
i960® VH Processor
Developer’s Manual

October 1998

Order Number: 273173-001

i960® VH Processor Developer’s Manual

Information in this document is provided in connection with Intel products. No license, express or implied, by estoppel or otherwise, to any intellectual
property rights is granted by this document. Except as provided in Intel’s Terms and Conditions of Sale for such products, Intel assumes no liability
whatsoever, and Intel disclaims any express or implied warranty, relating to sale and/or use of Intel products including liability or warranties relating to
fitness for a particular purpose, merchantability, or infringement of any patent, copyright or other intellectual property right. Intel products are not
intended for use in medical, life saving, or life sustaining applications.

Intel may make changes to specifications and product descriptions at any time, without notice.

Designers must not rely on the absence or characteristics of any features or instructions marked "reserved" or "undefined." Intel reserves these for
future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them.

The i960® VH Processor may contain design defects or errors known as errata which may cause the product to deviate from published specifications.
Current characterized errata are available on request.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.

Copies of documents which have an ordering number and are referenced in this document, or other Intel literature may be obtained by calling 1-800-
548-4725 or by visiting Intel’s website at http://www.intel.com.

Copyright © Intel Corporation, 1998

*Third-party brands and names are the property of their respective owners.

i960® VH Processor Developer’s Manual iii

Contents
1 Introduction

1.1 Intel’s i960® VH Processor .. 1-1
1.2 i960® VH Processor Features.. 1-1

1.2.1 DMA Controller ... 1-2
1.2.2 Address Translation Unit... 1-2
1.2.3 Messaging Unit ... 1-2
1.2.4 Memory Controller .. 1-2
1.2.5 I2C Bus Interface Unit ... 1-3

1.3 i960® Core Processor Features (80960VH) .. 1-3
1.3.1 Burst Bus .. 1-4
1.3.2 Timer Unit ... 1-4
1.3.3 Priority Interrupt Controller .. 1-5
1.3.4 Faults and Debugging ... 1-5
1.3.5 On-Chip Cache and Data RAM... 1-5
1.3.6 Local Register Cache.. 1-5
1.3.7 Test Features.. 1-5
1.3.8 Memory-Mapped Control Registers .. 1-6
1.3.9 Instructions, Data Types and Memory Addressing Modes 1-6

1.4 About This Document... 1-6
1.4.1 Terminology .. 1-6
1.4.2 Representing Numbers ... 1-7
1.4.3 Fields .. 1-7
1.4.4 Specifying Bit and Signal Values .. 1-7
1.4.5 Signal Name Conventions .. 1-8
1.4.6 Solutions960® Program.. 1-8
1.4.7 Intel Customer Literature and Telephone Support.......................... 1-8
1.4.8 Related Documents .. 1-8
1.4.9 Electronic Information ... 1-9

2 Data Types and Memory Addressing Modes
2.1 Data Types ... 2-1

2.1.1 Word/Dword Notation.. 2-2
2.1.2 Integers ... 2-2
2.1.3 Ordinals... 2-2
2.1.4 Bits and Bit Fields ... 2-3
2.1.5 Triple and Quad Words... 2-3
2.1.6 Register Data Alignment ... 2-3
2.1.7 Literals .. 2-4

2.2 Bit and Byte Ordering in Memory ... 2-4
2.3 Memory Addressing Modes.. 2-4

2.3.1 Absolute .. 2-5
2.3.2 Register Indirect.. 2-5
2.3.3 Index with Displacement ... 2-5
2.3.4 IP with Displacement .. 2-6
2.3.5 Addressing Mode Examples ... 2-6

iv i960® VH Processor Developer’s Manual

3 Programming Environment
3.1 Overview .. 3-1
3.2 Registers and Literals as Instruction Operands ... 3-1

3.2.1 Global Registers ... 3-2
3.2.2 Local Registers ... 3-3
3.2.3 Register Scoreboarding .. 3-3
3.2.4 Literals .. 3-4
3.2.5 Register and Literal Addressing and Alignment.............................. 3-4

3.3 Memory-Mapped Control Registers (MMRs) ... 3-5
3.3.1 i960® Core Processor Function Memory-Mapped Registers 3-5

3.3.1.1 Restrictions on Instructions that Access the
i960® Core Processor Memory-Mapped Registers 3-6

3.3.1.2 Access Faults for i960® Core Processor MMRs............ 3-6
3.3.2 i960® VH Processor Peripheral Memory-Mapped Registers.......... 3-7

3.3.2.1 Accessing The Peripheral Memory-Mapped
Registers.. 3-7

3.4 Architecturally Defined Data Structures ... 3-8
3.5 Memory Address Space... 3-9

3.5.1 Memory Requirements.. 3-10
3.5.2 Data and Instruction Alignment in the Address Space.................. 3-11
3.5.3 Byte, Word and Bit Addressing ... 3-11
3.5.4 Internal Data RAM .. 3-12
3.5.5 Instruction Cache .. 3-12
3.5.6 Data Cache ... 3-12

3.6 Processor-State Registers ... 3-12
3.6.1 Instruction Pointer (IP) Register.. 3-12
3.6.2 Arithmetic Controls Register – AC .. 3-13

3.6.2.1 Initializing and Modifying the AC Register 3-13
3.6.2.2 Condition Code (AC.cc) ... 3-14

3.6.3 Process Controls Register – PC ... 3-15
3.6.3.1 Initializing and Modifying the PC Register 3-16

3.6.4 Trace Controls (TC) Register.. 3-17
3.7 User-Supervisor Protection Model ... 3-17

3.7.1 Supervisor Mode Resources... 3-17
3.7.2 Using the User-Supervisor Protection Model................................ 3-18

4 Cache and On-Chip Data RAM
4.1 Internal Data RAM.. 4-1
4.2 Local Register Cache ... 4-2
4.3 Instruction Cache ... 4-3

4.3.1 Enabling and Disabling the Instruction Cache 4-4
4.3.2 Operation While the Instruction Cache Is Disabled 4-4
4.3.3 Loading and Locking Instructions in the Instruction Cache............. 4-4
4.3.4 Instruction Cache Visibility .. 4-4
4.3.5 Instruction Cache Coherency.. 4-5

4.4 Data Cache .. 4-5
4.4.1 Enabling and Disabling the Data Cache ... 4-5
4.4.2 Multi-Word Data Accesses that Partially Hit the Data Cache 4-5
4.4.3 Data Cache Fill Policy... 4-6
4.4.4 Data Cache Write Policy ... 4-6

i960® VH Processor Developer’s Manual v

4.4.5 Data Cache Coherency and Non-Cacheable Accesses 4-7
4.4.6 External I/O and Bus Masters and Cache Coherency 4-8
4.4.7 Data Cache Visibility ... 4-8

5 Instruction Set Overview
5.1 Instruction Formats... 5-1

5.1.1 Assembly Language Format ... 5-1
5.1.2 Instruction Encoding Formats ... 5-1
5.1.3 Instruction Operands... 5-2

5.2 Instruction Groups .. 5-3
5.2.1 Data Movement... 5-4

5.2.1.1 Load and Store Instructions ... 5-4
5.2.1.2 Move .. 5-5
5.2.1.3 Load Address ... 5-5

5.2.2 Select Conditional ... 5-5
5.2.3 Arithmetic .. 5-6

5.2.3.1 Add, Subtract, Multiply, Divide, Conditional Add,
Conditional Subtract... 5-6

5.2.3.2 Remainder and Modulo.. 5-7
5.2.3.3 Shift, Rotate and Extended Shift 5-7
5.2.3.4 Extended Arithmetic ... 5-8

5.2.4 Logical... 5-8
5.2.5 Bit, Bit Field and Byte Operations ... 5-9

5.2.5.1 Bit Operations .. 5-9
5.2.5.2 Bit Field Operations.. 5-10
5.2.5.3 Byte Operations ... 5-10

5.2.6 Comparison... 5-10
5.2.6.1 Compare and Conditional Compare............................. 5-10
5.2.6.2 Compare and Increment or Decrement........................ 5-11
5.2.6.3 Test Condition Codes... 5-11

5.2.7 Branch... 5-12
5.2.7.1 Unconditional Branch ... 5-12
5.2.7.2 Conditional Branch... 5-12
5.2.7.3 Compare and Branch ... 5-13

5.2.8 Call/Return .. 5-14
5.2.9 Faults .. 5-14
5.2.10 Debug ... 5-15
5.2.11 Atomic Instructions.. 5-15
5.2.12 Processor Management.. 5-16

5.3 Performance Optimization.. 5-16
5.3.1 Instruction Optimizations... 5-16

5.3.1.1 Load / Store Execution Model 5-16
5.3.1.2 Compare Operations.. 5-17
5.3.1.3 Microcoded Instructions ... 5-17
5.3.1.4 Multiply-Divide Unit Instructions 5-17
5.3.1.5 Multi-Cycle Register Operations 5-17
5.3.1.6 Simple Control Transfer ... 5-18
5.3.1.7 Memory Instructions... 5-18
5.3.1.8 Unaligned Memory Accesses....................................... 5-18

5.3.2 Miscellaneous Optimizations .. 5-19
5.3.2.1 Masking of Integer Overflow .. 5-19
5.3.2.2 Avoid Using PFP, SP, R3 As Destinations for

vi i960® VH Processor Developer’s Manual

MDU Instructions ... 5-19
5.3.2.3 Use Global Registers (g0 - g14) As Destinations

for MDU Instructions .. 5-19
5.3.2.4 Execute in Imprecise Fault Mode................................. 5-19

5.3.3 Cache Control ... 5-19

6 Instruction Set Reference
6.1 Notation .. 6-1

6.1.1 Alphabetic Reference.. 6-1
6.1.2 Mnemonic ... 6-2
6.1.3 Format... 6-2
6.1.4 Description .. 6-3
6.1.5 Action .. 6-3
6.1.6 Faults .. 6-4
6.1.7 Example .. 6-4
6.1.8 Opcode and Instruction Format .. 6-4
6.1.9 See Also.. 6-5
6.1.10 Side Effects... 6-5
6.1.11 Notes... 6-5

6.2 Instructions... 6-5
6.2.16 chkbit... 6-27
6.2.20 COMPARE.. 6-31

7 Procedure Calls
7.1 Call and Return Mechanism... 7-2

7.1.1 Local Registers and the Procedure Stack....................................... 7-2
7.1.2 Local Register and Stack Management .. 7-3

7.1.2.1 Frame Pointer .. 7-3
7.1.2.2 Stack Pointer.. 7-4
7.1.2.3 Considerations When Pushing Data onto the Stack 7-4
7.1.2.4 Considerations When Popping Data off the Stack......... 7-4
7.1.2.5 Previous Frame Pointer ... 7-4
7.1.2.6 Return Type Field .. 7-4
7.1.2.7 Return Instruction Pointer .. 7-5

7.1.3 Call and Return Action .. 7-5
7.1.3.1 Call Operation .. 7-5
7.1.3.2 Return Operation ... 7-6

7.1.4 Caching Local Register Sets... 7-6
7.1.4.1 Reserving Local Register Sets for High Priority

Interrupts.. 7-7
7.1.5 Mapping Local Registers to the Procedure Stack......................... 7-10

7.2 Modifying the PFP Register ... 7-10
7.3 Parameter Passing... 7-11
7.4 Local Calls.. 7-12
7.5 System Calls .. 7-13

7.5.1 System Procedure Table .. 7-13
7.5.1.1 Procedure Entries .. 7-14
7.5.1.2 Supervisor Stack Pointer ... 7-15
7.5.1.3 Trace Control Bit .. 7-15

7.5.2 System Call to a Local Procedure... 7-15
7.5.3 System Call to a Supervisor Procedure .. 7-15

i960® VH Processor Developer’s Manual vii

7.6 User and Supervisor Stacks... 7-16
7.7 Interrupt and Fault Calls ... 7-16
7.8 Returns... 7-17
7.9 Branch-and-Link ... 7-18

8 Interrupts
8.1 Overview .. 8-1

8.1.1 The i960® VH Processor Core Interrupt Architecture..................... 8-2
8.1.2 Software Requirements For Interrupt Handling 8-2
8.1.3 Interrupt Priority .. 8-3
8.1.4 Interrupt Table... 8-3

8.1.4.1 Vector Entries... 8-4
8.1.4.2 Pending Interrupts.. 8-5
8.1.4.3 Caching Portions of the Interrupt Table 8-5

8.1.5 Interrupt Stack And Interrupt Record .. 8-5
8.1.6 Posting Interrupts.. 8-6

8.1.6.1 Posting Software Interrupts via sysctl 8-7
8.1.6.2 Posting Software Interrupts Directly in the

Interrupt Table.. 8-7
8.1.6.3 Posting External Interrupts... 8-8
8.1.6.4 Posting Hardware Interrupts .. 8-8

8.1.7 Resolving Interrupt Priority.. 8-8
8.1.8 Sampling Pending Interrupts in the Interrupt Table 8-9
8.1.9 Saving the Interrupt Mask ... 8-10

8.2 The i960® Core Processor Interrupt Controller.. 8-10
8.2.1 Interrupt Controller Dedicated Mode... 8-12
8.2.2 Interrupt Detection .. 8-12
8.2.3 Non-Maskable Interrupt (NMI#) .. 8-14
8.2.4 Timer Interrupts... 8-14
8.2.5 Software Interrupts.. 8-14
8.2.6 Interrupt Operation Sequence... 8-14
8.2.7 Setting Up the Interrupt Controller .. 8-15
8.2.8 Interrupt Service Routines .. 8-15
8.2.9 Interrupt Context Switch.. 8-16

8.2.9.1 Servicing An Interrupt From Executing State 8-16
8.2.9.2 Servicing An Interrupt From Interrupted State 8-17

8.3 PCI And Peripheral Interrupts .. 8-17
8.3.1 Pin Descriptions .. 8-19
8.3.2 PCI Interrupt Routing .. 8-19
8.3.3 Internal Peripheral Interrupt Routing... 8-20

8.3.3.1 XINT6 Interrupt Sources .. 8-20
8.3.3.2 XINT7 Interrupt Sources .. 8-21
8.3.3.3 NMI Interrupt Sources .. 8-21

8.3.4 PCI Outbound Doorbell Interrupts... 8-22
8.4 Memory-mapped Control Registers ... 8-22

8.4.1 PCI Interrupt Routing Select Register (PIRSR) 8-23
8.4.2 Interrupt Control Register – ICON... 8-24
8.4.3 Interrupt Mapping Registers – IMAP0-IMAP2............................... 8-25
8.4.4 Interrupt Mask – IMSK and Interrupt Pending Registers –

IPND ... 8-27
8.4.5 XINT6 Interrupt Status Register – X6ISR 8-29

viii i960® VH Processor Developer’s Manual

8.4.6 XINT7 Interrupt Status Register – X7ISR 8-29
8.4.7 NMI Interrupt Status Register – NISR... 8-30
8.4.8 Interrupt Controller Register Access Requirements...................... 8-32
8.4.9 Default and Reset Register Values... 8-32

8.5 Optimizing Interrupt Performance .. 8-34
8.5.1 Interrupt Service Latency .. 8-35
8.5.2 Features to Improve Interrupt Performance.................................. 8-35

8.5.2.1 Vector Caching Option... 8-35
8.5.2.2 Caching Interrupt Routines and Reserving

Register Frames .. 8-36
8.5.2.3 Caching the Interrupt Stack ... 8-36

8.5.3 Base Interrupt Latency.. 8-36
8.5.4 Maximum Interrupt Latency .. 8-37
8.5.5 Avoiding Certain Destinations for MDU Operations...................... 8-39
8.5.6 XINT3:0# to Primary PCI Interrupt Routing Latency 8-39

9 Faults
9.1 Fault Handling Overview .. 9-1
9.2 Fault Types .. 9-2
9.3 Fault Table ... 9-4
9.4 Stack Used in Fault Handling ... 9-6
9.5 Fault Record... 9-6

9.5.1 Fault Record Description .. 9-6
9.5.2 Fault Record Location... 9-7

9.6 Multiple and Parallel Faults .. 9-8
9.6.1 Multiple Non-Trace Faults on the Same Instruction........................ 9-8
9.6.2 Multiple Trace Fault Conditions on the Same Instruction 9-8
9.6.3 Multiple Trace and Non-Trace Fault Conditions on the Same

Instruction ... 9-9
9.6.4 Parallel Faults ... 9-9

9.6.4.1 Faults on Multiple Instructions Executed in Parallel....... 9-9
9.6.4.2 Fault Record for Parallel Faults 9-10

9.6.5 Override Faults ... 9-10
9.6.6 System Error ... 9-11

9.7 Fault Handling Procedures... 9-11
9.7.1 Possible Fault Handling Procedure Actions.................................. 9-11
9.7.2 Program Resumption Following a Fault.. 9-12

9.7.2.1 Faults Happening Before Instruction Execution........... 9-12
9.7.2.2 Faults Happening During Instruction Execution........... 9-12
9.7.2.3 Faults Happening After Instruction Execution.............. 9-13

9.7.3 Return Instruction Pointer (RIP).. 9-13
9.7.4 Returning to Point in Program Where Fault Occurred 9-13
9.7.5 Returning to a Point in the Program Other Than Where the

Fault Occurred .. 9-13
9.7.6 Fault Controls.. 9-14

9.8 Fault Handling Action ... 9-14
9.8.1 Local Fault Call ... 9-15
9.8.2 System-Local Fault Call .. 9-15
9.8.3 System-Supervisor Fault Call ... 9-15
9.8.4 Faults and Interrupts ... 9-16

9.9 Precise and Imprecise Faults ... 9-16

i960® VH Processor Developer’s Manual ix

9.9.1 Precise Faults ... 9-17
9.9.2 Imprecise Faults.. 9-17
9.9.3 Asynchronous Faults .. 9-17
9.9.4 No Imprecise Faults (AC.nif) Bit.. 9-17
9.9.5 Controlling Fault Precision .. 9-18

9.10 Fault Reference.. 9-18
9.10.1 ARITHMETIC Faults ... 9-19
9.10.2 CONSTRAINT Faults .. 9-20
9.10.3 OPERATION Faults .. 9-20
9.10.4 OVERRIDE Faults .. 9-21
9.10.5 PARALLEL Faults ... 9-22
9.10.6 PROTECTION Faults.. 9-23
9.10.7 TRACE Faults ... 9-24
9.10.8 TYPE Faults .. 9-26

10 Tracing and Debugging
10.1 Trace Controls.. 10-1

10.1.1 Trace Controls Register – TC ... 10-1
10.1.2 PC Trace Enable Bit and Trace-Fault-Pending Flag..................... 10-2

10.2 Trace Modes .. 10-3
10.2.1 Instruction Trace ... 10-3
10.2.2 Branch Trace .. 10-3
10.2.3 Call Trace.. 10-3
10.2.4 Return Trace ... 10-4
10.2.5 Prereturn Trace... 10-4
10.2.6 Supervisor Trace... 10-4
10.2.7 Mark Trace .. 10-4

10.2.7.1 Software Breakpoints ... 10-5
10.2.7.2 Hardware Breakpoints.. 10-5
10.2.7.3 Requesting Modification Rights to Hardware

Breakpoint Resources.. 10-5
10.2.7.4 Breakpoint Control Register – BPCON 10-6
10.2.7.5 Data Address Breakpoint Registers – DABx................ 10-7
10.2.7.6 Instruction Breakpoint Registers – IPBx....................... 10-8

10.3 Generating a Trace Fault ... 10-9
10.4 Handling Multiple Trace Events.. 10-10
10.5 Trace Fault Handling Procedure .. 10-10

10.5.1 Tracing and Interrupt Procedures ... 10-10
10.5.2 Tracing on Calls and Returns ... 10-11

10.5.2.1 Tracing on Explicit Call... 10-11
10.5.2.2 Tracing on Implicit Call... 10-11
10.5.2.3 Tracing on Return from Explicit Call........................... 10-12
10.5.2.4 Tracing on Return from Implicit Call: Fault Case 10-13
10.5.2.5 Tracing on Return from Implicit Call: Interrupt

Case... 10-13

11 Core and Peripheral Control Unit
11.1 Overview .. 11-1
11.2 Register Definitions .. 11-1

11.2.1 Reset/Retry Control Register - RRCR .. 11-1
11.2.2 PCI Interrupt Routing Select Register - PIRSR............................. 11-2

x i960® VH Processor Developer’s Manual

11.2.3 Core Select Register - CSR.. 11-2

12 Initialization and System Requirements
12.1 Overview .. 12-1

12.1.1 Core Initialization .. 12-1
12.1.2 General Initialization ... 12-2

12.2 i960® VH Processor Initialization... 12-2
12.2.1 Initialization Modes ... 12-2
12.2.2 Mode 0 Initialization .. 12-3
12.2.3 Mode 1 Initialization .. 12-3
12.2.4 Mode 2 (Default Mode) ... 12-3
12.2.5 Local Bus Arbitration Unit ... 12-5
12.2.6 Reset State Operation .. 12-5

12.2.6.1 i960® VH Processor Reset State Operation................ 12-5
12.2.6.2 i960® Jx Core Processor Reset State Operation 12-5

12.3 i960® Core Processor Initialization .. 12-6
12.3.1 Self Test Function (STEST, FAIL#) .. 12-7

12.3.1.1 The STEST Signal ... 12-8
12.3.1.2 Local Bus Confidence Test .. 12-8
12.3.1.3 The Fail Signal (FAIL#) .. 12-8
12.3.1.4 IMI Alignment Check and Core Processor Error 12-9
12.3.1.5 FAIL# Code.. 12-9

12.4 Initial Memory Image (IMI) ... 12-10
12.4.1 Initialization Boot Record (IBR)... 12-12
12.4.2 Process Control Block – PRCB... 12-15
12.4.3 Process PRCB Flow ... 12-17

12.4.3.1 AC Initial Image.. 12-18
12.4.3.2 Fault Configuration Word ... 12-19
12.4.3.3 Instruction Cache Configuration Word 12-19
12.4.3.4 Register Cache Configuration Word 12-19

12.4.4 Control Table .. 12-19
12.5 Device Identification on Reset.. 12-20
12.6 Reinitializing and Relocating Data Structures .. 12-22
12.7 System Requirements.. 12-23

12.7.1 Clocking .. 12-23
12.7.2 Output Clocks ... 12-23
12.7.3 Reset... 12-23
12.7.4 Power and Ground Requirements (VCC, VSS) 12-24
12.7.5 Power and Ground Planes.. 12-24
12.7.6 Decoupling Capacitors.. 12-25
12.7.7 High Frequency Design Considerations 12-25
12.7.8 Line Termination ... 12-25
12.7.9 Latchup ... 12-26
12.7.10 Interference... 12-27

13 Core Processor Local Bus Configuration
13.1 Memory Attributes .. 13-1

13.1.1 Physical Memory Attributes .. 13-1
13.1.2 Logical Memory Attributes .. 13-1

13.2 Programming the Physical Memory Attributes (Pmcon Registers) 13-3
13.2.1 Local Bus Width .. 13-4

i960® VH Processor Developer’s Manual xi

13.3 Physical Memory Attributes At Initialization.. 13-4
13.3.1 Bus Control Register – BCON .. 13-4

13.4 Boundary Conditions For Physical Memory Regions 13-5
13.4.1 Internal Memory Locations.. 13-5
13.4.2 Bus Transactions Across Region Boundaries............................... 13-5
13.4.3 Modifying the PMCON Registers .. 13-6

13.5 Programming The Logical Memory Attributes .. 13-6
13.5.1 Logical Memory Address Registers - LMADR0:1 13-6
13.5.2 Defining the Effective Range of a Logical Data Template 13-8
13.5.3 Data Caching Enable .. 13-8
13.5.4 Enabling the Logical Memory Template.. 13-8
13.5.5 Initialization ... 13-9
13.5.6 Boundary Conditions for Logical Memory Templates 13-9

13.5.6.1 Internal Memory Locations and Peripheral MMRs 13-9
13.5.6.2 Overlapping Logical Data Template Ranges 13-9
13.5.6.3 Accesses Across LMT Boundaries 13-9

13.5.7 Modifying the LMT Registers .. 13-9

14 Local Bus
14.1 Overview .. 14-2

14.1.1 Bus Operation ... 14-2
14.2 Basic Bus States .. 14-3
14.3 Bus Signal Types ... 14-4

14.3.1 Clock Signal .. 14-4
14.3.2 Address/Data Signal Definitions ... 14-5
14.3.3 Control/Status Signal Definitions .. 14-5
14.3.4 Bus Width.. 14-6
14.3.5 Basic Bus Accesses.. 14-7
14.3.6 Burst Transactions .. 14-10

14.3.6.1 i960® Core Processor Burst Transactions................. 14-10
14.3.6.2 ATU and DMA Burst Transactions 14-16

14.3.7 Wait States.. 14-17
14.3.7.1 Recovery States... 14-19

14.4 Bus and Control Signals During Recovery and Idle States 14-22
14.5 Atomic Bus Transactions.. 14-22
14.6 Bus Arbitration.. 14-23

14.6.1 HOLD/HOLDA Protocol .. 14-23

15 Memory Controller
15.1 Supported Memory Types .. 15-1
15.2 Theory Of Operation... 15-2
15.3 Memory Controller Wait States .. 15-3
15.4 ROM, SRAM and FLASH CONTROL .. 15-3
15.5 Memory Bank Programming Registers .. 15-6

15.5.1 Memory Bank Control Register - MBCR 15-6
15.5.2 Memory Bank Base Address Registers - MBBAR0:1 15-8
15.5.3 Memory Bank Wait State Registers - MBRWS0:1,

MBWWS0:1 .. 15-9
15.5.3.1 Memory Bank Read Wait State Registers -

MBRWS0:1 .. 15-10
15.5.3.2 Memory Bank Write Wait State Registers -

xii i960® VH Processor Developer’s Manual

MBWWS0:1 ... 15-11
15.5.4 Memory Bank Waveforms... 15-12
15.5.5 Extending Memory Write Enable Signals.................................... 15-16

15.6 DRAM Control .. 15-16
15.6.1 DRAM Organization and Configuration....................................... 15-17
15.6.2 DRAM Addressing .. 15-21
15.6.3 DRAM Registers ... 15-21
15.6.4 DRAM Bank Control Register — DBCR 15-22
15.6.5 DRAM Base Address Register — DBAR 15-23
15.6.6 DRAM Read Wait State Register — DRWS 15-24
15.6.7 DRAM Write Wait State Register — DWWS............................... 15-25
15.6.8 DRAM Refresh Interval Register — DRIR 15-27

15.7 Error Checking and Reporting.. 15-29
15.7.1 DRAM Parity Enable Register — DPER..................................... 15-29
15.7.2 Bus Monitor Enable Register — BMER 15-30
15.7.3 Memory Error Address Register — MEAR 15-31
15.7.4 Local Processor Interrupt Status Register — LPISR 15-32

15.8 DRAM Waveforms ... 15-33
15.8.1 Non-Interleaved Fast Page-Mode DRAM Waveform.................. 15-33
15.8.2 Interleaved FPM DRAM Waveform... 15-34
15.8.3 EDO DRAM Waveform ... 15-37

15.9 Initializing Dram Devices.. 15-38
15.10 Overlapping Memory Regions.. 15-39

16 Address Translation Unit
16.1 Overview .. 16-1
16.2 ATU Transaction Queues... 16-2

16.2.1 Address Queues ... 16-2
16.2.2 Data Queues... 16-3

16.3 ATU Address Translation ... 16-3
16.3.1 Inbound Address Translation .. 16-4
16.3.2 Inbound Write Transaction.. 16-6
16.3.3 Inbound Read Transaction.. 16-7
16.3.4 Inbound Configuration Cycle Translation...................................... 16-8
16.3.5 Discard Timers.. 16-8
16.3.6 Outbound Address Translation ... 16-8

16.3.6.1 Outbound Address Translation Windows..................... 16-9
16.3.6.2 Direct Addressing Window... 16-12

16.3.7 Outbound Write Transaction ... 16-13
16.3.8 Outbound Read Transaction... 16-14
16.3.9 Outbound Configuration Cycle Translation 16-14

16.4 Messaging Unit .. 16-15
16.5 Expansion Rom Translation Unit.. 16-15
16.6 ATU Data Flow Error Conditions .. 16-15
16.7 Register Definitions .. 16-18

16.7.1 ATU Vendor ID Register - ATUVID... 16-21
16.7.2 ATU Device ID Register - ATUDID ... 16-22
16.7.3 Primary ATU Command Register - PATUCMD 16-22
16.7.4 Primary ATU Status Register - PATUSR 16-23
16.7.5 ATU Revision ID Register - ATURID .. 16-24

i960® VH Processor Developer’s Manual xiii

16.7.6 ATU Class Code Register - ATUCCR... 16-25
16.7.7 ATU Cacheline Size Register - ATUCLSR 16-25
16.7.8 ATU Latency Timer Register - ATULT .. 16-26
16.7.9 ATU Header Type Register - ATUHTR....................................... 16-26
16.7.10 ATU BIST Register - ATUBISTR .. 16-27
16.7.11 Primary Inbound ATU Base Address Register - PIABAR 16-28
16.7.12 Determining Block Sizes for Base Address Registers 16-29
16.7.13 ATU Subsystem Vendor ID Register - ASVIR 16-30
16.7.14 ATU Subsystem ID Register - ASIR ... 16-31
16.7.15 Expansion ROM Base Address Register - ERBAR 16-31
16.7.16 ATU Interrupt Line Register - ATUILR .. 16-32
16.7.17 ATU Interrupt Pin Register - ATUIPR ... 16-33
16.7.18 ATU Minimum Grant Register - ATUMGNT................................ 16-34
16.7.19 ATU Maximum Latency Register - ATUMLAT 16-34
16.7.20 Primary Inbound ATU Limit Register - PIALR............................. 16-35
16.7.21 Primary Inbound ATU Translate Value Register - PIATVR......... 16-36
16.7.22 Primary Outbound Memory Window Value Register -

POMWVR ... 16-36
16.7.23 Primary Outbound I/O Window Value Register - POIOWVR 16-37
16.7.24 Expansion ROM Limit Register - ERLR 16-38
16.7.25 Expansion ROM Translate Value Register - ERTVR.................. 16-38
16.7.26 ATU Configuration Register - ATUCR .. 16-39
16.7.27 Primary ATU Interrupt Status Register - PATUISR..................... 16-40
16.7.28 Primary Outbound Configuration Cycle Address Register -

POCCAR... 16-41
16.7.29 Primary Outbound Configuration Cycle Data Port - POCCDP.... 16-42
16.7.30 Reset/Retry Control Register - RRCR .. 16-42
16.7.31 PCI Interrupt Routing Select Register PIRSR............................. 16-42
16.7.32 Core Select Register - CSR .. 16-43

16.8 Powerup/Default Status.. 16-43
16.9 Reset Modes .. 16-43

17 Messaging Unit
17.1 Overview .. 17-1
17.2 Message Registers... 17-2

17.2.1 Outbound Messages... 17-2
17.2.2 Inbound Messages.. 17-2

17.3 Doorbell Registers.. 17-2
17.3.1 Outbound Doorbells .. 17-3
17.3.2 Inbound Doorbells ... 17-3

17.4 Register Definitions .. 17-3
17.4.1 Inbound Message Registers - IMRx.. 17-5
17.4.2 Outbound Message Registers - OMRx ... 17-6
17.4.3 Inbound Doorbell Register - IDR... 17-6
17.4.4 Inbound Interrupt Status Register - IISR 17-7
17.4.5 Inbound Interrupt Mask Register - IIMR.. 17-8
17.4.6 Outbound Doorbell Register - ODR .. 17-9
17.4.7 Outbound Interrupt Status Register - OISR 17-10
17.4.8 Outbound Interrupt Mask Register - OIMR 17-11

xiv i960® VH Processor Developer’s Manual

18 Bus Arbitration
18.1 Overview .. 18-1
18.2 Local Bus Arbitration Unit... 18-1

18.2.1 Local Bus Arbitration Control Register - LBACR........................... 18-4
18.2.2 Removing Local Bus Ownership... 18-5
18.2.3 i960® Core Processor Bus Usage .. 18-5
18.2.4 External Bus Arbitration Support... 18-5
18.2.5 Local Bus Arbitration Latency Counter ... 18-6
18.2.6 Local Bus Arbitration Latency Counter Register – LBALCR......... 18-6
18.2.7 Local Bus Backoff ... 18-7

18.3 Internal Arbitration Units... 18-7
18.3.1 Internal Master Latency Timer .. 18-7

19 Timers
19.1 Timer Registers .. 19-2

19.1.1 Timer Mode Register – TMR0:1.. 19-2
19.1.1.1 Bit 0 - Terminal Count Status Bit (TMRx.tc) 19-3
19.1.1.2 Bit 1 - Timer Enable (TMRx.enable) 19-3
19.1.1.3 Bit 2 - Timer Auto Reload Enable (TMRx.reload) 19-4
19.1.1.4 Bit 3 - Timer Register Supervisor Read/Write

Control (TMRx.sup).. 19-4
19.1.1.5 Bits 4, 5 - Timer Input Clock Select (TMRx.csel1:0) 19-5

19.1.2 Timer Count Register – TCR0:1 ... 19-5
19.1.3 Timer Reload Register – TRR0:1.. 19-6

19.2 Timer Operation ... 19-6
19.2.1 Basic Timer Operation .. 19-6
19.2.2 Load/Store Access Latency for Timer Registers........................... 19-7

19.3 Timer Interrupts .. 19-8
19.4 Powerup/Reset Initialization... 19-9
19.5 Uncommon TCRx and TRRx Conditions ... 19-9
19.6 Timer State Diagram .. 19-10

20 DMA Controller
20.1 Overview .. 20-1
20.2 Theory Of Operation .. 20-2
20.3 DMA Transfer ... 20-3

20.3.1 Chain Descriptors ... 20-3
20.3.2 Initiating DMA Transfers ... 20-5
20.3.3 Scatter Gather DMA Transfers ... 20-6
20.3.4 Synchronizing a Program to Chained Transfers 20-7
20.3.5 Appending to the End of a Chain .. 20-8

20.4 Demand Mode DMA... 20-9
20.5 Wait States Initiated by the DMA Controller ... 20-9
20.6 Data Transfers ... 20-18

20.6.1 PCI to Local Memory Transfers .. 20-18
20.6.2 Local Memory to PCI Transfers .. 20-19
20.6.3 Local Memory to PCI Transfers using Memory Write and

Invalidate... 20-20
20.6.4 Exclusive Access .. 20-20

20.7 Register Definitions .. 20-20

i960® VH Processor Developer’s Manual xv

20.7.1 Channel Control Register - CCRx... 20-21
20.7.2 Channel Status Register - CSRx .. 20-22
20.7.3 Descriptor Address Register - DARx .. 20-24
20.7.4 Next Descriptor Address Register - NDARx 20-24
20.7.5 PCI Address Register - PADRx .. 20-25
20.7.6 PCI Upper Address Register - PUADRx 20-26
20.7.7 80960 Local Address Register - LADRx 20-26
20.7.8 Byte Count Register - BCRx ... 20-27
20.7.9 Descriptor Control Register - DCRx .. 20-28

20.8 Interrupts .. 20-29
20.9 Packing and Unpacking.. 20-30
20.10 DMA Channel Programming Examples.. 20-31

20.10.1 Software DMA Controller Initialization .. 20-31
20.10.2 Software Start DMA Transfer .. 20-32
20.10.3 Software Suspend Channel .. 20-32

21 I2C Bus Interface Unit
21.1 Overview .. 21-1
21.2 Theory of Operation ... 21-2
21.3 Start and Stop Bus States .. 21-4

21.3.1 START Condition .. 21-5
21.3.2 No START or STOP Condition ... 21-5
21.3.3 STOP Condition .. 21-5

21.4 Serial Clock Line (SCL) Management .. 21-5
21.4.1 SCL Clock Generation .. 21-6

21.5 Data and Addressing Management.. 21-6
21.5.1 Addressing a Slave Device ... 21-7

21.6 Arbitration ... 21-7
21.6.1 SCL Arbitration.. 21-8
21.6.2 SDA Arbitration ... 21-8

21.7 I2C Acknowledge.. 21-10
21.8 I2C Master and Slave Operations .. 21-11

21.8.1 Master Operations .. 21-12
21.8.2 Slave Operations .. 21-13
21.8.3 General Call Address.. 21-14

21.9 The I2C Bus Unit and Reset... 21-15
21.10 I2C Registers.. 21-15

21.10.1 I2C Control Register - ICR .. 21-15
21.10.2 I2C Status Register- ISR... 21-18
21.10.3 I2C Slave Address Register – ISAR ... 21-20
21.10.4 I2C Data Buffer Register – IDBR .. 21-21
21.10.5 I2C Clock Count Register – ICCR... 21-21

22 Test Features
22.1 On-Circuit Emulation (ONCE) .. 22-1

22.1.1 Entering/Exiting ONCE Mode ... 22-1
22.1.2 ONCE Mode and Boundary-Scan (JTAG) are Incompatible......... 22-2
22.1.3 How to use the Data Enable (DEN#) Signal with an

In-Circuit Emulator .. 22-2
22.1.3.1 DEN# Alternatives.. 22-2

xvi i960® VH Processor Developer’s Manual

22.2 Boundary-Scan (JTAG).. 22-3
22.2.1 Boundary-Scan Architecture ... 22-3
22.2.2 TAP Pins ... 22-4
22.2.3 Instruction Register ... 22-5

22.2.3.1 Boundary-Scan Instruction Set 22-5
22.2.4 TAP Test Data Registers .. 22-7

22.2.4.1 Device Identification Register 22-7
22.2.4.2 Bypass Register... 22-7
22.2.4.3 RUNBIST Register ... 22-8
22.2.4.4 Boundary-Scan Register .. 22-8

22.2.5 TAP Controller .. 22-13
22.2.5.1 Test Logic Reset State... 22-14
22.2.5.2 Run-Test/Idle State .. 22-15
22.2.5.3 Select-DR-Scan State.. 22-15
22.2.5.4 Capture-DR State .. 22-15
22.2.5.5 Shift-DR State .. 22-15
22.2.5.6 Exit1-DR State ... 22-15
22.2.5.7 Pause-DR State ... 22-16
22.2.5.8 Exit2-DR State ... 22-16
22.2.5.9 Update-DR State.. 22-16
22.2.5.10 Select-IR Scan State.. 22-16
22.2.5.11 Capture-IR State .. 22-16
22.2.5.12 Shift-IR State.. 22-17
22.2.5.13 Exit1-IR State... 22-17
22.2.5.14 Pause-IR State... 22-17
22.2.5.15 Exit2-IR State... 22-17
22.2.5.16 Update-IR State ... 22-17

22.2.6 Boundary-Scan Example .. 22-18

A Machine-level Instruction Formats
A.1 General Instruction Format ..A-1
A.2 REG Format ...A-2
A.3 COBR Format ..A-3
A.4 CTRL Format ...A-4
A.5 MEM Format ..A-4

A.5.1 MEMA Format Addressing ..A-5
A.5.2 MEMB Format Addressing ..A-5

B Opcodes and Execution Times
B.1 Instruction Reference by Opcode...B-1

C Memory-Mapped Registers
C.1 Overview ..C-1
C.2 Supervisor Space Family Registers and Tables ..C-1
C.3 Peripheral Memory-Mapped Register Address SpaceC-4
C.4 Accessing The Peripheral Memory-Mapped RegistersC-5
C.5 Architecturally Reserved Memory Space ...C-5
C.6 Peripheral Memory-Mapped Register Address SpaceC-6

i960® VH Processor Developer’s Manual xvii

Index

Figures

1-1 i960® VH Processor Functional Block Diagram... 1-1
1-2 80960JF Core Processor Block Diagram ... 1-3
2-1 Data Types and Ranges... 2-1
3-1 i960® VH Processor Programming Environment ... 3-2
3-2 Local Memory Address Space ... 3-9
3-3 Arithmetic Controls Register – AC.. 3-13
3-4 Process Controls Register – PC... 3-15
4-1 Internal Data RAM and Register Cache ... 4-1
5-1 Machine-Level Instruction Formats .. 5-2
6-1 dcctl src1 and src/dst Formats.. 6-38
6-2 Store Data Cache to Memory Output Format... 6-39
6-3 D-Cache Tag and Valid Bit Formats... 6-39
6-4 icctl src1 and src/dst Formats... 6-55
6-5 Store Instruction Cache to Memory Output Format.................................... 6-56
6-6 I-Cache Set Data, Tag and Valid Bit Formats .. 6-57
6-7 Src1 Operand Interpretation... 6-104
6-8 src/dst Interpretation for Breakpoint Resource Request 6-105
7-1 Procedure Stack Structure and Local Registers .. 7-3
7-2 Frame Spill ... 7-8
7-3 Frame Fill ... 7-9
7-4 System Procedure Table.. 7-14
7-5 Previous Frame Pointer Register – PFP .. 7-17
8-1 Interrupt Handling Data Structures... 8-2
8-2 Interrupt Table .. 8-4
8-3 Storage of an Interrupt Record on the Interrupt Stack 8-6
8-4 Interrupt Controller ... 8-11
8-5 Interrupt Pin Vector Assignment... 8-12
8-6 Interrupt Fast Sampling .. 8-13
8-7 Interrupt Controller Connections for 80960VH ... 8-18
8-8 Interrupt Service Flowchart .. 8-34
9-1 Fault-Handling Data Structures .. 9-1
9-2 Fault Table and Fault Table Entries ... 9-5
9-3 Fault Record... 9-7
9-4 Storage of the Fault Record on the Stack .. 9-8
10-1 i960® VH processor Trace Controls Register – TC 10-2
12-1 Initialization Examples Flow Chart ... 12-4
12-2 Processor Initialization Flow... 12-7
12-3 FAIL# Timing .. 12-9
12-4 Initial Memory Image (IMI) and Process Control Block (PRCB)............... 12-12
12-5 Control Table.. 12-20
12-6 VCCPLL Lowpass Filter ... 12-24
12-7 Reducing Characteristic Impedance .. 12-25
12-8 Series Termination ... 12-26
12-9 AC Termination .. 12-26

xviii i960® VH Processor Developer’s Manual

12-10 Avoid Closed-Loop Signal Paths.. 12-27
13-1 PMCON and LMCON Example.. 13-2
14-1 The Local Bus .. 14-1
14-2 Bus States with Arbitration ... 14-4
14-3 Data Width and Byte Encodings .. 14-6
14-4 Non-Burst Read and Write Transactions Without Wait States,

32-Bit Bus... 14-9
14-5 i960® Core Processor Summary of Aligned and Unaligned

Accesses (32-Bit Bus) .. 14-13
14-6 i960® Core Processor Summary of Aligned and Unaligned

Accesses (32-Bit Bus) (Continued) .. 14-14
14-7 Burst Read and Write Transactions w/o Wait States, 8-bit Bus 14-15
14-8 Burst Read and Write Transactions w/o Wait States, 32-bit Bus 14-16
14-9 ATU or DMA 7-Word Unaligned Burst Transfer 14-17
14-10 Burst Write Transactions With 2,1,1,1 Wait States, 32-bit Bus 14-19
14-11 Burst Read/Write Transactions with 1,0 Wait States - Extra TR

State on Read, 16-Bit Bus.. 14-21
14-12 The LOCK# Signal ... 14-23
14-13 Arbitration Timing Diagram for a Bus Master ... 14-24
15-1 i960® VH Processor Integrated Memory Controller................................... 15-1
15-2 Memory Controller Signal Overview... 15-3
15-3 Bank0 32-Bit ROM or SRAM System... 15-5
15-4 Bank0 8-Bit ROM or SRAM System... 15-5
15-5 32-Bit Bus, Burst Flash Memory, Read Access with 2,1,1,1 Wait

States ... 15-13
15-6 32-Bit Bus, SRAM Write Access with 2,1,1,1, Wait States 15-14
15-7 32-Bit Bus, SRAM Read Accesses with 0 Wait States 15-15
15-8 32-Bit Bus, SRAM Write Access With 0 Wait States................................ 15-15
15-9 32-Bit Bus, Write Access with Extended MWE3:0# 15-16
15-10 Non-Interleaved, 32-Bit, Single Bank, DRAM System 15-18
15-11 Interleaved 32-Bit DRAM System, 1 Bank, 2 Leaves............................... 15-19
15-12 DRAM Read Cycle Programmable Parameter Example.......................... 15-24
15-13 DRAM Write Cycle Programmable Parameter Example.......................... 15-26
15-14 CAS#-Before-RAS# DRAM Refresh .. 15-28
15-15 FPM DRAM System Read Access, Non-Interleaved, 3,1,1,1,

Wait States... 15-34
15-16 FPM DRAM System Write Cycle.. 15-34
15-17 FPM DRAM System Read Access, Interleaved, 2,0,0,0 Wait States....... 15-36
15-18 FPM DRAM System Write Access, Interleaved, 1,0,0,0 Wait States....... 15-37
15-19 EDO DRAM System Read Access, 2,0,0,0, Wait States 15-38
15-20 EDO DRAM System Write Access, 1,0,0,0 Wait States 15-38
16-1 Address Translation Unit (ATU) Block Diagram... 16-1
16-2 ATU Transaction Queue Block Diagram .. 16-2
16-3 Inbound Address Detection.. 16-5
16-4 Inbound Translation Example .. 16-6
16-5 80960 Local Bus Memory Map - Outbound Translation Window............. 16-10
16-6 Outbound Address Translation Windows... 16-12
16-7 Direct Addressing Window ... 16-13
16-8 ATU Configuration Space Header.. 16-19
17-1 PCI Memory Map ... 17-4
18-1 Local Bus Arbitration Example ... 18-3

i960® VH Processor Developer’s Manual xix

19-1 Timer Functional Diagram .. 19-1
19-2 Timer Unit State Diagram... 19-10
20-1 DMA Controller Block Diagram .. 20-1
20-2 DMA Channel Block Diagram... 20-2
20-3 DMA Chain Descriptor.. 20-4
20-4 DMA Chaining Operation ... 20-5
20-5 Example of Gather Chaining .. 20-6
20-6 Synchronizing to Chained Transfers .. 20-8
20-7 DMA - Aligned Write to Device, Wait States, Device Always

Requesting ... 20-10
20-8 DMA - Aligned Write to Device, DMA Inserting Wait States,

Device Always Requesting... 20-11
20-9 DMA - Aligned Read from Device, DMA Inserting Wait States,

Device Always Requesting... 20-12
20-10 DMA - Aligned Read from Device, Device Inserting Wait States,

Device Always Requesting... 20-13
20-11 DMA - Aligned Write to Device, Zero Wait States, Device ends

Transfer .. 20-14
20-12 DMA - Aligned Write to Device, Zero Wait States, Device ends

Transfer .. 20-15
20-13 DMA - READ from Device, Wait States, Device ends Transfer 20-16
20-14 DMA - Unaligned Read from Device, DMA Inserting Wait States,

Device Always Requesting... 20-17
20-15 Optimization of an Unaligned DMA .. 20-31
20-16 Software Example for Channel Initialization... 20-32
20-17 Software Example for Channel Suspend ... 20-32
21-1 I2C Unit Block Diagram .. 21-1
21-2 I2C Bus Configuration Example ... 21-3
21-3 Bit Transfer on the I2C Bus .. 21-4
21-4 Start and Stop Conditions .. 21-4
21-5 Data Format of First Byte in Master Transaction.. 21-7
21-6 Clock Synchronization During the Arbitration Procedure 21-8
21-7 Arbitration Procedure of Two Masters.. 21-9
21-8 Acknowledge on the I2C Bus.. 21-10
21-9 Master-Receiver Read from Slave-Transmitter.. 21-12
21-10 Master-Receiver Read from Slave-Transmitter / Repeated Start /

Master-Transmitter Write to Slave-Receiver .. 21-12
21-11 A Complete Data Transfer.. 21-13
21-12 Master-Transmitter Write to Slave-Receiver .. 21-13
21-13 Master-Receiver Read to Slave-Transmitter .. 21-13
21-14 Master-Receiver Read to Slave-Transmitter, Repeated START,

Master-Transmitter Write to Slave-Receiver .. 21-14
21-15 General Call Address ... 21-14
22-1 DEN# Alternatives .. 22-3
22-2 Test Access Port Block Diagram.. 22-4
22-3 TAP Controller State Diagram.. 22-14
22-4 Example Showing Typical JTAG Operations ... 22-19
22-5 Timing Diagram Illustrating the Loading of Instruction Register............... 22-20
22-6 Timing Diagram Illustrating the Loading of Data Register........................ 22-21
A-1 Instruction Formats...A-1
C-1 i960® VH processor Address Space ..C-6

xx i960® VH Processor Developer’s Manual

Tables

1-1 Additional Information Sources .. 1-8
1-2 Electronic Information .. 1-9
2-1 80960 and PCI Architecture Data Word Notation Differences 2-2
2-2 Memory Addressing Modes ... 2-4
3-1 Registers and Literals Used as Instruction Operands.................................. 3-2
3-2 Allowable Register Operands... 3-5
3-3 Data Structure Descriptions ... 3-8
3-4 Alignment of Data Structures in the Address Space 3-11
3-5 Condition Codes for True or False Conditions ... 3-14
3-6 Condition Codes for Equality and Inequality Conditions 3-14
3-7 Condition Codes for Carry Out and Overflow... 3-14
4-1 Load Instruction Updates ... 4-6
5-1 Instruction Encoding Formats (REG, COBR, CRTL, MEM) 5-2
5-2 i960® VH Processor Instruction Set... 5-3
5-3 Arithmetic Operations... 5-6
6-1 Pseudo-Code Symbol Definitions .. 6-3
6-2 Faults Applicable to All Instructions ... 6-3
6-3 Common Faulting Conditions... 6-4
6-4 Condition Code Mask Descriptions .. 6-6
6-5 concmpo Example: Register Ordering and CC .. 6-35
6-6 dcctl Operand Fields .. 6-37
6-7 dcctl Status Values and D-Cache Parameters... 6-38
6-8 icctl Operand Fields ... 6-54
6-9 icctl Status Values and I-Cache Parameters.. 6-56
6-10 sysctl Field Definitions.. 6-104
6-11 Cache Mode Configuration .. 6-104
7-1 Encodings of Entry Type Field in System Procedure Table....................... 7-15
7-2 Encoding of Return Status Field .. 7-17
8-1 Interrupt Input Pin Descriptions.. 8-19
8-2 PCI Interrupt Routing Summary for 80960VH.. 8-20
8-3 XINT6 Interrupt Sources .. 8-20
8-4 XINT7 Interrupt Sources .. 8-21
8-5 NMI Interrupt Sources .. 8-22
8-6 Interrupt Control Registers Memory-Mapped Addresses........................... 8-22
8-7 PCI Interrupt Routing Select Register – PIRSR ... 8-23
8-8 Interrupt Control Register – ICON.. 8-25
8-9 Interrupt Map Register 0 – IMAP0.. 8-26
8-10 Interrupt Map Register 1 – IMAP1.. 8-26
8-11 Interrupt Map Register 2 – IMAP2.. 8-27
8-12 Interrupt Pending Register – IPND... 8-27
8-13 Interrupt Mask Register – IMSK ... 8-28
8-14 XINT6 Interrupt Status Register – X6ISR... 8-29
8-15 XINT7 Interrupt Status Register – X7ISR... 8-30
8-16 NMI Interrupt Status Register – NISR .. 8-31
8-17 Default Interrupt Routing and Status Values Summary 8-32
8-18 Location of Cached Vectors in Internal RAM ... 8-35

i960® VH Processor Developer’s Manual xxi

8-19 Base Interrupt Latency ... 8-37
8-20 Worst-Case Interrupt Latency Controlled by divo to Destination r15 8-37
8-21 Worst-Case Interrupt Latency Controlled by divo to Destination r3 8-37
8-22 Worst-Case Interrupt Latency Controlled by calls 8-38
8-23 Worst-Case Interrupt Latency When Delivering a Software Interrupt 8-38
8-24 Worst-Case Interrupt Latency Controlled by flushreg of One

Stack Frame... 8-39
9-1 i960® VH Processor Fault Types and Subtypes .. 9-3
9-2 Fault Control Bits and Masks ... 9-14
10-1 src/dst Encoding... 10-6
10-2 Breakpoint Control Register – BPCON .. 10-6
10-3 Configuring the Data Address Breakpoint Registers – DABx..................... 10-7
10-4 Programming the Data Address Breakpoint Modes – DABx...................... 10-7
10-5 Data Address Breakpoint Register – DABx.. 10-8
10-6 Instruction Breakpoint Register – IPBx... 10-9
10-7 Instruction Breakpoint Modes... 10-9
10-8 Tracing on Explicit Call ... 10-11
10-9 Tracing on Implicit Call ... 10-12
10-10 Tracing on Return from Explicit Call... 10-12
11-1 ATU Extended Configuration Register Addresses 11-1
11-2 Reset/Retry Control Register - RRCR.. 11-1
11-3 Core Select Register - CSR ... 11-3
11-4 Selecting the 80960 Processor Speed ... 11-3
12-1 Initialization Modes... 12-2
12-2 Reset Values .. 12-5
12-3 BIST Failure Codes .. 12-9
12-4 Non-BIST Failure Codes .. 12-10
12-5 Initialization Boot Record.. 12-13
12-6 PMCON14_15 Register Bit Description in IBR... 12-15
12-7 PRCB Configuration ... 12-15
12-8 Process Control Block Configuration Words .. 12-17
12-9 Processor Device ID Register - PDIDR.. 12-21
12-10 i960® Core Processor Device ID Register - DEVICEID........................... 12-21
13-1 PMCON Address Mapping ... 13-3
13-2 Physical Memory Control Registers – PMCON0:15................................... 13-4
13-3 Bus Control Register – BCON.. 13-5
13-4 Logical Memory Address Registers – LMADR0:1 13-6
13-5 Logical Memory Mask Registers – LMMR0:1... 13-7
13-6 Default Logical Memory Configuration Register – DLMCON 13-7
14-1 Differences Between 80960JT and 80960VH Local Buses........................ 14-2
14-2 8-Bit Bus Width Byte Enable Encodings .. 14-7
14-3 16-Bit Bus Width Byte Enable Encodings .. 14-7
14-4 32-Bit Bus Width Byte Enable Encodings .. 14-7
14-5 i960® Core Processor Natural Boundaries for Load and

Store Accesses .. 14-10
14-6 i960® Core Processor Summary of Byte Load and Store Accesses 14-11
14-7 i960® Core Processor Summary of Short Word Load and Store

Accesses .. 14-11
14-8 i960® Core Processor Summary of n-Word Load and Store

Accesses (n = 1, 2, 3, 4) .. 14-11

xxii i960® VH Processor Developer’s Manual

15-1 ROM, SRAM and Flash Control Signals .. 15-4
15-2 Memory Bank Register Summary .. 15-6
15-3 Memory Bank Control Register – MBCR ... 15-7
15-4 Memory Bank Base Address Registers – MBBAR0:1................................ 15-9
15-5 Memory Bank Read Wait States Register – MBRWS0:1 15-10
15-6 Memory Bank Write Wait States Register – MBWWS0:1 15-11
15-7 Burst Flash Memory, Read Access Example Programming Summary.... 15-13
15-8 SRAM Write Access Example Programming Summary 15-13
15-9 SRAM Read Access Example Programming Summary........................... 15-14
15-10 SRAM Write Access Example Programming Summary 15-15
15-11 Write Access with Extended MWE3:0# Example Programming

Summary.. 15-16
15-12 DRAM Control Signals ... 15-17
15-13 Supported DRAM Configurations... 15-18
15-14 Supported DRAM Configurations (Symmetric Addressing Only) 15-19
15-15 MA11:0 Address Bits for Non-Interleaved/Interleaved 15-21
15-16 DRAM Register Summary.. 15-21
15-17 DRAM Bank Control Register — DBCR... 15-22
15-18 DRAM Base Address Register — DBAR ... 15-23
15-19 DRAM Bank Read Wait State Register — DRWS 15-25
15-20 DRAM Bank Write Wait State Register — DWWS................................... 15-26
15-21 DRAM Refresh Interval Register — DRIR ... 15-28
15-22 Error Checking and Reporting Register Summary................................... 15-29
15-23 DRAM Parity Enable Register — DPER .. 15-30
15-24 Bus Monitor Enable Register — BMER ... 15-31
15-25 Memory Error Address Register — MEAR... 15-32
15-26 Local Processor Interrupt Status Register — LPISR 15-32
15-27 FPM (Non-Interleaved) DRAM Example Programming Summary 15-33
15-28 FPM (Interleaved) DRAM Example Programming Summary................... 15-35
15-29 EDO DRAM Example Programming Summary.. 15-37
15-30 Memory Precedence .. 15-39
16-1 ATU Command Support ... 16-4
16-2 Inbound Write Error Conditions.. 16-16
16-3 Inbound Read Error Conditions.. 16-16
16-4 Outbound Write Error Conditions ... 16-17
16-5 Outbound Read Error Conditions... 16-17
16-6 Primary ATU Error Reporting Summary... 16-17
16-7 ATU Configuration Space Register Summary.. 16-19
16-8 ATU Vendor ID Register - ATUVID .. 16-22
16-9 ATU Device ID Register - ATUDID .. 16-22
16-10 Primary ATU Command Register - PATUCMD.. 16-23
16-11 Primary ATU Status Register - PATUSR ... 16-24
16-12 ATU Revision ID Register - ATURID.. 16-25
16-13 ATU Class Code Register - ATUCCR.. 16-25
16-14 ATU Cacheline Size Register - ATUCLSR... 16-26
16-15 ATU Latency Timer Register - ATULT ... 16-26
16-16 ATU Header Type Register - ATUHTR .. 16-27
16-17 ATU BIST Register - ATUBISTR.. 16-27
16-18 Primary Inbound ATU Base Address Register - PIABAR 16-28
16-19 Instructions for Base Address Register .. 16-29

i960® VH Processor Developer’s Manual xxiii

16-20 Memory Block Size Read Response.. 16-30
16-21 Base Address and Limit Register Descriptions .. 16-30
16-22 ATU Subsystem Vendor ID Register - ASVIR.. 16-31
16-23 ATU Subsystem ID Register - ASIR... 16-31
16-24 Expansion ROM Base Address Register - ERBAR.................................. 16-32
16-25 ATU Interrupt Line Register - ATUILR.. 16-33
16-26 ATU Interrupt Pin Register - ATUIPR... 16-33
16-27 ATU Minimum Grant Register - ATUMGNT ... 16-34
16-28 ATU Maximum Latency Register - ATUMLAT.. 16-35
16-29 Primary Inbound ATU Limit Register - PIALR .. 16-35
16-30 Primary Inbound ATU Translate Value Register - PIATVR 16-36
16-31 Primary Outbound Memory Window Value Register - POMWVR 16-37
16-32 Primary Outbound I/O Window Value Register - POIOWVR 16-37
16-33 Expansion ROM Limit Register - ERLR ... 16-38
16-34 Expansion ROM Translate Value Register - ERTVR 16-39
16-35 ATU Configuration Register - ATUCR.. 16-39
16-36 Primary ATU Interrupt Status Register - PATUISR.................................. 16-41
16-37 Primary Outbound Configuration Cycle Address Register - POCCAR..... 16-42
17-1 Messaging Unit (MU) Summary ... 17-1
17-2 Peripheral Memory-Mapped Register Summary .. 17-5
17-3 Inbound Message Register - IMRx... 17-6
17-4 Outbound Message Register - OMRx .. 17-6
17-5 Inbound Doorbell Register - IDR .. 17-7
17-6 Inbound Interrupt Status Register - IISR .. 17-7
17-7 Inbound Interrupt Mask Register - IIMR ... 17-8
17-8 Outbound Doorbell Register - ODR.. 17-10
17-9 Outbound Interrupt Status Register - OISR.. 17-10
17-10 Outbound Interrupt Mask Register - OIMR... 17-12
18-1 Local Bus Masters.. 18-2
18-2 Programmed Priority Control .. 18-2
18-3 Priority Programming for Local Bus Arbitration Example 18-3
18-4 Bus Arbitration Example – Three Bus Masters .. 18-4
18-5 Local Bus Arbitration Control Register – LBACR 18-4
18-6 Local Bus Arbitration Latency Count Register – LBALCR.......................... 18-6
19-1 Timer Performance Ranges ... 19-1
19-2 Timer Registers .. 19-2
19-3 Timer Mode Register – TMRx .. 19-2
19-4 Timer Input Clock (TCLOCK) Frequency Selection 19-5
19-5 Timer Count Register – TCRx .. 19-5
19-6 Timer Reload Register – TRRx .. 19-6
19-7 Timer Mode Register Control Bit Summary.. 19-7
19-8 Timer Responses to Register Bit Settings.. 19-8
19-9 Timer Powerup Mode Settings ... 19-9
19-10 Uncommon TMRx Control Bit Settings... 19-9
20-1 DMA Registers ... 20-3
20-2 DMA Controller Register Summary .. 20-21
20-3 Channel Control Register - CCRx .. 20-21
20-4 Channel Status Register - CSRx.. 20-23
20-5 Descriptor Address Register - DARx.. 20-24
20-6 Next Descriptor Address Register - NDARx... 20-25

xxiv i960® VH Processor Developer’s Manual

20-7 PCI Address Register - PADRx.. 20-26
20-8 PCI Upper Address Register - PUADRx .. 20-26
20-9 80960 Local Address Register - LADRx .. 20-27
20-10 Byte Count Register - BCRx .. 20-27
20-11 Descriptor Control Register - DCRx ... 20-28
20-12 PCI Commands.. 20-28
20-13 DMA Interrupt Summary .. 20-29
21-1 I2C Bus Definitions... 21-2
21-2 ICCR Programming Values.. 21-6
21-3 Operation Modes.. 21-11
21-4 General Call Address Second Byte Definitions.. 21-15
21-5 I2C Register Summary ... 21-15
21-6 I2C Control Register – ICR .. 21-16
21-7 I2C Status Register – ISR .. 21-18
21-8 I2C Slave Address Register – ISAR... 21-20
21-9 I2C Data Buffer Register – IDBR ... 21-21
21-10 I2C Clock Count Register – ICCR.. 21-22
22-1 TAP Controller Pin Definitions.. 22-4
22-2 Boundary-Scan Instruction Set .. 22-5
22-3 IEEE Instructions.. 22-6
22-4 i960® VH Processor Boundary Scan Register Bit Order 22-8
A-1 Instruction Field Descriptions ...A-2
A-2 Encoding of src1 and src2 in REG Format...A-2
A-3 Encoding of src/dst in REG Format..A-3
A-4 Encoding of src1 in COBR Format ...A-3
A-5 Encoding of src2 in COBR Format ...A-3
A-6 Addressing Modes for MEM Format Instructions ...A-5
A-7 Encoding of Scale Field ...A-6
B-1 Miscellaneous Instruction Encoding Bits ..B-1
B-2 REG Format Instruction Encodings..B-1
B-3 COBR Format Instruction Encodings ...B-6
B-4 CTRL Format Instruction Encodings ..B-7
B-5 Cycle Counts for sysctl Operations ..B-8
B-6 Cycle Counts for icctl Operations...B-8
B-7 Cycle Counts for dcctl Operations..B-8
B-8 Cycle Counts for intctl Operations..B-9
B-9 MEM Format Instruction Encodings ...B-9
B-10 Addressing Mode Performance..B-10
C-1 Access Types...C-1
C-2 Supervisor Space Register Addresses ..C-2
C-3 Timer Registers ..C-3
C-4 80960 Internal Addresses Assigned to Integrated PeripheralsC-6
C-5 Peripheral Memory-Mapped Register Locations..C-7

i960® VH Processor Developer’s Manual 1-1

Introduction 1

1.1 Intel’s i960 ® VH Processor

The i960® VH Processor (“80960VH”) integrates a high-performance 80960 “core” into a
Peripheral Components Interconnect (PCI) functionality. This integrated processor addresses the
needs of embedded applications and helps reduce embedded system costs. As indicated in
Figure 1-1, the primary functional units include an i960 core processor, PCI-to-80960 Address
Translation Unit, Messaging Unit, Direct Memory Access (DMA) Controller, Memory Controller,
and I2C Bus Interface Unit.

The PCI Bus is an industry standard, high performance, low latency system bus that operates up to
132 Mbyte/sec.

1.2 i960® VH Processor Features

The 80960VH combines the i960® JT processor with powerful new features to create an embedded
processor. This PCI device is fully compliant with the PCI Local Bus Specification, revision 2.1.
80960VH-specific features include:

Figure 1-1. i960® VH Processor Functional Block Diagram

i960® JT Core
Processor

PCI Bus

Local Memory

I2C Bus
Interface Unit

Memory
Controller

I2C Serial Bus

Address
Translation

Unit

Two DMA
Channels

Message
Unit

 Local Bus

Internal Local
Bus Arbiter

Internal Primary
PCI Arbiter

1-2 i960® VH Processor Developer’s Manual

Introduction

Because the 80960VH’s core processor is based upon the 80960JT, the two i960 family members
are object code compatible and can maintain a sustained execution rate of one instruction per clock
cycle. The 80960 local bus, a 32-bit multiplexed burst bus, is a high-speed interface to system
memory and I/O. A full complement of control signals simplifies the connection of the 80960VH
to external components. Physical and logical memory attributes are programmed via
memory-mapped control registers (MMRs), a feature not found on the i960 Kx, Sx or Cx
processors. Physical and logical configuration registers enable the processor to operate with all
combinations of bus width and data object alignment. See Section 1.3, “i960® Core Processor
Features (80960VH)” on page 1-3 for more information.

The subsections that follow briefly overview each feature. Refer to the appropriate chapter for full
technical descriptions.

1.2.1 DMA Controller

The DMA Controller allows low-latency, high-throughput data transfers between PCI bus agents
and 80960 local memory. Two separate DMA channels accommodate data transfers for the
primary PCI bus. The DMA Controller supports chaining and unaligned data transfers. It is
programmable through the i960 core processor only, and functions in synchronous mode only. See
Chapter 20, DMA Controller.

1.2.2 Address Translation Unit

The Address Translation Unit (ATU) allows PCI transactions direct access to the 80960VH local
memory. The ATU supports transactions between PCI address space and 80960VH address space.
Address translation is controlled through programmable registers accessible from both the PCI
interface and the i960 core processor. Dual access to registers allows flexibility in mapping the two
address spaces. See Chapter 16, Address Translation Unit.

1.2.3 Messaging Unit

The Messaging Unit (MU) provides data transfer between the PCI system and the 80960VH. It
uses interrupts to notify each system when new data arrives. The MU has four messaging
mechanisms: Message Registers and Doorbell Registers. Each allows a host processor or external
PCI device and the 80960VH to communicate through message passing and interrupt generation.
See Chapter 17, “Messaging Unit”.

1.2.4 Memory Controller

The Memory Controller allows direct control of external memory systems, including DRAM,
SRAM, ROM and flash. It provides a direct connect interface to memory that typically does not
require external logic. It features programmable chip selects, a wait state generator and byte parity.
External memory can be configured as PCI addressable memory or private 80960VH memory. See
Chapter 15, Memory Controller.

• DMA Controller • Memory Controller

• Address Translation Unit • I2C Bus Interface Unit

• Messaging Unit

i960® VH Processor Developer’s Manual 1-3

Introduction

1.2.5 I2C Bus Interface Unit

The I2C (Inter-Integrated Circuit) Bus Interface Unit allows the i960 core processor to serve as a
master and slave device residing on the I2C bus. The I2C unit uses a serial bus developed by Philips
Semiconductor consisting of a two-pin interface. The bus allows the 80960VH to interface to other
I2C peripherals and microcontrollers for system management functions. It requires a minimum of
hardware for an economical system to relay status and reliability information on the I/O subsystem
to an external device. See Chapter 21, “I2C Bus Interface Unit”. Also refer to the document I2C
Peripherals for Microcontrollers (Philips Semiconductor).

1.3 i960® Core Processor Features (80960VH)

The processing power of the 80960VH comes from the 80960JF processor core. The 80960JF is a
new, scalar implementation of the i960 core architecture. Figure 1-2 shows a block diagram of the
80960JF core processor.

Factors that contribute to the 80960VH’s performance include:

• Single-clock execution of most instructions

• Independent Multiply/Divide Unit

• Efficient instruction pipeline minimizes pipeline break latency

Figure 1-2. 80960JF Core Processor Block Diagram

Programmable

Bus Control Unit

Instruction Sequencer

Physical Region
Configuration

Interrupt
Port

1 Kbyte

Data RAM

Memory
Interface

Execution
Multiply
Divide Unit

Memory-Mapped
Register Interface

Register File

SRC2 DESTSRC1

Address

ControlConstants

Generation
Unit

Address

32-bit Data

Bus Request
Queues

and

Two 32-Bit
Timers

8-Set
Local Register Cache

PLL, Clocks,

Boundary ScanTAP

5

128

9

32

32-bit buses
address / data

Instruction Cache
16 Kbyte Two-Way Set Associative

4 Kbyte
Direct Mapped

Data Cache

P_CLK

Interrupt
Controller

Three Independent 32-Bit SRC1, SRC2, and DEST Buses

Control

1-4 i960® VH Processor Developer’s Manual

Introduction

• Register and resource scoreboarding allow overlapped instruction execution

• 128-bit register bus speeds local register caching

• 16 Kbyte two-way set-associative, integrated instruction cache

• 4 Kbyte direct-mapped, integrated data cache

• 1 Kbyte integrated data RAM delivers zero wait state program data

The i960 core processor operates out of its own 32-bit address space, which is independent of the
PCI address space. The 80960 local bus memory can be:

• Made visible to the PCI address space

• Kept private to the i960 core processor

• Allocated as a combination of the two

1.3.1 Burst Bus

A 32-bit high-performance bus controller interfaces the i960 core processor to external memory
and peripherals. The Bus Control Unit fetches instructions and transfers data on the 80960 local
bus at the rate of up to four 32-bit words per six clock cycles.

Note: DMA and ATU accesses are limited to 32-bit wide memory regions. Also these units can burst up
to a 2 Kbyte boundary with no alignment restrictions.

Users may configure the i960 core processor’s bus controller to match an application’s
fundamental memory organization. Physical bus width is programmable up to eight regions. Data
caching is programmed through a group of logical memory templates and a defaults register. The
Bus Control Unit’s features include:

• Multiplexed external bus minimizes pin count

• 32-, 16- and 8-bit bus widths simplify I/O interfaces

• External ready control for address-to-data, data-to-data and data-to-next-address wait state
types

• Unaligned bus accesses performed transparently

• Three-deep load/store queue decouples the bus from the i960 core processor

For reliability, the 80960VH conducts an internal self test upon reset. Before executing its first
instruction, it performs a local bus confidence test by performing a checksum on the first words of
the Initialization Boot Record.

1.3.2 Timer Unit

As described in Chapter 19, “Timers”, The Timer Unit (TU) contains two independent 32-bit
timers that are capable of counting at software-defined clock rates and generating interrupts. Each
is programmed by use of the Timer Unit memory-mapped registers. The timers have a single-shot
mode and auto-reload capabilities for continuous operation. Each timer has an independent
interrupt request to the 80960VH’s interrupt controller.

i960® VH Processor Developer’s Manual 1-5

Introduction

1.3.3 Priority Interrupt Controller

Chapter 8, “Interrupts” explains how low interrupt latency is critical to many embedded
applications. As part of its highly flexible interrupt mechanism, the 80960VH exploits several
techniques to minimize latency:

• Interrupt vectors and interrupt handler routines can be reserved on-chip

• Register frames for high-priority interrupt handlers can be cached on-chip

• The interrupt stack can be placed in cacheable memory space

1.3.4 Faults and Debugging

The 80960VH employs a comprehensive fault model. The processor responds to faults by making
implicit calls to fault handling routines. Specific information collected for each fault allows the
fault handler to diagnose exceptions and recover appropriately.

The processor also has built-in debug capabilities. Via software, the 80960VH may be configured
to detect as many as seven different trace event types. Alternatively, mark and fmark instructions
can generate trace events explicitly in the instruction stream. Hardware breakpoint registers are
also available to trap on execution and data addresses. See Chapter 9, “Faults”.

1.3.5 On-Chip Cache and Data RAM

As discussed in Chapter 4, “Cache and On-Chip Data RAM”, memory subsystems often impose
substantial wait state penalties. The 80960VH integrates considerable storage resources on-chip to
decouple CPU execution from the external bus. The 80960VH includes a 16 Kbyte instruction
cache, a 4 Kbyte data cache and 1 Kbyte data RAM.

1.3.6 Local Register Cache

The 80960VH rapidly allocates and deallocates local register sets during context switches. The
processor needs to flush a register set to the stack only when it saves more than seven sets to its
local register cache.

1.3.7 Test Features

The 80960VH incorporates features that enhance the user’s ability to test both the processor and
the system to which it is attached. These features include ONCE (On-Circuit Emulation) mode and
IEEE Std. 1149.1 Boundary Scan (JTAG). See Chapter 22, “Test Features”.

One of the boundary scan instructions, HIGHZ, forces the processor to float all its output pins
(ONCE mode). ONCE mode can also be initiated at reset without using the boundary scan
mechanism.

ONCE mode is useful for board-level testing. This feature allows a mounted 80960VH to
electrically “remove” itself from a circuit board. This mode allows system-level testing where a
remote tester, such as an In-Circuit Emulator (ICE) system, can exercise the processor system. The
test logic does not interfere with component or system behavior and ensures that components
function correctly, and also that the connections between various components are correct.

1-6 i960® VH Processor Developer’s Manual

Introduction

The JTAG Boundary Scan feature is an alternative to conventional “bed-of-nails” testing. It can
examine connections that might otherwise be inaccessible to a test system.

1.3.8 Memory-Mapped Control Registers

The 80960VH is compliant with 80960 family architecture and has the added advantage of
memory-mapped, internal control registers not found on the 80960Kx, Sx or Cx processors. This
feature provides software an interface to easily read and modify internal control registers.

Each memory-mapped, 32-bit register is accessed via regular memory-format instructions. The
processor ensures that these accesses do not generate external bus cycles. See Chapter 15,
“Memory Controller”.

1.3.9 Instructions, Data Types and Memory Addressing Modes

As with all 80960 family processors, the 80960VH instruction set supports several different data
types and formats:

• Bit

• Bit fields

• Integer (8-, 16-, 32-, 64-bit)

• Ordinal (8-, 16-, 32-, 64-bit unsigned integers)

• Triple word (96 bits)

• Quad word (128 bits)

Several chapters describe the 80960VH instruction set, including:

• Chapter 3, Programming Environment

• Chapter 5, Instruction Set Overview

• Chapter 6, Instruction Set Reference

1.4 About This Document

The 80960VH incorporates Peripheral Component Interconnect (PCI) functionality with the
80960VH. As such, it is assumed that the reader has a working understanding of Peripheral
Component Interconnect (PCI), PCI Local Bus Specification, revision 2.1, and the i960 core
processor.

1.4.1 Terminology

In this document, the following terms are used:

• 80960VH refers generically to the i960® VH processor.

• 80960 local bus refers to the 80960VH’s internal local bus, not the PCI local bus.

• Primary PCI bus is the 80960VH’s internal PCI bus that conforms to PCI SIG specifications.

• i960 core processor refers to the i960® JT processor that is integrated into the 80960VH.

i960® VH Processor Developer’s Manual 1-7

Introduction

• DWORD is a 32-bit data word.

• 80960 Local memory is a memory subsystem on the 80960 processor local bus.

• Downstream — at or toward a PCI bus with a higher number (after configuration).

• Host processor — Processor located upstream from the i960 VH Processor.

• Local processor — i960 core processor within the i960 VH Processor.

• Upstream — At or toward a PCI bus with a lower number (after configuration).

1.4.2 Representing Numbers

Assume that all numbers are base 10 unless designated otherwise. In text, numbers in base 16 are
represented as “nnnH”, where the “H” signifies hexadecimal. In pseudocode descriptions,
hexadecimal numbers are represented in the form 0x1234ABCD. Binary numbers are not explicitly
identified and are assumed when bit operations or bit ranges are used.

1.4.3 Fields

A preserved field in a data structure is one that the processor does not use. Preserved fields can be
used by software; the processor does not modify such fields.

A reserved field is a field that may be used by an implementation. When the initial value of a
reserved field is supplied by software, this value must be zero. Software should not modify
reserved fields or depend on any values in reserved fields.

A read only field can be read to return the current value. Writes to read only fields are treated as
no-op operations and do not change the current value or result in an error condition.

A read/clear field can also be read to return the current value. A write to a read/clear field with the
data value of 0 causes no change to the field. A write to a read/clear field with a data value of 1
causes the field to be cleared (reset to the value of 0). For example, when a read/clear field has a
value of F0H, and a data value of 55H is written, the resultant field is A0H.

A read/set field can also be read to return the current value. A write to a read/set field with the data
value of 0 causes no change to the field. A write to a read/set field with a data value of 1 causes the
field to be set (set to the value of 1). For example, when a read/set field has a value of F0H, and a
data value of 55H is written, the resultant field is F5H.

1.4.4 Specifying Bit and Signal Values

The terms set and clear in this specification refer to bit values in register and data structures. When
a bit is set, its value is 1; when the bit is clear, its value is 0. Likewise, setting a bit means giving it
a value of 1 and clearing a bit means giving it a value of 0.

The terms assert and deassert refer to the logically active or inactive value of a signal or bit,
respectively.

1-8 i960® VH Processor Developer’s Manual

Introduction

1.4.5 Signal Name Conventions

All signal names use the PCI signal name convention of using the “#” symbol at the end of a signal
name to indicate that the signal’s active state occurs when it is at a low voltage. This includes
80960 processor-related signal names that normally use an overline. The absence of the “#” symbol
indicates that the signal’s active state occurs when it is at a high voltage level.

1.4.6 Solutions960® Program

Intel’s Solutions960® program features a wide variety of development tools that support the i960

processor family. Many of these tools are developed by partner companies; some are developed by
Intel, such as profile-driven optimizing compilers. For more information on these products, contact
your local Intel representative.

1.4.7 Intel Customer Literature and Telephone Support

Contact Intel Corporation for literature and technical assistance for the i960® VH processor.

1.4.8 Related Documents

Intel documentation is available from your Intel Sales Representative or Intel Literature Sales. See
Section 1.4.7 for a complete listing of contact numbers for obtaining Intel literature.

Country Literature Customer Support Number

United States 800-548-4725 800-628-8686

Canada 800-468-8118 or 303-297-7763 800-628-8686

Europe Contact local distributor Contact local distributor

Australia Contact local distributor Contact local distributor

Israel Contact local distributor Contact local distributor

Japan Contact local distributor Contact local distributor

Table 1-1. Additional Information Sources

Document Title Order / Contact

i960® VH Processor Specification Update Intel Order # 273174-001

i960® VH Processor at 3.3 Volts Data Sheet Intel Order # 273179-001

i960® Jx Microprocessor Developer’s Manual Intel Order # 272483-002

MultiProcessor Specification Intel Order # 242016

PCI Local Bus Specification, revision 2.1 PCI Special Interest Group 1-800-433-5177

PCI System Design Guide, Revision 1.0 PCI Special Interest Group 1-800-433-5177

I2C Peripherals for Microcontrollers Philips Semiconductor

I2C Bus and How to Use It (Including Specifications) Philips Semiconductor

I2C Peripherals for Microcontrollers (Including Fast Mode) Signetics

i960® VH Processor Developer’s Manual 1-9

Introduction

1.4.9 Electronic Information

Intel’s documentation and other information is available from Intel’s website. See Table 1-2.

Table 1-2. Electronic Information

Intel’s World-Wide Web Home Page http://www.intel.com/

i960® VH Processor Developer’s Manual 2-1

Data Types and Memory Addressing
Modes 2

2.1 Data Types

The instruction set references or produces several data lengths and formats. The i960® VH
processor supports the following data types:

Figure 2-1 illustrates the class, data type and length of each type supported by i960 processors.

• Integer (signed 8, 16 and 32 bits) • Ordinal (unsigned integer 8, 16, and 32 bits)

• Long Word (64 bits) • Triple Word (96 bits)

• Quad Word (128 bits) • Bit Field

• Bit

Figure 2-1. Data Types and Ranges

Byte

Short

Word

Triple Word

Quad Word

8
Bits

16
Bits

32
Bits

64
Bits

96
Bits

128
Bits

Numeric
(Integer)

Numeric
(Ordinal)

Non-Numeric

Byte Integer
Short Integer

Integer

Byte Ordinal

Short Ordinal

Ordinal

Bit

Bit Field

Triple Word

Quad Word

8 Bits
16 Bits

32 Bits

8 Bits

16 Bits

32 Bits

1 Bit

1-32 Bits

96 Bits

128 Bits

-27 to 27 -1
-215 to 215 -1

-231 to 231 -1

0 to 28 -1

0 to 216 -1

0 to 232 -1

N/A

Bit Field

Length

LSB of
Bit Field

0

0

0

0

7

15

31

63

Class Data Type Length Range

0

0

95

127

031

Long Word 64 Bits

Long

Long Ordinal 64 Bits 0 to 264 - 1

2-2 i960® VH Processor Developer’s Manual

Data Types and Memory Addressing Modes

2.1.1 Word/Dword Notation

Data lengths, as described in the PCI Local Bus Specification Revision 2.1, differ from the
conventions used for the 80960 architecture. See also Table 2-1:

• In the PCI specification the term word refers to a 16-bit block of data.

• In this manual and other documentation relating to the 80960VH, the term word refers to a
32-bit block of data.

2.1.2 Integers

Integers are signed whole numbers that are stored and operated on in two’s complement format by
the integer instructions. Most integer instructions operate on 32-bit integers. Byte and short
integers are referenced by the byte and short classes of the load, store and compare instructions
only.

Integer load or store size (byte, short or word) determines how sign extension or data truncation is
performed when data is moved between registers and memory.

For instructions ldib (load integer byte) and ldis (load integer short), a byte or short word in
memory is considered a two’s complement value. The value is sign-extended and placed in the
32-bit register that is the destination of the load.

For instructions stib (store integer byte) and stis (store integer short), a 32-bit two’s complement
number in a register is stored to memory as a byte or short word. When register data is too large to
be stored as a byte or short word, the value is truncated and the integer overflow condition is
signaled. When an overflow occurs, either an AC register flag is set or the
ARITHMETIC.INTEGER_OVERFLOW fault is generated, depending on the Integer Overflow
Mask bit (AC.om) in the AC register. Chapter 9, “Faults” describes the integer overflow fault.

For instructions ld (load word) and st (store word), data is moved directly between memory and a
register with no sign extension or data truncation.

2.1.3 Ordinals

Ordinals or unsigned integer data types are stored and treated as positive binary values. Figure 2-1
shows the supported ordinal sizes.

Table 2-1. 80960 and PCI Architecture Data Word Notation Differences

No. of Bits PCI Architecture 80960 Architecture

16 word short word or half word

32 doubleword or dword word

Example 2-1. Sign Extensions on Load Byte and Load Short

ldib

7AH is loaded into a register as 0000 007AH
FAH is loaded into a register as FFFF FFFAH

ldis

05A5H is loaded into a register as 0000 05A5H
85A5H is loaded into a register as FFFF 85A5H

i960® VH Processor Developer’s Manual 2-3

Data Types and Memory Addressing Modes

The large number of instructions that perform logical, bit manipulation and unsigned arithmetic
operations reference 32-bit ordinal operands. When ordinals are used to represent Boolean values,
1 = TRUE and 0 = FALSE. Most extended arithmetic instructions reference the long ordinal data
type. Only load (ldob and ldos), store (stob and stos), and compare ordinal instructions reference
the byte and short ordinal data types.

Sign and sign extension are not considered when ordinal loads and stores are performed; however,
the values may be zero-extended or truncated. A short word or byte load to a register causes the
value loaded to be zero-extended to 32 bits. A short word or byte store to memory truncates an
ordinal value in a register to fit the destination memory. No overflow condition is signalled in this
case.

2.1.4 Bits and Bit Fields

The processor provides several instructions that perform operations on individual bits or bit fields
within register operands. An individual bit is specified for a bit operation by giving its bit number
and register. Internal registers always follow little endian byte order; the least significant bit is bit 0
and the most significant bit is bit 31.

A bit field is any contiguous group of bits (up to 32 bits long) in a 32-bit register. Bit fields do not
span register boundaries. A bit field is defined by giving its length in bits (1-32) and the bit number
of its lowest numbered bit (0-31).

Loading and storing bit and bit-field data is normally performed using the ordinal load (ldo) and
store (sto) instructions. When an ldi instruction loads a bit or bit field value into a 32-bit register,
the processor appends sign extension bits. A byte or short store can signal an integer overflow
condition.

2.1.5 Triple and Quad Words

Triple and quad words refer to consecutive words in memory or in registers. Triple- and quad-word
load, store and move instructions use these data types to accomplish block movements. No data
manipulation (sign extension, zero extension or truncation) is performed in these instructions.

Triple- and quad-word data types can be considered a superset of the other data types described.
Data in each word subset of a quad word is likely to be the operand or result of an ordinal, integer,
bit or bit field instruction.

2.1.6 Register Data Alignment

Several instructions operate on multiple-word operands. For example, the load-long instruction
(ldl) loads two words from memory into two consecutive registers. Here the register number for the
least significant word is automatically loaded into the next higher-numbered register.

In cases where an instruction specifies a register number, and multiple, consecutive registers are
implied, the register number must be even if two registers are accessed (for example, g0, g2) and an
integral multiple of four if three or four registers are accessed (for example, g0, g4). When a
register reference for a source value is not properly aligned, the registers that the processor writes
to are undefined.

2-4 i960® VH Processor Developer’s Manual

Data Types and Memory Addressing Modes

The 80960VH does not require data alignment in external memory; the processor hardware handles
unaligned memory accesses automatically. Optionally, user software can configure the processor
to generate a fault on unaligned memory accesses.

2.1.7 Literals

The architecture defines a set of 32 literals that can be used as operands in many instructions. These
literals are ordinal (unsigned) values that range from 0 to 31 (5 bits). When a literal is used as an
operand, the processor expands it to 32 bits by adding leading zeros. If the instruction requires an
operand larger than 32 bits, then the processor zero-extends the value to the operand size. If a
literal is used in an instruction that requires integer operands, then the processor treats the literal as
a positive integer value.

2.2 Bit and Byte Ordering in Memory

All occurrences of numeric and non-numeric data types, except bits and bit fields, must start on a
byte boundary. Any data item occupying multiple bytes is stored as little endian.

2.3 Memory Addressing Modes

Nine modes are available for addressing operands in memory. Each addressing mode is used to
reference a byte location in the processor’s address space. Table 2-2 shows the memory addressing
modes and a brief description of each mode’s address elements and assembly code syntax.

See Table B-9 “MEM Format Instruction Encodings” on page B-9 for more on addressing modes.
For purposes of this memory addressing modes description, MEMA format instructions require
one word of memory and MEMB usually require two words and therefore consume twice the bus
bandwidth to read. Otherwise, both formats perform the same functions.

Table 2-2. Memory Addressing Modes

Mode Description Assembler Syntax Inst.
Type

Absoluteoffset offset (smaller than 4096) exp MEMA

displacement displacement (larger than 4095) exp MEMB

Register Indirect abase (reg) MEMB

with offset abase + offset exp (reg) MEMA

with displacement abase + displacement exp (reg) MEMB

with index abase + (index*scale) (reg) [reg*scale] MEMB

with index and displacement abase + (index*scale) + displacement exp (reg) [reg*scale] MEMB

Index with displacement (index*scale) + displacement exp [reg*scale] MEMB

instruction pointer (IP) with
displacement IP + displacement + 8 exp (IP) MEMB

NOTE: reg is register, exp is an expression or symbolic label, and IP is the Instruction Pointer.

i960® VH Processor Developer’s Manual 2-5

Data Types and Memory Addressing Modes

2.3.1 Absolute

Absolute addressing modes allow a memory location to be referenced directly as an offset from
address 0H. At the instruction encoding level, two absolute addressing modes are provided:
absolute offset and absolute displacement, depending on offset size.

• For the absolute offset addressing mode, the offset is an ordinal number ranging from 0 to
4095. The absolute offset addressing mode is encoded in the MEMA machine instruction
format.

• For the absolute displacement addressing mode, the offset value ranges from 0 to 232-1. The
absolute displacement addressing mode is encoded in the MEMB format.

Addressing modes and encoding instruction formats are described in Chapter 6, “Instruction Set
Reference”.

At the assembly language level, the two absolute addressing modes use the same syntax. Typically,
development tools allow absolute addresses to be specified through arithmetic expressions (for
example, x + 44) or symbolic labels. After evaluating an address specified with the absolute
addressing mode, the assembler converts the address into an offset or displacement and selects the
appropriate instruction encoding format and addressing mode.

2.3.2 Register Indirect

Register indirect addressing modes use a register’s 32-bit value as a base for address calculation.
The register value is referred to as the address base (designated “abase” in Table 2-2). Depending
on the addressing mode, an optional scaled index and offset can be added to this address base.

Register indirect addressing modes are useful for addressing elements of an array or record
structure. When addressing array elements, the abase value provides the address of the first array
element. An offset (or displacement) selects a particular array element.

In register-indirect-with-index addressing mode, the index is specified using a value contained in a
register. This index value is multiplied by a scale factor. Allowable factors are 1, 2, 4, 8 and 16.
The register-indirect-with-index addressing mode is encoded in the MEMA format.

The two versions of register-indirect-with-offset addressing mode at the instruction encoding level
are register-indirect-with-offset and register-indirect-with-displacement. As with absolute
addressing modes, the mode selected depends on the size of the offset from the base address.

At the assembly language level, the assembler allows the offset to be specified with an expression
or symbolic label, then evaluates the address to determine whether to use
register-indirect-with-offset (MEMA format) or register-indirect-with-displacement (MEMB
format) addressing mode.

Register-indirect-with-index-and-displacement addressing mode adds both a scaled index and a
displacement to the address base. There is only one version of this addressing mode at the
instruction encoding level, and it is encoded in the MEMB instruction format.

2.3.3 Index with Displacement

A scaled index can also be used with a displacement alone. Again, the index is contained in a
register and multiplied by a scaling constant before displacement is added. This mode uses MEMB
format.

2-6 i960® VH Processor Developer’s Manual

Data Types and Memory Addressing Modes

2.3.4 IP with Displacement

This addressing mode is used with load and store instructions to make them instruction pointer (IP)
relative. IP-with-displacement addressing mode references the next instruction’s address plus the
displacement plus a constant of 8. The constant is added because, in a typical processor
implementation, the address has incremented beyond the next instruction address at the time of
address calculation. The constant simplifies IP-with-displacement addressing mode
implementation. This mode uses MEMB format.

2.3.5 Addressing Mode Examples

The following examples show how i960 processor addressing modes are encoded in assembly
language. Example 2-2 shows addressing mode mnemonics. Example 2-3 illustrates the usefulness
of scaled index and scaled index plus displacement addressing modes. In this example, a procedure
named array_op uses these addressing modes to fill two contiguous memory blocks separated by a
constant offset. A pointer to the top of the block is passed to the procedure in g0, the block size is
passed in g1 and the fill data in g2. Refer to Appendix A, “Machine-level Instruction Formats”.

Example 2-2. Addressing Mode Mnemonics

st g4,xyz # Absolute; word from g4 stored at memory
location designated with label xyz.

ldob (r3),r4 # Register indirect; ordinal byte from
memory location given in r3 loaded
into register r4 and zero extended.

stlg6,xyz(g5) # Register indirect with displacement;
double word from g6,g7 stored at memory
location xyz + g5.

ldq(r8)[r9*4],r4 # Register indirect with index; quad-word
beginning at memory location r8 + (r9
scaled by 4) loaded into r4 through r7.

st g3,xyz(g4)[g5*2] # Register indirect with index and
displacement; word in g3 stored to mem
location g4 + xyz + (g5 scaled by 2).

ldisxyz[r12*2],r13 # Index with displacement; load short
integer at memory location xyz + r12
into r13 and sign extended.

st r4,xyz(IP) # IP with displacement; store word in r4
at memory location IP + xyz + 8.

i960® VH Processor Developer’s Manual 2-7

Data Types and Memory Addressing Modes

Example 2-3. Scaled Index and Scaled Index Plus Displacement Addressing Modes

array_op:
movg0,r4 # Pointer to array is copied to r4.
subi1,g1,r3 # Calculate index for the last array
b .I33 # element to be filled

.I34:
st g2,(r4)[r3*4] # Fill element at index

st
g2,0x30(r4)[r3*4]

Fill element at index+constant offset

subi1,r3,r3 # Decrement index
.I33:

cmpible0,r3,.I34 # Store next array elements if
ret # index is not 0

i960® VH Processor Developer’s Manual 3-1

Programming Environment 3

This chapter describes the i960® VH processor’s programming environment including global and
local registers, control registers, literals, processor-state registers and address space.

3.1 Overview

The i960 architecture defines a programming environment for program execution, data storage and
data manipulation. Figure 3-1 shows the programming environment elements that include a
4 Gbyte (232 byte) flat address space, an instruction cache, a data cache, global and local
general-purpose registers, a register cache, a set of literals, control registers and a set of processor
state registers.

The processor includes several architecturally-defined data structures located in memory as part of
the programming environment. These data structures handle procedure calls, interrupts and faults
and provide configuration information at initialization. These data structures are:

3.2 Registers and Literals as Instruction Operands

With the exception of a few special instructions, the 80960VH uses only simple load and store
instructions to access memory. All operations take place at the register level. The processor uses
16 global registers, 16 local registers and 32 literals (constants 0-31) as instruction operands.

The global register numbers are g0 through g15; local register numbers are r0 through r15. Several
of these registers are used for dedicated functions. For example, register r0 is the previous frame
pointer, often referred to as pfp. i960 processor compilers and assemblers recognize only the
instruction operands listed in Table 3-1. Throughout this manual, the registers’ descriptive names,
numbers, operands and acronyms are used interchangeably, as dictated by context.

• interrupt stack • control table • system procedure table

• local stack • fault table • process control block

• supervisor stack • interrupt table • initialization boot record

3-2 i960® VH Processor Developer’s Manual

Programming Environment

3.2.1 Global Registers

Global registers are general-purpose 32-bit data registers that provide temporary storage for a
program’s computational operands. These registers retain their contents across procedure
boundaries. As such, they provide a fast and efficient means of passing parameters between
procedures.

Figure 3-1. i960® VH Processor Programming Environment

Architecturally

Defined

Data Structures

FFFF FFFFH

Instruction
Stream

Instruction

Execution

Processor State

Registers

Instruction
Pointer

Arithmetic
Controls

Process
Controls

Trace
Controls

Address Space

Sixteen 32-Bit
Global Registers

Sixteen 32-Bit
Local Registers

g0
g15

r0

r15

Load Store

0000 0000H

Control Registers

Register Cache

Fetch

Instruction

Cache

r15

Table 3-1. Registers and Literals Used as Instruction Operands

Instruction Operand Register Name (number) Function Acronym

g0 - g14 global (g0-g14) general purpose

fp global (g15) frame pointer FP

i960® VH Processor Developer’s Manual 3-3

Programming Environment

The i960 architecture supplies 16 global registers, designated g0 through g15. Register g15 is
reserved for the current Frame Pointer (FP), which contains the address of the first byte in the
current (topmost) stack frame in internal memory. See Section 7.1, “Call and Return Mechanism”
on page 7-2) for a description of the FP and procedure stack.

After the processor is reset, register g0 contains the i960 core processor device identification and
stepping information. g0 retains this information until it is written over by the user program. The
i960 core processor device identification and stepping information is also stored in the
memory-mapped DEVICEID register located at FF00 8710H. In addition, the 80960VH device
identification and stepping information is stored in the memory-mapped register located at
0000 1710H.

3.2.2 Local Registers

The i960 architecture provides a separate set of 32-bit local data registers (r0 through r15) for each
active procedure. These registers provide storage for variables that are local to a procedure. Each
time a procedure is called, the processor allocates a new set of local registers and saves the calling
procedure’s local registers. When the application returns from the procedure, the local registers are
released for the next procedure call. The processor performs local register management; a program
need not explicitly save and restore these registers.

r3 through r15 are general purpose registers; r0 through r2 are reserved for special functions; r0
contains the Previous Frame Pointer (PFP); r1 contains the Stack Pointer (SP); r2 contains the
Return Instruction Pointer (RIP). These are discussed in Chapter 7, “Procedure Calls”.

The processor does not always clear or initialize the set of local registers assigned to a new
procedure. Also, the processor does not initialize the local register save area in the newly created
stack frame for the procedure. User software should not rely on the initial values of local registers.

3.2.3 Register Scoreboarding

Register scoreboarding maintains register coherency by preventing parallel execution units from
accessing registers for which there is an outstanding operation. When an instruction that targets a
destination register or group of registers executes, the processor sets a register-scoreboard bit to
indicate that this register or group of registers is being used in an operation. If the instructions that
follow do not require data from registers already in use, then the processor can execute those
instructions before the prior instruction execution completes.

Software can use this feature to execute one or more single-cycle instructions concurrently with a
multi-cycle instruction (for example, multiply or divide). Example 3-1 shows a case where register
scoreboarding prevents a subsequent instruction from executing. It also illustrates overlapping
instructions that do not have register dependencies.

pfp local (r0) previous frame pointer PFP

sp local (r1) stack pointer SP

rip local (r2) return instruction pointer RIP

r3 - r15 local (r3-r15) general purpose

0-31 literals

Table 3-1. Registers and Literals Used as Instruction Operands

Instruction Operand Register Name (number) Function Acronym

3-4 i960® VH Processor Developer’s Manual

Programming Environment

3.2.4 Literals

The architecture defines a set of 32 literals that can be used as operands in many instructions. These
literals are ordinal (unsigned) values that range from 0 to 31 (5 bits). When a literal is used as an
operand, the processor expands it to 32 bits by adding leading zeros. If the instruction requires an
operand larger than 32 bits, then the processor zero-extends the value to the operand size. If a
literal is used in an instruction that requires integer operands, then the processor treats the literal as
a positive integer value.

3.2.5 Register and Literal Addressing and Alignment

Several instructions operate on multiple-word operands. For example, the load long instruction
(ldl) loads two words from memory into two consecutive registers. The register for the less
significant word is specified in the instruction. The more significant word is automatically loaded
into the next higher-numbered register.

In cases where an instruction specifies a register number and multiple consecutive registers are
implied, the register number must be even if two registers are accessed (for example, g0, g2) and an
integral multiple of 4 if three or four registers are accessed (for example, g0, g4). If a register
reference for a source value is not properly aligned, then the source value is undefined and an
OPERATION.INVALID_OPERAND fault is generated. If a register reference for a destination
value is not properly aligned, then the registers to which the processor writes and the values written
are undefined. The processor then generates an OPERATION.INVALID_OPERAND fault. The
assembly language code in Example 3-2 shows an example of correct and incorrect register
alignment.

Global registers, local registers and literals are used directly as instruction operands. Table 3-2 lists
instruction operands for each machine-level instruction format and the positions that can be filled
by each register or literal.

Example 3-1. Register Scoreboarding

muli r4,r5,r6 # r6 is scoreboarded
addi r6,r7,r8 # addi must wait for the previous multiply

. # to complete

.

.
muli r4,r5,r10 # r10 is scoreboarded
and r6,r7,r8 # and instruction is executed concurrently with

multiply

Example 3-2. Register Alignment

movl g3,g8 # Incorrect alignment - resulting value
. # in registers g8 and g9 is
. # unpredictable (non-aligned source)
.

movl g4,g8 # Correct alignment

i960® VH Processor Developer’s Manual 3-5

Programming Environment

3.3 Memory-Mapped Control Registers (MMRs)

The 80960VH gives software the interface to easily read and modify internal control registers.
Each of these registers is accessed as a memory-mapped register with a unique memory address.
There are two distinct sets of memory-mapped registers on the 80960VH. The first set exists in the
FF00 0000H through FFFF FFFFH address range and is used to control the i960 core processor
functions. The second set exists in the 0000 1000H through 0000 17FFH address range and is used
to control the 80960VH integrated peripherals. The processor ensures that accesses to MMRs do
not generate external bus cycles.

3.3.1 i960® Core Processor Function Memory-Mapped Registers

Portions of the 80960VH address space (addresses FF00 0000H through FFFF FFFFH) are
reserved for memory-mapped registers. These memory-mapped registers are accessed through
word-operand memory instructions (atmod, atadd, sysctl, ld and st instructions) only. Accesses
to this address space do not generate external bus cycles. The latency in accessing each of these
registers is one cycle.

Each register has an associated access mode (user and supervisor modes) and access type (read and
write accesses). Table C-2 and Table C-3 show all the memory-mapped registers.

The registers are partitioned into user and supervisor spaces based on their addresses. Addresses
FF00 0000H through FF00 7FFFH are allocated to user space memory-mapped registers;
Addresses FF00 8000H to FFFF FFFFH are allocated to supervisor space registers.

Table 3-2. Allowable Register Operands

Operand1

Instruction
Encoding Operand Field Local Register Global Register Literal

REG

src1
src2
src/dst (as src)
src/dst (as dst)
src/dst (as both)

X
X
X
X
X

X
X
X
X
X

X
X
X

MEM
src/dst
abase
index

X
X
X

X
X
X

COBR
src1
src2
dst

X
X
X2

X
X
X2

X
X2

NOTES:
1. “X” denotes the register can be used as an operand in a particular instruction field.
2. The COBR destination operands apply only to TEST instructions.

3-6 i960® VH Processor Developer’s Manual

Programming Environment

3.3.1.1 Restrictions on Instructions that Access the i960® Core Processor
Memory-Mapped Registers

The majority of memory-mapped registers can be accessed by both load (ld) and store (st)
instructions. However some registers have restrictions on the types of accesses they allow. To
ensure correct operation, the access type restrictions for each register should be followed. The
access type columns of Table C-2 and Table C-3 indicate the allowed access types for each
register.

Unless otherwise indicated by its access type, the modification of a memory-mapped register by a
st instruction takes effect completely before the next instruction starts execution.

Some operations require an atomic-read-modify-write sequence to a register, most notably IPND
and IMSK. The atmod and atadd instructions provide a special mechanism to quickly modify the
IPND and IMSK registers in an atomic manner on the 80960VH. Do not use this instruction on any
other memory-mapped registers.

The sysctl instruction can also modify the contents of a memory-mapped register atomically; in
addition, sysctl is the only method to read the breakpoint registers on the 80960VH; the
breakpoints cannot be read using a ld instruction.

At initialization the control table is automatically loaded into the on-chip control registers. This
action simplifies the user’s start-up code by providing a transparent setup of the processor’s
peripherals. See Chapter 12, “Initialization and System Requirements”.

3.3.1.2 Access Faults for i960® Core Processor MMRs

Memory-mapped registers are meant to be accessed only as aligned, word-size registers with
adherence to the appropriate access mode. Accessing these registers in any other way results in
faults or undefined operation. An access is performed using the following fault model:

1. The access must be a word-sized, word-aligned access; otherwise, the processor generates an
OPERATION.UNIMPLEMENTED fault.

2. If the access is a store in user mode to an implemented supervisor location, then a
TYPE.MISMATCH fault occurs. It is unpredictable whether a store to an unimplemented
supervisor location causes a fault.

3. If the access is neither of the above, then the access is attempted. Note that an MMR may
generate faults based on conditions specific to that MMR. (Example: trying to write the timer
registers in user mode when they have been allocated to supervisor mode only.)

4. When a store access to an MMR faults, the processor ensures that the store does not take
effect.

5. A load access of a reserved location returns an unpredictable value.

6. Avoid any store accesses to reserved locations. Such a store can result in undefined operation
of the processor if the location is in supervisor space.

Instruction fetches from the memory-mapped register space are not allowed and result in an
OPERATION.UNIMPLEMENTED fault.

i960® VH Processor Developer’s Manual 3-7

Programming Environment

3.3.2 i960® VH Processor Peripheral Memory-Mapped Registers

The Peripheral Memory-Mapped Register (PMMR) interface gives software the ability to read and
modify internal control registers. Each of these 32-bit registers is accessed as a memory-mapped
register with a unique memory address, using regular memory-format instructions from the i960
core processor. See Appendix C, “Memory-Mapped Registers”.

The memory-mapped registers discussed in this chapter are specific to the 80960VH only. They
support the DMA controller, memory controller, PCI and peripheral interrupt controller, messaging
unit, internal arbitration unit, PCI address translation unit and I2C bus interface unit. This manual
provides chapters that fully describe each of these peripherals.

The PMMR interface (addresses 0000 1000H through 0000 17FFH) provides full accessibility
from the primary ATU, and the i960 core processor.

3.3.2.1 Accessing The Peripheral Memory-Mapped Registers

The PMMR interface is a slave device connected to the 80960 internal bus. This interface accepts
data transactions that appear on the 80960 internal bus from the Primary ATU and the i960 core
processor. The PMMR interface allows these devices to perform read, write, or read-modify-write
transactions.

The PMMR interface does not support multi-word burst accesses from any bus master. The PMMR
interface supports 32-bit bus width transactions only. Because of this, PMCON0:1 must be
configured as a 32-bit memory region for accesses that originate from the i960 core processor.

The PMMR interface is byte addressable. For PMMR reads, all accesses are promoted to word
accesses and all data bytes are returned. The byte enables generated by the bus masters when
performing PMMR write cycles indicate which data bytes are valid on the 80960 internal bus.
However, there may be requirements from the individual units that interface to the PMMR. For
example, when configuring the DMA channel’s control register, a full 32-bit write must be
performed to configure and restart the DMA channel. These restrictions are highlighted in the
chapters describing the integrated peripheral units.

The PMMR interface supports the 80960 internal bus atomic operations from the i960 core
processor. The i960 core processor provides atmod (atomic modify) and atadd (atomic add)
instructions for atomic accesses to memory. When the 80960 processor executes an atmod or
atadd instruction, the LOCK# signal is asserted. The 80960 internal bus is not granted to any other
bus master until the LOCK# signal is deasserted. This prevents other bus masters from accessing
the PMMR interface during a locked operation.

All PMMR transactions are allowed from i960 core processor operating in either user mode or
supervisor mode. In addition, the PMMR does not provide any access fault to the i960 core
processor.

The following PMMR registers have read/write access from the 80960 internal bus (for the ATU):

• Vendor ID register

• Device ID register

• Revision ID register

• Class Code register

• Header Type register

3-8 i960® VH Processor Developer’s Manual

Programming Environment

For accesses through PCI configuration cycles, access is specified in the register definition located
in the appropriate chapter.

For PCI configuration read transactions, the PMMR returns a zero value for reserved registers. For
PCI configuration write transactions, the PMMR discards the data. For all other accesses, reading
or writing a reserved register is undefined. See Table C-2 and Table C-3 for register memory
locations.

3.4 Architecturally Defined Data Structures

The architecture defines a set of data structures including stacks, interfaces to system procedures,
interrupt handling procedures and fault handling procedures. Table 3-3 defines the data structures
and references other sections of this manual where detailed information can be found.

The 80960VH defines two initialization data structures: the Initialization Boot Record (IBR) and
the Process Control Block (PRCB). These structures provide initialization data and pointers to
other data structures in memory. When the processor is initialized, these pointers are read from the
initialization data structures and cached for internal use.

Pointers to the system procedure table, interrupt table, interrupt stack, fault table and control table
are specified in the processor control block. Supervisor stack location is specified in the system
procedure table. User stack location is specified in the user’s startup code. Of these structures, only
the system procedure table, fault table, control table and initialization data structures may be in
ROM; the interrupt table and stacks must be in RAM. The interrupt table must be located in RAM
to allow posting of software interrupts.

Table 3-3. Data Structure Descriptions

Structure Description

User and Supervisor Stacks

Section 7.6, “User and Supervisor
Stacks” on page 7-16

The processor uses these stacks when executing application code.

Interrupt Stack

Section 8.1.5, “Interrupt Stack And
Interrupt Record” on page 8-5

A separate interrupt stack is provided to ensure that interrupt handling
does not interfere with application programs.

System Procedure Table

Section 3.7, “User-Supervisor
Protection Model” on page 3-17

Section 7.5, “System Calls” on
page 7-13

Contains pointers to system procedures. Application code uses the
system call instruction (calls) to access system procedures through
this table. A system supervisor call switches execution mode from
user mode to supervisor mode. When the processor switches modes,
it also switches to the supervisor stack.

Interrupt Table

Section 8.1.4, “Interrupt Table” on
page 8-3

The interrupt table contains vectors (pointers) to interrupt handling
procedures. When an interrupt is serviced, a particular interrupt table
entry is specified.

Fault Table

Section 9.3, “Fault Table” on
page 9-4

Contains pointers to fault handling procedures. When the processor
detects a fault, it selects a particular entry in the fault table. The
architecture does not require a separate fault handling stack. Instead,
a fault handling procedure uses the supervisor stack, user stack or
interrupt stack, depending on the processor execution mode in which
the fault occurred and the type of call made to the fault handling
procedure.

i960® VH Processor Developer’s Manual 3-9

Programming Environment

3.5 Memory Address Space

The 80960VH’s local address space is byte-addressable with addresses running contiguously from
0 to 232-1. Some memory space is reserved or assigned special functions as shown in Figure 3-2.

Physical addresses can be mapped to read-write memory, read-only memory and memory-mapped
I/O. The architecture does not define a dedicated, addressable I/O space. There are no subdivisions
of the address space such as segments. For memory management, an external memory

Control Table

Section 12.4.4, “Control Table” on
page 12-19

Contains on-chip control register values. Control table values are
moved to on-chip registers at initialization or with sysctl.

Table 3-3. Data Structure Descriptions

Structure Description

Figure 3-2. Local Memory Address Space

Code/Data

Architecturally Defined Data Structures

External Memory

0000 0000H
Address

0000 0FFFH
0000 1000H

FF00 0000H

FFFF FFFFH

Reserved
Address
Space

FEFF FFFFH

FEFF FF60H
FEFF FF5FH

Initialization Boot Record (IBR)

0000 03FFH
0000 0400H

0000 17FFH
0000 1800H

FEFF FF30H
FEFF FF2FH

0000 2000H
0000 1FFFH

i960® VH Processor Reserved

Peripheral Memory-mapped Registers

i960® VH Processor Reserved

Available for Data

Reserved Memory

i960® Core Processor

 Register Space

NMI Vector
0000 0004H

0000 003FH
Internal

Data RAM
0000 0040H

Optional Interrupt Vectors

Memory-Mapped

3-10 i960® VH Processor Developer’s Manual

Programming Environment

management unit (MMU) may subdivide memory into pages or restrict access to certain areas of
memory to protect a kernel’s code, data and stack. However, the processor views this address space
as linear.

An address in memory is a 32-bit value in the range 0H to FFFF FFFFH. Depending on the
instruction, an address can reference in memory a single byte, short word (2 bytes), word (4 bytes),
double word (8 bytes), triple word (12 bytes) or quad word (16 bytes). Refer to load and store
instruction descriptions in Chapter 6, “Instruction Set Reference” for multiple-byte addressing
information.

3.5.1 Memory Requirements

The architecture requires that external memory have the following properties:

• Memory must be byte-addressable.

• Physical memory must not be mapped to reserved addresses that are specifically used by the
processor implementation.

• Memory must guarantee indivisible access (read or write) for addresses that fall within 16-byte
boundaries.

• Memory must guarantee atomic access for addresses that fall within 16-byte boundaries.

The latter two capabilities, indivisible and atomic access, are required only when multiple
processors or other external agents, such as DMA or graphics controllers, share a common
memory.

indivisible access Guarantees that a processor, reading or writing a set of memory
locations, complete the operation before another processor or external
agent can read or write the same location. The processor requires
indivisible access within an aligned 16-byte block of memory.

atomic access A read-modify-write operation. Here the external memory system must
guarantee that once a processor begins a read-modify-write operation on
an aligned, 16-byte block of memory it is allowed to complete the
operation before another processor or external agent can access to the
same location. An atomic memory system can be implemented by using
the LOCK# signal to qualify hold requests from external bus agents. The
processor asserts LOCK# for the duration of an atomic memory
operation.

The upper 16 Mbytes of the address space (addresses FF00 0000H through FFFF FFFFH and
0000 1000H through 0000 17FFH) are reserved for implementation-specific functions. 80960VH
programs cannot use this address space except for accesses to memory-mapped registers. The
processor does not generate any external bus cycles to this memory. As shown in Figure 3-2, part
of the initialization boot record is located just below the 80960VH’s reserved memory.

The 80960VH requires some special consideration when using the lower 1 Kbyte of address space
(addresses 0000H 03FFH). Loads and stores directed to these addresses access internal memory;
instruction fetches from these addresses are not allowed by the processor. See Section 4.1,
“Internal Data RAM” on page 4-1. No external bus cycles are generated to this address space.

i960® VH Processor Developer’s Manual 3-11

Programming Environment

3.5.2 Data and Instruction Alignment in the Address Space

Instructions, program data and architecturally defined data structures can be placed anywhere in
non-reserved address space while adhering to these alignment requirements:

• Align instructions on word boundaries.

• Align all architecturally defined data structures on the boundaries specified in Table 3-4.

• Align instruction operands for the atomic instructions (atadd, atmod) to word boundaries in
memory.

The 80960VH can perform unaligned load or store accesses. The processor handles a non-aligned
load or store request by:

• Automatically servicing a non-aligned memory access with microcode assistance as described
in Section 13.4.2, “Bus Transactions Across Region Boundaries” on page 13-5.

• After the access completes, the processor can generate an OPERATION.UNALIGNED fault,
if directed to do so.

The method of handling faults is selected at initialization based on the value of the Fault
Configuration Word in the Process Control Block. See Section 12.4.2, “Process Control Block –
PRCB” on page 12-15.

3.5.3 Byte, Word and Bit Addressing

The processor provides instructions for moving data blocks of various lengths from memory to
registers (ld) and from registers to memory (st). Supported sizes for blocks are bytes, short words
(2 bytes), words (4 bytes), double words, triple words and quad words. For example, stl (store
long) stores an 8-byte (double word) data block in memory.

The most efficient way to move data blocks longer than 16 bytes is to move them in quad-word
increments, using quad-word instructions ldq and stq.

When a data block is stored in memory, the block’s least significant byte is stored at a base
memory address and the more significant bytes are stored at successively higher byte addresses.
This method of ordering bytes in memory is referred to as “little endian” ordering.

Table 3-4. Alignment of Data Structures in the Address Space

Data Structure Alignment Boundary

System Procedure Table 4 byte

Interrupt Table 4 byte

Fault Table 4 byte

Control Table 16 byte

User Stack 16 byte

Supervisor Stack 16 byte

Interrupt Stack 16 byte

Process Control Block 16 byte

Initialization Boot Record Fixed at FEFF FF30H

3-12 i960® VH Processor Developer’s Manual

Programming Environment

When loading a byte, short word or word from memory to a register, the block’s least significant
bit is always loaded in register bit 0. When loading double words, triple words and quad words, the
least significant word is stored in the base register. The more significant words are then stored at
successively higher-numbered registers. Individual bits can be addressed only in data that resides
in a register: bit 0 in a register is the least significant bit, bit 31 is the most significant bit.

3.5.4 Internal Data RAM

The 80960VH has 1 Kbyte of on-chip data RAM. Only data accesses are allowed in this region.
Portions of the data RAM can also be reserved for functions such as caching interrupt vectors. The
internal RAM is fully described in Chapter 4, “Cache and On-Chip Data RAM”.

3.5.5 Instruction Cache

The instruction cache enhances performance by reducing the number of instruction fetches from
external memory. The cache provides fast execution of cached code and loops of code in the cache
and also provides more bus bandwidth for data operations in external memory. The 80960VH
instruction cache is a 16-Kbyte, two-way set associative cache, organized in two sets of four-word
lines.

3.5.6 Data Cache

The data cache on the 80960VH is a write-through 4-Kbyte direct-mapped cache. For more
information, see Chapter 4, “Cache and On-Chip Data RAM”.

3.6 Processor-State Registers

The architecture defines four 32-bit registers that contain status and control information:

3.6.1 Instruction Pointer (IP) Register

The IP register contains the address of the instruction currently being executed. This address is
32 bits long; however, since instructions are required to be aligned on word boundaries in memory,
the IP’s two least-significant bits are always 0 (zero).

All i960 processor instructions are either one or two words long. The IP gives the address of the
lowest-order byte of the first word of the instruction.

The IP register cannot be read directly. However, the IP-with-displacement addressing mode lets
software use the IP as an offset into the address space. This addressing mode can also be used with
the lda (load address) instruction to read the current IP value.

• Instruction Pointer (IP) register • Arithmetic Controls (AC) register

• Process Controls (PC) register • Trace Controls (TC) register

i960® VH Processor Developer’s Manual 3-13

Programming Environment

When a break occurs in the instruction stream due to an interrupt, procedure call or fault, the
processor stores the IP of the next instruction to be executed in local register r2, which is usually
referred to as the return IP or RIP register. Refer to Chapter 7, “Procedure Calls” for further
discussion.

3.6.2 Arithmetic Controls Register – AC

The AC register (Table 3-3) contains condition code flags, integer overflow flag, mask bit and a bit
that controls faulting on imprecise faults. Unused AC register bits are reserved.

3.6.2.1 Initializing and Modifying the AC Register

At initialization, the AC register is loaded from the Initial AC image field in the Process Control
Block. Set reserved bits to 0 in the AC Register Initial Image. Refer to Chapter 12, “Initialization
and System Requirements”.

After initialization, software must not modify or depend on the AC register’s initial image in the
PRCB. Software can use the modify arithmetic controls (modac) instruction to examine and/or
modify any of the register bits. This instruction provides a mask operand that lets user software
limit access to the register’s specific bits or groups of bits, such as the reserved bits.

The processor automatically saves and restores the AC register when it services an interrupt or
handles a fault. The processor saves the current AC register state in an interrupt record or fault
record, then restores the register upon returning from the interrupt or fault handler.

