intgl.

i960® VH Processor

Developer’'s Manual

October 1998

Order Number: 273173-001

Information in this document is provided in connection with Intel products. No license, express or implied, by estoppel or otherwise, to any intellectual
property rights is granted by this document. Except as provided in Intel's Terms and Conditions of Sale for such products, Intel assumes no liability
whatsoever, and Intel disclaims any express or implied warranty, relating to sale and/or use of Intel products including liability or warranties relating to
fitness for a particular purpose, merchantability, or infringement of any patent, copyright or other intellectual property right. Intel products are not
intended for use in medical, life saving, or life sustaining applications.

Intel may make changes to specifications and product descriptions at any time, without notice.

Designers must not rely on the absence or characteristics of any features or instructions marked "reserved"” or "undefined." Intel reserves these for
future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them.

The i960® VH Processor may contain design defects or errors known as errata which may cause the product to deviate from published specifications.
Current characterized errata are available on request.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.

Copies of documents which have an ordering number and are referenced in this document, or other Intel literature may be obtained by calling 1-800-
548-4725 or by visiting Intel’s website at http://www.intel.com.

Copyright © Intel Corporation, 1998
*Third-party brands and names are the property of their respective owners.

i960® VH Processor Developer's Manual

intel.

Contents

1 Introduction
1.1 INtE'S I960® VH PrOCESSON ..cceiiuiiiiiieiiiiit sttt 1-1
1.2 1960® VH ProCesSOr FEALUIES.........uuiii ittt et 1-1
1.2.1 DMA CONIOMET oottt 1-2
1.2.2 Address Translation UNit.........ccocooviiiiiiiiniiii e 1-2
1.2.3 MeSSAGING UNIt .ecoiiiiiiiieiiie et 1-2
1.2.4 Memory CONIOIETooiiiiiiiii it 1-2
1.25 12C Bus Interface UNit.........cccoviiiiiiiiii e 1-3
1.3 i960® Core Processor Features (80960VH)cccoeeiiiiiiiiiiiiineeiieeee e, 1-3
1.3.1 BUISEBUS oottt 1-4
1.3.2 TIMEE UNI e 1-4
1.3.3 Priority Interrupt Controlleroeeviiiiiiee e 1-5
1.3.4 Faults and Debuggingcueeeeeiiiiiieiiiieie e 1-5
1.3.5 On-Chip Cache and Data RAM.........ccccoiiiiiiiiiinie e 1-5
1.3.6 Local Register CacChe.........ceeviiiiiiiiie e 1-5
1.3.7 TS FEALUIESouitiiiiiiiie ittt 1-5
1.3.8 Memory-Mapped Control REJISLErSccoooiiiiiiiiiiiiie e, 1-6
1.3.9 Instructions, Data Types and Memory Addressing Modes 1-6
1.4 ADOUL ThiS DOCUMENL......uiiiiiiiitiiie ettt e 1-6
141 TermMINOIOQYeeeeiiiieeiiiiiiiee ettt 1-6
1.4.2 Representing NUMDEIScooiiiiiiiiie e 1-7
143 FHEIAS e 1-7
1.4.4 Specifying Bit and Signal Valuescccooiiiiiiiiiiiee e, 1-7
1.45 Signal Name CONVENLIONScccoiuuiiiiiiiiiiie ettt 1-8
1.4.6 SoOIUtiONSIB0® PrOgramccoiiurriiiiiiiiiiineaiiie et 1-8
1.4.7 Intel Customer Literature and Telephone Support...........ccccceeenne. 1-8
1.4.8 Related DOCUMENESccoiiiiiiiiiiiiic ettt 1-8
1.4.9 Electronic INfOrmationcooooueeiiiiiiiiiiiee e 1-9
2 Data Types and Memory Addressing Modes
21 DAtA TYPES e e 2-1
211 Word/DWOord NOTALIONccueiieiiiiiiie e 2-2
20,2 INEEOEIS oottt ettt 2-2
2,13 OrdiNAIS ...eeieiiiieieie e 2-2
214 Bitsand Bit Fieldscccooiiiiiiiiiiie e 2-3
2.15 Triple and QUad WOrdS.........ccooiiiiiiiiiiiiiie e 2-3
2.1.6 Register Data AIGNMENT.........ccoiiiiiiiiiiiie e 2-3
2,17 LIEEIAlS e 2-4
2.2 Bit and Byte Ordering in MEMOIYc..uuiiiiiiiiiiiiiiieie e 2-4
2.3 Memory ADdressSing MOES...........uuiiiiiiiiie et 2-4
2.3.1 ADSOIULE ..t 2-5
2.3.2 Register INAIrECT.........uviiiiiiiiie e 2-5
2.3.3 Index with DiSplacementcoooviieiiiiiiie e 2-5
2.3.4 IP with DISPlacementccooiiiiiiiiiiiiieee e 2-6
2.3.5 Addressing Mode Examplescccccoiiiiiiiniiin e, 2-6

i960® VH Processor Developer’'s Manual

Programming Environment

3.1 OVEIVIEW ..ttt ettt ettt ettt a ettt ettt e et bt e eannnneens 3-1
3.2 Registers and Literals as Instruction Operandscccceeervvieeeenniieeeeennnn. 3-1
3.2.1 Global REQISLEISoeiiiiiiiiii i 3-2
3.2.2 LOCAI REJISIEIS ...ttt 3-3
3.2.3 Register SCOreboardingcccueeviiiiieiiiiiiiiiie e 3-3
3B.2.4 LITEIAIS woeeii ettt 3-4
3.2.5 Register and Literal Addressing and Alignment............ccccceevvnnneen. 3-4
3.3 Memory-Mapped Control Registers (MMRS)coooiiiiiiieiniiiieenie e 3-5
3.3.1 i960® Core Processor Function Memory-Mapped Registers 3-5
3.3.1.1 Restrictions on Instructions that Access the
i960® Core Processor Memory-Mapped Registers 3-6
3.3.1.2 Access Faults for i960® Core Processor MMRs............ 3-6
3.3.2 i960® VH Processor Peripheral Memory-Mapped Registers.......... 3-7
3.3.2.1 Accessing The Peripheral Memory-Mapped
REQISTEIS ..ot 3-7
3.4 Architecturally Defined Data StruCtUIeScccvuiiriiiiiinn e 3-8
3.5 MeMOrY AAArESS SPACEccii ittt 3-9
351 Memory REQUINEMENES.ccuiiiiiiiiiiiiiie et 3-10
3.5.2 Data and Instruction Alignment in the Address Space.................. 3-11
3.5.3 Byte, Word and Bit AddreSSingccoceerrvrieiniiiiineee e 3-11
3.5.4 Internal Data RAMccooiiiiiiiiiie e 3-12
3.5.5 INStruction Cachecceeiiiiiiiiiii e 3-12
35,6 Data CaCheccooiuiiiiiiiiieie e 3-12
3.6 Processor-State REQISIEISc..vvviiiiiie e 3-12
3.6.1 Instruction Pointer (IP) REQIStEr.......cccovviiiiiiiiieiieee e 3-12
3.6.2 Arithmetic Controls Register — ACccooeiiiiiieeiiiiieee e 3-13
3.6.2.1 Initializing and Modifying the AC Register 3-13
3.6.2.2 Condition Code (AC.CC) ..ccevrrrireiiiiiiieeeniiieee e 3-14
3.6.3 Process Controls Register — PCocviiiiiiiiiieeiee e 3-15
3.6.3.1 Initializing and Modifying the PC Register 3-16
3.6.4 Trace Controls (TC) REQIStEr........ccoviiiiiiiiiiiiiie e 3-17
3.7 User-Supervisor Protection Modelcceeeiiiiiiiiiiiiiiieeieee e 3-17
3.7.1 Supervisor Mode RESOUICES.........coicuriiiiriiiieee et 3-17
3.7.2 Using the User-Supervisor Protection Model.............ccccccvvveeennnn. 3-18
Cache and On-Chip Data RAM
4.1 INternal Data RAMuiiii e 4-1
4.2 Local REQIStEr CACNEiiiiiiiiie e 4-2
4.3 INSEIUCHION CACKEiiiieiiiie e 4-3
4.3.1 Enabling and Disabling the Instruction Cachecccccovveeeennnn. 4-4
4.3.2 Operation While the Instruction Cache Is Disabled 4-4
4.3.3 Loading and Locking Instructions in the Instruction Cache............. 4-4
4.3.4 Instruction Cache Visibilityccccooviiiiiiiii e, 4-4
4.3.5 Instruction Cache CONErenCY........ccccoeiiiiiieiiiiiiie e 4-5
4.4 DAta CACNEoiiiiiiie e 4-5
4.4.1 Enabling and Disabling the Data Cacheccccoocuvveeeiiiiieeinnne. 4-5
4.4.2 Multi-Word Data Accesses that Partially Hit the Data Cache 4-5
4.4.3 Data Cache Fill POICY...........coiiiiiiiiiiiiiiiie e 4-6
4.4.4 Data Cache Write POlICYcccccouiiiiiiiiiiii e 4-6

i960® VH Processor Developer’s Manual

4.45 Data Cache Coherency and Non-Cacheable Accesses.................. 4-7

4.4.6 External I/O and Bus Masters and Cache Coherency 4-8

4.4.7 Data Cache Visibilitycoocoiiiiiiiiiiiiii e 4-8

5 Instruction Set Overview

51 INSEIUCHION FOMMALS. .. .uiiiiiiiiiie i e e 5-1

5.1.1 Assembly Language FOrmat.........cccccovuieeeiniiiiieininiie e 5-1

5.1.2 Instruction Encoding FOMMALSccooviiiiiiniiiiieiee e 5-1

5.1.3 INStruCtion OPErands.........ccueeeeiiiiiiiie et 5-2

5.2 INSEIUCTION GFOUPS ...ttt e s 5-3

5.2.1 Data MOVEMENT......uu it e 5-4

5211 Load and Store INStruCtioNScccvveeeiiiiiieeeriiecceeiee, 5-4

5.21.2 MOVE .ot e e e 5-5

5213 Load AdAreSSueeeiiiiiiiieei e 5-5

5.2.2 Select Conditional..........c.ooueeeiiiiiiiii e 5-5

5.2.3 AMAMELIC oeiiiiii e 5-6
5.2.3.1 Add, Subtract, Multiply, Divide, Conditional Add,

Conditional SUbtract.............coviiiiiiiiii 5-6

5.23.2 Remainder and Modulo...........ccccovviieiiiiiic e, 5-7

5.2.3.3 Shift, Rotate and Extended Shift............c.ccceeiiiinnins 5-7

5.234 Extended ArithmetiC ..o 5-8

B.2.4 LOQICAL...utiiiiiiieieie e 5-8

5.2.5 Bit, Bit Field and Byte Operationsccccceviiiveeiniiiiee e 5-9

5251 Bit OPErationsccoiiiiiiiiiiiiiie e 5-9

5.25.2 Bit Field Operations..........ccocveveiiiieieeeniiieieec e 5-10

5253 Byte Operationscceeviiiiiiiiiiiiieee e 5-10

B5.2.6 COMPAIISON.....uuiiiiiiitiiiieii ittt ettt ettt ee et ee e st ee e e srbeeee e aee 5-10

5.2.6.1 Compare and Conditional Compare.............ccccveerennnen. 5-10

5.2.6.2 Compare and Increment or Decrement........................ 5-11

5.2.6.3 Test Condition COUES.........ouviiiiiiiiiiiiiiiee e 5-11

B.2.7 BFANCR et 5-12

527.1 Unconditional Branchcccccoiii e 5-12

5.2.7.2 Conditional Branch..........ccccccoiiiiiiniiiieeeiee e 5-12

5.2.7.3 Compare and BranCh...........cccocociiniiiiiiiieiiieee e 5-13

5.2.8 Call/REIUIM oot 5-14

B5.2.9 FAURS oo 5-14

5,220 DEDBUQG . 5-15

5.2.11 AtOMIC INSIUCHIONSvviiiiiiieiies sttt e e e 5-15

5.2.12 Processor Management..........ooovurririieriieineeniniiniere e e es e 5-16

5.3 Performance OptiMIZatioN.............uuiiiiiiiiini e 5-16

5.3.1 Instruction OptimMIiZatioNS..........cooueeiiiiiiiiiieeiiiieie e 5-16

53.1.1 Load / Store Execution Model..........ccccovviiiiiiiinncne 5-16

5.3.1.2 Compare OPEratioNS.........cuuverimrieere it 5-17

5.3.1.3 Microcoded INSrUCtIONSc.veeeeiiiiiiieei e 5-17

5.3.1.4 Multiply-Divide Unit INStructionsccccceevviiveeeennnnen. 5-17

5.3.15 Multi-Cycle Register Operationsc..cccceeeeriveeneennnns 5-17

5.3.1.6 Simple Control Transfer........cccccoveiiiiiiiieiniece e 5-18

5.3.1.7 Memory INSLFUCIONS........coiiiiiiiiiiiie e 5-18

5.3.1.8 Unaligned Memory ACCESSES.......cuuvrieriiieeeeeniieeeeenens 5-18

5.3.2 Miscellaneous Optimizationscoovveeeiiiiiiiiiininiie e 5-19

5321 Masking of Integer OVerflowcccccccovviiiiiiiiinninnns 5-19

5.3.2.2 Avoid Using PFP, SP, R3 As Destinations for

i960® VH Processor Developer’'s Manual

Vi

6.1

6.2

Procedure Calls

7.1

7.2
7.3
7.4
7.5

MDU INSEIUCHIONS ...vveiiieeiiieiie e 5-19
5.3.2.3 Use Global Registers (g0 - g14) As Destinations
for MDU INSErUCLIONSeevviieiiiiecee e 5-19
5.3.2.4 Execute in Imprecise Fault Mode............cccceeviiieeenns 5-19
5.3.3 Cache CONMIOl.....c.uvviiiiiiiiiiie e 5-19
Instruction Set Reference
N\ To] = L1To] o O P OOV PPPTT R VPPPPPPN 6-1
6.1.1 Alphabetic REfErence.........cccovuviiiiiiiiii 6-1
B.1.2 MNEMIONIC ..eeiiiiiiitie ettt 6-2
B.1.3 FOIMAL.......i ittt 6-2
L0 S =T Tod 0 1o o USSP 6-3
B.1.5 ACHION ..ttt 6-3
B.1.6 FAUIS ..eeeiiiiciieie e 6-4
B.1.7 EXAMPIE oo 6-4
6.1.8 Opcode and Instruction FOrmatocoooviiiiiiiriieee e 6-4
B.1.9 SR AISO.... et 6-5
6.1.10 Side EffECLS ...ouiiiiiiiiiiii et 6-5
B.1.11 NOTES ..o eiiii ittt 6-5
INSEIUCTIONS ...ttt et e e b e e e eeas 6-5
6.2.16 ChKDIt. .o 6-27
6.2.20 COMPARE ... 6-31
Call and Return MeChaniSm..........coiiiiiiiiiiiiiii s 7-2
7.1.1 Local Registers and the Procedure Stack..........ccccocvvviiiiiiiniinneen. 7-2
7.1.2 Local Register and Stack Management...........cccccevvviriienieeniinnneen. 7-3
7.1.21 Frame POINTErouiiiiiiiiiii e 7-3
7.1.2.2 Stack POINTEr........cooiiiiiiiiiiiiie e 7-4
7.1.2.3 Considerations When Pushing Data onto the Stack...... 7-4
7.1.2.4 Considerations When Popping Data off the Stack......... 7-4
7.1.25 Previous Frame POINEroocoviiiiiiiiiiiniieeiien 7-4
7.1.2.6 Return Type Field ... 7-4
7.1.2.7 Return Instruction POINterccccccovviiiiiiiiiiiin, 7-5
7.1.3 Call and Return ACHIONcouueiiiiiiiiiiii et 7-5
7.1.3.1 Call OPEerationcccoovuveeeiiiiiiiie ittt 7-5
7.1.3.2 Return OPEerationcccuueeveiiiieiiiiniiiiie e 7-6
7.1.4 Caching Local REgiSter SetS........ccoiiuiiiiiiiiiiiiin e 7-6
7.14.1 Reserving Local Register Sets for High Priority
INEEITUPLS ... 7-7
7.1.5 Mapping Local Registers to the Procedure Stack.............ccccccueee. 7-10
Modifying the PFP REQISTENoiiiiiiiiiiii et 7-10
Parameter PASSING......c.uuieiiiiiiiiie ittt 7-11
LOCAI CallS ...ttt 7-12
SYSEEM CallS ... 7-13
7.5.1 System Procedure Tablecccooiiiiiiiiiii e 7-13
7511 Procedure ENtries ... 7-14
7.5.1.2 Supervisor Stack Pointerccccovieiiiiiee 7-15
7.5.1.3 Trace COoNtrol Bit........cccceveeeiiiiieeeiiiiiee e 7-15
7.5.2 System Call to a Local Procedure..........cccovuviieiiiieiie e 7-15
7.5.3 System Call to a Supervisor Procedure..........cccocevuveerinniiieeeennnnn. 7-15

i960® VH Processor Developer’s Manual

7.6 User and SUPEIVISOr STACKSuuuiiiiiiiiii ettt 7-16
7.7 Interrupt and Fault CallSoouviiiiiiiiii e 7-16
7.8 REIUMS ..o e 7-17
7.9 Branch-and-LinkK ... 7-18
Interrupts
8.1 OVEIVIEW ...ttt ettt ettt e b et e e e ekt e e e e sttt e e e s bt e eeenneees 8-1
8.1.1 The i960® VH Processor Core Interrupt Architecture..................... 8-2
8.1.2 Software Requirements For Interrupt Handlingccooceeeeene. 8-2
8.1.3 INEITUPL PHIONLY «.oooiiiiiiieiiiitieie e 8-3
8.1.4 INterrupt TAbIecooiiiiiiie e 8-3
8.1.4.1 VeCtor ENHES.....coiuuiiiii it 8-4
8.1.4.2 Pending INterruptsS......coeveiiiiiiie e, 8-5
8.1.4.3 Caching Portions of the Interrupt Tablecc..c.... 8-5
8.1.5 Interrupt Stack And Interrupt ReCOrdcoocvvveeiiiiieeeiniceeene, 8-5
8.1.6 POSHNG INTEITUPLSeeiiieeiiitie et 8-6
8.16.1 Posting Software Interrupts via sysctl...........ccocceveennnne. 8-7
8.1.6.2 Posting Software Interrupts Directly in the
Interrupt Table.......ooo e, 8-7
8.1.6.3 Posting External INterruptS........ccoovvvveeiniiiieeenniecceeie, 8-8
8.1.6.4 Posting Hardware INterruptscccoeovviviniiinninniiiieen, 8-8
8.1.7 Resolving Interrupt PriOFtYccooveeiiiiiiie e 8-8
8.1.8 Sampling Pending Interrupts in the Interrupt Table 8-9
8.1.9 Saving the INterrupt Maskccceeviiiiiiiiiiiiii e 8-10
8.2 The i960® Core Processor Interrupt Controller...........ocoovvvviiiiiiiniiinnnen. 8-10
8.2.1 Interrupt Controller Dedicated Mode..........ccccccvviiiiiiiiiiniiiinecns 8-12
8.2.2 INterrupt DELECHIONeeeiiiiiiie et 8-12
8.2.3 Non-Maskable Interrupt (NMI#) ..o 8-14
8.2.4 TIMEr INTEITUPTS...cciiitiiiie ittt 8-14
8.2.5 Software INterruptS.......ccooiiiiieiiiiie e 8-14
8.2.6 Interrupt Operation SEQUENCE..........ccoiiiiieiiiiiiiieei e 8-14
8.2.7 Setting Up the Interrupt Controllercccoviiiiiiiiiiie e 8-15
8.2.8 Interrupt Service ROULINEScoocueiiiiiiiiiieiiriieeee e 8-15
8.2.9 Interrupt Context SWItCh.........ccooiiiiiiiiii e 8-16
8.2.9.1 Servicing An Interrupt From Executing State................ 8-16
8.2.9.2 Servicing An Interrupt From Interrupted State 8-17
8.3 PCIl And Peripheral INterruPLSooiiiiiiiiiiiiie s 8-17
8.3.1 PiN DESCIPLIONS ..ceeiiiiiiieii ettt ettt e e ee e 8-19
8.3.2 PCIlINterrupt ROULINGccoouviiiiiiiiiiics et 8-19
8.3.3 Internal Peripheral Interrupt ROUtINGccooiiiiiiiiiiiiiieiiiieieees 8-20
8.33.1 XINTG INterrupt SOUICESccccvverieiiieiieerie e 8-20
8.3.3.2 XINT7 INterrupt SOUICESccccvverieiiieiieeniee e 8-21
8.3.3.3 NMI INtErruPt SOUICESuvviiieiiiiiieeiieeee e 8-21
8.3.4 PCI Outbound Doorbell INtErruptS........cvveeeiiiiiieeeiiieee e 8-22
8.4 Memory-mapped Control REQISLENSccoiiiiiiiriiie e 8-22
8.4.1 PCI Interrupt Routing Select Register (PIRSR)c.cccceeviiiiniennns 8-23
8.4.2 Interrupt Control Register — ICON........ccoiiiiiiiiiiiee e 8-24
8.4.3 Interrupt Mapping Registers — IMAPO-IMAP2..........ccccceevniieeeennns 8-25
8.4.4 Interrupt Mask — IMSK and Interrupt Pending Registers —
IPND e 8-27
8.4.5 XINT6 Interrupt Status Register — X6ISRcccccoovviieeieiiieienenns 8-29

i960® VH Processor Developer’'s Manual

vii

vii

8.4.6 XINT7 Interrupt Status Register — X7ISRccccovvvviiiiniiiieenn, 8-29
8.4.7 NMI Interrupt Status Register — NISR.........ccccccviiiiiiniiinee, 8-30
8.4.8 Interrupt Controller Register Access Requirements...................... 8-32
8.4.9 Default and Reset Register Values.........cccoouviieiiiiiiiieinniiieeeeee, 8-32
8.5 Optimizing Interrupt Performance ... 8-34
8.5.1 Interrupt Service LAteNCYccuvuiiiiiiiiiiiiiiiie e 8-35
8.5.2 Features to Improve Interrupt Performance..........ccccccovvivvieeennnn. 8-35
8.5.2.1 Vector Caching OptioNccueeveiiiiieeeiriiiiie e 8-35
8.5.2.2 Caching Interrupt Routines and Reserving
ReQISter Framesoiiiiiiiiii i 8-36
8.5.2.3 Caching the Interrupt Stackcccccceeviiiiiiiiis 8-36
8.5.3 Base INterrupt LAteNnCY.......cccccureemiiiieeiieiiiirie e 8-36
8.5.4 Maximum Interrupt LAteNCYoeeviiviiiiiiiiiiie e 8-37
8.5.5 Avoiding Certain Destinations for MDU Operations...................... 8-39
8.5.6 XINT3:0# to Primary PCI Interrupt Routing Latency..................... 8-39
Faults
9.1 Fault Handling OVEIVIEWcoiiiiiiiiiieei et 9-1
9.2 FAUIE TYPES ittt e e 9-2
9.3 FAUIL TADIE .. e e 9-4
9.4 Stack Used in Fault Handlingcoeeiiiiiiiii e 9-6
9.5 FAUIt RECOIU...ciiiiiiiii it 9-6
9.5.1 Fault Record DeSCIPLONccoiviiiiiiiiiiiie it 9-6
9.5.2 Fault Record LOCAION..........couuuiiiiiiiiiiiiii it 9-7
9.6 Multiple and Parallel Faults ..., 9-8
9.6.1 Multiple Non-Trace Faults on the Same Instruction........................ 9-8
9.6.2 Multiple Trace Fault Conditions on the Same Instruction 9-8
9.6.3 Multiple Trace and Non-Trace Fault Conditions on the Same
INSEIUCTION ...t 9-9
9.6.4 Parallel FAUILScoeiiiiiie e 9-9
9.6.4.1 Faults on Multiple Instructions Executed in Parallel....... 9-9
9.6.4.2 Fault Record for Parallel Faultsccccoocvviinnnnne. 9-10
9.6.5 OVerride FAUILSoooiiiiiiiiiiiieie s 9-10
9.6.6 SYSEM EFTOF ...eiiiiiiiiiiiie e 9-11
9.7 Fault Handling ProCedUIeS.coiuiiiiiiiiieie et 9-11
9.7.1 Possible Fault Handling Procedure ACtiONS..........ccccceevviinieeennne. 9-11
9.7.2 Program Resumption Following a Fault...............ccccceiiiiiiinnnnn. 9-12
9.7.2.1 Faults Happening Before Instruction Execution........... 9-12
9.7.2.2 Faults Happening During Instruction Execution........... 9-12
9.7.2.3 Faults Happening After Instruction Execution.............. 9-13
9.7.3 Return Instruction Pointer (RIP)........ccoocciiiiiiiiiieeie e, 9-13
9.7.4 Returning to Point in Program Where Fault Occurred 9-13
9.7.5 Returning to a Point in the Program Other Than Where the
FaUlt OCCUITEAeeiiiiii it 9-13
9.7.6 FaUlt CONLIOIS......c.uviiiiii it 9-14
9.8 Fault HAaNdling ACHIONooiiiiiiiii ittt 9-14
9.8.1 Local Fault Call.........ccooiiiiiiiiiii e 9-15
9.8.2 System-Local Fault Call...........cceeiiiiiiiiiiiii e, 9-15
9.8.3 System-Supervisor Fault Callccccccviiiiiiiiiiii e, 9-15
9.8.4 Faults and INTEITUPLSc.eeviiiiiiiiii e 9-16
9.9 Precise and Imprecise FAUILScvviieiiie e 9-16

i960® VH Processor Developer’s Manual

9.9.1 PreciSe FAUILSccooiuiiiiiiiiie e 9-17
9.9.2 IMPrecise FaUILS..........coooiiiiiiiiii e 9-17
9.9.3 ASYNChronous FaUlLSccooiiiiiiiiiiiiiic e 9-17
9.9.4 No Imprecise Faults (AC.NIf) Bit........c.oocoeiiiiiiiiiiiiiieeeee 9-17
9.9.5 Controlling Fault PreCiSion ... 9-18
9.10 FaUlt REFEIENCE ... 9-18
9.10.1 ARITHMETIC FAUIScoiutiiiiiiieiiieeeceiie et 9-19
9.10.2 CONSTRAINT FAUIS ...coeiiiiiiiiiiiiiiiie e 9-20
9.10.3 OPERATION FaUIEScoeiiiiiiiiieeieee et 9-20
9.10.4 OVERRIDE FAUILSueiiiiiiiieie e 9-21
9.10.5 PARALLEL FAUIS ... cuviiiiiiiiie e 9-22
9.10.6 PROTECTION FaUItS......cccoiiiiiiiiiiie e 9-23
9.10.7 TRACE FAUILScciiiiiiiiiii it 9-24
9.10.8 TYPE FAUILS.....eoeiiiiiiiiie ittt 9-26
10 Tracing and Debugging
10.1 TracCe CONMIOIS..ccii ittt 10-1
10.1.1 Trace Controls Register — TCooiiiiiiiiiiiiieie e 10-1
10.1.2 PC Trace Enable Bit and Trace-Fault-Pending Flag..................... 10-2
10.2 TrACE MOUES .oeiiiiiiie ettt e s sebe e e e 10-3
10.2. 1 INSErUCHION TFACE ...vviiieiiitiiiee ettt 10-3
10.2.2 BranCh TrACE ...ccoiiiiiiiie ettt 10-3
10.2.3 Call TrACE ... cttieeii ittt 10-3
10.2.4 RETUIM TrACEvuiiiiiieiiie ettt 10-4
10.2.5 Prereturn TIACEuuuiiiiiiie ettt 10-4
10.2.6 SUPEIVISON TTACEuiiiiiiiiiiiie ettt 10-4
10.2.7 MK TFACE .. .uueitii ittt 10-4
10.2.7.1 Software Breakpoints.........cccocovuiiiiiiiniiiniiiiieinsiieieen 10-5
10.2.7.2 Hardware Breakpoints............cceeeviiiiieeeiiniiiiiecnniiieeeennn 10-5
10.2.7.3 Requesting Modification Rights to Hardware

Breakpoint RESOUICES.........ccuvviiiiiiiiieer e 10-5
10.2.7.4 Breakpoint Control Register — BPCONcccccuveenn. 10-6
10.2.7.5 Data Address Breakpoint Registers — DABX................ 10-7
10.2.7.6 Instruction Breakpoint Registers — IPBX.............ccc.c.... 10-8
10.3 Generating @ Trace Faultoooiiiiiiiiiiii e 10-9
10.4 Handling Multiple Trace EVENS........cccuiiiiiiiiiiiiiiiiee e 10-10
10.5 Trace Fault Handling ProCedurecoovuueiiiiiiiiiieiiee e 10-10
10.5.1 Tracing and Interrupt Proceduresccccoveeeeeniiiiie e 10-10
10.5.2 Tracing on Calls and RetUrNSsccoccveeeiiiiiiee i 10-11
10.5.2.1 Tracing on Explicit Call...........ccccccvviiiiiiiniiiiiieeen 10-11
10.5.2.2 Tracing on Implicit Call...........cocceeeiiiiiieiiniiieiieee 10-11
10.5.2.3 Tracing on Return from Explicit Call................c.cceeee. 10-12
10.5.2.4 Tracing on Return from Implicit Call: Fault Case 10-13

10.5.2.5 Tracing on Return from Implicit Call: Interrupt
CASE ittt 10-13

11 Core and Peripheral Control Unit

L11.1 OVEIVIEW ittt ettt ettt ekt e bt e e rbb e e e e b ee e nnb e e enas 11-1
11.2 Register DefiNItiONSccueiiiiiiiiii et 111
11.2.1 Reset/Retry Control Register - RRCRccccciiiiiiiiiiiiiiieceee 111
11.2.2 PCI Interrupt Routing Select Register - PIRSR...........c.ccccveeenee. 11-2

i960® VH Processor Developer’'s Manual

11.2.3 Core Select Register - CSRccooiiiiiiieeiiiiiee e 11-2
12 Initialization and System Requirements

121 OVEIVIEW ettt ettt ettt e rb bttt e e bbbt e e sttt ee e s bbb e e e e 12-1
12.1.1 Core INLalZationc..eeviiiiiiiiiii e 12-1

12.1.2 General INitializationcccviiiiiiiii e 12-2

12.2 1960® VH Processor Initializationccccoiiiieiieiniiiieeeeee e 12-2
12.2.1 Initialization MOOEScuviiiiiiiiiie it 12-2

12.2.2 Mode 0 INtIaliZationccoiiieiiiiiiiiiii e 12-3

12.2.3 Mode 1 INtialiZationccoiiiiiiiiiiiiiie e 12-3

12.2.4 Mode 2 (Default MOAE)cueeiiiiiiiiiiii e 12-3

12.2.5 Local Bus Arbitration UnNitcoooiiiiriiiiiii e 12-5

12.2.6 Reset State OPErationccceeveiriieiiiiniiiiie e 12-5
12.2.6.1 i960® VH Processor Reset State Operation................ 12-5

12.2.6.2 i960® Jx Core Processor Reset State Operation 12-5

12.3 i1960® Core Processor Initializationccccoveiieiiiiiiie e, 12-6
12.3.1 Self Test Function (STEST, FAIL#)cooooiiiiiiiiee e 12-7
12.3.1.1 The STEST Signalcccoviiiiiiiiiiiiiieeieeeeeiie e 12-8

12.3.1.2 Local Bus Confidence Test........cueeeiiiiiiiieiniiiiee e, 12-8

12.3.1.3 The Fail Signal (FAIL#)ccovveiiiiieieeeee e, 12-8

12.3.1.4 IMI Alignment Check and Core Processor Error.......... 12-9

12.3.1.5 FAIL# COUE....ceiiiiiiiiiiie et 12-9

12.4 Initial Memory IMage (IMI)ooiii e 12-10
12.4.1 Initialization Boot Record (IBR).......cc.uvveieiiiiiiiiiiiiie e, 12-12

12.4.2 Process Control Block — PRCB..........cccoiiiiiiiii e, 12-15

12.4.3 Process PRCB FIOWcooiiiiiiiiiiiiiiii e 12-17
12.4.3.1 AC Initial IMage.......ccuveeeiiiiiiieeiie e 12-18

12.4.3.2 Fault Configuration Wordccccceeiiiiienniiiiieenenns 12-19

12.4.3.3 Instruction Cache Configuration Word 12-19

12.4.3.4 Register Cache Configuration Wordc.ccceeeernnee 12-19

12.4.4 Control Tableooviiiiii e 12-19

12.5 Device Identification 0N RESEL..........ccoiiiiiiiiiiiiiiiie e 12-20
12.6 Reinitializing and Relocating Data StruCtUresScceeeeiiiieeeeeriiieeeennns 12-22
12.7 SyStemM REQUIFEIMENESoiiiiiiiiiiiiiieiie ettt ettt ee e nrbbeee e 12-23
12.7. 1 ClIOCKING .ttt 12-23

12.7.2 OULPUL CIOCKS ...ttt 12-23

T12.7.3 RESEL... ittt 12-23

12.7.4 Power and Ground Requirements (Vcg, Vg) covvvviereiiinniiiecnen. 12-24

12.7.5 Power and Ground Planes..........ccoccuuiiiiiiiiiiniiii e, 12-24

12.7.6 Decoupling CapacitOrS.........ccueeeiiriieeieiriiiiee et 12-25

12.7.7 High Frequency Design Considerationscccccueeeeeniieeeeenninnn. 12-25

12.7.8 LiN€ TermMiNAtioNccuvuiiiiiiiiiiie et 12-25

12.7.9 LAtChUPD o 12-26
12.7.10 INTEIEIENCE ...cii ittt 12-27

13 Core Processor Local Bus Configuration

13.1 MemOry AUMDULES ..o e 13-1
13.1.1 Physical Memory AtribUtes ... 13-1

13.1.2 Logical Memory AHMDULESccooiiiiiiiriiiiiiee e 13-1

13.2 Programming the Physical Memory Attributes (Pmcon Registers) 13-3
13.2.1 Local BUS Widthcoiiiiiiiiiiiiiiie e 13-4

X i960® VH Processor Developer’s Manual

13.3 Physical Memory Attributes At Initialization.................cccoco i 13-4
13.3.1 Bus Control Register — BCONccoocuiiiiiiiiiieeeniiieee e 13-4
13.4 Boundary Conditions For Physical Memory Regions...........cccccuvveriunnnnenn. 13-5
13.4.1 Internal Memory LOCAtIONS........c.eeeeiiiiiiie et 13-5
13.4.2 Bus Transactions Across Region Boundaries............cccoceeeeennnen. 13-5
13.4.3 Modifying the PMCON REQIStErSccuuviiiiiiiiieeeeiieee e 13-6
13.5 Programming The Logical Memory Attributesccoociiviiniiiiiiiiieen 13-6
13.5.1 Logical Memory Address Registers - LMADRO:1cccceeeennnen. 13-6
13.5.2 Defining the Effective Range of a Logical Data Template 13-8
13.5.3 Data Caching Enableccooiiiiii 13-8
13.5.4 Enabling the Logical Memory Template..........ccccovvvveeeiineieeennnnn. 13-8
13.5.5 INItIANIZALION ...evveeiiiieiiiie e 13-9
13.5.6 Boundary Conditions for Logical Memory Templates 13-9
13.5.6.1 Internal Memory Locations and Peripheral MMRs....... 13-9
13.5.6.2 Overlapping Logical Data Template Ranges 13-9
13.5.6.3 Accesses Across LMT Boundariesccccccoeernneenee 13-9
13.5.7 Modifying the LMT ReQISIErsScooiiiiiiiiiiiiiiiiee e 13-9
14 Local Bus
TA.D OVEIVIEW ettt ettt h ettt e e eb et e e bbbt e e e e e e e s nnbbe e e s 14-2
14.1.1 BUS OPEIatiON ..ccciiiiiiieiiiiiie ettt 14-2
14.2 BAaSIC BUS SEAESoeiiiiiiiiii it 14-3
14.3 BUS SIGNAI TYPES ..eeeiiiiiieiiiit ittt ettt 14-4
14.3.1 ClOCK SIGNAIeiiiiiiiiiiii e 14-4
14.3.2 Address/Data Signal Definitionscccccoiiiieeiiniiiie e 14-5
14.3.3 Control/Status Signal Definitionscccccovvvieiiiiiine e 14-5
14.3.4 BUS WILth...oiiiiiiie s 14-6
14.3.5 BaSIC BUS ACCESSES....coiiiiiiiiiiitiiie ettt 14-7
14.3.6 BUISt TrANSACLIONSoeiiiiiiiiiiiiiiiie e 14-10
14.3.6.1 i960® Core Processor Burst Transactions................. 14-10
14.3.6.2 ATU and DMA Burst Transactions.............cccceeervvnenne. 14-16
14.3.7 WAt SALES....eeiiiiiiiiiiie et 14-17
14.3.7.1 RECOVEIY STAES....ccevviiieiiiiiiiieiieiiee e 14-19
14.4 Bus and Control Signals During Recovery and Idle States...................... 14-22
14.5 AtOMIC BUS TranSACHONS.coiiuiiiiiiiiiiiit ettt 14-22
14.6 BUS ArDItrAtiONcveeie e 14-23
14.6.1 HOLD/HOLDA ProtoColccoociiiiiiiiiiieeiiiiee e 14-23
15 Memory Controller
15.1 Supported MEmMOIY TYPES ...cciiiiiiiiiiieiieie ettt ettt aee e 15-1
15.2 Theory Of OPEratiON........ceuiiiiiieiiiiiiiiiie ettt 15-2
15.3 Memory Controller Wait STatescccuvvieiiiiiiiiie i 15-3
15.4 ROM, SRAM and FLASH CONTROLccoiiiiiiiiiiiiiiie it 15-3
15,5 Memory Bank Programming ReQISIErScccvviriiiiiiiiiiieien e 15-6
15.5.1 Memory Bank Control Register - MBCRcccociiieiiiiiiieeenne, 15-6
15.5.2 Memory Bank Base Address Registers - MBBARO:1 15-8
15.5.3 Memory Bank Wait State Registers - MBRWSO0:1,

MBWWSO:L ...ttt et 15-9

15.5.3.1 Memory Bank Read Wait State Registers -
MBRWSO:L ..ottt 15-10

15.5.3.2 Memory Bank Write Wait State Registers -

i960® VH Processor Developer’'s Manual

Xi

16

Xii

MBWWSO0:L .ot 15-11

15.5.4 Memory Bank Waveforms........cccccveiiioiiiiieiieeeee e 15-12

15.5.5 Extending Memory Write Enable Signals...........ccccccoeeviiiiieennnne. 15-16

156 DRAM CONIOL....uiiiiiiiiiie et e e 15-16

15.6.1 DRAM Organization and Configuration..............ccccceevenieiieennnnne. 15-17

15.6.2 DRAM AdAreSSiNG ..oceeiiiiiieeeiiiiiie ettt 15-21

15.6.3 DRAM REGISIEIS ...ueiiiiiiiiie ettt e 15-21

15.6.4 DRAM Bank Control Register — DBCRccoocvieieiiiiiieeninn, 15-22

15.6.5 DRAM Base Address Register — DBARccocccoeeiniiieeeenninnn, 15-23

15.6.6 DRAM Read Wait State Register — DRWSccceeiiiverinnn. 15-24

15.6.7 DRAM Write Wait State Register — DWWS.........cccoeevviiiieenninnn. 15-25

15.6.8 DRAM Refresh Interval Register — DRIRccccooeiiiiiiiieennine. 15-27

15.7 Error Checking and ReEPOItiNg.........ceeviiiiiieiiiiiieiee e 15-29

15.7.1 DRAM Parity Enable Register — DPER..........cccccoiiiiiiieiininn, 15-29

15.7.2 Bus Monitor Enable Register — BMERcccoccviiiiiiiiieen, 15-30

15.7.3 Memory Error Address Register — MEARccccceiiiiiiiieinnnnn, 15-31

15.7.4 Local Processor Interrupt Status Register — LPISR 15-32

15.8 DRAM WaVEOIMS ...ttt 15-33

15.8.1 Non-Interleaved Fast Page-Mode DRAM Waveform.................. 15-33

15.8.2 Interleaved FPM DRAM Waveform.........cccccceeiiiiiieiinieice e, 15-34

15.8.3 EDO DRAM WaVEefOrmcocceiiiiiiiiiieieiiiieie e 15-37

15.9 Initializing Dram DEVICEScuviiiiiiiieiieiiiiie ettt et na e 15-38

15.10 Overlapping Memory REJIONS.evuviiiiiiiiiiiiiieiie ettt ee e 15-39
Address Translation Unit

L16.1 OVEIVIEW weeeiiiiiiitie ettt ettt ettt e et e bbb e e e e e e ean e e e e easan s 16-1

16.2 ATU Transaction QUEBUES.ceeiieiiiiiitieeie et eeeee e e e ettitie e e ee e e e e s e s ene e eae s 16-2

16.2.1 AddreSS QUEUES ...ttt e ettt ee e e et aree e e e e 16-2

16.2.2 DAt QUEUESot 16-3

16.3 ATU Address Translationcooeiieoiiiiiie e 16-3

16.3.1 Inbound Address Translation...........cccccviueiiiiniiieiii e 16-4

16.3.2 Inbound Write TranSaction..........ccceeeviiiiieiiiiniiieie e 16-6

16.3.3 Inbound Read TranSaction.............cceeeviiiiiiiiiiniiiiiiin e 16-7

16.3.4 Inbound Configuration Cycle Translation............cccccoovvvveiniiennnn, 16-8

16.3.5 DiSCArd TIMEIS.....euiiiiiiiiiiie ittt 16-8

16.3.6 Outbound Address Translationcccoccvviiriieiiiniee e 16-8

16.3.6.1 Outbound Address Translation Windows.................... 16-9

16.3.6.2 Direct Addressing WiNndOWccccceoviieeeeiiiiieneenns 16-12

16.3.7 Outbound Write TranSacCtioNcccuveriieiiieiniiiiie e 16-13

16.3.8 Outbound Read TranSaction...........cccccviviiiiiiniiiiieee e 16-14

16.3.9 Outbound Configuration Cycle Translation............cccccoccevveeennnn. 16-14

16.4 MeSSAGING UNIt ..oooiiiiiiiiiiiiiiiiie ettt e 16-15

16.5 Expansion Rom Translation UNit..........cccccoceiiiiiiiiniiiiiieeee e 16-15

16.6 ATU Data Flow Error ConditionSocuveeeiiiiiieieiniiieee e 16-15

16.7 Register DefiNitiONSooiiiiiiiiiiiiiiie e 16-18

16.7.1 ATU Vendor ID Register - ATUVID........oooiiiiiiniiiiiiie e, 16-21

16.7.2 ATU Device ID Register - ATUDIDccooooiiiiiiiiiiieeenieeee e, 16-22

16.7.3 Primary ATU Command Register - PATUCMDc.cccceeeennnne. 16-22

16.7.4 Primary ATU Status Register - PATUSRccoooiiiiiiiiiieene, 16-23

16.7.5 ATU Revision ID Register - ATURIDccccoeiniiiiriinnieeee e, 16-24

i960® VH Processor Developer’s Manual

17

tel.

16.8
16.9

16.7.6 ATU Class Code Register - ATUCCR......c.occiieeiiiiiiiieeiieeeee 16-25
16.7.7 ATU Cacheline Size Register - ATUCLSRcccociieiiiiiieeeenn 16-25
16.7.8 ATU Latency Timer Register - ATULTcooiiiiiiiiiiieeeee e 16-26
16.7.9 ATU Header Type Register - ATUHTR ... 16-26
16.7.10 ATU BIST Register - ATUBISTRccuiiiiiiiiiieiiiiee e 16-27
16.7.11 Primary Inbound ATU Base Address Register - PIABAR 16-28
16.7.12 Determining Block Sizes for Base Address Registers 16-29
16.7.13 ATU Subsystem Vendor ID Register - ASVIRcccccevvviieeeennn. 16-30
16.7.14 ATU Subsystem ID Register - ASIR ..o 16-31
16.7.15 Expansion ROM Base Address Register - ERBAR 16-31
16.7.16 ATU Interrupt Line Register - ATUILRccccoiiiiiiiiiiniieeee 16-32
16.7.17 ATU Interrupt Pin Register - ATUIPRcoooooiiiiiiiieeeee 16-33
16.7.18 ATU Minimum Grant Register - ATUMGNToocoveiiiiieeeenn 16-34
16.7.19 ATU Maximum Latency Register - ATUMLATccccoeeviiiieeeennn 16-34
16.7.20 Primary Inbound ATU Limit Register - PIALRccccooviieeennn 16-35
16.7.21 Primary Inbound ATU Translate Value Register - PIATVR......... 16-36
16.7.22 Primary Outbound Memory Window Value Register -

POMWNWR ...ttt see e 16-36
16.7.23 Primary Outbound I/O Window Value Register - POIOWVR 16-37
16.7.24 Expansion ROM Limit Register - ERLRcccccoiiiiiieiniiiiieee 16-38
16.7.25 Expansion ROM Translate Value Register - ERTVR.................. 16-38
16.7.26 ATU Configuration Register - ATUCRccccceiiiiiiieiniiiieeee, 16-39
16.7.27 Primary ATU Interrupt Status Register - PATUISR..................... 16-40
16.7.28 Primary Outbound Configuration Cycle Address Register -

POCCAR ...ttt s eabe e 16-41
16.7.29 Primary Outbound Configuration Cycle Data Port - POCCDP.... 16-42
16.7.30 Reset/Retry Control Register - RRCRoooiiiiiiiiiiiiieieee 16-42
16.7.31 PCI Interrupt Routing Select Register PIRSR.........cccccovviieeeenee 16-42
16.7.32 Core Select Register - CSRcccuvviiiiiiie e 16-43
Powerup/Default StatUS...........cooiiiiiiiie e 16-43
RESEE MOUES ...t 16-43

Messaging Unit

17.1
17.2

17.3

17.4

OVEIVIEW ...ttt ettt et bttt e bt e e skt e e e s ebbe e e e s sbbneeeennees 17-1
MESSAGE REGISIEIS.eiiiiiii it 17-2
17.2.1 OuthoUNd MESSAQGES......cvvviieeiiitieie ettt 17-2
17.2.2 INDOUNT MESSAQGES ...cceiiiitiiiieeiiitie ettt ettt 17-2
DOOIDEI REGISTEISviiie ittt et 17-2
17.3.1 Outbound DOOIDEIIScoiuiiiieiiiiiie e 17-3
17.3.2 Inbound DOOIDEIIScoeiiiiiiiiiiiiiee e 17-3
Register DefiNitioNScccvuiiiiiiie e 17-3
17.4.1 Inbound Message Registers - IMRX.......ccccvviieeiiiiiieiniiieee e 17-5
17.4.2 Outbound Message Registers - OMRXcccveeeeiiiiiieiniiieieeenie 17-6
17.4.3 Inbound Doorbell Register - IDRceeeiiiiiiieieiiee e 17-6
17.4.4 Inbound Interrupt Status Register - ISRcccooviiiiiiiiiiiecennee, 17-7
17.4.5 Inbound Interrupt Mask Register - IMR.........cccooiiiiiiiiiiieieeee, 17-8
17.4.6 Outbound Doorbell Register - ODRcoociieiiiiiiiieeiiece e 17-9
17.4.7 Outbound Interrupt Status Register - OISRcccceeviiieeeeenn, 17-10
17.4.8 Outbound Interrupt Mask Register - OIMRccccceeiiiiieeennn 17-11

i960® VH Processor Developer’'s Manual

Xii

18

19

20

Xiv

Bus Arbitration

L18.1 OVEIVIEW weeiiiiiiiiiiie ettt ettt ettt et rb bttt e et bt e e st e e e e s bbb e e e b 18-1
18.2 Local Bus Arbitration UNit............ooceiiiiiiiiiiiee e 18-1
18.2.1 Local Bus Arbitration Control Register - LBACR..........cccceevnnnneen. 18-4
18.2.2 Removing Local Bus OWNership.........cccoooviiiniiiiiinniieee i 18-5
18.2.3 1960® Core Processor BuS USAgeccvvviiriiieiiiniiiiieeenniieieen 18-5
18.2.4 External Bus Arbitration SUPPOIt..........ccccovvviriiieiiinniiiieeenieeeenn 18-5
18.2.5 Local Bus Arbitration Latency COUNterccccvvvveriiieieeeniiiinen. 18-6
18.2.6 Local Bus Arbitration Latency Counter Register — LBALCR......... 18-6
18.2.7 Local BUS BaCKOffouiiiiiiiiiiiiiiie e 18-7
18.3 Internal Arbitration UNItS.........cooiiiiiiiieiiiiiiie e 18-7
18.3.1 Internal Master Latency TiMerccccuveeeiiiiiiiniiiiieee e 18-7
Timers
19.1 TIMEIr REGISIEIS ..ottt 19-2
19.1.1 Timer Mode Register — TMRO:L........oviieiiiiiiiieiiieee e 19-2
19.1.1.1 BitO0 - Terminal Count Status Bit (TMRX.tC)................. 19-3
19.1.1.2 Bit1 - Timer Enable (TMRx.enable)cccceenne. 19-3
19.1.1.3 Bit 2 - Timer Auto Reload Enable (TMRx.reload) 19-4
19.1.1.4 Bit 3 - Timer Register Supervisor Read/Write
Control (TMRX.SUP)....cuuvieeiiiiiiiie ettt 19-4
19.1.1.5 Bits 4,5 - Timer Input Clock Select (TMRx.csel1:0) 19-5
19.1.2 Timer Count Register — TCRO:Lcoovviiiiiiiiiiiieieeee e 19-5
19.1.3 Timer Reload Register — TRRO:L........cooiiiiiiiiiiiiiiiiee e 19-6
19.2 TIMEr OPEIALION ..ceeiiiiiiiiie ettt ettt ettt 19-6
19.2.1 BaSIiC TIMer OPErationccceeeiiriuiiiiiniiiiie e 19-6
19.2.2 Load/Store Access Latency for Timer Registers.........ccccccevvnvnneen. 19-7
19.3 TIMEI INEEITUPLS .eeeee ettt 19-8
19.4 Powerup/Reset INItialization............coooiiiiiiiiiiiiiie e 19-9
19.5 Uncommon TCRx and TRRX CONAItiONScceeeeeriiiiieiniiiiiie e 19-9
19.6 TiMer State DIagramccoiuueiiiiiiiiiie ittt et ee e ee e 19-10
DMA Controller
20,1 OVEIVIEBW ..ottt ettt ettt ettt e et e e e ab et e e st ee e e sbbbe e e e nbeeeeennes 20-1
20.2 Theory Of OPErationccoiiueeiieiiiiiie et 20-2
20.3 DMA TFANSTOI ..ottt 20-3
20.3.1 Chain DESCHPLOISueeeeeiiiiiie ettt ettt 20-3
20.3.2 Initiating DMA Transfers ... 20-5
20.3.3 Scatter Gather DMA Transferscccccciiieiieiiiiiiee e 20-6
20.3.4 Synchronizing a Program to Chained Transfers............cccccoeenee. 20-7
20.3.5 Appending to the End of a Chain..........cccoccviiiiiiiiiiiiee, 20-8
20.4 Demand MOde DMA 20-9
20.5 Wait States Initiated by the DMA Controller..........ccccovviiiiiiiiiiieeee 20-9
20.6 DaAta TrANSTEIS .ueeiiiii i 20-18
20.6.1 PCI to Local Memory Transferscccccviiiieiniiiiie e, 20-18
20.6.2 Local Memory to PCl Transfersccooccviiiiiiniiiecee e 20-19
20.6.3 Local Memory to PCI Transfers using Memory Write and
INVAIIAALE. ... 20-20
20.6.4 EXCIUSIVE ACCESSoeiiiiiiiiii ittt 20-20
20.7 Register DefiNitiONSccuviiie ittt 20-20

i960® VH Processor Developer’s Manual

21

22

20.8
20.9
20.10

21.1
21.2
21.3

21.4

215

21.6

21.7
21.8

21.9
21.10

Test Features

22.1

20.7.1 Channel Control Register - CCRXccccuvviiiiieieiiiiiie e 20-21
20.7.2 Channel Status Register - CSRXcccoviiiiiiiiiiiiiiiieee e 20-22
20.7.3 Descriptor Address Register - DARXccevvveiiiiiiiiiiiieceesiiee 20-24
20.7.4 Next Descriptor Address Register - NDARXcoceeiiiiieriiiineens 20-24
20.7.5 PCIl Address Register - PADRXcooiiiiiiieriiiiieiieiieie e 20-25
20.7.6 PCIl Upper Address Register - PUADRXccovvvieeeiiiiieiieiiiiieee 20-26
20.7.7 80960 Local Address Register - LADRXccooviviiiiiiiiieiiniiiinees 20-26
20.7.8 Byte Count Register - BCRXccoiviiiiiiiiiiiiie e 20-27
20.7.9 Descriptor Control Register - DCRXcccoiiiiiiiiiiieieiiiieee e 20-28
INTEITUPLS ..o e 20-29
Packing and Unpacking..........ccouiiiiiiiii e 20-30
DMA Channel Programming EXamples. ... 20-31
20.10.1 Software DMA Controller Initializationcccccoviiiiiiiennn 20-31
20.10.2 Software Start DMA Transfer........ccccciiieiiiiiiiiiiieee e 20-32
20.10.3 Software Suspend Channel ... 20-32
I°C Bus Interface Unit

OVEIVIEW ..ttt ettt ettt ettt s bt e e e skt e e e s et e e e s sbbeeeeenaee 21-1
Theory Of OPErationcoiiiiiiiiii s 21-2
Start and Stop BUS StAteSceoiiiiiiieiiie e 21-4
21.3.1 START CONAItION c.ciiiiiiiiiiiiiiie ettt 21-5
21.3.2 NO START or STOP ConditiONccoiiuieiiiiiiiiiiiiiiiiee e 21-5
21.3.3 STOP CONAItION ..cceiiiiiiiiiii ittt 21-5
Serial Clock Line (SCL) Management..........coocuuveeeiiiiiieeeiniiieeeeniieee e 21-5
21.4.1 SCL CIOCK GENEIALIONvviieeeiitieeie ettt 21-6
Data and Addressing Management...........ccooocuuuieriiiieee e 21-6
21.5.1 Addressing @ Slave DEVICEcccuviiiiiiiiiiiiie e 21-7
ATDIIFATION ... 21-7
21.6.1 SCL ArDItration.....ccooiuiiiie et 21-8
21.6.2 SDA ArDItratioNoooeveiiiiiiiiie e 21-8
1’C ACKNOWIEAGE ...ttt 21-10
12C Master and Slave OPerationsceeveiviiir i 21-11
21.8.1 MasSter OPEeratiOnsccoiiuieieiiiiiiiein it 21-12
21.8.2 Slave OPErAtiONSueeiiiiiiiieiei ittt 21-13
21.8.3 General Call AdAreSS.......ocuviiiiiiiiiie et 21-14
The 12C Bus Unit @and RESEL.........ccoiiiiiiiiiiiiiiii e 21-15
[2C REGISTEIS. ...ttt 21-15
21.10.1 12C Control Register - ICRcoooiiiiiiiiiie e 21-15
21.10.2 12C Status Register- ISR.........cooiiiiiiiiiiiiii e 21-18
21.10.3 12C Slave Address Register — ISARccooviiiiiiiiiiiee e 21-20
21.10.4 12C Data Buffer Register — IDBRcccceeiiiiiiiiiiiiiie e 21-21
21.10.5 12C Clock Count Register — ICCRcoiuiiiiiiiiiiiie e 21-21
On-Circuit Emulation (ONCE)ccooiiiiiiiiiiii e 22-1
22.1.1 Entering/Exiting ONCE MOdeccoiiiiiiiiiiiiiiiiee e 22-1
22.1.2 ONCE Mode and Boundary-Scan (JTAG) are Incompatible......... 22-2
22.1.3 How to use the Data Enable (DEN#) Signal with an

IN-CIrcUit EMUIALOTeeiiiiiiiiiii e 22-2

22.1.3.1 DEN# ARErNatiVeS......cccooiiiiiiieiiiiiie e 22-2

i960® VH Processor Developer’'s Manual

XV

XVi

22.2 Boundary-SCan (JTAG)ccuiiumieiiiiiiiiees ittt ettt arbe e e e 22-3

22.2.1 Boundary-Scan ArChiteCtUreccovvviriiiiieie e 22-3

22.2.2 TAP PiNS ottt 22-4

22.2.3 INSErUCHON REQISTET ...ceiiiiiiiie ettt 22-5

22.2.3.1 Boundary-Scan Instruction Setccccocvveeiiiiinnenns 22-5

2224 TAP Test Data REQISIEIScooiiiiiiiiiiiiiie et 22-7

22.2.4.1 Device Identification Registercccccvvieeiiiiiinnenns 22-7

22.2.4.2 Bypass REQISIEr.....cccoiiiiiiiiiiiiiie et 22-7

22.2.4.3 RUNBIST REQISIEr....ceiiiiiiiieeiiieeeiiieiee e 22-8

22.2.4.4 Boundary-Scan Register.........ccccviiiiiiiiiiiiieiniiiieeeens 22-8

2225 TAP CONrOHEr ..o 22-13

22.25.1 TestLogic Reset State.........ccccveviiiiiiiiniiiiin e, 22-14

22.25.2 Run-Test/ldle State.........cccocueriiiiiiiini e 22-15

22.2.5.3 Select-DR-Scan State.........ccccoveeiiiiiiiiniiiicee e, 22-15

22.2.5.4 Capture-DR Stateccccovvimiriiiiieiii e 22-15

22.25.5 Shift-DR Statecccocciiiiiiiiiiiiin i 22-15

22256 EXIt1-DR Statecccoeoiiiiiiiiiiiie e 22-15

22257 Pause-DR State.........c.ccccovimvmiriiiiieiiencen e 22-16

22.25.8 EXit2-DR Stateccooiiiiiiiiiiiiie e 22-16

22.2.5.9 Update-DR State.........cccvviiiiiiiiiriiiiiiiiniie e 22-16

22.2.5.10 Select-IR Scan State.........c.occcvveriiiiiiiiniiiie e 22-16

22.2.5.11 Capture-IR Stateccocoiirriirieiiiei e 22-16

22.2.5.12 Shift-IR State........ccviiiiiiiiiiiiiiii e 22-17

22.2.5.13 EXit1-IR State.......ovveiiiiiiiiiiie e 22-17

22.2.5.14 Pause-IR State..........ccooevrrrriiiiieee e 22-17

22.2.5.15 EXit2-IR State.......coveiiiiiiiiiiiiie e 22-17

22.2.5.16 Update-IR Stateccoevvviiiiiiiiiiiiiiiice e 22-17

22.2.6 Boundary-Scan EXampleccccoeiiiiiiiiiniiiiie e 22-18
Machine-level Instruction Formats

Al General INSrUCtion FOIMMALcueviiiiiiiiii et A-1

A2 REG FOIMAL ...ttt ettt e e e e ae e e e A-2

A3 COBR FOMIAL ... e e e e e e e e e ee e e e ae e e e eeaeaennnes A-3

A4 CTRL FOIMMAAL ..ttt et e e e A-4

A5 MEM FOIMAL ..o A-4

A5.1 MEMA Format AddreSSingccoocuueuriiiiiiiiie it A-5

A5.2 MEMB Format AddreSSingcoocuuvuiiiiiiiiiie ittt A-5

Opcodes and Execution Times
B.1 Instruction Reference by OPCOTE.cooiiiiiiiiiiiiiii e B-1

Memory-Mapped Registers

Cl OVEIVIEW ...ttt ettt ettt eh e a ettt ee bttt e et e e e sabe bt e naenn e C-1
Cc.2 Supervisor Space Family Registers and Tablesc.ccccciiiiiiiiiiinnecns C-1
C.3 Peripheral Memory-Mapped Register Address Spacecccceeevvvieeeeennne. C-4
C4 Accessing The Peripheral Memory-Mapped Registers.........cccccoeeviveeeeene. C-5
C5 Architecturally Reserved Memory SPacecocuvveeariiiiieeeeiiiiieee e C-5
C.6 Peripheral Memory-Mapped Register Address Spacecccceeevvvieeeeenne. C-6

i960® VH Processor Developer’s Manual

intel.

Figures

Index

1-1
1-2
2-1
3-1
3-2
3-3
3-4
4-1
5-1
6-1
6-2
6-3
6-4
6-5
6-6
6-7
6-8
7-1
7-2
7-3
7-4
7-5
8-1
8-2
8-3
8-4
8-5
8-6
8-7
8-8
9-1
9-2
9-3
9-4
10-1
12-1
12-2
12-3
12-4
12-5
12-6
12-7
12-8
12-9

i960® VH Processor Functional Block Diagram...........ccccoevviieeeeennieeeeennnnne, 1-1
80960JF Core Processor Block Diagramccccceeeriiiiieiniiiiie e, 1-3
Data Types and RANGES.......ooiiiiiiiiiiiiiieit ettt 2-1
i960® VH Processor Programming Environment...........ccccooveeeeiieeenine, 3-2
Local Memory AdAreSS SPACEccociiiiiieeeiiiieiie ettt 3-9
Arithmetic Controls RegiSter — AC.........ueeiiiiiiiiie e 3-13
Process Controls RegiSter — PC........ooiiiiiiiiiiiee et 3-15
Internal Data RAM and Register Cacheccccccoviiiiiiiiiiiiii e 4-1
Machine-Level InStruction FOrMatscoovciiiiiiiiiiii e 5-2
dectl srel and Sre/adst FOrMALS.. ... ivveeeeiiiiieiie e 6-38
Store Data Cache to Memory Output Format...........ccoccevveeiiiiineeiniieennennnns 6-39
D-Cache Tag and Valid Bit FOrmats..........ccoccvuiiiiiininiiiiieeeeee e 6-39
icCtl srcl and Sre/dStFOIMALSvvvvie i 6-55
Store Instruction Cache to Memory Output Format...........cceceeveeriieennennnns 6-56
I-Cache Set Data, Tag and Valid Bit FOrmatscccccoeeviiiiniiiiinieeeie, 6-57
Srcl Operand INterpretationovveeeeeiiieeee e 6-104
src/dst Interpretation for Breakpoint Resource Requestc..ccceeeenee. 6-105
Procedure Stack Structure and Local Registerscooocvveeeiiiieieeniiieenene 7-3
Frame SpPill.......oooiii e 7-8
Frame Fill ... e 7-9
System Procedure Table............oooiiiii e 7-14
Previous Frame Pointer Register — PFP ..o 7-17
Interrupt Handling Data StruCtUIES..........eviiiiiiiiiiiiiieee e 8-2
INEITUPE TADIE ... e 8-4
Storage of an Interrupt Record on the Interrupt Stackccccoviiinnn, 8-6
INtErruPt CONLIONIEYeiiiii s 8-11
Interrupt Pin Vector ASSIGNMENT.........ccoiuiiiiiiiiie et 8-12
Interrupt Fast SAmMPliNGoooviiiiiii e 8-13
Interrupt Controller Connections for 80960VHcccoviiiiiiriiiiieee e, 8-18
Interrupt Service FIOWChArtuviiiiiiii i 8-34
Fault-Handling Data StrUCIUIESccoiiiiiiiiiiiii et 9-1
Fault Table and Fault Table ENtriesccoocoeiiiiiiiiiiiee e 9-5
FAUIt RECOIT.....eeiiiiieieee et 9-7
Storage of the Fault Record on the Stackccccceeiiiiiiiiiiie e, 9-8
i960® VH processor Trace Controls Register — TCcoocovvveriiieeeeenninen. 10-2
Initialization Examples FIOW Chartcccoo oo 12-4
Processor Initialization FIOW............ccoiiiiiiii e 12-7
FAILE TIMING ettt san e 12-9
Initial Memory Image (IMI) and Process Control Block (PRCB)............... 12-12
CONIOl TADIE ...t 12-20
VeepLL LOWpass Filter ... 12-24
Reducing Characteristic IMpedancCeccccvuveriiiiiien e 12-25
Series TerMiNALIONoeoii i 12-26
AC TEIMINALION ...ttt s 12-26

i960® VH Processor Developer’'s Manual

XVii

12-10 Avoid Closed-Loop Signal Paths...........ccceiiiiiiiiiiiiiiiieeee e 12-27
13-1 PMCON and LMCON EXample.....cccccooiiiiiiiiiieeiee e 13-2
14-1 THhE LOCAI BUS ...ceiiiiiiiiiiie ettt et 14-1
14-2 Bus States with Arbitrationcceeiiiiiiiiiii e 14-4
14-3 Data Width and Byte ENCOAINGScoooiiiiiiiiiiiiiiiieciiiee e 14-6
14-4 Non-Burst Read and Write Transactions Without Wait States,

B2-Bit BUS ittt ettt e 14-9
14-5 i960® Core Processor Summary of Aligned and Unaligned

ACCESSES (32-Bit BUS) ...eviiiiiiiiiiieieiieiie ettt 14-13
14-6 i960® Core Processor Summary of Aligned and Unaligned

Accesses (32-Bit BUS) (CONtINUEA)oovvvreeeiiiieiie e 14-14
14-7 Burst Read and Write Transactions w/o Wait States, 8-bit Bus............... 14-15
14-8 Burst Read and Write Transactions w/o Wait States, 32-bit Bus 14-16
14-9 ATU or DMA 7-Word Unaligned Burst Transfercccccooviveeiiiiiennenns 14-17
14-10 Burst Write Transactions With 2,1,1,1 Wait States, 32-bit Bus................ 14-19
14-11 Burst Read/Write Transactions with 1,0 Wait States - Extra Tg

State on Read, 16-Bit BUS..........cceeeiiiiiiiie et 14-21
14-12 The LOCKH SIgNalooeiiiiiiiiiee e 14-23
14-13 Arbitration Timing Diagram for a Bus Master............ccccccviiiieeiniiieneennns 14-24
15-1 i960® VH Processor Integrated Memory Controller...........cccceeeviiveeeennnne. 15-1
15-2 Memory Controller Signal OVErVIEW..........cccoiiiiiiieiiiiieee e 15-3
15-3 Bank0 32-Bit ROM or SRAM SYStEM........oeiiiiiiiiiieiiiee e 15-5
15-4 BankO 8-Bit ROM 0r SRAM SYSIEM....coccuiiiiiiiiiiiie et 15-5
15-5 32-Bit Bus, Burst Flash Memory, Read Access with 2,1,1,1 Wait

SHALES ...ttt et 15-13
15-6 32-Bit Bus, SRAM Write Access with 2,1,1,1, Wait Statescc....... 15-14
15-7 32-Bit Bus, SRAM Read Accesses with 0 Wait Statesccccocvveeeens 15-15
15-8 32-Bit Bus, SRAM Write Access With 0 Wait States...........ccccceevvvveeeenns 15-15
15-9 32-Bit Bus, Write Access with Extended MWE3:0#ccccociviiiennenns 15-16
15-10 Non-Interleaved, 32-Bit, Single Bank, DRAM Systemccccocveeeenns 15-18
15-11 Interleaved 32-Bit DRAM System, 1 Bank, 2 Leaves..........ccccccevvvveeeenns 15-19
15-12 DRAM Read Cycle Programmable Parameter Example..............ccccceeene 15-24
15-13 DRAM Write Cycle Programmable Parameter Example..........cccccceeee 15-26
15-14 CAS#-Before-RAS# DRAM Refreshoooeeiiiiiiiiiecee 15-28
15-15 FPM DRAM System Read Access, Non-Interleaved, 3,1,1,1,

WAL STALES ...ttt e 15-34
15-16 FPM DRAM System WIite CYCle........ooooiiiiiiiiiiiiiieeiie e 15-34
15-17 FPM DRAM System Read Access, Interleaved, 2,0,0,0 Wait States....... 15-36
15-18 FPM DRAM System Write Access, Interleaved, 1,0,0,0 Wait States....... 15-37
15-19 EDO DRAM System Read Access, 2,0,0,0, Wait Statescccceeeene 15-38
15-20 EDO DRAM System Write Access, 1,0,0,0 Wait Statesccccuveeeenne 15-38
16-1 Address Translation Unit (ATU) Block Diagram..........cccccovvieeeeeiniiieennnnnnn. 16-1
16-2 ATU Transaction Queue BIOCK Diagramcccceeriiiiieininiieie e 16-2
16-3 Inbound AdAress DeteCtioNccueiieiiiiiiie e 16-5
16-4 Inbound Translation EXample ... 16-6
16-5 80960 Local Bus Memory Map - Outbound Translation Window 16-10
16-6 Outbound Address Translation WiNAOWS.........c.ceeeeriiiieeenniieeee e 16-12
16-7 Direct Addressing WINQOWocueeiiiiiiiiiriniiieeee et ee e 16-13
16-8 ATU Configuration Space Header..........cceeviiiiiiiiiiiiiieie e 16-19
17-1 PCIMEMOIY MaP ..ottt ettt e 17-4
18-1 Local Bus Arbitration EXample ... 18-3

XViii i960® VH Processor Developer’s Manual

19-1
19-2
20-1
20-2
20-3
20-4
20-5
20-6
20-7

20-8

20-9

20-10

20-11

20-12

20-13
20-14

20-15
20-16
20-17
21-1
21-2
21-3
21-4
21-5
21-6
21-7
21-8
21-9
21-10

21-11
21-12
21-13
21-14

21-15
22-1
22-2
22-3
22-4
22-5
22-6
A-1
C-1

Timer FUNCLional DIagramc.cuviiiiiiiiei it 19-1
Timer Unit State DIagramcccuiiiiiiiiiee it 19-10
DMA Controller BIOCK Diagramccccueeeeoiiiiiiieeniiieie e e 20-1
DMA Channel BIOCK Diagram..........ccoocuiiiriiiiie e 20-2
DMA Chain DESCIIPIONcuieiieie ettt 20-4
DMA Chaining OPEIatiONcccouiiiiiiiiiie ettt e e 20-5
Example of Gather ChaiNingccooiiiiiiiiii e 20-6
Synchronizing to Chained Transfersccccccviiiiiiiii e 20-8
DMA - Aligned Write to Device, Wait States, Device Always

REQUESTING ..ttt 20-10
DMA - Aligned Write to Device, DMA Inserting Wait States,

Device AIWayS REQUESHINGcuiiiiiuiieiriiiiie ettt 20-11
DMA - Aligned Read from Device, DMA Inserting Wait States,

Device AIWayS REQUESHINGcuuiiiiuiiiiriiiiie ettt 20-12
DMA - Aligned Read from Device, Device Inserting Wait States,

Device AIWayS REQUESHINGcuuiiiiiiieiiiiiiie ettt 20-13
DMA - Aligned Write to Device, Zero Wait States, Device ends

TRANSTEE e 20-14
DMA - Aligned Write to Device, Zero Wait States, Device ends

TRANSTEE L. s 20-15
DMA - READ from Device, Wait States, Device ends Transfer 20-16
DMA - Unaligned Read from Device, DMA Inserting Wait States,

Device AlWays REQUESHINGcuiiiiiiiieiriiiiie ettt 20-17
Optimization of an Unaligned DMA ... 20-31
Software Example for Channel Initialization.............ccccceeeiiiienniieee 20-32
Software Example for Channel Suspendcccciiiiiiiiii e 20-32
[2C Unit BIOCK DIAQIAIM ...ttt 21-1
12C Bus Configuration EXamplecccooiiiiiiini e 21-3
Bit Transfer 0N the 12C BUScoouiiiii i 21-4
Start and Stop CONAILIONSveeiiiiiiiie e 21-4
Data Format of First Byte in Master Transaction.............ccccveeeiiiieeeeenninnn. 21-7
Clock Synchronization During the Arbitration Procedureccoceeveenne 21-8
Arbitration Procedure of TWO MaStersS........cceevviiiiiiiiiiiiiiie e 21-9
Acknowledge on the I2C BUS...voeeeeeeeeeeeeeee e es e es e nesn e 21-10
Master-Receiver Read from Slave-Transmitter...........cccoooviviniiiineenen 21-12
Master-Receiver Read from Slave-Transmitter / Repeated Start /
Master-Transmitter Write to Slave-ReceivVerccocovviiiiiieiiiiiee e 21-12
A Complete Data Transfer........couiiiiiiiii s 21-13
Master-Transmitter Write to Slave-ReceiVerccoooveieiiieiiiieee 21-13
Master-Receiver Read to Slave-TranSmittercccccvvviviieiniiiiieeeeee, 21-13
Master-Receiver Read to Slave-Transmitter, Repeated START,
Master-Transmitter Write to Slave-ReceiVerccocovceiiiiiiiii i 21-14
General Call AAArESSooiiiiiiiiie e 21-14
DEN# AIEINALIVESoeviiiieiiiiii ittt 22-3
Test Access Port BIOCK Diagram...........ueeeeoiiiieie i 22-4
TAP Controller State Diagramcceeeiiiiiiiirii it 22-14
Example Showing Typical JTAG Operationsccccceeeriiieeeeninieeee e, 22-19
Timing Diagram lllustrating the Loading of Instruction Register............... 22-20
Timing Diagram lllustrating the Loading of Data Register........................ 22-21
INSEIUCHION FOIMALSciiiiiiiiiiei it A-1
i960® VH processor Address SPACEc.c.ovoeerveverereeeeeereeeereeseneressneneeen, C-6

i960® VH Processor Developer’'s Manual

Xix

Tables
1-1 Additional INformation SOUICEScooiiiiiiiiiiiie e 1-8
1-2 Electronic INFOrmationcceeeiiiiiiiie e 1-9
2-1 80960 and PCI Architecture Data Word Notation Differences 2-2
2-2 Memory ADAressing MOUESociiiiiiieiiiiiee e 2-4
3-1 Registers and Literals Used as Instruction Operands...........cccccoevvvieeeeennne. 3-2
3-2 Allowable Register OPerands............uviiiiiiiiiriiiiiiee e 3-5
3-3 Data Structure DESCIPLIONSceviiiiiiiieei ittt 3-8
3-4 Alignment of Data Structures in the Address Spacecccceeeevvvieeeennne. 3-11
3-5 Condition Codes for True or False Conditionsccccceveiiieeieiiniiieeeennee, 3-14
3-6 Condition Codes for Equality and Inequality Conditionscccceeennee. 3-14
3-7 Condition Codes for Carry Out and OVerflow...........cccccoviiiiiin i, 3-14
4-1 Load INStruction UPdatesccoooiiiiiieiiiiiie e 4-6
5-1 Instruction Encoding Formats (REG, COBR, CRTL, MEM)ccceeeenne. 5-2
5-2 i1960® VH Processor INSrUCtioN Set.........cceeiiiiiiiiiiiiiiie e 5-3
5-3 Arithmetic OPEIatioNS........oiuuiiiiiiii e 5-6
6-1 Pseudo-Code Symbol Definitionsoccoeeeiiiiiiieiniee e 6-3
6-2 Faults Applicable to All INSTIUCHIONScoiiviieiiiiiiiie e 6-3
6-3 Common Faulting ConditioNScooiiiiiiiiiiiiii e 6-4
6-4 Condition Code Mask DeSCIIPLIONSeeviiiiiieiiiiriieiie st 6-6
6-5 concmpo Example: Register Ordering and CC........ccuuveeeiiiiiiieenniieeeenee, 6-35
6-6 dectl Operand FIelds ... 6-37
6-7 dcctl Status Values and D-Cache Parameters.........ccocveeerviieeieiiniiieee e, 6-38
6-8 ICCtl OPErand FIElAScueeiiiiiiiiiiii e 6-54
6-9 icctl Status Values and I-Cache Parameters..........ccccceeeiiiiieieiiieeen i, 6-56
6-10 sysctl Field DefinitioNS........coooiiiiie e 6-104
6-11 Cache Mode Configurationccocueeiioiiiiiiniie e 6-104
7-1 Encodings of Entry Type Field in System Procedure Table....................... 7-15
7-2 Encoding of Return Status Field ... 7-17
8-1 Interrupt INput Pin DEeSCHPLIONSvuviieiiiiiiie et 8-19
8-2 PCI Interrupt Routing Summary for 80960VH............ccoeieiiiiiieeiiiiieees 8-20
8-3 XINTG INEITUPE SOUICES ...ceviviieeiiiiisitiee et 8-20
8-4 XINT7 INEITUPE SOUICES ...eeviviieeiiiiistitiee ittt 8-21
8-5 NMI INEEITUPE SOUICES ...ttt 8-22
8-6 Interrupt Control Registers Memory-Mapped Addresses.........ccccovveeeeene 8-22
8-7 PCI Interrupt Routing Select Register — PIRSR ..o 8-23
8-8 Interrupt Control Register — ICONccooiiiiiiiiiiie e 8-25
8-9 Interrupt Map Register 0 — IMAPO..........oooiiiiiiiiii e 8-26
8-10 Interrupt Map Register 1 — IMAPL........ccooiiiiiiiiiiie e 8-26
8-11 Interrupt Map Register 2 — IMAP2.........cooiiiiiiiiiii e 8-27
8-12 Interrupt Pending Register — IPNDocoiiiiiiiiie e 8-27
8-13 Interrupt Mask Register — IMSKoiiiiiiiiiiiiiie e 8-28
8-14 XINT6 Interrupt Status Register — X6ISR........coccoviiiiiiiiiieiiieeee e 8-29
8-15 XINT7 Interrupt Status Register — X7ISR......ccooviiiiiiiiiiieiie e 8-30
8-16 NMI Interrupt Status Register — NISRccccoooiiiiiiiiiiieee e 8-31
8-17 Default Interrupt Routing and Status Values Summaryc.cccccovvveeeeens 8-32
8-18 Location of Cached Vectors in Internal RAMccccooiiieiiiiiiiiieiieee e 8-35

XX i960® VH Processor Developer’s Manual

8-19
8-20
8-21
8-22
8-23
8-24

9-1
9-2
10-1
10-2
10-3
10-4
10-5
10-6
10-7
10-8
10-9
10-10
111
11-2
11-3
11-4
12-1
12-2
12-3
12-4
12-5
12-6
12-7
12-8
12-9
12-10
13-1
13-2
13-3
13-4
13-5
13-6
14-1
14-2
14-3
14-4
14-5

14-6
14-7

14-8

Base INterrupt LAtENCYcooiiiiiiiiiiiiiiee e 8-37
Worst-Case Interrupt Latency Controlled by divo to Destination r15 8-37
Worst-Case Interrupt Latency Controlled by divo to Destination r3 8-37
Worst-Case Interrupt Latency Controlled by calls...........ccceeeviiiiiniinnnn. 8-38
Worst-Case Interrupt Latency When Delivering a Software Interrupt 8-38
Worst-Case Interrupt Latency Controlled by flushreg of One

SEACK Frame ..o 8-39
i960® VH Processor Fault Types and Subtypes.........ccccceviiiiiiieniecce e, 9-3
Fault Control Bits and MasKSccoiuueiiiiiiiiiiei e 9-14
SIC/ASEENCOTING ...cciiitiiiieii ittt 10-6
Breakpoint Control Register —m BPCONcoocuuiiiiiiiiiieeeiieee e 10-6
Configuring the Data Address Breakpoint Registers — DABX.........ccccccouu. 10-7
Programming the Data Address Breakpoint Modes — DABX..............cc...... 10-7
Data Address Breakpoint Register — DABX.........cccouruiiieiiiiiieeeniiieee e 10-8
Instruction Breakpoint Register — IPBX.........cccveviiiiiiiiiniieiie e 10-9
Instruction Breakpoint MOAES..........ccoiiiiiiiiiiiii s 10-9
Tracing on EXPlCit Call.........coooiiiiiiiiii e 10-11
Tracing on IMPICit Call...........ooooiiiiiiii e 10-12
Tracing on Return from EXplicit Call.........coooiiiiiiiiiiiiic 10-12
ATU Extended Configuration Register AddreSSesScccvvveviivineeniinnnnenn 11-1
Reset/Retry Control Register - RRCRcocciiiiiiiiiiieiieecee e 11-1
Core SeleCt REgISter - CSRuiiiiiiiieiieei et 11-3
Selecting the 80960 Processor SPEed..........ccoviuiiiiiiiiiiiieniiiiee e 11-3
INILIAlIZAtION MOUESeiiiiiiiiii i 12-2
RESEE VAIUES ...ttt 12-5
BIST FailUre COUESoiiiiiiiiiiiii ittt 12-9
NON-BIST Failure COUESciiiiiiiiiiiiiiit et 12-10
Initialization BOOt RECOIM.........ccoiiuiiiiiiiiiiie e 12-13
PMCON14_15 Register Bit Description in IBR...........cccoveiiiiiniiiieeee 12-15
PRCB CONfIQUIALIONcoiiiiiiiie ettt 12-15
Process Control Block Configuration Wordscccceeeiiiiiiieennieeeeenn 12-17
Processor Device ID Register - PDIDR ... 12-21
i960® Core Processor Device ID Register - DEVICEID.............cccceeeenee. 12-21
PMCON AdAress MapPingcuueueeiiumrrieniairniees e sneie s snie e enee s 13-3
Physical Memory Control Registers — PMCONO:15..........ccccieeiiiiieeeeninnn. 13-4
Bus Control Register — BCONuiiiiiiiiie ettt 13-5
Logical Memory Address Registers — LMADRO:Lc.oocviveiiiiiieeeeeien, 13-6
Logical Memory Mask Registers — LMMRO:L........cccooveiiiiiiiiiniiiieee e 13-7
Default Logical Memory Configuration Register — DLMCONcc...... 13-7
Differences Between 80960JT and 80960VH Local Buses............ccccc....... 14-2
8-Bit Bus Width Byte Enable ENCOdINGSccoovviiiiiiiiiiiieiiiieeeee e 14-7
16-Bit Bus Width Byte Enable ENCOdingsccccoovviiieeeiiiiiie e 14-7
32-Bit Bus Width Byte Enable ENcOdiNgSccccceeiiiiiiiiiiiiiieeieeeeee 14-7
i960® Core Processor Natural Boundaries for Load and

SEOTE ACCESSES ..etiiiieeiieiie ittt e e e e e e e st ee e ee e s e e 14-10
i960® Core Processor Summary of Byte Load and Store Accesses 14-11
i960® Core Processor Summary of Short Word Load and Store

ACCESSES ...ttt 14-11
i960® Core Processor Summary of n-Word Load and Store

ACCESSES (NT 1,2, 3, 4) it 14-11

i960® VH Processor Developer’'s Manual

XXi

15-1 ROM, SRAM and Flash Control Signalsccccccoiviiiieiniiiiieeniee e, 15-4
15-2 Memory Bank RegiSter SUMMANYcccueeiiiiiiiiieiniiieie e 15-6
15-3 Memory Bank Control Register — MBCRccccviiiiiiiiiiiieeeeiieee e 15-7
15-4 Memory Bank Base Address Registers — MBBARO:L..........cccccoovviveeennnne. 15-9
15-5 Memory Bank Read Wait States Register —- MBRWSO:1cccceeeennee 15-10
15-6 Memory Bank Write Wait States Register - MBWWSO0:1cccceeeene 15-11
15-7 Burst Flash Memory, Read Access Example Programming Summary.... 15-13
15-8 SRAM Write Access Example Programming SUMMArycccoocvveeeennne 15-13
15-9 SRAM Read Access Example Programming Summary...........cccocveeeennns 15-14
15-10 SRAM Write Access Example Programming SUMmMarycccoocuveeeennns 15-15
15-11 Write Access with Extended MWE3:0# Example Programming

SUMMIATY ¢ttt e e e e s et ee e e e e e e s nn e 15-16
15-12 DRAM COoNtrol SIgNaIScvuiiiiiiiiiiii et 15-17
15-13 Supported DRAM Configurationsccveeeriiieiieeniiiiie e 15-18
15-14 Supported DRAM Configurations (Symmetric Addressing Only) 15-19
15-15 MAL1:0 Address Bits for Non-Interleaved/Interleavedcccocveeeennes 15-21
15-16 DRAM ReQIStEr SUMMAIYvviiiiiiiiiiie ettt e e 15-21
15-17 DRAM Bank Control Register — DBCR........cccoiuiiiiiiiiiiieciiee e 15-22
15-18 DRAM Base Address Register — DBARcoooiiiiiiiiiiiieeiieee e 15-23
15-19 DRAM Bank Read Wait State Register — DRWScccooiiiieiiiiiinnenns 15-25
15-20 DRAM Bank Write Wait State Register — DWWS.........ccooooiieiiiiiiinenns 15-26
15-21 DRAM Refresh Interval Register — DRIRccoeeiiiiiiiieiiiiieceeeee 15-28
15-22 Error Checking and Reporting Register SUmMmaryoccceveeeriiveeeennns 15-29
15-23 DRAM Parity Enable Register — DPERcccceiiiiiiiiiiniieeee e 15-30
15-24 Bus Monitor Enable Register — BMERccooiiiiiiiiiees 15-31
15-25 Memory Error Address Register — MEAR ... 15-32
15-26 Local Processor Interrupt Status Register — LPISRcccccceiiiiiinninns 15-32
15-27 FPM (Non-Interleaved) DRAM Example Programming Summary........... 15-33
15-28 FPM (Interleaved) DRAM Example Programming Summary................... 15-35
15-29 EDO DRAM Example Programming SUMMArYcccccoeviiieeeeeniineeeennns 15-37
15-30 MeMOrY PreCEUEBNCEcciiiiiiiiee ittt et 15-39
16-1 ATU CommMaNd SUPPOI.....cuuuieeeeiiiiii ettt ettt n e 16-4
16-2 Inbound Write Error CONAItiONScoiviiiiiiiiiiiiiier e 16-16
16-3 Inbound Read Error CoNditioNS..........ccovuvieiiiiiieieeeiiiieee e 16-16
16-4 Outbound Write Error CONditioNScoovvviieiiiiiiiie e 16-17
16-5 Outbound Read Error CoNditioNnScccvveeeeiiiiieiie e 16-17
16-6 Primary ATU Error Reporting SUMMAIYcccevviiiiiiiiieniiiieeeessiiieee e 16-17
16-7 ATU Configuration Space Register SUMMArY..........ccccvveriiiereeeriineeeennns 16-19
16-8 ATU Vendor ID Register - ATUVIDcooiiiiiiiiiiiiiiie e 16-22
16-9 ATU Device ID Register - ATUDIDccooiiiiiiiiiiiieieeie e 16-22
16-10 Primary ATU Command Register - PATUCMD........ccocoiiiiiiiiieiiiiieeeene 16-23
16-11 Primary ATU Status Register - PATUSR ...t 16-24
16-12 ATU Revision ID Register - ATURID........cceeeiiiiiiiieie e 16-25
16-13 ATU Class Code Register - ATUCCRcooiiiiiiiiiiiiieiee e 16-25
16-14 ATU Cacheline Size Register - ATUCLSR........ccviiiiiiiiiieeiiiie e 16-26
16-15 ATU Latency Timer Register - ATULToviiiiiiiiieiee e 16-26
16-16 ATU Header Type Register - ATUHTRooooiiiiiiiiiiiii e 16-27
16-17 ATU BIST Register - ATUBISTR........coiiiiiiiiiiiiiiie et 16-27
16-18 Primary Inbound ATU Base Address Register - PIABARccccceee 16-28
16-19 Instructions for Base Address RegiSter........couuuvviiriiiiiiiriiiieee e 16-29

Xxii i960® VH Processor Developer’s Manual

16-20
16-21
16-22
16-23
16-24
16-25
16-26
16-27
16-28
16-29
16-30
16-31
16-32
16-33
16-34
16-35
16-36
16-37
17-1
17-2
17-3
17-4
17-5
17-6
17-7
17-8
17-9
17-10
18-1
18-2
18-3
18-4
18-5
18-6
19-1
19-2
19-3
19-4
19-5
19-6
19-7
19-8
19-9
19-10
20-1
20-2
20-3
20-4
20-5
20-6

Memory Block Size Read ReSPONSEe.........ccccco i 16-30
Base Address and Limit Register DescCriptionscccovevvieiriniiieeee e 16-30
ATU Subsystem Vendor ID Register - ASVIR ..o 16-31
ATU Subsystem ID Register - ASIR.......ooooiiiiiiiiiie e 16-31
Expansion ROM Base Address Register - ERBAR.............cccovoiiiiie 16-32
ATU Interrupt Line Register - ATUILRcoooiiiiiiiiiiie e 16-33
ATU Interrupt Pin Register - ATUIPRoociiiiiiiiiii e 16-33
ATU Minimum Grant Register - ATUMGNT ..o 16-34
ATU Maximum Latency Register - ATUMLATcooviiiiiiiiiiieeece e 16-35
Primary Inbound ATU Limit Register - PIALRcccocoiiiiiiiii 16-35
Primary Inbound ATU Translate Value Register - PIATVRcccccoeen. 16-36
Primary Outbound Memory Window Value Register - POMWVR............. 16-37
Primary Outbound I/O Window Value Register - POIOWVR 16-37
Expansion ROM Limit Register - ERLRccccoiiiiiiiiiii e 16-38
Expansion ROM Translate Value Register - ERTVRccccooiiiiiie 16-39
ATU Configuration Register - ATUCRccoiiiiiiiiiiiiiie e 16-39
Primary ATU Interrupt Status Register - PATUISRccoooiiieiiiiieeeenn 16-41
Primary Outbound Configuration Cycle Address Register - POCCAR..... 16-42
Messaging Unit (MU) SUMMATYooooiiiiieiiiiiee e 17-1
Peripheral Memory-Mapped Register SUMmarycccoooeeeiiniieee e, 17-5
Inbound Message Register - IMRX ...t 17-6
Outbound Message Register - OMRXcueviiiiiiiiiiiiiiiiiee e 17-6
Inbound Doorbell ReGISter - IDRoociiiiiiiiiiie e 17-7
Inbound Interrupt Status Register - ISR ... 17-7
Inbound Interrupt Mask Register - IIMR ... 17-8
Outbound Doorbell Register - ODR.........ouviiiiiiiiiiice e 17-10
Outbound Interrupt Status Register - OISR........cccceeiiiiiiiiiie e 17-10
Outbound Interrupt Mask Register - OIMR.........ccccoeiiiiiiiiiiie e 17-12
LOCAI BUS MASLEIS......eiiiiiiiiiit ittt ettt 18-2
Programmed Priority CONIrOl...........ooiiiiiiiie e 18-2
Priority Programming for Local Bus Arbitration Exampleccccooeee. 18-3
Bus Arbitration Example — Three Bus Mastersccccevvviieieiiniieeee e, 18-4
Local Bus Arbitration Control Register — LBACRccovviiiiiiiiiiieeee 18-4
Local Bus Arbitration Latency Count Register — LBALCR..........ccccceeeennnen. 18-6
Timer Performance RANQEScuviiiiiiiiiiiiiieie et 19-1
TIMET REGISIEIS ..ttt et 19-2
Timer Mode RegiSter — TIMRXoviiiiiiiiiiiiiieie e 19-2
Timer Input Clock (TCLOCK) Frequency Selectioncccccvvvvervcnnnnenn. 19-5
Timer Count RegISter — TCRXvuviiiiiiiiiiiiiiiiie e 19-5
Timer Reload Register — TRRX ..ueviiiiiiiiie et 19-6
Timer Mode Register Control Bit SUMMArY..........ccceviiiiiiiiiiniiiiieiniieeee 19-7
Timer Responses to Register Bit SettingS..........oocvveiiiiiiiiiiiniieiieeniieeeen 19-8
Timer Powerup Mode SettiNgsScoouviiiiiiiiiiiie e 19-9
Uncommon TMRx Control Bit SEttiNGS.......cccovvuiiiiiiiiiieeeiiiieee e 19-9
DMA REQISLEIS ...eiiiiiiiiii ittt e e s 20-3
DMA Controller Register SUMMAIYc.ceveiriiiiiieiiiiie e 20-21
Channel Control Register - CCRXccoiiiiieeiiiiiiie et 20-21
Channel Status Register - CSRX.......cccoiiiiiiiiiiiiiiee e 20-23
Descriptor Address Register - DARXcueuviiiiiiiie et 20-24
Next Descriptor Address Register - NDARX.........ccoviiiiiinniiiie e 20-25

i960® VH Processor Developer’'s Manual

XXiii

20-7 PCIl Address Register - PADRX.....cciiiitiieiiiiiiie ettt 20-26
20-8 PCI Upper Address Register - PUADRXccooviiiiinniiiiccie e 20-26
20-9 80960 Local Address Register - LADRXccooiiiiiiiniiiiiieineiieee e 20-27
20-10 Byte Count RegiSter - BCRXcuiiiiiiiiiiiiiiiiii it 20-27
20-11 Descriptor Control Register - DCRXccoiiviiiiiiiiiie e 20-28
20-12 PCl COMMANASoiiiiiiiiiitie ettt 20-28
20-13 DMA INTEITUPE SUMIMAIY ...viiiiiiiiiiiearieiiitirie et ie e e e s e e eeee e s e e sneens 20-29
21-1 12C BUS DEfiNItIONS. ..ottt 21-2
21-2 ICCR Programming ValUESccccuuuiiiiiiiiieeiiieee et 21-6
21-3 OPEration MOGES.......coiuuiiiiiiiieiie ittt 21-11
21-4 General Call Address Second Byte Definitions...........cccccvivviiiiiinniiineen. 21-15
215 I1°C REGIStEr SUMMAAIY ...t 21-15
21-6 12C Control Register — ICRc.uuiiiiiiieie e 21-16
21-7 12C Status Register — ISRc.ceiiiiiiiii et 21-18
21-8 12C Slave Address Register — ISAR........oociiiiiiiiiiie e 21-20
21-9 12C Data Buffer Register — IDBRccooocoiiiiiiiiiiiiin et 21-21
21-10 12C Clock Count Register — ICCRccoiiiiiiiiiiiiiiies et 21-22
22-1 TAP Controller Pin DefinitionsS.c..eviiiiiiiiiiiiiiiie e 22-4
22-2 Boundary-Scan INSruCtion Setceeiiiiiiiiiiiiiiiee e 22-5
22-3 IEEE INSIIUCHIONScciiiitiiiiiii ittt ettt ettt e e e 22-6
22-4 i960® VH Processor Boundary Scan Register Bit Ordercccocoeeeeenns 22-8
A-1 Instruction Field DeSCHPLIONSccuiiiiiiiiiie e A-2
A-2 Encoding of src1 and src2in REG FOrmMat.........ccueeeeiiiiiieeiniiiiie e A-2
A-3 Encoding of src/dstin REG FOIMALt.........ooouveeeiiiiiiieiiiieee e A-3
A-4 Encoding of src1in COBR FOrmMat........c.oocveiiiiiiiiieiie e A-3
A-5 Encoding of src2in COBR FOrmMat........cooocviiiiiiiiiie e A-3
A-6 Addressing Modes for MEM Format INStructionsccceeecvveeeiiniieeee e, A-5
A-7 Encoding of Scale Field ..o A-6
B-1 Miscellaneous Instruction Encoding BitS.........c.ccocceiiiiiiieiiniiiiie e, B-1
B-2 REG Format InStruction ENCOAINGSccoiiiiiieiiiiiiiie e B-1
B-3 COBR Format Instruction ENCOAINGSvveeeiiiiiieeiiiiiie e B-6
B-4 CTRL Format Instruction ENCOAINGSuveiiiiiiiiiiiiiiieiiiieie e B-7
B-5 Cycle Counts for SySCtl OPerationseeeeriiieeeeeriiiieie e B-8
B-6 Cycle Counts for icCtl OPEratioNScocvvveeeeiiiiiiiie et B-8
B-7 Cycle Counts for dcctl OpPerationsS.........c.uueeeeiiiieeeeeiiiieee e B-8
B-8 Cycle Counts for intCtl OPErationS............eviiiuieiiiiriieiie e B-9
B-9 MEM Format Instruction ENCOTINGScoiviiiiiiiiiiiiie e B-9
B-10 Addressing Mode PerformancCe...........cccouuiiiiiiiiin i B-10
C-1 ACCESS TYPES ...t e e et C-1
C-2 Supervisor Space Register AQArESSESccouvviviriiiiiiieeiiieeie e C-2
C-3 TIMEE REGISIEIS ...ttt e e C-3
C-4 80960 Internal Addresses Assigned to Integrated Peripherals.................... C-6
C-5 Peripheral Memory-Mapped Register LOCAtioNS.........ccceeeerviieeeerniieieeenee, C-7

XXV i960® VH Processor Developer’s Manual

intel.

