache, the instruction depending on
the load is stalled until the outstanding load request is resolved.

Multiple, back-to-back load instructions do not stall the processor until the bus queue becomes full.

The processor delays issuing a store instruction until all previously-issued load instructions
complete. This happens regardless of whether the store is dependent on the load. This ordering
between loads and stores ensures that the return data from a previous cache-read miss does not
overwrite the cache line updated by a subsequent store.

5.3.1.2 Compare Operations

Byte and short word data is more efficiently compared using the new byte and short compare
instructions (cmpob, cmpib, cmpos, cmpis), rather than shifting the data and using a word
compare instruction.

5.3.1.3 Microcoded Instructions

While the majority of instructions on the i960 RM/RN I/O processor are single cycle and are
executed directly by processor hardware, some require microcode emulation. Entry into a
microcode routine requires two cycles. Exit from microcode typically requires two cycles. For
some routines, one cycle of the exit process can execute in parallel with another instruction, thus
saving one cycle of execution time.
5-18 i960® RM/RN I/O Processor Developer’s Manual

Instruction Set Overview
5.3.1.4 Multiply-Divide Unit Instructions

The Multiply-Divide Unit (MDU) performs a number of multi-cycle arithmetic operations. These
can range from 2 cycles for a 16-bitx32-bit mulo, 4 cycles for a 32-bitx32-bit mulo, to 30+ cycles
for an ediv.

Once issued, these MDU instructions are executed in parallel with other non-MDU instructions
that do not depend on the result of the MDU operation. Attempting to issue another MDU
instruction while a current MDU instruction is executing, stalls the processor until the first one
completes.

5.3.1.5 Multi-Cycle Register Operations

A few register operations can also take multiple cycles. The following instructions are performed
in microcode:

On the i960 RM/RN I/O processor, test<cc> dst is microcoded and takes many more cycles than
SEL<cc> 0,1,dst, which is executed in one cycle directly by processor hardware.

Multi-register move operation execution time can be decreased at the expense of cache utilization
and code density by using mov the appropriate number of times instead of movl, movt and
movq.

5.3.1.6 Simple Control Transfer

There is no branch look-ahead or branch prediction mechanism on the i960 RM/RN I/O processor.
Simple branch instructions take one cycle to execute, and one more cycle is needed to fetch the
target instruction if the branch is actually taken.

 b, bal, bno, bo, bl, ble, be, bne, bg, bge

One mode of the bx (branch-extended) instruction, bx (base), is also a simple branch and takes one
cycle to execute and one cycle to fetch the target.

As a result, a bal(g14) or bx (g14) sequence provides a two-cycle call and return mechanism for
efficient leaf procedure implementation.

Compare-and-branch instructions have been optimized on the i960 RM/RN I/O processor. They
require two cycles to execute, and one more cycle to fetch the target instruction if the branch is
actually taken. The instructions are:

• bswap • extract • eshro • modify • movl • movt

• movq • shrdi • scanbit • spanbit • testno • testo

• testl • testle • teste • testne • testg • testge

• cmpobno • cmpobo • cmpobl • cmpoble • cmpobe • cmpobne

• cmpobg • cmpobge • cmpibno • cmpibo • cmpibl • cmpible

• cmpibe • cmpibg • cmpibne • cmpibge • bbc • bbs
i960® RM/RN I/O Processor Developer’s Manual 5-19

Instruction Set Overview
5.3.1.7 Memory Instructions

The i960 RM/RN I/O processor provides efficient support for naturally aligned byte, short, and
word accesses that use one of six optimized addressing modes. These accesses require only one to
two cycles to execute; additional cycles are needed for a load to return its data.

 The byte, short and word memory instructions are:

 ldob, ldib, ldos, ldis, ld, lda stob, stib, stos, stis, st

The remainder of accesses require multiple cycles to execute. These include:

• Unaligned short, and word accesses

• Byte, short, and word accesses that do not use one of the 6 optimized addressing modes

• Multi-word accesses

The multi-word accesses are:

 ldl, ldt, ldq, stl, stt, stq

5.3.1.8 Unaligned Memory Accesses

Unaligned memory accesses are performed by microcode. Microcode sequences the access into
smaller aligned pieces and does any merging of data that is needed. As a result, these accesses are
not as efficient as aligned accesses. In addition, no bursting on the external bus is performed for
these accesses. Whenever possible, unaligned accesses should be avoided.

5.3.2 Miscellaneous Optimizations

5.3.2.1 Masking of Integer Overflow

The i960 core architecture inserts an implicit syncf before performing a call operation or
delivering an interrupt so that a fault handler can be dispatched first, when necessary. syncf can
require a number of cycles to complete when a multi-cycle integer-multiply (muli) or
integer-divide (divi) instruction is issued previously and integer-overflow faults are unmasked
(allowed to occur). Call performance and interrupt latency can be improved by masking
integer-overflow faults (AC.om = 1), which allows the implicit syncf to complete more quickly.

5.3.2.2 Avoid Using PFP, SP, R3 As Destinations for MDU Instructions

When performing a call operation or delivering an interrupt, the processor typically attempts to
push the first four local registers (pfp, sp, rip, and r3) onto the local register cache as early as
possible. Because of register-interlock, this operation is stalled until previous instructions return
their results to these registers. In most cases, this is not a problem; however, in the case of
multi-cycle instructions (divo, divi, ediv, modi, remo, and remi), the processor could be
stalled for many cycles waiting for the result and unable to proceed to the next step of call
processing or interrupt delivery.

Call performance and interrupt latency can be improved by avoiding the first four registers as the
destination for a MDU instruction. Generally, registers pfp, sp, and rip should be avoided; they are
used for procedure linking.
5-20 i960® RM/RN I/O Processor Developer’s Manual

Instruction Set Overview
5.3.2.3 Use Global Registers (g0 - g14) As Destinations for MDU Instructions

Using the same rationale as in the previous item, call processing and interrupt performance are
improved even further by using global registers (g0-g14) as the destination for multi-cycle MDU
instructions. This is because there is no dependency between g0-g14 and implicit or explicit call
operations (i.e., global registers are not pushed onto the local register cache).

5.3.2.4 Execute in Imprecise Fault Mode

Significant performance improvement is possible by allowing imprecise faults (AC.nif = 0). In
precise fault mode (AC.nif = 1), the processor does not issue a new instruction until the previous
one completes. This ensures that a fault from the previous instruction is delivered before the next
instruction can begin execution. Imprecise fault mode allows new instructions to be issued before
previous ones complete, thus increasing the instruction issue rate. Many applications can tolerate
the imprecise fault reporting for the performance gain. A syncf can be used in imprecise fault
mode to isolate faults at desired points of execution when necessary.

5.3.3 Cache Control

The following instructions provide instruction and data cache control functions.

icctl and dcctl provide cache control functions including: enabling, disabling, loading and locking
(instruction cache only), invalidating, getting status and storing cache information out to memory.

icctl Instruction cache control

dcctl Data cache control
i960® RM/RN I/O Processor Developer’s Manual 5-21

de for

es

re are a
chapter.

tions

 of the

t are
icate
s to

s.
Instruction Set Reference 6

This chapter provides detailed information about each instruction available to the i960® RM/RN
I/O processor. Instructions are listed alphabetically by assembly language mnemonic. Format and
notation used in this chapter are defined in Section 6.1, “Notation” on page 6-1.

Information in this chapter is oriented toward programmers who write assembly language co
the i960 RM/RN I/O processor. Information provided for each instruction includes:

Additional information about the instruction set can be found in the following chapters and
appendices in this manual:

• Chapter 5, “Instruction Set Overview” - Summarizes the instruction set by group and describ
the assembly language instruction format.

• Appendix A, “Machine-Level Instruction Formats” - Describes instruction set opword
encodings.

• Appendix B, “Opcodes and Execution Times” - A quick-reference listing of instruction
encodings assists debugging with a logic analyzer.

6.1 Notation

In general, notation in this chapter is consistent with usage throughout the manual; however, the
few exceptions. Read the following subsections to understand notations that are specific to this

6.1.1 Alphabetic Reference

Instructions are listed alphabetically by assembly language mnemonic. When several instruc
are related and fall together alphabetically, they are described as a group on a single page.

The instruction’s assembly language mnemonic is shown in bold at the top of the page (e.g., subc).
Occasionally, it is not practical to list all mnemonics at the page top. In these cases, the name
instruction group is shown in capital letters (e.g., BRANCH<cc> or FAULT<cc>).

The i960 RM/RN I/O processor-specific extensions to the i960 microprocessor instruction se
indicated in the header text for each such instruction. This type of notation is also used to ind
new core architecture instructions. Sections describing new core instructions provide notes a
which i960-series processors do not implement these instructions.

Generally, instruction set extensions are not portable to other i960 processor implementation
Further, new core instructions are not typically portable to earlier i960 processor family
implementations such as the i960 Kx microprocessors.

• Alphabetic listing of all instructions • Faults that can occur during execution

• Assembly language mnemonic, name and
format

• Action (or algorithm) and other side
effects of executing an instruction

• Description of the instruction’s operation • Assembly language example

• Related instructions• Opcode and instruction encoding format
i960® RM/RN I/O Processor Developer’s Manual 6-1

Instruction Set Reference

ypes.

When
. An *

ple, it
 is as

also
6.1.2 Mnemonic

The Mnemonic section gives the mnemonic (in boldface type) and instruction name for each
instruction covered on the page, for example:

subi Subtract Integer

This name is the actual assembly language instruction name recognized by assemblers.

6.1.3 Format

The Format section gives the instruction’s assembly language format and allowable operand t
Format is given in two or three lines. The following is a two-line format example:

The first line gives the assembly language mnemonic (boldface type) and operands (italics).
the format is used for two or more instructions, an abbreviated form of the mnemonic is used
(asterisk) at the end of the mnemonic indicates a variable: in the above example, sub* is either
subi or subo. Capital letters indicate an instruction class. For example, ADD<cc> refers to the
class of conditional add instructions (e.g., addio, addig, addoo, addog).

Operand names are designed to describe operand function (e.g., src, len, mask).

The second line shows allowable entries for each operand. Notation is as follows:

reg Global (g0 ... g15) or local (r0 ... r15) register

lit Literal of the range 0 ... 31

disp Signed displacement of range (-222 ... 222 - 1)

mem Address defined with the full range of addressing modes

In some cases, a third line is added to show register or memory location contents. For exam
may be useful to know that a register is to contain an address. The notation used in this line
follows:

addr Address

efa Effective Address

6.1.4 Description

The Description section is a narrative description of the instruction’s function and operands. It
gives programming hints when appropriate.

sub* src1 src2 dst

reg/lit reg/lit reg
6-2 i960® RM/RN I/O Processor Developer’s Manual

Instruction Set Reference

tion’s
ssor
e

g
6.1.5 Action

The Action section gives an algorithm written in a "C-like" pseudo-code that describes direct
effects and possible side effects of executing an instruction. Algorithms document the instruc
net effect on the programming environment; they do not necessarily describe how the proce
actually implements the instruction. The following is an example of the action algorithm for th
alterbit instruction:

if ((AC.cc & 0102)==0)
dst = src2 & ~(2**(src1%32));

else
dst = src2 | 2**(src1%32);

Table 6-1 defines each abbreviation used in the instruction reference pseudo-code. The
pseudo-code has been written to comply as closely as possible with standard C programmin
language notation. Table 6-1 lists the pseudocode symbol definitions.

Table 6-1. Pseudo-Code Symbol Definitions

= Assignment

==, != Comparison: equal, not equal

<, > less than, greater than

<=, >= less than or equal to, greater than or equal to

<<, >> Logical Shift

** Exponentiation

&, && Bitwise AND, logical AND

|, || Bitwise OR, logical OR

^ Bitwise XOR

~ One’s Complement

% Modulo

+, - Addition, Subtraction

* Multiplication (Integer or Ordinal)

/ Division (Integer or Ordinal)

Comment delimiter

Table 6-2. Faults Applicable to All Instructions

Fault Type Subtype Description

OPERATION UNIMPLEMENTED
An attempt to execute any instruction fetched from internal data RAM
or a memory-mapped region causes an operation unimplemented
fault.

TRACE

MARK
A Mark Trace Event is signaled after completion of an instruction for
which there is a hardware breakpoint condition match. A Trace fault
is generated when PC.mk is set.

INSTRUCTION An Instruction Trace Event is signaled after instruction completion. A
Trace fault is generated when both PC.te and TC.i=1.
i960® RM/RN I/O Processor Developer’s Manual 6-3

Instruction Set Reference

.

,
6.1.6 Faults

The Faults section lists faults that can be signaled as a direct result of instruction execution.
Table 6-2 shows the possible faulting conditions that are common to the entire instruction set and
could directly result from any instruction. These fault types are not included in the instruction
reference. Table 6-3 shows the possible faulting conditions that are common to large subsets of the
instruction set. When an instruction can generate a fault, it is noted in that instruction’s Faults
section. In these sections, “Standard” refers to the faults shown in Table 6-2 and Table 6-3.

6.1.7 Example

The Example section gives an assembly language example of an application of the instruction

6.1.8 Opcode and Instruction Format

The Opcode and Instruction Format section gives the opcode and instruction format for each
instruction, for example:

subi 593H REG

The opcode is given in hexadecimal format. The format is one of four possible formats: REG
COBR, CTRL and MEM. Refer to Appendix A, “Machine-Level Instruction Formats” for more
information on the formats.

6.1.9 See Also

The See Also section gives the mnemonics of related instructions which are also alphabetically
listed in this chapter.

Table 6-3. Common Faulting Conditions

Fault Type Subtype Description

OPERATION

UNALIGNED
Any instruction that causes an unaligned memory access causes
an operation aligned fault when unaligned faults are not masked in
the fault configuration word in the Processor Control Block (PRCB).

INVALID_OPCODE This fault is generated when the processor attempts to execute an
instruction containing an undefined opcode or addressing mode.

INVALID_OPERAND
This fault is caused by a non-defined operand in a supervisor mode
only instruction or by an operand reference to an unaligned long-,
triple- or quad-register group.

UNIMPLEMENTED
This fault can occur due to an attempt to perform a non-word or
unaligned access to a memory-mapped region or when attempting
to fetch instructions from MMR space or internal data RAM.

Type MISMATCH

Any instruction that attempts to write to supervisor protected
internal data RAM or a memory-mapped register in supervisor
space while not in supervisor mode causes a TYPE.MISMATCH
fault. This fault is also generated for any non-supervisor mode
reference to an SFR.
6-4 i960® RM/RN I/O Processor Developer’s Manual

Instruction Set Reference
6.1.10 Side Effects

This section indicates whether the instruction causes changes to the condition code bits in the
Arithmetic Controls.

6.1.11 Notes

This section provides additional information about an instruction such as whether it is implemented
in other i960 processor families.
i960® RM/RN I/O Processor Developer’s Manual 6-5

Instruction Set Reference
6.2 Instructions
The processor’s instructions are arranged alphabetically by instruction or instruction group.

6.2.1 ADD<cc>

Mnemonic: addono Add Ordinal if Unordered
addog Add Ordinal if Greater
addoe Add Ordinal if Equal
addoge Add Ordinal if Greater or Equal
addol Add Ordinal if Less
addone Add Ordinal if Not Equal
addole Add Ordinal if Less or Equal
addoo Add Ordinal if Ordered
addino Add Integer if Unordered
addig Add Integer if Greater
addie Add Integer if Equal
addige Add Integer if Greater or Equal
addil Add Integer if Less
addine Add Integer if Not Equal
addile Add Integer if Less or Equal
addio Add Integer if Ordered

Format: add* src1, src2, dst
reg/lit reg/lit reg

Description: Conditionally adds src2 and src1 values and stores the result in dst based on
the AC register condition code. If for Unordered the condition code is 0, or if
for all other cases the logical AND of the condition code and the mask part of
the opcode is not 0, then the values are added and placed in the destination.
Otherwise the destination is left unchanged. Table 6-4 shows the condition
code mask for each instruction. The mask is in opcode bits 4-6.

Table 6-4. Condition Code Mask Descriptions

Instruction Mask Condition

addono
0002 Unordered

addino
addog

0012 Greater
addig
addoe

0102 Equal
addie

addoge
0112 Greater or equal

addige
addol

1002 Less
addil

addone
1012 Not equal

addine
addole

1102 Less or equal
addile
addoo

1112 Ordered
addio
6-6 i960® RM/RN I/O Processor Developer’s Manual

Instruction Set Reference

 Sx
Action: addo<cc>:
if((mask & AC.cc) || (mask == AC.cc))

dst = (src1 + src2)[31:0];

addi<cc>:
if((mask & AC.cc) || (mask == AC.cc))
{

{ true_result = (src1 + src2);
dst = true_result[31:0];

}
if((true_result > (2**31) - 1) || (true_result < -2**31))

Check for overflow
{ if(AC.om == 1)

AC.of = 1;
else

generate_fault(ARITHMETIC.OVERFLOW);
}

}

Faults: STANDARD Refer to Section 6.1.6, “Faults” on page 6-4.
ARITHMETIC.OVERFLOW Occurs only with addi<cc>.

Example: # Assume (AC.cc AND 0012) ≠ 0.
addig r4, r8, r10 # r10 = r8 + r4

Assume (AC.cc AND 1012) = 0.
addone r4, r8, r10 # r10 is not changed.

Opcode: addono 780H REG
addog 790H REG
addoe 7A0H REG
addoge 7B0H REG
addol 7C0H REG
addone 7D0H REG
addole 7E0H REG
addoo 7F0H REG
addino 781H REG
addig 791H REG
addie 7A1H REG
addige 7B1H REG
addil 7C1H REG
addine 7D1H REG
addile 7E1H REG
addio 7F1H REG

See Also: addc, SUB<cc>, addi, addo

Notes: This class of core instructions is not implemented on 80960Cx, Kx and
processors.
i960® RM/RN I/O Processor Developer’s Manual 6-7

Instruction Set Reference
6.2.2 addc

Mnemonic: addc Add Ordinal With Carry

Format: addc src1, src2, dst
reg/lit reg/lit reg

Description: Adds src2 and src1 values and condition code bit 1 (used here as a carry-in)
and stores the result in dst. If ordinal addition results in a carry out, condition
code bit 1 is set; otherwise, bit 1 is cleared. If integer addition results in an
overflow, condition code bit 0 is set; otherwise, bit 0 is cleared. Regardless of
addition results, condition code bit 2 is always set to 0.

addc can be used for ordinal or integer arithmetic. addc does not distinguish
between ordinal and integer source operands. Instead, the processor evaluates
the result for both data types and sets condition code bits 0 and 1 accordingly.

An integer overflow fault is never signaled with this instruction.

Action: dst = (src1 + src2 + AC.cc[1])[31:0];
AC.cc[2:0] = 0002;
if((src2[31] == src1[31]) && (src2[31] != dst[31]))

AC.cc[0] = 1; # Set overflow bit.
AC.cc[1] = (src2 + src1 + AC.cc[1])[32]; # Carry out.

Faults: STANDARD Refer to Section 6.1.6, “Faults” on page 6-4.

Example: # Example of double-precision arithmetic.
Assume 64-bit source operands
in g0,g1 and g2,g3
cmpo 1, 0 # Clears Bit 1 (carry bit) of

the AC.cc.
addc g0, g2, g0 # Add low-order 32 bits:

g0 = g2 + g0 + carry bit
addc g1, g3, g1 # Add high-order 32 bits:

g1 = g3 + g1 + carry bit
64-bit result is in g0, g1.

Opcode: addc 5B0H REG

See Also: ADD<cc>, SUB<cc>

Side Effects: Sets the condition code in the arithmetic controls.
6-8 i960® RM/RN I/O Processor Developer’s Manual

Instruction Set Reference
6.2.3 addi, addo

Mnemonic: addo Add Ordinal
addi Add Integer

Format: add* src1, src2, dst
reg/lit reg/lit reg

Description: Adds src2 and src1 values and stores the result in dst. The binary results from
these two instructions are identical. The only difference is that addi can signal
an integer overflow.

Action: addo:
dst = (src2 +src1)[31:0];

addi:
true_result = (src1 + src2);
dst = true_result[31:0];
if((true_result > (2**31) - 1) || (true_result < -2**31)) # Check for overflow
{ if(AC.om == 1)

AC.of = 1;
else

generate_fault(ARITHMETIC.OVERFLOW);
}

Faults: STANDARD Refer to Section 6.1.6, “Faults” on page 6-4.
ARITHMETIC.OVERFLOW Occurs only with addi.

Example: addi r4, g5, r9 # r9 = g5 + r4

Opcode: addo 590H REG
addi 591H REG

See Also: addc, subi, subo, subc, ADD<cc>
i960® RM/RN I/O Processor Developer’s Manual 6-9

Instruction Set Reference
6.2.4 alterbit

Mnemonic: alterbit Alter Bit

Format: alterbit bitpos, src, dst
reg/lit reg/lit reg

Description: Copies src value to dst with one bit altered. bitpos operand specifies bit to be
changed; condition code determines the value to which the bit is set. If
condition code is X1X2, bit 1 = 1, the selected bit is set; otherwise, it is
cleared. Typically this instruction is used to set the bitpos bit in the targ
register if the result of a compare instruction is the equal condition code
(0102).

Action: if((AC.cc & 0102)==0)
dst = src & ~(2**(bitpos%32));

else
dst = src | 2**(bitpos%32);

Faults: STANDARD Refer to Section 6.1.6, “Faults” on page 6-4.

Example: # Assume AC.cc = 0102.
alterbit 24, g4,g9 # g9 = g4, with bit 24 set.

Opcode: alterbit 58FH REG

See Also: chkbit, clrbit, notbit, setbit
6-10 i960® RM/RN I/O Processor Developer’s Manual

Instruction Set Reference
6.2.5 and, andnot

Mnemonic: and And
andnot And Not

Format: and src1, src2, dst
reg/lit reg/lit reg

andnot src1, src2, dst
reg/lit reg/lit reg

Description: Performs a bitwise AND (and) or AND NOT (andnot) operation on src2 and
src1 values and stores result in dst. Note in the action expressions below, src2
operand comes first, so that with andnot the expression is evaluated as:

{src2 and not (src1)}
rather than

{src1 and not (src2)}.

Action: and:
dst = src2 & src1;

andnot:
dst = src2 & ~src1;

Faults: STANDARD Refer to Section 6.1.6, “Faults” on page 6-4.

Example: and 0x7, g8, g2 # Put lower 3 bits of g8 in g2.
andnot 0x7, r12, r9 # Copy r12 to r9 with lower

three bits cleared.

Opcode: and 581H REG
andnot 582H REG

See Also: nand, nor, not, notand, notor, or, ornot, xnor, xor
i960® RM/RN I/O Processor Developer’s Manual 6-11

Instruction Set Reference

is
6.2.6 atadd

Mnemonic: atadd Atomic Add

Format: atadd addr, src, dst
reg reg/lit reg

Description: Adds src value (full word) to value in the memory location specified with
addr operand. This read-modify-write operation is performed on the actual
data in memory and never on a cached value on chip. Initial value from
memory is stored in dst.

Memory read and write are done atomically (i.e., other bus masters must be
prevented from accessing the word of memory containing the word specified
by src/dst operand until operation completes). See Section 3.5.1, “Memory
Requirements” on page 3-11 or more information on atomic accesses.

Memory location in addr is the word’s first byte (LSB) address. Address
automatically aligned to a word boundary. (Note that addr operand maps to
src1 operand of the REG format.)

Action: implicit_syncf();
tempa = addr & 0xFFFFFFFC;
temp = atomic_read(tempa);
atomic_write(tempa, temp+src);
dst = temp;

Faults: STANDARD Refer to Section 6.1.6, “Faults” on page 6-4.

Example: atadd r8, r3, r11 # r8 contains the address of
memory location.
r11 = (r8)
(r8) = r11 + r3.

Opcode: atadd 612H REG

See Also: atmod
6-12 i960® RM/RN I/O Processor Developer’s Manual

Instruction Set Reference

st be
ified

.

6.2.7 atmod

Mnemonic: atmod Atomic Modify

Format: atmod addr, mask, src/dst
reg reg/lit reg

Description: Copies the selected bits of src/dst value into memory location specified in
addr. The read-modify-write operation is performed on the actual data in
memory and never on a cached value on chip. Bits set in mask operand select
bits to be modified in memory. Initial value from memory is stored in src/dst.
See Section 3.5.1, “Memory Requirements” on page 3-11 for information on
atomic accesses.

Memory read and write are done atomically (i.e., other bus masters mu
prevented from accessing the word of memory containing the word spec
with the src/dst operand until operation completes).

Memory location in addr is the modified word’s first byte (LSB) address
Address is automatically aligned to a word boundary.

Action: implicit_syncf();
tempa = addr & 0xFFFFFFFC;
tempb = atomic_read(tempa);
temp = (tempb &~ mask) | (src_dst & mask);
atomic_write(tempa, temp);
src_dst = tempb;

Faults: STANDARD Refer to Section 6.1.6, “Faults” on page 6-4.

Example: atmod g5, g7, g10 # tempa = (g5)
temp = (tempa andnot g7) or
(g10 and g7)
(g5) = temp
g10 = tempa

Opcode: atmod 610H REG

See Also: atadd
i960® RM/RN I/O Processor Developer’s Manual 6-13

Instruction Set Reference

n’s

e
 is
o be
sing
 be
irect
6.2.8 b, bx

Mnemonic: b Branch
bx Branch Extended

Format: b targ
disp

bx targ
mem

Description: Branches to the specified target.

With the b instruction, IP specified with targ operand can be no farther than
-223 to (223- 4) bytes from current IP. When using the Intel i960 processor
assembler, targ operand must be a label which specifies target instructio
IP.

bx performs the same operation as b except the target instruction can b
farther than -223 to (223- 4) bytes from current IP. Here, the target operand
an effective address, which allows the full range of addressing modes t
used to specify target instruction’s IP. The “IP + displacement” addres
mode allows the instruction to be IP-relative. Indirect branching can
performed by placing target address in a register then using a register-ind
addressing mode.

Refer to Section 2.3, “Memory Addressing Modes” on page 2-4 for
information on this subject.

Action: b, bx:
IP[31:2] = effective_address(targ[31:2]);
IP[1:0] = 0;

Faults: STANDARD Refer to Section 6.1.6, “Faults” on page 6-4.

Example: b xyz # IP = xyz;
bx 1332 (ip) # IP = IP + 8 + 1332;
this example uses IP-relative addressing

Opcode: b 08H CTRL
bx 84H MEM

See Also: bal, balx, BRANCH<cc>, COMPARE AND BRANCH<cc>, bbc, bbs
6-14 i960® RM/RN I/O Processor Developer’s Manual

Instruction Set Reference

s its

el
et

d

ffective
ecify
 be
 in a

P.
6.2.9 bal, balx

Mnemonic: bal Branch and Link
balx Branch and Link Extended

Format: bal targ
disp

balx targ, dst
mem reg

Description: Stores address of instruction following bal or balx in a register then branches
to the instruction specified with the targ operand.

The bal and balx instructions are used to call leaf procedures (procedures that
do not call other procedures). The IP saved in the register provides a return IP
that the leaf procedure can branch to (using a b or bx instruction) to perform a
return from the procedure. Note that these instructions do not use the
processor’s call-and-return mechanism, so the calling procedure share
local-register set with the called (leaf) procedure.

With bal, address of next instruction is stored in register g14. targ operand value
can be no farther than -223 to (223- 4) bytes from current IP. When using the Int
i960 processor assembler, targ must be a label which specifies the targ
instruction’s IP.

balx performs same operation as bal except next instruction address is store
in dst (allowing the return IP to be stored in any available register). With balx,
the full address space can be accessed. Here, the target operand is an e
address, which allows full range of addressing modes to be used to sp
target IP. “IP + displacement” addressing mode allows instruction to
IP-relative. Indirect branching can be performed by placing target address
register and then using a register-indirect addressing mode.

See Section 2.3, “Memory Addressing Modes” on page 2-4 for a complete
discussion of addressing modes available with memory-type operands.

Action: bal:
g14 = IP + 4;
IP[31:2] = effective_address(targ[31:2]);
IP[1:0] = 0;

balx:
dst = IP + instruction_length;
Instruction_length = 4 or 8 depending on the addressing mode used.
IP[31:2] = effective_address(targ[31:2]); # Resume execution at new I
IP[1:0] = 0;

Faults: STANDARD Refer to Section 6.1.6, “Faults” on page 6-4.

Example: bal xyz # g14 = IP + 4
IP = xyz

balx (g2), g4 # g4 = IP + 4
IP = (g2)

Opcode: bal 0BH CTRL
balx 85H MEM

See Also: b, bx, BRANCH<cc>, COMPARE AND BRANCH<cc>, bbc, bbs
i960® RM/RN I/O Processor Developer’s Manual 6-15

Instruction Set Reference
6.2.10 bbc, bbs

Mnemonic: bbc Check Bit and Branch If Clear
bbs Check Bit and Branch If Set

Format: bb* bitpos, src, targ
reg/lit reg disp

Description: Checks bit (designated by bitpos) in src and sets AC register condition code
according to src value. The processor then performs conditional branch to
instruction specified with targ, based on condition code state.

For bbc, if selected bit in src is clear, the processor sets condition code to
0002 and branches to instruction specified by targ; otherwise, it sets condition
code to 0102 and goes to next instruction.

For bbs, if selected bit is set, the processor sets condition code to 0102 and branches
to targ; otherwise, it sets condition code to 0002 and goes to next instruction.

targ can be no farther than -212 to (212 - 4) bytes from current IP. When using
the Intel i960 processor assembler, targ must be a label which specifies target
instruction’s IP.

Action: bbs:
if((src & 2**(bitpos%32)) == 1)
{ AC.cc = 0102;

temp[31:2] = sign_extension(targ[12:2]);
IP[31:2] = IP[31:2] + temp[31:2];
IP[1:0] = 0;

}
else

AC.cc = 0002;

bbc:
if((src & 2**(bitpos%32)) == 0)
{ AC.cc = 0002;

temp[31:2] = sign_extension(targ[12:2]);
IP[31:2] = IP[31:2] + temp[31:2];
IP[1:0] = 0;

}
else

AC.cc = 0102;

Faults: STANDARD Refer to Section 6.1.6, “Faults” on page 6-4.

Example: # Assume bit 10 of r6 is clear.
bbc 10, r6, xyz # Bit 10 of r6 is checked

and found clear:
AC.cc = 000
IP = xyz;

Opcode: bbc 30H COBR
bbs 37H COBR

See Also: chkbit, COMPARE AND BRANCH<cc>, BRANCH<cc>

Side Effects: Sets the condition code in the arithmetic controls.
6-16 i960® RM/RN I/O Processor Developer’s Manual

Instruction Set Reference
6.2.11 BRANCH<cc>

Mnemonic: be Branch If Equal
bne Branch If Not Equal
bl Branch If Less
ble Branch If Less Or Equal
bg Branch If Greater
bge Branch If Greater Or Equal
bo Branch If Ordered
bno Branch If Unordered

Format: b* targ
disp

Description: Branches to instruction specified with targ operand according to AC register
condition code state.

For all branch<cc> instructions except bno, the processor branches to
instruction specified with targ, if the logical AND of condition code and mask
part of opcode is not zero. Otherwise, it goes to next instruction.

For bno, the processor branches to instruction specified with targ if the
condition code is zero. Otherwise, it goes to next instruction.

For instance, bno (unordered) can be used as a branch if false instruction
when coupled with chkbit. For bno, branch is taken if condition code equals
0002. be can be used as branch-if true instruction.

The targ operand value can be no farther than -223 to (223- 4) bytes from
current IP.

The following table shows condition code mask for each instruction. The
mask is in opcode bits 0-2.

Action: if((mask & AC.cc) || (mask == AC.cc))
{ temp[31:2] = sign_extension(targ[23:2]);

IP[31:2] = IP[31:2] + temp[31:2];
IP[1:0] = 0;

}

Faults: STANDARD Refer to Section 6.1.6, “Faults” on page 6-4.

Instruction Mask Condition

bno 0002 Unordered

bg 0012 Greater

be 0102 Equal

bge 0112 Greater or equal

bl 1002 Less

bne 1012 Not equal

ble 1102 Less or equal

bo 1112 Ordered
i960® RM/RN I/O Processor Developer’s Manual 6-17

Instruction Set Reference
Example: # Assume (AC.cc AND 1002) ≠ 0
bl xyz # IP = xyz;

Opcode: be 12H CTRL
bne 15H CTRL
bl 14H CTRL
ble 16H CTRL
bg 11H CTRL
bge 13H CTRL
bo 17H CTRL
bno 10H CTRL

See Also: b, bx, bbc, bbs, COMPARE AND BRANCH<cc>, bal, balx, BRANCH<cc>
6-18 i960® RM/RN I/O Processor Developer’s Manual

Instruction Set Reference

ors.
6.2.12 bswap

Mnemonic: bswap Byte Swap

Format: bswap src1:src, src2:dst
reg/lit reg

Description: Alters the order of bytes in a word, reversing its “endianess.”

Copies bytes 3:0 of src1 to src2 reversing order of the bytes. Byte 0 of src1
becomes byte 3 of src2, byte 1 of src1 becomes byte 2 of src2, etc.

Action: dst = (rotate_left(src 8) & 0x00FF00FF)
 +(rotate_left(src 24) & 0xFF00FF00);

Faults: STANDARD Refer to Section 6.1.6, “Faults” on page 6-4.

Example: # g8 = 0x89ABCDEF
bswap g8, g10 # Reverse byte order.

g10 now 0xEFCDAB89

Opcode: bswap 5ADH REG

See Also: scanbyte, rotate

Notes: This core instruction is not implemented on 80960Cx, Kx and Sx process
i960® RM/RN I/O Processor Developer’s Manual 6-19

Instruction Set Reference

’s

n as

th the
stack
ction

.
6.2.13 call

Mnemonic: call Call

Format: call targ
disp

Description: Calls a new procedure. targ operand specifies the IP of called procedure
first instruction. When using the Intel i960 processor assembler, targ must be
a label.

In executing this instruction, the processor performs a local call operatio
described in Section 7.1.3.1, “Call Operation” on page 7-6. As part of this
operation, the processor saves the set of local registers associated wi
calling procedure and allocates a new set of local registers and a new
frame for the called procedure. Processor then goes to the instru
specified with targ and begins execution.

targ can be no farther than -223 to (223 - 4) bytes from current IP.

Action: # Wait for any uncompleted instructions to finish.
implicit_syncf();
temp = (SP + (SALIGN*16 - 1)) & ~(SALIGN*16 - 1)

Round stack pointer to next boundary.
SALIGN=1 on 80960RM/RN.

RIP = IP;
if (register_set_available)

allocate_new_frame();
else

{ save_register_set(); # Save register set in memory at its FP
allocate_new_frame();

}
Local register references now refer to new frame.

IP[31:2] = effective_address(targ[31:2]);
IP[1:0] = 0;
PFP = FP;
FP = temp;
SP = temp + 64;

Faults: STANDARD Refer to Section 6.1.6, “Faults” on page 6-4.

Example: call xyz # IP = xyz

Opcode: call 09H CTRL

See Also: bal, calls, callx
6-20 i960® RM/RN I/O Processor Developer’s Manual

Instruction Set Reference

alled

g on
 the

isters
s to

.

6.2.14 calls

Mnemonic: calls Call System

Format: calls targ
reg/lit

Description: Calls a system procedure. The targ operand gives the number of the procedure
being called. For calls, the processor performs system call operation
described in Section 7.5, “System Calls” on page 7-14. targ provides an index
to a system procedure table entry from which the processor gets the c
procedure’s IP.

The called procedure can be a local or supervisor procedure, dependin
system procedure table entry type. If it is a supervisor procedure,
processor switches to supervisor mode (if not already in this mode).

As part of this operation, processor also allocates a new set of local reg
and a new stack frame for called procedure. If the processor switche
supervisor mode, the new stack frame is created on the supervisor stack

Action: # Wait for any uncompleted instructions to finish.
implicit_syncf();
If (targ > 259)

generate_fault(PROTECTION.LENGTH);
temp = get_sys_proc_entry(sptbase + 48 + 4*targ);
 # sptbase is address of supervisor procedure table.

 if (register_set_available)
 allocate_new_frame();

else
{ save_register_set(); # Save a frame in memory at its FP.

 allocate_new_frame();
 # Local register references now refer to new frame.

}
RIP = IP;
IP[31:2] = effective_address(temp[31:2]);
IP[1:0] = 0;
if ((temp.type == local) || (PC.em == supervisor))

{ # Local call or supervisor call from supervisor mode.
 tempa = (SP + (SALIGN*16 - 1)) & ~(SALIGN*16 - 1)

Round stack pointer to next boundary.
SALIGN=1 on 80960RM/RN.
temp.RRR = 0002;

}
else # Supervisor call from user mode.
{ tempa = SSP; # Get Supervisor Stack pointer.

temp.RRR = 0102 | PC.te;
 PC.em = supervisor;
 PC.te = temp.te;

}
PFP = FP;
PFP.rrr = temp.RRR;
i960® RM/RN I/O Processor Developer’s Manual 6-21

Instruction Set Reference

n

FP = tempa;
SP = tempa + 64;

Faults: STANDARD Refer to Section 6.1.6, “Faults” on page 6-4.
PROTECTION.LENGTH Specifies a procedure number greater tha

259.

Example: calls r12 # IP = value obtained from
procedure table for procedure
number given in r12.

calls 3 # Call procedure 3.

Opcode: calls 660H REG

See Also: bal, call, callx, ret
6-22 i960® RM/RN I/O Processor Developer’s Manual

Instruction Set Reference

 in

or the

n be

ing
P +
ive.
r and

;
6.2.15 callx

Mnemonic: callx Call Extended

Format: callx targ
mem

Description: Calls new procedure. targ specifies IP of called procedure’s first instruction.

In executing callx, the processor performs a local call as described
Section 7.1.3.1, “Call Operation” on page 7-6. As part of this operation, the
processor allocates a new set of local registers and a new stack frame f
called procedure. Processor then goes to the instruction specified withtarg
and begins execution of new procedure.

callx performs the same operation as call except the target instruction ca
farther than -223 to (223 - 4) bytes from current IP.

The targ operand is a memory type, which allows the full range of address
modes to be used to specify the IP of the target instruction. The “I
displacement” addressing mode allows the instruction to be IP-relat
Indirect calls can be performed by placing the target address in a registe
then using one of the register-indirect addressing modes.

Refer to Chapter 2, “Data Types and Memory Addressing Modes” for more
information.

Action: # Wait for any uncompleted instructions to finish;
implicit_syncf();
 temp = (SP + (SALIGN*16 - 1)) & ~(SALIGN*16 - 1)

Round stack pointer to next boundary.
SALIGN=1 on 80960RM/RN.

RIP = IP;
if (register_set_available)

allocate_new_frame();
else

{ save_register_set(); # Save register set in memory at its FP
allocate_new_frame();

}
Local register references now refer to new frame.

IP[31:2] = effective_address(targ[31:2]);
IP[1:0] = 0;
PFP = FP;
FP = temp;
SP = temp + 64;

Faults: STANDARD Refer to Section 6.1.6, “Faults” on page 6-4.

Example: callx (g5) # IP = (g5), where the address in g5
is the address of the new procedure.

Opcode: callx 86H MEM

See Also: bal, call, calls, ret
i960® RM/RN I/O Processor Developer’s Manual 6-23

Instruction Set Reference
6.2.16 chkbit

Mnemonic: chkbit Check Bit

Format: chkbit bitpos, src2
reg/lit reg/lit

Description: Checks bit in src2 designated by bitpos and sets condition code according to
value found. If bit is set, condition code is set to 0102; if bit is clear, condition
code is set to 0002.

Action: if (((src2 & 2**(bitpos % 32)) == 0)
AC.cc = 0002;

else
AC.cc = 0102;

Faults: STANDARD Refer to Section 6.1.6, “Faults” on page 6-4.

Example: chkbit 13, g8 # Checks bit 13 in g8 and sets
AC.cc according to the result.

Opcode: chkbit 5AEH REG

See Also: alterbit, clrbit, notbit, setbit, cmpi, cmpo

Side Effects: Sets the condition code in the arithmetic controls.
6-24 i960® RM/RN I/O Processor Developer’s Manual

Instruction Set Reference
6.2.17 clrbit

Mnemonic: clrbit Clear Bit

Format: clrbit bitpos, src, dst
reg/lit reg/lit reg

Description: Copies src value to dst with one bit cleared. bitpos operand specifies bit to be
cleared.

Action: dst = src & ~(2**(bitpos%32));

Faults: STANDARD Refer to Section 6.1.6, “Faults” on page 6-4.

Example: clrbit 23, g3, g6 # g6 = g3 with bit 23 cleared.

Opcode: clrbit 58CH REG

See Also: alterbit, chkbit, notbit, setbit
i960® RM/RN I/O Processor Developer’s Manual 6-25

Instruction Set Reference
6.2.18 cmpdeci, cmpdeco

Mnemonic: cmpdeci Compare and Decrement Integer
cmpdeco Compare and Decrement Ordinal

Format: cmpdec* src1, src2, dst
reg/lit reg/lit reg

Description: Compares src2 and src1 values and sets the condition code according to
comparison results. src2 is then decremented by one and result is stored in dst.
The following table shows condition code setting for the three possible results
of the comparison.

These instructions are intended for use in ending iterative loops. For
cmpdeci, integer overflow is ignored to allow looping down through the
minimum integer values.

Action: if(src1 < src2)
AC.cc = 1002;

else if(src1 == src2)
AC.cc = 0102;

else
AC.cc = 0012;

dst = src2 -1; # Overflow suppressed for cmpdeci.

Faults: STANDARD Refer to Section 6.1.6, “Faults” on page 6-4.

Example: cmpdeci 12, g7, g1 # Compares g7 with 12 and sets
AC.cc to indicate the result
g1 = g7 - 1.

Opcode: cmpdeci 5A7H REG
cmpdeco 5A6H REG

See Also: cmpinco, cmpo, cmpi, cmpinci, COMPARE AND BRANCH<cc>

Side Effects: Sets the condition code in the arithmetic controls.

Condition Code Comparison

1002 src1 < src2

0102 src1 = src2

0012 src1 > src2
6-26 i960® RM/RN I/O Processor Developer’s Manual

Instruction Set Reference
6.2.19 cmpinci, cmpinco

Mnemonic: cmpinci Compare and Increment Integer
cmpinco Compare and Increment Ordinal

Format: cmpinc* src1, src2, dst
reg/lit reg/lit reg

Description: Compares src2 and src1 values and sets the condition code according to
comparison results. src2 is then incremented by one and result is stored in dst.
The following table shows condition code settings for the three possible
comparison results.

These instructions are intended for use in ending iterative loops. For cmpinci,
integer overflow is ignored to allow looping up through the maximum integer
values.

Action: if (src1 < src2)
AC.cc = 1002;

else if (src1 == src2)
AC.cc = 0102;

else
AC.cc = 0012;

dst = src2 + 1; # Overflow suppressed for cmpinci.

Faults: STANDARD Refer to Section 6.1.6, “Faults” on page 6-4.

Example: cmpinco r8, g2, g9 # Compares the values in g2
and r8 and sets AC.cc to
indicate the result:
g9 = g2 + 1

Opcode: cmpinci 5A5H REG
cmpinco 5A4H REG

See Also: cmpdeco, cmpo, cmpi, cmpdeci, COMPARE AND BRANCH<cc>

Side Effects: Sets the condition code in the arithmetic controls.

Condition Code Comparison

1002 src1 < src2

0102 src1 = src2

0012 src1 > src2
i960® RM/RN I/O Processor Developer’s Manual 6-27

Instruction Set Reference
6.2.20 COMPARE

Mnemonic: cmpi Compare Integer
cmpib Compare Integer Byte
cmpis Compare Integer Short
cmpo Compare Ordinal
cmpob Compare Ordinal Byte
cmpos Compare Ordinal Short

Format: cmp* src1, src2
reg/lit reg/lit

Description: Compares src2 and src1 values and sets condition code according to
comparison results. The following table shows condition code settings for the
three possible comparison results.

cmpi* followed by a branch-if instruction is equivalent to a
compare-integer-and-branch instruction. The latter method of comparing and
branching produces more compact code; however, the former method can
execute byte and short compares without masking. The same is true for
cmpo* and the compare-ordinal-and-branch instructions.

Action: # For cmpo, cmpi, N = 31.
For cmpos, cmpis, N = 15.
For cmpob, cmpib, N = 7.

if (src1[N:0] < src2[N:0])
AC.cc = 1002;

else if (src1[N:0] == src2[N:0])
 AC.cc = 0102;
else if (src1[N:0] > src2[N:0])

AC.cc = 0012;

Faults: STANDARD Refer to Section 6.1.6, “Faults” on page 6-4.

Example: cmpo r9, 0x10 # Compares the value in r9 with
0x10 and sets AC.cc to indicate
the result.

bg xyz # Branches to xyz if the value of
r9 was greater than 0x10.

Opcode: cmpi 5A1H REG
cmpib 595H REG
cmpis 597H REG
cmpo 5A0H REG
cmpob 594H REG
cmpos 596H REG

Condition Code Comparison

1002 src1 < src2

0102 src1 = src2

0012 src1 > src2
6-28 i960® RM/RN I/O Processor Developer’s Manual

Instruction Set Reference
See Also: COMPARE AND BRANCH<cc>, cmpdeci, cmpdeco, cmpinci, cmpinco,
concmpi, concmpo

Side Effects: Sets the condition code in the arithmetic controls.

Notes: The core instructions cmpib, cmpis, compob and compos are not
implemented on 80960Cx, Kx and Sx processors.
i960® RM/RN I/O Processor Developer’s Manual 6-29

Instruction Set Reference

The
6.2.21 COMPARE AND BRANCH<cc>

Mnemonic: cmpibe Compare Integer and Branch If Equal
cmpibne Compare Integer and Branch If Not Equal
cmpibl Compare Integer and Branch If Less
cmpible Compare Integer and Branch If Less Or Equal
cmpibg Compare Integer and Branch If Greater
cmpibge Compare Integer and Branch If Greater Or Equal
cmpibo Compare Integer and Branch If Ordered
cmpibno Compare Integer and Branch If Not Ordered

cmpobe Compare Ordinal and Branch If Equal
cmpobne Compare Ordinal and Branch If Not Equal
cmpobl Compare Ordinal and Branch If Less
cmpoble Compare Ordinal and Branch If Less Or Equal
cmpobg Compare Ordinal and Branch If Greater
cmpobge Compare Ordinal and Branch If Greater Or Equal

Format: cmpib* src1, src2, targ
reg/lit reg disp

cmpob* src1, src2, targ
reg/lit reg disp

Description: Compares src2 and src1 values and sets AC register condition code according
to comparison results. If logical AND of condition code and mask part of
opcode is not zero, the processor branches to instruction specified with targ;
otherwise, the processor goes to next instruction.

targ can be no farther than -212 to (212 - 4) bytes from current IP. When using the Intel
i960 processor assembler, targ must be a label that specifies target instruction’s IP.

Functions these instructions perform can be duplicated with a cmpi or cmpo
followed by a branch-if instruction, as described in Section 6.2.20, “COMPARE”
on page 6-28.

The following table shows the condition-code mask for each instruction.
mask is in bits 0-2 of the opcode.

Instruction Mask Branch Condition
cmpibno 0002 No Condition

cmpibg 0012 src1 > src2

cmpibe 0102 src1 = src2

cmpibge 0112 src1 ≥ src2

cmpibl 1002 src1 < src2

cmpibne 1012 src1 ≠ src2

cmpible 1102 src1 ≤ src2

cmpibo 1112 Any Condition

cmpobg 0012 src1 > src2

cmpobe 0102 src1 = src2

cmpobge 0112 src1 ≥ src2

cmpobl 1002 src1 < src2

cmpobne 1012 src1 ≠ src2

cmpoble 1102 src1 ≤ src2
cmpibo always branches; cmpibno never branches.
6-30 i960® RM/RN I/O Processor Developer’s Manual

Instruction Set Reference
Action: if(src1 < src2)
AC.cc = 1002;

else if(src1 == src2)
AC.cc = 0102;

else
AC.cc = 0012;

if((mask && AC.cc) != 0002)
IP[31:2] = efa[31:2]; # Resume execution at the new IP.
IP[1:0] = 0;

Faults: STANDARD Refer to Section 6.1.6, “Faults” on page 6-4.

Example: # Assume g3 < g9
cmpibl g3, g9, xyz # g9 is compared with g3;

IP = xyz.
assume 19 ≥ r7
cmpobge 19, r7, xyz # 19 is compared with r7;

IP = xyz.

Opcode: cmpibe 3AH COBR
cmpibne 3DH COBR
cmpibl 3CH COBR
cmpible 3EH COBR
cmpibg 39H COBR
cmpibge 3BH COBR
cmpibo 3FH COBR
cmpibno 38H COBR
cmpobe 32H COBR
cmpobne 35H COBR
cmpobl 34H COBR
cmpoble 36H COBR
cmpobg 31H COBR
cmpobge 33H COBR

See Also: BRANCH<cc>, cmpi, cmpo, bal, balx

Side Effects: Sets the condition code in the arithmetic controls.
i960® RM/RN I/O Processor Developer’s Manual 6-31

Instruction Set Reference
6.2.22 concmpi, concmpo

Mnemonic: concmpi Conditional Compare Integer
concmpo Conditional Compare Ordinal

Format: concmp* src1, src2
reg/lit reg/lit

Description: Compares src2 and src1 values if condition code bit 2 is not set. If
comparison is performed, condition code is set according to comparison
results. Otherwise, condition codes are not altered.

These instructions are provided to facilitate bounds checking by means of two-sided
range comparisons (e.g., is A between B and C?). They are generally used after a
compare instruction to test whether a value is inclusively between two other values.

The example below illustrates this application by testing whether g3 value is between
g5 and g6 values, where g5 is assumed to be less than g6. First a comparison (cmpo)
of g3 and g6 is performed. If g3 is less than or equal to g6 (i.e., condition code is
either 0102 or 0012), a conditional comparison (concmpo) of g3 and g5 is then
performed. If g3 is greater than or equal to g5 (indicating that g3 is within the bounds
of g5 and g6), condition code is set to 0102; otherwise, it is set to 0012.

Action: if (AC.cc != 1XX2)
{ if(src1 <= src2)

AC.cc = 0102;
else

AC.cc = 0012;
}

Faults: STANDARD Refer to Section 6.1.6, “Faults” on page 6-4.

Example: cmpo g6, g3 # Compares g6 and g3
and sets AC.cc.

concmpo g5, g3 # If AC.cc < 1002 (g6 Š g3)
g5 is compared with g3.

At this point, depending on the register ordering, the condition code is one of
those listed on Table 6-5.

Opcode: concmpi 5A3H REG
concmpo 5A2H REG

See Also: cmpo, cmpi, cmpdeci, cmpdeco, cmpinci, cmpinco, COMPARE AND
BRANCH<cc>

Side Effects: Sets the condition code in the arithmetic controls.

Table 6-5. concmpo Example: Register Ordering and CC

Order CC

g5 < g6 < g3 1002

g5 < g6 = g3 0102

g5 < g3 < g6 0102

g5 = g3 < g6 0102

g3 < g5 < g6 0012
6-32 i960® RM/RN I/O Processor Developer’s Manual

Instruction Set Reference
6.2.23 dcctl

Mnemonic: dcctl Data-cache Control

Format: src1, src2, src/dst
reg/lit reg/lit reg

Description: Performs management and control of the data cache including disabling,
enabling, invalidating, ensuring coherency, getting status, and storing cache
contents to memory. Operations are indicated by the value of src1. src2 and
src/dst are also used by some operations. When needed by the operation, the
processor orders the effects of the operation with previous and subsequent
operations to ensure correct behavior.

1. Invalidates data cache on 80960RM/RN.

Table 6-6. dcctl Operand Fields

Function src1 src2 src/dst

Disable D-cache 0 NA NA

Enable D-cache 1 NA NA

Global invalidate
D-cache 2 NA NA

Ensure cache
coherency1 3 NA NA

Get D-cache status 4 NA
src: NA
dst: Receives
D-cache status (Figure 6-1).

Reserved 5 NA NA

Store D-cache to
memory 6

Destination
address for
cache sets

src: D-cache set #’s to be stored
(Figure 6-1).

Reserved 7 NA NA

Quick invalidate 8 1 NA

Reserved 9 NA NA
i960® RM/RN I/O Processor Developer’s Manual 6-33

Instruction Set Reference
Figure 6-1. dcctl src1 and src/dst Formats

Table 6-7. dcctl Status Values and D-Cache Parameters

Value Value on 80960RM/RN

bytes per atom 4

atoms per line 4

number of sets 256 (full)

number of ways 1 (Direct)

cache size 4-Kbytes (full)

Status[0] (enable / disable) 0 or 1

Status[1:3] (reserved) 0

Status[7:4] (log2(bytes per atom)) 2

Status[11:8] (log2(atoms per line)) 2

Status[15:12] (log2(number of sets)) 8 (full)

Status[27:16] (number of ways - 1) 0

8 7 031
src1 Format

28 27 16 15 12 8 4 031

src/dst Format for Data Cache Status

3711

Enabled = 1
Disabled = 0

of Ways-1

031

src/dst Format for Store Data Cache Sets to Memory

16 15

Starting Set #Ending Set #

Function Type

log2 (# of Sets)
log2 (Atoms/Line)

log2 (Bytes/Atom)
6-34 i960® RM/RN I/O Processor Developer’s Manual

Instruction Set Reference
Figure 6-2. Store Data Cache to Memory Output Format

Figure 6-3. D-Cache Tag and Valid Bit Formats

 0 Destination
Address (DA)

Tag (Starting set) DA + 4H

Valid Bits (Starting set) DA + 8H

Word 0 DA + CH

Word 1 DA + 10H

Word 2 DA + 14H

Word 3 DA + 18H

 0 DA + 1CH

Tag (Starting set + 1) DA + 20H

Valid Bits (Starting set + 1) DA + 24H

.

W
ay

 0
W

ay
 0

031

Actual Address Bits 31:11

80960RM/RN Cache Tag Format (4 Kbyte Cache)

21 20

031

Valid Bits Values

5

Valid Bit for Word 2 of current Set and Way

Valid Bit for Word 3 of current Set and Way

Valid Bit for Word 1 of current Set and Way

Tag Valid Bit for current Set and Way

Valid Bit for Word 0 of current Set and Way
i960® RM/RN I/O Processor Developer’s Manual 6-35

Instruction Set Reference
Action: if (PC.em != supervisor)
generate_fault(TYPE.MISMATCH);

order_wrt(previous_operations);
switch (src1[7:0]) {

case 0: # Disable data cache.
disable_Dcache();
break;

case 1: # Enable data cache.
enable_Dcache();
break;

case 2: # Global invalidate data cache.
invalidate_Dcache();
break;

case 3: # Ensure coherency of data cache with memory.
Causes data cache to be invalidated on this processor.
ensure_Dcache_coherency();
break;

case 4: # Get data cache status into src_dst.
if (Dcache_enabled) src_dst[0] = 1;
else src_dst[0] = 0;
Atom is 4 bytes.
src_dst[7:4] = log2(bytes per atom);
4 atoms per line.
src_dst[11:8] = log2(atoms per line);
src_dst[15:12] = log2(number of sets);
src_dst[27:16] = number of ways-1; # in lines per set
cache size = ([27:16]+1) << ([7:4] + [11:8] + [15:12]).
break;
6-36 i960® RM/RN I/O Processor Developer’s Manual

Instruction Set Reference
case 6: # Store data cache sets to memory pointed to by src2.
start = src_dst[15:0] # Starting set number.
end = src_dst[31:16] # Ending set number.

(zero-origin).
if (end >= Dcache_max_sets) end = Dcache_max_sets - 1;
if (start > end) generate_fault

(OPERATION.INVALID_OPERAND);
memadr = src2; # Must be word-aligned.
if (0x3 & memadr! = 0)
generate_fault(OPERATION.INVALID_OPERAND)
for (set = start; set <= end; set++){

Set_Data is described at end of this code flow.
 memory[memadr] = Set_Data[set];
 memadr += 4;
 for (way = 0; way < numb_ways; way++)

{memory[memadr] = tags[set][way];
 memadr += 4;
 memory[memadr] = valid_bits[set][way];
 memadr += 4;
for (word = 0; word < words_in_line; word++)

{memory[memadr] =
 Dcache_line[set][way][word];

 memadr += 4;
}
}

}
break;

default: # Reserved.
generate_fault(OPERATION.INVALID_OPERAND);
break;

}
order_wrt(subsequent_operations);

Faults: STANDARD Refer to Section 6.1.6, “Faults” on page 6-4.
TYPE.MISMATCH Attempt to execute instruction while not in

supervisor mode.
OPERATION.INVALID_OPERAND

Example: # g0 = 6, g1 = 0x10000000,
g2 = 0x001F0001

dcctl g0,g1,g2 # Store the status of D-cache
sets 1-0x1F to memory starting
at 0x10000000.

Opcode: dcctl 65CH REG
i960® RM/RN I/O Processor Developer’s Manual 6-37

Instruction Set Reference
See Also: sysctl

Notes: DCCTL function 6 stores data-cache sets to a target range in external
memory. For any memory location that is cached and also within the target
range for function 6, the corresponding word-valid bit is cleared after function
6 completes to ensure data-cache coherency. Thus, dcctl function 6 can alter
the state of the cache after it completes, but only the word-valid bits. In all
cases, even when the cache sets to store to external memory overlap the cache
sets that map the target range in external memory, DCCTL function 6 always
returns the state of the cache as it existed when the DCCTL was issued.

This instruction is implemented on the 80960RM/RN, 80960RP/RD,
80960Hx and 80960Jx processor families only, and may or may not be
implemented on future i960 processors.
6-38 i960® RM/RN I/O Processor Developer’s Manual

Instruction Set Reference

1.
in
6.2.24 divi, divo

Mnemonic: divi Divide Integer
divo Divide Ordinal

Format: div* src1, src2, dst
reg/lit reg/lit reg

Description: Divides src2 value by src1 value and stores the result in dst. Remainder is
discarded.

For divi, an integer-overflow fault can be signaled.

Action: divo:
if (src1 == 0)
{ dst = undefined_value;

generate_fault (ARITHMETIC.ZERO_DIVIDE);
else

dst = src2/src1;

divi:
if (src1 == 0)
{ dst = undefined_value;

generate_fault (ARITHMETIC.ZERO_DIVIDE);}
else if ((src2 == -2**31) && (src1 == -1))

{ dst = -2**31

if (AC.om == 1)
AC.of = 1;

else
generate_fault (ARITHMETIC.OVERFLOW);

}
else

dst = src2 / src1;

Faults: STANDARD Refer to Section 6.1.6, “Faults” on page 6-4.

ARITHMETIC.ZERO_DIVIDE The src1 operand is 0.

ARITHMETIC.OVERFLOW Result too large for destination register (divi
only). If overflow occurs and AC.om=1,
fault is suppressed and AC.of is set to
Result’s least significant 32 bits are stored
dst.

Example: divo r3, r8, r13 # r13 = r8/r3

Opcode: divi 74BH REG
divo 70BH REG

See Also: ediv, mulo, muli, emul
i960® RM/RN I/O Processor Developer’s Manual 6-39

Instruction Set Reference

ient.

.,

no
6.2.25 ediv

Mnemonic: ediv Extended Divide

Format: ediv src1, src2, dst
reg/lit reg/lit reg

Description: Divides src2 by src1 and stores result in dst. The src2 value is a long ordinal
(64 bits) contained in two adjacent registers. src2 specifies the lower
numbered register which contains operand’s least significant bits. src2 must
be an even numbered register (i.e., g0, g2, ... or r4, r6, r8...). src1 value is a
normal ordinal (i.e., 32 bits).

The result consists of a one-word remainder and a one-word quot
Remainder is stored in the register designated by dst; quotient is stored in the
next highest numbered register. dst must be an even numbered register (i.e
g0, g2, ... r4, r6, r8, ...).

This instruction performs ordinal arithmetic.

If this operation overflows (quotient or remainder do not fit in 32 bits),
fault is raised and the result is undefined.

Action: if((reg_number(src2)%2 != 0) || (reg_number(dst)%2 != 0))
{ dst[0] = undefined_value;

dst[1] = undefined_value;
generate_fault (OPERATION.INVALID_OPERAND);

}
else if(src1 == 0)
{ dst[0] = undefined_value;

dst[1] = undefined_value;
generate_fault(ARITHMETIC.DIVIDE_ZERO);

}
else # Quotient
{ dst[1] = ((src2 + reg_value(src2[1]) * 2**32) / src1)[31:0];

#Remainder
dst[0] = (src2 + reg_value(src2[1]) * 2**32

- ((src2 + reg_value(src2[1]) * 2**32 / src1) * src1);
}

Faults: STANDARD Refer to Section 6.1.6, “Faults” on page 6-4.
ARITHMETIC.ZERO_DIVIDE The src1 operand is 0.

Example: ediv g3, g4, g10 # g10 = remainder of g4,g5/g3
g11 = quotient of g4,g5/g3

Opcode: ediv 671H REG

See Also: emul, divi, divo
6-40 i960® RM/RN I/O Processor Developer’s Manual

Instruction Set Reference
6.2.26 emul

Mnemonic: emul Extended Multiply

Format: emul src1, src2, dst
reg/lit reg/lit reg

Description: Multiplies src2 by src1 and stores the result in dst. Result is a long ordinal (64
bits) stored in two adjacent registers. dst specifies lower numbered register,
which receives the result’s least significant bits. dst must be an even
numbered register (i.e., g0, g2, ... r4, r6, r8, ...).

This instruction performs ordinal arithmetic.

Action: if(reg_number(dst)%2 != 0)
{ dst[0] = undefined_value;

dst[1] = undefined_value;
generate_fault(OPERATION.INVALID_OPERAND);

}
else
{ dst[0] = (src1 * src2)[31:0];

dst[1] = (src1 * src2)[63:32];
}

Faults: STANDARD Refer to Section 6.1.6, “Faults” on page 6-4.

Example: emul r4, r5, g2 # g2,g3 = r4 * r5.

Opcode: emul 670H REG

See Also: ediv, muli, mulo
i960® RM/RN I/O Processor Developer’s Manual 6-41

Instruction Set Reference

nd’s
 r4,

cify

ors.
6.2.27 eshro

Mnemonic: eshro Extended Shift Right Ordinal

Format: eshro src1, src2, dst
reg/lit reg/lit reg

Description: Shifts src2 right by (src1 mod 32) places and stores the result in dst. Bits
shifted beyond the least-significant bit are discarded.

src2 value is a long ordinal (i.e., 64 bits) contained in two adjacent registers.
src2 operand specifies the lower numbered register, which contains opera
least significant bits. src2 operand must be an even numbered register (i.e.,
r6, r8, ... or g0, g2).

src1 operand is a single 32-bit register or literal where the lower 5 bits spe
the number of places that the src2 operand is to be shifted.

The least significant 32 bits of the shift operation result are stored in dst.

Action: if(reg_number(src2)%2 != 0)
{ dst[0] = undefined_value;

dst[1] = undefined_value;
generate_fault(OPERATION.INVALID_OPERAND);

}
else

dst = shift_right((src2 + reg_value(src2[1]) * 2**32),(src1%32))[31:0];

Faults: STANDARD Refer to Section 6.1.6, “Faults” on page 6-4.

Example: eshro g3, g4, g11 # g11 = g4,5 shifted right by
(g3 MOD 32).

Opcode: eshro 5D8H REG

See Also: SHIFT, extract

Notes: This core instruction is not implemented on the 80960Kx and Sx process
6-42 i960® RM/RN I/O Processor Developer’s Manual

Instruction Set Reference
6.2.28 extract

Mnemonic: extract Extract

Format: extract bitpos len src/dst
reg/lit reg/lit reg

Description: Shifts a specified bit field in src/dst right and zero fills bits to left of shifted bit
field. bitpos value specifies the least significant bit of the bit field to be
shifted; len value specifies bit field length.

Action: src_dst = (src_dst >> min(bitpos, 32))
& ~ (0xFFFFFFFF << len);

Faults: STANDARD Refer to Section 6.1.6, “Faults” on page 6-4.

Example: extract 5, 12, g4 # g4 = g4 with bits 5 through
16 shifted right.

Opcode: extract 651H REG

See Also: modify
i960® RM/RN I/O Processor Developer’s Manual 6-43

Instruction Set Reference

g
tions

The
6.2.29 FAULT<cc>

Mnemonic: faulte Fault If Equal
faultne Fault If Not Equal
faultl Fault If Less
faultle Fault If Less Or Equal
faultg Fault If Greater
faultge Fault If Greater Or Equal
faulto Fault If Ordered
faultno Fault If Not Ordered

Format: fault*

Description: Raises a constraint-range fault if the logical AND of the condition code and
opcode’s mask part is not zero. For faultno (unordered), fault is raised if
condition code is equal to 0002.

faulto and faultno are provided for use by implementations with a floatin
point coprocessor. They are used for compare and branch (or fault) opera
involving real numbers.

The following table shows the condition-code mask for each instruction.
mask is opcode bits 0-2.

Action: For all except faultno:
if(mask && AC.cc != 0002)

generate_fault(CONSTRAINT.RANGE);

faultno:
if(AC.cc == 0002)

generate_fault(CONSTRAINT.RANGE);

Faults: STANDARD Refer to Section 6.1.6, “Faults” on page 6-4.
CONSTRAINT.RANGE If condition being tested is true.

Example: # Assume (AC.cc AND 1102)≠ 0002
faultle # Generate CONSTRAINT_RANGE fault

Instruction Mask Condition

faultno 0002 Unordered

faultg 0012 Greater

faulte 0102 Equal

faultge 0112 Greater or equal

faultl 1002 Less

faultne 1012 Not equal

faultle 1102 Less or equal

faulto 1112 Ordered
6-44 i960® RM/RN I/O Processor Developer’s Manual

Instruction Set Reference
Opcode: faulte 1AH CTRL
faultne 1DH CTRL
faultl 1CH CTRL
faultle 1EH CTRL
faultg 19H CTRL
faultge 1BH CTRL
faulto 1FH CTRL
faultno 18H CTRL

See Also: BRANCH<cc>, TEST<cc>
i960® RM/RN I/O Processor Developer’s Manual 6-45

Instruction Set Reference

e, a
eturn,
 at a
mes
to

r

rupt
.
rupt
s

o its
t they
ister
6.2.30 flushreg

Mnemonic: flushreg Flush Local Registers

Format: flushreg

Description: Copies the contents of every cached register set, except the current set, to its
associated stack frame in memory. The entire register cache is then marked as
purged (or invalid). On a return to a stack frame for which the local registers
are not cached, the processor reloads the locals from memory.

flushreg is provided to allow a debugger or application program to
circumvent the processor’s normal call/return mechanism. For exampl
debugger may need to go back several frames in the stack on the next r
rather than using the normal return mechanism that returns one frame
time. Since the local registers of an unknown number of previous stack fra
may be cached, a flushreg must be executed prior to modifying the PFP
return to a frame other than the one directly below the current frame.

To reduce interrupt latency, flushreg is abortable. If an interrupt of highe
priority than the current process is detected while flushreg is executing,
flushreg flushes at least one frame and aborts. After executing the inter
handler, the processor returns to the flushreg instruction and re-executes it
flushreg does not reflush any frames that were flushed before the inter
occurred. flushreg is not aborted by high priority interrupts if tracing i
enabled in the PC or if any faults are pending at the time of the interrupt.

Action: Each local cached register set except the current one is flushed t
associated stack frame in memory and marked as purged, meaning tha
are reloaded from memory if and when they become the current local reg
set.

Faults: STANDARD Refer to Section 6.1.6, “Faults” on page 6-4.

Example: flushreg

Opcode: flushreg 66DH REG
6-46 i960® RM/RN I/O Processor Developer’s Manual

Instruction Set Reference

the
6.2.31 fmark

Mnemonic: fmark Force Mark

Format: fmark

Description: Generates a mark trace event. Causes a mark trace event to be generated,
regardless of mark trace mode flag setting, providing the trace enable bit, bit 0
in the Process Controls, is set.

For more information on trace fault generation, refer to Chapter 10, “Tracing
and Debugging”.

Action: A mark trace event is generated, independent of the setting of
mark-trace-mode flag.

Faults: STANDARD Refer to Section 6.1.6, “Faults” on page 6-4.
TRACE.MARK A TRACE.MARK fault is generated if

PC.te=1.

Example: # Assume PC.te = 1
fmark
Mark trace event is generated at this point in the
instruction stream.

Opcode: fmark 66CH REG

See Also: mark
i960® RM/RN I/O Processor Developer’s Manual 6-47

Instruction Set Reference

 on
6.2.32 halt

Mnemonic: halt Halt CPU

Format: halt src1
reg/lit

Description: Causes the i960 core processor to enter HALT mode. Entry into Halt mode
allows the interrupt enable state to be conditionally changed based on the
value of src1.

The processor exits Halt mode on a hardware reset or upon receipt of an
interrupt that should be delivered based on the current process priority. After
executing the interrupt that forced the processor out of Halt mode, execution
resumes at the instruction immediately after the halt instruction. The
processor must be in supervisor mode to use this instruction.

Action: implicit_syncf;
if (PC.em != supervisor)
 generate_fault(TYPE.MISMATCH);
switch(src1) {

case 0: # Disable interrupts. set ICON.gie.
global_interrupt_enable = true; break;

case 1: # Enable interrupts. clear ICON.gie.
 global_interrupt_enable = false; break;

case 2: # Use the current interrupt enable state.
break;

default:
generate_fault(OPERATION.INVALID_OPERAND);
break;

}

ensure_bus_is_quiescient;
enter_HALT_mode;

Faults: STANDARD Refer to Section 6.1.6, “Faults” on page 6-4.
TYPE.MISMATCH Attempt to execute instruction while not in

supervisor mode.

Example: # ICON.gie = 1, g0 = 1, Interrupts disabled.
halt g0 # Enable interrupts and halt.

Opcode: halt 65DH REG

Notes: This instruction is implemented on the 80960RM/RN 80960RP/RD, and
80960Jx processor families only, and may or may not be implemented
future i960 processors.

src1 Operation

0 Disable interrupts and halt

1 Enable interrupts and halt

2 Use current interrupt enable state and halt
6-48 i960® RM/RN I/O Processor Developer’s Manual

Instruction Set Reference
6.2.33 icctl

Mnemonic: icctl Instruction-cache Control

Format: icctl src1, src2, src/dst
reg/lit reg/lit reg

Description: Performs management and control of the instruction cache including
disabling, enabling, invalidating, loading and locking, getting status, and
storing cache sets to memory. Operations are indicated by the value of src1.
Some operations also use src2 and src/dst. When needed by the operation, the
processor orders the effects of the operation with previous and subsequent
operations to ensure correct behavior. For specific function setup, see the
following tables and diagrams:

Table 6-8. icctl Operand Fields

Function src1 src2 src/dst

Disable I-cache 0 NA NA

Enable I-cache 1 NA NA

Invalidate I-cache 2 NA NA

Load and lock
I-cache 3

src: Starting
address of code to
lock.

Number of blocks to lock.

Get I-cache status 4 NA dst: Receives status
(Figure 6-4).

Get I-cache locking
status 5 NA dst: Receives status

(Figure 6-4)

Store I-cache sets
to memory 6

Destination
address for cache
sets

src: I-cache set #’s to be stored
(Figure 6-4).
i960® RM/RN I/O Processor Developer’s Manual 6-49

Instruction Set Reference
Figure 6-4. icctl src1 and src/dst Formats

8 7 031

Function Type

src1 Format

28 27 16 15 12 8 4 031

src/dst Format for I-cache Status

3711

Enabled = 1
Disabled = 0

log2 (# of Sets)

of Ways-1

8 7 031

src/dst Format for I-cache Locking Status

24 23

of Blocks that Lock Block Size in Words

031

src/dst Format for Store I-cache Sets to Memory

16 15

Starting Set #Ending Set #

of Blocks that are Locked

Reserved
(Initialize to 0)

log2 (Atoms/Line)
log2 (Bytes/Atom)
6-50 i960® RM/RN I/O Processor Developer’s Manual

Instruction Set Reference
Table 6-9. icctl Status Values and I-Cache Parameters

Value Value on i960RP CPU

bytes per atom 4

atoms per line 4

number of sets 512

number of ways 2

cache size 16-Kbytes

Status[0] (enable / disable) 0 or 1

Status[1:3] (reserved) 0

Status[7:4] (log2(bytes per atom)) 2

Status[11:8] (log2(atoms per line)) 2

Status[15:12] (log2(number of sets)) 9

Status[27:16] (number of ways - 1) 1

Lock Status[7:0] (number of blocks that lock) 1

Lock Status[23:8] (block size in words) 2048

Lock Status[31:24] (number of blocks that are locked) 0 or 1

Figure 6-5. Store Instruction Cache to Memory Output Format

 Set_Data [Starting Set] Destination
Address (DA)

Tag (Starting set) DA + 4H

Valid Bits (Starting set) DA + 8H

Word 0 DA + CH

Word 1 DA + 10H

Word 2 DA + 14H

Word 3 DA + 18H

Tag (Starting set) DA + 1CH

Valid Bits (Starting set) DA + 20H

Word 0 DA + 24H

Word 1 DA + 28H

Word 2 DA + 2CH

Word 3 DA + 30H

Set_Data [Starting Set + 1] DA + 34H

Tag (Starting set + 1) DA + 38H

Valid Bits (Starting set + 1) DA + 3CH

.

W
ay

 0
W

ay
 1

W
ay

 0
i960® RM/RN I/O Processor Developer’s Manual 6-51

Instruction Set Reference
Figure 6-6. I-Cache Set Data, Tag and Valid Bit Formats

0 = Way 0 is least recently used

031

Actual Address Bits 31:11

80960RM/RN Cache Tag Format (16 Kbyte Cache)

031

Set Data I-Cache Values

21 20

031

Valid Bits Values

5

I-Cache Set Data Value

Valid Bit for Word 2 of current Set and Way

Valid Bit for Word 3 of current Set and Way

Valid Bit for Word 1of current Set and Way

Tag Valid bit for current Set and Way

Valid Bit for Word 0 of current Set and Way

1 = Way 1 is least recently used
6-52 i960® RM/RN I/O Processor Developer’s Manual

Instruction Set Reference
Action: if (PC.em != supervisor)
generate_fault(TYPE.MISMATCH);

switch (src1[7:0]) {
case 0: # Disable instruction cache.

disable_instruction_cache();
break;

case 1: # Enable instruction cache.
enable_instruction_cache();
break;

case 2: # Globally invalidate instruction cache.
Includes locked lines also.
invalidate_instruction_cache();
unlock_icache();
break;

case 3: # Load & Lock code into Instruction-Cache
src_dst has number of contiguous blocks to lock.
src2 has starting address of code to lock.
On the i960 RP, src2 is aligned to a quad word boundary

aligned_addr = src2 & 0xFFFFFFF0;
invalidate(I-cache); unlock(I-cache);
for (j = 0; j < src_dst; j++)

{ way = way_associated_with_block(j);
start = src2 + j*block_size;
end = start + block_size;
for (i = start; i < end; i=i+4)

{ set = set_associated_with(i);
word = word_associated_with(i);
Icache_line[set][way][word] =

 memory[i];
update_tag_n_valid_bits(set,way,word)

lock_icache(set,way,word);
} } break;

case 4: # Get instruction cache status into src_dst.
if (Icache_enabled) src_dst[0] = 1;

else src_dst[0] = 0;
Atom is 4 bytes.
 src_dst[7:4] = log2(bytes per atom);
4 atoms per line.
 src_dst[11:8] = log2(atoms per line);
src_dst[15:12] = log2(number of sets);
src_dst[27:16] = number of ways-1; #in lines per set
cache size = ([27:16]+1) << ([7:4] + [11:8] + [15:12])
break;

case 5: # Get instruction cache locking status into dst.
src_dst[7:0] = number_of_blocks_that_lock;
src_dst[23:8] = block_size_in_words;
src_dst[31:24] = number_of_blocks_that_are_locked;
break;

case 6: # Store instr cache sets to memory pointed to by src2.
i960® RM/RN I/O Processor Developer’s Manual 6-53

Instruction Set Reference

t be
start = src_dst[15:0] # Starting set number
end = src_dst[31:16] # Ending set number

(zero-origin).
if (end >= Icache_max_sets)

end = Icache_max_sets - 1;
if (start > end)

generate_fault(OPERATION.INVALID_OPERAND);
memadr = src2; # Must be word-aligned.
if(0x3 & memadr != 0)

generate_fault(OPERATION.INVALID_OPERAND);
for (set = start; set <= end; set++){

 # Set_Data is described at end of this code flow.
 memory[memadr] = Set_Data[set];
 memadr += 4;
 for (way = 0; way < numb_ways; way++)

{memory[memadr] = tags[set][way];
 memadr += 4;
 memory[memadr] = valid_bits[set][way];
 memadr += 4;
 for (word = 0; word < words_in_line;

 word++)
 {memory[memadr] =

 Icache_line[set][way][word];
 memadr += 4;
 }

} } break;

default: # Reserved.
generate_fault(OPERATION.INVALID_OPERAND);
break;}

Faults: STANDARD Refer to Section 6.1.6, “Faults” on page 6-4.
TYPE.MISMATCH Attempt to execute instruction while not in

supervisor mode.

Example: # g0 = 3, g1=0x10000000, g2=1
icctl g0,g1,g2 # Load and lock 1 block of cache

(one way) with
location of code at starting
0x10000000.

Opcode: icctl 65BH REG

See Also: sysctl

Notes: This instruction is implemented on the 80960RM/RN, 80960RP/RD,
80960Hx and 80960Jx processor families only, and may or may no
implemented on future i960 processors.
6-54 i960® RM/RN I/O Processor Developer’s Manual

Instruction Set Reference

 and
uture
6.2.34 intctl

Mnemonic: intctl Global Enable and Disable of Interrupts

Format: intctl src1 dst
reg/lit reg

Description: Globally enables, disables or returns the current status of interrupts depending on
the value of src1. Returns the previous interrupt enable state (1 for enabled or 0
for disabled) in dst. When the state of the global interrupt enable is changed, the
processor ensures that the new state is in full effect before the instruction
completes. (This instruction is implemented by manipulating ICON.gie.)

Action: if (PC.em != supervisor)
generate_fault(TYPE.MISMATCH);

old_interrupt_enable = global_interrupt_enable;
switch(src1) {

case 0: # Disable. Set ICON.gie to one.
globally_disable_interrupts;
global_interrupt_enable = false;
order_wrt(subsequent_instructions);
break;

case 1: # Enable. Clear ICON.gie to zero.
globally_enable_interrupts;
global_interrupt_enable = true;
order_wrt(subsequent_instructions);
break;

 case 2: # Return status. Return ICON.gie
break;

default:
generate_fault(OPERATION.INVALID_OPERAND);
break;

}
if(old_interrupt_enable)

dst = 1;
else

dst = 0;

Faults: STANDARD Refer to Section 6.1.6, “Faults” on page 6-4.

TYPE.MISMATCH Attempt to execute instruction while not in
supervisor mode.

Example: # ICON.gie = 0, interrupts enabled
intctl 0, g4 # Disable interrupts (ICON.gie = 1)

g4 = 1

Opcode: intctl 658H REG

See Also: intdis, inten

Notes: This instruction is implemented on the 80960RM/RN, 80960RP/RD, 80960Hx
80960Jx processor families only, and may or may not be implemented on f
i960 processors.

src1 Value Operation

0 Disables interrupts

1 Enables interrupts

2 Returns current interrupt enable status
i960® RM/RN I/O Processor Developer’s Manual 6-55

Instruction Set Reference

D,
t be
6.2.35 intdis

Mnemonic: intdis Global Interrupt Disable

Format: intdis

Description: Globally disables interrupts and ensures that the change takes effect before
the instruction completes. This operation is implemented by setting ICON.gie
to one.

Action: if (PC.em != supervisor)
generate_fault(TYPE.MISMATCH);

Implemented by setting ICON.gie to one.
globally_disable_interrupts;
interrupt_enable = false;
order_wrt(subsequent_instructions);

Faults: STANDARD Refer to Section 6.1.6, “Faults” on page 6-4.
TYPE.MISMATCH Attempt to execute instruction while not in

supervisor mode.

Example: # ICON.gie = 0, interrupts enabled
intdis # Disable interrupts.

ICON.gie = 1

Opcode: intdis 5B4H REG

See Also: intctl, inten

Notes: This instruction is implemented on the 80960RM/RN, 80960RP/R
80960Hx and 80960Jx processor families only, and may or may no
implemented on future i960 processors.
6-56 i960® RM/RN I/O Processor Developer’s Manual

Instruction Set Reference

t be
6.2.36 inten

Mnemonic: inten global interrupt enable

Format: inten

Description: Globally enables interrupts and ensures that the change takes effect before the
instruction completes. This operation is implemented by clearing ICON.gie to
zero.

Action: if (PC.em != supervisor)
generate_fault(TYPE.MISMATCH);

Implemented by clearing ICON.gie to zero.
globally_enable_interrupts;
interrupt_enable = true;
order_wrt(subsequent_instructions);

Faults: STANDARD Refer to Section 6.1.6, “Faults” on page 6-4.
TYPE.MISMATCH Attempt to execute instruction while not in

supervisor mode.

Example: # ICON.gie = 1, interrupts disabled.
inten # Enable interrupts.

ICON.gie = 0

Opcode: inten 5B5H REG

See Also: intctl, intdis

Notes: This instruction is implemented on the 80960RM/RN, 80960RP/RD,
80960Hx and 80960Jx processor families only, and may or may no
implemented on future i960 processors.
i960® RM/RN I/O Processor Developer’s Manual 6-57

Instruction Set Reference

sive

ads

m

g4,
d on
6.2.37 LOAD

Mnemonic: ld Load
ldob Load Ordinal Byte
ldos Load Ordinal Short
ldib Load Integer Byte
ldis Load Integer Short
ldl Load Long
ldt Load Triple
ldq Load Quad

Format: ld* src, dst
mem reg

Description: Copies byte or byte string from memory into a register or group of successive
registers.

The src operand specifies the address of first byte to be loaded. The full range
of addressing modes may be used in specifying src. Refer to Chapter 2, “Data
Types and Memory Addressing Modes” for more information.

dst specifies a register or the first (lowest numbered) register of succes
registers.

ldob and ldib load a byte and ldos and ldis load a half word and convert it to
a full 32-bit word. Data being loaded is sign-extended during integer lo
and zero-extended during ordinal loads.

ld, ldl, ldt and ldq instructions copy 4, 8, 12 and 16 bytes, respectively, fro
memory into successive registers.

For ldl, dst must specify an even numbered register (i.e., g0, g2...). For ldt and
ldq, dst must specify a register number that is a multiple of four (i.e., g0,
g8, g12, r4, r8, r12). Results are unpredictable if registers are not aligne
the required boundary or if data extends beyond register g15 or r15 for ldl, ldt
or ldq.

Action: ld:
dst = read_memory(effective_address)[31:0];
if((effective_address[1:0] != 002) && unaligned _fault_enabled)

generate_fault(OPERATION.UNALIGNED);

ldob:
dst[7:0] = read_memory(effective_address)[7:0];
dst[31:8] = 0x000000;

ldib:
dst[7:0] = read_memory(effective_address)[7:0];
if(dst[7] == 0)

dst[31:8] = 0x000000;
else

dst[31:8] = 0xFFFFFF;

ldos:
6-58 i960® RM/RN I/O Processor Developer’s Manual

Instruction Set Reference
dst = read_memory(effective_address)[15:0];
Order depends on endianism.

dst[31:16] = 0x0000;
if((effective_address[0] != 02) && unaligned_fault_enabled)

generate_fault(OPERATION.UNALIGNED);

ldis:
dst[15:0] = read_memory(effective_address)[15:0];

Order depends on endianism.
if(dst[15] == 02)

dst[31:16] = 0x0000;
else

dst[31:16] = 0xFFFF;
if((effective_address[0] != 02) && unaligned_fault_enabled)

generate_fault(OPERATION.UNALIGNED);

ldl:
if((reg_number(dst) % 2) != 0)

generate_fault(OPERATION.INVALID_OPERAND);
dst not modified.

else
{ dst = read_memory(effective_address)[31:0];

dst_+_1 = read_memory(effective_address_+_4)[31:0];
if((effective_address[2:0] != 0002) && unaligned_fault_enabled)

generate_fault(OPERATION.UNALIGNED);
}

ldt:
if((reg_number(dst) % 4) != 0)

generate_fault(OPERATION.INVALID_OPERAND);
dst not modified.

else
{ dst = read_memory(effective_adddress)[31:0];

dst_+_1 = read_memory(effective_adddress_+_4)[31:0];
dst_+_2 = read_memory(effective_adddress_+_8)[31:0];
if((effective_address[3:0] != 00002) && unaligned_fault_enabled)

generate_fault(OPERATION.UNALIGNED);
}

ldq:
if((reg_number(dst) % 4) != 0)

generate_fault(OPERATION.INVALID_OPERAND);
dst not modified.

else
{ dst = read_memory(effective_adddress)[31:0];

Order depends on endianism.
dst_+_1 = read_memory(effective_adddress_+_4)[31:0];
dst_+_2 = read_memory(effective_adddress_+_8)[31:0];
dst_+_3 = read_memory(effective_adddress_+_12)[31:0];
if((effective_address[3:0] != 00002) && unaligned_fault_enabled)
i960® RM/RN I/O Processor Developer’s Manual 6-59

Instruction Set Reference
generate_fault(OPERATION.UNALIGNED);
}

Faults: STANDARD Refer to Section 6.1.6, “Faults” on page 6-4.
OPERATION.UNALIGNED
OPERATION.INVALID_OPERAND

Example: ldl 2450 (r3), r10 # r10, r11 = r3 + 2450 in
memory

Opcode: ld 90H MEM
ldob 80H MEM
ldos 88H MEM
ldib C0H MEM
ldis C8H MEM
ldl 98H MEM
ldt A0H MEM
ldq B0H MEM

See Also: MOVE, STORE
6-60 i960® RM/RN I/O Processor Developer’s Manual

Instruction Set Reference
6.2.38 lda

Mnemonic: lda Load Address

Format: lda src, dst
mem reg
efa

Description: Computes the effective address specified with src and stores it in dst. The src
address is not checked for validity. Any addressing mode may be used to
calculate efa.

An important application of this instruction is to load a constant longer than 5
bits into a register. (To load a register with a constant of 5 bits or less, mov
can be used with a literal as the src operand.)

Action: dst = effective_address;

Faults: STANDARD Refer to Section 6.1.6, “Faults” on page 6-4.

Example: lda 58 (g9), g1 # g1 = g9+58
lda 0x749, r8 # r8 = 0x749

Opcode: lda 8CH MEM
i960® RM/RN I/O Processor Developer’s Manual 6-61

Instruction Set Reference
6.2.39 mark

Mnemonic: mark Mark

Format: mark

Description: Generates mark trace fault if mark trace mode is enabled. Mark trace mode is
enabled if the PC register trace enable bit (bit 0) and the TC register mark
trace mode bit (bit 7) are set.

If mark trace mode is not enabled, mark behaves like a no-op.

For more information on trace fault generation, refer to Chapter 10, “Tracing
and Debugging”.

Action: if(PC.te && TC.mk)
generate_fault(TRACE.MARK)

Faults: STANDARD Refer to Section 6.1.6, “Faults” on page 6-4.
TRACE.MARK Trace fault is generated if PC.te=1 and

TC.mk=1.

Example: # Assume that the mark trace mode is enabled.
ld xyz, r4
addi r4, r5, r6
mark
Mark trace event is generated at this point in the
instruction stream.

Opcode: mark 66BH REG

See Also: fmark, modpc, modtc
6-62 i960® RM/RN I/O Processor Developer’s Manual

Instruction Set Reference
6.2.40 modac

Mnemonic: modac Modify AC

Format: modac mask, src, dst
reg/lit reg/lit reg

Description: Reads and modifies the AC register. src contains the value to be placed in the
AC register; mask specifies bits that may be changed. Only bits set in mask
are modified. Once the AC register is changed, its initial state is copied into
dst.

Action: temp = AC;
AC = (src & mask) | (AC & ~mask);
dst = temp;

Faults: STANDARD Refer to Section 6.1.6, “Faults” on page 6-4.

Example: modac g1, g9, g12 # AC = g9, masked by g1.
g12 = initial value of AC.

Opcode: modac 645H REG

See Also: modpc, modtc

Side Effects: Sets the condition code in the arithmetic controls.
i960® RM/RN I/O Processor Developer’s Manual 6-63

Instruction Set Reference

ult.
6.2.41 modi

Mnemonic: modi Modulo Integer

Format: modi src1, src2, dst
reg/lit reg/lit reg

Description: Divides src2 by src1, where both are integers and stores the modulo
remainder of the result in dst. If the result is nonzero, dst has the same sign as
src1.

Action: if(src1 == 0)
{ dst = undefined_value;

generate_fault(ARITHMETIC.ZERO_DIVIDE);
}

dst = src2 - (src2/src1) * src1;
if((src2 *src1 < 0) && (dst != 0))

dst = dst + src1;

Faults: STANDARD See Section 6.1.6, “Faults” on page 6-4.
ARITHMETIC.ZERO_DIVIDE The src1 operand is zero.

Example: modi r9, r2, r5 # r5 = modulo (r2/r9)

Opcode: modi 749H REG

See Also: divi, divo, remi, remo

Notes: modi generates the correct result (0) when computing -231 mod -1, although
the corresponding 32-bit division does overflow, it does not generate a fa
6-64 i960® RM/RN I/O Processor Developer’s Manual

Instruction Set Reference
6.2.42 modify

Mnemonic: modify Modify

Format: modify mask, src, src/dst
reg/lit reg/lit reg

Description: Modifies selected bits in src/dst with bits from src. The mask operand selects
the bits to be modified: only bits set in the mask operand are modified in
src/dst.

Action: src_dst = (src & mask) | (src_dst & ~mask);

Faults: STANDARD Refer to Section 6.1.6, “Faults” on page 6-4.

Example: modify g8, g10, r4 # r4 = g10 masked by g8.

Opcode: modify 650H REG

See Also: alterbit, extract
i960® RM/RN I/O Processor Developer’s Manual 6-65

Instruction Set Reference

ode
ed in
6.2.43 modpc

Mnemonic: modpc Modify Process Controls

Format: modpc src, mask, src/dst
reg/lit reg/lit reg

Description: Reads and modifies the PC register as specified with mask and src/dst. src/dst
operand contains the value to be placed in the PC register; mask operand
specifies bits that may be changed. Only bits set in the mask are modified.
Once the PC register is changed, its initial value is copied into src/dst. The src
operand is a dummy operand that should specify a literal or the same register
as the mask operand.

The processor must be in supervisor mode to use this instruction with a
non-zero mask value. If mask=0, this instruction can be used to read the
process controls, without the processor being in supervisor mode.

If the action of this instruction lowers the processor priority, the processor
checks the interrupt table for pending interrupts.

When process controls are changed, the processor recognizes the changes
immediately except in one situation: if modpc is used to change the trace
enable bit, the processor may not recognize the change before the next four
non-branch instructions are executed. For more information see Section 3.6.3,
“Process Controls Register – PC” on page 3-16.

Action: if(mask != 0)
{ if(PC.em != supervisor)

generate_fault(TYPE.MISMATCH);
temp = PC;
PC = (mask & src_dst) | (PC & ~mask);
src_dst = temp;
if(temp.priority > PC.priority)

check_pending_interrupts;
}
else

src_dst = PC;

Faults: STANDARD Refer to Section 6.1.6, “Faults” on page 6-4.
TYPE.MISMATCH

Example: modpc g9, g9, g8 # process controls = g8
masked by g9.

Opcode: modpc 655H REG

See Also: modac, modtc

Notes: Since modpc does not switch stacks, it should not be used to switch the m
of execution from supervisor to user (the supervisor stack can get corrupt
this case). The call and return mechanism should be used instead.
6-66 i960® RM/RN I/O Processor Developer’s Manual

Instruction Set Reference
6.2.44 modtc

Mnemonic: modtc Modify Trace Controls

Format: modtc mask, src2, dst
reg/lit reg/lit reg

Description: Reads and modifies TC register as specified with mask and src2. The src2
operand contains the value to be placed in the TC register; mask operand
specifies bits that may be changed. Only bits set in mask are modified. mask
must not enable modification of reserved bits. Once the TC register is
changed, its initial state is copied into dst.

The changed trace controls may take effect immediately or may be delayed. If
delayed, the changed trace controls may not take effect until after the first
non-branching instruction is fetched from memory or after four
non-branching instructions are executed.

For more information on the trace controls, refer to Chapter 9, “Faults” and
Chapter 10, “Tracing and Debugging”.

Action: mode_bits = 0x000000FE;
event_flags = 0X0F000000
temp = TC;
tempa = (event_flags & TC & mask) | (mode_bits & mask);
TC = (tempa & src2) | (TC & ~tempa);
dst = temp;

Faults: STANDARD Refer to Section 6.1.6, “Faults” on page 6-4.

Example: modtc g12, g10, g2 # trace controls = g10 masked
by g12; previous trace
controls stored in g2.

Opcode: modtc 654H REG

See Also: modac, modpc
i960® RM/RN I/O Processor Developer’s Manual 6-67

Instruction Set Reference
6.2.45 MOVE

Mnemonic: mov Move
movl Move Long
movt Move Triple
movq Move Quad

Format: mov* src1, dst
reg/lit reg

Description: Copies the contents of one or more source registers (specified with src) to one
or more destination registers (specified with dst).

For movl, movt and movq, src1 and dst specify the first (lowest numbered)
register of several successive registers. src1 and dst registers must be even
numbered (e.g., g0, g2, ... or r4, r6, ...) for movl and an integral multiple of
four (e.g., g0, g4, ... or r4, r8, ...) for movt and movq.

The moved register values are unpredictable when: 1) the src and dst
operands overlap; 2) registers are not properly aligned.

Action: mov:
if(is_reg(src1))

dst = src1;
else
{ dst[4:0] = src1; #src1 is a 5-bit literal.

dst[31:5] = 0;
}
movl:
if((reg_num(src1)%2 != 0) || (reg_num(dst)%2 != 0))
{ dst = undefined_value;

dst_+_1 = undefined_value;
generate_fault(OPERATION.INVALID_OPERAND);

}
else if(is_reg(src1))
{ dst = src1;

dst_+_1 = src1_+_1;
}
else
{ dst[4:0] = src1; #src1 is a 5-bit literal.

dst[31:5] = 0;
dst_+_1[31:0] = 0;

}

movt:
if((reg_num(src1)%4 != 0) || (reg_num(dst)%4 != 0))
{ dst = undefined_value;

dst_+_1 = undefined_value;
dst_+_2 = undefined_value;
generate_fault(OPERATION.INVALID_OPERAND);
6-68 i960® RM/RN I/O Processor Developer’s Manual

Instruction Set Reference
}
else if(is_reg(src1))
{ dst = src1;

dst_+_1 = src1_+_1;
dst_+_2 = src1_+_2;

}
else
{ dst[4:0] = src1; #src1 is a 5-bit literal.

dst[31:5] = 0;
dst_+_1[31:0] = 0;
dst_+_2[31:0] = 0;

}
movq:
if((reg_num(src1)%4 != 0) || (reg_num(dst)%4 != 0))
{ dst = undefined_value;

dst_+_1 = undefined_value;
dst_+_2 = undefined_value;
dst_+_3 = undefined_value;
generate_fault(OPERATION.INVALID_OPERAND);

}
else if(is_reg(src1))
{ dst = src1;

dst_+_1 = src1_+_1;
dst_+_2 = src1_+_2;
dst_+_3 = src1_+_3;

}
else
{ dst[4:0] = src1; #src1 is a 5 bit literal.

dst[31:5] = 0;
dst_+_1[31:0] = 0;
dst_+_2[31:0] = 0;
dst_+_3[31:0] = 0;

}

Faults: STANDARD Refer to Section 6.1.6, “Faults” on page 6-4.

Example: movt g8, r4 # r4, r5, r6 = g8, g9, g10

Opcode: mov 5CCH REG
movl 5DCH REG
movt 5ECH REG
movq 5FCH REG

See Also: LOAD, STORE, lda
i960® RM/RN I/O Processor Developer’s Manual 6-69

Instruction Set Reference

r

e

6.2.46 muli, mulo

Mnemonic: muli Multiply Integer
mulo Multiply Ordinal

Format: mul* src1, src2, dst
reg/lit reg/lit reg

Description: Multiplies the src2 value by the src1 value and stores the result in dst. The
binary results from these two instructions are identical. The only difference is
that muli can signal an integer overflow.

Action: mulo:
dst = (src2 * src1)[31:0];

muli:
true_result = (src1 * src2);
dst = true_result[31:0];
if((true_result > (2**31) - 1) || (true_result < -2**31)) # Check for overflow
{ if(AC.om == 1)

AC.of = 1;
else

generate_fault(ARITHMETIC.OVERFLOW);
}

Faults: STANDARD Refer to Section 6.1.6, “Faults” on page 6-4.
ARITHMETIC.OVERFLOW Result is too large for destination registe

(muli only). If a condition of overflow
occurs, the least significant 32 bits of th
result are stored in the destination register.

Example: muli r3, r4, r9 # r9 = r4 * r3

Opcode: muli 741H REG
mulo 701H REG

See Also: emul, ediv, divi, divo
6-70 i960® RM/RN I/O Processor Developer’s Manual

Instruction Set Reference
6.2.47 nand

Mnemonic: nand Nand

Format: nand src1, src2, dst
reg/lit reg/lit reg

Description: Performs a bitwise NAND operation on src2 and src1 values and stores the
result in dst.

Action: dst = ~src2 | ~src1;

Faults: STANDARD Refer to Section 6.1.6, “Faults” on page 6-4.

Example: nand g5, r3, r7 # r7 = r3 NAND g5

Opcode: nand 58EH REG

See Also: and, andnot, nor, not, notand, notor, or, ornot, xnor, xor
i960® RM/RN I/O Processor Developer’s Manual 6-71

Instruction Set Reference
6.2.48 nor

Mnemonic: nor Nor

Format: nor src1, src2, dst
reg/lit reg/lit reg

Description: Performs a bitwise NOR operation on the src2 and src1 values and stores the
result in dst.

Action: dst = ~src2 & ~src1;

Faults: STANDARD Refer to Section 6.1.6, “Faults” on page 6-4.

Example: nor g8, 28, r5 # r5 = 28 NOR g8

Opcode: nor 588H REG

See Also: and, andnot, nand, not, notand, notor, or, ornot, xnor, xor
6-72 i960® RM/RN I/O Processor Developer’s Manual

Instruction Set Reference
6.2.49 not, notand

Mnemonic: not Not
notand Not And

Format: not src1, dst
reg/lit reg

notand src1, src2, dst
reg/lit reg/lit reg

Description: Performs a bitwise NOT (not instruction) or NOT AND (notand instruction)
operation on the src2 and src1 values and stores the result in dst.

Action: not:
dst = ~src1;

notand:
dst = ~src2 & src1;

Faults: STANDARD Refer to Section 6.1.6, “Faults” on page 6-4.

Example: not g2, g4 # g4 = NOT g2
notand r5, r6, r7 # r7 = NOT r6 AND r5

Opcode: not 58AH REG
notand 584H REG

See Also: and, andnot, nand, nor, notor, or, ornot, xnor, xor
i960® RM/RN I/O Processor Developer’s Manual 6-73

Instruction Set Reference
6.2.50 notbit

Mnemonic: notbit Not Bit

Format: notbit bitpos, src2, dst
reg/lit reg/lit reg

Description: Copies the src2 value to dst with one bit toggled. The bitpos operand specifies
the bit to be toggled.

Action: dst = src2 ^ 2**(src1%32);

Faults: STANDARD Refer to Section 6.1.6, “Faults” on page 6-4.

Example: notbit r3, r12, r7 # r7 = r12 with the bit
specified in r3 toggled.

Opcode: notbit 580H REG

See Also: alterbit, chkbit, clrbit, setbit
6-74 i960® RM/RN I/O Processor Developer’s Manual

Instruction Set Reference
6.2.51 notor

Mnemonic: notor Not Or

Format: notor src1, src2, dst
reg/lit reg/lit reg

Description: Performs a bitwise NOTOR operation on src2 and src1 values and stores
result in dst.

Action: dst = ~src2 | src1;

Faults: STANDARD Refer to Section 6.1.6, “Faults” on page 6-4.

Example: notor g12, g3, g6 # g6 = NOT g3 OR g12

Opcode: notor 58DH REG

See Also: and, andnot, nand, nor, not, notand, or, ornot, xnor, xor
i960® RM/RN I/O Processor Developer’s Manual 6-75

Instruction Set Reference
6.2.52 or, ornot

Mnemonic: or Or
ornot Or Not

Format: or src1, src2, dst
reg/lit reg/lit reg

ornot src1, src2, dst
reg/lit reg/lit reg

Description: Performs a bitwise OR (or instruction) or ORNOT (ornot instruction)
operation on the src2 and src1 values and stores the result in dst.

Action: or:
dst = src2 | src1;

ornot:
dst = src2 | ~src1;

Faults: STANDARD Refer to Section 6.1.6, “Faults” on page 6-4.

Example: or 14, g9, g3 # g3 = g9 OR 14
ornot r3, r8, r11 # r11 = r8 OR NOT r3

Opcode: or 587H REG
ornot 58BH REG

See Also: and, andnot, nand, nor, not, notand, notor, xnor, xor
6-76 i960® RM/RN I/O Processor Developer’s Manual

Instruction Set Reference

t is
6.2.53 remi, remo

Mnemonic: remi Remainder Integer
remo Remainder Ordinal

Format: rem* src1, src2, dst
reg/lit reg/lit reg

Description: Divides src2 by src1 and stores the remainder in dst. The sign of the result (if
nonzero) is the same as the sign of src2.

Action: remi, remo:
if(src1 == 0)

generate_fault(ARITHMETIC.ZERO_DIVIDE);
dst = src2 - (src2/src1)*src1;

Faults: STANDARD Refer to Section 6.1.6, “Faults” on page 6-4.

ARITHMETIC.ZERO_DIVIDE The src1 operand is 0.

Example: remo r4, r5, r6 # r6 = r5 rem r4

Opcode: remi 748H REG
remo 708H REG

See Also: modi

Notes: remi produces the correct result (0) even when computing -231 remi -1, which
would cause the corresponding division to overflow, although no faul
generated.
i960® RM/RN I/O Processor Developer’s Manual 6-77

Instruction Set Reference

d at
me,

and
eturn.
lled
6.2.54 ret

Mnemonic: ret Return

Format: ret

Description: Returns program control to the calling procedure. The current stack frame
(i.e., that of the called procedure) is deallocated and the FP is changed to point
to the calling procedure’s stack frame. Instruction execution is continue
the instruction pointed to by the RIP in the calling procedure’s stack fra
which is the instruction immediately following the call instruction.

As shown in the action statement below, the return-status field
prereturn-trace flag determine the action that the processor takes on the r
These fields are contained in bits 0 through 3 of register r0 of the ca
procedure’s local registers.

See Chapter 7, “Procedure Calls” for more on ret.

Action: implicit_syncf();
if(pfp.p && PC.te && TC.p)
{ pfp.p = 0;

generate_fault(TRACE.PRERETURN);
}
switch(return_status_field)
{

case 0002: #local return
get_FP_and_IP();
break;

case 0012: #fault return
tempa = memory(FP-16);
tempb = memory(FP-12);
get_FP_and_IP();
AC = tempb;
if(execution_mode == supervisor)

PC = tempa;
break;

case 0102: #supervisor return, trace on return disabled
if(execution_mode != supervisor)

get_FP_and_IP();
else
{ PC.te = 0;

execution_mode = user;
get_FP_and_IP();

}
break;

case 0112: # supervisor return, trace on return enabled
if(execution_mode != supervisor)

get_FP_and_IP();
else
{ PC.te = 1;

execution_mode = user;
get_FP_and_IP();
6-78 i960® RM/RN I/O Processor Developer’s Manual

Instruction Set Reference
}
break;

case 1002: #reserved - unpredictable behavior
break;

case 1012: #reserved - unpredictable behavior
break;

case 1102: #reserved - unpredictable behavior
break;

case 1112: #interrupt return
tempa = memory(FP-16);
tempb = memory(FP-12);
get_FP_and_IP();
AC = tempb;
if(execution_mode == supervisor)

PC = tempa;
check_pending_interrupts();
break;

}

get_FP_and_IP()
{ FP =PFP;

free(current_register_set);
if(not_allocated(FP))

retrieve_from_memory(FP);
IP = RIP;

}

Faults: STANDARD Refer to Section 6.1.6, “Faults” on page 6-4.

Example: ret # Program control returns to
context of calling procedure.

Opcode: ret 0AH CTRL

See Also: call, calls, callx
i960® RM/RN I/O Processor Developer’s Manual 6-79

Instruction Set Reference
6.2.55 rotate

Mnemonic: rotate Rotate

Format: rotate len, src2, dst
reg/lit reg/lit reg

Description: Copies src2 to dst and rotates the bits in the resulting dst operand to the left
(toward higher significance). Bits shifted off left end of word are inserted at
right end of word. The len operand specifies number of bits that the dst
operand is rotated.

This instruction can also be used to rotate bits to the right. The number of bits
the word is to be rotated right should be subtracted from 32 and the result used
as the len operand.

Action: src2 is rotated by len mod 32. This value is stored in dst.

Faults: STANDARD Refer to Section 6.1.6, “Faults” on page 6-4.

Example: rotate 13, r8, r12 # r12 = r8 with bits rotated
13 bits to left.

Opcode: rotate 59DH REG

See Also: SHIFT, eshro
6-80 i960® RM/RN I/O Processor Developer’s Manual

Instruction Set Reference
6.2.56 scanbit

Mnemonic: scanbit Scan For Bit

Format: scanbit src1, dst
reg/lit reg

Description: Searches src1 for a set bit (1 bit). If a set bit is found, the bit number of the
most significant set bit is stored in the dst and the condition code is set to
0102. If src value is zero, all 1’s are stored in dst and condition code is set to
0002.

Action: dst = 0xFFFFFFFF;
AC.cc = 0002;
for(i = 31; i >= 0; i--)
{ if((src1 & 2**i) != 0)
{ dst = i;

AC.cc = 0102;
break;

}

}

Faults: STANDARD Refer to Section 6.1.6, “Faults” on page 6-4.

Example: # assume g8 is nonzero
scanbit g8, g10 # g10 = bit number of most-

significant set bit in g8;
AC.cc = 0102.

Opcode: scanbit 641H REG

See Also: spanbit, setbit

Side Effects: Sets the condition code in the arithmetic controls.
i960® RM/RN I/O Processor Developer’s Manual 6-81

Instruction Set Reference
6.2.57 scanbyte

Mnemonic: scanbyte Scan Byte Equal

Format: scanbyte src1, src2
reg/lit reg/lit

Description: Performs byte-by-byte comparison of src1 and src2 and sets condition code to
0102 if any two corresponding bytes are equal. If no corresponding bytes are
equal, condition code is set to 0002.

Action: if((src1 & 0x000000FF) == (src2 & 0x000000FF)
|| (src1 & 0x0000FF00) == (src2 & 0x0000FF00)
|| (src1 & 0x00FF0000) == (src2 & 0x00FF0000)
|| (src1 & 0xFF000000) == (src2 & 0xFF000000))

AC.cc = 0102;
else

AC.cc = 0002;

Faults: STANDARD Refer to Section 6.1.6, “Faults” on page 6-4.

Example: # Assume r9 = 0x11AB1100
scanbyte 0x00AB0011, r9# AC.cc = 0102

Opcode: scanbyte 5ACH REG

See Also: bswap

Side Effects: Sets the condition code in the arithmetic controls.
6-82 i960® RM/RN I/O Processor Developer’s Manual

Instruction Set Reference

sors.
6.2.58 SEL<cc>

Mnemonic: selno Select Based on Unordered
selg Select Based on Greater
sele Select Based on Equal
selge Select Based on Greater or Equal
sell Select Based on Less
selne Select Based on Not Equal
selle Select Based on Less or Equal
selo Select Based on Ordered

Format: sel* src1, src2, dst
reg/lit reg/lit reg

Description: Selects either src1 or src2 to be stored in dst based on the condition code bits
in the arithmetic controls. If for Unordered the condition code is 0, or if for
the other cases the logical AND of the condition code and the mask part of the
opcode is not zero, then the value of src2 is stored in the destination. Else, the
value of src1 is stored in the destination.

Action: if ((mask & AC.cc) || (mask == AC.cc))
dst = src2;

else
dst = src1;

Faults: STANDARD Refer to Section 6.1.6, “Faults” on page 6-4.

Example: # AC.cc = 0102
sele g0,g1,g2 # g2 = g1

AC.cc = 0012
sell g0,g1,g2 # g2 = g0

Opcode: selno 784H REG
selg 794H REG
sele 7A4H REG
selge 7B4H REG
sell 7C4H REG
selne 7D4H REG
selle 7E4H REG
selo 7F4H REG

See Also: MOVE, TEST<cc>, cmpi, cmpo, SUB<cc>

Notes: These core instructions are not implemented on i960 Cx, Kx and Sx proces

Instruction Mask Condition
selno 0002 Unordered

selg 0012 Greater

sele 0102 Equal

selge 0112 Greater or equal

sell 1002 Less

selne 1012 Not equal

selle 1102 Less or equal

selo 1112 Ordered
i960® RM/RN I/O Processor Developer’s Manual 6-83

Instruction Set Reference
6.2.59 setbit

Mnemonic: setbit Set Bit

Format: setbit bitpos, src, dst
reg/lit reg/lit reg

Description: Copies src value to dst with one bit set. bitpos specifies bit to be set.

Action: dst = src | (2**(bitpos%32));

Faults: STANDARD Refer to Section 6.1.6, “Faults” on page 6-4.

Example: setbit 15, r9, r1 # r1 = r9 with bit 15 set.

Opcode: setbit 583H REG

See Also: alterbit, chkbit, clrbit, notbit
6-84 i960® RM/RN I/O Processor Developer’s Manual

Instruction Set Reference
6.2.60 SHIFT

Mnemonic: shlo Shift Left Ordinal
shro Shift Right Ordinal
shli Shift Left Integer
shri Shift Right Integer
shrdi Shift Right Dividing Integer

Format: sh* len, src, dst
reg/lit reg/lit reg

Description: Shifts src left or right by the number of bits indicated with the len operand and
stores the result in dst. Bits shifted beyond register boundary are discarded.
For values of len > 32, the processor interprets the value as 32.

shlo shifts zeros in from the least significant bit; shro shifts zeros in from the
most significant bit. These instructions are equivalent to mulo and divo by the
power of 2, respectively.

shli shifts zeros in from the least significant bit. An overflow fault is
generated if the bits shifted out are not the same as the most significant bit (bit
31). If overflow occurs, dst equals src shifted left as much as possible without
overflowing.

shri performs a conventional arithmetic shift-right operation by shifting in the
most significant bit (bit 31). When this instruction is used to divide a negative
integer operand by the power of 2, it produces an incorrect quotient
(discarding the bits shifted out has the effect of rounding the result toward
negative).

shrdi is provided for dividing integers by the power of 2. With this
instruction, 1 is added to the result if the bits shifted out are non-zero and the
src operand was negative, which produces the correct result for negative
operands.

shli and shrdi are equivalent to muli and divi by the power of 2.

Action: shlo:
if(src1 < 32)

dst = src * (2**len);
else

dst = 0;
shro:
if(src1 < 32)

dst = src / (2**len);
else

dst = 0;

shli:
if(len > 32)

count = 32;
else

count = src1;
temp = src;
i960® RM/RN I/O Processor Developer’s Manual 6-85

Instruction Set Reference

e
t

while((temp[31] == temp[30]) && (count > 0))
{ temp = (temp * 2)[31:0];

count = count - 1;
}
dst = temp;
if(count > 0)
{ if(AC.om == 1)

AC.of = 1;
else

generate_fault(ARITHMETIC.OVERFLOW);
}

shri:
if(len > 32)

count = 32;
else

count = src1;
temp = src;
while(count > 0)
{ temp = (temp >> 1)[31:0];

temp[31] = src[31];
count = count - 1;

}
dst = temp;

shrdi:
dst = src / (2**len);

Faults: STANDARD Refer to Section 6.1.6, “Faults” on page 6-4.
ARITHMETIC.OVERFLOW For shli.

Example: shli 13, g4, r6 # g6 = g4 shifted left 13 bits.

Opcode: shlo 59CH REG
shro 598H REG
shli 59EH REG
shri 59BH REG
shrdi 59AH REG

See Also: divi, muli, rotate, eshro

Notes: shli and shrdi are identical to multiplications and divisions for all positiv
and negative values of src2. shri is the conventional arithmetic right shift tha
does not produce a correct quotient when src2 is negative.
6-86 i960® RM/RN I/O Processor Developer’s Manual

Instruction Set Reference
6.2.61 spanbit

Mnemonic: spanbit Span Over Bit

Format: spanbit src, dst
reg/lit reg

Description: Searches src value for the most significant clear bit (0 bit). If a most
significant 0 bit is found, its bit number is stored in dst and condition code is
set to 0102. If src value is all 1’s, all 1’s are stored in dst and condition code is
set to 0002.

Action: dst = 0xFFFFFFFF;
AC.cc = 0002;
for(i = 31; i > = 0; i--)
{ if((src1 & 2**i) == 0))
{ dst = i;

AC.cc = 0102;
break;

}
}

Faults: STANDARD Refer to Section 6.1.6, “Faults” on page 6-4.

Example: # Assume r2 is not 0xffffffff
spanbit r2, r9 # r9 = bit number of most-

significant clear bit in r2;
AC.cc = 0102

Opcode: spanbit 640H REG

See Also: scanbit

Side Effects: Sets the condition code in the arithmetic controls.
i960® RM/RN I/O Processor Developer’s Manual 6-87

Instruction Set Reference

the
ectly

ive

, r2,
of
6.2.62 STORE

Mnemonic: st Store
stob Store Ordinal Byte
stos Store Ordinal Short
stib Store Integer Byte
stis Store Integer Short
stl Store Long
stt Store Triple
stq Store Quad

Format: st* src1, dst
reg mem

Description: Copies a byte or group of bytes from a register or group of registers to
memory. src specifies a register or the first (lowest numbered) register of
successive registers.

dst specifies the address of the memory location where the byte or first byte or
a group of bytes is to be stored. The full range of addressing modes may be
used in specifying dst. Refer to Section 2.3, “Memory Addressing Modes” on
page 2-4 for a complete discussion.

stob and stib store a byte and stos and stis store a half word from the src
register’s low order bytes. Data for ordinal stores is truncated to fit
destination width. If the data for integer stores cannot be represented corr
in the destination width, an Arithmetic Integer Overflow fault is signaled.

st, stl, stt and stq copy 4, 8, 12 and 16 bytes, respectively, from success
registers to memory.

For stl, src must specify an even numbered register (e.g., g0, g2, ... or r0
...). For stt and stq, src must specify a register number that is a multiple
four (e.g., g0, g4, g8, ... or r0, r4, r8, ...).

Action: st:
if (illegal_write_to_on_chip_RAM)

generate_fault(TYPE.MISMATCH);
else if ((effective_address[1:0] != 002) && unaligned_fault_enabled)

{store_to_memory(effective_address)[31:0] = src1;
generate_fault(OPERATION.UNALIGNED);}

else
store_to_memory(effective_address)[31:0] = src1;

Action: stob:
if (illegal_write_to_on_chip_RAM_or_MMR)

generate_fault(TYPE.MISMATCH);
else

store_to_memory(effective_address)[7:0] = src1[7:0];

stib:
if (illegal_write_to_on_chip_RAM_or_MMR)

generate_fault(TYPE.MISMATCH);
else if ((src1[31:8] != 0) && (src1[31:8] != 0xFFFFFF))

{ store_to_memory(effective_address)[7:0] = src1[7:0];
if (AC.om == 1)
6-88 i960® RM/RN I/O Processor Developer’s Manual

Instruction Set Reference
AC.of = 1;
else

generate_fault(ARITHMETIC.OVERFLOW);
}

else
store_to_memory(effective_address)[7:0] = src1[7:0];

end if;

stos:
if (illegal_write_to_on_chip_RAM_or_MMR)

generate_fault(TYPE.MISMATCH);
else if ((effective_address[0] != 02) && unaligned_fault_enabled)

{ store_to_memory(effective_address)[15:0] = src1[15:0];
generate_fault(OPERATION.UNALIGNED);

}
else

store_to_memory(effective_address)[15:0] = src1[15:0];

stis:
if (illegal_write_to_on_chip_RAM_or_MMR)

generate_fault(TYPE.MISMATCH);
else if ((effective_address[0] != 02) && unaligned_fault_enabled)

{ store_to_memory(effective_address)[15:0] = src1[15:0];
generate_fault(OPERATION.UNALIGNED);

}
else if ((src1[31:16] != 0) && (src1[31:16] != 0xFFFF))

{ store_to_memory(effective_address)[15:0] = src1[15:0];
if (AC.om == 1)
AC.of = 1;

else
generate_fault(ARITHMETIC.OVERFLOW);

}
else

store_to_memory(effective_address)[15:0] = src1[15:0];

stl:
if (illegal_write_to_on_chip_RAM_or_MMR)

generate_fault(TYPE.MISMATCH);
else if (reg_number(src1) % 2 != 0)

generate_fault(OPERATION.INVALID_OPERAND);
else if ((effective_address[2:0] != 0002) && unaligned_fault_enabled)

{ store_to_memory(effective_address)[31:0] = src1;
store_to_memory(effective_address + 4)[31:0] = src1_+_1;
generate_fault (OPERATION.UNALIGNED);

}
else

{ store_to_memory(effective_address)[31:0] = src1;
store_to_memory(effective_address + 4)[31:0] = src1_+_1;

}

stt:
if (illegal_write_to_on_chip_RAM_or_MMR)
i960® RM/RN I/O Processor Developer’s Manual 6-89

Instruction Set Reference

sm.
e

generate_fault(TYPE.MISMATCH);
else if (reg_number(src1) % 4 != 0)

generate_fault(OPERATION.INVALID_OPERAND);
else if ((effective_address[3:0] != 00002) && unaligned_fault_enabled)

{ store_to_memory(effective_address)[31:0] = src1;
store_to_memory(effective_address + 4)[31:0] = src1_+_1;
store_to_memory(effective_address + 8)[31:0] = src1_+_2;
generate_fault (OPERATION.UNALIGNED);

}
else

{ store_to_memory(effective_address)[31:0] = src1;
store_to_memory(effective_address + 4)[31:0] = src1_+_1;
store_to_memory(effective_address + 8)[31:0] = src1_+_2;

}

stq:
if (illegal_write_to_on_chip_RAM_or_MMR)

generate_fault(TYPE.MISMATCH);
else if (reg_number(src1) % 4 != 0)

generate_fault(OPERATION.INVALID_OPERAND);
else if ((effective_address[3:0] != 00002) && unaligned_fault_enabled)

{ store_to_memory(effective_address)[31:0] = src1;
store_to_memory(effective_address + 4)[31:0] = src1_+_1;
store_to_memory(effective_address + 8)[31:0] = src1_+_2;
store_to_memory(effective_address + 12)[31:0] = src1_+_3;
generate_fault (OPERATION.UNALIGNED);

}
else

{ store_to_memory(effective_address)[31:0] = src1;
store_to_memory(effective_address + 4)[31:0] = src1_+_1;
store_to_memory(effective_address + 8)[31:0] = src1_+_2;
store_to_memory(effective_address + 12)[31:0] = src1_+_3;

}

Faults: STANDARD Refer to Section 6.1.6, “Faults” on page 6-4.
ARITHMETIC.OVERFLOW For stib, stis.

Example: st g2, 1254 (g6) # Word beginning at offset
1254 + (g6) = g2.

Opcode: st 92H MEM
stob 82H MEM
stos 8AH MEM
stib C2H MEM
stis CAH MEM
stl 9AH MEM
stt A2H MEM
stq B2H MEM

See Also: LOAD, MOVE

Notes: illegal_write_to_on_chip_RAM is an implementation-dependent mechani
The mapping of register bits to memory(efa) depends on the endianism of th
memory region and is implementation-dependent.
6-90 i960® RM/RN I/O Processor Developer’s Manual

Instruction Set Reference
6.2.63 subc

Mnemonic: subc Subtract Ordinal With Carry

Format: subc src1, src2, dst
reg/lit reg/lit reg

Description: Subtracts src1 from src2, then subtracts the opposite of condition code bit 1
(used here as the carry bit) and stores the result in dst. If the ordinal
subtraction results in a carry, condition code bit 1 is set to 1, otherwise it is set
to 0.

This instruction can also be used for integer subtraction. Here, if integer
subtraction results in an overflow, condition code bit 0 is set.

subc does not distinguish between ordinals and integers: it sets condition
code bits 0 and 1 regardless of data type.

Action: dst = (src2 - src1 -1 + AC.cc[1])[31:0];
AC.cc[2:0] = 0002;
if((src2[31] == src1[31]) && (src2[31] != dst[31]))

AC.cc[0] = 1; # Overflow bit.
AC.cc[1] = (src2 - src1 -1 + AC.cc[1])[32]; # Carry out.

Faults: STANDARD Refer to Section 6.1.6, “Faults” on page 6-4.

Example: subc g5, g6, g7
g7 = g6 - g5 - not(condition code bit 1)

Opcode: subc 5B2H REG

See Also: addc, addi, addo, subi, subo

Side Effects: Sets the condition code in the arithmetic controls.
i960® RM/RN I/O Processor Developer’s Manual 6-91

Instruction Set Reference
6.2.64 SUB<cc>

Mnemonic: subono Subtract Ordinal if Unordered
subog Subtract Ordinal if Greater
suboe Subtract Ordinal if Equal
suboge Subtract Ordinal if Greater or Equal
subol Subtract Ordinal if Less
subone Subtract Ordinal if Not Equal
subole Subtract Ordinal if Less or Equal
suboo Subtract Ordinal if Ordered
subino Subtract Integer if Unordered
subig Subtract Integer if Greater
subie Subtract Integer if Equal
subige Subtract Integer if Greater or Equal
subil Subtract Integer if Less
subine Subtract Integer if Not Equal
subile Subtract Integer if Less or Equal
subio Subtract Integer if Ordered

Format: sub* src1, src2, dst
reg/lit reg/lit reg

Description: Subtracts src1 from src2 conditionally based on the condition code bits in the
arithmetic controls.

If for Unordered the condition code is 0, or if for the other cases the logical
AND of the condition code and the mask part of the opcode is not zero; then
src1 is subtracted from src2 and the result stored in the destination

Instruction Mask Condition

subono, subino 0002 Unordered

subog, subig 0012 Greater

suboe, subie 0102 Equal

suboge, subige 0112 Greater or equal

subol, subil 1002 Less

subone, subine 1012 Not equal

subole, subile 1102 Less or equal

suboo, subio 1112 Ordered
6-92 i960® RM/RN I/O Processor Developer’s Manual

Instruction Set Reference

 Sx
Action: SUBO<cc>:
if ((mask & AC.cc) || (mask == AC.cc))

dst = (src2 - src1)[31:0];

SUBI<cc>:
if ((mask & AC.cc) || (mask == AC.cc))
{

{ true_result = (src2 - src1);
dst = true_result[31:0];

}
if((true_result > (2**31) - 1) || (true_result < -2**31))

Check for overflow
{ if (AC.om == 1)

AC.of = 1;
else

generate_fault (ARITHMETIC.OVERFLOW);
}

}

Faults: STANDARD Refer to Section 6.1.6, “Faults” on page 6-4.
ARITHMETIC.OVERFLOW For the SUBI<cc> class.

Example: # AC.cc = 0102
suboge g0,g1,g2 # g2 = g1 - g0

AC.cc = 0012
subile g0,g1,g2 # g2 not modified

Opcode: subono 782H REG
subog 792H REG
suboe 7A2H REG
suboge 7B2H REG
subol 7C2H REG
subone 7D2H REG
subole 7E2H REG
suboo 7F2H REG
subino 783H REG
subig 793H REG
subie 7A3H REG
subige 7B3H REG
subil 7C3H REG
subine 7D3H REG
subile 7E3H REG
subio 7F3H REG

See Also: subc, subi, subo, SEL<cc>, TEST<cc>

Notes: These core instructions are not implemented on 80960Cx, Kx and
processors.
i960® RM/RN I/O Processor Developer’s Manual 6-93

Instruction Set Reference
6.2.65 subi, subo

Mnemonic: subi Subtract Integer
subo Subtract Ordinal

Format: sub* src1, src2, dst
reg/lit reg/lit reg

Description: Subtracts src1 from src2 and stores the result in dst. The binary results from
these two instructions are identical. The only difference is that subi can
signal an integer overflow.

Action: subo:
dst = (src2 - src1)[31:0];

subi:
true_result = (src2 - src1);
dst = true_result[31:0];
if((true_result > (2**31) - 1) || (true_result < -2**31)) # Check for overflow
{ if(AC.om == 1)

AC.of = 1;
else

generate_fault(ARITHMETIC.OVERFLOW);
}

Faults: STANDARD Refer to Section 6.1.6, “Faults” on page 6-4.
ARITHMETIC.OVERFLOW For subi.

Example: subi g6, g9, g12 # g12 = g9 - g6

Opcode: subi 593H REG
subo 592H REG

See Also: addi, addo, subc, addc
6-94 i960® RM/RN I/O Processor Developer’s Manual

Instruction Set Reference
6.2.66 syncf

Mnemonic: syncf Synchronize Faults

Format: syncf

Description: Waits for all faults to be generated that are associated with any prior
uncompleted instructions.

Action: if(AC.nif == 1)
break;

else
wait_until_all_previous_instructions_in_flow_have_completed();
This also means that all of the faults on these instructions have
been reported.

Faults: STANDARD Refer to Section 6.1.6, “Faults” on page 6-4.

Example: ld xyz, g6
addi r6, r8, r8
syncf
and g6, 0xFFFF, g8
The syncf instruction ensures that any faults
that may occur during the execution of the
ld and addi instructions occur before the
and instruction is executed.

Opcode: syncf 66FH REG

See Also: mark, fmark
i960® RM/RN I/O Processor Developer’s Manual 6-95

Instruction Set Reference
6.2.67 sysctl

Mnemonic: sysctl System Control

Format: sysctl src1, src2, src/dst
reg/lit reg/lit reg

Description: Performs system management and control operations including requesting
software interrupts, invalidating the instruction cache, configuring the
instruction cache, processor reinitialization, modifying memory-mapped
registers, and acquiring breakpoint resource information.

Processor control function specified by the message field of src1 is executed.
The type field of src1 is interpreted depending upon the command. Remaining
src1 bits are reserved. The src2 and src3 operands are also interpreted
depending upon the command.

Figure 6-7. Src1 Operand Interpretation

Table 6-10. sysctl Field Definitions

Message
Src1 Src2 Src/Dst

Type Field 1 Field 2 Field 3 Field 4

Request Interrupt 0x0 Vector Number N/U N/U N/U

Invalidate Cache 0x1 N/U N/U N/U N/U

Configure Instruction
Cache 0x2

Cache Mode
Configuration
(Table 6-11)

N/U Cache load
address N/U

 Reinitialize 0x3 N/U N/U Starting IP PRCB Pointer

Modify
Memory-Mapped
Control Register
(MMR)

0x5 N/U Lower 2 bytes of
MMR address Value to write Mask

Breakpoint Resource
Request 0x6 N/U N/U N/U Breakpoint info

(Figure 6-8)

NOTE: Sources and fields that are not used (designated N/U) are ignored.

Table 6-11. Cache Mode Configuration

Mode Field Mode Description 80960RM/RN

0002 Normal cache enabled 16 Kbyte

XX12 Full cache disabled 16 Kbyte

1002 or 1102 Load and lock one way of the
cache 4 Kbyte

8 7 031 16 15

Message TypeField 2 Field 1
6-96 i960® RM/RN I/O Processor Developer’s Manual

Instruction Set Reference
Action: if (PC.em != supervisor)
generate_fault(TYPE.MISMATCH);

order_wrt(previous_operations);
OPtype = (src1 & 0xff00) >> 8;
switch (OPtype) {
 case 0: # Signal Software Interrupt

vector_to_post = 0xff & src1;
priority_to_post = vector_to_post >> 3;
pend_ints_addr = interrupt_table_base + 4 + priority_to_post;
pend_priority = memory_read(interrupt_table_base,atomic_lock);
Priority zero just recans Interrupt Table
if (priority_to_post != 0)
 {pend_ints = memory_read(pend_ints_addr, non-cacheable)
 pend_ints[7 & vector] = 1;
 pend_priority[priority_to_post] = 1;
 memory_write(pend_ints_addr, pend_ints); }
memory_write(interrupt_table_base,pend_priority,atomic_unlock);
Update internal software priority with highest priority interrupt
from newly adjusted Pending Priorities word. The current internal
software priority is always replaced by the new, computed one. (If
there is no bit set in pending_priorities word for the current
internal one, then it is discarded by this action.)
if (pend_priority == 0)
 SW_Int_Priority = 0;
else {msb_set = scan_bit(pend_priority);
 SW_Int_Priority = msb_set; }

Make sure change to internal software priority takes full effect
before next instruction.
order_wrt(subsequent_operations);

break;
case 1: # Global Invalidate Instruction Cache

invalidate_instruction_cache();
unlock_instruction_cache();
break;

case 2: # Configure Instruction-Cache
mode = src1 & 0xff;
if (mode & 1) disable_instruction_cache;
else switch (mode) {

case 0: enable_instruction_cache; break;
case 4,6: # Load & Lock code into I-Cache

Figure 6-8. src/dst Interpretation for Breakpoint Resource Request

Reserved - Set to zero

4 331 8 7

available
instruction
breakpoints

available
data

breakpoints

0

i960® RM/RN I/O Processor Developer’s Manual 6-97

Instruction Set Reference
All contiguous blocks are locked.
Note: block = way on 80960RM/RN.
src2 has starting address of code to lock.
src2 is aligned to a quad word
boundary.
aligned_addr = src2 & 0xfffffff0;
invalidate(I-cache); unlock(I-cache);
for (j = 0; j < number_of_blocks_that_lock; j++)
{way = block_associated_with_block(j);
 start = src2 + j*block_size;
 end = start + block_size;
 for (i = start; i < end; i=i+4)

{ set = set_associated_with(i);
word = word_associated_with(i);
Icache_line[set][way][word] =

 memory[i];
update_tag_n_valid_bits(set,way,word)

 lock_icache(set,way,word);
} } break;

default:
generate_operation_invalid_operand_fault;

} break;
case 3: # Software Re-init

disable(I_cache); invalidate(I_cache);
disable(D_cache); invalidate(D_cache);
Process_PRCB(dst); # dst has ptr to new PRCB
IP = src2;
break;

case 5: # Modify One Memory-Mapped Control Register (MMR)
src1[31:16] has lower 2 bytes of MMR address
src2 has value to write; dst has mask.
After operation, dst has old value of MMR
addr = (0xff00 << 16) | (src1 >> 16);
temp = memory[addr];
memory[addr] = (src2 & dst) | (temp & ~dst);
dst = temp;
break;

case 6: # Breakpoint Resource Request
acquire_available_instr_breakpoints();
dst[3:0] = number_of_available_instr_breakpoints;
acquire_available_data_breakpoints();
dst[7:4] = number_of_available_data_breakpoints;
dst[31:8] = 0;
break;

default: # Reserved, fault occurs
generate_fault(OPERATION.INVALID_OPERAND);
break;

}
order_wrt(subsequent_operations);

Faults: STANDARD Refer to Section 6.1.6, “Faults” on page 6-4.
6-98 i960® RM/RN I/O Processor Developer’s Manual

Instruction Set Reference
Example: ldconst 0x100,r6 # Set up message.
sysctl r6,r7,r8 # Invalidate I-cache.

r7, r8 are not used.
ldconst 0x204, g0 # Set up message type and

cache configuration mode.
Lock half cache.

ldconst 0x20000000,g2 # Starting address of code.
sysctl g0,g2,g2 # Execute Load and Lock.

Opcode: sysctl 659H REG

See Also: dcctl, icctl

Notes: This instruction is implemented on 80960RM/RN, 80960RP/RD, 80960Hx,
80960Jx and 80960Cx processors, and may or may not be implemented on
future i960 processors.
i960® RM/RN I/O Processor Developer’s Manual 6-99

Instruction Set Reference
6.2.68 TEST<cc>

Mnemonic: teste Test For Equal
testne Test For Not Equal
testl Test For Less
testle Test For Less Or Equal
testg Test For Greater
testge Test For Greater Or Equal
testo Test For Ordered
testno Test For Not Ordered

Format: test* dst:src1
reg

Description: Stores a true (01H) in dst if the logical AND of the condition code and opcode
mask part is not zero. Otherwise, the instruction stores a false (00H) in dst.
For testno (Unordered), a true is stored if the condition code is 0002,
otherwise a false is stored.

The following table shows the condition-code mask for each instruction. The
mask is in bits 0-2 of the opcode.

Action: For all TEST<cc> except testno:
if((mask & AC.cc) != 0002)

src1 = 1; #true value
else

src1 = 0; #false value

testno:
if(AC.cc == 0002)

src1 = 1; #true value
else

src1 = 0; #false value

Faults: STANDARD Refer to Section 6.1.6, “Faults” on page 6-4.

Example: # Assume AC.cc = 1002
testl g9 # g9 = 0x00000001

Instruction Mask Condition

testno 0002 Unordered

testg 0012 Greater

teste 0102 Equal

testge 0112 Greater or equal

testl 1002 Less

testne 1012 Not equal

testle 1102 Less or equal

testo 1112 Ordered
6-100 i960® RM/RN I/O Processor Developer’s Manual

Instruction Set Reference
Opcode: teste 22H COBR
testne 25H COBR
testl 24H COBR
testle 26H COBR
testg 21H COBR
testge 23H COBR
testo 27H COBR
testno 20H COBR

See Also: cmpi, cmpdeci, cmpinci
i960® RM/RN I/O Processor Developer’s Manual 6-101

Instruction Set Reference
6.2.69 xnor, xor

Mnemonic: xnor Exclusive Nor
xor Exclusive Or

Format: xnor src1, src2, dst
reg/lit reg/lit reg

xor src1, src2, dst
reg/lit reg/lit reg

Description: Performs a bitwise XNOR (xnor instruction) or XOR (xor instruction)
operation on the src2 and src1 values and stores the result in dst.

Action: xnor:
dst = ~(src2 | src1) | (src2 & src1);

xor:
dst = (src2 | src1) & ~(src2 & src1);

Faults: STANDARD Refer to Section 6.1.6, “Faults” on page 6-4.

Example: xnor r3, r9, r12 # r12 = r9 XNOR r3
xor g1, g7, g4 # g4 = g7 XOR g1

Opcode: xnor 589H REG
xor 586H REG

See Also: and, andnot, nand, nor, not, notand, notor, or, ornot
6-102 i960® RM/RN I/O Processor Developer’s Manual

ll tree.
Procedure Calls 7

This chapter describes mechanisms for making procedure calls, which include branch-and-link
instructions, built-in call and return mechanism, call instructions (call, callx, calls), return
instruction (ret) and call actions caused by interrupts and faults.

The i960® processor architecture supports two methods for making procedure calls:

• A RISC-style branch-and-link: a fast call best suited for calling procedures that do not call
other procedures.

• An integrated call and return mechanism: a more versatile method for making procedure calls,
providing a highly efficient means for managing a large number of registers and the program stack.

On a branch-and-link (bal, balx), the processor branches and saves a return IP in a register. The
called procedure uses the same set of registers and the same stack as the calling procedure. On a
call (call, callx, calls) or when an interrupt or fault occurs, the processor also branches to a target
instruction and saves a return IP. Additionally, the processor saves the local registers and allocates
a new set of local registers and a new stack for the called procedure. The saved context is restored
when the return instruction (ret) executes.

In many RISC architectures, a branch-and-link instruction is used as the base instruction for coding
a procedure call. The user program then handles register and stack management for the call. Since
the i960 architecture provides a fully integrated call and return mechanism, coding calls with
branch-and-link are not necessary. Additionally, the integrated call is much faster than typical
RISC-coded calls.

The branch-and-link instruction in the i960 processor family, therefore, is used primarily for calling
leaf procedures. Leaf procedures call no other procedures; they reside at the “leaves” of the ca

In the i960 architecture the integrated call and return mechanism is used in two ways:

• explicit calls to procedures in a user’s program

• implicit calls to interrupt and fault handlers

The remainder of this chapter explains the generalized call mechanism used for explicit and
implicit calls and call and return instructions.
i960® RM/RN I/O Processor Developer’s Manual 7-1

Procedure Calls

rred to
ed

ter set
 frame.
The processor performs two call actions:

local When a local call is made, execution mode remains unchanged and the stack
frame for the called procedure is placed on the local stack. The local stack refers
to the stack of the calling procedure.

supervisor When a supervisor call is made from user mode, execution mode is switched to
supervisor and the stack frame for the called procedure is placed on the
supervisor stack.

When a supervisor call is issued from supervisor mode, the call degenerates into
a local call (i.e., no mode nor stack switch).

Explicit procedure calls can be made using several instructions. Local call instructions call and
callx perform a local call action. With call and callx, the called procedure’s IP is included as an
operand in the instruction.

A system call is made with calls. This instruction is similar to call and callx, except that the
processor obtains the called procedure’s IP from the system procedure table. A system call, when
executed, is directed to perform either the local or supervisor call action. These calls are refe
as system-local and system-supervisor calls, respectively. A system-supervisor call is also referr
to as a supervisor call.

7.1 Call and Return Mechanism

At any point in a program, the i960 processor has access to the global registers, a local regis
and the procedure stack. A subset of the stack allocated to the procedure is called the stack

• When a call executes, a new stack frame is allocated for the called procedure. The processor
also saves the current local register set, freeing these registers for use by the newly called
procedure. In this way, every procedure has a unique stack and a unique set of local registers.

• When a return executes, the current local register set and current stack frame are deallocated.
The previous local register set and previous stack frame are restored.
7-2 i960® RM/RN I/O Processor Developer’s Manual

Procedure Calls
7.1.1 Local Registers and the Procedure Stack

The processor automatically allocates a set of 16 local registers for each procedure. Since local registers
are on-chip, they provide fast access storage for local variables. Of the 16 local registers, 13 are
available for general use; r0, r1 and r2 are reserved for linkage information to tie procedures together.

The processor does not always clear or initialize the set of local registers assigned to a new
procedure. Therefore, initial register contents are unpredictable. Also, because the processor does
not initialize the local register save area in the newly created stack frame for the procedure, its
contents are equally unpredictable.

The procedure stack can be located anywhere in the address space and grows from low addresses to
high addresses. It consists of contiguous frames, one frame for each active procedure. Local
registers for a procedure are assigned a save area in each stack frame (Figure 7-1). The procedure
stack, available to the user, begins after this save area.

To increase procedure call speed, the architecture allows an implementation to cache the saved
local register sets on-chip. Thus, when a procedure call is made, the contents of the current set of
local registers often do not have to be written out to the save area in the stack frame in memory.
Refer to Section 7.1.4, “Caching Local Register Sets” on page 7-7 and Section 7.1.4.1, “Reserving
Local Register Sets for High Priority Interrupts” on page 7-8 for more about local registers and
procedure stack interrelations.

Figure 7-1. Procedure Stack Structure and Local Registers

register
save area

Procedure Stack

Previous Frame Pointer (PFP)

Stack Pointer (SP)

Return Instruction Pointer (RIP)

user allocated stack

unused stack

stack growth
(toward higher addresses)

padding area

user allocated stack

Current Register Set

Previous Frame Pointer (PFP)

Stack Pointer (SP)

reserved for RIP

.

..

Frame Pointer (FP)

Previous
Stack

Frame

Current
Stack
Frame.

..

...

...

g0

g15

r0

r1

r2

r15

r0

r1

r2

r15
i960® RM/RN I/O Processor Developer’s Manual 7-3

Procedure Calls

 g15,
ot use

rding

ck
k

 action

k. The
his is

In the
pt
 written

ng the
 data
ld be
7.1.2 Local Register and Stack Management

Global register g15 (FP) and local registers r0 (PFP), r1 (SP) and r2 (RIP) contain information to
link procedures together and link local registers to the procedure stack (Figure 7-1). The following
subsections describe this linkage information.

7.1.2.1 Frame Pointer

The frame pointer is the current stack frame’s first byte address. It is stored in global register
the frame pointer (FP) register. The FP register is always reserved for the frame pointer; do n
g15 for general storage.

Stack frame alignment is defined for each implementation of the i960 processor family, acco
to an SALIGN parameter. In the i960® RM/RN I/O processor, stacks are aligned on 16-byte
boundaries (Figure 7-1). When the processor needs to create a new frame on a procedure call, it
adds a padding area to the stack so that the new frame starts on a 16-byte boundary.

7.1.2.2 Stack Pointer

The stack pointer is the byte-aligned address of the stack frame’s next unused byte. The sta
pointer value is stored in local register r1, the stack pointer (SP) register. The procedure stac
grows upward (i.e., toward higher addresses). When a stack frame is created, the processor
automatically adds 64 to the frame pointer value and stores the result in the SP register. This
creates the register save area in the stack frame for the local registers.

The program must modify the SP register value when data is stored or removed from the stac
i960 architecture does not provide an explicit push or pop instruction to perform this action. T
typically done by adding the size of all pushes to the stack in one operation.

7.1.2.3 Considerations When Pushing Data onto the Stack

Care should be taken in writing to stack in the presence of unforeseen faults and interrupts.
general case, to ensure that the data written to the stack is not corrupted by a fault or interru
record, the SP should be incremented first to allocate the space, and then the data should be
to the allocated space:
mov sp,r4

addo 24,sp,sp

st data,(r4)

...

st data,20(r4)

7.1.2.4 Considerations When Popping Data off the Stack

For reasons similar to those discussed in the previous section, care should be taken in readi
stack in the presence of unforeseen faults and interrupts. In the general case, to ensure that
about to be popped off the stack is not corrupted by a fault or interrupt record, the data shou
read first and then the sp should be decremented:
subo 24,sp,r4

ld 20(r4),rn

...

ld (r4),rn

mov r4,sp
7-4 i960® RM/RN I/O Processor Developer’s Manual

Procedure Calls

per

 a
e

nism

anism

IP.

rame’s
uction

 with

/RN
ts
7.1.2.5 Previous Frame Pointer

The previous frame pointer is the previous stack frame’s first byte address. This address’s up
28 bits are stored in local register r0, the previous frame pointer (PFP) register. The four
least-significant bits of the PFP are used to store the return type field. See Figure 7-5 and Table 7-2
for more information on the PFP and the return-type field.

7.1.2.6 Return Type Field

PFP register bits 0 through 3 contain return type information for the calling procedure. When
procedure call is made — either explicit or implicit — the processor records the call type in th
return type field. The processor then uses this information to select the proper return mecha
when returning to the calling procedure. The use of this information is described in Section 7.8,
“Returns” on page 7-17.

7.1.2.7 Return Instruction Pointer

The actual RIP register (r2) is reserved by the processor to support the call and return mech
and must not be used by software; the actual value of RIP is unpredictable at all times. For
example, an implicit procedure call (fault or interrupt) can occur at any time and modify the R
An OPERATION.INVALID_OPERAND fault is generated when attempting to write the RIP.

The image of the RIP register in the stack frame is used by the processor to determine that f
return instruction address. When a call is made, the processor saves the address of the instr
after the call in the image of the RIP register in the calling frame.

7.1.3 Call and Return Action

To clarify how procedures are linked and how the local registers and stack are managed, the
following sections describe a general call and return operation and the operations performed
the FP, SP, PFP and RIP registers.

The events for call and return operations are given in a logical order of operation. The i960 RM
I/O processor can execute independent operations in parallel; therefore, many of these even
execute simultaneously. For example, to improve performance, the processor often begins
prefetching of the target instruction for the call or return before the operation is complete.
i960® RM/RN I/O Processor Developer’s Manual 7-5

Procedure Calls

ing
egister

ister

inter
a new

ad of

 value

time

ith the

y read
d from
e.

he
7.1.3.1 Call Operation

When a call, calls or callx instruction is executed or an implicit call is triggered:

1. The processor stores the instruction pointer for the instruction following the call in the current
stack’s RIP register (r2).

2. The current local registers — including the PFP, SP and RIP registers — are saved, free
these for use by the called procedure. The local registers are saved in the on-chip local r
cache if space is available.

3. The frame pointer (g15) for the calling procedure is stored in the current stack’s PFP reg
(r0). The return type field in the PFP register is set according to the call type which is
performed. See Section 7.8, “Returns” on page 7-17.

4. For a local or system-local call, a new stack frame is allocated by using the old stack po
value saved in step 2. This value is first rounded to the next 16-byte boundary to create
frame pointer, then stored in the FP register. Next, 64 bytes are added to create the new
frame’s register save area. This value is stored in the SP register.

For an interrupt call from user mode, the current interrupt stack pointer value is used inste
the value saved in step 2.

For a system-supervisor call from user mode, the current Supervisor Stack Pointer (SSP)
is used instead of the value saved in step 2.

5. The instruction pointer is loaded with the address of the first instruction in the called
procedure. The processor gets the new instruction pointer from the call, the system procedure
table, the interrupt table or the fault table, depending on the type of call executed.

Upon completion of these steps, the processor begins executing the called procedure. Some
before a return or nested call, the local register set is bound to the allocated stack frame.

7.1.3.2 Return Operation

A return from any call type — explicit or implicit — is always initiated with a return (ret)
instruction. On a return, the processor performs these operations:

1. The current stack frame and local registers are deallocated by loading the FP register w
value of the PFP register.

2. The local registers for the return target procedure are retrieved. The registers are usuall
from the local register cache; however, in some cases, these registers have been flushe
register cache to memory and must be read directly from the save area in the stack fram

3. The processor sets the instruction pointer to the value of the RIP register.

Upon completion of these steps, the processor executes the instruction to which it returns. T
frames created before the ret instruction was executed is overwritten by later implicit or explicit
call operations.
7-6 i960® RM/RN I/O Processor Developer’s Manual

Procedure Calls

e
 area in

ilable
is

cache is
mory.

 in the
7.1.4 Caching Local Register Sets

Actual implementations of the i960 architecture may cache some number of local register sets
within the processor to improve performance. Local registers are typically saved and restored from
the local register cache when calls and returns are executed. Other overhead associated with a call
or return is performed in parallel with this data movement.

When the number of nested procedures exceeds local register cache size, local register sets must at
times be saved to (and restored from) their associated save areas in the procedure stack. Because these
operations require access to external memory, this local cache miss affects call and return performance.

When a call is made and no frames are available in the register cache, a register set in the cache
must be saved to external memory to make room for the current set of local registers in the cache.
See Section 4.2, “Local Register Cache” on page 4-2. This action is referred to as a frame spill. Th
oldest set of local registers stored in the cache is spilled to the associated local register save
the procedure stack. Figure 7-2 illustrates a call operation with and without a frame spill.

Similarly, when a return is made and the local register set for the target procedure is not ava
in the cache, these local registers must be retrieved from the procedure stack in memory. Th
operation is referred to as a frame fill. Figure 7-3 illustrates return operations with and without
frame fills.

The flushreg instruction, described in Section 6.2.30, “flushreg” on page 6-46, writes all local
register sets (except the current one) to their associated stack frames in memory. The register
then invalidated, meaning that all flushed register sets are restored from their save areas in me

For most programs, the existence of the multiple local register sets and their saving/restoring
stack frames should be transparent. However, there are some special cases:

• A store to the register save area in memory does not necessarily update a local register set,
unless user software executes flushreg first.

• Reading from the register save area in memory does not necessarily return the current value of
a local register set, unless user software executes flushreg first.

• There is no mechanism, including flushreg, to access the current local register set with a read
or write to memory.

• flushreg must be executed sometime before returning from the current frame if the current
procedure modifies the PFP in register r0, or else the behavior of the ret instruction is not
predictable.

• The values of the local registers r2 to r15 in a new frame are undefined.

flushreg is commonly used in debuggers or fault handlers to gain access to all saved local
registers. In this way, call history may be traced back through nested procedures.
i960® RM/RN I/O Processor Developer’s Manual 7-7

Procedure Calls

y. The
licit

ames
 for
7.1.4.1 Reserving Local Register Sets for High Priority Interrupts

To decrease interrupt latency for high priority interrupts, software can limit the number of frames
available to all remaining code. This includes code that is either in the executing state
(non-interrupted) or code that is in the interrupted state but has a process priority less than 28. For the
purposes of discussion here, this remaining code is referred to as non-critical code. Specifying a limit
for non-critical code ensures that some number of free frames are available to high-priority interrupt
service routines. Software can specify the limit for non-critical code by writing bits 10 through 8 of
the register cache configuration word in the PRCB (Table 11-8 “Process Control Block
Configuration Words” on page 11-15). The value indicates how many frames within the register
cache may be used by non-critical code before a frame needs to be flushed to external memor
programmed limit is used only when a frame is pushed, which occurs only for an implicit or exp
call.

Allowed values of the programmed limit range from 0 to 7. Setting the value to 0 reserves no fr
for high-priority interrupts. Setting the value to 7 causes the register cache to become disabled
non-critical code. See Section 11.4.2, “Process Control Block – PRCB” on page 11-14.
7-8 i960® RM/RN I/O Processor Developer’s Manual

Procedure Calls
Figure 7-2. Frame Spill

Local Register Cache

Current Local
Register Set

Procedure Stack
(0 = Main, successive

numbers indicate nested
procedure level)

user
stack
space

reserved
for local
register set n

local register
set n stored
on procedure stack

Spill

call with no frame spill call with frame spill

1

0

3

2

1

Empty

4

3

2

1

4

3

2

5

1

0

1

0

n

2

3

4

5

6

8

6

5

4

3

2

3

4

5

6

7

8

n

Frame

(with no sets reserved for
high priority interrupts)

7 8 9

5

6

7

4

5

6

6

7

8

2

11

2

3

2

7 7

9

i960® RM/RN I/O Processor Developer’s Manual 7-9

Procedure Calls
Figure 7-3. Frame Fill

Frame
Fill

return with no frame fill return with frame fill

4

3

3 2

1

0

1

0

1

0

3

2 2

Procedure Stack
(0 = Main, successive

numbers indicate nested

procedure level)

Local Register Cache
(With no sets reserved

Current Local
Register Set

user
stack
space

reserved
for local
register set n

local register
set n stored
on procedure stack

n n

for high priority interrupts)
Empty

Empty

Empty

Empty

Empty

Empty

Empty

Empty

Empty

Empty

Empty

Empty

Empty

Empty

Empty

Empty

Empty

Empty

Empty

Empty

Empty

Empty

Empty

4

3

2

7-10 i960® RM/RN I/O Processor Developer’s Manual

Procedure Calls

e
7.1.5 Mapping Local Registers to the Procedure Stack

Each local register set is mapped to a register save area of its respective frame in the procedure
stack (Figure 7-1). Saved local register sets are frequently cached on-chip rather than saved to
memory. This is not a write-through cache. Local register set contents are not saved automatically
to the save area in memory when the register set is cached. This would cause a significant
performance loss for call operations.

Also, no automatic update policy is implemented for the register cache. If the register save area in
memory for a cached register set is modified, there is no guarantee that the modification is reflected
when the register set is restored. For a frame spill, the set must be flushed to memory prior to the
modification for the modification to be valid.

The flushreg instruction causes the contents of all cached local register sets to be written (flushed)
to their associated stack frames in memory. The register cache is then invalidated, meaning that all
flushed register sets are restored from their save areas in memory. The current set of local registers
is not written to memory. flushreg is commonly used in debuggers or fault handlers to gain access
to all saved local registers. In this way, call history may be traced back through nested procedures.
flushreg is also used when implementing task switches in multitasking kernels. The procedure
stack is changed as part of the task switch. To change the procedure stack, flushreg is executed to
update the current procedure stack and invalidate all entries in the local register cache. Next, the
procedure stack is changed by directly modifying the FP and SP registers and executing a call
operation. After flushreg executes, the procedure stack may also be changed by modifying the
previous frame in memory and executing a return operation.

When a set of local registers is assigned to a new procedure, the processor may or may not clear or
initialize these registers. Therefore, initial register contents are unpredictable. Also, the processor
does not initialize the local register save area in the newly created stack frame for the procedure; its
contents are equally unpredictable.

7.2 Modifying the PFP Register

The FP must not be directly modified by user software or risk corrupting the local registers.
Instead, implement context switches by modifying the PFP.

Modification of the PFP is typically for context switches; as part of the switch, the active procedure
changes the pointer to the frame that it returns to (previous frame pointer — PFP). Great car
should be taken in modifying the PFP. In the general case, a flushreg must be issued before and
after modifying the PFP when the local register cache is enabled (Example 7-1). This requirement
ensures the correct operation of a context switch on all i960 processors in all situations.

Example 7-1. flushreg

Do a context switch.

Assume PFP = 0x5000.

flushreg # Flush Frames to correct address.

lda 0x8000,pfp

flushreg # Ensure that "ret" gets updated PFP.

ret
i960® RM/RN I/O Processor Developer’s Manual 7-11

Procedure Calls

 the

cts

has

ddition

d in
ers, the

 be
rgument

an

ument

To do
rs.

e using
sed
ed
t block
ds the
The flushreg before the modification is necessary to ensure that the frame of the previous context
(mapped to 0x5000 in the example) is “spilled” to the proper external memory address and
removed from the local register cache. If the flushreg before the modification was omitted, a
flushreg (or implicit frame spill due to an interrupt) after the modification of PFP would cause
frame of the previous context to be written to the wrong location in external memory.

The flushreg after the modification ensures that outstanding results are completely written to thePFP
before a subsequent ret instruction can be executed. Recall that the ret instruction uses the low-order
4 bits of the PFP to select which ret function to perform. Requiring the flushreg after the PFP
modification allows an i960 implementation to implement a simple mechanism that quickly sele
the ret function at the time the ret instruction is issued and provides a faster return operation.

Note the flushreg after the modification executes very quickly because the local register cache
already been flushed by the flushreg before; only synchronization of the PFP is performed. i960
processor implementations may provide other mechanisms to ensure PFP synchronization in a
to flushreg, but a flushreg after a PFP modification is ensured to work on all i960 processors.

7.3 Parameter Passing

Parameters are passed between procedures in two ways:

value Parameters are passed directly to the calling procedure as part of the call and
return mechanism. This is the fastest method of passing parameters.

reference Parameters are stored in an argument list in memory and a pointer to the
argument list is passed in a global register.

When passing parameters by value, the calling procedure stores the parameters to be passe
global registers. Since the calling procedure and the called procedure share the global regist
called procedure has direct access to the parameters after the call.

When a procedure needs to pass more parameters than fits in the global registers, they can
passed by reference. Here, parameters are placed in an argument list and a pointer to the a
list is placed in a global register.

The argument list can be stored anywhere in memory; however, a convenient place to store
argument list is in the stack for a calling procedure. Space for the argument list is created by
incrementing the SP register value. If the argument list is stored in the current stack, the arg
list is automatically deallocated when no longer needed.

A procedure receives parameters from — and returns values to — other calling procedures.
this successfully and consistently, all procedures must agree on the use of the global registe

Parameter registers pass values into a function. Up to 12 parameters can be passed by valu
the global registers. If the number of parameters exceeds 12, additional parameters are pas
using the calling procedure’s stack; a pointer to the argument list is passed in a pre-designat
register. Similarly, several registers are set aside for return arguments and a return argumen
pointer is defined to point to additional parameters. If the number of return arguments excee
available number of return argument registers, the calling procedure passes a pointer to an
argument list on its stack where the remaining return values is placed. Example 7-2 illustrates
parameter passing by value and by reference.
7-12 i960® RM/RN I/O Processor Developer’s Manual

Procedure Calls

isters

must
his is
return

call.

nt
dure
.

Local registers are automatically saved when a call is made. Because of the local register cache,
they are saved quickly and with no external bus traffic. The efficiency of the local register
mechanism plays an important role in two cases when calls are made:

1. When a procedure is called which contains other calls, global parameter registers should be
moved to working local registers at the beginning of the procedure. In this way, parameter
registers are freed and nested calls are easily managed. The register move instruction
necessary to perform this action is very fast; the working parameters — now in local reg
— are saved efficiently when nested calls are made.

2. When other procedures are nested within an interrupt or fault procedure, the procedure
preserve all normally non-preserved parameter registers, such as the global registers. T
necessary because the interrupt or fault occurs at any point in the user’s program and a
from an interrupt or fault must restore the exact processor state. The interrupt or fault
procedure can move non-preserved global registers to local registers before the nested

7.4 Local Calls

A local call does not cause a stack switch. A local call can be made two ways:

• with the call and callx instructions; or

• with a system-local call as described in Section 7.5, “System Calls” on page 7-14.

call specifies the address of the called procedures as the IP plus a signed, 24-bit displaceme
(i.e., -223 to 223 - 4). callx allows any of the addressing modes to be used to specify the proce
address. The IP-with-displacement addressing mode allows full 32-bit IP-relative addressing

When a local call is made with a call or callx, the processor performs the same operation as
described in Section 7.1.3.1, “Call Operation” on page 7-6. The target IP for the call is derived
from the instruction’s operands and the new stack frame is allocated on the current stack.

Example 7-2. Parameter Passing Code Example

Example of parameter passing . . .

C-source: int a,b[10];

a = proc1(a,1,’x’,&b[0]);

assembles to ...

mov r3,g0 # value of a

ldconst 1,g1 # value of 1

ldconst 120,g2 # value of “x”

lda 0x40(fp),g3 # reference to b[10]

call _proc1

mov g0,r3 # save return value in “a”

.

.

_proc1:

movq g0,r4 # save parameters

.

. # other instructions in procedure

. # and nested calls

mov r3,g0 # load return parameter

ret
i960® RM/RN I/O Processor Developer’s Manual 7-13

Procedure Calls

e

dure

 the

tion for

ility.
edure
e the

able
a
ode.
8

can be

 up to
re

lds.
7.5 System Calls

A system call is a call made via the system procedure table. It can be used to make a system-local
call — similar to a local call made with call and callx in the sense that there is no stack nor mod
switch — or a system supervisor call. A system call is initiated with calls, which requires a
procedure number operand. The procedure number provides an index into the system proce
table, where the processor finds IPs for specific procedures.

Using an i960 processor language assembler, a system procedure is directly declared using
.sysproc directive. At link time, the optimized call directive, callj, is replaced with a calls when a
system procedure target is specified. (Refer to current i960 processor assembler documenta
a description of the .sysproc and callj directives.)

The system call mechanism offers two benefits. First, it supports application software portab
System calls are commonly used to call kernel services. By calling these services with a proc
number rather than a specific IP, applications software does not need to be changed each tim
implementation of the kernel services is modified. Only the entries in the system procedure t
must be changed. Second, the ability to switch to a different execution mode and stack with
system supervisor call allows kernel procedures and data to be insulated from applications c
This benefit is further described in Section 3.7, “User-Supervisor Protection Model” on page 3-1.

7.5.1 System Procedure Table

The system procedure table is a data structure for storing IPs to system procedures. These
procedures which software can access through (1) a system call or (2) the fault handling
mechanism. Using the system procedure table to store IPs for fault handling is described in
Section 9.1, “Fault Handling Overview” on page 9-1.

Figure 7-4 shows the system procedure table structure. It is 1088 bytes in length and can have
260 procedure entries. At initialization, the processor caches a pointer to the system procedu
table. This pointer is located in the PRCB. The following subsections describe this table’s fie
7-14 i960® RM/RN I/O Processor Developer’s Manual

Procedure Calls

ach
s field
rd

7.5.1.1 Procedure Entries

A procedure entry in the system procedure table specifies a procedure’s location and type. E
entry is one word in length and consists of an address (IP) field and a type field. The addres
gives the address of the first instruction of the target procedure. Since all instructions are wo
aligned, only the entry’s 30 most significant bits are used for the address. The entry’s two
least-significant bits specify entry type. The procedure entry type field indicates call type:
system-local call or system-supervisor call (Table 7-1). On a system call, the processor performs
different actions depending on the type of call selected.

1. Calls with reserved entry types have unpredictable behavior.

Figure 7-4. System Procedure Table

Reserved
(Initialize to 0)

000H

008H

00CH

010H

02CH

034H

030H

038H

03CH

438H

43CH

Entry Type:
00 - Local
10-Supervisor

Trace
Control
Bit

031

Procedure Entry

Tsupervisor stack pointer base

procedure entry 2

procedure entry 1

procedure entry 0

procedure entry 259

.

.

.

Preserved

address

031 12

Table 7-1. Encodings of Entry Type Field in System Procedure Table

Encoding Call Type

00 System-Local Call

01 Reserved1

10 System-Supervisor Call

11 Reserved1
i960® RM/RN I/O Processor Developer’s Manual 7-15

Procedure Calls

0-3

f 00,
cessor

he

 of
rget IP
7.5.1.2 Supervisor Stack Pointer

When a system-supervisor call is made, the processor switches to a new stack called the supervisor
stack, if not already in supervisor mode. The processor gets a pointer to this stack from the
supervisor stack pointer field in the system procedure table (Figure 7-4) during the reset
initialization sequence and caches the pointer internally. Only the 30 most significant bits of the
supervisor stack pointer are given. The processor aligns this value to the next 16-byte boundary to
determine the first byte of the new stack frame.

7.5.1.3 Trace Control Bit

The trace control bit (byte 12, bit 0) specifies the new value of the trace enable bit in the PC register
(PC.te) when a system-supervisor call causes a switch from user mode to supervisor mode. Setting
this bit to 1 enables tracing in the supervisor mode; setting it to 0 disables tracing. The use of this bit
is described in Section 10.1.2, “PC Trace Enable Bit and Trace-Fault-Pending Flag” on page 1.

7.5.2 System Call to a Local Procedure

When a calls instruction references an entry in the system procedure table with an entry type o
the processor executes a system-local call to the selected procedure. The action that the pro
performs is the same as described in Section 7.1.3.1, “Call Operation” on page 7-6. The call’s
target IP is taken from the system procedure table and the new stack frame is allocated on t
current stack, and the processor does not switch to supervisor mode. The calls algorithm is
described in Section 6.2.14, “calls” on page 6-21.

7.5.3 System Call to a Supervisor Procedure

When a calls instruction references an entry in the system procedure table with an entry type
102, the processor executes a system-supervisor call to the selected procedure. The call’s ta
is taken from the system procedure table.

The processor performs the same action as described in Section 7.1.3.1, “Call Operation” on
page 7-6, with the following exceptions:

• If the processor is in user mode, it switches to supervisor mode.

• If a mode switch occurs, SP is read from the Supervisor Stack Pointer (SSP) base. A new
frame for the called procedure is placed at the location pointed to after alignment of SP.

• If no mode switch occurs, the new frame is allocated on the current stack.

• If a mode switch occurs, the state of the trace enable bit in the PC register is saved in the return
type field in the PFP register. The trace enable bit is then loaded from the trace control bit in
the system procedure table.

• If no mode switch occurs, the value 0002 (calls instruction) or 0012 (fault call) is saved in the
return type field of the pfp register.

When the processor switches to supervisor mode, it remains in that mode and creates new frames
on the supervisor stack until a return is performed from the procedure that caused the original
switch to supervisor mode. While in supervisor mode, either the local call instructions (call and
callx) or calls can be used to call procedures.

The user-supervisor protection model and its relationship to the supervisor call are described in
Section 3.7, “User-Supervisor Protection Model” on page 3-18.
7-16 i960® RM/RN I/O Processor Developer’s Manual

Procedure Calls

er mode;

or
pointer

us

nism:

r mode

or
nd

wly
dentify
tored

rn
7.6 User and Supervisor Stacks

When using the user-supervisor protection mechanism, the processor maintains separate stacks in
the address space. One of these stacks — the user stack — is for procedures executed in us
the other stack — the supervisor stack — is for procedures executed in supervisor mode.

The user and supervisor stacks are identical in structure (Figure 7-1). The base stack pointer for the
supervisor stack is automatically read from the system procedure table and cached internally
during initialization. Each time a user-to-supervisor mode switch occurs, the cached supervis
stack pointer base is used for the starting point of the new supervisor stack. The base stack
for the user stack is usually created in the initialization code. See Section 11.2, “i960® RM/RN I/O
Processor Initialization” on page 11-2. The base stack pointers must be aligned to a 16-byte
boundary; otherwise, the first frame pointer on the interrupt stack is rounded up to the previo
16-byte boundary.

7.7 Interrupt and Fault Calls

The architecture defines two types of implicit calls that make use of the call and return mecha
interrupt-handling procedure calls and fault-handling procedure calls. A call to an interrupt
procedure is similar to a system-supervisor call. Here, the processor obtains pointers to the
interrupt procedures through the interrupt table. The processor always switches to superviso
on an interrupt procedure call.

A call to a fault procedure is similar to a system call. Fault procedure calls can be local calls
supervisor calls. The processor obtains pointers to fault procedures through the fault table a
(optionally) through the system procedure table.

When a fault call or interrupt call is made, a fault record or interrupt record is placed in the ne
generated stack frame for the call. These records hold the machine state and information to i
the fault or interrupt. When a return from an interrupt or fault is executed, machine state is res
from these records. See Chapter 8, “PCI and Peripheral Interrupt Controller Unit” and Chapter 9,
“Faults” for more information on the structure of the fault and interrupt records.

7.8 Returns

The return (ret) instruction provides a generalized return mechanism that can be used to retu
from any procedure that was entered by call, calls, callx, an interrupt call or a fault call. When ret
executes, the processor uses the information from the return-type field in the PFP register
(Figure 7-5) to determine the type of return action to take.
i960® RM/RN I/O Processor Developer’s Manual 7-17

Procedure Calls

f

return
 are

return-type field indicates the type of call which was made. Table 7-2 shows the return-type field
encoding for the various calls: local, supervisor, interrupt and fault.

trace-on-return flag (PFP.rt0 or bit 0 of the return-type field) stores the trace enable bit value when
an explicit system-supervisor call is made from user mode. When the call is made, the PC register
trace enable bit is saved as the trace-on-return flag and then replaced by the trace controls bit in the
system procedure table. On a return, the trace enable bit’s original value is restored. This
mechanism allows instruction tracing to be turned on or off when a supervisor mode switch occurs.
See Section 10.5.2.1, “Tracing on Explicit Call” on page 10-12.

prereturn-trace flag (PFP.p) is used in conjunction with call-trace and prereturn-trace modes. I
call-trace mode is enabled when a call is made, the processor sets the prereturn-trace flag;
otherwise it clears the flag. Then, if this flag is set and prereturn-trace mode is enabled, a pre
trace event is generated on a return, before any actions associated with the return operation
performed. See Section 10.2, “Trace Modes” on page 10-3 for a discussion of interaction between
call-trace and prereturn-trace modes with the prereturn-trace flag.

Figure 7-5. Previous Frame Pointer Register – PFP

28 24 20 16 12 8 4 031

Return Status

a
4 p

r
t
2

r
t
1

r
t
0

Return-Type Field - PFP.rt

Pre-Return-Trace Flag - PFP.p

Previous Frame Pointer
Address-PFP.a

a
3
1

Table 7-2. Encoding of Return Status Field

Return Status
Field Call Type Return Action

000
Local call
(system-local call or system-supervisor
call made from supervisor mode)

Local return
(return to local stack; no mode switch)

001 Fault call Fault return

01t System-supervisor from user mode

Supervisor return
(return to user stack, mode switch to user
mode, trace enable bit is replaced with the
t1 bit stored in the PFP register on the call)

100 reserved 2

101 reserved2

110 reserved2

111 Interrupt call Interrupt return

NOTES:
1. “t” denotes the trace-on-return flag; used only for system supervisor calls which cause a user-to-supervisor

mode switch.
2. This return type results in unpredictable behavior.
7-18 i960® RM/RN I/O Processor Developer’s Manual

Procedure Calls

’s

es.
e a
7.9 Branch-and-Link

A branch-and-link is executed using either the branch-and-link instruction (bal) or
branch-and-link-extended instruction (balx). When either instruction executes, the processor
branches to the first instruction of the called procedure (the target instruction), while saving a
return IP for the calling procedure in a register. The called procedure uses the same set of local
registers and stack frame as the calling procedure:

• For bal, the return IP is automatically saved in global register g14

• For balx, the return IP instruction is saved in a register specified by one of the instruction
operands

A return from a branch-and-link is generally carried out with a bx (branch extended) instruction,
where the branch target is the address saved with the branch-and-link instruction. The
branch-and-link method of making procedure calls is recommended for calls to leaf procedur
Leaf procedures typically call no other procedures. Branch-and-link is the fastest way to mak
call, providing the calling procedure does not require its own registers or stack frame.
i960® RM/RN I/O Processor Developer’s Manual 7-19

tate,
rogram

service
errupt

terrupt

d
se by

 the
PCI and Peripheral Interrupt Controller
Unit 8

This chapter describes the i960® RM/RN I/O processor Interrupt Controller Unit, including:

• operation modes

• setup

• external memory interface

• implementation of the interrupts

8.1 Overview

An interrupt is an event that causes a temporary break in program execution so the processor can
handle another task. Interrupts commonly request I/O services or synchronize the processor with
some external hardware activity. For interrupt handler portability across the i960 processor family,
the architecture defines a consistent interrupt state and interrupt-priority-handling mechanism. To
manage and prioritize interrupt requests in parallel with processor execution, the i960 RM/RN I/O
processor provides an on-chip programmable interrupt controller.

When the processor is redirected to service an interrupt, it uses a vector number that accompanies
the interrupt request to locate the vector entry in the interrupt table. From that entry, it gets an
address to the first instruction of the selected interrupt procedure. The processor then makes an
implicit call to that procedure.

When the interrupt call is made, the processor uses a dedicated interrupt stack. The processor
creates a new frame for the interrupt on this stack and a new set of local registers is allocated to the
interrupt procedure. The interrupted program’s current state is also saved.

Upon return from the interrupt procedure, the processor restores the interrupted program’s s
switches back to the stack that the processor was using prior to the interrupt and resumes p
execution.

Since interrupts are handled based on priority, requested interrupts are often saved for later
rather than handled immediately. The mechanism for saving the interrupt is referred to as int
posting. Interrupt posting is described in Section 8.1.6, “Posting Interrupts” on page 8-7.

The i960 core architecture defines two data structures to support interrupt processing: the in
table (Figure 8-1) and interrupt stack. The interrupt table contains 248 vectors for interrupt
handling procedures (eight of which are reserved) and an area for posting software requeste
interrupts. The interrupt stack prevents interrupt handling procedures from using the stack in u
the application program. It also locates the interrupt stack in a different area of memory than
user and supervisor stack (e.g., fast SDRAM).
i960® RM/RN I/O Processor Developer’s Manual 8-1

PCI and Peripheral Interrupt Controller Unit

nate
Requests for interrupt service come from many sources and are prioritized such that instruction
execution is redirected only when an interrupt request is of higher priority than that of the
executing task. On the i960 RM/RN I/O processor, interrupt requests may originate from external
hardware sources, internal peripherals or software. The i960 RM/RN I/O processor contains a
number of integrated peripherals which may generate interrupts, including:

The interrupt controller can also intercept external secondary PCI interrupts and forward them to
the primary PCI interrupt pins.

Interrupts are detected with the chip’s 6-bit interrupt port and with a dedicated Non-Maskable
Interrupt (NMI#) input in the i960 core processor’s interrupt controller. Interrupt requests origi
from software by the sysctl instruction. To manage and prioritize all possible interrupts, the
processor integrates an on-chip programmable interrupt controller.

8.1.1 The i960® RM/RN I/O Processor Core Interrupt Architecture

The i960 RM/RN I/O processor contains the same core interrupt architecture as many other 80960
family members. Some of the core features include the interrupt record and stack, the way
interrupts are posted, and the way interrupt priorities are resolved. These basic architectural
features are detailed in the following sections.

Figure 8-1. Interrupt Handling Data Structures

Interrupt
InterruptTable
Handling

Procedure

Interrupt
Request Interrupt Pointer

Memory

i960® RM/RN
I/O Processor

• DMA Channel 0 • Primary ATU

• DMA Channel 1 • Secondary ATU

• DMA Channel 2 • I2C Bus Interface Unit

• Primary and Secondary Bridge Interface • Application Accelerator Unit

• Performance Monitoring Unit • Messaging Unit

• Timers 0 & 1 • Memory Controller Unit
8-2 i960® RM/RN I/O Processor Developer’s Manual

PCI and Peripheral Interrupt Controller Unit

tems

t.
ters
inters
 a

ether

t.

t

n
8.1.2 Software Requirements For Interrupt Handling

To use the processor’s interrupt handling facilities, user software must provide the following i
in memory:

• Interrupt Table

• Interrupt Handler Routines

• Interrupt Stack

These items are established in memory as part of the initialization procedure. Once these items are
present in memory and pointers to them have been entered in the appropriate system data
structures, the processor handles interrupts automatically and independently from software.

8.1.3 Interrupt Priority

Each procedure pointer’s priority is defined by dividing the procedure pointer number by eigh
Thus, at each priority level, there are eight possible procedure pointers (e.g., procedure poin
8-15 have a priority of 1 and procedure pointers 246-255 have a priority of 31). Procedure po
0-7 cannot be used because a priority-0 interrupt would never successfully stop execution of
program of any priority. In addition, procedure pointers 244-247 and 249-251 are reserved;
therefore, 241 procedure pointers are available to the user.

The processor compares its current priority with the interrupt request priority to determine wh
to service the interrupt immediately or to delay service:

• The interrupt is serviced immediately when its priority is higher than the priority of the
program or interrupt the processor is currently executing.

• The interrupt is posted as a pending interrupt (not serviced immediately) when the interrupt
priority is less than or equal to the processor’s current priority.

See Section 8.1.4.2, “Pending Interrupts” on page 8-5. When multiple interrupt requests are
pending at the same priority level, the request with the highest vector number is serviced firs

Priority-31 interrupts are handled as a special case. Even when the processor is executing a
priority level 31, a priority-31 interrupt interrupts the processor. On the i960 RM/RN I/O
processor, the non-maskable interrupt (NMI#) interrupts priority-31 execution; no interrupt ca
interrupt an NMI# handler.
i960® RM/RN I/O Processor Developer’s Manual 8-3

PCI and Peripheral Interrupt Controller Unit
8.1.4 Interrupt Table

The interrupt table (Figure 8-2) is 1028 bytes in length and can be located anywhere in the
non-reserved address space. It must be aligned on a word boundary. The processor reads a pointer
to the interrupt table byte 0 during initialization. The interrupt table must be located in RAM so the
processor can read and write the table’s pending interrupt section for software or externally
generated interrupts.

The interrupt table is divided into two sections: vector entries and pending interrupts. Each are
described in the subsections that follow.

Figure 8-2. Interrupt Table

X X

000H

004H

020H

024H (Vector 8)

028H (Vector 9)

02CH (Vector 10)

3D0H (Vector 243)
3D4H (Vector 244)

3E4H (Vector 248)

3E8H (Vector 249)

3F0H (Vector 251)
3F4H (Vector 252)

400H (Vector 255)

Entry Type:
00 Normal

10 Target in Cache
01 Reserved1

Pending Priorities

Pending Interrupts

Entry 8

Entry 9

NMI# Vector

Vector Entry

Instruction Pointer

...

Reserved (Initialize to 0)

Preserved

0

012

7831

...

Entry 252

Entry 255

...

Entry 243

Entry 10...

3E0H (Vector 247)

11 Reserved1

1Vector entries with a reserved
type have unpredictable behavior.
8-4 i960® RM/RN I/O Processor Developer’s Manual

PCI and Peripheral Interrupt Controller Unit

 the

upt
-255
 NMI#

ed
.

vector
. The
ce.

. Bits 0
etched
ion of
ter

ields:

ssor
 is

offset
 4, the
nding

st

r. The
cess
ake
8.1.4.1 Vector Entries

A vector entry contains a specific interrupt handler’s address. When an interrupt is serviced,
processor branches to the address specified by the vector entry.

Each interrupt is associated with an 8-bit vector number that points to a vector entry in the interr
table. The vector entry section contains 248 word-length entries. Vector numbers 8-243 and 252
and their associated vector entries are used for conventional interrupts. Vector number 248 is the
vector. Vector numbers 244-247 and 249-251 are reserved. Vector number 248 and its associat
vector entry is used for the non-maskable interrupt (NMI#). Vector numbers 0-7 cannot be used

Vector entry 248 contains the NMI# handler address. When the processor is initialized, the NMI#
located in the interrupt table is automatically read and stored in location 0H of internal data RAM
NMI# vector is subsequently fetched from internal data RAM to improve this interrupt’s performan

The vector entry structure is given at the bottom of Figure 8-2. Each interrupt procedure must begin
on a word boundary, so the processor assumes that the vector’s two least significant bits are 0
and 1 of an entry indicate entry type: type 00 indicates that the interrupt procedure should be f
normally; type 10 indicates that the interrupt procedure should be fetched from the locked partit
the instruction cache. Refer to Section 8.4.4.2, “Caching Interrupt Routines and Reserving Regis
Frames” on page 8-29. The other possible entry types are reserved and must not be used.

8.1.4.2 Pending Interrupts

The pending interrupts section comprises the interrupt table’s first 36 bytes, divided into two f
pending priorities (byte offset 0 through 3) and pending interrupts (4 through 35).

Each of the 32 bits in the pending priorities field indicate an interrupt priority. When the proce
posts a pending interrupt in the interrupt table, the bit corresponding to the interrupt’s priority
set; (e.g., when an interrupt with a priority of 10 is posted in the interrupt table, bit 10 is set).

Each of the pending interrupts field’s 256 bits represent an interrupt procedure pointer. Byte
5 is for vectors 8 through 15, byte offset 6 is for vectors 16 through 23, and so on. Byte offset
first byte of the pending interrupts field, is reserved. When an interrupt is posted, its correspo
bit in the pending interrupt field is set.

This encoding of the pending priority and pending interrupt fields permits the processor to fir
check for any pending interrupts with a priority greater than the current program and then
determine the vector number of the interrupt with the highest priority.

8.1.4.3 Caching Portions of the Interrupt Table

The architecture allows all or part of the interrupt table to be cached internally to the processo
purpose of caching these fields is to reduce interrupt latency by allowing the processor to ac
certain interrupt procedure pointers and the pending interrupt information without having to m
external memory accesses. The i960 RM/RN I/O processor caches the following:

• The value of the highest priority posted in the pending priorities field.

• A predefined subset of interrupt procedure pointers (entries from the interrupt table).

• Pending interrupts received from external interrupt pins.

This caching mechanism is non-transparent; the processor may modify fields in a cached interrupt
table without modifying the same fields in the interrupt table itself. Vector caching is described in
Section 8.4.4.1, “Vector Caching Option” on page 8-28.
i960® RM/RN I/O Processor Developer’s Manual 8-5

PCI and Peripheral Interrupt Controller Unit

re, in a

reated
e the

 frame
located

essor
the new
8.1.5 Interrupt Stack And Interrupt Record

The interrupt stack can be located anywhere in the non-reserved address space. The processor
obtains a pointer to the base of the stack during initialization. The interrupt stack has the same
structure as the local procedure stack described in Section 7.1.1, “Local Registers and the
Procedure Stack” on page 7-3. As with the local stack, the interrupt stack grows from lower
addresses to higher addresses.

The processor saves the state of an interrupted program, or an interrupted interrupt procedu
record on the interrupt stack. Figure 8-3 shows the structure of this interrupt record.

The interrupt record is always stored on the interrupt stack adjacent to the new frame that is c
for the interrupt handling procedure. It includes the state of the AC and PC registers at the tim
interrupt was serviced and the interrupt procedure pointer number used. Relative to the new
pointer (NFP), the saved AC register is located at address NFP-12, the saved PC register is
at address NFP-16.

In the i960 RM/RN I/O processor, the stack is aligned to a 16-byte boundary. When the proc
needs to create a new frame on an interrupt call, it adds a padding area to the stack so that
frame starts on a 16-byte boundary.

Figure 8-3. Storage of an Interrupt Record on the Interrupt Stack

Padding Area

Saved Arithmetic Controls Register

New Frame

NFP-8

NFP-16

NFP-12

NFP

Current Frame

FP

Saved Process Controls Register

Interrupt Stack
031

Current Stack
031 (Local, Supervisor, or Interrupt Stack)

Vector Number

Reserved

Stack
Growth

Interrupt

Record

Optional Data
(not used by i960 RM/RN I/O processor Implementation)
8-6 i960® RM/RN I/O Processor Developer’s Manual

PCI and Peripheral Interrupt Controller Unit

d

t.

nding
.

t.
ur:

iced.

est
the

 table

riority,
ter is
r’s
8.1.6 Posting Interrupts

Interrupts are posted to the processor by a number of different mechanisms; these are described in
the following sections.

• Software interrupts: interrupts posted through the interrupt table, by software running on the
i960 RM/RN I/O processor.

• External Interrupts: interrupts posted through the interrupt table, by an external agent to the
i960 RM/RN I/O processor.

• Hardware interrupts: interrupts posted directly to the i960 RM/RN I/O processor through an
implementation-dependent mechanism that may avoid using the interrupt table.

8.1.6.1 Posting Software Interrupts via sysctl

In the i960 RM/RN I/O processor, sysctl is typically used to request an interrupt in a program
(Example 8-1). The request interrupt message type (00H) is selected and the interrupt procedure pointer
number is specified in the least significant byte of the instruction operand. See Section 6.2.67, “sysctl”
on page 6-96 for a complete discussion of sysctl.

A literal can be used to post an interrupt with a vector number from 8 to 31. Here, the require
value of 00H in the second byte of a register operand is implied.

The action of the processor when it executes the sysctl instruction is as follows:

1. The processor performs an atomic write to the interrupt table and sets the bits in the
pending-interrupts and pending-priorities fields that correspond to the requested interrup

2. The processor updates the internal software priority register with the value of the highest pe
priority from the interrupt table. This may be the priority of the interrupt that was just posted

The interrupt controller continuously compares the following three values: software priority
register, current process priority, priority of the highest pending hardware-generated interrup
When the software priority register value is the highest of the three, the following actions occ

1. The interrupt controller signals the core that a software-generated interrupt is to be serv

2. The core checks the interrupt table in memory, determines the vector number of the high
priority pending interrupt and clears the pending-interrupts and pending-priorities bits in
table that correspond to that interrupt.

3. The core detects the interrupt with the next highest priority that is posted in the interrupt
(if any) and writes that value into the software priority register.

4. The core services the highest priority interrupt.

When more than one pending interrupt is posted in the interrupt table at the same interrupt p
the core handles the interrupt with the highest vector number first. The software priority regis
an internal register and, as such, is not visible to the user. The core only updates this registe
value when sysctl requests an interrupt or when a software-generated interrupt is serviced.

Example 8-1. Using sysctl to Request an Interrupt

ldconst 0x53,g5 # Vector number 53H is loaded

into byte 0 of register g5 and

the value is zero extended into

byte 1 of the register

sysctl g5, g5, g5 # Vector number 53H is posted
i960® RM/RN I/O Processor Developer’s Manual 8-7

PCI and Peripheral Interrupt Controller Unit

h the

anism

iority
upt.)
than

vel, the
hen

 first
ered
8.1.6.2 Posting Software Interrupts Directly in the Interrupt Table

In special cases within a single processor system, software can post interrupts by setting the desired
pending-interrupt and pending-priorities bits directly. Direct posting requires that software ensure
that no external I/O agents post a pending interrupt simultaneously, and that an interrupt cannot
occur after one bit is set but before the other is set. Note, however, that this method is not
recommended.

8.1.6.3 Posting External Interrupts

An external agent posts (sets) a pending interrupt with vector “v” to the i960 processor throug
interrupt table by executing the following algorithm:

Generally, software cannot use this algorithm to post interrupts because there is no way for
software to have an atomic (locking) read/write span multiple instructions.

8.1.6.4 Posting Hardware Interrupts

Certain interrupts are posted directly to the processor by an implementation-dependent mech
that can bypass the interrupt table. This is often done for performance reasons.

8.1.7 Resolving Interrupt Priority

The interrupt controller continuously compares the processor’s priority to the priorities of the
highest-posted software interrupt and the highest-pending hardware interrupt. The core is
interrupted when a pending interrupt request is higher than the processor priority or has a pr
of 31. (Note that a priority-31 interrupt handler can be interrupted by another priority-31 interr
There are no priority-0 interrupts, since such an interrupt would never have a priority higher
the current process, and would therefore never be serviced.

In the event that both hardware and software requested interrupts are posted at the same le
hardware interrupt is delivered first while the software interrupt is left pending. As a result, w
both priority-31 hardware- and software-requested interrupts are pending, control is first
transferred to the interrupt handler for the hardware-requested interrupt. However, before the
instruction of that handler can be executed, the pending software-requested interrupt is deliv
and control is transferred to the corresponding interrupt handler.

Example 8-2. External Agent Posting

External_Agent_Posting:

x = atomic_read(pending_priorities); #synchronize;

z = read(pending_interrupts[v/8]);

x[v/8] = 1;

z[v mod 8] = 1;

write(pending_interrupts[v/8]) = z;

atomic_write(pending_priorities) = x;
8-8 i960® RM/RN I/O Processor Developer’s Manual

PCI and Peripheral Interrupt Controller Unit
8.1.8 Sampling Pending Interrupts in the Interrupt Table

At specific points, the processor checks the interrupt table for pending interrupts posted. When one
is found, it is handled as if the interrupt occurred at that time. In the i960 RM/RN I/O processor, a
check for pending interrupts in the interrupt table is made when requesting a software interrupt
with sysctl or when servicing a software interrupt.

When a check of the interrupt table is made, the following algorithm is used. Since the pending
interrupts may be cached, the check for pending interrupt operation may not involve any memory
operations. The algorithm uses synchronization because there may be multiple agents posting and
unposting interrupts. In the algorithm, w, x, y, and z are temporary registers within the processor.

Example 8-3. Interrupt Resolution

/* Model used to resolve interrupts between execution of all macro instructions */

if (NMI#_pending && !block_NMI)

 { block_NMI = true; /* Reset on return from NMI INTR handler */

 vecnum = 248; vector_addr = 0;

 PC.priority = 31;

 push_local_register_set();

 goto common_interrupt_process; }

if (ICON.gie == enabled) {

 expand_HW_int();

 temp = max(HW_Int_Priority, SW_Int_Priority);

 if (temp == 31 || temp > PC.priority)

 { PC.priority = temp;

 if (SW_Int_Priority > HW_Int_Priority) goto Deliver_SW_Int;

 else{ vecnum = HW_vecnum; goto Deliver_HW_Int;}

 }

 }
i960® RM/RN I/O Processor Developer’s Manual 8-9

PCI and Peripheral Interrupt Controller Unit
The algorithm shows that the pending interrupts are marked by a bit in the Pending Interrupts Field,
and that the Pending Priorities Field is an optimization. The processor examines Pending Interrupts
only when the corresponding bit in Pending Priorities is set.

The steps prior to the atomic_read are another optimization. Note that these steps must be
repeated within the synchronized critical section, since another processor could have spotted and
accepted the same pending interrupt(s).

Use sysctl with a vector in the range 0 to 7 to force the core to check the interrupt table for pending
interrupts. When an external agent is posting interrupts to a shared interrupt table, use sysctl
periodically to guarantee recognition of pending interrupts posted in the table by the external agent.

Example 8-4. Check for Pending Interrupts

Check_For_Pending_Interrupts:

x = read(pending_priorities);

if(x == 0) return(); #nothing to do

y = most_significant_bit(x);

if(y != 31 && y <= current_priority) return();

x = atomic_read(pending_priorities); #synchronize

if(x == 0)

{atomic_write(pending_priorities) = x;

 return();} #interrupts disappeared

(e.g., handled by another processor)

y = most_significant_bit(x); #must be repeated

if(y != 31 && y <= current_priority)

{atomic_write(pending_priorities) = x;

return();} #interrupt disappeared

z = read(pending_interrupts[y]); #z is a byte

if(z == 0)

{x[y] = 0; #false alarm, should not happen

atomic_write(pending_priorities) = x;

return();}

else

{w = most_significant_bit[z];

z[w] = 0;

write(pending_interrupts[y]) = z;

if(z == 0) x[y] = 0; #no others at this level

atomic_write(pending_priorities) = x;

take_interrupt();}
8-10 i960® RM/RN I/O Processor Developer’s Manual

PCI and Peripheral Interrupt Controller Unit

pt
e to
led

pt
r on

f an

 When

n.
are
priority.

rupts:
8.1.9 Saving the Interrupt Mask

Whenever an interrupt requested by the external interrupt pins or by the internal timers is serviced,
the IMSK register is automatically saved in register r3 of the new local register set allocated for the
interrupt handler. After the mask is saved, the IMSK register is optionally cleared. This masks all
interrupts except NMI#s while an interrupt is serviced. Since the IMSK register value is saved, the
interrupt procedure can restore the value before returning. The option of clearing the mask is
selected by programming the ICON register as described in Section 8.5.1, “Interrupt Control
Register (ICON)” on page 8-33.

Priority-31 interrupts are interrupted by other priority-31 interrupts. For level-activated interru
inputs, instructions within the interrupt handler are typically responsible for causing the sourc
deactivate. If these priority-31 interrupts are not masked, another priority-31 interrupt is signa
and serviced before the handler can deactivate the source. The first instruction of the interru
handling procedure is never reached, unless the option is selected to clear the IMSK registe
entry to the interrupt.

Another use of the mask is to lock out other interrupts when executing time-critical portions o
interrupt handling procedure. All hardware-generated interrupts are masked until software
explicitly replaces the mask.

The processor does not restore r3 to the IMSK register when the interrupt return is executed.
the IMSK register is cleared, the interrupt handler must restore the IMSK register to enable
interrupts after return from the handler.

8.2 The i960® Core Processor Interrupt Controller

The i960 RM/RN I/O processor Interrupt Controller Unit (ICU) provides a flexible, low-latency
means for requesting and posting interrupts and minimizing the core’s interrupt handling burde
Acting independently from the core, the interrupt controller posts interrupts requested by hardw
and software sources and compares the priorities of posted interrupts with the current process

The interrupt controller provides the following features for managing hardware-requested inter

• Low latency, high throughput handling

• Six external interrupt pins

• One non-maskable interrupt pin

• Two internal timers sources

• Peripheral interrupt sources

• Two internal interrupts lines
i960® RM/RN I/O Processor Developer’s Manual 8-11

PCI and Peripheral Interrupt Controller Unit

The user program interfaces to the interrupt controller with ten memory-mapped control registers.
The Interrupt Control Register (ICON) and Interrupt Map Control Registers (IMAP0-IMAP2)
provide configuration information. The Interrupt Pending Register (IPND) posts
hardware-requested interrupts. The Interrupt Mask Register (IMSK) selectively masks
hardware-requested interrupts.

Figure 8-4. Interrupt Controller

Interrupt Control

Register

Pending Interrupts

Interrupt Masks

Interrupt

Block

Selection

Interrupt

Block
Action

Clear
a Bit

Interrupt

Pin Mode

NMI#
 Pending

NMI#S_INT[D:A]/XINT3:0#, XINT5:4#

Interrupt Pin to
Vector Map

AckVector

Processor

State
Software Interrupt

Priority Register
(Internal)

Process Priority

(in PC)

Ack
Core

Vector

Interrupt Core

Core accepts interrupt when:
* Processor not stopped
* Not executing a fault-call or
* Interrupt-call action and
* Between instruction or
* At a resumption point

Global
Interrupt
Disable

Core:
* Calls interrupt handlers
* Posts software interrupts
* Checks for software interrupts
* Handles all interrupt table access

Interrupt Detection
Block

TINT0 TINT1

Registers 0 to 2
8-12 i960® RM/RN I/O Processor Developer’s Manual

PCI and Peripheral Interrupt Controller Unit

ctors.

t

rted
r, if
til the
 may
oved.

at
is

umes
8.2.1 Interrupt Controller Dedicated Mode

The i960 RM/RN I/O processor interrupt controller external pins are set up for dedicated mode
operation, where each external interrupt pin is assigned a vector number. Vector numbers that may
be assigned to a pin are those with the encoding PPPP 00102 (Figure 8-5), where bits marked P are
programmed with bits in the interrupt map (IMAP) registers. This encoding of programmable bits
and preset bits can designate 15 unique vector numbers, each with a unique, even-numbered
priority. (Vector 0000 00102 is undefined; it has a priority of 0.)

Interrupts are posted in the interrupt pending (IPND) register. Single bits in the IPND register
correspond to each of the eight dedicated external interrupt inputs, or the two timer inputs to the
interrupt controller. The interrupt mask (IMSK) register selectively masks each of the interrupts.
Optionally, the IMSK register can be saved and cleared when an interrupt is serviced. This locks
out other hardware-generated interrupts until the mask is restored. See Section 8.5, “Register
Definitions” on page 8-32 for a further description of the IMSK, IPND and IMAP registers.

Interrupt vectors are assigned to timer inputs in the same way external pins are assigned ve

8.2.2 Interrupt Detection

The XINT5:0# pins and the NMI# pin use level-low detection. All of the interrupt pins use fas
sampling.

For low-level detection, the pin’s bit in the IPND register remains set as long as the pin is asse
(low). The processor attempts to clear the IPND bit on entry into the interrupt handler. Howeve
the active level on the pin is not removed at this time, the bit in the IPND register remains set un
source of the interrupt is deactivated and the IPND bit is explicitly cleared by software. Software
attempt to clear an interrupt pending bit before the active level on the corresponding pin is rem
In this case, the active level on the interrupt pin causes the pending bit to remain asserted.

After the interrupt signal is deasserted, the handler then clears the interrupt pending bit for th
source before return from handler is executed. If the pending bit is not cleared, the interrupt
re-entered after the return is executed.

Example 8-4 demonstrates how a level detect interrupt is typically handled. The example ass
that the ld from address “timer_0,” deactivates the interrupt input.

Figure 8-5. Interrupt Pin Vector Assignment

PPPP

PPPP

PPPP

PPPP

PPPP

PPPP

00102

00102

00102

00102

00102

00102

... ...

S_INTA#/XINT0#

XINT5#

TINT0

TINT1

...

8

4 LSB4 MSB

IMAP Control Registers Hard-wired Vector Offset

Highest Selected
Vector Number

S_INTB#/XINT1#

S_INTC#/XINT2#
i960® RM/RN I/O Processor Developer’s Manual 8-13

PCI and Peripheral Interrupt Controller Unit
Interrupt pins are asynchronous inputs. Setup or hold times relative to S_CLK are not needed to
ensure proper pin detection. Note in Figure 8-6, which shows how a signal is sampled using fast
sampling, that interrupt inputs are sampled once every two S_CLK cycles. For practical purposes,
this means that asynchronous interrupting devices must generate an interrupt signal that is asserted
for at least three S_CLK cycles. See the 80960RM I/O Processor Data Sheet and the 80960RN I/O
Processor Data Sheet for setup and hold specifications that guarantee detection of the interrupt on
particular edges of S_CLK. These specifications are useful in designs that use synchronous logic to
generate interrupt signals to the processor. These specifications must also be used to calculate the
minimum signal width, as shown in Figure 8-6.

8.2.3 Non-Maskable Interrupt (NMI#)

The NMI# pin generates an interrupt for implementation of critical interrupt routines. Error
interrupts from the internal peripheral units also come into the 80960JT core through the NMI# pin.
NMI# provides an interrupt that cannot be masked and that has a priority of 31. The interrupt
vector for NMI# resides in the interrupt table as vector number 248. During initialization, the core
caches the vector for NMI# on-chip, to reduce NMI# latency. The NMI# vector is cached in
location 0H of internal data RAM.

The core immediately services NMI# requests. While servicing an NMI#, the core does not
respond to any other interrupt requests, even another NMI# request. The processor remains in this
non-interruptible state until any return-from-interrupt (in supervisor mode) occurs. An interrupt
request on the NMI# pin is always falling-edge detected. (Note that a return-from-interrupt in user
mode does not unblock NMI# events and should be avoided by software.)

Example 8-5. Return from a Level-detect Interrupt

Clear level-detect interrupts before return from handler

lda IPND_MMR, g1 # Get address of IPND Memory-Mapped Register

ld timer_0, g0 # Get timer value and clear TMRO

lda 0x1000, g2

wait:

mov 0, g3

atmod g1, g2, g3

bbs 0xC, g3, wait

ret # Return from handler

Figure 8-6. Interrupt Fast Sampling

Denotes sampling clock edge. Interrupt pins are sampled one time for every two S_CLK (external bus clock) cycles.

S_CLK

XINT5:4#
(fast sampled)

* * * *

3 cycle min.