Figure 3-3. Arithmetic Controls Register – AC

28 24 20 16 12 8 4 031

Condition Code Bits - AC.cc

Integer-Overflow Flag - AC.of
(0) No Overflow
(1) Overflow

Integer Overflow Mask Bit - AC.om
(0) No Mask
(1) Mask

No-Imprecise-Faults Bit- AC.nif
(0) Some Faults are Imprecise
(1) All Faults are Precise

Reserved
(Initialize to 0)

c
c
0

c
c
1

c
c
2

o
m

n
i
f

o
f

3-14 i960® VH Processor Developer’s Manual

Programming Environment

3.6.2.2 Condition Code (AC.cc)

The processor sets the AC register’s condition code flags (bits 0-2) to indicate the results of certain
instructions, such as compare instructions. Other instructions, such as conditional branch
instructions, examine these flags and perform functions as dictated by the state of the condition
code flags. Once the processor sets the condition code flags, the flags remain unchanged until
another instruction executes that modifies the field.

Condition code flags show true/false conditions, inequalities (greater than, equal or less than
conditions) or carry and overflow conditions for the extended arithmetic instructions. To show true
or false conditions, the processor sets the flags as shown in Table 3-5. To show equality and
inequalities, the processor sets the condition code flags as shown in Table 3-6.

The term unordered is used when comparing floating point numbers. The 80960VH does not
implement on-chip floating point processing.

To show carry out and overflow, the processor sets the condition code flags as shown in Table 3-7.

Certain instructions, such as the branch-if instructions, use a 3-bit mask to evaluate the condition
code flags. For example, the branch-if-greater-or-equal instruction (bge) uses a mask of 0112 to
determine if the condition code is set to either greater-than or equal. Conditional instructions use
similar masks for the remaining conditions such as: greater-or-equal (0112), less-or-equal (1102)
and not-equal (1012). The mask is part of the instruction opcode; the instruction performs a bitwise
AND of the mask and condition code.

The AC register integer overflow flag (bit 8) and integer overflow mask bit (bit 12) are used in
conjunction with the ARITHMETIC.INTEGER_OVERFLOW fault. The mask bit disables fault
generation. When the fault is masked and integer overflow is encountered, the processor sets the
integer overflow flag instead of generating a fault. If the fault is not masked, then the fault is
allowed to occur and the flag is not set.

Table 3-5. Condition Codes for True or False Conditions

Condition Code Condition

0102 true

0002 false

Table 3-6. Condition Codes for Equality and Inequality Conditions

Condition Code Condition

0002 unordered

0012 greater than

0102 equal

1002 less than

Table 3-7. Condition Codes for Carry Out and Overflow

Condition Code Condition

01X2 carry out

0X12 overflow

i960® VH Processor Developer’s Manual 3-15

Programming Environment

Once the processor sets this flag, the flag remains set until the application software clears it. Refer
to the discussion of the ARITHMETIC.INTEGER_OVERFLOW fault in Chapter 9, “Faults” for
more information about the integer overflow mask bit and flag.

The no imprecise faults (AC.nif) bit (bit 15) determines whether or not faults are allowed to be
imprecise. If set, then all faults are required to be precise; if clear, then certain faults can be
imprecise. See Section 9.9, “Precise and Imprecise Faults” on page 9-16 for more information.

3.6.3 Process Controls Register – PC

The PC register (Table 3-4) is used to control processor activity and show the processor’s current
state. The PC register execution mode flag (bit 1) indicates that the processor is operating in either
user mode (0) or supervisor mode (1). The processor automatically sets this flag on a system call
when a switch from user mode to supervisor mode occurs and it clears the flag on a return from
supervisor mode. (User and supervisor modes are described in Section 3.7, “User-Supervisor
Protection Model” on page 3-17.

PC register state flag (bit 13) indicates the processor state: executing (0) or interrupted (1). If the
processor is servicing an interrupt, then its state is interrupted. Otherwise, the processor’s state is
executing.

While in the interrupted state, the processor can receive and handle additional interrupts. When
nested interrupts occur, the processor remains in the interrupted state until all interrupts are
handled, then switches back to the executing state on the return from the initial interrupt procedure.

The PC register priority field (bits 16 through 20) indicates the processor’s current executing or
interrupted priority. The architecture defines a mechanism for prioritizing execution of code,
servicing interrupts and servicing other implementation-dependent tasks or events. This

Figure 3-4. Process Controls Register – PC

28 24 20 16 12 8 4 031

Trace-Enable Bit - PC.te
(0) Globally disable trace faults
(1) Globally enable trace faults

Execution-Mode Flag - PC.em
(0) user mode
(1) supervisor mode

Trace-Fault-Pending - PC.tfp
(0) no fault pending
(1) fault pending

State Flag - PC.s
(0) executing
(1) interrupted

Priority Field - PC.p
(0-31) process priority

Reserved

te
t

s
p pppp

4 3 2 1 0
f

m ep

(Do not modify)

3-16 i960® VH Processor Developer’s Manual

Programming Environment

mechanism defines 32 priority levels, ranging from 0 (the lowest priority level) to 31 (the highest).
The priority field always reflects the current priority of the processor. Software can change this
priority by use of the modpc instruction.

The processor uses the priority field to determine whether to service an interrupt immediately or to
post the interrupt. The processor compares the priority of a requested interrupt with the current
process priority. When the interrupt priority is greater than the current process priority or equal to
31, the interrupt is serviced; otherwise it is posted. When an interrupt is serviced, the process
priority field is automatically changed to reflect interrupt priority. See Chapter 8, “Interrupts”.

The PC register trace enable bit (bit 0) and trace fault pending flag (bit 10) control the tracing
function. The trace enable bit determines whether trace faults are globally enabled (1) or globally
disabled (0). The trace fault pending flag indicates that a trace event has been detected (1) or not
detected (0). The tracing functions are further described in Chapter 10, “Tracing and Debugging”.

3.6.3.1 Initializing and Modifying the PC Register

Any of the following three methods can be used to change bits in the PC register:

• Modify process controls instruction (modpc)

• Alter the saved process controls prior to a return from an interrupt handler or fault handler

The modpc instruction reads and modifies the PC register directly. A TYPE.MISMATCH fault
results if software executes modpc in user mode with a non-zero mask. As with modac, modpc
provides a mask operand that can be used to limit access to specific bits or groups of bits in the
register. In user mode, software can use modpc to read the current PC register.

In the latter two methods, the interrupt or fault handler changes process controls in the interrupt or
fault record that is saved on the stack. Upon return from the interrupt or fault handler, the modified
process controls are copied into the PC register. The processor must be in supervisor mode prior to
return for modified process controls to be copied into the PC register.

When process controls are changed as described above, the processor recognizes the changes
immediately except for one situation: if modpc is used to change the trace enable bit, then the
processor may not recognize the change before the next four non-branch instructions are executed.

After initialization (hardware reset), the process controls reflect the following conditions:

When the processor is reinitialized with a sysctl reinitialize message, the PC register is not
changed.

Software should not use modpc to modify execution mode or trace fault state flags except under
special circumstances, such as in initialization code. Normally, execution mode is changed through
the call and return mechanism. See Section 6.2.43, “modpc” on page 6-72 for more details.

• priority = 31 • execution mode = supervisor

• trace enable = disabled • state = interrupted

• no trace fault pending

i960® VH Processor Developer’s Manual 3-17

Programming Environment

3.6.4 Trace Controls (TC) Register

The TC register, in conjunction with the PC register, controls processor tracing facilities. It
contains trace mode enable bits and trace event flags that are used to enable specific tracing modes
and record trace events, respectively. Trace controls are described in Chapter 10, “Tracing and
Debugging”.

3.7 User-Supervisor Protection Model

The processor can be in either of two execution modes: user or supervisor. The capability of a
separate user and supervisor execution mode creates a code and data protection mechanism
referred to as the user-supervisor protection model. This mechanism allows code, data and stack
for a kernel (or system executive) to reside in the same address space as code, data and stack for the
application. The mechanism restricts access to all or parts of the kernel by the application code.
This protection mechanism prevents application software from inadvertently altering the kernel.

3.7.1 Supervisor Mode Resources

Supervisor mode is a privileged mode that provides several additional capabilities over user mode.

• When the processor switches to supervisor mode, it also switches to the supervisor stack.
Switching to the supervisor stack helps maintain a kernel’s integrity. For example, it allows
access to system debugging software or a system monitor, even if an application’s program
destroys its own stack.

• In supervisor mode, the processor is allowed access to a set of supervisor-only functions and
instructions. For example, the processor uses supervisor mode to handle interrupts and trace
faults. Operations that can modify interrupt controller behavior or reconfigure bus controller
characteristics can be performed only in supervisor mode. These functions include
modification of control registers and internal data RAM that is dedicated to interrupt
controllers. A fault is generated if supervisor-only operations are attempted while the
processor is in user mode.

The PC register execution mode flag specifies processor execution mode. The processor
automatically sets and clears this flag when it switches between the two execution modes.

Note that all of these instructions return a TYPE.MISMATCH fault if executed in user mode.

• dcctl (data cache control) • inten (global interrupt enable)

• Protected timer unit registers • modpc (modify process controls w/
non-zero mask)

• icctl (instruction cache control) • sysctl (system control)

• intctl (global interrupt enable and disable) • Protected internal data RAM or Supervisor
MMR space write

• intdis (global interrupt disable)

3-18 i960® VH Processor Developer’s Manual

Programming Environment

3.7.2 Using the User-Supervisor Protection Model

A program switches from user mode to supervisor mode by making a system-supervisor call (also
referred to as a supervisor call). A system-supervisor call is a call executed with the call-system
instruction (calls). With calls, the IP for the called procedure comes from the system procedure
table. An entry in the system procedure table can specify an execution mode switch to supervisor
mode when the called procedure is executed. calls and the system procedure table thus provide a
tightly controlled interface to procedures that can execute in supervisor mode. Once the processor
switches to supervisor mode, it remains in that mode until a return is performed to the procedure
that caused the original mode switch.

Interrupts and faults can cause the processor to switch from user to supervisor mode. When the
processor handles an interrupt, it automatically switches to supervisor mode. However, it does not
switch to the supervisor stack. Instead, it switches to the interrupt stack. Fault table entries
determine if a particular fault transitions the processor from user to supervisor mode.

If an application does not require a user-supervisor protection mechanism, then the processor can
always execute in supervisor mode. At initialization, the processor is placed in supervisor mode
prior to executing the first instruction of the application code. The processor then remains in
supervisor mode indefinitely, as long as no action is taken to change execution mode to user mode.
The processor does not need a user stack in this case.

i960® VH Processor Developer’s Manual 4-1

Cache and On-Chip Data RAM 4

This chapter describes the structure and user configuration of all forms of on-chip storage,
including caches (data, local register and instruction) and data RAM.

4.1 Internal Data RAM

Internal data RAM is mapped to the lower 1 Kbyte (0 to 03FFH) of the address space. Loads and
stores with target addresses in internal data RAM operate directly on the internal data RAM; no
external bus activity is generated. Data RAM allows time-critical data storage and retrieval without
dependence on external bus performance. Only data accesses are allowed to the internal data RAM;
instructions cannot be fetched from the internal data RAM. Instruction fetches directed to the data
RAM cause an OPERATION.UNIMPLEMENTED fault to occur.

Internal data RAM locations are never cached in the data cache. Logical Memory Template bits
controlling caching are ignored for data RAM accesses.

Some internal data RAM locations are reserved for functions other than general data storage. The
first 64 bytes of data RAM may be used to cache interrupt vectors, which reduces latency for these
interrupts. The word at location 0000H is always reserved for the cached NMI vector. With the
exception of the cached NMI vector, other reserved portions of the data RAM can be used for data
storage when the alternate function is not used. All locations of the internal data RAM can be read
in both supervisor and user mode.

The first 64 bytes (0000H to 003FH) of internal RAM are always user-mode write-protected. This
portion of data RAM can be read while executing in user or supervisor mode; however, it can be
only modified in supervisor mode. This area can also be write-protected from supervisor mode
writes by setting the BCON.sirp bit. See Section 13.3.1, “Bus Control Register – BCON” on
page 13-4. Protecting this portion of the data RAM from user and supervisor rights preserves the
interrupt vectors that may be cached there. See Section 8.5.2.1, “Vector Caching Option” on
page 8-35.

Figure 4-1. Internal Data RAM and Register Cache

NMI
0000 0000H

Optional Interrupt Vectors

0000 0004H

0000 003FH

0000 03FFH

Available for Data

4-2 i960® VH Processor Developer’s Manual

Cache and On-Chip Data RAM

The remainder of the internal data RAM can always be written from supervisor mode. User mode
write protection is optionally selected for the rest of the data RAM (40H to 3FFH) by setting the
Bus Control Register RAM protection bit (BCON.irp). Writes to internal data RAM locations
while they are protected generate a TYPE.MISMATCH fault. See Section 13.3.1, “Bus Control
Register – BCON” on page 13-4 for the format of the BCON register.

New versions of i960 processor compilers take advantage of internal data RAM. Profiling
compilers, such as those offered by Intel, can allocate the most frequently used variables into this
RAM.

4.2 Local Register Cache

The i960® VH processor provides fast storage of local registers for call and return operations by
using an internal local register cache (also known as a stack frame cache). Up to eight local register
sets can be contained in the cache before sets must be saved in external memory. The register set is
all the local registers (i.e., r0 through r15). The processor uses a 128-bit wide bus to store local
register sets quickly to the register cache. An integrated procedure call mechanism saves the
current local register set when a call is executed. A local register set is saved into a frame in the
local register cache, one frame per register set. When the eighth frame is saved, the oldest set of
local registers is flushed to the procedure stack in external memory, which frees one frame.

Section 7.1.4, “Caching Local Register Sets” on page 7-6 and Section 7.1.5, “Mapping Local
Registers to the Procedure Stack” on page 7-10 further discuss the relationship between the internal
register cache and the external procedure stack.

The branch-and-link (bal and balx) instructions do not cause the local registers to be stored.

The entire internal register cache contents can be copied to the external procedure stack through the
flushreg instruction. Section 6.2.30, “flushreg” on page 6-50 explains the instruction itself and
Section 7.2, “Modifying the PFP Register” on page 7-10 offers a practical example when flushreg
must be used.

To decrease interrupt latency, software can reserve a number of frames in the local register cache
solely for high priority interrupts (interrupted state and process priority greater than or equal to 28).
The remaining frames in the cache can be used by all code, including high-priority interrupts.
When a frame is reserved for high-priority interrupts, the local registers of the code interrupted by
a high-priority interrupt can be saved to the local register cache without causing a frame flush to
memory, providing that the local register cache is not already full. Thus, the register allocation for
the implicit interrupt call does not incur the latency of a frame flush.

Software can reserve frames for high-priority interrupt code by writing bits 10 through 8 of the
register cache configuration word in the PRCB. This value indicates the number of free frames
within the register cache that can be used by high-priority interrupts only. Any attempt by
non-critical code to reduce the number of free frames below this value results in a frame flush to
external memory. The free frame check is performed only when a frame is pushed, which occurs
only for an implicit or explicit call. The following pseudo-code illustrates the operation of the
register cache when a frame is pushed.

i960® VH Processor Developer’s Manual 4-3

Cache and On-Chip Data RAM

The valid range for the number of reserved free frames is 0 to 7. Setting the value to 0 reserves no
frames for exclusive use by high-priority interrupts. Setting the value to 1 reserves 1 frame for
high-priority interrupts and 6 frames to be shared by all code. Setting the value to 7 causes the
register cache to become disabled for non-critical code. If the number of reserved high-priority
frames exceeds the allocated size of the register cache, then the entire cache is reserved for
high-priority interrupts. In that case, all low-priority interrupts and procedure calls cause frame
spills to external memory.

4.3 Instruction Cache

The 80960VH features a 16-Kbyte, 2-way set-associative instruction cache (I-cache) organized in
lines of four 32-bit words. The cache provides fast execution of cached code and loops of code and
provides more bus bandwidth for data operations in external memory. To optimize cache updates
when branches or interrupts are executed, each word in the line has a separate valid bit. When
requested instructions are found in the cache, the instruction fetch time is one cycle for up to four
words. A mechanism to load and lock critical code within a way of the cache is provided along
with a mechanism to disable the cache. The cache is managed through the icctl or sysctl
instruction. The sysctl instruction supports the instruction cache to maintain compatibility with
other i960 processor software. Using icctl is the preferred and more versatile method for
controlling the instruction cache on the 80960VH.

Cache misses cause the processor to issue a double-word or a quad-word fetch, based on the
location of the Instruction Pointer:

• If the IP is at word 0 or word 1 of a 16-byte block, a four-word fetch is initiated.

• If the IP is at word 2 or word 3 of a 16-byte block, a two-word fetch is initiated.

Example 4-1. Register Cache Operation

frames_for_non_critical = 7- RCW[11:8];
if (interrupt_request)

set_interrupt_handler_PC;
push_frame;
number_of_frames = number_of_frames + 1;

if (number_of_frames = 8) {
flush_register_frame(oldest_frame);
number_of_frames = number_of_frames - 1; }

else if (number_of_frames = (frames_for_non_critical + 1) &&
(PC.priority < 28 || PC.state != interrupted)) {

flush_register_frame(oldest_frame);
number_of_frames = number_of_frames - 1; }

4-4 i960® VH Processor Developer’s Manual

Cache and On-Chip Data RAM

4.3.1 Enabling and Disabling the Instruction Cache

Enabling the instruction cache is controlled on reset or initialization by the instruction cache
configuration word in the Process Control Block (PRCB); see Table 12-8 “Process Control Block
Configuration Words” on page 12-17. When bit 16 in the instruction cache configuration word is
set, the instruction cache is disabled and all instruction fetches are directed to external memory.
Disabling the instruction cache is useful for tracing execution in a software debug environment.

The instruction cache remains disabled until one of three operations is performed:

• icctl is issued with the enable instruction cache operation (preferred method)

• sysctl is issued with the configure-instruction-cache message type and cache configuration
mode other than disable cache (provides compatibility with other i960 processors; not the
preferred method for 80960VH).

• The processor is reinitialized with a new value in the instruction cache configuration word

4.3.2 Operation While the Instruction Cache Is Disabled

Disabling the instruction cache does not disable instruction buffering that may occur in the
instruction fetch unit. A four-word instruction buffer is always enabled, even when the cache is
disabled.

There is one tag and four word-valid bits associated with the buffer. Because there is only one tag
for the buffer, any “miss” within the buffer causes the following:

• All four words of the buffer are invalidated.

• A new tag value for the required instruction is loaded.

• The required instruction(s) are fetched from external memory.

Depending on the alignment of the “missed” instruction, either two or four words of instructions
are fetched and only the valid bits corresponding to the fetched words are set in the buffer. No
external instruction fetches are generated until there is a “miss” within the buffer, even in the
presence of forward and backward branches.

4.3.3 Loading and Locking Instructions in the Instruction Cache

The processor can be directed to load a block of instructions into the cache and then lock out all
normal updates to the cache. This cache load-and-lock mechanism is provided to minimize latency
on program control transfers to key operations such as interrupt service routines. The block size
that can be loaded and locked on the 80960VH is one way of the cache.

An icctl or sysctl instruction is issued with a configure-instruction-cache message type to select
the load-and-lock mechanism. When the lock option is selected, the processor loads the cache
starting at an address specified as an operand to the instruction.

4.3.4 Instruction Cache Visibility

Instruction cache status can be determined by issuing icctl with an instruction-cache status
message. To facilitate debugging, the instruction cache contents, instructions, tags and valid bits
can be written to memory. This is done by issuing icctl with the store cache operation.

i960® VH Processor Developer’s Manual 4-5

Cache and On-Chip Data RAM

4.3.5 Instruction Cache Coherency

The 80960VH does not snoop the bus to prevent instruction cache incoherency. The cache does not
detect modification to program memory by loads, stores or actions of other bus masters. Several
situations may require program memory modification, such as uploading code at initialization or
loading from a backplane bus or a disk drive.

The application program is responsible for synchronizing its own code modification and cache
invalidation. In general, a program must ensure that modified code space is not accessed until
modification and cache-invalidate are completed. To achieve cache coherency, instruction cache
contents should be invalidated after code modification is complete. icctl invalidates the instruction
cache for the 80960VH. Alternately, i960 processor legacy software can use sysctl.

4.4 Data Cache

The 80960VH features a 4-Kbyte, direct-mapped cache that enhances performance by reducing the
number of data load and store accesses to external memory. The cache is write-through and
write-allocate. It has a line size of 4 words and each line in the cache has a valid bit. To reduce
fetch latency on cache misses, each word within a line also has a valid bit. Caches are managed
through the dcctl instruction.

User settings in the memory region configuration registers LMCON0-1 and DLMCON determine
the data accesses that are cacheable or non-cacheable based on memory region.

4.4.1 Enabling and Disabling the Data Cache

To cache data, two conditions must be met:

1. The data cache must be enabled. A dcctl instruction issued with an enable data cache message
enables the cache. On reset or initialization, the data cache is always disabled and all valid bits
are set to zero.

2. Data caching for a location must be enabled by the corresponding logical memory template, or
by the default logical memory template if no other template applies. See Section 13.2,
“Programming the Physical Memory Attributes (Pmcon Registers)” on page 13-3 for more
details on logical memory templates.

When the data cache is disabled, all data fetches are directed to external memory. Disabling the
data cache is useful for debugging or monitoring a system. To disable the data cache, issue a dcctl
with a disable data cache message. The enable and disable status of the data cache and various
attributes of the cache can be determined by a dcctl issued with a data-cache status message.

4.4.2 Multi-Word Data Accesses that Partially Hit the Data Cache

The following applies only when data caching is enabled for an access.

For a multi-word load access (ldl, ldt, ldq) in which none of the requested words hit the data cache,
an external bus transaction is started to acquire all the words of the access.

For a multi-word load access that partially hits the data cache, the processor may either:

• Load or reload all words of the access (even those that hit) from the external bus.

4-6 i960® VH Processor Developer’s Manual

Cache and On-Chip Data RAM

• Load only missing words from the external bus and interleave them with words found in the
data cache.

The multi-word alignment determines which of the above methods is used:

• Naturally aligned multi-word accesses cause all words to be reloaded.

• An unaligned multi-word access causes only missing words to be loaded.

When any words (Table 4-1) accessed with ldl, ldt, or ldq miss the data cache, every word
accessed by that load instruction is updated in the cache.

In each case, the external bus accesses used to acquire the data may consist of none, one, or several
burst accesses based on the alignment of the data and the bus-width of the memory region that
contains the data. See Chapter 13, “Core Processor Local Bus Configuration” for more details.

A multi-word load access that completely hits in the data cache does not cause external bus
accesses.

For a multi-word store access (stl, stt, stq) an external bus transaction is started to write all words
of the access regardless if any or all words of the access hit the data cache. External bus accesses
used to write the data may consist of either one or several burst accesses based on data alignment
and the bus-width of the memory region that receives the data. The cache is also updated
accordingly as described earlier in this chapter.

4.4.3 Data Cache Fill Policy

The 80960VH always uses a “natural” fill policy for cacheable loads. The processor fetches only
the amount of data that is requested by a load (i.e., a word, long word, etc.) on a data cache miss.
Exceptions are byte and short-word accesses, which are always promoted to words. This allows a
complete word to be brought into the cache and marked valid. When the data cache is disabled and
loads are done from a cacheable region, promotions from bytes and short words still take place.

4.4.4 Data Cache Write Policy

The write policy determines what happens on cacheable writes (stores). The 80960VH always uses
a write-through policy. Stores are always seen on the external bus, thus maintaining coherency
between the data cache and external memory.

The 80960VH always uses a write-allocate policy for data. For a cacheable location, data is always
written to the data cache regardless of whether the access is a hit or miss. The following cases are
relevant to consider:

1. In the case of a hit for a word or multi-word store, the appropriate line and word(s) are updated
with the data.

Table 4-1. Load Instruction Updates

 Load Instruction Number of Updated Words

ldq 4 words

ldt 3 words

ldl 2 words

i960® VH Processor Developer’s Manual 4-7

Cache and On-Chip Data RAM

2. In the case of a miss for a word or multi-word store, a tag and cache line are allocated, if
needed, and the appropriate valid bits, line, and word(s) are updated.

3. In the case of byte or short-word data that hits a valid word in the cache, both the word in
cache and external memory are updated with the data; the cache word remains valid.

4. In the case of byte or short-word data that falls within a valid line but misses because the
appropriate word is invalid, both the word and external memory are updated with the data;
however, the cache word remains invalid.

5. In the case of byte or short-word data that does not fall within a valid line, the external
memory is updated with the data. For data writes less than a word, the data cache is not
updated; the tags and valid bits are not changed.

A byte or short word is always invalid in the data cache since valid bits only apply to words.

For cacheable stores that are equal to or greater than a word in length, cache tags and appropriate
valid bits are updated whenever data is written into the cache. Consider a word store that misses as
an example. The tag is always updated and its valid bit is set. The appropriate valid bit for that
word is always set and the other three valid bits are always cleared. If the word store hits the cache,
the tag bits remain unchanged. The valid bit for the stored word is set; all other valid bits are
unchanged.

Cacheable stores that are less than a word in length are handled differently. Byte and short-word
stores that hit the cache (i.e., are contained in valid words within valid cache lines) do not change
the tag and valid bits. The processor writes the data into the cache and external memory as usual. A
byte or short-word store to an invalid word within a valid cache line leaves the word’s valid bit
cleared because the rest of the word is still invalid. In these two cases the processor simultaneously
writes the data into the cache and the external memory.

4.4.5 Data Cache Coherency and Non-Cacheable Accesses

The 80960VH ensures that the data cache is always kept coherent with accesses that it initiates and
performs. The most visible application of this requirement concerns non-cacheable accesses
discussed below. However, the processor does not provide data cache coherency for accesses on
the external bus that it did not initiate. Software is responsible for maintaining coherency in a
multi-processor environment.

An access is defined as non-cacheable when any of the following is true:

1. The access falls into an address range mapped by an enabled LMCON or DLMCON and the
data-caching enabled bit in the matching LMCON is clear.

2. The entire data cache is disabled.

3. The access is a read operation of the read-modify-write sequence performed by an atmod or
atadd instruction.

4. The access is an implicit read access to the interrupt table to post or deliver a software
interrupt.

If the memory location targeted by an atmod or atadd instruction is currently in the data cache, it
is invalidated.

If the address for a non-cacheable store matches a tag (“tag hit”), the corresponding cache line is
marked invalid. This is because the word is not actually updated with the value of the store. This
behavior ensures that the data cache never contains stale data in a single-processor system. A

4-8 i960® VH Processor Developer’s Manual

Cache and On-Chip Data RAM

simple case illustrates the necessity of this behavior: a read of data previously stored by a
non-cacheable access must return the new value of the data, not the value in the cache. Because the
processor invalidates the appropriate word in the cache line on a store hit when the cache is
disabled, coherency can be maintained when the data cache is enabled and disabled dynamically.

Data loads or stores invalidate the corresponding lines of the cache even when data caching is
disabled. This behavior further ensures that the cache does not contain stale data.

4.4.6 External I/O and Bus Masters and Cache Coherency

The 80960VH implements a single processor coherency mechanism. There is no hardware
mechanism, such as bus snooping, to support multiprocessing. If another bus master can change
shared memory, then there is no guarantee that the data cache contains the most recent data. The
user must manage such data coherency issues in software.

A suggested practice is to program the LMCON0-1 registers so that I/O regions are non-cacheable.
Partitioning the system in this fashion eliminates I/O as a source of coherency problems. See
Section 13.2, “Programming the Physical Memory Attributes (Pmcon Registers)” on page 13-3 for
more information on this subject.

4.4.7 Data Cache Visibility

Data cache status can be determined by a dcctl instruction issued with a data-cache status message.
Data cache contents, data, tags and valid bits can be written to memory as an aid for debugging.
This operation is accomplished by a dcctl instruction issued with the dump cache operand. See
Section 6.2.23, “dcctl” on page 6-37 for more information.

i960® VH Processor Developer’s Manual 5-1

Instruction Set Overview 5

This chapter provides an overview of the i960® microprocessor family’s instruction set and i960®
VH processor-specific instruction set extensions. Also discussed are the assembly-language and
instruction-encoding formats, various instruction groups and each group’s instructions.

Chapter 6, “Instruction Set Reference” describes each instruction, including assembly language
syntax, and the action taken when the instruction executes and examples of how to use the
instruction.

5.1 Instruction Formats

80960VH instructions may be described in two formats: assembly language and instruction
encoding. The following subsections briefly describe these formats.

5.1.1 Assembly Language Format

Throughout this manual, instructions are referred to by their assembly language mnemonics. For
example, the add ordinal instruction is referred to as addo. Examples use Intel 80960 assembly
language syntax which consists of the instruction mnemonic followed by zero to three operands,
separated by commas. In the following assembly language statement example for addo, ordinal
operands in global registers g5 and g9 are added together, and the result is stored in g7:

addo g5, g9, g7# g7 = g9 + g5

In the assembly language listings in this chapter, registers are denoted as:

All numbers used as literals or in address expressions are assumed to be decimal. Hexadecimal
numbers are denoted with a “0x” prefix (e.g., 0xffff0012). Several assembly language instruction
statement examples follow. Additional assembly language examples are given in Section 2.3.5,
“Addressing Mode Examples” on page 2-6.

5.1.2 Instruction Encoding Formats

All instructions are encoded in one 32-bit machine language instruction — an opword — which
must be word aligned in memory. An opword’s most significant eight bits contain the opcode field.
The opcode field determines the instruction to be performed and how the remainder of the machine

g global register r local register

pound sign precedes a comment

subi r3, r5, r6 #r6 = r5 - r3
setbit 13, g4, g5 #g5 = g4 with bit 13 set
lda 0xfab3, r12 #r12 = 0xfab3
ld (r4), g3 #g3 = memory location that r4 points to
st g10, (r6)[r7*2] #g10 = memory location that r6+2*r7 points to

5-2 i960® VH Processor Developer’s Manual

Instruction Set Overview

language instruction is interpreted. Instructions are encoded in opwords in one of four formats (see
Figure 5-1). For more information on instruction formats, see Appendix A, “Machine-level
Instruction Formats”.

5.1.3 Instruction Operands

This section identifies and describes operands that can be used with the instruction formats.

Table 5-1. Instruction Encoding Formats (REG, COBR, CRTL, MEM)

Instruction Type Format Description

register REG Most instructions are encoded in this format. Used primarily for instructions
which perform register-to-register operations.

compare and
branch COBR

An encoding optimization which combines compare and branch operations
into one opword. Other compare and branch operations are also provided as
REG and CTRL format instructions.

control CTRL For branches and calls that do not depend on registers for address
calculation.

memory MEM

Used for referencing an operand which is a memory address. Load and store
instructions — and some branch and call instructions — use this format. MEM
format has two encodings: MEMA or MEMB. Usage depends upon the
addressing mode selected. MEMB-formatted addressing modes use the word
in memory immediately following the instruction opword as a 32-bit constant.
MEMA format uses one word and MEMB uses two words.

Figure 5-1. Machine-Level Instruction Formats

031

OPCODE src/dst src2 OPCODE src1

031

OPCODE src2 displacementsrc1

031

OPCODE displacement

031

OPCODE src/dst Address Offset

REG

COBR

CTRL

MEMA

MEMB

031

OPCODE src/dst Address Index

32-Bit displacement

Scale

Base

Base

Format Operand(s) Description

REG src1, src2, src/dst src1 and src2 can be global registers, local registers or
literals. src/dst is either a global or a local register.

i960® VH Processor Developer’s Manual 5-3

Instruction Set Overview

5.2 Instruction Groups

The i960 processor instruction set can be categorized into the functional groups shown in
Table 5-2. The actual number of instructions is greater than those shown in this list because, for
some operations, several unique instructions are provided to handle various operand sizes, data
types or branch conditions. The following sections provide an overview of the instructions in each
group. For detailed information about each instruction, refer to Chapter 6, “Instruction Set
Reference”.

CTRL displacement CTRL format is used for branch and call instructions.
displacement value indicates the target instruction of the
branch or call.

COBR src1, src2,
displacement

src1, src2 indicate values to be compared; displacement
indicates branch target. src1 can specify a global register,
local register or a literal. src2 can specify a global or local
register.

MEM src/dst, efa Specifies source or destination register and an effective
address (efa) formed by using the processor’s addressing
modes as described in Section 2.3, “Memory Addressing
Modes” on page 2-4. Registers specified in a MEM format
instruction must be either a global or local register.

Format Operand(s) Description

Table 5-2. i960® VH Processor Instruction Set (Sheet 1 of 2)

Data Movement Arithmetic Logical Bit, Bit Field and Byte

Load

Store

Move

*Conditional Select

Load Address

Add

Subtract

Multiply

Divide

Remainder

Modulo

Shift

Extended Shift

Extended Multiply

Extended Divide

Add with Carry

Subtract with Carry

*Conditional Add

*Conditional Subtract

Rotate

And

Not And

And Not

Or

Exclusive Or

Not Or

Or Not

Nor

Exclusive Nor

Not

Nand

Set Bit

Clear Bit

Not Bit

Alter Bit

Scan For Bit

Span Over Bit

Extract

Modify

Scan Byte for Equal

*Byte Swap

* Denotes newer instructions that are NOT available on 80960CA/CF, 80960KA/KB and 80960SA/SB implementations.

5-4 i960® VH Processor Developer’s Manual

Instruction Set Overview

5.2.1 Data Movement

These instructions are used to move data from memory to global and local registers, from global
and local registers to memory, and between local and global registers.

Rules for register alignment must be followed when using load, store and move instructions that
move 8, 12 or 16 bytes at a time. See Section 3.5, “Memory Address Space” on page 3-9 for
alignment requirements for code portability across implementations.

5.2.1.1 Load and Store Instructions

Load instructions copy bytes or words from memory to local or global registers or to a group of
registers. Each load instruction has a corresponding store instruction to memory bytes or words to
copy from a selected local or global register or group of registers. All load and store instructions
use the MEM format.

Comparison Branch Call/Return Fault

Compare

Conditional Compare

Compare and Increment

Compare and Decrement

Test Condition Code

Check Bit

Unconditional Branch

Conditional Branch

Compare and Branch

Call

Call Extended

Call System

Return

Branch and Link

Conditional Fault

Synchronize Faults

Debug Processor
Management Atomic

Modify Trace Controls

Mark

Force Mark

Flush Local Registers

Modify Arithmetic
Controls

Modify Process Controls

*Halt

System Control

*Cache Control

*Interrupt Control

Atomic Add

Atomic Modify

* Denotes newer instructions that are NOT available on 80960CA/CF, 80960KA/KB and 80960SA/SB implementations.

Table 5-2. i960® VH Processor Instruction Set (Sheet 2 of 2)

ld load word st store word

ldob load ordinal byte stob store ordinal byte

ldos load ordinal short stos store ordinal short

ldib load integer byte stib store integer byte

ldis load integer short stis store integer short

ldl load long stl store long

ldt load triple stt store triple

ldq load quad stq store quad

i960® VH Processor Developer’s Manual 5-5

Instruction Set Overview

ld copies 4 bytes from memory into a register; ldl copies 8 bytes; ldt copies 12 bytes into
successive registers; ldq copies 16 bytes into successive registers.

st copies 4 bytes from a register into memory; stl copies 8 bytes; stt copies 12 bytes from
successive registers; stq copies 16 bytes from successive registers.

For ld, ldob, ldos, ldib and ldis, the instruction specifies a memory address and register; the
memory address value is copied into the register. The processor automatically extends byte and
short (half-word) operands to 32 bits according to data type. Ordinals are zero-extended; integers
are sign-extended.

For st, stob, stos, stib and stis, the instruction specifies a memory address and register; the
register value is copied into memory. For byte and short instructions, the processor automatically
reformats the source register’s 32-bit value for the shorter memory location. For stib and stis, this
reformatting can cause integer overflow when the register value is too large for the shorter memory
location. When integer overflow occurs, either an integer-overflow fault is generated or the
integer-overflow flag in the AC register is set, depending on the integer-overflow mask bit setting
in the AC register.

For stob and stos, the processor truncates the register value and does not create a fault when
truncation results in the loss of significant bits.

5.2.1.2 Move

Move instructions copy data from a local or global register or group of registers to another register
or group of registers. These instructions use the REG format.

5.2.1.3 Load Address

The Load Address instruction (lda) computes an effective address in the address space from an
operand presented in one of the addressing modes. lda is commonly used to load a constant into a
register. This instruction uses the MEM format and can operate upon local or global registers.

On the 80960VH, lda is useful for performing simple arithmetic operations. The processor’s
parallelism allows lda to execute in the same clock as another arithmetic or logical operation.

5.2.2 Select Conditional

Given the proper condition code bit settings in the Arithmetic Controls register, these instructions
move one of two pieces of data from its source to the specified destination.

mov move word

movl move long word

movt move triple word

movq move quad word

selno Select Based on Unordered

selg Select Based on Greater

sele Select Based on Equal

5-6 i960® VH Processor Developer’s Manual

Instruction Set Overview

5.2.3 Arithmetic

Table 5-3 lists arithmetic operations and data types for which the 80960VH provides instructions.
“X” in this table indicates that the microprocessor provides an instruction for the specified
operation and data type. All arithmetic operations are carried out on operands in registers or
literals. Refer to Section 5.2.11, “Atomic Instructions” on page 5-15 for instructions which handle
specific requirements for in-place memory operations.

All arithmetic instructions use the REG format and can operate on local or global registers. The
following subsections describe arithmetic instructions for ordinal and integer data types.

5.2.3.1 Add, Subtract, Multiply, Divide, Conditional Add, Conditional Subtract

These instructions perform add, subtract, multiply or divide operations on integers and ordinals:

selge Select Based on Greater or Equal

sell Select Based on Less

selne Select Based on Not Equal

selle Select Based on Less or Equal

selo Select Based on Ordered

Table 5-3. Arithmetic Operations

Arithmetic Operations
Data Types

Integer Ordinal

Add X X

Add with Carry X X

Conditional Add X X

Subtract X X

Subtract with Carry X X

Conditional Subtract X X

Multiply X X

Extended Multiply X

Divide X X

Extended Divide X

Remainder X X

Modulo X

Shift Left X X

Shift Right X X

Extended Shift Right X

Shift Right Dividing Integer X

NOTE: “X” indicates that an instruction is available for the specified operation and data type.

i960® VH Processor Developer’s Manual 5-7

Instruction Set Overview

addi, ADDI<cc>, subi, SUBI<cc>, muli and divi generate an integer-overflow fault when the result
is too large to fit in the 32-bit destination. divi and divo generate a zero-divide fault when the
divisor is zero.

5.2.3.2 Remainder and Modulo

These instructions divide one operand by another and retain the remainder of the operation:

The difference between the remainder and modulo instructions lies in the sign of the result. For
remi and remo, the result has the same sign as the dividend; for modi, the result has the same sign
as the divisor.

5.2.3.3 Shift, Rotate and Extended Shift

These shift instructions shift an operand a specified number of bits left or right:

Except for rotate, these instructions discard bits shifted beyond the register boundary.

shlo shifts zeros in from the least significant bit; shro shifts zeros in from the most significant bit.
These instructions are equivalent to mulo and divo by the power of 2, respectively.

addi Add Integer

addo Add Ordinal

subi Subtract Integer

subo Subtract Ordinal

SUB<cc> Conditional Subtract

muli Multiply Integer

mulo Multiply Ordinal

divi Divide Integer

divo Divide Ordinal

remi remainder integer

remo remainder ordinal

modi modulo integer

shlo shift left ordinal

shro shift right ordinal

shli shift left integer

shri shift right integer

shrdi shift right dividing integer

rotate rotate left

eshro extended shift right ordinal

5-8 i960® VH Processor Developer’s Manual

Instruction Set Overview

shli shifts zeros in from the least significant bit. When the shift operation results in an overflow, an
integer-overflow fault is generated (when enabled). The destination register is written with the
source shifted as much as possible without overflow and an integer-overflow fault is signaled.

shri performs a conventional arithmetic shift right operation by extending the sign bit. However,
when this instruction is used to divide a negative integer operand by the power of 2, it may produce
an incorrect quotient. (Discarding the bits shifted out has the effect of rounding the result toward
negative.)

shrdi is provided for dividing integers by the power of 2. With this instruction, 1 is added to the
result when the bits shifted out are non-zero and the operand is negative, which produces the
correct result for negative operands. shli and shrdi are equivalent to muli and divi by the power of
2, respectively, except in cases where an overflow error occurs.

rotate rotates operand bits to the left (toward higher significance) by a specified number of bits.
Bits shifted beyond the register’s left boundary (bit 31) appear at the right boundary (bit 0).

The eshro instruction performs an ordinal right shift of a source register pair (64 bits) by as much
as 32 bits and stores the result in a single (32-bit) register. This instruction is equivalent to an
extended divide by a power of 2, which produces no remainder. The instruction is also the
equivalent of a 64-bit extract of 32 bits.

5.2.3.4 Extended Arithmetic

These instructions support extended-precision arithmetic; (i.e., arithmetic operations on operands
greater than one word in length):

addc adds two word operands (literals or contained in registers) plus the AC Register condition
code bit 1 (used here as a carry bit). When the result has a carry, bit 1 of the condition code is set;
otherwise, it is cleared. This instruction’s description in Chapter 6, “Instruction Set Reference”
gives an example of how this instruction can be used to add two long-word (64-bit) operands
together.

subc is similar to addc, except it is used to subtract extended-precision values. Although addc and
subc treat their operands as ordinals, the instructions also set bit 0 of the condition codes when the
operation would have resulted in an integer overflow condition. This facilitates a software
implementation of extended integer arithmetic.

emul multiplies two ordinals (each contained in a register), producing a long ordinal result (stored
in two registers). ediv divides a long ordinal by an ordinal, producing an ordinal quotient and an
ordinal remainder (stored in two adjacent registers).

5.2.4 Logical

These instructions perform bitwise Boolean operations on the specified operands:

addc add ordinal with carry

subc subtract ordinal with carry

emul extended multiply

ediv extended divide

i960® VH Processor Developer’s Manual 5-9

Instruction Set Overview

All logical instructions use the REG format and can operate on literals or local or global registers.

5.2.5 Bit, Bit Field and Byte Operations

These perform operations on a specified bit or bit field in an ordinal operand. All Bit, Bit Field and
Byte instructions use the REG format and can operate on literals or local or global registers.

5.2.5.1 Bit Operations

These instructions operate on a specified bit:

setbit, clrbit and notbit set, clear or complement (toggle) a specified bit in an ordinal.

alterbit alters the state of a specified bit in an ordinal according to the condition code. When the
condition code is 0102, the bit is set; when the condition code is 0002, the bit is cleared.

chkbit, described in Section 5.2.6, “Comparison” on page 5-10, can be used to check the value of
an individual bit in an ordinal.

scanbit and spanbit find the most significant set bit or clear bit, respectively, in an ordinal.

and src2 AND src1

notand (NOT src2) AND src1

andnot src2 AND (NOT src1)

xor src2 XOR src1

or src2 OR src1

nor NOT (src2 OR src1)

xnor src2 XNOR src1

not NOT src1

notor (NOT src2) or src1

ornot src2 or (NOT src1)

nand NOT (src2 AND src1)

setbit set bit

clrbit clear bit

notbit invert bit

alterbit alter bit

scanbit scan for bit

spanbit span over bit

5-10 i960® VH Processor Developer’s Manual

Instruction Set Overview

5.2.5.2 Bit Field Operations

The two bit field instructions are extract and modify.

extract converts a specified bit field, taken from an ordinal value, into an ordinal value. In essence,
this instruction shifts right a bit field in a register and fills in the bits to the left of the bit field with
zeros. (eshro also provides the equivalent of a 64-bit extract of 32 bits).

modify copies bits from one register into another register. Only masked bits in the destination
register are modified. modify is equivalent to a bit field move.

5.2.5.3 Byte Operations

scanbyte performs a byte-by-byte comparison of two ordinals to determine when any two
corresponding bytes are equal. The condition code is set based on the results of the comparison.
scanbyte uses the REG format and can specify literals or local or global registers as arguments.

bswap alters the order of bytes in a word, reversing its “endianness.”

5.2.6 Comparison

The processor provides several types of instructions for comparing two operands, as described in
the following subsections.

5.2.6.1 Compare and Conditional Compare

These instructions compare two operands then set the condition code bits in the AC register
according to the results of the comparison:

These all use the REG format and can specify literals or local or global registers. The condition
code bits are set to indicate whether one operand is less than, equal to, or greater than the other
operand. See Section 3.6.2, “Arithmetic Controls Register – AC” on page 3-13 for a description of
the condition codes for conditional operations.

cmpi and cmpo simply compare the two operands and set the condition code bits accordingly.
concmpi and concmpo first check the status of condition code bit 2:

• When not set, the operands are compared as with cmpi and cmpo.

• When set, no comparison is performed and the condition code flags are not changed.

cmpi Compare Integer

cmpib Compare Integer Byte

cmpis Compare Integer Short

cmpo Compare Ordinal

concmpi Conditional Compare Integer

concmpo Conditional Compare Ordinal

chkbit Check Bit

i960® VH Processor Developer’s Manual 5-11

Instruction Set Overview

The conditional-compare instructions are provided specifically to optimize two-sided range
comparisons to check for the condition when A is between B and C (B ≤ A ≤ C). Here, a compare
instruction (cmpi or cmpo) checks one side of the range (A ≥ B) and a conditional compare
instruction (concmpi or concmpo) checks the other side (A ≤ C) according to the result of the first
comparison. The condition codes following the conditional comparison directly reflect the results
of both comparison operations. Therefore, only one conditional branch instruction is required to act
upon the range check; otherwise, two branches would be needed.

chkbit checks a specified bit in a register and sets the condition code flags according to the bit
state. The condition code is set to 0102 when the bit is set, and 0002 when the bit is not set.

5.2.6.2 Compare and Increment or Decrement

These instructions compare two operands, set the condition code bits according to the compare
results, then increment or decrement one of the operands:

These all use the REG format and can specify literals or local or global registers. They are an
architectural performance optimization which allows two register operations (e.g., compare and
add) to execute in a single cycle. The intended use of these instructions is at the end of iterative
loops.

5.2.6.3 Test Condition Codes

These test instructions allow the state of the condition code flags to be tested:

When the condition code matches the instruction-specified condition, a TRUE (0000 0001H) is
stored in a destination register; otherwise, a FALSE (0000 0000H) is stored. All use the COBR
format and can operate on local and global registers.

cmpinci compare and increment integer

cmpinco compare and increment ordinal

cmpdeci compare and decrement integer

cmpdeco compare and decrement ordinal

teste test for equal

testne test for not equal

testl test for less

testle test for less or equal

testg test for greater

testge test for greater or equal

testo test for ordered

testno test for unordered

5-12 i960® VH Processor Developer’s Manual

Instruction Set Overview

5.2.7 Branch

Branch instructions allow program flow direction to be changed by explicitly modifying the IP.
The processor provides three branch instruction types:

• unconditional branch

• conditional branch

• compare and branch

Most branch instructions specify the target IP by specifying a signed displacement to be added to
the current IP. Other branch instructions specify the target IP’s memory address, using one of the
processor’s addressing modes. This latter group of instructions is called extended addressing
instructions (e.g., branch extended, branch-and-link extended).

5.2.7.1 Unconditional Branch

These instructions are used for unconditional branching:

b and bal use the CTRL format. bx and balx use the MEM format and can specify local or global
registers as operands. b and bx cause program execution to jump to the specified target IP. These
two instructions perform the same function; however, their determination of the target IP differs.
The target IP of a b instruction is specified at link time as a relative displacement from the current
IP. The target IP of the bx instruction is the absolute address resulting from the instruction’s use of
a memory-addressing mode during execution.

bal and balx store the next instruction’s address in a specified register, then jump to the specified
target IP. (For bal, the RIP is automatically stored in register g14; for balx, the RIP location is
specified with an instruction operand.) As described in Section 7.9, “Branch-and-Link” on
page 7-18, branch and link instructions provide a method of performing procedure calls that do not
use the processor’s integrated call/return mechanism. Here, the saved instruction address is used as
a return IP. Branch and link is generally used to call leaf procedures (that is, procedures that do not
call other procedures).

bx and balx can make use of any memory-addressing mode.

5.2.7.2 Conditional Branch

With conditional branch (BRANCH IF) instructions, the processor checks the AC register condition
code flags. When these flags match the value specified with the instruction, the processor jumps to
the target IP. These instructions use the displacement-plus-ip method of specifying the target IP:

b Branch

bx Branch Extended

bal Branch and Link

balx Branch and Link Extended

be branch if equal/true

bne branch if not equal

bl branch if less

i960® VH Processor Developer’s Manual 5-13

Instruction Set Overview

All use the CTRL format. bo and bno are used with real numbers. bno can also be used with the
result of a chkbit or scanbit instruction. Refer to Section 3.6.2.2, “Condition Code (AC.cc)” on
page 3-14 for a discussion of the condition code for conditional operations.

5.2.7.3 Compare and Branch

These instructions compare two operands then branch according to the comparison result. Three
instruction subtypes are compare integer, compare ordinal and branch on bit:

All use the COBR machine instruction format and can specify literals, local or global registers as
operands. With compare ordinal and branch (compob*) and compare integer and branch
(compib*) instructions, two operands are compared and the condition code bits are set as described
in Section 5.2.6, “Comparison” on page 5-10. A conditional branch is then executed as with the
conditional branch (BRANCH IF) instructions.

With check bit and branch instructions (bbs, bbc), one operand specifies a bit to be checked in the
second operand. The condition code flags are set according to the state of the specified bit: 0102
(true) when the bit is set and 0002 (false) when the bit is clear. A conditional branch is then
executed according to condition code bit settings.

ble branch if less or equal

bg branch if greater

bge branch if greater or equal

bo branch if ordered

bno branch if unordered/false

cmpibe compare integer and branch if equal

cmpibne compare integer and branch if not equal

cmpibl compare integer and branch if less

cmpible compare integer and branch if less or equal

cmpibg compare integer and branch if greater

cmpibge compare integer and branch if greater or equal

cmpibo compare integer and branch if ordered

cmpibno compare integer and branch if unordered

cmpobe compare ordinal and branch if equal

cmpobne compare ordinal and branch if not equal

cmpobl compare ordinal and branch if less

cmpoble compare ordinal and branch if less or equal

cmpobg compare ordinal and branch if greater

cmpobge compare ordinal and branch if greater or equal

bbs check bit and branch if set

bbc check bit and branch if clear

5-14 i960® VH Processor Developer’s Manual

Instruction Set Overview

These instructions can be used to optimize execution performance time. When it is not possible to
separate adjacent compare and branch instructions from other unrelated instructions, replacing two
instructions with a single compare and branch instruction increases performance.

5.2.8 Call/Return

The 80960VH offers an on-chip call/return mechanism for making procedure calls. Refer to
Section 7.1, “Call and Return Mechanism” on page 7-2. The following instructions support this
mechanism:

call and ret use the CTRL machine-instruction format. callx uses the MEM format and can specify
local or global registers. calls uses the REG format and can specify local or global registers.

call and callx make local calls to procedures. A local call is a call that does not require a switch to
another stack. call and callx differ only in the method of specifying the target procedure’s address.
The target procedure of a call is determined at link time and is encoded in the opword as a signed
displacement relative to the call IP. callx specifies the target procedure as an absolute 32-bit
address calculated at run time using any one of the addressing modes. For both instructions, a new
set of local registers and a new stack frame are allocated for the called procedure.

calls is used to make calls to system procedures — procedures that provide a kernel or
system-executive service. This instruction operates similarly to call and callx, except that it gets its
target-procedure address from the system procedure table. An index number included as an
operand in the instruction provides an entry point into the procedure table.

Depending on the type of entry being pointed to in the system procedure table, calls can cause
either a system-supervisor call or a system-local call to be executed. A system-supervisor call is a
call to a system procedure that switches the processor to supervisor mode and switches to the
supervisor stack. A system-local call is a call to a system procedure that does not cause an
execution mode or stack change. Supervisor mode is described throughout Chapter 7, “Procedure
Calls”.

ret performs a return from a called procedure to the calling procedure (the procedure that made the
call). ret obtains its target IP (return IP) from linkage information that was saved for the calling
procedure. ret is used to return from all calls — including local and supervisor calls — and from
implicit calls to interrupt and fault handlers.

5.2.9 Faults

Generally, the processor generates faults automatically as the result of certain operations. Fault
handling procedures are then invoked to handle various fault types without explicit intervention by
the currently running program. These conditional fault instructions permit a program to explicitly
generate a fault according to the state of the condition code flags. All use the CTRL format.

call call

callx call extended

calls call system

ret return

faulte fault if equal

i960® VH Processor Developer’s Manual 5-15

Instruction Set Overview

syncf ensures that any faults that occur during the execution of prior instructions occur before the
instruction that follows the syncf. syncf uses the REG format and requires no operands.

5.2.10 Debug

The processor supports debugging and monitoring of program activity through the use of trace
events. The following instructions support these debugging and monitoring tools:

These all use the REG format. Trace functions are controlled with bits in the Trace Control (TC)
register which enable or disable various types of tracing. Other TC register flags indicate when an
enabled trace event is detected. Refer to Chapter 10, “Tracing and Debugging”.

modtc permits trace controls to be modified. mark causes a breakpoint trace event to be generated
when breakpoint trace mode is enabled. fmark generates a breakpoint trace independent of the state
of the breakpoint trace mode bits.

Other instructions that are helpful in debugging include modpc and sysctl. modpc can
enable/disable trace fault generation. The sysctl instruction also provides control over breakpoint
trace event generation. This instruction is used, in part, to load and control the 80960VH’s
breakpoint registers.

5.2.11 Atomic Instructions

Atomic instructions perform an atomic read-modify-write operation on operands in memory. An
atomic operation is one in which other memory operations are forced to occur before or after, but
not during, the accesses that comprise the atomic operation. These instructions are required to
enable synchronization between interrupt handlers and background tasks in any system. They are
also particularly useful in systems where several agents — processors, coprocessors or external
logic — have access to the same system memory for communication.

The atomic instructions are atomic add (atadd) and atomic modify (atmod). atadd causes an
operand to be added to the value in the specified memory location. atmod causes bits in the
specified memory location to be modified under control of a mask. Both instructions use the REG
format and can specify literals or local or global registers as operands.

faultne fault if not equal

faultl fault if less

faultle fault if less or equal

faultg fault if greater

faultge fault if greater or equal

faulto fault if ordered

faultno fault if unordered

modpc modify process controls

modtc modify trace controls

mark mark

fmark force mark

5-16 i960® VH Processor Developer’s Manual

Instruction Set Overview

5.2.12 Processor Management

These instructions control processor-related functions:

All use the REG format and can specify literals or local or global registers.

modpc provides a method of reading and modifying PC register contents. Only programs
operating in supervisor mode may modify the PC register; however, any program may read it.

The processor provides a flush local registers instruction (flushreg) to save the contents of the
cached local registers to the stack. The flush local registers instruction automatically stores the
contents of all the local register sets — except the current set — in the register save area of their
associated stack frames.

The modify arithmetic controls instruction (modac) allows the AC register contents to be copied to
a register and/or modified under the control of a mask. The AC register cannot be explicitly
addressed with any other instruction; however, it is implicitly accessed by instructions that use the
condition codes or set the integer overflow flag.

sysctl is used to configure the interrupt controller, breakpoint registers and instruction cache. It
also permits software to signal an interrupt or cause a processor reset and reinitialization. sysctl
may be executed only by programs operating in supervisor mode.

intctl, inten and intdis are used to enable and disable interrupts and to determine current interrupt
enable status.

5.3 Performance Optimization

Performance optimization is categorized into two sections: instructions optimizations and
miscellaneous optimizations.

5.3.1 Instruction Optimizations

Instruction optimizations are broken down by the instruction classification.

5.3.1.1 Load / Store Execution Model

Because the 80960VH has a 32-bit external data bus, multiple word accesses require multiple
cycles. The processor uses microcode to sequence the multi-word accesses. Because the microcode
can ensure that aligned multi-words are bursted together on the external bus, software should not
substitute multiple single-word instructions for one multi-word instruction for data that is not likely
to be in cache; (i.e., one ldq provides better bus performance than four ld instructions).

Once a load is issued, the processor attempts to execute other instructions while the load is
outstanding. It is important to note that when the load misses the data cache, the processor does not
stall the issuing of subsequent instructions (other than stores) that do not depend on the load.

modpc Modify the Process Controls register

flushreg Flush cached local register sets to memory

modac Modify the Arithmetic Controls register

i960® VH Processor Developer’s Manual 5-17

Instruction Set Overview

Software should avoid following a load with an instruction that depends on the result of the load.
For a load that hits the data cache, a one-cycle stall occurs when the instruction immediately after
the load requires the data. When the load fails to hit the data cache, the instruction depending on
the load is stalled until the outstanding load request is resolved.

Multiple, back-to-back load instructions do not stall the processor until the bus queue becomes full.

The processor delays issuing a store instruction until all previously-issued load instructions
complete. This happens regardless of whether the store is dependent on the load. This ordering
between loads and stores ensures that the return data from a previous cache-read miss does not
overwrite the cache line updated by a subsequent store.

5.3.1.2 Compare Operations

Byte and short word data is more efficiently compared using the new byte and short compare
instructions (cmpob, cmpib, cmpos, cmpis), rather than shifting the data and using a word
compare instruction.

5.3.1.3 Microcoded Instructions

While the majority of instructions on the 80960VH are single cycle and are executed directly by
processor hardware, some require microcode emulation. Entry into a microcode routine requires
two cycles. Exit from microcode typically requires two cycles. For some routines, one cycle of the
exit process can execute in parallel with another instruction, thus saving one cycle of execution
time.

5.3.1.4 Multiply-Divide Unit Instructions

The Multiply-Divide Unit (MDU) performs a number of multi-cycle arithmetic operations. These
can range from 2 cycles for a 16-bitx32-bit mulo, 4 cycles for a 32-bitx32-bit mulo, to 30+ cycles
for an ediv.

Once issued, these MDU instructions are executed in parallel with other non-MDU instructions
that do not depend on the result of the MDU operation. Attempting to issue another MDU
instruction while a current MDU instruction is executing, stalls the processor until the first one
completes.

5.3.1.5 Multi-Cycle Register Operations

A few register operations can also take multiple cycles. The following instructions are performed
in microcode:

On the 80960VH, test<cc> dst is microcoded and takes many more cycles than SEL<cc> 0,1,dst,
which is executed in one cycle directly by processor hardware.

Multi-register move operation execution time can be decreased at the expense of cache utilization
and code density by using mov the appropriate number of times instead of movl, movt and movq.

• bswap • extract • eshro • modify • movl • movt

• movq • shrdi • scanbit • spanbit • testno • testo

• testl • testle • teste • testne • testg • testge

5-18 i960® VH Processor Developer’s Manual

Instruction Set Overview

5.3.1.6 Simple Control Transfer

There is no branch look-ahead or branch prediction mechanism on the 80960VH. Simple branch
instructions take one cycle to execute, and one more cycle is needed to fetch the target instruction if
the branch is actually taken.

 b, bal, bno, bo, bl, ble, be, bne, bg, bge

One mode of the bx (branch-extended) instruction, bx (base), is also a simple branch and takes one
cycle to execute and one cycle to fetch the target.

As a result, a bal(g14) or bx (g14) sequence provides a two-cycle call and return mechanism for
efficient leaf procedure implementation.

Compare-and-branch instructions have been optimized on the 80960VH. They require two cycles
to execute, and one more cycle to fetch the target instruction if the branch is actually taken. The
instructions are:

5.3.1.7 Memory Instructions

The 80960VH provides efficient support for naturally aligned byte, short, and word accesses that
use one of six optimized addressing modes. These accesses require only one to two cycles to
execute; additional cycles are needed for a load to return its data.

The byte, short and word memory instructions are:

 ldob, ldib, ldos, ldis, ld, lda stob, stib, stos, stis, st

The remainder of accesses require multiple cycles to execute. These include:

• Unaligned short, and word accesses

• Byte, short, and word accesses that do not use one of the 6 optimized addressing modes

• Multi-word accesses

The multi-word accesses are:

 ldl, ldt, ldq, stl, stt, stq

5.3.1.8 Unaligned Memory Accesses

Unaligned memory accesses are performed by microcode. Microcode sequences the access into
smaller aligned pieces and does any merging of data that is needed. As a result, these accesses are
not as efficient as aligned accesses. In addition, no bursting on the external bus is performed for
these accesses. Whenever possible, unaligned accesses should be avoided.

• cmpobno • cmpobo • cmpobl • cmpoble • cmpobe • cmpobne

• cmpobg • cmpobge • cmpibno • cmpibo • cmpibl • cmpible

• cmpibe • cmpibg • cmpibne • cmpibge • bbc • bbs

i960® VH Processor Developer’s Manual 5-19

Instruction Set Overview

5.3.2 Miscellaneous Optimizations

5.3.2.1 Masking of Integer Overflow

The i960 core architecture inserts an implicit syncf before performing a call operation or
delivering an interrupt so that a fault handler can be dispatched first, when necessary. syncf can
require a number of cycles to complete when a multi-cycle integer-multiply (muli) or
integer-divide (divi) instruction is issued previously and integer-overflow faults are unmasked
(allowed to occur). Call performance and interrupt latency can be improved by masking
integer-overflow faults (AC.om = 1), which allows the implicit syncf to complete more quickly.

5.3.2.2 Avoid Using PFP, SP, R3 As Destinations for MDU Instructions

When performing a call operation or delivering an interrupt, the processor typically attempts to
push the first four local registers (pfp, sp, rip, and r3) onto the local register cache as early as
possible. Because of register-interlock, this operation is stalled until previous instructions return
their results to these registers. In most cases, this is not a problem; however, in the case of
multi-cycle instructions (divo, divi, ediv, modi, remo, and remi), the processor could be stalled
for many cycles waiting for the result and unable to proceed to the next step of call processing or
interrupt delivery.

Call performance and interrupt latency can be improved by avoiding the first four registers as the
destination for a MDU instruction. Generally, registers pfp, sp, and rip should be avoided; they are
used for procedure linking.

5.3.2.3 Use Global Registers (g0 - g14) As Destinations for MDU Instructions

Using the same rationale as in the previous item, call processing and interrupt performance are
improved even further by using global registers (g0-g14) as the destination for multi-cycle MDU
instructions. This is because there is no dependency between g0-g14 and implicit or explicit call
operations (i.e., global registers are not pushed onto the local register cache).

5.3.2.4 Execute in Imprecise Fault Mode

Significant performance improvement is possible by allowing imprecise faults (AC.nif = 0). In
precise fault mode (AC.nif = 1), the processor does not issue a new instruction until the previous
one completes. This ensures that a fault from the previous instruction is delivered before the next
instruction can begin execution. Imprecise fault mode allows new instructions to be issued before
previous ones complete, thus increasing the instruction issue rate. Many applications can tolerate
the imprecise fault reporting for the performance gain. A syncf can be used in imprecise fault
mode to isolate faults at desired points of execution when necessary.

5.3.3 Cache Control

The following instructions provide instruction and data cache control functions.

icctl Instruction cache control

dcctl Data cache control

5-20 i960® VH Processor Developer’s Manual

Instruction Set Overview

icctl and dcctl provide cache control functions including: enabling, disabling, loading and locking
(instruction cache only), invalidating, getting status and storing cache information out to memory.

i960® VH Processor Developer’s Manual 6-1

Instruction Set Reference 6

This chapter provides detailed information about each instruction available to the i960® VH
processor. Instructions are listed alphabetically by assembly language mnemonic. Format and
notation used in this chapter are defined in Section 6.1, “Notation” on page 6-1.

Information in this chapter is oriented toward programmers who write assembly language code for
the 80960VH. Information provided for each instruction includes:

Additional information about the instruction set can be found in the following chapters and
appendices in this manual:

• Chapter 5, “Instruction Set Overview” - Summarizes the instruction set by group and describes
the assembly language instruction format.

• Appendix A, “Machine-level Instruction Formats” - Describes instruction set opword
encodings.

• Appendix B, “Opcodes and Execution Times” - A quick-reference listing of instruction
encodings assists debugging with a logic analyzer.

6.1 Notation

In general, notation in this chapter is consistent with usage throughout the manual; however, there
are a few exceptions. Read the following subsections to understand notations that are specific to
this chapter.

6.1.1 Alphabetic Reference

Instructions are listed alphabetically by assembly language mnemonic. When several instructions
are related and fall together alphabetically, they are described as a group on a single page.

The instruction’s assembly language mnemonic is shown in bold at the top of the page (for
example, subc). Occasionally, it is not practical to list all mnemonics at the page top. In these
cases, the name of the instruction group is shown in capital letters (for example, BRANCH<cc> or
FAULT<cc>).

The 80960VH-specific extensions to the i960 microprocessor instruction set are indicated in the
header text for each such instruction. This type of notation is also used to indicate new core
architecture instructions. Sections describing new core instructions provide notes as to which
i960-series processors do not implement these instructions.

• Alphabetic listing of all instructions • Faults that can occur during execution

• Assembly language mnemonic, name and
format

• Action (or algorithm) and other side
effects of executing an instruction

• Description of the instruction’s operation • Assembly language example

• Related instructions• Opcode and instruction encoding format

6-2 i960® VH Processor Developer’s Manual

Instruction Set Reference

Generally, instruction set extensions are not portable to other i960 processor implementations.
Further, new core instructions are not typically portable to earlier i960 processor family
implementations such as the i960 Kx microprocessors.

6.1.2 Mnemonic

The Mnemonic section gives the mnemonic (in boldface type) and instruction name for each
instruction covered on the page, for example:

subi Subtract Integer

This name is the actual assembly language instruction name recognized by assemblers.

6.1.3 Format

The Format section gives the instruction’s assembly language format and allowable operand types.
Format is given in two or three lines. The following is a two-line format example:

The first line gives the assembly language mnemonic (boldface type) and operands (italics). When
the format is used for two or more instructions, an abbreviated form of the mnemonic is used. An *
(asterisk) at the end of the mnemonic indicates a variable: in the above example, sub* is either
subi or subo. Capital letters indicate an instruction class. For example, ADD<cc> refers to the
class of conditional add instructions (for example, addio, addig, addoo, addog).

Operand names are designed to describe operand function (for example, src, len, mask).

The second line shows allowable entries for each operand. Notation is as follows:

In some cases, a third line is added to show register or memory location contents. For example, it
may be useful to know that a register is to contain an address. The notation used in this line is as
follows:

sub* src1 src2 dst

reg/lit reg/lit reg

reg Global (g0 ... g15) or local (r0 ... r15) register

lit Literal of the range 0 ... 31

disp Signed displacement of range (-222 ... 222 - 1)

mem Address defined with the full range of addressing modes

addr Address

efa Effective Address

i960® VH Processor Developer’s Manual 6-3

Instruction Set Reference

6.1.4 Description

The Description section is a narrative description of the instruction’s function and operands. It also
gives programming hints when appropriate.

6.1.5 Action

The Action section gives an algorithm written in a "C-like" pseudo-code that describes direct
effects and possible side effects of executing an instruction. Algorithms document the instruction’s
net effect on the programming environment; they do not necessarily describe how the processor
actually implements the instruction. The following is an example of the action algorithm for the
alterbit instruction:

Table 6-1 defines each abbreviation used in the instruction reference pseudo-code. The
pseudo-code has been written to comply as closely as possible with standard C programming
language notation. Table 6-1 lists the pseudocode symbol definitions.

if ((AC.cc & 0102)==0)
dst = src2 & ~(2**(src1%32));

else
dst = src2 | 2**(src1%32);

Table 6-1. Pseudo-Code Symbol Definitions

= Assignment

==, != Comparison: equal, not equal

<, > less than, greater than

<=, >= less than or equal to, greater than or equal to

<<, >> Logical Shift

** Exponentiation

&, && Bitwise AND, logical AND

|, || Bitwise OR, logical OR

^ Bitwise XOR

~ One’s Complement

% Modulo

+, - Addition, Subtraction

* Multiplication (Integer or Ordinal)

/ Division (Integer or Ordinal)

Comment delimiter

Table 6-2. Faults Applicable to All Instructions (Sheet 1 of 2)

Fault Type Subtype Description

OPERATION UNIMPLEMENTED
An attempt to execute any instruction fetched from internal data RAM
or a memory-mapped region causes an operation unimplemented
fault.

6-4 i960® VH Processor Developer’s Manual

Instruction Set Reference

6.1.6 Faults

The Faults section lists faults that can be signaled as a direct result of instruction execution.
Table 6-2 shows the possible faulting conditions that are common to the entire instruction set and
could directly result from any instruction. These fault types are not included in the instruction
reference. Table 6-3 shows the possible faulting conditions that are common to large subsets of the
instruction set. When an instruction can generate a fault, it is noted in that instruction’s Faults
section. In these sections, “Standard” refers to the faults shown in Table 6-2 and Table 6-3.

6.1.7 Example

The Example section gives an assembly language example of an application of the instruction.

6.1.8 Opcode and Instruction Format

The Opcode and Instruction Format section gives the opcode and instruction format for each
instruction, for example:

subi 593H REG

TRACE

MARK
A Mark Trace Event is signaled after completion of an instruction for
which there is a hardware breakpoint condition match. A Trace fault
is generated when PC.mk is set.

INSTRUCTION An Instruction Trace Event is signaled after instruction completion. A
Trace fault is generated when both PC.te and TC.i=1.

Table 6-3. Common Faulting Conditions

Fault Type Subtype Description

OPERATION

UNALIGNED
Any instruction that causes an unaligned memory access causes
an operation aligned fault when unaligned faults are not masked in
the fault configuration word in the Processor Control Block (PRCB).

INVALID_OPCODE This fault is generated when the processor attempts to execute an
instruction containing an undefined opcode or addressing mode.

INVALID_OPERAND
This fault is caused by a non-defined operand in a supervisor mode
only instruction or by an operand reference to an unaligned long-,
triple- or quad-register group.

UNIMPLEMENTED
This fault can occur due to an attempt to perform a non-word or
unaligned access to a memory-mapped region or when attempting
to fetch instructions from MMR space or internal data RAM.

Type MISMATCH

Any instruction that attempts to write to supervisor protected
internal data RAM or a memory-mapped register in supervisor
space while not in supervisor mode causes a TYPE.MISMATCH
fault. This fault is also generated for any non-supervisor mode
reference to an SFR.

Table 6-2. Faults Applicable to All Instructions (Sheet 2 of 2)

Fault Type Subtype Description

i960® VH Processor Developer’s Manual 6-5

Instruction Set Reference

The opcode is given in hexadecimal format. The format is one of four possible formats: REG,
COBR, CTRL and MEM. Refer to Appendix A, “Machine-level Instruction Formats,” for more
information on the formats.

6.1.9 See Also

The See Also section gives the mnemonics of related instructions which are also alphabetically
listed in this chapter.

6.1.10 Side Effects

This section indicates whether the instruction causes changes to the condition code bits in the
Arithmetic Controls.

6.1.11 Notes

This section provides additional information about an instruction such as whether it is implemented
in other i960 processor families.

6.2 Instructions

The processor’s instructions are arranged alphabetically by instruction or instruction group.

6-6 i960® VH Processor Developer’s Manual

Instruction Set Reference

6.2.1 ADD<cc>

Mnemonic: addono Add Ordinal if Unordered
addog Add Ordinal if Greater
addoe Add Ordinal if Equal
addoge Add Ordinal if Greater or Equal
addol Add Ordinal if Less
addone Add Ordinal if Not Equal
addole Add Ordinal if Less or Equal
addoo Add Ordinal if Ordered
addino Add Integer if Unordered
addig Add Integer if Greater
addie Add Integer if Equal
addige Add Integer if Greater or Equal
addil Add Integer if Less
addine Add Integer if Not Equal
addile Add Integer if Less or Equal
addio Add Integer if Ordered

Format: add* src1, src2, dst
reg/lit reg/lit reg

Description: Conditionally adds src2 and src1 values and stores the result in dst based on
the AC register condition code. If for Unordered the condition code is 0, or if
for all other cases the logical AND of the condition code and the mask part of
the opcode is not 0, then the values are added and placed in the destination.
Otherwise the destination is left unchanged. Table 6-4 shows the condition
code mask for each instruction. The mask is in opcode bits 4-6.

Table 6-4. Condition Code Mask Descriptions (Sheet 1 of 2)

Instruction Mask Condition

addono
0002 Unordered

addino

addog
0012 Greater

addig

addoe
0102 Equal

addie

addoge
0112 Greater or equal

addige

addol
1002 Less

addil

addone
1012 Not equal

addine

addole
1102 Less or equal

addile

i960® VH Processor Developer’s Manual 6-7

Instruction Set Reference

Action: addo<cc>:
if((mask & AC.cc) || (mask == AC.cc))

dst = (src1 + src2)[31:0];

addi<cc>:
if((mask & AC.cc) || (mask == AC.cc))
{

{ true_result = (src1 + src2);
dst = true_result[31:0];

}
if((true_result > (2**31) - 1) || (true_result < -2**31))

Check for overflow
{ if(AC.om == 1)

AC.of = 1;
else

generate_fault(ARITHMETIC.OVERFLOW);
}

}

Faults: STANDARD Refer to Section 6.1.6, “Faults” on page 6-4.
ARITHMETIC.OVERFLOW Occurs only with addi<cc>.

Example: # Assume (AC.cc AND 0012) ≠ 0.
addig r4, r8, r10 # r10 = r8 + r4

Assume (AC.cc AND 1012) = 0.
addone r4, r8, r10 # r10 is not changed.

Opcode: addono 780H REG
addog 790H REG
addoe 7A0H REG
addoge 7B0H REG
addol 7C0H REG
addone 7D0H REG
addole 7E0H REG
addoo 7F0H REG
addino 781H REG
addig 791H REG
addie 7A1H REG
addige 7B1H REG
addil 7C1H REG
addine 7D1H REG
addile 7E1H REG
addio 7F1H REG

addoo
1112 Ordered

addio

Table 6-4. Condition Code Mask Descriptions (Sheet 2 of 2)

Instruction Mask Condition

6-8 i960® VH Processor Developer’s Manual

Instruction Set Reference

See Also: addc, SUB<cc>, addi, addo

Notes: This class of core instructions is not implemented on 80960Cx, Kx and Sx
processors.

i960® VH Processor Developer’s Manual 6-9

Instruction Set Reference

6.2.2 addc

Mnemonic: addc Add Ordinal With Carry

Format: addc src1, src2, dst
reg/lit reg/lit reg

Description: Adds src2 and src1 values and condition code bit 1 (used here as a carry-in)
and stores the result in dst. If ordinal addition results in a carry out, then
condition code bit 1 is set; otherwise, bit 1 is cleared. If integer addition
results in an overflow, then condition code bit 0 is set; otherwise, bit 0 is
cleared. Regardless of addition results, condition code bit 2 is always set to 0.

addc can be used for ordinal or integer arithmetic. addc does not distinguish
between ordinal and integer source operands. Instead, the processor evaluates
the result for both data types and sets condition code bits 0 and 1 accordingly.

An integer overflow fault is never signaled with this instruction.

Action: dst = (src1 + src2 + AC.cc[1])[31:0];
AC.cc[2:0] = 0002;
if((src2[31] == src1[31]) && (src2[31] != dst[31]))

AC.cc[0] = 1; # Set overflow bit.
AC.cc[1] = (src2 + src1 + AC.cc[1])[32]; # Carry out.

Faults: STANDARD Refer to Section 6.1.6, “Faults” on page 6-4.

Example: # Example of double-precision arithmetic.
Assume 64-bit source operands
in g0,g1 and g2,g3
cmpo 1, 0 # Clears Bit 1 (carry bit) of

the AC.cc.
addc g0, g2, g0 # Add low-order 32 bits:

g0 = g2 + g0 + carry bit
addc g1, g3, g1 # Add high-order 32 bits:

g1 = g3 + g1 + carry bit
64-bit result is in g0, g1.

Opcode: addc 5B0H REG

See Also: ADD<cc>, SUB<cc>

Side Effects: Sets the condition code in the arithmetic controls.

6-10 i960® VH Processor Developer’s Manual

Instruction Set Reference

6.2.3 addi, addo

Mnemonic: addo Add Ordinal
addi Add Integer

Format: add* src1, src2, dst
reg/lit reg/lit reg

Description: Adds src2 and src1 values and stores the result in dst. The binary results from
these two instructions are identical. The only difference is that addi can signal
an integer overflow.

Action: addo:
dst = (src2 +src1)[31:0];

addi:
true_result = (src1 + src2);
dst = true_result[31:0];
if((true_result > (2**31) - 1) || (true_result < -2**31)) # Check for overflow
{ if(AC.om == 1)

AC.of = 1;
else

generate_fault(ARITHMETIC.OVERFLOW);
}

Faults: STANDARD Refer to Section 6.1.6, “Faults” on page 6-4.
ARITHMETIC.OVERFLOW Occurs only with addi.

Example: addi r4, g5, r9 # r9 = g5 + r4

Opcode: addo 590H REG
addi 591H REG

See Also: addc, subi, subo, subc, ADD<cc>

i960® VH Processor Developer’s Manual 6-11

Instruction Set Reference

6.2.4 alterbit

Mnemonic: alterbit Alter Bit

Format: alterbit bitpos, src, dst
reg/lit reg/lit reg

Description: Copies src value to dst with one bit altered. bitpos operand specifies bit to be
changed; condition code determines the value to which the bit is set. If
condition code is X1X2, then bit 1 = 1, the selected bit is set; otherwise, it is
cleared. Typically this instruction is used to set the bitpos bit in the targ
register if the result of a compare instruction is the equal condition code
(0102).

Action: if((AC.cc & 0102)==0)
dst = src & ~(2**(bitpos%32));

else
dst = src | 2**(bitpos%32);

Faults: STANDARD Refer to Section 6.1.6, “Faults” on page 6-4.

Example: # Assume AC.cc = 0102.
alterbit 24, g4,g9 # g9 = g4, with bit 24 set.

Opcode: alterbit 58FH REG

See Also: chkbit, clrbit, notbit, setbit

6-12 i960® VH Processor Developer’s Manual

Instruction Set Reference

6.2.5 and, andnot

Mnemonic: and And
andnot And Not

Format: and src1, src2, dst
reg/lit reg/lit reg

andnot src1, src2, dst
reg/lit reg/lit reg

Description: Performs a bitwise AND (and) or AND NOT (andnot) operation on src2 and
src1 values and stores result in dst. Note in the action expressions below, src2
operand comes first, so that with andnot the expression is evaluated as:

{src2 and not (src1)}
rather than

{src1 and not (src2)}.

Action: and:
dst = src2 & src1;

andnot:
dst = src2 & ~src1;

Faults: STANDARD Refer to Section 6.1.6, “Faults” on page 6-4.

Example: and 0x7, g8, g2 # Put lower 3 bits of g8 in g2.
andnot 0x7, r12, r9 # Copy r12 to r9 with lower

three bits cleared.

Opcode: and 581H REG
andnot 582H REG

See Also: nand, nor, not, notand, notor, or, ornot, xnor, xor

i960® VH Processor Developer’s Manual 6-13

Instruction Set Reference

6.2.6 atadd

Mnemonic: atadd Atomic Add

Format: atadd addr, src, dst
reg reg/lit reg

Description: Adds src value (full word) to value in the memory location specified with
addr operand. This read-modify-write operation is performed on the actual
data in memory and never on a cached value on chip. Initial value from
memory is stored in dst.

Memory read and write are done atomically (i.e., other bus masters must be
prevented from accessing the word of memory containing the word specified
by src/dst operand until operation completes). See Section 3.5.1, “Memory
Requirements” on page 3-10 or more information on atomic accesses.

Memory location in addr is the word’s first byte (LSB) address. Address is
automatically aligned to a word boundary. (Note that addr operand maps to
src1 operand of the REG format.)

Action: implicit_syncf();
tempa = addr & 0xFFFFFFFC;
temp = atomic_read(tempa);
atomic_write(tempa, temp+src);
dst = temp;

Faults: STANDARD Refer to Section 6.1.6, “Faults” on page 6-4.

Example: atadd r8, r3, r11 # r8 contains the address of
memory location.
r11 = (r8)
(r8) = r11 + r3.

Opcode: atadd 612H REG

See Also: atmod

6-14 i960® VH Processor Developer’s Manual

Instruction Set Reference

6.2.7 atmod

Mnemonic: atmod Atomic Modify

Format: atmod addr, mask, src/dst
reg reg/lit reg

Description: Copies the selected bits of src/dst value into memory location specified in
addr. The read-modify-write operation is performed on the actual data in
memory and never on a cached value on chip. Bits set in mask operand select
bits to be modified in memory. Initial value from memory is stored in src/dst.
See Section 3.5.1, “Memory Requirements” on page 3-10 for information on
atomic accesses.

Memory read and write are done atomically (i.e., other bus masters must be
prevented from accessing the word of memory containing the word specified
with the src/dst operand until operation completes).

Memory location in addr is the modified word’s first byte (LSB) address.
Address is automatically aligned to a word boundary.

Action: implicit_syncf();
tempa = addr & 0xFFFFFFFC;
tempb = atomic_read(tempa);
temp = (tempb &~ mask) | (src_dst & mask);
atomic_write(tempa, temp);
src_dst = tempb;

Faults: STANDARD Refer to Section 6.1.6, “Faults” on page 6-4.

Example: atmod g5, g7, g10 # tempa = (g5)
temp = (tempa andnot g7) or
(g10 and g7)
(g5) = temp
g10 = tempa

Opcode: atmod 610H REG

See Also: atadd

i960® VH Processor Developer’s Manual 6-15

Instruction Set Reference

6.2.8 b, bx

Mnemonic: b Branch
bx Branch Extended

Format: b targ
disp

bx targ
mem

Description: Branches to the specified target.

With the b instruction, IP specified with targ operand can be no farther than
-223 to (223- 4) bytes from current IP. When using the Intel i960 processor
assembler, targ operand must be a label which specifies target instruction’s
IP.

bx performs the same operation as b except the target instruction can be
farther than -223 to (223- 4) bytes from current IP. Here, the target operand is
an effective address, which allows the full range of addressing modes to be
used to specify target instruction’s IP. The “IP + displacement” addressing
mode allows the instruction to be IP-relative. Indirect branching can be
performed by placing target address in a register then using a register-indirect
addressing mode.

Refer to Section 2.3, “Memory Addressing Modes” on page 2-4 for
information on this subject.

Action: b, bx:
IP[31:2] = effective_address(targ[31:2]);
IP[1:0] = 0;

Faults: STANDARD Refer to Section 6.1.6, “Faults” on page 6-4.

Example: b xyz # IP = xyz;
bx 1332 (ip) # IP = IP + 8 + 1332;
this example uses IP-relative addressing

Opcode: b 08H CTRL
bx 84H MEM

See Also: bal, balx, BRANCH<cc>, COMPARE AND BRANCH<cc>, bbc, bbs

6-16 i960® VH Processor Developer’s Manual

Instruction Set Reference

6.2.9 bal, balx

Mnemonic: bal Branch and Link
balx Branch and Link Extended

Format: bal targ
disp

balx targ, dst
mem reg

Description: Stores address of instruction following bal or balx in a register then branches
to the instruction specified with the targ operand.

The bal and balx instructions are used to call leaf procedures (procedures that
do not call other procedures). The IP saved in the register provides a return IP
that the leaf procedure can branch to (using a b or bx instruction) to perform a
return from the procedure. Note that these instructions do not use the
processor’s call-and-return mechanism, so the calling procedure shares its
local-register set with the called (leaf) procedure.

With bal, address of next instruction is stored in register g14. targ operand value
can be no farther than -223 to (223- 4) bytes from current IP. When using the Intel
i960 processor assembler, targ must be a label which specifies the target
instruction’s IP.

balx performs same operation as bal except next instruction address is stored
in dst (allowing the return IP to be stored in any available register). With balx,
the full address space can be accessed. Here, the target operand is an effective
address, which allows full range of addressing modes to be used to specify
target IP. “IP + displacement” addressing mode allows instruction to be
IP-relative. Indirect branching can be performed by placing target address in a
register and then using a register-indirect addressing mode.

See Section 2.3, “Memory Addressing Modes” on page 2-4 for a complete
discussion of addressing modes available with memory-type operands.

Action: bal:
g14 = IP + 4;
IP[31:2] = effective_address(targ[31:2]);
IP[1:0] = 0;

balx:
dst = IP + instruction_length;
Instruction_length = 4 or 8 depending on the addressing mode used.
IP[31:2] = effective_address(targ[31:2]); # Resume execution at new IP.
IP[1:0] = 0;

Faults: STANDARD Refer to Section 6.1.6, “Faults” on page 6-4.

Example: bal xyz # g14 = IP + 4
IP = xyz

balx (g2), g4 # g4 = IP + 4
IP = (g2)

Opcode: bal 0BH CTRL
balx 85H MEM

i960® VH Processor Developer’s Manual 6-17

Instruction Set Reference

See Also: b, bx, BRANCH<cc>, COMPARE AND BRANCH<cc>, bbc, bbs

6-18 i960® VH Processor Developer’s Manual

Instruction Set Reference

6.2.10 bbc, bbs

Mnemonic: bbc Check Bit and Branch If Clear
bbs Check Bit and Branch If Set

Format: bb* bitpos, src, targ
reg/lit reg disp

Description: Checks bit (designated by bitpos) in src and sets AC register condition code
according to src value. The processor then performs conditional branch to
instruction specified with targ, based on condition code state.

For bbc, if selected bit in src is clear, the processor sets condition code to
0002 and branches to instruction specified by targ; otherwise, it sets condition
code to 0102 and goes to next instruction.

For bbs, if selected bit is set, then the processor sets condition code to 0102 and
branches to targ; otherwise, it sets condition code to 0002 and goes to next
instruction.

targ can be no farther than -212 to (212 - 4) bytes from current IP. When using
the Intel i960 processor assembler, targ must be a label which specifies target
instruction’s IP.

Action: bbs:
if((src & 2**(bitpos%32)) == 1)
{ AC.cc = 0102;

temp[31:2] = sign_extension(targ[12:2]);
IP[31:2] = IP[31:2] + temp[31:2];
IP[1:0] = 0;

}
else

AC.cc = 0002;

bbc:
if((src & 2**(bitpos%32)) == 0)
{ AC.cc = 0002;

temp[31:2] = sign_extension(targ[12:2]);
IP[31:2] = IP[31:2] + temp[31:2];
IP[1:0] = 0;

}
else

AC.cc = 0102;

Faults: STANDARD Refer to Section 6.1.6, “Faults” on page 6-4.

Example: # Assume bit 10 of r6 is clear.
bbc 10, r6, xyz # Bit 10 of r6 is checked

and found clear:
AC.cc = 000
IP = xyz;

Opcode: bbc 30H COBR
bbs 37H COBR

i960® VH Processor Developer’s Manual 6-19

Instruction Set Reference

See Also: chkbit, COMPARE AND BRANCH<cc>, BRANCH<cc>

Side Effects: Sets the condition code in the arithmetic controls.

6-20 i960® VH Processor Developer’s Manual

Instruction Set Reference

6.2.11 BRANCH<cc>

Mnemonic: be Branch If Equal
bne Branch If Not Equal
bl Branch If Less
ble Branch If Less Or Equal
bg Branch If Greater
bge Branch If Greater Or Equal
bo Branch If Ordered
bno Branch If Unordered

Format: b* targ
disp

Description: Branches to instruction specified with targ operand according to AC register
condition code state.

For all branch<cc> instructions except bno, the processor branches to
instruction specified with targ, if the logical AND of condition code and mask
part of opcode is not zero. Otherwise, it goes to next instruction.

For bno, the processor branches to instruction specified with targ if the
condition code is zero. Otherwise, it goes to next instruction.

For instance, bno (unordered) can be used as a branch if false instruction
when coupled with chkbit. For bno, branch is taken if condition code equals
0002. be can be used as branch-if true instruction.

The targ operand value can be no farther than -223 to (223- 4) bytes from
current IP.

The following table shows condition code mask for each instruction. The
mask is in opcode bits 0-2.

Action: if((mask & AC.cc) || (mask == AC.cc))
{ temp[31:2] = sign_extension(targ[23:2]);

IP[31:2] = IP[31:2] + temp[31:2];
IP[1:0] = 0;

}

Faults: STANDARD Refer to Section 6.1.6, “Faults” on page 6-4.

Instruction Mask Condition

bno 0002 Unordered

bg 0012 Greater

be 0102 Equal

bge 0112 Greater or equal

bl 1002 Less

bne 1012 Not equal

ble 1102 Less or equal

bo 1112 Ordered

i960® VH Processor Developer’s Manual 6-21

Instruction Set Reference

Example: # Assume (AC.cc AND 1002) ≠ 0
bl xyz # IP = xyz;

Opcode: be 12H CTRL
bne 15H CTRL
bl 14H CTRL
ble 16H CTRL
bg 11H CTRL
bge 13H CTRL
bo 17H CTRL
bno 10H CTRL

See Also: b, bx, bbc, bbs, COMPARE AND BRANCH<cc>, bal, balx, BRANCH<cc>

6-22 i960® VH Processor Developer’s Manual

Instruction Set Reference

6.2.12 bswap

Mnemonic: bswap Byte Swap

Format: bswap src1:src, src2:dst
reg/lit reg

Description: Alters the order of bytes in a word, reversing its “endianess.”

Copies bytes 3:0 of src1 to src2 reversing order of the bytes. Byte 0 of src1
becomes byte 3 of src2, byte 1 of src1 becomes byte 2 of src2, etc.

Action: dst = (rotate_left(src 8) & 0x00FF00FF)
 +(rotate_left(src 24) & 0xFF00FF00);

Faults: STANDARD Refer to Section 6.1.6, “Faults” on page 6-4.

Example: # g8 = 0x89ABCDEF
bswap g8, g10 # Reverse byte order.

g10 now 0xEFCDAB89

Opcode: bswap 5ADH REG

See Also: scanbyte, rotate

Notes: This core instruction is not implemented on Cx, Kx and Sx 80960 processors.

i960® VH Processor Developer’s Manual 6-23

Instruction Set Reference

6.2.13 call

Mnemonic: call Call

Format: call targ
disp

Description: Calls a new procedure. targ operand specifies the IP of called procedure’s
first instruction. When using the Intel i960 processor assembler, targ must be
a label.

In executing this instruction, the processor performs a local call operation as
described in Section 7.1.3.1, “Call Operation” on page 7-5. As part of this
operation, the processor saves the set of local registers associated with the
calling procedure and allocates a new set of local registers and a new stack
frame for the called procedure. Processor then goes to the instruction
specified with targ and begins execution.

targ can be no farther than -223 to (223 - 4) bytes from current IP.

Action: # Wait for any uncompleted instructions to finish.
implicit_syncf();
temp = (SP + (SALIGN*16 - 1)) & ~(SALIGN*16 - 1)

Round stack pointer to next boundary.
SALIGN=1 on 80960VH.

RIP = IP;
if (register_set_available)

allocate_new_frame();
else

{ save_register_set(); # Save register set in memory at its FP.
allocate_new_frame();

}
Local register references now refer to new frame.

IP[31:2] = effective_address(targ[31:2]);
IP[1:0] = 0;
PFP = FP;
FP = temp;
SP = temp + 64;

Faults: STANDARD Refer to Section 6.1.6, “Faults” on page 6-4.

Example: call xyz # IP = xyz

Opcode: call 09H CTRL

See Also: bal, calls, callx

6-24 i960® VH Processor Developer’s Manual

Instruction Set Reference

6.2.14 calls

Mnemonic: calls Call System

Format: calls targ
reg/lit

Description: Calls a system procedure. The targ operand gives the number of the procedure
being called. For calls, the processor performs system call operation
described in Section 7.5, “System Calls” on page 7-13. targ provides an index
to a system procedure table entry from which the processor gets the called
procedure’s IP.

The called procedure can be a local or supervisor procedure, depending on
system procedure table entry type. If it is a supervisor procedure, then the
processor switches to supervisor mode (if not already in this mode).

As part of this operation, processor also allocates a new set of local registers
and a new stack frame for called procedure. If the processor switches to
supervisor mode, then the new stack frame is created on the supervisor stack.

Action: # Wait for any uncompleted instructions to finish.
implicit_syncf();
If (targ > 259)

generate_fault(PROTECTION.LENGTH);
temp = get_sys_proc_entry(sptbase + 48 + 4*targ);
 # sptbase is address of supervisor procedure table.

 if (register_set_available)
 allocate_new_frame();

else
{ save_register_set(); # Save a frame in memory at its FP.

 allocate_new_frame();
 # Local register references now refer to new frame.

}
RIP = IP;
IP[31:2] = effective_address(temp[31:2]);
IP[1:0] = 0;
if ((temp.type == local) || (PC.em == supervisor))

{ # Local call or supervisor call from supervisor mode.
 tempa = (SP + (SALIGN*16 - 1)) & ~(SALIGN*16 - 1)

Round stack pointer to next boundary.
SALIGN=1 on 80960VH.
temp.RRR = 0002;

}
else # Supervisor call from user mode.
{ tempa = SSP; # Get Supervisor Stack pointer.

temp.RRR = 0102 | PC.te;
 PC.em = supervisor;
 PC.te = temp.te;

}
PFP = FP;
PFP.rrr = temp.RRR;

i960® VH Processor Developer’s Manual 6-25

Instruction Set Reference

FP = tempa;
SP = tempa + 64;

Faults: STANDARD Refer to Section 6.1.6, “Faults” on page 6-4.
PROTECTION.LENGTH Specifies a procedure number greater than

259.

Example: calls r12 # IP = value obtained from
procedure table for procedure
number given in r12.

calls 3 # Call procedure 3.

Opcode: calls 660H REG

See Also: bal, call, callx, ret

6-26 i960® VH Processor Developer’s Manual

Instruction Set Reference

6.2.15 callx

Mnemonic: callx Call Extended

Format: callx targ
mem

Description: Calls new procedure. targ specifies IP of called procedure’s first instruction.

In executing callx, the processor performs a local call as described in
Section 7.1.3.1, “Call Operation” on page 7-5. As part of this operation, the
processor allocates a new set of local registers and a new stack frame for the
called procedure. Processor then goes to the instruction specified with targ
and begins execution of new procedure.

callx performs the same operation as call except the target instruction can be
farther than -223 to (223 - 4) bytes from current IP.

The targ operand is a memory type, which allows the full range of addressing
modes to be used to specify the IP of the target instruction. The “IP +
displacement” addressing mode allows the instruction to be IP-relative.
Indirect calls can be performed by placing the target address in a register and
then using one of the register-indirect addressing modes.

Refer to Chapter 2, “Data Types and Memory Addressing Modes” for more
information.

Action: # Wait for any uncompleted instructions to finish;
implicit_syncf();
 temp = (SP + (SALIGN*16 - 1)) & ~(SALIGN*16 - 1)

Round stack pointer to next boundary.
SALIGN=1 on 80960VH.

RIP = IP;
if (register_set_available)

allocate_new_frame();
else

{ save_register_set(); # Save register set in memory at its FP;
allocate_new_frame();

}
Local register references now refer to new frame.

IP[31:2] = effective_address(targ[31:2]);
IP[1:0] = 0;
PFP = FP;
FP = temp;
SP = temp + 64;

Faults: STANDARD Refer to Section 6.1.6, “Faults” on page 6-4.

Example: callx (g5) # IP = (g5), where the address in
g5

is the address of the new
procedure.

Opcode: callx 86H MEM

See Also: bal, call, calls, ret

i960® VH Processor Developer’s Manual 6-27

Instruction Set Reference

6.2.16 chkbit

Mnemonic: chkbit Check Bit

Format: chkbit bitpos, src2
reg/lit reg/lit

Description: Checks bit in src2 designated by bitpos and sets condition code according to
value found. If bit is set, then condition code is set to 0102; if bit is clear, then
condition code is set to 0002.

Action: if (((src2 & 2**(bitpos % 32)) == 0)
AC.cc = 0002;

else
AC.cc = 0102;

Faults: STANDARD Refer to Section 6.1.6, “Faults” on page 6-4.

Example: chkbit 13, g8 # Checks bit 13 in g8 and sets
AC.cc according to the result.

Opcode: chkbit 5AEH REG

See Also: alterbit, clrbit, notbit, setbit, cmpi, cmpo

Side Effects: Sets the condition code in the arithmetic controls.

6-28 i960® VH Processor Developer’s Manual

Instruction Set Reference

6.2.17 clrbit

Mnemonic: clrbit Clear Bit

Format: clrbit bitpos, src, dst
reg/lit reg/lit reg

Description: Copies src value to dst with one bit cleared. bitpos operand specifies bit to be
cleared.

Action: dst = src & ~(2**(bitpos%32));

Faults: STANDARD Refer to Section 6.1.6, “Faults” on page 6-4.

Example: clrbit 23, g3, g6 # g6 = g3 with bit 23 cleared.

Opcode: clrbit 58CH REG

See Also: alterbit, chkbit, notbit, setbit

i960® VH Processor Developer’s Manual 6-29

Instruction Set Reference

6.2.18 cmpdeci, cmpdeco

Mnemonic: cmpdeci Compare and Decrement Integer
cmpdeco Compare and Decrement Ordinal

Format: cmpdec* src1, src2, dst
reg/lit reg/lit reg

Description: Compares src2 and src1 values and sets the condition code according to
comparison results. src2 is then decremented by one and result is stored in dst.
The following table shows condition code setting for the three possible results
of the comparison.

These instructions are intended for use in ending iterative loops. For
cmpdeci, integer overflow is ignored to allow looping down through the
minimum integer values.

Action: if(src1 < src2)
AC.cc = 1002;

else if(src1 == src2)
AC.cc = 0102;

else
AC.cc = 0012;

dst = src2 -1; # Overflow suppressed for cmpdeci.

Faults: STANDARD Refer to Section 6.1.6, “Faults” on page 6-4.

Example: cmpdeci 12, g7, g1 # Compares g7 with 12 and sets
AC.cc to indicate the result
g1 = g7 - 1.

Opcode: cmpdeci 5A7H REG
cmpdeco 5A6H REG

See Also: cmpinco, cmpo, cmpi, cmpinci, COMPARE AND BRANCH<cc>

Side Effects: Sets the condition code in the arithmetic controls.

Condition Code Comparison

1002 src1 < src2

0102 src1 = src2

0012 src1 > src2

6-30 i960® VH Processor Developer’s Manual

Instruction Set Reference

6.2.19 cmpinci, cmpinco

Mnemonic: cmpinci Compare and Increment Integer
cmpinco Compare and Increment Ordinal

Format: cmpinc* src1, src2, dst
reg/lit reg/lit reg

Description: Compares src2 and src1 values and sets the condition code according to
comparison results. src2 is then incremented by one and result is stored in dst.
The following table shows condition code settings for the three possible
comparison results.

These instructions are intended for use in ending iterative loops. For cmpinci,
integer overflow is ignored to allow looping up through the maximum integer
values.

Action: if (src1 < src2)
AC.cc = 1002;

else if (src1 == src2)
AC.cc = 0102;

else
AC.cc = 0012;

dst = src2 + 1; # Overflow suppressed for cmpinci.

Faults: STANDARD Refer to Section 6.1.6, “Faults” on page 6-4.

Example: cmpinco r8, g2, g9 # Compares the values in g2
and r8 and sets AC.cc to
indicate the result:
g9 = g2 + 1

Opcode: cmpinci 5A5H REG
cmpinco 5A4H REG

See Also: cmpdeco, cmpo, cmpi, cmpdeci, COMPARE AND BRANCH<cc>

Side Effects: Sets the condition code in the arithmetic controls.

Condition Code Comparison

1002 src1 < src2

0102 src1 = src2

0012 src1 > src2

i960® VH Processor Developer’s Manual 6-31

Instruction Set Reference

6.2.20 COMPARE

Mnemonic: cmpi Compare Integer
cmpib Compare Integer Byte
cmpis Compare Integer Short
cmpo Compare Ordinal
cmpob Compare Ordinal Byte
cmpos Compare Ordinal Short

Format: cmp* src1, src2
reg/lit reg/lit

Description: Compares src2 and src1 values and sets condition code according to
comparison results. The following table shows condition code settings for the
three possible comparison results.

cmpi* followed by a branch-if instruction is equivalent to a
compare-integer-and-branch instruction. The latter method of comparing and
branching produces more compact code; however, the former method can
execute byte and short compares without masking. The same is true for
cmpo* and the compare-ordinal-and-branch instructions.

Action: # For cmpo, cmpi, N = 31.
For cmpos, cmpis, N = 15.
For cmpob, cmpib, N = 7.

if (src1[N:0] < src2[N:0])
AC.cc = 1002;

else if (src1[N:0] == src2[N:0])
 AC.cc = 0102;
else if (src1[N:0] > src2[N:0])

AC.cc = 0012;

Faults: STANDARD Refer to Section 6.1.6, “Faults” on page 6-4.

Example: cmpo r9, 0x10 # Compares the value in r9 with
0x10

and sets AC.cc to indicate the
result.

bg xyz # Branches to xyz if the value of
r9

was greater than 0x10.

Condition Code Comparison

1002 src1 < src2

0102 src1 = src2

0012 src1 > src2

6-32 i960® VH Processor Developer’s Manual

Instruction Set Reference

Opcode: cmpi 5A1H REG
cmpib 595H REG
cmpis 597H REG
cmpo 5A0H REG
cmpob 594H REG
cmpos 596H REG

See Also: COMPARE AND BRANCH<cc>, cmpdeci, cmpdeco, cmpinci, cmpinco,
concmpi, concmpo

Side Effects: Sets the condition code in the arithmetic controls.

Notes: The core instructions cmpib, cmpis, compob and compos are not imple-
mented on i960 Cx, Kx and Sx processors.

i960® VH Processor Developer’s Manual 6-33

Instruction Set Reference

6.2.21 COMPARE AND BRANCH<cc>

Mnemonic: cmpibe Compare Integer and Branch If Equal
cmpibne Compare Integer and Branch If Not Equal
cmpibl Compare Integer and Branch If Less
cmpible Compare Integer and Branch If Less Or Equal
cmpibg Compare Integer and Branch If Greater
cmpibge Compare Integer and Branch If Greater Or Equal
cmpibo Compare Integer and Branch If Ordered
cmpibno Compare Integer and Branch If Not Ordered

cmpobe Compare Ordinal and Branch If Equal
cmpobne Compare Ordinal and Branch If Not Equal
cmpobl Compare Ordinal and Branch If Less
cmpoble Compare Ordinal and Branch If Less Or Equal
cmpobg Compare Ordinal and Branch If Greater
cmpobge Compare Ordinal and Branch If Greater Or Equal

Format: cmpib* src1, src2, targ
reg/lit reg disp

cmpob* src1, src2, targ
reg/lit reg disp

Description: Compares src2 and src1 values and sets AC register condition code according
to comparison results. If logical AND of condition code and mask part of
opcode is not zero, then the processor branches to instruction specified with
targ; otherwise, the processor goes to next instruction.

targ can be no farther than -212 to (212 - 4) bytes from current IP. When using the Intel
i960 processor assembler, targ must be a label that specifies target instruction’s IP.

Functions these instructions perform can be duplicated with a cmpi or cmpo
followed by a branch-if instruction, as described in Section 6.2.20, “COMPARE”
on page 6-31.

The following table shows the condition-code mask for each instruction. The
mask is in bits 0-2 of the opcode.

Instruction Mask Branch Condition

cmpibno 0002 No Condition

cmpibg 0012 src1 > src2

cmpibe 0102 src1 = src2

cmpibge 0112 src1 ≥ src2

cmpibl 1002 src1 < src2

cmpibne 1012 src1 ≠ src2

cmpible 1102 src1 ≤ src2

cmpibo 1112 Any Condition

cmpobg 0012 src1 > src2

cmpobe 0102 src1 = src2

cmpobge 0112 src1 ≥ src2

6-34 i960® VH Processor Developer’s Manual

Instruction Set Reference

Action: if(src1 < src2)
AC.cc = 1002;

else if(src1 == src2)
AC.cc = 0102;

else
AC.cc = 0012;

if((mask && AC.cc) != 0002)
IP[31:2] = efa[31:2]; # Resume execution at the new IP.
IP[1:0] = 0;

Faults: STANDARD Refer to Section 6.1.6, “Faults” on page 6-4.

Example: # Assume g3 < g9
cmpibl g3, g9, xyz # g9 is compared with g3;

IP = xyz.
assume 19 ≥ r7
cmpobge 19, r7, xyz # 19 is compared with r7;

IP = xyz.

Opcode: cmpibe 3AH COBR
cmpibne 3DH COBR
cmpibl 3CH COBR
cmpible 3EH COBR
cmpibg 39H COBR
cmpibge 3BH COBR
cmpibo 3FH COBR
cmpibno 38H COBR
cmpobe 32H COBR
cmpobne 35H COBR
cmpobl 34H COBR
cmpoble 36H COBR
cmpobg 31H COBR
cmpobge 33H COBR

See Also: BRANCH<cc>, cmpi, cmpo, bal, balx

Side Effects: Sets the condition code in the arithmetic controls.

cmpobl 1002 src1 < src2

cmpobne 1012 src1 ≠ src2

cmpoble 1102 src1 ≤ src2

cmpibo always branches; cmpibno never branches.

Instruction Mask Branch Condition

i960® VH Processor Developer’s Manual 6-35

Instruction Set Reference

6.2.22 concmpi, concmpo

Mnemonic: concmpi Conditional Compare Integer
concmpo Conditional Compare Ordinal

Format: concmp* src1, src2
reg/lit reg/lit

Description: Compares src2 and src1 values if condition code bit 2 is not set. If
comparison is performed, then condition code is set according to comparison
results. Otherwise, condition codes are not altered.

These instructions are provided to facilitate bounds checking by means of two-sided
range comparisons (for example, is A between B and C?). They are generally used
after a compare instruction to test whether a value is inclusively between two other
values.

The example below illustrates this application by testing whether g3 value is between
g5 and g6 values, where g5 is assumed to be less than g6. First a comparison (cmpo)
of g3 and g6 is performed. If g3 is less than or equal to g6 (i.e., condition code is
either 0102 or 0012), then a conditional comparison (concmpo) of g3 and g5 is then
performed. If g3 is greater than or equal to g5 (indicating that g3 is within the bounds
of g5 and g6), then condition code is set to 0102; otherwise, it is set to 0012.

Action: if (AC.cc != 1XX2)
{ if(src1 <= src2)

AC.cc = 0102;
else

AC.cc = 0012;
}

Faults: STANDARD Refer to Section 6.1.6, “Faults” on page 6-4.

Example: cmpo g6, g3 # Compares g6 and g3
and sets AC.cc.

concmpo g5, g3 # If AC.cc < 1002 (g6 Š g3)
g5 is compared with g3.

At this point, depending on the register ordering, the condition code is one of
those listed on Table 6-5.

Opcode: concmpi 5A3H REG
concmpo 5A2H REG

Table 6-5. concmpo Example: Register Ordering and CC

Order CC

g5 < g6 < g3 1002

g5 < g6 = g3 0102

g5 < g3 < g6 0102

g5 = g3 < g6 0102

g3 < g5 < g6 0012

6-36 i960® VH Processor Developer’s Manual

Instruction Set Reference

See Also: cmpo, cmpi, cmpdeci, cmpdeco, cmpinci, cmpinco, COMPARE AND
BRANCH<cc>

Side Effects: Sets the condition code in the arithmetic controls.

i960® VH Processor Developer’s Manual 6-37

Instruction Set Reference

6.2.23 dcctl

Mnemonic: dcctl Data-cache Control

Format: src1, src2, src/dst
reg/lit reg/lit reg

Description: Performs management and control of the data cache including disabling,
enabling, invalidating, ensuring coherency, getting status, and storing cache
contents to memory. Operations are indicated by the value of src1. src2 and
src/dst are also used by some operations. When needed by the operation, the
processor orders the effects of the operation with previous and subsequent
operations to ensure correct behavior.

1. Invalidates data cache on 80960VH.

Table 6-6. dcctl Operand Fields

Function src1 src2 src/dst

Disable D-cache 0 NA NA

Enable D-cache 1 NA NA

Global invalidate
D-cache 2 NA NA

Ensure cache coherency1 3 NA NA

Get D-cache status 4 NA
src: NA
dst: Receives
D-cache status (Figure 6-1).

Reserved 5 NA NA

Store D-cache to memory 6
Destination
address for
cache sets

src: D-cache set #’s to be stored
(Figure 6-1).

Reserved 7 NA NA

Quick invalidate 8 1 NA

Reserved 9 NA NA

6-38 i960® VH Processor Developer’s Manual

Instruction Set Reference

Figure 6-1. dcctl src1 and src/dst Formats

Table 6-7. dcctl Status Values and D-Cache Parameters

Value Value on 80960VH

bytes per atom 4

atoms per line 4

number of sets 128 (full)

number of ways 1 (Direct)

cache size 2-Kbytes(full)

Status[0] (enable / disable) 0 or 1

Status[1:3] (reserved) 0

Status[7:4] (log2(bytes per atom)) 2

Status[11:8] (log2(atoms per line)) 2

Status[15:12] (log2(number of sets)) 7 (full)

Status[27:16] (number of ways - 1) 0

8 7 031
src1 Format

28 27 16 15 12 8 4 031

src/dst Format for Data Cache Status

3711

Enabled = 1
Disabled = 0

of Ways-1

031

src/dst Format for Store Data Cache Sets to Memory

16 15

Starting Set #Ending Set #

Function Type

log2 (# of Sets)
log2 (Atoms/Line)

log2 (Bytes/Atom)

i960® VH Processor Developer’s Manual 6-39

Instruction Set Reference

Figure 6-2. Store Data Cache to Memory Output Format

Figure 6-3. D-Cache Tag and Valid Bit Formats

 0 Destination
Address (DA)

Tag (Starting set) DA + 4H

Valid Bits (Starting set) DA + 8H

Word 0 DA + CH

Word 1 DA + 10H

Word 2 DA + 14H

Word 3 DA + 18H

 0 DA + 1CH

Tag (Starting set + 1) DA + 20H

Valid Bits (Starting set + 1) DA + 24H

.

W
ay

 0
W

ay
 0

031

Actual Address Bits 31:11

80960VH Cache Tag Format (2 Kbyte Cache)

21 20

031

Valid Bits Values

5

Valid Bit for Word 2 of current Set and Way

Valid Bit for Word 3 of current Set and Way

Valid Bit for Word 1 of current Set and Way

Tag Valid Bit for current Set and Way

Valid Bit for Word 0 of current Set and Way

6-40 i960® VH Processor Developer’s Manual

Instruction Set Reference

Action: if (PC.em != supervisor)
generate_fault(TYPE.MISMATCH);

order_wrt(previous_operations);
switch (src1[7:0]) {

case 0: # Disable data cache.
disable_Dcache();
break;

case 1: # Enable data cache.
enable_Dcache();
break;

case 2: # Global invalidate data cache.
invalidate_Dcache();
break;

case 3: # Ensure coherency of data cache with memory.
Causes data cache to be invalidated on this processor.
ensure_Dcache_coherency();
break;

case 4: # Get data cache status into src_dst.
if (Dcache_enabled) src_dst[0] = 1;
else src_dst[0] = 0;
Atom is 4 bytes.
src_dst[7:4] = log2(bytes per atom);
4 atoms per line.
src_dst[11:8] = log2(atoms per line);
src_dst[15:12] = log2(number of sets);
src_dst[27:16] = number of ways-1; # in lines per set
cache size = ([27:16]+1) << ([7:4] + [11:8] + [15:12]).
break;

i960® VH Processor Developer’s Manual 6-41

Instruction Set Reference

case 6: # Store data cache sets to memory pointed to by src2.
start = src_dst[15:0] # Starting set number.
end = src_dst[31:16] # Ending set number.

(zero-origin).
if (end >= Dcache_max_sets) end = Dcache_max_sets - 1;
if (start > end) generate_fault

(OPERATION.INVALID_OPERAND);
memadr = src2; # Must be word-aligned.
if (0x3 & memadr! = 0)
generate_fault(OPERATION.INVALID_OPERAND)
for (set = start; set <= end; set++){

Set_Data is described at end of this code flow.
 memory[memadr] = Set_Data[set];
 memadr += 4;
 for (way = 0; way < numb_ways; way++)

{memory[memadr] = tags[set][way];
 memadr += 4;
 memory[memadr] = valid_bits[set][way];
 memadr += 4;
for (word = 0; word < words_in_line; word++)

{memory[memadr] =
 Dcache_line[set][way][word];

 memadr += 4;
}
}

}
break;

default: # Reserved.
generate_fault(OPERATION.INVALID_OPERAND);
break;

}
order_wrt(subsequent_operations);

Faults: STANDARD Refer to Section 6.1.6, “Faults” on page 6-4.
TYPE.MISMATCH Attempt to execute instruction while not in

supervisor mode.
OPERATION.INVALID_OPERAND

Example: # g0 = 6, g1 = 0x10000000,
g2 = 0x001F0001

dcctl g0,g1,g2 # Store the status of D-cache
sets 1-0x1F to memory starting
at 0x10000000.

Opcode: dcctl 65CH REG

6-42 i960® VH Processor Developer’s Manual

Instruction Set Reference

See Also: sysctl

Notes: DCCTL function 6 stores data-cache sets to a target range in external mem-
ory. For any memory location that is cached and also within the target range
for function 6, the corresponding word-valid bit is cleared after function 6
completes to ensure data-cache coherency. Thus, dcctl function 6 can alter
the state of the cache after it completes, but only the word-valid bits. In all
cases, even when the cache sets to store to external memory overlap the cache
sets that map the target range in external memory, DCCTL function 6 always
returns the state of the cache as it existed when the DCCTL was issued.

This instruction is implemented on the 80960VH, 80960Hx and 80960Jx
processor families only, and may or may not be implemented on future i960
processors.

i960® VH Processor Developer’s Manual 6-43

Instruction Set Reference

6.2.24 divi, divo

Mnemonic: divi Divide Integer
divo Divide Ordinal

Format: div* src1, src2, dst
reg/lit reg/lit reg

Description: Divides src2 value by src1 value and stores the result in dst. Remainder is
discarded.

For divi, an integer-overflow fault can be signaled.

Action: divo:
if (src1 == 0)
{ dst = undefined_value;

generate_fault (ARITHMETIC.ZERO_DIVIDE);
else

dst = src2/src1;

divi:
if (src1 == 0)
{ dst = undefined_value;

generate_fault (ARITHMETIC.ZERO_DIVIDE);}
else if ((src2 == -2**31) && (src1 == -1))

{ dst = -2**31

if (AC.om == 1)
AC.of = 1;

else
generate_fault (ARITHMETIC.OVERFLOW);

}
else

dst = src2 / src1;

Faults: STANDARD Refer to Section 6.1.6, “Faults” on page 6-4.

ARITHMETIC.ZERO_DIVIDE The src1 operand is 0.

ARITHMETIC.OVERFLOW Result too large for destination register (divi
only). If overflow occurs and AC.om=1,
then fault is suppressed and AC.of is set to 1.
Result’s least significant 32 bits are stored in
dst.

Example: divo r3, r8, r13 # r13 = r8/r3

Opcode: divi 74BH REG
divo 70BH REG

See Also: ediv, mulo, muli, emul

6-44 i960® VH Processor Developer’s Manual

Instruction Set Reference

6.2.25 ediv

Mnemonic: ediv Extended Divide

Format: ediv src1, src2, dst
reg/lit reg/lit reg

Description: Divides src2 by src1 and stores result in dst. The src2 value is a long ordinal
(64 bits) contained in two adjacent registers. src2 specifies the lower
numbered register which contains operand’s least significant bits. src2 must
be an even numbered register (i.e., g0, g2, ... or r4, r6, r8...). src1 value is a
normal ordinal (i.e., 32 bits).

The result consists of a one-word remainder and a one-word quotient.
Remainder is stored in the register designated by dst; quotient is stored in the
next highest numbered register. dst must be an even numbered register (i.e.,
g0, g2, ... r4, r6, r8, ...).

This instruction performs ordinal arithmetic.

If this operation overflows (quotient or remainder do not fit in 32 bits), then
no fault is raised and the result is undefined.

Action: if((reg_number(src2)%2 != 0) || (reg_number(dst)%2 != 0))
{ dst[0] = undefined_value;

dst[1] = undefined_value;
generate_fault (OPERATION.INVALID_OPERAND);

}
else if(src1 == 0)
{ dst[0] = undefined_value;

dst[1] = undefined_value;
generate_fault(ARITHMETIC.DIVIDE_ZERO);

}
else # Quotient
{ dst[1] = ((src2 + reg_value(src2[1]) * 2**32) / src1)[31:0];

#Remainder
dst[0] = (src2 + reg_value(src2[1]) * 2**32

- ((src2 + reg_value(src2[1]) * 2**32 / src1) * src1);
}

Faults: STANDARD Refer to Section 6.1.6, “Faults” on page 6-4.
ARITHMETIC.ZERO_DIVIDE The src1 operand is 0.

Example: ediv g3, g4, g10 # g10 = remainder of g4,g5/g3
g11 = quotient of g4,g5/g3

Opcode: ediv 671H REG

See Also: emul, divi, divo

i960® VH Processor Developer’s Manual 6-45

Instruction Set Reference

6.2.26 emul

Mnemonic: emul Extended Multiply

Format: emul src1, src2, dst
reg/lit reg/lit reg

Description: Multiplies src2 by src1 and stores the result in dst. Result is a long ordinal (64
bits) stored in two adjacent registers. dst specifies lower numbered register,
which receives the result’s least significant bits. dst must be an even
numbered register (i.e., g0, g2, ... r4, r6, r8, ...).

This instruction performs ordinal arithmetic.