Introduction 1

1.1

Figure 1-1.

1.2

Intel’s 1960 ® VH Processor

Thei960® VH Processor (“80960VH”) integrates a high-performance 80960 “core” into a
Peripheral Components Interconnect (PCI) functionality. This integrated processor addresses the
needs of embedded applications and helps reduce embedded system costs. As indicated in
Figure 1-1 the primary functional units include an i960 core processor, PCI-to-80960 Address
Translation Unit, Messaging Unit, Direct Memory Access (DMA) Controller, Memory Controller,
and PC Bus Interface Unit.

The PCI Bus is an industry standard, high performance, low latency system bus that operates up to
132 Mbyte/sec.

i960® VH Processor Functional Block Diagram

Local Memory I°C Serial Bus
) A
A
Memo i960® JT Core v
Control?ér Processor 1°C Bus Internal L_ocal
Interface Unit Bus Arbiter
y \ Local Bus 2 >
Address Message
Two DMA Translation Unitg
Channels Unit
PCI Bus -
Internal Primary
PCI Arbiter

i960® VH Processor Features

The 80960V H combinesthei960® JT processor with powerful new features to create an embedded
processor. This PCI deviceis fully compliant with the PCI Local Bus Specification, revision 2.1.
80960V H-specific featuresinclude:

i960® VH Processor Developer’s Manual 1-1

[]
Introduction I ntel ®

* DMA Controller * Memory Controller
* Address Translation Unit e 12C Bus Interface Unit

* Messaging Unit

Because the 80960VH's core processor is based upon the 80960JT, the two 1960 family members
are object code compatible and can maintain a sustained execution rate of one instruction per clock
cycle. The 80960 local bus, a 32-bit multiplexed burst bus, is a high-speed interface to system
memory and I/O. A full complement of control signals simplifies the connection of the 80960VH

to external components. Physical and logical memory attributes are programmed via
memory-mapped control registers (MMRSs), a feature not found on the i960 Kx, Sx or Cx
processors. Physical and logical configuration registers enable the processor to operate with all
combinations of bus width and data object alignment.S&e¢ion 1.3, “iI960® Core Processor

Features (80960VH)” on page 1f& more information.

The subsections that follow briefly overview each feature. Refer to the appropriate chapter for full
technical descriptions.

1.2.1 DMA Controller

The DMA Controller allows low-latency, high-throughput data transfers between PCI bus agents
and 80960 local memory. Two separate DMA channels accommodate data transfers for the
primary PCI bus. The DMA Controller supports chaining and unaligned data transfers. It is
programmable through the 1960 core processor only, and functions in synchronous mode only. See
Chapter 20, DMA Controller

1.2.2 Address Translation Unit

The Address Translation Unit (ATU) allows PCI transactions direct access to the 80960VH local
memory. The ATU supports transactions between PCIl address space and 80960VH address space.
Address translation is controlled through programmable registers accessible from both the PCI
interface and the i960 core processor. Dual access to registers allows flexibility in mapping the two
address spaces. S@hapter 16, Address Translation Unit

1.2.3 Messaging Unit

The Messaging Unit (MU) provides data transfer between the PCI system and the 80960VH. It
uses interrupts to notify each system when new data arrives. The MU has four messaging
mechanisms: Message Registers and Doorbell Registers. Each allows a host processor or external
PCI device and the 80960VH to communicate through message passing and interrupt generation.
SeeChapter 17, “Messaging Unit”

1.2.4 Memory Controller

The Memory Controller allows direct control of external memory systems, including DRAM,
SRAM, ROM and flash. It provides a direct connect interface to memory that typically does not
require external logic. It features programmable chip selects, a wait state generator and byte parity.
External memory can be configured as PCI addressable memory or private 80960VH memory. See
Chapter 15, Memory Controller

1-2 i960® VH Processor Developer’s Manual

intel.

1.2.5

1.3

Figure 1-2.

i960® VH Processor Developer's Manual

Introduction

12C Bus Interface Unit

The I2C (Inter-Integrated Circuit) Bus Interface Unit aI lows the 1960 core processor to serve as a
master and slave device residing on the 1°C bus. The 1°C unit uses a serial bus developed by Philips
Seml conductor consisting of atwo-pin interface. The bus allows the 80960V H to interface to other
1’Cc peripherals and microcontrollers for system management functions. It requires a minimum of
hardware for an economica system to relay status and reliability information on the |/O subsystem
to an external device. See Chapter 21, “I2C Bus Interface UnitAlso refer to the documehfC
Peripherals for Microcontrollers (Philips Semiconductor).

i960® Core Processor Features (80960VH)

The processing power of the 80960V H comes from the 80960JF processor core. The 80960JF isa
new, scalar implementation of the i960 core architecture. Figure 1-2 shows a block diagram of the
80960JF core processor.

80960JF Core Processor Block Diagram

32-bit buses Control
P_CLK address / data Physi;:al Region
Configuration
PLL, Clocks, € 9 «——>[0]
@_ > Instruction Cache J_| Bus Control Unit
16 Kbyte Two-Way Set Associative o
> Bus Request
TAP Boundary Scan | Queuqes H 473“2'@
o4~ v
Instruction Sequencer <= Two 32-Bit
> Timers
Constants Control
l Interrupt
< & !| Programmable |Port,
< ’ Interrupt 4+@
8-Set v vy ¥ l > Controller 9
Local Register Cache
Execution Memory
7y Multiply and Interface <= Memory-Mapped
|, Divide Address Unit »| Register Interface
A128 Generation v
v Unit
PN 1 Kbyte
32-bit Data
Address .
Register File > Data RAM
SRC1 SRC2 DEST
-y 4 Kbyte
‘ 1 t l t 1 1 ‘ | Direct Mapped
”| Data Cache

Three Independent 32-Bit SRC1, SRC2, and DEST Buses I

Factors that contribute to the 80960VH’s performance include:
* Single-clock execution of most instructions
* Independent Multiply/Divide Unit
¢ Efficient instruction pipeline minimizes pipeline break latency

Introduction

1.3.1

1.3.2

1-4

Note:

intel.

* Register and resource scoreboarding allow overlapped instruction execution

* 128-bit register bus speedslocal register caching

* 16 Kbyte two-way set-associative, integrated instruction cache

* 4 Kbyte direct-mapped, integrated data cache

* 1Kbyteintegrated data RAM delivers zero wait state program data
The 1960 core processor operates out of its own 32-bit address space, which is independent of the
PCI address space. The 80960 local bus memory can be:

* Made visible to the PCI address space

* Kept private to the 1960 core processor

* Allocated as a combination of the two

Burst Bus

A 32-bit high-performance bus controller interfaces the i960 core processor to external memory
and peripherals. The Bus Control Unit fetches instructions and transfers data on the 80960 local
bus at the rate of up to four 32-bit words per six clock cycles.

DMA and ATU accesses are limited to 32-bit wide memory regions. Also these units can burst up
to a 2 Kbyte boundary with no alignment restrictions.

Users may configure the i960 core processor’s bus controller to match an application’s
fundamental memory organization. Physical bus width is programmable up to eight regions. Data
caching is programmed through a group of logical memory templates and a defaults register. The
Bus Control Unit's features include:

* Multiplexed external bus minimizes pin count
* 32-, 16- and 8-bit bus widths simplify I/O interfaces

* External ready control for address-to-data, data-to-data and data-to-next-address wait state
types

* Unaligned bus accesses performed transparently

* Three-deep load/store queue decouples the bus from the i960 core processor

For reliability, the 80960VH conducts an internal self test upon reset. Before executing itsfirst
instruction, it performs alocal bus confidence test by performing a checksum on the first words of
the Initialization Boot Record.

Timer Unit

Asdescribed in Chapter 19, “Timers"The Timer Unit (TU) contains two independent 32-bit

timers that are capable of counting at software-defined clock rates and generating interrupts. Each
is programmed by use of the Timer Unit memory-mapped registers. The timers have a single-shot
mode and auto-reload capabilities for continuous operation. Each timer has an independent
interrupt request to the 80960VH’s interrupt controller.

i960® VH Processor Developer’s Manual

[]
I ntel ® Introduction

1.3.3 Priority Interrupt Controller

Chapter 8, “Interruptséxplains how low interrupt latency is critical to many embedded
applications. As part of its highly flexible interrupt mechanism, the 80960VH exploits several
technigues to minimize latency:

* Interrupt vectors and interrupt handler routines can be reserved on-chip
* Register frames for high-priority interrupt handlers can be cached on-chip
* Theinterrupt stack can be placed in cacheable memory space

1.34 Faults and Debugging

The 80960VH employs a comprehensive fault model. The processor responds to faults by making
implicit calls to fault handling routines. Specific information collected for each fault allows the
fault handler to diagnose exceptions and recover appropriately.

The processor also has built-in debug capabilities. Via software, the 80960V H may be configured
to detect as many as seven different trace event types. Alternatively, mark and fmark instructions
can generate trace events explicitly in the instruction stream. Hardware breakpoint registers are
also available to trap on execution and data addresses. See Chapter 9, “Faults”

1.3.5 On-Chip Cache and Data RAM

As discussed ihapter 4, “Cache and On-Chip Data RANfiemory subsystems often impose
substantial wait state penalties. The 80960VH integrates considerable storage resources on-chip to
decouple CPU execution from the external bus. The 80960VH includes a 16 Kbyte instruction
cache, a 4 Kbyte data cache and 1 Kbyte data RAM.

1.3.6 Local Register Cache

The 80960VH rapidly allocates and deallocates local register sets during context switches. The
processor needs to flush a register set to the stack only when it saves more than seven sets to its
local register cache.

1.3.7 Test Features

The 80960VH incorporates features that enhance the user’s ability to test both the processor and
the system to which it is attached. These features include ONCE (On-Circuit Emulation) mode and
IEEE Std. 1149.1 Boundary Scan (JTAG). 8dmpter 22, “Test Features”

One of the boundary scan instructiodGHz, forces the processor to float all its output pins
(ONCE mode). ONCE mode can also be initiated at reset without using the boundary scan
mechanism.

ONCE mode is useful for board-level testing. This feature allows a mounted 80960VH to
electrically “remove” itself from a circuit board. This mode allows system-level testing where a
remote tester, such as an In-Circuit Emulator (ICE) system, can exercise the processor system. The
test logic does not interfere with component or system behavior and ensures that components
function correctly, and also that the connections between various components are correct.

i960® VH Processor Developer’s Manual 1-5

Introduction

1.3.8

1.3.9

1.4

1.4.1

1-6

intel.

The JTAG Boundary Scan feature is an alternative to conventional “bed-of-nails” testing. It can
examine connections that might otherwise be inaccessible to a test system.

Memory-Mapped Control Registers

The 80960VH is compliant with 80960 family architecture and has the added advantage of
memory-mapped, internal control registers not found on the 80960Kx, Sx or Cx processors. This
feature provides software an interface to easily read and modify internal control registers.

Each memory-mapped, 32-bit register is accessed via regular memory-format instructions. The
processor ensures that these accesses do not generate external bus cyCleptSee5,
“Memory Controller”.

Instructions, Data Types and Memory Addressing Modes
As with all 80960 family processors, the 80960VH instruction set supports several different data
types and formats:
* Bit
Bit fields
Integer (8-, 16-, 32-, 64-hit)
Ordina (8-, 16-, 32-, 64-bit unsigned integers)
Triple word (96 bits)
* Quad word (128 bits)

Several chapters describe the 80960V H instruction set, including:
* Chapter 3, Programming Environment
* Chapter 5, Instruction Set Overview
* Chapter 6, Instruction Set Reference

About This Document

The 80960V H incorporates Peripheral Component Interconnect (PCI) functionality with the
80960V H. Assuch, it isassumed that the reader has a working understanding of Peripheral
Component Interconnect (PCl), PCI Local Bus Specification, revision 2.1, and the i960 core
processor.

Terminology

In this document, the following terms are used:
* 80960V H refers generically to the i960® VH processor.
* 80960 local bus refers to the 80960VH's internal local bus, not the PCI local bus.
* Primary PCI bus is the 80960VH'’s internal PCI bus that conforms to PCI SIG specifications.
* {960 core processor refersto the i960% JT processor that isintegrated into the 80960V H.

i960® VH Processor Developer’s Manual

1.4.2

1.4.3

1.4.4

Introduction

* DWORD is a32-hit dataword.

* 80960 Local memory isamemory subsystem on the 80960 processor local bus.

* Downstream — at or toward a PCI bus with a higher number (after configuration).
* Host processor — Processor located upstream from the i960 VH Processor.

* Local processor — i960 core processor within the 1960 VH Processor.

* Upstream — At or toward a PCI bus with a lower number (after configuration).

Representing Numbers

Assume that all numbers are base 10 unless designated otherwise. In text, numbers in base 16 are
represented as “nnnH”, where the “H” signifies hexadecimal. In pseudocode descriptions,
hexadecimal numbers are represented in the form 0x1234ABCD. Binary numbers are not explicitly
identified and are assumed when bit operations or bit ranges are used.

Fields

A preserved field in a data structure is one that the processor does not use. Preserved fields can be
used by software; the processor does not modify such fields.

A reserved field is a field that may be used by an implementation. When the initial value of a
reserved field is supplied by software, this value must be zero. Software should not modify
reserved fields or depend on any values in reserved fields.

A read only field can be read to return the current value. Writegdd only fields are treated as
no-op operations and do not change the current value or result in an error condition.

A read/clear field can also be read to return the current value. A write¢adiclear field with the
data value of 0 causes no change to the field. A writa¢adiclear field with a data value of 1

causes the field to be cleared (reset to the value of 0). For example, réadfci@ar field has a

value of FOH, and a data value of 55H is written, the resultant field is AOH.

A read/set field can also be read to return the current value. A writer¢éadiset field with the data
value of 0 causes no change to the field. A writeread/set field with a data value of 1 causes the
field to be set (set to the value of 1). For example, wheadiset field has a value of FOH, and a
data value of 55H is written, the resultant field is F5H.

Specifying Bit and Signal Values

The termsset andclear in this specification refer to bit values in register and data structures. When
a bit is set, its value is 1; when the bit is clear, its value is 0. Likesetsieg a bit means giving it
a value of 1 andlearing a bit means giving it a value of 0.

The termsassert anddeassert refer to the logically active or inactive value of a signal or bit,
respectively.

i960® VH Processor Developer’s Manual 1-7

Introduction

1.4.5

1.4.6

1.4.7

1.4.8

Table 1-1.

1-8

INtal.

Signal Name Conventions

All signal names use the PCI signal name convention of using the “#” symbol at the end of a signal
name to indicate that the signal’s active state occurs when it is at a low voltage. This includes
80960 processor-related signal names that normally use an ovéHamabsence of the “#” symbol
indicates that the signal’s active state occurs when it is at a high voltage level.

Solutions960® Program
Intel’s Solutions960® program features a wide variety of development tools that support the i960
processor family. Many of these tools are developed by partner companies; some are devel oped by

Intel, such as profile-driven optimizing compilers. For more information on these products, contact
your local Intel representative.

Intel Customer Literature and Telephone Support

Contact Intel Corporation for literature and technical assistance for the i960® VH processor.

Country Literature Customer Support Number
United States 800-548-4725 800-628-8686
Canada 800-468-8118 or 303-297-7763 | 800-628-8686
Europe Contact local distributor Contact local distributor
Australia Contact local distributor Contact local distributor
Israel Contact local distributor Contact local distributor
Japan Contact local distributor Contact local distributor

Related Documents

Intel documentation is available from your Intel Sales Representative or Intel Literature Sales. See
Section 1.4.7 for acomplete listing of contact numbers for obtaining Intel literature.

Additional Information Sources

Document Title Order / Contact

Intel Order # 273174-001
Intel Order # 273179-001
Intel Order # 272483-002
Intel Order # 242016
PCI Special Interest Group 1-800-433-5177
PCI Special Interest Group 1-800-433-5177

i960® VH Processor Specification Update

i960® VH Processor at 3.3 Volts Data Sheet

i960® Jx Microprocessor Developer’s Manual

MultiProcessor Specification

PCI Local Bus Specification, revision 2.1

PCI System Design Guide, Revision 1.0
I2

C Peripherals for Microcontrollers Philips Semiconductor

12C Bus and How to Use It (Including Specifications) Philips Semiconductor

12C Peripherals for Microcontrollers (Including Fast Mode) Signetics

i960® VH Processor Developer’s Manual

[]
I ntel ® Introduction

1.49 Electronic Information

Intel's documentation and other information is available from Intel’s websitelside 1-2.

Table 1-2. Electronic Information

Intel's World-Wide Web Home Page http://www.intel.com/

i960® VH Processor Developer’s Manual 1-9

intel.

Data Types and Memory Addressing
Modes 2

2.1 Data Types

Theinstruction set references or produces several data lengths and formats. The i960° VH
processor supports the following data types:

* Integer (signed 8, 16 and 32 bits) * Ordinal (unsigned integer 8, 16, and 32 bits)
* Long Word (64 bhits) * Triple Word (96 hits)

* Quad Word (128 hits) * Bit Field

* Bit

Figure 2-1 illustrates the class, data type and length of each type supported by i960 processors.
Figure 2-1. Data Types and Ranges

8
| Bit Field | Bits
7 0
31 — Length 7 0
" 1 A NETT
LSB of 15 0
Bit Field 32
Bits Word |
31 0
64
Bits I Long |
63 0
96 N
Bits | | Triple Word |
95 0
élztg | | | Quad Word |
127 0
Class Data Type Length Range
N) Byte Integer 8 Bits 2"t027-1
(Integen) Short Integer 16 Bits 215102151
Integer 32 Bits 2%t0 2811
Byte Ordinal 8 Bits 0to28-1
Numeric Short Ordinal 16 Bits 0to216-1
(Ordinal) Ordinal 32 Bits 0t02%-1
Long Ordinal 64 Bits 0to2%4-1
Bit i
f ' 1 Bit N/A
Bit Field 1-32 Bits
Non-Numeric Long Word 64 Bits
Triple Word 96 Bits
Quad Word 128 Bits

i960® VH Processor Developer’s Manual 2-1

u
Data Types and Memory Addressing Modes I ntel ®

21.1

Table 2-1.

2.1.2

Example 2-1.

2.1.3

2-2

Word/Dword Notation
Data lengths, as described in the PCI Local Bus Specification Revision 2.1, differ from the
conventions used for the 80960 architecture. See also Table 2-1:

* In the PCI specification the term word refersto a 16-bit block of data.

* |n thismanual and other documentation relating to the 80960V H, the term word refersto a
32-bit block of data.

80960 and PCI Architecture Data Word Notation Differences

No. of Bits PCI Architecture 80960 Architecture
16 word short word or half word
32 doubleword or dword word
Integers

Integers are signed whole numbers that are stored and operated on in two’s complement format by
the integer instructions. Most integer instructions operate on 32-bit integers. Byte and short
integers are referenced by the byte and short classes of the load, store and compare instructions
only.

Integer load or store size (byte, short or word) determines how sign extension or data truncation is
performed when data is moved between registers and memory.

For instructionddib (load integer byte) andis (load integer short), a byte or short word in
memory is considered a two’s complement value. The value is sign-extended and placed in the
32-bit register that is the destination of the load.

Sign Extensions on Load Byte and Load Short
Idib

7AH is | oaded into a regi ster as 0000 007AH

FAH is | oaded into a register as FFFF FFFAH
Idis

05A5H is | oaded into a register as 0000 05A5H

85A5H is | oaded into a register as FFFF 85A5H

For instructionstib (store integer byte) aradis (store integer short), a 32-bit two’s complement
number in a register is stored to memory as a byte or short word. When register data is too large to
be stored as a byte or short word, the value is truncated and the integer overflow condition is
signaled. When an overflow occurs, either an AC register flag is set or the
ARITHMETIC.INTEGER_OVERFLOW fault is generated, depending on the Integer Overflow
Mask bit (AC.om) in the AC registe€hapter 9, “Faultstlescribes the integer overflow fault.

For instructionsd (load word) andt (store word), data is moved directly between memory and a
register with no sign extension or data truncation.

Ordinals

Ordinals or unsigned integer data types are stored and treated as positive binarfFicalte2-1
shows the supported ordinal sizes.

i960® VH Processor Developer’s Manual

2.1.4

2.1.5

2.1.6

Data Types and Memory Addressing Modes

The large number of instructions that perform logical, bit manipulation and unsigned arithmetic
operations reference 32-bit ordinal operands. When ordinals are used to represent Boolean val ues,
1=TRUE and 0 = FALSE. Most extended arithmetic instructions reference the long ordinal data
type. Only load (Idob and Idos), store (stob and stos), and compare ordinal instructions reference
the byte and short ordinal datatypes.

Sign and sign extension are not considered when ordinal loads and stores are performed; however,
the values may be zero-extended or truncated. A short word or byte load to aregister causes the
value loaded to be zero-extended to 32 bits. A short word or byte store to memory truncates an
ordinal value in aregister to fit the destination memory. No overflow condition is signalled in this
case.

Bits and Bit Fields

The processor provides severa instructions that perform operations on individual bits or bit fields
within register operands. An individual bit is specified for a bit operation by giving its bit number
and register. Internal registersalwaysfollow little endian byte order; the least significant bit isbit 0
and the most significant bit is bit 31.

A bit field is any contiguous group of bits (up to 32 bitslong) in a 32-bit register. Bit fields do not
span register boundaries. A bit field is defined by giving its length in bits (1-32) and the bit number
of its lowest numbered bit (0-31).

Loading and storing bit and bit-field data is normally performed using the ordinal load (Ido) and
store (sto) instructions. When an Idi instruction loads a bit or bit field value into a 32-bit register,
the processor appends sign extension bits. A byte or short store can signal an integer overflow
condition.

Triple and Quad Words

Triple and quad wordsrefer to consecutive words in memory or in registers. Triple- and quad-word
load, store and move instructions use these data types to accomplish block movements. No data
manipulation (sign extension, zero extension or truncation) is performed in these instructions.

Triple- and quad-word data types can be considered a superset of the other data types described.
Datain each word subset of a quad word islikely to be the operand or result of an ordinal, integer,
bit or bit field instruction.

Register Data Alignment

Severd instructions operate on multiple-word operands. For example, the load-long instruction
(Id1) loads two words from memory into two consecutive registers. Here the register number for the
least significant word is automatically loaded into the next higher-numbered register.

In cases where an instruction specifies a register number, and multiple, consecutive registers are
implied, the register number must be even if two registers are accessed (for example, g0, g2) and an
integral multiple of four if three or four registers are accessed (for example, g0, g4). When a
register reference for a source value is not properly aligned, the registers that the processor writes
to are undefined.

i960® VH Processor Developer’s Manual 2-3

u
Data Types and Memory Addressing Modes I ntel ®

The 80960V H does not require data alignment in external memory; the processor hardware handles
unaligned memory accesses automatically. Optionally, user software can configure the processor
to generate afault on unaligned memory accesses.

2.1.7 Literals

The architecture defines a set of 32 literalsthat can be used as operands in many instructions. These
literals are ordinal (unsigned) values that range from 0 to 31 (5 hits). When aliteral is used as an
operand, the processor expands it to 32 bits by adding leading zeros. If the instruction requires an
operand larger than 32 bits, then the processor zero-extends the value to the operand size. If a
literal isused in an instruction that requires integer operands, then the processor treats the literal as
apositive integer value.

2.2 Bit and Byte Ordering in Memory

All occurrences of numeric and non-numeric data types, except bits and bit fields, must start on a
byte boundary. Any data item occupying multiple bytesis stored aslittle endian.

2.3 Memory Addressing Modes

Nine modes are available for addressing operands in memory. Each addressing mode is used to
reference a byte location in the processor’s address sfeate.2-2shows the memory addressing
modes and a brief description of each mode’s address elements and assembly code syntax.

Table 2-2. Memory Addressing Modes

Mode Description Assembler Syntax Jr[;/s;;te
Absoluteoffset offset (smaller than 4096) exp MEMA
displacement | displacement (larger than 4095) exp MEMB

Register Indirect abase (reg) MEMB
with offset | abase + offset exp (reg) MEMA

with displacement | abase + displacement exp (reg) MEMB

with index | abase + (index*scale) (reg) [reg*scale] MEMB

with index and displacement | abase + (index*scale) + displacement | exp (reg) [reg*scale] | MEMB

Index with displacement (index*scale) + displacement exp [reg*scale] MEMB
idr::g;((::t(iaonr:epn?inter (IP) with IP + displacement + 8 exp (IP) MEMB

NOTE: reg is register, exp is an expression or symbolic label, and IP is the Instruction Pointer.

SeeTable B-9 “MEM Format Instruction Encodings” on page Be®@more on addressing modes.

For purposes of this memory addressing modes description, MEMA format instructions require
one word of memory and MEMB usually require two words and therefore consume twice the bus
bandwidth to read. Otherwise, both formats perform the same functions.

2-4 i960® VH Processor Developer’s Manual

u
I ntel ® Data Types and Memory Addressing Modes

2.3.1 Absolute

Absolute addressing modes allow a memory location to be referenced directly as an offset from
address OH. At the instruction encoding level, two absolute addressing modes are provided:
absol ute offset and absol ute displacement, depending on offset size.

* For the absolute offset addressing mode, the offset is an ordinal number ranging from 0 to
4095. The absolute offset addressing mode is encoded in the MEM A machine instruction
format.

* For the absolute displacement addressing mode, the offset value ranges from 0 to 23%-1. The
absol ute displacement addressing mode is encoded in the MEMB format.

Addressing modes and encoding instruction formats are described in Chapter 6, “Instruction Set
Reference”

At the assembly language level, the two absolute addressing modes use the same syntax. Typically,
development tools allow absolute addresses to be specified through arithmetic expressions (for
example, x + 44) or symbolic labels. After evaluating an address specified with the absolute
addressing mode, the assembler converts the address into an offset or displacement and selects the
appropriate instruction encoding format and addressing mode.

2.3.2 Register Indirect

Register indirect addressing modes use a register’s 32-bit value as a base for address calculation.
The register value is referred to as the address base (designated “abaséd &+). Depending
on the addressing mode, an optional scaled index and offset can be added to this address base.

Register indirect addressing modes are useful for addressing elements of an array or record
structure. When addressing array elements, the abase value provides the address of the first array
element. An offset (or displacement) selects a particular array element.

In register-indirect-with-index addressing mode, the index is specified using a value contained in a
register. This index value is multiplied by a scale factor. Allowable factors are 1, 2, 4, 8 and 16.
The register-indirect-with-index addressing mode is encoded in the MEMA format.

The two versions of register-indirect-with-offset addressing mode at the instruction encoding level
are register-indirect-with-offset and register-indirect-with-displacement. As with absolute
addressing modes, the mode selected depends on the size of the offset from the base address.

At the assembly language level, the assembler allows the offset to be specified with an expression
or symbolic label, then evaluates the address to determine whether to use
register-indirect-with-offset (MEMA format) or register-indirect-with-displacement (MEMB

format) addressing mode.

Register-indirect-with-index-and-displacement addressing mode adds both a scaled index and a

displacement to the address base. There is only one version of this addressing mode at the
instruction encoding level, and it is encoded in the MEMB instruction format.

2.3.3 Index with Displacement

A scaled index can also be used with a displacement alone. Again, the index is contained in a
register and multiplied by a scaling constant before displacement is added. This mode uses MEMB
format.

i960® VH Processor Developer’s Manual 2-5

u
Data Types and Memory Addressing Modes I ntel ®

2.3.4 IP with Displacement

This addressing mode is used with load and store instructions to make them instruction pointer (1P)

relative. IP-with-displacement addressing mode references the next instruction’s address plus the
displacement plus a constant of 8. The constant is added because, in a typical processor
implementation, the address has incremented beyond the next instruction address at the time of
address calculation. The constant simplifies IP-with-displacement addressing mode
implementation. This mode uses MEMB format.

2.3.5 Addressing Mode Examples

The following examples show how 1960 processor addressing modes are encoded in assembly
languageExample 2-Zhows addressing mode mnemoniesample 2-3llustrates the usefulness

of scaled index and scaled index plus displacement addressing modes. In this example, a procedure
named array_op uses these addressing modes to fill two contiguous memory blocks separated by a
constant offset. A pointer to the top of the block is passed to the procedure in g0, the block size is
passed in gl and the fill data in g2. RefeAfpendix A, “Machine-level Instruction Formats”

Example 2-2. Addressing Mode Mnemonics

st g4, xyz Absol ute; word from g4 stored at nenory
| ocation designated with |abel xyz.
Idob (r3),r4 Regi ster indirect; ordinal byte from

nmenory | ocation given in r3 | oaded

into register r4 and zero extended.

Regi ster indirect with displacenent;
double word from g6,g7 stored at nenory
| ocation xyz + g5.

Regi ster indirect with index; quad-word
begi nning at nmenory location r8 + (r9
scal ed by 4) loaded into r4 through r7.
Regi ster indirect with index and

di spl acenent; word in g3 stored to nem
| ocation g4 + xyz + (g5 scaled by 2).

I ndex with displacenent; |oad short

i nteger at nenory |ocation xyz + r12
into r13 and sign extended.

I P with displacenent; store word in r4
at nenory location IP + xyz + 8.

stl g6, xyz(g5h)

Idq(r8)[r9*4],r4

st g3, xyz(g4)[g5*2]

| di sxyz[r12*2],r13

st r4,xyz(1P)

H o HHHHHHHHHHHHHH R R

2-6 i960® VH Processor Developer’s Manual

intel.

Data Types and Memory Addressing Modes

Example 2-3. Scaled Index and Scaled Index Plus Displacement Addressing Modes

array_op:
movgo, r4
subi 1,g1,r3
b .133

.1 34:
st g2, (r4)[r3*4]
st
g2, 0x30(r4)[r3*4]
subi1,r3,r3

. 133:
cnpi bl e0,r3,.134
ret

H*+

F*

Pointer to array is copied to r4.
Cal cul ate index for the last array
elenent to be filled

Fill elenment at index

Fill elenment at index+constant offset
Decr enent i ndex

Store next array elenents if

index is not O

i960® VH Processor Developer's Manual

2-7

intel.

Programming Environment 3

This chapter describes the i960® VH processor’'s programming environment including global and
local registers, control registers, literals, processor-state registers and address space.

3.1 Overview

The 1960 architecture defines a programming environment for program execution, data storage and
data manipulatiorFigure 3-1shows the programming environment elements that include a

4 Ghyte (2 byte) flat address space, an instruction cache, a data cache, global and local
general-purpose registers, a register cache, a set of literals, control registers and a set of processor
state registers.

The processor includes several architecturally-defined data structures located in memory as part of
the programming environment. These data structures handle procedure calls, interrupts and faults
and provide configuration information at initialization. These data structures are:

* interrupt stack ¢ control table * system procedure table

* locd stack ¢ fault table * process control block

® supervisor stack * interrupt table * initialization boot record
3.2 Registers and Literals as Instruction Operands

With the exception of a few special instructions, the 80960VH uses only simple load and store
instructions to access memory. All operations take place at the register level. The processor uses
16 global registers, 16 local registers and 32 literals (constants 0-31) as instruction operands.

The global register numbers are g0 through g15; local register numbers are r0 through r15. Several
of these registers are used for dedicated functions. For example, register r0 is the previous frame
pointer, often referred to gufp. 1960 processor compilers and assemblers recognize only the
instruction operands listed fable 3-1 Throughout this manual, the registers’ descriptive names,
numbers, operands and acronyms are used interchangeably, as dictated by context.

i960® VH Processor Developer’s Manual 3-1

Programming Environment

Figure 3-1.

3.2.1

Table 3-1.

3-2

i960® VH Processor Programming Environment

N

Instruction
Execution

Processor State
Registers

0000 0000H FFFF FFFFH
|
|
|
|
Address Space
Architecturally
Defined
Data Structures
l
Fetch
Instruction
Cache
Load Store
Instruction
Stream

Instruction
Pointer

Arithmetic
Controls

Process
Controls

Trace
Controls

Sixteen 32-Bit
Global Registers

g0
gl5

,.5 Register Cache

Sixteen 32-Bit
Local Registers

0
r15

Control Registers

Global Registers

Globa registers are general -purpose 32-bit data registers that provide temporary storage for a

program’s computational operands. These registers retain their contents across procedure
boundaries. As such, they provide a fast and efficient means of passing parameters between

procedures.

Registers and Literals Used as Instruction Operands

Instruction Operand Register Name (number) Function Acronym
g0 - gl4 global (g0-g14) general purpose
fp global (g15) frame pointer FP

i960® VH Processor Developer’s Manual

intel.

Table 3-1.

Programming Environment

Registers and Literals Used as Instruction Operands

Instruction Operand

Register Name (number)

Function

Acronym

pfp

local (r0)

previous frame pointer

PFP

sp

local (r1)

stack pointer

SP

rip

local (r2)

return instruction pointer

RIP

r3-rl5

local (r3-r15)

general purpose

0-31 literals

The 960 architecture supplies 16 global registers, designated g0 through g15. Register g15is
reserved for the current Frame Pointer (FP), which contains the address of the first bytein the
current (topmost) stack frame in internal memory. See Section 7.1, “Call and Return Mechanism”
on page 7-pfor a description of the FP and procedure stack.

After the processor is reset, register g0 contains the i960 core processor device identification and
stepping information. g0 retains this information until it is written over by the user program. The
i960 core processor device identification and stepping information is also stored in the
memory-mapped DEVICEID register located at FFO0 8710H. In addition, the 80960VH device
identification and stepping information is stored in the memory-mapped register located at

0000 1710H.

3.2.2 Local Registers

The 1960 architecture provides a separate set of 32-bit local data registers (rO through r15) for each
active procedure. These registers provide storage for variables that are local to a procedure. Each
time a procedure is called, the processor allocates a new set of local registers and saves the calling
procedure’s local registers. When the application returns from the procedure, the local registers are
released for the next procedure call. The processor performs local register management; a program
need not explicitly save and restore these registers.

r3 through r15 are general purpose registers; r0 through r2 are reserved for special functions; r0
contains the Previous Frame Pointer (PFP); rl contains the Stack Pointer (SP); r2 contains the
Return Instruction Pointer (RIP). These are discuss&hapter 7, “Procedure Calls”

The processor does not always clear or initialize the set of local registers assigned to a new
procedure. Also, the processor does not initialize the local register save area in the newly created
stack frame for the procedure. User software should not rely on the initial values of local registers.

3.2.3 Register Scoreboarding

Register scoreboarding maintains register coherency by preventing parallel execution units from
accessing registers for which there is an outstanding operation. When an instruction that targets a
destination register or group of registers executes, the processor sets a register-scoreboard bit to
indicate that this register or group of registers is being used in an operation. If the instructions that
follow do not require data from registers already in use, then the processor can execute those
instructions before the prior instruction execution completes.

Software can use this feature to execute one or more single-cycle instructions concurrently with a
multi-cycle instruction (for example, multiply or divid&xample 3-1shows a case where register
scoreboarding prevents a subsequent instruction from executing. It also illustrates overlapping
instructions that do not have register dependencies.

i960® VH Processor Developer’s Manual 3-3

u
Programming Environment I nt6| o

Example 3-1.

3.2.4

3.2.5

Example 3-2.

3-4

Register Scoreboarding

muli r4,r5,r6 # r6 is scoreboarded
addi r6,r7,r8 # addi nmust wait for the previous nultiply
to conplete

muli r4,r5,r10 # r10 is scoreboarded
and r6,r7,r8 # and instruction is executed concurrently with

mul tiply

Literals

The architecture defines a set of 32 literalsthat can be used as operands in many instructions. These
literalsare ordinal (unsigned) values that range from 0 to 31 (5 hits). When aliteral is used as an
operand, the processor expands it to 32 bits by adding leading zeros. If the instruction requires an
operand larger than 32 bits, then the processor zero-extends the value to the operand size. If a
literal isused in an instruction that requires integer operands, then the processor treats the literal as
apositive integer value.

Register and Literal Addressing and Alignment

Several instructions operate on multiple-word operands. For example, the load long instruction
(1dl) loads two words from memory into two consecutive registers. The register for the less
significant word is specified in the instruction. The more significant word is automatically loaded
into the next higher-numbered register.

In cases where an instruction specifies aregister number and multiple consecutive registers are
implied, the register number must be evenif two registers are accessed (for example, g0, g2) and an
integral multiple of 4 if three or four registers are accessed (for example, g0, g4). If aregister
reference for a source valueis not properly aigned, then the source value is undefined and an
OPERATION.INVALID_OPERAND fault is generated. If aregister reference for adestination
value is not properly aligned, then the registers to which the processor writes and the values written
are undefined. The processor then generates an OPERATION.INVALID_OPERAND fault. The
assembly language code in Example 3-2 shows an example of correct and incorrect register
alignment.

Register Alignment

novl 93,98 # Incorrect alignment - resulting val ue
#in registers g8 and g9 is
unpredictable (non-aligned source)

movl g4,98 # Correct alignment

Global registers, local registersand literals are used directly as instruction operands. Table 3-2 lists
instruction operands for each machine-level instruction format and the positions that can be filled
by each register or literal.

i960® VH Processor Developer’s Manual

intel.

Table 3-2.

3.3

3.3.1

Programming Environment

Allowable Register Operands

Operand?
Instruction
Encoding Operand Field Local Register Global Register Literal
srcl X X X
src2 X X X
REG src/dst (as src) X X X
src/dst (as dst) X X
src/dst (as both) X X
src/dst X X
MEM abase X X
index X X
srcl X X
COBR src2 X X X
dst X2 X? X?
NOTES:

1. “X” denotes the register can be used as an operand in a particular instruction field.
2. The COBR destination operands apply only to TEST instructions.

Memory-Mapped Control Registers (MMRS)

The 80960V H gives software the interface to easily read and modify internal control registers.
Each of these registersis accessed as a memory-mapped register with a unique memory address.
There are two distinct sets of memory-mapped registers on the 80960VH. Thefirst set existsin the
FFO0 0000H through FFFF FFFFH address range and is used to control the i960 core processor
functions. The second set exists in the 0000 1000H through 0000 17FFH address range and is used
to control the 80960V H integrated peripherals. The processor ensures that accessesto MMRs do
not generate external bus cycles.

i960%® Core Processor Function Memory-Mapped Registers

Portions of the 80960V H address space (addresses FFO0 0000H through FFFF FFFFH) are
reserved for memory-mapped registers. These memory-mapped registers are accessed through
word-operand memory instructions (atmod, atadd, sysctl, Id and st instructions) only. Accesses
to this address space do not generate external bus cycles. The latency in accessing each of these
registersis one cycle.

Each register has an associated access mode (user and supervisor modes) and access type (read and
write accesses). Table C-2 and Table C-3 show al the memory-mapped registers.

Theregisters are partitioned into user and supervisor spaces based on their addresses. Addresses
FFOO0 0000H through FFOO 7FFFH are allocated to user space memory-mapped registers;
Addresses FFOO0 8000H to FFFF FFFFH are alocated to supervisor space registers.

i960® VH Processor Developer’s Manual 3-5

u
Programming Environment I nt6| o

3.3.1.1

3.3.1.2

3-6

Restrictions on Instructions that Access the i960® Core Processor
Memory-Mapped Registers

The majority of memory-mapped registers can be accessed by both load (1d) and store (st)
instructions. However some registers have restrictions on the types of accessesthey alow. To
ensure correct operation, the access type restrictions for each register should be followed. The
access type columns of Table C-2 and Table C-3 indicate the allowed access types for each
register.

Unless otherwise indicated by its access type, the modification of a memory-mapped register by a
st instruction takes effect completely before the next instruction starts execution.

Some operations require an atomic-read-modify-write sequence to aregister, most notably IPND
and IMSK. The atmod and atadd instructions provide a special mechanism to quickly modify the
IPND and IMSK registersin an atomic manner on the 80960V H. Do not use this instruction on any
other memory-mapped registers.

The sysctl instruction can also modify the contents of a memory-mapped register atomically; in
addition, sysctl is the only method to read the breakpoint registers on the 80960V H; the
breakpoints cannot beread using ald instruction.

At initialization the control table is automatically loaded into the on-chip control registers. This
action simplifies the user’s start-up code by providing a transparent setup of the processor’s
peripherals. Se€hapter 12, “Initialization and System Requirements”

Access Faults for i960® Core Processor MMRs

Memory-mapped registers are meant to be accessed only as aligned, word-size registers with
adherence to the appropriate access mode. Accessing these registersin any other way resultsin
faults or undefined operation. An access is performed using the following fault mode:

1. The access must be a word-sized, word-aligned access; otherwise, the processor generates an
OPERATION.UNIMPLEMENTED fault.

2. If the accessisastorein user mode to an implemented supervisor location, then a
TYPE.MISMATCH fault occurs. It is unpredictable whether a store to an unimplemented
supervisor location causes a fault.

3. If the accessis neither of the above, then the access is attempted. Note that an MM R may
generate faults based on conditions specific to that MMR. (Example: trying to write the timer
registers in user mode when they have been allocated to supervisor mode only.)

4. When a store access to an MMR faullts, the processor ensures that the store does not take
effect.

5. A load access of areserved location returns an unpredictable value.

6. Avoid any store accesses to reserved locations. Such astore can result in undefined operation
of the processor if the location is in supervisor space.

Instruction fetches from the memory-mapped register space are not allowed and result in an
OPERATION.UNIMPLEMENTED faullt.

i960® VH Processor Developer’s Manual

intel.

3.3.2

3321

Programming Environment

i960%® VH Processor Peripheral Memory-Mapped Registers

The Peripheral Memory-Mapped Register (PMMR) interface gives software the ability to read and
modify internal control registers. Each of these 32-bit registers is accessed as a memory-mapped
register with a unique memory address, using regular memory-format instructions from the i960
core processor. See Appendix C, “Memory-Mapped Registers”

The memory-mapped registers discussed in this chapter are specific to the 80960VH only. They
support the DMA controller, memory controller, PCI and peripheral interrupt controller, messaging
unit, internal arbitration unit, PCI address translation unit 48cbus interface unit. This manual
provides chapters that fully describe each of these peripherals.

The PMMR interface (addresses 0000 1000H through 0000 17FFH) provides full accessibility
from the primary ATU, and the i960 core processor.

Accessing The Peripheral Memory-Mapped Registers

The PMMR interface is a slave device connected to the 80960 internal bus. This interface accepts
data transactions that appear on the 80960 internal bus from the Primary ATU and the i960 core
processor. The PMMR interface allows these devices to perform read, write, or read-modify-write
transactions.

The PMMR interface does not support multi-word burst accesses from any bus master. The PMMR
interface supports 32-bit bus width transactions only. Because of this, PMCONO:1 must be
configured as a 32-bit memory region for accesses that originate from the i960 core processor.

The PMMR interface is byte addressable. For PMMR reads, all accesses are promoted to word
accesses and all data bytes are returned. The byte enables generated by the bus masters when
performing PMMR write cycles indicate which data bytes are valid on the 80960 internal bus.
However, there may be requirements from the individual units that interface to the PMMR. For
example, when configuring the DMA channel’s control register, a full 32-bit write must be
performed to configure and restart the DMA channel. These restrictions are highlighted in the
chapters describing the integrated peripheral units.

The PMMR interface supports the 80960 internal bus atomic operations from the 1960 core
processor. The i960 core processor providesd (atomic modify) anditadd (atomic add)

instructions for atomic accesses to memory. When the 80960 processor exeatresdaor

atadd instruction, the LOCK# signal is asserted. The 80960 internal bus is not granted to any other
bus master until the LOCK# signal is deasserted. This prevents other bus masters from accessing
the PMMR interface during a locked operation.

All PMMR transactions are allowed from i960 core processor operating in either user mode or
supervisor mode. In addition, the PMMR does not provide any access fault to the i960 core
processor.

The following PMMR registers have read/write access from the 80960 internal bus (for the ATU):
* Vendor ID register
* Device D register
* Revision ID register
* Class Code register
* Header Type register

i960® VH Processor Developer’s Manual 3-7

Programming Environment

intel.

For accesses through PCI configuration cycles, accessis specified in the register definition located
in the appropriate chapter.

For PCI configuration read transactions, the PMMR returns a zero value for reserved registers. For
PCI configuration write transactions, the PMMR discards the data. For al other accesses, reading
or writing a reserved register is undefined. See Table C-2 and Table C-3 for register memory
locations.

3.4 Architecturally Defined Data Structures
The architecture defines a set of data structuresincluding stacks, interfaces to system procedures,
interrupt handling procedures and fault handling procedures. Table 3-3 defines the data structures
and references other sections of this manual where detailed information can be found.
The 80960V H defines two initialization data structures: the Initialization Boot Record (IBR) and
the Process Control Block (PRCB). These structures provide initialization data and pointers to
other data structures in memory. When the processor is initialized, these pointers are read from the
initialization data structures and cached for internal use.
Pointers to the system procedure table, interrupt table, interrupt stack, fault table and control table
are specified in the processor control block. Supervisor stack location is specified in the system
procedure table. User stack location is specified in the user’s startup code. Of these structures, only
the system procedure table, fault table, control table and initialization data structures may be in
ROM; the interrupt table and stacks must be in RAM. The interrupt table must be located in RAM
to allow posting of software interrupts.
Table 3-3. Data Structure Descriptions
Structure Description
User and Supervisor Stacks
Section 7.6, “User and Supervisor The processor uses these stacks when executing application code.
Stacks” on page 7-16
Interrupt Stack
) . A separate interrupt stack is provided to ensure that interrupt handling
Section 8.1.5, “Interrupt Stack And | joeg not interfere with application programs.
Interrupt Record” on page 8-5
System Procedure Table Contains pointers to system procedures. Application code uses the
Section 3.7, “User-Supervisor system call instruction (calls) to access system procedures through
Protection Model” on page 3-17 this table. A system supervisor call switches execution mode from
Section 7.5, “System Calls” on user mode to supervisor mode. When the processor switches modes,
page 713 it also switches to the supervisor stack.
Interrupt Table The interrupt table contains vectors (pointers) to interrupt handling
Section 8.1.4, “Interrupt Table” on procedures. When an interrupt is serviced, a particular interrupt table
page 8-3 entry is specified.
Contains pointers to fault handling procedures. When the processor
detects a fault, it selects a particular entry in the fault table. The
Fault Table architecture does not require a separate fault handling stack. Instead,
Section 9.3, “Fault Table” on a fault handling procedure uses the supervisor stack, user stack or
page 9-4 interrupt stack, depending on the processor execution mode in which
the fault occurred and the type of call made to the fault handling
procedure.
3-8 i960® VH Processor Developer’s Manual

u
I nt6| ® Programming Environment

Table 3-3. Data Structure Descriptions

Structure Description

Control Table

Section 12.4.4, “Control Table” on
page 12-19

Contains on-chip control register values. Control table values are
moved to on-chip registers at initialization or with sysctl.

3.5 Memory Address Space

The 80960V H’s local address space is byte-addressable with addresses running contiguously from
0 to 22-1. Some memory space is reserved or assigned special functions as shimunei3-2

Figure 3-2. Local Memory Address Space

Address
0000 0000H NMI Vector
0000 0004H
0000 003EH Optional Interrupt Vectors { ngzrgla\IM
0000 0040H
? Available for Data 2
8600 83001
—_ i960° VH Processor Reserved —
0000 OFFFH
0000 1000H
— Peripheral Memory-mapped Registers (‘_
0000 17FFH
0000 1800H
= i960° VH Processor Reserved 4I7
0000 1FFFH
0000 2000H
Z Code/Data _—
Architecturally Defined Data Structures
External Memory
FEFF FF2FH
FEFF FF30H
Initialization Boot Record (IBR) ﬁ_
FEFF FF5FH
FEFF FF60H
Reserved Memory }
FEFF FFFFH
FFOO0 0000H
i960® Core Processor
Memory-Mapped
Z Register Space Z iszsenslgd
FFFF FFFFH Space

Physical addresses can be mapped to read-write memory, read-only memory and memory-mapped
I/0. The architecture does not define a dedicated, addressable 1/0 space. There are no subdivisions
of the address space such as segments. For memory management, an external memory

i960® VH Processor Developer’s Manual 3-9

u
Programming Environment I nt6| o

351

3-10

management unit (MMU) may subdivide memory into pages or restrict access to certain areas of
memory to protect a kernel’s code, data and stack. However, the processor views this address space
as linear.

An address in memory is a 32-bit value in the range OH to FFFF FFFFH. Depending on the
instruction, an address can reference in memory a single byte, short word (2 bytes), word (4 bytes),
double word (8 bytes), triple word (12 bytes) or quad word (16 bytes). Refer to load and store
instruction descriptions i€hapter 6, “Instruction Set Referendet multiple-byte addressing
information.

Memory Requirements

The architecture requires that external memory have the following properties:
* Memory must be byte-addressable.

* Physical memory must not be mapped to reserved addresses that are specifically used by the
processor implementation.

* Memory must guaranteeindivisible access (read or write) for addressesthat fall within 16-byte
boundaries.

* Memory must guarantee atomic access for addresses that fall within 16-byte boundaries.

The latter two capabilities, indivisible and atomic access, are required only when multiple
processors or other external agents, such asDMA or graphics controllers, share acommon
memory.

indivisible access Guarantees that a processor, reading or writing a set of memory
locations, complete the operation before another processor or external
agent can read or write the same location. The processor requires
indivisible access within an aligned 16-byte block of memory.

atomic access A read-modify-write operation. Here the external memory system must
guarantee that once aprocessor begins a read-modify-write operation on
an aligned, 16-byte block of memory it isallowed to complete the
operation before another processor or external agent can access to the
same |ocation. An atomic memory system can be implemented by using
the LOCK# signal to qualify hold requestsfrom external busagents. The
processor asserts LOCK# for the duration of an atomic memory
operation.

The upper 16 Mbytes of the address space (addresses FFO0 0000H through FFFF FFFFH and
0000 1000H through 0000 17FFH) are reserved for implementati on-specific functions. 80960VH
programs cannot use this address space except for accesses to memory-mapped registers. The
processor does not generate any external bus cyclesto this memory. As shown in Figure 3-2, part
of theinitialization boot record islocated just below the 80960V H'’s reserved memory.

The 80960VH requires some special consideration when using the lower 1 Kbyte of address space
(addresses 0000H 03FFH). Loads and stores directed to these addresses access internal memory;
instruction fetches from these addresses are not allowed by the procesSmct8ses.1,

“Internal Data RAM” on page 4-INo external bus cycles are generated to this address space.

i960® VH Processor Developer’s Manual

intel.

3.5.2

Table 3-4.

3.5.3

Programming Environment

Data and Instruction Alignment in the Address Space
Instructions, program data and architecturally defined data structures can be placed anywherein
non-reserved address space while adhering to these alignment requirements:

¢ Align instructions on word boundaries.

¢ Align all architecturally defined data structures on the boundaries specified in Table 3-4.

¢ Align instruction operands for the atomic instructions (atadd, atmod) to word boundariesin

memory.

The 80960V H can perform unaligned |oad or store accesses. The processor handles a non-aligned
load or storerequest by:

* Automatically servicing a non-aligned memory access with microcode assistance as described
in Section 13.4.2, “Bus Transactions Across Region Boundaries” on page 13-5

* After the access completes, the processor can generate an OPERATION.UNALIGNED faullt,
if directed to do so.

The method of handling faultsis selected at initialization based on the value of the Fault
Configuration Word in the Process Control Block. See Section 12.4.2, “Process Control Block —
PRCB” on page 12-15

Alignment of Data Structures in the Address Space

Data Structure Alignment Boundary
System Procedure Table 4 byte
Interrupt Table 4 byte
Fault Table 4 byte
Control Table 16 byte
User Stack 16 byte
Supervisor Stack 16 byte
Interrupt Stack 16 byte
Process Control Block 16 byte

Initialization Boot Record Fixed at FEFF FF30H

Byte, Word and Bit Addressing

The processor provides instructions for moving data blocks of various lengths from memory to
registersid) and from registers to memoryt). Supported sizes for blocks are bytes, short words

(2 bytes), words (4 bytes), double words, triple words and quad words. For exstinfdimre
long) stores an 8-byte (double word) data block in memory.

The most efficient way to move data blocks longer than 16 bytes is to move them in quad-word

increments, using quad-word instructiodg andstq.

When a data block is stored in memory, the block’s least significant byte is stored at a base

memory address and the more significant bytes are stored at successively higher byte addresses.

This method of ordering bytes in memory is referred to as “little endian” ordering.

i960® VH Processor Developer’s Manual 3-11

u
Programming Environment I nt6| o

3.5.4

3.5.5

3.5.6

3.6

3.6.1

3-12

When loading a byte, short word or word from memory to a register, the block’s least significant
bit is always loaded in register bit 0. When loading double words, triple words and quad words, the
least significant word is stored in the base register. The more significant words are then stored at
successively higher-numbered registers. Individual bits can be addressed only in data that resides
in a register: bit 0 in a register is the least significant bit, bit 31 is the most significant bit.

Internal Data RAM

The 80960VH has 1 Kbyte of on-chip data RAM. Only data accesses are allowed in this region.
Portions of the data RAM can also be reserved for functions such as caching interrupt vectors. The
internal RAM is fully described i€hapter 4, “Cache and On-Chip Data RAM”

Instruction Cache

The instruction cache enhances performance by reducing the number of instruction fetches from
external memory. The cache provides fast execution of cached code and loops of code in the cache
and also provides more bus bandwidth for data operations in external memory. The 80960VH
instruction cache is a 16-Kbyte, two-way set associative cache, organized in two sets of four-word
lines.

Data Cache

The data cache on the 80960VH is a write-through 4-Kbyte direct-mapped cache. For more
information, see€Chapter 4, “Cache and On-Chip Data RAM”

Processor-State Registers
The architecture defines four 32-bit registers that contain status and control information:

* Instruction Pointer (IP) register * Arithmetic Controls (AC) register
* Process Controls (PC) register * Trace Controls (TC) register

Instruction Pointer (IP) Register

The IP register contains the address of the instruction currently being executed. This address is
32 bits long; however, since instructions are required to be aligned on word boundaries in memory,
the IP’s two least-significant bits are always 0 (zero).

All' i960 processor instructions are either one or two words long. The IP gives the address of the
lowest-order byte of the first word of the instruction.

The IP register cannot be read directly. However, the IP-with-displacement addressing mode lets

software use the IP as an offset into the address space. This addressing mode can also be used with
thelda (load address) instruction to read the current IP value.

i960® VH Processor Developer’s Manual

u
I nt6| ® Programming Environment

When a break occurs in the instruction stream due to an interrupt, procedure call or fault, the
processor stores the | P of the next instruction to be executed in local register r2, which is usually
referred to asthereturn |P or RIP register. Refer to Chapter 7, “Procedure Callgdr further
discussion.

3.6.2 Arithmetic Controls Register — AC

The AC register (Table 3-3) contains condition code flags, integer overflow flag, mask bit and a bit
that controls faulting on imprecise faults. Unused AC register bits are reserved.

Figure 3-3. Arithmetic Controls Register — AC

31 28 24 20 16 12 8 4 0
n ° ° cfc|c
i m f clc|c
f 21110

No-Imprecise-Faults Bit- AC.nif 4T

(0) Some Faults are Imprecise
(1) All Faults are Precise

Integer Overflow Mask Bit - AC.om
(0) No Mask
(1) Mask

Integer-Overflow Flag - AC.of
(0) No Overflow
(1) Overflow

Condition Code Bits - AC.cc

Reserved
(Initialize to 0)

3.6.2.1 Initializing and Modifying the AC Register

At initialization, the AC register isloaded from the Initial AC image field in the Process Control
Block. Set reserved bitsto 0 in the AC Register Initia Image. Refer to Chapter 12, “Initialization
and System Requirements”

After initialization, software must not modify or depend on the AC register’s initial image in the
PRCB. Software can use the modify arithmetic contmaksd@c) instruction to examine and/or
modify any of the register bits. This instruction provides a mask operand that lets user software
limit access to the register’s specific bits or groups of bits, such as the reserved bits.

The processor automatically saves and restores the AC register when it services an interrupt or

handles a fault. The processor saves the current AC register state in an interrupt record or fault
record, then restores the register upon returning from the interrupt or fault handler.

i960® VH Processor Developer’s Manual 3-13

u
Programming Environment I nt6| o

3.6.2.2

Table 3-5.

Table 3-6.

Table 3-7.

3-14

Condition Code (AC.cc)

The processor sets the AC registedadition code flags (bits 0-2) to indicate the results of certain
instructions, such as compare instructions. Other instructions, such as conditional branch
instructions, examine these flags and perform functions as dictated by the state of the condition
code flags. Once the processor sets the condition code flags, the flags remain unchanged until
another instruction executes that modifies the field.

Condition code flags show true/false conditions, inequalities (greater than, equal or less than
conditions) or carry and overflow conditions for the extended arithmetic instructions. To show true
or false conditions, the processor sets the flags as shotatbla 3-5 To show equality and
inequalities, the processor sets the condition code flags as shdablén3-6

Condition Codes for True or False Conditions

Condition Code Condition
010, true
000, false

Condition Codes for Equality and Inequality Conditions

Condition Code Condition
000, unordered
001, greater than
010, equal
100, less than

The termunordered is used when comparing floating point numbers. The 80960VH does not

implement on-chip floating point processing.

To show carry out and overflow, the processor sets the condition code flags as shable B+7

Condition Codes for Carry Out and Overflow

Condition Code Condition
01X, carry out
0X1, overflow

Certain instructions, such as the branch-if instructions, use a 3-bit mask to evaluate the condition
code flags. For example, the branch-if-greater-or-equal instrudiig) ¢ses a mask of 0310
determine if the condition code is set to either greater-than or equal. Conditional instructions use
similar masks for the remaining conditions such as: greater-or-equag),(l@sk-or-equal (11)

and not-equal (1G). The mask is part of the instruction opcode; the instruction performs a bitwise

AND of the mask and condition code.

The AC registeinteger overflow flag (bit 8) andinteger overflow mask bit (bit 12) are used in
conjunction with the ARITHMETIC.INTEGER_OVERFLOW fault. The mask bit disables fault
generation. When the fault is masked and integer overflow is encountered, the processor sets the
integer overflow flag instead of generating a fault. If the fault is not masked, then the fault is

allowed to occur and the flag is not set.

i960® VH Processor Developer’s Manual

3.6.3

Figure 3-4.

Programming Environment

Once the processor sets this flag, the flag remains set until the application software clearsit. Refer
to the discussion of the ARITHMETIC.INTEGER_OVERFLOW fault in Chapter 9, “Faultsfor
more information about the integer overflow mask bit and flag.

Theno imprecise faults (AC.nif) bit (bit 15) determines whether or not faults are allowed to be
imprecise. If set, then all faults are required to be precise; if clear, then certain faults can be
imprecise. Se&ection 9.9, “Precise and Imprecise Faults” on page @l ore information.

Process Controls Register — PC

The PC register (Table 3-4) is used to control processor activity and show the processor’s current
state. The PC registexecution mode flag (bit 1) indicates that the processor is operating in either
user mode (0) or supervisor mode (1). The processor automatically sets this flag on a system call
when a switch from user mode to supervisor mode occurs and it clears the flag on a return from
supervisor mode. (User and supervisor modes are descriBedtion 3.7, “User-Supervisor
Protection Model” on page 3-17

Process Controls Register — PC

Trace-Enable Bit - PC.te
(0) Globally disable trace faults
(1) Globally enable trace faults

Execution-Mode Flag - PC.em
(0) user mode
(1) supervisor mode

Trace-Fault-Pending - PC.tfp
(0) no fault pending

(1) fault pending
State Flag - PC.s

(0) executing

(1) interrupted

Priority Field - PC.p
(0-31) process priority l
1
pip|p|prfp : et
als|2]1]o0 N f m|e
p
31 28 24 20 16 12 8 4 0
Reserved
(Do not modify)

PC registestate flag (bit 13) indicates the processor state: executing (0) or interrupted (1). If the
processor is servicing an interrupt, then its state is interrupted. Otherwise, the processor’s state is
executing.

While in the interrupted state, the processor can receive and handle additional interrupts. When
nested interrupts occur, the processor remains in the interrupted state until all interrupts are
handled, then switches back to the executing state on the return from the initial interrupt procedure.

The PC registepriority field (bits 16 through 20) indicates the processor’s current executing or
interrupted priority. The architecture defines a mechanism for prioritizing execution of code,
servicing interrupts and servicing other implementation-dependent tasks or events. This

i960® VH Processor Developer’s Manual 3-15

u
Programming Environment I nt6| o

mechanism defines 32 priority levels, ranging from 0O (the lowest priority level) to 31 (the highest).
The priority field always reflects the current priority of the processor. Software can change this
priority by use of the modpc instruction.

The processor uses the priority field to determine whether to service an interrupt immediately or to
post the interrupt. The processor compares the priority of arequested interrupt with the current
process priority. When the interrupt priority is greater than the current process priority or equal to
31, theinterrupt is serviced; otherwiseit is posted. When an interrupt is serviced, the process
priority field is automatically changed to reflect interrupt priority. See Chapter 8, “Interrupts”

The PC registetrace enable bit (bit 0) andtrace fault pending flag (bit 10) control the tracing

function. The trace enable bit determines whether trace faults are globally enabled (1) or globally
disabled (0). The trace fault pending flag indicates that a trace event has been detected (1) or not
detected (0). The tracing functions are further describ&hapter 10, “Tracing and Debugging”

3.6.3.1 Initializing and Modifying the PC Register

Any of the following three methods can be used to change bits in the PC register:
* Modify process controls instruction (modpc)
* Alter the saved process controls prior to areturn from an interrupt handler or fault handler

The modpc instruction reads and modifies the PC register directly. A TY PE.MISMATCH fault
results if software executes modpc in user mode with a non-zero mask. As with modac, modpc
provides a mask operand that can be used to limit access to specific bits or groups of bitsin the
register. In user mode, software can use modpc to read the current PC register.

In the latter two methods, the interrupt or fault handler changes process controls in the interrupt or
fault record that is saved on the stack. Upon return from the interrupt or fault handler, the modified
process controls are copied into the PC register. The processor must be in supervisor mode prior to
return for modified process controls to be copied into the PC register.

When process controls are changed as described above, the processor recognizes the changes
immediately except for one situation: if modpc is used to change the trace enable bit, then the
processor may not recognize the change before the next four non-branch instructions are executed.

After initialization (hardware reset), the process controls reflect the following conditions:
* priority =31 * execution mode = supervisor

* trace enable = disabled * state = interrupted
* no trace fault pending

When the processor is reinitialized with a sysctl reinitialize message, the PC register is not
changed.

Software should not use modpc to modify execution mode or trace fault state flags except under

special circumstances, such asin initialization code. Normally, execution mode is changed through
the call and return mechanism. See Section 6.2.43, “modpc” on page 6-#®# more details.

3-16 i960® VH Processor Developer’s Manual

u
I nu ® Programming Environment

3.6.4 Trace Controls (TC) Register

The TC register, in conjunction with the PC register, controls processor tracing facilities. It
contains trace mode enabl e bits and trace event flags that are used to enabl e specific tracing modes
and record trace events, respectively. Trace controls are described in Chapter 10, “Tracing and
Debugging”

3.7 User-Supervisor Protection Model

The processor can be in either of two execution modes: user or supervisor. The capability of a
separate user and supervisor execution mode creates a code and data protection mechanism
referred to as the user-supervisor protection model. This mechanism allows code, data and stack

for a kernel (or system executive) to reside in the same address space as code, data and stack for the
application. The mechanism restricts access to all or parts of the kernel by the application code.
This protection mechanism prevents application software from inadvertently altering the kernel.

3.7.1 Supervisor Mode Resources

Supervisor mode is a privileged mode that provides several additional capabilities over user mode.

* When the processor switches to supervisor mode, it aso switches to the supervisor stack.
Switching to the supervisor stack helps maintain a kernel’s integrity. For example, it allows
access to system debugging software or a system monitor, even if an application’s program
destroys its own stack.

* Insupervisor mode, the processor is allowed access to a set of supervisor-only functions and
instructions. For example, the processor uses supervisor mode to handle interrupts and trace
faults. Operations that can modify interrupt controller behavior or reconfigure bus controller
characteristics can be performed only in supervisor mode. These functionsinclude
modification of control registersand internal data RAM that is dedicated to interrupt
controllers. A fault is generated if supervisor-only operations are attempted while the
processor isin user mode.

The PC register execution mode flag specifies processor execution mode. The processor
automatically sets and clears this flag when it switches between the two execution modes.

* dcctl (data cache control) * inten (global interrupt enable)

* Protected timer unit registers * modpc (modify process controlsw/
non-zero mask)

* icctl (instruction cache control) * sysctl (system control)

* intctl (global interrupt enable and disable) * Protected internal data RAM or Supervisor
MMR space write

intdis (global interrupt disable)

Note that all of these instructions return a TY PE.MISMATCH fault if executed in user mode.

i960® VH Processor Developer’s Manual 3-17

u
Programming Environment I nt6| o

3.7.2

3-18

Using the User-Supervisor Protection Model

A program switches from user mode to supervisor mode by making a system-supervisor call (also
referred to as a supervisor call). A system-supervisor call is a call executed with the call-system
instruction (calls). With calls, the |P for the called procedure comes from the system procedure
table. An entry in the system procedure table can specify an execution mode switch to supervisor
mode when the called procedure is executed. calls and the system procedure table thus provide a
tightly controlled interface to procedures that can execute in supervisor mode. Once the processor
switches to supervisor mode, it remainsin that mode until areturn is performed to the procedure
that caused the original mode switch.

Interrupts and faults can cause the processor to switch from user to supervisor mode. When the
processor handles an interrupt, it automatically switches to supervisor mode. However, it does not
switch to the supervisor stack. Instead, it switches to the interrupt stack. Fault table entries
determine if a particular fault transitions the processor from user to supervisor mode.

If an application does not require a user-supervisor protection mechanism, then the processor can
always execute in supervisor mode. At initialization, the processor is placed in supervisor mode
prior to executing the first instruction of the application code. The processor then remainsin
supervisor mode indefinitely, as long as no action is taken to change execution mode to user mode.
The processor does not need a user stack in this case.

i960® VH Processor Developer’s Manual

intel.

Cache and On-Chip Data RAM 4

4.1

Figure 4-1.

This chapter describes the structure and user configuration of all forms of on-chip storage,
including caches (data, local register and instruction) and data RAM.

Internal Data RAM

Internal data RAM is mapped to the lower 1 Kbyte (0 to 03FFH) of the address space. L oads and
stores with target addresses in internal data RAM operate directly on the internal data RAM; no
external busactivity is generated. Data RAM allowstime-critical data storage and retrieval without
dependence on external bus performance. Only data accesses are allowed to theinternal data RAM;
instructions cannot be fetched from the internal data RAM. Instruction fetches directed to the data
RAM cause an OPERATION.UNIMPLEMENTED fault to occur.

Internal data RAM locations are never cached in the data cache. Logical Memory Template bits
controlling caching are ignored for data RAM accesses.

Some internal data RAM locations are reserved for functions other than general data storage. The
first 64 bytes of data RAM may be used to cache interrupt vectors, which reduces latency for these
interrupts. The word at location 0000H is always reserved for the cached NMI vector. With the
exception of the cached NMI vector, other reserved portions of the data RAM can be used for data
storage when the alternate function is not used. All locations of the internal data RAM can be read
in both supervisor and user mode.

The first 64 bytes (0000H to 003FH) of internal RAM are always user-mode write-protected. This
portion of data RAM can be read while executing in user or supervisor mode; however, it can be
only modified in supervisor mode. This area can a so be write-protected from supervisor mode
writes by setting the BCON.sirp bit. See Section 13.3.1, “Bus Control Register — BCON” on

page 13-4Protecting this portion of the data RAM from user and supervisor rights preserves the

interrupt vectors that may be cached there.Sssion 8.5.2.1, “Vector Caching Option” on
page 8-35

Internal Data RAM and Register Cache

0000 0000H
NMI
0000 0004H
Optional Interrupt Vectors
0000 003FH
Available for Data
0000 03FFH

i960® VH Processor Developer’s Manual 4-1

u
Cache and On-Chip Data RAM I ntel ®

4.2

4-2

The remainder of the interna data RAM can always be written from supervisor mode. User mode
write protection is optionally selected for the rest of the data RAM (40H to 3FFH) by setting the
Bus Control Register RAM protection bit (BCON.irp). Writesto internal data RAM locations
while they are protected generate a TY PE.MISMATCH fault. See Section 13.3.1, “Bus Control
Register — BCON” on page 13fdr the format of the BCON register.

New versions of i960 processor compilers take advantage of internal data RAM. Profiling
compilers, such as those offered by Intel, can allocate the most frequently used variables into this
RAM.

Local Register Cache

The 196 VH processor provides fast storage of local registers for call and return operations by
using aninternal local register cache (also known as a stack frame cache). Up to eight local register
sets can be contained in the cache before sets must be saved in external memory. Theregister set is
all thelocal registers (i.e., r0 through r15). The processor uses a 128-bit wide busto store local
register sets quickly to the register cache. An integrated procedure call mechanism saves the
current local register set when a call is executed. A local register set is saved into aframein the
local register cache, one frame per register set. When the eighth frame is saved, the oldest set of
local registersis flushed to the procedure stack in external memory, which frees one frame.

Section 7.1.4, “Caching Local Register Sets” on pagerdSection 7.1.5, “Mapping Local
Registers to the Procedure Stack” on page ftttBer discuss the relationship between the internal
register cache and the external procedure stack.

The branch-and-linkb@l andbalx) instructions do not cause the local registers to be stored.

The entire internal register cache contents can be copied to the external procedure stack through the
flushreg instructionSection 6.2.30, “flushreg” on page 6-B®plains the instruction itself and

Section 7.2, “Modifying the PFP Register” on page 7efférs a practical example when flushreg

must be used.

To decrease interrupt latency, software can reserve a number of frames in the local register cache
solely for high priority interrupts (interrupted state and process priority greater than or equal to 28).
The remaining frames in the cache can be used by all code, including high-priority interrupts.
When a frame is reserved for high-priority interrupts, the local registers of the code interrupted by
a high-priority interrupt can be saved to the local register cache without causing a frame flush to
memory, providing that the local register cache is not already full. Thus, the register allocation for
the implicit interrupt call does not incur the latency of a frame flush.

Software can reserve frames for high-priority interrupt code by writing bits 10 through 8 of the
register cache configuration word in the PRCB. This value indicates the number of free frames
within the register cache that can be used by high-priority interrupts only. Any attempt by
non-critical code to reduce the number of free frames below this value results in a frame flush to
external memory. The free frame check is performed only when a frame is pushed, which occurs
only for an implicit or explicit call. The following pseudo-code illustrates the operation of the
register cache when a frame is pushed.

i960® VH Processor Developer’s Manual

u
I ntel ® Cache and On-Chip Data RAM

Example 4-1. Register Cache Operation

franmes_for_non_critical = 7- RCW 11: 8];
if (interrupt_request)
set _i nterrupt _handl er _PC,
push_frane;
nunber of franes = nunber _of frames + 1;
i f (nunber_of frames = 8) {
flush_register_frane(ol dest_frane);
nunber _of franes = nunber_of frames - 1; }
el se if (nunber_of _frames = (frames_for_non_critical + 1) &&
(PC.priority <28 || PC.state !=interrupted)) {
flush_register_franme(ol dest_frane);
nunber _of franes = nunber_of franmes - 1; }

The valid range for the number of reserved free framesis0to 7. Setting the value to O reserves no
frames for exclusive use by high-priority interrupts. Setting the value to 1 reserves 1 frame for
high-priority interrupts and 6 frames to be shared by all code. Setting the value to 7 causes the
register cache to become disabled for non-critical code. If the number of reserved high-priority
frames exceeds the allocated size of the register cache, then the entire cache is reserved for
high-priority interrupts. In that case, all low-priority interrupts and procedure calls cause frame
spillsto external memory.

4.3 Instruction Cache

The 80960V H features a 16-Kbyte, 2-way set-associative instruction cache (1-cache) organized in
lines of four 32-bit words. The cache provides fast execution of cached code and loops of code and
provides more bus bandwidth for data operations in external memory. To optimize cache updates
when branches or interrupts are executed, each word in the line has a separate valid bit. When
requested instructions are found in the cache, the instruction fetch time is one cycle for up to four
words. A mechanism to load and lock critical code within away of the cacheis provided aong
with a mechanism to disable the cache. The cache is managed through the icctl or sysctl
instruction. The sysctl instruction supports the instruction cache to maintain compatibility with
other i960 processor software. Using icctl is the preferred and more versatile method for
controlling the instruction cache on the 80960V H.

Cache misses cause the processor to issue a double-word or a quad-word fetch, based on the
location of the Instruction Pointer:

¢ If thelPisat word O or word 1 of a 16-byte block, a four-word fetch isinitiated.
¢ If thelPisat word 2 or word 3 of a 16-byte block, atwo-word fetch isinitiated.

i960® VH Processor Developer’s Manual 4-3

u
Cache and On-Chip Data RAM I ntel ®

4.3.1 Enabling and Disabling the Instruction Cache

Enabling the instruction cacheis controlled on reset or initialization by the instruction cache
configuration word in the Process Control Block (PRCB); see Table 12-8 “Process Control Block
Configuration Words” on page 12-1When bit 16 in the instruction cache configuration word is
set, the instruction cache is disabled and all instruction fetches are directed to external memory.
Disabling the instruction cache is useful for tracing execution in a software debug environment.

The instruction cache remains disabled until one of three operations is performed:
* jcctl isissued with the enable instruction cache operation (preferred method)

* sysctl isissued with the configure-instruction-cache message type and cache configuration
mode other than disable cache (provides compatibility with other 1960 processors; not the
preferred method for 80960V H).

* The processor is reinitialized with a new value in the instruction cache configuration word

4.3.2 Operation While the Instruction Cache Is Disabled

Disabling the instruction cache does not disable instruction buffering that may occur in the
instruction fetch unit. A four-word instruction buffer is always enabled, even when the cache is
disabled.

There is one tag and four word-valid bits associated with the buffer. Because there is only one tag
for the buffer, any “miss” within the buffer causes the following:

¢ All four words of the buffer are invalidated.
* A new tag vaue for the required instruction is loaded.
* Therequired instruction(s) are fetched from external memory.

Depending on the alignment of the “missed” instruction, either two or four words of instructions
are fetched and only the valid bits corresponding to the fetched words are set in the buffer. No
external instruction fetches are generated until there is a “miss” within the buffer, even in the
presence of forward and backward branches.

4.3.3 Loading and Locking Instructions in the Instruction Cache

The processor can be directed to load a block of instructions into the cache and then lock out all
normal updates to the cache. This cache load-and-lock mechanism is provided to minimize latency
on program control transfers to key operations such as interrupt service routines. The block size
that can be loaded and locked on the 80960VH is one way of the cache.

Anicctl or sysctl instruction is issued with a configure-instruction-cache message type to select

the load-and-lock mechanism. When the lock option is selected, the processor loads the cache
starting at an address specified as an operand to the instruction.

4.3.4 Instruction Cache Visibility

Instruction cache status can be determined by isseétigwith an instruction-cache status
message. To facilitate debugging, the instruction cache contents, instructions, tags and valid bits
can be written to memory. This is done by issuaegl with the store cache operation.

4-4 i960® VH Processor Developer’s Manual

u
I ntel ® Cache and On-Chip Data RAM

4.3.5 Instruction Cache Coherency

The 80960V H does not snoop the bus to prevent instruction cache incoherency. The cache does not
detect modification to program memory by loads, stores or actions of other bus masters. Severa
situations may require program memory modification, such as uploading code at initialization or
loading from a backplane bus or adisk drive.

The application program is responsible for synchronizing its own code modification and cache
invalidation. In general, a program must ensure that modified code space is not accessed until
modification and cache-invalidate are completed. To achieve cache coherency, instruction cache
contents should be invalidated after code modification is complete. icctl invalidates the instruction
cache for the 80960V H. Alternately, 1960 processor legacy software can use sysctl.

4.4 Data Cache

The 80960V H features a4-Kbyte, direct-mapped cache that enhances performance by reducing the
number of dataload and store accesses to external memory. The cache is write-through and
write-allocate. It has aline size of 4 words and each line in the cache has a valid bit. To reduce
fetch latency on cache misses, each word within aline also has avalid bit. Caches are managed
through the dcctl instruction.

User settings in the memory region configuration registers LMCONO-1 and DLMCON determine
the data accesses that are cacheable or non-cacheable based on memory region.

4.4.1 Enabling and Disabling the Data Cache

To cache data, two conditions must be met:

1. The data cache must be enabled. A dcctl instruction issued with an enable data cache message
enablesthe cache. On reset or initialization, the data cache is always disabled and all valid bits
are set to zero.

2. Datacaching for alocation must be enabled by the corresponding logical memory template, or
by the default logical memory template if no other template applies. See Section 13.2,
“Programming the Physical Memory Attributes (Pmcon Registers)” on pagddrar®re
details on logical memory templates.

When the data cache is disabled, all data fetches are directed to external memory. Disabling the
data cache is useful for debugging or monitoring a system. To disable the data cacheldsgSue a

with a disable data cache message. The enable and disable status of the data cache and various
attributes of the cache can be determined tycal issued with a data-cache status message.

4.4.2 Multi-Word Data Accesses that Partially Hit the Data Cache

The following applies only when data caching is enabled for an access.

For a multi-word load accesill, Idt, Idq) in which none of the requested words hit the data cache,
an external bus transaction is started to acquire all the words of the access.

For a multi-word load access that partially hits the data cache, the processor may either:
* Load or reload all words of the access (even those that hit) from the external bus.

i960® VH Processor Developer’s Manual 4-5

u
Cache and On-Chip Data RAM I ntel ®

Table 4-1.

4.4.3

4.4.4

4-6

* Load only missing words from the external bus and interleave them with words found in the
data cache.

The multi-word alignment determines which of the above methods is used:
¢ Naturally aligned multi-word accesses cause all words to be rel oaded.
* An unaligned multi-word access causes only missing words to be |oaded.

When any words (Table 4-1) accessed with Idl, Idt, or Idg miss the data cache, every word
accessed by that load instruction is updated in the cache.

Load Instruction Updates

Load Instruction Number of Updated Words
Idq 4 words
Idt 3 words
Idl 2 words

In each case, the external bus accesses used to acquire the data may consist of none, one, or several
burst accesses based on the alignment of the data and the bus-width of the memory region that
contains the data. See Chapter 13, “Core Processor Local Bus Configuration'more details.

A multi-word load access that completely hits in the data cache does not cause external bus
accesses.

For a multi-word store accesstl(stt, stq) an external bus transaction is started to write all words

of the access regardless if any or all words of the access hit the data cache. External bus accesses
used to write the data may consist of either one or several burst accesses based on data alignment
and the bus-width of the memory region that receives the data. The cache is also updated
accordingly as described earlier in this chapter.

Data Cache Fill Policy

The 80960VH always uses a “natural” fill policy for cacheable loads. The processor fetches only
the amount of data that is requested by a load (i.e., a word, long word, etc.) on a data cache miss.
Exceptions are byte and short-word accesses, which are always promoted to words. This allows a
complete word to be brought into the cache and marked valid. When the data cache is disabled and
loads are done from a cacheable region, promotions from bytes and short words still take place.

Data Cache Write Policy

The write policy determines what happens on cacheable writes (stores). The 80960VH always uses
a write-through policy. Stores are always seen on the external bus, thus maintaining coherency
between the data cache and external memory.

The 80960VH always uses a write-allocate policy for data. For a cacheable location, data is always
written to the data cache regardless of whether the access is a hit or miss. The following cases are
relevant to consider:

1. Inthe case of a hit for a word or multi-word store, the appropriate line and word(s) are updated
with the data.

i960® VH Processor Developer’s Manual

4.4.5

Cache and On-Chip Data RAM

2. Inthe case of amissfor aword or multi-word store, atag and cache line are allocated, if
needed, and the appropriate valid bits, line, and word(s) are updated.

3. Inthe case of byte or short-word data that hits a valid word in the cache, both the word in
cache and external memory are updated with the data; the cache word remains valid.

4. Inthe case of byte or short-word data that falls within avalid line but misses because the
appropriate word isinvalid, both the word and external memory are updated with the data;
however, the cache word remainsinvalid.

5. Inthe case of byte or short-word data that does not fall within avalid line, the externa
memory is updated with the data. For data writes less than aword, the data cache is not
updated; the tags and valid bits are not changed.

A byteor short word isalways invaid in the data cache since valid bits only apply to words.

For cacheable stores that are equal to or greater than aword in length, cache tags and appropriate
valid bits are updated whenever data is written into the cache. Consider aword store that misses as
an example. The tag is always updated and its valid bit is set. The appropriate valid bit for that
word is always set and the other three valid bits are always cleared. If the word store hits the cache,
the tag bits remain unchanged. The valid bit for the stored word is set; al other valid bits are
unchanged.

Cacheable stores that are less than aword in length are handled differently. Byte and short-word

stores that hit the cache (i.e., are contained in valid words within valid cache lines) do not change

the tag and valid bits. The processor writes the data into the cache and external memory as usua. A

byte or short-word store to an invalid word within a valid cache line leaves the word’s valid bit
cleared because the rest of the word is still invalid. In these two cases the processor simultaneously
writes the data into the cache and the external memory.

Data Cache Coherency and Non-Cacheable Accesses

The 80960VH ensures that the data cache is always kept coherent with accesses that it initiates and
performs. The most visible application of this requirement concerns non-cacheable accesses
discussed below. However, the processor does not provide data cache coherency for accesses on
the external bus that it did not initiate. Software is responsible for maintaining coherency in a
multi-processor environment.

An access is defined as non-cacheable when any of the following is true:

1. The access falls into an address range mapped by an enabled LMCON or DLMCON and the
data-caching enabled bit in the matching LMCON is clear.

2. The entire data cache is disabled.

3. The access is a read operation of the read-modify-write sequence performedrbydcor
atadd instruction.

4. The access is an implicit read access to the interrupt table to post or deliver a software
interrupt.

If the memory location targeted by ammod or atadd instruction is currently in the data cache, it
is invalidated.

If the address for a non-cacheable store matches a tag (“tag hit”), the corresponding cache line is
marked invalid. This is because the word is not actually updated with the value of the store. This
behavior ensures that the data cache never contains stale data in a single-processor system. A

i960® VH Processor Developer’s Manual 4-7

u
Cache and On-Chip Data RAM I ntel ®

4.4.6

4.4.7

4-8

simple case illustrates the necessity of this behavior: aread of data previously stored by a
non-cacheabl e access must return the new value of the data, not the value in the cache. Because the
processor invalidates the appropriate word in the cache line on a store hit when the cache is
disabled, coherency can be maintained when the data cache is enabled and disabled dynamically.

Data loads or stores invalidate the corresponding lines of the cache even when data caching is
disabled. This behavior further ensures that the cache does not contain stale data.

External 1/0 and Bus Masters and Cache Coherency

The 80960V H implements a single processor coherency mechanism. There is no hardware
mechanism, such as bus snooping, to support multiprocessing. If another bus master can change
shared memory, then there is no guarantee that the data cache contains the most recent data. The
user must manage such data coherency issues in software.

A suggested practice isto program the LM CONO-1 registers so that |/O regions are non-cacheable.
Partitioning the system in this fashion eliminates /O as a source of coherency problems. See

Section 13.2, “Programming the Physical Memory Attributes (Pmcon Registers)” on pader13-3
more information on this subject.

Data Cache Visibility

Data cache status can be determined dgc#l instruction issued with a data-cache status message.
Data cache contents, data, tags and valid bits can be written to memory as an aid for debugging.
This operation is accomplished byect! instruction issued with the dump cache operand. See
Section 6.2.23, “dcctl” on page 6-33@r more information.

i960® VH Processor Developer’s Manual

intel.

Instruction Set Overview 5

5.1

5.1.1

5.1.2

This chapter provides an overview of thei960® microprocessor family’s instruction set and i§60
VH processor-specific instruction set extensions. Also discussed are the assembly-language and
instruction-encoding formats, various instruction groups and each group’s instructions.

Chapter 6, “Instruction Set Referenaddscribes each instruction, including assembly language
syntax, and the action taken when the instruction executes and examples of how to use the
instruction.

Instruction Formats

80960VH instructions may be described in two formats: assembly language and instruction
encoding. The following subsections briefly describe these formats.

Assembly Language Format

Throughout this manual, instructions are referred to by their assembly language mnemonics. For
example, the add ordinal instruction is referred tadao. Examples use Intel 80960 assembly
language syntax which consists of the instruction mnemonic followed by zero to three operands,
separated by commas. In the following assembly language statement exaraptefardinal
operands in global registers g5 and g9 are added together, and the result is stored in g7:

addo g5, g9, g7# g7 = g9 + g5

In the assembly language listings in this chapter, registers are denoted as:

g global register r local register
pound sign precedes a comment

All numbers used as literals or in address expressions are assumed to be decimal. Hexadecimal
numbers are denoted with a “0x” prefix (e.g., 0XffL2). Several assembly language instruction
statement examples follow. Additional assembly language examples are g&ection 2.3.5,
“Addressing Mode Examples” on page 2-6

subi r3, r5, ré6 #r6 =r5 - r3

setbit 13, g4, g5 #g5 = g4 with bit 13 set

| da Oxfab3, ri2 #r12 = Oxfab3

Id (r4), 93 #93 = menory location that r4 points to

st 910, (r6)[r7*2] #g10 = nenory |location that r6+2*r7 points to

Instruction Encoding Formats

All instructions are encoded in one 32-bit machine language instructionepwand — which
must be word aligned in memory. An opword’s most significant eight bits contain the opcode field.
The opcode field determines the instruction to be performed and how the remainder of the machine

i960® VH Processor Developer’s Manual 5-1

|]
Instruction Set Overview I ntel ®

language instruction is interpreted. Instructions are encoded in opwords in one of four formats (see
Figure 5-1). For more information on instruction formats, see Appendix A, “Machine-level
Instruction Formats”

Table 5-1. Instruction Encoding Formats (REG, COBR, CRTL, MEM)

Instruction Type | Format Description

Most instructions are encoded in this format. Used primarily for instructions

register REG which perform register-to-register operations.

An encoding optimization which combines compare and branch operations

compare and COBR | into one opword. Other compare and branch operations are also provided as

branch REG and CTRL format instructions.

control CTRL For brar_mhes and calls that do not depend on registers for address
calculation.
Used for referencing an operand which is a memory address. Load and store
instructions — and some branch and call instructions — use this format. MEM
format has two encodings: MEMA or MEMB. Usage depends upon the

memory MEM

addressing mode selected. MEMB-formatted addressing modes use the word
in memory immediately following the instruction opword as a 32-bit constant.
MEMA format uses one word and MEMB uses two words.

Figure 5-1. Machine-Level Instruction Formats

31 0
OPCODE src/dst src2 OPCODE srcl REG
31 0
OPCODE srcl src2 displacement COBR
31 0
OPCODE displacement CTRL
31 0
OPCODE src/dst Address Offset MEMA
Base
31 0
OPCODE sro/dst Address Scale Index MEMB
Base
32-Bit displacement

5.1.3 Instruction Operands

This section identifies and describes operands that can be used with the instruction formats.
Format Operand(s) Description

REG srcl, src2, sre/dst srcl and src2 can be globa registers, local registers or
literals. src/dst is either aglobal or alocal register.

5-2 i960® VH Processor Developer’s Manual

5.2

Table 5-2.

Format Operand(s)
CTRL displacement
COBR srcl, src2,
displacement
MEM src/dst, efa

Instruction Set Overview

Description

CTRL format is used for branch and call instructions.
displacement value indicates the target instruction of the
branch or call.

srel, sre2 indicate values to be comparedilsplacement
indicates branch targeti.cl can specify a global register,
local register or a literatrc2 can specify a global or local
register.

Specifies source or destination register and an effective
addressdfa) formed by using the processor’s addressing
modes as described 8ection 2.3, “Memory Addressing
Modes” on page 2-Registers specified in a MEM format
instruction must be either a global or local register.

Instruction Groups

The 1960 processor instruction set can be categorized into the functional groups shown in

Table 5-2. The actual number of instructions is greater than those shown in thislist because, for
some operations, several unigque instructions are provided to handle various operand sizes, data

types or branch conditions. The following sections provide an overview of the instructionsin each
group. For detailed information about each instruction, refer to Chapter 6, “Instruction Set

Reference!”

i960® VH Processor Instruction Set (Sheet 1 of 2)

Data Movement Arithmetic Logical Bit, Bit Field and Byte
Add
Subtract
Multipl And
. Py Set Bit
Divide Not And .
. Clear Bit
Remainder And Not .
Not Bit
Load Modulo Or .
) . Alter Bit
Store Shift Exclusive Or)
. Scan For Bit
Move Extended Shift Not Or .
-, . Span Over Bit
*Conditional Select Extended Multiply Or Not Extract
X
Load Address Extended Divide Nor]
. . Modify
Add with Carry Exclusive Nor
) Scan Byte for Equal
Subtract with Carry Not
- *Byte Swap
*Conditional Add Nand
*Conditional Subtract
Rotate

* Denotes newer instructions that are NOT available on 80960CA/CF, 80960KA/KB and 80960SA/SB implementations.

i960® VH Processor Developer's Manual

5-3

|]
Instruction Set Overview I ntel ®

Table 5-2. i960® VH Processor Instruction Set (Sheet 2 of 2)

Comparison Branch Call/Return Fault
Compare
- Call
Conditional Compare .
Unconditional Branch Call Extended "
Compare and Increment . Conditional Fault
Conditional Branch Call System)
Compare and Decrement Synchronize Faults
Compare and Branch Return

Test Condition Code
Check Bit

Branch and Link

Processor .
Debug Management Atomic

Flush Local Registers

Modify Arithmetic
] Controls
Modify Trace Controls Modify Process Controls | Atomic Add
Mark . . .
Halt Atomic Modify
Force Mark

System Control
*Cache Control
*Interrupt Control

* Denotes newer instructions that are NOT available on 80960CA/CF, 80960KA/KB and 80960SA/SB implementations.

52.1 Data Movement

These instructions are used to move data from memory to global and local registers, from global
and local registers to memory, and between local and global registers.

Rules for register alignment must be followed when using load, store and move instructions that
move 8, 12 or 16 bytes at atime. See Section 3.5, “Memory Address Space” on pagef89
alignment requirements for code portability across implementations.

5211 Load and Store Instructions

Load instructions copy bytes or words from memory to local or global registers or to a group of
registers. Each load instruction has a corresponding store instruction to memory bytes or words to
copy from a selected local or global register or group of registers. All load and store instructions
use the MEM format.

Id load word st store word

Idob load ordinal byte stob store ordinal byte
Idos load ordinal short stos store ordinal short
Idib load integer byte stib store integer byte
Idis load integer short stis store integer short
Idl load long stl store long

Idt load triple stt storetriple

Idg load quad stq store quad

5-4 i960® VH Processor Developer’s Manual

|]
I nt6| ® Instruction Set Overview

Id copies 4 bytes from memory into aregister; Idl copies 8 bytes; Idt copies 12 bytesinto
successive registers; Idg copies 16 bytes into successive registers.

st copies 4 bytes from aregister into memory; stl copies 8 bytes; stt copies 12 bytes from
successive registers; stq copies 16 bytes from successive registers.

For Id, Idob, Idos, Idib and Idis, the instruction specifies a memory address and register; the
memory address value is copied into the register. The processor automatically extends byte and
short (half-word) operands to 32 bits according to data type. Ordinals are zero-extended; integers
are sign-extended.

For st, stob, stos, stib and stis, the instruction specifies amemory address and register; the

register value is copied into memory. For byte and short instructions, the processor automatically
reformats the source register’s 32-bit value for the shorter memory locatiostid-andstis, this
reformatting can cause integer overflow when the register value is too large for the shorter memory
location. When integer overflow occurs, either an integer-overflow fault is generated or the
integer-overflow flag in the AC register is set, depending on the integer-overflow mask bit setting
in the AC regqister.

Forstob andstos, the processor truncates the register value and does not create a fault when
truncation results in the loss of significant bits.

5.2.1.2 Move

Move instructions copy data from a local or global register or group of registers to another register
or group of registers. These instructions use the REG format.

mov move word

mov! move long word
movt move triple word
movq move quad word

5.2.1.3 Load Address
The Load Address instructioidg) computes an effective address in the address space from an
operand presented in one of the addressing matteiss commonly used to load a constant into a
register. This instruction uses the MEM format and can operate upon local or global registers.

On the 80960VHIda is useful for performing simple arithmetic operations. The processor’s
parallelism allowsda to execute in the same clock as another arithmetic or logical operation.

5.2.2 Select Conditional

Given the proper condition code bit settings in the Arithmetic Controls register, these instructions
move one of two pieces of data from its source to the specified destination.

selno Select Based on Unordered
selg Select Based on Greater
sele Select Based on Equal

i960® VH Processor Developer’s Manual 5-5

|]
Instruction Set Overview I ntel ®

5.2.3

Table 5-3.

5.23.1

5-6

selge Select Based on Greater or Equal
sell Select Based on Less

selne Select Based on Not Equal

selle Select Based on Less or Equal
selo Select Based on Ordered
Arithmetic

Table 5-3 lists arithmetic operations and data types for which the 80960V H provides instructions.

“X" in this table indicates that the microprocessor provides an instruction for the specified
operation and data type. All arithmetic operations are carried out on operands in registers or
literals. Refer tdSection 5.2.11, “Atomic Instructions” on page 5fbs instructions which handle
specific requirements for in-place memory operations.

All arithmetic instructions use the REG format and can operate on local or global registers. The
following subsections describe arithmetic instructions for ordinal and integer data types.

Arithmetic Operations

Data Types
Arithmetic Operations

Integer Ordinal

Add X

x

Add with Carry

Conditional Add

Subtract

Subtract with Carry

Conditional Subtract

X | X| X| X| X| X

Multiply

Extended Multiply

Divide

X

Extended Divide

X| X| X| X| X[X| X[X[X] X

Remainder

Modulo

Shift Left

X

X | X| X| X

Shift Right

Extended Shift Right

Shift Right Dividing Integer X

NOTE: “X" indicates that an instruction is available for the specified operation and data type.

Add, Subtract, Multiply, Divide, Conditional Add, Conditional Subtract

These instructions perform add, subtract, multiply or divide operations on integers and ordinals:

i960® VH Processor Developer’s Manual

5.2.3.2

5.2.3.3

Instruction Set Overview

addi Add Integer

addo Add Ordinal

subi Subtract Integer
subo Subtract Ordinal
SUB<cc> Conditional Subtract
muli Multiply Integer
mulo Multiply Ordinal
divi Divide Integer

divo Divide Ordina

addi, ADDI<cc>, subi, SUBI<cc>, muli and divi generate an integer-overflow fault when the result
istoo large to fit in the 32-bit destination. divi and divo generate a zero-divide fault when the
divisor is zero.