*

*

S_INT[D:A]/XINT3:0#

Detect Interrupt
8-14 i960® RM/RN I/O Processor Developer’s Manual

PCI and Peripheral Interrupt Controller Unit

at
ction,
ller
r

troller
ts) or
 port
ls.

ely or
ice is
d

ding

’s

iority

ed
fic

rrupt

rm the

cess
 never
8.2.4 Timer Interrupts

Each of the two timer units has an associated interrupt to allow the application to accept or post the
interrupt request. The timer interrupts are connected directly to the i960 RM/RN I/O processor
interrupt controller and are posted in the IPND register. These interrupts are set up through the timer
control registers described in the Chapter 18, “Timers”.

8.2.5 Software Interrupts

The application program may use the sysctl instruction to request interrupt service. The vector th
sysctl requests is serviced immediately or posted in the interrupt table’s pending interrupts se
depending upon the current processor priority and the request’s priority. The interrupt contro
caches the priority of the highest priority interrupt posted in the interrupt table. The processo
cannot request vector 248 (NMI#) as a software interrupt.

8.2.6 Interrupt Operation Sequence

The interrupt controller, microcode and core resources handle all stages of interrupt service.
Interrupt service is handled in the following stages:

Requesting Interrupt — In the i960 RM/RN I/O processor, the programmable on-chip interrupt con
transparently manages all interrupt requests. Interrupts are generated by hardware (external even
software (the application program). Hardware requests are signaled on the 6-bit external interrupt
(S_INT[D:A]/XINT3:0#, XINT5:4#), the non-maskable interrupt pin (NMI#) or the two timer channe
Software interrupts are signaled with the sysctl instruction with post-interrupt message type.

Posting Interrupts — When an interrupt is requested, the interrupt is either serviced immediat
saved for later service, depending on the interrupt’s priority. Saving the interrupt for later serv
referred to as posting. Once posted, an interrupt becomes a pending interrupt. Hardware an
software interrupts are posted differently:

• Hardware interrupts are posted by setting the interrupt’s assigned bit in the interrupt pen
(IPND) memory mapped register

• Software interrupts are posted by setting the interrupt’s assigned bit in the interrupt table
pending priorities and pending interrupts fields

Checking Pending Interrupts — The interrupt controller compares each pending interrupt’s pr
with the current process priority. When process priority changes, posted interrupts of higher
priority are then serviced. Comparing the process priority to posted interrupt priority is handl
differently for hardware and software interrupts. Each hardware interrupt is assigned a speci
priority when the processor is configured. The priority of all posted hardware interrupts is
continually compared to the current process priority. Software interrupts are posted in the inte
table in external memory. The highest priority posted in this table is also saved in an on-chip
software priority register; this register is continually compared to the current process priority.

Servicing Interrupts — When the process priority falls below that of any posted interrupt, the
interrupt is serviced. The comparator signals the core to begin a microcode sequence to perfo
interrupt context switch and branch to the first instruction of the interrupt routine.

Figure 8-4 illustrates interrupt controller function. For best performance, the interrupt flow for
hardware interrupt sources is implemented entirely in hardware.

The comparator only signals the core when a posted interrupt is a higher priority than the pro
priority. Because the comparator function is implemented in hardware, microcode cycles are
consumed unless an interrupt is serviced.
i960® RM/RN I/O Processor Developer’s Manual 8-15

PCI and Peripheral Interrupt Controller Unit

 the
8.2.7 Setting Up the Interrupt Controller

This section provides an example of setting up the interrupt controller. The following example
describes how the interrupt controller can be dynamically configured after initialization.

Example 8-5 sets up the interrupt controller to fetch interrupt vectors from internal data RAM
rather than external memory. Initially the IMSK register is masked to allow for setup. A value that
selects vector caching is loaded into the ICON register and the IMSK is unmasked.

8.2.8 Interrupt Service Routines

An interrupt handling procedure performs a specific action that is associated with a particular
interrupt procedure pointer. For example, one interrupt handler task might initiate a timer unit
request. The interrupt handler procedures can be located anywhere in the non-reserved address
space. Since instructions in the i960 processor architecture must be word-aligned, each procedure
must begin on a word boundary.

When an interrupt handling procedure is called, the processor allocates a new frame on the
interrupt stack and a set of local registers for the procedure. If not already in supervisor mode, the
processor always switches to supervisor mode while an interrupt is handled. It also saves the states
of the AC and PC registers for the interrupted program.

The interrupt procedure shares the remainder of the execution environment resources (namely the
global registers and the address space) with the interrupted program. Thus, interrupt procedures
must preserve and restore the state of any resources shared with a non-cooperating program. For
example, an interrupt procedure that uses a global register that is not permanently allocated to it
should save the register’s contents before using the register and restore the contents before
returning from the interrupt handler.

To reduce interrupt latency to critical interrupt routines, interrupt handlers may be locked into
instruction cache. See Section 8.4.4.2, “Caching Interrupt Routines and Reserving Register
Frames” on page 8-29 for a complete description.

Example 8-6. Programming the Interrupt Controller for Vector Caching

Example vector caching setup . . .

mov 0x0, g0

mov 0x00006000, g1

st g0,IMSK # mask, IMSK MMR at 0XFF008504

st g1,ICON

st g1,IMSK # fetch vectors from internal RAM
8-16 i960® RM/RN I/O Processor Developer’s Manual

PCI and Peripheral Interrupt Controller Unit

t stack.

ler,

n that

am,
e

. The

ck

r also

lobal

its
pt
t.

inter.

 into
e

itches

.

8.2.9 Interrupt Context Switch

When the processor services an interrupt, it automatically saves the interrupted program state or
interrupt procedure and calls the interrupt handling procedure associated with the new interrupt
request. When the interrupt handler completes, the processor automatically restores the interrupted
program state. The method used to service an interrupt depends on the processor state when the
interrupt is received.

• An executing-state interrupt — When the processor is executing a background task and an
interrupt request is posted, the interrupt context switch must change stacks to the interrup

• An interrupted-state interrupt — When the processor is already executing an interrupt hand
no stack switch is required since the interrupt stack is already in use.

The following subsections describe interrupt handling actions for executing-state and
interrupted-state interrupts. In both cases, it is assumed that the interrupt priority is higher tha
of the processor and thus is serviced immediately when the processor receives it.

8.2.9.1 Servicing An Interrupt From Executing State

When the processor receives an interrupt while in the executing state (i.e., executing a progr
PC.s = 0), it performs the following actions to service the interrupt. This procedure is the sam
regardless of whether the processor is in user or supervisor mode when the interrupt occurs
processor:

1. Switches to the interrupt stack (Figure 8-3). The interrupt stack pointer becomes the new sta
pointer for the processor.

2. Saves the current PC and AC in an interrupt record on the interrupt stack. The processo
saves the interrupt procedure pointer number.

3. Allocates a new frame on the interrupt stack and loads the new frame pointer (NFP) in g
register g15.

4. Sets the state flag in PC to interrupted (PC.s = 1), its execution mode to supervisor and
priority to the priority of the interrupt. Setting the processor's priority to that of the interru
ensures that lower priority interrupts cannot interrupt the servicing of the current interrup

5. Clears the trace enable bit in PC. The interrupt is handled without raising trace faults.

6. Sets the frame return status field pfp[2:0] to 1112.

7. Performs a call operation as described in the Chapter 7, “Procedure Calls”. The address for the
called procedure is specified in the interrupt table for the specified interrupt procedure po

After completing the interrupt procedure, the processor:

1. Copies the arithmetic controls field and the process controls field from the interrupt record
the AC and PC, respectively. It therefore switches to the executing state and restores th
trace-enable bit to its value before the interrupt occurred.

2. Deallocates the current stack frame and interrupt record from the interrupt stack and sw
to the stack it was using before servicing the interrupt.

3. Performs a return operation as described in the Chapter 7, “Procedure Calls”.

4. Resumes work on the program when all pending interrupts and trace faults are serviced
i960® RM/RN I/O Processor Developer’s Manual 8-17

PCI and Peripheral Interrupt Controller Unit

to the

or

 to
ber of

0 core
. The
ng
rrupts
8.2.9.2 Servicing An Interrupt From Interrupted State

When the processor receives an interrupt while servicing another interrupt, and the new interrupt
has a higher priority than one being serviced, the current interrupt-handler routine is interrupted.
Here, the processor performs the same interrupt-servicing action as described in Section 8.2.9.1,
“Servicing An Interrupt From Executing State” on page 8-17 to save the state of the interrupted
interrupt-handler routine. The interrupt record is saved on the top of the interrupt stack prior
new frame that is created for use in servicing the new interrupt. See Figure 8-3.

On the return from the current interrupt handler to the previous interrupt handler, the process
de-allocates the current stack frame and interrupt record, and stays on the interrupt stack.

8.3 PCI and Peripheral Interrupts

The PCI And Peripheral Interrupt Controller (PPIC) provides the ability to generate interrupts
both the i960 core processor and the PCI bus. The i960 RM/RN I/O processor contains a num
peripherals which may generate an interrupt to the i960 core processor. These are:

In addition to the internal peripherals, external devices may also generate interrupts to the i96
processor. External devices can generate interrupts via the XINT5:0# pins and the NMI# pin
PCI And Peripheral Interrupt Controller provides the ability to direct PCI interrupts. The routi
logic enables, under software control, the ability to intercept the external secondary PCI inte
and forward to the primary PCI interrupt pins.

The PCI And Peripheral Interrupt Controller has two functions:

• Internal Peripheral Interrupt Control

• PCI Interrupt Routing

The internal peripheral interrupt control mechanism consolidates a number of interrupt sources for
a given peripheral into a single interrupt driven to the i960 core processor. In order to provide the
executing software with the knowledge of interrupt source, memory-mapped status registers
describe the source of the interrupts. All of the peripheral interrupts are individually enabled from
the respective peripheral control registers.

The PCI interrupt routing mechanism allows the host software (or i960 RM/RN I/O processor
software) to route PCI interrupts to either the i960 core processor or the P_INTA#, P_INTB#,
P_INTC#, and P_INTD# output pins. This routing mechanism is controlled through a
memory-mapped register accessible from the primary PCI bridge configuration space or the i960
RM/RN I/O processor.

• DMA Channel 0 • Primary ATU

• DMA Channel 1 • Secondary ATU

• DMA Channel 2 • I2C Bus Interface Unit

• Bridge Primary Interface • Application Accelerator Unit

• Bridge Secondary Interface • Messaging Unit

• Performance Monitoring Unit • Memory Controller Unit
8-18 i960® RM/RN I/O Processor Developer’s Manual

PCI and Peripheral Interrupt Controller Unit
The PCI And Peripheral Interrupt Controller provides the connections to the i960 core processor.
These connections are shown in Figure 8-7.

Figure 8-7. Interrupt Controller Connections

i960® Core

XINT0#

XINT1#

XINT2#

XINT3#

XINT4#

XINT5#

XINT6#

XINT7#

NMI#

S_INTA#/XINT0#

S_INTD# Select bit

m
u
x

S_INTB#/XINT1#
m
u
x

S_INTC#/XINT2#
m
u
x

S_INTD#/XINT3#
m
u
x

XINT4#

XINT5#

NMI#

P
_I

N
T

A

O
ut

pu
t

Memory Controller Unit Error

I2C Bus Interface Unit Interrupt Pending
Messaging Unit Interrupt Pending

i960® RM/RN I/O Processor

Primary ATU Error
Secondary ATU Error

Secondary PCI Bridge Interface Error
Primary PCI Bridge Interface Error

N
M

I I
nt

er
ru

pt
La

tc
h

X
IN

T
7

In
te

rr
up

t
La

tc
h

P
_I

N
T

B

O
ut

pu
t

P
_I

N
T

C

O
ut

pu
t

P
_I

N
T

D

O
ut

pu
t

X
IN

T
6

In
te

rr
up

t
La

tc
h

DMA Channel 0 Error

Primary ATU/Start BIST Interrupt Pending

DMA Channel 0 Interrupt Pending
DMA Channel 1 Interrupt Pending
DMA Channel 2 Interrupt Pending

DMA Channel 1 Error
DMA Channel 2 Error
Messaging Unit Error

Processor

80960 Outbound Doorbell 0
80960 Outbound Doorbell 1
80960 Outbound Doorbell 2
80960 Outbound Doorbell 3

Performance Monitor Unit Interrupt Pending
Application Accelerator Interrupt Pending

Application Accelerator Unit Error

S_INTC# Select bit

S_INTB# Select bit

S_INTA# Select bit

Bus Interface Unit Error
i960® RM/RN I/O Processor Developer’s Manual 8-19

PCI and Peripheral Interrupt Controller Unit
8.3.1 Pin Descriptions

The i960 RM/RN I/O processor provides six external interrupt pins and one non-maskable
interrupt pin for detecting external interrupt requests. The six external pins are configured as
dedicated inputs, where each pin is capable of requesting a single interrupt, in some cases from
several different sources. The external interrupt input interface for the i960 RM/RN I/O processor
consists of the following pins:

All pins in Table 8-1 are level-low activated. See Section 8.2.2, “Interrupt Detection” on page 8-13.

Table 8-1. Interrupt Input Pin Descriptions

Signal Description

S_INTA#/XINT0#

Can be directed to the P_INTA# output or the i960 core interrupt input XINT0#.

When routed to the P_INTA# output, this pin is shared with two internal interrupts. They
are the interrupts from the Messaging Unit. When routed to the i960 core internal input
XINT0#, this input is not shared.

S_INTB#/XINT1#

Can be directed to the P_INTB# output or the i960 core interrupt input XINT1#.

When routed to the P_INTB1# output, this pin is shared with two internal interrupts. They
are the interrupts from the Messaging Unit. When routed to the i960 core internal input
XINT1#, this input is not shared.

S_INTC#/XINT2#

Can be directed to the P_INTC# output or the i960 core interrupt input XINT2#.

When routed to the P_INTC2# output, this pin is shared with two internal interrupts. They
are the interrupts from the Messaging Unit. When routed to the i960 core internal input
XINT2#, this input is not shared.

S_INTD#/XINT3#

Can be directed to the P_INTD# output or the i960 core interrupt input XINT3#.

When routed to the P_INTD# output, this pin is shared with two internal interrupts. They
are the interrupts from the Messaging Unit. When routed to the i960 core internal input
XINT3#, this input is not shared.

XINT4# Always connected to the i960 core interrupt input XINT4#.

XINT5# Always connected to the i960 core interrupt input XINT5#.

NMI#

Shared with ten internal interrupts. They include error interrupts from the core processor,
primary PCI bridge interface, secondary PCI bridge interface, primary ATU, secondary
ATU, three DMA channels, application accelerator, and the messaging unit. All of the
interrupts are directed to the i960 core NMI# input. Software must read the NMI Interrupt
Status Register to determine the exact source of the interrupt. NMI# is the highest priority
interrupt recognized.
8-20 i960® RM/RN I/O Processor Developer’s Manual

PCI and Peripheral Interrupt Controller Unit
8.3.2 PCI Interrupt Routing

The four secondary PCI interrupt inputs can be routed to either i960 core processor interrupt inputs
or to primary PCI interrupt output pins. Routing of interrupt inputs is controlled by bits 3:0 in the
PCI Interrupt Routing Select Register (PIRSR). Table 8-2 summarizes the usage of these bits.

Note: Please check the i960® RM/RN I/O Processor Specification Update for possible issues with the PIRSR.

8.3.3 Internal Peripheral Interrupt Routing

The XINT6#, XINT7#, and NMI# interrupt inputs on the i960 core processor receive inputs from
multiple internal interrupt sources. There is one internal latch before each of these three inputs that
provides the necessary muxing of the different interrupt sources. More detail about the exact cause
of the interrupt can be determined by reading the status register of the respective peripheral unit.

8.3.3.1 XINT6 Interrupt Sources

The XINT6# interrupt of the i960 core processor receives interrupts from the three DMA channels,
Performance Monitoring Unit and the Application Accelerator Unit. Each DMA channel interrupt
is either for a DMA End of Transfer interrupt or a DMA End of Chain interrupt. A Performance
Monitoring Unit interrupt implies that at least one of the fourteen programmable event counters
and/or the Global Time Stamp Counter has a pending interrupt condition. An application
accelerator interrupt implies an End of Chain interrupt or an End of Transfer interrupt.

A valid interrupt from any of these sources sets the bit in the latch and outputs a level-sensitive
interrupt to the i960 core processor XINT6# input. The interrupt latch should continue driving an
active low input to the processor interrupt input as long as a one is present in the latch. The XINT6
Interrupt Latch is read through the XINT6 Interrupt Status Register. The XINT6 Interrupt Latch is
cleared by clearing the source of the interrupt at the internal peripheral.

Table 8-2. PCI Interrupt Routing Summary

PIRSR Select Bit Bit Value Description

bit 0
1 S_INTA#/XINT0# Input Pin routed to i960 core processor XINT0# Input Pin

0 S_INTA#/XINT0# Input Pin routed to P_INTA# Output Pin

bit 1
1 S_INTB#/XINT1# Input Pin routed to i960 core processor XINT1# Input Pin

0 S_INTB#/XINT1# Input Pin routed to P_INTB# Output Pin

bit 2
1 S_INTC#/XINT2# Input Pin routed to i960 core processor XINT2# Input Pin

0 S_INTC#/XINT2# Input Pin routed to P_INTC# Output Pin

bit 3
1 S_INTD#/XINT3# Input Pin routed to i960 core processor XINT3# Input Pin

0 S_INTD#/XINT3# Input Pin routed to P_INTD# Output Pin
i960® RM/RN I/O Processor Developer’s Manual 8-21

PCI and Peripheral Interrupt Controller Unit
The interrupt sources which drive the inputs to the XINT6 Interrupt Latch are detailed in Table 8-3.

8.3.3.2 XINT7 Interrupt Sources

The XINT7# interrupt on the i960 core processor receives interrupts from the I2C Bus Interface
Unit, the Primary ATU, and the Messaging Unit. A valid interrupt from any of these sources sets
the bit in the latch and outputs a level-sensitive interrupt to the i960 core processor XINT7# input.
The interrupt latch should continue driving an active low input to the processor interrupt input as
long as a one is present in the latch. The XINT7 Interrupt Latch is read through the XINT7
Interrupt Status Register. The XINT7 Interrupt Latch is cleared by clearing the source of the
interrupt at the internal peripheral.

The unit interrupt sources which drive the inputs to the XINT7 interrupt latch are detailed in
Table 8-4.

Table 8-3. XINT6# Interrupt Sources

Unit Interrupt Condition Register

DMA Channel 0
End of Chain Channel Status Register 0

End of Transfer Channel Status Register 0

DMA Channel 1
End of Chain Channel Status Register 1

End of Transfer Channel Status Register 1

DMA Channel 2
End of Chain Channel Status Register 2

End of Transfer Channel Status Register 2

Application Accelerator
End of Chain Accelerator Status Register

End of Transfer Accelerator Status Register

Performance Monitor Counter Overflow Event Monitoring Interrupt Status
Register

Table 8-4. XINT7 Interrupt Sources

Unit Interrupt Condition Register

I2C Bus Interface Unit

Receive Buffer Full

I2C Status Register

Transmit Buffer Empty

Slave Address Detect

STOP Detected

Bus Error Detected

Arbitration Lost Detected

 Messaging Unit

Index Register Interrupt

Inbound Interrupt Status Register

Inbound Post Queue Interrupt

Inbound Doorbell Interrupt

Inbound Message 1 Interrupt

Inbound Message 0 Interrupt

Primary ATU ATU BIST Start Primary ATU Interrupt Status Register
8-22 i960® RM/RN I/O Processor Developer’s Manual

PCI and Peripheral Interrupt Controller Unit
8.3.3.3 NMI# Interrupt Sources

The Non-Maskable Interrupt (NMI#) on the i960 core processor receives interrupts from the
external pin, the primary and secondary ATUs, the primary and secondary bridge interfaces, the
local processor, the Messaging Unit, three DMA channels and the application accelerator. Each of
these interrupts represent an error condition in the peripheral unit. Refer to the appropriate units for
more details.

The NMI Interrupt Latch accepts one interrupt input from each source and the external NMI# pin.
A valid interrupt from any of these sources sets the bit in the latch and outputs an edge-triggered
interrupt to the i960 core processor NMI# input. The NMI Interrupt Latch is read through the NMI
Interrupt Status Register. The NMI Interrupt Latch is cleared by clearing the source of the interrupt
at the internal peripheral.

Note: The NMI# input of the i960 core processor is edge-triggered. The external NMI# input of the i960
RM/RN I/O processor requires a level input. The interrupt latch drives an active low input to the
processor as long as a valid interrupt condition exists. When there are multiple interrupt sources (e.g.,
DMA Channel 0 and DMA Channel 1), the NMI latch output transitions from active low to high to
account for the interrupt condition that has been cleared. It then outputs another edge-triggered input
to the i960 core processor to identify the second interrupt condition that still exists.
i960® RM/RN I/O Processor Developer’s Manual 8-23

PCI and Peripheral Interrupt Controller Unit
The unit interrupt sources which drive the inputs to the NMI interrupt latch are detailed in Table 8-5.

The PCI Interrupt Routing Select Register (PIRSR), XINT6 Interrupt Status Register (X6ISR), XINT7
Interrupt Status Register (X7ISR), and NMI Interrupt Status Register (NISR) are described in Section 8.5,
“Register Definitions” on page 8-32.

Table 8-5. NMI Interrupt Sources

Unit Register Error Condition

Primary PCI Bridge
Interface Primary Bridge Interrupt Status Register

PCI Master Parity Error

PCI Target Abort (target)

PCI Target Abort (master)

PCI Master Abort

P_SERR# Asserted

Secondary PCI Bridge
Interface

Secondary Bridge Interrupt Status
Register

PCI Master Parity Error

PCI Target Abort (target)

PCI Target Abort (master)

PCI Master Abort

S_SERR# Asserted

Primary ATU Primary ATU Interrupt Status Register

PCI Master Parity Error

PCI Target Abort (target)

PCI Target Abort (master)

PCI Master Abort

P_SERR# Detected

IB Master Abort

ATU BIST Interrupt

Messaging Unit Inbound Interrupt Status Register
Outbound Free Queue Full Interrupt

NMI Doorbell Interrupt

Secondary ATU Secondary ATU Interrupt Status
Register

PCI Master Parity Error

PCI Target Abort (target)

PCI Target Abort (master)

PCI Master Abort

S_SERR# Detected

IB Master Abort

Bus Interface Unit BIU Interrupt Status Register IB Master Abort

DMA Channel 0 Channel Status Register 0

PCI Master Parity Error

PCI Target Abort (master)

PCI Master Abort

IB Master Abort

DMA Channel 1 Channel Status Register 1

PCI Master Parity Error

PCI Target Abort (master)

PCI Master Abort

IB Master Abort

DMA Channel 2 Channel Status Register 2

PCI Master Parity Error

PCI Target Abort (master)

PCI Master Abort

IB Master Abort

Application Accelerator Accelerator Status Register IB Master Abort

Memory Controller Memory Controller Interrupt Status Register Target-Abort (Single or Multi-bit ECC Errors)
8-24 i960® RM/RN I/O Processor Developer’s Manual

PCI and Peripheral Interrupt Controller Unit
8.3.4 PCI Outbound Doorbell Interrupts

The i960 RM/RN I/O processor has the capability of generating interrupts on the primary PCI
interrupt pins. This is done by setting a bit in the Outbound Doorbell Register within the Messaging
Unit. Bits 28 through 31 correspond to PCI interrupts P_INTA# through P_INTD# respectively.
Setting a bit within the register generates the corresponding PCI interrupt.

Bits 27 through 0 in the Outbound Doorbell Register are all cleared in the default state. When any
bit is set, a PCI interrupt is generated. The bit-field in the Address Translation Unit Interrupt Pin
Register (ATUIPR) determines which PCI interrupt (P_INTA# through P_INTD#) is generated.
Refer to PCI Local Bus Specification Revision 2.1 for complete details on the bit-field definition of
the ATUIPR.

8.4 Default Status

The interrupt logic is reset by the primary PCI reset signal or through software. Table 8-6 shows
the power-up and reset values.

Table 8-6. Default Interrupt Routing and Status Values

Register Default Value Description

IPND Undefined Software responsible for clearing this register before
unmasking any interrupts.

IMSK 0000 0000H All interrupts masked

IMAP2:0 Initial Image in Control
Table Set to user’s values

ICON Initial Image in Control
Table Set to user’s values

PIRSR 0000H

S_INTA#/XINT0# routed to the i960 core processor

S_INTB#/XINT1# routed to the i960 core processor

S_INTC#/XINT2# routed to the i960 core processor

S_INTD#/XINT3# routed to the i960 core processor

NMI Interrupt Status
Register 0000 0000H No interrupts set

XINT7 Interrupt Status
Register 0000 0000H No interrupts set

XINT6 Interrupt Status
Register 0000 0000H No interrupts set
i960® RM/RN I/O Processor Developer’s Manual 8-25

PCI and Peripheral Interrupt Controller Unit

sses
 best
8.4.1 Interrupt Controller Register Access Requirements

A load instruction that accesses the IPND, IMSK, IMAP2:0 or ICON register has a latency of one
internal processor cycle. A store access to an interrupt register is synchronous with respect to the
next instruction; that is, the operation completes fully and all state changes take effect before the
next instruction begins execution.

Interrupts can be enabled and disabled quickly by the intdis and inten instructions, which take four
cycles each to execute. intctl takes a few cycles longer because it returns the previous interrupt
enable value. See Chapter 6, “Instruction Set Reference” for more information on these
instructions.

8.4.2 Optimizing Interrupt Performance

Figure 8-8 depicts the path from interrupt source to interrupt service routine. This section discu
interrupt performance in general and suggests techniques the application can use to get the
interrupt performance.
8-26 i960® RM/RN I/O Processor Developer’s Manual

PCI and Peripheral Interrupt Controller Unit
8.4.3 Interrupt Service Latency

The established measure of interrupt performance is the time required to perform an interrupt task
switch, which is known as interrupt service latency. Latency is the time measured between
interrupt source activation and execution of the first instruction for the accompanying
interrupt-handling procedure.

Interrupt latency depends on interrupt controller configuration and the instruction being executed at
the time of the interrupt. The processor also has a number of cache options that reduce interrupt
latency. In the discussion that follows, interrupt latency is expressed as a number of bus clock cycles.

Figure 8-8. Interrupt Service Flowchart

set bit in IPND

Dedicated Interrupt Non-Maskable Interrupt (NMI#)

is
int.prio

> PC.pr NO

YES

signal core to
process interrupt

Software Interrupt

is
IMSK

ANDed with
IPND
= 0?

YES

get vector from
IMAP register

YES

NOPC.s = 1

SP = interrupt
stack pointer

PFP = FP

SIPR =

get vector in field 1

set corresponding

New PC =

state = interrupted (PC.s = 1)
mode = supervisor (PC.em = 1)

YES
software
interrupt

NO

store interrupt
record at FP - 16

get interrupt procedure pointer
SP = FP + 64
IP = interrupt procedure pointer

pending bits in
interrupt table

interrupt priority

?

or = 31?

?

FP = SP aligned to
next 16 byte boundary

+16

clear trace fault pending bit (TC.tfp)
clear trace enable bit (TC.te)

vector = 248

NO

YES

continue normal

operation

(Test for external

is

ICON.gie

= 0?

update SIPR with
next highest priority

read pending interrupt bits;
clear pending interrupt bits

in interrupt table,

 interrupts enabled)

(See if
 Interrupt
Priority is

(Test for
 interrupted
state)

Servicing
NMI#

already

YES

NO

greater than
process
priority OR
at interrupt
priority=31)

PFP[3:0] = 0111
i960® RM/RN I/O Processor Developer’s Manual 8-27

PCI and Peripheral Interrupt Controller Unit

 at

t
 of
8.4.4 Features to Improve Interrupt Performance

The i960 RM/RN I/O processor employs four methods to reduce interrupt latency:

• Caching interrupt vectors on-chip

• Caching of interrupt handling procedure code

• Reserving register frames in the local register cache

• Caching the interrupt stack in the data cache

8.4.4.1 Vector Caching Option

To reduce interrupt latency, the i960 RM/RN I/O processor caches some interrupt table vector
entries in internal data RAM. When the vector cache option is enabled and an interrupt request has
a cached vector to be serviced, the controller fetches the associated vector from internal RAM
rather than from the interrupt table in memory.

Interrupts with a vector number with the four least-significant bits equal to 00102 can be cached.
Vectors that can be cached coincide with the vector numbers selected with the mapping registers
and assigned to dedicated-mode inputs. The vector caching option is selected when programming
the ICON register; software must explicitly store the vector entries in internal RAM.

Since the internal RAM is mapped to the address space directly, this operation can be performed
using the core’s store instructions. Table 8-7 shows the required vector mapping to specific
locations in internal RAM. For example, the vector entry for vector number 18 must be stored
RAM location 04H, and so on.

The NMI# vector is also shown in Table 8-7. This vector is always cached in internal data RAM a
location 0000H. The processor automatically loads this location at initialization with the value
vector number 248 in the interrupt table.

Table 8-7. Location of Cached Vectors in Internal RAM

Vector Number (Binary) Vector Number (Decimal) Internal RAM Address

(NMI#) 248 0000H

0001 00102 18 0004H

0010 00102 34 0008H

0011 00102 50 000CH

0100 00102 66 0010H

0101 00102 82 0014H

0110 00102 98 0018H

0111 00102 114 001CH

1000 00102 130 0020H

1001 00102 146 0024H

1010 00102 162 0028H

1011 00102 178 002CH

1100 00102 194 0030H

1101 00102 210 0034H

1110 00102 226 0038H

1111 00102 242 003CH
8-28 i960® RM/RN I/O Processor Developer’s Manual

PCI and Peripheral Interrupt Controller Unit

 limit

riority

nce of
terrupt

 For

8.4.4.2 Caching Interrupt Routines and Reserving Register Frames

The time required to fetch the first instructions of an interrupt-handling procedure affects interrupt
response time and throughput. The controller reduces this fetch time by caching interrupt
procedures or portions of procedures in the i960 RM/RN I/O processor’s instruction cache.

To decrease interrupt latency for high priority interrupts (priority 28 and above), software can
the number of frames in the local register cache available to code running at a lower priority
(priority 27 and below). This ensures that some number of free frames are available to high-p
interrupt service routines. See Section 4.2, “Local Register Cache” on page 4-2, for more details.

8.4.4.3 Caching the Interrupt Stack

By locating the interrupt stack in memory that can be cached by the data cache, the performa
interrupt returns can be improved. This is because accesses to the interrupt record by the in
return can be satisfied by the data cache. See Section 12.2.1, “PMCON Registers” on page 12-1 for
details on how to enable data caching for portions of memory.

8.4.5 Base Interrupt Latency

In many applications, the processor’s instruction mix and cache configuration are known
sufficiently well to use typical interrupt latency in calculations of overall system performance.
example, a timer interrupt may frequently trigger a task switch in a multi-tasking kernel. Base
interrupt latency assumes the following:

• Single-cycle RISC instruction is interrupted

• Frame flush does not occur

• Bus queue is empty

• Cached interrupt handler

• No interaction of faults and interrupts (i.e., a stable system)

Table 8-8 shows the base latencies for all interrupt types, with varying vector caching options.

Table 8-8. Base Interrupt Latency

Interrupt Type Vector Caching Enabled Typical Latency (Bus Clocks)1,2

NMI# Yes 30

 XINT[5:4]#, TINT1:0
Yes 34

No 40+a

 XINT[7:6]#, XINT[3:0]#
Yes 35

No 41+a

Software
Yes 68

No 69+a

NOTES:
1. a = MAX (0,N - 7), where “N” is the number of bus cycles needed to perform a word load.
2. Bus Clocks are 80960 core processor bus clocks. The core processor bus is typically 100 MHz.
i960® RM/RN I/O Processor Developer’s Manual 8-29

PCI and Peripheral Interrupt Controller Unit

as the

latency.
8.4.6 Maximum Interrupt Latency

In real-time applications, worst-case interrupt latency must be considered for critical handling of
external events. For example, an interrupt from a mechanical subsystem may need service to
calculate servo loop parameters to maintain directional control. Determining worst-case latency
depends on knowledge of the processor’s instruction mix and operating environment as well
interrupt controller configuration. Excluding certain very long, uninterruptible instructions from
critical sections of code reduces worst-case interrupt latency to levels approaching the base

The following tables present worst case interrupt latencies based on possible execution of divo (r15
destination), divo (r3 destination), calls or flushreg instructions or software interrupt detection.
The assumptions for these tables are the same as for Table 8-8, except for instruction execution.

Table 8-9. Worst-Case Interrupt Latency Controlled by divo to Destination r15

Interrupt Type Vector Caching Enabled Worst Latency (Bus Clocks)1,2

NMI# Yes 43

XINT[5:4]#, TINT1:0
Yes 45

No 45+a

XINT[7:6]# XINT[3:0]#
Yes 46

No 46+a

NOTES:
1. a = MAX (0,N - 11), where “N” is the number of bus cycles needed to perform a word load.
2. Bus Clocks are 80960 core processor bus clocks. The core processor bus is typically 100 MHz.

Table 8-10. Worst-Case Interrupt Latency Controlled by divo to Destination r3

Interrupt Type Vector Caching Enabled Worst Latency (Bus Clocks)1,2

NMI# Yes 60

 XINT[5:4]#, TINT1:0
Yes 65

No 72+a

 XINT[7:6]# XINT[3:0]#
Yes 66

No 73+a

NOTES:
3. a = MAX (0,N - 7), where “N” is the number of bus cycles needed to perform a word load.
4. Bus Clocks are 80960 core processor bus clocks. The core processor bus is typically 100 MHz.

Table 8-11. Worst-Case Interrupt Latency Controlled by calls

Interrupt Type Vector Caching Enabled Worst Latency (Bus Clocks)1,2

NMI# Yes 54+a

 XINT[5:4]#, TINT1:0
Yes 58+a

No 66+a+b

 XINT[7:6]# XINT[3:0]#
Yes 59+a

No 67+a+b

NOTES:
1. a = MAX (0,N - 4)

b = MAX (0,N - 7)

where “N” is the number of bus cycles needed to perform a word load.
2. Bus Clocks are 80960 core processor bus clocks. The core processor bus is typically 100 MHz.
8-30 i960® RM/RN I/O Processor Developer’s Manual

PCI and Peripheral Interrupt Controller Unit
Table 8-12. Worst-Case Interrupt Latency When Delivering a Software Interrupt

Interrupt Type Vector Caching Enabled Worst Latency (Bus Clocks)1,2

NMI# Yes 97

 XINT[5:4]#, TINT1:0
Yes 99

No 107+a

 XINT[7:6]# XINT[3:0]#
Yes 100

No 108+a

NOTES:
1. a = MAX (0,N - 7), where “N” is the number of bus cycles needed to perform a word load.
2. Bus Clocks are 80960 core processor bus clocks. The core processor bus is typically 100 MHz.

Table 8-13. Worst-Case Interrupt Latency Controlled by flushreg of One Stack Frame

Interrupt Type Vector Caching Enabled Worst Latency (Bus Clocks)1,2

NMI# Yes 78+a+b

 XINT[5:4]#, TINT1:0
Yes 82+a+b

No 89+a+b+c

 XINT[7:6]# XINT[3:0]#
Yes 83+a+b

No 90+a+b+c

NOTES:
1. a = MAX (0, M - 15)

b = MAX (0, M - 28)
c = MAX (0, N - 7)

where “M” is the number of bus cycles needed to perform a quad word store and “N” is the number of bus
cycles needed to perform a word load. Interrupt latency increases rapidly as the number of flushed stack
frames increases.

2. Bus Clocks are 80960 core processor bus clocks. The core processor bus is typically 100 MHz.
i960® RM/RN I/O Processor Developer’s Manual 8-31

PCI and Peripheral Interrupt Controller Unit

l

 be
 in the

so
ee
CI
8.4.7 Avoiding Certain Destinations for MDU Operations
Typically, when delivering an interrupt, the processor attempts to push the first four local registers
(pfp, sp, rip, and r3) onto the local register cache as early as possible. Because of register-interlock,
this operation is stalled until previous instructions return their results to these registers. In most
cases, this is not a problem; however, in the case of instructions performed by the Multiply/Divide
Unit (divo, divi, ediv, modi, remo, and remi), the processor could be stalled for many cycles
waiting for the result and unable to proceed to the next step of interrupt delivery.

Interrupt latency can be improved by avoiding the first four local registers as the destination for a
Multiply/Divide Unit operation. (Registers pfp, sp, and rip should be avoided anyway for general
operations as these are used for procedure linking.)

8.4.8 Secondary PCI to Primary PCI Interrupt Routing Latency
The interrupt routing logic accepts the changes to the routing control value written to the PIRSR
register one clock after the write has completed. There is a one clock delay from the time that the
interrupt is recognized on the input of the mux until the signal is driven either to the 80960JT core
interrupt controller or the PCI output interrupt pins.

8.5 Register Definitions
The programmer’s interface to the interrupt controller is through ten memory-mapped contro
registers. Table 8-14 describes these registers.

All ten registers are visible as i960 RM/RN I/O processor memory mapped registers and can
accessed through the internal memory bus. Each is a 32-bit register and is memory-mapped
i960 RM/RN I/O processor processor memory space. The memory-mapped addresses of the
interrupt control registers are found in Appendix C, “Memory-Mapped Registers”.

The PCI Interrupt Routing Select Register is accessible from the internal memory bus and al
during PCI configuration cycles through the PCI configuration register space (function #0). S
chapter 3 for additional information regarding the PCI configuration cycles that access the P
Interrupt Routing Select Register.

Table 8-14. Interrupt Control Registers Addresses

Register Name Description Address

ICON Interrupt Control Register FF00 8510H

IMAP0 Interrupt Map Register 0 FF00 8520H

IMAP1 Interrupt Map Register 1 FF00 8524H

IMAP2 Interrupt Map Register 2 FF00 8528H

IPND Interrupt Pending Register FF00 8500H

IMSK Interrupt Mask Register FF00 8504H

PIRSR PCI Interrupt Routing Select Register 0000 1050H

XINT6 XINT6 Interrupt Status Register 0000 1708H

XINT7 XINT7 Interrupt Status Register 0000 1704H

NISR NMI Interrupt Status Register 0000 1700H
8-32 i960® RM/RN I/O Processor Developer’s Manual

PCI and Peripheral Interrupt Controller Unit
8.5.1 Interrupt Control Register (ICON)

The ICON register is a 32-bit memory-mapped control register, that sets up the interrupt controller.
Software can manipulate this register using the load/store type instructions. The ICON register is
also automatically loaded at initialization from the control table in external memory. Table 8-15
describes the ICON register.

Table 8-15. Interrupt Control (ICON) Register

Bit Default Description

31:15

Default
Value

loaded from
image in
Control
Table

Reserved. These bits must be cleared (0).

14 Reserved. This bit must be set (1).

13
Vector Cache Enable - determines whether interrupt table vector entries are fetched
from the interrupt table (bit clear) or from internal data RAM (bit set). Only vectors with
the four least-significant bits equal to 00102 may be cached in internal data RAM.

12:11

Mask Operation Field - determines the operation the core performs on the mask
register when a hardware-generated interrupt is serviced. On an interrupt, the value in
IMSK is copied to r3. IMSK is then either left unchanged (00) or cleared (01). IMSK is
never cleared for NMI# or software interrupts.

10

Global Interrupts Enable - globally enables or disables the external interrupt pins and
timer unit inputs. It does not affect the NMI# pin. This bit performs the same function
as clearing the IMSK register. This bit is also changed indirectly by the instructions
inten, intdis, intctl.

9:0 Reserved. These bits must be cleared (0).

P
C

I
IO

P
A

ttr
ib

ut
es

A
tt

rib
ut

es

28 24 20 16 12 8 4 031

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rw

na

rw

na

rw

na

rw

na

rw

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

1 c o o i 0
e 1 0 e

v m m g

Attribute Legend:

RV = Reserved

PR = Preserved

RS = Read/Set

RW = Read/Write

RC = Read Clear

RO = Read Only

NA = Not Accessible

Internal bus address

FF00 8510H
i960® RM/RN I/O Processor Developer’s Manual 8-33

PCI and Peripheral Interrupt Controller Unit

icant
f

ory.
8.5.2 Interrupt Mapping Registers (IMAP0-IMAP2)

The IMAP registers (Table 8-16, Table 8-17 and Table 8-18) are three 32-bit registers (IMAP0
through IMAP2). These registers are used to program the vector number associated with the
interrupt source. IMAP0 and IMAP1 contain mapping information for the external interrupt pins
(four bits per pin). IMAP2 contains mapping information for the timer-interrupt inputs (four bits
per interrupt).

Each set of four bits contains a vector number’s four most-significant bits; the four least-signif
bits are always 00102. In other words; each source can be programmed for a vector number o
PPPP 00102, where “P” indicates a programmable bit. For example, IMAP0 bits 4 through 7
contain mapping information for the XINT1 pin. When these bits are set to 01102, the pin is
mapped to vector number 0110 00102 (or vector number 98).

Software can access the mapping registers using load/store type instructions. The mapping
registers are also automatically loaded at initialization from the control table in external mem

Table 8-16. Interrupt Map Register 0 (IMAP0)

Bit Default Description

31:16
Default
Value

loaded from
image in
Control
Table

Reserved (initialize to 0)

15:12 External Interrupt 3 Field - IMAP0.x3

11:8 External Interrupt 2 Field - IMAP0.x2

9:4 External Interrupt 1 Field - IMAP0.x1

3:0 External Interrupt 0 Field - IMAP0.x0

P
C

I
IO

P
A

ttr
ib

u
te

s
A

ttr
ib

ut
es

28 24 20 16 12 8 4 031

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

3 3 3 3 2 2 2 2 1 1 1 1 0 0 0 0
3 2 1 0 3 2 1 0 3 2 1 0 3 2 1 0

x x x x x x x x x x x x x x x x

Attribute Legend:

RV = Reserved

PR = Preserved

RS = Read/Set

RW = Read/Write

RC = Read Clear

RO = Read Only

NA = Not Accessible

Internal bus address

FF00 8520H
8-34 i960® RM/RN I/O Processor Developer’s Manual

PCI and Peripheral Interrupt Controller Unit
Table 8-17. Interrupt Map Register 1 (IMAP1)

Bit Default Description

31:16
Default
Value

loaded from
image in
Control
Table

Reserved (initialize to 0)

15:12 Internal Interrupt 7 Field - IMAP1.x7

11:8 Internal Interrupt 6 Field - IMAP1.x6

9:4 External Interrupt 5 Field - IMAP1.x5

3:0 External Interrupt 4 Field - IMAP1.x4

Table 8-18. Interrupt Map Register 2 (IMAP2)

Bit Default Description

31:24 Default
Value

loaded from
image in
Control
Table

Reserved (initialize to 0)

23:20 Timer Interrupt 1 Field - IMAP2.t1

19:16 Timer Interrupt 0 Field - IMAP2.t0

15:0 Reserved (initialize to 0)

P
C

I
IO

P
A

ttr
ib

ut
es

A
tt

rib
ut

e
s

28 24 20 16 12 8 4 031

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

7 7 7 7 6 6 6 6 5 5 5 5 4 4 4 4
7 6 5 4 7 6 5 4 7 6 5 4 7 6 5 4

x x x x x x x x x x x x x x x x

Attribute Legend:

RV = Reserved

PR = Preserved

RS = Read/Set

RW = Read/Write

RC = Read Clear

RO = Read Only

NA= Not Accessible

Internal bus address

FF00 8524H

P
C

I
IO

P
A

ttr
ib

u
te

s
A

ttr
ib

ut
es

28 24 20 16 12 8 4 031

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

1 1 1 1 0 0 0 0
3 2 1 0 3 2 1 0

t t t t t t t t

Internal bus address

FF00 8528H

Attribute Legend:

RV = Reserved

PR = Preserved

RS = Read/Set

RW = Read/Write

RC = Read Clear

RO = Read Only

NA= Not Accessible
i960® RM/RN I/O Processor Developer’s Manual 8-35

PCI and Peripheral Interrupt Controller Unit
8.5.3 Interrupt Pending (IPND) and Interrupt Mask (IMSK) Registers

The IPND and IMSK (Table 8-19 and Table 8-20) registers are both memory-mapped registers.
Bits 0 through 7 of these registers are associated with the external interrupt pins (XINT0# -
XINT5#), internal interrupts (XINT6#-XINT7#) and bits 12 and 13 are associated with the
timer-interrupt inputs (TMR0 and TMR1). All other bits are reserved and should be cleared at
initialization.

The IPND register posts interrupts originating from the six external dedicated sources, two internal
dediciated sources and the two timer sources. Asserting one of these inputs latches a 1 into its
associated bit in the IPND register. The mask register provides a mechanism for masking
individual bits in the IPND register. An interrupt source is disabled when its associated mask bit is
cleared (0).

When delivering a hardware interrupt, the interrupt controller conditionally clears IMSK based on
the value of the ICON.mo bit. Note that IMSK is never cleared for NMI# or software interrupt.

Although software can read and write IPND and IMSK using any memory-format instruction, it is
recommended that a read-modify-write operation using the atomic-modify instruction (atmod) be
used for reading and writing these registers. Executing an atmod on one of these registers causes
the interrupt controller to perform regular interrupt processing (including using or automatically
updating IPND and IMSK) either before or after, but, not during the read-modify-write operation
on that register. This requirement ensures that modifications to IPND and IMSK take effect
cleanly, completely, and at a well-defined point. Note that the processor does not assert the LOCK#
pin externally when executing an atomic instruction to IPND and IMSK.

When the processor core handles a pending interrupt, it attempts to clear the bit that is latched for
that interrupt in the IPND register before it begins servicing the interrupt. If that bit is associated
with an interrupt source that is programmed for level detection and the true level is still present, the
bit remains set. Because of this, the interrupt routine for a level-detected interrupt should clear the
external interrupt source and explicitly clear the IPND bit before return from the handler is
executed.

An alternative method of posting interrupts in the IPND register, other than through the external
interrupt pins, is to set bits in the register directly using an atmod instruction. This operation has
the same effect as requesting an interrupt through the external interrupt pins.
8-36 i960® RM/RN I/O Processor Developer’s Manual

PCI and Peripheral Interrupt Controller Unit
Table 8-19. Interrupt Pending (IPND) Register

Bit Default Description

31:14 0 Reserved (initialize to 0)

13:12 x
Timer Interrupt Pending Bits - IPND, tip
(0) No Interrupt
(1) Pending Interrupt

11:8 00002 Reserved (initialize to 0)

7:6 x
Internal Interrupt Pending Bits - IPND, xip
(0) No Interrupt
(1) Pending Interrupt

5:0 x
External Interrupt Pending Bits - IPND, xip
(0) No Interrupt
(1) Pending Interrupt

P
C

I
IO

P
A

ttr
ib

ut
es

A
ttr

ib
ut

e
s

28 24 20 16 12 8 4 031

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rw

na

rw

na

rv

na

rv

na

rv

na

rv

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

i i i i i i i i i i
p p p p p p p p p p

t t x x x x x x x x

1 0 7 6 5 4 3 2 1 0

Internal bus address

FF00 8500H

Attribute Legend:

RV = Reserved

PR = Preserved

RS = Read/Set

RW = Read/Write

RC = Read Clear

RO = Read Only

NA= Not Accessible
i960® RM/RN I/O Processor Developer’s Manual 8-37

PCI and Peripheral Interrupt Controller Unit
Table 8-20. Interrupt Mask (IMSK) Register

Bit Default Description

31:14 0 Reserved (initialize to 0)

13:12 002

Timer Interrupt Pending Bits - IMSK, tim
(0) Masked
(1) Not Masked

11:8 00002 Reserved (initialize to 0)

7:6 00H
Internal Interrupt Mask Bits - IMSK, xim
(0) Masked
(1) Not Masked

5:0 00H
External Interrupt Mask Bits - IMSK, xim
(0) Masked
(1) Not Masked

P
C

I
IO

P
A

ttr
ib

ut
es

A
tt

rib
ut

e
s

28 24 20 16 12 8 4 031

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rw

na

rw

na

rv

na

rv

na

rv

na

rv

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

i i i i i i i i i i
m m m m m m m m m m

t t x x x x x x x x

1 0 7 6 5 4 3 2 1 0

Internal bus address

FF00 8504H

Attribute Legend:

RV = Reserved

PR = Preserved

RS = Read/Set

RW = Read/Write

RC = Read Clear

RO = Read Only

NA= Not Accessible
8-38 i960® RM/RN I/O Processor Developer’s Manual

PCI and Peripheral Interrupt Controller Unit

 pins,

r.
8.5.4 PCI Interrupt Routing Select Register - PIRSR

The PCI Interrupt Routing Select Register (PIRSR) determines the routing of the external input
pins. The input pins consist of four secondary PCI interrupt inputs which are routed to either the
primary PCI interrupts or i960 RM/RN I/O processor interrupts. The PCI interrupt pins are defined
as “level sensitive,” asserted low. The assertion and deassertion of the interrupt pins are
synchronous to the PCI or processor clock.

When any or all of the secondary PCI interrupt inputs are routed to the primary PCI interrupt
the corresponding i960 core processor inputs (XINT3:0#) must be set inactive (level ‘1’).

Table 8-21 shows the bit definitions for programming the PCI Interrupt Routing Select Registe

Table 8-21. PCI Interrupt Routing Select Register (PIRSR)

Bit Default Description

31:4 0 Reserved (initialize to 0)

3 0
S_INTD# Select Bit - PIRSR, xsel
(1) Interrupt routed to 80960 core interrupt controller input (XINT3#)
(0) Interrupt routed to P_INTD# pin

2 0
S_INTC# Select Bit - PIRSR, xsel
(1) Interrupt routed to 80960 core interrupt controller input (XINT2#)
(0) Interrupt routed to P_INTC# pin

1 0
S_INTB# Select Bit - PIRSR, xsel
(1) Interrupt routed to 80960 core interrupt controller input (XINT1#)
(0) Interrupt routed to P_INTB# pin

0 0
S_INTA# Select Bit - PIRSR, xsel
(1) Interrupt routed to 80960 core interrupt controller input (XINT0#)
(0) Interrupt routed to P_INTA# pin

NOTE: Please check the i960® RM/RN I/O Processor Specification Update for possible issues with the
PIRSR.

P
C

I
IO

P
A

ttr
ib

u
te

s
A

ttr
ib

ut
es

28 24 20 16 12 8 4 031

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rw

rw

rw

rw

rw

rw

rw

rw

e e e e
l l l l

s s s s

d c b a

80960 Core internal bus address

0000 1050H

Attribute Legend:

RV = Reserved

PR = Preserved

RS = Read/Set

RW = Read/Write

RC = Read Clear

RO = Read Only

NA= Not Accessible
i960® RM/RN I/O Processor Developer’s Manual 8-39

PCI and Peripheral Interrupt Controller Unit
8.5.5 XINT6 Interrupt Status Register - X6ISR

The XINT6 Interrupt Status Register (X6ISR) contains the current pending XINT6# interrupts. The
source of the XINT6# interrupt can be the internal peripheral devices connected through the
XINT6# Interrupt Latch. The interrupts which can be generated on the XINT6# input are detailed
in Section 8.3.3, on page 8-21.

The X6ISR is used by application software to determine the source of an interrupt on the XINT6#
input and to clear that interrupt. All bits within this register are defined as read only. The bits within
this register are cleared when the source of the interrupt (status register source shown in Table 8-3) is
cleared. The X6ISR reflects the current state of the input to the XINT6# Interrupt Latch.

Due to the asynchronous nature of the i960 RM/RN I/O processor peripheral units, multiple interrupts can
be active when application software reads the X6ISR register. Application software must handle such
conditions appropriately. In addition, application software may subsequently read the X6ISR register to
determine if additional interrupts have occurred during interrupt processing for the prior interrupts. All
interrupts from the X6ISR register is at the same priority level within the i960 core processor.

Table 8-22 details the bit definition of the X6ISR.

Table 8-22. XINT6 Interrupt Status Register- X6ISR

Bit Default Description

31:06 0 Reserved

05 0 Application Accelerator Interrupt Pending - when set, an end of chain condition has been
signaled by the Application Accelerator. When clear, no interrupt condition exists.

04 02

Performance Monitor Interrupt Pending - when set, at least one of the programmable
event counters and/or the Global Time Stamp Counter contains an overflow condition.
Application software identifies the counter by reading the Event Monitoring Interrupt
Status register (EMISR).

When clear, no interrupt condition exists.

03 02 Reserved.

02 02
DMA Channel 2 Interrupt Pending - when set, an end of chain of channel active condition
has been signaled by DMA channel 2. When clear, no interrupt condition exists.

01 02
DMA Channel 1 Interrupt Pending - when set, an end of chain of channel active condition
has been signaled by DMA channel 1. When clear, no interrupt condition exists.

00 02
DMA Channel 0 Interrupt Pending - when set, an end of chain of channel active condition
has been signaled by DMA channel 0. When clear, no interrupt condition exists.

P
C

I
IO

P
A

ttr
ib

ut
e

s
A

ttr
ib

u
te

s

28 24 20 16 12 8 4 031

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

ro

na

ro

na

rv

na

ro

na

ro

na

ro

na

a m i i i
i i p p p

a p d d d

p p 2 1 0

Internal bus address

0000 1708H

Attribute Legend:

RV = Reserved

PR = Preserved

RS = Read/Set

RW = Read/Write

RC = Read Clear

RO = Read Only

NA= Not Accessible
8-40 i960® RM/RN I/O Processor Developer’s Manual

PCI and Peripheral Interrupt Controller Unit
8.5.6 XINT7 Interrupt Status Register- X7ISR

The XINT7 Interrupt Status Register (X7ISR) contains the current pending XINT7 interrupts. The
source of the XINT7 interrupt can be the internal peripheral devices connected through the XINT7
Interrupt Latch. The interrupts which can be generated on the XINT7# input are detailed in
Section 8.3.3, on page 8-21.

The X7ISR is used by application software to determine the source of an interrupt on the XINT7#
input and to clear that interrupt. All bits within this register are defined as read only. The bits within
this register are cleared when the source of the interrupt (status register source shown in Table 8-4) is
cleared. The X7ISR reflects the current state of the input to the XINT7 Interrupt Latch.

Due to the asynchronous nature of the i960 RM/RN I/O processor peripheral units, multiple
interrupts can be active when application software reads the X7ISR register. Application software
must handle these multiple interrupt conditions appropriately. In addition, application software
may subsequently read the X7ISR register to determine if additional interrupts have occurred
during interrupt processing for the prior interrupts. All interrupts from the X7ISR register is at the
same priority level within the i960 core processor.

Table 8-23 details the bit definition of the X7ISR.

Table 8-23. XINT7 Interrupt Status Register- X7ISR

Bit Default Description

31:05 0 Reserved

04 02 Reserved

03 02

Primary ATU/Start BIST Interrupt Pending - when set, the host processor has set the
start BIST request in the ATUBISTR register. When clear, no start BIST interrupt is
pending.

02 02
Messaging Unit Interrupt Pending - when set, an interrupt from the Messaging Unit is
pending. When clear, no interrupt is pending.

01 02
I2C Interrupt Pending - when set, an interrupt is from the I2C Bus Interface Unit is
pending. When clear, no interrupt is pending.

00 02 Reserved

P
C

I
IO

P
A

tt
rib

ut
es

A
ttr

ib
ut

e
s

28 24 20 16 12 8 4 031

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

ro

na

ro

na

ro

na

rv

na

i n s
s d q

b i i

t b c

Internal bus address

0000 1704H

Attribute Legend:

RV = Reserved

PR = Preserved

RS = Read/Set

RW = Read/Write

RC = Read Clear

RO = Read Only

NA= Not Accessible
i960® RM/RN I/O Processor Developer’s Manual 8-41

PCI and Peripheral Interrupt Controller Unit
8.5.7 NMI Interrupt Status Register - NISR

The NMI Interrupt Status Register (NISR) contains the current pending NMI interrupts. The source
of the NMI interrupt can be the internal peripheral devices connected through the NMI Interrupt
Latch or the external NMI# input pin. The interrupts which can be generated on the NMI# input are
detailed in Section 8.3.3, on page 8-21.

The NMI Interrupt Status Register is used by application software to determine the source of an
interrupt on the NMI# input and to clear that interrupt. All of the bits within the NISR are read
only. The bits within this register are cleared when the source of the interrupt (status register source
shown in Table 8-5) is cleared. The NISR reflects the current state of the input to the NMI Interrupt
Latch.

Due to the asynchronous nature of the i960 RM/RN I/O processor peripheral units, multiple
interrupts can be active when the application software reads the NISR register. Application
software must handle these multiple interrupt conditions appropriately. In addition, application
software may subsequently read the NISR register to determine if additional interrupts have
occurred during interrupt processing for the prior interrupts. All interrupts from the NISR register
is at the same priority level within the i960 core processor.

Note: Although the NMI# input of the i960 core processor is edge triggered, the external NMI# input of
the i960 RM/RN I/O processor requires a level input and must be latched external to the i960
RM/RN I/O processor.

Table 8-24 details the bit definitions for the NMI interrupt status register.

Table 8-24. NMI Interrupt Status Register- NISR (Sheet 1 of 2)

Bit Default Description

31:12 0 Reserved

11 0 Bus Interface Unit Error - when set, a PCI or internal bus error condition exists within
the BIU. When clear, no error condition exists.

10 02
Application Accelerator Unit Error - when set, an internal bus error condition exists
within AA unit. When clear, no error exists.

09 02
External NMI# Interrupt - when set, an interrupt is pending on the external NMI# input.
When clear, no interrupt exists.

08 02
Messaging Unit Interrupt - when set, an NMI interrupt or error exists in the Messaging
Unit. When clear, no error exits.

P
C

I
IO

P
A

ttr
ib

u
te

s
A

ttr
ib

ut
es

28 24 20 16 12 8 4 031

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

i a x u m m m b b a a c
u u i a a a d d t t u

b a e m d d d s p s p m

p 2 1 0 g g u u

Internal bus address

0000 1700H

Attribute Legend:

RV = Reserved

PR = Preserved

RS = Read/Set

RW = Read/Write

RC = Read Clear

RO = Read Only

NA= Not Accessible
8-42 i960® RM/RN I/O Processor Developer’s Manual

PCI and Peripheral Interrupt Controller Unit
07 02
DMA Channel 2 Error - when set, a PCI or internal bus error condition exists within
DMA channel. When clear, no error exists.

06 02
DMA Channel 1 Error - when set, a PCI or internal bus error condition exists within
DMA channel. When clear, no error exists.

05 02
DMA Channel 0 Error - when set, a PCI or internal bus error condition exists within
DMA channel. When clear, no error exists.

04 02
Secondary Bridge Error - when set, a PCI error condition exists within the secondary
interface of the bridge. When clear, no error exists.

03 02
Primary Bridge Interface Error - when set, a PCI error condition exists within the
primary interface of the bridge. When clear, no error exists.

02 02
Secondary ATU Error - when set, a PCI or internal bus error condition exists within the
secondary ATU. When clear, no error exists.

01 02
Primary ATU Error - when set, a PCI or internal bus error condition exists within the
primary ATU. When clear, no error exists.

00 02

Memory Controller Error - when set, an error condition exists within the MCU. The bit
indicates one of the following conditions:

- A single-bit correctable or uncorrectable ECC error.

- A multi-bit correctable or uncorrectable ECC error.

 When clear, no error exists.

Table 8-24. NMI Interrupt Status Register- NISR (Sheet 2 of 2)

Bit Default Description

P
C

I
IO

P
A

ttr
ib

ut
es

A
tt

rib
ut

e
s

28 24 20 16 12 8 4 031

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

i a x u m m m b b a a c
u u i a a a d d t t u

b a e m d d d s p s p m

p 2 1 0 g g u u

Internal bus address

0000 1700H

Attribute Legend:

RV = Reserved

PR = Preserved

RS = Read/Set

RW = Read/Write

RC = Read Clear

RO = Read Only

NA= Not Accessible
i960® RM/RN I/O Processor Developer’s Manual 8-43

ternal
 cause

with

of
ndle
Faults 9

This chapter describes the i960® RM/RN I/O processor’s fault handling facilities. Subjects covered
include the fault handling data structures and fault handling mechanisms. See Section 9.10, “Fault
Reference” on page 9-20 for detailed information on each fault type.

9.1 Fault Handling Overview

The i960 processor architecture defines various conditions in code and/or the processor’s in
state that could cause the processor to deliver incorrect or inappropriate results or that could
it to choose an undesirable control path. These are called fault conditions. For example, the
architecture defines faults for divide-by-zero and overflow conditions on integer calculations
an inappropriate operand value.

As shown in Figure 9-1, the architecture defines a fault table, a system procedure table, a set
fault handling procedures and stacks (user stack, supervisor stack and interrupt stack) to ha
processor-generated faults.

Figure 9-1. Fault-Handling Data Structures

i960® RM/RN

Fault

Fault Fault

Supervisor

User Stack

System

Table

Procedure
Table

Handling
Procedures

Stack

I/O processor
i960® RM/RN I/O Processor Developer’s Manual 9-1

Faults

r.

also
The fault table contains pointers to fault handling procedures. The system procedure table
optionally provides an interface to any fault handling procedure and allows faults to be handled in
supervisor mode. Stack frames for fault handling procedures are created on either the user or
supervisor stack, depending on the mode in which the fault is handled. When the processor is in the
interrupted state, the processor uses the interrupt stack.

Once these data structures and the code for the fault procedures are established in memory, the
processor handles faults automatically and independently from application software.

The processor can detect a fault at any time while executing instructions, whether from a program,
interrupt handling procedure or fault handling procedure. When a fault occurs, the processor
determines the fault type and selects a corresponding fault handling procedure from the fault table.
It then invokes the fault handling procedure by means of an implicit call. As described later in this
chapter, the fault handler call can be:

• A local call (call-extended operation)

• A system-local call (local call through the system procedure table)

• A system-supervisor call (supervisor call through the system procedure table)

A normal fault condition is handled by the processor in the following manner:

• The current local registers are saved and cached on-chip.

• PFP = FP and the value 001 is written to the Return Type Field (Fault Call). Refer to
Section 7.8, “Returns” on page 7-17 for more information.

• When the fault call is a system-supervisor call from user mode, the processor switches to the
supervisor stack; otherwise, SP is re-aligned on the current stack.

• The processor writes the fault record on the new stack. This record includes information on the
fault and the processor’s state when the fault was generated.

• The Instruction Pointer (IP) of the first instruction of the fault handler is accessed through the
fault table or through the system procedure table (for system fault calls).

After the fault record is created, the processor executes the selected fault handling procedure.
When a fault is recoverable (i.e., the program can be resumed after handling the fault) the Return
Instruction Pointer (RIP) is defined for the fault being serviced (Section 9.10, “Fault Reference” on
page 9-20, and the processor resumes execution at the RIP upon return from the fault handle
When the RIP is undefined, the fault handling procedure can create one by using the flushreg
instruction followed by a modification of the RIP in the previous frame. The fault handler can
call a debug monitor or reset the processor instead of resuming prior execution.

This procedure call mechanism also handles faults that occur:

• While the processor is servicing an interrupt

• While the processor is servicing another fault
9-2 i960® RM/RN I/O Processor Developer’s Manual

Faults
9.2 Fault Types

The i960 architecture defines a basic set of faults that are categorized by type and subtype. Each
fault has a unique type and subtype number. When the processor detects a fault, it records the fault
type and subtype numbers in the fault record. It then uses the type number to select the fault
handling procedure.

The fault handling procedure can optionally use the subtype number to select a specific fault
handling action. The i960 RM/RN I/O processor recognizes i960 architecture-defined faults and a
new fault subtype for detecting unaligned memory accesses. Table 9-1 lists all faults that the i960
RM/RN I/O processor detects, arranged by type and subtype. Text that follows the table gives
column definitions.

Table 9-1. i960® RM/RN I/O Processor Fault Types and Subtypes

Fault Type Fault Subtype Fault Record

Number Name Number or
Bit Position Name

0H PARALLEL NA NA see Section 9.6.4, “Parallel
Faults” on page 9-9

1H TRACE

Bit 1

Bit 2

Bit 3

Bit 4

Bit 5

Bit 6

Bit 7

INSTRUCTION

BRANCH

CALL

RETURN

PRERETURN

SUPERVISOR

MARK/BREAKPOINT

0001 0002H

0001 0004H

0001 0008H

0001 0010H

0001 0020H

0001 0040H

0001 0080H

2H OPERATION

1H

2H

3H

4H

INVALID_OPCODE

UNIMPLEMENTED

UNALIGNED

INVALID_OPERAND

0002 0001H

0002 0002H

0002 0003H

0002 0004H

3H ARITHMETIC
1H

2H

INTEGER_OVERFLOW

ZERO-DIVIDE

0003 0001H

0003 0002H

4H Reserved

5H CONSTRAINT 1H RANGE 0005 0001H

6H Reserved

7H PROTECTION Bit 1 LENGTH 0007 0002H

8H - 9H Reserved

AH TYPE 1H MISMATCH 000A 0001H

BH - FH Reserved
i960® RM/RN I/O Processor Developer’s Manual 9-3

Faults

ore

be
ins a

s the
 to the
dure
g the
In Table 9-1:

• The first (left-most) column contains the fault type numbers in hexadecimal.

• The second column shows the fault type name.

• The third column gives the fault subtype number as either: (1) a hexadecimal number or (2) as
a bit position in the fault record’s 8-bit fault subtype field. The bit position method of
indicating a fault subtype is used for certain faults (such as trace faults) in which two or m
fault subtypes may occur simultaneously.

• The fourth column gives the fault subtype name. For convenience, individual faults are
referenced by their fault-subtype names. Thus an OPERATION.INVALID_OPERAND fault
is referred to as an INVALID_OPERAND fault; an ARITHMETIC.INTEGER_OVERFLOW
fault is referred to as an INTEGER_OVERFLOW fault.

• The fifth column shows the encoding of the word in the fault record that contains the fault type
and fault subtype numbers.

Other i960 processor family members may provide extensions that recognize additional fault
conditions. Fault type and subtype encoding allows all faults to be included in the fault table: those
that are common to all i960 processors and those that are specific to one or more family members.
The fault types are used consistently for all family members. For example, Fault Type 4H is
reserved for floating point faults. Any i960 processor with floating point operations uses Entry 4H
to store the pointer to the floating point fault handling procedure.

9.3 Fault Table

The fault table (Figure 9-2) is the processor’s pathway to the fault handling procedures. It can
located anywhere in the address space. From the Process Control Block, the processor obta
pointer to the fault table during initialization.

The fault table contains one entry for each fault type. When a fault occurs, the processor use
fault type to select an entry in the fault table. From this entry, the processor obtains a pointer
fault handling procedure for the type of fault that occurred. Once called, a fault handling proce
has the option of reading the fault subtype or subtypes from the fault record when determinin
appropriate fault recovery action.
9-4 i960® RM/RN I/O Processor Developer’s Manual

Faults
Figure 9-2. Fault Table and Fault Table Entries

31 0

TYPE Fault Entry

PROTECTION Fault Entry

CONSTRAINT Fault Entry

ARITHMETIC Fault Entry

OPERATION Fault Entry

TRACE Fault Entry

PARALLEL/OVERRIDE Fault Entry

Local-Call Entry

Fault-Handler Procedure Address

System-Call Entry

Fault-Handler Procedure Number

0000 027FH

n

n+4

n

n+4

012

0

01

00H

08H

10H

18H

20H

28H

30H

38H

40H

48H

50H

FCH

Reserved (Initialize to 0)

0

31

31

Fault Table

012
i960® RM/RN I/O Processor Developer’s Manual 9-5

Faults

and

ree

ult, the
ult is
ated
or

mory.
m the
same

f an
 is

must

visor
As indicated in Figure 9-2, two fault table entry types are allowed: local-call entry and system-call
entry. Each is two words in length. The entry type field (bits 0 and 1 of the entry’s first word)
the value in the entry’s second word determine the entry type.

Other entry types (012 and 112) are reserved and have unpredictable behavior.

To summarize, a fault handling procedure can be invoked through the fault table in any of th
ways: a local call, a system-local call or a system-supervisor call.

9.4 Stack Used in Fault Handling

The i960 architecture does not define a dedicated fault handling stack. Instead, to handle a fa
processor uses either the user, interrupt or supervisor stack, whichever is active when the fa
generated. There is, however, one exception: if the user stack is active when a fault is gener
and the fault handling procedure is called with an implicit system supervisor call, the process
switches to the supervisor stack to handle the fault.

9.5 Fault Record

When a fault occurs, the processor records information about the fault in a fault record in me
The fault handling procedure uses the information in the fault record to correct or recover fro
fault condition and, if possible, resume program execution. The fault record is stored on the
stack that the fault handling procedure uses to handle the fault.

local-call entry
(type 002)

Provides an instruction pointer for the fault handling procedure. The
processor uses this entry to invoke the specified procedure by means o
implicit local-call operation. The second word of a local procedure entry
reserved. It must be set to zero when the fault table is created and not
accessed after that.

system-call entry
(type 102)

Provides a procedure number in the system procedure table. This entry
have an entry type of 102 and a value in the second word of 0000 027FH.
Using this entry, the processor invokes the specified fault handling
procedure by means of an implicit call-system operation similar to that
performed for the calls instruction. A fault handling procedure in the system
procedure table can be called with a system-local call or a system-super
call, depending on the entry type in the system-procedure table.
9-6 i960® RM/RN I/O Processor Developer’s Manual

Faults

pe

 fault
andled.

 fault
ng
aph for
9.5.1 Fault Record Description

Figure 9-3 shows the fault record’s structure. In this record, the fault’s type number and subty
number (or bit positions for multiple subtypes) are stored in the fault type and subtype fields,
respectively. The Address of Faulting Instruction Field contains the IP of the instruction that
caused the processor to fault.

When a fault is generated, the existing PC and AC register contents are stored in their respective
record fields. The processor uses this information to resume program execution after the fault is h

The Resumption Field is used to store information about a pending trace fault. When a trace
and a non-trace fault occur simultaneously, the non-trace fault is serviced first and the pendi
trace may be lost depending on the non-trace fault encountered. The Trace Reporting paragr
each fault specifies whether the pending trace is kept or lost.

Figure 9-3. Fault Record

031

Process Controls

Address of Faulting Instruction (n)

Reserved

NFP-20

NFP-16

NFP-12

NFP-8

NFP-4

OTYPE OSUBTYPE OFLAGS

Arithmetic Controls

FTYPE (N) FSUBTYPE (N)FFLAGS (N)

Override Fault Data

Fault Data

NFP-96

NFP-88

NFP-84

NFP-76

NFP-72

NFP-68

NFP-64

NFP-52

NFP-48

NFP-44

NFP-32

FTYPE (1) FSUBTYPE (1)

Address of Faulting Instruction (1)

28 24 20 16 12 8 4 031

Resumption Information

Fault Data

NOTE: “NFP” means “New Frame Pointer”

WasIs

80960 Local Bus Address

NFP-64

NFP-4-n*32

NFP-8-n*32

NFP-12-n*32

NFP-20-n*32

NFP-24-n*32

NFP-(n+1)*32
i960® RM/RN I/O Processor Developer’s Manual 9-7

Faults
9.5.2 Fault Record Location

The fault record is stored on the stack that the processor uses to execute the fault handling
procedure. As shown in Figure 9-4, this stack can be the user stack, supervisor stack or interrupt
stack. The fault record begins at byte address NFP-1. NFP refers to the new frame pointer that is
computed by adding the memory size allocated for padding and the fault record to the new stack
pointer (NSP). The processor rounds the FP to the next 16-byte boundary and then allocates 80
bytes for the fault record.

9.6 Multiple and Parallel Faults

Multiple fault conditions can occur during a single instruction execution and during multiple
instruction execution when the instructions are executed by different units within the processor.
The following sections describe how faults are handled under these conditions.

9.6.1 Multiple Non-Trace Faults on the Same Instruction

Multiple fault conditions can occur during a single instruction execution. For example, an
instruction can have an invalid operand and unaligned address. When this situation occurs, the
processor is required to recognize and generate at least one of the fault conditions. The processor
may not detect all fault conditions and reports only one detected non-trace fault on a single
instruction.

In a multiple fault situation, the reported fault condition is left to the implementation.

Figure 9-4. Storage of the Fault Record on the Stack

Current Frame

Padding Area

Fault Record

New Frame

NSP1

NFP-4

NFP

FP

SP

031

Fault
Record

Stack
Growth

Local Stack or Supervisor Stack2

Current Stack
(User, Supervisor, or Interrupt Stack)

031

NOTES:
1. If the call to the fault handler procedure does not require a stack switch, the new stack pointer (NSP) is the same as SP.
2. If the processor is in user mode and the fault handler procedure is called with a system supervisor call, the processor

switches to the supervisor stack.
9-8 i960® RM/RN I/O Processor Developer’s Manual

Faults

ace,
itions

 to

ult

ther

 the
tored.
the

 the
e can

ction
9.6.2 Multiple Trace Fault Conditions on the Same Instruction

Trace faults on different instructions cannot happen concurrently, because trace faults are precise
(Section 9.9, “Precise and Imprecise Faults” on page 9-18). Multiple trace fault conditions on the
same instruction are reported in a single trace fault record (with the exception of prereturn tr
which always happens alone). To support multiple fault reporting, the trace fault uses bit pos
in the fault-subtype field to indicate occurrences of multiple faults of the same type (Table 9-1).

9.6.3 Multiple Trace and Non-Trace Fault Conditions on the Same
Instruction

The execution of a single instruction can create one or more trace fault conditions in addition
multiple non-trace fault conditions. When this occurs:

• The pending trace is dismissed if any of the non trace faults dismisses it, as mentioned in the
“Trace Reporting” paragraph for that fault in Section 9.10, “Fault Reference” on page 9-20.

• The processor services one of the non trace faults.

• Finally, the trace is serviced upon return from the non-trace fault handler if it was not
dismissed in step 1.

9.6.4 Parallel Faults

The i960 RM/RN I/O processor exploits the architecture’s tolerance of out-of-order instruction
execution by issuing instructions to independent execution units within the processor. The
following subsections describe how the processor handles faults in this environment.

9.6.4.1 Faults on Multiple Instructions Executed in Parallel

When AC.nif=0, imprecise faults relative to different instructions executing in parallel may be
reported in a single parallel fault record. For these conditions, the processor calls a unique fa
handler, the PARALLEL fault handler (Section 9.9.4, “No Imprecise Faults (AC.nif) Bit” on
page 9-19). This mechanism allows instructions that can fault to be executed in parallel with o
instructions or out of order.

In parallel fault situations, the processor saves the fault type and subtype of the second and
subsequent faults detected in the optional section of the fault record. The optional section is
area below NFP-64 where the fault records for each of the parallel faults that occurred are s
The fault handling procedure for parallel faults can then analyze the fault record and handle
faults. The fault record for parallel faults is described in the next section.

When the RIP is undefined for at least one of the faults found in the parallel fault record, then
RIP of the parallel fault handler is undefined. In this case, the parallel fault handling procedur
either create a RIP and return or call a debug monitor to analyze the faults.

When the RIP is defined for all faults found in the fault record, then it points to the next instru
not yet executed. The parallel fault handler can simply return to the next instruction not yet
executed with a ret instruction.
i960® RM/RN I/O Processor Developer’s Manual 9-9

Faults

aults
d by
C.of

t be a

-local
r.
pon

t set

 bytes

ng

ction
ault
ecord
tion
r the

r the
 and
Consider the following code example, where the muli and the addi instructions both have overflow
conditions. AC.om=0, AC.nif = 0, and both instructions are in the instruction cache at the time of
their execution. The addi and muli are allowed to execute in parallel because AC.nif = 0 and the
faults that these instructions can generate (ARITHMETIC) are imprecise.

The fault on the addi is detected before the fault on the muli because the muli takes longer to
execute. The fault call synchronizes faults on the way to the overflow fault handler for the addi
instruction (Section 9.9.5, “Controlling Fault Precision” on page 9-19), which is when the muli
fault is detected. The processor builds a parallel fault record with information relative to both f
and calls the parallel fault handler. In the fault handler, ARITHMETIC faults may be recovere
storing the desired result of the instruction in the proper destination register and setting the A
flag (optional) to indicate that an overflow occurred. A ret at the end of the parallel fault handler
routine then returns to the next instruction not yet executed in the program flow.

On the i960 RM/RN I/O processor, the muli overflow fault is the only fault that can happen with a
delay. Therefore, parallel fault records can report a maximum of two faults, one of which mus
muli ARITHMETIC.INTEGER_OVERFLOW fault.

A parallel fault handler must be accessed through a system-supervisor call. Local and system
parallel fault handlers are not supported by the architecture and have unpredictable behavio
Tracing is disabled upon entry into the parallel fault handler (PC.te is cleared). It is restored u
return from the handler. To prevent infinite internal loops, the parallel fault handler should no
PC.te.

9.6.4.2 Fault Record for Parallel Faults

When parallel faults occur, the processor selects one of the faults and records it in the first 16
of the fault record as described in Section 9.5.1, “Fault Record Description” on page 9-7. The
remaining parallel faults are written to the fault record’s optional section, and the fault handli
procedure for parallel faults is invoked. Figure 9-3 shows the structure of the fault record for
parallel faults.

The OType/OSubtype word at NFP - 20 contains the number of parallel faults. The optional se
also contains a 32-byte parallel fault record for each additional parallel fault. These parallel f
records are stored incrementally in the fault record starting at byte offset NFP-68. The fault r
for each additional fault contains only the fault type, fault subtype, address-of-faulting-instruc
and the optional fault section. (For example, when two parallel faults occur, the fault record fo
second fault is located from NFP-96 to NFP-65.)

For the second fault recorded (n=2), the relationship (NFP-8-(n * 32)) reduces to NFP-72. Fo
i960 RM/RN I/O processor, a maximum of two faults are reported in the parallel fault record,
one of them must be the ARITHMETIC.INTEGER_OVERFLOW fault on a muli instruction.

Example 9-1. Imprecise Fault Generations

muli g2, g4, g6;

addi g8, g9, g10; # results in integer overflow
9-10 i960® RM/RN I/O Processor Developer’s Manual

Faults
9.6.5 Override Faults

The i960 RM/RN I/O processor can detect a fault condition while the processor is preparing to
service a previously detected fault. When this occurs, it is called an override condition. This
section describes this condition and how the processor handles it.

A normal fault condition is handled by the processor in the following manner:

• The current local registers are saved and cached on-chip.

• PFP = FP and the value 001 is written to the Return Type Field (Fault Call). Refer to
Section 7.8, “Returns” on page 7-17 for more information.

• When the fault call is a system-supervisor call from user mode, the processor switches to the
supervisor stack; otherwise, SP is re-aligned on the current stack.

• The processor writes the fault record on the new stack.

• The IP of the first instruction of the fault handler is accessed through the fault table or through
the system procedure table (for system fault calls).

A fault that occurs during any of the above actions is called an override fault. In response to this
condition, the processor does the following:

• Switches the execution mode to supervisor.

• Selects the override condition that shows that the writing of the fault record was unsuccessful.
If no such fault exists, the processor selects one of the other fault conditions. This method
ensures that the fault handler has information regarding the fault record write.

• Saves information pertaining to the override condition selected. The fault record describes the
first fault as described previously. Field OType contains the fault type of the second fault, field
OSubtype contains the fault subtype of the second fault and field override-fault-data contains
what would normally be the fault data field for the second fault type.

• Attempts to access the IP of the first instruction in the override fault handler through the
system procedure table.

It should be noted that a fault that occurs while the processor is actually executing a fault handling
procedure is not an override fault.

The override fault entry is entry 0. When the override fault entry in the fault table points to a
location beyond the system procedure table, the processor enters system error mode. Override fault
conditions include: PROTECTION and OPERATION.UNIMPLEMENTED faults.

An override fault handler must be accessed through a system-supervisor call. Local and
system-local override fault handlers are not supported by the architecture and have an
unpredictable behavior. Tracing is disabled upon entry into the override fault handler (PC.te is
cleared). It is restored upon return from the handler. To prevent infinite internal loops, the override
fault handler should not set PC.te.
i960® RM/RN I/O Processor Developer’s Manual 9-11

Faults

cessor

, the
f the bus

he
essor
e.

sible,
k on

n take
9.6.6 System Error

When a fault is detected while the processor is in the process of servicing an override or parallel
fault, the processor enters the system error state. Note that “servicing” indicates that the pro
has detected the override or parallel fault, but has not begun executing the fault handling
procedure. This type of error causes the processor to enter a system error state. In this state
processor uses only one read bus transaction to signal the fail code message; the address o
transaction is the fail code itself. See Section 11.3.1.5, “FAIL# Code” on page 11-8.

9.7 Fault Handling Procedures

The fault handling procedures can be located anywhere in the address space except within t
on-chip data RAM or MMR space. Each procedure must begin on a word boundary. The proc
can execute the procedure in user or supervisor mode, depending on the fault table entry typ

9.7.1 Possible Fault Handling Procedure Actions

The processor allows easy recovery from many faults that occur. When fault recovery is pos
the processor’s fault handling mechanism allows the processor to automatically resume wor
the program or pending interrupt when the fault occurred. Resumption is initiated with a ret
instruction in the fault handling procedure.

When recovery from the fault is not possible or not desirable, the fault handling procedure ca
one of the following actions, depending on the nature and severity of the fault condition (or
conditions, in the case of multiple faults):

• Return to a point in the program or interrupt code other than the point of the fault.

• Call a debug monitor.

• Perform processor or system shutdown with or without explicitly saving the processor state
and fault information.

When working with the processor at the development level, a common fault handling strategy is to
save the fault and processor state information and call a debugging tool such as a monitor.

9.7.2 Program Resumption Following a Fault

Because of the wide variety of faults, they can occur at different times with respect to the faulting
instruction:

• Before execution of the faulting instruction (e.g., fetch from on-chip RAM)

• During instruction execution (e.g., integer overflow)

• Immediately following execution (e.g., trace)
9-12 i960® RM/RN I/O Processor Developer’s Manual

Faults

9.7.2.1 Faults Happening Before Instruction Execution

The following fault types occur before instruction execution:

• ARITHMETIC.ZERO_DIVIDE

• TYPE.MISMATCH

• PROTECTION.LENGTH

• All OPERATION subtypes except UNALIGNED

For these faults, the contents of a destination register are lost, and memory is not updated. The RIP
is defined for the ARITHMETIC.ZERO_DIVIDE fault only. In some cases the fault occurs before
the faulting instruction is executed, the faulting instruction may be fixed and re-executed upon
return from the fault handling procedure.

9.7.2.2 Faults Happening During Instruction Execution

The following fault types occur during instruction execution:

• CONSTRAINT.RANGE

• OPERATION.UNALIGNED

• ARITHMETIC.INTEGER_OVERFLOW

For these faults, the fault handler must explicitly modify the RIP to return to the faulting
application (except for ARITHMETIC.INTEGER_OVERFLOW).

When a fault occurs during or after execution of the faulting instruction, the fault may be
accompanied by a program state change such that program execution cannot be resumed after the
fault is handled. For example, when an integer overflow fault occurs, the overflow value is stored
in the destination. When the destination register is the same as one of the source registers, the
source value is lost, making it impossible to re-execute the faulting instruction.

9.7.2.3 Faults Happening After Instruction Execution

For these faults, the Return Instruction Pointer (RIP) is defined and the fault handler can return to
the next instruction in the flow:

• TRACE

• ARITHMETIC.INTEGER_OVERFLOW

In general, resumption of program execution with no changes in the program’s control flow is
possible with the following fault types or subtypes:

• All TRACE Subtypes

The effect of specific fault types on a program is defined in Section 9.10, “Fault Reference” on
page 9-20 under the heading Program State Changes.
i960® RM/RN I/O Processor Developer’s Manual 9-13

Faults

IP is

ows a

ault
r by

lt
ling

turn

ely
9.7.3 Return Instruction Pointer (RIP)

When a fault handling procedure is called, a Return Instruction Pointer (RIP) is saved in the image of
the RIP in the faulting frame. The RIP can be accessed at address PFP+8 while executing the fault
handler after a flushreg. The RIP in the previous frame points to an instruction where program
execution can be resumed with no break in the program’s control flow. It generally points to the
faulting instruction or to the next instruction to be executed. In some instances, however, the R
undefined. RIP content for each fault is described in Section 9.10, “Fault Reference” on page 9-20.

9.7.4 Returning to Point in Program Where Fault Occurred

As described in Section 9.7.2, “Program Resumption Following a Fault” on page 9-12, most faults
can be handled such that program control flow is not affected. In this case, the processor all
program to be resumed at the point where the fault occurred, following a return from a fault
handling procedure (initiated with a ret instruction). The resumption mechanism used here is
similar to that provided for returning from an interrupt handler.

Also, to restore the PC register from the fault record upon return from the fault handler, the f
handling procedure must be executed in supervisor mode either by using a supervisor call o
running the program in supervisor mode. See the pseudocode in Section 6.2.54, “ret” on page 6-78.

9.7.5 Returning to a Point in the Program Other Than Where the
Fault Occurred

A fault handling procedure can also return to a point in the program other than where the fau
occurred. To do this, the fault procedure must alter the RIP. To do this reliably, the fault hand
procedure should perform the following steps:

1. Flush the local register sets to the stack with a flushreg instruction.

2. Modify the RIP in the previous frame.

3. Clear the trace-fault-pending flag in the fault record’s process controls field before the re
(optional).

4. Execute a return with the ret instruction.

Use this technique carefully and only in situations where the fault handling procedure is clos
coupled with the application program.
9-14 i960® RM/RN I/O Processor Developer’s Manual

Faults

r a

ode
of these

 the
rols

 and, if
other

 local

t
dling
 fault
9.7.6 Fault Controls

For certain fault types and subtypes, the processor employs register mask bits or flags that determine
whether or not a fault is generated when a fault condition occurs. Table 9-2 summarizes these flags
and masks, the data structures in which they are located, and the fault subtypes they affect.

The integer overflow mask bit inhibits the generation of integer overflow faults. The use of this
mask is discussed in Section 9.10, “Fault Reference” on page 9-20.

The Arithmetic Controls no imprecise faults (AC.nif) bit controls the synchronizing of faults fo
category of faults called imprecise faults. The function of this bit is described in Section 9.9,
“Precise and Imprecise Faults” on page 9-18.

TC register trace mode bits and the PC register trace enable bit support trace faults. Trace m
bits enable trace modes; the trace enable bit (PC.te) enables trace fault generation. The use
bits is described in the trace faults description in Section 9.10, “Fault Reference” on page 9-20.
Further discussion of these flags is provided in Chapter 10, “Tracing and Debugging”.

The unaligned fault mask bit is located in the process control block (PRCB), which is read from
fault configuration word (located at address PRCB pointer + 0CH) during initialization. It cont
whether unaligned memory accesses generate a fault.

9.8 Fault Handling Action

Once a fault occurs, the processor saves the program state, calls the fault handling procedure
possible, restores the program state when the fault recovery action completes. No software
than the fault handling procedures is required to support this activity.

Three types of implicit procedure calls can be used to invoke the fault handling procedure: a
call, a system-local call and a system-supervisor call.

The following subsections describe actions the processor takes while handling faults. It is no
necessary to read these sections to use the fault handling mechanism or to write a fault han
procedure. This discussion is provided for those readers who wish to know the details of the
handling mechanism.

Table 9-2. Fault Control Bits and Masks

Flag or Mask Name Location Faults Affected

Integer Overflow Mask Bit Arithmetic Controls (AC) Register INTEGER_OVERFLOW

No Imprecise Faults Bit Arithmetic Controls (AC) Register All Imprecise Faults

Trace Enable Bit Process Controls (PC) Register All TRACE Faults

Trace Mode Trace Controls (TC) Register All TRACE Faults except hardware
breakpoint traces and fmark

Unaligned Fault Mask Process Control Block (PRCB) UNALIGNED Fault
i960® RM/RN I/O Processor Developer’s Manual 9-15

Faults

lt

nto
ess

entry
a local
's
9.8.1 Local Fault Call

When the selected fault handler entry in the fault table is an entry type 0002 (a local procedure), the
processor operates as described in Section 7.1.3.1, “Call Operation” on page 7-6, with the
following exceptions:

• A new frame is created on the stack that the processor is currently using. The stack can be the
user stack, supervisor stack or interrupt stack.

• The fault record is copied into the area allocated for it in the stack, beginning at NFP-1
(Figure 9-4).

• The processor gets the IP for the first instruction in the called fault handling procedure from
the fault table.

• The processor stores the fault return code (0012) in the PFP return type field.

When the fault handling procedure is not able to perform a recovery action, it performs one of the
actions described in Section 9.7.2, “Program Resumption Following a Fault” on page 9-12.

When the handler action results in recovery from the fault, a ret instruction in the fault handling
procedure allows processor control to return to the program that was executing when the fau
occurred. Upon return, the processor performs the action described in Section 7.1.3.2, “Return
Operation” on page 7-6, except that the arithmetic controls field from the fault record is copied i
the AC register. When the processor is in user mode before execution of the return, the proc
controls field from the fault record is not copied back to the PC register.

9.8.2 System-Local Fault Call

When the fault handler selects an entry for a local procedure in the system procedure table (
type 102), the processor performs the same action as is described in the previous section for
fault call or return. The only difference is that the processor gets the fault handling procedure
address from the system procedure table rather than from the fault table.
9-16 i960® RM/RN I/O Processor Developer’s Manual

Faults
9.8.3 System-Supervisor Fault Call

When the fault handler selects an entry for a supervisor procedure in the system procedure table,
the processor performs the same action described in Section 7.1.3.1, “Call Operation” on page 7-6,
with the following exceptions:

• When the fault occurs while in user mode, the processor switches to supervisor mode, reads
the supervisor stack pointer from the system procedure table and switches to the supervisor
stack. A new frame is then created on the supervisor stack.

• When the fault occurs while in supervisor mode, the processor creates a new frame on the current
stack. When the processor is executing a supervisor procedure when the fault occurred, the current
stack is the supervisor stack; when it is executing an interrupt handler procedure, the current stack
is the interrupt stack. (The processor switches to supervisor mode when handling interrupts.)

• The fault record is copied into the area allocated for it in the new stack frame, beginning at
NFP-1 (Figure 9-4).

• The processor gets the IP for the first instruction of the fault handling procedure from the
system procedure table (using the index provided in the fault table entry).

• The processor stores the fault return code (0012) in the PFP register return type field. When the
fault is not a trace, parallel or override fault, it copies the state of the system procedure table
trace control flag (byte 12, bit 0) into the PC register trace enable bit. When the fault is a trace,
parallel or override fault, the trace enable bit is cleared.

On a return from the fault handling procedure, the processor performs the action described in
Section 7.1.3.2, “Return Operation” on page 7-6 with the addition of the following:

• The fault record arithmetic controls field is copied into the AC register.

• When the processor is in supervisor mode prior to the return from the fault handling procedure
(which it should be), the fault record process controls field is copied into the PC register. The
mode is then switched back to user, if it was in user mode before the call.

• The processor switches back to the stack it was using when the fault occurred. (When the
processor was in user mode when the fault occurred, this operation causes a switch from the
supervisor stack to the user stack.)

• When the trace-fault-pending flag and trace enable bits are set in the PC field of the fault record,
the trace fault on the instruction at the origin of the supervisor fault call is handled at this time.

The user should note that PC register restoration causes any changes to the process controls done
by the fault handling procedure to be lost.

9.8.4 Faults and Interrupts

When an interrupt occurs during an instruction that faults, an instruction that has already faulted, or
fault handling procedure selection, the processor:

1. Completes the selection of the fault handling procedure.

2. Creates the fault record.

3. Services the interrupt just prior to executing the first instruction of the fault handling procedure.

4. Handles the fault upon return from the interrupt.

Handling the interrupt before the fault reduces interrupt latency.
i960® RM/RN I/O Processor Developer’s Manual 9-17

Faults

gether.

s are
ize

e each.
9.9 Precise and Imprecise Faults

As described in Section 9.10.5, “PARALLEL Faults” on page 9-25, the i960 architecture — to
support parallel and out-of-order instruction execution — allows some faults to be generated to

The processor provides two mechanisms for controlling the circumstances under which fault
generated: the AC register no-imprecise-faults bit (AC.nif) and the instructions that synchron
faults. See Section 9.9.5, “Controlling Fault Precision” on page 9-19 for more information. Faults
are categorized as precise, imprecise and asynchronous. The following subsections describ

9.9.1 Precise Faults

A fault is precise if it meets all of the following conditions:

• The faulting instruction is the earliest instruction in the instruction issue order to generate a fault.

• All instructions after the faulting instruction, in instruction issue order, are guaranteed not to
have executed.

TRACE and PROTECTION.LENGTH faults are always precise. Precise faults cannot be found in
parallel records with other precise or imprecise faults.

9.9.2 Imprecise Faults

Faults that do not meet all of the requirements for precise faults are considered imprecise. For
imprecise faults, the state of execution of instructions surrounding the faulting instruction may be
unpredictable. When instructions are executed out of order and an imprecise fault occurs, it may
not be possible to access the source operands of the instruction. This is because they may have been
modified by subsequent instructions executed out of order. However, the RIP of some imprecise
faults (e.g., ARITHMETIC) points to the next instruction that has not yet executed and guarantees
the return from the fault handler to the original flow of execution. Faults that the architecture
allows to be imprecise are OPERATION, CONSTRAINT, ARITHMETIC and TYPE.

9.9.3 Asynchronous Faults

Asynchronous faults are those whose occurrence has no direct relationship to the instruction
pointer. This group includes MACHINE faults, which are not implemented on the i960 RM/RN I/O
processor.
9-18 i960® RM/RN I/O Processor Developer’s Manual

Faults
9.9.4 No Imprecise Faults (AC.nif) Bit

The Arithmetic Controls no imprecise faults (AC.nif) bit controls imprecise fault generation. When
AC.nif is set, out of order instruction execution is disabled and all faults generated are precise.
Therefore, setting this bit reduces processor performance. When AC.nif is clear, several imprecise
faults may be reported together in a parallel fault record. Precise faults can never be found in
parallel fault records, thus only more than one imprecise fault occurring concurrently with AC.nif
= 0 can produce a parallel fault.

Compiled code should execute with the AC.nif bit clear, using syncf where necessary to ensure that
faults occur in order. In this mode, imprecise faults are considered to be catastrophic errors from
which recovery is not needed. This also allows the processor to take advantage of internal
pipelining, which can speed up processing time. When only precise faults are allowed, the
processor must restrict the use of pipelining to prevent imprecise faults.

The AC.nif bit should be set if recovery from one or more imprecise faults is required. For
example, the AC.nif bit should be set if a program needs to handle and recover from unmasked
integer-overflow faults and the fault handling procedure cannot be closely coupled with the
application to perform imprecise fault recovery.

9.9.5 Controlling Fault Precision

The syncf instruction forces the processor to complete execution of all instructions that occur prior
to syncf and to generate all faults before it begins work on instructions that occur after syncf. This
instruction has two uses:

• It forces faults to be precise when the AC.nif bit is clear.

• It ensures that all instructions are complete and all faults are generated in one block of code
before executing another block of code.

The implicit fault call operation synchronizes all faults. In addition, the following instructions or
operations perform synchronization of all faults except MACHINE.PARITY:

• Call and return operations including call, callx, calls and ret instructions, plus the implicit
interrupt and fault call operations.

• Atomic operations including atadd and atmod.
i960® RM/RN I/O Processor Developer’s Manual 9-19

Faults

n
he
.

RIP
uted

ter

uting

cted

e

9.10 Fault Reference

This section describes each fault type and subtype and gives detailed information about what is
stored in the various fields of the fault record. The section is organized alphabetically by fault type.
The following paragraphs describe the information that is provided for each fault type.

Fault Type: Gives the number that appears in the fault record fault-type field
when the fault is generated.

Fault Subtype: Lists the fault subtypes and the number associated with each fault
subtype.

Function: Describes the purpose and handling of the fault type and each
subtype.

RIP: Describes the value saved in the image of the RIP register in the
stack frame that the processor was using when the fault occurred. In
the RIP definitions, “next instruction” refers to the instructio
directly after the faulting instruction or to an instruction to which t
processor can logically return when resuming program execution

Note that the discussions of many fault types specify that the
contains the address of the instruction that would have exec
next had the fault not occurred.

Fault IP: Describes the contents of the fault record’s fault instruction poin
field, typically the faulting instruction’s IP.

Fault Data: Describes any values stored in the fault record’s fault data field.

Class: Indicates if a fault is precise or imprecise.

Program State Changes: Describes the process state changes that would prevent re-exec
the faulting instruction if applicable.

Trace Reporting: Relates whether a trace fault (other than PRERET) can be dete
on the faulting instruction, also if and when the fault is serviced.

Notes: Additional information specific to particular implementations of th
i960 architecture.
9-20 i960® RM/RN I/O Processor Developer’s Manual

Faults

s

ro.

ad

ed.
e
e the
be
r for

r.
9.10.1 ARITHMETIC Faults

Fault Type: 3H

Fault Subtype: Number Name
0H Reserved
1H INTEGER_OVERFLOW
2H ZERO_DIVIDE
3H-FH Reserved

Function: Indicates a problem with an operand or the result of an arithmetic
instruction. An INTEGER_OVERFLOW fault is generated when
the result of an integer instruction overflows its destination and the
AC register integer overflow mask is cleared. Here, the result’n
least significant bits are stored in the destination, where n is
destination size. Instructions that generate this fault are:

An ARITHMETIC.ZERO_DIVIDE fault is generated when the
divisor operand of an ordinal- or integer-divide instruction is ze
Instructions that generate this fault are:

RIP: IP of the instruction that would have executed next if the fault h
not occurred.

Fault IP: IP of the faulting instruction.

Class: Imprecise.

Program State Changes: Faults may be imprecise when executing with the AC.nif bit clear
INTEGER_OVERFLOW and ZERO_DIVIDE faults may not b
recoverable because the result is stored in the destination befor
fault is generated (e.g., the faulting instruction cannot
re-executed if the destination register was also a source registe
the instruction).

Trace Reporting: The trace is reported upon return from the arithmetic fault handle

addi subi stis

stib shli ADDI<cc>

muli divi SUBI<cc>

divo divi

ediv remi

remo modi
i960® RM/RN I/O Processor Developer’s Manual 9-21

Faults

ese
e
.
9.10.2 CONSTRAINT Faults

Fault Type: 5H

Fault Subtype: Number Name
0H Reserved
1H RANGE
2H-FH Reserved

Function: Indicates the program or procedure violated an architectural
constraint.

A CONSTRAINT.RANGE fault is generated when a FAULT<cc>

instruction is executed and the AC register condition code field
matches the condition required by the instruction.

RIP: No defined value.

Fault IP: Faulting instruction.

Class: Imprecise.

Program State Changes: These faults may be imprecise when executing with the AC.nif bit
cleared. No changes in the program’s control flow accompany th
faults. A CONSTRAINT.RANGE fault is generated after th
FAULT<cc> instruction executes. The program state is not affected

Trace Reporting: Serviced upon return from the Constraint fault handler.
9-22 i960® RM/RN I/O Processor Developer’s Manual

Faults

ata
l to
s.

:
ot
n
es,

n

9.10.3 OPERATION Faults

Fault Type: 2H

Fault Subtype: Number Name
0H Reserved
1H INVALID_OPCODE
2H UNIMPLEMENTED
3H UNALIGNED
4H INVALID_OPERAND
5H - FH Reserved

Function: Indicates the processor cannot execute the current instruction
because of invalid instruction syntax or operand semantics.

An INVALID_OPCODE fault is generated when the processor
attempts to execute an instruction containing an undefined opcode
or addressing mode.

An UNIMPLEMENTED fault is generated when the processor
attempts to execute an instruction fetched from on-chip data RAM,
or when a non-word or unaligned access to a memory-mapped
region is performed, or when attempting to write memory-mapped
region 0xFF0084XX when rights have not been granted.

An UNALIGNED fault is generated when the following conditions
are present: (1) the processor attempts to access an unaligned word or
group of words in non-MMR memory; and (2) the fault is enabled by
the unaligned-fault mask bit in the PRCB fault configuration word.

An INVALID_OPERAND fault is generated when the processor
attempts to execute an instruction that has one or more operands having
special requirements that are not satisfied. This fault is generated when
specifying a non-defined sysctl, icctl, dcctl or intctl command, or
referencing an unaligned long-, triple- or quad-register group, or by
referencing an undefined register, or by writing to the RIP register (r2).

RIP: No defined value.

Fault IP: Address of the faulting instruction.

Fault Data: When an UNALIGNED fault is signaled, the effective address of
the unaligned access is placed in the fault record’s optional d
section, beginning at address NFP-24. This address is usefu
debug a program that is making unintentional unaligned accesse

Class: Imprecise.

Program State Changes: For the INVALID_OPCODE and UNIMPLEMENTED faults (case
store to MMR), the destination of the faulting instruction is n
modified. (For the UNALIGNED fault, the memory operatio
completes correctly before the fault is reported.) In all other cas
the destination is undefined.

Trace Reporting: OPERATION.UNALIGNED fault: the trace is reported upon retur
from the OPERATION fault handler.
All other subtypes: the trace event is lost.

Notes: OPERATION.UNALIGNED fault is not implemented on i960 Kx
and Sx CPUs.
i960® RM/RN I/O Processor Developer’s Manual 9-23

Faults
9.10.4 OVERRIDE Faults

Fault Type: Fault table entry = 10H

The fault type in the fault record on the stack equals the fault type of
the initial fault. The fault type in the internal registers equals the
fault type of the additional fault detected while attempting to service
the initial fault.

Fault Subtype: The fault subtype in the fault record on the stack equals the fault
subtype of the initial fault. The fault subtype in the internal registers
equals the fault subtype of the additional fault detected while
attempting to service the initial fault.

Fault OType: The fault type of the additional fault detected while attempting to
deliver the program fault.

Fault OSubtype: The fault subtype of the additional fault detected while attempting to
deliver the program fault.

Function: The override fault handler must be accessed through a system-super-
visor call. Local and system-local override fault handlers are not
supported and have an unpredictable behavior. Tracing is disabled
upon entry into the override fault handler (PC.te is cleared). It is
restored upon return from the handler. To prevent infinite internal
loops, the override fault handler should not set PC.te.

Trace Reporting: Same behavior as if the override condition had not existed. Refer to
the description of the original program fault.
9-24 i960® RM/RN I/O Processor Developer’s Manual

Faults

re
nd

ult
n of
ble
ns

 all
ult

lts
 in

s on
ific

per-
not
vior.
.te
ent
.te.

 is
is

 is
st.
9.10.5 PARALLEL Faults

Fault Type: Fault table entry = 0H
Fault type in fault record = fault type of one of the parallel faults.

Fault Subtype: Fault subtype of one of the parallel faults.

Fault OType: 0H

Fault OSubtype: Number of parallel faults.

Function: See Section 9.6.4, “Parallel Faults” on page 9-9 for a complete
description of parallel faults. When the AC.nif=0, the architectu
permits the processor to execute instructions in parallel a
out-of-order by different execution units. When an imprecise fa
occurs in any of these units, it is not possible to stop the executio
those instructions after the faulting instruction. It is also possi
that more than one fault is detected from different instructio
almost at the same time.

When there is more than one outstanding fault at the point when
execution units terminate, a parallel fault situation arises. The fa
record of parallel faults contains the fault information of all fau
that occurred in parallel. The number of parallel faults is indicated
the Parallel Faults Field (NFP-20). See Figure 9-3. The maximum
size of the fault record is implementation dependent and depend
the number of parallel and pipeline execution units in the spec
implementation.

The parallel fault handler must be accessed through a system-su
visor call. Local and system-local parallel fault handlers are
supported by the i960 processor and have an unpredictable beha
Tracing is disabled upon entry into the parallel fault handler (PC
is cleared). It is restored upon return from the handler. To prev
infinite internal loops, the parallel fault handler should not set PC

RIP: When all parallel fault types allow a RIP to be defined, the RIP
the next instruction in the flow of execution, otherwise it
undefined.

Fault IP: IP of one of the faulting instructions.

Class: Imprecise.

Program State Changes: State changes associated with all the parallel faults.

Trace Reporting: If all parallel fault types allow for a resumption trace, then a trace
reported upon return from the parallel fault handler, or else it is lo
i960® RM/RN I/O Processor Developer’s Manual 9-25

Faults
9.10.6 PROTECTION Faults

Fault Type: 7H

Fault Subtype: Number Name
Bit 0 Reserved
Bit 1 LENGTH
Bit 2-7 Reserved

Function: Indicates that a program or procedure is attempting to perform an
illegal operation that the architecture protects against.

A PROTECTION.LENGTH fault is generated when the index
operand, used in a calls instruction, points to an entry beyond the
extent of the system procedure table.

RIP: IP of the faulting instruction.

IP of the faulting instruction.

Fault IP: LENGTH: IP of the faulting instruction.

Class: Imprecise. (PROTECTION.LENGTH is precise even though the
PROTECTION fault class is imprecise.)

Program State Changes: LENGTH: The instruction does not execute.

Trace Reporting: PROTECTION.LENGTH: The trace event is lost.
9-26 i960® RM/RN I/O Processor Developer’s Manual

Faults

or
izes
rn,

 TC
able
ent is

s a
nt).

ry

y
s
ot

y

r
or
ll
e

ny

rn
e
is
9.10.7 TRACE Faults

Fault Type: 1H

Fault Subtype: NumberName
Bit 0 Reserved
Bit 1 INSTRUCTION
Bit 2 BRANCH
Bit 3 CALL
Bit 4 RETURN
Bit 5 PRERETURN
Bit 6 SUPERVISOR
Bit 7 MARK/BREAKPOINT

Function: Indicates the processor detected one or more trace events. The event
tracing mechanism is described in Chapter 10, “Tracing and
Debugging”.

A trace event is the occurrence of a particular instruction
instruction type in the instruction stream. The processor recogn
seven different trace events: instruction, branch, call, retu
prereturn, supervisor, mark. It detects these events only if the
register mode bit is set for the event. If the PC register trace en
bit is also set, the processor generates a fault when a trace ev
detected.

A TRACE fault is generated following the instruction that cause
trace event (or prior to the instruction for the prereturn trace eve
The following trace modes are available:

INSTRUCTION Generates a trace event following eve
instruction.

BRANCH Generates a trace event following an
branch instruction when the branch i
taken (a branch trace event does n
occur on branch-and-link or call
instructions).

CALL Generates a trace event following an
call or branch-and-link instruction or an
implicit fault call.

RETURN Generates a trace event following a ret.

PRERETURN Generates a trace event prior to any ret
instruction, provided the PFP registe
prereturn trace flag is set (the process
sets the flag automatically when a ca
trace is serviced). A prereturn trac
fault is always generated alone.

SUPERVISOR Generates a trace event following a
calls instruction that references a
supervisor procedure entry in the
system procedure table and on a retu
from a supervisor procedure where th
return status type in the PFP register
0102 or 0112.
i960® RM/RN I/O Processor Developer’s Manual 9-27

Faults
MARK/BREAKPOINT Generates a trace event following the
mark instruction. The MARK fault
subtype bit, however, is used to indicate
a match of the instruction-address
breakpoint register or the data-address
breakpoint register as well as the fmark
and mark instructions.

A TRACE fault subtype bit is associated with each mode. Multiple
fault subtypes can occur simultaneously; all trace fault conditions
detected on one instruction (except prereturn) are reported in one
single trace fault, with the fault subtype bit set for each subtype that
occurs. The prereturn trace is always reported alone.

When a fault type other than a TRACE fault is generated during
execution of an instruction that causes a trace event, the non-trace
fault is handled before the trace fault. An exception is the
prereturn-trace fault, which occurs before the processor detects a
non-trace fault and is handled first.

Similarly, if an interrupt occurs during an instruction that causes a
trace event, the interrupt is serviced before the TRACE fault is
handled. Again, the TRACE.PRERETURN fault is different. Since
it is generated before the instruction, it is handled before any
interrupt that occurs during instruction execution.

A trace fault handler must be accessed through a system-supervisor
call (it must be a supervisor procedure in the system procedure
table). Local and system-local trace fault handlers are not supported
by the architecture and may have unpredictable behavior. Tracing is
automatically disabled when entering the trace fault handler and is
restored upon return from the trace fault handler. The trace fault
handler should not modify PC.te.

RIP: Instruction immediately following the instruction traced, in
instruction issue order, except for PRERETURN. For
PRERETURN, the RIP is the return instruction traced.

Fault IP: IP of the faulting instruction for all except prereturn trace and call
trace (on implicit fault calls), for which the fault IP field is
undefined.

Class: Precise.

Program State Changes: All trace faults except PRERETURN are serviced after the
execution of the faulting instruction. The processor returns to the
instruction immediately following the instruction traced, in
instruction issue order. For PRERETURN, the return is traced
before it executes. The processor re-executes the return instruction
after completion of the PRERETURN trace fault handler.
9-28 i960® RM/RN I/O Processor Developer’s Manual

Faults

ile
the

r-

e
p is

om

er

tate
9.10.8 TYPE Faults

Fault Type: AH

Fault Subtype: Number Name
0H Reserved
1H MISMATCH
2H-FH Reserved

Function: Indicates a program or procedure attempted to perform an illegal
operation on an architecture-defined data type or a typed data
structure.

A TYPE.MISMATCH fault is generated when attempts are made to:

• Execute a privileged (supervisor-mode only) instruction wh
the processor is in user mode. Privileged instructions on
i960 RM/RN I/O processor are:

• Write to on-chip data RAM while the processor is in supe
visor-only write mode and BCON.irp is set.

• Write to the first 64 bytes of on-chip data RAM while th
processor is in either user or supervisor mode and BCON.sir
set.

• Write to memory-mapped registers in supervisor space fr
user mode.

• Write to timer registers while in user mode, when tim
registers are protected against user-mode writes.

RIP: No defined value.

Fault IP: IP of the faulting instruction.

Class: Imprecise.

Program State Changes: The fault happens before execution of the instruction. Machine s
is not changed.

Trace Reporting: The trace event is lost.

modpc intctl

sysctl inten

icctl intdis

dcctl
i960® RM/RN I/O Processor Developer’s Manual 9-29

uting a
ticular
n

. This
uring

de bits

 trace
sses,
.

s,
isters
Tracing and Debugging 10

This chapter describes the i960® RM/RN I/O processor’s facilities for runtime activity monitoring.
The i960 architecture provides facilities for monitoring processor activity through trace event
generation. A trace event indicates a condition where the processor has just completed exec
particular instruction or a type of instruction or where the processor is about to execute a par
instruction. When the processor detects a trace event, it generates a trace fault and makes a
implicit call to the fault handling procedure for trace faults. This procedure can, in turn, call
debugging software to display or analyze the processor state when the trace event occurred
analysis can be used to locate software or hardware bugs or for general system monitoring d
program development.

Tracing is enabled by the process controls (PC) register trace enable bit and a set of trace mo
in the trace controls (TC) register. Alternatively, the mark and fmark instructions can be used to
generate trace events explicitly in the instruction stream.

The i960 RM/RN I/O processor also provides four hardware breakpoint registers that generate
events and trace faults. Two registers are dedicated to trapping on instruction execution addre
while the remaining two registers can trap on the addresses of various types of data accesses

10.1 Trace Controls

To use the architecture’s tracing facilities, software must provide trace fault handling procedure
perhaps interfaced with a debugging monitor. Software must also manipulate the following reg
and control bits to enable the various tracing modes and enable or disable tracing in general.

• TC register mode bits

• DAB0-DAB1 registers’ address field and enable bit (in the control table)

• System procedure table supervisor-stack-pointer field trace control bit

• IPB0-IPB1 registers’ address field (in the control table)

• PC register trace enable bit

• PFP register return status field prereturn trace flag (bit 3)

• BPCON register breakpoint mode bits and enable bits (in the control table)

These controls are described in the following subsections.
i960® RM/RN I/O Processor Developer’s Manual 10-1

Tracing and Debugging

ted.

ions to

lt; the
a trace
M/RN

10.1.1 Trace Controls Register – TC

The TC register (Table 10-1) allows software to define conditions that generate trace events.

The TC register contains mode bits and event flags. Mode bits define a set of tracing conditions that
the processor can detect. For example, when the call-trace mode bit is set, the processor generates a
trace event when a call or branch-and-link operation executes. See Section 10.2, “Trace Modes” on
page 10-3. The processor uses event flags to monitor which breakpoint trace events are genera

A special instruction, modify-trace-controls (modtc), allows software to modify the TC register. On
initialization, the TC register is read from the Control Table. modtc can then be used to set or clear
trace mode bits as required. Updating TC mode bits may take up to four non-branching instruct
take effect. Software can access the breakpoint event flags using modtc. The processor automatically
sets and clears these flags as part of its trace handling mechanism: the breakpoint event flag
corresponding to the trace being serviced is set in the TC while servicing a breakpoint trace fau
TC event flags are cleared upon return from the trace fault handler. When the program is not in
fault handler, or when the trace is not for breakpoints, the TC event bits are clear. On the i960 R
I/O processor, TC register bits 0, 8 through 23 and 28 through 31 are reserved. Software must
initialize these bits to zero and cannot modify them afterwards.

Table 10-1. 80960RM/RN Trace Controls Register – TC

28 24 20 16

12 8 4 0

31

Trace Mode Bits
Instruction Trace Mode - TC.i
Branch Trace Mode - TC.b
Call Trace Mode -TC.c

Pre-Return Trace Mode - TC.p
Supervisor Trace Mode - TC.s
Mark Trace Mode - TC.mk

Return Trace Mode - TC.r

ibcrpsm
k

Reserved

Hardware Breakpoint Event Flags
Instruction-Address Breakpoint 0 - TC.i0f
Instruction-Address Breakpoint 1 - TC.i1f
Data-Address Breakpoint 0 - TC.d0f
Data-Address Breakpoint 1 - TC.d1f

i
0
f

i
1
f

d
0
f

d
1
f

10-2 i960® RM/RN I/O Processor Developer’s Manual

Tracing and Debugging

6
ates

e trace
hat the
2

ct.

ber
.,

 of the

bled
ce

n is
sor.

erates a
10.1.2 PC Trace Enable Bit and Trace-Fault-Pending Flag

The Process Controls (PC) register trace enable bit and the trace-fault-pending flag in the PC field
of the fault record control tracing (Section 3.6.3, “Process Controls Register – PC” on page 3-1).
The trace enable bit enables the processor’s tracing facilities; when set, the processor gener
trace faults on all trace events.

Typically, software selects the trace modes to be used through the TC register. It then sets th
enable bit to begin tracing. This bit is also altered as part of some call and return operations t
processor performs as described in Section 10.5.2, “Tracing on Calls and Returns” on page 10-1.

The update of PC.te through modpc may take up to four non-branching instructions to take effe
The update of PC.te through call and return operations is immediate.

The trace-fault-pending flag, in the PC field of the fault record, allows the processor to remem
to service a trace fault when a trace event is detected at the same time as another event (e.g
non-trace fault, interrupt). The non-trace fault event is serviced before the trace fault, and
depending on the event type and execution mode, the trace-fault-pending flag in the PC field
fault record may be used to generate a fault upon return from the non-trace fault event
(Section 10.5.2.4, “Tracing on Return from Implicit Call: Fault Case” on page 10-14).

10.2 Trace Modes

This section defines trace modes enabled through the TC register. These modes can be ena
individually or several modes can be enabled at once. Some modes overlap, such as call-tra
mode and supervisor-trace mode.

See Section 10.4, “Handling Multiple Trace Events” on page 10-11 for a description of processor
function when multiple trace events occur.

10.2.1 Instruction Trace

When the instruction-trace mode is enabled in TC (TC.i = 1) and tracing is enabled in PC
(PC.te = 1), the processor generates an instruction-trace fault immediately after an instructio
executed. A debug monitor can use this mode (TC.i = 1, PC.te = 1) to single-step the proces

10.2.2 Branch Trace

When the branch-trace mode is enabled in TC (TC.b = 1) and PC.te is set, the processor gen
branch-trace fault immediately after a branch instruction executes, if the branch is taken. A
branch-trace event is not generated for conditional-branch instructions that do not branch,
branch-and-link instructions, and call-and-return instructions.

• Instruction trace • Branch trace • Mark trace • Prereturn trace

• Call trace • Return trace • Supervisor trace
i960® RM/RN I/O Processor Developer’s Manual 10-3

Tracing and Debugging

re

all.

 in the
 was
ce

set, the

sor

erates a
ates a
two
10.2.3 Call Trace

When the call-trace mode is enabled in TC (TC.c = 1) and PC.te is set after the call operation, the
processor generates a call-trace fault when a call instruction (call, callx or calls) or a
branch-and-link instruction (bal or balx) executes. See Section 10.5.2.1, “Tracing on Explicit Call”
on page 10-12 for a detailed description of call tracing on explicit instructions. Interrupt calls a
never traced.

An implicit call to a fault handler also generates a call trace if TC.c and PC.te are set after the c
Refer to Section 10.5.2.2, “Tracing on Implicit Call” on page 10-13 for a complete description of
this case.

When the processor services a trace fault, it sets the prereturn-trace flag (PFP register bit 3)
new frame created by the call operation or in the current frame if a branch-and-link operation
performed. The processor uses this flag to determine whether or not to signal a prereturn-tra
event on a ret instruction.

10.2.4 Return Trace

When the return-trace mode is enabled in TC and PC.te is set after the return instruction, the
processor generates a return-trace fault for a return from explicit call (PFP.rrr = 000 or
PFP.rrr = 01x). See Section 10.5.2.3, “Tracing on Return from Explicit Call” on page 10-14.

A return from fault may be traced and a return from interrupt cannot. See Section 10.5.2.4,
“Tracing on Return from Implicit Call: Fault Case” on page 10-14 and Section 10.5.2.5, “Tracing
on Return from Implicit Call: Interrupt Case” on page 10-14 for details.

10.2.5 Prereturn Trace

When the TC prereturn-trace mode, the PC.te, and the PFP prereturn-trace flag (PFP.p) are
processor generates a prereturn-trace fault prior to executing a ret execution. The dependence on
PFP.p implies that prereturn tracing cannot be used without enabling call tracing. The proces
sets PFP.p whenever it services a call-trace fault (as described above) for call-trace mode.

If another trace event occurs at the same time as the prereturn-trace event, the processor gen
fault on the non-prereturn-trace event first. Then, on a return from that fault handler, it gener
fault on the prereturn-trace event. The prereturn trace is the only trace event that can cause
successive trace faults to be generated between instruction boundaries.

10.2.6 Supervisor Trace

When supervisor-trace mode is enabled in TC and PC.te is set, the processor generates a
supervisor-trace fault after either of the following:

• A call-system instruction (calls) executes from user mode and the procedure table entry is for
a system-supervisor call.

• A ret instruction executes from supervisor mode and the return-type field is set to 0102 or 0112
(i.e., return from calls).

This trace mode allows a debugging program to determine kernel-procedure call boundaries within
the instruction stream.
10-4 i960® RM/RN I/O Processor Developer’s Manual

Tracing and Debugging
10.2.7 Mark Trace

Mark trace mode allows trace faults to be generated at places other than those specified with the
other trace modes, using the mark instruction. It should be noted that the MARK fault subtype bit
in the fault record is used to indicate a match of the instruction-address breakpoint registers or the
data-address breakpoint registers as well as the fmark and mark instructions.

10.2.7.1 Software Breakpoints

mark and fmark allow breakpoint trace faults to be generated at specific points in the instruction
stream. When mark trace mode is enabled and PC.te is set, the processor generates a mark trace
fault any time it encounters a mark instruction. fmark causes the processor to generate a mark trace
fault regardless of whether or not mark trace mode is enabled, provided PC.te is set. If PC.te is
clear, mark and fmark behave like no-ops.

10.2.7.2 Hardware Breakpoints

The hardware breakpoint registers are provided to enable generation of trace faults on instruction
execution and data access.

The i960 RM/RN I/O processor implements two instruction and two data address breakpoint
registers, denoted IPB0, IPB1, DAB0 and DAB1. The instruction and data address breakpoint
registers are 32-bit registers. The instruction breakpoint registers cause a break after execution of
the target instruction. The DABx registers cause a break after the memory access has been issued
to the bus controller.

Hardware breakpoint registers may be armed or disarmed. When the registers are armed, hardware
breakpoints can generate an architectural trace fault. When the registers are disarmed, no action
occurs, and execution continues normally. Since instructions are always word aligned, the two
low-order bits of the IPBx registers act as control bits. Control bits for the DABx registers reside in
the Breakpoint Control (BPCON) register. BPCON enables the data address breakpoint registers,
and sets the specific modes of these registers. Hardware breakpoints are globally enabled by the
process controls trace enable bit (PC.te).

The IPBx, DABx, and BPCON registers may be accessed using normal load and store instructions
(except for loads from IPBx register). The application must be in supervisor mode for a legal
access to occur. See Section 3.3, “Memory-Mapped Control Registers (MMRs)” on page 3-5 for
more information on the address for each register.

Applications must request modification rights to the hardware breakpoint resources, before
attempting to modify these resources. Rights are requested by executing the sysctl instruction, as
described in the following section.
i960® RM/RN I/O Processor Developer’s Manual 10-5

Tracing and Debugging
10.2.7.3 Requesting Modification Rights to Hardware Breakpoint Resources

Application code must always first request and acquire modification rights to the hardware breakpoint
resources before any attempt is made to modify them. This mechanism is employed to eliminate
simultaneous usage of breakpoint resources by emulation tools and application code. An emulation
tool exercises supervisor control over breakpoint resource allocation. If the emulator retains control of
breakpoint resources, none are available for application code. If an emulation tool is not being used in
conjunction with the device, modification rights to breakpoint resources are granted to the application.
The emulation tool may relinquish control of breakpoint resources to the application.

If the application attempts to modify the breakpoint or breakpoint control (BPCON) registers
without first obtaining rights, an OPERATION.UNIMPLEMENTED fault is generated. In this
case, the breakpoint resource are not modified, whether accessed through a sysctl instruction or as
a memory-mapped register.

Application code requests modification rights by executing the sysctl instruction and issuing the
Breakpoint Resource Request message (src1.Message_Type = 06H). In response, the current
available breakpoint resources are returned as the src/dst parameter (src/dst must be a register).
The src2 parameter is not used. Results returned in the src/dst parameter must be interpreted as
shown in Table 10-2.

The following code sample illustrates the execution of the breakpoint resource request.

ldconst 0x600, r4 # Load the Breakpoint Resource

Request message type into r4.

sysctl r4, r4, r4 # Issue the request.

Assume in this example that after execution of the sysctl instruction, the value of r4 is
0000 0022H. This indicates that the application has gained modification rights to both instruction
and both data address breakpoint registers. If the value returned is zero, the application has not
gained the rights to the breakpoint resources.

Because the i960 RM/RN I/O processor does not initialize the breakpoint registers from the control
table during initialization (as i960 Cx processors do), the application must explicitly initialize the
breakpoint registers in order to use them once modification rights have been granted by the sysctl
instruction.

Table 10-2. src/dst Encoding

src/dst 7:4 src/dst 3:0

Number of Available Data Address Breakpoints Number of Available Instruction Breakpoints

NOTE: src/dst 31:8 are reserved and always return zeroes.
10-6 i960® RM/RN I/O Processor Developer’s Manual

Tracing and Debugging
10.2.7.4 Breakpoint Control Register – BPCON

The format of the BPCON registers are shown in Table 10-3 and Table 10-6. Each breakpoint has
four control bits associated with it: two mode and two enable bits. The enable bits (DABx.e0,
DABx.e1) in BPCON act to enable or disable the data address breakpoints, while the mode bits
(DABx.m0, DABx.m1) dictate which type of access generates a break event.

Table 10-3. Breakpoint Control Register – BPCON

LBA:

PCI:

8440H

NA

Legend: NA = Not Accessible RO = Read Only
RV = Reserved PR = Preserved RW = Read/Write
RS = Read/Set RC = Read Clear
LBA = 80960 local bus address PCI = PCI Configuration Address Offset

Bit Default Description

31:24 00H Reserved. Initialize to 0.

23 02 DAB1 Breakpoint Mode Control Bit: DAB1.m1

22 02 DAB1 Breakpoint Mode Control Bit: DAB1.m0

21 02 DAB1 Breakpoint Enable Control Bit: DAB1.e1

20 02 DAB1 Breakpoint Enable Control Bit: DAB1.e0

19 02 DAB0 Breakpoint Mode Control Bit: DAB0.m1

18 02 DAB0 Breakpoint Mode Control Bit: DAB0.m0

17 02 DAB0 Breakpoint Enable Control Bit: DAB0.e1

16 02 DAB0 Breakpoint Enable Control Bit: DAB0.e0

15:00 0000H Reserved. Initialize to 0.

PCI

LBA

28 24 20 16 12 8 4 031

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na
i960® RM/RN I/O Processor Developer’s Manual 10-7

Tracing and Debugging
Programming the BPCON register is summarized in Table 10-4 and Table 10-5.

The mode bits of BPCON control the type of access that generates a fault, trace message, or break
event, as summarized in Table 10-5.

Table 10-4. Configuring the Data Address Breakpoint Registers – DABx

PC.te DABx.e1 DABx.e0 Description

0 X X No action. With PC.te clear, breakpoints are globally disabled.

X 0 0 No action. DABx is disabled.

1 0 1 Reserved.

1 1 0 Reserved.

1 1 1 Generate a Trace Fault.

NOTE: “X” = don’t care. Reserved combinations must not be used.

Table 10-5. Programming the Data Address Breakpoint Modes – DABx

DABx.m1 DABx.m0 Mode

0 0 Break on Data Write Access Only.

0 1 Break on Data Read or Data Write Access.

1 0 Break on Data Read Access.

1 1 Break on Data Read or Data Write Access.
10-8 i960® RM/RN I/O Processor Developer’s Manual

Tracing and Debugging

 by

 to
tes

a value

triple

read or

r

in an

10.2.7.5 Data Address Breakpoint Registers – DABx

The format for the Data Address Breakpoint (DAB) registers is shown in Table 10-6. Each
breakpoint register contains a 32-bit address of a byte to match on.

A breakpoint is triggered when both a data access’s type and address matches that specified
BPCON and the appropriate DAB register. The mode bits for each DAB register, which are
contained in BPCON (Section 10.2.7.4, “Breakpoint Control Register – BPCON” on page 10-7),
qualify the access types that DAB matches. An access-type match selects that DAB register
perform address checking. An address match occurs when the byte address of any of the by
referenced by the data access matches the byte address contained within a selected DAB.

Consider the following example. DAB0 is enabled to break on any data read access and has
of 100FH. Any of the following instructions causes the DAB0 breakpoint to be triggered:

ldob 0x100f,r8

ldos 0x100e,r8

ld 0x100c,r8

ld 0x100d,r8 /* even unaligned accesses */

ldl 0x1008,r8

ldq 0x1000,r8

Note that the instruction:
ldt 0x1000,r8

does not cause the breakpoint to be triggered because byte 100FH is not referenced by the
word access.

Data address breakpoints can be set to break on any data read, any data write, or any data
data write access. All accesses qualify for checking. These include explicit load and store
instructions, and implicit data accesses performed by other instructions and normal processo
operations.

For data accesses to the memory-mapped control register space, it is unpredictable whether
breakpoint traces are generated when the access matches the breakpoints and also results
OPERATION fault or TYPE.MISMATCH fault. The OPERATION or TYPE.MISMATCH fault is
always reported in this case.

Table 10-6. Data Address Breakpoint Register – DABx

LBA:

PCI:

Ch 0-8420H
Ch 1-8424H

NA

Legend: NA = Not Accessible RO = Read Only
RV = Reserved PR = Preserved RW = Read/Write
RS = Read/Set RC = Read Clear
LBA = 80960 local bus address PCI = PCI Configuration Address Offset

Bit Default Description

31:00 0000 0000H Data Address.

PCI

LBA

28 24 20 16 12 8 4 031

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na
i960® RM/RN I/O Processor Developer’s Manual 10-9

Tracing and Debugging
10.2.7.6 Instruction Breakpoint Registers – IPBx

The format for the instruction breakpoint registers is given in Table 10-7. The upper 30 bits of the
IPBx register contain the word-aligned instruction address on which to break. The two low-order
bits indicate the action to take upon an address match.

Programming the instruction breakpoint register modes is shown in Table 10-8.

On the i960 RM/RN I/O processor, the instruction breakpoint memory-mapped registers can be read by
using the sysctl instruction only. They can be modified by sysctl or by a word-length store instruction.

Storing directly to an IP breakpoint register may cause unexpected results if tracing is enabled. Any
instructions in the superscalar template of a store operation that updates an IPB and any instructions
in the subsequent superscalar template may trigger on the new or old value of the breakpoint register.
The IP in the fault record may be that of the instruction that caused the breakpoint or may be the new
value of the IPB register. The return IP in the fault record is always correct.

If it is necessary to avoid this condition, use the modify memory-mapped control register operation
of the sysctl instruction to update the IPB registers.

Table 10-7. Instruction Breakpoint Register – IPBx

LBA:

PCI:

Ch 0-8400H
Ch 1-8404H

NA

Legend: NA = Not Accessible RO = Read Only
RV = Reserved PR = Preserved RW = Read/Write
RS = Read/Set RC = Read Clear
LBA = 80960 local bus address PCI = PCI Configuration Address Offset

Bit Default Description

31:02 0000 0000H Instruction Address.

01 02 IPBX Mode: IPB1

00 02 IPBX Mode: IPB0

PCI

LBA

28 24 20 16 12 8 4 031

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

Table 10-8. Instruction Breakpoint Modes

PC.te IPBx.m1 IPBx.m0 Action

0 X X No action. Globally disabled.

X 0 0 No action. IPBx disabled.

1 0 1 Reserved.

1 1 0 Reserved.

1 1 1 Generate a Trace Fault.

NOTE: “X” = don’t care. Reserved combinations must not be used.
10-10 i960® RM/RN I/O Processor Developer’s Manual

Tracing and Debugging

s
 PC
r all

with
f when
fault

n
hen
race
ble
ace
e is
10.3 Generating a Trace Fault

To summarize the information presented in the previous sections, the processor services a trace
fault when PC.te is set and the processor detects any of the following conditions:

• An instruction included in a trace mode group executes or is about to execute (in the case of a
prereturn trace event) and the trace mode for that instruction is enabled.

• A fault call operation executes and the call-trace mode is enabled.

• A mark instruction executes and the breakpoint-trace mode is enabled.

• An fmark instruction executes.

• The processor executes an instruction at an IP matching an enabled instruction address
breakpoint (IPB) register.

• The processor issues a memory access matching the conditions of an enabled data address
breakpoint (DAB) register.

10.4 Handling Multiple Trace Events

With the exception of a prereturn trace event, which is always reported alone, it is possible for a
combination of trace events to be reported in the same fault record. The processor may not report
all events; however, it always reports a supervisor event and it always signals at least one event.

If the processor reports prereturn trace and other trace types at the same time, it reports the other
trace types in a single trace fault record first, and then services the prereturn trace fault upon return
from the other trace fault.

10.5 Trace Fault Handling Procedure

The processor calls the trace fault handling procedure when it detects a trace event. See
Section 9.7, “Fault Handling Procedures” on page 9-12 for general requirements for fault handling
procedures. A trace fault handler must be invoked with an implicit system-supervisor call, thi
differs from other fault handling procedures. When the call is made, the processor clears the
register trace enable bit (PC.te), disabling trace faults in the trace fault handler. Recall that fo
other implicit or explicit system-supervisor calls, the processor replaces the trace enable bit
the system procedure table trace control bit. Clearing PC.te ensures that tracing is turned of
a trace fault handling procedure is being executed, thus preventing an endless loop of trace
handling calls.

The processor calls the trace fault handling procedure when it detects a trace event. See
Section 9.7, “Fault Handling Procedures” on page 9-12 for general requirements for fault handling
procedures.

The trace fault handling procedure is involved in a specific way and is handled differently tha
other faults. A trace fault handler must be invoked with an implicit system-supervisor call. W
the call is made, the PC register trace enable bit is cleared. This disables trace faults in the t
fault handler. Recall that for all other implicit or explicit system-supervisor calls the trace ena
bit is replaced with the system procedure table trace control bit. The exception handling of tr
enable for trace faults ensures that tracing is turned off when a trace fault handling procedur
being executed. This is necessary to prevent an endless loop of trace fault handling calls.
i960® RM/RN I/O Processor Developer’s Manual 10-11

Tracing and Debugging

ring

 the

d.

d
ich is
10.5.1 Tracing and Interrupt Procedures

When the processor invokes an interrupt handling procedure to service an interrupt, it disables
tracing. It does this by saving the PC register’s current state in the interrupt record, then clea
the PC register trace enable bit.

On returning from the interrupt handling procedure, the processor restores the PC register to
state it was in prior to handling the interrupt, which restores the trace enable bit. See
Section 10.5.2.2, “Tracing on Implicit Call” on page 10-13 and Section 10.5.2.5, “Tracing on
Return from Implicit Call: Interrupt Case” on page 10-14 for detailed descriptions of tracing on
calls and returns from interrupts.

10.5.2 Tracing on Calls and Returns

During call and return operations, the trace enable flag (PC.te) may be altered. This section
discusses how tracing is handled on explicit and implicit calls and returns.

Since all trace faults (except prereturn) are serviced after execution of the traced instruction,
tracing on calls and returns is controlled by the PC.te in effect after the call or the return.

10.5.2.1 Tracing on Explicit Call

Tracing an explicit call happens before execution of the first instruction of the procedure calle

Tracing is not modified by using a call or callx instruction. Further, tracing is not modified by
using a calls instruction from supervisor mode. When calls is issued from user mode, PC.te is rea
from the supervisor stack pointer trace enable bit (SSP.te) of the system procedure table, wh
cached on chip during initialization. The trace enable bit in effect before the calls is stored in the
new PFP[0] bit and is restored upon return from the routine (Section 10.5.2.3, “Tracing on Return
from Explicit Call” on page 10-14). The calls instruction and all instructions of the procedure
called are traced according to the new PC.te.

Table 10-9. Tracing on Explicit Call

Call
Type

Calling Procedure
Trace Enable

Calling Procedure
Mode Saved PFP.rt2:0 Called Procedure

Trace Enable Bit

call, callx PC.te user or supervisor 0002 PC.te

calls PC.te supervisor 0002 PC.te

calls PC.te user
01t2

Stores PC.te into
bit 0 of PFP.rt2:0

SSP.te

Refer to Table 7-2 “Encoding of Return Status Field” on page 7-18).
10-12 i960® RM/RN I/O Processor Developer’s Manual

Tracing and Debugging

bit
10.5.2.2 Tracing on Implicit Call

Tracing on an implicit call happens before execution of the first instruction of the non-trace fault
handler called. Table 10-10 summarizes all cases of tracing on implicit call. In the table, “a” is a
variable that symbolizes the trace enable bit in PC.

Table 10-10 summarizes all cases.

1. On i960® RM/RN I/O processor, all faults except parallel/override and trace faults.
2. “a” and “x” are bit variables.

Tracing is not altered on the way to a local or a system-local fault handler, so the call is traced if
PC.te and TC.c are set before the call. For an implicit system-supervisor call, PC.te is read from the
Supervisor Stack Pointer enable bit (SSP.te). The trace on the call is serviced before execution of
the first instruction of the non-trace fault handler (tracing is disabled on the way to a trace fault
handler).

On the i960 RM/RN I/O processor, the parallel/override fault handler must be accessed through a
system-supervisor call. Tracing is disabled on the way to the parallel/override fault handler.

The only type of trace fault handler supported is the system-supervisor type. Tracing is disabled on
the way to the trace fault handler.

Tracing is disabled by the processor on the way to an interrupt handler, so an interrupt call is never
traced.

Note that the Fault IP field of the fault record is not defined when tracing a fault call, because there
is no instruction pointer associated with an implicit call.

Table 10-10. Tracing on Implicit Call

Call
Type

System
Procedure
Table Entry

Previous
Frame
Pointer
Return
Status

(PFP.rt2:0)

Source
PC.te

Target
PC.te

PC.te Value
Used for

Traces on
Implicit Call

00-Fault1 N.A. 001 a2 a a

10-Fault1 00 001 a a a

10-Fault1 10 001 a SSP.te SSP.te

00-Parallel/Override Fault

00-Trace Fault
x2 Type of trace fault not supported

10-Parallel/Override Fault

10-Trace Fault
00 Type of trace fault not supported

10-Parallel/Override Fault

10-Trace Fault
10 001 a 0 0

Interrupt N.A. 111 a 0 0
i960® RM/RN I/O Processor Developer’s Manual 10-13

Tracing and Debugging

t

he

e trace
P-16).

n the

pletes
 the
t

 of the
10.5.2.3 Tracing on Return from Explicit Call

Table 10-11 shows all cases.

For a return from local call (return type 000), tracing is not modified. For a return from system call
(return type 01a, with PC.te equal to “a” before the call), tracing of the return and subsequen
instructions is controlled by “a”, which is restored in the PC.te during execution of the return.

10.5.2.4 Tracing on Return from Implicit Call: Fault Case

When the processor detects several fault conditions on the same instruction (referred to as t
“target”), the non-trace fault is serviced first. Upon return from the non-trace fault handler, the
processor services a trace fault on the target if in supervisor mode before the return and if th
enable and trace-fault-pending flags are set in the PC field of the non-trace fault record (at F

If the processor is in user mode before the return, tracing is not altered. The pending trace o
target instruction is lost, and the return is traced according to the current PC.te.

10.5.2.5 Tracing on Return from Implicit Call: Interrupt Case

When an interrupt and a trace fault are reported on the same instruction, the instruction com
and then the interrupt is serviced. Upon return from the interrupt, the trace fault is serviced if
interrupt handler did not switch to user mode. On the i960 RM/RN I/O processor, the interrup
handler returns directly to the trace fault handler.

If the interrupt return is executed from user mode, the PC register is not restored and tracing
return occurs according to the PC.te and TC.modes bit fields.

Table 10-11. Tracing on Return from Explicit Call

PFP.rt2:0 Execution Mode PC.em Trace Enable Used for Trace on Return

0002 user or supervisor PC.te

01a2 user PC.te

01a2 supervisor t2 (from PFP.r2:0)

Refer to Table 7-2 “Encoding of Return Status Field” on page 7-18.
10-14 i960® RM/RN I/O Processor Developer’s Manual

round
.

tion
e
nals
hen the

d,

e Intel

ge

er’s

ins

 at

Initialization and System
Requirements 11

This chapter describes the steps that the i960® RM/RN I/O processor performs during
initialization. Discussed are the reset modes, the reset state and built-in self test (BIST) features.
This chapter also describes the processor’s basic system requirements — including power, g
and clock — and concludes with some general guidelines for high-speed circuit board design

11.1 Overview

The i960 RM/RN I/O processor initialization can basically be separated into two steps: initializa
of the i960 core processor and initialization of all of the other units. Four initialization modes ar
available; the selected mode is determined by the values of the RST_MODE# and RETRY sig
when P_RST# is asserted. These modes dictate when the i960 core processor initializes and w
primary PCI interface accepts transactions.

Many of the i960 RM/RN I/O processor’s functional units require initialization before system
operation. The order in which they are initialized is important and is dependent on the system
design. There is no one single initialization process for the i960 RM/RN I/O processor. Instea
there are several options that may be considered.

Note: Sample initialization code, technical notes and other developer resources are available on th
World Wide Web site at: http://www.intel.com.

11.1.1 Core Initialization

When the i960 core processor initialization begins, the processor uses an Initial Memory Ima
(IMI) to establish its state. The IMI includes:

• Initialization Boot Record (IBR) – contains the addresses of the first instruction of the us
code and the PRCB.

• Process Control Block (PRCB) – contains pointers to system data structures; also conta
information used to configure the processor at initialization.

• System data structures – the processor caches several data structure pointers internally
initialization.

Software can reinitialize the processor. When a reinitialization takes place, a new PRCB and
reinitialization instruction pointer are specified. Reinitialization is useful for relocating data
structures from ROM to RAM after initialization.
i960® RM/RN I/O Processor Developer’s Manual 11-1

Initialization and System Requirements

 are

 input
 a
 noise

e
et is
 is
11.1.2 General Initialization

The i960 RM/RN I/O processor supports several facilities to assist in system testing and start-up
diagnostics. ONCE mode electrically removes the processor from a system. This feature is useful
for system-level testing where a remote tester exercises the processor system. The i960 RM/RN I/O
processor also supports JTAG boundary scan (Chapter 23, “Test Features”). During initialization,
the processor performs an internal functional self test and local bus self test. These features
useful for system diagnostics to ensure basic CPU and system bus functionality.

The processor is designed to minimize the requirements of its external system. It requires an
clock and clean power and ground connections (VSS and VCC). Since the processor can operate at
high frequency, the external system must be designed with considerations to reduce induced
on signals, power and ground.

11.2 i960® RM/RN I/O Processor Initialization

Several functional units within the i960 RM/RN I/O processor must be initialized before system
operation. These are the PCI-to-PCI Bridge, Address Translation Unit (ATU), i960 core processor,
Memory Controller, and Secondary PCI Bus Arbiter. The order in which they are initialized is
dependent on how the i960 RM/RN I/O processor is used in the system. The initialization process
begins when the Primary PCI Bus Reset signal (P_RST#) is asserted.

11.2.1 Initialization Modes

The initialization process is generally controlled through either an external host processor or the
i960 core processor. Based on this assumption, there are four initialization modes.

The mode is determined by the value of the RST_MODE# and RETRY signals, described in the
next sections. Table 11-1 describes the relationship between the RST_MODE# and RETRY signal
values and the initialization mode.

The RST_MODE# signal is sampled on the rising edge of P_RST#. The inverse value of this signal
is then written to the Core Processor Reset bit in the Extended Bridge Control Register (EBCR).
See Chapter 14, “PCI-to-PCI Bridge”. When RST_MODE# is active and P_RST# is asserted, th
i960 core processor is held in reset until P_RST# is deasserted. The i960 core processor res
released when the reset bit in EBCR is cleared. When RST_MODE# is inactive and P_RST#
asserted, the i960 core processor is reset. The i960 core processor then begins its normal
initialization sequence when P_RST# is deasserted.

Table 11-1. Initialization Modes

RST_MODE# RETRY Initialization
Mode Primary PCI Interface i960 Core

Processor

0 0 Mode 0 Accepts Transactions Held in Reset

0 1 Mode 1 Retries All Configuration Transactions Held in Reset

1 0 Mode 2 Accepts Transactions Initializes

1 1 Mode 3 (default) Retries All Configuration Transactions Initializes
11-2 i960® RM/RN I/O Processor Developer’s Manual

Initialization and System Requirements
The RETRY signal is sampled on the rising edge of P_RST#. The value of this signal is written to
the Configuration Cycle Disable bit in the EBCR. When RETRY is active and P_RST# is
de-asserted, the i960 RM/RN I/O processor signals a Retry on all PCI configuration cycles it
receives on the primary PCI bus. When RETRY is inactive and P_RST# is de-asserted, the i960
RM/RN I/O processor accepts PCI configuration cycles on the primary PCI bus.

Figure 11-1 shows a flow chart of the initialization process.

11.2.2 Mode 0 Initialization

Mode 0 allows a host processor to configure the i960 RM/RN I/O processor peripherals while the
i960 core processor is held in reset. The host processor configures the PCI-to-PCI Bridge by
assigning bus numbers, allocating PCI address space, and assigning IRQ numbers. The memory
controller and ATU can also be initialized by the host processor. Program code for the i960 core
processor may be downloaded into local memory by the host processor.

The host processor clears the 80960 reset signal by clearing the Core Processor Reset bit in the
EBCR. This deasserts the internal reset signal on the i960 core processor and the processor begins
its initialization process.

11.2.3 Mode 1 Initialization

Intel does not recommend the use of Mode 1 initialization.

11.2.4 Mode 2 Initialization

Intel does not recommend the use of Mode 2 initialization.

11.2.5 Mode 3 (Default Mode)

Mode 3 allows the i960 core processor to initialize and control the initialization process before the
host processor is allowed to configure the i960 RM/RN I/O processor peripherals. During this time,
the primary PCI interface signals a Retry on all configuration cycles it receives until the i960 core
processor clears the Configuration Cycle Disable bit in the EBCR. This option is only available
when an initialization ROM is used.

By allowing the i960 core processor to control the initialization process, it is possible to initialize
the PCI configuration registers to values other than the default power-up values. Certain PCI
configuration registers that are read only through PCI configuration cycles are read/write from the
i960 core processor. This allows the programmer to customize the way the i960 RM/RN I/O
processor appears to the PCI configuration software.
i960® RM/RN I/O Processor Developer’s Manual 11-3

Initialization and System Requirements
Figure 11-1. Initialization Flow Chart

 80960
Core

held in
reset

RST_MODE#
Asserted?

Host configures
Bridge

(if needed)

80960 Core
Initialization

80960 configures
Private PCI

Devices
(if any)

Host configures
ATU

Host configures
Memory

Controller

Host downloads
80960 Code

80960 Core
Initialization

Enable Bridge
(Clear Config
Disable Bit

EBCR)

NOYES

Start

End

Host clears
80960 Reset Bit

in EBCR

80960 configures
ATU

Host
configures

Bridge

P_RST# signal
asserted

Host
processor
prevented

from
configuring
PCI-to-PCI
Bridge Unit

and the
ATU

NO

RETRY
Asserted?

RETRY
Asserted?

YES

80960 configures
Bridge

(if needed)

Mode 3Mode 0
11-4 i960® RM/RN I/O Processor Developer’s Manual

Initialization and System Requirements
11.2.6 Secondary PCI Bus Arbitration Unit

After reset, all devices controlled by the secondary PCI Bus Arbiter are set to low priority, except
for the secondary PCI interface of the 80960RM/RN, which is set to high priority.

The secondary bus arbiter is reset by the S_RST# signal on the secondary interface. Whenever the
secondary bus is reset, the secondary arbiter is reset moving all devices to their programmed
priority levels and starting the round robin arbitration sequence on the lowest number device at
each priority level.

11.2.7 Internal Bus Arbitration Unit

The internal bus arbitration logic is reset by the P_RST# signal. The reset values of the registers are
shown in Table 11-2. All bus masters are initialized to the highest priority. None of the devices are
disabled at powerup.

11.2.8 Reset State Operation

The P_RST# signal, when asserted, causes the i960 RM/RN I/O processor to enter the reset state.
All external signals go to a defined state, internal logic is initialized, and certain registers are set to
defined values.

P_RST# must be asserted when power is applied to the processor. The processor then stabilizes in
the reset state. This power-up reset is referred to as cold reset. To ensure that all internal logic has
stabilized in the reset state, a valid input clock (S_CLK) and VCC must be present and stable for a
specified time before P_RST# can be deasserted.

The processor may also be cycled through the reset state after execution has started. This is referred
to as warm reset. For a warm reset, P_RST# must be asserted for a minimum number of clock
cycles. Specifications for a cold and warm reset can be found in the 80960RM I/O Processor Data
Sheet and the 80960RN I/O Processor Data Sheet.

User software cannot reset the entire i960 RM/RN I/O processor; however, the sysctl instruction
can reset the i960 core processor. The P_RST# signal must be asserted to enter the reset state. See
Section 11.6, “Reinitializing and Relocating Data Structures” on page 11-20.

Table 11-2. Reset Values

Internal Arbitration Register Reset Value Note

Internal Arbitration Control Register (IACR) 0000 0000H All Bus Masters Enabled

Master Latency Timer Register (MLTR) 0000 0FFFH Maximum Count Value

Multi-Transaction Timer Register (MTTR) 0000 0000H Disabled
i960® RM/RN I/O Processor Developer’s Manual 11-5

Initialization and System Requirements
11.3 i960® Core Processor Initialization

Initialization describes the mechanism that the processor uses to establish its initial state and begin
instruction execution. When i960 core processor initialization begins, the processor automatically
configures itself with information specified in the IMI and performs its built-in self test based on
the sampling of the STEST signal. The processor then branches to the first instruction of user code.
See Figure 11-2 for a flow chart of i960 core processor initialization.

The objective of the initialization sequence is to provide a complete, working initial state when the
first user instruction executes. The user’s start-up code needs only to perform several basic
functions to place the processor in a configuration for executing application code.

Figure 11-2. Processor Initialization Flow

Executing Program

P_RST#
Asserted

?

Hardware Reset in Mode 3

Reset State

YES

Assert FAIL# Signal

STEST
Asserted

?

Perform Built-In

Built-In
Self Test Pass

?

NO

STOP

Deassert FAIL# Signal

Configure Registers
Setup Bus Controller

Assert FAIL# Signal

Bus Confidence Self-

Checksum = 0
NO

Deassert FAIL# Signal

?

sysctl
Reinitialize

?

Software Reinitialization

Process PRCB
Contents

Cache NMI Vector from
Vector Location 248 in

Interrupt Table

Load Control Registers
with the Data in the

Control Table

Execute User Code
Branch to Start-up

NO

NO

Drive Fail Code
on Address/Data Pins

 Self Test

Test: compute Checksum

NO

YES

YES

YES

YES
11-6 i960® RM/RN I/O Processor Developer’s Manual

Initialization and System Requirements

 by

n the
11.3.1 Self Test Function (STEST, FAIL#)

As part of initialization, the i960 RM/RN I/O processor executes a local bus confidence self test, an
alignment check for data structures within the initial memory image (IMI), and optionally, a
built-in self test program. The self test (STEST) signal enables or disables built-in self test. The
FAIL# signal indicates that the self tests failed by asserting FAIL#. During normal operations the
FAIL# signal can be asserted when a core processor error is detected. The following subsections
further describe these signal functions.

Built-in self test checks basic functionality of internal data paths, registers and memory arrays
on-chip. Built-in self test is not intended to be a full validation of processor functionality; it is
intended to detect catastrophic internal failures and complement a user’s system diagnostics
ensuring a confidence level in the processor before any system diagnostics are executed.

Note: BIST applies only to the 80960RM/RN core processor.

11.3.1.1 The STEST Signal

The STEST signal enables and disables Built-In Self Test (BIST). BIST can be disabled whe
initialization time needs to be minimized or when diagnostics are simply not necessary. The
STEST signal is sampled under the following conditions:

• On the rising edge P_RST#

• On the rising edge of reset mode (RST_MODE#), if used.

• On the rising edge of na internal bus reset (initiated after the Reset Internal Bus bit in the
Extended Bridge Control Register (EBCR) is set).

When STEST is asserted, the i960 core processor executes the built-in self test. When STEST is
deasserted, the i960 core processor bypasses built-in self test.

11.3.1.2 80960 Local Bus Confidence Test

The local bus confidence test is always performed regardless of STEST signal value. The local bus
confidence test reads eight words from the Initialization Boot Record (IBR) and performs a
checksum on the words and the constant FFF FFFFH. The test passes only when the processor
calculates a sum of zero (0). The test can detect catastrophic bus failures such as external address,
data or control lines that are stuck, shorted or open.

11.3.1.3 The Fail Signal (FAIL#)

The FAIL# signal signals errors in either the built-in self test or the bus confidence self test. FAIL#
is asserted (low) for each self test (Figure 11-3):

• When any test fails, the FAIL# signal remains asserted, a fail code message is driven onto the
address bus, and the processor stops execution at the point of failure.

• When a core processor error occurs, FAIL# is also asserted. See Section 11.3.1.4, “IMI
Alignment Check and Core Processor Error” on page 11-8 for details.

• When the test passes, FAIL# is deasserted.
i960® RM/RN I/O Processor Developer’s Manual 11-7

Initialization and System Requirements
When FAIL# stays asserted, the only way to resume normal operation is to perform a reset operation.
When the STEST signal is used to disable the built-in self test, the test does not execute; however,
FAIL# still asserts at the point where the built-in self test would occur. FAIL# is deasserted after the
bus confidence test passes. In Figure 11-3, all transitions on the FAIL# signal are relative to S_CLK
as described in the 80960RM I/O Processor Data Sheet and the 80960RN I/O Processor Data Sheet.

11.3.1.4 IMI Alignment Check and Core Processor Error

The alignment check during initialization for data structures within the IMI ensures that the PRCB,
control table, interrupt table, system-procedure table, and fault table are aligned to word
boundaries. Normal processor operation is not possible without the alignment of these key data
structures. The alignment check is one case where a core processor error could occur.

The other case of core processor error can occur during regular operation when generation of an
override fault incurs a fault. The sequence of events leading up to this case is quite uncommon.

When a core processor error is detected, the FAIL# signal is asserted, a fail code message is driven
onto the address bus, and the processor stops execution at the point of failure. The only way to resume
normal operation of the processor is to perform a reset operation. Because core processor error
generation can occur sometime after the Bus confidence test and even after initialization during normal
processor operation, the FAIL# signal is a logic one before the detection of a Core Processor Error.

11.3.1.5 FAIL# Code

The processor uses only one read bus transaction to signal the fail code message; the address of the
bus transaction is the fail code itself. The fail code is of the form: 0xFEFFFFnn; bits 6 to 0 contain
a mask recording the possible failures. Bit 7, when one, indicates the mask contains failures from
Built-In Self-Test (BIST); when zero, the mask indicates other failures. The fail codes are shown in
Table 11-3 and Table 11-4.

Figure 11-3. FAIL# Timing

FAIL#

~414,000 Cycles

26 Cycles

FAIL FAIL

PASS PASS

Built-In Self-Test Status
Bus Confidence

 132 Cycles

Built-In Self-Test 80960 Local Bus Confidence Test

Test Status

Cycles = Number of S_CLK Periods

80960 Core
 Reset

Table 11-3. BIST Failure Codes

Bit When Set

7 Set to one for BIST failure

6 On-chip Data-RAM failure detected by BIST

5 Internal Microcode ROM failure detected by BIST

4 I-cache failure detected by BIST

3 D-cache failure detected by BIST

2 Local-register cache or processor core failure detected by BIST

1 Always Zero

0 Always Zero
11-8 i960® RM/RN I/O Processor Developer’s Manual

Initialization and System Requirements

ace.

erved

hese

dure
trol
dure
rammed
11.4 Initial Memory Image (IMI)

The IMI comprises the minimum set of data structures that the processor needs to initialize. As
shown in Figure 11-4, these structures are: the initialization boot record (IBR), process control
block (PRCB) and system data structures. The IBR is located at a fixed address in memory. The
other components are referenced directly or indirectly by pointers in the IBR and the PRCB. The
IMI performs three functions for the processor:

• Provides initial configuration information for the core.

• Provides pointers to the system data structures and the first instruction to be executed after
processor initialization.

• Provides checksum words that the processor uses in its self test routine at startup.

Several data structures are typically included as part of the IMI because values in these data
structures are accessed by the processor during initialization. These data structures are usually
programmed in the systems’s boot ROM, located in memory region 14_15 of the address sp
The required data structures are:

• PRCB

• IBR

• System procedure table

• Control table

• Interrupt table

• Fault table

To ensure proper processor operation, the PRCB, system procedure table, control table, interrupt
table, and fault table must not be located in architecturally reserved memory – addresses res
for on-chip Data RAM and addresses at and above FEFF FF60H. In addition, each of these
structures must start at a word-aligned address; a core processor error occurs when any of t
structures are not word-aligned. See Section 11.3.1.3, “The Fail Signal (FAIL#)” on page 11-7.

At initialization, the processor loads the Supervisor Stack Pointer (SSP) from the system proce
table, aligns it to a 16-byte boundary, and caches the pointer in the SSP memory-mapped con
register. Recall that the supervisor stack pointer is located in the preamble of the system proce
table at byte offset 12 from the base address. The system procedure table base address is prog
in the PRCB. Consult Section 7.5.1, “System Procedure Table” on page 7-14 for the format of the
system procedure table.

Table 11-4. Non-BIST Failure Codes

Bit When Set

7 Set to zero for non-BIST failure

6 Always One; this bit does not indicate a failure

5 Always One; this bit does not indicate a failure

4 A data structure within the IMI is not aligned to a word boundary

3 A core processor error during normal operation has occurred

2 The Bus Confidence test has failed

1 Always Zero

0 Always Zero
i960® RM/RN I/O Processor Developer’s Manual 11-9

Initialization and System Requirements
At initialization, the NMI vector is loaded from the interrupt table and saved at location
0000 0000H of the internal data RAM. The interrupt table is typically programmed in the boot
ROM and then relocated to internal RAM by reinitializing the processor.

The fault table is typically located in boot ROM. When it is necessary to locate the fault table in
RAM, the processor must be reinitialized.

The remaining data structures that an application may need are the user stack, supervisor stack and
interrupt stack. These stacks must be located in the i960 RM/RN I/O processor’s local bus RAM.

Figure 11-4. Initial Memory Image (IMI) and Process Control Block (PRCB)

FEFF FF30H

FEFF FF40H

FEFF FF44H

FEFF FF48H

FEFF FF5CH

PMCON

First Instruction
Pointer

PRCB Pointer

6 Check Words
(For Local Bus

Self-Test)

Address

User Code:

Process Control Block (PRCB)

Fault Table Base Address

Control Table Base Address

AC Register Initial Image

Fault Configuration Word

Interrupt Table Base Address

System Procedure
Table Base Address

Reserved

Interrupt Stack Pointer

Instruction Cache
Configuration Word

Register Cache

Control Table

Interrupt Table

System Procedure Table

Other Architecturally
Defined Data

Structures (not
required as part of IMI)

Fixed Data Structures Relocatable Data Structures

Configuration Word

FEFF FF34H

FEFF FF38H

FEFF FF3CH

Byte 0
PMCON
Byte 1
PMCON
Byte 2
PMCON
Byte 3

Inititialization

Confidence

Boot Record (IBR)
11-10 i960® RM/RN I/O Processor Developer’s Manual

Initialization and System Requirements

e
ddress

s
11.4.1 Initialization Boot Record (IBR)

The initialization boot record (IBR) is the primary data structure required to initialize the i960
RM/RN I/O processor processor. The IBR is a 12-word structure which must be located at address
FEFF FF30H (Table 11-5). The IBR is made up of four components: the initial bus configuration
data, the first instruction pointer, the PRCB pointer and the bus confidence test checksum data.

When the processor reads the IMI during initialization, it must know the bus characteristics of
external memory where the IMI is located. Specifically, it must know the bus width and endianism
for the remainder of the IMI. At initialization, the processor sets the PMCON register to an 8-bit
bus width. The processor then needs to form the initial DLMCON and PMCON14_15 registers so
that the memory containing the IBR can be accessed correctly. The lowest-order byte of each of the
IBR’s first 4 words are used to form the register values. On the i960 RM/RN I/O processor, th
bytes at FEFF FF30H and FEFF FF34H are not needed, so the processor starts fetching at a
FEFF FF38. The loading of these registers is shown in the pseudo-code flow in Example 11-1.

Note: The 80960RM/RN processor requires that all PMCON registers be programmed for 32-bit bu
widths.

Table 11-5. Initialization Boot Record

Byte Physical Address Description

FEFF FF30H PMCON14_15, byte 0
(Program to 0000 0000H) for 80960RM/RN processor

FEFF FF31H to FEFF FF33H Reserved

FEFF FF34H PMCON14_15, byte 1
(Program to 0000 0000H) for 80960RM/RN processor

FEFF FF35H to FEFF FF37H Reserved

FEFF FF38H PMCON14_15, byte 2
(Program to 0000 0080H) for 80960RM/RN processor

FEFF FF39H to FEFF FF3BH Reserved

FEFF FF3CH PMCON14_15, byte 3
(Program to 0000 0000H) for 80960RM/RN processor

FEFF FF3DH to FEFF FF3FH Reserved

FEFF FF40H to FEFF FF43H First Instruction Pointer

FEFF FF44H to FEFF FF47H PRCB Pointer

FEFF FF48H to FEFF FF4BH Bus Confidence Self-Test Check Word 0

FEFF FF4CH to FEFF FF4FH Bus Confidence Self-Test Check Word 1

FEFF FF50H to FEFF FF53H Bus Confidence Self-Test Check Word 2

FEFF FF54H to FEFF FF57H Bus Confidence Self-Test Check Word 3

FEFF FF58H to FEFF FF5BH Bus Confidence Self-Test Check Word 4

FEFF FF5CH to FEFF FF5FH Bus Confidence Self-Test Check Word 5
i960® RM/RN I/O Processor Developer’s Manual 11-11

Initialization and System Requirements
Example 11-1. Processor Initialization Pseudocode Flow

Processor_Initialization_flow()

{ FAIL_pin = true;

 restore_full_cache_mode; disable(I_cache); invalidate(I_cache);

 disable(D_cache); invalidate(D_cache);

 BCON.ctv = 0; /* Selects PMCON14_15 to control all accesses */

 PMCON14_15 = 0; /* Selects 8-bit bus width */

/** Exit Reset State & Start_Init **/

 if (STEST_ON_RISING_EDGE_OF_RESET)

 status = BIST(); /* BIST does not return if it fails */

 FAIL_pin = false;

 PC = 0x001f2002; /* PC.Priority = 31, PC.em = Supervisor,*/

 /* PC.te = 0; PC.State = Interrupted */

 ibr_ptr = 0xfeffff30; /* ibr_ptr used to fetch IBR words */

/* Read PMCON14_15 image in IBR */

FAIL_pin = true; IMSK = 0;

DLMCON.dcen = 0; LMMR0.lmte = 0; LMMR1.lmte = 0;

PMCON14_15[byte2] = 0xc0 & memory[ibr_ptr +8];

/*Compute CheckSum on Boot Record */

carry = 0; CheckSum = 0xffffffff;

for(i = 6; i>0; i--) /* carry is carry out from previous add*/

 CheckSum = memory[ibr_ptr + 24 + i*4] + CheckSum + carry;

prcb_ptr = memory[ibr_ptr + 0x14];

IP = memory[prcb_ptr + 4];

CheckSum = prcb_ptr + IP + CheckSum + carry;

if(CheckSum != 0)

 {fail_msg = 0xfeffff64; /* Fail BUS Confidence Test */

 dummy = memory[fail_msg]; /* Do load with address = fail_msg */

 for(;;); /* loop forever with FAIL pin true */

 }

else FAIL_pin = false;

/* Process PRCB and Control Table */

prcb_ptr = memory[ibr_ptr + 0x14];

Process_PRCB(prcb_ptr); /* See Process PRCB Section for Details */

Destroy_Global_&_Local_Register_Values(); /*Previous values of Global

 and Local Registers are

 Destroyed during

 initialization and software re-

 initialization*/

g0 = 80960core_device_ID;

return; /* Execute First Instruction */

}

11-12 i960® RM/RN I/O Processor Developer’s Manual

Initialization and System Requirements

essor
r and
. The
ed in
The processor initializes the DLMCON.dcen bit to 0 to disable data caching. The remainder of the
assembled word is used to initialize PMCON14_15. In conjunction with this step, the processor
clears the bus control table valid bit (BCON.ctv), to ensure for the remainder of initialization that
every bus request issued takes configuration information from the PMCON14_15 register,
regardless of the memory region associated with the request. At a later point in initialization, the
processor loads the remainder of the memory region configuration table from the external control
table. The Bus Configuration (BCON) register is also loaded at this time. The control table valid
(BCON.ctv) bit is then set in the control table to validate the PMCON registers after they are
loaded. In this way, the bus controller is completely configured during initialization. (Chapter 12,
“Core Processor and Internal Operation” for a complete discussion of memory regions and
configuring the bus controller.)

After the bus configuration data is loaded and the new bus configuration is in place, the proc
loads the remainder of the IBR which consists of the first instruction pointer, the PRCB pointe
six checksum words. The PRCB pointer and the first instruction pointer are internally cached
six checksum words — along with the PRCB pointer and the first instruction pointer — are us
a checksum calculation which implements a confidence test of the local bus. The checksum
calculation is shown in the pseudo-code flow in Example 11-2. When the checksum calculation
equals zero, then the bus confidence test passes.

Table 11-6 further describes the IBR organization.

Table 11-6. PMCON14_15 Register Bit Description in IBR

ADD:

PCI:

8638H

NA

Legend: NA = Not Accessible RO = Read Only
RV = Reserved PR = Preserved RW = Read/Write
RS = Read/Set RC = Read Clear
ADD = 80960 internal bus address PCI = PCI Configuration Address Offset

Bit Default Description

31:24 00H Reserved. Initialize to 0.

23:22 002

Local Bus Width (BW)
(00) Reserved
(01) Reserved
(10) 32-bit
(11) Reserved

21:00 00 0000H Reserved. Initialize to 0.

PCI

ADD

28 24 20 16 12 8 4 031

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rw

na

rw

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na
i960® RM/RN I/O Processor Developer’s Manual 11-13

Initialization and System Requirements
11.4.2 Process Control Block – PRCB

The PRCB contains base addresses for system data structures and initial configuration information
for the i960 core processor. The base addresses are accessed from these internal registers. The
registers are accessible to the users through the memory mapped interface. Upon reset or
reinitialization, the registers are initialized. The PRCB format is shown in Table 11-7.

The initial configuration information is programmed in the arithmetic controls register (AC) initial
image, the fault configuration word, the instruction cache configuration word, and the register
cache configuration word. Table 11-8 show these configuration words.

Table 11-7. PRCB Configuration

Physical Address Description

PRCB POINTER + 00H Fault Table Base Address

PRCB POINTER + 04H Control Table Base Address

PRCB POINTER + 08H AC Register Initial Image

PRCB POINTER + 0CH Fault Configuration Word

PRCB POINTER + 10H Interrupt Table Base Address

PRCB POINTER + 14H System Procedure Table Base Address

PRCB POINTER + 18H Reserved

PRCB POINTER + 1CH Interrupt Stack Pointer

PRCB POINTER + 20H Instruction Cache Configuration Word

PRCB POINTER + 24H Register Cache Configuration Word
11-14 i960® RM/RN I/O Processor Developer’s Manual

Initialization and System Requirements
Table 11-8. Process Control Block Configuration Words

28 24 20 16 12 8 4 031

28 24 20 16

12 8 4 0

31

AC Register Initial Image

Condition Code Bits - AC.cc

Integer-Overflow Flag - AC.of
(0) no overflow
(1) overflow

Integer Overflow Mask Bit - AC.om
(0) enable overflow faults
(1) mask overflow faults

No-Imprecise-Faults Bit - AC.nif
(0) allow imprecise fault conditions
(1) prevent imprecise fault conditions

Register Cache Configuration Word

Number of Frames Reserved for High Priority Interrupts

Disable Instruction Cache

Instruction Cache Configuration Word

(0) enable cache
(1) disable cache

Mask Non-Aligned Bus Request Fault
(0) enable the fault
(1) mask the fault

c
c
0

c
c
1

c
c
2

o
f

o
m

n
i
f

12 8 4 028 24 20 1631

28 24 20 16 12 8 4 031

Fault Configuration Word

Offset 08H

Offset 0CH

Offset 20H

Offset 24H
i960® RM/RN I/O Processor Developer’s Manual 11-15

Initialization and System Requirements
11.4.3 Process PRCB Flow

The following pseudo-code flow illustrates the processing of the PRCB. Note that this flow is used
for both initialization and reinitialization (through sysctl).

Example 11-2. PRCB Processing Pseudo-code Flow

Process_PRCB(prcb_ptr)

{ PRCB_mmr = prcb_ptr;

 reset_state(data_ram); /* It is unpredictable whether the */

 /* Data RAM keeps its prior contents */

 fault_table = memory[PRCB_mmr];

 ctrl_table = memory[PRCB_mmr+0x4];

 AC = memory[PRCB_mmr+0x8];

 fault_config = memory[PRCB_mmr+0xc];

 if (1 & (fault_config >> 30))

generate_fault_on_unaligned_access = false;

 else generate_fault_on_unaligned_access = true;

/** Load Interrupt Table Pointer **/

 Reset_block_NMI;

 interrupt_table = memory[PRCB_mmr+0x10];

/** Load System Procedure Table Pointer **/

 sysproc = memory[PRCB_mmr+0x14];

/** Initialize ISP, FP, SP, and PFP **/

 ISP_mmr = memory[PRCB_mmr+0x1c];

 FP = ISP_mmr;

 SP = FP + 64;

 PFP = FP;

/** Initialize Instruction Cache **/

 ICCW = memory[PRCB_mmr+0x20];

 if (1 & (ICCW >> 16)) enable(I_cache);

/** Cache NMI Vector Entry in Data RAM**/

 memory[0] = memory[interrupt_table + (248*4) + 4];

/** Process System Procedure Table **/

 temp = memory[sysproc+0xc];

 SSP_mmr = (~0x3) & temp;

 SSP.te = 1 & temp;

/** Configure Local Register Cache **/

 programmed_limit = (7 & (memory[PRCB_mmr+0x24] >> 8));

 config_reg_cache(programmed_limit);

/** Load_control_table. Note breakpoints and BPCON are excluded here **/

 load_control_table(ctrl_table+0x10 , ctrl_table+0x58);

 /* Load ctrl_table+0x10 through ctrl_table+0x58 */

 load_control_table(ctrl_table+0x68 , ctrl_table+0x6c);

 /* Load ctrl_table+0x68 through ctrl_table+0x6C */

 IBP0 = 0x0; IBP1 = 0x0; DAB0 = 0x0; DAB1 = 0x0;

/** Initialize Timers **/

 TMR0.tc = 0; TMR1.tc = 0; TMR0.enable = 0; TMR1.enable = 0;

 TMR0.sup = 0; TMR1.sup = 0; TMR0.reload = 0; TMR1.reload = 0;

 TMR0.csel = 0; TMR1.csel = 0;

 return;
11-16 i960® RM/RN I/O Processor Developer’s Manual

Initialization and System Requirements

d thus
.

igned

ld
ter an

led at
che
on
11.4.3.1 AC Initial Image

The AC initial image is loaded into the on-chip AC register during initialization. The AC initial
image allows the initial value of the overflow mask, no imprecise faults bit and condition code bits
to be selected at initialization.

The AC initial image condition code bits can be used to specify the source of an initialization or
reinitialization when a single instruction entry point to the user start-up code is desirable. This is
accomplished by programming the condition code in the AC initial image to a different value for
each different entry point. The user start-up code can detect the condition code values — an
the source of the reinitialization — by using the compare or compare-and-branch instructions

11.4.3.2 Fault Configuration Word

The fault configuration word allows the operation-unaligned fault to be masked when an unal
memory request is issued. When an unaligned access is encountered, the processor always
performs the access. After performing the access, the processor determines whether it shou
generate a fault. When bit 30 in the fault configuration word is set, a fault is not generated af
unaligned memory request is performed. When bit 30 is clear, a fault is generated after an
unaligned memory request is performed.

11.4.3.3 Instruction Cache Configuration Word

The instruction cache configuration word allows the instruction cache to be enabled or disab
initialization. When bit 16 in the instruction cache configuration word is set, the instruction ca
is disabled and all instruction fetches are directed to external memory. Disabling the instructi
cache is useful for tracing execution in a software debug environment.

The instruction cache remains disabled until the following operations:

• The processor is reinitialized with a new value in the instruction cache configuration word

• icctl is issued with the enable instruction cache operation

• sysctl is issued with the configure instruction cache message type and a cache configuration
mode other than disable cache.

11.4.3.4 Register Cache Configuration Word

The register cache configuration word specifies the number of free frames in the local register
cache that can be used by critical code (i.e., code that is in the interrupted state and has a process
priority greater than or equal to 28).

The register cache and the configuration word are explained further in Section 4.2, “Local Register
Cache” on page 4-2.
i960® RM/RN I/O Processor Developer’s Manual 11-17

Initialization and System Requirements

2

11.4.4 Control Table

The control table is the data structure that contains the on-chip control registers values. It is
automatically loaded during initialization and must be completely constructed in the IMI.
Figure 11-5 shows the Control Table format.

For register bit definitions of the on-chip control table registers, see the following:

• IMAP — Table 8-16 through Table 8-18 “Interrupt Map Register 2 (IMAP2)” on page 8-35

• ICON — Table 8-15 “Interrupt Control (ICON) Register” on page 8-33

• PMCON — Table 12-2 “Physical Memory Control Registers – PMCON0:15” on page 12-

• TC — Table 10-1 “80960RM/RN Trace Controls Register – TC” on page 10-2

• BCON —Table 12-3 “Bus Control Register – BCON” on page 12-3

Figure 11-5. Control Table

031

00H

04H

08H

0CH

10H

14H

18H

1CH

6CH

64H

68H

20H

24H

28H

2CH

30H

34H

38H

3CH

40H

44H

48H

4CH

50H

54H

58H

5CH

60H

Bus Configuration Control (BCON)

Interrupt Configuration (ICON)

Physical Memory Region 0:1 Configuration (PMCON0_1) (0080 0000H)

Physical Memory Region 2:3 Configuration (PMCON2_3) (0080 0000H)

Physical Memory Region 4:5 Configuration (PMCON4_5) (0080 0000H)

Physical Memory Region 6:7 Configuration (PMCON6_7) (0080 0000H)

Physical Memory Region 8:9 Configuration (PMCON8_9) (0080 0000H)

Physical Memory Region 10:11 Configuration (PMCON10_11 (0080 0000H)

Physical Memory Region 12:13 Configuration (PMCON12_13) (0080 0000H)

Physical Memory Region 14:15 Configuration (PMCON14_15) (0080 0000H)

Interrupt Map 0 (IMAP0)

Interrupt Map 1 (IMAP1)

Trace Controls (TC)

Interrupt Map 2 (IMAP2)

Reserved (Initialize to 0)

Reserved (Initialize to 0)

Reserved (Initialize to 0)

Reserved (Initialize to 0)

Reserved (Initialize to 0)

Reserved (Initialize to 0)

Reserved (Initialize to 0)

Reserved (Initialize to 0)

Reserved (Initialize to 0)

Reserved (Initialize to 0)

Reserved (Initialize to 0)

Reserved (Initialize to 0)

Reserved (Initialize to 0)

Reserved (Initialize to 0)
11-18 i960® RM/RN I/O Processor Developer’s Manual

Initialization and System Requirements
11.5 Device Identification on Reset

During the manufacturing process, values characterizing the i960 RM/RN I/O processor type and
stepping are programmed into the memory-mapped registers. The i960 RM/RN I/O processor
contains two read-only device ID MMRs. One holds the Processor Device ID (PDIDR) and the
other holds the i960 Core Processor Device ID (DEVICEID).

The device identification values are compliant with the IEEE 1149.1 specification and Intel
standards. Table 11-9 and Table 11-10 describe the fields of the two Device IDs. During
initialization, the PDIDR is placed in g0.

Table 11-9. Processor Device ID Register - PDIDR

ADD:

PCI:

1710H

NA

Legend: NA = Not Accessible RO = Read Only
RV = Reserved PR = Preserved RW = Read/Write
RS = Read/Set RC = Read Clear
ADD = 80960 internal bus address PCI = PCI Configuration Address Offset

Bit Default Description

31:0 X The values programmed into this register vary with stepping. Refer to the i960®
RM/RN I/O Processor Specification Update (273164) for the correct value.

Table 11-10. i960® Core Processor Device ID Register - DEVICEID

ADD:

PCI:

FF00 8710H

NA

Legend: NA = Not Accessible RO = Read Only
RV = Reserved PR = Preserved RW = Read/Write
RS = Read/Set RC = Read Clear
ADD = 80960 internal bus address PCI = PCI Configuration Address Offset

Bit Default Description

31:0 X The values programmed into this register vary with stepping. Refer to the i960®
RM/RN I/O Processor Specification Update (273164) for the correct value.

PCI

ADD

28 24 20 16 12 8 4 031

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

PCI

ADD

28 24 20 16 12 8 4 031

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na
i960® RM/RN I/O Processor Developer’s Manual 11-19

Initialization and System Requirements

t
 the
te the

by
 system

M.
e new
11.6 Reinitializing and Relocating Data Structures

Reinitialization can reconfigure the processor and change pointers to data structures. The processor
is reinitialized by issuing the sysctl instruction with the reinitialize processor message type. See
Section 6.2.67, “sysctl” on page 6-96 for a description of sysctl.) The reinitialization instruction
pointer and a new PRCB pointer are specified as operands to the sysctl instruction. When the
processor is reinitialized, the fields in the newly specified PRCB are loaded as described in
Section 11.4.2, “Process Control Block – PRCB” on page 11-14.

Reinitialization is useful for relocating data structures to RAM after initialization. The interrup
table must be located in RAM: to post software-generated interrupts, the processor writes to
pending priorities and pending interrupts fields in this table. It may also be necessary to reloca
control table to RAM: it must be in RAM when the control register values are to be changed
user code. In some systems, it is necessary to relocate other data structures (fault table and
procedure table) to RAM because of unsatisfactory load performance from ROM.

After initialization, the software is responsible for copying data structures from ROM into RA
The processor is then reinitialized with a new PRCB which contains the base addresses of th
data structures in RAM.

The processor caches the following pointers during its initialization. To modify these data
structures, a software re-initialization is needed.

• Interrupt Table Address

• Fault Table Address

• System Procedure Table Address

• Control Table Address

11.6.1 Output Clocks

The i960 RM/RN I/O processor supports an I2C bus interface. The output clock frequency for I2C
operation is 100 KHz or 400 KHz. This clock is generated from the i960 core processor clock. To
use the I2C interface, a clock divider value must be written into the I2C Clock Count Register. See
Section 22.8.5, “I2C Clock Count Register- ICCR” on page 22-31.
11-20 i960® RM/RN I/O Processor Developer’s Manual

Core Processor and Internal
Operation 12

This chapter provides information on setting the Core Processor memory-mapped registers that
configure the local memory bus. Topics include enabling/disabling data caching for a memory
region, setting 80960 core local bus width, the Bus Interface Unit (BIU), and the 80960RM/RN
internal bus.

12.1 Core Processor Memory Attributes

Every location in memory has associated physical and logical attributes. For example, a specific
location may have the following attributes:

• Logical: Data is non-cacheable

• Physical: 80960RM/RN processors require all to be 32-bit wide physical regions

In the example above, physical attributes correspond to those parameters that indicate how to
physically access the data. The BCU uses physical attributes to determine the local bus protocol
and signal pins to use when controlling the memory subsystem. The logical attributes tell the BCU
how to interpret, format and control interaction of on-chip data caches. The physical and logical
attributes for an individual location are independently programmable.

12.2 Physical Memory Attributes

The physical memory attributes of the 80960RM/RN processor are controlled through the PMCON
registers anf the BCON.

12.2.1 PMCON Registers

The Physical Memory Configuration registers, PMCON0_1 to PMCON14_15, are shown in
Table 12-2. The PMCON registers reside within memory-mapped control register space. Each
PMCON register controls one 512-Mbyte region of memory according to the mapping shown in
Table 12-1.

Table 12-1. PMCON Address Mapping (Sheet 1 of 2)

Register
(Control Table Entry) Region Controlled Required Bus Width

Physical Memory Control
Register 0 – PMCON0_1

0000 0000H to 0FFF FFFFH
and

1000 0000H to 1FFF FFFFH

32 bits - 80960RM/RN Peripheral
Memory-Mapped Registers

Physical Memory Control
Register 1 – PMCON2_3

2000 0000H to 2FFF FFFFH
and

3000 0000H to 3FFF FFFFH

32 Bits
i960® RM/RN I/O Processor Developer’s Manual 12-1

Core Processor and Internal Operation
The Bus Interface Unit expects all accesses coming out of the 80960 core processor to be targeted
for a 32-bit region. The PMCON registers should all be programmed to support a 32-bit bus width
during initialization and then left alone.

All eight PMCON registers are loaded automatically during system initialization. The initial values
are stored in the Control Table in the Initialization Boot Record [Section 11.4, “Initial Memory
Image (IMI)” on page 11-9].

Physical Memory Control
Register 2 – PMCON4_5

4000 0000H to 4FFF FFFFH
and

5000 0000H to 5FFF FFFFH

32 Bits

Physical Memory Control
Register 3 – PMCON6_7

6000 0000H to 6FFF FFFFH
and

7000 0000H to 7FFF FFFFH

32 Bits

Physical Memory Control
Register 4 – PMCON8_9

8000 0000H to 8FFF FFFFH
and

9000 0000H to 9FFF FFFFH

32 bits - 80960RM/RN
outbound ATU translation windows

Physical Memory Control
Register 5 – PMCON10_11

A000 0000H to AFFF FFFFH
and

B000 0000H to BFFF FFFFH

32 Bits

Physical Memory Control
Register 6 – PMCON12_13

C000 0000H to CFFF FFFFH
and

D000 0000H to DFFF FFFFH

32 Bits

Physical Memory Control
Register 7 – PMCON14_15

E000 0000H to EFFF FFFFH
and

F000 0000H to FFFF FFFFH

32 Bits

Table 12-1. PMCON Address Mapping (Sheet 2 of 2)

Table 12-2. Physical Memory Control Registers – PMCON0:15

LBA:

PCI:

Table 12-1

NA

Legend: NA = Not AccessibleRO = Read Only
RV = ReservedPR = PreservedRW = Read/Write
RS = Read/SetRC = Read Clear
LBA = 80960 Local Bus AddressPCI = PCI Configuration Address Offset

Bit Default Description

31:24 00H Reserved. Initialize to 0.

23:22 002

Bus Width

Selects the local bus width for a region:
(00) = reserved (do not use)
(01) = reserved (do not use)
(10) = 32-bit bus
(11) = reserved (do not use)

21:00 00 0000H Reserved. Initialize to 0.

PCI

LBA

28 24 20 16 12 8 4 031

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rw

na

rw

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na
12-2 i960® RM/RN I/O Processor Developer’s Manual

Core Processor and Internal Operation
12.2.2 Bus Control Register – BCON

Immediately after a hardware reset, the PMCON register contents are marked invalid in the Bus
Control (BCON) register. When the PMCON entries are marked invalid in BCON, the BCU uses
the parameters in PMCON14_15 for all regions. On a hardware reset, PMCON14_15 is
automatically cleared. This operation configures all regions to an 8-bit bus width. Subsequently,
the processor loads all PMCON registers from the Control Table. The processor then loads BCON
from the Control Table. When bit 2 of BCON is clear, PMCON14_15 remains in use for all local
bus accesses. When bit 2 of BCON is set, the region table is valid and the BCU uses the
programmed PMCON values for each region.

Table 12-3. Bus Control Register – BCON

LBA:

PCI:

86FCH

NA

Legend: NA = Not AccessibleRO = Read Only
RV = ReservedPR = PreservedRW = Read/Write
RS = Read/SetRC = Read Clear
LBA = 80960 Local Bus AddressPCI = PCI Configuration Address Offset

Bit Default Description

31:03 0000 0000H Reserved.

02 02

Configuration Entries in Control Table Valid)
(0) = PMCON entries not valid, default to PMCON14_15 setting
(1) = PMCON entries valid

01 02

Internal RAM Protection
(0) = Internal data RAM not protected from user mode writes
(1) = Internal data RAM protected from user mode write

00 02

Supervisor Internal RAM Protection
(0) = First 64 bytes not protected from supervisor mode write
(1) = First 64 bytes protected from supervisor mode writes

PCI

LBA

28 24 20 16 12 8 4 031

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rw

na

rw

na

rw

na
i960® RM/RN I/O Processor Developer’s Manual 12-3

Core Processor and Internal Operation

l
ble in

t

by an
ogical
12.3 Programming the Logical Memory Attributes

Bit field definitions for Logical Memory Address Registers - LMADR1:0 and LMMR1:0 registers
are shown in Table 12-4. LMCON registers reside within the i960 core processor memory-mapped
control register space. (Appendix C, “Memory-Mapped Registers”.)

12.3.1 Logical Memory Attributes

The i960 RM/RN I/O processor provides a mechanism for defining two Logical Memory
Templates (LMTs). An LMT may be used to specify whether a section (or subset) of a physica
memory subsystem connected to the BCU (e.g., DRAM, SRAM) is cacheable or non-cachea
the on-chip data cache.

There are typically several different LMTs defined within a single memory subsystem. For
example, data within one area of DRAM may be non-cacheable while data in another area is
cacheable. Figure 12-1 shows the use of the Control Table (PMCON registers) with logical
memory templates for a single DRAM region in a typical application.

Each logical memory template is defined by programming Logical Memory Configuration
(LMCON) registers. An LMCON register pair defines a data template for areas of memory tha
have common logical attributes. The i960 RM/RN I/O processor has two pairs of LMCON
registers — defining two separate templates. The extent of each data template is described
address (on 4 Kbyte boundaries) and an address mask. The address is programmed in the L
Memory Address register (LMADR). The mask is programmed in the Logical Memory Mask
register (LMMSK). These two registers constitute the LMCON register pair.

The Default Logical Memory Configuration (DLMCON) register provides configuration data for
areas of memory that do not fall within one of the two logical data templates.

The LMCON registers and their programming are described in Section 12.3, “Programming the
Logical Memory Attributes” on page 12-4.

Figure 12-1. LMCON Example

8000 0000H

FFFF FFFFH

0000 0000H

Logical Memory Templates (LMCON)

LMADR0
LMMAR0

LMADR1
LMMAR1

Non-Cacheable

9FFF FFFFH

Non-Cacheable

Note: The DLMCON maps the
remaining memory as cacheable.
12-4 i960® RM/RN I/O Processor Developer’s Manual

Core Processor and Internal Operation
12.3.2 Logical Memory Address Registers - LMADR0:1

The LMADR1:0 registers define the address for the logical data templates and template caching.

Table 12-4. Logical Memory Address Registers – LMADR0:1

LBA:

PCI:

CH0-8108H
CH1-8110H

NA

Legend: NA = Not AccessibleRO = Read Only
RV = ReservedPR = PreservedRW = Read/Write
RS = Read/SetRC = Read Clear
LBA = 80960 Local Bus AddressPCI = PCI Configuration Address Offset

Bit Default Description

31:12 0000 0H Template Starting Address - Defines upper 20 bits for the address of a logical data
template. The lower 12 bits are fixed at zero. The starting address is modulo 4 Kbytes.

11:02 000H Reserved.

01 02

Data Cache Enable - Controls data caching for the template.
(0) = Data caching disabled
(1) = Data caching enabled

Instruction caching is never affected by this bit.

00 02 Reserved.

PCI

LBA

28 24 20 16 12 8 4 031

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rw

na

rv

na
i960® RM/RN I/O Processor Developer’s Manual 12-5

Core Processor and Internal Operation
The Default Logical Memory Configuration (DLMCON) register is shown in Table 12-6. The
BCU uses the parameters in the DLMCON register when the current access does not fall within
one of the two logical memory templates (LMTs).

Table 12-5. Logical Memory Mask Registers – LMMR0:1

LBA:

PCI:

CH0-810CH
CH1-8114H

NA

Legend: NA = Not AccessibleRO = Read Only
RV = ReservedPR = PreservedRW = Read/Write
RS = Read/SetRC = Read Clear
LBA = 80960 Local Bus AddressPCI = PCI Configuration Address Offset

Bit Default Description

31:12 0000 0H

Template Address Mask - Defines upper 20 bits for the address mask for a logical
memory template. The lower 12 bits are fixed at zero (MA).

(0) = Mask
(1) = Do not mask

11:01 000H Reserved.

00 02

Logical Memory Template Enabled - Enables/disables logical memory template.
(0) = LMT disable
(1) = LMT enabled

PCI

LBA

28 24 20 16 12 8 4 031

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rw

na

Table 12-6. Default Logical Memory Configuration Register – DLMCON

LBA:

PCI:

8100H

NA

Legend: NA = Not AccessibleRO = Read Only
RV = ReservedPR = PreservedRW = Read/Write
RS = Read/SetRC = Read Clear
LBA = 80960 Local Bus AddressPCI = PCI Configuration Address Offset

Bit Default Description

31:02 0000 0000H Reserved.

01 02

Data Cache Enable - Controls data caching for areas not within other logical memory
templates.

(0) = Data caching disabled
(1) = Write-through caching enabled

Instruction caching is never affected by this bit.

00 02 Reserved.

PCI

LBA

28 24 20 16 12 8 4 031

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rw

na

rv

na
12-6 i960® RM/RN I/O Processor Developer’s Manual

Core Processor and Internal Operation

ss

 bits

12.3.3 Defining the Effective Range of a Logical Data Template

For each logical data template, an LMADRx register sets the base address using the bits 31:12. The
LMMR register sets the address mask using the bits 31:12. The effective address range for a logical
data template is defined by using bits 31:12 in the LMADRx register and bits 31:12 in the LMMRx
register.

For each access, only those address bits in the range 31:12 marked as unmasked (defined by bits
MA31:12 in the LMMRx register), are compared against bits 31:12 in the LMMRx register. When
all of the unmasked bits of the address match bits 31:12 of the LMMRx register, then the address
falls within the memory region governed by “x” logical memory template. The lower 12 addre
bits are not compared and are thus considered masked bits or “don’t care” bits. This forces a
minimum 4 Kbyte boundary on a memory region governed by a logical memory template.
Logically, the operation is as follows:

(EFA31:12 xnor LMADRx31:12) or (not LMMRx31:12)

Where EFA31:12 is the effective address for a bus access. Only when all compared address
match is the logical data template used for the current access. Two examples help clarify the
operation of the address comparators.

• Create a template 64 Kbytes in length beginning at address 0010 0000H and ending at address
0010 FFFFH. Determine the form of the candidate address to match and then program the
LMADR and LMMR registers:

Candidate Address is of form:0010 XXXX
LMADR <31:12> should be:0010 0...
LMMR <31:12> should be:FFFF 0...

• Multiple data templates can be created from a single LMADRxLMMRx register pair by
aliasing effective addresses. For example, to create sixteen 64 Kbyte templates, each
beginning on modulo 1 Mbyte boundaries starting at 0000 0000H and ending with
00F0 0000H, the registers are programmed as follows:

Candidate Address is of form:00X0 XXXX
LMADR <31:12> should be:0000 0...
LMMR <31:12> should be:FF0F 0...

12.3.4 Data Caching Enable

Enabling and disabling data caching for an LMT is controlled via the bit 0 in the LMADR register.
Likewise, the bit 1 in the DLMCON enables and disables data-caching for regions of memory that
are not covered by the LMCON registers.

Disabling a memory range does not exclude an address range from being cacheable. For cacheable
ranges, the BCU promotes all sub-word accesses to word accesses.

12.3.5 Enabling the Logical Memory Template

LMMRx bit 0 activates the logical data template in the LMMR register for the programmed range.
i960® RM/RN I/O Processor Developer’s Manual 12-7

Core Processor and Internal Operation

gisters.
ata
rough
s

omes

 broken
h.
12.3.6 Initialization

Immediately following a hardware reset, all LMTs are disabled. The bit 0 in each of the LMMR
registers is cleared (0) and all other bits are undefined. Also the Default Logical Memory Control
register Data Caching Enable (LMADRx bit 1) is cleared (Data Caching Disabled). Application
software may initialize and enable the logical memory template after hardware reset. The registers
are not modified by software initialization.

12.3.7 Boundary Conditions for Logical Memory Templates

The following sections describe the operation of the LMT registers during conditions other than
“normal” accesses. See Chapter 4, “Cache and On-Chip Data RAM” for a treatment of data cache
coherency when modifying an LMT.

12.3.7.1 Internal Memory Locations and Peripheral MMRs

The LMT registers are not used during accesses to i960 core processor memory-mapped re
Internal data RAM locations are never cached; LMT bits controlling caching are ignored for d
RAM accesses. The i960 RM/RN I/O processor peripheral MMRs, (addresses 0000 1000H th
0000 17FFH) and the ATU windows (8000 0000H through 9001 FFFFH) should be defined a
non-cacheable. Further, if direct addressing is enabled (bit 8 of the ATUCR) addresses
0000 0000H through 7FFF FFFFH should be defined as non-cacheable.

12.3.7.2 Overlapping Logical Data Template Ranges

Logical data templates that specify overlapping ranges are not allowed. When an access is
attempted that matches more than one enabled LMT range, the operation of the access bec
undefined.

To establish different logical memory attributes for the same address range, program
non-overlapping logical ranges, then use partial physical address decoding.

12.3.7.3 Accesses Across LMT Boundaries

Accesses that cross LMT boundaries should be avoided. These accesses are unaligned and
into a number of smaller aligned accesses, which reside in one or the other LMT, but not bot
Each smaller access is completed using the parameters of the LMT in which it resides.

12.3.8 Modifying the LMT Registers

An LMT register can be modified using st or sysctl instructions. Both instructions ensure data
cache coherency and order the modification with previous and subsequent data accesses.
12-8 i960® RM/RN I/O Processor Developer’s Manual

Core Processor and Internal Operation

core

ain
12.4 Bus Interface Unit

The BIU connects the i960® core processor to the Internal Bus. The BIU has two bus interfaces:

• 32-bit i960 core processor bus

• 64-bit Internal Bus (IB).

The BIU is the only agent on the i960 core processor bus. The BIU also separates the core
processor clock domain from the Internal Bus clock domain. See Figure 12-2.

The BIU forwards i960 core processor bus accesses to the Internal Bus and is responsible for their
completion. No address translation is performed by the BIU.

12.4.1 Overview

The BIU accepts i960 core processor bus accesses. It forwards read accesses to the IB and returns
the read data to the i960 core processor. It completes write accesses for the i960 core processor.

All accesses received by the BIU from the i960 core processor are processed in order, except that instruction
fetches may bypass write accesses. See Section 12.4.4.2, “Instruction Fetch Bypass” on page 12-12.

The BIU may address any target on the Internal Bus. Instruction fetch accesses by the i960
processor to either ATU is not supported.

The BIU divides the core processor clock domain (100 MHz) from the Internal Bus clock dom
(66 MHz). All data moving through the BIU is buffered.

The BIU has several address/data buffers:

• Write Buffer

• Read Buffer

• Prefetch Buffer

The Write Buffer temporarily stores write accesses that are destined for the IB. The Write Buffer is
2 entries deep and each entry can store one address and up to 16 bytes of data. The BIU is
responsible for forwarding all write accesses to the IB and ensuring their completion.

Figure 12-2. Core Processor/BIU Interface Block Diagram

100 MHz Bus Interface Unit

66 MHz.

100 MHz i960® Processor

i960® Core Processor

Internal Bus (IB)

Local Bus
i960® RM/RN I/O Processor Developer’s Manual 12-9

Core Processor and Internal Operation
The Read Buffer temporarily stores read data for read accesses returning from the IB to the i960
core processor. The Read Buffer is one entry deep and each entry can store up to 16 bytes of data.

The Prefetch Buffer temporarily stores additional instructions prefetched by the BIU from the
Memory Controller.

The BIU has two optional features that are intended to increase overall performance. The BIU can
extend i960 core processor fetches by 16 bytes and then store the additional 16 bytes in the
Prefetch Buffer. If a subsequent instruction fetch hits the Prefetch Buffer, the instructions are
returned to the processor and an IB bus access is avoided. Under special conditions, the BIU also
can merge two sequential write accesses into one IB bus access. Both of these features can be
independently enabled or disabled.

The BIU does not perform byte merging (merging byte writes together) or write collapsing
(collapsing multiple writes to one location).

Figure 12-3. Internal Block Diagram

i960® Processor Bus Interface

Prefetch Buffer

Bus Interface Unit

Internal Bus Interface

32-bit i960® Processor Bus

64-bit Internal Bus

D
at

a

A
d

d
re

ss

Write Buffer
Read Buffer
12-10 i960® RM/RN I/O Processor Developer’s Manual

Core Processor and Internal Operation
12.4.2 Addressing

The BIU converts 32-bit DWORD addresses from the i960 core processor bus into 64-bit QWORD
addresses on the Internal Bus. The BIU does not translate addresses or otherwise alter addresses.

The BIU only reads and writes data on the Internal Bus as indicated by the Byte Enables generated
by the i960 core processor. The BIU assumes that all accesses are to non-prefetchable memory. It
does not promote i960 byte or i960 short accesses to DWORD accesses.

12.4.2.1 Bus Width

The BIU only supports i960 core processor data bus width of 32-bits. The Bus Width field
(BW1:0) in the Physical Memory Region Configuration Registers (PMCON) should set to 102
(32-bit bus).

Note: Setting the i960 core processor data bus width in the PMCON Registers to 16-bits or 8-bits results
in undefined behavior.

The BIU, however, does supports the 8-bit bus width when the Initial Boot Record (IBR) is read
during core processor initialization.

12.4.3 Multi-Transaction Timer

The BIU has an associated Multi-Transaction Timer (MTT) in the Internal Bus Arbiter. When
programmed properly, the MTT allows for a guaranteed quantum of time for the BIU. See
Chapter 17, “i960® RM/RN I/O Processor Arbitration”.

12.4.4 Features

Additional features of the BIU are:

• Write Buffering

• Instruction Fetch Bypass

• Instruction Prefetch (optional)

• Write Merging (optional)

12.4.4.1 Write Buffering

The Write Buffer temporarily stores multiple i960 core processor write accesses waiting for
completion on the Internal Bus. The Write Buffer has two entries. Each entry contains one 32-bit
address and 16 bytes of data storage.

Write buffering allows the BIU to handle up to 2 outstanding write accesses from the i960 core
processor. If Write Merging is enabled, up to 4 outstanding write accesses are allowed.