Action: if(reg_number(dst)%2 != 0)
{ dst[0] = undefined_value;

dst[1] = undefined_value;
generate_fault(OPERATION.INVALID_OPERAND);

}
else
{ dst[0] = (src1 * src2)[31:0];

dst[1] = (src1 * src2)[63:32];
}

Faults: STANDARD Refer to Section 6.1.6, “Faults” on page 6-4.

Example: emul r4, r5, g2 # g2,g3 = r4 * r5.

Opcode: emul 670H REG

See Also: ediv, muli, mulo

6-46 i960® VH Processor Developer’s Manual

Instruction Set Reference

6.2.27 eshro

Mnemonic: eshro Extended Shift Right Ordinal

Format: eshro src1, src2, dst
reg/lit reg/lit reg

Description: Shifts src2 right by (src1 mod 32) places and stores the result in dst. Bits
shifted beyond the least-significant bit are discarded.

src2 value is a long ordinal (i.e., 64 bits) contained in two adjacent registers.
src2 operand specifies the lower numbered register, which contains operand’s
least significant bits. src2 operand must be an even numbered register (i.e., r4,
r6, r8, ... or g0, g2).

src1 operand is a single 32-bit register or literal where the lower 5 bits specify
the number of places that the src2 operand is to be shifted.

The least significant 32 bits of the shift operation result are stored in dst.

Action: if(reg_number(src2)%2 != 0)
{ dst[0] = undefined_value;

dst[1] = undefined_value;
generate_fault(OPERATION.INVALID_OPERAND);

}
else

dst = shift_right((src2 + reg_value(src2[1]) * 2**32),(src1%32))[31:0];

Faults: STANDARD Refer to Section 6.1.6, “Faults” on page 6-4.

Example: eshro g3, g4, g11 # g11 = g4,5 shifted right by
(g3 MOD 32).

Opcode: eshro 5D8H REG

See Also: SHIFT, extract

Notes: This core instruction is not implemented on the Kx and Sx 80960 processors.

i960® VH Processor Developer’s Manual 6-47

Instruction Set Reference

6.2.28 extract

Mnemonic: extract Extract

Format: extract bitpos len src/dst
reg/lit reg/lit reg

Description: Shifts a specified bit field in src/dst right and zero fills bits to left of shifted bit
field. bitpos value specifies the least significant bit of the bit field to be
shifted; len value specifies bit field length.

Action: src_dst = (src_dst >> min(bitpos, 32))
& ~ (0xFFFFFFFF << len);

Faults: STANDARD Refer to Section 6.1.6, “Faults” on page 6-4.

Example: extract 5, 12, g4 # g4 = g4 with bits 5 through
16 shifted right.

Opcode: extract 651H REG

See Also: modify

6-48 i960® VH Processor Developer’s Manual

Instruction Set Reference

6.2.29 FAULT<cc>

Mnemonic: faulte Fault If Equal
faultne Fault If Not Equal
faultl Fault If Less
faultle Fault If Less Or Equal
faultg Fault If Greater
faultge Fault If Greater Or Equal
faulto Fault If Ordered
faultno Fault If Not Ordered

Format: fault*

Description: Raises a constraint-range fault if the logical AND of the condition code and
opcode’s mask part is not zero. For faultno (unordered), fault is raised if
condition code is equal to 0002.

faulto and faultno are provided for use by implementations with a floating
point coprocessor. They are used for compare and branch (or fault) operations
involving real numbers.

The following table shows the condition-code mask for each instruction. The
mask is opcode bits 0-2.

Action: For all except faultno:
if(mask && AC.cc != 0002)

generate_fault(CONSTRAINT.RANGE);

faultno:
if(AC.cc == 0002)

generate_fault(CONSTRAINT.RANGE);

Faults: STANDARD Refer to Section 6.1.6, “Faults” on page 6-4.
CONSTRAINT.RANGE If condition being tested is true.

Example: # Assume (AC.cc AND 1102)≠ 0002
faultle # Generate CONSTRAINT_RANGE
fault

Instruction Mask Condition

faultno 0002 Unordered

faultg 0012 Greater

faulte 0102 Equal

faultge 0112 Greater or equal

faultl 1002 Less

faultne 1012 Not equal

faultle 1102 Less or equal

faulto 1112 Ordered

i960® VH Processor Developer’s Manual 6-49

Instruction Set Reference

Opcode: faulte 1AH CTRL
faultne 1DH CTRL
faultl 1CH CTRL
faultle 1EH CTRL
faultg 19H CTRL
faultge 1BH CTRL
faulto 1FH CTRL
faultno 18H CTRL

See Also: BRANCH<cc>, TEST<cc>

6-50 i960® VH Processor Developer’s Manual

Instruction Set Reference

6.2.30 flushreg

Mnemonic: flushreg Flush Local Registers

Format: flushreg

Description: Copies the contents of every cached register set, except the current set, to its
associated stack frame in memory. The entire register cache is then marked as
purged (or invalid). On a return to a stack frame for which the local registers
are not cached, the processor reloads the locals from memory.

flushreg is provided to allow a debugger or application program to
circumvent the processor’s normal call/return mechanism. For example, a
debugger may need to go back several frames in the stack on the next return,
rather than using the normal return mechanism that returns one frame at a
time. Since the local registers of an unknown number of previous stack frames
may be cached, a flushreg must be executed prior to modifying the PFP to
return to a frame other than the one directly below the current frame.

To reduce interrupt latency, flushreg is abortable. If an interrupt of higher
priority than the current process is detected while flushreg is executing, then
flushreg flushes at least one frame and aborts. After executing the interrupt
handler, the processor returns to the flushreg instruction and re-executes it.
flushreg does not reflush any frames that were flushed before the interrupt
occurred. flushreg is not aborted by high priority interrupts if tracing is
enabled in the PC or if any faults are pending at the time of the interrupt.

Action: Each local cached register set except the current one is flushed to its
associated stack frame in memory and marked as purged, meaning that they
are reloaded from memory if and when they become the current local register
set.

Faults: STANDARD Refer to Section 6.1.6, “Faults” on page 6-4.

Example: flushreg

Opcode: flushreg 66DH REG

i960® VH Processor Developer’s Manual 6-51

Instruction Set Reference

6.2.31 fmark

Mnemonic: fmark Force Mark

Format: fmark

Description: Generates a mark trace event. Causes a mark trace event to be generated,
regardless of mark trace mode flag setting, providing the trace enable bit, bit 0
in the Process Controls, is set.

For more information on trace fault generation, refer to Chapter 10, “Tracing
and Debugging”.

Action: A mark trace event is generated, independent of the setting of the
mark-trace-mode flag.

Faults: STANDARD Refer to Section 6.1.6, “Faults” on page 6-4.
TRACE.MARK A TRACE.MARK fault is generated if

PC.te=1.

Example: # Assume PC.te = 1
fmark
Mark trace event is generated at this point in the
instruction stream.

Opcode: fmark 66CH REG

See Also: mark

6-52 i960® VH Processor Developer’s Manual

Instruction Set Reference

6.2.32 halt

Mnemonic: halt Halt CPU

Format: halt src1
reg/lit

Description: Causes the i960 core processor to enter HALT mode. Entry into Halt mode
allows the interrupt enable state to be conditionally changed based on the
value of src1.

The processor exits Halt mode on a hardware reset or upon receipt of an
interrupt that should be delivered based on the current process priority. After
executing the interrupt that forced the processor out of Halt mode, execution
resumes at the instruction immediately after the halt instruction. The
processor must be in supervisor mode to use this instruction.

Action: implicit_syncf;
if (PC.em != supervisor)
 generate_fault(TYPE.MISMATCH);
switch(src1) {

case 0: # Disable interrupts. set ICON.gie.
global_interrupt_enable = true; break;

case 1: # Enable interrupts. clear ICON.gie.
 global_interrupt_enable = false; break;

case 2: # Use the current interrupt enable state.
break;

default:
generate_fault(OPERATION.INVALID_OPERAND);
break;

}

ensure_bus_is_quiescient;
enter_HALT_mode;

Faults: STANDARD Refer to Section 6.1.6, “Faults” on page 6-4.
TYPE.MISMATCH Attempt to execute instruction while not in

supervisor mode.

Example: # ICON.gie = 1, g0 = 1, Interrupts
disabled.
halt g0 # Enable interrupts and halt.

src1 Operation

0 Disable interrupts and halt

1 Enable interrupts and halt

2 Use current interrupt enable state and halt

i960® VH Processor Developer’s Manual 6-53

Instruction Set Reference

Opcode: halt 65DH REG

Notes: This instruction is implemented on the 80960VH and 80960Jx processor fam-
ilies only, and may or may not be implemented on future i960 processors.

6-54 i960® VH Processor Developer’s Manual

Instruction Set Reference

6.2.33 icctl

Mnemonic: icctl Instruction-cache Control

Format: icctl src1, src2, src/dst
reg/lit reg/lit reg

Description: Performs management and control of the instruction cache including
disabling, enabling, invalidating, loading and locking, getting status, and
storing cache sets to memory. Operations are indicated by the value of src1.
Some operations also use src2 and src/dst. When needed by the operation, the
processor orders the effects of the operation with previous and subsequent
operations to ensure correct behavior. For specific function setup, see the
following tables and diagrams:

Table 6-8. icctl Operand Fields

Function src1 src2 src/dst

Disable I-cache 0 NA NA

Enable I-cache 1 NA NA

Invalidate I-cache 2 NA NA

Load and lock
I-cache 3 src: Starting address of

code to lock. Number of blocks to lock.

Get I-cache status 4 NA dst: Receives status (Figure 6-4).

Get I-cache locking
status 5 NA dst: Receives status (Figure 6-4)

Store I-cache sets to
memory 6 Destination address for

cache sets
src: I-cache set #’s to be stored
(Figure 6-4).

i960® VH Processor Developer’s Manual 6-55

Instruction Set Reference

Figure 6-4. icctl src1 and src/dst Formats

8 7 031

Function Type

src1 Format

28 27 16 15 12 8 4 031

src/dst Format for I-cache Status

3711

Enabled = 1
Disabled = 0

log2 (# of Sets)

of Ways-1

8 7 031

src/dst Format for I-cache Locking Status

24 23

of Blocks that Lock Block Size in Words

031

src/dst Format for Store I-cache Sets to Memory

16 15

Starting Set #Ending Set #

of Blocks that are Locked

Reserved
(Initialize to 0)

log2 (Atoms/Line)
log2 (Bytes/Atom)

6-56 i960® VH Processor Developer’s Manual

Instruction Set Reference

Table 6-9. icctl Status Values and I-Cache Parameters

Value Value on i960VH CPU

bytes per atom 4

atoms per line 4

number of sets 128

number of ways 2

cache size 4-Kbytes

Status[0] (enable / disable) 0 or 1

Status[1:3] (reserved) 0

Status[7:4] (log2(bytes per atom)) 2

Status[11:8] (log2(atoms per line)) 2

Status[15:12] (log2(number of sets)) 7

Status[27:16] (number of ways - 1) 1

Lock Status[7:0] (number of blocks that lock) 1

Lock Status[23:8] (block size in words) 512

Lock Status[31:24] (number of blocks that are locked) 0 or 1

Figure 6-5. Store Instruction Cache to Memory Output Format

 Set_Data [Starting Set] Destination
Address (DA)

Tag (Starting set) DA + 4H

Valid Bits (Starting set) DA + 8H

Word 0 DA + CH

Word 1 DA + 10H

Word 2 DA + 14H

Word 3 DA + 18H

Tag (Starting set) DA + 1CH

Valid Bits (Starting set) DA + 20H

Word 0 DA + 24H

Word 1 DA + 28H

Word 2 DA + 2CH

Word 3 DA + 30H

Set_Data [Starting Set + 1] DA + 34H

Tag (Starting set + 1) DA + 38H

Valid Bits (Starting set + 1) DA + 3CH

.

W
ay

 0
W

ay
 1

W
ay

 0

i960® VH Processor Developer’s Manual 6-57

Instruction Set Reference

Action: if (PC.em != supervisor)
generate_fault(TYPE.MISMATCH);

switch (src1[7:0]) {
case 0: # Disable instruction cache.

disable_instruction_cache();
break;

case 1: # Enable instruction cache.
enable_instruction_cache();
break;

case 2: # Globally invalidate instruction cache.
Includes locked lines also.
invalidate_instruction_cache();
unlock_icache();
break;

case 3: # Load & Lock code into Instruction-Cache
src_dst has number of contiguous blocks to lock.

Figure 6-6. I-Cache Set Data, Tag and Valid Bit Formats

0 = Way 0 is least recently used

031

Actual Address Bits 31:11

80960VH Cache Tag Format (4 Kbyte Cache)

031

Set Data I-Cache Values

21 20

031

Valid Bits Values

5

I-Cache Set Data Value

Valid Bit for Word 2 of current Set and Way

Valid Bit for Word 3 of current Set and Way

Valid Bit for Word 1of current Set and Way

Tag Valid bit for current Set and Way

Valid Bit for Word 0 of current Set and Way

1 = Way 1 is least recently used

6-58 i960® VH Processor Developer’s Manual

Instruction Set Reference

src2 has starting address of code to lock.
On the i960 VH, src2 is aligned to a quad word boundary

aligned_addr = src2 & 0xFFFFFFF0;
invalidate(I-cache); unlock(I-cache);
for (j = 0; j < src_dst; j++)

{ way = way_associated_with_block(j);
start = src2 + j*block_size;
end = start + block_size;
for (i = start; i < end; i=i+4)

{ set = set_associated_with(i);
word = word_associated_with(i);
Icache_line[set][way][word] =

 memory[i];
update_tag_n_valid_bits(set,way,word)

lock_icache(set,way,word);
} } break;

case 4: # Get instruction cache status into src_dst.
if (Icache_enabled) src_dst[0] = 1;

else src_dst[0] = 0;
Atom is 4 bytes.
 src_dst[7:4] = log2(bytes per atom);
4 atoms per line.
 src_dst[11:8] = log2(atoms per line);
src_dst[15:12] = log2(number of sets);
src_dst[27:16] = number of ways-1; #in lines per set
cache size = ([27:16]+1) << ([7:4] + [11:8] + [15:12])
break;

case 5: # Get instruction cache locking status into dst.
src_dst[7:0] = number_of_blocks_that_lock;
src_dst[23:8] = block_size_in_words;
src_dst[31:24] = number_of_blocks_that_are_locked;
break;

case 6: # Store instr cache sets to memory pointed to by src2.
start = src_dst[15:0] # Starting set number
end = src_dst[31:16] # Ending set number

(zero-origin).
if (end >= Icache_max_sets)

end = Icache_max_sets - 1;
if (start > end)

generate_fault(OPERATION.INVALID_OPERAND);
memadr = src2; # Must be word-aligned.
if(0x3 & memadr != 0)

generate_fault(OPERATION.INVALID_OPERAND);
for (set = start; set <= end; set++){

 # Set_Data is described at end of this code flow.
 memory[memadr] = Set_Data[set];
 memadr += 4;
 for (way = 0; way < numb_ways; way++)

{memory[memadr] = tags[set][way];

i960® VH Processor Developer’s Manual 6-59

Instruction Set Reference

 memadr += 4;
 memory[memadr] = valid_bits[set][way];
 memadr += 4;
 for (word = 0; word < words_in_line;

 word++)
 {memory[memadr] =

 Icache_line[set][way][word];
 memadr += 4;
 }

} } break;

default: # Reserved.
generate_fault(OPERATION.INVALID_OPERAND);
break;}

Faults: STANDARD Refer to Section 6.1.6, “Faults” on page 6-4.
TYPE.MISMATCH Attempt to execute instruction while not in

supervisor mode.

Example: # g0 = 3, g1=0x10000000, g2=1
icctl g0,g1,g2 # Load and lock 1 block of cache

(one way) with
location of code at starting
0x10000000.

Opcode: icctl 65BH REG

See Also: sysctl

Notes: This instruction is implemented on the 80960VH, 80960Hx and 80960Jx pro-
cessor families only, and may or may not be implemented on future i960 pro-
cessors.

6-60 i960® VH Processor Developer’s Manual

Instruction Set Reference

6.2.34 intctl

Mnemonic: intctl Global Enable and Disable of Interrupts

Format: intctl src1 dst
reg/lit reg

Description: Globally enables, disables or returns the current status of interrupts depending
on the value of src1. Returns the previous interrupt enable state (1 for enabled
or 0 for disabled) in dst. When the state of the global interrupt enable is
changed, the processor ensures that the new state is in full effect before the
instruction completes. (This instruction is implemented by manipulating
ICON.gie.)

Action: if (PC.em != supervisor)
generate_fault(TYPE.MISMATCH);

old_interrupt_enable = global_interrupt_enable;
switch(src1) {

case 0: # Disable. Set ICON.gie to one.
globally_disable_interrupts;
global_interrupt_enable = false;
order_wrt(subsequent_instructions);
break;

case 1: # Enable. Clear ICON.gie to zero.
globally_enable_interrupts;
global_interrupt_enable = true;
order_wrt(subsequent_instructions);
break;

 case 2: # Return status. Return ICON.gie
break;

default:
generate_fault(OPERATION.INVALID_OPERAND);
break;

}
if(old_interrupt_enable)

dst = 1;
else

dst = 0;

Faults: STANDARD Refer to Section 6.1.6, “Faults” on page 6-4.

TYPE.MISMATCH Attempt to execute instruction while not in
supervisor mode.

src1 Value Operation

0 Disables interrupts

1 Enables interrupts

2 Returns current interrupt enable status

i960® VH Processor Developer’s Manual 6-61

Instruction Set Reference

Example: # ICON.gie = 0, interrupts
enabled
intctl 0, g4 # Disable interrupts (ICON.gie
= 1)

g4 = 1

Opcode: intctl 658H REG

See Also: intdis, inten

Notes: This instruction is implemented on the 80960VH, 80960Hx and 80960Jx pro-
cessor families only, and may or may not be implemented on future i960 pro-
cessors.

6-62 i960® VH Processor Developer’s Manual

Instruction Set Reference

6.2.35 intdis

Mnemonic: intdis Global Interrupt Disable

Format: intdis

Description: Globally disables interrupts and ensures that the change takes effect before
the instruction completes. This operation is implemented by setting ICON.gie
to one.

Action: if (PC.em != supervisor)
generate_fault(TYPE.MISMATCH);

Implemented by setting ICON.gie to one.
globally_disable_interrupts;
interrupt_enable = false;
order_wrt(subsequent_instructions);

Faults: STANDARD Refer to Section 6.1.6, “Faults” on page 6-4.
TYPE.MISMATCH Attempt to execute instruction while not in

supervisor mode.

Example: # ICON.gie = 0, interrupts
enabled
intdis # Disable interrupts.

ICON.gie = 1

Opcode: intdis 5B4H REG

See Also: intctl, inten

Notes: This instruction is implemented on the 80960VH, 80960Hx and 80960Jx pro-
cessor families only, and may or may not be implemented on future i960 pro-
cessors.

i960® VH Processor Developer’s Manual 6-63

Instruction Set Reference

6.2.36 inten

Mnemonic: inten global interrupt enable

Format: inten

Description: Globally enables interrupts and ensures that the change takes effect before the
instruction completes. This operation is implemented by clearing ICON.gie to
zero.

Action: if (PC.em != supervisor)
generate_fault(TYPE.MISMATCH);

Implemented by clearing ICON.gie to zero.
globally_enable_interrupts;
interrupt_enable = true;
order_wrt(subsequent_instructions);

Faults: STANDARD Refer to Section 6.1.6, “Faults” on page 6-4.
TYPE.MISMATCH Attempt to execute instruction while not in

supervisor mode.

Example: # ICON.gie = 1, interrupts
disabled.
inten # Enable interrupts.

ICON.gie = 0

Opcode: inten 5B5H REG

See Also: intctl, intdis

Notes: This instruction is implemented on the 80960VH, 80960Hx and 80960Jx pro-
cessor families only, and may or may not be implemented on future i960 pro-
cessors.

6-64 i960® VH Processor Developer’s Manual

Instruction Set Reference

6.2.37 LOAD

Mnemonic: ld Load
ldob Load Ordinal Byte
ldos Load Ordinal Short
ldib Load Integer Byte
ldis Load Integer Short
ldl Load Long
ldt Load Triple
ldq Load Quad

Format: ld* src, dst
mem reg

Description: Copies byte or byte string from memory into a register or group of successive
registers.

The src operand specifies the address of first byte to be loaded. The full range
of addressing modes may be used in specifying src. Refer to Chapter 2, “Data
Types and Memory Addressing Modes” for more information.

dst specifies a register or the first (lowest numbered) register of successive
registers.

ldob and ldib load a byte and ldos and ldis load a half word and convert it to
a full 32-bit word. Data being loaded is sign-extended during integer loads
and zero-extended during ordinal loads.

ld, ldl, ldt and ldq instructions copy 4, 8, 12 and 16 bytes, respectively, from
memory into successive registers.

For ldl, dst must specify an even numbered register (i.e., g0, g2...). For ldt and
ldq, dst must specify a register number that is a multiple of four (i.e., g0, g4,
g8, g12, r4, r8, r12). Results are unpredictable if registers are not aligned on
the required boundary or if data extends beyond register g15 or r15 for ldl, ldt
or ldq.

Action: ld:
dst = read_memory(effective_address)[31:0];
if((effective_address[1:0] != 002) && unaligned _fault_enabled)

generate_fault(OPERATION.UNALIGNED);

ldob:
dst[7:0] = read_memory(effective_address)[7:0];
dst[31:8] = 0x000000;

ldib:
dst[7:0] = read_memory(effective_address)[7:0];
if(dst[7] == 0)

dst[31:8] = 0x000000;
else

dst[31:8] = 0xFFFFFF;

ldos:

i960® VH Processor Developer’s Manual 6-65

Instruction Set Reference

dst = read_memory(effective_address)[15:0];
Order depends on endianism.

dst[31:16] = 0x0000;
if((effective_address[0] != 02) && unaligned_fault_enabled)

generate_fault(OPERATION.UNALIGNED);

ldis:
dst[15:0] = read_memory(effective_address)[15:0];

Order depends on endianism.
if(dst[15] == 02)

dst[31:16] = 0x0000;
else

dst[31:16] = 0xFFFF;
if((effective_address[0] != 02) && unaligned_fault_enabled)

generate_fault(OPERATION.UNALIGNED);

ldl:
if((reg_number(dst) % 2) != 0)

generate_fault(OPERATION.INVALID_OPERAND);
dst not modified.

else
{ dst = read_memory(effective_address)[31:0];

dst_+_1 = read_memory(effective_address_+_4)[31:0];
if((effective_address[2:0] != 0002) && unaligned_fault_enabled)

generate_fault(OPERATION.UNALIGNED);
}

ldt:
if((reg_number(dst) % 4) != 0)

generate_fault(OPERATION.INVALID_OPERAND);
dst not modified.

else
{ dst = read_memory(effective_adddress)[31:0];

dst_+_1 = read_memory(effective_adddress_+_4)[31:0];
dst_+_2 = read_memory(effective_adddress_+_8)[31:0];
if((effective_address[3:0] != 00002) && unaligned_fault_enabled)

generate_fault(OPERATION.UNALIGNED);
}

ldq:
if((reg_number(dst) % 4) != 0)

generate_fault(OPERATION.INVALID_OPERAND);
dst not modified.

else
{ dst = read_memory(effective_adddress)[31:0];

Order depends on endianism.
dst_+_1 = read_memory(effective_adddress_+_4)[31:0];
dst_+_2 = read_memory(effective_adddress_+_8)[31:0];
dst_+_3 = read_memory(effective_adddress_+_12)[31:0];
if((effective_address[3:0] != 00002) && unaligned_fault_enabled)

6-66 i960® VH Processor Developer’s Manual

Instruction Set Reference

generate_fault(OPERATION.UNALIGNED);
}

Faults: STANDARD Refer to Section 6.1.6, “Faults” on page 6-4.
OPERATION.UNALIGNED
OPERATION.INVALID_OPERAND

Example: ldl 2450 (r3), r10 # r10, r11 = r3 + 2450 in
memory

Opcode: ld 90H MEM
ldob 80H MEM
ldos 88H MEM
ldib C0H MEM
ldis C8H MEM
ldl 98H MEM
ldt A0H MEM
ldq B0H MEM

See Also: MOVE, STORE

i960® VH Processor Developer’s Manual 6-67

Instruction Set Reference

6.2.38 lda

Mnemonic: lda Load Address

Format: lda src, dst
mem reg
efa

Description: Computes the effective address specified with src and stores it in dst. The src
address is not checked for validity. Any addressing mode may be used to
calculate efa.

An important application of this instruction is to load a constant longer than 5
bits into a register. (To load a register with a constant of 5 bits or less, mov
can be used with a literal as the src operand.)

Action: dst = effective_address;

Faults: STANDARD Refer to Section 6.1.6, “Faults” on page 6-4.

Example: lda 58 (g9), g1 # g1 = g9+58
lda 0x749, r8 # r8 = 0x749

Opcode: lda 8CH MEM

6-68 i960® VH Processor Developer’s Manual

Instruction Set Reference

6.2.39 mark

Mnemonic: mark Mark

Format: mark

Description: Generates mark trace fault if mark trace mode is enabled. Mark trace mode is
enabled if the PC register trace enable bit (bit 0) and the TC register mark
trace mode bit (bit 7) are set.

If mark trace mode is not enabled, then mark behaves like a no-op.

For more information on trace fault generation, refer to Chapter 10, “Tracing
and Debugging”.

Action: if(PC.te && TC.mk)
generate_fault(TRACE.MARK)

Faults: STANDARD Refer to Section 6.1.6, “Faults” on page 6-4.
TRACE.MARK Trace fault is generated if PC.te=1 and

TC.mk=1.

Example: # Assume that the mark trace mode is enabled.
ld xyz, r4
addi r4, r5, r6
mark
Mark trace event is generated at this point in the
instruction stream.

Opcode: mark 66BH REG

See Also: fmark, modpc, modtc

i960® VH Processor Developer’s Manual 6-69

Instruction Set Reference

6.2.40 modac

Mnemonic: modac Modify AC

Format: modac mask, src, dst
reg/lit reg/lit reg

Description: Reads and modifies the AC register. src contains the value to be placed in the
AC register; mask specifies bits that may be changed. Only bits set in mask
are modified. Once the AC register is changed, its initial state is copied into
dst.

Action: temp = AC;
AC = (src & mask) | (AC & ~mask);
dst = temp;

Faults: STANDARD Refer to Section 6.1.6, “Faults” on page 6-4.

Example: modac g1, g9, g12 # AC = g9, masked by g1.
g12 = initial value of AC.

Opcode: modac 645H REG

See Also: modpc, modtc

Side Effects: Sets the condition code in the arithmetic controls.

6-70 i960® VH Processor Developer’s Manual

Instruction Set Reference

6.2.41 modi

Mnemonic: modi Modulo Integer

Format: modi src1, src2, dst
reg/lit reg/lit reg

Description: Divides src2 by src1, where both are integers and stores the modulo
remainder of the result in dst. If the result is nonzero, then dst has the same
sign as src1.

Action: if(src1 == 0)
{ dst = undefined_value;

generate_fault(ARITHMETIC.ZERO_DIVIDE);
}

dst = src2 - (src2/src1) * src1;
if((src2 *src1 < 0) && (dst != 0))

dst = dst + src1;

Faults: STANDARD Refer to Section 6.1.6, “Faults” on page 6-4.
ARITHMETIC.ZERO_DIVIDE The src1 operand is zero.

Example: modi r9, r2, r5 # r5 = modulo (r2/r9)

Opcode: modi 749H REG

See Also: divi, divo, remi, remo

Notes: modi generates the correct result (0) when computing -231 mod -1, although
the corresponding 32-bit division does overflow, it does not generate a fault.

i960® VH Processor Developer’s Manual 6-71

Instruction Set Reference

6.2.42 modify

Mnemonic: modify Modify

Format: modify mask, src, src/dst
reg/lit reg/lit reg

Description: Modifies selected bits in src/dst with bits from src. The mask operand selects
the bits to be modified: only bits set in the mask operand are modified in
src/dst.

Action: src_dst = (src & mask) | (src_dst & ~mask);

Faults: STANDARD Refer to Section 6.1.6, “Faults” on page 6-4.

Example: modify g8, g10, r4 # r4 = g10 masked by g8.

Opcode: modify 650H REG

See Also: alterbit, extract

6-72 i960® VH Processor Developer’s Manual

Instruction Set Reference

6.2.43 modpc

Mnemonic: modpc Modify Process Controls

Format: modpc src, mask, src/dst
reg/lit reg/lit reg

Description: Reads and modifies the PC register as specified with mask and src/dst. src/dst
operand contains the value to be placed in the PC register; mask operand
specifies bits that may be changed. Only bits set in the mask are modified.
Once the PC register is changed, its initial value is copied into src/dst. The src
operand is a dummy operand that should specify a literal or the same register
as the mask operand.

The processor must be in supervisor mode to use this instruction with a
non-zero mask value. If mask=0, then this instruction can be used to read the
process controls, without the processor being in supervisor mode.

If the action of this instruction lowers the processor priority, then the
processor checks the interrupt table for pending interrupts.

When process controls are changed, the processor recognizes the changes
immediately except in one situation: if modpc is used to change the trace
enable bit, then the processor may not recognize the change before the next
four non-branch instructions are executed. For more information see
Section 3.6.3, “Process Controls Register – PC” on page 3-15.

Action: if(mask != 0)
{ if(PC.em != supervisor)

generate_fault(TYPE.MISMATCH);
temp = PC;
PC = (mask & src_dst) | (PC & ~mask);
src_dst = temp;
if(temp.priority > PC.priority)

check_pending_interrupts;
}
else

src_dst = PC;

Faults: STANDARD Refer to Section 6.1.6, “Faults” on page 6-4.
TYPE.MISMATCH

Example: modpc g9, g9, g8 # process controls = g8
masked by g9.

Opcode: modpc 655H REG

See Also: modac, modtc

Notes: Since modpc does not switch stacks, it should not be used to switch the mode
of execution from supervisor to user (the supervisor stack can get corrupted in
this case). The call and return mechanism should be used instead.

i960® VH Processor Developer’s Manual 6-73

Instruction Set Reference

6.2.44 modtc

Mnemonic: modtc Modify Trace Controls

Format: modtc mask, src2, dst
reg/lit reg/lit reg

Description: Reads and modifies TC register as specified with mask and src2. The src2
operand contains the value to be placed in the TC register; mask operand
specifies bits that may be changed. Only bits set in mask are modified. mask
must not enable modification of reserved bits. Once the TC register is
changed, its initial state is copied into dst.

The changed trace controls may take effect immediately or may be delayed. If
delayed, then the changed trace controls may not take effect until after the
first non-branching instruction is fetched from memory or after four
non-branching instructions are executed.

For more information on the trace controls, refer to Chapter 9, “Faults” and
Chapter 10, “Tracing and Debugging”.

Action: mode_bits = 0x000000FE;
event_flags = 0X0F000000
temp = TC;
tempa = (event_flags & TC & mask) | (mode_bits & mask);
TC = (tempa & src2) | (TC & ~tempa);
dst = temp;

Faults: STANDARD Refer to Section 6.1.6, “Faults” on page 6-4.

Example: modtc g12, g10, g2 # trace controls = g10 masked
by g12; previous trace
controls stored in g2.

Opcode: modtc 654H REG

See Also: modac, modpc

6-74 i960® VH Processor Developer’s Manual

Instruction Set Reference

6.2.45 MOVE

Mnemonic: mov Move
movl Move Long
movt Move Triple
movq Move Quad

Format: mov* src1, dst
reg/lit reg

Description: Copies the contents of one or more source registers (specified with src) to one
or more destination registers (specified with dst).

For movl, movt and movq, src1 and dst specify the first (lowest numbered)
register of several successive registers. src1 and dst registers must be even
numbered (for example, g0, g2, ... or r4, r6, ...) for movl and an integral
multiple of four (for example, g0, g4, ... or r4, r8, ...) for movt and movq.

The moved register values are unpredictable when: 1) the src and dst
operands overlap; 2) registers are not properly aligned.

Action: mov:
if(is_reg(src1))

dst = src1;
else
{ dst[4:0] = src1; #src1 is a 5-bit literal.

dst[31:5] = 0;
}
movl:
if((reg_num(src1)%2 != 0) || (reg_num(dst)%2 != 0))
{ dst = undefined_value;

dst_+_1 = undefined_value;
generate_fault(OPERATION.INVALID_OPERAND);

}
else if(is_reg(src1))
{ dst = src1;

dst_+_1 = src1_+_1;
}
else
{ dst[4:0] = src1; #src1 is a 5-bit literal.

dst[31:5] = 0;
dst_+_1[31:0] = 0;

}

movt:
if((reg_num(src1)%4 != 0) || (reg_num(dst)%4 != 0))
{ dst = undefined_value;

dst_+_1 = undefined_value;
dst_+_2 = undefined_value;
generate_fault(OPERATION.INVALID_OPERAND);

i960® VH Processor Developer’s Manual 6-75

Instruction Set Reference

}
else if(is_reg(src1))
{ dst = src1;

dst_+_1 = src1_+_1;
dst_+_2 = src1_+_2;

}
else
{ dst[4:0] = src1; #src1 is a 5-bit literal.

dst[31:5] = 0;
dst_+_1[31:0] = 0;
dst_+_2[31:0] = 0;

}
movq:
if((reg_num(src1)%4 != 0) || (reg_num(dst)%4 != 0))
{ dst = undefined_value;

dst_+_1 = undefined_value;
dst_+_2 = undefined_value;
dst_+_3 = undefined_value;
generate_fault(OPERATION.INVALID_OPERAND);

}
else if(is_reg(src1))
{ dst = src1;

dst_+_1 = src1_+_1;
dst_+_2 = src1_+_2;
dst_+_3 = src1_+_3;

}
else
{ dst[4:0] = src1; #src1 is a 5 bit literal.

dst[31:5] = 0;
dst_+_1[31:0] = 0;
dst_+_2[31:0] = 0;
dst_+_3[31:0] = 0;

}

Faults: STANDARD Refer to Section 6.1.6, “Faults” on page 6-4.

Example: movt g8, r4 # r4, r5, r6 = g8, g9, g10

Opcode: mov 5CCH REG
movl 5DCH REG
movt 5ECH REG
movq 5FCH REG

See Also: LOAD, STORE, lda

6-76 i960® VH Processor Developer’s Manual

Instruction Set Reference

6.2.46 muli, mulo

Mnemonic: muli Multiply Integer
mulo Multiply Ordinal

Format: mul* src1, src2, dst
reg/lit reg/lit reg

Description: Multiplies the src2 value by the src1 value and stores the result in dst. The
binary results from these two instructions are identical. The only difference is
that muli can signal an integer overflow.

Action: mulo:
dst = (src2 * src1)[31:0];

muli:
true_result = (src1 * src2);
dst = true_result[31:0];
if((true_result > (2**31) - 1) || (true_result < -2**31)) # Check for overflow
{ if(AC.om == 1)

AC.of = 1;
else

generate_fault(ARITHMETIC.OVERFLOW);
}

Faults: STANDARD Refer to Section 6.1.6, “Faults” on page 6-4.
ARITHMETIC.OVERFLOW Result is too large for destination register

(muli only). If a condition of overflow
occurs, then the least significant 32 bits of
the result are stored in the destination
register.

Example: muli r3, r4, r9 # r9 = r4 * r3

Opcode: muli 741H REG
mulo 701H REG

See Also: emul, ediv, divi, divo

i960® VH Processor Developer’s Manual 6-77

Instruction Set Reference

6.2.47 nand

Mnemonic: nand Nand

Format: nand src1, src2, dst
reg/lit reg/lit reg

Description: Performs a bitwise NAND operation on src2 and src1 values and stores the
result in dst.

Action: dst = ~src2 | ~src1;

Faults: STANDARD Refer to Section 6.1.6, “Faults” on page 6-4.

Example: nand g5, r3, r7 # r7 = r3 NAND g5

Opcode: nand 58EH REG

See Also: and, andnot, nor, not, notand, notor, or, ornot, xnor, xor

6-78 i960® VH Processor Developer’s Manual

Instruction Set Reference

6.2.48 nor

Mnemonic: nor Nor

Format: nor src1, src2, dst
reg/lit reg/lit reg

Description: Performs a bitwise NOR operation on the src2 and src1 values and stores the
result in dst.

Action: dst = ~src2 & ~src1;

Faults: STANDARD Refer to Section 6.1.6, “Faults” on page 6-4.

Example: nor g8, 28, r5 # r5 = 28 NOR g8

Opcode: nor 588H REG

See Also: and, andnot, nand, not, notand, notor, or, ornot, xnor, xor

i960® VH Processor Developer’s Manual 6-79

Instruction Set Reference

6.2.49 not, notand

Mnemonic: not Not
notand Not And

Format: not src1, dst
reg/lit reg

notand src1, src2, dst
reg/lit reg/lit reg

Description: Performs a bitwise NOT (not instruction) or NOT AND (notand instruction)
operation on the src2 and src1 values and stores the result in dst.

Action: not:
dst = ~src1;

notand:
dst = ~src2 & src1;

Faults: STANDARD Refer to Section 6.1.6, “Faults” on page 6-4.

Example: not g2, g4 # g4 = NOT g2
notand r5, r6, r7 # r7 = NOT r6 AND r5

Opcode: not 58AH REG
notand 584H REG

See Also: and, andnot, nand, nor, notor, or, ornot, xnor, xor

6-80 i960® VH Processor Developer’s Manual

Instruction Set Reference

6.2.50 notbit

Mnemonic: notbit Not Bit

Format: notbit bitpos, src2, dst
reg/lit reg/lit reg

Description: Copies the src2 value to dst with one bit toggled. The bitpos operand specifies
the bit to be toggled.

Action: dst = src2 ^ 2**(src1%32);

Faults: STANDARD Refer to Section 6.1.6, “Faults” on page 6-4.

Example: notbit r3, r12, r7 # r7 = r12 with the bit
specified in r3 toggled.

Opcode: notbit 580H REG

See Also: alterbit, chkbit, clrbit, setbit

i960® VH Processor Developer’s Manual 6-81

Instruction Set Reference

6.2.51 notor

Mnemonic: notor Not Or

Format: notor src1, src2, dst
reg/lit reg/lit reg

Description: Performs a bitwise NOTOR operation on src2 and src1 values and stores
result in dst.

Action: dst = ~src2 | src1;

Faults: STANDARD Refer to Section 6.1.6, “Faults” on page 6-4.

Example: notor g12, g3, g6 # g6 = NOT g3 OR g12

Opcode: notor 58DH REG

See Also: and, andnot, nand, nor, not, notand, or, ornot, xnor, xor

6-82 i960® VH Processor Developer’s Manual

Instruction Set Reference

6.2.52 or, ornot

Mnemonic: or Or
ornot Or Not

Format: or src1, src2, dst
reg/lit reg/lit reg

ornot src1, src2, dst
reg/lit reg/lit reg

Description: Performs a bitwise OR (or instruction) or ORNOT (ornot instruction)
operation on the src2 and src1 values and stores the result in dst.

Action: or:
dst = src2 | src1;

ornot:
dst = src2 | ~src1;

Faults: STANDARD Refer to Section 6.1.6, “Faults” on page 6-4.

Example: or 14, g9, g3 # g3 = g9 OR 14
ornot r3, r8, r11 # r11 = r8 OR NOT r3

Opcode: or 587H REG
ornot 58BH REG

See Also: and, andnot, nand, nor, not, notand, notor, xnor, xor

i960® VH Processor Developer’s Manual 6-83

Instruction Set Reference

6.2.53 remi, remo

Mnemonic: remi Remainder Integer
remo Remainder Ordinal

Format: rem* src1, src2, dst
reg/lit reg/lit reg

Description: Divides src2 by src1 and stores the remainder in dst. The sign of the result (if
nonzero) is the same as the sign of src2.

Action: remi, remo:
if(src1 == 0)

generate_fault(ARITHMETIC.ZERO_DIVIDE);
dst = src2 - (src2/src1)*src1;

Faults: STANDARD Refer to Section 6.1.6, “Faults” on page 6-4.
ARITHMETIC.ZERO_DIVIDE The src1 operand is 0.

Example: remo r4, r5, r6 # r6 = r5 rem r4

Opcode: remi 748H REG
remo 708H REG

See Also: modi

Notes: remi produces the correct result (0) even when computing -231 remi -1, which
would cause the corresponding division to overflow, although no fault is gen-
erated.

6-84 i960® VH Processor Developer’s Manual

Instruction Set Reference

6.2.54 ret

Mnemonic: ret Return

Format: ret

Description: Returns program control to the calling procedure. The current stack frame
(i.e., that of the called procedure) is deallocated and the FP is changed to point
to the calling procedure’s stack frame. Instruction execution is continued at
the instruction pointed to by the RIP in the calling procedure’s stack frame,
which is the instruction immediately following the call instruction.

As shown in the action statement below, the return-status field and
prereturn-trace flag determine the action that the processor takes on the return.
These fields are contained in bits 0 through 3 of register r0 of the called
procedure’s local registers.

See Chapter 7, “Procedure Calls” for more on ret.

Action: implicit_syncf();
if(pfp.p && PC.te && TC.p)
{ pfp.p = 0;

generate_fault(TRACE.PRERETURN);
}
switch(return_status_field)
{

case 0002: #local return
get_FP_and_IP();
break;

case 0012: #fault return
tempa = memory(FP-16);
tempb = memory(FP-12);
get_FP_and_IP();
AC = tempb;
if(execution_mode == supervisor)

PC = tempa;
break;

case 0102: #supervisor return, trace on return disabled
if(execution_mode != supervisor)

get_FP_and_IP();
else
{ PC.te = 0;

execution_mode = user;
get_FP_and_IP();

}
break;

case 0112: # supervisor return, trace on return enabled
if(execution_mode != supervisor)

get_FP_and_IP();
else
{ PC.te = 1;

execution_mode = user;
get_FP_and_IP();

i960® VH Processor Developer’s Manual 6-85

Instruction Set Reference

}
break;

case 1002: #reserved - unpredictable behavior
break;

case 1012: #reserved - unpredictable behavior
break;

case 1102: #reserved - unpredictable behavior
break;

case 1112: #interrupt return
tempa = memory(FP-16);
tempb = memory(FP-12);
get_FP_and_IP();
AC = tempb;
if(execution_mode == supervisor)

PC = tempa;
check_pending_interrupts();
break;

}

get_FP_and_IP()
{ FP =PFP;

free(current_register_set);
if(not_allocated(FP))

retrieve_from_memory(FP);
IP = RIP;

}

Faults: STANDARD Refer to Section 6.1.6, “Faults” on page 6-4.

Example: ret # Program control returns to
context of calling procedure.

Opcode: ret 0AH CTRL

See Also: call, calls, callx

6-86 i960® VH Processor Developer’s Manual

Instruction Set Reference

6.2.55 rotate

Mnemonic: rotate Rotate

Format: rotate len, src2, dst
reg/lit reg/lit reg

Description: Copies src2 to dst and rotates the bits in the resulting dst operand to the left
(toward higher significance). Bits shifted off left end of word are inserted at
right end of word. The len operand specifies number of bits that the dst
operand is rotated.

This instruction can also be used to rotate bits to the right. The number of bits
the word is to be rotated right should be subtracted from 32 and the result used
as the len operand.

Action: src2 is rotated by len mod 32. This value is stored in dst.

Faults: STANDARD Refer to Section 6.1.6, “Faults” on page 6-4.

Example: rotate 13, r8, r12 # r12 = r8 with bits rotated
13 bits to left.

Opcode: rotate 59DH REG

See Also: SHIFT, eshro

i960® VH Processor Developer’s Manual 6-87

Instruction Set Reference

6.2.56 scanbit

Mnemonic: scanbit Scan For Bit

Format: scanbit src1, dst
reg/lit reg

Description: Searches src1 for a set bit (1 bit). If a set bit is found, then the bit number of
the most significant set bit is stored in the dst and the condition code is set to
0102. If src value is zero, then all 1’s are stored in dst and condition code is set
to 0002.

Action: dst = 0xFFFFFFFF;
AC.cc = 0002;
for(i = 31; i >= 0; i--)
{ if((src1 & 2**i) != 0)
{ dst = i;

AC.cc = 0102;
break;

}

}

Faults: STANDARD Refer to Section 6.1.6, “Faults” on page 6-4.

Example: # assume g8 is nonzero
scanbit g8, g10 # g10 = bit number of most-

significant set bit in g8;
AC.cc = 0102.

Opcode: scanbit 641H REG

See Also: spanbit, setbit

Side Effects: Sets the condition code in the arithmetic controls.

6-88 i960® VH Processor Developer’s Manual

Instruction Set Reference

6.2.57 scanbyte

Mnemonic: scanbyte Scan Byte Equal

Format: scanbyte src1, src2
reg/lit reg/lit

Description: Performs byte-by-byte comparison of src1 and src2 and sets condition code to
0102 if any two corresponding bytes are equal. If no corresponding bytes are
equal, then condition code is set to 0002.

Action: if((src1 & 0x000000FF) == (src2 & 0x000000FF)
|| (src1 & 0x0000FF00) == (src2 & 0x0000FF00)
|| (src1 & 0x00FF0000) == (src2 & 0x00FF0000)
|| (src1 & 0xFF000000) == (src2 & 0xFF000000))

AC.cc = 0102;
else

AC.cc = 0002;

Faults: STANDARD Refer to Section 6.1.6, “Faults” on page 6-4.

Example: # Assume r9 = 0x11AB1100
scanbyte 0x00AB0011, r9# AC.cc = 0102

Opcode: scanbyte 5ACH REG

See Also: bswap

Side Effects: Sets the condition code in the arithmetic controls.

i960® VH Processor Developer’s Manual 6-89

Instruction Set Reference

6.2.58 SEL<cc>

Mnemonic: selno Select Based on Unordered
selg Select Based on Greater
sele Select Based on Equal
selge Select Based on Greater or Equal
sell Select Based on Less
selne Select Based on Not Equal
selle Select Based on Less or Equal
selo Select Based on Ordered

Format: sel* src1, src2, dst
reg/lit reg/lit reg

Description: Selects either src1 or src2 to be stored in dst based on the condition code bits
in the arithmetic controls. If for Unordered the condition code is 0, or if for
the other cases the logical AND of the condition code and the mask part of the
opcode is not zero, then the value of src2 is stored in the destination. Else, the
value of src1 is stored in the destination.

Action: if ((mask & AC.cc) || (mask == AC.cc))
dst = src2;

else
dst = src1;

Faults: STANDARD Refer to Section 6.1.6, “Faults” on page 6-4.

Example: # AC.cc = 0102
sele g0,g1,g2 # g2 = g1

AC.cc = 0012
sell g0,g1,g2 # g2 = g0

Instruction Mask Condition

selno 0002 Unordered

selg 0012 Greater

sele 0102 Equal

selge 0112 Greater or equal

sell 1002 Less

selne 1012 Not equal

selle 1102 Less or equal

selo 1112 Ordered

6-90 i960® VH Processor Developer’s Manual

Instruction Set Reference

Opcode: selno 784H REG
selg 794H REG
sele 7A4H REG
selge 7B4H REG
sell 7C4H REG
selne 7D4H REG
selle 7E4H REG
selo 7F4H REG

See Also: MOVE, TEST<cc>, cmpi, cmpo, SUB<cc>

Notes: These core instructions are not implemented on i960 Cx, Kx and Sx proces-
sors.

i960® VH Processor Developer’s Manual 6-91

Instruction Set Reference

6.2.59 setbit

Mnemonic: setbit Set Bit

Format: setbit bitpos, src, dst
reg/lit reg/lit reg

Description: Copies src value to dst with one bit set. bitpos specifies bit to be set.

Action: dst = src | (2**(bitpos%32));

Faults: STANDARD Refer to Section 6.1.6, “Faults” on page 6-4.

Example: setbit 15, r9, r1 # r1 = r9 with bit 15 set.

Opcode: setbit 583H REG

See Also: alterbit, chkbit, clrbit, notbit

6-92 i960® VH Processor Developer’s Manual

Instruction Set Reference

6.2.60 SHIFT

Mnemonic: shlo Shift Left Ordinal
shro Shift Right Ordinal
shli Shift Left Integer
shri Shift Right Integer
shrdi Shift Right Dividing Integer

Format: sh* len, src, dst
reg/lit reg/lit reg

Description: Shifts src left or right by the number of bits indicated with the len operand and
stores the result in dst. Bits shifted beyond register boundary are discarded.
For values of len > 32, the processor interprets the value as 32.

shlo shifts zeros in from the least significant bit; shro shifts zeros in from the
most significant bit. These instructions are equivalent to mulo and divo by the
power of 2, respectively.

shli shifts zeros in from the least significant bit. An overflow fault is
generated if the bits shifted out are not the same as the most significant bit (bit
31). If overflow occurs, then dst equals src shifted left as much as possible
without overflowing.

shri performs a conventional arithmetic shift-right operation by shifting in the
most significant bit (bit 31). When this instruction is used to divide a negative
integer operand by the power of 2, it produces an incorrect quotient
(discarding the bits shifted out has the effect of rounding the result toward
negative).

shrdi is provided for dividing integers by the power of 2. With this
instruction, 1 is added to the result if the bits shifted out are non-zero and the
src operand was negative, which produces the correct result for negative
operands.

shli and shrdi are equivalent to muli and divi by the power of 2.

Action: shlo:
if(src1 < 32)

dst = src * (2**len);
else

dst = 0;
shro:
if(src1 < 32)

dst = src / (2**len);
else

dst = 0;

shli:
if(len > 32)

count = 32;
else

count = src1;
temp = src;

i960® VH Processor Developer’s Manual 6-93

Instruction Set Reference

while((temp[31] == temp[30]) && (count > 0))
{ temp = (temp * 2)[31:0];

count = count - 1;
}
dst = temp;
if(count > 0)
{ if(AC.om == 1)

AC.of = 1;
else

generate_fault(ARITHMETIC.OVERFLOW);
}

shri:
if(len > 32)

count = 32;
else

count = src1;
temp = src;
while(count > 0)
{ temp = (temp >> 1)[31:0];

temp[31] = src[31];
count = count - 1;

}
dst = temp;

shrdi:
dst = src / (2**len);

Faults: STANDARD Refer to Section 6.1.6, “Faults” on page 6-4.
ARITHMETIC.OVERFLOW For shli.

Example: shli 13, g4, r6 # g6 = g4 shifted left 13 bits.

Opcode: shlo 59CH REG
shro 598H REG
shli 59EH REG
shri 59BH REG
shrdi 59AH REG

See Also: divi, muli, rotate, eshro

Notes: shli and shrdi are identical to multiplications and divisions for all positive
and negative values of src2. shri is the conventional arithmetic right shift that
does not produce a correct quotient when src2 is negative.

6-94 i960® VH Processor Developer’s Manual

Instruction Set Reference

6.2.61 spanbit

Mnemonic: spanbit Span Over Bit

Format: spanbit src, dst
reg/lit reg

Description: Searches src value for the most significant clear bit (0 bit). If a most
significant 0 bit is found, then its bit number is stored in dst and condition
code is set to 0102. If src value is all 1’s, then all 1’s are stored in dst and
condition code is set to 0002.

Action: dst = 0xFFFFFFFF;
AC.cc = 0002;
for(i = 31; i > = 0; i--)
{ if((src1 & 2**i) == 0))
{ dst = i;

AC.cc = 0102;
break;

}
}

Faults: STANDARD Refer to Section 6.1.6, “Faults” on page 6-4.

Example: # Assume r2 is not 0xffffffff
spanbit r2, r9 # r9 = bit number of most-

significant clear bit in r2;
AC.cc = 0102

Opcode: spanbit 640H REG

See Also: scanbit

Side Effects: Sets the condition code in the arithmetic controls.

i960® VH Processor Developer’s Manual 6-95

Instruction Set Reference

6.2.62 STORE

Mnemonic: st Store
stob Store Ordinal Byte
stos Store Ordinal Short
stib Store Integer Byte
stis Store Integer Short
stl Store Long
stt Store Triple
stq Store Quad

Format: st* src1, dst
reg mem

Description: Copies a byte or group of bytes from a register or group of registers to
memory. src specifies a register or the first (lowest numbered) register of
successive registers.

dst specifies the address of the memory location where the byte or first byte or
a group of bytes is to be stored. The full range of addressing modes may be
used in specifying dst. Refer to Section 2.3, “Memory Addressing Modes” on
page 2-4 for a complete discussion.

stob and stib store a byte and stos and stis store a half word from the src
register’s low order bytes. Data for ordinal stores is truncated to fit the
destination width. If the data for integer stores cannot be represented correctly
in the destination width, then an Arithmetic Integer Overflow fault is
signaled.

st, stl, stt and stq copy 4, 8, 12 and 16 bytes, respectively, from successive
registers to memory.

For stl, src must specify an even numbered register (for example, g0, g2, ... or
r0, r2, ...). For stt and stq, src must specify a register number that is a
multiple of four (for example, g0, g4, g8, ... or r0, r4, r8, ...).

Action: st:
if (illegal_write_to_on_chip_RAM)

generate_fault(TYPE.MISMATCH);
else if ((effective_address[1:0] != 002) && unaligned_fault_enabled)

{store_to_memory(effective_address)[31:0] = src1;
generate_fault(OPERATION.UNALIGNED);}

else
store_to_memory(effective_address)[31:0] = src1;

Action: stob:
if (illegal_write_to_on_chip_RAM_or_MMR)

generate_fault(TYPE.MISMATCH);
else

store_to_memory(effective_address)[7:0] = src1[7:0];

stib:
if (illegal_write_to_on_chip_RAM_or_MMR)

generate_fault(TYPE.MISMATCH);
else if ((src1[31:8] != 0) && (src1[31:8] != 0xFFFFFF))

6-96 i960® VH Processor Developer’s Manual

Instruction Set Reference

{ store_to_memory(effective_address)[7:0] = src1[7:0];
if (AC.om == 1)

AC.of = 1;
else

generate_fault(ARITHMETIC.OVERFLOW);
}

else
store_to_memory(effective_address)[7:0] = src1[7:0];

end if;

stos:
if (illegal_write_to_on_chip_RAM_or_MMR)

generate_fault(TYPE.MISMATCH);
else if ((effective_address[0] != 02) && unaligned_fault_enabled)

{ store_to_memory(effective_address)[15:0] = src1[15:0];
generate_fault(OPERATION.UNALIGNED);

}
else

store_to_memory(effective_address)[15:0] = src1[15:0];

stis:
if (illegal_write_to_on_chip_RAM_or_MMR)

generate_fault(TYPE.MISMATCH);
else if ((effective_address[0] != 02) && unaligned_fault_enabled)

{ store_to_memory(effective_address)[15:0] = src1[15:0];
generate_fault(OPERATION.UNALIGNED);

}
else if ((src1[31:16] != 0) && (src1[31:16] != 0xFFFF))

{ store_to_memory(effective_address)[15:0] = src1[15:0];
if (AC.om == 1)
AC.of = 1;

else
generate_fault(ARITHMETIC.OVERFLOW);

}
else

store_to_memory(effective_address)[15:0] = src1[15:0];

stl:
if (illegal_write_to_on_chip_RAM_or_MMR)

generate_fault(TYPE.MISMATCH);
else if (reg_number(src1) % 2 != 0)

generate_fault(OPERATION.INVALID_OPERAND);
else if ((effective_address[2:0] != 0002) && unaligned_fault_enabled)

{ store_to_memory(effective_address)[31:0] = src1;
store_to_memory(effective_address + 4)[31:0] = src1_+_1;
generate_fault (OPERATION.UNALIGNED);

}
else

{ store_to_memory(effective_address)[31:0] = src1;
store_to_memory(effective_address + 4)[31:0] = src1_+_1;

i960® VH Processor Developer’s Manual 6-97

Instruction Set Reference

}

stt:
if (illegal_write_to_on_chip_RAM_or_MMR)

generate_fault(TYPE.MISMATCH);
else if (reg_number(src1) % 4 != 0)

generate_fault(OPERATION.INVALID_OPERAND);
else if ((effective_address[3:0] != 00002) && unaligned_fault_enabled)

{ store_to_memory(effective_address)[31:0] = src1;
store_to_memory(effective_address + 4)[31:0] = src1_+_1;
store_to_memory(effective_address + 8)[31:0] = src1_+_2;
generate_fault (OPERATION.UNALIGNED);

}
else

{ store_to_memory(effective_address)[31:0] = src1;
store_to_memory(effective_address + 4)[31:0] = src1_+_1;
store_to_memory(effective_address + 8)[31:0] = src1_+_2;

}

stq:
if (illegal_write_to_on_chip_RAM_or_MMR)

generate_fault(TYPE.MISMATCH);
else if (reg_number(src1) % 4 != 0)

generate_fault(OPERATION.INVALID_OPERAND);
else if ((effective_address[3:0] != 00002) && unaligned_fault_enabled)

{ store_to_memory(effective_address)[31:0] = src1;
store_to_memory(effective_address + 4)[31:0] = src1_+_1;
store_to_memory(effective_address + 8)[31:0] = src1_+_2;
store_to_memory(effective_address + 12)[31:0] = src1_+_3;
generate_fault (OPERATION.UNALIGNED);

}
else

{ store_to_memory(effective_address)[31:0] = src1;
store_to_memory(effective_address + 4)[31:0] = src1_+_1;
store_to_memory(effective_address + 8)[31:0] = src1_+_2;
store_to_memory(effective_address + 12)[31:0] = src1_+_3;

}

Faults: STANDARD Refer to Section 6.1.6, “Faults” on page 6-4.
ARITHMETIC.OVERFLOW For stib, stis.

Example: st g2, 1254 (g6) # Word beginning at offset
1254 + (g6) = g2.

6-98 i960® VH Processor Developer’s Manual

Instruction Set Reference

Opcode: st 92H MEM
stob 82H MEM
stos 8AH MEM
stib C2H MEM
stis CAH MEM
stl 9AH MEM
stt A2H MEM
stq B2H MEM

See Also: LOAD, MOVE

Notes: illegal_write_to_on_chip_RAM is an implementation-dependent mechanism.
The mapping of register bits to memory(efa) depends on the endianism of the
memory region and is implementation-dependent.

i960® VH Processor Developer’s Manual 6-99

Instruction Set Reference

6.2.63 subc

Mnemonic: subc Subtract Ordinal With Carry

Format: subc src1, src2, dst
reg/lit reg/lit reg

Description: Subtracts src1 from src2, then subtracts the opposite of condition code bit 1
(used here as the carry bit) and stores the result in dst. If the ordinal
subtraction results in a carry, then condition code bit 1 is set to 1, otherwise it
is set to 0.

This instruction can also be used for integer subtraction. Here, if integer
subtraction results in an overflow, then condition code bit 0 is set.

subc does not distinguish between ordinals and integers: it sets condition
code bits 0 and 1 regardless of data type.

Action: dst = (src2 - src1 -1 + AC.cc[1])[31:0];
AC.cc[2:0] = 0002;
if((src2[31] == src1[31]) && (src2[31] != dst[31]))

AC.cc[0] = 1; # Overflow bit.
AC.cc[1] = (src2 - src1 -1 + AC.cc[1])[32]; # Carry out.

Faults: STANDARD Refer to Section 6.1.6, “Faults” on page 6-4.

Example: subc g5, g6, g7
g7 = g6 - g5 - not(condition code bit 1)

Opcode: subc 5B2H REG

See Also: addc, addi, addo, subi, subo

Side Effects: Sets the condition code in the arithmetic controls.

6-100 i960® VH Processor Developer’s Manual

Instruction Set Reference

6.2.64 SUB<cc>

Mnemonic: subono Subtract Ordinal if Unordered
subog Subtract Ordinal if Greater
suboe Subtract Ordinal if Equal
suboge Subtract Ordinal if Greater or Equal
subol Subtract Ordinal if Less
subone Subtract Ordinal if Not Equal
subole Subtract Ordinal if Less or Equal
suboo Subtract Ordinal if Ordered
subino Subtract Integer if Unordered
subig Subtract Integer if Greater
subie Subtract Integer if Equal
subige Subtract Integer if Greater or Equal
subil Subtract Integer if Less
subine Subtract Integer if Not Equal
subile Subtract Integer if Less or Equal
subio Subtract Integer if Ordered

Format: sub* src1, src2, dst
reg/lit reg/lit reg

Description: Subtracts src1 from src2 conditionally based on the condition code bits in the
arithmetic controls.

If for Unordered the condition code is 0, or if for the other cases the logical
AND of the condition code and the mask part of the opcode is not zero, then
src1 is subtracted from src2 and the result stored in the destination

Action: SUBO<cc>:
if ((mask & AC.cc) || (mask == AC.cc))

dst = (src2 - src1)[31:0];

SUBI<cc>:
if ((mask & AC.cc) || (mask == AC.cc))
{

{ true_result = (src2 - src1);
dst = true_result[31:0];

Instruction Mask Condition

subono, subino 0002 Unordered

subog, subig 0012 Greater

suboe, subie 0102 Equal

suboge, subige 0112 Greater or equal

subol, subil 1002 Less

subone, subine 1012 Not equal

subole, subile 1102 Less or equal

suboo, subio 1112 Ordered

i960® VH Processor Developer’s Manual 6-101

Instruction Set Reference

}
if((true_result > (2**31) - 1) || (true_result < -2**31))

Check for overflow
{ if (AC.om == 1)

AC.of = 1;
else

generate_fault (ARITHMETIC.OVERFLOW);
}

}

Faults: STANDARD Refer to Section 6.1.6, “Faults” on page 6-4.
ARITHMETIC.OVERFLOW For the SUBI<cc> class.

Example: # AC.cc = 0102
suboge g0,g1,g2 # g2 = g1 - g0

AC.cc = 0012
subile g0,g1,g2 # g2 not modified

Opcode: subono 782H REG
subog 792H REG
suboe 7A2H REG
suboge 7B2H REG
subol 7C2H REG
subone 7D2H REG
subole 7E2H REG
suboo 7F2H REG
subino 783H REG
subig 793H REG
subie 7A3H REG
subige 7B3H REG
subil 7C3H REG
subine 7D3H REG
subile 7E3H REG
subio 7F3H REG

See Also: subc, subi, subo, SEL<cc>, TEST<cc>

Notes: These core instructions are not implemented on 80960Cx, Kx and Sx proces-
sors.

6-102 i960® VH Processor Developer’s Manual

Instruction Set Reference

6.2.65 subi, subo

Mnemonic: subi Subtract Integer
subo Subtract Ordinal

Format: sub* src1, src2, dst
reg/lit reg/lit reg

Description: Subtracts src1 from src2 and stores the result in dst. The binary results from
these two instructions are identical. The only difference is that subi can signal
an integer overflow.

Action: subo:
dst = (src2 - src1)[31:0];

subi:
true_result = (src2 - src1);
dst = true_result[31:0];
if((true_result > (2**31) - 1) || (true_result < -2**31)) # Check for overflow
{ if(AC.om == 1)

AC.of = 1;
else

generate_fault(ARITHMETIC.OVERFLOW);
}

Faults: STANDARD Refer to Section 6.1.6, “Faults” on page 6-4.
ARITHMETIC.OVERFLOW For subi.

Example: subi g6, g9, g12 # g12 = g9 - g6

Opcode: subi 593H REG
subo 592H REG

See Also: addi, addo, subc, addc

i960® VH Processor Developer’s Manual 6-103

Instruction Set Reference

6.2.66 syncf

Mnemonic: syncf Synchronize Faults

Format: syncf

Description: Waits for all faults to be generated that are associated with any prior
uncompleted instructions.

Action: if(AC.nif == 1)
break;

else
wait_until_all_previous_instructions_in_flow_have_completed();
This also means that all of the faults on these instructions have
been reported.

Faults: STANDARD Refer to Section 6.1.6, “Faults” on page 6-4.

Example: ld xyz, g6
addi r6, r8, r8
syncf
and g6, 0xFFFF, g8
The syncf instruction ensures that any faults
that may occur during the execution of the
ld and addi instructions occur before the
and instruction is executed.

Opcode: syncf 66FH REG

See Also: mark, fmark

6-104 i960® VH Processor Developer’s Manual

Instruction Set Reference

6.2.67 sysctl

Mnemonic: sysctl System Control

Format: sysctl src1, src2, src/dst
reg/lit reg/lit reg

Description: Performs system management and control operations including requesting
software interrupts, invalidating the instruction cache, configuring the
instruction cache, processor reinitialization, modifying memory-mapped
registers, and acquiring breakpoint resource information.

Processor control function specified by the message field of src1 is executed.
The type field of src1 is interpreted depending upon the command. Remaining
src1 bits are reserved. The src2 and src3 operands are also interpreted
depending upon the command.

Figure 6-7. Src1 Operand Interpretation

Table 6-10. sysctl Field Definitions

Message
src1 src2 src/dst

Type Field 1 Field 2 Field 3 Field 4

Request Interrupt 0x0 Vector Number N/U N/U N/U

Invalidate Cache 0x1 N/U N/U N/U N/U

Configure Instruction
Cache 0x2

Cache Mode
Configuration
(Table 6-11)

N/U Cache load
address N/U

 Reinitialize 0x3 N/U N/U Starting IP PRCB Pointer

Modify
Memory-Mapped
Control Register
(MMR)

0x5 N/U
Lower 2 bytes

of MMR
address

Value to write Mask

Breakpoint Resource
Request 0x6 N/U N/U N/U Breakpoint info

(Figure 6-8)

NOTE: Sources and fields that are not used (designated N/U) are ignored.

Table 6-11. Cache Mode Configuration

Mode Field Mode Description 80960VH

0002 Normal cache enabled 4 Kbyte

XX12 Full cache disabled 4 Kbyte

1002 or 1102 Load and lock one way of the
cache 2 Kbyte

8 7 031 16 15

Message TypeField 2 Field 1

i960® VH Processor Developer’s Manual 6-105

Instruction Set Reference

Action: if (PC.em != supervisor)
generate_fault(TYPE.MISMATCH);

order_wrt(previous_operations);
OPtype = (src1 & 0xff00) >> 8;
switch (OPtype) {
 case 0: # Signal Software Interrupt

vector_to_post = 0xff & src1;
priority_to_post = vector_to_post >> 3;
pend_ints_addr = interrupt_table_base + 4 + priority_to_post;
pend_priority = memory_read(interrupt_table_base,atomic_lock);
Priority zero just recans Interrupt Table
if (priority_to_post != 0)
 {pend_ints = memory_read(pend_ints_addr, non-cacheable)
 pend_ints[7 & vector] = 1;
 pend_priority[priority_to_post] = 1;
 memory_write(pend_ints_addr, pend_ints); }
memory_write(interrupt_table_base,pend_priority,atomic_unlock);
Update internal software priority with highest priority interrupt
from newly adjusted Pending Priorities word. The current internal
software priority is always replaced by the new, computed one. (If
there is no bit set in pending_priorities word for the current
internal one, then it is discarded by this action.)
if (pend_priority == 0)
 SW_Int_Priority = 0;
else {msb_set = scan_bit(pend_priority);
 SW_Int_Priority = msb_set; }

Make sure change to internal software priority takes full effect
before next instruction.
order_wrt(subsequent_operations);

break;
case 1: # Global Invalidate Instruction Cache

invalidate_instruction_cache();
unlock_instruction_cache();
break;

case 2: # Configure Instruction-Cache
mode = src1 & 0xff;
if (mode & 1) disable_instruction_cache;
else switch (mode) {

case 0: enable_instruction_cache; break;
case 4,6: # Load & Lock code into I-Cache

Figure 6-8. src/dst Interpretation for Breakpoint Resource Request

Reserved - Set to zero

4 331 8 7

available
instruction
breakpoints

available
data

breakpoints

0

6-106 i960® VH Processor Developer’s Manual

Instruction Set Reference

All contiguous blocks are locked.
Note: block = way on 80960VH.
src2 has starting address of code to lock.
src2 is aligned to a quad word
boundary.
aligned_addr = src2 & 0xfffffff0;
invalidate(I-cache); unlock(I-cache);
for (j = 0; j < number_of_blocks_that_lock; j++)
{way = block_associated_with_block(j);
 start = src2 + j*block_size;
 end = start + block_size;
 for (i = start; i < end; i=i+4)

{ set = set_associated_with(i);
word = word_associated_with(i);
Icache_line[set][way][word] =

 memory[i];
update_tag_n_valid_bits(set,way,word)

 lock_icache(set,way,word);
} } break;

default:
generate_operation_invalid_operand_fault;

} break;
case 3: # Software Re-init

disable(I_cache); invalidate(I_cache);
disable(D_cache); invalidate(D_cache);
Process_PRCB(dst); # dst has ptr to new PRCB
IP = src2;
break;

case 5: # Modify One Memory-Mapped Control Register (MMR)
src1[31:16] has lower 2 bytes of MMR address
src2 has value to write; dst has mask.
After operation, dst has old value of MMR
addr = (0xff00 << 16) | (src1 >> 16);
temp = memory[addr];
memory[addr] = (src2 & dst) | (temp & ~dst);
dst = temp;
break;

case 6: # Breakpoint Resource Request
acquire_available_instr_breakpoints();
dst[3:0] = number_of_available_instr_breakpoints;
acquire_available_data_breakpoints();
dst[7:4] = number_of_available_data_breakpoints;
dst[31:8] = 0;
break;

default: # Reserved, fault occurs
generate_fault(OPERATION.INVALID_OPERAND);
break;

}
order_wrt(subsequent_operations);

Faults: STANDARD Refer to Section 6.1.6, “Faults” on page 6-4.

i960® VH Processor Developer’s Manual 6-107

Instruction Set Reference

Example: ldconst 0x100,r6 # Set up message.
sysctl r6,r7,r8 # Invalidate
I-cache.

r7, r8 are not
used.
ldconst 0x204, g0 # Set up message
type and

cache configu-
ration mode.

Lock half cache.
ldconst 0x20000000,g2 # Starting address
of code.
sysctl g0,g2,g2 # Execute Load and
Lock.

Opcode: sysctl 659H REG

See Also: dcctl, icctl

Notes: This instruction is implemented on 80960VH, Hx, Jx and Cx processors, and
may or may not be implemented on future i960 processors.

6-108 i960® VH Processor Developer’s Manual

Instruction Set Reference

6.2.68 TEST<cc>

Mnemonic: teste Test For Equal
testne Test For Not Equal
testl Test For Less
testle Test For Less Or Equal
testg Test For Greater
testge Test For Greater Or Equal
testo Test For Ordered
testno Test For Not Ordered

Format: test* dst:src1
reg

Description: Stores a true (01H) in dst if the logical AND of the condition code and opcode
mask part is not zero. Otherwise, the instruction stores a false (00H) in dst.
For testno (Unordered), a true is stored if the condition code is 0002,
otherwise a false is stored.

The following table shows the condition-code mask for each instruction. The
mask is in bits 0-2 of the opcode.

Action: For all TEST<cc> except testno:
if((mask & AC.cc) != 0002)

src1 = 1; #true value
else

src1 = 0; #false value

testno:
if(AC.cc == 0002)

src1 = 1; #true value
else

src1 = 0; #false value

Faults: STANDARD Refer to Section 6.1.6, “Faults” on page 6-4.

Example: # Assume AC.cc = 1002
testl g9 # g9 = 0x00000001

Instruction Mask Condition

testno 0002 Unordered

testg 0012 Greater

teste 0102 Equal

testge 0112 Greater or equal

testl 1002 Less

testne 1012 Not equal

testle 1102 Less or equal

testo 1112 Ordered

i960® VH Processor Developer’s Manual 6-109

Instruction Set Reference

Opcode: teste 22H COBR
testne 25H COBR
testl 24H COBR
testle 26H COBR
testg 21H COBR
testge 23H COBR
testo 27H COBR
testno 20H COBR

See Also: cmpi, cmpdeci, cmpinci

6-110 i960® VH Processor Developer’s Manual

Instruction Set Reference

6.2.69 xnor, xor

Mnemonic: xnor Exclusive Nor
xor Exclusive Or

Format: xnor src1, src2, dst
reg/lit reg/lit reg

xor src1, src2, dst
reg/lit reg/lit reg

Description: Performs a bitwise XNOR (xnor instruction) or XOR (xor instruction)
operation on the src2 and src1 values and stores the result in dst.

Action: xnor:
dst = ~(src2 | src1) | (src2 & src1);

xor:
dst = (src2 | src1) & ~(src2 & src1);

Faults: STANDARD Refer to Section 6.1.6, “Faults” on page 6-4.

Example: xnor r3, r9, r12 # r12 = r9 XNOR r3
xor g1, g7, g4 # g4 = g7 XOR g1

Opcode: xnor 589H REG
xor 586H REG

See Also: and, andnot, nand, nor, not, notand, notor, or, ornot

i960® VH Processor Developer’s Manual 7-1

Procedure Calls 7

This chapter describes mechanisms for making procedure calls, which include branch-and-link
instructions, built-in call and return mechanism, call instructions (call, callx, calls), return
instruction (ret) and call actions caused by interrupts and faults.

The i960® processor architecture supports two methods for making procedure calls:

• A RISC-style branch-and-link: a fast call best suited for calling procedures that do not call
other procedures.

• An integrated call and return mechanism: a more versatile method for making procedure calls,
providing a highly efficient means for managing a large number of registers and the program
stack.

On a branch-and-link (bal, balx), the processor branches and saves a return IP in a register. The
called procedure uses the same set of registers and the same stack as the calling procedure. On a
call (call, callx, calls) or when an interrupt or fault occurs, the processor also branches to a target
instruction and saves a return IP. Additionally, the processor saves the local registers and allocates
a new set of local registers and a new stack for the called procedure. The saved context is restored
when the return instruction (ret) executes.

In many RISC architectures, a branch-and-link instruction is used as the base instruction for coding
a procedure call. The user program then handles register and stack management for the call. Since
the i960 architecture provides a fully integrated call and return mechanism, coding calls with
branch-and-link are not necessary. Additionally, the integrated call is much faster than typical
RISC-coded calls.

The branch-and-link instruction in the i960 processor family, therefore, is used primarily for
calling leaf procedures. Leaf procedures call no other procedures; they reside at the “leaves” of the
call tree.

In the i960 architecture the integrated call and return mechanism is used in two ways:

• explicit calls to procedures in a user’s program

• implicit calls to interrupt and fault handlers

The remainder of this chapter explains the generalized call mechanism used for explicit and
implicit calls and call and return instructions.

The processor performs two call actions:

local When a local call is made, execution mode remains unchanged and the stack
frame for the called procedure is placed on the local stack. The local stack refers
to the stack of the calling procedure.

supervisor When a supervisor call is made from user mode, execution mode is switched to
supervisor and the stack frame for the called procedure is placed on the
supervisor stack.

When a supervisor call is issued from supervisor mode, the call degenerates into
a local call (i.e., no mode nor stack switch).

7-2 i960® VH Processor Developer’s Manual

Procedure Calls

Explicit procedure calls can be made using several instructions. Local call instructions call and
callx perform a local call action. With call and callx, the called procedure’s IP is included as an
operand in the instruction.

A system call is made with calls. This instruction is similar to call and callx, except that the
processor obtains the called procedure’s IP from the system procedure table. A system call, when
executed, is directed to perform either the local or supervisor call action. These calls are referred to
as system-local and system-supervisor calls, respectively. A system-supervisor call is also referred
to as a supervisor call.

7.1 Call and Return Mechanism

At any point in a program, the i960 processor has access to the global registers, a local register set
and the procedure stack. A subset of the stack allocated to the procedure is called the stack frame.

• When a call executes, a new stack frame is allocated for the called procedure. The processor
also saves the current local register set, freeing these registers for use by the newly called
procedure. In this way, every procedure has a unique stack and a unique set of local registers.

• When a return executes, the current local register set and current stack frame are deallocated.
The previous local register set and previous stack frame are restored.

7.1.1 Local Registers and the Procedure Stack

The processor automatically allocates a set of 16 local registers for each procedure. Since local
registers are on-chip, they provide fast access storage for local variables. Of the 16 local registers,
13 are available for general use; r0, r1 and r2 are reserved for linkage information to tie procedures
together.

The processor does not always clear or initialize the set of local registers assigned to a new
procedure. Therefore, initial register contents are unpredictable. Also, because the processor does
not initialize the local register save area in the newly created stack frame for the procedure, its
contents are equally unpredictable.

The procedure stack can be located anywhere in the address space and grows from low addresses to
high addresses. It consists of contiguous frames, one frame for each active procedure. Local
registers for a procedure are assigned a save area in each stack frame (Figure 7-1). The procedure
stack, available to the user, begins after this save area.

To increase procedure call speed, the architecture allows an implementation to cache the saved
local register sets on-chip. Thus, when a procedure call is made, the contents of the current set of
local registers often do not have to be written out to the save area in the stack frame in memory.
Refer to Section 7.1.4, “Caching Local Register Sets” on page 7-6 and Section 7.1.4.1, “Reserving
Local Register Sets for High Priority Interrupts” on page 7-7 for more about local registers and
procedure stack interrelations.

i960® VH Processor Developer’s Manual 7-3

Procedure Calls

7.1.2 Local Register and Stack Management

Global register g15 (FP) and local registers r0 (PFP), r1 (SP) and r2 (RIP) contain information to
link procedures together and link local registers to the procedure stack (Figure 7-1). The following
subsections describe this linkage information.

7.1.2.1 Frame Pointer

The frame pointer is the current stack frame’s first byte address. It is stored in global register g15,
the frame pointer (FP) register. The FP register is always reserved for the frame pointer; do not use
g15 for general storage.

Stack frame alignment is defined for each implementation of the i960 processor family, according
to an SALIGN parameter. In the i960® processor, stacks are aligned on 16-byte boundaries
(Figure 7-1). When the processor needs to create a new frame on a procedure call, it adds a padding
area to the stack so that the new frame starts on a 16-byte boundary.

Figure 7-1. Procedure Stack Structure and Local Registers

register
save area

Procedure Stack

Previous Frame Pointer (PFP)

Stack Pointer (SP)

Return Instruction Pointer (RIP)

user allocated stack

unused stack

stack growth
(toward higher addresses)

padding area

user allocated stack

Current Register Set

Previous Frame Pointer (PFP)

Stack Pointer (SP)

reserved for RIP

...

Frame Pointer (FP)

Previous
Stack

Frame

Current
Stack
Frame...

.

..

.

..

g0

g15

r0

r1

r2

r15

r0

r1

r2

r15

7-4 i960® VH Processor Developer’s Manual

Procedure Calls

7.1.2.2 Stack Pointer

The stack pointer is the byte-aligned address of the stack frame’s next unused byte. The stack
pointer value is stored in local register r1, the stack pointer (SP) register. The procedure stack
grows upward (i.e., toward higher addresses). When a stack frame is created, the processor
automatically adds 64 to the frame pointer value and stores the result in the SP register. This action
creates the register save area in the stack frame for the local registers.

The program must modify the SP register value when data is stored or removed from the stack. The
i960 architecture does not provide an explicit push or pop instruction to perform this action. This is
typically done by adding the size of all pushes to the stack in one operation.

7.1.2.3 Considerations When Pushing Data onto the Stack

Care should be taken in writing to stack in the presence of unforeseen faults and interrupts. In the
general case, to ensure that the data written to the stack is not corrupted by a fault or interrupt
record, the SP should be incremented first to allocate the space, and then the data should be written
to the allocated space:

movsp,r4

addo24,sp,sp

st data,(r4)

...

st data,20(r4)

7.1.2.4 Considerations When Popping Data off the Stack

For reasons similar to those discussed in the previous section, care should be taken in reading the
stack in the presence of unforeseen faults and interrupts. In the general case, to ensure that data
about to be popped off the stack is not corrupted by a fault or interrupt record, the data should be
read first and then the sp should be decremented:

subo24,sp,r4

ld 20(r4),rn

...

ld (r4),rn

movr4,sp

7.1.2.5 Previous Frame Pointer

The previous frame pointer is the previous stack frame’s first byte address. This address’ upper
28 bits are stored in local register r0, the previous frame pointer (PFP) register. The four
least-significant bits of the PFP are used to store the return type field. See Figure 7-5 and Table 7-2
for more information on the PFP and the return-type field.

7.1.2.6 Return Type Field

PFP register bits 0 through 3 contain return type information for the calling procedure. When a
procedure call is made — either explicit or implicit — the processor records the call type in the
return type field. The processor then uses this information to select the proper return mechanism
when returning to the calling procedure. The use of this information is described in Section 7.8,
“Returns” on page 7-17.

i960® VH Processor Developer’s Manual 7-5

Procedure Calls

7.1.2.7 Return Instruction Pointer

The actual RIP register (r2) is reserved by the processor to support the call and return mechanism
and must not be used by software; the actual value of RIP is unpredictable at all times. For
example, an implicit procedure call (fault or interrupt) can occur at any time and modify the RIP.
An OPERATION.INVALID_OPERAND fault is generated when attempting to write the RIP.

The image of the RIP register in the stack frame is used by the processor to determine that frame’s
return instruction address. When a call is made, the processor saves the address of the instruction
after the call in the image of the RIP register in the calling frame.

7.1.3 Call and Return Action

To clarify how procedures are linked and how the local registers and stack are managed, the
following sections describe a general call and return operation and the operations performed with
the FP, SP, PFP and RIP registers.

The events for call and return operations are given in a logical order of operation. The 80960VH
can execute independent operations in parallel; therefore, many of these events execute
simultaneously. For example, to improve performance, the processor often begins prefetching of
the target instruction for the call or return before the operation is complete.

7.1.3.1 Call Operation

When a call, calls or callx instruction is executed or an implicit call is triggered:

1. The processor stores the instruction pointer for the instruction following the call in the current
stack’s RIP register (r2).

2. The current local registers — including the PFP, SP and RIP registers — are saved, freeing
these for use by the called procedure. The local registers are saved in the on-chip local register
cache if space is available.

3. The frame pointer (g15) for the calling procedure is stored in the current stack’s PFP register
(r0). The return type field in the PFP register is set according to the call type performed. See
Section 7.8, “Returns” on page 7-17.

4. For a local or system-local call, a new stack frame is allocated by using the old stack pointer
value saved in step 2. This value is first rounded to the next 16-byte boundary to create a new
frame pointer, then stored in the FP register. Next, 64 bytes are added to create the new
frame’s register save area. This value is stored in the SP register.

For an interrupt call from user mode, the current interrupt stack pointer value is used instead of
the value saved in step 2.

For a system-supervisor call from user mode, the current Supervisor Stack Pointer (SSP) value
is used instead of the value saved in step 2.

5. The instruction pointer is loaded with the address of the first instruction in the called
procedure. The processor gets the new instruction pointer from the call, the system procedure
table, the interrupt table or the fault table, depending on the type of call executed.

Upon completion of these steps, the processor begins executing the called procedure. Sometime
before a return or nested call, the local register set is bound to the allocated stack frame.

7-6 i960® VH Processor Developer’s Manual

Procedure Calls

7.1.3.2 Return Operation

A return from any call type — explicit or implicit — is always initiated with a return (ret)
instruction. On a return, the processor performs these operations:

1. The current stack frame and local registers are deallocated by loading the FP register with the
value of the PFP register.

2. The local registers for the return target procedure are retrieved. The registers are usually read
from the local register cache; however, in some cases, these registers have been flushed from
register cache to memory and must be read directly from the save area in the stack frame.

3. The processor sets the instruction pointer to the value of the RIP register.

Upon completion of these steps, the processor executes the instruction to which it returns. The
frames created before the ret instruction was executed is overwritten by later implicit or explicit
call operations.

7.1.4 Caching Local Register Sets

Actual implementations of the i960 architecture may cache some number of local register sets
within the processor to improve performance. Local registers are typically saved and restored from
the local register cache when calls and returns are executed. Other overhead associated with a call
or return is performed in parallel with this data movement.

When the number of nested procedures exceeds local register cache size, local register sets must at
times be saved to (and restored from) their associated save areas in the procedure stack. Because
these operations require access to external memory, this local cache miss affects call and return
performance.

When a call is made and no frames are available in the register cache, a register set in the cache
must be saved to external memory to make room for the current set of local registers in the cache.
See Section 4.2, “Local Register Cache” on page 4-2. This action is referred to as a frame spill. The
oldest set of local registers stored in the cache is spilled to the associated local register save area in
the procedure stack. Figure 7-2 illustrates a call operation with and without a frame spill.

Similarly, when a return is made and the local register set for the target procedure is not available
in the cache, these local registers must be retrieved from the procedure stack in memory. This
operation is referred to as a frame fill. Figure 7-3 illustrates return operations with and without
frame fills.

The flushreg instruction, described in Section 6.2.30, “flushreg” on page 6-50, writes all local
register sets (except the current one) to their associated stack frames in memory. The register cache
is then invalidated, meaning that all flushed register sets are restored from their save areas in
memory.

For most programs, the existence of the multiple local register sets and their saving/restoring in the
stack frames should be transparent. However, there are some special cases:

• A store to the register save area in memory does not necessarily update a local register set,
unless user software executes flushreg first.

• Reading from the register save area in memory does not necessarily return the current value of
a local register set, unless user software executes flushreg first.

• There is no mechanism, including flushreg, to access the current local register set with a read
or write to memory.

i960® VH Processor Developer’s Manual 7-7

Procedure Calls

• flushreg must be executed sometime before returning from the current frame if the current
procedure modifies the PFP in register r0, or else the behavior of the ret instruction is not
predictable.

• The values of the local registers r2 to r15 in a new frame are undefined.

flushreg is commonly used in debuggers or fault handlers to gain access to all saved local
registers. In this way, call history may be traced back through nested procedures.

7.1.4.1 Reserving Local Register Sets for High Priority Interrupts

To decrease interrupt latency for high priority interrupts, software can limit the number of frames
available to all remaining code. This includes code that is either in the executing state
(non-interrupted) or code that is in the interrupted state but has a process priority less than 28. For
the purposes of discussion here, this remaining code is referred to as non-critical code. Specifying
a limit for non-critical code ensures that some number of free frames are available to high-priority
interrupt service routines. Software can specify the limit for non-critical code by writing bits 10
through 8 of the register cache configuration word in the PRCB (Table 12-8 “Process Control
Block Configuration Words” on page 12-17). The value indicates how many frames within the
register cache may be used by non-critical code before a frame needs to be flushed to external
memory. The programmed limit is used only when a frame is pushed, which occurs only for an
implicit or explicit call.

Allowed values of the programmed limit range from 0 to 7. Setting the value to 0 reserves no
frames for high-priority interrupts. Setting the value to 7 causes the register cache to become
disabled for non-critical code. See Section 12.4.2, “Process Control Block – PRCB” on
page 12-15.

7-8 i960® VH Processor Developer’s Manual

Procedure Calls

Figure 7-2. Frame Spill

Local Register Cache

Current Local
Register Set

Procedure Stack
(0 = Main, successive

numbers indicate nested
procedure level)

user
stack
space

reserved
for local
register set n

local register
set n stored
on procedure stack

Spill

call with no frame spill call with frame spill

1

0

3

2

1

Empty

4

3

2

1

4

3

2

5

1

0

1

0

n

2

3

4

5

6

8

6

5

4

3

2

3

4

5

6

7

8

n

Frame

(with no sets reserved for
high priority interrupts)

7 8 9

5

6

7

4

5

6

6

7

8

2

11

2

3

2

7 7

9

i960® VH Processor Developer’s Manual 7-9

Procedure Calls

Figure 7-3. Frame Fill

Frame
Fill

return with no frame fill return with frame fill

4

3

3 2

1

0

1

0

1

0

3

2 2

Procedure Stack
(0 = Main, successive

numbers indicate nested

procedure level)

Local Register Cache
(With no sets reserved

Current Local
Register Set

user
stack
space

reserved
for local
register set n

local register
set n stored
on procedure stack

n n

for high priority interrupts)
Empty

Empty

Empty

Empty

Empty

Empty

Empty

Empty

Empty

Empty

Empty

Empty

Empty

Empty

Empty

Empty

Empty

Empty

Empty

Empty

Empty

Empty

Empty

4

3

2

7-10 i960® VH Processor Developer’s Manual

Procedure Calls

7.1.5 Mapping Local Registers to the Procedure Stack

Each local register set is mapped to a register save area of its respective frame in the procedure
stack (Figure 7-1). Saved local register sets are frequently cached on-chip rather than saved to
memory. This is not a write-through cache. Local register set contents are not saved automatically
to the save area in memory when the register set is cached. This would cause a significant
performance loss for call operations.

Also, no automatic update policy is implemented for the register cache. If the register save area in
memory for a cached register set is modified, then there is no guarantee that the modification is
reflected when the register set is restored. For a frame spill, the set must be flushed to memory
prior to the modification for the modification to be valid.

The flushreg instruction causes the contents of all cached local register sets to be written (flushed)
to their associated stack frames in memory. The register cache is then invalidated, meaning that all
flushed register sets are restored from their save areas in memory. The current set of local registers
is not written to memory. flushreg is commonly used in debuggers or fault handlers to gain access
to all saved local registers. In this way, call history may be traced back through nested procedures.
flushreg is also used when implementing task switches in multitasking kernels. The procedure
stack is changed as part of the task switch. To change the procedure stack, flushreg is executed to
update the current procedure stack and invalidate all entries in the local register cache. Next, the
procedure stack is changed by directly modifying the FP and SP registers and executing a call
operation. After flushreg executes, the procedure stack may also be changed by modifying the
previous frame in memory and executing a return operation.

When a set of local registers is assigned to a new procedure, the processor may or may not clear or
initialize these registers. Therefore, initial register contents are unpredictable. Also, the processor
does not initialize the local register save area in the newly created stack frame for the procedure; its
contents are equally unpredictable.

7.2 Modifying the PFP Register

The FP must not be directly modified by user software because this may corrupt the local registers.
Instead, implement context switches by modifying the PFP.

Modification of the PFP is typically for context switches; as part of the switch, the active procedure
changes the pointer to the frame that it returns to (previous frame pointer — PFP). Great care
should be taken in modifying the PFP. In the general case, a flushreg must be issued before and
after modifying the PFP when the local register cache is enabled (Example 7-1). This requirement
ensures the correct operation of a context switch on all i960 processors in all situations.

Example 7-1. flushreg

Do a context switch.
Assume PFP = 0x5000.
flushreg # Flush Frames to correct address.

lda 0x8000,pfp
flushreg # Ensure that "ret" gets updated PFP.
ret

i960® VH Processor Developer’s Manual 7-11

Procedure Calls

The flushreg before the modification is necessary to ensure that the frame of the previous context
(mapped to 0x5000 in the example) is “spilled” to the proper external memory address and
removed from the local register cache. If the flushreg before the modification were omitted, then a
flushreg (or implicit frame spill due to an interrupt) after the modification of PFP would cause the
frame of the previous context to be written to the wrong location in external memory.

The flushreg after the modification ensures that outstanding results are completely written to the
PFP before a subsequent ret instruction can be executed. Recall that the ret instruction uses the
low-order 4 bits of the PFP to select which ret function to perform. Requiring the flushreg after the
PFP modification allows an i960 processor implementation to implement a simple mechanism that
quickly selects the ret function at the time the ret instruction is issued and provides a faster return
operation.

Note the flushreg after the modification executes very quickly because the local register cache has
already been flushed by the previous flushreg; only synchronization of the PFP is performed. i960
processor implementations may provide other mechanisms to ensure PFP synchronization in
addition to flushreg, but a flushreg after a PFP modification will work on all i960 processors.

7.3 Parameter Passing

Parameters are passed between procedures in two ways:

value Parameters are passed directly to the calling procedure as part of the call and
return mechanism. This is the fastest method of passing parameters.

reference Parameters are stored in an argument list in memory and a pointer to the
argument list is passed in a global register.

When passing parameters by value, the calling procedure stores the parameters to be passed in
global registers. Since the calling procedure and the called procedure share the global registers, the
called procedure has direct access to the parameters after the call.

When a procedure needs to pass more parameters than fits in the global registers, they can be
passed by reference. Here, parameters are placed in an argument list and a pointer to the argument
list is placed in a global register.

The argument list can be stored anywhere in memory; however, a convenient place to store an
argument list is in the stack for a calling procedure. Space for the argument list is created by
incrementing the SP register value. If the argument list is stored in the current stack, then the
argument list is automatically deallocated when no longer needed.

A procedure receives parameters from — and returns values to — other calling procedures. To do
this successfully and consistently, all procedures must agree on the use of the global registers.

Parameter registers pass values into a function. Up to 12 parameters can be passed by value using
the global registers. If the number of parameters exceeds 12, then additional parameters are passed
using the calling procedure’s stack; a pointer to the argument list is passed in a pre-designated
register. Similarly, several registers are set aside for return arguments and a return argument block
pointer is defined to point to additional parameters. If the number of return arguments exceeds the
available number of return argument registers, then the calling procedure passes a pointer to an
argument list on its stack where the remaining return values are placed. Example 7-2 illustrates
parameter passing by value and by reference.

7-12 i960® VH Processor Developer’s Manual

Procedure Calls

Local registers are automatically saved when a call is made. Because of the local register cache,
they are saved quickly and with no external bus traffic. The efficiency of the local register
mechanism plays an important role in two cases when calls are made:

1. When a procedure is called which contains other calls, global parameter registers should be
moved to working local registers at the beginning of the procedure. In this way, parameter
registers are freed and nested calls are easily managed. The register move instruction
necessary to perform this action is very fast; the working parameters — now in local registers
— are saved efficiently when nested calls are made.

2. When other procedures are nested within an interrupt or fault procedure, the procedure must
preserve all normally non-preserved parameter registers, such as the global registers. This is
necessary because the interrupt or fault occurs at any point in the user’s program and a return
from an interrupt or fault must restore the exact processor state. The interrupt or fault
procedure can move non-preserved global registers to local registers before the nested call.

7.4 Local Calls

A local call does not cause a stack switch. A local call can be made in two ways:

• with the call and callx instructions; or

• with a system-local call as described in Section 7.5, “System Calls” on page 7-13.

call specifies the address of the called procedures as the IP plus a signed, 24-bit displacement
(i.e., -223 to 223 - 4). callx allows any of the addressing modes to be used to specify the procedure
address. The IP-with-displacement addressing mode allows full 32-bit IP-relative addressing.

Example 7-2. Parameter Passing Code Example

Example of parameter passing . . .
C-source:int a,b[10];
a = proc1(a,1,’x’,&b[0]);
assembles to ...

mov r3,g0# value of a
ldconst1,g1# value of 1
ldconst120,g2# value of “x”
lda 0x40(fp),g3# reference to b[10]
call _proc1
mov g0,r3 # save return value in “a”

.

.
_proc1:

movq g0,r4 # save parameters
.
. # other instructions in procedure

. # and nested calls
mov r3,g0 # load return parameter
ret

i960® VH Processor Developer’s Manual 7-13

Procedure Calls

When a local call is made with a call or callx, the processor performs the same operation as
described in Section 7.1.3.1, “Call Operation” on page 7-5. The target IP for the call is derived
from the instruction’s operands and the new stack frame is allocated on the current stack.

7.5 System Calls

A system call is a call made via the system procedure table. It can be used to make a system-local
call — similar to a local call made with call and callx in the sense that there is no stack nor mode
switch — or a system supervisor call. A system call is initiated with calls, which requires a
procedure number operand. The procedure number provides an index into the system procedure
table, where the processor finds IPs for specific procedures.

Using an i960 processor language assembler, a system procedure is directly declared using the
.sysproc directive. At link time, the optimized call directive, callj, is replaced with a calls when a
system procedure target is specified. (Refer to current i960 processor assembler documentation for
a description of the .sysproc and callj directives.)

The system call mechanism offers two benefits. First, it supports application software portability.
System calls are commonly used to call kernel services. By calling these services with a procedure
number rather than a specific IP, application software does not need to be changed each time the
implementation of the kernel services is modified. Only the entries in the system procedure table
must be changed. Second, the ability to switch to a different execution mode and stack with a
system supervisor call allows kernel procedures and data to be insulated from applications code.
This benefit is further described in Section 3.7, “User-Supervisor Protection Model” on page 3-17.

7.5.1 System Procedure Table

The system procedure table is a data structure for storing IPs to system procedures. These can be
procedures which software can access through (1) a system call or (2) the fault handling
mechanism. Using the system procedure table to store IPs for fault handling is described in
Section 9.1, “Fault Handling Overview” on page 9-1.

Figure 7-4 shows the system procedure table structure. It is 1088 bytes in length and can have up to
260 procedure entries. At initialization, the processor caches a pointer to the system procedure
table. This pointer is located in the PRCB. The following subsections describe this table’s fields.

7-14 i960® VH Processor Developer’s Manual

Procedure Calls

7.5.1.1 Procedure Entries

A procedure entry in the system procedure table specifies a procedure’s location and type. Each
entry is one word in length and consists of an address (IP) field and a type field. The address field
gives the address of the first instruction of the target procedure. Since all instructions are word
aligned, only the entry’s 30 most significant bits are used for the address. The entry’s two
least-significant bits specify entry type. The procedure entry type field indicates call type:
system-local call or system-supervisor call (Table 7-1). On a system call, the processor performs
different actions depending on the type of call selected.

Figure 7-4. System Procedure Table

Reserved
(Initialize to 0)

000H

008H

00CH

010H

02CH

034H

030H

038H

03CH

438H

43CH

Entry Type:
00 - Local
10-Supervisor

Trace
Control
Bit

031

Procedure Entry

Tsupervisor stack pointer base

procedure entry 2

procedure entry 1

procedure entry 0

procedure entry 259

.

.

.

Preserved

address

031 12

i960® VH Processor Developer’s Manual 7-15

Procedure Calls

7.5.1.2 Supervisor Stack Pointer

When a system-supervisor call is made, the processor switches to a new stack called the supervisor
stack, if it is not already in supervisor mode. The processor gets a pointer to this stack from the
supervisor stack pointer field in the system procedure table (Figure 7-4) during the reset
initialization sequence and caches the pointer internally. Only the 30 most significant bits of the
supervisor stack pointer are given. The processor aligns this value to the next 16-byte boundary to
determine the first byte of the new stack frame.

7.5.1.3 Trace Control Bit

The trace control bit (byte 12, bit 0) specifies the new value of the trace enable bit in the PC register
(PC.te) when a system-supervisor call causes a switch from user mode to supervisor mode. Setting
this bit to 1 enables tracing in the supervisor mode; setting it to 0 disables tracing. The use of this
bit is described in Section 10.1.2, “PC Trace Enable Bit and Trace-Fault-Pending Flag” on
page 10-2.

7.5.2 System Call to a Local Procedure

When a calls instruction references an entry in the system procedure table with an entry type of 00,
the processor executes a system-local call to the selected procedure. The action that the processor
performs is the same as described in Section 7.1.3.1, “Call Operation” on page 7-5. The call’s
target IP is taken from the system procedure table and the new stack frame is allocated on the
current stack, and the processor does not switch to supervisor mode. The calls algorithm is
described in Section 6.2.14, “calls” on page 6-24.

7.5.3 System Call to a Supervisor Procedure

When a calls instruction references an entry in the system procedure table with an entry type of
102, the processor executes a system-supervisor call to the selected procedure. The call’s target IP
is taken from the system procedure table.

The processor performs the same action as described in Section 7.1.3.1, “Call Operation” on
page 7-5, with the following exceptions:

• If the processor is in user mode, then it switches to supervisor mode.

• If a mode switch occurs, then SP is read from the Supervisor Stack Pointer (SSP) base. A new
frame for the called procedure is placed at the location pointed to after alignment of SP.

• If no mode switch occurs, then the new frame is allocated on the current stack.

Table 7-1. Encodings of Entry Type Field in System Procedure Table

Encoding Call Type

00 System-Local Call

01 Reserved1

10 System-Supervisor Call

11 Reserved1

1. Calls with reserved entry types have unpredictable behavior.

7-16 i960® VH Processor Developer’s Manual

Procedure Calls

• If a mode switch occurs, then the state of the trace enable bit in the PC register is saved in the
return type field in the PFP register. The trace enable bit is then loaded from the trace control
bit in the system procedure table.

• If no mode switch occurs, then the value 0002 (calls instruction) or 0012 (fault call) is saved in
the return type field of the pfp register.

When the processor switches to supervisor mode, it remains in that mode and creates new frames
on the supervisor stack until a return is performed from the procedure that caused the original
switch to supervisor mode. While in supervisor mode, either the local call instructions (call and
callx) or calls can be used to call procedures.

The user-supervisor protection model and its relationship to the supervisor call are described in
Section 3.7, “User-Supervisor Protection Model” on page 3-17.

7.6 User and Supervisor Stacks

When using the user-supervisor protection mechanism, the processor maintains separate stacks in
the address space. One of these stacks — the user stack — is for procedures executed in user mode;
the other stack — the supervisor stack — is for procedures executed in supervisor mode.

The user and supervisor stacks are identical in structure (Figure 7-1). The base stack pointer for the
supervisor stack is automatically read from the system procedure table and cached internally
during initialization. Each time a user-to-supervisor mode switch occurs, the cached supervisor
stack pointer base is used for the starting point of the new supervisor stack. The base stack pointer
for the user stack is usually created in the initialization code. See Section 12.2, “i960® VH
Processor Initialization” on page 12-2. The base stack pointers must be aligned to a 16-byte
boundary; otherwise, the first frame pointer on the interrupt stack is rounded up to the previous
16-byte boundary.

7.7 Interrupt and Fault Calls

The architecture defines two types of implicit calls that make use of the call and return mechanism:
interrupt-handling procedure calls and fault-handling procedure calls. A call to an interrupt
procedure is similar to a system-supervisor call. Here, the processor obtains pointers to the
interrupt procedures through the interrupt table. The processor always switches to supervisor mode
on an interrupt procedure call.

A call to a fault procedure is similar to a system call. Fault procedure calls can be local calls or
supervisor calls. The processor obtains pointers to fault procedures through the fault table and
(optionally) through the system procedure table.

When a fault call or interrupt call is made, a fault record or interrupt record is placed in the newly
generated stack frame for the call. These records hold the machine state and information to identify
the fault or interrupt. When a return from an interrupt or fault is executed, machine state is restored
from these records. See Chapter 8, “Interrupts” and Chapter 9, “Faults” for more information on
the structure of the fault and interrupt records.

i960® VH Processor Developer’s Manual 7-17

Procedure Calls

7.8 Returns

The return (ret) instruction provides a generalized return mechanism that can be used to return
from any procedure that was entered by call, calls, callx, an interrupt call or a fault call. When ret
executes, the processor uses the information from the return-type field in the PFP register
(Figure 7-5) to determine the type of return action to take.

return-type field indicates the type of call which was made. Table 7-2 shows the return-type field
encoding for the various calls: local, supervisor, interrupt and fault.

trace-on-return flag (PFP.rt0 or bit 0 of the return-type field) stores the trace enable bit value when
an explicit system-supervisor call is made from user mode. When the call is made, the PC register
trace enable bit is saved as the trace-on-return flag and then replaced by the trace controls bit in the
system procedure table. On a return, the trace enable bit’s original value is restored. This
mechanism allows instruction tracing to be turned on or off when a supervisor mode switch occurs.
See Section 10.5.2.1, “Tracing on Explicit Call” on page 10-11.

prereturn-trace flag (PFP.p) is used in conjunction with call-trace and prereturn-trace modes. If
call-trace mode is enabled when a call is made, then the processor sets the prereturn-trace flag;
otherwise it clears the flag. If this flag is set and prereturn-trace mode is enabled, then a prereturn
trace event is generated on a return before any actions associated with the return operation are
performed. See Section 10.2, “Trace Modes” on page 10-3 for a discussion of interaction between
call-trace and prereturn-trace modes with the prereturn-trace flag.

Figure 7-5. Previous Frame Pointer Register – PFP

28 24 20 16 12 8 4 031

Return Status

a
4 p

r
t
2

r
t
1

r
t
0

Return-Type Field - PFP.rt

Pre-Return-Trace Flag - PFP.p

Previous Frame Pointer
Address-PFP.a

a
3
1

Table 7-2. Encoding of Return Status Field (Sheet 1 of 2)

Return Status
Field Call Type Return Action

000
Local call
(system-local call or system-supervisor
call made from supervisor mode)

Local return
(return to local stack; no mode switch)

001 Fault call Fault return

01t System-supervisor from user mode

Supervisor return
(return to user stack, mode switch to user
mode, trace enable bit is replaced with the
t1 bit stored in the PFP register on the call)

100 reserved 2

101 reserved2

7-18 i960® VH Processor Developer’s Manual

Procedure Calls

7.9 Branch-and-Link

A branch-and-link is executed using either the branch-and-link instruction (bal) or
branch-and-link-extended instruction (balx). When either instruction executes, the processor
branches to the first instruction of the called procedure (the target instruction), while saving a
return IP for the calling procedure in a register. The called procedure uses the same set of local
registers and stack frame as the calling procedure:

• For bal, the return IP is automatically saved in global register g14

• For balx, the return IP instruction is saved in a register specified by one of the instruction’s
operands

A return from a branch-and-link is generally carried out with a bx (branch extended) instruction,
where the branch target is the address saved with the branch-and-link instruction. The
branch-and-link method of making procedure calls is recommended for calls to leaf procedures.
Leaf procedures typically call no other procedures. Branch-and-link is the fastest way to make a
call, providing the calling procedure does not require its own registers or stack frame.

110 reserved2

111 Interrupt call Interrupt return

NOTES:
1. “t” denotes the trace-on-return flag; used only for system supervisor calls which cause a user-to-supervisor mode switch.
2. This return type results in unpredictable behavior.

Table 7-2. Encoding of Return Status Field (Sheet 2 of 2)

Return Status
Field Call Type Return Action

i960® VH Processor Developer’s Manual 8-1

Interrupts 8

This chapter describes the i960® core processor architecture interrupt mechanism, the i960® VH
processor interrupt controller, peripheral interrupts and secondary PCI interrupt routing. Key topics
include the 80960VH’s facilities for requesting and posting interrupts, the programmer’s interface
to the on-chip interrupt controller, interrupt implementation, interrupt latency and how to optimize
interrupt performance.

8.1 Overview

An interrupt is an event that causes a temporary break in program execution so the processor can
handle another task. Interrupts commonly request I/O services or synchronize the processor with
some external hardware activity. For interrupt handler portability across the i960 processor family,
the architecture defines a consistent interrupt state and interrupt-priority-handling mechanism. To
manage and prioritize interrupt requests in parallel with processor execution, the 80960VH
provides an on-chip programmable interrupt controller.

When the processor is redirected to service an interrupt, it uses a vector number that accompanies
the interrupt request to locate the vector entry in the interrupt table. From that entry, it gets an
address to the first instruction of the selected interrupt procedure. The processor then makes an
implicit call to that procedure.

When the interrupt call is made, the processor uses a dedicated interrupt stack. The processor
creates a new frame for the interrupt on this stack and a new set of local registers is allocated to the
interrupt procedure. The interrupted program’s current state is also saved.

Upon return from the interrupt procedure, the processor restores the interrupted program’s state,
switches back to the stack that the processor was using prior to the interrupt and resumes program
execution.

Since interrupts are handled based on priority, requested interrupts are often saved for later service
rather than handled immediately. The mechanism for saving the interrupt is referred to as interrupt
posting. Interrupt posting is described in Section 8.1.6, “Posting Interrupts” on page 8-6.

The i960 core architecture defines two data structures to support interrupt processing: the interrupt
table (see Figure 8-1) and interrupt stack. The interrupt table contains 248 vectors for interrupt
handling procedures (eight of which are reserved) and an area for posting software requested
interrupts. The interrupt stack prevents interrupt handling procedures from using the stack in use by
the application program. It also locates the interrupt stack in a different area of memory than the
user and supervisor stack (for example, fast SRAM).

8-2 i960® VH Processor Developer’s Manual

Interrupts

Requests for interrupt service come from many sources and are prioritized so that instruction
execution is redirected only when an interrupt request is of higher priority than that of the
executing task. On the 80960VH, interrupt requests may originate from external hardware sources,
internal peripherals or software. The 80960VH contains a number of integrated peripherals which
may generate interrupts, including:

The interrupt controller can also intercept external interrupts and forward them to the primary PCI
interrupt pins.

Interrupts are detected with the chip’s 8-bit interrupt port and with a dedicated Non-Maskable
Interrupt (NMI#) input in the i960 core processor’s interrupt controller. Interrupt requests originate
from software by the sysctl instruction. To manage and prioritize all possible interrupts, the
processor integrates an on-chip programmable interrupt controller.

8.1.1 The i960® VH Processor Core Interrupt Architecture

The 80960VH contains the same core interrupt architecture as many other 80960 family members.
Some of the core features include the interrupt record and stack, the way interrupts are posted, and
the way interrupt priorities are resolved. These basic architectural features are detailed in the
following sections.

8.1.2 Software Requirements For Interrupt Handling

To use the processor’s interrupt handling facilities, user software must provide the following items
in memory:

• Interrupt Table

• Interrupt Handler Routines

• Interrupt Stack

Figure 8-1. Interrupt Handling Data Structures

Interrupt
InterruptTable
Handling

Procedure

Interrupt
Request Interrupt Pointer

Memory

i960® VH
Processor

• DMA Channel 0 • I2C Bus Interface Unit

• DMA Channel 1 • Messaging Unit

• Timers 0 & 1 • Memory Controller

• Primary ATU

i960® VH Processor Developer’s Manual 8-3

Interrupts

These items are established in memory as part of the initialization procedure. Once these items are
present in memory and pointers to them have been entered in the appropriate system data
structures, the processor handles interrupts automatically and independently from software.

8.1.3 Interrupt Priority

Each procedure pointer’s priority is defined by dividing the procedure pointer number by eight.
Thus, at each priority level, there are eight possible procedure pointers (for example, procedure
pointers 8-15 have a priority of 1 and procedure pointers 246-255 have a priority of 31). Procedure
pointers 0-7 cannot be used because a priority-0 interrupt would never successfully stop execution
of a program of any priority. In addition, procedure pointers 244-247 and 249-251 are reserved;
therefore, 241 procedure pointers are available to the user.

The processor compares its current priority with the interrupt request priority to determine whether
to service the interrupt immediately or to delay service:

• The interrupt is serviced immediately when its priority is higher than the priority of the
program or interrupt the processor is currently executing.

• The interrupt is posted as a pending interrupt (not serviced immediately) when the interrupt
priority is less than or equal to the processor’s current priority.

See Section 8.1.4.2, “Pending Interrupts” on page 8-5. When multiple interrupt requests are
pending at the same priority level, the request with the highest vector number is serviced first.

A priority-31 interrupt is handled as a special case. Even when the processor is executing at priority
level 31, a priority-31 interrupt will interrupt the processor. On the 80960VH, the non-maskable
interrupt (NMI#) interrupts priority-31 execution; no interrupt can interrupt an NMI# handler.

8.1.4 Interrupt Table

The interrupt table (see Figure 8-2) is 1028 bytes in length and can be located anywhere in the
non-reserved address space. It must be aligned on a word boundary. The processor reads a pointer
to the interrupt table byte 0 during initialization. The interrupt table must be located in RAM so the
processor can read and write the table’s pending interrupt section for software or externally
generated interrupts.

The interrupt table is divided into two sections: vector entries and pending interrupts. Each are
described in the subsections that follow.

8-4 i960® VH Processor Developer’s Manual

Interrupts

8.1.4.1 Vector Entries

A vector entry contains a specific interrupt handler’s address. When an interrupt is serviced, the
processor branches to the address specified by the vector entry.

Each interrupt is associated with an 8-bit vector number that points to a vector entry in the interrupt
table. The vector entry section contains 248 word-length entries. Vector numbers 8-243 and
252-255 and their associated vector entries are used for conventional interrupts. Vector number
248 is the NMI# vector. Vector numbers 244-247 and 249-251 are reserved. Vector number 248
and its associated vector entry is used for the non-maskable interrupt (NMI#). Vector numbers 0-7
cannot be used.

Vector entry 248 contains the NMI# handler address. When the processor is initialized, the NMI#
vector located in the interrupt table is automatically read and stored in location 0H of internal data
RAM. The NMI# vector is subsequently fetched from internal data RAM to improve this
interrupt’s performance.

Figure 8-2. Interrupt Table

X X

000H

004H

020H

024H (Vector 8)

028H (Vector 9)

02CH (Vector 10)

3D0H (Vector 243)
3D4H (Vector 244)

3E4H (Vector 248)

3E8H (Vector 249)

3F0H (Vector 251)
3F4H (Vector 252)

400H (Vector 255)

Entry Type:
00 Normal

10 Target in Cache
01 Reserved1

Pending Priorities

Pending Interrupts

Entry 8

Entry 9

NMI# Vector

Vector Entry

Instruction Pointer

...

Reserved (Initialize to 0)

Preserved

0

012

7831

...

Entry 252

Entry 255

...

Entry 243

Entry 10...

3E0H (Vector 247)

11 Reserved1

1Vector entries with a reserved
type have unpredictable behavior.

i960® VH Processor Developer’s Manual 8-5

Interrupts

The vector entry structure is given at the bottom of Figure 8-2. Each interrupt procedure must
begin on a word boundary, so the processor assumes that the vector’s two least significant bits are
0. Bits 0 and 1 of an entry indicate entry type: type 00 indicates that the interrupt procedure should
be fetched normally; type 10 indicates that the interrupt procedure should be fetched from the
locked partition of the instruction cache. Refer to Section 8.5.2.2, “Caching Interrupt Routines and
Reserving Register Frames” on page 8-36. The other possible entry types are reserved and must not
be used.

8.1.4.2 Pending Interrupts

The pending interrupts section comprises the interrupt table’s first 36 bytes, divided into two fields:
pending priorities (byte offset 0 through 3) and pending interrupts (4 through 35).

Each of the 32 bits in the pending priorities field indicate an interrupt priority. When the processor
posts a pending interrupt in the interrupt table, the bit corresponding to the interrupt’s priority is
set; for example, when an interrupt with a priority of 10 is posted in the interrupt table, bit 10 is set.

Each of the pending interrupts field’s 256 bits represent an interrupt procedure pointer. Byte offset
5 is for vectors 8 through 15, byte offset 6 is for vectors 16 through 23, and so on. Byte offset 4, the
first byte of the pending interrupts field, is reserved. When an interrupt is posted, its corresponding
bit in the pending interrupt field is set.

This encoding of the pending priority and pending interrupt fields permits the processor to first
check for any pending interrupts with a priority greater than the current program and then
determine the vector number of the interrupt with the highest priority.

8.1.4.3 Caching Portions of the Interrupt Table

The architecture allows all or part of the interrupt table to be cached internally to the processor. The
purpose of caching these fields is to reduce interrupt latency by allowing the processor to access
certain interrupt procedure pointers and the pending interrupt information without having to make
external memory accesses. The 80960VH caches the following:

• The value of the highest priority posted in the pending priorities field.

• A predefined subset of interrupt procedure pointers (entries from the interrupt table).

• Pending interrupts received from external interrupt pins.

This caching mechanism is non-transparent; the processor may modify fields in a cached interrupt
table without modifying the same fields in the interrupt table itself. Vector caching is described in
Section 8.5.2.1, “Vector Caching Option” on page 8-35.

8.1.5 Interrupt Stack And Interrupt Record

The interrupt stack can be located anywhere in the non-reserved address space. The processor
obtains a pointer to the base of the stack during initialization. The interrupt stack has the same
structure as the local procedure stack described in Section 7.1.1, “Local Registers and the
Procedure Stack” on page 7-2. As with the local stack, the interrupt stack grows from lower
addresses to higher addresses.

The processor saves the state of an interrupted program, or an interrupted interrupt procedure, in a
record on the interrupt stack. Figure 8-3 shows the structure of this interrupt record.

8-6 i960® VH Processor Developer’s Manual

Interrupts

The interrupt record is always stored on the interrupt stack adjacent to the new frame that is created
for the interrupt handling procedure. It includes the state of the AC and PC registers at the time the
interrupt was serviced and the interrupt procedure pointer number used. Relative to the new frame
pointer (NFP), the saved AC register is located at address NFP-12, the saved PC register is located
at address NFP-16.

In the 80960VH, the stack is aligned to a 16-byte boundary. When the processor needs to create a
new frame on an interrupt call, it adds a padding area to the stack so that the new frame starts on a
16-byte boundary.

8.1.6 Posting Interrupts

Interrupts are posted to the processor by a number of different mechanisms; these are described in
the following sections.

• Software interrupts: interrupts posted through the interrupt table, by software running on the
80960VH.

• External Interrupts: interrupts posted through the interrupt table, by an external agent to the
80960VH.

• Hardware interrupts: interrupts posted directly to the 80960VH through an
implementation-dependent mechanism that may avoid using the interrupt table.

Figure 8-3. Storage of an Interrupt Record on the Interrupt Stack

Padding Area

Saved Arithmetic Controls Register

New Frame

NFP-8

NFP-16

NFP-12

NFP

Current Frame

FP

Saved Process Controls Register

Interrupt Stack
031

Current Stack
031 (Local, Supervisor, or Interrupt Stack)

Vector Number

Reserved

Stack
Growth

Interrupt

Record

Optional Data

i960® VH Processor Developer’s Manual 8-7

Interrupts

8.1.6.1 Posting Software Interrupts via sysctl

In the 80960VH, sysctl is typically used to request an interrupt in a program (see Example 8-1).
The request interrupt message type (00H) is selected and the interrupt procedure pointer number is
specified in the least significant byte of the instruction operand. See Section 6.2.67, “sysctl” on
page 6-104 for a complete discussion of sysctl.

A literal can be used to post an interrupt with a vector number from 8 to 31. Here, the required
value of 00H in the second byte of a register operand is implied.

The action of the processor when it executes the sysctl instruction is as follows:

1. The processor performs an atomic write to the interrupt table and sets the bits in the
pending-interrupts and pending-priorities fields that correspond to the requested interrupt.

2. The processor updates the internal software priority register with the value of the highest
pending priority from the interrupt table. This may be the priority of the interrupt that was just
posted.