Remainder and Modulo

These instructions divide one operand by another and retain the remainder of the operation:

remi remainder integer
remo remainder ordina
modi modulo integer

The difference between the remainder and modulo instructions liesin the sign of the result. For
remi and remo, the result has the same sign as the dividend; for modi, the result has the same sign
asthedivisor.

Shift, Rotate and Extended Shift

These shift instructions shift an operand a specified number of bits left or right:

shlo shift left ordinal

shro shift right ordinal

shli shift left integer

shri shift right integer

shrdi shift right dividing integer
rotate rotate left

eshro extended shift right ordinal

Except for rotate, these instructions discard bits shifted beyond the register boundary.

shlo shifts zerosin from the least significant bit; shro shifts zerosin from the most significant bit.
These instructions are equivalent to mulo and divo by the power of 2, respectively.

i960® VH Processor Developer’s Manual 5-7

|]
Instruction Set Overview I ntel ®

5.2.3.4

5.2.4

5-8

shli shifts zeros in from the least significant bit. When the shift operation resultsin an overflow, an
integer-overflow fault is generated (when enabled). The destination register is written with the
source shifted as much as possible without overflow and an integer-overflow fault is signaled.

shri performs a conventional arithmetic shift right operation by extending the sign bit. However,
when thisinstruction is used to divide a negative integer operand by the power of 2, it may produce
an incorrect quotient. (Discarding the bits shifted out has the effect of rounding the result toward
negative.)

shrdi is provided for dividing integers by the power of 2. With thisinstruction, 1 is added to the
result when the bits shifted out are non-zero and the operand is negative, which produces the
correct result for negative operands. shli and shrdi are equivalent to muli and divi by the power of
2, respectively, except in cases where an overflow error occurs.

rotate rotates operand bits to the left (toward higher significance) by a specified number of bits.
Bits shifted beyond the register’s left boundary (bit 31) appear at the right boundary (bit 0).

Theeshro instruction performs an ordinal right shift of a source register pair (64 bits) by as much
as 32 bits and stores the result in a single (32-bit) register. This instruction is equivalent to an
extended divide by a power of 2, which produces no remainder. The instruction is also the
equivalent of a 64-bit extract of 32 bits.

Extended Arithmetic

These instructions support extended-precision arithmetic; (i.e., arithmetic operations on operands
greater than one word in length):

addc add ordinal with carry
subc subtract ordinal with carry
emul extended multiply

ediv extended divide

addc adds two word operands (literals or contained in registers) plus the AC Register condition
code bit 1 (used here as a carry bit). When the result has a carry, bit 1 of the condition code is set;
otherwise, it is cleared. This instruction’s descriptio€apter 6, “Instruction Set Reference”

gives an example of how this instruction can be used to add two long-word (64-bit) operands
together.

subc is similar toaddc, except it is used to subtract extended-precision values. Altteaigighand

subc treat their operands as ordinals, the instructions also set bit O of the condition codes when the
operation would have resulted in an integer overflow condition. This facilitates a software
implementation of extended integer arithmetic.

emul multiplies two ordinals (each contained in a register), producing a long ordinal result (stored
in two registers)ediv divides a long ordinal by an ordinal, producing an ordinal quotient and an
ordinal remainder (stored in two adjacent registers).

Logical

These instructions perform bitwise Boolean operations on the specified operands:

i960® VH Processor Developer’s Manual

|]
I nt6| ® Instruction Set Overview

and src2 AND srcl
notand (NOT src2) AND srcl
andnot src2 AND (NOT srcl)
xor src2 XOR srcl

or src2 ORsrcl

nor NOT (src2 ORsrcl)
xnor src2 XNOR srcl

not NOT srcl

notor (NOT src2) orsrcl
ornot src2 or (NOT srcl)
nand NOT (src2 AND srcl)

All logical instructions use the REG format and can operate on literals or local or global registers.

5.2.5 Bit, Bit Field and Byte Operations

These perform operations on a specified bit or bit field in an ordinal operand. All Bit, Bit Field and
Byte instructions use the REG format and can operate on literals or local or global registers.

5251 Bit Operations

These instructions operate on a specified bit:

setbit set bit

clrbit clear bit
notbit invert bit
alterbit alter bit
scanbit scan for bit
spanbit span over bit

setbit, clrbit and notbit set, clear or complement (toggle) a specified bit in an ordinal.

alterbit alters the state of a specified bit in an ordinal according to the condition code. When the
condition code is 0105, the bit is set; when the condition code is 000,, the bit is cleared.

chkbit, described in Section 5.2.6, “Comparison” on page 5;t@n be used to check the value of
an individual bit in an ordinal.

scanbit andspanbit find the most significant set bit or clear bit, respectively, in an ordinal.

i960® VH Processor Developer’s Manual 5-9

|]
Instruction Set Overview I ntel ®

5.25.2

5.2.5.3

5.2.6

5.2.6.1

5-10

Bit Field Operations

The two bit field instructions are extract and modify.

extract convertsaspecified bit field, taken from an ordinal value, into an ordinal value. In essence,
thisinstruction shiftsright a bit field in aregister and fills in the bits to the left of the bit field with
zeros. (eshro also provides the equivaent of a 64-bit extract of 32 bits).

modify copies bits from one register into another register. Only masked bits in the destination
register are modified. modify is equivalent to a bit field move.

Byte Operations

scanbyte performs a byte-by-byte comparison of two ordinals to determine when any two
corresponding bytes are equal. The condition code is set based on the results of the comparison.
scanbyte uses the REG format and can specify literals or local or global registers as arguments.

bswap alters the order of bytes in a word, reversing its “endianness.”

Comparison

The processor provides several types of instructions for comparing two operands, as described in
the following subsections.

Compare and Conditional Compare

These instructions compare two operands then set the condition code bits in the AC register
according to the results of the comparison:

cmpi Compare Integer

cmpib Compare Integer Byte

cmpis Compare Integer Short

cmpo Compare Ordinal

concmpi Conditional Compare I nteger
concmpo Conditional Compare Ordinal
chkbit Check Bit

These all use the REG format and can specify literals or local or global registers. The condition
code bits are set to indicate whether one operand is less than, equal to, or greater than the other
operand. Se8ection 3.6.2, “Arithmetic Controls Register — AC” on page Jeat3 description of

the condition codes for conditional operations.

cmpi andcmpo simply compare the two operands and set the condition code bits accordingly.
concmpi andconcmpo first check the status of condition code bit 2:

* When not set, the operands are compared as with cmpi and cmpo.
* When set, no comparison is performed and the condition code flags are not changed.

i960® VH Processor Developer’s Manual

5.2.6.2

5.2.6.3

Instruction Set Overview

The conditional-compare instructions are provided specifically to optimize two-sided range
comparisons to check for the condition when A is between B and C (B < A < C). Here, acompare
instruction (cmpi or cmpo) checks one side of the range (A = B) and a conditional compare
instruction (concmpi or concmpo) checks the other side (A < C) according to the result of thefirst
comparison. The condition codes following the conditional comparison directly reflect the results
of both comparison operations. Therefore, only one conditional branch instruction is required to act
upon the range check; otherwise, two branches would be needed.

chkbit checks a specified bit in aregister and sets the condition code flags according to the bit
state. The condition code is set to 010, when the bit is set, and 000, when the bit is not set.

Compare and Increment or Decrement

These instructions compare two operands, set the condition code bits according to the compare
results, then increment or decrement one of the operands:

cmpinci compare and increment integer
cmpinco compare and increment ordina
cmpdeci compare and decrement integer
cmpdeco compare and decrement ordina

These al use the REG format and can specify literals or local or global registers. They are an
architectural performance optimization which allows two register operations (e.g., compare and
add) to execute in asingle cycle. The intended use of these instructions is at the end of iterative
loops.

Test Condition Codes

These test instructions allow the state of the condition code flags to be tested:

teste test for equal

testne test for not equal

testl test for less

testle test for less or equal
testg test for greater

testge test for greater or equa
testo test for ordered

testno test for unordered

When the condition code matches the instruction-specified condition, a TRUE (0000 0001H) is
stored in adestination register; otherwise, a FALSE (0000 O000H) is stored. All use the COBR
format and can operate on local and global registers.

i960® VH Processor Developer’s Manual 5-11

|]
Instruction Set Overview I ntel ®

527 Branch

Branch instructions alow program flow direction to be changed by explicitly modifying the IP.
The processor provides three branch instruction types:

* unconditional branch
¢ conditional branch

* compare and branch
Most branch instructions specify the target IP by specifying a signed displacement to be added to
the current IP. Other branch instructions specify the target IP's memory address, using one of the

processor’s addressing modes. This latter group of instructions is called extended addressing
instructions (e.g., branch extended, branch-and-link extended).

5.2.7.1 Unconditional Branch

These instructions are used for unconditional branching:

b Branch

bx Branch Extended

bal Branch and Link

balx Branch and Link Extended

b andbal use the CTRL formahx andbalx use the MEM format and can specify local or global
registers as operandsandbx cause program execution to jump to the specified target IP. These
two instructions perform the same function; however, their determination of the target IP differs.
The target IP of & instruction is specified at link time as a relatilisplacement from the current

IP. The target IP of thiex instruction is the absolute address resulting from the instruction’s use of
a memory-addressing mode during execution.

bal andbalx store the next instruction’s address in a specified register, then jump to the specified
target IP. (Fobal, the RIP is automatically stored in register g14pfalx, the RIP location is

specified with an instruction operand.) As describefention 7.9, “Branch-and-Link” on

page 7-18branch and link instructions provide a method of performing procedure calls that do not
use the processor’s integrated call/return mechanism. Here, the saved instruction address is used as
areturn IP. Branch and link is generally used to call leaf procedures (that is, procedures that do not
call other procedures).

bx andbalx can make use of any memory-addressing mode.

5.2.7.2 Conditional Branch

With conditional branchBRANCH IF) instructions, the processor checks the AC register condition
code flags. When these flags match the value specified with the instruction, the processor jumps to
the target IP. These instructions usedisplacement-plus-ip method of specifying the target IP:

be branch if equal/true
bne branch if not equal
bl branch if less

5-12 i960® VH Processor Developer’s Manual

|]
I nt6| ® Instruction Set Overview

ble branch if less or equal

bg branch if greater

bge branch if greater or equal
bo branch if ordered

bno branch if unordered/false

All usethe CTRL format. bo and bno are used with real numbers. bno can also be used with the
result of achkbit or scanbit instruction. Refer to Section 3.6.2.2, “Condition Code (AC.cc)” on
page 3-14or a discussion of the condition code for conditional operations.

5.2.7.3 Compare and Branch

These instructions compare two operands then branch according to the comparison result. Three
instruction subtypes are compare integer, compare ordinal and branch on bit:

cmpibe compare integer and branch if equal

cmpibne compare integer and branch if not equal
cmpibl compare integer and branch if less

cmpible compare integer and branch if less or equal
cmpibg compare integer and branch if greater
cmpibge compare integer and branch if greater or equal
cmpibo compare integer and branch if ordered
cmpibno compare integer and branch if unordered
cmpobe compare ordinal and branch if equal

cmpobne compare ordinal and branch if not equal
cmpobl compare ordinal and branch if less

cmpoble compare ordinal and branch if less or equal
cmpobg compare ordinal and branch if greater
cmpobge compare ordinal and branch if greater or equal
bbs check bit and branch if set

bbc check bit and branch if clear

All use the COBR machine instruction format and can specify literals, local or global registers as
operands. With compare ordinal and brarmdn{pob*) and compare integer and branch

(compib*) instructions, two operands are compared and the condition code bits are set as described
in Section 5.2.6, “Comparison” on page 5-P0conditional branch is then executed as with the
conditional branchERANCH IF) instructions.

With check bit and branch instructiorishé, bbc), one operand specifies a bit to be checked in the
second operand. The condition code flags are set according to the state of the specifiesl bit: 010
(true) when the bit is set and Q0@alse) when the bit is clear. A conditional branch is then
executed according to condition code bit settings.

i960® VH Processor Developer’s Manual 5-13

|]
Instruction Set Overview I ntel ®

5.2.8

5.2.9

5-14

These instructions can be used to optimize execution performance time. When it is not possible to
separate adjacent compare and branch instructions from other unrelated instructions, replacing two
instructions with a single compare and branch instruction increases performance.

Call/Return

The 80960V H offers an on-chip call/return mechanism for making procedure calls. Refer to
Section 7.1, “Call and Return Mechanism” on page T following instructions support this
mechanism:

call call

callx call extended
calls call system
ret return

call andret use the CTRL machine-instruction formadlix uses the MEM format and can specify
local or global registersalls uses the REG format and can specify local or global registers.

call andcallx make local calls to procedures. A local call is a call that does not require a switch to
another stackcall andcallx differ only in the method of specifying the target procedure’s address.
The target procedure of a call is determined at link time and is encoded in the opword as a signed
displacement relative to the call IRallx specifies the target procedure as an absolute 32-bit

address calculated at run time using any one of the addressing modes. For both instructions, a new
set of local registers and a new stack frame are allocated for the called procedure.

calls is used to make calls to system procedures — procedures that provide a kernel or
system-executive service. This instruction operates similadglt@ndcallx, except that it gets its
target-procedure address from the system procedure table. An index number included as an
operand in the instruction provides an entry point into the procedure table.

Depending on the type of entry being pointed to in the system proceduretdiblean cause

either a system-supervisor call or a system-local call to be executed. A system-supervisor call is a
call to a system procedure that switches the processor to supervisor mode and switches to the
supervisor stack. A system-local call is a call to a system procedure that does not cause an
execution mode or stack change. Supervisor mode is described throGhlapter 7, “Procedure

Calls”.

ret performs a return from a called procedure to the calling procedure (the procedure that made the
call). ret obtains its target IP (return IP) from linkage information that was saved for the calling
procedureret is used to return from all calls — including local and supervisor calls — and from
implicit calls to interrupt and fault handlers.

Faults

Generally, the processor generates faults automatically as the result of certain operations. Fault
handling procedures are then invoked to handle various fault types without explicit intervention by
the currently running program. These conditional fault instructions permit a program to explicitly
generate a fault according to the state of the condition code flags. All use the CTRL format.

faulte fault if equal

i960® VH Processor Developer’s Manual

5.2.10

5.2.11

Instruction Set Overview

faultne fault if not equal

faultl fault if less

faultle fault if less or equal
faultg fault if greater

faultge fault if greater or equal
faulto fault if ordered

faultno fault if unordered

syncf ensures that any faults that occur during the execution of prior instructions occur before the
instruction that follows the syncf. syncf uses the REG format and requires no operands.

Debug

The processor supports debugging and monitoring of program activity through the use of trace
events. The following instructions support these debugging and monitoring tools:

modpc modify process controls
modtc modify trace controls
mark mark

fmark force mark

These all use the REG format. Trace functions are controlled with bitsin the Trace Control (TC)
register which enable or disable various types of tracing. Other TC register flagsindicate when an
enabled trace event is detected. Refer to Chapter 10, “Tracing and Debugging”

modtc permits trace controls to be modifiedark causes a breakpoint trace event to be generated
when breakpoint trace mode is enabfethrk generates a breakpoint trace independent of the state
of the breakpoint trace mode bits.

Other instructions that are helpful in debugging inclmdelipc andsysctl. modpc can
enable/disable trace fault generation. hectl instruction also provides control over breakpoint
trace event generation. This instruction is used, in part, to load and control the 80960VH’s
breakpoint registers.

Atomic Instructions

Atomic instructions perform an atomic read-modify-write operation on operands in memory. An
atomic operation is one in which other memory operations are forced to occur before or after, but
not during, the accesses that comprise the atomic operation. These instructions are required to
enable synchronization between interrupt handlers and background tasks in any system. They are
also particularly useful in systems where several agents — processors, coprocessors or external
logic — have access to the same system memory for communication.

The atomic instructions are atomic adtald) and atomic modifyadtmod). atadd causes an

operand to be added to the value in the specified memory locatiosd causes bits in the

specified memory location to be modified under control of a mask. Both instructions use the REG
format and can specify literals or local or global registers as operands.

i960® VH Processor Developer’s Manual 5-15

|]
Instruction Set Overview I ntel ®

5.2.12 Processor Management

These instructions control processor-related functions:

modpc Modify the Process Controls register
flushreg Flush cached local register sets to memory
modac Modify the Arithmetic Controls register

All use the REG format and can specify literals or local or global registers.

modpc provides amethod of reading and modifying PC register contents. Only programs
operating in supervisor mode may modify the PC register; however, any program may read it.

The processor provides aflush local registersinstruction (flushreg) to save the contents of the

cached local registersto the stack. The flush local registers instruction automatically stores the

contents of all the local register sets — except the current set — in the register save area of their
associated stack frames.

The modify arithmetic controls instructiom¢dac) allows the AC register contents to be copied to

a register and/or modified under the control of a mask. The AC register cannot be explicitly
addressed with any other instruction; however, it is implicitly accessed by instructions that use the
condition codes or set the integer overflow flag.

sysctl is used to configure the interrupt controller, breakpoint registers and instruction cache. It
also permits software to signal an interrupt or cause a processor reset and reinitiadigstibn.
may be executed only by programs operating in supervisor mode.

intctl, inten andintdis are used to enable and disable interrupts and to determine current interrupt
enable status.

5.3 Performance Optimization

Performance optimization is categorized into two sections: instructions optimizations and
miscellaneous optimizations.

5.3.1 Instruction Optimizations

Instruction optimizations are broken down by the instruction classification.

53.1.1 Load / Store Execution Model

Because the 80960VH has a 32-bit external data bus, multiple word accesses require multiple
cycles. The processor uses microcode to sequence the multi-word accesses. Because the microcode
can ensure that aligned multi-words are bursted together on the external bus, software should not
substitute multiple single-word instructions for one multi-word instruction for data that is not likely

to be in cache; (i.e., oneq provides better bus performance than fdunstructions).

Once a load is issued, the processor attempts to execute other instructions while the load is

outstanding. It is important to note that when the load misses the data cache, the processor does not
stall the issuing of subsequent instructions (other than stores) that do not depend on the load.

5-16 i960® VH Processor Developer’s Manual

5.3.1.2

5.3.1.3

5314

5.3.15

Instruction Set Overview

Software should avoid following aload with an instruction that depends on the result of the load.
For aload that hits the data cache, a one-cycle stall occurs when the instruction immediately after
the load requires the data. When the load fails to hit the data cache, the instruction depending on
the load is stalled until the outstanding load request is resolved.

Multiple, back-to-back load instructions do not stall the processor until the bus queue becomes full.

The processor delays issuing a store instruction until all previously-issued load instructions
complete. This happens regardless of whether the store is dependent on the load. This ordering
between loads and stores ensures that the return data from a previous cache-read miss does not
overwrite the cache line updated by a subsequent store.

Compare Operations

Byte and short word data is more efficiently compared using the new byte and short compare
instructions (cmpob, cmpib, cmpos, cmpis), rather than shifting the data and using aword
compare instruction.

Microcoded Instructions

While the majority of instructions on the 80960V H are single cycle and are executed directly by
processor hardware, some require microcode emulation. Entry into a microcode routine requires
two cycles. Exit from microcode typically requires two cycles. For some routines, one cycle of the
exit process can execute in parallel with another instruction, thus saving one cycle of execution
time.

Multiply-Divide Unit Instructions

The Multiply-Divide Unit (MDU) performs a number of multi-cycle arithmetic operations. These
can range from 2 cycles for a 16-bitx32-bit mulo, 4 cyclesfor a 32-bitx32-bit mulo, to 30+ cycles
for an ediv.

Onceissued, these MDU instructions are executed in parallel with other non-MDU instructions
that do not depend on the result of the MDU operation. Attempting to issue another MDU
instruction while a current MDU instruction is executing, stalls the processor until the first one
compl etes.

Multi-Cycle Register Operations

A few register operations can also take multiple cycles. The following instructions are performed
in microcode:

* bswap * extract eshro * modify * movl * movt
* movq * shrdi scanbit * spanbit * testno * testo
* testl - testle * teste * testne * testg * testge

On the 80960V H, test<cc> dst is microcoded and takes many more cyclesthan SEL<cc> 0,1,dst,
which is executed in one cycle directly by processor hardware.

Multi-register move operation execution time can be decreased at the expense of cache utilization
and code density by using mov the appropriate number of times instead of movl, movt and movq.

i960® VH Processor Developer’s Manual 5-17

|]
Instruction Set Overview I ntel ®

5.3.1.6

5.3.1.7

5.3.1.8

5-18

Simple Control Transfer

There isno branch look-ahead or branch prediction mechanism on the 80960V H. Simple branch
instructions take one cycle to execute, and one more cycleis needed to fetch the target instruction if
the branch is actually taken.

b, bal, bno, bo, bl, ble, be, bne, bg, bge

One mode of the bx (branch-extended) instruction, bx (base), is also a simple branch and takes one
cycle to execute and one cycle to fetch the target.

Asaresult, abal(g14) or bx (g14) sequence provides atwo-cycle call and return mechanism for
efficient leaf procedure implementation.

Compare-and-branch instructions have been optimized on the 80960V H. They require two cycles
to execute, and one more cycle to fetch the target instruction if the branch is actually taken. The
instructions are:

« cmpobno - cmpobo « cmpobl « cmpoble « cmpobe « cmpobne
« cmpobg « cmpobge - cmpibno « cmpibo « cmpibl « cmpible
- cmpibe - cmpibg - cmpibne - cmpibge » bbc » bbs

Memory Instructions

The 80960V H provides efficient support for naturally aligned byte, short, and word accesses that
use one of six optimized addressing modes. These accesses require only one to two cyclesto
execute; additional cycles are needed for aload to return its data.

The byte, short and word memory instructions are:

Idob, Idib, Idos, Idis, Id, Ida stob, stib, stos, stis, st

The remainder of accesses require multiple cycles to execute. These include:
* Unaligned short, and word accesses
* Byte, short, and word accesses that do not use one of the 6 optimized addressing modes
* Multi-word accesses

The multi-word accesses are:

Idl, Idt, Idq, stl, stt, stq

Unaligned Memory Accesses

Unaligned memory accesses are performed by microcode. Microcode sequences the access into
smaller aligned pieces and does any merging of datathat is needed. As aresult, these accesses are
not as efficient as aligned accesses. In addition, no bursting on the external busis performed for
these accesses. Whenever possible, unaligned accesses should be avoided.

i960® VH Processor Developer’s Manual

intel.

5.3.2

5.3.21

5.3.2.2

5.3.2.3

5.3.2.4

5.3.3

Instruction Set Overview

Miscellaneous Optimizations

Masking of Integer Overflow

The 1960 core architecture inserts an implicit syncf before performing a call operation or
delivering an interrupt so that a fault handler can be dispatched first, when necessary. syncf can
require anumber of cyclesto complete when a multi-cycle integer-multiply (muli) or
integer-divide (divi) instruction is issued previously and integer-overflow faults are unmasked
(allowed to occur). Call performance and interrupt latency can be improved by masking
integer-overflow faults (AC.om = 1), which alows the implicit syncf to complete more quickly.

Avoid Using PFP, SP, R3 As Destinations for MDU Instructions

When performing acall operation or delivering an interrupt, the processor typically attempts to
push the first four local registers (pfp, sp, rip, and r3) onto the local register cache as early as
possible. Because of register-interlock, this operation is stalled until previous instructions return
their results to these registers. In most cases, thisis not a problem; however, in the case of
multi-cycle instructions (divo, divi, ediv, modi, remo, and remi), the processor could be stalled
for many cycleswaiting for the result and unable to proceed to the next step of call processing or
interrupt delivery.

Call performance and interrupt latency can be improved by avoiding the first four registers as the
destination for aMDU instruction. Generally, registers pfp, sp, and rip should be avoided; they are
used for procedure linking.

Use Global Registers (g0 - g14) As Destinations for MDU Instructions

Using the same rationale as in the previous item, call processing and interrupt performance are
improved even further by using global registers (g0-g14) as the destination for multi-cycle MDU
instructions. Thisis because there is no dependency between g0-g14 and implicit or explicit call
operations (i.e., global registers are not pushed onto the local register cache).

Execute in Imprecise Fault Mode

Significant performance improvement is possible by allowing imprecise faults (AC.nif = 0). In
precise fault mode (AC.nif = 1), the processor does not issue anew instruction until the previous
one completes. This ensures that a fault from the previous instruction is delivered before the next
instruction can begin execution. Imprecise fault mode alows new instructions to be issued before
previous ones complete, thus increasing the instruction issue rate. Many applications can tolerate
the imprecise fault reporting for the performance gain. A syncf can be used in imprecise fault
mode to isolate faults at desired points of execution when necessary.

Cache Control
The following instructions provide instruction and data cache control functions.

icctl Instruction cache control
dcctl Data cache control

i960® VH Processor Developer’s Manual 5-19

|]
Instruction Set Overview I ntel ®

icctl and dcctl provide cache control functionsincluding: enabling, disabling, loading and locking
(instruction cache only), invalidating, getting status and storing cache information out to memory.

5-20 i960® VH Processor Developer’s Manual

intel.

Instruction Set Reference 6

This chapter provides detailed information about each instruction available to the i960° VH
processor. Instructions are listed alphabetically by assembly language mnemonic. Format and
notation used in this chapter are defined in Section 6.1, “Notation” on page 6-1

Information in this chapter is oriented toward programmers who write assembly language code for
the 80960VH. Information provided for each instruction includes:

* Alphabetic listing of all instructions * Faultsthat can occur during execution
* Assembly language mnemonic, name and * Action (or algorithm) and other side
format effects of executing an instruction

* Description of the instruction’s operation * Assembly language example
* Opcode and instruction encoding format * Related instructions

Additional information about the instruction set can be found in the following chapters and
appendices in this manual:

* Chapter 5, “Instruction Set Overview'Summarizes the instruction set by group and describes
the assembly language instruction format.

* Appendix A, “Machine-level Instruction Formats’Describes instruction set opword
encodings.

* Appendix B, “Opcodes and Execution TimesA quick-reference listing of instruction
encodings assists debugging with a logic analyzer.

6.1 Notation

In general, notation in this chapter is consistent with usage throughout the manual; however, there
are a few exceptions. Read the following subsections to understand notations that are specific to
this chapter.

6.1.1 Alphabetic Reference

Instructions are listed alphabetically by assembly language mnemonic. When several instructions
are related and fall together alphabetically, they are described as a group on a single page.

The instruction’s assembly language mnemonic is shown in bold at the top of the page (for
examplesubc). Occasionally, it is not practical to list all mnemonics at the page top. In these
cases, the name of the instruction group is shown in capital letters (for exBRpANCH<cc> or
FAULT<cc>).

The 80960VH-specific extensions to the i960 microprocessor instruction set are indicated in the
header text for each such instruction. This type of notation is also used to indicate new core
architecture instructions. Sections describing new core instructions provide notes as to which
i960-series processors do not implement these instructions.

i960® VH Processor Developer’s Manual 6-1

[]
Instruction Set Reference I ntel ®

6.1.2

6.1.3

6-2

Generally, instruction set extensions are not portable to other 1960 processor implementations.
Further, new core instructions are not typically portable to earlier 1960 processor family
implementations such as the 1960 Kx microprocessors.

Mnemonic

The Mnemonic section gives the mnemonic (in boldface type) and instruction name for each
instruction covered on the page, for example:

subi Subtract Integer

This name is the actual assembly language instruction name recognized by assemblers.

Format

The Format section gives the instruction’s assembly language format and allowable operand types.
Format is given in two or three lines. The following is a two-line format example:

sub* srcl src2 dst
reg/lit reg/lit reg
The first line gives the assembly language mnemonic (boldface type) and operands (italics). When
the format is used for two or more instructions, an abbreviated form of the mnemonic is used. An *
(asterisk) at the end of the mnemonic indicates a variable: in the above exarpls,either

subi orsubo. Capital letters indicate an instruction class. For examl®<cc> refers to the
class of conditional add instructions (for examphbjio, addig, addoo, addog).

Operand names are designed to describe operand function (for exsmo)pém, mask).

The second line shows allowable entries for each operand. Notation is as follows:

reg Global (g0 ... g15) or local (rO ... r15) register

lit Literal of the range O ... 31

disp Signed displacement of range (-2% ... 2% - 1)

mem Address defined with the full range of addressing modes

In some cases, a third line is added to show register or memory location contents. For example, it
may be useful to know that a register is to contain an address. The notation used in this line is as
follows:

addr Address
efa Effective Address

i960® VH Processor Developer’s Manual

intel.

6.1.4

6.1.5

Table 6-1.

Table 6-2.

i960® VH Processor Developer's Manual

Instruction Set Reference

Description

The Description section is a narrative description of the instruction’s function and operands. It also
gives programming hints when appropriate.

Action

TheAction section gives an algorithm written in a "C-like" pseudo-code that describes direct
effects and possible side effects of executing an instruction. Algorithms document the instruction’s
net effect on the programming environment; they do not necessarily describe how the processor
actually implements the instruction. The following is an example of the action algorithm for the
alterbit instruction:

if ((AC.cc & 010,)==0)

dst = src2 & ~(2**(src1%32));
else

dst = src2 | 2**(src1%32);

Table 6-1defines each abbreviation used in the instruction reference pseudo-code. The

pseudo-code has been written to comply as closely as possible with standard C programming
language notatiorTable 6-1lists the pseudocode symbol definitions.

Pseudo-Code Symbol Definitions

= Assignment

Comparison: equal, not equal

less than, greater than

less than or equal to, greater than or equal to

Logical Shift

Exponentiation

&, && Bitwise AND, logical AND

Bitwise OR, logical OR

n Bitwise XOR

~ One’s Complement

Modulo

Addition, Subtraction

* Multiplication (Integer or Ordinal)

/ Division (Integer or Ordinal)

Comment delimiter

Faults Applicable to All Instructions (Sheet 1 of 2)

Fault Type Subtype Description

An attempt to execute any instruction fetched from internal data RAM
or a memory-mapped region causes an operation unimplemented
fault.

OPERATION UNIMPLEMENTED

6-3

Instruction Set Reference I n

Table 6-2.

Table 6-3.

6.1.6

6.1.7

6.1.8

Faults Applicable to All Instructions (Sheet 2 of 2)

Fault Type Subtype Description
A Mark Trace Event is signaled after completion of an instruction for
MARK which there is a hardware breakpoint condition match. A Trace fault
TRACE is generated when PC.mk is set.
INSTRUCTION An Instruction Trace Event is signaled after instruction completion. A

Trace fault is generated when both PC.te and TC.i=1.

Common Faulting Conditions

Fault Type Subtype Description

Any instruction that causes an unaligned memory access causes
UNALIGNED an operation aligned fault when unaligned faults are not masked in
the fault configuration word in the Processor Control Block (PRCB).

This fault is generated when the processor attempts to execute an

INVALID_OPCODE instruction containing an undefined opcode or addressing mode.

OPERATION This fault is caused by a non-defined operand in a supervisor mode

INVALID_OPERAND | only instruction or by an operand reference to an unaligned long-,
triple- or quad-register group.

This fault can occur due to an attempt to perform a non-word or
UNIMPLEMENTED | unaligned access to a memory-mapped region or when attempting
to fetch instructions from MMR space or internal data RAM.

Any instruction that attempts to write to supervisor protected
internal data RAM or a memory-mapped register in supervisor
Type MISMATCH space while not in supervisor mode causes a TYPE.MISMATCH
fault. This fault is also generated for any non-supervisor mode
reference to an SFR.

Faults

The Faults section lists faults that can be signaled as a direct result of instruction execution.

Table 6-2 shows the possible faulting conditions that are common to the entire instruction set and
could directly result from any instruction. These fault types are not included in the instruction
reference. Table 6-3 shows the possible faulting conditions that are common to large subsets of the
instruction set. When an instruction can generate a fault, it is noted in that instruesialtss
section. In these sections, “Standard” refers to the faults shovabla 6-2andTable 6-3

Example

The Example section gives an assembly language example of an application of the instruction.

Opcode and Instruction Format

The Opcode and Instruction Format section gives the opcode and instruction format for each
instruction, for example:

subi 593H REG

i960® VH Processor Developer’s Manual

6.1.9

6.1.10

6.1.11

6.2

Instruction Set Reference

The opcode is given in hexadecimal format. The format is one of four possible formats: REG,
COBR, CTRL and MEM. Refer to Appendix A, “Machine-level Instruction Formatsdr more
information on the formats.

See Also

The See Alscection gives the mnemonics of related instructions which are also al phabetically
listed in this chapter.

Side Effects

This section indicates whether the instruction causes changes to the condition code bitsin the
Arithmetic Contrals.

Notes

This section provides additional information about an instruction such aswhether it isimplemented
in other 1960 processor families.

Instructions

The processor’s instructions are arranged alphabetically by instruction or instruction group.

i960® VH Processor Developer’s Manual 6-5

Instruction Set Reference

6.2.1
Table 6-4.
6-6

ADD<cc>
Mnemonic: addono Add Ordinal if Unordered
addog Add Ordinal if Greater
addoe Add Ordinal if Equa
addoge Add Ordinal if Greater or Equal
addol Add Ordinal if Less
addone Add Ordinal if Not Equal
addole Add Ordinal if Lessor Equal
addoo Add Ordinal if Ordered
addino Add Integer if Unordered
addig Add Integer if Greater
addie Add Integer if Equal
addige Add Integer if Greater or Equal
addil Add Integer if Less
addine Add Integer if Not Equal
addile Add Integer if Less or Equal
addio Add Integer if Ordered
Format: add* srcl, src2, dst
reg/lit reg/lit reg
Description: Conditionally adds src2 and srcl values and stores the result in dst based on

the AC register condition code. If for Unordered the condition code is O, or if
for all other casesthe logical AND of the condition code and the mask part of
the opcode is not O, then the values are added and placed in the destination.
Otherwise the destination is left unchanged. Table 6-4 shows the condition
code mask for each instruction. The mask isin opcode bits 4-6.

Condition Code Mask Descriptions (Sheet 1 of 2)

Instruction Mask Condition
addono
- 000, Unordered
addino
addog
- 001, Greater
addig
addoe
- 010, Equal
addie
addoge
- 011, Greater or equal
addige
addo
- 100, Less
addil
addone
- 101, Not equal
addine
addole
- 110, Less or equal
addile

i960® VH Processor Developer’s Manual

[]
I ntel o Instruction Set Reference

Table 6-4. Condition Code Mask Descriptions (Sheet 2 of 2)

Instruction Mask Condition
addoo
- 111, Ordered
addio
Action: addo<cc>:

if((mask & AC.cc) || (mask == AC.cc))
dst = (srcl + src2)[31:0];

addi<cc>:
if((mask & AC.cc) || (mask == AC.cc))
{
{ true_result = (srcl + src2);
dst = true_result[31:0];
}

if((true_result > (2**31) - 1) || (true_result < -2**31))
Check for overflow
{ Iif(AC.om==1)

AC.of = 1;
else
generate fault(ARITHMETIC.OVERFLOW);
}
}
Faults: STANDARD Refer to Section 6.1.6, “Faults” on page 6-4
ARITHMETIC.OVERFLOW Occurs only witladdi<cc>.
Example: # Assume (AC.cc AND 001,) # O.
addig r4, r8, rl10 #r10 =r8 +r4

Assume (AC.cc AND 101,) = 0.
addone r4, r8, ri10 # r10 is not changed.

Opcode: addono 780H REG
addog 790H REG
addoe 7A0H REG
addoge 7BOH REG
addol 7COH REG
addone 7DOH REG
addole 7EOH REG
addoo 7FOH REG
addino 781H REG
addig 791H REG
addie 7A1H REG
addige 7B1H REG
addil 7C1H REG
addine 7D1H REG
addile 7E1H REG
addio 7F1H REG

i960® VH Processor Developer’s Manual 6-7

Instruction Set Reference

See Also:

Notes:

intel.

This class of core instructions is not implemented on 80960Cx, Kx and Sx
processors.

addc, SUB<cc>, addi, addo

i960® VH Processor Developer’s Manual

intgl.
6.2.2 addc

Mnemonic:

Format:

Description:

Action:

Faults:

Example:

Opcode:
See Also:

Side Effects:

Instruction Set Reference

addc Add Ordina With Carry
addc srcd, src2, dst
reg/lit reg/lit reg

Adds src2 and srcl values and condition code bit 1 (used here as a carry-in)
and stores the result in dst. If ordinal addition results in a carry out, then
condition code bit 1 is set; otherwise, bit 1 is cleared. If integer addition
results in an overflow, then condition code bit O is set; otherwise, bit O is
cleared. Regardless of addition results, condition code bit 2 is always set to 0.

addc can be used for ordinal or integer arithmetic. addc does not distinguish
between ordinal and integer source operands. Instead, the processor evaluates
the result for both datatypes and sets condition code bits 0 and 1 accordingly.

An integer overflow fault is never signaled with thisinstruction.

dst = (srcl + src2 + AC.cc[1])[3L:0];
AC.cc[2:0] = 000;
if((src2[31] == src1[31]) & & (src2[31] != dst[31]))

AC.cc[0] = 1; # Set overflow bit.
AC.cc[1] = (src2 + srel + AC.cc[1])[32]; # Carry out.
STANDARD Refer to Section 6.1.6, “Faults” on page 6-4

Exanpl e of doubl e-precision arithnetic.
Assune 64-bit source operands
in g0,9gl1 and g2, g3

cnmpo 1, O # Clears Bit 1 (carry bit) of
the AC. cc.
addc g0, g2, g0 # Add | oworder 32 bits:
90 = g2 + g0 + carry bit
addc g1, g3, g1 # Add hi gh-order 32 bits:
91 = g3 + g1 + carry bit
64-bit result is in g0, gl.
addc 5BOH REG

ADD<cc>, SUB<cc>

Sets the condition code in the arithmetic controls.

i960® VH Processor Developer’s Manual 6-9

[]
Instruction Set Reference I ntel ®

6.2.3 addi, addo

Mnemonic: addo Add Ordinal
addi Add Integer
Format: add* srcl, src2, dst
reg/lit reg/lit reg
Description: Adds src2 and srcl values and stores the result in dst. The binary results from

these two instructions are identical. The only differenceisthat addi can signal
an integer overflow.

Action: addo:
dst = (src2 +srcl)[31:0];

addi:

true_result = (srcl + src2);

dst = true_result[31:0];

if ((true_result > (2**31) - 1) || (true_result < -2**31))# Check for overflow
{ Iif(ACom==1)

AC.of = 1;
else
generate_fault(ARITHMETIC.OVERFLOW);
}
Faults: STANDARD Refer to Section 6.1.6, “Faults” on page 6-4
ARITHMETIC.OVERFLOW Occurs only withaddi.
Example: addi r4, g5, r9 #r9 = g5 +r4
Opcode: addo 590H REG
addi 591H REG
See Also: addc, subi, subo, subc, ADD<cc>

6-10 i960® VH Processor Developer’s Manual

intgl.
6.2.4 alterbit

Mnemonic:

Format:

Description:

Action:

Faults:

Example:

Opcode:

See Also:

Instruction Set Reference

alterbit Alter Bit
alterbit bitpos, src, dst
reg/lit reg/lit reg

Copies src value to dst with one bit altered. bitpos operand specifies bit to be
changed; condition code determines the value to which the bit is set. If
condition code is X1X,, then bit 1 = 1, the selected bit is set; otherwise, it is
cleared. Typically this instruction is used to set the bitpos bit in the targ
register if the result of a compare instruction is the equal condition code
(010,).

if((AC.cc & 0105)==0)

dst = src & ~(2** (bitpos%632));
else

dst = src | 2** (bitpos%32);

STANDARD Refer to Section 6.1.6, “Faults” on page 6-4

Assunme AC.cc = 010,
alterbit 24, g4,99 # g9 = g4, with bit 24 set.

alterbit 58FH REG
chkbit, clrbit, notbit, setbit

i960® VH Processor Developer’s Manual 6-11

Instruction Set Reference

6.2.5

6-12

and, andnot

Mnemonic:

Format:

Description:

Action:

Faults:

Example:

Opcode:

See Also:

and And
andnot And Not
and srel, src2, dst
reg/lit reg/lit reg
andnot srel, src2, dst
reg/lit reg/lit reg
Performs a bitwise AND (and) or AND NOT (andnot) operation on src2 and

srcl values and stores result in dst. Note in the action expressions below, src2
operand comes first, so that with andnot the expression is evaluated as:

{src2 and not (srcl)}
rather than
{srcl and not (src2)}.

and:

dst = src2 & srcl;

andnot:

dst = src2 & ~srcl;

STANDARD Refer to Section 6.1.6, “Faults” on page 6-4

and Ox7, g8, g2 # Put lower 3 bits of g8 in g2.
andnot Ox7, r12, r9# Copy r12 to r9 with | ower
three bits cleared.

and 581H REG
andnot 582H REG

nand, nor, not, notand, notor, or, ornot, xnor, xor

i960® VH Processor Developer’s Manual

intgl.
6.2.6 atadd

Mnemonic:

Format:

Description:

Action:

Faults:

Example:

Opcode:

See Also:

Instruction Set Reference

atadd Atomic Add
atadd addr, sre, dst
reg reg/lit reg

Adds src value (full word) to value in the memory location specified with
addr operand. This read-modify-write operation is performed on the actual
data in memory and never on a cached value on chip. Initial value from
memory isstored in dst.

Memory read and write are done atomically (i.e., other bus masters must be
prevented from accessing the word of memory containing the word specified
by src/dst operand until operation completes). See Section 3.5.1, “Memory
Requirements” on page 3-1® more information on atomic accesses.

Memory location inaddr is the word’s first byte (LSB) address. Address is
automatically aligned to a word boundary. (Note #wdr operand maps to
srcl operand of the REG format.)

implicit_syncf();

tempa = addr & OxFFFFFFFC;
temp = atomic_read(tempa);
atomic_write(tempa, temp+src);
dst = temp;

STANDARD Refer toSection 6.1.6, “Faults” on page 6-4

atadd r8, r3, rll # r8 contains the address of
menory | ocation.
#rl11 = (r8)
(r8) =rl1ll1 + r3.

atadd 612H REG

atmod

i960® VH Processor Developer’s Manual 6-13

Instruction Set Reference

6.2.7

6-14

atmod

Mnemonic:

Format:

Description:

Action:

Faults:

Example:

Opcode:

See Also:

intel.

atmod Atomic Modify
atmod addr, mask, src/dst
reg reg/lit reg

Copies the selected bits of src/dst value into memory location specified in

addr. The read-modify-write operation is performed on the actual data in

memory and never on a cached value on chip. Bits set in mask operand select

bits to be modified in memory. Initial value from memory is stored in src/dst.

See Section 3.5.1, “Memory Requirements” on page 3di0information on
atomic accesses.

Memory read and write are done atomically (i.e., other bus masters must be
prevented from accessing the word of memory containing the word specified
with thesrc/dst operand until operation completes).

Memory location inaddr is the modified word’s first byte (LSB) address.
Address is automatically aligned to a word boundary.

implicit_syncf();

tempa = addr & OxFFFFFFFC;

tempb = atomic_read(tempa);

temp = (tempb &~ mask) | (src_dst & mask);

atomic_write(tempa, temp);

src_dst = tempb;

STANDARD Refer toSection 6.1.6, “Faults” on page 6-4

atnmod g5, g7, gl0 # tenpa = (g5)
tenp = (tenpa andnot g7) or
(910 and g7)
(9g5) = tenp
910 = tenpa
atmod 610H REG

atadd

i960® VH Processor Developer’s Manual

intgl.
6.2.8 b, bx

Mnemonic:

Format:

Description:

Action:

Faults:

Example:

Opcode:

See Also:

Instruction Set Reference

b Branch
bx Branch Extended
b targ
disp
bx targ
mem

Branchesto the specified target.

With the b instruction, |P specified with targ operand can be no farther than

-2%3 to (2% 4) bytes from current IP. When using the Intel i960 processor
assembler, targ operand must be a label which specifies target instruction’s
IP.

bx performs the same operation lasexcept the target instruction can be
farther than -2° to (223- 4) bytes from current IP. Here, the target operand is
an effective address, which allows the full range of addressing modes to be
used to specify target instruction’'s IP. The “IP + displacement” addressing
mode allows the instruction to be IP-relative. Indirect branching can be
performed by placing target address in a register then using a register-indirect
addressing mode.

Refer to Section 2.3, “Memory Addressing Modes” on page Zar
information on this subject.

b, bx:

IP[31:2] = effective_address(targ[31:2]);

IP[1:0] = O;

STANDARD Refer toSection 6.1.6, “Faults” on page 6-4
b xyz # 1P = xyz;

bx 1332 (ip) # 1P =1P + 8 + 1332;

this exanple uses |P-relative addressing

b 08H CTRL

bx 84H MEM

bal, balx, BRANCH<cc>, COMPARE AND BRANCH<cc>, bbc, bbs

i960® VH Processor Developer’s Manual 6-15

Instruction Set Reference

6.2.9

6-16

bal, balx
Mnemonic:

Format:

Description:

Action:

Faults:

Example:

Opcode:

bal Branch and Link
balx Branch and Link Extended
bal targ
disp
balx targ, dst
mem reg

Stores address of instruction following bal or balx in aregister then branches
to the instruction specified with the targ operand.

The bal and balx instructions are used to call leaf procedures (procedures that

do not call other procedures). The IP saved in the register provides areturn P

that the leaf procedure can branch to (using ab or bx instruction) to perform a

return from the procedure. Note that these instructions do not use the
processor’s call-and-return mechanism, so the calling procedure shares its
local-register set with the called (leaf) procedure.

With bal, address of next instruction is stored in register @itd.operand value
can be no farther than®2to (> 4) bytes from current IP. When using the Intel
i960 processor assemblagrg must be a label which specifies the target
instruction’s IP.

balx performs same operation laal except next instruction address is stored

in dst (allowing the return IP to be stored in any available register). Mith

the full address space can be accessed. Here, the target operand is an effective
address, which allows full range of addressing modes to be used to specify
target IP. “IP + displacement” addressing mode allows instruction to be
IP-relative. Indirect branching can be performed by placing target address in a
register and then using a register-indirect addressing mode.

SeeSection 2.3, “Memory Addressing Modes” on page ¥ a complete
discussion of addressing modes available with memory-type operands.

bal:

gl4 = 1P + 4;

IP[31:2] = effective_address(targ[31:2]);
IP[1:0] = O;

balx:

dst = IP + instruction_length;

Instruction_length = 4 or 8 depending on the addressing mode used.
IP[31:2] = effective_address(targ[31:2]); # Resume execution at new IP.
IP[1:0] = O;

STANDARD Refer toSection 6.1.6, “Faults” on page 6-4
bal xyz # 9l4 = IP + 4
1P = xyz
bal x (g2), g4 # g4 =IP + 4
1P = (92)
bal OBH CTRL
balx 85H MEM

i960® VH Processor Developer’s Manual

[]
I ntel o Instruction Set Reference

See Also: b, bx, BRANCH<cc>, COMPARE AND BRANCH<cc>, bbc, bbs

i960® VH Processor Developer’s Manual 6-17

[]
Instruction Set Reference I ntel ®

6.2.10 bbc, bbs

Mnemonic: bbc Check Bit and Branch If Clear
bbs Check Bit and Branch If Set
Format: bb* bitpos, sre, targ
reg/lit reg disp
Description: Checks bit (designated by bitpos) in src and sets AC register condition code

according to src value. The processor then performs conditional branch to
instruction specified with targ, based on condition code state.

For bbc, if selected bit in src is clear, the processor sets condition code to
000, and branches to instruction specified by targ; otherwise, it sets condition
code to 010, and goes to next instruction.

For bbs, if sdected bit is set, then the processor sets condition code to 010, and
branches to targ; otherwise, it sets condition code to 000, and goes to next
instruction.

targ can be no farther than -212 to (212 - 4) bytes from current |P. When using
the Intel 1960 processor assembler, targ must be alabel which specifies target
instruction’s IP.

Action: bbs:
if((src & 2**(bitpos%32)) == 1)
{ AC.cc=010;
temp[31:2] = sign_extension(targ[12:2]);
IP[31:2] = IP[31:2] + temp[31:2];

IP[1:0] = 0;
}
else
AC.cc = 00g;
bbc:
if((src & 2**(bitpos%32)) == 0)
{ AC.cc =000
temp[31:2] = sign_extension(targ[12:2]);
IP[31:2] = IP[31:2] + temp[31:2];
IP[1:0] = O;
}
else
AC.cc = 01G;
Faults: STANDARD Refer toSection 6.1.6, “Faults” on page 6-4
Example: # Assune bit 10 of r6 is clear.
bbc 10, r6, xyz # Bit 10 of r6 is checked
and found cl ear:
AC.cc = 000
1P = xyz;
Opcode: bbc 30H COBR
bbs 37H COBR

6-18 i960® VH Processor Developer’s Manual

[]
I ntel o Instruction Set Reference

See Also: chkbit, COMPARE AND BRANCH<cc>, BRANCH<cc>

Side Effects: Sets the condition code in the arithmetic controls.

i960® VH Processor Developer’s Manual 6-19

[]
Instruction Set Reference I ntel ®

6.2.11 BRANCH<cc>

Mnemonic: be Branch If Equal
bne Branch If Not Equal
bl Branch If Less
ble Branch If Less Or Equal
bg Branch If Greater
bge Branch If Greater Or Equal
bo Branch If Ordered
bno Branch If Unordered
Format: b* targ
disp
Description: Branches to instruction specified with targ operand according to AC register

condition code state.

For al branch<cc> instructions except bno, the processor branches to
instruction specified with targ, if the logical AND of condition code and mask
part of opcode is not zero. Otherwise, it goesto next instruction.

For bno, the processor branches to instruction specified with targ if the
condition code is zero. Otherwise, it goes to next instruction.

For instance, bno (unordered) can be used as a branch if false instruction
when coupled with chkbit. For bno, branch is taken if condition code equals
000,. be can be used as branch-if true instruction.

The targ operand value can be no farther than -223 to (223- 4) bytes from
current |P.

The following table shows condition code mask for each instruction. The
mask isin opcode bits 0-2.

Instruction Mask Condition
bno 000, Unordered
bg 001, Greater
be 010, Equal
bge 011, Greater or equal
bl 100, Less
bne 101, Not equal
ble 110, Less or equal
bo 111, Ordered

Action: if((mask & AC.cc) || (mask == AC.cc))

{ temp[31:2] = sign_extension(targ[23:2]);
IP[31:2] = IP[31:2] + temp[31:2];
IP[1:0] =0;

}

Faults: STANDARD Refer to Section 6.1.6, “Faults” on page 6-4

6-20 i960® VH Processor Developer’s Manual

intel.

Instruction Set Reference

Example: # Assune (AC.cc AND 100,) # O
bl xyz # 1P = xyz;
Opcode: be 12H CTRL
bne 15H CTRL
bl 14H CTRL
ble 16H CTRL
bg 11H CTRL
bge 13H CTRL
bo 17H CTRL
bno 10H CTRL
See Also: b, bx, bbc, bbs, COMPARE AND BRANCH<cc>, bal, balx, BRANCH<cc>

i960® VH Processor Developer's Manual

6-21

Instruction Set Reference

6.2.12

6-22

bswap

Mnemonic:

Format:

Description:

Action:

Faults:

Example:

Opcode:

See Also:

Notes:

intel.

bswap Byte Swap
bswap srcl:src, src2:dst
reg/lit reg

Alters the order of bytes in a word, reversing its “endianess.”
Copies bytes 3:0 afrcl to src2 reversing order of the bytes. Byte Osl
becomes byte 3 afc2, byte 1 ofsrcl becomes byte 2 afc2, etc.

dst = (rotate_left(src 8) & 0xOOFFOOFF)
+(rotate_left(src 24) & OxFFOOFF00);

STANDARD Refer toSection 6.1.6, “Faults” on page 6-4
98 = Ox89ABCDEF
bswap g8, gl0 # Reverse byte order.

910 now OxEFCDAB89
bswap 5ADH REG

scanbyte, rotate

This core instruction is not implemented on Cx, Kx and Sx 80960 processors.

i960® VH Processor Developer’s Manual

intgl.
6.2.13 call

Mnemonic:

Format:

Description:

Action:

Faults:
Example:

Opcode:

See Also:

Instruction Set Reference

call Call
call targ
disp

Calls a new procedure. targ operand specifies the IP of called procedure’s
first instruction. When using the Intel i960 processor assentatgrmust be
a label.

In executing this instruction, the processor performs a local call operation as
described inSection 7.1.3.1, “Call Operation” on page .74&s part of this
operation, the processor saves the set of local registers associated with the
calling procedure and allocates a new set of local registers and a new stack
frame for the called procedure. Processor then goes to the instruction
specified withtarg and begins execution.

targ can be no farther than®2to (223 - 4) bytes from current IP.

Wait for any uncompleted instructions to finish.
implicit_syncf();
temp = (SP + (SALIGN*16 - 1)) & ~(SALIGN*16 - 1)
Round stack pointer to next boundary.
SALIGN=1 on 80960VH.
RIP=1P;
if (register_set_available)
allocate_new_frame();
else
{ save_register_set(); # Save register set in memory at its FP.
allocate_new_frame();
}
Local register references now refer to new frame.
IP[31:2] = effective_address(targ[31:2]);

IP[1:0] = O;

PFP = FP;

FP = temp;

SP =temp + 64;

STANDARD Refer toSection 6.1.6, “Faults” on page 6-4
call xyz # 1P = xyz

call 09H CTRL

bal, calls, callx

i960® VH Processor Developer’s Manual 6-23

Instruction Set Reference

6.2.14 calls
Mnemonic:
Format:
Description:
Action:

6-24

intel.

calls Call System
calls targ
reg/lit

Calls asystem procedure. The targ operand gives the number of the procedure

being called. For calls, the processor performs system call operation
described in Section 7.5, “System Calls” on page 7-1&8g provides an index

to a system procedure table entry from which the processor gets the called
procedure’s IP.

The called procedure can be a local or supervisor procedure, depending on
system procedure table entry type. If it is a supervisor procedure, then the
processor switches to supervisor mode (if not already in this mode).

As part of this operation, processor also allocates a new set of local registers
and a new stack frame for called procedure. If the processor switches to
supervisor mode, then the new stack frame is created on the supervisor stack.

Wait for any uncompleted instructions to finish.
implicit_syncf();
If (targ > 259)
generate_fault(PROTECTION.LENGTH);
temp = get_sys_proc_entry(sptbase + 48 + 4*targ);
sptbase is address of supervisor procedure table.

if (register_set_available)
allocate_new_frame();
else
{ save_register_set(); # Save aframe in memory at its FP.
allocate_new_frame();
Local register references now refer to new frame.

}
RIP = IP;
IP[31:2] = effective_address(temp[31:2]);
IP[1:0] = O;
if (temp.type ==local) || (PC.em == supervisor))
{ # Local call or supervisor call from supervisor mode.
tempa = (SP + (SALIGN*16 - 1)) & ~(SALIGN*16 - 1)
Round stack pointer to next boundary.
SALIGN=1 on 80960VH.
temp.RRR = 00§
}
else # Supervisor call from user mode.
{ tempa=SSP; # Get Supervisor Stack pointer.
temp.RRR = 019| PC.te;
PC.em = supervisor;
PC.te =temp.te;
}
PFP = FP;

PFP.rrr = temp.RRR;

i960® VH Processor Developer’s Manual

Faults:

Example:

Opcode:

See Also:

Instruction Set Reference

FP = tempa;

SP = tempa + 64,

STANDARD Refer to Section 6.1.6, “Faults” on page 6-4

PROTECTION.LENGTH Specifies a procedure number greater than
259.

calls ri12 # | P = value obtained from

procedure table for procedure
nunmber given in rl2.
calls 3 # Call procedure 3.

calls 660H REG

bal, call, callx, ret

i960® VH Processor Developer’s Manual 6-25

[]
Instruction Set Reference I ntel ®

6.2.15 callx

Mnemonic: callx Call Extended

Format: callx targ
mem

Description: Calls new procedure. targ specifies IP of called procedure’s first instruction.

In executingcallx, the processor performs a local call as described in
Section 7.1.3.1, “Call Operation” on page 74 part of this operation, the
processor allocates a new set of local registers and a new stack frame for the
called procedure. Processor then goes to the instruction specifiedargth

and begins execution of new procedure.

callx performs the same operation as call except the target instruction can be
farther than -23 to (223 - 4) bytes from current IP.

Thetarg operand is a memory type, which allows the full range of addressing
modes to be used to specify the IP of the target instruction. The “IP +
displacement” addressing mode allows the instruction to be IP-relative.
Indirect calls can be performed by placing the target address in a register and
then using one of the register-indirect addressing modes.

Refer toChapter 2, “Data Types and Memory Addressing Modes'more
information.

Action: # Wait for any uncompleted instructions to finish;
implicit_syncf();
temp = (SP + (SALIGN*16 - 1)) & ~(SALIGN*16 - 1)
Round stack pointer to next boundary.
SALIGN=1 on 80960VH.
RIP = 1P;
if (register_set_available)
allocate_new_frame();
else
{ save_reqister_set(); # Save register set in memory at its FP;
allocate_new_frame();
}
Local register references now refer to new frame.
IP[31:2] = effective_address(targ[31:2]);
IP[1:0] = 0;
PFP = FP;
FP =temp;
SP =temp + 64;

Faults: STANDARD Refer toSection 6.1.6, “Faults” on page 6-4

Example: cal I x (gb5) # 1P =(g5), where the address in

g5
is the address of the new
procedure.

Opcode: callx 86H MEM

See Also: bal, call, calls, ret

6-26 i960® VH Processor Developer’s Manual

intgl.
6.2.16 chkbit

Mnemonic:

Format:

Description:

Action:

Faults:

Example:

Opcode:
See Also:

Side Effects:

Instruction Set Reference

chkbit Check Bit
chkbit bitpos, src2
reg/lit reg/lit

Checks bit in src2 designated by bitpos and sets condition code according to
value found. If bit is set, then condition code is set to 010,; if bit is clear, then
condition code is set to 000,.

if (((src2 & 2+* (bitpos % 32)) == 0)

AC.cc = 000y;
else
AC.cc = 010y;
STANDARD Refer to Section 6.1.6, “Faults” on page 6-4
chkbit 13, g8 # Checks bit 13 in g8 and sets
AC. cc according to the result.
chkbit 5AEH REG

alterbit, clrbit, notbit, setbit, cmpi, cmpo

Sets the condition code in the arithmetic controls.

i960® VH Processor Developer’s Manual 6-27

Instruction Set Reference

6.2.17

6-28

clrbit

Mnemonic:

Format:

Description:

Action:
Faults:
Example:
Opcode:

See Also:

intel.

clrbit Clear Bit
clrbit bitpos, src, dst
reg/lit reg/lit reg

Copies src value to dst with one bit cleared. bitpos operand specifies bit to be
cleared.

dst = src & ~(2** (bitpos%32));

STANDARD Refer to Section 6.1.6, “Faults” on page 6-4
clrbit 23, g3, g6 # g6 = g3 with bit 23 cleared.
clrbit 58CH REG

alterbit, chkbit, notbit, setbit

i960® VH Processor Developer’s Manual

[]
I ntel o Instruction Set Reference

6.2.18 cmpdeci, cmpdeco

Mnemonic: cmpdeci Compare and Decrement I nteger
cmpdeco Compare and Decrement Ordinal
Format: cmpdec* srcl, src2, dst
reg/lit reg/lit reg
Description: Compares src2 and srcl values and sets the condition code according to

comparison results. src2 is then decremented by one and result is stored in dst.
The following table shows condition code setting for the three possible results
of the comparison.

Condition Code Comparison
100, srcl < src2
010, srcl = src2
001, srcl > src2

These ingtructions are intended for use in ending iterative loops. For
cmpdeci, integer overflow is ignored to allow looping down through the
minimum integer values.

Action: if(srcl < src2)
AC.cc = 100;
eseif(srcl == src2)
AC.cc = 010y;
ese
AC.cc = 001y;
dst = src2 -1, # Overflow suppressed for cmpdeci.
Faults: STANDARD Refer to Section 6.1.6, “Faults” on page 6-4
Example: cnpdeci 12, g7, gl # Conpares g7 with 12 and sets
AC.cc to indicate the result
91 = g7 - 1.
Opcode: cmpdeci 5A7TH REG
cmpdeco 5A6H REG
See Also: cmpinco, cmpo, cmpi, cmpinci, COMPARE AND BRANCH<cc>
Side Effects: Sets the condition code in the arithmetic controls.

i960® VH Processor Developer’s Manual 6-29

[]
Instruction Set Reference I ntel ®

6.2.19 cmpinci, cmpinco

Mnemonic: cmpinci Compare and Increment Integer
cmpinco Compare and Increment Ordinal
Format: cmpinc* srcl, src2, dst
reg/lit reg/lit reg
Description: Compares src2 and srcl values and sets the condition code according to

comparison results. src2 is then incremented by one and result is stored in dst.
The following table shows condition code settings for the three possible
comparison results.

Condition Code Comparison
100, srcl < src2
010, srcl = src2
001, srcl > src2

Theseinstructions are intended for usein ending iterative loops. For cmpinci,
integer overflow isignored to alow looping up through the maximum integer
values.

Action: if (srcl<src2)
AC.cc = 100y;
eseif (srcl == src2)
AC.cc = 010;
ese
AC.cc = 001y;

dst=src2+1; #Overflow suppressed for cmpinci.

Faults: STANDARD Refer to Section 6.1.6, “Faults” on page 6-4

Example: cnpinco r8, g2, g9 # Conpares the values in g2
and r8 and sets AC.cc to
indicate the result:
#0909 =92 +1

Opcode: cmpinci 5A5H REG

cmpinco 5A4H REG
See Also: cmpdeco, cmpo, cmpi, cmpdeci, COMPARE AND BRANCH<cc>
Side Effects: Sets the condition code in the arithmetic controls.

6-30 i960® VH Processor Developer’s Manual

intgl.
6.2.20 COMPARE

Mnemonic:

Format:

Description:

Action:

Faults:

Example:

Instruction Set Reference

cmpi Compare Integer

cmpib Compare Integer Byte
cmpis Compare Integer Short
cmpo Compare Ordina

cmpob Compare Ordinal Byte
cmpos Compare Ordinal Short
cmp* srcl, src2

reg/lit reg/lit

Compares src2 and srcl values and sets condition code according to
comparison results. The following table shows condition code settings for the
three possible comparison results.

Condition Code Comparison
100, srcl < src2
010, srcl = src2
001, srcl > src2

cmpi* followed by a branch-if instruction is equivalent to a
compare-integer-and-branch instruction. The latter method of comparing and
branching produces more compact code; however, the former method can
execute byte and short compares without masking. The same is true for
cmpo* and the compare-ordinal-and-branch instructions.

For cmpo, cmpi, N = 31.
For cmpos, cmpis, N = 15.
For cmpob, cmpib, N = 7.

if (src1[N:0] < src2[N:0Q])

AC.cc = 100;
elseif (srcl[N:0] == src2[N:0])
AC.cc = 010;
elseif (src1[N:0] > src2[N:Q])
AC.cc = 001y;
STANDARD Refer to Section 6.1.6, “Faults” on page 6-4
cnpo r9, 0x10 # Conpares the value in r9 wth
0x10
and sets AC.cc to indicate the
result.
bg xyz # Branches to xyz if the val ue of

ro
was greater than 0x10.

i960® VH Processor Developer’s Manual 6-31

Instruction Set Reference

6-32

Opcode:

See Also:

Side Effects:

Notes:

cmpi 5A1H
cmpib 595H
cmpis 597H
cmpo 5A0H
cmpob 594H
cmpos 596H

intel.

REG
REG
REG
REG
REG
REG

COMPARE AND BRANCH<cc>, cmpdeci, cmpdeco, cmpinci, cmpinco,

concmpi, concmpo

Sets the condition code in the arithmetic controls.

The core instructions cmpib, cmpis, compob and compos are not imple-
mented on 1960 Cx, Kx and Sx processors.

i960® VH Processor Developer’s Manual

[]
I ntel o Instruction Set Reference

6.2.21 COMPARE AND BRANCH<cc>

Mnemonic: cmpibe Compare Integer and Branch If Equal
cmpibne Compare Integer and Branch If Not Equal
cmpibl Compare Integer and Branch If Less
cmpible Compare Integer and Branch If Less Or Equal
cmpibg Compare Integer and Branch If Greater

cmpibge Compare Integer and Branch If Greater Or Equal
cmpibo Compare Integer and Branch If Ordered
cmpibno Compare Integer and Branch If Not Ordered

cmpobe Compare Ordinal and Branch If Equal
cmpobne Compare Ordinal and Branch If Not Equal
cmpobl Compare Ordinal and Branch If Less
cmpoble Compare Ordinal and Branch If Less Or Equal
cmpobg Compare Ordinal and Branch If Greater
cmpobge Compare Ordinal and Branch If Greater Or Equal
Format: cmpib* srcl, src2, targ
reg/lit reg disp
cmpob* srcl, src2, targ
reg/lit reg disp
Description: Compares src2 and srcl values and sets AC register condition code according

to comparison results. If logical AND of condition code and mask part of
opcode is not zero, then the processor branches to instruction specified with
targ; otherwise, the processor goes to next instruction.

targ can be no farther than -212 to (212 - 4) bytesfrom current IP When using the Intel
1960 processor assembler, targ must be a label that specifies target instruction’s IP.

Functions these instructions perform can be duplicated witth@ or cmpo
followed by a branch-if instruction, as describe&éttion 6.2.20, “COMPARE”"
on page 6-31

The following table shows the condition-code mask for each instruction. The
mask is in bits 0-2 of the opcode.

Instruction Mask Branch Condition
cmpibno 000, No Condition
cmpibg 001, srcl > src2
cmpibe 010, srcl = src2
cmpibge 011, srcl= src2
cmpibl 100, srcl < sre2
cmpibne 101, srcl# src2
cmpible 110, srcl < src2
cmpibo 111, Any Condition
cmpobg 001, srcl > src2
cmpobe 010, srcl = src2
cmpobge 011, srcl= src2

i960® VH Processor Developer’s Manual 6-33

[]
Instruction Set Reference I ntel ®

Instruction Mask Branch Condition
cmpobl 100, srcl < src2

cmpobne 101, srcl % src2
cmpoble 110, srcl < src2

cmpibo always branches; cCmpibno never branches.

Action: if(srcl < src2)

AC.cc = 100y;

elseif(srcl == src2)
AC.cc = 010y;

ese
AC.cc =001y

if((mask && AC.cc) !=000,)
IP[31:2] = efa[31:2]; # Resume execution at the new IP.
IP[1:0] = 0;

Faults: STANDARD Refer to Section 6.1.6, “Faults” on page 6-4

Example: # Assume g3 < g9
cnpi bl g3, g9, xyz # g9 is conpared with g3;
1P = xyz.
assune 19 > r7
cnpobge 19, r7, xyz# 19 is conpared with r7;

1P = xyz.
Opcode: cmpibe 3AH COBR
cmpibne 3DH COBR
cmpibl 3CH COBR
cmpible 3EH COBR
cmpibg 39H COBR
cmpibge 3BH COBR
cmpibo 3FH COBR
cmpibno 38H COBR
cmpobe 32H COBR
cmpobne 35H COBR
cmpobl 34H COBR
cmpoble 36H COBR
cmpobg 31H COBR
cmpobge 33H COBR
See Also: BRANCH<cc>, cmpi, cmpo, bal, balx
Side Effects: Sets the condition code in the arithmetic controls.

6-34 i960® VH Processor Developer’s Manual

intel.

6.2.22

Table 6-5.

Instruction Set Reference

concmpi, concmpo

Mnemonic:

Format:

Description:

Action:

Faults:

Example:

concmpi Conditional Compare Integer
concmpo Conditional Compare Ordinal

concmp* srcl, src2
reg/lit reg/lit

Compares src2 and srcl values if condition code bit 2 is not set. If
comparison is performed, then condition code is set according to comparison
results. Otherwise, condition codes are not altered.

Theseinstructions are provided to facilitate bounds checking by means of two-sided
range comparisons (for example, is A between B and C?). They are generally used
after acompare ingtruction to test whether avalue is inclusively between two other
vaues.

The examplebdow illustrates this application by testing whether g3 vaueis between
g5 and g6 values, where g5 is assumed to beless than g6. First acomparison (cmpo)
of g3 and g6 is performed. If g3 is less than or equa to g6 (i.e, condition code is
ether 010, or 001,), then aconditional comparison (concmpo) of g3and g5 isthen
performed. If g3 is grester than or equa to g5 (indicating that g3 iswithin the bounds
of g5 and g6), then condition code is et to 010,; otherwise, it isset to 001,.

if (AC.cc!=1XX5)
{ if(srcl<=src2)

AC.cc = 010;
ese

AC.cc = 001y;
}
STANDARD Refer to Section 6.1.6, “Faults” on page 6-4
cnpo g6, g3 # Conpares g6 and g3

and sets AC. cc.

concnpo g5, g3 # 1f AC.cc < 1002 (g6 S g3)

g5 is compared with g3.

At this point, depending on the register ordering, the condition code is one of
those listed on Table 6-5.

concmpo Example: Register Ordering and CC

Order CcC

g5<g6<g3 100,

g5<g6=g3 010,

g5<0g3<g6 010,

g5=03<g6 010,

g3<g5<g6 001,
Opcode: concmpi 5A3H REG
concmpo 5A2H REG

i960® VH Processor Developer’s Manual 6-35

[]
Instruction Set Reference I ntel ®

See Also: cmpo, cmpi, cmpdeci, cmpdeco, cmpinci, cmpinco, COMPARE AND
BRANCH<cc>
Side Effects: Sets the condition code in the arithmetic controls.

6-36 i960® VH Processor Developer’s Manual

intgl.
6.2.23 dcctl

Mnemonic:

Format:

Description:

Instruction Set Reference

dcctl Data-cache Control
srcl, src2, src/dst
reg/lit reg/lit reg

Performs management and control of the data cache including disabling,
enabling, invalidating, ensuring coherency, getting status, and storing cache
contents to memory. Operations are indicated by the value of srcl. src2 and
src/dst are also used by some operations. When needed by the operation, the
processor orders the effects of the operation with previous and subsequent
operations to ensure correct behavior.

Table 6-6. dcctl Operand Fields

Function srcl src2 src/dst

Disable D-cache 0 NA NA
Enable D-cache 1 NA NA
(S!gl;glhg\vahdate 5 NA NA
Ensure cache coherencyl 3 NA NA

src: NA
Get D-cache status 4 NA dst: Receives

D-cache status (Figure 6-1).
Reserved 5 NA NA
Store D-cache to memory 6 %55&{%23 ngguDrngclh)e set #'s to be stored
Reserved 7 NA NA
Quick invalidate 8 1 NA
Reserved 9 NA NA

1. Invalidates data cache on 80960VH.

i960® VH Processor Developer’s Manual 6-37

Instruction Set Reference

Figure 6-1. dcctl src1and src/dst Formats
31 srcl Format 8 7 0
Function Type
src/dst Format for Data Cache Status
31 28 27 16 15 12 11 8 7 4 3 0
of Ways-1
log, (# of Sets) —T j T
log, (Atoms/Line) Enabled = 1
log, (Bytes/Atom) Disabled = 0
src/dst Format for Store Data Cache Sets to Memory
31 16 15 0
Ending Set # Starting Set #
Table 6-7. dcctl Status Values and D-Cache Parameters
Value Value on 80960VH
bytes per atom 4
atoms per line 4
number of sets 128 (full)
number of ways 1 (Direct)
cache size 2-Kbytes(full)
Status[0] (enable / disable) Oorl
Status[1:3] (reserved) 0
Status[7:4] (log,(bytes per atom)) 2
Status[11:8] (log,(atoms per line)) 2
Status[15:12] (logo(number of sets)) 7 (full)
Status[27:16] (number of ways - 1) 0
6-38 i960® VH Processor Developer’s Manual

INtal.

Figure 6-2. Store Data Cache to Memory Output Format

Instruction Set Reference

0 Destination
Address (DA)
Tag (Starting set) DA + 4H
Valid Bits (Starting set) DA + 8H
o Word 0 DA + CH
8§ |word1 DA + 10H
= Word 2 DA + 14H
Word 3 DA + 18H
0 DA + 1CH
° Tag (Starting set + 1) DA + 20H
g Valid Bits (Starting set + 1) DA + 24H

Figure 6-3. D-Cache Tag and Valid Bit Formats

31

80960VH Cache Tag Format (2 Kbyte Cache)

2120

Actual Address Bits 31:11

31

Valid Bits Values

Valid Bit for Word 3 of current Set and Way 4T
Valid Bit for Word 2 of current Set and Way

Valid Bit for Word 1 of current Set and Way
Valid Bit for Word 0 of current Set and Way
Tag Valid Bit for current Set and Way

i960® VH Processor Developer's Manual

6-39

Instruction Set Reference

Action: if (PC.em != supervisor)
generate fault(TY PE.MISMATCH);
order_wrt(previous_operations);
switch (src1[7:0]) {

case 0:

case 1.

case 2:

case 4.

6-40

Disable data cache.

disable _Dcache();

break;

Enable data cache.

enable_Dcache();

break;

Global invalidate data cache.

invalidate Dcache();

break;

Ensure coherency of data cache with memory.

Causes data cache to be invalidated on this processor.
ensure_Dcache_coherency();

break;

Get data cache status into src_dst.

if (Dcache_enabled) src_dst[0] = 1;

else src_dst[0] = 0;

Atom is 4 bytes.

src_dst[7:4] = log2(bytes per atom);

4 atoms per line.

src_dst[11:8] = log2(atoms per line);

src_dst[15:12] = log2(number of sets);
src_dst[27:16] = number of ways-1; #in lines per set
cache size = ([27:16]+1) << ([7:4] + [11:8] + [15:12]).
break;

i960® VH Processor Developer’s Manual

[]
I ntel o Instruction Set Reference

case 6: # Store data cache sets to memory pointed to by src2.
start = src_dst[15:0] # Starting set number.
end =src_dst[31:16] # Ending set number.

(zero-origin).
if (end >= Dcache_max_sets) end = Dcache_max_sets - 1;
if (start > end) generate fault
(OPERATION.INVALID_OPERAND);
memadr = src2; # Must be word-aligned.
if (Ox3 & memadr! = 0)
generate_fault(OPERATION.INVALID_OPERAND)
for (set = start; set <= end; set++){
Set_Dataisdescribed at end of this code flow.
memory[memadr] = Set_Data[set];
memadr += 4;
for (way = 0; way < numb_ways; way++)
{memory[memadr] = tagg[set][way];
memadr += 4;
memory[memadr] = valid_bits[set][way];
memadr += 4;
for (word = 0; word < words _in_line; word++)
{memory[memadr] =
Dcache_ling[set][way][word];
memadr += 4;
}
}

}
break;

default: # Reserved.
generate_fault(OPERATION.INVALID_OPERAND);
break;

order_wrt(subsequent_operations);

Faults: STANDARD Refer to Section 6.1.6, “Faults” on page 6-4
TYPE.MISMATCH Attempt to execute instruction while not in
supervisor mode.
OPERATION.INVALID_OPERAND

Example: # g0 = 6, g1 = 0x10000000,
g2 = 0x001F0001
dcctl g0, 91,92 # Store the status of D-cache

sets 1-O0x1F to nenory starting
at 0x10000000.

Opcode: dcctl 65CH REG

i960® VH Processor Developer’s Manual 6-41

[]
Instruction Set Reference I ntel ®

See Also: sysctl

Notes: DCCTL function 6 stores data-cache sets to a target range in external mem-
ory. For any memory location that is cached and also within the target range
for function 6, the corresponding word-valid bit is cleared after function 6
completes to ensure data-cache coherency. Thus, dcctl function 6 can alter
the state of the cache after it completes, but only the word-valid bits. In al
cases, even when the cache sets to store to external memory overlap the cache
sets that map the target range in external memory, DCCTL function 6 always
returns the state of the cache asit existed when the DCCTL was issued.

This instruction is implemented on the 80960VH, 80960Hx and 80960Jx
processor families only, and may or may not be implemented on future 1960
processors.

6-42 i960® VH Processor Developer’s Manual

intel.

6.2.24

divi, divo
Mnemonic:

Format:

Description:

Action:

Faults:

Example:

Opcode:

See Also:

Instruction Set Reference

divi Divide Integer

divo Divide Ordinal

div* srcl, sre2, dst
reg/lit reg/lit reg

Divides src2 value by srcl value and stores the result in dst. Remainder is
discarded.

For divi, an integer-overflow fault can be signaled.
divo:
if (srcl==0)
{ dst=undefined_value;
generate_fault (ARITHMETIC.ZERO_DIVIDE);

dse

dst = src2/srcl;
divi:
if (srcl ==0)

{ dst=undefined_value;
generate_fault (ARITHMETIC.ZERO_DIVIDE);}
dseif ((src2 ==-2**31) & & (srcl ==-1))

{ dst = -2**31
if (ACom==1)
AC.of =1,
else
generate fault (ARITHMETIC.OVERFLOW);

}
else

dst =src2/ srcd;
STANDARD Refer to Section 6.1.6, “Faults” on page 6-4

ARITHMETIC.ZERO_DIVIDE Thesrcl operand is O.

ARITHMETIC.OVERFLOW Result too large for destination registiri
only). If overflow occurs and AC.om=1,
then fault is suppressed and AC.of is set to 1.
Result's least significant 32 bits are stored in
dst.

divo r3, r8, rl13 # r13 =r8/r3

divi 74BH REG
divo 70BH REG

ediv, mulo, muli, emul

i960® VH Processor Developer’s Manual 6-43

Instruction Set Reference

6.2.25 ediv

Mnemonic:

Format:

Description:

Action:

Faults:
Example:

Opcode:

See Also:

6-44

intel.

ediv Extended Divide
ediv srcl, src2, dst
reg/lit reg/lit reg

Divides src2 by srcl and stores result in dst. The src2 value is along ordinal
(64 bits) contained in two adjacent registers. src2 specifies the lower
numbered register which contains operand’s least significantsti&must
be an even numbered register (i.e., g0, g2, ... or r4, r6, r&cl)value is a
normal ordinal (i.e., 32 bits).

The result consists of a one-word remainder and a one-word quotient.
Remainder is stored in the register designatedshyguotient is stored in the
next highest numbered registdst must be an even numbered register (i.e.,
g0, g2, ... 14,16, 18, ...).

This instruction performs ordinal arithmetic.

If this operation overflows (quotient or remainder do not fit in 32 bits), then
no fault is raised and the result is undefined.

if((reg_number(src2)%2 = 0) || (reg_number(dst)%?2 != 0))
{ dst[0] = undefined_value;
dst[1] = undefined_value;
generate_fault (OPERATION.INVALID_OPERAND);
}
else if(srcl == 0)
{ dst[0] = undefined_value;
dst[1] = undefined_value;
generate_fault(ARITHMETIC.DIVIDE_ZERO);
}
else # Quotient
{ dst[1] = ((src2 + reg_value(src2[1]) * 2**32) / src1)[31:0];
#Remainder
dst[0] = (src2 + reg_value(src2[1]) * 2**32
- ((src2 + reg_value(src2[1]) * 2**32 / srcl) * srcl);

}
STANDARD Refer toSection 6.1.6, “Faults” on page 6-4
ARITHMETIC.ZERO_DIVIDE Thesrcl operand is 0.
ediv g3, 94, 910 # 910 = remai nder of g4, g5/g3

gl11 = quotient of g4, g5/g3
ediv 671H REG

emul, divi, divo

i960® VH Processor Developer’s Manual

intgl.
6.2.26 emul

Mnemonic:

Format:

Description:

Action:

Faults:
Example:

Opcode:

See Also:

Instruction Set Reference

emul Extended Multiply
emul srcd, src2, dst
reg/lit reg/lit reg

Multiplies src2 by srcl and stores the result in dst. Result is along ordinal (64
bits) stored in two adjacent registers. dst specifies lower numbered register,
which receives the result's least significant bitlst must be an even
numbered register (i.e., g0, g2, ... r4, 16, 18, ...).

This instruction performs ordinal arithmetic.

if(reg_number(dst)%2 != 0)
{ dst[0] = undefined_value;
dst[1] = undefined_value;
generate_fault((OPERATION.INVALID_OPERAND);
}
else
{ dst[0] = (srcl * src2)[31:0];
dst[1] = (srcl * src2)[63:32];

}

STANDARD Refer toSection 6.1.6, “Faults” on page 6-4
emul r4, r5, g2 # 02,093 =r4 * rb5.

emul 670H REG

ediv, muli, mulo

i960® VH Processor Developer’s Manual 6-45

[]
Instruction Set Reference I ntel ®

6.2.27 eshro

Mnemonic: eshro Extended Shift Right Ordinal
Format: eshro srcl, src2, dst
reg/lit reg/lit reg
Description: Shifts src2 right by (srcl mod 32) places and stores the result in dst. Bits

shifted beyond the least-significant bit are discarded.

src2 valueis along ordina (i.e., 64 bits) contained in two adjacent registers.

src2 operand specifies the lower numbered register, which contains operand’s
least significant bitssrc2 operand must be an even numbered register (i.e., r4,
ré, r8, ... or g0, g2).

srcl operand is a single 32-bit register or literal where the lower 5 bits specify
the number of places that the2 operand is to be shifted.

The least significant 32 bits of the shift operation result are stomsd. in

Action: if(reg_number(src2)%?2 != 0)
{ dst[0] = undefined_value;
dst[1] = undefined_value;
generate_faultf(OPERATION.INVALID_OPERAND);

}
else
dst = shift_right((src2 + reg_value(src2[1]) * 2**32),(src1%32))[31:0];
Faults: STANDARD Refer toSection 6.1.6, “Faults” on page 6-4
Example: eshro g3, g4, g1l # gl1l = g4,5 shifted right by
(g3 MOD 32).

Opcode: eshro 5D8H REG
See Also: SHIFT, extract
Notes: This core instruction is not implemented on the Kx and Sx 80960 processors.

6-46 i960® VH Processor Developer’s Manual

intgl.
6.2.28 extract

Mnemonic:

Format:

Description:

Action:

Faults:

Example:

Opcode:

See Also:

Instruction Set Reference

extract Extract
extract bitpos len src/dst
reg/lit reg/lit reg

Shifts a specified bit field in src/dst right and zero fills bitsto left of shifted bit
field. bitpos value specifies the least significant bit of the bit field to be
shifted; len value specifies bit field length.

src_dst = (src_dst >> min(bitpos, 32))
& ~ (OXFFFFFFFF << len);

STANDARD Refer to Section 6.1.6, “Faults” on page 6-4

extract 5, 12, g4 # g4 = g4 with bits 5 through
16 shifted right.

extract 651H REG
modify

i960® VH Processor Developer's Manual 6-47

Instruction Set Reference

6.2.29

6-48

FAULT<cc>

Mnemonic:

Format:

Description:

Action:

Faults:

Example:

faulte
faultne
faultl
faultle
faultg
faultge
faulto
faultno

fault*

Fault If Equal

Fault If Not Equal

Fault If Less

Fault If Less Or Equal
Fault If Greater

Fault If Greater Or Equal
Fault If Ordered

Fault If Not Ordered

Raises a constraint-range fault if the logical AND of the condition code and
opcode’s mask part is not zero. Faultno (unordered), fault is raised if
condition code is equal to 090

faulto andfaultno are provided for use by implementations with a floating
point coprocessor. They are used for compare and branch (or fault) operations
involving real numbers.

The following table shows the condition-code mask for each instruction. The

mask is opcode bits 0-2.

Instruction Mask Condition
faultno 000, Unordered
faultg 001, Greater
faulte 010, Equal
faultge 011, Greater or equal
faultl 100, Less
faultne 101, Not equal
faultle 110, Less or equal
faulto 111, Ordered

For all except faultno:
if(mask && AC.cc |= 00Q)
generate_fault(CONSTRAINT.RANGE);

faultno:
if(AC.cc == 00Q)
generate_fault(CONSTRAINT.RANGE);

STANDARD
CONSTRAINT.RANGE

Assune (AC. cc AND 110,) #0005,
faultle
faul t

i960® VH Processor Developer’s Manual

Refer toSection 6.1.6, “Faults” on page 6-4
If condition being tested is true.

Generat e CONSTRAI NT_RANGE

Opcode: faulte 1AH
faultne 1DH
faultl 1CH
faultle 1EH
faultg 19H
faultge 1BH
faulto 1FH
faultno 18H
See Also: BRANCH<cc>, TEST<cc>

i960® VH Processor Developer's Manual

CTRL
CTRL
CTRL
CTRL
CTRL
CTRL
CTRL
CTRL

Instruction Set Reference

6-49

Instruction Set Reference

6.2.30 flushreg

Mnemonic:
Format:

Description:

Action:

Faults:
Example:

Opcode:

6-50

intel.

flushreg Flush Local Registers
flushreg

Copies the contents of every cached register set, except the current set, to its
associated stack frame in memory. The entire register cache isthen marked as
purged (or invalid). On areturn to a stack frame for which the local registers
are not cached, the processor reloads the locals from memory.

flushreg is provided to alow a debugger or application program to
circumvent the processor’'s normal call/return mechanism. For example, a
debugger may need to go back several frames in the stack on the next return,
rather than using the normal return mechanism that returns one frame at a
time. Since the local registers of an unknown number of previous stack frames
may be cached, fushreg must be executed prior to modifying the PFP to
return to a frame other than the one directly below the current frame.

To reduce interrupt latenc§lushreg is abortable. If an interrupt of higher
priority than the current process is detected wihilehreg is executing, then
flushreg flushes at least one frame and aborts. After executing the interrupt
handler, the processor returns to theshreg instruction and re-executes it.
flushreg does not reflush any frames that were flushed before the interrupt
occurred.flushreg is not aborted by high priority interrupts if tracing is
enabled in the PC or if any faults are pending at the time of the interrupt.

Each local cached register set except the current one is flushed to its
associated stack frame in memory and marked as purged, meaning that they
are reloaded from memory if and when they become the current local register
set.

STANDARD Refer toSection 6.1.6, “Faults” on page 6-4
flushreg
flushreg 66DH REG

i960® VH Processor Developer’s Manual

[]
I ntel o Instruction Set Reference

6.2.31 fmark

Mnemonic: fmark Force Mark
Format: fmark
Description: Generates a mark trace event. Causes a mark trace event to be generated,

regardless of mark trace mode flag setting, providing the trace enable bit, bit O
in the Process Controls, is set.

For more information on trace fault generation, refer to Chapter 10, “Tracing
and Debugging’

Action: A mark trace event is generated, independent of the setting of the
mark-trace-mode flag.
Faults: STANDARD Refer toSection 6.1.6, “Faults” on page 6-4
TRACE.MARK A TRACE.MARK fault is generated if
PC.te=1.
Example: # Assune PC.te =1
f mar k

Mark trace event is generated at this point in the
instruction stream

Opcode: fmark 66CH REG

See Also: mark

i960® VH Processor Developer’s Manual 6-51

[]
Instruction Set Reference I ntel ®

6.2.32 halt

Mnemonic: halt Halt CPU

Format: halt srcl
reg/lit

Description: Causes the 1960 core processor to enter HALT mode. Entry into Halt mode
allows the interrupt enable state to be conditionally changed based on the
value of srcl.

The processor exits Halt mode on a hardware reset or upon receipt of an
interrupt that should be delivered based on the current process priority. After
executing the interrupt that forced the processor out of Halt mode, execution
resumes at the instruction immediately after the halt instruction. The
processor must be in supervisor mode to use this instruction.

srcl Operation

0 Disable interrupts and halt

1 Enable interrupts and halt

2 Use current interrupt enable state and halt

Action: implicit_syncf;
if (PC.em != supervisor)
generate_fault(TY PE.MISMATCH);
switch(srcl) {
case 0: # Disable interrupts. set ICON.gie.
global_interrupt_enable = true; break;
case 1: # Enable interrupts. clear ICON.gie.
global_interrupt_enable = false; break;
case 2: # Use the current interrupt enable state.
break;
default:
generate_fault(OPERATION.INVALID_OPERAND);
break;

}

ensure_bus is_quiescient;
enter HALT_mode;

Faults: STANDARD Refer to Section 6.1.6, “Faults” on page 6-4
TYPE.MISMATCH Attempt to execute instruction while not in
supervisor mode.

Example: #1CONgie =1, g0 =1, Interrupts
di sabl ed.
halt g0 # Enable interrupts and halt.

6-52 i960® VH Processor Developer’s Manual

Opcode:

Notes:

Instruction Set Reference

halt 65DH REG

Thisinstruction is implemented on the 80960VH and 80960Jx processor fam-
ilies only, and may or may not be implemented on future i960 processors.

i960® VH Processor Developer’s Manual 6-53

Instruction Set Reference

6.2.33

Table 6-8.

6-54

icctl

Mnemonic:

Format:

Description:

icctl

icctl

srcl,
reg/lit

src2

Instruction-cache Control

src/dst

reg/l’it reg

Performs management and control of the instruction cache including
disabling, enabling, invalidating, loading and locking, getting status, and
storing cache sets to memory. Operations are indicated by the value of srcl.
Some operations also use src2 and src/dst. When needed by the operation, the
processor orders the effects of the operation with previous and subsequent
operations to ensure correct behavior. For specific function setup, see the
following tables and diagrams:

icctl Operand Fields

Function srcl src2 src/dst
Disable |-cache 0 NA NA
Enable I-cache 1 NA NA
Invalidate I-cache 2 NA NA
Load and lock 3 src: Starting address of Number of blocks to lock.
I-cache code to lock.
Get I-cache status 4 NA dst: Receives status (Figure 6-4).
gg:d;cache locking 5 NA dst: Receives status (Figure 6-4)
Store |-cache sets to 6 Destination address for src: I-cache set #'s to be stored
memory cache sets (Figure 6-4).

i960® VH Processor Developer’s Manual

In

Figure 6-4.

Instruction Set Reference

icctl src1 and src/dst Formats

srcl Format

31 8 7 0

Function Type

src/dst Format for I-cache Status

31 28 27 16 15 12 11 8 7 4 3 0

of Ways-1

log, (# of Sets) —T J T

log, (Atoms/Line) Enabled = 1
log, (Bytes/Atom) Disabled = 0
src/dst Format for I-cache Locking Status
31 24 23 8 7 0
of Blocks that are Locked Block Size in Words # of Blocks that Lock
src/dst Format for Store I-cache Sets to Memory
31 16 15 0

Ending Set # Starting Set #

Reserved

(Initialize to 0)

i960® VH Processor Developer’s Manual 6-55

Instruction Set Reference

Table 6-9.

Figure 6-5.

6-56

icctl Status Values and I-Cache Parameters

INtal.

Value Value on i960VH CPU
bytes per atom 4
atoms per line 4
number of sets 128
number of ways 2
cache size 4-Kbytes
Status[0] (enable / disable) Oorl
Status[1:3] (reserved) 0
Status[7:4] (log2(bytes per atom)) 2
Status[11:8] (log2(atoms per line)) 2
Status[15:12] (log2(number of sets)) 7
Status[27:16] (number of ways - 1) 1
Lock Status[7:0] (humber of blocks that lock) 1
Lock Status[23:8] (block size in words) 512
Lock Status[31:24] (number of blocks that are locked) Oorl

Store Instruction Cache to Memory Output Format

Set_Data [Starting Set] 233}235“?8 A)
Tag (Starting set) DA + 4H
Valid Bits (Starting set) DA + 8H
o Word 0 DA + CH
%‘ Word 1 DA + 10H
; Word 2 DA + 14H
Word 3 DA + 18H
Tag (Starting set) DA + 1CH
Valid Bits (Starting set) DA + 20H
= |Word0 DA + 24H
g word 1 DA + 28H
Word 2 DA + 2CH
Word 3 DA + 30H
Set_Data [Starting Set + 1] DA + 34H
o Tag (Starting set + 1) DA + 38H
Z | Valid Bits (Starting set + 1) DA + 3CH
=

i960® VH Processor Developer’s Manual

intel.

Instruction Set Reference

Figure 6-6. |-Cache Set Data, Tag and Valid Bit Formats

31

Set Data I-Cache Values

I-Cache Set Data Value —T

0 = Way 0 is least recently used
1 =Way 1is least recently used

31

80960VH Cache Tag Format (4 Kbyte Cache)

2120 0

Actual Address Bits 31:11

31

Valid Bits Values

Valid Bit for Word 3 of current Set and Way 4T
Valid Bit for Word 2 of current Set and Way

Valid Bit for Word 1of current Set and Way
Valid Bit for Word 0 of current Set and Way
Tag Valid bit for current Set and Way

Action:

if (PC.em != supervisor)
generate fault(TYPE.MISMATCH);
switch (src1[7:0]) {
case 0 # Disable instruction cache.
disable_instruction_cache();
break;
case 1 # Enable instruction cache.
enable_instruction_cache();
break;
case 2: # Globally invalidate instruction cache.
Includes locked lines also.
invalidate_instruction_cache();
unlock_icache();
break;
case 3: # Load & Lock code into Instruction-Cache
src_dst has number of contiguous blocks to lock.

i960® VH Processor Developer’s Manual 6-57

[]
Instruction Set Reference I ntel ®

src2 has starting address of code to lock.