An instruction fetch by the i960 core processor may bypass write accesses in the Write (see
Section 12.4.4.2, “Instruction Fetch Bypass”).
i960® RM/RN I/O Processor Developer’s Manual 12-11

Core Processor and Internal Operation
12.4.4.2 Instruction Fetch Bypass

With instruction fetch bypass, instruction fetches by the i960 core processor bypass any write
accesses in the Write Buffer. The instruction fetch has priority over all write accesses in the Write
Buffer for the next IB access performed by the BIU.

If the write access in the Write Buffer was attempted on the IB but has not completed (e.g.,
received a Retry), the instruction fetch does not bypass the write access. The instruction fetch
bypasses the write access only if the write access has not started on the IB.

There is no address checking between the address of the instruction fetch and the address of any
write accesses in the Write Buffer.

12.4.4.3 Instruction Prefetch

With instruction prefetch, instruction fetches by the i960 core processor cause the BIU to extend
the IB bus access by an additional 16 bytes. An 8-byte fetch is extended to a 24-byte fetch and a
16-byte fetch is extended to a 32-byte fetch. The 8-byte or 16-byte fetch data originally requested
by the processor is returned to the processor. The additional 16 bytes of instructions are stored in
the Prefetch Buffer and marked valid.

If, for any reason, the Memory Controller is not able to deliver the complete extra 16 bytes of
instructions (e.g., the Memory Controller disconnects after the original 8-byte or 16-byte fetch but
before the complete 24-byte or 32-byte fetch is returned), the prefetch is aborted. The Prefetch
Buffer is not loaded and is marked invalid.

When instruction prefetch is enabled, the address of all instruction fetches is compared with the
address stored in the Prefetch Buffer. If the buffer is valid and the addresses match, the BIU returns
the contents of the Prefetch Buffer to the i960 core processor and the BIU does not begin an IB
access for the fetch.

Because the Prefetch Buffer contains 16 bytes and the i960 core processor may make an 8-byte
instruction fetch, it is possible that the desired 8 bytes is in the Prefetch Buffer but the addresses do
not match. In this case, the BIU does not return the 8 bytes from the Prefetch Buffer but must instead
make an IB bus request. For example, if the Prefetch Buffer is marked valid and contains the address
A000.0000H and the subsequent instruction fetch is an 8-byte fetch with an address of A000.0002H,
the BIU does not match the addresses even though the instructions are in the Prefetch Buffer.

Instruction Prefetch can be enabled or disabled by the Instruction Prefetch Enable bit in the BIU
Control Register.

12.4.4.4 Write Merging

With write merging, the BIU may merge two sequential write accesses by the i960 core processor
into one IB bus access. Write merging is controlled by the Write Merging Enable bit in the BIU
Control Register.

There is only one type of sequential write accesses that may be merged: one DWORD write
followed another one DWORD write.

For write merging, the addresses must be sequential and incrementing. Bits 31:03 of the addresses
of both accesses must match exactly. Bits 02:00 of the address must be 0002 for the first access and
1002 for the second access. The resulting QWORD must be naturally aligned. No other pairings of
store accesses are merged by the BIU.
12-12 i960® RM/RN I/O Processor Developer’s Manual

Core Processor and Internal Operation
For example, if the first access is a DWORD write and the address is xxxx.xxx0H, the next access
must be a DWORD write and the address must be xxxx.xxx4H. If the first access is a DWORD
write and the address is xxxx.xxx8H, the next access must be a DWORD write and the address
must be xxxx.xxxCH.

DWORDs are merged at the input to the Write Buffer. Both DWORDs are written to the same
entry in the Write Buffer to form a QWORD in the entry.

Write accesses are never deliberately held in the Write Buffer and not completed on the Internal
Bus just to enable Write Merging. Write Merging only occurs if the first DWORD write has not
started on the IB before the second DWORD write occurs.

Instruction fetches that bypass write accesses in the Write Buffer do not affect write merging. An
instruction fetch that occurs between two DWORD writes may bypass the first write in the Write
Buffer. The second write may then merge with the first write.

12.4.4.5 Atomic Accesses

The BIU supports atomic bus accesses from the i960 core processor to local memory and the
Peripheral Memory-Mapped Registers (PMMR) only. Atomic instructions (atmod, atadd) from the
i960 core processor require that the BIU perform the memory read-modify-write operation
atomically.

12.4.5 Interrupts and Error Conditions

The BIU records error conditions that result from accesses initiated by the BIU on the Internal Bus.
The errors are recorded in the BIU Interrupt Status Register (BIUISR).

12.4.5.1 Master-Abort

There are two ways that the BIU can receive a Master-Abort from the Internal Bus:

• IB Master-Abort: No target on the Internal Bus claims the transaction

• PCI Master-Abort: The ATU, as a PCI master on behalf of the BIU, received a Master-Abort
on the PCI bus and is returning the Master-Abort to the BIU during the read completion

Example 12-1. Code Examples of Write Merging

; Merge Example

st g0, 0xA0000000

st g7, 0xA0000004

; Merge Example

st g5, 0xA0001008

st g4, 0xA000100C

; Non-Example

;(not merged due to non-sequential addresses)

st g5, 0xA0002000

st g6, 0xA0002010
i960® RM/RN I/O Processor Developer’s Manual 12-13

Core Processor and Internal Operation

er
When an Internal Bus access initiated by the BIU receives a Master-Abort, the BIU records the
Master-Abort condition in the BIU Interrupt Status Register and signals an NMI interrupt to the
i960 core processor. Note that a Master-Abort received from the ATU is not recorded as an IB
Master-Abort in the BIU Interrupt Status Register.

The PCI Master Abort is recorded in the PATUISR or SATUISR depending on which outbound
ATU window is accessed. The ATU generates an interrupt to the i960 core processor. When the
ATU detects a Master-Abort on the PCI bus for a read access and the ATU returns the
Master-Abort to the BIU during the read completion.

For read accesses, the BIU returns FFH to the i960 core processor for each byte read. For write
accesses, the BIU clears the access from the Write Buffer.

12.4.5.2 PCI Target-Abort

There are two ways that the BIU can receive a Target-Abort from the Internal Bus:

• PCI Target-Abort: The ATU, as a PCI master on behalf of the BIU, received a Target-Abort on
the PCI bus and is returning the Target-Abort to the BIU

• IB Target-Abort: The Memory Controller returned a Target-Abort to the BIU

The PCI Target Abort is recorded in the PATUISR or SATUISR depending on which outbound
ATU window is accessed. The ATU generates an interrupt to the i960 core processor. When the
ATU detects a Target-Abort on the PCI bus for a read access and the ATU returns the Target-Abort
to the BIU during the read completion.

The BIU does not need to distinguish the difference between an MCU access that resulted in a target
abort and a outbound ATU access that results in a target abort. Both the ATUs and the MCUs record the
target aborts and generate its respective interrupt to the core. The only requirement for the BIU during a
target abort, is to return any valid data received from the target and then returns FFH to the i960 core
processor for each unread byte. For write accesses, the BIU clears the access from the Write Buffer.

The IB Target Abort is discussed in Section 12.4.5.3, “Internal Bus Target-Abort” on page 12-14
and When an Internal Bus access initiated by the BIU receives a Target-Abort, the Memory
Controller Unit (MCU) records the Target-Abort condition in the MCU Interrupt Status Regist
and signal an NMI interrupt to the i960 core processor.

12.4.5.3 Internal Bus Target-Abort

There are four ways that the BIU can receive a Target-Abort from the Internal Bus Memory
Controller Unit (MCU):

• Target Abort during BIU write to MCU

• Target Abort during BIU read from MCU

• Target Abort during BIU instruction fetch from MCU

• Target Abort during BIU instruction prefetch from MCU

The MCU generates a target abort to initiating masters only when the access hits the SDRAM,
ECC is enabled, and the MCU detected a multi-bit ECC error.

All four of the Target Abort cases are described in the following sections.
12-14 i960® RM/RN I/O Processor Developer’s Manual

Core Processor and Internal Operation
Target-Abort During BIU Write

When an Internal Bus access initiated by the BIU receives a Target-Abort from the MCU, the MCU
records the Target-Abort in the ELOGx registers and generate an NMI interrupt to the i960 core processor.

Since the BIU burst a maximum of 2 data cycles (for 64-bit SDRAM), and 4 data cycles for (32-bit
SDRAM), the target abort can occur on any of the data cycles. If the target abort occurs on any data
cycle, except the last data cycle, the BIU discards with the remaining data.

If the target abort occurs on the last data cycle of a burst, the transaction is completed by the BIU
before the MCU had determined there is a multi-bit ECC error. Therefore, to the BIU, the transaction
appears as if it has completed and there is no remaining data in the write queue for the transaction. In
this case, the MCU is the only unit that can notify the core processor of the error condition.

Target-Abort During BIU Read

When an Internal Bus access initiated by the BIU receives a Target-Abort from the MCU, the MCU
records the Target-Abort in the ELOGx registers and generate an NMI interrupt to the i960 core processor.

For read accesses, the BIU returns any data received from the target and then returns FFH to the
i960 core processor for each unread byte.

Target-Abort During BIU Instruction Fetch

When an Internal Bus access initiated by the BIU receives a Target-Abort from the MCU, the MCU
records the Target-Abort in the ELOGx registers and generate an NMI interrupt to the i960 core processor.

For read accesses, the BIU returns any data received from the target and then returns FFH to the
i960 core processor for each unread byte.

Target-Abort During BIU Instruction Prefetch

When an Internal Bus access initiated by the BIU receives a Target-Abort from the MCU, the
MCU records the Target-Abort in the ELOGx registers and generate an NMI interrupt to the i960
core processor.

For read accesses, the BIU returns any data received from the target and then returns FFH to the
i960 core processor for each unread byte. If the target abort occurs during the BIU instruction
prefetch, the prefetch buffer is not loaded and is marked invalid.

Note: The MCU records the errors and generates an interrupt to the i960 core processor during an
instruction prefetch. The MCU may log the same error condition multiple times under the
following condition. If, during the instruction prefetch, the MCU generates a target abort, the error
is recorded. If the instruction flow is such that the next instruction fetch hits the addresses which
the BIU prefetch just occurred, the BIU generates an IB cycle to fetch the instructions as instructed
to by the i960 core processor. The second access by the BIU, to the same address as the previous
prefetch (which marked the prefetch buffer invalid because of the target abort), results in another
target abort by the MCU to the BIU. The MCU logs the same error condition again if there are
available ELOGx registers. However, because the interrupt from the MCU to the NMI latch is level
sensitive, the MCU generates only one interrupt to the i960 core processor. The software
processing the MCU errors, must ensure that all error conditions are processed each interrupt to the
i960 core.
i960® RM/RN I/O Processor Developer’s Manual 12-15

Core Processor and Internal Operation
12.4.6 Register Definitions

There are two peripheral memory-mapped registers (PMMR) for the BIU. Table 12-7 lists the
PMMR registers for the BIU.

12.4.6.1 BIU Control Register - BIUCR

The BIU Control Register (BIUCR) allows software to control the BIU.

Table 12-7. Bus Interface Unit Register Table

Section, Register Name - Acronym (Page)

Section 12.4.6.1, “BIU Control Register - BIUCR” on page 12-16

Section 12.4.6.2, “BIU Interrupt Status Register - BIUISR” on page 12-17

Table 12-8. BIU Control Register - BIUCR

Bit Default Description

31:02 0000 0000H Reserved

01 12
Write Merging Enable - When set, the BIU merges sequential DWORD Write
accesses. When clear, the BIU does not merge any accesses.

00 12

Instruction Prefetch Enable - When set, the BIU extends i960 core processor
instruction fetches by 16 bytes. The 16-byte prefetch data is stored in the Prefetch
Buffer. When clear, the BIU does not prefetch additional instructions and the Prefetch
Buffer is invalid.

P
C

I
IO

P
A

ttr
ib

u
te

s
A

ttr
ib

ut
es

28 24 20 16 12 8 4 031

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rw

na

rw

na

Attribute Legend:

RV = Reserved

PR = Preserved

RS = Read/Set

RW = Read/Write

RC = Read Clear

RO = Read Only

NA = Not Accessible

80960 Core Internal Address

1640H
12-16 i960® RM/RN I/O Processor Developer’s Manual

Core Processor and Internal Operation
12.4.6.2 BIU Interrupt Status Register - BIUISR

The BIU Interrupt Status Register (BIUISR) records the assertion of interrupts to the i960 core
processor.

Table 12-9. BIU Interrupt Status Register - BIUISR

Bit Default Description

31:03 00000000H Reserved

02 02

IB Master-Abort - When set, the BIU has detected a Master-Abort on the Internal Bus
and has signalled an NMI interrupt to the i960 core processor. This bit is cleared by
software.

Note that a Master-Abort received from the ATU is not recorded as an IB Master-Abort
in this bit.

01:00 02 Reserved

P
C

I
IO

P
A

ttr
ib

ut
es

A
ttr

ib
ut

es

28 24 20 16 12 8 4 031

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rc

na

rv

na

rv

na

Attribute Legend:

RV = Reserved

PR = Preserved

RS = Read/Set

RW = Read/Write

RC = Read Clear

RO = Read Only

NA = Not Accessible

80960 Core Internal Address

1644H
i960® RM/RN I/O Processor Developer’s Manual 12-17

Memory Controller 13

This chapter describes the 80960RM/RN integrated Memory Controller Unit (MCU). The
operating modes, initialization, external interfaces, and implementation are detailed in this chapter.

13.1 Overview

The i960® RM/RN I/O processor integrates a Memory Controller to provide a direct interface
between the i960 RM/RN I/O processor and its local memory subsystem. The Memory Controller
supports:

• Up to 16 Mbytes of 8-bit Flash

• Between 8 and 128 Mbytes of 64-bit Synchronous DRAM (SDRAM) or

Between 4 and 64 Mbytes of 32-bit Synchronous DRAM for low cost solutions

• Single-bit error correction, double-bit and nibble detection support (ECC)

The Flash interface provides an 8-bit data bus, 23-bit address bus, and control to support up to two
64 Mbit Bulk-Erase or Boot-Block Flash devices. The Flash devices provide storage for the i960
RM/RN I/O processor initialization code.

The MCU provides a separate SDRAM interface from the Flash interface. The SDRAM interface
provides a direct connection to a high bandwidth and reliable memory subsystem. The SDRAM
interface consists of a 66 MHz, 64-bit wide data path to support 528 Mbytes/sec throughput. An
8-bit Error Correction Code (ECC) across each 64-bit word improves system reliability. The ECC
is stored into the SDRAM array along with the data and is checked when the data is read. If the
code is incorrect, the MCU corrects the data (if possible) before reaching the initiator of the read.
User-defined fault correction software is responsible for scrubbing the memory array.

• The MCU supports two banks of SDRAM in the form of one two-bank dual inline memory
module (DIMM) or two single-bank DIMMs, or

The MCU supports a 32-bit SDRAM data interface. This mode enables lower-cost solutions at
the cost of system performance.

• The MCU responds to internal bus memory accesses within its programmed address range and
issues the memory request to either the Flash or SDRAM interface.

• The MCU provides four chip enables to the memory subsystem. Two chip enables service the
SDRAM subsystem (one per bank) and two service the Flash devices.
i960® RM/RN I/O Processor Developer’s Manual 13-1

Memory Controller

ize
d

olumn

ides.

bit

 can
he
ly

wide
e

ithin
 with

he
 The

ory
me
13.1.1 Memory Controller Terminology

This section lists commonly used terms throughout this chapter:

• Bank — A bank is defined as a memory region defined with a base register and a bank s
register. Physically, a bank of memory is controlled by a single chip select. A DIMM coul
comprise of a single or dual banks.

• Column — A column refers to a portion of memory within an SDRAM device. An SDRAM
device can be thought of as a grid with rows and columns. Once a row is activated, any c
within that row can be accessed multiple times without reactivating the row. Columns are
activated with SCAS#.

• DIMM — A DIMM is an acronym for Dual Inline Memory Module. A DIMM is a physical
card comprising multiple SDRAM devices. The card could be populated on one or both s
A DIMM can be single or dual-bank.

• Leaf — SDRAM devices use multiple banks within the device operating in an interleaved
mode. 16 Mbit SDRAM devices contains two internal banks and the MCU supports 64 M
devices containing four internal banks. An internal bank is defined as a leaf (to avoid
confusion with a memory bank).

• Page — A page is a row of memory. Once a row is activated, any column within that row
be accessed multiple times without reactivating the row. This is referred to as “keeping t
page open.” While it depends on the SDRAM device configuration, the MCU supports on
the smallest possible page size (2 Kbytes for 64-bit wide memory and 1 Kbyte for 32-bit
memory). Therefore, if an SDRAM physical configuration supports a larger page size, th
MCU breaks it up into smaller 2 Kbyte or 1 Kbyte pages.

• Row — A row refers to a portion of memory within an SDRAM device. An SDRAM device
can be thought of as a grid with rows and columns. Once a row is activated, any column w
that row can be accessed multiple times without reactivating the row. Rows are activated
SRAS#.

• Scrubbing — Once an error is detected within the memory array, the MCU must correct t
error (if possible). Correcting the memory location is referred to as “scrubbing the array.”
MCU relies on software to scrub any errors.

• Syndrome — A syndrome is a value which indicates an error in the data read from the mem
array. The MCU computes the syndrome with every memory read. Decoding the syndro
indicates: the bit in error for a single-bit error, a double-bit error, or a nibble-error. Table 13-13
on page 13-31 defines the syndrome decoding.
13-2 i960® RM/RN I/O Processor Developer’s Manual

Memory Controller
13.2 Flash Memory Support

The i960 RM/RN I/O processor memory controller supports one or two 8-bit Flash devices. The
second Flash bank may be used to interface a UART device and/or LEDs. The Flash devices
typically store initialization code.

The MCU supports read bursting up to 8 bytes of data from the Flash device for a single read
transaction. Any write transactions the core issues to the Flash address space must always be single
byte transfers (stob).

The MCU separates the Flash interface from the SDRAM interface to isolate the electrical loading
on the SDRAM interface. The MCU implements twenty three address pins multiplexed on
RAD[16:0] to address Flash devices up to 64 Mbits. Refer to the timing diagrams in Figure 13-2
and Figure 13-3 for details about how the pins are multiplexed.

Flash memory space is separate from the SDRAM space. The Flash chip enables activate the
appropriate Flash bank when the address falls within one of the Flash address ranges. Table 13-1
shows the Flash interface signals.

Table 13-1. Flash Interface Signals

Pin Name Description

RCE[1:0]# Chip Enable. Must be asserted for all transactions to the Flash device.

RWE# Write Enable. Controls the Flash data input buffers.

ROE# Output Enable. Asserted for reads, deasserted for writes. Controls the Flash output data
buffers for write transactions.

RAD[16:0] Address/Data bus capable of supporting 16 Mbit of Flash (2Mx8). The data bus is
multiplexed on RAD[16:9].

RALE Address Latch Enable. Indicates the transfer of a physical address. RALE is asserted
during a Flash address cycle and deasserted before the beginning of the data cycle.
i960® RM/RN I/O Processor Developer’s Manual 13-3

Memory Controller
Figure 13-1 illustrates how two Flash devices would interface with the i960 RM/RN I/O processor
through the MCU.

13.2.1 Flash Memory Addressing

Since the internal bus comprises a 64-bit data bus, it is possible that an internal bus master requests
up to 8 bytes for a read transaction. The Flash interface utilizes a multiplexed address/data bus. The
address bus is effectively 23 bits. The memory controller pipelines the address in two cycles.
During the first address phase, address bits [22:9] are presented on RAD[16:3]. An external 14-bit
latch must preserve RAD[16:3] using RALE. During the second address phase, address bits [8:0]
are presented on RAD[8:0]. The data bus is multiplexed on RAD[16:9]. The MCU increments the
lower 3 address bits (RAD[2:0]) throughout the subsequent data phases.

The two Flash chip enables (RCE[1:0]#) support a Flash memory subsystem consisting of two
devices. The base addresses for the two Flash devices are programmed in FEBR0 and FEBR1. The
size of each Flash memory region is programmed in FBSR0 and FBSR1.

Figure 13-1. 4 Mbyte Flash Memory System

A4656-01

Intel ® 28F016-70
16Mb Flash

i960® RM/RN
I/O Processor

RALE
RAD(16:0)

ROE#
RWE#

RCE0#
RCE1#

Latch

Latch

RAD(2:0)

RAD(8:3)

A(2:0)

A(8:3)

A(22:17)

A(20:0)
OE#
WE#
DQ(7:0)
CE#

Intel ® 28F016-70
16Mb Flash

A(20:0)
OE#
WE#
DQ(7:0)
CE#

A(16:9)

DQ(7:0)

RAD(16:9)
13-4 i960® RM/RN I/O Processor Developer’s Manual

Memory Controller

ding on

 of

for
te
d
To determine if the internal bus address is within Flash memory space, Table 13-2 indicates which
bits of the FEBRx are compared with the corresponding bits of I_AD[31:0].

A valid address range for RCE[0]# is defined by the start address programmed in the base address
register (FEBR0) with the ending address determined by the size programmed into the bank size
register (FBSR0). The programmed value in the base address register requires alignment based on
the size programmed into the FBSR0 register. The base address logic ignores the lower address bits
based on the programmed block size. For example, if the memory size is 2 Mbytes, the software
programs the base address value aligned with a 2 Mbyte boundary.

RCE[1]# follows the same logic but uses FEBR1 and FBSR1.

Refer to Section 13.5.3, “Overlapping Memory Regions” on page 13-41 for prioritization details if
the two Flash memory regions overlap.

13.2.2 Flash Read Cycle

Reading a Flash device involves driving the address, output enable, and chip enable. Depen
the speed of the Flash device, the data returns several cycles later.

The definition of address-to-data wait states are the number of cycles between the assertion
RCE[1:0]# and the arrival of data from the Flash or UART device on RAD[16:9]. The definition
recovery wait states are the number of cycles between the data arrival on RAD[16:9] and the
address for the next Flash transaction.

Address-to-data and recovery wait states programmed in FWSR0 and FWSR1 are identical
reads and writes. Since the read wait state requirement is typically greater, the write wait sta
requirement is guaranteed to be met. Refer to Table 13-3 for the programmable address-to data an
recovery wait states.

Table 13-2. Address Decoding for Flash Memory Space

Flash Bank Size Bits Compared for Decoding the Flash Address Range

64 Kbytes FEBRx[31:16]

128 Kbytes FEBRx[31:17]

256 Kbytes FEBRx[31:18]

512 Kbytes FEBRx[31:19]

1 Mbyte FEBRx[31:20]

2 Mbytes FEBRx[31:21]

4 Mbytes FEBRx[31:22]

8 Mbytes FEBRx[31:23]
i960® RM/RN I/O Processor Developer’s Manual 13-5

Memory Controller
Figure 13-2 illustrates a read cycle from a 90 ns Flash device.

When an internal bus master requests data from the Flash memory region, the MCU decodes the
internal bus byte enables for the initial RAD[2:0]. The read request could result in multiple 8-bit
reads (burst) on the Flash interface depending on I_C/BE[7:0]#. The Flash state machine
increments RAD[2:0] for each read. The MCU is responsible for packing the multiple bytes and
placing them on the appropriate byte lanes before driving the data on the internal bus. Due to the
typically long time for Flash reads, the internal bus master reading data always gets disconnected
after the first data phase.

Figure 13-2. 90 ns Flash Read Cycle

 0 1 2 3 4 5 6 7 8 9 10 11SCLK

Retry the Internal Bus

 12

Address
Decode

TA T1 T2 T3 T4 T5 T6

 13 14

T7 T8 TD

 15

TR TR TR TR

 16 17 18 19

RCE#

ROE#

RWE#

RAD[2:0] ADD[2:0]

RAD[16:9]

RALE

D0ADD[16:9]

 20

TA

RAD[8:3] ADD[22:17]

14-bit External Latch

ADD[8:3]
13-6 i960® RM/RN I/O Processor Developer’s Manual

Memory Controller
Figure 13-3 illustrates a bursted read cycle from a 60 ns Flash device.

Refer to Table 13-3 for the programmable address-to data wait states.

Figure 13-3. 60 ns Flash Burst Read Cycle

 0 1 2 3 4 5 6 7 8 9 10 11DCLK

RCE#

ROE#

RWE#

RAD[2:0]

 12

Address
Decode

T1 T2 T3 T4 TD T1

 13 14

T2 T3 T4

 15

TD

ADD[2:0]

RAD[16:9]

RALE

D0

 16

ADD[16:9]

ADD[2:0] + 1

D1

14-bit External
Latch

D0 driven
by Flash and

Pack D0 and D1
and drive on Internal bus

latched in the MCU

TA TA

RAD[8:3] ADD[8:3]ADD[22:17]

Table 13-3. Flash Wait State Profile Programming

 Flash Speed Address-to-Data Wait States Recovery Wait States

≤ 55 ns 4 0

≤ 115 ns 8 4

≤ 175 ns 12 4
i960® RM/RN I/O Processor Developer’s Manual 13-7

Memory Controller
13.2.3 Flash Write Cycle

Address-to-data and recovery wait states for reads and writes are identical and programmed in
FWSR0 and FWSR1. Refer to Table 13-3 for the programmable address-to data wait states.

Note: The MCU always adds one extra address-to-data wait state for write operations. This extra wait
state accommodates for the fact that read time is initiated with RCE# while write time is initiated
with RWE#. RWE# is asserted one cycle after RCE#.

The MCU claims internal bus transactions and accepts the data with zero wait-states, thus freeing
the internal bus. However, the MCU remains busy until the cycle completes on the Flash interface.
Subsequent MCU cycles are retried on the internal bus during this period.

The MCU does not support bursting data to a Flash device since the time between writes is
typically 6 ms. The core is the only device permitted to write to the Flash device and the software
must ensure that only a single byte is written.

Figure 13-4 illustrates a write cycle to a 90 ns Flash device.

Figure 13-4. 90 ns Flash Write Cycle

 0 1 2 3 4 5 6 7 8 9 10 11

RCE#

ROE#

RWE#

RAD[2:0]

 12

Address

Decode

TA T1 T2 T3 T4

 13

T5 T6 T7 T8 TD TR TR TR

14

ADDR[2:0]

15 DCLK

TR

RAD[16:9]

RALE

D0ADDR[16:9]

TATA

16 17

RAD[8:3] ADDR[8:3]ADDR[22:17]

14-bit External Latch
13-8 i960® RM/RN I/O Processor Developer’s Manual

Memory Controller

s.

e
a
saction
13.3 SDRAM Memory Support

The i960 RM/RN I/O processor memory controller supports one or two banks of SDRAM. SDRAM
allows zero data-to-data wait-state operation at 66 MHz. It also offers an extremely wide range of
configuration options emerging from the SDRAM’s internal interleaving and bursting capabilitie

The MCU supports SDRAM burst lengths of four. A burst length of four enables seamless
read/write bursting of long data streams as long as the MCU master does not cross the page
boundary. The page size depends on the data bus width indicated in the SDCR register. Pag
boundaries are naturally aligned 2 Kbyte blocks for a 64-bit data bus and 1 Kbyte blocks for
32-bit data bus. The MCU ensures that the page boundary is not crossed within a single tran
by initiating a disconnect with data on the Internal Bus prior to the page boundary.

The MCU SDRAM interface provides a flexible mix of combinations as shown in Table 13-5.
Table 13-5 shows the SDRAM interface signals.

Table 13-4. SDRAM Memory Configuration Options

Data Bus Width ECC Enabled Maximum Throughput

64 bit Yes 528 Mbyte/s

64 bit No 528 Mbyte/s

32 bit Yes 256 Mbyte/s

32 bit No 256 Mbyte/s

Table 13-5. SDRAM Interface Signals

Pin Name Description

DCLKOUT
SDRAM Clock Out - This is the clock to the off-chip SDRAM clock buffer driven by the
i960 RM/RN I/O processor. Section 13.3.8, “SDRAM Clocking” on page 13-33 describes
the SDRAM clocking strategy.

DCLKIN
SDRAM Clock In - This is the clock returning from the off-chip SDRAM clock buffer.
Section 13.3.8, “SDRAM Clocking” on page 13-33 describes the SDRAM clocking
strategy.

SCKE[1:0]

Clock enables - One clock after SCKE[1:0] is deasserted, the data is latched on DQ[63:0]
and SCB[7:0]. The burst counters within the SDRAM device are not incremented.
Deasserting this signal places the SDRAM in self-refresh mode. For normal operation,
SCKE[1:0] must be asserted.

SDQM[7:0]
Data Mask - On a write, these signals disable the data on a byte-by-byte basis thus
preventing certain bytes from being written. On a read, two clocks after asserting
SDQM[7:0] the output data bytes are disabled.

SCE[1:0]# Chip Select - Must be asserted for all transactions to the SDRAM device. One per bank.

SWE# Write Enable - Controls the SDRAM data input buffers. Asserting SWE# causes the data
on DQ[63:0] and SCB[7:0] to be written into the SDRAM devices.

SBA[1:0] SDRAM Bank Selects - Controls which of the internal SDRAM banks to read or write. For
16 Mbit devices (2 banks), only SBA[0] is used while 64 Mbit devices use SBA[1:0].

SA[10] Address bit 10 - If high during a read or write command, auto-precharge occurs after the
command. During a row-activate command, this bit is part of the address (Table 13-6).

SA[11:0] Address bits 11 through 0 - Indicates the row or column to access depending on the state
of SRAS# and SCAS# (Table 13-6).

SRAS# Row Address Strobe - Indicates that the current address on SA[11:0] is the row.

SCAS# Column Address Strobe - Indicates that the current address on SA[11:0] is the column.

DQ[63:0] Data Bus - 64-bit wide data bus.

SCB[7:0] ECC Bus - 8-bit error correction code which accompanies the data on DQ[63:0].
i960® RM/RN I/O Processor Developer’s Manual 13-9

Memory Controller
Utilizing the SDRAM chip enables SCE[1:0]# and internal bank selects SBA[1:0], the MCU keeps
a maximum of eight pages open simultaneously with 64 Mbit devices. The number of available
pages depends on the memory subsystem population. A single 64 Mbit SDRAM bank allows four
pages and two banks allow eight pages.

Open pages allow optimal performance when a read or write occurs to an open page. Multiple open
pages allow multiple memory segments to be open simultaneously and is well-suited for the i960
RM/RN I/O processor’s system environment. The MCU’s paging algorithm is detailed in
Section 13.3.4, “Page Hit/Miss Determination” on page 13-14. The waveforms illustrating the
performance issues are in Section 13.3.6.2, “SDRAM Read Cycle” on page 13-20 and
Section 13.3.6.3, “SDRAM Write Cycle” on page 13-24.

Figure 13-5 illustrates how two banks of SDRAM would interface with the i960 RM/RN I/O
processor through the MCU.

Figure 13-5. Dual-Bank SDRAM Memory Subsystem

A4657-01

SDRAM DIMM
using 16Mb devices

i960® RM/RN
I/O Processor

DQ(63:0)

CB(7:0)

RAS#

CAS#

WE#

A(10:0)

BA0

DQM(7:0)

CKE(1:0)

CS(3:0)#

SDRAM DIMM
using 16Mb devices

DQ(63:0)

CB(7:0)

RAS#

CAS#

WE#

A(10:0)

BA0

DQM(7:0)

CKE(1:0)

CS(3:0)#

DQ(63:0)

SCB(7:0)

SRAS#

SCAS#

SWE#

SA(10:0)

SBA(0)

SBA(1)

SDQM(7:0)

SCKE

SCE0#

SCE1#
13-10 i960® RM/RN I/O Processor Developer’s Manual

Memory Controller
13.3.1 SDRAM Sizes and Configurations

The MCU supports a memory subsystem ranging from 16 to 128 Mbytes. If the memory subsystem
supports ECC, there is a limitation on the SDRAM devices used. Since an ECC-supported system
needs to be 72 bits wide, x16 devices are not optimal. A non-ECC system may be implemented
using x8, or x16 devices. This allows flexibility and offers between 8 and 128 Mbytes. Table 13-6
illustrates the supported SDRAM configurations.

16 Mbit devices comprise two internal leaves. The MCU controls the leaf select within 16 Mbit
SDRAM by toggling SBA[0]. 64 Mbit SDRAM devices comprise four internal leaves. The MCU
controls the leaf selects within 64 Mbit SDRAM by toggling SBA[0] and SBA[1].

The two SDRAM chip enables (SCE[1:0]#) support an SDRAM memory subsystem consisting of
two banks. The base address for the two contiguous banks are programmed in the SDRAM Base
Register (SDBR) and must be aligned to a 4 Mbyte boundary. The size of each SDRAM bank is
programmed with the SDRAM boundary registers (SBR0 and SBR1).

Note: SDRAM memory space must be aligned to a 4 Mbyte boundary and must never cross a 128 Mbyte
boundary.

The base register defines the upper ten address bits of the SDRAM memory space. The boundary
registers define the address limits for each SDRAM bank in 4 Mbyte granularity. Table 13-8
defines the conditions which must be satisfied to activate an SDRAM memory bank.

Table 13-6. Supported SDRAM Configurations

SDRAM
Technology

SDRAM
Arrangement

Banks

Address Size Leaf Select
Total Memory

Size
Row Column SBA[1] SBA[0]

16 Mbit

2M x 8
1

11 9 - I_AD[23]
16M

2 32M

1M x 16
1

11 8 - I_AD[22]
8M

2 16M

64 Mbit

8M x 8
1

12 9 I_AD[25] I_AD[24]
64M

2 128M

4M x 16
1

12 8 I_AD[24] I_AD[23]
32M

2 64M

Table 13-7. SDRAM Address Register Definitions

SDRAM Address Register Definition

SDRAM Base Register (SDBR) The lowest address for SDRAM memory space aligned to a 4 Mbyte
boundary.

SDRAM Boundary Register 0 (SBR0) The upper address for bank 0 of SDRAM memory space. Also, the
lower address for bank 1 of SDRAM memory space.

SDRAM Boundary Register 1 (SBR1) The upper address for bank 1 of SDRAM memory space. SBR1 must
be greater than or equal to SBR0.
i960® RM/RN I/O Processor Developer’s Manual 13-11

Memory Controller
Address Register Programming Examples

Example 13-1. The user wants to program the SDRAM memory space to begin at B000 0000H. Bank 0 is
4 Mbytes and Bank 1 is 8 Mbytes yielding in a total memory of 12 Mbytes. The registers would
be programmed as follows:

SDBR = B000 0000H
SBR0 = 0000012 = 0000 0001H
SBR1 = 0000112 = 0000 0003H

Example 13-2. The user wants to program the SDRAM memory space to begin at B000 0000H. Bank 0 is
16 Mbytes and Bank 1 is unpopulated. The registers would be programmed as follows:

SDBR = B000 0000H
SBR0 = 0001002 = 0000 0004H
SBR1 = 0001002 = 0000 0004H

Example 13-3. The user wants to program the SDRAM memory space to begin at B000 0000H. Bank 0 is
8 Mbytes and Bank 1 is 8 Mbytes yielding in a total memory of 16 Mbytes. The registers would
be programmed as follows:

SDBR = B000 0000H
SBR0 = 0000102 = 0000 0002H
SBR1 = 0001002 = 0000 0004H

Table 13-9 shows the programming for SDRAM memory space.
.

Table 13-8. Address Decoding for SDRAM Memory Space

Condition SDRAM Bank Selected

I_AD[31:27] is not equal to the SDBR None
I_AD[31:22] is greater than or equal to the SDBR

I_AD[26:22] is less than the value in SBR0
Bank 0

I_AD[31:22] is greater than or equal to the SDBR

I_AD[26:22] is greater or equal than the value in SBR0

I_AD[26:22] is less than the value in SBR1

Bank 1

Table 13-9. Programming Values for the SDRAM Boundary Registers (SBRx[5:0])

Bank Size Bank 0 (SBR0) Bank 1 (SBR1)

Empty SBR0 = 0x00 + SDBR[26:22] SBR1 = 0x00 + SBR0[5:0]

4 Mbytes SBR0 = 0x01 + SDBR[26:22] SBR1 = 0x01 + SBR0[5:0]

8 Mbytes SBR0 = 0x02 + SDBR[26:22] SBR1 = 0x02 + SBR0[5:0]

16 Mbytes SBR0 = 0x04 + SDBR[26:22] SBR1 = 0x04 + SBR0[5:0]

32 Mbytes SBR0 = 0x08 + SDBR[26:22] SBR1 = 0x08 + SBR0[5:0]

64 Mbytes SBR0 = 0x10 + SDBR[26:22] SBR1 = 0x10 + SBR0[5:0]

128 Mbytes SBR0 = 0x20 + SDBR[26:22] SBR1 = 0x20 + SBR0[5:0]
13-12 i960® RM/RN I/O Processor Developer’s Manual

Memory Controller
13.3.2 SDRAM Addressing

Table 13-10 illustrates internal address mapping to the SA[11:0] lines for 16 Mbit SDRAM devices.

Table 13-11 illustrates internal address mapping to the SA[11:0] lines for 64 Mbit SDRAM devices.

Differences between 16 Mbit and 64 Mbit address translations occur in SA[9:8] during the column
access. The leaf select decoding (SBA[1:0]) is shown in Table 13-6.

Since the MCU supports SDRAM bursting, the MCU increments the column address by four for
each SDRAM read or write burst.

The MCU supports a sequential burst type (Figure 13-8). Sequential bursting means that the address
issued to the SDRAM is incremented by the SDRAM device in a linear fashion during the burst cycle.

Table 13-10. SDRAM Address Translation for 16 Mbit Devices

SA[11:0] Row Col

11 – –

10 I_AD[21] V1

9 I_AD[20] –

8 I_AD[19] I_AD[22]

7 I_AD[18] I_AD[10]

6 I_AD[17] I_AD[9]

5 I_AD[16] I_AD[8]

4 I_AD[15] I_AD[7]

3 I_AD[14] I_AD[6]

2 I_AD[13] I_AD[5]

1 I_AD[12] I_AD[4]

0 I_AD[11] I_AD[3]

NOTES:
1. A10 is used for precharge variations on the read or write command. See Table 13-12 for more details.
2. For the Leaf Selects, see Table 13-6.

Table 13-11. SDRAM Address Translation for 64 Mbit Devices

SA[11:0] Row Col

11 I_AD[22] –

10 I_AD[21] V1

9 I_AD[20] –

8 I_AD[19] I_AD[23]

7 I_AD[18] I_AD[10]

6 I_AD[17] I_AD[9]

5 I_AD[16] I_AD[8]

4 I_AD[15] I_AD[7]

3 I_AD[14] I_AD[6]

2 I_AD[13] I_AD[5]

1 I_AD[12] I_AD[4]

0 I_AD[11] I_AD[3]

NOTES:
1. A10 is used for precharge variations on the read or write command. See Table 13-12 for more details.
2. For the Leaf Selects, see Table 13-6.
i960® RM/RN I/O Processor Developer’s Manual 13-13

Memory Controller
13.3.3 32-bit Mode

Using 16 Mbit SDRAM, a 64-bit data bus yields a minimum memory size of 8 Mbytes. To address
cost-sensitive applications requiring less than 8 Mbytes of local memory, the MCU supports a
32-bit data bus. While 32-bit mode decreases the memory size, the bus throughput reduces to
264 Mbytes/sec.

The MCU does not support switching between 32-bit mode and 64-bit mode. The data bus width is
sampled from the 32BITMEM_EN# pin on reset. The data bus width can be polled with software
by reading bit 2 of the SDCR.

Reducing the data bus width by half also reduces the page size by half. Therefore, when the MCU
is in 32-bit mode, the page size is 1 Kbytes versus 2 Kbytes for 64-bit mode. The MCU disconnects
from the internal bus if the page is crossed during a burst read or write.

13.3.4 Page Hit/Miss Determination

For 64-bit mode, the MCU address translation assumes a 2 Kbyte page even if the physical
addressing allows a greater page size. For 32-bit mode, the MCU address translation assumes a
1 Kbyte page. For 16 Mbit devices, the MCU keeps two pages per bank (4 maximum) open
simultaneously allowing greater performance for sequential accesses distributed across multiple
internal bus transactions. For 64 Mbit devices, the MCU keeps four pages per bank (8 maximum)
open simultaneously.

For 16 Mbit devices, the MCU keeps only one page each of Bank0/Leaf0, Bank0/Leaf1,
Bank1/Leaf0, and Bank1/Leaf1 open simultaneously. This rule implies that one 2 Kbyte page per
quarter (1 Kbyte for 32-bit mode) of the memory can be open. See Figure 13-6 for an example
organization using 16 Mbit devices.

For 64 Mbit devices, the MCU keeps only one page each of Bank0/Leaf0, Bank0/Leaf1,
Bank0/Leaf2, Bank0/Leaf3, Bank1/Leaf0, Bank1/Leaf1, Bank1/Leaf2, and Bank1/Leaf3 open
simultaneously. This rule implies that one 2 Kbyte page per eighth (1 Kbyte for 32-bit mode) of the
memory can be open. See Figure 13-7 for an example organization using 64 Mbit devices.

The MCU paging logic determines the hit/miss status for reads and writes. For a new SDRAM
transaction, the MCU compares the address of the current transaction with the address stored in the
appropriate page address register. Assuming 64 Mbit SDRAM devices, there are eight pages kept
open simultaneously. The SDRAM chip enables (SCE[1:0]#) and leaf selects (SBA[1:0])
determine which page address to compare.

If the current transaction misses the open page selected then the MCU closes the open page pointed
to by SCE[1:0]# and SBA[1:0] by issuing a precharge command. The MCU opens the current
page with a row-activate command and the transaction completes with a read or write command.
When the MCU opens the current page, I_AD[31:11] is stored in the page address register pointed
to by SCE[1:0]# and SBA[1:0] so it may be compared for future transactions.

If the current transaction hits the open page, then the page is already active and the read or write
command may be issued without a row-activate command. If the refresh timer expires and the
MCU issues an auto-refresh command, all pages are closed.
13-14 i960® RM/RN I/O Processor Developer’s Manual

Memory Controller
Figure 13-6 illustrates how the logical memory image is partitioned with respect to open and closed
pages. If the above image represents an 8 Mbyte SDRAM memory size, each bank is 4 Mbytes and
each leaf is 2 Mbytes.

Figure 13-6. Logical Memory Image of a 16 Mbit SDRAM Memory Subsystem

Bank 0

Bank 1

Leaf 0

Leaf 1

Leaf 0

Leaf 1

.

.

.

.

.

.

Page 0 (OPEN)

Page 1 (closed)

Page 2 (closed)

Page 3 (closed)

Page 0 (closed)

Page 1 (closed)

Page 2 (OPEN)

Page 3 (closed)

Page 0 (closed)

Page 1 (OPEN)

Page 2 (closed)

Page 3 (closed)

Page 0 (closed)

Page 1 (OPEN)

Page 2 (closed)

Page 3 (closed)

.

.

.

.

.

.

Page Address Registers

Note:
devices so there are only 4 pages

simultaneously open

SBA[1] is unused for 16 Mbit SDRAM

Page 2

Page 0

Invalid

Invalid

Bank0 Leaf0

Bank0 Leaf1

Bank0 Leaf2

Bank0 Leaf3

Page 1

Page 1

Invalid

Invalid

Bank1 Leaf0

Bank1 Leaf1

Bank1 Leaf2

Bank1 Leaf3
i960® RM/RN I/O Processor Developer’s Manual 13-15

Memory Controller
Figure 13-7 illustrates how the logical memory image is partitioned with respect to open and closed
pages. If the above image represents a 32 Mbyte SDRAM memory size, each bank is 16 Mbytes
and each leaf is 4 Mbytes.

Only one page may be open within each of the leaf blocks. The block sizes depend on the memory
sizes implemented in the SDRAM memory subsystem. The page size is 2 Kbytes for 64-bit mode
and 1 Kbyte for 32-bit mode. The programmer can optimize SDRAM transactions by partitioning
code and data across the leaf boundaries to maximize the number of page hits.

Figure 13-7. Logical Memory Image of a 64 Mbit SDRAM Memory Subsystem

Bank 0

Leaf 0

Leaf 1

Leaf 2

Leaf 3

.

.

.

.

.

.

Page 0 (OPEN)
Page 1 (closed)
Page 2 (closed)
Page 3 (closed)

Page 0 (closed)
Page 1 (closed)
Page 2 (OPEN)
Page 3 (closed)

Page 0 (closed)
Page 1 (OPEN)
Page 2 (closed)
Page 3 (closed)

Page 0 (closed)
Page 1 (OPEN)
Page 2 (closed)
Page 3 (closed)

.

.

.

.

.

.

Page Address Registers

Page 2

Page 0

Page 1

Page 1

Bank0 Leaf0

Bank0 Leaf1

Bank0 Leaf2

Bank0 Leaf3

Page 2

Page 0

Page 1

Page 1

Bank1 Leaf0

Bank1 Leaf1

Bank1 Leaf2

Bank1 Leaf3

Bank 1

Leaf 0

Leaf 1

Leaf 2

Leaf 3

.

.

.

.

.

.

Page 0 (OPEN)
Page 1 (closed)
Page 2 (closed)
Page 3 (closed)

Page 0 (closed)
Page 1 (closed)
Page 2 (OPEN)
Page 3 (closed)

Page 0 (closed)
Page 1 (OPEN)
Page 2 (closed)
Page 3 (closed)

Page 0 (closed)
Page 1 (OPEN)
Page 2 (closed)
Page 3 (closed)

.

.

.

..

.

13-16 i960® RM/RN I/O Processor Developer’s Manual

Memory Controller
13.3.5 SDRAM Commands

The MCU issues specific commands to the SDRAM devices by encoding them on the SCE[1:0]#,
SRAS#, SCAS#, and SWE# inputs. Table 13-12 lists all of the SDRAM commands understood by
SDRAM devices. The MCU supports a subset of these commands.

SDRAM commands are synchronous to the clock so the MCU sets up the above conditions prior to
the DCLKOUT rising edge.

Table 13-12. SDRAM Commands

Command
Conditions

Comments
SCE# SRAS# SCAS# SWE# Other

NOP 0 1 1 1 No Operation

Mode Register Set 0 0 0 0 Load the Mode Register from
SA[11:0]

Row Activate 0 0 1 1 SBA[0] = Leaf Activate a row specified on
SA[11:0]

Read 0 1 0 1
SBA[0] = Leaf

SA[10] = 0
Column burst read

Read w/
Auto-Precharge 0 1 0 1

SBA[0] = Leaf

SA[10] = 1

Column burst read with row
precharge at the end of the
transfer

Write 0 1 0 0
SBA[0] = Leaf

SA[10] = 0
Column burst write

Write w/
Auto-Precharge 0 1 0 0

SBA[0] = Leaf

SA[10] = 1

Column burst write with row
precharge at the end of the
transfer

Precharge 0 0 1 0
SBA[0] = Leaf

SA[10] = 0
Precharge a single leaf

Precharge All 0 0 1 0 SA[10] = 1 Precharge both leaves

Auto-Refresh 0 0 0 1 Refresh both banks from
on-chip refresh counter

Self-Refresh 0 0 0 1 SCKE = 0 Refresh autonomously while
SCKE = 0

Power Down X X X X SCKE = 0 Power down if both banks
precharged when SCKE = 0

Stop 0 1 1 0 Interrupt a read or write burst.

NOTE: Shaded boxes indicate commands not supported by i960 RM/RN I/O processor. They are included for
completeness.
i960® RM/RN I/O Processor Developer’s Manual 13-17

Memory Controller

nd
el.

0

13.3.6 SDRAM Initialization

Since SDRAM devices contain a controller within the device, the MCU must initialize them
specifically. On reset, software initializes the SDRAM devices with the sequence illustrated with
Figure 13-9:

1. The MCU applies the clock (DCLKOUT) at power up along with system power (clock
frequency unknown).

2. The MCU must stabilize DCLKOUT within 100 µs after power stabilizes.

3. The MCU holds all the control inputs inactive (SRAS#, SCAS#, SWE#, SCE[1:0]# = 1) a
deasserts SCKE[1:0] for a minimum of 1 ms after supply voltage reaches the desired lev
Asserting P_RST# achieves this state.

4. Software disables the refresh counter by setting the RFR to zero.

5. Software issues one NOP cycle after the 1 ms device deselect. A NOP is accomplished by
setting the SDIR to 0112. The MCU asserts SCKE[1:0] with the NOP.

6. Software pauses 200 µsec after the NOP.

7. Software re-enables the refresh counter by setting the RFR to the required value.

8. Software issues a precharge-all command to the SDRAM interface by setting the SDIR to 012.

9. Software provides eight auto-refresh cycles. An auto-refresh cycle is accomplished by setting
the SDIR to 1002. Software must ensure at least Trc cycles between each auto-refresh command.

10. Software issues a mode-register-select command by writing to the SDIR to program the
SDRAM parameters. Setting the SDIR to 0002 programs the MCU for CAS Latency of two
while setting the SDIR to 0012 programs the MCU for CAS Latency of three. The MCU
supports the following SDRAM mode parameters:

a. CAS Latency (CL) = three or two

b. Wrap Type (WT) = Sequential

c. Burst Length (BL) = four

11. The MCU may issue a row-activate command three clocks after the mode-register-set
command (Tmrd).

Figure 13-8. Supported SDRAM Mode Register Settings

0 00 00

CAS Latency:
010: 2
011: 3
Other: Not Supported

Burst Type:
0:Sequential
1: Not Supported

Burst Length:
010: 4
Other: Not Supported

A0A11

The SDRAM mode register resides
in the SDRAM devices.
13-18 i960® RM/RN I/O Processor Developer’s Manual

Memory Controller

ove
efresh
er

BIU
ray is
 this
The waveform in Figure 13-9 illustrates the SDRAM initialization sequence.

Note: If the power failure logic is implemented (Section 13.4, “Power Failure Mode” on page 13-34), the
initialization sequence differs between a cold start and a warm start. If the power fails, the ab
initialization sequence is not required when the system is powered up. In fact, disabling the r
counter might cause the data to be lost while waiting the 200 us. After recovering from a pow
failure, a single MRS command is required to both assert SCKE[1:0] and reprogram the CAS
latency within the MCU.

If the SDRAM subsystem implements ECC (Section 13.3.7, “Error Correction and Detection” on
page 13-29), then initialization software should initialize the entire memory array with the i960
RM/RN I/O processor. It is important that every memory location has a valid ECC byte. The
optimizes SDRAM accesses by supporting instruction and read prefetching. If the memory ar
not initialized, the BIU may attempt to read memory locations beyond the specified word(s). In
case, the MCU reports an ECC error even though software did not specifically request the
uninitialized data.

13.3.6.1 SDRAM Mode Programming

The MCU programs the SDRAM devices through a mode-register-set command. During the
initialization sequence this command sets the SDRAM mode register (Section 13.3.6, “SDRAM
Initialization” on page 13-18) by programming the SDIR.

The SDRAM state machine ensures that a row-activate command is issued no sooner than Tmrd
(3) cycles after the mode-register-set command.

Figure 13-9. SDRAM Initialization Sequence (controlled with software)

DCLK

SA[11:0]

SBA[0]

SCE[0]#

SRAS#

SCAS#

SWE#

Inputs Stable
for 200 µsec

Precharge
All Banks

1st Auto Refresh 8th Auto Refresh MRS Command Legal Command

SCKE[1:0]

after NOP command

TmrdTrp

SCE[1]#
i960® RM/RN I/O Processor Developer’s Manual 13-19

Memory Controller

nd

g

hit, the
eving

re hit.
 chip

13.3.6.2 SDRAM Read Cycle

Read performance is optimized for page hits and the MCU’s behavior is different for the hit a
miss scenario. Both read descriptions below assume that ECC is enabled.

Note: To accommodate a heavily loaded memory subsystem (≥ 18 SDRAM devices), the MCU drives
SA[11:0], SBA[1:0], SCAS#, SRAS#, and SWE# for two clocks in the following SDRAM timin
diagrams. The MCU drives SCE[1:0]# for one clock since it maintains half the loading of the
above signals, SDQM[7:0] is unaffected.

Read Page Hit

A page hit occurs when the current address falls within a row that is currently open. For a page
MCU does not need to open the page (assert SRAS#) and avoids the RAS-to-CAS delay achi
greater performance. The waveform for a read that hits a page in bank 0 is illustrated in Figure 13-10.

• The MCU decodes the address to determine if the transaction should be claimed.

— If the address falls in the SDRAM address range indicated by the SDBR, SBR0, and
SBR1, the MCU claims the transaction.

— During the same cycle, the MCU determines whether or not any of the open pages a
If so, then the SDRAM state machine activates the appropriate bank by asserting its
select for the next cycle.

• In the following cycle, the MCU asserts SCAS#, deasserts SWE#, and places the column
address on SA[11:0]. This initiates the burst read cycle.

• After the CAS latency expires, the SDRAM device drives data to the MCU.

• Upon receipt of the data, the MCU calculates the ECC code from the data and compares it with
the ECC returned by the SDRAM array. Section 13.3.7, “Error Correction and Detection” on
page 13-29 explains the ECC algorithm in more detail.

• Assuming the calculated ECC matches the read ECC, the MCU drives the data onto the
internal bus.

• For each burst read issued, the memory controller increments the column address by four.

The MCU continues to return data until the master initiating the transaction is satisfied. Once the
master terminates the transaction, the MCU ceases issuing read cycles and asserts SDQM[7:0]
preventing the SDRAM devices from driving the additional data. The additional data returned from
the SDRAM devices is discarded.
13-20 i960® RM/RN I/O Processor Developer’s Manual

Memory Controller
Figure 13-10. SDRAM Read, 40 bytes, ECC Enabled, Page Hit

SRAS#

SCAS#

SWE#

SA[11:0]

DQ[71:0]

Address
Decode
(Hit)

CAS Latency
ECC
Calculation and
Compare for D0

D7D6D5D4D3D2D1

SDQM[7:0] 00

Ready for
next transaction
on internal bus

FF

Tdqz

 0 1 2 3 4 5 6 7 8 9 10 11 12DCLK

SCE[0]#

 13 14 15

D8D0

COL COL+4 COL+8

D9
i960® RM/RN I/O Processor Developer’s Manual 13-21

Memory Controller

re hit.

].
Read Page Miss

A read that misses the open pages encounters a miss penalty because the currently open page needs
to be closed before the read can be issued to the new page. Refer to Section 13.3.4, “Page Hit/Miss
Determination” on page 13-14 for the paging algorithm details. Closing a page means issuing a
precharge command to the row that needs to be closed. Figure 13-11 illustrates a read miss. The
new page and the old page are in bank 0.

• The MCU decodes the address to determine if the transaction should be claimed.

— If the address falls in the SDRAM address range indicated by the SDBR, SBR0, and
SBR1, the MCU claims the transaction.

— During the same cycle, the MCU determines whether or not any of the open pages a

• In the following cycle, the MCU closes the currently open page by issuing a precharge
command to the currently open row.

— The MCU waits Trp (3) cycles after the precharge before issuing the row-activate
command for the new read transaction.

• The row-activate command enables the appropriate row.

— The MCU asserts SRAS#, deasserts SWE#, and drives the row address on SA[11:0

• After Trcd (2) cycles, the MCU issues the read command by asserting SCAS# while driving
the column address on SA[11:0].

The remainder of the read transaction is identical to a “Read Page Hit” on page 13-20 beginning at
clock cycle 8.
13-22 i960® RM/RN I/O Processor Developer’s Manual

Memory Controller
Figure 13-11. SDRAM Read, 40 bytes, ECC Enabled, Page Miss

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18DCLK

SRAS#

SCAS#

SWE#

SA[11:0]

DQ[71:0]

Address
Decode
(Miss)

Trp Trcd

CAS Latency

ECC
Calculation and
Compare for D0Precharge

ROW

Row
Activate

SDQM[7:0] 00

0 1 2 3 4 5 6

COL COL+4 COL+8

 19

Disable
I_AD drivers

FF

Tdqz

7

SCE[0]#

New
Row

8

i960® RM/RN I/O Processor Developer’s Manual 13-23

Memory Controller

it and

g

 in

re hit.
 chip
13.3.6.3 SDRAM Write Cycle

The performance is best for page hits and therefore the MCU’s behavior is different for the h
miss scenario. Both descriptions below assume that ECC is enabled. Section 13.3.7, “Error
Correction and Detection” on page 13-29 explains the ECC algorithm in more detail.

Note: To accommodate a heavily loaded memory subsystem (≥ 18 SDRAM devices), the MCU drives
SA[11:0], SBA[1:0], SCAS#, SRAS#, and SWE# for two clocks in the following SDRAM timin
diagrams. The MCU drives SCE[1:0]# for one clock since it maintains half the loading of the
above signals, SDQM[7:0] is unaffected.

Write Page Hit

For a page hit, the MCU does not need to open the page (assert SRAS#) and avoids the
RAS-to-CAS delay achieving greater performance. The waveform for a write that hits a page
bank 0 is illustrated in Figure 13-10.

• The MCU decodes the address to determine if the transaction should be claimed.

— If the address falls in the MCU address range, the MCU claims the transaction.

— During the same cycle, the MCU determines whether or not any of the open pages a
If so, then the SDRAM state machine activates the appropriate bank by asserting its
select for the next cycle.

• The ECC logic generates the ECC code for the data to be written.

• In the following cycle, the MCU asserts SCAS#, asserts SWE#, and places the column address
on SA[11:0]. This initiates the burst write cycle. The MCU drives the data to be written and its
ECC code to the SDRAM devices.

• The MCU drives the new data on the data bus each cycle until the transaction is completed.

• If the data to write is not aligned on a 32 byte boundary, the unneeded bytes are masked by
asserting SDQM[7:0] during the extra data cycles.
13-24 i960® RM/RN I/O Processor Developer’s Manual

Memory Controller
Figure 13-12. SDRAM Write, 40 bytes, ECC Enabled, Page Hit

 0 1 2 3 4 5 6 7DCLK

SRAS#

SCAS#

SWE#

SA[11:0]

DQ[71:0]

8

Addr.
Decode
(Hit)

Generate
ECC for D0

SDQM[7:0] 00

COL COL+4

D0 D1 D2 D3 D4

SCE[0]#

9 10 11

FF 00
i960® RM/RN I/O Processor Developer’s Manual 13-25

Memory Controller

he
Write Page Miss

A write that misses the open pages encounters a miss penalty because the currently open page
needs to be closed before the MCU can issue the write to the SDRAM. Closing a page means
issuing a precharge command to the row that needs to be closed. Figure 13-13 illustrates a write
miss. The new page and the old page are in bank 0.

• Tthe MCU decodes the address to determine if the transaction should be claimed.

— If the address falls in the MCU address range, the MCU claims the transaction.

• In the following cycle, the MCU closes the currently open page by issuing a precharge
command to the currently open row.

— The MCU waits Trp (3) cycles after the precharge command before the MCU issues t
row-activate command for the new write transaction.

• The MCU issues the row-activate command enabling the appropriate row.

— The MCU asserts SRAS# while driving the row address on SA[11:0].

• After Trcd (2) cycles, the MCU issues the write command by asserting SCAS# and driving the
column address on SA[11:0].

The remainder of the write transaction is identical to “Write Page Miss” on page 13-26.

Figure 13-13. SDRAM Write, 40 bytes, ECC Enabled, Page Miss

 0 1 2 3 4 5 6 7 8 9 10 11SCLK

SRAS#

SCAS#

SWE#

SA[11:0]

DQ[71:0]

 12

Trp TrcdAddress

Decode

(Miss) Precharge

Generate

ECC

New

Row

ROW COL COL+4

D0 D1 D2 D3 D4

SDQM[7:0] 00

SCE[0]#

FF

 13
13-26 i960® RM/RN I/O Processor Developer’s Manual

Memory Controller

te

ed

13.3.6.4 SDRAM Refresh Cycle

Since the SDRAM is a dynamic memory, the MCU issues a refresh cycle periodically. The interval
of these refresh cycles is programmable in the RFR register. The SDRAM device generates the
refresh address internally. The MCU initiates two sequential refresh cycles (one per bank) after the
MCU’s refresh timer expires and any current transaction is complete. The waveform in
Figure 13-14 illustrates the case where the refresh timer expires in the middle of an incomple
read cycle.

• Once the refresh timer expires, the MCU knows that a refresh cycle is necessary.

— The refresh timer continues to count for the next refresh cycle.

• The MCU allows the current read transaction to complete.

— Since the MCU is currently reading from the SDRAM array, the refresh cycle is queu
until the transaction is complete.

• The MCU closes all open pages with a precharge-all command to all the populated SDRAM
banks.

— The MCU resets the page register valid bits.

• The MCU issues an auto-refresh command to SDRAM bank 0.

— This command affects both internal leaves.

• In the next cycle, the MCU issues an auto-refresh command to SDRAM bank 1.

• After Trc cycles, the MCU can service a new transaction or another refresh cycle.

The refresh timer value is programmed with the RFR depending on the internal bus frequency. If
the primary PCI bus is 33 MHz, the internal bus is 66 MHz and RFR should be programmed to
400H. If the primary PCI bus is less than 66 MHz, the RFR should be programmed to 300H.

A timer value of 300H is sufficient for internal bus frequencies down to 50 MHz. The longest
possible internal bus transaction is writing a 2 Kbyte page where each data cycle results in a
read-modify-write due to partial writes (Section 13.3.7.2, “ECC Generation for Partial Writes” on
page 13-30). Such a transaction could potentially require queueing two refresh cycles.
i960® RM/RN I/O Processor Developer’s Manual 13-27

Memory Controller
Figure 13-14. Refresh Following a Read Cycle

SRAS#

SCAS#

SWE#

SA[11:0]

DQ[71:0] D7D6D5D4D3D2

SDQM[7:0] 00 FF

Tdqz

 0 1 2 3 4 5 6 7 8 9 10 11 12DCLK

SCE[0]#

 13 14 15

D8

COL

Trc

Refresh

Trp

Precharge

 16 17 18 19

Read in
progress Refresh

counter expires

SCE[1]#

Bank 0

Refresh
Bank 1 Ready for

next transaction
on internal bus

D9
13-28 i960® RM/RN I/O Processor Developer’s Manual

Memory Controller

ny
ory

le hits

8-bit
or

ata
nds it

rray.
 the

2 data
 32-bit

h the
13.3.7 Error Correction and Detection

The MCU is capable of correcting any single bit errors and detecting any double bit errors in the
i960 RM/RN I/O processor’s SDRAM memory subsystem. In addition, the ECC logic detects a
three or four bit errors which occur in the same nibble. ECC enhances the reliability of a mem
subsystem by correcting single bit errors caused by electrical noise or occasional alpha partic
on the SDRAM devices.

Similar to parity, which simply detects single bit errors, error correction requires an additional
code word for the 64-bit datum. This means that a memory must have the additional 8-bit err
correction code (SCB[7:0]) per 64-bit datum (DQ[63:0]) resulting in a 72-bit wide memory
subsystem. During SDRAM read cycles, the MCU detects single bit errors and corrects the d
prior to returning the data on the internal bus. SDRAM write cycles generate the ECC and se
with the data to the memories.

Scrubbing is the process of correcting an error in the memory array. The chance of an
unrecoverable multi-bit error increases if the MCU does not correct a single-bit error in the a
For the i960 RM/RN I/O processor, scrubbing is handled by software. When an error occurs,
MCU logs the error type in ELOG0 or ELOG1 and the address in ECAR0 or ECAR1.

The MCU supports ECC for 32-bit data mode in the same fashion as 64-bit mode. The top 3
bits are assumed to be all zeroes when generating or comparing the ECC in 32-bit mode. For
mode details, see Section 13.3.3, “32-bit Mode” on page 13-14.

13.3.7.1 ECC Generation

For write operations, the MCU generates the error correction code which is written along wit
data. The algorithm for a write transaction is:

if data to write is 64 bits wide

Generate the ECC with the G-matrix

Write the new data and ECC

else {Partial Write}

Read entire 64-bit data word from memory

Merge the new data portion with the data from memory

Generate the new ECC

Write new data and ECC
i960® RM/RN I/O Processor Developer’s Manual 13-29

Memory Controller
13.3.7.2 ECC Generation for Partial Writes

If the internal bus master writes less than the data bus width programmed in the SDCR and ECC is
enabled in the ECCR, then the MCU translates the write transaction into a read-modify-write
transaction. For a partial write, the MCU calculates the ECC for the modified datum and writes it
back. So, if an internal bus master issues a write cycle with partial data, the MCU:

1. Issues a 64-bit read for a 64-bit data bus or a 32-bit read for a 32-bit data bus.

2. Modifies the value with the new portion to be written.

3. Calculates the ECC on the modified value.

4. Writes the 64 or 32-bit value and ECC.

If ECC is not enabled, the above read-modify-write flow is not required for a partial write. The
MCU writes the partial data without penalty.

Figure 13-15 shows an example where the second data of a burst write to bank 0 is less than 64-bits
wide. The data bus is programmed for 64 bits wide in the SDCR. The waveform illustrates how the
MCU issues a read-modify-write cycle for the second data (D1).

Even though the internal bus transaction completes, the MCU may still be busy due to the
read-modify-write. Subsequent MCU transactions are retried on the internal bus during this period.

Figure 13-15. Sub 64-bit SDRAM Write (D1)

 0 1 2 3 4 5 6 7DCLK

SRAS#

SCAS#

SWE#

SA[11:0]

DQ[71:0]

Address
Decode
(Hit)

Generate
ECC for D0

8 9 10 11

Write

Read

CAS
Latency ECC Calculation

Comparison, and
Correction for D1

Merge New Data
and Generate
New ECC for D1

Write

12

COL+1

D1D1

COL COL+1

D0

SCE[0]#

SDQM[7:0] 00 FF 00

D0

FF 00
13-30 i960® RM/RN I/O Processor Developer’s Manual

Memory Controller
13.3.7.3 ECC Checking

If enabled, the ECC logic uses the following ECC read algorithm. This algorithm corrects the data
before it’s driven onto the internal bus. The ECC algorithm for a read transaction is:

Read 64-bit data and 8-bit ECC

Compute the syndrome

if the syndrome <> 0 {ECC Error}

determine error type

Register the address where the error occurred

if error is correctable {single bit}

Correct data

Send corrected data to internal bus

Interrupt core for software scrubbing

else {uncorrectable}

if the read cycle is a part of a RMW cycle

Interrupt the core for uncorrectable error (MCISR[2])

else

Target-Abort the transaction

When the MCU reads the ECC code from the memory subsystem, it is compared (XORed) with an
ECC that the MCU generates from the data read from memory. The result is called the syndrome.
Table 13-13 shows how the MCU decodes the syndrome for SDRAM read cycles.

If decoding the syndrome indicates a double-bit or nibble error (Table 13-13), the transaction results
in a target-abort. If an internal bus master detects a target-abort, the master asserts an NMI to the core.
If during a write cycle, the internal bus master has already released the bus, the MCU sets bit 2 in the
MCISR and the MCU interrupts the core with an NMI.

If error reporting is enabled in the ECCR and the MCU detects a nibble, single-bit, or double-bit error, the
MCU stores the address in ECARx and the syndrome in ELOGx. Software decides how to proceed
through an interrupt handler. By registering the address in ECARx, software can identify the faulty DIMM.

For details about the MCU error conditions and how the MMR registers are affected, refer to
Section 13.5, “Interrupts/Error Conditions” on page 13-39.

Table 13-13. Syndrome Decoding

Error Type Symptom

None The syndrome is 0000 0000.

Single-Bit The syndrome contains an odd number of ones.

Nibble One nibble of the syndrome contains 3 bits that are a “1”. The other nibble contains all “0”. This
error is uncorrectable.

Double-Bit All other syndrome values. This error is uncorrectable.
i960® RM/RN I/O Processor Developer’s Manual 13-31

Memory Controller

on:

g
 the

here
CC
13.3.7.4 Scrubbing

Fixing the data error in memory is called scrubbing. The i960 RM/RN I/O processor relies on
software scrubbing. Once the MCU detects an error during a read, the MCU registers the address
where the error occurred and interrupts the core. The core decides how to fix the error through an
interrupt handler. To prevent coherency problems, software needs to use the 80960JT core
processor’s atmod instruction to fix the error. Software could decide to perform the scrubbing

• the data location that failed

• the entire row of the data that failed

• the entire memory

For single-bit errors, the error is fixed by reading the location that failed and writing back the data
after the ECC hardware fixed it. If the SDRAM array implements a 64-bit wide array, then the
scrubbing routine should read the 64-bit word using a ldl instruction and write the data with a stl
instruction. A 32-bit wide memory can be handled with a ld/st combination.

Note: If the scrubbing routine reads the failed location in order to fix the single-bit error, a second error is reported.
Therefore, software should disable single-bit ECC reporting (ECCR[0]) during the scrubbing routine.

Double-bit or nibble errors cannot be fixed.

13.3.7.5 ECC Disabled

If software disables ECC, the MCU does not generate the ECC byte for writes or check the ECC
byte for reads. In addition, any writes less than 64 bits does not result in a read-modify-write
operation as in Figure 13-15 “Sub 64-bit SDRAM Write (D1)” on page 13-30.

13.3.7.6 ECC Testing

Section 13.3.7.4, “Scrubbing” on page 13-32 explains how the software is responsible for correctin
an error in the memory array once it has been detected by the ECC logic. The MCU implements
ECTST register providing the programmer the ability to test error handling software. For write
transactions, the ECTST register value is XORed with the generated ECC. This inverts the bits w
the mask is set prior to writing the ECC to memory. When the MCU reads the address later, the E
mismatches and the error condition occurs (Section 13.5, “Interrupts/Error Conditions” on
page 13-39).
13-32 i960® RM/RN I/O Processor Developer’s Manual

Memory Controller
13.3.8 SDRAM Clocking

The MCU provides 1 clock (DCLKOUT) to the SDRAM memory subsystem at 66 MHz. The
72-bit 2-bank SDRAM DIMM specification requires 4 clocks to distribute the loading across
eighteen x8 SDRAM components. DCLKOUT is buffered external to the i960 RM/RN I/O
processor. To satisfy the loading requirements, the buffer outputs are driven to the SDRAM
subsystem.

One of the buffered clocks is driven back into the i960 RM/RN I/O processor so that DCLKOUT
may be skewed back to accommodate for the clocks’ flight time. The amount of skew is
determined by the board trace length. Refer to Figure 13-16 for the layout diagram. SDRAM layout
details as well as the clocking strategy are recommended in the i960® RM/RN I/O Processor
Design Guide.

Figure 13-16. SDRAM Clocking

A4653-01

SDRAM
DIMM

Memory
Controller

DCLKOUT

DCLKIN

Clock
Buffer
i960® RM/RN I/O Processor Developer’s Manual 13-33

Memory Controller
13.4 Power Failure Mode

This section defines the mechanism that the i960 RM/RN I/O processor’s memory controller uses
to ensure that the data within local memory is not lost during a power failure.

SDRAM technology provides a simple way of enabling data preservation through the
self-refresh command. This command is issued by the memory controller and the SDRAM
refreshes itself autonomously with internal logic and timers. The self-refresh command is
defined in Table 13-12.

The SDRAM device remains in self-refresh mode as long as:

• The device continues to be powered.

• SCKE is held low until the memory controller is ready to control the SDRAM once again.

Power to the SDRAM subsystem is ensured with an adequate battery backup and a reliable method
for switching between system power and battery power. The memory controller is responsible for
deasserting SCKE[1:0] when issuing the self-refresh command but while power gradually drops,
SCKE[1:0] MUST remain deasserted regardless of the state of Vcc powering the i960 RM/RN I/O
processor.

Note: The operation of any memory (SDRAM/flash) transactions are not guaranteed when P_RST# is
asserted.
13-34 i960® RM/RN I/O Processor Developer’s Manual

Memory Controller

ower
tate
13.4.1 Power Failure Sequence

Figure 13-17 illustrates the sequence of events during a power failure as defined by PCI Local Bus
Specification Revision 2.1.

13.4.1.1 Power Failure Impact on the System

Upon initial power-up a power supply provides the appropriate voltage to the system. The voltage
level increases at a rate that is dependent on the type of power supply used and the components in
the system. These variables are not certain, so the power supply often provides a signal called
PWRGOOD which indicates the time when the voltage has reached a reliable level. The power
supply deasserts PWRGOOD if the voltage level drops below a certain minimum threshold.

PCI Local Bus Specification Revision 2.1 indicates that once PWRGOOD is deasserted, the PCI
reset pin (P_RST#) is asserted in order to float the output buffers. In the specification Tfail is
defined as the time when P_RST# is asserted in response to the power rail going out of
specification. Tfail is the minimum of:

• 500 ns from either power rail going out of specification (exceeding specified tolerances by
more than 500mV)

• 100 ns from the 5V rail falling below the 3.3V rail by more than 300mV

13.4.1.2 System Assumptions

Specific assumptions are made about the system’s behavior during a power failure. If the below
assumptions are not guaranteed, it is the vendor’s responsibility to ensure them.

1. P_RST# is asserted to the i960 RM/RN I/O processor when there is at least of reliable p
remaining. This is required so that the memory controller can execute it’s power-failure s
machine in response to the assertion of P_RST#.

Figure 13-17. Power Failure Sequence

Initial
Power-Up

System
Deasserts

CLK

POWER

PWRGOOD

P_RST#

SCKE

approx. 1 ms

PULLCKE

SCKEout

Power Detected
Good by Supply

Reset

Power
Failure

Power
Restored
i960® RM/RN I/O Processor Developer’s Manual 13-35

Memory Controller
13.4.2 Memory Controller Response to Reset

The memory controller assumes a power failure condition whenever P_RST# is asserted. If
P_RST# indicates a true power failure, then battery-backup power is supplied to the SDRAM
array. If P_RST# indicates any condition other than a power failure, the SDRAM array is powered
down and any attempt to issue the self-refresh command is ignored by the memory.

Due to the high loading on SCKE and the requirement of 66 MHz operation, the memory controller
must drive two copies to the SDRAM DIMM. The board layout distributes the two SCKE[1:0]
signals between the two SDRAM banks equally.

Refer to Figure 13-18 for a high-level state machine representation illustrating the memory
controller’s behavior during a power failure condition.

Once the memory controller detects the assertion of I_RST#, the memory controller:

• Ignores the internal bus.

• Waits for eight clocks to allow any previous SDRAM bus activity (i.e., read burst) to complete
before the memory controller issues the precharge-all command.

• Deactivates all SDRAM leaves with the precharge-all command.

• Issues an auto-refresh command and wait Trc (8) clocks.

• Issues a self-refresh command to the SDRAM devices and continue to deassert SCKE[1:0].

Figure 13-18. Power Failure State Machine

Issue
auto-refresh
command to

SDRAM

Issue
 precharge-all
command to

SDRAM

Ignore the
Internal Bus and
wait for 8 cycles

Issue self-refresh
command to

SDRAM

P_RST#
transitions to 0
13-36 i960® RM/RN I/O Processor Developer’s Manual

Memory Controller

 i960
at any
hin the
Figure 13-19 illustrates the SDRAM waveforms upon the assertion of I_RST#.

SCKE[1:0] must be held low throughout the power-down period. The memory controller drives it
low initially with the self-refresh command, but an external pull-down is required to continually
drive it low when the i960 RM/RN I/O processor loses power. External logic ensures that
SCKE[1:0] is held low after the memory controller initially deasserts it. Likewise, the external
logic must stop driving SCKE[1:0] low once P_RST# is deasserted by the system. Figure 13-20
shows one example of the external logic required for power failure mode.

As long as the SDRAM memory subsystem is powered with a battery source and SCKE[1:0] is
held low, the SDRAM preserves its memory image.

When power is restored, the system asserts P_RST# to the i960 RM/RN I/O processor. While the
i960 RM/RN I/O processor is reset, SCKE[1:0] is held low by the memory controller. After
P_RST# is deasserted, the i960 RM/RN I/O processor must be re-initialized to reset the CAS
Latency parameter. The MRS command issued to the SDRAM subsystem re-asserts SCKE[1:0] to
ones and the memory controller resumes refreshing. The SDRAM initialization sequence does not
affect the memory contents. For more details about the SDRAM initialization sequence, refer to
Section 13.3.6, “SDRAM Initialization” on page 13-18.

Note: The power failure mechanism in the memory controller is not responsible for maintaining the
RM/RN I/O processor state. The purpose of this mechanism is to maintain the memory so th
data cached in the local memory can be flushed once power is restored. Any data queued wit
i960 RM/RN I/O processor’s components (ATUs, BIU, etc.) is lost.

Figure 13-19. Power Failure Sequence

SRAS#

SCAS#

SWE#

SA[10]

 0 1 2 3 4 5 6 7 8 9 10 11 12DCLK 13 14 15

Trc

Auto-Refresh

Trp

 16 17 18 19

Reset

SCE[0]#

due to Power Fail

Wait for 8 to 10 clocks

I_RST#

Precharge-All Self-Refresh

SCKE[0]

SCE[1]#

 20

SCKE[1]
i960® RM/RN I/O Processor Developer’s Manual 13-37

Memory Controller
13.4.2.1 External Logic Required for Power Failure

Refer to Figure 13-20 for a state machine of the external logic required for power failure mode.
Actual implementations may vary. This state machine can be implemented in a programmable
logic device illustrated in Figure 13-21.

The implementation illustrated in Figure 13-21 requires that all external logic is powered by Vbatt.
The edge detect state machine turns on the pull-down when the MCU deasserts SCKE[1:0]. As
long as Vbatt is active, SCKE[1:0] is held low. Once the memory controller is reset, the rising edge
of P_RST# deactivates the pull-down. The memory controller reliably controls SCKE[1:0] at this
point driving it low.

Note: Figure 13-21 shows logic for one of the SCKE signals. The loading of this signal is large enough
that two signals are required (one per SDRAM bank). The above logic needs to be replicated for
each SCKE[1:0].

Figure 13-20. External Power Failure State Machine

PULLCKE = 0PULLCKE = 1

SCKEout

P_RST#

Figure 13-21. External Power Failure Logic in the System

A4652-01

+
_

SDRAM
Subsystem

Memory
Controller

Address, Data and Control

SCKEout

PULLCKE

SCKE(0)

P_RST#

+
_ External

PLD
13-38 i960® RM/RN I/O Processor Developer’s Manual

Memory Controller
13.5 Interrupts/Error Conditions

The MCU has two conditions which require intervention from the i960 RM/RN I/O processor core.
If a single-bit error is detected during a read cycle, the MCU can fix the error but software needs to
fix the error in the memory array. If a double-bit or nibble error is detected, the core decides how to
handle the condition. For all ECC errors, the MCU records the master of the transaction resulting in
the error in ELOGx[18:16] and interrupts the core.

If the MCU detects an ECC error during a read or write cycle1, MCISR[0] or MCISR[1] is set to 1.
Whenever the MCU toggles one of the MCISR bits from 0 to 1, an NMI is generated to the core.

Table 13-14 shows how the MCU responds to error conditions when ECC is enabled with
ECCR[3].

1. Any error condition during a write cycle actually occurs while performing the read portion of a read-modify-write on a sub-64-bit write. See
Section 13.3.7.1, “ECC Generation” on page 13-29 for details.

Note: If ECC reporting is enabled with ECCR[1] or ECCR[0] and an ECC error occurs, MCISR[1] or
MCISR[0] is set and ELOGx/ECARx logs the error in addition to the above table actions.

Table 13-14. MCU Error Response

Error Type MCU Action

Single-Bit during a read or write Fix Error

Double-Bit/Nibble during a read Target Abort the transaction

Double-Bit/Nibble during a write

Internal Bus write cycle not yet complete

Target Abort the transaction

Do not write the data in error to SDRAM array

Double-Bit/Nibble during a write

Internal Bus write cycle completed
Do not write the data in error to SDRAM array
i960® RM/RN I/O Processor Developer’s Manual 13-39

Memory Controller
13.5.1 Single-Bit Error Detection

When enabled, the MCU interrupts the core when the ECC logic detects a single-bit error by
setting the appropriate bit in the MCISR register. The core knows the interrupt was caused by a
single-bit error by polling the ELOG0 or ELOG1 register. The MCU ensures that correct data is
transferred onto I_AD[63:0] but the interrupt handler is responsible for scrubbing the error in the
array (Section 13.3.7.4, “Scrubbing” on page 13-32).

An example flow for a single-bit error with error detection and reporting enabled is:

• A single-bit ECC error is detected on the data bus (DQ[63:0]) by the MCU.

• The MCU fixes the error prior to sending the data onto the internal bus.

• The MCU clears ELOG0[8] indicating a single-bit error.

• The MCU records the master of the transaction that resulted in an error in ELOG0[18:16]

• The MCU loads ELOG0[7:0] with the syndrome that indicated the error.

• The MCU loads ECAR0[31:2] with address where the error occurred.

• Since the core needs to scrub the error in the array, the MCU sets MCISR[0] to 1 (assuming it
is not already set).

— Setting any bit in the MCISR causes an NMI to the core.

• Software polls the interrupt status register. Bit 0 set to 1 indicates that the first error has
occurred.

• Software polls ELOG0 and ECAR0 and scrubs the error at the location specified by ECAR0.

• Software writes a 1 to MCISR[0] thereby clearing it.

If software does not perform error scrubbing, the probability of an unrecoverable double-bit error
increases for the memory location containing the single-bit error.

ESTAT, ECARx and ELOGx remain registered until software explicitly clears them. I_RST# does
not affect these registers. If an uncorrectable error resets the i960 RM/RN I/O processor, the faulty
address remains registered so the system may correct the problem during initialization.

If a second error occurs before software clears the first by resetting MCISR[0] or MCISR[1], the
error is recorded in the remaining ELOGx/ECARx register. If none are available, the error is not
logged but the MCU carries out the action described in Table 13-14.
13-40 i960® RM/RN I/O Processor Developer’s Manual

Memory Controller

r the
13.5.2 Double-Bit/Nibble Error Detection

If a multi-bit error occurs during a read or write transaction and error reporting is enabled, the
MCU sets MCISR[0] or MCISR[1] which asserts an NMI to the core. Upon receiving an NMI, the
core knows the interrupt was caused by a double-bit or nibble error by polling the ELOGx
registers.

When the MCU detects a double-bit or nibble error during a read cycle and error reporting is
enabled in the ECCR, the MCU target aborts the transaction indicating to the internal bus masters
that an unrecoverable error has been detected. The MCU records the error type in ELOGx and the
address in ECARx.

When the MCU detects a double-bit or nibble error during a write cycle and error reporting is
enabled in the ECCR, the MCU records the first nibble or double-bit error by programming
ELOGx and ECARx. The MCU cannot correct the data before sending it on DQ[63:0] so the MCU
aborts the read-modify-write cycle.

If a second error occurs before software clears the first by resetting MCISR[0] or MCISR[1], the
error is recorded in the remaining ELOGx/ECARx register. If none are available, the error is not
logged but the MCU carries out the action described in Table 13-14.

It is the interrupt handler’s responsibility to decide how to handle this error condition and clea
MCISR.

13.5.3 Overlapping Memory Regions

The MCU supports four independent memory regions:

• MMR Memory Space

• SDRAM Memory Space

• Two Flash Memory Spaces

The MMR memory space is fixed at 1500H to 15FFH. Software programs the SDRAM memory
region by providing a base address in SDBR and each of the two bank boundaries in SBR0 and
SBR1. The first Flash address range is programmed with a base register in FEBR0 and the bank
size in FBSR0. FEBR1 and FBSR1 defines the second address range.

While it is not recommended, the four ranges could overlap. In the case of a memory region
overlap, refer to Table 13-15 for the priority rules.

Table 13-15. Overlapping Address Priorities

Priority Address Region

Highest Memory Mapped Register Address Space

Flash Bank 0 Address Space

Flash Bank 1 Address Space

Lowest SDRAM Address Space
i960® RM/RN I/O Processor Developer’s Manual 13-41

Memory Controller
13.6 Register Definitions

A series of configuration registers control the MCU. Software can determine the status of the MCU
by reading the status registers. Table 13-16 lists all of the MCU registers which are detailed further
in proceeding sections.

Table 13-16. Memory Controller Register Reference

Section, Register Name - Acronym (Page)

Section 13.6.1, “SDRAM Initialization Register - SDIR” on page 13-43

Section 13.6.2, “SDRAM Control Register - SDCR” on page 13-44

Section 13.6.3, “SDRAM Base Register - SDBR” on page 13-47

Section 13.6.4, “SDRAM Boundary Register 0 - SBR0” on page 13-48

Section 13.6.5, “SDRAM Boundary Registers 1 - SBR1” on page 13-49

Section 13.6.6, “ECC Control Register - ECCR” on page 13-50

Section 13.6.7, “ECC Log Registers - ELOG0, ELOG1” on page 13-51

Section 13.6.8, “ECC Address Registers - ECAR0, ECAR1” on page 13-52

Section 13.6.9, “ECC Test Register - ECTST” on page 13-53

Section 13.6.10, “Flash Base Register 0 - FEBR0” on page 13-54

Section 13.6.11, “Flash Base Register 1 - FEBR1” on page 13-55

Section 13.6.12, “Flash Bank Size Register 0 - FBSR0” on page 13-56

Section 13.6.13, “Flash Bank Size Register 1 - FBSR1” on page 13-57

Section 13.6.14, “Flash Wait States Registers - FWSR0, FWSR1” on page 13-58

Section 13.6.15, “Memory Controller Interrupt Status Register - MCISR” on page 13-59

Section 13.6.16, “Refresh Frequency Register - RFR” on page 13-60
13-42 i960® RM/RN I/O Processor Developer’s Manual

Memory Controller
13.6.1 SDRAM Initialization Register - SDIR

The SDRAM Initialization Register (SDIR) is responsible for programming the operation of the
SDRAM device state machines. The SDIR provides a method for software to execute the SDRAM
initialization sequence (Section 13.3.6, “SDRAM Initialization” on page 13-18).

Table 13-17. SDRAM Initialization Register - SDIR

Bit Default Description

31:03 0 Reserved

02:00 1112

Special SDRAM Command: These bits are used for SDRAM initialization. See
Section 13.3.6, “SDRAM Initialization” on page 13-18 for details. While not in the
initialization sequence, these bits should be set to 11x2. For details on the exact
SDRAM commands, refer to Table 13-12 “SDRAM Commands” on page 13-17.

• 0002 - Mode-Register-Set Command where CAS# Latency = 2.

• 0012 - Mode-Register-Set Command where CAS# Latency = 3.

• 0102 - Precharge-All Command: The MCU issues one precharge-all
command to the SDRAM devices.

• 0112 - NOP Command: The MCU issues one NOP command to the SDRAM
devices.

• 1002 - Auto-Refresh Command: The MCU issues one auto-refresh command
to the SDRAM devices.

• 11x2 - Normal SDRAM Operation

P
C

I
IO

P
A

ttr
ib

ut
es

A
ttr

ib
ut

es

28 24 20 16 12 8 4 031

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rw

na

rw

na

rw

na

Attribute Legend:

RV = Reserved

PR = Preserved

RS = Read/Set

RW = Read/Write

RC = Read Clear

RO = Read Only

NA = Not Accessible

Internal Bus Address

1500H
i960® RM/RN I/O Processor Developer’s Manual 13-43

Memory Controller
13.6.2 SDRAM Control Register - SDCR

The SDRAM Control Register (SDCR) is responsible for programming the operation of the SDRAM
state machines. The SDCR specifies the drive strength for the MCU pins, the bus width, and power
failure handling. Refer to Table 13-19 for the recommended output buffer drive programmability.

Table 13-18. SDRAM Control Register - SDCR

Bit Default Description

31:08 0 Reserved

07 02

Address and Control Drive Strength: Controls the strength of the SA[11:0],
SBA[1:0], SRAS#, SCAS#, SWE# SDRAM output buffers.

• 0 - low drive strength

• 1 - high drive strength

06 02

Data Mask Drive Strength: Controls the strength of the SDQM[7:0] SDRAM output
buffers.

• 0 - low drive strength

• 1 - high drive strength

05 02

Chip Enable 1 Drive Strength: Controls the strength of the SCE[1]# and SCKE[1]
SDRAM output buffers.

• 0 - low drive strength

• 1 - high drive strength

04 02

Chip Enable 0 Drive Strength: Controls the strength of the SCE[0]# and SCKE[0]
SDRAM output buffers.

• 0 - low drive strength

• 1 - high drive strength

03 02

Data Bus Drive Strength: Controls the strength of the DQ[63:0] and SCB[7:0]
SDRAM output buffers.

• 0 - low drive strength

• 1 - high drive strength

02

Varies with
the external
state of the

32BITMEM_
EN# pin at
internal bus

reset

Data Bus Width: Indicates the width of the data bus. See Section 13.3.3, “32-bit
Mode” on page 13-14.

• 0 - 32 bits

• 1 - 64 bits

The state of this bit is based on the external state of the 32BITMEM_EN# pin at the
rising edge of P_RST#. If the external state of this pin is low, the default value for this
bit is 0. If the external state of this pin is high, the default value for this bit is 1.

01:00 002 Reserved

P
C

I
IO

P
A

ttr
ib

ut
e

s
A

ttr
ib

u
te

s

28 24 20 16 12 8 4 031

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rw

na

rw

na

rw

na

rw

na

rw

na

ro

na

rv

na

rv

na

Attribute Legend:

RV = Reserved

PR = Preserved

RS = Read/Set

RW = Read/Write

RC = Read Clear

RO = Read Only

NA = Not Accessible

Internal Bus Address

1504H
13-44 i960® RM/RN I/O Processor Developer’s Manual

Memory Controller
Table 13-19. Drive Strength Programmability Options (16-Mbit SDRAM Technology)

B
u

s
W

id
th

M
em

o
ry

 S
iz

e
(M

b
yt

es
)

F
o

rm
 F

ac
to

r

B
an

k
0

B
an

k
1

S
D

C
R

[3
]

(D
Q

)

S
D

C
R

[4
]

(C
K

E
0)

S
D

C
R

[5
]

(C
K

E
1)

S
D

C
R

[6
]

(D
Q

M
)

S
D

C
R

[7
]

(S
A

[1
1:

0]
)

32
4

On-board

2x1M16

None

0 0 0 0 0

8 4x2M8 0 0 0 0 0

64

8 4x1M16 0 0 0 0 0

16 8X2M8 0 1 0 0 1

8 1 Single-
sided
DIMM

4x1M16 0 0 0 0 0

16 8x2M8 0 1 0 0 1

16 1 Double-
sided
DIMM

4x1M16 4x1M16 1 0 0 1 1

32 8x2M8 8x2M8 1 1 1 1 1

16

2 Single-
sided

DIMMs

4x1M16 4x1M16 1 0 0 1 1

24 4x1M16 8x2M8 1 0 1 1 1

24 8x2M8 4x1M16 1 1 0 1 1

32 8x2M8 8x2M8 1 1 1 1 1

72

16 On-board 9x2M8

None

0 1 0 0 1

16
1 Single-

sided
DIMM

9x2M8 0 1 0 0 1

32
1 Double-

sided
DIMM

9x2M8 9x2M8 1 1 1 1 1

32
2 Single-

sided
DIMMs

9x2M8 9x2M8 1 1 1 1 1
i960® RM/RN I/O Processor Developer’s Manual 13-45

Memory Controller
Table 13-20. Drive Strength Programmability Options (64-Mbit SDRAM Technology)

B
u

s
W

id
th

M
em

o
ry

 S
iz

e (M
b

yt
es

)

F
o

rm
 F

ac
to

r

B
an

k
0

B
an

k
1

S
D

C
R

[3
]

(D
Q

)

S
D

C
R

[4
]

(C
K

E
0)

S
D

C
R

[5
]

(C
K

E
1)

S
D

C
R

[6
]

(D
Q

M
)

S
D

C
R

[7
]

(S
A

[1
1:

0]
)

32
16

On-board

2x4M16

None

0 0 0 0 0

32 4x8M8 0 0 0 0 0

64

32 4x4M16 0 0 0 0 0

64 8X8M8 0 1 0 0 1

32 1 Single-
sided
DIMM

4x4M16 0 0 0 0 0

64 8x8M8 0 1 0 0 1

64 1 Double-
sided
DIMM

4x4M16 4x4M16 1 0 0 1 1

128 8x8M8 8x8M8 1 1 1 1 1

64

2 Single-
sided

DIMMs

4x4M16 4x4M16 1 0 0 1 1

96 4x4M16 8x8M8 1 0 1 1 1

96 8x8M8 4x4M16 1 1 0 1 1

128 8x8M8 8x8M8 1 1 1 1 1

72

64 On-board 9x8M8

None

0 1 0 0 1

64
1 Single-

sided
DIMM

9x8M8 0 1 0 0 1

128
1 Double-

sided
DIMM

9x8M8 9x8M8 1 1 1 1 1

128
2 Single-

sided
DIMMs

9x8M8 9x8M8 1 1 1 1 1
13-46 i960® RM/RN I/O Processor Developer’s Manual

Memory Controller
13.6.3 SDRAM Base Register - SDBR

This register indicates the beginning of SDRAM space. See Section 13.3.1, “SDRAM Sizes and
Configurations” on page 13-11 for usage details. There can be two contiguous physical banks
defined by SBR0 and SBR1 in the SDRAM subsystem starting at this address.

Note: SDRAM space must never cross a 128 Mbyte boundary.

Table 13-21. SDRAM Base Register - SDBR

Bit Default Description

31:22 0 SDRAM Base Address: These bits define the upper ten bits of the SDRAM base
address.

21:00 0 Reserved

P
C

I
IO

P
A

ttr
ib

ut
es

A
ttr

ib
ut

es

28 24 20 16 12 8 4 031

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

Attribute Legend:

RV = Reserved

PR = Preserved

RS = Read/Set

RW = Read/Write

RC = Read Clear

RO = Read Only

NA = Not Accessible

Internal Bus Address

1508H
i960® RM/RN I/O Processor Developer’s Manual 13-47

Memory Controller
13.6.4 SDRAM Boundary Register 0 - SBR0

This register indicates the upper boundary of SDRAM bank 0 and its memory technology. If bank
0 is unpopulated, SBR0[4:0] is programmed with all zeros. See Section 13.3.1, “SDRAM Sizes
and Configurations” on page 13-11 for more details and programming examples.

Table 13-22. SDRAM Boundary Register 0 - SBR0

Bit Default Description

31 02

SDRAM Technology: Defines the memory subsystem technology.

• 0 - 16 Mbit

• 1 - 64 Mbit

30:06 0 Reserved

05:00 0000002 SDRAM Boundary: Defines the upper limit of SDRAM bank 0.

P
C

I
IO

P
A

tt
rib

ut
es

A
ttr

ib
ut

e
s

28 24 20 16 12 8 4 031

rw

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

Attribute Legend:

RV = Reserved

PR = Preserved

RS = Read/Set

RW = Read/Write

RC = Read Clear

RO = Read Only

NA = Not Accessible

Internal Bus Address

150CH
13-48 i960® RM/RN I/O Processor Developer’s Manual

Memory Controller
13.6.5 SDRAM Boundary Registers 1 - SBR1

This register indicates the upper boundary of SDRAM bank 1 and its memory technology. If bank
1 is unpopulated, SBR1[5:0] is programmed with all zeroes. If bank 1 is populated, SBR1[5:0]
must be programmed greater than or equal to SBR0[4:0]. See Section 13.3.1, “SDRAM Sizes and
Configurations” on page 13-11 for more details and programming examples.

Table 13-23. SDRAM Boundary Registers - SBR1

Bit Default Description

31 02

SDRAM Technology: Defines the memory subsystem technology.

• 0 - 16 Mbit

• 1 - 64 Mbit

30:06 0 Reserved

05:00 0000002 SDRAM Boundary: Defines the upper limit of SDRAM bank 1.

P
C

I
IO

P
A

ttr
ib

u
te

s
A

ttr
ib

ut
es

28 24 20 16 12 8 4 031

rw

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

Attribute Legend:

RV = Reserved

PR = Preserved

RS = Read/Set

RW = Read/Write

RC = Read Clear

RO = Read Only

NA = Not Accessible

Internal Bus Address

1510H
i960® RM/RN I/O Processor Developer’s Manual 13-49

Memory Controller
13.6.6 ECC Control Register - ECCR

This register programs the MCU error correction and detection capabilities. The configuration
depends on the application’s needs but a typical configuration is:

• ECC mode enabled

• Enable double-bit error reporting

• Disable single-bit error reporting

• Enable single-bit error correcting

For more details, see Section 13.3.7, “Error Correction and Detection” on page 13-29 and
Section 13.5, “Interrupts/Error Conditions” on page 13-39.

Table 13-24. ECC Control Register - ECCR

Bit Default Description

31:04 000 0000H Reserved

03 02

ECC Enabled: Enables ECC calculation and generation.

• 0 - ECC Disabled

• 1 - ECC Enabled

02 02

Single Bit Error Correction Enable: Enables or disables the correction of a single bit
error.

• 0 - Disable single bit error correction

• 1 - Enable single bit error correction

01 02

Multi-Bit Error Reporting Enable: Enables or disables the reporting of a multi-bit
error condition.

• 0 - Disable multi-bit error reporting

• 1 - Enable multi-bit error reporting

00 02

Single Bit Error Reporting Enable: Enables or disables the reporting of a single bit
error condition.

• 0 - Disable single bit error reporting

• 1 - Enable single bit error reporting

P
C

I
IO

P
A

ttr
ib

u
te

s
A

ttr
ib

ut
es

28 24 20 16 12 8 4 031

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rw

na

rw

na

rw

na

rw

na

Attribute Legend:

RV = Reserved

PR = Preserved

RS = Read/Set

RW = Read/Write

RC = Read Clear

RO = Read Only

NA = Not Accessible

Internal Bus Address

1534H
13-50 i960® RM/RN I/O Processor Developer’s Manual

Memory Controller

1] is
”
13.6.7 ECC Log Registers - ELOG0, ELOG1

The ECC Log Registers are responsible for logging the error types detected on the local memory
bus. Two errors can be detected and logged. The error type is logged (single-bit or multi-bit) along
with the syndrome that indicated the error. For a single-bit error, software can read this syndrome
and determine which bit had the error in order to perform scrubbing. For a multi-bit error, software
can read the syndrome and determine if the error is a nibble error (Table 13-13 “Syndrome
Decoding” on page 13-31).

The error recorded in ELOG0 corresponds to the address in ECAR0. ELOG1 corresponds to
ECAR1.

The ELOGx registers comprise read-only bits and only have meaning if MCISR[0] or MCISR[
non-zero. For more details on error handling, see Section 13.3.7, “Error Correction and Detection
on page 13-29.

Table 13-25. ECC Log Registers - ELOG0, ELOG1

Bit Default Description

31:19 0 Reserved

18:16 0002

ECC Error Master: Indicates the master of the logged error.

• 000 - Primary ATU / Expansion ROM / Messaging Unit

• 001 - DMA Channel 0

• 010 - DMA Channel 1

• 011 - Secondary ATU

• 100 - DMA Channel 2

• 101 - Core/Bus Interface Unit

• 110 - Application Accelerator

• 111 - Reserved

15:13 0002 Reserved

12 02

Read or Write: Indicates if the error occurred during a read or write transaction.

• 0 - Read error

• 1 - Write Error

11:09 0002 Reserved

08 02

ECC Error Type: Indicates the type of error that occurred at this address.

• 0 - Single Bit Error

• 1 - Multi-Bit Error

07:00 00H Syndrome: Holds the syndrome value that indicated the error.

P
C

I
IO

P
A

ttr
ib

u
te

s
A

ttr
ib

ut
es

28 24 20 16 12 8 4 031

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

ro

na

ro

na

ro

na

rv

na

rv

na

rv

na

ro

na

rv

na

rv

na

rv

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

Attribute Legend:

RV = Reserved

PR = Preserved

RS = Read/Set

RW = Read/Write

RC = Read Clear

RO = Read Only

NA = Not Accessible

Error #

0

1

Internal Bus Address

1538H

153CH
i960® RM/RN I/O Processor Developer’s Manual 13-51

Memory Controller
13.6.8 ECC Address Registers - ECAR0, ECAR1

These registers are responsible for logging the addresses where the errors were detected on the
local memory bus. Two errors can be detected and logged. The software knows exactly which
SDRAM device had the error by reading these registers and decoding the syndrome in the log
registers. For error details, see Section 13.3.7, “Error Correction and Detection” on page 13-29).

Table 13-26. ECC Address Registers - ECAR0, ECAR1

Bit Default Description

31:02 0 Error Address: Stores the upper 30 bits of the address that resulted in a single bit or
multi-bit error.

01:00 002 Reserved

P
C

I
IO

P
A

ttr
ib

u
te

s
A

ttr
ib

ut
es

28 24 20 16 12 8 4 031

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

rv

na

rv

na

Attribute Legend:

RV = Reserved

PR = Preserved

RS = Read/Set

RW = Read/Write

RC = Read Clear

RO = Read Only

NA = Not Accessible

Error #

0

1

Internal Bus Address

1540H

1544H
13-52 i960® RM/RN I/O Processor Developer’s Manual

Memory Controller

ter
n of

ror.
13.6.9 ECC Test Register - ECTST

This register allows testing between the ECC logic and the memory subsystem (Section 13.3.7.6,
“ECC Testing” on page 13-32). To test error handling software, the programmer writes this regis
with a non-zero masking function. Any subsequent writes to memory stores a masked versio
the computed ECC. Therefore, any subsequent reads to these locations result in an ECC er

Table 13-27. ECC Test Register - ECTST

Bit Default Description

31:08 00 0000H Reserved

07:00 00H
ECC Mask: 8-bit ECC mask. Each bit of the generated ECC is XORed with the
appropriate bit in this mask field before the ECC is stored into memory. See
Section 13.3.7.6, “ECC Testing” on page 13-32.

P
C

I
IO

P
A

ttr
ib

u
te

s
A

ttr
ib

ut
es

28 24 20 16 12 8 4 031

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

Attribute Legend:

RV = Reserved

PR = Preserved

RS = Read/Set

RW = Read/Write

RC = Read Clear

RO = Read Only

NA = Not Accessible

Internal Bus Address

1548H
i960® RM/RN I/O Processor Developer’s Manual 13-53

Memory Controller
13.6.10 Flash Base Register 0 - FEBR0

This register indicates the beginning of the first Flash memory bank. The starting location must be
boundary equal to the granularity of the Flash device. The upper 16 bits are used for a 64 Kbyte
bank, 15 for a 128 Kbyte bank, etc. There can be two non-contiguous physical banks in the Flash
subsystem starting with this address. For more details, see Section 13.2.1, “Flash Memory
Addressing” on page 13-4.

Table 13-28. Flash Base Register 0 - FEBR0

Bit Default Description

31:16 FE80H Flash Base Address: These bits define the upper 16 bits of the Flash base address.

15:00 0000H Reserved

P
C

I
IO

P
A

ttr
ib

ut
es

A
ttr

ib
ut

es

28 24 20 16 12 8 4 031

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

Attribute Legend:

RV = Reserved

PR = Preserved

RS = Read/Set

RW = Read/Write

RC = Read Clear

RO = Read Only

NA = Not Accessible

Internal Bus Address

154CH
13-54 i960® RM/RN I/O Processor Developer’s Manual

Memory Controller
13.6.11 Flash Base Register 1 - FEBR1

This register indicates the beginning of the second Flash memory bank. The starting location must
be boundary equal to the granularity of the Flash device. The upper 16 bits are used for a 64 Kbyte
bank, 15 for a 128 Kbyte bank, etc. There can be two non-contiguous physical banks in the Flash
subsystem. For more details, see Section 13.2.1, “Flash Memory Addressing” on page 13-4.

Table 13-29. Flash Base Register 1 - FEBR1

Bit Default Description

31:16 0000H Flash Base Address: These bits define the upper 16 bits of the Flash base address.

15:00 0000H Reserved

P
C

I
IO

P
A

ttr
ib

u
te

s
A

ttr
ib

ut
es

28 24 20 16 12 8 4 031

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

Attribute Legend:

RV = Reserved

PR = Preserved

RS = Read/Set

RW = Read/Write

RC = Read Clear

RO = Read Only

NA = Not Accessible

Internal Bus Address

1550H
i960® RM/RN I/O Processor Developer’s Manual 13-55

Memory Controller
13.6.12 Flash Bank Size Register 0 - FBSR0

This register indicates the size of Flash bank 0. The two Flash banks do not have to be equal in size.
If the bank is unpopulated, a value of zero is programmed. See Section 13.2.1, “Flash Memory
Addressing” on page 13-4 for more details.

Table 13-30. Flash Bank Size Register 0 - FBSR0

Bit Default Description

31:04 0 Reserved

03:00 10002

Flash Bank Size: Defines the size for the Flash bank.

• 0000 - Bank disabled

• 0001 - 64 Kbytes

• 0010 - 128 Kbytes

• 0011 - 256 Kbytes

• 0100 - 512 Kbytes

• 0101 - 1 Mbytes

• 0110 - 2 Mbytes

• 0111 - 4 Mbytes

• 1XXX - 8 Mbytes

P
C

I
IO

P
A

tt
rib

ut
es

A
ttr

ib
ut

e
s

28 24 20 16 12 8 4 031

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rw

na

rw

na

rw

na

rw

na

Attribute Legend:

RV = Reserved

PR = Preserved

RS = Read/Set

RW = Read/Write

RC = Read Clear

RO = Read Only

NA = Not Accessible

Internal Bus Address

1554H
13-56 i960® RM/RN I/O Processor Developer’s Manual

Memory Controller
13.6.13 Flash Bank Size Register 1 - FBSR1

These registers indicate the size of Flash bank 1. The two Flash banks do not have to be equal in
size. If the bank is unpopulated, a value of zero is programmed. See Section 13.2.1, “Flash
Memory Addressing” on page 13-4 for more details.

Table 13-31. Flash Bank Size Register 1 - FBSR1

Bit Default Description

31:04 0 Reserved

03:00 00002

Flash Bank Size: Defines the size for the Flash bank.

• 0000 - Bank disabled

• 0001 - 64 Kbytes

• 0010 - 128 Kbytes

• 0011 - 256 Kbytes

• 0100 - 512 Kbytes

• 0101 - 1 Mbytes

• 0110 - 2 Mbytes

• 0111 - 4 Mbytes

• 1XXX - 8 Mbytes

P
C

I
IO

P
A

tt
rib

ut
es

A
ttr

ib
ut

e
s

28 24 20 16 12 8 4 031

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rw

na

rw

na

rw

na

rw

na

Attribute Legend:

RV = Reserved

PR = Preserved

RS = Read/Set

RW = Read/Write

RC = Read Clear

RO = Read Only

NA = Not Accessible

Internal Bus Address

1558H
i960® RM/RN I/O Processor Developer’s Manual 13-57

Memory Controller
13.6.14 Flash Wait States Registers - FWSR0, FWSR1

These registers indicate the wait state and recovery cycle profile of each physical Flash bank.
Programmability for up to 20 address-to-data wait states is included to accommodate UART
devices. For more details, see Section 13.2.2, “Flash Read Cycle” on page 13-5 and Section 13.2.3,
“Flash Write Cycle” on page 13-8.

Table 13-32. Flash Wait State Registers - FWSR0, FWSR1

Bit Default Description

31:07 0 Reserved

06:04 1112

Recovery Cycle Wait States: Defines the number of recovery cycle wait states for
the Flash bank.

• 000 - 1 Recovery wait state

• 001 - 4 Recovery wait states

• 010 - 8 Recovery wait states

• 011 - 12 Recovery wait states

• 100 - 16 Recovery wait states

• 1x1 - 20 Recovery wait states

03 02 Reserved

02:00 1112

 Address-to-Data Wait States: Defines the number of address-to-data wait states for
the Flash bank during a read or write transaction.

• 000 - 4 Address-to-Data wait states

• 001 - 8 Address-to-Data wait states

• 010 - 12 Address-to-Data wait states

• 011 - 16 Address-to-Data wait states

• 1xx - 20 Address-to-Data wait states

P
C

I
IO

P
A

ttr
ib

u
te

s
A

ttr
ib

ut
es

28 24 20 16 12 8 4 031

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rw

na

rw

na

rw

na

rv

na

rw

na

rw

na

rw

na

Attribute Legend:

RV = Reserved

PR = Preserved

RS = Read/Set

RW = Read/Write

RC = Read Clear

RO = Read Only

NA = Not Accessible

Bank #

0

1

Internal Bus Address

155CH

1560H
13-58 i960® RM/RN I/O Processor Developer’s Manual

Memory Controller
13.6.15 Memory Controller Interrupt Status Register - MCISR

Setting the MCISR asserts an NMI to the core. Upon an interrupt, the 80960JT core processor polls
the interrupt status register for each unit. The interrupt status register tells the core the reason for
the interrupt. The MCU has three interrupt conditions: first ECC error (MCISR[0]), second ECC
error (MCISR[1]), and more than two ECC errors (MCISR[2]).

If the MCU detects an ECC error and both MCISR[0] and MCISR[1] are cleared, the error is
logged in ELOG0 and MCISR[0] is set to 1. If one of the MCISR bits are not clear and the MCU
detects an error, the error is logged in the unused ELOGx register and the appropriate MCISR bit is
set to 1. If both MCISR[0] and MCISR[1] are not clear, any additional ECC errors are not logged
and MCISR[2] is set.

Bits 2:0 are read/clear bits which means that to clear them, software must write a one to these bits.

Table 13-33. Memory Controller Interrupt Status Register - MCISR

Bit Default Description

31:03 0 Reserved

02 02

ECC Error N: Indicates that the MCU detected an ECC error while MCISR[1] and
MCISR[0] are both set.

• 0 - No error detected

• 1 - Error detected

01 02

ECC Error 1: Indicates that the MCU detected an ECC error and recorded the error in
ELOG1.

• 0 - No error detected

• 1 - Error detected and recorded in ELOG1

00 02

ECC Error 0: Indicates that the MCU detected an ECC error and recorded the error in
ELOG0.

0 - No error detected

1 - Error detected and recorded in ELOG0

P
C

I
IO

P
A

ttr
ib

ut
e

s
A

ttr
ib

u
te

s

28 24 20 16 12 8 4 031

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rc

na

rc

na

rc

na

Attribute Legend:

RV = Reserved

PR = Preserved

RS = Read/Set

RW = Read/Write

RC = Read Clear

RO = Read Only

NA = Not Accessible

Internal Bus Address

1564H
i960® RM/RN I/O Processor Developer’s Manual 13-59

Memory Controller
13.6.16 Refresh Frequency Register - RFR

The Refresh Frequency Register is programmed for refreshing the SDRAM subsystem at the
specified interval. Writing to the RFR programs the refresh counter with the number of clocks
between refresh cycles. Reading from the RFR results in the value currently within the refresh
counter.

For 66 MHz operation, the RFR should be programmed with a value of 400H. For frequencies
below 66 MHz, the RFR should be programmed with 300H.

Table 13-34. Refresh Frequency Register - RFR

Bit Default Description

31:11 0 Reserved

10:00 300H Refresh Interval: Programs the number of clocks that triggers a refresh cycle to the
SDRAM interface. If all zeroes, refresh cycles are disabled.

P
C

I
IO

P
A

ttr
ib

u
te

s
A

ttr
ib

ut
es

28 24 20 16 12 8 4 031

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

ro

na

ro

na

ro

na

ro

na

Attribute Legend:

RV = Reserved

PR = Preserved

RS = Read/Set

RW = Read/Write

RC = Read Clear

RO = Read Only

NA = Not Accessible

Internal Bus Address

1568H
13-60 i960® RM/RN I/O Processor Developer’s Manual

ctions

tions
PCI-to-PCI Bridge 14

This chapter describes the PCI-to-PCI Bridge including functionality, modes of operation,
configuration, and integration into the i960® RM/RN I/O processor system architecture.

14.1 Overview

The PCI-to-PCI bridge unit extends a PCI Bus beyond its physical constraint of ten electrical PCI
loads at 33 MHz. The bridge unit uses the concept of hierarchical buses; each bus in the hierarchy
is electrically a separate entity, but all buses within the hierarchy are logically one bus. The
PCI-to-PCI bridge unit does not increase the bandwidth of a PCI bus, it only allows that bus to be
extended for applications requiring more I/O components than PCI electrical specifications allow.

PCI-to-PCI bridge unit features include:

• Full compliance to the PCI Local Bus Specification Revision 2.1

• Full compliance to the PCI-to-PCI Bridge Architecture Specification Revision 1.0

• 264 MBytes/sec PCI bandwidth on both the primary and secondary buses through 64-bit operation

• Synchronous operation between primary and secondary PCI busses

• Support for 32-bit PCI masters and targets on both busses

— Additional support for independent 32-bit only bus configurations on primary and
secondary busses

• Independent primary and secondary PCI buses allowing for concurrent operations in either direction

• Multiple Memory Write and Memory Write and Invalidate operations posted within the
upstream and downstream bridge queues concurrently

— Up to 4 PMW transactions with a total of 128 Bytes of write data on downstream transa

— Up to 8 PMW transactions with a total of 256 Bytes of write data on upstream transac

• Support for up to three delayed read cycles initiated from the primary bus and three delayed
read cycles initiated from the secondary bus

— 260 bytes dedicated for delayed read completion data for upstream reads

— 132 bytes dedicated for delayed read completion data for downstream reads

• Separate memory and I/O address spaces on the secondary side of the bridge

• 64-bit addressing mode (Dual Address Command) for upstream cycles initiated from the
secondary PCI interface

• Private device configuration and address space for private PCI devices on the secondary PCI bus
i960® RM/RN I/O Processor Developer’s Manual 14-1

PCI-to-PCI Bridge
Figure 14-1 shows a block diagram of the i960 RM/RN I/O processor PCI-to-PCI Bridge unit.

14.2 Theory of Operation

The bridge unit operates as an address filter unit between the primary and the secondary PCI buses.
PCI supports three separate address spaces:

• 32-Bit address space with Single Address Cycle (SAC)

• 64-Bit address space with Dual Address Cycle (DAC)

• 64 Kbyte I/O address space (with 16-bit addressing)

• Separate configuration space

A PCI-to-PCI bridge is programmed with a contiguous range of addresses within the memory and
I/O address spaces, which then become the secondary PCI address space. Any address present on
the primary side of the bridge which falls within the programmed secondary space is forwarded
from the primary to the secondary side while addresses outside the secondary space are ignored by
the primary interface. The secondary side of the bridge works in reverse of the primary side,
ignoring any addresses within the programmed secondary address space and forwarding any
addresses outside the secondary space to the primary side. See Figure 14-2.

Figure 14-1. PCI-to-PCI Bridge Unit Block Diagram

Secondary
PCI

33 MHz/64-Bit

Upstream Delayed Read Completion (DRC) 128 Bytes Data

Downstream DWC
4 Bytes Data

PCI-to-PCI Bridge
Configuration Registers
256 Byte Address Space

D_PMWD

U_DRC0

U_DRC1

U_DRC2

D_DWC

Upstream DRR

Transaction Queues

(3)

Downstr. DWR Trans. Queue (1)

U_TRQ0:2

D_TRQ3 Upstream DWC
4 Bytes Data

U_DWC

D_DRC2
Downstream DRC

4 Bytes Data

D_DRC1

Downstream DRC 64 Bytes Data
D_DRC0

Upstream Posted Memory Write (PMW) 256 Bytes Data
U_PMWDPrimary

PCI
33 MHz/64-Bit

D_TRQ0:2

U_TRQ3
Up. DWR Trans. Q (1)

Downstream DRR

Transaction Queues

(3)
D_PMWAD

U_PMWAD

Upstream PMW
Address Queue

(8 Entries)

Downstream
PMW Address

Queue
(4 Entries)

Upstream DRC
4 Bytes Data

Downstream DRC 64 Bytes Data

Downstream Posted Memory Write (PMW) 128 Bytes Data

Upstream Delayed Read Completion (DRC) 128 Bytes Data

80960RM/RN Internal Bus
(for Configuration Only)
14-2 i960® RM/RN I/O Processor Developer’s Manual

PCI-to-PCI Bridge
The primary and secondary interfaces of the PCI bridge each implement PCI Local Bus
Specification Revision 2.1 compliant master and target devices. A PCI transaction initiated on one
side of the bridge addresses the initiating bus bridge interface as a target and the transaction is
completed by the target bus interface operating as a master device. The bridge is software
transparent to PCI devices on either side.

The PCI-to-PCI bridge unit of the i960 RM/RN I/O processor adheres, at a minimum, to the
required features found in the PCI-to-PCI Bridge Architecture Specification Revision 1.0 and the
PCI Local Bus Specification Revision 2.1. This chapter describes bridge functionality and refers to
the PCI-to-PCI Bridge Architecture Specification Revision 1.0 and the PCI Local Bus
Specification Revision 2.1 where appropriate.

14.3 Architectural Description

The PCI-to-PCI bridge unit can be logically separated into four major components. They are:

• Primary PCI Interface

• Secondary PCI Interface

• Upstream/Downstream Queues

• Configuration Registers

Figure 14-2. Bridge Operation

Primary PCI Address Space
0000.0000H

FFFF.FFFFH

0000.0000H

FFFF.FFFFH

Secondary PCI Address Space

Valid Primary
PCI

Addresses

Transactions
Forwarded Upstream
to The Primary PCI

Bus

Valid Primary
PCI Addresses

Secondary PCI Address
Remain On the Secondary

PCI Bus and are Never
Forwarded Upstream

Transactions
Forwarded Upstream
to The Primary PCI

Bus

Valid
Secondary PCI

Addresses

Transactions
Forwarded Downstream
to The Secondary PCI

FFFF.FFFF.FFFF.FFFFH

64-Bit DAC
Addresses

64-Bit DAC
Addresses

All Transactions
Forwarded Upstream
to The Primary PCI

Bus

FFFF.FFFF.FFFF.FFFFH

Valid
Secondary PCI

Addresses
i960® RM/RN I/O Processor Developer’s Manual 14-3

PCI-to-PCI Bridge

f

is

ner as
ts the
y PCI

CI

hat do
gh

 PCI
. The
ards

ices on
ed at

n

 claims
ecode
14.3.1 Primary PCI Interface

The primary PCI interface of the PCI-to-PCI bridge unit can act either as a target or an initiator of a
PCI bus transaction. For most systems, the primary interface is connected to the PCI side of a
Host/PCI bridge which is typically the lowest numbered PCI bus in a system hierarchy. The
primary interface consists of the mandatory 50 signal pins defined within the PCI-to-PCI Bridge
Architecture Specification Revision 1.0, four optional interrupt pins, and the 39 pins required by
the PCI 64-bit extension. Refer to the PCI Local Bus Specification Revision 2.1 for a complete
description of individual pin functionality.

The primary PCI interface implements both an initiator (master) and a target (slave) PCI device.
When a PCI transaction is initiated on the secondary bus, the primary master state machine
completes the transaction (write or read) as if it was the initiating device. The primary PCI
interface, as a PCI target for transactions that need to complete on the secondary bus, accepts the
transaction and forwards the request to the secondary side. As a target, the primary PCI interface
uses positive decoding to claim the PCI transaction addressed below the bridge and then forward
the transaction onto the secondary master interface.

The primary PCI interface is responsible for all PCI command interpretation, address decoding and
error handling for transactions initiated on the PCI-to-PCI bridge’s primary bus.

The primary interface of the i960 RM/RN I/O processor supports enhanced PCI bandwidth o
264 MBytes/sec through the use of the 64-bit PCI extension at a frequency of up to 33 MHz.

The additional bandwidth that the i960 RM/RN I/O processor primary PCI interface provides
used to support additional I/O bandwidth from the secondary PCI bus as well as providing a
faster/wider pipe to the host processor memory bus.

14.3.2 Secondary PCI Interface

The secondary PCI interface of the PCI-to-PCI bridge unit functions in almost the same man
the primary interface. It consists of both a PCI master and a PCI slave device and implemen
“second” PCI bus with a new set of PCI electrical loads for use by the system. The secondar
interface consists of the mandatory 49 pins defined in the PCI-to-PCI Bridge Architecture
Specification Revision 1.0 and the 39 pins required for the 64-bit extension. Four additional P
interrupt pins are provided for use by secondary PCI devices.

As a slave (target), the secondary PCI interface is responsible for claiming PCI transactions t
not fit within the bridge’s secondary memory or I/O address space and forwarding them throu
the bridge to the addressed target on the primary side. As a master (initiator), the secondary
interface is responsible for completing transactions initiated on the primary side of the bridge
secondary PCI interface uses inverse decoding of the bridge address registers and only forw
addresses within the primary address space across the bridge.

The secondary PCI interface also implements a separate address space for private PCI dev
the secondary bus where it ignores and does not forward a range of primary addresses defin
configuration time by the i960 core processor. Support for private PCI devices is discussed i
Section 14.4.5, on page 14-11 and Section 14.5.4, on page 14-20.

The secondary PCI interface supports the use of PCI dual address cycles (DAC) for memory
transactions targeted at the primary bus and main system memory. The secondary interface
all DAC memory cycles present on the secondary bus with subtractive (default) or medium d
timing decode timing.
14-4 i960® RM/RN I/O Processor Developer’s Manual

PCI-to-PCI Bridge

rger
14.3.3 Upstream/Downstream Queues

The i960 RM/RN I/O processor implements an extensive queueing architecture to improve the PCI
bandwidth for all write transactions and to reduce the latency of read transactions from both sides
of the PCI-to-PCI bridge unit. As a PCI Local Bus Specification Revision 2.1 compliant device, the
bridge unit supports both posted and delayed transactions.

In a Delayed transaction, information required to complete the transaction is latched and the transaction is
terminated with a Retry. The bridge then performs the transaction on behalf of the initiator. The initiator is
required to repeat the original transaction that was terminated with a Retry in order to complete the transaction.

In a Posted transaction, the transaction is allowed to complete on the initiating bus before
completing on the target bus.

Delayed and Posted transactions are discussed in detail in Section 14.6, on page 14-23.

The bridge has an asymmetric queue architecture supporting the data flow requirements of
intelligent I/O applications. For downstream transactions (initiated on the primary PCI bus
interface) the PCI-to-PCI bridge unit supports the following number and types of a queues:

• Up to four transactions with 128 bytes of data for posted memory write transactions

— FIFO implementation supporting variable length write transactions within the same
queue. Any combination of burst sizes from one to four transactions.

— Supports Memory Write and Memory Write and Invalidate transactions

• 132 bytes of delayed read completion (DRC) data queue with three separate Transaction Address Queues

— Two 64 byte DRC queues

— One 4 Byte DRC queue

— Transaction Queue holds delayed read addresses during PCI delayed transactions

— Supports Memory Read, Memory Read Line, Memory Read Multiple, Configuration Read
and I/O Read transactions

• Separate 4 byte queue for I/O and Configuration Write Cycles

— Performed as Delayed Write Cycles

For upstream transactions (initiated on the secondary PCI interface), the bridge supports a la
set of queues to accommodate high PCI bandwidth targeted at the primary PCI bus:

• Up to 8 transactions with 256 bytes of data for posted memory write transactions

• FIFO implementation supporting variable length write transactions within the same queue.
Any combination of burst sizes from one to 8 transactions.

• Supports Memory Write and Memory Write and Invalidate transactions

• 260 bytes of delayed read completion (DRC) data queue with three separate Transaction Address Queues

• Two 128 byte DRC queues

• One 4 byte DRC queue

• Transaction Queue holds delayed read addresses during PCI delayed transactions

• Supports Memory Read, Memory Read Line, Memory Read Multiple, and I/O Read transactions

• Separate 4 byte queue for Delayed Write Cycles

• I/O Writes and Configuration Writes

The asymmetric, multi-transaction queue architecture enforces all PCI Local Bus Specification
Revision 2.1 ordering rules. Priority mechanisms with additional prefetch rules assign larger read
queues (if available) for Memory Read Line and Memory Read Multiple transactions. See
Section 14.6.4, on page 14-31 and Section 14.7.2, on page 14-46 for additional details.
i960® RM/RN I/O Processor Developer’s Manual 14-5

PCI-to-PCI Bridge
14.3.4 Configuration Registers

Every PCI device implements a separate configuration address space and configuration registers.
The PCI Local Bus Specification Revision 2.1 requires that the configuration space be 256 bytes
long with the first 64 bytes adhering to a predefined header format. The PCI-to-PCI Bridge in the
i960 RM/RN I/O processor contains the predefined 64 byte header registers plus additional
configuration registers for device dependent operation (Section 14.15, on page 14-70).

The first 16 bytes of the bridge configuration header format implement the common configuration
registers required by all PCI devices. The value in the read-only Header Type Register defines the
format for the remaining 48 bytes within the header and returns a 01H for a PCI-to-PCI bridge.

Devices on the primary bus can only access the PCI-to-PCI bridge configuration space with Type 0
configuration commands. Devices on the secondary PCI bus can not access bridge configuration
space with PCI configuration cycles. The configuration registers hold all the necessary address
decode, error condition and status information for both sides of the bridge.

14.4 Configuration Accesses

This section describes how the bridge handles PCI configuration read and write commands.

There are two classes of targets for PCI configuration commands:

• devices that reside on the primary PCI bus

• devices that reside on hierarchical (secondary) PCI buses that are accessed via PCI-to-PCI
bridge chips

The encoding of the address during a configuration command distinguishes the target of the command.
Figure 14-3. and Table 14-1 show the different address encodings associated with each PCI
configuration command type. Type 0 and Type 1 commands are distinguished by address bits AD[1:0].

Table 14-1. PCI Configuration Command Access Formats

Bit Function Type 0 Commands
Bit Position (# of bits)

Type 1 Commands
Bit Position (# of bits)

Command Type 1:0 (2) 1:0 (2)

Register Number 7:2 (6) 7:2 (6)

Function Number 10:8 (3) 10:8 (3)

Device Number N/A 15:11 (5)

Bus Number N/A 23:16 (8)

Reserved 31:11 (20) 31:24 (8)
14-6 i960® RM/RN I/O Processor Developer’s Manual

PCI-to-PCI Bridge
A Type 0 configuration command on the primary interface may be accepted or ignored by the
bridge depending on the value of the P_IDSEL input. A Type 1 configuration command on the
primary interface may be ignored, forwarded downstream unaltered, converted to a Type 0
command on the secondary interface, or converted to a Special Cycle on the secondary interface.

A Type 1 configuration write command on the secondary interface of the bridge may be ignored,
forwarded upstream under certain conditions, or converted to a Special Cycle on the primary
interface. The bridge cannot convert a Type 1 configuration command on the secondary side to a
Type 0 on the primary side. The bridge ignores all configuration reads and Type 0 configuration
writes on the secondary interface.

Configuration commands are only be accepted on the primary interface if the Configuration Cycle
Retry bit within the Extended Bridge Command Register (EBCR, Section 14.15, on page 14-70) is
cleared. If the Configuration Cycle Retry bit is set, the primary PCI interface signals a Retry on all
Type 1 and Type 0 configuration commands.

All configuration commands are 32-bit only and therefore do not use the 64-bit extensions of both
the primary and secondary PCI bus interfaces. See Section 14.6.3, on page 14-26 for complete
details of 64-bit operation. In addition, the i960 RM/RN I/O processor does not support bursting
during Type 0 or Type 1 configuration cycles. Type 0 and Type 1 configuration writes are
disconnected after the first 32-bit data phase. Type 1 configuration reads (handled as delayed
transactions) can read a maximum of one Dword (actual data read depends on the byte enables
during the data phase).

Figure 14-3. PCI Configuration Access Formats

Function
Number 00

Register
Number

31 10 278 0111

Type 0

Function
Number 10

Register
Number

31 10 278 0111

Type 1

Device
Number

Bus
Number

23 1524 16

Reserved

Reserved
i960® RM/RN I/O Processor Developer’s Manual 14-7

PCI-to-PCI Bridge

EL
is
 phase
14.4.1 Type 0 Commands

If address bits P_AD[1:0] are 002, then the transaction present on the PCI bus is a Type 0
configuration read or write command. Type 0 configuration transactions configure PCI devices
connected to the bus where the transaction originated. The PCI-to-PCI bridge responds to Type 0
commands on the primary PCI interface only. Type 0 configuration commands present on the
secondary bus are ignored by the bridge.

The bridge is selected by a PCI configuration command and claims it (by asserting P_DEVSEL#)
if the P_IDSEL pin is asserted, the PCI command indicates a configuration read or write, and
address bits P_AD[1:0] are 002 all during the address phase. The primary interface ignores any
configuration command (P_IDSEL active) where P_AD[1:0] are not 002 (Section 14.4.2, on
page 14-9 for the case of 012). During the configuration access address phase, the PCI address is
divided into a number of fields to determine the actual configuration register access. These fields,
in combination with the byte enables during the data phase create the unique encoding necessary to
access the individual registers of the configuration address space:

• P_AD[7:2] - Register Number. Selects one of 64 DWORD registers in the bridge PCI
configuration address space.

• P_C/BE[3:0]# - Used during the data phase. Selects which actual configuration register is used
within the DWORD address. Creates byte addressability of the register space.

• P_AD[10:8] - Function Number. Used to select which function of a multi-function device is
being accessed. The PCI-to-PCI bridge unit is function 0 and therefore only responds to 0002
in this bit field and ignore all other bit combinations. (Refer to Section 15.2.4, “PCI
Multi-Function Device Swapping/Disabling” on page 15-22 for exceptions to this statement.)

Address bits P_AD[31:11] are used to drive the bridge unit P_IDSEL input. Typically, the IDS
input of each PCI device on a PCI bus is connected to a unique address bit in this range. Th
mapping requires that only one address bit from P_AD[31:11] be asserted during the address
of a configuration access.

Table 14-2. Bridge Configuration Cycle Handling Summary

Primary Interface Secondary Interface

Type 0 - Bridge Ignores
Type 0 - Bridge Ignores

Config Reads - Bridge Ignores

Type 1 forwarded to Type 1 on Secondary Side if:

Bus number between SBNR and SubBNR (including
SubBNR)

Type 1 forwarded to Type 1 on Primary Side if:

Bus number does not equal PBNR

and

Bus Number is outside SBNR and SubBNR

and

Address = 0xXXXXFF01H

Type 1 converted to Type 0 on Secondary Side if:

Bus number = SBNR

and

Address not equal to 0xXXXXFF01H

Type 1 converted to a Special Cycle on Primary Side
if:

Bus number = PBNR

and

Address = 0xXXXXFF01H

Type 1 converted to a Special Cycle on Secondary
Side if:

Bus number is equal to SBNR

and

Address equals 0xXXXXFF01H
14-8 i960® RM/RN I/O Processor Developer’s Manual

PCI-to-PCI Bridge

t
ded in

g PCI

and.
mine
it
14.4.2 Type 1 Commands and Type 1 to Type 0 Conversions

If P_AD[1:0] are 012, a Type 1 configuration command is present. Type 1 commands can be
forwarded by the bridge to any level in the PCI hierarchy (up to 255 levels). Eventually, a Type 1
command is converted to a Type 0 command by a PCI bridge to configure a device on its secondary
interface. Configuration registers in the bridge itself (PBNR, SBNR, and SubBNR) identify the
bridge’s primary bus number, secondary bus number and a subordinate bus number (highes
numbered PCI bus beneath the bridge). These parameters, along with the information embed
the PCI Type 1 command determine whether a Type 1 transaction is ignored, forwarded, or
converted to a Type 0 command. Type 1 commands are also used as a means for generatin
Special Cycles on a hierarchical bus.

Address bits P_AD[10:2] in a Type 1 command have the same function as in a Type 0 comm
P_AD[15:11] and P_AD[23:16] are used to determine a unique IDSEL encoding and to deter
whether or not to convert the Type 1 command to a Type 0, forward it unmodified, or ignore
completely. The bit fields within a Type 1 PCI configuration command are as follows:

• P_AD[7:2] - Register Number. Selects one of 64 DWORD registers in the bridge PCI
configuration address space.

• P_C/BE[3:0]# - Used during the data phase. Selects which actual configuration register is used
within the DWORD address. Creates byte addressability of the register space.

• P_AD[10:8] - Function Number. Used to select which function of a multi-function device is
being accessed.

• P_AD[15:11] - Device Number. Used during Type 1 to Type 0 conversion. Decoded by the
bridge and used to select a unique address bit to drive an IDSEL input of a PCI device on the
secondary bus during the Type 0 transaction that occurs after a Type 1 to Type 0 conversion.
The value in P_AD[15:11] is decoded and used to drive S_AD[31:11]. See Table 14-3.

• P_AD[23:16] - Bus Number. Used to identify the hierarchical bus number for which the
configuration transaction is intended and where the Type 0 conversion needs to occur. The
bridge uses this information in conjunction with the Primary, Secondary, and Subordinate Bus
Number registers to make the decision to forward unaltered or to convert to a Type 0 on its
secondary interface. If the bus number bit field (bits 23:16 of Type 1 command) matches the
value in the secondary bus number register (Section 14.15.11, on page 14-82, the transaction is
converted to a Type 0 on the secondary bus.

Table 14-3 shows the address mapping for driving S_AD[31:11] on the secondary bus based on the
encoding of the device number in P_AD[15:11] of a Type 1 transaction. Note that when
P_AD[15] = 12 on the primary interface, bits 31:11 are not asserted on the secondary interface.

In addition, the Secondary IDSEL Select Register (SISR, Section 14.15, on page 14-70) can cause
any of the secondary address bits S_AD[25:16] to be zero regardless of the primary address
P_AD[15:11]. This register is needed for implementing private PCI devices on the secondary PCI
bus. Refer to Section 14.4.5, on page 14-11 for details.
i960® RM/RN I/O Processor Developer’s Manual 14-9

PCI-to-PCI Bridge
14.4.3 Type 1 to Type 1 Forwarding

A Type 1 write transaction on the primary bus is converted to a Type 0 write transaction and
forwarded to the secondary interface provided the following condition is met:

• Bus number in the Type 1 command is equal to the Secondary Bus Number Register (SBNR,
Section 14.15)

A Type 1 write transaction on the primary bus is forwarded unmodified to the secondary interface
provided the following condition is met:

• Bus number in the Type 1 command is greater than the SBNR but less than or equal to the
Subordinate Bus Number Register (SubBNR)

In this instance, the secondary interface generates a Type 1 command address cycle with exactly the
same address information that was contained within the Type 1 command on the primary interface.
The Type 1 command on the secondary interface is intercepted and decoded by a downstream bridge.

A Type 1 write transaction on the secondary bus is forwarded unmodified to the primary interface
provided all of the following conditions are met:

• Device Number is all ones - S_AD[15:11] = 111112

• Function Number is all ones - S_AD[10:8] = 1112

• Register Number is all zeros - S_AD[7:2] = 000002

• Bus Number does not match the Primary Bus Number of the bridge

• Bus Number is outside the range of bus numbers specified by the Secondary Bus Number
(inclusive) and the Subordinate Bus Number (inclusive) of the bridge.

The bridge generates a Type 1 on the primary side with exactly the same information as on the secondary side.
This Type 1 command is intercepted by an upstream bridge and converted to a Special Cycle transaction.

Note that Type 1 to Type 1 forwarding is for Configuration Write commands only. Type 1
Configuration Read commands are not forwarded upstream through the bridge.

Table 14-3. IDSEL mapping for Type 1 to Type 0 Conversions

Primary Address P_AD[15:11] Secondary Address Bits S_AD[31:11]

00000 0000 0000 0000 0001 0000 02

00001 0000 0000 0000 0010 0000 02

00010 0000 0000 0000 0100 0000 02

00011 0000 0000 0000 1000 0000 02

00100 0000 0000 0001 0000 0000 02

00101 0000 0000 0010 0000 0000 02

00110 0000 0000 0100 0000 0000 02

00111 0000 0000 1000 0000 0000 02

010002 0000 0001 0000 0000 0000 02

010012 0000 0010 0000 0000 0000 02

010102 0000 0100 0000 0000 0000 02

010112 0000 1000 0000 0000 0000 02

011002 0001 0000 0000 0000 0000 02

011012 0010 0000 0000 0000 0000 02

011102 0100 0000 0000 0000 0000 02

011112 1000 0000 0000 0000 0000 02

100002 - 111112 0000 0000 0000 0000 0000 02
14-10 i960® RM/RN I/O Processor Developer’s Manual

PCI-to-PCI Bridge

 input
nique

ate
ry PCI

R) can
 from
ked by

14.4.4 Type 1 to Special Cycle Conversion

A Type 1 configuration write command on the primary interface is converted to a Special Cycle
command on the secondary interface provided all of the following conditions are met:

• Device Number is all ones - P_AD[15:11] = 111112

• Function Number is all ones - P_AD[10:8] = 1112

• Register Number is all zeros - P_AD[7:2] = 000002

• Bus Number matches the Secondary Bus Number of the bridge

All PCI devices ignore the address during a Special Cycle and no Master-Abort occurs (bit 13 of
the Secondary Status Register is not set). The data for the Special Cycle on the secondary interface
is the write data from the Type 1 command on the primary interface. Converted cycles are
restricted to a burst length of one PCI 32-bit data phase.

A Type 1 configuration write command on the secondary interface is converted to a Special Cycle
command on the primary interface provided all of the following conditions are met:

• Device Number is all ones - S_AD[15:11] = 111112

• Function Number is all ones - S_AD[10:8] = 1112

• Register Number is all zeros - S_AD[7:2] = 000002

• Bus Number matches the Primary Bus Number of the bridge

The address during a Special Cycle is ignored by all PCI devices and no Master-Abort occurs
(bit 13 of the Primary Status Register is not set). The data for the Special Cycle on the primary
interface is the write data from the Type 1 command on the secondary interface. Converted cycles
are restricted to a burst length of one 32-bit PCI data phase.

14.4.5 Private Type 0 Commands on the Secondary Interface

Type 0 configuration reads and write commands can be generated by the secondary Address
Translation Unit of the i960 RM/RN I/O processor. These Type 0 configuration commands are
required to configure private PCI devices on the secondary bus which are in private PCI address
space. These commands are initiated by the Address Translation Unit and not by Type 1 commands
on the primary bus. Any device mapped into this private address space is not part of the standard
secondary PCI address space and therefore is not configured by the system host processor. These
devices are hidden from PCI configuration software but are accessible from the i960 RM/RN I/O
processor Secondary Address Translation Unit. See Chapter 15, “Address Translation Unit” for a
complete description of the private PCI address space implementation.

In Type 0 commands on the secondary interface, S_AD[31:11] are used to select the IDSEL
of the target device. In Type 1 to Type 0 conversions, P_AD[15:11] are decoded to assert a u
address line from S_AD[31:16] on the secondary interface. This leaves S_AD[15:11] on the
secondary interface open for a possibility of up to 5 address lines for IDSEL assertion of priv
PCI devices. These 5 address lines shall be reserved for private PCI devices on the seconda
bus.

If more than 5 unique address lines are required, the Secondary IDSEL Select Register (SIS
be programmed to block an additional 10 address lines during Type 1 to Type 0 conversions
the primary interface. Secondary addresses S_AD[25:16] are the addresses that can be mas
the SISR register. By setting bits 9 through 0 (corresponding to S_AD[25] - S_AD[16]) in the
i960® RM/RN I/O Processor Developer’s Manual 14-11

PCI-to-PCI Bridge
SISR, the associated address line can be forced to remain deasserted for the P_AD[15:11]
encodings of 000002 - 010012 and therefore are free to be used as an IDSEL select line for private
secondary PCI devices. Table 14-4 shows the possible configurations of S_AD[31:11] for
public/private Type 0 commands on the secondary interface. For example, if SISR Bit 0 is set,
S_AD[16] is never asserted during a Type 1 to Type 0 conversion from the primary PCI bus. It can
only be asserted by the Secondary Address Translation Unit.

If the primary interface receives a Type 1 command that intends to use one of the S_AD address lines
reserved for private PCI devices, the bridge performs the Type 1 to Type 0 conversion but does not
assert the reserved S_AD address line. The Type 0 command is then ignored on the secondary PCI
bus.

By using the SISR register and the 5 reserved address lines, a total of 15 IDSEL signals are
available for private PCI devices.

X = Don’t Care

Table 14-4. Public/Private PCI Memory IDSEL Select Configurations

Primary
Address

P_AD[15:11]

Secondary Addresses
S_AD[31:11] with
All SISR Bits = 0

Secondary IDSEL
Select Register

Bits 9 - 0

Secondary Addresses
S_AD[31:11] with

SISR Bits Programmed

00000 0000 0000 0000 0001 0000 02 XXXXXXXXX12 0000 0000 0000 0000 0000 02

00001 0000 0000 0000 0010 0000 02 XXXXXXXX1X2 0000 0000 0000 0000 0000 02

00010 0000 0000 0000 0100 0000 02 XXXXXXX1XX2 0000 0000 0000 0000 0000 02

00011 0000 0000 0000 1000 0000 02 XXXXXX1XXX2 0000 0000 0000 0000 0000 02

00100 0000 0000 0001 0000 0000 02 XXXXX1XXXX2 0000 0000 0000 0000 0000 02

00101 0000 0000 0010 0000 0000 02 XXXX1XXXXX2 0000 0000 0000 0000 0000 02

00110 0000 0000 0100 0000 0000 02 XXX1XXXXXX2 0000 0000 0000 0000 0000 02

00111 0000 0000 1000 0000 0000 02 XX1XXXXXXX2 0000 0000 0000 0000 0000 02

010002 0000 0001 0000 0000 0000 02 X1XXXXXXXX2 0000 0000 0000 0000 0000 02

010012 0000 0010 0000 0000 0000 02 1XXXXXXXXX2 0000 0000 0000 0000 0000 02
14-12 i960® RM/RN I/O Processor Developer’s Manual

PCI-to-PCI Bridge
Figure 14-4 shows an example of connecting S_AD lines to IDSEL inputs of PCI devices and
private PCI devices.

14.4.6 Special Cycles

The bridge unit neither initiates nor accepts PCI Special Cycle commands on either the primary or
the secondary interface, except as a conversion. A mechanism is provided for converting Type 1
write commands to Special Cycles on either interface. See Section 14.4.4 for details.

Figure 14-4. Secondary IDSEL Example

S_AD[12]

S_AD[14]
S_AD[13]

S_AD[15]

S_AD[11]

S_AD[28]

S_AD[30]
S_AD[29]

S_AD[31]

S_AD[22]

S_AD[24]
S_AD[23]

S_AD[25]

S_AD[26]

S_AD[27]

S_AD[16]

S_AD[18]
S_AD[17]

S_AD[19]

S_AD[20]
S_AD[21]

IDSEL

Public/Private Public/Private

IDSEL

PCI Device
Private

IDSEL

PCI-to-PCI
Bridge

Public

Private

Private
or Public*

* These S_AD lines can be either PCI or private
depending on the SISR register. For example, S_AD[21] can

be used as a private PCI device only if SISR bit 5 is set.

PCI Device
Private

IDSEL

PCI Device Device
i960® RM/RN I/O Processor Developer’s Manual 14-13

PCI-to-PCI Bridge

tinuous
ridge
 lower
f the

.

ress
erface
.

the

 initiator.

fore
face.
IOBR
n to

h the
et —

-bit
).

:

14.5 Address Decoding
The i960 RM/RN I/O processor provides three separate address ranges that are used to determine
which memory and I/O addresses are forwarded in either direction across the bridge portion of the i960
RM/RN I/O processor. There are two address ranges provided for memory transactions and one
address range provided for I/O transactions. The bridge uses a base address register and limit register to
implement an address range. The address ranges are positively decoded on the primary interface with
any address within the range considered a secondary address and therefore capable of being forwarded
downstream across the bridge. On the secondary interface, the address ranges are inversely decoded.

In addition to the memory and I/O space, the bridge unit implements support for an ISA
compatibility mode to support downstream expansion bridges.

Standard bridge unit address decoding can also be modified by the Secondary Decode Enable Register
(SDER). The bits within this register enable private address space on the secondary side of the bridge.

The bridge does not accept PCI transactions generated by the Address Translation Units or the DMA Controller
from the secondary PCI interface. The bridge is capable of mastering transactions on the primary interface that
can be accepted by the Primary Address Translation Unit. (Chapter 15, “Address Translation Unit”)

14.5.1 I/O Address Space

The PCI-to-PCI bridge unit implements one programmable address range for PCI I/O transactions. A con
I/O address space is defined by the I/O Base Register (IOBR) and the I/O Limit Register (IOLR) in the b
configuration space. The upper four bits of the IOBR correspond to AD[15:12] of the I/O address and the
twelve bits are always 000H forcing a 4 Kbyte alignment for the I/O address space. The upper four bits o
IOLR also correspond to AD[15:12] and the lower twelve bits are FFFH forcing a granularity of 4 Kbytes

The bridge unit forwards an I/O transaction from the primary to secondary interface, that has an add
within the address range defined (inclusively) by the IOBR and IOLR. In this instance the primary int
acts as a PCI target and the secondary interface acts as a PCI initiator for the bridged I/O transaction

If an I/O read or write transaction is present on the secondary bus, the bridge unit forwards it to
primary interface if the address is outside the address range defined by IOBR and IOLR. In this
instance the secondary interface acts as a PCI target and the primary interface serves as a PCI

The i960 RM/RN I/O processor only supports 16-bit addresses for I/O transactions and there
any I/O transaction with an address greater than 64 Kbytes is not forwarded over either inter
The bridge assumes AD[31:16] = 0000H even though these bits are not implemented in the
and the IOLR. The bridge unit must still perform a full 32-bit decode during an I/O transactio
check for AD[31:16] = 0000H per the PCI Local Bus Specification Revision 2.1.

I/O Read and I/O Write transactions with invalid byte enables (those that are inconsistent wit
byte address) are transparently passed by the bridge. In this case, it is expected that the targ
target-aborts, and the bridge passes the target-abort back to the master.

For all PCI I/O transactions (I/O Read/Write Commands), the bridge does not use the PCI 64
extensions. I/O cycles are performed as 32-bit transactions only (REQ64# is never asserted

The bridge’s response to I/O transactions can be modified by the following configuration bits

• Master Enable bit in the Primary Command Register (PCR)

• I/O Enable bit in the Primary Command Register (PCR)

• ISA Enable bit in the Bridge Control Register (BCR)

The Master Enable bit needs to be set to allow the primary interface to function as a PCI initiator (master) on
behalf of transactions initiated on the secondary bus. The I/O Enable bit must be set to allow the bridge to
accept I/O transactions on the primary interface. The ISA Enable bit is discussed in the following section.
14-14 i960® RM/RN I/O Processor Developer’s Manual

PCI-to-PCI Bridge
14.5.1.1 Disabling the I/O Address Range

The I/O address range can be disabled for primary to secondary transactions by using either the I/O
Enable bit or by using the I/O Base and Limit Registers. If the I/O Limit Register (IOLR) is
programmed to a value less than the I/O Base Register (IOBR), the i960 RM/RN I/O processor does
not forward any transactions from the primary PCI interface to the secondary PCI interface. In this
case, all I/O transactions from the secondary to the primary are forwarded upstream through the bridge.

14.5.1.2 ISA Mode

The PCI-to-PCI bridge unit of the i960 RM/RN I/O processor implements an ISA Enable bit in the
Bridge Control Register (BCR) to provide ISA-awareness for ISA I/O cards on downstream PCI
buses. ISA Mode only affects I/O addresses within the address range defined by the IOBR and
IOLR registers. When ISA Mode is enabled by setting the ISA Enable bit in the Bridge Control
Register (BCR), the bridge filters out and not forward from primary to secondary I/O transactions
with addresses in the upper 768 bytes (300H) of each naturally aligned 1 Kbyte block. Conversely,
I/O transactions on the secondary bus inversely decode the ISA addresses and therefore forward
I/O transactions with addresses in the upper 768 bytes of each naturally aligned 1 Kbyte block from
secondary to primary.

Figure 14-5. ISA Mode Address Decode

000H - 0FFH

100H - 3FFH

400H - 4FFH

500H - 7FFH

800H - 8FFH

900H - BFFH

C00H - CFFH

D00H - FFFH

Primary
Interface

Secondary
Interface

1 Kbyte
Block

Range Defined
by IOBR/IOLR
Register Pair
i960® RM/RN I/O Processor Developer’s Manual 14-15

PCI-to-PCI Bridge
ISA I/O cards only decode the lower 10 bits of the address (1 Kbyte). The upper 768 bytes of the
1 Kbyte is assigned for general I/O. Because these cards do not decode the upper 6 bits of the
16-bit I/O address, the ISA address is aliased 64 times in the 64 Kbyte I/O address space. The
combination of ISA addressing modes and the 4 Kbyte I/O address granularity results in an address
decode that is similar to EISA slot decoding. Devices on the secondary interface may be mapped to
the first 256 bytes of each 1 Kbyte block. ISA addressing and the ISA Enable bit do not affect
ordering, posting or error handling behavior of the PCI-to-PCI bridge unit. See Figure 14-5 for an
ISA address decoding diagram.

14.5.2 Memory Address Space

The bridge supports two separate address ranges for forwarding PCI memory accesses downstream
from the primary to secondary interfaces. The Memory Base Register (MBR) and the Memory
Limit Register (MLR) define one address range (often referred to as the Memory Mapped I/O
Range) and the Prefetchable Memory Base Register (PMBR) and the Prefetchable Limit Register
(PMLR) define the other address range. The prefetchable address range is used in determining
which memory spaces are capable of prefetching without side effects. Both register pairs determine
when the bridge forwards Memory Read, Memory Read Line, Memory Read Multiple, Memory
Write, and Memory Write and Invalidate transactions across the bridge. In the case where the two
register pairs overlap, one address range results that is the summation of both registers combined
(Figure 14-6) with the prefetchable range having priority over bridge read transaction response.

The upper twelve bits of the MBR, MLR, PMBR, PMLR (see Section 14.15 for all register
definitions) registers correspond to address bits AD[31:20] of a primary or a secondary Single
Address Cycle (SAC) memory address. For decoding purposes, the bridge assumes that AD[19:0]
of both memory base registers are 00000H and that AD[19:0] of both memory limit registers are
FFFFFH. This forces the memory address ranges supported by the bridge unit to be aligned on 1
Mbyte boundaries and to have a size granularity of 1 Mbyte. The lower four bits in all four registers
are read only from the configuration address space and return zero when read.

Figure 14-6. Overlapping Memory Address Ranges

MBR/MLR

PMBR/PMLR

Combined Address
Range

80960RM/RN

PMBR/PMLR
Read Attributes

Private Memory
Address Range

Address Range

Address Range
14-16 i960® RM/RN I/O Processor Developer’s Manual

PCI-to-PCI Bridge

either

 of
r
y

lue
es not
tions
Any PCI memory transaction present on the primary bus that falls inside the address ranges defined
by the two register pairs (MBR-MLR and PMBR-PMLR) are forwarded downstream across the
bridge from the primary to secondary interface. The command used on the secondary interface may
or may not match the command used on the primary interface. Under certain conditions Memory
Write and Invalidate commands can be converted to Memory Write commands (Section 14.6.5.4)
and within the non-prefetchable address space, Memory Read Multiple and Memory Read Line
commands can be converted to Memory Read commands (Section 14.6.4).

Any PCI memory transaction present on the secondary bus that falls outside the address range
defined by the two register pairs (MBR-MLR and PMBR-PMLR) are forwarded upstream across
the bridge from the secondary to primary interface. These transactions default to prefetchable
unless programmed to non-prefetchable in the EBCR. The secondary interface forwards all Dual
Address Cycles from the secondary bus to the primary bus. Dual address cycles are constrained to
the upper 4 Gbytes of the 64-bit address space (Section 14.5.3). Under certain conditions Memory
Write and Invalidate commands can be converted to Memory Write commands (Section 14.6.5.4)
and within the non-prefetchable address space, Memory Read Multiple and Memory Read Line
commands can be converted to Memory Read commands (Section 14.6.4).

The 64-bit PCI extensions can be used by PCI memory commands for transactions initiated from
either bridge PCI interface. See Section 14.6.3 for details on PCI 64-bit extensions. As a side note,
the addition of a 64-bit PCI datapath still requires the use of DAC mode for 64-bit addressing. See
Section 14.5.3 for details.

The bridge response to memory transactions on either interface may be modified by the following
register bits from the bridge configuration space:

• Master Enable bit in the Primary Command Register (PCR)

• Memory Enable bit in the Primary Command Register (PCR)

The Memory Enable bit in the PCR register must be set to allow the bridge to accept memory
transactions on the primary bus. The Master Enable bit in the PCR must be set to allow the primary
interface to master PCI transactions.

14.5.2.1 Burst Order

The bridge only supports linear incrementing addresses for burst order (AD[1:0] = 002). For any other
burst order, the Bridge disconnects the transaction after the first 32-bit data phase. See Section 14.8.1,
“Delayed Read Transaction” on page 14-49 for information on non-linear MRL’s and MRM’s.

14.5.2.2 Disabling the Memory Address Range

The Memory address range can be disabled for primary to secondary transactions by using
the Memory Enable bit or by using the MBR-MLR and PMBR-PMLR register pairs. If the
Memory Enable bit in the Primary Command Register (PCR) is cleared, the primary interface
the bridge does not respond to any PCI memory transaction that falls within the MBR-MLR o
PMBR-PMLR register pair address ranges. The secondary interface is unaffected by Memor
Enable bit in the PCR.

If the Memory Limit Register (MLR) is programmed to a value less than the Memory Base
Register (MBR) and the Prefetchable Memory Limit Register (PMLR) is programmed to a va
less than the Prefetchable Memory Base Register (PMBR), the i960 RM/RN I/O processor do
forward any transactions from the primary to the secondary. In this case, all Memory transac
from the secondary to the primary are forwarded upstream through the bridge.
i960® RM/RN I/O Processor Developer’s Manual 14-17

PCI-to-PCI Bridge
14.5.3 64-Bit Address Decoding - Dual Address Cycles

The bridge unit supports the dual address cycle (DAC) command for 64-bit addressing on the
secondary interface of the bridge unit only. Dual address cycle commands allow 64-bit addressing
by using two PCI address phases; the first one for the lower 32 bits and the second one for the
higher 32 bits. The DAC command is also used by the bridge primary PCI interface when 64-bit
PCI operation is enabled to maintain backwards compatibility to 32-bit PCI buses.

The bridge unit decodes and forwards all dual address cycle commands from the secondary to the
primary interface regardless of the address ranges defined in the MBR/MLR and PMBR/PMLR
register pairs. DAC cycles are restricted to PCI memory commands only. I/O and configuration
cycles are not supported in the greater than 4GB address space. All DAC transactions are treated as
prefetchable and adhere to the prefetch data amounts defined in Table 14-13 on page 14-34.

The bridge unit defaults to Subtractive Decode timing for claiming dual address cycle commands.
Subtractive Decode timing is defined as the assertion of DEVSEL# on the fourth clock after the
address phase, the fifth clock after FRAME#, for DAC cycles. If the Secondary DAC Medium
Decode Enable bit is set in the EBCR, the secondary interface of the bridge claims all DAC
transactions with medium decode timing.

The primary interface does not forward dual address cycle commands to the secondary interface.

The operation of DAC mode addressing for 32-bit or 64-bit buses, as defined by the PCI Local Bus
Specification Revision 2.1, is shown in Figure 14-7. For 32-bit bus operation or for a DAC request
initiated from a 32-bit device on a 64-bit bus, AD[63:32] and C/BE[7:4]# are ignored. As a master
on the primary PCI bus, the bridge unit extends the address phase to two clock cycles. In the first
cycle, the bridge drives the low order 32-bits of address on AD[31:0] and the DAC PCI command
(11012) on C/BE[3:0]#. In the second address cycle, the bridge drives the high order 32-bit of
address on AD[31:0] and the actual PCI read/write command on C/BE[3:0]#.

For 64-bit bus operation as a target on the secondary bus, the bridge unit does not decode the high
order address bits driven on S_AD[63:32] during the first address phase of the DAC cycle. The
secondary bridge interface waits for the second address phase to capture the complete 64-bit
address and the actual PCI command for the transaction. As a master on the primary PCI bus
interface, the bridge operates as defined in Figure 14-7 and drives the high order 32 bits on
P_AD[63:32] and the actual PCI command on P_C/BE[7:4]# during the first address phase of the
DAC cycle. Both address phases as defined for a 32-bit bus are still performed.

The response to DAC commands on the secondary interface may be modified by the following
register bit from the bridge configuration space:

• the Master Enable bit in the Primary Command Register (PCR)

• the Posting Disable bit in the Extended Bridge Control Register (EBCR)

The Master Enable bit in the PCR must be set to allow the primary interface to master PCI transactions.

If the Posting Disable bit is set, the secondary interface of the bridge unit does not accept any DAC
write transactions at all.
14-18 i960® RM/RN I/O Processor Developer’s Manual

PCI-to-PCI Bridge
Figure 14-7. 64-bit Dual Address Read Cycle

CLK

FRAME#

AD[31:00]

AD[63:32]

C/BE[3:0]#

C/BE[7:4]#

IRDY#

TRDY#

DEVSEL#

ADDRESS
PHASE

LO-ADDR

W
A

IT

W
A

IT

D
A

TA
 T

R
A

N
S

F
E

R

D
A

TA
 T

R
A

N
S

F
E

R

DATA
PHASE

DATA
PHASE

DUAL AD

DATA-1HI-ADDR

BUS CMD BE#[3:0]

 1 2 3 4 5 6 7 8

DATA-3(2)

HI ADDR DATA-2 DATA-4

BUS CMD BE#[7:4]
i960® RM/RN I/O Processor Developer’s Manual 14-19

PCI-to-PCI Bridge

 the

ntained
14.5.4 Private Address Space

The bridge supports private address space by not claiming and forwarding upstream private
Memory and I/O addresses on the secondary PCI bus. These private addresses appears to the bridge
as primary PCI addresses because they fall outside the secondary PCI address space. Private
addresses are only supported on the secondary PCI bus and may be used for transactions from
private devices to the secondary ATU, transactions from the i960 RM/RN I/O processor to private
devices, or transactions from private device to private device. The bridge does not claim
transactions with these three types of private addresses if private addressing has been enabled:

1. Inbound transactions from private devices to the secondary ATU.

2. Outbound transactions from the secondary ATU or DMA channel 2 to private devices.

3. Peer transactions from secondary devices.

For inbound private transactions, the secondary ATU is responsible for claiming these transactions.
If the secondary ATU claims the transaction, the bridge does not claim or try to forward the
transaction. The inbound ATU address space takes precedence over the inverse decoding
performed by the bridge on the secondary PCI interface.

For outbound transactions from the secondary ATU or DMA channel 2, the bridge does not claim these
transactions. This is true for all outbound transactions from the any ATU or DMA channel since the
i960 RM/RN I/O processor is never a master and slave on the secondary bus during the same cycle.

For transactions from secondary device to private device, the programmer must use the Secondary
Memory Base Register and Secondary Memory Limit Register (SMBR/SMLR) to define a private
memory address range and the Secondary I/O Base Register and the Secondary I/O Limit Register
(SIOBR/SIOLR) to define a private I/O address range. To enable this feature, the Private Memory Space
Enable bit in the Secondary Decode Enable Register must be set. See Section 14.15.34. The bridge does
not claim any secondary PCI address that falls within a valid SMBR/SMLR and SIOBR/SIOLR address
ranges if the Private Memory Space Enable or the Private I/O Space Enable bits are set.

14.5.5 Secondary PCI to Messaging Unit Access

The PCI-to-PCI bridge unit is responsible for providing the data path for access to the Messaging
Unit (part of the Primary ATU). The bridge, in conjunction with the SATU, allows secondary PCI
masters to read and write the first 4KB of the PATU inbound address space (the MU). The
following statements apply to accessing the MU from the secondary PCI bus through the bridge:

• The Secondary Bus - Messaging Unit Access Enable bit must be set. When set, the SATU does
not claim the first 4KB of it’s inbound address space, allowing the bridge the opportunity. In
addition, setting this bit enables the bridge to act as a master on the primary interface and
PATU/MU to act as a slave on the primary interface at the same time. The i960 RM/RN I/O
processor is not a master and a slave at the same time on any other interface. This bit is co
in the ATUCR in the ATU configuration space (Chapter 15, “Address Translation Unit”).

• The PCI memory read or write transaction (I/O or configuration cycles are not supported) must
have a valid bridge address outside the PMBR/PMLR and MBR/MLR address ranges.

• The bridge unit primary interface takes no other action to allow secondary access to the MU.
The application programmer is responsible for guaranteeing that the MU address is accessible
from the secondary PCI interface as an upstream bridge transaction. If the upstream
transaction, meant for the Messaging Unit, is not at the correct address, a master abort occurs
or the transaction is claimed by the incorrect target.

• Normal Upstream read prefetch behavior applies. The Messaging Unit disconnects (as a 32-bit
device) after delivering one 32-bit Dword.
14-20 i960® RM/RN I/O Processor Developer’s Manual

PCI-to-PCI Bridge

en the

mory

tions.

ress
nge.
14.5.6 Address Decode Summary

Four tables in this section contain a summary of the address decode options:

• One pair of tables summarize how addresses are decoded for Primary to Secondary
transactions

• One pair of tables summarize how addresses are decoded for Secondary to Primary
transactions

Each pair of tables is divided into one Memory transaction table and one I/O transaction table. The
tables list the various control bits and the potential address ranges.

The response for the address is noted in each table entry. The response is determined by the control
bits and by the address range the address falls into. The response may be one of following three:

• Forward the transaction across the Bridge (denoted as “Forward”).

• Ignore the transaction and do not forward across the Bridge (denoted as “Ignore”).

• This particular range is not valid and the response is dictated by another address range
(denoted as “Not Valid”).

The tables assume that the Memory and I/O Base and Limit address ranges are only valid wh
Limit is greater than or equal to the Base.

Table 14-5 is a summary of the Memory address decoding rules for Primary to Secondary Me
transactions.

Table 14-6 is a summary of the I/O address decoding rules for Primary to Secondary I/O transac

The I/O Enable bit must be set to forward any I/O transactions. To be in the ISA range, the add
must also fall in the IOBR/IOLR range. Also, the ISA range covers the complete IOBR/IOLR ra

Table 14-5. Primary to Secondary Memory Address Decoding Summary

Memory
Enable bit

Primary to Secondary

In
MBR/MLR range In PMBR/PMLR range Outside all valid ranges

0 Ignore Ignore Ignore

1 Forward Forward Ignore

Table 14-6. Primary to Secondary I/O Address Decoding Summary

I/O
Enable

bit

ISA
Mode bit

Primary to Secondary

In IOBR/IOLR
range

In ISA range
(Lower 256 bytes)

In ISA range
(Upper 768 bytes)

Outside
all valid ranges

0 X Ignore

1 0 Forward Not Valid Not Valid Ignore

1 1 Forward Forward Ignore Ignore
i960® RM/RN I/O Processor Developer’s Manual 14-21

PCI-to-PCI Bridge
Table 14-5 is a summary of the Memory address decoding rules for Secondary to Primary Memory
transactions.

The Private Address Space Enable bit in the SDER can disable forwarding of the SMBR/SMLR range.

Table 14-6 is a summary of the I/O address decoding rules for Secondary to Primary I/O
transactions. The ISA Enable pertains to the IOBR/IOLR range.

Table 14-7. Secondary to Primary Memory Address Decoding Summary

Master
Enable bit

Private
Address
Space

Enable bit

Memory
Enable bit

Secondary to Primary

In MBR/
MLR

range

In PMBR/
PMLR
range

In SMBR/
SMLR
range

In ATU
Inbound
Address

range

Outside all
valid

ranges

0 X X Ignore

1 0 0 Forward Forward Not Valid Ignore Forward

1 0 1 Ignore Ignore Not Valid Ignore Forward

1 1 0 Forward Forward Ignore Ignore Forward

1 1 1 Ignore Ignore Ignore Ignore Forward

Table 14-8. Secondary to Primary I/O Address Decoding Summary

Master
Enable

bit

I/O
Enable

bit

ISA
Mode

bit

Private
Memory
 Space
Enable

Secondary to Primary

In IOBR/
IOLR
range

In SIOBR/
SIOLR
range

In ISA
range
(Lower

256 bytes)

In ISA
range
(Upper

768 bytes)

Outside
all valid
ranges

0 X X X Ignore

1 0 0 0 Forward Not Valid Not Valid Not Valid Forward

1 0 1 0 Forward Not Valid Not Valid Not Valid Forward

1 1 0 0 Ignore Not Valid Not Valid Not Valid Forward

1 1 1 0 Forward Not Valid Ignore Forward Forward

1 0 0 1 Forward Ignore Not Valid Not Valid Forward

1 0 1 1 Forward Ignore Not Valid Not Valid Forward

1 1 0 1 Ignore Ignore Not Valid Not Valid Forward

1 1 1 1 Forward Ignore Ignore Forward Forward
14-22 i960® RM/RN I/O Processor Developer’s Manual

PCI-to-PCI Bridge
14.6 Bridge Operation

The bridge unit of the i960 RM/RN I/O processor is capable of forwarding all types of memory, I/O
and configuration commands from one PCI interface to the other PCI interface. Table 14-9 defines
the PCI commands supported and not supported by the PCI-to-PCI bridge unit and its two PCI
interfaces. PCI commands are encoded within the C/BE[3:0]# pins on either interface during the
address phase of any PCI transaction (excluding DAC cycles which encode the DAC command in
the first address phase and the read or write command in the second address phase).

.

14.6.1 PCI Interfaces

The i960 RM/RN I/O processor bridge unit consists of a primary PCI interface and a secondary
PCI interface. When transactions are initiated on the primary bus and claimed by the bridge, the
primary interface serves as a PCI target device and the secondary interface serves as an initiating
device for the true PCI target on the secondary bus. The primary bus is the initiating bus and the
secondary bus is the target bus. The sequence is reversed for transactions initiated on the secondary
bus. The interfaces are defined in the following sections.

14.6.1.1 Primary Interface

The primary PCI interface of the bridge unit is the interface connected to the lower numbered PCI
bus between the two PCI buses that the i960 RM/RN I/O processor bridges.

The primary PCI interface must adhere to the definition of a PCI master and slave device as
defined within the PCI Local Bus Specification Revision 2.1 and the PCI-to-PCI Bridge
Architecture Specification Revision 1.0.

Table 14-9. PCI Commands

C/BE# PCI Command Initiator: Primary Bus
Target: Secondary Bus

Initiator: Secondary Bus
Target: Primary Bus

00002 Interrupt Acknowledge Ignore Ignore

00012 Special Cycle Ignore Ignore

00102 I/O Read Forward Forward

00112 I/O Write Forward Forward

01002 Reserved Ignore Ignore

01012 Reserved Ignore Ignore

01102 Memory Read Forward Forward

01112 Memory Write Forward Forward

10002 Reserved Ignore Ignore

10012 Reserved Ignore Ignore

10102 Configuration Read Forward Ignore

10112 Configuration Write Forward Forward (Type 1 Only)

11002 Memory Read Multiple Forward Forward

11012 Dual Address Cycle Ignore Forward

11102 Memory Read Line Forward Forward

11112 Memory Write and Invalidate Forward Forward
i960® RM/RN I/O Processor Developer’s Manual 14-23

PCI-to-PCI Bridge
14.6.1.2 Secondary Interface

The secondary PCI interface of the bridge unit is the interface connected to the higher numbered
PCI bus between the two PCI buses that the i960 RM/RN I/O processor bridges.

The secondary PCI interface must adhere to the definition of a PCI master and slave device as
defined within the PCI Local Bus Specification and the PCI Local Bus Specification Revision 2.1.

14.6.2 Claiming a PCI Transaction

The PCI-to-PCI bridge unit, as a target on the initiating bus, uses medium timing to assert DEVSEL#
to claim a bus transaction. This meets the PCI specification of claiming a transaction within five
clocks of the assertion of FRAME# by the initiating PCI device. The bridge target interface claims the
transaction depending on the transaction type and address. See the rules for address decoding for
memory and I/O transactions in Section 14.5 and for configuration transactions in Section 14.4.

The bridge unit, as a master on the target bus, expects DEVSEL# to be asserted from the target
device within five PCI clocks of asserting FRAME#. If the target interface does not receive
DEVSEL# within the required amount of time, it signals a Master-Abort on the target bus if the
function is enabled (see Section 14.10.1 for Master-Abort information).

See the PCI Local Bus Specification Revision 2.1 for full details on transaction claiming.

14.6.2.1 Latency Timers

A latency timer (LT) is used to create a mechanism that limits one masters ownership of a PCI bus
in the presence of other bus masters. There are two latency timers in the bridge, one for each of the
PCI interface masters.

The function of each latency timer is defined as:

• A LT is initialized and suspended (not counting) whenever a master interface (primary or
secondary) is not asserting FRAME#.

• When a master interface asserts FRAME#, the LT starts counting down one for every PCI
clock cycle that FRAME# is asserted.

• If the master interface deasserts FRAME# before the LT has expired (reached zero), the LT is
meaningless to the transaction. The LT is initialized when FRAME# is deasserted.

• If the LT expires before the transaction completes, the interface must relinquish the bus and
terminate the transaction (Section 14.10.1) as soon as the master interface GNT# signal is
deasserted. If the LT expires and the master interface GNT# signal is still asserted, the
transaction is allowed to continue until it is complete or the master GNT# signal is deasserted.
The exception to this rule is when a master is currently performing a Memory Write and
Invalidate command on the bus. Refer to Section 14.10.1.3 for details.

In essence, the LT creates a minimum time slice that each master is allowed to own the PCI bus.
Two registers exist within the bridge unit configuration space which define the maximum count
and granularity of both the primary and secondary latency timers; the Primary Latency Timer
Register (PLTR) and the Secondary Latency Timer Register (SLTR). Each register is 8 bits wide
resulting in a time slice of up to 248 PCI clocks that each interface can own its respective PCI bus.
The lower three bits (02 through 00) of the PLTR and the SLTR are hardwired to 0002 which forces
a minimum granularity for the timer of 8 PCI clocks. The upper five bits of the register are
programmable to allow the timer value for each PCI interface to be independently programmed to a
value between 111110002 and 000000002 resulting in timer count of anywhere from 0 to 248.
14-24 i960® RM/RN I/O Processor Developer’s Manual

PCI-to-PCI Bridge
14.6.2.2 Delayed Transactions

Delayed transactions are a method for processing PCI transactions that may exceed the PCI Local Bus
Specification Revision 2.1 requirement for no more than 16 clocks of latency between the PCI address
and the first data word. All PCI read and configuration transactions (except for Special Cycle)
complete as a Delayed transaction.

The bridge processes all transactions as Delayed transactions, except for Memory Write and
Memory Write and Invalidate transactions. These two transactions can be processed as Posted
transactions or as delayed write transactions. If the Posting Disable bit in the Extended Bridge
Control Register is clear, Memory Write and, Memory Write and Invalidate transactions are
processed as Posted transactions (default state). If Posting Disable bit is set, Memory Write
commands are processed as Delayed transactions and Memory Write and Invalidate commands are
processed as delayed Memory Write commands.

In a Delayed transactions performed by the bridge, the address, command, REQ64# and byte
enable information required to complete the transaction is latched by the bridge in a transaction
queue and the initiator is signaled a retry. For writes, the information includes the data to be written
as well. The bridge performs the request on the target bus on behalf of the initiator. For reads, the
returned data and the target response is stored in the bridge delayed read completion (DRC)
queues. For writes, only the target response is recorded. The retried initiator must then repeat the
original request on the initiating bus in order complete the full transaction.

A Delayed transaction consists of three parts:

• Request phase on the initiating bus

• Completion phase on the target bus

• Completion phase on the initiating bus

The request phase is when the transaction information is latched by the bridge and the bridge
terminates the transaction with a Retry. This is referred to as a Delayed Request phase.

Once a Delayed Request transaction is accepted by the bridge, the bridge initiates a completion
phase on the target bus using the same transaction type as on the initiating bus. Data that
accompanies the request transactions for delayed writes is held in the bridge delayed write request
(DWR) queues. Data being returned for reads is written into the DRC queues.

The completion phase on the initiating bus is when the initiator repeats the original request and the
bridge signals a termination other than Retry. This is referred to as a Delayed Completion
transaction. The Delayed Completion transaction terminates with the same termination as the target
bus transaction. For example, if the target bus transaction terminated with Disconnect, the Delayed
Completion transaction terminates with Disconnect.

The bridge has a discard timer associated with each data buffer used for Delayed transactions
(Section 14.11.4). If the discard timer expires before the initiator repeats the original request, the
data and associated request information is discarded.
i960® RM/RN I/O Processor Developer’s Manual 14-25

PCI-to-PCI Bridge
14.6.2.3 Posted Transactions

In a Posted transaction performed by the bridge, the bridge stores the data in a write queue and signals
a termination other than Retry. Once the bridge acquires the target bus, it completes the request.

Table 14-10 summarizes the difference between Delayed transactions and Posted transactions.

14.6.3 64-Bit Operation

Both the primary and secondary interfaces of the i960 RM/RN I/O processor are capable of PCI
64-bit operation to support data transfer rates of up to 264 MBytes/sec. The 64-bit PCI extensions
add 39 additional signals to each bridge PCI interface. These signals and their functions are

• AD[63:32] - high order address/data bus

• C/BE[7:4]# - byte enables covering high order four bytes of data

• PAR64 - even parity signal covering AD[63:32] and C/BE[7:4]#. Same timing as PAR

• REQ64# - used by a 64-bit master to request a 64-bit operation. Same timing as FRAME#

• ACK64# - used by a 64-bit capable target in response to REQ64# being asserted. Signifies to the
master that the transaction can be completed with 64-bit transfers. Same timing as DEVSEL#.

At PCI bus reset, each individual PCI bus (primary and secondary) independently sample their
respective REQ64# signals. If this signal is low, the bus is 64-bit capable and the respective master
state machines attempt to complete all memory transactions as 64 bit cycles. See Section 14.13.3
for complete details of REQ64# detection by each PCI interface at power-up. Once a PCI bus
interface is known to be 64-bit, the interface may attempt the following transaction types as 64-bit;
Memory Read, Memory Read Line, Memory Read Multiple, Memory Write, and Memory Write and
Invalidate. Configuration and I/O transactions are 32-bit only.

The bridge attempts a transaction on the target interface according to the size of the initiating
interface. For example, a downstream write from a 32-bit master on the primary bus is typically
attempted as a 32-bit transaction on the secondary PCI interface. This approach improves the
possibility of streaming between the initiator and its target. Another possibility occurs if a 32-bit
write transaction is fully posted and meets the criteria of a 64-bit transaction, the write is attempted
as a 64-bit transaction. The previous statements also apply to read transactions.

Table 14-10. Delayed Transactions vs. Posted Transactions

Delayed Transaction Posted Transaction

For all PCI commands (except Special Cycle) For Memory Write, Memory Write and Invalidate
commands only

Requires repeated request Does not require repeated request

Completes on target bus before initiating bus Completes on initiating bus before target bus

Less efficient for writes More efficient for writes
14-26 i960® RM/RN I/O Processor Developer’s Manual

PCI-to-PCI Bridge
14.6.3.1 64-Bit Protocol

The 64-bit PCI extensions have been developed to coincide with the existing 32-bit protocol. The
additional 32 bits of address/data require an additional four byte enables and a parity signal to
cover them. The bus timing, protocol, and turn-around cycles behave exactly the same for the
64-bit signals as they do for the standard PCI interface signals with the exception of the 64-bit
handshake signals referenced below.

The 64-bit handshake signals used by the i960 RM/RN I/O processor are P_REQ64# and P_ACK64#
on the primary interface and S_REQ64# and S_ACK64# on the secondary interface. As a master, a
PCI interface of the bridge asserts REQ64# with FRAME# to indicate to the target that a 64-bit
transaction is being requested. REQ64# is asserted and deasserted with the exact timing as FRAME#
for the master state machines. When REQ64# is asserted, the target of the memory operation is
required to assert ACK64# with the same timing as DEVSEL# to allow a 64-bit transaction to
proceed. If ACK64# is not asserted with DEVSEL#, the master interface must revert to a 32-bit
transaction. See Section 14.6.3.2 for details on 64-bit operation with 32-bit targets.

A 64-bit transaction is required to have a 64-bit aligned address (AD2 = 0). A master that is starting
a request on an odd boundary (AD2 = 1) must use a 32-bit transaction and not assert REQ64#. This
is true for an initial request or as the result of a disconnect from a 32-bit target (see the next
section). The bridge, as a master on the target interface for reads, uses 32-bit transactions when the
initiator starts a 32-bit read transaction on an odd boundary

When ACK64# is asserted by the target of the transaction, a 64-bit transfer may proceed. As stated,
a 64-bit transfer behaves exactly the same as a 32-bit transfer except that up to 8 bytes of data are
transferred during each PCI data phase. For the 64-bit transfer, the AD[63:32] and C/BE[7:4]# are
reserved during the address phase. (assuming a SAC transfer). During the data phases, the master
interface transfers up to 8 bytes of data on each of the 8 byte lanes defined by AD[63:00]. As in a
32-bit transfer the master is capable of asserting any (or none) of the byte enables during each of
the data phases within a burst transfer. Refer to Figure 14-8 for a diagram of a 64-bit transfer to a
64-bit target. PAR64 for a 64-bit transfer has the same function and timing as PAR for a 32-bit
transfer. PAR64 must be asserted one clock after each address and data phase. 64-bit targets qualify
address parity checking using PAR64 with the assertion of REQ64#. Although AD[63:32] and
C/BE[7:4]# are reserved for SAC 64-bit transfers, PAR64 must still be preserved and therefore
stable values must be driven.
i960® RM/RN I/O Processor Developer’s Manual 14-27

PCI-to-PCI Bridge
As a target, the slave state machines of both bridge PCI interfaces are capable of responding as a
64-bit target. When a PCI memory transaction is claimed by a bridge interface and the initiating
master has requested a 64-bit transfer by asserting REQ64# with FRAME#, the bridge slave
interface asserts and deasserts ACK64# with the same timing and protocol as DEVSEL#. Further
64-bit slave operation is exactly like 32-bit operation with data being written or returned on both
AD[31:00] and AD[63:32] using C/BE[3:0]# and C/BE[7:4]# respectively. PAR64 must be driven
with the same timing as PAR for read operations.

Figure 14-8. PCI 64-Bit Transfer to a 64-Bit Target

CLK

FRAME#

REQ64#

AD[31:00]

AD[63:32]

C/BE[3:0]#

C/BE[7:4]#

IRDY#

TRDY#

DEVSEL#

ACK64#

ADDRESS
PHASE

DATA
PHASE

ADDRESS DATA-3 DATA-5

BE#’s

W
A

IT

W
A

IT

W
A

IT

D
A

TA
 T

R
A

N
S

F
E

R

D
A

TA
 T

R
A

N
S

F
E

R

D
A

TA
 T

R
A

N
S

F
E

R

DATA
PHASE

DATA
PHASE

DATA-4 DATA-6DATA-2

BUS CMD

BE#’s

DATA-1

 1 2 3 4 5 6 7 8 9
14-28 i960® RM/RN I/O Processor Developer’s Manual

PCI-to-PCI Bridge
14.6.3.2 64-Bit Operation with 32-Bit Targets

When a 64-bit transfer is requested by the PCI master interfaces by the assertion of REQ64#, it is
not guaranteed that the target of the transaction is capable of performing the 64-bit request. If the
target is not 64-bit capable, ACK64# remains deasserted when the target asserts DEVSEL# to
claim the transaction. When a target signals that it cannot complete the transaction using 64-bit
transfers, the bridge master interfaces are responsible for completing the transactions as a 32-bit
master. Two possible conditions arise from a 32-bit target which does not respond with ACK64#:

1. ACK64# deasserted but a burst can be sustained

2. ACK64# deasserted but a burst can not be sustained

If a 32-bit target does not respond with ACK64# and STOP#, it is capable of continuing a burst as
a 32-bit target. For memory read requests, the bridge master interfaces changes to 32-bit operation
by only expecting read data on the lower byte lanes, AD[31:0]. The master interfaces continue
requesting read data (by the continued asserting of IRDY#) as 32-bit masters. No master
completions are prematurely signaled due to 32-bit target response. For memory write operations,
the master interface may already have the first data phase on the bus by the time it is detected that
ACK64# has not been asserted. The bridge primary/secondary master interface discontinues
driving data on the upper 4 bytes during the second data phase. The second data phase of the burst
now contains the data from the high 4 bytes of the first data phase. The master interface stops
driving the AD[63:32] and C/BE[7:4]# during data phase 2 and all subsequent data phases of the
burst write transfer. See Figure 14-9 for a diagram of this transaction. As a note, a disconnect after
the first data phase of the burst transfer write results in the continuation of the write transaction as a
32-bit master only (no REQ64#). This works similar to the write transfer disconnected in the first
data phase described in the next paragraph.

If a 32-bit target does not respond with ACK64# but asserts STOP#, the target does not continue the
burst. If a read or write request is made and STOP# without TRDY# is signaled (Retry), the master
interface must repeat the original read or write request as a 64-bit transaction. If the target signals a
Disconnect with data (STOP# and TRDY#) on a write transaction, then only the lower 4 bytes of the
8 byte transfer have been delivered. The master state machines of the bridge unit repeat the request as
a 32-bit master (no REQ64# assertion) using the upper 4 bytes of data from the disconnected
transaction on AD[31:00] and the next address (i.e. if address 00H was used in the first 64-bit request,
address 04H is used in the next 32-bit request). The bridge unit completes the memory write
transaction as a 32-bit master until the data transferred from the initiating interface is exhausted (data
from the posted memory write being completed on the target bus) regardless of the number of times
the target disconnects the master or the address boundary on which it occurs. This occurs for 64-bit
requests which are disconnected with no ACK64#. 64-bit requests disconnected with an ACK64# are
continued as 64-bit requests. If the target signals a Disconnect with data on a read transaction (during
the first data phase), then data has only been returned on AD[31:00]. No additional read requests are
initiated due to delayed read transaction usage (See Section 14.6.4 for details).

Note that 32-bit targets create special circumstances for FRAME# signaling. For 32-bit, single
Dword transfers, FRAME# is driven low and then high immediately in the in the next clock
signaling last data phase. Due to the potential of requiring two 32-bit data phases to complete what
was originally intended as one 64-bit data phase, this is not possible. FRAME# must not be
deasserted until after ACK64# is returned.
i960® RM/RN I/O Processor Developer’s Manual 14-29

PCI-to-PCI Bridge
Figure 14-9. 64-Bit Write Request with 32-Bit Transfer

CLK

FRAME#

REQ64#

AD[31:00]

AD[63:32]

C/BE[3:0]#

C/BE[7:4]#

IRDY#

TRDY#

DEVSEL#

ACK64#

ADDRESS
PHASE

DATA
PHASE

ADDRESS DATA-3

W
A

IT

W
A

IT

W
A

IT

D
A

TA
 T

R
A

N
S

F
E

R

D
A

TA
 T

R
A

N
S

F
E

R

D
A

TA
 T

R
A

N
S

F
E

R

DATA
PHASE

DATA
PHASE

BUS CMD

DATA-2DATA-1

DATA-2

BE#’s-1 BE#’s-2 BE#’s-3

BE#’s-2

 1 2 3 4 5 6 7 8 9
14-30 i960® RM/RN I/O Processor Developer’s Manual

PCI-to-PCI Bridge

tion

tion
ed by

dress,

As a PCI-to-PCI bridge, the i960 RM/RN I/O processor may be in a system environment with 64-bit
devices on one side of the bridge and 32-bit devices on the other side of the bridge. This creates
potential problems when a 64-bit master performs a delayed read to a 32-bit target with a prefetching
PCI Local Bus Specification Revision 2.1 bridge in the data path within non-prefetching address
space. To account for this, the following rules apply to bridge read behavior:

• For a non-prefetchable read, the bridge never returns ACK64# and always performs a 32-bit
read (REQ64# not asserted) on the target interface.

• As is the case in all delayed reads, a disconnect during the delayed completion cycle on the
target bus does not result in any additional reads.

• For all prefetchable reads, if the initiator starts a transaction with A2=0, the target interface
asserts REQ64#. If the initiator starts a transaction with A2=1, the target interface does not
assert REQ64#. This means that a 32-bit requestor can transfer data from a 64-bit target on a
64-bit target bus. If the read completion data is completely buffered and QWORD aligned at
the tail end, the bridge returns the data as a 64-bit target.

• Delayed reads in prefetchable address space can return 64-bit data to a 64-bit master on the
initiating bus even if the read on the target bus was from a 32-bit target.

• REQ64# is required to be asserted on a Retry sequence by the master but the target is under no
obligation to assert ACK64# during the completion cycle even if it was asserted during the
original transaction when the delayed read was enqueued and initiated.

14.6.4 PCI Read Transactions

The i960 RM/RN I/O processor supports memory read and I/O read transactions from both sides of
the bridge unit. Memory read transactions are claimed if they are within the MBR/MLR or
PMBR/PMLR address pairs on the primary bus and outside the register pairs on the secondary bus.
I/O read transactions are claimed if they are within the IOBR/IOLR write transactions on the
primary bus and outside the address pair on the secondary bus. Refer to the PCI Local Bus
Specification Revision 2.1 for full details on memory and I/O read transactions. Prefetchable
Memory read commands are attempted as 64-bit transactions (Section 14.6.3). I/O,
non-prefetchable reads and configuration reads are always performed as 32-bit operations. Refer to
Section 14.7.1, “Queue Operation” on page 14-42 for information on bridge queue operation
during PCI read operations.

The bridge implements Delayed Read transactions in order to meet initial transaction latency
requirements (from initiating bus IRDY# active to target bus TRDY# active). Delayed Transac
operation is described in Section 14.6.2.2.

The Delayed Read Request (DRR) transaction is the initial memory read or I/O read transac
that the bridge claims. The address, command, and byte enables of this transaction are latch
the bridge and retained in the Transaction Queues. Once the bridge interface latches the ad
command (including REQ64# for 64-bit transfers), and byte enables, it signals a Retry to the
initiator who is then required to re-issue the now delayed request.
i960® RM/RN I/O Processor Developer’s Manual 14-31

PCI-to-PCI Bridge
If the DRR is accepted by the bridge, the bridge then initiates the transaction on the target bus.
Delayed Requests are accepted as new requests if all of the following conditions apply:

• The DRR does not match any DRRs currently held by the bridge in the initiating bus
Transaction Queues.

• The request does not match up with the Delayed Completion currently held by the bridge. This
new request must be checked against possible Delayed Completions to see if this is a repeated
request that can be completed.

• The bridge has the ability to hold a Delayed Read Request in an available Transaction Queue
and Delayed Read Completion Queue. In the situation where no queues are available, the
bridge signals a Retry without latching any information.

Two requests match only if they have the exact same address, command, byte enables, and
REQ64#. For the purposes of matching a delayed request with a delayed completion, the bridge
unit does not compare byte enables for all prefetchable transactions that have linear addresses. Byte
enables are compared for prefetchable transactions that are non-linear.

If the request is accepted as a delayed transaction, the bridge retrys the master on the initiating bus
and performs the same memory or I/O read command on the target bus. If the request is not accepted,
the bridge signals a Retry to the master on the initiating bus with no action on the target bus.

When the target returns data on the target bus, the bridge stores the data in a Delayed Read
Completion (DRC) Queue along with the associated Delayed Request information (address,
command, REQ64#, and byte enables) that already exists in the Transaction Queue. The bridge
accepts one or more data bytes to be stored in the DRC Queues. If additional queue space becomes
unavailable (either from physically full or due to reserved space) and more data words are available
from the target, the bridge signals a Disconnect on the target bus.

The amount of data that the bridge reads on the target bus and store in the DRC queues depends on:

• PCI command type

• whether the memory address space is prefetchable or not

• Size of Delayed Read Completion Queues available for data

Whether or not the read command prefetches depends on the address space, whether the transaction
is upstream or downstream and the Upstream Prefetchable Enable bit in the EBCR. See
Table 14-11 for a summary.

For downstream Memory Read commands, which address range (MBR-MBLR or PMBR-PMLR)
is used to claim the address determines whether the memory is prefetchable or not. See
Section 14.5.2.

For upstream Memory Read commands on the secondary PCI bus, the bridge treats the memory as
prefetchable or non-prefetchable depending on the Upstream Prefetchable Memory Enable bit in
the Extended Bridge Control Register. If this bit is set, upstream memory is prefetchable. If this bit
is clear, upstream memory is non-prefetchable.

For all Memory Read Line and Memory Read Multiple transactions in the non-prefetchable address
space (either upstream or downstream), the bridge unit aliases the command to Memory Read on
the target interface. For the purposes of matching MRL/MRM in the non-prefetchable address
space, the bridge matches on the original command issued from the PCI master on the initiating
interface. Non-prefetchable commands are always claimed as a 32-bit target (ACK64# deasserted)
and attempted as 32-bit requests (REQ64# deasserted) on the target bus.
14-32 i960® RM/RN I/O Processor Developer’s Manual

PCI-to-PCI Bridge
1. MRL and MRM commands are aliased to Memory Read command on Secondary PCI Bus
2. MRL and MRM commands are aliased to Memory Read command on Primary PCI Bus
3. DAC MRL and MRM are aliased to Memory Read on the Primary PCI Bus

For DAC read commands on the secondary PCI bus, the bridge treats the memory the same as SAC
transactions. See Table 14-11 for details.

The rules for the amount of data attempted to be read during a delayed transaction depend on the
command used, the direction of the request (upstream or downstream) and whether or not
prefetchable or non-prefetchable address space is used. Table 14-12 and Table 14-13 summarize
the rules for downstream and upstream read transactions respectively. Note that the actual amount
of data read depends upon the DRC queue available at the time the DRR is enqueued in the
Transaction Queue (refer to Section 14.7.1 for queue selection criteria), the amount of data
delivered by the target on the actual target bus and the starting address of the read command.

The starting address of the read transaction must be on a cacheline boundary to prefetch the full
data size determined in Table 14-12 and Table 14-13. For example a MRM read with a 32 byte
cacheline configuration that wants to prefetch 128 bytes and start on address XXXXXX24H would
only read a maximum of 124 bytes. If the same read had a starting address of XXXXXX20H, the
maximum of 128 bytes could be read (assuming the target returned that much data).

1. CLS - Cache Line Size Defined by the Cache Line Size Register within the bridge configuration space
2. Up to 64 Bytes if the Downstream MRL Prefetch Size Bit is set in the Queue Control Register (Section 14.15.35)

Table 14-11. Prefetchable and Non-Prefetchable Memory Summary

PCI Command
Prefetchable Non-Prefetchable

Downstream Upstream Downstream Upstream

Memory Read

In PMBR/PMLR
Address Range Upstream Prefetch

Enable bit = 1 in
EBCR

In MBR/MLR
Address Range

Upstream Prefetch
Enable bit = 0 in

EBCR

Memory Read Line
In MBR/MLR

Address Range1

Upstream Prefetch
Enable bit = 0 in

EBCR2Memory Read
Multiple

DAC Read N/A N/A
Upstream Prefetch

Enable bit = 0 in
EBCR3

Table 14-12. Downstream Memory Read Prefetch Size

Read Command

Prefetchable Memory Address Space Non-Prefetchable Memory Address
Space

CLS1= 8
(32 bytes)

CLS = 16
(64 bytes)

CLS = 8
(32 bytes)

CLS = 16
(64 bytes)

Memory Read Up to 32 Bytes Up to 64 Bytes Up to 4 Bytes Up to 4 Bytes

Memory Read

Line
Up to 32 Bytes2 Up to 64 Bytes Up to 4 Bytes Up to 4 Bytes

Memory Read

Multiple
Up to 64 Bytes Up to 64 Bytes Up to 4 Bytes Up to 4 Bytes
i960® RM/RN I/O Processor Developer’s Manual 14-33

PCI-to-PCI Bridge

1. CLS - Cache Line Size Defined by the Cache Line Size Register within the bridge configuration space
2. Up to 64 Bytes if the Upstream MRL Prefetch Size Bit is set in the Queue Control Register (Section 14.15.35)
3. Up to 128 Bytes if the Upstream MRL Prefetch Size Bit is set in the Queue Control Register (Section 14.15.35)

If the value in the CLS is anything other than 8 or 16, the read prefetch behavior is that of a CLS
value of 8 (32 bytes).

The MRL control bits within the Queue Control Register are capable of promoting the prefetch size
of the Memory Read Line Command to 2x the amount in the previous tables if the command is in
the prefetchable address space. Refer to Section 14.15.35 for details. The MRL prefetch bits
increase the maximum prefetch size attempted during an MRL transaction.

I/O Read commands, Configuration Read, and all non-prefetchable read commands are limited to
one 32-bit PCI data phase. The bridge reads and stores up to 4 bytes for these transaction types.
The bridge signals a Disconnect to the initiator if the master requests more than one DWORD.

The Delayed Completion transaction is the repeated memory read, I/O read, or configuration read
transaction from the original initiator. The bridge matches the address, command, REQ64#, and
byte enables of repeated transaction with those in the Transaction Queue and retrieves the data
from the DRC queues. The bridge provides the requested data to the initiator and signals the
termination (other than Retry) that matches what was used on the target bus.

The bridge terminates the Delayed Completion transaction with:

• Completion termination if the transaction on the target bus terminated normally.

• Master-Abort termination or 1’s (the number of 1’s passed back, either 32-bit or 64-bit, is
based on the PCI bus size of the initiating master, and in the 64-bit bus size case,
REQ64#/ACK64#) if the transaction on the target bus terminated with Master-Abort. See
Section 14.10.1 for more information.

• Target-Abort termination if the transaction on the target bus terminated with Target-Abort.

• Disconnect termination if the transaction on the target bus terminated with Disconnect before
the prefetch data amount was reached.

Any additional data words read from the target by the bridge but not ultimately requested by the
initiator is discarded upon transaction completion from the DRC queue. The bridge does not follow
the termination rules above when it reads more data than is requested. The bridge terminates with
Completion termination if the initiator requests less data words than the bridge read from the target.
For example, if the bridge reads 8 Dwords from the target and is terminated with a Disconnect
while the initiator only reads four DWORDs, the bridge terminates with Completion termination.

Table 14-13. Upstream Memory Read Prefetch Size

Read Command

Prefetchable Memory Address Space Non-Prefetchable Memory Address
Space

CLS1 = 8
(32 bytes)

CLS = 16
(64 bytes)

CLS = 8
(32 bytes)

CLS = 16
(64 bytes)

Memory Read Up to 32 Bytes Up to 64 Bytes Up to 4 Bytes Up to 4 Bytes

Memory Read Line Up to 32 Bytes2 Up to 64 Bytes3 Up to 4 Bytes Up to 4 Bytes

Memory Read
Multiple Up to 128 Bytes Up to 128 Bytes Up to 4 Bytes Up to 4 Bytes
14-34 i960® RM/RN I/O Processor Developer’s Manual

PCI-to-PCI Bridge

nd of

=
 and
 or
R on

or.
If the expected number of prefetch data transfers are not received from the target for a Memory
Read Line or a Memory Read Multiple command, the bridge performs the same number of data
transfers to the initiator during the Delayed Read Completion transaction as it receives from the
target. For example, if the bridge, as a master, is disconnected by the target before reading the
prefetch amount and only receives 16 DWORDs from the target, the bridge, as a target only returns
16 DWORDs to the initiator during the Delayed Read Completion transaction. An additional read
transaction on the target bus is not issued to read the full prefetch amount as defined in Table 14-12
and Table 14-13.

If the initiator does not repeat the read transaction, the data and associated information may be
discarded (Section 14.11.4).

Under PCI Local Bus Specification Revision 2.1, the initiator must repeat the read transaction
exactly with the same address, byte enables, REQ64#, and command or the bridge treats the
transaction as a new request which results in a deadlock condition. To support PCI Specification,
rev. 2.0 devices, the bridge can be programmed to ignore the memory read command (Memory
Read, Memory Read Line, and Memory Read Multiple) when trying to match the current read
transaction on an initiating interface with data in a DRC queue which was read previously (DRC on
target bus). If the Read Command Alias Bit in the QCR register is set, the bridge does not
distinguish the read commands on transactions which where read through prefetchable address
space only. For example, the bridge enqueues a DRR with a Memory Read Multiple command and
performs the read on the target bus. Some time later, a PCI master attempts a Memory Read with
the same address as the previous Memory Read Multiple. If the Read Command Alias Bit is set and
the transaction was in prefetchable address space, the bridge initiating interface would return the
read data from the DRC queue and consider the Delayed Read transaction complete. If the Read
Command bit in the QCR was clear, or if the transaction was in non-prefetchable address space, the
bridge would not return data since the PCI read commands didn’t match, only the address (a
course byte enables).

The bridge only supports the linear incrementing burst mode for Memory commands (AD[1:0]
002). For a non-linear (AD[1:0] do not equal 002) Memory Read transaction, the bridge fetches
transfers one Dword of data and then signal a Disconnect to the initiator. For a non-linear MRL
MRM (prefetchable or non-prefetchable) transaction, the bridge converts the transaction to an M
the target bus, fetch and transfer one Dword of data, and then signal a Disconnect to the initiat
i960® RM/RN I/O Processor Developer’s Manual 14-35

PCI-to-PCI Bridge

face

e. The
14.6.4.1 Read Streaming

Once the target interface of the bridge starts reading memory data, the initiating interface of the
bridge allows the retried transaction access to the data in the DRC queue if there are at least 4
Dwords already in the queue. A target termination by the PCI slave on the target bus or the
completion of the prefetch data size overrides the programmed value (if necessary) and allows the
retrying master access to the data in the DRC queue.