The interrupt controller continuously compares the following three values: software priority
register, current process priority, and priority of the highest pending hardware-generated interrupt.
When the software priority register value is the highest of the three, the following actions occur:

1. The interrupt controller signals the core that a software-generated interrupt is to be serviced.

2. The core checks the interrupt table in memory, determines the vector number of the highest
priority pending interrupt and clears the pending-interrupts and pending-priorities bits in the
table that correspond to that interrupt.

3. The core detects the interrupt with the next highest priority that is posted in the interrupt table
(if any) and writes that value into the software priority register.

4. The core services the highest priority interrupt.

When more than one pending interrupt is posted in the interrupt table at the same interrupt priority,
the core handles the interrupt with the highest vector number first. The software priority register is
an internal register and, as such, is not visible to the user. The core only updates this register’s
value when sysctl requests an interrupt or when a software-generated interrupt is serviced.

8.1.6.2 Posting Software Interrupts Directly in the Interrupt Table

In special cases within a single processor system, software can post interrupts by setting the desired
pending-interrupt and pending-priorities bits directly. Direct posting requires that software ensure
that no external I/O agents post a pending interrupt simultaneously, and that an interrupt cannot
occur after one bit is set but before the other is set. Note, however, that this method is not
recommended.

Example 8-1. Using sysctl to Request an Interrupt

ldconst 0x53,g5# Vector number 53H is loaded
into byte 0 of register g5 and
the value is zero extended into
byte 1 of the register

sysctl g5, g5, g5# Vector number 53H is posted

8-8 i960® VH Processor Developer’s Manual

Interrupts

8.1.6.3 Posting External Interrupts

An external agent posts (sets) a pending interrupt with vector “v” to the 80960VH through the
interrupt table by executing the following algorithm:

External_Agent_Posting:

x = atomic_read(pending_priorities); #synchronize;
z = read(pending_interrupts[v/8]);
x[v/8] = 1;
z[v mod 8] = 1;
write(pending_interrupts[v/8]) = z;
atomic_write(pending_priorities) = x;

Generally, software cannot use this algorithm to post interrupts because there is no way for
software to have an atomic (locking) read/write span multiple instructions.

8.1.6.4 Posting Hardware Interrupts

Certain interrupts are posted directly to the processor by an implementation-dependent mechanism
that can bypass the interrupt table. This is often done for performance reasons.

8.1.7 Resolving Interrupt Priority

The interrupt controller continuously compares the processor’s priority to the priorities of the
highest-posted software interrupt and the highest-pending hardware interrupt. The core is
interrupted when a pending interrupt request is higher than the processor priority or has a priority
of 31. (Note that a priority-31 interrupt handler can be interrupted by another priority-31 interrupt.)
There are no priority-0 interrupts since such an interrupt would never have a priority higher than
the current process, and would therefore never be serviced.

In the event that both hardware and software requested interrupts are posted at the same level, the
hardware interrupt is delivered first while the software interrupt is left pending. As a result, when
both priority-31 hardware- and software-requested interrupts are pending, control is first
transferred to the interrupt handler for the hardware-requested interrupt. However, before the first
instruction of that handler can be executed, the pending software-requested interrupt is delivered
and control is transferred to the corresponding interrupt handler.

Example 8-2. Interrupt Resolution (Sheet 1 of 2)

/* Model used to resolve interrupts between execution of all macro
instructions */
if (NMI#_pending && !block_NMI)

{ block_NMI = true; /* Reset on return from NMI INTR handler */
vecnum = 248; vector_addr = 0;
PC.priority = 31;
push_local_register_set();
goto common_interrupt_process; }

if (ICON.gie == enabled) {

expand_HW_int();
temp = max(HW_Int_Priority, SW_Int_Priority);
if (temp == 31 || temp > PC.priority)

i960® VH Processor Developer’s Manual 8-9

Interrupts

8.1.8 Sampling Pending Interrupts in the Interrupt Table

At specific points, the processor checks the interrupt table for pending interrupts posted. When one
is found, it is handled as if the interrupt occurred at that time. In the 80960VH, a check for pending
interrupts in the interrupt table is made when requesting a software interrupt with sysctl or when
servicing a software interrupt.

When a check of the interrupt table is made, the following algorithm is used. Since the pending
interrupts may be cached, the check for pending interrupt operation may not involve any memory
operations. The algorithm uses synchronization because there may be multiple agents posting and
unposting interrupts. In the algorithm, w, x, y, and z are temporary registers within the processor.

Check_For_Pending_Interrupts:

x = read(pending_priorities);

if(x == 0) return(); #nothing to do

y = most_significant_bit(x);

if(y != 31 && y <= current_priority) return();

x = atomic_read(pending_priorities); #synchronize

if(x == 0)

{atomic_write(pending_priorities) = x;

 return();} #interrupts disappeared

(e.g., handled by another processor)

y = most_significant_bit(x); #must be repeated

if(y != 31 && y <= current_priority)

{atomic_write(pending_priorities) = x;

return();} #interrupt disappeared

z = read(pending_interrupts[y]); #z is a byte

if(z == 0)

{x[y] = 0; #false alarm, should not happen

atomic_write(pending_priorities) = x;

return();}

else

{w = most_significant_bit[z];

z[w] = 0;

write(pending_interrupts[y]) = z;

if(z == 0) x[y] = 0; #no others at this level

 { PC.priority = temp;
 if (SW_Int_Priority > HW_Int_Priority) goto
Deliver_SW_Int;
 else{ vecnum = HW_vecnum; goto Deliver_HW_Int;}
 }

}

Example 8-2. Interrupt Resolution (Sheet 2 of 2)

8-10 i960® VH Processor Developer’s Manual

Interrupts

atomic_write(pending_priorities) = x;

take_interrupt();}

The algorithm shows that the pending interrupts are marked by a bit in the Pending Interrupts Field,
and that the Pending Priorities Field is an optimization. The processor examines Pending Interrupts
only when the corresponding bit in Pending Priorities is set.

The steps prior to the atomic_read are another optimization. Note that these steps must be
repeated within the synchronized critical section, since another processor could have spotted and
accepted the same pending interrupt(s).

Use sysctl with a vector in the range 0 to 7 to force the core to check the interrupt table for pending
interrupts. When an external agent is posting interrupts to a shared interrupt table, use sysctl
periodically to guarantee recognition of pending interrupts posted in the table by the external agent.

8.1.9 Saving the Interrupt Mask

Whenever an interrupt requested by the external interrupt pins or by the internal timers is serviced,
the IMSK register is automatically saved in register r3 of the new local register set allocated for the
interrupt handler. After the mask is saved, the IMSK register is optionally cleared. This masks all
interrupts except NMI#s while an interrupt is serviced. Since the IMSK register value is saved, the
interrupt procedure can restore the value before returning. The option of clearing the mask is
selected by programming the ICON register as described in Section 8.4.2, “Interrupt Control
Register – ICON” on page 8-24.

Priority-31 interrupts are interrupted by other priority-31 interrupts. For level-activated interrupt
inputs, instructions within the interrupt handler are typically responsible for causing the source to
deactivate. If these priority-31 interrupts are not masked, then another priority-31 interrupt is
signaled and serviced before the handler can deactivate the source. The first instruction of the
interrupt handling procedure is never reached, unless the option is selected to clear the IMSK
register on entry to the interrupt.

Another use of the mask is to lock out other interrupts when executing time-critical portions of an
interrupt handling procedure. All hardware-generated interrupts are masked until software
explicitly replaces the mask.

The processor does not restore r3 to the IMSK register when the interrupt return is executed. When
the IMSK register is cleared, the interrupt handler must restore the IMSK register to enable
interrupts after return from the handler.

8.2 The i960® Core Processor Interrupt Controller

The 80960VH Interrupt Controller Unit (ICU) provides a flexible, low-latency means for
requesting and posting interrupts and minimizing the core’s interrupt handling burden. Acting
independently from the core, the interrupt controller posts interrupts requested by hardware and
software sources and compares the priorities of posted interrupts with the current process priority.

The interrupt controller provides the following features for managing hardware-requested
interrupts:

• Low latency, high throughput handling.

• Eight external interrupt pins.

i960® VH Processor Developer’s Manual 8-11

Interrupts

• One non-maskable interrupt pin.

• Two internal timers sources.

• Peripheral interrupt sources.

Figure 8-4. Interrupt Controller

Interrupt Control

Register

Pending Interrupts

Interrupt Masks

Interrupt

Block

Selection

Interrupt

Block
Action

Clear
a Bit

Interrupt

Pin Mode

NMI#
 Pending

NMI#S_INT[D:A]/XINT3:0#, XINT7:4#

Interrupt Pin to
Vector Map

AckVector

Processor

State
Software Interrupt

Priority Register
(Internal)

Process Priority

(in PC)

Ack
Core

Vector

Interrupt Core

Core accepts interrupt when:
* Processor not stopped
* Not executing a fault-call or
* Interrupt-call action and
* Between instruction or
* At a resumption point

Global
Interrupt
Disable

Core:
* Calls interrupt handlers
* Posts software interrupts
* Checks for software interrupts
* Handles all interrupt table access

Interrupt Detection
Block

TINT0 TINT1

Registers 0 to 2

8-12 i960® VH Processor Developer’s Manual

Interrupts

The user program interfaces to the interrupt controller with ten memory-mapped control registers.
The Interrupt Control Register (ICON) and Interrupt Map Control Registers (IMAP0-IMAP2)
provide configuration information. The Interrupt Pending Register (IPND) posts
hardware-requested interrupts. The Interrupt Mask Register (IMSK) selectively masks
hardware-requested interrupts.

8.2.1 Interrupt Controller Dedicated Mode

The 80960VH interrupt controller external pins are set up for dedicated mode operation, where
each external interrupt pin is assigned a vector number. Vector numbers that may be assigned to a
pin are those with the encoding PPPP 00102 (Figure 8-5), where bits marked P are programmed
with bits in the interrupt map (IMAP) registers. This encoding of programmable bits and preset bits
can designate 15 unique vector numbers, each with a unique, even-numbered priority. (Vector
0000 00102 is undefined; it has a priority of 0.)

Interrupts are posted in the interrupt pending (IPND) register. Single bits in the IPND register
correspond to each of the eight dedicated external interrupt inputs, or the two timer inputs to the
interrupt controller. The interrupt mask (IMSK) register selectively masks each of the interrupts.
Optionally, the IMSK register can be saved and cleared when an interrupt is serviced. This locks
out other hardware-generated interrupts until the mask is restored. See Section 8.4,
“Memory-mapped Control Registers” on page 8-22 for a further description of the IMSK, IPND
and IMAP registers.

Interrupt vectors are assigned to timer inputs in the same way external pins are assigned vectors.

8.2.2 Interrupt Detection

The XINT7:0# pins use level-low detection. All of the interrupt pins use fast sampling.

Figure 8-5. Interrupt Pin Vector Assignment

PPPP

PPPP

PPPP

PPPP

PPPP

PPPP

00102

00102

00102

00102

00102

00102

... ...
XINT7#

TINT0

TINT1

...

8

4 LSB4 MSB

IMAP Control Registers Hard-wired Vector Offset

Highest Selected
Vector Number

XINT0#

XINT1#

XINT2#

i960® VH Processor Developer’s Manual 8-13

Interrupts

For low-level detection, the pin’s bit in the IPND register remains set as long as the pin is asserted
(low). The processor attempts to clear the IPND bit on entry into the interrupt handler. However, if
the active level on the pin is not removed at this time, then the bit in the IPND register remains set
until the source of the interrupt is deactivated and the IPND bit is explicitly cleared by software.
Software may attempt to clear an interrupt pending bit before the active level on the corresponding
pin is removed. In this case, the active level on the interrupt pin causes the pending bit to remain
asserted.

After the interrupt signal is deasserted, the handler then clears the interrupt pending bit for that
source before return from handler is executed. If the pending bit is not cleared, then the interrupt is
re-entered after the return is executed.

Example 8-3 demonstrates how a level detect interrupt is typically handled. The example assumes
that the ld from address “timer_0,” deactivates the interrupt input.

Interrupt pins are asynchronous inputs. Setup or hold times relative to P_CLK are not needed to
ensure proper pin detection. Note in Figure 8-6, which shows how a signal is sampled using fast
sampling, that interrupt inputs are sampled once every two P_CLK cycles. For practical purposes,
this means that asynchronous interrupting devices must generate an interrupt signal that is asserted
for at least three P_CLK cycles. See your 80960VH Data Sheet for setup and hold specifications
that guarantee detection of the interrupt on particular edges of P_CLK. These specifications are
useful in designs that use synchronous logic to generate interrupt signals to the processor. These
specification must also be used to calculate the minimum signal width, as shown in Figure 8-6.

Example 8-3. Return from a Level-detect Interrupt

Clear level-detect interrupts before return from handler
lda IPND_MMR, g1 # Get address of IPND Memory-Mapped Register
ld timer_0, g0 # Get timer value and clear TMRO
lda 0x1000, g2

wait:
mov 0, g3
atmod g1, g2, g3
bbs 0xC, g3, wait
ret # Return from handler

Figure 8-6. Interrupt Fast Sampling

Denotes sampling clock edge. Interrupt pins are sampled one time for every two P_CLK (external bus clock) cycles.

P_CLK

(fast sampled)

* * * *

3 cycle min.

*

*

XINT7:0#

Detect Interrupt

8-14 i960® VH Processor Developer’s Manual

Interrupts

8.2.3 Non-Maskable Interrupt (NMI#)

The NMI# pin generates an interrupt for implementation of critical interrupt routines. Error
interrupts from the internal peripheral units also come into the i960 core through the NMI# pin.
NMI# provides an interrupt that cannot be masked and that has a priority of 31. The interrupt
vector for NMI# resides in the interrupt table as vector number 248. During initialization, the core
caches the vector for NMI# on-chip, to reduce NMI# latency. The NMI# vector is cached in
location 0H of internal data RAM.

The core immediately services NMI# requests. While servicing an NMI#, the core does not
respond to any other interrupt requests, even another NMI# request. The processor remains in this
non-interruptible state until any return-from-interrupt (in supervisor mode) occurs. An interrupt
request on the NMI# pin is always falling-edge detected. (Note that a return-from-interrupt in user
mode does not unblock NMI# events and should be avoided by software.)

8.2.4 Timer Interrupts

Each of the two timer units has an associated interrupt to allow the application to accept or post the
interrupt request. The timer interrupts are connected directly to the 80960VH interrupt controller
and are posted in the IPND register. These interrupts are set up through the timer control registers
described in Chapter 19, “Timers”.

8.2.5 Software Interrupts

The application program may use the sysctl instruction to request interrupt service. The vector that
sysctl requests is serviced immediately or posted in the interrupt table’s pending interrupts section,
depending upon the current processor priority and the request’s priority. The interrupt controller
caches the priority of the highest priority interrupt posted in the interrupt table. The processor
cannot request vector 248 (NMI#) as a software interrupt.

8.2.6 Interrupt Operation Sequence

The interrupt controller, microcode and core resources handle all stages of interrupt service.
Interrupt service is handled in the following stages:

Requesting Interrupt — In the 80960VH, the programmable on-chip interrupt controller
transparently manages all interrupt requests. Interrupts are generated by hardware (external events)
or software (the application program). Hardware requests are signaled on the 8-bit external
interrupt port (XINT7:0#), the non-maskable interrupt pin (NMI#) or the two timer channels.
Software interrupts are signaled with the sysctl instruction with post-interrupt message type.

Posting Interrupts — When an interrupt is requested, the interrupt is either serviced immediately or
saved for later service, depending on the interrupt’s priority. Saving the interrupt for later service is
referred to as posting. Once posted, an interrupt becomes a pending interrupt. Hardware and
software interrupts are posted differently:

• Hardware interrupts are posted by setting the interrupt’s assigned bit in the interrupt pending
(IPND) memory mapped register

• Software interrupts are posted by setting the interrupt’s assigned bit in the interrupt table’s
pending priorities and pending interrupts fields

i960® VH Processor Developer’s Manual 8-15

Interrupts

Checking Pending Interrupts — The interrupt controller compares each pending interrupt’s priority
with the current process priority. When process priority changes, posted interrupts of higher
priority are then serviced. Comparing the process priority to posted interrupt priority is handled
differently for hardware and software interrupts. Each hardware interrupt is assigned a specific
priority when the processor is configured. The priority of all posted hardware interrupts is
continually compared to the current process priority. Software interrupts are posted in the interrupt
table in external memory. The highest priority posted in this table is also saved in an on-chip
software priority register; this register is continually compared to the current process priority.

Servicing Interrupts — When the process priority falls below that of any posted interrupt, the
interrupt is serviced. The comparator signals the core to begin a microcode sequence to perform the
interrupt context switch and branch to the first instruction of the interrupt routine.

Figure 8-4 illustrates interrupt controller function. For best performance, the interrupt flow for
hardware interrupt sources is implemented entirely in hardware.

The comparator only signals the core when a posted interrupt is a higher priority than the process
priority. Because the comparator function is implemented in hardware, microcode cycles are never
consumed unless an interrupt is serviced.

8.2.7 Setting Up the Interrupt Controller

This section provides an example of setting up the interrupt controller. The following example
describes how the interrupt controller can be dynamically configured after initialization.

Example 8-4 sets up the interrupt controller to fetch interrupt vectors from internal data RAM
rather than external memory. Initially the IMSK register is masked to allow for setup. A value that
selects vector caching is loaded into the ICON register and the IMSK is unmasked.

8.2.8 Interrupt Service Routines

An interrupt handling procedure performs a specific action that is associated with a particular
interrupt procedure pointer. For example, one interrupt handler task might initiate a timer unit
request. The interrupt handler procedures can be located anywhere in the non-reserved address
space. Since instructions in the 80960VH architecture must be word-aligned, each procedure must
begin on a word boundary.

When an interrupt handling procedure is called, the processor allocates a new frame on the
interrupt stack and a set of local registers for the procedure. If not already in supervisor mode, then
the processor always switches to supervisor mode while an interrupt is handled. It also saves the
states of the AC and PC registers for the interrupted program.

Example 8-4. Programming the Interrupt Controller for Vector Caching

Example vector caching setup . . .
mov 0x0, g0
mov 0x00006000, g1

ld IMSK, g3 # mask, IMSK MMR at 0xFF008504
st g1,IMSK
st g1,ICON

8-16 i960® VH Processor Developer’s Manual

Interrupts

The interrupt procedure shares the remainder of the execution environment resources (namely the
global registers and the address space) with the interrupted program. Thus, interrupt procedures
must preserve and restore the state of any resources shared with a non-cooperating program. For
example, an interrupt procedure that uses a global register that is not permanently allocated to it
should save the register’s contents before using the register and restore the contents before
returning from the interrupt handler.

To reduce interrupt latency to critical interrupt routines, interrupt handlers may be locked into the
instruction cache. See Section 8.5.2.2, “Caching Interrupt Routines and Reserving Register
Frames” on page 8-36 for a complete description.

8.2.9 Interrupt Context Switch

When the processor services an interrupt, it automatically saves the interrupted program state or
interrupt procedure and calls the interrupt handling procedure associated with the new interrupt
request. When the interrupt handler completes, the processor automatically restores the interrupted
program state. The method used to service an interrupt depends on the processor state when the
interrupt is received.

• An executing-state interrupt — When the processor is executing a background task and an
interrupt request is posted, the interrupt context switch must change stacks to the interrupt
stack.

• An interrupted-state interrupt — When the processor is already executing an interrupt handler,
no stack switch is required since the interrupt stack is already in use.

The following subsections describe interrupt handling actions for executing-state and
interrupted-state interrupts. In both cases, it is assumed that the interrupt priority is higher than that
of the processor and thus is serviced immediately when the processor receives it.

8.2.9.1 Servicing An Interrupt From Executing State

When the processor receives an interrupt while in the executing state (i.e., executing a program,
PC.s = 0), it performs the following actions to service the interrupt. This procedure is the same
regardless of whether the processor is in user or supervisor mode when the interrupt occurs. The
processor:

1. Switches to the interrupt stack (see Figure 8-3). The interrupt stack pointer becomes the new
stack pointer for the processor.

2. Saves the current PC and AC in an interrupt record on the interrupt stack. The processor also
saves the interrupt procedure pointer number.

3. Allocates a new frame on the interrupt stack and loads the new frame pointer (NFP) in global
register g15.

4. Sets the state flag in PC to interrupted (PC.s = 1), its execution mode to supervisor and its
priority to the priority of the interrupt. Setting the processor's priority to that of the interrupt
ensures that lower priority interrupts cannot interrupt the servicing of the current interrupt.

5. Clears the trace enable bit in PC. The interrupt is handled without raising trace faults.

6. Sets the frame return status field pfp[2:0] to 1112.

7. Performs a call operation as described in Chapter 7, “Procedure Calls”. The address for the
called procedure is specified in the interrupt table for the specified interrupt procedure pointer.

i960® VH Processor Developer’s Manual 8-17

Interrupts

After completing the interrupt procedure, the processor:

1. Copies the arithmetic controls field and the process controls field from the interrupt record into
the AC and PC, respectively. It therefore switches to the executing state and restores the
trace-enable bit to its value before the interrupt occurred.

2. Deallocates the current stack frame and interrupt record from the interrupt stack and switches
to the stack it was using before servicing the interrupt.

3. Performs a return operation as described in Chapter 7, “Procedure Calls”.

4. Resumes work on the program when all pending interrupts and trace faults are serviced.

8.2.9.2 Servicing An Interrupt From Interrupted State

When the processor receives an interrupt while servicing another interrupt, and the new interrupt
has a higher priority than one being serviced, the current interrupt-handler routine is interrupted.
Here, the processor performs the same interrupt-servicing action as described in Section 8.2.9.1, on
page 8-16 to save the state of the interrupted interrupt-handler routine. The interrupt record is
saved on the top of the interrupt stack prior to the new frame that is created for use in servicing the
new interrupt. See Figure 8-3.

On the return from the current interrupt handler to the previous interrupt handler, the processor
de-allocates the current stack frame and interrupt record, and stays on the interrupt stack.

8.3 PCI And Peripheral Interrupts

The PCI and peripheral portion of the interrupt controller has two functions:

• Internal Peripheral Interrupt Control

• PCI Interrupt Routing

The peripheral interrupt control mechanism consolidates a number of interrupt sources for a given
internal peripheral into a single interrupt driven to the i960 core. In order to provide the executing
software with the knowledge of interrupt source, there is a memory-mapped status register that
describes the source of the interrupt. All of the internal peripheral interrupts are individually
enabled from their respective peripheral control registers.

The PCI interrupt routing mechanism allows the host software (or 80960 software) to route some
interrupts to either the i960 core or the P_INTA#, P_INTB#, P_INTC#, and P_INTD# output pins.
This routing mechanism is controlled through a memory-mapped register accessible from the
primary ATU configuration space or the 80960VH local bus.

8-18 i960® VH Processor Developer’s Manual

Interrupts

Figure 8-7. Interrupt Controller Connections for 80960VH

i960® Core

XINT0#

XINT1#

XINT2#

XINT3#

XINT4#

XINT5#

XINT6#

XINT7#

NMI#

XINT0#

XINT0 Select bit

M
U
X

XINT1#

XINT2#
M
U
X

XINT3#
M
U
X

XINT4#

XINT5#

XINT6#

XINT7#

NMI#

P_INTA# Output

Local Processor Error

I2C Bus Interface Unit Interrupt Pending

Messaging Unit Inbound Interrupt Pending

i960® VH Processor

Primary ATU Error

N
M

I I
nt

er
ru

pt
La

tc
h

X
IN

T
7

In
te

rr
up

t
La

tc
h

P_INTB# Output

P_INTC# Output
P_INTD# Output

X
IN

T
6

In
te

rr
up

t
La

tc
h

DMA Channel 0 Error

Primary ATU/Start BIST Interrupt Pending

DMA Channel 0 Interrupt Pending
DMA Channel 1 Interrupt Pending

DMA Channel 1 Error

Processor

Messaging Unit Error

M
U
X

Messaging Unit
Outbound Interrupt Pending

M
U
X

XINT1 Select bit

XINT2 Select bit

XINT3 Select bit

Primary ATU Interrupt Pin Register

 Message Unit Outbound Doorbell A
 Message Unit Outbound Doorbell B
 Message Unit Outbound Doorbell C
 Message Unit Outbound Doorbell D

i960® VH Processor Developer’s Manual 8-19

Interrupts

8.3.1 Pin Descriptions

The 80960VH provides eight external interrupt pins and one non-maskable interrupt pin for
detecting external interrupt requests. The eight external pins are configured as dedicated inputs,
where each pin is capable of requesting a single interrupt, in some cases from several different
sources. The external interrupt input interface for the 80960VH consists of the following pins:

All pins in Table 8-1 are level-low activated. See Section 8.2.2, “Interrupt Detection” on page 8-12.

8.3.2 PCI Interrupt Routing

Four PCI interrupt inputs can be routed to either the i960 core interrupt inputs or to the PCI
interrupt output pins. This routing is controlled by the XINT Select bit in the PCI interrupt Routing
Select Register. See Table 8-2.

Table 8-1. Interrupt Input Pin Descriptions

Signal Description

XINT0#

Can be directed to the P_INTA# output or the i960 core interrupt input XINT0#.

When routed to the P_INTA# output, this pin is shared with two internal interrupts. They
are the interrupts from the Messaging Unit. When routed to the i960 core internal input
XINT0#, this input is not shared.

XINT1#

Can be directed to the P_INTB# output or the i960 core interrupt input XINT1#.

When routed to the P_INTB1# output, this pin is shared with two internal interrupts. They
are the interrupts from the Messaging Unit. When routed to the i960 core internal input
XINT1#, this input is not shared.

XINT2#

Can be directed to the P_INTC# output or the i960 core interrupt input XINT2#.

When routed to the P_INTC2# output, this pin is shared with two internal interrupts. They
are the interrupts from the Messaging Unit. When routed to the i960 core internal input
XINT2#, this input is not shared.

XINT3#

Can be directed to the P_INTD# output or the i960 core interrupt input XINT3#.

When routed to the P_INTD# output, this pin is shared with two internal interrupts. They
are the interrupts from the Messaging Unit. When routed to the i960 core internal input
XINT3#, this input is not shared.

XINT4# Always connected to the i960 core interrupt input XINT4#.

XINT5# Always connected to the i960 core interrupt input XINT5#.

XINT6#

Shared with two internal interrupts. They are the interrupts from each of the two internal
DMA channels. All of the interrupts are directed to the i960 core interrupt input XINT6#.
Software must read the XINT6 Interrupt Status Register to determine the exact source of
the interrupt.

XINT7#

Shared with three internal interrupts. They are the interrupts from the I2C Bus Interface
Unit, the Primary ATU, and the Messaging Unit. All of the interrupts are directed to the
i960 core interrupt input XINT7#. Software must read the XINT7 Interrupt Status Register
to determine the exact source of the interrupt.

NMI#

Shared with five internal interrupts. They include error interrupts from the local processor,
primary ATU, Messaging Unit and the two DMA channels. All of the interrupts are directed
to the i960 core NMI# input. Software must read the NMI Interrupt Status Register to
determine the exact source of the interrupt. NMI# is the highest priority interrupt
recognized. This pin is synchronized internal to the i960 core.

8-20 i960® VH Processor Developer’s Manual

Interrupts

8.3.3 Internal Peripheral Interrupt Routing

XINT6#, XINT7# and NMI# interrupt inputs on the i960 core receive inputs from multiple internal
interrupt sources. One internal latch before each of these three inputs provides the necessary
muxing of the different interrupt sources. Application software can determine which peripheral
unit caused an interrupt by reading the corresponding interrupt latch. More detail about the exact
cause of the interrupt can be determined by reading status from the peripheral unit.

8.3.3.1 XINT6 Interrupt Sources

The XINT6# interrupt of the i960 core receives interrupts from the external pin and the two DMA
channels. A DMA channel can cause an interrupt for a DMA End of Transfer interrupt or a DMA
End of Chain interrupt. See Section 20.3, “DMA Transfer” on page 20-3 for details. A valid
interrupt from any of these sources sets the bit in the latch and outputs a level-sensitive interrupt to
the i960 core’s XINT6# input. The interrupt latch continues to drive an active low input to the i960
core interrupt input while an interrupt is present at the latch. The XINT6 interrupt latch is read
through the XINT6 Interrupt Status Register. The XINT6 interrupt latch is cleared by clearing the
source of the interrupt at the internal peripheral or deasserting the XINT6# input.

The interrupt sources which drive the inputs to the XINT6 interrupt latch are detailed in Table 8-3

Table 8-2. PCI Interrupt Routing Summary for 80960VH

PIRSR Select Bit Bit Value Description

bit 0
1 XINT0# Input Pin routed to i960 core processor XINT0# Input Pin

0 XINT0# Input Pin routed to P_INTA# Output Pin

bit 1
1 XINT1# Input Pin routed to i960 core processor XINT1# Input Pin

0 XINT1# Input Pin routed to P_INTB# Output Pin

bit 2
1 XINT2# Input Pin routed to i960 core processor XINT2# Input Pin

0 XINT2# Input Pin routed to P_INTC# Output Pin

bit 3
1 XINT3# Input Pin routed to i960 core processor XINT3# Input Pin

0 XINT3# Input Pin routed to P_INTD# Output Pin

Table 8-3. XINT6 Interrupt Sources

Unit Interrupt Condition
Interrupt Status Interrupt MASK

Register Bit Register Bit

DMA Channel 0
End of Chain CSR0 08

DCR0 04
End of Transfer CSR0 09

DMA Channel 1
End of Chain CSR1 08

DCR1 04
End of Transfer CSR1 09

XINT6# Pin External Source N/A N/A N/A N/A

i960® VH Processor Developer’s Manual 8-21

Interrupts

8.3.3.2 XINT7 Interrupt Sources

The XINT7# interrupt on the i960 core receives interrupts from the external pin, the I2C Bus
Interface Unit, the Primary ATU, and the Messaging Unit. A valid interrupt from any of these
sources sets the bit in the latch and outputs a level-sensitive interrupt to the i960 core XINT7#
input. The interrupt latch drives an active low input to the i960 core interrupt input as long as an
interrupt is present at the latch. The XINT7 interrupt latch is read through the XINT7 Interrupt
Status Register. The XINT7 interrupt latch is cleared by clearing the source of the interrupt at the
internal peripheral or deasserting the XINT7# input pin.

The interrupt sources which drive the inputs to the XINT7 interrupt latch are detailed in Table 8-4

8.3.3.3 NMI Interrupt Sources

The Non-Maskable Interrupt (NMI#) on the i960 core receives interrupts from the external pin, the
primary ATU and the i960 core and each of the two DMA channels. Each of the interrupts
represents an error condition in the peripheral unit. A valid interrupt from any of these sources,
when enabled, sets the bit in the latch and outputs an edge-triggered interrupt to the i960 core
NMI# input. The NMI interrupt latch is read through the NMI Interrupt Status Register. The NMI
interrupt latch is cleared by clearing the sources of all interrupts at the internal peripherals. A new
edge triggered interrupt is generated to the i960 core only after all interrupt status bits have been
simultaneously cleared.

The interrupt sources which drive the inputs to the NMI interrupt latch are detailed in Table 8-5.

Table 8-4. XINT7 Interrupt Sources

Unit Interrupt Condition
Interrupt Status Interrupt MASK

Register Bit Register Bit

I2C Bus Interface
Unit

Slave STOP Detected ISR 04 ICR 11

Arbitration Loss Detected ISR 05 ICR 12

IDBR Transmit Empty ISR 06 ICR 08

IDBR Receive Full ISR 07 ICR 09

Slave Address Detected ISR 09 ICR 13

Bus Error ISR 10 ICR 10

Messaging Unit

Inbound Message 0
Interrupt

IISR 00 IIMR 00

Inbound Message 1
Interrupt

IISR 01 IIMR 01

Inbound Doorbell Interrupt IISR 02 IIMR 02

Primary ATU ATU BIST Start PATUISR 08 N/A N/A

XINT7# Pin External Source N/A N/A N/A N/A

8-22 i960® VH Processor Developer’s Manual

Interrupts

8.3.4 PCI Outbound Doorbell Interrupts

The 80960VH has the capability of generating interrupts on any of the four primary PCI interrupt
pins. This is done by setting a bit in the messaging unit Outbound Doorbell Port Register. See
Chapter 17, “Messaging Unit” for details.

8.4 Memory-mapped Control Registers

The programmer’s interface to the interrupt controller is through ten memory-mapped control
registers. Table 8-6 describes these registers.

Table 8-5. NMI Interrupt Sources

Unit Error Condition
Interrupt Status Interrupt MASK

Register Bit Register Bit

Primary ATU

PCI Master Parity Error PATUISR 00 ATUCR 04

PCI Target Abort (target) PATUISR 01 ATUCR 04

PCI Target Abort (master) PATUISR 02 ATUCR 04

PCI Master Abort PATUISR 03 ATUCR 04

P_SERR# Asserted PATUISR 04 ATUCR 04

80960 Bus Fault PATUISR 05 N/A N/A

80960 Memory Fault PATUISR 06 N/A N/A

Messaging Unit NMI Doorbell IISR 03 IIMR 03

i960 Core
Processor

80960 Local Bus Fault LPISR 05 N/A N/A

80960 Memory Fault LPISR 06 N/A N/A

DMA Channel 0

PCI Master Parity Error CSR0 0 PATUCMD 06

PCI Target Abort (master) CSR0 2 N/A N/A

PCI Master Abort CSR0 3 N/A N/A

80960 Bus Fault CSR0 5 N/A N/A

80960 Memory Fault CSR0 6 N/A N/A

DMA Channel 1

PCI Master Parity Error CSR1 0 PATUCMD 06

PCI Target Abort (master) CSR1 2 N/A N/A

PCI Master Abort CSR1 3 N/A N/A

80960 Bus Fault CSR1 5 N/A N/A

80960 Memory Fault CSR1 6 N/A N/A

NMI# Pin External Source N/A N/A N/A N/A

Table 8-6. Interrupt Control Registers Memory-Mapped Addresses (Sheet 1 of 2)

Register Name Description Address

PIRSR PCI Interrupt Routing Select Register 0000 12C8H

NISR NMI Interrupt Status Register 0000 1700H

i960® VH Processor Developer’s Manual 8-23

Interrupts

All registers are visible to software as 80960VH memory-mapped registers and can be accessed
through the internal memory bus. The PCI Interrupt Routing Select Register is accessible from the
internal memory bus and through the PCI configuration register space of the ATU (function #0).
See Chapter 11, “Core and Peripheral Control Unit” for additional information regarding the PCI
configuration cycles that can access this register.

8.4.1 PCI Interrupt Routing Select Register (PIRSR)

The PCI Interrupt Routing Select Register (PIRSR) determines the routing of four of the external
interrupt pins. These interrupt pins consist of four external interrupt inputs which are routed to
either the primary PCI interrupts or the i960 core interrupts. If the external interrupt inputs are
routed to the primary PCI interrupt pins, then the i960 core XINT3:0# inputs must be set inactive
by setting bits 3-0 in the IMSK register to zero.

Table 8-7 shows the bit definitions for programming the PCI Interrupt Routing Select Register.
The XINT Select bit defaults to a 0.

XINT7 XINT7 Interrupt Status Register 0000 1704H

XINT6 XINT6 Interrupt Status Register 0000 1708H

IPND Interrupt Pending Register FF00 8500H

IMSK Interrupt Mask Register FF00 8504H

ICON Interrupt Control Register FF00 8510H

IMAP0 Interrupt Map Register 0 FF00 8520H

IMAP1 Interrupt Map Register 1 FF00 8524H

IMAP2 Interrupt Map Register 2 FF00 8528H

Table 8-6. Interrupt Control Registers Memory-Mapped Addresses (Sheet 2 of 2)

Register Name Description Address

Table 8-7. PCI Interrupt Routing Select Register – PIRSR (Sheet 1 of 2)

LBA:

PCI:

12C8H

C8H

Legend: NA = Not Accessible RO = Read Only
RV = Reserved PR = Preserved RW = Read/Write
RS = Read/Set RC = Read Clear
LBA = 80960 local bus address PCI = PCI Configuration Address Offset

Bit Default Description

31:04 0000 000H Reserved. Initialize to 0.

03 02

XINT3 Select Bit -
(0) Interrupts Routed To P_INTx# Pins
(1) Interrupts Routed To i960 core Interrupt Controller Input

02 02

XINT2 Select Bit -
(0) Interrupts Routed To P_INTx# Pins
(1) Interrupts Routed To i960 core Interrupt Controller Input

PCI

LBA

28 24 20 16 12 8 4 031

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rw

rw

rw

rw

rw

rw

rw

rw

8-24 i960® VH Processor Developer’s Manual

Interrupts

8.4.2 Interrupt Control Register – ICON

The ICON register is a 32-bit memory-mapped control register, that sets up the interrupt controller.
Software can manipulate this register using the load/store type instructions. The ICON register is
also automatically loaded at initialization from the control table in external memory. Table 8-8
describes the layout of the ICON register.

01 02

XINT1 Select Bit -
(0) Interrupts Routed To P_INTx# Pins
(1) Interrupts Routed To i960 core Interrupt Controller Input

00 02

XINT0 Select Bit -
(0) Interrupts Routed To P_INTx# Pins
(1) Interrupts Routed To i960 core Interrupt Controller Input

Table 8-7. PCI Interrupt Routing Select Register – PIRSR (Sheet 2 of 2)

LBA:

PCI:

12C8H

C8H

Legend: NA = Not Accessible RO = Read Only
RV = Reserved PR = Preserved RW = Read/Write
RS = Read/Set RC = Read Clear
LBA = 80960 local bus address PCI = PCI Configuration Address Offset

Bit Default Description

PCI

LBA

28 24 20 16 12 8 4 031

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rw

rw

rw

rw

rw

rw

rw

rw

i960® VH Processor Developer’s Manual 8-25

Interrupts

8.4.3 Interrupt Mapping Registers – IMAP0-IMAP2

The IMAP registers (Table 8-9 through Table 8-11) are three 32-bit registers (IMAP0 through
IMAP2). These registers are used to program the vector number associated with the interrupt
source. IMAP0 and IMAP1 contain mapping information for the external interrupt pins (four bits
per pin). IMAP2 contains mapping information for the timer-interrupt inputs (four bits per
interrupt).

Each set of four bits contains a vector number’s four most-significant bits; the four least-significant
bits are always 00102. In other words, each source can be programmed for a vector number of
PPPP 00102, where “P” indicates a programmable bit. For example, IMAP0 bits 4 through 7
contain mapping information for the XINT1# pin. When these bits are set to 01102, the pin is
mapped to vector number 0110 00102 (or vector number 98).

Software can access the mapping registers using load/store type instructions. The mapping
registers are also automatically loaded at initialization from the control table in external memory.

Table 8-8. Interrupt Control Register – ICON

LBA:

PCI:

8510H

NA

Legend: NA = Not Accessible RO = Read Only
RV = Reserved PR = Preserved RW = Read/Write
RS = Read/Set RC = Read Clear
LBA = 80960 local bus address PCI = PCI Configuration Address Offset

Bit Default Description

31:15

Default
Value

Loaded
from Image
in Control

Table.

Reserved. Initialize to 0.

14 This bit must be set (1).

13
Vector Cache Enable - determines whether interrupt table vector entries are fetched
from the interrupt table (bit clear) or from internal data RAM (bit set). Only vectors with
the four least-significant bits equal to 00102 may be cached in internal data RAM.

12:11

Mask Operation Field - determines the operation the core performs on the mask
register when a hardware-generated interrupt is serviced. On an interrupt, the value in
IMSK is copied to r3. IMSK is then either left unchanged (00) or cleared (01). IMSK is
never cleared for NMI# or software interrupts.

10

Global Interrupts Disable - when set (1) this bit globally disables the i960 core interrupt
inputs and the timer unit inputs. When clear (0) this bit globally enables the i960 core
interrupt inputs and the timer unit inputs. This does not affect the NMI# input. This bit
performs the same function as clearing the IMSK register. This bit is also changed
indirectly by the instructions inten, intdis, intctl.

9:0 These bits must be cleared (0).

PCI

LBA

28 24 20 16 12 8 4 031

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

1 0 0 0 0 0 0 0 0 0 0

8-26 i960® VH Processor Developer’s Manual

Interrupts

Table 8-9. Interrupt Map Register 0 – IMAP0

LBA:

PCI:

8520H

NA

Legend: NA = Not Accessible RO = Read Only
RV = Reserved PR = Preserved RW = Read/Write
RS = Read/Set RC = Read Clear
LBA = 80960 local bus address PCI = PCI Configuration Address Offset

Bit Default Description

31:15
Default
Value

Loaded
from Image
in Control

Table.

Reserved. Initialize to 0.

15:12 External Interrupt 3 Field.

11:08 External Interrupt 2 Field.

07:04 External Interrupt 1 Field.

03:00 External Interrupt 0 Field.

Table 8-10. Interrupt Map Register 1 – IMAP1

LBA:

PCI:

8524H

NA

Legend: NA = Not Accessible RO = Read Only
RV = Reserved PR = Preserved RW = Read/Write
RS = Read/Set RC = Read Clear
LBA = 80960 local bus address PCI = PCI Configuration Address Offset

Bit Default Description

31:15
Default
Value

Loaded
from Image
in Control

Table.

Reserved. Initialize to 0.

15:12 External Interrupt 7 Field.

11:08 External Interrupt 6 Field.

07:04 External Interrupt 5 Field.

03:00 External Interrupt 4 Field.

PCI

LBA

28 24 20 16 12 8 4 031

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

PCI

LBA

28 24 20 16 12 8 4 031

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

i960® VH Processor Developer’s Manual 8-27

Interrupts

8.4.4 Interrupt Mask – IMSK and Interrupt Pending Registers –
IPND

The IMSK and IPND registers are both memory-mapped registers. Bits 0 through 7 of these
registers are associated with the external interrupt pins (XINT0# - XINT7#) and bits 12 and 13 are
associated with the timer-interrupt inputs (TMR0 and TMR1). All other bits are reserved and
should be cleared at initialization.

Table 8-11. Interrupt Map Register 2 – IMAP2

LBA:

PCI:

8528H

NA

Legend: NA = Not Accessible RO = Read Only
RV = Reserved PR = Preserved RW = Read/Write
RS = Read/Set RC = Read Clear
LBA = 80960 local bus address PCI = PCI Configuration Address Offset

Bit Default Description

31:24 Default
Value

Loaded
from Image
in Control

Table.

Reserved. Initialize to 0.

23:20 Timer Interrupt 1 Field.

19:16 Timer Interrupt 0 Field.

15:00 Reserved. Initialize to 0.

PCI

LBA

28 24 20 16 12 8 4 031

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

Table 8-12. Interrupt Pending Register – IPND

LBA:

PCI:

8500H

NA

Legend: NA = Not Accessible RO = Read Only
RV = Reserved PR = Preserved RW = Read/Write
RS = Read/Set RC = Read Clear
LBA = 80960 local bus address PCI = PCI Configuration Address Offset

Bit Default Description

31:14 XXXX XH Reserved. Initialize to 0.

13:12 XX2

Timer Interrupt Pending Bits - IPND.tip
(1) Pending Interrupt
(0) No Interrupt

11:08 XH Reserved. Initialize to 0.

07:00 XXH
External Interrupt Pending Bits - IPND.xip

(1) Pending Interrupt
(0) No Interrupt

PCI

LBA

28 24 20 16 12 8 4 031

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rw

na

rw

na

rv

na

rv

na

rv

na

rv

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

8-28 i960® VH Processor Developer’s Manual

Interrupts

The IPND register posts interrupts originating from the eight external dedicated sources and the
two timer sources. Asserting one of these inputs latches a 1 into its associated bit in the IPND
register. The mask register provides a mechanism for masking individual bits in the IPND register.
An interrupt source is disabled when its associated mask bit is cleared (0).

When delivering a hardware interrupt, the interrupt controller conditionally clears IMSK based on
the value of the ICON.mo bit. Note that IMSK is never cleared for NMI# or software interrupt.

Although software can read and write IPND and IMSK using any memory-format instruction, it is
recommended that a read-modify-write operation using the atomic-modify instruction (atmod) be
used for reading and writing these registers. Executing an atmod on one of these registers causes
the interrupt controller to perform regular interrupt processing (including using or automatically
updating IPND and IMSK) either before or after, but, not during the read-modify-write operation
on that register. This requirement ensures that modifications to IPND and IMSK take effect
cleanly, completely, and at a well-defined point. Note that the processor does not assert the LOCK#
pin externally when executing an atomic instruction to IPND and IMSK.

When the processor core handles a pending interrupt, it attempts to clear the bit that is latched for
that interrupt in the IPND register before it begins servicing the interrupt. If that bit is associated
with an interrupt source that is programmed for level detection and the true level is still present,
then the bit remains set. Because of this, the interrupt routine for a level-detected interrupt should
clear the external interrupt source and explicitly clear the IPND bit before return from the handler
is executed.

An alternative method of posting interrupts in the IPND register, other than through the external
interrupt pins, is to set bits in the register directly using an atmod instruction. This operation has
the same effect as requesting an interrupt through the external interrupt pins.

Table 8-13. Interrupt Mask Register – IMSK

LBA:

PCI:

8504H

NA

Legend: NA = Not Accessible RO = Read Only
RV = Reserved PR = Preserved RW = Read/Write
RS = Read/Set RC = Read Clear
LBA = 80960 local bus address PCI = PCI Configuration Address Offset

Bit Default Description

31:14 0000 0H Reserved. Initialize to 0.

13:12 002

Timer Interrupt Mask Bits - IMSK.tim
(1) Not Masked
(0) Masked

11:08 0H Reserved. Initialize to 0.

07:00 00H
External Interrupt Mask Bits - IMSK.xim

(1) Not Masked
(0) Masked

PCI

LBA

28 24 20 16 12 8 4 031

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rw

na

rw

na

rv

na

rv

na

rv

na

rv

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

i960® VH Processor Developer’s Manual 8-29

Interrupts

8.4.5 XINT6 Interrupt Status Register – X6ISR

The XINT6 Interrupt Status Register (X6ISR) shows the pending XINT6 interrupts. The source of
the XINT6 interrupt can be the internal peripheral devices connected through the XINT6 interrupt
latch or the external XINT6# interrupt pin. The interrupts which are connected to the XINT6 input
are detailed in Section 8.3.3, “Internal Peripheral Interrupt Routing” on page 8-20.

The X6ISR register is used to determine the source of an interrupt on the XINT6# input. All bits
within this register are defined as read-only. The bits within this register are cleared when the
source of the interrupt (status register source shown in Table 8-3) are cleared. X6ISR reflects the
current state of the input to the XINT6 interrupt latch.

Due to the asynchronous nature of the 80960VH internal peripheral units, multiple interrupts can
be active when application software reads the X6ISR register. Application software must handle
the occurrence of multiple interrupts. In addition, software may subsequently read X6ISR to
determine when additional interrupts have occurred while processing the current interrupts. All
interrupts from X6ISR will be at the same priority level within the i960 core.

Table 8-14 details the X6ISR register.

8.4.6 XINT7 Interrupt Status Register – X7ISR

The XINT7 Interrupt Status Register (X7ISR) shows the pending XINT7 interrupts. The source of
the XINT7 interrupt can be the internal peripheral devices connected through the XINT7 interrupt
latch or the external XINT7# interrupt pin. The interrupts which are connected to the XINT7# input
are detailed in Section 8.3.3, “Internal Peripheral Interrupt Routing”.

Table 8-14. XINT6 Interrupt Status Register – X6ISR

LBA:

PCI:

1708H

NA

Legend: NA = Not Accessible RO = Read Only
RV = Reserved PR = Preserved RW = Read/Write
RS = Read/Set RC = Read Clear
LBA = 80960 local bus address PCI = PCI Configuration Address Offset

Bit Default Description

31:04 0000 000H Reserved.

03 02
External XINT6# Interrupt Pending - when set, an interrupt is pending on the external
XINT6# input. When clear, no interrupt exists.

02 02 Reserved.

01 02
DMA Channel 1 Interrupt Pending - when set, a DMA channel 1 interrupt is pending.
When clear, no interrupt condition exists.

00 02
DMA Channel 0 Interrupt Pending - when set, a DMA channel 0 interrupt is pending.
When clear, no interrupt condition exists.

PCI

LBA

28 24 20 16 12 8 4 031

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

ro

na

ro

na

ro

na

ro

na

8-30 i960® VH Processor Developer’s Manual

Interrupts

The X7ISR register is used to determine the source of an interrupt on the XINT7# input. All bits
within this register are defined as read-only. The bits within this register are cleared when the
source of the interrupt (status register source shown in Table 8-4) are cleared. X7ISR reflects the
current state of the input to the XINT7 interrupt latch.

Due to the asynchronous nature of the 80960VH internal peripheral units, multiple interrupts can
be active when the application software reads the X7ISR register. It is up to the application
software to handle the occurrence of multiple interrupts. In addition, software may subsequently
read X7ISR to determine when additional interrupts have occurred while processing the current
interrupts. All X7ISR interrupts will be at the same priority level within the i960 core.

Table 8-14 details the definition of the X7ISR.

8.4.7 NMI Interrupt Status Register – NISR

The NMI Interrupt Status Register (NISR) shows the pending NMI interrupts. The source of the
NMI interrupt can be the internal peripheral devices connected through the NMI Interrupt Latch or
the external NMI# interrupt pin. The interrupts which are connected to the NMI# input are detailed
in Section 8.3.3, “Internal Peripheral Interrupt Routing”.

The NMI Interrupt Status Register is used to determine the source of an interrupt on the NMI#
input. All of the bits within the NISR are read-only. The bits within this register are cleared when
the source of the interrupt (status register source shown in Table 8-5) are cleared. NISR reflects the
current state of the input to the NMI Interrupt Latch. Note that although the NMI# input of the i960
core is edge triggered, the external NMI# input of the 80960VH requires a level input and must be
latched external to the 80960VH.

Table 8-15. XINT7 Interrupt Status Register – X7ISR

LBA:

PCI:

1704H

NA

Legend: NA = Not Accessible RO = Read Only
RV = Reserved PR = Preserved RW = Read/Write
RS = Read/Set RC = Read Clear
LBA = 80960 local bus address PCI = PCI Configuration Address Offset

Bit Default Description

31:05 0000 000H Reserved.

04 02
External XINT7# Interrupt Pending - when set, an interrupt is pending on the external
XINT7# input. When clear, no interrupt exists.

03 02

Primary ATU/Start BIST Interrupt Pending - when set, the host processor has set the
start BIST request in the ATUBISTR register. When clear, no start BIST interrupt is
pending.

02 02
Inbound Doorbell Interrupt Pending - when set, an interrupt from the Inbound Doorbell
Unit is pending. When clear, no interrupt is pending.

01 02
I2C Interrupt Pending - when set, an interrupt is from the I2C Bus Interface Unit is
pending. When clear, no interrupt is pending.

00 02 Reserved.

PCI

LBA

28 24 20 16 12 8 4 031

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

ro

na

ro

na

ro

na

ro

na

ro

na

i960® VH Processor Developer’s Manual 8-31

Interrupts

Due to the asynchronous nature of the 80960VH internal peripheral units, multiple interrupts can
be active when the application software reads the NISR register. It is up to the application software
to handle the occurrence of multiple interrupts. In addition, software must check the contents of the
NISR to ensure all NMI sources are cleared before returning from the NMI interrupt service
routine. All NISR interrupts will be at the same priority level within the i960 core.

Table 8-16 shows the bit definitions for reading the NMI interrupt status register.

Example 8-5. Example Code - NMI Interrupt Handler Main Loop

/* NMI Interrupt Handler */
volatile unsigned long int NISR;
do

{ NISR = *NISR_reg_addr;
if (NISR & 1)

80960_core_error();
if (NISR & 2)

primary_atu_error();
if (NISR & 32)

dma_channel_0_error();
if (NISR & 64)

dma_channel_1_error();
if (NISR & 256)

messaging_unit_interrupt();
if (NISR & 512)

external_nmi_interrupt(); }
while(!NISR);

return;

Table 8-16. NMI Interrupt Status Register – NISR (Sheet 1 of 2)

LBA:

PCI:

1700H

NA

Legend: NA = Not Accessible RO = Read Only
RV = Reserved PR = Preserved RW = Read/Write
RS = Read/Set RC = Read Clear
LBA = 80960 local bus address PCI = PCI Configuration Address Offset

Bit Default Description

31:10 0000 00H Reserved.

09 02
External NMI# Interrupt - when set, an interrupt is pending on the external NMI# input.
When clear, no interrupt exists.

08 02
Messaging Unit Interrupt - when set, an NMI interrupt or error exists in the Messaging
Unit. When clear, no error exists.

07 02 Reserved.

06 02
DMA Channel 1 Error - when set, a PCI or local bus error condition exists within DMA
channel. When clear, no error exists.

PCI

LBA

28 24 20 16 12 8 4 031

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

8-32 i960® VH Processor Developer’s Manual

Interrupts

8.4.8 Interrupt Controller Register Access Requirements

A load instruction that accesses the IPND, IMSK, IMAP2:0 or ICON register has a latency of one
internal processor cycle. A store access to an interrupt register is synchronous with respect to the
next instruction; that is, the operation completes fully and all state changes take effect before the
next instruction begins execution.

Interrupts can be enabled and disabled quickly by the intdis and inten instructions, which take four
cycles each to execute. intctl takes a few cycles longer because it returns the previous interrupt
enable value. See Chapter 6, “Instruction Set Reference” for more information on these
instructions.

8.4.9 Default and Reset Register Values

The interrupt logic is reset by the primary PCI reset signal or through software. Table 8-17 shows
the power-up and reset values. Refer to Section 12.4, “Initial Memory Image (IMI)” on page 12-10
for more information on register values after reset.

05 02
DMA Channel 0 Error - when set, a PCI or local bus error condition exists within DMA
channel. When clear, no error exists.

04 02 Reserved.

03 02 Reserved.

02 02 Reserved.

01 02
Primary ATU Error - when set, a PCI or local bus error condition exists within the
primary ATU. When clear, no error exists.

00 02
i960 core Error - when set, an error condition caused by the i960 core exists within the
internal memory controller. When clear, no error exists.

Table 8-16. NMI Interrupt Status Register – NISR (Sheet 2 of 2)

LBA:

PCI:

1700H

NA

Legend: NA = Not Accessible RO = Read Only
RV = Reserved PR = Preserved RW = Read/Write
RS = Read/Set RC = Read Clear
LBA = 80960 local bus address PCI = PCI Configuration Address Offset

Bit Default Description

PCI

LBA

28 24 20 16 12 8 4 031

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

Table 8-17. Default Interrupt Routing and Status Values Summary

Register Default Value Description

PCI Interrupt Routing Select Register 0000 0000H

XINT0# routed to the P_INTA#

XINT1# routed to the P_INTB#

XINT2# routed to the P_INTC#

XINT3# routed to the P_INTD#

NMI Interrupt Status Register 0000 0000H No interrupts set

XINT7 Interrupt Status Register 0000 0000H No interrupts set

i960® VH Processor Developer’s Manual 8-33

Interrupts

XINT6 Interrupt Status Register 0000 0000H No interrupts set

IPND undefined Software responsible for clearing this
register before unmasking any interrupts

IMSK 0000 0000H All interrupts masked

ICON
Initial Image in
Control Table

Set to user’s values

IMAP2:0
Initial Image in
Control Table

Set to user’s values

Table 8-17. Default Interrupt Routing and Status Values Summary

Register Default Value Description

8-34 i960® VH Processor Developer’s Manual

Interrupts

8.5 Optimizing Interrupt Performance

Figure 8-8 depicts the path from interrupt source to interrupt service routine. This section discusses
interrupt performance in general and suggests techniques the application can use to get the best
interrupt performance.

Figure 8-8. Interrupt Service Flowchart

set bit in IPND

Dedicated Interrupt Non-Maskable Interrupt (NMI#)

is
int.prio

> PC.pr NO

YES

signal core to
process interrupt

Software Interrupt

is
IMSK

ANDed with
IPND
= 0?

YES

get vector from
IMAP register

YES

NO
PC.s = 1

SP = interrupt
stack pointer

PFP = FP

SIPR =

get vector in field 1

set corresponding

New PC =

state = interrupted (PC.s = 1)
mode = supervisor (PC.em = 1)

YES
software
interrupt

NO

store interrupt
record at FP - 16

get interrupt procedure pointer
SP = FP + 64
IP = interrupt procedure pointer

pending bits in
interrupt table

interrupt priority

?

or = 31?

?

FP = SP aligned to
next 16 byte boundary

+16

clear trace fault pending bit (TC.tfp)
clear trace enable bit (TC.te)

vector = 248

NO

YES

continue normal

operation

(Test for external

is

ICON.gid

= 0?

update SIPR with
next highest priority

read pending interrupt bits;
clear pending interrupt bits

in interrupt table,

 interrupts enabled)

(See if
 Interrupt
Priority is

(Test for
 interrupted
state)

Servicing
NMI#

already

YES

NO

greater than
process
priority OR
at interrupt
priority=31)

PFP[3:0] = 0111

i960® VH Processor Developer’s Manual 8-35

Interrupts

8.5.1 Interrupt Service Latency

The established measure of interrupt performance is the time required to perform an interrupt task
switch, which is known as interrupt service latency. Latency is the time measured between
interrupt source activation and execution of the first instruction for the accompanying
interrupt-handling procedure.

Interrupt latency depends on interrupt controller configuration and the instruction being executed
at the time of the interrupt. The processor also has a number of cache options that reduce interrupt
latency. In the discussion that follows, interrupt latency is expressed as a number of bus clock
cycles.

8.5.2 Features to Improve Interrupt Performance

The 80960VH employs four methods to reduce interrupt latency:

• Caching interrupt vectors on-chip

• Caching of interrupt handling procedure code

• Reserving register frames in the local register cache

• Caching the interrupt stack in the data cache

8.5.2.1 Vector Caching Option

To reduce interrupt latency, the 80960VH loads interrupt table vector entries in internal data RAM.
When the vector cache option is enabled and an interrupt request has a cached vector to be
serviced, the controller fetches the associated vector from internal RAM rather than from the
interrupt table in memory.

Interrupts with a vector number with the four least-significant bits equal to 00102 can be cached.
Vectors that can be cached coincide with the vector numbers selected with the mapping registers
and assigned to dedicated-mode inputs. The vector caching option is selected when programming
the ICON register; software must explicitly store the vector entries in internal RAM.

Since the internal RAM is mapped to the address space directly, this operation can be performed
using the core’s store instructions. Table 8-18 shows the required vector mapping to specific
locations in internal RAM. For example, the vector entry for vector number 18 must be stored at
RAM location 04H, and so on.

The NMI# vector is also shown in Table 8-18. This vector is always cached in internal data RAM
at location 0000H. The processor automatically loads this location at initialization with the value of
vector number 248 in the interrupt table.

Table 8-18. Location of Cached Vectors in Internal RAM (Sheet 1 of 2)

Vector Number (Binary) Vector Number (Decimal) Internal RAM Address

(NMI#) 248 0000H

0001 00102 18 0004H

0010 00102 34 0008H

0011 00102 50 000CH

0100 00102 66 0010H

8-36 i960® VH Processor Developer’s Manual

Interrupts

8.5.2.2 Caching Interrupt Routines and Reserving Register Frames

The time required to fetch the first instructions of an interrupt-handling procedure affects interrupt
response time and throughput. The controller reduces this fetch time by caching interrupt
procedures or portions of procedures in the 80960VH’s instruction cache.

To decrease interrupt latency for high priority interrupts (priority 28 and above), software can limit
the number of frames in the local register cache available to code running at a lower priority
(priority 27 and below). This ensures that some number of free frames are available to high-priority
interrupt service routines. See Section 4.2, “Local Register Cache” on page 4-2, for more details.

8.5.2.3 Caching the Interrupt Stack

By locating the interrupt stack in memory that can be cached by the data cache, the performance of
interrupt returns can be improved. This is because accesses to the interrupt record by the interrupt
return can be satisfied by the data cache. See Section 13.2, “Programming the Physical Memory
Attributes (Pmcon Registers)” on page 13-3 for details on how to enable data caching for portions
of memory.

8.5.3 Base Interrupt Latency

In many applications, the processor’s instruction mix and cache configuration are known
sufficiently well to use typical interrupt latency in calculations of overall system performance. For
example, a timer interrupt may frequently trigger a task switch in a multi-tasking kernel. Base
interrupt latency assumes the following:

• Single-cycle RISC instruction is interrupted.

• Frame flush does not occur.

• Bus queue is empty.

• Cached interrupt handler.

• No interaction of faults and interrupts (i.e., a stable system).

0101 00102 82 0014H

0110 00102 98 0018H

0111 00102 114 001CH

1000 00102 130 0020H

1001 00102 146 0024H

1010 00102 162 0028H

1011 00102 178 002CH

1100 00102 194 0030H

1101 00102 210 0034H

1110 00102 226 0038H

1111 00102 242 003CH

Table 8-18. Location of Cached Vectors in Internal RAM (Sheet 2 of 2)

Vector Number (Binary) Vector Number (Decimal) Internal RAM Address

i960® VH Processor Developer’s Manual 8-37

Interrupts

Table 8-19 shows the base latencies for all interrupt types, with varying vector caching options.

8.5.4 Maximum Interrupt Latency

In real-time applications, worst-case interrupt latency must be considered for critical handling of
external events. For example, an interrupt from a mechanical subsystem may need service to
calculate servo loop parameters to maintain directional control. Determining worst-case latency
depends on knowledge of the processor’s instruction mix and operating environment as well as the
interrupt controller configuration. Excluding certain very long, uninterruptible instructions from
critical sections of code reduces worst-case interrupt latency to levels approaching the base latency.

The following tables present worst case interrupt latencies based on possible execution of divo (r15
destination), divo (r3 destination), calls or flushreg instructions or software interrupt detection.
The assumptions for these tables are the same as for Table 8-19, except for instruction execution.

Table 8-19. Base Interrupt Latency

Interrupt Type Vector Caching Enabled Typical 80960VH Latency (Bus Clocks)1

NMI# Yes 30

 XINT5:4#, TINT1:0
Yes 34

No 40+a

 XINT7:6#, XINT3:0#
Yes 35

No 41+a

Software
Yes 68

No 69+a

NOTE:
1. a = MAX (0,N - 7) where “N” is the number of bus cycles needed to perform a word load.

Table 8-20. Worst-Case Interrupt Latency Controlled by divo to Destination r15

Interrupt Type
Vector Caching

Enabled
Worst 80960VH Latency (Bus Clocks)1

NMI# Yes 43

XINT5:4#, TINT1:0
Yes 45

No 45+a

XINT7:6#, XINT3:0#
Yes 46

No 46+a

NOTE:
1. a = MAX (0,N - 11) where “N” is the number of bus cycles needed to perform a word load.

Table 8-21. Worst-Case Interrupt Latency Controlled by divo to Destination r3 (Sheet 1 of 2)

Interrupt Type Vector Caching Enabled Worst 80960VH Latency (Bus Clocks)1

NMI# Yes 60

NOTE:
1. a = MAX (0,N - 7) where “N” is the number of bus cycles needed to perform a word load.

8-38 i960® VH Processor Developer’s Manual

Interrupts

 XINT5:4#, TINT1:0
Yes 65

No 72+a

 XINT7:6#, XINT3:0#
Yes 66

No 73+a

Table 8-21. Worst-Case Interrupt Latency Controlled by divo to Destination r3 (Sheet 2 of 2)

Interrupt Type Vector Caching Enabled Worst 80960VH Latency (Bus Clocks)1

NOTE:
1. a = MAX (0,N - 7) where “N” is the number of bus cycles needed to perform a word load.

Table 8-22. Worst-Case Interrupt Latency Controlled by calls

Interrupt Type Vector Caching
Enabled Worst 80960VH Latency (Bus Clocks)1

NMI# Yes 54+a

 XINT5:4#, TINT1:0
Yes 58+a

No 66+a+b

 XINT7:6#, XINT3:0#
Yes 59+a

No 67+a+b

NOTE:
1. a = MAX (0,N - 4)

b = MAX (0,N - 7)
where “N” is the number of bus cycles needed to perform a word load.

Table 8-23. Worst-Case Interrupt Latency When Delivering a Software Interrupt

Interrupt Type Vector Caching Enabled Worst 80960VH Latency (Bus Clocks)1

NMI# Yes 97

 XINT5:4#, TINT1:0
Yes 99

No 107+a

 XINT7:6#, XINT3:0#
Yes 100

No 108+a

NOTE:
1. a = MAX (0,N - 7) where “N” is the number of bus cycles needed to perform a word load.

i960® VH Processor Developer’s Manual 8-39

Interrupts

8.5.5 Avoiding Certain Destinations for MDU Operations

Typically, when delivering an interrupt, the processor attempts to push the first four local registers
(pfp, sp, rip, and r3) onto the local register cache as early as possible. Because of register-interlock,
this operation is stalled until previous instructions return their results to these registers. In most
cases, this is not a problem; however, in the case of instructions performed by the Multiply/Divide
Unit (divo, divi, ediv, modi, remo, and remi), the processor could be stalled for many cycles
waiting for the result and unable to proceed to the next step of interrupt delivery.

Interrupt latency can be improved by avoiding the first four local registers as the destination for a
Multiply/Divide Unit operation. (Registers pfp, sp, and rip should be avoided anyway for general
operations as these are used for procedure linking.)

8.5.6 XINT3:0# to Primary PCI Interrupt Routing Latency

The interrupt routing logic accepts the changes to the routing control value written to the PIRSR
register one clock after the write has completed. There is a one clock delay from the time that the
interrupt is recognized on the input of the mux until the signal is driven either to the i960 core
interrupt controller or the PCI output interrupt pins.

Table 8-24. Worst-Case Interrupt Latency Controlled by flushreg of One Stack Frame

Interrupt Type
Vector Caching

Enabled
Worst 80960VH Latency (Bus Clocks)

NMI# Yes 78+a+b

 XINT5:4#, TINT1:0
Yes 82+a+b

No 89+a+b+c

 XINT7:6#, XINT3:0#
Yes 83+a+b

No 90+a+b+c

NOTE:
1. a = MAX (0, M - 15)

b = MAX (0, M - 28)
c = MAX (0, N - 7)

where “M” is the number of bus cycles needed to perform a quad word store and “N” is the number of bus cycles
needed to perform a word load. Interrupt latency increases rapidly as the number of flushed stack frames increases.

i960® VH Processor Developer’s Manual 9-1

Faults 9

This chapter describes the i960® VH processor’s fault handling facilities. Subjects covered include
the fault handling data structures and fault handling mechanisms. See Section 9.10, “Fault
Reference” on page 9-18 for detailed information on each fault type.

9.1 Fault Handling Overview

The i960 processor architecture defines various conditions in code and/or the processor’s internal
state that could cause the processor to deliver incorrect or inappropriate results or that could cause
it to choose an undesirable control path. These are called fault conditions. For example, the
architecture defines faults for divide-by-zero and overflow conditions on integer calculations with
an inappropriate operand value.

As shown in Figure 9-1, the architecture defines a fault table, a system procedure table, a set of
fault handling procedures and stacks (user stack, supervisor stack and interrupt stack) to handle
processor-generated faults.

The fault table contains pointers to fault handling procedures. The system procedure table
optionally provides an interface to any fault handling procedure and allows faults to be handled in
supervisor mode. Stack frames for fault handling procedures are created on either the user or
supervisor stack, depending on the mode in which the fault is handled. When the processor is in the
interrupted state, the processor uses the interrupt stack.

Figure 9-1. Fault-Handling Data Structures

Processor

Fault

Fault Fault

Supervisor

User Stack

System

Table

Procedure
Table

Handling
Procedures

Stack

9-2 i960® VH Processor Developer’s Manual

Faults

Once these data structures and the code for the fault procedures are established in memory, the
processor handles faults automatically and independently from application software.

The processor can detect a fault at any time while executing instructions, whether from a program,
interrupt handling procedure or fault handling procedure. When a fault occurs, the processor
determines the fault type and selects a corresponding fault handling procedure from the fault table.
It then invokes the fault handling procedure by means of an implicit call. As described later in this
chapter, the fault handler call can be:

• A local call (call-extended operation)

• A system-local call (local call through the system procedure table)

• A system-supervisor call (supervisor call through the system procedure table)

A normal fault condition is handled by the processor in the following manner:

• The current local registers are saved and cached on-chip.

• PFP = FP and the value 001 is written to the Return Type Field (Fault Call). Refer to
Section 7.8, “Returns” on page 7-17 for more information.

• When the fault call is a system-supervisor call from user mode, the processor switches to the
supervisor stack; otherwise, SP is realigned on the current stack.

• The processor writes the fault record on the new stack. This record includes information on the
fault and the processor’s state when the fault was generated.

• The Instruction Pointer (IP) of the first instruction of the fault handler is accessed through the
fault table or through the system procedure table (for system fault calls).

After the fault record is created, the processor executes the selected fault handling procedure.
When a fault is recoverable (i.e., the program can be resumed after handling the fault) the Return
Instruction Pointer (RIP) is defined for the fault being serviced (Section 9.10, “Fault Reference” on
page 9-18) and the processor resumes execution at the RIP upon return from the fault handler.
When the RIP is undefined, the fault handling procedure can create one by using the flushreg
instruction followed by a modification of the RIP in the previous frame. The fault handler can also
call a debug monitor or reset the processor instead of resuming prior execution.

This procedure call mechanism also handles faults that occur:

• While the processor is servicing an interrupt.

• While the processor is servicing another fault.

9.2 Fault Types

The i960 architecture defines a basic set of faults that are categorized by type and subtype. Each
fault has a unique type and subtype number. When the processor detects a fault, it records the fault
type and subtype numbers in the fault record. It then uses the type number to select the fault
handling procedure.

The fault handling procedure can optionally use the subtype number to select a specific fault
handling action. The 80960VH recognizes i960 architecture-defined faults and a new fault subtype
for detecting unaligned memory accesses. Table 9-1 lists all faults that the 80960VH detects,
arranged by type and subtype. Text that follows Table 9-1 gives column definitions.

i960® VH Processor Developer’s Manual 9-3

Faults

In Table 9-1:

• The first (left-most) column contains the fault type numbers in hexadecimal.

• The second column shows the fault type name.

• The third column gives the fault subtype number as either: (1) a hexadecimal number or (2) as
a bit position in the fault record’s 8-bit fault subtype field. The bit position method of
indicating a fault subtype is used for certain faults (such as trace faults) in which two or more
fault subtypes may occur simultaneously.

• The fourth column gives the fault subtype name. For convenience, individual faults are
referenced by their fault-subtype names. Thus an OPERATION.INVALID_OPERAND fault
is referred to as an INVALID_OPERAND fault; an ARITHMETIC.INTEGER_OVERFLOW
fault is referred to as an INTEGER_OVERFLOW fault.

• The fifth column shows the encoding of the word in the fault record that contains the fault type
and fault subtype numbers.

Other i960 processor family members may provide extensions that recognize additional fault
conditions. Fault type and subtype encoding allows all faults to be included in the fault table: those
that are common to all i960 processors and those that are specific to one or more family members.

Table 9-1. i960® VH Processor Fault Types and Subtypes

Fault Type Fault Subtype Fault Record

Number Name Number or
Bit Position Name

0H PARALLEL NA NA see Section 9.6.4, “Parallel
Faults” on page 9-9

1H TRACE

Bit 1

Bit 2

Bit 3

Bit 4

Bit 5

Bit 6

Bit 7

INSTRUCTION

BRANCH

CALL

RETURN

PRERETURN

SUPERVISOR

MARK/BREAKPOINT

0001 0002H

0001 0004H

0001 0008H

0001 0010H

0001 0020H

0001 0040H

0001 0080H

2H OPERATION

1H

2H

3H

4H

INVALID_OPCODE

UNIMPLEMENTED

UNALIGNED

INVALID_OPERAND

0002 0001H

0002 0002H

0002 0003H

0002 0004H

3H ARITHMETIC
1H

2H

INTEGER_OVERFLOW

ZERO-DIVIDE

0003 0001H

0003 0002H

4H Reserved

5H CONSTRAINT 1H RANGE 0005 0001H

6H Reserved

7H PROTECTION Bit 1 LENGTH 0007 0002H

8H - 9H Reserved

AH TYPE 1H MISMATCH 000A 0001H

BH - FH Reserved

9-4 i960® VH Processor Developer’s Manual

Faults

The fault types are used consistently for all family members. For example, Fault Type 4H is
reserved for floating point faults. Any i960 processor with floating point operations uses Entry 4H
to store the pointer to the floating point fault handling procedure.

9.3 Fault Table

The fault table (Figure 9-2) is the processor’s pathway to the fault handling procedures. It can be
located anywhere in the address space. From the Process Control Block, the processor obtains a
pointer to the fault table during initialization.

The fault table contains one entry for each fault type. When a fault occurs, the processor uses the
fault type to select an entry in the fault table. From this entry, the processor obtains a pointer to the
fault handling procedure for the type of fault that occurred. Once called, a fault handling procedure
has the option of reading the fault subtype or subtypes from the fault record when determining the
appropriate fault recovery action.

i960® VH Processor Developer’s Manual 9-5

Faults

As indicated in Figure 9-2, two fault table entry types are allowed: local-call entry and system-call
entry. Each is two words in length. The entry type field (bits 0 and 1 of the entry’s first word) and
the value in the entry’s second word determine the entry type.

Figure 9-2. Fault Table and Fault Table Entries

31 0

TYPE Fault Entry

PROTECTION Fault Entry

CONSTRAINT Fault Entry

ARITHMETIC Fault Entry

OPERATION Fault Entry

TRACE Fault Entry

PARALLEL/OVERRIDE Fault Entry

Local-Call Entry

Fault-Handler Procedure Address

System-Call Entry

Fault-Handler Procedure Number

0000 027FH

n

n+4

n

n+4

012

0

01

00H

08H

10H

18H

20H

28H

30H

38H

40H

48H

50H

FCH

Reserved (Initialize to 0)

0

31

31

Fault Table

012

9-6 i960® VH Processor Developer’s Manual

Faults

Other entry types (012 and 112) are reserved and have unpredictable behavior.

To summarize, a fault handling procedure can be invoked through the fault table in any of three
ways: a local call, a system-local call or a system-supervisor call.

9.4 Stack Used in Fault Handling

The i960 architecture does not define a dedicated fault handling stack. Instead, to handle a fault, the
processor uses either the user, interrupt or supervisor stack, whichever is active when the fault is
generated. There is, however, one exception: if the user stack is active when a fault is generated
and the fault handling procedure is called with an implicit system supervisor call, then the
processor switches to the supervisor stack to handle the fault.

9.5 Fault Record

When a fault occurs, the processor records information about the fault in a fault record in memory.
The fault handling procedure uses the information in the fault record to correct or recover from the
fault condition and, if possible, resume program execution. The fault record is stored on the same
stack that the fault handling procedure uses to handle the fault.

9.5.1 Fault Record Description

Figure 9-3 shows the fault record’s structure. In this record, the fault’s type number and subtype
number (or bit positions for multiple subtypes) are stored in the fault type and subtype fields,
respectively. The Address of Faulting Instruction Field contains the IP of the instruction that
caused the processor to fault.

When a fault is generated, the existing PC and AC register contents are stored in their respective
fault record fields. The processor uses this information to resume program execution after the fault
is handled.

The Resumption Field is used to store information about a pending trace fault. When a trace fault
and a non-trace fault occur simultaneously, the non-trace fault is serviced first and the pending
trace may be lost depending on the non-trace fault encountered. The Trace Reporting paragraph for
each fault specifies whether the pending trace is kept or lost.

local-call entry
(type 002)

Provides an instruction pointer for the fault handling procedure. The
processor uses this entry to invoke the specified procedure by means of an
implicit local-call operation. The second word of a local procedure entry is
reserved. It must be set to zero when the fault table is created and not
accessed after that.

system-call entry
(type 102)

Provides a procedure number in the system procedure table. This entry must
have an entry type of 102 and a value in the second word of 0000 027FH.
Using this entry, the processor invokes the specified fault handling
procedure by means of an implicit call-system operation similar to that
performed for the calls instruction. A fault handling procedure in the system
procedure table can be called with a system-local call or a system-supervisor
call, depending on the entry type in the system-procedure table.

i960® VH Processor Developer’s Manual 9-7

Faults

9.5.2 Fault Record Location

The fault record is stored on the stack that the processor uses to execute the fault handling
procedure. As shown in Figure 9-4, this stack can be the user stack, supervisor stack or interrupt
stack. The fault record begins at byte address NFP-1. NFP refers to the new frame pointer that is
computed by adding the memory size allocated for padding and the fault record to the new stack
pointer (NSP). The processor rounds the FP to the next 16-byte boundary and then allocates 80
bytes for the fault record.

Figure 9-3. Fault Record

031

Process Controls

Address of Faulting Instruction (n)

Reserved

NFP-20

NFP-16

NFP-12

NFP-8

NFP-4

OTYPE OSUBTYPE OFLAGS

Arithmetic Controls

FTYPE (N) FSUBTYPE (N)FFLAGS (N)

Override Fault Data

Fault Data

NFP-96

NFP-88

NFP-84

NFP-76

NFP-72

NFP-68

NFP-64

NFP-52

NFP-48

NFP-44

NFP-32

FTYPE (1) FSUBTYPE (1)

Address of Faulting Instruction (1)

28 24 20 16 12 8 4 031

Resumption Information

Fault Data

NOTES: “NFP” means “New Frame Pointer”

WasIs

80960 Local Bus Address

NFP-64

NFP-4-n*32

NFP-8-n*32

NFP-12-n*32

NFP-20-n*32

NFP-24-n*32

NFP-(n+1)*32

9-8 i960® VH Processor Developer’s Manual

Faults

9.6 Multiple and Parallel Faults

Multiple fault conditions can occur during a single instruction execution and during a multiple
instruction execution when the instructions are executed by different units within the processor.
The following sections describe how faults are handled under these conditions.

9.6.1 Multiple Non-Trace Faults on the Same Instruction

Multiple fault conditions can occur during a single instruction execution. For example, an
instruction can have an invalid operand and unaligned address. When this situation occurs, the
processor is required to recognize and generate at least one of the fault conditions. The processor
may not detect all fault conditions and reports only one detected non-trace fault on a single
instruction.

In a multiple fault situation, the reported fault condition is left to the implementation.

9.6.2 Multiple Trace Fault Conditions on the Same Instruction

Trace faults on different instructions cannot happen concurrently, because trace faults are precise
(Section 9.9, “Precise and Imprecise Faults” on page 9-16). Multiple trace fault conditions on the
same instruction are reported in a single trace fault record (with the exception of prereturn trace,
which always happens alone). To support multiple fault reporting, the trace fault uses bit positions
in the fault-subtype field to indicate occurrences of multiple faults of the same type (Table 9-1).

Figure 9-4. Storage of the Fault Record on the Stack

Current Frame

Padding Area

Fault Record

New Frame

NSP1

NFP-4

NFP

FP

SP

031

Fault
Record

Stack
Growth

Local Stack or Supervisor Stack2

Current Stack
(User, Supervisor, or Interrupt Stack)

031

NOTES:

1. If the call to the fault handler procedure does not require a stack switch, then the new stack pointer (NSP) is the same as
SP.

2. If the processor is in user mode and the fault handler procedure is called with a system supervisor call, then the processor
switches to the supervisor stack.

i960® VH Processor Developer’s Manual 9-9

Faults

9.6.3 Multiple Trace and Non-Trace Fault Conditions on the Same
Instruction

The execution of a single instruction can create one or more trace fault conditions in addition to
multiple non-trace fault conditions. When this occurs:

• The pending trace is dismissed if any of the non-trace faults dismisses it, as mentioned in the
“Trace Reporting” paragraph for that fault in Section 9.10, “Fault Reference” on page 9-18.

• The processor services one of the non-trace faults.

• Finally, the trace is serviced upon return from the non-trace fault handler if it was not
dismissed in step 1.

9.6.4 Parallel Faults

The 80960VH exploits the architecture’s tolerance of out-of-order instruction execution by issuing
instructions to independent execution units on the chip. The following subsections describe how
the processor handles faults in this environment.

9.6.4.1 Faults on Multiple Instructions Executed in Parallel

When AC.nif=0, imprecise faults relative to different instructions executing in parallel may be
reported in a single parallel fault record. For these conditions, the processor calls a unique fault
handler, the PARALLEL fault handler (Section 9.9.4, “No Imprecise Faults (AC.nif) Bit” on
page 9-17). This mechanism allows instructions that can fault to be executed in parallel with other
instructions or to be executed out of order.

In parallel fault situations, the processor saves the fault type and subtype of the second and
subsequent faults detected in the optional section of the fault record. The optional section is the
area below NFP-64 where the fault records for each of the parallel faults that occurred are stored.
The fault handling procedure for parallel faults can then analyze the fault record and handle the
faults. The fault record for parallel faults is described in the next section.

When the RIP is undefined for at least one of the faults found in the parallel fault record, then the
RIP of the parallel fault handler is undefined. In this case, the parallel fault handling procedure can
either create a RIP and return or call a debug monitor to analyze the faults.

When the RIP is defined for all faults found in the fault record, then it points to the next instruction
not yet executed. The parallel fault handler can simply return to the next instruction not yet
executed with a ret instruction.

Consider the following code example, where the muli and the addi instructions both have overflow
conditions. AC.om=0, AC.nif = 0, and both instructions are in the instruction cache at the time of
their execution. The addi and muli are allowed to execute in parallel because AC.nif = 0 and the
faults that these instructions can generate (ARITHMETIC) are imprecise.

The fault on the addi is detected before the fault on the muli because the muli takes longer to
execute. The fault call synchronizes faults on the way to the overflow fault handler for the addi
instruction (Section 9.9.5, “Controlling Fault Precision” on page 9-18), which is when the muli

Example 9-1. Imprecise Fault Generations

muli g2, g4, g6;

addi g8, g9, g10; # results in integer overflow

9-10 i960® VH Processor Developer’s Manual

Faults

fault is detected. The processor builds a parallel fault record with information relative to both faults
and calls the parallel fault handler. In the fault handler, ARITHMETIC faults may be recovered by
storing the desired result of the instruction in the proper destination register and setting the AC.of
flag (optional) to indicate that an overflow occurred. A ret at the end of the parallel fault handler
routine then returns to the next instruction not yet executed in the program flow.

On the 80960VH, the muli overflow fault is the only fault that can happen with a delay. Therefore,
parallel fault records can report a maximum of 2 faults, one of which must be a muli
ARITHMETIC.INTEGER_OVERFLOW fault.

A parallel fault handler must be accessed through a system-supervisor call. Local and system-local
parallel fault handlers are not supported by the architecture and have unpredictable behavior.
Tracing is disabled upon entry into the parallel fault handler (PC.te is cleared). It is restored upon
return from the handler. To prevent infinite internal loops, the parallel fault handler should not set
PC.te.

9.6.4.2 Fault Record for Parallel Faults

When parallel faults occur, the processor selects one of the faults and records it in the first 16 bytes
of the fault record as described in Section 9.5.1, “Fault Record Description” on page 9-6. The
remaining parallel faults are written to the fault record’s optional section, and the fault handling
procedure for parallel faults is invoked. Figure 9-3 shows the structure of the fault record for
parallel faults.

The OType/OSubtype word at NFP - 20 contains the number of parallel faults. The optional section
also contains a 32-byte parallel fault record for each additional parallel fault. These parallel fault
records are stored incrementally in the fault record starting at byte offset NFP-68. The fault record
for each additional fault contains only the fault type, fault subtype, address-of-faulting-instruction
and the optional fault section. (For example, when two parallel faults occur, the fault record for the
second fault is located from NFP-96 to NFP-65.)

For the second fault recorded (n=2), the relationship (NFP-8-(n * 32)) reduces to NFP-72. For the
80960VH, a maximum of two faults are reported in the parallel fault record, and one of them must
be the ARITHMETIC.INTEGER_OVERFLOW fault on a muli instruction.

9.6.5 Override Faults

The 80960VH can detect a fault condition while the processor is preparing to service a previously
detected fault. When this occurs, it is called an override condition. This section describes this
condition and how the processor handles it.

A normal fault condition is handled by the processor in the following manner:

• The current local registers are saved and cached on-chip.

• PFP = FP and the value 001 is written to the Return Type Field (Fault Call). Refer to
Section 7.8, “Returns” on page 7-17 for more information.

• When the fault call is a system-supervisor call from user mode, the processor switches to the
supervisor stack; otherwise, SP is realigned on the current stack.

• The processor writes the fault record on the new stack.

• The IP of the first instruction of the fault handler is accessed through the fault table or through
the system procedure table (for system fault calls).

i960® VH Processor Developer’s Manual 9-11

Faults

A fault that occurs during any of the above actions is called an override fault. In response to this
condition, the processor does the following:

• Switches the execution mode to supervisor.

• Selects the override condition that shows that the writing of the fault record was unsuccessful.
If no such fault exists, then the processor selects one of the other fault conditions. This method
ensures that the fault handler has information regarding the fault record write.

• Saves information pertaining to the override condition selected. The fault record describes the
first fault as described previously. Field OType contains the fault type of the second fault, field
OSubtype contains the fault subtype of the second fault and field override-fault-data contains
what would normally be the fault data field for the second fault type.

• Attempts to access the IP of the first instruction in the override fault handler through the
system procedure table.

It should be noted that a fault that occurs while the processor is actually executing a fault handling
procedure is not an override fault.

The override fault entry is entry 0. When the override fault entry in the fault table points to a
location beyond the system procedure table, the processor enters system error mode. Override fault
conditions include: PROTECTION and OPERATION.UNIMPLEMENTED faults.

An override fault handler must be accessed through a system-supervisor call. Local and
system-local override fault handlers are not supported by the architecture and have an
unpredictable behavior. Tracing is disabled upon entry into the override fault handler (PC.te is
cleared). It is restored upon return from the handler. To prevent infinite internal loops, the override
fault handler should not set PC.te.

9.6.6 System Error

When a fault is detected while the processor is in the process of servicing an override or parallel
fault, the processor enters the system error state. Note that “servicing” indicates that the processor
has detected the override or parallel fault, but has not begun executing the fault handling
procedure. This type of error causes the processor to enter a system error state. In this state, the
processor uses only one read bus transaction to signal the fail code message; the address of the bus
transaction is the fail code itself. See Section 12.3.1.5, “FAIL# Code” on page 12-9.

9.7 Fault Handling Procedures

The fault handling procedures can be located anywhere in the address space except within the
on-chip data RAM or MMR space. Each procedure must begin on a word boundary. The processor
can execute the procedure in user or supervisor mode, depending on the fault table entry type.

9.7.1 Possible Fault Handling Procedure Actions

The processor allows easy recovery from many faults that occur. When fault recovery is possible,
the processor’s fault handling mechanism allows the processor to automatically resume work on
the program or pending interrupt when the fault occurred. Resumption is initiated with a ret
instruction in the fault handling procedure.

9-12 i960® VH Processor Developer’s Manual

Faults

When recovery from the fault is not possible or not desirable, the fault handling procedure can take
one of the following actions, depending on the nature and severity of the fault condition (or
conditions, in the case of multiple faults):

• Return to a point in the program or interrupt code other than the point of the fault.

• Call a debug monitor.

• Perform processor or system shutdown with or without explicitly saving the processor state
and fault information.

When working with the processor at the development level, a common fault handling strategy is to
save the fault and processor state information and call a debugging tool such as a monitor.

9.7.2 Program Resumption Following a Fault

Because of the wide variety of faults, they can occur at different times with respect to the faulting
instruction:

• Before execution of the faulting instruction (for example, fetch from on-chip RAM)

• During instruction execution (for example, integer overflow)

• Immediately following execution (for example, trace)

9.7.2.1 Faults Happening Before Instruction Execution

The following fault types occur before instruction execution:

• ARITHMETIC.ZERO_DIVIDE

• TYPE.MISMATCH

• PROTECTION.LENGTH

• All OPERATION subtypes except UNALIGNED

For these faults, the contents of a destination register are lost, and memory is not updated. The RIP
is defined for the ARITHMETIC.ZERO_DIVIDE fault only. In some cases the fault occurs before
the faulting instruction is executed, the faulting instruction may be fixed and re-executed upon
return from the fault handling procedure.

9.7.2.2 Faults Happening During Instruction Execution

The following fault types occur during instruction execution:

• CONSTRAINT.RANGE

• OPERATION.UNALIGNED

• ARITHMETIC.INTEGER_OVERFLOW

For these faults, the fault handler must explicitly modify the RIP to return to the faulting
application (except for ARITHMETIC.INTEGER_OVERFLOW).

i960® VH Processor Developer’s Manual 9-13

Faults

When a fault occurs during or after execution of the faulting instruction, the fault may be
accompanied by a program state change so that program execution cannot be resumed after the
fault is handled. For example, when an integer overflow fault occurs, the overflow value is stored
in the destination register. When the destination register is the same as one of the source registers,
the source value is lost, making it impossible to re-execute the faulting instruction.

9.7.2.3 Faults Happening After Instruction Execution

For these faults, the Return Instruction Pointer (RIP) is defined and the fault handler can return to
the next instruction in the flow:

• TRACE

• ARITHMETIC.INTEGER_OVERFLOW

In general, resumption of program execution with no changes in the program’s control flow is
possible with the following fault types or subtypes:

• All TRACE Subtypes

The effect of specific fault types on a program is defined in Section 9.10, “Fault Reference” on
page 9-18 under the heading Program State Changes.

9.7.3 Return Instruction Pointer (RIP)

When a fault handling procedure is called, a Return Instruction Pointer (RIP) is saved in the image
of the RIP in the faulting frame. The RIP can be accessed at address PFP+8 while executing the
fault handler after a flushreg. The RIP in the previous frame points to an instruction where
program execution can be resumed with no break in the program’s control flow. It generally points
to the faulting instruction or to the next instruction to be executed. In some instances, however, the
RIP is undefined. RIP content for each fault is described in Section 9.10, “Fault Reference” on
page 9-18.

9.7.4 Returning to Point in Program Where Fault Occurred

As described in Section 9.7.2, “Program Resumption Following a Fault” on page 9-12, most faults
can be handled so that program control flow is not affected. In this case, the processor allows a
program to be resumed at the point where the fault occurred, following a return from a fault
handling procedure (initiated with a ret instruction). The resumption mechanism used here is
similar to that provided for returning from an interrupt handler.

Also, to restore the PC register from the fault record upon return from the fault handler, the fault
handling procedure must be executed in supervisor mode either by using a supervisor call or by
running the program in supervisor mode. See the pseudocode in Section 6.2.54, “ret” on page 6-84.

9.7.5 Returning to a Point in the Program Other Than Where the
Fault Occurred

A fault handling procedure can also return to a point in the program other than where the fault
occurred. To do this, the fault procedure must alter the RIP. To do this reliably, the fault handling
procedure should perform the following steps:

1. Flush the local register sets to the stack with a flushreg instruction.

9-14 i960® VH Processor Developer’s Manual

Faults

2. Modify the RIP in the previous frame.

3. Clear the trace-fault-pending flag in the fault record’s process controls field before the return
(optional).

4. Execute a return with the ret instruction.

Use this technique carefully and only in situations where the fault handling procedure is closely
coupled with the application program.

9.7.6 Fault Controls

For certain fault types and subtypes, the processor employs register mask bits or flags that
determine whether or not a fault is generated when a fault condition occurs. Table 9-2 summarizes
these flags and masks, the data structures in which they are located, and the fault subtypes they
affect.

The integer overflow mask bit inhibits the generation of integer overflow faults. The use of this
mask is discussed in Section 9.10, “Fault Reference” on page 9-18.

The Arithmetic Controls no imprecise faults (AC.nif) bit controls the synchronizing of faults for a
category of faults called imprecise faults. The function of this bit is described in Section 9.9,
“Precise and Imprecise Faults” on page 9-16.

TC register trace mode bits and the PC register trace enable bit support trace faults. Trace mode
bits enable trace modes; the trace enable bit (PC.te) enables trace fault generation. The use of these
bits is described in the trace faults description in Section 9.10, “Fault Reference” on page 9-18.
Further discussion of these flags is provided in Chapter 10, “Tracing and Debugging”.

The unaligned fault mask bit is located in the process control block (PRCB), which is read from the
fault configuration word (located at address PRCB pointer + 0CH) during initialization. It controls
whether unaligned memory accesses generate a fault. See Section 13.4.2, “Bus Transactions
Across Region Boundaries” on page 13-5.

9.8 Fault Handling Action

Once a fault occurs, the processor saves the program state, calls the fault handling procedure and, if
possible, restores the program state when the fault recovery action completes. No software other
than the fault handling procedures is required to support this activity.

Table 9-2. Fault Control Bits and Masks

Flag or Mask Name Location Faults Affected

Integer Overflow Mask Bit Arithmetic Controls (AC) Register INTEGER_OVERFLOW

No Imprecise Faults Bit Arithmetic Controls (AC) Register All Imprecise Faults

Trace Enable Bit Process Controls (PC) Register All TRACE Faults

Trace Mode Trace Controls (TC) Register All TRACE Faults except hardware
breakpoint traces and fmark

Unaligned Fault Mask Process Control Block (PRCB) UNALIGNED Fault

i960® VH Processor Developer’s Manual 9-15

Faults

Three types of implicit procedure calls can be used to invoke the fault handling procedure: a local
call, a system-local call and a system-supervisor call.

The following subsections describe actions the processor takes while handling faults. It is not
necessary to read these sections to use the fault handling mechanism or to write a fault handling
procedure. This discussion is provided for those readers who wish to know the details of the fault
handling mechanism.

9.8.1 Local Fault Call

When the selected fault handler entry in the fault table is an entry type 0002 (a local procedure), the
processor operates as described in Section 7.1.3.1, “Call Operation” on page 7-5, with the
following exceptions:

• A new frame is created on the stack that the processor is currently using. The stack can be the
user stack, supervisor stack or interrupt stack.

• The fault record is copied into the area allocated for it in the stack, beginning at NFP-1
(Figure 9-4).

• The processor gets the IP for the first instruction in the called fault handling procedure from
the fault table.

• The processor stores the fault return code (0012) in the PFP return type field.

When the fault handling procedure is not able to perform a recovery action, it performs one of the
actions described in Section 9.7.2, “Program Resumption Following a Fault” on page 9-12.

When the handler action results in recovery from the fault, a ret instruction in the fault handling
procedure allows processor control to return to the program that was executing when the fault
occurred. Upon return, the processor performs the action described in Section 7.1.3.2, “Return
Operation” on page 7-6, except that the arithmetic controls field from the fault record is copied into
the AC register. When the processor is in user mode before execution of the return, the process
controls field from the fault record is not copied back to the PC register.

9.8.2 System-Local Fault Call

When the fault handler selects an entry for a local procedure in the system procedure table (entry
type 102), the processor performs the same action as is described in the previous section for a local
fault call or return. The only difference is that the processor gets the fault handling procedure's
address from the system procedure table rather than from the fault table.

9.8.3 System-Supervisor Fault Call

When the fault handler selects an entry for a supervisor procedure in the system procedure table,
the processor performs the same action described in Section 7.1.3.1, “Call Operation” on page 7-5,
with the following exceptions:

• When the fault occurs while in user mode, the processor switches to supervisor mode, reads
the supervisor stack pointer from the system procedure table and switches to the supervisor
stack. A new frame is then created on the supervisor stack.

• When the fault occurs while in supervisor mode, the processor creates a new frame on the
current stack. When the processor is executing a supervisor procedure when the fault occurred,
the current stack is the supervisor stack; when it is executing an interrupt handler procedure,

9-16 i960® VH Processor Developer’s Manual

Faults

the current stack is the interrupt stack. (The processor switches to supervisor mode when
handling interrupts.)

• The fault record is copied into the area allocated for it in the new stack frame, beginning at
NFP-1 (Figure 9-4).

• The processor gets the IP for the first instruction of the fault handling procedure from the
system procedure table (using the index provided in the fault table entry).

• The processor stores the fault return code (0012) in the PFP register return type field. When the
fault is not a trace, parallel or override fault, it copies the state of the system procedure table
trace control flag (byte 12, bit 0) into the PC register trace enable bit. When the fault is a trace,
parallel or override fault, the trace enable bit is cleared.

On a return from the fault handling procedure, the processor performs the action described in
Section 7.1.3.2, “Return Operation” on page 7-6 with the addition of the following:

• The fault record arithmetic controls field is copied into the AC register.

• When the processor is in supervisor mode prior to the return from the fault handling procedure
(which it should be), the fault record process controls field is copied into the PC register. The
mode is then switched back to user, if it was in user mode before the call.

• The processor switches back to the stack it was using when the fault occurred. (When the
processor is in user mode when the fault occurs, this operation causes a switch from the
supervisor stack to the user stack.)

• When the trace-fault-pending flag and trace enable bits are set in the PC field of the fault
record, the trace fault on the instruction at the origin of the supervisor fault call is handled at
this time.

The user should note that PC register restoration causes any changes to the process controls, done
by the fault handling procedure, to be lost.

9.8.4 Faults and Interrupts

When an interrupt occurs during an instruction that faults, an instruction that has already faulted, or
fault handling procedure selection, the processor:

1. Completes the selection of the fault handling procedure.

2. Creates the fault record.

3. Services the interrupt just prior to executing the first instruction of the fault handling
procedure.

4. Handles the fault upon return from the interrupt.

Handling the interrupt before the fault reduces interrupt latency.

9.9 Precise and Imprecise Faults

As described in Section 9.10.5, “PARALLEL Faults” on page 9-22, the i960 architecture — to
support parallel and out-of-order instruction execution — allows some faults to be generated
together.

i960® VH Processor Developer’s Manual 9-17

Faults

The processor provides two mechanisms for controlling the circumstances under which faults are
generated: the AC register no-imprecise-faults bit (AC.nif) and the instructions that synchronize
faults. See Section 9.9.5, “Controlling Fault Precision” on page 9-18 for more information. Faults
are categorized as precise, imprecise and asynchronous. The following subsections describe each.

9.9.1 Precise Faults

A fault is precise if it meets all of the following conditions:

• The faulting instruction is the earliest instruction in the instruction issue order to generate a
fault.

• All instructions after the faulting instruction, in instruction issue order, are guaranteed not to
have executed.

TRACE and PROTECTION.LENGTH faults are always precise. Precise faults cannot be found in
parallel records with other precise or imprecise faults.

9.9.2 Imprecise Faults

Faults that do not meet all of the requirements for precise faults are considered imprecise. For
imprecise faults, the state of execution of instructions surrounding the faulting instruction may be
unpredictable. When instructions are executed out of order and an imprecise fault occurs, it may
not be possible to access the source operands of the instruction. This is because they may have been
modified by subsequent instructions executed out of order. However, the RIP of some imprecise
faults (for example, ARITHMETIC) points to the next instruction that has not yet executed and
guarantees the return from the fault handler to the original flow of execution. Faults that the
architecture allows to be imprecise are OPERATION, CONSTRAINT, ARITHMETIC and TYPE.

9.9.3 Asynchronous Faults

Asynchronous faults are those whose occurrence has no direct relationship to the instruction
pointer. This group includes MACHINE faults, which are not implemented on the 80960VH.

9.9.4 No Imprecise Faults (AC.nif) Bit

The Arithmetic Controls no imprecise faults (AC.nif) bit controls imprecise fault generation. When
AC.nif is set, out of order instruction execution is disabled and all faults generated are precise.
Therefore, setting this bit reduces processor performance. When AC.nif is clear, several imprecise
faults may be reported together in a parallel fault record. Precise faults can never be found in
parallel fault records, thus only more than one imprecise fault occurring concurrently with AC.nif
= 0 can produce a parallel fault.

Compiled code should execute with the AC.nif bit clear, using syncf where necessary to ensure
that faults occur in order. In this mode, imprecise faults are considered to be catastrophic errors
from which recovery is not needed. This also allows the processor to take advantage of internal
pipelining, which can speed up processing time. When only precise faults are allowed, the
processor must restrict the use of pipelining to prevent imprecise faults.

9-18 i960® VH Processor Developer’s Manual

Faults

The AC.nif bit should be set if recovery from one or more imprecise faults is required. For
example, the AC.nif bit should be set if a program needs to handle and recover from unmasked
integer-overflow faults and the fault handling procedure cannot be closely coupled with the
application to perform imprecise fault recovery.

9.9.5 Controlling Fault Precision

The syncf instruction forces the processor to complete execution of all instructions that occur prior
to syncf and to generate all faults before it begins work on instructions that occur after syncf. This
instruction has two uses:

• It forces faults to be precise when the AC.nif bit is clear.

• It ensures that all instructions are complete and all faults are generated in one block of code
before executing another block of code.

The implicit fault call operation synchronizes all faults. In addition, the following instructions or
operations perform synchronization of all faults except MACHINE.PARITY:

• Call and return operations including call, callx, calls and ret instructions, plus the implicit
interrupt and fault call operations.

• Atomic operations including atadd and atmod.

9.10 Fault Reference

This section describes each fault type and subtype and gives detailed information about what is
stored in the various fields of the fault record. The section is organized alphabetically by fault type.
The following paragraphs describe the information that is provided for each fault type.

Fault Type: Gives the number that appears in the fault record fault-type field
when the fault is generated.

Fault Subtype: Lists the fault subtypes and the number associated with each fault
subtype.

Function: Describes the purpose and handling of the fault type and each
subtype.

RIP: Describes the value saved in the image of the RIP register in the
stack frame that the processor was using when the fault occurred. In
the RIP definitions, “next instruction” refers to the instruction
directly after the faulting instruction or to an instruction to which the
processor can logically return when resuming program execution.

Note that the discussions of many fault types specify that the RIP
contains the address of the instruction that would have executed
next had the fault not occurred.

Fault IP: Describes the contents of the fault record’s fault instruction pointer
field, typically the faulting instruction’s IP.

Fault Data: Describes any values stored in the fault record’s fault data field.

Class: Indicates if a fault is precise or imprecise.

i960® VH Processor Developer’s Manual 9-19

Faults

Program State Changes: Describes the process state changes that would prevent re-executing
the faulting instruction if applicable.

Trace Reporting: Relates whether a trace fault (other than PRERET) can be detected
on the faulting instruction, also if and when the fault is serviced.

Notes: Additional information specific to particular implementations of the
i960 architecture.

9.10.1 ARITHMETIC Faults

Fault Type: 3H

Fault Subtype: Number Name
0H Reserved
1H INTEGER_OVERFLOW
2H ZERO_DIVIDE
3H-FH Reserved

Function: Indicates a problem with an operand or the result of an arithmetic
instruction. An INTEGER_OVERFLOW fault is generated when
the result of an integer instruction overflows its destination and the
AC register integer overflow mask is cleared. Here, the result’s n
least significant bits are stored in the destination, where n is
destination size. Instructions that generate this fault are:

An ARITHMETIC.ZERO_DIVIDE fault is generated when the
divisor operand of an ordinal- or integer-divide instruction is zero.
Instructions that generate this fault are:

RIP: IP of the instruction that would have executed next if the fault had
not occurred.

Fault IP: IP of the faulting instruction.

Class: Imprecise.

addi subi stis

stib shli ADDI<cc>

muli divi SUBI<cc>

divo divi

ediv remi

remo modi

9-20 i960® VH Processor Developer’s Manual

Faults

Program State Changes: Faults may be imprecise when executing with the AC.nif bit cleared.
INTEGER_OVERFLOW and ZERO_DIVIDE faults may not be
recoverable because the result is stored in the destination before the
fault is generated (for example, the faulting instruction cannot be
re-executed if the destination register was also a source register for
the instruction).

Trace Reporting: The trace is reported upon return from the arithmetic fault handler.

9.10.2 CONSTRAINT Faults

Fault Type: 5H

Fault Subtype: Number Name
0H Reserved
1H RANGE
2H-FH Reserved

Function: Indicates the program or procedure violated an architectural
constraint.

A CONSTRAINT.RANGE fault is generated when a FAULT<cc>
instruction is executed and the AC register condition code field
matches the condition required by the instruction.

RIP: No defined value.

Fault IP: Faulting instruction.

Class: Imprecise.

Program State Changes: These faults may be imprecise when executing with the AC.nif bit
cleared. No changes in the program’s control flow accompany these
faults. A CONSTRAINT.RANGE fault is generated after the
FAULT<cc> instruction executes. The program state is not affected.

Trace Reporting: Serviced upon return from the Constraint fault handler.

9.10.3 OPERATION Faults

Fault Type: 2H

Fault Subtype: Number Name
0H Reserved
1H INVALID_OPCODE
2H UNIMPLEMENTED
3H UNALIGNED
4H INVALID_OPERAND
5H - FH Reserved

Function: Indicates the processor cannot execute the current instruction
because of invalid instruction syntax or operand semantics.

i960® VH Processor Developer’s Manual 9-21

Faults

An INVALID_OPCODE fault is generated when the processor
attempts to execute an instruction containing an undefined opcode
or addressing mode.

An UNIMPLEMENTED fault is generated when the processor
attempts to execute an instruction fetched from on-chip data RAM,
or when a non-word or unaligned access to a memory-mapped
region is performed, or when attempting to write memory-mapped
region 0xFF0084XX when rights have not been granted.

An UNALIGNED fault is generated when the following conditions
are present: (1) the processor attempts to access an unaligned word
or group of words in non-MMR memory; and (2) the fault is enabled
by the unaligned-fault mask bit in the PRCB fault configuration
word.

An INVALID_OPERAND fault is generated when the processor
attempts to execute an instruction that has one or more operands
having special requirements that are not satisfied. This fault is
generated when specifying a non-defined sysctl, icctl, dcctl or
intctl command, or referencing an unaligned long-, triple- or
quad-register group, or by referencing an undefined register, or by
writing to the RIP register (r2).

RIP: No defined value.

Fault IP: Address of the faulting instruction.

Fault Data: When an UNALIGNED fault is signaled, the effective address of
the unaligned access is placed in the fault record’s optional data
section, beginning at address NFP-24. This address is useful to
debug a program that is making unintentional unaligned accesses.

Class: Imprecise.

Program State Changes: For the INVALID_OPCODE and UNIMPLEMENTED faults (case:
store to MMR), the destination of the faulting instruction is not
modified. (For the UNALIGNED fault, the memory operation
completes correctly before the fault is reported.) In all other cases,
the destination is undefined.

Trace Reporting: OPERATION.UNALIGNED fault: the trace is reported upon return
from the OPERATION fault handler.
All other subtypes: the trace event is lost.

Notes: OPERATION.UNALIGNED fault is not implemented on i960 Kx
and Sx CPUs.

9.10.4 OVERRIDE Faults

Fault Type: Fault table entry = 10H

9-22 i960® VH Processor Developer’s Manual

Faults

The fault type in the fault record on the stack equals the fault type of
the initial fault. The fault type in the internal registers equals the
fault type of the additional fault detected while attempting to service
the initial fault.

Fault Subtype: The fault subtype in the fault record on the stack equals the fault
subtype of the initial fault. The fault subtype in the internal registers
equals the fault subtype of the additional fault detected while
attempting to service the initial fault.

Fault OType: The fault type of the additional fault detected while attempting to
deliver the program fault.

Fault OSubtype: The fault subtype of the additional fault detected while attempting to
deliver the program fault.

Function: The override fault handler must be accessed through a system-super-
visor call. Local and system-local override fault handlers are not
supported and exhibit unpredictable behavior. Tracing is disabled
upon entry into the override fault handler (PC.te is cleared). It is
restored upon return from the handler. To prevent infinite internal
loops, the override fault handler should not set PC.te.

Trace Reporting: Same behavior as if the override condition had not existed. Refer to
the description of the original program fault.

9.10.5 PARALLEL Faults

Fault Type: Fault table entry = 0H
Fault type in fault record = fault type of one of the parallel faults.

Fault Subtype: Fault subtype of one of the parallel faults.

Fault OType: 0H

Fault OSubtype: Number of parallel faults.

Function: See Section 9.6.4, “Parallel Faults” on page 9-9 for a complete
description of parallel faults. When the AC.nif=0, the architecture
permits the processor to execute instructions in parallel and
out-of-order by different execution units. When an imprecise fault
occurs in any of these units, it is not possible to stop the execution of
those instructions after the faulting instruction. It is also possible
that more than one fault is detected from different instructions
almost at the same time.

When there is more than one outstanding fault at the point when all
execution units terminate, a parallel fault situation arises. The fault
record of parallel faults contains the fault information of all faults
that occurred in parallel. The number of parallel faults is indicated in
the Parallel Faults Field (NFP-20). See Figure 9-3. The maximum

i960® VH Processor Developer’s Manual 9-23

Faults

size of the fault record is implementation dependent and depends on
the number of parallel and pipeline execution units in the specific
implementation.

The parallel fault handler must be accessed through a system-super-
visor call. Local and system-local parallel fault handlers are not
supported by the i960 processor and exhibit unpredictable behavior.
Tracing is disabled upon entry into the parallel fault handler (PC.te
is cleared). It is restored upon return from the handler. To prevent
infinite internal loops, the parallel fault handler should not set PC.te.

RIP: When all parallel fault types allow a RIP to be defined, the RIP is
the next instruction in the flow of execution, otherwise it is
undefined.

Fault IP: IP of one of the faulting instructions.

Class: Imprecise.

Program State Changes: State changes associated with all the parallel faults.

Trace Reporting: If all parallel fault types allow for a resumption trace, then a trace is
reported upon return from the parallel fault handler, or else it is lost.

9.10.6 PROTECTION Faults

Fault Type: 7H

Fault Subtype: Number Name
Bit 0 Reserved
Bit 1 LENGTH
Bit 2-7 Reserved

Function: Indicates that a program or procedure is attempting to perform an
illegal operation that the architecture protects against.

A PROTECTION.LENGTH fault is generated when the index
operand, used in a calls instruction, points to an entry beyond the
extent of the system procedure table.

RIP: IP of the faulting instruction.

IP of the faulting instruction.

Fault IP: LENGTH: IP of the faulting instruction.

Class: Imprecise. (PROTECTION.LENGTH is precise even though the
PROTECTION fault class is imprecise.)

Program State Changes: LENGTH: The instruction does not execute.

Trace Reporting: PROTECTION.LENGTH: The trace event is lost.

9-24 i960® VH Processor Developer’s Manual

Faults

9.10.7 TRACE Faults

Fault Type: 1H

Fault Subtype: NumberName
Bit 0 Reserved
Bit 1 INSTRUCTION
Bit 2 BRANCH
Bit 3 CALL
Bit 4 RETURN
Bit 5 PRERETURN
Bit 6 SUPERVISOR
Bit 7 MARK/BREAKPOINT

Function: Indicates the processor detected one or more trace events. The event
tracing mechanism is described in Chapter 10, “Tracing and
Debugging”.

A trace event is the occurrence of a particular instruction or
instruction type in the instruction stream. The processor recognizes
seven different trace events: instruction, branch, call, return,
prereturn, supervisor, mark. It detects these events only if the TC
register mode bit is set for the event. If the PC register trace enable
bit is also set, then the processor generates a fault when a trace event
is detected.

A TRACE fault is generated following the instruction that causes a
trace event (or prior to the instruction for the prereturn trace event).
The following trace modes are available:

INSTRUCTION Generates a trace event following every
instruction.

BRANCH Generates a trace event following any
branch instruction when the branch is
taken (a branch trace event does not
occur on branch-and-link or call
instructions).

CALL Generates a trace event following any
call or branch-and-link instruction or an
implicit fault call.

RETURN Generates a trace event following a ret.

PRERETURN Generates a trace event prior to any ret
instruction, provided the PFP register
prereturn trace flag is set (the processor
sets the flag automatically when a call
trace is serviced). A prereturn trace
fault is always generated alone.

i960® VH Processor Developer’s Manual 9-25

Faults

SUPERVISOR Generates a trace event following any
calls instruction that references a
supervisor procedure entry in the
system procedure table and on a return
from a supervisor procedure where the
return status type in the PFP register is
0102 or 0112.

MARK/BREAKPOINT Generates a trace event following the
mark instruction. The MARK fault
subtype bit, however, is used to indicate
a match of the instruction-address
breakpoint register or the data-address
breakpoint register as well as the fmark
and mark instructions.

A TRACE fault subtype bit is associated with each mode. Multiple
fault subtypes can occur simultaneously; all trace fault conditions
detected on one instruction (except prereturn) are reported in one
single trace fault, with the fault subtype bit set for each subtype that
occurs. The prereturn trace is always reported alone.

When a fault type other than a TRACE fault is generated during
execution of an instruction that causes a trace event, the non-trace
fault is handled before the trace fault. An exception is the
prereturn-trace fault, which occurs before the processor detects a
non-trace fault and is handled first.

Similarly, if an interrupt occurs during an instruction that causes a
trace event, then the interrupt is serviced before the TRACE fault is
handled. The TRACE.PRERETURN fault is different. Since the
fault is generated before the instruction, it is handled before any
interrupt that occurs during instruction execution.

A trace fault handler must be accessed through a system-supervisor
call (it must be a supervisor procedure in the system procedure
table). Local and system-local trace fault handlers are not supported
by the architecture and may have unpredictable behavior. Tracing is
automatically disabled when entering the trace fault handler and is
restored upon return from the trace fault handler. The trace fault
handler should not modify PC.te.

RIP: Instruction immediately following the instruction traced, in
instruction issue order, except for PRERETURN. For
PRERETURN, the RIP is the return instruction traced.

Fault IP: IP of the faulting instruction for all except prereturn trace and call
trace (on implicit fault calls), for which the fault IP field is
undefined.

Class: Precise.

9-26 i960® VH Processor Developer’s Manual

Faults

Program State Changes: All trace faults except PRERETURN are serviced after the
execution of the faulting instruction. The processor returns to the
instruction immediately following the instruction traced, in
instruction issue order. For PRERETURN, the return is traced
before it executes. The processor re-executes the return instruction
after completion of the PRERETURN trace fault handler.

9.10.8 TYPE Faults

Fault Type: AH

Fault Subtype: Number Name
0H Reserved
1H MISMATCH
2H-FH Reserved

Function: Indicates a program or procedure attempted to perform an illegal
operation on an architecture-defined data type or a typed data
structure.

A TYPE.MISMATCH fault is generated when attempts are made to:

• Execute a privileged (supervisor-mode only) instruction while
the processor is in user mode. Privileged instructions on the
80960VH are:

• Write to on-chip data RAM while the processor is in super-
visor-only write mode and BCON.irp is set.

• Write to the first 64 bytes of on-chip data RAM while the
processor is in either user or supervisor mode and BCON.sirp is
set.

• Write to memory-mapped registers in supervisor space from
user mode.

• Write to timer registers while in user mode, when timer
registers are protected against user-mode writes.

RIP: No defined value.

Fault IP: IP of the faulting instruction.

Class: Imprecise.

Program State Changes: The fault occurs before execution of the instruction. Machine state is
not changed.

Trace Reporting: The trace event is lost.

modpc intctl

sysctl inten

icctl intdis

dcctl

i960® VH Processor Developer’s Manual 10-1

Tracing and Debugging 10

This chapter describes the i960® VH processor’s facilities for runtime activity monitoring. The
i960 architecture provides facilities for monitoring processor activity through trace event
generation. A trace event indicates a condition where the processor has just completed executing a
particular instruction or a type of instruction or where the processor is about to execute a particular
instruction. When the processor detects a trace event, it generates a trace fault and makes an
implicit call to the fault handling procedure for trace faults. This procedure can, in turn, call
debugging software to display or analyze the processor state when the trace event occurred. This
analysis can be used to locate software or hardware bugs or for general system monitoring during
program development.

Tracing is enabled by the process controls (PC) register trace enable bit and a set of trace mode bits
in the trace controls (TC) register. Alternatively, the mark and fmark instructions can be used to
generate trace events explicitly in the instruction stream.

The 80960VH also provides four hardware breakpoint registers that generate trace events and trace
faults. Two registers are dedicated to trapping on instruction execution addresses, while the
remaining two registers can trap on the addresses of various types of data accesses.

10.1 Trace Controls

To use the architecture’s tracing facilities, software must provide trace fault handling procedures,
perhaps interfaced with a debugging monitor. Software must also manipulate the following
registers and control bits to enable the various tracing modes and enable or disable tracing in
general.

• TC register mode bits

• DAB0-DAB1 registers’ address field and enable bit (in the control table)

• System procedure table supervisor-stack-pointer field trace control bit

• IPB0-IPB1 registers’ address field (in the control table)

• PC register trace enable bit

• PFP register return status field prereturn trace flag (bit 3)

• BPCON register breakpoint mode bits and enable bits (in the control table)

These controls are described in the following subsections.

10.1.1 Trace Controls Register – TC

The TC register (Figure 10-1) allows software to define conditions that generate trace events.

10-2 i960® VH Processor Developer’s Manual

Tracing and Debugging

The TC register contains mode bits and event flags. Mode bits define a set of tracing conditions
that the processor can detect. For example, when the call-trace mode bit is set, the processor
generates a trace event when a call or branch-and-link operation executes. See Section 10.2, “Trace
Modes” on page 10-3. The processor uses event flags to monitor which breakpoint trace events are
generated.

A special instruction, modify-trace-controls (modtc), allows software to modify the TC register.
On initialization, the TC register is read from the Control Table. modtc can then be used to set or
clear trace mode bits as required. Updating TC mode bits may take up to four non-branching
instructions to take effect. Software can access the breakpoint event flags using modtc. The
processor automatically sets and clears these flags as part of its trace handling mechanism: the
breakpoint event flag corresponding to the trace being serviced is set in the TC while servicing a
breakpoint trace fault; the TC event flags are cleared upon return from the trace fault handler.
When the program is not in a trace fault handler, or when the trace is not for breakpoints, the TC
event bits are clear. On the 80960VH, TC register bits 0, 8 through 23 and 28 through 31 are
reserved. Software must initialize these bits to zero and cannot modify them afterwards.