0On the i960 VH, src2 is aligned to a quad word boundary
aligned_addr = src2 & OxFFFFFFFO;
invalidate(l-cache); unlock(l-cache);
for (j =0;j < src_dst; j++)

{ way =way_associated_with_block(j);
start = src2 + j*block_size;
end = start + block_size;
for (i = start; i <end; i=i+4)
{ set=set_associated_with(i);
word = word_associated with(i);
Icache_line[set][way][word] =
memoryl[il;
update_tag n_valid_bits(set,way,word)
lock_icache(set,way,word);
} } break;
case 4. # Get instruction cache status into src_dst.

if (Icache_enabled) src_dst[0] = 1;
else src_dst[0] = 0;

Atom is 4 bytes.

src_dst[7:4] = log2(bytes per atom);
4 atoms per line.
src_dst[11:8] = log2(atoms per line);

src_dst[15:12] = log2(number of sets);

src_dst[27:16] = number of ways-1; #in lines per set

cache size = ([27:16]+1) << ([7:4] + [11:8] + [15:12])

break;

case 5: # Get instruction cache locking status into dst.
src_dst[7:0] = number_of blocks that_lock;
src_dst[23:8] = block_size in_words;
src_dst[31:24] = number_of _blocks_that_are locked,;

break;
case 6: # Store instr cache sets to memory pointed to by src2.
start = src_dst[15:0] # Starting set number

end =src_dst[31:16] # Ending set number
(zero-origin).
if (end >=Icache_max_sets)
end = lcache_max_sets - 1,
if (start > end)
generate_fault(OPERATION.INVALID_OPERAND);
memadr = src2; # Must be word-aligned.
if(Ox3 & memadr !=0)
generate_fault(OPERATION.INVALID_OPERAND);
for (set = start; set <= end; set++){
Set_Datais described at end of this code flow.
memory[memadr] = Set_Data[set];
memadr += 4;
for (way = 0; way < numb_ways; way++)
{memory[memadr] = tags[set][way];

6-58 i960® VH Processor Developer’s Manual

Faults:

Example:

Opcode:

See Also:

Notes:

Instruction Set Reference

memadr += 4;

memory[memadr] = valid_bitg set][way];

memadr += 4;

for (word = O; word < words_in_line;

word++)
{memory[memadr] =
Icache_ling[set][way][word];

memadr += 4;
}

} } break;

default: # Reserved.
generate fault(OPERATION.INVALID_OPERAND);
break;}

STANDARD Refer to Section 6.1.6, “Faults” on page 6-4
TYPE.MISMATCH Attempt to execute instruction while not in
supervisor mode.

g0 = 3, g1=0x10000000, g2=1
icctl g0,901,9g2 # Load and lock 1 block of cache

(one way) with

location of code at starting

0x10000000.

icctl 65BH REG
sysctl
This instruction is implemented on the 80960VH, 80960Hx and 80960Jx pro-

cessor families only, and may or may not be implemented on future i960 pro-
cessors.

i960® VH Processor Developer’s Manual 6-59

Instruction Set Reference

6.2.34

6-60

intctl

Mnemonic:

Format:

Description:

Action:

Faults:

intel.

intctl Global Enable and Disable of Interrupts
intctl srcl dst
reg/lit reg

Globally enables, disables or returns the current status of interrupts depending
on the value of srcl. Returns the previousinterrupt enable state (1 for enabled
or O for disabled) in dst. When the state of the global interrupt enable is
changed, the processor ensures that the new state is in full effect before the
instruction completes. (This instruction is implemented by manipulating
ICON.gie.)

src1 Value Operation
0 Disables interrupts
1 Enables interrupts
2 Returns current interrupt enable status

if (PC.em != supervisor)
generate fault(TY PE.MISMATCH);
old_interrupt_enable = global_interrupt_enable;
switch(srcl) {
case 0: # Disable. Set ICON.gie to one.
globally_disable interrupts;
global_interrupt_enable = false;
order_wrt(subsequent_instructions);
break;
case 1: # Enable. Clear ICON.gieto zero.
globally_enable interrupts;
global_interrupt_enable = true;
order_wrt(subsequent_instructions);

break;
case 2: # Return status. Return ICON.gie
break;
default:
generate fault(OPERATION.INVALID_OPERAND);
break;
}
if(old_interrupt_enable)
dst =1,
else
dst=0;
STANDARD Refer to Section 6.1.6, “Faults” on page 6-4
TYPE.MISMATCH Attempt to execute instruction while not in

supervisor mode.

i960® VH Processor Developer’s Manual

Example:

Opcode:

See Also:

Notes:

Instruction Set Reference

ICON.gie = 0, interrupts

enabl ed
intctl 0, g4 # Disable interrupts (1 CON. gie
= 1)
94 =1
intctl 658H REG
intdis, inten

Thisinstruction is implemented on the 80960V H, 80960Hx and 80960Jx pro-
cessor families only, and may or may not be implemented on future i960 pro-
Cessors.

i960® VH Processor Developer’s Manual 6-61

[]
Instruction Set Reference I ntel ®

6.2.35 intdis

Mnemonic: intdis Glaobal Interrupt Disable

Format: intdis

Description: Globally disables interrupts and ensures that the change takes effect before
the instruction completes. This operation isimplemented by setting ICON.gie
to one.

Action: if (PC.em != supervisor)

generate fault(TY PE.MISMATCH);
Implemented by setting ICON.gie to one.
globally_disable interrupts;
interrupt_enable = false;
order_wrt(subsequent_instructions);

Faults: STANDARD Refer to Section 6.1.6, “Faults” on page 6-4

TYPE.MISMATCH Attempt to execute instruction while not in
supervisor mode.

Example: # ICON.gie = 0, interrupts
enabl ed
intdis # Disable interrupts.

ICON.gie = 1

Opcode: intdis 5B4H REG

See Also: intctl, inten

Notes: This instruction is implemented on the 80960VH, 80960Hx and 80960Jx pro-
cessor families only, and may or may not be implemented on future 1960 pro-
cessors.

6-62 i960® VH Processor Developer’s Manual

intel.

6.2.36 inten

Mnemonic:
Format:

Description:

Action:

Faults:

Example:

Opcode:

See Also:

Notes:

Instruction Set Reference

inten global interrupt enable
inten

Globally enablesinterrupts and ensures that the change takes effect before the
instruction completes. This operation isimplemented by clearing ICON.gieto
zero.

if (PC.em != supervisor)

generate fault(TYPE.MISMATCH);
Implemented by clearing ICON.gie to zero.
globally_enable interrupts;
interrupt_enable = true;
order_wrt(subsequent_instructions);

STANDARD Refer to Section 6.1.6, “Faults” on page 6-4
TYPE.MISMATCH Attempt to execute instruction while not in
supervisor mode.

ICON.gie = 1, interrupts

di sabl ed.

inten # Enabl e interrupts.
ICON.gie = 0

inten 5B5H REG

intctl, intdis

This instruction is implemented on the 80960VH, 80960Hx and 80960Jx pro-
cessor families only, and may or may not be implemented on future i960 pro-
cessors.

i960® VH Processor Developer’s Manual 6-63

Instruction Set Reference

6.2.37 LOAD
Mnemonic:
Format:
Description:
Action:
6-64

Id Load

Idob Load Ordinal Byte

Idos Load Ordinal Short

Idib Load Integer Byte

Idis Load Integer Short

Idl Load Long

Idt Load Triple

Idg Load Quad

Id* src, dst
mem reg

Copies byte or byte string from memory into aregister or group of successive
registers.

The src operand specifies the address of first byte to be loaded. The full range
of addressing modes may be used in specifying src. Refer to Chapter 2, “Data
Types and Memory Addressing Moddst more information.

dst specifies a register or the first (lowest numbered) register of successive
registers.

Idob andldib load a byte antfios andldis load a half word and convert it to
a full 32-bit word. Data being loaded is sign-extended during integer loads
and zero-extended during ordinal loads.

Id, Idl, Idt andldq instructions copy 4, 8, 12 and 16 bytes, respectively, from
memory into successive registers.

Forldl, dst must specify an even numbered register (i.e., g0, g2...)dFand

Idg, dst must specify a register number that is a multiple of four (i.e., g0, g4,
08, 912, r4, r8, r12). Results are unpredictable if registers are not aligned on
the required boundary or if data extends beyond register g15 or rith, fdt

orldg.

Id:

dst = read_memory(effective_address)[31:0];

if((effective_address[1:0] |= @0 && unaligned _fault_enabled)
generate_faultf(OPERATION.UNALIGNED);

Idob:
dst[7:0] = read_memory(effective_address)[7:0];
dst[31:8] = 0x000000;

Idib:
dst[7:0] = read_memory(effective_address)[7:0];
if(dst[7] == 0)
dst[31:8] = 0x000000;
else
dst[31:8] = OXFFFFFF;

Idos:

i960® VH Processor Developer’s Manual

Instruction Set Reference

dst = read_memory(effective_address)[15:0];
Order depends on endianism.
dst[31:16] = 0x0000;
if((effective_address[0] != 0,) & & unaligned_fault_enabled)
generate_fault(OPERATION.UNALIGNED);

Idis:
dst[15:0] = read_memory(effective_address)[15:0];
Order depends on endianism.
if(dst[15] == 0,)
dst[31:16] = 0x0000;
else
dst[31:16] = OXFFFF;
if((effective_address[0] != 0,) & & unaligned_fault_enabled)
generate_fault(OPERATION.UNALIGNED);

Idl:

if((reg_number(dst) % 2) != 0)
generate_fault(OPERATION.INVALID_OPERAND);
dst not modified.

ese

{ dst=read_memory(effective_address)[31:0];
dst_+ 1 =read memory(effective_address + 4)[31:0];
if((effective_addresg[2:0] != 000,) & & unaligned_fault_enabled)

generate fault(OPERATION.UNALIGNED);
}

Idt:

if((reg_number(dst) % 4) != 0)
generate_fault(OPERATION.INVALID_OPERAND);
dst not modified.

ese

{ dst=read_memory(effective_adddress)[31:0];
dst_+ 1 =read memory(effective_adddress + 4)[31:0];
dst_+ 2 =read memory(effective_adddress + 8)[31:0];
if((effective_addresg[3:0] != 0000,) & & unaligned_fault_enabled)

generate fault(OPERATION.UNALIGNED);
}

Idq:

if((reg_number(dst) % 4) != 0)
generate_fault(OPERATION.INVALID_OPERAND);
dst not modified.

ese

{ dst=read_memory(effective_adddress)[31:0];

Order depends on endianism.

dst_+ 1 =read memory(effective_adddress + 4)[31:0];
dst_+ 2 =read memory(effective_adddress + 8)[31:0];
dst_+ 3 =read memory(effective_adddress + 12)[31:0];
if((effective_addresg[3:0] != 0000,) & & unaligned_fault_enabled)

i960® VH Processor Developer’s Manual 6-65

[]
Instruction Set Reference I ntel ®

generate_fault(OPERATION.UNALIGNED);
}

Faults: STANDARD Refer to Section 6.1.6, “Faults” on page 6-4
OPERATION.UNALIGNED
OPERATION.INVALID_OPERAND

Example: Idl 2450 (r3), r10 # r10, rl11 =r3 + 2450 in
menory

Opcode: Id 90H MEM
Idob 80H MEM
Idos 88H MEM
Idib COH MEM
Idis C8H MEM
Idl 98H MEM
Idt AOH MEM
Idg BOH MEM

See Also: MOVE, STORE

6-66 i960® VH Processor Developer’s Manual

intgl.
6.2.38 Ida

Mnemonic:

Format:

Description:

Action:
Faults:

Example:

Opcode:

Instruction Set Reference

Ida Load Address

Ida sre, dst
mem reg
efa

Computes the effective address specified with src and storesit in dst. The src
address is not checked for validity. Any addressing mode may be used to
calculate efa.

An important application of thisinstruction isto load a constant longer than 5
bits into a register. (To load a register with a constant of 5 bits or less, mov
can be used with aliteral as the src operand.)

dst = effective_address;

STANDARD Refer to Section 6.1.6, “Faults” on page 6-4
I da 58 (g9), 91 # gl = g9+58

| da 0x749, r8 # r8 = 0x749

Ida 8CH MEM

i960® VH Processor Developer’s Manual 6-67

[]
Instruction Set Reference I ntel ®

6.2.39 mark

Mnemonic: mark Mark
Format: mark
Description: Generates mark trace fault if mark trace modeis enabled. Mark trace mode is

enabled if the PC register trace enable bit (bit 0) and the TC register mark
trace mode bit (bit 7) are set.

If mark trace mode is not enabled, then mark behaves like a no-op.

For more information on trace fault generation, refer to Chapter 10, “Tracing
and Debugging”

Action: if(PC.te && TC.mkK)
generate_fault(TRACE.MARK)
Faults: STANDARD Refer toSection 6.1.6, “Faults” on page 6-4
TRACE.MARK Trace fault is generated if PC.te=1 and
TC.mk=1.
Example: # Assunme that the mark trace node is enabl ed.
Id xyz, r4
addi r4, r5, r6
mar k

Mark trace event is generated at this point in the
instruction stream

Opcode: mark 66BH REG

See Also: fmark, modpc, modtc

6-68 i960® VH Processor Developer’s Manual

intel.

6.2.40 modac

Mnemonic:

Format:

Description:

Action:

Faults:

Example:

Opcode:
See Also:

Side Effects:

Instruction Set Reference

modac Modify AC
modac mask, sre, dst
reg/lit reg/lit reg

Reads and modifies the AC register. src contains the value to be placed in the
AC register; mask specifies bits that may be changed. Only bits set in mask
are modified. Once the AC register is changed, its initia state is copied into
dst.

temp = AC;

AC = (src & mask) | (AC & ~mask);

dst = temp;

STANDARD Refer to Section 6.1.6, “Faults” on page 6-4

nodac g1, g9, gl2 # AC = g9, masked by gl.
912 = initial value of AC

modac 645H REG
modpc, modtc

Sets the condition code in the arithmetic controls.

i960® VH Processor Developer’s Manual 6-69

[]
Instruction Set Reference I ntel ®

6.2.41 modi

Mnemonic: modi Modulo Integer
Format: modi srcl, src2, dst
reg/lit reg/lit reg
Description: Divides src2 by srcl, where both are integers and stores the modulo
remainder of the result in dst. If the result is nonzero, then dst has the same
sign as srcl.
Action: if(srcl ==0)

{ dst=undefined_value
generate fault(ARITHMETIC.ZERO_DIVIDE);
}
dst = src2 - (src2/srcl) * srcl;
if((src2 *srcl < 0) & & (dst '=0))

dst = dst + srcl;
Faults: STANDARD Refer to Section 6.1.6, “Faults” on page 6-4
ARITHMETIC.ZERO_DIVIDE Thesrcl operand is zero.
Example: modi r9, r2, r5 # r5 = nodulo (r2/r9)
Opcode: modi 749H REG
See Also: divi, divo, remi, remo
Notes: modi generates the correct result (0) when computidg ribd -1, although

the corresponding 32-bit division does overflow, it does not generate a fault.

6-70 i960® VH Processor Developer’s Manual

intel.

6.2.42 modify

Mnemonic:

Format:

Description:

Action:
Faults:
Example:
Opcode:

See Also:

Instruction Set Reference

modify Modify
modify mask, src, src/dst
reg/lit reg/lit reg

Modifies selected bitsin src/dst with bits from src. The mask operand selects
the bits to be modified: only bits set in the mask operand are modified in
src/dst.

src_dst = (src & mask) | (src_dst & ~mask);

STANDARD Refer to Section 6.1.6, “Faults” on page 6-4
nodi fy g8, gl10, r4 # r4 = g10 masked by g8.
modify 650H REG

alterbit, extract

i960® VH Processor Developer’s Manual 6-71

[]
Instruction Set Reference I ntel ®

6.2.43 modpc

Mnemonic: modpc Modify Process Controls
Format: modpc src, mask, src/dst
reg/lit reg/lit reg
Description: Reads and modifies the PC register as specified with mask and src/dst. src/dst

operand contains the value to be placed in the PC register; mask operand
specifies bits that may be changed. Only bits set in the mask are modified.
Once the PC register is changed, itsinitial value is copied into src/dst. The src
operand is a dummy operand that should specify a literal or the same register
as the mask operand.

The processor must be in supervisor mode to use this instruction with a
non-zero mask value. If mask=0, then thisinstruction can be used to read the
process controls, without the processor being in supervisor mode.

If the action of this instruction lowers the processor priority, then the
processor checks the interrupt table for pending interrupts.

When process controls are changed, the processor recognizes the changes
immediately except in one situation: if modpc is used to change the trace
enable bit, then the processor may not recognize the change before the next
four non-branch instructions are executed. For more information see
Section 3.6.3, “Process Controls Register — PC” on page 3-15

Action: if(mask = 0)
{ if(PC.em != supervisor)

generate_fault(TYPE.MISMATCH);

temp = PC;

PC = (mask & src_dst) | (PC & ~mask);

src_dst = temp;

if(temp.priority > PC.priority)
check_pending_interrupts;

}
else
src_dst = PC;

Faults: STANDARD Refer toSection 6.1.6, “Faults” on page 6-4

TYPE.MISMATCH
Example: nmodpc g9, g9, g8 # process controls = g8

masked by g9.

Opcode: modpc 655H REG
See Also: modac, modtc
Notes: Sincemodpc does not switch stacks, it should not be used to switch the mode

of execution from supervisor to user (the supervisor stack can get corrupted in
this case). The call and return mechanism should be used instead.

6-72 i960® VH Processor Developer’s Manual

intel.

6.2.44 modtc

Mnemonic:

Format:

Description:

Action:

Faults:

Example:

Opcode:

See Also:

Instruction Set Reference

modtc Modify Trace Controls
modtc mask, sre2, dst
reg/lit reg/lit reg

Reads and modifies TC register as specified with mask and src2. The src2
operand contains the value to be placed in the TC register; mask operand
specifies bits that may be changed. Only bits set in mask are modified. mask
must not enable modification of reserved bits. Once the TC register is
changed, itsinitial state is copied into dst.

The changed trace controls may take effect immediately or may be delayed. If
delayed, then the changed trace controls may not take effect until after the
first non-branching instruction is fetched from memory or after four
non-branching instructions are executed.

For more information on the trace controls, refer to Chapter 9, “Faults’and
Chapter 10, “Tracing and Debugging”

mode_bits = 0Ox000000FE;

event_flags = 0XOF000000

temp = TC;

tempa = (event_flags & TC & mask) | (mode_bits & mask);
TC = (tempa & src2) | (TC & ~tempa);

dst = temp;

STANDARD Refer toSection 6.1.6, “Faults” on page 6-4

nodtc g12, gl10, g2 # trace controls = gl10 masked
by gl2; previous trace
controls stored in g2.

modtc 654H REG

modac, modpc

i960® VH Processor Developer’s Manual 6-73

Instruction Set Reference

6.2.45

6-74

MOVE

Mnemonic:

Format:

Description:

Action:

mov Move

movl Move Long

movt Move Triple

movq Move Quad

mov* srcl, dst
reg/lit reg

Copies the contents of one or more source registers (specified with src) to one
or more destination registers (specified with dst).

For movl, movt and movq, srcl and dst specify the first (lowest numbered)
register of several successive registers. srcl and dst registers must be even
numbered (for example, g0, g2, ... or r4, r6, ...) for movl and an integral
multiple of four (for example, g0, g4, ... or r4, r8, ...) for movt and movgq.

The moved register values are unpredictable when: 1) the src and dst
operands overlap; 2) registers are not properly aligned.

mov:

if(is_reg(srcl))
dst = srcl;

else

{ dst[4:0] =srcl; #srclisab-bit literd.
dst[31:5] = 0;

}

movl:

if ((reg_num(src1)%?2 != 0) || (reg_num(dst)%?2 != 0))

{ dst=undefined_value;
dst + 1 =undefined value;
generate_fault(OPERATION.INVALID_OPERAND);

}
elseif(is_reg(srcl))
{ dst=srcl;
dst + 1=srcl_+ 1;
}
ese
{ dst[4:0] =srcl; #srclisab-bitliterd.
dst[31:5] = 0;
dst + 1[31:0] =0;
}
movt:

if ((reg_num(srcl)%4 != 0) || (reg_num(dst)%4 ! = 0))

{ dst=undefined_value;
dst + 1 =undefined value
dst + 2 = undefined value
generate_fault(OPERATION.INVALID_OPERAND);

i960® VH Processor Developer’s Manual

Faults:
Example:

Opcode:

See Also:

Instruction Set Reference

}

eseif(is_reg(srcl))

{ dst=srcl;
dst + 1=srcl_+ 1;
dst + 2=srcl_+ 2;

}

ese

{ dst[4:0] =srcl; #srclisab-bit literal.
dst[31:5] = 0;
dst_+ 1[31:0] =0;
dst_+ 2[31:0] =0;

}

movq:

if((reg_num(src1)%4 != 0) || (reg_num(dst)%4 ! = 0))
{ dst=undefined_value;
dst_+_ 1 =undefined value;
dst_+_ 2 =undefined value;
dst + 3 =undefined value;
generate_fault(OPERATION.INVALID_OPERAND);

}

eseif(is_reg(srcl))

{ dst=srcl;
dst + 1=srcl + 1;
dst + 2=srcl + 2;
dst + 3=srcl +_3;

}
ese
{ dst[4:0] =srcl; #srclisab bitliteral.
dst[31:5] = 0;
dst_+ 1[31:0] =0;
dst_+ 2[31:0] =0;
dst_+ 3[31:0] =0;
}
STANDARD Refer to Section 6.1.6, “Faults” on page 6-4
movt g8, r4 #r4, r5 r6 =98, g9, gl0
mov 5CCH REG
movl 5DCH REG
movt 5ECH REG
movq 5FCH REG

LOAD, STORE, Ida

i960® VH Processor Developer’s Manual 6-75

Instruction Set Reference

6.2.46

6-76

muli, mulo

Mnemonic:
Format:

Description:

Action:

Faults:

Example:

Opcode:

See Also:

intel.

muli Multiply Integer

mulo Multiply Ordinal

mul* srcl, src2, dst
reg/lit reg/lit reg

Multiplies the src2 value by the srcl value and stores the result in dst. The
binary results from these two instructions are identical. The only differenceis
that muli can signal an integer overflow.

mulo:
dst = (src2 * srcl)[31:0];

muli:

true_result = (srcl* src2);

dst = true_result[31:0];

if ((true_result > (2**31) - 1) || (true_result < -2**31))# Check for overflow
{ Iif(ACom==1)

AC.of = 1;
else
generate_fault(ARITHMETIC.OVERFLOW);
}
STANDARD Refer to Section 6.1.6, “Faults” on page 6-4

ARITHMETIC.OVERFLOW Result is too large for destination register
(muli only). If a condition of overflow
occurs, then the least significant 32 bits of
the result are stored in the destination

register.
muli r3, r4, r9 #r9 =r4 * r3
muli 741H REG
mulo 701H REG

emul, ediv, divi, divo

i960® VH Processor Developer’s Manual

intel.

6.2.47 nand

Mnemonic:

Format:

Description:

Action:
Faults:
Example:
Opcode:

See Also:

Instruction Set Reference

nand Nand
nand srcl, src2, dst
reg/lit reg/lit reg

Performs a bitwise NAND operation on src2 and srcl values and stores the
result in dst.

dst = ~src2 | ~srcl;

STANDARD Refer to Section 6.1.6, “Faults” on page 6-4
nand g5, r3, r7 # r7 = r3 NAND g5

nand 58EH REG

and, andnot, nor, not, notand, notor, or, ornot, xnor, xor

i960® VH Processor Developer’s Manual 6-77

[]
Instruction Set Reference I ntel ®

6.2.48 nor

Mnemonic: nor Nor
Format: nor srcl, sre2, dst
reg/lit reg/lit reg
Description: Performs a bitwise NOR operation on the src2 and srcl values and stores the
result in dst.
Action: dst = ~src2 & ~srcl;
Faults: STANDARD Refer to Section 6.1.6, “Faults” on page 6-4
Example: nor g8, 28, r5 #r5 = 28 NOR @8
Opcode: nor 588H REG
See Also: and, andnot, nand, not, notand, notor, or, ornot, xnor, xor

6-78 i960® VH Processor Developer’s Manual

intgl.
6.2.49 not, notand

Mnemonic:

Format:

Description:

Action:

Faults:

Example:

Opcode:

See Also:

Instruction Set Reference

not Not

notand Not And

not srcl, dst
reg/lit reg

notand srcl, src2, dst
reg/lit reg/lit reg

Performs a bitwise NOT (not instruction) or NOT AND (notand instruction)
operation on the src2 and srcl values and stores the result in dst.

not:

dst = ~srcl;

notand:

dst = ~src2 & srcl;

STANDARD Refer to Section 6.1.6, “Faults” on page 6-4
not g2, g4 # g4 = NOT g2

notand r5, r6, r7 # r7 =NOT r6 AND r5

not 58AH REG

notand 584H REG

and, andnot, nand, nor, notor, or, ornot, xnor, xor

i960® VH Processor Developer’s Manual 6-79

[]
Instruction Set Reference I ntel ®

6.2.50 notbit

Mnemonic: notbit Not Bit
Format: notbit bitpos, src2, dst

reg/lit reg/lit reg
Description: Copiesthe src2 value to dst with one bit toggled. The bitpos operand specifies

the bit to be toggled.
Action: dst = src2 ~ 2** (src1%32);
Faults: STANDARD Refer to Section 6.1.6, “Faults” on page 6-4
Example: notbit r3, rl2, r7 #r7 =rl12 with the bit
specified in r3 toggl ed.

Opcode: notbit 580H REG
See Also: alterbit, chkbit, cIrbit, setbit

6-80 i960® VH Processor Developer’s Manual

intel.

6.2.51 notor

Mnemonic:

Format:

Description:

Action:
Faults:
Example:
Opcode:

See Also:

Instruction Set Reference

notor Not Or
notor srcl, src2, dst
reg/lit reg/lit reg

Performs a bitwise NOTOR operation on src2 and srcl values and stores
result in dst.

dst = ~src2 | srcl;

STANDARD Refer to Section 6.1.6, “Faults” on page 6-4
notor gl2, g3, g6 # g6 = NOT g3 OR gl2
notor 58DH REG

and, andnot, nand, nor, not, notand, or, ornot, xnor, xor

i960® VH Processor Developer’s Manual 6-81

Instruction Set Reference

6.2.52

6-82

or, ornot

Mnemonic:

Format:

Description:

Action:

Faults:

Example:

Opcode:

See Also:

or Or

ornot Or Not

or srcl, src2, dst
reg/lit reg/lit reg

ornot srcl, src2, dst
reg/lit reg/lit reg

Performs a bitwise OR (or instruction) or ORNOT (ornot instruction)
operation on the src2 and srcl values and stores the result in dst.

or:
dst = src2 | srcl;

ornot:

dst = src2 | ~srcl;

STANDARD Refer to Section 6.1.6, “Faults” on page 6-4
or 14, g9, g3 # 93 = g9 OR 14

ornot r3, r8, r1ll # rl11 =r8 OR NOT r3

or 587H REG

ornot 58BH REG

and, andnot, nand, nor, not, notand, notor, xnor, xor

i960® VH Processor Developer’s Manual

intel.

6.2.53 remi, remo

Mnemonic:
Format:
Description:

Action:

Faults:

Example:

Opcode:

See Also:

Notes:

Instruction Set Reference

remi Remainder Integer

remo Remainder Ordinal

rem* srcl, sre2, dst
reg/lit reg/lit reg

Divides src2 by srcl and stores the remainder in dst. The sign of the result (if
nonzero) is the same as the sign of src2.

remi, remo:
if(srcl==0)

generate fault(ARITHMETIC.ZERO_DIVIDE);
dst = src2 - (src2/srcl)* srel;

STANDARD Refer to Section 6.1.6, “Faults” on page 6-4
ARITHMETIC.ZERO_DIVIDE Thesrcl operand is 0

remo r4, r5, r6 #r6 =r5 remr4
remi 748H REG

remo 708H REG

modi

remi produces the correct result (0) even when computitigegni -1, which

would cause the corresponding division to overflow, although no fault is gen-

erated.

i960® VH Processor Developer’s Manual 6-83

Instruction Set Reference

6.2.54 ret
Mnemonic:
Format:
Description:
Action:
6-84

intel.

ret Return
ret

Returns program control to the calling procedure. The current stack frame

(i.e., that of the called procedure) is deallocated and the FP is changed to point

to the calling procedure’s stack frame. Instruction execution is continued at
the instruction pointed to by the RIP in the calling procedure’s stack frame,
which is the instruction immediately following the call instruction.

As shown in the action statement below, the return-status field and
prereturn-trace flag determine the action that the processor takes on the return.
These fields are contained in bits 0 through 3 of register r0 of the called
procedure’s local registers.

SeeChapter 7, “Procedure Call$r more orret.

implicit_syncf();

if(pfp.p && PC.te && TC.p)

{ pfp.p=0;
generate_fault(TRACE.PRERETURN);

}

switch(return_status_field)
{
case 008 #local return
get FP_and_IP();
break;
case 00% #fault return
tempa = memory(FP-16);
tempb = memory(FP-12);
get FP_and_IP();
AC = tempb;
if(execution_mode == supervisor)
PC = tempa,;
break;
case 01@ #supervisor return, trace on return disabled
if(execution_mode != supervisor)
get FP_and_IP();
else
{ PCte=0;
execution_mode = user;
get FP_and_IP();
}
break;
case 01% # supervisor return, trace on return enabled
if(execution_mode != supervisor)
get FP_and_IP();
else
{ PCte=1;
execution_mode = user;
get FP_and_IP();

i960® VH Processor Developer’s Manual

[]
I ntel o Instruction Set Reference

}
break;
case 100,: #reserved - unpredictable behavior
break;
case 101,: #reserved - unpredictable behavior
break;
case 110,: #reserved - unpredictable behavior
break;
case 111,: #interrupt return
tempa = memory(FP-16);
tempb = memory(FP-12);
get FP_and_IP();

AC = tempb;
if(execution_mode == supervisor)
PC = tempa;
check_pending_interrupts();
break;
}
get_FP_and_IP()
{ FP=PFPR;
free(current_register_set);
if(not_all ocated(FP))
retrieve_from_memory(FP);
IP=RIP,
}
Faults: STANDARD Refer to Section 6.1.6, “Faults” on page 6-4
Example: ret # Program control returns to
context of calling procedure.
Opcode: ret OAH CTRL
See Also: call, calls, callx

i960® VH Processor Developer’s Manual 6-85

Instruction Set Reference

6.2.55

6-86

rotate

Mnemonic:

Format:

Description:

Action:

Faults:

Example:

Opcode:

See Also:

intel.

rotate Rotate
rotate len, src2, dst
reg/lit reg/lit reg

Copies src2 to dst and rotates the bits in the resulting dst operand to the left
(toward higher significance). Bits shifted off left end of word are inserted at
right end of word. The len operand specifies number of bits that the dst
operand isrotated.

This instruction can also be used to rotate bits to the right. The number of bits
the word isto be rotated right should be subtracted from 32 and the result used
as the len operand.

src2 isrotated by len mod 32. Thisvalueis stored in dst.
STANDARD Refer to Section 6.1.6, “Faults” on page 6-4

rotate 13, r8, rl1l2 # rl12 =r8 with bits rotated
13 bits to left.

rotate 59DH REG
SHIFT, eshro

i960® VH Processor Developer’s Manual

intel.

6.2.56 scanbit

Mnemonic:

Format:

Description:

Action:

Faults:

Example:

Opcode:

See Also:

Side Effects:

Instruction Set Reference

scanbit Scan For Bit
scanbit srcl, dst
reg/lit reg

Searches srcl for a set bit (1 bit). If aset bit is found, then the bit number of
the most significant set bit is stored in the dst and the condition code is set to
010,. If src value is zero, then all 1's are storedighand condition code is set
to 000,.

dst = OXFFFFFFFF;
AC.cc = 00G;
for(i=31;i>=0;i--)
{ if((srcl & 2**) 1= 0)
{ dst=1i;
AC.cc = 01G;
break;

}
}

STANDARD Refer toSection 6.1.6, “Faults” on page 6-4

assune g8 is nonzero

scanbit g8, g10 # g10 = bit nunber of nost-
significant set bit in g8;
AC.cc = 010,.

scanbit 641H REG
spanbit, setbit

Sets the condition code in the arithmetic controls.

i960® VH Processor Developer’s Manual 6-87

[]
Instruction Set Reference I ntel ®

6.2.57 scanbyte

Mnemonic: scanbyte Scan Byte Equal
Format: scanbyte srcl, src2
reg/lit reg/lit
Description: Performs byte-by-byte comparison of srcl and src2 and sets condition code to

010, if any two corresponding bytes are equal. If no corresponding bytes are
equal, then condition code is set to 000,.

Action: if((srcl & 0xO00000FF) == (src2 & 0x000000FF)
|| (srcl & Ox0000FFQO0) == (src2 & 0x0000FFO0)
|| (srcl & OxO0FF0000) == (src2 & 0xO00FF0000)
|| (srcl & OxFFO00000) == (src2 & 0xFF000000))

AC.cc = 010,;
ese
AC.cc = 000,;

Faults: STANDARD Refer to Section 6.1.6, “Faults” on page 6-4
Example: # Assunme r9 = 0x11AB1100

scanbyte 0x00ABOO11, r9# AC.cc = 010,
Opcode: scanbyte 5ACH REG
See Also: bswap
Side Effects: Sets the condition code in the arithmetic controls.

6-88 i960® VH Processor Developer’s Manual

intel.

Instruction Set Reference

6.2.58 SEL<cc>
Mnemonic: selno Select Based on Unordered
selg Select Based on Greater
sele Select Based on Equal
selge Select Based on Greater or Equal
sell Select Based on Less
selne Select Based on Not Equal
selle Select Based on Less or Equal
selo Select Based on Ordered
Format: sel* srcl, src2, dst
reg/lit reg/lit reg
Description: Selects either srcl or src2 to be stored in dst based on the condition code bits
in the arithmetic controls. If for Unordered the condition code is O, or if for
the other casesthe logical AND of the condition code and the mask part of the
opcode is not zero, then the value of src2 is stored in the destination. Else, the
value of srcl isstored in the destination.
Instruction Mask Condition
selno 000, Unordered
selg 001, Greater
sele 010, Equal
selge 011, Greater or equal
sell 100, Less
selne 101, Not equal
selle 110, Less or equal
selo 111, Ordered
Action: if ((mask & AC.cc) || (mask == AC.cc))
dst = src2;
else
dst = srcl;
Faults: STANDARD Refer to Section 6.1.6, “Faults” on page 6-4
Example: # AC.cc = 010,

sele g0,91, g2

sell g0,91, g2

i960® VH Processor Developer's Manual

6-89

Instruction Set Reference

6-90

Opcode:

See Also:

Notes:

selno
selg
sele
selge
sell
selne
selle
selo

784H

794H

7A4H
7B4H
7C4H
7D4H
7E4H
7F4H

REG
REG
REG
REG
REG
REG
REG
REG

MOVE, TEST<cc>, cmpi, cmpo, SUB<cc>

These core instructions are not implemented on 1960 Cx, Kx and Sx proces-

SOrs.

i960® VH Processor Developer’s Manual

intgl.
6.2.59 setbit

Mnemonic:

Format:

Description:

Action:
Faults:
Example:
Opcode:

See Also:

Instruction Set Reference

setbit Set Bit
setbit bitpos, src, dst
reg/lit reg/lit reg

Copies src value to dst with one bit set. bitpos specifies bit to be set.

dst = src | (2** (bitpos%632));

STANDARD Refer to Section 6.1.6, “Faults” on page 6-4
setbit 15, r9, r1 # rl =r9 with bit 15 set.

setbit 583H REG

alterbit, chkbit, clrbit, notbit

i960® VH Processor Developer’s Manual 6-91

Instruction Set Reference

6.2.60

6-92

SHIFT

Mnemonic:

Format:

Description:

Action:

shlo Shift Left Ordinal

shro Shift Right Ordinal

shli Shift Left Integer

shri Shift Right Integer

shrdi Shift Right Dividing Integer

sh* len, src, dst
reg/lit reg/lit reg

Shiftssrc left or right by the number of bitsindicated with the len operand and
stores the result in dst. Bits shifted beyond register boundary are discarded.
For values of len > 32, the processor interprets the value as 32.

shlo shifts zerosin from the least significant bit; shro shifts zerosin from the
most significant bit. Theseinstructions are equivaent to mulo and divo by the
power of 2, respectively.

shli shifts zeros in from the least significant bit. An overflow fault is
generated if the bits shifted out are not the same as the most significant bit (bit
31). If overflow occurs, then dst equals src shifted left as much as possible
without overflowing.

shri performs a conventional arithmetic shift-right operation by shifting in the
most significant bit (bit 31). When thisinstruction is used to divide a negative
integer operand by the power of 2, it produces an incorrect quotient
(discarding the bits shifted out has the effect of rounding the result toward
negative).

shrdi is provided for dividing integers by the power of 2. With this
instruction, 1 is added to the result if the bits shifted out are non-zero and the
src operand was negative, which produces the correct result for negative
operands.

shli and shrdi are equivalent to muli and divi by the power of 2.

shlo:
if(srcl< 32)

dst =src* (2**len);
else

dst=0;
shro:
if(srcl< 32)

dst = src/ (2**len);
else

shli:
if(len>32)
count = 32;
dse
count = srcl;
temp = src;

i960® VH Processor Developer’s Manual

Faults:

Example:

Opcode:

See Also:

Notes:

Instruction Set Reference

while((temp[31] == temp[30]) && (count > 0))
{ temp=(temp* 2)[31:0];

count = count - 1,
}

dst = temp;
if(count > 0)
{ if(AC.om==1)
AC.of = 1;
ese
generate faultf(ARITHMETIC.OVERFLOW);

}

shri:
if(len > 32)
count = 32;
else
count = srcl,
temp = src;
while(count > 0)
{ temp = (temp>>1)[31:0];
temp[31] = src[31];
count = count - 1,

}
dst = temp;

shrdi:
dst =src/ (2**len);

STANDARD Refer to Section 6.1.6, “Faults” on page 6-4
ARITHMETIC.OVERFLOW Forshli.

shli 13, g4, r6 # g6 = g4 shifted left 13 bits.

shlo 59CH REG
shro 598H REG
shili 59EH REG
shri 59BH REG
shrdi 59AH REG

divi, muli, rotate, eshro

shli andshrdi are identical to multiplications and divisions for all positive
and negative values efc2. shri is the conventional arithmetic right shift that
does not produce a correct quotient whe? is negative.

i960® VH Processor Developer’s Manual 6-93

Instruction Set Reference

6.2.61

6-94

spanbit

Mnemonic:

Format:

Description:

Action:

Faults:

Example:

Opcode:
See Also:

Side Effects:

intel.

spanbit Span Over Bit

spanbit src, dst
reg/lit reg

Searches src value for the most significant clear bit (0 bit). If a most
significant O bit is found, then its bit number is stored in dst and condition
code is set to 010,. If src value is all 1's, then all 1's are storeddst and
condition code is set to 000

dst = OXFFFFFFFF;
AC.cc = 00g;
for(i=31;i>=0;i-)

{ if((srcl & 2**i) == 0))

{ dst =i
AC.cc = 01G;
break;
}
}
STANDARD Refer toSection 6.1.6, “Faults” on page 6-4
Assune r2 is not Oxffffffff
spanbit r2, r9 # r9 = bit nunmber of npst-
significant clear bit in r2;
AC.cc = 010,
spanbit 640H REG
scanbit

Sets the condition code in the arithmetic controls.

i960® VH Processor Developer’s Manual

intel.

6.2.62

STORE

Mnemonic:

Format:

Description:

Action:

Action:

Instruction Set Reference

st Store

stob Store Ordinal Byte

stos Store Ordinal Short

stib Store Integer Byte

stis Store Integer Short

stl Store Long

stt Store Triple

stq Store Quad

st* srcl, dst
reg mem

Copies a byte or group of bytes from a register or group of registers to
memory. src specifies a register or the first (lowest numbered) register of
successive registers.

dst specifiesthe address of the memory location where the byte or first byte or

a group of bytesis to be stored. The full range of addressing modes may be
used in specifying dst. Refer to Section 2.3, “Memory Addressing Modes” on
page 2-4for a complete discussion.

stob andstib store a byte andtos andstis store a half word from thsrc
register’s low order bytes. Data for ordinal stores is truncated to fit the
destination width. If the data for integer stores cannot be represented correctly
in the destination width, then an Arithmetic Integer Overflow fault is
signaled.

st, stl, stt andstq copy 4, 8, 12 and 16 bytes, respectively, from successive
registers to memory.

Forstl, src must specify an even numbered register (for example, g0, g2, ... or
r0, r2, ...). Forstt andstqg, src must specify a register number that is a
multiple of four (for example, g0, g4, g8, ... or r0, r4, 18, ...).

st:

if (illegal_write_to_on_chip_RAM)
generate_fault(TYPE.MISMATCH);

else if ((effective_address[1:0] B9,) && unaligned_fault_enabled)
{store_to_memory(effective_address)[318]src1,;
generate_fault(OPERATION.UNALIGNED);}

else
store_to_memory(effective_address)[31:0] = srcl;

stob:

if (illegal_write_to_on_chip_RAM_or_MMR)
generate_fault(TYPE.MISMATCH);

else
store_to_memory(effective_address)[7:0] = src1[7:0];

stib:

if (illegal_write_to_on_chip_RAM_or_MMR)
generate_fault(TYPE.MISMATCH);

else if ((src1[31:8] I= 0) && (src1[31:8] = OXFFFFFF))

i960® VH Processor Developer’s Manual 6-95

Instruction Set Reference

6-96

intel.

{ store_to_memory(effective_address)[7:0] = src1[7:0];

if AC.om==1)
AC.of = 1;
else
generate fault(ARITHMETIC.OVERFLOW);
}
else
store_to_memory(effective_address)[7:0] = src1[7:0];
end if;
stos:

if (illegal_write to_on_chip RAM_or_ MMR)
generate fault(TY PE.MISMATCH);
elseif ((effective_address0] !=0,) && unaligned_fault_enabled)
{ store_to_memory(effective_address)[15:0] = src1{15:0];
generate_fault(OPERATION.UNALIGNED);
}
ese
store_to_memory(effective_address)[15:0] = src1[15:0];

stis:
if (illegal_write to_on_chip RAM_or_ MMR)
generate fault(TY PE.MISMATCH);
elseif ((effective_address0] !=0,) && unaligned_fault_enabled)
{ store_to_memory(effective address)[15:0] = src1{15:0];
generate_fault(OPERATION.UNALIGNED);
}
eseif ((src1[31:16] '=0) && (src1[31:16] != OXFFFF))
{ store_to_memory(effective_address)[15:0] = src1{15:0];

if AC.om==1)
AC.of = 1;
dse
generate fault(ARITHMETIC.OVERFLOW);
}
dse

store_to_memory(effective_address)[15:0] = src1[15:0];

stl:
if (illegal_write to_on_chip RAM_or_ MMR)
generate fault(TY PE.MISMATCH);
elseif (reg_number(srcl) % 2 !=0)
generate_fault(OPERATION.INVALID_OPERAND);
elseif ((effective_address[2:0] !=000,) && unaligned_fault_enabled)
{ store_to_memory(effective_address)[31:0] = srcl;
store_to_memory(effective_address + 4)[31:0] = srcl +_1;
generate_fault (OPERATION.UNALIGNED);

dse

{ store_to_memory(effective_address)[31:0] = srcl;
store_to_memory(effective_address + 4)[31:0] = srcl +_1;

i960® VH Processor Developer’s Manual

[]
I ntel o Instruction Set Reference

stt:
if (illegal_write to_on_chip RAM_or_ MMR)
generate fault(TYPE.MISMATCH);
elseif (reg_number(srcl) % 4 != 0)
generate_fault(OPERATION.INVALID_OPERAND);
elseif ((effective_address[3:0] != 0000,) && unaligned_fault_enabled)
{ store to_memory(effective_address)[31:0] = srcl;
store_to_memory(effective_address + 4)[31:0] =srcl +_1;
store_to_memory/(effective_address + 8)[31:0] =srcl +_2;
generate_fault (OPERATION.UNALIGNED);

ese
{ store to_memory(effective_address)[31:0] = srcl;
store_to_memory/(effective_address + 4)[31:0] =srcl_+_1;
store_to_memory/(effective_address + 8)[31:0] =srcl_+_2;

stq:
if (illegal_write to_on_chip RAM_or_ MMR)
generate fault(TYPE.MISMATCH);
elseif (reg_number(srcl) % 4 != 0)
generate_fault(OPERATION.INVALID_OPERAND);
elseif ((effective_address3:0] != 0000,) && unaligned_fault_enabled)
{ store to_memory(effective_address)[31:0] = srcl;
store_to_memory(effective_address + 4)[31:0] =srcl_+_1;
store_to_memory/(effective_address + 8)[31:0] =srcl +_2;
store_to_memory(effective_address + 12)[31:0] = srcl_+_3;
generate_fault (OPERATION.UNALIGNED);

ese
{ store to_memory(effective_address)[31:0] = srcl;
store_to_memory/(effective_address + 4)[31:0] =srcl_+_1;
store_to_memory/(effective_address + 8)[31:0] =srcl +_2;
store_to_memory(effective_address + 12)[31:0] = srcl_+_3;

}
Faults: STANDARD Refer to Section 6.1.6, “Faults” on page 6-4
ARITHMETIC.OVERFLOW Forstib, stis.
Example: st g2, 1254 (g6) # Word begi nning at of fset

1254 + (g6) = g2.

i960® VH Processor Developer’s Manual 6-97

Instruction Set Reference

6-98

Opcode:

See Also:

Notes:

st 92H

stob 82H

stos 8AH
stib C2H
stis CAH
stl 9AH
stt A2H
stq B2H
LOAD, MOVE

MEM
MEM
MEM
MEM
MEM
MEM
MEM
MEM

illegal_write to_on_chip_RAM is an implementati on-dependent mechanism.
The mapping of register bits to memory(efa) depends on the endianism of the
memory region and isimplementation-dependent.

i960® VH Processor Developer’s Manual

intgl.
6.2.63 subc

Mnemonic:

Format:

Description:

Action:

Faults:

Example:

Opcode:
See Also:

Side Effects:

Instruction Set Reference

subc Subtract Ordina With Carry
subc srcd, src2, dst
reg/lit reg/lit reg

Subtracts srcl from src2, then subtracts the opposite of condition code bit 1
(used here as the carry bit) and stores the result in dst. If the ordinal
subtraction resultsin a carry, then condition code bit 1 is set to 1, otherwise it
issetto 0.

This instruction can also be used for integer subtraction. Here, if integer
subtraction results in an overflow, then condition code bit O is set.

subc does not distinguish between ordinals and integers: it sets condition
code bits 0 and 1 regardless of data type.

dst = (src2 - srcl -1 + AC.cc[1])[31:0];
AC.cc[2:0] = 000;
if((src2[31] == src1[31]) && (src2[31] != dst[31]))

AC.cc[0] = 1; # Overflow bit.
AC.cc[1] = (src2 - srcl -1+ AC.cc[1])[32]; # Carry out.
STANDARD Refer to Section 6.1.6, “Faults” on page 6-4

subc g5, g6, g7
g7 = g6 - g5 - not(condition code bit 1)

subc 5B2H REG
addc, addi, addo, subi, subo

Sets the condition code in the arithmetic controls.

i960® VH Processor Developer’s Manual 6-99

Instruction Set Reference

6.2.64 SUB<cc>
Mnemonic: subono Subtract Ordinal if Unordered
subog Subtract Ordinal if Greater
suboe Subtract Ordinal if Equal
suboge Subtract Ordinal if Greater or Equal
subol Subtract Ordinal if Less
subone Subtract Ordinal if Not Equal
subole Subtract Ordinal if Lessor Equal
suboo Subtract Ordinal if Ordered
subino Subtract Integer if Unordered
subig Subtract Integer if Greater
subie Subtract Integer if Equal
subige Subtract Integer if Greater or Equal
subil Subtract Integer if Less
subine Subtract Integer if Not Equal
subile Subtract Integer if Lessor Equal
subio Subtract Integer if Ordered
Format: sub* srcl, src2, dst
reg/lit reg/lit reg
Description: Subtracts srcl from src2 conditionally based on the condition code bitsin the
arithmetic contrals.
If for Unordered the condition code is O, or if for the other cases the logical
AND of the condition code and the mask part of the opcode is not zero, then
srcl is subtracted from src2 and the result stored in the destination
Instruction Mask Condition
subono, subino 000, Unordered
subog, subig 001, Greater
suboe, subie 010, Equal
suboge, subige 011, Greater or equal
subol, subil 100, Less
subone, subine 101, Not equal
subole, subile 110, Less or equal
suboo, subio 111, Ordered
Action: SUBO<cc>:
if ((mask & AC.cc) || (mask == AC.cc))
dst = (src2 - srcl)[31:0];
SUBI<cc>:
if ((mask & AC.cc) || (mask == AC.cc))
{
{ true_result = (src2 - srcl);
dst = true_result[31:0];
6-100 i960® VH Processor Developer’s Manual

[]
I ntel o Instruction Set Reference

}
if((true_result > (2**31) - 1) || (true_result < -2**31))
Check for overflow
{ if(ACom==1)

AC.of =1,
else
generate fault (ARITHMETIC.OVERFLOW);
}
}
Faults: STANDARD Refer to Section 6.1.6, “Faults” on page 6-4
ARITHMETIC.OVERFLOW For thesuBI<cc> class.
Example: # AC.cc = 010,

suboge g0, g1, g2 # g2 =91 - g0

AC.cc = 001,
subil e g0, g1, g2 # g2 not nodified

Opcode: subono 782H REG
subog 792H REG
suboe 7A2H REG
suboge 7B2H REG
subol 7C2H REG
subone 7D2H REG
subole 7E2H REG
suboo 7F2H REG
subino 783H REG
subig 793H REG
subie 7A3H REG
subige 7B3H REG
subil 7C3H REG
subine 7D3H REG
subile 7E3H REG
subio 7F3H REG

See Also: subc, subi, subo, SEL<cc>, TEST<cc>

Notes: These core instructions are not implemented on 80960Cx, Kx and Sx proces-
Sors.

i960® VH Processor Developer’s Manual 6-101

[]
Instruction Set Reference I ntel ®

6.2.65 subi, subo

Mnemonic: subi Subtract Integer
subo Subtract Ordinal
Format: sub* srcl, sre2, dst
reg/lit reg/lit reg
Description: Subtracts srcl from src2 and stores the result in dst. The binary results from

these two instructions are identical. The only differenceisthat subi can signal
an integer overflow.

Action: subo:
dst = (src2 - src1)[31:0];

subi:

true_result = (src2 - srcl);

dst = true_result[31:0];

if ((true_result > (2**31) - 1) || (true_result < -2**31))# Check for overflow
{ Iif(ACom==1)

AC.of = 1;
ese
generate fault(ARITHMETIC.OVERFLOW);
}
Faults: STANDARD Refer to Section 6.1.6, “Faults” on page 6-4
ARITHMETIC.OVERFLOW Forsubi.
Example: subi g6, g9, g12 # 9gl1l2 = g9 - g6
Opcode: subi 593H REG
subo 592H REG
See Also: addi, addo, subc, addc

6-102 i960® VH Processor Developer’s Manual

intgl.
6.2.66 syncf

Mnemonic:
Format:

Description:

Action:

Faults:

Example:

Opcode:

See Also:

Instruction Set Reference

syncf Synchronize Faults
syncf

Waits for al faults to be generated that are associated with any prior
uncompleted instructions.

if(AC.nif == 1)
break;
ese
wait_until_all_previous_instructions_in_flow_have _completed();
Thisaso meansthat al of the faults on these instructions have
beenreported.

STANDARD Refer to Section 6.1.6, “Faults” on page 6-4

Id xyz, g6

addi r6, r8, r8

syncf

and g6, OxFFFF, @8

The syncf instruction ensures that any faults
that may occur during the execution of the

Id and addi instructions occur before the

and instruction is executed.

syncf 66FH REG

mark, fmark

i960® VH Processor Developer’s Manual 6-103

Instruction Set Reference

6.2.67

Figure 6-7.

Table 6-10.

Table 6-11.

6-104

sysctl

Mnemonic:

Format:

Description:

sysctl System Control
sysctl srcl, src2, src/dst
reg/lit reg/lit reg

Performs system management and control operations including requesting
software interrupts, invalidating the instruction cache, configuring the
instruction cache, processor reinitialization, modifying memory-mapped
registers, and acquiring breakpoint resource information.

Processor control function specified by the message field of srcl is executed.
Thetypefield of srcl isinterpreted depending upon the command. Remaining
srcl bits are reserved. The src2 and src3 operands are also interpreted
depending upon the command.

Src1 Operand Interpretation

31 16 15 8 7 0
Field 2 Message Type Field 1
sysctl Field Definitions
srcl src2 src/dst
Message
Type Field 1 Field 2 Field 3 Field 4
Request Interrupt 0x0 Vector Number N/U N/U N/U
Invalidate Cache 0x1 N/U N/U N/U N/U
. : Cache Mode
gggzgure Instruction 0x2 Configuration N/U nggfelgsd N/U
(Table 6-11)
Reinitialize 0x3 N/U N/U Starting IP PRCB Pointer
mg?rllfgr -Mapped Lower 2 bytes
y-Vapp 0x5 N/U of MMR Value to write Mask
Control Register address
(MMR)
Breakpoint Resource Breakpoint info
Request 0x6 N/U NU N/U (Figure 6-8)
NOTE: Sources and fields that are not used (designated N/U) are ignored.
Cache Mode Configuration
Mode Field Mode Description 80960VH
Normal cache enabled 4 Kbyte
Full cache disabled 4 Kbyte
Load and lock one way of the
100, or 110, cache 2 Kbyte

i960® VH Processor Developer’s Manual

intel.

Instruction Set Reference

Figure 6-8. src/dst Interpretation for Breakpoint Resource Request

31 8 7 4 3 0
s
available | # available
Reserved - Set to zero data instruction
/\, breakpoints | breakpoints
Action: if (PC.em != supervisor)

generate fault(TYPE.MISMATCH);

order_wrt(previous_operations);

OPtype = (srcl & 0xff00) >> 8;

switch (OPtype) {

case0: # Signal Software Interrupt

i960® VH Processor Developer's Manual

vector_to_post = Oxff & srcl;
priority_to_post = vector_to_post >> 3;
pend_ints addr = interrupt_table base + 4 + priority_to_post;
pend_priority = memory_read(interrupt_table base,atomic_lock);
Priority zero just recans Interrupt Table
if (priority_to_post !=0)

{pend_ints = memory_read(pend_ints_addr, non-cacheable)

pend_ints[7 & vector] = 1;

pend_priority[priority_to_post] = 1;

memory_write(pend_ints_addr, pend_ints); }
memory_write(interrupt_table_base,pend_priority,atomic_unlock);
Update internal software priority with highest priority interrupt
from newly adjusted Pending Priorities word. The current internal
software priority is always replaced by the new, computed one. (If
thereis no bit set in pending_priorities word for the current
internal one, then it is discarded by this action.)
if (pend_priority == 0)

SW_Int_Priority = 0;
else {msb_set = scan_bit(pend_priority);
SW_Int_Priority = msb_set; }

Make sure change to internal software priority takes full effect
before next instruction.
order_wrt(subsequent_operations);
break;
case 1: # Global Invaidate Instruction Cache
invalidate instruction_cache();
unlock_instruction_cache();
break;
case 2: # Configure Instruction-Cache
mode = srcl & Oxff;
if (mode & 1) disable_instruction_cache;
else switch (mode) {
case 0: enable_instruction_cache; break;
case 4,6: #Load & Lock code into I-Cache

6-105

[]
Instruction Set Reference I ntel ®

All contiguous blocks are locked.
Note: block = way on 80960V H.
src2 has starting address of code to lock.
src2 is aligned to a quad word
boundary.
aligned_addr = src2 & Oxfffffffo;
invalidate(l-cache); unlock(l-cache);
for (j =0; j < number_of blocks that_lock; j++)
{way =block_associated with_block(j);
start = src2 + j*block_size;
end = start + block_size;
for (i = start; i <end; i=i+4)
{ set=set_associated with(i);
word = word_associated with(i);
Icache_line[set][way][word] =
memoryl[il;
update_tag n_valid_bits(set,way,word)
lock_icache(set,way,word);
} } break;
default:
generate_operation_invalid_operand_fault;
} break;
case 3: # Software Re-init
disable(l_cache); invalidate(l_cache);
disable(D_cache); invalidate(D_cache);
Process PRCB(dst); # dst has ptr to new PRCB
IP=srcz;
break;
case5: # Modify One Memory-Mapped Control Register (MMR)
src1[31:16] haslower 2 bytes of MMR address
src2 has value to write; dst has mask.
After operation, dst has old value of MMR
addr = (Oxff00 << 16) | (srcl >> 16);
temp = memory[addr];
memory[addr] = (src2 & dst) | (temp & ~dst);
dst = temp;
break;
case 6: # Breakpoint Resource Request
acquire_available instr_breakpoints();
dst[3:0] = number_of available instr_breakpoints;
acquire_available data_breakpoints();
dst[7:4] = number_of available data breakpoints;

dst[31:8] =0;
break;
default: # Reserved, fault occurs

generate_fault(OPERATION.INVALID_OPERAND);
break;

}

order_wrt(subsequent_operations);

Faults: STANDARD Refer to Section 6.1.6, “Faults” on page 6-4

6-106 i960® VH Processor Developer’s Manual

[]
I ntel o Instruction Set Reference

Example: | dconst 0x100,r6 # Set up nessage.
sysctl r6,r7,r8 # Invalidate
| - cache.
#r7, r8 are not
used.
| dconst 0x204, g0 # Set up nmessage
type and

cache confi gu-
rati on node.
Lock half cache.

| dconst 0x20000000, g2 # Starting address
of code.
sysctl g0, g2, g2 # Execut e Load and
Lock.

Opcode: sysctl 659H REG

See Also: dcctl, icctl

Notes: This instruction is implemented on 80960V H, Hx, Jx and Cx processors, and

may or may not be implemented on future i960 processors.

i960® VH Processor Developer’s Manual 6-107

[]
Instruction Set Reference I ntel ®

6.2.68 TEST<cc>

Mnemonic: teste Test For Equal
testne Test For Not Equal
testl Test For Less
testle Test For Less Or Equal
testg Test For Greater
testge Test For Greater Or Equal
testo Test For Ordered
testno Test For Not Ordered
Format: test* dst:srcl
reg
Description: Storesatrue (O1H) in dst if the logical AND of the condition code and opcode

mask part is not zero. Otherwise, the instruction stores a false (O0OH) in dst.
For testno (Unordered), a true is stored if the condition code is 000,,
otherwise afaseisstored.

The following table shows the condition-code mask for each instruction. The
mask isin bits 0-2 of the opcode.

Instruction Mask Condition
testno 000, Unordered
testg 001, Greater
teste 010, Equal
testge 011, Greater or equal
testl 100, Less
testne 101, Not equal
testle 110, Less or equal
testo 111, Ordered

Action: For all TEST<cc> except testno:

if((mask & AC.cc) |=000,)
srcl=1, #true value
dse
srcl=0; #false value

testno:
if(AC.cc == 000,)
srcl=1; #true value

else
srcl=0; #false value
Faults: STANDARD Refer to Section 6.1.6, “Faults” on page 6-4
Example: # Assune AC.cc = 100,
testl g9 # g9 = 0x00000001

6-108 i960® VH Processor Developer’s Manual

Opcode: teste 22H
testne 25H
testl 24H
testle 26H
testg 21H
testge 23H
testo 27H
testno 20H

See Also: cmpi, cmpdeci, cmpinci

i960® VH Processor Developer's Manual

COBR
COBR
COBR
COBR
COBR
COBR
COBR
COBR

Instruction Set Reference

6-109

[]
Instruction Set Reference I ntel ®

6.2.69 Xnor, Xor

Mnemonic: xnor Exclusive Nor
xor Exclusive Or
Format: xnor srcl, sre2, dst
reg/lit reg/lit reg
xor srcl, src2, dst
reg/lit reg/lit reg
Description: Performs a bitwise XNOR (xnor instruction) or XOR (xor instruction)

operation on the src2 and srcl values and stores the result in dst.

Action: XNor:
dst = ~(src2 | srcl) | (src2 & srcl);

Xor:
dst = (src2 | srcl) & ~(src2 & srcl);
Faults: STANDARD Refer to Section 6.1.6, “Faults” on page 6-4
Example: xnor r3, r9, rl2 #r12 =r9 XNOR r3
xor g1, g7, g4 # g4 = g7 XOR g1
Opcode: xnor 589H REG
xor 586H REG
See Also: and, andnot, nand, nor, not, notand, notor, or, ornot

6-110 i960® VH Processor Developer’s Manual

intel.

Procedure Calls 4

This chapter describes mechanisms for making procedure calls, which include branch-and-link
instructions, built-in call and return mechanism, call instructions (call, callx, calls), return
instruction (ret) and call actions caused by interrupts and faults.

The i960® processor architecture supports two methods for making procedure calls:

* A RISC-style branch-and-link: afast call best suited for calling procedures that do not call
other procedures.

* Anintegrated call and return mechanism: a more versatile method for making procedure calls,
providing a highly efficient means for managing alarge number of registers and the program
stack.

On abranch-and-link (bal, balx), the processor branches and saves areturn IP in aregister. The
called procedure uses the same set of registers and the same stack as the calling procedure. On a
call (call, callx, calls) or when an interrupt or fault occurs, the processor also branchesto a target
instruction and saves areturn |P. Additionally, the processor saves the local registers and allocates
anew set of local registers and a new stack for the called procedure. The saved context is restored
when the return instruction (ret) executes.

In many RISC architectures, a branch-and-link instruction is used asthe base instruction for coding
aprocedure call. The user program then handles register and stack management for the call. Since
the 1960 architecture provides afully integrated call and return mechanism, coding callswith
branch-and-link are not necessary. Additionally, the integrated call is much faster than typical
RISC-coded cdlls.

The branch-and-link instruction in the i960 processor family, therefore, is used primarily for
calling leaf procedures. Leaf procedures call no other procedures; they reside at the “leaves” of the
call tree.

In the 1960 architecture the integrated call and return mechanism is used in two ways:
¢ explicit calls to procedures in a user’s program
* implicit calsto interrupt and fault handlers

The remainder of this chapter explains the generalized call mechanism used for explicit and
implicit calls and call and return instructions.

The processor performs two call actions:

local When a local call is made, execution mode remains unchanged and the stack
frame for the called procedure is placed on the local stack. The local stack refers
to the stack of the calling procedure.

supervisor When a supervisor call is made from user mode, execution mode is switched to
supervisor and the stack frame for the caled procedure is placed on the
supervisor stack.

When a supervisor call isissued from supervisor mode, the call degeneratesinto
alocal cal (i.e., no mode nor stack switch).

i960® VH Processor Developer’s Manual 7-1

Procedure Calls i ntel ®

Explicit procedure calls can be made using several instructions. Local cal instructions call and
callx perform alocal cal action. With call and callx, the called procedure’s IP is included as an
operand in the instruction.

A system call is made wittalls. This instruction is similar toall andcallx, except that the

processor obtains the called procedure’s IP fronsystem procedure table. A system call, when
executed, is directed to perform either the local or supervisor call action. These calls are referred to
assystem-local andsystem-supervisor calls, respectively. A system-supervisor call is also referred

to as asupervisor call.

7.1 Call and Return Mechanism

At any point in a program, the i960 processor has access to the global registers, a local register set
and the procedure stack. A subset of the stack allocated to the procedure is called the stack frame.

* When acall executes, anew stack frame isallocated for the called procedure. The processor
also saves the current local register set, freeing these registers for use by the newly called
procedure. In this way, every procedure has a unique stack and a unique set of local registers.

* When areturn executes, the current local register set and current stack frame are deall ocated.
The previous local register set and previous stack frame are restored.

7.1.1 Local Registers and the Procedure Stack

The processor automatically allocates a set of 16 local registers for each procedure. Since local
registers are on-chip, they provide fast access storage for local variables. Of the 16 local registers,
13 are available for general use; r0, r1 and r2 are reserved for linkage information to tie procedures
together.

The processor does not always clear or initialize the set of local registers assigned to a new
procedure. Therefore, initial register contents are unpredictable. Also, because the processor does
not initialize the local register save areain the newly created stack frame for the procedure, its
contents are equally unpredictable.

The procedure stack can belocated anywhere in the address space and grows from low addressesto
high addresses. It consists of contiguous frames, one frame for each active procedure. Local
registers for a procedure are assigned a save area in each stack frame (Figure 7-1). The procedure
stack, available to the user, begins after this save area.

To increase procedure call speed, the architecture alows an implementation to cache the saved

local register sets on-chip. Thus, when a procedure call is made, the contents of the current set of
local registers often do not have to be written out to the save area in the stack frame in memory.
Refer to Section 7.1.4, “Caching Local Register Sets” on pagardsection 7.1.4.1, “Reserving
Local Register Sets for High Priority Interrupts” on pagefé+imore about local registers and
procedure stack interrelations.

7-2 i960® VH Processor Developer’s Manual

intel.

Figure 7-1.

7.1.2

7.1.2.1

i960® VH Processor Developer's Manual

Procedure Calls

Procedure Stack Structure and Local Registers

Procedure Stack

Current Register Set Previous Frame Pointer (PFP) r0
go — Stack Pointer (SP) 1)
Previous
Return Instruction Pointer (RIP) r2 Stack
Frame
rl5
Frame Pointer (FP) gl5
user allocated stack
padding area
Previous Frame Pointer (PFP) r0 |-—
Stack Pointer (SP) 1]
register Current
reserved for RIP r2 save area Stack
Frame
15
user allocated stack

unused stack

stack growth
(toward higher addresses)

Local Register and Stack Management

Global register g15 (FP) and local registers rO (PFP), r1 (SP) and r2 (RIP) contain information to
link procedures together and link local registers to the procedure stack (Figure 7-1). The following
subsections describe this linkage information.

Frame Pointer

The frame pointer is the current stack frame’s first byte address. It is stored in global register g15,
the frame pointer (FP) register. The FP register is always reserved for the frame pointer; do not use
g15 for general storage.

Stack frame alignment is defined for each implementation of the i960 processor family, according
to an SALIGN parameter. In the i9B@rocessor, stacks are aligned on 16-byte boundaries

(Figure 7-1). When the processor needs to create a new frame on a procedure call, it adds a padding

areato the stack so that the new frame starts on a 16-byte boundary.

Procedure Calls i ntel ®

7.1.2.2

7.1.2.3

7.1.2.4

7.1.2.5

7.1.2.6

7-4

Stack Pointer

The stack pointer is the byte-aligned address of the stack frame’s next unused byte. The stack
pointer value is stored in local register r1, the stack pointer (SP) register. The procedure stack
grows upward (i.e., toward higher addresses). When a stack frame is created, the processor
automatically adds 64 to the frame pointer value and stores the result in the SP register. This action
creates the register save area in the stack frame for the local registers.

The program must modify the SP register value when data is stored or removed from the stack. The
i960 architecture does not provide an explicit push or pop instruction to perform this action. This is
typically done by adding the size of all pushes to the stack in one operation.

Considerations When Pushing Data onto the Stack

Care should be taken in writing to stack in the presence of unforeseen faults and interrupts. In the
general case, to ensure that the data written to the stack is not corrupted by a fault or interrupt
record, the SP should be incremented first to allocate the space, and then the data should be written
to the allocated space:

nmovsp, r4
addo24, sp, sp
st data, (r4)

st data, 20(r4)

Considerations When Popping Data off the Stack

For reasons similar to those discussed in the previous section, care should be taken in reading the
stack in the presence of unforeseen faults and interrupts. In the general case, to ensure that data
about to be popped off the stack is not corrupted by a fault or interrupt record, the data should be
read first and then the sp should be decremented:

subo24, sp, r4
Id 20(r4),rn
Id (rd4),rn
nmovr 4, sp

Previous Frame Pointer

The previous frame pointer is the previous stack frame’s first byte address. This address’ upper
28 hits are stored in local register r0, the previous frame pointer (PFP) register. The four
least-significant bits of the PFP are used to store the return type fieldigbee 7-5andTable 7-2

for more information on the PFP and the return-type field.

Return Type Field

PFP register bits 0 through 3 contain return type information for the calling procedure. When a
procedure call is made — either explicit or implicit — the processor records the call type in the
return type field. The processor then uses this information to select the proper return mechanism
when returning to the calling procedure. The use of this information is descriSedtion 7.8,
“Returns” on page 7-17

i960® VH Processor Developer’s Manual

intel.

7.1.2.7

7.1.3

7.1.3.1

Procedure Calls

Return Instruction Pointer

The actual RIP register (r2) isreserved by the processor to support the call and return mechanism
and must not be used by software; the actual value of RIP is unpredictable at all times. For
example, an implicit procedure call (fault or interrupt) can occur at any time and modify the RIP.
An OPERATION.INVALID_OPERAND fault is generated when attempting to write the RIP.

The image of the RIP register in the stack frame is used by the processor to determine that frame’s
return instruction address. When a call is made, the processor saves the address of the instruction
after the call in the image of the RIP register in the calling frame.

Call and Return Action

To clarify how procedures are linked and how the local registers and stack are managed, the
following sections describe a general call and return operation and the operations performed with
the FP, SP, PFP and RIP registers.

The events for call and return operations are given in a logical order of operation. The 80960VH
can execute independent operations in parallel; therefore, many of these events execute
simultaneously. For example, to improve performance, the processor often begins prefetching of
the target instruction for the call or return before the operation is complete.

Call Operation

When acall, calls or callx instruction is executed or an implicit call is triggered:

1. The processor stores the instruction pointer for the instruction following the call in the current
stack’s RIP register (r2).

2. The current local registers — including the PFP, SP and RIP registers — are saved, freeing
these for use by the called procedure. The local registers are saved in the on-chip local register
cache if space is available.

3. The frame pointer (g15) for the calling procedure is stored in the current stack’'s PFP register
(r0). The return type field in the PFP register is set according to the call type performed. See
Section 7.8, “Returns” on page 7-17

4. For alocal or system-local call, a new stack frame is allocated by using the old stack pointer
value saved in step 2. This value is first rounded to the next 16-byte boundary to create a new
frame pointer, then stored in the FP register. Next, 64 bytes are added to create the new
frame’s register save area. This value is stored in the SP register.

For an interrupt call from user mode, the current interrupt stack pointer value is used instead of
the value saved in step 2.

For a system-supervisor call from user mode, the current Supervisor Stack Pointer (SSP) value
is used instead of the value saved in step 2.

5. The instruction pointer is loaded with the address of the first instruction in the called
procedure. The processor gets the new instruction pointer frocalthéhe system procedure
table, the interrupt table or the fault table, depending on the type of call executed.

Upon completion of these steps, the processor begins executing the called procedure. Sometime
before a return or nested call, the local register set is bound to the allocated stack frame.

i960® VH Processor Developer’s Manual 7-5

Procedure Calls i ntel ®

7.1.3.2

7.1.4

7-6

Return Operation

A return from any call type — explicit or implicit — is always initiated with a retuet) (
instruction. On a return, the processor performs these operations:

1. The current stack frame and local registers are deallocated by loading the FP register with the
value of the PFP register.

2. The local registers for the return target procedure are retrieved. The registers are usually read
from the local register cache; however, in some cases, these registers have been flushed from
register cache to memory and must be read directly from the save area in the stack frame.

3. The processor sets the instruction pointer to the value of the RIP register.

Upon completion of these steps, the processor executes the instruction to which it returns. The
frames created before thet instruction was executed is overwritten by later implicit or explicit
call operations.

Caching Local Register Sets

Actual implementations of the 1960 architecture may cache some number of local register sets
within the processor to improve performance. Local registers are typically saved and restored from
the local register cache when calls and returns are executed. Other overhead associated with a call
or return is performed in parallel with this data movement.

When the number of nested procedures exceeds local register cache size, local register sets must at
times be saved to (and restored from) their associated save areas in the procedure stack. Because
these operations require access to external memory, this local cache miss affects call and return
performance.

When a call is made and no frames are available in the register cache, a register set in the cache
must be saved to external memory to make room for the current set of local registers in the cache.
SeeSection 4.2, “Local Register Cache” on page. 442is action is referred to as a frame spill. The
oldest set of local registers stored in the cache is spilled to the associated local register save area in
the procedure stackigure 7-2illustrates a call operation with and without a frame spill.

Similarly, when a return is made and the local register set for the target procedure is not available
in the cache, these local registers must be retrieved from the procedure stack in memory. This
operation is referred to as a frame #igure 7-3illustrates return operations with and without

frame fills.

Theflushreg instruction, described iSection 6.2.30, “flushreg” on page 6;5@rites all local

register sets (except the current one) to their associated stack frames in memory. The register cache
is then invalidated, meaning that all flushed register sets are restored from their save areas in
memory.

For most programs, the existence of the multiple local register sets and their saving/restoring in the
stack frames should be transparent. However, there are some special cases:

* A storeto the register save areain memory does not necessarily update alocal register set,
unless user software executes flushreg first.

* Reading from the register save areain memory does not necessarily return the current value of
alocal register set, unless user software executes flushreg first.

* Thereisno mechanism, including flushreg, to access the current local register set with aread
or write to memory.

i960® VH Processor Developer’s Manual

i ntel ® Procedure Calls

* flushreg must be executed sometime before returning from the current frame if the current
procedure modifies the PFP in register r0, or else the behavior of the ret instruction is not
predictable.

* Thevalues of the local registersr2 to r15in a new frame are undefined.

flushreg is commonly used in debuggers or fault handlersto gain access to all saved local
registers. In thisway, call history may be traced back through nested procedures.

7.14.1 Reserving Local Register Sets for High Priority Interrupts

To decrease interrupt latency for high priority interrupts, software can limit the number of frames
available to all remaining code. This includes code that is either in the executing state

(non-interrupted) or code that isin the interrupted state but has a process priority less than 28. For

the purposes of discussion here, this remaining code isreferred to as non-critical code. Specifying
alimit for non-critical code ensures that some number of free frames are available to high-priority
interrupt service routines. Software can specify the limit for non-critical code by writing bits 10
through 8 of the register cache configuration word in the PRCB (Table 12-8 “Process Control

Block Configuration Words” on page 1201 The value indicates how many frames within the
register cache may be used by non-critical code before a frame needs to be flushed to external
memory. The programmed limit is used only when a frame is pushed, which occurs only for an
implicit or explicit call.

Allowed values of the programmed limit range from 0 to 7. Setting the value to O reserves no
frames for high-priority interrupts. Setting the value to 7 causes the register cache to become
disabled for non-critical code. S8ection 12.4.2, “Process Control Block — PRCB” on

page 12-15

i960® VH Processor Developer's Manual 7-7

Procedure Calls

Figure 7-2.

7-8

Frame Spill

Procedure Stack
(0 = Main, successive
numbers indicate nested
procedure level)

local register
set n stored
on procedure stack

user
stack
space

reserved
for local
register set n

Local Register Cache
(with no sets reserved for
high priority interrupts)

Current Local
Register Set

call with no frame spill call with frame spill
N ™
0 0 0
fo g 1
z 7 v
b 7)
4 A 4
/5/ /5/ Frame
Spill
2 o
7 7 i,
! 7 :
! ;
Empty 1 2
1 2 3
2 3 4
3 4 5
4 5 6
5 6 7
6 7 8

i960® VH Processor Developer’s Manual

INtal.

Figure 7-3. Frame Fill

Procedure Calls

return with no frame fill

—

Procedure Stack

0

return with frame fill

(0 = Main, successive

numbers indicate nested

procedure level)

Local Register Cache

(With no sets reserved

for high priority interrupts)

Empty

Empty

.

Empty

Empty

Empty

Empty

Empty

Current Local
Register Set

—_—

local register user
set n stored stack

on procedure stack space

reserved
for local
register set n

—

0 0

1 1

2 2

3 l

l Frame

Fill
Empty Empty
Empty Empty
Empty Empty
Empty Empty
Empty Empty
Empty Empty
Empty Empty
Empty Empty
3 2

i960® VH Processor Developer's Manual

7-9

Procedure Calls i ntel ®

7.1.5 Mapping Local Registers to the Procedure Stack

Each local register set is mapped to aregister save area of its respective frame in the procedure
stack (Figure 7-1). Saved local register sets are frequently cached on-chip rather than saved to
memory. This isnot awrite-through cache. Local register set contents are not saved automatically
to the save areain memory when the register set is cached. This would cause a significant
performance loss for call operations.

Also, no automatic update policy isimplemented for the register cache. If the register save areain
memory for a cached register set is modified, then there is no guarantee that the modification is
reflected when the register set isrestored. For aframe spill, the set must be flushed to memory
prior to the modification for the modification to be valid.

The flushreg instruction causes the contents of all cached local register setsto be written (flushed)
to their associated stack frames in memory. The register cacheisthen invalidated, meaning that all
flushed register sets are restored from their save areasin memory. The current set of local registers
is not written to memory. flushreg is commonly used in debuggers or fault handlers to gain access
to all saved local registers. In thisway, call history may be traced back through nested procedures.
flushreg is aso used when implementing task switches in multitasking kernels. The procedure
stack is changed as part of the task switch. To change the procedure stack, flushreg is executed to
update the current procedure stack and invalidate all entriesin the local register cache. Next, the
procedure stack is changed by directly modifying the FP and SP registers and executing a call
operation. After flushreg executes, the procedure stack may also be changed by modifying the
previous frame in memory and executing a return operation.

When a set of local registersis assigned to anew procedure, the processor may or may not clear or
initialize these registers. Therefore, initia register contents are unpredictable. Also, the processor
doesnot initialize the local register save areain the newly created stack frame for the procedure; its
contents are equally unpredictable.

7.2 Modifying the PFP Register

The FP must not be directly modified by user software because this may corrupt the local registers.
Instead, implement context switches by modifying the PFP.

Modification of the PFPistypically for context switches; as part of the switch, the active procedure
changes the pointer to the frame that it returns to (previous frame pointer — PFP). Great care
should be taken in modifying the PFP. In the general céiestaeg must be issued before and
after modifying the PFP when the local register cache is endbkednple 7-}. This requirement
ensures the correct operation of a context switch on all i960 processors in all situations.

Example 7-1. flushreg

Do a context swtch.
Assune PFP = 0x5000.

fl ushreg # Flush Franes to correct address.

| da 0x8000, pfp

flushreg # Ensure that "ret" gets updated PFP.
ret

7-10 i960® VH Processor Developer’s Manual

7.3

Procedure Calls

The flushreg before the modification is necessary to ensure that the frame of the previous context
(mapped to 0x5000 in the example) is “spilled” to the proper external memory address and
removed from the local register cache. If thehreg before the modification were omitted, then a
flushreg (or implicit frame spill due to an interrupt) after the modification of PFP would cause the
frame of the previous context to be written to the wrong location in external memory.

Theflushreg after the modification ensures that outstanding results are completely written to the
PFP before a subsequeat instruction can be executed. Recall thatrthénstruction uses the
low-order 4 bits of the PFP to select whiehfunction to perform. Requiring theishreg after the

PFP modification allows an i960 processor implementation to implement a simple mechanism that
quickly selects theet function at the time theet instruction is issued and provides a faster return
operation.

Note theflushreg after the modification executes very quickly because the local register cache has
already been flushed by the previdusshreg; only synchronization of the PFP is performed. i960
processor implementations may provide other mechanisms to ensure PFP synchronization in
addition toflushreg, but aflushreg after a PFP modification will work on all i960 processors.

Parameter Passing

Parameters are passed between procedures in two ways:

value Parameters are passed directly to the calling procedure as part of the call and
return mechanism. Thisis the fastest method of passing parameters.

reference Parameters are stored in an argument list in memory and a pointer to the
argument list is passed in aglobal register.

When passing parameters by value, the calling procedure stores the parameters to be passed in
global registers. Since the calling procedure and the called procedure share the global registers, the
called procedure has direct access to the parameters after the call.

When a procedure needs to pass more parameters than fits in the global registers, they can be
passed by reference. Here, parameters are placed in an argument list and a pointer to the argument
list is placed in a global register.

The argument list can be stored anywhere in memory; however, a convenient place to store an
argument list is in the stack for a calling procedure. Space for the argument list is created by
incrementing the SP register value. If the argument list is stored in the current stack, then the
argument list is automatically deallocated when no longer needed.

A procedure receives parameters from — and returns values to — other calling procedures. To do
this successfully and consistently, all procedures must agree on the use of the global registers.

Parameter registers pass values into a function. Up to 12 parameters can be passed by value using
the global registers. If the number of parameters exceeds 12, then additional parameters are passed
using the calling procedure’s stack; a pointer to the argument list is passed in a pre-designated
register. Similarly, several registers are set aside for return arguments and a return argument block
pointer is defined to point to additional parameters. If the number of return arguments exceeds the
available number of return argument reqgisters, then the calling procedure passes a pointer to an
argument list on its stack where the remaining return values are ptagedple 7-2illustrates

parameter passing by value and by reference.

i960® VH Processor Developer’s Manual 7-11

Procedure Calls i ntel ®

Local registers are automatically saved when acall is made. Because of the local register cache,
they are saved quickly and with no external bustraffic. The efficiency of the local register
mechanism plays an important role in two cases when calls are made;

1. When aprocedure is called which contains other calls, global parameter registers should be
moved to working local registers at the beginning of the procedure. In this way, parameter
registers are freed and nested calls are easily managed. The register move instruction
necessary to perform this action is very fast; the working parameters — now in local registers
— are saved efficiently when nested calls are made.

2. When other procedures are nested within an interrupt or fault procedure, the procedure must
preserve all normally non-preserved parameter registers, such as the global registers. This is
necessary because the interrupt or fault occurs at any point in the user’s program and a return
from an interrupt or fault must restore the exact processor state. The interrupt or fault
procedure can move non-preserved global registers to local registers before the nested call.

Example 7-2. Parameter Passing Code Example

Exanpl e of paraneter passing .
C-source:int a,b[10];
a = procl(a,1,’x',&b[0]);
assembles to ...
mov r3,g0# value of a
Idconstl,g1# value of 1
Idconst120,g2# value of “Xx”
Ida 0x40(fp),g3# reference to b[10]
call _procl
mov g0,r3 # save return value in “a”

_procl:
movqg ¢g0,r4 # save parameters

other instructions in procedure
and nested calls

mov r3,g0 # load return parameter

ret

7.4 Local Calls

A local call does not cause a stack switch. A local call can be made in two ways:
* with the call and callx instructions; or
* with asystem-local call asdescribed in Section 7.5, “System Calls” on page 7-13
call specifies the address of the called procedures as the IP plus a signed, 24-bit displacement

(i.e., -23 to 228 - 4).callx allows any of the addressing modes to be used to specify the procedure
address. The IP-with-displacement addressing mode allows full 32-bit IP-relative addressing.

7-12 i960® VH Processor Developer’s Manual

7.5

7.5.1

Procedure Calls

When alocal call is made with acall or callx, the processor performs the same operation as
described in Section 7.1.3.1, “Call Operation” on page 7The target IP for the call is derived
from the instruction’s operands and the new stack frame is allocated on the current stack.

System Calls

A system call is a call made via the system procedure table. It can be used to make a system-local
call — similar to a local call made wittall andcallx in the sense that there is no stack nor mode
switch — or a system supervisor call. A system call is initiated ewitls, which requires a

procedure number operand. The procedure number provides an index into the system procedure
table, where the processor finds IPs for specific procedures.

Using an i960 processor language assembler, a system procedure is directly declared using the
.sysproc directive. At link time, the optimized call directive, callj, is replaced wittlawhen a

system procedure target is specified. (Refer to current i960 processor assembler documentation for
a description of the .sysproc and callj directives.)

The system call mechanism offers two benefits. First, it supports application software portability.
System calls are commonly used to call kernel services. By calling these services with a procedure
number rather than a specific IP, application software does not need to be changed each time the
implementation of the kernel services is modified. Only the entries in the system procedure table
must be changed. Second, the ability to switch to a different execution mode and stack with a
system supervisor call allows kernel procedures and data to be insulated from applications code.
This benefit is further described $ection 3.7, “User-Supervisor Protection Model” on page.3-17

System Procedure Table

The system procedure table is a data structure for storing IPs to system procedures. These can be
procedures which software can access through (1) a system call or (2) the fault handling
mechanism. Using the system procedure table to store IPs for fault handling is described in
Section 9.1, “Fault Handling Overview” on page 9-1

Figure 7-4shows the system procedure table structure. It is 1088 bytes in length and can have up to
260 procedure entries. At initialization, the processor caches a pointer to the system procedure
table. This pointer is located in the PRCB. The following subsections describe this table’s fields.

i960® VH Processor Developer’s Manual 7-13

Procedure Calls i ntel ®

Figure 7-4. System Procedure Table

31 0
000H
008H
supervisor stack pointer base T| OOCH
010H Trace
Control
Bit
02CH
procedure entry 0 030H
procedure entry 1 034H
procedure entry 2 038H
03CH
438H
procedure entry 259 43CH
31 Procedure Entry 210
’ address Dj
L1
Reserved Entry Type:
(Initialize to 0) | S 00 - Local
10-Supervisor
l Preserved

75.1.1 Procedure Entries

A procedure entry in the system procedure table specifies a procedure’s location and type. Each
entry is one word in length and consists of an address (IP) field and a type field. The address field
gives the address of the first instruction of the target procedure. Since all instructions are word
aligned, only the entry’s 30 most significant bits are used for the address. The entry’s two
least-significant bits specify entry type. The procedure entry type field indicates call type:
system-local call or system-supervisor ca@llfle 7-). On a system call, the processor performs
different actions depending on the type of call selected.

7-14 i960® VH Processor Developer’s Manual

i ntel ® Procedure Calls

Table 7-1. Encodings of Entry Type Field in System Procedure Table

Encoding Call Type
00 System-Local Call
01 Reserved?®
10 System-Supervisor Call
1 Reserved?®

1. Calls with reserved entry types have unpredictable behavior.

7.5.1.2 Supervisor Stack Pointer

When a system-supervisor call is made, the processor switches to a new stack called the supervisor
stack, if it is not already in supervisor mode. The processor gets a pointer to this stack from the
supervisor stack pointer field in the system procedure table (Figure 7-4) during the reset
initialization sequence and caches the pointer internally. Only the 30 most significant bits of the
supervisor stack pointer are given. The processor aligns this value to the next 16-byte boundary to
determine the first byte of the new stack frame.

75.1.3 Trace Control Bit

The trace control bit (byte 12, bit 0) specifiesthe new value of the trace enable bit in the PC register
(PC.te) when a system-supervisor call causes a switch from user mode to supervisor mode. Setting
thisbit to 1 enablestracing in the supervisor mode; setting it to O disables tracing. The use of this
bit isdescribed in Section 10.1.2, “PC Trace Enable Bit and Trace-Fault-Pending Flag” on
page 10-2

7.5.2 System Call to a Local Procedure

When acalls instruction references an entry in the system procedure table with an entry type of 00,
the processor executes a system-local call to the selected procedure. The action that the processor
performs is the same as describe&éction 7.1.3.1, “Call Operation” on page .7Te call's

target IP is taken from the system procedure table and the new stack frame is allocated on the
current stack, and the processor does not switch to supervisor modellEtegorithm is

described irSection 6.2.14, “calls” on page 6-24

7.5.3 System Call to a Supervisor Procedure

When acalls instruction references an entry in the system procedure table with an entry type of
10,, the processor executes a system-supervisor call to the selected procedure. The call’s target IP
is taken from the system procedure table.

The processor performs the same action as descrit@sttion 7.1.3.1, “Call Operation” on
page 7-5with the following exceptions:

* |If the processor isin user mode, then it switches to supervisor mode.

¢ |f amode switch occurs, then SPis read from the Supervisor Stack Pointer (SSP) base. A new
framefor the called procedureis placed at the location pointed to after alignment of SP.

* |f no mode switch occurs, then the new frameis allocated on the current stack.

i960® VH Processor Developer’s Manual 7-15

Procedure Calls i ntel ®

7.6

7.7

7-16

¢ |f amode switch occurs, then the state of the trace enable bit in the PC register is saved in the
return type field in the PFP register. The trace enable bit is then loaded from the trace control
bit in the system procedure table.

* If no mode switch occurs, then the value 000, (calls instruction) or 001, (fault call) issaved in
the return type field of the pfp register.

When the processor switches to supervisor mode, it remainsin that mode and creates new frames
on the supervisor stack until areturnis performed from the procedure that caused the original
switch to supervisor mode. While in supervisor mode, either the local call instructions (call and
callx) or calls can be used to call procedures.

The user-supervisor protection model and its relationship to the supervisor call are described in
Section 3.7, “User-Supervisor Protection Model” on page.3-17

User and Supervisor Stacks

When using the user-supervisor protection mechanism, the processor maintains separate stacks in
the address space. One of these stacks — the user stack — is for procedures executed in user mode;
the other stack — the supervisor stack — is for procedures executed in supervisor mode.

The user and supervisor stacks are identical in strudtigeré 7-). The base stack pointer for the
supervisor stack is automatically read from the system procedure table and cached internally
during initialization. Each time a user-to-supervisor mode switch occurs, the cached supervisor
stack pointer base is used for the starting point of the new supervisor stack. The base stack pointer
for the user stack is usually created in the initialization codeS8ei#on 12.2, “i960® VH

Processor Initialization” on page 12-Phe base stack pointers must be aligned to a 16-byte
boundary; otherwise, the first frame pointer on the interrupt stack is rounded up to the previous
16-byte boundary.

Interrupt and Fault Calls

The architecture defines two types of implicit calls that make use of the call and return mechanism:
interrupt-handling procedure calls and fault-handling procedure calls. A call to an interrupt
procedure is similar to a system-supervisor call. Here, the processor obtains pointers to the
interrupt procedures through the interrupt table. The processor always switches to supervisor mode
on an interrupt procedure call.

A call to a fault procedure is similar to a system call. Fault procedure calls can be local calls or
supervisor calls. The processor obtains pointers to fault procedures through the fault table and
(optionally) through the system procedure table.

When a fault call or interrupt call is made, a fault record or interrupt record is placed in the newly
generated stack frame for the call. These records hold the machine state and information to identify
the fault or interrupt. When a return from an interrupt or fault is executed, machine state is restored
from these records. S&hapter 8, “InterruptsandChapter 9, “Faultsfor more information on

the structure of the fault and interrupt records.

i960® VH Processor Developer’s Manual

i ntel ® Procedure Calls

7.8 Returns

The return (ret) instruction provides a generalized return mechanism that can be used to return
from any procedure that was entered by call, calls, callx, an interrupt call or afault call. When ret
executes, the processor uses the information from the return-type field in the PFP register

(Figure 7-5) to determine the type of return action to take.

Figure 7-5. Previous Frame Pointer Register — PFP

Return Status
Return-Type Field - PFP.rt
Pre-Return-Trace Flag - PFP.p

Previous Frame Pointer

Address-PFP.a ¢
a a r r r
3 tf t]t
1 o 2l 1|0
31 28 24 20 16 12 8 4 0

return-type field indicates the type of call which was made. Table 7-2 shows the return-type field
encoding for the various calls: local, supervisor, interrupt and fault.

trace-on-return flag (PFP.rtO or bit O of the return-type field) stores the trace enable bit value when
an explicit system-supervisor call is made from user mode. When the call is made, the PC register
trace enable bit is saved as the trace-on-return flag and then replaced by the trace controls bit in the
system procedure table. On areturn, the trace enable bit's original value is restored. This
mechanism allows instruction tracing to be turned on or off when a supervisor mode switch occurs.
See Section 10.5.2.1, “Tracing on Explicit Call” on page 10-11

prereturn-trace flag (PFP.p) is used in conjunction with call-trace and prereturn-trace modes. If
call-trace mode is enabled when a call is made, then the processor sets the prereturn-trace flag;
otherwise it clears the flag. If this flag is set and prereturn-trace mode is enabled, then a prereturn
trace event is generated on a return before any actions associated with the return operation are
performed. Se&ection 10.2, “Trace Modes” on page 1@e8a discussion of interaction between
call-trace and prereturn-trace modes with the prereturn-trace flag.

Table 7-2. Encoding of Return Status Field (Sheet 1 of 2)

Retulgriwelsdtatus Call Type Return Action
Local call
000 (system-local call or system-supervisor Local return .
call made from supervisor mode) (return to local stack; no mode switch)
001 Fault call Fault return
Supervisor return
o1t Svstem-supervisor from user mode (return to user stack, mode switch to user
y P mode, trace enable bit is replaced with the
t* bit stored in the PFP register on the call)
100 reserved 2
101 reserved?

i960® VH Processor Developer’s Manual 7-17

Procedure Calls

Table 7-2.

7.9

7-18

Encoding of Return Status Field (Sheet 2 of 2)

intel.

Return Status

Field Call Type Return Action
110 reserved?
111 Interrupt call Interrupt return

NOTES:

1. “t” denotes the trace-on-return flag; used only for system supervisor calls which cause a user-to-supervisor mode switch.

2. This return type results in unpredictable behavior.

Branch-and-Link

A branch-and-link is executed using either the branch-and-link instruction (bal) or
branch-and-link-extended instruction (balx). When either instruction executes, the processor
branches to the first instruction of the called procedure (the target instruction), while saving a
return |P for the calling procedure in aregister. The called procedure uses the same set of local

registers and stack frame as the calling procedure:

* For bal, thereturn | P isautomatically saved in global register g14

* For balx, the return IP instruction is saved in a register specified by one of the instruction’s

operands

A return from a branch-and-link is generally carried out witkx #branch extended) instruction,
where the branch target is the address saved with the branch-and-link instruction. The
branch-and-link method of making procedure calls is recommended for calls to leaf procedures.
Leaf procedures typically call no other procedures. Branch-and-link is the fastest way to make a
call, providing the calling procedure does not require its own registers or stack frame.

i960® VH Processor Developer’s Manual

intel.

Interrupts 8

This chapter describes the i960° core processor architecture interrupt mechanism, the i960%° VH
processor interrupt controller, periphera interrupts and secondary PCI interrupt routing. Key topics
include the 80960V H's facilities for requesting and posting interrupts, the programmer’s interface
to the on-chip interrupt controller, interrupt implementation, interrupt latency and how to optimize
interrupt performance.

8.1 Overview

Aninterrupt isan event that causes atemporary break in program execution so the processor can
handle ancther task. Interrupts commonly request 1/O services or synchronize the processor with
some external hardware activity. For interrupt handler portability across the 960 processor family,
the architecture defines a consistent interrupt state and interrupt-priority-handling mechanism. To
manage and prioritize interrupt requestsin parallel with processor execution, the 80960V H
provides an on-chip programmable interrupt controller.

When the processor is redirected to service an interrupt, it uses a vector number that accompanies
the interrupt request to locate the vector entry in the interrupt table. From that entry, it gets an
addressto the first instruction of the selected interrupt procedure. The processor then makes an
implicit call to that procedure.

When the interrupt call is made, the processor uses a dedicated interrupt stack. The processor
creates anew frame for the interrupt on this stack and anew set of local registersis allocated to the
interrupt procedure. The interrupted program’s current state is also saved.

Upon return from the interrupt procedure, the processor restores the interrupted program'’s state,
switches back to the stack that the processor was using prior to the interrupt and resumes program
execution.

Since interrupts are handled based on priority, requested interrupts are often saved for later service
rather than handled immediately. The mechanism for saving the interrupt is referred to as interrupt
posting. Interrupt posting is describedSaction 8.1.6, “Posting Interrupts” on page.8-6

The 1960 core architecture defines two data structures to support interrupt processing: the interrupt
table (sed-igure 8-) and interrupt stack. The interrupt table contains 248 vectors for interrupt
handling procedures (eight of which are reserved) and an area for posting software requested
interrupts. The interrupt stack prevents interrupt handling procedures from using the stack in use by
the application program. It also locates the interrupt stack in a different area of memory than the
user and supervisor stack (for example, fast SRAM).

i960® VH Processor Developer’s Manual 8-1

Interrupts

Figure 8-1.

8.1.1

8.1.2

8-2

Interrupt Handling Data Structures

| Memory |
l |
| Interrupt |
Interrupt 1960° VH | Table jerupt |
Request Processor | : andiing I
i Interrupt Pointer Procedure |
l |
l |
- - __ I

Requests for interrupt service come from many sources and are prioritized so that instruction
execution is redirected only when an interrupt request is of higher priority than that of the
executing task. On the 80960V H, interrupt requests may originate from external hardware sources,
internal peripherals or software. The 80960V H contains a number of integrated peripherals which
may generate interrupts, including:

« DMA Channel 0 « I?C Bus Interface Unit
* DMA Channel 1 * Messaging Unit
e Timers0&1 * Memory Controller

e Primary ATU

Theinterrupt controller can also intercept external interrupts and forward them to the primary PCI
interrupt pins.

Interrupts are detected with the chip’s 8-bit interrupt port and with a dedicated Non-Maskable
Interrupt (NMI#) input in the i960 core processor’s interrupt controller. Interrupt requests originate
from software by theysctl instruction. To manage and prioritize all possible interrupts, the
processor integrates an on-chip programmable interrupt controller.

The i960® VH Processor Core Interrupt Architecture

The 80960V H contains the same core interrupt architecture as many other 80960 family members.
Some of the core features include the interrupt record and stack, the way interrupts are posted, and
the way interrupt priorities are resolved. These basic architectural features are detailed in the
following sections.

Software Requirements For Interrupt Handling
To use the processor’s interrupt handling facilities, user software must provide the following items
in memory:

* Interrupt Table

* Interrupt Handler Routines

* Interrupt Stack

i960® VH Processor Developer's Manual

8.1.3

8.1.4

Interrupts

These items are established in memory as part of the initialization procedure. Once these items are
present in memory and pointers to them have been entered in the appropriate system data
structures, the processor handles interrupts automatically and independently from software.