If the PCI master on the initiating interface is granted access to the DRC queue on a retried
transaction, and the target interface of the bridge is filling, read streaming can occur. During read
streaming, the bridge unit is filling on the target interface and draining on the initiating interface
simultaneously. The following rules apply for read streaming:

• Read streaming only occurs for the following master/target transaction sizes:

— 32-bit request: 32-bit target

— 64-bit request: 64-bit target

— 32-bit request: 64-bit target

• Read streaming only occurs for prefetchable transactions (Table 14-11).

• The bridge unit reads beyond the prefetch read sizes to accommodate read streaming.

• Read streaming stops if the target performs a disconnect, the master terminates, or the 4 KB
read boundary is reached.

• The bridge unit never inserts target or master D-D waitstates on the initiating or target busses
to accommodate read streaming except as defined below.

To provide the maximum window of opportunity to stream read data, the bridge’s target inter
inserts up to 16 target waitstates (from the master’s assertion of FRAME#) when the master
attempts to complete a read during a delayed completion transaction on the initiating interfac
following rules apply to this situation:

• The initiating interface only inserts waitstates if the target bus has GNT# and has asserted
FRAME# for the read transaction matching the master on the initiating bus.

• Waitstates are inserted until read low watermark in the DRC queue. The read low watermark is
defined by QCR bits [9:8] and defaults to two Qwords.

• Once the read low watermark is reached the initiating interface asserts TRDY# for the first
time and start delivering data to the target.

• If the full 16 clocks has expired and the read low watermark has not been reached, the
initiating interface asserts STOP# signaling a Retry to the initiator.

• This mechanism is used for all prefetchable read transactions crossing the bridge.

14.6.4.2 Read Boundary

The bridge is required not to read past a 4 Kbyte read address boundary. This prevents a
prefetchable read access from crossing the boundary from a prefetchable range into a
non-prefetchable range. When the 4 Kbyte read address boundary is reached, the bridge signals a
Disconnect on the target bus.
14-36 i960® RM/RN I/O Processor Developer’s Manual

PCI-to-PCI Bridge
14.6.5 PCI Write Transactions

The i960 RM/RN I/O processor supports memory write and I/O write transactions from both sides of the
bridge unit. Memory write transactions are claimed if they are within the MBR/MLR or PMBR/PMLR
address pairs on the primary bus and outside the register pairs on the secondary bus. I/O Write transactions
are claimed if they are within the IOBR/IOLR write transactions on the primary bus and outside the
address pair on the secondary bus. Refer to the PCI Local Bus Specification Revision 2.1 for full details on
memory and I/O write transactions. Memory write commands are attempted as 64-bit transactions
(Section 14.6.3). I/O and configuration write commands are always performed as 32-bit operations.

The bridge supports both posted and delayed write transactions for memory transactions. I/O write
and configuration write transactions are always delayed transactions. The Posting Disable bit must be
clear in the Extended Bridge Control Register (EBCR) to allow posting to occur from either interface
of the bridge. If this bit is set, all write transactions are processed as delayed transactions.

14.6.5.1 Delayed Write Transactions

A Delayed write transaction is very similar to a Delayed read transaction. The bridge claims the
transaction on the initiating bus by asserting DEVSEL# and latch the address, command, byte
enables into a Transaction Queue, and data into a Delayed Write Completion (DWC) Queue. It then
signals a Retry to the initiator.

Delayed write transactions are limited to one data cycle of 4 bytes for I/O and configuration and 4
bytes for memory writes performed with posting disabled.

Delayed write transactions are used for:

• I/O Writes

• Configuration Writes

• All memory writes when the Posting Disable bit in the Extended Bridge Control Register
(EBCR) is set. This means the bridge limits all write commands to one PCI data phase (4
bytes) when this bit is set.

The bridge then initiates the same command on the target bus. Once the target bus has been obtained,
the bridge propagates the write data from the initiating bus to the target bus. The bridge keeps the
request information in a Transaction Queue and a DWC queue. The request information is the
address, command (including REQ64#), byte enables, parity (if enabled), and data.

Once the write data has been successfully transferred to the target by assertion of IRDY# and
TRDY# on the target bus, the bridge can now accept the repeated write command from the original
initiator. At this time, the bridge accepts the request and attempt to match it with the transaction
information in a Transaction Queue. The bridge must match the address, command, REQ64#, byte
enables, parity (if parity is enabled), and data in order to signal a termination other than Retry to the
initiator. The bridge unit uses the following terminations for delayed write cycles:

• Completion termination if the transaction on the target bus terminated normally.

• Master-Abort termination if the transaction on the target bus terminated with Master-Abort or
normal termination (Section 14.10.1.4, on page 14-55).

• Target-Abort termination if the transaction on the target bus terminated with Target-Abort.

The initiator must repeat the write transaction exactly with the same address, REQ64#, byte enables,
command, parity, and data or the bridge treats the transaction as a new request. If the initiator does not
repeat the write transaction, the data and associated information may be discarded (Section 14.11.4).
i960® RM/RN I/O Processor Developer’s Manual 14-37

PCI-to-PCI Bridge

t
ntee no
xists.
14.6.5.2 Posted Write Transactions

In a posted write transaction, the bridge accepts the write data and assert TRDY# to the initiating
bus before the data has been transferred to target interface for writing to the target bus. Once the
bridge has acquired the target bus, it transfers the write data to the target to complete the PCI
transaction (both IRDY# and TRDY# asserted on the target bus).

For downstream posted write transactions, the bridge contains a 128 byte FIFO queue (Posted
Memory Write Queue) for holding PMW data and separate address queue capable of holding up to
4 PMW transaction addresses (entries). For upstream posted write transactions, the bridge contains
a 256 byte FIFO queue and a separate address queue capable of holding up to 8 PMW transaction
addresses. This queue implementation holds any number of posted memory writes up to the data
queue depth and the size address queue. For example, the downstream queue could maintain two
posted write transactions:

1. PMW 1

• 20 bytes of data in data queue

• 4 bytes of address (1 entry) in address queue

2. PMW 2

• 74 bytes of data in data queue

• 4 bytes for address (1 entry) in address queue

For a total of 94 bytes of data and two transaction entries. Another example of a possible upstream
PMW Queue state could have the queue holding 4 transactions:

1. PMW 1

• 4 bytes for address (1 entry) in address queue

• 4 bytes of data in data queue

2. PMW 2

• 4 bytes for address(1 entry) in address queue

• 8 bytes of data in data queue

3. PMW 3

• 4 bytes for address in address queue

• 64 bytes of data in data queue

4. PMW 4

• 4 bytes for address (1 entry) in address queue

• 128 bytes of data in data queue

For a total of 204 bytes of data in the data queue and 4 entries in the address queue. New posted
memory write transactions are accepted in the PMW queues as long as there is enough data queue
space to hold the data (8 bytes) and one transaction entry.

If the bridge PMW queues reach one less than the full state (defined as 8 bytes free) and the bridge
has not acquired the target bus to transfer out data, the bridge signals a Disconnect to the initiator on
the initiating bus on the last transfer that would fill the PMW queue. A state may exist where a 64-bit
master is filling the PMW queue and the bridge unit is transferring to a 32-bit target on the target
interface. For this or any other bus configuration where the primary and secondary buses don’
maintain the same PCI bandwidths, the bridge PMW Queues maintain data integrity and guara
data is lost by disconnecting a filling master on an initiating bus before an overflow condition e
14-38 i960® RM/RN I/O Processor Developer’s Manual

PCI-to-PCI Bridge

ridge.

a 32-bit

signals

dress

sting

 set,

is only
ect after

te
e
s the

pace in
he

queue,
een
ce of
f
ndary
The PMW Queues are capable of streaming write data from an initiating bus to a target bus assuming no
prior PMW transactions exist in the PMW Queue (by the time the queue fills) being accessed and the
target interface is capable of acquiring the bus and the addressed target device. This can continue until
the target initiates termination (Disconnect or Target-Abort), the bridge initiates termination on the target
bus (Time-out), the PMW Queue fills, the transaction is an MWI and a full cacheline is not free in the
PMW Queue, or the initiator completes the required number of write transfers. In the situation where the
target bus transaction terminates while the initiator is still transferring data, the PMW Queue fills and a
Disconnect would occur in the same situation as when the initiator started the original transaction (see
previous paragraph). In addition, neither the primary or secondary interface of the bridge inserts target
waitstates (deassertion of TRDY#) or master waitstates (deassertion of IRDY#) to support the sustaining
of a streaming transaction through the bridge. The target interface of the bridge may insert master
waitstates to guarantee the transfer of an entire cacheline during Memory Write and Invalidate transfers.
See Section 14.6.5.4, “Memory Write and Invalidate Command” on page 14-39.

The bridge unit is capable of supporting simultaneous write posting in both directions across the b

When a memory write transaction is accepted on the initiating bus interface, and transaction
ordering supports the immediate draining of the current transaction (Section 14.7.2, on
page 14-46), the default is for the target bridge interface to assert REQ# once the first PCI
dataphase has been entered into the posted write queue. In this case, the PCI dataphase is
word if the master is driving 32-bits or a 64-bit word if the master is driving 64-bits.

The bridge only supports the linear incrementing burst mode for Memory write commands. The bridge
a Disconnect to the initiator after the transfer of the first data phase if the burst mode is not linear incrementing.

See Section 14.7.1.1 for complete details on posted memory write queues.

14.6.5.3 Memory Write Command

A PCI initiator uses the memory write command for transferring data to one of the memory ad
spaces defined in one or both of the MBR/MLR and the PMBR/PMLR register pairs. Memory
write transactions can be either posted or delayed transactions. This is determined by the Po
Disable bit in the Extended Bridge Control Register. If clear, posted transactions are used. If
delayed transactions are used.

Delayed Memory Write commands only transfer one 32-bit PCI data phase. This means FRAME#
asserted for one clock on the target interface and that the initiating interface signals a target Disconn
the first data transfer. Refer to the PCI Local Bus Specification Revision 2.1 for more details.

14.6.5.4 Memory Write and Invalidate Command

The Memory Write and Invalidate (MWI) command is essentially identical to the Memory Wri
command except it guarantees a minimum transfer of at least one cacheline as defined by th
Cacheline Size Register (CLSR). The initiating PCI master only allows the transaction to cros
predefined cacheline boundary if it intends to transfer the entire next cacheline.

The target interface of the bridge must guarantee that there is at least a enough free queue s
the PMW data queue to accept an MWI transaction. If this is not true, the MWI is retried on t
target bus. Once a full cacheline is accepted and the master continues bursting into the next
cacheline, this decision needs to be made again and so on. For example, if in the upstream
an MWI is active on the secondary bus, a full cacheline (32 bytes in this case) has already b
transferred, and the U_PMWD queue only has 24 free bytes available, the secondary interfa
the bridge performs a disconnect without data on the first data phase of the next cacheline. I
U_PMWD queue, in this case, had 32 bytes or more of free queue space available, the seco
interface would continue accepting the next cacheline.
i960® RM/RN I/O Processor Developer’s Manual 14-39

PCI-to-PCI Bridge
When the bridge accepts an MWI command which is terminated with a Master Abort on the target
bus, the bridge may disconnect the transaction before transferring an entire cacheline into the queue.

When the bridge accepts an MWI command which is terminated by the master before the entire
cacheline is transferred, the bridge completes the transaction using a Memory Write Invalidate
command to transfer the partial cacheline.

When the bridge accepts an MWI command which is disconnected by the target (on the target
interface) before the entire cacheline is transferred, the bridge completes the transaction using a
Memory Write command to transfer the partial cacheline. If the transaction is still in progress
(streaming), the bridge is free to disconnect the initiator with a target disconnect on the initiating
bus in the middle of a cacheline. No other action is taken by the bridge unit; no error is reported.

To satisfy the MWI command protocol, the target interface of the bridge deasserts IRDY# (master
waitstate) when a stream is occurring (data transferred on initiating and target interface
simultaneously) and the target interface is capable of a faster transfer rate than the initiating
interface. This can occur due to varying bus or target widths or master waitstates from the initiator
on the initiating bus. (When master waitstates are 3 or greater, this may cause the bridge to insert
more than 8 IRDY# wait-states between data phases on the target bus.)

The bridge unit converts a MWI command to a Memory Write command if the CLSR is
programmed to a value of 0 or if the Cacheline Size Register is programmed to a value other than 8
or 16. Refer to the PCI Local Bus Specification Revision 2.1 for the full details of a Memory Write
and Invalidate command.

If posting is disabled, the bridge does not allow the MWI command to appear on the target bus. The
bridge converts the MWI to a Memory Write and only allow one PCI data phase on the target bus.

If the MWI Alias bit is set in the Queue Control Register, the bridge accepts an MWI command as
long as the PMW queue is not in a full state. This means that there does not need to be at least a
cacheline of queue space free to accept the MWI. When the MWI Alias bit is set, the bridge target
interface aliases the MWI command to a Memory Write command for transfer to the PCI target.
MWI master rules do not apply. In addition, MWI transactions which start on a non-cacheline
boundary are treated as if the MWI alias bit is set, i.e. they are aliased to an Memory Write.

14.6.5.5 I/O Write Command

All I/O Write transactions are processed as Delayed transactions. The i960 RM/RN I/O processor is
restricted to 16-bit addressing for I/O transactions although it still must decode the full 32-bits of
address and verify that AD[31:16] = 0000H. The bridge claims any transaction inside the 16-bit
address range defined by the I/O Base and I/O Limit registers on the primary bus and outside the
address range on the secondary address bus.

14.6.5.6 Write Boundary

The bridge of the i960 RM/RN I/O processor imposes a naturally-aligned 4096 byte write
boundary for posted write transactions only. When the bridge unit detects a write boundary, the
initiating interface signals a Disconnect to the initiator and complete delivery of the write data
within the PMW Queue to the target interface. The write boundary can be considered an address
counter which is incremented by one for every byte of a burst transaction. The write boundary is
imposed when the lower 12 bits of the counter reach zero.
14-40 i960® RM/RN I/O Processor Developer’s Manual

PCI-to-PCI Bridge

 on

 on

 The
ontrol

ster.

hieve
ge

bus.
14.6.5.7 Qword Unaligned Memory Write Transactions

To minimize the number of null write transactions on the PCI bus, the bridge has the following
behavior for Qword (8 byte) unaligned write transactions:

• If the memory write transaction is completely posted within the bridge posted memory write queue
(upstream or downstream), and the transaction is QWORD aligned at both the head and tail of the
transaction, then the bridge attempts this as a 64-bit transaction (assuming the bus is defined as 64-bit).

• If the memory write transaction is in a streaming mode (active on initiating bus while the
target interface is acquired), the bridge attempts the transaction on the target bus based on the
initiating bus transaction width:

— 64-bit memory write transaction on initiating bus is attempted as a 64-bit transaction
the target bus

— 32-bit memory write transaction on initiating bus is attempted as a 32-bit transaction
the target bus

14.6.5.8 Fast Back to Back Transactions

The i960 RM/RN I/O processor bridge unit does not generate fast back to back transactions.
Fast Back to Back Enable bits in the Primary Command Register (PCR) and in the Bridge C
Register (BCR) are ignored.

The bridge unit is capable of accepting fast back to back transactions from the same PCI ma

14.7 Queue Architecture
The extensive queueing architecture in the i960 RM/RN I/O processor allows the bridge to ac
maximum PCI throughput between buses while keeping read latency to a minimum. The brid
unit queues are responsible for transferring all transactions from an initiating bus to a target
The queues are classified under the following 5 categories:

• Posted Memory Write Queue - used to forward posted memory write operations (Memory
Write, Memory Write and Invalidate) from an initiating bus to a target bus. By definition, the
data within a posted memory write queue has already completed on it’s source bus.

• Delayed Read Completion Queue - used to forward memory read (Memory Read, Memory Read
Line, Memory Read Multiple), configuration read, and I/O read data from the target bus back to the
initiating bus. Read data within a DRC Queue is the result of a Delayed Read Completion transaction
and is not considered “read” until delivered to the requesting master on the initiating bus.

• Delayed Write Completion Queue - used to forward I/O write and configuration write data
from the initiating bus to the target bus. Write data in a DWC queue is the result of a Delayed
Write Request transaction and is not considered written until delivered to the addressed PCI
slave on the target bus. The DWC Queue also returns the status of the write operation on the
target bus back to the master on the initiating bus.

• Transaction Queue - used to hold the address, REQ64#, and command of a delayed request
cycle. This includes all memory and I/O reads as well as all delayed write operations.

• Address Queue - used to hold the address and command of a posted memory write operation.

The bridge is capable of holding multiple posted memory writes and delayed reads in either
direction simultaneously. This high performance architecture requires strict adherence to
PCI-to-PCI bridge transaction ordering rules. The ordering requirements for the i960 RM/RN I/O
processor bridge architecture is defined in Section 14.7.2. Refer to the PCI Local Bus Specification
Revision 2.1, Appendix E for complete details on PCI transaction ordering.
i960® RM/RN I/O Processor Developer’s Manual 14-41

PCI-to-PCI Bridge
14.7.1 Queue Operation

Table 14-14 details a summary of the different queues present in the i960 RM/RN I/O processor
bridge unit.

1. MRL - Memory Read Line, MRM - Memory Read Multiple, MR - Memory Read (Non-Prefetchable is noted, Prefetchable oth-
erwise), MW - Memory Write, MWI - Memory Write & Invalidate, IOR - I/O Read, IOW - I/O Write, CD - Configuration Read,
CW - Configuration Write, DRR - Delayed Read Request, DWR - Delayed Write Request

Figure 14-1 contains a block diagram of the queues defined in Table 14-14. There are five different
types of queues in the bridge. Each queue type has a specific responsibility for either upstream or
downstream transactions. Detailed explanations of the queue types follow.

Table 14-14. Bridge Unit Queue

Queue
Mnemonic Queue Name Queue Size Transactions

Possible in Queue1

U_PMWD Upstream Posted Memory Write 256 Bytes MWI, MW

U_PMWAD Upstream Posted Memory Write Address 8 Entries
Address/Command MWI, MW

U_DRC0 Upstream Delayed Read Completion 0 128 Bytes MR, MRL, MRM

U_DRC1 Upstream Delayed Read Completion 1 128 Bytes MR, MRL, MRM

U_DRC2 Upstream Delayed Read Completion 2 4 Bytes Non-prefetchable
Read, IOR

U_DWC Upstream Delayed Write Completion 4 Bytes CW, IOW

U_TRQ0:2 Upstream Transaction Queues 0:2 Address / Command DRR address

U_TRQ3 Upstream Transaction Queue 3 Address / Command DWR address

D_PMWD Downstream Posted Memory Write 128 Bytes MWI, MW

D_PMWAD Downstream Posted Memory Write
Address

4 Entries
Address/Command MWI, MW

D_DRC0 Downstream Delayed Read Completion 0 64 Bytes MR, MRL, MRM

D_DRC1 Downstream Delayed Read Completion 1 64 Bytes MR, MRL, MRM

D_DRC2 Downstream Delayed Read Completion 2 4 Bytes Non-Pref MR, CR, IOR

D_DWC Downstream Delayed Write Completion 4 Bytes CW, IOW

D_TRQ0:2 Downstream Transaction Queues 0:2 Address / Command DRR address

D_TRQ3 Downstream Transaction Queue 3 Address / Command DWR address
14-42 i960® RM/RN I/O Processor Developer’s Manual

PCI-to-PCI Bridge
14.7.1.1 Upstream/Downstream Posted Memory Write Queue Structures

Each upstream and downstream PMW Queue structure consists of two separate queues: one for
data, one for address. The upstream data queue, U_PMWD, has a queue depth of 256 bytes and
moves write transactions from the secondary bus to the primary bus. The corresponding address
queue, U_PMWAD, holds the address of the posted memory write transactions. There are a total of
8 entries in the U_PMWAD for holding up to 8 SACs. DAC addresses are handled in a separate
address queue sitting beside the U_PMWAD for holding up to 8 DAC memory writes. If the write
transaction is a DAC cycle, the upper 32-bits of address is entered into this piece of the
U_PMWAD. Each entry is the address for the write data which exists in the U_PMWD queue. The
size of the data (transaction burst size) attached to each address queue entry is variable.

The downstream queue, D_PMWD, has a depth of 128 bytes and moves write transactions from
the primary bus to the secondary bus. The address queue, D_PMWAD, contains four address
entries for up to four SAC addresses. Downstream DACs are not supported. The queue operation is
the same as the upstream description.

Memory write transactions fill the tail of the queue on the initiating bus and are drained from the
head of the queue on the target bus. The following rules apply to the initiating bus interface and
govern the acceptance of data into the tail of the PMW Queue:

• A memory write operation claimed by the slave PCI interface on the initiating bus is accepted
into the queue if the data queue is in a non-full state and can accept at least one data phase and
the address queue has free space for the address. A non-full state for the data queues are
defined as:

— The length of a cacheline (determined by the Cacheline Size Register, see
Section 14.15.7) for Memory Write and Invalidate transactions.

A non-full state for the address queues are defined as one address entry (SAC or DAC).

A Retry is signaled if these conditions are not true when a transaction is first claimed by
the slave interface.

• If the PMW data queue reaches a full state while filling, a disconnect with data is signaled to
the master of the transaction on the data phase that fills the queue to a completely full state (no
queue bytes remaining).

Error conditions on the initiating bus take precedence over the previous rules. See Section 14.11
for error condition responses.

Memory write transactions are drained from the head of the queue when the master interface has
acquired bus ownership and transaction ordering and priority have been satisfied (Section 14.7.2).
A memory write transaction is considered drained from the queue when the entire amount of data
entered on the initiating bus has been accepted by the target. Error conditions resulting in the
cancellation of a write transaction (master-abort and target-abort) only flush the transaction at the
head of both the address and data queues. All other transactions within the queues are considered
still valid. When draining Memory Write and Invalidate transactions, the master interface may only
complete on cacheline boundaries (regardless of GNT# and the master latency timer).

Transactions entering the tail of an empty queue (no previous write transactions reside in queue)
are forwarded immediately to the head of the queue. A queue entry (4 bytes for 32-bit data and 8
bytes for 64-bit data) is immediately added to the tail of the queue when drained from the head of
the queue on the target bus. As a note, both the upstream and downstream PMW Queues do not
operate if the Posting Disable bit is set in the EBCR (Section 14.15.24). All write operations are
delayed and use the DWC Queues.
i960® RM/RN I/O Processor Developer’s Manual 14-43

PCI-to-PCI Bridge

s

 and

 space

byte

14.7.1.2 Upstream/Downstream Delayed Read Completion Queues

The Delayed Read Completion Queues (DRC) in the bridge hold the read data obtained during a
read completion cycle on the target bus of a Delayed Read Request transaction. The bridge unit has
three DRC Queues for each direction of data through the bridge unit. These DRC Queues are
different sizes allowing for larger read prefetch sizes when Memory Read Line and Memory Read
Multiple commands are used. I/O Reads and Configuration Reads are constrained to the 4 byte
queues on each side of the bridge (Table 14-14 “Bridge Unit Queue” on page 14-42).

Only the data from a delayed read completion cycle is stored in the DRC queue. The addres
latched from the delayed read request cycle on the initiating bus is stored in the dedicated
transaction queues. U_DRC0 through U_DRC2 use U_TRQ0 through U_TRQ2 respectively
D_DRC0 through D_DRC2 use D_TRQ0 through D_TRQ2 respectively.

Transaction queues U_TRQ0, U_TRQ1, and U_TRQ2 have an additional 32-bits of address
for holding the upper 32-bits of an upstream DAC read transaction. Upstream DACs are
constrained to U_DRC0, U_DRC1, and U_DRC2.

To maximize read throughput, the larger DRC queues are assigned to the memory read hint
commands to maximize the amount of data read on the target bus interface. I/O Reads,
Configuration Reads, and non-prefetchable Memory Reads are assigned to the dedicated 4
queues. The assignment schemes are in Table 14-15 for the downstream read queues and
Table 14-16 for the upstream read queues. Refer to Table 14-12 for downstream read prefetch data
sizes and Table 14-13 for upstream read prefetch sizes.

Table 14-15. D_DRC Assignments

PCI Command
Queue Assignment

Prefetch Non-Prefetch

Memory Read Multiple 64 Byte Queue 4 Byte Queue

Memory Read Line 64 Byte Queue 4 Byte Queue

Memory Read 64 Byte Queue 4 Byte Queue

I/O Read N/A 4 Byte Queue

Configuration Read N/A 4 Byte Queue

Table 14-16. U_DRC Assignments

PCI Command
Queue Assignment

Prefetch Non-Prefetch

Memory Read Multiple 128 Byte Queue 128 Byte Queue

Memory Read Line 128 Byte Queue 128 Byte Queue

Memory Read 128 Byte Queue 4 Byte Queue

I/O Read N/A 4 Byte Queue
14-44 i960® RM/RN I/O Processor Developer’s Manual

PCI-to-PCI Bridge
The exact amount of data read by the master state machine on the target interface depends upon the
size of the queue assigned to the request cycle, read command used, prefetchable or
non-prefetchable, and how much data the PCI target device delivers. Table 14-12 and Table 14-13
show the amounts of data attempted to be read for the different memory read commands in
prefetchable and non-prefetchable address spaces. If an entry in Table 14-12 and Table 14-13 states
a prefetch size of 128 bytes and the target PCI device on the target bus disconnects the bridge
master interface before reaching the prefetch size, the DRC is complete on the target bus and is
allowed to be returned to the initiator. Additional cycles are not initiated to fill the DRC queue to
the predefined prefetch data size. PCI error conditions override all prefetch amounts
(i.e., master-abort and target-abort conditions).

Filling the DRC Queues on the target bus only occurs when the DRR cycle in the dedicated
Transaction Queue has satisfied priority and transaction ordering. Once the DRC cycle is complete
on the target bus, it remains in the DRC Queue until the master on the initiating bus performs a
Retry cycle with the same address and command as the initial read request cycle. The DRC
transaction remains in the DRC Queue until retrieved by the master or until the discard timer
attached to the queue has expired. Section 14.11.4 explains discard timer operation. When the
master does retrieve the data from the DRC queue, the only amount returned is what the master
asks for. Any data left in a DRC queue after the master has performed a master completion is
invalidated. The bridge unit slave state machine on the initiating bus only disconnects the read in
response to a disconnect on the target bus during the DRC completion cycle on an error condition.
See Section 14.11 for all bridge error states.

14.7.1.3 Upstream/Downstream Delayed Write Completion Queue

The upstream and downstream Delayed Write Completion Queues hold the data from a delayed
write cycle moving from the initiating bus to the target bus. The upstream and downstream DWC
Queues are each 4 bytes in length with one per side of the bridge unit. When a delayed write cycle
is claimed by the initiating side of the bridge, the write data is entered into the DWC queue and the
initiator is issued a Retry. The address and command information for the delayed write cycle is held
in a Transaction Queue. Each DWC Queue has a dedicated Transaction Queue. D_DWC used
D_TRQ3 and U_DWC uses U_TRQ3. The DWC queue holds all I/O Write and Configuration
Write data. In addition, if write posting is disabled all Memory Write and Memory Write and
Invalidate commands are delayed and uses the initiating bus DWC Queue.

During the write request cycle on the initiating bus, the slave interface of the bridge claims the
delayed write cycle. If the DWC Queue is busy (and the transaction in x_TRQ3 does not match)
then the cycle is retried immediately since only one DWC queue exists per side of the bridge and
each one is only capable of holding the data from one transaction at a time. If the DWC Queue is
empty, the data from the write request cycle is latched into the DWC for delivery to the target bus.
The queue is 4 bytes only since all delayed write cycles are a maximum of 32-bits in length.

The DWC Queue is drained on the target bus of the delayed write cycle during the Delayed Write
Completion phase after transaction ordering and priority are satisfied. The address from the
x_TRQ3 queue is presented and the data for the write is drained from the DWC Queue. Once the
data is accepted the DWC Queue is responsible for returning the completion status of the cycle
from the target bus back to the initiating bus. This completion is then delivered back to the original
master. This completion is either normal master completion, target disconnect, or one of the error
conditions discussed in Section 14.11.

When the retry cycle occurs on the initiating bus, the DWC Queue is used to match the data and
byte enables from the retry cycle to the request cycle. This is different than delayed reads which
only use the address, byte enables, REQ64#, LOCK#(for downstream transactions only), and
command to determine if there is a cycle match.
i960® RM/RN I/O Processor Developer’s Manual 14-45

PCI-to-PCI Bridge
14.7.1.4 Upstream/Downstream Transaction Queues

The upstream and downstream Transaction Queues are used to hold the address and command
information from a delayed read or delayed write request cycle. The address within the Transaction
Queue is latched on the initiating bus and is presented on the target bus during the delayed
completion cycle. Once the delayed completion cycle is enqueued in the completion queue (data
for reads, status for writes), the Transaction Queue is used in determining which PCI transaction on
the initiating bus is the retried transaction of the original request cycle.

The choice of which Transaction Queue for reads (U_TRQ0 - U_TRQ2 and D_TRQ0 - D_TRQ2)
is determined from the information in Section 14.7.1.2. The Transaction Queues for write
(U_TRQ3 and D_TRQ3) are dedicated.

The Transaction Queues are loaded during the request cycle on the initiating bus and are only
invalidated when a PCI master retries the original request transaction on the initiating interface or
when a discard timer attached to the associated data queue expires.

For Dual Address Cycles initiated on the secondary interface, the Transaction Queues are capable
of holding the upper 32-bits of address in a separate set of queues.

14.7.2 Transaction Ordering

Because the bridge can process multiple transactions simultaneously, it must maintain proper
ordering to avoid deadlock conditions and improve throughput. The PCI-to-PCI Bridge transaction
ordering rules used by the i960 RM/RN I/O processor are listed in Table 14-17.

These transaction ordering rules define the base line operation for the way in which data moves in
both directions through the PCI-to-PCI Bridge. In Table 14-17 a NO response in a box means that
based on ordering rules, the current transaction (the row) can not pass the previous transaction (the
column) under any circumstance. A Yes response in the box means that the current transaction is
allowed to pass the previous transaction but is not required to do so. This table is derived from
Appendix E of the PCI Local Bus Specification Revision 2.1.

In the case of bridge posted memory write operations, multiple transactions may exist within the
PMW Queue at any point in time. The ordering of these transactions is based on a time stamp basis.
Transactions entering the queue are stamped with a relative time in relation to all other transactions
moving in a similar direction.

Table 14-17. Bridge Transaction Ordering Rules

Row Pass Column?

Posted
Memory

Write
(PMW)

Delayed
Read

Request
(DRR)

Delayed
Write

Request
(DWR)

Delayed
Read

Completion
(DRC)

Delayed
Write

Completion
(DWC)

Posted Memory Write
(PMW) No Yes Yes Yes Yes

Delayed Read Request
(DRR) No Yes Yes Yes Yes

Delayed Write Request
(DWR) No Yes No Yes No

Delayed Read Completion
(DRC) No Yes Yes Yes Yes

Delayed Write Completion
(DWC) Yes Yes No Yes No
14-46 i960® RM/RN I/O Processor Developer’s Manual

PCI-to-PCI Bridge
In Figure 14-10, the downstream write data queue (D_PMWD) and an upstream read completion queue
(U_DRC0) of the bridge are shown. In this example, transaction A entered the write queue at Time 0. Next,
the bridge entered read completion data into the upstream read queue at Time 1 (Transaction B). Finally,
before the previous transactions could be cleared, another downstream write, Transaction C, was entered
into the downstream write data queue. The ordering in Table 14-17 states that nothing can pass a PMW and
therefore Transaction A must complete on the secondary bus before Transaction B is allowed to complete
since an upstream read completion can not pass a downstream posted memory write. Also, Transaction A
must complete before Transaction C since a PMW can not pass another PMW. Once Transaction A
completes, Transaction C moves to the head of the downstream posted memory write queue. The two
transactions at the head of the queues moving data in downstream direction are now Transaction C, a
downstream posted memory write, and Transaction B, an upstream read completion. Ordering states that a
PMW may pass a read completion. This means that the priority mechanism now takes over to decide which
completes since a YES condition from Table 14-17 is now present. In this case, if the PCI master on the
secondary bus acquires the secondary bus first, Transaction B is completed. If the secondary interface of the
bridge acquires the secondary bus first, Transaction C is completed. Note that ordering enforced the
completion of Transaction A but priority dictated the completion of Transactions B and C.

The first action performed to determine which transaction is allowed to proceed (either upstream or
downstream) is to apply the rules of ordering as defined in Table 14-17. Any box marked No must
be satisfied first. For example if a downstream read request is in the D_TRQx queue and it was
latched after the data in the D_PMW arrived, then ordering states that a Read Request may not pass
a Posted Memory Write; therefore the Posted Memory Write must be cleared out of the D_PMW
before the Read Request is attempted on the secondary bus.

Table 14-18 summarizes the transaction ordering tables in relation to token assignment of the
priority mechanism. This table is read as follow:

1. As the transaction reaches the head of the respective queue, the question in column 2 is asked.

2. Based on the answer in column 3, either a token is assigned or no token is assigned signifying
that transaction ordering must first be satisfied. Note that if the answer is Yes/No in column 3,
the Action in column 4 is for either a Yes or a No.

Figure 14-10. Downstream Data Path Queue Completion

Upstream Delayed Read Completion Queue 0

Downstream Posted Memory Write Queue

B B B B B B B B

AAAAAAAACCCCCCC

Upstream Delayed Read Completion Queue 0

Downstream Posted Memory Write Queue

B B B B B B B B

CCCCCCCC
i960® RM/RN I/O Processor Developer’s Manual 14-47

PCI-to-PCI Bridge
1. Allow previous Transaction to Complete

Table 14-18. Bridge Transaction Ordering and Priority Mechanism

Transaction at
Head of Queue Question Answer Action

Posted
Memory Write

in PMWD

Is there a DRR in a TRQ0:2 queue with an earlier time
stamp? Yes/No Assign Token

Is there a DRC in DRC0:2 with an earlier time stamp? Yes/No Assign Token

Is there a DWR in TRQ3 with an earlier time stamp? Yes/No Assign Token

Is there a DWC in DWC queue with an earlier time
stamp? Yes/No Assign Token

Delayed Read
Request in

TRQ0:2

Is there a PMW in the PMWD queue with an earlier
time stamp? Yes Do Not Assign Token1

Is there a PMW in the PMWD queue with an earlier
time stamp? No Assign Token

Is there a DRR in a TRQ0:2 queue with an earlier time
stamp? Yes/No Assign Token

Is there a DRC in DRC0:2 with an earlier time stamp? Yes/No Assign Token

Is there a DWR in TRQ3 with an earlier time stamp? Yes/No Assign Token

Is there a DWC in DWC queue with an earlier time
stamp? Yes/No Assign Token

Delayed Write
Request in

TRQ3

Is there a PMW in the PMWD queue with an earlier
time stamp? Yes Do Not Assign Token1

Is there a PMW in the PMWD queue with an earlier
time stamp? No Assign Token

Is there a DRR in a TRQ0:2 queue with an earlier time
stamp? Yes/No Assign Token

Is there a DRC in DRC0:2 with an earlier time stamp? Yes/No Assign Token

Is there a DWC in DWC queue with an earlier time
stamp? Yes/No Assign Token

Delayed Read
Completion in

DRC0:2

Is there a PMW in the PMWD queue with an earlier
time stamp? Yes Do Not Assign Token1

Is there a PMW in the PMWD queue with an earlier
time stamp? No Assign Token

Is there a DRR in a TRQ0:2 queue with an earlier time
stamp? Yes/No Assign Token

Is there a DRC in DRC0:2 with an earlier time stamp? Yes/No Assign Token

Is there a DWR in TRQ3 with an earlier time stamp? Yes/No Assign Token

Is there a DWC in DWC queue with an earlier time
stamp? Yes/No Assign Token

Delayed Write
Completion in

DWC

Is there a PMW in the PMWD queue with an earlier
time stamp? Yes/No Assign Token

Is there a DRR in a TRQ0:2 queue with an earlier time
stamp? Yes/No Assign Token

Is there a DRC in DRC0:2 with an earlier time stamp? Yes/No Assign Token

Is there a DWR in TRQ3 with an earlier time stamp? Yes/No Assign Token
14-48 i960® RM/RN I/O Processor Developer’s Manual

PCI-to-PCI Bridge
14.8 Bridge Data Flow

The bridge allows transactions to cross both PCI buses through the i960 RM/RN I/O processor.
PCI transactions initiated on the primary PCI bus and targeted at an agent on the secondary PCI bus
are referred to as downstream transactions and PCI transactions initiated on the secondary PCI bus
and targeted at an agent on the primary PCI bus are referred to as upstream transactions.

Upstream and downstream bridge transactions are best described by the data flows used on the
initiating and target bus during read and write operations. The following sections describe:

• Delayed Read transactions

• Delayed Write transactions

• Posted Write transactions

Separate upstream and downstream transactions are not shown but have identical data flows except
that the references to initiating interface and target interface are reversed.

14.8.1 Delayed Read Transaction

A delayed read transaction is initiated by a PCI master on the initiating PCI bus and is targeted at a
PCI agent on the target PCI bus. The read transaction is propagated through the bridge and read
data is returned through a Delayed Read Completion Queue (DRC).

All read transactions are processed as delayed read transactions. The PCI slave interface on the
initiating bus of the bridge claims the read transaction and store the read address and control
information in a bridge Transaction Queue. This read request is then forwarded to the target bus.
The target bus master interface then performs the read from a PCI target and store the returning
read data in a Delayed Read Completion Queue. The original PCI master on the initiating bus
continuously retries the read transaction until the slave interface on the initiating bus claims the
transaction and returns the read data present in the DRC Queue. The data flow for a delayed read
transaction is summarized in the following statements:

• The Bridge claims the PCI read transaction if the PCI address is within the address window
defined by a Base/Limit register pair and a Transaction Queue is available to retain the
address/control information to forward to the target bus.

• If there is currently an available Transaction Queue, then latch the PCI address into
Transaction Queue and then signal a Retry to the initiator.

• If an address parity error is detected, allow the transaction to master-abort and assert SERR#.
This assumes parity checking is enabled and SERR# assertion is enabled.

Note: SERR# is not asserted on the secondary bus interface, only on the primary bus interface, see
Section 14.11.1).

• If the transaction is inside an address window and a Transaction Queue is not available or it is
inside an address window, A cycle match occurs but the read data is not ready (!DRC_Ready),
then retry the transaction.

• If the transaction is inside an address window, a cycle match occurs, the read data is ready in the
DRC (DRC_Ready), then return the read data to the master device. Data is returned 64-bits wide
if the master used REQ64# during the request or 32-bits at a time if REQ64# was not asserted.
i960® RM/RN I/O Processor Developer’s Manual 14-49

PCI-to-PCI Bridge

ueue).
• Once read data has started to be driven onto the initiating PCI bus from a DRC Queue, it
continues to be driven until one of the following is true:

— The initiator completes the PCI transaction, master-completion.

— The DRC Queue becomes empty.

— A target-abort condition is driven out from the DRC Queue.

• If a data parity error is detected by the master and PERR# is asserted, set the appropriate error
response bits (if enabled, see Section 14.11.2).

The target PCI interface initiates the read transaction with the PCI address and command used on
the initiating bus and then put the return data into a DRC Queue to return it to the initiating PCI
bus. The data flow is summarized in the following statements:

• The bridge PCI master interface on the target bus requests the PCI bus when an read request
address is written to a Transaction Queue.

• Once the bus is granted to the bridge interface for the read transaction, the target bus master
interface initiates a read transaction with the same address and command used on the initiating
interface. If the read is a memory read (and a 64-bit bus is enabled) the bridge asserts REQ64#
attempting to use 64-bit data phases. If the bus is not 64-bit enabled or it is an I/O or
Configuration Read, REQ64# is not asserted.

• If the transaction is claimed and retried, the bus interface re-attempts the transaction. If the
master interface receives a master-abort, a master-abort condition is loaded into the DRC
Queue for return to the master on the initiating bus. The condition loaded is dependent on the
Master Abort bit in the BCR. See Section 14.10.1.4 for details.

• Once the read transaction is claimed, the bridge master interface reads data from the PCI
target. If ACK64# is asserted data is read 64-bits at a time. If ACK64# is not asserted, data is
read 32-bits at a time.

• The master interface continues to read data until one of the following is true:

— The prefetch amount of DWORDs specified in Table 14-12 is reached.

— The target disconnects the transaction.

— A PCI time-out occurs.

— The target performs a target-abort (this condition is returned and loaded into the DRC Q

— The bridge’s master interface encounters a 4 Kbyte boundary.

• If parity checking is enabled and a data parity error is detected, the master interface asserts
PERR# and continue reading data until one of the previous conditions is true.

14.8.2 Delayed Write Transaction

A delayed write transaction is initiated by an agent on the initiating PCI bus and is targeted at a PCI
agent on the target PCI buses. I/O and Configuration writes as well as memory writes with posting
disabled are processed as delayed writes. The delayed write request address is propagated from the
initiating PCI bus to the target PCI bus through a Transaction Queue. The delayed write request
data is propagated to the target bus in a Delayed Write Completion (DWC) Queue. Completion
status is returned to the master on the initiating bus during a retry cycle.
14-50 i960® RM/RN I/O Processor Developer’s Manual

PCI-to-PCI Bridge
The data flow for a delayed write transaction on the PCI bus is summarized in the following statements:

• The Bridge claims the PCI write transaction if the PCI address is within an address window
defined by a Base/Limit register pair, the Delayed Write Completion Queue is available (if DWC
is free, the associated Transaction Queue is free by architectural definition), and it is a delayed
write PCI transaction (I/O writes, Configuration Writes, Memory Writes with posting disabled).

• The address is written to the Transaction Queue in anticipation of capturing the data for the
delayed write request.

• If an address parity error is detected (if enabled), the Transaction Queue is cleared and the
transaction is allowed to master-abort. SERR# is asserted if enabled and on the primary bus.

• The assertion of STOP#, to Retry the transactions, by the bridge unit is delayed until the
assertion of PAR by the master so parity can be calculated. If parity is good, the transaction is
retried and the delayed write request can proceed to the target interface.

• If a data parity error is detected and parity response is enabled, the transaction is claimed (not
retried) with the assertion of TRDY# and PERR# is asserted if enabled. The delayed write
request is cleared from the queues and is not forwarded to the target interface.

• If subsequent transactions from the master on the initiating bus are inside the address window,
the DWC is not cleared, and there is no cycle match or the write has not completed on the
target interface (!Write_Complete), the transaction is retried immediately.

• If subsequent transactions are inside the address window, the DWC is not cleared, there is a cycle
match, and the transaction has already completed on the target bus, then the bridge unit slave
interface compares the write data from the master with the write data that was used in the delayed
request cycle. If the data matches (with no parity error detected) then the status seen on the target
bus is returned and a disconnect is performed. Note that the status returned is exactly what was
seen from the target on the target bus i.e. target-abort, parity error or normal completion.

• If a parity error is detected from the data being written from the initiating master, the bridge
slave interface claims the transaction and assert PERR# if enabled. Since the data has not
matched with the data from the write request cycle, the transaction remains enqueued.

The PCI master target interface is responsible for issuing the write completion transaction to a PCI
agent using the data in the DWC Queue and the address/command from the Transaction Queue. The
data flow for a delayed write transaction on the target bus is summarized in the following statements:

• The master interface on the target PCI bus requests the PCI bus when after address and data
from the request cycle have been received and ordering has been satisfied (Section 14.7.2).
Once the bus is granted, the target PCI interface writes the PCI address to the PCI bus and wait
for the transaction to be claimed.

• If an address parity error is detected by an agent on the bus, SERR# may be asserted.

• If the transaction on the bus receives a master-abort, the appropriate master abort condition is
loaded into the DWC queue for return to the PCI master on the initiating bus. Refer to
Section 14.10.1.4 for master-abort conditions.

• If the PCI target signals a Retry or Disconnect, the master interface returns to idle. If the PCI
target signals claims the transaction, the 32-bit data is transferred to the target in a single data
phase (all delayed writes are performed as 32-bit operations.). The master/target response is
captured for return to the master on the initiating bus. The following conditions are possible:

— Master Completion - Normal Completion

— Target Abort

— Data Parity Error

The Write_Complete flag is set indicating to the initiating interface that the write
completion cycle is complete.
i960® RM/RN I/O Processor Developer’s Manual 14-51

PCI-to-PCI Bridge

nect

he

lts in
14.8.3 Posted Write Transaction

A posted write transaction is initiated by a PCI master on the primary PCI bus and is targeted at a
PCI agent on the secondary PCI bus. The address and data from the master on the initiating bus is
written to the Posted Memory Write (PMW) Queue for delivery to the target bus. Posted memory
write operations complete on the initiating bus before they complete on the target bus.

The data flow for a posted write transaction on the PCI bus is summarized in the following statements:

• The Bridge claims the PCI write transaction if the PCI address within the address window
defined by a Base/Limit register pair. If the PMW Queue is full (defined as not enough buffer
space to hold the address and at least one data phase) the transaction is retried. If the memory
write transaction is inside the address window and the PMW Queue is not full (and posting is
enabled) the transaction is claimed and the address is entered into the PMW Queue.

• If an address parity error is detected from the master. SERR# is asserted (if enabled and the
initiating bus is the primary bus) and the transaction is allowed to master-abort.

• Once the PCI address is in the PMW Queue, the PCI interface can start accepting write data
and store it in the PMW Queue. If REQ64# was asserted by the master, 64-bit data is received.
If REQ64# was not asserted by the master, 32-bit data is received. The PCI interface continues
accepting write data until one of the following is true:

— The initiator completes the transaction - master completion.

— The PMW Queue becomes full. In this case, the PCI slave interface signals a discon
to the master and return to idle.

• If a data parity error is detected, the slave interface asserts PERR# (if enabled). No other action
is taken and the reception of write data continues.

The PCI interface is responsible for completing the posted write transaction to a PCI agent using
the address/data in the PMW Queue. The data flow for the posted write transaction on the target
PCI bus is summarized in the following statements:

• The master interface on the target PCI bus requests the PCI bus when posted write transaction
address is at the head of the PMW Queue and transaction ordering has been satisfied
(Section 14.7.2). Once the bus is granted, the target PCI interface writes the PCI address from
the PMW Queue to the PCI bus and wait for the transaction to be claimed.

• If an address parity error is detected by the assertion of SERR# on the target interface, the error
is recorded. The action taken by the interface depends on the targets response to the parity
error. If a master abort is used, see the following section.

• If a master-abort is signaled, the master-abort condition is used. This could be either flushing the
write data, asserting P_SERR#, or signaling a disconnect. Refer to Section 14.10.1.4 for details.

• Once the PCI write transaction is claimed, the PCI interface transfers data from the PMW
Queue to the PCI bus. If ACK64# is asserted, data is transferred 64-bits at a time. If ACK64#
is deasserted, data is transferred 32-bits at a time. Data is transferred to the bus until one of the
following is true:

— The PCI target signals Disconnect.

— The PCI target signals a Target-Abort. In this case, the PMW Queue is flushed and t
transaction is aborted.

— The PMW Queue become empty signifying that the transaction is finished. This resu
a master completion.

• If the transfer is an MWI, the bridge target bus interface may have to insert master waitstates to
guarantee to transfer of an entire cacheline of data (defined by the value in the CLS register).

• If a data parity error is detected by the target (PERR# driven) and it is not a result of an error
propagated from the initiating interface, the bridge master interface logs the error and asserts
P_SERR#, if enabled, on the primary bus. Refer to Section 14.11.2.3 for details.
14-52 i960® RM/RN I/O Processor Developer’s Manual

PCI-to-PCI Bridge

ich
14.9 Exclusive Access

The bridge supports the PCI exclusive access mechanism using the P_LOCK# signal for
downstream accesses only. The bridge ignores the S_LOCK# signal for upstream accesses.

Note: PCI Masters on the secondary bus should not attempt to perform upstream locked transactions.
Doing so may cause the PCI system to enter a state which prevents the secondary locking master
from completing the locked request enqueued in the bridge, resulting in a system livelock.

The bridge establishes itself as a locked target during a Delayed Read Request on the primary PCI
bus when P_LOCK# is deasserted in the address phase. When the bridge detects a downstream
locked read request, a bridge lock sequence is started. This sequence is a series of state transitions
which, when completed, leaves the bridge “locked” from all masters except for the master wh
owns the P_LOCK# resource.

These states, and their transition criteria, are described in detail in Table 14-19.

Table 14-19. LOCK# Operation State Definitions

State
Primary Interface Secondary Interface Transition

Operation Definition Operation Definition Transition

Unlocked Unrestricted
Accept all

transactions
on interface‘

Unrestricted
Accept all

transactions
on interface

Move to Secondary Locking
when locked DRR received on
primary interface

Secondary
 Locking Restricted

All new
downstream
transactions

retried.

Unrestricted
Accept all

transactions
on interface

Move to Primary Locking
when bridge has finished
mastering the locked request on
the secondary interface. If an
abort occurs while mastering
this transaction the bridge
transitions directly to the
Unlocking state.

Primary
Locking Restricted

All new
downstream
transactions

retried.

Restricted

All new
upstream

transactions
retried

Upon completion of the locked
request the bridge transitions
to Locked state. If the DRC’s
discard timer expires before
the transaction is completed,
the bridge transitions directly to
the Unlocking state.

Locked Restricted

Only accepts
downstream
transactions

from lock
master

Restricted
All upstream
transactions

retried

Moves to Unlocking when Lock
master on primary interface
releases P_LOCK# signal. If an
abort occurs while mastering a
locked transaction, the bridge
releases the S_LOCK# signal
and transition to the Unlocking
state.

Unlocking Restricted

All new
downstream
transactions

retried

Restricted
All upstream
transactions

retried

Moves to the Unlocked state
as soon as the bridge has
completely emptied all of its
transaction queues. Note: In
certain error situations this may
require that the discard timers
be used to remove transactions
which cannot otherwise be
completed.
i960® RM/RN I/O Processor Developer’s Manual 14-53

PCI-to-PCI Bridge

locked
tion

rates

am
ked
ondary
sure

 these

ld
nt a

ust
try (with

ter or
If an abort (Section 14.9.1) occurs, either while locked or while attempting to lock, or the discard
timer associated with a locked transaction expires, the bridge transitions to the Unlocking state. If
this occurs due to an abort, any remaining enqueued requests are forwarded as unlocked
transactions. This ensures that the bridge makes every attempt to pass the lost lock status back to
the initiating master before accepting more transactions.

Downstream lock transactions must begin with a delayed read request (DRR) from the lock master.
If a PCI master tries to establish a lock with a write transaction using any PCI write command, the
primary interface accepts the write transaction as an unlocked transaction and forwards it to the
secondary interface without asserting S_LOCK#.

Systems which implement multiple i960 RM/RN I/O processor’s must be aware that there are
situations which can cause lockup conditions if downstream masters are allowed to generate
transactions. These lockup conditions can arise due to interactions between the PCI transac
ordering rules and the requirement to restrict transaction forwarding through the bridge while
locking or locked. This should not present a problem as the only master which typically gene
locked transactions is the system host, located on the uppermost PCI bus.

Several other precautions are worth noting for systems that forward transactions to downstre
targets. Since the PCI specification requires that the lock resource be released when the loc
master’s transaction aborts, situations may arise in which the bridge loses its lock on the sec
bus before the initial locked master is ready to release its lock. The system designer must en
that the bridge is configured to allow error or abort status to be reflected upstream to handle
situations, otherwise data integrity may be compromised in the shared resource.

Finally, since the bridge is required to transition through the Unlocking state before returning to
Unlocked, the bridge must be able to empty all of its transaction queues. Discard timers shou
never be disabled, since timing out may be the only means of emptying the bridge in the eve
master is unable to complete an enqueued transaction.

14.9.1 Secondary Interface Error Handling

The PCI Local Bus Specification Revision 2.1 states that a master which has lost it’s bus lock, m
deassert LOCK#. An issue arises because the specification also states that a master must re
LOCK#) all locked outstanding transactions already attempted on the bus.

The secondary interface of the bridge uses the following rules when an abort condition (mas
target) is encountered from a target on the secondary interface:

• Deassert S_LOCK# as masters are required to do when an abort condition is encountered.

• Put the bridge into the Unlocked state (see Table 14-19).

• Convert all remaining requests within the bridge into non-locked transactions and let them complete
(locked completions complete as locked). This includes any outstanding delayed requests.

The converted transactions (on the secondary interface) may be accepted as new transactions by
any downstream bridges. The original master on the initiating bus releases P_LOCK# when the
abort condition is reported. This may leave delayed locked requests within downstream bridge
queues which can only be removed by the action of the Discard Timers. In the case of posted write
transactions, it is up to software to use P_SERR# to determine that the transaction aborted on the
target interface.
14-54 i960® RM/RN I/O Processor Developer’s Manual

PCI-to-PCI Bridge

ith
and
 the
e sets
14.10 PCI Transaction Termination

PCI creates a mechanism for both PCI initiators and PCI targets to prematurely terminate a
transaction. As a PCI master (initiator), a device can terminate a transaction when it is complete or
when an error condition occurs. As a slave (target), a PCI device can only terminate when an error
condition occurs. While transaction termination can be initiated by either a master or a target,
ultimately it is up to the master to bring a PCI transaction to an orderly conclusion. As a bridge
device, the target interface is responsible for this on the target bus. A PCI transaction is considered
concluded when both FRAME# and IRDY# are both deasserted indicating a PCI IDLE cycle.

14.10.1 Termination as a Master (Initiator)

The target interface of the bridge unit, acting as a PCI master, terminates a PCI transaction under
the different situations described in the following sections.

14.10.1.1 Completion

The target interface completes the transaction in response to a completion on the initiating
interface. Completion termination occurs when the initiator bus has FRAME# and IRDY#
deasserted. FRAME# is always deasserted during the second to last data transfer of a transaction.
Refer to the PCI Local Bus Specification Revision 2.1.

14.10.1.2 Time-out

A time-out occurs when the GNT# signal is deasserted on the target bus and the associated master
latency timer has expired (Section 14.6.2.1). A normal termination occurs on the target interface
(except when Memory Write and Invalidate is in progress). See the next section for the Memory
Write and Invalidate case.

14.10.1.3 Time-out during Memory Write and Invalidate

If target interface time-out occurs during a Memory Write and Invalidate transaction, the bridge
retains ownership until an entire cacheline has been transferred from the PMW Queues. Refer to
the PCI Local Bus Specification Revision 2.1.

14.10.1.4 Master-Abort

A Master-Abort is used when no target responds with a DEVSEL# within 5 clocks after the
assertion of FRAME#. The i960 RM/RN I/O processor bridge unit has two mechanisms for
handling Master-Aborts. The mechanism depends on the Master Abort Mode bit in the Bridge
Control Register (BCR).

When the Master Abort Mode bit is cleared, the bridge is operating in a PC compatibility mode.
When a read transaction crosses the bridge in this mode and the target interface signals a
Master-Abort, the bridge returns all 1’s (32-bits wide or 64-bits wide based on the size of the
initiating PCI bus) to the initiator during the repeated transaction and terminates normally (w
TRDY#) on the initiating interface. When a write transaction crosses the bridge in this mode
the target interface signals a Master-Abort, the bridge completes the transaction normally on
initiating interface and discards the write data on the target interface. In both cases, the bridg
i960® RM/RN I/O Processor Developer’s Manual 14-55

PCI-to-PCI Bridge

 bridge
the Received Master Abort bit in the Primary Status Register (PSR) if the Master-Abort occurred
on the primary interface and in the Secondary Status Register (SSR) if the Master-Abort occurred
on the secondary interface.

When the Master Abort Mode bit is set, the bridge signals a Master-Abort to the initiator of a
delayed read or write transaction when that transaction causes a Master-Abort on the target bus.
The bridge sets the corresponding Received Master Abort bit as in the previous case. If the
transaction that caused the Master-Abort on the target interface was a posted write transaction, the
bridge asserts P_SERR# on the primary interface (if enabled). The bridge terminates the posted
write transaction on the initiating interface with a disconnect with or without data (assuming the
write is still occurring) within three clocks of the Master-Abort on the target interface. The
Received Master Abort bit is set in the appropriate status register corresponding to the
Master-Abort interface and the Signaled System Error bit in the PSR.

A Master-Abort is not signaled during a Special Cycle transaction from either interface.

14.10.2 Termination as a Slave (Target)

The method for a target termination on either PCI interface is the assertion of the STOP# signal. A
PCI target asserts STOP# to request that the master terminate a transaction. The target holds
STOP# asserted until the master deasserts FRAME#. IRDY# and TRDY# are independent of target
termination so data may or may not be transferred. The only rule is that if STOP# is asserted when
TRDY# is deasserted, the master does not wait for the final data transfer. The following sections
summarize the bridge’s actions as a PCI target for termination situations. See the PCI Local Bus
Specification Revision 2.1 for details.

14.10.2.1 Retry

Retry refers to a termination request to the initiator where data has not been transferred. The
uses the Retry mechanism when the bridge:

• is unable to provide resources for propagating the transaction to its destination.

• accepts a delayed request.

• receives a delayed request and it does not match any delayed completions held by the bridge.

• is locked and the initiator does not own the LOCK# signal.

A Retry is signaled when STOP# and DEVSEL# are asserted and TRDY# is deasserted on the
initiating interface.

14.10.2.2 Disconnect

A Disconnect is used when the initiating interface is unable to respond to the initiator due to a
condition like the posting buffer has become full. A Disconnect is used when data has been already
been transferred to the bridge. Refer to the PCI Local Bus Specification for details on Disconnect.

A Disconnect is signaled using two sequences. When STOP#, TRDY#, and DEVSEL# are all
asserted, it indicates that this transfer is the last and at least one data word is transferred. When
STOP# and DEVSEL# are asserted and TRDY# is deasserted after previous data transfers, it
indicates that the most recent transfer was the last.
14-56 i960® RM/RN I/O Processor Developer’s Manual

PCI-to-PCI Bridge

 Target
 case
ced to
-data

t Abort

e write

(PSR

RR#
t

ty
sses
tlined

dary

hen
ing a

ary
14.10.2.3 Target-Abort

A Target-Abort differs from a Retry or a Disconnect when STOP# is asserted and DEVSEL# has
been deasserted.

During all transactions crossing the bridge, except posted writes, the bridge signals a Target-Abort to
the initiator on the initiating bus when a Target-Abort is received by the bridge on the target bus. The
bridge sets the Target Abort (master) bit in the target bus’s status register (PSR or SSR) and the
Abort (target) bit in the initiating bus’s status register. (An exception to this rule can occur in the
where a target inserts data-to-data wait states after the initial Qword of data. If the bridge is for
disconnect with data on the initiating side, due to the fact that the bridge does not insert data-to
wait states as a slave, and a target-abort is then signalled by the target after the bridge has
disconnected with the master, the target-abort is not reflected back to the master and the Targe
(target) bit in the initiating bus’s status register is not set.)

If the bridge detects a Target-Abort during a posted write transaction on the target bus and th
is still in progress on the initiating bus, the bridge signals a Target-Abort to the initiator on the
initiating bus. The bridge sets the Target Abort (master) bit in the target bus’s status register
or SSR) and the Target Abort (target) bit in the initiating bus’s status register.

If the posted write transaction is complete on the initiating interface, the bridge asserts P_SE
(if enabled) on the primary interface indicating a system error. The bridge also sets the Targe
Abort (master) bit in the target bus’s status register (PSR or SSR).

14.11 Error Conditions

PCI provides an extensive error reporting mechanism. The PCI-to-PCI bridge implements pari
generation and parity error detection on both the primary and secondary PCI interfaces and pa
that information to the primary interface. This enables the parity error recovery mechanisms ou
on the PCI Local Bus Specification Revision 2.1 without special considerations for a bridge.

The following sections detail the bridge’s response to parity errors on the primary and secon
PCI interfaces.

14.11.1 Address Parity Errors

The bridge must detect and report address parity errors for transactions on both interfaces. W
the bridge, as a device on the initiating interface, detects an address parity error before claim
cycle, the bridge does not claim the cycle (not assert DEVSEL#) and allow the transaction to
terminate with the Master-Abort mechanism.

When the bridge detects an address parity error during a transaction the primary and second
interfaces handle the error in different manners.
i960® RM/RN I/O Processor Developer’s Manual 14-57

PCI-to-PCI Bridge
14.11.1.1 Address Parity Errors on Primary Interface

If an address parity error occurs on the primary interface of the bridge unit, the i960 RM/RN I/O
processor performs the following actions based on the constraints specified:

• If the Primary Parity Error Response Enable bit in the PCR is set, the primary bridge interface
does not claim the transaction by not asserting P_DEVSEL#, allowing a master abort to occur.

If the Primary Parity Error Response Enable bit in the PCR is cleared, the primary bridge
interface takes normal action and allows the transaction to proceed (claim the transaction
if the address is within the bridge address space).

• Assert P_SERR# on the primary interface if the SERR# Enable bit and Primary Parity Error
Response Enable bit in the PCR are both set.

• Set the Signaled System Error bit in the PSR if the SERR# Enable bit and Primary Parity Error
Response Enable bit in the PCR are both set. If the Signaled System Error bit in the PSR is set
and the P_SERR# Asserted Interrupt Mask is clear in the SDER, set the P_SERR# Asserted bit
in the PBISR

• Set the Detected Parity Error bit in the PSR. If the Detected Parity Error bit in the PSR is set
and the Primary Detected Parity Error Interrupt Mask bit in the SDER is clear, set Detected
Parity Error bit in the PBISR.

14.11.1.2 Address Parity Errors on Secondary Interface

If an address parity error occurs on the secondary interface of the bridge unit, the i960 RM/RN I/O
processor performs the following actions based on the constraints specified:

• If the Secondary Parity Error Response Enable bit in the Bridge Control Register (BCR) is set,
the secondary bridge interface does not claim the transaction by not asserting S_DEVSEL#,
allowing a master abort to occur.

If the Secondary Parity Error Response Enable bit in the BCR is cleared, the secondary
bridge interface takes normal action and allows the transaction to proceed.

• Assert P_SERR# on the primary interface if the SERR# Enable bit in the PCR is set and
Secondary Parity Error Response Enable bit and the Secondary SERR# enable bit in the BCR
are set.

• Set the Signaled System Error bit in the PSR if the SERR# Enable bit in the PCR is set and
Secondary Parity Error Response Enable bit in the BCR is set. If the Signaled System Error bit
in the PSR is set and the P_SERR# Asserted Interrupt Mask is clear in the SDER, set the
P_SERR# Asserted bit in the PBISR

• Set the Detected Parity Error bit in the SSR. If the Detected Parity Error bit in the SSR is set
and the Secondary Detected Parity Error Interrupt Mask bit in the SDER is clear, set Detected
Parity Error bit in the SBISR.

While forwarding a DAC cycle upstream, the bridge may detect an address parity error in any of
the four different parts of the DAC address phase in which parity information is encoded. If an
address parity error is detected these cases, the bridge forwards the DAC using bad address parity
for all possible parts of the forwarded transaction. The eliminates the possibility of an address
parity being filtered out by the bridge in the event it is converted from a 64-bit transaction to a
32-bit transaction.
14-58 i960® RM/RN I/O Processor Developer’s Manual

PCI-to-PCI Bridge
14.11.2 Data Parity Errors

When the bridge unit detects a data parity error, the bad data and bad parity are passed to the opposite
interface whenever possible. This enables the parity error recovery mechanisms outlined in the PCI Local
Bus Specification Revision 2.1 without special consideration for the bridge in the datapath.

14.11.2.1 Read Data Parity

When a data parity error is detected during a read transaction that crosses the bridge unit, it asserts
PERR# on the target interface. The bridge passes the bad data and the bad parity to the initiating
interface and bus where the initiator also detects the bad parity and data and assert PERR# on the
initiating bus. The bridge sets the Detected Parity Error bit and set the Data Parity Detected bit
(when enabled) in the PSR if the primary interface is the target bus or the SSR if the secondary
interface is the target bus. When data parity is detected by the master on the initiating bus, it asserts
PERR#. No other action is taken by the bridge unit.

Specifically for downstream reads (initiated by a master on the primary bus interface), the i960
RM/RN I/O processor performs the following actions with the given constraints:

• S_PERR# is asserted two clock cycles following the data phase in which the data parity error
is detected on the secondary bus. This is only done if the Secondary Parity Error Response
Enable bit in the Bridge Control Register (BCR) is set.

• The Data Parity Detected bit in the Secondary Status Register (SSR) is set if the Secondary
Parity Error Response Enable bit in the BCR is set. If the Secondary PCI Master Parity Error
Interrupt Mask bit in the SDER is clear, set the PCI Master Parity Error bit in the SBISR.

• The Detected Parity Error bit in the SSR is set. If the Secondary Detected Parity Error
Interrupt Mask bit is clear in the SDER, set the Detected Parity Error bit in the SBISR.

• The data and the bad parity are stored in a DRC queue and returned to the master on the
primary bus during the Delayed Read Completion cycle. If the data word with the bad parity is
not read from DRC queue by the initiator (i.e., delayed cycle read 32 bytes with an error in
byte 30 and the master only wanted 16 bytes) due to the prefetch algorithm (Section 14.6.4),
the data is discarded when the queue is invalidated and no other action is taken.

Specifically for upstream reads (initiated by a master on the secondary bus interface), the i960
RM/RN I/O processor performs the following actions with the given constraints:

• P_PERR# is asserted two clocks cycles following the data phase in which the data parity error
is detected on the primary bus. This is only done if the Primary Parity Error Response Enable
bit in the Primary Command Register (PCR) is set.

• The Data Parity Detected bit in the Primary Status Register (PSR) is set if the Primary Parity
Error Response Enable bit in the PCR is set. If the Primary PCI Master Parity Error Interrupt
Mask bit in the SDER is clear, set the PCI Master Parity Error bit in the PBISR.

• The Detected Parity Error bit in the PSR is set. If the Primary Detected Parity Error Interrupt
Mask bit is clear in the SDER, set the Detected Parity Error bit in the PBISR.

• The data and the bad parity are stored in a DRC queue and returned to the master on the
secondary bus during the Delayed Read Completion cycle. If the data word with the bad parity
is not read from DRC queue by the initiator (i.e., delayed cycle read 32 bytes with an error in
byte 30 and the master only wanted 16 bytes) due to the prefetch algorithm (Section 14.6.4),
the data is discarded when the queue is invalidated and no other action is taken.

In both cases, the initiator of the Delayed Read transaction is responsible for asserting PERR# on the
initiating bus (if enabled) in response to the bridge unit delivering the data along with the bad parity.
i960® RM/RN I/O Processor Developer’s Manual 14-59

PCI-to-PCI Bridge

ed
14.11.2.2 Delayed Write Data Parity

To allow for correct data parity calculations for delayed write transactions, the bridge delays the
assertion of STOP# (signalling a Retry) until PAR is driven by the master. A parity error during a
delayed write transaction can occur in any of the following parts of the transactions:

• During the Delayed Write Request cycle on the initiating bus when the transaction is enqueued
by the bridge unit.

• During the Delayed Write Completion cycle on the target bus when the write data is delivered
to the target and write status is capture for delivery to the initiator

• During the Delayed Write Completion cycle on the initiating bus when write status is to be
delivered to the initiator who has retried the transaction.

Depending on where and when the parity error occurs, different responses are required.

The i960 RM/RN I/O processor’s primary bridge interface has the following responses to a delay
write parity error for downstream transactions during Delayed Write Request cycles on the
initiating bus with the given constraints:

• If the Primary Parity Error Response bit in the PCR is set, the primary bridge interface asserts
P_TRDY# (disconnects with data) and two clock cycles later asserts P_PERR# notifying the
initiator of the parity error. The delayed write cycle in not enqueued and not forwarded to the
secondary interface.

The Detected Parity Error bit is set in the Primary Status Register (PSR) only if data has
been transferred. This scenario would occur if a request is seen with bad parity. In this
case the request is immediately completed and discarded. Because of the completion, data
has been transferred on the initiating interface. If the Primary Detected Parity Error
Interrupt Mask bit is clear in the SDER, set the Detected Parity Error bit in the PBISR.

• If the Primary Parity Error Response bit in the PCR is cleared, the primary bridge interface
retries the transaction by asserting P_STOP# and enqueues the Delayed Write Request cycle to
be forwarded to the secondary bridge interface. P_PERR# is not asserted.

On the secondary bridge interface, the following responses to a delayed write parity error for upstream
transactions during Delayed Write Request cycles on the initiating bus with the given constraints:

• If the Secondary Parity Error Response bit in the BCR is set, the secondary bridge interface
asserts S_TRDY# (disconnecting with data) and two clock cycles later asserts S_PERR#
notifying the initiator of the parity error. The delayed write cycle in not enqueued and not
forwarded to the primary interface.

The Detected Parity Error bit is set in the Secondary Status Register (SSR) only if data has
been transferred. This scenario would occur if a request is seen with bad parity. In this
case the request is immediately completed and discarded. Because of the completion, data
has been transferred on the initiating interface. If the Secondary Detected Parity Error
Interrupt Mask bit is clear in the SDER, set the Detected Parity Error bit in the SBISR.

• If the Secondary Parity Error Response bit in the BCR is cleared, the secondary bridge
interface retries the transaction by asserting S_STOP# and enqueues the Delayed Write
Request cycle to be forwarded to the primary bridge interface. S_PERR# is not asserted.
14-60 i960® RM/RN I/O Processor Developer’s Manual

PCI-to-PCI Bridge
During a downstream Write Completion Cycle on the target bus when the bridge is trying to deliver
enqueued write data, the secondary bridge interface has the following actions with the given
constraints when S_PERR# is detected during the transaction:

• The Data Parity Error Detected bit is set in the Secondary Status Register (SSR) if the
Secondary Parity Error Response Bit is set in the BCR. If the Data Parity Error Detected bit in
the SSR is set and the Secondary PCI Master Parity Error Interrupt Mask in the SDER is clear,
set the PCI Master Parity Error bit in the SBISR.

• The secondary interface of the bridge captures the error completion status for delivery back to
the initiator on the primary interface.

During a upstream Write Completion Cycle on the target bus when the bridge is trying to deliver
enqueued write data, the primary bridge interface has the following actions with the given
constraints when P_PERR# is detected during the transaction:

• The Data Parity Error Detected bit is set in the Primary Status Register (PSR) if the Primary
Parity Error Response Bit is set in the PCR. If the Data Parity Error Detected bit in the PSR is
set and the Primary PCI Master Parity Error Interrupt Mask in the SDER is clear, set the PCI
Master Parity Error bit in the PBISR.

• The primary interface of the bridge captures the error completion status for delivery back to
the initiator on the secondary interface.

For the original write transaction to be completed, the initiator retries the transaction on the
initiating bus and the bridge returns the status from the target bus, completing the transaction. A
data parity error can occur in this scenario on the initiating bus that was not detected during the
write completion cycle on the target bus or a parity error can occur in response to a parity error that
did occur during the write completion cycle on the target bus (contained with the status returned by
the bridge).

For downstream delayed completion transaction on the initiating bus where a data parity error
occurs that did not occur on the target bus (i.e., status being returned is normal completion) the
primary bridge interface performs the following actions with the given constraints:

• If the Primary Parity Error Response Bit is set in the PCR, the primary interface claims the
transaction by asserting P_TRDY# and two clocks later asserts P_PERR#. The Delayed
Completion cycle in the DWC Queue remains since the data of retried command did not match
the data within the queue.

If the Primary Parity Error Response Bit is clear in the PCR, the primary interface retries
the transaction with no other response. A new transaction is not enqueued due to queue
architecture constraints (Section 14.7.1).

• The Detected Parity Error bit is set in the Primary Status Register (PSR) in the following
scenario only: a transaction with bad parity was forwarded to the secondary bus, which means
that the Parity Response Enable Bit (PCR) associated with the primary bus is not set. If the
Primary Detected Parity Error Interrupt Mask bit is clear in the SDER, set the Detected Parity
Error bit in the PBISR.

Note that if the parity of the original request does not match the parity of the transaction
the primary master sends for a completion, the bridge does not detect a match for the
completion attempt and retries the transaction. In this case the transaction is most likely
never completed, and the enqueued data is eventually discarded.
i960® RM/RN I/O Processor Developer’s Manual 14-61

PCI-to-PCI Bridge

s after
ys
For upstream delayed completion transaction on the initiating bus where a data parity error occurs
that did not occur on the target bus (i.e., status being returned is normal completion) the secondary
bridge interface performs the following actions with the given constraints:

• If the Secondary Parity Error Response Bit is set in the BCR, the primary interface asserts
claims the transaction by asserting S_TRDY# and two clocks later asserts S_PERR#. The
Delayed Completion cycle in the DWC Queue remains since the data of retried command did
not match the data within the queue.

If the Secondary Parity Error Response Bit is clear in the BCR, the secondary interface
retries the transaction with no other response. A new transaction is not enqueued due to
queue architecture constraints (Section 14.7.1).

• The Detected Parity Error bit is set in the Secondary Status Register (SSR) in the following
scenario only: a transaction with bad parity was forwarded to the primary bus, which means
that the Parity Response Enable Bit (BCR) associated with the secondary bus is not set. If the
Secondary Detected Parity Error Interrupt Mask bit is clear in the SDER, set the Detected
Parity Error bit in the SBISR.

Note that if the parity of the original request does not match the parity of the transaction
the secondary master sends for a completion, the bridge does not detect a match for the
completion attempt and retries the transaction. In this case the transaction is most likely
never completed, and the enqueued data is eventually discarded.

When returning status on the initiating bus from an error that occurred on the target and did not
originally occur on the initiating bus, the bridge unit asserts PERR# (on the initiating bus interface)
two clocks after the data is written assuming the bridge unit has parity enabled on both interfaces
by the setting of the Primary and Secondary Parity Error Response bits in the PCR and BCR. The
status is delivered and the transaction is cleared from the DWC queue. The appropriate Detected
Parity Error bit is not set since the error did not actually occur on that bus.

14.11.2.3 Posted Write Data Parity

When a data parity error is detected by the bridge’s initiating interface during a posted write
transactions that crosses the bridge, the bridge asserts PERR# on the initiating bus two clock
the error is detected and retains the bad data and parity in the PMW Queue. The bridge alwa
performs the following on the initiating bus interface

• The Detected Parity Error bit in the PSR is set if the initiating bus is the primary bus. If the
Primary Detected Parity Error Interrupt Mask bit is clear in the SDER, set the Detected Parity
Error bit in the PBISR.

• The Detected Parity Error bit in the SSR is set if the initiating bus is the secondary bus. If the
Secondary Detected Parity Error Interrupt Mask bit is clear in the SDER, set the Detected
Parity Error bit in the SBISR.

When the write data is transferred on the target bus, the target of the transaction should assert
PERR# on the target bus. If PERR# is asserted by the target, then the bridge sets:

• The Data Parity Detected bit in the PSR if the target bus is the primary and the Primary Parity
Error Response bit is set in the PCR. If the Primary Detected Parity Error Interrupt Mask bit is
clear in the SDER, set the Detected Parity Error bit in the PBISR.

• The Data Parity Detected bit in the SSR if the target bus is the secondary and the Secondary
Parity Error Response bit is set in the BCR. If the Secondary Detected Parity Error Interrupt
Mask bit is clear in the SDER, set the Detected Parity Error bit in the SBISR.
14-62 i960® RM/RN I/O Processor Developer’s Manual

PCI-to-PCI Bridge

rface,
e
When a data parity error is detected on the target bus by the target of a posted write transaction
when the bridge did not detect a data parity error on the initiating bus, the master of the transaction
has no way of knowing that the data parity error has occurred (since PERR# cannot be forwarded
back to the master due to the two clock cycle restriction for PERR# and data transferred).
P_SERR# is used to notify the primary interface of an error of this type. P_SERR# is only used
when the data parity error occurs on the target bus and was not detected on the initiating bus.

For a downstream transaction, where no data parity error was detected on the primary interface,
which is completing on the secondary bus and S_PERR# is detected by the secondary interface the
following actions are performed with the given constraints:

• The Data Parity Detected bit in the SSR is set if the Secondary Parity Error Enable bit is set in
the BCR. If the Data Parity Detected bit is set in the SSR and the Secondary PCI Master Parity
Error Interrupt Mask bit is clear in the SDER, set the Data Parity Detected bit in the SBISR.

• P_SERR# is asserted if:

— the Secondary Parity Error Enable bit is set in the BCR

— the Primary Parity Error Enable bit is set in the PCR

— the SERR# Enable bit is set in the PCR

For an upstream transaction, where no data parity error was detected on the secondary inte
which is completing on the primary bus and P_PERR# is detected by the primary interface th
following actions are performed with the given constraints:

• The Data Parity Detected bit in the PSR is set if the Primary Parity Error Enable bit is set in the
PCR. If the Data Parity Detected bit is set in the PSR and the Primary PCI Master Parity Error
Interrupt Mask bit is clear in the SDER, set the Data Parity Detected bit in the PBISR.

• P_SERR# is asserted if:

— the Secondary Parity Error Enable bit is set in the BCR

— the Primary Parity Error Enable bit is set in the PCR

— the SERR# Enable bit is set in the PCR
i960® RM/RN I/O Processor Developer’s Manual 14-63

PCI-to-PCI Bridge
14.11.3 SERR# Assertion

Whenever S_SERR# is asserted on the secondary interface of the bridge, the bridge must assert
P_SERR# on the primary interface if the following is true:

• The SERR# Enable bit is set in the PCR.

• The Secondary SERR# Enable bit is set in the BCR

The bridge must also set the Received System Error bit in the SSR. This function propagates the error
upstream to the primary interface. If the Received System Error bit in the SSR is set and the S_SERR#
Detected Interrupt Mask bit in the SDER is clear, the S_SERR# Detected bit is set in the SBISR.

14.11.4 Discard Timers

The discard timer is responsible for preventing deadlocks when the initiator of a retried transaction
fails to complete the transaction within 210 or 215 PCI clock cycles. The timer starts counting when
the delayed request becomes a delayed completion by completing on the destination bus. If the
originating master on the initiating bus has not retried the transaction before the timer expires, the
completion transaction is discarded and P_SERR# is optionally asserted on the primary bus.

There are 8 discard timers in the bridge unit. Each PCI interface of the bridge unit has separate
discard timers for a the DRC and DWC Queues in each direction. When the discard timer attached to
a particular queue expires, the queue is invalidated, freeing the queue for use with a new transaction.

The discard timers are controlled through configuration bits in the Bridge Control Register.
Delayed cycles initiated from the primary bus interface have a programmable discard value of 210
(enabled by setting bit 08 in the BCR) or 215 (enabled by clearing bit 08 in the BCR). Delayed
cycles initiated from the secondary bus interface have a programmable discard value of 210
(enabled by setting bit 09 in the BCR) or 215 (enabled by clearing bit 08 in the BCR).

When a discard timer expires, the bridge sets (unconditionally) the Discard Timer Status bit in the
BCR and optionally asserts P_SERR# if the following is true:

• The SERR# Enable bit is set in the PCR

• The Discard Timer SERR# Enable bit is set in the BCR

The Primary and Secondary Discard Timers can be disabled by setting Discard Timer Disable bit (bit
07) in the Extended Bridge Control Register (EBCR). When disabled, the timers do not count and
delayed completion transactions remain in their respective queues until retrieved by a PCI master.
14-64 i960® RM/RN I/O Processor Developer’s Manual

PCI-to-PCI Bridge
14.11.5 PCI-to-PCI Bridge Error Summary

The following tables summarize the bridges error reporting for PCI bus errors (parity and
transaction termination). The tables are in relation to the Primary and Secondary Status Registers.
Each table details the corresponding registers error bit and the conditions that set the bit. The
Primary and Secondary Bridge Interrupt Status Registers are also shown. These registers record
i960 core processor interrupt status information.

Note: When an external agent violates PCI protocol, PCI-to-PCI Bridge behavior may be
unpredictable/undefined.

Table 14-20. PSR Error Reporting Summary (Sheet 1 of 3)

Error Bit in Primary
Status Register (PSR) Error Condition

Qualifying Bit in
Primary Command

Register (PCR Unless
Otherwise Noted)

Detected Parity Error -
bit 15

Address Parity Error on Primary Interface N/A

Upstream Read Data Parity Error on Primary Bus N/A

Downstream Posted Memory Write Data Parity Error
on Primary Bus N/A

Downstream Delayed Write Data Parity Error During
Request Cycle on Primary Bus if Request is Seen
with Bad Parity & Immediately Completed

Primary Parity Error
Response Enable must
be SET- bit 06

Downstream Delayed Write Data Parity Error During
Completion Cycle on Primary Bus, Only if Error
Occurred During Request Phase of Transaction on
Primary Bus and Completion Request from Master
Matches Initial Request Error

Primary Parity Error
Response Enable must
be CLEAR- bit 06

Data Parity Error
Detected - bit 08

Upstream Delayed Read Data Parity Error on
Primary Bus

Primary Parity Error
Response Enable - bit 06

Upstream Delayed Write Data Parity Error During
Completion Cycle on Primary Bus

Primary Parity Error
Response Enable - bit 06

Upstream Posted Memory Write Data Parity Error on
the Primary Bus

Primary Parity Error
Response Enable - bit 06
i960® RM/RN I/O Processor Developer’s Manual 14-65

PCI-to-PCI Bridge
Signaled System Error -
bit 14

Address Parity Error on Primary Interface
Primary Parity Error
Response Enable - bit 06

SERR# Enable - bit 08

Address Parity Error on Secondary Interface

Secondary Parity Error
Response Enable - bit 00
(BCR)

SERR# Enable - bit 08

SERR# Forwarding - bit
01 (BCR)

Downstream Posted Memory Write Data Parity Error
Which Occurs on Secondary Bus and Did Not Occur
on Primary Bus

Primary Parity Error
Response Enable - bit 06

Secondary Parity Error
Response Enable - bit 00
(BCR)

SERR# Enable - bit 08

Upstream Posted Memory Write Data Parity Error
Which Occurs on Primary Bus and Did Not Occur on
Secondary Bus

Primary Parity Error
Response Enable - bit 06

Secondary Parity Error
Response Enable - bit 00
(BCR)

SERR# Enable - bit 08

Downstream Posted Memory Write that Receives a
Target Abort on Secondary Bus and the Transaction
is Not Currently Active on the Primary Interface

SERR# Enable - bit 08

Upstream Posted Memory Write that Receives a
Target Abort on Primary Bus and the Transaction is
Not Currently Active on the Secondary Interface

SERR# Enable - bit 08

Downstream Posted Memory Write that Ends in a
Master Abort on the Secondary Bus

Master Abort Mode - bit
05 (BCR)

SERR# Enable - bit 08

Upstream Posted Memory Write that Ends in a
Master Abort on the Primary Bus

Master Abort Mode - bit
05 (BCR)

SERR# Enable - bit 08

1 of 8 Discard Timers Expire
Discard Timer SERR#
Enable - bit 11 (BCR)

SERR# Enable - bit 08

Master Abort - bit 13

Upstream Delayed Read (memory or I/O) Which
Received a Master Abort on the Primary Bus N/A

Upstream Write (posted or delayed) Which Received
a Master Abort on the Primary Bus N/A

Target Abort (master) -
bit 12

Upstream Delayed Read (memory or I/O) Which
Received a Target Abort on the Primary Bus N/A

Upstream Write (posted or delayed) Which Received
a Target Abort on the Primary Bus N/A

Table 14-20. PSR Error Reporting Summary (Sheet 2 of 3)

Error Bit in Primary
Status Register (PSR) Error Condition

Qualifying Bit in
Primary Command

Register (PCR Unless
Otherwise Noted)
14-66 i960® RM/RN I/O Processor Developer’s Manual

PCI-to-PCI Bridge
Target Abort (target) -
bit 11

Downstream Delayed Read Which Receives a Target
Abort on the Secondary Bus. Set During Completion
Cycle on Primary Bus.

N/A

Downstream Delayed Write Which Received a Target
Abort on the Secondary Bus. Set During Completion
Cycle on Primary Bus.

N/A

Downstream Posted Write Which Received a Target
Abort on the Secondary Bus and the Transaction
Was Still Active on the Primary Bus

N/A

Table 14-21. SSR Error Reporting Summary (Sheet 1 of 2)

Error Bit in Primary Status
Register (SSR) Error Condition

Qualifying Bit in Primary
Command Register

(BCR)

Detected Parity Error - bit 15

Address Parity Error on Secondary
Interface N/A

Downstream Read Data Parity Error on
Secondary Bus N/A

Upstream Posted Memory Write Data
Parity Error on Secondary Bus N/A

Upstream Delayed Write Data Parity Error
During Request Cycle on Secondary Bus if
Request is Seen with Bad Parity &
Immediately Completed

Secondary Parity Error
Response Enable must be
SET- bit 00

Upstream Delayed Write Data Parity Error
During Completion Cycle on Secondary
Bus, Only if Error Occurred During
Request Phase of Transaction on
Secondary Bus and Completion Request
from Master Matches Initial Request Error

Secondary Parity Error
Response Enable must be
CLEAR- bit 00

Data Parity Error Detected -
bit 08

Downstream Delayed Read Data Parity
Error on Secondary Bus

Secondary Parity Error
Response Enable - bit 00

Downstream Delayed Write Data Parity
Error During Completion Cycle on
Secondary Bus

Secondary Parity Error
Response Enable - bit 00

Downstream Posted Memory Write Data
Parity Error on the Secondary Bus

Secondary Parity Error
Response Enable - bit 00

Received System Error -
bit 14

S_SERR# Detected on Secondary
Interface N/A

Address Parity Error on Secondary
Interface

Secondary Parity Error
Response Enable - bit 00
(BCR)

Table 14-20. PSR Error Reporting Summary (Sheet 3 of 3)

Error Bit in Primary
Status Register (PSR) Error Condition

Qualifying Bit in
Primary Command

Register (PCR Unless
Otherwise Noted)
i960® RM/RN I/O Processor Developer’s Manual 14-67

PCI-to-PCI Bridge

.

 unit
ary
it for
14.12 Primary and Secondary Clocking

The P_CLK clock input provides the only clock source for the i960 RM/RN I/O processor
PCI-to-PCI bridge. It is the system designer’s responsibility to provide clock sources to all
secondary devices which are synchronous to the primary input clock.

Refer to the PCI Local Bus Specification Revision 2.1 for details on PCI bus clock specifications

14.13 Initialization and Reset Requirements

When the primary bus P_RST# is removed from the primary interface, the PCI-to-PCI bridge
is in an inactive mode. The bridge responds only to Type 0 configuration cycles with the prim
IDSEL input active. System configuration software is responsible for setting up the bridge un
correct operation. Refer to the PCI Local Bus Specification Revision 2.1 and the PCI-to-PCI
Bridge Architecture Specification Revision 1.0.

Master Abort - bit 13

Downstream Delayed Read (memory or
I/O) Which Received a Master Abort on the
Secondary Bus

N/A

Downstream Write (posted or delayed)
Which Received a Master Abort on the
Secondary Bus

N/A

Target Abort (master) - bit 12

Downstream Delayed Read (memory or
I/O) Which Received a Target Abort on the
Secondary Bus

N/A

Downstream Write (posted or delayed)
Which Received a Target Abort on the
Secondary Bus

N/A

Target Abort (target) - bit 11

Upstream Delayed Read Which Received
a Target Abort on the Primary Bus. Set
During Completion Cycle on Secondary
Bus.

N/A

Upstream Delayed Write Which Received
a Target Abort on the Primary Bus. Set
During Completion Cycle on Secondary
Bus.

N/A

Upstream Posted Write Which Received a
Target Abort on the Primary Bus and the
Transaction Was Still Active on the
Secondary Bus

N/A

Table 14-21. SSR Error Reporting Summary (Sheet 2 of 2)

Error Bit in Primary Status
Register (SSR) Error Condition

Qualifying Bit in Primary
Command Register

(BCR)
14-68 i960® RM/RN I/O Processor Developer’s Manual

PCI-to-PCI Bridge

rimary
dary

d. The
eness.

ust be
are to

st be
ter. The
.

 range
 and
MLR
ter all

the PCR
condary
e and

sses on
CR is

tional.

r -

ion
or

sing
stem
14.13.1 Bridge Reset
The PCI-to-PCI bridge unit has two independent reset states; one for the primary interface and one
for the secondary interface. The Secondary S_RST# signal is the logical OR of the primary
interface P_RST# and the Secondary Bus Reset bit in the BCR. The secondary interface S_RST#
output is asynchronous with respect to the secondary S_CLK signal and therefore there are no
synchronization issues with the internal reset signal crossing clock domains from the primary side
to the secondary side. To support this, the path from both the primary P_RST# input and the
Secondary Bus Reset bit to the secondary PCI bus S_RST# output must be combinatorial. The
bridge does not take any action if the secondary bus S_RST# is driven active by another device.

When the Secondary Bus Reset Bit in the BCR is set and subsequently cleared by software, the
i960 RM/RN I/O processor can also be programmed to send an interrupt to the core processor. This
is done using the “Secondary Decode Enable Register - SDER” on page 14-107

During the reset sequence (no more than three clocks from the assertion of P_RST# on the p
interface) the Secondary PCI Bus Arbitration Unit must park the secondary bus on the secon
bus interface. Refer to Section 17.2.1.3, “Secondary PCI Bus Arbitration Parking” on page 17-7 for
details on bridge parking.

14.13.2 Configuring the Bridge
For the bridge unit to operate in a system environment, several things must be properly initialize
procedure outlined below is required for all PCI-to-PCI bridges and is included here for complet

1) The Primary Bus Number, Secondary Bus Number and Subordinate Bus Number m
programmed with valid bus numbers. This must be done to allow the configuration softw
probe the configuration space of downstream buses.

2) If I/O accesses must be forwarded downstream, the IOBR and IOLR register pair mu
programmed to the proper values and then the I/O Space Enable bit set in the PCR regis
ISA Enable bit of the BCR register should be set if the system includes ISA or EISA buses

3) If Memory accesses must be forwarded downstream then both the Memory Mapped I/O
and the Prefetchable Memory range must be defined by programming the MBR/MLR
PMBR/PMLR register pairs. If only one address range is required then the PMBR/P
register pair can be programmed with the same values as the MBR/MLR register pair. Af
four memory registers are valid, the Memory Enable bit in the PCR register can be set.

4) If bus masters are to be supported on the downstream buses, the Bus Master Enable bit in
register must be set. Note that once this bit is set, all I/O and Memory accesses on the se
bus that do not fall into the ranges defined by the bridge is forwarded to the primary interfac
bus. This means that if the I/O Space Enable bit of the PCR register is not set, all I/O acce
the secondary bus is passed to the primary bus. Likewise, if the Memory Enable bit in the P
not set, all memory accesses on the secondary bus is forwarded to the primary bus.

5) The CLSR, PLTR, and SLTR must be set to appropriate values before the bridge is fully func
Most systems want the SERR# Enable bits in the PCR and the BCR registers set as well.

6) The Configuration Cycle Retry Bit in Section 14.15.24, “Extended Bridge Control Registe
EBCR” on page 14-96 must then be cleared to allow the host to configure the bridge.

The previous list is the base minimum required to initialize the bridge unit. It is the configurat
software responsibility to enable or disable the additional base and i960 RM/RN I/O process
specific features found in the bridge.

Note: If the bridge is using private PCI devices on the secondary bus and their IDSEL inputs are u
S_AD[25:16], then the Secondary IDSEL Select Register must be programmed before the sy
configuration software probes the secondary bus.
i960® RM/RN I/O Processor Developer’s Manual 14-69

PCI-to-PCI Bridge

ation
y
lized
14.13.3 64-Bit Bus Configuration

At i960 RM/RN I/O processor reset time, it is the responsibility of the bus arbitration resource to
configure the bus for 64-bit operation. If the bus is configured for 64-bit operation, the PCI master
interfaces of the bridge attempts memory transactions as 64-bit cycles. 64-bit bus operation is
defined by the state of the REQ64# pin on the rising edge of the bus reset signal (P_RST# for the
primary bus). Table 14-22 details the bus configuration for the different states of each bus REQ64#
at reset. The results of bus configuration operation are latched into the EBCR register (bit 8 for
primary bus and bit 9 for secondary bus).

14.14 Powerup/Default States

Upon power-up and before P_RST# is asserted on the primary interface, the bridge is in an inactive
mode of operation. After reset, all internal registers associated with the bridge configuration
address space are set to the default values defined in Section 14.15. The posting buffers are marked
invalid. Refer to Section 14.13.1 for details on resetting the PCI-to-PCI bridge unit.

14.15 Register Definitions

The following sections describe the PCI-to-PCI bridge configuration registers. The configuration
space consists of 8, 16, 24, and 32-bit registers arranged in a predefined format. The configuration
registers are accessed through Type 0 Configuration Reads and Writes on the primary side of the
bridge and through 80960 core processor operations. Figure 14-11 describes the entire bridge PCI
configuration space.

Each register is detailed in functionality, access type (read/write, read/clear, read only) and reset
default condition. As stated, a Type 0 configuration command on the primary side with an active
IDSEL or a memory-mapped 80960 processor access is required to read or write these registers.
The format for the registers with offsets up to 3EH are defined with the PCI-to-PCI Bridge
Architecture Specification Rev. 1.0. Registers with offsets greater than 3EH are implementation
specific to the i960 RM/RN I/O processor.

See Chapter 1, “Introduction” for definitions of reserved, read only, and read/clear. All registers
adhere to the definitions found in the PCI Local Bus Specification Revision 2.1 and the PCI-to-PCI
Bridge Architecture Specification Revision 1.0 unless otherwise noted.

An additional requirement exists to allow the i960 core processor to access the bridge configur
space. Some registers that are read only from Type 0 Configuration Read and Write commands ma
be writable from the i960 core processor. This allows certain configuration registers to be initia
before PCI configuration begins. See Appendix C, “Memory-Mapped Registers”.

Table 14-22. 64-Bit Configuration Options at Reset

Pin State at the Rising Edge of Reset Bus Configuration

P_REQ64# Asserted (logic 0) 64-bit Capable Bus

P_REQ64# Deasserted (logic 1) 32-bit Only Bus

S_REQ64# Asserted (logic 0) 64-bit Capable Bus

S_REQ64# Deasserted (logic 1) 32-bit Only Bus
14-70 i960® RM/RN I/O Processor Developer’s Manual

PCI-to-PCI Bridge
The i960 core processor reads and write the bridge configuration space as memory-mapped
registers. Table 14-23 shows the register and its associated offset used in a PCI configuration
command and its memory-mapped address in the 80960 processor address space.

The assertion of the P_RST# signal on the primary side of the bridge affects the state of most of the
registers contained within the bridge configuration space. Unless otherwise noted, all bits and
registers returns to their stated default state value upon primary reset. The only bit affected by
I_RST# is bit 5 of the EBCR, Reset Internal Bus.

Figure 14-11. Bridge Configuration Header Format

PCI-to-PCI
Bridge

80960RM/RN
Processor
Specific

Bridge Configuration Header
PCI

Address
Offset

Device ID Vendor ID 00H

Primary Status Primary Command 04H

Class Code Revision ID 08H

Reserved Header Type Primary Latency
Timer Cacheline Size 0CH

Reserved
10H

14H

Secondary
Latency Timer

Subordinate Bus
Number

Secondary Bus
Number

Primary Bus
Number 18H

Secondary Status I/O Limit I/O Base 1CH

Memory Limit Memory Base 20H

Prefectchable Memory Limit Prefectchable Memory Base 24H

Reserved

28H

2CH

30H

Subsystem ID Subsystem Vendor ID 34H

Reserved 38H

Bridge Control Reserved 3CH

Secondary IDSEL Control Extended Bridge Control 40H

Primary Bridge Interrupt Status 44H

Secondary Bridge Interrupt Status 48H

Secondary Arbitration Control 4CH

PCI Interupt Routing Control 50H

Reserved Secondary I/O
Limit

Secondary I/O
Base 54H

Secondary Memory Limit Secondary Memory Base 58H

Queue Control Secondary Decode Enable 5CH

Centralized Discard Timer 60H
i960® RM/RN I/O Processor Developer’s Manual 14-71

PCI-to-PCI Bridge
Table 14-23. PCI-to-PCI Bridge Register Table

Internal Bus
Address Section, Register Name - Acronym (Page)

1000H Section 14.15.1, “Vendor Identification Register - VIDR” on page 14-73

1002H Section 14.15.2, “Device ID Register - DIDR” on page 14-74

1004H Section 14.15.3, “Primary Command Register - PCR” on page 14-75

1006H Section 14.15.4, “Primary Status Register - PSR” on page 14-76

1008H Section 14.15.5, “Revision ID Register - RID” on page 14-77

1009H Section 14.15.6, “Class Code Register - CCR” on page 14-77

100CH Section 14.15.7, “Cacheline Size Register - CLSR” on page 14-78

100DH Section 14.15.8, “Primary Latency Timer Register - PLTR” on page 14-79

100EH Section 14.15.9, “Header Type Register - HTR” on page 14-80

1018H Section 14.15.10, “Primary Bus Number Register - PBNR” on page 14-81

1019H Section 14.15.11, “Secondary Bus Number Register - SBNR” on page 14-82

101AH Section 14.15.12, “Subordinate Bus Number Register - SubBNR” on page 14-83

101BH Section 14.15.13, “Secondary Latency Timer Register - SLTR” on page 14-84

101CH Section 14.15.14, “I/O Base Register - IOBR” on page 14-85

101DH Section 14.15.15, “I/O Limit Register - IOLR” on page 14-86

101EH Section 14.15.16, “Secondary Status Register - SSR” on page 14-87

1020H Section 14.15.17, “Memory Base Register - MBR” on page 14-88

1022H Section 14.15.18, “Memory Limit Register - MLR” on page 14-89

1024H Section 14.15.19, “Prefetchable Memory Base Register - PMBR” on page 14-90

1026H Section 14.15.20, “Prefetchable Memory Limit Register - PMLR” on page 14-91

1034H Section 14.15.21, “Bridge Subsystem Vendor ID Register - BSVIR” on page 14-92

1036H Section 14.15.22, “Bridge Subsystem ID Register - BSIR” on page 14-92

103EH Section 14.15.23, “Bridge Control Register - BCR” on page 14-93

1040H Section 14.15.24, “Extended Bridge Control Register - EBCR” on page 14-96

1042H Section 14.15.25, “Secondary IDSEL Select Register - SISR” on page 14-99

1044H Section 14.15.26, “Primary Bridge Interrupt Status Register - PBISR” on page 14-101

1048H Section 14.15.27, “Secondary Bridge Interrupt Status Register - SBISR” on page 14-102

104CH Section 14.15.28, “Secondary Arbitration Control Register - SACR” on page 14-103

1050H Section 14.15.29, “PCI Interrupt Routing Select Register - PIRSR” on page 14-103

1054H Section 14.15.30, “Secondary I/O Base Register - SIOBR” on page 14-103

1055H Section 14.15.31, “Secondary I/O Limit Register - SIOLR” on page 14-104

1058H Section 14.15.32, “Secondary Memory Base Register - SMBR” on page 14-105

105AH Section 14.15.33, “Secondary Memory Limit Register - SMLR” on page 14-106

105CH Section 14.15.34, “Secondary Decode Enable Register - SDER” on page 14-107

105EH Section 14.15.35, “Queue Control Register - QCR” on page 14-109
14-72 i960® RM/RN I/O Processor Developer’s Manual

PCI-to-PCI Bridge
14.15.1 Vendor Identification Register - VIDR

Vendor ID Register bits adhere to the definitions in the PCI Local Bus Specification Revision 2.1.

Table 14-24. Vendor Identification Register - VIDR

Bit Default Description

15:00 8086H Vendor ID - A unique identifier indicating the manufacturer of a PCI device

PCI

IOP
Attributes

Attributes

15 12 8 4 0

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

Attribute Legend:

RV = Reserved

PR = Preserved

RS = Read/Set

RW = Read/Write

RC = Read Clear

RO = Read Only

NA = Not Accessible

PCI Configuration Offset

00 - 01H

Internal Bus Address

0000 1000H
i960® RM/RN I/O Processor Developer’s Manual 14-73

PCI-to-PCI Bridge
14.15.2 Device ID Register - DIDR

Device ID Register bits adhere to the definitions in the PCI Local Bus Specification Revision 2.1.

Table 14-25. Device Identification Register - DIDR (80960RN)

Bit Default Description

15:00 0964H Device ID - This is a 16-bit value assigned to the i960 RM/RN I/O processor. This
register, combined with the VID, uniquely identify any PCI device.

Table 14-26. Device Identification Register - DIDR (80960RM)

Bit Default Description

15:00 0962H Device ID - This is a 16-bit value assigned to the i960 RM/RN I/O processor. This
register, combined with the VID, uniquely identify any PCI device.

PCI

IOP
Attributes

Attributes

15 12 8 4 0

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

Attribute Legend:

RV = Reserved

PR = Preserved

RS = Read/Set

RW = Read/Write

RC = Read Clear

RO = Read Only

NA = Not Accessible

PCI Configuration Offset

02 - 03H

Internal Bus Address

0000 1002H

PCI

IOP
Attributes

Attributes

15 12 8 4 0

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

Attribute Legend:

RV = Reserved

PR = Preserved

RS = Read/Set

RW = Read/Write

RC = Read Clear

RO = Read Only

NA = Not Accessible

PCI Configuration Offset

02 - 03H

Internal Bus Address

0000 1002H
14-74 i960® RM/RN I/O Processor Developer’s Manual

PCI-to-PCI Bridge
14.15.3 Primary Command Register - PCR

Primary Command Register bits adhere to the definitions in the PCI Local Bus Specification
Revision 2.1 and in most cases affect the behavior of the primary interface of the PCI-to-PCI bridge.

Table 14-27. Primary Command Register - PCR

Bit Default Description

15:10 000002 Reserved

09 02
Fast Back to Back Enable - This primary interface does not perform fast back to back
transactions.

08 02
SERR# Enable - If this bit is cleared, the i960 RM/RN I/O processor is not allowed to
assert P_SERR# on its primary interface.

07 02
Wait Cycle Control - controls address/data stepping. Not implemented and a reserved
bit field

06 02

Primary Parity Error Response Enable - If this bit is set, then the bridge must take
normal action when a parity error is detected. If it is cleared, then parity checking is
disabled.

05 02 VGA Palette Snoop Enable - VGA Palette Snooping is not supported.

04 02

Memory Write and Invalidate Enable - Not applicable. A PCI-to-PCI bridge does not
initiate MWI commands, only forwards them on behalf of another master. The initiator
has the control to determine which type of write command to use.

03 02
Special Cycle Enable - The bridge cannot respond as the target of a Special Cycle so
this bit field is defined as read only.

02 02

Bus Master Enable - Controls the bridge’s ability to operate as a master on the
primary interface for memory and I/O transactions. This bit does not affect the bridge’s
ability to forward or convert type 1 configuration commands. When this bit is set, the
bridge is enabled to act as a master on the primary interface. When this bit is clear,
the bridge does not claim all memory or I/O transactions on the secondary PCI
interface.

01 02

Memory Enable - Controls the bridge’s response to both memory and prefetchable
memory accesses. If this bit is cleared, the bridge does not respond to any memory
access on the primary PCI interface.

00 02

I/O Space Enable - Controls the bridges response to I/O transactions on the primary
PCI interface. If this bit is cleared, the bridge does not respond to any I/O transaction
on the primary side.

PCI

IOP
Attributes

Attributes

15 12 8 4 0

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

ro

ro

rw

rw

ro

ro

rw

rw

rv

rv

ro

ro

ro

ro

rw

rw

rw

rw

rw

rw

Attribute Legend:

RV = Reserved

PR = Preserved

RS = Read/Set

RW = Read/Write

RC = Read Clear

RO = Read Only

NA = Not Accessible

PCI Configuration Offset

04 - 05H

Internal Bus Address

0000 1004H
i960® RM/RN I/O Processor Developer’s Manual 14-75

PCI-to-PCI Bridge
14.15.4 Primary Status Register - PSR

Primary Status Register bits adhere to the definitions in the PCI Local Bus Specification Revision 2.1
but only apply to the primary interface of the bridge. The read/clear bits can only be set by the
internal hardware and are cleared by either a reset condition of by writing a 12 to the register.

Figure 14-12. Primary Status Register - PSR

Bit Default Description

15 02

Detected Parity Error - This bit is set when a parity error is detected during a data
transfer on the primary bus even if parity handling is disabled. Set under the following
conditions:

• Write Data Parity Error when the Primary interface of the Bridge is a slave
(downstream write).

• Read Data Parity Error when the Primary interface of the Bridge is a master
(upstream read).

• Any Address Parity Error on the Primary Bus (including one generated by the
Primary interface of the Bridge).

14 02 Signaled System Error - This bit is set if P_SERR# is asserted on the primary bus.

13 02
Master Abort - This bit is set whenever a transaction initiated by the bridge on the
primary bus (except Special Cycles) ends in a Master-Abort.

12 02
Target Abort (master) - This bit is set whenever a transaction initiated by the primary
interface ends in a Target-Abort

11 02
Target Abort (target) - This bit is set whenever the bridge, acting as a target,
terminates the transaction on the primary bus with a Target-Abort.

10:09 012 DEVSEL# Timing - This indicates the primary interface uses Medium Decode timing.

08 02

Data Parity Error Detected - This bit is set when the bridge:

• asserted P_PERR# (or saw asserted) on the primary bus

• and was the master of the transaction when it occurred

• and the Primary Parity Error Response bit is set in the PCR.

07 12
Fast Back-to-Back Capable - Indicates that the primary interface capable of accepting
Fast Back-to-Back transactions as a target.

06 02 UDF Supported - User Definable Features are not supported

05 02 66 MHz. Capable - 66 MHz. operation is not supported.

04:00 000002 Reserved

PCI

IOP
Attributes

Attributes

15 12 8 4 0

rc

rc

rc

rc

rc

rc

rc

rc

rc

rc

ro

ro

ro

ro

rc

rc

ro

ro

ro

ro

ro

ro

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

Attribute Legend:

RV = Reserved

PR = Preserved

RS = Read/Set

RW = Read/Write

RC = Read Clear

RO = Read Only

NA = Not Accessible

PCI Configuration Offset

06 - 07H

Internal Bus Address

0000 1006H
14-76 i960® RM/RN I/O Processor Developer’s Manual

PCI-to-PCI Bridge
14.15.5 Revision ID Register - RID

Revision ID Register bits adhere to definitions in the PCI Local Bus Specification Revision 2.1.

14.15.6 Class Code Register - CCR

Class Code Register bits adhere to the definitions in the PCI Local Bus Specification Revision 2.1.
It tells the auto configuration software the type of function present in the PCI device.

Table 14-28. Revision Identification Register - RID

Bit Default Description

07:00 00H Revision ID - This value identifies the revision number of the i960 RM/RN I/O
processor.

PCI

IOP
Attributes

Attributes

7 4 0

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

Attribute Legend:

RV = Reserved

PR = Preserved

RS = Read/Set

RW = Read/Write

RC = Read Clear

RO = Read Only

NA = Not Accessible

PCI Configuration Offset

08H

Internal Bus Address

0000 1008H

Table 14-29. Class Code Register - CCR

Bit Default Description

23:16 06H Base Class - Bridge Device

15:08 04H Sub Class - PCI-to-PCI Bridge Device

07:00 00H Programming Interface - Consistent with PCI-to-PCI Bridge Architecture Specification
Revision 1.0.

PCI

IOP
Attributes

Attributes

23 20 16 12 8 4 0

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

Attribute Legend:

RV = Reserved

PR = Preserved

RS = Read/Set

RW = Read/Write

RC = Read Clear

RO = Read Only

NA = Not Accessible

PCI Configuration Offset

09 - 0BH

Internal Bus Address

0000 1009H
i960® RM/RN I/O Processor Developer’s Manual 14-77

PCI-to-PCI Bridge
14.15.7 Cacheline Size Register - CLSR

Cacheline Size Register bits adhere to the definitions in the PCI Local Bus Specification Revision 2.1
and apply to both sides of the bridge. It is programmed with the system cacheline size in DWORDs
(32-bit quantities). The Cacheline Size is restricted to either 32 or 64 bytes. If a value other than 8 or
16 is written to the Cacheline Size Register, the Bridge behaves as if a value of 0 was written.

Table 14-30. Cacheline Size Register - CLSR

Bit Default Description

07:00 00H Cacheline Size - Cacheline size in DWORDs. Cacheline size is restricted to a register
value of 8 or 16 for 32 or 64 byte cachelines, respectively.

PCI

IOP
Attributes

Attributes

7 4 0

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

Attribute Legend:

RV = Reserved

PR = Preserved

RS = Read/Set

RW = Read/Write

RC = Read Clear

RO = Read Only

NA = Not Accessible

PCI Configuration Offset

0CH

Internal Bus Address

0000 100CH
14-78 i960® RM/RN I/O Processor Developer’s Manual

PCI-to-PCI Bridge
14.15.8 Primary Latency Timer Register - PLTR

Primary Latency Timer Register bits adhere to the definitions in the PCI Local Bus Specification
Revision 2.1 and apply to the primary side of the bridge only. It loads a timer at the beginning of
each PCI transaction initiated by the bridge on the primary bus. If the timer counts down to zero,
the bridge must terminate the transaction as soon as the GNT# signal is deasserted.

Table 14-31. Primary Latency Timer Register- PLTR

Bit Default Description

07:03 000002
Programmable Latency Timer - This portion of the register varies the latency timer for
the primary interface from a minimum of 0 clocks to a maximum of 248 clocks.

02:00 0002
Latency Timer Granularity - These bits are read only giving a programmable
granularity of 8 clocks for the Latency Timer.

PCI

IOP
Attributes

Attributes

7 4 0

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

ro

ro

ro

ro

ro

ro

Attribute Legend:

RV = Reserved

PR = Preserved

RS = Read/Set

RW = Read/Write

RC = Read Clear

RO = Read Only

NA = Not Accessible

PCI Configuration Offset

0DH

Internal Bus Address

0000 100DH
i960® RM/RN I/O Processor Developer’s Manual 14-79

PCI-to-PCI Bridge
14.15.9 Header Type Register - HTR

Header Type Register bits adhere to the definitions in the PCI Local Bus Specification
Revision 2.1. This register indicates the layout of bytes 10H to 3FH of the bridge configuration
space. The most significant bit indicates whether or not the device is multi-function and is defined
as a 1 for multi-function device in the PCI-to-PCI Bridge Architecture Specification Revision 1.0.
(Refer to Section 15.2.4, “PCI Multi-Function Device Swapping/Disabling” on page 15-22 for
exceptions to this statement.)

Table 14-32. Header Type Register- HTR

Bit Default Description

7 12

Single Function/Multi-Function Device - This bit identifies whether or not the i960
RM/RN I/O processor is a single or multi-function PCI device. The i960 RM/RN I/O
processor is considered a multi-function device.

06:00 0000012

PCI Header Type - This bit field tells the system initialization code what type of PCI
header is implemented. The i960 RM/RN I/O processor has a PCI-to-PCI bridge
header as defined in Rev. 1 of the bridge architecture specification.

PCI

IOP
Attributes

Attributes

7 4 0

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

Attribute Legend:

RV = Reserved

PR = Preserved

RS = Read/Set

RW = Read/Write

RC = Read Clear

RO = Read Only

NA = Not Accessible

PCI Configuration Offset

0EH

Internal Bus Address

0000 100EH
14-80 i960® RM/RN I/O Processor Developer’s Manual

PCI-to-PCI Bridge
14.15.10 Primary Bus Number Register - PBNR

Primary Bus Number Register bits adhere to the definitions in the PCI Local Bus Specification
Revision 2.1. This register records the bus number of the bridge primary interface. This register
decodes Type 1 configuration transactions on the secondary interface that should be converted to
Special Cycle transactions on the primary interface.

Table 14-33. Primary Bus Number Register- PBNR

Bit Default Description

07:00 00H Primary Bus Number - This field is programmed with the PCI bus number of the
bridge’s primary interface.

PCI

IOP
Attributes

Attributes

7 4 0

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

Attribute Legend:

RV = Reserved

PR = Preserved

RS = Read/Set

RW = Read/Write

RC = Read Clear

RO = Read Only

NA = Not Accessible

PCI Configuration Offset

18H

Internal Bus Address

0000 1018H
i960® RM/RN I/O Processor Developer’s Manual 14-81

PCI-to-PCI Bridge
14.15.11 Secondary Bus Number Register - SBNR

Secondary Bus Number Register bits adhere to the definitions in the PCI Local Bus
Specification.This register records the bus number of the bridge secondary interface. This register
determines when to respond to Type1 configuration commands on the primary interface and
convert them to Type 0 commands on the secondary interface.

Table 14-34. Secondary Bus Number Register - SBNR

Bit Default Description

07:00 00H Secondary Bus Number - This field is programmed with the PCI bus number of the
bridge’s secondary interface.

PCI

IOP
Attributes

Attributes

7 4 0

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

Attribute Legend:

RV = Reserved

PR = Preserved

RS = Read/Set

RW = Read/Write

RC = Read Clear

RO = Read Only

NA = Not Accessible

PCI Configuration Offset

19H

Internal Bus Address

0000 1019H
14-82 i960® RM/RN I/O Processor Developer’s Manual

PCI-to-PCI Bridge
14.15.12 Subordinate Bus Number Register - SubBNR

Subordinate Bus Number Register bits adhere to the definitions in the PCI Local Bus Specification
Revision 2.1. This register records the highest numbered PCI bus behind the bridge. This register is
used in conjunction with the secondary bus number to determine when to respond to Type 1
configuration commands on the primary bus and pass them on to the secondary interface.

Table 14-35. Subordinate Bus Number Register - SubBNR

Bit Default Description

07:00 00H Subordinate Bus Number - This field is programmed with the highest numbered PCI
bus which exists behind the bridge.

PCI

IOP
Attributes

Attributes

7 4 0

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

Attribute Legend:

RV = Reserved

PR = Preserved

RS = Read/Set

RW = Read/Write

RC = Read Clear

RO = Read Only

NA = Not Accessible

PCI Configuration Offset

1AH

Internal Bus Address

0000 101AH
i960® RM/RN I/O Processor Developer’s Manual 14-83

PCI-to-PCI Bridge
14.15.13 Secondary Latency Timer Register - SLTR

Secondary Latency Timer Register bits adhere to the definitions in the PCI Local Bus Specification
Revision 2.1 and apply to the secondary interface of the bridge only. It loads a timer at the
beginning of each PCI transaction initiated by the bridge on the secondary bus. If the timer counts
down to zero, the bridge must terminate the transaction as soon as the GNT# signal is deasserted.

Table 14-36. Secondary Latency Timer Register - SLTR

Bit Default Description

07:03 000002
Programmable Latency Timer - This portion of the register varies the latency timer for
the secondary interface from a minimum of 0 clocks to a maximum of 248 clocks.

02:00 0002
Latency Timer Granularity - These bits are read only giving a programmable
granularity of 8 clocks for the Latency Timer.

PCI

IOP
Attributes

Attributes

7 4 0

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

ro

ro

ro

ro

ro

ro

Attribute Legend:

RV = Reserved

PR = Preserved

RS = Read/Set

RW = Read/Write

RC = Read Clear

RO = Read Only

NA = Not Accessible

PCI Configuration Offset

1BH

Internal Bus Address

0000 101BH
14-84 i960® RM/RN I/O Processor Developer’s Manual

PCI-to-PCI Bridge
14.15.14 I/O Base Register - IOBR

I/O Base Register bits adhere to the definitions in the PCI Local Bus Specification Revision 2.1.
The I/O Base Register defines the bottom address (inclusive) of an address range that is used to
determine when to forward I/O transactions from one side of the bridge to the other. It must be
programmed with a valid value before the I/O Space Enable bit in the Primary Command Register
(PCR) is set. The bridge only supports 16-bit addressing which is indicated by a value of 0H in the
four least significant bits of the register. The upper 4 bits are programmed with AD[15:12] for the
bottom of the address range. AD[11:0] of the base address is always 000H forcing the I/O address
range to be 4 Kbyte aligned.

For the purposes of address decoding, the bridge assumes that AD[31:16], the upper 16 address bits
of the I/O address, are zero. The bridge must still perform the address decode on the full 32 bits of
address per PCI Local Bus Specification and check that the upper 16 bits are equal to 0000H.

The I/O address range (defined by the IOBR in conjunction with the IOLR) is modified by the ISA
Enable bit of the Bridge Control Register (BCR). If this bit is set, then I/O addresses in the range
X400H - XFFFH are not accepted by the primary side of the bridge, even if the address falls within
the defined I/O address range.

Table 14-37. I/O Base Register - IOBR

Bit Default Description

07:04 0H I/O Base Address - This field is programmed with AD[15:12] of the bottom of the I/O
address range to be passed down the hierarchy by the bridge.

03:00 0H I/O Addressing Capability - The value of 0H signifies that the bridge only supports
16-bit I/O addressing.

PCI

IOP
Attributes

Attributes

7 4 0

rw

rw

rw

rw

rw

rw

rw

rw

ro

ro

ro

ro

ro

ro

ro

ro

Attribute Legend:

RV = Reserved

PR = Preserved

RS = Read/Set

RW = Read/Write

RC = Read Clear

RO = Read Only

NA = Not Accessible

PCI Configuration Offset

1CH

Internal Bus Address

0000 101CH
i960® RM/RN I/O Processor Developer’s Manual 14-85

PCI-to-PCI Bridge
14.15.15 I/O Limit Register - IOLR

I/O Limit Register bits adhere to the definitions in the PCI Local Bus Specification Revision 2.1.
The I/O Limit Register defines the upper address (inclusive) of an address range that is used to
determine when to forward I/O transactions from one side of the bridge to the other. It must be
programmed with a valid value greater than or equal to the IOBR before the I/O Space Enable bit
in the Primary Command Register (PCR) is set. The bridge only supports 16 bit addressing which
is indicated by a value of 0H in the four least significant bits of the register. The upper 4 bits are
programmed with AD[15:12] for the top of the address range. AD[11:0] of the limit address is
always FFFH forcing a 4 Kbyte I/O range granularity.

For the purposes of address decoding, the bridge assumes that AD[31:16], the upper 16 address bits
of the I/O address, are zero. The bridge must still perform the address decode on the full 32 bits of
address per PCI Local Bus Specification and check that the upper 16 bits are equal to 0000H.

The I/O address range (defined by the IOBR in conjunction with the IOLR) is modified by the ISA
Enable bit of the Bridge Control Register. If this bit is set then I/O addresses in the range X400H -
XFFFH are not accepted by the primary side of the bridge, even if the address falls within the
defined I/O address range.

Table 14-38. I/O Limit Register - IOLR

Bit Default Description

07:04 0H I/O Limit Address - This field is programmed with AD[15:12] of the top of the I/O
address range to be passed down the hierarchy by the bridge.

03:00 0H I/O Addressing Capability - The value of 0H signifies that the bridge only supports 16
bit I/O addressing.

PCI

IOP
Attributes

Attributes

7 4 0

rw

rw

rw

rw

rw

rw

rw

rw

ro

ro

ro

ro

ro

ro

ro

ro

Attribute Legend:

RV = Reserved

PR = Preserved

RS = Read/Set

RW = Read/Write

RC = Read Clear

RO = Read Only

NA = Not Accessible

PCI Configuration Offset

1DH

Internal Bus Address

0000 101DH
14-86 i960® RM/RN I/O Processor Developer’s Manual

PCI-to-PCI Bridge
14.15.16 Secondary Status Register - SSR

Secondary Status Register bits adhere to the definitions in the PCI Local Bus Specification
Revision 2.1 (with modifications made to bit 14 by the PCI-to-PCI Bridge Architecture Specification
Revision 1.0) and apply to the secondary interface of the bridge only. The Read/Clear bits can only be
set by the hardware. They are cleared when S_RST# is asserted or by writing a 12 to the bit location.

Table 14-39. Secondary Status Register - SSR

Bit Default Description

15 02

Detected Parity Error - This bit is set when a parity error is detected during a data
transfer on the secondary bus even if parity handling is disabled. Set under the
following conditions:

• Write Data Parity Error when the Secondary interface of the Bridge is a slave
(upstream write).

• Read Data Parity Error when the Secondary interface of the Bridge is a master
(downstream read).

• Any Address Parity Error on the Secondary Bus (including one generated by the
Secondary interface of the Bridge).

14 02
Received System Error - When set indicates that S_SERR# was detected by the
bridge on the secondary interface.

13 02
Master Abort - This bit is set whenever a transaction initiated by the secondary
interface (except Special Cycles) ends in Master-Abort

12 02
Target Abort (master) - This bit is set whenever a transaction initiated by the
secondary interface ends in a Target-Abort.

11 02
Target Abort (target) - This bit is set whenever the secondary interface, acting as a
target, terminates a transaction with a Target-Abort

10:09 012 DEVSEL# Timing - Medium Decode Timing for the secondary interface

08 02

Data Parity Error Detected - This bit is set when the bridge:

• asserted S_PERR# (or saw asserted) on the secondary bus

• and was the master of the transaction when it occurred

• and the Secondary Parity Error Response bit is set in the BCR.

07 12
Fast Back-to-Back Capable - Indicates that the secondary interface is capable of
accepting Fast Back-to-Back transactions as a target on the secondary interface

06 02 UDF Supported - This indicates that User Definable Features is not supported

05 02 66 MHz Capable - This indicates that 66 MHz operation is not supported

04:00 000002 Reserved

PCI

IOP
Attributes

Attributes

15 12 8 4 0

rc

rc

rc

rc

rc

rc

rc

rc

rc

rc

ro

ro

ro

ro

rc

rc

ro

ro

ro

ro

ro

ro

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

Attribute Legend:

RV = Reserved

PR = Preserved

RS = Read/Set

RW = Read/Write

RC = Read Clear

RO = Read Only

NA = Not Accessible

PCI Configuration Offset

1E - 1FH

Internal Bus Address

0000 101EH
i960® RM/RN I/O Processor Developer’s Manual 14-87

PCI-to-PCI Bridge
14.15.17 Memory Base Register - MBR

Memory Base Register bits adhere to the definitions in the PCI Local Bus Specification
Revision 2.1. The Memory Base Register defines the bottom address (inclusive) of a
memory-mapped I/O address range (non-prefetchable) that is used to determine when to forward
memory transactions from one side of the bridge to the other. The Memory Base Register must be
programmed before the Memory Space Enable bit of the Primary Command Register (PCR) is set.
The upper 12 bits correspond to AD[31:20] of 32 bit addresses. For the purposes of address
decoding, the bridge assumes that AD[19:0], the lower 20 address bits of the memory base address,
are zero. This means that the bottom of the defined address range is aligned on a 1 Mbyte
boundary.

Table 14-40. Memory Base Register - MBR

Bit Default Description

15:04 000H Memory Base Address - This field is programmed with AD[31:20] of the bottom of the
memory address range to be passed down the hierarchy by the bridge.

03:00 0H Reserved

PCI

IOP
Attributes

Attributes

15 12 8 4 0

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rv

rv

rv

rv

rv

rv

rv

rv

Attribute Legend:

RV = Reserved

PR = Preserved

RS = Read/Set

RW = Read/Write

RC = Read Clear

RO = Read Only

NA = Not Accessible

PCI Configuration Offset

20 - 21H

Internal Bus Address

0000 1020H
14-88 i960® RM/RN I/O Processor Developer’s Manual

PCI-to-PCI Bridge
14.15.18 Memory Limit Register - MLR

Memory Limit Register bits adhere to the definitions in the PCI Local Bus Specification
Revision 2.1. The Memory Limit Register defines the upper address (inclusive) of the
memory-mapped I/O address range (non-prefetchable) that is used to determine when to forward
memory transactions from one side of the bridge to the other. The Memory Limit Register must be
programmed to a value greater than or equal to the MBR before the Memory Space Enable bit of
the Primary Command Register is set. The upper 12 bits correspond to AD[31:20] of 32 bit
addresses. For the purposes of address decoding, the bridge assumes that AD[19:0], the lower 20
bits of the memory limit address, are FFFFFH. This forces a 1 Mbyte granularity on the memory
address range.

Table 14-41. Memory Limit Register - MLR

Bit Default Description

15:04 000H Memory Limit Address - This field is programmed with AD[31:20] of the top of the
memory address range to be passed down the hierarchy by the bridge.

03:00 0H Reserved

PCI

IOP
Attributes

Attributes

15 12 8 4 0

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rv

rv

rv

rv

rv

rv

rv

rv

Attribute Legend:

RV = Reserved

PR = Preserved

RS = Read/Set

RW = Read/Write

RC = Read Clear

RO = Read Only

NA = Not Accessible

PCI Configuration Offset

22 - 23H

Internal Bus Address

0000 1022H
i960® RM/RN I/O Processor Developer’s Manual 14-89

PCI-to-PCI Bridge
14.15.19 Prefetchable Memory Base Register - PMBR

The Prefetchable Memory Base Register defines the bottom address (inclusive) of a prefetchable
memory address range that is used to determine when to forward memory transactions from one
side of the bridge to the other. The Prefetchable Memory Base Register must be programmed
before the Memory Space Enable bit of the Primary Command Register (PCR) is set. The upper 12
bits correspond to AD[31:20] of 32 bit addresses. For the purposes of address decoding, the bridge
assumes that AD[19:0], the lower 20 address bits of the memory base address, are zero. This means
that the bottom of the defined address range is aligned on a 1 Mbyte boundary.

Table 14-42. Prefetchable Memory Base Register - PMBR

Bit Default Description

15:04 000H Prefetchable Memory Base Address - This field is programmed with AD[31:20] of the
bottom of the memory address range to be passed down the hierarchy by the bridge.

03:00 0H Reserved

PCI

IOP
Attributes

Attributes

15 12 8 4 0

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rv

rv

rv

rv

rv

rv

rv

rv

Attribute Legend:

RV = Reserved

PR = Preserved

RS = Read/Set

RW = Read/Write

RC = Read Clear

RO = Read Only

NA = Not Accessible

PCI Configuration Offset

24 - 25H

Internal Bus Address

0000 1024H
14-90 i960® RM/RN I/O Processor Developer’s Manual

PCI-to-PCI Bridge
14.15.20 Prefetchable Memory Limit Register - PMLR

The Prefetchable Memory Limit Register defines the upper address (inclusive) of a prefetchable
memory address range that is used to determine when to forward memory transactions from one
side of the bridge to the other. The Prefetchable Memory Limit Register must be programmed to a
value greater than or equal to the PMBR before the Memory Space Enable bit of the Primary
Command Register is set. If the value in the PMLR is not greater than or equal to the value of the
PMBR once the Memory Space Enable bit is set, memory transactions on either side of the bridge
are indeterminate. The upper 12 bits correspond to AD[31:20] of 32 bit addresses. For the purposes
of address decoding, the bridge assumes that AD[19:0], the lower 20 bits of the memory limit
address, are FFFFFH. This forces a 1 Mbyte granularity on the memory address range.

Table 14-43. Prefetchable Memory Limit Register - PMLR

Bit Default Description

15:04 000H Prefetchable Memory Limit Address - This field is programmed with AD[31:20] of the
top of the memory address range to be passed down the hierarchy by the bridge.

03:00 0H Reserved

PCI

IOP
Attributes

Attributes

15 12 8 4 0

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rv

rv

rv

rv

rv

rv

rv

rv

Attribute Legend:

RV = Reserved

PR = Preserved

RS = Read/Set

RW = Read/Write

RC = Read Clear

RO = Read Only

NA = Not Accessible

PCI Configuration Offset

26 - 27H

Internal Bus Address

0000 1026H
i960® RM/RN I/O Processor Developer’s Manual 14-91

PCI-to-PCI Bridge
14.15.21 Bridge Subsystem Vendor ID Register - BSVIR

Bridge Subsystem Vendor ID Register bits adhere to the definitions in the PCI Local Bus
Specification Revision 2.1.

14.15.22 Bridge Subsystem ID Register - BSIR

Bridge Subsystem ID Register bits adhere to the definitions in the PCI Local Bus Specification
Revision 2.1.

Table 14-44. Bridge Subsystem Vendor ID Register - BSVIR

Bit Default Description

15:0 0000H Subsystem Vendor ID - This register uniquely identifies the vendor of the add-in board
or subsystem

PCI

IOP
Attributes

Attributes

15 12 8 4 0

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

Attribute Legend:

RV = Reserved

PR = Preserved

RS = Read/Set

RW = Read/Write

RC = Read Clear

RO = Read Only

NA = Not Accessible

PCI Configuration Offset

34 - 35H

Internal Bus Address

0000 1034H

Table 14-45. Bridge Subsystem ID Register - BSIR

Bit Default Description

15:0 000H Subsystem ID - This register uniquely identifies the add-in board or subsystem

PCI

IOP
Attributes

Attributes

15 12 8 4 0

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

Attribute Legend:

RV = Reserved

PR = Preserved

RS = Read/Set

RW = Read/Write

RC = Read Clear

RO = Read Only

NA = Not Accessible

PCI Configuration Offset

36 - 37H

Internal Bus Address

0000 1036H
14-92 i960® RM/RN I/O Processor Developer’s Manual

PCI-to-PCI Bridge
14.15.23 Bridge Control Register - BCR

Bridge Control Register bits provide extensions to the Command Register that are specific to
PCI-to-PCI bridges. The Bridge Control Register provides many of the same controls for the
secondary interface that are provided by the Command register for the primary interface. Some bits
affect the operation of both interfaces of the bridge.

Table 14-46. Bridge Control Register - BCR (Sheet 1 of 3)

Bit Default Description

15:12 00H Reserved

11 02

Discard Timer SERR# Enable - This bit enables the assertion of P_SERR# for all
discard timers. A value of 0 indicates that P_SERR# is not asserted when any discard
timer expires. A value of 1 indicates that P_SERR# is asserted (if enabled in the PCR)
when a discard timer expires.

10 02

Discard Timer Status - This bit indicates the status of the discard timers. A value of 0
indicates that no discard timers have expired. A value of 1 indicates that at least one
of the 8 discard timers has expired.

09 02

Secondary Discard Timer Value - This bit controls the time-out value for the 4 discard
timers attached to the queues holding data for transactions initiated on the secondary
bus. A value of 0 indicates the time-out value is 215 clocks. A value of 1 indicates the
time-out value is 210 clocks.

08 02

Primary Discard Timer Value - This bit controls the time-out value for the 4 discard
timers attached to the queues holding data for transactions initiated on the primary
bus. A value of 0 indicates the time-out value is 215 clocks. A value of 1 indicates the
time-out value is 210 clocks.

07 02
Fast Back to Back Enable - This secondary interface does not perform fast back to
back transactions.

PCI

IOP
Attributes

Attributes

15 12 8 4 0

rv

rv

rv

rv

rv

rv

rv

rv

rw

rw

rc

rc

rw

rw

rw

rw

ro

ro

rw

rw

rw

rw

rv

rv

rv

rv

rw

rw

rw

rw

rw

rw

Attribute Legend:

RV = Reserved

PR = Preserved

RS = Read/Set

RW = Read/Write

RC = Read Clear

RO = Read Only

NA = Not Accessible

PCI Configuration Offset

3E - 3FH

Internal Bus Address

0000 103EH
i960® RM/RN I/O Processor Developer’s Manual 14-93

PCI-to-PCI Bridge
06 02

Secondary Bus Reset - This bit controls the secondary bus S_RST# signal. When set:

• The PCI-to-PCI Bridge Unit resets all upstream and downstream Transaction
Queues and Data Queues as well as the secondary PCI bus interface. The Bridge
PCI configuration registers are not reset. The primary PCI bus interface retries all
transactions, except Type 0 configuration transactions, until this bit is cleared.

• DMA Channel 2 immediately halts any PCI transactions and gracefully complete
any local bus transactions. It then returns to an idle state. DMA Channel 2 does
not begin any new transfers until the Secondary Bus Reset bit is cleared.

• Secondary ATU immediately halts any PCI transactions and gracefully complete
any local bus transactions. The i960 core processor is released from back-off, if
necessary. The Secondary ATU does not accept any new i960 core processor
requests until the Secondary Bus Reset bit is cleared. The Secondary ATU
configuration registers are reset.

• An interrupt may be sent to the core processor based upon the setting of bit 3 in
the SDER.

When this bit is cleared, the S_RST# signal is deasserted. The software must clear
this bit.

05 02

Master Abort Mode - This bit controls the bridge functionality whenever a
Master-Abort termination occurs on either interface for transactions in which the
bridge is the slave.

When clear, reads return all ones (32-bit or 64-bit depending on the PCI bus size of
the initiating master and in the 64-bit bus case on REQ64#/ACK64#) and write data is
accepted by the bridge and discarded.

When set, the bridge signals a Master-Abort to the requesting master when the
corresponding transaction on the other side of the bridge terminates with a
Master-Abort and the transaction has not yet been concluded (reads and non-posted
writes). When the bit is set and the transaction on the requesting interface has
completed (posted writes) then the bridge must assert P_SERR# on the primary
interface (providing enabled in the PCR).

04 02 Reserved

03 02 VGA Enable - VGA Addressing is not supported.

02 02

ISA Enable - This bit modifies the bridges response to ISA I/O addresses. This only
applies to I/O addresses that are defined by the bridge in IOBR and IOLR and are also
in the first 64 Kbytes of PCI address space (0000.0000H - 0000.FFFFH)

When set, the bridge does not forward from primary to secondary and I/O transactions
addressing the last 768 bytes in each 1 Kbyte block. In the opposite direction, I/O
transactions are forwarded up the bridge if the address the last 768 bytes in each
1 Kbyte block.

Table 14-46. Bridge Control Register - BCR (Sheet 2 of 3)

Bit Default Description

PCI

IOP
Attributes

Attributes

15 12 8 4 0

rv

rv

rv

rv

rv

rv

rv

rv

rw

rw

rc

rc

rw

rw

rw

rw

ro

ro

rw

rw

rw

rw

rv

rv

rv

rv

rw

rw

rw

rw

rw

rw

Attribute Legend:

RV = Reserved

PR = Preserved

RS = Read/Set

RW = Read/Write

RC = Read Clear

RO = Read Only

NA = Not Accessible

PCI Configuration Offset

3E - 3FH

Internal Bus Address

0000 103EH
14-94 i960® RM/RN I/O Processor Developer’s Manual

PCI-to-PCI Bridge
01 02

Secondary SERR# Enable - This bit controls the forwarding of secondary interface
S_SERR# assertions to the primary interface. When this bit is set, If the SERR#
Enable bit in the PCR register is set and the bridge detects the assertion of S_SERR#
on the secondary bus, it then asserts P_SERR# on the primary interface. When clear,
S_SERR# assertions are not forwarded to the primary interface.

00 02

Secondary Parity Error Response Enable - This bit controls the response to parity
errors on the secondary interface. If this bit is clear, all address and data parity errors
on the secondary interface is ignored. If this bit is set, detection and reporting of all
parity errors on the secondary interface is enabled. Correct parity must be generated
even when parity error reporting is disabled.

Table 14-46. Bridge Control Register - BCR (Sheet 3 of 3)

Bit Default Description

PCI

IOP
Attributes

Attributes

15 12 8 4 0

rv

rv

rv

rv

rv

rv

rv

rv

rw

rw

rc

rc

rw

rw

rw

rw

ro

ro

rw

rw

rw

rw

rv

rv

rv

rv

rw

rw

rw

rw

rw

rw

Attribute Legend:

RV = Reserved

PR = Preserved

RS = Read/Set

RW = Read/Write

RC = Read Clear

RO = Read Only

NA = Not Accessible

PCI Configuration Offset

3E - 3FH

Internal Bus Address

0000 103EH
i960® RM/RN I/O Processor Developer’s Manual 14-95

PCI-to-PCI Bridge
14.15.24 Extended Bridge Control Register - EBCR

The Extended Bridge Control Register controls the extended functionality the bridge implements
over the base PCI-to-PCI Bridge Architecture Specification Revision 1.0.

Table 14-47. Extended Bridge Control Register - EBCR (Sheet 1 of 3)

Bit Default Description

15:10 000002 Reserved

09

Varies with
external
state of

S_REQ64#
at

secondary
PCI bus

reset

Secondary PCI Bus 64-Bit Capable - When clear, the secondary PCI bus interface
has been configured as 64-bit capable by the assertion of S_REQ64# on the rising
edge of S_RST#. When set, the secondary PCI interface is configured as 32-bit only.

08

Varies with
external
state of

P_REQ64#
at primary
PCI bus

reset

Primary PCI Bus 64-Bit Capable - When clear, the primary PCI bus interface has been
configured as 64-bit capable by the assertion of P_REQ64# on the rising edge of
P_RST#. When set, the primary PCI interface is configured as 32-bit only.

07 02 Reserved

06 02

Secondary DAC Medium Decode Enable - When set, DAC cycles on the secondary
PCI interface of the bridge are claimed by the bridge and forwarded to the primary PCI
interface with medium decode timing. When clear, all DAC cycles on the secondary
PCI interface are claimed with subtractive decode timing and forwarded to the primary
PCI interface.

PCI

IOP
Attributes

Attributes

15 12 8 4 0

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

ro

ro

ro

ro

rv

rv

rw

rw

rw

rw

rv

rv

rw

rw

rw

ro

rw

rw

rw

rw

Attribute Legend:

RV = Reserved

PR = Preserved

RS = Read/Set

RW = Read/Write

RC = Read Clear

RO = Read Only

NA = Not Accessible

PCI Configuration Offset

40 - 41H

Internal Bus Address

0000 1040H
14-96 i960® RM/RN I/O Processor Developer’s Manual

PCI-to-PCI Bridge
05 02

Reset Internal Bus - This bit controls the reset of the i960 core processor and all units
on the internal bus. When set:

• The PCI-to-PCI Bridge Unit is not reset. Upstream and downstream bridge I/O
and memory transactions are unaffected during the IB reset.

• All current PCI transactions being mastered by the ATU and DMA are completed,
and the ATU and DMA master interfaces proceed to an idle state. No additional
transactions are mastered by these units until the IB reset is complete.

• All current transactions being slaved by the ATU on either the PCI bus or the
internal bus completes, and the ATU slave interfaces proceeds to an idle state. All
future slave transactions master abort, with the exception of the completion cycle
for the transaction that set the Reset Internal Bus bit in the EBCR.

• If the value of the Core Processor Reset bit in the EBCR (upon normal reset) is
set, the i960 core processor is held in reset when the IB reset is complete.

• The Bridge and the ATU ignores configuration cycles, and they appear as master
aborts for:
32 PCI clocks + the number of PCI clocks needed to finish all ATU and DMA
transactions that completes before the IB reset (as described in the above text).

• The i960 RM/RN I/O processor hardware clears this bit after the reset operation
completes.

04 02 Reserved

03 12

Upstream Prefetchable Memory Enable - When this bit is set, the Bridge assumes that
upstream Memory Read commands are to prefetchable memory. When this bit is
clear, the Bridge assumes that upstream Memory Read commands are to
non-prefetchable memory. (Modifying this bit, while the bridge is enabled may cause
unknown behavior.)

02

Varies with
external
state of

RETRY pin
at primary
PCI bus

reset

Configuration Cycle Retry - When this bit is set, the primary PCI interface of the i960
RM/RN I/O processor responds to all configuration cycles with a Retry condition.
When clear, the i960 RM/RN I/O processor responds to the appropriate configuration
cycles.

The default condition for this bit is based on the external state of the RETRY pin at the
rising edge of P_RST#. If the external state of the pin is high, the bit is set. If the
external state of the pin is low, the bit is cleared.

01

Varies with
external
state of

RST_MODE
pin at

primary PCI
bus reset

Core Processor Reset - This bit is set to its default value by the hardware when either
P_RST# is asserted or the Reset Local Bus bit in the EBCR is set. When this bit is set,
the i960 core processor is being held in reset. Software cannot set this bit. Software is
required to clear this bit to deassert 80960 processor reset.

The default condition for this bit is based on the external state of the RST_MODE# pin
at the rising edge of P_RST#. If the external state of the pin is low, the default value of
this bit is set. If the external state of the pin is high, the default value of this bit is clear.

Table 14-47. Extended Bridge Control Register - EBCR (Sheet 2 of 3)

Bit Default Description

PCI

IOP
Attributes

Attributes

15 12 8 4 0

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

ro

ro

ro

ro

rv

rv

rw

rw

rw

rw

rv

rv

rw

rw

rw

ro

rw

rw

rw

rw

Attribute Legend:

RV = Reserved

PR = Preserved

RS = Read/Set

RW = Read/Write

RC = Read Clear

RO = Read Only

NA = Not Accessible

PCI Configuration Offset

40 - 41H

Internal Bus Address

0000 1040H
i960® RM/RN I/O Processor Developer’s Manual 14-97

PCI-to-PCI Bridge
00 02

Posting Disable - If this bit is set, the bridge is not allowed to post write transactions
from either bridge interface. All memory write transactions are processed as Delayed
Write transactions. If this bit is clear, the bridge is allowed to post write transactions.
(Modifying this bit, while the bridge is enabled may cause unknown behavior.)

Table 14-47. Extended Bridge Control Register - EBCR (Sheet 3 of 3)

Bit Default Description

PCI

IOP
Attributes

Attributes

15 12 8 4 0

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

ro

ro

ro

ro

rv

rv

rw

rw

rw

rw

rv

rv

rw

rw

rw

ro

rw

rw

rw

rw

Attribute Legend:

RV = Reserved

PR = Preserved

RS = Read/Set

RW = Read/Write

RC = Read Clear

RO = Read Only

NA = Not Accessible

PCI Configuration Offset

40 - 41H

Internal Bus Address

0000 1040H
14-98 i960® RM/RN I/O Processor Developer’s Manual

PCI-to-PCI Bridge
14.15.25 Secondary IDSEL Select Register - SISR

The Secondary IDSEL Select Register controls the usage of S_AD[25:16] in Type 1 to Type 0
conversions from the primary to secondary interface. In default operation, a unique encoding on
primary addresses P_AD[15:11] results in the assertion of one bit on the secondary address bus
S_AD[31:16] during a Type 1 to Type 0 conversion (Section 14.4.2). This is used for the assertion
of IDSEL on the device being targeted by the Type 0 configuration command. This register allows
secondary address bits S_AD[25:16] to be used to configure private PCI devices by forcing
secondary address bits S_AD[25:16] to all zeros during Type 1 to Type 0 conversions, regardless of
the state of primary addresses P_AD[15:11] (device number in Type 1 configuration command).

If any address bit within S_AD[25:16] is to be used for private secondary PCI devices, the i960
core processor must guarantee that the corresponding bit in the SISR register is set before the host
tries to configure the hierarchical PCI buses.

Note: Please check the i960® RM/RN I/O Processor Specification Update for possible issues with the SISR.

Table 14-48. Secondary IDSEL Select Register - SISR (Sheet 1 of 2)

Bit Default Description

15:10 0000002 Reserved

09 02

AD25- IDSEL Disable - When this bit is set, AD25 is deasserted for any possible Type
1 to Type 0 conversion. When clear, AD25 is asserted when primary addresses
AD[15:11] = 010012 during a Type 1 to Type 0 conversion.

08 02

AD24- IDSEL Disable - When this bit is set, AD24 is deasserted for any possible Type
1 to Type 0 conversion. When clear, AD24 is asserted when primary addresses
AD[15:11] = 010002 during a Type 1 to Type 0 conversion.

07 02

AD23 - IDSEL Disable - When this bit is set, AD23 is deasserted for any possible Type
1 to Type 0 conversion. When clear, AD23 is asserted when primary addresses
AD[15:11] = 001112 during a Type 1 to Type 0 conversion.

06 02

AD22 - IDSEL Disable - When this bit is set, AD22 is deasserted for any possible Type
1 to Type 0 conversion. When clear, AD22 is asserted when primary addresses
AD[15:11] = 001102 during a Type 1 to Type 0 conversion.

05 02

AD21 - IDSEL Disable - When this bit is set, AD21 is deasserted for any possible Type
1 to Type 0 conversion. When clear, AD21 is asserted when primary addresses
AD[15:11] = 001012 during a Type 1 to Type 0 conversion.

04 02

AD20 - IDSEL Disable - When this bit is set, AD20 is deasserted for any possible Type
1 to Type 0 conversion. When clear, AD20 is asserted when primary addresses
AD[15:11] = 001002 during a Type 1 to Type 0 conversion.

PCI

IOP
Attributes

Attributes

15 12 8 4 0

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

Attribute Legend:

RV = Reserved

PR = Preserved

RS = Read/Set

RW = Read/Write

RC = Read Clear

RO = Read Only

NA = Not Accessible

PCI Configuration Offset

42 - 43H

Internal Bus Address

0000 1042H
i960® RM/RN I/O Processor Developer’s Manual 14-99

PCI-to-PCI Bridge
03 02

AD19 - IDSEL Disable - When this bit is set, AD19 is deasserted for any possible Type
1 to Type 0 conversion. When clear, AD19 is asserted when primary addresses
AD[15:11] = 000112 during a Type 1 to Type 0 conversion.

02 02

AD18 - IDSEL Disable - When this bit is set, AD18 is deasserted for any possible Type
1 to Type 0 conversion. When clear, AD18 is asserted when primary addresses
AD[15:11] = 000102 during a Type 1 to Type 0 conversion.

01 02

AD17 - IDSEL Disable - When this bit is set, AD17 is deasserted for any possible Type
1 to Type 0 conversion. When clear, AD17 is asserted when primary addresses
AD[15:11] = 000012 during a Type 1 to Type 0 conversion.

00 02

AD16 - IDSEL Disable - When this bit is set, AD16 is deasserted for any possible Type
1 to Type 0 conversion. When clear, AD16 is asserted when primary addresses
AD[15:11] = 000002 during a Type 1 to Type 0 conversion.

Table 14-48. Secondary IDSEL Select Register - SISR (Sheet 2 of 2)

Bit Default Description

PCI

IOP
Attributes

Attributes

15 12 8 4 0

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

Attribute Legend:

RV = Reserved

PR = Preserved

RS = Read/Set

RW = Read/Write

RC = Read Clear

RO = Read Only

NA = Not Accessible

PCI Configuration Offset

42 - 43H

Internal Bus Address

0000 1042H
14-100 i960® RM/RN I/O Processor Developer’s Manual

PCI-to-PCI Bridge

ister

g a 1

it 4 of
14.15.26 Primary Bridge Interrupt Status Register - PBISR

The Primary Bridge Interrupt Status Register notifies the i960 core processor of the source of a Primary
Bridge interface interrupt. In addition, this register is written to clear the source of the interrupt to the
interrupt unit of the i960 RM/RN I/O processor (Section 8.3, “PCI and Peripheral Interrupts” on
page 8-18). All bits in this register are Read Only from PCI and Read/Clear from the local bus.

Bits 5:0 are a direct reflection of bits 15:11 and bit 8 (respectively) of the Primary Status Reg
(these bits are set at the same time by hardware but need to be cleared independently). The
conditions that result in a Primary Bridge interrupt to the core processor are cleared by writin
to the appropriate bits in this register.

The individual setting of the bits within the PBISR can be masked through the bits 10:6 and b
the SDER. Refer to Section 14.15.34 for details.

Table 14-49. Primary Bridge Interrupt Status Register - PBISR

Bit Default Description

31:06 0000000H Reserved

05 02

Detected Parity Error - This bit is set when a parity error is detected during a data
transfer on the primary bus even if parity handling is disabled. Set under the following
conditions:

• Write Data Parity Error when the Primary interface of the Bridge is a slave
(downstream write).

• Read Data Parity Error when the Primary interface of the Bridge is a master
(upstream read).

• Any Address Parity Error on the Primary Bus (including one generated by the
Primary interface of the Bridge).

04 02 P_SERR# Asserted - This bit is set if P_SERR# is asserted on the primary PCI bus.

03 02
PCI Master Abort - This bit is set whenever a transaction initiated by the primary
master interface ends in a Master-Abort.

02 02
PCI Target Abort (Master) - This bit is set whenever a transaction initiated by the
primary master interface ends in a Target-Abort.

01 02
PCI Target Abort (Target) - This bit is set whenever the primary interface, acting as a
target, terminates the transaction on the PCI bus with a Target-Abort.

00 02

PCI Master Parity Error - The primary interface sets this bit when three conditions are
met:

1) the bus agent asserted P_PERR# itself or observed P_PERR# asserted.

2) the agent setting the bit acted as the bus master for the operation in which the error
occurred.

3) the Parity Checking Enable bit (PCR Register) is set.

P
C

I
IO

P
A

ttr
ib

u
te

s
A

ttr
ib

ut
es

28 24 20 16 12 8 4 031

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rc

rc

rc

rc

rc

rc

rc

rc

rc

rc

rc

rc

Attribute Legend:

RV = Reserved

PR = Preserved

RS = Read/Set

RW = Read/Write

RC = Read Clear

RO = Read Only

NA = Not Accessible

PCI Configuration Offset

44 - 47H

Internal Bus Address

0000 1044H
i960® RM/RN I/O Processor Developer’s Manual 14-101

PCI-to-PCI Bridge

ister
et when
 that
gister.

nd 5
14.15.27 Secondary Bridge Interrupt Status Register - SBISR

The Secondary Bridge Interrupt Status Register notifies the i960 core processor of the source of a
Secondary Bridge interface interrupt. In addition, this register is written to clear the source of the interrupt
to the interrupt unit of the i960 RM/RN I/O processor (Section 8.3, “PCI and Peripheral Interrupts” on
page 8-18). All bits in this register are Read/Clear from the PCI bus and the local bus.

Bits 5:0 are a direct reflection of bits 15:11 and bit 8 (respectively) of the Secondary Status Reg
(these bits are set at the same time by hardware but need to be cleared independently). Bit 6 is s
software sets and subsequently clears the Secondary Bus Reset bit in the BCR. The conditions
result in a Secondary Bridge interrupt are cleared by writing a 1 to the appropriate bits in this re

The individual setting of the bits within the SBISR can be masked through the bits 3, 15:11, a
of the SDER. Refer to Section 14.15.34 for details.

Table 14-50. Secondary Bridge Interrupt Status Register - SBISR

Bit Default Description

31:07 0000000H Reserved

06 02
Secondary Bus Reset Occurred - This bit is set when the bridge senses the
deassertion (by software only) of bit 6, Secondary Bus Reset, in the BCR.

05 02

Detected Parity Error - This bit is set when a parity error is detected during a data
transfer on the secondary bus even if parity handling is disabled. Set under the
following conditions:

• Write Data Parity Error when the Secondary interface of the Bridge is a slave
(upstream write).

• Read Data Parity Error when the Secondary interface of the Bridge is a master
(downstream read).

• Any Address Parity Error on the Secondary Bus (including one generated by the
Secondary interface of the Bridge).

04 02 Received System Error - This bit is set if S_SERR# is detected on the secondary PCI bus.

03 02
PCI Master Abort - This bit is set whenever a transaction initiated by the secondary
master interface ends in a Master-Abort.

02 02
PCI Target Abort (Master) - This bit is set whenever a transaction initiated by the
secondary master interface ends in a Target-Abort.

01 02
PCI Target Abort (Target) - This bit is set whenever the secondary interface, acting as
a target, terminates the transaction on the PCI bus with a Target-Abort.

00 02

PCI Master Parity Error - Secondary interface sets this bit when three conditions are met:

1) bus agent asserted S_PERR# itself or observed S_PERR# asserted

2) agent setting the bit acted as bus master for the operation in which the error
occurred

3) the Secondary Parity Error Response bit (BCR Register) is set

P
C

I
IO

P
A

ttr
ib

ut
es

A
tt

rib
ut

es

28 24 20 16 12 8 4 031

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rc

rc

rc

rc

rc

rc

rc

rc

rc

rc

rc

rc

rc

rc

Attribute Legend:

RV = Reserved

PR = Preserved

RS = Read/Set

RW = Read/Write

RC = Read Clear

RO = Read Only

NA = Not Accessible

PCI Configuration Offset

48 - 4BH

Internal Bus Address

0000 1048H
14-102 i960® RM/RN I/O Processor Developer’s Manual

PCI-to-PCI Bridge

 private
sitively
the
d

. The
1:0]
ligned.

ddress
32 bits
0H.
14.15.28 Secondary Arbitration Control Register - SACR

Refer to Section 17.6.1, “Secondary Arbitration Control Register - SACR” on page 17-12 for a
description of the Secondary Arbitration Control Register.

14.15.29 PCI Interrupt Routing Select Register - PIRSR

Refer to Section 8.5.4, “PCI Interrupt Routing Select Register - PIRSR” on page 8-39 for a
description of the PCI Interrupt Routing Select Register.

14.15.30 Secondary I/O Base Register - SIOBR

Secondary I/O Base Register bits are used when the secondary PCI interface is enabled for
addressing. The Secondary I/O Base Register defines the bottom address (inclusive) of a po
decoded address range that is used to determine when to not forward I/O transactions from
secondary interface to the primary interface of the bridge. It must be programmed with a vali
value before the Private Address Space Enable bit is set. The bridge only supports 16-bit
addressing which is indicated by a value of 0H in the four least significant bits of the register
upper 4 bits are programmed with S_AD[15:12] for the bottom of the address range. S_AD[1
of the base address is always 000H forcing the secondary I/O address range to be 4 Kbyte a

For the purposes of address decoding, the bridge assumes that S_AD[31:16], the upper 16 a
bits of the I/O address, are zero. The bridge must still perform the address decode on the full
of address per PCI Local Bus Specification and check that the upper 16 bits are equal to 000

Table 14-51. Secondary I/O Base Register - SIOBR

Bit Default Description

07:04 0H
Secondary I/O Base Address - This field is programmed with S_AD[15:12] of the
bottom of the private secondary I/O address range not passed from the secondary to
the primary side of the bridge due to a private I/O range.

03:00 0H I/O Addressing Capability - The value of 0H signifies that the bridge only supports 16
bit I/O addressing.

PCI

IOP
Attributes

Attributes

7 4 0

rw

rw

rw

rw

rw

rw

rw

rw

ro

ro

ro

ro

ro

ro

ro

ro

PCI Configuration Offset

54H

Internal Bus Address

0000 1054H

Attribute Legend:

RV = Reserved

PR = Preserved

RS = Read/Set

RW = Read/Write

RC = Read Clear

RO = Read Only

NA = Not Accessible
i960® RM/RN I/O Processor Developer’s Manual 14-103

PCI-to-PCI Bridge
14.15.31 Secondary I/O Limit Register - SIOLR

Secondary I/O Limit Register bits are used when the secondary PCI interface is enabled for private
address decoding. The Secondary I/O Limit Register defines the upper address (inclusive) of a
decoded secondary address range that is used to determine when to not forward I/O transactions
from the secondary to primary interface of the bridge. The bridge only supports 16 bit addressing
which is indicated by a value of 0H in the four least significant bits of the register. The upper 4 bits
are programmed with S_AD[15:12] for the top of the address range. S_AD[11:0] of the base
address is always FFFH forcing a 4 Kbyte I/O range granularity.

For the purposes of address decoding, the bridge assumes that S_AD[31:16], the upper 16 address
bits of the I/O address, are zero. The bridge must still perform the address decode on the full 32 bits
of address per PCI Local Bus Specification and check that the upper 16 bits are equal to 0000H.

Table 14-52. Secondary I/O Limit Register - SIOLR

Bit Default Description

07:04 0H Secondary I/O Limit Address - This field is programmed with S_AD[15:12] of the top of
the private I/O address range not passed from the secondary to primary interface.

03:00 0H Secondary I/O Addressing Capability - The value of 0H signifies that the bridge only
supports 16-bit I/O addressing.

PCI

IOP
Attributes

Attributes

7 4 0

rw

rw

rw

rw

rw

rw

rw

rw

ro

ro

ro

ro

ro

ro

ro

ro

Attribute Legend:

RV = Reserved

PR = Preserved

RS = Read/Set

RW = Read/Write

RC = Read Clear

RO = Read Only

NA = Not Accessible

PCI Configuration Offset

55H

Internal Bus Address

0000 1055H
14-104 i960® RM/RN I/O Processor Developer’s Manual

PCI-to-PCI Bridge
14.15.32 Secondary Memory Base Register - SMBR

Secondary Memory Base Register bits are used to define a private address space on the secondary
PCI bus if the Private Address Space Enable bit in the SDER is set. The Secondary Memory Base
Register defines the bottom address (inclusive) of a memory-mapped address range that is used to
determine when to not forward transactions from the secondary to primary interface. The
Secondary Memory Base Register must be programmed with a valid value before the Private
Address Space Enable bit in the SDER is set. The upper 12 bits correspond to S_AD[31:20] of 32
bit addresses. For the purposes of address decoding, the bridge assumes that S_AD[19:0], the lower
20 address bits of the memory base address, are zero. This means that the bottom of the defined
address range is aligned on a 1 Mbyte boundary.

Table 14-53. Secondary Memory Base Register - SMBR

Bit Default Description

15:04 000H
Secondary Memory Base Address - This field is programmed with S_AD[31:20] of the
bottom of the secondary memory address range that is not passed from the
secondary to primary interface when private address space is enabled.

03:00 0H Reserved

PCI

IOP
Attributes

Attributes

15 12 8 4 0

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rv

rv

rv

rv

rv

rv

rv

rv

Attribute Legend:

RV = Reserved

PR = Preserved

RS = Read/Set

RW = Read/Write

RC = Read Clear

RO = Read Only

NA = Not Accessible

PCI Configuration Offset

58 - 59H

Internal Bus Address

0000 1058H
i960® RM/RN I/O Processor Developer’s Manual 14-105

PCI-to-PCI Bridge
14.15.33 Secondary Memory Limit Register - SMLR

Secondary Memory Limit Register bits are used when the secondary interface of the bridge unit is
enabled for private address decoding. The Secondary Memory Limit Register defines the upper
address (inclusive) of a memory-mapped address range that is used to determine when to not forward
transactions from the secondary to primary interface. The Secondary Memory Limit Register must be
programmed to a value greater than or equal to the SMBR before private address space is enabled. If
the value in the SMLR is not greater than or equal to the value of the SMBR once the Private Address
Enable bit is set, the private address range is indeterminate and does not function. The upper 12 bits
correspond to S_AD[31:20] of 32 bit addresses. For the purposes of address decoding, the bridge
assumes that S_AD[19:0], the lower 20 address bits of the secondary memory base address, are
FFFFFH. This forces a 1 Mbyte granularity on the memory address range.

Table 14-54. Secondary Memory Limit Register - SMLR

Bit Default Description

15:04 000H
Secondary Memory Limit Address - This field is programmed with S_AD[31:20] of the
top of the secondary memory address range that is not forwarded from secondary to
primary side due to a private address space.

03:00 0H Reserved

PCI

IOP
Attributes

Attributes

15 12 8 4 0

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rv

rv

rv

rv

rv

rv

rv

rv

PCI Configuration Offset

5A - 5BH

Internal Bus Address

0000 105AH

Attribute Legend:

RV = Reserved

PR = Preserved

RS = Read/Set

RW = Read/Write

RC = Read Clear

RO = Read Only

NA = Not Accessible
14-106 i960® RM/RN I/O Processor Developer’s Manual

PCI-to-PCI Bridge

n
14.15.34 Secondary Decode Enable Register - SDER

The Secondary Decode Enable Register has two separate functions. It is used to control the address
decode functions on the secondary PCI interface of the bridge unit and in addition contains the
control bits capable of masking the primary and secondary bridge interface interrupt sources to the
80960JT core.

The Private Memory Space Enable bit allows a private memory and I/O space to be created on the
secondary PCI bus. This bit is used in conjunction with the SMBR/SMLR and the SIOBR/SIOLR
registers. If this bit is set, transactions with addresses within the memory and I/O address ranges
are ignored by the bridge. It also disables secondary positive decode.

The interrupt mask bits are responsible for masking interrupt conditions to the Primary and
Secondary Bridge Interrupt Status Registers (PBISR and SBISR). Masking the bits in the PBISR
and SBISR prevents the setting of the Primary Bridge PCI Interface Error Interrupt Bit and the
Secondary Bridge PCI Interface Error Bit in the NMI Interrupt Status Register (Chapter 8, “PCI
and Peripheral Interrupt Controller Unit”). The setting of a mask bit means that an error conditio
which results in the setting of an error response bit in the PSR or SSR does not set the
corresponding bit in the PBISR or SBISR.

Table 14-55. Secondary Decode Enable Register - SDER (Sheet 1 of 2)

Bit Default Description

15 12

S_SERR# Detected Interrupt Mask - When set, detecting S_SERR# on the secondary
interface resulting in bit 14 of the SSR being set does not result in bit 4 of the SBISR
being set. When clear, an error that sets bit 14 of the SSR causes bit 4 of the SBISR
to be set

14 12

Secondary PCI Master Abort Interrupt Mask - When set, a master abort error resulting
in bit 13 of the SSR being set does not result in bit 3 of the SBISR being set. When
clear, an error that sets bit 13 of the SSR causes bit 3 of the SBISR to be set.

13 12

Secondary PCI Target Abort (Master) Interrupt Mask- When set, a target abort error
resulting in bit 12 of the SSR being set does not result in bit 2 of the SBISR being set.
When clear, an error that sets bit 12 of the SSR causes bit 2 of the SBISR to be set.

12 12

Secondary PCI Target Abort (Target) Interrupt Mask - When set, a target abort error
resulting in bit 11 of the SSR being set does not result in bit 1 of the SBISR being set.
When clear, an error that sets bit 11 of the SSR causes bit 1 of the SBISR to be set.

11 12

Secondary PCI Master Parity Error Interrupt Mask - When set a parity error resulting
in bit 8 of the SSR being set does not result in bit 0 of the SBISR being set. When
clear, an error that sets bit 8 of the SSR causes bit 0 of the SBISR to be set.

PCI

IOP
Attributes

Attributes

15 12 8 4 0

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rv

rv

rv

rv

PCI Configuration Offset

5C - 5DH

Internal Bus Address

0000 105CH

Attribute Legend:

RV = Reserved

PR = Preserved

RS = Read/Set

RW = Read/Write

RC = Read Clear

RO = Read Only

NA = Not Accessible
i960® RM/RN I/O Processor Developer’s Manual 14-107

PCI-to-PCI Bridge
10 12

P_SERR# Asserted Interrupt Mask - When set, detecting or asserting P_SERR# on
the primary interface resulting in bit 14 of the PSR being set does not result in bit 4 of
the PBISR being set. When clear, an error that sets bit 14 of the PSR causes bit 4 of
the PBISR to be set

09 12

Primary PCI Master Abort Interrupt Mask - When set, a master abort error resulting in
bit 13 of the PSR being set does not result in bit 3 of the PBISR being set. When clear,
an error that sets bit 13 of the PSR causes bit 3 of the PBISR to be set.

08 12

Primary PCI Target Abort (Master) Interrupt Mask- When set, a target abort error
resulting in bit 12 of the PSR being set does not result in bit 2 of the PBISR being set.
When clear, an error that sets bit 12 of the PSR causes bit 2 of the PBISR to be set.

07 12

Primary PCI Target Abort (Target) Interrupt Mask - When set, a target abort error
resulting in bit 11 of the PSR being set does not result in bit 1 of the PBISR being set.
When clear, an error that sets bit 11 of the PSR causes bit 1 of the PBISR to be set.

06 12

Primary PCI Master Parity Error Interrupt Mask - When set a parity error resulting in
bit 8 of the PSR being set does not result in bit 0 of the PBISR being set. When clear,
an error that sets bit 8 of the PSR causes bit 0 of the PBISR to be set.

05 12
Secondary Detected Parity Error Bit Interrupt Mask - When set a parity error resulting
in bit 15 of the SSR being set does not result in bit 5 of the SBISR being set.

04 12
Primary Detected Parity Error Bit Interrupt Mask - When set a parity error resulting in
bit 15 of the PSR being set does not result in bit 5 of the PBISR being set.

03 12

Secondary Bus Reset Occurred Interrupt Mask - When this bit is set, and the bridge
senses the deassertion (by software only) of bit 6, Secondary Bus Reset, in the BCR,
bit 6 of the SBISR is not set.

02 02

Private Memory Space Enable - when set, this bit disables Bridge forwarding of
addresses in the SMBR/SMLR and SIOBR/SIOLR address ranges. This creates a
private memory space on the secondary PCI bus that allows peer to peer
transactions.

01:00 002 Reserved

Table 14-55. Secondary Decode Enable Register - SDER (Sheet 2 of 2)

Bit Default Description

PCI

IOP
Attributes

Attributes

15 12 8 4 0

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rv

rv

rv

rv

PCI Configuration Offset

5C - 5DH

Internal Bus Address

0000 105CH

Attribute Legend:

RV = Reserved

PR = Preserved

RS = Read/Set

RW = Read/Write

RC = Read Clear

RO = Read Only

NA = Not Accessible
14-108 i960® RM/RN I/O Processor Developer’s Manual

PCI-to-PCI Bridge
14.15.35 Queue Control Register - QCR

The Queue Control Register contains programmable parameters affecting operation of the
PCI-to-PCI Bridge Queues.

Table 14-56. Queue Control Register- QCR

Bit Default Description

15:04 000H Reserved

03 02

DRC Alias - when set, the bridge does not distinguish read commands in prefetchable
address space when attempting to match a current PCI read transaction with read
data enqueued within a DRC buffer. When clear, a current read transaction must have
the exact same read command as the DRR for the bridge to deliver DRC data.
(Modifying this bit, while the bridge is enabled may cause unknown behavior.)

02 02
MWI Alias - when set, the target interface of the bridge treats an MWI as a Memory
Write and aliases the MWI to a Memory Write on the target bus.

01:00 002 Reserved.

PCI

IOP
Attributes

Attributes

15 12 8 4 0

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rw

rw

rw

rw

rv

rv

rv

rv

Attribute Legend:

RV = Reserved

PR = Preserved

RS = Read/Set

RW = Read/Write

RC = Read Clear

RO = Read Only

NA = Not Accessible

PCI Configuration Offset

5E - 5FH

Internal Bus Address

0000 105EH
i960® RM/RN I/O Processor Developer’s Manual 14-109

nal
g Unit

RN
ace.

0

us are
N

sly

r) to
nal
es and

O
he

ss the

es a
efer

 single
e

e
Address Translation Unit 15

This chapter describes the operation modes, setup, and implementation of the mechanism which
interfaces between the primary and secondary PCI buses and the i960® RM/RN I/O processor
internal bus.

15.1 Overview

As indicated in Figure 15-1, the ATU — the interface between the PCI bus and the on-chip inter
bus — consists of two address translation units, the Expansion ROM Unit and the Messagin
(MU) described in Chapter 16, “Messaging Unit”.

The ATUs support both inbound and outbound address translation. The ATUs are:

• Primary ATU (PATU) — provides access between the primary PCI bus and the i960 RM/
I/O Processor Internal Bus. The primary ATU and Messaging Unit share PCI address sp

• Secondary ATU (SATU) — provides access between the secondary PCI bus and the i96
RM/RN I/O Processor Internal Bus.

Transactions initiated on a PCI bus and targeted at the i960 RM/RN I/O Processor Internal B
referred to as inbound transactions (PCI to internal bus); transactions initiated on the i960 RM/R
I/O Processor Internal Bus and targeted at a PCI bus are referred to as outbound transactions
(internal bus to PCI). The ATU handles multiple inbound PCI transactions; it can simultaneou
process PCI read and write transactions.

During inbound transactions, the ATU converts PCI addresses (initiated by a PCI bus maste
internal bus addresses and initiates the data transfer on the i960 RM/RN I/O Processor Inter
Bus. During outbound transactions, the ATU converts internal bus addresses to PCI address
initiates the data transfer on the respective PCI bus.

The Messaging Unit provides a mechanism for the system processor and the i960 RM/RN I/
processor to transfer control information. The Messaging Unit occupies the first 4 Kbytes of t
Primary ATU address space. PCI masters on the primary interface of the i960 RM/RN I/O
processor access the MU by addressing the PATU anywhere in the first 4 KB offset from the
PATU Base Address Register. When the mode is enabled, secondary PCI masters can acce
MU by addressing anywhere in the first 4 K of the SATU directly.

The Expansion ROM provides the PCI mechanism for downloading device/board driver code
during system boot sequence. It consists of a separate inbound address range which access
Flash EPROM device connected through the i960 RM/RN I/O processor memory controller. R
to the PCI Local Bus Specification Revision 2.1 for details of Expansion ROM usage.

The Primary and Secondary Address Translation Units and the Messaging Unit appear as a
PCI device on the primary PCI bus. These units collectively are the second PCI function in th
multi-function i960 RM/RN I/O processor. (Refer to Section 15.2.4, “PCI Multi-Function Device
Swapping/Disabling”, for exceptions to this statement.) The block diagram for the ATUs and th
Messaging Unit is shown in Figure 15-1.
i960® RM/RN I/O Processor Developer’s Manual 15-1

Address Translation Unit
Both the Primary ATU and the Secondary ATU support the PCI 64-bit extensions providing up to
264 Mbytes/sec of PCI bandwidth. On the internal interface, the Primary and Secondary ATU
implement the i960 RM/RN I/O processor internal bus protocol which provides for a maximum of
528 Mbytes/sec using 64-bit/66 MHz signaling.

The functionality of the ATUs is described in the following sections. The Primary and Secondary
ATUs (and the Messaging Unit) have a memory-mapped register interface that is visible from
either the PCI interface, the internal bus interface, or both.

Figure 15-1. ATU Block Diagram

Primary PCI Bus

Secondary PCI Bus

PCI to PCI Bridge

In
te

rn
al

 B
u

s
In

te
rf

ac
e

M
a

st
e

r/
S

la
ve

 P
C

I

i960 RM/RN

Primary Address
Translation Unit

B
us

 In
te

rf
a

ce

In
te

rn
al

M
a

st
e

r/
S

la
ve

 P
C

I

Secondary Address
Translation Unit

B
us

 In
te

rf
a

ce

Messaging Unit

PRIMARY ADDRESS TRANSLATION UNIT

SECONDARY ADDRESS TRANSLATION UNIT

Expansion ROM
Translation Unit

B
us

 In
te

rf
a

ce

I/O Processor
Internal Bus
15-2 i960® RM/RN I/O Processor Developer’s Manual

Address Translation Unit
15.2 ATU Address Translation

The primary ATU and the secondary ATU support transactions from both directions through the
i960 RM/RN I/O processor. The primary ATU allows PCI masters on the primary PCI bus to
initiate transactions to the i960 RM/RN I/O Processor Internal Bus and allows the 80960JT core
processor to initiate transactions to the primary PCI bus. The secondary ATU performs the same
function, but on the secondary PCI bus and for secondary PCI bus masters.

The ATUs implement an address windowing scheme to determine which addresses to claim and
translate to the appropriate bus.

• The address windowing mechanism for inbound translation is described in Section 15.2.1.1,
“Inbound Address Translation”.

• The address windowing mechanism for outbound translation is described in Section 15.2.2.1,
“Outbound Address Translation”.

Figure 15-2. ATU Queue Architecture Block Diagram

PCI-to-PCI
Bridge

Secondary ATU

Primary ATU

P
C

I M
aster/S

lave

IB
 M

aster/S
lave

S_IRQ 128 Bytes

P
C

I M
aster/S

lave

IB
 M

aster/S
lave

S_OWQ 16 Bytes

S_ORQ 16 Bytes

S_OTQ

P
rim

ary P
C

I
S

eco
n

d
ary P

C
I

In
tern

al B
u

s

P_IWQ 128 Bytes

P_IDWQ
8 Bytes

P_OTQ

P_OWQ 16 Bytes

P_ORQ 16 Bytes

S_IWQ 128 Bytes

P_IWQAD

P_ITQ1

P_ITQ2

S_IWQAD

S_ITQ1

S_ITQ2

P_IRQ 128 Bytes
i960® RM/RN I/O Processor Developer’s Manual 15-3

Address Translation Unit

ted by

0

CI bus
ing
s) and
The ATU has the ability to handle multiple inbound PCI transactions simultaneously. The ATU
may contain up to four PCI memory writes up to the data queue size of the ATU (PATU or SATU).
Each ATU is also capable of handling two outstanding delayed read transactions. Refer to
Figure 15-2 and Section 15.5 for details of the ATU queue architecture.

The primary ATU contains a data path between the primary PCI bus and the internal bus.
Connecting the primary ATU in this manner enables data transfers to occur without requiring any
resources on the secondary PCI bus. The secondary ATU contains a data path between the
secondary PCI bus and the internal bus. The secondary ATU allows secondary PCI bus masters to
access the internal bus and i960 RM/RN I/O processor local memory. These transactions are
initiated by a secondary bus master and do not require any bandwidth on the primary PCI bus.

The ATU units allow for recognition and generation of multiple PCI cycle types. Table 15-1 shows
the PCI commands supported for both inbound and outbound ATU transactions. The type of
operation seen by the ATU on inbound transactions is determined by the PCI master (on either
primary or secondary bus) who initiates the transaction. Claiming an inbound transaction depends
on the address range programmed within the inbound translation window. The type of transaction
used by the ATU on outbound transactions is determined by the 80960 local address and the fixed
outbound windowing scheme. See Section 15.2.2.1, “Outbound Address Translation” for the full
details on outbound PCI cycle selection.

Both ATUs support the 64-bit addressing specified by the PCI Local Bus Specification Revision 2.1.
This 64-bit addressing extension is for outbound data transactions only (i.e., data transfers initia
the i960 core processor). This is in addition to the 64-bit data extensions supported by the i960
RM/RN I/O processor. Refer to Section 15.2.5 for details of 64-bit PCI operation.

Neither ATU supports exclusive access using the PCI LOCK# signal. Also, the ATUs do not
guarantee atomicity for outbound transactions when performing atomic accesses using 8096
atomic instructions (atmod, atadd).

Inbound and outbound ATU transactions are best described by the data flows used on the P
and the i960 RM/RN I/O processor internal bus during read and write operations. The follow
sections describe read and write operations for inbound ATU transactions (PCI to internal bu
outbound transactions (internal bus to PCI). For the purposes of data flows, there are no
distinctions between primary ATU transactions and secondary ATU transactions.

Table 15-1. ATU Command Support

PCI Command Type Claimed on Inbound
Transactions on PCI Bus

Generated by Outbound
Transactions on PCI Bus

Valid Internal
Bus Command

Interrupt Acknowledge No No No

Special Cycle No No No

I/O Read No Yes No

I/O Write No Yes No

Memory Read Yes Yes Yes

Memory Write Yes Yes Yes

Memory Write and
Invalidate Yes No No

Memory Read Line Yes No Yes

Memory Read Multiple Yes No Yes

Configuration Read Yes Yes Yes

Configuration Write Yes Yes Yes

Dual Address Cycle No Yes No
15-4 i960® RM/RN I/O Processor Developer’s Manual

Address Translation Unit

und
n be

able of
ed
15.2.1 Inbound Transactions

Inbound transactions which target the PATU or the SATU are translated and performed on the i960
RM/RN I/O Processor Internal Bus. As a PCI target, the ATUs are capable of accepting all PCI
memory read and write operations as either a 32-bit or a 64-bit target PCI target. Refer to
Section 15.2.5 for details on 64-bit PCI operation. Memory Writes and Memory Write and
Invalidate operations are performed as posted operations and all memory read operations are
performed as delayed reads. The PATU is capable of accepting configuration read and write
cycles. For Configuration Writes, the cycles are performed as delayed memory write operations.
Configuration Reads are performed as delayed read operations.

Inbound write transactions have their address entered into the inbound write address queue
(IWQAD) and data entered into the inbound write data queue (IWQ). The IWQ/IWQAD pair are
capable of holding up to 4 write operations up to the size of the data queue. Inbound read
operations (memory and configuration) have their address entered into the inbound transaction
queue (ITQ) and the data is returned to the PCI master in the inbound read queue (IRQ). Inbound
configuration writes use the inbound delayed write queue (IDWQ) for address and data. Refer to
Section 15.5 for details of queue operation.

For inbound transactions, the ATUs are slaves on the PCI bus and are masters on the internal bus.
PCI slave operation is defined in the PCI Local Bus Specification Revision 2.1.

15.2.1.1 Inbound Address Translation

The ATUs allow PCI bus masters to directly access the internal bus. These PCI bus masters can
read or write i960 RM/RN I/O processor memory-mapped registers or i960 RM/RN I/O processor
local memory space. The process of inbound address translation involves two steps:

1. Address Detection.

• Determine when the 32-bit PCI address is within the address window defined for
the inbound ATU (primary or secondary).

• Claim the PCI transaction with medium DEVSEL# timing.

2. Address Translation.

• Translate the 32-bit PCI address to a 32-bit i960 RM/RN I/O Processor Internal
Bus address.

The ATUs use the following registers in inbound address translation:

• Inbound ATU Base Address Register

• Inbound ATU Limit Register

• Inbound ATU Translate Value Register

See Section 15.7, “Register Definitions” on page 15-47 for details on inbound translation register
definition and programming constraints.

By convention, primary inbound ATU addresses are primary PCI addresses; secondary inbo
ATU addresses are secondary PCI addresses. For the PATU, in the event that an address ca
claimed by both the ATU and the bridge, the PATU PCI interface has priority. For the SATU,
inbound addresses beyond the first 4 KB of the SATU inbound address space which are cap
being claimed by the secondary interface of bridge unit and the SATU slave interface, is claim
by the SATU.
i960® RM/RN I/O Processor Developer’s Manual 15-5

Address Translation Unit

 the
local

 a
The first 4 Kbytes of the SATU inbound address space is dependent on the value of bit 12
(Secondary Bus-Messaging Unit Access Enable bit) of the ATUCR. If set, these addresses are
claimed by the secondary interface of the Bridge Unit (if a valid bridge address). If clear, these
addresses are claimed by the SATU for forwarding to the internal bus. See Section 15.3 for details.

Inbound address detection is determined from the 32-bit PCI address, the base address register and
the limit register. The algorithm for detection is:

When (PCI_Address & Limit_Register == Base_Register) the PCI Address is claimed by the
Inbound ATU

Figure 15-3 shows an example of inbound address detection.

The incoming 32-bit PCI address is bitwise ANDed with the associated inbound limit register.
When the result matches the base register, the inbound PCI address is detected as being within the
inbound translation window and is claimed by the ATU.

Note: The first 4 Kbytes of the primary ATU’s inbound address translation window are reserved for
Messaging Unit. PCI addresses in this 4 Kbyte area are not translated and forwarded to the
bus as inbound transactions. See Section 15.3, “Messaging Unit” on page 15-27.

Once the transaction is claimed, the address must be translated from a 32-bit PCI address to
32-bit internal bus address. The algorithm is:

i960® RM/RN I/O Processor Internal Bus Address = (PCI_Address & ~Limit_Register)
ATU_Translate_Value_Register

The incoming 32-bit PCI address is first bitwise ANDed with the bitwise inverse of the limit register.
This result is bitwise ORed with the ATU Translate Value and the result is the internal bus address.
This translation mechanism is used for all inbound memory read and write commands excluding
inbound configuration read and writes. Inbound configuration cycle translation is described in
Section 15.2.1.4, on page 15-12 Address aliasing of multiple PCI addresses to the same physical
80960 address can be prevented by programming the inbound translate value register on boundaries
matching the associated limit register, but this is only enforced through application programming.

For inbound memory transactions, the only burst order supported is Linear Incrementing. For any
other burst order, the ATU signals a Disconnect after the first data phase.

Figure 15-3. Inbound Address Detection

PCI Address

Space

Base_Register

Base_Register + Value of Limit_Register

Inbound Translation

Address is claimed

Address is not claimed

Window

Address is not claimed
15-6 i960® RM/RN I/O Processor Developer’s Manual

Address Translation Unit
Figure 15-4 shows an inbound translation example. This example would hold true for an inbound
transaction from either the primary or secondary PCI bus.

Figure 15-4. Inbound Translation Example

0000 0000H

FFFF FFFFH

0000 0000H

FFFF FFFFH

Base_Register = 3A00 0000H

Limit_Register = FF80 0000H (8 Mbyte limit value)

Inbound Translation
Window

Inbound Translation Window ranges from 3A00 0000H to 3A7F FFFFH (8 Mbytes)

PCI_Address

Value_Register = B100 0000H

Value_Register
Address

PCI Address
Space

i960® RM/RN I/O Processor Local Memory
Address Space

Address Detection
PCI_Address & Limit_Register == Base_Register
3A45 012CH & FF80 0000H == 3A00 0000H

3A45 012CH

PCI_Address is in the Inbound Translation Window

Address Translation
IB_Address = (PCI_Address & ~Limit_Register) | Value_Register
IB_Address = (3A45 012CH & 007F FFFFH) | B100 0000H

B145 012CH

Register Values

IB_Address = B145 012CH
i960® RM/RN I/O Processor Developer’s Manual 15-7

Address Translation Unit

iator

 is
es
D,
to
r

rite
cepted
ot
15.2.1.2 Inbound Write Transaction

An inbound write transaction is initiated by a PCI master (on either the primary or secondary PCI
bus) and is targeted at either i960 RM/RN I/O processor local memory or a i960 RM/RN I/O
processor memory-mapped register.

Data flow for an inbound write transaction on the PCI bus is summarized as:

• The ATU claims the PCI write transaction when the PCI address is within the inbound
translation window defined by the ATU Inbound Base Register and Inbound Limit Register.

• If the IWQAD has at least one address entry available and the IWQ is not full and is capable of
accepting data (dependent upon the Memory Write Non-Full State Bits, the address is latched
and the first data phase is accepted. If additional queue space is available, the slave interface
continues accepting data until the IWQ reaches a full state. If REQ64# was driven by the
initiator, data is accepted as 64-bit, otherwise a 32-bit transactions is used.

• If an address parity error is detected during the address phase of the transaction, the address
parity error mechanisms are used. Refer to Section 15.6.1 for details of the address parity error
response. If a data parity error is detected while accepting data, the slave interface sets the
appropriate bits based on PCI specification. No other action is taken. Refer to Section 15.6.2.4
for details of the inbound write data parity error response.

• The PCI interface continues to accept write data until one of the following is true:

— The initiator performs a master completion.

— The IWQ becomes full. In this case, the PCI interface signals a Disconnect to the init
and returns to idle.

• If a master abort or a memory controller multi-bit ECC error (target abort), occurs during the
inbound transaction on the internal bus and the transaction is still active on the PCI interface,
the slave interface performs a disconnect, and SERR# is asserted based upon the setting of the
PATUIMR or SATUIMR, see Section 15.7.44, “Primary ATU Interrupt Mask Register -
PATUIMR” and Section 15.7.45, “Secondary ATU Interrupt Mask Register - SATUIMR”.

Once the PCI interface places a PCI address in the IWQAD and at least 1 64-byte boundary
crossed or if the master disconnects on the PCI bus, the ATU’s internal bus interface becom
aware of the inbound write. If there are additional write transactions ahead in the IWQ/IWQA
the current transaction remains posted until ordering and priority have been satisfied (Refer
Section 15.5.3) and the transaction is attempted on the internal bus by the ATU internal maste
interface. If there are no other write operations in the queue and ordering and the priority
mechanism supports it, the ATU attempts to immediately acquire the internal bus and allow w
streaming to occur. If the queue fills or the master completes before the first data phase is ac
(by the assertion of I_TRDY#) on the internal bus, streaming can not occur. The ATU does n
insert target wait states nor do data merging on the PCI interface to allow for streaming.
15-8 i960® RM/RN I/O Processor Developer’s Manual

Address Translation Unit

 based

has
quire

e

ed

error
MR

”
Q is
e

etting

Data flow for the inbound write transaction on the internal bus is summarized as:

• The ATU internal bus master requests the internal bus when a PCI address and at least 2
64-byte boundaries are crossed by the current transaction on the PCI bus appears in the
IWQAD/IWQ or a PCI address from an earlier posted PCI transaction has moved to the head
of the IWQAD.

• When the internal bus is granted, the internal bus master interface initiates the write
transaction by driving the translated address onto the internal bus. For details on inbound
address translation, see Section 15.2, “ATU Address Translation” on page 15-3. If
I_DEVSEL# is not returned, a master abort condition is signaled on the internal bus. The
current transaction is flushed from the queue and SERR# on the PCI interface is asserted
upon the setting of the ATUCR, see Section 15.7.33, “ATU Configuration Register - ATUCR”.

• Write data is transferred from the IWQ to the internal bus when data is available and the
internal bus interface retains internal bus ownership. The ATU master interface asserts
I_REQ64# to attempt a 64-bit transfer. If I_ACK64# is not returned, a 32-bit transfer is used.
Transfers of less than 64-bits use the I_C/BE[7:0]# to mask the bytes not written in the 64-bit
data phase. Refer to the Internal Bus Chapter for details of internal bus operation.

• The internal bus interface stops transferring data from the current transaction to the internal
bus when one of the following conditions becomes true:

— The internal bus master interface loses bus ownership and the master latency timer
expired. The ATU internal master performs a master completion and attempt to reac
the bus to complete delivery of the data.

— A Disconnect with Data is signaled on the internal bus from the internal slave. If the
transaction in the IWQ is complete, the master returns to idle. If the transaction in th
IWQ is not complete, the master attempts to reacquire the internal bus.

— The data from the current transaction has completed. A master completion is perform
and the bus returns to idle.

— A Target Abort is signaled from the internal bus slave. This is in response to an ECC
from the memory controller. SERR# is asserted based upon the setting of the PATUI
or the SATUIMR, see Section 15.7.44, “Primary ATU Interrupt Mask Register -
PATUIMR” and Section 15.7.45, “Secondary ATU Interrupt Mask Register - SATUIMR.
A disconnect is signaled on PCI if the transaction is active. If the transaction in the IW
complete, the master returns to idle. If the transaction in the IWQ is not complete, th
master attempts to reacquire the internal bus. Refer to Section 15.6.6.2, for full details.

— A Master Abort is signaled on the internal bus. SERR# is asserted based upon the s
of the PATUIMR or the SATUIMR, see Section 15.7.44, “Primary ATU Interrupt Mask
Register - PATUIMR” and Section 15.7.45, “Secondary ATU Interrupt Mask Register -
SATUIMR”. Data is flushed from the IWQ.

• When the ATU attempts to transfer data in the IWQ to the IB and is stopped during a burst for
any reason other than a Master Abort, the ATU attempts to reacquire the IB only after one of
the following conditions is met:

— The transactions has disconnected on the PCI bus.

— At least 4 Dwords are in the IWQ.

— The next IB address to attempt is not Qword aligned.
i960® RM/RN I/O Processor Developer’s Manual 15-9

Address Translation Unit

terface
rns the

arized

r on
ther

there

 data

the

ata to
15.2.1.3 Inbound Read Transaction

An inbound read transaction is initiated by a PCI master (on either the primary or secondary PCI bus)
and is targeted at either i960 RM/RN I/O processor local memory or a i960 RM/RN I/O processor
memory-mapped register. The read transaction is propagated through the inbound transaction queues
(ITQ1 and ITQ2) and read data is returned through the inbound read queue (IRQ).

All inbound read transactions are processed as delayed read transactions. The ATU’s PCI in
claims the read transaction and forwards the read request through to the internal bus and retu
read data to the PCI bus. Data flow for an inbound read transaction on the PCI bus is summ
in the following statements:

• The ATU claims the PCI read transaction when the PCI address is within the inbound
translation window defined by ATU Inbound Base Register and Inbound Limit Register.

• When one of the ITQs is empty, the PCI address and command are latched into the available
ITQ and a Retry is signalled to the initiator.

• If an ITQ is currently holding transaction information from a previous delayed read, the
current transaction information is compared to the previous transaction information (based on
the setting of the DRC Alias bit in Section 15.7.33, “ATU Configuration Register - ATUCR”
on page 15-80). If there is a match and the data is in the IRQ, return the data to the maste
the PCI bus. If there is a match or the data is not available, a Retry is signaled with no o
action taken. If there is not a match and there is an ITQ available, latch the transaction
information, signal a Retry and initiate a delayed transaction. If there is not a match and
is not an ITQ available, signal a Retry with no other action taken.

— For the case where there is a match on the transaction information and the IRQ is
currently being filled, memory read streaming is possible.

— If an address parity error is detected, the address parity response defined in Section 15.6 is
used.

• Once read data is driven onto the PCI bus from the IRQ, it continues until one of the following is true:

— The initiator completes the PCI transaction. If there is data left unread in the IRQ, the
is flushed.

— An internal bus Target Abort was detected. In this case, the Q-word associated with
Target Abort is never entered into the IRQ, and therefore is never returned.

— The IRQ becomes empty. In this case, the PCI interface signals a Disconnect with d
the initiator on the last data word available.

The slave ATU interface delivers 64-bit read data if REQ64# was asserted and 32-bit read
data if REQ64# was deasserted.

• If the master inserts waitstates on the PCI bus, the ATU PCI slave interface waits with no
premature disconnects.

• If a data parity error occurs signified by PERR# asserted from the master, no action is taken by
the slave interface. Refer to Section 15.6.2.3.

• If the transaction on the internal bus resulted in a master abort, the completion cycle is allowed
to master abort on the PCI interface. The ITQ for this transaction is flushed. Refer to
Section 15.6.1.

• When the first Q-word read on the internal bus is target-aborted, either a target-abort or a
disconnect with data is signaled to the initiator. This is based on the ATU ECC Target Abort
Enable bit (bit 0 of the PATUIMR for PATU and bit 0 of the SATUIMR for the SATU). If set,
a target abort is used, if clear, a disconnect is used.
15-10 i960® RM/RN I/O Processor Developer’s Manual

Address Translation Unit

, the
I

d. A
een
turns

data
s. If
The data flow for an inbound read transaction on the internal bus is summarized in the following
statements:

• The ATU internal bus master interface requests the internal bus when a PCI address appears in
an ITQ and transaction ordering has been satisfied.

• Once the internal bus is granted, the internal bus master interface drives the translated address
onto the bus and wait for I_DEVSEL#. If a Retry is signaled, the request is repeated. If a
master abort occurs, the transaction is considered complete and a master abort is loaded into
the associated IRQ for return to the PCI initiator (transaction is flushed once the PCI master
has been delivered the master abort).

• Once the translated address is on the bus and the transaction has been accepted, the internal
bus slave starts returning data with the assertion of I_TRDY#. Read data is continuously
received by the IRQ until one of the following is true:

— The predetermined prefetch data amount is received. This is detailed in Section 15.5.1.2.
The ATU internal bus master interface performs a master completion in this case.

— A Target Abort is received on the internal bus from the internal bus slave. In this case
transaction is aborted. If a Target Abort occurs before 64 bits are ready, notify the PC
side; otherwise, discard the Target Aborted Q-word and take no further action.

— The IRQ becomes full. In this case, the ATU master performs a master completion.

— The ATU loses ownership of the internal bus and the master latency timer has expire
master completion is performed on the internal bus. If less than 64-bits of data has b
fetched, the ATU IB master interface attempts to reacquire the bus. If not, the bus re
to idle.

— A disconnect with data is received from the internal bus slave. If less than 64-bits of
has been fetched, the ATU internal bus master interface attempts to reacquire the bu
not, the bus returns to idle.

If the prefetch amount of data has been read and the PCI bus is actively draining the data
on the PCI interface, the ATU continues to read data and latch it into the IRQ to support
inbound read streaming. If the IRQ fills and the PCI interface is active, IB master wait
states are not inserted to support streaming.

• Since all inbound reads are promoted to 64-bit internal bus transactions, a disconnect from the
internal bus target with less than 8 bytes returned to the IRQ creates a problem for 64-bit PCI
requestors. To guarantee a minimum of 64-bits of data prefetched for the PCI initiator, the
ATU reacquires the internal bus.

To support PCI Local Bus Specification Revision 2.1 devices, the ATUs can be programmed to
ignore the memory read command (Memory Read, Memory Read Line, and Memory Read
Multiple) when trying to match the current inbound read transaction with data in a DRC queue
which was read previously (DRC on target bus). If the Read Command Alias Bit in the ATUCR
register is set, the ATUs does not distinguish the read commands on transactions. For example, the
ATU enqueues a DRR with a Memory Read Multiple command and performs the read on the
internal bus. Some time later, a PCI master attempts a Memory Read with the same address as the
previous Memory Read Multiple. If the Read Command Bit is set, the ATU would return the read
data from the DRC queue and consider the Delayed Read transaction complete. If the Read
Command bit in the ATUCR was clear, the ATU would not return data since the PCI read
commands did not match, only the address.
i960® RM/RN I/O Processor Developer’s Manual 15-11

Address Translation Unit

 only
essed
ed by

cess

0]
I
ss.
coding

D[7:2]

Q64#
,
he

d
isfied,
rget as

y PCI
ternal
arget
s is
15.2.1.4 Inbound Configuration Cycle Translation

The ATU only accepts Type 0 configuration cycles with a function number of one (the bridge is
function 0 in the i960 RM/RN I/O processor). (Refer to Section 15.2.4, “PCI Multi-Function
Device Swapping/Disabling” for exceptions to this statement.)

Both primary and secondary ATUs are configured through the primary ATU. This means that
one configuration space exists for both PCI buses. All inbound configuration cycles are proc
as delayed transactions. The translation mechanism for inbound configuration cycles is defin
the PCI Local Bus Specification Revision 2.1.

The ATU configuration space is selected by a PCI configuration command and claims the ac
(by asserting P_DEVSEL#) if the P_IDSEL pin is asserted, the PCI command indicates a
configuration read or write, and address bits P_AD[1:0] are 002 all during the address phase. The
ATU primary interface ignores any configuration command (P_IDSEL active) where P_AD[1:
are not 002 (e.g., Type 1 commands). During the configuration access address phase, the PC
address is divided into a number of fields to determine the actual configuration register acce
These fields, in combination with the byte enables during the data phase create the unique en
necessary to access the individual registers of the configuration address space:

• P_AD[7:2] - Register Number. Selects one of 64 DWORD registers in the ATU PCI
configuration address space.

• P_C/BE[3:0]# - Used during the data phase. Selects which actual configuration register is used
within the DWORD address. Creates byte addressability of the register space.

• P_AD[10:8] - Function Number. Used to select which function of a multi-function device is
being accessed. The ATUs are function 1 and therefore it only responds to 0012 in this bit field
and ignore all other bit combinations. (Refer to Section 15.2.4, “PCI Multi-Function Device
Swapping/Disabling” for exceptions to this statement.)

The ATU configuration address space starts at internal address 0000.1200H. Therefore P_A
equal to 0000002 equates to address 0000.1200H and P_AD[7:2] equal to 0000012 results in
address 0000.1204H and so on.

For inbound configuration reads, the IRQ and ITQ are used in the same manner as inbound
memory read operations. The internal bus cycle that results is a 32-bit transaction where I_RE
is not asserted. For inbound configuration writes, the PATU adds a delayed write data queue
IDWQ, which holds data in the same manner as the IWQ. The transaction information from t
configuration write operation on the primary PCI interface is latched into the IDWQ (if full, a
Retry is signaled). The data from the delayed write request cycle is latched into the IDWQ an
forwarded to the internal bus interface. Once transaction ordering and priority have been sat
the internal bus master interface requests the internal bus and deliver the write data to the ta
defined in Section 15.2.1.2.

The status of the transaction on the internal bus is returned to the PCI initiator on the primar
bus. The retry cycle from the initiator is accepted once the write has been completed on the in
bus and the status has been latched for return to the PCI master. Since Master Aborts and T
Aborts cannot occur during configuration cycles on the internal bus, normal completion statu
returned. The data from PCI completion transaction is discarded.
15-12 i960® RM/RN I/O Processor Developer’s Manual

Address Translation Unit

alue
.
eue

rface
Us

MRL

efer to
d as

rite
data

 read

us. PCI

ry bus.
e PCI
rent
15.2.1.5 Discard Timers

The ATUs implement discard timers for inbound delayed transactions. These timers prevent
deadlocks when the initiator of a retried delayed transaction fails to complete the transaction within
210 or 215 PCI clock cycles. The timer starts counting when the delayed request becomes a delayed
completion by completing on the internal bus. When the originating master on the PCI bus has not
retried the transaction before the timer expires, the completion transaction is discarded.

Discard timer values are controlled by the Bridge Control Register’s Primary Discard Timer V
bit (for the primary ATU) and the Secondary Discard Timer Value bit (for the secondary ATU)
The PATU queues covered by discard timers are the P_IRQ and the P_IDWQ. The SATU qu
covered by discard timer is the S_IRQ. After discarding a transaction, the ATUs must set the
Discard Timer Status bit in the ATU Control Register. However, unlike the PCI to PCI Bridge
Unit, the ATUs do not assert the P_SERR# signal after discarding a transaction.

15.2.2 Outbound Transactions

Outbound transactions initiated by the i960 core processor are either to the primary PCI inte
through the PATU or the secondary PCI interface through the SATU. As a PCI master, the AT
are capable of PCI I/O transactions, PCI memory reads (excluding the read hint commands
and MRM), PCI memory writes (excluding MWI), configuration reads and writes, and DAC
cycles. Outbound transactions are performed as either 32-bit or a 64-bit PCI transactions. R
Section 15.2.5 for details on 64-bit operation. Outbound memory write operations are performe
posted operations and outbound memory read operations are all performed as delayed read
operations.