10.1.2 PC Trace Enable Bit and Trace-Fault-Pending Flag

The Process Controls (PC) register trace enable bit and the trace-fault-pending flag in the PC field
of the fault record control tracing (Section 3.6.3, “Process Controls Register – PC” on page 3-15).
The trace enable bit enables the processor’s tracing facilities; when set, the processor generates
trace faults on all trace events.

Typically, software selects the trace modes to be used through the TC register. It then sets the trace
enable bit to begin tracing. This bit is also altered as part of some call and return operations that the
processor performs as described in Section 10.5.2, “Tracing on Calls and Returns” on page 10-11.

Figure 10-1. i960® VH processor Trace Controls Register – TC

28 24 20 16

12 8 4 0

31

Trace Mode Bits
Instruction Trace Mode - TC.i
Branch Trace Mode - TC.b
Call Trace Mode -TC.c

Pre-Return Trace Mode - TC.p
Supervisor Trace Mode - TC.s
Mark Trace Mode - TC.mk

Return Trace Mode - TC.r

ibcrpsm
k

Reserved

Hardware Breakpoint Event Flags
Instruction-Address Breakpoint 0 - TC.i0f
Instruction-Address Breakpoint 1 - TC.i1f
Data-Address Breakpoint 0 - TC.d0f
Data-Address Breakpoint 1 - TC.d1f

i
0
f

i
1
f

d
0
f

d
1
f

i960® VH Processor Developer’s Manual 10-3

Tracing and Debugging

The update of PC.te through modpc may take up to four non-branching instructions to take effect.
The update of PC.te through call and return operations is immediate.

The trace-fault-pending flag in the PC field of the fault record allows the processor to remember to
service a trace fault when a trace event is detected at the same time as another event (for example,
non-trace fault, interrupt). The non-trace fault event is serviced before the trace fault, and
depending on the event type and execution mode, the trace-fault-pending flag in the PC field of the
fault record may be used to generate a fault upon return from the non-trace fault event
(Section 10.5.2.4, “Tracing on Return from Implicit Call: Fault Case” on page 10-13).

10.2 Trace Modes

This section defines trace modes enabled through the TC register. These modes can be enabled
individually or several modes can be enabled at once. Some modes overlap, such as call-trace
mode and supervisor-trace mode.

See Section 10.4, “Handling Multiple Trace Events” on page 10-10 for a description of processor
function when multiple trace events occur.

10.2.1 Instruction Trace

When the instruction-trace mode is enabled in TC (TC.i = 1) and tracing is enabled in PC
(PC.te = 1), the processor generates an instruction-trace fault immediately after an instruction is
executed. A debug monitor can use this mode (TC.i = 1, PC.te = 1) to single-step the processor.

10.2.2 Branch Trace

When the branch-trace mode is enabled in TC (TC.b = 1) and PC.te is set, the processor generates a
branch-trace fault immediately after a branch instruction executes, if the branch is taken. A
branch-trace event is not generated for conditional-branch instructions that do not branch,
branch-and-link instructions, and call-and-return instructions.

10.2.3 Call Trace

When the call-trace mode is enabled in TC (TC.c = 1) and PC.te is set after the call operation, the
processor generates a call-trace fault when a call instruction (call, callx or calls) or a
branch-and-link instruction (bal or balx) executes. See Section 10.5.2.1, “Tracing on Explicit Call”
on page 10-11 for a detailed description of call tracing on explicit instructions. Interrupt calls are
never traced.

An implicit call to a fault handler also generates a call trace if TC.c and PC.te are set after the call.
Refer to Section 10.5.2.2, “Tracing on Implicit Call” on page 10-11 for a complete description of
this case.

• Instruction trace • Branch trace • Mark trace • Prereturn trace

• Call trace • Return trace • Supervisor trace

10-4 i960® VH Processor Developer’s Manual

Tracing and Debugging

When the processor services a trace fault, it sets the prereturn-trace flag (PFP register bit 3) in the
new frame created by the call operation or in the current frame if a branch-and-link operation was
performed. The processor uses this flag to determine whether or not to signal a prereturn-trace
event on a ret instruction.

10.2.4 Return Trace

When the return-trace mode is enabled in TC and PC.te is set after the return instruction, the
processor generates a return-trace fault for a return from explicit call (PFP.rrr = 000 or
PFP.rrr = 01x). See Section 10.5.2.3, “Tracing on Return from Explicit Call” on page 10-12.

A return from fault may be traced whereas a return from interrupt cannot be traced. See
Section 10.5.2.4, “Tracing on Return from Implicit Call: Fault Case” on page 10-13 and
Section 10.5.2.5, “Tracing on Return from Implicit Call: Interrupt Case” on page 10-13 for details.

10.2.5 Prereturn Trace

When the TC prereturn-trace mode, the PC.te, and the PFP prereturn-trace flag (PFP.p) are set, the
processor generates a prereturn-trace fault prior to executing a ret execution. The dependence on
PFP.p implies that prereturn tracing cannot be used without enabling call tracing. The processor
sets PFP.p whenever it services a call-trace fault (as described above) for call-trace mode.

If another trace event occurs at the same time as the prereturn-trace event, then the processor
generates a fault on the non-prereturn-trace event first. Then, on a return from that fault handler, it
generates a fault on the prereturn-trace event. The prereturn trace is the only trace event that can
cause two successive trace faults to be generated between instruction boundaries.

10.2.6 Supervisor Trace

When supervisor-trace mode is enabled in TC and PC.te is set, the processor generates a
supervisor-trace fault after either of the following:

• A call-system instruction (calls) executes from user mode and the procedure table entry is
used to generate a system-supervisor call.

• A ret instruction executes from supervisor mode and the return-type field is set to 0102 or 0112
(i.e., return from calls).

This trace mode allows a debugging program to determine kernel-procedure call boundaries within
the instruction stream.

10.2.7 Mark Trace

Mark trace mode allows trace faults to be generated at places other than those specified with the
other trace modes, using the mark instruction. It should be noted that the MARK fault subtype bit
in the fault record is used to indicate a match of the instruction-address breakpoint registers or the
data-address breakpoint registers as well as the fmark and mark instructions.

i960® VH Processor Developer’s Manual 10-5

Tracing and Debugging

10.2.7.1 Software Breakpoints

mark and fmark allow breakpoint trace faults to be generated at specific points in the instruction
stream. When mark trace mode is enabled and PC.te is set, the processor generates a mark trace
fault any time it encounters a mark instruction. fmark causes the processor to generate a mark trace
fault regardless of whether or not mark trace mode is enabled, provided PC.te is set. If PC.te is
clear, then mark and fmark behave like no-ops.

10.2.7.2 Hardware Breakpoints

The hardware breakpoint registers are provided to enable generation of trace faults on instruction
execution and data access.

The 80960VH implements two instruction and two data address breakpoint registers, denoted
IPB0, IPB1, DAB0 and DAB1. The instruction and data address breakpoint registers are 32-bit
registers. The instruction breakpoint registers cause a break after execution of the target
instruction. The DABx registers cause a break after the memory access has been issued to the bus
controller.

Hardware breakpoint registers may be armed or disarmed. When the registers are armed, hardware
breakpoints can generate an architectural trace fault. When the registers are disarmed, no action
occurs, and execution continues normally. Since instructions are always word aligned, the two
low-order bits of the IPBx registers act as control bits. Control bits for the DABx registers reside in
the Breakpoint Control (BPCON) register. BPCON enables the data address breakpoint registers,
and sets the specific modes of these registers. Hardware breakpoints are globally enabled by the
process controls trace enable bit (PC.te).

The IPBx, DABx, and BPCON registers may be accessed using normal load and store instructions
(except for loads from IPBx register). The application must be in supervisor mode for a legal
access to occur. See Section 3.3, “Memory-Mapped Control Registers (MMRs)” on page 3-5 for
more information on the address for each register.

Applications must request modification rights to the hardware breakpoint resources, before
attempting to modify these resources. Rights are requested by executing the sysctl instruction, as
described in the following section.

10.2.7.3 Requesting Modification Rights to Hardware Breakpoint Resources

Application code must always first request and acquire modification rights to the hardware
breakpoint resources before any attempt is made to modify them. This mechanism is employed to
eliminate simultaneous usage of breakpoint resources by emulation tools and application code. An
emulation tool exercises supervisor control over breakpoint resource allocation. If the emulator
retains control of breakpoint resources, then none are available for application code. If an
emulation tool is not being used in conjunction with the device, then modification rights to
breakpoint resources are granted to the application. The emulation tool may relinquish control of
breakpoint resources to the application.

If the application attempts to modify the breakpoint or breakpoint control (BPCON) registers
without first obtaining rights, then an OPERATION.UNIMPLEMENTED fault is generated. In
this case, the breakpoint resource are not modified, whether accessed through a sysctl instruction
or as a memory-mapped register.

10-6 i960® VH Processor Developer’s Manual

Tracing and Debugging

Application code requests modification rights by executing the sysctl instruction and issuing the
Breakpoint Resource Request message (src1.Message_Type = 06H). In response, the current
available breakpoint resources are returned as the src/dst parameter (src/dst must be a register).
The src2 parameter is not used. Results returned in the src/dst parameter must be interpreted as
shown in Table 10-1.

The following code sample illustrates the execution of the breakpoint resource request.

Assume in this example that after execution of the sysctl instruction, the value of r4 is
0000 0022H. This indicates that the application has gained modification rights to both instruction
and data address breakpoint registers. If the value returned is zero, then the application has not
gained the rights to the breakpoint resources.

Because the 80960VH does not initialize the breakpoint registers from the control table during
initialization (as i960 Cx processors do), the application must explicitly initialize the breakpoint
registers to use them once modification rights have been granted by the sysctl instruction.

10.2.7.4 Breakpoint Control Register – BPCON

The format of the BPCON registers are shown in Table 10-2 and Table 10-5. Each breakpoint has
four control bits associated with it: two mode and two enable bits. The enable bits (DABx.e0,
DABx.e1) in BPCON act to enable or disable the data address breakpoints, while the mode bits
(DABx.m0, DABx.m1) dictate which type of access generates a break event.

Table 10-1. src/dst Encoding

src/dst 7:4 src/dst 3:0

Number of Available Data Address Breakpoints Number of Available Instruction Breakpoints

NOTE: src/dst 31:8 are reserved and always return zeroes.

ldconst 0x600, r4 # Load the Breakpoint Resource

Request message type into r4.
sysctl r4, r4, r4 # Issue the request.

Table 10-2. Breakpoint Control Register – BPCON (Sheet 1 of 2)

LBA:

PCI:

8440H

NA

Legend: NA = Not Accessible RO = Read Only
RV = Reserved PR = Preserved RW = Read/Write
RS = Read/Set RC = Read Clear
LBA = 80960 local bus address PCI = PCI Configuration Address Offset

Bit Default Description

31:24 00H Reserved. Initialize to 0.

23 02 DAB1 Breakpoint Mode Control Bit: DAB1.m1

22 02 DAB1 Breakpoint Mode Control Bit: DAB1.m0

21 02 DAB1 Breakpoint Enable Control Bit: DAB1.e1

PCI

LBA

28 24 20 16 12 8 4 031

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

i960® VH Processor Developer’s Manual 10-7

Tracing and Debugging

Programming the BPCON register is summarized in Table 10-3 and Table 10-4.

The mode bits of BPCON control the type of access that generates a fault, trace message, or break
event, as summarized in Table 10-4.

10.2.7.5 Data Address Breakpoint Registers – DABx

The format for the Data Address Breakpoint (DAB) registers is shown in Table 10-5. Each
breakpoint register contains a 32-bit address of a byte to match on.

20 02 DAB1 Breakpoint Enable Control Bit: DAB1.e0

19 02 DAB0 Breakpoint Mode Control Bit: DAB0.m1

18 02 DAB0 Breakpoint Mode Control Bit: DAB0.m0

17 02 DAB0 Breakpoint Enable Control Bit: DAB0.e1

16 02 DAB0 Breakpoint Enable Control Bit: DAB0.e0

15:00 0000H Reserved. Initialize to 0.

Table 10-2. Breakpoint Control Register – BPCON (Sheet 2 of 2)

LBA:

PCI:

8440H

NA

Legend: NA = Not Accessible RO = Read Only
RV = Reserved PR = Preserved RW = Read/Write
RS = Read/Set RC = Read Clear
LBA = 80960 local bus address PCI = PCI Configuration Address Offset

Bit Default Description

PCI

LBA

28 24 20 16 12 8 4 031

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

Table 10-3. Configuring the Data Address Breakpoint Registers – DABx

PC.te DABx.e1 DABx.e0 Description

0 X X No action. With PC.te clear, breakpoints are globally disabled.

X 0 0 No action. DABx is disabled.

1 0 1 Reserved.

1 1 0 Reserved.

1 1 1 Generate a Trace Fault.

NOTE: “X” = don’t care. Reserved combinations must not be used.

Table 10-4. Programming the Data Address Breakpoint Modes – DABx

DABx.m1 DABx.m0 Mode

0 0 Break on Data Write Access Only.

0 1 Break on Data Read or Data Write Access.

1 0 Break on Data Read Access.

1 1 Break on Data Read or Data Write Access.

10-8 i960® VH Processor Developer’s Manual

Tracing and Debugging

A breakpoint is triggered when both a data access’s type and address matches that specified by
BPCON and the appropriate DAB register. The mode bits for each DAB register, which are
contained in BPCON (Section 10.2.7.4, “Breakpoint Control Register – BPCON” on page 10-6),
qualify the access types that DAB matches. An access-type match selects that DAB register to
perform address checking. An address match occurs when the byte address of any of the bytes
referenced by the data access matches the byte address contained within a selected DAB.

Consider the following example. DAB0 is enabled to break on any data read access and has a value
of 100FH. Any of the following instructions causes the DAB0 breakpoint to be triggered:

Note that the instruction:

ldt 0x1000,r8

does not cause the breakpoint to be triggered because byte 100FH is not referenced by the triple
word access.

Data address breakpoints can be set to break on any data read, any data write, or any data read or
data write access. All accesses qualify for checking. These include explicit load and store
instructions, and implicit data accesses performed by other instructions and normal processor
operations.

For data accesses to the memory-mapped control register space, one cannot predict whether or not
breakpoint traces are generated when an OPERATION fault or TYPE.MISMATCH fault occurs.
The OPERATION or TYPE.MISMATCH fault is always reported in this case.

10.2.7.6 Instruction Breakpoint Registers – IPBx

The format for the instruction breakpoint registers is given in Table 10-6. The upper 30 bits of the
IPBx register contain the word-aligned instruction address on which to break. The two low-order
bits indicate the action to take upon an address match.

ldob 0x100f,r8

ldos 0x100e,r8
ld 0x100c,r8
ld 0x100d,r8 /* even unaligned accesses */
ldl 0x1008,r8
ldq 0x1000,r8

Table 10-5. Data Address Breakpoint Register – DABx

LBA:

PCI:

Ch 0-8420H
Ch 1-8424H

NA

Legend: NA = Not Accessible RO = Read Only
RV = Reserved PR = Preserved RW = Read/Write
RS = Read/Set RC = Read Clear
LBA = 80960 local bus address PCI = PCI Configuration Address Offset

Bit Default Description

31:00 0000 0000H Data Address.

PCI

LBA

28 24 20 16 12 8 4 031

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

i960® VH Processor Developer’s Manual 10-9

Tracing and Debugging

Programming the instruction breakpoint register modes is shown in Table 10-7.

On the 80960VH, the instruction breakpoint memory-mapped registers can be read by using the
sysctl instruction only. They can be modified by sysctl or by a word-length store instruction.

Storing directly to an IP breakpoint register may cause unexpected results if tracing is enabled. Any
instructions in the superscalar template of a store operation that updates an IPB and any
instructions in the subsequent superscalar template may trigger on the new or old value of the
breakpoint register. The IP in the fault record may be that of the instruction that caused the
breakpoint or may be the new value of the IPB register. The return IP in the fault record is always
correct.

If it is necessary to avoid this condition, then use the modify memory-mapped control register
operation of the sysctl instruction to update the IPB registers.

10.3 Generating a Trace Fault

To summarize the information presented in the previous sections, the processor services a trace
fault when PC.te is set and the processor detects any of the following conditions:

• An instruction included in a trace mode group executes or is about to execute (in the case of a
prereturn trace event) and the trace mode for that instruction is enabled.

Table 10-6. Instruction Breakpoint Register – IPBx

LBA:

PCI:

Ch 0-8400H
Ch 1-8404H

NA

Legend: NA = Not Accessible RO = Read Only
RV = Reserved PR = Preserved RW = Read/Write
RS = Read/Set RC = Read Clear
LBA = 80960 local bus address PCI = PCI Configuration Address Offset

Bit Default Description

31:02 0000 0000H Instruction Address.

01 02 IPBX Mode: IPB1

00 02 IPBX Mode: IPB0

PCI

LBA

28 24 20 16 12 8 4 031

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

Table 10-7. Instruction Breakpoint Modes

PC.te IPBx.m1 IPBx.m0 Action

0 X X No action. Globally disabled.

X 0 0 No action. IPBx disabled.

1 0 1 Reserved.

1 1 0 Reserved.

1 1 1 Generate a Trace Fault.

NOTE: “X” = don’t care. Reserved combinations must not be used.

10-10 i960® VH Processor Developer’s Manual

Tracing and Debugging

• A fault call operation executes and the call-trace mode is enabled.

• A mark instruction executes and the breakpoint-trace mode is enabled.

• An fmark instruction executes.

• The processor executes an instruction at an IP matching an enabled instruction address
breakpoint (IPB) register.

• The processor issues a memory access matching the conditions of an enabled data address
breakpoint (DAB) register.

10.4 Handling Multiple Trace Events

With the exception of a prereturn trace event, which is always reported alone, it is possible for a
combination of trace events to be reported in the same fault record. The processor may not report
all events; however, it always reports a supervisor event and it always signals at least one event.

If the processor reports prereturn trace and other trace types at the same time, then it reports the
other trace types in a single trace fault record first, and then services the prereturn trace fault upon
return from the other trace fault.

10.5 Trace Fault Handling Procedure

The processor calls the trace fault handling procedure when it detects a trace event. See
Section 9.7, “Fault Handling Procedures” on page 9-11 for general requirements for fault handling
procedures. A trace fault handler must be invoked with an implicit system-supervisor call, this
differs from other fault handling procedures. When the call is made, the processor clears the PC
register trace enable bit (PC.te), disabling trace faults in the trace fault handler. Recall that for all
other implicit or explicit system-supervisor calls, the processor replaces the trace enable bit with
the system procedure table trace control bit. Clearing PC.te ensures that tracing is turned off when
a trace fault handling procedure is being executed, thus preventing an endless loop of trace fault
handling calls.

The processor calls the trace fault handling procedure when it detects a trace event. See
Section 9.7, “Fault Handling Procedures” on page 9-11 for general requirements for fault handling
procedures.

The trace fault handling procedure is involved in a specific way and is handled differently than
other faults. A trace fault handler must be invoked with an implicit system-supervisor call. When
the call is made, the PC register trace enable bit is cleared. This disables trace faults in the trace
fault handler. Recall that for all other implicit or explicit system-supervisor calls the trace enable
bit is replaced with the system procedure table trace control bit. The exception handling of trace
enable for trace faults ensures that tracing is turned off when a trace fault handling procedure is
being executed. This is necessary to prevent an endless loop of trace fault handling calls.

10.5.1 Tracing and Interrupt Procedures

When the processor invokes an interrupt handling procedure to service an interrupt, it disables
tracing. It does this by saving the PC register’s current state in the interrupt record, then clearing
the PC register trace enable bit.

i960® VH Processor Developer’s Manual 10-11

Tracing and Debugging

On returning from the interrupt handling procedure, the processor restores the PC register to the
state it was in prior to handling the interrupt, which restores the trace enable bit. See
Section 10.5.2.2, “Tracing on Implicit Call” on page 10-11 and Section 10.5.2.5, “Tracing on
Return from Implicit Call: Interrupt Case” on page 10-13 for detailed descriptions of tracing on
calls and returns from interrupts.

10.5.2 Tracing on Calls and Returns

During call and return operations, the trace enable flag (PC.te) may be altered. This section
discusses how tracing is handled on explicit and implicit calls and returns.

Since all trace faults (except prereturn) are serviced after execution of the traced instruction,
tracing on calls and returns is controlled by the PC.te in effect after the call or the return.

10.5.2.1 Tracing on Explicit Call

Tracing an explicit call happens before execution of the first instruction of the procedure called.

Tracing is not modified by using a call or callx instruction. Further, tracing is not modified by
using a calls instruction from supervisor mode. When calls is issued from user mode, PC.te is read
from the supervisor stack pointer trace enable bit (SSP.te) of the system procedure table, which is
cached on chip during initialization. The trace enable bit, in effect before the calls, is stored in the
new PFP[0] bit and is restored upon return from the routine (Section 10.5.2.3, “Tracing on Return
from Explicit Call” on page 10-12). The calls instruction and all instructions of the procedure
called are traced according to the new PC.te.

10.5.2.2 Tracing on Implicit Call

Tracing on an implicit call happens before execution of the first instruction of the non-trace fault
handler called. Table 10-9 summarizes all cases of tracing on implicit call. In the table, “a” is a bit
variable that symbolizes the trace enable bit in PC.

Table 10-9 summarizes all cases.

Table 10-8. Tracing on Explicit Call

Call
Type

Calling Procedure
Trace Enable

Calling Procedure
Mode Saved PFP.rt2:0 Called Procedure

Trace Enable Bit

call, callx PC.te user or supervisor 0002 PC.te

calls PC.te supervisor 0002 PC.te

calls PC.te user
01t2

Stores PC.te into
bit 0 of PFP.rt2:0

SSP.te

NOTE: Refer to Table 7-2 “Encoding of Return Status Field” on page 7-17.

10-12 i960® VH Processor Developer’s Manual

Tracing and Debugging

Tracing is not altered on the way to a local or a system-local fault handler, so the call is traced if
PC.te and TC.c are set before the call. For an implicit system-supervisor call, PC.te is read from the
Supervisor Stack Pointer enable bit (SSP.te). The trace on the call is serviced before execution of
the first instruction of the non-trace fault handler (tracing is disabled on the way to a trace fault
handler).

On the 80960VH, the parallel/override fault handler must be accessed through a system-supervisor
call. Tracing is disabled on the way to the parallel/override fault handler.

The only type of trace fault handler supported is the system-supervisor type. Tracing is disabled on
the way to the trace fault handler.

Tracing is disabled by the processor on the way to an interrupt handler, so an interrupt call is never
traced.

Note that the Fault IP field of the fault record is not defined when tracing a fault call, because there
is no instruction pointer associated with an implicit call.

10.5.2.3 Tracing on Return from Explicit Call

Table 10-10 shows all cases.

Table 10-9. Tracing on Implicit Call

Call
Type

System
Procedure
Table Entry

Previous
Frame
Pointer
Return
Status

(PFP.rt2:0)

Source
PC.te

Target
PC.te

PC.te Value
Used for

Traces on
Implicit Call

00-Fault1 N.A. 001 a1 a a

10-Fault1 00 001 a a a

10-Fault1 10 001 a SSP.te SSP.te

00-Parallel/Override Fault

00-Trace Fault
x2 Type of trace fault not supported

10-Parallel/Override Fault

10-Trace Fault
00 Type of trace fault not supported

10-Parallel/Override Fault

10-Trace Fault
10 001 a 0 0

Interrupt N.A. 111 a 0 0

NOTES:
1. On the 80960VH all faults except parallel/override and trace faults.
2. “a” and “x” are bit variables.

Table 10-10. Tracing on Return from Explicit Call (Sheet 1 of 2)

PFP.rt2:0 Execution Mode PC.em Trace Enable Used for Trace on Return

0002 user or supervisor PC.te

01a2 user PC.te

Refer to Table 7-2 “Encoding of Return Status Field” on page 7-17.

i960® VH Processor Developer’s Manual 10-13

Tracing and Debugging

For a return from local call (return type 000), tracing is not modified. For a return from system call
(return type 01a, with PC.te equal to “a” before the call), tracing of the return and subsequent
instructions is controlled by “a”, which is restored in the PC.te during execution of the return.

10.5.2.4 Tracing on Return from Implicit Call: Fault Case

When the processor detects several fault conditions on the same instruction (referred to as the
“target”), the non-trace fault is serviced first. Upon return from the non-trace fault handler, the
processor services a trace fault on the target if in supervisor mode before the return and if the trace
enable and trace-fault-pending flags are set in the PC field of the non-trace fault record (at FP-16).

If the processor is in user mode before the return, then tracing is not altered. The pending trace on
the target instruction is lost, and the return is traced according to the current PC.te.

10.5.2.5 Tracing on Return from Implicit Call: Interrupt Case

When an interrupt and a trace fault are reported on the same instruction, the instruction completes
and then the interrupt is serviced. Upon return from the interrupt, the trace fault is serviced if the
interrupt handler did not switch to user mode. On the 80960VH, the interrupt handler returns
directly to the trace fault handler.

If the interrupt return is executed from user mode, then the PC register is not restored and tracing of
the return occurs according to the PC.te and TC.modes bit fields.

01a2 supervisor t2 (from PFP.r2:0)

Table 10-10. Tracing on Return from Explicit Call (Sheet 2 of 2)

PFP.rt2:0 Execution Mode PC.em Trace Enable Used for Trace on Return

Refer to Table 7-2 “Encoding of Return Status Field” on page 7-17.

i960® VH Processor Developer’s Manual 11-1

Core and Peripheral Control Unit 11

11.1 Overview

This chapter describes how to select the operating speed of the i960® VH processor. It also
describes how the 80960 processor core and the local bus on the 80960VH can be reset. These
registers are extended registers of the Address Translation Unit (ATU), therefore they can be
accessed through either the primary PCI bus or the 80960 processor local bus.

11.2 Register Definitions

Refer to Chapter 16, “Address Translation Unit” for all of the ATU extended configuration
registers. The ATU extended registers shown in Table 11-1 are described in the following sections.

11.2.1 Reset/Retry Control Register - RRCR

The Reset/Retry Control Register is used to control how the 80960 processor core and the local bus
on the 80960VH can be reset. This register also provides a mechanism to allow PCI configuration
cycles to be retried.

Table 11-1. ATU Extended Configuration Register Addresses

Register
Name

Register Size in
Bits

PCI
Configuration
Cycle Register

Number

Internal Bus
Address

Reset/Retry Control Register - RRCR 32 49 0000.12C4H

PCI Interrupt Routing Select Register - PIRSR 32 50 0000.12C8H

Core Select Register - CSR 32 51 0000.12CCH

Table 11-2. Reset/Retry Control Register - RRCR (Sheet 1 of 2)

LBA:

PCI:

12C4H

C4H

Legend: NA = Not Accessible RO = Read Only
RV = Reserved PR = Preserved RW = Read/Write
RS = Read/Set RC = Read Clear
LBA = 80960 local bus address PCI = PCI Configuration Address Offset

Bit Default Description

31:06 0000 000H Reserved.

05 02

Reset Local Bus - When set, the 80960 processor core and all units on the local bus shall
be reset, except for the Core and Peripheral Unit. The i960 VH processor hardware will
clear this bit after the reset operation completes. Note that the i960 core processor will be
held in reset if the default value of the Core Processor Reset bit in the RRCR is set.

PCI

LBA

28 24 20 16 12 8 4 031

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rw

rw

rv

rv

rv

rv

rw

rw

rw

rw

rv

rv

11-2 i960® VH Processor Developer’s Manual

Core and Peripheral Control Unit

11.2.2 PCI Interrupt Routing Select Register - PIRSR

Refer to Section 8.4.1, “PCI Interrupt Routing Select Register (PIRSR)” on page 8-23 for a
description of this register.

11.2.3 Core Select Register - CSR

The Core Select Register is used to select the operating speed of the 80960VH. The PCI bus and
the 80960 local bus operate at the same frequency as the system clock, P_CLK. The 80960
processor core can operate in DX, DX2, or DX4 modes. The 80960 processor core speed can be
selected by either controlling bits in the CSR register or by controlling the external
CLKMODE1:0# pins. When both CLKMODE1:0# pins are high, the 80960 processor speed can
be selected by controlling the content of the CSR register, otherwise the speed is selected based on
the states of the CLKMODE1:0# pins. Refer to Table 11-4.

04 02 Reserved.

03 02 Reserved.

02

Varies with
external
state of

RETRY pin at
primary PCI

bus reset

Configuration Cycle Retry - When this bit is set, the primary PCI interface of the i960 VH
processor will respond to all configuration cycles with a Retry condition. When clear, the
i960 VH processor will respond to the appropriate configuration cycles.

The default condition for this bit is based on the external state of the RETRY pin at the
rising edge of P_RST#. If the external state of the pin is high, then the bit is set. If the
external state of the pin is low, then the bit is cleared.

When the RST_MODE# pin is high, this bit will be forced to a zero regardless of the state
of the external RETRY pin. Refer to Chapter 12, “Initialization and System Requirements”
for more details on the i960 VH processor initialization modes.

01

Varies with
external
state of

RST_MODE#
 pin at

primary PCI
bus reset

Core Processor Reset - This bit is set to its default value by the hardware when either
P_RST# is asserted or the Reset Local Bus bit in the RRCR is set. When this bit is set,
the i960 core processor is being held in reset. Software cannot set this bit. Software will
be required to clear this bit to deassert 80960 processor reset.

The default condition for this bit is based on the external state of the RST_MODE# pin at
the rising edge of P_RST#. If the external state of the pin is low, then the default value of
this bit is set. If the external state of the pin is high, then the default value of this bit is
clear.

00 02 Reserved.

Table 11-2. Reset/Retry Control Register - RRCR (Sheet 2 of 2)

LBA:

PCI:

12C4H

C4H

Legend: NA = Not Accessible RO = Read Only
RV = Reserved PR = Preserved RW = Read/Write
RS = Read/Set RC = Read Clear
LBA = 80960 local bus address PCI = PCI Configuration Address Offset

Bit Default Description

PCI

LBA

28 24 20 16 12 8 4 031

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rw

rw

rv

rv

rv

rv

rw

rw

rw

rw

rv

rv

i960® VH Processor Developer’s Manual 11-3

Core and Peripheral Control Unit

Table 11-4 shows how to control the 80960 processor core speed using the external
CLKMODE1:0# pins.

Table 11-3. Core Select Register - CSR

LBA:

PCI:

12CCH

CCH

Legend: NA = Not Accessible RO = Read Only
RV = Reserved PR = Preserved RW = Read/Write
RS = Read/Set RC = Read Clear
LBA = 80960 local bus address PCI = PCI Configuration Address Offset

Bit Default Description

31:18 0000H Reserved.

16 02

Primary Discard Timer Value - This bit controls the timeout value for the primary delayed
read and delayed write discard timers. A value of 0 indicates the timeout value is 215
clocks. A value of 1 indicates the timeout value is 210 clocks.

15:04 000H Reserved.

03

Varies with
the external
state of the

CLKMODE1#
 pin at reset

CLKMODE1# Pin Status - This bit indicates the external state of the external
CLKMODE1# pin. This bit’s default condition is based on the external state of the
CLKMODE1# pin at the rising edge of P_RST#. When the external state of the pin is high,
the bit is set. When the external state of the pin is low, the bit is cleared.

02

Varies with
the external
state of the

CLKMODE0#
 pin at reset

CLKMODE0# Pin Status - This bit indicates the external state of the external
CLKMODE0# pin. This bit’s default condition is based on the external state of the
CLKMODE0# pin at the rising edge of P_RST#. When the external state of the pin is high,
the bit is set. When the external state of the pin is low, the bit is cleared.

01:00 012

Clock Mode Bits - These bits are used to select the operating speed of the 80960
processor core. The 80960 processor core can operate in DX, DX2, and DX4 modes.
These bits are only operational when the external CLKMODE1:0# pins are both high.
When CLKMODE1:0# pins are both high, the default value of these bits are 012 after
reset, for example, DX mode. Software must alter these bits to select the operating speed
of the 80960 processor core.

(00) - DX Mode

(01) - DX Mode

(10) - DX2 Mode

(11) - DX4 Mode

PCI

LBA

28 24 20 16 12 8 4 031

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

ro

ro

rw

rw

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

ro

ro

ro

ro

rw

rw

rw

rw

Table 11-4. Selecting the 80960 Processor Speed

CLKMODE1:0# Pins Description

112

The 80960 processor core operating speed is selected using the Clock Mode
bits in the CSR register. The CSR register can be accessed via the PCI bus.
The default speed is DX mode after reset.

102
The i960 VH processor operates in DX mode. The Clock Mode bits in the CSR
register are not operational.

012
The i960 VH processor operates in DX2 mode. The Clock Mode bits in the CSR
register are not operational.

002
The i960 VH processor operates in DX4 mode. The Clock Mode bits in the CSR
register are not operational.

i960® VH Processor Developer’s Manual 12-1

Initialization and System
Requirements 12

This chapter describes the steps that the i960® VH processor performs during initialization.
Discussed are the reset modes, the reset state and built-in self test (BIST) features. This chapter
also describes the processor’s basic system requirements — including power, ground and clock —
and concludes with some general guidelines for high-speed circuit board design.

12.1 Overview

The 80960VH initialization can basically be separated into two steps: initialization of the i960 core
processor and initialization of all of the other units. Four initialization modes are available; the
selected mode is determined by the values of the D/C#/RST_MODE# (hereafter called
RST_MODE#) and RETRY signals when P_RST# is asserted. These modes dictate when the i960
core processor initializes and when the primary PCI interface accepts transactions.

Many of the 80960VH’s functional units require initialization before system operation. The order
in which they are initialized is important and is dependent on the system design. There is no one
single initialization process for the 80960VH. Instead, there are several options that may be
considered.

Note: Sample initialization code, technical notes and other developer resources are available on the Intel
World Wide Web site at: http://www.intel.com.

12.1.1 Core Initialization

When the i960 core processor initialization begins, the processor uses an Initial Memory Image
(IMI) to establish its state. The IMI includes:

• Initialization Boot Record (IBR) – contains the addresses of the first instruction of the user’s
code and the PRCB.

• Process Control Block (PRCB) – contains pointers to system data structures; also contains
information used to configure the processor at initialization.

• System data structures – the processor caches several data structure pointers internally at
initialization.

Software can reinitialize the processor. When a reinitialization takes place, a new PRCB and
reinitialization instruction pointer are specified. Reinitialization is useful for relocating data
structures from ROM to RAM after initialization.

12-2 i960® VH Processor Developer’s Manual

Initialization and System Requirements

12.1.2 General Initialization

The 80960VH supports several facilities to assist in system testing and start-up diagnostics. ONCE
mode electrically removes the processor from a system. This feature is useful for system-level
testing where a remote tester exercises the processor system. The 80960VH also supports JTAG
boundary scan (see Chapter 22, “Test Features”). During initialization, the processor performs an
internal functional self test and local bus self test. These features are useful for system diagnostics
to ensure basic CPU and system bus functionality.

The processor is designed to minimize the requirements of its external system. It requires an input
clock (P_CLK) and clean power and ground connections (VS S and VC C). Since the processor can
operate at a high frequency, the external system must be designed with considerations to reduce
induced noise on signals, power and ground.

12.2 i960® VH Processor Initialization

Several functional units within the 80960VH must be initialized before system operation. These are
the Core and Peripheral Control Unit, Address Translation Unit (ATU), i960 core processor and
Memory Controller. The order in which they are initialized is dependent on how the 80960VH is
used in the system. The initialization process begins when the Primary PCI Bus Reset signal
(P_RST#) is asserted.

12.2.1 Initialization Modes

The initialization process is generally controlled through either an external host processor or the
i960 core processor. Based on this assumption, there are four initialization modes.

The mode is determined by the value of the RST_MODE# and RETRY signals, described in the
next sections. Table 12-1 describes the relationship between the RST_MODE# and RETRY signal
values and the initialization mode.

The RST_MODE# signal is sampled on the rising edge of P_RST#. The inverse value of this signal
is then written to the Core Processor Reset bit in the Reset/Retry Control Register (RRCR). See
Chapter 11, “Core and Peripheral Control Unit”. When RST_MODE# is active and P_RST# is
asserted, the i960 core processor is held in reset until P_RST# is deasserted. The i960 core
processor reset is released when the reset bit in RRCR is cleared. When RST_MODE# is inactive
and P_RST# is asserted, the i960 core processor is reset. The i960 core processor then begins its
normal initialization sequence when P_RST# is deasserted.

Table 12-1. Initialization Modes

RST_MODE# RETRY Initialization
Mode Primary PCI Interface i960 Core

Processor

0 X Mode 0 Accepts Transactions Held in Reset

1 0 Mode 1 Accepts Transactions Initializes

1 1 Mode 2 (default) Retries All Configuration Transactions Initializes

i960® VH Processor Developer’s Manual 12-3

Initialization and System Requirements

The RETRY signal is sampled on the rising edge of P_RST#. The value of this signal is written to
the Configuration Cycle Disable bit in the RRCR. When RETRY is active and P_RST# is
de-asserted, the 80960VH 33/3.3 signals a Retry on all PCI configuration cycles it receives on the
primary PCI bus. When RETRY is inactive and P_RST# is de-asserted, the 80960VH accepts PCI
configuration cycles on the primary PCI bus.

Figure 12-1 shows a flow chart of the initialization process.

12.2.2 Mode 0 Initialization

Mode 0 allows a host processor to configure the 80960VH peripherals while the i960 core
processor is held in reset. The host processor configures the Core and Peripheral Control Unit. The
memory controller and ATU can also be initialized by the host processor. Program code for the
i960 core processor may be downloaded into local memory by the host processor.

The host processor clears the 80960 reset signal by clearing the Core Processor Reset bit in the
RRCR. This deasserts the internal reset signal on the i960 core processor and the processor begins
its initialization process.

12.2.3 Mode 1 Initialization

Mode 1 allows configuration cycles on the ATU at any time and allows the i960 core processor to
initialize after reset. Mode 1 allows each unit of the 80960VH to be initialized in its own manner.
All units are reset when the P_RST# signal is asserted. Each unit returns to its default state. Be
aware that race conditions may exist between 80960 operation after reset and PCI configuration.

12.2.4 Mode 2 (Default Mode)

Mode 2 allows the i960 core processor to initialize and control the initialization process before the
host processor is allowed to configure the 80960VH peripherals. During this time, the primary PCI
interface signals a Retry on all configuration cycles it receives until the i960 core processor clears
the Configuration Cycle Disable bit in the RRCR. This option is only available when an
initialization ROM is used.

By allowing the i960 core processor to control the initialization process, it is possible to initialize
the PCI configuration registers to values other than the default power-up values. Certain PCI
configuration registers that are read only through PCI configuration cycles are read/write from the
i960 core processor. This allows the programmer to customize the way the 80960VH appears to the
PCI configuration software.

12-4 i960® VH Processor Developer’s Manual

Initialization and System Requirements

Figure 12-1. Initialization Examples Flow Chart

RST_MODE#
Asserted?

80960 Core
Initialization

Host configures
ATU

Host configures
Memory

Controller

Host downloads
80960 Code

(if any)

80960 Core
Initialization

Enable ATU
(Clear Config
Disable Bit

RRCR)

NOYES

Start

End

Host clears
80960 Reset Bit

in RRCR.

• 80960 config-
ures ATU

• Memory Con-
troller
Initialization

P_RST# signal
asserted

The host
processor
is held in

retry
during this

time.

 80960
Core

held in
reset

RETRY
Asserted?

NO YES

80960 Core
Initialization

Mode 2Mode 1

Mode 0

• Memory Con-
troller
Initialization

• ATU Initializa-
tion

i960® VH Processor Developer’s Manual 12-5

Initialization and System Requirements

12.2.5 Local Bus Arbitration Unit

The internal local bus arbitration logic is reset by the P_RST# signal. The reset values of the
registers are shown in Table 12-2. All of the bus masters are initialized to the highest priority. None
of the devices are disabled at powerup.

12.2.6 Reset State Operation

The 80960VH has two reset conditions:

• P_RST#

• L_RST#

Each is described in detail in the following sections.

12.2.6.1 i960® VH Processor Reset State Operation

The P_RST# signal, when asserted, causes the 80960VH to enter the reset state. All external
signals go to a defined state, internal logic is initialized, and certain registers are set to defined
values. P_RST# is a level-sensitive, asynchronous input.

P_RST# must be asserted when power is applied to the processor. The processor then stabilizes in
the reset state. This power-up reset is referred to as cold reset. To ensure that all internal logic has
stabilized in the reset state, a valid input clock (P_CLK) and VCC must be present and stable for a
specified time before P_RST# can be deasserted.

The processor may also be cycled through the reset state after execution has started. This is referred
to as warm reset. For a warm reset, P_RST# must be asserted for a minimum number of clock
cycles. Specifications for a cold and warm reset can be found in the 80960VH Datasheet.

While the processor’s P_RST# signal is asserted, output signals are driven to the states as indicated
in Table 12-2. User software cannot reset the entire 80960VH; however, the sysctl instruction can
reset the i960 core processor. The P_RST# signal must be asserted to enter the reset state. See
Section 12.6, “Reinitializing and Relocating Data Structures” on page 12-22.

12.2.6.2 i960® Jx Core Processor Reset State Operation

The L_RST# signal, when asserted, causes the i960 core processor to enter the reset state. All core
signals go to a defined state, internal core logic is initialized, and certain registers are set to defined
values.

L_RST# is asserted in the RRCR when the ATU and DMA have indicated that they are off the PCI
bus. L_RST# also asserts when P_RST# asserts.

L_RST# asserts after P_RST# is asserted. L_RST# deasserts after P_RST# deasserts.

Table 12-2. Reset Values

Local Arbitration Register Reset Value Note

Local Bus Arbitration Control Register (LBACR) 0000 0000H All Bus Masters Enabled

Local Bus Arbitration Latency Count Register (LBALCR) 0000 0FFFH Maximum Count Value

12-6 i960® VH Processor Developer’s Manual

Initialization and System Requirements

12.3 i960® Core Processor Initialization

Initialization describes the mechanism that the processor uses to establish its initial state and begin
instruction execution. When i960 core processor initialization begins, the processor automatically
configures itself with information specified in the IMI and performs its built-in self test based on
the sampling of the STEST signal. The processor then branches to the first instruction of user code.
See Figure 12-2 for a flow chart of i960 core processor initialization.

The objective of the initialization sequence is to provide a complete, working initial state when the
first user instruction executes. The user’s startup code needs only to perform several basic
functions to place the processor in a configuration for executing application code.

i960® VH Processor Developer’s Manual 12-7

Initialization and System Requirements

12.3.1 Self Test Function (STEST, FAIL#)

As part of initialization, the 80960VH executes a local bus confidence self test, an alignment check
for data structures within the initial memory image (IMI), and optionally, a built-in self test
program. The self test (STEST) signal enables or disables built-in self test. The FAIL# signal
indicates that the self tests failed by asserting FAIL#. During normal operations the FAIL# signal
can be asserted when a core processor error is detected. The following subsections further describe
these signal functions.

Figure 12-2. Processor Initialization Flow

Executing Program

P_RST# or

?

Hardware Reset

Reset State

YES

Assert FAIL# Signal

STEST
Asserted

?

Perform Built-In

Built-In
Self Test Pass

?

NO

STOP

Deassert FAIL# Signal

Configure Registers
Setup Bus Controller

Assert FAIL# Signal

Bus Confidence Self-

Checksum = 0
NO

Deassert FAIL# Signal

?

sysctl
Reinitialize

?

Software Reinitialization

Process PRCB
Contents

Cache NMI Vector from
Vector Location 248 in

Interrupt Table

Load Control Registers
with the Data in the

Control Table

Execute User Code
Branch to Start-up

NO

NO

Drive Fail Code
on Address/Data Pins

 Self Test

Test: compute Checksum

NO

YES

YES

YES

YES

Reset Local Bus

Asserted
?

Bit in RRCR

RST_MODE# RST_MODE#

Asserted

NO

YES

cleared
?

YES

NO

12-8 i960® VH Processor Developer’s Manual

Initialization and System Requirements

Built-in self test checks basic functionality of internal data paths, registers and memory arrays
on-chip. Built-in self test is not intended to be a full validation of processor functionality; it is
intended to detect catastrophic internal failures and complement a user’s system diagnostics by
ensuring a confidence level in the processor before any system diagnostics are executed.

12.3.1.1 The STEST Signal

The STEST signal enables and disables Built-In Self Test (BIST). BIST can be disabled when the
initialization time needs to be minimized or when diagnostics are simply not necessary. The
STEST signal is sampled under the following conditions:

• On the rising edge P_RST#

When STEST is asserted, the i960 core processor executes the built-in self test. When STEST is
deasserted, the i960 core processor bypasses built-in self test.

12.3.1.2 Local Bus Confidence Test

The local bus confidence test is always performed regardless of STEST signal value. The local bus
confidence test reads eight words from the Initialization Boot Record (IBR) and performs a
checksum on the words and the constant FFFF FFFFH. The test passes only when the processor
calculates a sum of zero (0). The test can detect catastrophic bus failures such as external address,
data or control lines that are stuck, shorted or open.

12.3.1.3 The Fail Signal (FAIL#)

The FAIL# signal signals errors in either the built-in self test or the bus confidence self test. FAIL#
is asserted (low) for each self test (Figure 12-3):

• When any test fails, the FAIL# signal remains asserted, a fail code message is driven onto the
address bus, and the processor stops execution at the point of failure.

• When a core processor error occurs, FAIL# is also asserted. See Section 12.3.1.4, “IMI
Alignment Check and Core Processor Error” on page 12-9 for details.

• When the test passes, FAIL# is deasserted.

When FAIL# stays asserted, the only way to resume normal operation is to perform a reset
operation. When the STEST signal is used to disable the built-in self test, the test does not execute;
however, FAIL# still asserts at the point where the built-in self test would occur. FAIL# is
deasserted after the bus confidence test passes. In Figure 12-3, all transitions on the FAIL# signal
are relative to P_CLK as described in the 80960VH Datasheet.

i960® VH Processor Developer’s Manual 12-9

Initialization and System Requirements

12.3.1.4 IMI Alignment Check and Core Processor Error

The alignment check during initialization for data structures within the IMI ensures that the PRCB,
control table, interrupt table, system-procedure table, and fault table are aligned to word
boundaries. Normal processor operation is not possible without the alignment of these key data
structures. The alignment check is one case where a core processor error could occur.

The other case of core processor error can occur during regular operation when generation of an
override fault incurs a fault. The sequence of events leading up to this case is quite uncommon.

When a core processor error is detected, the FAIL# signal is asserted, a fail code message is driven
onto the address bus, and the processor stops execution at the point of failure. The only way to
resume normal operation of the processor is to perform a reset operation. Because core processor
error generation can occur sometime after the BUS confidence test and even after initialization
during normal processor operation, the FAIL# signal is a logic one before the detection of a Core
PROCESSOR Error.

12.3.1.5 FAIL# Code

The processor uses only one read bus transaction to signal the fail code message; the address of the
bus transaction is the fail code itself. The fail code is of the form: 0xFEFFFFnn; bits 6 to 0 contain
a mask recording the possible failures. Bit 7, when one, indicates the mask contains failures from
Built-In Self-Test (BIST); when zero, the mask indicates other failures. The fail codes are shown in
Table 12-3 and Table 12-4.

Figure 12-3. FAIL# Timing

FAIL#

~414,000 Cycles

26 Cycles

FAIL FAIL

PASS PASS

Built-In Self-Test Status
Bus Confidence

 132 Cycles

Built-In Self-Test Local Bus Confidence Test

Test Status

Cycles = Number of P_CLK Periods

80960 Core
 Reset

Table 12-3. BIST Failure Codes

Bit When Set

7 Set to one for BIST failure

6 On-chip Data-RAM failure detected by BIST

5 Internal Microcode ROM failure detected by BIST

4 I-cache failure detected by BIST

3 D-cache failure detected by BIST

2 Local-register cache or processor core failure detected by BIST

1 Always Zero

0 Always Zero

12-10 i960® VH Processor Developer’s Manual

Initialization and System Requirements

12.4 Initial Memory Image (IMI)

The IMI comprises the minimum set of data structures that the processor needs to initialize. As
shown in Figure 12-4, these structures are: the initialization boot record (IBR), process control
block (PRCB) and system data structures. The IBR is located at a fixed address in memory. The
other components are referenced directly or indirectly by pointers in the IBR and the PRCB. The
IMI performs three functions for the processor:

• Provides initial configuration information for the core and integrated peripherals.

• Provides pointers to the system data structures and the first instruction to be executed after
processor initialization.

• Provides checksum words that the processor uses in its self test routine at startup.

Several data structures are typically included as part of the IMI because values in these data
structures are accessed by the processor during initialization. These data structures are usually
programmed in the systems’s boot ROM, located in memory region 14_15 of the address space.
The required data structures are:

• PRCB

• IBR

• System procedure table

• Control table

• Interrupt table

• Fault table

To ensure proper processor operation, the PRCB, system procedure table, control table, interrupt
table, and fault table must not be located in architecturally reserved memory – addresses reserved
for on-chip Data RAM and addresses at and above FEFF FF60H. In addition, each of these
structures must start at a word-aligned address; a core processor error occurs when any of these
structures are not word-aligned. See Section 12.3.1.3, “The Fail Signal (FAIL#)” on page 12-8.

At initialization, the processor loads the Supervisor Stack Pointer (SSP) from the system procedure
table, aligns it to a 16-byte boundary, and caches the pointer in the SSP memory-mapped control
register — see Section 3.3, “Memory-Mapped Control Registers (MMRs)” on page 3-5. Recall that
the supervisor stack pointer is located in the preamble of the system procedure table at byte offset

Table 12-4. Non-BIST Failure Codes

Bit When Set

7 Set to zero for non-BIST failure

6 Always One; this bit does not indicate a failure

5 Always One; this bit does not indicate a failure

4 A data structure within the IMI is not aligned to a word boundary

3 A core processor error during normal operation has occurred

2 The Bus Confidence test has failed

1 Always Zero

0 Always Zero

i960® VH Processor Developer’s Manual 12-11

Initialization and System Requirements

12 from the base address. The system procedure table base address is programmed in the PRCB.
Consult Section 7.5.1, “System Procedure Table” on page 7-13 for the format of the system
procedure table.

At initialization, the NMI vector is loaded from the interrupt table and saved at location
0000 0000H of the internal data RAM. The interrupt table is typically programmed in the boot
ROM and then relocated to internal RAM by reinitializing the processor.

The fault table is typically located in boot ROM. When it is necessary to locate the fault table in
RAM, the processor must be reinitialized.

The remaining data structures that an application may need are the user stack, supervisor stack and
interrupt stack. These stacks must be located in the 80960VH’s local bus RAM.

12-12 i960® VH Processor Developer’s Manual

Initialization and System Requirements

12.4.1 Initialization Boot Record (IBR)

The initialization boot record (IBR) is the primary data structure required to initialize the 80960VH
processor. The IBR is a 12-word structure which must be located at address FEFF FF30H (see
Table 12-5). The IBR is made up of four components: the initial bus configuration data, the first
instruction pointer, the PRCB pointer and the bus confidence test checksum data.

Figure 12-4. Initial Memory Image (IMI) and Process Control Block (PRCB)

FEFF FF30H

FEFF FF40H

FEFF FF44H

FEFF FF48H

FEFF FF5CH

PMCON

First Instruction
Pointer

PRCB Pointer

6 Check Words
(For Local Bus

Self-Test)

Address

User Code:

Process Control Block (PRCB)

Fault Table Base Address

Control Table Base Address

AC Register Initial Image

Fault Configuration Word

Interrupt Table Base Address

System Procedure
Table Base Address

Reserved

Interrupt Stack Pointer

Instruction Cache
Configuration Word

Register Cache

Control Table

Interrupt Table

System Procedure Table

Other Architecturally
Defined Data

Structures (not
required as part of IMI)

Fixed Data Structures Relocatable Data Structures

Configuration Word

FEFF FF34H

FEFF FF38H

FEFF FF3CH

Byte 0
PMCON
Byte 1
PMCON
Byte 2
PMCON
Byte 3

Init. Boot Record (IBR)

Confidence

i960® VH Processor Developer’s Manual 12-13

Initialization and System Requirements

When the processor reads the IMI during initialization, it must know the bus characteristics of
external memory where the IMI is located. Specifically, it must know the bus width and endianism
for the remainder of the IMI. At initialization, the processor sets the PMCON register to an 8-bit
bus width. The processor then needs to form the initial DLMCON and PMCON14_15 registers so
that the memory containing the IBR can be accessed correctly. The lowest-order byte of each of the
IBR’s first 4 words are used to form the register values. On the 80960VH, the bytes at
FEFF FF30H and FEFF FF34H are not needed, so the processor starts fetching at address
FEFF FF38. The loading of these registers is shown in the pseudo-code flow in Example 12-1.

Table 12-5. Initialization Boot Record

Byte Physical Address Description

FEFF FF30H PMCON14_15, byte 0

FEFF FF31H to FEFF FF33H Reserved

FEFF FF34H PMCON14_15, byte 1

FEFF FF35H to FEFF FF37H Reserved

FEFF FF38H PMCON14_15, byte 2

FEFF FF39H to FEFF FF3BH Reserved

FEFF FF3CH PMCON14_15, byte 3

FEFF FF3DH to FEFF FF3FH Reserved

FEFF FF40H to FEFF FF43H First Instruction Pointer

FEFF FF44H to FEFF FF47H PRCB Pointer

FEFF FF48H to FEFF FF4BH Local Bus Confidence Self-Test Check Word 0

FEFF FF4CH to FEFF FF4FH Local Bus Confidence Self-Test Check Word 1

FEFF FF50H to FEFF FF53H Local Bus Confidence Self-Test Check Word 2

FEFF FF54H to FEFF FF57H Local Bus Confidence Self-Test Check Word 3

FEFF FF58H to FEFF FF5BH Local Bus Confidence Self-Test Check Word 4

FEFF FF5CH to FEFF FF5FH Local Bus Confidence Self-Test Check Word 5

12-14 i960® VH Processor Developer’s Manual

Initialization and System Requirements

The processor initializes the DLMCON.dcen bit to 0 to disable data caching. The remainder of the
assembled word is used to initialize PMCON14_15. In conjunction with this step, the processor
clears the bus control table valid bit (BCON.ctv), to ensure for the remainder of initialization that
every bus request issued takes configuration information from the PMCON14_15 register,
regardless of the memory region associated with the request. At a later point in initialization, the
processor loads the remainder of the memory region configuration table from the external control
table. The Bus Configuration (BCON) register is also loaded at this time. The control table valid
(BCON.ctv) bit is then set in the control table to validate the PMCON registers after they are

Example 12-1. Processor Initialization Pseudocode Flow

Processor_Initialization_flow()

{ FAIL_pin = true;
 restore_full_cache_mode; disable(I_cache); invalidate(I_cache);
 disable(D_cache); invalidate(D_cache);
 BCON.ctv = 0; /* Selects PMCON14_15 to control all accesses */
 PMCON14_15 = 0; /* Selects 8-bit bus width */

/** Exit Reset State & Start_Init **/
 if (STEST_ON_RISING_EDGE_OF_RESET)
 status = BIST(); /* BIST does not return if it fails */
 FAIL_pin = false;
 PC = 0x001f2002; /* PC.Priority = 31, PC.em = Supervisor,*/
 /* PC.te = 0; PC.State = Interrupted */
 ibr_ptr = 0xfeffff30; /* ibr_ptr used to fetch IBR words */

/* Read PMCON14_15 image in IBR */
FAIL_pin = true; IMSK = 0;
DLMCON.dcen = 0; LMMR0.lmte = 0; LMMR1.lmte = 0;
PMCON14_15[byte2] = 0xc0 & memory[ibr_ptr +8];

/*Compute CheckSum on Boot Record */
carry = 0; CheckSum = 0xffffffff;
for(i = 6; i>0; i--) /* carry is carry out from previous add*/
 CheckSum = memory[ibr_ptr + 24 + i*4] + CheckSum + carry;
prcb_ptr = memory[ibr_ptr + 0x14];
IP = memory[prcb_ptr + 4];
CheckSum = prcb_ptr + IP + CheckSum + carry;
if(CheckSum != 0)
 {fail_msg = 0xfeffff64; /* Fail BUS Confidence Test */
 dummy = memory[fail_msg]; /* Do load with address = fail_msg */
 for(;;); /* loop forever with FAIL pin true */
 }
else FAIL_pin = false;

/* Process PRCB and Control Table */
prcb_ptr = memory[ibr_ptr + 0x14];
Process_PRCB(prcb_ptr); /* See Process PRCB Section for Details */

Destroy_Global_&_Local_Register_Values(); /*Previous values of Global
 and Local Registers are
 Destroyed during
 initialization and software re-
 initialization*/
g0 = 80960core_device_ID;
return; /* Execute First Instruction */

}

i960® VH Processor Developer’s Manual 12-15

Initialization and System Requirements

loaded. In this way, the bus controller is completely configured during initialization. (See
Chapter 14, “Local Bus” for a complete discussion of memory regions and configuring the bus
controller.)

After the local bus configuration data is loaded and the new bus configuration is in place, the
processor loads the remainder of the IBR which consists of the first instruction pointer, the PRCB
pointer and six checksum words. The PRCB pointer and the first instruction pointer are internally
cached. The six checksum words — along with the PRCB pointer and the first instruction pointer
— are used in a checksum calculation which implements a confidence test of the local bus. The
checksum calculation is shown in the pseudo-code flow in Example 12-1. When the checksum
calculation equals zero, then the confidence test of the local bus passes.

Table 12-6 further describes the IBR organization.

12.4.2 Process Control Block – PRCB

The PRCB contains base addresses for system data structures and initial configuration information
for the i960 core processor. The base addresses are accessed from these internal registers. The
registers are accessible to the users through the memory mapped interface. Upon reset or
reinitialization, the registers are initialized. The PRCB format is shown in Table 12-7.

Table 12-6. PMCON14_15 Register Bit Description in IBR

LBA:

PCI:

8638H

NA

Legend: NA = Not Accessible RO = Read Only
RV = Reserved PR = Preserved RW = Read/Write
RS = Read/Set RC = Read Clear
LBA = 80960 Local Bus Address PCI = PCI Configuration Address Offset

Bit Default Description

31:24 00H Reserved. Initialize to 0.

23:22 002

Local Bus Width (BW)
(00) 8-bit
(01) 16-bit
(10) 32-bit
(11) Reserved

21:00 00 0000H Reserved. Initialize to 0.

PCI

LBA

28 24 20 16 12 8 4 031

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rw

na

rw

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

Table 12-7. PRCB Configuration (Sheet 1 of 2)

Physical Address Description

PRCB POINTER + 00H Fault Table Base Address

PRCB POINTER + 04H Control Table Base Address

PRCB POINTER + 08H AC Register Initial Image

PRCB POINTER + 0CH Fault Configuration Word

PRCB POINTER + 10H Interrupt Table Base Address

PRCB POINTER + 14H System Procedure Table Base Address

12-16 i960® VH Processor Developer’s Manual

Initialization and System Requirements

The initial configuration information is programmed in the arithmetic controls register (AC) initial
image, the fault configuration word, the instruction cache configuration word, and the register
cache configuration word. Table 12-8 show these configuration words.

PRCB POINTER + 18H Reserved

PRCB POINTER + 1CH Interrupt Stack Pointer

PRCB POINTER + 20H Instruction Cache Configuration Word

PRCB POINTER + 24H Register Cache Configuration Word

Table 12-7. PRCB Configuration (Sheet 2 of 2)

Physical Address Description

i960® VH Processor Developer’s Manual 12-17

Initialization and System Requirements

12.4.3 Process PRCB Flow

The following pseudo-code flow illustrates the processing of the PRCB. Note that this flow is used
for both initialization and reinitialization (through sysctl).

Table 12-8. Process Control Block Configuration Words

28 24 20 16 12 8 4 031

Reserved
F_CR076A

28 24 20 16

12 8 4 0

31

AC Register Initial Image

Condition Code Bits - AC.cc

Integer-Overflow Flag - AC.of
(0) no overflow
(1) overflow

Integer Overflow Mask Bit - AC.om
(0) enable overflow faults
(1) mask overflow faults

No-Imprecise-Faults Bit - AC.nif
(0) allow imprecise fault conditions
(1) prevent imprecise fault conditions

Register Cache Configuration Word

Number of Frames Reserved for High Priority Interrupts

Disable Instruction Cache

Instruction Cache Configuration Word

(0) enable cache
(1) disable cache

Mask Non-Aligned Bus Request Fault
(0) enable the fault
(1) mask the fault

c
c
0

c
c
1

c
c
2

o
f

o
m

n
i
f

(Initialize to 0)

12 8 4 028 24 20 1631

28 24 20 16 12 8 4 031

Fault Configuration Word

Offset 08H

Offset 0CH

Offset 20H

Offset 24H

12-18 i960® VH Processor Developer’s Manual

Initialization and System Requirements

12.4.3.1 AC Initial Image

The AC initial image is loaded into the on-chip AC register during initialization. The AC initial
image allows the initial value of the overflow mask, no imprecise faults bit and condition code bits
to be selected at initialization.

Example 12-2. PRCB Processing Pseudo-code Flow

Process_PRCB(prcb_ptr)
{ PRCB_mmr = prcb_ptr;
 reset_state(data_ram); /* It is unpredictable whether the */
 /* Data RAM keeps its prior contents */
 fault_table = memory[PRCB_mmr];
 ctrl_table = memory[PRCB_mmr+0x4];
 AC = memory[PRCB_mmr+0x8];
 fault_config = memory[PRCB_mmr+0xc];
 if (1 & (fault_config >> 30))
generate_fault_on_unaligned_access = false;
 else generate_fault_on_unaligned_access = true;

/** Load Interrupt Table Pointer **/
 Reset_block_NMI;
 interrupt_table = memory[PRCB_mmr+0x10];

/** Load System Procedure Table Pointer **/
 sysproc = memory[PRCB_mmr+0x14];

/** Initialize ISP, FP, SP, and PFP **/
 ISP_mmr = memory[PRCB_mmr+0x1c];
 FP = ISP_mmr;
 SP = FP + 64;
 PFP = FP;

/** Initialize Instruction Cache **/
 ICCW = memory[PRCB_mmr+0x20];
 if (1 & (ICCW >> 16)) enable(I_cache);

/** Cache NMI Vector Entry in Data RAM**/
 memory[0] = memory[interrupt_table + (248*4) + 4];

/** Process System Procedure Table **/
 temp = memory[sysproc+0xc];
 SSP_mmr = (~0x3) & temp;
 SSP.te = 1 & temp;

/** Configure Local Register Cache **/
 programmed_limit = (7 & (memory[PRCB_mmr+0x24] >> 8));
 config_reg_cache(programmed_limit);

/** Load_control_table. Note breakpoints and BPCON are excluded here **/
 load_control_table(ctrl_table+0x10 , ctrl_table+0x58);
 /* Load ctrl_table+0x10 through ctrl_table+0x58 */
 load_control_table(ctrl_table+0x68 , ctrl_table+0x6c);
 /* Load ctrl_table+0x68 through ctrl_table+0x6C */
 IBP0 = 0x0; IBP1 = 0x0; DAB0 = 0x0; DAB1 = 0x0;

/** Initialize Timers **/
 TMR0.tc = 0; TMR1.tc = 0; TMR0.enable = 0; TMR1.enable = 0;
 TMR0.sup = 0; TMR1.sup = 0; TMR0.reload = 0; TMR1.reload = 0;
 TMR0.csel = 0; TMR1.csel = 0;

 return;

i960® VH Processor Developer’s Manual 12-19

Initialization and System Requirements

The AC initial image condition code bits can be used to specify the source of an initialization or
reinitialization when a single instruction entry point to the user start-up code is desirable. This is
accomplished by programming the condition code in the AC initial image to a different value for
each different entry point. The user start-up code can detect the condition code values — and thus
the source of the reinitialization — by using the compare or compare-and-branch instructions.

12.4.3.2 Fault Configuration Word

The fault configuration word allows the operation-unaligned fault to be masked when an unaligned
memory request is issued. When an unaligned access is encountered, the processor always
performs the access. After performing the access, the processor determines whether it should
generate a fault. When bit 30 in the fault configuration word is set, a fault is not generated after an
unaligned memory request is performed. When bit 30 is clear, a fault is generated after an
unaligned memory request is performed.

12.4.3.3 Instruction Cache Configuration Word

The instruction cache configuration word allows the instruction cache to be enabled or disabled at
initialization. When bit 16 in the instruction cache configuration word is set, the instruction cache
is disabled and all instruction fetches are directed to external memory. Disabling the instruction
cache is useful for tracing execution in a software debug environment.

The instruction cache remains disabled until the following operations:

• The processor is reinitialized with a new value in the instruction cache configuration word

• icctl is issued with the enable instruction cache operation

• sysctl is issued with the configure instruction cache message type and a cache configuration
mode other than disable cache.

12.4.3.4 Register Cache Configuration Word

The register cache configuration word specifies the number of free frames in the local register
cache that can be used by critical code (i.e., code that is in the interrupted state and has a process
priority greater than or equal to 28).

The register cache and the configuration word are explained further in Section 4.2, “Local Register
Cache” on page 4-2.

12.4.4 Control Table

The control table is the data structure that contains the on-chip control registers values. It is
automatically loaded during initialization and must be completely constructed in the IMI.
Figure 12-5 shows the Control Table format.

For register bit definitions of the on-chip control table registers, see the following:

• IMAP — Table 8-9 through Table 8-11, Interrupt Map Register 2 – IMAP2 (page 8-27)

• ICON — Table 8-8. Interrupt Control Register – ICON (pg. 8-25)

• PMCON — Table 13-2. Physical Memory Control Registers – PMCON0:15 (pg. 13-4)

• TC — Figure 10-1. i960® VH processor Trace Controls Register – TC (pg. 10-2)

12-20 i960® VH Processor Developer’s Manual

Initialization and System Requirements

• BCON — Table 13-3. Bus Control Register – BCON (pg. 13-5)

12.5 Device Identification on Reset

During the manufacturing process, values characterizing the 80960VH type and stepping are
programmed into the memory-mapped registers. The 80960VH contains two read-only device ID
MMRs. One holds the Processor Device ID (PDIDR) and the other holds the i960 Core Processor
Device ID (DEVICEID).

Figure 12-5. Control Table

031

00H

04H

08H

0CH

10H

14H

18H

1CH

6CH

64H

68H

20H

24H

28H

2CH

30H

34H

38H

3CH

40H

44H

48H

4CH

50H

54H

58H

5CH

60H

Interrupt Map 0 (IMAP0)

Interrupt Map 1 (IMAP1)

Bus Configuration Control (BCON)

Trace Controls (TC)

Interrupt Map 2 (IMAP2)

Interrupt Configuration (ICON)

Physical Memory Region 0:1 Configuration (PMCON0_1)

Physical Memory Region 2:3 Configuration (PMCON2_3)

Physical Memory Region 4:5 Configuration (PMCON4_5)

Physical Memory Region 6:7 Configuration (PMCON6_7)

Physical Memory Region 8:9 Configuration (PMCON8_9)

Physical Memory Region 10:11 Configuration (PMCON10_11

Physical Memory Region 12:13 Configuration (PMCON12_13)

Physical Memory Region 14:15 Configuration (PMCON14_15)

Reserved (Initialize to 0)

Reserved (Initialize to 0)

Reserved (Initialize to 0)

Reserved (Initialize to 0)

Reserved (Initialize to 0)

Reserved (Initialize to 0)

Reserved (Initialize to 0)

Reserved (Initialize to 0)

Reserved (Initialize to 0)

Reserved (Initialize to 0)

Reserved (Initialize to 0)

Reserved (Initialize to 0)

Reserved (Initialize to 0)

Reserved (Initialize to 0)

i960® VH Processor Developer’s Manual 12-21

Initialization and System Requirements

The device identification values are compliant with the IEEE 1149.1 specification and Intel
standards. Table 12-9 and Table 12-10 describe the fields of the two Device IDs. During
initialization, the PDIDR is placed in g0.

NOTE: The values programmed into this register varies with stepping. Refer to the i960® VH Processor Specification Update
(Intel Order # 273174-001) for the correct value.

Table 12-9. Processor Device ID Register - PDIDR

LBA:

PCI:

1710H

NA

Legend: NA = Not Accessible RO = Read Only
RV = Reserved PR = Preserved RW = Read/Write
RS = Read/Set RC = Read Clear
LBA = 80960 Local Bus Address PCI = PCI Configuration Address Offset

Bit Default Description

31:28 X Version - Indicates stepping changes.

27 X
VCC - Indicates device voltage type.

0=5.0V
1=3.3V

26:21 X Product Type - Indicates the generation or “family member”.

20:17 X Generation Type - Indicates the generation of the device.

16:12 X Model Type - Indicates member within a series and specific model information.

11:01 X
Manufacturer ID - Indicates manufacturer ID assigned by IEEE.

0000 0001 001=Intel Corporation

0 1 Constant

PCI

LBA

28 24 20 16 12 8 4 031

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

Table 12-10. i960® Core Processor Device ID Register - DEVICEID (Sheet 1 of 2)

LBA:

PCI:

FF00 8710
H

NA

Legend: NA = Not Accessible RO = Read Only
RV = Reserved PR = Preserved RW = Read/Write
RS = Read/Set RC = Read Clear
LBA = 80960 Local Bus Address PCI = PCI Configuration Address Offset

Bit Default Description

31:28 X Version - Indicates stepping changes.

27 X
VCC - Indicates device voltage type.

0=5.0V
1=3.3V

26:21 X Product Type - Indicates the generation or “family member”.

20:17 X Generation Type - Indicates the generation of the device.

16:12 X Model Type - Indicates member within a series and specific model information.

PCI

LBA

28 24 20 16 12 8 4 031

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

12-22 i960® VH Processor Developer’s Manual

Initialization and System Requirements

NOTE: The values programmed into this register varies with stepping. Refer to the i960® VH Processor Specification
Update (Intel Order # 273174-001) for the correct value.

12.6 Reinitializing and Relocating Data Structures

Reinitialization can reconfigure the processor and change pointers to data structures. The processor
is reinitialized by issuing the sysctl instruction with the reinitialize processor message type. See
Section 6.2.67, “sysctl” on page 6-104 for a description of sysctl. The reinitialization instruction
pointer and a new PRCB pointer are specified as operands to the sysctl instruction. When the
processor is reinitialized, the fields in the newly specified PRCB are loaded as described in
Section 12.4.2, “Process Control Block – PRCB” on page 12-15.

Reinitialization is useful for relocating data structures to RAM after initialization. The interrupt
table must be located in RAM: to post software-generated interrupts, the processor writes to the
pending priorities and pending interrupts fields in this table. It may also be necessary to relocate the
control table to RAM: it must be in RAM when the control register values are to be changed by
user code. In some systems, it is necessary to relocate other data structures (fault table and system
procedure table) to RAM because of unsatisfactory load performance from ROM.

After initialization, the software is responsible for copying data structures from ROM into RAM.
The processor is then reinitialized with a new PRCB which contains the base addresses of the new
data structures in RAM.

The processor caches the following pointers during its initialization. To modify these data
structures, a software re-initialization is needed.

• Interrupt Table Address

• Fault Table Address

• System Procedure Table Address

• Control Table Address

11:01 X Manufacturer ID - Indicates manufacturer ID assigned by IEEE.
0000 0001 001=Intel Corporation

0 1 Constant

Table 12-10. i960® Core Processor Device ID Register - DEVICEID (Sheet 2 of 2)

LBA:

PCI:

FF00 8710
H

NA

Legend: NA = Not Accessible RO = Read Only
RV = Reserved PR = Preserved RW = Read/Write
RS = Read/Set RC = Read Clear
LBA = 80960 Local Bus Address PCI = PCI Configuration Address Offset

Bit Default Description

PCI

LBA

28 24 20 16 12 8 4 031

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

i960® VH Processor Developer’s Manual 12-23

Initialization and System Requirements

12.7 System Requirements

The following sections discuss generic hardware requirements for a system built around the
80960VH. This section describes electrical characteristics of the processor’s interface to the
external circuit, including the P_CLK, P_RST#, STEST, FAIL#, ONCE#, VS S and VC C signals.
Specific signal functions for the external bus signals and interrupt inputs are discussed in their
respective sections in this manual.

12.7.1 Clocking

The 80960VH has a single clock input (P_CLK) for control. All input/output timings are relative to
P_CLK.

The range of operation for all PCI clocks is 0 to 33 MHz. The 80960VH has an internal PLL that
limits the range of processor clock operation from 16 MHz to 33 MHz. When the minimum
frequency is not met, the internal status of the processor is not guaranteed.

The clock input is designed to be driven by most common TTL crystal clock oscillators. The clock
input must be free of noise and conform with the specifications listed in the 80960VH Datasheet.
P_CLK input capacitance is minimal; for this reason, it may be necessary to terminate the P_CLK
circuit board traces at the processor to reduce overshoot and undershoot.

12.7.2 Output Clocks

The 80960VH supports an I2C bus interface. The output clock frequency for I2C operation is
100 KHz or 400 KHz. This clock is generated from the i960 core processor clock. To use the I2C
interface, a clock divider value must be written into the I2C Clock Count Register. See
Section 21.10.5, “I2C Clock Count Register – ICCR” on page 21-21.

12.7.3 Reset

There are multiple ways to reset the 80960VH. Reset is controlled either through external signals
or control registers.

When the primary PCI bus reset signal P_RST# is asserted, the 80960VH:

• Resets the i960 core processor and the local bus.

• Resets all internal units, including the Core and Peripheral Control Unit.

• Asserts local bus reset.

Reset is also available through the Reset/Retry Control Register in the Core and Peripheral Control
Unit:

• The Reset Local Bus bit in the Reset/Retry Control Register (RRCR) resets the i960 core
processor and all units on the local bus. Before reset, the DMA channels and the ATU halt all
PCI bus transactions. Software must ensure that the I2C bus is idle before the reset occurs. The
i960 core processor may or may not be held in reset when the reset local bus bit is cleared by
software. This depends on the default value of the Core Processor Reset bit in the RRCR. The
local bus reset does not reset the Core and Peripheral Control Unit or its configuration
registers. All other configuration registers are reset.

12-24 i960® VH Processor Developer’s Manual

Initialization and System Requirements

See Chapter 11, “Core and Peripheral Control Unit” for a full description of the Reset/Retry
Control Register.

12.7.4 Power and Ground Requirements (VCC, VSS)

The large number of VS S and VC C signals effectively reduce the impedance of power and ground
connections to the chip and reduces transient noise induced by current surges. The 80960VH is
implemented in CHMOS IV technology. Unlike NMOS processes, power dissipation in the
CHMOS process is due to capacitive charging and discharging on-chip and in the processor’s
output buffers; there is almost no DC power component. The nature of this power consumption
results in current surges when capacitors charge and discharge. The processor’s power
consumption depends mostly on frequency. It also depends on voltage and capacitive bus load (see
the 80960VH Datasheet).

To reduce clock skew internal to the 80960VH, the VCCP LL pins for the Phase Lock Loop (PLL)
circuits are isolated on the pinout. The lowpass filter, as shown in Figure 12-6, reduces noise
induced clock jitter and its effects on timing relationships in system designs. The 0.01µF capacitor
must be of the type X7R and the node connecting VCC PLL must be as short as possible.

12.7.5 Power and Ground Planes

Power and ground planes must be used in 80960VH systems to minimize noise. Justification for
these power and ground planes is the same as for multiple VSS and VCC pins. Power and ground
lines have inherent inductance and capacitance; therefore, an impedance Z=(L/C)1/2.

Total characteristic impedance for the power supply can be reduced by adding more lines. This
effect is illustrated in Figure 12-7, which shows that two lines in parallel have half the impedance
of one. Ideally, a plane, an infinite number of parallel lines, results in the lowest impedance.
Fabricate power and ground planes with a 1 oz. copper for outer layers and 0.5 oz. copper for inner
layers.

All power and ground pins must be connected to the planes. Ideally, the 80960VH should be
located at the center of the board to take full advantage of these planes, simplify layout and reduce
noise.

Figure 12-6. VCCPLL Lowpass Filter

10Ω, 5%, 1/8W

VCC
(Board Plane)

VCCPLL
(On i960® VH processors)0.01µF4.7µF

+

i960® VH Processor Developer’s Manual 12-25

Initialization and System Requirements

12.7.6 Decoupling Capacitors

Decoupling capacitors placed across the processor between VCC and VSS reduce voltage spikes by
supplying the extra current needed during switching. Place these capacitors close to the device
because connection line inductance negates their effect. Also, for this reason, the capacitors should
be low inductance. Chip capacitors (surface mount) exhibit lower inductance.

12.7.7 High Frequency Design Considerations

At high signal frequencies and/or with fast edge rates, the transmission line properties of signal
paths in a circuit must be considered. Transmission line effects and crosstalk become significant in
comparison to the signals. These errors can be transient and therefore difficult to debug. In this
section, some high-frequency design issues are discussed; for more information, consult a
reference on high-frequency design.

12.7.8 Line Termination

Input voltage level violations are usually due to voltage spikes that raise input voltage levels above
the maximum limit (overshoot) and below the minimum limit (undershoot). These voltage levels
can cause excess current on input gates, resulting in permanent damage to the device. Even when
no damage occurs, many devices are not guaranteed to function as specified when input voltage
levels are exceeded.

Signal lines are terminated to minimize signal reflections and prevent overshoot and undershoot.
Terminate the line when the round-trip signal path delay is greater than signal rise or fall time.
When the line is not terminated, the signal reaches its high or low level before reflections have time
to dissipate and overshoot or undershoot occurs.

For the 80960VH, two termination methods are recommended: AC and series. An AC termination
matches the impedance of the trace, there by eliminating reflections due to the impedance
mismatch.

Figure 12-7. Reducing Characteristic Impedance

Z0 = L0

C0

Z0 =
L0

2
2C0

= 1/2

L0

C0

C0

C0

L0

L0

L0

C0

12-26 i960® VH Processor Developer’s Manual

Initialization and System Requirements

Series termination decreases current flow in the signal path by adding a series resistor as shown in
Figure 12-8. The resistor increases signal rise and fall times so that the change in current occurs
over a longer period of time. Because the amount of voltage overshoot and undershoot depends on
the change in current over time (V = L di/dt), the increased time reduces overshoot and undershoot.
Place the series resistor as close as possible to the signal source. AC termination is effective in
reducing signal reflection (ringing). This termination is accomplished by adding an RC
combination at the signal’s farthest destination (Figure 12-9). While the termination provides no
DC load, the RC combination damps signal transients.

Selection of termination methods and values is dependent upon many variables, such as output
buffer impedance, board trace impedance and input impedance.

12.7.9 Latchup

Latchup is a condition in a CMOS circuit in which VCC becomes shorted to VS S. Intel’s CMOS IV
processes are immune to latchup under normal operation conditions. Latchup can be triggered
when the voltage limits on I/O pins are exceeded, causing internal PN junctions to become forward
biased.

Figure 12-8. Series Termination

A C

Source

RS

B

Figure 12-9. AC Termination

A C

Source

B

C

R

i960® VH Processor Developer’s Manual 12-27

Initialization and System Requirements

The following guidelines help prevent latchup:

• Observe the maximum rating for input voltage on I/O pins.

• Never apply power to an 80960VH signal or a device connected to an 80960VH signal before
applying power to the 80960VH itself.

• Prevent overshoot and undershoot on I/O pins by adding line termination and by designing to
reduce noise and reflection on signal lines.

12.7.10 Interference

Interference is the result of electrical activity in one conductor that causes transient voltages to
appear in another conductor. Interference increases with the following factors:

• Frequency Interference is the result of changing currents and voltages. The more frequent the
changes, the greater the interference.

• Closeness-of-conductors Interference is due to electromagnetic and electrostatic fields whose
effects are weaker further from the source.

Two types of interference must be considered in high frequency circuits: electromagnetic
interference (EMI) and electrostatic interference (ESI).

EMI is caused by the magnetic field that exists around any current-carrying conductor. The
magnetic flux from one conductor can induce current in another conductor, resulting in transient
voltage. Several precautions can minimize EMI:

• Run ground lines between two adjacent lines wherever they traverse a long section of the
circuit board. The ground line should be grounded at both ends.

• Run ground lines between the lines of an address bus or a data bus when either of the
following conditions exist:

— The bus is on an external layer of the board.

— The bus is on an internal layer but not sandwiched between power and ground planes that
are at most 10 mils away.

Figure 12-10. Avoid Closed-Loop Signal Paths

A

CB

12-28 i960® VH Processor Developer’s Manual

Initialization and System Requirements

ESI is caused by the capacitive coupling of two adjacent conductors. The conductors act as the
plates of a capacitor; a charge built up on one induces the opposite charge on the other.

The following steps reduce ESI:

• Separate signal lines so that capacitive coupling becomes negligible.

• Run a ground line between two lines to cancel the electrostatic fields.

i960® VH Processor Developer’s Manual 13-1

Core Processor
Local Bus Configuration 13

This chapter provides information on setting the memory-mapped registers that configure the local
memory bus. Topics include setting address ranges for different types of memory and configuring
the bus width. This chapter also details enabling/disabling data caching for a memory region.

13.1 Memory Attributes

Every location in memory has associated physical and logical attributes. For example, a specific
location may have the following attributes:

• Physical: Memory is an 8-bit wide ROM

• Logical: Data is non-cacheable

In the example above, physical attributes correspond to those parameters that indicate how to
physically access the data. The BCU uses physical attributes to determine the local bus protocol
and signal pins to use when controlling the memory subsystem. The logical attributes tell the BCU
how to interpret, format and control interaction of on-chip data caches. The physical and logical
attributes for an individual location are independently programmable.

13.1.1 Physical Memory Attributes

The only programmable physical memory attribute for the i960® VH processor is the local bus
width, which can be 8-, 16- or 32-bits wide.

For the purposes of assigning memory attributes, the physical address space is partitioned into 8
fixed 512 Mbyte regions determined by the upper three address bits. The regions are numbered as 8
paired sections for consistency with other i960 processor implementations. Region 0_1 maps to
addresses 0000 0000H to 1FFF FFFFH and region 14_15 maps to addresses E000 0000H to
FFFF FFFFH. The physical memory attributes for each region are programmable through the
PMCON registers. The PMCON registers are loaded from the Control Table. The 80960VH
provides one PMCON register for each region.The descriptions of the PMCON registers and
instructions on programming them are found in Section 13.2, “Programming the Physical Memory
Attributes (Pmcon Registers)” on page 13-3.

13.1.2 Logical Memory Attributes

The 80960VH provides a mechanism for defining two Logical Memory Templates (LMTs). An
LMT may be used to specify whether a section (or subset) of a physical memory subsystem
connected to the BCU (for example, DRAM, SRAM) is cacheable or non-cacheable in the on-chip
data cache.

13-2 i960® VH Processor Developer’s Manual

Core Processor Local Bus Configuration

There are typically several different LMTs defined within a single memory subsystem. For
example, data within one area of DRAM may be non-cacheable while data in another area is
cacheable. Figure 13-1 shows the use of the Control Table (PMCON registers) with logical
memory templates for a single DRAM region in a typical application.

Each logical memory template is defined by programming Logical Memory Configuration
(LMCON) registers. An LMCON register pair defines a data template for areas of memory that
have common logical attributes. The 80960VH has two pairs of LMCON registers — defining two
separate templates. The extent of each data template is described by an address (on 4 Kbyte
boundaries) and an address mask. The address is programmed in the Logical Memory Address
register (LMADR). The mask is programmed in the Logical Memory Mask register (LMMSK).
These two registers constitute the LMCON register pair.

The Default Logical Memory Configuration (DLMCON) register provides configuration data for
areas of memory that do not fall within one of the two logical data templates.

The LMCON registers and their programming are described in Section 13.5, “Programming The
Logical Memory Attributes” on page 13-6.

Figure 13-1. PMCON and LMCON Example

PMCON Registers

Region 14_15

Region 12_13

Region 10_11

Region 8_9

Region 6_7

Region 4_5

Region 2_3

Region 0_1

8000 0000H

FFFF FFFFH

Physical
Regions 10_11

0000 0000H

Logical Memory
Templates
(LMCON)

LMADR0

LMMAR0

LMADR1

LMMAR1

Non-Cacheable

Physical
Region 8_9

Physical
Regions 0_1

9FFF FFFFH

Non-Cacheable

32-bit wide
DRAM

Note: The DLMCON maps the remaining memory as cacheable.

 to 14_15

to 6_7

i960® VH Processor Developer’s Manual 13-3

Core Processor Local Bus Configuration

13.2 Programming the Physical Memory Attributes
(Pmcon Registers)

The Physical Memory Configuration registers, PMCON0_1 to PMCON14_15, are shown in
Table 13-2. The PMCON registers reside within memory-mapped control register space. Each
PMCON register controls one 512-Mbyte region of memory according to the mapping shown in
Table 13-1.

Table 13-1. PMCON Address Mapping

Register
(Control Table Entry)

Region Controlled Required Bus Width

Physical Memory Control
Register 0 – PMCON0_1

0000 0000H to 0FFF FFFFH
and

1000 0000H to 1FFF FFFFH

32 bits - 80960VH Peripheral
Memory-Mapped Registers

Physical Memory Control
Register 1 – PMCON2_3

2000 0000H to 2FFF FFFFH
and

3000 0000H to 3FFF FFFFH
Application dependent1

Physical Memory Control
Register 2 – PMCON4_5

4000 0000H to 4FFF FFFFH
and

5000 0000H to 5FFF FFFFH
Application dependent1

Physical Memory Control
Register 3 – PMCON6_7

6000 0000H to 6FFF FFFFH
and

7000 0000H to 7FFF FFFFH
Application dependent1

Physical Memory Control
Register 4 – PMCON8_9

8000 0000H to 8FFF FFFFH
and

9000 0000H to 9FFF FFFFH

32 bits - 80960VH
outbound ATU translation windows2

(See Figure 16-5., 80960 Local Bus
Memory Map - Outbound Translation

Window (pg. 16-10))

Physical Memory Control
Register 5 – PMCON10_11

A000 0000H to AFFF FFFFH
and

B000 0000H to BFFF FFFFH
Application dependent2

Physical Memory Control
Register 6 – PMCON12_13

C000 0000H to CFFF FFFFH
and

D000 0000H to DFFF FFFFH
Application dependent2

Physical Memory Control
Register 7 – PMCON14_15

E000 0000H to EFFF FFFFH
and

F000 0000H to FFFF FFFFH
Application dependent2

NOTES:
1. When direct addressing mode is enabled (bit 8 of the ATUCR), the region must be programmed to 32-bits wide. When

disabled, the peripherals/memory connected to this region define the bus width to be programmed.

2. The user peripheral/memory connected to this region defines the bus width to be programmed.

13-4 i960® VH Processor Developer’s Manual

Core Processor Local Bus Configuration

13.2.1 Local Bus Width

The local bus width for a region is controlled by the PMCON register. The operation of the
80960VH with different local bus width programming options is described in Section 14.3.4, “Bus
Width” on page 14-6.

13.3 Physical Memory Attributes At Initialization

All eight PMCON registers are loaded automatically during system initialization. The initial values
are stored in the Control Table in the Initialization Boot Record. See Section 12.4, “Initial Memory
Image (IMI)” on page 12-10.

13.3.1 Bus Control Register – BCON

Immediately after a hardware reset, the PMCON register contents are marked invalid in the Bus
Control (BCON) register. When the PMCON entries are marked invalid in BCON, the BCU uses
the parameters in PMCON14_15 for all regions. On a hardware reset, PMCON14_15 is
automatically cleared. This operation configures all regions to an 8-bit bus width. Subsequently,
the processor loads all PMCON registers from the Control Table. The processor then loads BCON
from the Control Table. When bit 2 of BCON is clear, PMCON14_15 remains in use for all local
bus accesses. When bit 2 of BCON is set, the region table is valid and the BCU uses the
programmed PMCON values for each region.

Table 13-2. Physical Memory Control Registers – PMCON0:15

LBA:

PCI:

see Table 13-1

NA

Legend: NA = Not Accessible RO = Read Only
RV = Reserved PR = Preserved RW = Read/Write
RS = Read/Set RC = Read Clear
LBA = 80960 local bus address PCI = PCI Configuration Address Offset

Bit Default Description

31:24 00H Reserved. Initialize to 0.

23:22 002

Bus Width

Selects the local bus width for a region:
(00) = 8-bit
(01) = 16-bit
(10) = 32-bit bus
(11) = reserved (do not use)

21:00 00 0000H Reserved. Initialize to 0.

PCI

LBA

28 24 20 16 12 8 4 031

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rw

na

rw

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

i960® VH Processor Developer’s Manual 13-5

Core Processor Local Bus Configuration

13.4 Boundary Conditions For Physical Memory Regions

The following sections describe the operation of the PMCON registers during conditions other than
“normal” accesses.

13.4.1 Internal Memory Locations

The PMCON registers are ignored during accesses to internal memory or i960 core processor
memory-mapped registers. The processor performs those accesses over 32-bit buses, except for
local register cache accesses. The register bus is 128 bits wide.

13.4.2 Bus Transactions Across Region Boundaries

An unaligned bus request that spans region boundaries uses the PMCON settings of both regions.
Accesses that lie in the first region use that region’s PMCON parameters, and the remaining
accesses use the second region’s PMCON parameters.

For example, an unaligned quad word load/store beginning at address 1FFF FFFEH would cross
boundaries from region 0_1 to 2_3. The physical parameters for region 0_1 would be used for the
first 2-byte access and the physical parameters for region 2_3 would be used for the remaining
access.

Table 13-3. Bus Control Register – BCON

LBA:

PCI:

86FCH

NA

Legend: NA = Not Accessible RO = Read Only
RV = Reserved PR = Preserved RW = Read/Write
RS = Read/Set RC = Read Clear
LBA = 80960 local bus address PCI = PCI Configuration Address Offset

Bit Default Description

31:03
0000 0000

H
Reserved.

02 02

Supervisor Internal RAM Protection
(0) = First 64 bytes not protected from supervisor mode write
(1) = First 64 bytes protected from supervisor mode writes

01 02

Internal RAM Protection
(0) = Internal data RAM not protected from user mode writes
(1) = Internal data RAM protected from user mode write

00 02

Configuration Entries in Control Table Valid
(0) = PMCON entries not valid, default to PMCON14_15 setting
(1) = PMCON entries valid

PCI

LBA

28 24 20 16 12 8 4 031

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rw

na

rw

na

rw

na

13-6 i960® VH Processor Developer’s Manual

Core Processor Local Bus Configuration

13.4.3 Modifying the PMCON Registers

An application can modify the value of a PMCON register by using the st or sysctl instruction.
When a st or sysctl instruction is issued when an access is in progress, the current access is
completed before the modification takes effect.

13.5 Programming The Logical Memory Attributes

Bit field definitions for Logical Memory Address Registers - LMADR1:0 and LMMR1:0 registers
are shown in Table 13-4. LMCON registers reside within the i960 core processor memory-mapped
control register space. (See Appendix C, “Memory-Mapped Registers”.)

13.5.1 Logical Memory Address Registers - LMADR0:1

The LMADR1:0 registers define the address for the logical data templates and template caching.

Table 13-4. Logical Memory Address Registers – LMADR0:1

LBA:

PCI:

CH0-8108H
CH1-8110H

NA

Legend: NA = Not Accessible RO = Read Only
RV = Reserved PR = Preserved RW = Read/Write
RS = Read/Set RC = Read Clear
LBA = 80960 local bus address PCI = PCI Configuration Address Offset

Bit Default Description

31:12 0000 0H Template Starting Address - Defines upper 20 bits for the address of a logical data
template. The lower 12 bits are fixed at zero. The starting address is modulo 4 Kbytes.

11:02 000H Reserved.

01 02

Data Cache Enable - Controls data caching for the template.
(0) = Data caching disabled
(1) = Data caching enabled

Instruction caching is never affected by this bit.

00 02 Reserved.

PCI

LBA

28 24 20 16 12 8 4 031

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rw

na

rv

na

i960® VH Processor Developer’s Manual 13-7

Core Processor Local Bus Configuration

The Default Logical Memory Configuration (DLMCON) register is shown in Table 13-6. The
BCU uses the parameters in the DLMCON register when the current access does not fall within
one of the two logical memory templates (LMTs).

Table 13-5. Logical Memory Mask Registers – LMMR0:1

LBA:

PCI:

CH0-810C
H
CH1-8114H

NA

Legend: NA = Not Accessible RO = Read Only
RV = Reserved PR = Preserved RW = Read/Write
RS = Read/Set RC = Read Clear
LBA = 80960 local bus address PCI = PCI Configuration Address Offset

Bit Default Description

31:12 0000 0H

Template Address Mask - Defines upper 20 bits for the address mask for a logical
memory template. The lower 12 bits are fixed at zero (MA).

(0) = Mask
(1) = Do not mask

11:01 000H Reserved.

00 02

Logical Memory Template Enabled - Enables/disables logical memory template.
(0) = LMT disable
(1) = LMT enabled

PCI

LBA

28 24 20 16 12 8 4 031

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rw

na

Table 13-6. Default Logical Memory Configuration Register – DLMCON

LBA:

PCI:

8100H

NA

Legend: NA = Not Accessible RO = Read Only
RV = Reserved PR = Preserved RW = Read/Write
RS = Read/Set RC = Read Clear
LBA = 80960 local bus address PCI = PCI Configuration Address Offset

Bit Default Description

31:02
0000 0000

H
Reserved.

01 02

Data Cache Enable - Controls data caching for areas not within other logical memory
templates.

(0) = Data caching disabled
(1) = Write-through caching enabled

Instruction caching is never affected by this bit.

00 02 Reserved.

PCI

LBA

28 24 20 16 12 8 4 031

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rw

na

rv

na

13-8 i960® VH Processor Developer’s Manual

Core Processor Local Bus Configuration

13.5.2 Defining the Effective Range of a Logical Data Template

For each logical data template, an LMADRx register sets the base address using the bits 31:12. The
LMMR register sets the address mask using the bits 31:12. The effective address range for a logical
data template is defined by using bits 31:12 in the LMADRx register and bits 31:12 in the LMMRx
register.

For each access, only those address bits in the range 31:12 marked as unmasked (defined by bits
MA31:12 in the LMMRx register), are compared against bits 31:12 in the LMMRx register. When
all of the unmasked bits of the address match bits 31:12 of the LMMRx register, then the address
falls within the memory region governed by “x” logical memory template. The lower 12 address
bits are not compared and are thus considered masked bits or “don’t care” bits. This forces a
minimum 4 Kbyte boundary on a memory region governed by a logical memory template.
Logically, the operation is as follows:

(EFA31:12 xnor LMADRx31:12) or (not LMMRx31:12)

Where EFA31:12 is the effective address for a bus access. Only when all compared address bits
match is the logical data template used for the current access. Two examples help clarify the
operation of the address comparators.

• Create a template 64 Kbytes in length beginning at address 0010 0000H and ending at address
0010 FFFFH. Determine the form of the candidate address to match and then program the
LMADR and LMMR registers:

Candidate Address is of form:0010 XXXX
LMADR <31:12> should be:0010 0...
LMMR <31:12> should be:FFFF 0...

• Multiple data templates can be created from a single LMADRxLMMRx register pair by
aliasing effective addresses. For example, to create sixteen 64 Kbyte templates, each
beginning on modulo 1 Mbyte boundaries starting at 0000 0000H and ending with
00F0 0000H, the registers are programmed as follows:

Candidate Address is of form:00X0 XXXX
LMADR <31:12> should be:0000 0...
LMMR <31:12> should be:FF0F 0...

13.5.3 Data Caching Enable

Enabling and disabling data caching for an LMT is controlled via the bit 0 in the LMADR register.
Likewise, the bit 1 in the DLMCON enables and disables data-caching for regions of memory that
are not covered by the LMCON registers.

Disabling a memory range does not exclude an address range from being cacheable. For cacheable
ranges, the BCU promotes all sub-word accesses to word accesses.

13.5.4 Enabling the Logical Memory Template

LMMRx bit 0 activates the logical data template in the LMMR register for the programmed range.

i960® VH Processor Developer’s Manual 13-9

Core Processor Local Bus Configuration

13.5.5 Initialization

Immediately following a hardware reset, all LMTs are disabled. The bit 0 in each of the LMMR
registers is cleared (0) and all other bits are undefined. Also the Default Logical Memory Control
register Data Caching Enable (LMADRx bit 1) is cleared (Data Caching Disabled). Application
software may initialize and enable the logical memory template after hardware reset. The registers
are not modified by software initialization.

13.5.6 Boundary Conditions for Logical Memory Templates

The following sections describe the operation of the LMT registers during conditions other than
“normal” accesses. See Chapter 4, “Cache and On-Chip Data RAM” for a treatment of data cache
coherency when modifying an LMT.

13.5.6.1 Internal Memory Locations and Peripheral MMRs

The LMT registers are not used during accesses to i960 core processor memory-mapped registers.
Internal data RAM locations are never cached; LMT bits controlling caching are ignored for data
RAM accesses. The 80960VH peripheral MMRs, (addresses 0000 1000H through 0000 17FFH)
and the ATU windows (8000 0000H through 9001 FFFFH) should be defined as non-cacheable.
Further, if direct addressing is enabled (bit 8 of the ATUCR) addresses 0000 0000H through
7FFF FFFFH should be defined as non-cacheable.

13.5.6.2 Overlapping Logical Data Template Ranges

Logical data templates that specify overlapping ranges are not allowed. When an access is
attempted that matches more than one enabled LMT range, the operation of the access becomes
undefined.

To establish different logical memory attributes for the same address range, program
non-overlapping logical ranges, then use partial physical address decoding.

13.5.6.3 Accesses Across LMT Boundaries

Accesses that cross LMT boundaries should be avoided. These accesses are unaligned and broken
into a number of smaller aligned accesses, which reside in one or the other LMT, but not both.
Each smaller access is completed using the parameters of the LMT in which it resides.

13.5.7 Modifying the LMT Registers

An LMT register can be modified using st or sysctl instructions. Both instructions ensure data
cache coherency and order the modification with previous and subsequent data accesses.

i960® VH Processor Developer’s Manual 14-1

Local Bus 14

This chapter describes the bus interface of the i960® VH processor. It explains the following:

• Bus states and their relationship to each other

• Bus signals, which consist of address/data, control/status

• Read, write, burst and atomic bus transactions

• Related bus functions such as arbitration

This chapter also serves as a starting point for the hardware designer when interfacing typical
peripheral devices to the 80960VH’s address/data bus.

For information on programmable bus configuration, refer to Chapter 13, “Core Processor Local
Bus Configuration”.

Figure 14-1. The Local Bus

80960
Core

 Memory
Controller

Address
Translation

Unit
Two DMA
Channels

MA11:0 + CTRL

AD31:0 + CTRL

80960 Core Processor Local Bus

14-2 i960® VH Processor Developer’s Manual

Local Bus

14.1 Overview

The local bus is the data communication path between the various components of an 80960VH
hardware system. It allows the processor to fetch instructions, manipulate data and interact with its
I/O environment. To perform these tasks at high bandwidth, the processor features a burst transfer
capability which allows successive 32-bit data transfers.

The local bus is controlled by the on-chip bus masters: the i960 core processor, the ATU and DMA
units. While the i960 core processor is limited to a burst length of four transfers, the ATU and
DMA units can burst up to naturally aligned 2 Kbyte boundaries.

The address/data path is multiplexed for economy, and bus width is programmable to 8-, 16- and
32-bit widths for i960 core processor accesses. The ATU and DMA units are limited to 32-bit bus
widths. The processor has dedicated control signals for external address latches, buffers and data
transceivers. In addition, the processor uses other signals to communicate with alternate bus
masters. All bus transactions are synchronized with the processor’s clock input (P_CLK);
therefore, the memory system control logic can be implemented as state machines.

Users who are familiar with i960 JT processor should note the following differences in
functionality between the i960 JT processor and the 80960VH. See Table 14-1.

14.1.1 Bus Operation

The terms request, access and transfer are used to describe bus operations. The processor’s bus
control unit decouples bus activity from instruction execution in the core as much as possible.
When a load or store instruction or instruction prefetch is issued, a bus request is generated in the
bus control unit. The bus control unit independently processes the request and retrieves data from
memory for load instructions and instruction prefetches. The bus control unit delivers data to
memory for store instructions.

Table 14-1. Differences Between 80960JT and 80960VH Local Buses

Topic 80960JT 80960VH

HOLD function HOLD recognized during reset. HOLD not recognized during reset.

Burst access limits Four-word burst
i960 core processor: Four-word burst

DMA units and ATU: 2 Kbyte

Data byte order Supports big and little endian byte
order. Supports little endian byte order only.

BSTAT signal Uses BSTAT to provide bus status
information. BSTAT signal not present.

A3:2 signal A3:2 increments addresses during burst
accesses. A3:2 not present.

Bus width Supports 8-, 16- or 32-bits bus widths

Peripherals that only interface to the
i960 core processor can use 8-, 16 or
32-bit bus widths.

Peripherals interfaced to the DMA units
and ATU must use 32-bit bus widths.

Bus alignment Unaligned accesses broken up by
microcode into aligned accesses.

i960 core processor: unaligned
accesses broken up by microcode into
aligned accesses.

DMA units and ATU: No alignment
restrictions.

i960® VH Processor Developer’s Manual 14-3

Local Bus

A bus access is defined as a bus transaction bounded by the assertion of ADS# (address strobe) and
de-assertion of BLAST# (burst last) signals, which are outputs from the processor. During each
transfer, the processor either reads data or drives data on the bus. The number of transfers per
access and the number of accesses per request is governed by the requested data length, the
programmed width of the bus and the alignment of the address.

14.2 Basic Bus States

The bus has five basic bus states: idle (TI), address (TA), wait/data (TW/TD), recovery (TR), and
hold (TH). During system operation, the processor continuously enters and exits different bus
states.

The bus occupies the idle (TI) state when no address/data transactions are in progress and when
P_RST# is asserted. When the processor needs to initiate a bus access, it enters the TA state to
transmit the address.

Following a TA state, the bus enters the TW/TD state to transmit or receive data on the address/data
lines. Assertion of the LRDYRCV# (Local Ready Recover) or RDYRCV# (Ready/Recover) signal
indicates completion of each transfer. When data is not ready, the processor can wait as long as
necessary for the memory or I/O device to respond.

In the case of a burst transaction, the bus exits the TD state and re-enters the TD/TW state to transfer
the next data word. The processor asserts the BLAST# signal during the last TW/TD states of an
access. Once all data words transfer in a burst access, the bus enters the recovery (TR) state to allow
devices on the bus to recover.

The processor remains in the TR state until LRDYRCV# or RDYRCV# is deasserted. When the
recovery state completes, the bus enters the TI state when no new accesses are required. When an
access is pending, the bus enters the TA state to transmit the new address.

14-4 i960® VH Processor Developer’s Manual

Local Bus

14.3 Bus Signal Types

Bus signals consist of three groups: address/data, control/status and bus arbitration. A detailed
description of all signals can be found in the 80960VH Microprocessor Data Sheets.

14.3.1 Clock Signal

The P_CLK input signal is the reference for all 80960VH signal timing relationships. Transitions
on the AD31:0, ADS#, BE3:0#, WIDTH/HLTD1:0, D/C#, W/R#, DEN#, BLAST#, LRDYRCV#
or RDYRCV#, LOCK#/ONCE#, HOLD, and HOLDA signals are always measured directly from
the rising edge of P_CLK. The processor asserts ALE directly from the rising P_CLK edge at the
beginning of a TA state but deasserts them approximately half way through the state instead of the
next rising P_CLK edge. All transitions on DT/R# are also referenced to a point halfway through
the TA state instead of rising P_CLK edges.

Figure 14-2. Bus States with Arbitration

TI — Idle state
TA — address state
TW / TD — Wait/data state
TR — Recovery state
TH — Hold state
TO — ONCE state

READY— RDYRCV# asserted
NOT READY— LRDYRCV#/RDYRCV# not asserted

BURST— BLAST# not asserted
NO BURST— BLAST# asserted

RECOVERED—LRDYRCV#/ RDYRCV# not asserted

NOT RECOVERED— LRDYRCV#/RDYRCV# asserted
REQUEST PENDING— New transaction

NO REQUEST— No new transaction
HOLD— Hold request asserted
NO HOLD— Hold request not asserted
LOCKED— Atomic execution (atadd, atmod) in progress
NOT LOCKED— No atomic execution in progress
RESET— RESET# asserted

ONCE— ONCE# asserted

TW/TD

TR

TH

TI

TA

NOT
RECOVERED

READY AND
 NO BURST

HOLD AND
NOT LOCKED

HOLD

RECOVERED AND
NO REQUEST AND

(NO HOLD OR
LOCKED)

RECOVERED
AND REQUEST
PENDING AND
(NO HOLD OR

LOCKED)

NO REQUEST
AND NO HOLD

TO RESET

ONCE & RESET
DEASSERTION

RECOVERED AND
HOLD AND NOT

LOCKED

REQUEST
PENDING

AND NO HOLD

REQUEST PENDING
AND (NO HOLD OR

LOCKED)

NO REQUEST
AND (NO HOLD
OR LOCKED)

(READY AND BURST)
OR NOT READY

i960® VH Processor Developer’s Manual 14-5

Local Bus

14.3.2 Address/Data Signal Definitions

The address/data signal group consists of 32 lines. These signals multiplex within the processor to
serve a dual purpose. During TA, the processor drives AD31:2 with the address of the bus access.
At all other times, these lines are defined to contain data. AD1:0 denote burst size during TA and
data during other states.

The processor routinely performs data transfers less than 32 bits wide for i960 core processor
accesses. When the programmed bus width is 32 bits and transfers are 16- or 8-bit, then during
write cycles the processor replicates the data being driven on the unused address/data signals.
When the programmed bus width is 16 or 8 bits, then during write cycles the processor continues
driving address on any unused address/data signals.

Whenever the programmed bus width is less than 32 bits, additional demultiplexed address bits are
available on unused byte enable signals. See Section 14.3.4, “Bus Width” on page 14-6. These
signals increment during burst accesses. The memory controller increments the addresses during
bursts. See Chapter 15, “Memory Controller” for more information.

14.3.3 Control/Status Signal Definitions

The control/status signals control data buffers and address latches or furnish information useful to
external chip-select generation logic. All output control/status signals are three-state.

Bus accesses begin with the assertion of ADS# (address/data status) during a TA state. External
decoding logic typically uses ADS# to qualify a valid address at the rising clock edge at the end of
TA. The processor pulses ALE (address latch enable) active high for one half clock during TA to
latch the multiplexed address on AD31:2 in external address latches.

The byte enable (BE3:0#) signals denote which bytes on the 32-bit data bus transfers data during
an access. The processor asserts byte enables during TA and deasserts them during TR. When the
data bus is configured for 16 bits, two byte enables become byte high enable and byte low enable
and an additional address bit A1 is provided. When the bus is configured for 8 bits, there are no
byte enables, but additional address bits A1:0 are provided. Note that the processor always drives
byte enable signals to logical 1’s during the TR state, even when they are used as addresses.

The WIDTH1:0, D/C# and W/R# signals yield useful bus access information for external memory
and I/O controllers. The WIDTH1:0 signals denote the i960 core processor’s programmed physical
memory attributes. The data/code signal D/C#, indicates whether an access is a data transaction (1)
or an instruction transaction (0). The write/read signal W/R#, indicates the direction of data flow
relative to the 80960VH. WIDTH1:0, D/C# and W/R# change state as needed during the TA state.

DT/R# and DEN# signals control data transceivers. Data transceivers may be used in a system to
isolate a memory subsystem or control loading on data lines. DT/R# (data transmit/receive) is used
to control transceiver direction. In the second half of the TA state, it transitions high for write
cycles or low for read cycles. DEN# (data enable) is used to enable the transceivers. DEN# is
asserted during the first TW/TD state of a bus access and deasserted during TR. DT/R# and DEN#
timings ensure that DT/R# does not change state when DEN# is asserted.

A bus access may be either non-burst or burst. A non-burst access ends after one data transfer to a
single location. The processor asserts BLAST# (burst last) to indicate the last data cycle of an
access in both burst and non-burst situations.

All 80960VH wait states to the local bus are controlled by either LRDYRCV# or RDYRCV#. See
Section 14.3.7.1, “Recovery States” on page 14-19 for a description of these signals.

14-6 i960® VH Processor Developer’s Manual

Local Bus

14.3.4 Bus Width

Each region’s data bus width is programmed in a Physical Memory Region Configuration
(PMCON) register (see Chapter 13). The processor allows an 8-, 16- or 32-bit data bus width for
each region. The processor places 8- and 16-bit data on low-order data signals, simplifying the
interface to narrow bus external devices. As shown in Figure 14-3, 8-bit data is placed on lines
AD7:0; 16-bit data is placed on lines AD15:0; 32-bit data is placed on lines AD31:0. The processor
encodes bus width on the WIDTH1:0 signals so that external logic may enable the bus correctly.
Note that DMA and ATU accesses are limited to 32-bit wide memory regions.

Depending on the programmed bus width, the byte enable signals provide either data enables or
low-order address lines:

• 8-bit region: BE0:1# provide the byte address (A0, A1). BE3:2# are not used.

• 16-bit region: BE1# provides the short-word address (A1); BE3# is the byte high enable signal
(BHE#); BE0# is the byte low enable signal (BLE#). BE2# is not used.

• 32-bit region: byte enables are not encoded as address signals. Byte enables BE3:0# select
bytes 0 through 3 of the 32-bit words addressed by AD31:2.

During initialization, the bus configuration data is read from the Initialization Boot Record (IBR)
assuming an 8-bit bus width; however, the IBR can be in 8-bit, 16-bit or 32-bit physical memory.
BE3:2# are defined as “1” so that reading the bus configuration data works for all bus widths. Since
these byte enables are ignored for actual 8-bit memory, they can be permanently defined this way
for ease of implementation.

The 80960VH drives determinate values on all address/data signals during TW/TD write operation
states. For an 8-bit bus, the processor continues to drive address on unused data signals AD31:8.
For a 16-bit bus, the processor continues to drive address on unused data signals AD31:16.
However, when the processor does not use the entire bus width because of data width or
misalignment (i.e., 8-bit write on a 16- or 32-bit bus or a 16-bit write on a 32-bit bus), data is
replicated on those unused portions of the bus.

Figure 14-3. Data Width and Byte Encodings

AD31:24

AD23:16

AD15:8

AD7:0

A0

A1

BE3:0

A1

BHE BLE

BE1BE1BE0 BE3 BE0 BE3 BE2 BE1 BE0

32 - Bit16 - Bit8 - Bit

i960® VH Processor Developer’s Manual 14-7

Local Bus

14.3.5 Basic Bus Accesses

The basic transaction is a read or write of one data word. The first half of Figure 14-4 shows a
typical timing diagram for a non-burst, 32-bit read transaction. For simplicity, no wait states are
shown.

During the TA state, the 80960VH transmits the address on the address/data lines. In the figure, the
SIZE bits (AD1:0) specify a single word transaction and WIDTH1:0 indicate a 32-bit wide access.
For DMA and ATU accesses to the local bus, SIZE is not valid. The processor asserts ALE to latch
the address and drives ADS# low to denote the start of the cycle. BE3:0# specify which bytes the
processor uses to read the data word. The processor brings W/R# low to denote a read operation
and drives D/C# to the proper state. For data transceivers, DT/R# goes low to define the input
direction.

Table 14-2. 8-Bit Bus Width Byte Enable Encodings

Byte
BE3#

(Not Used)
BE2#

(Not Used)
BE1#

(Used as A1)
BE0#

(Used as A0)

0 1 1 0 0

1 1 1 0 1

2 1 1 1 0

3 1 1 1 1

Table 14-3. 16-Bit Bus Width Byte Enable Encodings

Byte
BE3#

(Used as BHE#)
BE2#

(Not Used)
BE1#

(Used as A1)
BE0#

(Used as BLE#)

0,1 0 1 0 0

2,3 0 1 1 0

0 1 1 0 0

1 0 1 0 1

2 1 1 1 0

3 0 1 1 1

Table 14-4. 32-Bit Bus Width Byte Enable Encodings

Byte BE3# BE2# BE1# BE0#

0,1,2,3 0 0 0 0

0,1 1 1 0 0

2,3 0 0 1 1

0 1 1 1 0

1 1 1 0 1

2 1 0 1 1

3 0 1 1 1

14-8 i960® VH Processor Developer’s Manual

Local Bus

During the TW/TD state, the processor deasserts ADS# and asserts DEN# to enable any data
transceivers. Since this is a non-burst transaction, the processor asserts BLAST# to signify the last
transfer of a transaction. Figure 14-4 shows LRDYRCV#/RDYRCV# asserted, so this state is a
data state and the processor latches data on a rising P_CLK edge. RDYRCV# is asserted by
external logic.

The TR state follows the TW/TD state. This allows the system components adequate time to remove
their outputs from the bus before the processor drives the next address on the address/data lines.
During the TR state, BLAST#, BE3:0# and DEN# are inactive. W/R# and DT/R# hold their
previous values. The figure indicates a logical high for the LRDYRCV#/RDYRCV# signal, so
there is only one recovery state.

After a read, notice that the address/data bus goes to an invalid state during TI. The processor
drives valid logic levels on the address/data bus instead of allowing it to float. See Section 14.4,
“Bus and Control Signals During Recovery and Idle States” on page 14-22 for the values that are
driven during TI.

i960® VH Processor Developer’s Manual 14-9

Local Bus

Figure 14-4 also shows a typical timing diagram for a non-burst, 32-bit write transaction. For the
write operation, W/R# and DT/R# are high to denote the direction of the data flow. The D/C#
signal is high since instruction code cannot be written. During the TW/TD state, the processor
drives data on the bus, waiting to sample LRDYRCV#/RDYRCV# low to terminate the transfer.
The figure shows LRDYRCV#/RDYRCV# asserted, so this state is a data state and the processor
enters the recovery state. RDYRCV# is asserted by external logic.

At the end of a write, notice that the write data is driven during TR and any subsequent TI states.
After a write, the processor drives write data until the next TA state. See Section 14.4, “Bus and
Control Signals During Recovery and Idle States” on page 14-22 for details.

Figure 14-4. Non-Burst Read and Write Transactions Without Wait States, 32-Bit Bus

AD31:0

ALE

ADS#

BE3:0#

WIDTH1:0

D/C#

W/R#

DT/R#

DEN#

LRDYRCV#/RDYRCV#

BLAST#

ADDR D
In Invalid ADDR

10 10

TA TD TR TI TI TA TD TR TI TI

Read Idle Write Idle

P_CLK

D
Out

14-10 i960® VH Processor Developer’s Manual

Local Bus

14.3.6 Burst Transactions

A burst access is an address cycle followed by multiple data transfers. The 80960VH uses burst
transactions to optimize local bus bandwidth. Burst transactions can be initiated by the i960 core
processor, the ATU and the DMA units. Burst transactions initiated by the i960 core processor
have the same burst length and alignment rules as the i960 JT processor. However, burst
transactions initiated by the ATU and DMA units to the local bus have been further optimized to
increase bandwidth by supporting much greater burst transfer lengths (up to 2K) and have added
hardware support for optimized unaligned transfers.

When interfacing devices to the local bus that are accessed by on-chip i960 core processor only, the
same burst length and alignment rules from the i960 JT processor apply. If devices connected to the
local bus are targeted by either the ATU or the DMA units, then those devices must support the
additional local bus optimizations added by those units.

14.3.6.1 i960® Core Processor Burst Transactions

The maximum i960 core processor burst size is four data transfers, independent of bus width.
These transfers are used by the i960 core processor for instruction fetching and accessing system
data structures (i.e., load and store instructions). For an 8- and 16-bit bus widths, this means that
some bus requests may result in multiple burst accesses. For example, a quad word load request
(ldq instructions) to an 8-bit data region results in four 4-byte burst accesses.

For the i960 core processor, the burst accesses on the local bus are always aligned, meaning that
byte lanes always carry valid data for each burst transfer (BE3:0# asserted). Table 14-5
summarizes the natural boundaries for load and store accesses from the i960 core processor.

When processing unaligned data requests from the i960 core processor, the Bus Control Unit
breaks these accesses into a series of aligned burst accesses. The alignment rules for load and store
requests are based on address offsets from natural data boundaries. Table 14-6 through Table 14-8
list all possible combinations of bus accesses resulting from aligned and unaligned requests.
Figure 14-5 and Figure 14-6 depict the combinations for 32-bit buses.

The Process Control Block (PRCB) fault configuration word can configure the i960 core processor
to handle unaligned accesses non-transparently by generating an OPERATION.UNALIGNED
fault after executing any unaligned accesses. See Section 12.4.2, “Process Control Block – PRCB”
on page 12-15.