Interrupt Priority

Each procedure pointer’s priority is defined by dividing the procedure pointer number by eight.
Thus, at each priority level, there are eight possible procedure pointers (for example, procedure
pointers 8-15 have a priority of 1 and procedure pointers 246-255 have a priority of 31). Procedure
pointers 0-7 cannot be used because a priority-0 interrupt would never successfully stop execution
of a program of any priority. In addition, procedure pointers 244-247 and 249-251 are reserved;
therefore, 241 procedure pointers are available to the user.

The processor compares its current priority with the interrupt request priority to determine whether
to service the interrupt immediately or to delay service:

* Theinterrupt is serviced immediately when its priority is higher than the priority of the
program or interrupt the processor is currently executing.

* Theinterrupt is posted as a pending interrupt (not serviced immediately) when the interrupt
priority is less than or equal to the processor’s current priority.

SeeSection 8.1.4.2, “Pending Interrupts” on page. 8&en multiple interrupt requests are
pending at the same priority level, the request with the highest vector number is serviced first.

A priority-31 interrupt is handled as a special case. Even when the processor is executing at priority
level 31, a priority-31 interrupt will interrupt the processor. On the 80960VH, the non-maskable
interrupt (NMI#) interrupts priority-31 execution; no interrupt can interrupt an NMI# handler.

Interrupt Table

The interrupt table (sd€igure 8-3 is 1028 bytes in length and can be located anywhere in the
non-reserved address space. It must be aligned on a word boundary. The processor reads a pointer
to the interrupt table byte 0 during initialization. The interrupt table must be located in RAM so the
processor can read and write the table’s pending interrupt section for software or externally
generated interrupts.

The interrupt table is divided into two sectiomector entries andpending interrupts. Each are
described in the subsections that follow.

i960® VH Processor Developer’s Manual 8-3

Interrupts

Figure 8-2.

8.14.1

8-4

Interrupt Table

31 87 0
Pending Priorities 000H
004H
> Pending Interrupts
020H
Entry 8 024H (Vector 8)
Entry 9 028H (Vector 9)
Entry 10 02CH (Vector 10)
; < :
Entry 243 3DO0H (Vector 243)

3D4H (Vector 244)

A

Ve
3EOH (Vector 247)
NMI# Vector 3E4H (Vector 248)
3E8H (Vector 249)

< :
3FOH (Vector 251)
Entry 252 3F4H (Vector 252)
T Entry 255 T400H (Vector 255)
Vector Entry 210
| Instruction Pointer |X’ X‘
[—
L Entry Type:
00 Normal
|:| Reserved (Initialize to 0) 01 Reserved!
10 Targetin Cache
-] Preserved 11 Reserved!

LVector entries with a reserved
type have unpredictable behavior.

Vector Entries

A vector entry contains a specific interrupt handler’s address. When an interrupt is serviced, the
processor branches to the address specified by the vector entry.

Each interrupt is associated with an 8-bit vector number that points to a vector entry in the interrupt
table. The vector entry section contains 248 word-length entries. Vector numbers 8-243 and
252-255 and their associated vector entries are used for conventional interrupts. Vector number
248 is the NMI# vector. Vector numbers 244-247 and 249-251 are reserved. Vector number 248
and its associated vector entry is used for the non-maskable interrupt (NMI#). Vector numbers 0-7
cannot be used.

Vector entry 248 contains the NMI# handler address. When the processor is initialized, the NMI#
vector located in the interrupt table is automatically read and stored in location OH of internal data
RAM. The NMI# vector is subsequently fetched from internal data RAM to improve this

interrupt’s performance.

i960® VH Processor Developer's Manual

8.1.4.2

8.1.4.3

8.1.5

Interrupts

The vector entry structure is given at the bottom of Figure 8-2. Each interrupt procedure must

begin on a word boundary, so the processor assumes that the vector’s two least significant bits are
0. Bits 0 and 1 of an entry indicate entry type: type 00 indicates that the interrupt procedure should
be fetched normally; type 10 indicates that the interrupt procedure should be fetched from the
locked partition of the instruction cache. RefeStxtion 8.5.2.2, “Caching Interrupt Routines and
Reserving Register Frames” on page 893te other possible entry types are reserved and must not
be used.

Pending Interrupts

The pending interrupts section comprises the interrupt table’s first 36 bytes, divided into two fields:
pending priorities (byte offset 0 through 3) and pending interrupts (4 through 35).

Each of the 32 bits in the pending priorities field indicate an interrupt priority. When the processor
posts a pending interrupt in the interrupt table, the bit corresponding to the interrupt’s priority is
set; for example, when an interrupt with a priority of 10 is posted in the interrupt table, bit 10 is set.

Each of the pending interrupts field’s 256 bits represent an interrupt procedure pointer. Byte offset
5 is for vectors 8 through 15, byte offset 6 is for vectors 16 through 23, and so on. Byte offset 4, the
first byte of the pending interrupts field, is reserved. When an interrupt is posted, its corresponding
bit in the pending interrupt field is set.

This encoding of the pending priority and pending interrupt fields permits the processor to first
check for any pending interrupts with a priority greater than the current program and then
determine the vector number of the interrupt with the highest priority.

Caching Portions of the Interrupt Table

The architecture allows all or part of the interrupt table to be cached internally to the processor. The
purpose of caching these fields is to reduce interrupt latency by allowing the processor to access
certain interrupt procedure pointers and the pending interrupt information without having to make
external memory accesses. The 80960VH caches the following:

* Thevalue of the highest priority posted in the pending priorities field.
* A predefined subset of interrupt procedure pointers (entries from the interrupt table).
* Pending interrupts received from external interrupt pins.

This caching mechanism is non-transparent; the processor may modify fields in a cached interrupt
table without modifying the same fieldsin the interrupt table itself. Vector caching is described in
Section 8.5.2.1, “Vector Caching Option” on page 8-35

Interrupt Stack And Interrupt Record

The interrupt stack can be located anywhere in the non-reserved address space. The processor
obtains a pointer to the base of the stack during initialization. The interrupt stack has the same
structure as the local procedure stack describ&eation 7.1.1, “Local Registers and the

Procedure Stack” on page 7/s with the local stack, the interrupt stack grows from lower
addresses to higher addresses.

The processor saves the state of an interrupted program, or an interrupted interrupt procedure, in a
record on the interrupt stadkigure 8-3shows the structure of this interrupt record.

i960® VH Processor Developer’s Manual 8-5

u
Interrupts I nt6I ®

Figure 8-3. Storage of an Interrupt Record on the Interrupt Stack

Current Stack
31 (Local, Supervisor, or Interrupt Stack) 0
FP
Current Frame
31 Interrupt Stack 0
L Padding Area L
Stack Optional Data
Growth
Saved Process Controls Register NFP-16
Interrupt
Saved Arithmetic Controls Register NFP-12 | Record
Vector Number NFP-8
NFP
< New Frame <
Reserved
v 4

The interrupt record is always stored on theinterrupt stack adjacent to the new framethat is created
for the interrupt handling procedure. It includes the state of the AC and PC registers at the time the
interrupt was serviced and the interrupt procedure pointer number used. Relative to the new frame
pointer (NFP), the saved AC register islocated at address NFP-12, the saved PC register islocated
at address NFP-16.

In the 80960V H, the stack is aligned to a 16-byte boundary. When the processor needs to create a

new frame on an interrupt call, it adds a padding area to the stack so that the new frame startson a
16-byte boundary.

8.1.6 Posting Interrupts

Interrupts are posted to the processor by a number of different mechanisms; these are described in
the following sections.

* Software interrupts: interrupts posted through the interrupt table, by software running on the
80960V H.

* External Interrupts: interrupts posted through the interrupt table, by an external agent to the
80960V H.

* Hardware interrupts: interrupts posted directly to the 80960V H through an
implementation-dependent mechanism that may avoid using the interrupt table.

8-6 i960® VH Processor Developer’s Manual

intel.

8.1.6.1

Example 8-1.

8.1.6.2

Interrupts

Posting Software Interrupts via sysctl

In the 80960VH, sysctl istypically used to request an interrupt in a program (see Example 8-1).
The request interrupt message type (O0H) is selected and the interrupt procedure pointer number is
specified in the least significant byte of the instruction operand. See Section 6.2.67, “sysctl” on
page 6-104or a complete discussion sysctl.

Using sysctl to Request an Interrupt

| dconst 0x53, g5# Vector nunber 53H is | oaded
into byte 0 of register g5 and
the value is zero extended into
byte 1 of the register

sysctl g5, g5, gb5# Vector nunber 53H is posted

A literal can be used to post an interrupt with a vector number from 8 to 31. Here, the required
value of O0H in the second byte of a register operand is implied.

The action of the processor when it executesiset! instruction is as follows:

1. The processor performs an atomic write to the interrupt table and sets the bits in the
pending-interrupts and pending-priorities fields that correspond to the requested interrupt.

2. The processor updates the internal software priority register with the value of the highest
pending priority from the interrupt table. This may be the priority of the interrupt that was just
posted.

The interrupt controller continuously compares the following three values: software priority
register, current process priority, and priority of the highest pending hardware-generated interrupt.
When the software priority register value is the highest of the three, the following actions occur:

1. The interrupt controller signals the core that a software-generated interrupt is to be serviced.

2. The core checks the interrupt table in memory, determines the vector number of the highest
priority pending interrupt and clears the pending-interrupts and pending-priorities bits in the
table that correspond to that interrupt.

3. The core detects the interrupt with the next highest priority that is posted in the interrupt table
(if any) and writes that value into the software priority register.

4. The core services the highest priority interrupt.

When more than one pending interrupt is posted in the interrupt table at the same interrupt priority,
the core handles the interrupt with the highest vector number first. The software priority register is
an internal register and, as such, is not visible to the user. The core only updates this register’s
value whersysctl requests an interrupt or when a software-generated interrupt is serviced.

Posting Software Interrupts Directly in the Interrupt Table

In special cases within a single processor system, software can post interrupts by setting the desired
pending-interrupt and pending-priorities bits directly. Direct posting requires that software ensure
that no externdlO agents post a pending interrupt simultaneously, and that an interrupt cannot
occur after one bit is set but before the other is set. Note, however, that this method is not
recommended.

i960® VH Processor Developer’s Manual 8-7

Interrupts

8.1.6.3

8.1.6.4

8.1.7

intel.

An external agent posts (sets) a pending interrupt with vector “v” to the 80960VH through the
interrupt table by executing the following algorithm:

Posting External Interrupts

Ext er nal _Agent _Post i ng:

X atomi c_read(pending_priorities); #synchronize;
z read(pendi ng_i nterrupts[v/8]);
x[v/8] = 1;

z[v nod 8] = 1;
wite(pending_interrupts[v/8]) = z;
atomic_wite(pending_priorities) =

X,

Generally, software cannot use this algorithm to post interrupts because there is no way for
software to have an atomic (locking) read/write span multiple instructions.

Posting Hardware Interrupts

Certain interrupts are posted directly to the processor by an implementation-dependent mechanism
that can bypass the interrupt table. This is often done for performance reasons.

Resolving Interrupt Priority

The interrupt controller continuously compares the processor’s priority to the priorities of the
highest-posted software interrupt and the highest-pending hardware interrupt. The core is
interrupted when a pending interrupt request is higher than the processor priority or has a priority
of 31. (Note that a priority-31 interrupt handler can be interrupted by another priority-31 interrupt.)
There are no priority-0 interrupts since such an interrupt would never have a priority higher than
the current process, and would therefore never be serviced.

In the event that both hardware and software requested interrupts are posted at the same level, the
hardware interrupt is delivered first while the software interrupt is left pending. As a result, when
both priority-31 hardware- and software-requested interrupts are pending, control is first
transferred to the interrupt handler for the hardware-requested interrupt. However, before the first
instruction of that handler can be executed, the pending software-requested interrupt is delivered
and control is transferred to the corresponding interrupt handler.

Example 8-2. Interrupt Resolution (Sheet 1 of 2)

8-8

/* Model used to resolve interrupts between execution of all macro
i nstructions */

if (NM#_pending && ! bl ock_NM)
{ block_NM = true; /* Reset on return fromNM I|INTR handler */
vecnum = 248; vector_addr = 0;
PC priority = 31;
push_l ocal _register_set();
got o conmon_i nterrupt _process; }
if (1CON gie == enabled) {
expand_HW.int();
temp = max(HW.Int _Priority, SWInt_Priority);
if (temp == 31 || tenp > PC. priority)

i960® VH Processor Developer’s Manual

intel.

Example 8-2.

Interrupts

Interrupt Resolution (Sheet 2 of 2)

{ PC.priority = tenp;

if (SWIint_Priority > HWInt _Priority) goto
Del i ver _SW I nt;

el se{ vechnum = HWvecnum goto Deliver_HWInt;}

}

8.1.8

Sampling Pending Interrupts in the Interrupt Table

At specific points, the processor checks the interrupt table for pending interrupts posted. When one
isfound, itis handled asif the interrupt occurred at that time. In the 80960V H, a check for pending
interrupts in the interrupt table is made when requesting a software interrupt with sysctl or when
servicing a software interrupt.

When a check of the interrupt table is made, the following agorithm is used. Since the pending
interrupts may be cached, the check for pending interrupt operation may not involve any memory
operations. The algorithm uses synchronization because there may be multiple agents posting and
unposting interrupts. In the algorithm, w, X, y, and z are temporary registers within the processor.

Check_For _Pending_I nterrupts:

x = read(pending_priorities);
if(x == 0) return(); #nothing to do
y = nost_significant_bit(x);
if(y '=31 & y <= current_priority) return();
X = atom c_read(pending_priorities); #synchronize
if(x == 0)
{atomi c_wite(pending_priorities) = x;
return();} #interrupts disappeared
(e.g., handl ed by another processor)
y = nost_significant_bit(x); #nust be repeated
if(y '=31 & y <= current_priority)
{atomi c_wite(pending_priorities) = x;
return();} #interrupt disappeared
z = read(pending_interrupts[y]); #z is a byte
if(z == 0)
{x[y] = 0; #false alarm should not happen
atom c_write(pending_priorities) = x;
return();}
el se
{w = nmost _significant_bit[z];
z[w] = 0;
write(pending_interrupts[y]) = z;
if(z == 0) x[y] = 0; #no others at this |eve

i960® VH Processor Developer’s Manual 8-9

Interrupts

8.1.9

8.2

8-10

intel.

atom c_write(pending_priorities) = x;
take_interrupt();}

The algorithm shows that the pending interrupts are marked by a bit in the Pending I nterrupts Field,
and that the Pending Priorities Field is an optimization. The processor examines Pending Interrupts
only when the corresponding bit in Pending Prioritiesis set.

The steps prior to the at omi ¢_r ead are another optimization. Note that these steps must be
repeated within the synchronized critical section, since another processor could have spotted and
accepted the same pending interrupt(s).

Usesysctl with avector in therange 0 to 7 to force the core to check the interrupt table for pending
interrupts. When an external agent is posting interrupts to a shared interrupt table, use sysctl
periodically to guarantee recognition of pending interrupts posted in the table by the external agent.

Saving the Interrupt Mask

Whenever an interrupt requested by the external interrupt pins or by the internal timersis serviced,
the IMSK register isautomatically saved in register r3 of the new local register set allocated for the
interrupt handler. After the mask is saved, the IMSK register is optionally cleared. This masks all
interrupts except NMI#s while an interrupt is serviced. Sincethe IMSK register valueis saved, the
interrupt procedure can restore the value before returning. The option of clearing the mask is
selected by programming the ICON register as described in Section 8.4.2, “Interrupt Control
Register — ICON” on page 8-24

Priority-31 interrupts are interrupted by other priority-31 interrupts. For level-activated interrupt
inputs, instructions within the interrupt handler are typically responsible for causing the source to
deactivate. If these priority-31 interrupts are not masked, then another priority-31 interrupt is
signaled and serviced before the handler can deactivate the source. The first instruction of the
interrupt handling procedure is never reached, unless the option is selected to clear the IMSK
register on entry to the interrupt.

Another use of the mask is to lock out other interrupts when executing time-critical portions of an
interrupt handling procedure. All hardware-generated interrupts are masked until software
explicitly replaces the mask.

The processor does not restore r3 to the IMSK register when the interrupt return is executed. When
the IMSK register is cleared, the interrupt handler must restore the IMSK register to enable
interrupts after return from the handler.

The i960® Core Processor Interrupt Controller

The 80960V H Interrupt Controller Unit (ICU) provides a flexible, low-latency means for

requesting and posting interrupts and minimizing the core’s interrupt handling burden. Acting
independently from the core, the interrupt controller posts interrupts requested by hardware and
software sources and compares the priorities of posted interrupts with the current process priority.

The interrupt controller provides the following features for managing hardware-requested
interrupts:

* Low latency, high throughput handling.
* FEight external interrupt pins.

i960® VH Processor Developer’s Manual

I n Interrupts
®
* One non-maskable interrupt pin.
* Two internal timers sources.
* Periphera interrupt sources.
Figure 8-4. Interrupt Controller
S_INT[D:Al/XINT3:0#, XINT7:4# NMI#
IT????T?? f TINTO TINT1
Interrupt Control Interrupt Detection <
Register Block
Clear ++++++++
a Blt—b Pending Interrupts
Global
Interrupt + + * + + + + *
Disable
Interrupt Masks
YYYVYVYVYYY
Interrupt Interrupt
Pin Mode
- Selection
Interrupt Pin to N Block
Vector Map
Registers 0 to 2 % i
Vector Ack
Interrupt Core
Interrupt
Vectorc Action <> P’:r’:/lc:ig
ore
Ak Block
B AN VAR Process Priority Software Interrupt | | Processor
(in PC) - Priority Register State
(Internal)
Core accepts interrupt when: Core:
* Processor not stopped * Calls interrupt handlers
* Not executing a fault-call or * Posts software interrupts
* Interrupt-call action and * Checks for software interrupts
* Between instruction or * Handles all interrupt table access
* At a resumption point
i960® VH Processor Developer’s Manual 8-11

Interrupts

8.2.1

Figure 8-5.

8.2.2

8-12

intel.

The user program interfaces to the interrupt controller with ten memory-mapped control registers.
The Interrupt Control Register (ICON) and Interrupt Map Control Registers (IMAPO-IMAP2)
provide configuration information. The Interrupt Pending Register (IPND) posts
hardware-requested interrupts. The Interrupt Mask Register (IMSK) selectively masks
hardware-requested interrupts.

Interrupt Controller Dedicated Mode

The 80960V H interrupt controller external pins are set up for dedicated mode operation, where
each external interrupt pin is assigned a vector number. Vector numbers that may be assigned to a
pin are those with the encoding PPPP 0010, (Figure 8-5), where bits marked P are programmed
with bitsin theinterrupt map (IMAP) registers. This encoding of programmable bits and preset bits
can designate 15 unique vector numbers, each with a unique, even-numbered priority. (Vector
0000 0010, is undefined; it has a priority of 0.)

Interrupts are posted in the interrupt pending (IPND) register. Single bitsin the IPND register
correspond to each of the eight dedicated externa interrupt inputs, or the two timer inputs to the
interrupt controller. The interrupt mask (IMSK) register selectively masks each of the interrupts.
Optionally, the IMSK register can be saved and cleared when an interrupt is serviced. Thislocks
out other hardware-generated interrupts until the mask is restored. See Section 8.4,
“Memory-mapped Control Registers” on page 8f@2a further description of the IMSK, IPND
and IMAP registers.

Interrupt vectors are assigned to timer inputs in the same way external pins are assigned vectors.
Interrupt Pin Vector Assignment

IMAP Control Registers Hard-wired Vector Offset

XINTO# R —— PPPP 0010,
XINT1# _— PPPP 0010,
XINT2# R — PPPP 0010,

u n n

[] n u

u n n
XINT7# —_— PPPP 0010,
TINTO _— PPPP 00102
TINT1 E—— PPPP 0010,

4 MSB 41SB
Highest Selected
8 Vector Number

Interrupt Detection

The XINT7:0# pins use level-low detection. All of the interrupt pins use fast sampling.

i960® VH Processor Developer’s Manual

Example 8-3.

Figure 8-6.

Interrupts

For low-level detection, the pin’s bit in the IPND register remains set as long as the pin is asserted
(low). The processor attempts to clear the IPND bit on entry into the interrupt handler. However, if
the active level on the pin is not removed at this time, then the bit in the IPND register remains set
until the source of the interrupt is deactivated and the IPND bit is explicitly cleared by software.
Software may attempt to clear an interrupt pending bit before the active level on the corresponding
pin is removed. In this case, the active level on the interrupt pin causes the pending bit to remain
asserted.

After the interrupt signal is deasserted, the handler then clears the interrupt pending bit for that
source before return from handler is executed. If the pending bit is not cleared, then the interrupt is
re-entered after the return is executed.

Example 8-3emonstrates how a level detect interrupt is typically handled. The example assumes
that theld from address “timer_0,” deactivates the interrupt input.

Return from a Level-detect Interrupt

Clear level-detect interrupts before return from handl er
| da | PND MVR, gl # Get address of | PND Menory- Mapped Regi ster
Id timer_0, g0 # Get tiner value and clear TMRO
| da 0x1000, g2
wai t :
nmov 0, g3
atnmod g1, g2, g3
bbs 0xC, g3, wait
ret # Return from handl er

Interrupt pins are asynchronous inputs. Setup or hold times relative to P_CLK are not needed to
ensure proper pin detection. NoteFigure 8-6 which shows how a signal is sampled using fast
sampling, that interrupt inputs are sampled once every two P_CLK cycles. For practical purposes,
this means that asynchronous interrupting devices must generate an interrupt signal that is asserted
for at least three P_CLK cycles. See your 80960VH Data Sheet for setup and hold specifications
that guarantee detection of the interrupt on particular edges of P_CLK. These specifications are
useful in designs that use synchronous logic to generate interrupt signals to the processor. These
specification must also be used to calculate the minimum signal width, as sheigoriz 8-6

Interrupt Fast Sampling

P CLK |: ; : : : ;
XINT7:0# ["\ \ <~— 3cyclemin. —/ /
5 ~ 5 5 : :

(fast sampled) T~

Detect Interrupt

* Denotes sampling clock edge. Interrupt pins are sampled one time for every two P_CLK (external bus clock) cycles.

i960® VH Processor Developer’s Manual 8-13

u
Interrupts I nt6I ®

8.2.3 Non-Maskable Interrupt (NMI#)

The NMI# pin generates an interrupt for implementation of critical interrupt routines. Error
interrupts from the internal peripheral units also come into the 1960 core through the NM1# pin.
NMI# provides an interrupt that cannot be masked and that has a priority of 31. The interrupt
vector for NMI# resides in the interrupt table as vector number 248. During initialization, the core
caches the vector for NMI# on-chip, to reduce NMI# latency. The NMI# vector is cached in
location OH of internal data RAM.

The coreimmediately services NMI# requests. While servicing an NM 14, the core does not
respond to any other interrupt requests, even another NM I# request. The processor remainsin this
non-interruptible state until any return-from-interrupt (in supervisor mode) occurs. An interrupt
request on the NMI# pinis always falling-edge detected. (Note that a return-from-interrupt in user
mode does not unblock NM I# events and should be avoided by software.)

8.2.4 Timer Interrupts

Each of the two timer units has an associated interrupt to allow the application to accept or post the
interrupt request. The timer interrupts are connected directly to the 80960V H interrupt controller
and are posted in the IPND register. These interrupts are set up through the timer control registers
described in Chapter 19, “Timers”

8.2.5 Software Interrupts

The application program may use #yactl instruction to request interrupt service. The vector that
sysctl requests is serviced immediately or posted in the interrupt table’s pending interrupts section,
depending upon the current processor priority and the request’s priority. The interrupt controller
caches the priority of the highest priority interrupt posted in the interrupt table. The processor
cannot request vector 248 (NMI#) as a software interrupt.

8.2.6 Interrupt Operation Sequence

The interrupt controller, microcode and core resources handle all stages of interrupt service.
Interrupt service is handled in the following stages:

Requesting Interrupt — In the 80960VH, the programmable on-chip interrupt controller
transparently manages all interrupt requests. Interrupts are generated by hardware (external events)
or software (the application program). Hardware requests are signaled on the 8-bit external
interrupt port (XINT7:0#), the non-maskable interrupt pin (NMI#) or the two timer channels.
Software interrupts are signaled with the sysctl instruction with post-interrupt message type.

Posting Interrupts — When an interrupt is requested, the interrupt is either serviced immediately or
saved for later service, depending on the interrupt’s priority. Saving the interrupt for later service is
referred to as posting. Once posted, an interrupt becomes a pending interrupt. Hardware and
software interrupts are posted differently:

* Hardware interrupts are posted by setting the interrupt’s assigned bit in the interrupt pending
(IPND) memory mapped register

* Software interrupts are posted by setting the interrupt’s assigned bit in the interrupt table’s
pending priorities and pending interrupts fields

8-14 i960® VH Processor Developer’s Manual

8.2.7

Example 8-4.

8.2.8

Interrupts

Checking Pending Interrupts — The interrupt controller compares each pending interrupt’s priority
with the current process priority. When process priority changes, posted interrupts of higher
priority are then serviced. Comparing the process priority to posted interrupt priority is handled
differently for hardware and software interrupts. Each hardware interrupt is assigned a specific
priority when the processor is configured. The priority of all posted hardware interrupts is
continually compared to the current process priority. Software interrupts are posted in the interrupt
table in external memory. The highest priority posted in this table is also saved in an on-chip
software priority register; this register is continually compared to the current process priority.

Servicing Interrupts — When the process priority falls below that of any posted interrupt, the
interrupt is serviced. The comparator signals the core to begin a microcode sequence to perform the
interrupt context switch and branch to the first instruction of the interrupt routine.

Figure 8-4illustrates interrupt controller function. For best performance, the interrupt flow for
hardware interrupt sources is implemented entirely in hardware.

The comparator only signals the core when a posted interrupt is a higher priority than the process
priority. Because the comparator function is implemented in hardware, microcode cycles are never
consumed unless an interrupt is serviced.

Setting Up the Interrupt Controller

This section provides an example of setting up the interrupt controller. The following example
describes how the interrupt controller can be dynamically configured after initialization.

Example 8-4sets up the interrupt controller to fetch interrupt vectors from internal data RAM
rather than external memory. Initially the IMSK register is masked to allow for setup. A value that
selects vector caching is loaded into the ICON register and the IMSK is unmasked.

Programming the Interrupt Controller for Vector Caching

Exanpl e vector caching setup .

mov 0x0, g0

nov 0x00006000, g1

Id | MBK, g3 # mask, | MBK MVR at OxFF008504
st g1, | MK

st gl, 1 CON

Interrupt Service Routines

An interrupt handling procedure performs a specific action that is associated with a particular
interrupt procedure pointer. For example, one interrupt handler task might initiate a timer unit
request. The interrupt handler procedures can be located anywhere in the non-reserved address
space. Since instructions in the 80960VH architecture must be word-aligned, each procedure must
begin on a word boundary.

When an interrupt handling procedure is called, the processor allocates a new frame on the
interrupt stack and a set of local registers for the procedure. If not already in supervisor mode, then
the processor always switches to supervisor mode while an interrupt is handled. It also saves the
states of the AC and PC registers for the interrupted program.

i960® VH Processor Developer’s Manual 8-15

Interrupts

8.2.9

8.2.9.1

8-16

intel.

The interrupt procedure shares the remainder of the execution environment resources (namely the
global registers and the address space) with the interrupted program. Thus, interrupt procedures

must preserve and restore the state of any resources shared with a non-cooperating program. For
example, an interrupt procedure that uses a global register that is not permanently allocated to it
should save the register’s contents before using the register and restore the contents before
returning from the interrupt handler.

To reduce interrupt latency to critical interrupt routines, interrupt handlers may be locked into the
instruction cache. Segection 8.5.2.2, “Caching Interrupt Routines and Reserving Register
Frames” on page 8-36r a complete description.

Interrupt Context Switch

When the processor services an interrupt, it automatically saves the interrupted program state or
interrupt procedure and calls the interrupt handling procedure associated with the new interrupt
request. When the interrupt handler completes, the processor automatically restores the interrupted
program state. The method used to service an interrupt depends on the processor state when the
interrupt is received.

* An executing-state interrupt — When the processor is executing a background task and an
interrupt request is posted, the interrupt context switch must change stacks to the interrupt
stack.

* Aninterrupted-state interrupt — When the processor is already executing an interrupt handler,
no stack switch is required since the interrupt stack is already in use.

The following subsections describe interrupt handling actions for executing-state and
interrupted-state interrupts. In both cases, it is assumed that the interrupt priority is higher than that
of the processor and thus is serviced immediately when the processor receives it.

Servicing An Interrupt From Executing State

When the processor receives an interrupt while in the executing state (i.e., executing a program,
PC.s = 0), it performs the following actions to service the interrupt. This procedure is the same
regardless of whether the processor is in user or supervisor mode when the interrupt occurs. The
processor:

1. Switches to the interrupt stack ($&gure 8-3. The interrupt stack pointer becomes the new
stack pointer for the processor.

2. Saves the current PC and AC in an interrupt record on the interrupt stack. The processor also
saves the interrupt procedure pointer number.

3. Allocates a new frame on the interrupt stack and loads the new frame pointer (NFP) in global
register g15.

4. Sets the state flag in PC to interrupted (PC.s = 1), its execution mode to supervisor and its
priority to the priority of the interrupt. Setting the processor's priority to that of the interrupt
ensures that lower priority interrupts cannot interrupt the servicing of the current interrupt.

5. Clears the trace enable bit in PC. The interrupt is handled without raising trace faults.
6. Sets the frame return status field pfp[2:0] to,111

7. Performs a call operation as describe@lapter 7, “Procedure CallsThe address for the
called procedure is specified in the interrupt table for the specified interrupt procedure pointer.

i960® VH Processor Developer’s Manual

|]
Interrupts
intel. :

After completing the interrupt procedure, the processor:

1. Copiesthe arithmetic controlsfield and the process controls field from the interrupt record into
the AC and PC, respectively. It therefore switches to the executing state and restores the
trace-enabl e bit to its value before the interrupt occurred.

2. Deallocates the current stack frame and interrupt record from the interrupt stack and switches
to the stack it was using before servicing the interrupt.

3. Performs areturn operation as described in Chapter 7, “Procedure Calls”
4. Resumes work on the program when all pending interrupts and trace faults are serviced.

8.2.9.2 Servicing An Interrupt From Interrupted State

When the processor receives an interrupt while servicing another interrupt, and the new interrupt
has a higher priority than one being serviced, the current interrupt-handler routine is interrupted.
Here, the processor performs the same interrupt-servicing action as desc8betidn 8.2.9.1, on

page 8-160 save the state of the interrupted interrupt-handler routine. The interrupt record is
saved on the top of the interrupt stack prior to the new frame that is created for use in servicing the
new interrupt. SeEigure 8-3

On the return from the current interrupt handler to the previous interrupt handler, the processor
de-allocates the current stack frame and interrupt record, and stays on the interrupt stack.

8.3 PCIl And Peripheral Interrupts

The PCI and peripheral portion of the interrupt controller has two functions:
* Internal Periphera Interrupt Control
* PCI Interrupt Routing

The peripheral interrupt control mechanism consolidates a number of interrupt sources for agiven
internal peripheral into a single interrupt driven to the i960 core. In order to provide the executing
software with the knowledge of interrupt source, there is a memory-mapped status register that
describes the source of the interrupt. All of the internal peripheral interrupts are individually
enabled from their respective peripheral control registers.

The PCI interrupt routing mechanism allows the host software (or 80960 software) to route some
interrupts to either the 1960 core or the P_INTA#, P_INTB#, P_INTC#, and P_INTD# output pins.
This routing mechanism is controlled through a memory-mapped register accessible from the
primary ATU configuration space or the 80960V H local bus.

i960® VH Processor Developer’s Manual 8-17

Interrupts I n
P ®

Figure 8-7. Interrupt Controller Connections for 80960VH

—————— P_INTA# Output
—>» P_INTB# Output
——> P_INTC# Output
> P_INTD# Output
; ®
1960~ VH Processor
A ye Unit Outbound Doorbell A
A je Unit Outbound Doorbell B
< M ge Unit Outbound Doorbell C
< M ge Unit Outbound Doorbell D
< M
< < Messaging Unit
3 <« g Outbound Interrupt Pending
| XINTO Select bit h _ o
| Primary ATU Interrupt Pin Register
M >| XINTO#
XINTO# ———— > U ||
i L X > XINT1#
! XINT1 Select bit o
| XINT2#
5 M > XINT3#
H .
XINTL# 1 ol nay 19607 Core
| XINT2 Select bit Processor
; > XINT5#
| M
XINT2#—— (U XINT6#
i LX]
| XINT3 Select bit >| XINT7#
| > NMI#
; M
XINT3#+——»(U
s LX|
XINT4#~
XINTS# +
DMA Channel 0 Interrupt Pending —>{ g
DMA Channel 1 Interrupt Pending —> 5
: 5l
08
XINT6# ~ > =
i X |
12C Bus Interface Unit Interrupt Pending ——> g
Messaging Unit Inbound Interrupt Pending —> % 5
! Primary ATU/Start BIST Interrupt Pending —> E <
; > | Z
XINT7# ! > =
Primary ATU Error—>» §
Messaging Unit Error —»| £ s
Local Processor Error—> | £ &
DMA Channel 0 Error—> s =
DMA Channel 1 Error—>| 2
NMI# >

8-18 i960® VH Processor Developer’s Manual

|]
Interrupts
intel. :

8.3.1 Pin Descriptions

The 80960V H provides eight external interrupt pins and one non-maskable interrupt pin for
detecting external interrupt requests. The eight external pins are configured as dedicated inputs,
where each pin is capable of requesting a single interrupt, in some cases from several different
sources. The external interrupt input interface for the 80960V H consists of the following pins:

Table 8-1. Interrupt Input Pin Descriptions

Signal Description

Can be directed to the P_INTA# output or the i960 core interrupt input XINTO#.

XINTO# When routed to the P_INTA# output, this pin is shared with two internal interrupts. They
are the interrupts from the Messaging Unit. When routed to the i960 core internal input
XINTO#, this input is not shared.

Can be directed to the P_INTB# output or the i960 core interrupt input XINT1#.

XINT1# When routed to the P_INTB1# output, this pin is shared with two internal interrupts. They
are the interrupts from the Messaging Unit. When routed to the i960 core internal input
XINT1#, this input is not shared.

Can be directed to the P_INTC# output or the 1960 core interrupt input XINT2#.

XINT2# When routed to the P_INTC2# output, this pin is shared with two internal interrupts. They
are the interrupts from the Messaging Unit. When routed to the i960 core internal input
XINT2#, this input is not shared.

Can be directed to the P_INTD# output or the 1960 core interrupt input XINT3#.

XINT3# When routed to the P_INTD# output, this pin is shared with two internal interrupts. They
are the interrupts from the Messaging Unit. When routed to the i960 core internal input
XINT3#, this input is not shared.

XINTA4# Always connected to the i960 core interrupt input XINT4#.

XINT5# Always connected to the i960 core interrupt input XINT5#.

Shared with two internal interrupts. They are the interrupts from each of the two internal
DMA channels. All of the interrupts are directed to the i960 core interrupt input XINT6#.

XINT6# Software must read the XINT6 Interrupt Status Register to determine the exact source of
the interrupt.
Shared with three internal interrupts. They are the interrupts from the 12C Bus Interface
XINT7# Unit, the Primary ATU, and the Messaging Unit. All of the interrupts are directed to the

1960 core interrupt input XINT7#. Software must read the XINT7 Interrupt Status Register
to determine the exact source of the interrupt.

Shared with five internal interrupts. They include error interrupts from the local processor,
primary ATU, Messaging Unit and the two DMA channels. All of the interrupts are directed
NMI# to the 1960 core NMI# input. Software must read the NMI Interrupt Status Register to
determine the exact source of the interrupt. NMI# is the highest priority interrupt
recognized. This pin is synchronized internal to the 1960 core.

All pinsin Table 8-1 are level-low activated. See Section 8.2.2, “Interrupt Detection” on page 8-12

8.3.2 PCI Interrupt Routing

Four PCI interrupt inputs can be routed to either the 1960 core interrupt inputs or to the PCI
interrupt output pins. This routing is controlled by the XINT Select bit in the PCI interrupt Routing
Select Register. S@able 8-2

i960® VH Processor Developer’s Manual 8-19

Interrupts

Table 8-2.

8.3.3

8.3.3.1

Table 8-3.

8-20

intel.

PCI Interrupt Routing Summary for 80960VH

PIRSR Select Bit | Bit Value Description

] 1 XINTO# Input Pin routed to i960 core processor XINTO# Input Pin
bit0 0 XINTO# Input Pin routed to P_INTA# Output Pin

] 1 XINT1# Input Pin routed to i960 core processor XINT1# Input Pin
bit 1 0 XINT1# Input Pin routed to P_INTB# Output Pin

] 1 XINT2# Input Pin routed to i960 core processor XINT2# Input Pin
bit 2 0 XINT2# Input Pin routed to P_INTC# Output Pin

] 1 XINT3# Input Pin routed to i960 core processor XINT3# Input Pin
bit 3 0 XINT3# Input Pin routed to P_INTD# Output Pin

Internal Peripheral Interrupt Routing

XINT6#, XINT7# and NM I# interrupt inputs on the 1960 core receive inputs from multiple internal
interrupt sources. One internal latch before each of these three inputs provides the necessary
muxing of the different interrupt sources. Application software can determine which peripheral
unit caused an interrupt by reading the corresponding interrupt latch. More detail about the exact
cause of the interrupt can be determined by reading status from the peripheral unit.

XINT6 Interrupt Sources

The XINT6# interrupt of the i960 core receives interrupts from the external pin and the two DMA

channels. A DMA channel can cause an interrupt for aDMA End of Transfer interrupt or aDMA

End of Chain interrupt. See Section 20.3, “DMA Transfer” on page 20f& details. A valid

interrupt from any of these sources sets the bit in the latch and outputs a level-sensitive interrupt to
the 1960 core’s XINT6# input. The interrupt latch continues to drive an active low input to the 1960
core interrupt input while an interrupt is present at the latch. The XINT6 interrupt latch is read
through the XINT6 Interrupt Status Register. The XINT6 interrupt latch is cleared by clearing the
source of the interrupt at the internal peripheral or deasserting the XINT6# input.

The interrupt sources which drive the inputs to the XINT6 interrupt latch are detailedlan8-3

XINTG6 Interrupt Sources

Interrupt Status Interrupt MASK
Unit Interrupt Condition
Register Bit Register Bit
End of Chain CSRO 08
DMA Channel 0 DCRO 04
End of Transfer CSRO 09
End of Chain CSR1 08
DMA Channel 1 DCR1 04
End of Transfer CSR1 09
XINT6# Pin External Source N/A N/A N/A N/A

i960® VH Processor Developer’s Manual

intel.

8.3.3.2

Table 8-4.

8.3.3.3

Interrupts

XINT7 Interrupt Sources

The XINT7# interrupt on the i960 core receives interrupts from the external pin, the 12C Bus
Interface Unit, the Primary ATU, and the Messaging Unit. A valid interrupt from any of these
sources sets the bit in the latch and outputs a level-sensitive interrupt to the 1960 core XINT 7#
input. The interrupt latch drives an active low input to the i960 core interrupt input as long as an
interrupt is present at the latch. The XINT7 interrupt latch isread through the XINT7 Interrupt
Status Register. The XINT7 interrupt latch is cleared by clearing the source of the interrupt at the
internal peripheral or deasserting the XINT7# input pin.

The interrupt sources which drive the inputs to the XINT7 interrupt latch are detailed in Table 8-4

XINT7 Interrupt Sources

Interrupt Status Interrupt MASK
Unit Interrupt Condition
Register Bit Register Bit
Slave STOP Detected ISR 04 ICR 11
Arbitration Loss Detected ISR 05 ICR 12
12C Bus Interface IDBR Transmit Empty ISR 06 ICR 08
Unit IDBR Receive Full ISR 07 ICR 09
Slave Address Detected ISR 09 ICR 13
Bus Error ISR 10 ICR 10
Inbound Message 0 ISR 00 IIMR 00
Interrupt
Messaging Unit Inbound Message 1 ISR 01 IIMR o1
Interrupt
Inbound Doorbell Interrupt IISR 02 IIMR 02
Primary ATU ATU BIST Start PATUISR 08 N/A N/A
XINT7# Pin External Source N/A N/A N/A N/A

NMI Interrupt Sources

The Non-Maskable Interrupt (NMI#) on thei960 core receives interrupts from the external pin, the
primary ATU and the 1960 core and each of the two DMA channels. Each of the interrupts
represents an error condition in the peripheral unit. A valid interrupt from any of these sources,
when enabled, sets the bit in the latch and outputs an edge-triggered interrupt to the i960 core
NMI# input. The NMI interrupt latch isread through the NMI Interrupt Status Register. The NMI
interrupt latch is cleared by clearing the sources of all interrupts at the internal peripherals. A new
edge triggered interrupt is generated to the i960 core only after all interrupt status bits have been
simultaneously cleared.

The interrupt sources which drive the inputs to the NMI interrupt latch are detailed in Table 8-5.

i960® VH Processor Developer’s Manual 8-21

Interrupts I n
P ®

Table 8-5. NMI Interrupt Sources

Interrupt Status Interrupt MASK
Unit Error Condition

Register Bit Register Bit

PCI Master Parity Error PATUISR 00 ATUCR 04

PCI Target Abort (target) PATUISR 01 ATUCR 04

PCI Target Abort (master) PATUISR 02 ATUCR 04

Primary ATU PCI Master Abort PATUISR 03 ATUCR 04
P_SERR# Asserted PATUISR 04 ATUCR 04
80960 Bus Fault PATUISR 05 N/A N/A
80960 Memory Fault PATUISR 06 N/A N/A

Messaging Unit NMI Doorbell ISR 03 IIMR 03
960 Core 80960 Local Bus Fault LPISR 05 N/A N/A
Processor 80960 Memory Fault LPISR 06 N/A N/A
PCI Master Parity Error CSRO 0 PATUCMD 06
PCI Target Abort (master) CSRO 2 N/A N/A
DMA Channel 0 PCI Master Abort CSRO 3 N/A N/A
80960 Bus Fault CSRO 5 N/A N/A
80960 Memory Fault CSRO 6 N/A N/A

PCI Master Parity Error CSR1 0 PATUCMD 06
PCI Target Abort (master) CSR1 2 N/A N/A
DMA Channel 1 PCI Master Abort CSR1 3 N/A N/A
80960 Bus Fault CSR1 5 N/A N/A
80960 Memory Fault CSR1 6 N/A N/A
NMI# Pin External Source N/A N/A N/A N/A

8.3.4 PCI Outbound Doorbell Interrupts

The 80960V H has the capability of generating interrupts on any of the four primary PCI interrupt
pins. Thisisdone by setting a bit in the messaging unit Outbound Doorbell Port Register. See
Chapter 17, “Messaging Unifor details.

8.4 Memory-mapped Control Registers

The programmer’s interface to the interrupt controller is through ten memory-mapped control
registersTable 8-6describes these registers.

Table 8-6. Interrupt Control Registers Memory-Mapped Addresses (Sheet 1 of 2)

Register Name Description Address
PIRSR PCI Interrupt Routing Select Register 0000 12C8H
NISR NMI Interrupt Status Register 0000 1700H

8-22 i960® VH Processor Developer’s Manual

intel.

Table 8-6.

8.4.1

Table 8-7.

Interrupts
Interrupt Control Registers Memory-Mapped Addresses (Sheet 2 of 2)
Register Name Description Address
XINT7 XINT7 Interrupt Status Register 0000 1704H
XINT6 XINT6 Interrupt Status Register 0000 1708H
IPND Interrupt Pending Register FFO0 8500H
IMSK Interrupt Mask Register FFO0 8504H
ICON Interrupt Control Register FFO00 8510H
IMAPO Interrupt Map Register 0 FFOO 8520H
IMAP1 Interrupt Map Register 1 FFOO 8524H
IMAP2 Interrupt Map Register 2 FFOO 8528H

All registers are visible to software as 80960V H memory-mapped registers and can be accessed
through the internal memory bus. The PCI Interrupt Routing Select Register is accessible from the
internal memory bus and through the PCI configuration register space of the ATU (function #0).
See Chapter 11, “Core and Peripheral Control Uridf additional information regarding the PCI
configuration cycles that can access this register.

PCI Interrupt Routing Select Register (PIRSR)

The PCI Interrupt Routing Select Register (PIRSR) determines the routing of four of the external
interrupt pins. These interrupt pins consist of four external interrupt inputs which are routed to
either the primary PCI interrupts or the i960 core interrupts. If the external interrupt inputs are
routed to the primary PCI interrupt pins, then the i960 core XINT3:0# inputs must be set inactive
by setting bits 3-0 in the IMSK register to zero.

Table 8-7shows the bit definitions for programming the PCI Interrupt Routing Select Register.
The XINT Select bit defaults to a O.

PCI Interrupt Routing Select Register — PIRSR (Sheet 1 of 2)

31 28 24 20 16 12 8 4 0
LBAl: w/frvfvfvfrvfovfvfovfovfovfovfvfovfvfvfof v/ v foof v fovf v fvf v fvfinfrwfrafw,

PCI[I'VI’VI’VI’VI’VI’VI'VI’VI’VI'VI’VI’VI’VI’VI’VI'VI’VI'VI’VI’VI'VI’VI’VI'VI’VI’VI'VI’V WN\'W

Legend: NA = Not Accessible RO = Read Only

LBA: 12C8H RV = Reserved PR =Preserved RW = Read/Write

PCl: CS8H RS = Read/Set RC = Read Clear

LBA = 80960 local bus address PCI = PCI Configuration Address Offset

Bit Default Description

31:04 | 0000 000H | Reserved. Initialize to 0.

XINT3 Select Bit -
03 0, (0) Interrupts Routed To P_INTx# Pins
(1) Interrupts Routed To i960 core Interrupt Controller Input

XINT2 Select Bit -
02 0, (0) Interrupts Routed To P_INTx# Pins

(1) Interrupts Routed To i960 core Interrupt Controller Input

i960® VH Processor Developer’s Manual 8-23

Interrupts I n
P ®

Table 8-7. PCl Interrupt Routing Select Register — PIRSR (Sheet 2 of 2)

31 28 24 20 16 12 8 4 0
LBA[wvfvfrvfrvfvfrvfvfvfrvfvfvfovf v/ oS fovfvf v fovf v v fvfvfrafrwfrv/w,

PCI[I’VI’VI’VI’VI’VI'VI’VI’VI'VI’VI’VI'VI’VI’VI’VI’VI'VI’VI’VI’VI’VI’VI'VI’VI’VI'VI’VI’VWW w

Legend: NA = Not Accessible RO = Read Only
LBA: 12C8H RV = Reserved PR = Preserved RW = Read/Write

PCl: C8H RS = Read/Set RC = Read Clear
LBA = 80960 local bus address PCI = PCI Configuration Address Offset

Bit Default Description

XINT1 Select Bit -
01 0, (0) Interrupts Routed To P_INTx# Pins
(1) Interrupts Routed To 1960 core Interrupt Controller Input

XINTO Select Bit -
00 0, (0) Interrupts Routed To P_INTx# Pins
(1) Interrupts Routed To i960 core Interrupt Controller Input

8.4.2 Interrupt Control Register — ICON

The ICON register is a32-bit memory-mapped control register, that sets up the interrupt controller.
Software can manipulate this register using the load/store type instructions. The ICON register is
also automatically loaded at initialization from the control table in external memory. Table 8-8
describes the layout of the ICON register.

8-24 i960® VH Processor Developer’s Manual

|]
Interrupts
intel. :

Table 8-8. Interrupt Control Register — ICON

31 28 24 20 16 12 8 4 0
LBAl: w/frvfvfvfrvfvfrvfvfvfovfvfvfvfvfvfoof rvfrwfwfrwfrwf/rw/iw/rwf rw/iw/rw/rwfrw/rw/rw/w,

1 ojogojojojofjojofjofjo

PC'[a\na\pa\na\na\na\na\na\na\na\na\na

Legend: NA = Not Accessible RO = Read Only

LBA: 8510H RV = Reserved PR = Preserved RW = Read/Write
PCl: NA RS = Read/Set RC = Read Clear
LBA =80960 local bus address PCI = PCI Configuration Address Offset
Bit Default Description
31:15 Reserved. Initialize to 0.
14 This bit must be set (1).

Vector Cache Enable - determines whether interrupt table vector entries are fetched
13 from the interrupt table (bit clear) or from internal data RAM (bit set). Only vectors with
Default the four least-significant bits equal to 0010, may be cached in internal data RAM.

Value Mask Operation Field - determines the operation the core performs on the mask

12:11 Loaded registgr whe_n a hardware-ggnerated_ interrupt is serviced. On an interrupt, the value_in

’ from Image | IMSK is copied to r3. IMSK is then either left unchanged (00) or cleared (01). IMSK is
in Control | never cleared for NMI# or software interrupts.

Table. Global Interrupts Disable - when set (1) this bit globally disables the 1960 core interrupt
inputs and the timer unit inputs. When clear (0) this bit globally enables the i960 core
10 interrupt inputs and the timer unit inputs. This does not affect the NMI# input. This bit
performs the same function as clearing the IMSK register. This bit is also changed
indirectly by the instructions inten, intdis, intctl.

9:0 These bits must be cleared (0).

8.4.3 Interrupt Mapping Registers — IMAPO-IMAP2

The IMAP registers (Table 8-9 through Table 8-11) are three 32-bit registers (IMAPO through
IMAP2). These registers are used to program the vector number associated with the interrupt
source. IMAPO and IMAPL contain mapping information for the external interrupt pins (four bits
per pin). IMAP2 contains mapping information for the timer-interrupt inputs (four bits per
interrupt).

Each set of four bits contains a vector number’s four most-significant bits; the four least-significant
bits are always 0010In other words, each source can be programmed for a vector number of
PPPP 001§ where “P” indicates a programmable bit. For example, IMAPO bits 4 through 7
contain mapping information for the XINT1# pin. When these bits are set tg,athi&Qin is

mapped to vector number 0110 0910r vector number 98).

Software can access the mapping registers using load/store type instructions. The mapping
registers are also automatically loaded at initialization from the control table in external memory.

i960® VH Processor Developer’s Manual 8-25

Interrupts

Table 8-9.

Table 8-10.

8-26

INtal.

Interrupt Map Register 0 — IMAPO

31 28

24 20 16 12 8 4 0

SIS INSING NSNS NG NSNS NG TV TV IV TG TWSTWSTWSTWE TWS W/ TW/ TWE TW/ TW/S TW W TW/ TW/ TW/TW,

a\na\na\nayna\na\yiayiayia\ia\na\nayna\nayia\yiaynayia\yia\nayna\na\na\nayna\yia\ayiayiayia\na\na

Legend: NA = Not Accessible RO = Read Only

LBA: 8520H RV = Reserved PR = Preserved RW = Read/Write
PCI: NA RS = Read/Set RC = Read Clear
LBA =80960 local bus address PCI = PCI Configuration Address Offset
Bit Default Description
31:15 Default Reserved. Initialize to 0.
15:12 Value External Interrupt 3 Field.
11:08 Loaded External Interrupt 2 Field.
from Image
07:04 | in Control | External Interrupt 1 Field.
03:00 Table. External Interrupt O Field.
Interrupt Map Register 1 — IMAP1
31 28 24 20 16 12 8 4 0

SIS INSING NSNS ING NSNS IS NG IV TV TV TG TWSTWSTWSTWE TWS W/ TW/ TWE TW/ TW/ TW W TW/ TW/TW/TW,

a\na\na\na\na\na\nayna\na\na\na\na\na\nayayiaynayia\nayiayna\na\nayiaynayiayia\naynaynayaya

Legend: NA = Not Accessible RO = Read Only

LBA: 8524H RV = Reserved PR = Preserved RW = Read/Write
PCI: NA RS = Read/Set RC = Read Clear
LBA = 80960 local bus address PCI = PCI Configuration Address Offset
Bit Default Description
31:15 Reserved. Initialize to 0.
Default
15:12 Value External Interrupt 7 Field.
11:08 Loaded External Interrupt 6 Field.
from Image
07:04 | inControl | External Interrupt 5 Field.
03:00 Table. External Interrupt 4 Field.

i960® VH Processor Developer’s Manual

intel.

Table 8-11. IMAP2

Interrupt Map Register 2 —

Interrupts

31 28 24 20 16

12 8 4 0

NSNS NS NGNSV IV INGTWSTWSTWSTWE TWS TWTW/ T

IA7ANTANT AL ANTANTANT AN ANTANTANT AV AN T AV T AV AV

8.4.4

Table 8-12.

i960® VH Processor Developer's Manual

a\na\na\naya\ia\na\nayna\na\na\naya\na\iaynayia\na\na\nayna\na\na\naya\na\nayiayia\na\na\na

Legend: NA = Not Accessible RO = Read Only

LBA: 8528H RV = Reserved PR =Preserved RW = Read/Write

PCl: NA RS = Read/Set RC = Read Clear

LBA = 80960 local bus address PCI = PCI Configuration Address Offset

Bit Default Description

31:24 Default Reserved. Initialize to 0.

Value

23:20 Loaded

Timer Interrupt 1 Field.

19:16 | from Image | Timer Interrupt O Field.

in Control

Table. Reserved. Initialize to 0.

15:00

Interrupt Mask — IMSK and Interrupt Pending Registers —
IPND

The IMSK and IPND registers are both memory-mapped registers. Bits 0 through 7 of these
registers are associated with the externa interrupt pins (XINTO# - XINT 7#) and bits 12 and 13 are
associated with the timer-interrupt inputs (TMRO and TMR1). All other bits are reserved and
should be cleared at initialization.

Interrupt Pending Register — IPND

31 28 24 20 16 12 8 4 0
rw/rw/rw/rw,

N7AL7AN7AL7 ALTAVTANT ALY AT ANTALTAY ANTANTANT ALY AVT AN T 40V 4) /v IS VI TWITWSTW/T

a\na\na\nayia\ia\iayiayiayia\na\nayia\iayiayiayiayia\a\nayia\na\na\nayia\yiayayiayiayna\na\na

Legend: NA = Not Accessible RO = Read Only
LBA: 8500H RV = Reserved PR = Preserved RW = Read/Write
PCl: NA RS = Read/Set RC = Read Clear
LBA = 80960 local bus address PCI = PCI Configuration Address Offset
Bit Default Description
31:14 | XXXX XH | Reserved. Initialize to 0.
Timer Interrupt Pending Bits - IPND.tip
13:12 XXo (1) Pending Interrupt
(0) No Interrupt
11:08 XH Reserved. Initialize to 0.
External Interrupt Pending Bits - IPND.xip
07:00 XXH (1) Pending Interrupt
(0) No Interrupt

8-27

u
Interrupts I nt6I ®

Table 8-13. Interrupt Mask Register — IMSK

31 28 24 20 16 12 8 4 0
LBAl: wvfvfrvfrvfvfrvfvfvfrvfvfvfovfrvfvfovfovf v frwfrwf v v/ v f v rnfrwfrw/ g rw/rw/rw/w,

PC'l: a\na\pna\na\na\na\na\na\na\na

Legend: NA = Not Accessible RO = Read Only

LBA: 8504H RV = Reserved PR =Preserved RW = Read/Write

PCI: NA RS = Read/Set RC = Read Clear

LBA = 80960 local bus address PCI = PCI Configuration Address Offset

Bit Default Description

31:14 0000 OH Reserved. Initialize to 0.

Timer Interrupt Mask Bits - IMSK.tim

13:12 00, (1) Not Masked
(0) Masked
11:08 OH Reserved. Initialize to 0.
External Interrupt Mask Bits - IMSK.xim
07:00 00H (1) Not Masked
(0) Masked

The IPND register posts interrupts originating from the eight external dedicated sources and the
two timer sources. Asserting one of these inputslatchesa 1 into its associated bit in the IPND
register. The mask register provides a mechanism for masking individual bitsin the IPND register.
An interrupt source is disabled when its associated mask bit is cleared (0).

When delivering a hardware interrupt, theinterrupt controller conditionaly clears IMSK based on
the value of the ICON.mo bit. Note that IMSK isnever cleared for NMI# or software interrupt.

Although software can read and write IPND and IMSK using any memory-format instruction, it is
recommended that a read-modify-write operation using the atomic-modify instruction (atmod) be
used for reading and writing these registers. Executing an atmod on one of these registers causes
the interrupt controller to perform regular interrupt processing (including using or automatically
updating IPND and IM SK) either before or after, but, not during the read-modify-write operation
on that register. This requirement ensures that modifications to IPND and IMSK take effect
cleanly, completely, and at awell-defined point. Note that the processor does not assert the LOCK#
pin externally when executing an atomic instruction to IPND and IMSK.

When the processor core handles a pending interrupt, it attemptsto clear the bit that islatched for
that interrupt in the IPND register before it begins servicing the interrupt. If that bit is associated
with an interrupt source that is programmed for level detection and the true level is still present,
then the bit remains set. Because of this, the interrupt routine for alevel-detected interrupt should
clear the external interrupt source and explicitly clear the IPND bit before return from the handler
is executed.

An alternative method of posting interrupts in the IPND register, other than through the external

interrupt pins, isto set bitsin the register directly using an atmod instruction. This operation has
the same effect as requesting an interrupt through the external interrupt pins.

8-28 i960® VH Processor Developer’s Manual

intel.

8.4.5

Table 8-14.

8.4.6

Interrupts

XINT®6 Interrupt Status Register — X6ISR

The XINT6 Interrupt Status Register (X6l SR) shows the pending XINT6 interrupts. The source of
the XINT®6 interrupt can be the internal peripheral devices connected through the XINT6 interrupt
latch or the external XINT6# interrupt pin. Theinterrupts which are connected to the XINT6 input
are detailed in Section 8.3.3, “Internal Peripheral Interrupt Routing” on page.8-20

The X6ISR register is used to determine the source of an interrupt on the XINT6# input. All bits
within this register are defined as read-only. The bits within this register are cleared when the

source of the interrupt (status register source showalhie 8-3 are cleared. X6ISR reflects the
current state of the input to the XINT6 interrupt latch.

Due to the asynchronous nature of the 80960VH internal peripheral units, multiple interrupts can
be active when application software reads the X6ISR register. Application software must handle

the occurrence of multiple interrupts. In addition, software may subsequently read X6ISR to

determine when additional interrupts have occurred while processing the current interrupts. All

interrupts from X6ISR will be at the same priority level within the i960 core.
Table 8-14details the X6ISR register.

XINT6 Interrupt Status Register — X6ISR

31 28 24 20 16 12 8 4 0
LBAl: w/frvfvfvfrvfvfvfovfovfovfvfvfvfvfvfof v/ v foof v fvfvf v v/ frvfrofrofrofro,

PC'[a\na\na\na\na\pa\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\pa\pa\na\na\na\na\na\na\na\na\na

Legend: NA = Not Accessible RO = Read Only

LBA: 1708H RV = Reserved PR =Preserved RW = Read/Write

PCl: NA RS = Read/Set RC = Read Clear

LBA = 80960 local bus address PCI = PCI Configuration Address Offset

Bit Default Description

31:04 | 0000 000H | Reserved.

External XINT6# Interrupt Pending - when set, an interrupt is pending on the external

03 02 XINT6# input. When clear, no interrupt exists.

02 0, Reserved.

o1 0, DMA Channel 1_ Interrupt Pen_d_ing - vyhen set, a DMA channel 1 interrupt is pending.
When clear, no interrupt condition exists.

00 0, DMA Channel 0 Interrupt Pending - when set, a DMA channel O interrupt is pending.

When clear, no interrupt condition exists.

XINT7 Interrupt Status Register — X7ISR

The XINT7 Interrupt Status Register (X71SR) shows the pending XINT7 interrupts. The source of
the XINT7 interrupt can be the internal peripheral devices connected through the XINT7 interrupt
latch or the external XINT7# interrupt pin. Theinterrupts which are connected to the XINT 7# input
are detailed in Section 8.3.3, “Internal Peripheral Interrupt Routing”

i960® VH Processor Developer’s Manual 8-29

Interrupts

Table 8-15.

8.4.7

8-30

intel.

The X7ISR register is used to determine the source of an interrupt on the XINT7# input. All bits
within this register are defined as read-only. The bits within this register are cleared when the
source of the interrupt (status register source shown in Table 8-4) are cleared. X7ISR reflects the
current state of the input to the XINT7 interrupt latch.

Due to the asynchronous nature of the 80960V H internal periphera units, multiple interrupts can
be active when the application software reads the X 7I1SR register. It is up to the application
software to handle the occurrence of multiple interrupts. In addition, software may subsequently
read X 7ISR to determine when additional interrupts have occurred while processing the current
interrupts. All X7ISR interrupts will be at the same priority level within the 1960 core.

Table 8-14 details the definition of the X7I1SR.

XINT7 Interrupt Status Register — X7ISR

31 28 24 20 16 12 8 4 0
LBAl: wvfvfrvfvfvfvfvfvfvfvfvfof v/ fvfouf v fovfovffvfvfvfvf v fvfrvfrof rofrofrof o,

PCll: a\na\na\na\na\na\pna\pna\na\na\na\na\na

Legend: NA = Not Accessible RO = Read Only

LBA: 1704H RV = Reserved PR =Preserved RW = Read/Write
PCI: NA RS = Read/Set RC = Read Clear
LBA =80960 local bus address PCI = PCI Configuration Address Offset
Bit Default Description
31:05 | 0000 000H | Reserved.
04 0 External XINT7# Interrupt Pending - when set, an interrupt is pending on the external
2 XINT7# input. When clear, no interrupt exists.
Primary ATU/Start BIST Interrupt Pending - when set, the host processor has set the
03 0, start BIST request in the ATUBISTR register. When clear, no start BIST interrupt is
pending.
02 0 Inbound Doorbell Interrupt Pending - when set, an interrupt from the Inbound Doorbell
2 Unit is pending. When clear, no interrupt is pending.
01 0 12C Interrupt Pending - when set, an interrupt is from the 12C Bus Interface Unit is
2 pending. When clear, no interrupt is pending.
00 0, Reserved.

NMI Interrupt Status Register — NISR

The NMI Interrupt Status Register (NISR) shows the pending NMI interrupts. The source of the
NMI interrupt can be the internal peripheral devices connected through the NMI Interrupt Latch or
the external NMI# interrupt pin. The interrupts which are connected to the NMI# input are detailed
in Section 8.3.3, “Internal Peripheral Interrupt Routing”

The NMI Interrupt Status Register is used to determine the source of an interrupt on the NMI#
input. All of the bits within the NISR are read-only. The bits within this register are cleared when
the source of the interrupt (status register source shoabie 8-5 are cleared. NISR reflects the
current state of the input to the NMI Interrupt Latch. Note that although the NMI# input of the i960
core is edge triggered, the external NMI# input of the 80960VH requires a level input and must be
latched external to the 80960VH.

i960® VH Processor Developer’s Manual

intel.

Example 8-5.

Table 8-16.

Interrupts

Due to the asynchronous nature of the 80960V H internal peripheral units, multiple interrupts can
be active when the application software reads the NISR register. It is up to the application software
to handle the occurrence of multiple interrupts. In addition, software must check the contents of the
NISR to ensure all NMI sources are cleared before returning from the NMI interrupt service
routine. All NISR interrupts will be at the same priority level within the i960 core.

Example Code - NMI Interrupt Handler Main Loop

/* NM Interrupt Handler */
vol atil e unsigned long int N SR

do
{ NSR = *N SR reg_addr;
if (NNSR & 1)
80960_core_error();
if (NISR & 2)

primary_atu_error();
if (NISR & 32)

dme_channel _0_error();
if (NISR & 64)

dme_channel _1_error();
if (NISR & 256)

nmessagi ng_unit_interrupt();
if (NISR & 512)

external _nm _interrupt(); }
while(!'NISR);
return;

Table 8-16 shows the bit definitions for reading the NMI interrupt status register.
NMI Interrupt Status Register — NISR (Sheet 1 of 2)

31 28 24 20 16 12 8 4 0

LBA[vy fvgngvgovgng v govgovgn g ng v/ frofrof rofrofrofrof rofrofrofro

PC'[a\na\pa\na\na

Legend: NA = Not Accessible RO = Read Only

LBA: 1700H RV = Reserved PR = Preserved RW = Read/Write

PCl: NA RS = Read/Set RC = Read Clear

LBA = 80960 local bus address PCI = PCI Configuration Address Offset

Bit Default Description

31:10 | 0000 00H | Reserved.

External NMI# Interrupt - when set, an interrupt is pending on the external NMI# input.

09 02 When clear, no interrupt exists.

08 0, Me_ssaging Unit Interrupt - wr_\en set, an NMI interrupt or error exists in the Messaging
Unit. When clear, no error exists.

07 0, Reserved.

06 0, DMA Channel 1 Error - when set, a PCI or local bus error condition exists within DMA

channel. When clear, no error exists.

i960® VH Processor Developer’s Manual 8-31

Interrupts I n
P ®

Table 8-16. NMI Interrupt Status Register — NISR (Sheet 2 of 2)

31 28 24 20 16 12 8 4 0
LBAl: w/frvfvfvfrvfvfvfvfvfovfovfvf v fovfvfof v v g frvfrofrofrofrofrofrof rofrofrofro,

PC'[a\na\pa\na\na\na\na\na\na\na\na\na

Legend: NA = Not Accessible RO = Read Only

LBA: 1700H RV = Reserved PR = Preserved RW = Read/Write
PCI: NA RS = Read/Set RC = Read Clear
LBA = 80960 local bus address PCI = PCI Configuration Address Offset
Bit Default Description
05 0 DMA Channel 0 Error - when set, a PCI or local bus error condition exists within DMA
2 channel. When clear, no error exists.
04 0, Reserved.
03 0, Reserved.
02 0, Reserved.

Primary ATU Error - when set, a PCI or local bus error condition exists within the

01 02 primary ATU. When clear, no error exists.
00 0 i960 core Error - when set, an error condition caused by the i960 core exists within the
2 internal memory controller. When clear, no error exists.
8.4.8 Interrupt Controller Register Access Requirements

A load instruction that accesses the IPND, IMSK, IMAP2:0 or ICON register has alatency of one
internal processor cycle. A store access to an interrupt register is synchronous with respect to the
next instruction; that is, the operation completes fully and all state changes take effect before the
next instruction begins execution.

Interrupts can be enabled and disabled quickly by theintdis and inten instructions, which take four
cycles each to execute. intctl takes afew cycles longer because it returns the previousinterrupt
enable value. See Chapter 6, “Instruction Set Referendet more information on these
instructions.

8.4.9 Default and Reset Register Values

The interrupt logic is reset by the primary PCI reset signal or through soffiedile.8-17shows
the power-up and reset values. RefeBéation 12.4, “Initial Memory Image (IMI)” on page 12-10
for more information on register values after reset.

Table 8-17. Default Interrupt Routing and Status Values Summary

Register Default Value Description

XINTO# routed to the P_INTA#
XINT1# routed to the P_INTB#

PCI Interrupt Routing Select Register 0000 0000H
XINT2# routed to the P_INTC#
XINT3# routed to the P_INTD#
NMI Interrupt Status Register 0000 0000H No interrupts set
XINT7 Interrupt Status Register 0000 0000H No interrupts set

8-32 i960® VH Processor Developer’s Manual

intel.

Interrupts

Table 8-17. Default Interrupt Routing and Status Values Summary

Register Default Value Description
XINT6 Interrupt Status Register 0000 0000H No interrupts set
) Software responsible for clearing this
IPND undefined register before unmasking any interrupts
IMSK 0000 0000H All interrupts masked
Initial Image in .

ICON Control Table Set to user’s values

IMAP2:0 Initial Image in Set to user’s values

Control Table

i960® VH Processor Developer's Manual

8-33

Interrupts

8.5

8-34

In

Optimizing Interrupt Performance

Figure 8-8 depicts the path from interrupt source to interrupt service routine. This section discusses
interrupt performance in genera and suggests techniques the application can use to get the best

interrupt performance.
Figure 8-8.

Interrupt Service Flowchart

Dedicated Interrupt
set bit in IPND

get vector from
IMAP register

(Test for external

Software Interrupt

get vector in field 1

CNon-MaskabIe Interrupt (NMI#))

vector = 248

set corresponding
pending bits in
interrupt table

|

YES

Servicing

SIPR =
interrupt priority

NMI#
already

[

interrupts enabled) |

is
ICON.gid
=07

continue normal

operation

FP = SP aligned to

in interrupt table,
read pending interrupt bits;
clear pending interrupt bits

update SIPR with
next highest priority

(See if
Interrupt
Priority is B
greater than int.prio
process > PC.pr NO
priority OR
at interrupt or =317
priority=31)
signal core to *
process interrupt
Y
(Test for
interrupted
state)
pc.s=1 SN0
?
| YES
PFP = FP

PFP[3:0] = 0111

|

next 16 byte boundary
+16

{

store interrupt
record at FP - 16

i

New PC =

clear trace fault pending bit (TC.tfp)
clear trace enable bit (TC.te)

state = interrupted (PC.s = 1)
mode = supervisor (PC.em = 1)

i

get interrupt procedure pointer
SP =FP + 64
IP = interrupt procedure pointer

i960® VH Processor Developer's Manual

|]
Interrupts
intel. :

8.5.1 Interrupt Service Latency

The established measure of interrupt performance is the time required to perform an interrupt task
switch, which is known as interrupt service latency. Latency is the time measured between
interrupt source activation and execution of the first instruction for the accompanying
interrupt-handling procedure.

Interrupt latency depends on interrupt controller configuration and the instruction being executed
at the time of the interrupt. The processor also has a number of cache options that reduce interrupt
latency. In the discussion that follows, interrupt latency is expressed as a number of bus clock
cycles.

8.5.2 Features to Improve Interrupt Performance

The 80960VH employs four methods to reduce interrupt latency:
* Caching interrupt vectors on-chip
* Caching of interrupt handling procedure code
* Reserving register framesin the local register cache
* Caching the interrupt stack in the data cache

8.5.2.1 Vector Caching Option

To reduce interrupt latency, the 80960V H loads interrupt table vector entriesin internal data RAM.
When the vector cache option is enabled and an interrupt request has a cached vector to be
serviced, the controller fetches the associated vector from internal RAM rather than from the
interrupt table in memory.

Interrupts with a vector number with the four least-significant bits equal to 0010, can be cached.
Vectorsthat can be cached coincide with the vector numbers selected with the mapping registers
and assigned to dedicated-mode inputs. The vector caching option is selected when programming
the ICON register; software must explicitly store the vector entriesin internal RAM.

Since the internal RAM is mapped to the address space directly, this operation can be performed

using the core’s store instructiof@ble 8-18shows the required vector mapping to specific
locations in internal RAM. For example, the vector entry for vector number 18 must be stored at
RAM location 04H, and so on.

The NMI# vector is also shown iFable 8-18 This vector is always cached in internal data RAM
at location 0000H. The processor automatically loads this location at initialization with the value of
vector number 248 in the interrupt table.

Table 8-18. Location of Cached Vectors in Internal RAM (Sheet 1 of 2)

Vector Number (Binary) Vector Number (Decimal) Internal RAM Address
(NMI#) 248 0000H
0001 0010, 18 0004H
0010 0010, 34 0008H
0011 0010, 50 000CH
0100 0010, 66 0010H

i960® VH Processor Developer’s Manual 8-35

Interrupts

Table 8-18.

8.5.2.2

8.5.2.3

8.5.3

8-36

intel.

Location of Cached Vectors in Internal RAM (Sheet 2 of 2)

Vector Number (Binary) Vector Number (Decimal) Internal RAM Address
0101 0010, 82 0014H
0110 0010, 98 0018H
0111 0010, 114 001CH
1000 0010, 130 0020H
1001 0010, 146 0024H
1010 0010, 162 0028H
1011 0010, 178 002CH
1100 0010, 194 0030H
1101 0010, 210 0034H
1110 0010, 226 0038H
1111 0010, 242 003CH

Caching Interrupt Routines and Reserving Register Frames

The time required to fetch the first instructions of an interrupt-handling procedure affects interrupt
response time and throughput. The controller reduces this fetch time by caching interrupt
procedures or portions of procedures in the 80960V H'’s instruction cache.

To decrease interrupt latency for high priority interrupts (priority 28 and above), software can limit
the number of frames in the local register cache available to code running at a lower priority
(priority 27 and below). This ensures that some number of free frames are available to high-priority
interrupt service routines. S&ection 4.2, “Local Register Cache” on page, 462 more details.

Caching the Interrupt Stack

By locating the interrupt stack in memory that can be cached by the data cache, the performance of
interrupt returns can be improved. This is because accesses to the interrupt record by the interrupt
return can be satisfied by the data cache . S&=tion 13.2, “Programming the Physical Memory
Attributes (Pmcon Registers)” on page 18Bdetails on how to enable data caching for portions

of memory.

Base Interrupt Latency

In many applications, the processor’s instruction mix and cache configuration are known
sufficiently well to use typical interrupt latency in calculations of overall system performance. For
example, a timer interrupt may frequently trigger a task switch in a multi-tasking kernel. Base
interrupt latency assumes the following:

* Single-cycle RISC instruction is interrupted.

* Frame flush does not occur.

* Busqueueis empty.

® Cached interrupt handler.

* No interaction of faults and interrupts (i.e., a stable system).

i960® VH Processor Developer’s Manual

Interrupts
INtal. p

Table 8-19 shows the base latencies for all interrupt types, with varying vector caching options.

Table 8-19. Base Interrupt Latency

Interrupt Type Vector Caching Enabled Typical 80960VH Latency (Bus Clocks)t
NMI# Yes 30
Yes 34
XINT5:4#, TINT1:0
No 40+a
Yes 35
XINT7:6#, XINT3:0#
No 41+a
Yes 68
Software
No 69+a

NOTE:
1. a = MAX (O,N - 7) where “N” is the number of bus cycles needed to perform a word load.

8.5.4 Maximum Interrupt Latency

In real-time applications, worst-case interrupt latency must be considered for critical handling of

external events. For example, an interrupt from a mechanical subsystem may need service to

calculate servo loop parameters to maintain directional control. Determining worst-case latency

depends on knowledge of the processor’s instruction mix and operating environment as well as the
interrupt controller configuration. Excluding certain very long, uninterruptible instructions from
critical sections of code reduces worst-case interrupt latency to levels approaching the base latency.

The following tables present worst case interrupt latencies based on possible exeditioffrbb
destination)divo (r3 destination)galls or flushreg instructions or software interrupt detection.
The assumptions for these tables are the same @aljte 8-19 except for instruction execution.

Table 8-20. Worst-Case Interrupt Latency Controlled by divo to Destination r15

Vector Caching 1
Interrupt Type Enabled Worst 80960VH Latency (Bus Clocks)
NMI# Yes 43
Yes 45
XINT5:4#, TINT1:0
No 45+a
Yes 46
XINT7:6#, XINT3:0#
No 46+a

NOTE:
1. a=MAX (O,N - 11) where “N” is the number of bus cycles needed to perform a word load.

Table 8-21. Worst-Case Interrupt Latency Controlled by divo to Destination r3 (Sheet 1 of 2)

Interrupt Type Vector Caching Enabled Worst 80960VH Latency (Bus Clocks)!

NMI# Yes 60

NOTE:
1. a=MAX (O,N - 7) where “N” is the number of bus cycles needed to perform a word load.

i960® VH Processor Developer’s Manual 8-37

Interrupts

Table 8-21.

Table 8-22.

Table 8-23.

8-38

intel.

Worst-Case Interrupt Latency Controlled by divo to Destination r3 (Sheet 2 of 2)

Interrupt Type

Vector Caching Enabled

Worst 80960VH Latency (Bus Clocks)?®

Yes 65
XINT5:4#, TINT1:0
No 72+a
Yes 66
XINT7:6#, XINT3:0#
No 73+a

NOTE:

1. a=MAX (O,N - 7) where “N” is the number of bus cycles needed to perform a word load.

Worst-Case Interrupt Latency Controlled by calls

Interrupt Type Vecté)r:a(;?ggnng Worst 80960VH Latency (Bus Clocks)l
NMI# Yes 54+a
Yes 58+a
XINT5:4#, TINT1:0
No 66+at+b
Yes 59+a
XINT7:6#, XINT3:0#
No 67+at+b

NOTE:
1. a= MAX (ON - 4)
b = MAX (O,N - 7)

where “N” is the number of bus cycles needed to perform a word load.

Worst-Case Interrupt Latency When Delivering a Software Interrupt

Interrupt Type Vector Caching Enabled Worst 80960VH Latency (Bus Clocks)l
NMI# Yes 97
Yes 99
XINT5:4#, TINT1:0
No 107+a
Yes 100
XINT7:6#, XINT3:0#
No 108+a

NOTE:

1. a=MAX (O,N - 7) where “N” is the number of bus cycles needed to perform a word load.

i960® VH Processor Developer's Manual

|]
Interrupts
intel. ,,

Table 8-24. Worst-Case Interrupt Latency Controlled by flushreg of One Stack Frame

Vector Caching
Interrupt Type Enabled Worst 80960VH Latency (Bus Clocks)
NMI# Yes 78+a+b
Yes 82+atb
XINT5:4#, TINT1:0
No 89+a+b+c
Yes 83+atb
XINT7:6#, XINT3:0#
No 90+a+b+c

NOTE:

1. a=MAX (0, M - 15)
b = MAX (0, M - 28)
c=MAX (0,N-7)

where “M” is the number of bus cycles needed to perform a quad word store and “N” is the number of bus cycles
needed to perform a word load. Interrupt latency increases rapidly as the number of flushed stack frames increases.

8.5.5 Avoiding Certain Destinations for MDU Operations

Typically, when delivering an interrupt, the processor attempts to push the first four local registers
(pfp, sp, rip, and r3) onto the locdl register cache as early as possible. Because of register-interlock,
this operation is stalled until previousinstructions return their results to these registers. In most
cases, thisis not a problem; however, in the case of instructions performed by the Multiply/Divide
Unit (divo, divi, ediv, modi, remo, and remi), the processor could be stalled for many cycles
waiting for the result and unable to proceed to the next step of interrupt delivery.

Interrupt latency can be improved by avoiding the first four local registers as the destination for a
Multiply/Divide Unit operation. (Registers pfp, sp, and rip should be avoided anyway for general
operations as these are used for procedure linking.)

8.5.6 XINT3:0# to Primary PCI Interrupt Routing Latency

The interrupt routing logic accepts the changes to the routing control value written to the PIRSR
register one clock after the write has completed. Thereisa one clock delay from the time that the
interrupt is recognized on the input of the mux until the signal is driven either to the i960 core
interrupt controller or the PCI output interrupt pins.

i960® VH Processor Developer’s Manual 8-39

intel.

Faults 9

This chapter describes the i960% VH processor’s fault handling facilities. Subjects covered include
the fault handling data structures and fault handling mechanismsS&a®n 9.10, “Fault
Reference” on page 9-16r detailed information on each fault type.

9.1 Fault Handling Overview

The 1960 processor architecture defines various conditions in code and/or the processor’s internal
state that could cause the processor to deliver incorrect or inappropriate results or that could cause
it to choose an undesirable control path. These are dalltatonditions. For example, the

architecture defines faults for divide-by-zero and overflow conditions on integer calculations with

an inappropriate operand value.

As shown inFigure 9-1 the architecture defines a fault table, a system procedure table, a set of
fault handling procedures and stacks (user stack, supervisor stack and interrupt stack) to handle
processor-generated faults.

Figure 9-1. Fault-Handling Data Structures

Fault
Fault Fault
Processor Table Handling
| Procedures
System)
Procedure Supervisor
Table Stack
User Stack

The fault table contains pointers to fault handling procedures. The system procedure table
optionally provides an interface to any fault handling procedure and allows faults to be handled in
supervisor mode. Stack frames for fault handling procedures are created on either the user or
supervisor stack, depending on the mode in which the fault is handled. When the processor is in the
interrupted state, the processor uses the interrupt stack.

i960® VH Processor Developer’s Manual 9-1

Faults i nu ®

Once these data structures and the code for the fault procedures are established in memory, the
processor handles faults automatically and independently from application software.

The processor can detect a fault at any time while executing instructions, whether from a program,
interrupt handling procedure or fault handling procedure. When afault occurs, the processor
determines the fault type and selects a corresponding fault handling procedure from the fault table.
It then invokes the fault handling procedure by means of an implicit call. As described later in this
chapter, the fault handler call can be:

* Alocd cdl (call-extended operation)
* A system-local call (local call through the system procedure table)
* A system-supervisor call (supervisor call through the system procedure table)

A normal fault condition is handled by the processor in the following manner:
* The current local registers are saved and cached on-chip.

* PFP=FP and the value 001 is written to the Return Type Field (Fault Call). Refer to
Section 7.8, “Returns” on page 7-fiof more information.

* When the fault call is asystem-supervisor call from user mode, the processor switches to the
supervisor stack; otherwise, SPis realigned on the current stack.

* The processor writes the fault record on the new stack. Thisrecord includesinformation on the
fault and the processor’s state when the fault was generated.

* TheInstruction Pointer (IP) of the first instruction of the fault handler is accessed through the
fault table or through the system procedure table (for system fault calls).

After the fault record is created, the processor executes the selected fault handling procedure.

When afault is recoverable (i.e., the program can be resumed after handling the fault) the Return
Instruction Pointer (RIP) isdefined for the fault being serviced (Section 9.10, “Fault Reference” on
page 9-18and the processor resumes execution at the RIP upon return from the fault handler.
When the RIP is undefined, the fault handling procedure can create one by usiaghtreg

instruction followed by a modification of the RIP in the previous frame. The fault handler can also
call a debug monitor or reset the processor instead of resuming prior execution.

This procedure call mechanism also handles faults that occur:
* While the processor is servicing an interrupt.
* While the processor is servicing another fault.

9.2 Fault Types

The 1960 architecture defines a basic set of faults that are categorized by type and subtype. Each
fault has a unique type and subtype number. When the processor detects a fault, it records the fault
type and subtype numbers in the fault record. It then uses the type number to select the fault
handling procedure.

The fault handling procedure can optionally use the subtype number to select a specific fault
handling action. The 80960V H recognizes 1960 architecture-defined faults and a new fault subtype
for detecting unaligned memory accesses. Table 9-1 lists all faults that the 80960V H detects,
arranged by type and subtype. Text that follows Table 9-1 gives column definitions.

9-2 i960® VH Processor Developer’s Manual

intel.

Table 9-1.

i960%® VH Processor Fault Types and Subtypes

Faults

Fault Type Fault Subtype Fault Record
Number or
Number Name Bit Position Name
OH PARALLEL NA NA see Sectlt?’n 9.6.4, “Parallel
Faults” on page 9-9
Bit 1 INSTRUCTION 0001 0002H
Bit 2 BRANCH 0001 0004H
Bit 3 CALL 0001 0008H
1H TRACE Bit 4 RETURN 0001 0010H
Bit5 PRERETURN 0001 0020H
Bit 6 SUPERVISOR 0001 0040H
Bit 7 MARK/BREAKPOINT 0001 0080H
1H INVALID_OPCODE 0002 0001H
2H UNIMPLEMENTED 0002 0002H
2H OPERATION
3H UNALIGNED 0002 0003H
4H INVALID_OPERAND 0002 0004H
1H INTEGER_OVERFLOW 0003 0001H
3H ARITHMETIC N
2H ZERO-DIVIDE 0003 0002H
4H Reserved
5H CONSTRAINT 1H RANGE 0005 0001H
6H Reserved
7H PROTECTION Bit 1 LENGTH 0007 0002H
8H - 9H Reserved
AH TYPE 1H MISMATCH 000A 0001H
BH - FH Reserved
In Table 9-1:

* Thefirst (left-most) column contains the fault type numbers in hexadecimal.

* The second column shows the fault type name.

® Thethird column gives the fault subtype number as either: (1) a hexadecimal number or (2) as
a bit position in the fault record’s 8-bit fault subtype field. The bit position method of

indicating a fault subtype is used for certain faults (such as trace faults) in which two or more

fault subtypes may occur simultaneously.

* Thefourth column gives the fault subtype name. For convenience, individual faults are

referenced by their fault-subtype names. Thus an OPERATION.INVALID_OPERAND fault
isreferred to asan INVALID_OPERAND fault; an ARITHMETIC.INTEGER_OVERFLOW
fault isreferred to as an INTEGER_OVERFLOW fault.

* Thefifth column shows the encoding of the word in the fault record that containsthe fault type

and fault subtype numbers.

Other 1960 processor family members may provide extensions that recognize additional fault
conditions. Fault type and subtype encoding allows al faults to be included in the fault table: those
that are common to all 1960 processors and those that are specific to one or more family members.

i960® VH Processor Developer's Manual

9-3

Faults

9.3

9-4

intel.

The fault types are used consistently for all family members. For example, Fault Type 4H is
reserved for floating point faults. Any 1960 processor with floating point operations uses Entry 4H
to store the pointer to the floating point fault handling procedure.

Fault Table

The fault table (Figure 9-2) is the processor’s pathway to the fault handling procedures. It can be
located anywhere in the address space. From the Process Control Block, the processor obtains a
pointer to the fault table during initialization.

The fault table contains one entry for each fault type. When a fault occurs, the processor uses the
fault type to select an entry in the fault table. From this entry, the processor obtains a pointer to the
fault handling procedure for the type of fault that occurred. Once called, a fault handling procedure
has the option of reading the fault subtype or subtypes from the fault record when determining the
appropriate fault recovery action.

i960® VH Processor Developer’s Manual

I n ® Faults

Figure 9-2. Fault Table and Fault Table Entries

31 Fault Table 0
PARALLEL/OVERRIDE Fault Entry 00H
TRACE Fault Entry 08H
OPERATION Fault Entry 10H
ARITHMETIC Fault Entry 18H
20H
CONSTRAINT Fault Entry 28H
30H
PROTECTION Fault Entry 38H
40H
48H
TYPE Fault Entry 50H
FCH
31 Local-Call Entry 210
Fault-Handler Procedure Address 0|10 n

31 System-Call Entry 210
Fault-Handler Procedure Number | 1| ol n
0000 027FH n+4

. Reserved (Initialize to 0)

Asindicated in Figure 9-2, two fault table entry types are allowed: local-call entry and system-call
entry. Each is two words in length. The entry type field (bits 0 and 1 of the entry’s first word) and
the value in the entry’s second word determine the entry type.

i960® VH Processor Developer’s Manual 9-5

Faults

9.4

9.5

951

9-6

intel.

local-call entry Provides an instruction pointer for the fault handling procedure. The

(type 0Q) processor uses this entry to invoke the specified procedure by means of an
implicit local-call operation. The second word of a local procedure entry is
reserved. It must be set to zero when the fault table is created and not
accessed after that.

system-call entry ~ Provides a procedure number in the system procedure table. This entry must

(type 10) have an entry type of 3@nd a value in the second word of 0000 027FH.
Using this entry, the processor invokes the specified fault handling
procedure by means of an implicit call-system operation similar to that
performed for thealls instruction. A fault handling procedure in the system
procedure table can be called with a system-local call or a system-supervisor
call, depending on the entry type in the system-procedure table.

Other entry types (01, and 11,) are reserved and have unpredictable behavior.

To summarize, afault handling procedure can be invoked through the fault table in any of three
ways: alocal call, asystem-local call or a system-supervisor call.

Stack Used in Fault Handling

Thei960 architecture does not define adedicated fault handling stack. Instead, to handle afault, the
processor uses either the user, interrupt or supervisor stack, whichever is active when the fault is
generated. There is, however, one exception: if the user stack is active when afault is generated
and the fault handling procedure is called with an implicit system supervisor call, then the
processor switchesto the supervisor stack to handle the fault.

Fault Record

When afault occurs, the processor records information about the fault in a fault record in memory.
The fault handling procedure uses the information in the fault record to correct or recover from the
fault condition and, if possible, resume program execution. The fault record is stored on the same

stack that the fault handling procedure uses to handle the fault.

Fault Record Description

Figure 9-3 shows the fault record’s structure. In this record, the fault’s type number and subtype
number (or bit positions for multiple subtypes) are stored in the fault type and subtype fields,
respectively. The Address of Faulting Instruction Field contains the IP of the instruction that
caused the processor to fault.

When a fault is generated, the existing PC and AC register contents are stored in their respective
fault record fields. The processor uses this information to resume program execution after the fault
is handled.

The Resumption Field is used to store information about a pending trace fault. When a trace fault
and a non-trace fault occur simultaneously, the non-trace fault is serviced first and the pending
trace may be lost depending on the non-trace fault encountered. The Trace Reporting paragraph for
each fault specifies whether the pending trace is kept or lost.

i960® VH Processor Developer’s Manual

intel.

Figure 9-3.

9.5.2

i960® VH Processor Developer's Manual

Fault Record

Faults

80960 Local Bus Address

. Reserved

31 0 Is Was
NFP-96 | NFP-(n+1)*32
Fault Data
NFP-88 | NFP-24-n*32
NFP-84 | NFP-20-n*32
NFP-76 | NFP-12-n*32
, FTYPE(N), [FSUBTYPE(N) | NFP-72 | NFP-8-n*32
Address of Faulting Instruction (n) NFP-68 | NFP-4-n*32
NFP-64 | NFP-64
Resumption Information
NFP-52
NFP-44
- Override Fault Data]
NFP-32
Fault Data
T T T T T T 1T T T T T 1771
IR | o DR | ceveries , | nFp-20
Process Controls NFP-16
Arithmetic Controls NFP-12
: : FITY:PE:(l): : :Fs:UB':I'YF%E(:l): NFP-8
.., oo nsiucton (1) N
31 28 24 20 16 12 8 4 0

NOTES: “NFP” means “New Frame Pointer”

Fault Record Location

The fault record is stored on the stack that the processor uses to execute the fault handling
procedure. As shown in Figure 9-4, this stack can be the user stack, supervisor stack or interrupt
stack. The fault record begins at byte address NFP-1. NFP refers to the new frame pointer that is
computed by adding the memory size allocated for padding and the fault record to the new stack
pointer (NSP). The processor rounds the FP to the next 16-byte boundary and then allocates 80
bytes for the fault record.

9-7

Faults i nu ®

Figure 9-4. Storage of the Fault Record on the Stack

Current Stack
User, Supervisor, or Interrupt Stack]
31 (P pt Stack) 0
FP
Current Frame
¢ L SP
31 Local Stack or Supervisor Stack? 0
} } NSP?
Padding Area
Stack
Growth Fault
2 Fault Record 2 Record
NFP-4
NFP
T New Frame T
NOTES:
1. If the call to the fault handler procedure does not require a stack switch, then the new stack pointer (NSP) is the same as
SP.
2. If the processor is in user mode and the fault handler procedure is called with a system supervisor call, then the processor
switches to the supervisor stack.

9.6 Multiple and Parallel Faults

Multiple fault conditions can occur during a single instruction execution and during a multiple
instruction execution when the instructions are executed by different units within the processor.
The following sections describe how faults are handled under these conditions.

9.6.1 Multiple Non-Trace Faults on the Same Instruction

Multiple fault conditions can occur during a single instruction execution. For example, an
instruction can have an invalid operand and unaligned address. When this situation occurs, the
processor is required to recognize and generate at least one of the fault conditions. The processor
may not detect all fault conditions and reports only one detected non-trace fault on asingle
instruction.

In amultiple fault situation, the reported fault condition is | ft to the implementation.

9.6.2 Multiple Trace Fault Conditions on the Same Instruction

Trace faults on different instructions cannot happen concurrently, because trace faults are precise

(Section 9.9, “Precise and Imprecise Faults” on page)9Maéltiple trace fault conditions on the

same instruction are reported in a single trace fault record (with the exception of prereturn trace,
which always happens alone). To support multiple fault reporting, the trace fault uses bit positions
in the fault-subtype field to indicate occurrences of multiple faults of the sameTajge ©-1.

9-8 i960® VH Processor Developer’s Manual

intel.

9.6.3

9.6.4

9.6.4.1

Example 9-1.

Faults

Multiple Trace and Non-Trace Fault Conditions on the Same
Instruction

The execution of a single instruction can create one or more trace fault conditions in addition to
multiple non-trace fault conditions. When this occurs:

* The pending trace is dismissed if any of the non-trace faults dismissesit, as mentioned in the
“Trace Reporting” paragraph for that fault$ection 9.10, “Fault Reference” on page 9-18

* The processor services one of the non-trace faults.

* Finally, thetraceis serviced upon return from the non-trace fault handler if it was not
dismissed in step 1.

Parallel Faults

The 80960V H exploits the architecture’s tolerance of out-of-order instruction execution by issuing
instructions to independent execution units on the chip. The following subsections describe how
the processor handles faults in this environment.

Faults on Multiple Instructions Executed in Parallel

When AC.nif=0, imprecise faults relative to different instructions executing in parallel may be
reported in a single parallel fault record. For these conditions, the processor calls a unique fault
handler, the PARALLEL fault handleGéction 9.9.4, “No Imprecise Faults (AC.nif) Bit” on

page 9-17. This mechanism allows instructions that can fault to be executed in parallel with other
instructions or to be executed out of order.

In parallel fault situations, the processor saves the fault type and subtype of the second and
subsequent faults detected in the optional section of the fault record. The optional section is the
area below NFP-64 where the fault records for each of the parallel faults that occurred are stored.
The fault handling procedure for parallel faults can then analyze the fault record and handle the
faults. The fault record for parallel faults is described in the next section.

When the RIP is undefined for at least one of the faults found in the parallel fault record, then the
RIP of the parallel fault handler is undefined. In this case, the parallel fault handling procedure can
either create a RIP and return or call a debug monitor to analyze the faults.

When the RIP is defined for all faults found in the fault record, then it points to the next instruction
not yet executed. The parallel fault handler can simply return to the next instruction not yet
executed with aet instruction.

Consider the following code example, whererthgi and theaddi instructions both have overflow
conditions. AC.om=0, AC.nif = 0, and both instructions are in the instruction cache at the time of
their execution. Thaddi andmuli are allowed to execute in parallel because AC.nif = 0 and the
faults that these instructions can generate (ARITHMETIC) are imprecise.

Imprecise Fault Generations

muli g2, g4, g6;
addi g8, g9, g10; # results in integer overfl ow

The fault on theaddi is detected before the fault on theli because thewuli takes longer to
execute. The fault call synchronizes faults on the way to the overflow fault handler &adthe
instruction Section 9.9.5, “Controlling Fault Precision” on page 9;1#hich is when thenuli

i960® VH Processor Developer’s Manual 9-9

Faults

9.6.4.2

9.6.5

9-10

intel.

fault is detected. The processor builds aparallel fault record with information relative to both faults
and callsthe paralel fault handler. In the fault handler, ARITHMETIC faults may be recovered by
storing the desired result of the instruction in the proper destination register and setting the AC.of
flag (optional) to indicate that an overflow occurred. A ret at the end of the parallel fault handler
routine then returnsto the next instruction not yet executed in the program flow.

On the 80960V H, the muli overflow fault isthe only fault that can happen with a delay. Therefore,
parallel fault records can report a maximum of 2 faults, one of which must be amuli
ARITHMETIC.INTEGER_OVERFLOW faullt.

A parallel fault handler must be accessed through a system-supervisor call. Local and system-local
parallel fault handlers are not supported by the architecture and have unpredictable behavior.
Tracing is disabled upon entry into the paralel fault handler (PC.teis cleared). It is restored upon
return from the handler. To prevent infinite internal 1oops, the parallel fault handler should not set
PC.te.