Outbound transactions use a separate set of queues from inbound transactions. Outbound w
operations have their address entered into the outbound transaction queue (OTQ) and their
into the outbound write queue (OWQ). Outbound read transactions, performed as delayed
operations, use the same address queue, the OTQ, and get data returned into the outbound
queue (ORQ). Refer to Section 15.2.5 for details of outbound queue architecture. Outbound
configuration transactions use a special outbound port structure. Refer to Section 15.2.3 for details.

For outbound transactions, the ATUs are slaves on the internal bus and masters on the PCI b
master operation is defined in the PCI Local Bus Specification Revision 2.1.

15.2.2.1 Outbound Address Translation

In addition to providing the mechanism for inbound translation, the ATUs translate i960 core
processor-initiated cycles to the PCI bus. This is known as outbound address translation.
Outbound transactions are processor reads or writes targeted at the PCI primary or seconda
The ATU internal bus slave interface claims internal bus cycles and completes the cycle on th
bus on behalf of the i960 core processor. The primary and secondary ATUs support two diffe
outbound windowing modes:

• Address Translation Windowing

• Direct Address Windowing (No translation)

Figure 15-5 shows a i960 RM/RN I/O processor memory map with all reserved address locations
highlighted. The outbound translation windows exist from 8000.0000H to 9001.FFFFH. This is a
256 Mbyte window and a 128 Kbyte window which are equally divided between the primary and
secondary ATUs. The direct addressing window is from 0000.2000H to 7FFF.FFFFH. Both
outbound schemes are described in the following subsections.
i960® RM/RN I/O Processor Developer’s Manual 15-13

Address Translation Unit

 The
Outbound address translation is disabled for the Primary ATU when the Bus Master Enable bit in
the Primary ATU Command Register is clear and is disabled for the Secondary ATU when the Bus
Master Enable bit in the Secondary ATU Command Register is clear. When the Bus Master Enable
bit is clear, the ATU does not claim any i960 core processor accesses. These unclaimed accesses
may result in an internal bus Master Abort. For outbound Memory transactions, the only burst
order supported is Linear Incrementing.

15.2.2.2 Outbound Address Translation Windows

Inbound translation involves a programmable inbound translation window consisting of a base and
limit register and a value register for PCI to internal bus translation. The outbound address
translation windows use a similar methodology except that the outbound translation window base
addresses and limit sizes are fixed in i960 RM/RN I/O Processor Internal Bus local address space;
this removes the need for separate base and limit registers.

Figure 15-6 illustrates the outbound address translation windows. Each ATU has three windows:
two are 64 Mbyte and one is 64 Kbyte. The primary outbound memory and DAC translation
windows range from 8000.0000H to 87FF.FFFFH and the secondary outbound memory and DAC
translation windows range from 8800.0000H to 8FFF.FFFFH. After these four windows, the
primary and secondary outbound I/O windows range from 9000.0000H to 9001.FFFFH.

Each memory and DAC window is 64 Mbytes and each I/O window is 64 Kbytes. An internal bus
cycle with an address within one outbound window initiates a read or write cycle on the targeted
PCI bus. The PCI cycle type depends on which translation window the local bus cycle “hits”.
read or write decision is based on the internal bus cycle type.

Each ATU has a window dedicated to the following outbound PCI transaction types:

• Memory reads and writes - Memory Window

• I/O reads and writes - I/O Window

• Dual Address Cycle reads and writes - DAC Window

Refer to Figure 15-6 for the sub-window addresses involved in primary and secondary outbound
translation.

The windowing scheme refers to:

• a core processor read cycle that addresses a Memory Window is translated to a Memory Read
on the PCI bus

• a core processor write cycle that addresses a Memory Window is translated to a Memory Write
on the PCI bus

• a core processor read cycle that addresses the I/O Window is an I/O Read on the PCI bus

• a core processor write cycle that addresses the I/O Window is an I/O Write on the PCI bus

• a core processor read cycle that addresses a DAC Window is translated to a DAC Memory
Read on the PCI bus

• a core processor write cycle that addresses a DAC Window is translated to a DAC Memory
Write on the PCI bus

Memory Write and Invalidate (MWI), Memory Read Line, and Memory Read Multiple commands
are not supported in outbound ATU transactions on the PCI interface.
15-14 i960® RM/RN I/O Processor Developer’s Manual

Address Translation Unit

r
The translation portion of outbound ATU transactions is accomplished with a value register in the
same manner as inbound translations. The POUDR and the SOUDR contain the high order 32-bits of a
dual cycle 64-bit address. Each ATU uses the following registers during outbound address translation:

• Outbound Memory Window Value Register

• Outbound I/O Window Value Register

• Outbound DAC Window Value Register

• Outbound Upper 64-Bit DAC Register

• Outbound Configuration Cycle Address Register

See Section 15.7, “Register Definitions” on page 15-47 for details on outbound translation registe
definition and programming constraints.

Figure 15-5. 80960 Memory Map - Outbound Translation Window

0000 0000H

0000 0400H

0000 1000H

0000 2000H

8000 0000H

FEFF FF2FH

FEFF FF60H

FF00 0000H

FFFF FFFFH

ATU Outbound

9002 0000H

External Memory
Code/Data

ATU Outbound
Translation Windows

80960 Address

Direct Addressing
Window

Core Processor Internal Data RAM

Reserved

Peripheral Memory
Mapped Registers

Reserved

Initialization Boot Record (IBR)

i960 Core Processor Memory-
Mapped Register Space
i960® RM/RN I/O Processor Developer’s Manual 15-15

Address Translation Unit

 only
ord

hat the
nerates

dow,
The translation algorithm used, as stated, is very similar to inbound translation. For memory and
DAC transactions, the algorithm is:

PCI Address = (Internal_Bus_Address & 03FF.FFFFH) | Window_Value_Register

For memory and DAC transactions, the internal bus address is bitwise ANDed with the inverse of
64 Mbytes which clears the upper 6 bits of address. The result is bitwise ORed with the outbound
window value register to create the lower 32-bits of the primary or secondary PCI address.

For I/O transactions, the algorithm is:

PCI Address = (Internal_Bus_Address & 0000.FFFFH) | Window_Value_Register

For I/O transactions, the internal bus address is bitwise ANDed with the inverse of 64 Kbytes
which clears the upper 16 bits of address. Address aliasing can be prevented by programming the
outbound window value registers on boundaries equivalent to the window’s length, but this is
enforced through application programming. PCI I/O addresses are byte addresses and not w
addresses. The PCI I/O address’s two least significant bits are determined by byte enables t
processor issues. For example, when the i960 core processor performs a 2-byte write and ge
byte enables of 00112, the ATU sets the two least significant bits of PCI I/O address to 102.

Note: When the i960 core processor’s data cache is enabled for accesses to the Outbound I/O Win
the byte enables generated by the i960 core processor are always 002 for Byte and Short accesses.

Figure 15-6. Outbound Address Translation Windows

8000 0000H

ATU Outbound
Memory and DAC Cycle

 ATU Outbound
I/O Cycle

9000 0000H

9001 FFFFH

8FFF FFFFH

8000 0000H

8400 0000H

8800 0000H

83FF FFFFH

87FF FFFFH

8BFF FFFFH

9000 0000H

9001 0000H

9000 FFFFH

9001 FFFFH

Primary Memory Window

Primary DAC Window

Secondary Memory Window

Primary I/O Window

Secondary I/O Window

64 Mbytes

64 Kbytes

8C00 0000H

8FFF FFFFH

Secondary DAC Window

Translation Windows

Translation Windows
15-16 i960® RM/RN I/O Processor Developer’s Manual

Address Translation Unit
15.2.2.3 Direct Addressing Window

The second method used by outbound cycles from the i960 RM/RN I/O processor to the PCI bus is
the direct addressing window. This is a window of addresses in i960 RM/RN I/O processor address
space that act in the same manner as the outbound translation windows either without any
translation or with the translation of address bit 31 only. This allows the Direct Addressing window
to translate to different address ranges on the PCI bus (0000.2000H to 7FFF.FFFFH or
8000.2000H to FFFF.FFFFH). A i960 RM/RN I/O processor read or write to a local bus address
within the direct addressing window initiates a read or write on the PCI bus with the same address
(with the possible exception of address bit 31) as used on the internal bus. Figure 15-7 shows two
examples of outbound writes that are through the direct addressing window.

Direct Addressing is limited to PCI memory read commands and writes only. I/O cycles, DAC
cycles, and MWI commands are not supported with direct addressing.

Figure 15-7. Direct Addressing Window

0000 2000H

7FFF FFFFH

Direct Addressing Window

i960® RM/RN I/O Processor Local Address Space

Internal Bus Write
with address

PCI Write Cycle
with address
6000 1008H6000 1008H

No Address Translation

0000 2000H

7FFF FFFFH

Direct Addressing Window

Internal Bus Write
with address

PCI Write Cycle
with address
E000 1008H6000 1008H

Address Translation

Upper 2Gbyte

Translation
Disabled

Upper 2Gbyte
Translation
Enabled
i960® RM/RN I/O Processor Developer’s Manual 15-17

Address Translation Unit

FFCH

ta
al bus
The internal bus side of the direct addressing window address range is fixed in the lower 2 Gbytes
of the i960 RM/RN I/O processor local address space (except for the first 8 Kbytes which is
reserved for the i960 core processor’s internal data RAM and i960 RM/RN I/O processor
memory-mapped registers). Internal bus cycles with an address from 0000.2000H to 7FFF.F
are forwarded to a PCI bus, when enabled. The primary PCI bus is the default bus for direct
addressing. The following bits within the ATUCR affect direct addressing operation:

• ATUCR Direct Addressing Enable bit - when set, enables the direct addressing window. When
clear, addresses within the direct addressing window are not forwarded to the PCI bus.

• ATUCR Secondary Direct Addressing Select bit - when clear, all transactions through the direct
addressing window are to the primary ATU and primary PCI bus. When set, all transactions
through the direct addressing window are to the secondary ATU and secondary PCI bus.

• ATUCR Direct Addressing Upper 2G Translation Enable - when set, the ATU forwards
internal bus cycles with an address between 0000.2000H and 7FFF.FFFFH to the PCI bus with
bit 31 of the address set (8000.2000H - FFFF.FFFFH). When clear, no translation occurs.

15.2.2.4 Outbound Write Transaction

An outbound write transaction is initiated by the i960 core processor and is targeted at a PCI slave on
either the primary or secondary PCI buses. The outbound write address and write data are propagated
from the i960 RM/RN I/O Processor Internal Bus to a PCI bus through the OTQ and OWQ, respectively.

The ATU’s slave internal bus interface claims the write transaction and forwards the write da
through to the targeted PCI bus. The data flow for an outbound write transaction on the intern
is summarized in the following statements:

• The ATU internal bus slave interface latches the address from the internal bus into the OTQ
when that address is inside one of the outbound translate windows (Section 15.5) and the OTQ
is empty.

• Once the outbound address is latched, the internal bus slave interface stores the write data into
the OWQ until the internal bus transaction completes. The initiator of the transaction performs
a master completion when done writing data. The OWQ is capable of holding 16 bytes of data
which is the maximum amount written by the core processor.

• When the OTQ is not available, the slave interface signals a Retry on the internal bus to the
outbound cycle initiator.

• When the OTQ latches the address, the outbound cycle is enabled for transmission on the PCI
Bus and the PCI master requests the PCI bus.

The PCI interface is responsible for completing the outbound write transaction to a PCI address
translated from the OTQ and the data in the OWQ. The data flow for an outbound write transaction
on the PCI bus is summarized in the following statements:

• The ATU PCI interface requests the PCI bus when an address is written to the OTQ (a write
request). Once the bus is granted, the PCI master interface writes the PCI translated address
from the OTQ to the PCI bus and wait for the transaction to be claimed.

• If a Master Abort is seen during the address phase, the transaction is flushed and the OTQ and
OWQ are cleared. Refer to Section 15.6.3 for full details on PCI master abort conditions
during outbound transactions.
15-18 i960® RM/RN I/O Processor Developer’s Manual

Address Translation Unit

quire

e, the
n.

nd the

s is

lave on
tbound

uest
e first
ord

ements:
• Once the PCI write transaction is claimed, the PCI interface transfers data from the OWQ to
the PCI bus until one of the following is true:

— The PCI target signals a Retry or Disconnect. The ATU PCI master attempts to reac
the PCI bus to complete the write transaction.

— The GNT# signal is deasserted and the master latency timer has expired. In this cas
master interface attempts to reacquire the PCI bus and complete the write transactio

— The PCI target signals a Target-Abort. In this case, the OWQ and OTQ are cleared a
transaction is aborted. The appropriate error bits are set defined in Section 15.6.4.

— The OWQ become empty signifying that the transaction is finished. The write addres
removed from the OTQ and the interface returns to idle.

If a data parity error is encountered (PERR# detected), the master interface continues
writing data to clear the queue.

If the PCI target deasserts TRDY#, no action is taken by the ATU master other than
inserting waitstates.

15.2.2.5 Outbound Read Transaction

An outbound read transaction is initiated by the i960 core processor and is targeted at a PCI s
either the primary or secondary PCI buses. The read transaction is propagated through the ou
transaction queue (OTQ) and read data is returned through the outbound read queue (ORQ).

The ATU’s internal bus slave interface claims the read transaction and forwards the read req
through to the PCI bus and returns the read data to the internal bus. The byte enables for th
word only of the transaction are also passed by the ATU (to cover the case of less than 1 Dw
being requested). The prefetch data amount used by the PCI side is determined by the read
command used on the internal bus by the IB master. Table 15-2 are the prefetch data sizes used
during outbound ATU read transactions:

The data flow for an outbound read transaction on the local bus is summarized in the following stat

• The ATU internal bus interface latches the internal bus address when the address is inside an
outbound address translation window (or the direct addressing window, if enabled) and the
OTQ is empty. When the OTQ is not empty (previous outbound transaction in progress), the
internal bus interface signals a Retry to the transaction initiator.

• Once the outbound internal address is latched into the OTQ, a Retry is signaled to the internal
bus master and a delayed read transaction is initiated. The ATU signals the BIU at the time of
the Retry that a delayed cycle has started and that it should not request the internal bus until the
ATU has notified it that the data to be read is now available.

• If during the completion cycle on the PCI interface, a master abort is encountered, a flag is set
and the ATU notifies the BIU that it may now request the internal bus to complete the retried
transaction. A master abort condition is returned once the IB master has acquired the bus and
asserted the address of the delayed read completion cycle. The OTQ is cleared of the transaction.

Table 15-2. Outbound Read Prefetch Sizes

Internal Bus Command Outbound Prefetch Size

Memory Read 4 Bytes (1 Dword)

Memory Read Line 8 Bytes (2 Dwords)

Memory Read Multiple 16 (4 Dwords)
i960® RM/RN I/O Processor Developer’s Manual 15-19

Address Translation Unit

uire

e

rnal
d in

CI bus.
t part of
ry PCI

 that is
rimary
resses.
• Once the transaction completes on the PCI bus, the ATU notifies the BIU that it may now
request the internal bus to complete the retried transaction. The outbound read was
deterministic with no prefetching and data read is the data that was required per the command
used on the internal bus (Table 15-2).

• A target abort encountered on the PCI bus is returned as a target abort to the IB master on the
first data phase. If a data parity error is signaled on PCI, the bad data is still passed through to
the IB master.

The data flow for an outbound read transaction on the PCI bus is summarized in the following statements:

• The ATU PCI interface requests the PCI bus when an address is written to the OTQ (a read
request). Once the bus is granted, the PCI interface transfers the PCI translated address from
the OTQ to the PCI bus and wait for the transaction to be claimed.

• If no DEVSEL# is asserted, a master abort is signaled. This is passed through to the internal
bus slave interface.

• Once the transaction is claimed and data is provided by the target, the PCI interface continue
reading until the prefetch data amount is satisfied. The master interface stops reading under the
following circumstances:

— A disconnect is signaled from the PCI target. The master interface attempts to reacq
the bus and continue reading until the prefetch data size is satisfied.

— The master interface loses GNT# and the interface MLT has expired. A master
completion is performed and the interface attempts to reacquire the bus and continu
reading until the prefetch data size is satisfied.

— A target abort is signaled from the PCI target. The target abort is returned to the inte
bus and the PCI interface returns to idle. The appropriate error bits are set as define
Section 15.6.4.

— The prefetch data size has been reached. The master interface performs a master
completion and the interface returns to idle.

If the PCI target inserts waitstates at any point, the PCI master interface halts until
TRDY# is asserted. No other action is taken.

15.2.3 Private PCI Address Space / Outbound Configuration Cycle
Translation

The secondary ATU contains special support for private address spaces on the secondary P
A private address space is defined as a range of secondary PCI bus addresses which are no
the secondary PCI address space as defined by the bridge and are also not part of the prima
address space. Private address space can be considered a “hole” in the PCI address space
only supported on the secondary PCI bus. Private address space generally falls within the p
PCI address space and requires special bridge support so that it does not forward these add
The i960 RM/RN I/O processor has several mechanisms to support private address space:

• Inbound transactions from private devices through the secondary ATU.

• Outbound transactions from the secondary ATU and DMA channel 2 to private devices.

• Outbound configuration cycles to private devices.

• Hiding private devices from PCI Type 0 configuration cycles. (Chapter 14, “PCI-to-PCI
Bridge” for more details.)
15-20 i960® RM/RN I/O Processor Developer’s Manual

Address Translation Unit

.

lves

 the

ycle

ary).
 cycle
 cycle
rite
d to a
ation

 the

the
es not

e

are
s. A

ming
oint,

N I/O

ot from
For inbound transactions from private devices, the secondary ATU can be configured outside the
valid secondary PCI address space; this creates private address space. The secondary ATU claims
private addresses and prevents the bridge from forwarding them upstream to the primary PCI bus.

Outbound transactions from the secondary ATU and DMAs are not claimed by the bridge unit and
therefore can access private devices on the secondary PCI bus.

Outbound configuration cycles — secondary and primary — can support private PCI devices
Outbound ATUs provide a port programming model for outbound configuration cycles.
Performing an outbound configuration cycle to either the primary or secondary PCI bus invo
up to two internal bus cycles:

1) Writing the Outbound Configuration Cycle Address Register (primary or secondary) with
PCI address used during the configuration cycle. See the PCI Local Bus Specification
Revision 2.1 for information regarding configuration address cycle formats. This IB bus c
enables the transaction.

2) Writing or reading the Outbound Configuration Cycle Data Register (primary or second
The i960 core processor cycle initiates the transaction. A read causes a configuration
read to the primary or secondary PCI bus with the address in the outbound configuration
address register. Similarly, a write initiates a configuration cycle write to PCI with the w
data from the second processor cycle. Configuration cycles are non-burst and restricte
single 32-bit word cycle. Internal bus burst writes and reads to the Outbound Configur
Cycle Data Register are disconnected after the first data phase.

Master aborts during outbound configuration reads result in master aborts being returned on
internal bus.

When the Configuration Cycle Data Register is written, the data is latched and forwarded to
PCI bus with the internal master issued a disconnect with data for 32-bits only. This cycle do
receive an I_ACK64# from the ATU and therefore is defined as 32-bit only.

When the Configuration Cycle Data Register is read, the internal bus master is retried and th
delayed cycle is issued. Refer to Section 15.2.2.5 for details on outbound read behavior.

Note that both the Configuration Cycle Address and Data registers are non-burstable. Softw
should only access these 4 registers with the single Dword read or write load/store operation
burst attempt to these registers may result in incorrect or unexpected behavior.

Section 15.7, “Register Definitions” on page 15-47 describes an outbound configuration cycle
address and data register definition and programming constraints. Note that while the program
model uses the register interface for outbound configuration cycles, from a hardware standp
the address is entered into the OTQ, configuration write data goes through the OWQ and
configuration read data is returned in the ORQ.

Note: Outbound configuration cycle data registers are not physical registers. They are a i960 RM/R
processor memory mapped addresses used to initiate a transaction with the address in the
associated address register. Reads/writes to these registers return data from the PCI bus — n
the register.
i960® RM/RN I/O Processor Developer’s Manual 15-21

Address Translation Unit

tion
marized

ridge
.

tes of

15.2.4 PCI Multi-Function Device Swapping/Disabling

The i960 RM/RN I/O processor, in its default state, appears on the PCI bus as a multi-function
device, with the Bridge as function 0 and the ATU as function 1. If necessary, these function
numbers can be swapped, or the i960 RM/RN I/O processor can appear as a single function device,
with either the ATU or the Bridge designated as the single function. The swapping is accomplished
by setting or clearing bit 21 of the Table 15-62 “ATU Configuration Register - ATUCR” on
page 15-80 and setting the value in the Table 15-37 “ATU Header Type Register - ATUHTR” on
page 15-57 and Table 14-32 “Header Type Register- HTR” on page 14-80 from the i960 core
processor. The i960 RM/RN I/O processor must be in mode 3 (core executing and configura
cycles retried) when executing the changes to these registers. The register settings are sum
in Table 15-3.

Note: Configuring the i960 RM/RN I/O processor as a single function device is only recommended in
situations where the host BIOS does not recognize multi-function devices and/or PCI-to-PCI B
configuration headers. It is up to the user to handle/disable error reporting for the disabled unit

15.2.5 64-Bit PCI Operation

Both the PATU and the SATU are capable of PCI 64-bit operation to support data transfer ra
up to 264 MBytes/sec. The 64-bit PCI extensions add 39 additional signals to each ATU PCI
interface. These signals and there functions are

• AD[63:32] - high order address/data bus

• C/BE[7:4]# - byte enables covering high order 4 bytes of data

• PAR64 - even parity signal covering AD[63:32] and C/BE[7:4]#. Same timing as PAR

• REQ64# - used by a 64-bit master to request a 64-bit operation. Same timing as FRAME#

• ACK64# - used by a 64-bit capable target in response to REQ64# being asserted. Signifies to the
master that the transaction can be completed with 64-bit transfers. Same timing as DEVSEL#.

At PCI bus reset, each individual PCI bus (primary and secondary) independently samples their
respective REQ64# signals. If this signal is low, the bus is 64-bit capable. The PCI to PCI Bridge
Unit holds the information about 64-bit bus capability latched at the de-assertion of reset. The
Primary Bus 64-Bit Capable bit (bit 8) of the Extended Bridge Control Register (EBCR) tells the
PATU whether or not the bus it is connected to is 64-bit capable. The Secondary Bus 64-Bit
Capable bit (Bit 9) of the Extended Bridge Control Register (EBCR) tells the SATU if the
secondary bus is 64-bit capable. Refer to the Chapter 14, “PCI-to-PCI Bridge” for details.

Table 15-3. PCI Multi-Function Device Swapping/Disabling Summary

Bridge Header
Type Register

(HTR)

ATU Header
Type Register

(ATUHTR)

ATU
Configuration

Register
(ATUCR), Bit 21

i960® RM/RN
I/O Processor
Device Type

Bridge
Function
Number

ATU Function
Number

1 1 0 Multi-Function
(Default) Function 0 Function 1

1 1 1 Multi-Function Function 1 Function 0

0 0 0 Single Function Function 0 Master-Aborts

0 0 1 Single Function Master-Aborts Function 0
15-22 i960® RM/RN I/O Processor Developer’s Manual

Address Translation Unit
15.2.5.1 64-Bit Protocol

The 64-bit PCI extensions have been developed to coincide with the existing 32-bit protocol. The
additional 32 bits of address/data require an additional 4 byte enables and a parity signal to cover
them. The bus timing, protocol, and turn-around cycles behave exactly the same for the 64-bit
signals as they do for the standard PCI interface signals with the exception of the 64-bit handshake
signals referenced below.

The 64-bit handshake signals used by the i960 RM/RN I/O processor are P_REQ64# and P_ACK64#
on the primary interface and S_REQ64# and S_ACK64# on the secondary interface. As a master, a
PCI interface of the ATUs asserts REQ64# with FRAME# to indicate to the target that a 64-bit
transaction is being requested. REQ64# is asserted and deasserted with the exact timing as FRAME#
for the master state machines. When REQ64# is asserted, the target of the memory operation is
required to assert ACK64# with the same timing as DEVSEL# to allow a 64-bit transaction to
proceed. If ACK64# is not asserted with DEVSEL#, the master interface must revert to a 32-bit
transaction. See Section 15.2.5.2 for details on 64-bit operation with 32-bit targets.

When ACK64# is asserted by the target of the transaction, a 64-bit transfer must proceed. As
stated, a 64-bit transfer behaves exactly the same as a 32-bit transfer except that up to 8 bytes of
data are transferred during each PCI data phase. For the 64-bit transfer, the AD[63:32] and
C/BE[7:4]# are reserved during the address phase (assuming a SAC transfer). During the data
phases, the master interface transfers up to 8 bytes of data on each of the 8 byte lanes defined by
AD[63:00]. As in a 32-bit transfer the master is capable of asserting any (or none) of the byte
enables during each of the data phases within a burst transfer. Refer to Figure 15-8 for a diagram of
a 64-bit transfer from a 64-bit target. PAR64 for a 64-bit transfer has the same function and timing
as PAR for a 32-bit transfer. PAR64 must be asserted one clock after each address and data phase.
64-bit targets qualify address parity checking using PAR64 with the assertion of REQ64#.
Although AD[63:32] and C/BE[7:4]# are reserved for SAC 64-bit transfers, parity must still be
preserved and therefore stable values must be driven.
i960® RM/RN I/O Processor Developer’s Manual 15-23

Address Translation Unit
As a target, the slave state machines of both ATU PCI interfaces are capable of responding as a
64-bit target. When a PCI memory transaction is claimed by an ATU interface and the initiating
master has requested a 64-bit transfer by asserting REQ64# with FRAME#, the ATU slave
interface asserts and deasserts ACK64# with the same timing and protocol as DEVSEL#.
Furthermore, 64-bit slave operation is exactly like 32-bit operation with data being written or
returned on both AD[31:00] and AD[63:32] using C/BE[3:0]# and C/BE[7:4]#, respectively.
PAR64 must be driven with the same timing as PAR for read operations.

As a target during write operations, the ATUs must make sure they contain enough data queue
space (i.e., 8 bytes) to complete the next data transfer. Otherwise for less than 8 bytes of queue
space, a Target Disconnect with Data must be signaled in the data phase prior to the data phase,
where the queue space becomes full (defined as 7 bytes or less of queue space available).

Figure 15-8. PCI 64-Bit Transfer from a 64-Bit Target

CLK

FRAME#

REQ64#

AD[31:00]

AD[63:32]

C/BE[3:0]#

C/BE[7:4]#

IRDY#

TRDY#

DEVSEL#

ACK64#

ADDRESS
PHASE

DATA
PHASE

ADDRESS DATA-3 DATA-5

BE#’s

W
A

IT

W
A

IT

W
A

IT

D
A

TA
 T

R
A

N
S

F
E

R

D
A

TA
 T

R
A

N
S

F
E

R

D
A

TA
 T

R
A

N
S

F
E

R

DATA
PHASE

DATA
PHASE

DATA-4 DATA-6DATA-2

BUS CMD

BE#’s

DATA-1

 1 2 3 4 5 6 7 8 9
15-24 i960® RM/RN I/O Processor Developer’s Manual

Address Translation Unit
15.2.5.2 64-Bit Operation with 32-Bit Targets

When a 64-bit transfer is requested by the PCI master interfaces by the assertion of REQ64#, it is
not guaranteed that the target of the transaction is capable of performing the 64-bit request. In this
case, ACK64# remains deasserted when the target asserts DEVSEL# to claim the transaction.
When a target signals that is cannot complete the transaction using 64-bit transfers, the ATU
master interfaces are responsible for completing the transactions as a 32-bit master. Two possible
conditions arise from a 32-bit target which does not respond with ACK64#:

1. ACK64# deasserted but a burst can be sustained

2. ACK64# deasserted but a burst can not be sustained

If a 32-bit target does not respond with ACK64# and STOP#, it is capable of continuing a burst as
a 32-bit target. For memory read requests, the ATU interfaces changes to 32-bit operation by only
expecting read data on the lower byte lanes, AD[31:0]. The master interfaces continue requesting
read data (by the continued asserting of IRDY#) as 32-bit masters. No master completions are
prematurely signaled due to 32-bit target response. For memory write operations, the master
interface may already have the first data phase on the bus by the time it is detected that ACK64#
has not been asserted. The PATU and SATU master interfaces discontinue driving data on the
upper 4 bytes during the second data phase. The second data phase of the burst now contains the
data from the high 4 bytes of the first data phase. The master interface stops driving the AD[63:32]
and C/BE[7:4]# during data phase 2 and all subsequent data phases of the burst write transfer. See
Figure 15-9 for a diagram of this transaction. As a note, a disconnect after the first data phase of the
burst transfer write results in the continuation of the write transaction as a 32-bit master only (no
REQ64#). This works similar to the write transfer disconnected in the first data phase described in
the next paragraph.

If a 32-bit target does not respond with ACK64# but asserts STOP#, the target does not continue
the burst. If a read or write request is made and STOP# without TRDY# is signaled (Retry), the
master interface must repeat the original read or write request as a 64-bit transaction. If the target
signals a disconnect with data (STOP# and TRDY#) on a write transaction, then only the lower 4
bytes of the 8 byte transfer have been delivered. The master state machines of the ATUs repeat the
request as a 32-bit master (no REQ64# assertion) using the upper 4 bytes of data from the
disconnected transaction on AD[31:00] and the next address (i.e., if address 00H was used in the
first 64-bit request, address 04H is used in the next 32-bit request). A disconnect from a 32-bit
target before an odd address results in a new transaction (if required) as a 32-bit master. A
disconnect from a 32-bit master before an even address results in a new transaction as a 64-bit
master (if required).

Note that 32-bit targets create special circumstances for FRAME# signaling. For 64-bit, single
Qword transfers, FRAME# is driven low and then high immediately in the next clock signaling last
data phase. Due to the potential of requiring two 32-bit data phases to complete what was originally
intended as one 64-bit data phase, this is not possible. FRAME# must not be deasserted until after
ACK64# is returned or not.
i960® RM/RN I/O Processor Developer’s Manual 15-25

Address Translation Unit
Figure 15-9. 64-Bit Write Request with 32-Bit Transfer

CLK

FRAME#

REQ64#

AD[31:00]

AD[63:32]

C/BE[3:0]#

C/BE[7:4]#

IRDY#

TRDY#

DEVSEL#

ACK64#

ADDRESS
PHASE

DATA
PHASE

ADDRESS DATA-3

W
A

IT

W
A

IT

W
A

IT

D
AT

A
 T

R
A

N
S

F
E

R

D
A

TA
 T

R
A

N
S

F
E

R

D
A

TA
 T

R
A

N
S

F
E

R

DATA
PHASE

DATA
PHASE

BUS CMD

DATA-2DATA-1

DATA-2

BE#’s-1 BE#’s-2 BE#’s-3

BE#’s-2

 1 2 3 4 5 6 7 8 9
15-26 i960® RM/RN I/O Processor Developer’s Manual

Address Translation Unit

nd

set,
y the
lly
arded
ter

ce to
ess

ns and

 used

e host
ansion

e
rnal
und

e
e

 read
e and

queue
sion
cess
15.3 Messaging Unit

The Messaging Unit (MU) transfers data between the PCI system and the i960 RM/RN I/O processor
and notifies the respective system when new data arrives. The MU is described in Chapter 16,
“Messaging Unit”.

The primary PCI window for messaging transactions is always the first 4 Kbytes of the inbound
translation window defined by the Primary Inbound ATU Base Address Register (PIABAR) a
the Primary Inbound ATU Limit Register (PIALR).

Access to the Messaging Unit from the secondary PCI interface is supported through a
combination of the PCI-to-PCI Bridge Unit and the Secondary ATU. If bit 12 of the ATUCR is
the first 4 KB of the SATU address is not claimed by the SATU but is allowed to be claimed b
secondary interface of the bridge. This address space must be within the range that is norma
decoded and forwarded from secondary to primary by the bridge. Once the transaction is forw
through the bridge, the setting of bit 12 allows the i960 RM/RN I/O processor to act as a mas
(bridge) and slave (ATU/Messaging Unit) at the same time on the primary interface. Refer to
Section 15.7.33, “ATU Configuration Register - ATUCR” on page 15-80 for details of bit 12. The
bridge unit does not perform any special “steering” of transactions from the secondary interfa
the primary ATU/MU. The upstream bridge transaction must have a valid MU address to acc
the MU (first 4 KB of primary ATU address space).

All of the Messaging Unit errors are reported in the same manner as PATU errors. Error conditio
status can be found in the PATUSR and the PATUISR, see Section 15.6, “ATU Error Conditions”.

15.4 Expansion ROM Translation Unit

The primary inbound ATU supports one address range (defined by a base/limit register pair)
for the Expansion ROM. Refer to the PCI Local Bus Specification Revision 2.1 for details on
Expansion ROM format and usage.

During a powerup sequence, initialization code from Expansion ROM is executed once by th
processor to initialize the associated device. The code can be discarded once executed. Exp
ROM registers are described in Section 15.7.14, Section 15.7.31, and Section 15.7.32.

The inbound primary ATU supports an inbound Expansion ROM window which works like th
inbound translation window. A read from the expansion ROM windows is forwarded to the inte
bus and to the Memory Controller. The address translation algorithm is the same as the inbo
translation; see Section 15.2.1.1, “Inbound Address Translation”. The only width Expansion ROM
supported by the i960 RM/RN I/O processor Memory Controller is an 8-bit non-volatile devic
(FLASH/EPROM/ROM). The PATU uses standard 64-bit accesses on the internal bus and th
responsibility for packing the data from the 8-bit device resides with the Memory Controller.

The Expansion ROM unit uses the primary ATU inbound transaction queue and the inbound
data queue. The address of the inbound delayed read cycle is entered into the P_ITQx queu
the delayed read completion data is returned in the P_IRQ. Expansion ROM writes are not
supported and result in a Target Abort. The internal bus master interface fills the P_IRQ read
with a minimum of 8-bytes in response to a read on the PCI bus. As a PCI target, the Expan
ROM interface behaves as a standard ATU interface and is capable of returning a 64-byte ac
by the assertion of P_ACK64# in response to a 64-bit request.
i960® RM/RN I/O Processor Developer’s Manual 15-27

Address Translation Unit
15.5 ATU Queue Architecture

ATU operation and performance depends on the queueing mechanism implemented between the
internal bus interface and PCI bus interface. As indicated in Figure 15-2, the ATU queue
architecture consists of separate inbound and outbound queues for ATU. The function of each
queue is described in the following sections.

15.5.1 Inbound Queues

The inbound data queues of the ATUs support transactions initiated on a PCI bus and targeted at
either i960 RM/RN I/O processor local memory or a i960 RM/RN I/O processor memory mapped
register. Table 15-4 details the name and sizes of the PATU and SATU inbound data queues.

15.5.1.1 Inbound Write Queue Structure

The PATU and SATU Inbound Write Queues consist of the inbound write data queues and the
inbound write address queues. The inbound write data queue hold the data for memory write
transactions moving from a PCI Bus to the internal bus and the address queues hold the
corresponding address of the transactions in the data queues. The primary inbound write queue,
P_IWQ, has a queue depth of 128 bytes and moves write transactions from the primary PCI bus to
the internal bus. The corresponding address queue, P_IWQAD, is capable of holding 4 address
entries. The queue pair is capable of holding up to 4 memory write (or MWI) transactions up to the
size of the queue in a manner similar to the bridge unit write queues.

The secondary inbound write queue (S_IWQ) has a depth of 128 bytes and moves write
transactions from the secondary PCI bus to the internal bus. The corresponding address queue,
S_IWQAD, is capable of holding 4 address entries. This queue pair functions the same as the
primary queue pair, holding up to 4 transactions of variable length up to the size of the data queue.

Table 15-4. Inbound Queues

ATU Queue Mnemonic Queue Name Queue Size (Bytes)

PATU

P_IWQ Primary Inbound Write Data Queue 128

P_IWQAD Primary Inbound Write Address Queue 4 Transaction Addresses

P_IRQ Primary Inbound Read Data Queue 128

P_IDWQ Primary Inbound Delayed Write Queue 8

P_ITQ1 Primary Inbound Transaction Queue 1 Address/Command

P_ITQ2 Primary Inbound Transaction Queue 2 Address/Command

SATU

S_IWQ Secondary Inbound Write Data Queue 128

S_IWQAD Secondary Inbound Write Address Queue 4 Transaction Addresses

S_IRQ Secondary Inbound Read Data Queue 128

S_ITQ1 Secondary Inbound Transaction Queue 1 Address/Command

S_ITQ2 Secondary Inbound Transaction Queue 2 Address/Command
15-28 i960® RM/RN I/O Processor Developer’s Manual

Address Translation Unit

en
et. Error

es are

eue)
 or
f the

g it to
s each
1 and
ach

on PCI
e PCI
forms a
e ATU

s a
t in an
al

n the

rimary
 is
al
p. If

e bus.
fter the

f up to
he
ious
 been
Memory write transactions fill the tail of the queue on the PCI bus and are drained from the head of
the queue on the internal bus. The following rules apply to the PCI bus interface and govern the
acceptance of data into the tail of IWQ and address into the tail of the IWQAD:

• A memory write operation claimed by the slave PCI interface on the PCI bus is accepted into
the address and data queues if the queues are in a non-full state. A Retry is signaled if this
condition is not true when a transaction is first claimed by the slave interface.

• If the IWQ reaches a full state while filling, a disconnect with data is signaled to the master of the
transaction on the data phase that fills the queue to a completely full state (no queue bytes remaining).

Memory write transactions are drained from the head of the queue when the master interface has
acquired bus ownership and transaction ordering and priority have been satisfied (Section 15.5.3,
“Transaction Ordering”). A memory write transaction is considered drained from the queue wh
the entire amount of data entered on the PCI bus has been accepted by the internal bus targ
conditions resulting in the cancellation of a write transaction (master-abort) only flush the
transaction at the head of the data and address queue. All other transactions within the queu
considered still valid. Memory Write and Invalidate transactions are treated like Memory Write
transactions on the PCI interface and use the Memory Write command on the internal bus.

Transactions entering the tail of an empty queue (no previous write transactions reside in qu
are forwarded immediately to the head of the queue. A queue entry (8 bytes for either 64-bit
32-bit data) is immediately added to the tail of the data queue when drained from the head o
queue on the target bus.

15.5.1.2 Inbound Read Queues and Inbound Transaction Queues

The inbound read queues are responsible for retrieving data from local memory and returnin
the PCI buses in response to a delayed read transaction initiated from a PCI master. The ATU
have one IRQ for data only. The address of the transaction is held in a dedicated ITQ. P_ITQ
P_ITQ2 are dedicated to P_IRQ with a similar arrangement for the secondary ATU queues. E
IRQ holds the data from only one read transaction from the PCI bus. The read request cycle
latches the read command and the address into the ITQ when the cycle is first initiated by th
master. The ATU IB master interface takes the translated address and the command and per
read on the internal bus. Reads can be any of the PCI memory read command types using th
inbound translation or an inbound configuration read using the specific configuration cycle
translation. The data from the read on the IB is stored in the IRQ until the PCI master initiate
read cycle that matches the initial request cycle in both command and address. Any data lef
IRQ after the delivery of a completion cycle on PCI is flushed. This is possible since all intern
bus memory is considered prefetchable with no read side effects.

The exact amount of data read by the master state machine on the IB interface depends upo
read command used and how much data the PCI target device delivers. Table 15-5 shows the
amount of data attempted to be read for the different memory read commands for both the p
and secondary ATUs. In addition, memory read streaming is used. This means that if an IRQ
currently being drained while it is being filled and the prefetch size is reached, the ATU intern
bus master maintains the transaction and continues filling read data into the IRQ until it fills u
the IRQ reaches a full state while being drained, the ATU internal bus master relinquishes th
No master waitstates are inserted. If additional read prefetch data is entered into the queue a
draining master gives up the PCI bus, the data is flushed.

The function of the two transaction queues for each data queue is to allow the acceptance o
two delayed read requests. While only 1 read completion can be occurring at any one time, t
second DRR can be accepted to reduce the latency of accepting another DRR after the prev
DRC has completed. For example, a DRR can be accepted into P_ITQ1. After the DRR has
i960® RM/RN I/O Processor Developer’s Manual 15-29

Address Translation Unit
accepted and the read starts on the internal bus, data starts filling P_IRQ from the internal bus side.
While this is occurring the PCI slave interface is capable of accepting another independent read
request into P_ITQ2. This read only begins on the internal bus after a PCI master has performed a
read completion cycle on PCI and has drained the read data associated with P_ITQ1 from P_IRQ.
Under no circumstances does the read data queue hold read data from more than one transaction
queue at a time.

Internal bus error conditions override all prefetch amounts. (i.e., a master-abort and target-abort conditions.)

15.5.1.3 Inbound Delayed Write Queue

The IDWQ is present only in the primary ATU and is used specifically for inbound configuration
write cycles to the ATUs. I/O Write transactions are not accepted by the PATU or the SATU and
result in a Master Abort.

The IDWQ contains both the address and data of a configuration write cycle. When the delayed
write cycle is initiated on the PCI bus, the address and data are entered into the 8 byte queue
forwarded to the IB bus. The address translation used is the specific configuration translation
defined in Section 15.2.1.4. The transaction is forwarded to the IB bus once transaction ordering
has been satisfied and the translated write cycle is performed on the internal bus with the IB
memory write command. The status of the transaction (normal completion) is maintained in the
IDWQ for return to the PCI master on the initiating bus.

The IDWQ can only hold 32-bit data and should never be accessed from PCI with P_REQ64#
active. In addition, the cycle should always return only 32-bits of data on the internal bus and
should never receive an I_ACK64#.

Table 15-5. Inbound Read Prefetch Data Sizes

ATU PCI Read Command Prefetch Size (Bytes)

PATU

Memory Read 32

Memory Read Line 64

Memory Read Multiple 128

SATU

Memory Read 32

Memory Read Line 64

Memory Read Multiple 128
15-30 i960® RM/RN I/O Processor Developer’s Manual

Address Translation Unit
15.5.2 Outbound Queues

The outbound queues of the ATU are used to hold read and write transactions from the core
processor directed at the PCI buses. Each ATU outbound queue structure has a separate read
queue, write queue, and address queue. Table 15-6 contains information about both PATU and
SATU outbound queues.

The outbound queues are capable of holding outbound memory read, memory write, I/O read, I/O
write, and DAC transactions. The type of transaction used is defined by the internal bus address
and the command used on the internal bus (memory write, memory read, memory read line,
memory read multiple). See Section 15.2.2.1 and Section 15.2.2.2 for details on outbound address
translation. For DAC cycles, each outbound transaction queue contains a separate register which
contains the upper 32-bits of a 64-bit outbound transactions (Section 15.7.28 and Section 15.7.39).

When the core processor (BIU) initiates an outbound write transaction, the address is entered into
the OTQ (if empty). The data from the internal bus write is then entered into the OWQ and the
transaction is forwarded to the PCI bus. When the write completes (or an error occurs), the address
is flushed from the OTQ. Data is flushed only from master abort or target abort cases.

For outbound reads, the address is entered into the OTQ (if empty) and a retry is signaled to the
master on the internal bus. Read data is prefetched (amounts based on Table 15-2) into the ORQ
and once the full prefetch amount (or a target abort or master abort error) is reached, the data is
allowed to be returned to the master on the internal bus.

The amount of data read during an outbound read cycle depends on the read command presented
on the internal bus during the address phase. Since all outbound reads are deterministic and not
speculative prefetching, the ATU must complete the read before allowing the internal bus master
access to the data. Table 15-2 shows the read sizes used by the primary and secondary ATUs during
outbound reads.

Table 15-6. Outbound Queues

ATU Queue Mnemonic Queue Name Queue Size (Bytes)

PATU

P_OWQ Primary Outbound Write Queue 16

P_ORQ Primary Outbound Read Queue 16

P_OTQ Primary Outbound Transaction Queue Address/Command

SATU

S_OWQ Secondary Outbound Write Queue 16

S_ORQ Secondary Outbound Read Queue 16

S_OTQ Secondary Outbound Transaction Queue Address/Command
i960® RM/RN I/O Processor Developer’s Manual 15-31

Address Translation Unit
15.5.3 Transaction Ordering

Because the ATUs can process multiple transactions, they must maintain proper ordering to avoid
deadlock conditions and improve throughput. The ATU transaction ordering rules used by the i960
RM/RN I/O processor are listed in Table 15-7 for the inbound direction and Table 15-8 for the
outbound direction. The tables are based on the direction the transaction is moving, (i.e., the data
for outbound delayed read moves in the same direction as the data for an inbound write or the
address/command for an inbound read).

1. ATU Primary and Secondary Inbound Write Queues.
2. The only situation where an ATU inbound write can pass an inbound read request is if there is both a delayed read comple-

tion and an inbound read request pending.
3. Messaging Unit Inbound Queue (Primary Only).
4. Not valid in Secondary ATU.
5. The only situation where an outbound read completion can pass an inbound write is if the outbound read master-aborts or

target-aborts on the PCI bus.

1. Not valid for Secondary ATU.

Table 15-7. ATU Inbound Data Flow Ordering Rules

Row Pass Column?

Inbound Write
Inbound

Read
Request

Inbound
Configuration
Write Request

Outbound
Read

Completion
ATU

Inbound
Writes

MU
Inbound
Writes

Inbound Write

ATU1
Inbound
Writes

No No No/Yes2 No Yes

MU3
Inbound
Writes

No No No No Yes

Inbound Read Request No No No No Yes

Inbound Configuration Write
Request4 No No No No Yes

Outbound Read Completion No5 No5 Yes No5 No

Table 15-8. ATU Outbound Data Flow Ordering Rules

Row Pass Column? Outbound Write Outbound Read
Request

Inbound Read
Completion

Inbound
Delayed Write
Completion

Outbound Write No No Yes Yes

Outbound Read Request No No Yes Yes

Inbound Read Completion No Yes No Yes

Inbound Delayed Write
Completion1 Yes Yes Yes No
15-32 i960® RM/RN I/O Processor Developer’s Manual

Address Translation Unit
Definitions of the terms used in Table 15-7 and Table 15-8 are indicated as follows. PCI terms are
noted in parenthesis:

• Inbound Write (PMW) - Data from a write cycle initiated on PCI and targeted at the internal
bus. Note that the address is in a separate transaction queue and is not referenced. Inbound
writes can also come in through the Messaging Unit which is part of the primary ATU.

• Inbound Read Request (DRR) - address information from a read transactions retried and
delayed on the PCI bus. Is mastered on the internal bus to retrieve data for the Inbound Read
Completion.

• Inbound Configuration Write Request - (DWR) - The address and data associated with a
configuration write transaction from primary PCI and targeted at the ATU PCI configuration
address space. Once completed on the internal bus, creates an Inbound Configuration Write
Completion. Only available in the PATU.

• Outbound Read Completion (DRC) - The data read on PCI in the process of being returned to
the BIU on the internal bus. This data is the completion cycle that results from an Outbound
Read Request.

• Outbound Write (PMW) - The address and data from a write initiated on the internal bus and
eventually completing on the PCI bus.

• Outbound Read Request (DRR) - The address/command of a delayed read cycle initiated on
the internal bus. The read data is returned in the Outbound Read Completion cycle.

• Inbound Read Completion (DRC) - The data read on the internal bus in the process of being
returned to the PCI bus. This data is the completion cycle for an Inbound Read Request.

• Inbound Configuration Write Completion (DWC) - The status of an inbound write
configuration cycle traveling from the internal bus back towards the primary PCI bus. This is
only present in the PATU.

These transaction ordering rules define the way in which data moves in both directions through the
ATUs. In Table 15-7 and Table 15-8 a NO response in a box means that based on ordering rules,
the current transaction (the row) can not pass the previous transaction (the column) under any
circumstance. A Yes response in the box means that the current transaction is allowed to pass the
previous transaction but is not required to, based on whether a consistent view of data or prevention
of deadlocks is needed.

In the case of inbound write operations, multiple transactions may exist within the x_IWQ and the
corresponding x_IWQAD at any point in time. The ordering of these transactions is based on a
time stamp basis. Transactions entering the queue are stamped with a relative time in relation to all
other transactions moving in a similar direction.
i960® RM/RN I/O Processor Developer’s Manual 15-33

Address Translation Unit
In Figure 15-10, the inbound write and outbound read queues of an ATU are shown. In this
example, transaction A entered the write queue at Time 0. Next, the ATU entered read data into the
outbound read queue at Time 1 (Transaction B). Finally, before the previous transactions could be
cleared, another inbound write, Transaction C, was entered into the IWQ. The ordering in
Table 15-7 states that nothing can pass an inbound write and therefore Transaction A must
complete on the internal bus before Transaction B since an outbound read completion can not pass
an inbound write. Also, Transaction A must complete before Transaction C since an inbound write
can not pass another inbound write. Once Transaction A completes, Transaction C moves to the
head of the IWQ. The two transactions at the head of the queues moving data in an inbound
direction are now Transaction C, an inbound write, and Transaction B, an outbound read
completion. Ordering states that an inbound write may pass an outbound read completion. This
means that the priority mechanism now takes over to decide which completes (defined in the next
section). In this case, if the BIU acquires the internal bus first, Transaction B completes. If the
ATU acquires the internal bus first, Transaction C completes. Note that ordering enforced the
completion of Transaction A but priority dictated the completion of Transactions B and C.

The first action performed to determine which transaction is allowed to proceed (either inbound or
outbound) is to apply the rules of ordering as defined in Table 15-7 and Table 15-8. Any box
marked No must be satisfied first. For example, if an inbound read request is in P_ITQ1 and it was
latched after the data in the P_IDWQ arrived (this is a configuration write), then ordering states
that an Inbound Read Request may not pass an Inbound Configuration Write Request. Therefore,
the Inbound Configuration Write Request must be cleared out of P_IDWQ before the Inbound
Read Request is attempted on the internal bus. Once transaction ordering is satisfied, the boxes
marked Yes are now resolved.

Figure 15-10. Inbound Queue Completion

Outbound Read Queue

Inbound Write Queue

B B B B B B B B

AAAAAAACCCCCCCC

Outbound Read Queue

Inbound Write Queue

B B B B B B B B

CCCCCCCC

PCI Bus Internal Bus
15-34 i960® RM/RN I/O Processor Developer’s Manual

Address Translation Unit

ting
he

ociated

f an
r
15.6 ATU Error Conditions

PCI and internal bus error conditions cause the ATU state machines to exit normal operation and
return to idle states. In addition, status bits are set to inform error handling code of the exact cause
of the error condition. The i960 RM/RN I/O processor ATUs use a similar error handling scheme
for PCI interrupts as the PCI to PCI Bridge Unit. All of the Messaging Unit errors are reported in
the same manner as PATU errors. Error conditions and status can be found in the PATUSR and the
PATUISR. The basic flow for a PCI error is as follows:

• Set the bit in the ATU Status Register which corresponds to the error condition (master abort,
target abort, etc.)

• Set the bit in the ATU Interrupt Status Register which corresponds to the error condition
(master abort, target abort, etc.). This function is maskable for all PCI error conditions.

• The setting of the bit in the ATU Interrupt Status Register results in a NMI# interrupt being
driven to the i960 core processor

Error conditions on one side of the ATU are generally propagated to the other side of the ATU and
have different effects depending on the error. Error conditions and their effects are described in the
following sections.

PCI bus error conditions and the action taken on the bus are defined within the PCI Local Bus
Specification Revision 2.1. The ATU adheres to the error conditions defined within the PCI
specification for both master and slave operation. Error conditions on the internal bus are caused by
an ECC error from the Memory Controller (Section 13.5, “Interrupts/Error Conditions” on
page 13-39 for details on memory controller error conditions) or by incorrect addressing resul
in an internal master abort. All actions on the PCI Bus for error situations are dependent on t
error control bits found in the Primary ATU and Secondary ATU Control Registers. See
Section 15.7, “Register Definitions” on page 15-47.

The following sections detail all ATU error conditions on the PCI bus and the i960 RM/RN I/O
Processor Internal Bus, action taken on these conditions, and the status and control bits ass
with error handling.

15.6.1 Address Parity Errors on the PCI Interface

The ATUs must detect and report address parity errors for transactions on both PCI buses. I
address parity error occurs on the PCI interface of either ATU, the i960 RM/RN I/O processo
performs the following actions based on the constraints specified:

Table 15-9. Address Parity Errors on PCI Interface (Sheet 1 of 2)

Primary ATU Secondary ATU

If the Parity Error Response bit in the PATUCMD is
set, the PATU does not claim the transaction by not
asserting P_DEVSEL#, allowing a master abort to
occur. If the Parity Error Response Enable bit in the
PATUCMD is cleared, the PATU takes normal action
and allows the transaction to proceed.

If the Parity Error Response bit in the SATUCMD is
set, the SATU does not claim the transaction by not
asserting S_DEVSEL#, allowing a master abort to
occur. If the Parity Error Response Enable bit in the
SATUCMD is cleared, the SATU takes normal action
and allows the transaction to proceed.

Assert P_SERR# if the P_SERR# Enable bit and
Parity Error Response bit in the PATUCMD are both
set.

Assert S_SERR# if the S_SERR# Enable bit and
Parity Error Response bit in the SATUCMD are both
set.
i960® RM/RN I/O Processor Developer’s Manual 15-35

Address Translation Unit
15.6.2 Data Parity Errors on the PCI Interface

Two kinds of data parity errors can occur on the PCI interface; errors as a master and errors as a
slave. For errors as a master (outbound transactions), the ATUs detects data parity errors on reads
and record data parity errors occurring at the target for writes. For errors as a slave device (inbound
transactions), the ATUs detects data parity errors during write transactions and take no action for
data parity errors during read transactions.

15.6.2.1 Outbound Read Data Parity Errors - Master

Data parity errors occurring during read operations initiated by the ATU are recorded, PERR# is
asserted (if enabled) and the data is returned to the initiator on the internal bus. The entire prefetch
amount of data is read and the transaction is never terminated with master completion in response
to the data parity error. Specifically, the following actions with the given constraints are taken on
both the primary and secondary ATUs:

Outbound read parity errors, as stated, results in the bad data being delivered back to the initiator
on the internal bus of the i960 RM/RN I/O processor.

Set the P_SERR# Asserted bit in the PATUSR if the
P_SERR# Enable bit and Parity Error Response bit in
the PATUCMD are both set.

Set the S_SERR# Asserted bit in the SATUSR if the
S_SERR# Enable bit and Parity Error Response bit in
the SATUCMD are both set.

Set the Detected Parity Error bit in the PATUSR Set the Detected Parity Error bit in the SATUSR

If the PATU P_SERR# Asserted Interrupt Mask Bit in
the PATUIMR is clear, set the P_SERR# Asserted bit
in the PATUISR, if set, no action.

If the SATU S_SERR# Asserted Interrupt Mask Bit in
the SATUIMR is clear, set the S_SERR# Asserted bit
in the SATUISR, if set, no action.

If the PATU P_SERR# Detected Interrupt Mask Bit in
the ATUCR is clear, set the P_SERR# Detected bit in
the PATUISR, if set, no action.

If the SATU S_SERR# Detected Interrupt Mask Bit in
the ATUCR is clear, set the S_SERR# Detected bit in
the SATUISR, if set, no action.

If the PATU Detected Parity Error Interrupt Mask bit in
the PATUIMR is clear, set the Detected Parity Error
bit in the PATUISR. If set, no action

If the SATU Detected Parity Error Interrupt Mask bit in
the SATUIMR is clear, set the Detected Parity Error
bit in the SATUISR. If set, no action

Table 15-9. Address Parity Errors on PCI Interface (Sheet 2 of 2)

Table 15-10. Outbound Read Data Parity Errors - Master

Primary ATU Secondary ATU

P_PERR# is asserted two clocks cycles following
the data phase in which the data parity error is
detected on the primary bus. This is only done if
the Parity Error Response bit in the PATUCMD
is set.

S_PERR# is asserted two clocks cycles following
the data phase in which the data parity error is
detected on the secondary bus. This is only
done if the Parity Error Response bit in the
SATUCMD is set.

The Master Parity Error bit in the PATUSR is set if the
Parity Error Response bit in the PATUCMD is set.

The Master Parity Error bit in the SATUSR is set if the
Parity Error Response bit in the SATUCMD is set.

The Detected Parity Error bit in the PATUSR is set The Detected Parity Error bit in the SATUSR is set

If the PATU PCI Master Parity Error Interrupt Mask Bit
in the PATUIMR is clear, set the PCI Master Parity
Error bit in the PATUISR, if set, no action.

If the SATU PCI Master Parity Error Interrupt Mask Bit
in the SATUIMR is clear, set the PCI Master Parity
Error bit in the SATUISR, if set, no action.

If the PATU Detected Parity Error Interrupt Mask bit in
the PATUIMR is clear, set the Detected Parity Error
bit in the PATUISR. If set, no action

If the SATU Detected Parity Error Interrupt Mask bit in
the SATUIMR is clear, set the Detected Parity Error
bit in the SATUISR. If set, no action
15-36 i960® RM/RN I/O Processor Developer’s Manual

Address Translation Unit
15.6.2.2 Outbound Write Data Parity Errors - Master

Data parity errors occurring during write operations initiated by the ATU may record the assertion
of PERR# from the target on the PCI Bus. When an error occurs, the ATUs continues writing data
to the target to clear the OWQ of the current outbound write transaction. Specifically, the following
actions with the given constraints are taken on both the primary and secondary ATUs:

Outbound write parity errors, as stated, does not result in a master completion. In addition, if the
target terminates the transaction (disconnect), the ATU master must reinitiate the transaction to
clear the data from the OWQ.

15.6.2.3 Inbound Read Data Parity Errors - Slave

Inbound read data parity errors occur when read data delivered from the IRQ is detected as having
bad parity by the master of the transaction who is receiving the data. The master may optionally
report the error to the system by asserting PERR#. As a slave device in this scenario, no action is
required and no error bits are set.

15.6.2.4 Inbound Write Data Parity Errors - Slave

Data parity errors occurring during write operations received by the ATU may assert PERR# on the
PCI Bus. When an error occurs, the ATUs continues accepting data until the master of the write
transaction completes or a queue fill condition is reached. Specifically, the following actions with
the given constraints are taken on both the primary and secondary ATUs:

Table 15-11. Outbound Write Data Parity Errors - Master

Primary ATU Secondary ATU

If P_PERR# is sampled active and the Parity Error
Response bit in the PATUCMD is set, set the Master
Parity Error bit in the PATUSR. If the Parity Error
Response bit in the PATUCMD is clear, no action is
taken.

If S_PERR# is sampled active and the Parity Error
Response bit in the SATUCMD is set, set the Master
Parity Error bit in the SATUSR. If the Parity Error
Response bit in the SATUCMD is clear, no action is
taken.

If the PATU PCI Master Parity Error Interrupt Mask Bit
in the PATUIMR is clear, set the PCI Master Parity
Error bit in the PATUISR, if set, no action.

If the SATU PCI Master Parity Error Interrupt Mask Bit
in the SATUIMR is clear, set the PCI Master Parity
Error bit in the SATUISR, if set, no action.

Table 15-12. Inbound Write Data Parity Errors - Slave

Primary ATU Secondary ATU

P_PERR# is asserted two clocks cycles following the
data phase in which the data parity error is detected
on the primary bus. This is only done if the Parity
Error Response bit in the PATUCMD is set.

S_PERR# is asserted two clocks cycles following the
data phase in which the data parity error is detected
on the secondary bus. This is only done if the Parity
Error Response bit in the SATUCMD is set.

The Detected Parity Error bit in the PATUSR is set The Detected Parity Error bit in the SATUSR is set

If the PATU Detected Parity Error Interrupt Mask bit in
the PATUIMR is clear, set the Detected Parity Error
bit in the PATUISR. If set, no action

If the SATU Detected Parity Error Interrupt Mask bit in
the SATUIMR is clear, set the Detected Parity Error
bit in the SATUISR. If set, no action
i960® RM/RN I/O Processor Developer’s Manual 15-37

Address Translation Unit

 the
15.6.2.5 Inbound Configuration Write Data Parity Errors - Slave

To allow for correct data parity calculations for delayed write transactions, the primary ATU
delays the assertion of P_STOP# (signalling a Retry) until P_PAR is driven by the master. A parity
error during a delayed write transaction (inbound configuration write cycle) can occur in any of the
following parts of the transactions:

• During the initial Delayed Write Request cycle on the primary PCI bus when the PATU latches
the address/command and data for delayed delivery to the internal configuration register.

• During the Delayed Write Completion cycle on the primary PCI bus when the ATU delivers
the status of the operation back to the original master.

The i960 RM/RN I/O processor’s primary ATU PCI interface has the following responses to a
delayed write parity error for inbound transactions during Delayed Write Request cycles with
given constraints:

• If the Parity Error Response bit in the PATUCMD is set, the primary ATU asserts P_TRDY#
(disconnects with data) and two clock cycles later asserts P_PERR# notifying the initiator of
the parity error. The delayed write cycle in not enqueued and forwarded to the internal bus.

If the Primary Parity Error Response bit in the PATUCMD is cleared, the primary ATU
retries the transaction by asserting P_STOP# and enqueues the Delayed Write Request
cycle to be forwarded to the internal bus. P_PERR# is not asserted.

• The Detected Parity Error bit is set in the Primary ATU Status Register (PATUSR).

• If the PATU Detected Parity Error Interrupt Mask bit in the PATUIMR is clear, set the
Detected Parity Error bit in the PATUISR. If set, no action

For the original write transaction to be completed, the initiator retries the transaction on the PCI
bus and the PATU returns the status from the internal bus, completing the transaction.

For the Delayed Write Completion transaction on the primary PCI bus where a data parity error
occurs and therefore does not agree with the status being returned from the internal bus (i.e., status
being returned is normal completion) the primary ATU performs the following actions with the
given constraints:

• If the Parity Error Response Bit is set in the PATUCMD, the primary ATU asserts P_TRDY#
(disconnects with data) and two clocks later asserts S_PERR#. The Delayed Completion cycle in
the IDWQ remains since the data of retried command did not match the data within the queue.

If the Parity Error Response Bit is clear in the PATUCMD, the primary ATU retries the
transaction with no other response. A new transaction is not enqueued due to queue archi-
tecture constraints (Section 15.5.1.1).

• The Detected Parity Error bit is set in the Primary ATU Status Register (PATUSR).

• If the PATU Detected Parity Error Interrupt Mask bit in the PATUIMR is clear, set the
Detected Parity Error bit in the PATUISR. If set, no action.
15-38 i960® RM/RN I/O Processor Developer’s Manual

Address Translation Unit

 reads.
layed
ycle

 target

d from

us.

TUs
action:
15.6.3 Master Aborts on the PCI Interface

As a master on the PCI bus, the ATUs can encounter master abort conditions during outbound read
and write transactions. A master abort is signaled when the target of the transaction does not assert
DEVSEL# within 5 clocks of the assertion of FRAME#. The following action with the given
constraints are performed by the primary and secondary ATUs when a master abort is detected by
the PCI master interface during an outbound read or write transaction:

For the read case, the BIU is responsible for completing a transaction to the core processor
(Chapter 12, “Core Processor and Internal Operation”).

As a target, the ATU PCI interface is capable of creating a master abort case during inbound
If the inbound read transaction is master aborted on the internal bus, the ATU holding the De
Request Cycle purposely master aborts the PCI initiator during a Delayed Completion retry c
on the PCI bus. After this has occurred, the read transaction is flushed from the Inbound
Transaction Queue (ITQ).

15.6.4 Target Aborts on the PCI Interface

Target abort can be signaled to the ATUs by PCI targets during outbound transactions and a
abort can be initiated by the ATUs during inbound transactions where the internal bus cycle
resulted in a Target Abort from the memory controller due to an ECC error.

An inbound read transaction results in a PCI bus target abort when an ECC error was receive
the internal bus memory controller, the ATU ECC Target Abort Enable bit is set, and the Qword
aligned data phase that received a target abort on the internal bus is requested on the PCI b

The following actions with the given constraints are performed by the primary and secondary A
when a target abort is signaled by the PCI slave interface during an inbound read or write trans

Table 15-13. Master Aborts on the PCI Interface

Primary ATU Secondary ATU

Set the Master Abort bit (bit 13) in the PATUSR Set the Master Abort bit (bit 13) in the SATUSR

If the PATU PCI Master Abort Interrupt Mask bit in the
PATUIMR is clear, set the PCI Master Abort bit in the
PATUISR. If set, no action

If the SATU PCI Master Abort Interrupt Mask bit in the
SATUIMR is clear, set the PCI Master Abort bit in the
SATUISR. If set, no action

If an outbound write, flush the write data in the
P_OWQ and the address in the P_OTQ

If an outbound write, flush the write data in the
S_OWQ and the address in the S_OTQ

If an outbound read, return the master abort condition
to the internal master when the completion cycle is
allowed to proceed on the internal bus. Flush the
address from the P_OTQ.

If an outbound read, return the master abort condition
to the internal master when the completion cycle is
allowed to proceed on the internal bus. Flush the
address from the S_OTQ.

Table 15-14. Target Abort Signaled on the PCI Interface

Primary ATU Secondary ATU

Set the Target Abort (target) bit (bit 11) in the
PATUSR

Set the Target Abort (target) bit (bit 11) in the
SATUSR

If the PATU PCI Target Abort (target) Interrupt Mask
bit in the PATUIMR is clear, set the PCI Target Abort
(target) bit in the PATUISR. If set, no action

If the SATU PCI Target Abort (target) Interrupt Mask
bit in the SATUIMR is clear, set the PCI Target Abort
(target) bit in the SATUISR. If set, no action

If an inbound read, the P_IRQ is flushed after the
completion cycle is performed on the primary PCI bus.

If an inbound read, the S_IRQ is flushed after the
completion cycle is performed on the secondary PCI bus.
i960® RM/RN I/O Processor Developer’s Manual 15-39

Address Translation Unit
As a master during outbound transactions, the ATUs can receive target aborts from their PCI
targets. For outbound writes, the transaction in the OWQ is flushed and for outbound reads, the
target abort is delivered back to the initiator on the internal bus. The following actions with the
given constraints are performed by the primary and secondary ATUs when a target abort is
detected by the PCI master interface during an outbound read or write transaction:

15.6.5 SERR# Assertion and Detection

The primary and secondary ATUs are capable of reporting error conditions through the use of the
P_SERR# output and the S_SERR# output respectively.

The following conditions may result in the assertion P_SERR# by the primary ATU:

• An address parity error is detected by the PATU PCI interface and the Parity Error Response
bit and the P_SERR# Enable are set in the PATUCMD.

• An inbound write transaction is target aborted when the transaction is attempted on the internal
bus, the Primary ATU Inbound Error P_SERR# Enable bit in the PATUIMR is set by the memory
controller, and the P_SERR# Enable bit is set in the PATUCMD.

• An inbound write transaction is master aborted on the internal bus, the Primary ATU Inbound
Error P_SERR# Enable bit in the PATUIMR is set, and the P_SERR# Enable bit is set in the
PATUCMD.

• The P_SERR# Manual Assertion bit in the ATUCR has been set by the core processor and the
P_SERR# Enable bit is set in the PATUCMD.

The following conditions may result in the assertion S_SERR# by the secondary ATU:

• An address parity error is detected by the SATU PCI interface and the Parity Error Response
bit and the S_SERR# Enable are set in the SATUCMD.

• An inbound write transaction is target aborted by the memory controller when the transaction
is attempted on the internal bus, the Secondary ATU Inbound Error S_SERR# Enable bit in
the SATUIMR is set, and the S_SERR# Enable bit is set in the SATUCMD.

• An inbound write transaction is master aborted on the internal bus, the Secondary ATU
Inbound Error S_SERR# Enable bit in the SATUIMR is set, and the S_SERR# Enable bit is
set in the SATUCMD.

• The S_SERR# Manual Assertion bit in the ATUCR has been set by the core processor and the
S_SERR# Enable bit is set in the SATUCMD.

Table 15-15. Target Abort Detected on the PCI Interface

Primary ATU Secondary ATU

Set the Target Abort (master) bit (bit 12) in the
PATUSR

Set the Target Abort (target) bit (bit 12) in the
SATUSR

If the PATU PCI Target Abort (master) Interrupt Mask
bit in the PATUIMR is clear, set the PCI Target Abort
(master) bit in the PATUISR. If set, no action

If the SATU PCI Target Abort (master) Interrupt Mask
bit in the SATUIMR is clear, set the PCI Target Abort
(master) bit in the SATUISR. If set, no action

If an outbound write transaction, flush the P_OWQ
and the P_OTQ.

If an outbound write transaction, flush the S_OWQ
and the S_OTQ.

If an outbound read transaction, return the target
abort

condition to the initiator on the internal bus through
the P_ORQ.

If an outbound read transaction, return the target
abort condition to the initiator on the internal bus
through the S_ORQ.
15-40 i960® RM/RN I/O Processor Developer’s Manual

Address Translation Unit

d to

et in the
serts
o mask

f the

As
ndling
ror
 an
ot

s.
Note that the SERR# manual assertion bits must be cleared manually before they can be set again
resulting in SERR# asserted. Refer to Section 15.7.33, “ATU Configuration Register - ATUCR” on
page 15-80 for details. For S_SERR# assertions by the SATU, the bridge must be programme
pass the error upstream for detection by a host processor.

The following actions with the given constraints are performed by the primary and secondary
ATUs when SERR# is asserted by the PCI interface:

The following actions with the given constraints are performed by the primary and secondary
ATUs when SERR# is detected by the PCI interface:

Note that whenever the ATU asserts SERR#, both the asserted and detected status bits are s
corresponding ISR. To mask an NMI# interrupt to the core when either the PATU or SATU as
SERR#, both the SERR# asserted mask bit and the SERR# detected mask bit must be set. T
and NMI# when either of the ATUs have detected SERR# (from some other device on one o
PCI interfaces), just the corresponding SERR# detected mask bit must be set.

15.6.6 Internal Bus Error Conditions

The i960 RM/RN I/O Processor Internal Bus uses a protocol similar to the PCI specification.
such, master abort and target abort conditions are valid error states on the bus. The error ha
protocol for internal bus conditions is similar to the PCI bus error protocol. An internal bus er
results in a bit being set in the Primary or Secondary Interrupt Status Registers at which time
interrupt is driven to the core processor. Unlike PCI errors, internal bus error conditions are n
maskable.

The following sections detail internal bus error conditions for the primary and secondary ATU

Table 15-16. SERR# Asserted by PCI Interface

Primary ATU Secondary ATU

Set the P_SERR# Asserted bit in the PATUSR Set the S_SERR# Asserted bit in the SATUSR

If the PATU P_SERR# Asserted Interrupt Mask bit in
the PATUIMR is clear, set the P_SERR# Asserted bit
in the PATUISR. If set, no action

If the SATU S_SERR# Asserted Interrupt Mask bit in
the SATUIMR is clear, set the S_SERR# Asserted bit
in the SATUISR. If set, no action

If the PATU P_SERR# Detected Interrupt Mask bit in
the ATUCR is clear, set the P_SERR# Detected bit in
the PATUISR. If set, no action

If the SATU S_SERR# Detected Interrupt Mask bit in
the ATUCR is clear, set the S_SERR# Detected bit in
the SATUISR. If set, no action

Table 15-17. SERR# Detected by PCI Interface

Primary ATU Secondary ATU

If the PATU P_SERR# Detected Interrupt Mask bit in
the ATUCR is clear, set the P_SERR# Detected bit in
the PATUISR. If set, no action

If the SATU S_SERR# Detected Interrupt Mask bit in
the ATUCR is clear, set the S_SERR# Detected bit in
the SATUISR. If set, no action
i960® RM/RN I/O Processor Developer’s Manual 15-41

Address Translation Unit
15.6.6.1 Master Abort on the Internal Bus

A master abort on the internal bus is seen by the ATUs when the inbound translated address
presented on the internal bus is not claimed by the assertion of I_DEVSEL#. As a slave device, the
ATUs returns a master abort (by not asserting I_DEVSEL#) during an outbound read DRC cycle
on the internal bus in response to a master abort on the PCI interface.

The following action with the given constraints are performed by the primary and secondary ATUs
when a master abort is detected by the internal master interface during an inbound write transaction:

The Internal Bus Master Abort bit is non-maskable and always results in an NMI# interrupt being
driven to the core processor.

The following action with the given constraints are performed by the primary and secondary ATUs
when a master abort is detected by the internal master interface during an inbound read transaction:

Table 15-18. Master Abort Detected by Internal Master Interface During Inbound Write

Primary ATU Secondary ATU

Set the Internal Bus Master Abort bit (bit 7) in the
PATUISR

Set the Internal Bus Master Abort bit (bit 7) in the
SATUISR

If the inbound write transaction is still active on the
primary PCI interface, notify the primary PCI slave
interface to disconnect the transaction.

If the inbound write transaction is still active on the
secondary PCI interface, notify the secondary PCI
slave interface to disconnect the transaction.

If the Primary Inbound Error P_SERR# Enable bit is
set and the P_SERR# Enable bit is set in the
PATUCMD, assert P_SERR# on the primary
interface. If both bits are not set, take no action.

If the Secondary Inbound Error S_SERR# Enable bit
is set and the S_SERR# Enable bit is set in the
SATUCMD, assert S_SERR# on the secondary
interface. If both bits are not set, take no action.

If P_SERR# is asserted, set the P_SERR# Asserted
bit in the PATUSR

If S_SERR# is asserted, set the S_SERR# Asserted
bit in the SATUSR

If P_SERR# is asserted and the PATU P_SERR#
Asserted Interrupt Mask bit in the PATUIMR is clear,
set the P_SERR# Asserted bit in the PATUISR. If set,
no action

If S_SERR# is asserted and the SATU S_SERR#
Asserted Interrupt Mask bit in the SATUIMR is clear,
set the S_SERR# Asserted bit in the SATUISR. If set,
no action

If P_SERR# is asserted and the PATU P_SERR#
Detected Interrupt Mask bit in the ATUCR is clear, set
the P_SERR# Detected bit in the PATUISR. If set, no
action

If S_SERR# is asserted and the SATU S_SERR#
Detected Interrupt Mask bit in the ATUCR is clear, set
the S_SERR# Detected bit in the SATUISR. If set, no
action

Flush the transaction that was master aborted from
the P_IWQ.

Flush the transaction that was master aborted from
the S_IWQ.

Table 15-19. Master Abort Detected by Internal Master Interface During Inbound Read

Primary ATU Secondary ATU

Set the Internal Bus Master Abort bit (bit 7) in the
PATUISR

Set the Internal Bus Master Abort bit (bit 7) in the
SATUISR

Return a master abort condition to the initiating
master during the delayed completion cycle on the
primary PCI bus. No data is ever read from the
internal bus and returned to the primary PCI bus.

Return a master abort condition to the initiating
master during the delayed completion cycle on the
secondary PCI bus. No data is ever read from the
internal bus and returned to the secondary PCI bus.

Flush the transaction that was master aborted from
the P_ITQ after the master abort is delivered on the
PCI interface.

Flush the transaction that was master aborted from
the S_ITQ after the master abort is delivered on the
PCI interface.
15-42 i960® RM/RN I/O Processor Developer’s Manual

Address Translation Unit
The Internal Bus Master Abort bit is non-maskable and always results in an NMI# interrupt being
driven to the core processor.

As a slave device on the internal bus, the ATUs can return a master abort to the BIU in response to
a master abort seen on the PCI interface during a delayed read cycle. In this scenario, the master
abort is detected on the PCI interface during the read. Once this occurs, the ATU notifies the
internal bus arbiter to allow the BIU to acquire the bus and after the assertion of I_FRAME#, the
ATU fails to return an I_DEVSEL# signalling a master abort to the internal bus master (the BIU).
No error conditions are recorded by the slave interface of the ATUs during master abort operations,
since they are already recorded by the PCI interface.

15.6.6.2 Target Abort on the Internal Bus

Target Aborts can be seen by the internal bus master interface during inbound read and write
operations to the memory controller and are signaled as a slave device in response to a target abort
encountered during outbound read. During inbound operations, the memory controller is capable of
signalling a target abort when a multi-bit, unrecoverable ECC error is encountered. This can occur
during writes of less than 64-bits and during any read operation. During outbound read operations,
a delayed read cycle that is target aborted on the PCI bus results in a target abort being driven back
to the BIU on the internal bus. Outbound writes do not see target aborts because they are always
fully posted.

The following action with the given constraints are performed by the primary and secondary ATUs
when a target abort is detected by the internal master interface during an inbound write transaction:

The Memory Controller is responsible for creating the NMI# interrupt to the core processor. The
inbound write queue (IWQ) is not cleared and the ATU internal bus master interface re-arbitrates
for the internal bus and eventually drain the transaction which was target aborted from the queue.

Table 15-20. Target Abort Detected by Internal Master Interface During Inbound Write

Primary ATU Secondary ATU

If the Primary Inbound Error P_SERR# Enable bit is
set and the P_SERR# Enable bit is set in the
PATUCMD, assert P_SERR# on the primary
interface. If both bits aren’t set, take no action.

If the Secondary Inbound Error S_SERR# Enable bit
is set, and the S_SERR# Enable bit is set in the
SATUCMD, assert S_SERR# on the secondary
interface. If both bits aren’t set, take no action.

If P_SERR# is asserted, set the P_SERR# Asserted
bit in the PATUSR.

If S_SERR# is asserted, set the S_SERR# Asserted
bit in the SATUSR.

If P_SERR# is asserted and the PATU P_SERR#
Asserted Interrupt Mask bit in the PATUIMR is clear,
set the P_SERR# Asserted bit in the PATUISR. If set,
no action.

If S_SERR# is asserted and the SATU S_SERR#
Asserted Interrupt Mask bit in the SATUIMR is clear,
set the S_SERR# Asserted bit in the SATUISR. If set,
no action.

If P_SERR# is asserted and the PATU P_SERR#
Detected Interrupt Mask bit in the ATUCR is clear, set
the P_SERR# Detected bit in the PATUISR. If set, no
action

If S_SERR# is asserted and the SATU S_SERR#
Detected Interrupt Mask bit in the ATUCR is clear, set
the S_SERR# Detected bit in the SATUISR. If set, no
action

If the inbound write transaction is still active on the
primary PCI interface, notify the primary PCI slave
interface to disconnect the transaction.

If the inbound write transaction is still active on the
primary PCI interface, notify the secondary PCI slave
interface to disconnect the transaction.
i960® RM/RN I/O Processor Developer’s Manual 15-43

Address Translation Unit
The following action with the given constraints are performed by the primary and secondary ATUs
when a target abort is detected by the internal master interface during an inbound read transaction:

The Memory Controller is responsible for creating the NMI# interrupt to the core processor. Note
target aborts are signalled on a Qword basis. If either Dword of a Qword target aborts, both is
considered to have target aborted.

15.6.7 ATU Error Summary

The following four tables summarize the ATU error reporting for PCI bus errors and internal bus
errors. The tables assume that all error reporting is enabled through the appropriate command
registers (unless otherwise noted). The Primary and Secondary ATU Status Registers record PCI
bus errors. Note that the SERR# Asserted bit in the Status Register is set only when the SERR#
Enable bit in the Command Register is set. The Primary and Secondary ATU Interrupt Status
Registers record 80960JT core processor interrupt status information.

Note: When an external agent violates PCI protocol, Primary and Secondary ATU behavior may be
unpredictable/undefined.

Table 15-21. Target Abort Detected by Internal Master Interface During Inbound Read

Primary ATU Secondary ATU

If the data word which was target aborted on the
internal bus is actually requested and delivered on the
primary PCI Bus, and the Primary ATU ECC Target
Abort Enable bit is set in the PATUIMR, a target abort
is returned to the PCI initiator on that data word. If the
Primary ATU ECC Target Abort Enable bit is clear in
the PATUIMR, a disconnect with data is returned to
the PCI initiator during the data word that was target
aborted on the internal bus.

If the data word which was target aborted on the
internal bus is actually requested and delivered on the
secondary PCI Bus, and the Secondary ATU ECC
Target Abort Enable bit is set in the SATUIMR, a
target abort is returned to the PCI initiator on that data
word. If the Secondary ATU ECC Target Abort Enable
bit is clear in the SATUIMR, a disconnect with data is
returned to the PCI initiator during the data word that
was target aborted on the internal bus.

Table 15-22. Primary ATU Error Reporting Summary - PCI Interface (Sheet 1 of 2)

Error Condition
Bits Set in

Primary ATU Status Register
(PATUSR)

Bits Set in
Primary ATU Interrupt Status

Register (PATUISR)

Interrupt Mask
Bit in PATUIMR

or ATUCR

Inbound Write
Address Parity Error

Detected Parity Error - bit 15 Detected Parity Error - bit 9 PATUIMR bit 07

P_SERR# Asserted - bit 14 P_SERR# Asserted - bit 10 PATUIMR bit 06

N/A P_SERR# Detected - bit 4 ATUCR bit 09

Inbound Write
Data Parity Error Detected Parity Error - bit 15 Detected Parity Error - bit 9 PATUIMR bit 07

Inbound Write
Master or Target
Abort

P_SERR# Asserted - bit 14 P_SERR# Asserted - bit 10 PATUIMR bit 06

N/A P_SERR# Detected - bit 4 ATUCR bit 09

Inbound Read
Address Parity Error

Detected Parity Error - bit 15 Detected Parity Error - bit 9 PATUIMR bit 07

P_SERR# Asserted - bit 14 P_SERR# Asserted - bit 10 PATUIMR bit 06

N/A P_SERR# Detected - bit 4 ATUCR bit 09

Inbound Read
Data Parity Error N/A N/A N/A

Inbound Read
Target Abort Target Abort (target) - bit 11 PCI Target Abort (target) - bit 1 PATUIMR bit 03

Outbound Write
Master Abort Master Abort - bit 13 PCI Master Abort - bit 3 PATUIMR bit 05
15-44 i960® RM/RN I/O Processor Developer’s Manual

Address Translation Unit
Outbound Write
Data Parity Error Master Parity Error - bit 8 PCI Master Parity Error - bit 0 PATUIMR bit 02

Outbound Write
Target Abort Target Abort (master) - bit 12 PCI Target Abort (master) - bit 2 PATUIMR bit 04

Outbound Read
Master Abort Master Abort - bit 13 PCI Master Abort - bit 3 PATUIMR bit 05

Outbound Read
Data Parity Error

Detected Parity Error - bit 15 Detected Parity Error - bit 9 PATUIMR bit 07

Master Parity Error - bit 8 PCI Master Parity Error - bit 0 PATUIMR bit 02

Outbound Read
Target Abort Target Abort (master) - bit 12 PCI Target Abort (master) - bit 2 PATUIMR bit 04

P_SERR# Detected N/A P_SERR# Detected - bit 4 ATUCR bit 09

Table 15-23. Secondary ATU Error Reporting Summary - PCI Interface

Error Condition

Bits Set in
Secondary ATU Status

Register
(SATUSR)

Bits Set in
Secondary ATU Interrupt

Status Register (SATUISR)

Interrupt Mask
Bit in SATUIMR

or ATUCR

Inbound Write
Address Parity Error

Detected Parity Error - bit 15 Detected Parity Error - bit 9 SATUIMR bit 07

S_SERR# Asserted - bit 14 S_SERR# Asserted - bit 10 SATUIMR bit 06

N/A S_SERR# Detected - bit 4 ATUCR bit 10

Inbound Write
Data Parity Error Detected Parity Error - bit 15 Detected Parity Error - bit 9 SATUIMR bit 07

Inbound Write
Master or Target
Abort

S_SERR# Asserted - bit 14 S_SERR# Asserted - bit 10 SATUIMR bit 06

N/A S_SERR# Detected - bit 4 ATUCR bit 10

Inbound Read
Address Parity Error

Detected Parity Error - bit 15 Detected Parity Error - bit 9 SATUIMR bit 07

S_SERR# Asserted - bit 14 S_SERR# Asserted - bit 10 SATUIMR bit 06

N/A S_SERR# Detected - bit 4 ATUCR bit 10

Inbound Read
Data Parity Error N/A N/A N/A

Inbound Read
Target Abort Target Abort (target) - bit 11 PCI Target Abort (target) - bit 1 SATUIMR bit 03

Outbound Write
Master Abort Master Abort - bit 13 PCI Master Abort - bit 3 SATUIMR bit 05

Outbound Write
Data Parity Error Master Parity Error - bit 8 PCI Master Parity Error - bit 0 SATUIMR bit 02

Outbound Write
Target Abort Target Abort (master) - bit 12 PCI Target Abort (master) - bit 2 SATUIMR bit 04

Outbound Read
Master Abort Master Abort - bit 13 PCI Master Abort - bit 3 SATUIMR bit 05

Outbound Read
Data Parity Error

Detected Parity Error - bit 15 Detected Parity Error - bit 9 SATUIMR bit 07

Master Parity Error - bit 8 PCI Master Parity Error - bit 0 SATUIMR bit 02

Outbound Read
Target Abort Target Abort (master) - bit 12 PCI Target Abort (master) - bit 2 SATUIMR bit 04

S_SERR# Detected N/A S_SERR# Detected - bit 4 ATUCR bit 10

Table 15-22. Primary ATU Error Reporting Summary - PCI Interface (Sheet 2 of 2)

Error Condition
Bits Set in

Primary ATU Status Register
(PATUSR)

Bits Set in
Primary ATU Interrupt Status

Register (PATUISR)

Interrupt Mask
Bit in PATUIMR

or ATUCR
i960® RM/RN I/O Processor Developer’s Manual 15-45

Address Translation Unit
1. Never occurs since outbound writes are always completely posted.
2. Never occurs since outbound writes are always completely posted.
3. In response to a master abort during the DRC on the primary PCI bus. No errors posted in the PATU, only in the BIU.

1. Never occurs since outbound writes are always completely posted.
2. Never occurs since outbound writes are always completely posted.
3. In response to a master abort during the DRC on the secondary PCI bus. No errors posted in the SATU, only in the BIU.

Table 15-24. Primary ATU Error Reporting Summary - Internal Bus Interface

Error Condition
Bits Set in

Primary ATU Status Register
(PATUSR)

Bits Set in
Primary ATU Interrupt Status

Register (PATUISR)

Interrupt Mask
Bit in PATUIMR

or ATUCR

Inbound Write
Master Abort

N/A Internal Bus Master Abort - bit 7 N/A

P_SERR# Asserted - bit 14 P_SERR# Asserted - bit 10 PATUIMR bit 06

N/A P_SERR# Detected - bit 4 ATUCR bit 09

Inbound Write
Target Abort

P_SERR# Asserted - bit 14 P_SERR# Asserted - bit 10 PATUIMR bit 06

N/A P_SERR# Detected - bit 4 ATUCR bit 09

Inbound Read
Master Abort N/A Internal Bus Master Abort - bit 7 N/A

Inbound Read
Target Abort N/A N/A N/A

Outbound Write
Master Abort1 N/A N/A N/A

Outbound Write
Target Abort2 N/A N/A N/A

Outbound Read
Master Abort3 N/A N/A N/A

Outbound Read
Target Abort N/A N/A N/A

Table 15-25. Secondary ATU Error Reporting Summary - Internal Bus Interface

Error Condition
Bits Set in

Secondary ATU Status
Register (SATUSR)

Bits Set in
Secondary ATU Interrupt

Status Register (SATUISR)

Interrupt Mask
Bit in SATUIMR

or ATUCR

Inbound Write
Master Abort

N/A Internal Bus Master Abort - bit 7 N/A

S_SERR# Asserted - bit 14 S_SERR# Asserted - bit 10 SATUIMR bit 06

N/A S_SERR# Detected - bit 4 ATUCR bit 10

Inbound Write
Target Abort

S_SERR# Asserted - bit 14 S_SERR# Asserted - bit 10 SATUIMR bit 06

N/A S_SERR# Detected - bit 4 ATUCR bit 10

Inbound Read
Master Abort N/A Internal Bus Master Abort - bit 7 N/A

Inbound Read
Target Abort N/A N/A N/A

Outbound Write
Master Abort1 N/A N/A N/A

Outbound Write
Target Abort2 N/A N/A N/A

Outbound Read
Master Abort3 N/A N/A N/A

Outbound Read
Target Abort N/A N/A N/A
15-46 i960® RM/RN I/O Processor Developer’s Manual

Address Translation Unit

r

at.
 reset
15.7 Register Definitions

Every PCI device implements its own separate configuration address space and configuration
registers. The PCI Local Bus Specification Revision 2.1 requires that configuration space be
256 bytes, and the first 64 bytes must adhere to a predefined header format.

Figure 15-10 defines the header format. Table 15-13 shows the PCI configuration registers, listed
by internal bus address offset. Table 15-14 shows the entire ATU configuration space (including
header and extended registers) and the corresponding section that describes each register. Note that
all configuration read and write transactions is accepted on the internal bus as 32-bit transactions.
Refer to Appendix C, “Memory-Mapped Registers”.

.

Primary and secondary ATUs are programmed via a Type 0 configuration command on the
primary interface. See Section 15.2.1.4, “Inbound Configuration Cycle Translation” on
page 15-12. ATU configuration space is function number one of the i960 RM/RN I/O processo
multi-function PCI device. (Refer to Section 15.2.4, “PCI Multi-Function Device
Swapping/Disabling” on page 15-22 for exceptions to this statement.)

Beyond the required 64 byte header format, ATU configuration space implements extended
register space in support of the units functionality. Refer to the PCI Local Bus Specification
Revision 2.1 for details on accessing and programming configuration register space.

The following sections describe the ATU and Expansion ROM configuration registers.
Configuration space consists of 8, 16, 24, and 32-bit registers arranged in a predefined form
Each register is described in functionality, access type (read/write, read/clear, read only) and
default condition.

Figure 15-11. ATU Interface Configuration Header Format

00H

04H

08H

0CH

10H

14H

18H

1CH

20H

24H

28H

2CH

30H

34H

38H

3CH

Primary Status Primary Command

Vendor IDATU Device ID

Revision IDATU Class Code

Header Type

Primary Inbound ATU Base Address

BIST

Interrupt Pin Interrupt Line

Expansion ROM Base Address

Latency Timer Cacheline Size

Maximum Latency Minimum Grant

ATU Subsystem ID ATU Subsystem Vendor ID

Reserved
i960® RM/RN I/O Processor Developer’s Manual 15-47

Address Translation Unit

ess is

es.
See Section 1.4, “About This Document” on page 1-9 for a description of reserved, read only, and
read/clear. All registers adhere to the definitions found in the PCI Local Bus Specification
Revision 2.1 unless otherwise noted.

The PCI register number for each register is given in Table 15-13. As stated, a Type 0 configuration
command on the primary bus with an active P_IDSEL or a memory-mapped internal bus acc
required to read or write these registers.

Note: Each configuration register’s access type is individually defined for PCI configuration access
Some PCI read-only configuration registers have read/write capability from the i960 core
processor. See also Appendix C, “Memory-Mapped Registers”.

Table 15-26. Address Translation Unit Registers (Sheet 1 of 2)

Register Name
Register
 Size in

Bits

PCI Configuration
Cycle Register

Number

Internal Bus
Address

ATU Vendor ID Register - ATUVID 16 0 0000.1200H

Device ID Register - DID (80960RN)
Device ID Register - DID (80960RM) 16 0 0000.1202H

Primary ATU Command Register - PATUCMD 16 1 0000.1204H

Primary ATU Status Register - PATUSR 16 1 0000.1206H

ATU Revision ID Register - ATURID 8 2 0000.1208H

ATU Class Code Register - ATUCCR 24 2 0000.1209H

ATU Cacheline Size Register - ATUCLSR 8 3 0000.120CH

ATU Latency Timer Register - ATULT 8 3 0000.120DH

ATU Header Type Register - ATUHTR 8 3 0000.120EH

ATU BIST Register - ATUBISTR 8 3 0000.120FH

Primary Inbound ATU Base Address - PIABAR 32 4 0000.1210H

Reserved 32 5 0000.1214H

Reserved 32 6 0000.1218H

Reserved 32 7 0000.121CH

Reserved 32 8 0000.1220H

Reserved 32 9 0000.1224H

Reserved 32 10 0000.1228H

ATU Subsystem Vendor ID Register - ASVIR 16 11 0000.122CH

ATU Subsystem ID Register - ASIR 16 11 0000.122EH

Expansion ROM Base Address Register -ERBAR 32 12 0000.1230H

Reserved 32 13 0000.1234H

Reserved 32 14 0000.1238H

ATU Interrupt Line Register - ATUILR 8 15 0000.123CH

ATU Interrupt Pin Register - ATUIPR 8 15 0000.123DH

ATU Minimum Grant Register - ATUMGNT 8 15 0000.123EH

ATU Maximum Latency Register - ATUMLAT 8 15 0000.123FH

Primary Inbound ATU Limit Register - PIALR 32 16 0000.1240H

Primary Inbound ATU Translate Value Register - PIATVR 32 17 0000.1244H

Secondary Inbound ATU Base Address Register - SIABAR 32 18 0000.1248H
15-48 i960® RM/RN I/O Processor Developer’s Manual

Address Translation Unit
Secondary Inbound ATU Limit Register - SIALR 32 19 0000.124CH

Secondary Inbound Translate ATU Value Register - SIATVR 32 20 0000.1250H

Primary Outbound Memory Window Value Register -
POMWVR 32 21 0000.1254H

Reserved 32 22 0000.1258H

Primary Outbound I/O Window Value Register - POIOWVR 32 23 0000.125CH

Primary Outbound DAC Window Value Register - PODWVR 32 24 0000.1260H

Primary Outbound Upper 64-bit DAC Register - POUDR 32 25 0000.1264H

Secondary Outbound Memory Window Value Register -
SOMWVR 32 26 0000.1268H

Secondary Outbound I/O Window Value Register - SOIOWVR 32 27 0000.126CH

Reserved 32 28 0000.1270H

Expansion ROM Limit Register - ERLR 32 29 0000.1274H

Expansion ROM Translate Value Register - ERTVR 32 30 0000.1278H

Reserved 32 31 0000.127CH

Reserved 32 32 0000.1280H

Reserved 32 33 0000.1284H

ATU Configuration Register - ATUCR 32 34 0000.1288H

Reserved 32 35 0000.128CH

Primary ATU Interrupt Status Register - PATUISR 32 36 0000.1290H

Secondary ATU Interrupt Status Register - SATUISR 32 37 0000.1294H

Secondary ATU Command Register - SATUCMD 16 38 0000.1298H

Secondary ATU Status Register - SATUSR 16 38 0000.129AH

Secondary Outbound DAC Window Value Register -
SODWVR 32 39 0000.129CH

Secondary Outbound Upper 64-bit DAC Register - SOUDR 32 40 0000.12A0H

Primary Outbound Configuration Cycle Address Register -
POCCAR 32 41 0000.12A4H

Secondary Outbound Configuration Cycle Address Register -
SOCCAR 32 42 0000.12A8H

Secondary Outbound Configuration Cycle Data Register -
SOCCDR 32

Not Available in
PCI Configuration

Space
0000.12ACH

Primary Outbound Configuration Cycle Data Register -
POCCDR 32

Not Available in
PCI Configuration

Space
0000.12B0H

Primary ATU Interrupt Mask Register - PATUIMR 32 47 0000.12BCH

Secondary ATU Interrupt Mask Register - SATUIMR 32 48 0000.12C0H

Table 15-26. Address Translation Unit Registers (Sheet 2 of 2)

Register Name
Register
 Size in

Bits

PCI Configuration
Cycle Register

Number

Internal Bus
Address
i960® RM/RN I/O Processor Developer’s Manual 15-49

Address Translation Unit
Table 15-27. ATU PCI Configuration Register Space

Internal
Bus

Address
Offset

ATU PCI Configuration Register Section, Name, Page

00H Section 15.7.1, “ATU Vendor ID Register - ATUVID” on page 15-51
02H Section 15.7.2, “ATU Device ID Register - ATUDID” on page 15-52
04H Section 15.7.3, “Primary ATU Command Register - PATUCMD” on page 15-53
06H Section 15.7.4, “Primary ATU Status Register - PATUSR” on page 15-54
08H Section 15.7.5, “ATU Revision ID Register - ATURID” on page 15-55
09H Section 15.7.6, “ATU Class Code Register - ATUCCR” on page 15-56
0CH Section 15.7.7, “ATU Cacheline Size Register - ATUCLSR” on page 15-56
0DH Section 15.7.8, “ATU Latency Timer Register - ATULT” on page 15-57
0EH Section 15.7.9, “ATU Header Type Register - ATUHTR” on page 15-57
0FH Section 15.7.10, “ATU BIST Register - ATUBISTR” on page 15-58
10H Section 15.7.11, “Primary Inbound ATU Base Address Register - PIABAR” on page 15-59
2CH Section 15.7.12, “ATU Subsystem Vendor ID Register - ASVIR” on page 15-60
2EH Section 15.7.13, “ATU Subsystem ID Register - ASIR” on page 15-60
30H Section 15.7.14, “Expansion ROM Base Address Register - ERBAR” on page 15-61
3CH Section 15.7.15, “Determining Block Sizes for Base Address Registers” on page 15-62
3DH Section 15.7.16, “ATU Interrupt Line Register - ATUILR” on page 15-63
3EH Section 15.7.18, “ATU Minimum Grant Register - ATUMGNT” on page 15-65
3FH Section 15.7.19, “ATU Maximum Latency Register - ATUMLAT” on page 15-66
40H Section 15.7.20, “Primary Inbound ATU Limit Register - PIALR” on page 15-67
44H Section 15.7.21, “Primary Inbound ATU Translate Value Register - PIATVR” on page 15-68
48H Section 15.7.22, “Secondary Inbound ATU Base Address Register - SIABAR” on page 15-69
4CH Section 15.7.23, “Secondary Inbound ATU Limit Register - SIALR” on page 15-70
50H Section 15.7.24, “Secondary Inbound ATU Translate Value Register - SIATVR” on page 15-71
54H Section 15.7.25, “Primary Outbound Memory Window Value Register - POMWVR” on page 15-72
5CH Section 15.7.26, “Primary Outbound I/O Window Value Register - POIOWVR” on page 15-73
60H Section 15.7.27, “Primary Outbound DAC Window Value Register - PODWVR” on page 15-74
64H Section 15.7.28, “Primary Outbound Upper 64-bit DAC Register - POUDR” on page 15-75

68H Section 15.7.29, “Secondary Outbound Memory Window Value Register - SOMWVR” on
page 15-76

6CH Section 15.7.30, “Secondary Outbound I/O Window Value Register - SOIOWVR” on page 15-77
74H Section 15.7.31, “Expansion ROM Limit Register - ERLR” on page 15-78
78H Section 15.7.32, “Expansion ROM Translate Value Register - ERTVR” on page 15-79
88H Section 15.7.33, “ATU Configuration Register - ATUCR” on page 15-80
90H Section 15.7.34, “Primary ATU Interrupt Status Register - PATUISR” on page 15-82
94H Section 15.7.35, “Secondary ATU Interrupt Status Register - SATUISR” on page 15-84
98H Section 15.7.36, “Secondary ATU Command Register - SATUCMD” on page 15-86
9AH Section 15.7.37, “Secondary ATU Status Register - SATUSR” on page 15-87
9CH Section 15.7.38, “Secondary Outbound DAC Window Value Register - SODWVR” on page 15-88
A0H Section 15.7.39, “Secondary Outbound Upper 64-bit DAC Register - SOUDR” on page 15-89

A4H Section 15.7.40, “Primary Outbound Configuration Cycle Address Register - POCCAR” on
page 15-90

A8H Section 15.7.41, “Secondary Outbound Configuration Cycle Address Register - SOCCAR” on
page 15-91

ACH Section 15.7.42, “Primary Outbound Configuration Cycle Data Register - POCCDR” on page 15-92

B0H Section 15.7.43, “Secondary Outbound Configuration Cycle Data Register - SOCCDR” on
page 15-93

BCH Section 15.7.44, “Primary ATU Interrupt Mask Register - PATUIMR” on page 15-94
C0H Section 15.7.45, “Secondary ATU Interrupt Mask Register - SATUIMR” on page 15-95
15-50 i960® RM/RN I/O Processor Developer’s Manual

Address Translation Unit
15.7.1 ATU Vendor ID Register - ATUVID

ATU Vendor ID Register bits adhere to the definitions in the PCI Local Bus Specification
Revision 2.1.

Table 15-28. ATU Vendor ID Register - ATUVID

Bit Default Description

15:00 8086H

ATU Vendor ID - This is a 16-bit value assigned to Intel. This register, combined with
the DID, uniquely identify the PCI device. Access type is Read/Write to allow the i960
RM/RN I/O processor to configure the register as a different vendor ID to simulate the
interface of a standard mechanism currently used by existing application software.

PCI

IOP
Attributes

Attributes

15 12 8 4 0

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

Attribute Legend:

RV = Reserved

PR = Preserved

RS = Read/Set

RW = Read/Write

RC = Read Clear

RO = Read Only

NA = Not Accessible

Internal Bus Address

1200H

PCI Configuration Address Offset

00H - 01H
i960® RM/RN I/O Processor Developer’s Manual 15-51

Address Translation Unit
15.7.2 ATU Device ID Register - ATUDID

ATU Device ID Register bits adhere to the definitions in the PCI Local Bus Specification
Revision 2.1.

Table 15-29. Device ID Register - DID (80960RN)

Bit Default Description

15:00 1964H ATU Device ID - This is a 16-bit value assigned to the ATU and MU. This ID,
combined with the VID, uniquely identify any PCI device.

Table 15-30. Device ID Register - DID (80960RM)

Bit Default Description

15:00 1962H ATU Device ID - This is a 16-bit value assigned to the ATU and MU. This ID,
combined with the VID, uniquely identify any PCI device.

PCI

IOP
Attributes

Attributes

15 12 8 4 0

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

Attribute Legend:

RV = Reserved

PR = Preserved

RS = Read/Set

RW = Read/Write

RC = Read Clear

RO = Read Only

NA = Not Accessible

Internal Bus Address

1202H

PCI Configuration Address Offset

02H - 03H

PCI

IOP
Attributes

Attributes

15 12 8 4 0

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

Attribute Legend:

RV = Reserved

PR = Preserved

RS = Read/Set

RW = Read/Write

RC = Read Clear

RO = Read Only

NA = Not Accessible

Internal Bus Address

1202H

PCI Configuration Address Offset

02H - 03H
15-52 i960® RM/RN I/O Processor Developer’s Manual

Address Translation Unit
15.7.3 Primary ATU Command Register - PATUCMD

ATU Command Register bits adhere to the definitions in the PCI Local Bus Specification
Revision 2.1 and in most cases, affect the behavior of the primary PCI ATU and devices on the
primary PCI bus.

Table 15-31. Primary ATU Command Register - PATUCMD

Bit Default Description

15:10 0000002 Reserved

09 02
Fast Back to Back Enable - When cleared, the ATU primary interface is not allowed to
generate fast back-to-back cycles on its bus.

08 02
P_SERR# Enable - When cleared, the ATU primary interface is not allowed to assert
P_SERR# on the primary PCI interface.

07 02
Wait Cycle Control - controls address/data stepping. Not implemented and a reserved
bit field.

06 02

Parity Error Response - When set, the primary ATU and DMA channels 0 and 1 take
normal action when a parity error is detected. When cleared, parity checking is
disabled.

05 02
VGA Palette Snoop Enable - The primary ATU interface does not support I/O writes
and therefore, does not perform VGA palette snooping.

04 02

Memory Write and Invalidate Enable - When set, DMA channels 0 and 1 may
generate MWI commands. When clear, DMA channels 0 and 1 use Memory Write
commands instead of MWI.

03 02
Special Cycle Enable - The ATU interface does not respond to special cycle
commands in any way. Not implemented and a reserved bit field.

02 02

Bus Master Enable - The primary ATU interface can act as a master on the PCI bus.
When cleared, disables the device from generating PCI accesses. When set, allows
the device to behave as a PCI bus master.

This enable bit also controls DMA channels 0 and 1 master interface. The bit must be
set before initiating a DMA transfer on the PCI bus.

01 02

Memory Enable - Controls the primary ATU interface’s response to PCI memory
addresses. When cleared, the ATU interface does not respond to any memory access
on the PCI bus.

00 02
I/O Space Enable - Controls the ATU interface response to I/O transactions on the
primary side. Not implemented and a reserved bit field.

PCI

IOP
Attributes

Attributes

15 12 8 4 0

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rw

rw

rw

rw

ro

ro

rw

rw

ro

ro

rw

rw

ro

ro

rw

rw

rw

rw

ro

ro

Attribute Legend:

RV = Reserved

PR = Preserved

RS = Read/Set

RW = Read/Write

RC = Read Clear

RO = Read Only

NA = Not Accessible

Internal Bus Address

1204H

PCI Configuration Address Offset

04H - 05H
i960® RM/RN I/O Processor Developer’s Manual 15-53

Address Translation Unit
15.7.4 Primary ATU Status Register - PATUSR

The Primary ATU Status Register bits adhere to the PCI Local Bus Specification Revision 2.1
definitions. The read/clear bits can only be set by internal hardware and cleared by either a reset
condition or by writing a 12 to the register.

Table 15-32. Primary ATU Status Register - PATUSR (Sheet 1 of 2)

Bit Default Description

15 02

Detected Parity Error - set when a parity error is detected on the primary PCI bus
even when the PATUCMD register’s Parity Error Response bit is cleared. Set under
the following conditions:

• Write Data Parity Error when the PATU is a slave (inbound write).

• Read Data Parity Error when the PATU, DMA Channel 0, or DMA Channel1 is a
master (outbound read).

• Any Address Parity Error on the Primary Bus (including one generated by the
PATU or DMA Channels 0 &1).

14 02
P_SERR# Asserted - set when P_SERR# is asserted on the PCI bus by the primary
ATU.

13 02

Master Abort - set when a transaction initiated by the primary ATU PCI master
interface, DMA Channel 0, or DMA Channel 1 ends in a Master-Abort. Setting of this
bit due to an error condition from either DMA Channel does not cause an ATU
interrupt to the core.

12 02

Target Abort (master) - set when a transaction initiated by the primary ATU PCI
master interface, DMA Channel 0 master interface or DMA Channel 1 master
interface ends in a target abort. Setting of this bit due to an error condition from either
DMA Channel does not cause an ATU interrupt to the core.

11 02
Target Abort (target) - set when the primary ATU interface, acting as a target,
terminates the transaction on the primary PCI bus with a target abort.

10:09 012

DEVSEL# Timing - These bits are read-only and define the slowest DEVSEL# timing
for a target device (except configuration accesses).
002 = Fast
012 = Medium
102 = Slow
112 = Reserved

This primary and secondary ATU interfaces uses Medium timing (012)

PCI

IOP
Attributes

Attributes

15 12 8 4 0

rc

rc

rc

rc

rc

rc

rc

rc

rc

rc

ro

ro

ro

ro

rc

rc

ro

ro

ro

ro

ro

ro

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

Attribute Legend:

RV = Reserved

PR = Preserved

RS = Read/Set

RW = Read/Write

RC = Read Clear

RO = Read Only

NA = Not Accessible

Internal Bus Address

1206H

PCI Configuration Address Offset

06H - 07H
15-54 i960® RM/RN I/O Processor Developer’s Manual

Address Translation Unit
15.7.5 ATU Revision ID Register - ATURID

Revision ID Register bit definitions adhere to PCI Local Bus Specification Revision 2.1.

08 02

Master Parity Error - The primary ATU interface sets this bit under the following
conditions:

• The PATU, DMA Channel 0, or DMA Channel 1 asserted S_PERR# itself or the
PATU observed S_PERR# asserted.

• And the PATU, DMA Channel 0, or DMA Channel 1 acted as the bus master for
the operation in which the error occurred.

• And the PATUCMD register’s Parity Error Response bit is set

Setting of this bit due to an error condition from either DMA Channel does not cause
an ATU interrupt to the core.

07 12
Fast Back-to-Back - The ATU/Messaging Unit interface is capable of accepting fast
back-to-back transactions when the transactions are not to the same target.

06 02 UDF Supported - User Definable Features are not supported

05 02 66 MHz. Capable - 66 MHz operation is not supported.

04:00 000002 Reserved

Table 15-32. Primary ATU Status Register - PATUSR (Sheet 2 of 2)

Bit Default Description

PCI

IOP
Attributes

Attributes

15 12 8 4 0

rc

rc

rc

rc

rc

rc

rc

rc

rc

rc

ro

ro

ro

ro

rc

rc

ro

ro

ro

ro

ro

ro

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

Attribute Legend:

RV = Reserved

PR = Preserved

RS = Read/Set

RW = Read/Write

RC = Read Clear

RO = Read Only

NA = Not Accessible

Internal Bus Address

1206H

PCI Configuration Address Offset

06H - 07H

Table 15-33. ATU Revision ID Register - ATURID

Bit Default Description

07:00 00H ATU Revision - identifies the i960 RM/RN I/O processor’s revision number.

PCI

IOP
Attributes

Attributes

7 4 0

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

Attribute Legend:

RV = Reserved

PR = Preserved

RS = Read/Set

RW = Read/Write

RC = Read Clear

RO = Read Only

NA = Not Accessible

Internal Bus Address

1208H

PCI Configuration Address Offset

08H
i960® RM/RN I/O Processor Developer’s Manual 15-55

Address Translation Unit
15.7.6 ATU Class Code Register - ATUCCR

Class Code Register bit definitions adhere to PCI Local Bus Specification Revision 2.1. Auto
configuration software reads this register to determine the PCI device function.

15.7.7 ATU Cacheline Size Register - ATUCLSR

Cacheline Size Register bit definitions adhere to PCI Local Bus Specification Revision 2.1. This
register is programmed with the system cacheline size in DWORDs (32-bit words). Cacheline Size
is restricted to either 0, 8 or 16 DWORDs; the ATU interprets any other value as “0”.

Table 15-34. ATU Class Code Register - ATUCCR

Bit Default Description

23:16 05H Base Class - Memory Controller

15:08 80H Sub Class - Other Memory Controller

07:00 00H Programming Interface - None defined

PCI

IOP
Attributes

Attributes

23 20 16 12 8 4 0

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

Attribute Legend:

RV = Reserved

PR = Preserved

RS = Read/Set

RW = Read/Write

RC = Read Clear

RO = Read Only

NA = Not Accessible

Internal Bus Address

1209H

PCI Configuration Address Offset

09H - 0BH

Table 15-35. ATU Cacheline Size Register - ATUCLSR

Bit Default Description

07:00 00H ATU Cacheline Size - specifies the system cacheline size in DWORDs. Cacheline
size is restricted to either 0, 8 or 16 DWORDs.

PCI

IOP
Attributes

Attributes

7 4 0

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

Attribute Legend:

RV = Reserved

PR = Preserved

RS = Read/Set

RW = Read/Write

RC = Read Clear

RO = Read Only

NA = Not Accessible

Internal Bus Address

120CH

PCI Configuration Address Offset

0CH
15-56 i960® RM/RN I/O Processor Developer’s Manual

Address Translation Unit
15.7.8 ATU Latency Timer Register - ATULT

ATU Latency Timer Register bit definitions apply to both the primary and secondary PCI interfaces.

15.7.9 ATU Header Type Register - ATUHTR

Header Type Register bit definitions adhere to PCI Local Bus Specification Revision 2.1. This
register indicates the layout of ATU and Messaging Unit register configuration space bytes 10H to
3FH. The MSB indicates whether or not the device is multi-function. (Refer to Section 15.2.4,
“PCI Multi-Function Device Swapping/Disabling” on page 15-22 for using this register in other
than its default state.)

Table 15-36. ATU Latency Timer Register - ATULT

Bit Default Description

07:03 000002
Programmable Latency Timer - This field varies the latency timer for the primary
interface from 0 to 248 clocks.

02:00 0002
Latency Timer Granularity - These Bits are read only giving a programmable
granularity of 8 clocks for the latency timer.

PCI

IOP
Attributes

Attributes

7 4 0

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

ro

ro

ro

ro

ro

ro

Attribute Legend:

RV = Reserved

PR = Preserved

RS = Read/Set

RW = Read/Write

RC = Read Clear

RO = Read Only

NA = Not Accessible

Internal Bus Address

120DH

PCI Configuration Address Offset

0DH

Table 15-37. ATU Header Type Register - ATUHTR

Bit Default Description

07 12
Single Function/Multi-Function Device - Identifies the ATU as a multi-function PCI
device.

06:00 0000002
PCI Header Type - This bit field indicates the type of PCI header implemented. The
ATU interface header conforms to PCI Local Bus Specification Revision 2.1.

PCI

IOP
Attributes

Attributes

7 4 0

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

Attribute Legend:

RV = Reserved

PR = Preserved

RS = Read/Set

RW = Read/Write

RC = Read Clear

RO = Read Only

NA = Not Accessible

Internal Bus Address

120EH

PCI Configuration Address Offset

0EH
i960® RM/RN I/O Processor Developer’s Manual 15-57

Address Translation Unit
15.7.10 ATU BIST Register - ATUBISTR

The ATU BIST Register controls the functions the i960 core processor performs when BIST is initiated.
This register is the interface between the host processor requesting BIST functions and the i960 RM/RN
I/O processor replying with the results from the software implementation of the BIST functionality.

Table 15-38. ATU BIST Register - ATUBISTR

Bit Default Description

07 02

BIST Capable - This bit value is always equal to the ATUCR ATU BIST Interrupt
Enable bit. See Section 15.7.33, “ATU Configuration Register - ATUCR” on
page 15-80.

06 02

Start BIST - When the ATUCR BIST Interrupt Enable bit is set:

Setting this bit generates an interrupt to the i960 core processor to perform a software
BIST function. The i960 core processor clears this bit when the BIST software has
completed with the BIST results found in ATUBISTR register bits [3:0].

When the ATUCR BIST Interrupt Enable bit is clear:

Setting this bit does not generate an interrupt to the i960 core processor and no BIST
functions is performed. The i960 core processor does not clear this bit.

05:04 002 Reserved

03:00 00002

BIST Completion Code - when the ATUCR BIST Interrupt Enable bit is set and the
ATUBISTR Start BIST bit is set (bit 6):

The i960 core processor places the results of the software BIST in these bits. A
nonzero value indicates a device-specific error.

PCI

IOP
Attributes

Attributes

7 4 0

ro

ro

rw

rw

rv

rv

rv

rv

rw

rw

rw

rw

rw

rw

rw

rw

Attribute Legend:

RV = Reserved

PR = Preserved

RS = Read/Set

RW = Read/Write

RC = Read Clear

RO = Read Only

NA = Not Accessible

Internal Bus Address

120FH

PCI Configuration Address Offset

0FH
15-58 i960® RM/RN I/O Processor Developer’s Manual

Address Translation Unit
15.7.11 Primary Inbound ATU Base Address Register - PIABAR

The Primary Inbound ATU Base Address Register (PIABAR) defines the block of memory
addresses where the primary inbound translation window begins. The inbound ATU decodes and
forwards the bus request to the i960 RM/RN I/O Processor Internal Bus with a translated address to
map into i960 RM/RN I/O processor local memory. The PIABAR defines the base address and
describes the required memory block size; see Section 15.7.15, on page 15-62. Bits 31 through 12
of the PIABAR is either read/write bits or read only with a value of 0 depending on the value
located within the PIALR. This configuration allows the PIABAR to be programmed per PCI
Local Bus Specification Revision 2.1.

The first 4 Kbytes of memory defined by the PIABAR and the PIALR is reserved for the
Messaging Unit.

The programmed value within the base address register must comply with the PCI programming
requirements for address alignment. Refer to the PCI Local Bus Specification Revision 2.1 for
additional information on programming base address registers.

Table 15-39. Primary Inbound ATU Base Address - PIABAR

Bit Default Description

31:12 00000H
Primary Translation Base Address - These bits define the actual location the Primary
translation function is to respond to when addressed from the PCI bus. The default
base address is undefined.

11:04 00H Reserved.

03 12 Prefetchable Indicator - Defines the memory spaces as prefetchable.

02:01 002

Address Type - These bits define where the block of memory can be located. The
base address must be located anywhere in the first 4 Gbyte of address space (lower
32 bits of address).

00 02
Memory Space Indicator - This bit field describes memory or I/O space base address.
The primary ATU does not occupy I/O space, thus this bit must be zero.

P
C

I
IO

P
A

tt
rib

ut
es

A
ttr

ib
ut

e
s

28 24 20 16 12 8 4 031

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

ro

ro

ro

ro

ro

ro

ro

ro

Attribute Legend:

RV = Reserved

PR = Preserved

RS = Read/Set

RW = Read/Write

RC = Read Clear

RO = Read Only

NA = Not Accessible

Internal Bus Address

1210H

PCI Configuration Address Offset

10H - 13H
i960® RM/RN I/O Processor Developer’s Manual 15-59

Address Translation Unit
15.7.12 ATU Subsystem Vendor ID Register - ASVIR

ATU Subsystem Vendor ID Register bit definitions adhere to PCI Local Bus Specification
Revision 2.1.

15.7.13 ATU Subsystem ID Register - ASIR

ATU Subsystem ID Register bit definitions adhere to PCI Local Bus Specification Revision 2.1.

Table 15-40. ATU Subsystem Vendor ID Register - ASVIR

Bit Default Description

15:0 0000H Subsystem Vendor ID - This register uniquely identifies the add-in board or
subsystem vendor.

PCI

IOP
Attributes

Attributes

15 12 8 4 0

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

Attribute Legend:

RV = Reserved

PR = Preserved

RS = Read/Set

RW = Read/Write

RC = Read Clear

RO = Read Only

NA = Not Accessible

Internal Bus Address

122CH

PCI Configuration Address Offset

2CH - 2DH

Table 15-41. ATU Subsystem ID Register - ASIR

Bit Default Description

15:0 0000H Subsystem ID - uniquely identifies the add-in board or subsystem

PCI

IOP
Attributes

Attributes

15 12 8 4 0

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

Attribute Legend:

RV = Reserved

PR = Preserved

RS = Read/Set

RW = Read/Write

RC = Read Clear

RO = Read Only

NA = Not Accessible

Internal Bus Address

122EH

PCI Configuration Address Offset

2EH - 2FH
15-60 i960® RM/RN I/O Processor Developer’s Manual

Address Translation Unit

ters.
15.7.14 Expansion ROM Base Address Register - ERBAR

The Expansion ROM Base Address Register defines the block of memory addresses used for
containing the Expansion ROM. It permits the inclusion of multiple code images, allowing the
device to be initialized. The code image supplied consists of either executable code or an
interpreted code. Each code image must start on a 512 byte boundary and each must contain the
PCI Expansion ROM header. Image placement in ROM space depends on the length of code
images which precede it within ROM. ERBAR defines the base address and describes the required
memory block size; see Section 15.7.15. Expansion ROM address space (limit size) can be a
maximum of 16 MBytes. Bits 31 through 12 of the ERBAR is either read/write bits or read only
with a value of 0 depending on the value located within the ERLR. This configuration allows the
ERBAR to be programmed per PCI Local Bus Specification Revision 2.1.

The Expansion ROM Base Address Register’s programmed value must comply with the PCI
programming requirements for address alignment. Refer to the PCI Local Bus Specification
Revision 2.1 for additional information on programming Expansion ROM base address regis

Table 15-42. Expansion ROM Base Address Register -ERBAR

Bit Default Description

31:12 00000H
Expansion ROM Base Address - These bits define the actual location where the
Expansion ROM address window resides when addressed from the primary PCI bus
on any 4 Kbyte boundary.

11:01 000H Reserved

00 02
Address Decode Enable - This bit field shows the ROM address decoder is enabled or
disabled. When cleared, indicates the address decoder is disabled.

P
C

I
IO

P
A

tt
rib

ut
es

A
ttr

ib
ut

e
s

28 24 20 16 12 8 4 031

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rw

rw

Attribute Legend:

RV = Reserved

PR = Preserved

RS = Read/Set

RW = Read/Write

RC = Read Clear

RO = Read Only

NA = Not Accessible

Internal Bus Address

1230H

PCI Configuration Address Offset

30H - 33H
i960® RM/RN I/O Processor Developer’s Manual 15-61

Address Translation Unit
15.7.15 Determining Block Sizes for Base Address Registers

The required address size and type can be determined by writing ones to a base address register and
reading from the registers. By scanning the returned value from the least-significant bit of the base
address registers upwards, the programmer can determine the required address space size. The
binary-weighted value of the first non-zero bit found indicates the required amount of space.
Table 15-30 describes the relationship between the values read back and the byte sizes the base
address register requires.

As an example, assume that FFFF.FFFFH is written to the ATU Primary Inbound Base Address
Register (PIABAR) and the value read back is FFF0.0004H. Bit zero is a zero, so the device
requires memory address space. Bits 2:1 are 002, so the memory can be located anywhere within
32-bit address space (4 Gbytes). Bit three is one, so the memory does supports prefetching.
Scanning upwards starting at bit four, bit twenty is the first one bit found. The binary-weighted
value of this bit is 1,048,576, indicated that the device requires 1 Mbyte of memory space.

Both the Primary and Secondary Inbound ATU Base Address Registers and the Expansion ROM
Base Address Register use their associated limit registers to enable which bits within the base
address register are read/write and which bits are read only (0). This allows the programming of
these registers in a manner similar to other PCI devices even though the limit is variable.

Table 15-43. Memory Block Size Read Response Table

Response After Writing all 1s
to the Base Address Register

Size
(in Bytes)

Response After Writing all 1s
to the Base Address Register

Size
(in Bytes)

FFFFFFF0H 16 FFF00000H 1 M

FFFFFFE0H 32 FFE00000H 2 M

FFFFFFC0H 64 FFC00000H 4 M

FFFFFF80H 128 FF800000H 8 M

FFFFFF00H 256 FF000000H 16 M

FFFFFE00H 512 FE000000H 32 M

FFFFFC00H 1K FC000000H 64 M

FFFFF800H 2K F8000000H 128 M

FFFFF000H 4K F0000000H 256 M

FFFFE000H 8K E0000000H 512 M

FFFFC000H 16K C0000000H 1 G

FFFF8000H 32K 80000000H 2 G

FFFF0000H 64K

00000000H

Register not
implemented,
no address

space required.

FFFE0000H 128K

FFFC0000H 256K

FFF80000H 512K

Table 15-44. ATU Base Registers and Associated Limit Registers

Base Address Register Limit Register Description

Primary Inbound ATU
Base Address Register

Primary Inbound ATU
Limit Register

Defines the inbound translation window from the
primary PCI bus.

Secondary Inbound ATU
Base Address Register

Secondary Inbound ATU
Limit Register

Defines the inbound translation window from the
secondary PCI bus.

Expansion ROM Base
Address Register

Expansion ROM Limit
Register

Defines the window of addresses used by a primary
bus master for reading from an Expansion ROM.
15-62 i960® RM/RN I/O Processor Developer’s Manual

Address Translation Unit

e
service.
15.7.16 ATU Interrupt Line Register - ATUILR

ATU Interrupt Line Register bit definitions adhere to PCI Local Bus Specification Revision 2.1.
This register identifies the system interrupt controller’s interrupt request lines which connect to the
device’s PCI interrupt request lines (as specified in the interrupt pin register).

In a PC environment, for example, the register values and corresponding connections are:

• 0 (00H) through 15 (0FH) correspond to IRQ0 through IRQ15

• 16 (10H) through 254 (FEH) are reserved

• 255 (FFH) indicates “unknown” or “no connection”

The operating system or device driver can examine each device’s interrupt pin and interrupt lin
register to determine which system interrupt request line the device uses to issue requests for

Table 15-45. ATU Interrupt Line Register - ATUILR

Bit Default Description

07:00 FFH

Interrupt Assigned - system-assigned value identifies which system interrupt
controller’s interrupt request line connects to the device's PCI interrupt request lines
(as specified in the interrupt pin register).

A value of FFH signifies “no connection” or “unknown”.

PCI

IOP
Attributes

Attributes

7 4 0

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

Attribute Legend:

RV = Reserved

PR = Preserved

RS = Read/Set

RW = Read/Write

RC = Read Clear

RO = Read Only

NA = Not Accessible

Internal Bus Address

123CH

PCI Configuration Address Offset

3CH
i960® RM/RN I/O Processor Developer’s Manual 15-63

Address Translation Unit
15.7.17 ATU Interrupt Pin Register - ATUIPR

ATU Interrupt Pin Register bit definitions adhere to PCI Local Bus Specification Revision 2.1.
This register identifies the interrupt pin the ATU and Messaging Unit interface uses. The i960
RM/RN I/O processor is, by default, a PCI multi-function device and, as such, can generate more
than one interrupt output. The interrupt output is for the Messaging Unit on P_INTA#, P_INTB#,
P_INTC#, or P_INTD#. The i960 core processor modifies the pin register to match the PCI
interrupts which the Messaging Unit generates.

Table 15-46. ATU Interrupt Pin Register - ATUIPR

Bit Default Description

07:00 01H Interrupt Used - A value of 01H signifies that the ATU interface unit uses INTA# as the
interrupt pin.

PCI

IOP
Attributes

Attributes

7 4 0

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

Attribute Legend:

RV = Reserved

PR = Preserved

RS = Read/Set

RW = Read/Write

RC = Read Clear

RO = Read Only

NA = Not Accessible

Internal Bus Address

123DH

PCI Configuration Address Offset

3DH
15-64 i960® RM/RN I/O Processor Developer’s Manual

Address Translation Unit
15.7.18 ATU Minimum Grant Register - ATUMGNT

ATU Minimum Grant Register bit definitions adhere to PCI Local Bus Specification Revision 2.1.
This register specifies the burst period the device requires in increments of 8 PCI clocks.

This register and the ATU Maximum Latency register are information-only registers which the
configuration uses to determine how often a bus master typically requires access to the PCI bus and
the duration of a typical transfer when it does acquire the bus. This information is useful in
determining the values to be programmed into the bus master latency timers and in programming
the algorithm to be used by the PCI bus arbiter.

Table 15-47. ATU Minimum Grant Register - ATUMGNT

Bit Default Description

07:00 00H This register specifies how long a burst period the device needs in increments of
8 PCI clocks. A zero value indicates the device has no stringent requirement.

PCI

IOP
Attributes

Attributes

7 4 0

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

Attribute Legend:

RV = Reserved

PR = Preserved

RS = Read/Set

RW = Read/Write

RC = Read Clear

RO = Read Only

NA = Not Accessible

Internal Bus Address

123EH

PCI Configuration Address Offset

3EH
i960® RM/RN I/O Processor Developer’s Manual 15-65

Address Translation Unit
15.7.19 ATU Maximum Latency Register - ATUMLAT

ATU Maximum Latency Register bit definitions adhere to PCI Local Bus Specification
Revision 2.1. This register specifies how often the device needs to access the PCI bus in increments
of 8 PCI clocks.

This register and the Minimum Grant Register are information-only registers which the
configuration uses to determine how often a bus master typically requires access to the PCI bus and
the duration of a typical transfer when it does acquire the bus. This information is useful in
determining the values to be programmed into the bus master latency timers and in programming
the algorithm to be used by the PCI bus arbiter.

Table 15-48. ATU Maximum Latency Register - ATUMLAT

Bit Default Description

07:00 00H Specifies frequency (how often) the device needs to access the PCI bus in increments
of 8 PCI clocks. A zero value indicates the device has no stringent requirement.

PCI

IOP
Attributes

Attributes

7 4 0

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

Attribute Legend:

RV = Reserved

PR = Preserved

RS = Read/Set

RW = Read/Write

RC = Read Clear

RO = Read Only

NA = Not Accessible

Internal Bus Address

123FH

PCI Configuration Address Offset

3FH
15-66 i960® RM/RN I/O Processor Developer’s Manual

Address Translation Unit

dress

 with
e lower
 to the
ss

 a
bit
LR
ce of
e
only
15.7.20 Primary Inbound ATU Limit Register - PIALR

Primary inbound address translation occurs for data transfers occurring from the PCI bus
(originated from the primary PCI bus) to the i960 RM/RN I/O Processor Internal Bus. The address
translation block converts PCI addresses to internal bus addresses.

The primary inbound translation base address is specified in Section 15.7.11, on page 15-59. When
determining block size requirements — as described in Section 15.7.15, on page 15-62 — the
primary translation limit register provides the block size requirements for the primary base ad
register. The remaining registers used for performing address translation are discussed in
Section 15.2.1.1, on page 15-5.

The i960 RM/RN I/O processor value register’s programmed value must be naturally aligned
the base address register’s programmed value. The limit register is used as a mask; thus, th
address bits programmed into the i960 RM/RN I/O processor value register are invalid. Refer
PCI Local Bus Specification Revision 2.1 for additional information on programming base addre
registers.

Bits 31 to 12 within the PIALR have a direct effect on the PIABAR register, bits 31 to 12, with
one to one correspondence. A value of 0 in a bit within the PIALR makes the corresponding
within the PIABAR a read only bit which always returns 0. A value of 1 in a bit within the PIA
makes the corresponding bit within the PIABAR read/write from PCI. Note that a consequen
this programming scheme is that unless a valid value exists within the PIALR, all writes to th
PIABAR has no effect since a value of all zeros within the PIALR makes the PIABAR a read
register.

.

Table 15-49. Primary Inbound ATU Limit Register - PIALR

Bit Default Description

31:12 FFFFEH
Primary Inbound Translation Limit - This readback value determines the memory
block size required for the primary ATU translation unit. This defaults to an inbound
window of 8KB.

11:00 000H Reserved

P
C

I
IO

P
A

ttr
ib

ut
e

s
A

ttr
ib

u
te

s

28 24 20 16 12 8 4 031

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

Attribute Legend:

RV = Reserved

PR = Preserved

RS = Read/Set

RW = Read/Write

RC = Read Clear

RO = Read Only

NA = Not Accessible

Internal Bus Address

1240H

PCI Configuration Address Offset

40H - 43H
i960® RM/RN I/O Processor Developer’s Manual 15-67

Address Translation Unit
15.7.21 Primary Inbound ATU Translate Value Register - PIATVR

The Primary Inbound ATU Translate Value Register (PIATVR) contains the internal bus address
used to convert primary PCI bus addresses. The converted address is driven on the internal bus as a
result of the primary inbound ATU address translation.

Table 15-50. Primary Inbound ATU Translate Value Register - PIATVR

Bit Default Description

31:12 00001H

Primary Inbound ATU Translation Value - This value is used to convert the primary
PCI address to internal bus addresses. This value must be 64-bit aligned on the
internal bus. The default address allows the ATU to access the internal i960 RM/RN
I/O processor memory-mapped registers.

11:00 000H Reserved

P
C

I
IO

P
A

tt
rib

ut
es

A
ttr

ib
ut

e
s

28 24 20 16 12 8 4 031

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

Attribute Legend:

RV = Reserved

PR = Preserved

RS = Read/Set

RW = Read/Write

RC = Read Clear

RO = Read Only

NA = Not Accessible

Internal Bus Address

1244H

PCI Configuration Address Offset

44H - 47H
15-68 i960® RM/RN I/O Processor Developer’s Manual

Address Translation Unit

s
tion

see

BAR.
15.7.22 Secondary Inbound ATU Base Address Register - SIABAR

The Secondary Inbound ATU Base Address Register (SIABAR) defines the block of memory
addresses where the secondary inbound translation window begins. The inbound ATU decodes and
forwards the bus request to the i960 RM/RN I/O Processor Internal Bus with a translated address to
map into the i960 RM/RN I/O processor internal memory. The SIABAR defines the base address
and describes the required memory block size; see Section 15.7.15, “Determining Block Sizes for
Base Address Registers” on page 15-62. Bits 31 through 12 of the SIABAR is either read/write bit
or read only with a value of 0 depending on the value located within the SIALR. This configura
allows the SIABAR to be programmed per PCI Local Bus Specification Revision 2.1.

The base address register’s programmed value must comply with the PCI programming
requirements for address alignment. Refer to the PCI Local Bus Specification Revision 2.1 for
additional information on programming base address registers.

Note: When trying to access the Messaging Unit from the Secondary PCI bus through the Bridge (
Section 15.7.33, “ATU Configuration Register - ATUCR” on page 15-80, Secondary Bus
Messaging Unit Access Enable Bit), the SIABAR must be programmed the same as the PIA

Table 15-51. Secondary Inbound ATU Base Address Register - SIABAR

Bit Default Description

31:12 00000H
Secondary Translation Base Address - These bits define the actual location to which
the Secondary Translation function responds when addressed from the secondary
PCI bus. The default block size is indeterminate.

11:04 00H Reserved.

03 12 Prefetchable Indicator - This bit defines the memory spaces as prefetchable.

02:01 002

Address Type - These bits define where the block of memory can be located. The
base address must be located anywhere in the first 4 Gbyte of address space (lower
32-bits of address).

00 02

Memory Space Indicator - This bit shows the register contents describes memory or
I/O space base address. The ATU does not occupy I/O space; thus, this bit must be
zero.

P
C

I
IO

P
A

tt
rib

ut
es

A
ttr

ib
ut

e
s

28 24 20 16 12 8 4 031

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

ro

ro

ro

ro

ro

ro

ro

ro

Attribute Legend:

RV = Reserved

PR = Preserved

RS = Read/Set

RW = Read/Write

RC = Read Clear

RO = Read Only

NA = Not Accessible

Internal Bus Address

1248H

PCI Configuration Address Offset

48H - 4BH
i960® RM/RN I/O Processor Developer’s Manual 15-69

Address Translation Unit

s
 on
ry
scussed

y
sed as
gister
r to

 one
in the
e

AR
r.
15.7.23 Secondary Inbound ATU Limit Register - SIALR

Secondary inbound address translation occurs for data transfers occurring from the secondary PCI
bus to the i960 RM/RN I/O Processor Internal Bus. The address translation block converts the PCI
addresses to internal bus addresses.

The secondary translation base address is specified in Section 15.7.22, “Secondary Inbound ATU
Base Address Register - SIABAR” on page 15-69. When determining the block size requirement
as described in section Section 15.7.15, “Determining Block Sizes for Base Address Registers”
page 15-62, the secondary limit register provides the block size requirements for the seconda
base address register. The remaining registers used for performing address translation are di
in Section 15.2.1.1, “Inbound Address Translation” on page 15-5.

The programmed value within the i960 RM/RN I/O processor value register must be naturall
aligned with the programmed value found in the base address register. The limit register is u
a mask thus the lower address bits programmed into the i960 RM/RN I/O processor value re
is invalid. The default value for the limit register is FFFFE000H, which is a 8 KByte limit. Refe
the PCI Local Bus Specification Revision 2.1 for additional information on programming base
address registers.

Bits 31 to 12 within the SIALR have a direct effect on the SIABAR register, bits 31 to 12, with a
to one correspondence. A value of 0 in a bit within the SIALR makes the corresponding bit with
SIABAR a read only bit which always returns 0. A value of 1 in a bit within the SIALR makes th
corresponding bit within the SIABAR read/write from PCI. Note that a consequence of this
programming scheme is that unless a valid value exists within the SIALR, all writes to the SIAB
has no effect since a value of all zeros within the SIALR makes the SIABAR a read only registe

Table 15-52. Secondary Inbound ATU Limit Register - SIALR

Bit Default Description

31:12 FFFFEH Secondary Inbound ATU Limit - This is the read back value that determines the block
size of memory required for the secondary ATU translation unit. Default size is 8 KB.

11:00 000H Reserved

P
C

I
IO

P
A

ttr
ib

ut
es

A
tt

rib
ut

es

28 24 20 16 12 8 4 031

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

Attribute Legend:

RV = Reserved

PR = Preserved

RS = Read/Set

RW = Read/Write

RC = Read Clear

RO = Read Only

NA = Not Accessible

Internal Bus Address

124CH

PCI Configuration Address Offset

4CH - 4FH
15-70 i960® RM/RN I/O Processor Developer’s Manual

Address Translation Unit
15.7.24 Secondary Inbound ATU Translate Value Register - SIATVR

The Secondary Inbound ATU Translate Value Register (SIATVR) contains the i960 RM/RN I/O
Processor Internal Bus address used to convert the secondary PCI bus address to a internal bus
address. This address is driven on the i960 RM/RN I/O Processor Internal Bus as a result of the
secondary inbound ATU address translation.

Table 15-53. Secondary Inbound Translate ATU Value Register - SIATVR

Bit Default Description

31:12 00001H

Secondary Inbound ATU Translate Value - Used to convert the secondary PCI
address to a internal bus address. The secondary inbound address translation value
must be 64-bit aligned on the i960 RM/RN I/O Processor Internal Bus. (The default
value of the entire register is 0000 1000H.)

11:00 000H Reserved

P
C

I
IO

P
A

ttr
ib

ut
es

A
ttr

ib
ut

e
s

28 24 20 16 12 8 4 031

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

Attribute Legend:

RV = Reserved

PR = Preserved

RS = Read/Set

RW = Read/Write

RC = Read Clear

RO = Read Only

NA = Not Accessible

Internal Bus Address

1250H

PCI Configuration Address Offset

50H - 53H
i960® RM/RN I/O Processor Developer’s Manual 15-71

Address Translation Unit

e
15.7.25 Primary Outbound Memory Window Value Register -
POMWVR

The Primary Outbound Memory Window Value Register (POMWVR) contains the primary PCI
address used to convert i960 RM/RN I/O Processor Internal Bus addresses for outbound
transactions. This address is driven on the primary PCI bus as a result of the primary outbound
ATU address translation. See Section 15.2.2.1, “Outbound Address Translation” on page 15-13 for
details on outbound address translation.

The primary memory window is from internal bus address 8000 000H to 83FF FFFFH with th
fixed length of 64 Mbytes.

Table 15-54. Primary Outbound Memory Window Value Register - POMWVR

Bit Default Description

31:04 0000 000H Primary Outbound MW Value - Used to convert i960 RM/RN I/O Processor Internal
Bus addresses to PCI addresses.

03:02 002 Reserved

01:00 002
Burst Order - This bit field shows the address sequence during a memory burst. Only
linear incrementing mode is supported.

P
C

I
IO

P
A

ttr
ib

u
te

s
A

ttr
ib

ut
es

28 24 20 16 12 8 4 031

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rv

rv

rv

rv

ro

ro

ro

ro

Attribute Legend:

RV = Reserved

PR = Preserved

RS = Read/Set

RW = Read/Write

RC = Read Clear

RO = Read Only

NA = Not Accessible

Internal Bus Address

1254H

PCI Configuration Address Offset

54H - 57H
15-72 i960® RM/RN I/O Processor Developer’s Manual

Address Translation Unit

 to
15.7.26 Primary Outbound I/O Window Value Register - POIOWVR

The Primary Outbound I/O Window Value Register (POIOWVR) contains the primary PCI I/O
address used to convert the internal bus access to a PCI address. This address is driven on the
primary PCI bus as a result of the primary outbound ATU address translation. See Section 15.2.2.1,
“Outbound Address Translation” on page 15-13 for details on outbound address translation.

The primary I/O window is from i960 RM/RN I/O Processor Internal Bus address 9000 000H
9000 FFFFH with the fixed length of 64 Kbytes.

Table 15-55. Primary Outbound I/O Window Value Register - POIOWVR

Bit Default Description

31:04 0000 000H Primary Outbound I/O Window Value - Used to convert internal bus addresses to PCI
addresses.

03:00 0H Reserved

P
C

I
IO

P
A

ttr
ib

ut
es

A
ttr

ib
ut

e
s

28 24 20 16 12 8 4 031

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rv

rv

rv

rv

rv

rv

rv

rv

Attribute Legend:

RV = Reserved

PR = Preserved

RS = Read/Set

RW = Read/Write

RC = Read Clear

RO = Read Only

NA = Not Accessible

Internal Bus Address

125CH

PCI Configuration Address Offset

5CH - 5FH
i960® RM/RN I/O Processor Developer’s Manual 15-73

Address Translation Unit
15.7.27 Primary Outbound DAC Window Value Register - PODWVR

The Primary Outbound DAC Window Value Register (PODWVR) contains the primary PCI DAC
address used to convert a i960 RM/RN I/O Processor Internal Bus address. This address is driven on
the primary PCI bus as a result of the primary outbound ATU address translation. See
Section 15.2.2.1, “Outbound Address Translation” on page 15-13 for details on outbound address
translation. This register is used in conjunction with the Primary Outbound Upper 64-Bit DAC
Register. The primary DAC window is from i960 RM/RN I/O Processor Internal Bus address
8400 000H to 87FF FFFFH with the fixed length of 64 Mbytes.

Table 15-56. Primary Outbound DAC Window Value Register - PODWVR

Bit Default Description

31:04 0000 000H Primary Outbound DAC Window Value - This value the primary ATU uses to convert
i960 RM/RN I/O Processor Internal Bus addresses to PCI addresses.

03:02 002 Reserved

01:00 002
Burst Order - This bit field shows the address sequence during a memory burst. Only
linear incrementing mode is supported.

P
C

I
IO

P
A

ttr
ib

ut
es

A
tt

rib
ut

es

28 24 20 16 12 8 4 031

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rv

rv

rv

rv

ro

ro

ro

ro

Attribute Legend:

RV = Reserved

PR = Preserved

RS = Read/Set

RW = Read/Write

RC = Read Clear

RO = Read Only

NA = Not Accessible

Internal Bus Address

1260H

PCI Configuration Address Offset

60H - 63H
15-74 i960® RM/RN I/O Processor Developer’s Manual

Address Translation Unit
15.7.28 Primary Outbound Upper 64-bit DAC Register - POUDR

The Primary Outbound Upper 64-bit DAC Register (POUDR) defines the upper 32-bits of address
used during a dual address cycle. This enables the primary outbound ATU to directly address
anywhere within the 64-bit host address space.

Table 15-57. Primary Outbound Upper 64-bit DAC Register - POUDR

Bit Default Description

31:00 0000 0000H These bits define the upper 32-bits of address driven during the dual address cycle
(DAC).

P
C

I
IO

P
A

ttr
ib

ut
e

s
A

ttr
ib

u
te

s

28 24 20 16 12 8 4 031

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

Attribute Legend:

RV = Reserved

PR = Preserved

RS = Read/Set

RW = Read/Write

RC = Read Clear

RO = Read Only

NA = Not Accessible

Internal Bus Address

1264H

PCI Configuration Address Offset

64H - 67H
i960® RM/RN I/O Processor Developer’s Manual 15-75

Address Translation Unit
15.7.29 Secondary Outbound Memory Window Value Register -
SOMWVR

The Secondary Outbound Memory Window Value Register (SOMWVR) contains the secondary
PCI address used to convert i960 RM/RN I/O Processor Internal Bus addresses for outbound
transactions. This address is driven on the secondary PCI bus as a result of the secondary outbound
ATU address translation. See Section 15.2.2.1, “Outbound Address Translation” on page 15-13 for
details on outbound address translation.

The secondary memory window is from i960 RM/RN I/O Processor Internal Bus address
8800 000H to 8BFF FFFFH with the fixed length of 64 Mbytes.

Table 15-58. Secondary Outbound Memory Window Value Register - SOMWVR

Bit Default Description

31:04 0000 000H Secondary Outbound Memory Window Value - Used to convert i960 RM/RN I/O
Processor Internal Bus addresses to PCI addresses.

03:02 002 Reserved

01:00 002
Burst Order - This bit field shows the address sequence during a memory burst. Only
linear incrementing mode is supported.

P
C

I
IO

P
A

tt
rib

ut
es

A
ttr

ib
u

te
s

28 24 20 16 12 8 4 031

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rv

rv

rv

rv

ro

ro

ro

ro

Attribute Legend:

RV = Reserved

PR = Preserved

RS = Read/Set

RW = Read/Write

RC = Read Clear

RO = Read Only

NA = Not Accessible

Internal Bus Address

1268H

PCI Configuration Address Offset

68H - 6BH
15-76 i960® RM/RN I/O Processor Developer’s Manual

Address Translation Unit

00H
15.7.30 Secondary Outbound I/O Window Value Register -
SOIOWVR

The Secondary Outbound I/O Window Value Register (SOIOWVR) contains the secondary PCI I/O
address used to convert i960 RM/RN I/O Processor Internal Bus addresses. This address is driven on the
secondary PCI bus as a result of the secondary outbound ATU address translation. See Section 15.2.2.1,
“Outbound Address Translation” on page 15-13 for details on outbound address translation.

The secondary I/O window is from i960 RM/RN I/O Processor Internal Bus address 9001 00
to 9001 FFFFH with the fixed length of 64 Kbytes.

Table 15-59. Secondary Outbound I/O Window Value Register - SOIOWVR

Bit Default Description

31:04 0000 000H Secondary Outbound I/O Window Value - Used to convert internal bus addresses to
PCI addresses.

03:00 0H Reserved

P
C

I
IO

P
A

ttr
ib

ut
e

s
A

ttr
ib

u
te

s

28 24 20 16 12 8 4 031

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rv

rv

rv

rv

rv

rv

rv

rv

Attribute Legend:

RV = Reserved

PR = Preserved

RS = Read/Set

RW = Read/Write

RC = Read Clear

RO = Read Only

NA = Not Accessible

Internal Bus Address

126CH

PCI Configuration Address Offset

6CH - 6FH
i960® RM/RN I/O Processor Developer’s Manual 15-77

Address Translation Unit
15.7.31 Expansion ROM Limit Register - ERLR

The Expansion ROM Limit Register (ERLR) defines the block size of addresses the primary ATU
defines as Expansion ROM address space. The block size is programmed by writing a value into
the ERLR from the i960 core processor.

Bits 31 to 12 within the ERLR have a direct effect on the ERBAR register, bits 31 to 12, with a one
to one correspondence. A value of 0 in a bit within the ERLR makes the corresponding bit within
the ERBAR a read only bit which always returns 0. A value of 1 in a bit within the ERLR makes
the corresponding bit within the ERBAR read/write from PCI.

Table 15-60. Expansion ROM Limit Register - ERLR

Bit Default Description

31:12 000000H
Expansion ROM Limit - Block size of memory required for the Expansion ROM
translation unit. Default value is 0, which indicates no Expansion ROM address space
and all bits within the ERBAR are read only with a value of 0.

11:00 000H Reserved

P
C

I
IO

P
A

ttr
ib

ut
es

A
ttr

ib
ut

es

28 24 20 16 12 8 4 031

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

Attribute Legend:

RV = Reserved

PR = Preserved

RS = Read/Set

RW = Read/Write

RC = Read Clear

RO = Read Only

NA = Not Accessible

Internal Bus Address

1274H

PCI Configuration Address Offset

74H - 77H
15-78 i960® RM/RN I/O Processor Developer’s Manual

Address Translation Unit
15.7.32 Expansion ROM Translate Value Register - ERTVR

The Expansion ROM Translate Value Register contains the i960 RM/RN I/O Processor Internal
Bus address which the primary ATU converts the primary PCI bus access. This address is driven
on the internal bus as a result of the primary Expansion ROM address translation.

Table 15-61. Expansion ROM Translate Value Register - ERTVR

Bit Default Description

31:12 00000H
Expansion ROM Translation Value - Used to convert PCI addresses to i960 RM/RN
I/O Processor Internal Bus addresses for Expansion ROM accesses. The Expansion
ROM address translation value must be word aligned on the internal bus.

11:00 000H Reserved

P
C

I
IO

P
A

ttr
ib

ut
es

A
tt

rib
ut

es

28 24 20 16 12 8 4 031

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

Attribute Legend:

RV = Reserved

PR = Preserved

RS = Read/Set

RW = Read/Write

RC = Read Clear

RO = Read Only

NA = Not Accessible

Internal Bus Address

1278H

PCI Configuration Address Offset

78H - 7BH
i960® RM/RN I/O Processor Developer’s Manual 15-79

Address Translation Unit
15.7.33 ATU Configuration Register - ATUCR

The ATU Configuration Register controls the outbound address translation for both the primary
and secondary outbound translation units. It also contains bits for DRC aliasing, discard timer
status, P_SERR# and S_SERR# manual assertion, access to the messaging unit from the secondary
PCI bus, P_SERR# and S_SERR# detection interrupt masking, and ATU Bist interrupt enabling.

Table 15-62. ATU Configuration Register - ATUCR (Sheet 1 of 2)

Bit Default Description

31:22 00H Reserved

21 02

Bridge Function Number - this bit in conjunction with the ATU Header Type
Register(ATUHTR) and the Bridge Header Type Register(HTR), can swap the Bridge
and the ATU device numbers as they appear to the PCI bus, or it can set the i960
RM/RN I/O processor as a single-function device with either the ATU or the Bridge as
the single function. (Refer to Section 15.2.4, “PCI Multi-Function Device
Swapping/Disabling” on page 15-22 for programming information.)

20 02

SATU DRC Alias - when set, the secondary ATU does not distinguish read commands
when attempting to match a current PCI read transaction with read data enqueued
within the DRC buffer. When clear, a current read transaction must have the exact
same read command as the DRR for the secondary ATU to deliver DRC data.

19 02

PATU DRC Alias - when set, the primary ATU does not distinguish read commands
when attempting to match a current PCI read transaction with read data enqueued
within the DRC buffer. When clear, a current read transaction must have the exact
same read command as the DRR for the primary ATU to deliver DRC data.

18 02

Direct Addressing Upper 2Gbytes Translation Enable - When set, with Direct
Addressing enabled (Bit 07 of the ATUCR set), the ATU forwards internal bus cycles
with an address between 0000.2000H and 7FFF.FFFFH to the PCI bus with bit 31 of
the address set (8000.2000H - FFFF.FFFFH). When clear, no translation occurs.

17 02

S_SERR# Manual Assertion - when set, the SATU asserts S_SERR# for one clock on
the secondary PCI interface. Until cleared, S_SERR# may not be manually asserted
again. Once cleared, operation proceeds as specified.

16 02

P_SERR# Manual Assertion - when set, the PATU asserts P_SERR# for one clock on
the primary PCI interface. Until cleared, P_SERR# may not be manually asserted
again. Once cleared, operation proceeds as specified.

15 02

ATU Discard Timer Status - when set, one of the 3 discard timers within the PATU
and SATU has expired and discarded the delayed completion transaction within the
queue. When clear, no timer has expired.

14:13 002 Reserved

P
C

I
IO

P
A

ttr
ib

ut
es

A
ttr

ib
ut

es

28 24 20 16 12 8 4 031

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rw

ro

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rc

rc

rv

rv

rv

rv

rw

rw

rv

rv

rw

rw

rw

rw

rw

rw

rw

rw

rv

rv

rv

rv

rv

rv

rw

rw

rw

rw

rw

rw

rv

rv

Attribute Legend:

RV = Reserved

PR = Preserved

RS = Read/Set

RW = Read/Write

RC = Read Clear

RO = Read Only

NA = Not Accessible

Internal Bus Address

1288H

PCI Configuration Address Offset

88H - 8BH
15-80 i960® RM/RN I/O Processor Developer’s Manual

Address Translation Unit
12 02

Secondary Bus Messaging Unit Access Enable - If set, the secondary addresses
which fall within the first 4 KB of the SATU inbound address space and are also
capable of being claimed by the secondary interface of the bridge defaults to the
bridge for forwarding to the MU on the primary interface. If clear, the SATU has priority
and claims addresses that are both within the first 4 KB of the SATU and/or are
capable of being claimed by the bridge unit.

Setting this bit simultaneously allows the Messaging Unit to claim target cycles which
are mastered by the primary interface of the Bridge Unit.

11 02 Reserved

10 02

S_SERR# Interrupt Enable - When set, the i960 core processor is signalled an NMI#
interrupt if the SATU detects that S_SERR# was asserted on the secondary interface.
When clear, the i960 core processor is not interrupted when S_SERR# is detected as
asserted on the secondary interface.

09 02

P_SERR# Interrupt Enable - When set, the i960 core processor is signalled an NMI#
interrupt if the PATU detects that P_SERR# was asserted on the primary interface.
When clear, the i960 core processor is not interrupted when P_SERR# is detected as
asserted on the primary interface.

08 02

Direct Addressing Enable - Setting this bit enables direct outbound addressing
through the ATUs. Internal bus cycles with an address between 0000.2000H and
7FFF.FFFFH is automatically forwarded to the PCI bus with or without translation of
address bit 31 based on the setting of bit 18 of the ATUCR.

07 02

Secondary Direct Addressing Select - When set, results in direct addressing outbound
transactions to be forwarded through the secondary ATU to the secondary PCI bus.
When clear, direct addressing uses the primary ATU and the primary PCI bus. The
Direct Addressing Enable bit must be set to enable direct addressing.

06:04 0002 Reserved

03 02

ATU BIST Interrupt Enable - When set, enables an interrupt to the i960 core
processor when the start BIST bit is set in the ATUBISTR register. This bit is also
reflected as the BIST Capable bit 7 in the ATUBISTR register.

02 02
Secondary Outbound ATU Enable - When set, enables the secondary outbound
address translation unit. When cleared, disables the secondary outbound ATU.

01 02
Primary Outbound ATU Enable - When set, enables the primary outbound address
translation unit. When cleared, disables the primary outbound ATU.

00 02 Reserved

Table 15-62. ATU Configuration Register - ATUCR (Sheet 2 of 2)

Bit Default Description

P
C

I
IO

P
A

ttr
ib

ut
es

A
ttr

ib
ut

es

28 24 20 16 12 8 4 031

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rw

ro

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rc

rc

rv

rv

rv

rv

rw

rw

rv

rv

rw

rw

rw

rw

rw

rw

rw

rw

rv

rv

rv

rv

rv

rv

rw

rw

rw

rw

rw

rw

rv

rv

Attribute Legend:

RV = Reserved

PR = Preserved

RS = Read/Set

RW = Read/Write

RC = Read Clear

RO = Read Only

NA = Not Accessible

Internal Bus Address

1288H

PCI Configuration Address Offset

88H - 8BH
i960® RM/RN I/O Processor Developer’s Manual 15-81

Address Translation Unit
15.7.34 Primary ATU Interrupt Status Register - PATUISR

The Primary ATU Interrupt Status Register is used to notify the core processor of the source of a
Primary ATU interrupt. In addition, this register is written to clear the source of the interrupt to the
interrupt unit of the i960 RM/RN I/O processor. All bits in this register are Read/Clear.

Bits 4:0 are a direct reflection of bits 14:11 and bit 8 (respectively) of the Primary ATU Status
Register (these bits are set at the same time by hardware but need to be cleared independently). Bit
7 is set by an error associated with the internal bus of the i960 RM/RN I/O processor. Bit 8 is for
software BIST. The conditions that result in a Primary ATU interrupt are cleared by writing a 1 to
the appropriate bits in this register.

Note that bits 4:0, bit 9 and bit 7 can result in an NMI# interrupt being driven to the i960 core processor.

Table 15-63. Primary ATU Interrupt Status Register - PATUISR (Sheet 1 of 2)

Bit Default Description

31:11 000000H Reserved

10 02
P_SERR# Asserted - set when P_SERR# is asserted on the PCI bus by the primary
ATU.

09 02

Detected Parity Error - set when a parity error is detected on the primary PCI bus
even when the PATUCMD register’s Parity Error Response bit is cleared. Set under
the following conditions:

• Write Data Parity Error when the PATU is a slave (inbound write).

• Read Data Parity Error when the PATU is a master (outbound read). Read Data
Parity Errors when DMA Channel 0 or DMA Channel 1 is the master ARE NOT
logged here, and instead are logged in the appropriate DMA CSR.

• Any Address Parity Error on the Primary Bus (including one generated by the
PATU or DMA Channels 0 & 1 when loopback is enabled).

08 02

ATU BIST Interrupt - When set, the host processor has set the start BIST, ATUBISTR
register bit 6, and the ATU BIST interrupt enable (ATUCR register bit 12) is enabled.
The i960 core processor can initiate the software BIST and store the result in
ATUBISTR register bits 3:0.

07 02
Internal Bus Master Abort - set when a transaction initiated by the ATU internal bus
master interface ends in a Master-abort.

06:05 002 Reserved

04 02
P_SERR# Detected - set when P_SERR# is detected on the PCI bus by the primary
ATU.

03 02
PCI Master Abort - set when a transaction initiated by the ATU PCI master interface
ends in a Master-abort.

P
C

I
IO

P
A

ttr
ib

ut
es

A
tt

rib
ut

es

28 24 20 16 12 8 4 031

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rc

ro

rc

ro

rc

ro

rc

ro

rv

rv

rv

rv

rc

ro

rc

ro

rc

ro

rc

ro

rc

ro

Attribute Legend:

RV = Reserved

PR = Preserved

RS = Read/Set

RW = Read/Write

RC = Read Clear

RO = Read Only

NA = Not Accessible

Internal Bus Address

1290H

PCI Configuration Address Offset

90H - 93H
15-82 i960® RM/RN I/O Processor Developer’s Manual

Address Translation Unit
02 02
PCI Target Abort (master) - set when a transaction initiated by the ATU PCI master
interface ends in a Target-abort.

01 02
PCI Target Abort (target) - set when the ATU interface, acting as a target, terminates
the transaction on the PCI bus with a target abort.

00 02

PCI Master Parity Error - The ATU interface sets this bit when three conditions are
met:

• the PATU asserted S_PERR# or observed S_PERR# asserted

• the PATU acted as the bus master for the operation in which the error occurred

• Parity Error Response bit is set (in the Primary ATU Command Register)

Table 15-63. Primary ATU Interrupt Status Register - PATUISR (Sheet 2 of 2)

Bit Default Description

P
C

I
IO

P
A

tt
rib

ut
es

A
ttr

ib
ut

e
s

28 24 20 16 12 8 4 031

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rc

ro

rc

ro

rc

ro

rc

ro

rv

rv

rv

rv

rc

ro

rc

ro

rc

ro

rc

ro

rc

ro

Attribute Legend:

RV = Reserved

PR = Preserved

RS = Read/Set

RW = Read/Write

RC = Read Clear

RO = Read Only

NA = Not Accessible

Internal Bus Address

1290H

PCI Configuration Address Offset

90H - 93H
i960® RM/RN I/O Processor Developer’s Manual 15-83

Address Translation Unit
15.7.35 Secondary ATU Interrupt Status Register - SATUISR

The Secondary ATU Interrupt Status Register is used to notify the core processor of the source of a
Secondary ATU interrupt. In addition, this register is written to clear the source of the interrupt to
the interrupt unit of the i960 RM/RN I/O processor. All bits in this register are Read/Clear.

Bits 4:0 are a direct reflection of bits 14:11 and bit 8 (respectively) of the Secondary ATU Status
Register (these bits are set at the same time by hardware but need to be cleared independently). Bit
7 is set by an error associated with the internal bus of the i960 RM/RN I/O processor. The
conditions that result in a Secondary ATU interrupt are cleared by writing a 1 to the appropriate
bits in this register.

Note that bits 4:0, bit 7, and bit 9 can result in an NMI# interrupt being driven to the i960 core processor.

Table 15-64. Secondary ATU Interrupt Status Register - SATUISR (Sheet 1 of 2)

Bit Default Description

31:11 000000H Reserved

10 02
S_SERR# Asserted - set when S_SERR# is asserted on the PCI bus by the
secondary ATU.

09 02

Detected Parity Error - set when a parity error is detected on the secondary PCI bus
even when the SATUCMD register’s Parity Error Response bit is cleared. Set under
the following conditions:

• Write Data Parity Error when the SATU is a slave (inbound write).

• Read Data Parity Error when the SATU is Master (outbound read). Read Data
Parity Errors when DMA Channel 2 is a master ARE NOT logged here, and
instead are logged in the DMA Channel 2 CSR.

• Any Address Parity Error on the Secondary Bus (including one generated by the
SATU or DMA Channel 2 when loopback is enabled).

08 02 Reserved

07 02
Internal Bus Master Abort - set when a transaction initiated by the ATU internal bus
master interface ends in a Master-abort.

06:05 002 Reserved

04 02
S_SERR# Detected - set when S_SERR# is detected on the PCI bus by the
secondary ATU.

03 02
PCI Master Abort - set when a transaction initiated by the ATU PCI master interface
ends in a Master-abort.

02 02
PCI Target Abort (master) - set when a transaction initiated by the ATU PCI master
interface ends in a Target-abort.

P
C

I
IO

P
A

tt
rib

ut
es

A
ttr

ib
u

te
s

28 24 20 16 12 8 4 031

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rc

ro

rc

ro

rv

rv

rc

ro

rv

rv

rv

rv

rc

ro

rc

ro

rc

ro

rc

ro

rc

ro

Attribute Legend:

RV = Reserved

PR = Preserved

RS = Read/Set

RW = Read/Write

RC = Read Clear

RO = Read Only

NA = Not Accessible

Internal Bus Address

1294H

PCI Configuration Address Offset

94H - 97H
15-84 i960® RM/RN I/O Processor Developer’s Manual

Address Translation Unit
01 02
PCI Target Abort (target) - set when the ATU interface, acting as a target, terminates
the transaction on the PCI bus with a target abort.

00 02

PCI Master Parity Error - The secondary ATU interface sets this bit when three
conditions are met:

• the SATU asserted S_PERR# or observed S_PERR# asserted

• the SATU acted as the bus master for the operation in which the error occurred

• Parity Error Response bit is set (in the Secondary ATU Command Register)

Table 15-64. Secondary ATU Interrupt Status Register - SATUISR (Sheet 2 of 2)

Bit Default Description

P
C

I
IO

P
A

ttr
ib

ut
e

s
A

ttr
ib

ut
es

28 24 20 16 12 8 4 031

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rc

ro

rc

ro

rv

rv

rc

ro

rv

rv

rv

rv

rc

ro

rc

ro

rc

ro

rc

ro

rc

ro

Attribute Legend:

RV = Reserved

PR = Preserved

RS = Read/Set

RW = Read/Write

RC = Read Clear

RO = Read Only

NA = Not Accessible

Internal Bus Address

1294H

PCI Configuration Address Offset

94H - 97H
i960® RM/RN I/O Processor Developer’s Manual 15-85

Address Translation Unit
15.7.36 Secondary ATU Command Register - SATUCMD

Secondary ATU Command Register bits adhere to the definitions in the PCI Local Bus Specification
Revision 2.1 and in most cases affect the behavior of the device on the secondary PCI bus.

Table 15-65. Secondary ATU Command Register - SATUCMD

Bit Default Description

15:10 00H Reserved

09 02
Fast Back to Back Enable - When this bit is cleared, the secondary ATU interface is
not allowed to generate fast back-to-back cycles on its bus.

08 02
S_SERR# Enable - When this bit is cleared, the secondary ATU interface is not
allowed to assert S_SERR# on the PCI interface.

07 02
Wait Cycle Control - controls address/data stepping. Not implemented and a reserved
bit field

06 02

Parity Error Response - When this bit is set, the secondary ATU and DMA channel 2
must take normal action when a parity error is detected. When it is cleared, parity
checking is disabled.

05 02
VGA Palette Snoop Enable - The secondary ATU interface does not support I/O
writes and therefore, does not perform VGA palette snooping.

04 02

Memory Write and Invalidate Enable - When this bit is set, DMA channel 2 may
generate MWI commands. When this bit is clear, DMA channel 2 must use Memory
Write commands instead of MWI.

03 02
Special Cycle Enable - The ATU interface does not respond to special cycle
commands in any way. Not implemented and a reserved bit field

02 02

Bus Master Enable - The secondary ATU interface has the ability to act as a master
on the PCI bus. A value of 0 disables the secondary ATU from claiming i960 core
processor accesses and from generating PCI accesses. A value of 1 allows the
secondary ATU to claim i960 core processor accesses and to behave as a PCI bus
master.

This enable bit also controls the master interface of the DMA channel 2. The bit must
be set before initiating an DMA transfer on the PCI bus.

01 02

Memory Enable - Controls the secondary ATU interface’s response to PCI memory
addresses. When this bit is cleared, the ATU interface does not respond to any
memory access on the PCI bus.

00 02
I/O Space Enable - Controls the ATU interface response to I/O transactions on the
primary side. Not implemented and a reserved bit field.

PCI

IOP
Attributes

Attributes

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rw

rw

rw

rw

ro

ro

rw

rw

ro

ro

rw

rw

ro

ro

rw

rw

rw

rw

ro

ro

415 12 08

Attribute Legend:

RV = Reserved

PR = Preserved

RS = Read/Set

RW = Read/Write

RC = Read Clear

RO = Read Only

NA = Not Accessible

Internal Bus Address

1298H

PCI Configuration Address Offset

98H - 99H
15-86 i960® RM/RN I/O Processor Developer’s Manual

Address Translation Unit
15.7.37 Secondary ATU Status Register - SATUSR

Secondary ATU Status Register bits adhere to the definitions in the PCI Local Bus Specification
Revision 2.1. The read/clear bits can only be set by the internal hardware and are cleared by either
a reset condition or by writing a 12 to the register.

Table 15-66. Secondary ATU Status Register - SATUSR

Bit Default Description

15 02

Detected Parity Error - set when a parity error is detected on the secondary PCI bus
even when the SATUCMD register’s Parity Error Response bit is cleared. Set under
the following conditions:

• Write Data Parity Error when the SATU is a slave (inbound write).

• Read Data Parity Error when the SATU or DMA Channel 2 is a master (outbound
read).

• Any Address Parity Error on the Secondary Bus (including one generated by the
SATU or DMA Channel 2).

14 02 S_SERR# Asserted - set when S_SERR# is asserted by the secondary ATU.

13 02

Master Abort - set when a transaction initiated by the secondary ATU PCI master
interface, or DMA Channel 2 ends in a Master-abort. Setting of this bit due to an error
condition from a DMA Channel does not cause an ATU interrupt to the core.

12 02

Target Abort (master) - set when a transaction initiated by the secondary ATU PCI
master interface or the DMA Channel 2 master interface ends in a Target-abort.
Setting of this bit due to an error condition from a DMA Channel does not cause an
ATU interrupt to the core.

11 02
Target Abort (target) - set when the secondary ATU PCI interface, acting as a target,
terminates the transaction on the secondary PCI bus with a Target-abort.

10:09 002 Reserved

08 02

Master Parity Error - The secondary ATU interface sets this bit under the following
conditions:

• The SATU or DMA Channel 2 asserted S_PERR# itself or the SATU observed
S_PERR# asserted.

• And the SATU or DMA Channel 2 acted as the bus master for the operation in
which the error occurred.

• And the SATUCMD register’s Parity Error Response bit is set

Setting of this bit due to an error condition from a DMA Channel does not cause an
ATU interrupt to the core.

07:00 00H Reserved

PCI

IOP
Attributes

Attributes

rc

rc

rc

rc

rc

rc

rc

rc

rc

rc

rv

rv

rv

rv

rc

rc

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

15 04812

Attribute Legend:

RV = Reserved

PR = Preserved

RS = Read/Set

RW = Read/Write

RC = Read Clear

RO = Read Only

NA = Not Accessible

Internal Bus Address

129AH

PCI Configuration Address Offset

9AH - 9BH
i960® RM/RN I/O Processor Developer’s Manual 15-87

Address Translation Unit

00H
15.7.38 Secondary Outbound DAC Window Value Register -
SODWVR

The Secondary Outbound DAC Window Value Register (SODWVR) contains the secondary PCI DAC
address used to convert an i960 RM/RN I/O Processor Internal Bus address. This address is driven on the
secondary PCI bus as a result of the secondary outbound ATU address translation. See Section 15.2.2.1,
“Outbound Address Translation” on page 15-13 for details on outbound address translation. This
register is used in conjunction with the Secondary Outbound Upper 64-Bit DAC Register.

The secondary DAC window is from i960 RM/RN I/O Processor Internal Bus address 8C00 0
to 8FFF FFFFH with the fixed length of 64 Mbytes.

Table 15-67. Secondary Outbound DAC Window Value Register - SODWVR

Bit Default Description

31:04 0000 000H Secondary Outbound DAC Window Value - The secondary ATU uses this value to
convert i960 RM/RN I/O Processor Internal Bus addresses to PCI addresses.

03:02 002 Reserved

01:00 002
Burst Order - This bit field shows the address sequence during a memory burst. Only
linear incrementing mode is supported.

P
C

I
IO

P
A

ttr
ib

ut
e

s
A

ttr
ib

u
te

s

28 24 20 16 12 8 4 031

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rv

rv

rv

rv

ro

ro

ro

ro

Attribute Legend:

RV = Reserved

PR = Preserved

RS = Read/Set

RW = Read/Write

RC = Read Clear

RO = Read Only

NA = Not Accessible

Internal Bus Address

129CH

PCI Configuration Address Offset

9CH - 9FH
15-88 i960® RM/RN I/O Processor Developer’s Manual

Address Translation Unit
15.7.39 Secondary Outbound Upper 64-bit DAC Register - SOUDR

The Secondary Outbound Upper 64-bit DAC Register (SOUDR) defines the upper 32-bits of
address used during a dual address cycle. This enables the secondary outbound ATU to directly
address anywhere within the 64-bit host address space.

Table 15-68. Secondary Outbound Upper 64-bit DAC Register - SOUDR

Bit Default Description

31:00 0000 0000H Secondary Outbound Upper 64-bit DAC Address - These bits define the upper 32-bits
of address driven during the dual address cycle (DAC).

P
C

I
IO

P
A

ttr
ib

ut
es

A
tt

rib
ut

es

28 24 20 16 12 8 4 031

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

Attribute Legend:

RV = Reserved

PR = Preserved

RS = Read/Set

RW = Read/Write

RC = Read Clear

RO = Read Only

NA = Not Accessible

Internal Bus Address

12A0H

PCI Configuration Address Offset

A0H - A3H
i960® RM/RN I/O Processor Developer’s Manual 15-89

Address Translation Unit
15.7.40 Primary Outbound Configuration Cycle Address Register -
POCCAR

The Primary Outbound Configuration Cycle Address Register is used to hold the 32-bit PCI
configuration cycle address. The i960 core processor writes the PCI configuration cycles address
which then enables the primary outbound configuration read or write. The i960 core processor then
performs a read or write to the Primary Outbound Configuration Cycle Data Register to initiate the
configuration cycle on the primary PCI bus.

Table 15-69. Primary Outbound Configuration Cycle Address Register - POCCAR

Bit Default Description

31:00 0000 0000H Primary Configuration Cycle Address - These bits define the 32-bit PCI address used
during an outbound configuration read or write cycle.

P
C

I
IO

P
A

ttr
ib

ut
es

A
ttr

ib
ut

e
s

28 24 20 16 12 8 4 031

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

Attribute Legend:

RV = Reserved

PR = Preserved

RS = Read/Set

RW = Read/Write

RC = Read Clear

RO = Read Only

NA = Not Accessible

Internal Bus Address

12A4H

PCI Configuration Address Offset

A4H - A7H
15-90 i960® RM/RN I/O Processor Developer’s Manual

Address Translation Unit
15.7.41 Secondary Outbound Configuration Cycle Address
Register - SOCCAR

The Secondary Outbound Configuration Cycle Address Register is used to hold the 32-bit PCI
configuration cycle address. The i960 core processor writes the PCI configuration cycles address
which then enables the secondary outbound configuration read or write. The i960 core processor
then performs a read or write to the Secondary Outbound Configuration Cycle Data Register to
initiate the configuration cycle on the secondary PCI bus.

Table 15-70. Secondary Outbound Configuration Cycle Address Register - SOCCAR

Bit Default Description

31:00 0000 0000H Secondary Configuration Cycle Address - These bits define the 32-bit PCI address
used during an outbound configuration read or write cycle.

P
C

I
IO

P
A

ttr
ib

ut
es

A
ttr

ib
ut

e
s

28 24 20 16 12 8 4 031

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

Attribute Legend:

RV = Reserved

PR = Preserved

RS = Read/Set

RW = Read/Write

RC = Read Clear

RO = Read Only

NA = Not Accessible

Internal Bus Address

12A8H

PCI Configuration Address Offset

A8H - ABH
i960® RM/RN I/O Processor Developer’s Manual 15-91

Address Translation Unit
15.7.42 Primary Outbound Configuration Cycle Data Register -
POCCDR

The Primary Outbound Configuration Cycle Data Register is used to initiate a configuration read
or write on the primary PCI bus. The register is logical rather than physical meaning that it is an
address not a register. The i960 core processor reads or writes the data registers memory-mapped
address to initiate the configuration cycle on the PCI bus with the address found in the POCCAR.
For a configuration write, the data is latched from the internal bus and forwarded directly to the
P_OWQ. For a read, the data is returned directly from the P_ORQ to the i960 core processor and is
never actually entered into the data register (which does not physically exist).

The POCCDR is only visible from i960 RM/RN I/O Processor Internal Bus address space and
appears as a reserved value within the ATU configuration space.

Table 15-71. Primary Outbound Configuration Cycle Data Register - POCCDR

Bit Default Description

31:00 0000 0000H Primary Configuration Cycle Data - These bits define the data used during an
outbound configuration read or write cycle.

P
C

I
IO

P
A

ttr
ib

u
te

s
A

ttr
ib

ut
es

28 24 20 16 12 8 4 031

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

Attribute Legend:

RV = Reserved

PR = Preserved

RS = Read/Set

RW = Read/Write

RC = Read Clear

RO = Read Only

NA = Not Accessible

Internal Bus Address

12ACH
15-92 i960® RM/RN I/O Processor Developer’s Manual

Address Translation Unit
15.7.43 Secondary Outbound Configuration Cycle Data Register -
SOCCDR

The Secondary Outbound Configuration Cycle Data Register is used to initiate a configuration read
or write on the secondary PCI bus. The register is logical rather than physical meaning that it is an
address not a register. The i960 core processor reads or writes the data registers memory-mapped
address to initiate the configuration cycle on the PCI bus with the address found in the SOCCAR.
For a configuration write, the data is latched from the internal bus and forwarded directly to the
S_OWQ. For a read, the data is returned directly from the S_ORQ to the i960 core processor and is
never actually entered into the data register (which does not physically exist).

The SOCCDR is only visible from i960 RM/RN I/O Processor Internal Bus address space and
appears as a reserved value within the ATU configuration space.

Table 15-72. Secondary Outbound Configuration Cycle Data Register - SOCCDR

Bit Default Description

31:00 0000 0000H Secondary Configuration Cycle Data - These bits define the data used during an
outbound configuration read or write cycle.

P
C

I
IO

P
A

ttr
ib

ut
es

A
ttr

ib
ut

e
s

28 24 20 16 12 8 4 031

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

Attribute Legend:

RV = Reserved

PR = Preserved

RS = Read/Set

RW = Read/Write

RC = Read Clear

RO = Read Only

NA = Not Accessible

Internal Bus Address

12B0H
i960® RM/RN I/O Processor Developer’s Manual 15-93

Address Translation Unit
15.7.44 Primary ATU Interrupt Mask Register - PATUIMR

The Primary ATU Interrupt Mask Register contains the control bit to enable and disable interrupts
generated by the primary ATU.

Table 15-73. Primary ATU Interrupt Mask Register - PATUIMR

Bit Default Description

31:08 0000 00H Reserved

07 02

PATU Detected Parity Error Interrupt Mask - When set, a parity error detected on the
primary PCI bus that sets bit 15 of the PATUSR does not result in bit 9 of the
PATUISR being set. When clear, an error that sets bit 15 of the PATUSR results in bit
9 of the PATUISR being set.

06 02

PATU P_SERR# Asserted Interrupt Mask - When set, asserting P_SERR# on the
primary interface resulting in bit 14 of the PATUSR being set does not result in bit 10
of the PATUISR being set. When clear, an error that sets bit 14 of the PATUSR
causes bit 10 of the PATUISR to be set. Note that this bit is specific to the PATU
asserting P_SERR# and not detecting P_SERR# from another master.

05 02

PATU PCI Master Abort Interrupt Mask - When set, a master abort error resulting in
bit 13 of the PATUSR being set does not result in bit 3 of the PATUISR being set.
When clear, an error that sets bit 13 of the PATUSR causes bit 3 of the PATUISR to
be set.

04 02

PATU PCI Target Abort (Master) Interrupt Mask- When set, a target abort error
resulting in bit 12 of the PATUSR being set does not result in bit 2 of the PATUISR
being set. When clear, an error that sets bit 12 of the PATUSR causes bit 2 of the
PATUISR to be set.

03 02

PATU PCI Target Abort (Target) Interrupt Mask- When set, a target abort error
resulting in bit 11 of the PATUSR being set does not result in bit 1 of the PATUISR
being set. When clear, an error that sets bit 11 of the PATUSR causes bit 1 of the
PATUISR to be set.

02 02

PATU PCI Master Parity Error Interrupt Mask - When set, a parity error resulting in bit
8 of the PATUSR being set does not result in bit 0 of the PATUISR being set. When
clear, an error that sets bit 8 of the PATUSR causes bit 0 of the PATUISR to be set.

01 02

Primary ATU Inbound Error P_SERR# Enable - When set, the PATU asserts (if
enabled through the PATUCMD) P_SERR# on the primary interface in response to a
master abort on the internal bus during an inbound write transaction or a target abort
from the memory controller (ECC Error) during an inbound write transaction. When
clear, P_SERR# is not asserted under the previous conditions.

00 02

Primary ATU ECC Target Abort Enable - When set, the PATU performs a target abort
on the primary PCI interface in response to a target abort (ECC error) from the
memory controller on the internal bus. This action only occurs when during an
inbound read transaction where the data phase that was target aborted on the internal
bus is actually requested from the inbound read queue. When clear, the response
under the same conditions is a disconnect with data (the data being up to 64 bits of
1’s) on the PCI bus instead of a target abort.

P
C

I
IO

P
A

ttr
ib

ut
e

s
A

ttr
ib

u
te

s

28 24 20 16 12 8 4 031

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

Attribute Legend:

RV = Reserved

PR = Preserved

RS = Read/Set

RW = Read/Write

RC = Read Clear

RO = Read Only

NA = Not Accessible

Internal Bus Address

12BCH

PCI Configuration Address Offset

BCH - BFH
15-94 i960® RM/RN I/O Processor Developer’s Manual

Address Translation Unit
15.7.45 Secondary ATU Interrupt Mask Register - SATUIMR

The Secondary ATU Interrupt Mask Register contains the control bit to enable and disable
interrupts generated by the secondary ATU.

Table 15-74. Secondary ATU Interrupt Mask Register - SATUIMR

Bit Default Description

31:08 0000 00H Reserved

07 02

SATU Detected Parity Error Interrupt Mask - When set, a parity error detected on the
secondary PCI bus that sets bit 15 of the SATUSR does not result in bit 09 of the
SATUISR being set. When clear, an error that sets bit 15 of the SATUSR results in bit
09 of the SATUISR being set.

06 02

SATU S_SERR# Asserted Interrupt Mask - When set, asserting S_SERR# on the
secondary interface resulting in bit 14 of the SATUSR being set does not result in bit
10 of the SATUISR being set. When clear, an error that sets bit 14 of the SATUSR
causes bit 10 of the SATUISR to be set. Note that this bit is specific to the SATU
asserting S_SERR# and not detecting S_SERR# from another master.

05 02

SATU PCI Master Abort Interrupt Mask - When set, a master abort error resulting in
bit 13 of the SATUSR being set does not result in bit 3 of the SATUISR being set.
When clear, an error that sets bit 13 of the SATUSR causes bit 3 of the SATUISR to
be set.

04 02

SATU PCI Target Abort (Master) Interrupt Mask- When set, a target abort error
resulting in bit 12 of the SATUSR being set does not result in bit 2 of the SATUISR
being set. When clear, an error that sets bit 12 of the SATUSR causes bit 2 of the
SATUISR to be set.

03 02

SATU PCI Target Abort (Target) Interrupt Mask - When set, a target abort error
resulting in bit 11 of the SATUSR being set does not result in bit 1 of the SATUISR
being set. When clear, an error that sets bit 11 of the SATUSR causes bit 1 of the
SATUISR to be set.

02 02

SATU PCI Master Parity Error Interrupt Mask - When set, a parity error resulting in bit
8 of the SATUSR being set does not result in bit 0 of the PATUISR being set. When
clear, an error that sets bit 8 of the SATUSR causes bit 0 of the SATUISR to be set.

01 02

Secondary ATU Inbound Error S_SERR# Enable - When set, the SATU asserts (if
enabled through the SATUCMD) S_SERR# on the secondary interface in response to
a master abort on the internal bus during an inbound write transaction or a target abort
from the memory controller (ECC Error) during an inbound write transaction. When
clear, S_SERR# is not asserted under the previous conditions.

00 02

Secondary ATU ECC Target Abort Enable - When set, the SATU performs a target
abort on the secondary PCI interface in response to a target abort (ECC error) from
the memory controller on the internal bus. This action only occurs during an inbound
read transaction where the data phase that was target aborted on the internal bus is
actually requested from the inbound read queue. When clear, the response under the
same conditions is a disconnect with data (the data being up to 64 bits of 1’s) on the
PCI bus instead of a target abort.

P
C

I
IO

P
A

ttr
ib

u
te

s
A

ttr
ib

ut
es

28 24 20 16 12 8 4 031

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

Attribute Legend:

RV = Reserved

PR = Preserved

RS = Read/Set

RW = Read/Write

RC = Read Clear

RO = Read Only

NA = Not Accessible

Internal Bus Address

12C0H

PCI Configuration Address Offset

C0H - C3H
i960® RM/RN I/O Processor Developer’s Manual 15-95

m and
 an

PCI
rrupt

text, a
ers and

als

/RN

ction is

ach

er, an

e four
re
nerated
Messaging Unit 16

This chapter describes the Messaging Unit (MU) of the i960® RM/RN I/O Processor. The MU is
closely related to the Primary Address Translation Unit (PATU) described in Chapter 15, “Address
Translation Unit”.

16.1 Overview

The Messaging Unit provides a mechanism for data to be transferred between the PCI syste
the i960 core processor and notifies the respective system of the arrival of new data through
interrupt. The MU can be used to send and receive messages.

The MU has four distinct messaging mechanisms. Each allows a host processor or external
agent and the i960 RM/RN I/O processor to communicate through message passing and inte
generation. The four mechanisms are:

• Message Registers — allow the i960 RM/RN I/O processor and external PCI agents to
communicate by passing messages in one of four 32-bit Message Registers. In this con
message is any 32-bit data value. Message registers combine aspects of mailbox regist
doorbell registers. Writes to the message registers may optionally cause interrupts.

• Doorbell Registers — allow the i960 RM/RN I/O processor to assert the PCI interrupt sign
and allow external PCI agents to generate an interrupt to the i960 core processor.

• Circular Queues — support a message passing scheme that uses four circular queues.

• Index Registers — support a message passing scheme that uses a portion of the i960 RM
I/O processor local memory to implement a large set of message registers.

Each of the above is available to the system designer at the same time. No special mode sele
needed.

16.2 Theory of Operation

The MU has four independent messaging mechanisms.

The four Message Registers are similar to a combination of mailbox and doorbell registers. E
holds a 32-bit value and generates an interrupt when written.

The two Doorbell Registers support software interrupts. When a bit is set in a Doorbell Regist
interrupt is generated.

The Circular Queues support a message passing scheme that uses four circular queues. Th
circular queues are implemented in i960 RM/RN I/O processor local memory. Two queues a
used for inbound messages and two are used for outbound messages. Interrupts may be ge
when the queue is written.
i960® RM/RN I/O Processor Developer’s Manual 16-1

Messaging Unit

 The

nd
ary
r

essage
64# on
dex
The Index Registers use a portion of the i960 RM/RN I/O processor local memory to implement a
large set of message registers. When one of the Index Registers is written, an interrupt is generated
and the address of the register written is captured.

Interrupt status for all interrupts is recorded in the Inbound Interrupt Status Register and the
Outbound Interrupt Status Register. Each interrupt generated by the Messaging Unit can be masked.

Multi-word PCI burst accesses are not supported by the Messaging Unit, with the exception of
multi-word reads to the index registers. The MU terminates multi-word PCI transactions (other
than index register reads) with a disconnect after the next Qword boundary, with the exception of
queue ports.

All registers needed to configure and control the Messaging Unit are memory-mapped registers.

The MU uses the first 4 Kbytes of the primary inbound translation window in the Primary Address
Translation Unit (PATU). This PCI address window is used for PCI transactions that access the
i960 RM/RN I/O processor local memory. The PCI address of the primary inbound translation
window is contained in the Primary Inbound ATU Base Address Register. See Chapter 15,
“Address Translation Unit” for more details on inbound ATU addressing and the PATU.

From the PCI perspective, the Messaging Unit is part of the Primary Address Translation Unit.
Messaging Unit uses the PCI configuration registers of the Primary ATU for control and status
information. The Messaging Unit must observe all PCI control bits in the Primary ATU Comma
Register and ATU Configuration Register. The Messaging Unit reports all PCI errors in the Prim
ATU Status Register. The Messaging Unit can be accessed from the i960 RM/RN I/O processo
secondary PCI bus by sending the cycle through the PCI-to-PCI Bridge Unit. Refer to Chapter 14,
“PCI-to-PCI Bridge” for details of the correct configuration options to support this feature.

Parts of the Messaging Unit can be accessed as a 64-bit PCI device. The register interface, m
registers, doorbell registers, and index registers return a P_ACK64# in response to a P_REQ
the primary interface. Up to 1 Qword of data can be read or written per transaction (except In
Register reads, see Section 16.6, on page 16-14). The Inbound and Outbound Queue Ports are
always 32-bit addresses and the MU never asserts P_ACK64# to offsets 40H and 44H.
16-2 i960® RM/RN I/O Processor Developer’s Manual

Messaging Unit
Figure 16-1. PCI Memory Map

Inbound Message Register 0

Inbound Message Register 1

Outbound Message Register 0

Outbound Message Register 1

Inbound Doorbell Register

Inbound Interrupt Status Register

Inbound Interrupt Mask Register

Outbound Doorbell Register

4 Message Registers

i960 RM/RN Processor

0000H

0004H

0008H

000CH

0010H

001CH

0018H

0014H

0020H

0FFCH

1004 Index Registers

First 4 Kbytes of the Primary ATU Inbound PCI Address Space

reserved

reserved

reserved

reserved

0024H

0028H

002CH

Outbound Interrupt Status Register

Outbound Interrupt Mask Register

reserved

reserved

2 Doorbell Registers and

0034H

0038H

003CH

0040H Inbound Queue Port

Outbound Queue Port

reserved

reserved

2 Queue Ports
0044H

0048H

004CH

0050H

0030H

4 Interrupt Registers

Local Memory
i960® RM/RN I/O Processor Developer’s Manual 16-3

Messaging Unit
Table 16-1 provides a summary of the four messaging mechanisms used in the Messaging Unit.

16.2.1 Transaction Ordering

From a PCI standpoint, the Messaging Unit is a piece of the primary ATU and therefore must
maintain some ordering requirements against PATU transactions. Transaction ordering is achieved
for the Index Registers, the Doorbell Register, and the Message Registers since these transactions
are routed through the standard set of PATU read/write queues.

The Circular Queues (Inbound/Outbound Queue Port) are separate queue structures and therefore
require ordering. The Inbound Post Queue (contains PCI writes) must be ordered against the
inbound write queue of the PATU to allow the data that is represented by the Inbound Post
interrupt to be written to local memory before the interrupt is delivered. See Table 16-2 for a
summary of Messaging Unit transaction ordering.

Table 16-1. MU Summary

Mechanism Quantity Assert PCI
Interrupt Signals?

Generate i960®
Core Processor

Interrupt?

Message Registers 2 Inbound
2 Outbound Optional Optional

Doorbell Registers 1 Inbound
1 Outbound Optional Optional

Circular Queues 4 Circular Queues Under certain
conditions

Under certain
conditions

Index Registers 1004 32-bit Memory Locations No Optional

Table 16-2. Circular Queue Ordering Requirements

Messaging Unit Feature Transaction Ordering Mechanism

Message Registers

Through PATU QueuesDoorbell Registers

Index Registers

Circular Queues

Inbound Post Ordered Against PATU Inbound Write Queue (PMW
Can Not Pass Another PMW)

Inbound Free

No Specific Hardware OrderingOutbound Post

Outbound Free
16-4 i960® RM/RN I/O Processor Developer’s Manual

Messaging Unit

 the

ssage

bound

errupt
This is

ssage
16.3 Message Registers

Messages can be sent and received by the i960 RM/RN I/O processor through the use of the Message
Registers. When written, the Message Registers may cause an interrupt to be generated to either the
i960 core processor or the PCI interrupt signals. Inbound messages are sent by the host processor and
received by the i960 RM/RN I/O processor. Outbound messages are sent by the i960 RM/RN I/O
processor and received by the host processor.

The interrupt status for outbound messages is recorded in the Outbound Interrupt Status Register.
Interrupt status for inbound messages is recorded in the Inbound Interrupt Status Register.

16.3.1 Outbound Messages

When an outbound message register is written by the i960 core processor, an interrupt may be
generated on the P_INTA#, P_INTB#, P_INTC#, or P_INTD# interrupt pins. Which interrupt pin
used is determined by the value of the ATU Interrupt Pin Register (Chapter 15, “Address
Translation Unit”).

The PCI interrupt is recorded in the Outbound Interrupt Status Register. The interrupt causes
Outbound Message Interrupt bit to be set in the Outbound Interrupt Status Register. This is a
Read/Clear bit that is set by the MU hardware and cleared by software.

The interrupt is cleared when an external PCI agent writes a value of “1” to the Outbound Me
Interrupt bit in the Outbound Interrupt Status Register to clear the bit.

The interrupt may be masked by the Mask bits in the Outbound Interrupt Mask Register.

16.3.2 Inbound Messages

When an inbound message register is written by an external PCI agent, an interrupt may be
generated to the i960 core processor. The interrupt may be masked by the Mask bits in the In
Interrupt Mask Register.

The i960 core processor interrupt is recorded in the Inbound Interrupt Status Register. The int
causes the Inbound Message Interrupt bit to be set in the Inbound Interrupt Status Register.
a Read/Clear bit that is set by the MU hardware and cleared by software.

The interrupt is cleared when the i960 core processor writes a value of “1” to the Inbound Me
Interrupt bit in the Inbound Interrupt Status Register.
i960® RM/RN I/O Processor Developer’s Manual 16-5

Messaging Unit

alue

core

n the
pt

e

orbell

orbell
 of

orbell

rrupt
 bit.
alues

value
16.4 Doorbell Registers

There are two Doorbell Registers: the Inbound Doorbell Register and the Outbound Doorbell
Register. The Inbound Doorbell Register allows external PCI agents to generate interrupts to the
i960 core processor. The Outbound Doorbell Register allows the i960 core processor to generate a
PCI interrupt. Both Doorbell Registers may generate interrupts whenever a bit in the register is set.

16.4.1 Outbound Doorbells

When the Outbound Doorbell Register is written by the i960 core processor, an interrupt may be
generated on the P_INTA#, P_INTB#, P_INTC#, or P_INTD# interrupt pins. An interrupt is
generated when any of the bits in the doorbell register is written to a value of “1”. Writing a v
of “0” to any bit does not change the value of that bit and does not cause an interrupt to be
generated. Once a bit is set in the Outbound Doorbell Register, it cannot be cleared by i960
processor.

Which PCI interrupt pin used is determined by the value of the ATU Interrupt Pin Register
(Chapter 15, “Address Translation Unit”).

The interrupt is recorded in the Outbound Interrupt Status Register.

The interrupt may be masked by the Mask bits in the Outbound Interrupt Mask Register. Whe
Mask bit is set for a particular bit, no interrupt is generated for that bit. The Outbound Interru
Mask Register affects only the generation of the interrupt and not the values written to the
Outbound Doorbell Register.

The interrupt is cleared when an external PCI agent writes a value of “1” to the bits in the
Outbound Doorbell Register that are set. Writing a value of “0” to any bit does not change th
value of that bit and does not clear the interrupt.

In summary, the i960 core processor generates an interrupt by setting bits in the Outbound Do
Register and external PCI agents clear the interrupt by also setting bits in the same register.

16.4.2 Inbound Doorbells

When the Inbound Doorbell Register is written by an external PCI agent, an interrupt may be
generated to the i960 core processor. An interrupt is generated when any of the bits in the do
register is written to a value of “1”. Writing a value of “0” to any bit does not change the value
that bit and does not cause an interrupt to be generated. Once a bit is set in the Inbound Do
Register, it cannot be cleared by any external PCI agent.

The interrupt is recorded in the Inbound Interrupt Status Register.

The interrupt may be masked by the Inbound Doorbell Interrupt Mask bit in the Inbound Inte
Mask Register. When the mask bit is set for a particular bit, no interrupt is generated for that
The Inbound Interrupt Mask Register affects only the generation of the interrupt and not the v
written to the Inbound Doorbell Register.

One bit in the Inbound Doorbell Register is reserved for an NMI interrupt.

The interrupt is cleared when the i960 core processor writes a value of “1” to the bits in the
Inbound Doorbell Register that are set. Writing a value of “0” to any bit does not change the
of that bit and does not clear the interrupt.
16-6 i960® RM/RN I/O Processor Developer’s Manual

Messaging Unit
16.5 Circular Queues

The MU implements four circular queues. There are two inbound queues and two outbound
queues. In this case, inbound and outbound refer to the direction of the flow of posted messages.

Inbound messages are either:

• posted messages by other processors for the i960 core processor to process or

• free (or empty) messages that can be reused by other processors.

Outbound messages are either:

• posted messages by the i960 core processor for other processors to process or

• free (or empty) messages that can be reused by the i960 core processor.

Therefore, free inbound messages flow away from the i960 RM/RN I/O processor and free
outbound messages flow toward the i960 RM/RN I/O processor.

The four Circular Queues are used to pass messages in the following manner. The two inbound
queues are used to handle inbound messages and the two outbound queues are used to handle
outbound messages. One of the inbound queues is designated the Free queue and it contains inbound
free messages. The other inbound queue is designated the Post queue and it contains inbound posted
messages. Similarly, one of the outbound queues is designated the Free queue and the other outbound
queue is designated the Post queue. Table 16-3 contains a summary of the queues.

The two outbound queues allow the i960 core processor to post outbound messages in one queue
and to receive free messages returning from the host processor. The i960 core processor posts
outbound messages, the host processor receives the posted message and when it is finished with the
message, places it back on the outbound free queue for reuse by the i960 core processor.

The two inbound queues allow the host processor to post inbound messages for the i960 RM/RN
I/O processor in one queue and to receive free messages returning from the i960 RM/RN I/O
processor. The host processor posts inbound messages, the i960 core processor receives the posted
message and when it is finished with the message, places it back on the inbound free queue for
reuse by the host processor.

Figure 16-2 provides an overview of the Circular Queue operation.

Table 16-3. Circular Queue Summary

Queue Name Purpose Action on PCI Interface

Inbound Post Queue
Queue for inbound messages from other processors
waiting to be processed by the i960 RM/RN I/O
processor

Written

Inbound Free Queue
Queue for empty inbound messages from the i960
RM/RN I/O processor available for use by other
processors

Read

Outbound Post Queue
Queue for outbound messages from the i960 RM/RN
I/O processor that are being posted to the other
processors

Read

Outbound Free Queue
Queue for empty outbound messages from other
processors available for use by the i960 RM/RN I/O
processor

Written
i960® RM/RN I/O Processor Developer’s Manual 16-7

Messaging Unit

y.
d to

ueue
il. The
nit
tails
The circular queues are accessed by external PCI agents through two port locations in the PCI
address space: Inbound Queue Port and Outbound Queue Port. The Inbound Queue Port is used by
external PCI agents to read the Inbound Free Queue and write the Inbound Post Queue. The
Outbound Queue Port is used by external PCI agents to read the Outbound Post Queue and write
the Outbound Free Queue. Note that a PCI transaction to the inbound or outbound queue ports with
null byte enables (P_C/BE[3:0]# = 11112) does not cause the MU hardware to increment the queue
pointers. This is treated as if the PCI transaction did not occur. The Inbound and Outbound Queue
Ports never respond with P_ACK64# on the primary PCI interface.

The data storage for the circular queues must be provided by the i960 RM/RN I/O processor local
memory. The base address of the circular queues is contained in the Queue Base Address Register
(Section 16.8.10, “Queue Base Address Register - QBAR” on page 16-25). Each entry in the queue
is a 32-bit data value. Each read from or write to the queue may access only one queue entr
Multi-word accesses to the circular queues are not allowed. Sub-word accesses are promote
32-bit word accesses.

Each circular queue has a head pointer and a tail pointer. The pointers are offsets from the Q
Base Address. Writes to a queue occur at the head of the queue and reads occur from the ta
head and tail pointers are incremented by either the i960 core processor or the Messaging U
hardware. Which unit maintains the pointer is determined by the writer of the queue. More de

Figure 16-2. Overview of Circular Queue Operation

Host Processor
i960® RM/RN

Inbound
Post Queue

head

tail

Inbound
Free Queue

head

tail

Inbound posted messages

Inbound free messages

Outbound posted messages

Outbound free messages

Outbound
Free Queue

head

tail

Outbound
Post Queue

head

tail

Interrupt when queue is written

Interrupt when data in prefetch buffer is valid

I/O processor
16-8 i960® RM/RN I/O Processor Developer’s Manual

Messaging Unit
about the pointers are given in the queue descriptions below. The pointers are incremented after the
queue access. Both pointers wrap around to the first address of the circular queue when they reach
the circular queue size.