Table 14-5. i960® Core Processor Natural Boundaries for Load and Store Accesses

Data Width Natural Boundary (Bytes)

Byte 1

Short Word 2

Word 4

Double Word 8

Triple Word 16

Quad Word 16

i960® VH Processor Developer’s Manual 14-11

Local Bus

Table 14-6. i960® Core Processor Summary of Byte Load and Store Accesses

Address Offset from
Natural Boundary

(in Bytes)

Accesses on 8-Bit Bus
(WIDTH1:0=00)

Accesses on 16 Bit
Bus (WIDTH1:0=01)

Accesses on 32 Bit
Bus (WIDTH1:0=10)

+0 (aligned) byte access byte access byte access

Table 14-7. i960® Core Processor Summary of Short Word Load and Store Accesses

Address Offset from
Natural Boundary

(in Bytes)

Accesses on 8-Bit Bus
(WIDTH1:0=00)

Accesses on 16 Bit Bus
(WIDTH1:0=01)

Accesses on 32 Bit Bus
(WIDTH1:0=10)

+0 (aligned) burst of 2 bytes short-word access short-word access

+1 2 byte accesses 2 byte accesses 2 byte accesses

Table 14-8. i960® Core Processor Summary of n-Word Load and Store Accesses (n = 1, 2, 3, 4)
(Sheet 1 of 2)

Address Offset
from Natural

Boundary in Bytes

Accesses on 8-Bit Bus
(WIDTH1:0=00)

Accesses on 16 Bit Bus
(WIDTH1:0=01)

Accesses on 32 Bit
Bus (WIDTH1:0=10)

+0 (aligned)
(n =1, 2, 3, 4)

• n burst(s) of 4 bytes • case n=1:
burst of 2 short words

• case n=2:
burst of 4 short words

• case n=3:
burst of 4 short words
burst of 2 short words

• case n=4:
2 bursts of 4 short words

• burst of n word(s)

+1 (n =1, 2, 3, 4)

+5 (n = 2, 3, 4)

+9 (n = 3, 4)

+13 (n = 3, 4)

• byte access

• burst of 2 bytes

• n-1 burst(s) of 4 bytes

• byte access

• byte access

• short-word access

• n-1 burst(s) of 2 short
words

• byte access

• byte access

• short-word
access

• n-1 word
access(es)

• byte access

+2 (n =1, 2, 3, 4)

+6 (n = 2, 3, 4)

+10 (n = 3, 4)

+14 (n = 3, 4)

• burst of 2 bytes

• n-1 burst(s) of 4 bytes

• burst of 2 bytes

• short-word access

• n-1 burst(s) of 2 short
words

• short-word access

• short-word
access

• n-1 word
access(es)

• short-word
access

14-12 i960® VH Processor Developer’s Manual

Local Bus

+3 (n =1, 2, 3, 4)

+7 (n = 2, 3, 4)

+11 (n = 3, 4)

+15 (n = 3, 4)

• byte access

• n-1 burst(s) of 4 bytes

• burst of 2 bytes

• byte access

• byte access

• n-1 burst(s) of 2 short
words

• short-word access

• byte access

• byte access

• n-1 word
access(es)

• short-word
access

• byte access

+4 (n = 2, 3, 4)

+8 (n = 3, 4)

+12 (n = 3, 4)

• n burst(s) of 4 bytes • n burst(s) of 2 short words • n word
access(es)

Table 14-8. i960® Core Processor Summary of n-Word Load and Store Accesses (n = 1, 2, 3, 4)
(Sheet 2 of 2)

Address Offset
from Natural

Boundary in Bytes

Accesses on 8-Bit Bus
(WIDTH1:0=00)

Accesses on 16 Bit Bus
(WIDTH1:0=01)

Accesses on 32 Bit
Bus (WIDTH1:0=10)

i960® VH Processor Developer’s Manual 14-13

Local Bus

Figure 14-5. i960® Core Processor Summary of Aligned and Unaligned Accesses
(32-Bit Bus)

0 4 8 12 16 20 24

0 1 2 3 4 5 6

One Double-Word

Short-Word
Load/Store

Word
Load/Store

Double-Word
Load/Store

Byte, Byte Accesses

Short Access (Aligned)

Short Access (Aligned)

Byte, Byte Accesses

Word Access (Aligned)

Byte, Short, Byte, Accesses

Short, Short Accesses

Byte, Short, Byte Accesses

Byte Offset

Word Offset

One Double-Word Burst (Aligned)

Byte, Short, Word, Byte Accesses

Short, Word, Short Accesses

Byte, Word, Short, Byte Accesses

Word, Word Accesses

Burst (Aligned)

14-14 i960® VH Processor Developer’s Manual

Local Bus

Figure 14-6. i960® Core Processor Summary of Aligned and Unaligned Accesses
(32-Bit Bus) (Continued)

0 4 8 12 16 20 24

0 1 2 3 4 5 6

Triple-Word
Load/Store

Quad-Word
Load/Store

Word, Word,
Word Accesses

Word,

Accesses
Word,
Word,
Word,

Word, Word, Word,
Word Accesses

Byte Offset

Word Offset

One Three-Word
 Burst (Aligned)

Byte, Short, Word,
 Word, Byte Accesses

 Short Accesses
Short, Word, Word,

Byte, Word, Word,
Short, Byte Accesses

Word, Word,
Word Accesses

One Four-Word
Burst (Aligned)

Byte, Short, Word, Word,
Word, Byte Accesses

Short, Word, Word, Word,
Short Accesses

Byte, Word, Word, Word,
Short, Byte Accesses

Accesses

Word,
Word

Word,

i960® VH Processor Developer’s Manual 14-15

Local Bus

Figure 14-7. Burst Read and Write Transactions w/o Wait States, 8-bit Bus

ADDR D D ADDR DATA DATA DATAAD31:0

ALE

ADS#

BE1#/A1#

WIDTH1:0

D/C#

W/R#

BLAST#

DT/R#

DEN#

LRDYRCV#/RDYRCV#

TA TD TD TR TA TD TD TD TD TR

00 01 10 11

00 00

BE0#/A0#

In In Out OutOut

00 or 10 01 or
 11

P_CLK

DATA
Out

14-16 i960® VH Processor Developer’s Manual

Local Bus

14.3.6.2 ATU and DMA Burst Transactions

While the i960 core processor generates local bus accesses in response to data requests (LD and ST
instructions) or instruction prefetching, the ATU and DMA units generate local bus accesses to
move large blocks of data to and from the PCI buses. For most 80960VH applications, these burst
accesses are translated by the on-chip memory controller directly to either DRAM or SRAM.
However, it is possible for the DMA or ATU units to access external peripherals connected to the
local bus.

Figure 14-8. Burst Read and Write Transactions w/o Wait States, 32-bit Bus

ADDR D D ADDR DATA DATA DATA

1 0 1 0

AD31:0

ALE

ADS#

BE3:0#

WIDTH1:0

D/C#

W/R#

BLAST#

DT/R#

DEN#

LRDYRCV#/RDYRCV#

TA TD TD TR TA TD TD TD TD TR

In In Out Out Out

P_CLK

DATA
Out

i960® VH Processor Developer’s Manual 14-17

Local Bus

To facilitate these large transfers, these units burst transfers up to naturally aligned 2K boundaries
to the local bus. Because of this, the SIZE value driven on the AD1:0 signals during the TA state is
invalid. The cycle still begins with ADS# and ends with BLAST#.

The ATU and DMA units also do not break unaligned burst accesses into aligned accesses. For
i960 core burst accesses, BE3:0# are unconditionally asserted for both reads and writes because the
transfers are aligned. For the ATU and DMA unit write cycles, BE3:0# can change for each data
transfer during a burst access to optimize the alignment. Figure 14-9 shows a seven-word burst
write from either the DMA or ATU units that is offset from the word boundary by one byte. The
transfer requires 8 burst data transfers, with 3 bytes valid for the first burst transfer, and one byte
valid for the last transfer.

14.3.7 Wait States

Wait states lengthen the processor’s bus cycles, allowing data transfers with slow memory and I/O
devices. The 80960VH supports three types of wait states: address-to-data, data-to-data and
turnaround or recovery. All three types are controlled through the processor’s
LRDYRCV#/RDYRCV# signal. RDYRCV# is a synchronous input.

Figure 14-9. ATU or DMA 7-Word Unaligned Burst Transfer

ADDR
DATA DATA DATA

1 0 1 0

AD31:0

ALE

ADS#

BE3:0#

WIDTH1:0

BLAST#

DT/R#

LRDYRCV#/RDYRCV#

TA TD TD TD TD TD TD TD TD TR

Out Out Out

P_CLK

DATA
Out

DATA
Out

DATA
Out

DATA
Out

0001 1110

DEN#

DATA
Out

14-18 i960® VH Processor Developer’s Manual

Local Bus

The processor’s bus states follow the state diagram in Figure 14-2. After the TA state, the processor
enters the TW/TD state to perform a data transfer. When the memory (or I/O) system is fast enough
to allow the transfer to complete during this clock (i.e., “ready”), LRDYRCV#/ is asserted. The
processor samples LRDYRCV#/RDYRCV# low on the next rising clock edge, completing the
transfer; the state is a data state. When the memory system is too slow to complete the transfer
during this clock, LRDYRCV#/RDYRCV# is driven high and the state is an address-to-data wait
state. Additional wait states may be inserted in similar fashion.

When the bus transaction is a burst, the processor re-enters the TW/TD state after the first data
transfer. The processor continues to sample LRDYRCV#/RDYRCV# on each rising clock edge,
adding a data-to-data wait state when LRDYRCV#/RDYRCV# is high and completing a transfer
when LRDYRCV#/RDYRCV# is low. The process continues until all transfers are finished, with
LRDYRCV#/RDYRCV# assertion denoting every data acquisition. The LRDYRCV# signal is
generated internally by the 80960VH for accesses by the memory controller and does not have to
be generated externally.

Figure 14-10 illustrates a quad word burst write transaction with wait states. There are two
address-to-data wait states single data-to-data wait states between transfers.

i960® VH Processor Developer’s Manual 14-19

Local Bus

14.3.7.1 Recovery States

The state following the last data transfer of an access is a recovery (TR) state. By default, 80960VH
bus transactions have one recovery state. External logic can cause additional recovery states to be
inserted by driving the LRDYRCV#/RDYRCV# signal low at the end of TR.

Figure 14-10. Burst Write Transactions With 2,1,1,1 Wait States, 32-bit Bus

ADDR DATA

1 0

DATA DATAAD31:0

ALE

ADS#

BE3:0#

WIDTH1:0

D/C#

W/R#

BLAST#

DT/R#

DEN#

LRDYRCV#/RDYRCV#

TA TW TW TD TW TD TW TD TW TD TR

Out Out Out

P_CLK

DATA
Out

14-20 i960® VH Processor Developer’s Manual

Local Bus

Recovery wait states are an important feature of the 80960VH because it employs a multiplexed
bus. Slow memory and I/O devices often need a long time to turn off their output drivers on read
accesses before the microprocessor drives the address for the next bus access. Recovery wait states
are also useful to force a delay between back-to-back accesses to I/O devices with their own
specific access recovery requirements.

System ready logic is often described as normally-ready or normally-not-ready. Normally-ready
logic asserts a microprocessor’s input signal during all bus states, except when wait states are
desired. Normally-not-ready logic deasserts a processor’s input signal during all bus states, except
when the processor is ready. The subtle nomenclature distinction is important for 80960VH
systems because the active sense of the LRDYRCV#/RDYRCV# signal reverses for recovery
states.

• During the TR state, logic 0 means “continue to recover” or “not ready”

• for TW/TD states, logic 0 means “ready”

Logic must assure “ready” and “not recover” are generated to terminate an access properly. Be
certain to not hang the processor with endless recovery states. Conventional ready logic
implemented as normally-not-ready operates correctly (but without adding turnaround wait states).

Figure 14-11 is a timing waveform of a read cycle followed by a write cycle, with an extra
recovery state inserted into the read cycle.

i960® VH Processor Developer’s Manual 14-21

Local Bus

Figure 14-11. Burst Read/Write Transactions with 1,0 Wait States - Extra TR State on Read, 16-Bit
Bus

ADDR D D
ADDR

DATA
AD31:0

ALE

ADS#

BE3#/BHE#

WIDTH1:0

D/C#

W/R#

BLAST#

DT/R#

DEN#

LRDYRCV#/RDYRCV#

TW TD TD TR TR TA TW TD TD TRTA

BE0#/BLE#

BE1#/A1

01 01

0 1 0 1

OutInIn

P_CLK

DATA
Out

14-22 i960® VH Processor Developer’s Manual

Local Bus

14.4 Bus and Control Signals During Recovery and Idle
States

Valid bus transactions are bounded by ADS# going active at the beginning of TA states and
BLAST# going inactive at the beginning of TR states. During TR and TI states, bus and control
signal logic levels are defined in such a way as to avoid unnecessary signal transitions that waste
power. In all cases, the bus and control signals are completely quiet for instruction fetches and data
loads that are cache hits.

When the last bus cycle is a read, the address/data bus floats during all TR states. When the last bus
cycle is a write, the address/data bus freezes during TR states. The processor drives control signals
such as ALE, ADS#, BLAST# and DEN# to their inactive states during TR. Byte enables BE3:0#
are always driven to logic high during TR, even when the processor uses them under alternate
definitions. Outputs without clearly defined active/inactive states such as WIDTH/HLTD1:0,
D/C#, W/R# and DT/R# freeze during TR.

When the bus enters the TI state, the bus and control signals also freeze to inactive states. The exact
states of the address/data signals depend on how the processor enters the TI state. When the
processor enters TI from a TR ending a write cycle, the processor continues driving data on
AD31:0. When the processor enters TI from a read cycle or from a TH state, AD31:4 are driven
with the upper 28 bits of the read address. The processor usually drives AD1:0 with the last SIZE
information. In cases where the core cancels a previously issued bus request, AD1:0 are
indeterminate.

14.5 Atomic Bus Transactions

The atomic instructions, atadd and atmod, consist of a load and store request to the same memory
location. Atomic instructions require indivisible, read-modify-write access to memory. That is,
another bus agent must not access the target of the atomic instruction between read and write
cycles. Atomic instructions are necessary to implement software semaphores.

For atomic bus accesses, the 80960VH asserts the LOCK# signal during the first TA of the read
operation and deasserts LOCK# in the last data transfer of the write operation. LOCK# is
deasserted at the same clock edge that BLAST# is asserted. The 80960VH does not assert LOCK#
except while a read-modify-write operation is in progress. While LOCK# is asserted, the processor
can perform other, non-atomic, accesses such as fetches. However, the 80960VH does not
acknowledge HOLD requests. This behavior is an enhancement over earlier i960 microprocessors.
Figure 14-12 illustrates locked read/write accesses associated with an atomic instruction.

Note that LOCK# is only valid during i960 core processor accesses to external memory. Atomic
accesses to the outbound ATU windows or ATU address space while direct addressing is enabled
are not supported.

i960® VH Processor Developer’s Manual 14-23

Local Bus

14.6 Bus Arbitration

The 80960VH can share the bus with other bus masters, using its built-in arbitration protocol. The
protocol assumes two bus masters: a default bus master (typically the 80960VH) that controls the
bus and another that requests bus control when it performs an operation. More than two bus
masters may exist on the bus, but this configuration requires external arbitration logic. External bus
masters do not have access to the 80960VH’s internal local bus. Therefore, an external bus master
cannot access any of the 80960VH’s internal peripherals (for example, the Memory Controller, the
i960 core, etc.).

Two processor signal signals comprise the bus arbitration signal group.

14.6.1 HOLD/HOLDA Protocol

In most cases, the 80960VH controls the bus; an I/O peripheral (for example, a communications
controller) requests bus control. The processor and I/O peripheral device exchange bus control with
two signals, HOLD and HOLDA.

Figure 14-12. The LOCK# Signal

AD31:0#

ADS#

W/R#

BLAST#

ALE#

TA TD TI TITR TI TA TD TR

LOCK#

LRDYRCV#/RDYRCV#

Addr Invalid Addr
D
In

~ ~
~ ~

~ ~
~ ~

~ ~
~ ~

~ ~
~ ~

~ ~
~ ~

P_CLK

DATA
Out

14-24 i960® VH Processor Developer’s Manual

Local Bus

HOLD is an 80960VH synchronous input signal which indicates that the alternate master needs the
bus. HOLD may be asserted at any time so long as the transition meets the processor setup and hold
requirements. HOLDA (hold acknowledge) is the processor output which indicates surrender of the
bus. When the 80960VH asserts HOLDA, it enters the Hold state (see Figure 14-2). When the last
bus state was TI or the last TR of a bus transaction, the processor is guaranteed to assert HOLDA
and float the bus on the same clock edge in which it recognizes HOLD. Similarly, the processor
deasserts HOLDA on the same edge in which it recognizes the deassertion of HOLD. Thus, bus
latency is no longer than it takes the processor to finish any bus access in progress.

When the bus is in hold and the 80960VH needs to regain the bus to perform a transaction, the
processor does not deassert HOLDA.

Unaligned load and store bus requests are broken into multiple accesses and the processor can
relinquish the bus between those transactions. When the alternate bus master gives control of the
bus back to the 80960VH, the processor immediately enters a TA state to continue those accesses
and respond to any other bus requests. When no requests are pending, the processor enters the idle
state.

Figure 14-13 illustrates a HOLD/HOLDA arbitration sequence.

Note: External bus masters do not have access to the 80960VH internal, local bus. Therefore, an external
bus master can not access any of the 80960VH internal peripherals (for example, memory
controller, i960 core processor, and memory-mapped registers).

The 80960VH arbitration logic enables external bus masters to control 80960VH local bus. The
Local Bus Arbitration Unit maintains the basic 80960VH protocol for the HOLD/HOLDA except
that the 80960VH processor will not respond to the assertion of the HOLD signal (i.e., assert the
HOLDA signal) during reset. This includes Processor Reset and Local Bus Reset.

Figure 14-13. Arbitration Timing Diagram for a Bus Master

Valid

Outputs:
AD31:0, ALE,

ADS#, BE3:0#,
WIDTH/HLTD1:0,

D/C#, W/R#,
DT/R#, DEN#,

BLAST#, LOCK#

HOLD

HOLDA

∼ ∼
∼ ∼

∼ ∼
∼ ∼

∼ ∼
∼ ∼

∼ ∼
∼ ∼

∼ ∼

TI or TR TH TH TI or TA

P_CLK

Valid

i960® VH Processor Developer’s Manual 15-1

Memory Controller 15

This chapter describes the i960® VH processor’s integrated memory controller, including the
supported memory types and theory of operation. This chapter also provides guidelines for
connecting the memory controller to SRAM/ROM and DRAM systems. Figure 15-1 provides an
overview of the 80960VH’s integrated memory controller.

15.1 Supported Memory Types

The 80960VH integrates a memory controller to provide a direct interface with a memory system.
The memory controller supports:

• Two independent memory banks of SRAM/ROM. Each bank can contain up to 16 Mbytes of
8- or 32-bit SRAM/ROM.

• Up to 256 Mbytes of 32-bit or 36-bit (32-bit memory data plus 4 parity bits) of:

— Fast Page-Mode (FPM) Interleaved DRAM

— Non-Interleaved DRAM

— Extended Data Out (EDO) DRAM

For a DRAM array, the memory controller generates row-address strobes (RAS3:0#),
column-address strobes (CAS7:0#), write enables (DWE1:0#) and 12-bit multiplexed addresses
(MA11:0). For interleaved DRAM, the DRAM address-latch enables (DALE1:0) and LEAF1:0#
signals provide address and data latching.

Byte-wide data parity is supported for DRAM systems. Once enabled, the memory controller
provides parity checking for all reads from memory. A parity error generates an error signal, which
may be used for fault isolation.

Figure 15-1. i960® VH Processor Integrated Memory Controller

Memory

Controller

i960 Core Processor Local Bus

Parity

Memory Control

Memory Address Bus

Primary Address
Translation

Unit

DMA
Controller

i960 Core
Processor

Address/Data

Control

15-2 i960® VH Processor Developer’s Manual

Memory Controller

The memory controller supports two banks of SRAM, ROM or Flash memory. Each bank supports
from 64 Kbytes to 16 Mbytes of memory and can be configured independently for 8-bit or 32-bit
wide memory. The memory controller also provides chip enables (CE1:0#), memory write enables
(MWE3:0#) and an incrementing burst address for SRAM/ROM. The memory controller supports
0 wait-state performance for both read and write transactions.

15.2 Theory Of Operation

The memory controller translates the i960 core processor’s burst access protocol to that of the
memory being addressed. The memory controller decodes local bus addresses presented on the
internal address/data bus, and generates the proper address and control signals to the memory
array. Burst accesses generated by local-bus masters provide the first address. The memory
controller provides incremental addresses that are presented to the memory array on the MA11:0
pins. The address increments until either the cycle has completed by the local-bus master, signified
by asserting the BLAST# signal, or a local bus parity error for a DRAM read cycle occurs.

The address presented on the MA11:0 bus depends on the type of memory bank addressed. For
DRAM, the MA11:0 pins provide the multiplexed row and column address. The column address
increments to the nearest 2 Kbyte address boundary. On-chip bus master must implement a
2 Kbyte address boundary to prevent bursts from crossing a DRAM page. For both SRAM and
Flash/ROM banks, the MA11:0 bus is based on the address presented on the AD13:2 signals during
the address phase. For burst data, the memory controller increments the address to the nearest 2
Kbyte boundary.

Configuration registers select characteristics associated with each type of memory used in a
system. The memory controller configuration registers are located in the address range
0000 1500H to 0000 15FFH. The memory-mapped registers are summarized in Appendix C,
“Memory-Mapped Registers”. Once configured, the memory controller responds to addresses
within an address range by issuing the appropriate memory-interface and bus-control signals.

Byte wide data parity generation and checking can be enabled for DRAM arrays. Parity checking
provides a memory fault error upon detection of a parity error. The faulting word address is
captured in a register.

The memory controller provides hardware DRAM refresh for CAS#-before-RAS# refresh cycles.
It also provides hardware support for detecting address ranges that do not return an external
RDYRCV# signal. This mechanism detects accesses to undefined address ranges. Upon detection
of an error, the memory controller generates an internal LRDYRCV# signal to complete the bus
accesses and optionally generates a bus fault signal.

Figure 15-2 shows the interface signals. Refer to the 80960VH Microprocessor for a complete
description.

i960® VH Processor Developer’s Manual 15-3

Memory Controller

15.3 Memory Controller Wait States

The memory controller generates the number of wait states programmed into the memory
controller registers for controlling the signals connected to the memory arrays, see Section 15.5.3,
on page 15-9. In addition, the WAIT# signal generated by the DMA unit (except the i960 core
processor) indicates when additional wait states are required during a memory access. See
Chapter 20, “DMA Controller” for more information on WAIT#.

15.4 ROM, SRAM and FLASH CONTROL

The memory controller supports two independent banks of ROM, SRAM, or Flash devices.
Devices that use these memory banks may be organized as 8-bit or 32-bit wide memory. Each
SRAM/ROM bank has a window of addresses that can be programmed to respond to any 80960
local bus address. Memory banks must not overlap with reserved addresses. See Section 15.10,
“Overlapping Memory Regions” on page 15-39. The memory controller asserts the chip enable
signals (CE1:0#) when the address on the 80960VH local bus falls within the programmed window
for the SRAM/ROM bank. The SRAM/ROM banks have independent control to support different
memory types in each bank. The memory write enable signals, MWE3:0#, provide the write
strobes for the selected memory bank. Connecting SRAM/ROM to the memory controller requires

Figure 15-2. Memory Controller Signal Overview

Bus

AD31:0

ALE

ADS#

DEN#

W/R#

WIDTH1:0#

D/C#

LRDYRCV#

BLAST#

MWE3:0#

CAS7:0#

RAS3:0#

DWE1:0#

LEAF1:0#

MA11:0

DP3:0

RDYRCV#

Memory
Controller

P_CLK# P_RST#

CE1:0#

Memory

(System)

BE3:0#

(Internal Local)

i960 Core Processor
Internal Bus

Memory
System Bus

WAIT#

DALE1:0

Local
Processor

Fault
FaultFault

LRDYRCV#

15-4 i960® VH Processor Developer’s Manual

Memory Controller

a combination of memory controller signals and local bus signals. Table 15-1 summarizes the
memory controller signals and the local bus signals used when connecting SRAM/ROM to the
memory banks.

For memory accesses that fall within the address windows for memory banks 0 and 1, the MA11:0
pins are translated to address bits during the address cycle. For 32-bit wide memory, the MA11:0
pins latch the address and provide a incrementing address during burst data accesses. The MA11:0
increments for burst data transfers up to a 2 Kbyte Page size boundary.

Eight-bit wide memory has a maximum burst count of four accesses. The incrementing burst
address is presented on the BE1:0# pins, which translate to A1:0.

Figure 15-3 shows an example of a 2 Mbyte, 32-bit ROM or SRAM system connected to memory
bank 0.

Table 15-1. ROM, SRAM and Flash Control Signals

Source Signal Name Description

Memory Controller

MA11:0 Demultiplexed A13:2

MWE3:0#

Memory write enable signifying valid data
• MWE3# - Data valid on D31:24

• MWE2# - Data valid on D23:16

• MWE1# - Data valid on D15:08

• MWE0# - Data valid on D07:00

CE1:0#

Chip Enable:
• CE1# - Memory Bank 1 Chip Enable

• CE0# - Memory Bank 0 Chip Enable

80960VH Local Bus

AD31:0 Multiplexed Address/Data Bus

W/R# Specifies the access is a Read or Write transaction

BE1:0#

Byte Enables - used for 8-bit memory only
• BE1# - Becomes A1

• BE0# - Becomes A0

ALE Indicates Address Valid during an address cycle

i960® VH Processor Developer’s Manual 15-5

Memory Controller

Figure 15-4 shows an example of an 1 Mbyte, 8-bit ROM or SRAM system connected to memory
bank 0.

During ROM, SRAM and Flash memory accesses, the memory controller generates the
incrementing address bits in conjunction with the control signals. The lower twelve bits of the
address are generated on the MA11:0 memory address bus, and the upper address bits are
generated on the AD31:14 multiplexed address/data bus. When addressing 8-bit memory, BE1#
becomes A1 and BE0# becomes A0 as shown in Figure 15-4. Since the memory controller only

Figure 15-3. Bank0 32-Bit ROM or SRAM System

D7:0

D7:0

D7:0

D7:0
AD7:0

AD15:8

AD23:16

AD31:24
AD31:0

CE0#
W/R#

MWE3#

MWE2#

MA11:0

LATCHAD20:14
ALE A20:14

CE#
OE#
WE#

CE#
OE#
WE#

CE#
OE#
WE#

CE#
OE#
WE#

MWE1#

MWE0#

A18:12
A11:0

512K x 8

A18:12
A11:0

A18:12
A11:0

A18:12
A11:0

512K x 8

512K x 8

512K x 8

Figure 15-4. Bank0 8-Bit ROM or SRAM System

AD7:0

CE0#
W/R#

MWE0#

A19:14

MA11:0

BE1#
BE0#

EXTERNAL
AD19:14

ALE
LATCH

CE#
OE#
WE#

A19:14
A13:2

D7:0

A1
A0

1M x 8

15-6 i960® VH Processor Developer’s Manual

Memory Controller

latches A13:2, external logic must use ALE to latch the upper address bit during an address cycle.
The CE1:0# signals provide unique chip enables that are used to select the device and activate its
control logic during a memory access.

The write enable signals, MWE3:0#, select the byte lanes used during memory write accesses.
During a memory write access, the appropriate combination of MWE3:0# and CE1:0# are asserted
for the data cycle. The W/R# signal from the processor is driven high preventing the memory
output from being enabled onto the address/data bus. During a memory read access, the MWE3:0#
signals remain high while the appropriate CE1:0# is driven low by the memory controller. The
W/R# signal from the processor is also driven low enabling the device’s output onto the
address/data bus.

The MWE3:0# signals may be used to select individual byte-wide Flash memory devices during
programming without the use of external logic. The memory write enable bit allows the memory
controller to assert MWE3:0# during write cycles. This bit is controlled in the Memory Bank
Control Register (MBCR) shown in Figure 15-3. If either memory bank 0 or 1 is used for SRAM,
then the memory write enable bit must be set to enable the assertion of the MWE3:0# signals for
memory write transactions.

15.5 Memory Bank Programming Registers

Seven memory-mapped registers provide independent control of memory banks 0 and 1:

Refer to Appendix C, “Memory-Mapped Registers” for the memory-mapped registers address
mappings.

15.5.1 Memory Bank Control Register - MBCR

The Memory Bank Control Register (MBCR) specifies parameters that dictate the memory
controller operating environment for the two memory banks. The MBCR should be programmed
after initializing the other memory bank registers. Table 15-3 shows the register format for the
MBCR. The memory bank enable bits should be disabled prior to modifying the memory bank base
address and wait state registers.

Memory Bank 0 initializes to an enabled state on the rising edge of P_RST# to support a Boot
ROM for the i960 core processor. Bank size, wait state profiles and memory enables initialize to
the maximum programmable values. Once the i960 core processor begins code execution, software

Table 15-2. Memory Bank Register Summary

Section Register Name, Acronym Page Size
(Bits) Channel

80960
Local Bus
Address

PCI
Config
Addr
Offset

15.5.1 Memory Bank Control Register - MBCR 15-6 32 0000 1500H NA

15.5.2 Memory Bank Base Address Registers -
MBBAR0:1 15-8 32

0
1

0000 1504H
0000 1510H NA

15.5.3.1 Memory Bank Read Wait State Registers -
MBRWS0:1 15-10 32

0
1

0000 1508H
0000 1514H NA

15.5.3.2 Memory Bank Write Wait State Registers -
MBWWS0:1 15-11 32

0
1

0000 150CH
0000 1518H

NA

i960® VH Processor Developer’s Manual 15-7

Memory Controller

should re-program the memory controller for the actual bank size and wait state profiles for the
physical memory connected. Refer to Section 15.5.2, “Memory Bank Base Address Registers -
MBBAR0:1” on page 15-8 for additional information.

Table 15-3. Memory Bank Control Register – MBCR (Sheet 1 of 2)

LBA:

PCI:

1500H

NA

Legend: NA = Not Accessible RO = Read Only
RV = Reserved PR = Preserved RW = Read/Write
RS = Read/Set RC = Read Clear
LBA = 80960 local bus address PCI = PCI Configuration Address Offset

Bit Default Description

31:24 00H Reserved

23:20 0H

Memory Bank 1 Size Field - This bit field contains the total block size of memory
connected to memory bank 1. Memory may be ROM, SRAM or Flash with the size
ranging from 64 Kbytes to16 Mbytes. Each bank may be organized as 8- or 32-bit wide
memory, but must consist of a uniform memory type.

000064 Kbytes

0001128 Kbytes

0010256 Kbytes

0011512 Kbytes

01001 Mbyte

01012 Mbytes

01104 Mbyte

01118 Mbytes

1xxx16 Mbytes

19 02 Reserved

18 02

Memory Bank 1 Extended MWE3:0# Bit - This bit field enables or disables extending
the deassertion period for the MWE3:0# signal during burst write cycles. The bit also
enables one clock of MA11:0 and BE1:0 hold time relative to the rising edge of MWE#
during writes to this region.

When cleared (0), deassertion period is one-half of a P_CLK period.

When set (1), the deassertion period is extended by the wait state profile defined in the
MBWWS1 registers in addition to the one-half clock in period. Also when set, the MA11:0
and BE1:0 keep their current state for one clock after MWE3:0# are deasserted. This also
adds an extra wait state. MWE wait states can be calculated by the following:

Address or Data Wait States = (tWWX * 2) + 1
where tWWX = tWWA or tWWD

17 02

Memory Bank 1 Write Enable Bit - This bit enables or disables the MWE3:0# signals
during write cycles to memory bank 1.

When cleared (0), the MWE3:0# is not asserted during write cycles to memory bank 1.

When set (1), the MWE3:0# signals is asserted during write cycles to memory bank 1.

16 02

Memory Bank 1 Enable Bit - enables or disables CE1# for memory bank 1.

When cleared (0), the memory controller does not assert CE1#.

When set (1), memory controller decodes local bus addresses and asserts CE1# when
local bus address falls within the window of address programmed into MBBAR1 in
conjunction with memory bank 1 size control bits.

15:08 00H Reserved

PCI

LBA

28 24 20 16 12 8 4 031

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rw

na

rw

na

rw

na

rw

na

rv

na

rw

na

rw

na

rw

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rw

na

rw

na

rw

na

rw

na

rv

na

rw

na

rw

na

rw

na

15-8 i960® VH Processor Developer’s Manual

Memory Controller

15.5.2 Memory Bank Base Address Registers - MBBAR0:1

The memory bank base addresses are programmed through the Memory Bank Base Address
Registers (MBBAR0:1). The base address for each memory bank must be on an address boundary
equal to its size. For example, a memory bank size of 1 Mbyte must have a starting address located
on a 1 Mbyte address boundary. The MBBARx register definitions are shown in Table 15-4.

07:04 0H

Memory Bank 0 Size Field - contains the total block size of memory connected to
memory bank 0. Memory connected may be ROM, SRAM or Flash memory; size may
range from 64 Kbytes to 16 Mbytes. Each bank may be organized as 8 or 32 bit wide
memory, and must consist of a uniform memory type. See Memory Bank 1 Size Field for
block size settings.

03 02 Reserved

02 02

Memory Bank 0 Extended MWE3:0# Bit - This bit field enables or disables extending
the deassertion period for the MWE3:0# signal during burst write cycles. The bit also
enables one clock of MA11:0 and BE1:0 hold time relative to the rising edge of MWE#
during writes to this region.

When cleared (0), deassertion period is one-half of a P_CLK period.

When set (1), the deassertion period is extended by the wait state profile defined in the
MBWWS0 registers in addition to the one-half clock in period. Also when set, the MA11:0
and BE1:0 keep their current state for one clock after MWE3:0# are deasserted. This also
adds an extra wait state. MWE wait states can be calculated by the following:

Address or Data Wait States = (tWWX * 2) + 1
where tWWX = tWWA or tWWD

01 02

Memory Bank 0 Write Enable Bit - This bit enables or disables the MWE3:0# signals
during write cycles to memory bank 0.

When cleared (0), the MWE3:0# is not asserted during write cycles to memory bank 0.

When set (1), the MWE3:0# signals is asserted during write cycles to memory bank 0.

00 12

Memory Bank 0 Enable Bit - enables or disables CE0# for memory bank 0.

When cleared (0), the memory controller does not assert the CE0#.

When set (1), the memory controller decodes the local bus addresses and asserts CE0#
when the local bus address falls within the window of addresses programmed into the
MBBAR0 in conjunction with the memory bank 0 size control bits.

Memory Bank 0 defaults as enabled. This memory bank should be used for connecting
boot ROM for booting the i960 core processor.

Table 15-3. Memory Bank Control Register – MBCR (Sheet 2 of 2)

LBA:

PCI:

1500H

NA

Legend: NA = Not Accessible RO = Read Only
RV = Reserved PR = Preserved RW = Read/Write
RS = Read/Set RC = Read Clear
LBA = 80960 local bus address PCI = PCI Configuration Address Offset

Bit Default Description

PCI

LBA

28 24 20 16 12 8 4 031

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rw

na

rw

na

rw

na

rw

na

rv

na

rw

na

rw

na

rw

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rw

na

rw

na

rw

na

rw

na

rv

na

rw

na

rw

na

rw

na

i960® VH Processor Developer’s Manual 15-9

Memory Controller

The Initialization Boot Record (IBR) is the primary data structure required to initialize the i960
core processor and must be located at address FEFF FF30H. Since the processor must access the
IBR before the memory controller has been configured, a bank base address of FE00 0000H and a
bank size of 16 Mbytes are used by default for Memory Bank 0. These values result in an address
decode range of FE00 0000H to FEFF FFFFH for memory bank 0 when the memory controller is
reset. For the i960 core processor to boot from ROM or Flash memory, the memory devices must
use Memory Bank 0 and its associated chip enable signal, CE0#. The default address is used by the
memory controller for address decoding until it is configured by programming the Memory Bank 0
Base Address Register and Memory Bank 0 Size with the ROM bank base address and size
information, respectively.

Note: The i960 core processor does not generate external bus cycles for transactions within the address
range of 0 to 0000 03FFH or FF00 0000H to FFFF FFFFH. These address ranges are reserved by
the processor for internal data RAM and memory-mapped registers, respectively. The memory
bank base address registers should not be programmed with a value within these reserved address
ranges.

15.5.3 Memory Bank Wait State Registers - MBRWS0:1,
MBWWS0:1

Bus cycle timing for ROM, SRAM and Flash memory accesses are programmed through the
internal wait-state registers (see Table 15-2 for register summaries):

• Memory Bank 0 Read Wait States Register (MBRWS0)

• Memory Bank 1 Read Wait States Register (MBRWS1)

• Memory Bank 0 Write Wait States Register (MBWWS0)

• Memory Bank 1 Write Wait States Register (MBWWS1)

The number of wait states for each access in a bus cycle is programmed in 1x increments of
P_CLK. The i960 core processor requires one recovery cycle, but it may need to be extended to
accommodate slower memory devices. Each memory bank contains registers to independently
program the read and write wait states. The programmable values support:

Table 15-4. Memory Bank Base Address Registers – MBBAR0:1

LBA:

PCI:

CH0-1504H
CH1-1510H

04H

Legend: NA = Not Accessible RO = Read Only
RV = Reserved PR = Preserved RW = Read/Write
RS = Read/Set RC = Read Clear
LBA = 80960 local bus address PCI = PCI Configuration Address Offset

Bit Default Description

31:16
FE00H (Bank 0)

0000H (Bank 1)

Memory Bank 0/1 Base Address - These bits define the base address to which
the memory bank responds when addressed from the local bus. The default base
address for memory bank 0 is FE00 0000H with a bank size of 16 Mbytes used to
address the Initialization Boot Record table for booting the i960 core processor.

15:0 0000H Reserved

PCI

LBA

28 24 20 16 12 8 4 031

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

15-10 i960® VH Processor Developer’s Manual

Memory Controller

• Address-to-Data wait states

• Data-to-Data wait states

• Data-to-Address wait states (i.e., turnaround cycles)

The programmable range of values is sufficient to support memory access cycle times from 60 to
200 ns while operating the processor at 25 or 33 MHz. The register definitions for the memory
bank read wait states registers are shown in Figure 15-5.

15.5.3.1 Memory Bank Read Wait State Registers - MBRWS0:1

The Memory Bank Read Wait State Register (MBRWS) describes the wait states during Read
cycles.

Table 15-5. Memory Bank Read Wait States Register – MBRWS0:1 (Sheet 1 of 2)

LBA:

PCI:

Bank 0 = 1508H
Bank 1 = 1514H
N/A

Legend: NA = Not Accessible RO = Read Only
RV = Reserved PR = Preserved RW = Read/Write
RS = Read/Set RC = Read Clear
LBA = 80960 local bus address PCI = PCI Configuration Address Offset

Bit Default Description

31:19 0000H Reserved

18:16 1112

Read Cycle Address-to-First Data Wait States (tWRA) - This bit field
represents the number of wait states between address and the first data for read
transactions. The bit field is encoded as:

000 0 Address-to-Data wait states

001 1 Address-to-Data wait state

010 2 Address-to-Data wait states

011 3 Address-to-Data wait states

100 4 Address-to-Data wait states

101 5 Address-to-Data wait states

110 6 Address-to-Data wait states

111 7 Address-to-Data wait states

15:11 00H Reserved

10:8 1112

Read Cycle Data-to-Data Wait states (tWRD) - This bit field represents the
number of wait states between burst Data to Data for read transactions. The bit
field encodings are the same as those shown for Read Cycle Address-to-First
Data Wait States (tWRA).

7:3 00H Reserved

PCI

LBA

28 24 20 16 12 8 4 031

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rw

na

rw

na

rw

na

rv

na

rv

na

rv

na

rv

na

rv

na

rw

na

rw

na

rw

na

rv

na

rv

na

rv

na

rv

na

rv

na

rw

na

rw

na

rw

na

i960® VH Processor Developer’s Manual 15-11

Memory Controller

15.5.3.2 Memory Bank Write Wait State Registers - MBWWS0:1

The Memory Bank Write Wait State Register (MBWWS) describes wait states during write cycles.

2:0 1112

Read Cycle Additional Recovery Cycles (tWRR) - The local bus defines one
recovery cycle between the last data and the next address. This bit field
represents the number of additional recovery cycles between the last data and
the next address after completing a for read transactions. The bit field is
encoded as:

000 0 additional recovery cycles

001 1 additional recovery cycle

010 2 additional recovery cycles

011 3 additional recovery cycles

100 4 additional recovery cycles

101 5 additional recovery cycles

110 6 additional recovery cycles

111 7 additional recovery cycles

Table 15-5. Memory Bank Read Wait States Register – MBRWS0:1 (Sheet 2 of 2)

LBA:

PCI:

Bank 0 = 1508H
Bank 1 = 1514H
N/A

Legend: NA = Not Accessible RO = Read Only
RV = Reserved PR = Preserved RW = Read/Write
RS = Read/Set RC = Read Clear
LBA = 80960 local bus address PCI = PCI Configuration Address Offset

Bit Default Description

PCI

LBA

28 24 20 16 12 8 4 031

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rw

na

rw

na

rw

na

rv

na

rv

na

rv

na

rv

na

rv

na

rw

na

rw

na

rw

na

rv

na

rv

na

rv

na

rv

na

rv

na

rw

na

rw

na

rw

na

Table 15-6. Memory Bank Write Wait States Register – MBWWS0:1 (Sheet 1 of 2)

LBA:

PCI:

Bank 0 = 150CH
Bank 1 = 1518H
N/A

Legend: NA = Not Accessible RO = Read Only
RV = Reserved PR = Preserved RW = Read/Write
RS = Read/Set RC = Read Clear
LBA = 80960 local bus address PCI = PCI Configuration Address Offset

Bit Default Description

31:19 0000H Reserved

PCI

LBA

28 24 20 16 12 8 4 031

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rw

na

rw

na

rw

na

rv

na

rv

na

rv

na

rv

na

rv

na

rw

na

rw

na

rw

na

rv

na

rv

na

rv

na

rv

na

rv

na

rw

na

rw

na

rw

na

15-12 i960® VH Processor Developer’s Manual

Memory Controller

15.5.4 Memory Bank Waveforms

Programming the wait states for each of the bus cycles allows the memory controller to support
SRAM, ROM and Flash memory. Figure 15-5 shows a burst read transaction with a wait state
profile of 2,1,1,1.

18:16 1112

Write Cycle Address-to-First Data Wait States (tWWA) - This bit field
represents the number of wait states between address and the first data for write
transactions. Encoded as follows:

000 0 Address-to-Data wait states

001 1 Address-to-Data wait state

010 2 Address-to-Data wait states

011 3 Address-to-Data wait states

100 4 Address-to-Data wait states

101 5 Address-to-Data wait states

110 6 Address-to-Data wait states

111 7 Address-to-Data wait states

15:11 00H Reserved

10:8 1112

Write Cycle Data-to-Data Wait States (tWWD) - This bit field represents the
number of wait states between burst Data to Data for write transactions. Bit field
encodings are the same as those shown for Write Cycle Address-to-First Data
Wait States (tWWA)

7:3 00H Reserved

2:0 1112

Write Cycle Additional Recovery Cycles (tWWR) - The local bus defines one
recovery cycle between the last data and the next address. This bit field
represents the number of additional recovery cycles between the last data and
the next address after completing a for write transactions. The bit field is
encoded as follows:

000 0 additional recovery cycles

001 1 additional recovery cycle

010 2 additional recovery cycles

011 3 additional recovery cycles

100 4 additional recovery cycles

101 5 additional recovery cycles

110 6 additional recovery cycles

111 7 additional recovery cycles

Table 15-6. Memory Bank Write Wait States Register – MBWWS0:1 (Sheet 2 of 2)

LBA:

PCI:

Bank 0 = 150CH
Bank 1 = 1518H
N/A

Legend: NA = Not Accessible RO = Read Only
RV = Reserved PR = Preserved RW = Read/Write
RS = Read/Set RC = Read Clear
LBA = 80960 local bus address PCI = PCI Configuration Address Offset

Bit Default Description

PCI

LBA

28 24 20 16 12 8 4 031

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rw

na

rw

na

rw

na

rv

na

rv

na

rv

na

rv

na

rv

na

rw

na

rw

na

rw

na

rv

na

rv

na

rv

na

rv

na

rv

na

rw

na

rw

na

rw

na

i960® VH Processor Developer’s Manual 15-13

Memory Controller

Figure 15-6 represents a burst write transaction to SRAM with a wait state profile of 2,1,1,1. The
Extended MWE3:0# control bit in the MBCR is cleared in this example.

Table 15-7. Burst Flash Memory, Read Access Example Programming Summary

Timing Symbol Programmed Value Cycles

tWRA 022 2

tWRD 012 1

tWRR 002 0

Figure 15-5. 32-Bit Bus, Burst Flash Memory, Read Access with 2,1,1,1 Wait States

W/R#

MA11:0

P_CLK

TA TW TW TD TW TD TW TD TW TD TR TI

LRDYRCV#

AD31:0

MWE3:0#

CE0#

ADDR

ADDR ADDR ADDR ADDR

DATA
IN

DATA
IN

DATA
IN

DATA
IN

Table 15-8. SRAM Write Access Example Programming Summary

Timing Symbol Programmed Value Cycles

tWWA 022 2

tWWD 012 1

tWWR 002 0

15-14 i960® VH Processor Developer’s Manual

Memory Controller

Programming the wait states for each of the bus cycles allows the memory controller to support
burst transactions with SRAMs. Figure 15-7 shows a read transaction with 0 wait state SRAM.

Figure 15-6. 32-Bit Bus, SRAM Write Access with 2,1,1,1, Wait States

W/R#

MA11:0

P_CLK

TA TW TW TD TW TD TW TD TW TD TR TI

LRDYRCV#

AD31:0

MWE3:0#

CE0#

Addr
Data
Out

Data
Out

Data
Out

Data
Out

Addr Addr Addr Addr

Table 15-9. SRAM Read Access Example Programming Summary

Timing Symbol Programmed Value Cycles

tWRA 002 0

tWRD 002 0

tWRR 002 0

i960® VH Processor Developer’s Manual 15-15

Memory Controller

Figure 15-8 represents a 0 wait state write transaction to SRAM.

Figure 15-7. 32-Bit Bus, SRAM Read Accesses with 0 Wait States

TA TD TD TD TD TR

ADDR ADDRADDRADDR

P_CLK

CE[1]#

MA[11:0]

AD[31:0]

MWE[3:0]#

ADDR D
IN

D
IN

D
IN IN

D

Table 15-10. SRAM Write Access Example Programming Summary

Timing Symbol Programmed Value Cycles

tWWA 002 0

tWWD 002 0

tWWR 002 0

Figure 15-8. 32-Bit Bus, SRAM Write Access With 0 Wait States

TA TD TD TD TD TR

ADDR ADDRADDRADDR

P_CLK

CE[1]#

MA[11:0]

AD[31:0]

MWE3:0#

ADDR D
OUT

D
OUT

D
OUT

D
OUT

D
OUT

15-16 i960® VH Processor Developer’s Manual

Memory Controller

15.5.5 Extending Memory Write Enable Signals

The extended MWE3:0# write enable control bit in the MBCR allows the MWE3:0# to be
extended during the deassertion period between burst data accesses. In addition, the LRDYRCV#
signal assertion is delayed. The characteristics of the other memory controller signals remain the
same. Figure 15-9 shows a 2-word burst of an extended MWE3:0# write cycle.

15.6 DRAM Control

The DRAM bank may be organized as 32-bit without parity or 36-bit with parity. The memory
controller provides a direct interface for a minimum of 1 Mbyte and a maximum of 256 Mbytes of
DRAM by generating the signals shown in Table 15-12.

Table 15-11. Write Access with Extended MWE3:0# Example Programming Summary

Timing Symbol Programmed Value Cycles

tWWA 022 5

tWWD 012 3

tWWR 002 1

Figure 15-9. 32-Bit Bus, Write Access with Extended MWE3:0#

TA TW TW TW TW TW

P_CLK

W/R#

BLAST#

ADS#

AD31:0

CE1#

MWE3:0#

LRDYRCV#/

MA11:0 ADDR

ADDR Data
Out

BE3:0#

ADDR

TD TW TW TW TD

RDYRCV#

TR

Data
Out

i960® VH Processor Developer’s Manual 15-17

Memory Controller

The memory controller supports from one to four banks of DRAM organized as 32 or 36 bits wide.
The memory banks may be configured as non-interleaved or two-way interleaved. The memory
controller supports two different types of DRAM: Fast Page-Mode (FPM) and Extended Data Out
(EDO). Interleaved Fast Page-Mode DRAM is also supported. DRAM refresh is supported through
the programmable DRAM refresh counter.

15.6.1 DRAM Organization and Configuration

The memory controller provides a programmable address window for DRAM that decodes local
bus addresses and drives the corresponding DRAM control signals. The address window is
programmed through the memory controller memory-mapped registers. Additional
memory-mapped registers control timings for different speed ratings of DRAM, DRAM bank
sizes, DRAM types, DRAM initialization, and DRAM organization.

To prevent bursts from crossing a DRAM page, the maximum burst size for a single data transfer
cycle to the memory controller is 2 Kbytes. On-chip bus masters accessing the memory controller
are required to adhere to the 2 Kbyte address boundary. The 80960VH closes the DRAM Page.
RAS# deasserts during the first recovery cycle and stays deasserted through ADS#.

DRAM organization is programmable through control bits in the DRAM Bank Control Register
(DBCR). The memory controller provides support for up to four banks of non-interleaved DRAM.
Up to two banks of non-interleaved DRAM can be connected with each bank containing two
leaves. Table 15-13 summarizes the supported DRAM organization and type.

Table 15-12. DRAM Control Signals

Signal Name Source Description

MA11:0 Memory
Controller Memory Address Bus - Specifies address path to the DRAM.

DP3:0 Memory
Controller

DRAM Data Parity, DP3:0 - Specifies the byte wide parity bit for data
transfers:
• DP3 - Parity value for data on AD31:24

• DP2 - Parity value for data on AD23:16

• DP1 - Parity value for data on AD15:8

• DP0 - Parity value for data on AD7:0

DALE1:0 Memory
Controller

DRAM Address Latch Enable:

DALE1:0 - Specifies address valid during an address cycle.

DWE1:0# Memory
Controller

DRAM Write Enable:

DWE1:0# - Write Cycle. Individual byte enables during write cycles are
controlled with the individual CAS7:0# signals.

For non-interleaved operation, these signals are identical and can be used
interchangeably.

CAS7:0# Memory
Controller

Column Address Strobe. Indicates the presence of a valid column address on
the memory address bus MA11:0.

RAS3:0# Memory
Controller

Row Address Strobe. Indicates the presence of a valid row address on the
memory address bus MA11:0.

LEAF1:0# Memory
Controller

LEAF OE# control. For non-interleaved DRAM, LEAF1:0# controls the OE#.
For interleaved DRAM, the LEAF1:0# signals control the OE# data latches.

For non-interleaved operation, these signals are identical and can be used
interchangeably.

AD31:0 Local Bus Multiplexed Address/Data Bus. Data path to and from the DRAM.

15-18 i960® VH Processor Developer’s Manual

Memory Controller

An example of a single 16 Mbyte bank of DRAM, organized as 32-bit non-interleaved, is shown in
Figure 15-10. As shown, the 80960VH is a direct connect to the non-interleaved memory
subsystem (no additional logic is required).

Figure 15-11 shows a sample memory system using 32-bit interleaved DRAM. The memory
controller provides eight CAS# signals for the support of interleaved memory. The CAS3:0#
signals provide the byte selection for one leaf, while CAS7:4# provide for the second leaf. It is
necessary to control external buffer output enables during read transactions in an interleaved
memory system. Two signals, LEAF1:0#, are provided to control the multiplexing of data from
each memory leaf onto the processor address/data bus. These signals are tied to the OE# pins of the
data transceivers in an interleaved memory array. In a non-interleaved memory array, the OE# pins
are typically tied to signal ground. Standard DRAM device sizes from 1 Mbit to 64 Mbit are
supported without the use of external logic to generate control signals. Two identical write enable
signals, DWE1:0#, are provided to control the WE# input of DRAM devices during read and write
transactions.

Table 15-13. Supported DRAM Configurations

Interleaved DRAM
(Fast Page-mode DRAM Only)

Non-Interleaved DRAM
(FPM, EDO)

1 Bank (2 leaves) 1 Bank

2 Banks (4 leaves)
2 Banks

4 Banks

Figure 15-10. Non-Interleaved, 32-Bit, Single Bank, DRAM System

MA11:0

AD31:0

CAS0#
CAS1#
CAS2#
CAS3#
CAS4#
CAS5#
CAS6#
CAS7#

RAS0#
RAS1#
RAS2#
RAS3#

DWE0#
DWE1#

LEAF1#
LEAF0#

DRAM Controller

MA11:0

D31:0

CAS0#
CAS1#
CAS2#
CAS3#

RAS0#

WE#

OE#

1 DRAM Bank
Non- Interleaved

8 x (4M x 4)

i960® VH Processor Developer’s Manual 15-19

Memory Controller

The DRAM types supported include 1-, 4-, 16- and 64-Mbit devices. These memory types are
supported without the use of external logic to generate control signals. The arrangement for each
technology is summarized in Table 15-14.

Figure 15-11. Interleaved 32-Bit DRAM System, 1 Bank, 2 Leaves

MA11:0

AD31:0

CAS0#
CAS1#
CAS2#
CAS3#
CAS4#
CAS5#
CAS6#
CAS7#

RAS0#
RAS1#
RAS2#
RAS3#

DWE0#
DWE1#

LEAF1#
LEAF0#

DRAM Controller

1 Leaf - Even
8 x (4M x 4)

DALE0
DALE1

A15:0 B15:0

LE
OE#

1 Leaf - Odd
8 x (4M x 4)

MA11:0

D31:0

CAS0#
CAS1#
CAS2#
CAS3#

RAS0#

WE#

OE#

MA11:0

D31:0

CAS0#
CAS1#
CAS2#
CAS3#

RAS0#

WE#

OE#

A15:0 B15:0

LE
OE#

W/R#

B31:0 A31:0

OE#
DIR

B31:0 A31:0

DIR
OE#

Data Transceiver

Address Latch

Address Latch

Data Transceiver

Table 15-14. Supported DRAM Configurations (Symmetric Addressing Only) (Sheet 1 of 2)

DRAM
Technology

DRAM
Arrangement

Address Size
(in Bits)

Bank /
Leaf
Size1

Non-Interleaved
DRAM

(in Mbytes)

Interleaved
DRAM (in
Mbytes)

Row Col. Min. Max. Min. Max.

1 Mbit
1M x 1 10 10 4 4 16 8 16

256K x 4 9 9 1 1 4 2 4

NOTE:
1. Every bank (or leaf) must use the same memory type. Mixed combinations of FPM or EDO are not permitted. The DRAM

bank size must also remain the same among banks (or leaves).

15-20 i960® VH Processor Developer’s Manual

Memory Controller

4 Mbit

4M x 1 11 11 16 16 64 32 64

1M x 4 10 10 4 4 16 8 16

256K x 16 9 9 1 1 4 2 4

16 Mbit

16M x 1 12 12 64 64 256 128 256

4M x 4 11 11 16 16 64 32 64

1M x 16 10 10 4 4 16 8 16

64 Mbit
16M x 4 12 12 64 64 256 128 256

4M x 16 11 11 16 16 64 32 64

Table 15-14. Supported DRAM Configurations (Symmetric Addressing Only) (Sheet 2 of 2)

DRAM
Technology

DRAM
Arrangement

Address Size
(in Bits)

Bank /
Leaf
Size1

Non-Interleaved
DRAM

(in Mbytes)

Interleaved
DRAM (in
Mbytes)

Row Col. Min. Max. Min. Max.

NOTE:
1. Every bank (or leaf) must use the same memory type. Mixed combinations of FPM or EDO are not permitted. The DRAM

bank size must also remain the same among banks (or leaves).

i960® VH Processor Developer’s Manual 15-21

Memory Controller

15.6.2 DRAM Addressing

The memory controller drives the DRAM address on the MA11:0 pins. This multiplexed address is
ordered to support 1 through 64 Mbyte DRAM arrays. Table 15-15 shows the address bits that are
presented on the MA11:0 pins during the row and column address cycle. The ordering depends on
the arrangement of the DRAM arrays, either non-interleaved or interleaved.

15.6.3 DRAM Registers

The DRAM controller provides registers for configuring and controlling DRAM. Six
memory-mapped registers control the memory controller for independent operation:

Table 15-15. MA11:0 Address Bits for Non-Interleaved/Interleaved

MA Bit
Non-Interleaved Interleaved

Row Column Row Column

0 11 2 11 10

1 12 3 12 3

2 13 4 13 4

3 14 5 14 5

4 15 6 15 6

5 16 7 16 7

6 17 8 17 8

7 18 9 18 9

8 19 10 19 20

9 21 20 21 22

10 23 22 23 24

11 25 24 25 26

Table 15-16. DRAM Register Summary

Section Section, Register Name, Acronym Page
Size
(Bits)

80960 Local
Bus Address

PCI
Config
 Addr
Offset

15.6.4 DRAM Bank Control Register — DBCR 15-22 32 0000 151CH N/A

15.6.5 DRAM Base Address Register — DBAR 15-23 32 0000 1520H N/A

15.6.6 DRAM Read Wait State Register — DRWS 15-24 32 0000 1524H N/A

15.6.7 DRAM Write Wait State Register — DWWS 15-25 32 0000 1528H N/A

15.6.8 DRAM Refresh Interval Register — DRIR 15-27 32 0000 152CH N/A

15.7.1 DRAM Parity Enable Register — DPER 15-29 32 0000 1530H N/A

15-22 i960® VH Processor Developer’s Manual

Memory Controller

15.6.4 DRAM Bank Control Register — DBCR

The DRAM Bank Control Register (DBCR) specifies the parameters used to control the DRAM
banks. The DBCR should be programmed after initializing the other DRAM registers.
Figure 15-17 shows the register format for the DBCR. This register can be read or written at any
time. The DRAM bank enable bits should be disabled prior to modifying the DRAM bank base
address and wait-state registers.

Table 15-17. DRAM Bank Control Register — DBCR (Sheet 1 of 2)

LBA:

PCI:

151CH

N/A

Legend: NA = Not Accessible RO = Read Only
RV = Reserved PR = Preserved RW = Read/Write
RS = Read/Set RC = Read Clear
LBA = 80960 local bus address PCI = PCI Configuration Address Offset

Bit Default Description

31:12 0000 0H Reserved

11 02

MA11:0 High-Drive Enable Bit - This bit controls the MA11:0 output.

When clear (0) MA11:0 has normal output buffer drive strength.

When set (1) MA11:0 has higher output buffer drive strength.

10 02

CAS7:0# High-Drive Enable Bit - This bit controls the CAS7:0# output.

When clear (0) the CAS7:0# has normal output buffer drive strength.

When set (1) the CAS7:0# has higher output buffer drive strength.

9 02

RAS3:0# High-Drive Enable Bit - This bit controls the RAS3:0# output.

When clear (0) the RAS3:0# has normal output buffer drive strength.

When set (1) the RAS3:0# has higher output buffer drive strength.

8 02

DWE1:0# High-Drive Enable Bit - This bit controls the DWE1:0# output.

When clear (0) the DWE1:0# has normal output buffer drive strength.

When set (1) the DWE1:0# has higher output buffer drive strength.

7:3 0H

DRAM Bank Type/Arrangement Field - This bit field contains the DRAM type and
block size of memory connected. The memory connect may be FPM or EDO DRAM.
Each bank must be organized as 32-bit wide memory and must consist of a uniform
memory type.

000 00 Fast Page-Mode DRAM, 1 Bank

000 01 Fast Page-Mode DRAM, 2 Banks

000 1x Fast Page-Mode DRAM, 4 Banks

001 x0 Fast Page-Mode DRAM, Interleaved, 1 Bank

001 x1 Fast Page-Mode DRAM, Interleaved, 2 Banks

010 00 Extended Data Out (EDO) DRAM, 1 Bank

010 01 Extended Data Out (EDO) DRAM, 2 Banks

010 10 Reserved

010 11 Extended Data Out (EDO) DRAM, 4 Banks

1xx xx Reserved

PCI

LBA

28 24 20 16 12 8 4 031

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

i960® VH Processor Developer’s Manual 15-23

Memory Controller

15.6.5 DRAM Base Address Register — DBAR

The DRAM Base Address Register (DBAR) stores the base address for the DRAM. This address
must be on an address boundary equal to the total size of the DRAM. For example, a 4 Mbyte
DRAM bank must have a starting address located on a 4 Mbyte address boundary. The register
definition is shown in Figure 15-18.

On memory controller reset, the default DRAM base address is indeterminate until it is overwritten
by programming DBAR. Since the DRAM bank is disabled at reset, this causes no addressing
conflict with the internal data RAM.

2:1 002

DRAM Bank/Leaf Size - This bit field defines the bank size of DRAM connected for
non-interleaved mode. For Interleaved DRAM, this bit field defines the leaf size.

00 1 Mbyte DRAM per bank/leaf

01 4 Mbytes DRAM per bank/leaf

10 16 Mbytes DRAM per bank/leaf

11 64 Mbytes DRAM per bank/leaf

0 02

DRAM Bank Enable Bit - This bit enables or disables the DRAM bank.

When cleared (0), the memory controller does not assert the DRAM control signals.

When set (1), the memory controller decodes the local bus addresses and assert the
DRAM control signals when the local bus address falls within the window of address
programmed into the DBAR0.

Table 15-17. DRAM Bank Control Register — DBCR (Sheet 2 of 2)

LBA:

PCI:

151CH

N/A

Legend: NA = Not Accessible RO = Read Only
RV = Reserved PR = Preserved RW = Read/Write
RS = Read/Set RC = Read Clear
LBA = 80960 local bus address PCI = PCI Configuration Address Offset

Bit Default Description

PCI

LBA

28 24 20 16 12 8 4 031

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

Table 15-18. DRAM Base Address Register — DBAR

LBA:

PCI:

1520H

N/A

Legend: NA = Not Accessible RO = Read Only
RV = Reserved PR = Preserved RW = Read/Write
RS = Read/Set RC = Read Clear
LBA = 80960 local bus address PCI = PCI Configuration Address Offset

Bit Default Description

31:20 000H
DRAM Bank Base Address - These bits define the upper 12 bits of the base address the
DRAM bank responds to when addressed from the local bus.

19:00 0 0000H Reserved

PCI

LBA

28 24 20 16 12 8 4 031

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

15-24 i960® VH Processor Developer’s Manual

Memory Controller

Note: The i960 core processor does not generate external bus cycles for transactions within the address
range of 0 to 0000 03FFH or FF00 0000H to FFFF FFFFH. The processor reserves these address
ranges for internal data RAM and memory-mapped registers, respectively. Do not program the
DRAM base address register with a value within these reserved address ranges.

15.6.6 DRAM Read Wait State Register — DRWS

The bus cycle timing for DRAM read accesses is programmed through the DRAM Read Wait
States Register (DRWS). The software programs the number of wait states for each access in a bus
cycle in 1x increments of P_CLK. The symbols tRRC, tRCP and tRRCV, which represent the number
of wait states programmed for the address, data and recovery cycles for read transfers, are shown in
Figure 15-12. The register definitions for the DRAM Bank Read Wait States Register are shown in
Table 15-19. The number of tRRC, tRCP and tRRCV wait states is encoded in two-bit fields, which
are also shown in Table 15-19.

Figure 15-12. DRAM Read Cycle Programmable Parameter Example

P_CLK

RAS#

MA11:0

TA TW TW TW TD TW TD TW TD TR TR TA

COL COL COLCOLROW

CAS#

ADS#

ROW

LRDYRCV#

BLAST#

tRRC

tRRCV

tRCP tRCP tRCP

Programmed tRRC = 01

Programmed tRCP = 00

Programmed tRRCV = 01; Total Recovery Cycles = tRRCV + 1

i960® VH Processor Developer’s Manual 15-25

Memory Controller

15.6.7 DRAM Write Wait State Register — DWWS

The bus cycle timing for DRAM write accesses is programmed through the DRAM Write Wait
States register (DWWS). The software programs the number of wait states for each access in a bus
cycle in 1x increments of P_CLK. The symbols tWRC, tWCP and tWRCV, which represent the
number of wait states programmed for the address, data and recovery cycles for write transactions,
are shown in Figure 15-13. The number of tWRC, tWCP and tWRCV wait states is encoded in two-bit
fields as shown in Table 15-20.

Table 15-19. DRAM Bank Read Wait State Register — DRWS

LBA:

PCI:

1524H

N/A

Legend: NA = Not Accessible RO = Read Only
RV = Reserved PR = Preserved RW = Read/Write
RS = Read/Set RC = Read Clear
LBA = 80960 local bus address PCI = PCI Configuration Address Offset

Bit Default Description

31:18 0000H Reserved

17:16 002

DRAM Read cycle RAS-to-CAS delay (tRRC) - This field affects the number of cycles
between the assertion of RAS3:0# and the assertion of CAS7:0#.

FPM EDO

00 1.5 cycles 1 cycles
01 2.5 cycles 2 cycles
10 3.5 cycles 3 cycles
11 4.5 cycles 4 cycles

15:10 00H Reserved

9:8 002

DRAM Read cycle CAS pulse width (tRCP) - This field affects the number of cycles that
CAS7:0# is asserted.

Fast Page-Mode DRAM:

0x 1.5 cycles (defaults to 1.5 for FPM DRAM)
10 2.5 cycles
11 3.5 cycles

EDO DRAM (this parameter is fixed for EDO DRAM type):

xx 0.5 cycles

7:2 00H Reserved

1:0 002

DRAM Read cycle additional recovery wait states (tRRCv) - These are the number of
extra wait states that are inserted at the end of a DRAM transaction. The purpose is to
increase the RAS precharge time for the DRAM (tRP).

00 0 additional recovery cycles
01 1 additional recovery cycle
10 2 additional recovery cycles
11 3 additional recovery cycles

PCI

LBA

28 24 20 16 12 8 4 031

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rw

na

rw

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rw

na

rw

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rw

na

rw

na

15-26 i960® VH Processor Developer’s Manual

Memory Controller

Figure 15-13. DRAM Write Cycle Programmable Parameter Example

Table 15-20. DRAM Bank Write Wait State Register — DWWS (Sheet 1 of 2)

LBA:

PCI:

1528H

N/A

Legend: NA = Not Accessible RO = Read Only
RV = Reserved PR = Preserved RW = Read/Write
RS = Read/Set RC = Read Clear
LBA = 80960 local bus address PCI = PCI Configuration Address Offset

Bit Default Description

31:18 0000H Reserved

P_CLK

RAS#

MA11:0

TA TW TW TW TD TW TD TR TR

WRITE CAS#

ADS#

LRDYRCV#

BLAST#

Programmed tWRC = 00

Programmed tWCP = 00

Programmed tWRCV = 01; Total Recovery Cycles = tWRCV + 1

TATD

AD31:0

COL COLCOLROW ROW

DA D D A

tWRC tWCP tWCP tWCP

tWRCV

PCI

LBA

28 24 20 16 12 8 4 031

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rw

na

rw

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rw

na

rw

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rw

na

rw

na

i960® VH Processor Developer’s Manual 15-27

Memory Controller

15.6.8 DRAM Refresh Interval Register — DRIR

The memory controller supports CAS# Before RAS# (CBR) refresh cycles for DRAM devices.
Figure 15-14 shows an example of a typical CBR refresh cycle.

17:16 002

DRAM Write cycle RAS-to-CAS delay (tWRC) - This field affects the number of cycles
between the assertion of RAS3:0# and the assertion of CAS7:0#.

FPM EDO

00 1.5 cycles 1.5 cycles
01 2.5 cycles 2.5 cycles
10 3.5 cycles 3.5 cycles
11 4.5 cycles 4.5 cycles

15:10 00H Reserved

9:8 002

DRAM Write cycle CAS pulse width (tWCP) - This field affects the number of cycles that
CAS7:0# is asserted.

Fast Page-Mode DRAM:

0x 1.5 cycles (defaults to 1.5 for FPM DRAM)
10 2.5 cycles
11 3.5 cycles

EDO DRAM (this parameter is fixed for EDO DRAM type):

xx 0.5 cycles

7:2 00H Reserved

1:0 002

DRAM Write cycle additional recovery wait states (tWRCV) - The number of extra wait
states inserted at the end of a DRAM transaction. The purpose is to increase RAS
precharge time for DRAM (tRP).

00 0 additional recovery cycles
01 1 additional recovery cycle
10 2 additional recovery cycles
11 3 additional recovery cycles

Table 15-20. DRAM Bank Write Wait State Register — DWWS (Sheet 2 of 2)

LBA:

PCI:

1528H

N/A

Legend: NA = Not Accessible RO = Read Only
RV = Reserved PR = Preserved RW = Read/Write
RS = Read/Set RC = Read Clear
LBA = 80960 local bus address PCI = PCI Configuration Address Offset

Bit Default Description

PCI

LBA

28 24 20 16 12 8 4 031

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rw

na

rw

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rw

na

rw

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rw

na

rw

na

15-28 i960® VH Processor Developer’s Manual

Memory Controller

The internal DRAM Refresh Interval Register (DRIR) (Table 15-21) provides the time delay
between DRAM refresh cycles and is programmed in increments of P_CLK. The value
programmed is determined as follows:

Programmed Value = (DRAM Refresh Cycle Rate x Input Clock Frequency)

The register provides ten bits for the programmed value that corresponds to a time delay range of
0 to 34.1 µs at 33 MHz.

The DRAM controller performs hidden refreshes which can occur in the middle of burst transfers
on the local bus.

Using a standard DRAM refresh cycle rate of 15.625 µs, the programmed value for a 33 MHz
clock is calculated as follows:

Figure 15-14. CAS#-Before-RAS# DRAM Refresh

P_CLK

RAS3:0#

CAS7:0#

Table 15-21. DRAM Refresh Interval Register — DRIR

LBA:

PCI:

152CH

N/A

Legend: NA = Not Accessible RO = Read Only
RV = Reserved PR = Preserved RW = Read/Write
RS = Read/Set RC = Read Clear
LBA = 80960 local bus address PCI = PCI Configuration Address Offset

Bit Default Description

31:17 0000H Reserved

16 0

DRAM Refresh Disable Bit - This bit disables the DRAM refresh cycles from occurring.

When cleared (0) the DRAM refresh counter decrements the value found in the DRAM
refresh interval value field until a zero value is reached. At that time, the DRAM refresh
initiates a CBR cycle.

When set (1) the DRAM refresh counter is disabled and does not generate any CBR
cycles.

15:10 00H Reserved

9:00 78H

DRAM Refresh Interval Value - This bit field defines the number of 1x P_CLK cycles
between generating refresh cycles. The DRAM refresh interval defaults to a value that
meets the minimum interval typically used with the DRAM types supported on the
80960VH.

PCI

LBA

28 24 20 16 12 8 4 031

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rw

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

i960® VH Processor Developer’s Manual 15-29

Memory Controller

 DRAM Refresh Interval = (15.625 µs x 33 MHz) = 516 = 0x0000 0204

An initial pause of 100 to 200 µs after power-up followed by eight RAS3:0# cycles is typically
required before proper DRAM device operation is assured. This requirement is satisfied by using a
200 µs delay between memory system power-up and memory controller reset, and a default refresh
interval of approximately 3.6 µs. The default value in the DRAM Refresh Interval Register is 120
or 0000 0078H, which is 4.8 µs with a 25 MHz clock or 3.6 µs with a 33 MHz clock.

15.7 Error Checking and Reporting

The memory controller provides two mechanisms for reporting error conditions. The first is
DRAM parity and the second is a bus monitor used to detect invalid local bus addresses and when
no RDYRCV# signal is returned to signify valid data.

15.7.1 DRAM Parity Enable Register — DPER

The use of parity is programmable through the DRAM Parity Enable Register (DPER), shown in
Figure 15-23. When data parity is enabled, the memory controller generates a parity bit for each
byte written to DRAM, and presents it to the parity bus DP3:0. Parity is checked on all DRAM read
accesses when enabled.

Table 15-22. Error Checking and Reporting Register Summary

Section Section, Register Name, Acronym Page
Size
(Bits)

80960 Local
Bus Address

PCI
Config
 Addr
Offset

15.7.1 DRAM Parity Enable Register — DPER 15-29 32 0000 1530H N/A

15.7.2 Bus Monitor Enable Register — BMER 15-30 32 0000 1534CH N/A

15.7.3 Memory Error Address Register — MEAR 15-31 32 0000 1538H N/A

15.7.4 Local Processor Interrupt Status Register — LPISR 15-32 32 0000 153CH N/A

15-30 i960® VH Processor Developer’s Manual

Memory Controller

Upon detection of a parity error, the 30-bit address of the faulty memory location is latched and
stored in the Memory Error Address Register (MEAR), Table 15-25. The memory controller
detects parity errors for any on-chip bus master. These include the primary ATU, DMA channel 0,
DMA channel 1 or the i960 core processor. Upon detecting a parity error, the faulty address is
latched and an interrupt is generated. The memory controller detects when the i960 core processor
is the bus master and sets the parity error status bit in the local processor status register and
generates an NMI#. When the i960 core processor is not the bus master, the memory controller
notifies the other bus masters of the error condition. The bus masters then latch the error and
generate an NMI# to the i960 core processor.

15.7.2 Bus Monitor Enable Register — BMER

The memory controller bus monitor examines all bus accesses to any memory region configured
for an external ready. When RDYRCV# is not returned to terminate an access, the processor stalls.
Under normal conditions, however, the application can enable or disable the interrupt generated to
the i960 core processor from the memory controller. When the valid data is not returned within 127
P_CLK periods, the memory controller asserts the ready signal, LRDYRCV#, which terminates the
current data cycle. When the bus monitor interrupt enable bit in the bus monitor enable register is
set, the Memory Controller also asserts a bus fault signal to the on-chip bus masters when the timer
expires. The on-chip bus master generates an interrupt to the i960 core processor when it receives
the bus fault signal. The memory controller is responsible for generating the interrupt when the
i960 core processor is the bus master.

The external bus monitor is enabled by programming the Bus Monitor Enable Register (BMER) as
shown in Table 15-24. On memory controller reset, the bus monitor interrupt is disabled.

Table 15-23. DRAM Parity Enable Register — DPER

LBA:

PCI:

1530H

N/A

Legend: NA = Not Accessible RO = Read Only
RV = Reserved PR = Preserved RW = Read/Write
RS = Read/Set RC = Read Clear
LBA = 80960 local bus address PCI = PCI Configuration Address Offset

Bit Default Description

31:2 0000 0000H Reserved

1 02

DRAM Parity Polarity Bit - This bit defines the parity polarity.

When clear (0) Even Parity Checking and Generation are performed

When set (1) Odd Parity Checking and Generation are performed.

0 02

DRAM Parity Enable Bit - This bit enables parity checking and generation.

When clear (0) Parity Checking and Generation is disabled.

When set (1) Parity Checking and Generation is enabled and an interrupt is generated
upon detecting a parity error.

PCI

LBA

28 24 20 16 12 8 4 031

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rw

na

rw

na

i960® VH Processor Developer’s Manual 15-31

Memory Controller

15.7.3 Memory Error Address Register — MEAR

Upon detecting a parity error or bus fault condition, the 30-bit address that generates the fault is
latched in the Memory Error Address Register (MEAR). Interrupt service routines can generate
individual bus cycles to determine the exact byte address that generated the error condition. The
MEAR retains the address until the i960 core processor clears the respective status bit in the local
processor status register, primary ATU status register or in the DMA channel status register(s).
When multiple errors occur, the MEAR register preserves the first address that generated the error,
however, multiple error status bits may be set.

Table 15-24. Bus Monitor Enable Register — BMER

LBA:

PCI:

1534H

N/A

Legend: NA = Not Accessible RO = Read Only
RV = Reserved PR = Preserved RW = Read/Write
RS = Read/Set RC = Read Clear
LBA = 80960 local bus address PCI = PCI Configuration Address Offset

Bit Default Description

31:1
0000 0000

H
Reserved

0 02

Bus Monitor Interrupt Enable Bit - This bit enables the assertion of the bus fault to
bus masters when the bus monitor timer expires. It also enables the generation of an
interrupt to the i960 core processor when the bus monitor timer expires and the bus
master is the i960 core processor.

When clear (0), the memory controller does not signal a bus fault to any bus master and
does not generate an NMI interrupt to the i960 core processor.

When set (1) the Memory Controller signals a bus fault to all bus masters when the bus
monitor timer expires and generates an NMI interrupt to the i960 core processor when
the core processor is the bus master.

PCI

LBA

28 24 20 16 12 8 4 031

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rw

na

15-32 i960® VH Processor Developer’s Manual

Memory Controller

15.7.4 Local Processor Interrupt Status Register — LPISR

Upon detecting a parity error or bus fault condition, when the core was local bus master, the
memory controller sets the corresponding bit within the Local Processor Interrupt Status Register
(LPISR). This register is used as a status for the i960 core processor to differentiate between the
two error conditions. Clearing the status bit within the LPISR register clears the memory controller
interrupt and allows additional memory controller interrupts to be generated. The interrupt is
cleared by writing a 1 to the respective interrupt status bit.

Table 15-25. Memory Error Address Register — MEAR

LBA:

PCI:

1538H

N/A

Legend: NA = Not Accessible RO = Read Only
RV = Reserved PR = Preserved RW = Read/Write
RS = Read/Set RC = Read Clear
LBA = 80960 local bus address PCI = PCI Configuration Address Offset

Bit Default Description

31:02
0000 0000

H

Memory Error Address Field - These bits define the upper 30 bits of local bus address
that generated either a parity error or a bus fault condition. Clearing the error status bits
in the local processor status register for i960 core processor errors allows the MEAR to
latch new error addresses. When the DMA units or the ATU generate the error, status
bits in their respective status registers must be cleared to allow the MEAR to latch new
error addresses.

01:00 002 Reserved

PCI

LBA

28 24 20 16 12 8 4 031

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

rv

na

rv

na

Table 15-26. Local Processor Interrupt Status Register — LPISR (Sheet 1 of 2)

LBA:

PCI:

153CH

N/A

Legend: NA = Not Accessible RO = Read Only
RV = Reserved PR = Preserved RW = Read/Write
RS = Read/Set RC = Read Clear
LBA = 80960 local bus address PCI = PCI Configuration Address Offset

Bit Default Description

31:7 0000 000H Reserved

6 02

Memory Fault Interrupt Status Bit - This bit signifies a memory fault error condition
occurred, when the core was local bus master.

When cleared (0) no memory fault (parity error) interrupt generated.

When set (1) a memory fault (parity error) interrupt is pending.

5 02

Local Bus Fault Interrupt Status Bit - This bit signifies a local bus fault error condition
occurred, when the core was local bus master.

When cleared (0) no local bus fault interrupt generated.

When set (1) a local bus fault interrupt is pending.

PCI

LBA

28 24 20 16 12 8 4 031

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rc

na

rc

na

rv

na

rv

na

rv

na

rv

na

rv

na

i960® VH Processor Developer’s Manual 15-33

Memory Controller

15.8 DRAM Waveforms

Waveforms showing FPM and EDO DRAM read and write cycles are contained in the following
sections. Also included are interleaved and non-interleaved FPM examples.

15.8.1 Non-Interleaved Fast Page-Mode DRAM Waveform

Figure 15-15 and Figure 15-16 represent non-interleaved FPM DRAM system read and write cycle
waveforms. The programmed timings used in these two examples are shown in Table 15-27.

4:0 00H Reserved

Table 15-26. Local Processor Interrupt Status Register — LPISR (Sheet 2 of 2)

LBA:

PCI:

153CH

N/A

Legend: NA = Not Accessible RO = Read Only
RV = Reserved PR = Preserved RW = Read/Write
RS = Read/Set RC = Read Clear
LBA = 80960 local bus address PCI = PCI Configuration Address Offset

Bit Default Description

PCI

LBA

28 24 20 16 12 8 4 031

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rc

na

rc

na

rv

na

rv

na

rv

na

rv

na

rv

na

Table 15-27. FPM (Non-Interleaved) DRAM Example Programming Summary

Timing Symbol Programmed Value Cycles

tRRC 012 2.5

tRCP 002 1.5

tRRCV 002 0

tWRC 002 1.5

tWCP 002 1.5

tWRCV 012 1

15-34 i960® VH Processor Developer’s Manual

Memory Controller

15.8.2 Interleaved FPM DRAM Waveform

The memory banks may be configured as an interleaved memory region consisting of up to two
banks, where each bank contains two leaves of DRAM. The maximum interleaved configuration is
256 Mbytes organized as two leaves with each leaf containing two banks of DRAM. The memory
controller provides eight CAS7:0# signals for the support of interleaved memory:

• CAS3:0# signals provide the byte selection for leaf 0

• CAS7:4# signals provide byte selection for leaf 1

Figure 15-15. FPM DRAM System Read Access, Non-Interleaved, 3,1,1,1, Wait States

P_CLK

RAS#

MA[11:0]

AD31:0

TA TW TW TW TD TW TD TW TD TW TD TR

COL COL COLCOLROW

CAS#

D D D DADDR

Figure 15-16. FPM DRAM System Write Cycle

P_CLK

RAS#

MA[11:0]

CAS#

AD[31:0]

TA TW TD TW TD TW TD TW TD TR

COL COL COLCOLROW

DATA
OUT

DATA
OUT

DATA
OUT

DATA
OUT

TR

ADDR

i960® VH Processor Developer’s Manual 15-35

Memory Controller

It is necessary to control output enables during read transactions in an interleaved memory system.
Two signals, LEAF1:0#, control the multiplexing of data from each memory leaf onto the
processor address/data bus. These signals may be tied to the OE# pins of the DRAM devices in an
interleaved memory array. The LEAF1:0# signals are generated when the DRAM type selected is
FPM, interleaved in the DBCR. Refer to Section 15.6.4, “DRAM Bank Control Register —
DBCR” on page 15-22.

The QA31:0 and QB31:0 signals refer to the even and odd leaf (respectively) data transceiver
outputs between the DRAM and the 80960VH. For an interleaved DRAM system, Figure 15-17
and Figure 15-18 represent typical read and write transactions. The programmed timings used in
the examples are shown in Table 15-28.

Table 15-28. FPM (Interleaved) DRAM Example Programming Summary

Timing Symbol Programmed Value Cycles

tRRC 002 1.5

tRCP 002 1.5

tRRCV 002 0

tWRC 002 1.5

tWCP 002 1.5

tWRCV 012 1

15-36 i960® VH Processor Developer’s Manual

Memory Controller

Figure 15-17. FPM DRAM System Read Access, Interleaved, 2,0,0,0 Wait States

P_CLK

RAS[n]#

MA[11:0]

AD[31:0]

TA TW TW TD TD TD TD

COLROW

DWE[1:0]#

RAS [n+1#]

DALE[0]

CAS[3:0]#

DALE[1]

CAS[7:4]#

D
IN

D
IN

D
IN

D
IN

LEAF[0]#

LEAF[1]#

COL

TR

ADDR

i960® VH Processor Developer’s Manual 15-37

Memory Controller

15.8.3 EDO DRAM Waveform

Figure 15-19 and Figure 15-20 represent EDO DRAM system read and write cycle waveforms.
The programmed timings are shown in Table 15-29.

Figure 15-18. FPM DRAM System Write Access, Interleaved, 1,0,0,0 Wait States

P_CLK

RAS[n]#

MA[11:0]

AD[31:0]

TA TW TD TD TD TD TR

COLROW

DWE[1:0]#

DALE[0]

CAS[3:0]#

DALE[1]

CAS[7:4]#

LEAF[0]#

LEAF[1]#

ADDR
D

OUT
D

OUT
D

OUT
D

OUT

TR

COL

RAS[n+1]#

Table 15-29. EDO DRAM Example Programming Summary

Timing Symbol Programmed Value Cycles

tRRC 012 2

tRCP Fixed at 002 for EDO DRAM 0.5

tRRCV 002 0

tWRC 002 1.5

tWCP Fixed at 002 for EDO DRAM 0.5

tWRCV 002 0

15-38 i960® VH Processor Developer’s Manual

Memory Controller

15.9 Initializing Dram Devices

Both DRAM types, FPM and EDO, require a minimum of eight CAS# Before RAS# cycles prior to
the first memory access.

Figure 15-19. EDO DRAM System Read Access, 2,0,0,0, Wait States

P_CLK

RAS#

MA[11:0]

AD[31:0]

TA TW TW TD TD TD TD TR

COL COL COLCOLROW

CAS#

DADDR IN
D
IN

D
IN

D
IN

Figure 15-20. EDO DRAM System Write Access, 1,0,0,0 Wait States

TA TW TD TD TD TD TR

COL COL COLCOLROW

D

P_CLK

RAS#

MA[11:0]

AD[31:0]

CAS#

ADDR
OUT

D
OUT

D
OUT

D
OUT

i960® VH Processor Developer’s Manual 15-39

Memory Controller

To satisfy the initialization cycles required by all DRAM types, the memory controller uses the
refresh counter to generate the CBR (CAS# before RAS#) cycles. The application must wait until
at least eight CBR cycles have been performed prior to the first access.

15.10 Overlapping Memory Regions

Applications can program the address windows for which the memory controller decodes and
generates memory cycles. However, certain address within the local bus address space are reserved
for memory-mapped registers and ATU-outbound translation. Memory windows can be
inadvertently programmed so that they overlap the reserved address space and other memory
controller windows. Table 15-30 summarizes memory precedence used when this overlapping
occurs.

Table 15-30. Memory Precedence

Priority Address Region

Highest Memory-Mapped Register Address Space

Primary Outbound Address Translation Unit Address Space

DRAM Address Space

Memory Bank 0 Address Space

Lowest Memory Bank 1 Address Space

i960® VH Processor Developer’s Manual 16-1

Address Translation Unit 16

The Address Translation Unit (ATU) is the interface between the PCI bus and the 80960 local bus.
This chapter describes the ATU operation modes, setup, and interface.

16.1 Overview

As indicated in Figure 16-1, the ATU — the interface between the PCI bus and the on-chip 80960
local bus — consists of the Address Translation Unit and the Messaging Unit (MU); described in
Chapter 17, “Messaging Unit”. The MU allows the system processor and the 80960VH to transfer
control information.

The ATU supports both inbound and outbound address translation. The ATU provides direct
access between the primary PCI bus and the 80960 local bus. The primary ATU and MU share PCI
address space.

The ATU and the MU appear as a single PCI device on the primary PCI bus. Collectively, these
units are PCI function 0 of the 80960VH PCI device.

Figure 16-1. Address Translation Unit (ATU) Block Diagram

Primary PCI Bus

80
96

0
Lo

ca
l B

us
 In

te
rf

ac
e

M
a

st
er

/S
la

ve
 P

C
I

Primary Address
Translation Unit

B
us

 In
te

rf
ac

e

Messaging Unit

PRIMARY ADDRESS TRANSLATION UNIT

Expansion ROM
Translation Unit

80960 Local Bus

16-2 i960® VH Processor Developer’s Manual

Address Translation Unit

Transactions initiated on a PCI bus and targeted at the 80960 local bus are referred to as inbound
transactions (PCI to 80960 local bus); transactions initiated on the 80960 local bus and targeted at
the PCI bus are referred to as outbound transactions (80960 local bus to PCI).

During inbound transactions, the ATU converts PCI addresses (initiated by a PCI bus master) to
80960 local bus addresses and initiates the data transfer on the 80960 local bus. During outbound
transactions, the ATU converts 80960 local bus addresses to PCI addresses and initiates the data
transfer on the PCI bus.

The ATU does not support outbound transactions generated by the DMA controller.

16.2 ATU Transaction Queues

ATU operation and performance depends on the queueing mechanism implemented between the
local bus interface and PCI bus interface. As indicated in Figure 16-2, the ATU transaction queues
consist of three address queues and two data queues; each are described in the following
subsections.

16.2.1 Address Queues

As indicated in Figure 16-2, ATU transaction queues contain three separate address queues:

• Inbound Delayed Read Address Queue (IDRAQ)

• Inbound Address Queue (IAQ)

• Outbound Address Queue (OAQ)

These queues, each of which hold a single 32-bit address, forward transactions from one side of the
queue structure to the other.

Figure 16-2. ATU Transaction Queue Block Diagram

80960
Local Bus

Primary

Outbound Data Queue (ODQ)

Outbound Address Queue (OAQ)

M

A

S

T

E

R

/

S

L

A

V

E

Inbound Data Queue (IDQ)

Inbound Address Queue (IAQ)

Inbound Delayed Read Address Queue (IDRAQ)

M

A

S

T

E

R

/

S

L

A

V

E

PCI Bus

i960® VH Processor Developer’s Manual 16-3

Address Translation Unit

The ATU PCI interface uses IDRAQ for inbound read operations and IAQ for write operations.
The 32-bit PCI address is latched into the inbound address queues and translated to the 80960 local
bus address and driven onto the local bus by the ATU local bus interface.

The ATU local bus interface uses OAQ for outbound read and write operations. The 32-bit 80960
local address is latched into the OAQ and translated to a PCI address and driven onto the PCI bus
by the ATU PCI interface.

The address queue is always initialized by the initiating bus and cleared by the target bus under
normal termination. The address queue is also cleared by a bus when an error has occurred on that
bus. This effectively cancels the transaction and clears the queue, allowing a new transaction to be
initiated.

16.2.2 Data Queues

The ATU transaction queue contains two separate data queues:

• Inbound Data Queue (IDQ)

• Outbound Data Queue (ODQ)

Each 64-byte queue is arranged in a 16 x 32-bit (1 DWORD) configuration. The ATU PCI
interface uses the IDQ to hold inbound write data; the ATU local bus uses IDQ to return outbound
read data. The ATU local bus interface uses ODQ for outbound write data and the ATU PCI
interface to return inbound read data. Data in the queues is invalidated only on error conditions (see
Section 16.6).

16.3 ATU Address Translation

The ATU implements an address windowing scheme to determine which addresses to claim and
translate to the appropriate bus.

• The address windowing mechanism for inbound translation is described in Section 16.3.1,
“Inbound Address Translation” on page 16-4

• The address windowing mechanism for outbound translation is described in Section 16.3.6,
“Outbound Address Translation” on page 16-8

The primary ATU contains a data path between the primary PCI bus and 80960 local bus.

The ATU unit allows for recognition and generation of multiple PCI cycle types. Table 16-1 shows
the PCI commands supported by both inbound and outbound ATU. The type of operation seen by
the inbound ATU is determined by the PCI master who initiates the transaction. Claiming an
inbound transaction depends on the address being within the programmed inbound translation
window. The type of transaction used by the outbound ATU is determined by the 80960 local
address and the fixed outbound windowing scheme. See Section 16.3.6, “Outbound Address
Translation” on page 16-8 for the full details on outbound PCI cycle selection.

The ATU does not support exclusive access using the PCI LOCK# signal. To achieve exclusive
access, use a software protocol or the Messaging Unit.

The ATU does not guarantee atomicity when performing atomic accesses using 80960 atomic
instructions (atmod, atadd, etc.).

16-4 i960® VH Processor Developer’s Manual

Address Translation Unit

16.3.1 Inbound Address Translation

The ATU allows PCI bus masters to directly access the 80960 local bus. These PCI bus masters can
read or write 80960VH memory-mapped registers or 80960 local memory space. The transactions
where PCI bus masters are accessing the 80960 local bus are called inbound transactions. Inbound
translation involves two steps:

1. Address Detection.

— Determine when the 32-bit PCI address is within the address window defined for the
inbound ATU.

— Claim the PCI transaction with medium DEVSEL# timing.

2. Address Translation.

— Translate the 32-bit PCI address to a 32-bit 80960 local bus address.

The ATU uses the following registers in inbound address translation:

• Inbound ATU Base Address Register

• Inbound ATU Limit Register

• Inbound ATU Translate Value Register

See Section 16.7, “Register Definitions” on page 16-18 for details on inbound translation register
definition and programming constraints.

By convention, primary inbound ATU addresses are primary PCI addresses.

Table 16-1. ATU Command Support

PCI Command Type Claimed on
Inbound Transactions

Generated by
Outbound Transactions

Interrupt Acknowledge No No

Special Cycle No No

I/O Read No Yes

I/O Write No Yes

Memory Read Yes Yes

Memory Write Yes Yes

Memory Write and Invalidate Yes No

Memory Read Line Yes No

Memory Read Multiple Yes No

Configuration Read Yes Yes

Configuration Write Yes Yes

Dual Address Cycle No No

i960® VH Processor Developer’s Manual 16-5

Address Translation Unit

Inbound address detection is determined from the 32-bit PCI address, the base address register and
the limit register. The algorithm for detection is:

Figure 16-3 shows an example of inbound address detection and inbound translation windows.

The incoming 32-bit PCI address is bitwise ANDed with the associated inbound limit register.
When the result matches the base register, the inbound PCI address is detected as being within the
inbound translation window and is claimed by the ATU.

Note: The first 4 Kbytes of the primary ATU’s inbound address translation window are reserved for the
Messaging Unit. See Section 16.4, “Messaging Unit” on page 16-15.

Once the transaction is claimed, the address within the Inbound Address Queue (IAQ) must be
translated from a 32-bit PCI address to a 32-bit 80960 local bus address. The algorithm is:

80960_Address = (PCI_Address & ~Limit_Register) | Translate_Register

The incoming 32-bit PCI address is first bitwise ANDed with the bitwise inverse of the limit
register. This result is bitwise ORed with the translate value register and the result is the 80960
local address. The translate value register must be aligned on the limit register boundary. For
example, if the limit register is 8 Mbytes, then the translate value register must point to an 8 Mbyte
boundary on the 80960 local bus. This translation mechanism is used for all inbound memory read
and write commands excluding inbound configuration read and writes. Inbound configuration
cycle translation is described in Section 16.3.4, “Inbound Configuration Cycle Translation” on
page 16-8. Address aliasing of multiple PCI addresses to the same physical 80960 local bus
address can be prevented by programming the inbound limit register on boundaries matching the
associated limit register, but this is only enforced through application programming.

For inbound memory transactions, the only burst order supported is Linear Incrementing. For any
other burst order, the ATU signals a Disconnect after the first data phase.

For inbound address translation, the physical memory attribute for the 80960 local bus must be
32-bit wide. See Section 13.1.1, “Physical Memory Attributes” on page 13-1. The only exception
is the expansion ROM window can be in 8-bit wide memory.

When PCI_Address & Limit_Register == Base_Register the PCI
Address is claimed by the Inbound ATU

Figure 16-3. Inbound Address Detection

PCI Address

Space

Base_Register

Base_Register + Limit_Register

Inbound Translation

Address is claimed

Address is not claimed

Window

Address is not claimed

16-6 i960® VH Processor Developer’s Manual

Address Translation Unit

Figure 16-4 shows an inbound translation example.

16.3.2 Inbound Write Transaction

An inbound write transaction is initiated by a PCI master and is targeted at either 80960 local
memory or an 80960 local bus memory-mapped register. Data flow for an inbound write
transaction on the PCI bus is summarized as:

• The ATU claims the PCI write transaction when the PCI address is within the inbound
translation window defined by the ATU Inbound Base Register and Inbound Limit Register.

• When no transaction is currently in the IAQ or inbound data queue (IDQ), the ATU latches the
PCI address into the IAQ. When an inbound write transaction is currently in progress, the
ATU does not latch the PCI address and signals a Retry to the initiator.

Figure 16-4. Inbound Translation Example

0000 0000H

FFFF FFFFH

0000 0000H

FFFF FFFFH

Base_Register = 3A00 0000H

Limit_Register = FF80 0000H

Inbound Translation
Window

Inbound Translation Window ranges from

Translate_Register = C100 0000H

PCI Address
Space

80960 Local Bus Address
Space

Address Detection
PCI_Address & Limit_Register == Base_Register
3A45 012CH & FF80 0000H == 3A00 0000H

3A45 012CH

PCI_Address is in the Inbound Translation Window

Address Translation
80960_Address = (PCI_Address & ~Limit_Register) | Translate_Register
80960_Address = (3A45 012CH & 007F FFFFH) | C100 0000H

C145 012CH

Register Values

80960_Address =C145 012CH

3A7F FFFFH

3A00 0000H

C100 0000H

C17F FFFFH

3A00 0000H to 3A7F FFFFH (8 Mbytes)

(8 Mbyte limit value)

i960® VH Processor Developer’s Manual 16-7

Address Translation Unit

• Once the PCI address is in the IAQ, the PCI interface can start accepting write data and store it
in the IDQ.

• The PCI interface continues to accept write data until one of the following is true:

— The initiator completes the transaction.

— The IDQ becomes full. In this case, the PCI interface signals a Disconnect to the initiator.

Once the PCI interface places a PCI address in the IAQ, the ATU’s local bus interface becomes
aware of the inbound write. The ATU local bus interface completes the inbound write on the 80960
local bus.

Data flow for the inbound write transaction on the 80960 local bus is summarized as:

• The ATU local bus interface requests the 80960 local bus when a PCI address appears in the
IAQ.

• When the 80960 local bus is granted, the local bus interface initiates the write transaction by
driving the translated address onto the 80960 local bus. For details on inbound address
translation, see Section 16.3, “ATU Address Translation” on page 16-3.

• Write data is transferred from the IDQ to the 80960 local bus when data is available and the
local bus interface retains local bus ownership.

• The local bus interface stops transferring data to the local bus when one of the following
conditions becomes true:

— The local bus interface loses bus ownership and the IDQ still has data. In this case, the
local bus interface removes REQ and immediately starts requesting the internal local bus
again.

— The Memory Controller signals a Bus Fault. In this case, the local bus interface aborts the
inbound write transaction and clears the IAQ and IDQ.

— The IDQ becomes empty while the transaction on the PCI bus is in progress, but held in
wait states. In this case, the local bus interface goes idle and is requested again when data
is received in the IDQ.

— The IDQ becomes empty and the PCI transaction has completed. The IAQ is cleared, in
this case, and the local bus interface goes idle. The IAQ and IDQ are now ready for a new
transaction.

16.3.3 Inbound Read Transaction

An inbound read transaction is initiated by a PCI master and is targeted at either 80960 local
memory or an 80960 local bus memory-mapped register. The read transaction is propagated
through the inbound delayed read address queue (IDRAQ) and read data is returned through the
outbound data queue (ODQ).

Data for all inbound ATU read transactions is implicitly prefetchable as defined in the PCI Local
Bus Specification, revision 2.1. The Inbound ATU Base Address Register’s Bit 3 is hardwired to
one (1) defining the memory space as prefetchable. The ATU prefetches on both single-word and
multi-word read transactions.

16-8 i960® VH Processor Developer’s Manual

Address Translation Unit

All inbound read transactions are processed as delayed read transactions. The ATU’s PCI interface
claims the read transaction and forwards the read request through to the 80960 local bus and
returns the read data to the PCI bus. The IDRAQ contains inbound PCI read address and the read
data is stored in the ODQ. Data flow for an inbound read transaction on the PCI bus is summarized
in the following statements:

• The ATU claims the PCI read transaction when the PCI address is within the inbound
translation window defined by ATU Inbound Base Register and Inbound Limit Register.

• When no transaction is currently in the IDRAQ, the PCI address is latched into IDRAQ and a
Retry is signalled to the initiator.

— When the IDRAQ is full: the PCI address, command, and byte enables match those from a
previous transaction, and the ODQ contains read data, start returning read data to the
initiator.

— When the IDRAQ is full and the PCI address, command, and byte enables do not match:
signal a Retry to the initiator and do not latch any transaction information.

• Once read data is driven onto the PCI bus from the ODQ, it continues until one of the
following is true:

— The initiator completes the PCI transaction.

— A local bus error was detected. In this case, a Target-abort is signaled to the initiator.

— The ODQ becomes empty. In this case, the PCI interface signals a Disconnect to the
initiator.

16.3.4 Inbound Configuration Cycle Translation

The ATU only accepts Type 0 configuration cycles with a function number of zero.

The ATU configuration space can be accessed using PCI configuration cycles from the primary
PCI bus using function 0 configuration space. All inbound configuration cycles are processed as
delayed transactions.

16.3.5 Discard Timers

The ATU implements a discard timer for inbound delayed transactions. The timer prevents
deadlocks when the initiator of a retried delayed transaction fails to complete the transaction within
210 or 215 PCI clock cycles. The timer starts counting when the delayed request becomes a delayed
completion by completing on the destination bus. When the originating master on the initiating bus
has not completed the transaction before the timer expires, the completion transaction is discarded.

Discard timer values are controlled by the Core Select Register (Section 11.2.3).

16.3.6 Outbound Address Translation

In addition to providing the mechanism for inbound translation, the ATU translates i960 core
processor-initiated cycles to the PCI bus. This is known as outbound address translation.
Outbound transactions are processor reads or writes targeted at the PCI bus. The ATU local bus
slave interface claims 80960 local bus address cycles and completes the cycle on the PCI bus on
behalf the i960 core processor. The primary ATU supports two different outbound translation
modes:

i960® VH Processor Developer’s Manual 16-9

Address Translation Unit

• Address Translation Windows

• Direct Addressing Window

Figure 16-5 shows a 80960VH memory map with all reserved address locations highlighted. The
outbound translation windows exist from 8000 0000H to 9001 FFFFH. This is a 64 Mbyte window
and a 64 Kbyte window. The outbound direct addressing window is from 0000 2000H to
7FFF FFFFH. Both outbound schemes are described in the following subsections.

Outbound address translation is disabled for the Primary ATU when the Bus Master Enable bit in
the Primary ATU Command Register is clear. When the Bus Master Enable bit is clear or the
Outbound ATU Enable (bit 1 of the ATUCR) is clear, the ATU does not claim any i960 core
processor accesses. These unclaimed accesses may cause a Bus Monitor time-out to occur. For
outbound memory transactions, the only burst order supported is Linear Incrementing.

16.3.6.1 Outbound Address Translation Windows

Inbound translation involves a programmable inbound translation window consisting of a base and
limit register and a value register for PCI to 80960 translation. The outbound address translation
windows use a similar methodology except that the outbound translation windows are fixed in
80960 local bus address space; this removes the need for base and limit registers.

Figure 16-6 illustrates the outbound address translation windows. The ATU has two windows- one
is 64 Mbyte and one is 64 Kbyte. The primary outbound memory window range from 8000 0000H
to 83FF FFFFH (64 Mbyte). After this window, the primary outbound I/O window range from
9000 0000H to 9000 FFFFH (64 Kbyte).

The memory window is 64 Mbytes and the I/O window is 64 Kbytes. An 80960 local bus cycle
with an address within one outbound window initiates a read or write cycle on the PCI bus. The
PCI cycle type depends on which translation window the local bus cycle “hits”. The read or write
decision is based on the 80960 local bus cycle type.

The ATU has a window dedicated to the following outbound PCI transaction types in the outbound
address translation window:

• Memory reads and writes - Memory Window

• I/O reads and writes - I/O Window

Refer to Figure 16-6 for the sub-window addresses involved in the outbound translation.

The windowing scheme means:

• a processor read cycle that addresses a Memory Window is a Memory Read on the PCI bus

• a processor write cycle that addresses the I/O Window is an I/O Write on the PCI bus

Memory Write and Invalidate (MWI), Memory Read Line, and Memory Read Multiple commands
are not supported in outbound ATU transactions.

16-10 i960® VH Processor Developer’s Manual

Address Translation Unit

The translation portion of outbound ATU transactions is accomplished with a value register in the
same manner as inbound translations. The ATU uses the following registers in outbound address
translation:

• Outbound Memory Window Value Register

• Outbound I/O Window Value Register

• Outbound Configuration Cycle Address Register

See Section 16.7, “Register Definitions” on page 16-18 for details on outbound translation register
definition and programming constraints.

The translation algorithm used, as stated, is very similar to inbound translation. For memory
transactions the algorithm is:

Figure 16-5. 80960 Local Bus Memory Map - Outbound Translation Window

0000 0000H

0000 0400H

0000 1000H

0000 2000H

8000 0000H

FEFF FF2FH

FEFF FF60H

FF00 0000H

FFFF FFFFH

ATU Outbound

9002 0000H

External Memory
Code/Data

ATU Outbound
Translation Windows

80960 Local Bus Address

Direct Addressing
Window

Internal Data RAM

Reserved

Peripheral Memory
Mapped Registers

Reserved

Initialization Boot Record (IBR)

i960 Core Processor Memory-
Mapped Register Space

i960® VH Processor Developer’s Manual 16-11

Address Translation Unit

For memory transactions, the 80960 local bus address is bitwise ANDed with the inverse of
64 Mbytes which clears the upper 6 bits of address. The result is bitwise ORed with the outbound
window value register to create the 32-bit PCI address. The translate value must be aligned on a 64
Mbyte boundary.

For I/O transactions, the local address is bitwise ANDed with the inverse of 64 Kbytes which
clears the upper 16 bits of address. The translate value must be aligned on a 64 Kbyte boundary.
Address aliasing can be prevented by programming the outbound window value registers on
boundaries equivalent to the window’s length, but this is only enforced through application
programming. PCI I/O addresses are byte addresses and not word addresses. The PCI I/O address’s
two least significant bits are determined by byte enables that the processor issues. For example,
when the i960 core processor performs a 2-byte write and generates byte enables of 00112, the
ATU sets the two least significant bits of PCI I/O address to 102.

PCI_Address = (80960_Address & 03FF FFFFH) | Translate_Register

PCI_Address = (80960_Address & 0000 FFFFH) | Translate_Register

16-12 i960® VH Processor Developer’s Manual

Address Translation Unit

Note: When the i960 core processor’s data cache is enabled for accesses to the Outbound I/O Window,
the byte enables generated by the i960 core processor are always 002 for Byte and Short accesses.

16.3.6.2 Direct Addressing Window

The second method used by outbound cycles from the i960 core processor to the PCI bus is with
the direct addressing window. This is a window of addresses in 80960 local bus address space that
act in the same manner as the outbound translation windows without the translation. An i960 core
processor read or write to a local bus address within the direct addressing window initiates a read
or write on the PCI bus with the same address as used on the local bus. Figure 16-7 shows an
example of an outbound write that is through the direct addressing window.

Direct Addressing is limited to PCI memory read and writes only. I/O cycles, MWI, Memory Read
Line, and Memory Read Multiple commands are not supported with direct addressing.

Figure 16-6. Outbound Address Translation Windows

8000 0000H

ATU Outbound
Memory

 ATU Outbound
I/O Cycle

9001 FFFFH

8400 0000H

83FF FFFFH

9000 0000H

9001 0000H

9000 FFFFH

Primary Memory Window

Primary I/O Window

Reserved

64 Mbytes

64 Kbytes

8FFF FFFFH

Translation Window

Translation Window

80960 Local Bus Address

Reserved

i960® VH Processor Developer’s Manual 16-13

Address Translation Unit

The direct addressing window address range is fixed in the lower 2 Gbytes of the 80960 local bus
address space — except for the first 8 Kbytes which is reserved for the i960 core processor’s
internal data RAM and i960 core processor memory-mapped registers. 80960 local bus cycles with
an address from 0000 2000H to 7FFF FFFCH are forwarded to a PCI bus, when enabled. The
primary PCI bus is the default bus for direct addressing. The following bits within the Address
Translation Unit Configuration Register (ATUCR) affect direct addressing operation:

• ATUCR Direct Addressing Enable bit - when set, enables the direct addressing window. When
clear, addresses within the direct addressing window are not claimed by the ATU.

16.3.7 Outbound Write Transaction

An outbound write transaction is initiated by the i960 core processor and is targeted at a PCI slave.
The outbound write address and write data are propagated from the 80960 local bus to a PCI bus
through the OAQ and the ODQ.

The ATU’s slave local bus interface claims the write transaction and forwards the write data
through to the PCI bus. Data flow for an outbound write transaction on the 80960 local bus is
summarized in the following statements:

• The ATU local bus interface latches the address from the 80960 local bus into the OAQ when
that address is inside one of the outbound translate windows and the OAQ and ODQ are
empty.

• Once the outbound address is latched, the local bus interface stores the write data into the
ODQ until the local bus transaction completes.

• When the OAQ or the ODQ are not available, the ATU signals the internal arbitration unit to
assert an i960 core processor backoff. Backoff remains active until the OAQ and ODQ
become available. When backoff is deasserted, the local bus slave interface returns to idle
while the backoff logic re-initiates the local bus transaction.

Figure 16-7. Direct Addressing Window

0000 2000H

7FFF FFFFH

Direct Addressing Window

80960 Local Bus Address Space

Address 6000 1008H

Local Bus Write
with address

PCI Write Cycle
with address
6000 1008H6000 1008H

0000 2000H

7FFF FFFFH

16-14 i960® VH Processor Developer’s Manual

Address Translation Unit

16.3.8 Outbound Read Transaction

An outbound read transaction is initiated by the i960 core processor and is targeted at a PCI slave.
The read transaction is propagated through the outbound address queue (OAQ) and read data is
returned through the inbound data queue (IDQ).

The ATU’s local bus interface claims the read transaction and forwards the read request through to
the PCI bus and returns the read data to the 80960 local bus. The data flow for an outbound read
transaction on the local bus is summarized in the following statements:

• The ATU local bus interface latches the 80960 local bus address on the bus when the address
is inside an outbound address translation window and the OAQ is empty. When the address is
inside an outbound translation window but the OAQ is not empty (previous outbound
transaction in progress), the local bus interface notifies the internal arbiter, which asserts
backoff. The processor stays in backoff until the OAQ becomes empty, at which time backoff
is deasserted.

• Once the outbound local address is latched into the OAQ, the i960 core processor is put into
backoff to give the delayed read transaction time to complete on the PCI bus. Backoff is
deasserted when the PCI interface has completed reading the requested amount of data and has
put the data into the IDQ. A PCI error cancels backoff and causes the outbound read request to
return FFFF FFFFH to the i960 core processor.

• If the PCI Read transaction is disconnected and an inbound write transaction occurs, then
return any data to the local bus and allow the inbound write transaction to complete. The
outbound read transaction will resume after the inbound write transaction completes.

• Once the transaction completes on the PCI bus, the local interface starts reading data from the
IDQ. This continues until the IDQ is empty and the local bus operation completes.

16.3.9 Outbound Configuration Cycle Translation

The outbound ATU provides a port programming model for outbound configuration cycles.
Performing an outbound configuration cycle involves up to two 80960 local bus cycles:

1. Writing the Outbound Configuration Cycle Address Register with the PCI address used during
the configuration cycle. See the PCI Local Bus Specification, revision 2.1 for information
regarding configuration address cycle formats. This i960 core processor cycle enables the
transaction.

2. Writing or reading the Outbound Configuration Cycle Data Register. The i960 core processor
cycle initiates the transaction. A read causes a configuration cycle read to the Primary PCI bus
with the address in the outbound configuration cycle address register. Similarly, a write
initiates a configuration cycle write to the Primary PCI bus with the write data from the second
processor cycle. Configuration cycles are non-burst and restricted to a single word cycle.

Section 16.7, Register Definitions (pg. 16-18) describes the outbound configuration cycle address
and data register definitions and programming constraints.

Note: Outbound configuration cycle data registers are not physical registers. They are an 80960 local bus
memory mapped address used to initiate a transaction with the address in the associated address

i960® VH Processor Developer’s Manual 16-15

Address Translation Unit

register. Reads/writes to these registers return data from the PCI bus — not from the register.
Outbound configuration cycles use address stepping and may delay the assertion of FRAME#.

16.4 Messaging Unit

The Messaging Unit (MU) transfers data between the PCI system and the 80960VH and notifies
the respective system when new data arrives. The MU is described in Chapter 17, “Messaging
Unit” .

The primary PCI window for messaging transactions is always the first 4 Kbytes of the inbound
translation window defined by the Primary Inbound ATU Base Address Register (PIABAR) and
the Primary Inbound ATU Limit Register (PIALR).

16.5 Expansion Rom Translation Unit

The primary inbound ATU supports one address range (defined by a base/limit register pair) used
for containing the Expansion ROM. Refer to the PCI Local Bus Specification, revision 2.1 for
details on Expansion ROM format and usage.

During a powerup sequence, initialization code from Expansion ROM is executed once by the host
processor to initialize the associated device. The code can be discarded once executed. Expansion
ROM registers are described in Section 16.7.15 (pg. 16-31), Section 16.7.24 (pg. 16-38) and
Section 16.7.25 (pg. 16-38).

The inbound primary ATU supports an inbound Expansion ROM window which works like the
inbound translation window. A read from the expansion ROM window is forwarded to the 80960
local bus and to the Memory Controller. Writes through the Expansion ROM window are not
supported. The address translation algorithm is the same as in inbound translation; see
Section 16.3.1, “Inbound Address Translation” on page 16-4. The ROM width supported is 8 bit
only.

16.6 ATU Data Flow Error Conditions

PCI and 80960 local bus error conditions cause the ATU state machines to exit normal operation
and return to idle states. Error conditions on one side of the ATU are propagated to the other side of
the ATU and have different effects depending on the error. Error conditions and their effects are
described in the following sections.

PCI bus error conditions and the action taken on the bus are defined within the PCI Local Bus
Specification, revision 2.1. The ATU adheres to the error conditions defined within the PCI
specification for both master and slave operation. Error conditions on the 80960 local bus are
caused by the propagation of an error from the Memory Controller. See Chapter 15, “Memory
Controller” for details on memory controller error conditions. All actions on the PCI Bus for error
situations are dependent on the error control bits found in the Primary ATU Command Register.
See Section 16.7, “Register Definitions” on page 16-18.

16-16 i960® VH Processor Developer’s Manual

Address Translation Unit

Table 16-2 through Table 16-5 assume that all error reporting is enabled through the appropriate
command and status registers (unless otherwise noted). Refer to the PCI Local Bus Specification,
revision 2.1 for details on the complete action a PCI master and slave interface needs to take for
parity error events.

When the ATU detects the assertion of P_SERR# on the primary PCI bus and the Primary SERR
Interrupt Enable bit in the ATU Configuration Register (ATUCR) is set, the ATU signals an NMI#
interrupt to the i960 core processor.

Table 16-2. Inbound Write Error Conditions

Bus & State
Machine Error Condition Effect on PCI Bus Effect on 80960 Local Bus

PCI Slave

Address Parity Error
• SERR# asserted

• PCI Master Abort

• No effect

• Transaction never
propagated to local bus

Data Parity Error

• PERR# asserted

• IAQ Cleared

• PCI Disconnect

• Data in IDQ completed

Local Bus
Master

80960VH Memory
Controller Fault

• PERR# asserted when
transaction is still in
progress or...
SERR# asserted after
transaction completes on
PCI bus, if not in progress

• IAQ cleared

• i960 core processor is
interrupted with NMI#

• IDQ cleared

Table 16-3. Inbound Read Error Conditions

Bus & State
Machine Error Condition Effect on PCI Bus Effect on 80960 Local Bus

PCI Slave Address Parity Error
• SERR# asserted

• PCI Master Abort

• No effect

• Transaction never
propagated to local bus

Local Bus
Master

80960VH Memory
Controller Parity Error

• ATU interface drives
bad data, causes bad
parity

• Error condition
determined by PCI
master

• i960 core processor is
interrupted with NMI#

80960VH Memory
Controller Fault

• PCI Target Abort • i960 core processor is
interrupted with NMI#

i960® VH Processor Developer’s Manual 16-17

Address Translation Unit

The following table (Table 16-6) summarizes the ATU error reporting for PCI bus errors and local
bus errors. The tables assume that all error reporting is enabled through the appropriate command
and status registers (unless otherwise noted). The Primary ATU Status Register records PCI bus
errors. Note that the SERR# Asserted bit in the Status Register is set only when the SERR# Enable
bit in the Command Register is set. The Primary ATU Interrupt Status Register records i960 core
processor interrupt status information.

Table 16-4. Outbound Write Error Conditions

Bus & State
Machine Error Condition Effect on PCI Bus Effect on 80960 Local Bus

PCI Master

No DEVSEL#
• PCI Master

Abort
• i960 core processor is interrupted with NMI# if

the ATU PCI Error Interrupt Enable bit is set
in the ATUCR. The data in the OWQ is
discarded.

Data Parity Error
• PERR#

detected

PCI Target Abort
• PCI Target

Abort

Table 16-5. Outbound Read Error Conditions

Bus & State
Machine Error Condition Effect on PCI Bus Effect on 80960 Local Bus

PCI Master

No DEVSEL# • PCI Master
Abort

• i960 core processor is interrupted with NMI#
if the ATU PCI Error Interrupt Enable bit is set
in the ATUCR

• A false data value is returned to the
processor to allow the cycle to complete. FFH
is returned for every byte read on the local
bus

Data Parity Error • PERR#
asserted

PCI Target Abort • PCI Target
Abort

Table 16-6. Primary ATU Error Reporting Summary (Sheet 1 of 2)

Error Condition Primary ATU Status Register
(PATUSR)

Primary ATU Interrupt Status
Register (PATUISR)

NMI#
Interrupt?
(if enabled)

Inbound Write
PCI Address Parity

Error

Parity Error bit (bit 15) set
P_SERR# Asserted bit (bit 14) set

P_SERR# Detected bit (bit 4) set Yes

Inbound Write
PCI Data Parity

Error
Parity Error bit (bit 15) set No

Inbound Write
Local Bus Fault

P_SERR# Asserted bit (bit 14) set
P_SERR# Detected bit (bit 4) set

80960 local bus address Fault
(bit 5) set

Yes

Inbound Read
PCI Address Parity

Error

Parity Error bit (bit 15) set
P_SERR# Asserted bit (bit 14) set

P_SERR# Detected bit (bit 4) set Yes

Inbound Read
Local Bus Data

Parity Error

80960 local bus memory Fault bit
(bit 6) set

Yes

Inbound Read
Local Bus Fault

Target Abort (Target) (bit 11) set
80960 local bus address Fault

(bit 5) set
Yes

16-18 i960® VH Processor Developer’s Manual

Address Translation Unit

16.7 Register Definitions

Every PCI device implements its own separate configuration address space and configuration
registers. The PCI Local Bus Specification, revision 2.1 requires that configuration space be
256 bytes, and the first 64 bytes must adhere to a predefined header format.

Figure 16-8 defines the format for the first 64 bytes of the header. The additional 182 bytes of the
configuration space is defined as the ATU extended configuration space. The ATU configuration
space is function number zero of the 80960VH PCI device.

Beyond the required 64 byte header format, ATU configuration space implements extended
register space in support of the units functionality. Refer to the PCI Local Bus Specification,
revision 2.1 for details on accessing and programming configuration register space.

The following sections describe the ATU and Expansion ROM configuration registers.
Configuration space consists of 8, 16, 24, and 32-bit registers arranged in a predefined format.
Each register is described in functionality, access type (read/write, read/clear, read only) and reset
default condition.