Fault Record for Parallel Faults

When parallel faults occur, the processor selects one of the faults and recordsit in the first 16 bytes

of the fault record as described in Section 9.5.1, “Fault Record Description” on page Jte
remaining parallel faults are written to the fault record’s optional section, and the fault handling
procedure for parallel faults is invokeeigure 9-3shows the structure of the fault record for
parallel faults.

The OType/OSubtype word at NFP - 20 contains the number of parallel faults. The optional section
also contains a 32-byte parallel fault record for each additional parallel fault. These parallel fault
records are stored incrementally in the fault record starting at byte offset NFP-68. The fault record
for each additional fault contains only the fault type, fault subtype, address-of-faulting-instruction
and the optional fault section. (For example, when two parallel faults occur, the fault record for the
second fault is located from NFP-96 to NFP-65.)

For the second fault recorded (n=2), the relationship (NFP-8-(n * 32)) reduces to NFP-72. For the
80960VH, a maximum of two faults are reported in the parallel fault record, and one of them must
be the ARITHMETIC.INTEGER_OVERFLOW fault onmauli instruction.

Override Faults

The 80960VH can detect a fault condition while the processor is preparing to service a previously
detected fault. When this occurs, it is callecbaerride condition. This section describes this
condition and how the processor handles it.

A normal fault condition is handled by the processor in the following manner:
* Thecurrent locdl registers are saved and cached on-chip.

* PFP=FP and the value 001 is written to the Return Type Field (Fault Call). Refer to
Section 7.8, “Returns” on page 7-fiof more information.

* When the fault call is a system-supervisor call from user mode, the processor switches to the
supervisor stack; otherwise, SPis realigned on the current stack.

* The processor writes the fault record on the new stack.

* ThelP of thefirst instruction of the fault handler is accessed through the fault table or through
the system procedure table (for system fault calls).

i960® VH Processor Developer’s Manual

intel.

9.6.6

9.7

9.7.1

Faults

A fault that occurs during any of the above actionsis called an override fault. In response to this
condition, the processor does the following:

* Switches the execution mode to supervisor.

* Selectsthe override condition that shows that the writing of the fault record was unsuccessful.
If no such fault exists, then the processor selects one of the other fault conditions. This method
ensures that the fault handler has information regarding the fault record write.

* Savesinformation pertaining to the override condition selected. The fault record describes the
first fault as described previoudly. Field OType contains the fault type of the second fault, field
OSubtype contains the fault subtype of the second fault and field override-fault-data contains
what would normally be the fault data field for the second fault type.

¢ Attempts to access the I P of the first instruction in the override fault handler through the
system procedure table.

It should be noted that a fault that occurs while the processor is actually executing afault handling
procedure is not an override fault.

The override fault entry isentry 0. When the override fault entry in the fault table pointsto a
location beyond the system procedure table, the processor enters system error mode. Override fault
conditions include: PROTECTION and OPERATION.UNIMPLEMENTED faults.

An override fault handler must be accessed through a system-supervisor call. Local and
system-local override fault handlers are not supported by the architecture and have an
unpredictable behavior. Tracing is disabled upon entry into the override fault handler (PC.teis
cleared). It is restored upon return from the handler. To prevent infinite internal loops, the override
fault handler should not set PC.te.

System Error

When afault is detected while the processor isin the process of servicing an override or parallel

fault, the processor enters the system error state. Note that “servicing” indicates that the processor
has detected the override or parallel fault, but has not begun executing the fault handling

procedure. This type of error causes the processor to enter a system error state. In this state, the
processor uses only one read bus transaction to signal the fail code message; the address of the bus
transaction is the fail code itself. Seection 12.3.1.5, “FAIL# Code” on page 12-9

Fault Handling Procedures

The fault handling procedures can be located anywhere in the address space except within the
on-chip data RAM or MMR space. Each procedure must begin on a word boundary. The processor
can execute the procedure in user or supervisor mode, depending on the fault table entry type.

Possible Fault Handling Procedure Actions

The processor allows easy recovery from many faults that occur. When fault recovery is possible,
the processor’s fault handling mechanism allows the processor to automatically resume work on
the program or pending interrupt when the fault occurred. Resumption is initiatedratith a
instruction in the fault handling procedure.

i960® VH Processor Developer’s Manual 9-11

Faults

9.7.2

9.7.2.1

9.7.2.2

9-12

intel.

When recovery from the fault is not possible or not desirable, the fault handling procedure can take
one of the following actions, depending on the nature and severity of the fault condition (or
conditions, in the case of multiple faults):

* Return to apoint in the program or interrupt code other than the point of the fault.
* Call adebug monitor.

* Perform processor or system shutdown with or without explicitly saving the processor state
and fault information.

When working with the processor at the development level, acommon fault handling strategy isto
save the fault and processor state information and call a debugging tool such as a monitor.

Program Resumption Following a Fault
Because of the wide variety of faults, they can occur at different times with respect to the faulting
instruction:

* Before execution of the faulting instruction (for example, fetch from on-chip RAM)

* During instruction execution (for example, integer overflow)

* Immediately following execution (for example, trace)

Faults Happening Before Instruction Execution

The following fault types occur before instruction execution:
* ARITHMETIC.ZERO DIVIDE
* TYPEMISMATCH
* PROTECTION.LENGTH
* All OPERATION subtypes except UNALIGNED

For these faults, the contents of a destination register are lost, and memory is not updated. The RIP
is defined for the ARITHMETIC.ZERO_DIVIDE fault only. In some cases the fault occurs before
the faulting instruction is executed, the faulting instruction may be fixed and re-executed upon
return from the fault handling procedure.

Faults Happening During Instruction Execution

The following fault types occur during instruction execution:
* CONSTRAINT.RANGE

* OPERATION.UNALIGNED

* ARITHMETIC.INTEGER_OVERFLOW

For these faults, the fault handler must explicitly modify the RIP to return to the faulting
application (except for ARITHMETIC.INTEGER_OVERFLOW).

i960® VH Processor Developer’s Manual

9.7.2.3

9.7.3

9.7.4

9.7.5

Faults

When afault occurs during or after execution of the faulting instruction, the fault may be
accompanied by a program state change so that program execution cannot be resumed after the
fault is handled. For example, when an integer overflow fault occurs, the overflow valueis stored
in the destination register. When the destination register isthe same as one of the source registers,
the source value is lost, making it impossible to re-execute the faulting instruction.

Faults Happening After Instruction Execution

For these faults, the Return Instruction Pointer (RIP) is defined and the fault handler can return to
the next instruction in the flow:

* TRACE
* ARITHMETIC.INTEGER_OVERFLOW

In general, resumption of program execution with no changes in the program’s control flow is
possible with the following fault types or subtypes:

¢ All TRACE Subtypes

The effect of specific fault types on a program is defined in Section 9.10, “Fault Reference” on
page 9-18inder the heading Program State Changes.

Return Instruction Pointer (RIP)

When a fault handling procedure is called, a Return Instruction Pointer (RIP) is saved in the image
of the RIP in the faulting frame. The RIP can be accessed at address PFP+8 while executing the
fault handler after 8ushreg. The RIP in the previous frame points to an instruction where

program execution can be resumed with no break in the program’s control flow. It generally points
to the faulting instruction or to the next instruction to be executed. In some instances, however, the
RIP is undefined. RIP content for each fault is describ&kition 9.10, “Fault Reference” on

page 9-18

Returning to Point in Program Where Fault Occurred

As described irBection 9.7.2, “Program Resumption Following a Fault” on page, ®abat faults

can be handled so that program control flow is not affected. In this case, the processor allows a
program to be resumed at the point where the fault occurred, following a return from a fault
handling procedure (initiated withrat instruction). The resumption mechanism used here is
similar to that provided for returning from an interrupt handler.

Also, to restore the PC register from the fault record upon return from the fault handler, the fault
handling procedure must be executed in supervisor mode either by using a supervisor call or by
running the program in supervisor mode. See the pseudoc8eéetion 6.2.54, “ret’ on page 6-84

Returning to a Point in the Program Other Than Where the
Fault Occurred

A fault handling procedure can also return to a point in the program other than where the fault
occurred. To do this, the fault procedure must alter the RIP. To do this reliably, the fault handling
procedure should perform the following steps:

1. Flush the local register sets to the stack withshreg instruction.

i960® VH Processor Developer’s Manual 9-13

Faults

9.7.6

Table 9-2.

9.8

9-14

intel.

3. Clear the trace-fault-pending flag in the fault record’s process controls field before the return
(optional).

2. Modify the RIPin the previous frame.

4. Execute a return with thet instruction.

Use this technique carefully and only in situations where the fault handling procedure is closely
coupled with the application program.

Fault Controls

For certain fault types and subtypes, the processor employs register mask bits or flags that
determine whether or not a fault is generated when a fault condition o€ahls 9-2summarizes
these flags and masks, the data structures in which they are located, and the fault subtypes they
affect.

The integer overflow mask bit inhibits the generation of integer overflow faults. The use of this
mask is discussed Bection 9.10, “Fault Reference” on page 9-18

The Arithmetic Controls no imprecise faults (AC.nif) bit controls the synchronizing of faults for a
category of faults called imprecise faults. The function of this bit is descrils&eciion 9.9,
“Precise and Imprecise Faults” on page 9-16

TC register trace mode bits and the PC register trace enable bit support trace faults. Trace mode
bits enable trace modes; the trace enable bit (PC.te) enables trace fault generation. The use of these
bits is described in the trace faults descriptioBéation 9.10, “Fault Reference” on page 9-18

Further discussion of these flags is provide@lvapter 10, “Tracing and Debugging”

Fault Control Bits and Masks

Flag or Mask Name Location Faults Affected
Integer Overflow Mask Bit Arithmetic Controls (AC) Register INTEGER_OVERFLOW
No Imprecise Faults Bit Arithmetic Controls (AC) Register All Imprecise Faults
Trace Enable Bit Process Controls (PC) Register All TRACE Faults

All TRACE Faults except hardware

Trace Mode Trace Controls (TC) Register breakpoint traces and fmark

Unaligned Fault Mask Process Control Block (PRCB) UNALIGNED Fault

The unaligned fault mask bit is located in the process control block (PRCB), which is read from the
fault configuration word (located at address PRCB pointer + OCH) during initialization. It controls
whether unaligned memory accesses generate a fauliestien 13.4.2, “Bus Transactions

Across Region Boundaries” on page 13-5

Fault Handling Action

Once a fault occurs, the processor saves the program state, calls the fault handling procedure and, if
possible, restores the program state when the fault recovery action completes. No software other
than the fault handling procedures is required to support this activity.

i960® VH Processor Developer’s Manual

9.8.1

9.8.2

9.8.3

Faults

Three types of implicit procedure calls can be used to invoke the fault handling procedure: alocal
call, asystem-local call and a system-supervisor call.

The following subsections describe actions the processor takes while handling faults. It is not
necessary to read these sections to use the fault handling mechanism or to write a fault handling
procedure. This discussion is provided for those readers who wish to know the details of the fault
handling mechanism.

Local Fault Call

When the selected fault handler entry in the fault table isan entry type 000, (alocal procedure), the
processor operates as described in Section 7.1.3.1, “Call Operation” on page ,/#bth the
following exceptions:

* A new frameis created on the stack that the processor is currently using. The stack can be the
user stack, supervisor stack or interrupt stack.

* Thefault record is copied into the area allocated for it in the stack, beginning at NFP-1
(Figure 9-4).

* The processor gets the IP for the first instruction in the called fault handling procedure from
the fault table.

* The processor stores the fault return code (001,) in the PFP return type field.

When the fault handling procedure is not able to perform arecovery action, it performs one of the
actions described in Section 9.7.2, “Program Resumption Following a Fault” on page 9-12

When the handler action results in recovery from the fauét, enstruction in the fault handling
procedure allows processor control to return to the program that was executing when the fault
occurred. Upon return, the processor performs the action descriBedtion 7.1.3.2, “Return
Operation” on page 7;@&xcept that the arithmetic controls field from the fault record is copied into
the AC register. When the processor is in user mode before execution of the return, the process
controls field from the fault record is not copied back to the PC register.

System-Local Fault Call

When the fault handler selects an entry for a local procedure in the system procedure table (entry
type 10), the processor performs the same action as is described in the previous section for a local
fault call or return. The only difference is that the processor gets the fault handling procedure's
address from the system procedure table rather than from the fault table.

System-Supervisor Fault Call

When the fault handler selects an entry for a supervisor procedure in the system procedure table,
the processor performs the same action describ®ddtion 7.1.3.1, “Call Operation” on page /-5
with the following exceptions:

* When the fault occurs while in user mode, the processor switches to supervisor mode, reads
the supervisor stack pointer from the system procedure table and switches to the supervisor
stack. A new frameisthen created on the supervisor stack.

* When the fault occurs while in supervisor mode, the processor creates a new frame on the
current stack. When the processor is executing a supervisor procedure when the fault occurred,
the current stack is the supervisor stack; when it is executing an interrupt handler procedure,

i960® VH Processor Developer’s Manual 9-15

Faults

9.8.4

9.9

9-16

intel.

the current stack isthe interrupt stack. (The processor switches to supervisor mode when
handling interrupts.)

The fault record is copied into the area allocated for it in the new stack frame, beginning at
NFP-1 (Figure 9-4).

The processor getsthe IP for the first instruction of the fault handling procedure from the
system procedure table (using the index provided in the fault table entry).

The processor storesthe fault return code (001,) in the PFP register return type field. When the
fault isnot atrace, parallel or override fault, it copies the state of the system procedure table
trace control flag (byte 12, bit 0) into the PC register trace enable bit. When the fault is atrace,
parallel or override fault, the trace enable bit is cleared.

On areturn from the fault handling procedure, the processor performs the action described in
Section 7.1.3.2, “Return Operation” on page With the addition of the following:

* The fault record arithmetic controls field is copied into the AC register.

* When the processor isin supervisor mode prior to the return from the fault handling procedure

(which it should be), the fault record process controlsfield is copied into the PC register. The
mode is then switched back to user, if it wasin user mode before the call.

The processor switches back to the stack it was using when the fault occurred. (When the
processor isin user mode when the fault occurs, this operation causes a switch from the
supervisor stack to the user stack.)

When the trace-fault-pending flag and trace enable bits are set in the PC field of the fault
record, the trace fault on theinstruction at the origin of the supervisor fault call is handled at
thistime.

The user should note that PC register restoration causes any changes to the process controls, done
by the fault handling procedure, to be lost.

Faults and Interrupts

When an interrupt occurs during an instruction that faults, an instruction that has already faulted, or
fault handling procedure selection, the processor:

1.
2.
3.

4,

Compl etes the selection of the fault handling procedure.
Creates the fault record.

Services the interrupt just prior to executing the first instruction of the fault handling
procedure.

Handles the fault upon return from the interrupt.

Handling the interrupt before the fault reduces interrupt latency.

Precise and Imprecise Faults

Asdescribed in Section 9.10.5, “PARALLEL Faults” on page 9;2Re i960 architecture — to
support parallel and out-of-order instruction execution — allows some faults to be generated
together.

i960® VH Processor Developer’s Manual

9.9.1

9.9.2

9.9.3

9.94

Faults

The processor provides two mechanisms for controlling the circumstances under which faults are
generated: the AC register no-imprecise-faults bit (AC.nif) and the instructions that synchronize
faults. See Section 9.9.5, “Controlling Fault Precision” on page 9fd8more information. Faults

are categorized as precise, imprecise and asynchronous. The following subsections describe each.

Precise Faults

A fault is precise if it meets all of the following conditions:

* Thefaulting instruction is the earliest instruction in the instruction issue order to generate a
fault.

¢ All instructions after the faulting instruction, in instruction issue order, are guaranteed not to
have executed.

TRACE and PROTECTION.LENGTH faults are always precise. Precise faults cannot be found in
parallel records with other precise or imprecise faults.

Imprecise Faults

Faults that do not meet all of the requirementsfor precise faults are considered imprecise. For
imprecise faults, the state of execution of instructions surrounding the faulting instruction may be
unpredictable. When instructions are executed out of order and an imprecise fault occurs, it may
not be possible to access the source operands of theinstruction. Thisis because they may have been
modified by subsequent instructions executed out of order. However, the RIP of some imprecise
faults (for example, ARITHMETIC) points to the next instruction that has not yet executed and
guarantees the return from the fault handler to the original flow of execution. Faults that the
architecture allows to be imprecise are OPERATION, CONSTRAINT, ARITHMETIC and TY PE.

Asynchronous Faults

Asynchronous faults are those whose occurrence has no direct relationship to the instruction
pointer. This group includes MACHINE faults, which are not implemented on the 80960V H.

No Imprecise Faults (AC.nif) Bit

The Arithmetic Controls no imprecise faults (A C.nif) bit controlsimprecise fault generation. When
AC.nif is set, out of order instruction execution is disabled and all faults generated are precise.
Therefore, setting this bit reduces processor performance. When AC.nif is clear, several imprecise
faults may be reported together in a parallel fault record. Precise faults can never be found in
parallel fault records, thus only more than one imprecise fault occurring concurrently with AC.nif
=0 can produce a parallel fault.

Compiled code should execute with the AC.nif bit clear, using syncf where necessary to ensure
that faults occur in order. In this mode, imprecise faults are considered to be catastrophic errors
from which recovery is not needed. This aso allows the processor to take advantage of internal
pipelining, which can speed up processing time. When only precise faults are allowed, the
processor must restrict the use of pipelining to prevent imprecise faults.

i960® VH Processor Developer’s Manual 9-17

Faults i nt6| ®

The AC.nif bit should be set if recovery from one or more imprecise faultsis required. For
example, the AC.nif bit should be set if a program needsto handle and recover from unmasked
integer-overflow faults and the fault handling procedure cannot be closely coupled with the
application to perform imprecise fault recovery.

9.9.5 Controlling Fault Precision

The syncf instruction forces the processor to complete execution of all instructions that occur prior
to syncf and to generate all faults before it begins work oninstructionsthat occur after syncf. This
instruction has two uses:

* It forces faults to be precise when the AC.nif bit is clear.

* |t ensuresthat al instructions are complete and all faults are generated in one block of code
before executing another block of code.

The implicit fault call operation synchronizes all faults. In addition, the following instructions or
operations perform synchronization of all faults except MACHINE.PARITY:

* Call and return operations including call, callx, calls and ret instructions, plus the implicit
interrupt and fault call operations.

* Atomic operationsincluding atadd and atmod.

9.10 Fault Reference

This section describes each fault type and subtype and gives detailed information about what is
stored in the various fields of the fault record. The section is organized al phabetically by fault type.
The following paragraphs describe the information that is provided for each fault type.

Fault Type: Gives the number that appears in the fault record fault-type field
when the fault is generated.

Fault Subtype: Lists the fault subtypes and the number associated with each fault
subtype.

Function: Describes the purpose and handling of the fault type and each
subtype.

RIP: Describes the value saved in the image of the RIP register in the

stack frame that the processor was using when the fault occurred. In

the RIP definitions, “next instruction” refers to the instruction
directly after the faulting instruction or to an instruction to which the
processor can logically return when resuming program execution.

Note that the discussions of many fault types specify that the RIP
contains the address of the instruction that would have executed
next had the fault not occurred.

Fault IP: Describes the contents of the fault record’s fault instruction pointer
field, typically the faulting instruction’s IP.

Fault Data: Describes any values stored in the fault record’s fault data field.

Class: Indicates if a fault is precise or imprecise.

9-18 i960® VH Processor Developer’s Manual

Program State Changes:

Trace Reporting:

Notes:

Faults

Describes the process state changes that would prevent re-executing
the faulting instruction if applicable.

Relates whether a trace fault (other than PRERET) can be detected
on the faulting instruction, also if and when the fault is serviced.

Additional information specific to particular implementations of the
i960 architecture.

9.10.1 ARITHMETIC Faults

Fault Type:

Fault Subtype:

Function:

RIP:

Fault IP:

Class:

i960® VH Processor Developer's Manual

3H

Number Name

OH Reserved

1H INTEGER_OVERFLOW
2H ZERO DIVIDE

3H-FH Reserved

Indicates a problem with an operand or the result of an arithmetic
instruction. An INTEGER_OVERFLOW fault is generated when
the result of an integer instruction overflows its destination and the
AC register integer overflow mask is cleared. Here, the result's
least significant bits are stored in the destination, whers
destination size. Instructions that generate this fault are:

addi subi stis
stib shli ADDl<cc>
muli divi SUBI<cc>

An ARITHMETIC.ZERO_DIVIDE fault is generated when the
divisor operand of an ordinal- or integer-divide instruction is zero.
Instructions that generate this fault are:

divo divi
ediv remi
remo modi

IP of the instruction that would have executed next if the fault had
not occurred.

IP of the faulting instruction.

Imprecise.

9-19

Faults

9.10.2

9.10.3

9-20

Program State Changes:

Trace Reporting:

intel.

Faults may be imprecise when executing with the AC.nif bit cleared.
INTEGER_OVERFLOW and ZERO_DIVIDE faults may not be
recoverable because the result is stored in the destination before the
fault is generated (for example, the faulting instruction cannot be
re-executed if the destination register was aso a source register for
the instruction).

The trace is reported upon return from the arithmetic fault handler.

CONSTRAINT Faults

Fault Type:

Fault Subtype:

Function:

RIP:
Fault IP:
Class:

Program State Changes:

Trace Reporting:

5H

Number Name
OH Reserved
1H RANGE
2H-FH Reserved

Indicates the program or procedure violated an architectural
constraint.

A CONSTRAINT.RANGE fault is generated when a FAULT<cc>
instruction is executed and the AC register condition code field
matches the condition required by the instruction.

No defined value.
Faulting instruction.
Imprecise.

These faults may be imprecise when executing with the AC.nif bit
cleared. No changes in the program’s control flow accompany these
faults. A CONSTRAINT.RANGE fault is generated after the
FAULT<cc> instruction executes. The program state is not affected.

Serviced upon return from the Constraint fault handler.

OPERATION Faults

Fault Type:

Fault Subtype:

Function:

2H

Number Name

OH Reserved

1H INVALID_OPCODE
2H UNIMPLEMENTED
3H UNALIGNED

4H INVALID_OPERAND
5H - FH Reserved

Indicates the processor cannot execute the current instruction
because of invalid instruction syntax or operand semantics.

i960® VH Processor Developer’s Manual

i nt6| ® Faults

An INVALID_OPCODE fault is generated when the processor
attempts to execute an instruction containing an undefined opcode
or addressing mode.

An UNIMPLEMENTED fault is generated when the processor
attempts to execute an instruction fetched from on-chip data RAM,
or when a non-word or undigned access to a memory-mapped
region is performed, or when attempting to write memory-mapped
region OxFF0084X X when rights have not been granted.

An UNALIGNED fault is generated when the following conditions
are present: (1) the processor attempts to access an unaligned word
or group of wordsin non-MMR memory; and (2) the fault is enabled
by the unaligned-fault mask bit in the PRCB fault configuration
word.

An INVALID_OPERAND fault is generated when the processor
attempts to execute an instruction that has one or more operands
having special requirements that are not satisfied. This fault is
generated when specifying a non-defined sysctl, icctl, dcctl or
intctl command, or referencing an unaligned long-, triple- or
quad-register group, or by referencing an undefined register, or by
writing to the RIP register (r2).

RIP: No defined value.
Fault IP: Address of the faulting instruction.
Fault Data: When an UNALIGNED fault is signaled, the effective address of

the unaligned access is placed in the fault record’s optional data
section, beginning at address NFP-24. This address is useful to
debug a program that is making unintentional unaligned accesses.

Class: Imprecise.

Program State Changes: For the INVALID_OPCODE and UNIMPLEMENTED faults (case:
store to MMR), the destination of the faulting instruction is not
modified. (For the UNALIGNED fault, the memory operation
completes correctly before the fault is reported.) In all other cases,
the destination is undefined.

Trace Reporting: OPERATION.UNALIGNED fault: the trace is reported upon return
from the OPERATION fault handler.
All other subtypes: the trace event is lost.

Notes: OPERATION.UNALIGNED fault is not implemented on 1960 Kx
and Sx CPUs.

9.10.4 OVERRIDE Faults

Fault Type: Fault table entry = 10H

i960® VH Processor Developer’s Manual 9-21

Faults i nt6| o

The fault type in the fault record on the stack equals the fault type of
the initial fault. The fault type in the internal registers equals the
fault type of the additional fault detected while attempting to service
theinitial fault.

Fault Subtype: The fault subtype in the fault record on the stack equals the fault
subtype of the initial fault. The fault subtype in the internal registers
equals the fault subtype of the additional fault detected while
attempting to service theinitial fault.

Fault OType: The fault type of the additional fault detected while attempting to
deliver the program fault.

Fault OSubtype: The fault subtype of the additional fault detected while attempting to
deliver the program fault.

Function: The override fault handler must be accessed through a system-super-
visor call. Local and system-local override fault handlers are not
supported and exhibit unpredictable behavior. Tracing is disabled
upon entry into the override fault handler (PC.te is cleared). It is
restored upon return from the handler. To prevent infinite internal
loops, the override fault handler should not set PC.te.

Trace Reporting: Same behavior as if the override condition had not existed. Refer to
the description of the original program faullt.

9.10.5 PARALLEL Faults

Fault Type: Fault table entry = OH
Fault type in fault record = fault type of one of the parallel faults.
Fault Subtype: Fault subtype of one of the parallel faults.
Fault OType: OH
Fault OSubtype: Number of parallel faults.
Function: See Section 9.6.4, “Parallel Faults” on page %& a complete

description of parallel faults. When the AC.nif=0, the architecture
permits the processor to execute instructions in parallel and
out-of-order by different execution units. When an imprecise fault
occurs in any of these units, it is not possible to stop the execution of
those instructions after the faulting instruction. It is also possible
that more than one fault is detected from different instructions
almost at the same time.

When there is more than one outstanding fault at the point when all
execution units terminate, a parallel fault situation arises. The fault
record of parallel faults contains the fault information of all faults
that occurred in parallel. The number of parallel faults is indicated in
the Parallel Faults Field (NFP-20). Seigure 9-3 The maximum

9-22 i960® VH Processor Developer’s Manual

RIP:

Fault IP:
Class:
Program State Changes:

Trace Reporting:

Faults

size of the fault record is implementation dependent and depends on
the number of parallel and pipeline execution units in the specific
implementation.

The pardllel fault handler must be accessed through a system-super-
visor call. Local and system-local parallel fault handlers are not
supported by the i960 processor and exhibit unpredictable behavior.
Tracing is disabled upon entry into the parallel fault handler (PC.te
is cleared). It is restored upon return from the handler. To prevent
infinite internal loops, the parallel fault handler should not set PC.te.

When al parallel fault types allow a RIP to be defined, the RIP is
the next instruction in the flow of execution, otherwise it is
undefined.

I P of one of the faulting instructions.
Imprecise.
State changes associated with all the paralle faults.

If al parallel fault types alow for aresumption trace, then atraceis
reported upon return from the paralel fault handler, or elseitislost.

9.10.6 PROTECTION Faults

Fault Type:

Fault Subtype:

Function:

RIP:

Fault IP:

Class:

Program State Changes:

Trace Reporting:

i960® VH Processor Developer's Manual

H

Number Name
Bit 0 Reserved
Bit 1 LENGTH
Bit 2-7 Reserved

Indicates that a program or procedure is attempting to perform an
illegal operation that the architecture protects against.

A PROTECTION.LENGTH fault is generated when the index
operand, used in a calls instruction, points to an entry beyond the
extent of the system procedure table.

I P of the faulting instruction.

I P of the faulting instruction.
LENGTH: IP of the faulting instruction.

Imprecise. (PROTECTION.LENGTH is precise even though the
PROTECTION fault classisimprecise.)

LENGTH: Theinstruction does not execute.
PROTECTION.LENGTH: The trace event is lost.

9-23

Faults

9.10.7

9-24

TRACE Faults

Fault Type:

Fault Subtype:

Function:

1H
Number Name
Bit 0 Reserved
Bit 1 INSTRUCTION
Bit 2 BRANCH
Bit 3 CALL
Bit 4 RETURN
Bit5 PRERETURN
Bit 6 SUPERVISOR
Bit7 MARK/BREAKPOINT

Indicates the processor detected one or more trace events. The event
tracing mechanism is described in Chapter 10, “Tracing and
Debugging”

A trace event is the occurrence of a particular instruction or
instruction type in the instruction stream. The processor recognizes
seven different trace events: instruction, branch, call, return,
prereturn, supervisor, mark. It detects these events only if the TC
register mode bit is set for the event. If the PC register trace enable
bit is also set, then the processor generates a fault when a trace event
is detected.

A TRACE fault is generated following the instruction that causes a
trace event (or prior to the instruction for the prereturn trace event).
The following trace modes are available:

INSTRUCTION Generates a trace event following every
instruction.
BRANCH Generates a trace event following any

branch instruction when the branch is
taken (a branch trace event does not
occur on branch-and-link or call
instructions).

CALL Generates a trace event following any
call or branch-and-link instruction or an
implicit fault call.

RETURN Generates a trace event followingea

PRERETURN Generates a trace event prior to aay
instruction, provided the PFP register
prereturn trace flag is set (the processor
sets the flag automatically when a call
trace is serviced). A prereturn trace
fault is always generated alone.

i960® VH Processor Developer’s Manual

RIP:

Fault IP:

Class:

i960® VH Processor Developer's Manual

Faults

SUPERVISOR Generates a trace event following any
calls instruction that references a
supervisor procedure entry in the
system procedure table and on a return
from a supervisor procedure where the
return status type in the PFP register is

010, or 011,.

Generates a trace event following the
mark instruction. The MARK fault
subtype bit, however, is used to indicate
a match of the instruction-address
breakpoint register or the data-address
breakpoint register as well as the fmark
and mark instructions.

A TRACE fault subtype bit is associated with each mode. Multiple
fault subtypes can occur simultaneously; al trace fault conditions
detected on one instruction (except prereturn) are reported in one
single trace fault, with the fault subtype bit set for each subtype that
occurs. The prereturn trace is always reported alone.

MARK/BREAKPOINT

When a fault type other than a TRACE fault is generated during
execution of an instruction that causes a trace event, the non-trace
fault is handled before the trace fault. An exception is the
prereturn-trace fault, which occurs before the processor detects a
non-trace fault and is handled first.

Similarly, if an interrupt occurs during an instruction that causes a
trace event, then the interrupt is serviced before the TRACE fault is
handled. The TRACE.PRERETURN fault is different. Since the
fault is generated before the instruction, it is handled before any
interrupt that occurs during instruction execution.

A trace fault handler must be accessed through a system-supervisor
call (it must be a supervisor procedure in the system procedure
table). Local and system-local trace fault handlers are not supported
by the architecture and may have unpredictable behavior. Tracing is
automatically disabled when entering the trace fault handler and is
restored upon return from the trace fault handler. The trace fault
handler should not modify PC.te.

Instruction immediately following the instruction traced, in
instruction issue order, except for PRERETURN. For
PRERETURN, the RIP is the return instruction traced.

IP of the faulting instruction for all except prereturn trace and call
trace (on implicit fault calls), for which the fault IP field is
undefined.

Precise.

9-25

Faults

9.10.8

9-26

Program State Changes:

TYPE Faults

Fault Type:

Fault Subtype:

Function:

RIP:
Fault IP:

Class:

Program State Changes:

Trace Reporting:

intel.

All trace faults except PRERETURN are serviced after the
execution of the faulting instruction. The processor returns to the
instruction immediately following the instruction traced, in
instruction issue order. For PRERETURN, the return is traced
before it executes. The processor re-executes the return instruction
after completion of the PRERETURN trace fault handler.

AH

Number Name

OH Reserved

1H MISMATCH
2H-FH Reserved

Indicates a program or procedure attempted to perform an illegal
operation on an architecture-defined data type or a typed data
structure.

A TYPE.MISMATCH fault is generated when attempts are made to:

» Execute a privileged (supervisor-mode only) instruction while
the processor is in user mode. Privileged instructions on the
80960VH are:

modpc intctl
sysctl inten
icctl intdis
dcctl

e Write to on-chip data RAM while the processor is in super-
visor-only write mode and BCON.irp is set.

* Write to the first 64 bytes of on-chip data RAM while the
processor is in either user or supervisor mode and BCON.sirp is
set.

* Write to memory-mapped registers in supervisor space from
user mode.

* Write to timer registers while in user mode, when timer
registers are protected against user-mode writes.

No defined value.
IP of the faulting instruction.
Imprecise.

The fault occurs before execution of the instruction. Machine state is
not changed.

The trace event is lost.

i960® VH Processor Developer’s Manual

intel.

Tracing and Debugging 10

This chapter describes the i960® VH processor’s facilities for runtime activity monitoring. The

i960 architecture provides facilities for monitoring processor activity through trace event
generation. A trace event indicates a condition where the processor has just completed executing a
particular instruction or a type of instruction or where the processor is about to execute a particular
instruction. When the processor detects a trace event, it generates a trace fault and makes an
implicit call to the fault handling procedure for trace faults. This procedure can, in turn, call
debugging software to display or analyze the processor state when the trace event occurred. This
analysis can be used to locate software or hardware bugs or for general system monitoring during
program development.

Tracing is enabled by the process controls (PC) register trace enable bit and a set of trace mode bits
in the trace controls (TC) register. Alternatively, thark andfmark instructions can be used to
generate trace events explicitly in the instruction stream.

The 80960VH also provides four hardware breakpoint registers that generate trace events and trace
faults. Two registers are dedicated to trapping on instruction execution addresses, while the
remaining two registers can trap on the addresses of various types of data accesses.

10.1 Trace Controls

To use the architecture’s tracing facilities, software must provide trace fault handling procedures,
perhaps interfaced with a debugging monitor. Software must also manipulate the following
registers and control bits to enable the various tracing modes and enable or disable tracing in
general.

* TC register mode bits

* DABO-DABLI registers’ address field and enable bit (in the control table)
* System procedure table supervisor-stack-pointer field trace control bit

* |IPBO-IPB1 registers’ address field (in the control table)

* PC register trace enable bit

* PFP register return status field prereturn trace flag (bit 3)

* BPCON register breakpoint mode bits and enable bits (in the control table)

These controls are described in the following subsections.

10.1.1 Trace Controls Register — TC

The TC register (Figure 10-1) allows software to define conditions that generate trace events.

i960® VH Processor Developer’s Manual 10-1

u
Tracing and Debugging I nt6| o

Figure 10-1. i960® VH processor Trace Controls Register — TC

Trace Mode Bits
Instruction Trace Mode - TC.i
Branch Trace Mode - TC.b
Call Trace Mode -TC.c
Return Trace Mode - TC.r
Pre-Return Trace Mode - TC.p
Supervisor Trace Mode - TC.s
Mark Trace Mode - TC.mk

31 28 24 20 16 Y Y Y Y Y VYY

—
—

12 8 4 0

Hardware Breakpoint Event Flags
Instruction-Address Breakpoint 0 - TC.iOf
Instruction-Address Breakpoint 1 - TC.ilf
Data-Address Breakpoint 0 - TC.dOf

Data-Address Breakpoint 1 - TC.d1f
|:| Reserved

The TC register contains mode bits and event flags. Mode bits define a set of tracing conditions

that the processor can detect. For example, when the call-trace mode bit is set, the processor
generates a trace event when a call or branch-and-link operation executes. See Section 10.2, “Trace
Modes” on page 10-3The processor uses event flags to monitor which breakpoint trace events are
generated.

A special instruction, modify-trace-controladdtc), allows software to modify the TC register.

On initialization, the TC register is read from the Control Tablkedtc can then be used to set or
clear trace mode bits as required. Updating TC mode bits may take up to four non-branching
instructions to take effect. Software can access the breakpoint event flagmaodingThe

processor automatically sets and clears these flags as part of its trace handling mechanism: the
breakpoint event flag corresponding to the trace being serviced is set in the TC while servicing a
breakpoint trace fault; the TC event flags are cleared upon return from the trace fault handler.
When the program is not in a trace fault handler, or when the trace is not for breakpoints, the TC
event bits are clear. On the 80960VH, TC register bits 0, 8 through 23 and 28 through 31 are
reserved. Software must initialize these bits to zero and cannot modify them afterwards.

10.1.2 PC Trace Enable Bit and Trace-Fault-Pending Flag

The Process Controls (PC) register trace enable bit and the trace-fault-pending flag in the PC field
of the fault record control tracingéction 3.6.3, “Process Controls Register — PC” on pagg.3-15

The trace enable bit enables the processor’s tracing facilities; when set, the processor generates
trace faults on all trace events.

Typically, software selects the trace modes to be used through the TC register. It then sets the trace

enable bit to begin tracing. This bit is also altered as part of some call and return operations that the
processor performs as describe®ection 10.5.2, “Tracing on Calls and Returns” on page 10-11

10-2 i960® VH Processor Developer’s Manual

u
I ntel ® Tracing and Debugging

The update of PC.te through modpc may take up to four non-branching instructions to take effect.
The update of PC.te through call and return operations isimmediate.

The trace-fault-pending flag in the PC field of the fault record allows the processor to remember to
service atrace fault when atrace event is detected at the same time as another event (for example,
non-trace fault, interrupt). The non-trace fault event is serviced before the trace fault, and
depending on the event type and execution mode, the trace-fault-pending flag in the PC field of the
fault record may be used to generate a fault upon return from the non-trace fault event

(Section 10.5.2.4, “Tracing on Return from Implicit Call: Fault Case” on page 10-13

10.2 Trace Modes

This section defines trace modes enabled through the TC register. These modes can be enabled
individually or several modes can be enabled at once. Some modes overlap, such as call-trace
mode and supervisor-trace mode.

* |nstruction trace * Branch trace * Mark trace * Prereturn trace
e Cadl trace * Return trace * Supervisor trace

SeeSection 10.4, “Handling Multiple Trace Events” on page 1dekG description of processor
function when multiple trace events occur.

10.2.1 Instruction Trace

When the instruction-trace mode is enabled in TC (TC.i = 1) and tracing is enabled in PC
(PC.te = 1), the processor generates an instruction-trace fault immediately after an instruction is
executed. A debug monitor can use this mode (TC.i = 1, PC.te = 1) to single-step the processor.

10.2.2 Branch Trace

When the branch-trace mode is enabled in TC (TC.b = 1) and PC.te is set, the processor generates a
branch-trace fault immediately after a branch instruction executes, if the branch is taken. A
branch-trace event is not generated for conditional-branch instructions that do not branch,
branch-and-link instructions, and call-and-return instructions.

10.2.3 Call Trace

When the call-trace mode is enabled in TC (TC.c = 1) and PC.te is set after the call operation, the
processor generates a call-trace fault when a call instructindalix or calls) or a

branch-and-link instructiorb@l orbalx) executes. Segection 10.5.2.1, “Tracing on Explicit Call”

on page 10-1for a detailed description of call tracing on explicit instructions. Interrupt calls are
never traced.

An implicit call to a fault handler also generates a call trace if TC.c and PC.te are set after the call.

Refer toSection 10.5.2.2, “Tracing on Implicit Call” on page 10ftfa complete description of
this case.

i960® VH Processor Developer’s Manual 10-3

u
Tracing and Debugging I nt6| o

10.2.4

10.2.5

10.2.6

10.2.7

10-4

When the processor services atrace fault, it sets the prereturn-trace flag (PFP register bit 3) in the
new frame created by the call operation or in the current frame if a branch-and-link operation was
performed. The processor uses this flag to determine whether or not to signal a prereturn-trace
event on aret instruction.

Return Trace

When the return-trace mode is enabled in TC and PC.te is set after the return instruction, the
processor generates a return-trace fault for areturn from explicit call (PFP.rrr = 000 or
PFPrrr = 01x). See Section 10.5.2.3, “Tracing on Return from Explicit Call” on page 10-12

A return from fault may be traced whereas a return from interrupt cannot be traced. See
Section 10.5.2.4, “Tracing on Return from Implicit Call: Fault Case” on page Hhd 3
Section 10.5.2.5, “Tracing on Return from Implicit Call: Interrupt Case” on page fort@tails.

Prereturn Trace

When the TC prereturn-trace mode, the PC.te, and the PFP prereturn-trace flag (PFP.p) are set, the
processor generates a prereturn-trace fault prior to executénggecution. The dependence on

PFP.p implies that prereturn tracing cannot be used without enabling call tracing. The processor
sets PFP.p whenever it services a call-trace fault (as described above) for call-trace mode.

If another trace event occurs at the same time as the prereturn-trace event, then the processor
generates a fault on the non-prereturn-trace event first. Then, on a return from that fault handler, it
generates a fault on the prereturn-trace event. The prereturn trace is the only trace event that can
cause two successive trace faults to be generated between instruction boundaries.

Supervisor Trace
When supervisor-trace mode is enabled in TC and PC.te is set, the processor generates a
supervisor-trace fault after either of the following:

* A call-system instruction (calls) executes from user mode and the procedure table entry is
used to generate a system-supervisor call.

* A ret instruction executes from supervisor mode and the return-type field is set to 010, or 011,
(i.e., return from calls).

This trace mode all ows a debugging program to determine kernel-procedure call boundaries within
the instruction stream.

Mark Trace

Mark trace mode allows trace faults to be generated at places other than those specified with the
other trace modes, using the mark instruction. It should be noted that the MARK fault subtype bit
in the fault record is used to indicate a match of the instruction-address breakpoint registers or the
data-address breakpoint registers as well asthe fmark and mark instructions.

i960® VH Processor Developer’s Manual

u
I ntel ® Tracing and Debugging

10.2.7.1 Software Breakpoints

mark and fmark allow breakpoint trace faults to be generated at specific pointsin the instruction
stream. When mark trace mode is enabled and PC.te is set, the processor generates a mark trace
fault any time it encounters amark instruction. fmark causes the processor to generate a mark trace
fault regardless of whether or not mark trace mode is enabled, provided PC.teis set. If PC.teis
clear, then mark and fmark behave like no-ops.

10.2.7.2 Hardware Breakpoints

The hardware breakpoint registers are provided to enable generation of trace faults on instruction
execution and data access.

The 80960V H implements two instruction and two data address breakpoint registers, denoted
IPBO, IPB1, DABO and DABL. Theinstruction and data address breakpoint registers are 32-bit
registers. The instruction breakpoint registers cause a break after execution of the target
instruction. The DABX registers cause a break after the memory access has been issued to the bus
controller.

Hardware breakpoint registers may be armed or disarmed. When the registers are armed, hardware
breakpoints can generate an architectural trace fault. When the registers are disarmed, no action
occurs, and execution continues normally. Since instructions are always word aligned, the two
low-order bits of the IPBx registers act as control bits. Control bitsfor the DABX registersresidein
the Breakpoint Control (BPCON) register. BPCON enables the data address breakpoint registers,
and sets the specific modes of these registers. Hardware breakpoints are globally enabled by the
process controls trace enable bit (PC.te).

The IPBx, DABX, and BPCON registers may be accessed using normal load and store instructions
(except for loads from |PBx register). The application must be in supervisor mode for alegal
access to occur. See Section 3.3, “Memory-Mapped Control Registers (MMRS)” on pagd@-5
more information on the address for each register.

Applications must request modification rights to the hardware breakpoint resources, before
attempting to modify these resources. Rights are requested by executipgdtiénstruction, as
described in the following section.

10.2.7.3 Requesting Modification Rights to Hardware Breakpoint Resources

Application code must always first request and acquire modification rights to the hardware
breakpoint resources before any attempt is made to modify them. This mechanism is employed to
eliminate simultaneous usage of breakpoint resources by emulation tools and application code. An
emulation tool exercises supervisor control over breakpoint resource allocation. If the emulator
retains control of breakpoint resources, then none are available for application code. If an
emulation tool is not being used in conjunction with the device, then modification rights to
breakpoint resources are granted to the application. The emulation tool may relinquish control of
breakpoint resources to the application.

If the application attempts to modify the breakpoint or breakpoint control (BPCON) registers
without first obtaining rights, then an OPERATION.UNIMPLEMENTED fault is generated. In
this case, the breakpoint resource are not modified, whether accessed thspsicthiastruction
or as a memory-mapped register.

i960® VH Processor Developer’s Manual 10-5

u
Tracing and Debugging I nt6| o

Table 10-1.

10.2.7.4

Table 10-2.

10-6

Application code requests modification rights by executing the sysctl instruction and issuing the
Breakpoint Resource Request message (src1.Message Type = 06H). In response, the current
available breakpoint resources are returned as the src/dst parameter (src/dst must be a register).
The src2 parameter is not used. Results returned in the src/dst parameter must be interpreted as
shown in Table 10-1.

src/dst Encoding

src/dst7:4 src/dst 3:0

Number of Available Data Address Breakpoints Number of Available Instruction Breakpoints

NOTE: src/dst 31:8 are reserved and always return zeroes.

The following code sample illustrates the execution of the breakpoint resource request.

| dconst 0x600, r4 # Load the Breakpoi nt Resource
Request nessage type into r4.
sysctl r4, r4, r4 # lssue the request.

Assumein this example that after execution of the sysctl instruction, the value of r4 is

0000 0022H. This indicates that the application has gained modification rights to both instruction
and data address breakpoint registers. If the value returned is zero, then the application has not
gained the rights to the breakpoint resources.

Because the 80960V H does not initialize the breakpoint registers from the control table during
initialization (asi960 Cx processors do), the application must explicitly initialize the breakpoint
registers to use them once modification rights have been granted by the sysctl instruction.

Breakpoint Control Register —- BPCON

The format of the BPCON registers are shown in Table 10-2 and Table 10-5. Each breakpoint has
four control bits associated with it: two mode and two enable bits. The enable bits (DABXx.€0,
DABXx.el) in BPCON act to enable or disable the data address breakpoints, while the mode bits
(DABx.m0, DABx.m1) dictate which type of access generates a break event.

Breakpoint Control Register - BPCON (Sheet 1 of 2)

31 28 24 20 16 12 8 4 0
LBAl: vfvfrvfrvf v/ v fvfvfrwf/rwfrwfrwfrwf/rwfrwfiwg v v v/ vf v fvf v fvf v v v v /v /v

PC'[a\na\pna\pna\pa

Legend: NA = Not Accessible RO = Read Only

LBA: 8440H RV = Reserved PR = Preserved RW = Read/Write
PCI: NA RS = Read/Set RC = Read Clear
LBA =80960 local bus address PCI = PCI Configuration Address Offset
Bit Default Description
31:24 00OH Reserved. Initialize to 0.
23 0, DAB1 Breakpoint Mode Control Bit: DAB1.m1
22 0, DABL1 Breakpoint Mode Control Bit: DAB1.m0
21 0, DAB1 Breakpoint Enable Control Bit: DAB1.el

i960® VH Processor Developer’s Manual

intel.

Table 10-2.

Table 10-3.

Table 10-4.

10.2.7.5

Tracing and Debugging

Breakpoint Control Register - BPCON (Sheet 2 of 2)

31 28 24 20 16 12 8 4 0
LBAl: wv/rvfvfrvf v v/ v fvfrwfrw/rwfrwfrwfrwfrwfrwg v v v fovf v v v o) fvf v fvfvfry,

PC'[a\pa\na\pa\na\na\na\na\na\na\na\na\na

Legend: NA =Not Accessible RO = Read Only

LBA: 8440H RV =Reserved PR =Preserved RW = Read/Write
PCI: NA RS = Read/Set RC = Read Clear
LBA = 80960 local bus address PCI = PCI Configuration Address Offset
Bit Default Description
20 0, DAB1 Breakpoint Enable Control Bit: DAB1.e0
19 0, DABO Breakpoint Mode Control Bit: DABO.m1
18 0, DABO Breakpoint Mode Control Bit: DAB0.m0
17 0, DABO Breakpoint Enable Control Bit: DABO.el
16 0, DABO Breakpoint Enable Control Bit: DABO.e0
15:00 0000H Reserved. Initialize to 0.

Programming the BPCON register is summarized in Table 10-3 and Table 10-4.

Configuring the Data Address Breakpoint Registers — DABx

PC.te DABx.el DABXx.e0 Description
0 X X No action. With PC.te clear, breakpoints are globally disabled.
X 0 0 No action. DABXx is disabled.
1 0 1 Reserved.
1 1 0 Reserved.
1 1 1 Generate a Trace Fault.

NOTE: “X”=don't care. Reserved combinations must not be used.

The mode bits of BPCON control the type of access that generates a fault, trace message, or break
event, as summarized in Table 10-4.

Programming the Data Address Breakpoint Modes — DABX

DABx.m1 DABx.mO0 Mode
0 0 Break on Data Write Access Only.
0 1 Break on Data Read or Data Write Access.
1 0 Break on Data Read Access.
1 1 Break on Data Read or Data Write Access.

Data Address Breakpoint Registers — DABXx

The format for the Data Address Breakpoint (DAB) registersis shown in Table 10-5. Each
breakpoint register contains a 32-bit address of a byte to match on.

i960® VH Processor Developer’s Manual 10-7

Tracing and Debugging

Table 10-5.

10.2.7.6

10-8

intel.

A breakpoint is triggered when both a data access’s type and address matches that specified by
BPCON and the appropriate DAB register. The mode bits for each DAB register, which are
contained in BPCONSection 10.2.7.4, “Breakpoint Control Register —- BPCON" on page),10-6
qualify the access types that DAB matches. An access-type match selects that DAB register to
perform address checking. An address match occurs when the byte address of any of the bytes
referenced by the data access matches the byte address contained within a selected DAB.

Consider the following example. DABO is enabled to break on any data read access and has a value
of 100FH. Any of the following instructions causes the DABO breakpoint to be triggered:

| dob 0x100f,r8
| dos 0x100e,r8
I d 0x100c, r8
I d 0x100d,r8 /* even unal i gned accesses */
| dl 0x1008,r8
| dg 0x1000,r8

Note that the instruction:
| dt 0x1000,r8

does not cause the breakpoint to be triggered because byte 100FH is not referenced by the triple
word access.

Data address breakpoints can be set to break on any data read, any data write, or any data read or
data write access. All accesses qualify for checking. These include explicit load and store
instructions, and implicit data accesses performed by other instructions and normal processor
operations.

For data accesses to the memory-mapped control register space, one cannot predict whether or not
breakpoint traces are generated when an OPERATION fault or TYPE.MISMATCH fault occurs.
The OPERATION or TYPE.MISMATCH fault is always reported in this case.

Data Address Breakpoint Register — DABX

31 28 24 20 16 12 8 4 0
"w/rw/rw/r

W/ TW/TW/ TWE TW/ TW/ TW/ TWE TW/ TW/TW TWE TW TW TW/ TWE TW/ TW/ TW TWE TW/ TW/ TW WP TWL TW TW/TW,

a\na\na\yia

a\na\na\nayia\na\a\nayia\na\na\nayna\na\na\naya\naynayiayia\na\na\aya\na\a\a

LBA: Cho0-8420H |Legend: NA=NotAccessible RO =Read Only_
Ch 1-8424H | RV =Reserved PR =Preserved RW = Read/Write
) RS = Read/Set RC = Read Clear
PCL: NA LBA = 80960 local bus address PCI = PCI Configuration Address Offset
Bit Default Description
31:00 | 0000 O000H | Data Address.

Instruction Breakpoint Registers — IPBx
The format for the instruction breakpoint registersis given in Table 10-6. The upper 30 bits of the

IPBX register contain the word-aligned instruction address on which to break. The two low-order
bits indicate the action to take upon an address match.

i960® VH Processor Developer’s Manual

intel.

Table 10-6.

Table 10-7.

10.3

Tracing and Debugging

Instruction Breakpoint Register — IPBx

31 28 24 20 16 12 8 4 0
LBAl: rw/rw/rw/rwf rw/rw/rw/rwf rw/rw/rw/rwgrw/rw/rw/rwg rw/rw/rw/raf rw/rw/rw/rwgf rw/rwfrw/rwf rw/frw/rw/w,

PC'l: a\pa\na

LBA: Cho0-8400H |Legend: NA =NotAccessible RO =Read Only
Ch 1-8404H | RV =Reserved PR =Preserved RW = Read/Write
RS = Read/Set RC = Read Clear
PCl: NA LBA = 80960 local bus address PCI = PCI Configuration Address Offset

Bit Default Description

31:02 | 0000 O000H | Instruction Address.

01 0, IPBX Mode: IPB1

00 0, IPBX Mode: IPBO

Programming the instruction breakpoint register modesis shown in Table 10-7.

On the 80960V H, the instruction breakpoint memory-mapped registers can be read by using the
sysctl instruction only. They can be modified by sysctl or by aword-length store instruction.

Storing directly to an | P breakpoint register may cause unexpected resultsif tracing is enabled. Any
instructions in the superscalar template of a store operation that updates an 1PB and any
instructions in the subsequent superscalar template may trigger on the new or old value of the
breakpoint register. The IPin the fault record may be that of the instruction that caused the
breakpoint or may be the new value of the |PB register. The return IP in the fault record is always
correct.

If it is necessary to avoid this condition, then use the modify memory-mapped control register
operation of the sysctl instruction to update the | PB registers.

Instruction Breakpoint Modes

PC.te IPBx.m1 IPBx.mO Action
0 X X No action. Globally disabled.
X 0 0 No action. IPBx disabled.
1 0 1 Reserved.
1 1 0 Reserved.
1 1 1 Generate a Trace Fault.
NOTE: “X”= don't care. Reserved combinations must not be used.

Generating a Trace Fault

To summarize the information presented in the previous sections, the processor services atrace
fault when PC.teis set and the processor detects any of the following conditions:

* Aninstruction included in atrace mode group executes or is about to execute (in the case of a
prereturn trace event) and the trace mode for that instruction is enabled.

i960® VH Processor Developer’s Manual 10-9

u
Tracing and Debugging I nt6| o

10.4

10.5

10.5.1

10-10

* A fault call operation executes and the call-trace mode is enabled.
* A mark instruction executes and the breakpoint-trace modeis enabl ed.
* Anfmark instruction executes.

* The processor executes an instruction at an | P matching an enabled instruction address
breakpoint (IPB) register.

* The processor issues a memory access matching the conditions of an enabled data address
breakpoint (DAB) register.

Handling Multiple Trace Events

With the exception of a prereturn trace event, which is always reported alone, it is possible for a
combination of trace eventsto be reported in the same fault record. The processor may not report
all events; however, it always reports a supervisor event and it aways signals at |east one event.

If the processor reports prereturn trace and other trace types at the same time, then it reports the
other trace typesin asingle trace fault record first, and then services the prereturn trace fault upon
return from the other trace fault.

Trace Fault Handling Procedure

The processor calls the trace fault handling procedure when it detects a trace event. See

Section 9.7, “Fault Handling Procedures” on page $etfeneral requirements for fault handling
procedures. A trace fault handler must be invoked with an implicit system-supervisor call, this
differs from other fault handling procedures. When the call is made, the processor clears the PC
register trace enable bit (PC.te), disabling trace faults in the trace fault handler. Recall that for all
other implicit or explicit system-supervisor calls, the processor replaces the trace enable bit with
the system procedure table trace control bit. Clearing PC.te ensures that tracing is turned off when
a trace fault handling procedure is being executed, thus preventing an endless loop of trace fault
handling calls.

The processor calls the trace fault handling procedure when it detects a trace event. See
Section 9.7, “Fault Handling Procedures” on page $etfeneral requirements for fault handling
procedures.

The trace fault handling procedure is involved in a specific way and is handled differently than
other faults. A trace fault handler must be invoked with an implicit system-supervisor call. When
the call is made, the PC register trace enable bit is cleared. This disables trace faults in the trace
fault handler. Recall that for all other implicit or explicit system-supervisor calls the trace enable
bit is replaced with the system procedure table trace control bit. The exception handling of trace
enable for trace faults ensures that tracing is turned off when a trace fault handling procedure is
being executed. This is necessary to prevent an endless loop of trace fault handling calls.

Tracing and Interrupt Procedures

When the processor invokes an interrupt handling procedure to service an interrupt, it disables
tracing. It does this by saving the PC register’s current state in the interrupt record, then clearing
the PC register trace enable bit.

i960® VH Processor Developer’s Manual

Tracing and Debugging

On returning from the interrupt handling procedure, the processor restores the PC register to the
state it wasin prior to handling the interrupt, which restores the trace enable bit. See

Section 10.5.2.2, “Tracing on Implicit Call” on page 10&kidSection 10.5.2.5, “Tracing on
Return from Implicit Call: Interrupt Case” on page 10f@Bdetailed descriptions of tracing on
calls and returns from interrupts.

10.5.2 Tracing on Calls and Returns

During call and return operations, the trace enable flag (PC.te) may be altered. This section
discusses how tracing is handled on explicit and implicit calls and returns.

Since all trace faults (except prereturn) are serviced after execution of the traced instruction,
tracing on calls and returns is controlled by the PC.te in effect after the call or the return.

10.5.2.1 Tracing on Explicit Call

Tracing an explicit call happens before execution of the first instruction of the procedure called.

Tracing is not modified by usingcall or callx instruction. Further, tracing is not modified by

using acalls instruction from supervisor mode. Wheatls is issued from user mode, PC.te is read
from the supervisor stack pointer trace enable bit (SSP.te) of the system procedure table, which is
cached on chip during initialization. The trace enable bit, in effect beforaltheis stored in the

new PFP[0] bit and is restored upon return from the rouSeet{on 10.5.2.3, “Tracing on Return

from Explicit Call” on page 10-1)2 Thecalls instruction and all instructions of the procedure

called are traced according to the new PC.te.

Table 10-8. Tracing on Explicit Call

10.5.2.2

i960® VH Processor Developer's Manual

Call
Type

Calling Procedure
Trace Enable

Calling Procedure
Mode

Saved PFP.rt2:0

Called Procedure
Trace Enable Bit

call, callx

PC.te

user or supervisor

000,

PC.te

calls

PC.te

supervisor

000,

PC.te

calls

PC.te

user

01lt,

Stores PC.te into
bit 0 of PFP.rt2:0

SSP.te

NOTE: Refer to Table 7-2 “Encoding of Return Status Field” on page 7-17.

Tracing on Implicit Call

Tracing on an implicit call happens before execution of the first instruction of the non-trace fault
handler calledTable 10-9summarizes all cases of tracing on implicit call. In the table, “a” is a bit
variable that symbolizes the trace enable bit in PC.

Table 10-9summarizes all cases.

10-11

Tracing and Debugging

Table 10-9.

10.5.2.3

Tracing on Implicit Call

intel.

Previous
Svstem Frame PC.te Value
Call y Pointer Source Target Used for
Procedure
Type Table Entr Return PC.te PC.te Traces on
y Status Implicit Call
(PFP.rt2:0)

00-Fault! N.A. 001 al a a
10-Fault® 00 001 a a a
10-Fault! 10 001 a SSP.te SSP.te
00-Parallel/Override Fault 2

X Type of trace fault not supported
00-Trace Fault
10-Parallel/Override Fault

00 Type of trace fault not supported
10-Trace Fault
10-Parallel/Override Fault

10 001 a 0 0
10-Trace Fault
Interrupt N.A. 111 a 0 0

NOTES:
1. On the 80960VH all faults except parallel/override and trace faults.
2. “a” and “x” are bit variables.

Tracing is not altered on the way to alocal or asystem-local fault handler, so the call istraced if
PC.teand TC.c are set before the call. For an implicit system-supervisor call, PC.teisread from the
Supervisor Stack Pointer enable bit (SSPte). The trace on the call is serviced before execution of
the first instruction of the non-trace fault handler (tracing is disabled on the way to a trace fault
handler).

On the 80960V H, the parallel/override fault handler must be accessed through a system-supervisor
call. Tracing is disabled on the way to the parallel/override fault handler.

The only type of trace fault handler supported is the system-supervisor type. Tracing is disabled on
the way to the trace fault handler.

Tracing is disabled by the processor on the way to an interrupt handler, so an interrupt call is never
traced.

Note that the Fault IP field of the fault record is not defined when tracing afault call, because there
is no instruction pointer associated with an implicit call.

Tracing on Return from Explicit Call

Table 10-10 shows all cases.

Table 10-10. Tracing on Return from Explicit Call (Sheet 1 of 2)

10-12

PFP.rt2:0 Execution Mode PC.em Trace Enable Used for Trace on Return
000, user or supervisor PC.te
Ola, user PC.te

Refer to Table 7-2 “Encoding of Return Status Field” on page 7-17.

i960® VH Processor Developer’s Manual

intel.

Table 10-10.

10.5.2.4

10.5.2.5

Tracing and Debugging
Tracing on Return from Explicit Call (Sheet 2 of 2)
PFP.rt2:0 Execution Mode PC.em Trace Enable Used for Trace on Return
Ola, supervisor t, (from PFP.r2:0)

Refer to Table 7-2 “Encoding of Return Status Field” on page 7-17.

For areturn from locd call (return type 000), tracing is not modified. For areturn from system call
(return type Ola, with PC.te equal to “a” before the call), tracing of the return and subsequent
instructions is controlled by “a”, which is restored in the PC.te during execution of the return.

Tracing on Return from Implicit Call: Fault Case

When the processor detects several fault conditions on the same instruction (referred to as the
“target”), the non-trace fault is serviced first. Upon return from the non-trace fault handler, the
processor services a trace fault on the target if in supervisor mode before the return and if the trace
enable and trace-fault-pending flags are set in the PC field of the non-trace fault record (at FP-16).

If the processor is in user mode before the return, then tracing is not altered. The pending trace on
the target instruction is lost, and the return is traced according to the current PC.te.

Tracing on Return from Implicit Call: Interrupt Case

When an interrupt and a trace fault are reported on the same instruction, the instruction completes
and then the interrupt is serviced. Upon return from the interrupt, the trace fault is serviced if the
interrupt handler did not switch to user mode. On the 80960VH, the interrupt handler returns
directly to the trace fault handler.

If the interrupt return is executed from user mode, then the PC register is not restored and tracing of
the return occurs according to the PC.te and TC.modes bit fields.

i960® VH Processor Developer’s Manual 10-13

intel.

Core and Peripheral Control Unit

11

11.1

11.2

Table 11-1.

11.2.1

Table 11-2.

Overview

This chapter describes how to select the operating speed of the i960® VH processor. It also
describes how the 80960 processor core and the local bus on the 80960V H can be reset. These
registers are extended registers of the Address Translation Unit (ATU), therefore they can be
accessed through either the primary PCI bus or the 80960 processor local bus.

Register Definitions

Refer to Chapter 16, “Address Translation Unftr all of the ATU extended configuration

registers. The ATU extended registers showhahle 11-lare described in the following sections.

ATU Extended Configuration Register Addresses

PCI
Register Register Size in Configuration Internal Bus
Name Bits Cycle Register Address
Number
Reset/Retry Control Register - RRCR 32 49 0000.12C4H
PCI Interrupt Routing Select Register - PIRSR 32 50 0000.12C8H
Core Select Register - CSR 32 51 0000.12CCH

Reset/Retry Control Register - RRCR

The Reset/Retry Control Register is used to control how the 80960 processor core and the local bus
on the 80960VH can be reset. This register also provides a mechanism to allow PCI configuration

cycles to be retried.
Reset/Retry Control Register - RRCR (Sheet 1 of 2)

31

28 24 20 16 12

8

4 0

I'VI'VI’VI'VI’VI’VI’VI’VI’VI’VI’VI’VI’VI’VI’VI’VI’VI’VI’VI’VI'VI’VI’VI'VI’V/’VI’WI’V/I’VI’WI’WI’V

I'VI’VI’VI'VI’VI’VI’VI’VI’VI'VI’VI’VI’VI’VI’VI'VI’VI'VI’VI’VI'VI’VI’VI'VI’V\'VWI’V\I’VWWI’V

Legend: NA = Not Accessible RO = Read Only

LBA: 12C4H RV = Reserved PR = Preserved RW = Read/Write
PClI: C4H RS = Read/Set RC = Read Clear
LBA =80960 local bus address PCI = PCI Configuration Address Offset
Bit Default Description
31:06 | 0000 000H [Reserved.
Reset Local Bus - When set, the 80960 processor core and all units on the local bus shall
05 0 be reset, except for the Core and Peripheral Unit. The i960 VH processor hardware will
2 clear this bit after the reset operation completes. Note that the i960 core processor will be
held in reset if the default value of the Core Processor Reset bit in the RRCR is set.

i960® VH Processor Developer's Manual

111

Core and Peripheral Control Unit

Table 11-2.

11.2.2

11.2.3

11-2

INtal.

Reset/Retry Control Register - RRCR (Sheet 2 of 2)

31 28 24 20 16 12 8 4 0
wvfovfvfvfvfvfovfvfvfvfvfovf v/ fvfovf v fvfvf v v/ fry rvrv/wrvrvrwrwrv

WAUWA WA WA WAWA WA RA WALA VA UA WA A WA A WA WA NSANYA VWA NA WA WA WA A 'LUANA WA WYY v

Legend: NA = Not Accessible RO = Read Only

LBA: 12C4H RV = Reserved PR = Preserved RW = Read/Write
PClI: C4H RS = Read/Set RC = Read Clear
LBA = 80960 local bus address PCI = PCI Configuration Address Offset
Bit Default Description
04 0, Reserved.
03 0, Reserved.
Configuration Cycle Retry - When this bit is set, the primary PCI interface of the i960 VH
Varies with [Processor will respond to all configuration cycles with a Retry condition. When clear, the
external 1960 VH processor will respond to the appropriate configuration cycles.
state of The default condition for this bit is based on the external state of the RETRY pin at the

02 RETRY pin at rising edge of P_RST#. If the external state of the pin is high, then the bit is set. If the
pinaliayternal state of the pin is low, then the bit is cleared.

rimary PCI
pbus gset When the RST_MODE# pin is high, this bit will be forced to a zero regardless of the state
of the external RETRY pin. Refer to Chapter 12, “Initialization and System Requirements”
for more details on the i960 VH processor initialization modes.

Core Processor Reset - This bit is set to its default value by the hardware when either
P_RST# is asserted or the Reset Local Bus bit in the RRCR is set. When this bit is set,
the i960 core processor is being held in reset. Software cannot set this bit. Software will
be required to clear this bit to deassert 80960 processor reset.

The default condition for this bit is based on the external state of the RST_MODE# pin at
the rising edge of P_RST#. If the external state of the pin is low, then the default value of
this bit is set. If the external state of the pin is high, then the default value of this bit is
clear.

Varies with
external
state of

01 |RST_MODE#

pin at
primary PCI
bus reset

00 0, Reserved.

PCI Interrupt Routing Select Register - PIRSR

Refer to Section 8.4.1, “PClI Interrupt Routing Select Register (PIRSR)” on page@-23
description of this register.

Core Select Register - CSR

The Core Select Register is used to select the operating speed of the 80960VH. The PCI bus and
the 80960 local bus operate at the same frequency as the system clock, P_CLK. The 80960
processor core can operate in DX, DX2, or DX4 modes. The 80960 processor core speed can be
selected by either controlling bits in the CSR register or by controlling the external

CLKMODEZ:0# pins. When both CLKMODEZ1:0# pins are high, the 80960 processor speed can

be selected by controlling the content of the CSR register, otherwise the speed is selected based on
the states of the CLKMODEZL:0# pins. RefeiTable 11-4

i960® VH Processor Developer’s Manual

u
I ntel ® Core and Peripheral Control Unit

Table 11-3. Core Select Register - CSR

31 28 24 20 16 12 8 4 0
LBAl: w/frvfvfvfvfvfvfvfvfrvfvfvfrvfrvfrofr rvrvrvrvrvrvrvrvrv/rvrvrvrororwrw

PCI[WA WA WA WA WAWA WA WA WA A WA WA WA VA (OA WA NAA RANAA LA A VWA VA VA NATA NAYA VYA VYA V(A (A Y0

Legend: NA = Not Accessible RO = Read Only

LBA: 12CCH RV = Reserved PR = Preserved RW = Read/Write

PCI: CCH RS = Read/Set RC = Read Clear

LBA =80960 local bus address PCI = PCI Configuration Address Offset

Bit Default Description

31:18 0000H Reserved.

Primary Discard Timer Value - This bit controls the timeout value for the primary delayed
16 0, read and delayed write discard timers. A value of 0 indicates the timeout value is 21°
clocks. A value of 1 indicates the timeout value is 210 clocks.

15:04 000H Reserved.

Varies with
the external
03 state of the
CLKMODE1#
pin at reset
Varies with
the external
02 state of the
CLKMODEO#
pin at reset

CLKMODEZ1# Pin Status - This bit indicates the external state of the external
CLKMODEZ1# pin. This bit's default condition is based on the external state of the
CLKMODEL1# pin at the rising edge of P_RST#. When the external state of the pin is high,
the bit is set. When the external state of the pin is low, the bit is cleared.

CLKMODEO# Pin Status - This bit indicates the external state of the external
CLKMODEO# pin. This bit's default condition is based on the external state of the
CLKMODEO# pin at the rising edge of P_RST#. When the external state of the pin is high,
the bit is set. When the external state of the pin is low, the bit is cleared.

Clock Mode Bits - These bits are used to select the operating speed of the 80960
processor core. The 80960 processor core can operate in DX, DX2, and DX4 modes.
These bits are only operational when the external CLKMODE1:0# pins are both high.
When CLKMODEL:0# pins are both high, the default value of these bits are 01, after
reset, for example, DX mode. Software must alter these bits to select the operating speed
01:00 01, of the 80960 processor core.

(00) - DX Mode
(01) - DX Mode
(10) - DX2 Mode
(11) - DX4 Mode

Table 11-4 shows how to control the 80960 processor core speed using the external
CLKMODEL:0# pins.

Table 11-4. Selecting the 80960 Processor Speed

CLKMODEL:0# Pins Description

The 80960 processor core operating speed is selected using the Clock Mode
11, bits in the CSR register. The CSR register can be accessed via the PCI bus.
The default speed is DX mode after reset.

The 1960 VH processor operates in DX mode. The Clock Mode bits in the CSR

10, register are not operational.

01 The i960 VH processor operates in DX2 mode. The Clock Mode bits in the CSR
2 register are not operational.

00 The i960 VH processor operates in DX4 mode. The Clock Mode bits in the CSR
2

register are not operational.

i960® VH Processor Developer’s Manual 11-3

intgl.
Initialization and System
Requirements 12

This chapter describes the steps that the i960® VH processor performs during initialization.
Discussed are the reset modes, the reset state and built-in self test (BIST) features. This chapter

also describes the processor’s basic system requirements — including power, ground and clock —
and concludes with some general guidelines for high-speed circuit board design.

12.1 Overview

The 80960V H initialization can basically be separated into two steps: initialization of the i960 core
processor and initialization of all of the other units. Four initialization modes are available; the
selected mode is determined by the values of the D/C#/RST_MODE# (hereafter called
RST_MODE#) and RETRY signalswhen P_RST# is asserted. These modes dictate when the i960
core processor initializes and when the primary PCI interface accepts transactions.

Many of the 80960VH’s functional units require initialization before system operation. The order
in which they are initialized is important and is dependent on the system design. There is no one
single initialization process for the 80960VH. Instead, there are several options that may be
considered.

Note: Sample initialization code, technical notes and other developer resources are available on the Intel
World Wide Web site at: http://www.intel.com.

12.1.1 Core Initialization
When the i960 core processor initialization begins, the processor uses an Initial Memory Image
(IM1) to establish its state. The IMI includes:

* |Initialization Boot Record (IBR) — contains the addresses of the first instruction of the user’s
code and the PRCB.

* Process Control Block (PRCB) — contains pointers to system data structures; also contains
information used to configure the processor at initialization.

* System data structures — the processor caches several data structure pointers internally at
initialization.

Software can reinitialize the processor. When a reinitialization takes place, a new PRCB and
reinitialization instruction pointer are specified. Reinitialization is useful for relocating data
structures from ROM to RAM after initialization.

i960® VH Processor Developer’s Manual 12-1

u
Initialization and System Requirements I ntel ®

12.1.2

12.2

12.2.1

Table 12-1.

12-2

General Initialization

The 80960V H supports several facilitiesto assist in system testing and start-up diagnostics. ONCE

mode electrically removes the processor from a system. This feature is useful for system-level

testing where a remote tester exercises the processor system. The 80960V H also supports JTAG

boundary scan (see Chapter 22, “Test Featurgs'During initialization, the processor performs an
internal functional self test and local bus self test. These features are useful for system diagnostics
to ensure basic CPU and system bus functionality.

The processor is designed to minimize the requirements of its external system. It requires an input
clock (P_CLK) and clean power and ground connectiong &vid \.¢). Since the processor can
operate at a high frequency, the external system must be designed with considerations to reduce
induced noise on signals, power and ground.

i960® VH Processor Initialization

Several functional units within the 80960V H must beinitialized before system operation. These are
the Core and Periphera Control Unit, Address Translation Unit (ATU), i960 core processor and
Memory Controller. The order in which they areinitialized is dependent on how the 80960V H is
used in the system. The initialization process begins when the Primary PCI Bus Reset signal
(P_RST#) is asserted.

Initialization Modes

The initialization process is generally controlled through either an external host processor or the
1960 core processor. Based on this assumption, there are four initialization modes.

The mode is determined by the value of the RST_MODE# and RETRY signals, described in the
next sections. Table 12-1 describes the relationship between the RST_MODE# and RETRY signal
values and the initialization mode.

Initialization Modes

RST_MODE# | RETRY '”i“,\"jl"éfgion Primary PCI Interface Fi)szggecsgr;
0 X Mode 0 Accepts Transactions Held in Reset
1 0 Mode 1 Accepts Transactions Initializes
1 1 Mode 2 (default) Retries All Configuration Transactions Initializes

The RST_MODE# signal is sampled on therising edge of P_RST#. The inverse value of thissignal

is then written to the Core Processor Reset bit in the Reset/Retry Control Register (RRCR). See

Chapter 11, “Core and Peripheral Control UniWhen RST_MODE# is active and P_RST# is
asserted, the 1960 core processor is held in reset until P_RST# is deasserted. The i960 core
processor reset is released when the reset bit in RRCR is cleared. When RST_MODE# is inactive
and P_RST# is asserted, the i960 core processor is reset. The i960 core processor then begins its
normal initialization sequence when P_RST# is deasserted.

i960® VH Processor Developer’s Manual

12.2.2

12.2.3

12.2.4

Initialization and System Requirements

The RETRY signal is sampled on the rising edge of P_RST#. The vaue of thissignal iswritten to
the Configuration Cycle Disable bit in the RRCR. When RETRY isactiveand P_RST# is
de-asserted, the 80960V H 33/3.3 signals a Retry on all PCI configuration cyclesit receives on the
primary PCl bus. When RETRY isinactive and P_RST# is de-asserted, the 80960V H accepts PCI
configuration cycles on the primary PCl bus.

Figure 12-1 shows aflow chart of the initialization process.

Mode O Initialization

Mode 0 allows a host processor to configure the 80960V H peripherals while the i960 core
processor isheld in reset. The host processor configures the Core and Peripheral Control Unit. The
memory controller and ATU can aso be initialized by the host processor. Program code for the
1960 core processor may be downloaded into local memory by the host processor.

The host processor clears the 80960 reset signal by clearing the Core Processor Reset bit in the
RRCR. This deasserts the internal reset signal on the 1960 core processor and the processor begins
itsinitialization process.

Mode 1 Initialization

Mode 1 allows configuration cycles on the ATU at any time and allows the 1960 core processor to
initialize after reset. Mode 1 allows each unit of the 80960V H to be initialized in its own manner.
All units are reset when the P_RST# signal is asserted. Each unit returns to its default state. Be
aware that race conditions may exist between 80960 operation after reset and PCI configuration.

Mode 2 (Default Mode)

Mode 2 allows the 1960 core processor to initialize and control the initialization process before the
host processor is allowed to configure the 80960V H peripheras. During thistime, the primary PCI
interface signals a Retry on al configuration cyclesit receives until the i960 core processor clears
the Configuration Cycle Disable bit in the RRCR. This option is only available when an
initialization ROM is used.

By alowing the i960 core processor to control theinitiaization process, it is possible to initialize
the PCI configuration registers to values other than the default power-up values. Certain PCI
configuration registersthat are read only through PCI configuration cycles are read/write from the
1960 core processor. This allows the programmer to customize the way the 80960V H appears to the
PCI configuration software.

i960® VH Processor Developer’s Manual 12-3

Initialization and System Requirements

Figure 12-1.

12-4

Initialization Examples Flow Chart

P_RST# signal
asserted

YES RST_MODE#

Asserted?

Mode 0 ’7

Asserted?

YES

r v Mode 1 Mode 2
Host configures v Y
ATU 80960 Core 80960 Core
. Initialization
+ Initialization
Host configures * *
Memory 80960 config-
Controller « Memory Con- ures ATU
e }ng!z;t ation {\rA:IIn;?ry com
Core Host downloads ltializatio oner
. - Initialization
held in 80960 Code AT Initializa
reset (if any) v
+ Enable ATU
Host clears (Clear Config
80960 Reset Bit Disable Bit
in RRCR. RRCR)
80960 Core
Initialization
End

The host
processor
is held in
retry
during this
time.

i960® VH Processor Developer's Manual

u
I ntel ® Initialization and System Requirements

12.2.5 Local Bus Arbitration Unit

Theinternal local bus arbitration logic isreset by the P_RST# signal. The reset values of the
registersare shown in Table 12-2. All of the bus masters are initialized to the highest priority. None
of the devices are disabled at powerup.

Table 12-2. Reset Values

Local Arbitration Register Reset Value Note
Local Bus Arbitration Control Register (LBACR) 0000 0000H All Bus Masters Enabled
Local Bus Arbitration Latency Count Register (LBALCR) 0000 OFFFH Maximum Count Value

12.2.6 Reset State Operation

The 80960V H has two reset conditions:
* P RST#
* L _RST#

Each is described in detail in the following sections.

12.2.6.1 i960® VH Processor Reset State Operation

The P_RST# signal, when asserted, causes the 80960V H to enter the reset state. All external
signals go to adefined state, internal logic is initialized, and certain registers are set to defined
values. P_RST# is alevel-sensitive, asynchronous input.

P_RST# must be asserted when power is applied to the processor. The processor then stabilizesin
the reset state. This power-up reset isreferred to as cold reset. To ensure that all internal logic has
stabilized in the reset state, avalid input clock (P_CLK) and V. must be present and stable for a
specified time before P_RST# can be deasserted.

The processor may also be cycled through the reset state after execution has started. Thisisreferred
to aswarmreset. For awarm reset, P_RST# must be asserted for a minimum number of clock
cycles. Specifications for a cold and warm reset can be found in the 80960V H Datasheet.

While the processor’'s P_RST# signal is asserted, output signals are driven to the states as indicated
in Table 12-2 User software cannot reset the entire 80960VH; howevesyttoel instruction can

reset the 1960 core processor. The P_RST# signal must be asserted to enter the reset state. See
Section 12.6, “Reinitializing and Relocating Data Structures” on page 12-22

12.2.6.2 i960® Jx Core Processor Reset State Operation
The L_RST# signal, when asserted, causes the 1960 core processor to enter the reset state. All core
signals go to a defined state, internal core logic isinitialized, and certain registers are set to defined
values.

L_RST#isasserted in the RRCR when the ATU and DMA have indicated that they are off the PCI
bus. L_RST# also asserts when P_RST# asserts.

L_RST# asserts after P_RST# is asserted. L_RST# deasserts after P_RST# deasserts.

i960® VH Processor Developer’s Manual 12-5

u
Initialization and System Requirements I ntel ®

12.3 i960® Core Processor Initialization

Initialization describes the mechanism that the processor uses to establish itsinitial state and begin
instruction execution. When i960 core processor initialization begins, the processor automatically
configures itself with information specified in the IMI and performsits built-in self test based on
the sampling of the STEST signal. The processor then branches to the first instruction of user code.
See Figure 12-2 for aflow chart of 1960 core processor initialization.

The objective of the initialization sequence isto provide acomplete, working initia state when the

first user instruction executes. The user’s startup code needs only to perform several basic
functions to place the processor in a configuration for executing application code.

12-6 i960® VH Processor Developer’s Manual

u
I ntel ® Initialization and System Requirements

Figure 12-2. Processor Initialization Flow

Hardware Reset

Reset State I(—

P_RST# or
Reset Local Bus
Asserted

YES

Software Reinitialization

Executing Program

RST_MODE#
Asserted
?

sysctl
Reinitialize
?

NO

Bitin RRCR
cleared
?

y YES

YES Process PRCB

—>
> Assert FAIL# Signal Contents
Cache NMI Vector from
NO STEST Vector Location 248 in
Asserted Interrupt Table
g v
YES Load Control Registers

with the Data in the
Control Table

STOP ‘L
Execute User Code

Branch to Start-up

Perform Built-In
Self Test

Built-In
Self Test Pass

Drive Fail Code
on Address/Data Pins

—>| Deassert FAIL# Signal

!}

Configure Registers
Setup Bus Controller

'

I Assert FAIL# Signal |

I

Bus Confidence Self-
Test: compute Checksum

'7

12.3.1 Self Test Function (STEST, FAIL#)

Aspart of initialization, the 80960V H executesalocal bus confidence self test, an alignment check
for data structures within the initial memory image (IM1), and optionally, a built-in self test
program. The self test (STEST) signa enables or disables built-in self test. The FAIL# signal
indicates that the self tests failed by asserting FAIL#. During normal operations the FAIL# signal
can be asserted when a core processor error is detected. The following subsections further describe
these signal functions.

i960® VH Processor Developer’s Manual 12-7

u
Initialization and System Requirements I ntel ®

Built-in self test checks basic functionality of internal data paths, registers and memory arrays

on-chip. Built-in self test is not intended to be a full validation of processor functionality; itis

intended to detect catastrophic internal failures and complement a user’s system diagnostics by
ensuring a confidence level in the processor before any system diagnostics are executed.

12.3.1.1 The STEST Signal

The STEST signal enables and disables Built-In Self Test (BIST). BIST can be disabled when the
initialization time needs to be minimized or when diagnostics are simply not necessary. The
STEST signal is sampled under the following conditions:

* Ontherising edge P_RST#

When STEST is asserted, the 1960 core processor executes the built-in self test. When STEST is
deasserted, the 1960 core processor bypasses built-in self test.

12.3.1.2 Local Bus Confidence Test

Thelocal bus confidence test is aways performed regardless of STEST signal value. The local bus
confidence test reads eight words from the Initialization Boot Record (IBR) and performs a
checksum on the words and the constant FFFF FFFFH. The test passes only when the processor
calculates a sum of zero (0). Thetest can detect catastrophic bus failures such as external address,
data or control lines that are stuck, shorted or open.

12.3.1.3 The Fail Signal (FAIL#)

The FAIL# signal signals errorsin either the built-in self test or the bus confidence self test. FAIL#
is asserted (low) for each self test (Figure 12-3):

* When any test fails, the FAIL# signal remains asserted, afail code message is driven onto the
address bus, and the processor stops execution at the point of failure.

* When a core processor error occurs, FAIL# is also asserted. See Section 12.3.1.4, “IMI
Alignment Check and Core Processor Error” on page fi2-8etails.

* When the test passes, FAIL# is deasserted.

When FAIL# stays asserted, the only way to resume normal operation is to perform areset
operation. When the STEST signal is used to disable the built-in self test, the test does not execute;
however, FAIL# till asserts at the point where the built-in self test would occur. FAIL# is
deasserted after the bus confidence test passes. In Figure 12-3, al transitions on the FAIL# signal
arerelativeto P_CLK as described in the 80960V H Datashest.

12-8 i960® VH Processor Developer’s Manual

u
I ntel ® Initialization and System Requirements

Figure 12-3. FAIL# Timing

Bus Confidence

80960 Core Built-In Self-Test Status Test Status
Reset
¢ PASS PASS
FAIL# [Built-In Self-Test FAIL Local Bus Confidence Test FAL
| «<——~414,000 Cycles >}« } 132 Cycles ———— |
26 Cycles

Cycles = Number of P_CLK Periods

12.3.1.4 IMI Alignment Check and Core Processor Error

The alignment check during initialization for data structures within the IM| ensuresthat the PRCB,
control table, interrupt table, system-procedure table, and fault table are aligned to word
boundaries. Normal processor operation is not possible without the alignment of these key data
structures. The alignment check is one case where a core processor error could occur.

The other case of core processor error can occur during regular operation when generation of an
override fault incurs a fault. The sequence of eventsleading up to this case is quite uncommon.

When a core processor error is detected, the FAIL# signal is asserted, afail code message isdriven
onto the address bus, and the processor stops execution at the point of failure. The only way to
resume normal operation of the processor isto perform areset operation. Because core processor
error generation can occur sometime after the BUS confidence test and even after initialization
during normal processor operation, the FAIL# signal is alogic one before the detection of a Core
PROCESSOR Etrror.

12.3.1.5 FAIL# Code

The processor uses only one read bus transaction to signal the fail code message; the address of the
bustransaction isthe fail codeitself. Thefail codeis of the form: OXFEFFFFnn; bits6 to O contain
amask recording the possible failures. Bit 7, when one, indicates the mask contains failures from
Built-In Self-Test (BIST); when zero, the mask indicates other failures. Thefail codesare shownin
Table 12-3 and Table 12-4.

Table 12-3. BIST Failure Codes

@

When Set

Set to one for BIST failure

On-chip Data-RAM failure detected by BIST

Internal Microcode ROM failure detected by BIST

I-cache failure detected by BIST

D-cache failure detected by BIST

Local-register cache or processor core failure detected by BIST

Always Zero

Ol RPN W[alo| N

Always Zero

i960® VH Processor Developer’s Manual 12-9

u
Initialization and System Requirements I ntel ®

Table 12-4.

12.4

12-10

Non-BIST Failure Codes

When Set

@

Set to zero for non-BIST failure

Always One; this bit does not indicate a failure

Always One; this bit does not indicate a failure

A data structure within the IMI is not aligned to a word boundary

A core processor error during normal operation has occurred

The Bus Confidence test has failed

Always Zero

Ol RPN W[l Ol | N

Always Zero

Initial Memory Image (IMI)

The IMI comprises the minimum set of data structures that the processor needsto initialize. As
shown in Figure 12-4, these structures are: the initialization boot record (IBR), process control
block (PRCB) and system data structures. The IBR is located at a fixed address in memory. The
other components are referenced directly or indirectly by pointersin the IBR and the PRCB. The
IMI performs three functions for the processor:

* Providesinitia configuration information for the core and integrated peripherals.

* Provides pointersto the system data structures and the first instruction to be executed after
processor initiaization.

* Provides checksum words that the processor usesin its self test routine at startup.
Several data structures are typically included as part of the IMI| because values in these data
structures are accessed by the processor during initialization. These data structures are usually

programmed in the systems’s boot ROM, located in memory region 14_15 of the address space.
The required data structures are:

* PRCB

* |IBR

* System procedure table
¢ Control table

* Interrupt table

* Faulttable

To ensure proper processor operation, the PRCB, system procedure table, control table, interrupt

table, and fault table must not be located in architecturally reserved memory — addresses reserved
for on-chip Data RAM and addresses at and above FEFF FF60H. In addition, each of these
structures must start at a word-aligned address; a core processor error occurs when any of these
structures are not word-aligned. Sgection 12.3.1.3, “The Fail Signal (FAIL#)” on page 12-8

At initialization, the processor loads the Supervisor Stack Pointer (SSP) from the system procedure
table, aligns it to a 16-byte boundary, and caches the pointer in the SSP memory-mapped control
register — se&ection 3.3, “Memory-Mapped Control Registers (MMRSs)” on pageRegall that

the supervisor stack pointer is located in the preamble of the system procedure table at byte offset

i960® VH Processor Developer’s Manual

u
I ntel ® Initialization and System Requirements

12 from the base address. The system procedure table base address is programmed in the PRCB.
Consult Section 7.5.1, “System Procedure Table” on page fodthe format of the system
procedure table.

At initialization, the NMI vector is loaded from the interrupt table and saved at location
0000 0000H of the internal data RAM. The interrupt table is typically programmed in the boot
ROM and then relocated to internal RAM by reinitializing the processor.

The fault table is typically located in boot ROM. When it is necessary to locate the fault table in
RAM, the processor must be reinitialized.

The remaining data structures that an application may need are the user stack, supervisor stack and
interrupt stack. These stacks must be located in the 80960VH’s local bus RAM.

i960® VH Processor Developer’s Manual 12-11

Initialization and System Requirements

Figure 12-4.

12.4.1

12-12

Initial Memory Image (IMI) and Process Control Block (PRCB)

Fixed Data Structures

Relocatable Data Structures

User Code:

<

Se

Init. Boot Record (IBR)

PMCON
Byte 0

PMCON
Byte 1

PMCON
Byte 2

PMCON
Byte 3

Pointer

First Instruction

— PRCB Pointer

6 Check Wol
(For Local Bus
Confidence Se

rds

If-Test)

Address

FEFF FF30H
FEFF FF34H
FEFF FF38H
FEFF FF3CH
FEFF FF40H
FEFF FF44H
FEFF FF48H

FEFF FF5CH

Process Control Block (PRCB)

Fault Table Base Address

Control Table Base Address

AC Register Initial Image

Fault Configuration Word

Interrupt Table Base Address

System Procedure
Table Base Address

Reserved

Interrupt Stack Pointer

Instruction Cache
Configuration Word

Register Cache
Configuration Word

Control Table

< <
Interrupt Table
< <
System Procedure Table
< <

Other Architecturally
Defined Data
Structures (not
required as part of IMI)

Initialization Boot Record (IBR)

Theinitialization boot record (IBR) isthe primary data structure required toinitialize the 80960V H
processor. The IBR is a 12-word structure which must be located at address FEFF FF30H (see
Table 12-5). The IBR is made up of four components: the initial bus configuration data, the first
instruction pointer, the PRCB pointer and the bus confidence test checksum data.

i960® VH Processor Developer’s Manual

intel.

Table 12-5.

Initialization Boot Record

Initialization and System Requirements

Byte Physical Address

Description

FEFF FF30H PMCON14_15, byte 0
FEFF FF31H to FEFF FF33H Reserved
FEFF FF34H PMCON14_15, byte 1

FEFF FF35H to FEFF FF37H

Reserved

FEFF FF38H

PMCONZ14_15, byte 2

FEFF FF39H to FEFF FF3BH

Reserved

FEFF FF3CH

PMCON14 15, byte 3

FEFF FF3DH to FEFF FF3FH

Reserved

FEFF FF40H to FEFF FF43H

First Instruction Pointer

FEFF FF44H to FEFF FF47H

PRCB Pointer

FEFF FF48H to FEFF FF4BH

Local Bus Confidence Self-Test Check Word 0

FEFF FF4CH to FEFF FF4FH

Local Bus Confidence Self-Test Check Word 1

FEFF FF50H to FEFF FF53H

Local Bus Confidence Self-Test Check Word 2

FEFF FF54H to FEFF FF57H

Local Bus Confidence Self-Test Check Word 3

FEFF FF58H to FEFF FF5BH

Local Bus Confidence Self-Test Check Word 4

FEFF FF5CH to FEFF FF5FH

Local Bus Confidence Self-Test Check Word 5

When the processor reads the IMI during initialization, it must know the bus characteristics of
external memory wherethe IMI is located. Specifically, it must know the bus width and endianism
for the remainder of the IMI. At initialization, the processor sets the PMCON register to an 8-bit
buswidth. The processor then needs to form the initiall DLMCON and PMCON14_15 registers so
that the memory containing the IBR can be accessed correctly. The lowest-order byte of each of the
IBR’s first 4 words are used to form the register values. On the 80960VH, the bytes at
FEFF FF30H and FEFF FF34H are not needed, so the processor starts fetching at address
FEFF FF38. The loading of these registers is shown in the pseudo-code Baaniple 12-1

i960® VH Processor Developer's Manual

12-13

Initialization and System Requirements

Example 12-1. Processor Initialization Pseudocode Flow

Processor_Initialization_flow)

{ FAIL_pin = true;
di sabl e(D_cache); invalidate(D cache);
PMCON14_15 = 0; /* Selects 8-bit bus width */

/** Exit Reset State & Start_Init **/
i f (STEST_ON_RI SI NG_EDGE_OF_RESET)

FAIL_pin = fal se;

PMCON14_15[byte2] = 0xcO & nmenory[ibr_ptr +8];

/ *Conmput e CheckSum on Boot Record */
carry = 0; CheckSum = Oxffffffff;

prcb_ptr = nmenory[ibr_ptr + 0x14];

I P = nenory[prcb_ptr + 4];

CheckSum = prch_ptr + IP + CheckSum + carry;
i f (CheckSum ! = 0)

g0 = 80960core_device_I D,
return; /* Execute First Instruction */

}

Destroy_G obal _& Local _Regi ster_Val ues(); /*Previous values of d obal
and Local Registers are
Destroyed during
initialization and software re-
initialization*/

restore_full _cache_node; disable(l_cache); invalidate(l_cache);

BCON.ctv = 0; /* Selects PMCON14_15 to control all accesses */

status = BI ST(); /* BIST does not return if it fails */

PC = 0x001f 2002; /* PC.Priority = 31, PC.em = Supervisor, */
/* PC.te = 0; PC. State = Interrupted */
i br_ptr = Oxfeffff30; /* ibr_ptr used to fetch IBR words */
/* Read PMCON14_15 image in |IBR */
FAIL_pin = true; I MSK = 0;
DLMCON. dcen = O; LMVRO.Inte = 0; LMWRL.Inte = 0;

for(i =6; i>0; i--) /* carry is carry out from previous add*/
CheckSum = nenory[ibr_ptr + 24 + i*4] + CheckSum + carry;

{fail _msg = Oxfeffff64; /* Fail BUS Confidence Test */
dummy = nmenory[fail_mnsg]; /* Do load with address = fail_nsg */
for(;;); /* loop forever with FAIL pin true */

el se FAIL_pin = fal se;

/* Process PRCB and Control Table */

prcb_ptr = nmenory[ibr_ptr + 0x14];

Process_PRCB(prch_ptr); /* See Process PRCB Section for Details */

The processor initializes the DLMCON.dcen bit to O to disable data caching. The remainder of the
assembled word is used to initialize PMCON14_15. In conjunction with this step, the processor
clears the bus control table valid bit (BCON.ctv), to ensure for the remainder of initialization that

every bus request issued takes configuration information from the PMCON14 15 register,

regardless of the memory region associated with the request. At alater point in initialization, the
processor loads the remainder of the memory region configuration table from the external control
table. The Bus Configuration (BCON) register is also loaded at thistime. The control table valid
(BCON.ctv) bit isthen set in the control table to validate the PM CON registers after they are

12-14 i960® VH Processor Developer’s Manual

Initialization and System Requirements

loaded. In thisway, the bus controller is completely configured during initialization. (See
Chapter 14, “Local Busfor a complete discussion of memory regions and configuring the bus
controller.)

After the local bus configuration data is loaded and the new bus configuration is in place, the
processor loads the remainder of the IBR which consists of the first instruction pointer, the PRCB
pointer and six checksum words. The PRCB pointer and the first instruction pointer are internally
cached. The six checksum words — along with the PRCB pointer and the first instruction pointer
— are used in a checksum calculation which implements a confidence test of the local bus. The
checksum calculation is shown in the pseudo-code floxample 12-1When the checksum
calculation equals zero, then the confidence test of the local bus passes.

Table 12-6further describes the IBR organization.