The Messaging Unit generates an interrupt to the i960 core processor or generate a PCI interrupt
under certain conditions. In general, when a Post queue is written, an interrupt is generated to
notify the receiver that a message was posted.

The size of each circular queue can range from 4K entries (16 Kbytes) to 64K entries (256 Kbytes).
All four queues must be the same size and may be contiguous. Therefore, the total amount of local
memory needed by the circular queues ranges from 64 Kbytes to 1 Mbyte. The Queue size is
determined by the Queue Size field in the MU Configuration Register.

There is one base address for all four queues. It is stored in the Queue Base Address Register (QBAR).
The starting addresses of each queue is based on the Queue Base Address and the Queue Size field.
Table 16-4 shows an example of how the circular queues should be set up based on the Intelligent I/O
(I2O) Architecture Specification. Other ordering of the circular queues is possible, however.

Table 16-4. Queue Starting Addresses

Queue Starting Address

Inbound Free Queue QBAR

Inbound Post Queue QBAR + Queue Size

Outbound Post Queue QBAR + 2 * Queue Size

Outbound Free Queue QBAR + 3 * Queue Size
i960® RM/RN I/O Processor Developer’s Manual 16-9

Messaging Unit
Figure 16-3 provides a more detailed diagram of the usage of the Circular Queues.

Figure 16-3. Circular Queue Operation

High Address Memory

i960 RM/RN I/O Processor Local Memory

Head PointerIncremented by

Incremented by

Tail Pointer

i960

Read

Write

Read

Write

Outbound

Free

Head PointerIncremented by

Incremented by

Tail Pointer
Outbound

Post

Head PointerIncremented by

Incremented by

Tail Pointer
Inbound

Post

Head PointerIncremented by

Incremented by hardware

Tail Pointer
Inbound

Free

External

i960

Read

Write

Read

Write

Outbound Queue Port

Inbound Queue Port

Low Address Memory

External

 i960 core processor

i960 core processor

 hardware

 hardware

 i960 core processor

 i960 core processor

 hardware

core

PCI

core

PCI

processor

processor

Agent

Agent
16-10 i960® RM/RN I/O Processor Developer’s Manual

Messaging Unit
16.5.1 Inbound Free Queue

The Inbound Free Queue holds free inbound messages placed there by the i960 core processor for
other processors to use. This queue is read from the queue tail by external PCI agents. It is written
to the queue head by the i960 core processor. The tail pointer is maintained by the MU hardware.
The head pointer is maintained by the i960 core processor.

For a PCI read transaction that accesses the Inbound Queue Port, the MU attempts to read the data at
the local memory address in the Inbound Free Tail Pointer:

• When the queue is not empty (head and tail pointers are not equal), or full (head and tail
pointers are equal but the head pointer was last written by software), the data is returned.

• When the queue is empty (head and tail pointers are equal), the value of -1 (FFFF.FFFFH) is
returned.

• When the queue was not empty and the MU succeeded in returning the data at the tail, the MU
hardware must increment the value in the Inbound Free Tail Pointer Register.

To reduce latency for the PCI read access, the MU implements a prefetch mechanism to anticipate
accesses to the Inbound Free Queue. The MU hardware prefetches the data at the tail of the
Inbound Free Queue and loads it into an internal prefetch register. When the PCI read access
occurs, the data is read directly from the prefetch register.

The prefetch mechanism loads a value of -1 (FFFF.FFFFH) into the prefetch register when the
head and tail pointers are equal and the queue is empty. To update the prefetch register when
messages are added to the queue and it becomes non-empty, the prefetch mechanism automatically
starts a prefetch when the prefetch register contains FFFF.FFFFH and the Inbound Free Head
Pointer Register is written. The i960 core processor needs to update the Inbound Free Head Pointer
Register when it adds messages to the queue.

A prefetch must appear atomic from the perspective of the external PCI agent. When a prefetch is
started, any PCI transaction that attempts to access the Inbound Free Queue is signalled a Retry
until the prefetch is completed.

The i960 core processor may place messages in the Inbound Free Queue by writing the data to the
local memory location pointed to by the Inbound Free Head Pointer Register. The processor must
then increment the Inbound Free Head Pointer Register.

16.5.2 Inbound Post Queue

The Inbound Post Queue holds posted messages placed there by other processors for the i960 core
processor to process. This queue is read from the queue tail by the i960 core processor. It is written
to the queue head by external PCI agents. The tail pointer is maintained by the i960 core processor.
The head pointer is maintained by the MU hardware.

For a PCI write transaction that accesses the Inbound Queue Port, the MU writes the data to the
local memory location address in the Inbound Post Head Pointer Register.

When the data written to the Inbound Queue Port is written to local memory, the MU hardware
increments the Inbound Post Head Pointer Register.

An i960 core processor interrupt may be generated when the Inbound Post Queue is written. The
Inbound Post Queue Interrupt bit in the Inbound Interrupt Status Register indicates the interrupt
status. The interrupt is cleared when the Inbound Post Queue Interrupt bit is cleared. The interrupt
i960® RM/RN I/O Processor Developer’s Manual 16-11

Messaging Unit
can be masked by the Inbound Interrupt Mask Register. When the Inbound Post Queue reaches a
full state (head pointer equals tail pointer), the PCI interface retries all further writes until software
increments the tail pointer or the Inbound Post Queue Interrupt bit is cleared. To prevent an
indefinite retry, software must be aware of the state of the Inbound Post Queue Interrupt Mask bit
to guarantee that the full condition is recognized by the core processor. In addition, to guarantee
that the queue is not overwritten, software must remove data from the tail of the queue before
clearing the interrupt (and incrementing the tail pointer).

From the time that the PCI write transaction is received until the data is written in local memory
and the Inbound Post Head Pointer Register is incremented, any PCI transaction that attempts to
access the Inbound Post Queue Port is signalled a Retry.

The i960 core processor may read messages from the Inbound Post Queue by reading the data from
the local memory location pointed to by the Inbound Post Tail Pointer Register. The i960 core
processor must then increment the Inbound Post Tail Pointer Register. When the Inbound Post
Queue is full, the hardware retries any PCI writes until a slot in the queue becomes available, by
the i960 core processor either clearing the inbound post queue interrupt or incrementing the tail
pointer. When the head pointer and tail pointer become equal, software must clear the inbound post
queue interrupt bit to avoid indefinite retries by the MU.

16.5.3 Outbound Post Queue

The Outbound Post Queue holds outbound posted messages placed there by the i960 core
processor for other processors to process. This queue is read from the queue tail by external PCI
agents. It is written to the queue head by the i960 core processor. The tail pointer is maintained by
the MU hardware. The head pointer is maintained by the i960 core processor.

For a PCI read transaction that accesses the Outbound Queue Port, the MU attempts to read the data at the
local memory address in the Outbound Post Tail Pointer Register:

• When the queue is not empty (head and tail pointers are not equal), or full (head and tail
pointers are equal but the head pointer was last written by software), the data is returned.

• When the queue is empty (head and tail pointers are equal), the value of -1 (FFFF.FFFFH) is
returned.

• When the queue was not empty and the MU succeeded in returning the data at the tail, the MU
hardware must increment the value in the Outbound Post Tail Pointer Register.

To reduce latency for the PCI read access, the MU implements a prefetch mechanism to anticipate
accesses to the Outbound Post Queue. The MU hardware prefetches the data at the tail of the
Outbound Post Queue and load it into an internal prefetch register. When the PCI read access
occurs, the data is read directly from the prefetch register.

The prefetch mechanism loads a value of -1 (FFFF.FFFFH) into the prefetch register when the
head and tail pointers are equal and the queue is empty. To update the prefetch register when
messages are added to the queue and it becomes non-empty, the prefetch mechanism automatically
starts a prefetch when the prefetch register contains FFFF.FFFFH and the Outbound Post Head
Pointer Register is written. The i960 core processor needs to update the Outbound Post Head
Pointer Register when it adds messages to the queue.

A prefetch must appear atomic from the perspective of the external PCI agent. When a prefetch is
started, any PCI transaction that attempts to access the Outbound Post Queue is signalled a Retry
until the prefetch is completed.
16-12 i960® RM/RN I/O Processor Developer’s Manual

Messaging Unit
A PCI interrupt may be generated when data in the prefetch buffer is valid. When the prefetch
queue is clear, no interrupt is generated. The Outbound Post Queue Interrupt bit in the Outbound
Interrupt Status Register indicates the status of the prefetch buffer data and therefore the interrupt
status. The interrupt is cleared when any prefetched data is read from the Outbound Queue Port.
The interrupt can be masked by the Outbound Interrupt Mask Register.

The i960 core processor may place messages in the Outbound Post Queue by writing the data to the
local memory address in the Outbound Post Head Pointer Register. The processor must then
increment the Outbound Post Head Pointer Register.

16.5.4 Outbound Free Queue

The Outbound Free Queue holds free messages placed there by other processors for the i960 core
processor to use. This queue is read from the queue tail by the i960 core processor. It is written to
the queue head by external PCI agents. The tail pointer is maintained by the i960 core processor.
The head pointer is maintained by the MU hardware.

For a PCI write transaction that accesses the Outbound Queue Port, the MU writes the data to the
local memory address in the Outbound Free Head Pointer Register. When the data written to the
Outbound Queue Port is written to local memory, the MU hardware increments the Outbound Free
Head Pointer Register.

When the head pointer and the tail pointer become equal and the queue is full, the MU may signal
an NMI interrupt to the i960 core processor to register the queue full condition. This interrupt is
recorded in the Inbound Interrupt Status Register. The NMI# interrupt is cleared and the Outbound
Free Queue accepts writes when the Outbound Free Queue Full Interrupt bit is cleared and not by
writing to the head or tail pointers. The interrupt can be masked by the Inbound Interrupt Mask
Register. To prevent an indefinite retry, software must be aware of the state of the Outbound Free
Queue Interrupt Mask bit to guarantee that the full condition is recognized by the core processor.

From the time that a PCI write transaction is received until the data is written in local memory and
the Outbound Free Head Pointer Register is incremented, any PCI transaction that attempts to
access the Outbound Free Queue Port is signalled a retry.

The i960 core processor may read messages from the Outbound Free Queue by reading the data
from the local memory address in the Outbound Free Tail Pointer Register. The processor must
then increment the Outbound Free Tail Pointer Register. When the Outbound Free Queue is full,
the hardware must retry any PCI writes until a slot in the queue becomes available.

Table 16-5. Circular Queue Summary

Queue Name PCI Port Generate
PCI Interrupt?

Generate
i960® Core
Processor
Interrupt?

Head Pointer
maintained by

Tail Pointer
maintained by

Inbound Post
Queue Inbound Queue

Port

No Yes, when
queue is written MU hardware i960 core

processor

Inbound Free
Queue No No i960 core

processor MU hardware

Outbound Post
Queue Outbound

Queue Port

Yes, when data
in prefetch

buffer is valid
No i960 core

processor MU hardware

Outbound Free
Queue No Yes, when the

queue is full MU hardware i960 core
processor
i960® RM/RN I/O Processor Developer’s Manual 16-13

Messaging Unit

written
s

s
egister

 cause

ites.

as
red
nisms.
16.6 Index Registers

The Index Registers are a set of 1004 registers that, when written by an external PCI agent, can
generate an interrupt to the i960 core processor. These registers are for inbound messages only.
The interrupt is recorded in the Inbound Interrupt Status Register.

The storage for the Index Registers is allocated from the i960 RM/RN I/O processor local memory.
PCI write accesses to the Index Registers write the data to local memory. PCI read accesses to the
Index Registers read the data from local memory. The local memory used for the Index Registers
ranges from Primary Inbound ATU Translate Value Register + 050H to Primary Inbound ATU
Translate Value Register + FFFH. Chapter 15, “Address Translation Unit” describes how PCI
addresses are translated to local memory addresses.

The address of the first write access is stored in the Index Address Register. This register is
during the earliest write access and provides a means to determine which Index Register wa
written. Once updated by the MU, the Index Address Register is not updated until the Index
Register Interrupt bit in the Inbound Interrupt Status Register is cleared. When the interrupt i
cleared, the Index Address Register is re-enabled and stores the address of the next Index R
write access.

Writes by the i960 core processor to the local memory used by the Index Registers does not
an interrupt and does not update the Index Address Register.

The index registers can be accessed with multi-word reads and single quad-word aligned wr

16.7 Messaging Unit Error Conditions

The Messaging Unit, like the Primary ATU, encounters error conditions on the PCI interface
well as the internal bus interface. As a PCI target, all PCI errors (parity and aborts) are captu
and recorded in the Primary ATU Status Register and can be masked using the PATU mecha
Refer to Chapter 15, “Address Translation Unit” for further details.
16-14 i960® RM/RN I/O Processor Developer’s Manual

Messaging Unit
16.8 Register Definitions

The following registers are located in the primary PCI address space and in the Peripheral
Memory-Mapped Register (PMMR) address space. They are accessible through primary PCI bus
transactions and through i960 core processor internal bus accesses. In the primary PCI address
space, they are mapped into the first 80 bytes of the primary inbound address window of the
Primary ATU.

• Inbound Message 0 Register

• Inbound Message 1 Register

• Outbound Message 0 Register

• Outbound Message 1 Register

• Inbound Doorbell Register

• Inbound Interrupt Status Register

• Inbound Interrupt Mask Register

• Outbound Doorbell Register

• Outbound Interrupt Status Register

• Outbound Interrupt Mask Register

The following registers are located in the Peripheral Memory-Mapped Register (PMMR) address
space as described in Appendix C, “Memory-Mapped Registers”.

• MU Configuration Register

• Queue Base Address Register

• Inbound Free Head Pointer Register

• Inbound Free Tail Pointer Register

• Inbound Post Head Pointer Register

• Inbound Post Tail Pointer Register

• Outbound Free Head Pointer Register

• Outbound Free Tail Pointer Register

• Outbound Post Head Pointer Register

• Outbound Post Tail Pointer Register

• Index Address Register

Reading or writing a register that is reserved is undefined.
i960® RM/RN I/O Processor Developer’s Manual 16-15

Messaging Unit
Table 16-6. Message Unit Register Table

Internal
Bus

Address
Section, Register Name - Acronym (Page)

1310H Section 16.8.1, “Inbound Message Register - IMRx” on page 16-17

1314H Section 16.8.1, “Inbound Message Register - IMRx” on page 16-17

1318H Section 16.8.2, “Outbound Message Register - OMRx” on page 16-17

131CH Section 16.8.2, “Outbound Message Register - OMRx” on page 16-17

1320H Section 16.8.3, “Inbound Doorbell Register - IDR” on page 16-18

1324H Section 16.8.4, “Inbound Interrupt Status Register - IISR” on page 16-19

1328H Section 16.8.5, “Inbound Interrupt Mask Register - IIMR” on page 16-20

132CH Section 16.8.6, “Outbound Doorbell Register - ODR” on page 16-21

1330H Section 16.8.7, “Outbound Interrupt Status Register - OISR” on page 16-22

1334H Section 16.8.8, “Outbound Interrupt Mask Register - OIMR” on page 16-23

1350H Section 16.8.9, “MU Configuration Register - MUCR” on page 16-24

1354H Section 16.8.10, “Queue Base Address Register - QBAR” on page 16-25

1360H Section 16.8.11, “Inbound Free Head Pointer Register - IFHPR” on page 16-26

1364H Section 16.8.12, “Inbound Free Tail Pointer Register - IFTPR” on page 16-27

1368H Section 16.8.13, “Inbound Post Head Pointer Register - IPHPR” on page 16-28

136CH Section 16.8.14, “Inbound Post Tail Pointer Register - IPTPR” on page 16-29

1370H Section 16.8.15, “Outbound Free Head Pointer Register - OFHPR” on page 16-30

1374H Section 16.8.16, “Outbound Free Tail Pointer Register - OFTPR” on page 16-31

1378H Section 16.8.17, “Outbound Post Head Pointer Register - OPHPR” on page 16-32

137CH Section 16.8.18, “Outbound Post Tail Pointer Register - OPTPR” on page 16-33

1380H Section 16.8.19, “Index Address Register - IAR” on page 16-34
16-16 i960® RM/RN I/O Processor Developer’s Manual

Messaging Unit
16.8.1 Inbound Message Register - IMRx

There are two Inbound Message Registers: IMR0 and IMR1. When the IMR register is written, an
interrupt to the i960 core processor may be generated. The interrupt is recorded in the Inbound
Interrupt Status Register and may be masked by the Inbound Message Interrupt Mask bit in the
Inbound Interrupt Mask Register.

16.8.2 Outbound Message Register - OMRx

There are two Outbound Message Registers: OMR0 and OMR1. When the OMR register is
written, a PCI interrupt may be generated. The interrupt is recorded in the Outbound Interrupt
Status Register and may be masked by the Outbound Message Interrupt Mask bit in the Outbound
Interrupt Mask Register.

Table 16-7. Inbound Message Register - IMRx

Bit Default Description

31:00 00000000H Inbound Message - This is a 32-bit message written by an external PCI agent. When
written, an interrupt to the i960 core processor may be generated.

P
C

I
IO

P
A

tt
rib

ut
es

A
ttr

ib
ut

e
s

28 24 20 16 12 8 4 031

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

Attribute Legend:

RV = Reserved

PR = Preserved

RS = Read/Set

RW = Read/Write

RC = Read Clear

RO = Read Only

NA = Not Accessible

IMR0
IMR1

80960RM/RN internal bus address

1310H
1314H

Table 16-8. Outbound Message Register - OMRx

Bit Default Description

31:00 00000000H
Outbound Message - This is 32-bit message written by the i960 core processor. When
written, an interrupt may be generated on the PCI Interrupt pin determined by the ATU
Interrupt Pin Register.

P
C

I
IO

P
A

ttr
ib

ut
es

A
tt

rib
ut

es

28 24 20 16 12 8 4 031

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

Attribute Legend:

RV = Reserved

PR = Preserved

RS = Read/Set

RW = Read/Write

RC = Read Clear

RO = Read Only

NA = Not Accessible

OMR0
OMR1

80960RM/RN internal bus address

1318H
131CH
i960® RM/RN I/O Processor Developer’s Manual 16-17

Messaging Unit
16.8.3 Inbound Doorbell Register - IDR

The Inbound Doorbell Register (IDR) is used to generate interrupts to the i960 core processor. Bit
31 is reserved for generating an NMI interrupt. When bit 31 is set, an NMI interrupt may be
generated to the i960 core processor. All other bits, when set, cause the XINT7 interrupt line of the
i960 core processor to be asserted, when the interrupt is not masked by the Inbound Doorbell
Interrupt Mask bit in the Inbound Interrupt Mask Register. The bits in the IDR register can only be
set by an external PCI agent and can only be cleared by the i960 core processor.

Table 16-9. Inbound Doorbell Register - IDR

Bit Default Description

31 02 NMI Interrupt - Generate an NMI Interrupt to the i960 core processor.

30:00 00000000H XINT7 Interrupt - When any bit is set, generate an XINT7 interrupt to the i960 core
processor. When all bits are clear, do not generate an XINT7 interrupt.

P
C

I
IO

P
A

ttr
ib

u
te

s
A

ttr
ib

ut
es

28 24 20 16 12 8 4 031

rc

rs

rc

rs

rc

rs

rc

rs

rc

rs

rc

rs

rc

rs

rc

rs

rc

rs

rc

rs

rc

rs

rc

rs

rc

rs

rc

rs

rc

rs

rc

rs

rc

rs

rc

rs

rc

rs

rc

rs

rc

rs

rc

rs

rc

rs

rc

rs

rc

rs

rc

rs

rc

rs

rc

rs

rc

rs

rc

rs

rc

rs

rc

rs

Attribute Legend:

RV = Reserved

PR = Preserved

RS = Read/Set

RW = Read/Write

RC = Read Clear

RO = Read Only

NA = Not Accessible

IDR
80960RM/RN internal bus address

1320H
16-18 i960® RM/RN I/O Processor Developer’s Manual

Messaging Unit
16.8.4 Inbound Interrupt Status Register - IISR

The Inbound Interrupt Status Register (IISR) contains hardware interrupt status. It records the
status of i960 core processor interrupts generated by the Message Registers, Doorbell Registers,
and the Circular Queues. All interrupts are routed to the XINT7 interrupt input of the i960 core
processor, except for the NMI Doorbell Interrupt and the Outbound Free Queue Full interrupt;
these three are routed to the NMI interrupt input. The generation of interrupts recorded in the
Inbound Interrupt Status Register may be masked by setting the corresponding bit in the Inbound
Interrupt Mask Register. Some bits in this register are Read Only. For those bits, the interrupt must
be cleared through another register.

Table 16-10. Inbound Interrupt Status Register - IISR

Bit Default Description

31:07 0000000H 02 Reserved

06 02
Index Register Interrupt - This bit is set by the MU hardware when an Index Register
is written after a PCI transaction.

05 02

Outbound Free Queue Full Interrupt - This bit is set when the Outbound Free Head
Pointer becomes equal to the Tail Pointer and the queue is full. An NMI interrupt is
generated for this condition.

04 02
Inbound Post Queue Interrupt - This bit is set by the MU hardware when the Inbound
Post Queue has been written.

03 02

NMI Doorbell Interrupt - This bit is set when the NMI Interrupt of the Inbound Doorbell
Register is set. To clear this bit (and the interrupt), the NMI Interrupt bit of the Inbound
Doorbell Register must be clear.

02 02

Inbound Doorbell Interrupt - This bit is set when at least one XINT7 Interrupt bit in the
Inbound Doorbell Register is set. To clear this bit (and the interrupt), the XINT7
Interrupt bits in the Inbound Doorbell Register must all be clear.

01 02
Inbound Message 1 Interrupt - This bit is set by the MU hardware when the Inbound
Message 1 Register has been written.

00 02
Inbound Message 0 Interrupt - This bit is set by the MU hardware when the Inbound
Message 0 Register has been written.

P
C

I
IO

P
A

tt
rib

ut
es

A
ttr

ib
ut

es

28 24 20 16 12 8 4 031

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rc

rc

rc

rc

rc

ro

ro

ro

ro

ro

rc

rc

rc

rc

Attribute Legend:

RV = Reserved

PR = Preserved

RS = Read/Set

RW = Read/Write

RC = Read Clear

RO = Read Only

NA = Not Accessible

IISR
80960RM/RN internal bus address

1324H
i960® RM/RN I/O Processor Developer’s Manual 16-19

Messaging Unit
16.8.5 Inbound Interrupt Mask Register - IIMR

The Inbound Interrupt Mask Register (IIMR) provides the ability to mask i960 core processor
interrupts generated by the Messaging Unit. Each bit in the Mask register corresponds to an
interrupt bit in the Inbound Interrupt Status Register.

Setting or clearing bits in this register does not affect the Inbound Interrupt Status Register. They
only affect the generation of the i960 core processor interrupt.

Table 16-11. Inbound Interrupt Mask Register - IIMR

Bit Default Description

31:07 000000H 02 Reserved

06 02
Index Register Interrupt Mask - When set, this bit masks the interrupt generated by
the MU hardware when an Index Register has been written after a PCI transaction.

05 02

Outbound Free Queue Full Interrupt Mask - When set, this bit masks the NMI interrupt
generated when the Outbound Free Head Pointer becomes equal to the Tail Pointer
and the queue is full.

04 02
Inbound Post Queue Interrupt Mask - When set, this bit masks the interrupt generated
by the MU hardware when the Inbound Post Queue has been written.

03 02
NMI Doorbell Interrupt Mask - When set, this bit masks the NMI Interrupt when the
NMI Interrupt bit of the Inbound Doorbell Register is set.

02 02
Inbound Doorbell Interrupt Mask - When set, this bit masks the interrupt generated
when at least one XINT7 Interrupt bit in the Inbound Doorbell Register is set.

01 02
Inbound Message 1 Interrupt Mask - When set, this bit masks the Inbound Message 1
Interrupt generated by a write to the Inbound Message 1 Register.

00 02
Inbound Message 0 Interrupt Mask - When set, this bit masks the Inbound Message 0
Interrupt generated by a write to the Inbound Message 0 Register.

P
C

I
IO

P
A

ttr
ib

ut
es

A
ttr

ib
ut

es

28 24 20 16 12 8 4 031

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

Attribute Legend:

RV = Reserved

PR = Preserved

RS = Read/Set

RW = Read/Write

RC = Read Clear

RO = Read Only

NA = Not Accessible

IIMR
80960RM/RN internal bus address

1328H
16-20 i960® RM/RN I/O Processor Developer’s Manual

Messaging Unit
16.8.6 Outbound Doorbell Register - ODR

The Outbound Doorbell Register (ODR) allows software interrupt generation. It allows the i960
core processor to generate PCI interrupts to the host processor by writing to the Software Interrupt
bits or to a specific PCI interrupt bit. The generation of PCI interrupts through the Outbound
Doorbell Register may be masked by setting the Outbound Doorbell Interrupt Mask bit in the
Outbound Interrupt Mask Register.

The Software Interrupt bits in this register can only be set by the i960 core processor and can only
be cleared by an external PCI agent.

Table 16-12. Outbound Doorbell Register - ODR

Bit Default Description

31 02
PCI Interrupt D - When set, this bit causes the P_INTD# signal to be asserted. When
this bit is cleared, the P_INTD# signal is deasserted.

30 02
PCI Interrupt C- When set, this bit causes the P_INTC# signal to be asserted. When
this bit is cleared, the P_INTC# signal is deasserted.

29 02
PCI Interrupt B- When set, this bit causes the P_INTB# signal to be asserted. When
this bit is cleared, the P_INTB# signal is deasserted.

28 02
PCI Interrupt A- When set, this bit causes the P_INTA# signal to be asserted. When
this bit is cleared, the P_INTA# signal is deasserted.

27:00 000000H
Software Interrupt - When any bit is set, generate a PCI interrupt. The PCI interrupt
pin used is determined by the ATU Interrupt Pin Register. When all bits are clear, do
not generate a PCI interrupt.

P
C

I
IO

P
A

ttr
ib

ut
es

A
ttr

ib
ut

e
s

28 24 20 16 12 8 4 031

rs

rc

rs

rc

rs

rc

rs

rc

rs

rc

rs

rc

rs

rc

rs

rc

rs

rc

rs

rc

rs

rc

rs

rc

rs

rc

rs

rc

rs

rc

rs

rc

rs

rc

rs

rc

rs

rc

rs

rc

rs

rc

rs

rc

rs

rc

rs

rc

rs

rc

rs

rc

rs

rc

rs

rc

rs

rc

rs

rc

rs

rc

rs

rc

Attribute Legend:

RV = Reserved

PR = Preserved

RS = Read/Set

RW = Read/Write

RC = Read Clear

RO = Read Only

NA = Not Accessible

ODR
80960RM/RN internal bus address

132CH
i960® RM/RN I/O Processor Developer’s Manual 16-21

Messaging Unit
16.8.7 Outbound Interrupt Status Register - OISR

The Outbound Interrupt Status Register (OISR) contains hardware interrupt status. It records the
status of PCI interrupts generated by the Message Registers, Doorbell Registers, and the Circular
Queues. The generation of PCI interrupts recorded in the Outbound Interrupt Status Register may be
masked by setting the corresponding bit in the Outbound Interrupt Mask Register. Some bits in this
register are Read Only. For those bits, the interrupt must be cleared through another register.

Table 16-13. Outbound Interrupt Status Register - OISR

Bit Default Description

31:08 000000H Reserved

07 02

PCI Interrupt D - This bit is set when the PCI Interrupt D bit is set in the Outbound
Doorbell Register. To clear this bit (and the interrupt), the PCI Interrupt D bit must be
cleared.

06 02

PCI Interrupt C - This bit is set when the PCI Interrupt C bit is set in the Outbound
Doorbell Register. To clear this bit (and the interrupt), the PCI Interrupt C bit must be
cleared.

05 02

PCI Interrupt B - This bit is set when the PCI Interrupt B bit is set in the Outbound
Doorbell Register. To clear this bit (and the interrupt), the PCI Interrupt B bit must be
cleared.

04 02

PCI Interrupt A - This bit is set when the PCI Interrupt A bit is set in the Outbound
Doorbell Register. To clear this bit (and the interrupt), the PCI Interrupt A bit must be
cleared.

03 02

Outbound Post Queue Interrupt - This bit is set when data in the prefetch buffer is
valid. This bit is cleared when any prefetch data has been read from the Outbound
Queue Port.

02 02

Outbound Doorbell Interrupt - This bit is set when at least one Software Interrupt bit in
the Outbound Doorbell Register is set. To clear this bit (and the interrupt), the
Software Interrupt bits in the Outbound Doorbell Register must all be clear.

01 02
Outbound Message 1 Interrupt - This bit is set by the MU when the Outbound
Message 1 Register is written. Clearing this bit clears the interrupt.

00 02
Outbound Message 0 Interrupt - This bit is set by the MU when the Outbound
Message 0 Register is written. Clearing this bit clears the interrupt.

P
C

I
IO

P
A

ttr
ib

ut
e

s
A

ttr
ib

u
te

s

28 24 20 16 12 8 4 031

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

ro

ro

ro

ro

ro

ro

ro

ro

ro

ro

ro

ro

rc

rc

rc

rc

OISR
80960RM/RN internal bus address

1330H

Attribute Legend:

RV = Reserved

PR = Preserved

RS = Read/Set

RW = Read/Write

RC = Read Clear

RO = Read Only

NA = Not Accessible
16-22 i960® RM/RN I/O Processor Developer’s Manual

Messaging Unit
16.8.8 Outbound Interrupt Mask Register - OIMR

The Outbound Interrupt Mask Register (OIMR) provides the ability to mask outbound PCI
interrupts generated by the Messaging Unit. Each bit in the mask register corresponds to a
hardware interrupt bit in the Outbound Interrupt Status Register. When the bit is set, the PCI
interrupt is not generated. When the bit is clear, the interrupt is allowed to be generated.

Setting or clearing bits in this register does not affect the Outbound Interrupt Status Register. They
only affect the generation of the PCI interrupt.

Table 16-14. Outbound Interrupt Mask Register - OIMR

Bit Default Description

31:08 000000H Reserved

07 02
PCI Interrupt D Mask - When set, this bit masks the PCI Interrupt D signal when the
PCI Interrupt D bit in the in the Outbound Doorbell Register is set.

06 02
PCI Interrupt C Mask - When set, this bit masks the PCI Interrupt C signal when the
PCI Interrupt C bit in the in the Outbound Doorbell Register is set.

05 02
PCI Interrupt B Mask - When set, this bit masks the PCI Interrupt B signal when the
PCI Interrupt B bit in the in the Outbound Doorbell Register is set.

04 02
PCI Interrupt A Mask - When set, this bit masks the PCI Interrupt A signal when the
PCI Interrupt A bit in the in the Outbound Doorbell Register is set.

03 02
Outbound Post Queue Interrupt Mask - When set, this bit masks the PCI interrupt
generated when data in the prefetch buffer is valid.

02 02
Outbound Doorbell Interrupt Mask - When set, this bit masks the Software Interrupt
generated by the Outbound Doorbell Register.

01 02
Outbound Message 1 Interrupt Mask - When set, this bit masks the Outbound
Message 1 Interrupt generated by a write to the Outbound Message 1 Register.

00 02
Outbound Message 0 Interrupt Mask- When set, this bit masks the Outbound
Message 0 Interrupt generated by a write to the Outbound Message 0 Register.

P
C

I
IO

P
A

ttr
ib

ut
es

A
tt

rib
ut

es

28 24 20 16 12 8 4 031

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

Attribute Legend:

RV = Reserved

PR = Preserved

RS = Read/Set

RW = Read/Write

RC = Read Clear

RO = Read Only

NA = Not Accessible

OIMR
80960RM/RN internal bus address

1334H
i960® RM/RN I/O Processor Developer’s Manual 16-23

Messaging Unit
16.8.9 MU Configuration Register - MUCR

The MU Configuration Register (MUCR) contains the Circular Queue Enable bit and the size of
one Circular Queue. The Circular Queue Enable bit enables or disables the Circular Queues. The
Circular Queues are disabled at reset to allow the software to initialize the head and tail pointer
registers before any PCI accesses to the Queue Ports. Each of the four Circular Queues may range
from 4K entries (16 Kbytes) to 64K entries (256 Kbytes).

Table 16-15. MU Configuration Register - MUCR

Bit Default Description

31:06 0000000H 02 Reserved

05:01 000012

Circular Queue Size - This field determines the size of each Circular Queue. All four
queues are the same size.

• 000012 - 4K Entries (16 Kbytes)

• 000102 - 8K Entries (32 Kbytes)

• 001002 - 16K Entries (64 Kbytes)

• 010002 - 32K Entries (128 Kbytes)

• 100002 - 64K Entries (256 Kbytes)

00 02

Circular Queue Enable - This bit enables or disables the Circular Queues. When clear
the Circular Queues are disabled; however, the MU accepts PCI accesses to the
Circular Queue Ports but ignores the data for Writes and returns FFFF.FFFFH for
Reads. Interrupts is not generated to the core when disabled. When set, the Circular
Queues are fully enabled.

P
C

I
IO

P
A

ttr
ib

ut
e

s
A

ttr
ib

u
te

s

28 24 20 16 12 8 4 031

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rs

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

Attribute Legend:

RV = Reserved

PR = Preserved

RS = Read/Set

RW = Read/Write

RC = Read Clear

RO = Read Only

NA = Not Accessible

MUCR
80960RM/RN internal bus address

1350H
16-24 i960® RM/RN I/O Processor Developer’s Manual

Messaging Unit
16.8.10 Queue Base Address Register - QBAR

The Queue Base Address Register (QBAR) contains the local memory address of the Circular
Queues. The base address must be located on a 1 Mbyte address boundary.

All Circular Queue head and tail pointers are based on the QBAR. When the head and tail pointer
registers are read, the Queue Base Address is returned in the upper 12 bits. Writing to the upper 12
bits of the head and tail pointer registers does not affect the Queue Base Address or Queue Base
Address Register.

Table 16-16. Queue Base Address Register - QBAR

Bit Default Description

31:20 000H Queue Base Address - Local memory address of the circular queues.

19:00 00000H Reserved

P
C

I
IO

P
A

ttr
ib

ut
es

A
tt

rib
ut

es

28 24 20 16 12 8 4 031

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

Attribute Legend:

RV = Reserved

PR = Preserved

RS = Read/Set

RW = Read/Write

RC = Read Clear

RO = Read Only

NA = Not Accessible

QBAR
80960RM/RN internal bus address

1354H
i960® RM/RN I/O Processor Developer’s Manual 16-25

Messaging Unit
16.8.11 Inbound Free Head Pointer Register - IFHPR

The Inbound Free Head Pointer Register (IFHPR) contains the local memory offset from the
Queue Base Address of the head pointer for the Inbound Free Queue. The Head Pointer must be
aligned on a word address boundary. When read, the Queue Base Address is provided in the upper
12 bits of the register. Writes to the upper 12 bits of the register are ignored. This register is
maintained by software.

Table 16-17. Inbound Free Head Pointer Register - IFHPR

Bit Default Description

31:20 000H Queue Base Address - Local memory address of the circular queues.

19:02 0000H 002
Inbound Free Head Pointer - Local memory offset of the head pointer for the Inbound
Free Queue.

01:00 002 Reserved

P
C

I
IO

P
A

ttr
ib

ut
e

s
A

ttr
ib

u
te

s

28 24 20 16 12 8 4 031

ro

ro

ro

ro

ro

ro

ro

ro

ro

ro

ro

ro

ro

ro

ro

ro

ro

ro

ro

ro

ro

ro

ro

ro

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rv

rv

rv

rv

Attribute Legend:

RV = Reserved

PR = Preserved

RS = Read/Set

RW = Read/Write

RC = Read Clear

RO = Read Only

NA = Not Accessible

IFHPR
80960RM/RN internal bus address

1360H
16-26 i960® RM/RN I/O Processor Developer’s Manual

Messaging Unit
16.8.12 Inbound Free Tail Pointer Register - IFTPR

The Inbound Free Tail Pointer Register (IFTPR) contains the local memory offset from the Queue
Base Address of the tail pointer for the Inbound Free Queue. The Tail Pointer must be aligned on a
word address boundary. When read, the Queue Base Address is provided in the upper 12 bits of the
register. Writes to the upper 12 bits of the register are ignored.

Table 16-18. Inbound Free Tail Pointer Register - IFTPR

Bit Default Description

31:20 000H Queue Base Address - Local memory address of the circular queues.

19:02 0000H 002
Inbound Free Tail Pointer - Local memory offset of the tail pointer for the Inbound Free
Queue.

01:00 002 Reserved

P
C

I
IO

P
A

tt
rib

ut
es

A
ttr

ib
ut

es

28 24 20 16 12 8 4 031

ro

ro

ro

ro

ro

ro

ro

ro

ro

ro

ro

ro

ro

ro

ro

ro

ro

ro

ro

ro

ro

ro

ro

ro

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rv

rv

rv

rv

Attribute Legend:

RV = Reserved

PR = Preserved

RS = Read/Set

RW = Read/Write

RC = Read Clear

RO = Read Only

NA = Not Accessible

IFTPR
80960RM/RN internal bus address

1364H
i960® RM/RN I/O Processor Developer’s Manual 16-27

Messaging Unit
16.8.13 Inbound Post Head Pointer Register - IPHPR

The Inbound Post Head Pointer Register (IPHPR) contains the local memory offset from the Queue
Base Address of the head pointer for the Inbound Post Queue. The Head Pointer must be aligned on
a word address boundary. When read, the Queue Base Address is provided in the upper 12 bits of
the register. Writes to the upper 12 bits of the register are ignored.

Table 16-19. Inbound Post Head Pointer Register - IPHPR

Bit Default Description

31:20 000H Queue Base Address - Local memory address of the circular queues.

19:02 0000H 002
Inbound Post Head Pointer - Local memory offset of the head pointer for the Inbound
Post Queue.

01:00 002 Reserved

P
C

I
IO

P
A

tt
rib

ut
es

A
ttr

ib
ut

es

28 24 20 16 12 8 4 031

ro

ro

ro

ro

ro

ro

ro

ro

ro

ro

ro

ro

ro

ro

ro

ro

ro

ro

ro

ro

ro

ro

ro

ro

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rv

rv

rv

rv

Attribute Legend:

RV = Reserved

PR = Preserved

RS = Read/Set

RW = Read/Write

RC = Read Clear

RO = Read Only

NA = Not Accessible

IPHPR
80960RM/RN internal bus address

1368H
16-28 i960® RM/RN I/O Processor Developer’s Manual

Messaging Unit
16.8.14 Inbound Post Tail Pointer Register - IPTPR

The Inbound Post Tail Pointer Register (IPTPR) contains the local memory offset from the Queue
Base Address of the tail pointer for the Inbound Post Queue. The Tail Pointer must be aligned on a
word address boundary. When read, the Queue Base Address is provided in the upper 12 bits of the
register. Writes to the upper 12 bits of the register are ignored.

Table 16-20. Inbound Post Tail Pointer Register - IPTPR

Bit Default Description

31:20 000H Queue Base Address - Local memory address of the circular queues.

19:02 0000H 002
Inbound Post Tail Pointer - Local memory offset of the tail pointer for the Inbound Post
Queue.

01:00 002 Reserved

P
C

I
IO

P
A

tt
rib

ut
es

A
ttr

ib
ut

es

28 24 20 16 12 8 4 031

ro

ro

ro

ro

ro

ro

ro

ro

ro

ro

ro

ro

ro

ro

ro

ro

ro

ro

ro

ro

ro

ro

ro

ro

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rv

rv

rv

rv

IPTPR
80960RM/RN internal bus address

136CH

Attribute Legend:

RV = Reserved

PR = Preserved

RS = Read/Set

RW = Read/Write

RC = Read Clear

RO = Read Only

NA = Not Accessible
i960® RM/RN I/O Processor Developer’s Manual 16-29

Messaging Unit
16.8.15 Outbound Free Head Pointer Register - OFHPR

The Outbound Free Head Pointer Register (OFHPR) contains the local memory offset from the
Queue Base Address of the head pointer for the Outbound Free Queue. The Head Pointer must be
aligned on a word address boundary. This register is maintained by software. When read, the
Queue Base Address is provided in the upper 12 bits of the register. Writes to the upper 12 bits of
the register are ignored.

Table 16-21. Outbound Free Head Pointer Register - OFHPR

Bit Default Description

31:20 000H Queue Base Address - Local memory address of the circular queues.

19:02 0000H 002
Outbound Free Head Pointer - Local memory offset of the head pointer for the
Outbound Free Queue.

01:00 002 Reserved

P
C

I
IO

P
A

ttr
ib

ut
e

s
A

ttr
ib

u
te

s

28 24 20 16 12 8 4 031

ro

ro

ro

ro

ro

ro

ro

ro

ro

ro

ro

ro

ro

ro

ro

ro

ro

ro

ro

ro

ro

ro

ro

ro

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rv

rv

rv

rv

Attribute Legend:

RV = Reserved

PR = Preserved

RS = Read/Set

RW = Read/Write

RC = Read Clear

RO = Read Only

NA = Not Accessible

OFHPR
80960RM/RN internal bus address

1370H
16-30 i960® RM/RN I/O Processor Developer’s Manual

Messaging Unit
16.8.16 Outbound Free Tail Pointer Register - OFTPR

The Outbound Free Tail Pointer Register (OFTPR) contains the local memory offset from the
Queue Base Address of the tail pointer for the Outbound Free Queue. The Tail Pointer must be
aligned on a word address boundary. When read, the Queue Base Address is provided in the upper
12 bits of the register. Writes to the upper 12 bits of the register are ignored.

Table 16-22. Outbound Free Tail Pointer Register - OFTPR

Bit Default Description

31:20 000H Queue Base Address - Local memory address of the circular queues.

19:02 0000H 002
Outbound Free Tail Pointer - Local memory offset of the tail pointer for the Outbound
Free Queue.

01:00 002 Reserved

P
C

I
IO

P
A

tt
rib

ut
es

A
ttr

ib
ut

es

28 24 20 16 12 8 4 031

ro

ro

ro

ro

ro

ro

ro

ro

ro

ro

ro

ro

ro

ro

ro

ro

ro

ro

ro

ro

ro

ro

ro

ro

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rv

rv

rv

rv

Attribute Legend:

RV = Reserved

PR = Preserved

RS = Read/Set

RW = Read/Write

RC = Read Clear

RO = Read Only

NA = Not Accessible

OFTPR
80960RM/RN internal bus address

1374H
i960® RM/RN I/O Processor Developer’s Manual 16-31

Messaging Unit
16.8.17 Outbound Post Head Pointer Register - OPHPR

The Outbound Post Head Pointer Register (OPHPR) contains the local memory offset from the
Queue Base Address of the head pointer for the Outbound Post Queue. The Head Pointer must be
aligned on a word address boundary. When read, the Queue Base Address is provided in the upper
12 bits of the register. Writes to the upper 12 bits of the register are ignored.

Table 16-23. Outbound Post Head Pointer Register - OPHPR

Bit Default Description

31:20 000H Queue Base Address - Local memory address of the circular queues.

19:02 0000H 002
Outbound Post Head Pointer - Local memory offset of the head pointer for the
Outbound Post Queue.

01:00 002 Reserved

P
C

I
IO

P
A

tt
rib

ut
es

A
ttr

ib
ut

es

28 24 20 16 12 8 4 031

ro

ro

ro

ro

ro

ro

ro

ro

ro

ro

ro

ro

ro

ro

ro

ro

ro

ro

ro

ro

ro

ro

ro

ro

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rv

rv

rv

rv

Attribute Legend:

RV = Reserved

PR = Preserved

RS = Read/Set

RW = Read/Write

RC = Read Clear

RO = Read Only

NA = Not Accessible

OPHPR
80960RM/RN internal bus address

1378H
16-32 i960® RM/RN I/O Processor Developer’s Manual

Messaging Unit
16.8.18 Outbound Post Tail Pointer Register - OPTPR

The Outbound Post Tail Pointer Register (OPTPR) contains the local memory offset from the
Queue Base Address of the tail pointer for the Outbound Post Queue. The Tail Pointer must be
aligned on a word address boundary. When read, the Queue Base Address is provided in the upper
12 bits of the register. Writes to the upper 12 bits of the register are ignored.

Table 16-24. Outbound Post Tail Pointer Register - OPTPR

Bit Default Description

31:20 000H Queue Base Address - Local memory address of the circular queues.

19:02 0000H 002
Outbound Post Tail Pointer - Local memory offset of the tail pointer for the Outbound
Post Queue.

01:00 002 Reserved

P
C

I
A

ttr
ib

ut
es

28 24 20 16 12 8 4 031

ro

ro

ro

ro

ro

ro

ro

ro

ro

ro

ro

ro

ro

ro

ro

ro

ro

ro

ro

ro

ro

ro

ro

ro

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rv

rv

rv

rv

IO
P

A
tt

rib
ut

es

Attribute Legend:

RV = Reserved

PR = Preserved

RS = Read/Set

RW = Read/Write

RC = Read Clear

RO = Read Only

NA = Not Accessible

OPTPR
80960RM/RN internal bus address

137CH
i960® RM/RN I/O Processor Developer’s Manual 16-33

Messaging Unit
16.8.19 Index Address Register - IAR

The Index Address Register (IAR) contains the offset of the least recently accessed Index Register.
It is written by the MU when the Index Registers are written by a PCI agent. The register is not
updated until the Index Interrupt bit in the Inbound Interrupt Status Register is cleared.

The local memory address of the Index Register least recently accessed is computed by adding the
Index Address Register to the Primary Inbound ATU Translate Value Register.

16.9 Power/Default Status

Software is responsible for initializing the Circular Queue Size in the MU Configuration Register
and all head and tail pointer registers before setting the Circular Queue Enable bit.

Table 16-25. Index Address Register - IAR

Bit Default Description

31:12 000000H Reserved

11:02 00H 002
Index Address - is the local memory offset of the Index Register written (050H to
FFCH)

01:00 002 Reserved

P
C

I
IO

P
A

ttr
ib

ut
es

A
ttr

ib
ut

es

28 24 20 16 12 8 4 031

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

ro

ro

ro

ro

ro

ro

ro

ro

ro

ro

ro

ro

ro

ro

ro

ro

ro

ro

ro

ro

rv

rv

rv

rv

Attribute Legend:

RV = Reserved

PR = Preserved

RS = Read/Set

RW = Read/Write

RC = Read Clear

RO = Read Only

NA = Not Accessible

IAR
80960RM/RN internal bus address

1380H
16-34 i960® RM/RN I/O Processor Developer’s Manual

i960® RM/RN I/O Processor
Arbitration 17

This chapter describes the components which comprise i960® RM/RN I/O processor arbitration,
which include two PCI Bus Arbiters, one PCI Selector, and two Latency Timers. The operation
modes, setup, and implementation of these components are described in this chapter.

17.1 Arbitration Overview

The i960 RM/RN I/O processor interfaces two PCI buses and contains an internal PCI-like bus.
Therefore, there are three PCI buses which need an arbitration mechanism. In addition, the i960
RM/RN I/O processor contains a secondary PCI arbiter for arbitrating multiple agents on the
secondary PCI bus. Figure 17-1 illustrates all the potential PCI bus masters and which arbitration
components are responsible for them.

Figure 17-1. i960® RM/RN I/O Processor Arbitration Block Diagram

A4658-01

MLT

MLTMLT

AAU

MUDAM1 DMA2SATUDMA0PATU

PCI Bus Arbiter
(IARB)

PCI Bus Arbiter
(SARB)

PCI Selector
(PSEL)

Configuration
Registers

BIU

Internal Bus

Scecondary PCI BusPrimary PCI Bus BDG

S_REQ#(5:0)
S_GNT#(5:0)

P_REQ#/P_GNT#
i960® RM/RN I/O Processor Developer’s Manual 17-1

i960® RM/RN I/O Processor Arbitration

CI
e,

ary

 the

he

n the
The four components which comprise i960 RM/RN I/O processor arbitration are:

• PCI Arbiter (page 17-2) - The PCI Arbiter arbitrates between multiple PCI masters. The
arbitration scheme is a round-robin with priority/promotion capabilities. The i960 RM/RN I/O
processor contains two PCI arbiters: the Secondary PCI Arbiter and the Internal Bus Arbiter.

— The Secondary Arbiter (SARB) arbitrates between six potential off-chip secondary P
bus masters and the three i960 RM/RN I/O processor secondary bus masters (Bridg
Secondary ATU, and DMA Channel 2).

— The Internal Bus Arbiter (IARB) arbitrates between the eight potential internal bus
masters (Primary and Secondary ATUs, three DMA Channels, Messaging Unit,
Application Accelerator, and the Bus Interface Unit for the core).

• PCI Selector (page 17-9) - The PCI selector arbitrates between the i960 RM/RN I/O processor PCI
masters for a single REQ#/GNT# pair. The selector uses a simple round-robin arbitration scheme.

— The Primary PCI Selector (PSEL) selects one of the four primary PCI masters (Prim
ATU, DMA Channels 0 and 1, and the Bridge). This selector arbitrates for
P_REQ#/P_GNT# on the primary PCI bus.

• Master Latency Timer (page 17-9) - PCI protocol requires each PCI master to use a master
latency timer (MLT). This timer counts the number of PCI cycles a master uses in a single
transaction. Once the timer expires, the master must relinquish the PCI bus. The i960 RM/RN
I/O processor implements three MLTs: one each for the Primary PCI bus, the Secondary PCI
bus, and the Internal bus. Once the timer expires, a signal indicates to the current PCI bus
master that its time has expired and must relinquish the bus if it no longer maintains its GNT#.

• Arbitration Configuration Registers (page 17-11) - Priorities and latency timer values for the
arbitration mechanism are programmable, as defined in the Arbitration Configuration Registers.

17.2 PCI Arbiter Overview

The PCI Local Bus Specification, Revision 2.1 requires a central arbitration resource for each PCI
bus within a system environment. This section details the operation of the PCI Arbiter block.

The PCI Arbiter supports:

• Up to nine PCI bus masters three priority levels for each bus master

• A “fairness” algorithm which ensures that each potential bus master is granted access to
PCI bus independent of other requests

• Hidden, access-based arbitration

PCI uses the concept of access-based arbitration rather than the traditional time slot approach. If a
bus master requires the PCI bus for a transaction, the device requests the arbitration logic for the
PCI bus. PCI arbitration consists of a simple REQ# and GNT# handshake protocol. When a device
requires the secondary PCI bus, it asserts its REQ# output. The arbitration unit allows the
requesting agent access to the bus by asserting that agent’s GNT# input.

PCI arbitration is a hidden arbitration scheme where the arbitration sequence occurs in the
background while another bus master may currently control the bus. Hidden arbitration has t
advantage of not consuming any PCI bandwidth for arbitration overhead.

The arbiter is required by the PCI Local Bus Specification, Revision 2.1 to implement a “fair”
arbitration algorithm. The PCI Arbiter’s algorithm guarantees there is only one GNT# active o
PCI bus at any one time.
17-2 i960® RM/RN I/O Processor Developer’s Manual

i960® RM/RN I/O Processor Arbitration
17.2.1 Theory of Operation

The purpose of the PCI Arbiter is to provide a fair arbitration scheme for all masters on the PCI bus.
The PCI Arbiter adheres to all the requirements of the PCI Local Bus Specification, Revision 2.1.

17.2.1.1 Priority Mechanism

The PCI Arbiter supports up to nine bus masters. Each request can be programmed to one of three
priority levels or be disabled. Application software programs the Secondary Arbiter Control
Register (SACR) and the Internal Arbiter Control Register (IACR) to set the initial priority for
each bus master. The arbiter promotes the bus master priority levels using a round-robin scheme.

Figure 17-2 is an example showing the three priority levels and reserved slots for the promoted requester.

In Figure 17-2, the bus masters are initially programmed to the priorities shown in Table 17-1. The
SACR register defines the initial priority levels for the SARB while the IACR defines the initial
priority levels for the IARB.

Figure 17-2. Secondary PCI Arbitration Example

i960® RM/RN
procesor Bridge

Priority 012
Winner

Priority 102
Winner

Device
0

Priority 002

Priority 012

Priority 102

Device
3

Device
4

Device
1

Device
2

Device
5

Priority 112

Highest Priority

Medium Priority

Lowest Priority

Disabled

Table 17-1. Bus Master / Programmed Priorities

Bus Master Programmed Priority

i960 RM/RN I/O Processor Bridge High - 002

Device 0 Medium - 012

Device 3 Medium - 012

Device 4 Medium - 012

Device 1 Low - 102

Device 2 Low - 102

Device 5 Disabled - 112
i960® RM/RN I/O Processor Developer’s Manual 17-3

i960® RM/RN I/O Processor Arbitration
Table 17-8 shows the 2-bit values that correspond to each priority level. A priority level of 112
effectively disables the associated device by removing it from the arbitration sequence. A device
programmed with a 112 priority never receives a grant to gain access to the bus.

The priority of the individual bus master determines the level to which the device is placed in the
round-robin scheme. The programmed priority determines the starting priority or the lowest priority
the device is. If the application programs the device for low priority, the device may be promoted up
to medium and then high priority until it is granted the local bus. Once the SARB grants the bus and
the device asserts S_FRAME#, the device is reset to its initially programmed priority.

Note: If a low priority master requests the bus and there is no other higher priority agent requesting the bus, that
master is granted the bus the following clock. The promotion mechanism does not consume bus cycles.

The round-robin arbitration scheme supports three levels of round-robin arbitration: low, medium,
and high priority. Using a round-robin mechanism ensures there is a winner for each priority level.
To enforce the concept of fairness, a slot is reserved for the winner of each priority level (except the
highest) in the next higher priority level. When the winner of a priority level is not granted the bus
during that particular arbitration sequence, it is promoted to the next higher level of priority.

Example 17-1. Priority Example with Three Bus Masters

Table 17-2 presents an example of bus arbitration with three bus masters:

Each of the bus masters (A, B, and C) are constantly requesting the bus and each is at a different
priority level. The top row of Table 17-2 lists the current bus master/winner of the highest priority
group. The three rows labelled as high, medium and low represent the actual priority levels that
devices are currently at based on either their initial programmed priority or promotion through the
levels. For example, device C starts out at low priority. Because it is the only device at this priority, it
is the winner at low priority and is promoted to medium priority. Later, it wins at the medium priority
level (against device B) and is promoted to high priority where it wins the level (against device A)
and the bus. Device C is then put back at its programmed priority of low and starts the cycle over.

Continuing with Table 17-2, the winning bus master pattern would follow as:

ABACABACABACABAC

Table 17-2. Bus Arbitration Example – Three Bus Masters

Priority
Level

Initial
State

Winning Bus Master

A B A C A B A C

High A B A C A B A C A

Medium B C C B B – C B B

Low C – – – – C – – –

NOTE: In this example, all bus masters are continually requesting the bus.
17-4 i960® RM/RN I/O Processor Developer’s Manual

i960® RM/RN I/O Processor Arbitration

must
Example 17-2. Priority Example with Six Bus Masters

Table 17-3 illustrates an example of bus arbitration with six bus masters:

Each of the six bus masters (A through F) are constantly requesting the bus. There are two masters
programmed at each priority level. The top row of Table 17-3 lists the current bus master/winner of
the highest priority group. The three rows labelled as high, medium and low represent the actual
priority levels that devices are currently at based on either their initial programmed priority or
promotion through the levels.

Continuing with Table 17-3, the winning bus master pattern would follow as:

ABCABDABFABCABDABEABCABDABF

17.2.1.2 Arbitration Signalling Protocol

The PCI Arbiter interfaces to all requesting agents on the bus through the REQ#/GNT#
handshaking protocol. A bus master asserts its REQ# to request ownership of the PCI bus. When
the arbiter determines an agent may use the bus, it asserts the agent’s GNT# input. Agents
only assert its REQ# to signal a true need for the bus and not to reserve the bus. Figure 17-3
illustrates secondary arbitration between masters of equal priority.

Table 17-3. Bus Arbitration Example – Six Bus Masters

Priority
Level

Initial
State

Winning Bus Master

A B C A B D A B E

High AB BC AC AB BD AD AB BE AE AB

Medium CD DE DE DE CE CE CE CDF CDF CDF

Low EF F F F F F F – – –

NOTE: In this example, all bus masters are continually requesting the bus.

Figure 17-3. Arbitration Between Two Masters

 1 2 3 4 5 6 7 8S_CLKIN

S_REQ[0]#

S_REQ[1]#

S_GNT[0]#

S_GNT[1]#

S_FRAME#

S_IRDY#

S_AD[63:0]

S_TRDY#

11 129 10

D0 D1 D2ADDR0 ADDR1 D0 ADDR0 D0
i960® RM/RN I/O Processor Developer’s Manual 17-5

i960® RM/RN I/O Processor Arbitration

r

is

rder to

tinues.

ranted
r.

us was

s is
of a
 bus.

e
PCI

’s

ce

rity

An agent can be granted the bus while a previous bus owner still has control of the PCI bus (hidden
arbitration). The arbiter is responsible for deciding which PCI device is granted the bus next while
each master is responsible for determining when the PCI bus actually becomes free and is allowed
to initiate its transaction by asserting FRAME#.

The PCI Local Bus Specification, Revision 2.1 indicates that a master may deassert its REQ# pin
before the arbiter grants the PCI bus to that master. If a master deasserts its REQ# pin, the PCI
Arbiter re-arbitrates and give bus ownership to the next master based on the priority algorithm
defined in Section 17.2.1.1, “Priority Mechanism” on page 17-3.

Note: The PCI Arbiter arbitrates the PCI bus by checking REQ[8:0]# on every cycle independent
of any transactions on the bus1.

1. Rule 2 above, indicates that the idle state must be monitored on the PCI bus. The arbiter always asserts a master’s GNT# one cycle afte
deasserting another master’s GNT# so the idle state is unimportant.

The PCI Arbiter may deassert an agent’s GNT# on any clock. An agent must ensure its GNT
asserted on the clock edge where it initiates a transaction by asserting FRAME#. If GNT# is
deasserted, the transaction may not proceed.

If any of the below three rules are satisfied, the arbiter may deassert one master’s GNT# in o
service a higher priority master:

Rule 1: When GNT# is deasserted and FRAME# is asserted, the bus transaction is valid and con

Once a master initiates a transaction by asserting FRAME# because the arbiter has g
that master the PCI bus, the arbiter may deassert its GNT# to service the next maste

If the bus master asserts FRAME# and the PCI Arbiter removes its grant on the same
cycle, the master assumes ownership of the bus and the arbiter behaves as if the b
granted and claimed by the original master.

Rule 2: One GNT# can be deasserted coincident with another GNT# being asserted if the bu
not in the idle state. Otherwise, a one clock delay is added between the deassertion
GNT# and the assertion of the next GNT#. This prevents contention on the AD[63:0]

An idle state is defined as a cycle where FRAME# and IRDY# are deasserted. If th
PCI bus appears to be idle, a master may actually be using “stepping” to drive the
bus. Stepping requires the master to drive AD[63:0] one cycle prior to the master’s
assertion of FRAME#. Refer to the PCI Local Bus Specification, Revision 2.1 for more
details on address/data stepping.

The PCI Arbiter always satisfies this rule since the arbiter always asserts a master
GNT# one cycle after deasserting another master’s GNT#.

Rule 3: While FRAME# is deasserted, GNT# may be deasserted any time in order to servi
another master, or in response to the associated REQ# being deasserted.

The PCI Arbiter continually updates the bus owner for the next transaction. For
example, assume the arbiter grants the next transaction to a device of medium prio
(Master_A). If a high priority device (Master_B) requests the PCI bus prior to
Master_A claiming the bus by asserting FRAME#, the arbiter deasserts Master_A’s
GNT# and assert Master_B’s GNT# one clock later.
17-6 i960® RM/RN I/O Processor Developer’s Manual

i960® RM/RN I/O Processor Arbitration

 agent

 PCI
s with
g.

en

stable.

iter
address
).

he

ry

 for
atomic
By monitoring REQ[8:0]#, the arbiter can control the arbitration algorithm described in
Section 17.2.1.1, “Priority Mechanism” on page 17-3. The arbiter asserts GNT# two clocks after
REQ# is asserted if the agent has won the bus. An example of arbitration flow is shown below in
Table 17-4.

17.2.1.3 Secondary PCI Bus Arbitration Parking

Arbitration parking occurs when the arbiter asserts GNT# to a selected PCI bus agent and no
is currently using or requesting the bus.

Upon reset, the IARB parks the internal bus with the BIU and the SARB parks the secondary
bus with the bridge. After a master requests, and is granted the bus, the arbiter parks the bu
that master. In other words, the last master that was granted the bus is responsible for parkin

When the secondary PCI bus is parked, the last master continues to assert S_AD[31:0],
S_C/BE[3:0]#, and S_PAR. This prevents the PCI bus from floating.

Note: The 64-bit extension signals (S_AD[63:32], S_C/BE[7:4]#, and S_PAR64) are not actively driv
when the secondary PCI bus is parked on the i960 RM/RN I/O processor. Per the PCI Local Bus
Specification, Revision 2.1, pull-ups provided on the motherboard ensure that these signals are

When a PCI bus is parked during an idle state, the parked agent loses the bus when the arb
asserts another agent’s GNT#. The parked agent relinquishes the bus and stops driving the
and command signals in one clock and parity one clock after that (for the secondary PCI bus
When the arbiter removes GNT# and simultaneously an agent drives FRAME# on the bus, t
agent completes the initiated bus transaction.

17.2.2 Atomic Accesses

The i960 RM/RN I/O processor core is capable of performing atomic operations to the memo
subsystem. Since the BIU (Chapter 12, “Core Processor and Internal Operation”) and MCU
(Chapter 13, “Memory Controller”) reside on the internal bus, the arbiter provides a mechanism
guaranteeing that no other master may access local memory while the core is performing an
operation.

Table 17-4. Arbitration Flow

Cycle Event

0
The arbiter is currently driving Master_A’s GNT#. The arbitration flow is independent of
whether or not Master_A is involved with a transaction. For example, the PCI bus could be
parked with Master_A.

1 Master_B asserts its REQ# for PCI bus ownership. The arbitration logic calculates that
Master_B has a higher priority than Master_A.

2 The arbiter deasserts GNT# for Master_A since Master_B is higher priority.

3 The arbiter asserts GNT# for Master_B.

4
When Master_B drives FRAME#, any of the priority winners that were not granted the bus
are promoted to a higher priority level if the reserved promotion slot is unoccupied
(Section 17.2.1.1, “Priority Mechanism” on page 17-3).
i960® RM/RN I/O Processor Developer’s Manual 17-7

i960® RM/RN I/O Processor Arbitration

al
 In a
tarved.

 the

gister

IU’s

CI
17.2.3 Internal and Secondary PCI Arbiter Differences

There is one difference between the secondary arbiter (SARB) and the internal bus arbiter (IARB):

• The IARB maintains a Multi-Transaction Timer (MTT) for the BIU

The i960 RM/RN I/O processor core has an inherently small burst size. For this reason, a busy
internal bus could inhibit data traffic for the core. To address this issue, the IARB implements a
Multi-Transaction Timer (MTT) which allocates a minimum timeslice where the IARB keeps
GNT[8]# asserted. Refer to Section 17.2.3.1, “Multi-Transaction Timer” on page 17-8 for details.

17.2.3.1 Multi-Transaction Timer

The Internal Arbiter incorporates a Multi-Transaction Timer (MTT) allowing the BIU more intern
bus utilization regardless of its inherently small burst size. PCI is a transaction based protocol.
system with long bursting agents, an agent such as the BIU with a small burst size could get s

The MTT overcomes this potential bottleneck by guaranteeing a programmed timeslice during which
BIU is granted the internal bus. Once the IARB grants the internal bus to the BIU and the BIU initially
asserts I_FRAME#, the MTT is loaded with the value programmed in the Multi-Transaction Timer Re
(MTTR) and begins to decrement. The arbiter does not remove the BIU’s grant (GNT[8]#) unless:

• The BIU no longer requests the bus by deasserting REQ[8]#.

• The BIU continues to drive REQ[8]# and the MTT expires.

Note: Even if a higher-priority master requests the internal bus, the arbiter does not deassert the B
grant (GNT[8]#) unless any of the above conditions occur.

Figure 17-4 illustrates an example of how the BIU uses the MTT for efficient back-to-back
transactions. For this example, the MTTR is programmed for 13 cycles.

Note: The MTT is tightly coupled with the Master Latency Timer (MLT). The Master Latency Timer
keeps track of the maximum time a single transaction may keep the bus. The MLT governs the P
master and is detailed in Section 17.4, “Master Latency Timer Operation” on page 17-9. The
Multi-Transaction Timer keeps track of the minimum time that multiple BIU transactions may
keep the internal bus. The MTT governs the internal arbiter.

If the MTTR is programmed with zero, the MTT is effectively disabled.

Figure 17-4. BIU Back-to-Back Transactions with MTT enabled

 1 2 3 4 5 6 7 8I_CLK 11 129 10

REQ[8]#

GNT[8]#

I_FRAME#

I_IRDY#

I_TRDY#

I_DEVSEL#

13 14 17 1815 16

Load/Start MTT MTT Expired
17-8 i960® RM/RN I/O Processor Developer’s Manual

i960® RM/RN I/O Processor Arbitration

oon as

ster
rs.
d in

possible
t

LT
T#.
17.3 PCI Selector Operation

Figure 17-1 shows the block diagram of all the arbitration components in the i960 RM/RN I/O
processor. i960 RM/RN I/O processor arbitration includes one PCI selector block. The
responsibility of the PCI selector is to assert an external REQ# on behalf of one of the internal
masters. The PCI selector also routes the external GNT# to the requesting internal agent.

The Primary PCI bus has four potential masters from the i960 RM/RN I/O processor: DMA0,
DMA1, PATU, and BDG. If one of the i960 RM/RN I/O processor masters needs the primary PCI
bus and asserts its REQ#, the Primary PCI selector (PSEL) asserts P_REQ#. When the Primary
PCI slave asserts P_GNT#, the PSEL asserts the GNT# for the master requesting the bus.

When a primary master asserts one of the four REQ# signals, the PSEL asserts P_REQ#. For the
case of multiple requests, the selector must arbitrate between the requesting agents. The arbitration
is a simple round-robin algorithm.

17.3.1 Primary PCI Bus Arbitration Parking

When the primary PCI bus is parked on the i960 RM/RN I/O processor, the last master continues to
assert P_AD[31:0], P_C/BE[3:0]#, and P_PAR. This prevents the PCI bus from floating.

Note: The 64-bit extension signals (P_AD[63:32], P_C/BE[7:4]#, and P_PAR64) are not actively driven
when the secondary PCI bus is parked on the i960 RM/RN I/O processor. Per the PCI Local Bus
Specification, Revision 2.1, pull-ups provided on the motherboard ensure that these signals are stable.

17.4 Master Latency Timer Operation

Each PCI device must contain a Master Latency Timer (MLT). This timer defines the minimum
time a PCI master may own the PCI bus. If no other agent is requesting the bus once the MLT
expires, the master may continue to use the bus. Once another agent requests the PCI bus and the
current bus master’s latency timer has expired, the current master must release the bus as s
possible to allow the requesting agent bus ownership.

17.4.1 Primary and Secondary PCI Master Latency Timers

Each PCI interface of the i960 RM/RN I/O processor (primary and secondary) contains a ma
latency timer (MLT) for use by the internal resources when they are acting as PCI bus maste
Both ATUs, the DMA channels, and the bridge interfaces use an MLT. MLT usage is explaine
the PCI Local Bus Specification, Revision 2.1.

As defined by the PCI specification, a PCI bus master must release bus ownership as soon as
when it has lost its GNT# and the MLT has expired. After the MLT expires, the bus master mus
relinquish the bus when an external device or one of the internal resources requests the bus.

17.4.2 Internal Master Latency Timer

All the internal bus masters use a common Internal Master Latency Timer (IMLT). After the IM
expires, the current internal bus master must relinquish the bus if the arbiter deasserts its GN
The 12-bit IMLT is preloaded with the value programmed into the MLTR.
i960® RM/RN I/O Processor Developer’s Manual 17-9

i960® RM/RN I/O Processor Arbitration

-12
17.5 Reset Conditions

Table 17-5 shows all the arbitration blocks and the signal responsible for resetting its logic:

When the secondary bus is reset with S_RST#, the SARB logic is reset which effectively moves all
secondary PCI devices to their programmed priority levels and starts the round robin arbitration
sequence on the lowest number device at each priority level. Similarly, I_RST# moves all the
internal agents to their programmed priority levels and starts the round robin arbitration sequence
on the lowest number device at each priority level.

Because the SACR is located in the bridge configuration register space, it is reset when P_RST# is
asserted. Refer to Section 17.6.1, “Secondary Arbitration Control Register - SACR” on page 17
for its value during reset.

17.5.1 S_REQ64# Control

While P_RST# is asserted, the SARB samples the 32BITPCI_EN# pin. The SARB uses the
sampled value to drive S_REQ64# while S_RST# is asserted.

• If 32BITPCI_EN# is deasserted while P_RST# is asserted, S_REQ64# is asserted during the
assertion of S_RST#. After the deassertion of S_RST#, S_REQ64# is driven high (deasserted)
for one to two clocks before floating the S_REQ64# pin.

• If 32BITPCI_EN# is asserted while P_RST# is asserted, S_REQ64# floats to allow the
motherboard to pull-up.

S_REQ64# remains valid for one clock (P_CLK) after S_RST# deasserts.

Table 17-5. Arbitration Block and Reset Signals

Arbitration Block Reset With:

Secondary Arbiter (SARB) S_RST#

Internal Arbiter (IARB) P_RST#

Primary PCI Selector (PSEL) P_RST#

Primary Master Latency Timer P_RST#

Secondary Master Latency Timer S_RST#
17-10 i960® RM/RN I/O Processor Developer’s Manual

i960® RM/RN I/O Processor Arbitration
17.6 Register Definitions

Table 17-6 lists Arbitration configuration registers which are detailed further in proceeding sections.

Table 17-6. Secondary Arbiter Register Table

Section, Register Name - Acronym (Page)

Section 17.6.1, “Secondary Arbitration Control Register - SACR” on page 17-12

Section 17.6.2, “Internal Arbitration Control Register - IACR” on page 17-13

Section 17.6.3, “Master Latency Timer Register - MLTR” on page 17-14

Section 17.6.4, “Multi-Transaction Timer Register - MTTR” on page 17-14
i960® RM/RN I/O Processor Developer’s Manual 17-11

i960® RM/RN I/O Processor Arbitration
17.6.1 Secondary Arbitration Control Register - SACR

The Secondary Arbitration Control Register (SACR) sets the arbitration priority of each device that
uses the secondary PCI bus. This register is part of the bridge configuration register space and is
accessible from both the primary PCI bus and the i960 RM/RN I/O processor core.

Each device is given a 2-bit priority shown in Table 17-8. The default values for the SACR give all
external secondary PCI devices the lowest priority level and the highest priority to the i960
RM/RN I/O processor.

l

Table 17-7. Secondary Arbitration Control Register - SACR

Bit Default Description

31:14 0 Reserved

13:12 102 Device 5 Priority

11:10 102 Device 4 Priority

9:8 102 Device 3 Priority

7:6 102 Device 2 Priority

5:4 102 Device 1 Priority

3:2 102 Device 0 Priority

1:0 002 Secondary PCI Interface Priority (Bridge, DMA Channel 2, or Secondary ATU)

P
C

I
IO

P
A

tt
rib

ut
es

A
ttr

ib
ut

es

28 24 20 16 12 8 4 031

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

Attribute Legend:

RV = Reserved

PR = Preserved

RS = Read/Set

RW = Read/Write

RC = Read Clear

RO = Read Only

NA = Not Accessible

Internal Bus Address

104CH

Table 17-8. 2-Bit Priorities

2-Bit Programmed Value Priority Level

002 High Priority

012 Medium Priority

102 Low Priority

112 Disabled
17-12 i960® RM/RN I/O Processor Developer’s Manual

i960® RM/RN I/O Processor Arbitration
17.6.2 Internal Arbitration Control Register - IACR

The Internal Arbitration Control Register (IACR) sets the arbitration priority of each device that
uses the internal bus. This register is part of the local arbitration configuration register space and is
accessible from the i960 RM/RN I/O processor core.

Each device is given a 2-bit priority shown in Table 17-8. The default values for the IACR give all
the internal bus masters the highest priority.

Table 17-9. Internal Arbitration Control Register - IACR

Bit Default Description

31:14 0 Reserved

13:12 002 Application Accelerator Priority

11:10 002 BIU Priority

9:8 002 DMA Channel 2 Priority

7:6 002 DMA Channel 1 Priority

5:4 002 DMA Channel 0 Priority

3:2 002 Secondary ATU Priority

1:0 002 Primary ATU and Messaging Unit Priority

P
C

I
IO

P
A

ttr
ib

u
te

s
A

ttr
ib

ut
es

28 24 20 16 12 8 4 031

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

rw

rv

na

rv

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

Attribute Legend:

RV = Reserved

PR = Preserved

RS = Read/Set

RC = Read Clear

RO = Read Only

NA = Not Accessible

Internal Bus Address

1600H
i960® RM/RN I/O Processor Developer’s Manual 17-13

i960® RM/RN I/O Processor Arbitration
17.6.3 Master Latency Timer Register - MLTR

The Master Latency Timer Register defines preload value for the Internal Bus Master Latency
Timer. The preload is a 12-bit value. This register is part of the local arbitration configuration
register space and is accessible from the i960 RM/RN I/O processor core.

17.6.4 Multi-Transaction Timer Register - MTTR

The Multi-Transaction Timer Register defines the duration, which the i960 core access, through the
BIU, retains GNT[8]# across back-to-back transactions. This is an 8-bit value allowing up to 255
dedicated internal bus cycles for as long as REQ[8]# is asserted. A value of zero effectively disables the
MTT. This register is part of the local arbitration configuration register space and is accessible from the
i960 RM/RN I/O processor core.

Table 17-10. Master Latency Timer Register - MLTR

Bit Default Description

31:12 0 Reserved

11:0 FFFH Master Latency Timer Preload Value - Indicates the minimum number of clocks a
master is allowed to hold the PCI bus for a single transaction.

P
C

I
IO

P
A

ttr
ib

ut
es

A
tt

rib
ut

es

28 24 20 16 12 8 4 031

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

rw

rv

na

rv

na

rv

na

rv

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

Attribute Legend:

RV = Reserved

PR = Preserved

RS = Read/Set

RW = Read/Write

RC = Read Clear

RO = Read Only

NA = Not Accessible

Internal Bus Address

1604H

Table 17-11. Multi-Transaction Timer Register - MTTR

Bit Default Description

31:8 000000H Reserved

7:0 00H Multi-Transaction Timer Preload Value - Indicates the minimum number of clocks a
master is allowed to hold the PCI bus for a single transaction.

P
C

I
IO

P
A

ttr
ib

ut
e

s
A

ttr
ib

u
te

s

28 24 20 16 12 8 4 031

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

rw

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

Attribute Legend:

RV = Reserved

PR = Preserved

RS = Read/Set

RW = Read/Write

RC = Read Clear

RO = Read Only

NA = Not Accessible

Internal Bus Address

1608H
17-14 i960® RM/RN I/O Processor Developer’s Manual

s

n the
efined

 or 8.
t mode)
rupt
Timers 18

This chapter describes the i960® RM/RN I/O processor’s dual, independent 32-bit timers. Topic
include timer registers (TMRx, TCRx and TRRx), timer operation, timer interrupts, and timer
register values at initialization.

Each timer is programmed by the timer registers. These registers are memory-mapped withi
processor, addressable on 32-bit boundaries. When enabled, a timer decrements the user-d
count value with each Timer Clock (TCLOCK) cycle. The countdown rate is also
user-configurable to be equal to the bus clock frequency, or the bus clock rate divided by 2, 4
The timers can be programmed to either stop when the count value reaches zero (single-sho
or run continuously (auto-reload mode). When a timer’s count reaches zero, the timer’s inter
unit signals the processor’s interrupt controller. Figure 18-1 shows a diagram of the timer
functions. See also Figure 18-2 for the Timer Unit state diagram.

Figure 18-1. Timer Functional Diagram

Table 18-1. Timer Performance Ranges

Bus Frequency (MHz) Max Resolution (ns) Max Range (mins)

100 10 5.73

Address
Detect

Timer Mode Register

Timer Count Register
32-bit Counter

32-bit Compare
Against Zero

Interrupt Unit

Clock Unit Bus

Fault
Output

User/ Interrupt
Output

Clock

Internal
CPU
Bus

Timer Reload Register

Selected

Terminal Count

Supervisor
Status

32-bit Register

Clock
i960® RM/RN I/O Processor Developer’s Manual 18-1

Timers
18.1 Timer Registers

As shown in Table 18-2, each timer has three memory-mapped registers:

• Timer Mode Register - programs the specific mode of operation or indicates the current
programmed status of the timer. This register is described in Section 18.1.1, “Timer Mode
Registers – TMR0:1” on page 18-3.

• Timer Count Register - contains the timer’s current count. See Section 18.1.2, “Timer Count
Register – TCR0:1” on page 18-6.

• Timer Reload Register - contains the timer’s reload count. See Section 18.1.3, “Timer Reload
Register – TRR0:1” on page 18-7.

For register memory locations, see Table C-3 “Timer Registers” on page C-4.

Table 18-2. Timer Registers

Timer Unit Register Acronym Register Name

Timer 0

TMR0 Timer Mode Register 0

TCR0 Timer Count Register 0

TRR0 Timer Reload Register 0

Timer 1

TMR1 Timer Mode Register 1

TCR1 Timer Count Register 1

TRR1 Timer Reload Register 1
18-2 i960® RM/RN I/O Processor Developer’s Manual

Timers
18.1.1 Timer Mode Registers – TMR0:1

The Timer Mode Register (TMRx) lets the user program the mode of operation and determine the
current status of the timer. TMRx bits are described in the subsections following Table 18-3 and are
summarized in Table 18-7.

18.1.1.1 Bit 0 - Terminal Count Status Bit (TMRx.tc)

The TMRx.tc bit is set when the Timer Count Register (TCRx) decrements to 0 and bit 2
(TMRx.reload) is not set for a timer. The TMRx.tc bit allows applications to monitor timer status
through software instead of interrupts. TMRx.tc remains set until software accesses (reads or
writes) the TMRx. The access clears TMRx.tc. The timer ignores any value specified for TMRx.tc
in a write request.

When auto-reload is selected for a timer and the timer is enabled, the TMRx.tc bit status is
unpredictable. Software should not rely on the value of the TMRx.tc bit when auto-reload is enabled.

The processor also clears the TMRx.tc bit upon hardware or software reset. Refer to Section 11.2,
“i960® RM/RN I/O Processor Initialization” on page 11-2.

Table 18-3. Timer Mode Register – TMRx

LBA:

PCI:

CH 0-0308H
CH 1-0318H

NA

Legend: NA = Not Accessible RO = Read Only
RV = Reserved PR = Preserved RW = Read/Write
RS = Read/Set RC = Read Clear
LBA = 80960 local bus address PCI = PCI Configuration Address Offset

Bit Default Description

31:06 0000 000H Reserved. Initialize to 0.

05:04 002

Timer Input Clock Selects - TMRx.csel1:0
(00) 1:1 Timer Clock = Bus Clock
(01) 2:1 Timer Clock = Bus Clock / 2
(10) 4:1 Timer Clock = Bus Clock / 4
(11) 8:1 Timer Clock = Bus Clock / 8

03 02

Timer Register Supervisor Write Control - TMRx.sup
 (0) Supervisor and User Mode Write Enabled
 (1) Supervisor Mode Only Write Enabled

02 02

Timer Auto Reload Enable - TMRx.reload
(0) Auto Reload Disabled
(1) Auto Reload Enabled

01 02

Timer Enable - TMRx.enable
(0) Disabled
(1) Enabled

00 02

Terminal Count Status - TMRx.tc
(0) No Terminal Count
(1) Terminal Count

PCI

LBA

28 24 20 16 12 8 4 031

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na
i960® RM/RN I/O Processor Developer’s Manual 18-3

Timers

lock

he

essor

Rx

ect

 equal

18.1.1.2 Bit 1 - Timer Enable (TMRx.enable)

The TMRx.enable bit allows user software to control the timer’s RUN/STOP status. When:

TMRx.enable = 1 The Timer Count Register (TCRx) value decrements every Timer C
(TCLOCK) cycle. TCLOCK is determined by the Timer Input Clock
Select (TMRx.csel bits 0-1). See Section 18.1.1.5. When
TMRx.reload=0, the timer automatically clears TMRx.enable when t
count reaches zero. When TMRx.reload=1, the bit remains set. See
Section 18.1.1.3.

TMRx.enable = 0 The timer is disabled and ignores all input transitions.

User software sets this bit. Once started, the timer continues to run, regardless of other proc
activity. Three events can stop the timer:

• User software explicitly clearing this bit (i.e., TMRx.enable = 0).

• TCRx value decrements to 0, and the Timer Auto Reload Enable (TMRx.reload) bit = 0.

• Hardware or software reset. Refer to Section 11.2, “i960® RM/RN I/O Processor
Initialization” on page 11-2.

18.1.1.3 Bit 2 - Timer Auto Reload Enable (TMRx.reload)

The TMRx.reload bit determines whether the timer runs continuously or in single-shot mode.
When TCRx = 0 and TMRx.enable = 1 and:

TMRx.reload = 1 The timer runs continuously. The processor:

1. Automatically loads TCRx with the value in the Timer Reload Register (TRRx), when TC
value decrements to 0.

2. Decrements TCRx until it equals 0 again.

Steps 1 and 2 repeat until software clears TMRx bits 1 or 2.

TMRx.reload = 0 The timer runs until the Timer Count Register = 0. TRRx has no eff
on the timer.

User software sets this bit. When TMRx.enable and TMRx.reload are set and TRRx does not
0, the timer continues to run in auto-reload mode, regardless of other processor activity. Two
events can stop the timer:

• User software explicitly clearing either TMRx.enable or TMRx.reload.

• Hardware or software reset.

The processor clears this bit upon hardware or software reset.
18-4 i960® RM/RN I/O Processor Developer’s Manual

Timers

ad

ode

ode.

See

ncy.
18.1.1.4 Bit 3 - Timer Register Supervisor Read/Write Control (TMRx.sup)

The TMRx.sup bit enables or disables user mode writes to the timer registers (TMRx, TCRx,
TRRx). Supervisor mode writes are allowed regardless of this bit’s condition. Software can re
these registers from either mode.

When:

TMRx.sup = 1 The timer generates a TYPE.MISMATCH fault when a user mode task
attempts a write to any of the timer registers; however, supervisor m
writes are allowed.

TMRx.sup = 0 The timer registers can be written from either user or supervisor m

The processor clears TMRx.sup upon hardware or software reset. Refer to Section 11.2, “i960®
RM/RN I/O Processor Initialization” on page 11-2.

18.1.1.5 Bits 4, 5 - Timer Input Clock Select (TMRx.csel1:0)

User software programs the TMRx.csel bits to select the Timer Clock (TCLOCK) frequency.
Table 18-4. As shown in Figure 18-1, the bus clock is an input to the timer clock unit. These bits
allow the application to specify whether TCLOCK runs at or slower than the bus clock freque

The processor clears these bits upon hardware or software reset (TCLOCK = Bus Clock).

Table 18-4. Timer Input Clock (TCLOCK) Frequency Selection

Bit 5
TMRx.csel1

Bit 4
TMRx.csel0 Timer Clock (TCLOCK)

0 0 Timer Clock = Bus Clock

0 1 Timer Clock = Bus Clock / 2

1 0 Timer Clock = Bus Clock / 4

1 1 Timer Clock = Bus Clock / 8
i960® RM/RN I/O Processor Developer’s Manual 18-5

Timers

The
 zero
e
 is

 it
”

x
e
18.1.2 Timer Count Register – TCR0:1

The Timer Count Register (TCRx) is a 32-bit register that contains the timer’s current count.
register value decrements with each timer clock tick. When this register value decrements to
(terminal count), a timer interrupt is generated. When TMRx.reload is not set for the timer, th
status bit in the timer mode register (TMRx.tc) is set and remains set until the TMRx register
accessed. Table 18-5 shows the timer count register.

The valid programmable range is from 1H to FFFF FFFFH. Avoid programming TCRx to 0 as
will have varying results as described in Section 18.5, “Uncommon TCRX and TRRX Conditions
on page 18-10.

User software can read or write TCRx whether the timer is running or stopped. Bit 3 of TMR
determines user read/write control (Section 18.1.1.4). The TCRx value is undefined after hardwar
or software reset.

Table 18-5. Timer Count Register – TCRx

LBA:

PCI:

CH 0-0304H
CH 1-0314H

na

Legend: NA = Not Accessible RO = Read Only
RV = Reserved PR = Preserved RW = Read/Write
RS = Read/Set RC = Read Clear
LBA = 80960 local bus address PCI = PCI Configuration Address Offset

Bit Default Description

31:00 0000 0000H Timer Count Value - TCRx.d31:0

PCI

LBA

28 24 20 16 12 8 4 031

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na
18-6 i960® RM/RN I/O Processor Developer’s Manual

Timers

d

g a

mines
18.1.3 Timer Reload Register – TRR0:1

The Timer Reload Register (TRRx; Table 18-6) is a 32-bit register that contains the timer’s reloa
count. The timer loads the reload count value into TCRx when TMRx.reload is set (1),
TMRx.enable is set (1) and TCRx equals zero.

As with TCRx, the valid programmable range is from 1H to FFFF FFFFH. Avoid programmin
value of 0, as it may prevent TINTx from asserting continuously. (See Section 18.5, “Uncommon
TCRX and TRRX Conditions” on page 18-10 for more information.)

User software can access TRRx whether the timer is running or stopped. Bit 3 of TMRx deter
read/write control (Section 18.1.1.4, “Bit 3 - Timer Register Supervisor Read/Write Control
(TMRx.sup)” on page 18-5). TRRx value is undefined after hardware or software reset.

Table 18-6. Timer Reload Register – TRRx

LBA:

PCI:

CH 0-0300H
CH 1-0310H

NA

Legend: NA = Not Accessible RO = Read Only
RV = Reserved PR = Preserved RW = Read/Write
RS = Read/Set RC = Read Clear
LBA = 80960 local bus address PCI = PCI Configuration Address Offset

Bit Default Description

31:00 0000 0000H Timer Auto-Reload Value - TRRx.d31:0

PCI

LBA

28 24 20 16 12 8 4 031

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na
i960® RM/RN I/O Processor Developer’s Manual 18-7

Timers

s

, the
18.2 Timer Operation

This section summarizes timer operation and describes load/store access latency for the timer registers.

18.2.1 Basic Timer Operation

Each timer has a programmable enable bit in its control register (TMRx.enable) to start and stop
counting. The supervisor (TMRx.sup) bit controls write access to the enable bit. This allows the
programmer to prevent user mode tasks from enabling or disabling the timer. Once the timer is
enabled, the value stored in the Timer Count Register (TCRx) decrements every Timer Clock
(TCLOCK) cycle. TCLOCK is determined by the Timer Input Clock Select (TMRx.csel) bit
setting. The countdown rate can be set to equal the bus clock frequency, or the bus clock rate
divided by 2, 4 or 8. Setting TCLOCK to a slower rate lets the user specify a longer count period
with the same 32-bit TCRx value.

Software can read or write the TCRx value whether the timer is running or stopped. This lets the
user monitor the count without using hardware interrupts. The TMRx.sup bit lets the programmer
allow or prevent user mode writes to TCRx, TMRx and TRRx.

When the TCRx value decrements to zero, the unit’s interrupt request signals the processor’
interrupt controller. See Section 18.3, “Timer Interrupts” on page 18-10 for more information. The
timer checks the value of the timer reload bit (TMRx.reload) setting. When TMRx.reload. = 1
processor:

• Automatically reloads TCRx with the value in the Timer Reload Register (TRRx).

• Decrements TCRx until it equals 0 again.

This process repeats until software clears TMRx.reload or TMR.enable.

When TMRx.reload = 0, the timer stops running and sets the terminal count bit (TMRx.tc). This bit
remains set until user software reads or writes the TMRx register. Either access type clears the bit.
The timer ignores any value specified for TMRx.tc in a write request.

Table 18-7. Timer Mode Register Control Bit Summary

B
it

 3
(T

M
R

x.
su

p
)

T
R

R
x

T
C

R
x

B
it

 2
(T

M
R

x.
re

lo
ad

)

B
it

 1
(T

M
R

x.
en

ab
le

)

Action

X X X X 0 Timer disabled.

X X N 0 1 Timer enabled, TMRx.enable is cleared when TCRx decrements to zero.

X N N 1 1 Timer and auto reload enabled,TMRx.enable remains set when TCRx=0.
When TCRx=0, TCRx equals the TRRx value.

0 X X X X No faults for user mode writes are generated.

1 X X X X TYPE.MISMATCH fault generated on user mode write.

NOTE: X = don’t care
N = a number between 1H and FFFF FFFFH
18-8 i960® RM/RN I/O Processor Developer’s Manual

Timers
18.2.2 Load/Store Access Latency for Timer Registers

As with all other load accesses from internal memory-mapped registers, a load instruction that
accesses a timer register has a latency of one internal processor cycle. With one exception, a store
access to a timer register completes and all state changes take effect before the next instruction
begins execution. The exception to this is when disabling a timer. Latency associated with the
disabling action is such that a timer interrupt may be posted immediately after the disabling
instruction completes. This can occur when the timer is near zero as the store to TMRx occurs. In
this case, the timer interrupt is posted immediately after the store to TMRx completes and before
the next instruction can execute. Table 18-8 summarizes the timer access and response timings.
Refer also to the individual register descriptions for details.

Note that the processor may delay the actual issuing of the load or store operation due to previous
instruction activity and resource availability of processor functional units.

The processor ensures that the TMRx.tc bit is cleared within one bus clock after a load or store
instruction accesses TMRx.

Table 18-8. Timer Responses to Register Bit Settings

 Name Status Action

(TMRx.tc)

Terminal Count
Bit 0

READ
Timer clears this bit when user software accesses TMRx. This bit can be set
1 bus clock later. The timer sets this bit within 1 bus clock of TCRx reaching
zero when TMRx.reload=0.

WRITE Timer clears this bit within 1 bus clock after the software accesses TMRx.
The timer ignores any value specified for TMRx.tc in a write request.

(TMRx.enable)

Timer Enable
Bit 1

READ Bit is available 1 bus clock after executing a read instruction from TMRx.

WRITE Writing a ‘1’ enables the bus clock to decrement TCRx within 1 bus clock
after executing a store instruction to TMRx.

(TMRx.reload)

Timer Auto
Reload Enable

Bit 2

READ Bit is available 1 bus clock after executing a read instruction from TMRx.

WRITE
Writing a ‘1’ enables the reload capability within 1 bus clock after the store
instruction to TMRx has executed. The timer loads TRRx data into TCRx and
decrements this value during the next bus clock cycle.

(TMRx.sup)

Timer Register
Supervisor Write

Control
Bit 3

READ Bit is available 1 bus clock after executing a read instruction from TMRx.

WRITE
Writing a ‘1’ locks out user mode writes within 1 bus clock after the store
instruction executes to TMRx. Upon detecting a user mode write the timer
generates a TYPE.MISMATCH fault.

(TMRx.csel1:0)

Timer Input Clock
Select

Bits 4-5

READ Bits are available 1 bus clock after executing a read instruction from
TMRx.csel1:0 bit(s).

WRITE The timer re-synchronizes the clock cycle used to decrement TCRx within
one bus clock cycle after executing a store instruction to TMRx.csel1:0 bit(s).

(TCRx.d31:0)

Timer Count
Register

READ
The current TCRx count value is available within 1 bus clock cycle after
executing a read instruction from TCRx. When the timer is running, the
pre-decremented value is returned as the current value.

WRITE
The value written to TCRx becomes the active value within 1 bus clock cycle.
When the timer is running, the value written is decremented in the current
clock cycle.

(TRRx.d31:0)

Timer Reload
Register

READ

The current TRRx count value is available within 1 bus clock after executing a
read instruction from TRRx. When the timer is transferring the TRRx count
into TCRx in the current count cycle, the timer returns the new TCRx count
value to the executing read instruction.

WRITE
The value written to TRRx becomes the active value stored in TRRx within 1
bus clock cycle. When the timer is transferring the TRRx value into the TCRx,
data written to TRRx is also transferred into TCRx.
i960® RM/RN I/O Processor Developer’s Manual 18-9

Timers

d, the
 a
y be lost.

 even

ain
 to zero
t.
18.3 Timer Interrupts

Each timer is the source for one interrupt. When a timer detects a zero count in its TCRx, the timer generates
an internal edge-detected Timer Interrupt signal (TINTx) to the interrupt controller, and the interrupt-pending
(IPND.tipx) bit is set in the interrupt controller. Each timer interrupt can be selectively masked in the Interrupt
Mask (IMSK) register or handled as a dedicated hardware-requested interrupt. Refer to Chapter 8, “PCI and
Peripheral Interrupt Controller Unit” for a description of hardware-requested interrupts.

When the interrupt is disabled after a request is generated, but before a pending interrupt is service
interrupt request is still active (the Interrupt Controller latches the request). When a timer generates
second interrupt request before the CPU services the first interrupt request, the second request ma

When auto-reload is enabled for a timer, the timer continues to decrement the value in TCRx
after entry into the timer interrupt handler.

18.4 Powerup/Reset Initialization
Upon power up, external hardware reset or software reset (sysctl), the timer registers are initialized
to the values shown in Table 18-9.

18.5 Uncommon TCRx and TRRx Conditions
Table 18-7 summarizes the most common settings for programming the timer registers. Under cert
conditions, however, it may be useful to set the Timer Count Register or the Timer Reload Register
before enabling the timer. Table 18-10 details the conditions and results when these conditions are se

Table 18-9. Timer Powerup Mode Settings

Mode/Control Bit Notes

TMRx.tc = 0 No terminal count

TMRx.enable = 0 Prevents counting and assertion of TINTx

TMRx.reload = 0 Single terminal count mode

TMRx.sup = 0 Supervisor or user mode access

TMRx.csel1:0 = 0 Timer Clock = Bus Clock

TCRx.d31:0 = 0 Undefined

TRRx.d31:0 = 0 Undefined

TINTx output Deasserted

Table 18-10. Uncommon TMRx Control Bit Settings

TRRx TCRx Bit 2
(TMRx.reload)

Bit 1
(TMRx.enable)

Action

X 0 0 1 TMRx.tc and TINTx set, TMR.enable cleared

0 0 1 1 Timer and auto reload enabled, TINTx not generated and timer
enable remains set.

0 N 1 1 Timer and auto reload enabled. TINT.x set when TCRx=0. The
timer remains enabled but further TINTx’s are not generated.

N 0 1 1
Timer and auto reload enabled, TINTx not set initially, TCRx =
TRRx, TINTx set when TCRx has completely decremented the
value it loaded from TRRx. TMRx.enable remains set.

NOTE: X = don’t care
N = a number between 1H and FFFF FFFFH
18-10 i960® RM/RN I/O Processor Developer’s Manual

Timers
18.6 Timer State Diagram

Figure 18-2 shows the common states of the Timer Unit. For uncommon conditions see
Section 18.5, “Uncommon TCRX and TRRX Conditions” on page 18-10.

Figure 18-2. Timer Unit State Diagram

Hardware/Software Reset

TMRx.enable = 0
TMRx.reload = 0
TMRx.sup = 0
TMRx.csel1:0 = 0

IDLE
Bus Clock or
SW Read

SW Write (TMRx.enable = 1)

TMRx.enable = 1
TMRx.reload =user value
TMRx.sup = user value
TMRx.csel1:0 = user value

TCRx
Decrement

Clock Unit Tick

SW Write TCRx = 0

 and TCRx != 0

TC = 1
IPND.tip = 1

IPND.tip = 0

TC Detected

Bus Clock

SW Read SW Read/Write & Reload = 0

Reload = 1

TCRx = TRRx

TMRx.enable = 1

TC = 0

TMRx.enable = 0

State
TC = 0

TMRx.reload =user value
TMRx.sup = user value
TMRx.csel1:0 = user value

TMRx.enable = 1

TMRx.enable = 0

SW Write
(TMRx.enable = 0)

Initial TCRx
Check

TCRx != 0

SW Read

SW Write

See Section 18.5, “Uncommon
TCRX and TRRX Conditions” on
page 18-10.

TCRx = 0
i960® RM/RN I/O Processor Developer’s Manual 18-11

DMA Controller Unit 19

This chapter describes the integrated Direct Memory Access (DMA) Controller Unit. The
operation modes, setup, external interface, and implementation of the DMA Controller are detailed
in this chapter.

19.1 Overview

The DMA Controller provides low-latency, high-throughput data transfer capability. The DMA
Controller optimizes block transfers of data between the PCI bus and the local processor memory.
The DMA is an initiator on the PCI bus with burst capabilities providing a maximum throughput of
132 Mbytes/sec at 33 MHz when the PCI bus is operating in 32-bit mode. When the PCI bus is
operating in 64-bit mode, the maximum throughput is 264 Mbytes/sec at 33 MHz.

The DMA Controller hardware is responsible for executing data transfers and for providing the
programming interface. The DMA Controller features:

• Three Independent Channels

• 256-byte queues in Ch-0 and Ch-1

• 64-byte queue in Ch-2

• Utilization of the i960® RM/RN I/O Processor Memory Controller Interface

• 232 addressing range on the i960 RM/RN I/O processor interface

• 264 addressing range on the primary and secondary PCI interfaces by using PCI Dual Address
Cycle (DAC)

• Independent PCI interfaces to the primary and secondary PCI buses

• Hardware support for unaligned data transfers for both the PCI bus and the internal bus

• Up to 264 Mbytes/sec burst support for both the PCI bus and the i960 RM/RN I/O processor
processor internal bus

• Direct addressing to and from the PCI bus

• Fully programmable from the i960 core processor

• Support for automatic data chaining for gathering and scattering of data blocks

• 64-bit PCI and i960 RM/RN I/O processor local memory interface
i960® RM/RN I/O Processor Developer’s Manual 19-1

DMA Controller Unit
Figure 19-1 shows the connections of the DMA channels to the PCI buses.

19.2 Theory of Operation

The DMA Controller provides three channels of high throughput PCI-to-memory transfers.
Channels 0 and 1 transfer blocks of data between the primary PCI bus and i960 RM/RN I/O
processor local memory. Channel 2 transfers blocks of data between the secondary PCI bus and
i960 RM/RN I/O processor local memory. All channels operate identically. Each channel has a PCI
bus interface and an internal bus interface. Figure 19-2 shows the block diagram for one channel of
the DMA Controller.

Figure 19-1. DMA Controller

Primary PCI Bus

Secondary PCI Bus

PCI to PCI Bridge

DMA Channel 0

DMA Channel 1

DMA Channel 2

internal bus

Figure 19-2. DMA Channel Block Diagram

64-bit

 Data Queue

DMA Channel
Packing/

Unpacking
Unit

32-bit or

Channel Control Register

Control Registers

Channel Status Register
Descriptor Address Register

Next Descriptor Address Register
PCI Address Register

PCI Upper Address Register

80960 Local Address Register
Byte Count Register

Descriptor Control Register

Internal
Bus Interface

Internal

Master PCI
Bus Interface

 64-bit
PCI Bus

Bus
19-2 i960® RM/RN I/O Processor Developer’s Manual

DMA Controller Unit
Each DMA channel uses direct addressing for both the PCI bus and the internal bus. It supports
data transfers to and from the full 64-bit address range of the PCI bus. This includes 64-bit
addressing using PCI DAC command. The channel provides a special register which contains the
upper 32 address bits for the 64-bit address. The DMA channels do not support data transfers that
cross a 32-bit address boundary.

Both the PCI interface and the internal bus interface support unlimited burst lengths.

The channel programming interface is accessible from the internal bus through a memory-mapped
register interface. Each channel is programmed independently and has its own set of registers. A
DMA transfer is configured by writing the source address, destination address, number of bytes to
transfer, and various control information into a chain descriptor in i960 RM/RN I/O processor local
memory. Chain descriptors are described in detail in Section 19.3.

Each channel supports chaining. Chain descriptors that describe one DMA transfer each can be
linked together in i960 RM/RN I/O processor local memory to form a linked list. Each chain
descriptor contains all the necessary information for transferring a block of data in addition to a
pointer to the next chain descriptor. The end of the chain is indicated when the pointer is zero.

Each channel contains a hardware data packing and unpacking unit. This unit enables data transfers
from or to unaligned addresses in either the PCI address space or the i960 RM/RN I/O processor
local address space. All combinations of unaligned data are supported with the packing and
unpacking unit.

The DMA Controller supports 64-bit and 32-bit wide PCI bus widths. Refer to Section 19.4 for
additional information on various PCI bus width transfer mechanisms.

19.3 DMA Transfer

A DMA transfer is a block move of data from one memory address space to another. DMA
transfers are configured and initiated through a set of memory-mapped registers and one or more
chain descriptors located in local memory. A DMA transfer is defined by the source address,
destination address, number of bytes to transfer, and control values. These values are loaded into
the chain descriptor before a DMA transfer begins. On the i960 RM/RN I/O processor internal bus,
the DMA controller attempts all transactions as 64-bit transfers.

Table 19-1. DMA Registers

Register Abbreviation Description

Channel Control Register CCR Channel Control Word

Channel Status Register CSR Channel Status Word

Descriptor Address Register DAR Address of Current Chain Descriptor

Next Descriptor Address Register NDAR Address of Next Chain Descriptor

PCI Address Register PADR Lower 32-bit PCI Address of Source/Destination

PCI Upper Address Register PUADR Upper 32-bit PCI Address of Source/Destination

i960 RM/RN I/O Processor Local
Address Register LADR i960 RM/RN I/O Processor Address of

Source/Destination

Byte Count Register BCR Number of Bytes to transfer

Descriptor Control Register DCR Chain Descriptor Control Word
i960® RM/RN I/O Processor Developer’s Manual 19-3

DMA Controller Unit
19.3.1 Chain Descriptors

All DMA transfers are controlled by chain descriptors located in local memory. A chain descriptor
contains the necessary information to complete one data transfer. A single DMA transfer has only
one chain descriptor in memory. Chain descriptors can be linked together to form more complex
DMA operations.

To perform a DMA transfer, one or more chain descriptors must first be written to i960 RM/RN
I/O processor local memory. Figure 19-3 shows the format of an individual chain descriptor. Every
descriptor requires six contiguous words in i960 RM/RN I/O processor memory and is required to
be aligned on an 8-word boundary. All six words are required.

Each word in the chain descriptor is analogous to control register values. Bit definitions for the
words in the chain descriptor are the same as for the DMA control registers.

• The first word is the i960 RM/RN I/O processor memory address of the next chain descriptor.
A value of zero specifies the end of chain. This value is loaded into the Next Descriptor
Address Register. Because chain descriptors must be aligned on an 8-word boundary, the
channel ignores bits 04:00 of this address.

• The second word is the lower 32-bit PCI source/destination address. This address is generated
on the PCI bus. This value is loaded into the PCI Address Register.

• The third word is the upper 32-bit PCI source/destination address, if needed. This address is
used during Dual Address Cycles for driving 64-bit PCI addresses. The address is ignored if
DAC is disabled. This value is loaded into the PCI Upper Address Register.

• The fourth word is the i960 RM/RN I/O processor source/destination address. This address is
driven on the internal bus. This value is loaded into the i960 RM/RN I/O processor Local
Address Register.

• The fifth word is the Byte Count value. This value determines the number of bytes to transfer.
This value is loaded into the Byte Count Register.

• The sixth word is the Descriptor Control word. This word configures the DMA channel for
one DMA transfer. It contains the PCI command type, which determines the direction of the
data transfer. This value is loaded into the Descriptor Control Register.

There are no data alignment requirements for either the PCI address or the i960 RM/RN I/O
processor address. However, maximum performance is obtained from aligned transfers, especially
small transfers (Section 19.7, on page 19-13).

Refer to Section 19.14 for additional descriptions about the DMA Controller registers.

Figure 19-3. DMA Chain Descriptor

Next Descriptor Address (NDA)

80960 Local Address (LAD)

Descriptor Control (DC)

Byte Count (BC)

PCI Upper Address [63:32] (PUAD)

PCI Address [31:0] (PAD) Lower 32-bit PCI Source/Destination Address

Descriptor Control

Address of Next Chain Descriptor

Upper 32-bit PCI Source/Destination Address

Number of Bytes to Transfer

80960 Local Source/Destination Address

Chain Descriptor in 80960 Memory Description
19-4 i960® RM/RN I/O Processor Developer’s Manual

DMA Controller Unit
A series of chain descriptors can be built in local memory to transfer data between the PCI buses
and the internal bus. For example, the application can build multiple chain descriptors to transfer
many blocks of data which have different source addresses within the local memory. When
multiple chain descriptors are built in i960 RM/RN I/O processor memory, the application can link
each of these chain descriptors using the Next Descriptor Address in the chain descriptor. This
address logically links the chain descriptors together. This allows the application to build a list of
DMA transfers which may not require the i960 RM/RN I/O processor processor until all of the
DMA transfers are complete. Figure 19-4 shows a list of DMA transfers built in external memory
and how they are linked together.

Figure 19-4. DMA Chaining Operation

Next Descriptor Address (NDA)

80960 Local Address (LAD)

Descriptor Address Register DMA Controller Register

Linked Descriptors In Local Memory

Buffer Transfers

First
Buffer

Transfer

Second
Buffer

Transfer

Nth
Buffer

Transfer

...

Descriptor Control (DC)

Byte Count (BC)

End of Chain

PCI Upper Address [63:32] (PUAD)

PCI Address [31:0] (PAD)

(Null Value Detected)

Next Descriptor Address (NDA)

80960 Local Address (LAD)

Descriptor Control (DC)

Byte Count (BC)

PCI Upper Address [63:32] (PUAD)

PCI Address [31:0] (PAD)

Next Descriptor Address (NDA)

80960 Local Address (LAD)

Descriptor Control (DC)

Byte Count (BC)

PCI Upper Address [63:32] (PUAD)

PCI Address [31:0] (PAD)
i960® RM/RN I/O Processor Developer’s Manual 19-5

DMA Controller Unit
19.3.2 Initiating DMA Transfers

A DMA transfer is started by building one or more chain descriptors in i960 RM/RN I/O processor
local memory. Each chain descriptor takes the form shown in Figure 19-3. The chain descriptors
are required to be aligned on an 8-word boundary in the i960 RM/RN I/O processor local memory.

The following describes the steps for initiating a new DMA transfer:

1. The channel must be inactive prior to starting a DMA transfer. This can be checked by software
by reading the Channel Active bit in the Channel Status Register (CSR). If this bit is clear, the
channel is inactive. If this bit is set, the channel is currently active with a DMA transfer.

2. The CSR must be cleared of all error conditions.

3. The software writes the address of the first chain descriptor to the Next Descriptor Address Register.

4. The software sets the Channel Enable bit in the Channel Control Register (CCR). Since this is
the start of a new DMA transfer and not the resumption of a previous transfer, the Chain
Resume bit in the CCR should be clear.

5. The channel starts the DMA transfer by reading the chain descriptor at the address contained
in the Next Descriptor Address Register. The channel loads the chain descriptor values into the
channel control registers and begins data transfer. The Descriptor Address Register now
contains the address of the chain descriptor just read and the Next Descriptor Address Register
now contains the Next Descriptor Address from the chain descriptor just read.

The last descriptor in the DMA chain list has zero in the next descriptor address field specifying the
last chain descriptor. The NULL value notifies the DMA channel not to read additional chain
descriptors from memory.

Once a DMA transfer is active, it may be temporarily suspended by clearing the Channel Enable
bit in the CCR. Note that this does not abort the DMA transfer. The channel resumes the DMA
transfer when the Channel Enable bit is set.

When descriptors are read from external memory, bus latency and memory speed affect chaining
latency. Chaining latency is defined as the time required for the channel to access the next chain
descriptor plus the time required to set up for the next DMA transfer.

See Section 19.9 for a state diagram of the channel programming model.
19-6 i960® RM/RN I/O Processor Developer’s Manual

DMA Controller Unit
19.3.3 Scatter Gather DMA Transfers

The DMA Controller can be used to perform typical scatter gather data transfers. This consists of
programming the chain descriptors to gather the data which may be located in non-contiguous
blocks of memory. The chain descriptor specifies the destination location such that once all data
has been transferred, the data is contiguous in memory. Figure 19-5 shows how the destination
pointers can gather data.

Figure 19-5. Example of Gather Chaining

source buffers

PAD = PCI Address
NDA = Next Descriptor Address

PUAD = PCI Upper Address

DC = Descriptor Control

...

...

...

destination
bufferPAD

LAD = 80960 Local Address
BC = Byte Count

End of Chain
Null Value Detected

PUAD LAD BC DCNDA

PAD PUAD LAD BC DCNDA

PAD PUAD LAD BC DCNDA

PAD PUAD LAD BC DCNDA
i960® RM/RN I/O Processor Developer’s Manual 19-7

DMA Controller Unit
19.3.4 Synchronizing a Program to Chained Transfers

Chained DMA transfers can be synchronized to a program executing on the i960 core processor
through the use of processor interrupts. The channel generates an interrupt to the i960 core
processor under certain conditions. They are:

1. [Interrupt & Continue] The channel completes the data transfer for a chain descriptor and the
Next Descriptor Address Register is non-zero. If the Interrupt Enable bit within the Descriptor
Control Register is set, an interrupt is generated to the i960 core processor. This interrupt is for
synchronization purposes only. The channel sets the End Of Transfer Interrupt flag in the
Channel Status Register. Since it is not the last chain descriptor in the list, the DMA channel
starts to process the next chain descriptor without requiring any processor interaction.

2. [End of Chain] The DMA channel completes the data transfer for a DMA chain descriptor and
the Next Descriptor Address Register is zero specifying the end of the chain. If the Interrupt
Enable bit within the Descriptor Control Register is set, an interrupt is generated to the i960 core
processor. The channel sets the End Of Chain Interrupt flag in the Channel Status Register.

3. [Error] An error condition occurs (refer to Section 19.12 for DMA error conditions) during a
DMA transfer. The channel halts operation on the current chain descriptor and not proceed to
the next chain descriptor.

Each chain descriptor can independently set the Interrupt Enable bit in the Descriptor Control word.
This bit enables an independent channel interrupt upon completion of the data transfer for the chain
descriptor. This bit can be set or clear within each chain descriptor. Control of interrupt generation
within each descriptor aids in synchronization of the executing software with DMA transfers.

Figure 19-6 shows two examples of program synchronization. The left column shows program
synchronization based on individual chain descriptors. Descriptor 1A generated an interrupt to the
processor, while descriptor 2A did not because the Interrupt Enable bit was clear. The last
descriptor nA, generated an interrupt to signify the end of the chain has been reached. The right
column in Figure 19-6 shows an example where the interrupt was generated only on the last
descriptor signifying the end of chain.
19-8 i960® RM/RN I/O Processor Developer’s Manual

DMA Controller Unit
19.3.5 Appending to The End of a Chain

Once a channel has started processing a chain of DMA descriptors, the application software may
need to append a chain descriptor to the current chain without interrupting the transfer in progress.
The mechanism used for performing this action is controlled by the Chain Resume bit in the
Channel Control Register.

The channel reads the subsequent chain descriptor each time the channel completes the current
chain descriptor and the Next Descriptor Address Register is non-zero. The Next Descriptor
Address Register always contains the address of the next chain descriptor to be read and the
Descriptor Address Register always contains the address of the current chain descriptor.

Figure 19-6. Synchronizing to Chained Transfers

Descriptor 1B

Descriptor 2A

Descriptor 2B

...

...

Descriptor 1A

chain descriptorschain descriptors

RET

interrupt procedure

...
RET

interrupt procedure

Descriptor nB

...
RET

interrupt procedure

Descriptor nA

...

Independent Interrupt after Completing any Descriptor Interrupt after Completing Last Descriptor

No Interrupt on this Descriptor

Optional interrupt
generated to
i960® RM/RN I/O Processor Developer’s Manual 19-9

DMA Controller Unit
The procedure for appending chains requires the software to find the last chain descriptor in the
current chain and change the Next Descriptor Address in that descriptor to the address of the new
chain to be appended. The software then sets the Chain Resume bit in the Channel Control Register
for the channel. It does not matter if the channel is active or not.

The channel examines the Chain Resume bit of the CCR when the channel is idle or upon
completion of a chain of DMA transfers. If this bit is set, the channel re-reads the Next Descriptor
Address of the current chain descriptor and load it into the Next Descriptor Address Register. The
address of the current chain descriptor is contained in the Descriptor Address Register. The channel
clears the Chain Resume bit and then examine the Next Descriptor Address Register. If the Next
Descriptor Address Register is not zero, the channel reads the chain descriptor using this new
address and begin a new DMA transfer. If the Next Descriptor Address Register is zero, the
channel remains or return to idle.

The three cases to consider are:

1. The channel completes a DMA transfer and it is not the last descriptor in the chain. In this
case, the channel clears the Chain Resume bit and reads the next chain descriptor. The
appended descriptor is read when the channel reaches the end of the original chain.

2. The channel completes a DMA transfer and it is the last descriptor in the chain. In this case,
the channel examines the state of the Chain Resume bit. If the bit is set, the channel re-reads
the current descriptor to get the address of the appended chain descriptor. If the bit is clear, the
channel returns to idle.

3. The channel is idle. In this case, the channel examines the state of the Chain Resume bit when
the CCR is written. If the bit is set, the channel re-reads the last descriptor from the
most-recent chain to get the appended chain descriptor.

19.4 64-bit Transfers on a 64-bit PCI Bus

The PCI specification provides a mechanism that permits a 64-bit bus master to perform data
transfers with a 64-bit target. 64-bit transactions on PCI are dynamically negotiated between the
master and the target. The 64-bit PCI extensions add an additional 39 signal pins. The signal
definitions and functions are detailed below:

• AD[63:32]: High order address/data bus.

• C/BE[7:4]#: Byte enables for the high order 4 bytes of data.

• PAR64#: Even parity for the upper double word.

• REQ64#: Request 64-bit transfer. This signal is generated by the current 64-bit master to
initiate a 64-bit operation. It has the same timing as the FRAME# signal.

• ACK64#: Acknowledge 64-bit transfer. This signal is generated by the currently addressed
target in response to a REQ64# assertion by the initiator. It has the same timing as the
DEVSEL# signal.

If either master or target, or both, do not support 64-bit data transfers, 32-bit data transfers are used
instead. For 64-bit transfers, all timings during data transfers are identical to that used for 32-bit
transfers. Refer to the PCI Local Bus Specification Revision 2.1 for details on the 64-bit Extension.
19-10 i960® RM/RN I/O Processor Developer’s Manual

DMA Controller Unit

vice
EL# to

el

as

 any
-bit

for the
19.4.1 64-bit Operation with 64-bit Targets

The 64-bit protocol is implemented uniformly for the various internal masters (PCI-to-PCI Bridge Unit,
DMA Ch-0, Ch-1, Ch-2 and Address Translation Units) on the i960 RM/RN I/O processor processor.

A 64-bit transfer is initiated by the DMA controller by the assertion of REQ64#. If the target device
can perform 64-bit transfers, ACK64# is asserted when the target asserts DEVSEL# to claim the
transaction. When a target signals the ability to complete a transaction as a 64-bit transaction, the
master interface of the DMA controller completes the transaction as a 64-bit master. In this
instance, up to eight bytes are transferred in each data phase. The DMA channel decrements the
byte count by 8 for every successful data transfer cycle.

Refer to Section 14.6.3.1, “64-Bit Protocol” on page 14-27 for complete details on 64-bit Initiator
and 64-bit Target Operation.

19.4.2 64-bit Operation with 32-bit Targets

A 64-bit transfer is initiated by the DMA controller by the assertion of REQ64#. If the target de
cannot perform 64-bit transfers, ACK64# remains deasserted when the target asserts DEVS
claim the transaction. When a target signals its inability to complete a transaction as a 64-bit
transaction, the master interface of the DMA controller completes the transaction as a 32-bit
master. In this instance, up to four bytes are transferred in each data phase. The DMA chann
decrements the byte count by 4 for every successful data transfer cycle.

Should a slave disconnect on an even word boundary, then all future transfers is carried out
32-bit transfers for the current chain descriptor transaction.

Refer to Section 14.6.3.2, “64-Bit Operation with 32-Bit Targets” on page 14-29 for complete
details on 64-bit Initiator and 32-bit Target Operation.

19.4.3 64-bit Addressing

The standard PCI bus transactions support a 32-bit address. 64-bit addressing generated by
DMA channel on the PCI bus using the PCI DAC command allows for an extension to the 32
addressing space. During DAC cycles on a 32-bit bus, none of the signals listed as a 64-bit
extension are used. During DAC cycles on a 64-bit bus, the upper 32-bits of the PCI address
bus(AD[63:32]) are driven during both address phases. Also, the associated data command
transaction (C/BE 7:4]) is driven during both address phases.

Refer to Section 14.5.3, “64-Bit Address Decoding - Dual Address Cycles” on page 14-18 for
complete details on the 64-bit addressing protocol.
i960® RM/RN I/O Processor Developer’s Manual 19-11

DMA Controller Unit

rs
ctions.

 DMA
hannel

ce for
Line,
ands.

r than
rge
quests.

m.

to the

 Write

d
Write

s
once a
ances
19.5 Data Transfers

The i960 RM/RN I/O processor processor’s DMA controller is optimized to perform data transfe
between the PCI bus and local memory. These transfers are summarized in the following se
The DMA Controller does not support Master-Initiated wait states on either interface.

19.5.1 PCI to Local Memory Transfers

PCI to local memory transfers perform read cycles on the PCI bus and place the data into the
channel queues. Once data is placed into the queue, the internal bus interface of the DMA c
requests the internal bus and drain the queue by writing the data to the local memory.

The application software can use the various PCI command types to improve system performan
these transfers. The three defined PCI read commands include: Memory Read, Memory Read
and Memory Read Multiple. Refer to the PCI specification for full description of these PCI comm

For example, a Memory Read Multiple command can be programmed if the block size is large
a cache line. This is used to notify the PCI target that the DMA channel intends to transfer a la
block of data and the target should try to read ahead and anticipate the DMA controller read re

The application software determines which command type best meets the needs of the syste

19.5.2 Local Memory to PCI Transfers: Memory Write Command

Local memory to PCI transfers perform read cycles on the internal bus and place the data in
DMA channel queues. Once data is placed into the queue, the PCI bus interface of the DMA
channel requests the PCI bus and drain the queue by writing the data to the PCI bus. Memory
commands can be used for all data transfers to the PCI bus.

Local memory to PCI transfers generate two PCI write command types: Memory Write and
Memory Write and Invalidate. The application software can use the appropriate PCI comman
type. However, the PCI target may provide better system performance by using the Memory
and Invalidate command.

19.5.3 Local Memory to PCI Transfers: Memory Write and
Invalidate Command

The second mechanism for performing local memory to PCI transfers may improve system
performance based on the PCI target capabilities. The Memory Write and Invalidate (MWI)
command improves system performance when the target is cacheable memory.

The DMA channel attempts to use the Memory Write and Invalidate command on the PCI bu
whenever programmed by the application software. The DMA channel requests the PCI bus
complete cache line is available in the DMA queue. However, there are a number of circumst
which may prevent the DMA channel from actually initiating the MWI command. It is the
responsibility of the application software to meet the requirements for the MWI command.
19-12 i960® RM/RN I/O Processor Developer’s Manual

DMA Controller Unit
If any of the following three conditions is not met, the channel converts the MWI command to a
Memory Write command for the complete DMA transfer:

1. The ATU Cacheline Size Register (ATUCLSR), located in the ATU configuration space, must
have a valid value other than zero. This register is programmed by host software.

2. The ATUCLSR must have a legal value which is less than or equal to the number of queue
entries in the DMA channel queue. (The channel must guarantee an entire cache line can be
transferred during an MWI bus transaction).

3. The Memory Write and Invalidate Enable bit in the Primary ATU Command Register (for
channels 0 and 1) or the Secondary ATU Command Register (for channel 2) must be set.

If the above conditions are met, the DMA channel provides full MWI support. For example, to
transfer an 80 byte block to a PCI address of 8001CH while the ATUCLSR is 8 DWORDs, the
DMA channel performs three PCI transactions:

1. Transfer of 4 bytes at address 8001CH using the Memory Write command.

2. Transfer of 64 bytes at address 80020H using the MWI command.

3. Transfer of 12 bytes at address 80060H using the Memory Write command.

19.5.4 Exclusive Access

The DMA Controller does not support exclusive access through the PCI LOCK# signal.

19.6 Data Queues

DMA Ch-0 and Ch-1 each contain a 256-byte, bidirectional data queue. DMA Ch-2 on the
secondary side contains a 64-byte, bidirectional data queue. These queues temporarily hold data to
increase performance of data transfers in both directions.

19.7 Packing and Unpacking

Each channel contains a hardware data packing and unpacking unit to support unaligned data
transfers between the source and destination buses. The packing unit optimizes data transfers to
and from 32 and 64-bit memory. The channel reformats data words for the correct bus data width.
When the channel needs to pack or unpack data, the data is held internally to the channel and does
not need to be re-read.

Aligned data transfers involve data accesses that fall on natural boundaries. For example; double
words are aligned on 8-byte boundaries and words are aligned on 4-byte boundaries. DMA
transfers can occur with both the source and destination addresses unaligned.
i960® RM/RN I/O Processor Developer’s Manual 19-13

DMA Controller Unit
19.7.1 64-bit Unaligned Data Transfers

Figure 19-7 illustrates a DMA transfer between unaligned 64-bit, source and destination addresses.

Figure 19-7. Optimization of an Unaligned DMA

byte number

10

Bus operation

double word load@ A0000200
double word load@ A0000208
double word load@ A0000210

byte store@ 40010307
double word store@ 40010308
double word store@ 40010310

SOURCE DESTINATION

CCR

PADR

PUADR

LADR

BCR

DCR

Programmed Values

0000 0001H

A000 0201H

0000 0000H

4001 0307H

0000 0014H

0000 0006H

ADDRESS

A000 0200H

A000 0208H

A000 0210H

4001 0300H

4001 0308H

4001 0310HDestination bus

LSBMemory

(internal bus)

1

9 8 7 6 5 4 3 2

12 11 10

12 11 10 9 8

7 6 5 4 3 2 1

MSB

64-bit Source bus
(PCI Bus)

REQ64# and
ACK64# sampled

asserted

20 19 18 17 16

15 14 13

17 16 15 14 13

20 19 18 4001 0318H

3-byte store@ 40010318
19-14 i960® RM/RN I/O Processor Developer’s Manual

DMA Controller Unit
19.7.2 64/32-bit Unaligned Data Transfers

Figure 19-8 illustrates a DMA transfer between an unaligned 32-bit source address and an
unaligned 64-bit destination address.

Figure 19-8. Optimization of an Unaligned DMA

123

4567

891011

12

ADDRESS

A000 0200H

A000 0204H

A000 0208H

A000 020CH

4001 0300H

4001 0308H

4001 0310H

32-bit Source bus

64-bit Destination bus

LSB

MSB

byte number

10

Bus operation

word load@ A0000200
word load@ A0000204
word load@ A0000208
word load@ A000020C

5-byte store@ 40010303
8-byte store@ 40010308

SOURCE DESTINATION

CCR

PADR

PUADR

LADR

BCR

DCR

Programmed Values

0000 0001H

A000 0201H

0000 0000H

4001 0303H

0000 0010H

0000 0006H

(PCI Bus)

(internal bus)

MSB

12 11 10 9 8 7 6

5 4 3 2 1

131415

13

16 15 14

A000 0210H16

word load@ A0000210
3-byte store@ 40010310
i960® RM/RN I/O Processor Developer’s Manual 19-15

DMA Controller Unit

d is the

.

19.8 Channel Priority

The i960 RM/RN I/O processor internal bus arbitration logic determines which internal bus master
has access to the internal bus. Each DMA channel has an independent bus Request/Grant signal
pair to the internal bus arbitration. Chapter 17, “i960® RM/RN I/O Processor Arbitration” further
describes the priority scheme between all the bus masters on the internal bus. Also describe
priority mechanism used between the three DMA channels.

19.9 Programming Model State Diagram

The channel programming model diagram is shown in Figure 19-9. Error condition states are not shown

Figure 19-9. DMA Programming Model State Diagram

Reset

Read NAD from

CSR ==0 &&

Read descriptor
NDAR =

= 0
||

DATA TRANSFER

Transfer Complete &&

D
M

A
 e

rr
or

 ||

NDAR == 0 && STATE

IDLE
STATE

READ DESCRIPTOR
STATE

READ NAD
STATE

Channel Active = 0

Channel Enable == 1 &&

Chain Resume == 0 &&

Tr
an

sfe
r C

om
ple

te
&&

NDAR !=
 0

N
D

A
R

 =
=

 0
 &

&

Chain Resume == 1 &&

NDAR != 0 && !InternalBus error

CSR =
= 0

 &
&

Cha
nn

el
Ena

ble
 =

= 1
&&

Cha
in

Res
um

e =
=

1
&&

current descriptor

at NDAR
Chain Resume = 0

at DAR
and load NDAR

Chain Resume = 0

NDAR != 0

NDAR ==
0

Internal Bus error

Int
ern

al B
us e

rro
r

!In
tern

al B
us e

rro
r

C
ha

in
 R

e
su

m
e

=
=

 0
 &

&
Tr

an
sf

er
 C

om
pl

et
e

!DMA error
Channel Active = 1
19-16 i960® RM/RN I/O Processor Developer’s Manual

DMA Controller Unit
19.10 DMA Channel Programming Examples

The software for the DMA channels falls into the following categories:

• Channel initialization

• Start DMA transfer

• Suspend channel

Examples for each of the software is shown in the following sections as pseudo code flow.

19.10.1 Software DMA Controller Initialization

The DMA Controller is designed to have independent control of the interrupts, enables, and
control. The initialization consists of virtually no overhead as shown in Example 19-1.

19.10.2 Software Start DMA Transfer

The DMA channel control register provides independent control per channel based on each time
the DMA channel is configured. This provides the greatest flexibility to the applications
programmer. Example 19-2 describes the pseudo code for starting a DMA transfer on channel 0.

Example 19-1. Software Example for Channel Initialization

CCR0 = 0x0000 0000 ; Disable channel

Call setup_channel

Example 19-2. Software Example for DMA Transfer

; Set up descriptor in local memory at address d

d.nad = 0 ; No chaining

d.pad = 0x0000F000 ; Source address of 0000F000H

d.puad = 0 ; DAC is not used

d.lad = 0xB0000000 ; Destination address B0000000H

d.bc = 64 ; byte count of 64

d.dc = 0x00000016 ; PCI Memory Read command, DAC disabled,

; Interrupt processor after transfer

; Check for inactive channel & no interrupts pending

if (CSR0 != 0) exit; If channel is not ready, exit

; Start transfer

NDAR0 = &d ; Set up descriptor address

CCR0 = 0x00000001 ; Set Channel Enable bit to start
i960® RM/RN I/O Processor Developer’s Manual 19-17

DMA Controller Unit

annel

ly be
 shall

ccur
19.10.3 Software Suspend Channel

The channel may need to be suspended for various reasons. The channel provides the ability to
suspend the state of the channel without losing the current status. The channel resumes DMA
operation without requiring the software to save the channel configuration. Example 19-3
describes the pseudo code for suspending channel 0.

19.11 Interrupts

Each channel can generate an interrupt to the i960 core processor. The Interrupt Enable bit in the
Descriptor Control Register (DCRx.ie) determines whether the channel generates an interrupt upon
successful error-free completion of a DMA transfer. Error conditions described in Section 19.12 also
generate an interrupt. Each channel has one interrupt output connected to the PCI and Peripheral
Interrupt Controller described in Chapter 8, “PCI and Peripheral Interrupt Controller Unit”.
Table 19-2 summarizes the status flags and conditions when interrupts are generated in the Ch
Status Register (CSRx).

Note: End-of-Transfer and End-of-Chain flags is set only when DCR.ie = 1. If DCR.ie = 0, then the
above flags are always set to 0. End-of-Transfer Interrupt and End-of-Chain Interrupt can on
reported in the CSR if the DMA transfer completed without any reportable errors.The channel
never report an End-of-Transfer interrupt or End-of-Chain interrupt along with any PCI error
conditions. Multiple error conditions may occur and be reported together. Also, because the
channel does not stop after reporting the End-of-Transfer Interrupt, internal bus errors may o
before the End-of-Transfer interrupt is acknowledged and cleared.

Example 19-3. Software Example for Channel Suspend

CCR0 = 0x0000 0000 ; Suspend Channel 0

Channel suspended.....

CCR0 = 0x0000 0001 ; Resume Channel 0

Table 19-2. DMA Interrupt Summary

Interrupt Condition

Channel Status Register (CSR) Flags Interrupt
Generated?

A
ct

iv
e

E
n

d
 o

f
Tr

an
sf

er

E
n

d
 o

f
C

h
ai

n

P
C

I M
as

te
r

A
b

o
rt

P
C

I T
ar

g
et

 A
b

o
rt

P
C

I P
ar

it
y

E
rr

o
r

In
te

rn
al

 B
u

s
E

rr
o

r

D
C

R
.ie

 S
et

D
C

R
.ie

 C
le

ar

Byte count == 0 &&
NDARx != NULL
(End of Transfer)

1 1 0 0 0 0 0 Y N

Byte Count == 0 &&
NDARx == NULL

(End of Chain)
0 0 1 0 0 0 0 Y N

PCI Master-Abort 0 0 0 1 0 0 0 Y Y

PCI Target-Abort 0 0 0 0 1 0 0 Y Y

PCI Parity Error 0 0 0 0 0 1 0 Y Y

Internal Bus Error 0 0 0 0 0 0 1 Y Y
19-18 i960® RM/RN I/O Processor Developer’s Manual

DMA Controller Unit

curs
19.12 Error Conditions

There are four error conditions that may occur during a DMA transfer that are recorded by the
channel. All error conditions are reported by setting the appropriate bit in the Channel Status
Register (CSR). The DMA controller must satisfy all “retries” even when an error condition oc
on the opposite bus.

The possible error conditions are:

• PCI Master-Abort

• PCI Target-Abort

• PCI Data Parity Error

• Internal Bus Errors

19.12.1 PCI Errors

• If a PCI Master-Abort occurs during a DMA transfer, the channel sets bit 3 in the CSR. The
channel also reflects the error to the Address Translation Units (PATU or SATU depending on
which channel was the master while the error occurred). The ATU in turn, records this error
condition by setting the appropriate bit in its status register (PATUSR or SATUSR). Refer to
Chapter 15, “Address Translation Unit” for complete details.

• If a PCI Target-Abort (Master) occurs during a DMA transfer, the channel sets bit 2 in the
CSR. The channel also reflects the error to the Address Translation Units (PATU or SATU
depending on which channel was the master while the error occurred). The ATU in turn,
records this error condition by setting the appropriate bit in its status register (PATUSR or
SATUSR). Refer to Chapter 15, “Address Translation Unit” for complete details.

• If a PCI data parity error occurs during a DMA transfer, the channel sets bit 0 in the CSR. The
channel also reflects the error to the Address Translation Units (PATU or SATU depending on
which channel was the master while the error occurred). The ATU in turn, records this error
condition by setting the appropriate bit in its status register (PATUSR or SATUSR). For PCI
parity errors, data with incorrect parity is never transferred to local memory. Refer to
Chapter 15, “Address Translation Unit” for complete details.
i960® RM/RN I/O Processor Developer’s Manual 19-19

DMA Controller Unit

e
19.12.2 Internal Bus Errors

Internal Bus error conditions and the actions taken, are detailed below:

• If an error occurs during a read of the Chain Descriptor or Next Descriptor Address, the
channel sets the appropriate error flag in the CSR, load the registers (if possible), and stop.

• If an error occurs when the DMA channel is mastering a transaction on the PCI bus, the
channel prematurely ends the transaction and stop transferring data as soon as possible.

• If the channel has asserted it’s PCI request signal, but not yet started the transaction, th
channel deasserts it’s request.

• If the channel has not yet asserted a request for the PCI bus, the channel never asserts a request
for the bus.

When an error condition occurs, the actions taken are detailed below:

• The channel shall cease data transfers for the current chain descriptor and clear the Channel
Active flag in the CSR.

• The channel invalidates any data held in the queue and not read any new chain descriptors.

• The channel sets the appropriate error flag in the Channel Status Register. For example; if a
PCI Master-Abort occurred during a DMA transfer, the channel sets bit 3 in the CSR. During
an MWI transaction, the channel completes the transfer of the cache line before stopping.

• The channel also signals an interrupt to the i960 core processor.

• The channel does not restart a DMA transfer after any error condition. It is the responsibility
of the application software to configure the channel to complete any remaining transfers.

Note: IB errors (Target-abort only) that occur while a DMA channel is the master on the internal bus are
recorded by the MCU and interrupt the core. For correct operation of the DMA channel, user
software has to disable the channel before clearing the error condition. Further, the channel needs
to be re-enabled by writing a 1 to CCR.ce before initiating a new operation.

Accesses to the MCU can be 64-bits or smaller. In both cases, there are three possible scenarios for
multi-bit ECC errors on reads or writes. These errors conditions are handled as detailed below:

• Multi-bit ECC error on MCU Data Read: Refer to Chapter 13, “Memory Controller” for
complete details regarding error handling.

• Multi-bit ECC error on MCU Data Write: This instance covers the case where the first data
write is less than a 64-bit value forcing the MCU to execute a read-modify-write operation.
Refer to Chapter 13, “Memory Controller” for complete details regarding error handling.

• Multi-bit ECC error on MCU Data Write: This instance covers the case where the last data
write is less than a 64-bit value forcing the MCU to execute a read-modify-write operation.
Refer to Chapter 13, “Memory Controller” for complete details regarding error handling.
19-20 i960® RM/RN I/O Processor Developer’s Manual

DMA Controller Unit
19.13 Powerup/Default Status

Upon powerup, an external hardware reset, the DMA Registers is initialized to their default values.

19.14 Register Definitions

The DMA controller contains registers for controlling each channel. Each channel has nine
memory-mapped control registers for independent operation. In register titles, x is 0, 1, or 2 for
channel 0, 1, or 2 respectively.

There is read/write access only to the Channel Control Register, Channel Status Register, and the
Next Descriptor Address Register. The remaining registers are read-only and are loaded with new
values from the chain descriptor whenever the channel reads a chain descriptor from memory.

Table 19-3. DMA Controller Unit Registers

Section, Register Name, Acronym (page)

Section 19.14.1, “Channel Control Register - CCR” on page 19-22

Section 19.14.2, “Channel Status Register - CSR” on page 19-23

Section 19.14.3, “Next Descriptor Address Register - NDAR” on page 19-25

Section 19.14.4, “Descriptor Address Register - DAR” on page 19-26

Section 19.14.5, “Byte Count Register - BCR” on page 19-27

Section 19.14.6, “PCI Address Register - PADR” on page 19-28

Section 19.14.7, “PCI Upper Address Register - PUADR” on page 19-29

Section 19.14.8, “Local Address Register - LADR” on page 19-30

Section 19.14.9, “Descriptor Control Register - DCR” on page 19-31
i960® RM/RN I/O Processor Developer’s Manual 19-21

DMA Controller Unit
19.14.1 Channel Control Register - CCR

The Channel Control Register (CCR) specifies parameters that dictate the overall channel
operating environment. The CCR should be initialized prior to any other DMA register following a
system reset. Table 19-4 shows the register format for the CCR. This register can be read or written
while the DMA channel is active.

Table 19-4. Channel Control Register - CCR

Bit Default Description

31:02 0000 0000H Reserved

01 02

Chain Resume - when set, causes the channel to resume chaining by re-reading the
current descriptor located at the address in the Descriptor Address Register when the
channel is idle (CA bit in the CSR is clear) or when the channel completes a DMA
transfer. This bit is cleared by the hardware when either:

• The channel completes a DMA transfer and the Next Descriptor Address Register
is zero. In this case, the channel proceeds to the next descriptor in the chain.

• The channel re-reads the chain descriptor located at the address in the Descriptor
Address Register and loads the Next Descriptor Address of that descriptor into
the Next Descriptor Address Register

00 02

Channel Enable - When set, the channel enables DMA transfers. When clear, the
channel disables DMA transfers. Clearing this bit once the channel is active suspends
the current DMA transfer at the earliest opportunity by halting all internal bus
transactions. The PCI interface may continue with the current transfer until the data
queue either fills or empties. The channel does not initiate any new DMA transfers
when this bit is cleared. Data held in queues remains valid. Setting this bit after the
channel is suspended causes the channel to resume the DMA transfer.

The Channel Enable bit works in conjunction with the Bus Master Enable bit of the
Primary ATU Command Register for DMA Channel 0 and 1 and with the Bus Master
Enable bit of the Secondary ATU Command Register for DMA Channel 2. The
respective Bus Master Enable bit must be set for the DMA channel to start a
transaction on the PCI bus.

P
C

I
IO

P
A

ttr
ib

ut
es

A
ttr

ib
ut

es

28 24 20 16 12 8 4 031

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rw

na

rw

na

c
e

r
e
s

Channel

0
1
2

80960RM/RN internal bus address

1400H
1440H
1480H

Attribute Legend:

RV = Reserved

PR = Preserved

RS = Read/Set

RW = Read/Write

RC = Read Clear

RO = Read Only

NA = Not Accessible
19-22 i960® RM/RN I/O Processor Developer’s Manual

DMA Controller Unit
19.14.2 Channel Status Register - CSR

The Channel Status Register (CSR) contains status flags that indicate the channel status. This
register is typically read by software to examine the source of an interrupt. See Section 19.12 for a
description of the error conditions that are reported in the CSR. See Section 19.11 for a description
of interrupts caused by the DMA channel.

If a DMA error occurs, application software must check the status of the Channel Active flag
before processing the interrupt. It is possible that the channel may still be active completing
outstanding PCI transactions.

Table 19-5. Channel Status Register - CSR (Sheet 1 of 2)

Bit Default Description

31:11 000000H Reserved

10 02

Channel Active Flag - indicates the channel is either active (in use) or inactive
(available). When set, indicates the channel is in use and actively performing DMA
data transfers. When clear, indicates the channel is inactive and available to be
configured to transfer data. The channel clears the Channel Active flag when the
previously configured DMA transfer completes as a result of:

• byte count reached zero and last chain descriptor is encountered (NULL value
detected for Next Descriptor Address in chain descriptor)

• PCI Master-abort occurred on the PCI interface

• PCI Target-abort occurred on the PCI interface

• PCI parity error occurred on the PCI interface

• Internal Bus Errors

The Channel Active flag is set when a Chain Descriptor is read from memory.

09 02

End of Transfer Interrupt Flag - set when the channel has signalled an interrupt to the
i960 core processor after successfully completing an error-free DMA transfer but it is
not the last descriptor in a chain.

08 02

End of Chain Interrupt Flag - set when the channel has signalled an interrupt to the
i960 core processor after successfully completing an error-free DMA transfer that is
the last of a chain.

07:06 02 Reserved

05 02
All Master-aborts when the channel is the master on the internal bus is reflected by
setting this bit.

04 02 Reserved

03 02
PCI Master Abort Flag - set when the channel has initiated a transaction on the PCI
bus and has detected a Master-abort.

P
C

I
IO

P
A

ttr
ib

u
te

s
A

ttr
ib

ut
es

28 24 20 16 12 8 4 031

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

ro

na

rc

na

rc

na

rv

na

rc

na

rc

na

rv

na

rc

na

rc

na

rv

na

rc

na

p
p
e

c
a

b
f

m
a

t
a

e
o
t

e
o
c

Attribute Legend:

RV = Reserved

PR = Preserved

RS = Read/Set

RW = Read/Write

RC = Read Clear

RO = Read Only

NA = Not Accessible

Channel

0
1
2

80960RM/RN internal bus address

1404H
1444H
1484H
i960® RM/RN I/O Processor Developer’s Manual 19-23

DMA Controller Unit
02 02
PCI Target Abort Flag - set when the channel has initiated a transaction on the PCI
bus and has detected a Target-abort.

01 02 Reserved

00 02

PCI Parity Error Flag - is set when the following conditions are met:

• DMA channel asserted PERR# or has observed PERR# asserted

• DMA channel was the master for the transaction during which the error occurred

Table 19-5. Channel Status Register - CSR (Sheet 2 of 2)

Bit Default Description

P
C

I
IO

P
A

ttr
ib

ut
es

A
ttr

ib
ut

es

28 24 20 16 12 8 4 031

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

ro

na

rc

na

rc

na

rv

na

rc

na

rc

na

rv

na

rc

na

rc

na

rv

na

rc

na

p
p
e

c
a

b
f

m
a

t
a

e
o
t

e
o
c

Attribute Legend:

RV = Reserved

PR = Preserved

RS = Read/Set

RW = Read/Write

RC = Read Clear

RO = Read Only

NA = Not Accessible

Channel

0
1
2

80960RM/RN internal bus address

1404H
1444H
1484H
19-24 i960® RM/RN I/O Processor Developer’s Manual

DMA Controller Unit
19.14.3 Next Descriptor Address Register - NDAR

The Next Descriptor Address Register (NDARx) contains the address of the next chain descriptor
in i960 RM/RN I/O processor local memory for a DMA transfer. When starting a DMA transfer,
this register contains the address of the first chain descriptor. Table 19-6 depicts the Next
Descriptor Address Register.

All chain descriptors are required to be aligned on an eight 32-bit word boundary. The channel may
set bits 04:00 to zero when loading this register.

Note: The Channel Enable bit in the CCR and the Channel Active bit in the CSR must both be clear prior
to writing the Next Descriptor Address Register. Writing a value to this register while the channel
is active may result in undefined behavior.

Table 19-6. Next Descriptor Address Register - NDAR

Bit Default Description

31:05 X Next Descriptor Address - local memory address of the next chain descriptor to be
read by the channel.

04:00 000002 Reserved

P
C

I
IO

P
A

ttr
ib

ut
es

A
ttr

ib
ut

es

28 24 20 16 12 8 4 031

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rv

na

rv

na

rv

na

rv

na

rv

na

Attribute Legend:

RV = Reserved

PR = Preserved

RS = Read/Set

RW = Read/Write

RC = Read Clear

RO = Read Only

NA = Not Accessible

Channel

0
1
2

80960RM/RN internal bus address

1410H
1450H
1490H
i960® RM/RN I/O Processor Developer’s Manual 19-25

DMA Controller Unit
19.14.4 Descriptor Address Register - DAR

The Descriptor Address Register (DARx) contains the address of the current chain descriptor in
i960 RM/RN I/O processor local memory for a DMA transfer. This register read-only and is loaded
when a new chain descriptor is read. Table 19-7 depicts the Descriptor Address Register.

All chain descriptors are aligned on an eight 32-bit word boundary.

Table 19-7. Descriptor Address Register - DAR

Bit Default Description

31:05 X Current Descriptor Address - local memory address of the current chain descriptor
that was read by the channel.

04:00 000002 Reserved

P
C

I
IO

P
A

ttr
ib

u
te

s
A

ttr
ib

ut
es

28 24 20 16 12 8 4 031

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

Attribute Legend:

RV = Reserved

PR = Preserved

RS = Read/Set

RW = Read/Write

RC = Read Clear

RO = Read Only

NA = Not Accessible

Channel

0
1
2

80960RM/RN internal bus address

140CH
144CH
148CH
19-26 i960® RM/RN I/O Processor Developer’s Manual

DMA Controller Unit

ister is
n

unt
19.14.5 Byte Count Register - BCR

The Byte Count Register (BCRx) contains the number of bytes to transfer for a DMA transfer. This
is a read-only register that is loaded from the Byte Count word in a chain descriptor. It allows for a
maximum DMA transfer of 16 Mbytes. A value of zero is a valid byte count and results in no data
words being transferred and no cycles generated on either the PCI bus or the internal bus.

Anytime this register is read by the i960 core processor, it contains the number of bytes left to
transfer on the internal bus. Note that valid data may be in the channel’s data queue. This reg
decremented by 1 through 8 bytes for every successful transfer from the source to destinatio
locations. Table 19-8 shows the Byte Count Register.

Note: The byte count value is not required to be aligned to a 32-bit word boundary (i.e., the byte co
value can be a double word aligned, word aligned, short aligned, or byte aligned).

Table 19-8. Byte Count Register - BCR

Bit Default Description

31:24 00H Reserved

23:00 X Byte Count - is the number of bytes to transfer for a DMA transfer.

P
C

I
IO

P
A

ttr
ib

ut
es

A
ttr

ib
ut

es

28 24 20 16 12 8 4 031

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

Attribute Legend:

RV = Reserved

PR = Preserved

RS = Read/Set

RW = Read/Write

RC = Read Clear

RO = Read Only

NA = Not Accessible

Channel

0
1
2

80960RM/RN internal bus address

1420H
1460H
14A0H
i960® RM/RN I/O Processor Developer’s Manual 19-27

DMA Controller Unit
19.14.6 PCI Address Register - PADR

The PCI Address Register (PADR) contains the 32-bit PCI address for SAC cycles or the lower 32-bit
PCI address of a 64-bit PCI address for DAC cycles. This address is the source or destination of the
DMA transfer. This register is read-only and is loaded when a chain descriptor is read from memory.

Table 19-9 shows the PCI Address Register.

The channel drives the P_AD[1:0] or S_AD[1:0] to a value of 002 indicating linear addressing.
Refer to the PCI internal bus specification for additional information.

Note: The application programmer must not program the channel to transfer data across a 4 Gbyte
boundary (i.e., the lower 32-bit address must not increment past the maximum address of
FFFF.FFFFH). The channel does not notify the application of this condition.

Table 19-9. PCI Address Register - PADR

Bit Default Description

31:00 X PCI Address - is the PCI source/destination address.

P
C

I
IO

P
A

tt
rib

ut
es

A
ttr

ib
ut

e
s

28 24 20 16 12 8 4 031

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

Attribute Legend:

RV = Reserved

PR = Preserved

RS = Read/Set

RW = Read/Write

RC = Read Clear

RO = Read Only

NA = Not Accessible

Channel

0
1
2

80960RM/RN internal bus address

1414H
1454H
1494H
19-28 i960® RM/RN I/O Processor Developer’s Manual

DMA Controller Unit
19.14.7 PCI Upper Address Register - PUADR

The PCI Upper Address Register (PUADRx) contains the upper 32-bit address of a 64-bit address.
Table 19-10 shows the register. This register is read-only and is loaded when a chain descriptor is
read from memory.

Table 19-10. PCI Upper Address Register - PUADR

Bit Default Description

31:00 X PCI Upper Address - is the PCI source/destination upper address.

P
C

I
IO

P
A

ttr
ib

u
te

s
A

ttr
ib

ut
es

28 24 20 16 12 8 4 031

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

Attribute Legend:

RV = Reserved

PR = Preserved

RS = Read/Set

RW = Read/Write

RC = Read Clear

RO = Read Only

NA = Not Accessible

Channel

0
1
2

80960RM/RN internal bus address

1418H
1458H
1498H
i960® RM/RN I/O Processor Developer’s Manual 19-29

DMA Controller Unit
19.14.8 Local Address Register - LADR

The Local Address Register (LADRx) contains the 32-bit i960 RM/RN I/O processor local
address. The i960 RM/RN I/O processor address space is a 32-bit, byte addressable address space.
Table 19-11 shows the i960 RM/RN I/O processor Local Address Register. This read-only register
is loaded when a chain descriptor is read from memory.

Note: Access to the Peripheral Memory-Mapped Registers through a DMA transfer is not allowed. The
LADRx should not be programmed with values less than 0000 2000H, as this address space is
reserved. The hardware must ensure that all internal bus accesses to this address space are properly
terminated.

Table 19-11. Local Address Register - LADR

Bit Default Description

31:00 X 80960 Local Address - the 80960 local source/destination address.

P
C

I
IO

P
A

ttr
ib

ut
e

s
A

ttr
ib

u
te

s

28 24 20 16 12 8 4 031

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

Attribute Legend:

RV = Reserved

PR = Preserved

RS = Read/Set

RW = Read/Write

RC = Read Clear

RO = Read Only

NA = Not Accessible

Channel

0
1
2

80960RM/RN internal bus address

141CH
145CH
149CH
19-30 i960® RM/RN I/O Processor Developer’s Manual

DMA Controller Unit

te
g
19.14.9 Descriptor Control Register - DCR

The Descriptor Control Register contains control values for the DMA transfer on a per-chain
descriptor basis. This read-only register is loaded whenever a chain descriptor is read from
memory. These values may vary from chain descriptor to chain descriptor. Table 19-12 shows the
definition of the Descriptor Control Register.

The following PCI command types are not supported:

• I/O Read

• I/O Write

• Configuration Read

• Configuration Write

The Memory Write and Invalidate command is fully supported by all channels of the DMA
controller. Refer to Section 19.5.3, “Local Memory to PCI Transfers: Memory Write and Invalida
Command” on page 19-12 for a complete description of the behavior of the DMA channel durin
this PCI bus cycle.

Table 19-12. Descriptor Control Register - DCR

Bit Default Description

31:06 000000H Reserved

05 02

Dual Address Cycle Enable - determines the address cycle type generated on the PCI
bus. When set, the channel uses Dual Address Cycle (DAC) to transfer a 64-bit
address. When clear, the channel uses Single Address Cycle (SAC) to transfer a
32-bit address. For DAC, the PCI Address Register (PADRx) contains the lower 32-bit
address used on the first address cycle. The PCI Upper Address Register (PUADRx)
contains the upper 32 bits address cycle used on the second address cycle. The
upper 32 bit address of a DAC transaction is required to be non-zero. Refer to
Section 19.4 for details on 64-bit addressing.

04 02
Interrupt Enable - when set, the channel generates an interrupt to the i960 RM/RN I/O
processor upon completion of a DMA transfer. When clear, no interrupt is generated.

03:00 00002

PCI Command - determines PCI bus command type on the PCI bus for this DMA
transfer. This value is used directly for the PCI bus command; e.g., when PCI
Command is 00002, the PCI Command is 00002, a reserved command type. See
Table 19-13. Hardware does not check for reserved or unsupported command types.

P
C

I
IO

P
A

ttr
ib

ut
es

A
ttr

ib
ut

es

28 24 20 16 12 8 4 031

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

i
e

d
a
c

c
m
3

c
m
2

c
m
1

c
m
0

Attribute Legend:

RV = Reserved

PR = Preserved

RS = Read/Set

RW = Read/Write

RC = Read Clear

RO = Read Only

NA = Not Accessible

Channel

0
1
2

80960RM/RN internal bus address

1424H
1464H
14A4H
i960® RM/RN I/O Processor Developer’s Manual 19-31

DMA Controller Unit
Table 19-13. PCI Commands

C/BE[3:0]# PCI Command Type Description

00002 reserved Not Supported

00012 reserved Not Supported

00102 I/O Read Not Supported

00112 I/O Write Not Supported

01002 reserved Not Supported

01012 reserved Not Supported

01102 Memory Read Memory Read of less than one cacheline

01112 Memory Write Memory Write

10002 reserved Not Supported

10012 reserved Not Supported

10102 Configuration Read Not Supported

10112 Configuration Write Not Supported

11002 Memory Read Multiple Memory Read of more than one cacheline

11012 reserved Not Supported

11102 Memory Read Line Memory Read of one cacheline

11112 Memory Write and Invalidate Memory Write which guarantees the transfer of a complete
cache line during the current transaction
19-32 i960® RM/RN I/O Processor Developer’s Manual

Application Accelerator Unit 20

This chapter describes the integrated Application Accelerator Unit (AAU). The operation modes,
setup, external interface, and implementation of the AAU are detailed in this chapter.

20.1 Overview

The AAU provides low-latency, high-throughput data transfer capability between the AAU and
80960 local memory. It executes data transfers to and from 80960 local memory and also provides
the necessary programming interface. The AAU performs the following functions:

• Transfers data (read) from memory controller

• Performs an optional boolean operation (XOR) on read data

• Transfers data (write) to memory controller

The AAU features:

• 128-byte, arranged as 8-byte x 16-deep store queue

• Utilization of the i960® RM/RN I/O processor memory controller Interface

• 232 addressing range on the 80960 local memory interface

• Hardware support for unaligned data transfers for the internal bus

• Fully programmable from the i960 core processor

• Support for automatic data chaining for gathering and scattering of data blocks

Figure 20-1 shows a simplified connection of the AAU to the i960 RM/RN I/O Processor Internal Bus.

Figure 20-1. Application Accelerator Unit

Application Accelerator Unit
internal bus
i960® RM/RN I/O Processor Developer’s Manual 20-1

Application Accelerator Unit

fers
 are
o be
te x
ligned.

locks
at

20.2 Theory of Operation

The AAU is a master on the internal bus and performs data transfers to and from local memory. It
does not interface to either the primary PCI or secondary PCI bus. The AAU uses direct addressing
for the memory controller.

The AAU implements the XOR algorithm in hardware. It performs the XOR operation on multiple
blocks of source (incoming) data and stores the result back in 80960 local memory. The source and
destination addresses are specified through chain descriptors resident in 80960 local memory.
Figure 20-2 shows the block diagram of the AAU. The AAU can also be used to perform
memory-to-memory transfers of data blocks controlled by the i960 RM/RN I/O processor memory
controller unit.

The AAU programming interface is accessible from the internal bus through a memory-mapped
register interface. Data for the XOR operation is configured by writing the source addresses,
destination address, number of bytes to transfer, and various control information into a chain
descriptor in local memory. Chain descriptors are described in detail in Section 20.3.2, “Chain
Descriptor Format (4 Source Addresses)” on page 20-3.

The AAU contains a hardware data packing and unpacking unit. This unit enables data trans
from and to unaligned addresses in 80960 local memory. All combinations of unaligned data
supported with the packing and unpacking unit. Data is held internally in the AAU until ready t
stored back to local memory. This is done using a 128-byte holding queue (arranged as 8-by
16-deep queue). Data to be written back to 80960 local memory can either be aligned or una

Each chain descriptor contains the necessary information for initiating an XOR operation on b
of data specified by the source addresses. The AAU supports chaining. Chain descriptors th
specify the source data to be XORed can be linked together in 80960 local memory to form a
linked list.

Figure 20-2. Application Accelerator Unit Block Diagram

64-bit

 Data Queue

Application Accelerator Unit
Packing/

Unpacking
Unit

Accelerator Control Register

Control Registers

Accelerator Status Register
Accelerator Descriptor Address Register

Accelerator Next Descriptor Address Register

80960 Local Source Address Register
80960 Local Destination Address Register

Accelerator Byte Count Register
Accelerator Descriptor Control Register

80960
Bus Interface Internal Bus

Boolean Unit
20-2 i960® RM/RN I/O Processor Developer’s Manual

Application Accelerator Unit
20.3 Hardware-Assist XOR Unit

The AAU implements the XOR algorithm in hardware. It performs the XOR operation on multiple
blocks of source (incoming) data and stores the result back in 80960 local memory.

• The process of reading source data, executing the XOR algorithm, and storing the XOR data
hereafter is referred to as XOR-transfer.

• The process of reading or writing data hereafter is referred to as data transfer.

The source and destination addresses are specified through chain descriptors resident in 80960
local memory.

20.3.1 Data Transfer

All transfers are configured and initiated through a set of memory-mapped registers and one or
more chain descriptors located in local memory. A transfer is defined by the source address,
destination address, number of bytes to transfer, and control values. These values are loaded in the
chain descriptor before a transfer begins. Table 20-1 describes the registers that need to be
configured for any operation.

20.3.2 Chain Descriptor Format (4 Source Addresses)

All transfers are controlled by chain descriptors located in local memory. A chain descriptor
contains the necessary information to complete one transfer. A single transfer has only one chain
descriptor in memory. Chain descriptors can be linked together to form more complex operations.

To perform a transfer, one or more chain descriptors must first be written to 80960 local memory.
Figure 20-3 shows the format of an individual chain descriptor. Every descriptor requires eight
contiguous words in 80960 local memory and is required to be aligned on an 8-word boundary. All
eight words are required.

Table 20-1. Register Description

Register Abbreviation Description

Accelerator Control Register ACR Application Accelerator Control Word

Accelerator Status Register ASR Application Accelerator Status Word

Accelerator Descriptor Address Register ADAR Address of Current Chain Descriptor

Accelerator Next Descriptor Address Register ANDAR Address of Next Chain Descriptor

Source Address Register SAR1.. SAR8 Local memory addresses of source data

Destination Address Register DAR Local memory address of destination data

Accelerator Byte Count Register ABCR Number of Bytes to transfer

Accelerator Descriptor Control Register ADCR Chain Descriptor Control Word
i960® RM/RN I/O Processor Developer’s Manual 20-3

Application Accelerator Unit
Each word in the chain descriptor is analogous to control register values. Bit definitions for the
words in the chain descriptor are the same as for the control registers.

• The first word is the 80960 local memory address of the next chain descriptor. A value of zero
specifies the end of the chain. This value is loaded into the Accelerator Next Descriptor
Address Register. Because chain descriptors must be aligned on an 8-word boundary, the unit
ignores bits 04:00 of this address.

• The second word is the address of the first block of data resident in 80960 local memory. This
address is driven on the internal bus. This value is loaded into the Source Address Register 1.

• The third word is the address of the second block of data resident in 80960 local memory. This
address is driven on the internal bus. This value is loaded into the Source Address Register 2.

• The fourth word is the address of the third block of data resident in 80960 local memory. This
address is driven on the internal bus. This value is loaded into the Source Address Register 3.

• The fifth word is the address of the fourth block of data resident in 80960 local memory. This
address is driven on the internal bus. This value is loaded into the Source Address Register 4.

• The sixth word is the destination address where data is stored in 80960 local memory. This
address is driven on the internal bus. This value is loaded into the Destination Address Register.

• The seventh word is the Byte Count value. This value specifies the number of bytes of data in
the current chain descriptor. This value is loaded into the Accelerator Byte Count Register.

• The eighth word is the Descriptor Control Word. This word configures the AAU for one operation.
This value is loaded into the Accelerator Descriptor Control Register.

There are no data alignment requirements for any of the source addresses or the destination
address. However, maximum performance is obtained from aligned transfers, especially small
transfers. See Section 20.5, on page 20-15.

Refer to Section 20.12 for additional description on the control registers.

Figure 20-3. Chain Descriptor Format

Next Descriptor Address (NDA)

80960 Source Address (SAR3)

80960 Destination Address (DAR)

80960 Source Address (SAR4)

80960 Source Address (SAR2)

80960 Source Address (SAR1) Source Address for first block of data

Destination Address

Address of Next Chain Descriptor

Source Address for second block of data

Source Address for fourth block of data

Source Address for third block of data

Chain Descriptor in 80960 Memory Description

Byte Count (BC)

Descriptor Control (DC)

Number of bytes

Descriptor Control
20-4 i960® RM/RN I/O Processor Developer’s Manual

Application Accelerator Unit
To perform an XOR-transfer, a series of chain descriptors can be built in local memory to XOR
multiple blocks of source data resident in 80960 local memory. The XOR-ed result is then stored
back in 80960 local memory. An application can build multiple chain descriptors to XOR many
blocks of data which have different source addresses within the local memory.

When multiple chain descriptors are built in 80960 local memory memory, the application can link
each of these chain descriptors using the Next Descriptor Address in the chain descriptor. This
address logically links the chain descriptors together. This allows the application to build a list of
transfers which may not require the processor until all transfers are complete. Figure 20-4 shows an
example of a linked-list of transfers specified in external memory.

Figure 20-4. XOR Chaining Operation

Next Descriptor Address (NDA)

80960 Source Address (SAR3)

Descriptor Address Register Accelerator Control Register

Linked Descriptors In Local Memory

Buffer Transfers

First Chain Descriptor
XOR

Operation
80960 Destination Address (DAR)

80960 Source Address (SAR4)

End of Chain

80960 Source Address (SAR2)
80960 Source Address (SAR1)

(Null Value Detected)

Byte Count (BC)
Descriptor Control (DC)

Next Descriptor Address (NDA)

80960 Source Address (SAR3)

80960 Destination Address (DAR)

80960 Source Address (SAR4)

80960 Source Address (SAR2)
80960 Source Address (SAR1)

Byte Count (BC)
Descriptor Control (DC)

Next Descriptor Address (NDA)

80960 Source Address (SAR3)

80960 Destination Address (DAR)

80960 Source Address (SAR4)

80960 Source Address (SAR2)
80960 Source Address (SAR1)

Byte Count (BC)
Descriptor Control (DC)

...

Second Chain Descriptor
XOR

Operation

Nth Chain Descriptor
XOR

Operation
i960® RM/RN I/O Processor Developer’s Manual 20-5

Application Accelerator Unit
20.3.3 Chain Descriptor Format (Eight Source Addresses)

To perform an XOR-transfer with more than four source blocks of data (up to eight), a special
chain descriptor needs to be configured:

• The first part (principal-descriptor) contains the address of the first four source data blocks
along with other information.

• The second part (mini-descriptor) contains four, 32-bit words containing the address of the
additional four (SAR5 - SAR8) source data blocks. The mini-descriptor is written to a
contiguous address immediately following the principal descriptor.

To perform a transfer, both parts (principal and mini-descriptor) must be written to 80960 local
memory. Figure 20-5 shows the format of this configuration. Every descriptor requires twelve
contiguous words in 80960 local memory and is required to be aligned on an 8-word boundary. All
twelve words are required.

• The first word is the 80960 local memory address of the next chain descriptor. A value of zero
specifies the end of the chain. This value is loaded into the Accelerator Next Descriptor
Address Register. Because chain descriptors must be aligned on an 8-word boundary, the unit
ignores bits 04:00 of this address.

• The second word is the address of the first block of data resident in 80960 local memory. This
address is driven on the internal bus. This value is loaded into SAR1.

• The third word is the address of the second block of data resident in 80960 local memory. This
address is driven on the internal bus. This value is loaded into SAR2.

• The fourth word is the address of the third block of data resident in 80960 local memory. This
address is driven on the internal bus. This value is loaded into SAR3.

• The fifth word is the address of the fourth block of data resident in 80960 local memory. This
address is driven on the internal bus. This value is loaded into SAR4.

• The sixth word is the destination address where the XOR-ed data is stored in 80960 local
memory. This address is driven on the internal bus. This value is loaded into the Destination
Address Register.

• The seventh word is the Byte Count value. This value determines the total number of bytes of
data to XOR in the current chain descriptor. This value is loaded into the Accelerator Byte
Count Register.

• The eighth word is the Descriptor Control Word. This word configures the AAU for one operation.
This value is loaded into the Accelerator Descriptor Control Register.

• The ninth word (1st word of mini-descriptor) is the address of the fifth block of data resident in
80960 local memory. This address is driven on the internal bus. This value is loaded into SAR5.

• The tenth word (2nd word of mini-descriptor) is the address of the sixth block of data resident in
80960 local memory. This address is driven on the internal bus. This value is loaded into SAR6.

• The eleventh word (3rd word of mini-descriptor) is the address of the seventh block of data
resident in 80960 local memory. This address is driven on the internal bus. This value is
loaded into SAR7.

• The twelfth word (4th word of mini-descriptor) is the address of the eighth block of data
resident in 80960 local memory. This address is driven on the internal bus. This value is
loaded into SAR8.
20-6 i960® RM/RN I/O Processor Developer’s Manual

Application Accelerator Unit
A series of chain descriptors can be built in local memory to XOR multiple blocks of source data
resident in 80960 local memory. The XOR-ed result is then stored back in 80960 local memory. An
application can build multiple chain descriptors to XOR many blocks of data which have different
source addresses within the local memory.

When multiple chain descriptors are built in 80960 local memory memory, the application can link
each of these chain descriptors using the Next Descriptor Address in the chain descriptor. This
address logically links the chain descriptors together. This allows the application to build a list of
transfers which may not require the processor until all transfers are complete. Figure 20-6 shows an
example of a linked-list of transfers specified in external memory.

Figure 20-5. Chain Descriptor Format for 8 Source Addresses (XOR Function)

Next Descriptor Address (NDA)

80960 Source Address (SAR3)

80960 Destination Address (DAR)

80960 Source Address (SAR4)

80960 Source Address (SAR2)

80960 Source Address (SAR1) Source Address for first block of data

Destination Address of XOR-ed data

Address of Next Chain Descriptor

Source Address for second block of data

Source Address for fourth block of data

Source Address for third block of data

Chain Descriptor in 80960 Memory Description

Byte Count (BC)

Descriptor Control (DC)

Number of bytes to XOR

Descriptor Control

80960 Source Address (SAR5)

80960 Source Address (SAR8)

80960 Source Address (SAR7)

80960 Source Address (SAR6) Source Address for sixth data block

Source Address for fifth data block

Source Address for seventh data block

Source Address for eighth data block
i960® RM/RN I/O Processor Developer’s Manual 20-7

Application Accelerator Unit
20.3.4 The Bitwise-XOR Algorithm

Figure 20-7 describes the XOR algorithm implementation. In this illustrative example, there are
four blocks of source data to be XOR-ed. The intermediate result is stored in the 128-byte store
queue in the AAU before being written back to 80960 local memory. The source data is located at
addresses A000 0200H, A000 0400H, A000 0600H and A000 0800H respectively.

All data transfers needed for this operation are controlled by chain descriptors located in local
memory. The AAU as a master on the internal bus initiates data transfer. The algorithm is
implemented such that as data is read from local memory, the boolean unit executes the XOR
operation on incoming data.

Figure 20-6. XOR Chaining Operation

Descriptor Address Register Accelerator Control Register

Linked Descriptors In Local Memory

Buffer Transfers

First Chain Descriptor
XOR

Operation

End of Chain
(Null Value Detected)

...

Nth Chain Descriptor
XOR

Operation

Next Descriptor Address (NDA)

80960 Source Address (SAR3)

80960 Destination Address (DAR)
80960 Source Address (SAR4)

80960 Source Address (SAR2)
80960 Source Address (SAR1)

Byte Count (BC)
Descriptor Control (DC)

80960 Source Address (SAR5)

80960 Source Address (SAR8)
80960 Source Address (SAR7)
80960 Source Address (SAR6)

Next Descriptor Address (NDA)

80960 Source Address (SAR3)

80960 Destination Address (DAR)
80960 Source Address (SAR4)

80960 Source Address (SAR2)
80960 Source Address (SAR1)

Byte Count (BC)
Descriptor Control (DC)

80960 Source Address (SAR5)

80960 Source Address (SAR8)
80960 Source Address (SAR7)
80960 Source Address (SAR6)
20-8 i960® RM/RN I/O Processor Developer’s Manual

Application Accelerator Unit
Figure 20-7. The Bit-wise XOR Algorithm

A000 0200HBlock 1

MSB LSB

80960 Local Memory

A000 0400H

A000 0600H

A000 0800H

bitwise-XOR

(64-bit wide)

bitwise-XOR

(64-bit wide)

bitwise-XOR

(64-bit wide)

128 byte, 16-Deep Store Queue

byte 1byte 8

128 bytes
bytes 1-8

128 bytes
bytes 1-8

128 bytes
bytes 1-8

bytes 1-8
128 bytes

Block 2

Block 3

Block 4

...

SAR3 = A000 0600H

DAR = B000 0400H

SAR4 = A000 0800H

SAR2 = A000 0400H
SAR1 = A000 0200H

ABCR = 0000 0080H
ADCR = 8000 049FH

Control Register Values

B000 0400H
i960® RM/RN I/O Processor Developer’s Manual 20-9

Application Accelerator Unit
The XOR algorithm and methodology followed once a chain descriptor has been configured is
detailed below:

1. The AAU as a master on the bus initiates data transfer from the address pointed at by the First
Source Address Register (SAR1). As this is the first transfer in the current chain descriptor, the
data is transferred directly to the store queue. The number of bytes transferred to the store
queue is 128. The total number of bytes to XOR-transfer is specified by the Byte Count (BC)
field in the chain descriptor.

Note: The AAU operates on 128 bytes of data at a time. If the Byte Count Register contains a value
greater than 128, the AAU completes the XOR-transfer operation on the first 128 bytes of data
obtained from each Source Register (SAR1 - SAR4), then proceeds with the next 128 bytes of data.
This process is repeated until the BCR contains a zero value.

2. The AAU transfers the first eight bytes of data from the address pointed at by the Second
Source Address Register (SAR2).

3. The boolean unit performs the bit-wise XOR algorithm on the input operands. The input
operands are the first eight bytes of data read from SAR1 (bytes 1-8) which are stored in the
queue and the first eight bytes of data just read from SAR2 (bytes 1-8).

4. The XOR-ed result is transferred to the store queue and stored in the first eight bytes (bytes
1-8) overwriting previously stored data.

5. The AAU transfers the next eight bytes of data (bytes 9-16) from address pointed at by the
Second Source Address Register (SAR2).

6. The boolean unit performs the bit-wise XOR algorithm on the input operands. The input
operands are the next eight bytes of data read from SAR1 (bytes 9-16 stored in the queue) and
the eight bytes of data read from SAR2 in Step-5.

7. Step-5 and Step-6 (Data transfer & XOR) are repeated until all data pointed at by SAR1 is
XOR-ed with the corresponding data pointed at by SAR2. The store queue now contains
128 bytes of XOR-ed data, the source addresses for which were specified in SAR1 and SAR2.

8. Steps 1-7 are repeated once again. The first input to the XOR unit is the data held in the store
queue and the second input is the data pointed at by SAR3.

Figure 20-8. Hardware Assist XOR Unit

New DataXORed

bytes 1 - 8
bytes 9-16

bytes 121-128

Byte 1 = Byte 1 ⊕ Byte 1 ⊕ Byte 1 ⊕ Byte 1
Block 1 Block 2 Block 3 Block 4

Byte 128 = Byte 128 ⊕ Byte 128 ⊕ Byte 128 ⊕ Byte 128

data

...

Each existing bit is XOR’ed with new data
and stored back to the same bit location

Block 1 Block 2 Block 3 Block 4
20-10 i960® RM/RN I/O Processor Developer’s Manual

Application Accelerator Unit
9. The above steps are repeated once more. The first input to the XOR unit is the data held in the
store queue and the second input is the data pointed at by SAR4.

10. Once Steps 1-9 are completed, the XOR operation is complete for the first 128 bytes of the
current chain descriptor. If the Destination Write Enable Bit in the Accelerator Descriptor
Control Register (ADCR) is set, the data in the store queue is written to local memory at the
address pointed to by the Destination Address Register (DAR). If the Destination Write Enable
Bit in the ADCR is not set, the data is not written to local memory and is held in the queue. Steps
1-9 are repeated until all the bytes of data have undergone the XOR-transfer operation.

Note: If the ABCR register contains a value greater than 128 and the ADCR.dwe bit is cleared, the AAU only
reads the first 128 bytes and perform the specified function. It does not read the remaining bytes
specified in the ABCR. Further, the AAU proceeds to process the next chain descriptor if it is specified.

20.3.5 Initiating the XOR Operation

An XOR operation is initiated by building one or more chain descriptors in 80960 local memory.
Figure 20-9 shows the format of a principal descriptor.

The following describes the steps for initiating a new XOR operation:

1. The AAU must be inactive prior to starting an XOR operation. This can be checked by
software by reading the Accelerator Active bit in the Accelerator Status Register. If this bit is
clear, the unit is inactive. If this bit is set, the unit is currently active.

2. The ASR must be cleared of all error conditions.

3. The software writes the address of the first chain descriptor to the Accelerator Next Descriptor
Address Register (ANDAR).

4. The software sets the Accelerator Enable bit in the Accelerator Control Register (ACR).
Because this is the start of a new XOR operation and not the resumption of a previous
operation, the XOR Resume bit in the ACR should be clear.

5. The AAU starts the XOR operation by reading the chain descriptor at the address contained in
ANDAR. The AAU loads the chain descriptor values into the ADAR and begins data transfer.
The Accelerator Descriptor Address Register (ADAR) contains the address of the chain
descriptor just read and ANDAR now contains the Next Descriptor Address from the chain
descriptor just read.

The last descriptor in the XOR chain list has zero in the next descriptor address field specifying the last
chain descriptor. A NULL value notifies the AAU not to read additional chain descriptors from
memory.

Once an XOR operation is active, it can be temporarily suspended by clearing the Accelerator
Enable bit in the ACR. Note that this does not abort the XOR operation. The unit resumes the
process when the Accelerator Enable bit is set.

When descriptors are read from external memory, bus latency and memory speed affect chaining
latency. Chaining latency is defined as the time required for the AAU to access the next chain
descriptor plus the time required to set up the next XOR-transfer.
i960® RM/RN I/O Processor Developer’s Manual 20-11

Application Accelerator Unit

20.3.6 Scatter Gather Transfers

The AAU can be used to perform typical scatter gather transfers. This consists of programming the chain
descriptors to gather data which may be located in non-contiguous blocks of memory. The chain descriptor
specifies the destination location such that once all data has been processed, the data is contiguous in
memory. Figure 20-9 shows how the destination pointers can gather data.

20.3.7 Synchronizing a program to Chained operation

Any operation involving the AAU can be synchronized to a program executing on the i960 core
processor through the use of processor interrupts. The AAU generates an interrupt to the i960 core
processor under certain conditions. They are:

1. [Interrupt & Continue] The AAU completes processing a chain descriptor and the Accelerator Next
Descriptor Address Register (ANDAR) is non-zero. If the Interrupt Enable bit within the
Accelerator Descriptor Control Register (ADCR) is set, an interrupt is generated to the i960 core
processor. This interrupt is for synchronization purposes. The AAU sets the End Of Transfer
Interrupt flag in the Accelerator Status Register (ASR). Since it is not the last chain descriptor in the
list, the AAU starts to process the next chain descriptor without requiring any processor interaction.

2. [End of Chain] The AAU completes processing a chain descriptor and the Accelerator Next
Descriptor Address Register is zero specifying the end of the chain. If the Interrupt Enable bit
within the ADCR is set, an interrupt is generated to the i960 core processor. The AAU sets the
End Of Chain Interrupt flag in the ASR.

3. [Error] An error condition occurs (refer to Section 20.10, “Error Conditions” on page 20-19
for AAU error conditions) during a transfer. The AAU halts operation on the current chain
descriptor and not proceed to the next chain descriptor.

Figure 20-9. Example of Gather Chaining for Four Source Blocks

source buffers

SAR1 = Source Address Register 1
NDA = Next Descriptor Address

SAR2 = Source Address Register 2

DAR = Destination Address Register

...

...

...

128-byte, 16 deep
Store BufferSAR1

SAR3 = Source Address Register 3
SAR4 = Source Address Register 4

End of Chain
Null Value Detected

SAR2 SAR3 SAR4 DARNDA DCBC

SAR1 SAR2 SAR3 SAR4 DARNDA DCBC

SAR1 SAR2 SAR3 SAR4 DARNDA DCBC

SAR1 SAR2 SAR3 SAR4 DARNDA DCBC

DC = Descriptor Control
BC = Byte Count
20-12 i960® RM/RN I/O Processor Developer’s Manual

Application Accelerator Unit
Each chain descriptor can independently set the Interrupt Enable bit in the Descriptor Control
word. This bit enables an independent interrupt once a chain descriptor is processed. This bit can
be set or clear within each chain descriptor. Control of interrupt generation within each descriptor
aids in synchronization of the executing software with XOR operation.

Figure 20-10 shows two examples of program synchronization. The left column shows program
synchronization based on individual chain descriptors. Descriptor 1A generated an interrupt to the
processor, while descriptor 2A did not because the Interrupt Enable bit was clear. The last
descriptor nA, generated an interrupt to signify the end of the chain has been reached. The right
column in Figure 20-10 shows an example where the interrupt was generated only on the last
descriptor signifying the end of chain.

Figure 20-10. Synchronizing to Chained XOR Operation

Descriptor 1B

Descriptor 2A

Descriptor 2B

...

...

Descriptor 1A

chain descriptorschain descriptors

RET

interrupt procedure

...
RET

interrupt procedure

Descriptor nB

...
RET

interrupt procedure

Descriptor nA

...

Independent Interrupt after Completing any Descriptor Interrupt after Completing Last Descriptor

No Interrupt on this Descriptor

Optional interrupt
generated to
i960® RM/RN I/O Processor Developer’s Manual 20-13

Application Accelerator Unit
20.3.8 Appending to The End of a Chain

Once the AAU has started processing a chain of descriptors, application software may need to
append a chain descriptor to the current chain without interrupting the transfer in progress. The
mechanism used for performing this action is controlled by the Chain Resume bit in the
Accelerator Control Register (ACR).

The AAU reads the subsequent chain descriptor each time it completes the current chain descriptor
and the Accelerator Next Descriptor Address Register (ANDAR) is non-zero. ANDAR always
contains the address of the next chain descriptor to be read and the Accelerator Descriptor Address
Register (ADAR) always contains the address of the current chain descriptor.

The procedure for appending chains requires the software to find the last chain descriptor in the
current chain and change the Next Descriptor Address in that descriptor to the address of the new
chain to be appended. The software then sets the Chain Resume bit in the ACR. It does not matter
if the unit is active or not.

The AAU examines the Chain Resume bit of the ACR when the unit is idle or upon completion of
a chain of transfers. If this bit is set, the AAU re-reads the Next Descriptor Address of the current
chain descriptor and load it into ANDAR. The address of the current chain descriptor is contained
in ADAR. The AAU clears the Chain Resume bit and then examines ANDAR. If ANDAR is not
zero, the AAU reads the chain descriptor using this new address and begin a new operation. If
ANDAR is zero, the AAU remains or return to idle.

There are three cases to consider:

1. The AAU completes an XOR-transfer and it is not the last descriptor in the chain. In this case,
the AAU clears the Chain Resume bit and reads the next chain descriptor. The appended
descriptor is read when the AAU reaches the end of the original chain.

2. The channel completes an XOR-transfer and it is the last descriptor in the chain. In this case,
the AAU examines the state of the Chain Resume bit. If the bit is set, the AAU re-reads the
current descriptor to get the address of the appended chain descriptor. If the bit is clear, the
AAU returns to idle.

3. The AAU is idle. In this case, the AAU examines the state of the Chain Resume bit when the
ACR is written. If the bit is set, the AAU re-reads the last descriptor from the most-recent
chain to get the appended chain descriptor.

20.4 Store Queue

The AAU contains one 128-byte store queue. This is arranged as an 8-byte x 16-deep queue. The
queue is used to hold data. Depending on the configuration of the Accelerator Descriptor Control
Register (ADCR), data in the queue is either written to 80960 local memory or is held in the queue.

When a transaction defined by a Chain Descriptor completes in its entirety, the contents of the
queue are undefined. The storage queue should therefore not be used as a history buffer when
setting up new transactions.
20-14 i960® RM/RN I/O Processor Developer’s Manual

Application Accelerator Unit
20.5 Packing and Unpacking

The AAU contains a hardware data packing and unpacking unit to support data transfers between
unaligned source and destination addresses. Source and destination addresses can either be
unaligned or aligned on natural boundaries. The packing unit optimizes data transfers to and from
32 and 64-bit memory. It reformats data words for the correct bus data width. When the read data
needs to be packed or unpacked, the data is held internally and does not need to be re-read.

Aligned data transfers are those that fall on natural boundaries. For example; double words are
aligned on 8-byte boundaries and words are aligned on 4-byte boundaries. Data transfers can take
place in two instances:

• The source and destination addresses are both aligned.

• All or some source addresses are unaligned and the destination address is aligned or unaligned.

20.5.1 64-bit Unaligned Data Transfers

Figure 20-11 illustrates a data transfer between unaligned 64-bit, source and destination addresses.

Figure 20-11. Optimization of an Unaligned Data Transfer

byte number

10

Bus operation

double word load@ A0000200
double word load@ A0000208
double word load@ A0000210

byte store@ 40010307
double word store@ 40010308
double word store@ 40010310

SOURCE DESTINATION

ACR

SAR1

DAR

ABCR

ADCR

Programmed Values

0000 0001H

A000 0201H

4001 0307H

0000 0014H

8000 000EH

ADDRESS

A000 0200H

A000 0208H

A000 0210H

4001 0300H

4001 0308H

4001 0310H64-bit Destination bus

LSBMemory

(Internal bus)

1

9 8 7 6 5 4 3 2

12 11 10

12 11 10 9 8

7 6 5 4 3 2 1

MSB

64-bit Source bus
(Internal Bus)

AAU performs a
Data Block Transfer

20 19 18 17 16

15 14 13

17 16 15 14 13

20 19 18 4001 0318H

3-byte store@ 40010318
i960® RM/RN I/O Processor Developer’s Manual 20-15

Application Accelerator Unit
20.6 Application Accelerator Unit Priority

The internal bus arbitration logic determines which internal bus master has access to the i960
RM/RN I/O Processor Internal Bus. The AAU has an independent Bus Request/Grant signal pair to
the internal bus arbitration logic. Chapter 17, “i960® RM/RN I/O Processor Arbitration” describes
in detail the priority scheme between all of the bus masters on the internal bus.

20.7 Programming Model State Diagram

The AAU programming model diagram is shown in Figure 20-12. Error condition states are not
shown.

Figure 20-12. Application Accelerator Unit Programming Model State Diagram

Reset

Read NAD from

ASR.bf == 0 &&

Read descriptorANDAR == 0
||

XOR TRANSFER

Transfer Complete &&

IB
 e

rr
or

 ||

ANDAR == 0 && STATE

IDLE
STATE

READ

STATE

READ
NAD STATE

AAU Active = 0
AAU Enable == 1 &&

Chain Resume == 0 &&

Tra
nsfe

r C
om

plete &
&

ANDAR !=
 0

A
N

D
A

R
 =

=
0

&
&

Chain Resume == 1 &&

ANDAR != 0 && !InternalBus error

ASR.bf =
= 0 &

&

AAU E
nab

le
== 1 &

&

Chain
 R

esu
me =

= 1 &
&

current descriptor

at ANDAR
Chain Resume = 0

at ADAR
and load ANDAR
Chain Resume = 0

ANDAR != 0

ANDAR == 0
Internal Bus error

Intern
al B

us e
rro

r

!In
ternal B

us e
rro

r

C
ha

in
 R

es
um

e
=

=
0

&
&

Tr
an

sf
er

 C
om

pl
et

e

!IB error
AAU Active = 1

DESCRIPTOR
20-16 i960® RM/RN I/O Processor Developer’s Manual

Application Accelerator Unit
20.8 Programming the Application Accelerator Unit

The software for initiating an XOR-transfer using the AAU falls into the following categories:

• AAU initialization

• Start XOR transfer

• Suspend AAU

An example for each category is shown in the following sections as pseudo code flow.

20.8.1 Application Accelerator Unit Initialization

The AAU is designed to have independent control of the interrupts, enables, and control. The
initialization consists of virtually no overhead as shown in Example 20-1.

20.8.2 Start XOR Transfer

The AAU control register provides independent control each time the AAU is configured. This
provides the greatest flexibility to the applications programmer. Example 20-2 describes the
pseudo code for initiating an XOR operation with the AAU.

Example 20-1. Pseudo Code: AAU Initialization

ACR = 0x0000 0000 ; Disable the application accelerator

Call setup_accelerator

Example 20-2. Pseudo Code: XOR Transfer Operation for Four Source Addresses and One
Destination Address

; Set up descriptor in 80960 local memory at address d

d.nda = 0 /* No chaining */

d.SAR1 = 0xA000 0200/* Source address of Data Block 1 */

d.SAR2 = 0xA000 0400/* Source address of Data Block 2 */

d.SAR3 = 0xA000 0600/* Source address of Data Block 3 */

d.SAR4 = 0xA000 0800/* Source address of Data Block 4 */

d.DAR = 0xB000 0100/* Destination address of XOR-ed data */

d.ABCR = 128 /* Byte Count of 128 */

d.ADCR = 0x8000 049F/* Direct fill data from Block 1 */

/* XOR with data from Block 2,Block 3 and

 Block 4 */

 /* Store the result & interrupt processor */

; Check for Inactive AA & no pending interrupts

if (ASR != 0) exit /* If AA is not ready, exit */

; Start Operation

ANDAR = &d ; Set up descriptor address

ACR = 0x00000001 ; Set AA Enable bit
i960® RM/RN I/O Processor Developer’s Manual 20-17

Application Accelerator Unit

the
ly be
e
fter
20.8.3 Suspend Application Accelerator Unit

The AAU provides the ability to suspend the current state without losing status information. The AAU
resumes without requiring application software to save the current configuration. Example 20-3
describes pseudo-code for suspending the ongoing operation and then restarting.

20.9 Interrupts

The AAU can generate an interrupt to the i960 core processor. The Interrupt Enable bit in the
Accelerator Descriptor Control Register (ADCR.ie) determines whether the AAU generates an
interrupt upon successful, error-free completion. Error conditions described in Section 20.10 also
generate an interrupt. The AAU has one interrupt output connected to the PCI and Peripheral
Interrupt Controller described in Chapter 8, “PCI and Peripheral Interrupt Controller Unit”.
Table 20-2 summarizes the status flags and conditions when interrupts are generated in the
Accelerator Status Register (ASR).

Note: End-of-Transfer and End-of-Chain flags is set only when ADCR.ie = 1. If ADCR.ie = 0, then
above flags are always set to 0. End-of-Transfer Interrupt and End of Chain Interrupt can on
reported in the ASR if the transfer completes without any reportable errors. However, multipl
error conditions may occur and be reported together. Also, because the AAU does not stop a
reporting the End-of-Transfer interrupt, an IB master-abort error may occur before the
End-of-Transfer interrupt is serviced and cleared.

Example 20-3. Pseudo Code: Suspend Application Accelerator Unit

ACR = 0x0000 0000 ; Suspend ongoing AA transfer

;Suspend Application Accelerator

ACR = 0x0000 0001 ; Resume AA transfer

Table 20-2. Application Accelerator Unit Interrupt Summary

Interrupt Condition

Accelerator Status Register (ASR)
Flags

Interrupt
Generated?

A
ct

iv
e

E
n

d
 o

f
Tr

an
sf

er

E
n

d
 o

f
C

h
ai

n

IB
 M

as
te

r
A

b
o

rt

A
D

C
R

.ie
 S

et

A
D

C
R

.ie
 C

le
ar

Byte count == 0 && ANDAR != NULL
(End of Transfer) 1 1 0 0 Y N

Byte Count == 0 && ANDAR == NULL
(End of Chain) 0 0 1 0 Y N

IB Master Abort 0 0 0 1 Y Y

IB Target Abort 0 0 0 0 0 0
20-18 i960® RM/RN I/O Processor Developer’s Manual

Application Accelerator Unit
20.9.1 Interrupts - Special Case (ADCR.dwe = 0)

Once the AAU is enabled, the AAU loads the chain descriptor fields into the respective registers. If
ADCR.dwe = 0, then an interrupt is generated (if enabled) after the descriptor is fetched and
processed as defined by the block control fields in the ADCR. Table 20-3 summarizes the status
flags and conditions when interrupts are generated in the Accelerator Status Register (ASR) for this
special case.

Note: End-of-Transfer and End-of-Chain flags is set only when ADCR.ie =1. If ADCR.ie = 0, then the
above flags are always set to 0. End-of-Transfer Interrupt and End of Chain Interrupt can only be
reported in the ASR if the descriptor fetch and processing completed without any reportable errors.
However, multiple error conditions may occur and be reported together. Also, because the AAU
does not stop after reporting the End-of-Transfer interrupt, an IB master-abort error may occur
before the End-of-Transfer interrupt is serviced and cleared.

20.10 Error Conditions

Master Aborts that occur during a transfer are recorded by the AAU.

When an error occurs, the actions taken are detailed below:

• The AAU shall cease the ongoing transfer for the current chain descriptor and clear the
Application Accelerator Active flag in the ASR.

• The AAU does not read any new chain descriptors.

• The AAU sets the error flag in the Accelerator Status Register. For example; if an IB
master-abort occurred during a transfer, the channel sets bit 5 in the ASR.

• The AAU signals an interrupt to the i960 core processor.

• The AAU does not restart the transfer after an error condition. It is the responsibility of the
application software to reconfigure the AAU to complete any remaining transfers.

Table 20-3. AAU Interrupts - Special Case

Interrupt Condition

Accelerator Status Register (ASR)
Flags

Interrupt
Generated?

A
ct

iv
e

E
n

d
 o

f
Tr

an
sf

er

E
n

d
 o

f
C

h
ai

n

IB
 M

as
te

r
A

b
o

rt

A
D

C
R

.ie
 S

et

A
D

C
R

.ie
 C

le
ar

(ADCR.dwe == 0 || byte count == 0)

&& ANDAR != NULL
(End of Transfer)

1 1 0 0 Y N

(ADCR.dwe == 0 || byte count == 0)

&& ANDAR == NULL
(End of Chain)

0 0 1 0 Y N

IB Master Abort 0 0 0 1 Y Y

IB Target Abort 0 0 0 0 0 0
i960® RM/RN I/O Processor Developer’s Manual 20-19

Application Accelerator Unit

alues.

the
d with
ory.
Note: Target-aborts that occur while the AAU is the master on the internal bus are recorded by the MCU
and interrupt the core. For correct operation of the AAU, user software has to disable the AAU
before clearing the error condition. Further, the AAU needs to be re-enabled by writing a 1 to
ACR.ae before initiating a new operation.

There are three possible scenarios for multi-bit ECC errors on reads or writes. These errors
conditions are handled as detailed below:

• Multi-bit ECC error on MCU Data Read: Refer Chapter 13, “Memory Controller” for
details on error handling in this instance.

• Multi-bit ECC error on MCU Data Write: This instance covers the case where the first data
write is less than a 64-bit value forcing the MCU to execute a read-modify-write operation.
Refer to Chapter 13, “Memory Controller” for complete details.

• Multi-bit ECC error on MCU Data Write: This instance covers the case where the last data
write is less than a 64-bit value forcing the MCU to execute a read-modify-write operation.
Refer to Chapter 13, “Memory Controller” for complete details.

20.11 Powerup/Default Status

Upon powerup, an external hardware reset, the AAU Registers is initialized to their default v

20.12 Register Definitions

The AAU contains fifteen memory-mapped registers for controlling its operation. There is
read/write access only to the Accelerator Control Register, Accelerator Status Register, and
Accelerator Next Descriptor Address Register. All other registers are read-only and are loade
new values from the chain descriptor whenever the AAU reads a chain descriptor from mem

Table 20-4. Application Accelerator Unit Registers

Section, Register Name - Acronym (page)

Section 20.12.1, “Accelerator Control Register - ACR” on page 20-21

Section 20.12.2, “Accelerator Status Register - ASR” on page 20-22

Section 20.12.3, “Accelerator Descriptor Address Register - ADAR” on page 20-23

Section 20.12.4, “Accelerator Next Descriptor Address Register - ANDAR” on page 20-24

Section 20.12.5, “80960 Source Address Register - SAR” on page 20-25

Section 20.12.6, “80960 Destination Address Register - DAR” on page 20-26

Section 20.12.7, “Accelerator Byte Count Register - ABCR” on page 20-27

Section 20.12.8, “Accelerator Descriptor Control Register - ADCR” on page 20-28
20-20 i960® RM/RN I/O Processor Developer’s Manual

Application Accelerator Unit
20.12.1 Accelerator Control Register - ACR

The Accelerator Control Register (ACR) specifies parameters that dictate the overall operating
environment. The ACR should be initialized prior to all other AAU registers following a system reset.
Table 20-5 shows the register format. This register can be read or written while the AAU is active.

Table 20-5. Accelerator Control Register - ACR

Bit Default Description

31:02 0 Reserved

01 02

Chain Resume - when set, causes the AAU to resume chaining by re-reading the
current descriptor located at the address in the Accelerator Descriptor Address
Register when the AAU is idle (AAU Active bit in the ASR is clear) or when the AAU
completes a transfer. This bit is cleared by hardware when either:

• The AAU completes a transfer and the Accelerator Next Descriptor Address
Register is non-zero. In this case, the AAU proceeds to the next descriptor in the
chain.

• The AAU re-reads the chain descriptor located at the address in the Accelerator
Descriptor Address Register and loads the Next Descriptor Address of that
descriptor into the Accelerator Next Descriptor Address Register

00 02

AAU Enable - When set, the AAU enables transfers. When clear, the AAU disables
any transfer. Clearing this bit when the AAU is active suspends the current transfer at
the earliest opportunity by halting all internal bus transactions. The AAU does not
initiate any new transfers when this bit is cleared. Data held in queues remains valid.
Setting the bit after the AAU is suspended causes the AAU to resume the previously
ongoing transfer.

P
C

I
IO

P
A

tt
rib

ut
es

A
ttr

ib
ut

e
s

28 24 20 16 12 8 4 031

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rw

na

rw

na

a
e

r
e
s

Attribute Legend:

RV = Reserved

PR = Preserved

RS = Read/Set

RW = Read/Write

RC = Read Clear

RO = Read Only

NA = Not Accessible

80960 Core Internal bus address

1800H
i960® RM/RN I/O Processor Developer’s Manual 20-21

Application Accelerator Unit
20.12.2 Accelerator Status Register - ASR

The Accelerator Status Register (ASR) contains status flags that indicate status. This register is
typically read by software to examine the source of an interrupt. See Section 20.10 for a description
of the error conditions that are reported in the ASR. See Section 20.9 for a description of interrupts
caused by the AAU.

If an AAU error occurs, application software should check the status of Accelerator Active flag
before processing the interrupt.

Table 20-6. Accelerator Status Register - ASR

Bit Default Description

31:11 000000H Reserved

10 02

Accelerator Active Flag - indicates the AAU is either active (in use) or idle (available).
When set, indicates the AAU is in use and actively performing an operation. When
clear, indicates the channel is idle and available to be configured for a new operation.
The AAU clears the Accelerator Active flag when the previously configured transfer
completes as a result of:

• byte count reached zero and last chain descriptor is encountered (NULL value
detected for Next Descriptor Address in chain descriptor)

• Internal Bus Errors

• Last chain descriptor is processed (NULL value detected for Next Descriptor
Address in chain descriptor) and ADCR.dwe = 0.

The Accelerator Active flag is set once a Chain Descriptor is read from memory.

09 02

End of Transfer Interrupt Flag - set when the AAU has signalled an interrupt to the
80960 processor after processing a descriptor but it is not the last descriptor in a
chain.

08 02
End of Chain Interrupt Flag - set when the channel has signalled an interrupt to the
80960 processor after processing a descriptor that is the last in a chain.

07:06 02 Reserved

05 02
This bit is set if a Master-abort occurs during a transaction when the AAU is the
master on the internal bus.

04:00 02 Reserved

P
C

I
IO

P
A

ttr
ib

ut
es

A
tt

rib
ut

es

28 24 20 16 12 8 4 031

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

ro

na

rc

na

rc

na

rv

na

rc

na

rc

na

rv

na

rv

na

rv

na

rv

na

rv

na

a
a

b
f

e
o
t

e
o
c

Attribute Legend:

RV = Reserved

PR = Preserved

RS = Read/Set

RW = Read/Write

RC = Read Clear

RO = Read Only

NA = Not Accessible

 80960 Core Internal bus address

1804H
20-22 i960® RM/RN I/O Processor Developer’s Manual

Application Accelerator Unit
20.12.3 Accelerator Descriptor Address Register - ADAR

The Accelerator Descriptor Address Register (ADAR) contains the address of the current chain
descriptor in 80960 local memory for an XOR-transfer. This read-only register is loaded when a
new chain descriptor is read. Table 20-7 depicts the Accelerator Descriptor Address Register. All
chain descriptors are aligned on an eight, 32-bit word boundary.

Table 20-7. Accelerator Descriptor Address Register - ADAR

Bit Default Description

31:05 X Current Descriptor Address - local memory address of the current chain descriptor
read by the AAU.

04:00 000002 Reserved

P
C

I
IO

P
A

ttr
ib

ut
e

s
A

ttr
ib

u
te

s

28 24 20 16 12 8 4 031

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

Attribute Legend:

RV = Reserved

PR = Preserved

RS = Read/Set

RW = Read/Write

RC = Read Clear

RO = Read Only

NA = Not Accessible

 80960 Core Internal bus address

1808H
i960® RM/RN I/O Processor Developer’s Manual 20-23

Application Accelerator Unit
20.12.4 Accelerator Next Descriptor Address Register - ANDAR

The Accelerator Next Descriptor Address Register (ANDAR) contains the address of the next
chain descriptor in 80960 local memory for an XOR-transfer. When starting a transfer, this register
contains the address of the first chain descriptor. Table 20-8 depicts the Accelerator Next
Descriptor Address Register.

All chain descriptors are aligned on an eight 32-bit word boundary. The AAU may set bits 04:00 to
zero when loading this register.

Note: The Accelerator Enable bit in the ACR and the Accelerator Active bit in the ASR must both be
clear prior to writing the ANDAR. Writing a value to this register while the AAU is active may
result in undefined behavior.

Table 20-8. Accelerator Next Descriptor Address Register - ANDAR

Bit Default Description

31:05 X Next Descriptor Address - local memory address of the next chain descriptor to be
read by the AAU.