See Chapter 1, “Introduction” for a description of reserved, read only, and read/clear. All registers
adhere to the definitions found in the PCI Local Bus Specification, revision 2.1 unless otherwise
noted.

Note: Each configuration register’s access type is individually defined for PCI configuration accesses.
Some PCI read-only configuration registers have read/write capability from the i960 core
processor. See also Appendix C, “Memory-Mapped Registers”.

Outbound Write
PCI Master Abort

Master Abort bit (bit 13) set PCI Master Abort bit (bit 3) set Yes

Outbound Write
PCI Data Parity

Error

Master Parity Error (bit 8) set,
Parity Error (bit 15) is set

PCI Master Parity Error bit (bit 0)
set

Yes

Outbound Write
PCI Target Abort

Target Abort (Master) (bit 12) set PCI Target Abort (Master) (bit 2) set Yes

Outbound Read
PCI Master Abort

Master Abort bit (bit 13) set PCI Master Abort bit (bit3) set Yes

Outbound Read
PCI Data Parity

Error

Parity Error bit (bit 15) set
Master Parity Error (bit 8) set

PCI Master Parity Error (bit 0) set Yes

Outbound Read
PCI Target Abort

Target Abort (Master) (bit 12) set PCI Target Abort (Master) (bit 2) set Yes

P_SERR#
Detected

P_SERR# Detected bit (bit 4) set Yes

Table 16-6. Primary ATU Error Reporting Summary (Sheet 2 of 2)

Error Condition Primary ATU Status Register
(PATUSR)

Primary ATU Interrupt Status
Register (PATUISR)

NMI#
Interrupt?
(if enabled)

i960® VH Processor Developer’s Manual 16-19

Address Translation Unit

Figure 16-8. ATU Configuration Space Header

ATU Configuration Space Header

PCI
Config
Addr
Offset

ATU Device ID ATU Vendor ID 00H

Primary ATU Status Primary ATU Command 04H

ATU Class Code ATU Revision ID 08H

ATU BIST ATU Header Type ATU Latency Timer ATU Cacheline Size 0CH

Primary Inbound ATU Base Address 10H

14H

18H

Reserved
1CH

20H

24H

28H

ATU Subsystem ID ATU Subsystem Vendor ID 2CH

Expansion ROM Base Address 30H

34H
Reserved

38H

ATU Max. Latency ATU Minimum Grant ATU Interrupt Pin ATU Interrupt Line 3CH

Table 16-7. ATU Configuration Space Register Summary (Sheet 1 of 3)

Section Register Name and Acronym Page
 Size
(Bits)

80960 Local
Bus

Address

PCI
Config
Addr
Offset

16.7.1 ATU Vendor ID Register - ATUVID 16-21 16 0000 1200H 00H

16.7.2 ATU Device ID Register - ATUDID 16-22 16 0000 1202H 02H

16.7.3 Primary ATU Command Register - PATUCMD 16-22 16 0000 1204H 04H

16.7.4 Primary ATU Status Register - PATUSR 16-23 16 0000 1206H 06H

16.7.5 ATU Revision ID Register - ATURID 16-24 8 0000 1208H 08H

16.7.6 ATU Class Code Register - ATUCCR 16-25 24 0000 1209H 09H

16.7.7 ATU Cacheline Size Register - ATUCLSR 16-25 8 0000 120CH 0CH

16.7.8 ATU Latency Timer Register - ATULT 16-26 8 0000 120DH 0DH

16.7.9 ATU Header Type Register - ATUHTR 16-26 8 0000 120EH 0EH

16.7.10 ATU BIST Register - ATUBISTR 16-27 8 0000 120FH 0FH

16-20 i960® VH Processor Developer’s Manual

Address Translation Unit

16.7.11 Primary Inbound ATU Base Address Register -
PIABAR 16-28 32 0000 1210H 10H

Reserved

32 0000 1214H 14H

32 0000 1218H 18H

32 0000 121CH 1CH

32 0000 1220H 20H

32 0000 1224H 24H

32 0000 1228H 28H

16.7.13 ATU Subsystem Vendor ID Register - ASVIR 16-30 16 0000 122CH 2CH

16.7.14 ATU Subsystem ID Register - ASIR 16-31 16 0000 122EH 2EH

16.7.15 Expansion ROM Base Address Register - ERBAR 16-31 32 0000 1230H 30H

Reserved
32 0000 1234H 34H

32 0000 1238H 38H

16.7.16 ATU Interrupt Line Register - ATUILR 16-32 8 0000 123CH 3CH

16.7.17 ATU Interrupt Pin Register - ATUIPR 16-33 8 0000 123DH 3DH

16.7.18 ATU Minimum Grant Register - ATUMGNT 16-34 8 0000 123EH 3EH

16.7.19 ATU Maximum Latency Register - ATUMLAT 16-34 8 0000 123FH 3FH

16.7.20 Primary Inbound ATU Limit Register - PIALR 16-35 32 0000 1240H 40H

16.7.21 Primary Inbound ATU Translate Value Register -
PIATVR 16-36 32 0000 1244H 44H

Reserved 32 0000 1248H 48H

Reserved 32 0000 124CH 4CH

Reserved 32 0000 1250H 50H

16.7.22 Primary Outbound Memory Window Value Register -
POMWVR 16-36 32 0000 1254H 54H

Reserved 32 0000 1258H 58H

16.7.23 Primary Outbound I/O Window Value Register -
POIOWVR 16-37 32 0000 125CH 5CH

Reserved 32 0000 1260H 60H

Reserved 32 0000 1264H 64H

Reserved 32 0000 1268H 68H

Reserved 32 0000 126CH 6CH

Reserved 32 0000 1270H 70H

16.7.24 Expansion ROM Limit Register - ERLR 16-38 32 0000 1274H 74H

16.7.25 Expansion ROM Translate Value Register - ERTVR 16-38 32 0000 1278H 78H

Table 16-7. ATU Configuration Space Register Summary (Sheet 2 of 3)

Section Register Name and Acronym Page
 Size
(Bits)

80960 Local
Bus

Address

PCI
Config
Addr

Offset

i960® VH Processor Developer’s Manual 16-21

Address Translation Unit

16.7.1 ATU Vendor ID Register - ATUVID

The ATU Vendor ID Register bit definitions adhere to PCI Local Bus Specification, revision 2.1.

Reserved

32 0000 127CH 7CH

32 0000 1280H 80H

32 0000 1284H 84H

16.7.26 ATU Configuration Register - ATUCR 16-39 32 0000 1288H 88H

Reserved 32 0000 128CH 8CH

16.7.27 Primary ATU Interrupt Status Register - PATUISR 16-40 32 0000 1290H 90H

Reserved 32 0000 1294H 94H

Reserved 32 0000 1298H 98H

Reserved 32 0000 129CH 9CH

Reserved 32 0000 12A0H A0H

16.7.28 Primary Outbound Configuration Cycle Address
Register - POCCAR 16-41 32 0000 12A4H A4H

Reserved 32 0000 12A8H A8H

16.7.29 Primary Outbound Configuration Cycle Data Port -
POCCDP 16-42 32 0000 12ACH ACH

Reserved 32 0000 12B0H B0H

Reserved 32 0000 12B4H B4H

Reserved 32 0000 12B8H B8H

Reserved 32 0000 12BCH BCH

Reserved 32 0000 12C0H C0H

16.7.30 Reset/Retry Control Register - RRCR 16-42 32 0000 12C4H C4H

16.7.31 PCI Interrupt Routing Select Register PIRSR 16-42 32 0000 12C8H C8H

16.7.32 Core Select Register - CSR 16-43 32 0000 12CCH CCH

Reserved 0000 12D0H through
0000 12FFH

Table 16-7. ATU Configuration Space Register Summary (Sheet 3 of 3)

Section Register Name and Acronym Page
 Size
(Bits)

80960 Local
Bus

Address

PCI
Config
Addr
Offset

16-22 i960® VH Processor Developer’s Manual

Address Translation Unit

16.7.2 ATU Device ID Register - ATUDID

ATU Device ID Register bit definitions adhere to PCI Local Bus Specification, revision 2.1.

16.7.3 Primary ATU Command Register - PATUCMD

ATU Command Register bit definitions adhere to PCI Local Bus Specification, revision 2.1 and, in
most cases, affect the behavior of the primary ATU.

Table 16-8. ATU Vendor ID Register - ATUVID

LBA:

PCI:

1200H

00H

Legend: NA = Not Accessible RO = Read Only
RV = Reserved PR = Preserved RW = Read/Write
RS = Read/Set RC = Read Clear
LBA = 80960 Local Bus Address PCI = PCI Configuration Address Offset

Bit Default Description

15:00 8086H

ATU Vendor ID - This is a 16-bit value assigned to Intel. This register, combined with the
DID, uniquely identify the PCI device. Access type is Read/Write to allow the i960 core
processor to configure the register as a different vendor ID to simulate the interface of a
standard mechanism currently used by existing application software.

PCI

LBA

15 12 8 4 0

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

Table 16-9. ATU Device ID Register - ATUDID

LBA:

PCI:

1202H

02H

Legend: NA = Not Accessible RO = Read Only
RV = Reserved PR = Preserved RW = Read/Write
RS = Read/Set RC = Read Clear
LBA = 80960 Local Bus Address PCI = PCI Configuration Address Offset

Bit Default Description

15:00 6960H ATU Device ID - This is a 16-bit value assigned to the ATU and MU. This ID, combined with
the ATUVID, uniquely identify the PCI device.

PCI

LBA

15 12 8 4 0

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

i960® VH Processor Developer’s Manual 16-23

Address Translation Unit

16.7.4 Primary ATU Status Register - PATUSR

The Primary ATU Status Register bits adhere to the PCI Local Bus Specification, revision 2.1
definitions. The read/clear bits can only be set by internal hardware and are cleared by either a
reset condition or by writing a 12 to the bit to be cleared.

Table 16-10. Primary ATU Command Register - PATUCMD

LBA:

PCI:

1204H

04H

Legend: NA = Not Accessible RO = Read Only
RV = Reserved PR = Preserved RW = Read/Write
RS = Read/Set RC = Read Clear
LBA = 80960 Local Bus Address PCI = PCI Configuration Address Offset

Bit Default Description

15:10 00H Reserved.

09 02
Fast Back to Back Enable - Allows the ATU to generate fast back-to-back cycles on its bus.
Not implemented and a reserved bit field.

08 02
P_SERR# Enable - When cleared, the ATU primary interface is not allowed to assert
P_SERR# on the PCI interface.

07 02
Wait Cycle Control - controls address/data stepping. Not implemented and a reserved bit
field.

06 02
Parity Checking Enable - When set, the primary ATU and DMA channels 0 and 1 take
normal action when a parity error is detected. When cleared, parity checking is disabled.

05 02
VGA Palette Snoop Enable - The primary ATU interface does not support I/O writes and
therefore, does not perform VGA pallet snooping.

04 02

Memory Write and Invalidate Enable - When set, DMA channels 0 and 1 may generate
MWI commands. When clear, DMA channels 0 and 1 use Memory Write commands
instead of MWI.

03 02
Special Cycle Enable - The ATU interface does not respond to special cycle commands in
any way. Not applicable. Not implemented and a reserved bit field

02 02

Bus Master Enable - The primary ATU interface can act as a master on the PCI bus. When
cleared, disables the primary ATU from generating PCI accesses. When set, allows the
primary ATU to behave as a PCI bus master.

This enable bit also controls DMA channels 0 and 1 master interface. The bit must be set
before initiating a DMA transfer on the PCI bus.

01 02

Memory Enable - Controls the primary ATU interface’s response to PCI memory
addresses. When cleared, the ATU interface does not respond to any memory access on
the PCI bus.

00 02
I/O Space Enable - Controls the ATU interface response to I/O transactions on the primary
side. The primary ATU does not support I/O space.

PCI

LBA

15 12 8 4 0

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rw

rw

rw

rw

ro

ro

rw

rw

ro

ro

rw

rw

ro

ro

rw

rw

rw

rw

ro

ro

0 0 0 0

16-24 i960® VH Processor Developer’s Manual

Address Translation Unit

16.7.5 ATU Revision ID Register - ATURID

Revision ID Register bit definitions adhere to PCI Local Bus Specification, revision 2.1.

Table 16-11. Primary ATU Status Register - PATUSR

LBA:

PCI:

1206H

06H

Legend: NA = Not Accessible RO = Read Only
RV = Reserved PR = Preserved RW = Read/Write
RS = Read/Set RC = Read Clear
LBA = 80960 Local Bus Address PCI = PCI Configuration Address Offset

Bit Default Description

15 02
Parity Error - set when a parity error is detected on the primary PCI bus even when the
PATUCMD register’s Parity Checking Enable bit is cleared.

14 02 P_SERR# Asserted - set when P_SERR# is asserted on the PCI bus.

13 02
Master Abort - set when a transaction initiated by the primary ATU master interface ends in
a Master-abort.

12 02
Target Abort (master) - set when a transaction initiated by the primary ATU master
interface ends in a target abort.

11 02
Target Abort (target) - set when the primary ATU interface, acting as a target, terminates
the transaction on the primary PCI bus with a target abort.

10:09 012
DEVSEL# Timing - These bits are read-only and define medium DEVSEL# timing for a
target device (except configuration accesses).

08 02

Master Parity Error - The primary ATU interface sets this bit when three conditions are met:

1) bus agent asserted S_PERR# itself or observed S_PERR# asserted

2) agent setting the bit acted as the bus master for the operation in which the error
occurred

3) PATUCMD register’s Parity Checking Enable bit is set

07 02

Fast Back-to-Back - The ATU/Messaging Unit interface is capable of accepting fast
back-to-back transactions when the transactions are not to the same target. Not
implemented and a reserved bit field.

06 02 UDF Supported - User Definable Features are not supported.

05 02 66 MHz Capable - 66 MHz operation is not supported.

04:00 00H Reserved.

PCI

LBA

15 12 8 4 0

rc

rc

rc

rc

rc

rc

rc

rc

rc

rc

ro

ro

ro

ro

rc

rc

ro

ro

ro

ro

ro

ro

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

0 1 1 0 0

i960® VH Processor Developer’s Manual 16-25

Address Translation Unit

16.7.6 ATU Class Code Register - ATUCCR

1. These numbers vary with stepping, refer to the i960® VH Processor Specification Update (273174) for the correct value.

Class Code Register bit definitions adhere to PCI Local Bus Specification, revision 2.1. Auto
configuration software reads this register to determine the PCI device function.

16.7.7 ATU Cacheline Size Register - ATUCLSR

Cacheline Size Register bit definitions adhere to PCI Local Bus Specification, revision 2.1. This
register is programmed with the system cacheline size in DWORDs (32-bit words). Cacheline Size
is restricted to either 8 or 16 DWORDs; the ATU interprets any other value as “0”.

Table 16-12. ATU Revision ID Register - ATURID

LBA:

PCI:

1208H

08H

Legend: NA = Not Accessible RO = Read Only
RV = Reserved PR = Preserved RW = Read/Write
RS = Read/Set RC = Read Clear
LBA = 80960 Local Bus Address PCI = PCI Configuration Address Offset

Bit Default Description

07:00 XXH ATU Revision - Identifies the 80960VH’s revision number.1

PCI

LBA

7 4 0

rw rw rw rw rw rw rw rw

ro ro ro ro ro ro ro ro

Table 16-13. ATU Class Code Register - ATUCCR

LBA:

PCI:

1209H

09H

Legend: NA = Not Accessible RO = Read Only
RV = Reserved PR = Preserved RW = Read/Write
RS = Read/Set RC = Read Clear
LBA = 80960 Local Bus Address PCI = PCI Configuration Address Offset

Bit Default Description

23:16 05H Base Class - Memory Controller

15:08 80H Sub Class - Other Memory Controller

07:00 00H Programming Interface - None defined

PCI

LBA

23 20 16 12 8 4 0

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

16-26 i960® VH Processor Developer’s Manual

Address Translation Unit

16.7.8 ATU Latency Timer Register - ATULT

16.7.9 ATU Header Type Register - ATUHTR

Header Type Register bit definitions adhere to PCI Local Bus Specification, revision 2.1. This
register indicates the layout of ATU and Messaging Unit register configuration space bytes 10H to
3FH. The MSB indicates whether or not the device is multifunction.

Table 16-14. ATU Cacheline Size Register - ATUCLSR

LBA:

PCI:

120CH

0CH

Legend: NA = Not Accessible RO = Read Only
RV = Reserved PR = Preserved RW = Read/Write
RS = Read/Set RC = Read Clear
LBA = 80960 Local Bus Address PCI = PCI Configuration Address Offset

Bit Default Description

07:00 00H ATU Cacheline Size - specifies the system cacheline size in DWORDs. Cacheline size is
restricted to either 8 or 16 DWORDs.

PCI

LBA

7 4 0

rw rw rw rw rw rw rw rw

rw rw rw rw rw rw rw rw

Table 16-15. ATU Latency Timer Register - ATULT

LBA:

PCI:

120DH

0DH

Legend: NA = Not Accessible RO = Read Only
RV = Reserved PR = Preserved RW = Read/Write
RS = Read/Set RC = Read Clear
LBA = 80960 Local Bus Address PCI = PCI Configuration Address Offset

Bit Default Description

07:03 0H Programmable Latency Timer - This field varies the latency timer for the primary interface
from 0 to 248 clocks, in increments of eight clocks.

02:00 0002
Latency Timer Granularity - These Bits are read only giving a programmable granularity of
8 clocks for the latency timer.

PCI

LBA

7 4 0

0 0 0

rw rw rw rw rw ro ro ro

rw rw rw rw rw ro ro ro

i960® VH Processor Developer’s Manual 16-27

Address Translation Unit

16.7.10 ATU BIST Register - ATUBISTR

The ATU BIST Register controls the functions the i960 core processor performs when BIST is
initiated. This register is the interface between the host processor requesting BIST functions and
the i960 core processor replying with the results from the software implementation of BIST
functionality.

Table 16-16. ATU Header Type Register - ATUHTR

LBA:

PCI:

120EH

0EH

Legend: NA = Not Accessible RO = Read Only
RV = Reserved PR = Preserved RW = Read/Write
RS = Read/Set RC = Read Clear
LBA = 80960 Local Bus Address PCI = PCI Configuration Address Offset

Bit Default Description

07 02
Single Function/Multi-Function Device - Identifies the 80960VH as a single PCI device.
1=multifunction device.

06:00 0H
PCI Header Type - This bit field indicates the type of PCI header implemented. The ATU
interface header conforms to PCI Local Bus Specification, revision 2.1. Type 00H
configuration space header definition.

PCI

LBA

7 4 0

rw rw rw rw rw rw rw rw

ro ro ro ro ro ro ro ro

Table 16-17. ATU BIST Register - ATUBISTR (Sheet 1 of 2)

LBA:

PCI:

120FH

0FH

Legend: NA = Not Accessible RO = Read Only
RV = Reserved PR = Preserved RW = Read/Write
RS = Read/Set RC = Read Clear
LBA = 80960 Local Bus Address PCI = PCI Configuration Address Offset

Bit Default Description

07 X2
BIST Capable - This bit value is always equal to the ATUCR ATU BIST Interrupt Enable bit.
See Section 16.7.28, ATU Configuration Register - ATUCR

06 02

Start BIST - When the ATUCR BIST Interrupt Enable bit is set:
• Setting this bit generates an interrupt to the i960 core processor to perform a software

BIST function. The i960 core processor clears this bit when the BIST software has
completed with the BIST results found in ATUBISTR register bits [3:0].

When the ATUCR BIST Interrupt Enable bit is clear:
• Setting this bit does not generate an interrupt to the i960 core processor and no BIST

functions are performed. The i960 core processor does not clear this bit.

05:04 002 Reserved.

PCI

LBA

7 4 0

x

ro rw rv rv rw rw rw rw

ro rw rv rv rw rw rw rw

16-28 i960® VH Processor Developer’s Manual

Address Translation Unit

16.7.11 Primary Inbound ATU Base Address Register - PIABAR

The Primary Inbound ATU Base Address Register (PIABAR) defines the block of memory
addresses where the primary inbound translation window begins. The inbound ATU decodes and
forwards the bus request to the 80960 local bus with a translated address to map into 80960 local
memory. The PIABAR defines the base address and describes the required memory block size; see
16-29.

The first 4 Kbytes of memory defined by the PIABAR and the PIALAR is reserved for the
Messaging Unit.

The programmed value within the base address register must comply with the PCI programming
requirements for address alignment. Refer to the PCI Local Bus Specification, revision 2.1 for
additional information on programming base address registers.

03:00 0H

BIST Completion Code - when the ATUCR BIST Interrupt Enable bit is set and the
ATUBISTR Start BIST bit is set (bit 6):
• The i960 core processor places the results of the software BIST in these bits. A

nonzero value indicates a device-specific error.

Table 16-17. ATU BIST Register - ATUBISTR (Sheet 2 of 2)

LBA:

PCI:

120FH

0FH

Legend: NA = Not Accessible RO = Read Only
RV = Reserved PR = Preserved RW = Read/Write
RS = Read/Set RC = Read Clear
LBA = 80960 Local Bus Address PCI = PCI Configuration Address Offset

Bit Default Description

PCI

LBA

7 4 0

x

ro rw rv rv rw rw rw rw

ro rw rv rv rw rw rw rw

Table 16-18. Primary Inbound ATU Base Address Register - PIABAR (Sheet 1 of 2)

LBA:

PCI:

1210H

10H

Legend: NA = Not Accessible RO = Read Only
RV = Reserved PR = Preserved RW = Read/Write
RS = Read/Set RC = Read Clear
LBA = 80960 Local Bus Address PCI = PCI Configuration Address Offset

Bit Default Description

31:12 0000 0H Primary Translation Base Address - These bits define the actual location the Primary
translation function is to respond to when addressed from the PCI bus.

11:04 00H Reserved.

PCI

LBA

28 24 20 16 12 8 4 031

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

ro

ro

ro

ro

ro

ro

ro

ro

1 0 0 0

i960® VH Processor Developer’s Manual 16-29

Address Translation Unit

16.7.12 Determining Block Sizes for Base Address Registers

The Primary Inbound ATU Base Address Register and Expansion ROM Base Address Register use
their associated limit registers for defining the requested address space size. The requested address
size and type can be determined by writing to a base address register, and then reading back from
the register. Table 16-19 describes the device specific values used to determine the memory block
size. By scanning the returned value from the least-significant bit of the base address register in
ascending order, the programmer can determine the required address space size. The
binary-weighted value of the first one bit found indicates the required amount of space.
Table 16-19 describes the relationship between the values read back and the byte sizes the base
address register requires.

03 12 Prefetchable Indicator - Defines the memory spaces as prefetchable.

02:01 002

Address Type - These bits define where the block of memory can be located. The base
address must be located anywhere in the first 4 Gbyte of address space (lower 32 bits of
address).

00 02
Memory Space Indicator - This bit field describes memory or I/O space base address.
the primary ATU does not occupy I/O space, thus this bit must be zero.

Table 16-18. Primary Inbound ATU Base Address Register - PIABAR (Sheet 2 of 2)

LBA:

PCI:

1210H

10H

Legend: NA = Not Accessible RO = Read Only
RV = Reserved PR = Preserved RW = Read/Write
RS = Read/Set RC = Read Clear
LBA = 80960 Local Bus Address PCI = PCI Configuration Address Offset

Bit Default Description

PCI

LBA

28 24 20 16 12 8 4 031

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

ro

ro

ro

ro

ro

ro

ro

ro

1 0 0 0

Table 16-19. Instructions for Base Address Register

Device Part Number Value Written
to the BAR Effect of writing the value to the Base Address Register

80960VH 100/3.3 A-0

FFFF FFFEH

or

FFFF FFFFH

The limit register is a bitwise enable of the base address register.
When any limit register bits are set to a 1, the corresponding bit in
the base register is enabled as read/write. Once the base address
register is enabled through the limit register, all 1’s can be written to
the base register as described in Section 6.2.5.1 of the PCI Local
Bus Specification, revision 2.1. Reading the base address register
after ones are written to the base address register yields the
memory block size requirement. Values used for programming the
limit register should be similar to those listed in Table 16-20.

Any access to the base address register can be performed as on
8-, 16-, or 32-bit access.

16-30 i960® VH Processor Developer’s Manual

Address Translation Unit

As an example, assume that FFFF FFFFH is written to the ATU Primary Inbound Base Address
Register (PIABAR) and the value read back is FFF0 0008H. Bit zero is a zero, so the device
requires memory address space. Bits 2:1 are 002, so the memory can be located anywhere within
32-bit address space (4 Gbytes). Bit three is one, so the memory does support prefetching.
Scanning upwards starting at bit four, bit twenty is the first one bit found. The binary-weighted
value of this bit is 1,048,576, indicated that the device requires 1 Mbyte of memory space.

16.7.13 ATU Subsystem Vendor ID Register - ASVIR

ATU Subsystem Vendor ID Register bit definitions adhere to PCI Local Bus Specification,
revision 2.1.

Table 16-20. Memory Block Size Read Response

Response After Writing all 1’s to
the Base Address Register Block Size

FFFF F000H 4 Kbytes

FFFF E000H 8 Kbytes

FFFF C000H 16 Kbytes

FFFF 8000H 32 Kbytes

FFFF 0000H 64 Kbytes

FFFE 0000H 128 Kbytes

FFFC 0000H 256 Kbytes

FFF8 0000H 512 Kbytes

FFF0 0000H 1 Mbytes

FFE0 0000H 2 Mbytes

FFC0 0000H 4 Mbytes

FF80 0000H 8 Mbytes

FF00 0000H 16 Mbytes

FE00 0000H 32 Mbytes

FC00 0000H 64 Mbytes

F800 0000H 128 Mbytes

F000 0000H 256 Mbytes

E000 0000H 512 Mbytes

C000 0000H 1 Gbytes

8000 0000H 2 Gbytes

0000 0000H
Register not implemented, no

address space required.

Table 16-21. Base Address and Limit Register Descriptions

Base Address Register Limit Register Description

Primary Inbound ATU
Base Address Register

Primary Inbound ATU
Limit Register

Defines the inbound translation window from the
primary PCI bus.

Expansion ROM Base
Address Register

Expansion ROM Limit
Register

Defines the window of addresses used by a primary
bus master for reading from an expansion ROM.

i960® VH Processor Developer’s Manual 16-31

Address Translation Unit

16.7.14 ATU Subsystem ID Register - ASIR

ATU Subsystem ID Register bit definitions adhere to PCI Local Bus Specification, revision 2.1.

16.7.15 Expansion ROM Base Address Register - ERBAR

The Expansion ROM Base Address Register defines the block of memory addresses used for
containing the Expansion ROM. It permits the inclusion of multiple code images, allowing the
device to be initialized. The code image supplied consists of either executable code or an
interpreted code. Each code image must start on a 512 byte boundary and each must contain the
PCI Expansion ROM header. Image placement in ROM space depends on the length of code
images which precede it within ROM. ERBAR defines the base address and describes the required
memory block size; see 16-29. Expansion ROM address space (limit size) can be a minimum of
4 Kbytes or a maximum of 16 Mbytes.

The Expansion ROM Base Address Register’s programmed value must comply with the PCI
programming requirements for address alignment. Refer to the PCI Local Bus Specification,
revision 2.1 for additional information on programming Expansion ROM base address registers.

Table 16-22. ATU Subsystem Vendor ID Register - ASVIR

LBA:

PCI:

122CH

2CH

Legend: NA = Not Accessible RO = Read Only
RV = Reserved PR = Preserved RW = Read/Write
RS = Read/Set RC = Read Clear
LBA = 80960 Local Bus Address PCI = PCI Configuration Address Offset

Bit Default Description

15:00 0000H Subsystem Vendor ID - This register uniquely identifies the add-in board or subsystem
vendor.

PCI

LBA

15 12 8 4 0

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

Table 16-23. ATU Subsystem ID Register - ASIR

LBA:

PCI:

122EH

2EH

Legend: NA = Not Accessible RO = Read Only
RV = Reserved PR = Preserved RW = Read/Write
RS = Read/Set RC = Read Clear
LBA = 80960 Local Bus Address PCI = PCI Configuration Address Offset

Bit Default Description

15:00 0000H Subsystem ID - uniquely identifies the add-in board or subsystem

PCI

LBA

15 12 8 4 0

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

16-32 i960® VH Processor Developer’s Manual

Address Translation Unit

16.7.16 ATU Interrupt Line Register - ATUILR

ATU Interrupt Line Register bit definitions adhere to PCI Local Bus Specification, revision 2.1.
This register identifies the system interrupt controller’s interrupt request lines which connect to the
device’s PCI interrupt request lines (as specified in the interrupt pin register).

In a PC environment, for example, the register values and corresponding connections are:

• 00H - 0FH: correspond to IRQ0 through IRQ15

• 10H - FEH: reserved

• FFH: “unknown” or “no connection”

The operating system or device driver can examine each device’s interrupt pin and interrupt line
register to determine which system interrupt request line the device uses to issue requests for
service.

Table 16-24. Expansion ROM Base Address Register - ERBAR

LBA:

PCI:

1230H

30H

Legend: NA = Not Accessible RO = Read Only
RV = Reserved PR = Preserved RW = Read/Write
RS = Read/Set RC = Read Clear
LBA = 80960 Local Bus Address PCI = PCI Configuration Address Offset

Bit Default Description

31:12 0000 0H
Expansion ROM Base Address - These bits define the actual location where the
Expansion ROM address window resides when addressed from the primary PCI bus on
any 2 Kbyte boundary.

11:01 000H Reserved

00 02
Address Decode Enable - This bit field shows the ROM address decoder is enabled or
disabled. When cleared, indicates the address decoder is disabled.

PCI

LBA

28 24 20 16 12 8 4 031

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rw

rw

i960® VH Processor Developer’s Manual 16-33

Address Translation Unit

16.7.17 ATU Interrupt Pin Register - ATUIPR

ATU Interrupt Pin Register bit definitions adhere to PCI Local Bus Specification, revision 2.1.
This register identifies the interrupt pin the ATU and Messaging Unit interface uses. The 80960VH
is a PCI multifunction device and, as such, can generate more than one interrupt output. The
interrupt output is for the Messaging Unit on P_INTA#, P_INTB#, P_INTC#, or P_INTD#. The
i960 core processor modifies the pin register to match the PCI interrupts which the Messaging Unit
generates.

Table 16-25. ATU Interrupt Line Register - ATUILR

LBA:

PCI:

123CH

3CH

Legend: NA = Not Accessible RO = Read Only
RV = Reserved PR = Preserved RW = Read/Write
RS = Read/Set RC = Read Clear
LBA = 80960 Local Bus Address PCI = PCI Configuration Address Offset

Bit Default Description

07:00 FFH
Interrupt Assigned - system-assigned value identifies which system interrupt controller’s
interrupt request line connects to the device's PCI interrupt request lines (as specified in
the interrupt pin register).

PCI

LBA

7 4 0

rw rw rw rw rw rw rw rw

rw rw rw rw rw rw rw rw

Table 16-26. ATU Interrupt Pin Register - ATUIPR

LBA:

PCI:

123DH

3DH

Legend: NA = Not Accessible RO = Read Only
RV = Reserved PR = Preserved RW = Read/Write
RS = Read/Set RC = Read Clear
LBA = 80960 Local Bus Address PCI = PCI Configuration Address Offset

Bit Default Description

07:03 00H Reserved.

02:00 0012

Interrupt Used - Selects the interrupt pin the ATU interface uses.

001 - INTA# used
010 - INTB# used
011 - INTC# used
100 - INTD# used

All other values have the effect of disabling the ATU interface interrupt.

PCI

LBA

7 4 0

rv rv rv rv rv rw rw rw

rv rv rv rv rv ro ro ro

16-34 i960® VH Processor Developer’s Manual

Address Translation Unit

16.7.18 ATU Minimum Grant Register - ATUMGNT

ATU Minimum Grant Register bit definitions adhere to PCI Local Bus Specification, revision 2.1.
This register specifies the burst period the device requires in increments of 8 PCI clocks.

This register and the ATU Maximum Latency register are information-only registers which the
configuration uses to determine frequency (how often) and duration (how long) of a bus master’s
access to the PCI bus. This information is useful when determining the values to be programmed
into the bus master latency timers and in programming the algorithm to be used by the PCI bus
arbiter.

16.7.19 ATU Maximum Latency Register - ATUMLAT

ATU Maximum Latency Register bit definitions adhere to PCI Local Bus Specification,
revision 2.1. This register specifies how often the device needs to access the PCI bus in increments
of 8 PCI clocks.

This register and the Minimum Grant Register are information-only registers which the
configuration uses to determine how often a bus master typically requires access to the PCI bus and
the duration of a typical transfer when it does acquire the bus. This information is useful in
determining the values to be programmed into the bus master latency timers and in programming
the algorithm to be used by the PCI bus arbiter.

Table 16-27. ATU Minimum Grant Register - ATUMGNT

LBA:

PCI:

123EH

3EH

Legend: NA = Not Accessible RO = Read Only
RV = Reserved PR = Preserved RW = Read/Write
RS = Read/Set RC = Read Clear
LBA = 80960 Local Bus Address PCI = PCI Configuration Address Offset

Bit Default Description

07:00 00H This register specifies how long a burst period the device needs in increments of 8 PCI
clocks. A zero value indicates the device has no stringent requirement.

PCI

LBA

7 4 0

ro ro ro ro ro ro ro ro

ro ro ro ro ro ro ro ro

i960® VH Processor Developer’s Manual 16-35

Address Translation Unit

16.7.20 Primary Inbound ATU Limit Register - PIALR

Primary inbound address translation occurs for data transfers occurring from the PCI bus
(originated from the primary PCI bus) to the 80960 local bus. The address translation block
converts PCI addresses to 80960 local bus addresses.

All data transfers are directly translated; thus, the bus master which initiates the transfer breaks
unaligned transfers into multiple data transfers. Byte enables specify valid data paths.

The primary inbound translation base address is specified in Section 16.7.11, “Primary Inbound
ATU Base Address Register - PIABAR” on page 16-28. When determining block size
requirements — as described in Section 16.7.12, “Determining Block Sizes for Base Address
Registers” on page 16-29 — the primary translation limit register provides the block size
requirements for the primary base address register. The remaining registers used for performing
address translation are discussed in Section 16.3.1, “Inbound Address Translation” on page 16-4.

Table 16-28. ATU Maximum Latency Register - ATUMLAT

LBA:

PCI:

123FH

3FH

Legend: NA = Not Accessible RO = Read Only
RV = Reserved PR = Preserved RW = Read/Write
RS = Read/Set RC = Read Clear
LBA = 80960 Local Bus Address PCI = PCI Configuration Address Offset

Bit Default Description

07:00 00H Specifies frequency (how often) the device needs to access the PCI bus in increments of
8 PCI clocks. A zero value indicates the device has no stringent requirement.

PCI

LBA

7 4 0

ro ro ro ro ro ro ro ro

ro ro ro ro ro ro ro ro

Table 16-29. Primary Inbound ATU Limit Register - PIALR

LBA:

PCI:

1240H

40H

Legend: NA = Not Accessible RO = Read Only
RV = Reserved PR = Preserved RW = Read/Write
RS = Read/Set RC = Read Clear
LBA = 80960 Local Bus Address PCI = PCI Configuration Address Offset

Bit Default Description

31:12
FFFF F

H
Primary Inbound Translation Limit - This value (Table 16-21) determines the memory block
size required for the primary ATU translation unit.

11:00 000H Reserved

PCI

LBA

28 24 20 16 12 8 4 031

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

16-36 i960® VH Processor Developer’s Manual

Address Translation Unit

16.7.21 Primary Inbound ATU Translate Value Register - PIATVR

The Primary Inbound ATU Translate Value Register (PIATVR) contains the local address used to
convert primary PCI bus addresses. The converted address is driven on the local bus as a result of
primary inbound ATU address translation.

16.7.22 Primary Outbound Memory Window Value Register -
POMWVR

The Primary Outbound Memory Window Value Register (POMWVR) contains the primary PCI
address used to convert 80960 local addresses for outbound transactions. This address is driven on
the primary PCI bus as a result of primary outbound ATU address translation. See Section 16.3.6,
“Outbound Address Translation” on page 16-8 for details on outbound address translation.

Primary memory window 0 is from 80960 local bus address 8000 0000H to 83FF FFFFH with the
fixed length of 64 Mbytes.

Table 16-30. Primary Inbound ATU Translate Value Register - PIATVR

LBA:

PCI:

1244H

44H

Legend: NA = Not Accessible RO = Read Only
RV = Reserved PR = Preserved RW = Read/Write
RS = Read/Set RC = Read Clear
LBA = 80960 Local Bus Address PCI = PCI Configuration Address Offset

Bit Default Description

31:02 0000 100H

Primary Inbound ATU Translation Value - This value is used to convert the primary PCI
address to local addresses. This value must be word-aligned on the 80960 local bus.
The default address allows the ATU to access the internal 80960 local bus
memory-mapped registers.

01:00 002 Reserved.

PCI

LBA

28 24 20 16 12 8 4 031

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rv

rv

rv

rv

i960® VH Processor Developer’s Manual 16-37

Address Translation Unit

16.7.23 Primary Outbound I/O Window Value Register - POIOWVR

The Primary Outbound I/O Window Value Register (POIOWVR) contains the primary PCI I/O
address used to convert the local bus access to a PCI address. This address is driven on the primary
PCI bus as a result of primary outbound ATU address translation. See Section 16.3.6, “Outbound
Address Translation” on page 16-8 for details on outbound address translation.

The primary I/O window is from 80960 local bus address 9000 0000H to 9000 FFFFH with a fixed
length of 64 Kbytes.

Table 16-31. Primary Outbound Memory Window Value Register - POMWVR

LBA:

PCI:

1254H

54H

Legend: NA = Not Accessible RO = Read Only
RV = Reserved PR = Preserved RW = Read/Write
RS = Read/Set RC = Read Clear
LBA = 80960 Local Bus Address PCI = PCI Configuration Address Offset

Bit Default Description

31:02 0000 0000
H

Primary Outbound MW Value - Used to convert 80960 local addresses to PCI
addresses.

01:00 002
Burst Order - This bit field shows the address sequence during a memory burst. Only
linear incrementing mode is supported.

PCI

LBA

28 24 20 16 12 8 4 031

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

ro

ro

ro

ro

0 0

Table 16-32. Primary Outbound I/O Window Value Register - POIOWVR

LBA:

PCI:

125CH

5CH

Legend: NA = Not Accessible RO = Read Only
RV = Reserved PR = Preserved RW = Read/Write
RS = Read/Set RC = Read Clear
LBA = 80960 Local Bus Address PCI = PCI Configuration Address Offset

Bit Default Description

31:02 0000 0000
H

Primary Outbound I/O Window Value - Used to convert local addresses to PCI
addresses.

01:00 002 Reserved.

PCI

LBA

28 24 20 16 12 8 4 031

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rv

rv

rv

rv

16-38 i960® VH Processor Developer’s Manual

Address Translation Unit

16.7.24 Expansion ROM Limit Register - ERLR

The Expansion ROM Limit Register (ERLR) defines the block size of addresses the primary ATU
defines as Expansion ROM address space. The block size is programmed by writing a value into
the ERLR from the i960 core processor. The possible programmed values range from 4 Kbytes
(FFFF F000H) to 16 Mbytes (FF00 0000H).

The Expansion ROM base address is specified in Section 16.7.15, “Expansion ROM Base Address
Register - ERBAR” on page 16-31. When determining the block size requirements, the Expansion
ROM Limit Register provides the block size requirements for the Expansion ROM Base Address
Register.

16.7.25 Expansion ROM Translate Value Register - ERTVR

The Expansion ROM Translate Value Register contains the 80960 local bus address which the
primary ATU converts the primary PCI bus access. This address is driven on the 80960 local bus
address as a result of primary Expansion ROM address translation.

Table 16-33. Expansion ROM Limit Register - ERLR

LBA:

PCI:

1274H

74H

Legend: NA = Not Accessible RO = Read Only
RV = Reserved PR = Preserved RW = Read/Write
RS = Read/Set RC = Read Clear
LBA = 80960 Local Bus Address PCI = PCI Configuration Address Offset

Bit Default Description

31:12 0000 0H Expansion ROM Limit - Block size of memory required for the Expansion ROM
translation unit. Default value is 0, which indicates no expansion ROM address space.

11:00 000H Reserved.

PCI

LBA

28 24 20 16 12 8 4 031

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

i960® VH Processor Developer’s Manual 16-39

Address Translation Unit

16.7.26 ATU Configuration Register - ATUCR

The ATU Configuration Register contains the control bits to enable and disable the interrupts
generated by the ATU. This register also controls the outbound address translation and contains a
bit for Expansion ROM width.

Table 16-34. Expansion ROM Translate Value Register - ERTVR

LBA:

PCI:

1278H

78H

Legend: NA = Not Accessible RO = Read Only
RV = Reserved PR = Preserved RW = Read/Write
RS = Read/Set RC = Read Clear
LBA = 80960 Local Bus Address PCI = PCI Configuration Address Offset

Bit Default Description

31:02 0000 0000
H

Expansion ROM 80960 Translation Value - Used to convert PCI addresses to 80960
local addresses for Expansion ROM accesses. The Expansion ROM address
translation value must be word aligned on the 80960 local bus.

01:00 002 Reserved.

PCI

LBA

28 24 20 16 12 8 4 031

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rv

rv

rv

rv

Table 16-35. ATU Configuration Register - ATUCR (Sheet 1 of 2)

LBA:

PCI:

1288H

88H

Legend: NA = Not Accessible RO = Read Only
RV = Reserved PR = Preserved RW = Read/Write
RS = Read/Set RC = Read Clear
LBA = 80960 Local Bus Address PCI = PCI Configuration Address Offset

Bit Default Description

31:10 0000 00H Reserved.

09 02

Primary SERR Interrupt Enable - When set, the i960 core processor receives an NMI#
when the Primary ATU detects that S_SERR# was asserted. When clear, no interrupt is
sent.

08 02

Direct Addressing Enable - When set, enables direct addressing through the ATU.
Local bus cycles with an address between 0000 2000H and 7FFF FFFFH are
automatically forwarded to the PCI bus with no address translation.

07 02 Reserved.

06 02

Expansion ROM Width - When clear, this bit signifies that an 8-bit Expansion ROM is
being used. When set, this bit signifies that 32-bit Expansion ROM is in use. Used in
conjunction with the ERBAR address decode enable (bit 0). The i960 VH processor
supports 8 bit Expansion ROM only. This bit must always be zero (0).

PCI

LBA

28 24 20 16 12 8 4 031

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rv

rv

16-40 i960® VH Processor Developer’s Manual

Address Translation Unit

16.7.27 Primary ATU Interrupt Status Register - PATUISR

The Primary ATU Interrupt Status Register notifies the i960 core processor of the Primary ATU
interrupt source. Writes to this register clear the source of the interrupt. All register bits are Read
Only from PCI and Read/Clear from the local bus.

Bits 4:0 are a direct reflection of Primary ATU Status Register bit 8 and bits 14:11 (respectively).
These bits are set at the same time by hardware but need to be cleared independently. Bits 6:5 are
set by an error associated with the Memory Controller. Bit 8 is for software BIST. The conditions
that result in a Primary ATU interrupt are cleared when the appropriate bits in this register are
set (=1).

05 02 Reserved.

04 02

Primary ATU PCI Error Interrupt Enable - This bit acts as a mask for Primary ATU
Interrupt Status Register bits 4:0. When set, enables an interrupt to the i960 core
processor when any of these bits are set in the PATUISR. When cleared, disables the
interrupt.

03 02

ATU BIST Interrupt Enable - When set, enables an interrupt to the i960 core processor
when the start BIST bit is set in the ATUBISTR register. This bit is also reflected as the
BIST Capable bit 7 in the ATUBISTR register.

02 02 Reserved.

01 02
Primary Outbound ATU Enable - When set, enables the primary outbound address
translation unit. When cleared, disables the primary outbound ATU.

00 02 Reserved.

Table 16-35. ATU Configuration Register - ATUCR (Sheet 2 of 2)

LBA:

PCI:

1288H

88H

Legend: NA = Not Accessible RO = Read Only
RV = Reserved PR = Preserved RW = Read/Write
RS = Read/Set RC = Read Clear
LBA = 80960 Local Bus Address PCI = PCI Configuration Address Offset

Bit Default Description

PCI

LBA

28 24 20 16 12 8 4 031

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rw

rv

rv

i960® VH Processor Developer’s Manual 16-41

Address Translation Unit

16.7.28 Primary Outbound Configuration Cycle Address Register -
POCCAR

The Primary Outbound Configuration Cycle Address Register holds the 32-bit PCI configuration
cycle address. The i960 core processor writes the PCI configuration cycles address that enables the
primary outbound configuration read or write. The i960 core processor performs a read or write to
the Primary Outbound Configuration Cycle Data Port to initiate the configuration cycle on the
primary PCI bus.

The value programmed into these registers is not a byte address. See the PCI Local Bus
Specification, revision 2.1 for information regarding configuration address cycle formats.

Table 16-36. Primary ATU Interrupt Status Register - PATUISR

LBA:

PCI:

1290H

90H

Legend: NA = Not Accessible RO = Read Only
RV = Reserved PR = Preserved RW = Read/Write
RS = Read/Set RC = Read Clear
LBA = 80960 Local Bus Address PCI = PCI Configuration Address Offset

Bit Default Description

31:09 0000 00H Reserved.

08 02

ATU BIST Interrupt - When set, the host processor has set the start BIST, ATUBISTR
register bit 6, and the ATU BIST interrupt enable, ATUCR register bit 3, is enabled. The
i960 core processor can initiate the software BIST and store the result in ATUBISTR
register bits 3:0.

07 02 Reserved.

06 02
80960 local bus memory Fault - set when the Memory Controller detects a Memory
Fault and the Primary ATU was the master for the transaction.

05 02
80960 local bus address Fault - set when the Memory Controller detects a Bus Fault
and the Primary ATU was the master for the transaction.

04 02 P_SERR# Asserted - set when P_SERR# is asserted on the PCI bus.

03 02
PCI Master Abort - set when a transaction initiated by the ATU master interface ends in
a Master-abort.

02 02
PCI Target Abort (master) - set when a transaction initiated by the ATU master
interface ends in a Target Abort.

01 02
PCI Target Abort (target) - set when the ATU interface, acting as a target, terminates
the transaction on the PCI bus with a target abort.

00 02

PCI Master Parity Error - The ATU interface sets this bit when three conditions are met:

• bus agent asserted S_PERR#

• agent setting the bit acted as the bus master for the operation in which the error
occurred

• Parity Checking Enable bit is set (in the Primary ATU Command Register)

PCI

LBA

28 24 20 16 12 8 4 031

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rv

rc

ro

rv

rv

rc

ro

rc

ro

rc

ro

rc

ro

rc

ro

rc

ro

rc

ro

16-42 i960® VH Processor Developer’s Manual

Address Translation Unit

16.7.29 Primary Outbound Configuration Cycle Data Port -
POCCDP

The Primary Outbound Configuration Cycle Data Port initiates a configuration read or write on the
primary PCI bus. The register is logical rather than physical meaning that it is an address not a
register. The i960 core processor reads or writes the data registers memory-mapped address to
initiate the configuration cycle on the PCI bus with the address found in the POCCAR.

The configuration cycle generated on the PCI bus enables the same bytes which are accessed in the
corresponding data register. For example, a read of all 32 bits of this data register generates a
4-byte configuration read cycle on the primary PCI bus of the addressed configuration register.
Also, a write of byte 2 (bits 23:16) of this data register generates a single byte configuration write
cycle of byte 2 of the addressed configuration register. Similar actions take place for short
accesses.

• For a configuration write, the data is latched from the 80960 local bus and forwarded directly
to the ATU ODQ.

• For a read, the data is returned directly from the ATU IDQ to the i960 core processor and is
never actually entered into the data register (which does not physically exist).

The POCCDP is only useful from 80960 local bus address space and appears as a reserved value
within the ATU configuration space. The 80960 local bus address is 12ACH.

Note: This port should never be accessed by PCI Function 0 cycles or ATU inbound transactions.

16.7.30 Reset/Retry Control Register - RRCR

Refer to Section 11.2.1, “Reset/Retry Control Register - RRCR” on page 11-1.

16.7.31 PCI Interrupt Routing Select Register PIRSR

Refer to Section 11.2.2, “PCI Interrupt Routing Select Register - PIRSR” on page 11-2.

Table 16-37. Primary Outbound Configuration Cycle Address Register - POCCAR

LBA:

PCI:

12A4H

A4H

Legend: NA = Not Accessible RO = Read Only
RV = Reserved PR = Preserved RW = Read/Write
RS = Read/Set RC = Read Clear
LBA = 80960 Local Bus Address PCI = PCI Configuration Address Offset

Bit Default Description

31:00 0000 0000
H

Primary Configuration Cycle Address - These bits define the 32-bit PCI address used
during an outbound configuration read or write cycle.

PCI

LBA

28 24 20 16 12 8 4 031

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

rw

ro

i960® VH Processor Developer’s Manual 16-43

Address Translation Unit

16.7.32 Core Select Register - CSR

Refer to Section 11.2.3, “Core Select Register - CSR” on page 11-2.

16.8 Powerup/Default Status

The default/powerup values for all registers are shown within each register description.

16.9 Reset Modes

See Section 11.2.1, “Reset/Retry Control Register - RRCR” on page 11-1.

i960® VH Processor Developer’s Manual 17-1

Messaging Unit 17

This chapter describes the operation of the Messaging Unit (MU). The MU is the communications
path between the host operating system and the I/O subsystem.

17.1 Overview

The MU sends and receives messages. It transfers data between the PCI system and the i960 core
processor and notifies the respective system when new data arrives due to an interrupt. The MU has
two messaging mechanisms. Each allows a host processor or external PCI agent and the i960® VH
processor to communicate through message passing and interrupt generation. Each mechanism and
corresponding sections are summarized as:

• Section 17.2, “Message Registers” on page 17-2. Each of four registers hold a 32-bit value and
generate an interrupt when any value is written.

• Section 17.3, “Doorbell Registers” on page 17-2. These two registers support software
interrupts. Interrupts are generated when a Doorbell Register bit is set.

Interrupt status for all interrupts is recorded in the Inbound Interrupt Status Register and Outbound
Interrupt Status Register. Any MU-generated interrupt can be masked.

The MU uses the first 4 Kbytes of the primary inbound translation window in the Primary Address
Translation Unit (ATU). This PCI address window is used for PCI transactions that access the
80960VH’s local memory. The primary inbound translation window’s PCI address is contained in
the Primary Inbound ATU Base Address Register. See Section 16.3, “ATU Address Translation” on
page 16-3 for more details on inbound ATU addressing.

From the PCI perspective, the MU is part of the Primary Address Translation Unit. The MU uses
the PCI configuration registers of the Primary ATU for control and status information. The MU
observes all PCI control bits in the Primary ATU Command Register and ATU Configuration
Register. The MU reports all PCI errors in the Primary ATU Status Register.

Table 17-1 summarizes the two MU mechanisms.

Table 17-1. Messaging Unit (MU) Summary

Mechanism Quantity Assert PCI Interrupt
Signals?

Generate i960 Core
Processor Interrupt?

Message Registers
Two Inbound No Optional

Two Outbound Yes No

Doorbell Registers
One Inbound No Optional

One Outbound Yes No

17-2 i960® VH Processor Developer’s Manual

Messaging Unit

17.2 Message Registers

The 80960VH uses the message registers to send and receive messages. When written, these
registers may cause an interrupt to be generated to either the i960 core processor or the PCI
interrupt signals.

• Inbound messages are sent by the host processor and received by the 80960VH.

• Outbound messages are sent by the 80960VH and received by the host processor.

The interrupt status for outbound messages is recorded in the Outbound Interrupt Status Register.
Interrupt status for inbound messages is recorded in the Inbound Interrupt Status Register.

17.2.1 Outbound Messages

The MU contains two outbound message registers. When an outbound message register is written
by the i960 core processor, an interrupt may be generated on the P_INTA#, P_INTB#, P_INTC#,
or P_INTD# interrupt pins. The interrupt pin used is determined by the value programmed in the
ATU Interrupt Pin Register (See Chapter 16, “Address Translation Unit”).

The PCI interrupt is recorded in the Outbound Interrupt Status Register. The interrupt causes the
Outbound Message Interrupt bit to be set in the Outbound Interrupt Status Register. This is a
Read/Clear bit that is set by MU hardware and cleared by software.

The interrupt is cleared when an external PCI agent writes a value of 1 to the Outbound Message
Interrupt bit in the Outbound Interrupt Status Register to clear the bit (via a PCI configuration
cycle).

The interrupt may be masked by the Mask bits in the Outbound Interrupt Mask Register.

17.2.2 Inbound Messages

The MU contains two inbound message registers. When an inbound message register is written by
an external PCI agent, an interrupt may be generated to the i960 core processor. The interrupt may
be masked by the Mask bits in the Inbound Interrupt Mask Register.

The i960 core processor interrupt is recorded in the Inbound Interrupt Status Register. The interrupt
causes the Inbound Message Interrupt bit to be set in the Inbound Interrupt Status Register. This is
a Read/Clear bit set by the MU.

The interrupt is cleared when the i960 core processor sets (=1) the Inbound Message Interrupt bit in
the Inbound Interrupt Status Register.

17.3 Doorbell Registers

The two doorbell registers generate interrupts when their bits are set. The registers, described in the
following subsections, are:

• Outbound Doorbell Register — allows the i960 core processor to generate a PCI interrupt.

• Inbound Doorbell Register — allows external PCI agents to generate interrupts to the i960
core processor.

i960® VH Processor Developer’s Manual 17-3

Messaging Unit

17.3.1 Outbound Doorbells

The i960 core processor generates an interrupt by setting bits in the Outbound Doorbell Register
and external PCI agents clear the interrupt by also setting bits in the same register.

When the Outbound Doorbell Register is written by the i960 core processor, an interrupt may be
generated on the P_INTA#, P_INTB#, P_INTC#, or P_INTD# interrupt pins. An interrupt is
generated when any doorbell register bits are set. The i960 core processor clearing (writing a 0 to)
any bit, does not change the value of that bit and does not cause an interrupt to be generated. Once
a bit is set in the Outbound Doorbell Register, it cannot be cleared by the i960 core processor.

The PCI interrupt pin used is determined by the value programmed in the ATU Interrupt Pin
Register (See Chapter 16, “Address Translation Unit”). The interrupt is recorded in the Outbound
Interrupt Status Register.

The interrupt may be masked by the Outbound Interrupt Mask Register’s Mask bits. When a Mask
bit is set, no interrupt is generated for that bit. The Outbound Interrupt Mask Register affects only
the generation of the interrupt and not the values written to the Outbound Doorbell Register.

The interrupt is cleared when an external PCI agent writes a 1 to the bits in the Outbound Doorbell
Register that are set. Clearing a bit does not change the value of that bit and does not clear the
interrupt.

17.3.2 Inbound Doorbells

When the Inbound Doorbell Register is written by an external PCI agent, an interrupt may be
generated to the i960 core processor. An interrupt is generated when any doorbell register bits are
set. An external PCI agent clearing (write a 0 to) any bit, does not change the value of that bit and
does not cause an interrupt to be generated. Once a bit is set in the Inbound Doorbell Register, it
cannot be cleared by any external PCI agent.

The interrupt is recorded in the Inbound Interrupt Status Register.

The interrupt may be masked by the Inbound Doorbell Interrupt Mask bit in the Inbound Interrupt
Mask Register. When a mask bit is set, no interrupt is generated for that bit. The Inbound Interrupt
Mask Register affects only the generation of the interrupt and not the values written to the Inbound
Doorbell Register.

One bit in the Inbound Doorbell Register is reserved for an NMI interrupt.

The interrupt is cleared when the i960 core processor writes a value of 1 to the bits in the Inbound
Doorbell Register that are set. Clearing a bit does not change the value of that bit and does not clear
the interrupt.

17.4 Register Definitions

Figure 17-1 shows the PCI memory map and identifies the first 4 Kbytes of ATU Primary Inbound
PCI address space. Registers in Table 17-2 are located in primary PCI address space and Peripheral
Memory-Mapped Register (PMMR) address space. They are accessible through primary PCI bus
transactions and i960 core processor bus accesses. In primary PCI address space, they are mapped
into the first 80 bytes of the Primary ATU’s primary inbound address window.

17-4 i960® VH Processor Developer’s Manual

Messaging Unit

Registers in Table 17-2 are located in Peripheral Memory-Mapped Register (PMMR) address
space as described in Appendix C, “Memory-Mapped Registers”. Reading or writing a register that
is reserved is undefined.

Figure 17-1. PCI Memory Map

Inbound Message Register 0

Inbound Message Register 1

Outbound Message Register 0

Outbound Message Register 1

Inbound Doorbell Register

Inbound Interrupt Status Register

Inbound Interrupt Mask Register

Outbound Doorbell Register

4 Message Registers

i960® VH Processor Local Memory

0000H

0004H

0008H

000CH

0010H

001CH

0018H

0014H

0020H

0FFCH

First 4 Kbytes of the ATU Primary Inbound PCI Address Space

Reserved

Reserved

Reserved

Reserved

0024H

0028H

002CH

Outbound Interrupt Status Register

Outbound Interrupt Mask Register

Reserved

Reserved

2 Doorbell Registers and

0034H

0038H

003CH

0040H Reserved

Reserved

Reserved

Reserved

0044H

0048H

004CH

0050H

0030H

4 Interrupt Registers

i960® VH Processor Developer’s Manual 17-5

Messaging Unit

17.4.1 Inbound Message Registers - IMRx

The two Inbound Message Registers are IMR0 and IMR1. When IMR registers are written, an
interrupt to the i960 core processor is generated. The interrupt is recorded in the Inbound Interrupt
Status Register and may be masked by the Inbound Interrupt Mask Register’s Inbound Message
Interrupt Mask bit.

Table 17-2. Peripheral Memory-Mapped Register Summary

Section Register Name, Acronym Page Size
(Bits)

80960 Local
Bus Address

PCI
Config
Addr
Offset

Reserved 32 0000 1300H NA

Reserved 32 0000 1308H NA

17.4.1 Inbound Message Registers - IMRx 17-5 32 0 - 0000 1310H
1 - 0000 1314H NA

17.4.2 Outbound Message Registers - OMRx 17-6 32 0 - 0000 1318H
1 -0000 131CH NA

17.4.3 Inbound Doorbell Register - IDR 17-6 32 0000 1320H NA

17.4.4 Inbound Interrupt Status Register - IISR 17-7 32 0000 1324H NA

17.4.5 Inbound Interrupt Mask Register - IIMR 17-8 32 0000 1328H NA

17.4.6 Outbound Doorbell Register - ODR 17-9 32 0000 132CH NA

17.4.7 Outbound Interrupt Status Register - OISR 17-10 32 0000 1330H NA

17.4.8 Outbound Interrupt Mask Register - OIMR 17-11 32 0000 1334H NA

Reserved 32 0000 1350H NA

Reserved 32 0000 1354H NA

Reserved 32 0000 1360H NA

Reserved 32 0000 1364H NA

Reserved 32 0000 1368H NA

Reserved 32 0000 136CH NA

Reserved 32 0000 1370H NA

Reserved 32 0000 1374H NA

Reserved 32 0000 1378H NA

Reserved 32 0000 137CH NA

Reserved 32 0000 1380H NA

17-6 i960® VH Processor Developer’s Manual

Messaging Unit

17.4.2 Outbound Message Registers - OMRx

The two Outbound Message Registers are OMR0 and OMR1. When an OMR register is written, a
PCI interrupt is generated. The interrupt is recorded in the Outbound Interrupt Status Register and
may be masked by the Outbound Message Interrupt Mask bit in the Outbound Interrupt Mask
Register.

17.4.3 Inbound Doorbell Register - IDR

The Inbound Doorbell Register (IDR) is used to generate interrupts to the i960 core processor. Bit
31 is reserved for generating an NMI interrupt. When bit 31 is set, an NMI interrupt is generated to
the NMI interrupt latch. All other bits, when set, cause the i960 core processor’s XINT7 interrupt
line to assert from the XINT7 interrupt latch, when the interrupt is not masked by the Inbound
Interrupt Mask Register’s Inbound Doorbell Interrupt Mask bit. IDR register bits can only be set by
an external PCI agent and can only be cleared by the i960 core processor. Refer to Section 8.3.3,
“Internal Peripheral Interrupt Routing” on page 8-20.

Table 17-3. Inbound Message Register - IMRx

LBA:

PCI:

CH. 0 = 1310H
CH. 1 = 1314H

NA

Legend: NA = Not Accessible RO = Read Only
RV = Reserved PR = Preserved RW = Read/Write
RS = Read/Set RC = Read Clear
LBA = 80960 Local Bus Address PCI = PCI Configuration Address Offset

Bit Default Description

31:00 0000 0000H Inbound Message - This 32-bit message is written by an external PCI agent. When
written, an interrupt to the i960 core processor is generated.

PCI

LBA

28 24 20 16 12 8 4 031

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

Table 17-4. Outbound Message Register - OMRx

LBA:

PCI:

CH. 0 = 1318H
CH. 1 = 131CH

NA

Legend: NA = Not Accessible RO = Read Only
RV = Reserved PR = Preserved RW = Read/Write
RS = Read/Set RC = Read Clear
LBA = 80960 Local Bus Address PCI = PCI Configuration Address Offset

Bit Default Description

31:00 0000 0000H
Outbound Message - This is 32-bit message written by the i960 core processor.
When written, an interrupt is generated on the PCI Interrupt pin determined by the
ATU Interrupt Pin Register.

PCI

LBA

28 24 20 16 12 8 4 031

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

i960® VH Processor Developer’s Manual 17-7

Messaging Unit

17.4.4 Inbound Interrupt Status Register - IISR

The Inbound Interrupt Status Register (IISR) contains hardware interrupt status. It records the
status of i960 core processor interrupts generated by the Message Registers, and the Doorbell
Registers. All interrupts are routed to the i960 core processor’s XINT7 interrupt input, except for
the NMI Doorbell Interrupt which is routed to the NMI interrupt input. The generation of interrupts
recorded in the Inbound Interrupt Status Register may be masked by setting the corresponding bit
in the Inbound Interrupt Mask Register. Some bits in this register are Read Only. For those bits, the
interrupt must be cleared through another register.

Table 17-5. Inbound Doorbell Register - IDR

LBA:

PCI:

1320H

NA

Legend: NA = Not Accessible RO = Read Only
RV = Reserved PR = Preserved RW = Read/Write
RS = Read/Set RC = Read Clear
LBA = 80960 Local Bus Address PCI = PCI Configuration Address Offset

Bit Default Description

31 02 NMI Interrupt - Generate an NMI Interrupt to the i960 core processor.

30:00 0000 000H XINT7 Interrupt - When any bit is set, generate an XINT7 interrupt to the i960 core
processor. When all bits are clear, do not generate an XINT7 interrupt.

PCI

LBA

28 24 20 16 12 8 4 031

rc

na

rc

na

rc

na

rc

na

rc

na

rc

na

rc

na

rc

na

rc

na

rc

na

rc

na

rc

na

rc

na

rc

na

rc

na

rc

na

rc

na

rc

na

rc

na

rc

na

rc

na

rc

na

rc

na

rc

na

rc

na

rc

na

rc

na

rc

na

rc

na

rc

na

rc

na

rc

na

Table 17-6. Inbound Interrupt Status Register - IISR (Sheet 1 of 2)

LBA:

PCI:

1324H

NA

Legend: NA = Not Accessible RO = Read Only
RV = Reserved PR = Preserved RW = Read/Write
RS = Read/Set RC = Read Clear
LBA = 80960 Local Bus Address PCI = PCI Configuration Address Offset

Bit Default Description

31:09 0000 00H Reserved.

08 02 Reserved

07 02 Reserved

06 02 Reserved

05 02 Reserved

04 02 Reserved

PCI

LBA

28 24 20 16 12 8 4 031

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rc

na

rc

na

rc

na

rc

na

rc

na

ro

na

ro

na

rc

na

rc

na

17-8 i960® VH Processor Developer’s Manual

Messaging Unit

17.4.5 Inbound Interrupt Mask Register - IIMR

The Inbound Interrupt Mask Register (IIMR) provides the ability to mask i960 core processor
interrupts that the MU generates. Each Mask register bit corresponds to an interrupt bit in the
Inbound Interrupt Status Register.

Setting or clearing bits in this register does not affect the Inbound Interrupt Status Register. They
only affect i960 core processor interrupt generation.

03 02

NMI Doorbell Interrupt - set when the Inbound Doorbell Register NMI Interrupt is set. To
clear this bit (and the interrupt), the Inbound Doorbell Register NMI Interrupt bit in the
Inbound Doorbell Register must be clear.

02 02

Inbound Doorbell Interrupt - set when at least one XINT7 Interrupt bit in the Inbound
Doorbell Register is set. To clear this bit (and the interrupt), the XINT7 Interrupt bits in
the Inbound Doorbell Register must all be clear.

01 02
Inbound Message 1 Interrupt - set when the Inbound Message 1 Register has been
written.

00 02
Inbound Message 0 Interrupt - set when the Inbound Message 0 Register has been
written.

Table 17-6. Inbound Interrupt Status Register - IISR (Sheet 2 of 2)

LBA:

PCI:

1324H

NA

Legend: NA = Not Accessible RO = Read Only
RV = Reserved PR = Preserved RW = Read/Write
RS = Read/Set RC = Read Clear
LBA = 80960 Local Bus Address PCI = PCI Configuration Address Offset

Bit Default Description

PCI

LBA

28 24 20 16 12 8 4 031

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rc

na

rc

na

rc

na

rc

na

rc

na

ro

na

ro

na

rc

na

rc

na

Table 17-7. Inbound Interrupt Mask Register - IIMR (Sheet 1 of 2)

LBA:

PCI:

1328H

NA

Legend: NA = Not Accessible RO = Read Only
RV = Reserved PR = Preserved RW = Read/Write
RS = Read/Set RC = Read Clear
LBA = 80960 Local Bus Address PCI = PCI Configuration Address Offset

Bit Default Description

31:09 0000 00H Reserved.

08 02 Reserved

07 02 Reserved

PCI

LBA

28 24 20 16 12 8 4 031

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

i960® VH Processor Developer’s Manual 17-9

Messaging Unit

17.4.6 Outbound Doorbell Register - ODR

The Outbound Doorbell Register (ODR) allows software interrupt generation. It allows the i960
core processor to generate PCI interrupts to the host processor by writing to the Software Interrupt
bits or to a specific PCI interrupt bit. PCI interrupt generation through the Outbound Doorbell
Register may be masked by setting the Outbound Doorbell Interrupt Mask bit in the Outbound
Interrupt Mask Register.

Software Interrupt bits in this register can only be set by the i960 core processor and can only be
cleared by an external PCI agent.

06 02 Reserved

05 02 Reserved

04 02 Reserved

03 02
NMI Doorbell Interrupt Mask - When set, this bit masks the NMI Interrupt when the
Inbound Doorbell Register NMI Interrupt bit is set.

02 02
Inbound Doorbell Interrupt Mask - When set, this bit masks the interrupt generated
when at least one XINT7 Interrupt bit in the Inbound Doorbell Register is set.

01 02
Inbound Message 1 Interrupt Mask - When set, this bit masks the Inbound Message 0
Interrupt generated by a write to the Inbound Message 0 Register.

00 02
Inbound Message 0 Interrupt Mask - When set, this bit masks the Inbound Message 0
Interrupt generated by a write to the Inbound Message 0 Register.

Table 17-7. Inbound Interrupt Mask Register - IIMR (Sheet 2 of 2)

LBA:

PCI:

1328H

NA

Legend: NA = Not Accessible RO = Read Only
RV = Reserved PR = Preserved RW = Read/Write
RS = Read/Set RC = Read Clear
LBA = 80960 Local Bus Address PCI = PCI Configuration Address Offset

Bit Default Description

PCI

LBA

28 24 20 16 12 8 4 031

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

17-10 i960® VH Processor Developer’s Manual

Messaging Unit

17.4.7 Outbound Interrupt Status Register - OISR

The Outbound Interrupt Status Register (OISR) contains hardware interrupt status. It records the
status of PCI interrupts generated by the Message Registers, and Doorbell Registers. All interrupts
are routed to the PCI interrupt pin selected by the ATU Interrupt Pin Register (ATUIPR), except
the PCI Interrupt “X” interrupts which are individually routed. The PCI interrupt generation
recorded in the Outbound Interrupt Status Register may be masked by setting the corresponding bit
in the Outbound Interrupt Mask Register. Some bits in this register are Read Only; for these bits,
the interrupt must be cleared through another register.

Table 17-8. Outbound Doorbell Register - ODR

LBA:

PCI:

132CH

NA

Legend: NA = Not Accessible RO = Read Only
RV = Reserved PR = Preserved RW = Read/Write
RS = Read/Set RC = Read Clear
LBA = 80960 Local Bus Address PCI = PCI Configuration Address Offset

Bit Default Description

31 02
PCI Interrupt D - When set, this bit causes P_INTD# to assert.
When cleared, P_INTD# deasserts.

30 02
PCI Interrupt C - When set, this bit causes P_INTC# to assert.
When cleared, P_INTC# deasserts.

29 02
PCI Interrupt B- When set, this bit causes P_INTB# to assert.
When cleared, P_INTB# deasserts.

28 02
PCI Interrupt A- When set, this bit causes P_INTA# to assert.
When cleared, P_INTA# deasserts.

27:00 0000 000H
Software Interrupt - When any bit is set, generate a PCI interrupt. The PCI interrupt pin
used is determined by the ATU Interrupt Pin Register. When all bits are clear, do not
generate a PCI interrupt.

PCI

LBA

28 24 20 16 12 8 4 031

rs rs

na na

Table 17-9. Outbound Interrupt Status Register - OISR (Sheet 1 of 2)

LBA:

PCI:

1330H

NA

Legend: NA = Not Accessible RO = Read Only
RV = Reserved PR = Preserved RW = Read/Write
RS = Read/Set RC = Read Clear
LBA = 80960 Local Bus Address PCI = PCI Configuration Address Offset

Bit Default Description

31:08 0000 00H Reserved.

PCI

LBA

28 24 20 16 12 8 4 031

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

i960® VH Processor Developer’s Manual 17-11

Messaging Unit

17.4.8 Outbound Interrupt Mask Register - OIMR

The Outbound Interrupt Mask Register (OIMR) provides the ability to mask outbound PCI
interrupts that the MU generates. Each mask register bit corresponds to a hardware interrupt bit in
the Outbound Interrupt Status Register. When the bit is set, the PCI interrupt is not generated.
When the bit is clear, the interrupt is allowed to be generated.

Setting or clearing bits in this register does not affect the Outbound Interrupt Status Register; they
only affect PCI interrupt generation.

07 02

PCI Interrupt D - set when the PCI Interrupt D bit is set in the Outbound Doorbell
Register. To clear this bit (and the interrupt), the PCI Interrupt D bit in the Outbound
Doorbell Register must be cleared.

06 02

PCI Interrupt C - set when the PCI Interrupt C bit is set in the Outbound Doorbell
Register. To clear this bit (and the interrupt), the PCI Interrupt C bit in the Outbound
Doorbell Register must be cleared.

05 02

PCI Interrupt B - set when the PCI Interrupt B bit is set in the Outbound Doorbell
Register. To clear this bit (and the interrupt), the PCI Interrupt B bit in the Outbound
Doorbell Register must be cleared.

04 02

PCI Interrupt A - set when the PCI Interrupt A bit is set in the Outbound Doorbell
Register. To clear this bit (and the interrupt), the PCI Interrupt A bit in the Outbound
Doorbell Register must be cleared.

03 02 Reserved

02 02

Outbound Doorbell Interrupt - set when at least one Software Interrupt bit in the
Outbound Doorbell Register is set. To clear this bit (and the interrupt), Software
Interrupt bits in the Outbound Doorbell Register must all be clear.

01 02
Outbound Message 1 Interrupt - set by the MU when the Outbound Message 1 Register
is written. Clearing this bit clears the interrupt.

00 02
Outbound Message 0 Interrupt - set by the MU when the Outbound Message 0 Register
is written. Clearing this bit clears the interrupt.

Table 17-9. Outbound Interrupt Status Register - OISR (Sheet 2 of 2)

LBA:

PCI:

1330H

NA

Legend: NA = Not Accessible RO = Read Only
RV = Reserved PR = Preserved RW = Read/Write
RS = Read/Set RC = Read Clear
LBA = 80960 Local Bus Address PCI = PCI Configuration Address Offset

Bit Default Description

PCI

LBA

28 24 20 16 12 8 4 031

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

17-12 i960® VH Processor Developer’s Manual

Messaging Unit

Table 17-10. Outbound Interrupt Mask Register - OIMR

LBA:

PCI:

1334H

NA

Legend: NA = Not Accessible RO = Read Only
RV = Reserved PR = Preserved RW = Read/Write
RS = Read/Set RC = Read Clear
LBA = 80960 Local Bus Address PCI = PCI Configuration Address Offset

Bit Default Description

31:08 0000 00H Reserved.

07 02

PCI Interrupt D Mask - When set, this bit masks the PCI Interrupt D signal when the PCI
Interrupt D bit in the in the Outbound Doorbell Register is set.

0 - allow interrupt to be generated
1 - do not allow interrupt to be generated

06 02

PCI Interrupt C Mask - When set, this bit masks the PCI Interrupt C signal when the PCI
Interrupt C bit in the in the Outbound Doorbell Register is set.

0 - allow interrupt to be generated
1 - do not allow interrupt to be generated

05 02

PCI Interrupt B Mask - When set, this bit masks the PCI Interrupt B signal when the PCI
Interrupt B bit in the in the Outbound Doorbell Register is set.

0 - allow interrupt to be generated
1 - do not allow interrupt to be generated

04 02

PCI Interrupt A Mask - When set, this bit masks the PCI Interrupt A signal when the PCI
Interrupt A bit in the in the Outbound Doorbell Register is set.

0 - allow interrupt to be generated
1 - do not allow interrupt to be generated

03 02 Reserved

02 02

Outbound Doorbell Interrupt Mask - When set, this bit masks the Software Interrupt
generated by the Outbound Doorbell Register.

0 - allow interrupt to be generated
1 - do not allow interrupt to be generated

01 02

Outbound Message 1 Interrupt Mask - When set, this bit masks the Outbound Message
1 Interrupt generated by a write to the Outbound Message 1 Register.

0 - allow interrupt to be generated
1 - do not allow interrupt to be generated

00 02

Outbound Message 0 Interrupt Mask- When set, this bit masks the Outbound Message
0 Interrupt generated by a write to the Outbound Message 0 Register.

0 - allow interrupt to be generated
1 - do not allow interrupt to be generated

PCI

LBA

28 24 20 16 12 8 4 031

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

i960® VH Processor Developer’s Manual 18-1

Bus Arbitration 18

This chapter describes the bus arbitration units of the i960® VH processor. The two arbitration
units include: the internal local bus arbiter and the primary PCI bus arbiter for internal PCI bus
masters.

Some of the other topics discussed in this chapter include: the priority mechanism used in all of the
arbitration units, the memory-mapped registers used in programming the arbitration units, and
local bus backoff.

Chapter 1, “Introduction” contains a block diagram of the 80960VH in Figure 1-1, which shows
the two arbitration units.

18.1 Overview

The 80960VH requires an arbitration mechanism to control 80960 local bus ownership. Bus
masters connected to the local bus consist of:

• Two DMA channels

• Primary PCI address translation unit

• i960 core processor

• External bus masters

The local bus arbitration unit is responsible for granting the local bus to a bus master. There is a
programmable 12-bit counter to limit the amount of time a bus master has control of the local bus
and to dictate when a bus master must relinquish ownership when other bus masters are requesting
the local bus.

In addition to the local bus arbiter, the 80960VH contains an internal PCI arbitration unit. The
primary internal arbitration unit controls access to the internal primary PCI bus. Arbitration occurs
for the primary PCI bus between the primary ATU, DMA channels 0 and 1. The internal arbiters
are not programmable.

18.2 Local Bus Arbitration Unit

The 80960 local bus arbitration unit supports up to five local bus masters. Table 18-1 shows the
five bus masters. Each master can be disabled or programmed to one of three priority levels. The
Local Bus Arbitration Control Register (LBACR), programmed by application software, sets the
priorities for each of the bus masters. Each priority level uses a round-robin algorithm to guarantee
that each device has a chance at bus ownership. When one device has finished, the next device,
assuming one is currently requesting the bus, is granted ownership.

When a bus master requests the local bus, the arbiter first obtains control of the local bus from the
i960 core processor or the current bus owner, based on the programmed priority and the current
local bus arbitration latency counter value. The arbiter then grants the local bus to the requesting
bus master by returning the respective internal GNT# signal.

18-2 i960® VH Processor Developer’s Manual

Bus Arbitration

When there are no masters requesting the local bus, the local bus arbiter parks the local bus with
the i960 core processor. The local bus arbitration latency counter is reset each time a master is
granted the local bus, with the exception of when the bus is being parked. When the arbiter parks
the bus by granting ownership to the processor, the local bus arbitration latency counter is not reset.

The initial priority for each bus master is programmable by software. While running, the arbiter
promotes and demotes the bus masters using the round robin scheme shown in Figure 18-1. After a
device relinquishes control of the bus, it returns to its initial programmed priority. Table 18-2
shows the 2-bit values that correspond to each priority level.

The arbitration scheme supports three levels of round-robin arbitration. The three levels define a
low, medium and high priority. Using the round-robin mechanism ensures there is a winner for
each priority level. To enforce the concept of fairness, a slot is reserved for the winner of each
priority level (except the highest) in the next highest priority. When the winner of a priority level is
not granted the bus during that particular arbitration sequence, it is promoted to the next highest
level of priority. Once its bus ownership is removed, the device is reset to its initially programmed
priority and may start arbitration once again. Figure 18-1 and Table 18-3 show the three priority
levels and the reserved slots for the promoted requestor.

Table 18-1. Local Bus Masters

Bus Master

i960 Core Processor (Parked Master)

DMA Channel 0

DMA Channel 1

Primary ATU (for inbound transactions)

External Local Bus Device

Table 18-2. Programmed Priority Control

2-Bit Programmed Value Priority Level

002 High Priority

012 Medium Priority

102 Low Priority

112 Disabled

i960® VH Processor Developer’s Manual 18-3

Bus Arbitration

Table 18-4 is an example of bus arbitration, with three bus masters. Each of the bus masters is
constantly requesting the bus, and each is at a different priority level. The top row of the table lists
the current bus master/winner of the highest priority group. The three rows labeled as high,
medium and low represent the actual priority levels that devices are currently at based on either
their initial programmed priority or promotion through the levels. For example, device C starts out
at low priority. Because it is the only device at this priority, it is the winner at low priority and is
promoted to medium priority. Later it wins at medium priority (against device B) and is promoted
to high priority where it wins the level (against device A) and the bus. Device C is then put back at
its programmed priority of low and starts the whole cycle over.

Figure 18-1. Local Bus Arbitration Example

Primary
ATU

Priority 012
Winner

DMA Channel 0

Priority 102
Winner

External Local
Bus Master

DMA Channel 1

i960 Core
Processor

Priority 002

Priority 012

Priority 102

Highest Priority

Medium Priority

Lowest Priority

Table 18-3. Priority Programming for Local Bus Arbitration Example

Bus Master Programmed Priority

Primary ATU High - 002

DMA Channel 0 Medium - 012

External Bus Master Medium - 012

DMA Channel 1 Low - 102

i960 Core Processor Low - 102

18-4 i960® VH Processor Developer’s Manual

Bus Arbitration

The winning bus master pattern for the bus arbitration example in Table 18-4 would continue on as
follows: ABACABACABACABAC.

18.2.1 Local Bus Arbitration Control Register - LBACR

The Local Bus Arbitration Control Register (LBACR - Table 18-5) sets the arbitration priority of
each device that uses the local bus. This register is accessible only from the 80960 processor bus.
Each device is given a 2-bit priority. At reset, all devices default to 002, high priority, which results
in a simple round-robin for all local bus masters. As devices are promoted up through the priority
levels in the internal arbitration scheme, the LBACR does not change to reflect the current priority
of a device. It always contains the device’s programmed priority.

Table 18-4. Bus Arbitration Example – Three Bus Masters

Priority
Level

Initial
State

Winning Bus Master

A B A C A B A C

High A B A C A B A C A

Medium B C C B B – C B B

Low C – – – – C – – –

NOTE: In this example, all bus masters are continually requesting the bus.

Table 18-5. Local Bus Arbitration Control Register – LBACR

LBA:

PCI:

1600H

NA

Legend: NA = Not Accessible RO = Read Only
RV = Reserved PR = Preserved RW = Read/Write
RS = Read/Set RC = Read Clear
LBA = 80960 Local Bus Address PCI = PCI Configuration Address Offset

Bits Default Description

31:14 0000 0H Reserved.

13:12 002
External Bus Master Priority

Note: Programming 112 (disabled) is not allowed for this bus master.

11:10 002 Primary ATU Priority

09:08 002 Reserved

07:06 002 Reserved

05:04 002 DMA Channel 1 Priority

03:02 002 DMA Channel 0 Priority

01:00 002 i960 Core Processor Priority

PCI

LBA

28 24 20 16 12 8 4 031

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

i960® VH Processor Developer’s Manual 18-5

Bus Arbitration

18.2.2 Removing Local Bus Ownership

With the exception of an external bus master currently owning the bus, the arbiter only removes
GNT# to the current bus owner if the local bus arbitration latency counter has expired or the
current bus owner removes its REQ#. When GNT# is removed, the bus master must get off the bus
by removing its REQ#. See Section 18.2.4, “External Bus Arbitration Support” on page 18-5 for
more information on external bus masters.

When the current local bus owner relinquishes ownership, it removes its REQ# output for a
minimum of one local bus clock. Once the arbiter detects the current owner’s inactive REQ#, it
grants the local bus to the next local bus winner by activating the appropriate GNT# signal. After
the one clock deassertion, the previous local bus master is free to reassert its REQ# signal.

When a local bus master has completed its transaction, it removes the REQ# signal to the arbiter,
regardless of the remaining count in the LBALCR. The arbiter is free to assign a new bus owner at
this time. The LBALCR is reloaded with a new count value whenever new bus ownership is
assigned, except when the bus is parked with the i960 core processor.

Due to the buffering capability within the DMA Controller and ATU, data transfers to the PCI bus
may continue. This means that ownership of a PCI bus may continue after ownership of the local
bus has been lost, since ownership of the local bus and the PCI bus are independent.

When a DMA channel is performing a PCI memory write and invalidate transaction, the DMA
channel does not relinquish the local bus until it has transferred a full cache line into its internal
buffer. This means the DMA channel only relinquishes the bus on host system cache line aligned
boundaries, regardless of the state of the internal GNT# signal and the LBALCR.

18.2.3 i960® Core Processor Bus Usage

The i960 core processor releases control of the local bus, when the latency timer times out, under
the following conditions:

• After completing a data access

• After completing an instruction fetch access

• After completing an atomic access (read-modify-write)

Since software has no control over when the processor needs the bus, it should make use of the
on-chip instruction cache, data cache, and internal data RAM to help reduce the number of
processor bus requests.

18.2.4 External Bus Arbitration Support

External bus masters may be used on the local bus by adding external logic to control the
HOLD/HOLDA mechanism. The 80960VH allows for one external bus master to participate in the
fairness algorithm. Multiple bus masters require external logic to treat all external devices as a
single bus master.

The 80960 arbitration logic supports external bus masters to control local bus. The arbiter
maintains the standard HOLD/HOLDA protocol used on previous 80960 processors except that
the 80960VH does not respond to the HOLD signal (i.e., assert HOLDA) while the core processor
is in reset. Refer to Section 14.6.1, “HOLD/HOLDA Protocol” on page 14-23 for a complete
description of the HOLD/HOLDA interface for external bus masters.

18-6 i960® VH Processor Developer’s Manual

Bus Arbitration

18.2.5 Local Bus Arbitration Latency Counter

The Local Bus Arbitration Latency Counter Register (LBALCR) value sets the minimum period
that the active bus master has control of the local bus. This register’s value is loaded into the 12-bit
counter each time the arbiter grants the local bus. The counter decrements on each processor clock
until it reaches zero. When the counter reaches zero, two possible scenarios may occur:

• When a high-priority request is pending, the arbiter notifies the existing bus master and waits
for the pending request to be removed (signifying the completion of the current data transfer).
The programmed count value is reloaded into the LBALCR and the pending request is granted
control of the local bus.

• When no pending requests are pending and the current bus master still needs the bus, the
arbiter continues to grant the current bus master control of the local bus. Every clock
thereafter, the arbiter continues checking for pending bus requests. Upon recognizing a bus
request the arbiter notifies the bus master and waits for the current bus request to de-assert.
The arbiter then grants the pending bus master control and reloads the LBALCR. When the
current bus master completes its transaction and there are no outstanding bus requests, the
arbiter parks the local bus on the i960 core processor. The LBALCR is not reloaded when the
bus is parked. It is not reloaded until a bus master, including the i960 core processor, is granted
the bus.

Table 18-6 shows the bit definitions for the local bus arbitration latency counter register.

18.2.6 Local Bus Arbitration Latency Counter Register – LBALCR

The Local Bus Arbitration Latency Counter Register (LBALCR) value sets the minimum period
that the active bus master has control of the local bus.

LBALCR is a read/write register accessible through a memory-mapped interface from the local
bus. The maximum value programmable is 0000 0FFFH. The minimum value programmable
(0000 0000H) could result in the local bus being reassigned on every clock. When reading the
LBALCR, the value returned is the programmed value, not the current count value.

Table 18-6. Local Bus Arbitration Latency Count Register – LBALCR

LBA:

PCI:

1604H

NA

Legend: NA = Not Accessible RO = Read Only
RV = Reserved PR = Preserved RW = Read/Write
RS = Read/Set RC = Read Clear
LBA = 80960 Local Bus Address PCI = PCI Configuration Address Offset

Bit Default Description

31:12 0000 0H Reserved.

11:00 FFFH Local Bus Arbitration Counter

PCI

LBA

28 24 20 16 12 8 4 031

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

i960® VH Processor Developer’s Manual 18-7

Bus Arbitration

18.2.7 Local Bus Backoff

The 80960VH backoff unit prevents deadlocks that occur when an i960 core processor outbound
transaction through an ATU occurs simultaneously with an inbound ATU transaction and both
transactions require the same resources. When backoff is required, the backoff unit three-states the
address/data bus and the necessary bus control signals (as in HOLD/HOLDA assertion) to
electrically remove the processor from the bus. The backoff unit simulates a cycle completion by
asserting BLAST# on the cycle following the address phase.

The i960 core processor always backs off under the following situations:

• Outbound configuration read to the ATU

• Outbound memory read to the ATU

• Outbound I/O Read to the ATU

• Any transaction (read or write) to a busy ATU

A busy ATU is one that is currently processing an inbound transaction (inbound address queue is
valid). When backoff occurs, the 12-bit arbitration counter is reset and is reloaded with a new count
when the local bus is granted to another bus master. When the 80960VH is removed from backoff,
the 12-bit arbitration counter is reset to a full count regardless of its value when backoff occurred.
In addition, the processor moves to the highest priority in the local bus arbitration sequence for the
purposes of reacquiring the bus after backoff. After bus re-acquisition, the processor returns to its
preprogrammed priority.

18.3 Internal Arbitration Units

The 80960VH contains an internal arbitration unit that controls access to the internal PCI buses
within the device. The Primary Internal PCI Arbitration Unit arbitrates for the following internal
units:

• Primary ATU

• DMA Channel 0

• DMA Channel 1

The internal PCI arbitration unit uses a fixed round-robin arbitration scheme with each device on a
bus having equal priority.

18.3.1 Internal Master Latency Timer

The PCI interface of the 80960VH contains a Master Latency Timer (MLT) for use by the internal
resources when they are acting as PCI bus masters. The ATU and the DMA channels use an MLT.
MLT usage is explained in the PCI Local Bus Specification Revision 2.1. As defined by the PCI
specification, a PCI bus master must release bus ownership when it has lost grant and its MLT has
expired. The internal PCI arbitration unit extends this concept by adding all of the internal bus
master resources to the arbitration equation and is therefore capable of removing the current bus
master when its MLT has expired.

18-8 i960® VH Processor Developer’s Manual

Bus Arbitration

The internal bus master may lose its grant based on whether an external bus master wants the bus
(external grant inactive) or whether an internal bus master wants the bus (internal grant inactive
while external grant still active). The bus master must relinquish the bus when an external device or
one of the internal resources requests the bus.

i960® VH Processor Developer’s Manual 19-1

Timers 19

This chapter describes the i960® VH processor’s dual, independent 32-bit timers. Topics include
timer registers (TMRx, TCRx and TRRx), timer operation, timer interrupts, and timer register
values at initialization.

Each timer is programmed by the timer registers. These registers are memory-mapped within the
processor, addressable on 32-bit boundaries. When enabled, a timer decrements the user-defined
count value with each Timer Clock (TCLOCK) cycle. The countdown rate is also
user-configurable to be equal to the bus clock frequency, or the bus clock rate divided by 2, 4 or 8.
The timers can be programmed to either stop when the count value reaches zero (single-shot mode)
or run continuously (auto-reload mode). When a timer’s count reaches zero, the timer’s interrupt
unit signals the processor’s interrupt controller. Figure 19-1 shows a diagram of the timer
functions. See also Figure 19-2 for the Timer Unit state diagram.

Figure 19-1. Timer Functional Diagram

Table 19-1. Timer Performance Ranges

Bus Frequency (MHz) Max Resolution (ns) Max Range (mins)

40 25 14.3

33 30.3 17.4

25 40 22.9

20 50 28.6

16 62.5 35.8

Address
Detect

Timer Mode Register

Timer Count Register
32-bit Counter

32-bit Compare
Against Zero

Interrupt Unit

Clock Unit Bus

Fault
Output

User/ Interrupt
Output

Clock

Internal
CPU
Bus

Timer Reload Register

Selected

Terminal Count

Supervisor
Status

32-bit Register

Clock

19-2 i960® VH Processor Developer’s Manual

Timers

19.1 Timer Registers

As shown in Table 19-2, each timer has three memory-mapped registers:

• Timer Mode Register - programs the specific mode of operation or indicates the current
programmed status of the timer. This register is described in Section 19.1.1, “Timer Mode
Register – TMR0:1” on page 19-2.

• Timer Count Register - contains the timer’s current count. See Section 19.1.2, “Timer Count
Register – TCR0:1” on page 19-5.

• Timer Reload Register - contains the timer’s reload count. See Section 19.1.3, “Timer Reload
Register – TRR0:1” on page 19-6.

For register memory locations, see Table C-3 “Timer Registers” on page C-3.

19.1.1 Timer Mode Register – TMR0:1

The Timer Mode Register (TMRx) lets the user program the mode of operation and determine the
current status of the timer. TMRx bits are described in the subsections following Table 19-3 and
are summarized in Table 19-7.

Table 19-2. Timer Registers

Timer Unit Register Acronym Register Name

Timer 0

TMR0 Timer Mode Register 0

TCR0 Timer Count Register 0

TRR0 Timer Reload Register 0

Timer 1

TMR1 Timer Mode Register 1

TCR1 Timer Count Register 1

TRR1 Timer Reload Register 1

Table 19-3. Timer Mode Register – TMRx (Sheet 1 of 2)

LBA:

PCI:

CH 0-0308H
CH 1-0318H

NA

Legend: NA = Not Accessible RO = Read Only
RV = Reserved PR = Preserved RW = Read/Write
RS = Read/Set RC = Read Clear
LBA = 80960 local bus address PCI = PCI Configuration Address Offset

Bit Default Description

31:06 0000 000H Reserved. Initialize to 0.

05:04 002

Timer Input Clock Selects - TMRx.csel1:0
(00) 1:1 Timer Clock = Bus Clock
(01) 2:1 Timer Clock = Bus Clock / 2
(10) 4:1 Timer Clock = Bus Clock / 4
(11) 8:1 Timer Clock = Bus Clock / 8

PCI

LBA

28 24 20 16 12 8 4 031

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

i960® VH Processor Developer’s Manual 19-3

Timers

19.1.1.1 Bit 0 - Terminal Count Status Bit (TMRx.tc)

The TMRx.tc bit is set when the Timer Count Register (TCRx) decrements to 0 and bit 2
(TMRx.reload) is not set for a timer. The TMRx.tc bit allows applications to monitor timer status
through software instead of interrupts. TMRx.tc remains set until software accesses (reads or
writes) the TMRx. The access clears TMRx.tc. The timer ignores any value specified for TMRx.tc
in a write request.

When auto-reload is selected for a timer and the timer is enabled, the TMRx.tc bit status is
unpredictable. Software should not rely on the value of the TMRx.tc bit when auto-reload is
enabled.

The processor also clears the TMRx.tc bit upon hardware or software reset. Refer to Section 12.2,
“i960® VH Processor Initialization” on page 12-2.

19.1.1.2 Bit 1 - Timer Enable (TMRx.enable)

The TMRx.enable bit allows user software to control the timer’s RUN/STOP status. When:

TMRx.enable = 1 The Timer Count Register (TCRx) value decrements every Timer Clock
(TCLOCK) cycle. TCLOCK is determined by the Timer Input Clock
Select (TMRx.csel bits 0-1). See Section 19.1.1.5. When
TMRx.reload=0, the timer automatically clears TMRx.enable when the
count reaches zero. When TMRx.reload=1, the bit remains set. See
Section 19.1.1.3.

TMRx.enable = 0 The timer is disabled and ignores all input transitions.

03 02

Timer Register Supervisor Write Control - TMRx.sup
 (0) Supervisor and User Mode Write Enabled
 (1) Supervisor Mode Only Write Enabled

02 02

Timer Auto Reload Enable - TMRx.reload
(0) Auto Reload Disabled
(1) Auto Reload Enabled

01 02

Timer Enable - TMRx.enable
(0) Disabled
(1) Enabled

00 02

Terminal Count Status - TMRx.tc
(0) No Terminal Count
(1) Terminal Count

Table 19-3. Timer Mode Register – TMRx (Sheet 2 of 2)

LBA:

PCI:

CH 0-0308H
CH 1-0318H

NA

Legend: NA = Not Accessible RO = Read Only
RV = Reserved PR = Preserved RW = Read/Write
RS = Read/Set RC = Read Clear
LBA = 80960 local bus address PCI = PCI Configuration Address Offset

Bit Default Description

PCI

LBA

28 24 20 16 12 8 4 031

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

19-4 i960® VH Processor Developer’s Manual

Timers

User software sets this bit. Once started, the timer continues to run, regardless of other processor
activity. For example, the timer runs while the processor is in Halt mode. Three events can stop the
timer:

• User software explicitly clearing this bit (i.e., TMRx.enable = 0).

• TCRx value decrements to 0, and the Timer Auto Reload Enable (TMRx.reload) bit = 0.

• Hardware or software reset. Refer to Section 12.2, “i960® VH Processor Initialization” on
page 12-2.

19.1.1.3 Bit 2 - Timer Auto Reload Enable (TMRx.reload)

The TMRx.reload bit determines whether the timer runs continuously or in single-shot mode.
When TCRx = 0 and TMRx.enable = 1 and:

TMRx.reload = 1 The timer runs continuously. The processor:

1. Automatically loads TCRx with the value in the Timer Reload Register (TRRx), when TCRx
value decrements to 0.

2. Decrements TCRx until it equals 0 again.

Steps 1 and 2 repeat until software clears TMRx bits 1 or 2.

TMRx.reload = 0 The timer runs until the Timer Count Register = 0. TRRx has no effect
on the timer.

User software sets this bit. When TMRx.enable and TMRx.reload are set and TRRx does not equal
0, the timer continues to run in auto-reload mode, regardless of other processor activity. For
example, the timer runs while the processor is in Halt mode. Two events can stop the timer:

• User software explicitly clearing either TMRx.enable or TMRx.reload.

• Hardware or software reset.

The processor clears this bit upon hardware or software reset.

19.1.1.4 Bit 3 - Timer Register Supervisor Read/Write Control (TMRx.sup)

The TMRx.sup bit enables or disables user mode writes to the timer registers (TMRx, TCRx,
TRRx). Supervisor mode writes are allowed regardless of this bit’s condition. Software can read
these registers from either mode.

When:

TMRx.sup = 1 The timer generates a TYPE.MISMATCH fault when a user mode task
attempts a write to any of the timer registers; however, supervisor mode
writes are allowed.

TMRx.sup = 0 The timer registers can be written from either user or supervisor mode.

The processor clears TMRx.sup upon hardware or software reset. Refer to Section 12.2, “i960®
VH Processor Initialization” on page 12-2.

i960® VH Processor Developer’s Manual 19-5

Timers

19.1.1.5 Bits 4, 5 - Timer Input Clock Select (TMRx.csel1:0)

User software programs the TMRx.csel bits to select the Timer Clock (TCLOCK) frequency. See
Table 19-4. As shown in Figure 19-1, the bus clock is an input to the timer clock unit. These bits
allow the application to specify whether TCLOCK runs at or slower than the bus clock frequency.

The processor clears these bits upon hardware or software reset (TCLOCK = Bus Clock).

19.1.2 Timer Count Register – TCR0:1

The Timer Count Register (TCRx) is a 32-bit register that contains the timer’s current count. The
register value decrements with each timer clock tick. When this register value decrements to zero
(terminal count), a timer interrupt is generated. When TMRx.reload is not set for the timer, the
status bit in the timer mode register (TMRx.tc) is set and remains set until the TMRx register is
accessed. Table 19-5 shows the timer count register.

The valid programmable range is from 1H to FFFF FFFFH. Avoid programming TCRx to 0 as it
will have varying results as described in Section 19.5, “Uncommon TCRx and TRRx Conditions”
on page 19-9.

User software can read or write TCRx whether the timer is running or stopped. Bit 3 of TMRx
determines user read/write control (Section 19.1.1.4). The TCRx value is undefined after hardware
or software reset.

Table 19-4. Timer Input Clock (TCLOCK) Frequency Selection

Bit 5
TMRx.csel1

Bit 4
TMRx.csel0 Timer Clock (TCLOCK)

0 0 Timer Clock = Bus Clock

0 1 Timer Clock = Bus Clock / 2

1 0 Timer Clock = Bus Clock / 4

1 1 Timer Clock = Bus Clock / 8

Table 19-5. Timer Count Register – TCRx

LBA:

PCI:

CH 0-0304H
CH 1-0314H

na

Legend: NA = Not Accessible RO = Read Only
RV = Reserved PR = Preserved RW = Read/Write
RS = Read/Set RC = Read Clear
LBA = 80960 local bus address PCI = PCI Configuration Address Offset

Bit Default Description

31:00 0000 0000H Timer Count Value - TCRx.d31:0

PCI

LBA

28 24 20 16 12 8 4 031

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

19-6 i960® VH Processor Developer’s Manual

Timers

19.1.3 Timer Reload Register – TRR0:1

The Timer Reload Register (TRRx; Table 19-6) is a 32-bit register that contains the timer’s reload
count. The timer loads the reload count value into TCRx when TMRx.reload is set (1),
TMRx.enable is set (1) and TCRx equals zero.

As with TCRx, the valid programmable range is from 1H to FFFF FFFFH. Avoid programming a
value of 0, as it may prevent TINTx from asserting continuously. (See Section 19.5, “Uncommon
TCRx and TRRx Conditions” on page 19-9 for more information.)

User software can access TRRx whether the timer is running or stopped. Bit 3 of TMRx determines
read/write control (Section 19.1.1.4, “Bit 3 - Timer Register Supervisor Read/Write Control
(TMRx.sup)” on page 19-4). TRRx value is undefined after hardware or software reset.

19.2 Timer Operation

This section summarizes timer operation and describes load/store access latency for the timer
registers.

19.2.1 Basic Timer Operation

Each timer has a programmable enable bit in its control register (TMRx.enable) to start and stop
counting. The supervisor (TMRx.sup) bit controls write access to the enable bit. This allows the
programmer to prevent user mode tasks from enabling or disabling the timer. Once the timer is
enabled, the value stored in the Timer Count Register (TCRx) decrements every Timer Clock
(TCLOCK) cycle. TCLOCK is determined by the Timer Input Clock Select (TMRx.csel) bit
setting. The countdown rate can be set to equal the bus clock frequency, or the bus clock rate
divided by 2, 4 or 8. Setting TCLOCK to a slower rate lets the user specify a longer count period
with the same 32-bit TCRx value.

Software can read or write the TCRx value whether the timer is running or stopped. This lets the
user monitor the count without using hardware interrupts. The TMRx.sup bit lets the programmer
allow or prevent user mode writes to TCRx, TMRx and TRRx.

Table 19-6. Timer Reload Register – TRRx

LBA:

PCI:

CH 0-0300H
CH 1-0310H

NA

Legend: NA = Not Accessible RO = Read Only
RV = Reserved PR = Preserved RW = Read/Write
RS = Read/Set RC = Read Clear
LBA = 80960 local bus address PCI = PCI Configuration Address Offset

Bit Default Description

31:00 0000 0000H Timer Auto-Reload Value - TRRx.d31:0

PCI

LBA

28 24 20 16 12 8 4 031

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

i960® VH Processor Developer’s Manual 19-7

Timers

When the TCRx value decrements to zero, the unit’s interrupt request signals the processor’s
interrupt controller. See Section 19.3, “Timer Interrupts” on page 19-8 for more information. The
timer checks the value of the timer reload bit (TMRx.reload) setting. When TMRx.reload. = 1, the
processor:

• Automatically reloads TCRx with the value in the Timer Reload Register (TRRx).

• Decrements TCRx until it equals 0 again.

This process repeats until software clears TMRx.reload or TMR.enable.

When TMRx.reload = 0, the timer stops running and sets the terminal count bit (TMRx.tc). This bit
remains set until user software reads or writes the TMRx register. Either access type clears the bit.
The timer ignores any value specified for TMRx.tc in a write request.

19.2.2 Load/Store Access Latency for Timer Registers

As with all other load accesses from internal memory-mapped registers, a load instruction that
accesses a timer register has a latency of one internal processor cycle. With one exception, a store
access to a timer register completes and all state changes take effect before the next instruction
begins execution. The exception to this is when disabling a timer. Latency associated with the
disabling action is such that a timer interrupt may be posted immediately after the disabling
instruction completes. This can occur when the timer is near zero as the store to TMRx occurs. In
this case, the timer interrupt is posted immediately after the store to TMRx completes and before
the next instruction can execute. Table 19-8 summarizes the timer access and response timings.
Refer also to the individual register descriptions for details.

Note that the processor may delay the actual issuing of the load or store operation due to previous
instruction activity and resource availability of processor functional units.

The processor ensures that the TMRx.tc bit is cleared within one bus clock after a load or store
instruction accesses TMRx.

Table 19-7. Timer Mode Register Control Bit Summary

B
it

 3
(T

M
R

x.
su

p
)

T
R

R
x

T
C

R
x

B
it

 2
(T

M
R

x.
re

lo
ad

)

B
it

 1
(T

M
R

x.
en

ab
le

)

Action

X X X X 0 Timer disabled.

X X N 0 1 Timer enabled, TMRx.enable is cleared when TCRx decrements to zero.

X N N 1 1 Timer and auto reload enabled,TMRx.enable remains set when TCRx=0.
When TCRx=0, TCRx equals the TRRx value.

0 X X X X No faults for user mode writes are generated.

1 X X X X TYPE.MISMATCH fault generated on user mode write.

NOTE: X = don’t care
N = a number between 1H and FFFF FFFFH

19-8 i960® VH Processor Developer’s Manual

Timers

19.3 Timer Interrupts

Each timer is the source for one interrupt. When a timer detects a zero count in its TCRx, the timer
generates an internal edge-detected Timer Interrupt signal (TINTx) to the interrupt controller, and
the interrupt-pending (IPND.tipx) bit is set in the interrupt controller. Each timer interrupt can be
selectively masked in the Interrupt Mask (IMSK) register or handled as a dedicated
hardware-requested interrupt. Refer to Chapter 8, “Interrupts” for a description of
hardware-requested interrupts.

Table 19-8. Timer Responses to Register Bit Settings

 Name Status Action

(TMRx.tc)

Terminal Count
Bit 0

READ
Timer clears this bit when user software accesses TMRx. This bit can be set
1 bus clock later. The timer sets this bit within 1 bus clock of TCRx reaching
zero when TMRx.reload=0.

WRITE Timer clears this bit within 1 bus clock after the software accesses TMRx.
The timer ignores any value specified for TMRx.tc in a write request.

(TMRx.enable)

Timer Enable
Bit 1

READ Bit is available 1 bus clock after executing a read instruction from TMRx.

WRITE Writing a ‘1’ enables the bus clock to decrement TCRx within 1 bus clock
after executing a store instruction to TMRx.

(TMRx.reload)

Timer Auto
Reload Enable

Bit 2

READ Bit is available 1 bus clock after executing a read instruction from TMRx.

WRITE
Writing a ‘1’ enables the reload capability within 1 bus clock after the store
instruction to TMRx has executed. The timer loads TRRx data into TCRx and
decrements this value during the next bus clock cycle.

(TMRx.sup)

Timer Register
Supervisor Write

Control
Bit 3

READ Bit is available 1 bus clock after executing a read instruction from TMRx.

WRITE
Writing a ‘1’ locks out user mode writes within 1 bus clock after the store
instruction executes to TMRx. Upon detecting a user mode write the timer
generates a TYPE.MISMATCH fault.

(TMRx.csel1:0)

Timer Input Clock
Select

Bits 4-5

READ Bits are available 1 bus clock after executing a read instruction from
TMRx.csel1:0 bit(s).

WRITE The timer re-synchronizes the clock cycle used to decrement TCRx within
one bus clock cycle after executing a store instruction to TMRx.csel1:0 bit(s).

(TCRx.d31:0)

Timer Count
Register

READ
The current TCRx count value is available within 1 bus clock cycle after
executing a read instruction from TCRx. When the timer is running, the
pre-decremented value is returned as the current value.

WRITE
The value written to TCRx becomes the active value within 1 bus clock cycle.
When the timer is running, the value written is decremented in the current
clock cycle.

(TRRx.d31:0)

Timer Reload
Register

READ

The current TRRx count value is available within 1 bus clock after executing a
read instruction from TRRx. When the timer is transferring the TRRx count
into TCRx in the current count cycle, the timer returns the new TCRx count
value to the executing read instruction.

WRITE
The value written to TRRx becomes the active value stored in TRRx within 1
bus clock cycle. When the timer is transferring the TRRx value into the TCRx,
data written to TRRx is also transferred into TCRx.

i960® VH Processor Developer’s Manual 19-9

Timers

When the interrupt is disabled after a request is generated, but before a pending interrupt is
serviced, the interrupt request is still active (the Interrupt Controller latches the request). When a
timer generates a second interrupt request before the CPU services the first interrupt request, the
second request may be lost.

When auto-reload is enabled for a timer, the timer continues to decrement the value in TCRx even
after entry into the timer interrupt handler.

19.4 Powerup/Reset Initialization

Upon power up, external hardware reset or software reset (sysctl), the timer registers are initialized
to the values shown in Table 19-9.

19.5 Uncommon TCRx and TRRx Conditions

Table 19-7 summarizes the most common settings for programming the timer registers. Under
certain conditions, however, it may be useful to set the Timer Count Register or the Timer Reload
Register to zero before enabling the timer. Table 19-10 details the conditions and results when
these conditions are set.

Table 19-9. Timer Powerup Mode Settings

Mode/Control Bit Notes

TMRx.tc = 0 No terminal count

TMRx.enable = 0 Prevents counting and assertion of TINTx

TMRx.reload = 0 Single terminal count mode

TMRx.sup = 0 Supervisor or user mode access

TMRx.csel1:0 = 0 Timer Clock = Bus Clock

TCRx.d31:0 = 0 Undefined

TRRx.d31:0 = 0 Undefined

TINTx output Deasserted

Table 19-10. Uncommon TMRx Control Bit Settings

TRRx TCRx Bit 2
(TMRx.reload)

Bit 1
(TMRx.enable)

Action

X 0 0 1 TMRx.tc and TINTx set, TMR.enable cleared

0 0 1 1 Timer and auto reload enabled, TINTx not generated and timer
enable remains set.

0 N 1 1 Timer and auto reload enabled. TINT.x set when TCRx=0. The
timer remains enabled but further TINTx’s are not generated.

N 0 1 1
Timer and auto reload enabled, TINTx not set initially, TCRx =
TRRx, TINTx set when TCRx has completely decremented the
value it loaded from TRRx. TMRx.enable remains set.

NOTE: X = don’t care
N = a number between 1H and FFFF FFFFH

19-10 i960® VH Processor Developer’s Manual

Timers

19.6 Timer State Diagram

Figure 19-2 shows the common states of the Timer Unit. For uncommon conditions see
Section 19.5, “Uncommon TCRx and TRRx Conditions” on page 19-9.

Figure 19-2. Timer Unit State Diagram

Hardware/Software Reset

TMRx.enable = 0
TMRx.reload = 0
TMRx.sup = 0
TMRx.csel1:0 = 0

IDLE
Bus Clock or
SW Read

SW Write (TMRx.enable = 1)

TMRx.enable = 1
TMRx.reload =user value
TMRx.sup = user value
TMRx.csel1:0 = user value

TCRx
Decrement

Clock Unit Tick

SW Write TCRx = 0

 and TCRx != 0

TC = 1
IPND.tip = 1

IPND.tip = 0

TC Detected

Bus Clock

SW Read SW Read/Write & Reload = 0

Reload = 1

TCRx = TRRx

TMRx.enable = 1

TC = 0

TMRx.enable = 0

State
TC = 0

TMRx.reload =user value
TMRx.sup = user value
TMRx.csel1:0 = user value

TMRx.enable = 1

TMRx.enable = 0

SW Write
(TMRx.enable = 0)

Initial TCRx
Check

TCRx != 0

SW Read

SW Write

See Section 19.5,
“Uncommon TCRx and TRRx
Conditions” on page 19-9.

TCRx = 0

i960® VH Processor Developer’s Manual 20-1

DMA Controller 20

This chapter describes the integrated Direct Memory Access (DMA) Controller, including the
operation modes, setup, external interface, registers and interrupts.

20.1 Overview

The DMA Controller provides low-latency, high-throughput data transfer capability. The DMA
Controller optimizes block transfers of data between the PCI bus and 80960 local bus memory. The
DMA is an initiator on the PCI bus with PCI burst capabilities to provide a maximum throughput
of 132 Mbytes/sec at 33 MHz.

Each channel contains a 64-byte data queue. This queue temporarily holds data to increase data
transfer performance in both directions.

Figure 20-1 shows the DMA channel to PCI bus connections.

The DMA Controller hardware executes data transfers and provides the programming interface.
Features include:

• Two Independent Channels

• Memory Controller Interface

• 32-bit addressing range on the 80960 local bus

• 32-bit addressing range on the primary PCI interface

• Independent PCI interfaces to the primary PCI bus.

• Hardware support for unaligned data transfers for both the PCI bus and 80960 local bus

• Full 132 Mbyte/sec burst support for both the PCI bus and 80960 local bus

• Direct addressing to and from the PCI bus

Figure 20-1. DMA Controller Block Diagram

Primary PCI Bus

80960
DMA Channel 0

DMA Channel 1

Local Bus

20-2 i960® VH Processor Developer’s Manual

DMA Controller

• Fully programmable from the i960 core processor

• Support for automatic data chaining for gathering and scattering of data blocks

• Demand Mode Support for 32 bit external devices on DMA channel 0

20.2 Theory Of Operation

The DMA Controller provides two channels of high throughput PCI-to-memory transfers:

• Channels 0 and 1 transfer data blocks between the primary PCI bus and 80960 local memory.
Channel 0 also supports demand-mode transfers.

Channel 0’s additional support for demand mode operation enables an external device to assert a
DMA request signal and provide the data for a DMA transfer. During demand mode operation, the
DMA controller supports the full 132 Mbytes/sec data throughput. The DMA Controller only
supports 32-bit wide external 80960 local bus widths.

Each channel has a PCI bus interface and an 80960 local bus interface. Figure 20-2 shows the
block diagram for one DMA Controller channel. Each channel also has an independent bus
request/grant signal pair to the 80960 local bus arbitration to decide which local bus master has
access to the 80960 local bus.

Each DMA channel uses direct addressing for both the PCI bus and the 80960 local bus. The DMA
channels do not support data transfers that cross a 32-bit address boundary. The PCI interface and
the 80960 local bus interface support 2 Kbyte burst lengths. The DMA Unit rearbitrates for the
80960 local bus at 2 Kbyte boundaries.

Figure 20-2. DMA Channel Block Diagram

80960

 Data Queue

DMA Channel
Packing/

Unpacking
Unit

PCI Bus

Channel Control Register

Control Registers

Channel Status Register

Descriptor Address Register

Next Descriptor Address Register
PCI Address Register

PCI Upper Address Register
80960 Local Address Register

Byte Count Register

Descriptor Control Register

80960 Local
Bus Interface

Local Bus

Master PCI
Bus Interface

i960® VH Processor Developer’s Manual 20-3

DMA Controller

The DMA channel programming interface is accessible from the 80960 local bus through a
memory-mapped register interface. Each DMA channel is programmed independently and has its
own set of registers. A DMA transfer is configured by writing the source address, destination
address, number of bytes to transfer, and various control information into a chain descriptor in
80960 local memory. Chain descriptors are described in detail in Section 20.3, “DMA Transfer” on
page 20-3.

Each DMA channel supports chaining. Chain descriptors describe one DMA transfer and can be
linked together in 80960 local memory to form a linked list. Each chain descriptor contains all the
necessary information for transferring a block of data in addition to a pointer to the next chain
descriptor. End of chain is indicated when the pointer is zero.

Each DMA channel contains a hardware data packing and unpacking unit. This unit enables data
transfers from or to unaligned addresses in either the PCI address space or the 80960 local address
space. All combinations of unaligned data are supported with the packing and unpacking unit.

20.3 DMA Transfer

A DMA transfer is a block move of data from one memory address space to another. DMA
transfers are configured and initiated through a set of memory-mapped registers, and one or more
chain descriptors located in local memory. Table 20-1 identifies the registers; see also Section 20.7,
“Register Definitions” on page 20-20. A DMA transfer is defined by the source address,
destination address, number of bytes to transfer, and control values. These values are loaded into
the chain descriptor before a DMA transfer begins.

20.3.1 Chain Descriptors

All DMA transfers are controlled by chain descriptors located in local memory. A chain descriptor
contains the necessary information to complete one data transfer. A single DMA transfer has only
one chain descriptor in memory. Chain descriptors can be linked together to form more complex
DMA operations.

To perform a DMA transfer, one or more chain descriptors must first be written to 80960 local
memory. Figure 20-3 shows the format of an individual chain descriptor. Every descriptor requires
six contiguous words in 80960 local bus memory and is required to be aligned on an 8-word
boundary. All six words are required.

Table 20-1. DMA Registers

Register Abbreviation Description

Channel Control Register CCR Channel Control Word

Channel Status Register CSR Channel Status Word

Descriptor Address Register DAR Address of Current Chain Descriptor

Next Descriptor Address Register NDAR Address of Next Chain Descriptor

PCI Address Register PADR Lower 32-bit PCI Address of Source/Destination

PCI Upper Address Register PUADR Upper 32-bit PCI Address of Source/Destination

80960 Local Address Register LADR 80960 Local Bus Address of Source/Destination

Byte Count Register BCR Number of Bytes to transfer

Descriptor Control Register DCR Chain Descriptor Control Word

20-4 i960® VH Processor Developer’s Manual

DMA Controller

Each chain descriptor word is analogous to control register values. Bit definitions for chain
descriptor words are the same as for the DMA control registers.

• The first word is the 80960 local bus memory address of the next chain descriptor. A zero
value specifies the end of chain. This value is loaded into the Next Descriptor Address
Register. Because chain descriptors must be aligned on an 8-word boundary, the channel
ignores bits 04:00 of this address.

• The second word is the lower 32-bit PCI source/destination address. This address is generated
on the PCI bus. This value is loaded into the PCI Address Register.

• The third word is the upper 32-bit PCI source/destination address. Dual Address Cycles are
not supported on the 80960VH processor, therefore this field must be set to zero (0).

• The fourth word is the 80960 local bus source/destination address. This address is driven on
the 80960 local bus. This value is loaded into the 80960 Local Address Register.

• The fifth word is the Byte Count value. This value determines the number of bytes to transfer.
This value is loaded into the Byte Count Register.

• The sixth word is the Descriptor Control word. This word configures the DMA channel for
one DMA transfer. It contains the PCI command type, which determines data transfer
direction. This value is loaded into the Descriptor Control Register.

There are no data alignment requirements for either the PCI address or the 80960 local bus address.
However, maximum performance is obtained from aligned transfers, especially small transfers. See
Section 20.9, “Packing and Unpacking” on page 20-30.

A series of chain descriptors can be built in local memory to transfer data between the PCI buses
and 80960 local bus. For example, the application can build multiple chain descriptors to transfer
many blocks of data which have different source addresses within local memory. When the
multiple chain descriptors are built in 80960 local bus memory, the application can link each chain
descriptor using the Next Descriptor Address in the chain descriptor. This address logically links
the chain descriptors together. This allows the application to build a list of DMA transfers which
may not require the i960 core processor until all DMA transfers are complete. Figure 20-4 shows a
list of DMA transfers built in external memory and how they are linked together.