Table 12-6. PMCON14_15 Register Bit Description in IBR

31 28 24

20 16 12 8 4 0

\7AN7A07487 ANTANTANTAY AT A TANT AN ANTANT AT AN ANTANT AT AN ANTANTANT AV ANTANTANT AN ANTANT AT AN

a\na\na\nayna\na\na\na\na\na\na\nayia\na\nayayia\na\na\nayna\na\na\aya\nayayiayia\na\na\na

Legend: NA = Not Accessible RO = Read Only

LBA: 8638H RV = Reserved PR = Preserved RW = Read/Write
PCI: NA RS = Read/Set RC = Read Clear
LBA = 80960 Local Bus Address PCI = PCI Configuration Address Offset
Bit Default Description
31:24 OO0H Reserved. Initialize to 0.
Local Bus Width (BW)
(00) 8-bit
23:22 00, (01) 16-bit
(10) 32-bit
(11) Reserved
21:00 | 00 O000H | Reserved. Initialize to 0.

12.4.2 Process Control Block — PRCB

The PRCB contains base addresses for system data structures and initial configuration information
for the 1960 core processor. The base addresses are accessed from theseinternal registers. The
registers are accessible to the users through the memory mapped interface. Upon reset or
reinitialization, the registers are initialized. The PRCB format is shown in Table 12-7.

Table 12-7. PRCB Configuration (Sheet 1 of 2)

Physical Address

Description

PRCB POINTER + 00H

Fault Table Base Address

PRCB POINTER + 04H

Control Table Base Address

PRCB POINTER + 08H

AC Register Initial Image

PRCB POINTER + OCH

Fault Configuration Word

PRCB POINTER + 10H

Interrupt Table Base Address

PRCB POINTER + 14H

System Procedure Table Base Address

i960® VH Processor Developer's Manual

12-15

u
Initialization and System Requirements I ntel ®

Table 12-7. PRCB Configuration (Sheet 2 of 2)

Physical Address Description
PRCB POINTER + 18H Reserved
PRCB POINTER + 1CH Interrupt Stack Pointer
PRCB POINTER + 20H Instruction Cache Configuration Word
PRCB POINTER + 24H Register Cache Configuration Word

Theinitial configuration information is programmed in the arithmetic controlsregister (AC) initial
image, the fault configuration word, the instruction cache configuration word, and the register
cache configuration word. Table 12-8 show these configuration words.

12-16 i960® VH Processor Developer’s Manual

u
I ntel ® Initialization and System Requirements

Table 12-8. Process Control Block Configuration Words

AC Register Initial Image Offset 08H

Condition Code Bits - AC.cc

Integer-Overflow Flag - AC.of
(0) no overflow
(1) overflow

Integer Overflow Mask Bit - AC.om
(0) enable overflow faults
(1) mask overflow faults

No-Imprecise-Faults Bit - AC.nif

(0) allow imprecise fault conditions
(1) prevent imprecise fault conditions

31 28 24 20 16

o
o

c|lc|CcC
f m f 21|60

12 8 4 0

Fault Configuration Word Offset 0CH
31 28 24 20 16 12 8 4 0

Mask Non-Aligned Bus Request Fault
(0) enable the fault
(1) mask the fault

Instruction Cache Configuration Word Offset 20H

Disable Instruction Cache
(0) enable cache
(1) disable cache

31 28 24 20 16 12 8 4 0

Register Cache Configuration Word Offset 24H

Number of Frames Reserved for High Priority Interrupts —¢

31 28 24 20 16 12 8 4 0

Reserved
(Initialize to 0) F_CRO76A

12.4.3 Process PRCB Flow

The following pseudo-code flow illustrates the processing of the PRCB. Note that this flow is used
for both initialization and reinitialization (through sysctl).

i960® VH Processor Developer’s Manual 12-17

Initialization and System Requirements I n

Example 12-2. PRCB Processing Pseudo-code Flow

Process_PRCB(prch_ptr)
{ PRCB_mr = prcb_ptr;
reset_state(data_ram); /* It is unpredictable whether the */
/* Data RAM keeps its prior contents */
nmenory[PRCB_mr] ;
nmenor y[PRCB_mr +0x4] ;
AC nmenor y[PRCB_mr +0x8] ;
fault_config nmenor y[PRCB_mr +0xc] ;
if (1 & (fault_config >> 30))
generate_fault_on_unaligned_access = fal se;
el se generate_fault_on_unal i gned_access = true;

faul t _table
ctrl _table

/** Load Interrupt Table Pointer **/
Reset _bl ock_NM ;
interrupt_table = nenory[PRCB_mr +0x10] ;

/** Load System Procedure Table Pointer **/
sysproc = nmenory[PRCB_mmr +0x14] ;

[** Initialize ISP, FP, SP, and PFP **/

I SP_mr = nenory[PRCB_mr +0x1c];
FP = I SP_mr;

SP = FP + 64;

PFP = FP;

/** Initialize Instruction Cache **/
| CCW = nenor y[PRCB_mmr +0x20] ;
if (1 & (ICCW>> 16)) enabl e(l_cache);

/** Cache NM Vector Entry in Data RAM*/
nmenory[0] = nenory[interrupt_table + (248*4) + 4];

/** Process System Procedure Table **/

tenp = menory[sysproc+0xc] ;
SSP_mr = (~0x3) & tenp;
SSP.te =1 & tenp;

/** Configure Local Register Cache **/
programred_|limt = (7 & (menory[PRCB_mmr +0x24] >> 8));
config_reg_cache(programed_limt);

/** Load_control _table. Note breakpoints and BPCON are excl uded here **/
| oad_control _table(ctrl_tabl e+tOx10 , ctrl _tabl e+0x58);
/* Load ctrl_tabl e+Ox10 through ctrl _tabl e+0x58 */
| oad_control _table(ctrl_tabl e+tOx68 , ctrl _tabl e+0x6c);
/* Load ctrl_tabl e+Ox68 through ctrl_tabl e+Ox6C */
I BPO = 0x0; 1BP1 = 0x0; DABO = 0x0; DABl = 0xO;

/** Initialize Timers **/

TMRO. tc = 0; TMRL.tc = 0; TMRO.enable = 0; TMR1l.enable = 0;
TMRO.sup = 0; TMRl.sup = 0; TMRO.reload = 0; TMRl.reload = O;
TMRO. csel = 0; TMR1l.csel = 0;

return;

12.4.3.1 AC Initial Image
The AC initial image is loaded into the on-chip AC register during initialization. The AC initia

image allows theinitial value of the overflow mask, no imprecise faults bit and condition code bits
to be selected at initialization.

12-18 i960® VH Processor Developer’s Manual

12.4.3.2

12.4.3.3

12.4.3.4

12.4.4

Initialization and System Requirements

The AC initial image condition code bits can be used to specify the source of an initialization or
reinitialization when a single instruction entry point to the user start-up code is desirable. Thisis
accomplished by programming the condition code in the AC initial image to a different value for

each different entry point. The user start-up code can detect the condition code values — and thus
the source of the reinitialization — by using the compare or compare-and-branch instructions.

Fault Configuration Word

The fault configuration word allows the operation-unaligned fault to be masked when an unaligned
memory request is issued. When an unaligned access is encountered, the pabeagsor

performs the access. After performing the access, the processor determines whether it should
generate a fault. When bit 30 in the fault configuration word is set, a fault is not generated after an
unaligned memory request is performed. When bit 30 is clear, a fault is generated after an
unaligned memory request is performed.

Instruction Cache Configuration Word

The instruction cache configuration word allows the instruction cache to be enabled or disabled at
initialization. When bit 16 in the instruction cache configuration word is set, the instruction cache
is disabled and all instruction fetches are directed to external memory. Disabling the instruction
cache is useful for tracing execution in a software debug environment.

The instruction cache remains disabled until the following operations:
* The processor isreinitialized with a new vaue in the instruction cache configuration word
* icctl isissued with the enable instruction cache operation

* sysctl isissued with the configure instruction cache message type and a cache configuration
mode other than disable cache.

Register Cache Configuration Word

The register cache configuration word specifies the number of free framesin the local register
cache that can be used by critical code (i.e., code that isin the interrupted state and has a process
priority greater than or equal to 28).

The register cache and the configuration word are explained further in Section 4.2, “Local Register
Cache” on page 4:2

Control Table

The control table is the data structure that contains the on-chip control registers values. It is
automatically loaded during initialization and must be completely constructed in the IMI.
Figure 12-5shows the Control Table format.

For register bit definitions of the on-chip control table registers, see the following:
* IMAP — Table 8-9throughTable 8-11 Interrupt Map Register 2 — IMAP@age 8-2Y
* ICON —Table 8-8. Interrupt Control Register — ICON (pg. 8-25)
* PMCON —Table 13-2. Physical Memory Control Registers — PMCONO:15 (pg. 13-4)
* TC —Figure 10-1. i960® VH processor Trace Controls Register — TC (pg. 10-2)

i960® VH Processor Developer’s Manual 12-19

Initialization and System Requirements I n

* BCON —Table 13-3. Bus Control Register — BCON (pg. 13-5)
Figure 12-5. Control Table

31 0
Reserved (Initialize to 0) 00H
Reserved (Initialize to 0) 04H
Reserved (Initialize to 0) 08H
Reserved (Initialize to 0) OCH
Interrupt Map 0 (IMAPQ) 10H
Interrupt Map 1 (IMAP1) 14H
Interrupt Map 2 (IMAP2) 18H
Interrupt Configuration (ICON) 1CH
Physical Memory Region 0:1 Configuration (PMCONO_1) 20H
Reserved (Initialize to 0) 24H
Physical Memory Region 2:3 Configuration (PMCON2_3) 28H
Reserved (Initialize to 0) 2CH
Physical Memory Region 4:5 Configuration (PMCON4_5) 30H
Reserved (Initialize to 0) 34H
Physical Memory Region 6:7 Configuration (PMCONG6_7) 38H
Reserved (Initialize to 0) 3CH
Physical Memory Region 8:9 Configuration (PMCONS8_9) 40H
Reserved (Initialize to 0) 44H
Physical Memory Region 10:11 Configuration (PMCON10_11 48H
Reserved (Initialize to 0) 4CH
Physical Memory Region 12:13 Configuration (PMCON12_13) 50H
Reserved (Initialize to 0) 54H
Physical Memory Region 14:15 Configuration (PMCON14_15) 58H
Reserved (Initialize to 0) 5CH
Reserved (Initialize to 0) 60H
Reserved (Initialize to 0) 64H
Trace Controls (TC) 68H
Bus Configuration Control (BCON) 6CH

12.5 Device Identification on Reset

During the manufacturing process, values characterizing the 80960VH type and stepping are
programmed into the memory-mapped registers. The 80960VH contains two read-only device 1D
MMRs. One holds the Processor Device ID (PDIDR) and the other holds the 1960 Core Processor
Device ID (DEVICEID).

12-20 i960® VH Processor Developer’s Manual

The device identification values are compliant with the IEEE 1149.1 specification and Intel

Initialization and System Requirements

standards. Table 12-9 and Table 12-10 describe the fields of the two Device IDs. During
initialization, the PDIDR is placed in gO.

Table 12-9. Processor Device ID Register - PDIDR

31 24 20 16 12 8 4 0
LBA [ro/ro/ro/rof rofrofrofrof rof ro/rofrof rofrofrof rof rof rof rofrof ro/rofrof rof rofrof ro/rof rof ro/ro/ro,
PC'[aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
Legend: NA = Not Accessible RO = Read Only
LBA: 1710H RV = Reserved PR =Preserved RW = Read/Write
PCI: NA RS = Read/Set RC = Read Clear
LBA = 80960 Local Bus Address PCI = PCI Configuration Address Offset
Bit Default Description
31:28 X Version - Indicates stepping changes.
Vcc - Indicates device voltage type.
27 X 0=5.0V
1=3.3v
26:21 Product Type - Indicates the generation or “family member”.
20:17 Generation Type - Indicates the generation of the device.
16:12 Model Type - Indicates member within a series and specific model information.
11:01 X Manufacturer ID - Indicates manufacturer ID assigned by IEEE.
’ 0000 0001 001=Intel Corporation
0 1 Constant
NOTE: The values programmed into this register varies with stepping. Refer to the 1960® VH Processor Specification Update

(Intel Order # 273174-001) for the correct value.

Table 12-10. i960® Core Processor Device ID Register - DEVICEID (Sheet 1 of 2)

31 24 20 16 12 8 4 0

LBA [ro/ro/ro/rof rofrofro/rof rof rofrofrog ro/rofrofrogrofrofro/frog ro/rofrof rog ro/rofro/rog ro/ro/ro/ro,

PC'[aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa

~ FF00 8710 Legend: NA =Not Accessible RO = Read Only_
LBA: RV = Reserved PR =Preserved RW = Read/Write
PCI: RS = Read/Set RC = Read Clear
NA LBA = 80960 Local Bus Address PCI = PCI Configuration Address Offset

Bit Default Description

31:28 X Version - Indicates stepping changes.
V¢ - Indicates device voltage type.
27 X 0=5.0V
1=3.3V

26:21 X Product Type - Indicates the generation or “family member”.
20:17 Generation Type - Indicates the generation of the device.
16:12 Model Type - Indicates member within a series and specific model information.

i960® VH Processor Developer's Manual

12-21

u
Initialization and System Requirements I ntel ®

Table 12-10. i960® Core Processor Device ID Register - DEVICEID (Sheet 2 of 2)

12.6

12-22

31 28 24 20 16 12 8 4 0
LBA [rofrofrofrof rofrofrofrof rofrofrofrof rofrofrofrof rofrofrofrof rofrofrofrof rofrofrofrof rofrofrofro

PC'l: a\na\na\na\pa\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\npa\na\na\na\na\na\na\na\na\pa\na\pa

FF00 8710 | Legend: NA = Not Accessible RO = Read Only

LBA: RV = Reserved PR = Preserved RW = Read/Write
PCI: RS = Read/Set RC = Read Clear
NA LBA =80960 Local Bus Address PCI = PCI Configuration Address Offset
Bit Default Description

Manufacturer ID - Indicates manufacturer ID assigned by IEEE.

1ot X 0000 0001 001=Intel Corporation

0 1 Constant

NOTE: The values programmed into this register varies with stepping. Refer to the i960® VH Processor Specification
Update (Intel Order # 273174-001) for the correct value.

Reinitializing and Relocating Data Structures

Reinitialization can reconfigure the processor and change pointers to data structures. The processor
isreinitialized by issuing the sysctl instruction with the reinitialize processor message type. See
Section 6.2.67, “sysctl” on page 6-1f3t a description ofysctl. The reinitialization instruction
pointer and a new PRCB pointer are specified as operandsdypsttteinstruction. When the
processor is reinitialized, the fields in the newly specified PRCB are loaded as described in
Section 12.4.2, “Process Control Block — PRCB” on page 12-15

Reinitialization is useful for relocating data structures to RAM after initialization. The interrupt

table must be located in RAM: to post software-generated interrupts, the processor writes to the
pending priorities and pending interrupts fields in this table. It may also be necessary to relocate the
control table to RAM: it must be in RAM when the control register values are to be changed by

user code. In some systems, it is necessary to relocate other data structures (fault table and system
procedure table) to RAM because of unsatisfactory load performance from ROM.

After initialization, the software is responsible for copying data structures from ROM into RAM.
The processor is then reinitialized with a new PRCB which contains the base addresses of the new
data structures in RAM.

The processor caches the following pointers during its initialization. To modify these data
structures, a software re-initialization is needed.

* Interrupt Table Address

* Fault Table Address

* System Procedure Table Address
* Control Table Address

i960® VH Processor Developer’s Manual

intel.

12.7

12.7.1

12.7.2

12.7.3

Initialization and System Requirements

System Requirements

The following sections discuss generic hardware requirements for a system built around the

80960VH. This section describes electrical characteristics of the processor’s interface to the
external circuit, including the P_CLK, P_RST#, STEST, FAIL#, ONCE#,and ;¢ signals.
Specific signal functions for the external bus signals and interrupt inputs are discussed in their
respective sections in this manual.

Clocking

The 80960VH has a single clock input (P_CLK) for control. All input/output timings are relative to
P_CLK.

The range of operation for all PCI clocks is 0 to 33 MHz. The 80960VH has an internal PLL that
limits the range of processor clock operation from 16 MHz to 33 MHz. When the minimum
frequency is not met, the internal status of the processor is not guaranteed.

The clock input is designed to be driven by most common TTL crystal clock oscillators. The clock
input must be free of noise and conform with the specifications listed in the 80960VH Datasheet.

P_CLK input capacitance is minimal; for this reason, it may be necessary to terminate the P_CLK
circuit board traces at the processor to reduce overshoot and undershoot.

Output Clocks

The 80960VH supports afG bus interface. The output clock frequency f& bperation is

100 KHz or 400 KHz. This clock is generated from the i960 core processor clock. To L@ the |
interface, a clock divider value must be written into #i@ Clock Count Register. See

Section 21.10.5, “I12C Clock Count Register — ICCR” on page 21-21

Reset

There are multiple ways to reset the 80960VH. Reset is controlled either through external signals
or control registers.

When the primary PCI bus reset signal P_RST# is asserted, the 80960VH:
* Resetsthe 960 core processor and the local bus.
* Resetsall internal units, including the Core and Peripheral Control Unit.
* Assertslocal bus reset.

Reset is also available through the Reset/Retry Control Register in the Core and Peripheral Control
Unit:

* The Reset Loca Busbit in the Reset/Retry Control Register (RRCR) resets the i960 core
processor and all units on the local bus. Before reset, the DMA channels and the ATU halt all
PCI bustransactions. Software must ensure that the 1°C busisidle before the reset occurs. The
1960 core processor may or may not be held in reset when the reset local bus bit is cleared by
software. This depends on the default value of the Core Processor Reset bit in the RRCR. The
local bus reset does not reset the Core and Peripheral Control Unit or its configuration
registers. All other configuration registers are reset.

i960® VH Processor Developer’s Manual 12-23

u
Initialization and System Requirements I ntel ®

See Chapter 11, “Core and Peripheral Control Urid@t a full description of the Reset/Retry
Control Register.

12.7.4 Power and Ground Requirements (Vcc, Vss)

The large number of 3 and ;¢ signals effectively reduce the impedance of power and ground
connections to the chip and reduces transient noise induced by current surges. The 80960VH is
implemented in CHMOS 1V technology. Unlike NMOS processes, power dissipation in the

CHMOS process is due to capacitive charging and discharging on-chip and in the processor’s
output buffers; there is almost no DC power component. The nature of this power consumption
results in current surges when capacitors charge and discharge. The processor’s power
consumption depends mostly on frequency. It also depends on voltage and capacitive bus load (see
the 80960VH Datasheet).

To reduce clock skew internal to the 80960VH, the Y, pins for the Phase Lock Loop (PLL)
circuits are isolated on the pinout. The lowpass filter, as showigime 12-6 reduces noise
induced clock jitter and its effects on timing relationships in system designs. Th&-0c@pacitor
must be of the type X7R and the node connectiggsM must be as short as possible.

Figure 12-6. Vccp L Lowpass Filter

10Q, 5%, 1/8W

VW
)

(Board Plane)
12.7.5 Power and Ground Planes

~ VceruL
0.01pF (On i960® VH processors)

+

4.7pF

lT;

Power and ground planes must be used in 80960VH systems to minimize noise. Justification for
these power and ground planes is the same as for multiplerd V. pins. Power and ground
lines have inherent inductance and capacitance; therefore, an impedance]i%.(L/C)

Total characteristic impedance for the power supply can be reduced by adding more lines. This
effect is illustrated ifFigure 12-7 which shows that two lines in parallel have half the impedance

of one. Ideally, a plane, an infinite number of parallel lines, results in the lowest impedance.
Fabricate power and ground planes with a 1 oz. copper for outer layers and 0.5 oz. copper for inner
layers.

All power and ground pins must be connected to the planes. Ideally, the 80960VH should be

located at the center of the board to take full advantage of these planes, simplify layout and reduce
noise.

12-24 i960® VH Processor Developer’s Manual

intel.

Initialization and System Requirements

Figure 12-7. Reducing Characteristic Impedance

12.7.6

12.7.7

12.7.8

“T :
)
._
Co I L
=1/2 0
Lo Co

Decoupling Capacitors

Decoupling capacitors placed across the processor between V¢ and V ¢5 reduce voltage spikes by
supplying the extra current needed during switching. Place these capacitors close to the device
because connection line inductance negatestheir effect. Also, for this reason, the capacitors should
be low inductance. Chip capacitors (surface mount) exhibit lower inductance.

High Frequency Design Considerations

At high signal frequencies and/or with fast edge rates, the transmission line properties of signa
pathsin acircuit must be considered. Transmission line effects and crosstalk become significant in
comparison to the signals. These errors can be transient and therefore difficult to debug. In this
section, some high-frequency design issues are discussed; for more information, consult a
reference on high-frequency design.

Line Termination

Input voltage level violations are usually due to voltage spikes that raise input voltage levels above
the maximum limit (overshoot) and below the minimum limit (undershoot). These voltage levels
can cause excess current on input gates, resulting in permanent damage to the device. Even when
no damage occurs, many devices are not guaranteed to function as specified when input voltage
levels are exceeded.

Signal lines are terminated to minimize signal reflections and prevent overshoot and undershoot.
Terminate the line when the round-trip signal path delay is greater than signal rise or fall time.
When thelineisnot terminated, the signal reachesits high or low level before reflections have time
to dissipate and overshoot or undershoot occurs.

For the 80960V H, two termination methods are recommended: AC and series. An AC termination
matches the impedance of the trace, there by eliminating reflections due to the impedance
mismatch.

i960® VH Processor Developer’s Manual 12-25

u
Initialization and System Requirements I ntel ®

Series termination decreases current flow in the signal path by adding a series resistor as shown in
Figure 12-8. The resistor increases signal rise and fall times so that the change in current occurs
over alonger period of time. Because the amount of voltage overshoot and undershoot depends on
the change in current over time (V = L di/dt), the increased time reduces overshoot and undershoot.
Place the series resistor as close as possible to the signal source. AC termination is effectivein
reducing signal reflection (ringing). This termination is accomplished by adding an RC
combination at the signal’s farthest destinatiBig(re 12-9. While the termination provides no
DC load, the RC combination damps signal transients.

Selection of termination methods and values is dependent upon many variables, such as output
buffer impedance, board trace impedance and input impedance.

Figure 12-8. Series Termination

A B ©
Rs
Source
Figure 12-9. AC Termination
A B ©
—_— C
Source
S
Y4

12.7.9 Latchup

Latchup is a condition in a CMOS circuit in which Vbecomes shorted togy. Intel's CMOS IV
processes are immune to latchup under normal operation conditions. Latchup can be triggered
when the voltage limits on I/O pins are exceeded, causing internal PN junctions to become forward
biased.

12-26 i960® VH Processor Developer’s Manual

u
I ntel ® Initialization and System Requirements

The following guidelines help prevent latchup:
* Observe the maximum rating for input voltage on 1/0 pins.

* Never apply power to an 80960V H signal or a device connected to an 80960V H signal before
applying power to the 80960V H itself.

* Prevent overshoot and undershoot on 1/O pins by adding line termination and by designing to
reduce noise and reflection on signal lines.

12.7.10 Interference

Interferenceis the result of electrical activity in one conductor that causes transient voltages to
appear in another conductor. Interference increases with the following factors:

* Frequency Interference is the result of changing currents and voltages. The more frequent the
changes, the greater the interference.

* Closeness-of-conductors Interference is due to electromagnetic and electrostatic fields whose
effects are weaker further from the source.

Two types of interference must be considered in high frequency circuits: electromagnetic
interference (EMI) and electrostatic interference (ESI).

EMI is caused by the magnetic field that exists around any current-carrying conductor. The
magnetic flux from one conductor can induce current in another conductor, resulting in transient
voltage. Several precautions can minimize EMI:

* Run ground lines between two adjacent lines wherever they traverse along section of the
circuit board. The ground line should be grounded at both ends.

* Run ground lines between the lines of an address bus or a data bus when either of the
following conditions exist:

— The bus is on an external layer of the board.

— The bus is on an internal layer but not sandwiched between power and ground planes that
are at most 10 mils away.

Figure 12-10. Avoid Closed-Loop Signal Paths

—H
),

i960® VH Processor Developer’s Manual 12-27

u
Initialization and System Requirements I ntel ®

ESl is caused by the capacitive coupling of two adjacent conductors. The conductors act as the
plates of a capacitor; a charge built up on one induces the opposite charge on the other.

The following steps reduce ESI:
* Separate signal lines so that capacitive coupling becomes negligible.
* Runaground line between two lines to cancel the electrostatic fields.

12-28 i960® VH Processor Developer’s Manual

intgl.
Core Processor
Local Bus Configuration 13

This chapter providesinformation on setting the memory-mapped registers that configure the local
memory bus. Topics include setting address ranges for different types of memory and configuring
the bus width. This chapter also details enabling/disabling data caching for a memory region.

13.1 Memory Attributes

Every location in memory has associated physical and logical attributes. For example, a specific
location may have the following attributes:

* Physical: Memory is an 8-bit wide ROM
* Logical: Datais non-cacheable

In the example above, physicd attributes correspond to those parameters that indicate how to
physically access the data. The BCU uses physical attributes to determine the local bus protocol
and signal pinsto use when controlling the memory subsystem. The logical attributestell the BCU
how to interpret, format and control interaction of on-chip data caches. The physical and logical
attributes for an individual location are independently programmable.

13.1.1 Physical Memory Attributes

The only programmable physical memory attribute for the i960® VH processor isthe local bus
width, which can be 8-, 16- or 32-bits wide.

For the purposes of assigning memory attributes, the physical address space is partitioned into 8

fixed 512 Mbyte regions determined by the upper three address bits. The regions are numbered as 8
paired sections for consistency with other 1960 processor implementations. Region 0_1 maps to
addresses 0000 0000H to 1FFF FFFFH and region 14 15 maps to addresses EO00 0000H to

FFFF FFFFH. The physical memory attributes for each region are programmabl e through the
PMCON registers. The PMCON registers are loaded from the Control Table. The 80960V H

provides one PMCON register for each region.The descriptions of the PMCON registers and
instructions on programming them are found in Section 13.2, “Programming the Physical Memory
Attributes (Pmcon Registers)” on page 13-3

13.1.2 Logical Memory Attributes

The 80960VH provides a mechanism for defining tvegical Memory Templates (LMTS). An

LMT may be used to specify whether a section (or subset) of a physical memory subsystem
connected to the BCU (for example, DRAM, SRAM) is cacheable or non-cacheable in the on-chip
data cache.

i960® VH Processor Developer’s Manual 13-1

Core Processor Local Bus Configuration

Figure 13-1.

13-2

intel.

There are typically several different LM Ts defined within a single memory subsystem. For
example, data within one area of DRAM may be non-cacheable while datain another areais
cacheable. Figure 13-1 shows the use of the Control Table (PMCON registers) with logical
memory templates for asingle DRAM region in atypical application.

Each logical memory template is defined by programming Logical Memory Configuration

(LMCON) registers. An LMCON register pair defines a data template for areas of memory that

have common logical attributes. The 80960VH has two pairs of LMCON registers — defining two
separate templates. The extent of each data template is described by an address (on 4 Kbyte
boundaries) and an address mask. The address is programmed in the Logical Memory Address
register (LMADR). The mask is programmed in the Logical Memory Mask register (LMMSK).
These two registers constitute the LMCON register pair.

The Default Logical Memory Configuration (DLMCON) register provides configuration data for
areas of memory that do not fall within one of the two logical data templates.

The LMCON registers and their programming are describ&gation 13.5, “Programming The
Logical Memory Attributes” on page 13-6

PMCON and LMCON Example

Logical Memory
FFFF FFFFH Templates
(LMCON)
Physical
Regions 10_11 LMADRO
to 14_15
LMMARO
9FFF FFFFH
PMCON Registers
Region 14_15 Non-Cacheable
Region 12_13
Region 10_11
LMADR1
Region 8_9 Physical
] Region 8_9 LMMARL
Region 6_7 32-bit wide
Region 4_5 DRAM
Region 2_3
Region 0_1 Non-Cacheable
8000 0000H
Physical
Regions 0_1
to 6_7
0000 0000H
Note: The DLMCON maps the remaining memory as cacheable.

i960® VH Processor Developer’s Manual

intel.

13.2

Table 13-1.

Core Processor Local Bus Configuration

Programming the Physical Memory Attributes
(Pmcon Registers)

The Physical Memory Configuration registers, PMCONO_1 to PMCON14 15, are shown in
Table 13-2. The PMCON registers reside within memory-mapped control register space. Each
PMCON register controls one 512-Mbyte region of memory according to the mapping shown in

Table 13-1.

PMCON Address Mapping

Register
(Control Table Entry)

Region Controlled

Required Bus Width

Physical Memory Control
Register 0 — PMCONO_1

0000 0000H to OFFF FFFFH
and
1000 0000H to 1FFF FFFFH

32 hits - 80960VH Peripheral
Memory-Mapped Registers

Physical Memory Control
Register 1 - PMCON2_3

2000 0000H to 2FFF FFFFH
and
3000 0000H to 3FFF FFFFH

Application dependent!

Physical Memory Control
Register 2 — PMCON4_5

4000 0000H to 4FFF FFFFH
and
5000 0000H to 5FFF FFFFH

Application dependent!

Physical Memory Control
Register 3 - PMCON6_7

6000 0000H to 6FFF FFFFH
and
7000 0000H to 7FFF FFFFH

Application dependent!

Physical Memory Control
Register 4 — PMCON8_9

8000 0000H to 8FFF FFFFH
and
9000 0000H to 9FFF FFFFH

32 bits - 80960VH
outbound ATU translation windows?
(See Figure 16-5., 80960 Local Bus
Memory Map - Outbound Translation

Window (pg. 16-10))

Physical Memory Control
Register 5 - PMCON10_11

A000 0000H to AFFF FFFFH
and
B000 0000H to BFFF FFFFH

Application dependent?

Physical Memory Control
Register 6 - PMCON12_13

C000 0000H to CFFF FFFFH
and
D000 0000H to DFFF FFFFH

Application dependent?

Physical Memory Control
Register 7 — PMCON14_15

E000 0000H to EFFF FFFFH
and
F000 0000H to FFFF FFFFH

Application dependent?

NOTES:

1. When direct addressing mode is enabled (bit 8 of the ATUCR), the region must be programmed to 32-bits wide. When
disabled, the peripherals/memory connected to this region define the bus width to be programmed.

2. The user peripheral/memory connected to this region defines the bus width to be programmed.

i960® VH Processor Developer's Manual

13-3

u
Core Processor Local Bus Configuration I ntel ®

Table 13-2. Physical Memory Control Registers — PMCONO:15

31 28 24 20 16 12 8 4 0
LBA[wv/fovfrvfrvfvfrvfrvfvfrwfrwf v v/ v oo v v/ v fovf o fvf o fovfv /v fry

PC'l: a\na\pa\na\pa

Legend: NA = Not Accessible RO = Read Only

LBA: see Table 13-1 | RV = Reserved PR = Preserved RW = Read/Write

PCI: NA RS = Read/Set RC = Read Clear

LBA = 80960 local bus address PCI = PCI Configuration Address Offset

Bit Default Description
31:24 00H Reserved. Initialize to 0.
Bus Width
Selects the local bus width for a region:
23:22 00 (00) = 8-bit
2 (01) = 16-bit
(10) = 32-bit bus
(11) = reserved (do not use)
21:00 00 0000H Reserved. Initialize to 0.

13.2.1 Local Bus Width

The local buswidth for aregion is controlled by the PMCON register. The operation of the
80960V H with different local bus width programming optionsis described in Section 14.3.4, “Bus
Width” on page 14-6

13.3 Physical Memory Attributes At Initialization

All eight PMCON registers are loaded automatically during system initialization. The initial values
are stored in the Control Table in the Initialization Boot Record Seedon 12.4, “Initial Memory
Image (IMI)” on page 12-10

13.3.1 Bus Control Register —- BCON

Immediately after a hardware reset, the PMCON register contents are marked invalid in the Bus
Control (BCON) register. When the PMCON entries are marked invalid in BCON, the BCU uses
the parametersin PMCON14_15 for all regions. On a hardware reset, PMCON14_15is
automatically cleared. This operation configures all regionsto an 8-bit bus width. Subsequently,
the processor loads all PMCON registers from the Control Table. The processor then |oads BCON
from the Control Table. When bit 2 of BCON is clear, PMCON14 15 remainsin use for all local
bus accesses. When bit 2 of BCON is set, the region tableis valid and the BCU uses the
programmed PM CON values for each region.

13-4 i960® VH Processor Developer’s Manual

intel.

Table 13-3.

13.4

13.4.1

13.4.2

Core Processor Local Bus Configuration

Bus Control Register —- BCON

31 28 24 20 16 12 8 4 0
LBA[ANVASTALY AVAST ANV AR AV ASVANT AV AV AT AT AV AV ANV ANTAY AT ANT AV ALY ANV AT VAV AT (AT (7)

PC'[a\pa\na\na\na\pa\na

Legend: NA = Not Accessible RO = Read Only

LBA: 86FCH RV = Reserved PR = Preserved RW = Read/Write
PCl: NA RS = Read/Set RC = Read Clear
LBA = 80960 local bus address PCI = PCI Configuration Address Offset
Bit Default Description
31:03 OOOOHOOOO Reserved.

Supervisor Internal RAM Protection
02 0, (0) = First 64 bytes not protected from supervisor mode write
(1) = First 64 bytes protected from supervisor mode writes

Internal RAM Protection
01 0, (0) = Internal data RAM not protected from user mode writes
(1) = Internal data RAM protected from user mode write

Configuration Entries in Control Table Valid
00 0, (0) = PMCON entries not valid, default to PMCON14_15 setting
(1) = PMCON entries valid

Boundary Conditions For Physical Memory Regions

The following sections describe the operation of the PMCON registers during conditions other than
“normal” accesses.

Internal Memory Locations

The PMCON registers are ignored during accesses to internal memory or i960 core processor
memory-mapped registers. The processor performs those accesses over 32-bit buses, except for
local register cache accesses. The register bus is 128 bits wide.

Bus Transactions Across Region Boundaries

An unaligned bus request that spans region boundaries uses the PMCON settings of both regions.
Accesses that lie in the first region use that region’'s PMCON parameters, and the remaining
accesses use the second region’'s PMCON parameters.

For example, an unaligned quad word load/store beginning at address 1FFF FFFEH would cross
boundaries from region 0_1 to 2_3. The physical parameters for region 0_1 would be used for the
first 2-byte access and the physical parameters for region 2_3 would be used for the remaining
access.

i960® VH Processor Developer’s Manual 13-5

u
Core Processor Local Bus Configuration I ntel ®

13.4.3 Modifying the PMCON Registers
An application can modify the value of a PMCON register by using the st or sysctl instruction.

When a st or sysctl instruction isissued when an accessisin progress, the current accessis
completed before the modification takes effect.

13.5 Programming The Logical Memory Attributes

Bit field definitions for Logical Memory Address Registers- LMADR1:0 and LMMRZ1:0 registers
are shown in Table 13-4. LMCON registers reside within the i960 core processor memory-mapped
control register space. (See Appendix C, “Memory-Mapped Registery”

13.5.1 Logical Memory Address Registers - LMADRO:1

The LMADRZ1.:0 registers define the address for the logical data templates and template caching.

Table 13-4. Logical Memory Address Registers — LMADRO:1

31 28 24 20 16 12 8 4 0

LBA[I’WI’WI’WI’ MW/ TW/ TW/ TWE TW/ TW/ TW/ TWE TW/TW/ TW TWE W/ W TW/ T IA7AL7ANTAY ANTANTANT AN AVTAN7T AV ANY

PCll: a\na\pna\na\na\na

LBA: CHoO-8108H | Legend: NA = Not Accessible RO = Read Only_
R RV = Reserved PR =Preserved RW = Read/Write
CH1-8110H
) RS = Read/Set RC = Read Clear
PCI: NA LBA = 80960 local bus address PCI = PCI Configuration Address Offset

Bit Default Description

Template Starting Address - Defines upper 20 bits for the address of a logical data

8112 0000 OH template. The lower 12 bits are fixed at zero. The starting address is modulo 4 Kbytes.

11:02 000H Reserved.

Data Cache Enable - Controls data caching for the template.
(0) = Data caching disabled

01 02 (1) = Data caching enabled
Instruction caching is never affected by this bit.
00 0, Reserved.

13-6 i960® VH Processor Developer’s Manual

intel.

Core Processor Local Bus Configuration

Table 13-5. Logical Memory Mask Registers — LMMRO:1

31 28

24 20 16 12 8 4 0

TW/TW/ TW/ TWE TW/ TW/ TW/ TWE W/ TW/TW/ TWE TW/ TW/ TW/ TWE TW/ TW/TW/ T INTANTANTANT ANV ANTANT AN AN T AN T AAT ALY/

a\na\na\na\na\na\na\nayna\na\na\nayia\na\na\nayna\na\na\na\na\na\na\nayia\na\yayiayna\nayia\a
LBA: CHO-810C || egend: NA =NotAccessible RO = Read Only
H RV = Reserved PR =Preserved RW = Read/Write
~ CHI1-8114H | RS = Read/Set RC = Read Clear
PCl: NA LBA = 80960 local bus address PCI = PCI Configuration Address Offset
Bit Default Description
Template Address Mask - Defines upper 20 bits for the address mask for a logical
memory template. The lower 12 bits are fixed at zero (MA).
31:12 | 0000 OH
(0) = Mask
(1) = Do not mask
11:01 000H Reserved.
Logical Memory Template Enabled - Enables/disables logical memory template.
00 0, (0) = LMT disable
(1) = LMT enabled

The Default Logical Memory Configuration (DLMCON) register is shown in Table 13-6. The
BCU uses the parametersin the DLMCON register when the current access does not fall within
one of the two logical memory templates (LMTSs).

Table 13-6. Default Logical Memory Configuration Register —- DLMCON

31 28 24 20 16 12 8 4 0
LBA[I’VI’WI’V
PC'[aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa

Legend: NA = Not Accessible RO = Read Only
LBA: 8100H RV = Reserved PR =Preserved RW = Read/Write
PCI: NA RS = Read/Set RC = Read Clear
LBA = 80960 local bus address PCI = PCI Configuration Address Offset
Bit Default Description
31:02 OOOOHOOOO Reserved.
Data Cache Enable - Controls data caching for areas not within other logical memory
templates.
01 0, (0) = Data caching disabled
(1) = Write-through caching enabled
Instruction caching is never affected by this bit.
00 0, Reserved.

i960® VH Processor Developer’s Manual 13-7

u
Core Processor Local Bus Configuration I ntel ®

13.5.2 Defining the Effective Range of a Logical Data Template

For each logical datatemplate, an LMADRX register sets the base address using the bits 31:12. The
LMMR register setsthe address mask using the bits 31:12. The effective addressrange for alogical
datatemplate is defined by using bits 31:12 in the LMADRX register and bits 31:12 in the LMMRXx
register.

For each access, only those address bitsin the range 31:12 marked as unmasked (defined by bits
MA31:12 in the LMMRX register), are compared against bits 31:12 in the LMMRX register. When

all of the unmasked bits of the address match bits 31:12 of the LMMRX register, then the address

falls within the memory region governed by “x” logical memory template. The lower 12 address
bits are not compared and are thus considered masked bits or “don’t care” bits. This forces a
minimum 4 Kbyte boundary on a memory region governed by a logical memory template.
Logically, the operation is as follows:

(EFA31:12 xnor LMADRXx31:12) or (not LMMRx31:12)

Where EFA31:12 is the effective address for a bus access. Only when all compared address bits
match is the logical data template used for the current access. Two examples help clarify the
operation of the address comparators.

* Create atemplate 64 Kbytesin length beginning at address 0010 0000H and ending at address
0010 FFFFH. Determine the form of the candidate address to match and then program the
LMADR and LMMR registers:

Candidate Addressis of form:0010 XXXX
LMADR <31:12> should be:0010 O. ..
LMMR <31:12> should beFFFF 0. . .

* Multiple data templates can be created from a single LMADRXLMMRX register pair by
aliasing effective addresses. For example, to create sixteen 64 Kbyte templates, each
beginning on modulo 1 Mbyte boundaries starting at 0000 0000H and ending with
OOFO O000H, the registers are programmed as follows:

Candidate Address is of form:00X0 XXXX

LMADR <31:12> should be:0000 O. ..
LMMR <31:12> should be:FFOF O. . .

13.5.3 Data Caching Enable

Enabling and disabling data caching for an LMT is controlled viathe bit 0 in the LMADR register.
Likewise, the bit 1 in the DLMCON enables and disables data-caching for regions of memory that
are not covered by the LMCON registers.

Disabling a memory range does not exclude an address range from being cachesble. For cacheable
ranges, the BCU promotes all sub-word accesses to word accesses.

13.5.4 Enabling the Logical Memory Template

LMMRXx bit O activates the logical datatemplate in the LMMR register for the programmed range.

13-8 i960® VH Processor Developer’s Manual

intel.

13.5.5

13.5.6

13.5.6.1

13.5.6.2

13.5.6.3

13.5.7

Core Processor Local Bus Configuration

Initialization

Immediately following a hardwarereset, all LMTs are disabled. The bit 0 in each of the LMMR
registersis cleared (0) and dl other bits are undefined. Also the Default Logical Memory Control
register Data Caching Enable (LMADRKX bit 1) is cleared (Data Caching Disabled). Application
software may initialize and enable the logical memory template after hardware reset. The registers
are not modified by software initialization.

Boundary Conditions for Logical Memory Templates

The following sections describe the operation of the LMT registers during conditions other than
“normal” accesses. S&hapter 4, “Cache and On-Chip Data RAKt a treatment of data cache
coherency when modifying an LMT.

Internal Memory Locations and Peripheral MMRs

The LMT registers are not used during accesses to i960 core processor memory-mapped registers.
Internal data RAM locations are never cached; LMT bits controlling caching are ignored for data
RAM accesses. The 80960VH peripheral MMRs, (addresses 0000 1000H through 0000 17FFH)
and the ATU windows (8000 0000H through 9001 FFFFH) should be defined as non-cacheable.
Further, if direct addressing is enabled (bit 8 of the ATUCR) addresses 0000 0000H through

7FFF FFFFH should be defined as non-cacheable.

Overlapping Logical Data Template Ranges

Logical data templates that specify overlapping ranges are not allowed. When an access is
attempted that matches more than one enabled LMT range, the operation of the access becomes
undefined.

To establish different logical memory attributes for the same address range, program
non-overlapping logical ranges, then use partial physical address decoding.

Accesses Across LMT Boundaries
Accesses that cross LMT boundaries should be avoided. These accesses are unaligned and broken

into a number of smaller aligned accesses, which reside in one or the other LMT, but not both.
Each smaller access is completed using the parameters of the LMT in which it resides.

Modifying the LMT Registers

An LMT register can be modified usisg or sysctl instructions. Both instructiorensure data
cache coherency and order the modification with previous and subsequent data accesses.

i960® VH Processor Developer’s Manual 13-9

intel.

Local Bus

14

This chapter describes the bus interface of the i960® VH processor. It explains the following:

* Bus states and their relationship to each other

* Bussignas, which consist of address/data, control/status

* Read, write, burst and atomic bus transactions

* Reated bus functions such as arbitration

This chapter also serves as a starting point for the hardware designer when interfacing typical

peripheral devices to the 80960VH'’s address/data bus.

For information on programmable bus configuration, refe&€hapter 13, “Core Processor Local

Bus Configuration”

Figure 14-1. The Local Bus

f

MA11:0 + CTRL

Memory
Controller

80960
Core

|

Two DMA
Channels

|

Address
Translation
Unit

80960 Core Processor Local Bus

AD31:0 + CTRL

i960® VH Processor Developer's Manual

14-1

Local Bus

14.1

Table 14-1.

14.1.1

14-2

intel.

Overview

Thelocal busis the data communication path between the various components of an 80960V H
hardware system. It allows the processor to fetch instructions, manipulate data and interact with its
I/0 environment. To perform these tasks at high bandwidth, the processor features a burst transfer
capability which allows successive 32-bit datatransfers.

Thelocal busiscontrolled by the on-chip bus masters: the i960 core processor, the ATU and DMA
units. While the i960 core processor is limited to a burst length of four transfers, the ATU and
DMA units can burst up to naturally aligned 2 Kbyte boundaries.

The address/data path is multiplexed for economy, and bus width is programmable to 8-, 16- and
32-bit widths for 1960 core processor accesses. The ATU and DMA units are limited to 32-bit bus
widths. The processor has dedicated control signals for external address latches, buffers and data
transceivers. In addition, the processor uses other signalsto communicate with alternate bus
masters. All bus transactions are synchronized with the processor’s clock input (P_CLK);
therefore, the memory system control logic can be implemented as state machines.

Users who are familiar with i960 JT processor should note the following differences in
functionality between the 1960 JT processor and the 80960VHT&#e 14-1

Differences Between 80960JT and 80960VH Local Buses

Topic 80960JT 80960VH

HOLD function HOLD recognized during reset. HOLD not recognized during reset.

i960 core processor: Four-word burst
DMA units and ATU: 2 Kbyte

Burst access limits Four-word burst

Supports big and little endian byte

Data byte order order.

Supports little endian byte order only.

Uses BSTAT to provide bus status

BSTAT signal information.

BSTAT signal not present.

A3:2 increments addresses during burst

A3:2 signal
accesses.

A3:2 not present.

Peripherals that only interface to the
i960 core processor can use 8-, 16 or
Bus width Supports 8-, 16- or 32-bits bus widths 32-bit bus widths.

Peripherals interfaced to the DMA units
and ATU must use 32-bit bus widths.

i960 core processor: unaligned
accesses broken up by microcode into
aligned accesses.

DMA units and ATU: No alignment
restrictions.

Unaligned accesses broken up by

Bus alignment . : -
microcode into aligned accesses.

Bus Operation

The termgeguest, access andtransfer are used to describe bus operations. The processor’s bus
control unit decouples bus activity from instruction execution in the core as much as possible.
When a load or store instruction or instruction prefetch is issued, redugst is generated in the

bus control unit. The bus control unit independently processes the request and retrieves data from
memory for load instructions and instruction prefetches. The bus control unit delivers data to
memory for store instructions.

i960® VH Processor Developer’s Manual

14.2

Local Bus

A bus accessisdefined as a bus transaction bounded by the assertion of ADS# (address strobe) and
de-assertion of BLAST# (burst |ast) signals, which are outputs from the processor. During each
transfer, the processor either reads data or drives data on the bus. The number of transfers per
access and the number of accesses per request is governed by the requested data length, the
programmed width of the bus and the alignment of the address.

Basic Bus States

The bus hasfive basic bus states: idle (T|), address (T,), wait/data (T\y/Tp), recovery (Tg), and
hold (Ty). During system operation, the processor continuously enters and exits different bus
states.

The bus occupiestheidle (T,) state when no address/data transactions are in progress and when
P_RST#isasserted. When the processor needs to initiate a bus access, it entersthe T, state to
transmit the address.

Following a Ty state, the bus enters the Ty/Tp state to transmit or receive data on the address/data
lines. Assertion of the LRDY RCV# (L ocal Ready Recover) or RDY RCV# (Ready/Recover) signal
indicates completion of each transfer. When data is not ready, the processor can wait as long as
necessary for the memory or 1/0O device to respond.

In the case of aburst transaction, the bus exitsthe T state and re-entersthe Tp/Tyy State to transfer
the next data word. The processor asserts the BLAST# signal during the last T,/ T states of an
access. Once all datawordstransfer in aburst access, the bus entersthe recovery (Tg) state to allow
devices on the bus to recover.

The processor remainsin the Ty state until LRDY RCV# or RDY RCV# is deasserted. When the
recovery state completes, the bus enters the T, state when no new accesses are required. When an
access is pending, the bus entersthe T, state to transmit the new address.

i960® VH Processor Developer’s Manual 14-3

Local Bus

Figure 14-2. Bus States with Arbitration

14.3

14.3.1

14-4

T, — Idle state
Tp — address state

Tw / Tp — Wait/data state
Tr — Recovery state
Ty — Hold state
To — ONCE state

(READY AND BURST)
OR NOT READY

RECOVERED READY AND
AND REQUEST NO BURST
PENDING AND

(NO HOLD OR
LOCKED)
REQUEST PENDING
AND (NO HOLD OR NOT
LOCKED) RECOVERED
REQUEST RECOVERED AND
PENDING NO REQUEST AND
NO REQUEST AND NO HOLD (NO HOLD OR
AND (NO HOLD LOCKED)
OR LOCKED)

ONCE & RESET RECOVERED AND
DEASSERTION HOLD AND NOT
NO REQUEST LOCKED
AND NO HOLD
HOLD AND /
NOT LOCKED
HOLD
READY— RDYRCV# asserted NO REQUEST— No new transaction
NOT READY— LRDYRCV#RDYRCV# not asserted HOLD— Hold request asserted

NO HOLD— Hold request not asserted

BURST— BLAST# not asserted LOCKED— Atomic e(iecution (atadd, atmod) in progress
NO BURST— BLAST# asserted NOT LOCKED— No atomic execution in progress
RECOVERED—LRDYRCV#/ RDYRCV# not asserted RESET— RESET# asserted

NOT RECOVERED— LRDYRCV#/RDYRCV# asserted ONCE— ONCE# asserted

REQUEST PENDING— New transaction

Bus Signal Types

Bus signals consist of three groups: address/data, control/status and bus arbitration. A detailed
description of all signals can be found in the 80960VH Microprocessor Data Sheets.

Clock Signal

The P_CLK input signal is the reference for all 80960V H signal timing relationships. Transitions
on the AD31:0, ADS#, BE3:0#, WIDTH/HLTD1:0, D/C#, W/R#, DEN#, BLAST#, LRDY RCV#
or RDYRCV#, LOCK#/ONCE#, HOLD, and HOLDA signals are always measured directly from
therising edge of P_CLK. The processor asserts ALE directly from therising P_CLK edge at the
beginning of a TA state but deasserts them approximately half way through the state instead of the
next rising P_CLK edge. All transitions on DT/R# are also referenced to a point halfway through
the TA state instead of rising P_CLK edges.

i960® VH Processor Developer’s Manual

intel.

14.3.2

14.3.3

Local Bus

Address/Data Signal Definitions

The address/data signal group consists of 32 lines. These signals multiplex within the processor to
serve adual purpose. During Tp, the processor drives AD31:2 with the address of the bus access.
At all other times, these lines are defined to contain data. AD1:0 denote burst size during T, and
data during other states.

The processor routinely performs data transfers less than 32 bits wide for 1960 core processor
accesses. When the programmed bus width is 32 bits and transfers are 16- or 8-bit, then during
write cycles the processor replicates the data being driven on the unused address/data signals.
When the programmed bus width is 16 or 8 bits, then during write cycles the processor continues
driving address on any unused address/data signals.

Whenever the programmed bus width is less than 32 bits, additional demultiplexed address bitsare
available on unused byte enable signals. See Section 14.3.4, “Bus Width” on page 14-these

signals increment during burst accesses. The memory controller increments the addresses during
bursts. Se€hapter 15, “Memory Controllerfor more information.

Control/Status Signal Definitions

The control/status signals control data buffers and address latches or furnish information useful to
external chip-select generation logic. All output control/status signals are three-state.

Bus accesses begin with the assertion of ADS# (address/data status) dyristgta. TExternal
decoding logic typically uses ADS# to qualify a valid address at the rising clock edge at the end of
Ta. The processor pulses ALE (address latch enable) active high for one half clock dutdng T

latch the multiplexed address on AD31:2 in external address latches.

The byte enable (BE3:0#) signals denote which bytes on the 32-bit data bus transfers data during
an access. The processor asserts byte enables dyramgideasserts them during. When the

data bus is configured for 16 bits, two byte enables become byte high enable and byte low enable
and an additional address bit Al is provided. When the bus is configured for 8 bits, there are no
byte enables, but additional address bits A1:0 are provided. Note that the processor always drives
byte enable signals to logical 1's during theskate, even when they are used as addresses.

The WIDTH1:0, D/C# and W/R# signals yield useful bus access information for external memory
and I/O controllers. The WIDTH1:0 signals denote the i960 core processor’s programmed physical
memory attributes. The data/code signal D/C#, indicates whether an access is a data transaction (1)
or an instruction transaction (0). The write/read signal W/R#, indicates the direction of data flow
relative to the 80960VH. WIDTH1:0, D/C# and W/R# change state as needed duringstia¢eT

DT/R# and DEN# signals control data transceivers. Data transceivers may be used in a system to
isolate a memory subsystem or control loading on data lines. DT/R# (data transmit/receive) is used
to control transceiver direction. In the second half of thetate, it transitions high for write

cycles or low for read cycles. DEN# (data enable) is used to enable the transceivers. DEN# is
asserted during the firstf Tp state of a bus access and deasserted dugnBT/R# and DEN#

timings ensure that DT/R# does not change state when DEN# is asserted.

A bus access may be either non-burst or burst. A non-burst access ends after one data transfer to a
single location. The processor asserts BLAST# (burst last) to indicate the last data cycle of an
access in both burst and non-burst situations.

All 80960VH wait states to the local bus are controlled by either LRDYRCV# or RDYRCV#. See
Section 14.3.7.1, “Recovery States” on page 14et@ description of these signals.

i960® VH Processor Developer’s Manual 14-5

Local Bus

14.3.4

intel.

Each region’s data bus width is programmed in a Physical Memory Region Configuration
(PMCON) register (se€hapter 1R The processor allows an 8-, 16- or 32-bit data bus width for
each region. The processor places 8- and 16-bit data on low-order data signals, simplifying the
interface to narrow bus external devices. As shovwkFigare 14-3 8-bit data is placed on lines

AD7:0; 16-bit data is placed on lines AD15:0; 32-bit data is placed on lines AD31:0. The processor
encodes bus width on the WIDTH1.:0 signals so that external logic may enable the bus correctly.
Note that DMA and ATU accesses are limited to 32-bit wide memory regions.

Bus Width

Figure 14-3. Data Width and Byte Encodings

14-6

AD31:24
AD23:16
AD15:8
AD7:0 A A A
) [I
8 - Bit 16 - Bit 32 - Bit
A0 Al
Al BHE BLE
BEO BE1 BE1 BE3 BEO BE3 BE2 | BE1 BEO
BE3:0 [|

Depending on the programmed bus width, the byte enable signals provide either data enables or
low-order address lines:

* 8-bit region: BEO: 1# provide the byte address (A0, A1). BE3:2# are not used.

* 16-hit region: BE1# provides the short-word address (A 1); BE3# isthe byte high enable signal
(BHE#); BEO# is the byte low enable signal (BLE#). BE2# is not used.

* 32-bit region: byte enables are not encoded as address signals. Byte enables BE3:0# select
bytes 0 through 3 of the 32-bit words addressed by AD31:2.

During initialization, the bus configuration datais read from the Initialization Boot Record (I1BR)

assuming an 8-bit bus width; however, the IBR can be in 8-bit, 16-bit or 32-bit physical memory.

BE3:2# are defined as “1” so that reading the bus configuration data works for all bus widths. Since
these byte enables are ignored for actual 8-bit memory, they can be permanently defined this way
for ease of implementation.

The 80960VH drives determinate values on all address/data signals dyyifig Write operation

states. For an 8-bit bus, the processor continues to drive address on unused data signals AD31:8.
For a 16-bit bus, the processor continues to drive address on unused data signals AD31:16.
However, when the processor does not use the entire bus width because of data width or
misalignment (i.e., 8-bit write on a 16- or 32-bit bus or a 16-bit write on a 32-bit bus), data is
replicated on those unused portions of the bus.

i960® VH Processor Developer’s Manual

intel.

Table 14-2.

Table 14-3.

Table 14-4.

14.3.5

Local Bus
8-Bit Bus Width Byte Enable Encodings
Byte BE3# BE2# BE1# BEO#
(Not Used) (Not Used) (Used as A1) (Used as A0)
0 1 1 0 0
1 1 1 0 1
2 1 1 1 0
3 1 1 1 1
16-Bit Bus Width Byte Enable Encodings
Byte BE3# BE2# BE1# BEO#
(Used as BHE#) (Not Used) (Used as A1) (Used as BLE#)
0,1 0 1 0 0
2,3 0 1 1 0
0 1 1 0 0
1 0 1 0 1
2 1 1 1 0
3 0 1 1 1
32-Bit Bus Width Byte Enable Encodings
Byte BE3# BE2# BE1# BEO#
0,1,2,3 0 0 0 0
0,1 1 1 0 0
2,3 0 0 1 1
0 1 1 1 0
1 1 1 0 1
2 1 0 1 1
3 0 1 1 1

Basic Bus Accesses

The basic transaction isaread or write of one dataword. Thefirst half of Figure 14-4 shows a
typical timing diagram for a non-burst, 32-bit read transaction. For simplicity, no wait states are

shown.

During the T, state, the 80960V H transmits the address on the address/data lines. In the figure, the
SIZE bits (AD1:0) specify asingle word transaction and WIDTHZ1:0 indicate a 32-bit wide access.
For DMA and ATU accessesto the local bus, SIZE isnot valid. The processor asserts ALE to latch
the address and drives ADS# low to denote the start of the cycle. BE3:0# specify which bytesthe
processor uses to read the data word. The processor brings W/R# low to denote a read operation
and drives D/C# to the proper state. For data transceivers, DT/R# goes low to define the input

direction.

i960® VH Processor Developer's Manual

14-7

Local Bus

14-8

intel.

During the T\y/Tp state, the processor deasserts ADS# and asserts DEN# to enable any data
transceivers. Since thisisanon-burst transaction, the processor asserts BLAST# to signify the last
transfer of atransaction. Figure 14-4 shows LRDYRCV#RDY RCV# asserted, so this stateis a
data state and the processor latches data on arising P_CLK edge. RDY RCV# is asserted by
external logic.

The TR state followsthe Tyy/Tp state. Thisallows the system components adeguate time to remove
their outputs from the bus before the processor drives the next address on the address/data lines.
During the T state, BLAST#, BE3:0# and DEN# are inactive. W/R# and DT/R# hold their
previous values. The figureindicatesalogical high for the LRDY RCV#RDY RCV# signal, so
thereisonly onerecovery state.

After aread, notice that the address/data bus goes to an invalid state during T,. The processor
drives valid logic levels on the address/data bus instead of allowing it to float. See Section 14.4,
“Bus and Control Signals During Recovery and ldle States” on page fet-### values that are
driven during T.

i960® VH Processor Developer’s Manual

intel.

Figure 14-4.

i960® VH Processor Developer's Manual

Local Bus
Non-Burst Read and Write Transactions Without Wait States, 32-Bit Bus
Read Idle Write ldle—>
Ty o TR T T T TR T T
— I | | I | | | I I |
P_CLK |
— | | | | | | | | | | |
— | I I I L L 1
AD31:0 E Invalid XADDRm
L |
- | | | | | | | | | | |
e
| | | | | | | | | | |
[| \ | [| | | | \ | [| | | |
ADSH# | | | | | | | | | | |
T | | | | | | | | | | |
[| | | | | | |
BE3:0# o\ [\ o [\ |
B I I I I I I I I I I
WIDTH1:0 ;X 10 10
— T T T T T T T T \ I
— | | | | | | | | | | |
DICH# :X / : : : : ‘
L | | | | |
- | | | | | | | | | | |
W/R# T\ | | | | | / | | | | |
[| | | | | | | | | | |
_ | | | | | | | | | | |
BLAST# | | \ | ' | | | | \ | ' | | |
| | | | | | | | | | |
: | | | | | | | | | |
DT/R# | | | | | | / | | | | |
L | | | | | | | | | | |
| | | | | | | | | | |
[| | | | | | | | | | |
DEN# \ / \ /
| | | | | | | | | | |
T \ \ \ \ \ \ \ \ \ \
_ | I | I
LRDYRCV#RDYRCV# \ | /]\ K \ \ / /\ Y
| | | |
| | | |

Figure 14-4 also shows atypical timing diagram for anon-burst, 32-bit write transaction. For the
write operation, W/R# and DT/R# are high to denote the direction of the data flow. The D/C#
signal is high since instruction code cannot be written. During the T\,/T, state, the processor
drives data on the bus, waiting to sample LRDY RCV#RDY RCV# low to terminate the transfer.
The figure shows LRDY RCV#RDY RCV# asserted, so this state is a data state and the processor
enters the recovery state. RDY RCV# is asserted by external logic.

At the end of awrite, notice that the write data is driven during Tk and any subsequent T, states.

After awrite, the processor drives write data until the next T, state. See Section 14.4, “Bus and
Control Signals During Recovery and Idle States” on page Hférafetails.

14-9

Local Bus

14.3.6

14.3.6.1

Table 14-5.

14-10

intel.

A burst access is an address cycle followed by multiple data transfers. The 80960V H uses burst
transactions to optimize local bus bandwidth. Burst transactions can be initiated by the 1960 core
processor, the ATU and the DMA units. Burst transactions initiated by the 1960 core processor
have the same burst length and alignment rules as thei960 JT processor. However, burst
transactions initiated by the ATU and DMA unitsto the local bus have been further optimized to
increase bandwidth by supporting much greater burst transfer lengths (up to 2K) and have added
hardware support for optimized unaligned transfers.

Burst Transactions

When interfacing devicesto the local bus that are accessed by on-chip i960 core processor only, the
same burst length and alignment rules from thei960 JT processor apply. |f devices connected to the
local bus are targeted by either the ATU or the DMA units, then those devices must support the
additional local bus optimizations added by those units.

i960® Core Processor Burst Transactions

The maximum i960 core processor burst sizeis four data transfers, independent of bus width.
These transfers are used by the 1960 core processor for instruction fetching and accessing system
data structures (i.e., load and store instructions). For an 8- and 16-bit bus widths, this means that
some bus requests may result in multiple burst accesses. For example, a quad word load request
(Idg instructions) to an 8-bit data region results in four 4-byte burst accesses.

For the 1960 core processor, the burst accesses on the local bus are aways aigned, meaning that
byte lanes always carry valid data for each burst transfer (BE3:0# asserted). Table 14-5
summarizes the natural boundaries for load and store accesses from the i960 core processor.

When processing unaligned data requests from the 1960 core processor, the Bus Control Unit
breaks these accesses into a series of aligned burst accesses. The alignment rules for load and store
requests are based on address offsets from natural data boundaries. Table 14-6 through Table 14-8
list al possible combinations of bus accesses resulting from aligned and unaligned requests.
Figure 14-5 and Figure 14-6 depict the combinations for 32-bit buses.

The Process Control Block (PRCB) fault configuration word can configure the 1960 core processor

to handle unaligned accesses non-transparently by generating an OPERATION.UNALIGNED

fault after executing any unaligned accesses. See Section 12.4.2, “Process Control Block — PRCB”
on page 12-15

i960% Core Processor Natural Boundaries for Load and Store Accesses

Data Width Natural Boundary (Bytes)
Byte 1

Short Word 2
Word 4

Double Word 8

Triple Word 16

Quad Word 16

i960® VH Processor Developer’s Manual

intel.

Table 14-6.

Table 14-7.

Table 14-8.

Local Bus

i960® Core Processor Summary of Byte Load and Store Accesses

Address Offset from
Natural Boundary
(in Bytes)

Accesses on 8-Bit Bus
(WIDTH1:0=00)

Accesses on 16 Bit
Bus (WIDTH1:0=01)

Accesses on 32 Bit
Bus (WIDTH1:0=10)

+0 (aligned)

byte access

byte access

byte access

i960® Core Processor Summary of Short Word Load and Store Accesses

Address Offset from
Natural Boundary

Accesses on 8-Bit Bus
(WIDTH1:0=00)

Accesses on 16 Bit Bus
(WIDTH1:0=01)

Accesses on 32 Bit Bus
(WIDTH1:0=10)

(in Bytes)
+0 (aligned) burst of 2 bytes short-word access short-word access
+1 2 byte accesses 2 byte accesses 2 byte accesses

i960® Core Processor Summary of n-Word Load and Store Accesses (n=1, 2, 3, 4)

(Sheet 1 of 2)

Address Offset
from Natural
Boundary in Bytes

Accesses on 8-Bit Bus
(WIDTH1:0=00)

Accesses on 16 Bit Bus
(WIDTH1:0=01)

Accesses on 32 Bit
Bus (WIDTH1:0=10)

+0 (aligned)
(n=1,2,3,4)

® N burst(s) of 4 bytes

® case nN=1:
burst of 2 short words

® case nN=2:
burst of 4 short words

® case N=3:
burst of 4 short words
burst of 2 short words

® case N=4:
2 bursts of 4 short words

® burst of N word(s)

+1(n=1,2,3,4)
+5(n=2,3,4)
+9 (n=3, 4)
+13 (n=3,4)

® byte access
® burst of 2 bytes
® N-1 burst(s) of 4 bytes

® byte access

® byte access
® short-word access

® N-1 burst(s) of 2 short
words

® byte access

® byte access

® short-word
access

® Nn-1word
access(es)

® byte access

+2(n=1,2,3,4)
+6(n=2,3,4)
+10 (n=3, 4)
+14 (n=3, 4)

® burst of 2 bytes
® N-1 burst(s) of 4 bytes

® burst of 2 bytes

® short-word access

® N-1 burst(s) of 2 short
words

® short-word access

® short-word
access

® Nn-1word
access(es)

® short-word
access

i960® VH Processor Developer's Manual

14-11

Local Bus i ntel ®

Table 14-8. i1960® Core Processor Summary of n-Word Load and Store Accesses (n=1, 2, 3, 4)
(Sheet 2 of 2)

Address Offset

from Natural Accesses on 8-Bit Bus Accesses on 16 Bit Bus Accesses on 32 Bit
. (WIDTH1:0=00) (WIDTH1:0=01) Bus (WIDTH1:0=10)
Boundary in Bytes
® hyte access ® byte access ® byte access

+3(n=1,2,3,4) ® nN-1 burst(s) of 4 bytes ® nN-1 burst(s) of 2 short ® N-1word
+7(n=2,3,4) * burstof 2 bytes words access(es)
+11(n=3,4) o byt ® short-word access ® short-word
+15(n=3, 4) yte access access

® byte access
® byte access

+4(n=2,3,4) ® N burst(s) of 4 bytes ® nburst(s) of 2 short words | ® nNword
+8 (n=3,4) access(es)
+12 (n=3, 4)

14-12 i960® VH Processor Developer’s Manual

intel.

Local Bus
Figure 14-5. i960® Core Processor Summary of Aligned and Unaligned Accesses
(32-Bit Bus)
Byte Offset 0 4 8 12 16 20 24
I I I | I I | I I | I I |
Word Offsit 0 1 2 3 4 5 6

Short Access (Aligned)

| | | |
Byte, Byte Accesses
I I

Short-Word
Load/Store |

Short Access (Aligned) \ \

Byte, Byte Accesses ‘ ‘

‘ \ \
Word Access (Aligned)
[\ \

Byte, Short, Byte, Accesses ‘

Word
Load/Store \

Short, Short Accesses \

\ \ \
Byte, Short, Byte Accesses |

One Double-Word Burst (Aligned)

Byte, Short, Word, Byte Accesses

Double-Word
Load/Store |

I I
Short, Word, Short Accesses
I I

| I
Word, Word Accesses

Byte, Word, Shorf, Byte Accesses

‘ One Double-Word
Burst (Aligned)

i960® VH Processor Developer's Manual

14-13

Local Bus I n ®

Figure 14-6. i960® Core Processor Summary of Aligned and Unaligned Accesses
(32-Bit Bus) (Continued)

IN
[oe]
=
N
[
o
N
o
N
~

0
ByteOffset||||||||||||||||||

| |
One Three-Word
Burst (Alrgned)

Byte Short Word,
Word, Byte Accesses | |

Word Offset

Short, Word, Word, |

Triple-Word Short Accesses

Load/Store |

| Byte, Word, Word, |
Short Byte Accesses
| | |

Word, Word,
Word Accesses |

Word, Word,

Word Accesses

Word,
Word,
Accesses

One Four-Word |
Burst (Aligned) |

Byte Short, Word, Word,
Word Byte Accesses

hort Word, Word, Word,

Quad-Word |
Short Accesses

Load/Store

Byte Word, Word Word,
Short, Byte Accesses

Word, Word, Word,
Word Accesses

Word,
Word,
Word,
Word,
Accesses

14-14 i960® VH Processor Developer’s Manual

Local Bus

Tr |

Tao |l Tp I Tp I Tr!l Tao Il Tp | Tp | Tp | Tp |

ADS#
BE1#/Al#
BEO#/AO#
WIDTH1:0
D/C#
WIR#
BLAST#
DT/R#

DEN#

LRDYRCV#/RDYRCV#

Figure 14-7. Burst Read and Write Transactions w/o Wait States, 8-bit Bus

14-15

i960® VH Processor Developer's Manual

Local Bus

Figure 14-8.

14.3.6.2

14-16

intel.

Burst Read and Write Transactions w/o Wait States, 32-bit Bus

I Tol Tp I Tp I Trl Tao Il Tp | Tp | Tp | Tp | TgrI

[| | | [I I
I I I I
I I I I I I

| | | |
_ DATA\/DATA \/DATA\/ DATA
T \ \ | \
[[
ALE ‘ ‘
T \
[[
ADS# | |
T \
I \
[[
T

P_CLK

BE3:0# \
WIDTH1:0 x 10 10
D/C# x /
W/R# I \
BLAST#

DT/R# \
[
1
DEN#
[[[I [I
LRDYRCV#/RDYRCV# | | | | | |

ATU and DMA Burst Transactions

While the 1960 core processor generates local bus accesses in response to data requests (LD and ST
instructions) or instruction prefetching, the ATU and DMA units generate local bus accesses to
move large blocks of datato and from the PCI buses. For most 80960V H applications, these burst
accesses are translated by the on-chip memory controller directly to either DRAM or SRAM.
However, it is possible for the DMA or ATU units to access external peripherals connected to the
local bus.

i960® VH Processor Developer's Manual

i ntel ® Local Bus

To facilitate these large transfers, these units burst transfers up to naturally aligned 2K boundaries
to the local bus. Because of this, the SIZE value driven on the AD1:0 signals during the T, stateis
invalid. The cycle still begins with ADS# and ends with BLAST#.

The ATU and DMA units also do not break unaligned burst accesses into aligned accesses. For
1960 core burst accesses, BE3:0# are unconditionally asserted for both reads and writes because the
transfers are aligned. For the ATU and DMA unit write cycles, BE3:0# can change for each data
transfer during a burst access to optimize the alignment. Figure 14-9 shows a seven-word burst
write from either the DMA or ATU unitsthat is offset from the word boundary by one byte. The
transfer requires 8 burst data transfers, with 3 bytes valid for the first burst transfer, and one byte
valid for the last transfer.

Figure 14-9. ATU or DMA 7-Word Unaligned Burst Transfer

Ta ' Tp ! Tp ! Tp! Tp ! Tp ' Tp '+ Tp 1 Tp Tr

. DATA\/DATA\/DATA\|DATA\ DATA\/DATA \|DATA\/ DATA

0001 1110

%dj

WIDTH1:0

BLAST#

DT/R#

LRDYRCV#/RDYRCV#

DEN#

R o

i

14.3.7 Wait States

Wait states lengthen the processor’s bus cycles, allowing data transfers with slow men@dy and
devices. The 80960VH supports three types of wait statideess-to-data, data-to-data and
turnaround or recovery. All three types are controlled through the processor’s
LRDYRCV#RDYRCV# signal. RDYRCV# is a synchronous input.

i960® VH Processor Developer’s Manual 14-17

Local Bus

14-18

intel.

The processor’s bus states follow the state diagrdfigime 14-2 After the T, state, the processor
enters the /T state to perform a data transfer. When the memorny@rsystem is fast enough

to allow the transfer to complete during this clock (i.e., “ready”), LRDYRQ¥#sserted. The
processor samples LRDYRCYRDYRCV# low on the next rising clock edge, completing the
transfer; the state is a data state. When the memory system is too slow to complete the transfer
during this clock, LRDYRCV#RDYRCV# is driven high and the state is an address-to-data wait
state. Additional wait states may be inserted in similar fashion.

When the bus transaction is a burst, the processor re-enterg/ffig Jtate after the first data

transfer. The processor continues to sample LRDYRRB¥RCV# on each rising clock edge,

adding a data-to-data wait state when LRDYR@RBYYRCV# is high and completing a transfer

when LRDYRCV#RDYRCV# is low. The process continues until all transfers are finished, with
LRDYRCV#RDYRCV# assertion denoting every data acquisition. The LRDYRCV# signal is
generated internally by the 80960VH for accesses by the memory controller and does not have to
be generated externally.

Figure 14-10llustrates a quad word burst write transaction with wait states. There are two
address-to-data wait states single data-to-data wait states between transfers.

i960® VH Processor Developer’s Manual

i ntel ® Local Bus

Figure 14-10. Burst Write Transactions With 2,1,1,1 Wait States, 32-bit Bus

Ta Tw Tw o Tw To Tw To Tw Tp Tr
o [[[[[[[[[[[
P CLK \ \ \ \ \ [[

L | \ \ |
[[[[[[[[[[[[

AD31:0 :><ADDR>< pATA >< DATA >< DATA >< DQK ><:
T [[[[[[[[[[[
— [[[[[[[[[[[
ALE f\ \ \ \ \ \ \ \ \ \ \
- f f f f f f f f f f f
— ‘ 1 | | | 1 | | | | |
ADS# M [[[[[[[[[[
L [[[[[[[[[[
_ [[[[[[[[[[\
BE3:0# \\ | | | | | | | | | | |
[[[[[[[[[[L
I [[[[[[[[[[[

WIDTH1:0 :>< 10

T [[[[[[[[[[[
_ f f f f f f f f f f f
DiC# J | | | | | | | | | | |
— [[[[[[[[[[[
WIR# J [[[[[[[[[[[
L [[[[[[[[[[[
] \ \ \ \ \ \ \ \ [[\
BLAST# [[[[[[[[[[[[
L [[[[[[[[[[[
] \ \ \ \ \ \ \ \ \ \ \
DT/R# J [[[[[[[[[[[
L [[[[[[[[[[[
[[[[[[[[[[[[

DEN [ﬁ [[[[[[[[[F
[[[[[[[[[[[[
B [[[[[[[[[[[
_ T T I T I T I T I T
=l L AVAVAYAY
- ‘V—V_/ | | f | f | f | f |
[[[[[[[[[[[[

14.3.7.1 Recovery States
The statefollowing the last data transfer of an accessis arecovery (Tg) state. By default, 80960V H

bus transactions have one recovery state. External logic can cause additional recovery statesto be
inserted by driving the LRDY RCV#RDY RCV# signal low at the end of Tg.

i960® VH Processor Developer’s Manual 14-19

Local Bus

14-20

intel.

Recovery wait states are an important feature of the 80960V H because it employs a multiplexed
bus. Slow memory and /O devices often need along time to turn off their output drivers on read
accesses before the microprocessor drives the address for the next bus access. Recovery wait states
are also useful to force adelay between back-to-back accessesto I/O devices with their own
specific access recovery requirements.

System ready logic is often described as normally-ready or normally-not-ready. Normally-ready

logic asserts a microprocessor’s input signal during all bus states, except when wait states are
desired. Normally-not-ready logic deasserts a processor’s input signal during all bus states, except
when the processor is ready. The subtle nomenclature distinction is important for 80960VH
systems because the active sense of the LRDYRRIV¥RCV# signal reverses for recovery

states.

* During the Ty state, logic 0 means “continue to recover” or “not ready”

¢ for T\y/Tp states, logic 0 means “ready”
Logic must assure “ready” and “not recover” are generated to terminate an access properly. Be
certain to not hang the processor with endless recovery states. Conventional ready logic
implemented as normally-not-ready operates correctly (but without adding turnaround wait states).

Figure 14-11is a timing waveform of a read cycle followed by a write cycle, with an extra
recovery state inserted into the read cycle.

i960® VH Processor Developer’s Manual

intel.

Figure 14-11.

i960® VH Processor Developer's Manual

Local Bus

Burst Read/Write Transactions with 1,0 Wait States - Extra Tr State on Read, 16-Bit
Bus

— |
P_CLK \
— | | \ \ ! \ ! !
— | | |
B E
— \ \ \
_\ \ \ \ \ \ \/—\\ | \ \ \
ALE | I\\ \ \ \ \ \ \ | \ \ \
\ \ \ \ \ \ \ \ \ \ \ \
[\ \ \ \ \ \ \ | | \ |
ADSH# | M | | | | o\ ! \ \
] \ \ \ \ \ \ \ \ | \ !
L \ \ \ ! !
\ \ | \ \ \ \ | \ \ \ !
BES#BHES | W I T O AR A wF
BEOHBLE# | | \ \ \ \ | ! \ ! \ \ !
] \ \ \ \ \ \ \ \ \ \ !
WIDTHL:0]< 01 01
o \ \ \ \ \ | \ \
DICH]< / ‘ | ‘ ‘ ‘
L \ | ! ! |
o \ \ \ \ \ \ \ \ ! ! \
WiRé 1 \ \ \ \ \ \/ \ | ! \ \
[| | | | | | | | | | |
_ | | | | | | | | ' | |
BLASTS | | | N | ! | ! _f
L ! \ \ \ \ \ \ | !
o \ \ \ \ \ \ w ; w w w
OT/R# \\ \ \ \ \ \ \ / \ | ! \ \
L - : : : : : : ! | ! \ \
_ \ \ \ | ! !
o w
L ! | | ! \
_ \ \ \ w \ 1 ! !
LRDYRCV#/RDYRCV# /‘\ \‘/—\‘/—\‘ﬂ‘\ /\T\‘/—\ W
I : | : : : | | ‘ : !
\ \ \ \ \ \ \ \

14-21

Local Bus

14.4

14.5

14-22

intel.

Bus and Control Signals During Recovery and Idle
States

Valid bus transactions are bounded by ADS# going active at the beginning of T, states and
BLAST# going inactive at the beginning of Ty states. During Tr and T, states, bus and control
signal logic levels are defined in such away asto avoid unnecessary signal transitions that waste
power. In al cases, the bus and control signals are completely quiet for instruction fetches and data
loads that are cache hits.

When the last bus cycleisaread, the address/data bus floats during all T states. When the last bus
cycleis awrite, the address/data bus freezes during Ty, states. The processor drives control signals
such as ALE, ADSH#, BLAST# and DEN# to their inactive states during Tr. Byte enables BE3:0#
are always driven to logic high during Tg, even when the processor uses them under alternate
definitions. Outputs without clearly defined active/inactive states such as WIDTH/HLTD1:0,
D/C#, W/R# and DT/R# freeze during Tg.

When the bus enters the T, state, the bus and control signals also freeze to inactive states. The exact
states of the address/data signals depend on how the processor entersthe T, state. When the
processor enters T, from a T ending a write cycle, the processor continues driving data on
AD31:0. When the processor enters T, from aread cycle or from a Ty state, AD31:4 aredriven
with the upper 28 bits of the read address. The processor usually drives AD1:0 with the last SIZE
information. In cases where the core cancels a previously issued bus request, AD1:0 are
indeterminate.

Atomic Bus Transactions

The atomic instructions, atadd and atmod, consist of aload and store request to the same memory
location. Atomic instructions require indivisible, read-modify-write access to memory. That is,
another bus agent must not access the target of the atomic instruction between read and write
cycles. Atomic instructions are necessary to implement software semaphores.

For atomic bus accesses, the 80960V H asserts the LOCK# signal during the first T, of the read
operation and deasserts LOCK# in the last data transfer of the write operation. LOCK# is
deasserted at the same clock edge that BLAST# is asserted. The 80960V H does not assert LOCK#
except while aread-modify-write operation isin progress. While LOCK# is asserted, the processor
can perform other, non-atomic, accesses such as fetches. However, the 80960V H does not
acknowledge HOL D requests. This behavior is an enhancement over earlier i960 microprocessors.
Figure 14-12 illustrates locked read/write accesses associated with an atomic instruction.

Note that LOCK# is only valid during i960 core processor accesses to external memory. Atomic

accesses to the outbound ATU windows or ATU address space while direct addressing is enabled
are not supported.

i960® VH Processor Developer’s Manual

intel.

Local Bus

Figure 14-12. The LOCK# Signal

14.6

14.6.1

Ta Tp Tr T T T Ta To Tr
o /—_/—_/—_/—_/—\ /—_/—_/—_/—\—/
— L
— L
AD31:0# @ 9 Invalid W Addr) PATA |
Qut
— 0
ALE# f\ [\
ADS# _/ \
W/R# \ /
BLAST# \ / \j
LOCK# _\ /
—)
LRDYRCV#/RDYRCV# \ // \ \ / ;
I)).
L 8

Bus Arbitration

The 80960V H can share the bus with other bus masters, using its built-in arbitration protocol. The

protocol assumes two bus masters: a default bus master (typically the 80960V H) that controls the

bus and another that requests bus control when it performs an operation. More than two bus

masters may exist on the bus, but this configuration requires external arbitration logic. External bus

masters do not have access to the 80960V H's internal local bus. Therefore, an external bus master
cannot access any of the 80960VH's internal peripherals (for example, the Memory Controller, the
i960 core, etc.).

Two processor signal signals comprise the bus arbitration signal group.

HOLD/HOLDA Protocol

In most cases, the 80960VH controls the bus; an I/O peripheral (for example, a communications
controller) requests bus control. The processor and 1/0O peripheral device exchange bus control with
two signals, HOLD and HOLDA.

i960® VH Processor Developer’s Manual 14-23

Local Bus

Note:

intel.

HOLD isan 80960V H synchronous input signal which indicates that the alternate master needsthe
bus. HOLD may be asserted at any time so long as the transition meets the processor setup and hold
requirements. HOLDA (hold acknowledge) isthe processor output which indicates surrender of the
bus. When the 80960V H asserts HOLDA,, it enters the Hold state (see Figure 14-2). When the | ast
bus state was T, or the last T of abus transaction, the processor is guaranteed to assert HOLDA
and float the bus on the same clock edgein which it recognizesHOLD. Similarly, the processor
deasserts HOL DA on the same edge in which it recognizes the deassertion of HOLD. Thus, bus
latency is no longer than it takes the processor to finish any bus access in progress.

When the bus isin hold and the 80960V H needs to regain the bus to perform atransaction, the
processor does not deassert HOLDA.

Unaligned load and store bus requests are broken into multiple accesses and the processor can
relinquish the bus between those transactions. When the alternate bus master gives control of the
bus back to the 80960V H, the processor immediately enters a T, state to continue those accesses
and respond to any other bus requests. When no requests are pending, the processor enters the idle
state.

Figure 14-13 illustrates a HOLD/HOLDA arbitration sequence.

External bus masters do not have access to the 80960V H internal, local bus. Therefore, an external
bus master can not access any of the 80960V H internal peripherals (for example, memory
controller, 1960 core processor, and memory-mapped registers).

Figure 14-13. Arbitration Timing Diagram for a Bus Master

14-24

TorTh Th T, T or T,
Outputs:
AD31.0, ALE, e
ADS#, BE3:0, .
WIDTH/HLTDL:0, [Valid L1 Valid
D/C#, WIR#, 3 ~_
DT/R#, DEN#,

BLAST#, LOCK#

HOLDA 7[—@—%—

o

[

The 80960V H arbitration logic enables external bus masters to control 80960V H loca bus. The
Local Bus Arbitration Unit maintains the basic 80960V H protocol for the HOLD/HOLDA except
that the 80960V H processor will not respond to the assertion of the HOLD signdl (i.e., assert the
HOLDA signal) during reset. Thisincludes Processor Reset and Local Bus Reset.

i960® VH Processor Developer’s Manual

intel.

Memory Controller 15

Figure 15-1.

15.1

This chapter describes thei960® VH processor’s integrated memory controller, including the
supported memory types and theory of operation. This chapter also provides guidelines for
connecting the memory controller to SRAM/ROM and DRAM systétigaire 15-1provides an
overview of the 80960VH’s integrated memory controller.

i960® VH Processor Integrated Memory Controller

Memory Address Bus

Memory Memory Control
Controller

Parity

i960 Core Processor Local Bus Address/Data

i960 Core

Processor Control

Primary Address DMA
Translation Controller
Unit

Supported Memory Types

The 80960VH integrates a memory controller to provide a direct interface with a memory system.
The memory controller supports:

* Two independent memory banks of SRAM/ROM. Each bank can contain up to 16 Mbytes of
8- or 32-hit SRAM/ROM.

* Upto 256 Mbytes of 32-bit or 36-bit (32-bit memory data plus 4 parity bits) of:
— Fast Page-Mode (FPM) Interleaved DRAM
— Non-Interleaved DRAM
— Extended Data Out (EDO) DRAM

For a DRAM array, the memory controller generates row-address strobes (RAS3:0#),
column-address strobes (CAS7:0#), write enables (DWE1:0#) and 12-bit multiplexed addresses
(MA11:0). For interleaved DRAM, the DRAM address-latch enables (DALE1:0) and LEAF1:0#
signals provide address and data latching.

Byte-wide data parity is supported for DRAM systems. Once enabled, the memory controller
provides parity checking for all reads from memory. A parity error generates an error signal, which
may be used for fault isolation.

i960® VH Processor Developer’s Manual 15-1

u
Memory Controller I nt6I ®

The memory controller supports two banks of SRAM, ROM or Flash memory. Each bank supports
from 64 Kbytesto 16 Mbytes of memory and can be configured independently for 8-bit or 32-bit
wide memory. The memory controller aso provides chip enables (CE1:0#), memory write enables
(MWES3:0#) and an incrementing burst address for SRAM/ROM. The memory controller supports
0 wait-state performance for both read and write transactions.

15.2 Theory Of Operation

The memory controller translates the i960 core processor’s burst access protocol to that of the
memory being addressed. The memory controller decodes local bus addresses presented on the
internal address/data bus, and generates the proper address and control signals to the memory
array. Burst accesses generated by local-bus masters provide the first address. The memory
controller provides incremental addresses that are presented to the memory array on the MA11:0
pins. The address increments until either the cycle has completed by the local-bus master, signified
by asserting the BLAST# signal, or a local bus parity error for a DRAM read cycle occurs.

The address presented on the MA11:0 bus depends on the type of memory bank addressed. For
DRAM, the MA11:0 pins provide the multiplexed row and column address. The column address
increments to the nearest 2 Kbyte address boundary. On-chip bus master must implement a

2 Kbyte address boundary to prevent bursts from crossing a DRAM page. For both SRAM and
Flash/ROM banks, the MA11:0 bus is based on the address presented on the AD13:2 signals during
the address phase. For burst data, the memory controller increments the address to the nearest 2
Kbyte boundary.

Configuration registers select characteristics associated with each type of memory used in a
system. The memory controller configuration registers are located in the address range

0000 1500H to 0000 15FFH. The memory-mapped registers are summarfggaeindix C,
“Memory-Mapped Registers'Once configured, the memory controller responds to addresses
within an address range by issuing the appropriate memory-interface and bus-control signals.

Byte wide data parity generation and checking can be enabled for DRAM arrays. Parity checking
provides a memory fault error upon detection of a parity error. The faulting word address is
captured in a register.

The memory controller provides hardware DRAM refresh for CAS#-before-RAS# refresh cycles.

It also provides hardware support for detecting address ranges that do not return an external
RDYRCV# signal. This mechanism detects accesses to undefined address ranges. Upon detection
of an error, the memory controller generates an internal LRDYRCV# signal to complete the bus
accesses and optionally generates a bus fault signal.

Figure 15-2shows the interface signals. Refer to 88860VH Microprocessor for a complete
description.

15-2 i960® VH Processor Developer’s Manual

intel.

Figure 15-2.

15.3

15.4

Memory Controller

Memory Controller Signal Overview

P_CLK# P_RST#

i960 Core Processor Memory
Internal Bus System Bus
WAIT#E ————>
AD31.0 —> — > MA11.0

ALE — > RAS3.0#

- > :
ADS# CAST7:0#

— > |LEAF1:0#

BE3:0# ————> Memory
WIDTH1:0# ————————> Controller < > DP3:0
DICH# ———————>DWE1..0#
WRH ————— | ——>DALEL0
DEN#f ——— > —>MWE3:0#
BLAST# ———> — > CEL1:.0#
LRDYRCV# l«—— RDYRCV#
(Internal Local) (System)

Memory Bus Local
Fault™ Fault Processor
Fault

» LRDYRCV#

Memory Controller Wait States

The memory controller generates the number of wait states programmed into the memory
controller registers for controlling the signals connected to the memory arrays, see Section 15.5.3,
on page 15-9. In addition, the WAIT# signal generated by the DMA unit (except the i960 core
processor) indicates when additional wait states are required during a memory access. See
Chapter 20, “DMA Controllerfor more information on WAIT#.

ROM, SRAM and FLASH CONTROL

The memory controller supports two independent banks of ROM, SRAM, or Flash devices.
Devices that use these memory banks may be organized as 8-bit or 32-bit wide memory. Each
SRAM/ROM bank has a window of addresses that can be programmed to respond to any 80960
local bus address. Memory banks must not overlap with reserved addresstsct®eel5.10,
“Overlapping Memory Regions” on page 15-3%he memory controller asserts the chip enable
signals (CE1:0#) when the address on the 80960VH local bus falls within the programmed window
for the SRAM/ROM bank. The SRAM/ROM banks have independent control to support different
memory types in each bank. The memory write enable signals, MWE3:0#, provide the write
strobes for the selected memory bank. Connecting SRAM/ROM to the memory controller requires

i960® VH Processor Developer’s Manual 15-3

u
Memory Controller I nt6I ®

Table 15-1.

15-4

a combination of memory controller signals and local bus signals. Table 15-1 summarizes the
memory controller signals and the local bus signals used when connecting SRAM/ROM to the
memory banks.

ROM, SRAM and Flash Control Signals

Source Signal Name Description

MA11:0 Demultiplexed A13:2

Memory write enable signifying valid data
MWE3# - Data valid on D31:24

MWE3:0# * MWE2# - Data valid on D23:16
Memory Controller e MWEL1# - Data valid on D15:08
* MWEO# - Data valid on D07:00
Chip Enable:
CE1:0# » CE1# - Memory Bank 1 Chip Enable
» CEO# - Memory Bank 0 Chip Enable
AD31:0 Multiplexed Address/Data Bus
WIR# Specifies the access is a Read or Write transaction

Byte Enables - used for 8-bit memory only
BE1:0# * BE1#-Becomes Al
 BEO# - Becomes A0

80960VH Local Bus

ALE Indicates Address Valid during an address cycle

For memory accesses that fall within the address windows for memory banks 0 and 1, the MA11:0
pins are translated to address bits during the address cycle. For 32-bit wide memory, the MA11:0
pins latch the address and provide aincrementing address during burst data accesses. The MA11:0
increments for burst data transfers up to a 2 Kbyte Page size boundary.

Eight-bit wide memory has amaximum burst count of four accesses. The incrementing burst
address is presented on the BE1:0# pins, which translate to A1:0.

Figure 15-3 shows an example of a2 Mbyte, 32-bit ROM or SRAM system connected to memory
bank 0.

i960® VH Processor Developer’s Manual

u
I nt6| ® Memory Controller

Figure 15-3. BankO0 32-Bit ROM or SRAM System

ALE A20:14
AD20:14 LATCH

MA11:0

512K x 8

CEO# CE#

W/R# OE#

MWE WE# .
- D7:0 2D31:23 AD31:0

Al18:12
Al11:0

512K x 8

CE#
MWE2# \CI)VEE#;
D7:0 AD23:16

A18:12
Al11:0

512K x 8

CE#
MWE1# \CI)VEE#;
D7:0 AD15:8

Al18:12
Al1l1:0

512K x 8

CE#
MWEO# \CI)VEE#;
D70 AD7:0

A18:12
Al11:0

Figure 15-4 shows an example of an 1 Mbyte, 8-bit ROM or SRAM system connected to memory
bank 0.

Figure 15-4. BankO 8-Bit ROM or SRAM System

ALE — | EXTERNAL | A19:14
AD19:14—— LATCH
1IMx8

CEO# CE#

WIR# OE#
MWEO# WE#

D7:0 |[r—AD7:0
A19:14

MA11:0 A13:2

BE1# Al

BEO# A0

During ROM, SRAM and Flash memory accesses, the memory controller generates the
incrementing address bits in conjunction with the control signals. The lower twelve bits of the
address are generated on the MA11:0 memory address bus, and the upper address bits are
generated on the AD31:14 multiplexed address/data bus. When addressing 8-bit memory, BE1#
becomes A1 and BEO# becomes A0 as shown in Figure 15-4. Since the memory controller only

i960® VH Processor Developer’s Manual 15-5

u
Memory Controller I nt6I ®

15.5

Table 15-2.

155.1

15-6

latches A13:2, external logic must use ALE to latch the upper address bit during an address cycle.
The CEL:0# signals provide unique chip enables that are used to select the device and activate its
control logic during a memory access.

The write enable signals, MWE3:0#, select the byte lanes used during memory write accesses.
During a memory write access, the appropriate combination of MWE3:0# and CE1:0# are asserted
for the data cycle. The W/R# signal from the processor is driven high preventing the memory
output from being enabled onto the address/data bus. During a memory read access, the MWE3:0#
signals remain high while the appropriate CE1:0# is driven low by the memory controller. The
W/R# signal from the processor is also driven low enabling the device’s output onto the
address/data bus.

The MWES3:0# signals may be used to select individual byte-wide Flash memory devices during
programming without the use of external logic. The memory write enable bit allows the memory
controller to assert MWE3:0# during write cycles. This bit is controlled in the Memory Bank
Control Register (MBCR) shown figure 15-3 If either memory bank O or 1 is used for SRAM,
then the memory write enable bit must be set to enable the assertion of the MWE3:0# signals for
memory write transactions.

Memory Bank Programming Registers

Seven memory-mapped registers provide independent control of memory banks 0 and 1:

Memory Bank Register Summary

Size 80960 | ot
Section Register Name, Acronym Page (Bits) Channel | Local Bus Addrg
Address Offset
155.1 Memory Bank Control Register - MBCR 15-6 32 0000 1500H NA
Memory Bank Base Address Registers -) 0 0000 1504H
15.5.2 MBBARO:1 15-8 32 1 0000 1510H NA
Memory Bank Read Wait State Registers - 0 0000 1508H
15531 1 viBRWSO:1 15101 32 1 0000 1514H | NA
15.5.3.2 mEr\r/:le%glnk Write Wait State Registers - 15-11 | 32 2 0000 150CH NA
) 0000 1518H

Refer toAppendix C, “Memory-Mapped Registerir the memory-mapped registers address
mappings.

Memory Bank Control Register - MBCR

The Memory Bank Control Register (MBCR) specifies parameters that dictate the memory
controller operating environment for the two memory banks. The MBCR should be programmed
after initializing the other memory bank registérable 15-3shows the register format for the

MBCR. The memory bank enable bits should be disabled prior to modifying the memory bank base
address and wait state registers.

Memory Bank 0 initializes to an enabled state on the rising edge of P_RST# to support a Boot

ROM for the i960 core processor. Bank size, wait state profiles and memory enables initialize to
the maximum programmable values. Once the i960 core processor begins code execution, software

i960® VH Processor Developer’s Manual

I n Memory Controller

should re-program the memory controller for the actual bank size and wait state profiles for the
physical memory connected. Refer to Section 15.5.2, “Memory Bank Base Address Registers -
MBBARO:1” on page 15-8or additional information.