04:00 000002 Reserved

P
C

I
IO

P
A

ttr
ib

u
te

s
A

ttr
ib

ut
es

28 24 20 16 12 8 4 031

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rv

na

rv

na

rv

na

rv

na

rv

na

Attribute Legend:

RV = Reserved

PR = Preserved

RS = Read/Set

RW = Read/Write

RC = Read Clear

RO = Read Only

NA = Not Accessible

80960 Core Internal bus address

180CH
20-24 i960® RM/RN I/O Processor Developer’s Manual

Application Accelerator Unit
20.12.5 80960 Source Address Register - SAR

The 80960 Source Address Register (SARx) contains a 32-bit, 80960 local memory address. There
are eight Source Address Registers (SAR1 - SAR8). Each of these registers is loaded with the
address of the blocks of data to be operated upon by the AAU. The ADCR register (Table 20-12 on
page 20-28) controls the operation performed on each data block referenced by the registers (SAR1
- SAR8). The 80960 local memory address space is a 32-bit, byte addressable address space.

Reading the SARx registers once the AAU has started a chain descriptor returns the current source
addresses. Once an XOR operation is initiated, these registers contain the current source addresses.
For example; if the Byte Count is initially 4096 bytes and the AAU has completed the
XOR-transfer operation on the first three 128-byte data blocks, the value in register SAR1 is the
equal to the programmed descriptor value + 384 (SAR1 + 384).

Table 20-9 shows the 80960 Source Address Register. These read-only registers are loaded when a
chain descriptor is read from memory.

Table 20-9. 80960 Source Address Register - SARx

Bit Default Description

31:00 X 80960 Local Address - The 80960 local source address.

P
C

I
IO

P
A

ttr
ib

ut
es

A
tt

rib
ut

es

28 24 20 16 12 8 4 031

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

Attribute Legend:

RV = Reserved

PR = Preserved

RS = Read/Set

RW = Read/Write

RC = Read Clear

RO = Read Only

NA = Not Accessible

SAR1

SAR2

SAR3

SAR4

SAR5

SAR6

SAR7

SAR8

80960 Core Internal bus address

1810H

1814H

1818H

181CH

182CH

1830H

1834H

1838H
i960® RM/RN I/O Processor Developer’s Manual 20-25

Application Accelerator Unit
20.12.6 80960 Destination Address Register - DAR

The 80960 Destination Address Register (DAR) contains a 32-bit, 80960 local memory address.
This address is the destination of the XOR-transfer - 80960 local memory address where XOR-ed
data is stored. The 80960 local memory address space is a 32-bit, byte addressable address space.

Reading the DAR once the AAU has started a chain descriptor returns the current destination
address. For example; if the Byte Count is initially 4096 bytes and the AAU has completed the
XOR-transfer operation on the first three 128-byte data blocks, the value in the Destination
Address Register (DAR) is the equal to the programmed descriptor value + 384 (DAR + 384).

Table 20-10 shows the 80960 Destination Address Register. This read-only register is loaded when
a chain descriptor is read from memory.

Table 20-10. 80960 Destination Address Register - DAR

Bit Default Description

31:00 X 80960 Local Address - The 80960 local destination address.

P
C

I
IO

P
A

ttr
ib

ut
es

A
ttr

ib
ut

es

28 24 20 16 12 8 4 031

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

Attribute Legend:

RV = Reserved

PR = Preserved

RS = Read/Set

RW = Read/Write

RC = Read Clear

RO = Read Only

NA = Not Accessible

80960 Core Internal bus address

1820H
20-26 i960® RM/RN I/O Processor Developer’s Manual

Application Accelerator Unit
20.12.7 Accelerator Byte Count Register - ABCR

The Accelerator Byte Count Register (ABCR) contains the number of bytes to transfer for an
XOR-transfer operation. This is a read-only register that is loaded from the Byte Count word in a
chain descriptor. It allows for a maximum XOR-transfer of 16 Mbytes. A value of zero is a valid
byte count and results in no read or write cycles being generated to the Memory Controller Unit.
No cycles are generated on the i960 RM/RN I/O Processor Internal Bus.

Anytime this register is read by the i960 core processor, it contains the number of bytes left to
XOR-transfer on the i960 RM/RN I/O Processor Internal Bus. Note that valid data may be present
in the AAU store queue. This register is decremented by 1 through 8 for every successful transfer
from the store queue to the destination location. Table 20-11 shows the Accelerator Byte Count
Register.

Note: The byte count value is not required to be aligned to a 32-bit word boundary (i.e., the byte count
value can be a double word aligned, word aligned, short aligned, or byte aligned).

Table 20-11. Accelerator Byte Count Register - ABCR

Bit Default Description

31:24 00H Reserved

23:00 X Byte Count - is the number of bytes to transfer for an XOR-transfer operation.

P
C

I
IO

P
A

ttr
ib

ut
es

A
tt

rib
ut

es

28 24 20 16 12 8 4 031

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

Attribute Legend:

RV = Reserved

PR = Preserved

RS = Read/Set

RW = Read/Write

RC = Read Clear

RO = Read Only

NA = Not Accessible

80960 Core Internal bus address

1824H
i960® RM/RN I/O Processor Developer’s Manual 20-27

Application Accelerator Unit
20.12.8 Accelerator Descriptor Control Register - ADCR

The Accelerator Descriptor Control Register contains control values for data transfer on a
per-chain descriptor basis. This read-only register is loaded when a chain descriptor is read from
memory. These values may vary from chain descriptor to chain descriptor. The AAU determines
whether a mini-descriptor is appended to the end of the current chain descriptor by examining bits
26:25. Table 20-12 shows the definition of the Accelerator Descriptor Control Register.

Table 20-12. Accelerator Descriptor Control Register - ADCR (Sheet 1 of 5)

Bit Default Description

31 02

Destination Write Enable - Determines whether data present in the 128-byte store
queue is written out to 80960 local memory. When set, data in the queue is written to
the address specified in the Destination Address Register (DAR) after performing the
specified operation on data referenced by the four SARx registers. When clear, data is
held in the queue.

NOTE: If the ABCR register contains a value greater than 128 and this bit is cleared,
the AAU only reads the first 128 bytes and perform the specified function. It
does not read the remaining bytes specified in the ABCR. Further, the AAU
proceeds to process the next chain descriptor if it is specified.

30:27 0H Reserved

26:25 00

Supplemental Block Control Interpreter - This bit field specifies the number of data
blocks on which the XOR-transfer operation is executed.

00 0 Blocks - This specifies that no additional data blocks exist. The AAU does
not read the mini-descriptor to initialize registers SAR5 - SAR8.

01 4 Blocks - This specifies that there are up to 4 additional data blocks. The
AAU therefore reads the mini-descriptor to initialize registers SAR5 - SAR8.

10 Reserved

11 Reserved

P
C

I
IO

P
A

ttr
ib

u
te

s
A

ttr
ib

ut
es

28 24 20 16 12 8 4 031

ro

na

rv

na

rv

na

rv

na

rv

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

i
e

b4cc b3cc b2cc b1cc

d
w
e

b5ccb6ccb7ccb8ccsbci

Attribute Legend:

RV = Reserved

PR = Preserved

RS = Read/Set

RW = Read/Write

RC = Read Clear

RO = Read Only

NA = Not Accessible

80960 Core Internal bus address

1828H
20-28 i960® RM/RN I/O Processor Developer’s Manual

Application Accelerator Unit
24:22 0

Block 8 Command Control - This bit field specifies the type of operation to be carried
out on the data pointed at by SAR8 register.

000 Null command - This implies that Block 8 Data can be disregarded for the
current chain descriptor. The AAU does not transfer data from this block while
processing the current chain descriptor.

001 XOR command - This implies that Block 8 Data is transferred to the AAU to
execute the XOR function.

010 Reserved

011 Reserved

100 Reserved

101 Reserved

110 Reserved

111 Reserved

21:19 0

Block 7 Command Control - This bit field specifies the type of operation to be carried
out on the data pointed at by SAR7 register.

000 Null command - This implies that Block 7 Data can be disregarded for the
current chain descriptor. The AAU does not transfer data from this block while
processing the current chain descriptor.

001 XOR command - This implies that Block 7 Data is transferred to the AAU to
execute the XOR function.

010 Reserved

011 Reserved

100 Reserved

101 Reserved

110 Reserved

111 Reserved

Table 20-12. Accelerator Descriptor Control Register - ADCR (Sheet 2 of 5)

Bit Default Description

P
C

I
IO

P
A

tt
rib

ut
es

A
ttr

ib
ut

es

28 24 20 16 12 8 4 031

ro

na

rv

na

rv

na

rv

na

rv

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

i
e

b4cc b3cc b2cc b1cc

d
w
e

b5ccb6ccb7ccb8ccsbci

Attribute Legend:

RV = Reserved

PR = Preserved

RS = Read/Set

RW = Read/Write

RC = Read Clear

RO = Read Only

NA = Not Accessible

80960 Core Internal bus address

1828H
i960® RM/RN I/O Processor Developer’s Manual 20-29

Application Accelerator Unit
18:16 0

Block 6 Command Control - This bit field specifies the type of operation to be carried
out on the data pointed at by SAR6 register.

000 Null command - This implies that Block 6 Data can be disregarded for the
current chain descriptor. The AAU does not transfer data from this block while
processing the current chain descriptor.

001 XOR command - This implies that Block 6 Data is transferred to the AAU to
execute the XOR function.

010 Reserved

011 Reserved

100 Reserved

101 Reserved

110 Reserved

111 Reserved

15:13 0

Block 5 Command Control - This bit field specifies the type of operation to be carried
out on the data pointed at by SAR5 register.

000 Null command - This implies that Block 5 Data can be disregarded for the
current chain descriptor. The AAU does not transfer data from this block while
processing the current chain descriptor.

001 XOR command - This implies that Block 5 Data is transferred to the AAU to
execute the XOR function.

010 Reserved

011 Reserved

100 Reserved

101 Reserved

110 Reserved

111 Reserved

Table 20-12. Accelerator Descriptor Control Register - ADCR (Sheet 3 of 5)

Bit Default Description

P
C

I
IO

P
A

tt
rib

ut
es

A
ttr

ib
ut

es

28 24 20 16 12 8 4 031

ro

na

rv

na

rv

na

rv

na

rv

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

i
e

b4cc b3cc b2cc b1cc

d
w
e

b5ccb6ccb7ccb8ccsbci

Attribute Legend:

RV = Reserved

PR = Preserved

RS = Read/Set

RW = Read/Write

RC = Read Clear

RO = Read Only

NA = Not Accessible

80960 Core Internal bus address

1828H
20-30 i960® RM/RN I/O Processor Developer’s Manual

Application Accelerator Unit
12:10 0

Block 4 Command Control - This bit field specifies the type of operation to be carried
out on the data pointed at by SAR4 register.

000 Null command - This implies that Block 4 Data can be disregarded for the
current chain descriptor. The AAU does not transfer data from this block while
processing the current chain descriptor.

001 XOR command - This implies that Block 4 Data is transferred to the AAU to
execute the XOR function.

010 Reserved

011 Reserved

100 Reserved

101 Reserved

110 Reserved

111 Reserved

09:07 0

Block 3 Command Control - This bit field specifies the type of operation to be carried
out on the data pointed at by SAR3 register.

000 Null command - This implies that Block 3 Data can be disregarded for the
current chain descriptor. The AAU does not transfer data from this block while
processing the current chain descriptor.

001 XOR command - This implies that Block 3 Data is transferred to the AAU to
execute the XOR function.

010 Reserved

011 Reserved

100 Reserved

101 Reserved

110 Reserved

111 Reserved

Table 20-12. Accelerator Descriptor Control Register - ADCR (Sheet 4 of 5)

Bit Default Description

P
C

I
IO

P
A

tt
rib

ut
es

A
ttr

ib
ut

es

28 24 20 16 12 8 4 031

ro

na

rv

na

rv

na

rv

na

rv

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

i
e

b4cc b3cc b2cc b1cc

d
w
e

b5ccb6ccb7ccb8ccsbci

Attribute Legend:

RV = Reserved

PR = Preserved

RS = Read/Set

RW = Read/Write

RC = Read Clear

RO = Read Only

NA = Not Accessible

80960 Core Internal bus address

1828H
i960® RM/RN I/O Processor Developer’s Manual 20-31

Application Accelerator Unit
06:04 0

Block 2 Command Control - This bit field specifies the type of operation to be carried
out on the data pointed at by SAR2 register.

000 Null command - This implies that Block 2 Data can be disregarded for the
current chain descriptor. The AAU does not transfer data from this block while
processing the current chain descriptor.

001 XOR command - This implies that Block 2 Data is transferred to the AAU to
execute the XOR function.

010 Reserved

011 Reserved

100 Reserved

101 Reserved

110 Reserved

111 Reserved

03:01 0

Block 1 Command Control - This bit field specifies the type of operation to be carried
out on the data pointed at by SAR1 register.

000 Null command - This implies that Block 1 Data can be disregarded for the
current chain descriptor. The AAU does not transfer data from this block while
processing the current chain descriptor.

001 XOR command - This implies that Block 1 Data is transferred to the AAU to
execute the XOR function.

010 Reserved

011 Reserved

100 Reserved

101 Reserved

110 Reserved

111 Direct Fill - This implies that Block 1 Data is transferred directly from 80960
local memory to the 128-byte store queue. In this instance, the data bypasses
the Boolean Execution Unit within the AAU.

00 0 Interrupt Enable - When set, the AAU generates an interrupt to the i960 RM/RN I/O
processor upon completion of a transfer. When clear, no interrupt is generated.

Table 20-12. Accelerator Descriptor Control Register - ADCR (Sheet 5 of 5)

Bit Default Description

P
C

I
IO

P
A

tt
rib

ut
es

A
ttr

ib
ut

es

28 24 20 16 12 8 4 031

ro

na

rv

na

rv

na

rv

na

rv

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

i
e

b4cc b3cc b2cc b1cc

d
w
e

b5ccb6ccb7ccb8ccsbci

Attribute Legend:

RV = Reserved

PR = Preserved

RS = Read/Set

RW = Read/Write

RC = Read Clear

RO = Read Only

NA = Not Accessible

80960 Core Internal bus address

1828H
20-32 i960® RM/RN I/O Processor Developer’s Manual

ments
Performance Monitoring Unit 21

This chapter describes the Performance Monitoring features integrated on the i960® RM/RN I/O
Processor. These features aid in measuring and monitoring various system parameters that
contribute to the overall performance of the processor. Also described are the operation modes,
setup mechanisms, registers and interrupts.

The monitoring facility is generically referred to as PMON — Performance Monitoring. The
facility is model specific, not architectural; its intended use is to gather performance measure
that can be used to retune/refine code for better system level performance.

21.1 Overview
The PMON facility provided on the i960 RM/RN I/O processor comprises:

• One dedicated Global Time Stamp counter, and

• Fourteen (14) Programmable Event Counters.

The global time stamp counter is a dedicated, free running 32-bit counter.

The programmable event counters are 32-bits wide. Each counter can be programmed to observe an event
from a defined set of events. An event consists of a set of parameters which define a start condition and a
stop condition. The monitored events are selected by programming an event select register (ESR).

21.2 Theory of Operation
The PMON facility provided on the i960 RM/RN I/O processor comprises:

• One dedicated Global Time Stamp counter, and

• Fourteen (14) programmable event counters.

The global time stamp counter is a dedicated, free running 32-bit counter clocked at one quarter the
internal bus frequency. It provides a time base for monitoring all events on the i960 RM/RN I/O
processor. Event counters are used to monitor events across different interfaces of the processor.

21.2.1 Global Time Stamp

The Global Time Stamp Counter is a dedicated, 32-bit counter provided on-chip. It contains a
divisor which provides the input clock to the global time stamp counter. Typically the counter is
clocked at one quarter the internal bus frequency. The counter is cleared upon the deassertion of the
Internal Bus Reset signal. The counter interrupts the processor core if the interrupt bit (bit 0) in the
Global Timer Mode Register (GTMR) is set. With the bit set, the counter sets bit 0 in the Event
Monitoring Interrupt Status Register (EMISR) when it overflows. When this bit is set, an interrupt
is generated to the core processor on the XINT6# interrupt pin. An overflow condition is defined as
a counter rolling over from FFFF FFFFH to 0000 0000H.

Once the counter reaches the maximum value, it rolls over to zero and increments at the clock
frequency. The value in the counter is accessible at all times by reading the memory mapped,
Global Time Stamp Register (GTSR). The GTSR is a read-only register.
i960® RM/RN I/O Processor Developer’s Manual 21-1

Performance Monitoring Unit
21.2.2 Programmable Event Counters

There are fourteen (14) general-purpose, 32-bit wide Programmable Event Counters (PECx). Each
counter is programmed to monitor an event from a predetermined list of events. Depending on the
monitored interface, the event tracked in any counter varies. Each counter is accessible through a
memory-mapped, read-only register.

The programmable event counters provide real-time monitoring capability. The current count value
contained in any counter is obtained by accessing the corresponding memory-mapped register.

Any counter that overflows sets the corresponding bit in the Event Monitoring Interrupt Status
Register (EMISR). Once a counter reaches the maximum value, it rolls over to zero and starts
incrementing. For example, when PEC1 overflows, it sets bit1 in the EMISR. Similarly, when any
other counter (PEC2 - PEC14) overflows, the corresponding bit in the EMISR (bit2:14) is set.
Once a bit in the EMISR is set, an interrupt is generated to the core processor on the XINT6#
interrupt pin.

All event counters and the Global Time Stamp Counter are disabled after RESET and the values
contained are undefined. All counters including the Global Time Stamp Counter are initialized to
zero when a specific monitoring mode is chosen by writing a value to the Event Select Register
(ESR) during performance monitoring. The fourteen programmable event counters monitor both
kinds of events: occurrence events and duration events.

21.2.2.1 Occurrence Events

An occurrence event is counted each time the event occurs. Table 21-1 lists the various occurrence
events that are monitored on the i960 RM/RN I/O processor.

Table 21-1. Occurrence Events

Observed Interface Monitored Event

Secondary PCI bus

Number of grants to the Bridge

Number of grants to Secondary Address Translation Unit (SATU)

Number of grants to DMA Ch-2

Number of grants to the i960 RM/RN I/O processor

Number of grants to external PCI masters 0..5

Primary PCI bus

Number of grants to the Bridge

Number of grants to Primary Address Translation Unit (PATU)

Number of grants to the i960 RM/RN I/O processor

Number of grants to DMA Ch-0 and Ch-1

i960 RM/RN processor internal bus

Number of grants to i960 core processor

Number of grants to DMA Ch-0, Ch-1 and Ch-2

Number of grants to Application Accelerator

Number of times backoff (BOFF) asserted by Primary Address
Translation Unit (PATU)

Number of times backoff (BOFF) asserted by Secondary Address
Translation Unit (SATU)

Number of grants to PATU and SATU
21-2 i960® RM/RN I/O Processor Developer’s Manual

Performance Monitoring Unit

t to
21.2.2.2 Duration Events

For a duration event, the counter counts the number of clocks during which a particular condition
or set of conditions is true. Acquisition latency measurements comprise:

• Arbitration Latency: This represents the elapsed time between the bus master’s reques
use the bus until the requesting master is granted the bus.

• Bus Acquisition Latency: This represents the elapsed time between the requesting bus master
being granted the bus and the current bus master surrendering the bus allowing the requesting
bus master to initiate the next transaction.

Table 21-2 lists the various duration events that are monitored on the i960 RM/RN I/O processor.

21.2.3 Performance Monitoring

The Event Select Register (ESR) determines the interface to be monitored. Table 21-3 shows the
relationship between the monitored mode specified in the ESR and the monitored interface.
Performance Monitoring on the i960 RM/RN I/O processor consists of a collection of event
primitives which can then be used by the user for statistical calculations.

Table 21-2. Duration Events

Observed Interface Monitored Event

Primary and
Secondary PCI buses

Number clocks the PCI bus is busy

Number of clocks the PCI bus is idle

Acquisition latency and ownership metrics for the PATU and SATU

Acquisition latency and ownership metrics for DMA Ch-0, Ch-1 and Ch-2

Acquisition latency and ownership metrics for the Bridge

Acquisition latency and ownership metrics for external masters 0..5 and the i960
RM/RN I/O processor (summation of all internal masters on secondary interface) on
the secondary PCI bus

i960 RM/RN
processor internal bus

Acquisition latency and ownership metrics for the i960 core processor

Acquisition latency and ownership metrics for DMA Channels 0,1 and 2

Acquisition latency and ownership metrics for Application Accelerator

Acquisition latency and ownership metrics for the PATU

Acquisition latency and ownership metrics for the SATU

Table 21-3. Relationship between the Monitored mode and Monitored Interface

Monitoring Mode Monitored Interface

M0 Performance Monitoring Disabled

M1 Primary PCI bus and internal agents (bridge, dma Ch0, dma Ch1, PATU)

M2 Secondary PCI bus and internal agents (bridge, dma Ch2, SATU)

M3 Secondary PCI bus and PCI agents (external masters 0..2 and i960 RM/RN I/O processor)

M4 Secondary PCI bus and PCI agents (external masters 3..5 and i960 RM/RN I/O processor
processor)

M5 Internal bus: DMA Channels and Application Accelerator

M6 Internal bus: PATU, SATU and i960 processor

M7 Internal bus: Primary PCI bus, Secondary PCI bus and Secondary PCI agents (external
masters 0..5 & i960 RM/RN I/O processor)
i960® RM/RN I/O Processor Developer’s Manual 21-3

Performance Monitoring Unit
Events across various interfaces are monitored by programming the event select register (ESR).
The various interfaces that can be monitored on the i960 RM/RN I/O processor are:

• Primary PCI bus and internal agents: The different events monitored in this mode provide
information about the primary PCI bus and the internal agents. The internal agents monitored
are: Bridge, PATU, DMA Ch-0 and DMA Ch-1.

• Secondary PCI bus and internal agents: The different events monitored in this mode
provide information about the secondary PCI bus and the internal agents. The internal agents
monitored are: Bridge, SATU and DMA Ch-2.

• Secondary PCI bus interface and external agents: The different events monitored in this
mode provide information about the secondary PCI bus and agents. There are seven PCI
agents monitored: six external agents and the i960 RM/RN I/O processor.

• Internal bus and bus masters: The different events monitored in this mode provide
information about the internal bus and the internal bus masters. The internal bus masters are:
i960 core processor, Three DMA channels, Two Address Translation Units and the
Application Accelerator.

• Internal bus and Secondary PCI bus: The different events monitored in this mode provide
information about the internal bus and the PCI bus.

21.3 Event Description

Events monitored on the i960 RM/RN I/O processor can either be duration events or occurrence
events. There are 98 events monitored on the i960 RM/RN I/O processor. A maximum of fourteen
(14) events can be monitored concurrently. There are eight monitoring modes implemented on the
i960 RM/RN I/O processor described below:

• Mode 0: Performance Monitoring disabled on the i960 RM/RN I/O processor.

• Mode 1: Monitors events on the Primary PCI bus.

• Mode 2: Monitors events on the Secondary PCI bus.

• Mode 3: Monitors events on the Secondary PCI bus.

• Mode 4: Monitors events on the Secondary PCI bus.

• Mode 5: Monitors events on the i960 RM/RN processor internal bus.

• Mode 6: Monitors events on the i960 RM/RN processor internal bus.

• Mode 7: Monitors events on the Primary PCI bus, Secondary PCI bus and i960 RM/RN
processor internal bus.

21.3.1 Mode0: Performance Monitoring Disabled

Programming Mode0 (M0) in the ESR disables performance monitoring on the i960 RM/RN I/O
processor. Reading any counter including the GTSR in Mode 0 returns undefined results.
21-4 i960® RM/RN I/O Processor Developer’s Manual

Performance Monitoring Unit

 is an

I bus.

ry
s but
cles
ster.

 bus.
21.3.2 Mode1: Primary PCI bus and Internal Agents

Programming Mode1 (M1) in the ESR enables performance monitoring on the primary PCI bus.
All counters are clocked at the primary PCI bus frequency. There are four internal agents
monitored: PCI bridge, DMA Ch-0, DMA Ch-1 and PATU. The following sections describe the
monitored events in Mode 1.

21.3.2.1 M1_PPCIBus_idle

This duration event increments the counter every primary PCI idle cycle. An idle cycle occurs
when there is no activity on the bus due to data being transferred and/or the bus is not in an
overhead cycle. An overhead cycle is a cycle when a master owns the bus, however the master is
unable to send data or the target is unable to receive data - hence no data is transferred.

21.3.2.2 M1_PPCIBus_data

This duration event increments the counter every primary PCI data cycle. Data cycles comprise of
two instances:

• The i960 RM/RN I/O processor as a master on the bus is involved in data transfers to other
masters.

• External masters initiate data transfers to either the i960 RM/RN I/O processor or to other
masters on the bus.

21.3.2.3 M1_PPCIBus_bridge_acq

This duration event counts the number of clocks spent by the bridge acquiring the primary PCI bus.
The counter increments on every clock cycle after the bridge requests the PCI bus but has not
actively driven the PCI bus as a master. The counter also increments for all clock cycles when this
agent’s Request Signal is asserted but bus ownership currently belongs to another master. This
event primitive, used in conjunction with another event primitive (number of grants granted to
bridge) to calculate the average acquisition latency for the bridge.

21.3.2.4 M1_PPCIBus_bridge_own

This duration event counts the duration for which the bridge is the master on the primary PC
The counter increments on every clock cycle during which the bridge is the bus master.

21.3.2.5 M1_PPCIBus_DMA0_acq

This duration event counts the number of clocks spent by the DMA Ch-0 acquiring the prima
PCI bus. The counter increments on every clock cycle after the channel requests the PCI bu
has not actively driven the PCI bus as a master. The counter also increments for all clock cy
when this agent’s Request Signal is asserted but bus ownership currently belongs to another ma
This is an event primitive, used in conjunction with another event primitive (number of grants
granted to DMA Ch-0) to calculate the average acquisition latency for the channel.

21.3.2.6 M1_PPCIBus_DMA0_own

This duration event counts the duration for which DMA Ch-0 is the master on the primary PCI
The counter increments on every clock cycle during which the channel is the bus master.
i960® RM/RN I/O Processor Developer’s Manual 21-5

Performance Monitoring Unit

ster.

 bus.

I bus.
ctively
gent’s
event
) to

. The

. This
nted
e first

. This
nted
e first

s.
ented
 the
21.3.2.7 M1_PPCIBus_DMA1_acq

This duration event counts the number of clocks spent by the DMA Ch-1 acquiring the primary
PCI bus. The counter increments on every clock cycle after the channel requests the PCI bus but
has not actively driven the PCI bus as a master. The counter also increments for all clock cycles
when this agent’s Request Signal is asserted but bus ownership currently belongs to another ma
This is an event primitive, used in conjunction with another event primitive (number of grants
granted to DMA Ch-1) to calculate the average acquisition latency for the channel.

21.3.2.8 M1_PPCIBus_DMA1_own

This duration event counts the duration for which DMA Ch-1 is the master on the primary PCI
The counter increments on every clock cycle during which the channel is the bus master.

21.3.2.9 M1_PPCIBus_PATU_acq

This duration event counts the number of clocks spent by the PATU acquiring the primary PC
The counter increments on every clock cycle after the unit requests the PCI bus but has not a
driven the PCI bus as a master. The counter also increments for all clock cycles when this a
Request Signal is asserted but bus ownership currently belongs to another master. This is an
primitive, used in conjunction with another event primitive (number of grants granted to PATU
calculate the average acquisition latency for the unit.

21.3.2.10 M1_PPCIBus_PATU_own

This duration event counts the duration for which PATU is the master on the primary PCI bus
counter increments on every clock cycle during which the unit is the bus master.

21.3.2.11 M1_PPCIBus_DMA0_gnt

This occurrence event monitors the number of times DMA Ch-0 is granted the primary PCI bus
event increments the counter when the channel is the PCI bus master. The counter is increme
once for every new transaction. For multi-cycle transactions, the counter increments once on th
cycle.

21.3.2.12 M1_PPCIBus_DMA1_gnt

This occurrence event monitors the number of times DMA Ch-1 is granted the primary PCI bus
event increments the counter when the channel is the PCI bus master. The counter is increme
once for every new transaction. For multi-cycle transactions, the counter increments once on th
cycle.

21.3.2.13 M1_PPCIBus_PATU_gnt

This occurrence event monitors the number of times the PATU is granted the primary PCI bu
This event increments the counter when the unit is the PCI bus master. The counter is increm
once for every new transaction. For multi-cycle transactions, the counter increments once on
first cycle.
21-6 i960® RM/RN I/O Processor Developer’s Manual

Performance Monitoring Unit

 is an

bus.

 PCI
as not
n this

 is an

21.3.2.14 M1_PPCIBus_bridge_gnt

This occurrence event monitors the number of times the bridge is granted the primary PCI bus. This
event increments the counter when the bridge is the PCI bus master. The counter is incremented once
for every new transaction. For multi-cycle transactions, the counter increments once on the first cycle.

21.3.3 Mode 2: Secondary PCI Bus and Internal Agents

Programming Mode2 (M2) in the ESR enables performance monitoring on the secondary PCI bus.
All counters are clocked at the secondary PCI bus frequency. There are three internal agents
monitored: PCI Bridge, DMA Ch-2 and the Secondary Address Translation Unit (SATU). The
following sections describe the monitored events in Mode 2.

21.3.3.1 M2_SPCIBus_idle

This duration event increments the counter every secondary PCI idle cycle. An idle cycle occurs
when there is no activity on the bus due to data being transferred and/or the bus is not in an
overhead cycle. An overhead cycle is a cycle when a master owns the bus, however the master is
unable to send data or the target is unable to receive data - hence no data is transferred.

21.3.3.2 M2_SPCIBus_data

This duration event increments the counter every secondary PCI data cycle. Data cycles comprise
of two instances:

• The i960 RM/RN I/O processor as a master on the bus is involved in data transfers to other masters.

• External masters initiate data transfers to either the i960 RM/RN I/O processor or to other
masters on the bus.

21.3.3.3 M2_SPCIBus_SATU_acq

This duration event counts the number of clocks spent by the SATU acquiring the secondary PCI
bus. The counter increments on every clock cycle after the unit requests the PCI bus but has not
actively driven the PCI bus as a master. The counter also increments for all clock cycles when this
agent’s Request Signal is asserted but bus ownership currently belongs to another master. This
event primitive, used in conjunction with another event primitive (number of grants granted to
SATU) to calculate the average acquisition latency for the unit.

21.3.3.4 M2_SPCIBus_SATU_own

This duration event counts the duration for which SATU is the master on the secondary PCI
The counter increments on every clock cycle during which the unit is the bus master.

21.3.3.5 M2_SPCIBus_bridge_acq

This duration event counts the number of clocks spent by the bridge acquiring the secondary
bus. The counter increments on every clock cycle after the bridge requests the PCI bus but h
actively driven the PCI bus as a master. The counter also increments for all clock cycles whe
agent’s Request Signal is asserted but bus ownership currently belongs to another master. This
event primitive, used in conjunction with another event primitive (number of grants granted to
bridge) to calculate the average acquisition latency for the bridge.
i960® RM/RN I/O Processor Developer’s Manual 21-7

Performance Monitoring Unit

ster.

PCI
r.

I bus.

ents

 bus.
ented
 the

bus.

nts

s

ster is
21.3.3.6 M2_SPCIBus_bridge_own

This duration event counts the duration for which the bridge is the master on the secondary PCI
bus. The counter increments on every clock cycle during which the bridge is the bus master.

21.3.3.7 M2_SPCIBus_DMA2_acq

This duration event counts the number of clocks spent by the DMA Ch-2 acquiring the secondary
PCI bus. The counter increments on every clock cycle after the channel requests the PCI bus but
has not actively driven the PCI bus as a master. The counter also increments for all clock cycles
when this agent’s Request Signal is asserted but bus ownership currently belongs to another ma
This is an event primitive, used in conjunction with another event primitive (number of grants
granted to DMA Ch-2) to calculate the average acquisition latency for the channel.

21.3.3.8 M2_SPCIBus_DMA2_own

This duration event counts the duration for which DMA Ch-2 is the master on the secondary
bus. The counter increments on every clock cycle during which the channel is the bus maste

21.3.3.9 M2_SPCIBus_bridge_gnt

This occurrence event monitors the number of times the bridge is granted the secondary PC
This event increments the counter when the bridge is the PCI bus master. The counter is
incremented once for every new transaction. For multi-cycle transactions, the counter increm
once on the first cycle.

21.3.3.10 M2_SPCIBus_SATU_gnt

This occurrence event monitors the number of times the SATU is granted the secondary PCI
This event increments the counter when the unit is the PCI bus master. The counter is increm
once for every new transaction. For multi-cycle transactions, the counter increments once on
first cycle.

21.3.3.11 M2_SPCIBus_DMA2_gnt

This occurrence event monitors the number of times DMA Ch-2 is granted the secondary PCI
This event increments the counter when the channel is the PCI bus master. The counter is
incremented once for every new transaction. For multi-cycle transactions, the counter increme
once on the first cycle.

21.3.3.12 M2_PPCIBus_idle

This duration event increments the counter every primary PCI idle cycle. An idle cycle occur
when there is no activity on the bus due to data being transferred and/or the bus is not in an
overhead cycle. An overhead cycle is a cycle when a master owns the bus, however the ma
unable to send data or the target is unable to receive data - hence no data is transferred.
21-8 i960® RM/RN I/O Processor Developer’s Manual

Performance Monitoring Unit

sed in
sor
21.3.3.13 M2_PPCIBus_data

This duration event increments the counter every primary PCI data cycle. Data cycles comprise of
two instances:

• The i960 RM/RN I/O processor as a master on the bus is involved in data transfers to other
masters.

• External masters initiate data transfers to either the i960 RM/RN I/O processor or to other
masters on the bus.

21.3.3.14 M2_IBus_data

This duration event increments the counter on every internal bus data cycle. This enables
calculation of data utilization of the bus.

21.3.4 Mode 3: Secondary PCI Bus and External Agents

Programming Mode3 (M3) in the ESR enables performance monitoring on the secondary PCI bus.
In addition, performance monitoring is done for external agents (i960 RM/RN I/O processor,
Master0, Master1, Master2) on the PCI bus. Master0 indicates the external PCI device connected to
the REQ0 and GNT0 signals of the internal arbiter in the i960 RM/RN I/O processor. The
nomenclature is similar for all other external PCI masters; Master 1 through Master 5. There are
four external agents monitored including the i960 RM/RN I/O processor in this mode.

All counters are clocked at the secondary PCI bus frequency. The following sections describe the
monitored events in Mode 3.

21.3.4.1 M3_SPCIbus_idle

This duration event increments the counter every secondary PCI idle cycle. An idle cycle occurs
when there is no activity on the bus due to data being transferred and/or the bus is not in an
overhead cycle. An overhead cycle is a cycle when a master owns the bus, however the master is
unable to send data or the target is unable to receive data - hence no data is transferred.

21.3.4.2 M3_SPCIbus_data

This duration event increments the counter every secondary PCI data cycle. Data cycles comprise
of two instances:

• The i960 RM/RN I/O processor as a master on the bus is involved in data transfers to other masters.

• External masters initiate data transfers to either the i960 RM/RN I/O processor or to other
masters on the bus.

21.3.4.3 M3_SPCIbus_IOP_acq

This duration event counts the number of clocks spent by the i960 RM/RN I/O processor (includes
the bridge, dma Ch-2, and satu) acquiring the PCI bus. The counter increments on every clock
cycle after the processor has requested use of the PCI bus but has not actively driven the PCI bus as
a master. The counter also increments for all clock cycles when this agent’s Request Signal is
asserted but bus ownership currently belongs to another master. This is an event primitive, u
conjunction with another event primitive (number of grants granted to i960 RM/RN I/O proces)
to calculate the average acquisition latency for the processor.
i960® RM/RN I/O Processor Developer’s Manual 21-9

Performance Monitoring Unit

her
f

ry PCI
ter.

ary
the PCI
clock
her
f

ry PCI
ter.

ary
the PCI
clock
her
f

ry PCI
ter.
21.3.4.4 M3_SPCIbus_IOP_own

This duration event counts the duration for which the i960 RM/RN I/O processor is the master on
the secondary PCI bus. The counter increments on every clock cycle during which the processor is
the bus master. This measure combines the individual ownership times of the bridge, DMA ch-2
and SATU.

21.3.4.5 M3_SPCIbus_D0_acq

This duration event counts the number of clocks spent by PCI Master 0 acquiring the secondary
PCI bus. The counter increments on every clock cycle after the device has requested use of the PCI
bus but has not actively driven the PCI bus as a master. The counter also increments for all clock
cycles when this agent’s Request Signal is asserted but bus ownership currently belongs to anot
master. This is an event primitive, used in conjunction with another event primitive (number o
grants granted to PCI Master 0) to calculate the average acquisition latency for the device.

21.3.4.6 M3_SPCIbus_D0_own

This duration event counts the duration for which PCI Master 0 is the master on the seconda
bus. The counter increments on every clock cycle during which PCI Master 0 is the bus mas

21.3.4.7 M3_SPCIbus_D1_acq

This duration event counts the number of clocks spent by PCI Master 1 acquiring the second
PCI bus. The counter increments on every clock cycle after the device has requested use of
bus but has not actively driven the PCI bus as a master. The counter also increments for all
cycles when this agent’s Request Signal is asserted but bus ownership currently belongs to anot
master. This is an event primitive, used in conjunction with another event primitive (number o
grants granted to PCI Master 1) to calculate the average acquisition latency for the device.

21.3.4.8 M3_SPCIbus_D1_own

This duration event counts the duration for which PCI Master 1 is the master on the seconda
bus. The counter increments on every clock cycle during which PCI Master 1 is the bus mas

21.3.4.9 M3_SPCIbus_D2_acq

This duration event counts the number of clocks spent by PCI Master 2 acquiring the second
PCI bus. The counter increments on every clock cycle after the device has requested use of
bus but has not actively driven the PCI bus as a master. The counter also increments for all
cycles when this agent’s Request Signal is asserted but bus ownership currently belongs to anot
master. This is an event primitive, used in conjunction with another event primitive (number o
grants granted to PCI Master 2) to calculate the average acquisition latency for the device.

21.3.4.10 M3_SPCIbus_D2_own

This duration event counts the duration for which PCI Master 2 is the master on the seconda
bus. The counter increments on every clock cycle during which PCI Master 2 is the bus mas
21-10 i960® RM/RN I/O Processor Developer’s Manual

Performance Monitoring Unit
21.3.4.11 M3_SPCIbus_IOP_gnt

This occurrence event monitors the number of times the i960 RM/RN I/O processor is granted the
secondary PCI bus. It increments the counter when the processor is the PCI bus master. The
counter is incremented once for every new transaction. For multi-cycle transactions, the counter
increments once on the first cycle. The count value is a summation of the individual grants received
by the bridge, satu and dma Ch-2.

21.3.4.12 M3_SPCIbus_D0_gnt

This occurrence event monitors the number of times PCI Master 0 is granted the secondary PCI
bus. It increments the counter when the device is the PCI bus master. The counter is incremented
once for every new transaction. For multi-cycle transactions, the counter increments once on the
first cycle.

21.3.4.13 M3_SPCIbus_D1_gnt

This occurrence event monitors the number of times PCI Master 1 is granted the secondary PCI
bus. It increments the counter when the device is the PCI bus master. The counter is incremented
once for every new transaction. For multi-cycle transactions, the counter increments once on the
first cycle.

21.3.4.14 M3_SPCIbus_D2_gnt

This occurrence event monitors the number of times PCI Master 2 is granted the secondary PCI
bus. It increments the counter when the device is the PCI bus master. The counter is incremented
once for every new transaction. For multi-cycle transactions, the counter increments once on the
first cycle.

21.3.5 Mode 4: Secondary PCI Bus and External Agents

Programming Mode4 (M4) in the ESR enables performance monitoring on the secondary PCI bus.
In addition, performance monitoring is done for external agents (i960 RM/RN I/O processor,
Master3, Master4 and Master5) on the PCI bus. Master3 indicates the external PCI device
connected to REQ3 and GNT3 signals of the internal arbiter in the i960 RM/RN I/O processor. The
nomenclature is similar for all other external PCI masters; Master 1 through Master 5.

All counters are clocked at the secondary PCI bus frequency. The following sections describe the
monitored events in Mode 4.

21.3.5.1 M4_SPCIbus_idle

This duration event increments the counter every secondary PCI idle cycle. An idle cycle occurs
when there is no activity on the bus due to data being transferred and/or the bus is not in an
overhead cycle. An overhead cycle is a cycle when a master owns the bus, however the master is
unable to send data or the target is unable to receive data - hence no data is transferred.
i960® RM/RN I/O Processor Developer’s Manual 21-11

Performance Monitoring Unit

her
f

ry PCI
ter.

ary
the PCI
clock
her
f

ry PCI
ter.

ary
the PCI
clock
her
f

ry PCI
ter.
21.3.5.2 M4_SPCIbus_data

This duration event increments the counter every secondary PCI data cycle. Data cycles comprise of
two instances:

• The i960 RM/RN I/O processor as a master on the bus is involved in data transfers to other masters.

• External masters initiate data transfers to either the i960 RM/RN I/O processor or to other
masters on the bus.

21.3.5.3 M4_SPCIbus_D3_acq

This duration event counts the number of clocks spent by PCI Master 3 acquiring the secondary
PCI bus. The counter increments on every clock cycle after the device has requested use of the PCI
bus but has not actively driven the PCI bus as a master. The counter also increments for all clock
cycles when this agent’s Request Signal is asserted but bus ownership currently belongs to anot
master. This is an event primitive, used in conjunction with another event primitive (number o
grants granted to PCI Master 3) to calculate the average acquisition latency for the device.

21.3.5.4 M4_SPCIbus_D3_own

This duration event counts the duration for which PCI Master 3 is the master on the seconda
bus. The counter increments on every clock cycle during which PCI Master 3 is the bus mas

21.3.5.5 M4_SPCIbus_D4_acq

This duration event counts the number of clocks spent by PCI Master 4 acquiring the second
PCI bus. The counter increments on every clock cycle after the device has requested use of
bus but has not actively driven the PCI bus as a master. The counter also increments for all
cycles when this agent’s Request Signal is asserted but bus ownership currently belongs to anot
master. This is an event primitive, used in conjunction with another event primitive (number o
grants granted to PCI Master 4) to calculate the average acquisition latency for the device.

21.3.5.6 M4_SPCIbus_D4_own

This duration event counts the duration for which PCI Master 4 is the master on the seconda
bus. The counter increments on every clock cycle during which PCI Master 4 is the bus mas

21.3.5.7 M4_SPCIbus_D5_acq

This duration event counts the number of clocks spent by PCI Master 5 acquiring the second
PCI bus. The counter increments on every clock cycle after the device has requested use of
bus but has not actively driven the PCI bus as a master. The counter also increments for all
cycles when this agent’s Request Signal is asserted but bus ownership currently belongs to anot
master. This is an event primitive, used in conjunction with another event primitive (number o
grants granted to PCI Master 5) to calculate the average acquisition latency for the device.

21.3.5.8 M4_SPCIbus_D5_own

This duration event counts the duration for which PCI Master 5 is the master on the seconda
bus. The counter increments on every clock cycle during which PCI Master 5 is the bus mas
21-12 i960® RM/RN I/O Processor Developer’s Manual

Performance Monitoring Unit

r on
ssor is
21.3.5.9 M4_SPCIbus_D3_gnt

This occurrence event monitors the number of times PCI Master 3 is granted the secondary PCI
bus. It increments the counter when the device is the PCI bus master. The counter is incremented
once for every new transaction. For multi-cycle transactions, the counter increments once on the
first cycle.

21.3.5.10 M4_SPCIbus_D4_gnt

This occurrence event monitors the number of times PCI Master 4 is granted the secondary PCI
bus. It increments the counter when the device is the PCI bus master. The counter is incremented
once for every new transaction. For multi-cycle transactions, the counter increments once on the
first cycle.

21.3.5.11 M4_SPCIbus_D5_gnt

This occurrence event monitors the number of times PCI Master 5 is granted the secondary PCI
bus. It increments the counter when the device is the PCI bus master. The counter is incremented
once for every new transaction. For multi-cycle transactions, the counter increments once on the
first cycle.

21.3.5.12 M4_SPCIbus_IOP_gnt

This occurrence event monitors the number of times the i960 RM/RN I/O processor is granted the
secondary PCI bus. It increments the counter when the processor is the PCI bus master. The
counter is incremented once for every new transaction. For multi-cycle transactions, the counter
increments once on the first cycle. The count value is a summation of the individual grants received
by the bridge, satu and dma Ch-2.

21.3.5.13 M4_SPCIbus_IOP_acq

This duration event counts the number of clocks spent by the i960 RM/RN I/O processor (includes the bridge,
dma Ch-2, and satu) acquiring the secondary PCI bus. The counter increments on every clock cycle after the
processor has requested use of the PCI bus but has not actively driven the PCI bus as a master. The counter
also increments for all clock cycles when this agent’s Request Signal is asserted but bus ownership currently
belongs to another master. This is an event primitive, used in conjunction with another event primitive
(number of grants granted to i960 RM/RN I/O processor to calculate the average acquisition latency for the
processor.

21.3.5.14 M4_SPCIbus_IOP_own

This duration event counts the duration for which the i960 RM/RN I/O processor is the maste
the secondary PCI bus. The counter increments on every clock cycle during which the proce
the bus master.
i960® RM/RN I/O Processor Developer’s Manual 21-13

Performance Monitoring Unit

he

us.
s not
when
This
ed to

. The
21.3.6 Mode 5: i960® RM/RN I/O Processor Internal Bus and
Agents Events

Programming Mode5 (M5) in the ESR enables performance monitoring on the i960 RM/RN I/O
processor internal bus. In addition, performance monitoring is done for selected agents. In this
mode, the monitored agents are: DMA channels (Ch-0, Ch-1 and Ch-2) and the Application
Accelerator. All counters are clocked at the internal bus frequency. The following sections describe
the monitored events in Mode 5.

21.3.6.1 M5_IBus_idle

This duration event increments the counter every internal bus idle cycle. An idle cycle occurs when
there is no activity on the bus due to data being transferred and/or the bus is not in an overhead
cycle. An overhead cycle is a cycle when a master owns the bus, however the master is unable to
send data or the target is unable to receive data - hence no data is transferred.

21.3.6.2 M5_IBus_data

This duration event increments the counter on every internal bus data cycle. This enables
calculation of data utilization of the bus.

21.3.6.3 M5_IBus_AAU_acq

This duration event counts the number of clocks spent by the Application Accelerator (AA)
acquiring the internal bus. The counter increments on every clock cycle after the AA has requested
use of the bus but has not actively driven the bus as a master. The counter also increments for all
clock cycles when this agent’s Request Signal is asserted but bus ownership currently belongs to
another master. This is an event primitive, used in conjunction with another event primitive
(number of grants granted to AA) to calculate the average acquisition latency.

21.3.6.4 M5_IBus_AAU_own

This duration event counts the duration for which the AA is the master on the internal bus. T
counter increments on every clock cycle during which the AA is the bus master.

21.3.6.5 M5_IBus_DMA0_acq

This duration event counts the number of clocks spent by DMA Ch-0 acquiring the internal b
The counter increments on every clock cycle after Ch-0 has requested use of the bus but ha
actively driven the internal bus as a master. The counter also increments for all clock cycles
this agent’s Request Signal is asserted but bus ownership currently belongs to another master.
is an event primitive, used in conjunction with another event primitive (number of grants grant
Ch-0) to calculate the average acquisition latency.

21.3.6.6 M5_IBus_DMA0_own

This duration event counts the duration for which DMA Ch-0 is the master on the internal bus
counter increments on every clock cycle during which Ch-0 is the bus master.
21-14 i960® RM/RN I/O Processor Developer’s Manual

Performance Monitoring Unit

This
ed to

. The

us.
s not
when
This
ed to

. The

 every

t
 for
cycle.

t
 for
cycle.

t
 for
cycle.
21.3.6.7 M5_IBus_DMA1_acq

This duration event counts the number of clocks spent by DMA Ch-1 acquiring the internal bus.
The counter increments on every clock cycle after Ch-1 has requested use of the bus but has not
actively driven the internal bus as a master. The counter also increments for all clock cycles when
this agent’s Request Signal is asserted but bus ownership currently belongs to another master.
is an event primitive, used in conjunction with another event primitive (number of grants grant
Ch-1) to calculate the average acquisition latency.

21.3.6.8 M5_IBus_DMA1_own

This duration event counts the duration for which DMA Ch-1 is the master on the internal bus
counter increments on every clock cycle during which Ch-1 is the bus master.

21.3.6.9 M5_IBus_DMA2_acq

This duration event counts the number of clocks spent by DMA Ch-2 acquiring the internal b
The counter increments on every clock cycle after Ch-2 has requested use of the bus but ha
actively driven the internal bus as a master. The counter also increments for all clock cycles
this agent’s Request Signal is asserted but bus ownership currently belongs to another master.
is an event primitive, used in conjunction with another event primitive (number of grants grant
Ch-2) to calculate the average acquisition latency.

21.3.6.10 M5_IBus_DMA2_own

This duration event counts the duration for which DMA Ch-2 is the master on the internal bus
counter increments on every clock cycle during which Ch-2 is the bus master.

21.3.6.11 M5_IBus_AAU_gnt

This occurrence event monitors the number of times the AA is granted the internal bus. It
increments the counter when the AA is the bus master. The counter is incremented once for
new transaction. For multi-cycle transactions, the counter increments once on the first cycle.

21.3.6.12 M5_IBus_DMA0_gnt

This occurrence event monitors the number of times DMA Ch-0 is granted the internal bus. I
increments the counter when DMA Ch-0 is the bus master. The counter is incremented once
every new transaction. For multi-cycle transactions, the counter increments once on the first

21.3.6.13 M5_IBus_DMA1_gnt

This occurrence event monitors the number of times DMA Ch-1 is granted the internal bus. I
increments the counter when DMA Ch-1 is the bus master. The counter is incremented once
every new transaction. For multi-cycle transactions, the counter increments once on the first

21.3.6.14 M5_IBus_DMA2_gnt

This occurrence event monitors the number of times DMA Ch-2 is granted the internal bus. I
increments the counter when DMA Ch-2 is the bus master. The counter is incremented once
every new transaction. For multi-cycle transactions, the counter increments once on the first
i960® RM/RN I/O Processor Developer’s Manual 21-15

Performance Monitoring Unit

her

al bus.
r.

he
s not
when
This
ed to

. The

he
s not
when
This
ed to

. The
21.3.7 Mode 6: i960® RM/RN I/O Processor Internal Bus and
Agents Events

Programming Mode6 (M6) in the ESR enables performance monitoring on the i960 RM/RN
processor internal bus. In addition, performance monitoring is also done for selected agents. In this
mode, the monitored agents are Primary Address Translation Unit (PATU), Secondary Address
Translation Unit (SATU) and i960 processor. All counters are clocked at the internal bus
frequency. The following sections describe the monitored events in Mode 6.

21.3.7.1 M6_IBus_core_acq

This duration event counts the number of clocks spent by i960 processor acquiring the internal bus.
The counter increments on every clock cycle after the i960 processor has requested use of the bus
but has not actively driven the internal bus as a master. The counter also increments for all clock
cycles when this agent’s Request Signal is asserted but bus ownership currently belongs to anot
master.

21.3.7.2 M6_IBus_core_own

This duration event counts the duration for which the i960 processor is the master on the intern
The counter increments on every clock cycle during which the i960 processor is the bus maste

21.3.7.3 M6_IBus_PATU_acq

This duration event counts the number of clocks spent by PATU acquiring the internal bus. T
counter increments on every clock cycle after the PATU has requested use of the bus but ha
actively driven the internal bus as a master. The counter also increments for all clock cycles
this agent’s Request Signal is asserted but bus ownership currently belongs to another master.
is an event primitive, used in conjunction with another event primitive (number of grants grant
PATU) to calculate the average acquisition latency for the unit.

21.3.7.4 M6_IBus_PATU_own

This duration event counts the duration for which the PATU is the master on the internal bus
counter increments on every clock cycle during which the PATU is the bus master.

21.3.7.5 M6_IBus_SATU_acq

This duration event counts the number of clocks spent by SATU acquiring the internal bus. T
counter increments on every clock cycle after the SATU has requested use of the bus but ha
actively driven the internal bus as a master. The counter also increments for all clock cycles
this agent’s Request Signal is asserted but bus ownership currently belongs to another master.
is an event primitive, used in conjunction with another event primitive (number of grants grant
SATU) to calculate the average acquisition latency for the unit.

21.3.7.6 M6_IBus_SATU_own

This duration event counts the duration for which the SATU is the master on the internal bus
counter increments on every clock cycle during which the SATU is the bus master.
21-16 i960® RM/RN I/O Processor Developer’s Manual

Performance Monitoring Unit
21.3.7.7 M6_IBus_PBOFF_time

This duration event counts the duration for which the backoff (PBOFF) signal is asserted by the
PATU. This is an event primitive, used in conjunction with another event primitive (PBOFF_cnt)
to calculate the average duration. The backoff signal is asserted by the PATU when it is busy with
an outbound read transaction and the Bus Interface Unit (BIU) attempts to perform another
transaction before the read transaction completes.

21.3.7.8 M6_IBus_PBOFF_cnt

This occurrence event counts the number of times the PATU asserts the PBOFF signal. This
occurrence event increments the counter on every instance of PBOFF assertion.

21.3.7.9 M6_IBus_SBOFF_time

This duration event counts the duration for which the backoff (SBOFF) signal is asserted by the
SATU. This is an event primitive, used in conjunction with another event primitive (SBOFF_cnt)
to calculate the average duration. The backoff signal is asserted by the SATU when it is busy with
an outbound read transaction and the Bus Interface Unit (BIU) attempts to perform another
transaction before the read transaction completes.

21.3.7.10 M6_IBus_SBOFF_cnt

This occurrence event counts the number of times the SATU asserts the SBOFF signal. This
occurrence event increments the counter on every instance of SBOFF assertion.

21.3.7.11 M6_IBus_PATU_gnt

This occurrence event monitors the number of times the PATU is granted the internal bus. This
event increments the counter when the PATU is the bus master. The counter is incremented once
for every new transaction. For multi-cycle transactions, the counter increments once on the first
cycle.

21.3.7.12 M6_IBus_SATU_gnt

This occurrence event monitors the number of times the SATU is granted the internal bus. This
event increments the counter when the SATU is the bus master. The counter is incremented once
for every new transaction. For multi-cycle transactions, the counter increments once on the first
cycle.

21.3.7.13 M6_IBus_core_gnt

This occurrence event monitors the number of times the core is granted the internal bus. This event
increments the counter when the core is the bus master. The counter is incremented once for every
new transaction. For multi-cycle transactions, the counter increments once on the first cycle.

21.3.7.14 M6_IBus_ATU_retries

This occurrence event counts the number of retries issued by the Primary Address Translation Unit
(PATU) on the primary PCI bus due to the inbound write queue being unable to accept a new transaction.
Retries issued by the PATU in response to configuration writes are not included in this metric.
i960® RM/RN I/O Processor Developer’s Manual 21-17

Performance Monitoring Unit
21.3.8 Mode 7: i960® RM/RN Processor Internal Bus, Secondary
PCI Bus and Primary PCI Bus Events

Programming Mode7 (M7) in the ESR enables performance monitoring on the internal bus,
secondary PCI bus and primary PCI bus. In addition, performance monitoring is done for external
agents (i960 RM/RN I/O processor and external masters 0..5) on the secondary bus and for i960
RM/RN I/O processor on the primary bus. Master0 designates the external secondary PCI device that
is connected to the REQ0 and GNT0 signals of the internal arbiter in the i960 RM/RN I/O processor.
The nomenclature is similar for all other external PCI masters; Master 1 through Master 5.

In this mode, counters monitoring events on the internal bus are clocked at the internal bus
frequency and counters monitoring PCI events are clocked at the respective PCI bus frequencies.
The following sections describe the monitored events in Mode 7.

21.3.8.1 M7_IBus_idle

This duration event increments the counter every internal bus idle cycle. An idle cycle occurs when
there is no activity on the bus due to data being transferred and/or the bus is not in an overhead
cycle. An overhead cycle is a cycle when a master owns the bus, however the master is unable to
send data or the target is unable to receive data - hence no data is transferred.

21.3.8.2 M7_IBus_data

This duration event increments the counter every internal bus data cycle. This enables calculation
of data utilization of the bus.

21.3.8.3 M7_SPCIbus_idle

This duration event increments the counter every secondary PCI bus idle cycle. An idle cycle
occurs when there is no activity on the bus due to data being transferred and/or the bus is not in an
overhead cycle. An overhead cycle is a cycle when a master owns the bus, however the master is
unable to send data or the target is unable to receive data - hence no data is transferred.

21.3.8.4 M7_SPCIbus_data

This duration event increments the counter every secondary PCI data cycle. Data cycles comprise
of two instances:

• The i960 RM/RN I/O processor as a master on the bus is involved in data transfers to other masters.

• External masters initiate data transfers to either the i960 RM/RN I/O processor or to other
masters on the bus.

21.3.8.5 M7_SPCIbus_IOP_own

This duration event counts the duration for which the i960 RM/RN I/O processor is the master on
the secondary PCI bus. The counter increments on every clock cycle during which the processor is
the bus master. The count value is a summation of ownership times of the bridge, SATU and
DMA Ch-2.
21-18 i960® RM/RN I/O Processor Developer’s Manual

Performance Monitoring Unit
21.3.8.6 M7_SPCIbus_D0_own

This duration event counts the duration for which PCI Master 0 is the master on the secondary PCI
bus. The counter increments on every clock cycle during which PCI Master 0 is the bus master.

21.3.8.7 M7_SPCIbus_D1_own

This duration event counts the duration for which PCI Master 1 is the master on the secondary PCI
bus. The counter increments on every clock cycle during which PCI Master 1 is the bus master.

21.3.8.8 M7_SPCIbus_D2_own

This duration event counts the duration for which PCI Master 2 is the master on the secondary PCI
bus. The counter increments on every clock cycle during which PCI Master 2 is the bus master.

21.3.8.9 M7_SPCIbus_D3_own

This duration event counts the duration for which PCI Master 3 is the master on the secondary PCI
bus. The counter increments on every clock cycle during which PCI Master 3 is the bus master.

21.3.8.10 M7_SPCIbus_D4_own

This duration event counts the duration for which PCI Master 4 is the master on the secondary PCI
bus. The counter increments on every clock cycle during which PCI Master 4 is the bus master.

21.3.8.11 M7_SPCIbus_D5_own

This duration event counts the duration for which PCI Master 5 is the master on the secondary PCI
bus. The counter increments on every clock cycle during which PCI Master 5 is the bus master.

21.3.8.12 M7_PPCIbus_IOP_own

This duration event counts the duration for which the i960 RM/RN I/O processor is the master on the
primary PCI bus. The counter increments on every clock cycle during which the processor is the bus
master. The count value is a summation of ownership times of the bridge, PATU and DMA Ch-0 and 1.

21.3.8.13 M7_PPCIbus_idle

This duration event increments the counter every primary PCI bus idle cycle. An idle cycle occurs
when there is no activity on the bus due to data being transferred and/or the bus is not in an
overhead cycle. An overhead cycle is a cycle when a master owns the bus, however the master is
unable to send data or the target is unable to receive data - hence no data is transferred.

21.3.8.14 M7_PPCIbus_data

This duration event increments the counter every primary PCI data cycle. Data cycles comprise of
two instances:

• The i960 RM/RN I/O processor as a master on the bus is involved in data transfers to other masters.

• External masters initiate data transfers to either the i960 RM/RN I/O processor or to other
masters on the bus.
i960® RM/RN I/O Processor Developer’s Manual 21-19

Performance Monitoring Unit
21.4 Interrupts

The Programmable Event Counters and the Global Time Stamp Counter generate interrupts to the
i960 RM/RN I/O processor. When bit 0 (enable/disable bit) in the Global Timer Mode Register
(GTMR) is set, the Global Time Stamp Counter interrupts the core processor on an overflow. Any
Programmable Event Counter interrupts the processor on an overflow by setting the corresponding
bit in the Event Monitoring Interrupt Status Register (EMISR). Setting a bit in this register
generates an interrupt to the XINT6# interrupt pin of the core processor. When multiple counters
overflow, each counter that overflows sets the corresponding bit in the EMISR.

The XINT6# pin of the core processor receives interrupts from multiple sources through the
XINT6 interrupt latch. A valid interrupt from any source sets the bit in the latch and outputs a
level-sensitive interrupt to the core processor XINT6# pin.

21.5 Reset Conditions

The Global Time Stamp Counter is cleared upon deassertion of the Internal Bus Reset signal. The
Global Timer Mode Register (GTMR) is cleared on reset. The Event Select Register (ESR)
defaults to Mode 0 upon reset: performance monitoring is disabled and all counters are disabled in
this mode. The Programmable Event Counters (PECRx) values are undefined upon reset.

21.6 Register Definitions

The performance monitoring facility on i960 RM/RN I/O processor consists of eighteen (18)
memory-mapped registers for controlling operation and monitoring various events. Each register is 32-bits
wide. Each of these registers is accessed as a memory-mapped 32-bit register with a unique memory
address. Access is accomplished through regular memory-format instructions from the i960 core processor.

Three registers control the mode of operation. They are; Global Timer Mode Register (GTMR),
Event Monitoring Interrupt Status Register (EMISR), and the Event Select Register (ESR). The
GTMR controls operation of the Global Time Stamp Counter. The EMISR is used to indicate an
overflow condition in any counter during performance monitoring. An overflow condition in the
Global Time Stamp Counter is also indicated in the EMISR when the mode is enabled. The value
programmed into the Event Select Register (ESR) determines the monitored interface.

Fourteen (14) registers (PECR1 - PECR14) contain the current count value from the programmable event
counters (PEC1 - PEC14). The Global Time Stamp Register (GTSR) contains the current count value of
the Time Stamp Counter. The event registers (PECR1 - PECR14) and the GTSR are read-only registers.

Table 21-4 identifies the registers used for performance monitoring. Each register is described in
the subsections following the table.

Table 21-4. Event Monitor Register Table

Section, Register Name - Acronym (Page)

Section 21.6.1, “Global Timer Mode Register (GTMR)” on page 21-21

Section 21.6.2, “Event Select Register (ESR)” on page 21-22

Section 21.6.3, “Event Monitoring Interrupt Status Register (EMISR)” on page 21-23

Section 21.6.4, “Global Time Stamp Register (GTSR)” on page 21-24

Section 21.6.5, “Programmable Event Counter Register (PECRx)” on page 21-25
21-20 i960® RM/RN I/O Processor Developer’s Manual

Performance Monitoring Unit
21.6.1 Global Timer Mode Register (GTMR)

The Global Timer Mode Register (GTMR) programs the mode of operation or indicates the current
mode of the Global Time Stamp Counter as shown in Table 21-5. This is a 32-bit, read-write
register. Bit 0 controls the interrupt capability of the Global Time Stamp Counter. When enabled,
an interrupt is generated to the i960 core processor processor on the XINT6# interrupt pin when the
Global Time Stamp Counter overflows. Bit 2 is an enable/disable bit. When set (1), the
Programmable Event Counters and the Global Time Stamp Counter are disabled and retain their
previous values. This bit needs to be rewritten to enable all counters.

Table 21-5. Global Timer Mode Register (GTMR)

Bit Default Description

31:03 0 Reserved

2 02

Bit value determines if the Global Time Stamp Counter and the Programmable Event
Counters are enabled or disabled.

0 All counters enabled (enable counting)

1 All counters disabled (disable counting)

1 02 Reserved

0 02

Bit value determines whether the Global Time Stamp Counter interrupts the processor
on an overflow condition.

0 Interrupt disabled

1 Interrupt enabled

P
C

I
IO

P
A

ttr
ib

ut
es

A
tt

rib
ut

es

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rw

na

rv

na

rw

na

28 24 20 16 12 8 4 031

Attribute Legend:

RV = Reserved

PR = Preserved

RS = Read/Set

RW = Read/Write

RC = Read Clear

RO = Read Only

NA = Not Accessible

Internal Bus Address

0000 1100H
i960® RM/RN I/O Processor Developer’s Manual 21-21

Performance Monitoring Unit
21.6.2 Event Select Register (ESR)

The Event Select Register (ESR) controls the specific mode of operation or indicates the current
mode of performance monitoring. There are eight (8) modes supported. To change the monitored
mode, it is necessary to write the entire ESR. The Programmable Event Counters and the Global
Time Stamp Counter are reset when a new value is written to the ESR. Performance monitoring is
disabled in the default mode.

Table 21-6 describes the various monitoring modes and the programmed values for those modes.

Table 21-6. Event Select Register (ESR)

Bit Default Description

31:17 0 Reserved

16 02

PECRx Master Interrupt Enable: When set (1), any/all the programmable event
counters interrupt the i960 processor on an overflow. When clear (0), none of the
programmable event counters interrupt the processor on an overflow. In this mode,
any counter that has an overflow condition rolls over to zero and start incrementing.

15:3 0 Reserved

2:0 0

Value in this bit field determines the monitored interface on the i960 RM/RN I/O
processor.

000 Mode 0 Performance Monitoring Disabled

001 Mode 1 Primary PCI Bus & Internal Agents

010 Mode 2 Secondary PCI Bus & Internal Agents

011 Mode 3 Secondary PCI Bus & PCI Agents

100 Mode 4 Secondary PCI Bus & PCI Agents (external masters 3..5)

101 Mode 5 i960 RM/RN processor internal bus, DMA Channels & AA

110 Mode 6 i960 RM/RN processor internal bus, PATU, SATU & i960 processor

111 Mode 7 i960 RM/RN processor internal bus, PCI buses (primary & secondary)

P
C

I
IO

P
A

ttr
ib

ut
e

s
A

ttr
ib

u
te

s

28 24 20 16 12 8 4 031

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rw

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rw

na

rw

na

rw

na

Attribute Legend:

RV = Reserved

PR = Preserved

RS = Read/Set

RW = Read/Write

RC = Read Clear

RO = Read Only

NA = Not Accessible

Internal Bus Address

0000 1104H
21-22 i960® RM/RN I/O Processor Developer’s Manual

Performance Monitoring Unit
21.6.3 Event Monitoring Interrupt Status Register (EMISR)

The Event Monitoring Interrupt Status Register (EMISR) generates interrupts to the i960 RM/RN
I/O processor. Bits 14:0 when set indicate an overflow condition in either the Global Time Stamp
Counter or the Programmable Event Counters. This generates an interrupt on the XINT6# pin of
the core processor. Bits 14:0 can only be set by the Event Counters and/or the Global Time Stamp
Counter and can only be cleared by the core processor.

When this register is read by the core processor and multiple bits are set, it is the responsibility of
the application software to record the value and prioritize the sequence of actions. Any bit (bits
14:0) once set is cleared by writing a 1 to the specific bit field.

Note: It is the responsibility of the application software to clear the individual bit fields in the register
once a new mode is programmed into the ESR.

Table 21-7. Event Monitoring Interrupt Status Register - EMISR

Bit Default Description

31:15 0 Reserved

14:1 02

Bit value indicates status of the Programmable Event Counter x(PECx) during event
monitoring. When clear (0), no PECx overflow interrupt is pending. When set (1), a
PECx overflow interrupt is pending.

0 02

Bit value indicates the status of the Global Time Stamp Counter (GTS) during event
monitoring. When clear (0), no GTS overflow interrupt is pending. When set (1), a
GTS overflow interrupt is pending.

P
C

I
IO

P
A

ttr
ib

u
te

s
A

ttr
ib

ut
es

28 24 20 16 12 8 4 031

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rc

na

rc

na

rc

na

rc

na

rc

na

rc

na

rc

na

rc

na

rc

na

rc

na

rc

na

rc

na

rc

na

rc

na

rc

na

Attribute Legend:

RV = Reserved

PR = Preserved

RS = Read/Set

RW = Read/Write

RC = Read Clear

RO = Read Only

NA = Not Accessible

Internal Bus Address

0000 1108H
i960® RM/RN I/O Processor Developer’s Manual 21-23

Performance Monitoring Unit
21.6.4 Global Time Stamp Register (GTSR)

The Global Time Stamp register (GTSR) is a 32-bit, read-only register. Writes to the GTSR have
no effect. The GTSR contains the current count value of the Global Time Stamp Counter. The
counter frequency is one-quarter the Internal Bus clock frequency. When a new mode is chosen by
writing a value to the ESR, this register is reset to zero. This register can be read at any time and
returns the current count value.

.

Table 21-8. Global Time Stamp Register - GTSR

Bit Default Description

31:00 X This is a 32-bit, read-only register. When accessed, it returns the current count value
in the Global Time Stamp Counter.

P
C

I
IO

P
A

ttr
ib

ut
es

A
tt

rib
ut

es

28 24 20 16 12 8 4 031

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

Attribute Legend:

RV = Reserved

PR = Preserved

RS = Read/Set

RC = Read Clear

RO = Read Only

NA = Not Accessible

Internal Bus Address

0000 1110H
21-24 i960® RM/RN I/O Processor Developer’s Manual

Performance Monitoring Unit
21.6.5 Programmable Event Counter Register (PECRx)

There are 14 programmable event counter registers (PECR1 - PECR14) that contain the current
count value in the 14 event counters (PEC1 - PEC14). Each register is a 32-bit, read-only register.
Writing to the Programmable Event Counter Registers (PECR1 - PECR14) has no effect.

The value in any register is incremented based on the current programmed ESR value and the
descriptions shown in Table 21-9. When a new mode is chosen by writing a value to the ESR, these
registers are reset to zero. Each of these registers can be read at any time, and return the current
count value.

Table 21-9. Programmable Event Counter Register - PECRx

Bit Default Description

31:00 X This is a 32-bit, read-only register. When accessed, it returns the current count value
in the respective event counter.

P
C

I
IO

P
A

ttr
ib

u
te

s
A

ttr
ib

ut
es

28 24 20 16 12 8 4 031

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

Attribute Legend:

RV = Reserved

PR = Preserved

RS = Read/Set

RW = Read/Write

RC = Read Clear

RO = Read Only

NA = Not Accessible

Internal Bus Address

PECR1 0000 1114H

PECR2 0000 1118H

PECR3 0000 111CH

PECR4 0000 1120H

PECR5 0000 1124H

PECR6 0000 1128H

PECR7 0000 112CH

PECR8 0000 1130H

PECR9 0000 1134H

PECR10 0000 1138H

PECR11 0000 113CH

PECR12 0000 1140H

PECR13 0000 1144H

PECR14 0000 1148H
i960® RM/RN I/O Processor Developer’s Manual 21-25

I2C Bus Interface Unit 22

This chapter describes the I2C (Inter-Integrated Circuit) bus interface unit of the i960® RM/RN I/O
Processor, including the operation modes and setup. Throughout this manual, this peripheral is
referred to as the I2C unit.

22.1 Overview

The I2C Bus Interface Unit allows the i960 RM/RN I/O processor to serve as a master and slave
device residing on the I2C bus. The I2C bus is a serial bus developed by Philips Corporation
consisting of a two-pin interface. SDA is the data pin for input and output functions and SCL is the
clock pin for reference and control of the I2C bus.

The I2C bus allows the i960 RM/RN I/O processor to interface to other I2C peripherals and
microcontrollers for system management functions. The serial bus requires a minimum of
hardware for an economical system to relay status and reliability information on the i960 RM/RN
I/O processor subsystem to an external device.

The I2C Bus Interface Unit is a peripheral device that resides on the i960 RM/RN I/O processor
internal bus. Data is transmitted to and received from the I2C bus via a buffered interface. Control
and status information is relayed through a set of memory-mapped registers. Refer to the I2C Bus
Specification for complete details on I2C bus operation.

22.2 Theory of Operation

The I2C bus defines a serial protocol for passing information between agents on the I2C bus using
only a two pin interface. The interface consists of a Serial Data/Address (SDA) line and a Serial
Clock Line (SCL). Each device on the I2C bus is recognized by a unique 7-bit address and can
operate as a transmitter or as a receiver. In addition to transmitter and receiver, the I2C bus uses the
concept of master and slave. Table 22-1 lists the I2C device types.

Table 22-1. I2C Bus Definitions

I2C Device Definition

Transmitter Sends data to the I2C bus.

Receiver Receives data from the I2C bus.

Master Initiates a transfer, generates the clock signal, and terminates the transactions.

Slave The device addressed by a master.

Multi-master More than one master can attempt to control the bus at the same time without corrupting
the message.

Arbitration Procedure to ensure that, when more than one master simultaneously tries to control the
bus, only one is allowed. This procedure ensures that messages are not corrupted.
i960® RM/RN I/O Processor Developer’s Manual 22-1

I2C Bus Interface Unit

 slow

ived
or both

he

, and a
As an example of I2C bus operation, consider the case of the i960 RM/RN I/O processor acting as a
master on the bus (Figure 22-1). The i960 RM/RN I/O processor, as a master, addresses an
EEPROM as a slave to receive data. The i960 RM/RN I/O processor is a master-transmitter and the
EEPROM is a slave-receiver. When the i960 RM/RN I/O processor reads data, the i960 RM/RN
I/O processor is a master-receiver and the EEPROM is a slave-transmitter. In both cases, the
master generates the clock, initiates the transaction and terminates it.

The I2C bus allows for a multi-master system, which means more than one device can initiate data
transfers at the same time. To support this feature, the I2C bus arbitration relies on the wired-AND
connection of all I2C interfaces to the I2C bus. Two masters can drive the bus simultaneously
provided they are driving identical data. The first master to drive SDA high while another master
drives SDA loses the arbitration. The SCL line consists of a synchronized combination of clocks
generated by the masters using the wired-AND connection to the SCL line.

The I2C bus serial operation uses an open-drain wired-AND bus structure, which allows multiple
devices to drive the bus lines and to communicate status about events such as arbitration, wait
states, error conditions and so on. For example, when a master drives the clock (SCL) line during a
data transfer, it transfers a bit on every instance that the clock is high. When the slave is unable to
accept or drive data at the rate that the master is requesting, the slave can hold the clock line low
between the high states to insert a wait interval. The master’s clock can only be altered by a
slave peripheral keeping the clock line low or by another master during arbitration.

I2C transactions are either initiated by the i960 RM/RN I/O processor as a master or are rece
by the processor as a slave. Both conditions may result in the processor doing reads, writes,
to the I2C bus.

22.2.1 Operational Blocks

The I2C Bus Interface Unit is a slave peripheral device that is connected to the internal bus. T
i960 RM/RN I/O processor interrupt mechanism can be used for notifying the i960 RM/RN I/O
processor that there is activity on the I2C bus. Polling can be also be used instead of interrupts,
although it would be very cumbersome. Figure 22-2 shows a block diagram of the I2C Bus
Interface Unit and its interface to the internal bus.

The I2C Bus Interface Unit consists of the two wire interface to the I2C bus, an 8-bit buffer for
passing data to and from the i960 RM/RN I/O processor, a set of control and status registers
shift register for parallel/serial conversions.

Figure 22-1. I2C Bus Configuration Example

Micro -
Controller

Gate
Array

EEPROM i960® RM/RN

SCL

SDA

Processor
22-2 i960® RM/RN I/O Processor Developer’s Manual

I2C Bus Interface Unit

ation
are.

he

vels,
ndard
e I
 to any
The I2C interrupts are signalled through i960 RM/RN I/O processor interrupt XINT7# and the
XINT7 Interrupt Status Register (X7ISR) in the PCI and Peripheral Interrupt Controller
(Chapter 8, “PCI and Peripheral Interrupt Controller Unit”). The I2C Bus Interface Unit can set a
bit within the X7ISR register when a buffer is full, buffer empty, slave address detected, arbitr
lost, or bus error condition occurs. All interrupt conditions must be cleared explicitly by softw
See Section 22.8.2, “I2C Status Register- ISR” on page 22-27 for details.

The I2C Data Buffer Register (IDBR) is an 8-bit data buffer that receives a byte of data from t
shift register interface of the I2C bus on one side and parallel data from the i960 RM/RN I/O
processor‘s internal bus on the other side. The serial shift register is not user accessible.

The control and status registers are located in the I2C memory-mapped address space (1680H to
1690H). The registers and their function are defined in Section 22.8.

The I2C Bus Interface Unit supports fast mode operation of 400 Kbits/sec. Fast mode logic le
formats, and capacitive loading, and protocols are exactly the same as the 100 Kbits/sec sta
mode. Because the data setup and hold times differ between the fast and standard mode, th2C is
designed to meet the slower, standard mode requirements for these two specifications. Refer
of the following literature for information on I2C bus operation:

Figure 22-2. I2C Bus Interface Unit Block Diagram

A4659-01

I2C Bus
Monitor

XINT7#

SCL
Generator

Internal Bus Interface

Internal Bus

Serial Shift Register

I2C Control Register (ICR)

Internal Bus Address and Control Signals

D
at

a
D

at
a

In
te

rn
al

 B
us

Count

SCL SDA

I2C Data Buffer Register (IDBR)

I2C Status Register (ISR)

I2C Slave Address Register(ISAR)

I2C Clock Count Register(ICCR)

Address
Decode

I2C Peripherals for Microcontrollers Philips Semiconductor

I2C Bus and How to Use It (Including Specifications) Philips Semiconductor

I2C Peripherals for Microcontrollers (Including Fast Mode) Signetics
i960® RM/RN I/O Processor Developer’s Manual 22-3

I2C Bus Interface Unit

he
e

22.2.2 I2C Bus Interface Modes

The I2C Bus Interface Unit can be in different modes of operation to accomplish a transfer.
Table 22-2 summarizes the different modes.

While the I2C Bus Interface Unit is in idle mode (neither receiving or transmitting serial data), the
unit defaults to Slave-Receive mode. This allows the interface to monitor the bus and receive any
slave addresses that might be intended for the i960 RM/RN I/O processor.

When the I2C Bus Interface Unit receives an address that matches the 7-bit address found in the
I2C Slave Address Register (ISAR) or the General Call Address (00H), the interface either remains
in Slave-Receive mode or transition to Slave-Transmit mode. This is determined by the Read/Write
(R/W#) bit (the least significant bit of the byte containing the slave address). If the R/W# bit is low,
the master initiating the transaction intends to do a write and the I2C Bus Interface Unit remains in
Slave-Receive mode. If the R/W# is high, the initiating master wants to read data and the slave
transitions to Slave-Transmit mode. Slave operation is further defined in Section 22.3.6, “Slave
Operations” on page 22-16.

When the i960 RM/RN I/O processor wants to initiate a read or write on the I2C bus, the I2C Bus
Interface Unit transitions from the default Slave-Receive mode to Master-Transmit mode. If t
i960 RM/RN I/O processor wants to write data, the interface remains in Master-Transmit mod
after the address transfer has completed. (Section 22.2.3.1, “START Condition” on page 22-6) for
START information). If the i960 RM/RN I/O processor wants to read data, the I2C Bus Interface
Unit transmits the start address, then transition to Master-Receive mode. Master operation is
further defined in Section 22.3.5, “Master Operations” on page 22-13.

Table 22-2. Modes of Operation

Mode Definition

Master - Transmit

• I2C Bus Interface Unit acts as a master.

• Used for a write operation.

• I2C Bus Interface Unit sends the data.

• I2C Bus Interface Unit is responsible for clocking.

• Slave device is in slave-receive mode

Master - Receive

• I2C Bus Interface Unit acts as a master.

• Used for a read operation.

• I2C Bus Interface Unit receives the data.

• I2C Bus Interface Unit is responsible for clocking.

• Slave device is in slave-transmit mode

Slave - Transmit

• I2C Bus Interface Unit acts as a slave.

• Used for a read (master) operation.

• I2C Bus Interface Unit sends the data.

• Master device is in master-receive mode.

Slave - Receive

(default)

• I2C Bus Interface Unit acts as a slave.

• Used for a write (master) operation.

• I2C Bus Interface Unit receives the data.

• Master device is in master-transmit mode.
22-4 i960® RM/RN I/O Processor Developer’s Manual

I2C Bus Interface Unit
22.2.3 Start and Stop Bus States

The I2C bus defines a transaction START and a transaction STOP bus state that are used at the
beginning and end of the transfer of one to an unlimited number of bytes on the bus.

The i960 RM/RN I/O processor uses the START and STOP bits in the I2C Control Register (ICR) to:

• initiate an additional byte transfer

• initiate a START condition on the I2C bus

• enable Data Chaining (repeated START)

• initiate a STOP condition on the I2C bus

Table 22-3 summarizes the definition of the START and STOP bits in the ICR.

Table 22-3. START and STOP Bit Definitions

STOP bit START bit Condition Notes

0 0 No START or STOP
• No START or STOP condition is sent by the I2C

Bus Interface Unit. This is used when multiple data
bytes need to be transferred.

0 1
START Condition &

Repeated START

• The I2C Bus Interface Unit sends a START
condition and transmit the contents of the 8 bit IDBR
after the START. The IDBR must contain the 7-bit
address and the R/W# bit before a START is
initiated.

• For a repeated start, the IDBR contents contains
the target slave address and the R/W# bit. This
enables multiple transfers to different slaves without
giving up the bus.

• The interface stays in Master-Transmit mode if a
write is used or transition to master-receive mode if
a read is requested.

1 X STOP Condition

• In Master-Transmit mode, the I2C Bus Interface Unit
transmits the 8-bit IDBR and then send a STOP on
the I2C bus.

• In Master-Receive mode, the Ack/Nack Control bit
in the ICR must be changed to a negative Ack
(Section 22.3.3). The I2C Bus Interface Unit writes
the Nack bit (Ack/Nack Control bit must be 1),
receive the data byte in the IDBR, then send a
STOP on the I2C bus.
i960® RM/RN I/O Processor Developer’s Manual 22-5

I2C Bus Interface Unit

ite or a
 the

 bus.

d),
 and
l the
ically

t
ansfer
or

 clear
Figure 22-3 shows the relationship between the SDA and SCL lines for a START and STOP condition.

22.2.3.1 START Condition

The START condition (bits 1:0 of the ICR set to 012) initiates a master transaction or repeated
START. Software must load the target slave address and the R/W# bit in the IDBR (see
Section 22.8.4, “I2C Data Buffer Register- IDBR” on page 22-30) before setting the START ICR
bit. The START and the IDBR contents are transmitted on the I2C bus when the ICR Transfer Byte
bit is set. The I2C bus stays in master-transmit mode when a write is requested or enters
master-receive mode when a read is requested. For a repeated start (a change in read or wr
change in the target slave address), the IDBR contains the updated target slave address and
R/W# bit. A repeated start enables multiple transfers to different slaves without giving up the

The START condition is not cleared by the I2C unit. When arbitration is lost while initiating a
START, the I2C unit may re-attempt the START when the bus becomes free. See Section 22.3.4,
“Arbitration” on page 22-11 for details on how the I2C unit functions under those circumstances.

22.2.3.2 No START or STOP Condition

No START or STOP condition (bits 1:0 of the ICR set to 002) is used in master-transmit mode
while the i960 RM/RN I/O processor is transmitting multiple data bytes (Figure 22-3). Software
writes the data byte, sets the IDBR Transmit Empty bit in the ISR (and interrupt when enable
and clears the Transfer Byte bit in the ICR. The software then writes a new byte to the IDBR
sets the Transfer Byte ICR bit, which initiates the new byte transmission. This continues unti
software sets the START or STOP bit. The START and STOP bits in the ICR are not automat
cleared by the I2C unit after the transmission of a START, STOP or repeated START.

After each byte transfer (including the Ack/Nack bit) the I2C unit holds the SCL line low (inserting
wait states) until the Transfer Byte bit in the ICR is set. This action notifies the I2C unit to release
the SCL line and allow the next information transfer to proceed.

22.2.3.3 STOP Condition

The STOP condition (bits 1:0 of the ICR set to 102) terminates a data transfer. In master-transmi
mode, the STOP bit and the Transfer Byte bit in the ICR must be set to initiate the last byte tr
(Figure 22-3). In master-receive mode, to initiate the last transfer the i960 RM/RN I/O process
must set the Ack/Nack bit, the STOP bit, and the Transfer Byte bit in the ICR. Software must
the STOP condition after it is transmitted.

Figure 22-3. Start and Stop Conditions

SDA

SCL

Start Condition

∼ ∼
∼ ∼

∼ ∼

Stop Condition

22-6 i960® RM/RN I/O Processor Developer’s Manual

I2C Bus Interface Unit

use of
g

en
22.3 I2C Bus Operation

The I2C Bus Interface Unit transfers in 1 byte increments. A data transfer on the I2C bus always
follows the sequence:
1) START
2) 7-bit Slave Address
3) R/W# Bit
4) Acknowledge Pulse
5) 8 Bits of Data
6) Ack/Nack Pulse
7) Repeat of Step 5 and 6 for Required Number of Bytes
8) Repeated START (Repeat Step 1) or STOP

22.3.1 Serial Clock Line (SCL) Generation

The i960 RM/RN I/O processor’s I2C unit is required to generate the I2C clock output when in
master mode (either receive or transmit). SCL clock generation is accomplished through the
the ICCR value, which is programmed at initialization. The ICCR value is used in the followin
equation to determine the SCL transition period:

Equation 22-1. SCL Transition Period = ICCR Decimal Value * i960 RM/RN I/O processor Internal
Bus Clock Period

The SCL transition period is the amount of time the clock spends in the high or low state. Wh
wait states are inserted or synchronization with another master is necessary, the I2C unit performs
the necessary clock synchronization. The ICCR provides a simple method for determining I2C
clock frequencies. Table 22-4 details sample programming values for the ICCR.

Programming a value less than 30H results in undefined behavior.

Figure 22-4. START and STOP Conditions

Data byte
Ack/
Nack

Ack/
NackR/W#START Target Slave Address

Ack/
NackR/W#Data Byte STOP

No START or STOP Condition

START Condition

STOP Condition

Table 22-4. ICCR Programming Values

PCI Bus
Frequency

i960® RM/RN I/O
Processor Internal

Bus Frequency

I2C Clock Frequency =
[1/(SCL Transition Per. * 2)]

SCL
Transition

 Period
ICCR Value

33 MHz 66 MHz
397.59 KHz 1.26 µs 010100112 053H 83

99.10 KHz 5.05 µs 101001102 14DH 333

25 MHz 50 MHz
397.59 KHz 1.26 µs 001111112 03FH 63

99.20 KHz 5.04 µs 111111002 0FCH 252
i960® RM/RN I/O Processor Developer’s Manual 22-7

I2C Bus Interface Unit

N

o the
 set.

n or

set.

 on

DBR

errupt

es.
22.3.2 Data and Addressing Management

Data and slave addressing is managed via the I2C Data Buffer Register (IDBR) and the I2C Slave
Address Register (ISAR). The IDBR (Section 22.8.4, “I2C Data Buffer Register- IDBR” on
page 22-30) contains data or a slave address and R/W# bit. The ISAR contains the i960 RM/R
I/O processor’s programmable slave address. Data coming into the I2C unit is received into the
IDBR after a full byte is received and acknowledged. To transmit data, the processor writes t
IDBR, and the I2C unit passes this onto the serial bus when the Transfer Byte bit in the ICR is
See Section 22.8.1, “I2C Control Register- ICR” on page 22-24.

When the I2C unit is in transmit mode (master or slave):

1. Software writes data to the IDBR over the internal bus. This initiates a master transactio
sends the next data byte, after the IDBR Transmit Empty bit is sent.

2. The I2C unit transmits the data from the IDBR when the Transmit Empty bit in the ICR is

3. When enabled, an IDBR Transmit Empty interrupt is signalled when a byte is transferred
the I2C bus and the acknowledge cycle is complete.

4. When the I2C bus is ready to transfer the next byte before the processor has written the I
(and a STOP condition is not in place), the I2C unit inserts wait states until the processor
writes a new value into the IDBR and sets the ICR Transfer Byte bit.

When the I2C unit is in receive mode (master or slave):

1. The processor reads the IDBR data over the internal bus after the IDBR Receive Full int
is signalled.

2. The I2C unit transfers data from the shift register to the IDBR after the Ack cycle complet

3. The I2C unit inserts wait states until the IDBR is read. Refer to Section 22.3.3, “I2C
Acknowledge” on page 22-10 for acknowledge pulse information in receiver mode.

4. After the processor reads the IDBR, the I2C unit writes the ICR’s Ack/Nack Control bit and
the Transfer Byte bit, allowing the next byte transfer to proceed.
22-8 i960® RM/RN I/O Processor Developer’s Manual

I2C Bus Interface Unit

22.3.2.1 Addressing a Slave Device

As a master device, the I2C unit must compose and send the first byte of a transaction. This byte
consists of the slave address for the intended device and a R/W# bit for transaction definition. The
slave address and the R/W# bit are written to the IDBR (Figure 22-5).

The first byte transmission must be followed by an Ack pulse from the addressed slave. When the
transaction is a write, the I2C unit remains in master-transmit mode and the addressed slave device
stays in slave-receive mode. When the transaction is a read, the I2C unit transitions to
master-receive mode immediately following the Ack and the addressed slave device transitions to
slave-transmit mode. When a Nack is returned, the I2C unit aborts the transaction by automatically
sending a STOP and setting the ISR bus error bit.

When the I2C unit is enabled and idle (no bus activity), it stays in slave-receive mode and monitors
the I2C bus for a START signal. Upon detecting a START pulse, the I2C unit reads the first seven
bits and compares them to those in the I2C Slave Address Register (ISAR) and the general call
address (00H). When the bits match those of the ISAR register, the I2C unit reads the eighth bit
(R/W# bit) and transmits an Ack pulse. The I2C unit either remains in slave-receive mode (R/W# =
0) or transitions to slave-transmit mode (R/W# = 1). See Section 22.3.7, “General Call Address” on
page 22-18 for actions when a general call address is detected.

Figure 22-5. Data Format of First Byte in Master Transaction

4 0

7-Bit I2C Slave Address

7

Read/Write Transaction

MSB LSB

(0) Write

(1) Read
i960® RM/RN I/O Processor Developer’s Manual 22-9

I2C Bus Interface Unit

t until
22.3.3 I2C Acknowledge

Every I2C byte transfer must be accompanied by an acknowledge pulse, which is always generated
by the receiver (master or slave). The transmitter must release the SDA line for the receiver to
transmit the acknowledge pulse (Figure 22-6).

In master-transmit mode, when the target slave receiver device cannot generate the acknowledge
pulse, the SDA line remains high. This lack of acknowledge (Nack) causes the I2C unit to set the
bus error detected bit in the ISR and generate the associated interrupt (when enabled). The I2C unit
aborts the transaction by generating a STOP automatically.

In master-receive mode, the I2C unit signals the slave-transmitter to stop sending data by using the
negative acknowledge (Nack). The Ack/Nack bit value driven by the I2C bus is controlled by the
Ack/Nack bit in the ICR. The bus error detected bit in the ISR is not set for a master-receive mode
Nack (as required by the I2C bus protocol). The I2C unit automatically transmits the Ack pulse,
based on the Ack/Nack ICR bit, after receiving each byte from the serial bus. Before receiving the
last byte, software must set the Ack/Nack Control bit to Nack. Nack is then sent after the next byte
is received to indicate the last byte.

In slave mode, the I2CI2C unit automatically acknowledges its own slave address, independent of
the Ack/Nack bit setting in the ICR. As a slave-receiver, an Ack response is automatically given to
a data byte, independent of the Ack/Nack bit setting in the ICR. The I2C unit sends the Ack value
after receiving the eighth data bit of the byte.

In slave-transmit mode, receiving a Nack from the master indicates the last byte is transferred. The
master then sends either a STOP or repeated START. The ISR’s unit busy bit (2) remains se
a STOP or repeated START is received.

Figure 22-6. Acknowledge on the I2C Bus

1 2-7 8 9
SCL from

Master

Data Output
by Receiver

Data Output
by Transmitter

Clock Pulse
for Acknowledge

SDA released

SDA pulled low
by Receiver (ACK)

Start Condition

∼ ∼
∼ ∼

∼ ∼
∼ ∼

(SDA)

(SDA)
22-10 i960® RM/RN I/O Processor Developer’s Manual

I2C Bus Interface Unit

s

cted

ters
line.
edure

 hold

ith the
22.3.4 Arbitration

Arbitration on the I2C bus is required due to the multi-master capabilities of the I2C bus.
Arbitration is used when two or more masters simultaneously generate a START condition within
the minimum I2C hold time of the START condition.

Arbitration can continue for a long period. If the address bit and the R/W# are the same, the
arbitration moves to the data. Due to the wired-AND nature of the I2C bus, no data is lost if both
(or all) masters are outputting the same bus states. If the address, the R/W# bit, or the data are
different, the master which outputted the high state (master’s data is different from SDA) lose
arbitration and shut its data drivers off. When losing arbitration, the I2C Bus Interface Unit shuts
off the SDA or SCL drivers for the remainder of the byte transfer, set the Arbitration Loss Dete
bit, then return to idle (Slave-Receive) mode.

22.3.4.1 SCL Arbitration

Each master on the I2C bus generates its own clock on the SCL line for data transfers. With mas
generating their own clocks, clocks with different frequencies may be connected to the SCL
Since data is valid when the clock is in the high period, a defined clock synchronization proc
is needed during bit-by-bit arbitration.

Clock synchronization is accomplished by using the wired-AND connection of the I2C interfaces
to the SCL line. When a master’s clock transitions from high to low, this causes the master to
down the SCL line for its associated period (Figure 22-7). The low to high transition of the clock
may not change when another master has not completed its period. Therefore, the master w
longest low period holds down the SCL line. Masters with shorter periods are held in a high
wait-state during this time. Once the master with the longest period completes, the SCL line
transitions to the high state, masters with the shorter periods can continue the data cycle.

Figure 22-7. Clock Synchronization During the Arbitration Procedure

CLK1

SCL

Wait
State

Start Counting
High Period

CLK1

The first master to complete its high period
pulls the SCL line low.

The master with the longest clock period
holds the SCL line low.
i960® RM/RN I/O Processor Developer’s Manual 22-11

I2C Bus Interface Unit
22.3.4.2 SDA Arbitration

Arbitration on the SDA line can continue for a long period starting with the address and R/W# bits and
continuing with the data bits. Figure 22-8 shows the arbitration procedure for two masters (more than two
may be involved depending on how many masters are connected to the bus). When the address bit and the
R/W# are the same, the arbitration moves to the data. Due to the wired-AND nature of the I2C bus, no data
is lost when both (or all) masters are outputting the same bus states. When the address, R/W# bit, or data is
different, the master that output the first low data bit loses arbitration and shuts its data drivers off. When
the I2C unit loses arbitration, it shuts off the SDA or SCL drivers for the remainder of the byte transfer, sets
the arbitration loss detected ISR bit, then returns to idle (Slave-Receive) mode.

When the I2C unit loses arbitration during transmission of the seven address bits and the i960
RM/RN I/O processor is not being addressed as a slave device, the I2C unit re-sends the address
when the I2C bus becomes free. This is possible because the IDBR and ICR registers are not
overwritten when arbitration is lost.

When the arbitration loss is to due to another bus master addressing the i960 RM/RN I/O processor
as a slave device, the I2C unit switches to slave-receive mode and the original data in the I2C data
buffer register is overwritten. Software is responsible for clearing the start and re-initiating the
master transaction at a later time.

Note: Software must not allow the I2C unit to write to its own slave address. This can cause the I2C bus to
enter an indeterminate state.

Boundary conditions exist for arbitration when an arbitration process is in progress and a repeated
START or STOP condition is transmitted on the I2C bus. To prevent errors, the I2C unit, acting as
a master, provides for the following sequences:

• No arbitration takes place between a repeated START condition and a data bit

• No arbitration takes place between a data bit and a STOP condition

• No arbitration takes place between a repeated START condition and a STOP condition

These situations arise only when different masters write the same data to the same target slave
simultaneously and arbitration is not resolved after the first data byte transfer.

Note: Typically, software is responsible for ensuring arbitration is lost soon after the transaction begins.
For example, the protocol might insist that all masters transmit their I2C address as the first data
byte of any transaction ensuring arbitration is ended. A restart is then sent to begin a valid data
transfer (the slave can then discard the master’s address).

Figure 22-8. Arbitration Procedure of Two Masters

SDA

SCL

Data 1

Data 2

Transmitter 1 Leaves Arbitration
Data 1 SDA
22-12 i960® RM/RN I/O Processor Developer’s Manual

I2C Bus Interface Unit

ata is
22.3.5 Master Operations

When software initiates a read or write on the I2C bus, the I2C unit transitions from the default
slave-receive mode to master-transmit mode. The start pulse is sent followed by the 7-bit slave
address and the R/W# bit. After the master receives an acknowledge, the I2C unit has the option of
two master modes:

• Master-Transmit — The i960 RM/RN I/O processor writes data

• Master-Receive — The i960 RM/RN I/O processor reads data

The i960 RM/RN I/O processor initiates a master transaction by writing to the ICR register. D
read and written from the I2C unit through the memory-mapped registers.

Table 22-5 describes the I2C Bus Interface Unit responsibilities as a master device.

Table 22-5. Master Transactions (Sheet 1 of 2)

I2C Master
Action

Mode of
Operation Definition

Generate
clock output

Master-
transmit

Master-
receive

• The master always drives the SCL line.

• The ICCR register is written.

• The SCL Enable bit must be set.

• The Unit Enable bit must be set.

Write target
slave address

to IDBR

Master-
transmit

Master-
receive

• The i960 core processor writes to IDBR bits 7-1 before a START condition
is enabled.

• First 7 bits sent on bus after START.

• See Section 22.2.3.

Write R/W#
Bit to IDBR

Master-
transmit

Master-
receive

• The i960 core processor writes to the least significant IDBR bit with the
target slave address.

• If low, the master remains a master-transmitter. If high, the master
transitions to a master-receiver.

• See Section 22.3.2.

Signal START
Condition

Master-
transmit

Master-
receive

• See “Generate clock output” above.

• Performed after the target slave address and the R/W# bit are in the IDBR.

• i960 core processor sets the START bit.

• i960 core processor sets the Transfer Byte bit which initiates the start condition.

• See Section 22.2.3.

Initiate first
data byte
transfer

Master-
transmit

Master-
receive

• i960 core processor writes byte to IDBR

• I2C Bus Interface Unit transmits the byte when the Transfer Byte bit is set.

• I2C Bus Interface Unit clears the Transfer Byte bit and sets the IDBR
Transmit Empty bit when the transfer is complete.

Arbitrate for
I2C Bus

Master-
transmit

Master-
receive

• If two or more masters signal a start within the same clock period, arbitration
must occur.

• The I2C Bus Interface Unit arbitrates for as long as necessary. Arbitration takes
place during slave address, R/W# bit, and data transmission and continues until
all but one master loses the bus. No data is lost during arbitration.

• If the I2C Bus Interface Unit loses arbitration, it sets the Arbitration Loss
Detect ISR bit after byte transfer is complete and transition to slave-receive
(default) mode.

• If I2C Bus Interface Unit loses arbitration while attempting to send the target
address byte, the I2C Bus Interface Unit attempts to resend it when the bus
becomes free.

• The system designer must ensure the boundary conditions described in
Section 22.3 do not occur.
i960® RM/RN I/O Processor Developer’s Manual 22-13

I2C Bus Interface Unit
When the i960 RM/RN I/O processor needs to read data, the I2C unit transitions from slave-receive
mode to master-transmit mode to transmit the start address and immediately following the ACK
pulse transitions to master-receive mode to wait for the reception of the read data from the slave
device (Figure 22-9). It is also possible to have multiple transactions during an I2C operation such
as transitioning from master-receive to master-transmit through a repeated start or Data Chaining
(Figure 22-10). Figure 22-11 shows the wave forms of SDA and SCL for a complete data transfer.

Write one
data byte to

the IDBR

Master-
transmit

only

• Data transmit mode of I2C master operation.

• Occurs when the IDBR Transmit Empty ISR bit is set and the Transfer Byte
bit is clear. If enabled, the IDBR Transmit Empty Interrupt is signalled to the
i960 core processor.

• i960 core processor writes 1 data byte to the IDBR, set the appropriate
START/STOP bit combination, and then set the Transfer Byte bit to send the
data. Eight bits are written on the serial bus followed by a STOP if requested.

Wait for
Acknowledge

from
slave-receiver

Master-
transmit

only

• As a master-transmitter, the I2C Bus Interface Unit generates the clock for
the acknowledge pulse. The I2C Bus Interface Unit is responsible for
releasing the SDA line to allow slave-receiver Ack transmission.

• See Section 22.3.3.

Read one
byte of I2C

Data from the
IDBR

Master-
receive

only

• Data receive mode of I2C master operation.

• Eight bits are read from the serial bus, collected in the shift register then
transferred to the IDBR after the Ack/Nack bit is read.

• The i960 core processor reads the IDBR when the IDBR Receive Full bit is
set and the Transfer Byte bit is clear. If enabled, a IDBR Receive Full
Interrupt is signalled to the i960 core processor.

• When the IDBR is read, if the Ack/Nack Status is clear (indicating Ack), the
i960 core processor writes the Ack/Nack Control bit and set the Transfer
Byte bit to initiate the next byte read.

• If the Ack/Nack Status bit is set (indicating Nack), Transfer Byte bit is clear,
STOP bit in the ICR is set, and Unit Busy bit in the ISR is set, then the last
data byte has been read into the IDBR and the I2C Bus Interface Unit is
sending the STOP.

• If the Ack/Nack Status bit is set (indicating Nack), Transfer Byte bit is clear,
but the STOP bit is clear, then the i960 core processor has two options: 1.
set the START bit, write a new target address to the IDBR, and set the
Transfer Byte bit which sends a repeated start condition, 2. set the Master
Abort bit and leave the Transfer Byte clear which sends a STOP only.

Transmit
Acknowledge

to
slave-transmitt

er

Master-
receive

only

• As a master-receiver, the I2C Bus Interface Unit generates the clock for the
acknowledge pulse. The I2C Bus Interface Unit is also responsible for
driving the SDA line during the Ack cycle.

• If the next data byte is to be the last transaction, the i960 core processor
sets the Ack/Nack Control bit for Nack generation.

• See Section 22.3.3.

Generate a
Repeated
START to
chain I2C

transactions

Master-
transmit

Master-
receive

• If data chaining is desired, a repeated START condition is used instead of a
STOP condition.

• This occurs after the last data byte of a transaction has been written to the bus.

• The i960 core processor writes the next target slave address and the R/W#
bit to the IDBR, set the START bit, and set the Transfer Byte bit.

• See Section 22.2.3.

Generate a
STOP

Master-
transmit

Master-
receive

• Generated after the i960 core processor writes the last data byte on the bus.

• i960 core processor generates a STOP condition by setting the STOP bit in
the ICR.

• See Section 22.2.3.

Table 22-5. Master Transactions (Sheet 2 of 2)

I2C Master
Action

Mode of
Operation Definition
22-14 i960® RM/RN I/O Processor Developer’s Manual

I2C Bus Interface Unit
Figure 22-9. Master-Receiver Read from Slave-Transmitter

Figure 22-10. Master-Receiver Read from Slave-Transmitter / Repeated Start / Master-Transmitter
Write to Slave-Receiver

Figure 22-11. A Complete Data Transfer

Master to Slave Slave to Master

START Slave Address
R/W#

1 ACK
Data
Byte ACK

Data
Byte STOP

N Bytes + ACK

ACK

Default
Slave-Receive

Mode

First Byte Read

START
Slave R/W#

1 ACK
Data
Byte ACK

Data
Byte

N Bytes + ACK

Read

ACK Sr
Slave R/W#

0 ACK
Data
Byte ACK

Data
Byte STOP

N Bytes + ACK

Write

ACKAddress Address

Master to Slave Slave to Master

Repeated
Start

Data Chaining

SDA

SCL

Start
Condition

Address R/W# ACK Data ACK Data

1-7 8 9 8 9891-7 1-7

ACK Stop
Condition

∼ ∼
∼ ∼

∼ ∼

∼ ∼
∼ ∼

∼ ∼

∼ ∼
∼ ∼

∼ ∼
i960® RM/RN I/O Processor Developer’s Manual 22-15

I2C Bus Interface Unit
22.3.6 Slave Operations

Table 22-6 describes the I2C Bus Interface Unit’s responsibilities as a slave device.

Table 22-6. Slave Transactions

I2C Slave
Action

Mode of
Operation Definition

Slave-receive

(default mode)
Slave-receive

only

• I2C Bus Interface Unit monitors all slave address transactions.

• The I2C Bus Interface Unit Enable bit must be set.

• I2C Bus Interface Unit monitors bus for START conditions. When a
START is detected, the interface reads the first 8 bits and compares
the most significant 7 bits with the 7 bit I2C Slave Address Register
and the General Call address (00H). If there is a match, the I2C Bus
Interface Unit sends an Ack.

• If the first 8 bits are all zero’s, this is a general call address. If the
General Call Disable bit is clear, both the General Call Address
Detected bit and the Slave Mode Operation bit in the ISR is set. See
Section 22.3.7.

• If the 8th bit of the first byte (R/W# bit) is low, the I2C Bus Interface
Unit stays in slave-receive mode and the Slave Mode Operation bit is
cleared. If the R/W# bit is high, the I2C Bus Interface Unit transitions
to slave-transmit mode and the Slave Mode Operation bit is set.

Setting the
Slave Address
Detected bit

Slave-receive

Slave-transmit

• Indicates the interface has detected an I2C operation that addresses
the i960 RM/RN I/O processor (this includes general call address).
The i960 core processor can distinguish an ISAR match from a
General Call by reading the General Call Address Detected bit.

• An interrupt is signalled (if enabled) after the matching slave address
is received and acknowledged.

Read one byte
of I2C Data

from the IDBR

Slave-receive
only

• Data receive mode of I2C slave operation.

• Eight bits are read from the serial bus into the shift register. When a
full byte has been received and the Ack/Nack bit has completed, the
byte is transferred from the shift register to the IDBR.

• Occurs when the IDBR Receive Full bit in the ISR is set and the
Transfer Byte bit is clear. If enabled, the IDBR Receive Full Interrupt
is signalled to the i960 core processor.

• i960 core processor reads 1 data byte from the IDBR. When the
IDBR is read, the i960 core processor writes the desired Ack/Nack
Control bit and set the Transfer Byte bit. This causes the I2C Bus
Interface Unit to stop inserting wait states and let the master
transmitter write the next piece of information.

Transmit
Acknowledge to
master-transmitt

er

Slave-receive
only

• As a slave-receiver, the I2C Bus Interface Unit is responsible for
pulling the SDA line low to generate the Ack pulse during the high
SCL period.

• The Ack/Nack Control bit controls the Ack data the I2C Bus Interface
Unit drives. See Section 22.3.3.

Write one byte
of I2C data to

the IDBR

Slave-transmit
only

• Data transmit mode of I2C slave operation.

• Occurs when the IDBR Transmit Empty bit is set and the Transfer
Byte bit is clear. If enabled, the IDBR Transmit Empty Interrupt is
signalled to the i960 core processor.

• i960 core processor writes a data byte to the IDBR and set the
Transfer Byte bit to initiate the transfer.

Wait for
Acknowledge

from
master-receiver

Slave-transmit
only

• As a slave-transmitter, the I2C Bus Interface Unit is responsible for
releasing the SDA line to allow the master-receiver to pull the line low
for the Ack.

• See Section 22.3.3.
22-16 i960® RM/RN I/O Processor Developer’s Manual

I2C Bus Interface Unit
Figure 22-12 through Figure 22-14 are examples of I2C transactions. These show the relationships
between master and slave devices.

Figure 22-12. Master-Transmitter Write to Slave-Receiver

Figure 22-13. Master-Receiver Read to Slave-Transmitter

Figure 22-14. Master-Receiver Read to Slave-Transmitter, Repeated START, Master-Transmitter
Write to Slave-Receiver

Master to Slave Slave to Master

START Slave Address
R/W#

0 ACK
Data
Byte ACK

Data
Byte STOP

N Bytes + ACKWrite

ACK

First Byte

Master to Slave Slave to Master

START Slave Address
R/W#

1 ACK
Data
Byte ACK

Data
Byte STOP

N Bytes + ACKRead

ACK#

Default
Slave-Receive

Mode

First Byte

START
Slave R/W#

1 ACK
Data
Byte ACK

Data
Byte

N Bytes + ACKRead

ACK SR
Slave R/W#

0 ACK
Data
Byte ACK

Data
Byte STOP

N Bytes + ACKWrite

ACKAddress Address

Master to Slave Slave to Master

Repeated
START

Data Chaining
i960® RM/RN I/O Processor Developer’s Manual 22-17

I2C Bus Interface Unit
22.3.7 General Call Address

The I2C unit supports both sending and receiving general call address transfers on the I2C bus.
When sending a general call message from the I2C unit, software must set the General Call Disable
bit in the ICR to keep the I2C unit from responding as a slave. Failure to set this bit causes the I2C
Bus to enter an indeterminate state.

A general call address is defined as a transaction with a slave address of 00H. When a device requires
the data from a general call address, it acknowledges the transaction and stays in slave-receiver mode.
Otherwise, the device can ignore the general call address. The second and following bytes of a general
call transaction are acknowledged by every device using it on the bus. Any device not using these bytes
must not Ack. The meaning of a general call address is defined in the second byte sent by the
master-transmitter. Figure 22-15 shows a general call address transaction. The least significant bit (B)
of the second byte defines the transaction. Table 22-7 shows the valid values and definitions when B=0.

When the i960 RM/RN I/O processor is acting as a slave, and the I2C unit receives a general call
address and the ICR General Call Disable bit is clear the I2C unit:

• Sets the ISR general call address detected bit

• Sets the ISR slave address detected bit

• Interrupts (when enabled) the i960 RM/RN I/O processor

When the I2C unit receives a general call address and the ICR General Call Disable bit is set, the
I2C unit ignores the general call address.

When directed to reset, the I2C Bus Interface Unit returns to its default reset condition with the
exception of the ISAR. The i960 RM/RN I/O processor is responsible for ensuring this occurs, not
the I2C Bus Interface Unit hardware.

When B=1, the sequence is used as a hardware general call by hardware masters only they cannot transmit a
slave address, only their own address. The I2C Bus Interface Unit does not support this mode of operation.

I2C 10-bit addressing and CBUS compatibility are not supported.

Figure 22-15. General Call Address

Table 22-7. General Call Address Second Byte Definitions

Least Significant Bit
of Second Byte (B)

Second
Byte Value Definition

0 06H 2-byte transaction where the second byte tells the slave to reset and
then store this value in the programmable part of their slave address.

0 04H 2-byte transaction where the second byte tells the slave to store this
value in the programmable part of their slave address. No reset.

0 00H Not allowed as a second byte.

Master to Slave Slave to Master

START 00000000 ACK
Data
Byte ACK

Data
Byte STOP

N Bytes + ACK

Least Significant Bit of Master Address

ACK

Second Byte

Second Byte 0 ACK

First Byte

Defines Transaction
22-18 i960® RM/RN I/O Processor Developer’s Manual

I2C Bus Interface Unit
22.4 Slave Mode Programming Examples

22.4.1 Initialize Unit

1. Write ICCR: Set clock count

2. Write ISAR: Set slave address

3. Write ICR: Enable all interrupts, set Unit Enable

22.4.2 Write 1 bytes as a slave

1. Wait for Slave Address Detected interrupt.
Read ISR: Slave Address Detected (set), Unit Busy (set), R/W# bit (0), Ack/Nack (Clear -
Ack)

2. Write IDBR: Load data byte to transfer

3. Write ICR: Set Transfer Byte bit

4. Wait for IDBR Transmit Empty interrupt.
Read ISR: IDBR Transmit Empty (set), Ack/Nack (set - indicates last byte write), R/W# bit (0)

5. Clear interrupt by clearing the IDBR Transmit Empty Interrupt bit.

6. Wait for interrupt.
Read ISR: Unit Busy (clear), Slave STOP Detected (set)

7. Clear interrupt by clearing Slave STOP Detected Interrupt bit.

22.4.3 Read 2 bytes as a Slave

1. Wait for Slave Address Detected interrupt.
Read ISR: Slave Address Detected (set), Unit busy (set), R/W# bit (0)

2. Read byte 1 on I2C bus
Write ICR: Set Transfer Byte bit to initiate the transfer

3. Wait for interrupt.
Read ISR: IDBR Receive Full (set), Ack/Nack (clear), R/W# bit (0)
Clear interrupt by clearing IDBR Receive Full bit.
Read IDBR: To get the data.

4. Read byte 2 on I2C bus
Write ICR: Set Transfer Byte bit to initiate the transfer

5. Wait for interrupt.
Read ISR: IDBR Receive Full (set), Ack/Nack (clear), R/W# bit (0)
Clear interrupt by clearing IDBR Receive Full bit.
Read IDBR: To get the data.
Write ICR: Set Transfer Byte bit (to release I2C bus allowing next transfer)

6. Wait for interrupt.
Read ISR: Unit busy (clear), Slave STOP Detected (set)
Clear interrupt by clearing Slave STOP Detected bit.
i960® RM/RN I/O Processor Developer’s Manual 22-19

I2C Bus Interface Unit
22.5 Master Programming Examples

22.5.1 Initialize Unit

1. Write ICCR: Set clock count

2. Write ISAR: Set slave address

3. Write ICR: Enable all interrupts (except Arb Loss), set SCL Enable, set Unit Enable

22.5.2 Write 1 byte as a master

1. Write IDBR: Target slave address and R/W# bit (0 for write)

2. Write ICR: Set START bit, Clear STOP bit, Set Transfer Byte bit to initiate the access

3. Wait for IDBR Transmit Empty interrupt. When interrupt arrives:
Read status register: IDBR Transmit Empty (set), Unit Busy (set), R/W# bit (clear)
Clear IDBR Transmit Empty Interrupt bit to clear the interrupt.

Note: The Arbitration Loss Detected bit may be set. Because the Arb Loss interrupt was disabled, if
arbitration was lost, an address retry would occur when the bus became free. Clear the Arbitration
Loss Detected bit if set.

4. Send byte with STOP
Write IDBR: With data byte to send
Write ICR: Clear START bit, Set STOP bit, Enable Arb Loss interrupt, Set Transfer Byte bit
to initiate the access

5. Wait for Buffer empty interrupt. When interrupt arrives (Note: Unit sends STOP):
Read status register: IDBR Transmit Empty (set), Unit busy (set - maybe), R/W# bit (clear)
Clear IDBR Transmit Empty Interrupt bit to clear the interrupt.
Clear ICR STOP bit (optional)

22.5.3 Read 1 byte as a master

1. Write IDBR: Target slave address and R/W# bit (1 for read)

2. Write ICR: Set START bit, Clear STOP bit, Disable Arb loss interrupt, Set Transfer Byte bit
to initiate the access

3. Wait for IDBR Transmit Empty interrupt. When interrupt arrives:
Read status register: IDBR Transmit Empty (set), Unit busy (set), R/W# bit (set)
Clear IDBR Transmit Empty bit to clear the interrupt.

4. Read byte with STOP
Write ICR: Clear START bit, Set STOP bit, Enable arb loss interrupt, Set Ack/Nack bit
(Nack), Set Transfer Byte bit to initiate the access

5. Wait for Buffer full interrupt. When interrupt arrives (Note: Unit sends STOP):
Read status register: IDBR Receive Full (set), Unit Busy (set - maybe), R/W# bit (Set),
Ack/Nack bit (Set)
Clear IDBR Receive Full bit to clear the interrupt.
Read IDBR data.
Clear ICR STOP bit (optional), Clear ICR Ack/Nack Control bit (optional)
22-20 i960® RM/RN I/O Processor Developer’s Manual

I2C Bus Interface Unit
22.5.4 Write 2 bytes and repeated start read 1 byte as a master

1. Write IDBR: Target slave address and R/W# bit (0 for write)

2. Write ICR: Set START bit, Clear STOP bit, Set Transfer Byte bit to initiate the access

3. Wait for IDBR Transmit Empty interrupt. When interrupt arrives:
Read status register: IDBR Transmit Empty (set), Unit busy (set), R/W# bit (clear)
Clear IDBR Transmit Empty bit to clear the interrupt.

4. Send byte 1
Write IDBR: With data byte to send
Write ICR: Clear START bit, Clear STOP bit, Enable Arb Loss interrupt, Set Transfer Byte bit
to initiate the access

5. Wait for Buffer empty interrupt.
Read status register: IDBR Transmit Empty (set), Unit busy (set), R/W# bit (clear)
Clear IDBR Transmit Empty bit to clear the interrupt.

6. Send byte 2
Write IDBR: With data byte to send
Write ICR: Clear START bit, Clear STOP bit, Set Transfer Byte bit to initiate the access

7. Wait for Buffer empty interrupt.
Read status register: IDBR Transmit Empty (set), Unit busy (set), R/W# bit (clear)
Clear IDBR Transmit Empty bit to clear the interrupt.

8. Send repeated start as a master
Write IDBR: Target slave address and R/W# bit (1 for read)
Write ICR: Set START bit, Clear STOP bit, Disable Arb Loss interrupt, Set Transfer Byte bit
the initiate the access

9. Wait for IDBR Transmit Empty interrupt. When interrupt comes.
Read status register: IDBR Transmit Empty (set), Unit busy (set), R/W# bit (set)
Clear IDBR Transmit Empty bit to clear the interrupt.

10. Read byte with STOP
Write ICR: Clear START bit, Set STOP bit, Enable arb loss interrupt, Set Ack/Nack bit
(Nack), Set Transfer Byte bit to initiate the access

11. Wait for Buffer full interrupt. When interrupt comes (Note: Unit sends STOP).
Read status register: IDBR Receive Full (set), Unit busy (set - maybe), R/W# bit (Set),
Ack/Nack bit (Set)
Clear IDBR Receive Full bit to clear the interrupt.
Read IDBR data.
Clear ICR STOP bit (optional), Clear ICR Ack/Nack Control bit (optional)
i960® RM/RN I/O Processor Developer’s Manual 22-21

I2C Bus Interface Unit
22.5.5 Read 2 bytes as a Master - Send STOP using the Abort

1. Write IDBR: Target slave address and R/W# bit (1 for read)

2. Write ICR: Set START bit, Clear STOP bit, Disable Arb loss interrupt, Set Transfer Byte bit
to initiate the access

3. Wait for IDBR Transmit Empty interrupt. When interrupt comes.
Read status register: IDBR Transmit Empty (set), Unit Busy (set), R/W# bit (set)
Clear IDBR Transmit Empty bit to clear the interrupt.

4. Read byte 1
Write ICR: Clear START bit, Clear STOP bit, Enable Arb Loss interrupt, Clear Ack/Nack bit
(Ack), Set Transfer Byte bit to initiate the access

5. Wait for Buffer full interrupt.
Read status register: IDBR Receive Full (set), Unit busy (set), R/W# bit (Set), Ack/Nack bit
(Clear)
Clear IDBR Receive Full bit to clear the interrupt.
Read IDBR data.

6. Read byte 2 with Nack (STOP is not set because STOP or Repeated START is decided on the
byte read)
Write ICR: Clear START bit, Clear STOP bit, Enable Arb Loss interrupt, Set Ack/Nack bit
(Nack), Set Transfer Byte bit to initiate the access

7. Wait for Buffer full interrupt.
Read status register: IDBR Receive Full (set), Unit Busy (set), R/W# bit (Set), Ack/Nack bit
(Set)
Clear IDBR Receive Full bit to clear the interrupt.
Read IDBR data.

There are now two options based on the byte read:

• Send a repeated START

• Send a STOP only

Here, a STOP abort is sent. NOTE: Had a NACK not been sent, the next transaction must involve
another data byte read.

8. Send STOP abort condition. (STOP with no data transfer.)
Write ICR: Set Master abort.
22-22 i960® RM/RN I/O Processor Developer’s Manual

I2C Bus Interface Unit

22.6 Glitch Suppression Logic

The I2C Bus Interface Unit has built-in glitch suppression logic. Glitches is suppressed according
to: 4 * internal bus clock period. For example, with a 66 MHz (15ns period) i960 RM/RN I/O
processor clock, glitches of 60ns or less is suppressed. At 40 MHz (25ns period) clock, glitches of
100ns or less is suppressed. This is within the 50ns glitch suppression specification.

22.7 Reset Conditions

The I2C unit is reset with I_RST#. Software is responsible for ensuring the I2C unit is not busy
(ISR[3]) before asserting reset. Software is also responsible for ensuring the I2C bus is idle when
the unit is enabled after reset. When directed to reset, the I2C unit returns to its default reset
condition with the exception of the ISAR. ISAR is not affected by a reset.

When the Unit Reset bit in the ICR is set, only the i960 RM/RN I/O processor I2C unit resets, the
associated I2C MMRs remain intact. When resetting the I2C unit with the ICR’s unit reset, use the
following guidelines:

1. In the ICR register, set the reset bit and clear the remainder of the register.

2. Clear the ISR register.

3. Clear reset in the ICR.

22.8 Register Definitions

The following registers are associated with the I2C Bus Interface Unit. They are all located within
the peripheral memory- mapped address space of the i960 RM/RN I/O processor. See Section 12.3,
“Programming the Logical Memory Attributes” on page 12-4Section11.10, “Register Definitions”
on page11-11 for the register addresses

Table 22-8. I2C Register Summary Table

Section, Register Name, Page

Section 22.8.1, “I2C Control Register- ICR” on page 22-24

Section 22.8.2, “I2C Status Register- ISR” on page 22-27

Section 22.8.3, “I2C Slave Address Register- ISAR” on page 22-29

Section 22.8.4, “I2C Data Buffer Register- IDBR” on page 22-30

Section 22.8.5, “I2C Clock Count Register- ICCR” on page 22-31

Section 22.8.6, “I2C Bus Monitor Register- IBMR” on page 22-32
i960® RM/RN I/O Processor Developer’s Manual 22-23

I2C Bus Interface Unit
22.8.1 I2C Control Register- ICR

The i960 RM/RN I/O processor uses the bits in the I2C Control Register (ICR) to control the I2C unit.

Table 22-9. I2C Control Register - ICR (Sheet 1 of 3)

Bit Default Description

31:14 0000H Reserved

14 02

Unit Reset:
1 = Reset the I2C unit only.

0 = No reset.

13 02

Slave Address Detected Interrupt Enable:
1 = Enables the I2C unit to interrupt the i960 RM/RN I/O processor upon detecting a

slave address match or a general call address.

0 = Disable interrupt.

12 02

Arbitration Loss Detected Interrupt Enable:
1 = Enables the I2C unit to interrupt the i960 RM/RN I/O processor upon losing

arbitration while in master mode.

0 = Disable interrupt.

11 02

Slave STOP Detected Interrupt Enable:
1 = Enables the I2C unit to interrupt the i960 RM/RN I/O processor when it detects a

STOP condition while in slave mode.

0 = Disable interrupt.

10 02

Bus Error Interrupt Enable:
1 = Enables the I2C unit to interrupt the i960 RM/RN I/O processor for the following

I2C bus errors:
As a master transmitter, no Ack was detected after a byte was sent.
As a slave receiver, the I2C unit generated a Nack pulse.

Note: Software is responsible for guaranteeing that misplaced START and STOP
conditions do not occur. See Section 22.6.

0 = Disable interrupt.

09 02

IDBR Receive Full Interrupt Enable:
1 = Enables the I2C unit to interrupt the i960 RM/RN I/O processor when the IDBR

has received a data byte from the I2C bus.

0 = Disable interrupt.

08 02

IDBR Transmit Empty Interrupt Enable:
1 = Enables the I2C unit to interrupt the i960 RM/RN I/O processor after transmitting

a byte onto the I2C bus.

0 = Disable interrupt.

P
C

I
IO

P
A

ttr
ib

ut
es

A
ttr

ib
ut

e
s

28 24 20 16 12 8 4 031

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

80960 Core Local Bus Address

1680H

Attribute Legend:

RV = Reserved

PR = Preserved

RS = Read/Set

RW = Read/Write

RC = Read Clear

RO = Read Only

NA = Not Accessible
22-24 i960® RM/RN I/O Processor Developer’s Manual

I2C Bus Interface Unit
07 02

General Call Disable:
1 = Disables I2C unit response to general call messages as a slave.

0 = Enables the I2C unit to respond to general call messages.

This bit must be set when sending a master mode general call message from the I2C
unit.

06 02

I2C Unit Enable:
1 = Enables the I2C unit (defaults to slave-receive mode).

0 = Disables the unit and does not master any transactions or respond to any slave
transactions.

Software must guarantee the I2C bus is idle before setting this bit.

05 02

SCL Enable:
1 = Enables the I2C clock output for master mode operation. The ICCR

(Section 22.8.5) must be programmed with a valid value before setting this bit.

0 = Disables the I2C unit from driving the SCL line.

04 02

Master Abort: used by the I2C unit when in master mode to generate a STOP without
transmitting another data byte.
1 = The I2C unit sends STOP without data transmission.

0 = The I2C unit transmits STOP using the STOP ICR bit only.

When in Master transmit mode, after transmitting a data byte, the ICR’s Transfer Byte
bit is clear and IDBR Transmit Empty bit is set. When no more data bytes need to be
sent, setting master abort bit sends the STOP. The Transfer Byte bit (03) must remain
clear.

In master-receive mode, when a Nack is sent without a STOP (STOP ICR bit was not
set) and the i960 RM/RN I/O processor does not send a repeated START, setting this
bit sends the STOP. Once again, the Transfer Byte bit (03) must remain clear.

03 02

Transfer Byte: used to send/receive a byte on the I2C bus.
1 = send/receive a byte.

0 = cleared by I2C unit when the byte is sent/received.

The i960 RM/RN I/O processor can monitor this bit to determine when the byte
transfer has completed. In master or slave mode, after each byte transfer including
Ack/Nack bit, the I2C unit holds the SCL line low (inserting wait states) until the
Transfer Byte bit is set.

02 02

Ack/Nack Control: defines the type of Ack pulse sent by the I2C unit when in master
receive mode.
1 = The I2C unit sends a negative Ack (Nack) after receiving a data byte.

0 = The I2C unit sends an Ack pulse after receiving a data byte.

The I2C unit automatically sends an Ack pulse when responding to its slave address
or when responding in slave-receive mode, independent of the Ack/Nack control bit
setting.

Table 22-9. I2C Control Register - ICR (Sheet 2 of 3)

Bit Default Description

P
C

I
IO

P
A

tt
rib

ut
es

A
ttr

ib
ut

es

28 24 20 16 12 8 4 031

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

80960 Core Local Bus Address

1680H

Attribute Legend:

RV = Reserved

PR = Preserved

RS = Read/Set

RW = Read/Write

RC = Read Clear

RO = Read Only

NA = Not Accessible
i960® RM/RN I/O Processor Developer’s Manual 22-25

I2C Bus Interface Unit
01 02

STOP: used to initiate a STOP condition after transferring the next data byte on the
I2C bus when in master mode. In master-receive mode, the Ack/Nack control bit must
be set in conjunction with this bit. See Section 22.2.3.3, “STOP Condition” on
page 22-6 for more details on the STOP state.
1 = Send a STOP

0 = Do not send a STOP

00 02

START: used to initiate a START condition to the I2C unit when in master mode. See
Section 22.2.3.1, “START Condition” on page 22-6 for more details on the START
state.
1 = Send a START

0 = Do not send a START

Table 22-9. I2C Control Register - ICR (Sheet 3 of 3)

Bit Default Description

P
C

I
IO

P
A

tt
rib

ut
es

A
ttr

ib
ut

es

28 24 20 16 12 8 4 031

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

80960 Core Local Bus Address

1680H

Attribute Legend:

RV = Reserved

PR = Preserved

RS = Read/Set

RW = Read/Write

RC = Read Clear

RO = Read Only

NA = Not Accessible
22-26 i960® RM/RN I/O Processor Developer’s Manual

I2C Bus Interface Unit

e I
22.8.2 I2C Status Register- ISR

I2C interrupts are signalled through XINT7# and the XINT7 Interrupt Status Register (X7ISR),
which shows the pending XINT7 interrupts (Chapter 22, “I2C Bus Interface Unit”). XINT7# is set
by the I2C Interrupt Status Register (ISR). Software uses the ISR bits to check the status of th2C
unit and bus. ISR bits (bits 9-5) are updated after the Ack/Nack bit has completed on the I2C bus.

The ISR is also used to clear interrupts signalled from the I2C Bus Interface Unit. These are:

• IDBR Receive Full

• IDBR Transmit Empty

• Slave Address Detected

• Bus Error Detected

• STOP Condition Detect

• Arbitration Lost

Table 22-10. I2C Status Register - ISR (Sheet 1 of 2)

Bit Default Description

31:11 000000H Reserved

10 02

Bus Error Detected:
1 = The I2C unit sets this bit when it detects one of the following error conditions:

As a master transmitter, no Ack was detected on the interface after a byte was sent.

As a slave receiver, the I2C unit generates a Nack pulse.

Note: When an error occurs, I2C bus transactions continue. Software must guarantee
that misplaced START and STOP conditions do not occur. See Section 22.3.4,
“Arbitration” on page 22-11.

0 = No error detected.

09 02

Slave Address Detected:
1 = I2C unit detected a 7-bit address that matches the general call address or ISAR.

An interrupt is signalled when enabled in the ICR.

0 = No slave address detected.

08 02

General Call Address Detected:
1 = I2C unit received a general call address.

0 = No general call address received.

P
C

I
IO

P
A

ttr
ib

u
te

s
A

ttr
ib

ut
es

28 24 20 16 12 8 4 031

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rc

na

rc

na

rc

na

rc

na

rc

na

rc

na

rc

na

ro

na

ro

na

ro

na

ro

na

80960 Core Local Bus Address

1684H

Attribute Legend:

RV = Reserved

PR = Preserved

RS = Read/Set

RW = Read/Write

RC = Read Clear

RO = Read Only

NA = Not Accessible
i960® RM/RN I/O Processor Developer’s Manual 22-27

I2C Bus Interface Unit
07 02

IDBR Receive Full:
1 = The IDBR register received a new data byte from the I2C bus. An interrupt is

signalled when enabled in the ICR.

0 = The IDBR has not received a new data byte or the I2C unit is idle.

06 02

IDBR Transmit Empty:
1 = The I2C unit has finished transmitting a data byte on the I2C bus. An interrupt is

signalled when enabled in the ICR.

0 = The data byte is still being transmitted.

05 02

Arbitration Loss Detected: used during multi-master operation.
1 = Set when the I2C unit loses arbitration.

0 = Cleared when arbitration is won or never took place.

04 02

Slave STOP Detected:
1 = Set when the I2C unit detects a STOP while in slave-receive or slave-transmit

mode.

0 = No STOP detected.

03 02

I2C Bus Busy:
1 = Set when the I2C bus is busy but the i960 RM/RN I/O processor’s I2C unit is not

involved in the transaction.

0 = I2C bus is idle or the I2C unit is using the bus (i.e., unit busy).

02 02

Unit Busy:
1 = Set when the i960 RM/RN I/O processor’s I2C unit is busy. This is defined as the

time between the first START and STOP.

0 = I2C unit not busy.

01 02

Ack/Nack Status:
1 = The I2C unit received or sent a Nack.

0 = The I2C unit received or sent an Ack on the bus.

This bit is used in slave transmit mode to determine when the byte transferred is the
last one. This bit is updated after each byte and Ack/Nack information is received.

00 02

Read/Write Mode:
1 = The I2C unit is in master-receive or slave-transmit mode.

0 = The I2C unit is in master-transmit or slave-receive mode.

This is the R/W# bit of the slave address. It is automatically cleared by hardware after
a stop state.

Table 22-10. I2C Status Register - ISR (Sheet 2 of 2)

Bit Default Description

P
C

I
IO

P
A

ttr
ib

ut
es

A
tt

rib
ut

es

28 24 20 16 12 8 4 031

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rc

na

rc

na

rc

na

rc

na

rc

na

rc

na

rc

na

ro

na

ro

na

ro

na

ro

na

80960 Core Local Bus Address

1684H

Attribute Legend:

RV = Reserved

PR = Preserved

RS = Read/Set

RW = Read/Write

RC = Read Clear

RO = Read Only

NA = Not Accessible
22-28 i960® RM/RN I/O Processor Developer’s Manual

I2C Bus Interface Unit

by the
o

 I/O
22.8.3 I2C Slave Address Register- ISAR

The I2C Slave Address Register (Table 22-11) defines the I2C unit’s 7-bit slave address to which
the i960 RM/RN I/O processor responds when in slave-receive mode. This register is written
i960 RM/RN I/O processor before enabling I2C operations. The register is fully programmable (n
address is assigned to the I2C unit) so it can be set to a value other than those of hard-wired I2C
slave peripherals that might exist in the system. The ISAR is not affected by the i960 RM/RN
processor being reset. The ISAR register default value is 00000002.

Table 22-11. I2C Slave Address Register - ISAR

Bit Default Description

31:07 000000H Reserved

06:00 00H I2C Slave Address: The 7-bit address to which the I2C unit responds when in
slave-receive mode.

P
C

I
IO

P
A

ttr
ib

ut
es

A
ttr

ib
ut

es

28 24 20 16 12 8 4 031

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

80960 Core Local Bus Address

1688H

Attribute Legend:

RV = Reserved

PR = Preserved

RS = Read/Set

RW = Read/Write

RC = Read Clear

RO = Read Only

NA = Not Accessible
i960® RM/RN I/O Processor Developer’s Manual 22-29

I2C Bus Interface Unit

0
yte
22.8.4 I2C Data Buffer Register- IDBR

The I2C Data Buffer Register is used by the i960 RM/RN I/O processor to transmit and receive data
from the I2C bus. The accesses the IDBR by the i960 RM/RN I/O processor on one side and by the
I2C shift register on the other. Data coming into the I2C Bus Interface Unit is received into the IDBR
after a full byte has been received and acknowledged. Data going out of the I2C Bus Interface Unit is
written to the IDBR by the i960 RM/RN I/O processor core and sent to the serial bus.

When the I2C Bus Interface Unit is in transmit mode (master or slave), the i960 RM/RN I/O
processor writes data to the IDBR over the internal bus. This occurs when a master transaction is
initiated or when the IDBR Transmit Empty Interrupt is signalled. Data is moved from the IDBR to
the shift register when the Transfer Byte bit is set. The IDBR Transmit Empty Interrupt is signalled
(if enabled) when a byte has been transferred on the I2C bus and the acknowledge cycle is
complete. If the IDBR is not written by the i960 RM/RN I/O processor (and a STOP condition was
not in place) before the I2C bus is ready to transfer the next byte packet, the I2C Bus Interface Unit
inserts wait states until the i960 core processor writes the IDBR and sets the Transfer Byte bit.

When the I2C Bus Interface Unit is in receive mode (master or slave), the processor reads IDBR
data over the internal bus. This occurs when the IDBR Receive Full Interrupt is signalled. The data
is moved from the shift register to the IDBR when the Ack cycle is complete. The I2C Bus
Interface Unit inserts wait states until the IDBR has been read. Refer to Section 22.3.3, “I2C
Acknowledge” on page 22-10 for acknowledge pulse information in receiver mode. After the i96
RM/RN I/O processor reads the IDBR, the Ack/Nack Control bit is written and the Transfer B
bit is written, allowing the next byte transfer to proceed on the I2C Bus. The IDBR register is 00H
after reset.

Table 22-12. I2C Data Buffer Register - IDBR

Bit Default Description

31:08 000000H Reserved

07:00 00H I2C Data Buffer: Buffer for I2C bus send/receive data.

P
C

I
IO

P
A

ttr
ib

u
te

s
A

ttr
ib

ut
es

28 24 20 16 12 8 4 031

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

80960 Core Local Bus Address

168CH

Attribute Legend:

RV = Reserved

PR = Preserved

RS = Read/Set

RW = Read/Write

RC = Read Clear

RO = Read Only

NA = Not Accessible
22-30 i960® RM/RN I/O Processor Developer’s Manual

I2C Bus Interface Unit
22.8.5 I2C Clock Count Register- ICCR

The I2C Clock Count Register (ICCR) defines the multiplier used to generate the I2C SCL clock.
This register is used with an internal 9-bit counter. When the SCL enable bit in the ICR is set, this
counter decrements from the programmed ICCR value to zero, then resets to the programmed
ICCR value and decrements again. This continues until the SCL enable bit in the ICR is cleared.
Each time the counter reaches zero, the SCL line transitions from low to high or vice versa,
depending on the current state. This creates the I2C clock output during I2C master operations.

Changing this register while the SCL enable bit is set results in undefined behavior.

Table 22-13. I2C Clock Count Register - ICCR

Bit Default Description

31:10 000000H Reserved

09:00 0 I2C Clock Count: 9 bit count value used to generate an I2C clock from the i960
RM/RN I/O processor internal bus clock.

P
C

I
IO

P
A

ttr
ib

u
te

s
A

ttr
ib

ut
es

28 24 20 16 12 8 4 031

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

80960 Core Local Bus Address

1690H

Attribute Legend:

RV = Reserved

PR = Preserved

RS = Read/Set

RW = Read/Write

RC = Read Clear

RO = Read Only

NA = Not Accessible
i960® RM/RN I/O Processor Developer’s Manual 22-31

I2C Bus Interface Unit
22.8.6 I2C Bus Monitor Register- IBMR

The I2C Bus Monitor Register (IBMR) tracks the status of the SCL and SDA pins. The values of
these pins are recorded in this read-only register so that software may determine if the I2C bus is
hung and the I2C unit must be reset.

Table 22-14. I2C Bus Monitor Register - IBMR

Bit Default Description

31:02 0 Reserved

01 1 SCL Status: This bit continuously reflects the value of the SCL pin.

00 1 SDA Status: This bit continuously reflects the value of the SDA pin.

P
C

I
IO

P
A

ttr
ib

u
te

s
A

ttr
ib

ut
es

28 24 20 16 12 8 4 031

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

ro

na

ro

na

80960 Core Local Bus Address

1694H

Attribute Legend:

RV = Reserved

PR = Preserved

RS = Read/Set

RW = Read/Write

RC = Read Clear

RO = Read Only

NA = Not Accessible
22-32 i960® RM/RN I/O Processor Developer’s Manual

g
nts a
ors
 power

. (The
 enters
ET#

E#
Test Features 23

This chapter describes the i960® RM/RN I/O processor test features, including ONCE (On-Circuit
Emulation) and boundary-scan (JTAG). Together these two features create a powerful environment
for design debug and fault diagnosis.

23.1 On-Circuit Emulation (ONCE)

On-circuit emulation aids board-level testing. This feature allows a mounted i960 RM/RN I/O
processor to electrically “remove” itself from a circuit board. This allows for system-level testin
where a remote tester exercises the processor system. In ONCE mode, the processor prese
high impedance on every pin, except for the JTAG test data Output (TDO). All pullup transist
present on input pins are also disabled and internal clocks stop. In this state the processor’s
demands on the circuit board are nearly eliminated.

Note: Do not use ONCE mode with boundary-scan (JTAG). See Section 23.1.2, “ONCE Mode and
Boundary-Scan (JTAG) are Incompatible” on page 23-2.

23.1.1 Entering/Exiting ONCE Mode

The ONCE# pin, in concert with the RESET# pin, invokes ONCE mode.

To invoke ONCE mode, assert the ONCE# pin (low) while the processor is in the reset state
processor recognizes the ONCE# pin signal only while RESET# is asserted.) The processor
ONCE mode immediately. The rising edge of RESET# latches the ONCE# pin state until RES
goes true again.

Enter ONCE mode by asserting the following sequence with an external tester:

1. Drive the ONCE# pin low (overcoming the internal pull-up resistor).

2. Initiate a normal reset cycle.

3. After the RESET# pin goes high again, the ONCE# pin can be deasserted.

Exit ONCE mode, by performing a normal reset with the RESET# pin while holding the ONC
pin high. A power off-on cycle is not necessary to exit ONCE mode.

See the 80960RM I/O Processor Data Sheet and the 80960RN I/O Processor Data Sheet for
specific timing of the ONCE# pin and the characteristics of the on-circuit emulation mode.
i960® RM/RN I/O Processor Developer’s Manual 23-1

Test Features

ccessed

toring

tions
ters
23.1.2 ONCE Mode and Boundary-Scan (JTAG) are Incompatible

Permanent damage can occur when an in-circuit emulator is used concurrently with boundary-scan
(JTAG). Do not use any system that relies on ONCE mode when using boundary-scan. Signal
contentions and resultant damage may occur if an external system, such as an emulator
development system, invokes ONCE mode and manipulates the i960 RM/RN I/O processor signals
while JTAG is active.

Since the i960 RM/RN I/O processor complies fully with IEEE Std. 1149.1, JTAG boundary-scan
instructions always override ONCE mode. While ONCE mode intends to disable all processor
outputs so an external emulator can drive them, JTAG boundary-scan can enable those outputs,
causing contention with the external emulator.

To avoid damage, and as a general design rule, force TRST# low to disable boundary-scan
whenever ONCE mode is active.

23.1.2.1 DEN# Alternatives

To use an ICE with your 80960RM/RN design, alternatives to DEN# are:

• Ground the OE# pin of the transceiver

• Re-create a DEN# signal with the circuit shown below

23.2 Boundary-Scan (JTAG)

The i960 RM/RN I/O processor provides test features compliant to IEEE standard test access port
and boundary-scan architecture (IEEE Std. 1149.1). JTAG ensures that components function
correctly, connections between components are correct, and components interact correctly on the
printed circuit board.

To date, the i960 Hx, Jx and Rx processors implement IEEE 1149.1 standard test access port and
boundary-scan architecture, and i960 Kx, Sx and Cx processors do not. For information about
using JTAG in a design, refer to IEEE Std. 1149.1 (available from the Institute of Electrical and
Electronics Engineers Inc., 345 E. 47th St., New York, NY 10017).

Note: Do not use ONCE mode with boundary-scan (JTAG). See Section 23.1.2, “ONCE Mode and
Boundary-Scan (JTAG) are Incompatible” on page 23-2.

23.2.1 Boundary-Scan Architecture

Boundary-scan test logic consists of a boundary-scan register and support logic. These are a
through a Test Access Port (TAP). The TAP provides a simple serial interface that allows all
processor signal pins to be driven and/or sampled, thereby providing direct control and moni
of processor pins at the system level.

This mode of operation is valuable for design debugging and fault diagnosis since it permits
examination of connections not normally accessible to the test system. The following subsec
describe the boundary-scan test logic elements: TAP pins, instruction register, test data regis
and TAP controller. Figure 23-1 illustrates how these pieces fit together to form the JTAG unit.
23-2 i960® RM/RN I/O Processor Developer’s Manual

Test Features

s

.
23.2.2 TAP Pins

The i960 RM/RN I/O processor’s TAP pins form a serial port composed of four input connection
(TMS, TCK, TRST# and TDI) and one output connection (TDO). These pins are described in
Table 23-1. The TAP pins provide access to the instruction register and the test data registers

Figure 23-1. Test Access Port Block Diagram

 Boundary-Scan Register

Device ID Register

RUNBIST Register

TDO

TDI

 Bypass Register

Control and Clock Signals

 Instruction
Register

. . .

 Processor System Pins TAP Pins

TRST#

TMS

TCK

TAP
 Controller

Table 23-1. TAP Controller Pin Definitions

Pin Type Definition

TCK Input Test Clock provides the clock for the JTAG logic. The JTAG test logic retains its state
indefinitely when TCK is stopped at “0” or “1”.

TMS Input Test Mode is decoded by the TAP controller state machine to control test operations. TMS is
sampled by the test logic on the rising edge of TCK. TMS is pulled high internally when not driven.

 TDI Input

Test Data Input is the serial port where test instructions and data is received by the test
logic. Signals presented at TDI are sampled into the test logic on the rising edge of TCK.
TDI is pulled high internally when not driven. Data shifted into TDI is not inverted on its way
to the TDO input.

TDO Output
Test Data Output is the serial output for test instructions and data from the JTAG test logic.
Changes in the state of TDO occur only on the falling edge of TCK. The TDO output is
active only during data shifting (SHDR or SHIR); it is inactive (high-Z) at all other times.

TRST# Input

Test Reset provides for an asynchronous initialization of the TAP controller. Asserting a logic
“0” on this pin puts the TAP controller state machine and all other test logic on the processor
in the Test-Logic-Reset (initial) state. TRST# is pulled high internally when not driven.

Note: The system must ensure that TRST# is asserted after power-up in order to put the
TAP controller in a known state. Failure to do so may cause improper processor operation.
i960® RM/RN I/O Processor Developer’s Manual 23-3

Test Features

e
23.2.3 Instruction Register

The Instruction Register (IR) holds instruction codes. These codes are shifted in through the Test
Data Input (TDI) pin. The instruction codes are used to select the specific test operation to be
performed and the test data register to be accessed.

The instruction register is a parallel-loadable, master/slave-configured 4-bit wide, serial-shift
register with latched outputs. Data is shifted into and out of the IR serially through the TDI pin
clocked by the rising edge of TCK when the TAP controller is in the Shift_IR state. The shifted-in
instruction becomes active upon latching from the master stage to the slave stage in the Update_IR
state. At that time the IR outputs along with the TAP finite state machine outputs are decoded to
select and control the test data register selected by that instruction. Upon latching, all actions
caused by any previous instructions terminates.

The instruction determines the test to be performed, the test data register to be accessed, or both
(Table 23-2). The IR is four bits wide. When the IR is selected in the Shift_IR state, the most
significant bit is connected to TDI, and the least significant bit is connected to TDO. The value
presented on the TDI pin is shifted into the IR on each rising edge of TCK, as long as the TAP
controller remains in the Shift_IR state. When the TAP controller changes to the Capture_IR state,
fixed parallel data (00012) is captured. During Shift_IR, when a new instruction is shifted in
through TDI, the value 00012 is always shifted out through TDO, least significant bit first. This
helps identify instructions in a long chain of serial data from several devices.

Upon activation of the TRST# reset pin, the latched instruction asynchronously changes to the
idcode instruction. When the TAP controller moves into the Test_Logic_Reset state other than by
reset activation, the opcode changes as TDI is shifts, and becomes active on the falling edge of
TCK. See Figure 23-4 for an example of loading the instruction register.

23.2.3.1 Boundary-Scan Instruction Set

The i960 RM/RN I/O processor supports three mandatory boundary-scan instructions (bypass,
sample/preload and extest) plus four additional public instructions (idcode, clamp, highz and
runbist). Table 23-2 lists the i960 RM/RN I/O processor’s boundary-scan instruction codes. Thos
codes listed as “not used” or “private” should not be used.

Table 23-2. Boundary-Scan Instruction Set

Instruction Code Instruction Name Instruction Code Instruction Name

00002 extest 10002 highz

00012 sample/preload 10012 not used

00102 idcode 10102 not used

00112 not used 10112 private

01002 clamp 11002 private

01012 not used 11012 not used

01102 not used 11102 not used

01112 runbist 11112 bypass
23-4 i960® RM/RN I/O Processor Developer’s Manual

Test Features
Table 23-3. IEEE Instructions

Instruction /
Requisite Opcode Description

extest

IEEE 1149.1

Required

00002

extest initiates testing of external circuitry, typically board-level interconnects and
off chip circuitry. extest connects the boundary-scan register between TDI and
TDO in the Shift_DR state only. When extest is selected, all output signal pin
values are driven by values shifted into the boundary-scan register and may change
only on the falling edge of TCK in the Update_DR state. Also, when extest is
selected, all system input pin states must be loaded into the boundary-scan register
on the rising-edge of TCK in the Capture_DR state. Values shifted into input latches
in the boundary-scan register are never used by the processor’s internal logic.

sample/
preload

IEEE 1149.1

Required

00012

sample/preload performs two functions:

• When the TAP controller is in the Capture-DR state, the sample instruction
occurs on the rising edge of TCK and provides a snapshot of the component’s
normal operation without interfering with that normal operation. The instruction
causes boundary-scan register cells associated with outputs to sample the
value being driven by or to the processor.

• When the TAP controller is in the Update-DR state, the preload instruction
occurs on the falling edge of TCK. This instruction causes the transfer of data
held in the boundary-scan cells to the slave register cells. Typically the slave
latched data is applied to the system outputs via the extest instruction.

idcode

IEEE 1149.1

Optional

00102

idcode is used in conjunction with the device identification register. It connects the
device identification register between TDI and TDO in the Shift_DR state. When
selected, idcode parallel-loads the hard-wired identification code (32 bits) into the
device identification register on the rising edge of TCK in the Capture_DR state.

NOTE: The device identification register is not altered by data being shifted in on
TDI.

runbist

i960 RM/RN
I/O processor

Optional

01112

runbist selects the one-bit RUNBIST register, loads a value of 1 into it and
connects it to TDO. It also initiates the processor’s built-in self test (BIST) feature
which is able to detect approximately 82% of all the possible stuck-at faults on the
device. The processor AC/DC specifications for VCC and CLKIN must be met and
RESET# must be de-asserted prior to executing runbist.

After loading runbist instruction code into the instruction register, the TAP
controller must be placed in the Run-Test/Idle state. BIST begins on the first rising
edge of TCK after the Run-Test/Idle state is entered. The TAP controller must
remain in the Run-Test/Idle state until BIST is completed. runbist requires
approximately 414,000 core cycles to complete BIST and report the result to the
RUNBIST register. The results are stored in bit 0 of the RUNBIST register. After the
report completes, the value in the RUNBIST register is shifted out on TDO during
the Shift-DR state. A value of 0 being shifted out on TDO indicates BIST completed
successfully. A value of 1 indicates a failure occurred. After BIST completes, the
processor must be cycled through the reset state to resume normal operation.

bypass

IEEE 1149.1

Required

11112

bypass instruction selects the one-bit bypass register between TDI and TDO pins
while in SHIFT_DR state, effectively bypassing the processor’s test logic. 02 is
captured in the CAPTURE_DR state. This is the only instruction that accesses the
bypass register. While this instruction is in effect, all other test data registers have
no effect on system operation. Test data registers with both test and system
functionality perform their system functions when this instruction is selected.

highz 10002

Executing highz generates a signal that is read on the rising-edge of RESET#.
When this signal is found asserted, the device is put into the ONCE mode (all output
pins are floated). Also, when this instruction is active, the Bypass register is
connected between TDI and TDO. This register can be accessed via the JTAG
Test-Access Port throughout the device operation. Access to the Bypass register
can also be obtained with the bypass instruction. highz provides an alternate
method of entering ONCE mode.

clamp 01002

clamp instruction allows the state of the signals driven from the i960 Jx processor
pins to be determined from the boundary-scan register while the BYPASS register
is selected as the serial path between TDI and TDO. Signals driven from the
component pins does not change while the clamp instruction is selected.
i960® RM/RN I/O Processor Developer’s Manual 23-5

Test Features

it.
r
from
. See

on

I and

or’s
 reset

e

able
n a

nd

ata
utput
23.2.4 TAP Test Data Registers

The i960 RM/RN I/O processor contains four test data registers (device identification, bypass,
RUNBIST and boundary-scan). Each test data register selected by the TAP controller is connected
serially between TDI and TDO. TDI is connected to the test data register’s most significant b
TDO is connected to the least significant bit. Data is shifted one bit position within the registe
towards TDO on each rising edge of TCK. While any register is selected, data is transferred
TDI to TDO without inversion. The following sections describe each of the test data registers
Figure 23-5 for an example of loading the data register.

23.2.4.1 Device Identification Register

The device identification register is a 32-bit register containing the manufacturer’s identificati
code, part number code, version code and other information in the format shown in the 80960RM
I/O Processor Data Sheet and the 80960RN I/O Processor Data Sheet. The identification register is
selected only by the idcode instruction. When the TAP controller’s Test_Logic_Reset state is
entered, idcode is asynchronously loaded into the instruction register. The device identification
register loads the fixed parallel input value in the Capture_DR state.

23.2.4.2 Bypass Register

The required bypass register, a one-bit shift register, provides the shortest path between TD
TDO when a bypass instruction is in effect. This allows rapid movement of test data to and from
other components on the board. This path can be selected when no test operation is being
performed on the processor.

23.2.4.3 RUNBIST Register

The RUNBIST register, a one-bit register, contains the result of the execution of the process
BIST routine. After the built-in self-test completes, the processor must be cycled through the
state to resume normal operation. See Section 11, “Initialization and System Requirements” for
details of the built-in self test algorithm. The processor runs the BIST routine when the TAP
controller enters the Test_Logic_Reset state while the runbist instruction is selected.

23.2.4.4 Boundary-Scan Register

The boundary-scan register contains a cell for each pin as well as control cells for I/O and th
HIGHZ pin.

Table 23-4 shows the bit order of the i960 RM/RN I/O processor boundary-scan register. All t
cells that contain “Control” select the direction of bidirectional pins or HIGHZ output pins. Whe
“0” is loaded into the control cell, the associated pin(s) are HIGHZ or selected as input.

The boundary-scan register is a required set of serial-shiftable register cells, configured in
master/slave stages and connected between each of the i960 RM/RN I/O processor’s pins a
on-chip system logic. The VCC, VSS and JTAG pins are NOT in the boundary-scan chain.

The boundary-scan register cells are dedicated logic and do not have any system function. D
may be loaded into the boundary-scan register master cells from the device input pins and o
pin-drivers in parallel by the mandatory sample/preload and extest instructions. Parallel loading
takes place on the rising edge of TCK in the Capture_DR state.
23-6 i960® RM/RN I/O Processor Developer’s Manual

Test Features
Data may be scanned into the boundary-scan register serially via the TDI serial input pin, clocked
by the rising edge of TCK in the Shift_DR state. When the required data has been loaded into the
master-cell stages, it can be driven into the system logic at input pins or onto the output pins on the
falling edge of TCK in the Update_DR state. Data may also be shifted out of the boundary-scan
register by means of the TDO serial output pin at the falling edge of TCK.

Table 23-4. i960® RM/RN I/O Processor Boundary Scan Register Bit Order (Sheet 1 of 9)

"0 (CBSC_1, dq(44), bidir, X, 85, 1, Z), "&

"1 (CBSC_1, dq(45), bidir, X, 89, 1, Z), "&

"2 (CBSC_1, dq(43), bidir, X, 85, 1, Z), "&

"3 (CBSC_1, dq(13), bidir, X, 78, 1, Z), "&

"4 (CBSC_1, dq(46), bidir, X, 89, 1, Z), "&

"5 (CBSC_1, dq(15), bidir, X, 78, 1, Z), "&

"6 (CBSC_1, dq(14), bidir, X, 78, 1, Z), "&

"7 (CBSC_1, dq(12), bidir, X, 78, 1, Z), "&

"8 (CBSC_1, dq(47), bidir, X, 89, 1, Z "&

"9 (CBSC_1, scb(5), bidir, X, 83, 1, Z), "&

"10 (CBSC_1, scb(1), bidir, X, 80, 1, Z), "&

"11 (CBSC_1, scb(0), bidir, X, 79, 1, Z), "&

"12 (CBSC_1, scb(4), bidir, X, 83, 1, Z), "&

"13 (BC_1, scasz, output3, X, 90, 1, Z), "&

"14 (CBSC_1, sdqm(0), bidir, X, 84, 1, Z), "&

"15 (CBSC_1, sdqm(4), bidir, X, 84, 1, Z), "&

"16 (BC_1, scez(1), output3, X, 90, 1, Z), "&

"17 (BC_1, swez, output3, X, 90, 1, Z), "&

"18 (CBSC_1, sdqm(5), bidir, X, 84, 1, Z), "&

"19 (BC_1, scez(0), output3, X, 90, 1, Z), "&

"20 (BC_1, sa(1), output3, X, 90, 1, Z), "&

"21 (CBSC_1, sdqm(1), bidir, X, 84, 1, Z), "&

"22 (BC_1, sa(2), output3, X, 90, 1, Z), "&

"23 (BC_1, srasz, output3, X, 90, 1, Z), "&

"24 (BC_1, sa(0), output3, X, 90, 1, Z), "&

"25 (BC_1, sa(4), output3, X, 90, 1, Z), "&

"26 (BC_1, sa(6), output3, X, 90, 1, Z), "&

"27 (BC_1, sa(8), output3, X, 90, 1, Z), "&

"28 (BC_1, sa(5), output3, X, 90, 1, Z), "&

"29 (BC_1, scke(0), output3, X, 90, 1, Z), "&

"30 (BC_1, sa(3), output3, X, 90, 1, Z), "&

"31 (BC_1, sa(10), output3, X, 90, 1, Z), "&

"32 (BC_1, sba(1), output3, X, 90, 1, Z), "&

"33 (BC_1, sa(9), output3, X, 90, 1, Z), "&

"34 (BC_1, scke(1), output3, X, 90, 1, Z), "&

"35 (BC_1, sa(7), output3, X, 90, 1, Z), "&

"36 (CBSC_1, sdqm(6), bidir, X, 84, 1, Z), "&

"37 (BC_1, sba(0), output3, X, 90, 1, Z), "&

"38 (CBSC_1, scb(2), bidir, X, 81, 1, Z), "&

"39 (BC_1, sa(11), output3, X, 90, 1, Z), "&

"40 (CBSC_1, sdqm(2), bidir, X, 84, 1, Z), &

"41 (CBSC_1, sdqm(3), bidir, X, 84, 1, Z), "&

"42 (CBSC_1, scb(3), bidir, X, 82, 1, Z), "&
i960® RM/RN I/O Processor Developer’s Manual 23-7

Test Features
"43 (CBSC_1, sdqm(7), bidir, X, 84, 1, Z), "&

"44 (CBSC_1, scb(7), bidir, X, 87, 1, Z), "&

"45 (CBSC_1, scb(6), bidir, X, 86, 1, Z), "&

"46 (CBSC_1, dq(48), bidir, X, 89, 1, Z), "&

"47 (CBSC_1, dq(17), bidir, X, 78, 1, Z), "&

"48 (CBSC_1, dq(16), bidir, X, 78, 1, Z), "&

"49 (CBSC_1, dq(18), bidir, X, 78, 1, Z), "&

"50 (CBSC_1, dq(49), bidir, X, 89, 1, Z), "&

"51 (CBSC_1, dq(50), bidir, X, 89, 1, Z), "&

"52 (CBSC_1, dq(19), bidir, X, 78, 1, Z), "&

"53 (CBSC_1, dq(52), bidir, X, 89, 1, Z), "&

"54 (CBSC_1, dq(51), bidir, X, 89, 1, Z), "&

"55 (CBSC_1, dq(20), bidir, X, 78, 1, Z), "&

"56 (CBSC_1, dq(53), bidir, X, 88, 1, Z), "&

"57 (CBSC_1, dq(21), bidir, X, 78, 1, Z), "&

"58 (CBSC_1, dq(23), bidir, X, 78, 1, Z), "&

"59 (CBSC_1, dq(22), bidir, X, 78, 1, Z), "&

"60 (CBSC_1, dq(24), bidir, X, 78, 1, Z), "&

"61 (CBSC_1, dq(54), bidir, X, 88, 1, Z), "&

"62 (CBSC_1, dq(56), bidir, X, 88, 1, Z), "&

"63 (CBSC_1, dq(57), bidir, X, 85, 1, Z), "&

"64 (CBSC_1, dq(55), bidir, X, 88, 1, Z), "&

"65 (CBSC_1, dq(58), bidir, X, 85, 1, Z), "&

"66 (CBSC_1, dq(25), bidir, X, 78, 1, Z), "&

"67 (CBSC_1, dq(27), bidir, X, 78, 1, Z), "&

"68 (CBSC_1, dq(26), bidir, X, 78, 1, Z), "&

"6 (CBSC_1, dq(60), bidir, X, 85, 1, Z), "&

"70 (CBSC_1, dq(59), bidir, X, 85, 1, Z), "&

"71 (CBSC_1, dq(28), bidir, X, 78, 1, Z), "&

"72 (CBSC_1, dq(29), bidir, X, 78, 1, Z), "&

"73 (CBSC_1, dq(31), bidir, X, 78, 1, Z), "&

"74 (CBSC_1, dq(30), bidir, X, 78, 1, Z), "&

"75 (CBSC_1, dq(61), bidir, X, 85, 1, Z), "&

"76 (CBSC_1, dq(62), bidir, X, 85, 1, Z), "&

"77 (CBSC_1, dq(63), bidir, X, 85, 1, Z), "&

"78 (BC_1, *, control, 1), " &

"79 (BC_1, *, control, 1), " &

"80 (BC_1, *, control, 1), " &

"81 (BC_1, *, control, 1), " &

"82 (BC_1, *, control, 1), " &

"83 (BC_1, *, control, 1), " &

"84 (BC_1, *, control, 1), " &

"85 (BC_1, *, control, 1), " &

"86 (BC_1, *, control, 1), " &

"87 (BC_1, *, control, 1), " &

"88 (BC_1, *, control, 1), " &

"89 (BC_1, *, control, 1), " &

"90 (BC_1, *, control, 1), " &

"91 (BC_4, s_reqz(3), input, X), "&

Table 23-4. i960® RM/RN I/O Processor Boundary Scan Register Bit Order (Sheet 2 of 9)
23-8 i960® RM/RN I/O Processor Developer’s Manual

Test Features
"92 (BC_4, s_reqz(5), input, X), "&

"93 (CBSC_1, s_gntz(3), bidir, X, 184, 1, Z), "&

"94 (CBSC_1, s_gntz(5), bidir, X, 184, 1, Z), "&

"95 (BC_4, s_reqz(1), input, X), "&

"96 (BC_4, s_reqz(4), input, X), "&

"97 (CBSC_1, s_gntz(4), bidir, X, 184, 1, Z), "&

"98 (BC_4, s_reqz(2), input, X), "&

"99 (CBSC_1, s_gntz(1), bidir, X, 184, 1, Z), "&

"100 (CBSC_1, s_ad(31), bidir, X, 189, 1, Z), "&

"101 (CBSC_1, s_gntz(2), bidir, X, 184, 1, Z), "&

"102 (CBSC_1, s_gntz(0), bidir, X, 184, 1, Z), "&

"103 (BC_1, s_rstz, output3, X, 205, 1, Z), "&

"104 (CBSC_1, s_ad(27), bidir, X, 189, 1, Z), "&

"105 (CBSC_1, s_ad(28), bidir, X, 189, 1, Z), "&

"106 (BC_4, s_reqz(0), input, X), "&

"107 (CBSC_1, s_ad(30), bidir, X, 189, 1, Z), "&

"108 (CBSC_1, s_ad(29), bidir, X, 189, 1, Z), "&

"109 (CBSC_1, s_cbez(3), bidir, X, 193, 1, Z), "&

"110 (CBSC_1, s_ad(24), bidir, X, 189, 1, Z), "&

"111 (CBSC_1, s_ad(25), bidir, X, 189, 1, Z), "&

"112 (CBSC_1, s_ad(26), bidir, X, 189, 1, Z), "&

"113 (CBSC_1, s_ad(20), bidir, X, 190, 1, Z), "&

"114 (CBSC_1, s_ad(23), bidir, X, 190, 1, Z), "&

"115 (CBSC_1, s_ad(21), bidir, X, 190, 1, Z), "&

"116 (CBSC_1, s_ad(17), bidir, X, 190, 1, Z), "&

"117 (CBSC_1, s_ad(22), bidir, X, 190, 1, Z), "&

"118 (CBSC_1, s_ad(18), bidir, X, 190, 1, Z), "&

"119 (CBSC_1, s_ad(16), bidir, X, 190, 1, Z), "&

"120 (CBSC_1, s_framez, bidir, X, 204, 1, Z), "&

"121 (CBSC_1, s_ad(19), bidir, X, 190, 1, Z), "&

"122 (CBSC_1, s_trdyz, bidir, X, 202, 1, Z), "&

"123 (CBSC_1, s_perrz, bidir, X, 200, 1, Z), "&

"124 (CBSC_1, s_irdyz, bidir, X, 203, 1, Z), "&

"125 (CBSC_1, s_lockz, bidir, X, 201, 1, Z), "&

"126 (CBSC_1, s_cbez(2), bidir, X, 193, 1, Z), "&

"127 (CBSC_1, s_par, bidir, X, 198, 1, Z), "&

"128 (CBSC_1, s_stopz, bidir, X, 202, 1, Z), "&

"129 (CBSC_1, s_ad(15), bidir, X, 191, 1, Z), "&

"130 (CBSC_1, s_serrz, bidir, X, 199, 1, Z), "&

"131 (CBSC_1, s_devselz, bidir, X, 202, 1, Z), "&

"132 (CBSC_1, s_ad(11), bidir, X, 191, 1, Z), "&

"133 (CBSC_1, s_cbez(1), bidir, X, 193, 1, Z), "&

"134 (CBSC_1, s_cbez(0), bidir, X, 193, 1, Z), "&

"135 (CBSC_1, s_ad(14), bidir, X, 191, 1, Z), "&

"136 (CBSC_1, s_ad(12), bidir, X, 191, 1, Z), "&

"137 (CBSC_1, s_ad(9), bidir, X, 191, 1, Z), "&

"138 (CBSC_1, s_ad(13), bidir, X, 191, 1, Z), "&

"139 (CBSC_1, s_ad(4), bidir, X, 192, 1, Z), "&

"140 (CBSC_1, s_ad(10), bidir, X, 191, 1, Z), "&

Table 23-4. i960® RM/RN I/O Processor Boundary Scan Register Bit Order (Sheet 3 of 9)
i960® RM/RN I/O Processor Developer’s Manual 23-9

Test Features
"141 (CBSC_1, s_ad(8), bidir, X, 191, 1, Z), "&

"142 (CBSC_1, s_ad(7), bidir, X, 192, 1, Z), "&

"143 (CBSC_1, s_ad(5), bidir, X, 192, 1, Z), "&

"144 (CBSC_1, s_ad(6), bidir, X, 192, 1, Z), "&

"145 (CBSC_1, s_ad(3), bidir, X, 192, 1, Z), "&

"146 (CBSC_1, s_cbez(6), bidir, X, 194, 1, Z), "&

"147 (CBSC_1, s_ad(1), bidir, X, 192, 1, Z), "&

"148 (CBSC_1, s_ad(2), bidir, X, 192, 1, Z), "&

"149 (CBSC_1, s_ad(59), bidir, X, 185, 1, Z), "&

"150 (CBSC_1, s_ad(0), bidir, X, 192, 1, Z), "&

"151 (CBSC_1, s_ack64z, bidir, X, 195, 1, Z), "&

"152 (CBSC_1, s_req64z, bidir, X, 196, 1, Z), "&

"153 (CBSC_1, s_cbez(7), bidir, X, 194, 1, Z), "&

"154 (CBSC_1, s_cbez(4), bidir, X, 194, 1, Z), "&

"155 (CBSC_1, s_cbez(5), bidir, X, 194, 1, Z), "&

"156 (CBSC_1, s_par64, bidir, X, 197, 1, Z), "&

"157 (CBSC_1, s_ad(63), bidir, X, 185, 1, Z), "&

"158 (CBSC_1, s_ad(51), bidir, X, 186, 1, Z), "&

"159 (CBSC_1, s_ad(62), bidir, X, 185, 1, Z), "&

"160 (CBSC_1, s_ad(61), bidir, X, 185, 1, Z), "&

"161 (CBSC_1, s_ad(57), bidir, X, 185, 1, Z), "&

"162 (CBSC_1, s_ad(60), bidir, X, 185, 1, Z), "&

"163 (CBSC_1, s_ad(55), bidir, X, 186, 1, Z), "&

"164 (CBSC_1, s_ad(58), bidir, X, 185, 1, Z), "&

"165 (CBSC_1, s_ad(53), bidir, X, 186, 1, Z), "&

"166 (CBSC_1, s_ad(56), bidir, X, 185, 1, Z), "&

"167 (CBSC_1, s_ad(50), bidir, X, 186, 1, Z), "&

"168 (CBSC_1, s_ad(54), bidir, X, 186, 1, Z), "&

"169 (CBSC_1, s_ad(47), bidir, X, 187, 1, Z), "&

"170 (CBSC_1, s_ad(52), bidir, X, 186, 1, Z), "&

"171 (CBSC_1, s_ad(42), bidir, X, 187, 1, Z), "&

"172 (CBSC_1, s_ad(49), bidir, X, 186, 1, Z), "&

"173 (CBSC_1, s_ad(45), bidir, X, 187, 1, Z), "&

"174 (CBSC_1, s_ad(48), bidir, X, 186, 1, Z), "&

"175 (CBSC_1, s_ad(43), bidir, X, 187, 1, Z), "&

"176 (CBSC_1, s_ad(41), bidir, X, 187, 1, Z), "&

"177 (CBSC_1, s_ad(46), bidir, X, 187, 1, Z), "&

"178 (CBSC_1, s_ad(39), bidir, X, 188, 1, Z), "&

"179 (CBSC_1, s_ad(44), bidir, X, 187, 1, Z), "&

"180 (CBSC_1, s_ad(37), bidir, X, 188, 1, Z), "&

"181 (CBSC_1, s_ad(40), bidir, X, 187, 1, Z), "&

"182 (CBSC_1, s_ad(36), bidir, X, 188, 1, Z), "&

"183 (CBSC_1, s_ad(38), bidir, X, 188, 1, Z), "&

"184 (BC_1, *, control, 1), " &

"185 (BC_1, *, control, 1), " &

"186 (BC_1, *, control, 1), " &

"187 (BC_1, *, control, 1), " &

"188 (BC_1, *, control, 1), " &

"189 (BC_1, *, control, 1), " &

Table 23-4. i960® RM/RN I/O Processor Boundary Scan Register Bit Order (Sheet 4 of 9)
23-10 i960® RM/RN I/O Processor Developer’s Manual

Test Features
"190 (BC_1, *, control, 1), " &

"191 (BC_1, *, control, 1), " &

"192 (BC_1, *, control, 1), " &

"193 (BC_1, *, control, 1), " &

"194 (BC_1, *, control, 1), " &

"195 (BC_1, *, control, 1), " &

"196 (BC_1, *, control, 1), " &

"197 (BC_1, *, control, 1), " &

"198 (BC_1, *, control, 1), " &

"199 (BC_1, *, control, 1), " &

"200 (BC_1, *, control, 1), " &

"201 (BC_1, *, control, 1), " &

"202 (BC_1, *, control, 1), " &

"203 (BC_1, *, control, 1), " &

"204 (BC_1, *, control, 1), " &

"205 (BC_1, *, control, 1), " &

"206 (CBSC_1, s_ad(33), bidir, X, 292, 1, Z), "&

"207 (CBSC_1, s_ad(35), bidir, X, 292, 1, Z), "&

"208 (CBSC_1, s_ad(32), bidir, X, 292, 1, Z), "&

"209 (CBSC_1, s_ad(34), bidir, X, 292, 1, Z), "&

"210 (BC_4, nc1, input, X), "&

"211 (CBSC_1, p_ad(33), bidir, X, 293, 1, Z), "&

"212 (CBSC_1, p_ad(34), bidir, X, 293, 1, Z), "&

"213 (CBSC_1, p_ad(32), bidir, X, 293, 1, Z), "&

"214 (CBSC_1, p_ad(40), bidir, X, 294, 1, Z), "&

"215 (CBSC_1, p_ad(36), bidir, X, 293, 1, Z), "&

"216 (CBSC_1, p_ad(37), bidir, X, 293, 1, Z), "&

"217 (CBSC_1, p_ad(39), bidir, X, 293, 1, Z), "&

"218 (CBSC_1, p_ad(35), bidir, X, 293, 1, Z), "&

"219 (CBSC_1, p_ad(43), bidir, X, 294, 1, Z), "&

"220 (CBSC_1, p_ad(41), bidir, X, 294, 1, Z), "&

"221 (CBSC_1, p_ad(49), bidir, X, 295, 1, Z), "&

"222 (CBSC_1, p_ad(38), bidir, X, 293, 1, Z), "&

"223 (CBSC_1, p_ad(45), bidir, X, 294, 1, Z), "&

"224 (CBSC_1, p_ad(48), bidir, X, 295, 1, Z), "&

"225 (CBSC_1, p_ad(44), bidir, X, 294, 1, Z), "&

"226 (CBSC_1, p_ad(46), bidir, X, 294, 1, Z), "&

"227 (CBSC_1, p_ad(42), bidir, X, 294, 1, Z), "&

"228 (CBSC_1, p_ad(51), bidir, X, 295, 1, Z), "&

"229 (CBSC_1, p_ad(47), bidir, X, 294, 1, Z), "&

"230 (CBSC_1, p_ad(53), bidir, X, 295, 1, Z), "&

"231 (CBSC_1, p_ad(50), bidir, X, 295, 1, Z), "&

"232 (CBSC_1, p_ad(52), bidir, X, 295, 1, Z), "&

"233 (CBSC_1, p_ad(57), bidir, X, 296, 1, Z), "&

"234 (CBSC_1, p_ad(56), bidir, X, 296, 1, Z), "&

"235 (CBSC_1, p_ad(55), bidir, X, 295, 1, Z), "&

"236 (CBSC_1, p_ad(54), bidir, X, 295, 1, Z), "&

"237 (CBSC_1, p_ad(58), bidir, X, 296, 1, Z), "&

"238 (CBSC_1, p_ad(60), bidir, X, 296, 1, Z), "&

Table 23-4. i960® RM/RN I/O Processor Boundary Scan Register Bit Order (Sheet 5 of 9)
i960® RM/RN I/O Processor Developer’s Manual 23-11

Test Features
"239 (CBSC_1, p_ad(61), bidir, X, 296, 1, Z), "&

"240 (CBSC_1, p_par64, bidir, X, 306, 1, Z), "&

"241 (CBSC_1, p_ad(59), bidir, X, 296, 1, Z), "&

"242 (CBSC_1, p_ad(63), bidir, X, 296, 1, Z), "&

"243 (CBSC_1, p_cbez(4), bidir, X, 310, 1, Z), "&

"244 (CBSC_1, p_cbez(5), bidir, X, 310, 1, Z), "&

"245 (CBSC_1, p_ad(62), bidir, X, 296, 1, Z), "&

"246 (CBSC_1, p_ack64z, bidir, X, 311, 1, Z), "&

"247 (CBSC_1, p_req64z, bidir, X, 303, 1, Z), "&

"248 (CBSC_1, p_cbez(7), bidir, X, 310, 1, Z), "&

"249 (CBSC_1, p_ad(2), bidir, X, 297, 1, Z), "&

"250 (CBSC_1, p_cbez(6), bidir, X, 310, 1, Z), "&

"251 (CBSC_1, p_ad(3), bidir, X, 297, 1, Z), "&

"252 (CBSC_1, p_ad(1), bidir, X, 297, 1, Z), "&

"253 (CBSC_1, p_ad(7), bidir, X, 297, 1, Z), "&

"254 CBSC_1, p_ad(0), bidir, X, 297, 1, Z), "&

"255 (CBSC_1, p_cbez(0), bidir, X, 309, 1, Z), "&

"256 (CBSC_1, p_ad(4), bidir, X, 297, 1, Z), "&

"257 (CBSC_1, p_ad(6), bidir, X, 297, 1, Z), "&

"258 (CBSC_1, p_ad(9), bidir, X, 298, 1, Z), "&

"259 (CBSC_1, p_ad(5), bidir, X, 297, 1, Z), "&

"260 (CBSC_1, p_ad(10), bidir, X, 298, 1, Z), "&

"261 (CBSC_1, p_ad(8), bidir, X, 298, 1, Z), "&

"262 (CBSC_1, p_ad(13), bidir, X, 298, 1, Z), "&

"263 (CBSC_1, p_ad(11), bidir, X, 298, 1, Z), "&

"264 (CBSC_1, p_ad(12), bidir, X, 298, 1, Z), "&

"265 (CBSC_1, p_ad(14), bidir, X, 298, 1, Z), "&

"266 (CBSC_1, p_ad(15), bidir, X, 298, 1, Z), "&

"267 (CBSC_1, p_cbez(1), bidir, X, 309, 1, Z), "&

"268 (CBSC_1, p_par, bidir, X, 305, 1, Z), "&

"269 (CBSC_1, p_perrz, bidir, X, 304, 1, Z), "&

"270 (CBSC_1, p_serrz, bidir, X, 302, 1, Z), "&

"271 (CBSC_1, p_stopz, bidir, X, 301, 1, Z), "&

"272 (CBSC_1, p_devselz, bidir, X, 301, 1, Z), "&

"273 (BC_4, p_lockz, input, X), "&

"274 (CBSC_1, p_trdyz, bidir, X, 301, 1, Z), "&

"275 (CBSC_1, p_irdyz, bidir, X, 307, 1, Z), "&

"276 (CBSC_1, p_cbez(2), bidir, X, 309, 1, Z), "&

"277 (CBSC_1, p_framez, bidir, X, 308, 1, Z), "&

"278 (CBSC_1, p_ad(18), bidir, X, 299, 1, Z), "&

"279 (CBSC_1, p_ad(17), bidir, X, 299, 1, Z), "&

"280 (CBSC_1, p_ad(16), bidir, X, 299, 1, Z), "&

"281 (CBSC_1, p_ad(20), bidir, X, 299, 1, Z), "&

"282 (CBSC_1, p_ad(19), bidir, X, 299, 1, Z), "&

"283 (CBSC_1, p_ad(22), bidir, X, 299, 1, Z), "&

"284 (CBSC_1, p_ad(21), bidir, X, 299, 1, Z), "&

"285 (CBSC_1, p_ad(23), bidir, X, 299, 1, Z), "&

"286 (CBSC_1, p_cbez(3), bidir, X, 309, 1, Z), "&

"287 (CBSC_1, p_ad(24), bidir, X, 300, 1, Z), "&

Table 23-4. i960® RM/RN I/O Processor Boundary Scan Register Bit Order (Sheet 6 of 9)
23-12 i960® RM/RN I/O Processor Developer’s Manual

Test Features
"288 (BC_4, p_idsel, input, X), "&

"289 (CBSC_1, p_ad(26), bidir, X, 300, 1, Z), "&

"290 (CBSC_1, p_ad(25), bidir, X, 300, 1, Z), "&

"291 (CBSC_1, p_ad(27), bidir, X, 300, 1, Z), "&

"292 (BC_1, *, control, 1), " &

"293 (BC_1, *, control, 1), " &

"294 (BC_1, *, control, 1), " &

"295 (BC_1, *, control, 1), " &

"296 (BC_1, *, control, 1), " &

"297 (BC_1, *, control, 1), " &

"298 (BC_1, *, control, 1), " &

"299 (BC_1, *, control, 1), " &

"300 (BC_1, *, control, 1), " &

"301 (BC_1, *, control, 1), " &

"302 (BC_1, *, control, 1), " &

"303 (BC_1, *, control, 1), " &

"304 (BC_1, *, control, 1), " &

"305 (BC_1, *, control, 1), " &

"306 (BC_1, *, control, 1), " &

"307 (BC_1, *, control, 1), " &

"308 (BC_1, *, control, 1), " &

"309 (BC_1, *, control, 1), " &

"310 (BC_1, *, control, 1), " &

"311 (BC_1, *, control, 1), " &

"312 (BC_1, *, control, 1), " &

"313 (CBSC_1, p_ad(28), bidir, X, 401, 1, Z), "&

"314 (CBSC_1, p_ad(30), bidir, X, 401, 1, Z), "&

"315 (CBSC_1, p_ad(31), bidir, X, 401, 1, Z), "&

"316 (CBSC_1, p_reqz, bidir, X, 402, 1, Z), "&

"317 (BC_1, p_intz(2), output3, X, 398, 1, Z), "&

"318 (BC_1, p_intz(3), output3, X, 397, 1, Z), "&

"319 (CBSC_1, p_ad(29), bidir, X, 401, 1, Z), "&

"320 (BC_4, p_rstz, input, X), "&

"321 (BC_4, p_gntz, input, X), "&

"322 (BC_1, p_intz(1), output3, X, 399, 1, Z), "&

"323 (BC_1, p_intz(0), output3, X, 400, 1, Z), "&

"324 (CBSC_1, sda, bidir, X, 388, 1, Z), "&

"325 (CBSC_1, scl, bidir, X, 389, 1, Z), "&

"326 (BC_4, s_intz_xintz(2), input, X), "&

"327 (BC_4, s_intz_xintz(1), input, X), "&

"328 (BC_4, scnmodez, input, X), "&

"329 (BC_4, s_intz_xintz(0), input, X), "&

"330 (BC_4, nmiz, input, X), "&

"331 (BC_4, xint5z, input, X), "&

"332 (BC_4, xint4z, input, X), "&

"333 (BC_4, s_intz_xintz(3), input, X), "&

"334 (BC_1, i_rstz, output3, X, 403, 1, Z), "&

"335 (BC_4, scbodz, input, X), "&

"336 (BC_1, failz, output3, X, 403, 1, Z), "&

Table 23-4. i960® RM/RN I/O Processor Boundary Scan Register Bit Order (Sheet 7 of 9)
i960® RM/RN I/O Processor Developer’s Manual 23-13

Test Features
"337 (CBSC_1, rad(3), bidir, X, 390, 1, Z), "&

"338 (CBSC_1, rad(0), bidir, X, 390, 1, Z), "&

"339 (CBSC_1, rad(2), bidir, X, 390, 1, Z), &

"340 (CBSC_1, rad(7), bidir, X, 390, 1, Z), "&

"341 (CBSC_1, rad(5), bidir, X, 390, 1, Z), "&

"342 (CBSC_1, rad(1), bidir, X, 390, 1, Z), "&

"343 (CBSC_1, rad(4), bidir, X, 390, 1, Z), "&

"344 (CBSC_1, rad(6), bidir, X, 390, 1, Z), "&

"345 (CBSC_1, rad(15), bidir, X, 391, 1, Z), "&

"346 (CBSC_1, rad(10), bidir, X, 391, 1, Z), "&

"347 (CBSC_1, rad(9), bidir, X, 391, 1, Z), "&

"348 (CBSC_1, rad(11), bidir, X, 391, 1, Z), "&

"349 (CBSC_1, rad(12), bidir, X, 391, 1, Z), "&

"350 (CBSC_1, rad(8), bidir, X, 390, 1, Z), "&

"351 (CBSC_1, rad(13), bidir, X, 391, 1, Z), "&

"352 (CBSC_1, rad(14), bidir, X, 391, 1, Z), "&

"353 (CBSC_1, rad(16), bidir, X, 391, 1, Z), "&

"354 (BC_1, rale, output3, X, 403, 1, Z), "&

"355 (CBSC_1, rcez(1), bidir, X, 395, 1, Z), "&

"356 (CBSC_1, rcez(0), bidir, X, 394, 1, Z), "&

"357 (BC_4, p_clk, input, X), "&

"358 (BC_1, rwez, output3, X, 403, 1, Z), "&

"359 (BC_4, lcdinitz, input, X), "&

"360 (BC_1, roez, output3, X, 403, 1, Z), "&

"361 (BC_4, p_cclk, input, X), "&

"362 (BC_4, oncez, input, X), "&

"363 (CBSC_1, dq(32), bidir, X, 396, 1, Z), "&

"364 (BC_1, dclkout, output3, X, 403, 1, Z), "&

"365 (BC_4, dclkin, input, X), "&

"366 (CBSC_1, dq(36), bidir, X, 396, 1, Z), "&

"367 (CBSC_1, dq(0), bidir, X, 396, 1, Z), "&

"368 (CBSC_1, dq(33), bidir, X, 396, 1, Z), "&

"369 (CBSC_1, dq(1), bidir, X, 396, 1, Z), "&

"370 (CBSC_1, dq(34), bidir, X, 396, 1, Z), "&

"371 (CBSC_1, dq(2), bidir, X, 396, 1, Z), "&

"372 (CBSC_1, dq(35), bidir, X, 396, 1, Z), "&

"373 (CBSC_1, dq(3), bidir, X, 396, 1, Z), "&

"374 (CBSC_1, dq(6), bidir, X, 396, 1, Z), "&

"375 (CBSC_1, dq(4), bidir, X, 396, 1, Z), "&

"376 (CBSC_1, dq(38), bidir, X, 392, 1, Z), "&

"377 (CBSC_1, dq(5), bidir, X, 396, 1, Z), "&

"378 (CBSC_1, dq(8), bidir, X, 396, 1, Z), "&

"379 (CBSC_1, dq(40), bidir, X, 392, 1, Z), "&

"380 (CBSC_1, dq(37), bidir, X, 396, 1, Z), "&

"381 (CBSC_1, dq(39), bidir, X, 392, 1, Z), "&

"382 (CBSC_1, dq(7), bidir, X, 396, 1, Z), "&

"383 (CBSC_1, dq(9), bidir, X, 396, 1, Z), "&

"384 (CBSC_1, dq(10), bidir, X, 396, 1, Z), "&

"385 (CBSC_1, dq(41), bidir, X, 392, 1, Z), "&

Table 23-4. i960® RM/RN I/O Processor Boundary Scan Register Bit Order (Sheet 8 of 9)
23-14 i960® RM/RN I/O Processor Developer’s Manual

Test Features
"386 (CBSC_1, dq(11), bidir, X, 396, 1, Z), "&

"387 (CBSC_1, dq(42), bidir, X, 393, 1, Z), "&

"388 (BC_1, *, control, 1), " &

"389 (BC_1, *, control, 1), " &

"390 (BC_1, *, control, 1), " &

"391 (BC_1, *, control, 1), " &

"392 (BC_1, *, control, 1), " &

"393 (BC_1, *, control, 1), " &

"394 (BC_1, *, control, 1), " &

"395 (BC_1, *, control, 1), " &

"396 (BC_1, *, control, 1), " &

"397 (BC_1, *, control, 1), " &

"398 (BC_1, *, control, 1), " &

"399 (BC_1, *, control, 1), " &

"400 (BC_1, *, control, 1), " &

"401 (BC_1, *, control, 1), " &

"402 (BC_1, *, control, 1), " &

"403 (BC_1, *, control, 1)";

Table 23-4. i960® RM/RN I/O Processor Boundary Scan Register Bit Order (Sheet 9 of 9)
i960® RM/RN I/O Processor Developer’s Manual 23-15

Test Features
23.2.5 TAP Controller

The TAP (Test Access Port) controller is a 16-state synchronous finite state machine that controls
the sequence of test logic operations. The TAP can be controlled via a bus master. The bus master
can be either automatic test equipment or a component (i.e., PLD) that interfaces to the TAP. The
TAP controller changes state only in response to a rising edge of TCK. The value of the test mode
state (TMS) input signal at a rising edge of TCK controls the sequence of state changes. The TAP
controller is initialized after power-up by applying a low to the TRST# pin. In addition, the TAP
controller can be initialized by applying a high signal level on the TMS input for a minimum of
five TCK periods. See Figure 23-2 for the state diagram of the TAP controller. An uninitialized
TAP controller can result in erratic processor behavior even when there is no intention to use the
JTAG portion of the processor.

The behavior of the TAP controller and other test logic in each controller state is described in the
following subsections. For greater detail on the state machine and the public instructions, refer to
the IEEE 1149.1 Standard Test Access Port and Boundary-Scan Architecture document (available
from the IEEE).

Figure 23-2. TAP Controller State Diagram

CAPTURE - IR

SHIFT - IR

EXIT1 - IR

PAUSE - IR

EXIT2 - IR

UPDATE - IR

SELECT-
IR - SCAN

CAPTURE - DR

SHIFT - DR

EXIT1 - DR

PAUSE - DR

EXIT2 - DR

UPDATE - DR

SELECT-
DR - SCAN

1

1

1

1

1

1

1

1

TEST - LOGIC -
RESET

RUN - TEST /
IDLE

1

1

1

1

1

1

1

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

NOTE: ALL STATE TRANSITIONS ARE BASED ON THE VALUE OF TMS.

TRST# = 0
23-16 i960® RM/RN I/O Processor Developer’s Manual

Test Features

 of

sters
dated
P

TMS

 bit
ters

TMS
23.2.5.1 Test Logic Reset State

In this state, test logic is disabled to allow normal operation of the i960 RM/RN I/O processor.
Upon entering the Test_Logic_Reset state, the device identification register is loaded. No matter
what the present state of the controller, it enters Test-Logic-Reset state when the TMS input is held
high (12) for at least five rising edges of TCK. The controller remains in this state while TMS is
high. The TAP controller is also forced to enter this state asynchronously by asserting TRST#.

When the controller exits the Test-Logic-Reset controller state as a result of an erroneous low
signal on the TMS line at the time of a rising edge on TCK (for example, a glitch due to external
interference), it returns to the Test-Logic-Reset state following three rising edges of TCK with the
TMS line at the intended high logic level.

23.2.5.2 Run-Test/Idle State

The TAP controller enters the Run-Test/Idle state between scan operations. The controller remains
in this state as long as TMS is held low. When the runbist instruction is selected, it executes during
the Run-Test/Idle state and the result is reported in the RUNBIST register. Instructions that do not
call functions generate no activity in the test logic while the controller is in this state. The
instruction register and all test data registers retain their current state. When TMS is high on the
rising edge of TCK, the controller moves to the Select-DR-Scan state. The instruction register does
not change while the TAP controller is in this state.

23.2.5.3 Select-DR-Scan State

The Select-DR-Scan state is a transitional controller state. While in the Select-DR-Scan state, the
test data registers selected by the current instruction retain their previous states. When TMS is held
low on the rising edge of TCK, the controller moves into the Capture-DR state. When TMS is held
high on the rising edge of TCK, the controller moves into the Select-IR-Scan state. See
Section 23.2.5.10, “Select-IR Scan State” on page 23-18. The instruction register does not change
while the TAP controller is in this state.

23.2.5.4 Capture-DR State

In this state, the selected test data register is loaded with its parallel value on the rising edge
TCK. When the controller is in the Capture-DR state and the current instruction is sample/preload,
the boundary-scan register captures input pin data on the rising edge of TCK. Test data regi
that do not have a parallel input are not changed. The boundary-scan registers cannot be up
from the parallel inputs any other way. The instruction register does not change while the TA
controller is in this state.

When TMS is high on the rising edge of TCK, the controller enters the Exit1-DR state. When
is low on the rising edge of TCK, the controller enters the Shift-DR state.

23.2.5.5 Shift-DR State

In the Shift-DR state, the test data register selected by the current instruction shifts data one
position nearer to the TDO serial output on each rising edge of TCK. All other test data regis
retain their previous values during this state.

The instruction register does not change while the TAP controller is in this state.

When TMS is high on the rising edge of TCK, the controller enters the Exit1-DR state. When
is low on the rising edge of TCK, the controller remains in the Shift-DR state.
i960® RM/RN I/O Processor Developer’s Manual 23-17

Test Features

n the

s
not

CK,

uction
e
ated.
set
23.2.5.6 Exit1-DR State

Exit1-DR is a temporary controller state. When the TAP controller is in the Exit1-DR state and
TMS is held high on the rising edge of TCK, the controller enters the Update-DR state, which
terminates the scanning process. When TMS is held low on the rising edge of TCK, the controller
enters the Pause-DR state.

The instruction register does not change while the TAP controller is in this state. All test data
registers selected by the current instruction retain their previous value during this state.

23.2.5.7 Pause-DR State

The Pause-DR state allows the test controller to temporarily halt the shifting of data through the
test data register in the serial path between TDI and TDO. The test data register selected by the
current instruction retains its previous value during this state. The instruction register does not
change in this state.

The controller remains in this state as long as TMS is low. When TMS is high on the rising edge of
TCK, the controller moves to the Exit2-DR state.

23.2.5.8 Exit2-DR State

Exit2-DR is a temporary state. When TMS is held high on the rising edge of TCK, the controller
enters the Update-DR state, which terminates the scanning process. When TMS is held low on the
rising edge of TCK, the controller re-enters the Shift-DR state.

The instruction register does not change while the TAP controller is in this state. All test data
registers selected by the current instruction retain their previous value during this state.

23.2.5.9 Update-DR State

The boundary-scan register is provided with a latched parallel output. This output prevents changes
at the parallel output while data is shifted in response to the extest, sample/preload instructions.
When the boundary-scan register is selected while the TAP controller is in the Update-DR state,
data is latched onto the boundary-scan register’s parallel output from the shift-register path o
falling edge of TCK. The data held at the latched parallel output does not change unless the
controller is in this state.

While the TAP controller is in this state, all of the test data register’s shift-register bit position
selected by the current instruction retain their previous values. The instruction register does
change while the TAP controller is in this state.

When the TAP controller is in this state and TMS is held high on the rising edge of TCK, the
controller re-enters the Select-DR-Scan state. When TMS is held low on the rising edge of T
the controller re-enters the Run-Test/Idle state.

23.2.5.10 Select-IR Scan State

Select-IR is a temporary controller state. The test data registers selected by the current instr
retain their previous states. In this state, when TMS is held low on the rising edge of TCK, th
controller enters the Capture-IR state and a scan sequence for the instruction register is initi
When TMS is held high on the rising edge of TCK, the controller re-enters the Test-Logic-Re
state. The instruction register does not change in this state.
23-18 i960® RM/RN I/O Processor Developer’s Manual

Test Features
23.2.5.11 Capture-IR State

When the controller is in the Capture-IR state, the shift register contained in the instruction register
appends the instruction with the fixed value 012 on the rising edge of TCK.

The test data register selected by the current instruction retains its previous value during this state.
The instruction does not change in this state. While in this state, holding TMS high on the rising
edge of TCK causes the controller to enter the Exit1-IR state. When TMS is held low on the rising
edge of TCK, the controller enters the Shift-IR state.

23.2.5.12 Shift-IR State

When the controller is in this state, the shift register contained in the instruction register is
connected between TDI and TDO and shifts data one bit position nearer to its serial output on each
rising edge of TCK. The test data register selected by the current instruction retains its previous
value during this state. The instruction register does not change.

When TMS is held high on the rising edge of TCK, the controller enters the Exit1-IR state. When
TMS is held low on the rising edge of TCK, the controller remains in the Shift-IR state.

23.2.5.13 Exit1-IR State

This is a temporary state. When TMS is held high on the rising edge of TCK, the controller enters
the Update-IR state, which terminates the scanning process. When TMS is held low on the rising
edge of TCK, the controller enters the Pause-IR state.

The test data register selected by the current instruction retains its previous value during this state.

The instruction does not change and the instruction register retains its state.

23.2.5.14 Pause-IR State

The Pause-IR state allows the test controller to temporarily halt the shifting of data through the
instruction register. The test data registers selected by the current instruction retain their previous
values during this state. The instruction does not change and the instruction register retains its state.

The controller remains in this state as long as TMS is held low. When TMS is high on the rising
edges of TCK, the controller enters the Exit2-IR state.

23.2.5.15 Exit2-IR State

This is a temporary state. When TMS is held high on the rising edge of TCK, the controller enters
the Update-IR state, which terminates the scanning process. When TMS is held low on the rising
edge of TCK, the controller re-enters the Shift-IR state.

This test data register selected by the current instruction retains its previous value during this state.
The instruction does not change and the instruction register retains its state.

23.2.5.16 Update-IR State

The instruction shifted into the instruction register is latched onto the parallel output from the
shift-register path on the falling edge of TCK. Once latched, the new instruction becomes the current
instruction. Test data registers selected by the current instruction retain their previous values.

When TMS is held high on the rising edge of TCK, the controller re-enters the Select-DR-Scan state.
When TMS is held low on the rising edge of TCK, the controller re-enters the Run-Test/Idle state.
i960® RM/RN I/O Processor Developer’s Manual 23-19

Test Features
23.2.6 Boundary-Scan Example

The following example describes two command actions. The example assumes the TAP controller
starts in the Test-Logic-Reset state. The TAP controller then loads and executes a new instruction.
See Figure 23-3 for an illustration of the waveforms involved in this example. The steps are:

1. Load the sample/preload instruction into the instruction register:

1.1. Use TMS to select the Shift-IR state. While in the Shift-IR state, shift in the new
instruction, least significant byte first.

1.2. Use the Shift-IR state four times to read the least- through most-significant instruction
bits into the instruction register (one does not care what old instruction is being shifted
out of the TDO pin).

1.3. Enter the Update-IR state to make the instruction take effect.

2. Capture pin data and shift the data out through the TDO pin:

2.1. Use TMS to select the Select-DR-Scan state.

2.2. Transition the TAP controller to the Capture-DR state to latch pin data in the
boundary-scan register cells.

2.3. Enter and stay in the Shift-DR state for 110 TCK cycles. These TDO values are
compared against expected data to determine if component operation and connection
are correct. Record the TDO values after each cycle. New serial data enters the
boundary-scan register through the TDI pin, while old data is scanned out.

2.4. Pass through the Exit1-DR state to the Update-DR state. Here boundary-scan data to
be driven out of the system output pins is latched and driven.

2.5. Transition back to the Select-DR state to begin another iteration.

This example does not use Pause states. These states allow software to pause the JTAG state
machine to accommodate slow board-level data paths. The Pause states allow indefinite
interruptions in the shifting while the external tester performs other tasks.

The old instruction was abcd in the example. The original instruction register value becomes the ID
code since the example starts from the reset state. Other times it represents the previous opcode.
The new instruction opcode is 00012 (sample/preload). All pins are captured into the serial
boundary-scan register and the values are output to the TDO pin.

The TCK signal at the top of the diagram shows a continuous pulse train. In many designs,
however, TCK is more irregular. In such cases, software controls TCK by writing to a port bit.
Software writes the TMS and TDI signals and toggles the clock high. Typically, software drives
TCK low quickly. The program monitors the TDO pin values as they are shifted out.
23-20 i960® RM/RN I/O Processor Developer’s Manual

Test Features
Figure 23-3. Example Showing Typical JTAG Operations

1 1 0 1 1 00

TCK

TMS

Don’t Care Don’t Care

New Inst = 00012Old Inst = abcd

Don’t Care

Boundary-Scan Reg. Instruction Register

TDI

Parallel Out

IR Shift Reg

Register

TDO

Selected

DR Shift Reg
 (n bits long)

4 bits long

d c b a
0 1 2 3 4 5 -4 -3 -2
0 0 0 0 0 0 n n n
P P P P P P P P P

-1
n
P

R
E

S
E

T

S
E

LE
C

T
 D

R
 S

C
A

N

S
E

LE
C

T
 I

R
 S

C
A

N
C

A
P

T
U

R
E

 I
R

S
H

IF
T

 IR
S

H
IF

T
 IR

E
X

IT
1

IR
S

H
IF

T
 IR

S
H

IF
T

 IR

R
E

S
E

T
R

U
N

 T
E

S
T

/ I
D

LE

0
0
0

1
0
0
1

0
1
0
0

0
0
1
0

0
0
0
0

1

U
P

D
A

T
E

 IR
S

E
LE

C
T

 D
R

 S
C

A
N

C
A

P
T

U
R

E
 D

R
S

H
IF

T
 D

R
S

H
IF

T
 D

R
S

H
IF

T
 D

R
S

H
IF

T
 D

R
S

H
IF

T
 D

R
S

H
IF

T
 D

R

S
H

IF
T

 D
R

S
H

IF
T

 D
R

S
H

IF
T

 D
R

S
H

IF
T

 D
R

S
H

IF
T

 D
R

U
P

D
A

T
E

 D
R

R
U

N
 T

E
S

T
/ID

LE
R

U
N

 T
E

S
T

/ID
LE

R
U

N
 T

E
S

T
/ID

LE
R

U
N

 T
E

S
T

/ID
LE

S
H

IF
T

 D
R

E
X

IT
1

D
R

01

0 0 0

1 1 1

1
R

E
S

E
T

R
E

S
E

T

R
E

S
E

T

111

Of IR

∼∼
∼∼

∼∼
∼∼

∼∼
∼∼

∼∼

6
0
P

∼∼
∼∼

∼∼
∼∼

∼∼
∼∼

∼∼
∼∼
i960® RM/RN I/O Processor Developer’s Manual 23-21

Test Features
Figure 23-4. Timing Diagram Illustrating the Loading of Instruction Register

TCK

TMS

Controller State

TDI

Data input to IR

IR shift-register

Parallel output of IR

Data input to TDR

TDR shift-register

Parallel output of TDR

Register selected

TDO enable

TDO

Test-Logic-R
eset

E
xit1 - IR

S
hift - IR

C
apture - IR

S
elect - IR

 - S
can

S
elect - D

R
 - S

can

R
un - Test / Idle

P
ause - IR

E
xit2 - IR

S
hift - IR

E
xit1 - IR

U
pdate - IR

R
un - R

est / Idle

InactiveActiveInactiveInactive Act

Old Data

= Don’t care or undefined

New InstructionID Code

Instruction Register
23-22 i960® RM/RN I/O Processor Developer’s Manual

Test Features
Figure 23-5. Timing Diagram Illustrating the Loading of Data Register

TCK

TMS

Controller State

TDI

Data input to IR

IR shift-register

Parallel output of IR

Data input to TDR

TDR shift-register

Parallel output of TDR

Register Selected

TDO enable

TDO

Test-Logic-R
eset

E
xit1 - D

R

S
hift - D

R

C
apture - D

R

S
elect - D

R
 - S

can

R
un - Test / Idle

P
ause - D

R

E
xit2 - D

R

S
hift - D

R

E
xit1 - D

R

U
pdate - D

R

R
un - R

est / Idle

INACTIVEACTIVEINACTIVEINACTIVE

NEW DATA

INSTRUCTION ID CODE

TEST DATA REGISTER

= Don’t care or undefined

S
elect - D

R
 - S

can
OLD DATA

ACT.

S
elect - IR

 - S
can
i960® RM/RN I/O Processor Developer’s Manual 23-23

Clocking and Reset 24

This chapter describes the clocking and reset function. The intent of this chapter is to elaborate and
clarify descriptions of the clocking and reset mechanisms.

24.1 Clocking Overview

The i960® RM/RN I/O Processor contains various clocking boundaries internally. The clocks for all of
the units within the i960 RM/RN I/O processor are generated from a single input clock. This input
feeds the Phase Lock Loop (PLL) circuitry which generates all of the internal clocks. The block
diagram of the i960 RM/RN I/O processor, shown in Figure 24-1, highlights the four clocking regions.

Within each of the clocking regions identified in Figure 24-1, exists various clock requirements for the
i960 RM/RN I/O processor units and for the output clocks pins provided for the external subsystem.

24.1.1 Clocking Theory of Operation

Each region within the i960 RM/RN I/O processor contains different clocking requirements. These
requirements are summarized in the following sections.

Figure 24-1. Clocking Regions Diagram

A4661-01

P_CLK

i960® JT CPU 100 MHz
16K I-Cache
4K D-Cache

Clock Region 3

Clock Region 1

Clock Region 2

Application
Accelerator

528 MBs Internal Bus (66MHz/64-bit)

64
-B

it
I/F

I2 C
 B

us

Event
Monitoring

Unit

Memory
Controller

I2C
Unit

D
C

LK
O

U
T

S
C

L

D
C

LK
IN

IC
E

C
LK

Bus Interface Unit

6 Reg/Grit Pairs

Primary PCI Bus

2 Channel
DMA

Controller

Primary
Address

Translation
Unit

PCI - to - PCI
Bridge

I20
Messaging

Unit

Secondary PCI Bus

Secondary
Address

Translation
Unit

1 Channel
DMA

Controller

Secondary
PCI Arbiter
i960® RM/RN I/O Processor Developer’s Manual 24-1

Clocking and Reset

24.1.2 Clocking Region 1

Region 1 contains the main input clock for providing the i960 RM/RN I/O processor with all of its
clock sources. This input clock is provided by the system designer. This input clock, called the
primary PCI bus clock, is connected to the input pin P_CLK. The i960 RM/RN I/O processor
supports an input frequency of 33MHz for normal PCI bus operation on the primary PCI interface.
The secondary interface of Region 1 obtains its input clock from the clocking unit specified in
clocking Region 1 by P_CLK.

24.1.3 Clocking Region 2

Region 2 obtains its input clock from the clocking unit specified in clocking region 1. This region
is the internal bus of the i960 RM/RN I/O processor. It supports clock frequencies up to a
maximum of 66 MHz operation. The clocking unit provides one SDRAM output clock, based on a
dedicated PLL. The clocking unit contains one output clock, called DCLKOUT and one SDRAM
input clock called DCLKIN. The DCLKOUT output is used by external circuitry (clock buffering)
to generate the clocks for the SDRAM memory subsystem. The DCLKIN signal is used to skew
DCLKOUT appropriately to accommodate flight time and clock buffer delays. Refer to
Figure 24-2 for a diagram that describes the SDRAM clocking requirements.

Region 2 also contains an output clock used for the I2C bus interface (Chapter 22, “I2C Bus
Interface Unit”). The output clock frequency for I2C operation is 100KHz or 400KHz. This clock is
generated from internal bus clock. In order to use the I2C interface, a clock divider value must be
written into the I2C Clock Count Register.

Figure 24-2. SDRAM Clocking Diagram

A4662-01

SDRAM
DIMM0

DQ(71:0)

I_CLK

P_CLK
DCLKout

DCLKin

DQ(71:0)

SDQ(71:0) SDQ(71:0)

CLK(3:0) CLK(3:0)Clock
Buffer

2Mx8
SDRAM

SDRAM
DIMM1
(used for

MAX
timings)
24-2 i960® RM/RN I/O Processor Developer’s Manual

Clocking and Reset
24.1.4 Clocking Region 3

Region 3 obtains its input clock from the clocking unit specified in clocking region 1. This region
is the i960 Core Processor and the Bus Interface Unit. It supports clock frequencies up to a
maximum of 100 MHz operation. The region 4 clock is a multiple of the P_CLK.

24.1.5 Clocking Region Summary

Table 24-1 summarizes all of the input clock pins, output clock pins, and clock strapping option
pins used in the i960 RM/RN I/O processor.

Table 24-2 summarizes all of the clocks generated to the three regions within the i960 RM/RN I/O
processor.

24.2 Reset Overview

There are three ways to reset the i960 RM/RN I/O processor. The main reset is controlled through
the primary PCI bus reset signal (P_RST#). When the primary PCI bus asserts this signal, the entire
i960 RM/RN I/O processor is placed in a reset state. In addition to the primary PCI reset pin, the
i960 RM/RN I/O processor provides software control of units within the i960 RM/RN I/O
processor and the secondary PCI interface.

Figure 24-3 shows the logical block diagram of the reset conditions.

Table 24-1. Clock Pin Summary

Pin Input/Output Description

P_CLK Input Primary PCI Input Clock

DCLKIN Input SDRAM Input Clock

DCLKOUT Output SDRAM Output Clock

SCL Output I2C Output Clock

Table 24-2. Clock Region Summary

Input Clock Region/Clock

P_CLK= 33 MHz

Region 1: 1x P_CLK

Region 2: 2x P_CLK

Region 3: 3x P_CLK
i960® RM/RN I/O Processor Developer’s Manual 24-3

Clocking and Reset
When the primary PCI signal (P_RST#) is asserted, the reset signal causes all configuration
registers, internal control and enable signals, state machines, and output buffers to their initialized
state. The specification is well defined for signal attached to the PCI bus.

Figure 24-3. Reset Block Diagram

S
ec

on
da

ry
 B

us
 R

es
et

 b
it

||
P

_R
S

T
#

Secondary
PCI Bus

Primary
PCI Bus

Memory
Controller

i960 Core
Processor

Local Bus
Arbitration

Address
Translation

DMA
ChannelsPrimary

RST#

Secondary
RST#

PCI to PCI
Bridge Unit

Reset Internal Bus bit || P_RST#

Application
Accelerator

Unit Unit

DMA
Channel

Address
Translation

Unit

Secondary
PCI

Arbiter

6 Req/Gnt
Pairs

In
te

rn
al

 B
us

I2C

Unit
Interface

Unit

Performance

Unit
Monitor

Reset CPU

Internal
Bus Reset

I_RST#
24-4 i960® RM/RN I/O Processor Developer’s Manual

Clocking and Reset

T# is
 i960
his

ended
 to

o
ource
tate of
0,
or is
24.2.1 Primary PCI Reset

When the primary PCI bus reset signal P_RST# is asserted, the i960 RM/RN I/O processor:

• asserts the secondary PCI bus reset signal S_RST#

• resets the i960 core processor and the internal bus

• resets all internal units

• resets all Memory Mapped Registers

• latches all configuration straps on the rising edge of P_RST#, refer to Section 24.3

• latches P_REQ64# to determine the primary PCI bus interface width

• asserts the I_RST# output signal

The assertion and deassertion of the PCI reset signal (P_RST#) is asynchronous with respect to
P_CLK. The rising edge of the P_RST# signal must be monotonic through the input switching
range and must meet the minimum slew rate. The PCI local bus specification defines the assertion
of P_RST# for a period of 1 ms after power is stable.

Upon the assertion of P_RST#, all units within the i960 RM/RN I/O processor are reset. This reset
will reset all internal memory mapped registers (MMRs) to their default configuration state. The
reset value for each register is defined within each register description.

Upon the deassertion of P_RST#, the i960 RM/RN I/O processor samples a series of strapping pins
to set configuration modes (refer to Section 24.3, “Reset Strapping Options” on page 24-7). One
strap which alters the behavior of the i960 RM/RN I/O processor on the deassertion of P_RS
the RST_MODE# strap. If the RST_MODE# pin is asserted on the rising edge of P_RST#, the
RM/RN I/O processor will continue to assert the individual reset to the i960 core processor. T
mode, will hold the i960 core processor in reset until the Core Processor Reset Bit in the Ext
Bridge Configuration Register (PCI Bridge) is cleared, thus allowing the i960 core processor
enter its initialization procedure.

The primary PCI interface of the i960 RM/RN I/O processor samples the P_REQ64# signal t
determine if the i960 RM/RN I/O processor is connected to a 64-bit data path. The central res
is required to drive the P_REQ64# signal low during the time that P_RST# is asserted. The s
P_REQ64# on the rising edge of the P_RST# signal notifies the primary ATU, DMA channel
DMA channel 1, and the primary interface of the PCI bridge that the i960 RM/RN I/O process
connected to a 64-bit or 32-bit PCI bus.
i960® RM/RN I/O Processor Developer’s Manual 24-5

Clocking and Reset

o PCI
nd
e

essor
efully

eset
r Reset

nd
24.2.2 Secondary PCI Reset

When the secondary PCI bus reset signal S_RST# is asserted, the i960RM/RN processor:

• asserts the secondary PCI bus reset signal S_RST#

• resets the SATU

• resets DMA channel 2

• resets all Memory Mapped Registers in the SATU and DMA2

• latches S_REQ64# to determine the secondary PCI bus interface width

Upon the assertion of P_RST#, the i960 RM/RN I/O processor asserts the secondary PCI reset
output (S_RST#). S_RST# remains asserted for the same period as P_RST#. The secondary PCI
arbiter is connected to the S_RST#. As with the primary PCI interface, the secondary PCI interface
is required to sample S_REQ64# on the rising edge of S_RST# to determine whether the i960
RM/RN I/O processor is connected to a 64-bit or a 32-bit wide PCI bus. Since the secondary PCI
arbiter is integrated into the i960 RM/RN I/O processor, the secondary arbiter is required to drive
S_REQ64# on the rising edge of S_RST# based on the strapping option pin 32BITPCI_EN#. Refer
to Chapter 17, “i960® RM/RN I/O Processor Arbitration” for additional information.

Secondary PCI reset is also available through the Bridge Control register (BCR) in the PCI t
Bridge Unit. The secondary PCI reset unit contains sideband signals from and to the SATU a
DMA2. These sideband signals are used to ensure a graceful completion of these units on th
internal bus during the secondary PCI reset.

24.2.3 Internal Bus Reset

The Reset Internal Bus bit in the Extended Bridge Control Register resets the i960 core proc
and all units on the internal bus. Before resetting, the DMA channels and the ATUs shall grac
halt all PCI bus transactions. It is the responsibility of the software to ensure that the I2C bus is idle
before the reset occurs. The i960 core processor may or may not be held in reset when the R
Local Bus bit is cleared by software. This depends on the default value of the Core Processo
bit in the EBCR. The Local Bus Reset does not reset the PCI to PCI Bridge Unit or its
configuration registers.

When the reset local bus bit in the Extended Bridge Control Register is set, there are sideba
signals notifying the BIU, PATU, SATU, and the DMAs that a reset is coming.
24-6 i960® RM/RN I/O Processor Developer’s Manual

Clocking and Reset
24.3 Reset Strapping Options

There are many initialization modes that can be selected when the processor is reset. Table 24-3
shows the configuration modes. All of the configuration modes defined are determined on the
rising edge of P_RST#.

Table 24-3. Configuration Modes

NAME DESCRIPTION

RAD[4]/STEST SELF TEST enables or disables the processor’s internal self-test feature at
initialization. STEST is examined at the end of P_RST#.

RAD[3]/RETRY RETRY is sampled at the end of P_RST# to determine if the Primary PCI
interface will be disabled.

RAD[6]/RST_MODE# RESET MODE is sampled at the end of P_RST# to determine if the i960 RM/RN
I/O processor is to be held in reset.

RAD[1]/32BITPCI_EN# 32-BIT Secondary PCI Enable is sampled at the end of P_RST# to notify the
secondary PCI arbiter if the 64-bit protocol is enabled on the secondary PCI bus.

RAD[2]/32BITMEM_EN#
32-BIT MemoryEnable is sampled at the end of P_RST# to notify the memory
controller if 32-bit wide SDRAM memories are connected to the memory
controller.

ONCE# ONCE MODE: is sampled during reset to stop all clocks and float all output pins
of the 80960 core processor except the TDO pin.
i960® RM/RN I/O Processor Developer’s Manual 24-7

nd

EM
 an
mat’s
Machine-Level Instruction Formats A

This appendix describes the encoding format for instructions used by the i960® processors.
Included is a description of the four instruction formats and how the addressing modes relate to
these formats. Refer also to Appendix B, “Opcodes and Execution Times”.

A.1 General Instruction Format

The i960 architecture defines four basic instruction encoding formats: REG, COBR, CTRL a
MEM (Figure A-1). Each instruction uses one of these formats, which is defined by the
instruction’s opcode field. All instructions are one word long and begin on word boundaries. M
format instructions are encoded in one of two sub-formats: MEMA or MEMB. MEMB supports
optional second word to hold a displacement value. The following sections describe each for
instruction word fields.

Figure A-1. Instruction Formats

28 24 20 16 12 8 4 031

 MMMOpcode src/dst src2 Opcode src1

28 24 20 16 12 8 4 031

 SOpcode src2 displacement Tsrc1

28 24 20 16 12 8 4 031

 0Opcode displacement T

28 24 20 16 12 8 4 031

Opcode src/dst abase Offset0

REG

COBR

CTRL

MEMA

MODE

MEMB

28 24 20 16 12 8 4 031

 Opcode src/dst abase Index
001

3 2 1

Optional Displacement

M
1

Scale

(5 bits)(5 bits)(5 bits) (4 bits)(8 bits)

(8 bits) (5 bits) (5 bits) (11 bits)

(8 bits) (22 bits)

(8 bits) (5 bits) (5 bits) (12 bits)

(8 bits) (5 bits) (5 bits) (3 bits) (5 bits)

2

S
2

S
1

X

X X X
i960® RM/RN I/O Processor Developer’s Manual A-1

Machine-Level Instruction Formats
When a particular instruction is defined as not using a particular field, the field is ignored.

Table A-1. Instruction Field Descriptions

Instruction Field Description

Opcode The opcode of the instruction. Opcode encodings are defined in Section 6.1.8,
“Opcode and Instruction Format” on page 6-4.

src1 An input to the instruction. This field specifies a value or address. In one case of
the COBR format, this field is used to specify a register in which a result is stored.

src2 An input to the instruction. This field specifies a value or address.

src/dst Depending on the instruction, this field can be (1) an input value or address, (2)
the register where the result is stored, or (3) both of the above.

abase A register whose value is used in computing a memory address.

INDEX A register whose value is used in computing a memory address.

DISPLACEMENT A signed two’s complement number.

Offset An unsigned positive number.

Optional Displacement A signed two’s complement number used in the two-word MEMB format.

MODE
A specification of how a memory address for an operand is computed and, for
MEMB, specifies whether the instruction contains a second word to be used as a
displacement.

SCALE A specification of how a register’s contents are multiplied for certain addressing
modes (i.e., for indexing).

M1, M2, M3 These fields further define the meaning of the src1, src2, and src/dst fields
respectively as shown in Table A-3.
A-2 i960® RM/RN I/O Processor Developer’s Manual

Machine-Level Instruction Formats

ween

l

he

bit
2 bits,
A.2 REG Format

REG format is used for operations performed on data contained in registers. Most of the i960
processor family’s instructions use this format.

The opcode for the REG instructions is 12 bits long (three hexadecimal digits) and is split bet
bits 7 through 10 and bits 24 through 31. For example, the addi opcode is 591H. Here, bits 24
through 31 contain 59H and bits 7 through 10 contain 1H.

src1 and src2 fields specify the instruction’s source operands. Operands can be global or loca
registers or literals. Mode bits (M1 for src1 and M2 for src2) and the instruction type determine
what an operand specifies. Table A-3 shows this relationship.

The src/dst field can specify a source operand, a destination operand or both, depending on t
instruction. Here again, mode bit M3 determines how this field is used. If M3 is clear, the src/dst
operand is a global or local register that is encoded as shown in Table A-3. If M3 is set, the src/dst
operand can be used as a source-only operand that is a literal.

When a literal is specified, it is always an unsigned 5-bit value that is zero-extended to a 32-
value and used as the operand. When the instruction defines an operand to be larger than 3
values specified by literals are zero-extended to the operand size.

Table A-2. Encoding of src1 and src2 in REG Format

M1 or M2 Src1 or Src2 Operand
Value Register Number Literal Value

0
00000 ... 01111 r0 ... r15 NA

10000 ... 11111 g0 ... g15 NA

1 00000 ... 11111 NA 0 ... 31

Table A-3. Encoding of src/dst in REG Format

M3 src/dst src Only dst Only

0 g0 ... g15
r0 ... r15

g0 ... g15
r0 ... r15

g0 ... g15
r0 ... r15

1 Reserved Reserved reserved
i960® RM/RN I/O Processor Developer’s Manual A-3

Machine-Level Instruction Formats

 which
nge

ulting

R

A.3 COBR Format

The COBR format is used primarily for compare-and-branch instructions. The test-if instructions
also use the COBR format. The COBR opcode field is eight bits (two hexadecimal digits).

The src1 and src2 fields specify source operands for the instruction. The src1 field can specify
either a global or local register or a literal as determined by mode bit M1. The src2 field can only
specify a global or local register. Table A-4 shows the M1, src1 relationship and Table A-5 shows
the S2, src2 relationship.

The displacement field contains a signed two’s complement number that specifies a word
displacement. The processor uses this value to compute the address of a target instruction to
the processor branches as a result of the comparison. The displacement field’s value can ra
from -210 to 210 -1. To determine the target instruction’s IP, the processor converts the
displacement value to a byte displacement (i.e., multiplies the value by 4). It then adds the res
byte displacement to the IP of the current instruction.

A.4 CTRL Format

The CTRL format is used for instructions that branch to a new IP, including the BRANCH<cc>, bal
and call instructions. Note that balx, bx and callx do not use this format. ret also uses the CTRL
format. The CTRL opcode field is eight bits (two hexadecimal digits).

A branch target address is specified with the displacement field in the same manner as COB
format instructions. The displacement field specifies a word displacement as a signed, two’s
complement number in the range -221 to 221-1. The processor ignores the ret instruction’s
displacement field.

Table A-4. Encoding of src1 in COBR Format

M1 src1

0 g0 ... g15
r0 ... r15

1 Literal

Table A-5. Encoding of src2 in COBR Format

S2 src2

0 g0 ... g15
r0 ... r15

1 reserved
A-4 i960® RM/RN I/O Processor Developer’s Manual

Machine-Level Instruction Formats

ord

tion
in the

es are
A.5 MEM Format

The MEM format is used for instructions that require a memory address to be computed. These
instructions include the LOAD, STORE and lda instructions. Also, the extended versions of the
branch, branch-and-link and call instructions (bx, balx and callx) use this format.

The two MEM-format encodings are MEMA and MEMB. MEMB can optionally add a 32-bit
displacement (contained in a second word) to the instruction. Bit 12 of the instruction’s first w
determines whether MEMA (clear) or MEMB (set) is used.

The opcode field is eight bits long for either encoding. The src/dst field specifies a global or local
register. For load instructions, src/dst specifies the destination register for a word loaded into the
processor from memory or, for operands larger than one word, the first of successive destina
registers. For store instructions, this field specifies the register or group of registers that conta
source operand to be stored in memory.

The mode field determines the address mode used for the instruction. Table A-6 summarizes the
addressing modes for the two MEM-format encodings. Fields used in these addressing mod
described in the following sections.

Table A-6. Addressing Modes for MEM Format Instructions

Format MODE Addressing Mode Address Computation # of Instr
Words

MEMA
00 Absolute Offset offset 1

10 Register Indirect with Offset (abase) + offset 1

MEMB

0100 Register Indirect (abase) 1

0101 IP with Displacement (IP) + displacement + 8 2

0110 Reserved reserved NA

0111 Register Indirect with Index (abase) + (index) * 2scale 1

1100 Absolute Displacement displacement 2

1101 Register Indirect with
Displacement (abase) + displacement 2

1110 Index with Displacement (index) * 2scale + displacement 2

1111 Register Indirect with Index
and Displacement (abase) + (index) * 2scale + displacement 2

NOTES:
1. In these address computations, a field in parentheses indicates that the value in the specified register is

used in the computation.
2. Usage of a reserved encoding may cause generation of an OPERATION.INVALID_OPCODE fault.
i960® RM/RN I/O Processor Developer’s Manual A-5

Machine-Level Instruction Formats

alue.

 the
A.5.1 MEMA Format Addressing

The MEMA format provides two addressing modes:

• Absolute offset

• Register indirect with offset

The offset field specifies an unsigned byte offset from 0 to 4096. The abase field specifies a global
or local register that contains an address in memory.

For the absolute-offset addressing mode (MODE = 00), the processor interprets the offset field as
an offset from byte 0 of the current process address space; the abase field is ignored. Using this
addressing mode along with the lda instruction allows a constant in the range 0 to 4096 to be
loaded into a register.

For the register-indirect-with-offset addressing mode (MODE = 10), offset field value is added to
the address in the abase register. Clearing the offset value creates a register indirect addressing
mode; however, this operation can generally be carried out faster by using the MEMB version of
this addressing mode.

A.5.2 MEMB Format Addressing

The MEMB format provides the following seven addressing modes:

The abase and index fields specify local or global registers, the contents of which are used in
address computation. When the index field is used in an addressing mode, the processor
automatically scales the index register value by the amount specified in the SCALE field.
Table A-7 gives the encoding of the scale field. The optional displacement field is contained in the
word following the instruction word. The displacement is a 32-bit signed two’s complement v

For the IP with displacement mode, the value of the displacement field plus eight is added to
address of the current instruction.

• absolute displacement • register indirect

• register indirect with displacement • register indirect with displacement

• register indirect with index and
displacement

• index with displacement

• IP with displacement

Table A-7. Encoding of Scale Field

Scale Scale Factor (Multiplier)

000 1

001 2

010 4

011 8

100 16

101 to 111 Reserved

NOTE: Usage of a reserved encoding causes an unpredictable result.
A-6 i960® RM/RN I/O Processor Developer’s Manual

Opcodes and Execution Times B

B.1 Instruction Reference by Opcode

This section lists the instruction encoding for each i960® RM/RN I/O Processor instruction.
Instructions are grouped by instruction format and listed by opcode within each format.

Table B-1. Miscellaneous Instruction Encoding Bits

M3 M2 M1 S2 S1 T Description

REG Format

x x 0 x 0 — src1 is a global or local register

x x 1 x 0 — src1 is a literal

x x 0 x 1 — reserved

x x 1 x 1 — reserved

x 0 x 0 x — src2 is a global or local register

x 1 x 0 x — src2 is a literal

x 0 x 1 x — reserved

x 1 x 1 x — reserved

0 x x x x — src/dst is a global or local register

1 x x x x —
src/dst is a literal when used as a source. M3 may not be 1 when
src/dst is used as a destination only or is used both as a source and
destination in an instruction (atmod, modify, extract, modpc).

COBR Format

— — 0 0 — x src1, src2 and dst are global or local registers

— — 1 0 — x src1 is a literal, src2 and dst are global or local registers

— — 0 1 — x reserved

— — 1 1 — x0 reserved
i960® RM/RN I/O Processor Developer’s Manual B-1

Opcodes and Execution Times
Table B-2. REG Format Instruction Encodings (Sheet 1 of 4)

O
p

co
d

e

M
n

em
o

n
ic

C
yc

le
s

to
 E

xe
cu

te

O
p

co
d

e
 (

11
 -

 4
)

sr
c/

d
st

sr
c2

M
o

d
e

O
p

co
d

e
 (

3-
0)

S
p

ec
ia

l
 F

la
g

s

sr
c1

31 24 2319 18 .14 13 12 11 10 7 6 5 4 0

58:0 notbit 1 0101 1000 dst src M3 M2 M1 0000 S2 S1 bitpos

58:1 and 1 0101 1000 dst src2 M3 M2 M1 0001 S2 S1 src1

58:2 andnot 1 0101 1000 dst src2 M3 M2 M1 0010 S2 S1 src1

58:3 setbit 1 0101 1000 dst src M3 M2 M1 0011 S2 S1 bitpos

58:4 notand 1 0101 1000 dst src2 M3 M2 M1 0100 S2 S1 src1

58:6 xor 1 0101 1000 dst src2 M3 M2 M1 0110 S2 S1 src1

58:7 or 1 0101 1000 dst src2 M3 M2 M1 0111 S2 S1 src1

58:8 nor 1 0101 1000 dst src2 M3 M2 M1 1000 S2 S1 src1

58:9 xnor 1 0101 1000 dst src2 M3 M2 M1 1001 S2 S1 src1

58:A not 1 0101 1000 dst M3 M2 M1 1010 S2 S1 src

58:B ornot 1 0101 1000 dst src2 M3 M2 M1 1011 S2 S1 src1

58:C clrbit 1 0101 1000 dst src M3 M2 M1 1100 S2 S1 bitpos

58:D notor 1 0101 1000 dst src2 M3 M2 M1 1101 S2 S1 src1

58:E nand 1 0101 1000 dst src2 M3 M2 M1 1110 S2 S1 src1

58:F alterbit 1 0101 1000 dst src M3 M2 M1 1111 S2 S1 bitpos

59:0 addo 1 0101 1001 dst src2 M3 M2 M1 0000 S2 S1 src1

59:1 addi 1 0101 1001 dst src2 M3 M2 M1 0001 S2 S1 src1

59:2 subo 1 0101 1001 dst src2 M3 M2 M1 0010 S2 S1 src1

59:3 subi 1 0101 1001 dst src2 M3 M2 M1 0011 S2 S1 src1

59:4 cmpob 1 0101 1001 src2 M3 M2 M1 0100 S2 S1 src1

59:5 cmpib 1 0101 1001 src2 M3 M2 M1 0101 S2 S1 src1

59:6 cmpos 1 0101 1001 src2 M3 M2 M1 0110 S2 S1 src1

59:7 cmpis 1 0101 1001 src2 M3 M2 M1 0111 S2 S1 src1

59:8 shro 1 0101 1001 dst src M3 M2 M1 1000 S2 S1 len

59:A shrdi 6 0101 1001 dst src M3 M2 M1 1010 S2 S1 len

59:B shri 1 0101 1001 dst src M3 M2 M1 1011 S2 S1 len

59:C shlo 1 0101 1001 dst src M3 M2 M1 1100 S2 S1 len

59:D rotate 1 0101 1001 dst src M3 M2 M1 1101 S2 S1 len

59:E shli 1 0101 1001 dst src M3 M2 M1 1110 S2 S1 len

5A:0 cmpo 1 0101 1010 src2 M3 M2 M1 0000 S2 S1 src1

5A:1 cmpi 1 0101 1010 src2 M3 M2 M1 0001 S2 S1 src1

5A:2 concmpo 1 0101 1010 src2 M3 M2 M1 0010 S2 S1 src1

1. Execution time based on function performed by instruction.
B-2 i960® RM/RN I/O Processor Developer’s Manual

Opcodes and Execution Times
5A:3 concmpi 1 0101 1010 src2 M3 M2 M1 0011 S2 S1 src1

5A:4 cmpinco 1 0101 1010 dst src2 M3 M2 M1 0100 S2 S1 src1

5A:5 cmpinci 1 0101 1010 dst src2 M3 M2 M1 0101 S2 S1 src1

5A:6 cmpdeco 1 0101 1010 dst src2 M3 M2 M1 0110 S2 S1 src1

5A:7 cmpdeci 1 0101 1010 dst src2 M3 M2 M1 0111 S2 S1 src1

5A:C scanbyte 1 0101 1010 src2 M3 M2 M1 1100 S2 S1 src1

5A:D bswap 10 0101 1010 dst M3 M2 M1 1101 S2 S1 src1

5A:E chkbit 1 0101 1010 src M3 M2 M1 1110 S2 S1 bitpos

5B:0 addc 1 0101 1011 dst src2 M3 M2 M1 0000 S2 S1 src1

5B:2 subc 1 0101 1011 dst src2 M3 M2 M1 0010 S2 S1 src1

5B:4 intdis 4 0101 1011 M3 M2 M1 0100 S2 S1

5B:5 inten 4 0101 1011 M3 M2 M1 0101 S2 S1

5C:C mov 1 0101 1100 dst M3 M2 M1 1100 S2 S1 src

5D:8 eshro 11 0101 1101 dst src2 M3 M2 M1 1000 S2 S1 src1

5D:C movl 4 0101 1101 dst M3 M2 M1 1100 S2 S1 src

5E:C movt 5 0101 1110 dst M3 M2 M1 1100 S2 S1 src

5F:C movq 6 0101 1111 dst M3 M2 M1 1100 S2 S1 src

61:0 atmod 24 0110 0010 dst src2 M3 M2 M1 0000 S2 S1 src1

61:2 atadd 24 0110 0010 dst src2 M3 M2 M1 0010 S2 S1 src1

64:0 spanbit 6 0110 0100 dst M3 M2 M1 0000 S2 S1 src

64:1 scanbit 5 0110 0100 dst M3 M2 M1 0001 S2 S1 src

64:5 modac 10 0110 0100 mask src M3 M2 M1 0101 S2 S1 dst

65:0 modify 6 0110 0101 src/dst src M3 M2 M1 0000 S2 S1 mask

65:1 extract 7 0110 0101 src/dst len M3 M2 M1 0001 S2 S1 bitpos

65:4 modtc 10 0110 0101 mask src M3 M2 M1 0100 S2 S1 dst

65:5 modpc 17 0110 0101 src/dst mask M3 M2 M1 0101 S2 S1 src

65:8 intctl 12-1
6 0110 0101 dst M3 M2 M1 1000 S2 S1 src1

65:9 sysctl 10-1
001 0110 0101 src/dst src2 M3 M2 M1 1001 S2 S1 src1

65:B icctl 10-1
001 0110 0101 src/dst src2 M3 M2 M1 1011 S2 S1 src1

Table B-2. REG Format Instruction Encodings (Sheet 2 of 4)

O
p

co
d

e

M
n

em
o

n
ic

C
yc

le
s

to
 E

xe
cu

te

O
p

co
d

e
 (

11
 -

 4
)

sr
c/

d
st

sr
c2

M
o

d
e

O
p

co
d

e
 (

3-
0)

S
p

ec
ia

l
 F

la
g

s

sr
c1

31 24 2319 18 .14 13 12 11 10 7 6 5 4 0

1. Execution time based on function performed by instruction.
i960® RM/RN I/O Processor Developer’s Manual B-3

Opcodes and Execution Times
65:C dcctl 10-1
001 0110 0101 src/dst src2 M3 M2 M1 1100 S2 S1 src1

65:D halt • 0110 0101 M3 M2 M1 1101 S2 S1 src1

66:0 calls 30 0110 0110 M3 M2 M1 0000 S2 S1 src

66:B mark 8 0110 0110 M3 M2 M1 1011 S2 S1

66:C fmark 8 0110 0110 M3 M2 M1 1100 S2 S1

66:D flushreg 15 0110 0110 M3 M2 M1 1101 S2 S1

66:F syncf 4 0110 0110 M3 M2 M1 1111 S2 S1

67:0 emul 7 0110 0111 dst src2 M3 M2 M1 0000 S2 S1 src1

67:1 ediv 40 0110 0111 dst src2 M3 M2 M1 0001 S2 S1 src1

70:1 mulo 2-4 0111 0000 dst src2 M3 M2 M1 0001 S2 S1 src1

70:8 remo 40 0111 0000 dst src2 M3 M2 M1 1000 S2 S1 src1

70:B divo 40 0111 0000 dst src2 M3 M2 M1 1011 S2 S1 src1

74:1 muli 2-4 0111 0100 dst src2 M3 M2 M1 0001 S2 S1 src1

74:8 remi 40 0111 0100 dst src2 M3 M2 M1 1000 S2 S1 src1

74:9 modi 40 0111 0100 dst src2 M3 M2 M1 1001 S2 S1 src1

74:B divi 40 0111 0100 dst src2 M3 M2 M1 1011 S2 S1 src1

78:0 addono 1 0111 1000 dst src2 M3 M2 M1 0000 S2 S1 src1

78:1 addino 1 0111 1000 dst src2 M3 M2 M1 0001 S2 S1 src1

78:2 subono 1 0111 1000 dst src2 M3 M2 M1 0010 S2 S1 src1

78:3 subino 1 0111 1000 dst src2 M3 M2 M1 0011 S2 S1 src1

78:4 selno 1 0111 1000 dst src2 M3 M2 M1 0100 S2 S1 src1

79:0 addog 1 0111 1001 dst src2 M3 M2 M1 0000 S2 S1 src1

79:1 addig 1 0111 1001 dst src2 M3 M2 M1 0001 S2 S1 src1

79:2 subog 1 0111 1001 dst src2 M3 M2 M1 0010 S2 S1 src1

79:3 subig 1 0111 1001 dst src2 M3 M2 M1 0011 S2 S1 src1

79:4 selg 1 0111 1001 dst src2 M3 M2 M1 0100 S2 S1 src1

7A:0 addoe 1 0111 1010 dst src2 M3 M2 M1 0000 S2 S1 src1

7A:1 addie 1 0111 1010 dst src2 M3 M2 M1 0001 S2 S1 src1

7A:2 suboe 1 0111 1010 dst src2 M3 M2 M1 0010 S2 S1 src1

7A:3 subie 1 0111 1010 dst src2 M3 M2 M1 0011 S2 S1 src1

7A:4 sele 1 0111 1010 dst src2 M3 M2 M1 0100 S2 S1 src1

Table B-2. REG Format Instruction Encodings (Sheet 3 of 4)

O
p

co
d

e

M
n

em
o

n
ic

C
yc

le
s

to
 E

xe
cu

te

O
p

co
d

e
 (

11
 -

 4
)

sr
c/

d
st

sr
c2

M
o

d
e

O
p

co
d

e
 (

3-
0)

S
p

ec
ia

l
 F

la
g

s

sr
c1

31 24 2319 18 .14 13 12 11 10 7 6 5 4 0

1. Execution time based on function performed by instruction.
B-4 i960® RM/RN I/O Processor Developer’s Manual

Opcodes and Execution Times
7B:0 addoge 1 0111 1011 dst src2 M3 M2 M1 0000 S2 S1 src1

7B:1 addige 1 0111 1011 dst src2 M3 M2 M1 0001 S2 S1 src1

7B:2 suboge 1 0111 1011 dst src2 M3 M2 M1 0010 S2 S1 src1

7B:3 subige 1 0111 1011 dst src2 M3 M2 M1 0011 S2 S1 src1

7B:4 selge 1 0111 1011 dst src2 M3 M2 M1 0100 S2 S1 src1

7C:0 addol 1 0111 1100 dst src2 M3 M2 M1 0000 S2 S1 src1

7C:1 addil 1 0111 1100 dst src2 M3 M2 M1 0001 S2 S1 src1

7C:2 subol 1 0111 1100 dst src2 M3 M2 M1 0010 S2 S1 src1

7C:3 subil 1 0111 1100 dst src2 M3 M2 M1 0011 S2 S1 src1

7C:4 sell 1 0111 1100 dst src2 M3 M2 M1 0100 S2 S1 src1

7D:0 addone 1 0111 1101 dst src2 M3 M2 M1 0000 S2 S1 src1

7D:1 addine 1 0111 1101 dst src2 M3 M2 M1 0001 S2 S1 src1

7D:2 subone 1 0111 1101 dst src2 M3 M2 M1 0010 S2 S1 src1

7D:3 subine 1 0111 1101 dst src2 M3 M2 M1 0011 S2 S1 src1

7D:4 selne 1 0111 1101 dst src2 M3 M2 M1 0100 S2 S1 src1

7E:0 addole 1 0111 1110 dst src2 M3 M2 M1 0000 S2 S1 src1

7E:1 addile 1 0111 1110 dst src2 M3 M2 M1 0001 S2 S1 src1

7E:2 subole 1 0111 1110 dst src2 M3 M2 M1 0010 S2 S1 src1

7E:3 subile 1 0111 1110 dst src2 M3 M2 M1 0011 S2 S1 src1

7E:4 selle 1 0111 1110 dst src2 M3 M2 M1 0100 S2 S1 src1

7F:0 addoo 1 0111 1111 dst src2 M3 M2 M1 0000 S2 S1 src1

7F:1 addio 1 0111 1111 dst src2 M3 M2 M1 0001 S2 S1 src1

7F:2 suboo 1 0111 1111 dst src2 M3 M2 M1 0010 S2 S1 src1

7F:3 subio 1 0111 1111 dst src2 M3 M2 M1 0011 S2 S1 src1

7F:4 sello 1 0111 1111 dst src2 M3 M2 M1 0100 S2 S1 src1

Table B-2. REG Format Instruction Encodings (Sheet 4 of 4)

O
p

co
d

e

M
n

em
o

n
ic

C
yc

le
s

to
 E

xe
cu

te

O
p

co
d

e
 (

11
 -

 4
)

sr
c/

d
st

sr
c2

M
o

d
e

O
p

co
d

e
 (

3-
0)

S
p

ec
ia

l
 F

la
g

s

sr
c1

31 24 2319 18 .14 13 12 11 10 7 6 5 4 0

1. Execution time based on function performed by instruction.
i960® RM/RN I/O Processor Developer’s Manual B-5

Opcodes and Execution Times

Table B-3. COBR Format Instruction Encodings

O
p

co
d

e

M
n

em
o

n
ic

C
yc

le
s

to
 E

xe
cu

te

O
p

co
d

e

sr
c1

sr
c2 M

D
is

p
la

ce
m

en
t

T S
2

3124 23 19 1814 13 122 1 0

20 testno 4 0010 0000 dst M1 T S2

21 testg 4 0010 0001 dst M1 T S2

22 teste 4 0010 0010 dst M1 T S2

23 testge 4 0010 0011 dst M1 T S2

24 testl 4 0010 0100 dst M1 T S2

25 testne 4 0010 0101 dst M1 T S2

26 testle 4 0010 0110 dst M1 T S2

27 testo 4 0010 0111 dst M1 T S2

30 bbc 2 + 11 0011 0000 bitpos src M1 targ T S2

31 cmpobg 2 + 1 0011 0001 src1 src2 M1 targ T S2

32 cmpobe 2 + 1 0011 0010 src1 src2 M1 targ T S2

33 cmpobge 2 + 1 0011 0011 src1 src2 M1 targ T S2

34 cmpobl 2 + 1 0011 0100 src1 src2 M1 targ T S2

35 cmpobne 2 + 1 0011 0101 src1 src2 M1 targ T S2

36 cmpoble 2 + 1 0011 0110 src1 src2 M1 targ T S2

37 bbs 2 + 1 0011 0111 bitpos src M1 targ T S2

38 cmpibno 2 + 1 0011 1000 src1 src2 M1 targ T S2

39 cmpibg 2 + 1 0011 1001 src1 src2 M1 targ T S2

3A cmpibe 2 + 1 0011 1010 src1 src2 M1 targ T S2

3B cmpibge 2 + 1 0011 1011 src1 src2 M1 targ T S2

3C cmpibl 2 + 1 0011 1100 src1 src2 M1 targ T S2

3D cmpibne 2 + 1 0011 1101 src1 src2 M1 targ T S2

3E cmpible 2 + 1 0011 1110 src1 src2 M1 targ T S2

3F cmpibo 2 + 1 0011 1111 src1 src2 M1 targ T S2

1. Indicates that 2 cycles are required to execute the instruction plus an additional cycle to fetch the TA get instruction when
the branch is taken.
B-6 i960® RM/RN I/O Processor Developer’s Manual

Opcodes and Execution Times
Table B-4. CTRL Format Instruction Encodings

O
p

co
d

e

M
n

em
o

n
ic

C
yc

le
s

to

E
xe

cu
te

O
p

co
d

e

D
is

p
la

ce
m

en
t

T 0

31............24 23...........2 1 0

08 b 1 + 11 0000 1000 targ T 0

09 call 7 0000 1001 targ T 0

0A ret 6 0000 1010 T 0

0B bal 1 + 1 0000 1011 targ T 0

10 bno 1 + 1 0001 0000 targ T 0

11 bg 1 + 1 0001 0001 targ T 0

12 be 1 + 1 0001 0010 targ T 0

13 bge 1 + 1 0001 0011 targ T 0

14 bl 1 + 1 0001 0100 targ T 0

15 bne 1 + 1 0001 0101 targ T 0

16 ble 1 + 1 0001 0110 targ T 0

17 bo 1 + 1 0001 0111 targ T 0

18 faultno 13 0001 1000 T 0

19 faultg 13 0001 1001 T 0

1A faulte 13 0001 1010 T 0

1B faultge 13 0001 1011 T 0

1C faultl 13 0001 1100 T 0

1D faultne 13 0001 1101 T 0

1E faultle 13 0001 1110 T 0

1F faulto 13 0001 1111 T 0

1. Indicates that 2 cycles are required to execute the instruction plus an additional cycle to fetch the target instruction when the
branch is taken.
i960® RM/RN I/O Processor Developer’s Manual B-7

Opcodes and Execution Times
Table B-5. Cycle Counts for sysctl Operations

Operation Cycles to Execute

Post Interrupt 20

Purge I-cache 19

Enable I-cache 20

Disable I-cache 22

Software Reset 329+bus

Load Control Register Group 26

Request Breakpoint Resource 21-22

Table B-6. Cycle Counts for icctl Operations

Operation Cycles to Execute

Disable I-cache 18

Enable I-cache 16

Invalidate I-cache 18

Load and Lock I-cache 5193

I-cache Status Request 21

I-cache Locking Status 20

Table B-7. Cycle Counts for dcctl Operations

Operation Cycles to Execute

Disable D-cache 18

Enable D-cache 18

Invalidate D-cache 19

Load and Lock D-cache 19

D-cache Status Request 16

Quick Invalidate D-cache 14

Table B-8. Cycle Counts for intctl Operations

Operation Cycles to Execute

Disable Interrupts 13

Enable Interrupts 13

Interrupt Status Request 8
B-8 i960® RM/RN I/O Processor Developer’s Manual

Opcodes and Execution Times
Table B-9. MEM Format Instruction Encodings

3124 23.19 1814 1312 110

Opcode src/dst ABASE Mode Offset

3124 23.19 1814 13121110 97 65 40

Opcode src/dst ABASE Mode Scale 00 Index

Displacement

Effective Address

efa = offset Opcode dst 0 0 offset

offset(reg) Opcode dst reg 1 0 offset

(reg) Opcode dst reg 0 1 0 0 00

disp + 8 (IP) Opcode dst 0 1 0 1 00

Displacement

(reg1)[reg2 * scale] Opcode dst reg1 0 1 1 1 scale 00 reg2

disp Opcode dst 1 1 0 0 00

Displacement

disp(reg) Opcode dst reg 1 1 0 1 00

Displacement

disp[reg * scale] Opcode dst 1 1 1 0 scale 00 reg

Displacement

disp(reg1)[reg2*scale] Opcode dst reg1 1 1 1 1 scale 00 reg2

Displacement

Opcode Mnemonic Cycles to
Execute Opcode Mnemonic Cycles to

Execute

80 ldob 9A stl

82 stob A0 ldt

84 bx 4-7 A2 stt

85 balx 5-8

86 callx 9-12 B0 ldq

88 ldos B2 stq

8A stos C0 ldib

8C lda C2 stib

90 ld C8 ldis

92 st CA stis

98 ldl

1. The number of cycles required to execute these instructions is based on the addressing mode used (see Table B-10).
i960® RM/RN I/O Processor Developer’s Manual B-9

Opcodes and Execution Times
Table B-10. Addressing Mode Performance

Mode Assembler Syntax Memory
Format

Number of
Instruction

words

Cycles to
Execute

Absolute Offset exp MEMA 1 1

Absolute Displacement exp MEMB 2 2

Register Indirect (reg) MEMB 1 1

Register Indirect with Offset exp(reg) MEMA 1 1

Register Indirect with
Displacement exp(reg) MEMB 2 2

Index with Displacement exp[reg*scale] MEMB 2 2

Register Indirect with Index (reg)[reg*scale] MEMB 1 6

Register Indirect with Index +
Displacement exp(reg)[reg*scale] MEMB 2 6

Instruction Pointer with
Displacement exp(IP) MEMB 2 6
B-10 i960® RM/RN I/O Processor Developer’s Manual

Memory-Mapped Registers C

This chapter describes the memory-mapped registers for the integrated peripherals.

C.1 Overview

The Peripheral Memory-Mapped Register (PMMR) interface gives software the ability to read and
modify internal control registers. Each register is accessed as a memory-mapped 32-bit register
with a unique memory address. Access is accomplished through regular memory-format
instructions from the i960 core processor. These memory-mapped registers are specific to the
i960® RM/RN I/O processor only.

C.2 Supervisor Space Family Registers and Tables

Table C-1. Access Types

Access Type Description

R Read Read (ld instruction) accesses are allowed.

RO Read Only Only Read (ld instruction) accesses are allowed. Write (st instruction)
accesses are ignored.

W Write Write (st instruction) accesses allowed.

R/W Read/Write ld, st, and sysctl instructions are allowed access.

WwG Write when
Granted

Writing or Modifying (through a st or sysctl instruction) the register is only
allowed when modification-rights to the register have been granted. An
OPERATION.UNIMPLEMENTED fault occurs if an attempt is made to write
the register before rights are granted. Section 10.2.7.2, “Hardware
Breakpoints” on page 10-5 for details about getting modification rights to
breakpoint registers.

Sysctl-RwG
sysctl

Read when
Granted

The value of the register can only be read by executing a sysctl instruction
issued with the modify memory-mapped register message type. Modification
rights to the register must be granted first or an
OPERATION.UNIMPLEMENTED fault occurs when the sysctl is executed.
A ld instruction to the register returns unpredictable results.

AtMod atmod
update

Register can be updated quickly through the atmod instruction. The atmod
ensures correct operation by performing the update of the register in an
atomic manner which provides synchronization with previous and
subsequent operations. This is a faster update mechanism than sysctl and is
optimized for a few special registers.
i960® RM/RN I/O Processor Developer’s Manual C-1

Memory-Mapped Registers
Table C-2. Supervisor Space Register Addresses (Sheet 1 of 2)

Section/Table, Register Name - Acronym, Page 80960 Internal
Bus Address

Reserved
FF00 8000H

to
FF00 80FFH

Section 12.3.2, “Logical Memory Address Registers - LMADR0:1” on page 12-5 FF00 8100H

Reserved FF00 8104H

Table 12-4 “Logical Memory Address Registers – LMADR0:1” on page 12-5 - 0 FF00 8108H

Table 12-5 “Logical Memory Mask Registers – LMMR0:1” on page 12-6 - 0 FF00 810CH

Table 12-4 “Logical Memory Address Registers – LMADR0:1” on page 12-5 - 1 FF00 8110H

Table 12-5 “Logical Memory Mask Registers – LMMR0:1” on page 12-6 - 1 FF00 8114H

Reserved
FF00 8118H

to
FF00 83FFH

Section 10.2.7.6, “Instruction Breakpoint Registers – IPBx” on page 10-10
FF00 8400H

to
FF00 8404H

Reserved
FF00 8408H

to
FF00 841FH

Section 10.2.7.5, “Data Address Breakpoint Registers – DABx” on page 10-9
FF00 8420H

to
FF00 8424H

Reserved
FF00 8428H

to
FF00 843FH

Section 10.2.7.4, “Breakpoint Control Register – BPCON” on page 10-7 FF00 8440H

Reserved
FF00 8444H

to
FF00 84FFH

Section 8.5.3, “Interrupt Pending (IPND) and Interrupt Mask (IMSK) Registers” on
page 8-36 - IPND FF00 8500H

Section 8.5.3, “Interrupt Pending (IPND) and Interrupt Mask (IMSK) Registers” on
page 8-36 – IMSK FF00 8504H

Reserved
FF00 8508H

to
FF00 850FH

Section 8.5.1, “Interrupt Control Register (ICON)” on page 8-33 FF00 8510H

Reserved
FF00 8514H

to
FF00 851FH

Section 8.5.2, “Interrupt Mapping Registers (IMAP0-IMAP2)” on page 8-34 – IMAP0 FF00 8520H

Section 8.5.2, “Interrupt Mapping Registers (IMAP0-IMAP2)” on page 8-34 – IMAP1 FF00 8524H

Section 8.5.2, “Interrupt Mapping Registers (IMAP0-IMAP2)” on page 8-34 – IMAP2 FF00 8528H

Reserved
FF00 852CH

through
FF00 85FFH
C-2 i960® RM/RN I/O Processor Developer’s Manual

Memory-Mapped Registers
Section 12.2.1, “PMCON Registers” on page 12-1 - Register 0 - PMCON0_1
(must be set to 32-bit bus width) FF00 8600H

Reserved FF00 8604H

Section 12.2.1, “PMCON Registers” on page 12-1 - Register 1 - PMCON2_3
(must be set to 32-bit bus width) FF00 8608H

Reserved FF00 860CH

Section 12.2.1, “PMCON Registers” on page 12-1 - Register 2 - PMCON4_5
(must be set to 32-bit bus width) FF00 8610H

Reserved FF00 8614H

Section 12.2.1, “PMCON Registers” on page 12-1 - Register 3 - PMCON6_7
(must be set to 32-bit bus width) FF00 8618H

Reserved FF00 861CH

Section 12.2.1, “PMCON Registers” on page 12-1 - Register 4 - PMCON8_9
(must be set to 32-bit bus width) FF00 8620H

Reserved FF00 8624H

Section 12.2.1, “PMCON Registers” on page 12-1 - Register 5 - PMCON10_11
(must be set to 32-bit bus width) FF00 8628H

Reserved FF00 862CH

Section 12.2.1, “PMCON Registers” on page 12-1 - Register 6 - PMCON12_13
(must be set to 32-bit bus width) FF00 8630H

Reserved FF00 8634H

Table 11-6 “PMCON14_15 Register Bit Description in IBR” on page 11-13
Section 12.2.1, “PMCON Registers” on page 12-1 - Register 7 - PMCON14_15
(must be set to 32-bit bus width)

FF00 8638H

Reserved
FF00 863CH

through
FF00 86F8H

Section 12.2.2, “Bus Control Register – BCON” on page 12-3 FF00 86FCH

Section 11.4.2, “Process Control Block – PRCB” on page 11-14 FF00 8700H

Section 8.1.5, “Interrupt Stack And Interrupt Record” on page 8-6 FF00 8704H

Section 7.6, “User and Supervisor Stacks” on page 7-17 FF00 8708H

Reserved FF00 870CH

Table 11-9 “Processor Device ID Register - PDIDR” on page 11-19 FF00 8710H

Table 11-10 “i960® Core Processor Device ID Register - DEVICEID” on page 11-19 FF00 8710H

Reserved
FF00 8714H

through
FFFF FFFFH

Table C-2. Supervisor Space Register Addresses (Sheet 2 of 2)

Section/Table, Register Name - Acronym, Page 80960 Internal
Bus Address
i960® RM/RN I/O Processor Developer’s Manual C-3

Memory-Mapped Registers
C.3 Peripheral Memory-Mapped Register Address
Space

The PMMR address space is divided to support the integrated peripherals on the i960 RM/RN I/O
processor. Table A-4 provides a summary of all of the non-core specific PMMR registers.

They support the DMA Controllers, Memory Controller, Bus Interface Unit, PCI And Peripheral
Interrupt Controller, Messaging Unit, Internal Arbitration Unit, PCI-to-PCI Bridge Unit, PCI
Address Translation Unit, I2C Bus Interface Unit, Performance Monitoring Unit, and the
Application Accelerator Unit. Each of these peripherals fully describe the independent
functionality of the registers, control and usage.

Portions of the i960 core processor address space are already reserved by the i960 core processor.
Addresses 0000 0000H through 0000 03FFH are reserved for the core processor internal data
RAM. This memory is dedicated to the i960 core processor only and inaccessible from local bus
masters. Addresses FF00 0000H through FFFF FFFFH are reserved for the core processor specific
memory-mapped registers. Accesses to this address space do not generate external bus cycles.

The PMMR interface provides full accessibility from the Primary ATU, Secondary ATU, and the
i960 core processor. Addresses 0000 1000H through 0000 18FFH are allocated to the PMMR
interface.

Table C-3. Timer Registers

Register Name 80960 Local Bus
Address

Reserved
FF00 0000H

to
FF00 02FFH

Table 18.1.3 “Timer Reload Register – TRR0:1” on page 18-7 - 0 FF00 0300H

Table 18.1.2 “Timer Count Register – TCR0:1” on page 18-6 - 0 FF00 0304H

Table 18.1.1 “Timer Mode Registers – TMR0:1” on page 18-3 - 0 FF00 0308H

Reserved FF00 030CH

Table 18.1.3 “Timer Reload Register – TRR0:1” on page 18-7 - 1 FF00 0310H

Table 18.1.2 “Timer Count Register – TCR0:1” on page 18-6 - 1 FF00 0314H

Table 18.1.1 “Timer Mode Registers – TMR0:1” on page 18-3Table 18.1.1 “Timer Mode
Registers – TMR0:1” on page 18-3 - 1 FF00 0318H

Reserved
FF00 031CH

to
FF00 7FFFH
C-4 i960® RM/RN I/O Processor Developer’s Manual

Memory-Mapped Registers

e
efined.
C.4 Accessing The Peripheral Memory-Mapped
Registers

The PMMR interface is a slave device connected to the 80960RM/RN internal bus. This interface
accepts data transactions which appear on the internal bus from the Primary ATU, Secondary
ATU, and the i960 core processor.

The PMMR interface allows these devices to perform read, write, or read-modify-write
transactions. The specific actions taken when modifying any value in the PMMR space is
independently defined within each chapter which describes the functionality of the register.

Note: The PMMR interface does not support multi-word burst accesses from any internal bus master.

All PMMR transactions shall be allowed from the i960 core processor operating in either user
mode or supervisor mode. In addition, the PMMR shall not provide any access fault to the i960
core processor.

The following PMMR registers have read/write access from the internal bus (for both the PCI
Bridge and ATU):

• Vendor ID Register

• Device ID Register

• Revision ID Register

• Class Code Register

• Header Type Register

• Subsystem ID Register

• Subsystem Vendor ID Register

For accesses through PCI configuration cycles, access is specified in the register definition located
in the appropriate chapter.

For PCI Configuration Read transactions, the PMMR shall return a value of zero for registers
declared as “reserved”. For PCI Configuration Write transactions, the PMMR shall discard th
data. For all other types of access, reading or writing a register declared as “reserved” is und
i960® RM/RN I/O Processor Developer’s Manual C-5

Memory-Mapped Registers

y use
to ensure
region.

0 core
tion
s access
N.

e and

gisters
igner.
C.5 Architecturally Reserved Memory Space

The i960 RM/RN I/O Processor provides 4 Gbytes of address space. Portions of this address space
is architecturally reserved and refrained from use by the customers. Figure C-2 shows the reserved
address space.

Addresses FF00 0000H through FFFF FFFFH are reserved for implementation-specific functions.
This address range is termed “reserved” because future i960 architecture implementations ma
these addresses for special functions such as mapped registers or data structures. Therefore,
complete object level compatibility, portable code must not access or depend on values in this

Addresses 0000 0000H through 0000 03FFH are reserved for the internal data RAM of the i96
processor. This internal data RAM contains interrupt vectors plus RAM available to the applica
software for variable allocation or data structures. Loads and stores directed to these addresse
internal memory; instruction fetches from these addresses are not allowed for the 80960RM/R

Addresses 0000 0400H through 0000 1FFFH are reserved for i960 RM/RN I/O processor us
should not be used by the system designer.

Addresses 0000 1000H through 0000 18FFH are allocated to the PMMR interface. These re
are reserved for i960 RM/RN I/O processor use and should not be written by the system des

Figure C-2. i960 RM/RN I/O Processor Address Space

Code/Data
Architecturally Defined Data Structures

External Memory

0000 0000H
Address

0000 07FFH
0000 1000H

FF00 0000H

FFFF FFFFH

Reserved
Address
Space

FEFF FFFFH
FEFF FF60H
FEFF FF5FH Initialization Boot Record (IBR)

0000 03FFH
0000 0400H

0000 18FFH
0000 1900H

FEFF FF30H
FEFF FF2FH

0000 2000H
0000 1FFFH

ATU Outbound Translation Windows

i960® Core Processor Internal Data RAM

i960® RM/RN Processor Reserved

Peripheral Memory-Mapped Registers

i960® RM/RN Processor Reserved

Reserved

i960® Core Processor
Memory-Mapped Register Space
C-6 i960® RM/RN I/O Processor Developer’s Manual

Memory-Mapped Registers
C.6 Peripheral Memory-Mapped Register Address
Space

The PMMR address space is divided to support the integrated peripherals on the i960 RM/RN I/O
processor. Table C-6 shows all of the i960 RM/RN I/O processor integrated peripheral
memory-mapped registers and their internal bus addresses.

\

The registers for the PCI-to-PCI Bridge Unit and Address Translation Units are accessible via PCI
configuration transactions. The DMA Controllers, Bus Interface Unit, Memory Controller, I2C Bus
Interface Unit, Messaging Unit, Application Accelerator Unit, Internal Arbitration Unit,
Performance Monitoring, and the PCI and Peripheral Interrupt Controller must have the address
translation logic configured to translate PCI addresses into the i960 RM/RN I/O Processor address
space to access the memory-mapped registers.

Table C-6 shows all i960® RM/RN I/O processor integrated peripheral memory-mapped registers
and their 80960 internal bus addresses.

Table C-5. 80960 Internal Addresses Assigned to Integrated Peripherals

Integrated Peripheral Internal Address Block

PCI to PCI Bridge Unit 0000 1000H through 0000 10FFH

Performance Monitoring Unit 0000 1100H through 0000 11FFH

Address Translation Unit 0000 1200H through 0000 12FFH

Messaging Unit 0000 1300H through 0000 13FFH

DMA Controller 0000 1400H through 0000 14FFH

Memory Controller 0000 1500H through 0000 15FFH

Internal Arbitration Unit 0000 1600H through 0000 163FH

Bus Interface Unit 0000 1640H through 0000 167FH

I2C Bus Interface Unit 0000 1680H through 0000 16FFH

PCI And Peripheral Interrupt Controller 0000 1700H through 0000 17FFH

Application Accelerator Unit 0000 1800H through 0000 18FFH
i960® RM/RN I/O Processor Developer’s Manual C-7

Memory-Mapped Registers
Table C-6. Peripheral Memory-Mapped Register Locations (Sheet 1 of 9)

80960RM/RN
Peripheral Register Description (Name)

Register
Size in

Bits

Internal Bus
Address

PCI
Configuration

Space Register
Number

PCI to PCI
Bridge Unit

Vendor ID Register 16 0000 1000H 00H

Device ID Register 16 0000 1002H 00H

Primary Command Register 16 0000 1004H 01H

Primary Status Register 16 0000 1006H 01H

Revision ID Register 8 0000 1008H 02H

Class Code Register 24 0000 1009H 02H

Cacheline Size Register 8 0000 100CH 03H

Primary Latency Timer Register 8 0000 100DH 03H

Header Type Register 8 0000 100EH 03H

Reserved x
0000 100FH

through
0000 1017H

04H
through

05H

Primary Bus Number Register 8 0000 1018H 06H

Secondary Bus Number Register 8 0000 1019H 06H

Subordinate Bus Number Register 8 0000 101AH 06H

Secondary Latency Timer Register 8 0000 101BH 06H

I/O Base Register 8 0000 101CH 07H

I/O Limit Register 8 0000 101DH 07H

Secondary Status Registe1 16 0000 101EH 07H

Memory Base Register 16 0000 1020H 08H

Memory Limit Register 16 0000 1022H 08H

Prefetchable Memory Base Register 16 0000 1024H 09H

Prefetchable Memory Limit Register 16 0000 1026H 09H

Reserved x
0000 1028H

through
0000 1033H

10H

Bridge Subsystem Vendor ID Register 16 0000 1034H 11H

Bridge Subsystem ID Register 16 0000 1036H 11H

Reserved x
0000 1038H

through
0000 103DH

0AH
through

0EH

Bridge Control Register 16 0000 103EH 0FH

Extended Bridge Control Register 16 0000 1040H 10H

Secondary IDSEL Control Register 16 0000 1042H 10H

Primary Bridge Interrupt Status Register 32 0000 1044H 11H

Secondary Bridge Interrupt Status Register 32 0000 1048H 12H

Secondary Arbitration Control Register 32 0000 104CH 13H

PCI Interrupt Routing Select Register 32 0000 1050H 14H
C-8 i960® RM/RN I/O Processor Developer’s Manual

Memory-Mapped Registers
PCI to PCI
Bridge Unit

Secondary I/O Base Register 8 0000 1054H 15H

Secondary I/O Limit Register 8 0000 1055H 15H

Reserved x 0000 1056H 15H

Secondary Memory Base Register 16 0000 1058H 16H

Secondary Memory Limit Register 16 0000 105AH 16H

Secondary Decode Enable Register 16 0000 105CH 17H

Queue Control 16 0000 105EH 17H

Reserved x

0000 1060H

through

 0000
10FFH

Performance
Monitoring

Unit

Global Timer Mode Register 32 0000 1100H

Must Translate
PCI address to
the i960 RM/RN
I/O Processor

Memory-Mapped
 Address

Event Select Register 32 0000 1104H

Event Monitoring Interrupt Status Register 32 0000 1108H

Reserved x 0000
110CH

Global Time Stamp Register 32 0000 1110H

Programmable Event Counter Register 1 32 0000 1114H

Programmable Event Counter Register 2 32 0000 1118H

Programmable Event Counter Register 3 32 0000
111CH

Programmable Event Counter Register 4 32 0000 1120H

Programmable Event Counter Register 5 32 0000 1124H

Programmable Event Counter Register 6 32 0000 1128H

Programmable Event Counter Register 7 32 0000
112CH

Programmable Event Counter Register 8 32 0000 1130H

Programmable Event Counter Register 9 32 0000 1134H

Programmable Event Counter Register 10 32 0000 1138H

Programmable Event Counter Register 11 32 0000
113CH

Programmable Event Counter Register 12 32 0000 1140H

Programmable Event Counter Register 13 32 0000 1144H

Programmable Event Counter Register 14 32 0000 1148H

Reserved x

0000 114CH

through

 0000
11FFH

Table C-6. Peripheral Memory-Mapped Register Locations (Sheet 2 of 9)

80960RM/RN
Peripheral Register Description (Name)

Register
Size in

Bits

Internal Bus
Address

PCI
Configuration

Space Register
Number
i960® RM/RN I/O Processor Developer’s Manual C-9

Memory-Mapped Registers
Address
Translation

Unit

ATU Vendor ID Register 16 0000 1200H 00H

ATU Device ID Register 16 0000 1202H 00H

Primary ATU Command Register 16 0000 1204H 01H

Primary ATU Status Register 16 0000 1206H 01H

ATU Revision ID Register 8 0000 1208H 02H

ATU Class Code Register 24 0000 1209H 02H

ATU Cacheline Size Register 8 0000 120CH 03H

ATU Latency Timer Register 8 0000 120DH 03H

ATU Header Type Register 8 0000 120EH 03H

 BIST Register 8 0000 120FH 03H

Primary Inbound ATU Base Address Register 32 0000 1210H 04H

Reserved 32 0000 1214H 05H

Reserved 32 0000 1218H 06H

Reserved 32 0000 121CH 07H

Reserved 32 0000 1220H 08H

Reserved 32 0000 1224H 09H

Reserved 32 0000 1228H 0AH

ATU Subsystem Vendor ID Register 16 0000 122CH 0BH

ATU Subsystem ID Register 16 0000 122EH 0BH

Expansion ROM Base Address Register 32 0000 1230H 0CH

Reserved 32 0000 1234H 0DH

Reserved 32 0000 1238H 0EH

ATU Interrupt Line Register 8 0000 123CH 0FH

ATU Interrupt Pin Register 8 0000 123DH 0FH

ATU Minimum Grant Register 8 0000 123EH 0FH

ATU Maximum Latency Register 8 0000 123FH 0FH

Primary Inbound ATU Limit Register 32 0000 1240H 10H

Primary Inbound ATU Translate Value Register 32 0000 1244H 11H

Secondary Inbound ATU Base Address Register 32 0000 1248H 12H

Secondary Inbound ATU Limit Register 32 0000 124CH 13H

Secondary Inbound ATU Translate Value
Register 32 0000 1250H 14H

Primary Outbound Memory Window Value
Register 32 0000 1254H 15H

Reserved 32 0000 1258H 16H

Primary Outbound I/O Window Value Register 32 0000 125C 17H

Table C-6. Peripheral Memory-Mapped Register Locations (Sheet 3 of 9)

80960RM/RN
Peripheral Register Description (Name)

Register
Size in

Bits

Internal Bus
Address

PCI
Configuration

Space Register
Number
C-10 i960® RM/RN I/O Processor Developer’s Manual

Memory-Mapped Registers
Address
Translation

Unit

Primary Outbound DAC Window Value Register 32 0000 1260H 18H

Primary Outbound Upper 64-bit DAC Register 32 0000 1264H 19H

Secondary Outbound Memory Window Value
Register 32 0000 1268H 1AH

Secondary Outbound I/O Window Value
Register 32 0000 126CH 1BH

Reserved 32 0000 1270H 1CH

Expansion ROM Limit Register 32 0000 1274H 1DH

Expansion ROM Translate Value Register 32 0000 1278H 1EH

Reserved 32 0000 127CH 1FH

Reserved 32 0000 1280H 20H

Reserved 32 0000 1284H 21H

ATU Configuration Register 32 0000 1288H 22H

Reserved 32 0000 128CH 23H

Primary ATU Interrupt Status Register 32 0000 1290H 24H

Secondary ATU Interrupt Status Register 32 0000 1294H 25H

Secondary ATU Command Register 16 0000 1298H 26H

Secondary ATU Status Register 16 0000 129AH 26H

Secondary Outbound DAC Window Value
Register 32 0000 129CH 27H

Secondary Outbound Upper 64-bit DAC
Register 32 0000 12A0H 28H

Primary Outbound Configuration Cycle Address
Register 32 0000 12A4H 29H

Secondary Outbound Configuration Cycle
Address Register 32 0000 12A8H 2AH

Primary Outbound Configuration Cycle Data
Register 32 0000 12ACH Reserved

Secondary Outbound Configuration Cycle Data
Register 32 0000 12B0H Reserved

Primary ATU Queue Control Register 32 0000 12B4H 2DH

Secondary ATU Queue Control Register 32 0000 12B8H 2EH

Primary ATU Interrupt Mask Register 32 0000 12BCH 2FH

Secondary ATU Interrupt Mask Register 32 0000 12C0H 30H

Reserved x

0000 12C4H

through

0000 12FFH

Table C-6. Peripheral Memory-Mapped Register Locations (Sheet 4 of 9)

80960RM/RN
Peripheral Register Description (Name)

Register
Size in

Bits

Internal Bus
Address

PCI
Configuration

Space Register
Number
i960® RM/RN I/O Processor Developer’s Manual C-11

Memory-Mapped Registers
Messaging
Unit

Reserved x
0000 1300H

through
0000 130CH

Available
through ATU

Primary Inbound
Translation

Window or must
translate PCI

address to the
i960 RM/RN I/O

Processor
Memory-Mapped

 Address

Inbound Message Register 0 32 0000 1310H

Inbound Message Register 1 32 0000 1314H

Outbound Message Register 0 32 0000 1318H

Outbound Message Register 1 32 0000 131CH

Inbound Doorbell Register 32 0000 1320H

Inbound Interrupt Status Register 32 0000 1324H

Inbound Interrupt Mask Register 32 0000 1328H

Outbound Doorbell Register 32 0000 132CH

Outbound Interrupt Status Register 32 0000 1330H

Outbound Interrupt Mask Register 32 0000 1334H

Reserved x
0000 1338H

through
0000 134FH

Must Translate
PCI address to
the i960 RM/RN
I/O Processor

Memory-Mapped
 Address

MU Configuration Register 32 0000 1350H

Queue Base Address Register 32 0000 1354H

Reserved 32 0000 1358H

Reserved 32 0000 135CH

Inbound Free Head Pointer Register 32 0000 1360H

Inbound Free Tail Pointer Register 32 0000 1364H

Inbound Post Head Pointer Register 32 0000 1368H

Inbound Post Tail Pointer Register 32 0000 136CH

Outbound Free Head Pointer Register 32 0000 1370H

Outbound Free Tail Pointer Register 32 0000 1374H

Outbound Post Head Pointer Register 32 0000 1378H

Outbound Post Tail Pointer Register 32 0000 137CH

Index Address Register 32 0000 1380H

Reserved x
0000 1384H

through
0000 13FFH

Table C-6. Peripheral Memory-Mapped Register Locations (Sheet 5 of 9)

80960RM/RN
Peripheral Register Description (Name)

Register
Size in

Bits

Internal Bus
Address

PCI
Configuration

Space Register
Number
C-12 i960® RM/RN I/O Processor Developer’s Manual

Memory-Mapped Registers
DMA
Controller

Channel 0 Channel Control Register 32 0000 1400H

Must Translate
PCI address to
the i960 RM/RN
I/O Processor

Memory-Mapped
 Address

Channel 0 Channel Status Register 32 0000 1404H

Reserved 32 0000 1408H

Channel 0 Descriptor Address Register 32 0000 140CH

Channel 0 Next Descriptor Address Register 32 0000 1410H

Channel 0 PCI Address Register 32 0000 1414H

Channel 0 PCI Upper Address Register 32 0000 1418H

Channel 0 Internal Bus Address Register 32 0000 141CH

Channel 0 Byte Count Register 32 0000 1420H

Channel 0 Descriptor Control Register 32 0000 1424H

Reserved x
0000 1428H

through
0000 143FH

Channel 1 Channel Control Register 32 0000 1440H

Channel 1 Channel Status Register 32 0000 1444H

Reserved 32 0000 1448H

Channel 1 Descriptor Address Register 32 0000 144CH

Channel 1 Next Descriptor Address Register 32 0000 1450H

Channel 1 PCI Address Register 32 0000 1454H

Channel 1 PCI Upper Address Register 32 0000 1458H

Channel 1 Internal Bus Address Register 32 0000 145CH

Channel 1 Byte Count Register 32 0000 1460H

Channel 1 Descriptor Control Register 32 0000 1464H

Reserved x
0000 1468H

through
0000 147FH

Channel 2 Channel Control Register 32 0000 1480H

Channel 2 Channel Status Register 32 0000 1484H

Reserved 32 0000 1488H

Channel 2 Descriptor Address Register 32 0000 148CH

Channel 2 Next Descriptor Address Register 32 0000 1490H

Channel 2 PCI Address Register 32 0000 1494H

Channel 2 PCI Upper Address Register 32 0000 1498H

Channel 2 Internal Bus Address Register 32 0000 149CH

Channel 2 Byte Count Register 32 0000 14A0H

Channel 2 Descriptor Control Register 32 0000 14A4H

Reserved x
0000 14A8H

through
0000 14FFH

Table C-6. Peripheral Memory-Mapped Register Locations (Sheet 6 of 9)

80960RM/RN
Peripheral Register Description (Name)

Register
Size in

Bits

Internal Bus
Address

PCI
Configuration

Space Register
Number
i960® RM/RN I/O Processor Developer’s Manual C-13

Memory-Mapped Registers
Memory
Controller

SDRAM Initialization Register 32 0000 1500H

Must Translate
PCI address to
the i960 RM/RN
I/O Processor

Memory-mapped
 Address

SDRAM Control Register 32 0000 1504H

SDRAM Base Register 32 0000 1508H

SDRAM Bank 0 Size Register 32 0000 150CH

SDRAM Bank 1 Size Register 32 0000 1510H

Reserved 32 0000 1514H

Reserved 32 0000 1518H

Reserved 32 0000 151CH

Reserved 32 0000 1520H

Reserved 32 0000 1524H

Reserved 32 0000 1528H

Reserved 32 0000 152CH

Reserved 32 0000 1530H

ECC Control Register 32 0000 1534H

ECC Log 0 Register 32 0000 1538H

ECC Log 1 Register 32 0000 153CH

ECC Address 0 Register 32 0000 1540H

ECC Address 1 Register 32 0000 1544H

ECC Test Register 32 0000 1548H

Flash Base 0 Register 32 0000 154CH

Flash Base 1 Register 32 0000 1550H

Flash Bank 0 Size Register 32 0000 1554H

Flash Bank 1 Size Register 32 0000 1558H

Flash Wait State 0 Register 32 0000 155CH

Flash Wait State 1 Register 32 0000 1560H

Memory Controller Interrupt Status Register 32 0000 1564H

Refresh Frequency Register 32 0000 1568H

Reserved x
0000 156CH

through
0000 15FFH

 Internal
Arbitration

Unit

Internal Arbitration Control Register 32 0000 1600H
Must Translate
PCI address to
the i960 RM/RN
I/O Processor

Memory-mapped
 Address

Master Latency Timer Register 32 0000 1604H

Multi-Transaction Timer Register 32 0000 1608H

Reserved x
0000 160CH

through
0000 163FH

Table C-6. Peripheral Memory-Mapped Register Locations (Sheet 7 of 9)

80960RM/RN
Peripheral Register Description (Name)

Register
Size in

Bits

Internal Bus
Address

PCI
Configuration

Space Register
Number
C-14 i960® RM/RN I/O Processor Developer’s Manual

Memory-Mapped Registers
Bus Interface
Unit

BIU Control Register 32 0000 1640H Must Translate
PCI address to
the i960 RM/RN
I/O Processor

Memory-mapped
 Address

BIU Interrupt Status Register 32 0000 1644H

Reserved x
0000 1648H

through
0000 167FH

I2C Bus
Interface Unit

I2C Control Register 32 0000 1680H

Must Translate
PCI address to
the i960 RM/RN
I/O Processor

Memory-mapped
 Address

I2C Status Register 32 0000 1684H

I2C Slave Address Register 32 0000 1688H

I2C Data Buffer Register 32 0000 168CH

I2C Clock Control Register 32 0000 1690H

I2C Bus Monitor Register 32 0000 1694H

Reserved x
0000 1698H

through
0000 16FFH

Table C-6. Peripheral Memory-Mapped Register Locations (Sheet 8 of 9)

80960RM/RN
Peripheral Register Description (Name)

Register
Size in

Bits

Internal Bus
Address

PCI
Configuration

Space Register
Number
i960® RM/RN I/O Processor Developer’s Manual C-15

Memory-Mapped Registers
PCI And
Peripheral
Interrupt

Controller

NMI Interrupt Status Register 32 0000 1700H Must Translate
PCI address to
the i960 RM/RN
I/O Processor

Memory-mapped
 Address

XINT7 Interrupt Status Register 32 0000 1704H

XINT6 Interrupt Status Register 32 0000 1708H

PCI Interrupt Routing Select Register 32

See
PCI to PCI

Bridge
Configu-

ration Space

(0000
1050H)

14H

Processor Device ID Register 32 0000 1710H

Must Translate
PCI address to
the i960 RM/RN
I/O Processor

Memory-mapped
 Address

Reserved x
0000 1714H

through
0000 17FFH

Application
Accelerator

Unit

Accelerator Control Register 32 0000 1800H

Accelerator Status Register 32 0000 1804H

Accelerator Descriptor Address Register 32 0000 1808H

Accelerator Next Descriptor Address Register 32 0000 180CH

i960 RM/RN I/O Processor Source Address 1
Register 32 0000 1810H

i960 RM/RN I/O Processor Source Address 2
Register 32 0000 1814H

i960 RM/RN I/O Processor Source Address 3
Register 32 0000 1818H

i960 RM/RN I/O Processor Source Address 4
Register 32 0000 181CH

i960 RM/RN I/O Processor Destination Address
Register 32 0000 1820H

Accelerator Byte Count Register 32 0000 1824H

Accelerator Descriptor Control Register 32 0000 1828H

i960 RM/RN I/O Processor Source Address 5
Register 32 0000 182CH

i960 RM/RN I/O Processor Source Address 6
Register 32 0000 1830H

i960 RM/RN I/O Processor Source Address 7
Register 32 0000 1834H

i960 RM/RN I/O Processor Source Address 8
Register 32 0000 1838H

Reserved x
0000 183CH

through
0000 18FFH

Table C-6. Peripheral Memory-Mapped Register Locations (Sheet 9 of 9)

80960RM/RN
Peripheral Register Description (Name)

Register
Size in

Bits

Internal Bus
Address

PCI
Configuration

Space Register
Number
C-16 i960® RM/RN I/O Processor Developer’s Manual

Index

A
absolute

displacement addressing mode 2-5
memory addressing mode 2-5
offset addressing mode 2-5

AC 3-14
AC register, see Arithmetic Controls (AC) register
access faults 3-7
access types

restrictions 3-6
ADD 6-6
add

conditional instructions 6-6
integer instruction 6-9
ordinal instruction 6-9
ordinal with carry instruction 6-8

addc 6-8
addi 6-9
addie 6-6
addig 6-6
addige 6-6
addil 6-6
addile 6-6
addine 6-6
addino 6-6
addio 6-6
addo 6-9
addoe 6-6
addog 6-6
addoge 6-6
addol 6-6
addole 6-6
addone 6-6
addono 6-6
addoo 6-6
Address Translation Unit 1-3

initialization 11-2
addressing mode

examples 2-6
register indirect 2-5

addressing registers and literals 3-4
alignment, registers and literals 3-4
alterbit 6-10
and 6-11
andnot 6-11
Application 20-1
argument list 7-12
Arithmetic Controls Register - AC 3-14
Arithmetic Controls (AC) register 3-14

condition code flags 3-14
initialization 3-14
integer overflow flag 3-15
integer overflow mask bit 3-15

no imprecise faults bit 3-15
arithmetic instructions 5-6

add, subtract, multiply or divide 5-7
extended-precision instructions 5-9
remainder and modulo instructions 5-8
shift and rotate instructions 5-8

arithmetic operations and data types 5-7
assert (defined) 1-11
atadd 3-12, 4-8, 6-12
atmod 3-12, 4-8, 6-13, C-1
atomic access 3-11
atomic add instruction 6-12
atomic instructions 5-17
atomic modify instruction 6-13
atomic-read-modify-write sequence 3-6
ATU

Error conditions 15-35
Expansion ROM Translation Unit 15-27
inbound address translation 15-5
initialization 11-2
overview 15-1
transaction queues 15-28
translating in/outbound address 15-3

ATU Interrupt Pin Register - ATUIPR 15-64
ATU Subsystem ID Register - ASIR 15-60
ATU Subsystem Vendor ID Register - ASVIR 15-60

B
b 6-14
bal 6-15
balx 6-15
bbc 6-16
bbs 6-16
BCON 12-3
BCON register 12-3
be 6-17
bg 6-17
bge 3-15, 6-17
Big endian 12-8
bit field instructions 5-10
bit instructions 5-10
bits

clear 1-11
set 1-11

bits and bit fields 2-3
bl 6-17
ble 6-17
bne 6-17
bno 6-17
bo 6-17
boundary conditions

internal memory locations 12-8
i960® RM/RN I/O Processor Developer’s Manual Index-1

LMT boundaries 12-8
logical data template ranges 12-8

Boundary-Scan Register 23-6
boundary-scan register 23-6
boundary-scan (JTAG) 23-1

architecture 23-2
test logic 23-2

BPCON 10-7
branch

and link extended instruction 6-15
and link instruction 6-15
check bit and branch if clear set instruction 6-16
check bit and branch if set instruction 6-16
conditional instructions 6-17
extended instruction 6-14
instruction 6-14

branch instructions, overview 5-12
compare and branch instructions 5-14
conditional branch instructions 5-13
unconditional branch instructions 5-13

branch-and-link 7-1
returning from 7-19

branch-and-link instruction 7-1
branch-if-greater-or-equal instruction 3-15
breakpoint

resource request message 10-6
Breakpoint Control Register - BPCON 10-7
Breakpoint Control (BPCON) register 10-7

programming 10-8
bswap 6-19
built-in self test 11-6
bus confidence self test 11-7
Bus Control Register Bit Definitions - BCON 12-3
Bus Control (BCON) register 12-3

BCON.irp bit 4-2
BCON.sirp bit 4-1

Bus Controller
logical memory attributes 12-4
memory attributes 12-1

Bus Controller Unit (BCU)
PMCON initialization 12-2

bus snooping 4-5, 4-8
bx 6-14
bypass register 23-6
byte instructions 5-10
byte swap instruction 6-19

C
cache

data
cache coherency and non-cacheable accesses 4-8
described 4-5
enabling and disabling 4-5
fill policy 4-6
partial-hit multi-word data accesses 4-6
visibility 4-8
write policy 4-7

instruction
enabling and disabling 4-4

loading and locking instruction 4-4
visibility 4-5

load-and-lock mechanism 4-4
local register 4-2
stack frame 4-2

cacheable writes (stores) 4-7
caching of interrupt-handling procedure 8-29
caching of local register sets

frame fills 7-7
frame spills 7-7
mapping to the procedure stack 7-11
updating the register cache 7-11

call
extended instruction 6-23
instruction 6-20
system instruction 6-21

call 6-20, 7-2, 7-6
call and return instructions 5-15
call and return mechanism 7-1, 7-2

explicit calls 7-1
implicit calls 7-1
local register cache 7-3
local registers 7-3
procedure stack 7-3
register and stack management 7-4

frame pointer 7-4
previous frame pointer 7-5
return type field 7-5
stack pointer 7-4

stack frame 7-2
call and return operations 7-5

call operation 7-6
return operation 7-6

calls 3-18, 6-21, 7-2, 7-6
call-trace mode 10-3
callx 6-23, 7-2, 7-6
carry conditions 3-14
check bit instruction 6-24
chkbit 6-24
clear bit instruction 6-25
clear bits 1-11
clrbit 6-25
cmpdeci 6-26
cmpdeco 6-26
cmpi 5-11, 6-28
cmpib 5-11
cmpibe 6-30
cmpibg 6-30
cmpibge 6-30
cmpibl 6-30
cmpible 6-30
cmpibne 6-30
cmpibno 6-30
cmpibo 6-30
cmpinci 6-27
cmpinco 6-27
cmpis 5-11
cmpo 5-11, 6-28
cmpobe 6-30
cmpobg 6-30
Index-2 i960® RM/RN I/O Processor Developer’s Manual

cmpobge 6-30
cmpobl 6-30
cmpoble 6-30
cmpobne 6-30
cold reset 11-5
compare

and branch conditional instructions 6-30
and conditional compare instructions 5-11
and decrement integer instruction 6-26
and decrement ordinal instruction 6-26
and increment integer instruction 6-27
and increment ordinal instruction 6-27
integer conditional instruction 6-32
integer instruction 6-28
ordinal conditional instruction 6-32
ordinal instruction 6-28

comparison instructions, overview
compare and increment or decrement instructions 5-11
test condition instructions 5-12

concmpi 6-32
concmpo 6-32
conditional branch instructions 3-14
conditional fault instructions 5-16
control registers 3-1, 3-6

memory-mapped 3-5
control table 3-1, 3-6, 3-9

alignment 3-12

D
DABx 10-9
DAC 1-2
Data Address Breakpoint Register - DABx 10-9
Data Address Breakpoint (DAB) registers 10-9

programming 10-8
data alignment in external memory 3-12
data cache

cache coherency and non-cacheable accesses 4-8
coherency

I/O and bus masters 4-8
control instruction 6-33
described 4-5
enabling and disabling 4-5
fill policy 4-6
partial-hit multi-word data accesses 4-6
visibility 4-8
write policy 4-7

data movement instructions 5-5
load address instruction 5-6
load instructions 5-5
move instructions 5-6

data register
timing diagram 23-23

data structures
control table 3-1, 3-6, 3-9
fault table 3-1, 3-9
Initialization Boot Record (IBR) 3-1, 3-9
interrupt stack 3-1, 3-9
interrupt table 3-1, 3-9
literals 3-4

local stack 3-1
Process Control Block (PRCB) 3-1, 3-9
supervisor stack 3-1, 3-9
system procedure table 3-1, 3-9
user stack 3-9

data types
bits and bit fields 2-3
integers 2-2
literals 2-4
ordinals 2-3
supported 2-1
triple and quad words 2-3

dcctl 3-18, 4-5, 4-8, 6-33
debug

overview 10-1
debug instructions 5-16
Default Logical Memory Configuration Register - DLMCON

12-6
Default Logical Memory Configuration (DLMCON) register

12-4
Delayed 14-25
Device ID register 23-6
device identification register 23-6
DEVICEID 11-19
DEVICEID register location 3-3
divi 6-39
divide integer instruction 6-39
divide ordinal instruction 6-39
divo 6-39
DLMCON 12-6
DLMCON registers
DMA 19-1
downstream (defined) 1-10
Dual Address Cycle addressing 1-2
DWORD (defined) 1-10

E
ediv 6-40
emul 6-41
eshro 6-42
Expansion ROM Base Address Register - ERBAR 15-61
Expansion ROM Translation Unit 15-27
explicit calls 7-1
extended addressing instructions 5-12
extended divide instruction 6-40
extended multiply instruction 6-41
extended shift right ordinal instruction 6-42
external memory requirements 3-11
extract 6-43

F
FAIL# pin 11-7
fault

OPERATION.UNIMPLEMENTED 4-1
fault conditional instructions 6-44
fault conditions 9-1
fault handling
i960® RM/RN I/O Processor Developer’s Manual Index-3

data structures 9-1
fault record 9-2, 9-6
fault table 9-2, 9-4
fault type and subtype numbers 9-3
fault types 9-4
local calls 9-2
multiple fault conditions 9-8
procedure invocation 9-6
return instruction pointer (RIP) 9-14
stack usage 9-6
supervisor stack 9-2
system procedure table 9-2
system-local calls 9-2
system-supervisor calls 9-2
user stack 9-2

fault record 9-6
address-of-faulting-instruction field 9-7
fault subtype field 9-7
location 9-6, 9-8
structure 9-7

fault table 3-1, 3-9, 9-4
alignment 3-12
local-call entry 9-6
location 9-4
system-call entry 9-6

fault type and subtype numbers 9-3
fault types 9-4
faulte 6-44
faultg 6-44
faultge 6-44
faultl 6-44
faultle 6-44
faultne 6-44
faultno 6-44
faulto 6-44
faults

access 3-7
AC.nif bit 9-19
ARITHMETIC.INTEGER_OVERFLOW 6-77
ARITHMETIC.OVERFLOW 6-7, 6-9, 6-39, 6-70, 6-

86, 6-90, 6-94
ARITHMETIC.ZERO_DIVIDE 6-39, 6-40, 6-64, 6-77
CONSTRAINT.RANGE 6-44
controlling precision of (syncf) 9-19
imprecise 5-21
OPERATION.INVALID_OPERAND 6-37
PROTECTION.LENGTH 6-22
TRACE.MARK 6-47, 6-62
TYPE.MISMATCH 6-37, 6-48, 6-54, 6-55, 6-56, 6-57,

6-66
fields

preserved 1-10
read only 1-10
read/clear 1-10
read/set 1-11
reserved 1-10

floating point 3-15
flush local registers instruction 6-46
flushreg 6-46, 7-11
fmark 6-47

force mark instruction 6-47
FP, see Frame Pointer
frame fills 7-7
Frame Pointer (FP) 7-4

location 3-3
frame spills 7-7

G
global registers 3-1, 3-3

H
halt 6-48
halt CPU instruction 6-48
hardware breakpoint resources 10-5

requesting access privilege 10-6
hexadecimal numbering (defined) 1-10
high priority interrupts 4-2
Host processor (defined) 1-10

I
IBR 11-13
IBR, see initialization boot record
icctl 3-18, 4-3, 4-4, 4-5
IEEE Standard Test Access Port 23-2
IEEE Std. 1149.1 23-2
IMI 11-1, 11-9
implicit calls 7-1, 9-2
imprecise faults 5-21
inbound address translation 15-5
index with displacement addressing mode 2-5
indivisible access 3-11
inequalities (greater than, equal or less than) conditions 3-14
Initial Memory Image (IMI) 11-1, 11-9
initialization 11-6

software 6-96
Initialization Boot Record (IBR) 3-1, 3-9, 11-1, 11-11, 11-13

alignment 3-12
initialization data structures 3-9
initialization requirements

control table 11-18
data structures 11-9
Process Control Block 11-14

instruction breakpoint modes
programming 10-10

Instruction Breakpoint Register - IPBx 10-10
instruction cache 3-13

coherency 4-5
configuration 3-13
enabling and disabling 4-4, 11-17
locking instructions 4-4
overview 4-3
visibility 4-5

instruction formats 5-3
assembly language format 5-1
instruction encoding format 5-2

instruction optimizations 5-18
Index-4 i960® RM/RN I/O Processor Developer’s Manual

Instruction Pointer (IP) register 3-13
Instruction Register (IR) 23-4

timing diagram 23-22
Instruction set

atmod C-1
sysctl C-1

instruction set
 6-6
ADD 6-6
addc 6-8
addi 6-9
addie 6-6
addig 6-6
addige 6-6
addil 6-6
addile 6-6
addine 6-6
addino 6-6
addo 6-9
addoe 6-6
addog 6-6
addoge 6-6
addol 6-6
addole 6-6
addone 6-6
addono 6-6
addoo 6-6
alterbit 6-10
and 6-11
andnot 6-11
atadd 3-12, 4-8, 6-12
atmod 3-12, 4-8, 6-13
b 6-14
bal 6-15
balx 6-15
bbc 6-16
bbs 6-16
be 6-17
bg 6-17
bge 3-15, 6-17
bl 6-17
ble 6-17
bne 6-17
bno 6-17
bo 6-17
bswap 6-19
bx 6-14
call 6-20, 7-2, 7-6
calls 3-18, 6-21, 7-2, 7-6
callx 6-23, 7-2, 7-6
chkbit 6-24
clrbit 6-25
cmpdeci 6-26
cmpdeco 6-26
cmpi 5-11, 6-28
cmpib 5-11
cmpibe 6-30
cmpibg 6-30
cmpibge 6-30
cmpibl 6-30

cmpible 6-30
cmpibne 6-30
cmpibno 6-30
cmpibo 6-30
cmpinci 6-27
cmpinco 6-27
cmpis 5-11
cmpo 5-11, 6-28
cmpobe 6-30
cmpobg 6-30
cmpobge 6-30
cmpobl 6-30
cmpoble 6-30
cmpobne 6-30
concmpi 6-32
concmpo 6-32
dcctl 3-18, 4-5, 4-8, 6-33
divi 6-39
divo 6-39
ediv 6-40
emul 6-41
eshro 6-42
extract 6-43
faulte 6-44
faultg 6-44
faultge 6-44
faultl 6-44
faultle 6-44
faultne 6-44
faultno 6-44
faulto 6-44
flushreg 6-46
fmark 6-47
halt 6-48
icctl 3-18, 4-3, 4-4, 4-5
intctl 3-18, 6-55
intdis 3-18, 6-56
inten 3-18, 6-57
ld 2-2, 3-12, 6-58
lda 6-61
ldib 2-2, 6-58
ldis 2-2, 6-58
ldl 3-4, 4-6, 6-58
ldob 2-3, 6-58
ldos 2-3, 6-58
ldq 3-12, 4-6, 6-58
ldt 4-6, 6-58
mark 6-62
modac 3-14, 6-63
modi 6-64
modify 6-65
modpc 3-16, 3-17, 3-18, 6-66, 10-3
modtc 6-67, 10-2
mov 6-68
movl 6-68
movq 6-68
movt 6-68
muli 6-70
mulo 6-70
nand 6-71
i960® RM/RN I/O Processor Developer’s Manual Index-5

nor 6-72
not 6-73
notand 6-73
notbit 6-74
notor 6-75
or 6-76
ornot 6-76
remi 6-77
remo 6-77
ret 6-78
rotate 6-80
scanbit 6-81
scanbyte 6-82
sele 5-6, 6-83
selg 5-6, 6-83
selge 5-6, 6-83
sell 5-6, 6-83
selle 5-6, 6-83
selne 5-6, 6-83
selno 5-6, 6-83
selo 5-6, 6-83
setbit 6-84
shli 6-85
shlo 6-85
shrdi 6-85
shri 6-85
shro 6-85
spanbit 6-87
st 2-2, 3-12, 6-88
stib 2-2, 6-88
stis 2-2, 6-88
stl 3-12, 4-6, 6-88
stob 2-3, 6-88
stos 2-3
stq 3-12, 4-6, 6-88
stt 4-6, 6-88
subc 6-91
subi 6-94
subie 6-92
subig 6-92
subige 6-92
subil 6-92
subile 6-92
subine 6-92
subino 6-92
subio 6-92
subo 6-94
suboe 6-92
subog 6-92
suboge 6-92
subol 6-92
subole 6-92
subone 6-92
subono 6-92
suboo 6-92
syncf 6-95, 9-19
sysctl 3-18, 4-3, 4-4, 4-5, 6-96, 10-6
teste 6-100
testg 6-100
testge 6-100

testl 6-100
testle 6-100
testne 6-100
testno 6-100
testo 6-100
xnor 6-102
xor 6-102

instruction set functional groups 5-4
Instruction Trace Event 6-3
Instructions

TRISTATE 23-5
instructions

conditional branch 3-14
instruction-trace mode 10-3
INTA#/XINT0# 8-20
INTB#/XINT1# 8-20
intctl 3-18, 6-55
INTC#/XINT2# 8-20
intdis 3-18, 6-56
INTD#/XINT3# 8-20
integer flow masking 5-20
integers 2-2

data truncation 2-2
sign extension 2-2

Integrated Memory Controller 1-3
inten 3-18, 6-57
Inter-Integrated Circuit Bus Interface Unit 1-4
internal data RAM 4-1

modification 4-1
size 4-1

internal self test program 11-7
interrupt

timer 8-15
Interrupt Control (ICON) register

memory-mapped addresses 8-32
interrupt controller

configuration 8-16
overview 8-11
program interface 8-12
programmer interface 8-32
setup 8-16

interrupt handling procedures 8-16
AC and PC registers 8-16
address space 8-16
global registers 8-16
instruction cache 8-16
interrupt stack 8-16
local registers 8-16
location 8-16
supervisor mode 8-16

Interrupt Mack (IMSK) register
atomic-read-modify-write sequence 3-6

Interrupt Mapping (IMAP0-IMAP2) registers 8-34
interrupt mask

saving 8-11
Interrupt Mask (IMSK) register 8-36
Interrupt Pending (IPND) register 8-36

atomic-read-modify-write sequence 3-6
interrupt performance

caching of interrupt-handling 8-29
Index-6 i960® RM/RN I/O Processor Developer’s Manual

interrupt stack 8-29
local register cache 8-29

interrupt posting 8-1
interrupt procedure pointer 8-5
interrupt record 8-6

location 8-6
interrupt requests

sysctl 8-7
interrupt sequencing of operations 8-15
interrupt service latency 8-27
interrupt stack 3-1, 3-9, 8-6, 8-29

alignment 3-12
structure 8-6

interrupt table 3-1, 3-9, 8-4
alignment 3-12, 8-4
caching mechanism 8-5
location 8-4
pending interrupts 8-5
vector entries 8-5

interrupt vectors
caching 4-1

interrupts
dedicated mode posting 8-13
executing-state 8-17
function 8-1
global disable instruction 6-56
global enable and disable instruction 6-55
global enable instruction 6-57
high priority 4-2
internal RAM 8-28
interrupt context switch 8-17
interrupt handling procedures 8-16
interrupt record 8-6
interrupt stack 8-6
interrupt table 8-4
interrupted-state 8-17
masking hardware interrupts 8-11
Non-Maskable Interrupt (NMI) 8-3, 8-14
overview 8-1
physical characteristics 8-20
posting 8-1
priority handling 8-8
priority-31 interrupts 8-3, 8-11
programmable options 8-13
restoring r3 8-11
servicing 8-3
sysctl 8-15
vector caching 8-28

IP register, see Instruction Pointer (IP) register
IP with displacement addressing mode 2-6
IPBx 10-10
IxWorks Real-Time Operating System (RTOS) 1-5
IxWorks (Wind River Systems RTOS) 1-5
I2C interface unit 22-1
i960 Core Processor Device ID Register - DEVICEID 11-19
i960 core processor (defined) 1-10

J
JTAG (boundary-scan) 23-1

L
ld 2-2, 3-12, 6-58
lda 6-61
ldib 2-2, 6-58
ldis 2-2, 6-58
ldl 3-4, 4-6, 6-58
ldob 2-3, 6-58
ldos 2-3, 6-58
ldq 3-12, 4-6, 6-58
ldt 4-6, 6-58
leaf procedures 7-1
literal addressing and alignment 3-4
literals 2-4, 3-1, 3-4

addressing 3-4
Little endian 12-8
little endian byte order 3-12
LMADR register
LMADR0

1 12-5
LMCON registers
LMMR0

1 12-6
load address instruction 6-61
load instructions 5-5, 6-58
load-and-lock mechanism 4-4
local bus (defined) 1-10
local calls 7-2, 7-13, 9-2

call 7-2
callx 7-2

Local memory (defined) 1-10
Local processor (defined) 1-10
local register cache 7-3

overview 4-2
local registers 3-1, 7-3

allocation 3-3, 7-3
management 3-3
usage 7-3

local stack 3-1
logical data templates

effective range 12-7
logical instructions 5-9
Logical Memory Address Registers - LMADR0

1 12-5
Logical Memory Address (LMADR) register 12-4
Logical Memory Address (LMADR) registers

programming 12-4
Logical Memory Configuration (LMCON) registers 12-4
Logical Memory Mask Registers - LMMR0

1 12-6
Logical Memory Mask (LMMR) registers

programming 12-4
Logical Memory Template registers (LMTs)

modifying 12-8
Logical Memory Templates (LMTs)

accesses across boundaries 12-8
boundary conditions 12-8
enabling 12-7
enabling and disabling data caching 12-7
overlapping ranges 12-8
i960® RM/RN I/O Processor Developer’s Manual Index-7

values after reset 12-8

M
mark 6-62
Mark Trace Event 6-3
memory address space 3-1

external memory requirements 3-11
atomic access 3-11
data alignment 3-12
data block sizes 3-12
data block storage 3-12
indivisible access 3-11
instruction alignment in external memory 3-12
little endian byte order 3-12
reserved memory 3-11

location 3-10
management 3-10

memory addressing modes
absolute 2-5
examples 2-6
index with displacement 2-5
IP with displacement 2-6
register indirect 2-5

memory-mapped control registers 3-5
Memory-Mapped Registers (MMR) 3-6, 3-11
MMR, see Memory-Mapped Registers (MMR)
modac 3-14, 6-63
modi 6-64
modify 6-65
modify arithmetic controls instruction 6-63
modify process controls instruction 6-66
modify trace controls instruction 6-67, 10-2
modpc 3-16, 3-17, 3-18, 6-66, 10-3
modtc 6-67, 10-2
modulo integer instruction 6-64
mov 6-68
move instructions 6-68
movl 6-68
movq 6-68
movt 6-68
muli 6-70
mulo 6-70
multiple fault conditions 9-8
multiply integer instruction 6-70
multiply ordinal instruction 6-70

N
nand 6-71
NMI# 8-20
No Imprecise Faults (AC.nif) bit 9-15, 9-19
Non-Maskable Interrupt (NMI) 8-3
nor 6-72
not 6-73
notand 6-73
notbit 6-74
notor 6-75

O
On-Circuit Emulation (ONCE) mode 11-1, 11-2, 23-1
OPERATION.UNIMPLEMENTED 4-1
or 6-76
ordinals 2-3

sign and sign extension 2-3
ornot 6-76
overflow conditions 3-14

P
parameter passing 7-12

argument list 7-12
by reference 7-12
by value 7-12

PC 3-16
PC register, see Process Controls (PC) register
PCI 14-1
PCI-to-PCI Bridge 1-2

initialization 11-2
PDIDR 11-19
pending interrupts 8-5

encoding 8-5
interrupt procedure pointer 8-5
pending priorities field 8-5

Performance 21-1
performance optimization 5-18
Philips Corporation 1-4
Physical Memory Configuration (PMCON) registers

initial values 12-2
Physical Memory Control Registers - PMCON0

15 12-2
PMCON0

15 12-2
PMCON14_15 Register Bit Description in IBR 11-13
powerup/reset initialization

timer powerup 18-10
PRCB 11-15
PRCB, see Processor Control Block (PRCB)
prereturn-trace mode 10-4
preserved fields 1-10
Previous Frame Pointer (PFP) 3-1, 7-4, 7-5

location 3-3
Primary and Secondary PCI buses (defined) 1-10
Primary PCI Bus Reset signal 11-2
priority-31 interrupts 8-3, 8-11
procedure calls

branch-and-link 7-1
call and return mechanism 7-1
leaf procedures 7-1

procedure stack 7-3
growth 7-3

Process Control Block AC Register Initial Image 11-15
Process Control Block (PRCB) 3-1, 3-9, 4-4, 11-1, 11-14

alignment 3-12
configuration 11-14
register cache configuration word 11-17

Process Control Register - PC 3-16
Process Controls (PC) register
Index-8 i960® RM/RN I/O Processor Developer’s Manual

execution mode flag 3-16
initialization 3-17
modification 3-17
modpc 3-17
priority field 3-16
processor state flag 3-16
trace enable bit 3-17
trace fault pending flag 3-17

Processor Device ID Register - PDIDR 11-19
processor management instructions 5-17
processor state registers 3-1, 3-13

Arithmetic Controls (AC) register 3-14
Instruction Pointer (IP) register 3-13
Process Controls (PC) register 3-16
Trace Controls (TC) register 3-17

programming
logical memory attributes 12-8

P_RST# 11-2, 11-3

R
RAM 3-9

internal data
described 4-1

read only fields 1-10
read/clear fields 1-10
read/set fields 1-11
register

addressing 3-4
addressing and alignment 3-4
boundary-scan 23-6
Breakpoint Control (BPCON) 10-7
cache 4-2
control 3-6

memory-mapped 3-5
DEVICEID

memory location 3-3
global 3-3
indirect addressing mode

register-indirect-with-displacement 2-5
register-indirect-with-index 2-5
register-indirect-with-index-and-displacement 2-5
register-indirect-with-offset 2-5

Interrupt Control (ICON) 8-32
Interrupt Mapping (IMAP0-IMAP2) 8-34
Interrupt Mask (IMSK) 8-36
Interrupt Pending (IPND) 8-36
local

allocation 3-3
management 3-3

processor-state 3-13
scoreboarding

example 3-4
TCRx 18-6

Registers
Arithmetic Controls Register - AC 3-14
Boundary-Scan 23-6
Breakpoint Control Register - BPCON 10-7
Bus Control Register Bit Definitions - BCON 12-3
bypass 23-6

Data Address Breakpoint Register - DABx 10-9
Default Logical Memory Configuration Register - DLM-

CON 12-6
Instruction Breakpoint Register - IPBx 10-10
i960 Core Processor Device ID Register - DEVICEID

11-19
Logical Memory Address Registers - LMADR0

1 12-5
Logical Memory Mask Registers - LMMR0

1 12-6
Physical Memory Control Registers - PMCON0

15 12-2
PMCON14_15 Register Bit Description in IBR 11-13
Process Control Block AC Register Initial Image 11-15
Process Control Register - PC 3-16
Processor Device ID Register - PDIDR 11-19
RUNBIST 23-6
Timer Count Register - TCRx 18-6
Timer Mode Register - TMRx 18-3
Timer Reload Register - TRRx 18-7
80960RxJx Trace Controls Register - TC 10-2

registers
Logical Memory Templates (LMTs) 12-8

re-initialization
software 6-96

remainder integer instruction 6-77
remainder ordinal instruction 6-77
remi 6-77
remo 6-77
reserved fields 1-10
reserving frames in the local register cache 8-29
reset state 11-5
ret 6-78
Return Instruction Pointer (RIP) 7-4

location 3-3
return operation 7-6
return type field 7-5
RIP, see Return Instruction Pointer (RIP)
ROM 3-9
rotate 6-80
RST_MODE 11-2
RTOS 1-5
Run Built-In Self-Test (RUNBIST) register 23-6
RUNBIST register 23-6

S
scanbit 6-81
scanbyte 6-82
Secondary PCI Bus Arbiter

initialization 11-2
sele 5-6, 6-83
select based on equal instruction 5-6
select based on less or equal instruction 5-6
select based on not equal instruction 5-6
select based on ordered instruction 5-6
Select Based on Unordered 5-6
self test (STEST) pin 11-7
selg 5-6, 6-83
selge 5-6, 6-83
i960® RM/RN I/O Processor Developer’s Manual Index-9

sell 5-6, 6-83
selle 5-6, 6-83
selne 5-6, 6-83
selno 5-6, 6-83
selo 5-6, 6-83
set bits 1-11
setbit 6-84
shift instructions 6-85
shli 6-85
shlo 6-85
shrdi 6-85
shri 6-85
shro 6-85
sign extension

integers 2-2
ordinals 2-3

Signal 1-11
software re-initialization 6-96
spanbit 6-87
SP, see Stack Pointer
src/dst parameter encodings 10-6
st 2-2, 3-12, 6-88
stack frame

allocation 7-2
stack frame cache 4-2
Stack Pointer (SP) 7-4

location 3-3
stacks 3-9
STEST 11-7
stib 2-2, 6-88
stis 2-2, 6-88
stl 3-12, 4-6, 6-88
stob 2-3, 6-88
store instructions 5-5, 6-88
stos 2-3
stq 3-12, 4-6, 6-88
stt 4-6, 6-88
subc 6-91
subi 6-94
subie 6-92
subig 6-92
subige 6-92
subil 6-92
subile 6-92
subine 6-92
subino 6-92
subio 6-92
subo 6-94
suboe 6-92
subog 6-92
suboge 6-92
subol 6-92
subole 6-92
subone 6-92
subono 6-92
suboo 6-92
subtract

conditional instructions 6-92
integer instruction 6-94
ordinal instruction 6-94

ordinal with carry instruction 6-91
supervisor calls 7-2
supervisor mode resources 3-18
supervisor space family registers and tables C-1, C-2
supervisor stack 3-1, 3-9

alignment 3-12
supervisor-trace mode 10-3
syncf 6-95, 9-19
synchronize faults instruction 6-95
sysctl 3-18, 4-3, 4-4, 4-5, 6-96, 10-6, C-1
system calls 7-2, 7-14

calls 7-2
system-local 7-2, 9-2
system-supervisor 7-2, 9-2

system control instruction 6-96
system procedure table 3-1, 3-9

alignment 3-12

T
TAP Test Data Registers 23-6
TC 10-2
TCRx 18-6
Test Access Port (TAP) controller 23-16

block diagram 23-3
state diagram 23-16

Test Data Input (TDI) pin 23-4
test features 23-2
test instructions 6-100
Test Mode Select (TMS) line 23-16
teste 6-100
testg 6-100
testge 6-100
testl 6-100
testle 6-100
testne 6-100
testno 6-100
testo 6-100
timer

interrupts 8-15
memory-mapped addresses 18-2

Timer Count Register - TCRx 18-6
Timer Count Register (TCRx) 18-6
Timer Mode Register

timer mode control bit summary 18-8
Timer Mode Register - TMRx 18-3
Timer Mode Register (TMRx)

terminal count 18-3
timer clock encodings 18-5

Timer Reload Register - TRRx 18-7
TMRx 18-3
Trace Controls (TC) register 3-17, 10-2
trace events 10-1

hardware breakpoint registers 10-1
mark and fmark 10-1
PC and TC registers 10-1

trace-fault-pending flag 10-3
TRISTATE 23-5
TRRx 18-7
true/false conditions 3-14
Index-10 i960® RM/RN I/O Processor Developer’s Manual

U
unordered numbers 3-15
Upstream (defined) 1-10
user space family registers and tables C-4
user stack 3-9

alignment 3-12
user supervisor protection model 3-18

supervisor mode resources 3-18
usage 3-18

V
vector entries 8-5

structure 8-5

W
warm reset 11-5

words
triple and quad 2-3

Word/Data Word notation conventions 2-2

X
XINT4# 8-20
XINT5# 8-20
xnor 6-102
xor 6-102

Z
05_Figure 8-19
80960 core

initialization 11-2
80960RxJx Trace Controls Register - TC 10-2
i960® RM/RN I/O Processor Developer’s Manual Index-11

	i960 ® RM/RN I/O Processor Developer's Manual
	Copyright Page
	Contents
	Figures
	Tables
	Introduction 1
	1.1 Intel’s i960® RM/RN I/O Processor
	Figure 1�1. i960® RM/RN I/O Processor Functional B...

	1.2 i960® RM/RN I/O Processor Features
	1.2.1 Intelligent I/O (I2O)
	1.2.2 PCI-to-PCI Bridge Unit
	1.2.3 Private PCI Device Support
	1.2.4 DMA Controller
	1.2.5 Address Translation Unit
	1.2.6 Messaging Unit
	1.2.7 Memory Controller
	1.2.8 I2C Bus Interface Unit
	1.2.9 Secondary PCI Arbitration Unit
	1.2.10 Performance Monitoring Unit
	1.2.11 Application Accelerator
	1.2.12 Bus Interface Unit
	1.2.13 Wind River Systems IxWorks* RTOS

	1.3 i960® Core Processor Features (80960JT)
	Figure 1�2. 80960JT Core Processor Block Diagram
	1.3.1 80960 Local Bus
	1.3.2 Timer Unit
	1.3.3 Priority Interrupt Controller
	1.3.4 Faults and Debugging
	1.3.5 On-Chip Cache and Data RAM
	1.3.6 Local Register Cache
	1.3.7 Test Features
	1.3.8 Memory-Mapped Control Registers
	1.3.9 Instructions, Data Types and Memory Addressi...

	1.4 About This Document
	1.4.1 Terminology
	1.4.2 Representing Numbers
	1.4.3 Fields
	1.4.4 Specifying Bit and Signal Values
	1.4.5 Signal Name Conventions
	1.4.6 Solutions960® Program
	1.4.7 Related Documents
	Table 1�1. Additional Information Sources

	1.4.8 Electronic Information
	Table 1�2. Electronic Information

	Data Types and Memory Addressing Modes 2
	2.1 Data Types
	Figure 2�1. Data Types and Ranges
	2.1.1 Word/Dword Notation
	Table 2�1. 80960 and PCI Architecture Data Word No...

	2.1.2 Integers
	Example 2�1. Sign Extensions on Load Byte and Load...

	2.1.3 Ordinals
	2.1.4 Bits and Bit Fields
	2.1.5 Triple and Quad Words
	2.1.6 Register Data Alignment
	2.1.7 Literals

	2.2 Bit and Byte Ordering in Memory
	2.3 Memory Addressing Modes
	Table 2�2. Memory Addressing Modes
	2.3.1 Absolute
	2.3.2 Register Indirect
	2.3.3 Index with Displacement
	2.3.4 IP with Displacement
	2.3.5 Addressing Mode Examples
	Example 2�2. Addressing Mode Mnemonics
	Example 2�3. Scaled Index and Scaled Index Plus Di...

	Programming Environment 3
	3.1 Overview
	3.2 Registers and Literals as Instruction Operands...
	Figure 3�1. i960® RM/RN I/O Processor Programming ...
	3.2.1 Global Registers
	Table 3�1. Registers and Literals Used as Instruct...

	3.2.2 Local Registers
	3.2.3 Register Scoreboarding
	Example 3�1. Register Scoreboarding

	3.2.4 Literals
	3.2.5 Register and Literal Addressing and Alignmen...
	Example 3�2. Register Alignment
	Table 3�2. Allowable Register Operands

	3.3 Memory-Mapped Control Registers (MMRs)
	3.3.1 i960® Core Processor Function Memory-Mapped ...
	3.3.1.1 Restrictions on Instructions that Access t...
	3.3.1.2 Access Faults for i960® Core Processor MMR...

	3.3.2 i960® RM/RN I/O Processor Peripheral Memory-...
	3.3.2.1 Accessing The Peripheral Memory-Mapped Reg...

	3.4 Architecturally Defined Data Structures
	Table 3�3. Data Structure Descriptions

	3.5 Memory Address Space
	Figure 3�2. Local Memory Address Space
	3.5.1 Memory Requirements
	3.5.2 Data and Instruction Alignment in the Addres...
	Table 3�4. Alignment of Data Structures in the Add...

	3.5.3 Byte, Word and Bit Addressing
	3.5.4 Internal Data RAM
	3.5.5 Instruction Cache
	3.5.6 Data Cache

	3.6 Processor-State Registers
	3.6.1 Instruction Pointer (IP) Register
	3.6.2 Arithmetic Controls Register – AC
	Table 3�5. Arithmetic Controls Register – AC�
	3.6.2.1 Initializing and Modifying the AC Register...
	3.6.2.2 Condition Code (AC.cc)
	Table 3�6. Condition Codes for True or False Condi...
	Table 3�7. Condition Codes for Equality and Inequa...
	Table 3�8. Condition Codes for Carry Out and Overf...

	3.6.3 Process Controls Register – PC
	Table 3�9. Process Controls Register – PC�
	3.6.3.1 Initializing and Modifying the PC Register...

	3.6.4 Trace Controls (TC) Register

	3.7 User-Supervisor Protection Model
	3.7.1 Supervisor Mode Resources
	3.7.2 Using the User-Supervisor Protection Model

	Cache and On-Chip Data RAM 4
	4.1 Internal Data RAM
	Figure 4�1. Internal Data RAM and Register Cache

	4.2 Local Register Cache
	Example 4�1. Register Cache Operation

	4.3 Instruction Cache
	4.3.1 Enabling and Disabling the Instruction Cache...
	4.3.2 Operation While the Instruction Cache Is Dis...
	4.3.3 Loading and Locking Instructions in the Inst...
	4.3.4 Instruction Cache Visibility
	4.3.5 Instruction Cache Coherency

	4.4 Data Cache
	4.4.1 Enabling and Disabling the Data Cache
	4.4.2 Multi-Word Data Accesses that Partially Hit ...
	Table 4�1. Load Instruction Updates

	4.4.3 Data Cache Fill Policy
	4.4.4 Data Cache Write Policy
	4.4.5 Data Cache Coherency and Non-Cacheable Acces...
	4.4.6 External I/O and Bus Masters and Cache Coher...
	4.4.7 Data Cache Visibility

	Instruction Set Overview 5
	5.1 Instruction Formats
	5.1.1 Assembly Language Format
	5.1.2 Instruction Encoding Formats
	Table 5�1. Instruction Encoding Formats (REG, COBR...
	Figure 5�1. Machine-Level Instruction Formats

	5.1.3 Instruction Operands

	5.2 Instruction Groups
	Table 5�2. i960® RM/RN I/O Processor Instruction S...
	5.2.1 Data Movement
	5.2.1.1 Load and Store Instructions
	5.2.1.2 Move
	5.2.1.3 Load Address

	5.2.2 Select Conditional
	5.2.3 Arithmetic
	Table 5�3. Arithmetic Operations
	5.2.3.1 Add, Subtract, Multiply, Divide, Condition...
	5.2.3.2 Remainder and Modulo
	5.2.3.3 Shift, Rotate and Extended Shift
	5.2.3.4 Extended Arithmetic

	5.2.4 Logical
	5.2.5 Bit, Bit Field and Byte Operations
	5.2.5.1 Bit Operations
	5.2.5.2 Bit Field Operations
	5.2.5.3 Byte Operations

	5.2.6 Comparison
	5.2.6.1 Compare and Conditional Compare
	5.2.6.2 Compare and Increment or Decrement
	5.2.6.3 Test Condition Codes

	5.2.7 Branch
	5.2.7.1 Unconditional Branch
	5.2.7.2 Conditional Branch
	5.2.7.3 Compare and Branch

	5.2.8 Call/Return
	5.2.9 Faults
	5.2.10 Debug
	5.2.11 Atomic Instructions
	5.2.12 Processor Management

	5.3 Performance Optimization
	5.3.1 Instruction Optimizations
	5.3.1.1 Load / Store Execution Model
	5.3.1.2 Compare Operations
	5.3.1.3 Microcoded Instructions
	5.3.1.4 Multiply-Divide Unit Instructions
	5.3.1.5 Multi-Cycle Register Operations
	5.3.1.6 Simple Control Transfer
	5.3.1.7 Memory Instructions
	5.3.1.8 Unaligned Memory Accesses

	5.3.2 Miscellaneous Optimizations
	5.3.2.1 Masking of Integer Overflow
	5.3.2.2 Avoid Using PFP, SP, R3 As Destinations fo...
	5.3.2.3 Use Global Registers (g0 - g14) As Destina...
	5.3.2.4 Execute in Imprecise Fault Mode

	5.3.3 Cache Control

	Instruction Set Reference 6
	6.1 Notation
	6.1.1 Alphabetic Reference
	6.1.2 Mnemonic
	6.1.3 Format
	6.1.4 Description
	6.1.5 Action
	Table 6�1. Pseudo-Code Symbol Definitions �
	Table 6�2. Faults Applicable to All Instructions
	Table 6�3. Common Faulting Conditions

	6.1.6 Faults
	6.1.7 Example
	6.1.8 Opcode and Instruction Format
	6.1.9 See Also
	6.1.10 Side Effects
	6.1.11 Notes

	6.2 Instructions
	6.2.1 ADD<cc>
	Table 6�4. Condition Code Mask Descriptions �

	6.2.2 addc
	6.2.3 addi, addo
	6.2.4 alterbit
	6.2.5 and, andnot
	6.2.6 atadd
	6.2.7 atmod
	6.2.8 b, bx
	6.2.9 bal, balx
	6.2.10 bbc, bbs
	6.2.11 BRANCH<cc>
	6.2.12 bswap
	6.2.13 call
	6.2.14 calls
	6.2.15 callx
	6.2.16 chkbit
	6.2.17 clrbit
	6.2.18 cmpdeci, cmpdeco
	6.2.19 cmpinci, cmpinco
	6.2.20 COMPARE
	6.2.21 COMPARE AND BRANCH<cc>
	6.2.22 concmpi, concmpo
	Table 6�5. concmpo Example: Register Ordering and ...

	6.2.23 dcctl
	Table 6�6. dcctl Operand Fields
	Figure 6�1. dcctl src1 and src/dst Formats
	Table 6�7. dcctl Status Values and D-Cache Paramet...
	Figure 6�2. Store Data Cache to Memory Output Form...
	Figure 6�3. D-Cache Tag and Valid Bit Formats

	6.2.24 divi, divo
	6.2.25 ediv
	6.2.26 emul
	6.2.27 eshro
	6.2.28 extract
	6.2.29 FAULT<cc>
	6.2.30 flushreg
	6.2.31 fmark
	6.2.32 halt
	6.2.33 icctl
	Table 6�8. icctl Operand Fields
	Figure 6�4. icctl src1 and src/dst Formats
	Table 6�9. icctl Status Values and I-Cache Paramet...
	Figure 6�5. Store Instruction Cache to Memory Outp...
	Figure 6�6. I-Cache Set Data, Tag and Valid Bit Fo...

	6.2.34 intctl
	6.2.35 intdis
	6.2.36 inten
	6.2.37 LOAD
	6.2.38 lda
	6.2.39 mark
	6.2.40 modac
	6.2.41 modi
	6.2.42 modify
	6.2.43 modpc
	6.2.44 modtc
	6.2.45 MOVE
	6.2.46 muli, mulo
	6.2.47 nand
	6.2.48 nor
	6.2.49 not, notand
	6.2.50 notbit
	6.2.51 notor
	6.2.52 or, ornot
	6.2.53 remi, remo
	6.2.54 ret
	6.2.55 rotate
	6.2.56 scanbit
	6.2.57 scanbyte
	6.2.58 SEL<cc>
	6.2.59 setbit
	6.2.60 SHIFT
	6.2.61 spanbit
	6.2.62 STORE
	6.2.63 subc
	6.2.64 SUB<cc>
	6.2.65 subi, subo
	6.2.66 syncf
	6.2.67 sysctl
	Figure 6�7. Src1 Operand Interpretation
	Table 6�10. sysctl Field Definitions
	Table 6�11. Cache Mode Configuration
	Figure 6�8. src/dst Interpretation for Breakpoint ...

	6.2.68 TEST<cc>
	6.2.69 xnor, xor

	Procedure Calls 7
	7.1 Call and Return Mechanism
	7.1.1 Local Registers and the Procedure Stack
	Figure 7�1. Procedure Stack Structure and Local Re...

	7.1.2 Local Register and Stack Management
	7.1.2.1 Frame Pointer
	7.1.2.2 Stack Pointer
	7.1.2.3 Considerations When Pushing Data onto the ...
	7.1.2.4 Considerations When Popping Data off the S...
	7.1.2.5 Previous Frame Pointer
	7.1.2.6 Return Type Field
	7.1.2.7 Return Instruction Pointer

	7.1.3 Call and Return Action
	7.1.3.1 Call Operation
	7.1.3.2 Return Operation

	7.1.4 Caching Local Register Sets
	7.1.4.1 Reserving Local Register Sets for High Pri...
	Figure 7�2. Frame Spill
	Figure 7�3. Frame Fill

	7.1.5 Mapping Local Registers to the Procedure Sta...

	7.2 Modifying the PFP Register
	Example 7�1. flushreg

	7.3 Parameter Passing
	Example 7�2. Parameter Passing Code Example

	7.4 Local Calls
	7.5 System Calls
	7.5.1 System Procedure Table
	Figure 7�4. System Procedure Table
	7.5.1.1 Procedure Entries
	Table 7�1. Encodings of Entry Type Field in System...

	7.5.1.2 Supervisor Stack Pointer
	7.5.1.3 Trace Control Bit

	7.5.2 System Call to a Local Procedure
	7.5.3 System Call to a Supervisor Procedure

	7.6 User and Supervisor Stacks
	7.7 Interrupt and Fault Calls
	7.8 Returns
	Figure 7�5. Previous Frame Pointer Register – PFP
	Table 7�2. Encoding of Return Status Field �

	7.9 Branch-and-Link

	PCI and Peripheral Interrupt Controller Unit 8
	8.1 Overview
	Figure 8�1. Interrupt Handling Data Structures
	8.1.1 The i960® RM/RN I/O Processor Core Interrupt...
	8.1.2 Software Requirements For Interrupt Handling...
	8.1.3 Interrupt Priority
	8.1.4 Interrupt Table
	Figure 8�2. Interrupt Table
	8.1.4.1 Vector Entries
	8.1.4.2 Pending Interrupts
	8.1.4.3 Caching Portions of the Interrupt Table

	8.1.5 Interrupt Stack And Interrupt Record
	Figure 8�3. Storage of an Interrupt Record on the ...

	8.1.6 Posting Interrupts
	8.1.6.1 Posting Software Interrupts via sysctl
	Example 8�1. Using sysctl to Request an Interrupt

	8.1.6.2 Posting Software Interrupts Directly in th...
	8.1.6.3 Posting External Interrupts
	Example 8�2. External Agent Posting

	8.1.6.4 Posting Hardware Interrupts

	8.1.7 Resolving Interrupt Priority
	Example 8�3. Interrupt Resolution

	8.1.8 Sampling Pending Interrupts in the Interrupt...
	Example 8�4. Check for Pending Interrupts�

	8.1.9 Saving the Interrupt Mask

	8.2 The i960® Core Processor Interrupt Controller
	Figure 8�4. Interrupt Controller
	8.2.1 Interrupt Controller Dedicated Mode
	Figure 8�5. Interrupt Pin Vector Assignment

	8.2.2 Interrupt Detection
	Example 8�5. Return from a Level-detect Interrupt
	Figure 8�6. Interrupt Fast Sampling

	8.2.3 Non-Maskable Interrupt (NMI#)
	8.2.4 Timer Interrupts
	8.2.5 Software Interrupts
	8.2.6 Interrupt Operation Sequence
	8.2.7 Setting Up the Interrupt Controller
	Example 8�6. Programming the Interrupt Controller ...

	8.2.8 Interrupt Service Routines
	8.2.9 Interrupt Context Switch
	8.2.9.1 Servicing An Interrupt From Executing Stat...
	8.2.9.2 Servicing An Interrupt From Interrupted St...

	8.3 PCI and Peripheral Interrupts
	Figure 8�7. Interrupt Controller Connections
	8.3.1 Pin Descriptions
	Table 8�1. Interrupt Input Pin Descriptions

	8.3.2 PCI Interrupt Routing
	Table 8�2. PCI Interrupt Routing Summary

	8.3.3 Internal Peripheral Interrupt Routing
	8.3.3.1 XINT6 Interrupt Sources
	Table 8�3. XINT6# Interrupt Sources

	8.3.3.2 XINT7 Interrupt Sources
	Table 8�4. XINT7 Interrupt Sources�

	8.3.3.3 NMI# Interrupt Sources
	Table 8�5. NMI Interrupt Sources�

	8.3.4 PCI Outbound Doorbell Interrupts

	8.4 Default Status
	Table 8�6. Default Interrupt Routing and Status Va...
	8.4.1 Interrupt Controller Register Access Require...
	8.4.2 Optimizing Interrupt Performance
	Figure 8�8. Interrupt Service Flowchart

	8.4.3 Interrupt Service Latency
	8.4.4 Features to Improve Interrupt Performance
	8.4.4.1 Vector Caching Option
	Table 8�7. Location of Cached Vectors in Internal ...

	8.4.4.2 Caching Interrupt Routines and Reserving R...
	8.4.4.3 Caching the Interrupt Stack

	8.4.5 Base Interrupt Latency
	Table 8�8. Base Interrupt Latency�

	8.4.6 Maximum Interrupt Latency
	Table 8�9. Worst-Case Interrupt Latency Controlled...
	Table 8�10. Worst-Case Interrupt Latency Controlle...
	Table 8�11. Worst-Case Interrupt Latency Controlle...
	Table 8�12. Worst-Case Interrupt Latency When Deli...
	Table 8�13. Worst-Case Interrupt Latency Controlle...

	8.4.7 Avoiding Certain Destinations for MDU Operat...
	8.4.8 Secondary PCI to Primary PCI Interrupt Routi...

	8.5 Register Definitions
	Table 8�14. Interrupt Control Registers Addresses
	8.5.1 Interrupt Control Register (ICON)
	Table 8�15. Interrupt Control (ICON) Register

	8.5.2 Interrupt Mapping Registers (IMAP0-IMAP2)
	Table 8�16. Interrupt Map Register 0 (IMAP0)
	Table 8�17. Interrupt Map Register 1 (IMAP1)
	Table 8�18. Interrupt Map Register 2 (IMAP2)

	8.5.3 Interrupt Pending (IPND) and Interrupt Mask ...
	Table 8�19. Interrupt Pending (IPND) Register
	Table 8�20. Interrupt Mask (IMSK) Register

	8.5.4 PCI Interrupt Routing Select Register - PIRS...
	Table 8�21. PCI Interrupt Routing Select Register ...

	8.5.5 XINT6 Interrupt Status Register - X6ISR
	Table 8�22. XINT6 Interrupt Status Register- X6ISR...

	8.5.6 XINT7 Interrupt Status Register- X7ISR
	Table 8�23. XINT7 Interrupt Status Register- X7ISR...

	8.5.7 NMI Interrupt Status Register - NISR
	Table 8�24. NMI Interrupt Status Register- NISR (S...

	Faults 9
	9.1 Fault Handling Overview
	Figure 9�1. Fault-Handling Data Structures

	9.2 Fault Types
	Table 9�1. i960® RM/RN I/O Processor Fault Types a...

	9.3 Fault Table
	Figure 9�2. Fault Table and Fault Table Entries

	9.4 Stack Used in Fault Handling
	9.5 Fault Record
	9.5.1 Fault Record Description
	Figure 9�3. Fault Record

	9.5.2 Fault Record Location
	Figure 9�4. Storage of the Fault Record on the Sta...

	9.6 Multiple and Parallel Faults
	9.6.1 Multiple Non-Trace Faults on the Same Instru...
	9.6.2 Multiple Trace Fault Conditions on the Same ...
	9.6.3 Multiple Trace and Non-Trace Fault Condition...
	9.6.4 Parallel Faults
	9.6.4.1 Faults on Multiple Instructions Executed i...
	Example 9�1. Imprecise Fault Generations

	9.6.4.2 Fault Record for Parallel Faults

	9.6.5 Override Faults
	9.6.6 System Error

	9.7 Fault Handling Procedures
	9.7.1 Possible Fault Handling Procedure Actions
	9.7.2 Program Resumption Following a Fault
	9.7.2.1 Faults Happening Before Instruction Execut...
	9.7.2.2 Faults Happening During Instruction Execut...
	9.7.2.3 Faults Happening After Instruction Executi...

	9.7.3 Return Instruction Pointer (RIP)
	9.7.4 Returning to Point in Program Where Fault Oc...
	9.7.5 Returning to a Point in the Program Other Th...
	9.7.6 Fault Controls
	Table 9�2. Fault Control Bits and Masks

	9.8 Fault Handling Action
	9.8.1 Local Fault Call
	9.8.2 System-Local Fault Call
	9.8.3 System-Supervisor Fault Call
	9.8.4 Faults and Interrupts

	9.9 Precise and Imprecise Faults
	9.9.1 Precise Faults
	9.9.2 Imprecise Faults
	9.9.3 Asynchronous Faults
	9.9.4 No Imprecise Faults (AC.nif) Bit
	9.9.5 Controlling Fault Precision

	9.10 Fault Reference
	9.10.1 ARITHMETIC Faults
	9.10.2 CONSTRAINT Faults
	9.10.3 OPERATION Faults
	9.10.4 OVERRIDE Faults
	9.10.5 PARALLEL Faults
	9.10.6 PROTECTION Faults
	9.10.7 TRACE Faults
	9.10.8 TYPE Faults

	Tracing and Debugging 10
	10.1 Trace Controls
	10.1.1 Trace Controls Register – TC
	Table 10�1. 80960RM/RN Trace Controls Register – T...

	10.1.2 PC Trace Enable Bit and Trace-Fault-Pending...

	10.2 Trace Modes
	10.2.1 Instruction Trace
	10.2.2 Branch Trace
	10.2.3 Call Trace
	10.2.4 Return Trace
	10.2.5 Prereturn Trace
	10.2.6 Supervisor Trace
	10.2.7 Mark Trace
	10.2.7.1 Software Breakpoints
	10.2.7.2 Hardware Breakpoints
	10.2.7.3 Requesting Modification Rights to Hardwar...
	Table 10�2. src/dst Encoding

	10.2.7.4 Breakpoint Control Register – BPCON
	Table 10�3. Breakpoint Control Register – BPCON
	Table 10�4. Configuring the Data Address Breakpoin...
	Table 10�5. Programming the Data Address Breakpoin...

	10.2.7.5 Data Address Breakpoint Registers – DABx
	Table 10�6. Data Address Breakpoint Register – DAB...

	10.2.7.6 Instruction Breakpoint Registers – IPBx
	Table 10�7. Instruction Breakpoint Register – IPBx...
	Table 10�8. Instruction Breakpoint Modes

	10.3 Generating a Trace Fault
	10.4 Handling Multiple Trace Events
	10.5 Trace Fault Handling Procedure
	10.5.1 Tracing and Interrupt Procedures
	10.5.2 Tracing on Calls and Returns
	10.5.2.1 Tracing on Explicit Call
	Table 10�9. Tracing on Explicit Call

	10.5.2.2 Tracing on Implicit Call
	Table 10�10. Tracing on Implicit Call �

	10.5.2.3 Tracing on Return from Explicit Call
	Table 10�11. Tracing on Return from Explicit Call

	10.5.2.4 Tracing on Return from Implicit Call: Fau...
	10.5.2.5 Tracing on Return from Implicit Call: Int...

	Initialization and System Requirements 11
	11.1 Overview
	11.1.1 Core Initialization
	11.1.2 General Initialization

	11.2 i960® RM/RN I/O Processor Initialization
	11.2.1 Initialization Modes
	Table 11�1. Initialization Modes

	11.2.2 Mode 0 Initialization
	11.2.3 Mode 1 Initialization
	11.2.4 Mode 2 Initialization
	11.2.5 Mode 3 (Default Mode)
	Figure 11�1. Initialization Flow Chart

	11.2.6 Secondary PCI Bus Arbitration Unit
	11.2.7 Internal Bus Arbitration Unit
	Table 11�2. Reset Values

	11.2.8 Reset State Operation

	11.3 i960® Core Processor Initialization
	Figure 11�2. Processor Initialization Flow
	11.3.1 Self Test Function (STEST, FAIL#)
	11.3.1.1 The STEST Signal
	11.3.1.2 80960 Local Bus Confidence Test
	11.3.1.3 The Fail Signal (FAIL#)
	Figure 11�3. FAIL# Timing

	11.3.1.4 IMI Alignment Check and Core Processor Er...
	11.3.1.5 FAIL# Code
	Table 11�3. BIST Failure Codes
	Table 11�4. Non-BIST Failure Codes

	11.4 Initial Memory Image (IMI)
	Figure 11�4. Initial Memory Image (IMI) and Proces...
	11.4.1 Initialization Boot Record (IBR)
	Table 11�5. Initialization Boot Record
	Example 11�1. Processor Initialization Pseudocode ...
	Table 11�6. PMCON14_15 Register Bit Description in...

	11.4.2 Process Control Block – PRCB
	Table 11�7. PRCB Configuration
	Table 11�8. Process Control Block Configuration Wo...

	11.4.3 Process PRCB Flow
	Example 11�2. PRCB Processing Pseudo-code Flow �
	11.4.3.1 AC Initial Image
	11.4.3.2 Fault Configuration Word
	11.4.3.3 Instruction Cache Configuration Word
	11.4.3.4 Register Cache Configuration Word

	11.4.4 Control Table
	Figure 11�5. Control Table

	11.5 Device Identification on Reset
	Table 11�9. Processor Device ID Register - PDIDR�
	Table 11�10. i960® Core Processor Device ID Regist...

	11.6 Reinitializing and Relocating Data Structures...
	11.6.1 Output Clocks

	Core Processor and Internal Operation 12
	12.1 Core Processor Memory Attributes
	12.2 Physical Memory Attributes
	12.2.1 PMCON Registers
	Table 12�1. PMCON Address Mapping (Sheet 2 of 2)
	Table 12�2. Physical Memory Control Registers – PM...

	12.2.2 Bus Control Register – BCON
	Table 12�3. Bus Control Register – BCON

	12.3 Programming the Logical Memory Attributes
	12.3.1 Logical Memory Attributes
	Figure 12�1. LMCON Example

	12.3.2 Logical Memory Address Registers - LMADR0:1...
	Table 12�4. Logical Memory Address Registers – LMA...
	Table 12�5. Logical Memory Mask Registers – LMMR0:...
	Table 12�6. Default Logical Memory Configuration R...

	12.3.3 Defining the Effective Range of a Logical D...
	12.3.4 Data Caching Enable
	12.3.5 Enabling the Logical Memory Template
	12.3.6 Initialization
	12.3.7 Boundary Conditions for Logical Memory Temp...
	12.3.7.1 Internal Memory Locations and Peripheral ...
	12.3.7.2 Overlapping Logical Data Template Ranges
	12.3.7.3 Accesses Across LMT Boundaries

	12.3.8 Modifying the LMT Registers

	12.4 Bus Interface Unit
	Figure 12�2. Core Processor/BIU Interface Block Di...
	12.4.1 Overview
	Figure 12�3. Internal Block Diagram

	12.4.2 Addressing
	12.4.2.1 Bus Width

	12.4.3 Multi-Transaction Timer
	12.4.4 Features
	12.4.4.1 Write Buffering
	12.4.4.2 Instruction Fetch Bypass
	12.4.4.3 Instruction Prefetch
	12.4.4.4 Write Merging
	Example 12�1. Code Examples of Write Merging

	12.4.4.5 Atomic Accesses

	12.4.5 Interrupts and Error Conditions
	12.4.5.1 Master-Abort
	12.4.5.2 PCI Target-Abort
	12.4.5.3 Internal Bus Target-Abort

	12.4.6 Register Definitions
	Table 12�7. Bus Interface Unit Register Table
	12.4.6.1 BIU Control Register - BIUCR
	Table 12�8. BIU Control Register - BIUCR�

	12.4.6.2 BIU Interrupt Status Register - BIUISR
	Table 12�9. BIU Interrupt Status Register - BIUISR...

	Memory Controller 13
	13.1 Overview
	13.1.1 Memory Controller Terminology

	13.2 Flash Memory Support
	Table 13�1. Flash Interface Signals �
	Figure 13�1. 4 Mbyte Flash Memory System
	13.2.1 Flash Memory Addressing
	Table 13�2. Address Decoding for Flash Memory Spac...

	13.2.2 Flash Read Cycle
	Figure 13�2. 90�ns Flash Read Cycle
	Figure 13�3. 60�ns Flash Burst Read Cycle
	Table 13�3. Flash Wait State Profile Programming

	13.2.3 Flash Write Cycle
	Figure 13�4. 90�ns Flash Write Cycle

	13.3 SDRAM Memory Support
	Table 13�4. SDRAM Memory Configuration Options
	Table 13�5. SDRAM Interface Signals �
	Figure 13�5. Dual-Bank SDRAM Memory Subsystem
	13.3.1 SDRAM Sizes and Configurations
	Table 13�6. Supported SDRAM Configurations
	Table 13�7. SDRAM Address Register Definitions
	Table 13�8. Address Decoding for SDRAM Memory Spac...
	Address Register Programming Examples
	Table 13�9. Programming Values for the SDRAM Bound...

	13.3.2 SDRAM Addressing
	Table 13�10. SDRAM Address Translation for 16 Mbit...
	Table 13�11. SDRAM Address Translation for 64 Mbit...

	13.3.3 32-bit Mode
	13.3.4 Page Hit/Miss Determination
	Figure 13�6. Logical Memory Image of a 16 Mbit SDR...
	Figure 13�7. Logical Memory Image of a 64 Mbit SDR...

	13.3.5 SDRAM Commands
	Table 13�12. SDRAM Commands

	13.3.6 SDRAM Initialization
	Figure 13�8. Supported SDRAM Mode Register Setting...
	Figure 13�9. SDRAM Initialization Sequence (contro...
	13.3.6.1 SDRAM Mode Programming
	13.3.6.2 SDRAM Read Cycle
	Figure 13�10. SDRAM Read, 40 bytes, ECC Enabled, P...
	Figure 13�11. SDRAM Read, 40 bytes, ECC Enabled, P...

	13.3.6.3 SDRAM Write Cycle
	Figure 13�12. SDRAM Write, 40 bytes, ECC Enabled, ...
	Figure 13�13. SDRAM Write, 40 bytes, ECC Enabled, ...

	13.3.6.4 SDRAM Refresh Cycle
	Figure 13�14. Refresh Following a Read Cycle

	13.3.7 Error Correction and Detection
	13.3.7.1 ECC Generation
	13.3.7.2 ECC Generation for Partial Writes
	Figure 13�15. Sub 64-bit SDRAM Write (D1)

	13.3.7.3 ECC Checking
	Table 13�13. Syndrome Decoding

	13.3.7.4 Scrubbing
	13.3.7.5 ECC Disabled
	13.3.7.6 ECC Testing

	13.3.8 SDRAM Clocking
	Figure 13�16. SDRAM Clocking

	13.4 Power Failure Mode
	13.4.1 Power Failure Sequence
	Figure 13�17. Power Failure Sequence
	13.4.1.1 Power Failure Impact on the System
	13.4.1.2 System Assumptions

	13.4.2 Memory Controller Response to Reset
	Figure 13�18. Power Failure State Machine
	Figure 13�19. Power Failure Sequence
	13.4.2.1 External Logic Required for Power Failure...
	Figure 13�20. External Power Failure State Machine...
	Figure 13�21. External Power Failure Logic in the ...

	13.5 Interrupts/Error Conditions
	Table 13�14. MCU Error Response
	13.5.1 Single-Bit Error Detection
	13.5.2 Double-Bit/Nibble Error Detection
	13.5.3 Overlapping Memory Regions
	Table 13�15. Overlapping Address Priorities

	13.6 Register Definitions
	Table 13�16. Memory Controller Register Reference
	13.6.1 SDRAM Initialization Register - SDIR
	Table 13�17. SDRAM Initialization Register - SDIR�...

	13.6.2 SDRAM Control Register - SDCR
	Table 13�18. SDRAM Control Register - SDCR�
	Table 13�19. Drive Strength Programmability Option...
	Table 13�20. Drive Strength Programmability Option...

	13.6.3 SDRAM Base Register - SDBR
	Table 13�21. SDRAM Base Register - SDBR�

	13.6.4 SDRAM Boundary Register 0 - SBR0
	Table 13�22. SDRAM Boundary Register 0 - SBR0

	13.6.5 SDRAM Boundary Registers 1 - SBR1
	Table 13�23. SDRAM Boundary Registers - SBR1�

	13.6.6 ECC Control Register - ECCR
	Table 13�24. ECC Control Register - ECCR�

	13.6.7 ECC Log Registers - ELOG0, ELOG1
	Table 13�25. ECC Log Registers - ELOG0, ELOG1�

	13.6.8 ECC Address Registers - ECAR0, ECAR1
	Table 13�26. ECC Address Registers - ECAR0, ECAR1�...

	13.6.9 ECC Test Register - ECTST
	Table 13�27. ECC Test Register - ECTST�

	13.6.10 Flash Base Register 0 - FEBR0
	Table 13�28. Flash Base Register 0 - FEBR0�

	13.6.11 Flash Base Register 1 - FEBR1
	Table 13�29. Flash Base Register 1 - FEBR1�

	13.6.12 Flash Bank Size Register 0 - FBSR0
	Table 13�30. Flash Bank Size Register 0 - FBSR0�

	13.6.13 Flash Bank Size Register 1 - FBSR1
	Table 13�31. Flash Bank Size Register 1 - FBSR1�

	13.6.14 Flash Wait States Registers - FWSR0, FWSR1...
	Table 13�32. Flash Wait State Registers - FWSR0, F...

	13.6.15 Memory Controller Interrupt Status Registe...
	Table 13�33. Memory Controller Interrupt Status Re...

	13.6.16 Refresh Frequency Register - RFR
	Table 13�34. Refresh Frequency Register - RFR�

	PCI-to-PCI Bridge 14
	14.1 Overview
	Figure 14�1. PCI-to-PCI Bridge Unit Block Diagram

	14.2 Theory of Operation
	Figure 14�2. Bridge Operation

	14.3 Architectural Description
	14.3.1 Primary PCI Interface
	14.3.2 Secondary PCI Interface
	14.3.3 Upstream/Downstream Queues
	14.3.4 Configuration Registers

	14.4 Configuration Accesses
	Table 14�1. PCI Configuration Command Access Forma...
	Figure 14�3. PCI Configuration Access Formats
	Table 14�2. Bridge Configuration Cycle Handling Su...
	14.4.1 Type 0 Commands
	14.4.2 Type 1 Commands and Type 1 to Type 0 Conver...
	Table 14�3. IDSEL mapping for Type 1 to Type 0 Con...

	14.4.3 Type 1 to Type 1 Forwarding
	14.4.4 Type 1 to Special Cycle Conversion
	14.4.5 Private Type 0 Commands on the Secondary In...
	Table 14�4. Public/Private PCI Memory IDSEL Select...
	Figure 14�4. Secondary IDSEL Example

	14.4.6 Special Cycles

	14.5 Address Decoding
	14.5.1 I/O Address Space
	14.5.1.1 Disabling the I/O Address Range
	14.5.1.2 ISA Mode
	Figure 14�5. ISA Mode Address Decode

	14.5.2 Memory Address Space
	Figure 14�6. Overlapping Memory Address Ranges
	14.5.2.1 Burst Order
	14.5.2.2 Disabling the Memory Address Range

	14.5.3 64-Bit Address Decoding - Dual Address Cycl...
	Figure 14�7. 64-bit Dual Address Read Cycle

	14.5.4 Private Address Space
	14.5.5 Secondary PCI to Messaging Unit Access
	14.5.6 Address Decode Summary
	Table 14�5. Primary to Secondary Memory Address De...
	Table 14�6. Primary to Secondary I/O Address Decod...
	Table 14�7. Secondary to Primary Memory Address De...
	Table 14�8. Secondary to Primary I/O Address Decod...

	14.6 Bridge Operation
	Table 14�9. PCI Commands
	14.6.1 PCI Interfaces
	14.6.1.1 Primary Interface
	14.6.1.2 Secondary Interface

	14.6.2 Claiming a PCI Transaction
	14.6.2.1 Latency Timers
	14.6.2.2 Delayed Transactions
	14.6.2.3 Posted Transactions
	Table 14�10. Delayed Transactions vs. Posted Trans...

	14.6.3 64-Bit Operation
	14.6.3.1 64-Bit Protocol
	Figure 14�8. PCI 64-Bit Transfer to a 64-Bit Targe...

	14.6.3.2 64-Bit Operation with 32-Bit Targets
	Figure 14�9. 64-Bit Write Request with 32-Bit Tran...

	14.6.4 PCI Read Transactions
	Table 14�11. Prefetchable and Non-Prefetchable Mem...
	Table 14�12. Downstream Memory Read Prefetch Size
	Table 14�13. Upstream Memory Read Prefetch Size
	14.6.4.1 Read Streaming
	14.6.4.2 Read Boundary

	14.6.5 PCI Write Transactions
	14.6.5.1 Delayed Write Transactions
	14.6.5.2 Posted Write Transactions
	14.6.5.3 Memory Write Command
	14.6.5.4 Memory Write and Invalidate Command
	14.6.5.5 I/O Write Command
	14.6.5.6 Write Boundary
	14.6.5.7 Qword Unaligned Memory Write Transactions...
	14.6.5.8 Fast Back to Back Transactions

	14.7 Queue Architecture
	14.7.1 Queue Operation
	Table 14�14. Bridge Unit Queue
	14.7.1.1 Upstream/Downstream Posted Memory Write Q...
	14.7.1.2 Upstream/Downstream Delayed Read Completi...
	Table 14�15. D_DRC Assignments
	Table 14�16. U_DRC Assignments

	14.7.1.3 Upstream/Downstream Delayed Write Complet...
	14.7.1.4 Upstream/Downstream Transaction Queues

	14.7.2 Transaction Ordering
	Table 14�17. Bridge Transaction Ordering Rules
	Figure 14�10. Downstream Data Path Queue Completio...
	Table 14�18. Bridge Transaction Ordering and Prior...

	14.8 Bridge Data Flow
	14.8.1 Delayed Read Transaction
	14.8.2 Delayed Write Transaction
	14.8.3 Posted Write Transaction

	14.9 Exclusive Access
	Table 14�19. LOCK# Operation State Definitions�
	14.9.1 Secondary Interface Error Handling

	14.10 PCI Transaction Termination
	14.10.1 Termination as a Master (Initiator)
	14.10.1.1 Completion
	14.10.1.2 Time-out
	14.10.1.3 Time-out during Memory Write and Invalid...
	14.10.1.4 Master-Abort

	14.10.2 Termination as a Slave (Target)
	14.10.2.1 Retry
	14.10.2.2 Disconnect
	14.10.2.3 Target-Abort

	14.11 Error Conditions
	14.11.1 Address Parity Errors
	14.11.1.1 Address Parity Errors on Primary Interfa...
	14.11.1.2 Address Parity Errors on Secondary Inter...

	14.11.2 Data Parity Errors
	14.11.2.1 Read Data Parity
	14.11.2.2 Delayed Write Data Parity
	14.11.2.3 Posted Write Data Parity

	14.11.3 SERR# Assertion
	14.11.4 Discard Timers
	14.11.5 PCI-to-PCI Bridge Error Summary
	Table 14�20. PSR Error Reporting Summary (Sheet 3 ...
	Table 14�21. SSR Error Reporting Summary (Sheet 2 ...

	14.12 Primary and Secondary Clocking
	14.13 Initialization and Reset Requirements
	14.13.1 Bridge Reset
	14.13.2 Configuring the Bridge
	14.13.3 64-Bit Bus Configuration
	Table 14�22. 64-Bit Configuration Options at Reset...

	14.14 Powerup/Default States
	14.15 Register Definitions
	Figure 14�11. Bridge Configuration Header Format
	Table 14�23. PCI-to-PCI Bridge Register Table�
	14.15.1 Vendor Identification Register - VIDR
	Table 14�24. Vendor Identification Register - VIDR...

	14.15.2 Device ID Register - DIDR
	Table 14�25. Device Identification Register - DIDR...
	Table 14�26. Device Identification Register - DIDR...

	14.15.3 Primary Command Register - PCR
	Table 14�27. Primary Command Register - PCR�

	14.15.4 Primary Status Register - PSR
	Figure 14�12. Primary Status Register - PSR

	14.15.5 Revision ID Register - RID
	Table 14�28. Revision Identification Register - RI...

	14.15.6 Class Code Register - CCR
	Table 14�29. Class Code Register - CCR

	14.15.7 Cacheline Size Register - CLSR
	Table 14�30. Cacheline Size Register - CLSR

	14.15.8 Primary Latency Timer Register - PLTR
	Table 14�31. Primary Latency Timer Register- PLTR

	14.15.9 Header Type Register - HTR
	Table 14�32. Header Type Register- HTR

	14.15.10 Primary Bus Number Register - PBNR
	Table 14�33. Primary Bus Number Register- PBNR

	14.15.11 Secondary Bus Number Register - SBNR
	Table 14�34. Secondary Bus Number Register - SBNR

	14.15.12 Subordinate Bus Number Register - SubBNR
	Table 14�35. Subordinate Bus Number Register - Sub...

	14.15.13 Secondary Latency Timer Register - SLTR
	Table 14�36. Secondary Latency Timer Register - SL...

	14.15.14 I/O Base Register - IOBR
	Table 14�37. I/O Base Register - IOBR

	14.15.15 I/O Limit Register - IOLR
	Table 14�38. I/O Limit Register - IOLR

	14.15.16 Secondary Status Register - SSR
	Table 14�39. Secondary Status Register - SSR

	14.15.17 Memory Base Register - MBR
	Table 14�40. Memory Base Register - MBR

	14.15.18 Memory Limit Register - MLR
	Table 14�41. Memory Limit Register - MLR

	14.15.19 Prefetchable Memory Base Register - PMBR
	Table 14�42. Prefetchable Memory Base Register - P...

	14.15.20 Prefetchable Memory Limit Register - PMLR...
	Table 14�43. Prefetchable Memory Limit Register - ...

	14.15.21 Bridge Subsystem Vendor ID Register - BSV...
	Table 14�44. Bridge Subsystem Vendor ID Register -...

	14.15.22 Bridge Subsystem ID Register - BSIR
	Table 14�45. Bridge Subsystem ID Register - BSIR

	14.15.23 Bridge Control Register - BCR
	Table 14�46. Bridge Control Register - BCR (Sheet ...

	14.15.24 Extended Bridge Control Register - EBCR
	Table 14�47. Extended Bridge Control Register - EB...

	14.15.25 Secondary IDSEL Select Register - SISR
	Table 14�48. Secondary IDSEL Select Register - SIS...

	14.15.26 Primary Bridge Interrupt Status Register ...
	Table 14�49. Primary Bridge Interrupt Status Regis...

	14.15.27 Secondary Bridge Interrupt Status Registe...
	Table 14�50. Secondary Bridge Interrupt Status Reg...

	14.15.28 Secondary Arbitration Control Register - ...
	14.15.29 PCI Interrupt Routing Select Register - P...
	14.15.30 Secondary I/O Base Register - SIOBR
	Table 14�51. Secondary I/O Base Register - SIOBR

	14.15.31 Secondary I/O Limit Register - SIOLR
	Table 14�52. Secondary I/O Limit Register - SIOLR

	14.15.32 Secondary Memory Base Register - SMBR
	Table 14�53. Secondary Memory Base Register - SMBR...

	14.15.33 Secondary Memory Limit Register - SMLR
	Table 14�54. Secondary Memory Limit Register - SML...

	14.15.34 Secondary Decode Enable Register - SDER
	Table 14�55. Secondary Decode Enable Register - SD...

	14.15.35 Queue Control Register - QCR
	Table 14�56. Queue Control Register- QCR �

	Address Translation Unit 15
	15.1 Overview
	Figure 15�1. ATU Block Diagram
	Figure 15�2. ATU Queue Architecture Block Diagram

	15.2 ATU Address Translation
	Table 15�1. ATU Command Support
	15.2.1 Inbound Transactions
	15.2.1.1 Inbound Address Translation
	Figure 15�3. Inbound Address Detection
	Figure 15�4. Inbound Translation Example

	15.2.1.2 Inbound Write Transaction
	15.2.1.3 Inbound Read Transaction
	15.2.1.4 Inbound Configuration Cycle Translation
	15.2.1.5 Discard Timers

	15.2.2 Outbound Transactions
	15.2.2.1 Outbound Address Translation
	15.2.2.2 Outbound Address Translation Windows
	Figure 15�5. 80960 Memory Map - Outbound Translati...
	Figure 15�6. Outbound Address Translation Windows

	15.2.2.3 Direct Addressing Window
	Figure 15�7. Direct Addressing Window

	15.2.2.4 Outbound Write Transaction
	15.2.2.5 Outbound Read Transaction
	Table 15�2. Outbound Read Prefetch Sizes

	15.2.3 Private PCI Address Space / Outbound Config...
	15.2.4 PCI Multi-Function Device Swapping/Disablin...
	Table 15�3. PCI Multi-Function Device Swapping/Dis...

	15.2.5 64-Bit PCI Operation
	15.2.5.1 64-Bit Protocol
	Figure 15�8. PCI 64-Bit Transfer from a 64-Bit Tar...

	15.2.5.2 64-Bit Operation with 32-Bit Targets
	Figure 15�9. 64-Bit Write Request with 32-Bit Tran...

	15.3 Messaging Unit
	15.4 Expansion ROM Translation Unit
	15.5 ATU Queue Architecture
	15.5.1 Inbound Queues
	Table 15�4. Inbound Queues �
	15.5.1.1 Inbound Write Queue Structure
	15.5.1.2 Inbound Read Queues and Inbound Transacti...
	Table 15�5. Inbound Read Prefetch Data Sizes

	15.5.1.3 Inbound Delayed Write Queue

	15.5.2 Outbound Queues
	Table 15�6. Outbound Queues �

	15.5.3 Transaction Ordering
	Table 15�7. ATU Inbound Data Flow Ordering Rules
	Table 15�8. ATU Outbound Data Flow Ordering Rules
	Figure 15�10. Inbound Queue Completion

	15.6 ATU Error Conditions
	15.6.1 Address Parity Errors on the PCI Interface
	Table 15�9. Address Parity Errors on PCI Interface...

	15.6.2 Data Parity Errors on the PCI Interface
	15.6.2.1 Outbound Read Data Parity Errors - Master...
	Table 15�10. Outbound Read Data Parity Errors - Ma...

	15.6.2.2 Outbound Write Data Parity Errors - Maste...
	Table 15�11. Outbound Write Data Parity Errors - M...

	15.6.2.3 Inbound Read Data Parity Errors - Slave
	15.6.2.4 Inbound Write Data Parity Errors - Slave
	Table 15�12. Inbound Write Data Parity Errors - Sl...

	15.6.2.5 Inbound Configuration Write Data Parity E...

	15.6.3 Master Aborts on the PCI Interface
	Table 15�13. Master Aborts on the PCI Interface

	15.6.4 Target Aborts on the PCI Interface
	Table 15�14. Target Abort Signaled on the PCI Inte...
	Table 15�15. Target Abort Detected on the PCI Inte...

	15.6.5 SERR# Assertion and Detection
	Table 15�16. SERR# Asserted by PCI Interface
	Table 15�17. SERR# Detected by PCI Interface

	15.6.6 Internal Bus Error Conditions
	15.6.6.1 Master Abort on the Internal Bus
	Table 15�18. Master Abort Detected by Internal Mas...
	Table 15�19. Master Abort Detected by Internal Mas...

	15.6.6.2 Target Abort on the Internal Bus
	Table 15�20. Target Abort Detected by Internal Mas...
	Table 15�21. Target Abort Detected by Internal Mas...

	15.6.7 ATU Error Summary
	Table 15�22. Primary ATU Error Reporting Summary -...
	Table 15�23. Secondary ATU Error Reporting Summary...
	Table 15�24. Primary ATU Error Reporting Summary -...
	Table 15�25. Secondary ATU Error Reporting Summary...

	15.7 Register Definitions
	Figure 15�11. ATU Interface Configuration Header F...
	Table 15�26. Address Translation Unit Registers (S...
	Table 15�27. ATU PCI Configuration Register Space ...
	15.7.1 ATU Vendor ID Register - ATUVID
	Table 15�28. ATU Vendor ID Register - ATUVID

	15.7.2 ATU Device ID Register - ATUDID
	Table 15�29. Device ID Register - DID (80960RN)
	Table 15�30. Device ID Register - DID (80960RM)

	15.7.3 Primary ATU Command Register - PATUCMD
	Table 15�31. Primary ATU Command Register - PATUCM...

	15.7.4 Primary ATU Status Register - PATUSR
	Table 15�32. Primary ATU Status Register - PATUSR ...

	15.7.5 ATU Revision ID Register - ATURID
	Table 15�33. ATU Revision ID Register - ATURID

	15.7.6 ATU Class Code Register - ATUCCR
	Table 15�34. ATU Class Code Register - ATUCCR

	15.7.7 ATU Cacheline Size Register - ATUCLSR
	Table 15�35. ATU Cacheline Size Register - ATUCLSR...

	15.7.8 ATU Latency Timer Register - ATULT
	Table 15�36. ATU Latency Timer Register - ATULT

	15.7.9 ATU Header Type Register - ATUHTR
	Table 15�37. ATU Header Type Register - ATUHTR

	15.7.10 ATU BIST Register - ATUBISTR
	Table 15�38. ATU BIST Register - ATUBISTR

	15.7.11 Primary Inbound ATU Base Address Register ...
	Table 15�39. Primary Inbound ATU Base Address - PI...

	15.7.12 ATU Subsystem Vendor ID Register - ASVIR
	Table 15�40. ATU Subsystem Vendor ID Register - AS...

	15.7.13 ATU Subsystem ID Register - ASIR
	Table 15�41. ATU Subsystem ID Register - ASIR

	15.7.14 Expansion ROM Base Address Register - ERBA...
	Table 15�42. Expansion ROM Base Address Register -...

	15.7.15 Determining Block Sizes for Base Address R...
	Table 15�43. Memory Block Size Read Response Table...
	Table 15�44. ATU Base Registers and Associated Lim...

	15.7.16 ATU Interrupt Line Register - ATUILR
	Table 15�45. ATU Interrupt Line Register - ATUILR

	15.7.17 ATU Interrupt Pin Register - ATUIPR
	Table 15�46. ATU Interrupt Pin Register - ATUIPR

	15.7.18 ATU Minimum Grant Register - ATUMGNT
	Table 15�47. ATU Minimum Grant Register - ATUMGNT

	15.7.19 ATU Maximum Latency Register - ATUMLAT
	Table 15�48. ATU Maximum Latency Register - ATUMLA...

	15.7.20 Primary Inbound ATU Limit Register - PIALR...
	Table 15�49. Primary Inbound ATU Limit Register - ...

	15.7.21 Primary Inbound ATU Translate Value Regist...
	Table 15�50. Primary Inbound ATU Translate Value R...

	15.7.22 Secondary Inbound ATU Base Address Registe...
	Table 15�51. Secondary Inbound ATU Base Address Re...

	15.7.23 Secondary Inbound ATU Limit Register - SIA...
	Table 15�52. Secondary Inbound ATU Limit Register ...

	15.7.24 Secondary Inbound ATU Translate Value Regi...
	Table 15�53. Secondary Inbound Translate ATU Value...

	15.7.25 Primary Outbound Memory Window Value Regis...
	Table 15�54. Primary Outbound Memory Window Value ...

	15.7.26 Primary Outbound I/O Window Value Register...
	Table 15�55. Primary Outbound I/O Window Value Reg...

	15.7.27 Primary Outbound DAC Window Value Register...
	Table 15�56. Primary Outbound DAC Window Value Reg...

	15.7.28 Primary Outbound Upper 64-bit DAC Register...
	Table 15�57. Primary Outbound Upper 64-bit DAC Reg...

	15.7.29 Secondary Outbound Memory Window Value Reg...
	Table 15�58. Secondary Outbound Memory Window Valu...

	15.7.30 Secondary Outbound I/O Window Value Regist...
	Table 15�59. Secondary Outbound I/O Window Value R...

	15.7.31 Expansion ROM Limit Register - ERLR
	Table 15�60. Expansion ROM Limit Register - ERLR

	15.7.32 Expansion ROM Translate Value Register - E...
	Table 15�61. Expansion ROM Translate Value Registe...

	15.7.33 ATU Configuration Register - ATUCR
	Table 15�62. ATU Configuration Register - ATUCR (S...

	15.7.34 Primary ATU Interrupt Status Register - PA...
	Table 15�63. Primary ATU Interrupt Status Register...

	15.7.35 Secondary ATU Interrupt Status Register - ...
	Table 15�64. Secondary ATU Interrupt Status Regist...

	15.7.36 Secondary ATU Command Register - SATUCMD
	Table 15�65. Secondary ATU Command Register - SATU...

	15.7.37 Secondary ATU Status Register - SATUSR
	Table 15�66. Secondary ATU Status Register - SATUS...

	15.7.38 Secondary Outbound DAC Window Value Regist...
	Table 15�67. Secondary Outbound DAC Window Value R...

	15.7.39 Secondary Outbound Upper 64-bit DAC Regist...
	Table 15�68. Secondary Outbound Upper 64-bit DAC R...

	15.7.40 Primary Outbound Configuration Cycle Addre...
	Table 15�69. Primary Outbound Configuration Cycle ...

	15.7.41 Secondary Outbound Configuration Cycle Add...
	Table 15�70. Secondary Outbound Configuration Cycl...

	15.7.42 Primary Outbound Configuration Cycle Data ...
	Table 15�71. Primary Outbound Configuration Cycle ...

	15.7.43 Secondary Outbound Configuration Cycle Dat...
	Table 15�72. Secondary Outbound Configuration Cycl...

	15.7.44 Primary ATU Interrupt Mask Register - PATU...
	Table 15�73. Primary ATU Interrupt Mask Register -...

	15.7.45 Secondary ATU Interrupt Mask Register - SA...
	Table 15�74. Secondary ATU Interrupt Mask Register...

	Messaging Unit 16
	16.1 Overview
	16.2 Theory of Operation
	Figure 16�1. PCI Memory Map
	Table 16�1. MU Summary
	16.2.1 Transaction Ordering
	Table 16�2. Circular Queue Ordering Requirements

	16.3 Message Registers
	16.3.1 Outbound Messages
	16.3.2 Inbound Messages

	16.4 Doorbell Registers
	16.4.1 Outbound Doorbells
	16.4.2 Inbound Doorbells

	16.5 Circular Queues
	Table 16�3. Circular Queue Summary
	Figure 16�2. Overview of Circular Queue Operation
	Table 16�4. Queue Starting Addresses
	Figure 16�3. Circular Queue Operation
	16.5.1 Inbound Free Queue
	16.5.2 Inbound Post Queue
	16.5.3 Outbound Post Queue
	16.5.4 Outbound Free Queue
	Table 16�5. Circular Queue Summary

	16.6 Index Registers
	16.7 Messaging Unit Error Conditions
	16.8 Register Definitions
	Table 16�6. Message Unit Register Table �
	16.8.1 Inbound Message Register - IMRx
	Table 16�7. Inbound Message Register - IMRx

	16.8.2 Outbound Message Register - OMRx
	Table 16�8. Outbound Message Register - OMRx

	16.8.3 Inbound Doorbell Register - IDR
	Table 16�9. Inbound Doorbell Register - IDR

	16.8.4 Inbound Interrupt Status Register - IISR
	Table 16�10. Inbound Interrupt Status Register - I...

	16.8.5 Inbound Interrupt Mask Register - IIMR
	Table 16�11. Inbound Interrupt Mask Register - IIM...

	16.8.6 Outbound Doorbell Register - ODR
	Table 16�12. Outbound Doorbell Register - ODR

	16.8.7 Outbound Interrupt Status Register - OISR
	Table 16�13. Outbound Interrupt Status Register - ...

	16.8.8 Outbound Interrupt Mask Register - OIMR
	Table 16�14. Outbound Interrupt Mask Register - OI...

	16.8.9 MU Configuration Register - MUCR
	Table 16�15. MU Configuration Register - MUCR

	16.8.10 Queue Base Address Register - QBAR
	Table 16�16. Queue Base Address Register - QBAR

	16.8.11 Inbound Free Head Pointer Register - IFHPR...
	Table 16�17. Inbound Free Head Pointer Register - ...

	16.8.12 Inbound Free Tail Pointer Register - IFTPR...
	Table 16�18. Inbound Free Tail Pointer Register - ...

	16.8.13 Inbound Post Head Pointer Register - IPHPR...
	Table 16�19. Inbound Post Head Pointer Register - ...

	16.8.14 Inbound Post Tail Pointer Register - IPTPR...
	Table 16�20. Inbound Post Tail Pointer Register - ...

	16.8.15 Outbound Free Head Pointer Register - OFHP...
	Table 16�21. Outbound Free Head Pointer Register -...

	16.8.16 Outbound Free Tail Pointer Register - OFTP...
	Table 16�22. Outbound Free Tail Pointer Register -...

	16.8.17 Outbound Post Head Pointer Register - OPHP...
	Table 16�23. Outbound Post Head Pointer Register -...

	16.8.18 Outbound Post Tail Pointer Register - OPTP...
	Table 16�24. Outbound Post Tail Pointer Register -...

	16.8.19 Index Address Register - IAR
	Table 16�25. Index Address Register - IAR

	16.9 Power/Default Status

	i960® RM/RN I/O Processor Arbitration 17
	17.1 Arbitration Overview
	Figure 17�1. i960® RM/RN I/O Processor Arbitration...

	17.2 PCI Arbiter Overview
	17.2.1 Theory of Operation
	17.2.1.1 Priority Mechanism
	Figure 17�2. Secondary PCI Arbitration Example
	Table 17�1. Bus Master / Programmed Priorities
	Example 17�1. Priority Example with Three Bus Mast...
	Table 17�2. Bus Arbitration Example – Three Bus Ma...
	Example 17�2. Priority Example with Six Bus Master...
	Table 17�3. Bus Arbitration Example – Six Bus Mast...

	17.2.1.2 Arbitration Signalling Protocol
	Figure 17�3. Arbitration Between Two Masters
	Table 17�4. Arbitration Flow

	17.2.1.3 Secondary PCI Bus Arbitration Parking

	17.2.2 Atomic Accesses
	17.2.3 Internal and Secondary PCI Arbiter Differen...
	17.2.3.1 Multi-Transaction Timer
	Figure 17�4. BIU Back-to-Back Transactions with MT...

	17.3 PCI Selector Operation
	17.3.1 Primary PCI Bus Arbitration Parking

	17.4 Master Latency Timer Operation
	17.4.1 Primary and Secondary PCI Master Latency Ti...
	17.4.2 Internal Master Latency Timer

	17.5 Reset Conditions
	Table 17�5. Arbitration Block and Reset Signals
	17.5.1 S_REQ64# Control

	17.6 Register Definitions
	Table 17�6. Secondary Arbiter Register Table
	17.6.1 Secondary Arbitration Control Register - SA...
	Table 17�7. Secondary Arbitration Control Register...
	Table 17�8. 2-Bit Priorities

	17.6.2 Internal Arbitration Control Register - IAC...
	Table 17�9. Internal Arbitration Control Register ...

	17.6.3 Master Latency Timer Register - MLTR
	Table 17�10. Master Latency Timer Register - MLTR ...

	17.6.4 Multi-Transaction Timer Register - MTTR
	Table 17�11. Multi-Transaction Timer Register - MT...

	Timers 18
	Figure 18�1. Timer Functional Diagram
	Table 18�1. Timer Performance Ranges
	18.1 Timer Registers
	Table 18�2. Timer Registers
	18.1.1 Timer Mode Registers – TMR0:1
	Table 18�3. Timer Mode Register – TMRx
	18.1.1.1 Bit 0 - Terminal Count Status Bit (TMRx.t...
	18.1.1.2 Bit 1 - Timer Enable (TMRx.enable)
	18.1.1.3 Bit 2 - Timer Auto Reload Enable (TMRx.re...
	18.1.1.4 Bit 3 - Timer Register Supervisor Read/Wr...
	18.1.1.5 Bits 4, 5 - Timer Input Clock Select (TMR...
	Table 18�4. Timer Input Clock (TCLOCK) Frequency S...

	18.1.2 Timer Count Register – TCR0:1
	Table 18�5. Timer Count Register – TCRx

	18.1.3 Timer Reload Register – TRR0:1
	Table 18�6. Timer Reload Register – TRRx

	18.2 Timer Operation
	18.2.1 Basic Timer Operation
	Table 18�7. Timer Mode Register Control Bit Summar...

	18.2.2 Load/Store Access Latency for Timer Registe...
	Table 18�8. Timer Responses to Register Bit Settin...

	18.3 Timer Interrupts
	18.4 Powerup/Reset Initialization
	Table 18�9. Timer Powerup Mode Settings

	18.5 Uncommon TCRX and TRRX Conditions
	Table 18�10. Uncommon TMRx Control Bit Settings�

	18.6 Timer State Diagram
	Figure 18�2. Timer Unit State Diagram

	DMA Controller Unit 19
	19.1 Overview
	Figure 19�1. DMA Controller

	19.2 Theory of Operation
	Figure 19�2. DMA Channel Block Diagram

	19.3 DMA Transfer
	Table 19�1. DMA Registers
	19.3.1 Chain Descriptors
	Figure 19�3. DMA Chain Descriptor
	Figure 19�4. DMA Chaining Operation

	19.3.2 Initiating DMA Transfers
	19.3.3 Scatter Gather DMA Transfers
	Figure 19�5. Example of Gather Chaining

	19.3.4 Synchronizing a Program to Chained Transfer...
	Figure 19�6. Synchronizing to Chained Transfers

	19.3.5 Appending to The End of a Chain

	19.4 64-bit Transfers on a 64-bit PCI Bus
	19.4.1 64-bit Operation with 64-bit Targets
	19.4.2 64-bit Operation with 32-bit Targets
	19.4.3 64-bit Addressing

	19.5 Data Transfers
	19.5.1 PCI to Local Memory Transfers
	19.5.2 Local Memory to PCI Transfers: Memory Write...
	19.5.3 Local Memory to PCI Transfers: Memory Write...
	19.5.4 Exclusive Access

	19.6 Data Queues
	19.7 Packing and Unpacking
	19.7.1 64-bit Unaligned Data Transfers
	Figure 19�7. Optimization of an Unaligned DMA

	19.7.2 64/32-bit Unaligned Data Transfers
	Figure 19�8. Optimization of an Unaligned DMA

	19.8 Channel Priority
	19.9 Programming Model State Diagram
	Figure 19�9. DMA Programming Model State Diagram

	19.10 DMA Channel Programming Examples
	19.10.1 Software DMA Controller Initialization
	Example 19�1. Software Example for Channel Initial...

	19.10.2 Software Start DMA Transfer
	Example 19�2. Software Example for DMA Transfer

	19.10.3 Software Suspend Channel
	Example 19�3. Software Example for Channel Suspend...

	19.11 Interrupts
	Table 19�2. DMA Interrupt Summary

	19.12 Error Conditions
	19.12.1 PCI Errors
	19.12.2 Internal Bus Errors

	19.13 Powerup/Default Status
	19.14 Register Definitions
	Table 19�3. DMA Controller Unit Registers
	19.14.1 Channel Control Register - CCR
	Table 19�4. Channel Control Register - CCR

	19.14.2 Channel Status Register - CSR
	Table 19�5. Channel Status Register - CSR (Sheet 2...

	19.14.3 Next Descriptor Address Register - NDAR
	Table 19�6. Next Descriptor Address Register - NDA...

	19.14.4 Descriptor Address Register - DAR
	Table 19�7. Descriptor Address Register - DAR

	19.14.5 Byte Count Register - BCR
	Table 19�8. Byte Count Register - BCR

	19.14.6 PCI Address Register - PADR
	Table 19�9. PCI Address Register - PADR

	19.14.7 PCI Upper Address Register - PUADR
	Table 19�10. PCI Upper Address Register - PUADR

	19.14.8 Local Address Register - LADR
	Table 19�11. Local Address Register - LADR

	19.14.9 Descriptor Control Register - DCR
	Table 19�12. Descriptor Control Register - DCR�
	Table 19�13. PCI Commands

	Application Accelerator Unit 20
	20.1 Overview
	Figure 20�1. Application Accelerator Unit

	20.2 Theory of Operation
	Figure 20�2. Application Accelerator Unit Block Di...

	20.3 Hardware-Assist XOR Unit
	20.3.1 Data Transfer
	Table 20�1. Register Description

	20.3.2 Chain Descriptor Format (4 Source Addresses...
	Figure 20�3. Chain Descriptor Format
	Figure 20�4. XOR Chaining Operation

	20.3.3 Chain Descriptor Format (Eight Source Addre...
	Figure 20�5. Chain Descriptor Format for 8 Source ...
	Figure 20�6. XOR Chaining Operation

	20.3.4 The Bitwise-XOR Algorithm
	Figure 20�7. The Bit-wise XOR Algorithm
	Figure 20�8. Hardware Assist XOR Unit

	20.3.5 Initiating the XOR Operation
	20.3.6 Scatter Gather Transfers
	Figure 20�9. Example of Gather Chaining for Four S...

	20.3.7 Synchronizing a program to Chained operatio...
	Figure 20�10. Synchronizing to Chained XOR Operati...

	20.3.8 Appending to The End of a Chain

	20.4 Store Queue
	20.5 Packing and Unpacking
	20.5.1 64-bit Unaligned Data Transfers
	Figure 20�11. Optimization of an Unaligned Data Tr...

	20.6 Application Accelerator Unit Priority
	20.7 Programming Model State Diagram
	Figure 20�12. Application Accelerator Unit Program...

	20.8 Programming the Application Accelerator Unit
	20.8.1 Application Accelerator Unit Initialization...
	Example 20�1. Pseudo Code: AAU Initialization

	20.8.2 Start XOR Transfer
	Example 20�2. Pseudo Code: XOR Transfer Operation ...

	20.8.3 Suspend Application Accelerator Unit
	Example 20�3. Pseudo Code: Suspend Application Acc...

	20.9 Interrupts
	Table 20�2. Application Accelerator Unit Interrupt...
	20.9.1 Interrupts - Special Case (ADCR.dwe = 0)
	Table 20�3. AAU Interrupts - Special Case

	20.10 Error Conditions
	20.11 Powerup/Default Status
	20.12 Register Definitions
	Table 20�4. Application Accelerator Unit Registers...
	20.12.1 Accelerator Control Register - ACR
	Table 20�5. Accelerator Control Register - ACR

	20.12.2 Accelerator Status Register - ASR
	Table 20�6. Accelerator Status Register - ASR�

	20.12.3 Accelerator Descriptor Address Register - ...
	Table 20�7. Accelerator Descriptor Address Registe...

	20.12.4 Accelerator Next Descriptor Address Regist...
	Table 20�8. Accelerator Next Descriptor Address Re...

	20.12.5 80960 Source Address Register - SAR
	Table 20�9. 80960 Source Address Register - SARx

	20.12.6 80960 Destination Address Register - DAR
	Table 20�10. 80960 Destination Address Register - ...

	20.12.7 Accelerator Byte Count Register - ABCR
	Table 20�11. Accelerator Byte Count Register - ABC...

	20.12.8 Accelerator Descriptor Control Register - ...
	Table 20�12. Accelerator Descriptor Control Regist...

	Performance Monitoring Unit 21
	21.1 Overview
	21.2 Theory of Operation
	21.2.1 Global Time Stamp
	21.2.2 Programmable Event Counters
	21.2.2.1 Occurrence Events
	Table 21�1. Occurrence Events

	21.2.2.2 Duration Events
	Table 21�2. Duration Events

	21.2.3 Performance Monitoring
	Table 21�3. Relationship between the Monitored mod...

	21.3 Event Description
	21.3.1 Mode0: Performance Monitoring Disabled
	21.3.2 Mode1: Primary PCI bus and Internal Agents
	21.3.2.1 M1_PPCIBus_idle
	21.3.2.2 M1_PPCIBus_data
	21.3.2.3 M1_PPCIBus_bridge_acq
	21.3.2.4 M1_PPCIBus_bridge_own
	21.3.2.5 M1_PPCIBus_DMA0_acq
	21.3.2.6 M1_PPCIBus_DMA0_own
	21.3.2.7 M1_PPCIBus_DMA1_acq
	21.3.2.8 M1_PPCIBus_DMA1_own
	21.3.2.9 M1_PPCIBus_PATU_acq
	21.3.2.10 M1_PPCIBus_PATU_own
	21.3.2.11 M1_PPCIBus_DMA0_gnt
	21.3.2.12 M1_PPCIBus_DMA1_gnt
	21.3.2.13 M1_PPCIBus_PATU_gnt
	21.3.2.14 M1_PPCIBus_bridge_gnt

	21.3.3 Mode 2: Secondary PCI Bus and Internal Agen...
	21.3.3.1 M2_SPCIBus_idle
	21.3.3.2 M2_SPCIBus_data
	21.3.3.3 M2_SPCIBus_SATU_acq
	21.3.3.4 M2_SPCIBus_SATU_own
	21.3.3.5 M2_SPCIBus_bridge_acq
	21.3.3.6 M2_SPCIBus_bridge_own
	21.3.3.7 M2_SPCIBus_DMA2_acq
	21.3.3.8 M2_SPCIBus_DMA2_own
	21.3.3.9 M2_SPCIBus_bridge_gnt
	21.3.3.10 M2_SPCIBus_SATU_gnt
	21.3.3.11 M2_SPCIBus_DMA2_gnt
	21.3.3.12 M2_PPCIBus_idle
	21.3.3.13 M2_PPCIBus_data
	21.3.3.14 M2_IBus_data

	21.3.4 Mode 3: Secondary PCI Bus and External Agen...
	21.3.4.1 M3_SPCIbus_idle
	21.3.4.2 M3_SPCIbus_data
	21.3.4.3 M3_SPCIbus_IOP_acq
	21.3.4.4 M3_SPCIbus_IOP_own
	21.3.4.5 M3_SPCIbus_D0_acq
	21.3.4.6 M3_SPCIbus_D0_own
	21.3.4.7 M3_SPCIbus_D1_acq
	21.3.4.8 M3_SPCIbus_D1_own
	21.3.4.9 M3_SPCIbus_D2_acq
	21.3.4.10 M3_SPCIbus_D2_own
	21.3.4.11 M3_SPCIbus_IOP_gnt
	21.3.4.12 M3_SPCIbus_D0_gnt
	21.3.4.13 M3_SPCIbus_D1_gnt
	21.3.4.14 M3_SPCIbus_D2_gnt

	21.3.5 Mode 4: Secondary PCI Bus and External Agen...
	21.3.5.1 M4_SPCIbus_idle
	21.3.5.2 M4_SPCIbus_data
	21.3.5.3 M4_SPCIbus_D3_acq
	21.3.5.4 M4_SPCIbus_D3_own
	21.3.5.5 M4_SPCIbus_D4_acq
	21.3.5.6 M4_SPCIbus_D4_own
	21.3.5.7 M4_SPCIbus_D5_acq
	21.3.5.8 M4_SPCIbus_D5_own
	21.3.5.9 M4_SPCIbus_D3_gnt
	21.3.5.10 M4_SPCIbus_D4_gnt
	21.3.5.11 M4_SPCIbus_D5_gnt
	21.3.5.12 M4_SPCIbus_IOP_gnt
	21.3.5.13 M4_SPCIbus_IOP_acq
	21.3.5.14 M4_SPCIbus_IOP_own

	21.3.6 Mode 5: i960® RM/RN I/O Processor Internal ...
	21.3.6.1 M5_IBus_idle
	21.3.6.2 M5_IBus_data
	21.3.6.3 M5_IBus_AAU_acq
	21.3.6.4 M5_IBus_AAU_own
	21.3.6.5 M5_IBus_DMA0_acq
	21.3.6.6 M5_IBus_DMA0_own
	21.3.6.7 M5_IBus_DMA1_acq
	21.3.6.8 M5_IBus_DMA1_own
	21.3.6.9 M5_IBus_DMA2_acq
	21.3.6.10 M5_IBus_DMA2_own
	21.3.6.11 M5_IBus_AAU_gnt
	21.3.6.12 M5_IBus_DMA0_gnt
	21.3.6.13 M5_IBus_DMA1_gnt
	21.3.6.14 M5_IBus_DMA2_gnt

	21.3.7 Mode 6: i960® RM/RN I/O Processor Internal ...
	21.3.7.1 M6_IBus_core_acq
	21.3.7.2 M6_IBus_core_own
	21.3.7.3 M6_IBus_PATU_acq
	21.3.7.4 M6_IBus_PATU_own
	21.3.7.5 M6_IBus_SATU_acq
	21.3.7.6 M6_IBus_SATU_own
	21.3.7.7 M6_IBus_PBOFF_time
	21.3.7.8 M6_IBus_PBOFF_cnt
	21.3.7.9 M6_IBus_SBOFF_time
	21.3.7.10 M6_IBus_SBOFF_cnt
	21.3.7.11 M6_IBus_PATU_gnt
	21.3.7.12 M6_IBus_SATU_gnt
	21.3.7.13 M6_IBus_core_gnt
	21.3.7.14 M6_IBus_ATU_retries

	21.3.8 Mode 7: i960® RM/RN Processor Internal Bus,...
	21.3.8.1 M7_IBus_idle
	21.3.8.2 M7_IBus_data
	21.3.8.3 M7_SPCIbus_idle
	21.3.8.4 M7_SPCIbus_data
	21.3.8.5 M7_SPCIbus_IOP_own
	21.3.8.6 M7_SPCIbus_D0_own
	21.3.8.7 M7_SPCIbus_D1_own
	21.3.8.8 M7_SPCIbus_D2_own
	21.3.8.9 M7_SPCIbus_D3_own
	21.3.8.10 M7_SPCIbus_D4_own
	21.3.8.11 M7_SPCIbus_D5_own
	21.3.8.12 M7_PPCIbus_IOP_own
	21.3.8.13 M7_PPCIbus_idle
	21.3.8.14 M7_PPCIbus_data

	21.4 Interrupts
	21.5 Reset Conditions
	21.6 Register Definitions
	Table 21�4. Event Monitor Register Table
	21.6.1 Global Timer Mode Register (GTMR)
	Table 21�5. Global Timer Mode Register (GTMR)

	21.6.2 Event Select Register (ESR)
	Table 21�6. Event Select Register (ESR)

	21.6.3 Event Monitoring Interrupt Status Register ...
	Table 21�7. Event Monitoring Interrupt Status Regi...

	21.6.4 Global Time Stamp Register (GTSR)
	Table 21�8. Global Time Stamp Register - GTSR

	21.6.5 Programmable Event Counter Register (PECRx)...
	Table 21�9. Programmable Event Counter Register - ...

	I2C Bus Interface Unit 22
	22.1 Overview
	22.2 Theory of Operation
	Table 22�1. I2C Bus Definitions
	Figure 22�1. I2C Bus Configuration Example
	22.2.1 Operational Blocks
	Figure 22�2. I2C Bus Interface Unit Block Diagram

	22.2.2 I2C Bus Interface Modes
	Table 22�2. Modes of Operation

	22.2.3 Start and Stop Bus States
	Table 22�3. START and STOP Bit Definitions
	Figure 22�3. Start and Stop Conditions
	22.2.3.1 START Condition
	22.2.3.2 No START or STOP Condition
	22.2.3.3 STOP Condition
	Figure 22�4. START and STOP Conditions

	22.3 I2C Bus Operation
	22.3.1 Serial Clock Line (SCL) Generation
	Equation 22�1. SCL Transition Period = ICCR Decima...
	Table 22�4. ICCR Programming Values

	22.3.2 Data and Addressing Management
	22.3.2.1 Addressing a Slave Device
	Figure 22�5. Data Format of First Byte in Master T...

	22.3.3 I2C Acknowledge
	Figure 22�6. Acknowledge on the I2C Bus

	22.3.4 Arbitration
	22.3.4.1 SCL Arbitration
	Figure 22�7. Clock Synchronization During the Arbi...

	22.3.4.2 SDA Arbitration
	Figure 22�8. Arbitration Procedure of Two Masters

	22.3.5 Master Operations
	Table 22�5. Master Transactions (Sheet 2 of 2)
	Figure 22�9. Master-Receiver Read from Slave-Trans...
	Figure 22�10. Master-Receiver Read from Slave-Tran...
	Figure 22�11. A Complete Data Transfer

	22.3.6 Slave Operations
	Table 22�6. Slave Transactions �
	Figure 22�12. Master-Transmitter Write to Slave-Re...
	Figure 22�13. Master-Receiver Read to Slave-Transm...
	Figure 22�14. Master-Receiver Read to Slave-Transm...

	22.3.7 General Call Address
	Figure 22�15. General Call Address
	Table 22�7. General Call Address Second Byte Defin...

	22.4 Slave Mode Programming Examples
	22.4.1 Initialize Unit
	22.4.2 Write 1 bytes as a slave
	22.4.3 Read 2 bytes as a Slave

	22.5 Master Programming Examples
	22.5.1 Initialize Unit
	22.5.2 Write 1 byte as a master
	22.5.3 Read 1 byte as a master
	22.5.4 Write 2 bytes and repeated start read 1 byt...
	22.5.5 Read 2 bytes as a Master - Send STOP using ...

	22.6 Glitch Suppression Logic
	22.7 Reset Conditions
	22.8 Register Definitions
	Table 22�8. I2C Register Summary Table
	22.8.1 I2C Control Register- ICR
	Table 22�9. I2C Control Register - ICR (Sheet 3 of...

	22.8.2 I2C Status Register- ISR
	Table 22�10. I2C Status Register - ISR (Sheet 2 of...

	22.8.3 I2C Slave Address Register- ISAR
	Table 22�11. I2C Slave Address Register - ISAR �

	22.8.4 I2C Data Buffer Register- IDBR
	Table 22�12. I2C Data Buffer Register - IDBR �

	22.8.5 I2C Clock Count Register- ICCR
	Table 22�13. I2C Clock Count Register - ICCR �

	22.8.6 I2C Bus Monitor Register- IBMR
	Table 22�14. I2C Bus Monitor Register - IBMR �

	Test Features 23
	23.1 On-Circuit Emulation (ONCE)
	23.1.1 Entering/Exiting ONCE Mode
	23.1.2 ONCE Mode and Boundary-Scan (JTAG) are Inco...
	23.1.2.1 DEN# Alternatives

	23.2 Boundary-Scan (JTAG)
	23.2.1 Boundary-Scan Architecture
	Figure 23�1. Test Access Port Block Diagram

	23.2.2 TAP Pins
	Table 23�1. TAP Controller Pin Definitions �

	23.2.3 Instruction Register
	23.2.3.1 Boundary-Scan Instruction Set
	Table 23�2. Boundary-Scan Instruction Set
	Table 23�3. IEEE Instructions �

	23.2.4 TAP Test Data Registers
	23.2.4.1 Device Identification Register
	23.2.4.2 Bypass Register
	23.2.4.3 RUNBIST Register
	23.2.4.4 Boundary-Scan Register
	Table 23�4. i960® RM/RN I/O Processor Boundary Sca...

	23.2.5 TAP Controller
	Figure 23�2. TAP Controller State Diagram
	23.2.5.1 Test Logic Reset State
	23.2.5.2 Run-Test/Idle State
	23.2.5.3 Select-DR-Scan State
	23.2.5.4 Capture-DR State
	23.2.5.5 Shift-DR State
	23.2.5.6 Exit1-DR State
	23.2.5.7 Pause-DR State
	23.2.5.8 Exit2-DR State
	23.2.5.9 Update-DR State
	23.2.5.10 Select-IR Scan State
	23.2.5.11 Capture-IR State
	23.2.5.12 Shift-IR State
	23.2.5.13 Exit1-IR State
	23.2.5.14 Pause-IR State
	23.2.5.15 Exit2-IR State
	23.2.5.16 Update-IR State

	23.2.6 Boundary-Scan Example
	Figure 23�3. Example Showing Typical JTAG Operatio...
	Figure 23�4. Timing Diagram Illustrating the Loadi...
	Figure 23�5. Timing Diagram Illustrating the Loadi...

	Clocking and Reset 24
	24.1 Clocking Overview
	Figure 24�1. Clocking Regions Diagram
	24.1.1 Clocking Theory of Operation
	24.1.2 Clocking Region 1
	24.1.3 Clocking Region 2
	Figure 24�2. SDRAM Clocking Diagram

	24.1.4 Clocking Region 3
	24.1.5 Clocking Region Summary
	Table 24�1. Clock Pin Summary
	Table 24�2. Clock Region Summary

	24.2 Reset Overview
	Figure 24�3. Reset Block Diagram
	24.2.1 Primary PCI Reset
	24.2.2 Secondary PCI Reset
	24.2.3 Internal Bus Reset

	24.3 Reset Strapping Options
	Table 24�3. Configuration Modes

	Machine-Level Instruction Formats A
	A.1 General Instruction Format
	Figure A�1. Instruction Formats
	Table A�1. Instruction Field Descriptions

	A.2 REG Format
	Table A�2. Encoding of src1 and src2 in REG Format...
	Table A�3. Encoding of src/dst in REG Format

	A.3 COBR Format
	Table A�4. Encoding of src1 in COBR Format
	Table A�5. Encoding of src2 in COBR Format

	A.4 CTRL Format
	A.5 MEM Format
	Table A�6. Addressing Modes for MEM Format Instruc...
	A.5.1 MEMA Format Addressing
	A.5.2 MEMB Format Addressing
	Table A�7. Encoding of Scale Field

	Opcodes and Execution Times B
	B.1 Instruction Reference by Opcode
	Table B�1. Miscellaneous Instruction Encoding Bits...
	Table B�2. REG Format Instruction Encodings (Sheet...
	Table B�3. COBR Format Instruction Encodings �
	Table B�4. CTRL Format Instruction Encodings �
	Table B�5. Cycle Counts for sysctl Operations
	Table B�6. Cycle Counts for icctl Operations
	Table B�7. Cycle Counts for dcctl Operations
	Table B�8. Cycle Counts for intctl Operations
	Table B�9. MEM Format Instruction Encodings
	Table B�10. Addressing Mode Performance

	Memory-Mapped Registers C
	C.1 Overview
	C.2 Supervisor Space Family Registers and Tables
	Table C�1. Access Types �
	Table C�2. Supervisor Space Register Addresses (Sh...
	Table C�3. Timer Registers�

	C.3 Peripheral Memory-Mapped Register Address Spac...
	C.4 Accessing The Peripheral Memory-Mapped Registe...
	C.5 Architecturally Reserved Memory Space
	Figure C�2. i960 RM/RN I/O Processor Address Space...

	C.6 Peripheral Memory-Mapped Register Address Spac...
	Table C�5. 80960 Internal Addresses Assigned to In...
	Table C�6. Peripheral Memory-Mapped Register Locat...

	Machine-Level Instruction Formats A
	A.1 General Instruction Format
	Figure A-1. Instruction Formats

	A.2 REG Format
	Table A-2. Encoding of src1 and src2 in REG Format
	Table A-3. Encoding of src/dst in REG Format

	A.3 COBR Format
	Table A-4. Encoding of src1 in COBR Format
	Table A-5. Encoding of src2 in COBR Format

	A.4 CTRL Format
	A.5 MEM Format
	Table A-6. Addressing Modes for MEM Format Instructions
	A.5.1 MEMA Format Addressing
	A.5.2 MEMB Format Addressing
	Table A-7. Encoding of Scale Field

	Opcodes and Execution Times B
	Table B-1. Miscellaneous Instruction Encoding Bits
	Table B-2. REG Format Instruction Encodings
	Table B-3. COBR Format Instruction Encodings
	Table B-4. CTRL Format Instruction Encodings
	Table B-5. Cycle Counts for sysctl Operations
	Table B-6. Cycle Counts for icctl Operations
	Table B-7. Cycle Counts for dcctl Operations
	Table B-8. Cycle Counts for intctl Operations
	Table B-9. MEM Format Instruction Encodings
	Table B-10. Addressing Mode Performance

	Memory-Mapped Registers C
	C.1 Overview
	C.2 Supervisor Space Family Registers and Tables
	Table C-1. Access Types
	Table C-2. Supervisor Space Register Addresses
	Table C-3. Timer Registers

	C.3 Peripheral Memory-Mapped Register Address Space
	C.4 Accessing The Peripheral Memory-Mapped Registers
	C.5 Architecturally Reserved Memory Space
	Figure C-2. i960 RM/RN I/O Processor Address Space

	C.6 Peripheral Memory-Mapped Register Address Space
	Table C-5. 80960 Internal Addresses Assigned to Integrated Peripherals
	Table C-6. Peripheral Memory-Mapped Register Locations

	Index