Table 15-3. Memory Bank Control Register - MBCR (Sheet 1 of 2)

31 28 24 20 16 12 8 4 0
LBAl: wv/frvfvfrvfrvfvfrvfrvfrwfrw/rwfrwf rv frwfrwfrwg rv v v fvf v fvf v rwfiwfrw/rwf iy frwfrwfw,

PC'[a\na\pa\na\na\na\na\na\na\na\na\na

Legend: NA = Not Accessible RO = Read Only

LBA: 1500H RV =Reserved PR =Preserved RW = Read/Write

PCl: NA RS = Read/Set RC = Read Clear

LBA = 80960 local bus address PCI = PCI Configuration Address Offset

Bit Default Description

31:24 00H Reserved

Memory Bank 1 Size Field - This bit field contains the total block size of memory
connected to memory bank 1. Memory may be ROM, SRAM or Flash with the size
ranging from 64 Kbytes to16 Mbytes. Each bank may be organized as 8- or 32-bit wide
memory, but must consist of a uniform memory type.

000064 Kbytes
0001128 Kbytes
0010256 Kbytes
0011512 Kbytes
01001 Mbyte
01012 Mbytes
01104 Mbyte
01118 Mbytes
1xxx16 Mbytes

19 0, Reserved

Memory Bank 1 Extended MWE3:0# Bit - This bit field enables or disables extending
the deassertion period for the MWE3:0# signal during burst write cycles. The bit also
enables one clock of MA11:0 and BE1:0 hold time relative to the rising edge of MWE#
during writes to this region.

When cleared (0), deassertion period is one-half of a P_CLK period.

18 0; When set (1), the deassertion period is extended by the wait state profile defined in the
MBWWSL1 registers in addition to the one-half clock in period. Also when set, the MA11:0
and BE1:0 keep their current state for one clock after MWE3:0# are deasserted. This also
adds an extra wait state. MWE wait states can be calculated by the following:

Address or Data Wait States = (tywx ¥ 2) + 1

where tywx = twwa OF twwp

Memory Bank 1 Write Enable Bit - This bit enables or disables the MWE3:0# signals
during write cycles to memory bank 1.

23:20 OH

1 02 When cleared (0), the MWE3:0# is not asserted during write cycles to memory bank 1.
When set (1), the MWE3:0# signals is asserted during write cycles to memory bank 1.
Memory Bank 1 Enable Bit - enables or disables CE1# for memory bank 1.
When cleared (0), the memory controller does not assert CE1#.

16 0, When set (1), memory controller decodes local bus addresses and asserts CE1# when

local bus address falls within the window of address programmed into MBBARL1 in
conjunction with memory bank 1 size control bits.

15:08 00H Reserved

i960® VH Processor Developer’s Manual 15-7

Memory Controller

INtal.

Table 15-3. Memory Bank Control Register —- MBCR (Sheet 2 of 2)

31

28 24 20 16 12 8 4 0

IA7ANTANTAY ANTANTANT ALY AV AV A4 v/mw/rw/r NSNS NS NG NSNS IV NG WS TWTWITWE TV TWTW/TW,

a\na\na

a\na\na\na\nayia\na\ia\nayia\na\na\nayna\na\na\nayia\naynayiayia\na\na\nayayiayiaya

LBA:
PCI:

1500H
NA

Legend: NA = Not Accessible RO = Read Only

RV = Reserved PR = Preserved RW = Read/Write

RS = Read/Set RC = Read Clear

LBA = 80960 local bus address PCI = PCI Configuration Address Offset

Bit

Default

Description

07:04

OH

Memory Bank 0 Size Field - contains the total block size of memory connected to
memory bank 0. Memory connected may be ROM, SRAM or Flash memory; size may
range from 64 Kbytes to 16 Mbytes. Each bank may be organized as 8 or 32 bit wide
memory, and must consist of a uniform memory type. See Memory Bank 1 Size Field for
block size settings.

03

Reserved

02

02

Memory Bank 0 Extended MWE3:0# Bit - This bit field enables or disables extending
the deassertion period for the MWE3:0# signal during burst write cycles. The bit also
enables one clock of MA11:0 and BE1:0 hold time relative to the rising edge of MWE#
during writes to this region.

When cleared (0), deassertion period is one-half of a P_CLK period.

When set (1), the deassertion period is extended by the wait state profile defined in the
MBWWSO registers in addition to the one-half clock in period. Also when set, the MA11:0
and BE1:0 keep their current state for one clock after MWE3:0# are deasserted. This also
adds an extra wait state. MWE walit states can be calculated by the following:

Address or Data Wait States = (tywx *2) + 1

where tywx = twwa Of twwp

01

Memory Bank 0 Write Enable Bit - This bit enables or disables the MWE3:0# signals
during write cycles to memory bank 0.

When cleared (0), the MWE3:0# is not asserted during write cycles to memory bank 0.
When set (1), the MWE3:0# signals is asserted during write cycles to memory bank 0.

00

1

Memory Bank 0 Enable Bit - enables or disables CEO0# for memory bank 0.
When cleared (0), the memory controller does not assert the CEO#.

When set (1), the memory controller decodes the local bus addresses and asserts CEO#
when the local bus address falls within the window of addresses programmed into the
MBBARQO in conjunction with the memory bank 0 size control bits.

Memory Bank 0 defaults as enabled. This memory bank should be used for connecting
boot ROM for booting the 1960 core processor.

15.5.2 Memory Bank Base Address Registers - MBBARO:1

The memory bank base addresses are programmed through the Memory Bank Base Address
Registers (MBBARO:1). The base address for each memory bank must be on an address boundary
equal toitssize. For example, amemory bank size of 1 Mbyte must have a starting address located
on a1 Mbyte address boundary. The MBBARX register definitions are shown in Table 15-4.

15-8

i960® VH Processor Developer’s Manual

u
I nu ® Memory Controller

Table 15-4. Memory Bank Base Address Registers — MBBARO:1

31 28 24 20 16 12 8 4 0
LBAl: rw/rw/rw/rwfrw/rw/rw/rwfrwfrw/rw/rwfrwfrwfrwfrwg rv v v v v fvfvf o fovfvffvfiv /v fry,

PC'l: a\na\na\na\na\npa\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\pna\na\na\na\na\na\na\pna\na\na

LBA: CHO-1504H Legend: NA = Not Accessible RO = Read OnIy‘
R RV = Reserved PR = Preserved RW = Read/Write
CH1-1510H
) RS = Read/Set RC = Read Clear
PCI: 04H LBA = 80960 local bus address PCI = PCI Configuration Address Offset
Bit Default Description

Memory Bank 0/1 Base Address - These bits define the base address to which
FEOOH (Bank 0) | the memory bank responds when addressed from the local bus. The default base

3116 0000H (Bank 1) | address for memory bank 0 is FEOO 0000H with a bank size of 16 Mbytes used to
address the Initialization Boot Record table for booting the i960 core processor.
15:0 0000H Reserved

The Initialization Boot Record (IBR) is the primary data structure required to initialize the 1960
core processor and must be located at address FEFF FF30H. Since the processor must access the
IBR before the memory controller has been configured, a bank base address of FEOO 0000H and a
bank size of 16 Mbytes are used by default for Memory Bank 0. These values result in an address
decode range of FEOO 0000H to FEFF FFFFH for memory bank O when the memory controller is
reset. For the 1960 core processor to boot from ROM or Flash memory, the memory devices must
use Memory Bank 0 and its associated chip enable signal, CEO#. The default addressis used by the
memory controller for address decoding until it is configured by programming the Memory Bank 0
Base Address Register and Memory Bank 0 Size with the ROM bank base address and size
information, respectively.

Note: Thei960 core processor does not generate external bus cycles for transactions within the address
range of 0 to 0000 03FFH or FFOO0 0000H to FFFF FFFFH. These address ranges are reserved by
the processor for internal data RAM and memory-mapped registers, respectively. The memory
bank base address registers should not be programmed with a value within these reserved address
ranges.

15.5.3 Memory Bank Wait State Registers - MBRWSO:1,
MBWWSO0:1

Bus cycle timing for ROM, SRAM and Flash memory accesses are programmed through the
internal wait-state registers (see Table 15-2 for register summaries):

* Memory Bank 0 Read Wait States Register (MBRWS0)
* Memory Bank 1 Read Wait States Register (MBRWS1)
* Memory Bank 0 Write Wait States Register (MBWWS0)

* Memory Bank 1 Write Wait States Register (MBWWS1)
The number of wait states for each accessin abus cycle is programmed in 1x increments of
P_CLK. Thei960 core processor requires one recovery cycle, but it may need to be extended to

accommodate slower memory devices. Each memory bank contains registers to independently
program the read and write wait states. The programmable values support:

i960® VH Processor Developer’s Manual 15-9

Memory Controller

15.5.3.1

Table 15-5.

15-10

* Address-to-Data wait states
* Data-to-Datawait states

* Datato-Address wait states (i.e., turnaround cycles)

The programmable range of values is sufficient to support memory access cycle times from 60 to
200 ns while operating the processor at 25 or 33 MHz. The register definitions for the memory
bank read wait states registers are shown in Figure 15-5.

Memory Bank Read Wait State Registers - MBRWSO0:1

The Memory Bank Read Wait State Register (MBRWS) describes the wait states during Read

cycles.

Memory Bank Read Wait States Register - MBRWSO0:1 (Sheet 1 of 2)

31 28

24 20 16 12 8 4 0

IA7ANTAL7 AL AT ANTAVT ALY ASTARTANTAY/ AT ANV ANV ALY AT ANV AT AR AR AV AN AV ARV ANT ANV AN A8 ANV ANV ALY

a\na\na\nayna\na\na\nayna\na\na\nay\na\na\na\nayia\ia\naynayna\na\na\nayia\na\naynayia\na\naya

LBA:

PCI:

Bank 0 = 1508H
Bank 1 = 1514H
N/A

Legend: NA = Not Accessible RO = Read Only

RV = Reserved PR = Preserved RW = Read/Write

RS = Read/Set RC = Read Clear

LBA =80960 local bus address PCI = PCI Configuration Address Offset

Bit

Default

Description

31:19

0000H

Reserved

18:16

111,

Read Cycle Address-to-First Data Wait States (t\yga) - This bit field
represents the number of wait states between address and the first data for read
transactions. The bit field is encoded as:

000 0 Address-to-Data wait states
001 1 Address-to-Data wait state

010 2 Address-to-Data wait states
011 3 Address-to-Data wait states
100 4 Address-to-Data wait states
101 5 Address-to-Data wait states
110 6 Address-to-Data wait states
111 7 Address-to-Data wait states

15:11

OOH

Reserved

10:8

111,

Read Cycle Data-to-Data Wait states (tygrp) - This bit field represents the
number of wait states between burst Data to Data for read transactions. The bit
field encodings are the same as those shown for Read Cycle Address-to-First
Data Wait States (tyra)-

7:3

OOH

Reserved

i960® VH Processor Developer’s Manual

u
I nt6| ® Memory Controller

Table 15-5. Memory Bank Read Wait States Register - MBRWSO0:1 (Sheet 2 of 2)

31 28 24 20 16 12 8 4 0
LBA[wvfovfrvfrvfvfrvfrvfvfvfvfvf o rvfiwfrwfrwg v v v/ v frnfrwfragf v v /v v ivfrwfrwfw,

PC'l: a\npa\pa\na\na\na\na\na\na\na\pna\pna\pa

. _ Legend: NA = Not Accessible RO = Read Only
LBA: Bank0 - 1508H RV = Reserved PR = Preserved RW = Read/Write
Bank 1 = 1514H _ _
PCl: N/A RS = Read/Set RC = Read Clear _ _
’ LBA = 80960 local bus address PCI = PCI Configuration Address Offset

Bit Default Description

Read Cycle Additional Recovery Cycles (tyrgr) - The local bus defines one
recovery cycle between the last data and the next address. This bit field
represents the number of additional recovery cycles between the last data and
the next address after completing a for read transactions. The bit field is
encoded as:

000 0 additional recovery cycles
001 1 additional recovery cycle

010 2 additional recovery cycles
011 3 additional recovery cycles
100 4 additional recovery cycles
101 5 additional recovery cycles
110 6 additional recovery cycles
111 7 additional recovery cycles

2:0 111,

15.5.3.2 Memory Bank Write Wait State Registers - MBWWSO0:1

The Memory Bank Write Wait State Register (MBWWS) describes wait states during write cycles.
Table 15-6. Memory Bank Write Wait States Register - MBWWSO0:1 (Sheet 1 of 2)

31 28 24 20 16 12 8 4 0
LBAl: w/frvfvfvfvfvfvfvfvfvfvfvf v frwfrwfrwf v/ v fvfovf v frwfiwfrwg v v/ v/ v v frwfrafw,

PC'[a\na\na\na\na\na\na\pna\na

. _ Legend: NA = Not Accessible RO = Read Only
LBA: Bank0 - 150CH RV = Reserved PR =Preserved RW = Read/Write
Bank 1 = 1518H _ _
PClE N/A RS = Read/Set RC = Read Clear _ ‘
’ LBA = 80960 local bus address PCI = PCI Configuration Address Offset

Bit Default Description

31:19 0000H Reserved

i960® VH Processor Developer’s Manual 15-11

Memory Controller

Table 15-6.

15.5.4

15-12

INtal.

Memory Bank Write Wait States Register - MBWWSO0:1 (Sheet 2 of 2)

31 28

24 20 16 12 8 4 0

LBA[I’VI’VI’VI’VI’VI’VI’VI’VI’VI’VI’VI’VI’VI’WI’WI’ NSNS IS NIV TWITWT NSNS NG TV TWITWLTW,

PC'l: a\na\pa\na\na\na\na\na\na\na\pna\pa\pa

LBA: Bank0=150CH
Bank 1 = 1518H
PCI: N/A

Legend: NA = Not Accessible RO = Read Only

RV = Reserved PR = Preserved RW = Read/Write

RS = Read/Set RC = Read Clear

LBA = 80960 local bus address PCI = PCI Configuration Address Offset

Bit Default

Description

18:16 111,

Write Cycle Address-to-First Data Wait States (tywa) - This bit field
represents the number of wait states between address and the first data for write
transactions. Encoded as follows:

000 0 Address-to-Data wait states
001 1 Address-to-Data walit state

010 2 Address-to-Data wait states
011 3 Address-to-Data wait states
100 4 Address-to-Data wait states
101 5 Address-to-Data wait states
110 6 Address-to-Data wait states
111 7 Address-to-Data wait states

15:11 00H

Reserved

10:8 111,

Write Cycle Data-to-Data Wait States (typ) - This bit field represents the
number of wait states between burst Data to Data for write transactions. Bit field
encodings are the same as those shown for Write Cycle Address-to-First Data
Wait States (tywa)

7:3 00H

Reserved

2:0 111,

Write Cycle Additional Recovery Cycles (tywr) - The local bus defines one
recovery cycle between the last data and the next address. This bit field
represents the number of additional recovery cycles between the last data and
the next address after completing a for write transactions. The bit field is
encoded as follows:

000 0 additional recovery cycles
001 1 additional recovery cycle

010 2 additional recovery cycles
011 3 additional recovery cycles
100 4 additional recovery cycles
101 5 additional recovery cycles
110 6 additional recovery cycles
111 7 additional recovery cycles

Memory Bank Waveforms

Programming the wait states for each of the bus cycles allows the memory controller to support
SRAM, ROM and Flash memory. Figure 15-5 shows a burst read transaction with await state

profile of 2,1,1,1.

i960® VH Processor Developer's Manual

intel.

Table 15-7.

Figure 15-5.

Table 15-8.

Memory Controller

Burst Flash Memory, Read Access Example Programming Summary

Timing Symbol Programmed Value Cycles
twrA 02, 2
twrD 01, 1
tWRR 00, 0

32-Bit Bus, Burst Flash Memory, Read Access with 2,1,1,1 Wait States

Ta Tw Tw Tp Tw Tp Tw Tp Tw Tp TR T
sl R AVAVAVAVAVAVAVAVAVAVAVAVE
MA11:0 B :>< ADDR >< ADDR >< ADDR >< ADDR X

W/R# : \\ /7
LRDYRCV# : —_/—_/—W
a0z | Yoo {5 " e)

[

—

MWES:0# [

Figure 15-6 represents a burst write transaction to SRAM with await state profile of 2,1,1,1. The
Extended MWES3:0# control bit inthe MBCR is cleared in this example.

SRAM Write Access Example Programming Summary

Timing Symbol Programmed Value Cycles
twwa 02, 2
twwp 01, 1
twwr 00, 0

i960® VH Processor Developer's Manual

15-13

Memory Controller

Figure 15-6.

Table 15-9.

32-Bit Bus, SRAM Write Access with 2,1,1,1, Wait States

e Ta - TwTw - Tp « Tw.Tp « Tw+ Tp +

Tw: Tp + TR + T

P_CLK
MA11:0 X Addr >< Addr >< Addr >< Addr ><
W/R# / ! ! ' ! '

AD31:0

LRDYRCV# : /_\ /—\

BN
Nt
MWES:O#[; \ 7ot I

Programming the wait states for each of the bus cycles allows the memory controller to support
burst transactions with SRAMs. Figure 15-7 shows aread transaction with 0 wait state SRAM.

SRAM Read Access Example Programming Summary

Timing Symbol Programmed Value Cycles
twRrA 00, 0
twrD 00, 0
twrR 00, 0

15-14

i960® VH Processor Developer's Manual

intel.

Figure 15-7. 32-Bit Bus, SRAM Read Accesses with 0 Wait States

Memory Controller

I Ta ! To | To | To | To | Tr |
— | | | | | | |
f f\f_/—_/—_/—_/—_/
— | | | |
CE[L# | | | | | [/
— | | | | I |
- 1 l 1 ! I |
MA[11:0] ADDR XADDRXADDRXADDRX
o | | | | | |
[| | | | | |
MWE[3:0]# | | | | | | |
o | | | | | |
]
| | | | | | |

Figure 15-8 represents a 0 wait state write transaction to SRAM.

Table 15-10. SRAM Write Access Example Programming Summary

Timing Symbol Programmed Value Cycles
twwa 00, 0
twwb 00, 0
tWwwRr 00, 0

Figure 15-8. 32-Bit Bus, SRAM Write Access With 0 Wait States

| Ta | To | To | To | To | Tr |
— | | | | | | |
P_CLK | |
i M i B
CEL}# | N | | /.
—_ | | : : : |
- | | | | | |
MA[11:0] l ADDR XADDRXADDRXADDRX
o [| I [[|
[| | | |
MWE3:0# | | | | |
] | | | | | |
D
—_—
| | | | | | |

i960® VH Processor Developer's Manual

15-15

u
Memory Controller I nt6I ®

15.5.5 Extending Memory Write Enable Signals

The extended MWE3:0# write enable control bit in the MBCR allows the MWE3:0# to be
extended during the deassertion period between burst data accesses. In addition, the LRDY RCV#
signal assertion is delayed. The characteristics of the other memory controller signals remain the
same. Figure 15-9 shows a 2-word burst of an extended MWE3:0# write cycle.

Table 15-11. Write Access with Extended MWE3:0# Example Programming Summary

Timing Symbol Programmed Value Cycles
twwa 02, 5
twwb 01, 3
twwr 00, 1

Figure 15-9. 32-Bit Bus, Write Access with Extended MWE3:0#

P TA o Tw o Tw o Twe TweTw » To » Tw: Tw: Tw: To . Tr .

P_CLK

]

MA11:0

ADDR X ADDR ><
B Dat
AD31:0 3<ADDR>< Roa >< out

W/R#

BLASTE | Lo s\)
cew | iou\ororoonoonono)
WwovRove [T o 1 o\ o 0 o\
RDYRCV# \

MWES:0#

BE3:0# O\

15.6 DRAM Control

The DRAM bank may be organized as 32-bit without parity or 36-bit with parity. The memory
controller provides a direct interface for aminimum of 1 Mbyte and a maximum of 256 Mbytes of
DRAM by generating the signals shown in Table 15-12.

15-16 i960® VH Processor Developer’s Manual

intel.

Table 15-12.

15.6.1

Memory Controller

DRAM Control Signals

Signal Name Source Description
. Memory s
MA11:0 Controiler Memory Address Bus - Specifies address path to the DRAM.
DRAM Data Parity, DP3:0 - Specifies the byte wide parity bit for data
transfers:
5P3:0 Memory » DP3 - Parity value for data on AD31:24
’ Controller * DP2 - Parity value for data on AD23:16
e DP1 - Parity value for data on AD15:8
* DPO - Parity value for data on AD7:0
DRAM Address Latch Enable:
DALE1:0 Memory o o
Controller DALE1:0 - Specifies address valid during an address cycle.
DRAM Write Enable:
Memor DWE1:0# - Write Cycle. Individual byte enables during write cycles are
DWEL1:0# Control)ller controlled with the individual CAS7:0# signals.
For non-interleaved operation, these signals are identical and can be used
interchangeably.
CAST-0# Memory Column Address Strobe. Indicates the presence of a valid column address on
’ Controller the memory address bus MA11:0.
RAS3:0# Memory Row Address Strobe. Indicates the presence of a valid row address on the
’ Controller memory address bus MA11:0.
LEAF OE# control. For non-interleaved DRAM, LEAF1:0# controls the OE#.
LEAFL:0# Memory For interleaved DRAM, the LEAF1:0# signals control the OE# data latches.
’ Controller For non-interleaved operation, these signals are identical and can be used
interchangeably.
AD31:0 Local Bus Multiplexed Address/Data Bus. Data path to and from the DRAM.

The memory controller supports from one to four banks of DRAM organized as 32 or 36 bits wide.
The memory banks may be configured as non-interleaved or two-way interleaved. The memory
controller supports two different types of DRAM: Fast Page-Mode (FPM) and Extended Data Out
(EDO). Interleaved Fast Page-Mode DRAM isalso supported. DRAM refresh is supported through
the programmable DRAM refresh counter.

DRAM Organization and Configuration

The memory controller provides a programmabl e address window for DRAM that decodes local
bus addresses and drives the corresponding DRAM control signals. The address window is
programmed through the memory controller memory-mapped registers. Additional
memory-mapped registers control timings for different speed ratings of DRAM, DRAM bank
sizes, DRAM types, DRAM initialization, and DRAM organization.

To prevent bursts from crossing a DRAM page, the maximum burst size for a single data transfer
cycle to the memory controller is 2 Kbytes. On-chip bus masters accessing the memory controller
are required to adhere to the 2 Kbyte address boundary. The 80960VH closes the DRAM Page.
RA S# deasserts during the first recovery cycle and stays deasserted through ADS#.

DRAM organization is programmable through control bitsin the DRAM Bank Control Register
(DBCR). The memory controller provides support for up to four banks of non-interleaved DRAM.
Up to two banks of non-interleaved DRAM can be connected with each bank containing two
leaves. Table 15-13 summarizes the supported DRAM organization and type.

i960® VH Processor Developer’s Manual 15-17

u
Memory Controller I nt6I ®

Table 15-13. Supported DRAM Configurations

Interleaved DRAM Non-Interleaved DRAM
(Fast Page-mode DRAM Only) (FPM, EDO)
1 Bank (2 leaves) 1 Bank
2 Banks
2 Banks (4 leaves)
4 Banks

Anexample of asingle 16 Mbyte bank of DRAM, organized as 32-bit non-interleaved, is shown in
Figure 15-10. As shown, the 80960V H is adirect connect to the non-interleaved memory
subsystem (no additional logic is required).

Figure 15-10. Non-Interleaved, 32-Bit, Single Bank, DRAM System

15-18

1 DRAM Bank
DRAM Controller Non- Interleaved
8 x (4M x 4)

MA11:0 MA11:0

RASO# RASO#

RAS1#

RAS2# CASO#

RAS3# CAS1#

CAS2# D31:0

CASO# CAS3#

CAS1#

CAS2#

CAS3# WE#

CAS4# OE#

CAS5#

CAS6#

CAST#

DWEO#

DWE1#

LEAFO#

LEAF1#

AD31:0

Figure 15-11 shows a sample memory system using 32-bit interleaved DRAM. The memory
controller provides eight CAS# signals for the support of interleaved memory. The CAS3:0#
signals provide the byte selection for one leaf, while CAS7:4# provide for the second leaf. It is
necessary to control external buffer output enables during read transactions in an interleaved
memory system. Two signals, LEAF1:0#, are provided to control the multiplexing of data from
each memory leaf onto the processor address/data bus. These signals are tied to the OE# pins of the
data transceiversin an interleaved memory array. In anon-interleaved memory array, the OE# pins
aretypically tied to signal ground. Standard DRAM device sizes from 1 Mbit to 64 Mbit are
supported without the use of external logic to generate control signals. Two identical write enable
signals, DWEL:0#, are provided to control the WE# input of DRAM devices during read and write
transactions.

i960® VH Processor Developer’s Manual

u
I nt6| ® Memory Controller

Figure 15-11. Interleaved 32-Bit DRAM System, 1 Bank, 2 Leaves

1 Leaf - Even
Address Latch 8 x (4M x 4)
DRAM Controller — A15:0 B15:0 i— MA11:0
oy RASO#
DALEO CAS1# Data Transceiver
DALE1 CAS2# D31:0 memmmmm 5310 A31:0 |m
CAS3#
RASO# CD)IIE{#
RAS1# —]
RAS2H# WE#
RAS3# J: OE#
CASO# \Y%
CAS1#
CAS2#
CAS3#
CAS4#
CASSH#
CAS6#
CAST7#
DWEOQO#
DWE1#
LEAFO#
LEAF1#
W/R#
AD31:0
1 Leaf - Odd
Address Latch 8 x (4M x 4)
s A15:0 B15:0 mes—\A11:0
LE
g OE# RASO#
CASO# .
CAS1# Data Transceiver
CAS2# D31:0 p——— . .0 =
L Casas B31:0 A31:.0
— DIR
L{WE# OE#
477 OE#

The DRAM types supported include 1-, 4-, 16- and 64-Mbit devices. These memory types are
supported without the use of external logic to generate control signals. The arrangement for each
technology is summarized in Table 15-14.

Table 15-14. Supported DRAM Configurations (Symmetric Addressing Only) (Sheet 1 of 2)

Address Size Non-Interleaved Interleaved
L Bank / DRAM DRAM (in
DRAM DRAM (in Bits) .
Leaf (in Mbytes) Mbytes)
Technology | Arrangement Sizel
Row Col. Min. Max. Min. Max.
IMx1 10 10 4 4 16 8 16
1 Mbit
256K x 4 9 9 1 1 4 2 4
NOTE:

1. Every bank (or leaf) must use the same memory type. Mixed combinations of FPM or EDO are not permitted. The DRAM
bank size must also remain the same among banks (or leaves).

i960® VH Processor Developer’s Manual 15-19

Memory Controller

intel.

Table 15-14. Supported DRAM Configurations (Symmetric Addressing Only) (Sheet 2 of 2)

15-20

Address Size Non-Interleaved Interleaved
L Bank / DRAM DRAM (in
DRAM DRAM (in Bits) .
Leaf (in Mbytes) Mbytes)
Technology | Arrangement Sizel
Row Col. Min. Max. Min. Max.
IM x 1 11 11 16 16 64 32 64
4 Mbit 1M x4 10 10 4 4 16 8 16
256K x 16 9 9 1 1 4 2 4
16M x 1 12 12 64 64 256 128 256
16 Mbit IM x 4 11 11 16 16 64 32 64
1M x 16 10 10 4 4 16 8 16
16M x 4 12 12 64 64 256 128 256
64 Mbit
4M x 16 11 11 16 16 64 32 64
NOTE:

1. Every bank (or leaf) must use the same memory type. Mixed combinations of FPM or EDO are not permitted. The DRAM
bank size must also remain the same among banks (or leaves).

i960® VH Processor Developer's Manual

intel.

15.6.2 DRAM Addressing

Memory Controller

The memory controller drivesthe DRAM address on the MA11:0 pins. This multiplexed addressis
ordered to support 1 through 64 Mbyte DRAM arrays. Table 15-15 shows the address bits that are
presented on the MA11:0 pins during the row and column address cycle. The ordering depends on
the arrangement of the DRAM arrays, either non-interleaved or interleaved.

Table 15-15. MA11:0 Address Bits for Non-Interleaved/Interleaved

Non-Interleaved Interleaved
MA Bit
Row Column Row Column
0 11 2 11 10
1 12 3 12 3
2 13 4 13 4
3 14 5 14 5
4 15 6 15 6
5 16 7 16 7
6 17 8 17 8
7 18 9 18 9
8 19 10 19 20
9 21 20 21 22
10 23 22 23 24
11 25 24 25 26

15.6.3 DRAM Registers

The DRAM controller provides registers for configuring and controlling DRAM. Six
memory-mapped registers control the memory controller for independent operation:

Table 15-16. DRAM Register Summary

PCI

Section Section, Register Name, Acronym Page (giii:) SSS?J&?Z; C:g;'?

Offset
15.6.4 | DRAM Bank Control Register — DBCR 15-22 32 0000 151CH N/A
15.6.5 | DRAM Base Address Register — DBAR 15-23 32 0000 1520H N/A
15.6.6 | DRAM Read Wait State Register — DRWS 15-24 32 0000 1524H N/A
15.6.7 | DRAM Write Wait State Register — DWWS 15-25 32 0000 1528H N/A
15.6.8 | DRAM Refresh Interval Register — DRIR 15-27 32 0000 152CH N/A
15.7.1 | DRAM Parity Enable Register — DPER 15-29 32 0000 1530H N/A

i960® VH Processor Developer’s Manual 15-21

Memory Controller
Yy I n ®
15.6.4 DRAM Bank Control Register — DBCR
The DRAM Bank Control Register (DBCR) specifies the parameters used to control the DRAM
banks. The DBCR should be programmed after initializing the other DRAM registers.
Figure 15-17 shows the register format for the DBCR. This register can be read or written at any
time. The DRAM bank enable bits should be disabled prior to modifying the DRAM bank base
address and wait-state registers.
Table 15-17. DRAM Bank Control Register — DBCR (Sheet 1 of 2)
31 28 24 20 16 12 8 4 0

LBA[I’VI’VI’VI’VI'VI’VI’VI'VI’VI’VI’VI’VI'VI’VI’VI’VI’VI’VI’VI’VI’WI’WI’WI’WI’WI’WI’WI’ W/ rw/rw/rw,

PC'[a\na\na\na\na\pa\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\npa\na\na\na\na\na\na\na\na\na

Legend: NA = Not Accessible RO = Read Only

LBA: 151CH RV = Reserved PR = Preserved RW = Read/Write

PCI: N/A RS = Read/Set RC = Read Clear

LBA = 80960 local bus address PCI = PCI Configuration Address Offset

Bit Default Description

31:12 0000 OH Reserved

MA11:0 High-Drive Enable Bit - This bit controls the MA11:0 output.
11 0, When clear (0) MA11:0 has normal output buffer drive strength.
When set (1) MA11:0 has higher output buffer drive strength.

CAS7:0# High-Drive Enable Bit - This bit controls the CAS7:0# output.
10 0, When clear (0) the CAS7:0# has normal output buffer drive strength.
When set (1) the CAS7:0# has higher output buffer drive strength.

RAS3:0# High-Drive Enable Bit - This bit controls the RAS3:0# output.
9 0, When clear (0) the RAS3:0# has normal output buffer drive strength.
When set (1) the RAS3:0# has higher output buffer drive strength.

DWE1:0# High-Drive Enable Bit - This bit controls the DWE1:0# output.
8 0, When clear (0) the DWEZ1:0# has normal output buffer drive strength.
When set (1) the DWE1:0# has higher output buffer drive strength.

DRAM Bank Type/Arrangement Field - This bit field contains the DRAM type and
block size of memory connected. The memory connect may be FPM or EDO DRAM.
Each bank must be organized as 32-bit wide memory and must consist of a uniform
memory type.

000 00 Fast Page-Mode DRAM, 1 Bank

000 01 Fast Page-Mode DRAM, 2 Banks

000 1x Fast Page-Mode DRAM, 4 Banks

7:3 OH 001 x0 Fast Page-Mode DRAM, Interleaved, 1 Bank
001 x1 Fast Page-Mode DRAM, Interleaved, 2 Banks
010 00 Extended Data Out (EDO) DRAM, 1 Bank
010 01 Extended Data Out (EDO) DRAM, 2 Banks
010 10 Reserved

010 11 Extended Data Out (EDO) DRAM, 4 Banks
1xx xx Reserved

15-22 i960® VH Processor Developer’s Manual

u
I nt6| ® Memory Controller

Table 15-17. DRAM Bank Control Register — DBCR (Sheet 2 of 2)

31 28 24 20 16 12 8 4 0
LBA[wvfvfrvfrvfvfrvfvfvfvfovfvfovf v/ v fovf v fvffrwfiwfrwfrwf rw/rw/rw/ g rw/rw/rw/w,

PC'l: a\npa\pa\na\na\na\na\na\na\na\pna\pna\pa

Legend: NA = Not Accessible RO = Read Only

LBA: 151CH RV = Reserved PR =Preserved RW = Read/Write

PCI: N/A RS = Read/Set RC = Read Clear

LBA = 80960 local bus address PCI = PCI Configuration Address Offset

Bit Default Description

DRAM Bank/Leaf Size - This bit field defines the bank size of DRAM connected for
non-interleaved mode. For Interleaved DRAM, this bit field defines the leaf size.

00 1 Mbyte DRAM per bank/leaf
01 4 Mbytes DRAM per bank/leaf
10 16 Mbytes DRAM per bank/leaf
11 64 Mbytes DRAM per bank/leaf

DRAM Bank Enable Bit - This bit enables or disables the DRAM bank.
When cleared (0), the memory controller does not assert the DRAM control signals.

0 0, When set (1), the memory controller decodes the local bus addresses and assert the
DRAM control signals when the local bus address falls within the window of address
programmed into the DBARO.

211 00,

15.6.5 DRAM Base Address Register — DBAR

The DRAM Base Address Register (DBAR) stores the base address for the DRAM. This address
must be on an address boundary equd to the total size of the DRAM. For example, a4 Mbyte
DRAM bank must have a starting address located on a 4 Mbyte address boundary. The register
definition is shown in Figure 15-18.

Table 15-18. DRAM Base Address Register — DBAR

31 28 24 20 16 12 8 4 0
LBAl: rw/rw/rw/rwf rw/rw/rw/rwfrw/rw/rwfrwg v v v v f v fvfvf v fovfvf o fvf v fv /v /iy

PC'[a\na\na\na\na\npa\na\na\na\na\na\na\na\na\na\na\na\na\na\na\na\pa\na\na\na\na\na\na\na\na\na\na

Legend: NA = Not Accessible RO = Read Only

LBA: 1520H RV = Reserved PR = Preserved RW = Read/Write
PCl: N/A RS = Read/Set RC = Read Clear
LBA = 80960 local bus address PCI = PCI Configuration Address Offset
Bit Default Description
31:20 000H DRAM Bank Base Address - These bits define the upper 12 bits of the base address the

DRAM bank responds to when addressed from the local bus.

19:00 | 0 0000H | Reserved

On memory controller reset, the default DRAM base addressisindeterminate until it is overwritten
by programming DBAR. Since the DRAM bank is disabled at reset, this causes no addressing
conflict with the internal data RAM.

i960® VH Processor Developer’s Manual 15-23

u
Memory Controller I nt6I ®

Note: Thei960 core processor does not generate external bus cycles for transactions within the address
range of 0 to 0000 03FFH or FFO0 0000H to FFFF FFFFH. The processor reserves these address
ranges for internal data RAM and memory-mapped registers, respectively. Do not program the
DRAM base address register with a value within these reserved address ranges.

15.6.6 DRAM Read Wait State Register — DRWS

The bus cycle timing for DRAM read accessesis programmed through the DRAM Read Wait
States Register (DRWS). The software programs the number of wait states for each accessin abus
cyclein 1x increments of P_CLK. The symbols tggc, trep and trreys Which represent the number
of wait states programmed for the address, data and recovery cyclesfor read transfers, are shownin
Figure 15-12. The register definitions for the DRAM Bank Read Wait States Register are shownin
Table 15-19. The number of trre, trep @d trrey Wait States is encoded in two-bit fields, which
are also shown in Table 15-19.

Figure 15-12. DRAM Read Cycle Programmable Parameter Example

Ta o Tw o Tw o Tw 1 To Tw 1+ Tp Tw 1 To TR 1 TR Ta
o [N_/—_/—_/—_/—WM
MA11:0 |: ROW X COL X COL X COL X COL X ROW

—>| tRroV €—

«— trrc —>|<« tReP—» < RcP» €« — tReP—>

i)

CASH# ’ \
LRDYRCV# ’ \ ,

BLAST# \ ’

Programmed tgrc = 01
Programmed tgcp = 00
Programmed tgrcy = 01; Total Recovery Cycles = tgrcy + 1

ADS#

I 1

|]

15-24 i960® VH Processor Developer’s Manual

intel.

Memory Controller

Table 15-19. DRAM Bank Read Wait State Register — DRWS

31

28 24 20 16 12 8 4 0

IA7AVTANTAY ANTANTANTAN7 AATANTANTAY AsTANTAVV ALY ARV ARTAVT AN AT AT ANV AL NSNS NS NGNSV TWSTW,

a\nayia

a\na\na\na\nayna\na\ayiayhayiayia\nayna\na\na\nayna\nayiayiaynayia\\ia\nayiayia\naya

LBA:
PCI:

1524H
N/A

Legend: NA = Not Accessible RO = Read Only

RV = Reserved PR =Preserved RW = Read/Write

RS = Read/Set RC = Read Clear

LBA = 80960 local bus address PCI = PCI Configuration Address Offset

Bit

Default

Description

31:18

0000H

Reserved

17:16

00,

DRAM Read cycle RAS-to-CAS delay (tgrc) - This field affects the number of cycles
between the assertion of RAS3:0# and the assertion of CAS7:0#.

FPM EDO
00 1.5 cycles 1 cycles
01 2.5 cycles 2 cycles

10 3.5 cycles 3 cycles
11 4.5 cycles 4 cycles

15:10

00H

Reserved

9:8

00,

DRAM Read cycle CAS pulse width (tgcp) - This field affects the number of cycles that
CAST:0# is asserted.

Fast Page-Mode DRAM:

0x 1.5 cycles (defaults to 1.5 for FPM DRAM)
10 2.5 cycles
11 3.5 cycles

EDO DRAM (this parameter is fixed for EDO DRAM type):
xx 0.5 cycles

7:2

00H

Reserved

1.0

00,

DRAM Read cycle additional recovery wait states (tgrcy) - These are the number of
extra wait states that are inserted at the end of a DRAM transaction. The purpose is to
increase the RAS precharge time for the DRAM (tgp).

00 0 additional recovery cycles
01 1 additional recovery cycle

10 2 additional recovery cycles
11 3 additional recovery cycles

15.6.7 DRAM Write Wait State Register — DWWS

The bus cycle timing for DRAM write accesses is programmed through the DRAM Write Wait
States register (DWWS). The software programs the number of wait states for each accessin abus
cyclein 1x increments of P_CLK. The symbols tyrc, twep and tywgrey, Which represent the
number of wait states programmed for the address, data and recovery cyclesfor write transactions,
are shown in Figure 15-13. The number of tygc, twep 8nd tyrcy Wait states is encoded in two-bit
fields as shown in Table 15-20.

i960® VH Processor Developer’s Manual 15-25

Memory Controller I n ®

Figure 15-13. DRAM Write Cycle Programmable Parameter Example

T" Tw Tw T Tw_ To Tw To Tk Tr Ta
s WAVAVAVAVAVAVAVAVAVAVAVA
\/

DTN 0
MA11:0 ROW X COoL X CcoL X COoL >< >< ROW

< wre >l twer—y e WeP» L twep
—> twrev le—

_ L L
[j

weesss [\ [T /
LRDYRCV# \—/_\ \—/—\ L__ f

BLAST# \ /

Programmed tyyrc = 00
Programmed ty,cp = 00
Programmed tyrcy = 01; Total Recovery Cycles = tyrcy + 1

ADS#

Table 15-20. DRAM Bank Write Wait State Register — DWWS (Sheet 1 of 2)

31 28 24 20 16 12 8 4 0
LBA[wvfovfvfvfvfvfovfvfvfvfvfovf v frwfiwg v v v/ v v fiwfrwf v v fivfvfivfivfvfrw,

PC'l: a\na

Legend: NA = Not Accessible RO = Read Only

LBA: 1528H RV = Reserved PR = Preserved RW = Read/Write

PCI: N/A RS = Read/Set RC = Read Clear

LBA = 80960 local bus address PCI = PCI Configuration Address Offset

Bit Default Description

31:18 0000H Reserved

15-26 i960® VH Processor Developer’s Manual

intel.

Memory Controller

Table 15-20. DRAM Bank Write Wait State Register — DWWS (Sheet 2 of 2)

31

28 24 20 16 12 8 4 0

INYANTANT AV ANV ARTANT AN AVTANTANT AN ANTAAT AN 4N IN7ANTANT ALY ANTANT AN 740 N7 ANTANTAY AT AT AN ALY/

a\yna\a

a\na\na\na\nayna\yia\ia\yiayia\na\ia\nayna\na\a\nayna\ya\aynayia\ia\na\nayna\nayia\a

LBA:
PCI:

1528H
N/A

Legend: NA = Not Accessible RO = Read Only

RV = Reserved PR =Preserved RW = Read/Write

RS = Read/Set RC = Read Clear

LBA = 80960 local bus address PCI = PCI Configuration Address Offset

Bit

Default

Description

17:16

00,

DRAM Write cycle RAS-to-CAS delay (tygrc) - This field affects the number of cycles
between the assertion of RAS3:0# and the assertion of CAS7:0#.

FPM EDO

00 1.5 cycles 1.5 cycles
01 2.5 cycles 2.5 cycles
10 3.5 cycles 3.5 cycles
11 4.5 cycles 4.5 cycles

15:10

OOH

Reserved

9:8

00,

DRAM Write cycle CAS pulse width (tycp) - This field affects the number of cycles that
CAS7:0# is asserted.

Fast Page-Mode DRAM:

0x 1.5 cycles (defaults to 1.5 for FPM DRAM)
10 2.5 cycles
11 3.5 cycles

EDO DRAM (this parameter is fixed for EDO DRAM type):
xx 0.5 cycles

7:2

00H

Reserved

1.0

00,

DRAM Write cycle additional recovery wait states (tyrcy) - The number of extra wait
states inserted at the end of a DRAM transaction. The purpose is to increase RAS
precharge time for DRAM (trp).

00 0 additional recovery cycles
01 1 additional recovery cycle

10 2 additional recovery cycles
11 3 additional recovery cycles

15.6.8 DRAM Refresh Interval Register — DRIR

The memory controller supports CAS# Before RAS# (CBR) refresh cyclesfor DRAM devices.
Figure 15-14 shows an example of atypical CBR refresh cycle.

i960® VH Processor Developer’s Manual 15-27

Memory Controller I n

Figure 15-14. CAS#-Before-RAS# DRAM Refresh

P_CLK W\IU
RAS3:0# \ /
CAST7:0# ~ /

The internal DRAM Refresh Interval Register (DRIR) (Table 15-21) provides the time delay
between DRAM refresh cycles and is programmed in increments of P_CLK. The value
programmed is determined as follows:

Programmed Value = (DRAM Refresh Cycle Rate x Input Clock Freguency)

The register provides ten bits for the programmed value that corresponds to a time delay range of
0to 34.1 us at 33 MHz.

The DRAM controller performs hidden refreshes which can occur in the middle of burst transfers
on the local bus.

Table 15-21. DRAM Refresh Interval Register — DRIR

31 28 24 20 16 12 8 4 0
LBA[wvfovfrvfrvfvfrvfrvfvfvfvfvfovf v v fiag v v v/ v fovfrwfraf rw/rw/rw/ g rw/rw/rw/w,

PC'l: a\na\pna\pa\pa

Legend: NA = Not Accessible RO = Read Only

LBA: 152CH | RV =Reserved PR =Preserved RW = Read/Write

PCl: N/A RS = Read/Set RC = Read Clear

LBA = 80960 local bus address PCI = PCI Configuration Address Offset

Bit Default Description

31:17 | 0000H | Reserved

DRAM Refresh Disable Bit - This bit disables the DRAM refresh cycles from occurring.

When cleared (0) the DRAM refresh counter decrements the value found in the DRAM
refresh interval value field until a zero value is reached. At that time, the DRAM refresh
initiates a CBR cycle.

When set (1) the DRAM refresh counter is disabled and does not generate any CBR
cycles.

16 0

15:10 00H Reserved

DRAM Refresh Interval Value - This bit field defines the number of 1x P_CLK cycles
between generating refresh cycles. The DRAM refresh interval defaults to a value that
meets the minimum interval typically used with the DRAM types supported on the
80960VH.

9:00 78H

Using a standard DRAM refresh cycle rate of 15.625 us, the programmed value for a 33 MHz
clock is calculated as follows:

15-28 i960® VH Processor Developer’s Manual

u
I nt6| ® Memory Controller

DRAM Refresh Interval = (15.625 ps x 33 MHz) = 516 = 0x0000 0204

An initial pause of 100 to 200 us after power-up followed by eight RAS3:0# cycles is typically
required before proper DRAM device operation is assured. This requirement is satisfied by using a
200 us delay between memory system power-up and memory controller reset, and a default refresh
interval of approximately 3.6 ps. The default value in the DRAM Refresh Interval Register is 120

or 0000 0078H, which is 4.8 ps with a 25 MHz clock or 3.6 us with a 33 MHz clock.

15.7 Error Checking and Reporting

The memory controller provides two mechanisms for reporting error conditions. The first is
DRAM parity and the second is a bus monitor used to detect invalid local bus addresses and when
no RDYRCV# signal is returned to signify valid data.

Table 15-22. Error Checking and Reporting Register Summary

PCI
Section Section, Register Name, Acronym Page (ziii:) SSSGAOdlaorZi, CZQEE
Offset
15.7.1 | DRAM Parity Enable Register — DPER 15-29 32 0000 1530H N/A
15.7.2 | Bus Monitor Enable Register — BMER 15-30 32 0000 1534CH N/A
15.7.3 | Memory Error Address Register — MEAR 15-31 32 0000 1538H N/A
15.7.4 | Local Processor Interrupt Status Register — LPISR 15-32 32 0000 153CH N/A

15.7.1 DRAM Parity Enable Register — DPER

The use of parity is programmable through the DRAM Parity Enable Register (DPER), shown in
Figure 15-23. When data parity is enabled, the memory controller generates a parity bit for each
byte written to DRAM, and presentsit to the parity bus DP3:0. Parity ischecked on all DRAM read
accesses when enabled.

i960® VH Processor Developer’s Manual 15-29

u
Memory Controller I nt6I ®

Table 15-23. DRAM Parity Enable Register — DPER

15.7.2

15-30

31 28 24 20 16 12 8 4 0

LBA[I\7AN7 A7 AL ANTANTAVT ALY ANTANTANTAY ANTANTANTALT ASTAVTANT AN ASTANT AT AL ANTANTALTAY/ AV T ATV ALY/

PCll: a\na\pa\na\na\na\pa\na\pa\na\pna\na\na\na\na\na\na\na\na\na\pna\na\na\na\pna\na\na\na\pna\na\na\pa

Legend: NA = Not Accessible RO = Read Only

LBA: 1530H RV = Reserved PR = Preserved RW = Read/Write

PCI: N/A RS = Read/Set RC = Read Clear

LBA = 80960 local bus address PCI = PCI Configuration Address Offset

Bit Default Description

31:2 | 0000 0000H | Reserved

DRAM Parity Polarity Bit - This bit defines the parity polarity.
1 0, When clear (0) Even Parity Checking and Generation are performed
When set (1) Odd Parity Checking and Generation are performed.

DRAM Parity Enable Bit - This bit enables parity checking and generation.
When clear (0) Parity Checking and Generation is disabled.
When set (1) Parity Checking and Generation is enabled and an interrupt is generated

upon detecting a parity error.

Upon detection of a parity error, the 30-bit address of the faulty memory location is latched and
stored in the Memory Error Address Register (MEAR), Table 15-25. The memory controller
detects parity errors for any on-chip bus master. These include the primary ATU, DMA channdl 0,
DMA channel 1 or the 1960 core processor. Upon detecting a parity error, the faulty addressis
latched and an interrupt is generated. The memory controller detects when the 1960 core processor
is the bus master and sets the parity error status bit in the local processor status register and
generates an NMI#. When the 1960 core processor is not the bus master, the memory controller
notifies the other bus masters of the error condition. The bus masters then latch the error and
generate an NMI# to the 1960 core processor.

Bus Monitor Enable Register — BMER

The memory controller bus monitor examines all bus accesses to any memory region configured
for an external ready. When RDY RCV# is not returned to terminate an access, the processor stalls.
Under norma conditions, however, the application can enable or disable the interrupt generated to
the 1960 core processor from the memory controller. When the valid dataiis not returned within 127
P_CLK periods, the memory controller assertsthe ready signal, LRDY RCV#, which terminates the
current data cycle. When the bus monitor interrupt enable bit in the bus monitor enable register is
set, the Memory Controller also asserts abusfault signal to the on-chip bus masters when the timer
expires. The on-chip bus master generates an interrupt to the i960 core processor when it receives
the bus fault signal. The memory controller is responsible for generating the interrupt when the
1960 core processor is the bus master.

The external bus monitor is enabled by programming the Bus Monitor Enable Register (BMER) as
shown in Table 15-24. On memory controller reset, the bus monitor interrupt is disabled.

i960® VH Processor Developer’s Manual

intel.

Table 15-24.

15.7.3

Memory Controller

Bus Monitor Enable Register — BMER

31 28 24 20 16 12 8 4 0
LBAl: w/frvfvfrvfvfvfvfvfvfovfvfvfovfvfvfof v/ v foof v fovf o) fvf v fvfv /v

PC'[a\na\pa\na\na\na\na\na\na\na\na\na

Legend: NA = Not Accessible RO = Read Only

LBA: 1534H RV = Reserved PR = Preserved RW = Read/Write
PCI: N/A RS = Read/Set RC = Read Clear
LBA =80960 local bus address PCI = PCI Configuration Address Offset
Bit Default Description
311 OOOOHOOOO Reserved

Bus Monitor Interrupt Enable Bit - This bit enables the assertion of the bus fault to
bus masters when the bus monitor timer expires. It also enables the generation of an
interrupt to the i960 core processor when the bus monitor timer expires and the bus
master is the i960 core processor.

0 0, When clear (0), the memory controller does not signal a bus fault to any bus master and
does not generate an NMI interrupt to the i960 core processor.

When set (1) the Memory Controller signals a bus fault to all bus masters when the bus
monitor timer expires and generates an NMI interrupt to the i960 core processor when

the core processor is the bus master.

Memory Error Address Register — MEAR

Upon detecting a parity error or bus fault condition, the 30-bit address that generates the fault is
latched in the Memory Error Address Register (MEAR). Interrupt service routines can generate
individua bus cycles to determine the exact byte address that generated the error condition. The
MEAR retains the address until the i960 core processor clears the respective status bit in the local
processor status register, primary ATU status register or in the DMA channel status register(s).
When multiple errors occur, the MEAR register preserves the first address that generated the error,
however, multiple error status bits may be set.

i960® VH Processor Developer’s Manual 15-31

Memory Controller I n

Table 15-25. Memory Error Address Register — MEAR

15.7.4

31 28 24 20 16 12 8 4 0
LBA[rofrofrofrofrofrofrofrof rofrofrofrof rofrofrofrof rofrofrofrof rofrofrofrof rofrofrofrof rofrof v/ v

PC'l: a\na\pa\na\na\na\na\na\na\na\pna\pa\pa

Legend: NA = Not Accessible RO = Read Only

LBA: 1538H RV = Reserved PR =Preserved RW = Read/Write

PCI: N/A RS = Read/Set RC = Read Clear

LBA = 80960 local bus address PCI = PCI Configuration Address Offset

Bit Default Description

Memory Error Address Field - These bits define the upper 30 bits of local bus address
that generated either a parity error or a bus fault condition. Clearing the error status bits
0000 0000 | in the local processor status register for i960 core processor errors allows the MEAR to

31:02 H latch new error addresses. When the DMA units or the ATU generate the error, status
bits in their respective status registers must be cleared to allow the MEAR to latch new
error addresses.

01:00 00, Reserved

Local Processor Interrupt Status Register — LPISR

Upon detecting a parity error or bus fault condition, when the core was local bus master, the
memory controller sets the corresponding bit within the Local Processor Interrupt Status Register
(LPISR). Thisregister isused as a status for the i960 core processor to differentiate between the
two error conditions. Clearing the status bit within the LPISR register clears the memory controller
interrupt and allows additional memory controller interrupts to be generated. The interrupt is
cleared by writing a 1 to the respective interrupt status bit.

Table 15-26. Local Processor Interrupt Status Register — LPISR (Sheet 1 of 2)

15-32

31 28 24 20 16 12 8 4 0
LBA[wvfvfrvfvfvfvfovfvfvfvfvfof v/ fovf v fovfovffvfvf v fvfvfrefrcfvf /v /v

PC'l: a\na

Legend: NA = Not Accessible RO = Read Only

LBA: 153CH RV = Reserved PR =Preserved RW = Read/Write

PCI: N/A RS = Read/Set RC = Read Clear

LBA = 80960 local bus address PCI = PCI Configuration Address Offset

Bit Default Description

31:7 | 0000 000H | Reserved

Memory Fault Interrupt Status Bit - This bit signifies a memory fault error condition
occurred, when the core was local bus master.

6 02 When cleared (0) no memory fault (parity error) interrupt generated.
When set (1) a memory fault (parity error) interrupt is pending.
Local Bus Fault Interrupt Status Bit - This bit signifies a local bus fault error condition
occurred, when the core was local bus master.

5 0,

When cleared (0) no local bus fault interrupt generated.

When set (1) a local bus fault interrupt is pending.

i960® VH Processor Developer’s Manual

u
I nt6| ® Memory Controller

Table 15-26. Local Processor Interrupt Status Register — LPISR (Sheet 2 of 2)

31 28 24 20 16 12 8 4 0
LBAl: w/frvfvfrvfvfvfvfvfovfovfvfvfvfvfvfof v/ oo v fovf v freefrefvf v fvfvfry,

PC'[a\na\pa\na\na\na\na\na\na\na\na\na

Legend: NA = Not Accessible RO = Read Only

LBA: 153CH RV = Reserved PR = Preserved RW = Read/Write
PCI: N/A RS = Read/Set RC = Read Clear
LBA =80960 local bus address PCI = PCI Configuration Address Offset
Bit Default Description
4:0 00H Reserved

15.8 DRAM Waveforms

Waveforms showing FPM and EDO DRAM read and write cycles are contained in the following
sections. Also included are interleaved and non-interleaved FPM examples.

15.8.1 Non-Interleaved Fast Page-Mode DRAM Waveform

Figure 15-15 and Figure 15-16 represent non-interleaved FPM DRAM system read and write cycle
waveforms. The programmed timings used in these two examples are shown in Table 15-27.

Table 15-27. FPM (Non-Interleaved) DRAM Example Programming Summary

Timing Symbol Programmed Value Cycles
trrC 01, 25
trep 00, 15
trRrcv 00, 0
twre 00, 1.5
twep 00, 15
twrev 01, 1

i960® VH Processor Developer’s Manual 15-33

Memory Controller

Figure 15-15. FPM DRAM System Read Access, Non-Interleaved, 3,1,1,1, Wait States

15.8.2

15-34

P_CLK

RAS#

MA[11:0] { rROW >< coL

B
Sl O S 3 S
CASH \ 3 | ‘

. ‘ DATA DATA DATA DATA
AD[31:0] ‘_<ADDRX ouT X ouT X ouT ouT

Interleaved FPM DRAM Waveform

The memory banks may be configured as an interleaved memory region consisting of up to two
banks, where each bank containstwo leaves of DRAM. The maximum interleaved configurationis
256 Mbytes organized as two leaves with each leaf containing two banks of DRAM. The memory
controller provides eight CAS7:0# signals for the support of interleaved memory:

* CAS3:0# signals provide the byte selection for leaf 0
* CAST:4# signals provide byte selection for leaf 1

i960® VH Processor Developer's Manual

u
I nt6| ® Memory Controller

It is necessary to control output enables during read transactionsin an interleaved memory system.
Two signals, LEAF1:0#, control the multiplexing of data from each memory leaf onto the
processor address/data bus. These signals may be tied to the OE# pins of the DRAM devicesin an
interleaved memory array. The LEAF1:0# signals are generated when the DRAM type selected is
FPM, interleaved in the DBCR. Refer to Section 15.6.4, “DRAM Bank Control Register —
DBCR” on page 15-22

The QA31:0 and QB31:0 signals refer to the even and odd leaf (respectively) data transceiver
outputs between the DRAM and the 80960VH. For an interleaved DRAM sySigune 15-17
andFigure 15-18&epresent typical read and write transactions. The programmed timings used in
the examples are shownTable 15-28

Table 15-28. FPM (Interleaved) DRAM Example Programming Summary

Timing Symbol Programmed Value Cycles
tRrC 00, 1.5
trep 00, 1.5
trRrCV 00, 0
twre 00, 1.5
twep 00, 1.5
twrev 01, 1

i960® VH Processor Developer’s Manual 15-35

Memory Controller

Figure 15-17. FPM DRAM System Read Access, Interleaved, 2,0,0,0 Wait States

P_CLK

AD[31:0]

RAS[n]#
RAS [n+1#]

MA[11:0]

DALEI0]

CAS[3:0#

LEAF[0]#

DALE[1]

CAS[7:4]#

LEAF[1]#

DWE1:0]#

15-36

i960® VH Processor Developer's Manual

u
I nt6| ® Memory Controller

Figure 15-18. FPM DRAM System Write Access, Interleaved, 1,0,0,0 Wait States

o | oo B [0 o
RAS[n]# \ \ \ \ \ \ \ \/ \
RAS[n+1J# \ ‘ ‘ ‘ ‘ ‘ ‘ |
MA[11:0] >< ROW >< ><
— S B N B
DALE[O] o /_\ | ﬂ T N
— L
CAS[3:0}# | | | | |
LEAF[O TR N T R A

ome || Q |

CAS[7:4J# \ \ \ \
— \ \ \ \ \ \
LEAF[1]# \
\ \ \ \ \ \ \ \
DWE[L:0J# \ \\ \ \ \ \ \ \

15.8.3 EDO DRAM Waveform

Figure 15-19 and Figure 15-20 represent EDO DRAM system read and write cycle waveforms.
The programmed timings are shown in Table 15-29.

Table 15-29. EDO DRAM Example Programming Summary

Timing Symbol Programmed Value Cycles
tRRC 01, 2
trep Fixed at 00, for EDO DRAM 0.5
trRrcv 00, 0
twre 00, 15
twep Fixed at 00, for EDO DRAM 05
twrev 00, 0

i960® VH Processor Developer’s Manual 15-37

Memory Controller

Figure 15-19. EDO DRAM System Read Access, 2,0,0,0, Wait States

P_CLK

RAS#

MA[11:0]

CAS#

AD[31:0]

1 TA 1 TW 1 TD 1 TD 1 TD 1 TD 1 TR 1
RAS# I i\ I I I I i I

MA[11:0] X ROW X CoL X COoL X COLiX coL |

CAS#

AD[31:0]

15.9 Initializing Dram Devices
Both DRAM types, FPM and EDO, require aminimum of eight CAS# Before RAS# cyclesprior to
the first memory access.

15-38 i960® VH Processor Developer’s Manual

u
I nt6| ® Memory Controller

To satisfy the initialization cycles required by all DRAM types, the memory controller uses the
refresh counter to generate the CBR (CAS# before RASH) cycles. The application must wait until
at least eight CBR cycles have been performed prior to the first access.

15.10 Overlapping Memory Regions

Applications can program the address windows for which the memory controller decodes and
generates memory cycles. However, certain address within the local bus address space are reserved
for memory-mapped registers and AT U-outbound translation. Memory windows can be
inadvertently programmed so that they overlap the reserved address space and other memory
controller windows. Table 15-30 summarizes memory precedence used when this overlapping
occurs.

Table 15-30. Memory Precedence

Priority Address Region

Highest Memory-Mapped Register Address Space

Primary Outbound Address Translation Unit Address Space

DRAM Address Space

Memory Bank 0 Address Space

Lowest Memory Bank 1 Address Space

i960® VH Processor Developer’s Manual 15-39

intel.

Address Translation Unit 16

The Address Translation Unit (ATU) is the interface between the PCI bus and the 80960 local bus.
This chapter describes the ATU operation modes, setup, and interface.

Figure 16-1. Address Translation Unit (ATU) Block Diagram

A
r—-- """ "—-"—-—"—"—"——— — — 7
I I
I I
I , I
Primary Address
| Translation Unit @ |
o 8
| (=8 5 I
(O] =
] 3o = |
0E Expansion ROM 2
| T o Translation Unit a |
Primary PCI Bus aq 8 80960 Local Bus
I]= 3 I
| gl
Messaging Unit §
I I
I I
I I
| PRIMARY ADDRESS TRANSLATION UNIT |
I I
L - — - e — = -
Y

16.1 Overview

Asindicated in Figure 16-1, the ATU — the interface between the PCI bus and the on-chip 80960
local bus — consists of the Address Translation Unit and the Messaging Unit (MU); described in
Chapter 17, “Messaging UnitThe MU allows the system processor and the 80960VH to transfer
control information.

The ATU supports both inbound and outbound address translation. The ATU provides direct
access between the primary PCI bus and the 80960 local bus. The primary ATU and MU share PCI
address space.

The ATU and the MU appear as a single PCI device on the primary PCI bus. Collectively, these
units are PCI function 0 of the 80960VH PCI device.

i960® VH Processor Developer’s Manual 16-1

[]
Address Translation Unit I ntel o

16.2

Transactions initiated on a PCl bus and targeted at the 80960 local bus are referred to as inbound
transactions (PCI to 80960 local bus); transactions initiated on the 80960 local bus and targeted at
the PCI bus are referred to as outbound transactions (80960 local bus to PCI).

During inbound transactions, the ATU converts PCI addresses (initiated by a PCI bus master) to
80960 local bus addresses and initiates the data transfer on the 80960 local bus. During outbound
transactions, the ATU converts 80960 local bus addresses to PCl addresses and initiates the data
transfer on the PCI bus.

The ATU does not support outbound transactions generated by the DMA controller.

ATU Transaction Queues

ATU operation and performance depends on the queueing mechanism implemented between the
local businterface and PCI bus interface. Asindicated in Figure 16-2, the ATU transaction queues
consist of three address queues and two data queues; each are described in the following
subsections.

Figure 16-2. ATU Transaction Queue Block Diagram

16.2.1

16-2

ggrlngilys] r Inbound Data Queue (IDQ)] 80960
M M Local Bus
A A
i «—— Inbound Address Queue (IAQ) i
E «—— Inbound Delayed Read Address Queue (IDRAQ) E
R _ R
/ /
S S
L Outbound Data Queue (ODQ) W L
A A
‘ \Vi \%

E L <={t

o Outbound Address Queue (OAQ) —J o

Address Queues

Asindicated in Figure 16-2, ATU transaction queues contain three separate address queues:
* |nbound Delayed Read Address Queue (IDRAQ)
* |nbound Address Queue (IAQ)
* QOutbound Address Queue (OAQ)

These queues, each of which hold a single 32-bit address, forward transactions from one side of the
gueue structure to the other.

i960® VH Processor Developer’s Manual

[]
I ntel o Address Translation Unit

The ATU PCI interface uses IDRAQ for inbound read operations and I1AQ for write operations.
The 32-bit PCI addressis latched into the inbound address queues and translated to the 80960 local
bus address and driven onto the local bus by the ATU local bus interface.

The ATU local bus interface uses OAQ for outbound read and write operations. The 32-bit 80960
local address is latched into the OAQ and translated to a PCI address and driven onto the PCI bus
by the ATU PCI interface.

The address queue is always initialized by the initiating bus and cleared by the target bus under
normal termination. The address queueis aso cleared by a bus when an error has occurred on that
bus. This effectively cancels the transaction and clears the queue, allowing a new transaction to be
initiated.

16.2.2 Data Queues

The ATU transaction queue contains two separate data queues:
* Inbound Data Queue (IDQ)
* Outbound Data Queue (ODQ)

Each 64-byte queue is arranged in a 16 x 32-bit (1 DWORD) configuration. The ATU PCI
interface uses the IDQ to hold inbound write data; the ATU local bus uses IDQ to return outbound
read data. The ATU local bus interface uses ODQ for outbound write data and the ATU PCI
interface to return inbound read data. Datain the queuesisinvalidated only on error conditions (see
Section 16.6).

16.3 ATU Address Translation

The ATU implements an address windowing scheme to determine which addresses to claim and
translate to the appropriate bus.

* The address windowing mechanism for inbound translation is described in Section 16.3.1,
“Inbound Address Translation” on page 16-4

* The address windowing mechanism for outbound translation is described in Section 16.3.6,
“Outbound Address Translation” on page 16-8

The primary ATU contains a data path between the primary PCI bus and 80960 local bus.

The ATU unit allows for recognition and generation of multiple PCI cycle tyfsse 16-1shows

the PCI commands supported by both inbound and outbound ATU. The type of operation seen by
the inbound ATU is determined by the PCI master who initiates the transaction. Claiming an
inbound transaction depends on the address being within the programmed inbound translation
window. The type of transaction used by the outbound ATU is determined by the 80960 local
address and the fixed outbound windowing schemeS8etion 16.3.6, “Outbound Address
Translation” on page 16-8r the full details on outbound PCI cycle selection.

The ATU does not support exclusive access using the PCI LOCK# signal. To achieve exclusive
access, use a software protocol or the Messaging Unit.

The ATU does not guarantee atomicity when performing atomic accesses using 80960 atomic
instructions étmod, atadd, etc.).

i960® VH Processor Developer’s Manual 16-3

[]
Address Translation Unit I ntel o

Table 16-1. ATU Command Support

PCI Command Type Inbou%lgl'wsgs%gtions Outbff:glﬁ't:r?sgitions
Interrupt Acknowledge No No
Special Cycle No No
1/0 Read No Yes
1/O Write No Yes
Memory Read Yes Yes
Memory Write Yes Yes
Memory Write and Invalidate Yes No
Memory Read Line Yes No
Memory Read Multiple Yes No
Configuration Read Yes Yes
Configuration Write Yes Yes
Dual Address Cycle No No

16.3.1 Inbound Address Translation

The ATU allows PCI bus masters to directly access the 80960 local bus. These PCI bus masters can
read or write 80960V H memory-mapped registers or 80960 local memory space. The transactions
where PCI bus masters are accessing the 80960 local bus are called inbound transactions. Inbound
translation involves two steps:

1. Address Detection.

— Determine when the 32-bit PCI address is within the address window defined for the
inbound ATU.

— Claim the PCI transaction with medium DEVSEL# timing.
2. Address Translation.
— Translate the 32-bit PCI address to a 32-bit 80960 local bus address.

The ATU uses the following registers in inbound address translation:
* |nbound ATU Base Address Register
* |nbound ATU Limit Register
* |nbound ATU Translate Value Register

See Section 16.7, “Register Definitions” on page 16ft8details on inbound translation register
definition and programming constraints.

By convention, primary inbound ATU addresses are primary PCl addresses.

16-4 i960® VH Processor Developer’s Manual

[]
I ntel o Address Translation Unit

Inbound address detection is determined from the 32-bit PCI address, the base address register and
the limit register. The algorithm for detection is:

When PCI_Address & Limit_Register == Base_Register the PC
Address is claimed by the Inbound ATU

Figure 16-3 shows an example of inbound address detection and inbound transation windows.
Figure 16-3. Inbound Address Detection

Address is not claimed —p
Base_Register [— — — — !

Address is claimed ——p

PCI Address Inbound Translation
Space Window

Base_Register + Limit_Register - — — — — -

Address is not claimed ——p

The incoming 32-bit PCI address is bitwise ANDed with the associated inbound limit register.
When the result matches the base register, the inbound PCl addressis detected as being within the
inbound translation window and is claimed by the ATU.

Note: The first 4 Kbytes of the primary ATU’s inbound address translation window are reserved for the
Messaging Unit. SeBection 16.4, “Messaging Unit” on page 16-15

Once the transaction is claimed, the address within the Inbound Address Queue (IAQ) must be
translated from a 32-bit PCI address to a 32-bit 80960 local bus address. The algorithm is:

80960_Address = (PCI_Address & ~Limit_Register) | Trandate_Register

The incoming 32-bit PCI address is first bitwise ANDed with the bitwise inverse of the limit
register. This result is bitwise ORed with the translate value register and the result is the 80960
local address. The translate value register must be aligned on the limit register boundary. For
example, if the limit register is 8 Mbytes, then the translate value register must point to an 8 Mbyte
boundary on the 80960 local bus. This translation mechanism is used for all inbound memory read
and write commands excluding inbound configuration read and writes. Inbound configuration
cycle translation is described $ection 16.3.4, “Inbound Configuration Cycle Translation” on

page 16-8Address aliasing of multiple PCI addresses to the same physical 80960 local bus
address can be prevented by programming the inbound limit register on boundaries matching the
associated limit register, but this is only enforced through application programming.

For inbound memory transactions, the only burst order supported is Linear Incrementing. For any
other burst order, the ATU signals a Disconnect after the first data phase.

For inbound address translation, the physical memory attribute for the 80960 local bus must be

32-bit wide. Se&ection 13.1.1, “Physical Memory Attributes” on page 134ie only exception
is the expansion ROM window can be in 8-bit wide memory.

i960® VH Processor Developer’s Manual 16-5

Address Translation Unit

Figure 16-4.

16.3.2

16-6

Figure 16-4 shows an inbound translation example.
Inbound Translation Example

PCI Address
Space

0000 0000H

3A00 0000H

3A45 012CH —p
3A7F FFFFH

FFFF FFFFH

Inbound Translation

Window

Register Values

Base_Register = 3A00 0000H

Address Detection
PCI_Address & Limit_Register == Base_Register
3A45 012CH & FF80 0000H == 3A00 0000H

Limit_Register = FF80 0000H

(8 Mbyte limit value)

Address Translation

Translate_Register = C100 0000H

Inbound Translation Window ranges from

3A00 0000H to 3A7F FFFFH (8 Mbytes)

PCI_Address is in the Inbound Translation Window

80960_Address = (PCI_Address & ~Limit_Register) | Translate_Register
80960_Address = (3A45 012CH & 007F FFFFH) | C100 0000H
80960_Address =C145 012CH

80960 Local Bus Address
Space

0000 0000H

C100 0000H

[C145 012CH
C17F FFFFH

FFFF FFFFH

Inbound Write Transaction

An inbound write transaction is initiated by a PCl master and is targeted at either 80960 local

memory or an 80960 local bus memory-mapped register. Data flow for an inbound write

transaction on the PCI bus is summarized as:

* The ATU claimsthe PCI write transaction when the PCI addressis within the inbound
translation window defined by the ATU Inbound Base Register and Inbound Limit Register.

* When no transaction is currently in the lAQ or inbound data queue (IDQ), the ATU latches the
PCI address into the IAQ. When an inbound write transaction is currently in progress, the
ATU does not latch the PCI address and signals a Retry to the initiator.

i960® VH Processor Developer's Manual

[]
I ntel o Address Translation Unit

* Oncethe PCI addressisin the IAQ, the PCI interface can start accepting write data and store it
in the IDQ.

* The PCI interface continues to accept write data until one of the following is true:
— The initiator completes the transaction.

— The IDQ becomes full. In this case, the PCI interface signals a Disconnect to the initiator.

Once the PCl interface places a PCl address in the IAQ, the ATU’s local bus interface becomes
aware of the inbound write. The ATU local bus interface completes the inbound write on the 80960
local bus.

Data flow for the inbound write transaction on the 80960 local bus is summarized as:

* The ATU local bus interface requests the 80960 local bus when a PCl address appearsin the
IAQ.

* When the 80960 local busis granted, the local bus interface initiates the write transaction by
driving the translated address onto the 80960 loca bus. For details on inbound address
trandation, see Section 16.3, “ATU Address Translation” on page 16-3

* Write dataistransferred from the IDQ to the 80960 local bus when data is available and the
local bus interface retains local bus ownership.

* Thelocal bus interface stops transferring data to the local bus when one of the following
conditions becomes true:

— The local bus interface loses bus ownership and the IDQ still has data. In this case, the
local bus interface removes REQ and immediately starts requesting the internal local bus
again.

— The Memory Controller signals a Bus Fault. In this case, the local bus interface aborts the
inbound write transaction and clears the IAQ and IDQ.

— The IDQ becomes empty while the transaction on the PCI bus is in progress, but held in
wait states. In this case, the local bus interface goes idle and is requested again when data
is received in the IDQ.

— The IDQ becomes empty and the PCI transaction has completed. The IAQ is cleared, in
this case, and the local bus interface goes idle. The IAQ and IDQ are now ready for a new
transaction.

16.3.3 Inbound Read Transaction

An inbound read transaction is initiated by a PCl master and is targeted at either 80960 local
memory or an 80960 local bus memory-mapped register. The read transaction is propagated
through the inbound delayed read address queue (IDRAQ) and read data is returned through the
outbound data queue (ODQ).

Data for all inbound ATU read transactions is implicitly prefetchable as defined RCtheocal

Bus Specification, revision 2.1. The Inbound ATU Base Address Register’s Bit 3 is hardwired to
one (1) defining the memory space as prefetchable. The ATU prefetches on both single-word and
multi-word read transactions.

i960® VH Processor Developer’s Manual 16-7

[]
Address Translation Unit I ntel o

16.3.4

16.3.5

16.3.6

16-8

All inbound read transactions are processed as delayed read transactions. The ATU’s PCl interface
claims the read transaction and forwards the read request through to the 80960 local bus and
returns the read data to the PCI bus. The IDRAQ contains inbound PCI read address and the read
data is stored in the ODQ. Data flow for an inbound read transaction on the PCI bus is summarized
in the following statements:

* The ATU claimsthe PCI read transaction when the PCI addressis within the inbound
translation window defined by ATU Inbound Base Register and Inbound Limit Register.

* When no transaction is currently in the IDRAQ, the PCI addressislatched into IDRAQ and a
Retry is signalled to the initiator.

— When the IDRAQ is full: the PCI address, command, and byte enables match those from a
previous transaction, and the ODQ contains read data, start returning read data to the
initiator.

— When the IDRAQ is full and the PCI address, command, and byte enables do not match:
signal a Retry to the initiator and do not latch any transaction information.

* Once read datais driven onto the PCI bus from the ODQ, it continues until one of the
following istrue:

— The initiator completes the PCI transaction.
— A local bus error was detected. In this case, a Target-abort is signaled to the initiator.

— The ODQ becomes empty. In this case, the PCI interface signals a Disconnect to the
initiator.

Inbound Configuration Cycle Translation

The ATU only accepts Type 0 configuration cycles with a function number of zero.

The ATU configuration space can be accessed using PCI configuration cycles from the primary
PCI bus using function 0 configuration space. All inbound configuration cycles are processed as
delayed transactions.

Discard Timers

The ATU implements a discard timer for inbound delayed transactions. The timer prevents
deadlocks when the initiator of a retried delayed transaction fails to complete the transaction within
21%9or 215 PCI clock cycles. The timer starts counting when the delayed request becomes a delayed
completion by completing on the destination bus. When the originating master on the initiating bus
has not completed the transaction before the timer expires, the completion transaction is discarded.

Discard timer values are controlled by the Core Select Reg&teti¢n 11.2.8

Outbound Address Translation

In addition to providing the mechanism for inbound translation, the ATU translates i960 core
processor-initiated cycles to the PCI bus. This is knowsutimund address translation.

Outbound transactions are processor reads or writes targeted at the PCI bus. The ATU local bus
slave interface claims 80960 local bus address cycles and completes the cycle on the PCI bus on
behalf the 1960 core processor. The primary ATU supports two different outbound translation
modes:

i960® VH Processor Developer’s Manual

[]
I ntel o Address Translation Unit

* Address Translation Windows
* Direct Addressing Window

Figure 16-5 shows a 80960V H memory map with all reserved address |ocations highlighted. The
outbound translation windows exist from 8000 0000H to 9001 FFFFH. Thisisa 64 Mbyte window
and a 64 Kbyte window. The outbound direct addressing window is from 0000 2000H to

7FFF FFFFH. Both outbound schemes are described in the following subsections.

Outbound address tranglation is disabled for the Primary ATU when the Bus Master Enable bit in
the Primary ATU Command Register is clear. When the Bus Master Enable bit is clear or the
Outbound ATU Enable (bit 1 of the ATUCR) is clear, the ATU does not claim any i960 core
processor accesses. These unclaimed accesses may cause a Bus Monitor time-out to occur. For
outbound memory transactions, the only burst order supported is Linear Incrementing.

16.3.6.1 Outbound Address Translation Windows

Inbound trand ation involves a programmable inbound translation window consisting of a base and
limit register and a value register for PCI to 80960 translation. The outbound address trandlation
windows use a similar methodology except that the outbound translation windows are fixed in
80960 local bus address space; this removes the need for base and limit registers.

Figure 16-6 illustrates the outbound address translation windows. The ATU has two windows- one
is64 Mbyte and oneis 64 Kbyte. The primary outbound memory window range from 8000 0000H
to 83FF FFFFH (64 Mbyte). After this window, the primary outbound I/O window range from
9000 0000H to 9000 FFFFH (64 Kbyte).

The memory window is 64 Mbytes and the 1/0 window is 64 Kbytes. An 80960 local bus cycle

with an address within one outbound window initiates a read or write cycle on the PCI bus. The

PCI cycle type depends on which translation window the local bus cycle “hits”. The read or write
decision is based on the 80960 local bus cycle type.

The ATU has a window dedicated to the following outbound PCI transaction types in the outbound
address translation window:

* Memory reads and writes - Memory Window
* |/O reads and writes - 1/0 Window

Refer to Figure 16-6 for the sub-window addresses involved in the outbound trand ation.

The windowing scheme means:
* aprocessor read cycle that addresses a Memory Window isaMemory Read on the PCI bus
* aprocessor write cycle that addresses the 1/0 Window is an 1/0 Write on the PCI bus

Memory Write and Invalidate (MWI), Memory Read Line, and Memory Read Multiple commands
are not supported in outbound ATU transactions.

i960® VH Processor Developer’s Manual 16-9

Address Translation Unit In

Figure 16-5. 80960 Local Bus Memory Map - Outbound Translation Window

16-10

80960 Local Bus Address
0000 0000H
Internal Data RAM
0000 0400H
Reserved
0000 1000H
Peripheral Memory
Mapped Registers
0000 2000H
ATU Outbound
Direct Addressing
Window
8000 0000H
ATU Outbound
Translation Windows
9002 0000H
External Memory
Code/Data
FEFF FF2FH
Initialization Boot Record (IBR)
FEFF FF60H
Reserved
FFOO 0000H
i960 Core Processor Memory-
Mapped Register Space
FFFF FFFFH

The translation portion of outbound ATU transactionsis accomplished with a value register in the

same manner as inbound translations. The ATU uses the following registers in outbound address
translation:

* QOutbound Memory Window Value Register
* Qutbound 1/0 Window Value Register
* Outbound Configuration Cycle Address Register

See Section 16.7, “Register Definitions” on page 16ft8details on outbound translation register
definition and programming constraints.

The translation algorithm used, as stated, is very similar to inbound translation. For memory
transactions the algorithm is:

i960® VH Processor Developer's Manual

Address Translation Unit

PCI_Address = (80960_Address & 03FF FFFFH) | Translate_Register

For memory transactions, the 80960 local bus address is bitwise ANDed with the inverse of

64 Mbytes which clears the upper 6 bits of address. The result is bitwise ORed with the outbound
window value register to create the 32-bit PCI address. The translate value must be aligned on a 64
Mbyte boundary.

PCI_Address = (80960_Address & 0000 FFFFH) | Translate_Register

For 1/0 transactions, the local address is bitwise ANDed with the inverse of 64 Kbytes which

clearsthe upper 16 bits of address. The translate value must be aligned on a 64 Kbyte boundary.

Address aliasing can be prevented by programming the outbound window value registers on

boundaries equivalent to the window’s length, but this is only enforced through application
programming. PCI I/O addresses are byte addresses and not word addresses. The PCI I/O address’s
two least significant bits are determined by byte enables that the processor issues. For example,
when the 1960 core processor performs a 2-byte write and generates byte enables ¢tfi®011

ATU sets the two least significant bits of PCI I/O address $0 10

i960® VH Processor Developer’s Manual 16-11

[]
Address Translation Unit I ntel o

Note: When the i960 core processor’s data cache is enabled for accesses to the Outbound 1/0 Window,
the byte enables generated by the i960 core processor are alwdgsB{te and Short accesses.

Figure 16-6. Outbound Address Translation Windows

80960 Local Bus Address
8000 0000H]
64 Mbytes Primary Memory Window
83FF FFFFH
8400 0000H
ATU Outbound
Memory
Translation Window
Reserved
8FFF FFFFH
9000 0000H
64 Kbytes Primary 1/0 Window
9000 EEEEH ATU Outbound
1/0 Cycle
9001 0000H Translation Window
Reserved
9001 FFFFH

16.3.6.2 Direct Addressing Window

The second method used by outbound cycles from the i960 core processor to the PCI bus is with
the direct addressing window. This is a window of addresses in 80960 local bus address space that
act in the same manner as the outbound translation windows without the translation. An i960 core
processor read or write to a local bus address within the direct addressing window initiates a read
or write on the PCI bus with the same address as used on the lodagous.16-7shows an

example of an outbound write that is through the direct addressing window.

Direct Addressing is limited to PClI memory read and writes only. I/O cycles, MWI, Memory Read
Line, and Memory Read Multiple commands are not supported with direct addressing.

16-12 i960® VH Processor Developer’s Manual

[]
I ntel o Address Translation Unit

Figure 16-7. Direct Addressing Window

80960 Local Bus Address Space
0000 2000H 0000 2000H

Direct Addressing Window

Local Bus Write PCI Write Cycle
with address Add 6000 1008H with address
6000 1008H ress 6000 1008H

B >
7FFF FFFFH 7FFF FFFFH

The direct addressing window address range is fixed in the lower 2 Gbytes of the 80960 local bus

address space — except for the first 8 Kbytes which is reserved for the i960 core processor’s
internal data RAM and i960 core processor memory-mapped registers. 80960 local bus cycles with
an address from 0000 2000H to 7FFF FFFCH are forwarded to a PCI bus, when enabled. The
primary PCI bus is the default bus for direct addressing. The following bits within the Address
Translation Unit Configuration Register (ATUCR) affect direct addressing operation:

* ATUCR Direct Addressing Enable bit - when set, enables the direct addressing window. When
clear, addresses within the direct addressing window are not claimed by the ATU.

16.3.7 Outbound Write Transaction

An outbound write transaction isinitiated by the i960 core processor and is targeted at a PCl slave.
The outbound write address and write data are propagated from the 80960 local bus to a PCI bus
through the OAQ and the ODQ.

The ATU's slave local bus interface claims the write transaction and forwards the write data
through to the PCI bus. Data flow for an outbound write transaction on the 80960 local bus is
summarized in the following statements:

* The ATU local bus interface | atches the address from the 80960 local bus into the OAQ when
that address isinside one of the outbound translate windows and the OAQ and ODQ are
empty.

* Oncethe outbound address is latched, the local bus interface stores the write datainto the
ODQ until the local bus transaction completes.

* When the OAQ or the ODQ are not available, the ATU signals the interna arbitration unit to
assert an 1960 core processor backoff. Backoff remains active until the OAQ and ODQ
become available. When backoff is deasserted, the local bus slave interface returnstoidle
while the backoff logic re-initiates the local bus transaction.

i960® VH Processor Developer’s Manual 16-13

[]
Address Translation Unit I ntel o

16.3.8

16.3.9

16-14

Note:

Outbound Read Transaction

An outbound read transaction is initiated by the i960 core processor and is targeted at a PCI slave.
The read transaction is propagated through the outbound address queue (OAQ) and read datais
returned through the inbound data queue (IDQ).

The ATU's local bus interface claims the read transaction and forwards the read request through to
the PCI bus and returns the read data to the 80960 local bus. The data flow for an outbound read
transaction on the local bus is summarized in the following statements:

* The ATU local bus interface latches the 80960 local bus address on the bus when the address
isinside an outbound address transl ation window and the OAQ is empty. When the addressis
inside an outbound translation window but the OAQ is not empty (previous outbound
transaction in progress), the local businterface notifies the internal arbiter, which asserts
backoff. The processor stays in backoff until the OAQ becomes empty, at which time backoff
is deasserted.

* Once the outbound local address is latched into the OAQ, the 1960 core processor is put into
backoff to give the delayed read transaction time to complete on the PCI bus. Backoff is
deasserted when the PCI interface has completed reading the requested amount of data and has
put the datainto the IDQ. A PCI error cancels backoff and causes the outbound read request to
return FFFF FFFFH to the 1960 core processor.

* If the PCI Read transaction is disconnected and an inbound write transaction occurs, then
return any datato the local bus and allow the inbound write transaction to complete. The
outbound read transaction will resume after the inbound write transaction compl etes.

* Once the transaction completes on the PCI bus, the local interface starts reading data from the
IDQ. This continues until the IDQ is empty and the local bus operation completes.

Outbound Configuration Cycle Translation

The outbound ATU provides a port programming model for outbound configuration cycles.
Performing an outbound configuration cycle involves up to two 80960 local bus cycles:

1. Writing the Outbound Configuration Cycle Address Register with the PCI address used during
the configuration cycle. See the PCI Local Bus Specification, revision 2.1 for information
regarding configuration address cycle formats. Thisi960 core processor cycle enables the
transaction.

2. Writing or reading the Outbound Configuration Cycle Data Register. The i960 core processor
cycleinitiates the transaction. A read causes a configuration cycle read to the Primary PCI bus
with the address in the outbound configuration cycle address register. Similarly, awrite
initiates aconfiguration cycle write to the Primary PCI bus with the write data from the second
processor cycle. Configuration cycles are non-burst and restricted to a single word cycle.

Section 16.7, Register Definitions (pg. 16-18) describes the outbound configuration cycle address
and data register definitions and programming constraints.

Outbound configuration cycle dataregisters are not physical registers. They are an 80960 local bus
memory mapped address used to initiate a transaction with the address in the associated address

i960® VH Processor Developer’s Manual

16.4

16.5

16.6

Address Translation Unit

register. Reads/writes to these registers return data from the PCI bus — not from the register.
Outbound configuration cycles use address stepping and may delay the assertion of FRAME#.

Messaging Unit

The Messaging Unit (MU) transfers data between the PCI system and the 80960VH and notifies
the respective system when new data arrives. The MU is describddypter 17, “Messaging
Unit”.

The primary PCI window for messaging transactions is alwayBrgtel Kbytes of the inbound
translation window defined by the Primary Inbound ATU Base Address Register (PIABAR) and
the Primary Inbound ATU Limit Register (PIALR).

Expansion Rom Translation Unit

The primary inbound ATU supports one address range (defined by a base/limit register pair) used
for containing the Expansion ROM. Refer to Bl Local Bus Specification, revision 2.1 for
details on Expansion ROM format and usage.

During a powerup sequence, initialization code from Expansion ROM is executed once by the host
processor to initialize the associated device. The code can be discarded once executed. Expansion
ROM registers are described$ection 16.7.15 (pg. 16-31$ection 16.7.24 (pg. 16-3&nd

Section 16.7.25 (pg. 16-38)

The inbound primary ATU supports an inbound Expansion ROM window which works like the
inbound translation window. A read from the expansion ROM window is forwarded to the 80960
local bus and to the Memory Controller. Writes through the Expansion ROM window are not
supported. The address translation algorithm is the same as in inbound translation; see
Section 16.3.1, “Inbound Address Translation” on page.IBi¢ ROM width supported is 8 bit

only.

ATU Data Flow Error Conditions

PCI and 80960 local bus error conditions cause the ATU state machines to exit normal operation
and return to idle states. Error conditions on one side of the ATU are propagated to the other side of
the ATU and have different effects depending on the error. Error conditions and their effects are
described in the following sections.

PCI bus error conditions and the action taken on the bus are defined witRi@lthecal Bus
Soecification, revision 2.1. The ATU adheres to the error conditions defined within the PCI
specification for both master and slave operation. Error conditions on the 80960 local bus are
caused by the propagation of an error from the Memory ControlleCs>er 15, “Memory
Controller” for details on memory controller error conditions. All actions on the PCI Bus for error
situations are dependent on the error control bits found in the Primary ATU Command Register.
SeeSection 16.7, “Register Definitions” on page 16-18

i960® VH Processor Developer’s Manual 16-15

Address Translation Unit

intel.

Table 16-2 through Table 16-5 assume that all error reporting is enabled through the appropriate
command and status registers (unless otherwise noted). Refer to the PCI Local Bus Specification,
revision 2.1 for details on the complete action a PCl master and slave interface needs to take for
parity error events.

When the ATU detects the assertion of P_SERR# on the primary PCI bus and the Primary SERR
Interrupt Enable bit in the ATU Configuration Register (ATUCR) is set, the ATU signas an NMI#

Table 16-2. Inbound Write Error Conditions
Bus & State Error Condition Effect on PCI Bus Effect on 80960 Local Bus
Machine
Add Parity E SERR# asserted * Noeffect
ress Parity Error . i
y PCI Master Abort Transaction never
propagated to local bus
PCI Slave
PERR# asserted
Data Parity Error IAQ Cleared » Data in IDQ completed
PCI Disconnect
PERR# asserted when
transaction is still in
progress or... » 960 core processor is
Local Bus 80960VH Memory SERR# asserted after interrupted with NMI#
Master Controller Fault transaction completes on . IDQ cleared
PCI bus, if not in progress
IAQ cleared
Table 16-3. Inbound Read Error Conditions
Bus & State Error Condition Effect on PCI Bus Effect on 80960 Local Bus
Machine
PCI Slave Address Parity Error SERRi# asserted o efee
vV Ss i i
y PCI Master Abort Transaction never
propagated to local bus
ATU interface drives
bad data, causes bad
80960VH Memory parity i960 core processor is
Local Bus Controller Parity Error Error condition interrupted with NMI#
Master determined by PCI
master
80960VH Memory i960 core processor is
Controller Fault PCI Target Abort interrupted with NMI#
16-16 i960® VH Processor Developer’s Manual

interrupt to the 1960 core processor.

intel.

Table 16-4.

Table 16-5.

Table 16-6.

Outbound Write Error Conditions

Address Translation Unit

Bus & State Error Condition Effect on PCI Bus Effect on 80960 Local Bus
Machine
NoDEVSEL# | ° ROl Master
1960 core processor is interrupted with NMI# if
. « PERR# the ATU PCI Error Interrupt Enable bit is set
PCI Master Data Parity Error detected in the ATUCR. The data in the OWQ is
PCI Target discarded.
PCI Target Abort Abort
Outbound Read Error Conditions
Bus & State Error Condition Effect on PCI Bus Effect on 80960 Local Bus
Machine
* PCI Master » 1960 core processor is interrupted with NMI#
No DEVSEL# Abort if the ATU PCI Error Interrupt Enable bit is set
in the ATUCR
. » PERR# .
PCI Master Data Parity Error asserted A false data value is returned to the
processor to allow the cycle to complete. FFH
» PCI Target is returned for every byte read on the local
PCI Target Abort Abort bus

The following table (Table 16-6) summarizes the ATU error reporting for PCI bus errors and local
bus errors. The tables assume that all error reporting is enabled through the appropriate command
and status registers (unless otherwise noted). The Primary ATU Status Register records PCI bus
errors. Note that the SERR# Asserted bit in the Status Register is set only when the SERR# Enable
bit in the Command Register is set. The Primary ATU Interrupt Status Register recordsi960 core
processor interrupt status information.

Primary ATU Error Reporting Summary (Sheet 1 of 2)

. . . NMI#
-, Primary ATU Status Register Primary ATU Interrupt Status 5
Error Condition (PATUSR) Register (PATUISR) Irjterrupt.
(if enabled)
Inbound Write . oo
. Parity Error bit (bit 15) set s
PCI Adg:?:f Parity P_SERRY# Asserted bit (bit 14) set P_SERR# Detected bit (bit 4) set Yes
Inbound Write
PCI Data Parity Parity Error bit (bit 15) set No
Error
Inbound Write P_SERR# Detected bit (bit 4) set
P_SERR# Asserted bit (bit 14) set 80960 local bus address Fault Yes
Local Bus Fault)
(bit 5) set
Inbound Read . oo
. Parity Error bit (bit 15) set s
PCI Adg:?:f Parity P_SERR# Asserted bit (bit 14) set P_SERR# Detected bit (bit 4) set Yes
Inbound Read 80960 local bus memory Fault bit
Local Bus Data (bit 6) set Yes
Parity Error
Inbound Read . 80960 local bus address Fault
Local Bus Fault Target Abort (Target) (bit 11) set (bit 5) set Yes
16-17

i960® VH Processor Developer's Manual

[]
Address Translation Unit I ntel o

Table 16-6.

16.7

16-18

Note:

Primary ATU Error Reporting Summary (Sheet 2 of 2)

. . . NMI#
. Primary ATU Status Register Primary ATU Interrupt Status 5
Error Condition (PATUSR) Register (PATUISR) Irjterrupt.
(if enabled)
Outbound Write oo oo
PCI Master Abort Master Abort bit (bit 13) set PCI Master Abort bit (bit 3) set Yes
Outbound Wr!te Master Parity Error (bit 8) set, PCI Master Parity Error bit (bit 0)
PCI Data Parity)) . Yes
Parity Error (bit 15) is set set
Error
Outbound Write . .
PCI Target Abort Target Abort (Master) (bit 12) set | PCI Target Abort (Master) (bit 2) set Yes
Outbound Read o o
PCI Master Abort Master Abort bit (bit 13) set PCI Master Abort bit (bit3) set Yes
Outbound Read . oo
- Parity Error bit (bit 15) set . .
PCI Data Parity Master Parity Error (bit 8) set PCI Master Parity Error (bit 0) set Yes
Error
Outbound Read . .
PCI Target Abort Target Abort (Master) (bit 12) set | PCI Target Abort (Master) (bit 2) set Yes
iy P_SERR# Detected hit (bit 4) set Yes
Detected

Register Definitions

Every PCI device implements its own separate configuration address space and configuration
registers. The PCI Local Bus Specification, revision 2.1 requires that configuration space be
256 bytes, and the first 64 bytes must adhere to a predefined header format.

Figure 16-8 defines the format for the first 64 bytes of the header. The additiona 182 bytes of the
configuration space is defined as the ATU extended configuration space. The ATU configuration
spaceis function number zero of the 80960VH PCI device.

Beyond the required 64 byte header format, ATU configuration space implements extended
register space in support of the units functionality. Refer to the PCI Local Bus Specification,
revision 2.1 for details on accessing and programming configuration register space.

The following sections describe the ATU and Expansion ROM configuration registers.
Configuration space consists of 8, 16, 24, and 32-hit registers arranged in a predefined format.
Each register is described in functionality, access type (read/write, read/clear, read only) and reset
default condition.

See Chapter 1, “Introductionfor a description ofeserved, read only, andread/clear. All registers
adhere to the definitions found in tRE€I Local Bus Specification, revision 2.1 unless otherwise
noted.

Each configuration register’s access type is individually defined for PCI configuration accesses.

Some PCI read-only configuration registers have read/write capability from the i960 core
processor. See algppendix C, “Memory-Mapped Registers”

i960® VH Processor Developer’s Manual

[]
I ntel o Address Translation Unit

Figure 16-8. ATU Configuration Space Header

PCI
Config
Addr
Offset

ATU Configuration Space Header

ATU Device ID ATU Vendor ID O00OH

Primary ATU Status Primary ATU Command 04H

ATU Class Code ATU Revision ID 08H

ATU BIST ATU Header Type ATU Latency Timer | ATU Cacheline Size OCH

Primary Inbound ATU Base Addre