Figure 20-3. DMA Chain Descriptor

Next Descriptor Address (NDA)

80960 Local Address (LAD)

Descriptor Control (DC)

Byte Count (BC)

PCI Upper Address [63:32] (PUAD)

PCI Address [31:0] (PAD) Lower 32-bit PCI Source/Destination Address

Descriptor Control

Address of Next Chain Descriptor

Upper 32-bit PCI Source/Destination Address

Number of Bytes to Transfer

80960 Local Bus Address

Chain Descriptor in 80960 Memory Description

i960® VH Processor Developer’s Manual 20-5

DMA Controller

20.3.2 Initiating DMA Transfers

A DMA transfer is started by first building one or more chain descriptors in 80960 local memory.
Each chain descriptor takes the form shown in Figure 20-3. The chain descriptors are required to be
aligned on an 8-word boundary in 80960 local memory. The following steps describe new DMA
transfer initiation:

1. The channel must be inactive prior to starting a DMA transfer. This can be checked by
software by reading the Channel Status Register’s (CSR) Channel Active bit. When this bit is
clear, the channel is inactive. When this bit is set, the channel is currently active with a DMA
transfer.

2. Software writes the first chain descriptor’s address to the Next Descriptor Address Register.

Figure 20-4. DMA Chaining Operation

Next Descriptor Address (NDA)

80960 Local Bus Address (LAD)

Descriptor Address Register DMA Controller Register

Linked Descriptors In Local Memory

Buffer Transfers

First
Buffer

Transfer

Second
Buffer

Transfer

Nth
Buffer

Transfer

...

Descriptor Control (DC)

Byte Count (BC)

End of Chain

PCI Upper Address [63:32] (PUAD)

PCI Address [31:0] (PAD)

(Null Value Detected)

Next Descriptor Address (NDA)

80960 Local Bus Address (LAD)

Descriptor Control (DC)

Byte Count (BC)

PCI Upper Address [63:32] (PUAD)

PCI Address [31:0] (PAD)

Next Descriptor Address (NDA)

80960 Local Bus Address (LAD)

Descriptor Control (DC)

Byte Count (BC)

PCI Upper Address [63:32] (PUAD)

PCI Address [31:0] (PAD)

20-6 i960® VH Processor Developer’s Manual

DMA Controller

3. Software sets the Channel Control Register’s (CCR) Channel Enable bit. Because this is the
start of a new DMA transfer and not the resumption of a previous DMA transfer, the CCR
Chain Resume bit should be clear.

4. The channel starts the DMA transfer by reading the chain descriptor at the address contained
in the Next Descriptor Address Register. The channel loads the chain descriptor values into the
CCRs and begins data transfer. The Descriptor Address Register now contains the address of
the chain descriptor just read and the Next Descriptor Address Register now contains the Next
Descriptor Address from the chain descriptor just read.

The last descriptor in the DMA chain list has zero in the next descriptor address field, which
identifies it as the last chain descriptor. The NULL value notifies the DMA channel to stop reading
chain descriptors from memory.

Once a DMA transfer is active, it may be temporarily suspended by clearing the CCR Channel
Enable bit. Note that this does not abort the DMA transfer; the channel resumes the DMA transfer
when the Channel Enable bit is set.

When descriptors are read from external memory, bus latency and memory speed affect chaining
latency. Chaining latency is defined as the time required for the channel to access the next chain
descriptor plus the time required to set up for the next DMA transfer.

20.3.3 Scatter Gather DMA Transfers

The DMA Controller can be used to perform typical scatter gather data transfers. This consists of
programming the chain descriptors to gather the data which may be located in non-contiguous
blocks of memory. The chain descriptor specifies the destination location, so that once the data has
been transferred, the data is contiguous in memory. Figure 20-5 shows how the destination pointers
can gather data.

Figure 20-5. Example of Gather Chaining

source buffers

PAD = PCI Address
NDA = Next Descriptor Address

PUAD = PCI Upper Address

DC = Descriptor Control

...

...

...

destination
bufferPAD

LAD = 80960 Local Address
BC = Byte Count

End of Chain
Null Value Detected

PUAD LAD BC DCNDA

PAD PUAD LAD BC DCNDA

PAD PUAD LAD BC DCNDA

PAD PUAD LAD BC DCNDA

i960® VH Processor Developer’s Manual 20-7

DMA Controller

20.3.4 Synchronizing a Program to Chained Transfers

Chained DMA transfers can be synchronized to a program executing on the i960 core processor
through the use of processor interrupts. The channel generates an interrupt to the i960 core
processor under certain conditions. They are:

• Interrupt & Continue - The channel completes the data transfer for a chain descriptor and the
Next Descriptor Address Register is non-zero. When the Descriptor Control Register’s
Interrupt Enable bit is set, an interrupt is generated to the i960 core processor. This interrupt is
for synchronization purposes only. The channel sets the CSR’s End Of Descriptor Interrupt
flag. Since it is not the last chain descriptor in the list, the DMA channel starts to process the
next chain descriptor without requiring any processor interaction.

• End of Chain - The DMA channel completes the data transfer for a DMA chain descriptor and
the Next Descriptor Address Register is zero specifying end of chain. When the Descriptor
Control Register’s Interrupt Enable bit is set, an interrupt is generated to the i960 core
processor. The channel sets the CSR’s End Of Chain Interrupt flag.

• Error - An error condition occurs during a DMA transfer. The channel halts operation on the
current chain descriptor and does not proceed to the next chain descriptor.

Each chain descriptor can independently set the Descriptor Control Register’s Interrupt Enable bit.
This bit enables an independent channel interrupt upon completion of the data transfer for the chain
descriptor. This bit can be set or clear within each chain descriptor. Control of interrupt generation
within each descriptor aids in the synchronization of the executing software with the DMA
transfers.

Figure 20-6 shows two examples of program synchronization. The left column shows program
synchronization based on individual chain descriptors. Descriptor 1A generated an interrupt to the
processor, while descriptor 2A did not because the Interrupt Enable bit was clear. The last
descriptor nA, generated an interrupt to signify end of chain is reached. The right column shows an
example where the interrupt was generated on the last descriptor signifying the end of chain.

20-8 i960® VH Processor Developer’s Manual

DMA Controller

20.3.5 Appending to the End of a Chain

Once the channel starts processing a chain of DMA descriptors, application software may need to
append a chain descriptor to the current chain without interrupting the transfer in progress. This
action is controlled by the CCR Chain Resume bit.

The channel reads the entire chain descriptor each time the channel completes a chain descriptor
and the Next Descriptor Address Register is non-zero.

• The Next Descriptor Address Register always contains the address of the next chain descriptor
to be read

• The Descriptor Address Register always contains the current chain descriptor’s address

The procedure for appending chains requires software to find the last chain descriptor in the current
chain and change the Next Descriptor Address in that descriptor to the address of the new chain.
Software then sets the CCR’s Chain Resume bit for the channel — whether the channel is active or
not.

Figure 20-6. Synchronizing to Chained Transfers

Descriptor 1B

Descriptor 2A

Descriptor 2B

...

...

Descriptor 1A

chain descriptorschain descriptors

RET

interrupt procedure

...
RET

interrupt procedure

Descriptor nB

...
RET

interrupt procedure

Descriptor nA

...

Independent Interrupt after Completing any Descriptor Interrupt after Completing Last Descriptor

No Interrupt on this Descriptor

Optional interrupt
generated to

i960® VH Processor Developer’s Manual 20-9

DMA Controller

The channel examines the CCR’s Chain Resume bit when the channel is idle or upon completion of
a chain of DMA transfers. When this bit is set, the channel re-reads the Next Descriptor Address of
the current chain descriptor and loads it into the Next Descriptor Address Register. The current
chain descriptor’s address is contained in the Descriptor Address Register. The channel clears the
Chain Resume bit and examines the Next Descriptor Address Register. When the Next Descriptor
Address Register is not zero, the channel reads the chain descriptor using this new address and
begins a new DMA transfer. When the Next Descriptor Address Register is zero, the channel
remains or returns to idle.

Three cases to consider when appending a chain descriptor are:

1. The channel completes a DMA transfer and it is not the last descriptor in the chain. In this
case, the channel clears the Chain Resume bit and reads the next chain descriptor. The
appended descriptor is read when the channel reaches the end of the original chain.

2. The channel completes a DMA transfer and it is the last descriptor in the chain. In this case,
the channel examines the state of the Chain Resume bit. When the bit is set, the channel
re-reads the current descriptor to get the appended chain descriptor’s address, placed there by
software. When the bit is clear, the channel returns to idle.

3. The channel is idle. In this case, the channel examines the Chain Resume bit state when the
CCR is written. When the bit is set, the channel re-reads the last descriptor from the
most-recent chain to get the appended chain descriptor placed there by the software.

20.4 Demand Mode DMA

DMA controller Channel 0 provides a two pin interface which supports DMA transfers to and from
32-bit external devices on the 80960 local bus. This interface consists of a DREQ# pin which the
external device asserts signifying there is new data to transfer or it has available buffers for DMA
transfers into the device. The second pin, DACK#, is driven by the DMA controller to notify the
device that it can receive additional data or it has data to send to the device.

The demand mode DMA transfers requires the 32-bit external device to be connected to the 80960
local bus and have the ability to support the 80960 local bus control signals through a direct
interface or custom external logic. The waveforms shown in Figure 20-7 through Figure 20-14
describe the control signal interface using the DREQ# and DACK# pins.

The Demand Mode Enable bit in the Descriptor Control Register (refer to Section 20.7.9,
“Descriptor Control Register - DCRx” on page 20-28) for channel 0 enables demand mode
transfers. When demand mode is enabled, the 80960 Address Increment Hold Enable bit in the
Descriptor Control Register allows the application programmer to program the 80960 local bus
address in DMA channel 0 to a fixed value. When this bit is set, the channel holds the 80960 local
bus address to the same value on every burst transfer. The external device is responsible for
internally keeping track of the data transfer address. Typically, holding the 80960 local bus address
is used for data transfers to a port, which may contain a deep FIFO to buffer the data. The address
increment hold is only available on DMA controller channel 0.

20.5 Wait States Initiated by the DMA Controller

The PCI bus allows PCI master and PCI slave devices to insert wait states during a burst transfer.
This is done through the PCI control signals P_IRDY# and P_TRDY#. These signals can change
the PCI bus’s data throughput characteristics. This, in turn, requires all DMA Channels to have a

20-10 i960® VH Processor Developer’s Manual

DMA Controller

similar control signal to notify the external device of the change in data rate. The WAIT# signal is
generated by the DMA Controller to insert wait states in the data stream between the external
device and the DMA controller. WAIT#, for the 80960 local bus, is similar in function to the PCI
bus’ IRDY# signal. It may assert at any time when DEN# is asserted and BLAST# is not asserted;
and as long as WAIT# is asserted, LRDYRCV#/RDYRCV# is a don’t care. WAIT# will not assert
when the 80960 local bus is idle. This WAIT# signal is also shown in Figure 20-7 through
Figure 20-14.

Figure 20-7. DMA - Aligned Write to Device, Wait States, Device Always Requesting

TA TD TD TD TD TD TD TD

P_CLK

DREQ#

DACK#

AD[31:0]

ADS#

DEN#/

RDYRCV#/

WAIT#

BLAST#

TD TD TD TD TD TD TD TD TD TR

CS1#

LRDYRCV#

W/R#

A D D D D D D D D D D D D D D D D

TI

NOTE:
* DMA transfers one queue of data

*

i960® VH Processor Developer’s Manual 20-11

DMA Controller

Figure 20-8. DMA - Aligned Write to Device, DMA Inserting Wait States, Device Always
Requesting

TA TD TD TD TD TW TD

P_CLK

DREQ#

DACK#

AD[31:0]

ADS#

DEN#/

RDYRCV#/

WAIT#

BLAST#

TW TD TW TD TR TI

CS1#

LRDYRCV#

*

W/R#

A D D D D D D

NOTE:
* DMA transfer ended - Lost PCI Bus Grant
** Wait states inserted by DMA controller after the queue was drained

(data may be streaming in from the PCI bus with wait states).

**

D

BE3:0#

20-12 i960® VH Processor Developer’s Manual

DMA Controller

Figure 20-9. DMA - Aligned Read from Device, DMA Inserting Wait States, Device Always
Requesting

TA TD TD TD TD TD TW TD

P_CLK

DREQ#

DACK#

AD[31:0]

ADS#

DEN#/

RDYRCV#/

WAIT#

BLAST#

TW TD TW TD TR

CS1#

LRDYRCV#

W/R#

A

NOTE:
* Wait states inserted by the DMA controller after the queue filled
(data may be streaming on the PCI bus with wait states).

D D D D D D D D

*

BE3:0#

i960® VH Processor Developer’s Manual 20-13

DMA Controller

Figure 20-10. DMA - Aligned Read from Device, Device Inserting Wait States, Device Always
Requesting

TA TW TD TW TD TW TD

P_CLK

DREQ#

DACK#

AD[31:0]

ADS#

DEN#/

RDYRCV#/

WAIT#

BLAST#

TW TD TW TD TR TI

CS1#

LRDYRCV#

W/R#

NOTE:
* Wait states inserted by memory controller (LRDYRCV#) -

*

using memory bank #1 for connecting the peripheral device
OR
Wait states inserted by an external memory controller and driving RDYRCV#

A D D D D D

BE3:0#

20-14 i960® VH Processor Developer’s Manual

DMA Controller

Figure 20-11. DMA - Aligned Write to Device, Zero Wait States, Device ends Transfer

TD TD TD TD TD TD TD TR

P_CLK

DREQ#

DACK#

AD[31:0]

DEN#/

RDYRCV#/

WAIT#

BLAST#

TI

CS1#

LRDYRCV#

W/R#

D D D D D D D

NOTE:
* DMA channel end transfer - DMA queue empty

and lost PCI Bus Grant (only one data transfer after deasserting DREQ#)

*

i960® VH Processor Developer’s Manual 20-15

DMA Controller

Figure 20-12. DMA - Aligned Write to Device, Zero Wait States, Device ends Transfer

TD TD TD TD TD TD TD TR

P_CLK

DREQ#

DACK#

AD[31:0]

DEN#/

RDYRCV#/

WAIT#

BLAST#

TI

CS1#

LRDYRCV#

W/R#

D D D D D D D

NOTE:
* Device ends transfer by deasserting DREQ#

(maximum 2 data transfers)

*

TD

D

20-16 i960® VH Processor Developer’s Manual

DMA Controller

Figure 20-13. DMA - READ from Device, Wait States, Device ends Transfer

TD TW TW TD TW TW TR

P_CLK

DREQ#

DACK#

AD[31:0]

DEN#/

RDYRCV#/

WAIT#

BLAST#

CS1#

LRDYRCV#

W/R#

NOTE:
* Device ends transfer by deasserting DREQ#

*

TD

D D D

**

** Wait states inserted by DMA channel after queue filled
 (data may be streaming on the PCI bus with wait states).

(only 1 data transfer).

TA

i960® VH Processor Developer’s Manual 20-17

DMA Controller

Figure 20-14. DMA - Unaligned Read from Device, DMA Inserting Wait States, Device Always
Requesting

TA TW TD TD TD TD TW TD

P_CLK

DREQ#

DACK#

AD[31:0]

ADS#

DEN#/

RDYRCV#/

WAIT#

BLAST#

TW TD TW TD TR

CS1#

LRDYRCV#

A

NOTE:
* Wait states inserted by the DMA controller after the queue filled

D D D D D D D

*

BE3:0# **Last Cycle Valid

W/R#

** For First and Last Cycle Valid Data Path bit settings.

Data PathData Path

**First Cycle Valid
Data PathData Path

BE3:0 = 00002

(data may be streaming on the PCI bus with wait states).

20-18 i960® VH Processor Developer’s Manual

DMA Controller

20.6 Data Transfers

The DMA controller is optimized to perform data transfers between the PCI bus and local memory.
The DMA channels issue both read and write accesses to the PCI bus and the 80960 local bus. The
DMA channels have bus mastering capabilities only. The same condition applies to the 80960 local
bus interface. These transfers are summarized in the following sections.

20.6.1 PCI to Local Memory Transfers

PCI to local memory transfers perform read cycles on the PCI bus and place the data into the DMA
channel queues. Once the first data is placed into the queue, the DMA channel’s local bus interface
requests the local bus and drains the queue by writing the data to local memory.

Application software can use the various PCI command types to improve system performance for
these transfers. The three defined PCI read commands include: Memory Read, Memory Read Line,
and Memory Read Multiple. Refer to the PCI Local Bus Specification, revision 2.1 for full PCI
command descriptions.

For example, a Memory Read Multiple command can be programmed when the block size is larger
than a cache line. This notifies the PCI target that the DMA channel intends to transfer a large
block of data and the target should try to read ahead and anticipate the DMA controller read
requests. Application software can select which command type is best to satisfy system
requirements.

The following describes a DMA transfer from the PCI bus to the 80960 local memory:

• The DMA channel requests the PCI bus. Once the DMA channel has at least one WORD in the
queue, it asserts the request for the 80960 local bus.

• The DMA channel reads data from the PCI bus and fills the channel queue. When the 80960
local bus has not been granted and the queues become full, it removes the request from the PCI
bus and continue to request the 80960 local bus.

• When the DMA channel reaches a byte count of zero while filling the queues or reaches a
queue full condition before acquiring the 80960 local bus, the DMA channel ends the data
transfer on the PCI bus, and removes the request for the PCI bus.

• When the DMA channel acquires the 80960 local bus while filling the queues, the DMA
channel transfers data from the channel queue to local memory. At the same time, the DMA
channel continues to request data on the PCI bus. This continues until one of four conditions
occur:

— loss of PCI bus ownership

— loss of 80960 local bus ownership

— PCI bus error condition

— 80960 local bus error condition

— When the DMA channel reaches a 2 Kbyte address boundary, the DMA controller stops
the current 80960 local bus transaction

i960® VH Processor Developer’s Manual 20-19

DMA Controller

Note: The loss of ownership on the PCI bus is determined by ATU latency timer expiration and the
removal of the PCI grant signal. Loss of ownership on the 80960 local bus is determined solely by
the removal of the grant signal.

• Upon losing the PCI bus, the DMA channel completes the current data transfer in progress,
terminates gracefully and removes the request on the 80960 local bus.

• Upon losing the 80960 local bus, the DMA channel completes the current data transfer in
progress, terminates gracefully and removes the request on the PCI bus.

• Error conditions on either bus terminates data transfers on both interfaces, sets the
corresponding bit in the status register, and generates an interrupt to the i960 core processor.

20.6.2 Local Memory to PCI Transfers

Local memory to PCI transfers perform read cycles on the local bus and place the data into the
DMA channel queues. Once the first data is placed into the queue, the DMA channel’s PCI bus
interface requests the PCI bus and drains the queue by writing data to the PCI bus.

Local memory to PCI transfers can generate two different PCI write commands: Memory Write,
and Memory Write and Invalidate. The application software can use these PCI command types to
improve system performance for these types of transfers.

Memory Write commands can be used for all data transfers to the PCI bus. There are no restrictions
for these transfers and both bus interfaces are optimized for full 132 Mbytes/sec bandwidth.
However, the PCI target may provide better system performance by using the Memory Write and
Invalidate command.

The following describes a DMA transfer from 80960 local memory to the PCI bus:

• The DMA channel requests the 80960 local bus. Once the DMA channel has at least one
WORD in the queue, it asserts the request for the PCI bus.

• The DMA channel reads data from local memory and fills the channel queue. If the PCI bus
has not been granted and the queues become full, then it removes the request from the 80960
local bus and continues to request the PCI bus. When the DMA channel reaches a 2 Kbyte
address boundary, the DMA controller stops the current local bus transaction.

• When the DMA channel reaches a byte count of zero while filling the queues or reaches a
queue full condition before acquiring the PCI bus, the DMA channel ends the data transfer and
removes the request for the 80960 local bus.

• When the DMA channel acquires the PCI bus while filling the queues, the DMA channel
transfers data from the channel queue to the PCI bus. At the same time, the DMA channel
continues requesting data from local memory. This continues until one of four conditions
occur: loss of PCI bus ownership, loss of 80960 local bus ownership, PCI bus error condition,
80960 local bus error condition.

Note: The loss of PCI bus ownership is determined by the ATU latency timer expiration and the removal
of the PCI grant signal. Loss of 80960 local bus ownership is determined by the local arbitration
described in Chapter 18, “Bus Arbitration”.

• Upon losing the PCI or 80960 local bus, the DMA channel completes the current data transfer
in progress and terminates gracefully. The only exception is for the Memory Write and
Invalidate cycle type. The DMA channel meets the requirements specified by the PCI local
bus specification. For Memory Write and Invalidate, the DMA channel continues data

20-20 i960® VH Processor Developer’s Manual

DMA Controller

transfers until reaching the next cacheline size boundary specified by the ATU Cacheline Size
Register.

• Error conditions on either bus terminate data transfers on both interfaces, sets the
corresponding status register bit, and generates an interrupt to the i960 core processor.

20.6.3 Local Memory to PCI Transfers using Memory Write and
Invalidate

The second mechanism for performing local memory to PCI transfers may improve system
performance based on the PCI target capabilities.

Note: Using the Memory Write and Invalidate (MWI) command improves system performance when the
target is cacheable memory.

The DMA channel attempts to use the Memory Write and Invalidate command on the PCI bus
when programmed by application software. However, a number of circumstances may prevent the
DMA channel from actually initiating the MWI command. If any of the following three conditions
are not met, then the channel converts the MWI command to a Memory Write command for the
complete DMA transfer:

1. The ATU Cacheline Size Register (ATUCLSR), located in ATU configuration space, must
have a valid value other than zero. This register is programmed by host software.

2. The ATUCLSR must have a legal value which is less than or equal to the number of queue
entries in the DMA channel queue. (The channel must guarantee an entire cache line can be
transferred during an MWI bus transaction).

3. The Memory Write and Invalidate Enable bit must be set in either the:

a. For Channels 0 and 1: Primary ATU Command Register

When the above conditions are met, the DMA channel provides full Memory Write and Invalidate
support. For example, to transfer an 80 byte block to a PCI address of 8001CH while the
ATUCLSR is 8 DWORDs, the DMA channel performs three PCI transactions:

1. Transfer of 4 bytes at address 8001CH using the Memory Write command.

2. Transfer of 64 bytes at address 80020H using the MWI command.

3. Transfer of 12 bytes at address 80060H using the Memory Write command.

20.6.4 Exclusive Access

The DMA Controller does not support exclusive access through the PCI LOCK# signal.

20.7 Register Definitions

The DMA controller contains registers for controlling each channel. Each channel has nine
memory-mapped control registers for independent operation. The CCR, CSR, and the Next
Descriptor Address Registers have a read/write access. All other DMA registers are read-only and
are loaded with new values from the chain descriptor when the channel reads a chain descriptor
from memory.

i960® VH Processor Developer’s Manual 20-21

DMA Controller

20.7.1 Channel Control Register - CCRx

The Channel Control Register (CCR) specifies parameters that dictate the overall channel
operating environment. The CCR should be initialized prior to any other DMA register following a
system reset. This register can be read or written while the DMA channel is active.

Table 20-2. DMA Controller Register Summary

Section Register Name - Acronym Page
Size
(Bits)

DMA
Channel

80960
Local Bus
Address

PCI
Config
Addr

Offset

20.7.1 Channel Control Register - CCRx 20-21 32
0
1

0000 1400H
0000 1440H

NA

20.7.2 Channel Status Register - CSRx 20-22 32
0
1

0000 1404H
0000 1444H

NA

20.7.3 Descriptor Address Register - DARx 20-24 32
0
1

0000 140CH
0000 144CH

NA

20.7.4 Next Descriptor Address Register - NDARx 20-24 32
0
1

0000 1410H
0000 1450H

NA

20.7.5 PCI Address Register - PADRx 20-25 32
0
1

0000 1414H
0000 1454H

NA

20.7.6 PCI Upper Address Register - PUADRx 20-26 32
0
1

0000 1418H
0000 1458H

NA

20.7.7 80960 Local Address Register - LADRx 20-26 32
0
1

0000 141CH
0000 145CH

NA

20.7.8 Byte Count Register - BCRx 20-27 32
0
1

0000 1420H
0000 1460H

NA

20.7.9 Descriptor Control Register - DCRx 20-28 32
0
1

0000 1424H
0000 1464H

NA

Table 20-3. Channel Control Register - CCRx (Sheet 1 of 2)

LBA:

PCI:

CH.0-1400H
CH.1-1440H

NA

Legend: NA = Not Accessible RO = Read Only
RV = Reserved PR = Preserved RW = Read/Write
RS = Read/Set RC = Read Clear
LBA = 80960 Local Bus Address PCI = PCI Configuration Address Offset

Bit Default Description

31:02 0000 0000H Reserved.

PCI

LBA

28 24 20 16 12 8 4 031

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rw

na

rw

na

20-22 i960® VH Processor Developer’s Manual

DMA Controller

20.7.2 Channel Status Register - CSRx

The Channel Status Register (CSRx) contain status flags that indicate the channel status (see
Table 20-4). This register is typically read by software to examine the source of an interrupt. See
Section 20.8, “Interrupts” on page 20-29 for a description of DMA channel interrupts.

When a DMA error occurs, application software should check the status of Channel Active flag
before processing the interrupt. It is possible that the channel may still be completing any
outstanding PCI transactions.

01 02

Chain Resume - when set, causes the channel to resume chaining by re-reading the
current descriptor located at the address in the Descriptor Address Register when the
channel is idle (Channel Active bit in the CSR is clear) or when the channel completes
a DMA transfer. This bit is cleared by the hardware when either:
• The channel completes a DMA transfer and the Next Descriptor Address Register

is zero. In this case, the channel proceeds to the next descriptor in the chain.

• The channel re-reads the chain descriptor located at the address in the Descriptor
Address Register and loads the Next Descriptor Address of that descriptor into the
Next Descriptor Address Register

00 02

Channel Enable - When set, the channel enables DMA transfers. When clear, the
channel disables DMA transfers. Clearing this bit when the channel is active
immediately suspends the current DMA transfer by halting all local bus transactions.
The PCI interface may continue with the current transfer until the data queue either fills
or empties. The channel does not initiate any new DMA transfers when this bit is
cleared. Data held in queues remains valid. Setting this bit after the channel is
suspended causes the channel to resume the DMA transfer.

The Channel Enable bit works in conjunction with the Bus Master Enable bit of the
Primary ATU Command Register for DMA Channel 0 and 1. The respective Bus Master
Enable bit must be set for the DMA channel to start a transaction on the PCI bus.

Table 20-3. Channel Control Register - CCRx (Sheet 2 of 2)

LBA:

PCI:

CH.0-1400H
CH.1-1440H

NA

Legend: NA = Not Accessible RO = Read Only
RV = Reserved PR = Preserved RW = Read/Write
RS = Read/Set RC = Read Clear
LBA = 80960 Local Bus Address PCI = PCI Configuration Address Offset

Bit Default Description

PCI

LBA

28 24 20 16 12 8 4 031

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rw

na

rw

na

i960® VH Processor Developer’s Manual 20-23

DMA Controller

Table 20-4. Channel Status Register - CSRx (Sheet 1 of 2)

LBA:

PCI:

CH.0-1404H
CH.1-1444H
NA

Legend: NA = Not Accessible RO = Read Only
RV = Reserved PR = Preserved RW = Read/Write
RS = Read/Set RC = Read Clear
LBA = 80960 Local Bus Address PCI = PCI Configuration Address Offset

Bit Default Description

31:11 0000 00H Reserved.

10 02

Channel Active Flag - indicates the channel is either active (in use) or inactive
(available). When set, indicates the channel is in use and actively performing DMA data
transfers. When clear, indicates the channel is inactive and available to be configured to
transfer data. The channel clears the Channel Active flag when the previously
configured DMA transfer completes as a result of:
• byte count reached zero and last chain descriptor is encountered (NULL value

detected for Next Descriptor Address in chain descriptor)

• PCI Master-abort occurred on the PCI interface

• PCI Target-abort occurred on the PCI interface

• PCI parity error occurred on the PCI interface

• 80960 parity error signalled from the Memory Controller

• 80960 local bus fault signalled from the Memory Controller

The Channel Active flag is set when a Chain Descriptor is read from memory.

09 02

End of Transfer Interrupt Flag - set when the channel has signalled an interrupt to the
i960 core processor after successfully completing an error-free DMA transfer but it is
not the last descriptor in a chain.

08 02

End of Chain Interrupt Flag - set when the channel has signalled an interrupt to the i960
core processor after successfully completing an error-free DMA transfer that is the last
of a chain.

07 02 Reserved.

06 02

80960 Memory Fault Error Flag - set when the channel detects a parity error when
reading data from the 80960 local bus or when reading the Chain Descriptor or NDAR
value. The Memory Controller verifies data parity (when enabled) on memory reads
from the 80960 local bus and notifies the DMA Controller upon detecting invalid parity.

05 02

80960 local bus Fault Error Flag - set when the channel detects a Bus Fault when
attempting to read or write data to the 80960 local bus or when reading the Chain
Descriptor or NDAR value.

04 02 Reserved.

03 02
PCI Master Abort Flag - set when the channel has initiated a transaction on the PCI bus
and has detected a Master-abort.

02 02
PCI Target Abort Flag - set when the channel has initiated a transaction on the PCI bus
and has detected a Target-abort.

01 02 Reserved.

PCI

LBA

28 24 20 16 12 8 4 031

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

ro

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

ro

na

rc

na

rc

na

rv

na

rc

na

rc

na

rv

na

rc

na

rc

na

rv

na

rc

na

20-24 i960® VH Processor Developer’s Manual

DMA Controller

20.7.3 Descriptor Address Register - DARx

The Descriptor Address Register (DARx, Table 20-5) contains the current chain descriptor’s
address in 80960 local memory for a DMA transfer. This read-only register is loaded when a new
chain descriptor is read. All chain descriptors are required to be aligned on an eight 32-bit word
boundary.

20.7.4 Next Descriptor Address Register - NDARx

The Next Descriptor Address Register (NDARx, see Table 20-6) contains the address of the next
chain descriptor in 80960 local memory for a DMA transfer. When starting a DMA transfer, this
register contains the first chain descriptor’s address.

00 02

PCI Parity Error Flag - is set when the following three conditions are met:
• DMA channel asserted PERR# or has observed PERR# asserted

• DMA channel was the master for the transaction in which the error occurred

• Parity Checking Enable bit is in the PATUCMD is set (for channel 0 and 1) or in the
SATUCMD (for channel 2)

Table 20-4. Channel Status Register - CSRx (Sheet 2 of 2)

LBA:

PCI:

CH.0-1404H
CH.1-1444H
NA

Legend: NA = Not Accessible RO = Read Only
RV = Reserved PR = Preserved RW = Read/Write
RS = Read/Set RC = Read Clear
LBA = 80960 Local Bus Address PCI = PCI Configuration Address Offset

Bit Default Description

PCI

LBA

28 24 20 16 12 8 4 031

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

ro

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

ro

na

rc

na

rc

na

rv

na

rc

na

rc

na

rv

na

rc

na

rc

na

rv

na

rc

na

Table 20-5. Descriptor Address Register - DARx

LBA:

PCI:

CH.0-140CH
CH.1-144CH
NA

Legend: NA = Not Accessible RO = Read Only
RV = Reserved PR = Preserved RW = Read/Write
RS = Read/Set RC = Read Clear
LBA = 80960 Local Bus Address PCI = PCI Configuration Address Offset

Bit Default Description

31:05 0000 000H Current Descriptor Address - 80960 local bus memory address of the current chain
descriptor that was read by the channel.

04:00 00H Reserved.

PCI

LBA

28 24 20 16 12 8 4 031

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

rv

na

rv

na

rv

na

rv

na

rv

na

i960® VH Processor Developer’s Manual 20-25

DMA Controller

All chain descriptors are required to be aligned on an eight 32-bit word boundary. The channel may
set bits 04:00 to zero when loading this register.

Note: The CCR Channel Enable bit and CSR Channel Active bit must both be clear prior to writing the
Next Descriptor Address Register. Writing a value to this register while the channel is active may
result in undefined behavior.

20.7.5 PCI Address Register - PADRx

The PCI Address Register (PADR, Table 20-7) contains the 32-bit PCI address for SAC cycles or
the lower 32-bit PCI address of a 64-bit PCI address for DAC cycles. DAC is not supported on the
i960 VH processor. This address is the DMA transfer’s source or destination. This read-only
register is loaded when a chain descriptor is read from memory.

The channel drives PAD1:0 to a value of 002 indicating linear or sequential addressing. Refer to the
PCI Local Bus Specification, revision 2.1 for additional information.

Note: Application software must not program the channel to transfer data across a 4 Gbyte boundary (i.e.,
the lower 32-bit address must not increment past the maximum address of FFFF FFFFH). The
channel does not notify the application of this condition.

Table 20-6. Next Descriptor Address Register - NDARx

LBA:

PCI:

CH.0-1410H
CH.1-1450H
NA

Legend: NA = Not Accessible RO = Read Only
RV = Reserved PR = Preserved RW = Read/Write
RS = Read/Set RC = Read Clear
LBA = 80960 Local Bus Address PCI = PCI Configuration Address Offset

Bit Default Description

31:05 0000 000H Next Descriptor Address - 80960 local bus memory address of the next chain descriptor
to be read by the channel.

04:00 00H Reserved.

PCI

LBA

28 24 20 16 12 8 4 031

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rv

na

rv

na

rv

na

rv

na

rv

na

20-26 i960® VH Processor Developer’s Manual

DMA Controller

20.7.6 PCI Upper Address Register - PUADRx

The PCI Upper Address Register (PUADRx, Table 20-8) contains the upper 32-bit address of a
64-bit address. This register is read-only and is loaded when a chain descriptor is read from
memory. Dual Address Cycle is not supported on the i960 VH processor. The PCI Upper Address
[63:32] (PUAD) in the DMA Chain Descriptor must always be set to zero (0).

20.7.7 80960 Local Address Register - LADRx

The 80960 Local Address Register (LADRx, Table 20-9) contains the 32-bit 80960 local bus
address. The 80960 local bus address space is a 32-bit, byte addressable address space. This
register is read-only and is loaded when a chain descriptor is read from memory.

Note: Access to the Peripheral Memory-Mapped Registers through a DMA transfer is not allowed. Do
not program LADRx with values less than 1800H; this address space is reserved. Hardware must
ensure that local bus accesses to this space are properly terminated.

Table 20-7. PCI Address Register - PADRx

LBA:

PCI:

CH.0-1414H
CH.1-1454H
NA

Legend: NA = Not Accessible RO = Read Only
RV = Reserved PR = Preserved RW = Read/Write
RS = Read/Set RC = Read Clear
LBA = 80960 Local Bus Address PCI = PCI Configuration Address Offset

Bit Default Description

31:00 0000 0000H PCI Address - is the PCI source/destination address.

PCI

LBA

28 24 20 16 12 8 4 031

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

Table 20-8. PCI Upper Address Register - PUADRx

LBA:

PCI:

CH.0-1418H
CH.1-1458H
NA

Legend: NA = Not Accessible RO = Read Only
RV = Reserved PR = Preserved RW = Read/Write
RS = Read/Set RC = Read Clear
LBA = 80960 Local Bus Address PCI = PCI Configuration Address Offset

Bit Default Description

31:00 0000 0000H

PCI Upper Address - is the PCI source/destination upper address. Not implemented
and a reserved register. The PCI upper address [63:32] (PUAD) in the DMA Chain
Descriptor must always be set to zero (0). Refer to bit 5 of the Descriptor Control
Register - DCRx in Section 20.7.9.

PCI

LBA

28 24 20 16 12 8 4 031

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

i960® VH Processor Developer’s Manual 20-27

DMA Controller

20.7.8 Byte Count Register - BCRx

The Byte Count Register contains the number of bytes to transfer for a DMA transfer. This is a
read-only register that is loaded from the Byte Count word in a chain descriptor. It allows for a
maximum DMA transfer of 16 Mbytes. A value of zero is a valid byte count and results in no data
words being transferred and no cycles generated on either the PCI bus or the 80960 local bus.

When the i960 core processor reads this register, it contains the number of bytes left to transfer on
the 80960 local bus. The channel’s data queue may contain valid data. This register decrements by
1, 2, 3 or 4 for each successful operand transfer from the source to destination locations.

• When the operand size is byte, the register byte count decrements by 1

• When the operand is a 2-byte transfer, the byte count decrements by 2

• When the operand is a 3-byte transfer, the byte count decrements by 3

• When the operand is a word (32-bit data) the byte count decrements by 4

Note: The byte count value is not required to be aligned to a 32-bit word boundary
(i.e., the byte count value can be a word aligned, short aligned, or byte aligned).

Table 20-9. 80960 Local Address Register - LADRx

LBA:

PCI:

CH.0-141CH
CH.1-145CH
NA

Legend: NA = Not Accessible RO = Read Only
RV = Reserved PR = Preserved RW = Read/Write
RS = Read/Set RC = Read Clear
LBA = 80960 Local Bus Address PCI = PCI Configuration Address Offset

Bit Default Description

31:00 0000 0000H 80960 local bus address - the 80960 local bus source/destination address.

PCI

LBA

28 24 20 16 12 8 4 031

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

Table 20-10. Byte Count Register - BCRx

LBA:

PCI:

CH.0-1420H
CH.1-1460H
NA

Legend: NA = Not Accessible RO = Read Only
RV = Reserved PR = Preserved RW = Read/Write
RS = Read/Set RC = Read Clear
LBA = 80960 Local Bus Address PCI = PCI Configuration Address Offset

Bit Default Description

31:24 00H Reserved

23:00 00 0000H Byte Count - is the number of bytes to transfer for a DMA transfer.

PCI

LBA

28 24 20 16 12 8 4 031

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

20-28 i960® VH Processor Developer’s Manual

DMA Controller

20.7.9 Descriptor Control Register - DCRx

The Descriptor Control Register (DCR, Table 20-11) contains control values for the DMA transfer
on a per-chain descriptor basis. These values may vary from chain descriptor to chain descriptor.

Table 20-12 lists the PCI commands that are supported and not supported for DCR bits 3:0.

Table 20-11. Descriptor Control Register - DCRx

LBA:

PCI:

CH.0-1424H
CH.1-1464H
NA

Legend: NA = Not Accessible RO = Read Only
RV = Reserved PR = Preserved RW = Read/Write
RS = Read/Set RC = Read Clear
LBA = 80960 Local Bus Address PCI = PCI Configuration Address Offset

Bit Default Description

31:08 0000 00H Reserved

07 02

80960 local bus address Increment Hold Enable - instructs DMA Channel 0 to hold the
80960 local bus address at a fixed value. This bit works in conjunction with demand
mode DMA (Section 20.4, “Demand Mode DMA”) and is ignored when the Demand
Mode Enable bit is clear. When set, Channel 0 holds the 80960 local bus address to the
fixed value in the 80960 Local Address Register. When clear, Channel 0 increments the
80960 local bus address on every byte transferred.

06 02

Demand Mode Enable - enables DMA Channel 0 to use the demand mode DMA
interface for data transfers between an external device on the 80960 local bus and the
PCI bus. When set, Channel 0 samples DREQ# to determine when the external device
has data to transfer. When the channel is ready to transfer data, it asserts DACK# to
notify the transfer is in progress. Refer to Section 20.4, “Demand Mode DMA”. When
clear, demand mode DMA transfers are disabled.

05 02

Dual Address Cycle Enable - determines the address cycle type generated on the PCI
bus. Not implemented and a reserved bit field. This bit must always be set to zero (0) to
disable the Dual Address Cycle.

04 02
Interrupt Enable - when set, the channel generates an interrupt to the i960 core
processor upon completion of this DMA transfer. When clear, no interrupt is generated.

03:00 0H

PCI Command - determines PCI bus command type on the PCI bus for this DMA
transfer. This value is used directly for the PCI bus command; for example, when PCI
Command is 00002, the PCI Command is 00002, a reserved command type. See
Table 20-12. Hardware does not check for reserved or unsupported command types.

PCI

LBA

28 24 20 16 12 8 4 031

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

ro

na

Table 20-12. PCI Commands (Sheet 1 of 2)

C/BE3:0# PCI Command Type Description

00002 Reserved Not Supported

00012 Reserved Not Supported

00102 I/O Read Not Supported

00112 I/O Write Not Supported

i960® VH Processor Developer’s Manual 20-29

DMA Controller

20.8 Interrupts

Each channel can generate an interrupt to the i960 core processor. The Descriptor Control
Register’s Interrupt Enable bit (DCRx.ie) determines when the channel generates an interrupt upon
successful error-free completion of a DMA transfer. Each channel has one interrupt output
connected to the PCI and Peripheral Interrupt Controller described in Chapter 8, “Interrupts”.
Table 20-13 summarizes the conditions when interrupts are generated and status flags found in the
Channel Status Register (CSRx).

01002 Reserved Not Supported

01012 Reserved Not Supported

01102 Memory Read Memory Read of less than one cacheline

01112 Memory Write Memory Write

10002 Reserved Not Supported

10012 Reserved Not Supported

10102 Configuration Read Not Supported

10112 Configuration Write Not Supported

11002 Memory Read Multiple Memory Read of more than one cacheline

11012 Reserved Not Supported

11102 Memory Read Line Memory Read of one cacheline

11112 Memory Write and Invalidate Memory Write which guarantees the transfer of a
complete cache line during the current transaction

Table 20-12. PCI Commands (Sheet 2 of 2)

C/BE3:0# PCI Command Type Description

Table 20-13. DMA Interrupt Summary (Sheet 1 of 2)

Interrupt
Condition

Channel Status Flags
Interrupt

Generated?

A
ct

iv
e

E
n

d
 o

f
D

es
cr

ip
to

r

E
n

d
 o

f
C

h
ai

n

P
C

I M
as

te
r

A
b

o
rt

P
C

I T
ar

g
et

A

b
o

rt

P
C

I P
ar

it
y

E
rr

o
r

L
o

ca
l B

u
s

P
ar

it
y

E
rr

o
r

L
o

ca
l B

u
s

F
au

lt
 E

rr
o

r

D
C

R
.ie

 S
et

D
C

R
.ie

 C
le

ar

Byte count == 0
&&

NDARx != NULL
(End of Transfer)

1 1 0 0 0 0 0 0 Y N

Byte Count == 0
&&

NDARx == NULL
(End of Chain)

0 0 1 0 0 0 0 0 Y N

PCI Master-abort 0 0 0 1 0 0 0 0 Y Y

PCI Target-abort 0 0 0 0 1 0 0 0 Y Y

20-30 i960® VH Processor Developer’s Manual

DMA Controller

When abort or error interrupt conditions occur, the channel terminates data transfers for the current
chain descriptor and clears the CSR Channel Active flag. The channel invalidates or clears any data
in the channel data queues and does not read any new chain descriptors. The channel signals an
interrupt to the i960 core processor and stops. The channel sets the appropriate error flag in the
CSR. For PCI errors, the channel takes the appropriate actions on the PCI bus specified by the
control bits found in the ATU Control Register (ATUCR). During an MWI transaction, the channel
completes the cache line transfer before stopping. Refer to Chapter 16, “Address Translation Unit”
for additional information on the PCI error conditions.

The channel cannot restart a DMA transfer after an error condition. Software must configure the
channel to complete the remaining transfers, if any.

For local bus parity errors, data with incorrect parity is never transferred to the PCI bus. For PCI
parity errors, data with incorrect parity is never transferred to the local memory.

When a Memory Fault Error or Bus Fault Error occurs while reading the Chain Descriptor or Next
Descriptor Address, the channel sets the appropriate CSR error flag, loads the CCRs (if possible),
and stops.

Note: The channel never reports an End of Descriptor Interrupt or End of Chain Interrupt along with any
PCI error condition. End of Descriptor Interrupt and End of Chain Interrupt can only be reported in
the CSR when the DMA transfer completes without any reportable errors. However, multiple error
conditions may occur and be reported together. Also, because the channel does not stop after
reporting the End of Descriptor Interrupt, the End of Chain Interrupt or local bus errors may occur
before the End of Descriptor Interrupt is acknowledged and cleared.

20.9 Packing and Unpacking

Each channel contains a data hardware packing and unpacking unit to support unaligned data
transfers between the source and destination busses. The packing unit optimizes data transfers to
and from 32-bit memory. The channel reformats data words for the correct bus data path. When the
channel must pack or unpack data, the data is held internally to the channel and does not need to be
re-read.

PCI Parity Error 0 0 0 0 0 1 0 0 Y Y

Local Bus Parity
Error

0 0 0 0 0 0 1 0 Y Y

Local Bus Fault
Error

0 0 0 0 0 0 0 1 Y Y

Table 20-13. DMA Interrupt Summary (Sheet 2 of 2)

Interrupt
Condition

Channel Status Flags
Interrupt

Generated?

A
ct

iv
e

E
n

d
 o

f
D

es
cr

ip
to

r

E
n

d
 o

f
C

h
ai

n

P
C

I M
as

te
r

A
b

o
rt

P
C

I T
ar

g
et

A

b
o

rt

P
C

I P
ar

it
y

E
rr

o
r

L
o

ca
l B

u
s

P
ar

it
y

E
rr

o
r

L
o

ca
l B

u
s

F
au

lt
 E

rr
o

r

D
C

R
.ie

 S
et

D
C

R
.ie

 C
le

ar

i960® VH Processor Developer’s Manual 20-31

DMA Controller

20.10 DMA Channel Programming Examples

Software is required for each of the following DMA channel functions:

• Channel initialization

• Start DMA transfer

• Suspend channel

Examples for each function is shown in the following sections as pseudocode.

20.10.1 Software DMA Controller Initialization

The DMA Controller has independent control of interrupts, enables, and control. Initialization
consists of virtually no overhead as shown in Figure 20-16.

Figure 20-15. Optimization of an Unaligned DMA

1

12

2

3

3

4

4

5

5

6

6

7

7

8

8

9

9

1011

11

12

12

ADDRESS

A000 0200H

A000 0204H

A000 0208H

A000 020CH

4001 0300H

4001 0304H

4001 0308H

4001 030CH

Source
Bus

Destination
Bus

LSB
MSB

Memory

Byte Number

10
10

Bus Operation

word load @ A0000200
word load @ A0000204
word load @ A0000208
word load @ A000020C

byte store @ 40010303
word store @40010304
word store @40010308
3-byte store @ 4001030C

SOURCE DESTINATION

CCR

PADR

PUADR

LADR

BCR

DCR

Programmed Values

0000 0001H

A000 0201H

0000 0000H

4001 0303H

0000 000CH

0000 0006H

(PCI Bus)

(Local Bus)

20-32 i960® VH Processor Developer’s Manual

DMA Controller

20.10.2 Software Start DMA Transfer

The DMA channel control register provides independent control per channel based on each time
the DMA channel is configured. This provides the most flexibility to the application programmer.

20.10.3 Software Suspend Channel

The channel may need to be suspended for various reasons. The channel provides the ability to
suspend the channel state without losing the current status. The channel resumes DMA operation
without requiring the software to save the channel configuration. The example shown in
Figure 20-17 describes the pseudocode for suspending channel 0.

Figure 20-16. Software Example for Channel Initialization

CCR0 = 0x0000 0000 ; Disable channel
Call setup_channel

Figure 20-17. Software Example for Channel Suspend

CCR0 = 0x0000 0000; Suspend Channel 0

 Channel suspended.....

CCR0 = 0x0000 0001; Resume Channel 0

i960® VH Processor Developer’s Manual 21-1

I2C Bus Interface Unit 21

This chapter describes the I2C (Inter-Integrated Circuit) bus interface unit of the i960® VH
processor, including the operation modes and setup. Throughout this manual, this peripheral is
referred to as the I2C unit.

Figure 21-1 shows a block diagram of the I2C unit and its interface to the 80960 local bus.

21.1 Overview

The I2C bus allows the 80960VH to interface to other I2C peripherals and microcontrollers for
system management functions. The serial bus requires hardware and software to create an
economical system for relaying status and reliability information from the 80960VH subsystem to
an external device.

Data transfers to and from the I2C bus via a buffered interface. Control and status information are
relayed through a set of 80960 memory-mapped registers. An interrupt mechanism notifies the
80960VH of I2C activity. Refer to any of the following sources for details on I2C bus operation:

• I2C Peripheral for Microcontrollers – Philips Semiconductor

• I2C Bus and How to Use It (Including Specifications) – Philips Semiconductor

• I2C Peripherals for Microcontrollers (Including Fast Mode) – Signetics

Figure 21-1. I2C Unit Block Diagram

80960
80960 Processor

Core

SDA

SCL

I2C Bus Interrupt (XINT7#)

Shift

Register

Memory-Mapped

Registers

I2C Control Register (ICR)

I2C Status Register (ISR)

I2C Slave Address Register (ISAR)

I2C Clock Count Register (ICCR)

I2C Data Buffer Register (IDBR)

Local Bus

I2C Bus Interface
Unit

21-2 i960® VH Processor Developer’s Manual

I2C Bus Interface Unit

The I2C unit allows the i960 VH processor to serve as a master or slave device residing on the I2C
bus. The I2C unit consists of:

• A Serial Data/Address (SDA) pin for input and output functions.

• A Serial Clock Line (SCL) pin for reference and control of the I2C bus

• An 8-bit buffer for passing data to and from the 80960VH

• A shift register for parallel/serial data conversions

• A set of control and status registers

• A dedicated interrupt to inform the 80960VH of activity on the I2C bus

21.2 Theory of Operation

The I2C bus defines a complete serial protocol for passing information between agents on the I2C
bus using only a two pin interface. The interface consists of a Serial Data/Address (SDA) line and
a Serial Clock Line (SCL). Each device on the I2C bus is recognized by a unique 7-bit address and
can operate as a transmitter or as a receiver. In addition to transmitter and receiver, the I2C bus uses
the concept of master and slave. Table 21-1 defines terms used in this chapter.

As an example of I2C bus operation, consider the case of an 80960VH acting as a master on the bus
(see Figure 21-2). The 80960VH, as a master, addresses an EEPROM as a slave to receive data.
The 80960VH is a master-transmitter and the EEPROM is a slave-receiver. When the 80960VH
reads data, the 80960VH is a master-receiver and the EEPROM is a slave-transmitter. In both
cases, the master generates the clock, initiates the transaction and terminates it.

Table 21-1. I2C Bus Definitions

I2C Device Definition

Transmitter Sends data to the I2C bus.

Receiver Receives data from the I2C bus.

Master Initiates a transfer, generates the clock signal, and terminates the transactions.

Slave The device addressed by a master.

Multi-master More than one master can attempt to control the bus at the same time without corrupting
the message.

Arbitration A procedure to ensure that, when more than one master simultaneously tries to control the
bus, only one is allowed. This procedure ensures that messages are not corrupted.

i960® VH Processor Developer’s Manual 21-3

I2C Bus Interface Unit

The I2C bus allows for a multi-master system, which means more than one device can initiate data
transfers at the same time. To support this feature, the I2C bus arbitration relies on the wired-AND
connection of all I2C interfaces to the I2C bus. Two masters can drive the bus simultaneously
provided they are driving identical data. The first master to go high when other produces a low
signal on the SDL line loses the arbitration. The SCL line consists of a synchronized combination
of clocks generated by the masters using the wired-AND connection to the SCL line.

The I2C bus serial operation uses an open-drain wired-AND bus structure, which allows multiple
devices to drive the bus lines and to communicate status about events such as arbitration, wait
states, error conditions, etc. For example, when a master drives the clock (SCL) line during a data
transfer, it transfers a bit on every instance that the clock is high (see Figure 21-3). When the slave
is unable to accept or drive data at the rate that the master is requesting, the slave can hold the clock
line low between the high states to insert a wait interval. The master’s clock can only be altered by
a slow slave peripheral keeping the clock line low or by another master during arbitration. For
more information on multi-master support, see Section 21.6, “Arbitration” on page 21-7.

The I2C unit supports both fast mode operation at 400 Kbits/sec and standard mode at
100 Kbits/sec. Fast mode logic levels, formats, capacitive loading and protocols function the same
in both modes. Refer to I2C Peripheral for Microcontrollers by Philips Semiconductor for details.
I2C unit does not support I2C 10-bit addressing or CBUS.

Figure 21-2. I2C Bus Configuration Example

Micro -
Controller

Gate
Array

EEPROM i960® VH

SCL

SDA

Processor

21-4 i960® VH Processor Developer’s Manual

I2C Bus Interface Unit

21.3 Start and Stop Bus States

The 80960VH uses the START and STOP bits (bits 1:0) in the ICR (Table 21-6) to:

• Initiate a START condition on the I2C bus.

• Enable data chaining (repeated START).

• Initiate a STOP condition on the I2C bus.

Figure 21-4 shows the relationship between the SDA and SCL lines for a START and STOP
condition.

Figure 21-3. Bit Transfer on the I2C Bus

SDA

Data Line

SCL

Data Valid
Stable:

Change
of Data
Allowed

∼ ∼
∼ ∼

∼ ∼

Figure 21-4. Start and Stop Conditions

SDA

SCL

Start Condition

∼ ∼
∼ ∼

∼ ∼

Stop Condition

i960® VH Processor Developer’s Manual 21-5

I2C Bus Interface Unit

21.3.1 START Condition

The START condition (bits 1:0 of the ICR set to 012) initiates a master transaction or repeated
START. Software must load the target slave address and the R/W# bit in the IDBR (Table 21-9
“I2C Data Buffer Register – IDBR” on page 21-21) before setting the START ICR bit (see
Figure 21-4). The START and the IDBR contents are transmitted on the I2C bus when the ICR
transfer byte bit is set. The I2C bus stays in master-transmit mode when a write is requested or
enters master-receive mode when a read is requested. For a repeated start (a change in read or write
or a change in the target slave address), the IDBR contains the updated target slave address and the
R/W# bit. This enables multiple transfers to different slaves without giving up the bus.

The START condition is not cleared by the I2C unit when arbitration is lost. While initiating a
START and the arbitration is lost, the I2C unit may re-attempt the START when the bus becomes
free - see Section 21.6.2, “SDA Arbitration” on page 21-8. See Section 21.6, “Arbitration” on
page 21-7 for details on how the I2C unit functions under those circumstances.

21.3.2 No START or STOP Condition

The START or STOP condition (bits 1:0 of the ICR set to 002) is used in master-transmit mode
while the 80960VH is transmitting multiple data bytes (see Figure 21-4). When the IDBR buffer
empty interrupt occurs, software clears the IDBR transmit empty bit to clear the interrupt. The
software then initiates the repeated START as a master by writing to the IDBR the target slave
address and the R/W# bit. The software then sets the START bit in the ICR, clears the STOP bit,
and disables the Arbitration Loss Interrupt bit in the ICR. To initiate the repeated START the
software sets the transfer byte bit. The I2C unit then waits for the IDBR transmit empty interrupt in
the ISR.

The software writes a new byte to the IDBR and sets the Transfer Byte ICR bit, which initiates the
new byte transmission. This continues until the software sets the START or STOP bit. The START
and STOP bits in the ICR are not automatically cleared by the I2C unit after the transmission of a
START, STOP or repeated START.

After each byte transfer (including the Ack/Nack bit) the I2C unit holds the SCL line low (inserting
wait states) until the transfer byte bit in the ICR is set. This action notifies the I2C unit to release
the SCL line and allow the next information transfer to proceed.

21.3.3 STOP Condition

The STOP condition (bits 1:0 of the ICR set to 102) terminates a data transfer. In master-transmit
mode, the software must write the last databyte to be transferred to the IDBR. The STOP bit and
the transfer byte bit in the ICR must be set to initiate the last byte transfer (see Figure 21-4). In
master-receive mode, to initiate the last transfer the 80960VH must set the Ack/Nack bit, the STOP
bit, and the transfer byte bit in the ICR. Software must clear the STOP bit after it is transmitted.

21.4 Serial Clock Line (SCL) Management

The 80960VH’s I2C clock (SCL) is programmed via the I2C Clock Count Register (ICCR). The
following subsections describe how the SCL works and is programmed.

21-6 i960® VH Processor Developer’s Manual

I2C Bus Interface Unit

21.4.1 SCL Clock Generation

The 80960VH’s I2C unit is required to generate the I2C clock output when in master mode (either
receive or transmit). SCL clock generation is accomplished through the use of the ICCR value,
which is programmed at initialization. The ICCR value is used in the following equation to
determine the SCL transition period:

SCL Transition Period =
ICCR Decimal Value * 80960VH Local Bus Clock Period

The SCL transition period is the amount of time the clock spends in the high or low state. When
wait states are inserted or synchronization with another master is necessary, the I2C unit performs
the necessary clock synchronization. The ICCR provides a simple method for determining I2C
clock frequencies. Table 21-2 details sample programming values for the ICCR.

Programming a value less than 1EH results in undefined behavior.

21.5 Data and Addressing Management

Data and slave addressing is managed via the I2C Data Buffer Register (IDBR) and the I2C Slave
Address Register (ISAR). The IDBR (see Table 21-9 “I2C Data Buffer Register – IDBR” on
page 21-21) contains data or a slave address and R/W# bit (Figure 21-5). The ISAR contains the
80960VH’s programmable slave address. Data coming into the I2C unit shift register is
acknowledged and placed into the IDBR after a full byte is received. To transmit data, the
processor writes to the IDBR, and the I2C unit passes this onto the serial bus when the transfer byte
bit in the ICR is set. See Section 21.10.1, “I2C Control Register - ICR” on page 21-15.

When the I2C unit is in transmit mode (master or slave):

1. Software writes data to the IDBR over the 80960 local bus. This typically occurs to initiate a
master transaction or to send the next data byte, after the IDBR transmit empty bit is sent.

2. The I2C unit transmits the data from the IDBR when the transfer byte bit in the ICR is set.

3. When enabled, an IDBR transmit empty interrupt is signaled when a byte is transferred on the
I2C bus and the acknowledge cycle is complete.

4. When the I2C bus is ready to transfer the next byte before the processor has written the IDBR
(and a STOP condition is not in place), the I2C unit inserts wait states until the processor
writes a new value into the IDBR and sets the ICR transfer byte bit.

When the I2C unit is in receive mode (master or slave):

Table 21-2. ICCR Programming Values

ICCR Value
80960VH Local
Bus Frequency

SCL
Transition

Period

I2C Clock Frequency =
[1/(SCL Transition Per. * 2)]

001010102 2AH 42 33 MHz 1.27 µs 392.86 KHz

101001112 A7H 167 33 MHz 5.06 µs 98.88 KHz

001000002 20H 32 25 MHz 1.28 µs 390.63 KHz

011111012 7DH 125 25 MHz 5.00 µs 100.00 KHz

i960® VH Processor Developer’s Manual 21-7

I2C Bus Interface Unit

1. The processor reads the IDBR data over the 80960 local bus after the IDBR receive full
interrupt is signaled.

2. The I2C unit transfers data from the shift register to the IDBR after the Ack cycle completes.

3. The I2C unit inserts wait states until the IDBR is read. Refer to Section 21.7, “I2C
Acknowledge” on page 21-10 for acknowledge pulse information in receiver mode.

4. After the processor reads the IDBR, the I2C unit sets the ICR’s Ack/Nack Control bit and the
transfer byte bit, allowing the next byte transfer to proceed.

21.5.1 Addressing a Slave Device

As a master device, the I2C unit must compose and send the first byte of a transaction. This byte
consists of the slave address for the intended device and a R/W# bit for transaction definition. The
slave address and the R/W# bit are written to the IDBR (see Figure 21-5).

The first byte transmission must be followed by an Ack pulse from the addressed slave. When the
transaction is a write, the I2C unit remains in master-transmit mode and the addressed slave device
stays in slave-receive mode. When the transaction is a read, the I2C unit transitions to
master-receive mode immediately following the Ack and the addressed slave device transitions to
slave-transmit mode. When a Nack is returned, the I2C unit aborts the transaction by automatically
sending a STOP and setting the ISR bus error bit.

When the I2C unit is enabled and idle (no bus activity), it stays in slave-receive mode and monitors
the I2C bus for a START signal. Upon detecting a START pulse, the I2C unit reads the first seven
bits and compares them to those in the I2C Slave Address Register (ISAR) and the general call
address (00H). When the bits match those of the ISAR register, the I2C unit reads the eighth bit
(R/W# bit) and transmits an Ack pulse. The I2C unit either remains in slave-receive mode (R/W# =
0) or transitions to slave-transmit mode (R/W# = 1). See Section 21.8.3, “General Call Address” on
page 21-14 for actions when a general call address is detected.

21.6 Arbitration

Arbitration on the I2C bus is required due to the multi-master capabilities of the I2C bus.
Arbitration is used when two or more masters simultaneously generate a START condition within
the minimum I2C hold time of the START condition. The following sections describe the
arbitration on the SCL and SDA lines.

Figure 21-5. Data Format of First Byte in Master Transaction

4 0

7-Bit I2C Slave Address

7

Read/Write Transaction

MSB LSB

(0) Write
(1) Read

21-8 i960® VH Processor Developer’s Manual

I2C Bus Interface Unit

21.6.1 SCL Arbitration

Each master on the I2C bus generates its own clock on the SCL line for data transfers. With masters
generating their own clocks, clocks with different frequencies may be connected to the SCL line.
Since data is valid when the clock is in the high period, a defined clock synchronization procedure
is needed during bit-by-bit arbitration.

Clock synchronization is accomplished by using the wired-AND connection of the I2C interfaces
to the SCL line. When a master’s clock transitions from high to low, this causes the master to hold
down the SCL line for its associated period (see Figure 21-6). The low to high transition of the
clock may not change when another master has not completed its period. Therefore, the master
with the longest low period holds down the SCL line. Masters with shorter periods are held in a
high wait-state during this time. Once the master with the longest period completes, the SCL line
transitions to the high state. Masters with the shorter periods can continue the data cycle.

21.6.2 SDA Arbitration

Arbitration on the SDA line can continue for a long period starting with the address and R/W# bits
and continuing with the data bits. Figure 21-7 shows the arbitration procedure for two masters
(more than two may be involved depending on how many masters are connected to the bus). When
the address bit and the R/W# are the same, the arbitration moves to the data. Due to the wired-AND
nature of the I2C bus, no data is lost when both (or all) masters are outputting the same bus states.
When the address, R/W# bit, or data is different, the master that outputs the first high data bit loses
arbitration and shuts its data drivers off. When the I2C unit loses arbitration, it shuts off the SDA or
SCL drivers for the remainder of the byte transfer, sets the arbitration loss detected ISR bit, then
returns to idle (Slave-Receive) mode.

Figure 21-6. Clock Synchronization During the Arbitration Procedure

CLK1

SCL

Wait
State

Start Counting
High Period

CLK1

The first master to complete its
high period pulls the SCL line low.

The master with the longest clock
period holds the SCL line low.

i960® VH Processor Developer’s Manual 21-9

I2C Bus Interface Unit

When the I2C unit loses arbitration during transmission of the seven address bits and the 80960VH
is not being addressed as a slave device, the I2C unit resends the address when the I2C bus becomes
free. This is possible because the IDBR and ICR registers are not overwritten when arbitration is
lost.

When the arbitration loss is to due to another bus master addressing the 80960VH as a slave device,
the I2C unit switches to slave-receive mode and the original data in the I2C data buffer register is
overwritten. Software is responsible for clearing the start and reinitiating the master transaction at a
later time.

Note: Software must not allow the I2C unit to write to its own slave address. This can cause the I2C bus to
enter an indeterminate state.

Boundary conditions exist for arbitration when an arbitration process is in progress and a repeated
START or STOP condition is transmitted on the I2C bus. To prevent errors, the I2C unit, acting as
a master, provides for the following sequences:

• No arbitration takes place between a repeated START condition and a data bit

• No arbitration takes place between a data bit and a STOP condition

• No arbitration takes place between a repeated START condition and a STOP condition

These situations arise only when different masters write the same data to the same target slave
simultaneously and arbitration is not resolved after the first data byte transfer.

Note: Typically software protocol is responsible for ensuring arbitration is lost soon after the transaction
begins. For example, the protocol might insist that all masters transmit their I2C address as the first

Figure 21-7. Arbitration Procedure of Two Masters

SDA

SCL

Data 1

Data 2

Transmitter 1 Leaves Arbitration
Data 1 SDA

21-10 i960® VH Processor Developer’s Manual

I2C Bus Interface Unit

data byte of any transaction ensuring arbitration is ended. A restart is then sent to begin a valid data
transfer (the slave can then discard the master’s address).

21.7 I2C Acknowledge

Every I2C byte transfer must be accompanied by an acknowledge pulse, which is always generated
by the receiver (master or slave). The transmitter must release the SDA line for the receiver to
transmit the acknowledge pulse (see Figure 21-8).

In master-transmit mode, when the target slave receiver device cannot generate the acknowledge
pulse, the SDA line remains high. This lack of acknowledge (Nack) causes the I2C unit to set the
bus error detected bit in the ISR and generate the associated interrupt (when enabled). The I2C unit
aborts the transaction by generating a STOP automatically.

In master-receive mode, the I2C unit signals the slave-transmitter to stop sending data by using the
negative acknowledge (Nack). The Ack/Nack bit value driven by the I2C bus is controlled by the
Ack/Nack control bit in the ICR. The bus error detected bit in the ISR is not set for a master-receive
mode Nack (as required by the I2C bus protocol). When the transmit bit is set in the ICR, the I2C
unit automatically transmits the Ack pulse, based on the Ack/Nack control bit, after receiving each
byte from the serial bus. Before receiving the last byte, software must set the Ack/Nack Control bit
to Nack. Nack is then sent after the next byte is received to indicate the last byte.

In slave mode, the I2C unit automatically acknowledges its own slave address, independent of the
Ack/Nack control bit setting in the ICR. As a slave-receiver, an Ack response is automatically
given to a data byte, independent of the Ack/Nack control bit setting in the ICR. The I2C unit sends
the Ack value after receiving the eighth data bit of the byte.

In slave-transmit mode, receiving a Nack from the master indicates the last byte is transferred. The
master then sends either a STOP or repeated START. The ISR’s unit busy bit (2) remains set until
a STOP or repeated START is received.

Figure 21-8. Acknowledge on the I2C Bus

1 2-7 8 9
SCL from

Master

Data Output
by Receiver

Data Output
by Transmitter

Clock Pulse
for Acknowledge

SDA released

SDA pulled low
by Receiver (ACK)

Start Condition

∼ ∼
∼ ∼

∼ ∼
∼ ∼

(SDA)

(SDA)

Cycles

i960® VH Processor Developer’s Manual 21-11

I2C Bus Interface Unit

21.8 I2C Master and Slave Operations

The I2C unit can be in different modes of operation to accomplish a transfer. Table 21-3
summarizes the different modes.

The I2C unit enable bit (6) in the ICR must be set and the reset bit (14) cleared before the I2C unit
may act as a master or slave device. When the I2C unit is in an idle mode (neither receiving or
transmitting serial data), the unit defaults to slave-receive mode. This allows the interface to
monitor the bus and receive any slave addresses that might be intended for the 80960VH.

The I2C unit transfers in 1-byte increments. A data transfer on the I2C bus always follows the
sequence:

1) START

2) 7-bit slave address

3) R/W# bit

4) Acknowledge

5) 8 bits of data

6) Acknowledge or No Acknowledge (NACK)

7) Repeat of step 5 and 6 for required number of bytes

8) STOP condition or a repeated START (for repeated START repeat steps 1-8)

Table 21-3. Operation Modes

Mode Definition

Master - Transmit

• Used for a write operation on the bus.

• I2C unit sends the data.

• I2C unit is responsible for clocking.

• Slave device must be in slave-receive mode.

Master - Receive

• Used for a read operation on the bus.

• I2C unit receives the data.

• I2C unit is responsible for clocking.

• Slave device must be in slave-transmit mode.

Slave - Transmit

• Used for a write operation on the bus.

• I2C unit sends the data.

• Master device must be in master-receive mode.

Slave - Receive

(default)

• Used for a read operation on the bus.

• I2C unit receives the data.

• Master device must be in master-transmit mode.

21-12 i960® VH Processor Developer’s Manual

I2C Bus Interface Unit

21.8.1 Master Operations

When software initiates a read or write on the I2C bus, the I2C unit transitions from the default
slave-receive mode to master-transmit mode. The start pulse is sent followed by the 7-bit slave
address and the R/W bit. After the master receives an acknowledge, the I2C unit has the option of
being one of two master modes:

• Master-Transmit — The 80960VH writes data

• Master-Receive — The 80960VH reads data

The 80960VH sets up a master transaction by writing to the slave address and the R/W# bit to the
IDBR. To initiate this transaction, the START bit and the TRANSMIT bit are set. Data is read and
written from the I2C unit through the memory-mapped registers. When the 80960VH needs to read
data, the I2C unit transitions from slave-receive mode to master-transmit mode to transmit the start
address and immediately following the ACK pulse transitions to master-receive mode to wait for
the reception of the read data from the slave device (see Figure 21-9). It is also possible to have
multiple transactions during an I2C operation such as transitioning from master-receive to
master-transmit through a repeated start or Data Chaining (see Figure 21-10). Figure 21-11 shows
the wave forms of SDA and SCL for a complete data transfer.

Figure 21-9. Master-Receiver Read from Slave-Transmitter

Master to Slave Slave to Master

START Slave Address
R/W#

1 ACK
Data
Byte ACK

Data
Byte STOP

N Bytes + ACK

ACK

Default
Slave-Receive

Mode

First Byte Read

Figure 21-10. Master-Receiver Read from Slave-Transmitter / Repeated Start / Master-Transmitter
Write to Slave-Receiver

START
Slave R/W

1 ACK
Data
Byte ACK

Data
Byte

N Bytes + ACK

Read

ACK Sr
Slave R/W

0 ACK
Data
Byte ACK

Data
Byte STOP

N Bytes + ACK

Write

ACKAddress Address

Master to Slave Slave to Master

Repeated
Start

Data Chaining

i960® VH Processor Developer’s Manual 21-13

I2C Bus Interface Unit

The 80960VH initiates a master transaction by writing to the ICR register. Table 21-4 “General
Call Address Second Byte Definitions” on page 21-15 describes the I2C unit responsibilities as a
master device.

21.8.2 Slave Operations

Figure 21-12 through Figure 21-14 are examples of I2C transactions. These show the relationships
between master and slave devices.

Figure 21-11. A Complete Data Transfer

SDA

SCL

Start
Condition

Address R/W ACK Data ACK Data

1-7 8 9 8 9891-7 1-7

ACK Stop
Condition

∼ ∼
∼ ∼

∼ ∼

∼ ∼
∼ ∼

∼ ∼

∼ ∼
∼ ∼

∼ ∼

Figure 21-12. Master-Transmitter Write to Slave-Receiver

Master to Slave Slave to Master

START Slave Address
R/W#

0 ACK
Data
Byte ACK

Data
Byte STOP

N Bytes + ACKWrite

ACK

First Byte

Figure 21-13. Master-Receiver Read to Slave-Transmitter

Master to Slave Slave to Master

START Slave Address
R/W#

1 ACK
Data
Byte ACK

Data
Byte STOP

N Bytes + ACKRead

ACK#

Default
Slave-Receive

Mode

First Byte

21-14 i960® VH Processor Developer’s Manual

I2C Bus Interface Unit

21.8.3 General Call Address

The I2C unit supports both sending and receiving general call address transfers on the I2C bus.
When sending a general call message from the I2C unit, software must set the general call disable
bit in the ICR to keep the I2C unit from responding as a slave. Failure to do this causes the I2C Bus
to enter an indeterminate state.

A general call address is defined as a transaction with a slave address of 00H. When a device
requires the data from a general call address, it Acks the transaction and stays in slave-receiver
mode. Otherwise, the device can ignore the general call address. The second and following bytes of
a general call transaction are acknowledged by every device using it on the bus. Any device not
using these bytes must not Ack. The meaning of a general call address is defined in the second byte
sent by the master-transmitter. Figure 21-15 shows a general call address transaction. The least
significant bit of the second byte defines the transaction. Table 21-4 “General Call Address Second
Byte Definitions” on page 21-15 shows the valid values and definitions when B = 0.

When the 80960VH is acting as a slave, and the I2C unit receives a general call address and the
ICR general call disable bit is clear the I2C unit:

• Sets the ISR general call address detected bit.

• Sets the ISR slave address detected bit.

• Signals an interrupt (when enabled) to the 80960VH.

When the I2C unit receives a general call address and the ICR general call disable bit is set, the I2C
unit will ignore the general call address.

Figure 21-14. Master-Receiver Read to Slave-Transmitter, Repeated START, Master-Transmitter
Write to Slave-Receiver

START
Slave R/W#

1 ACK
Data
Byte ACK

Data
Byte

N Bytes + ACKRead

ACK SR
Slave R/W#

0 ACK
Data
Byte ACK

Data
Byte STOP

N Bytes + ACKWrite

ACKAddress Address

Master to Slave Slave to Master

Repeated
START

Data Chaining

Figure 21-15. General Call Address

Master to Slave Slave to Master

START 00000000 ACK Data
Byte ACK Data

Byte STOP

N Bytes + ACK

Least Significant Bit of Master Address

ACK

Second Byte

Second Byte 0 ACK

First Byte

Defines Transaction

i960® VH Processor Developer’s Manual 21-15

I2C Bus Interface Unit

21.9 The I2C Bus Unit and Reset

The I2C unit is reset by the local bus reset signal that is active when P_RST# is asserted or when
reset local bus bit in Reset/Retry Control Register (RRCR) is set. Software is responsible for
ensuring the I2C unit is not busy (unit busy is clear) before asserting reset. Software is also
responsible for ensuring the I2C bus is idle when the unit is enabled after reset. When directed to
reset, the I2C unit must return to its default reset condition with the exception of the ISAR. ISAR is
not affected by a reset.

When the unit reset bit in the ICR is set, only the 80960VH I2C unit resets, the associated I2C
MMRs remain intact. When resetting the I2C unit with the ICR’s unit reset, use the following
guidelines:

1. In the ICR register, set the reset bit and clear the remainder of the register

2. Clear the ISR register

3. Clear reset in the ICR

21.10 I2C Registers

Table 21-5 identifies all I2C unit registers. Subsections identify all registers and define bit settings.

21.10.1 I2C Control Register - ICR

The 80960VH uses the bits in the I2C Control Register (ICR) to control the I2C unit.

Table 21-4. General Call Address Second Byte Definitions

Least Significant
Bit of Second Byte

(B)
Second Byte Value Definition

0 06H
2-byte transaction where the second byte tells the slave to
reset and then store this value in the programmable part of
their slave address.

0 04H
2-byte transaction where the second byte tells the slave to
store this value in the programmable part of their slave
address. No reset.

Table 21-5. I2C Register Summary

Section Register Name, Acronym Page
Size
(Bits)

80960 Local
Bus Address

PCI
Config
Addr
Offset

21.10.1 I2C Control Register - ICR 21-15 32 0000 1680H NA

21.10.2 I2C Status Register- ISR 21-18 32 0000 1684H NA

21.10.3 I2C Slave Address Register – ISAR 21-20 32 0000 1688H NA

21.10.4 I2C Data Buffer Register – IDBR 21-21 32 0000 168CH NA

21.10.5 I2C Clock Count Register – ICCR 21-21 32 0000 1690H NA

21-16 i960® VH Processor Developer’s Manual

I2C Bus Interface Unit

Table 21-6. I2C Control Register – ICR (Sheet 1 of 3)

LBA:

PCI:

1680H

NA

Legend: NA = Not Accessible RO = Read Only
RV = Reserved PR = Preserved RW = Read/Write
RS = Read/Set RC = Read Clear
LBA = 80960 local bus address PCI = PCI Configuration Address Offset

Bit Default Description

31:15 0000 0H Reserved

14 02

Unit Reset:

1 = Reset the 80960VH I2C unit only.
0 = No reset.

13 02

Slave Address Detected Interrupt Enable:

1 = Enables the I2C unit to signal an interrupt to the 80960VH upon detecting a slave
address match or a general call address.
0 = Disable interrupt.

12 02

Arbitration Loss Detected Interrupt Enable:

1 = Enables the I2C unit to signal an interrupt upon losing arbitration while in master
mode.

0 = Disable interrupt.

11 02

Slave STOP Detected Interrupt Enable:

1 = Enables the I2C unit to signal an interrupt when it detects a STOP condition while in
slave mode.

0 = Disable interrupt.

10 02

Bus Error Interrupt Enable:

1 = Enables the I2C unit to signal an interrupt for the following I2C bus errors:
• As a master transmitter, no Ack was detected after a byte was sent.

• As a slave receiver, the I2C unit generated a Nack pulse.

Note: Software must guarantee that misplaced START and STOP conditions do not
occur. See Section 14.6, “Bus Arbitration” on page 14-23.

0 = Disable interrupt.

09 02

IDBR Receive Full Interrupt Enable:

1 = Enables the I2C unit to signal an interrupt to the 80960VH when the IDBR has
received a data byte from the I2C bus.

0 = Disable interrupt.

08 02

IDBR Transmit Empty Interrupt Enable:

1 = Enables the I2C unit to signal an interrupt to the 80960VH after transmitting a byte
onto the I2C bus.

0 = Disable interrupt.

07 02

General Call Interrupt Disable:

1 = Disables I2C unit response to general call messages as a slave.

0 = Enables the I2C unit to respond to general call messages.

This bit must be set when sending a master mode general call message from the I2C
unit.

PCI

LBA

28 24 20 16 12 8 4 031

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

i960® VH Processor Developer’s Manual 21-17

I2C Bus Interface Unit

06 02

I2C Unit Enable:

1 = Enables the I2C unit (defaults to slave-receive mode).

0 = Disables the unit and does not master any transactions or respond to any slave
transactions.

Software must guarantee the I2C bus is idle before setting this bit.

05 02

SCL Enable:

1 = Enables the I2C clock output for master mode operation. The ICCR (see
Section 21.10.5, on page 21-21) must be programmed with a valid value before setting
this bit.

0 = Disables the I2C unit from driving the SCL line.

04 02

Master Abort: used by the I2C unit when in master mode to generate a STOP without
transmitting another data byte.

1 = The I2C unit sends STOP without data transmission.

0 = The I2C unit transmits STOP using the STOP ICR bit only.

When in Master transmit mode, after transmitting a data byte, the ICR’s transfer byte bit
is clear and IDBR transmit empty bit is set. When no more data bytes need to be sent,
setting master abort bit sends the STOP. The transfer byte bit (03) must remain clear.

In master-receive mode, when a Nack is sent without a STOP (STOP ICR bit was not
set) and the 80960VH does not send a repeated START, setting this bit sends the
STOP. Once again, the transfer byte bit (03) must remain clear.

03 02

Transfer Byte: used to send/receive a byte on the I2C bus.

1 = send/receive a byte.

0 = cleared by I2C unit when the byte is sent/received.

The 80960VH can monitor this bit to determine when the byte transfer has completed.
In master or slave mode, after each byte transfer including Ack/Nack bit, the I2C unit
holds the SCL line low (inserting wait states) until the transfer byte bit is set.

02 02

Ack/Nack Control: defines the type of Ack pulse sent by the I2C unit when in master or
slave receive mode.

1 = The I2C unit sends a negative Ack (Nack) after receiving a data byte.

0 = The I2C unit sends an Ack pulse after receiving a data byte.

The I2C unit automatically sends an Ack pulse when responding to its slave address,
independent of the Ack/Nack control bit setting.

01 02

STOP: used to initiate a STOP condition after transferring the next data byte on the I2C
bus when in master mode. In master-receive mode, the Ack/Nack control bit must be
set in conjunction with this bit. See Section 21.3, on page 21-4. for more details on the
STOP state.

1 = Send a STOP

0 = Do not send a STOP

Table 21-6. I2C Control Register – ICR (Sheet 2 of 3)

LBA:

PCI:

1680H

NA

Legend: NA = Not Accessible RO = Read Only
RV = Reserved PR = Preserved RW = Read/Write
RS = Read/Set RC = Read Clear
LBA = 80960 local bus address PCI = PCI Configuration Address Offset

Bit Default Description

PCI

LBA

28 24 20 16 12 8 4 031

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

21-18 i960® VH Processor Developer’s Manual

I2C Bus Interface Unit

21.10.2 I2C Status Register- ISR

I2C interrupts are signaled through XINT7# and the XINT7 Interrupt Status Register (X7ISR),
which shows the pending XINT7 interrupts (see Chapter 8, “Interrupts”). XINT7# is set by the I2C
Interrupt Status Register (ISR). Software uses the ISR bits to check the status of the I2C unit and
bus. ISR bits (bits 5-9) are updated after the Ack/Nack bit has completed on the I2C bus. The ISR is
also used to clear interrupts signaled from the I2C unit. They are:

• IDBR receive full

• IDBR transmit empty

• slave address detected

• bus error detected

• STOP condition detect

• arbitration lost

00 02

START: used to initiate a START condition to the I2C unit when in master mode. See
Section 21.3, on page 21-4. for more details on the START state.

1 = Send a START

0 = Do not send a START

Table 21-6. I2C Control Register – ICR (Sheet 3 of 3)

LBA:

PCI:

1680H

NA

Legend: NA = Not Accessible RO = Read Only
RV = Reserved PR = Preserved RW = Read/Write
RS = Read/Set RC = Read Clear
LBA = 80960 local bus address PCI = PCI Configuration Address Offset

Bit Default Description

PCI

LBA

28 24 20 16 12 8 4 031

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

Table 21-7. I2C Status Register – ISR (Sheet 1 of 3)

LBA:

PCI:

1684H

NA

Legend: NA = Not Accessible RO = Read Only
RV = Reserved PR = Preserved RW = Read/Write
RS = Read/Set RC = Read Clear
LBA = 80960 local bus address PCI = PCI Configuration Address Offset

Bit Default Description

31:11 0000 00H Reserved

PCI

LBA

28 24 20 16 12 8 4 031

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rc

na

rc

na

rc

na

rc

na

rc

na

rc

na

rc

na

ro

na

ro

na

ro

na

ro

na

i960® VH Processor Developer’s Manual 21-19

I2C Bus Interface Unit

10 02

Bus Error Detected:

1 = The I2C unit sets this bit when it detects one of the following error conditions:
• As a master transmitter, no Ack was detected on the interface after a byte was

sent.

• As a slave receiver, the I2C unit generates a Nack pulse.

Note: When an error occurs, I2C bus transactions continue. Software must guarantee
that misplaced START and STOP conditions do not occur. See Section 21.6,
“Arbitration” on page 21-7.

0 = no error detected.

09 02

Slave Address Detected:

1 = I2C unit detected a 7-bit address that matches the general call address or ISAR. An
interrupt is signaled when enabled in the ICR.

0 = No slave address detected.

08 02

General Call Address Detected:

1 = I2C unit received a general call address. An interrupt is signaled when enabled in
the ICR.

0 = No general call address received.

07 02

IDBR Receive Full:

1 = The IDBR register received a new data byte from the I2C bus. An interrupt is
signaled when enabled in the ICR.

0 = The IDBR has not received a new data byte or the I2C unit is idle.

06 02

IDBR Transmit Empty:

1 = The I2C unit has finished transmitting a data byte on the I2C bus. An interrupt is
signaled when enabled in the ICR.

0 = The data byte is still being transmitted.

05 02

Arbitration Loss Detected: used during multi-master operation.

1 = Set when the I2C unit loses arbitration.

0= Cleared when arbitration is won or never took place.

04 02

Slave STOP Detected:

1 = Set when the I2C unit detects a STOP while in slave-receive or slave-transmit
mode.

0 = No STOP detected.

03 02

I2C Bus Busy:

1 = Set when the I2C bus is busy but the 80960VH’s I2C unit is not involved in the
transaction.

0 = I2C bus is idle or the I2C unit is using the bus (i.e., unit busy).

Table 21-7. I2C Status Register – ISR (Sheet 2 of 3)

LBA:

PCI:

1684H

NA

Legend: NA = Not Accessible RO = Read Only
RV = Reserved PR = Preserved RW = Read/Write
RS = Read/Set RC = Read Clear
LBA = 80960 local bus address PCI = PCI Configuration Address Offset

Bit Default Description

PCI

LBA

28 24 20 16 12 8 4 031

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rc

na

rc

na

rc

na

rc

na

rc

na

rc

na

rc

na

ro

na

ro

na

ro

na

ro

na

21-20 i960® VH Processor Developer’s Manual

I2C Bus Interface Unit

21.10.3 I2C Slave Address Register – ISAR

The I2C Slave Address Register (see Table 21-8) defines the I2C unit’s 7-bit slave address to which
the 80960VH responds when in slave-receive mode. This register is written by the 80960VH
before enabling I2C operations. The register is fully programmable (no address is assigned to the
I2C unit) so it can be set to a value other than those of hard-wired I2C slave peripherals that might
exist in the system. The ISAR is not affected by the 80960VH being reset. The ISAR register
default value is 00H.

02 02

Unit Busy:

1 = Set when the 80960VH’s I2C unit is busy. This is defined as the time between the
first START and STOP.

0 = I2C unit not busy.

01 02

Ack/Nack Status:

1 = The I2C unit received a Nack.

0 = The I2C unit received an Ack on the bus.

This bit is used in slave transmit mode to determine when the byte transferred is the
last one. This bit is updated after each byte and Ack/Nack information is received.

00 02

R/W Mode:

1 = The I2C unit is in receive mode.

0 = The I2C unit is in transmit mode.

This is the R/W# received after a slave address match. It is automatically cleared by
hardware after a stop state.

Table 21-7. I2C Status Register – ISR (Sheet 3 of 3)

LBA:

PCI:

1684H

NA

Legend: NA = Not Accessible RO = Read Only
RV = Reserved PR = Preserved RW = Read/Write
RS = Read/Set RC = Read Clear
LBA = 80960 local bus address PCI = PCI Configuration Address Offset

Bit Default Description

PCI

LBA

28 24 20 16 12 8 4 031

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rc

na

rc

na

rc

na

rc

na

rc

na

rc

na

rc

na

ro

na

ro

na

ro

na

ro

na

Table 21-8. I2C Slave Address Register – ISAR (Sheet 1 of 2)

LBA:

PCI:

1688H

NA

Legend: NA = Not Accessible RO = Read Only
RV = Reserved PR = Preserved RW = Read/Write
RS = Read/Set RC = Read Clear
LBA = 80960 local bus address PCI = PCI Configuration Address Offset

Bit Default Description

31:07 0000 000H Reserved

PCI

LBA

28 24 20 16 12 8 4 031

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

i960® VH Processor Developer’s Manual 21-21

I2C Bus Interface Unit

21.10.4 I2C Data Buffer Register – IDBR

The IDBR (see Table 21-9) receives and sends data and transmits the slave address for the intended
slave. The IDBR register defaults to 00H after reset.

21.10.5 I2C Clock Count Register – ICCR

The I2C Clock Count Register (ICCR) defines the multiplier used to generate the I2C SCL clock.
This register is used with an internal 8-bit down counter. When the SCL enable bit in the ICR is set,
this counter decrements from the programmed ICCR value to zero, then resets to the programmed
ICCR value and begins to decrement again. This continues until the SCL enable bit in the ICR is
cleared. Each time the counter reaches zero, the SCL line transitions from low to high or vice versa,
depending on the current state. This creates the I2C clock output used during I2C master operations.

Changing this register while the SCL enable bit is set results in undefined behavior.

06:00 0H
I2C Slave Address: The 7-bit address to which the I2C unit responds when in
slave-receive mode.

Table 21-8. I2C Slave Address Register – ISAR (Sheet 2 of 2)

LBA:

PCI:

1688H

NA

Legend: NA = Not Accessible RO = Read Only
RV = Reserved PR = Preserved RW = Read/Write
RS = Read/Set RC = Read Clear
LBA = 80960 local bus address PCI = PCI Configuration Address Offset

Bit Default Description

PCI

LBA

28 24 20 16 12 8 4 031

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

Table 21-9. I2C Data Buffer Register – IDBR

LBA:

PCI:

168CH

NA

Legend: NA = Not Accessible RO = Read Only
RV = Reserved PR = Preserved RW = Read/Write
RS = Read/Set RC = Read Clear
LBA = 80960 local bus address PCI = PCI Configuration Address Offset

Bit Default Description

31:08 0000 00H Reserved

07:00 00H I2C Data Buffer: Buffer for I2C bus send/receive data.

PCI

LBA

28 24 20 16 12 8 4 031

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

21-22 i960® VH Processor Developer’s Manual

I2C Bus Interface Unit

Table 21-10. I2C Clock Count Register – ICCR

LBA:

PCI:

1690H

NA

Legend: NA = Not Accessible RO = Read Only
RV = Reserved PR = Preserved RW = Read/Write
RS = Read/Set RC = Read Clear
LBA = 80960 local bus address PCI = PCI Configuration Address Offset

Bit Default Description

31:08 0000 00H Reserved

07:00 00H
I2C Clock Count: 8 bit count value used to generate an I2C clock from the 80960VH
local bus clock.

PCI

LBA

28 24 20 16 12 8 4 031

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rv

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

rw

na

i960® VH Processor Developer’s Manual 22-1

Test Features 22

This chapter describes the i960® VH processor test features, including ONCE (On-Circuit
Emulation) and boundary-scan (JTAG). Together these two features create a powerful environment
for design debug and fault diagnosis.

22.1 On-Circuit Emulation (ONCE)

On-circuit emulation aids board-level testing. This feature allows a mounted 80960VH to
electrically “remove” itself from a circuit board. This allows for system-level testing where a
remote tester exercises the processor system. In ONCE mode, the processor presents a high
impedance on every pin, except for the JTAG test data Output (TDO). All pullup transistors
present on input pins are also disabled and internal clocks stop. In this state the processor’s power
demands on the circuit board are nearly eliminated. Once the processor is electrically removed, a
functional tester such as an In-Circuit Emulator (ICE) system can emulate the mounted processor
and execute a test of the 80960VH system.

Note: Do not use ONCE mode with boundary-scan (JTAG). See Section 22.1.2, “ONCE Mode and
Boundary-Scan (JTAG) are Incompatible” on page 22-2.

22.1.1 Entering/Exiting ONCE Mode

The ONCE# pin, in concert with the RESET# pin, invokes ONCE mode.

To invoke ONCE mode, assert the ONCE# pin (low) while the processor is in the reset state. (The
processor recognizes the ONCE# pin signal only while RESET# is asserted.) The processor enters
ONCE mode immediately. The rising edge of RESET# latches the ONCE# pin state until RESET#
goes true again.

Enter ONCE mode by asserting the following sequence with an external tester:

1. Drive the ONCE# pin low (overcoming the internal pull-up resistor).

2. Initiate a normal reset cycle.

3. After the RESET# pin goes high again, the ONCE# pin can be deasserted.

Exit ONCE mode, by performing a normal reset with the RESET# pin while holding the ONCE#
pin high. A power off-on cycle is not necessary to exit ONCE mode.

See the 80960VH Processor Data Sheet for specific timing of the ONCE# pin and the
characteristics of the on-circuit emulation mode.

22-2 i960® VH Processor Developer’s Manual

Test Features

22.1.2 ONCE Mode and Boundary-Scan (JTAG) are Incompatible

Permanent damage can occur when an in-circuit emulator is used concurrently with boundary-scan
(JTAG). Do not use any system that relies on ONCE mode when using boundary-scan. Signal
contentions and resultant damage may occur if an external system, such as an emulator
development system, invokes ONCE mode and manipulates the 80960VH signals while JTAG is
active.

Since the 80960VH complies fully with IEEE Std. 1149.1, JTAG boundary-scan instructions
always override ONCE mode. While ONCE mode intends to disable all processor outputs so an
external emulator can drive them, JTAG boundary-scan can enable those outputs, causing
contention with the external emulator.

To avoid damage, and as a general design rule, force TRST# low to disable boundary-scan
whenever ONCE mode is active.

22.1.3 How to use the Data Enable (DEN#) Signal with an In-Circuit
Emulator

When using an ICE in an 80960VH system, the use of the Data Enable signal (DEN#) is not
recommended. This section describes how DEN# operates and a recommended solution for using it
with an In-Circuit Emulator (ICE).

DEN# Operation: When asserted, DEN# indicates data transfer cycles during a bus access. DEN#
asserts at the start of the first data cycle in a bus access and de-asserts at the end of the last data
cycle. DEN# can be used in conjunction with DT/R# to provide control for data transceivers
connected to the data bus.

Using DEN# with an In-Circuit Emulator: For ICE users, it is not recommended to use the
80960VH’s DEN# signal directly to transceivers. When executing an ICE microcode transaction,
the expected behavior is that DEN# would remain de-asserted during the entire transaction.
However, DEN# asserts as described above. If the design uses DEN# to enable transceivers, then
the transceivers are enabled. This may result in bus contention.

The use of DEN# in 80960Jx designs was possible because the 80960Jx was on a “POD”. The
POD was cabled to the target board where it plugged in to a socket. The POD masks out DEN#
during ICE microcode transactions. The 80960VH’s package does not allow the use of a POD;
consequently, the ICE signals connect directly to the target system and the DEN# signal cannot be
masked.

22.1.3.1 DEN# Alternatives

To use an ICE with your 80960VH design, alternatives to DEN# are:

• Ground the OE# pin of the transceiver

• Recreate a DEN# signal with the circuit shown below

i960® VH Processor Developer’s Manual 22-3

Test Features

The circuit asserts T_DEN# (Q#) at the start of the first data cycle when ADS# asserts and
BLAST# and LRDYRCV# deasserts. T_DEN# deasserts at the end of the last data cycle when
ADS# deasserts and BLAST# and LRDYRCV# assert. During RESET, T_DEN# deasserts.

Equivalent components may be used in place of the components shown.

22.2 Boundary-Scan (JTAG)

The 80960VH Internal Bus provides test features compliant to IEEE standard test access port and
boundary-scan architecture (IEEE Std. 1149.1). JTAG ensures that components function correctly,
connections between components are correct, and components interact correctly on the printed
circuit board.

To date, the i960 Hx, Jx and Rx processors implement IEEE 1149.1 standard test access port and
boundary-scan architecture, and i960 Kx, Sx and Cx processors do not. For information about
using JTAG in a design, refer to IEEE Std. 1149.1 (available from the Institute of Electrical and
Electronics Engineers Inc., 345 E. 47th St., New York, NY 10017).

Note: Do not use ONCE mode with boundary-scan (JTAG). See Section 22.1.2, “ONCE Mode and
Boundary-Scan (JTAG) are Incompatible” on page 22-2.

22.2.1 Boundary-Scan Architecture

Boundary-scan test logic consists of a boundary-scan register and support logic. These are accessed
through a Test Access Port (TAP). The TAP provides a simple serial interface that allows all
processor signal pins to be driven and/or sampled, thereby providing direct control and monitoring
of processor pins at the system level.

This mode of operation is valuable for design debugging and fault diagnosis since it permits
examination of connections not normally accessible to the test system. The following subsections
describe the boundary-scan test logic elements: TAP pins, instruction register, test data registers
and TAP controller. Figure 22-2 illustrates how these pieces fit together to form the JTAG unit.

Figure 22-1. DEN# Alternatives

80960VH

ADS#

P_CLK

BLAST#

LRDYRCV#

P_RST#

SN74F04

VCC

J Q

K Q#

SN74F109

SN74F32

CLR

T_DEN#

SET

22-4 i960® VH Processor Developer’s Manual

Test Features

22.2.2 TAP Pins

The 80960VH’s TAP pins form a serial port composed of four input connections (TMS, TCK,
TRST# and TDI) and one output connection (TDO). These pins are described in Table 22-1. The
TAP pins provide access to the instruction register and the test data registers.

Figure 22-2. Test Access Port Block Diagram

 Boundary-Scan Register

Device ID Register

RUNBIST Register

TDO

TDI

 Bypass Register

Control and Clock Signals

 Instruction
Register

. . .

 Processor System Pins TAP Pins

TRST#

TMS

TCK

TAP
 Controller

Table 22-1. TAP Controller Pin Definitions (Sheet 1 of 2)

Pin Type Definition

TCK Input Test Clock provides the clock for the JTAG logic. The JTAG test logic retains its state
indefinitely when TCK is stopped at “0” or “1”.

TMS Input
Test Mode is decoded by the TAP controller state machine to control test operations. TMS
is sampled by the test logic on the rising edge of TCK. TMS is pulled high internally when
not driven.

 TDI Input

Test Data Input is the serial port where test instructions and data is received by the test
logic. Signals presented at TDI are sampled into the test logic on the rising edge of TCK.
TDI is pulled high internally when not driven. Data shifted into TDI is not inverted on its way
to the TDO input.

TDO Output
Test Data Output is the serial output for test instructions and data from the JTAG test logic.
Changes in the state of TDO occur only on the falling edge of TCK. The TDO output is
active only during data shifting (SHDR or SHIR); it is inactive (high-Z) at all other times.

i960® VH Processor Developer’s Manual 22-5

Test Features

22.2.3 Instruction Register

The Instruction Register (IR) holds instruction codes. These codes are shifted in through the Test
Data Input (TDI) pin. The instruction codes are used to select the specific test operation to be
performed and the test data register to be accessed.

The instruction register is a parallel-loadable, master/slave-configured 4-bit wide, serial-shift
register with latched outputs. Data is shifted into and out of the IR serially through the TDI pin
clocked by the rising edge of TCK when the TAP controller is in the Shift_IR state. The shifted-in
instruction becomes active upon latching from the master stage to the slave stage in the Update_IR
state. At that time the IR outputs along with the TAP finite state machine outputs are decoded to
select and control the test data register selected by that instruction. Upon latching, all actions
caused by any previous instructions terminate.

The instruction determines the test to be performed, the test data register to be accessed, or both
(Table 22-2). The IR is four bits wide. When the IR is selected in the Shift_IR state, the most
significant bit is connected to TDI, and the least significant bit is connected to TDO. The value
presented on the TDI pin is shifted into the IR on each rising edge of TCK, as long as the TAP
controller remains in the Shift_IR state. When the TAP controller changes to the Capture_IR state,
fixed parallel data (00012) is captured. During Shift_IR, when a new instruction is shifted in
through TDI, the value 00012 is always shifted out through TDO, least significant bit first. This
helps identify instructions in a long chain of serial data from several devices.

Upon activation of the TRST# reset pin, the latched instruction asynchronously changes to the
idcode instruction. When the TAP controller moves into the Test_Logic_Reset state other than by
reset activation, the opcode changes as TDI shifts, and becomes active on the falling edge of TCK.
See Figure 22-5 for an example of loading the instruction register.

22.2.3.1 Boundary-Scan Instruction Set

The 80960VH supports three mandatory boundary-scan instructions (bypass, sample/preload and
extest) plus four additional public instructions (idcode, clamp, highz and runbist). Table 22-2
lists the 80960VH’s boundary-scan instruction codes. Those codes listed as “not used” or “private”
should not be used.

TRST# Input

Test Reset provides for an asynchronous initialization of the TAP controller. Asserting a
logic “0” on this pin puts the TAP controller state machine and all other test logic on the
processor in the Test-Logic-Reset (initial) state. TRST# is pulled high internally when not
driven.

Note: The system must ensure that TRST# is asserted after power-up to put the TAP
controller in a known state. Failure to do so may cause improper processor operation.

Table 22-1. TAP Controller Pin Definitions (Sheet 2 of 2)

Pin Type Definition

Table 22-2. Boundary-Scan Instruction Set (Sheet 1 of 2)

Instruction Code Instruction Name Instruction Code Instruction Name

00002 extest 10002 highz

00012 sample/preload 10012 not used

00102 idcode 10102 not used

00112 not used 10112 private

22-6 i960® VH Processor Developer’s Manual

Test Features

01002 clamp 11002 private

01012 not used 11012 not used

01102 not used 11102 not used

01112 runbist 11112 bypass

Table 22-3. IEEE Instructions (Sheet 1 of 2)

Instruction /
Requisite Opcode Description

extest
IEEE 1149.1

Required

00002

extest initiates testing of external circuitry, typically board-level
interconnects and off chip circuitry. extest connects the boundary-scan
register between TDI and TDO in the Shift_DR state only. When extest is
selected, all output signal pin values are driven by values shifted into the
boundary-scan register and may change only on the falling edge of TCK in
the Update_DR state. Also, when extest is selected, all system input pin
states must be loaded into the boundary-scan register on the rising-edge of
TCK in the Capture_DR state. Values shifted into input latches in the
boundary-scan register are never used by the processor’s internal logic.

sample/
preload

IEEE 1149.1

Required

00012

sample/preload performs two functions:

• When the TAP controller is in the Capture-DR state, the sample
instruction occurs on the rising edge of TCK and provides a snapshot of
the component’s normal operation without interfering with that normal
operation. The instruction causes boundary-scan register cells
associated with outputs to sample the value being driven by or to the
processor.

• When the TAP controller is in the Update-DR state, the preload
instruction occurs on the falling edge of TCK. This instruction causes the
transfer of data held in the boundary-scan cells to the slave register cells.
Typically the slave latched data is applied to the system outputs via the
extest instruction.

idcode
IEEE 1149.1

Optional

00102

idcode is used in conjunction with the device identification register. It
connects the device identification register between TDI and TDO in the
Shift_DR state. When selected, idcode parallel-loads the hard-wired
identification code (32 bits) into the device identification register on the rising
edge of TCK in the Capture_DR state.
NOTE: The device identification register is not altered by data being shifted

in on TDI.

runbist
i960® VH
Processor
Optional

01112

runbist selects the one-bit RUNBIST register, loads a value of 1 into it and
connects it to TDO. It also initiates the processor’s built-in self test (BIST)
feature which is able to detect approximately 82% of all the possible stuck-at
faults on the device. The processor AC/DC specifications for VCC and CLKIN
must be met and RESET# must be deasserted prior to executing runbist.
After loading runbist instruction code into the instruction register, the TAP
controller must be placed in the Run-Test/Idle state. BIST begins on the first
rising edge of TCK after the Run-Test/Idle state is entered. The TAP
controller must remain in the Run-Test/Idle state until BIST is completed.
runbist requires approximately 414,000 core cycles to complete BIST and
report the result to the RUNBIST register. The results are stored in bit 0 of the
RUNBIST register. After the report completes, the value in the RUNBIST
register is shifted out on TDO during the Shift-DR state. A value of 0 being
shifted out on TDO indicates BIST completed successfully. A value of 1
indicates a failure occurred. After BIST completes, the processor must be
cycled through the reset state to resume normal operation.

Table 22-2. Boundary-Scan Instruction Set (Sheet 2 of 2)

Instruction Code Instruction Name Instruction Code Instruction Name

i960® VH Processor Developer’s Manual 22-7

Test Features

22.2.4 TAP Test Data Registers

The 80960VH contains four test data registers (device identification, bypass, RUNBIST and
boundary-scan). Each test data register selected by the TAP controller is connected serially
between TDI and TDO. TDI is connected to the test data register’s most significant bit. TDO is
connected to the least significant bit. Data is shifted one bit position within the register towards
TDO on each rising edge of TCK. While any [a?] register is selected, data is transferred from TDI
to TDO without inversion. The following sections describe each of the test data registers. See
Figure 22-6 for an example of loading the data register.

22.2.4.1 Device Identification Register

The device identification register is a 32-bit register containing the manufacturer’s identification
code, part number code, version code and other information in the format shown in the 80960VH
Processor Data Sheet. The format of the register is discussed in Section 12.5, “Device
Identification on Reset” on page 12-20. The identification register is selected only by the idcode
instruction. When the TAP controller’s Test_Logic_Reset state is entered, idcode is
asynchronously loaded into the instruction register. The device identification register loads the
fixed parallel input value in the Capture_DR state.

22.2.4.2 Bypass Register

The required bypass register, a one-bit shift register, provides the shortest path between TDI and
TDO when a bypass instruction is in effect. This allows rapid movement of test data to and from
other components on the board. This path can be selected when no test operation is being
performed on the processor.

bypass
IEEE 1149.1

Required

11112

bypass instruction selects the one-bit bypass register between TDI and
TDO pins while in SHIFT_DR state, effectively bypassing the processor’s test
logic. 02 is captured in the CAPTURE_DR state. This is the only instruction
that accesses the bypass register. While this instruction is in effect, all other
test data registers have no effect on system operation. Test data registers
with both test and system functionality perform their system functions when
this instruction is selected.

highz 10002

Executing highz generates a signal that is read on the rising-edge of
RESET#. When this signal is found asserted, the device is put into the ONCE
mode (all output pins are floated). Also, when this instruction is active, the
Bypass register is connected between TDI and TDO. This register can be
accessed via the JTAG Test-Access Port throughout the device operation.
Access to the Bypass register can also be obtained with the bypass
instruction. highz provides an alternate method of entering ONCE mode.

clamp 01002

clamp instruction allows the state of the signals driven from the i960 Jx
processor pins to be determined from the boundary-scan register while the
BYPASS register is selected as the serial path between TDI and TDO.
Signals driven from the component pins do not change while the clamp
instruction is selected.

Table 22-3. IEEE Instructions (Sheet 2 of 2)

Instruction /
Requisite Opcode Description

22-8 i960® VH Processor Developer’s Manual

Test Features

22.2.4.3 RUNBIST Register

The RUNBIST register, a one-bit register, contains the result of the execution of the processor’s
BIST routine. After the built-in self-test completes, the processor must be cycled through the reset
state to resume normal operation. See Section 12.3.1, “Self Test Function (STEST, FAIL#)” on
page 12-7 for details of the built-in self test algorithm. The processor runs the BIST routine when
the TAP controller enters the Test_Logic_Reset state while the runbist instruction is selected.

22.2.4.4 Boundary-Scan Register

The boundary-scan register contains a cell for each pin as well as control cells for I/O and the
HIGHZ pin.

Table 22-4 shows the bit order of the 80960VH boundary-scan register. All table cells that contain
“Control” select the direction of bidirectional pins or HIGHZ output pins. When a “0” is loaded
into the control cell, the associated pin(s) are HIGHZ or selected as input.

The boundary-scan register is a required set of serial-shiftable register cells, configured in
master/slave stages and connected between each of the 80960VH’s pins and on-chip system logic.
The VCC, VSS and JTAG pins are NOT in the boundary-scan chain.

The boundary-scan register cells are dedicated logic and do not have any system function. Data
may be loaded into the boundary-scan register master cells from the device input pins and output
pin-drivers in parallel by the mandatory sample/preload and extest instructions. Parallel loading
takes place on the rising edge of TCK in the Capture_DR state.

Data may be scanned into the boundary-scan register serially via the TDI serial input pin, clocked
by the rising edge of TCK in the Shift_DR state. When the required data has been loaded into the
master-cell stages, it can be driven into the system logic at input pins or onto the output pins on the
falling edge of TCK in the Update_DR state. Data may also be shifted out of the boundary-scan
register by means of the TDO serial output pin at the falling edge of TCK.

Table 22-4. i960® VH Processor Boundary Scan Register Bit Order (Sheet 1 of 6)

Bit Signal Input/Output

0 LRDYRCV#/STEST I/O

1 RDYRCV# I

2 control enable cell

3 NMI# I

4 HOLDA O

5 HOLD I

6 LCDINIT# I

7 LOCK#/ONCE# I/O

8 D/C#/RST_MODE# I/O

9 FAIL# O

10 WIDTH/HLTD0 I/O

11 WIDTH/HLTD1/RETRY I/O

12 LRST# O

13 XINT0# I

i960® VH Processor Developer’s Manual 22-9

Test Features

14 XINT1# I

15 XINT2# I

16 XINT3# I

17 XINT4# I

18 XINT5# I

19 control enable cell

20 control enable cell

21 control enable cell

22 XINT6# I

23 XINT7# I

24 RAS0# O

25 RAS1# O

26 RAS2# O

27 RAS3# O

28 CAS0# O

29 CAS1# O

30 CAS2# O

31 CAS3# O

32 CAS4# O

33 CAS5# O

34 CAS6# O

35 CAS7# O

36 MWE0# O

37 MWE1# O

38 MWE2# O

39 MWE3# O

40 DWE0# O

41 DWE1# O

42 CE0# O

43 CE1# O

44 LEAF0# O

45 LEAF1# O

46 DALE0 O

47 DALE1 O

48 control enable cell

49 MA0 O

50 MA1 O

51 MA2 O

Table 22-4. i960® VH Processor Boundary Scan Register Bit Order (Sheet 2 of 6)

Bit Signal Input/Output

22-10 i960® VH Processor Developer’s Manual

Test Features

52 MA3 O

53 MA4 O

54 MA5 O

55 MA6 O

56 MA7 O

57 MA8 O

58 MA9 O

59 MA10 O

60 MA11 O

61 DP0 I/O

62 DP1 I/O

63 control enable cell

64 DP2 I/O

65 DP3 I/O

66 CLKMODE0# I

67 CLKMODE1# I

68 DREQ# I

69 DACK# I/O

70 WAIT# O

71 control enable cell

72 control enable cell

73 P_AD0 I/O

74 P_AD1 I/O

75 P_AD2 I/O

76 P_AD3 I/O

77 P_AD4 I/O

78 P_AD5 I/O

79 P_AD6 I/O

80 P_AD7 I/O

81 P_C/BE0# I/O

82 P_AD8 I/O

83 P_AD9 I/O

84 P_AD10 I/O

85 P_AD11 I/O

86 P_AD12 I/O

87 control enable cell

88 P_AD13 I/O

89 P_AD14 I/O

Table 22-4. i960® VH Processor Boundary Scan Register Bit Order (Sheet 3 of 6)

Bit Signal Input/Output

i960® VH Processor Developer’s Manual 22-11

Test Features

90 P_AD15 I/O

91 P_C/BE1# I/O

92 P_PAR I/O

93 control enable cell

94 control enable cell

95 control enable cell

96 P_SERR# I/O

97 P_PERR# I/O

98 P_LOCK# I

99 P_STOP# I/O

100 P_DEVSEL# I/O

101 control enable cell

102 control enable cell

103 P_TRDY# I/O

104 P_IRDY# I/O

105 P_FRAME# I/O

106 P_C/BE2# I/O

107 control enable cell

108 control enable cell

109 P_AD16 I/O

110 P_AD17 I/O

111 P_AD18 I/O

112 P_AD19 I/O

113 P_AD20 I/O

114 P_AD21 I/O

115 P_AD22 I/O

116 P_AD23 I/O

117 P_IDSEL I

118 P_C/BE3# I/O

119 control enable cell

120 P_AD24 I/O

121 P_AD25 I/O

122 P_AD26 I/O

123 P_AD27 I/O

124 P_AD28 I/O

125 control enable cell

126 P_AD29 I/O

127 P_AD30 I/O

Table 22-4. i960® VH Processor Boundary Scan Register Bit Order (Sheet 4 of 6)

Bit Signal Input/Output

22-12 i960® VH Processor Developer’s Manual

Test Features

128 P_AD31 I/O

129 P_REQ# O

130 P_GNT# I

131 control enable cell

132 control enable cell

133 control enable cell

134 control enable cell

135 control enable cell

136 P_RST# I

137 P_INTD# O

138 P_INTC# O

139 P_INTB# O

140 P_INTA# O

141 SCL I/O

142 SDA I/O

143 control enable cell

144 control enable cell

145 BLAST# I/O

146 ADS# O

147 W/R# O

148 DT/R# O

149 DEN# I/O

150 ALE O

151 BE0# O

152 BE1# O

153 control enable cell

154 control enable cell

155 BE2# O

156 BE3# O

157 AD31 I/O

158 AD30 I/O

159 AD29 I/O

160 AD28 I/O

161 AD27 I/O

162 AD26 I/O

163 AD25 I/O

164 AD24 I/O

165 AD23 I/O

Table 22-4. i960® VH Processor Boundary Scan Register Bit Order (Sheet 5 of 6)

Bit Signal Input/Output

i960® VH Processor Developer’s Manual 22-13

Test Features

22.2.5 TAP Controller

The TAP (Test Access Port) controller is a 16-state synchronous finite state machine that controls
the sequence of test logic operations. The TAP can be controlled via a bus master. The bus master
can be either automatic test equipment or a component (i.e., PLD) that interfaces to the TAP. The
TAP controller changes state only in response to a rising edge of TCK. The value of the test mode
state (TMS) input signal at a rising edge of TCK controls the sequence of state changes. The TAP
controller is initialized after power-up by applying a low to the TRST# pin. In addition, the TAP
controller can be initialized by applying a high signal level on the TMS input for a minimum of
five TCK periods. See Figure 22-3 for the state diagram of the TAP controller. An uninitialized
TAP controller can result in erratic processor behavior even when there is no intention to use the
JTAG portion of the processor.

166 AD22 I/O

167 AD21 I/O

168 AD20 I/O

169 AD19 I/O

170 P_CLK I

171 AD18 I/O

172 control enable cell

173 AD17 I/O

174 AD16 I/O

175 AD15 I/O

176 AD14 I/O

177 AD13 I/O

178 AD12 I/O

179 AD11 I/O

180 AD10 I/O

181 AD9 I/O

182 AD8 I/O

183 AD7 I/O

184 AD6 I/O

185 AD5 I/O

186 control enable cell

187 AD4 I/O

188 AD3 I/O

189 AD2 I/O

190 AD1 I/O

191 AD0 I/O

Table 22-4. i960® VH Processor Boundary Scan Register Bit Order (Sheet 6 of 6)

Bit Signal Input/Output

22-14 i960® VH Processor Developer’s Manual

Test Features

The behavior of the TAP controller and other test logic in each controller state is described in the
following subsections. For greater detail on the state machine and the public instructions, refer to
the IEEE 1149.1 Standard Test Access Port and Boundary-Scan Architecture document (available
from the IEEE).

22.2.5.1 Test Logic Reset State

In this state, test logic is disabled to allow normal operation of the 80960VH. Upon entering the
Test_Logic_Reset state, the device identification register is loaded. No matter what the present
state of the controller, it enters Test-Logic-Reset state when the TMS input is held high (12) for at
least five rising edges of TCK. The controller remains in this state while TMS is high. The TAP
controller is also forced to enter this state asynchronously by asserting TRST#.

When the controller exits the Test-Logic-Reset controller state as a result of an erroneous low
signal on the TMS line at the time of a rising edge on TCK (for example, a glitch due to external
interference), it returns to the Test-Logic-Reset state following three rising edges of TCK with the
TMS line at the intended high logic level.

Figure 22-3. TAP Controller State Diagram

CAPTURE - IR

SHIFT - IR

EXIT1 - IR

PAUSE - IR

EXIT2 - IR

UPDATE - IR

SELECT-
IR - SCAN

CAPTURE - DR

SHIFT - DR

EXIT1 - DR

PAUSE - DR

EXIT2 - DR

UPDATE - DR

SELECT-
DR - SCAN

1

1

1

1

1

1

1

1

TEST - LOGIC -
RESET

RUN - TEST /
IDLE

1

1

1

1

1

1

1

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

NOTE: ALL STATE TRANSITIONS ARE BASED ON THE VALUE OF TMS.

TRST# = 0

i960® VH Processor Developer’s Manual 22-15

Test Features

22.2.5.2 Run-Test/Idle State

The TAP controller enters the Run-Test/Idle state between scan operations. The controller remains
in this state as long as TMS is held low. When the runbist instruction is selected, it executes during
the Run-Test/Idle state and the result is reported in the RUNBIST register. Instructions that do not
call functions generate no activity in the test logic while the controller is in this state. The
instruction register and all test data registers retain their current state. When TMS is high on the
rising edge of TCK, the controller moves to the Select-DR-Scan state. The instruction register does
not change while the TAP controller is in this state.

22.2.5.3 Select-DR-Scan State

The Select-DR-Scan state is a transitional controller state. While in the Select-DR-Scan state, the
test data registers selected by the current instruction retain their previous states. When TMS is held
low on the rising edge of TCK, the controller moves into the Capture-DR state. When TMS is held
high on the rising edge of TCK, the controller moves into the Select-IR-Scan state. See
Section 22.2.5.10, “Select-IR Scan State” on page 22-16. The instruction register does not change
while the TAP controller is in this state.

22.2.5.4 Capture-DR State

In this state, the selected test data register is loaded with its parallel value on the rising edge of
TCK. When the controller is in the Capture-DR state and the current instruction is
sample/preload, the boundary-scan register captures input pin data on the rising edge of TCK.
Test data registers that do not have a parallel input are not changed. The boundary-scan registers
cannot be updated from the parallel inputs any other way. The instruction register does not change
while the TAP controller is in this state.

When TMS is high on the rising edge of TCK, the controller enters the Exit1-DR state. When TMS
is low on the rising edge of TCK, the controller enters the Shift-DR state.

22.2.5.5 Shift-DR State

In the Shift-DR state, the test data register selected by the current instruction shifts data one bit
position nearer to the TDO serial output on each rising edge of TCK. All other test data registers
retain their previous values during this state.

The instruction register does not change while the TAP controller is in this state.

When TMS is high on the rising edge of TCK, the controller enters the Exit1-DR state. When TMS
is low on the rising edge of TCK, the controller remains in the Shift-DR state.

22.2.5.6 Exit1-DR State

Exit1-DR is a temporary controller state. When the TAP controller is in the Exit1-DR state and
TMS is held high on the rising edge of TCK, the controller enters the Update-DR state, which
terminates the scanning process. When TMS is held low on the rising edge of TCK, the controller
enters the Pause-DR state.

The instruction register does not change while the TAP controller is in this state. All test data
registers selected by the current instruction retain their previous value during this state.

22-16 i960® VH Processor Developer’s Manual

Test Features

22.2.5.7 Pause-DR State

The Pause-DR state allows the test controller to temporarily halt the shifting of data through the
test data register in the serial path between TDI and TDO. The test data register selected by the
current instruction retains its previous value during this state. The instruction register does not
change in this state.

The controller remains in this state as long as TMS is low. When TMS is high on the rising edge of
TCK, the controller moves to the Exit2-DR state.

22.2.5.8 Exit2-DR State

Exit2-DR is a temporary state. When TMS is held high on the rising edge of TCK, the controller
enters the Update-DR state, which terminates the scanning process. When TMS is held low on the
rising edge of TCK, the controller re-enters the Shift-DR state.

The instruction register does not change while the TAP controller is in this state. All test data
registers selected by the current instruction retain their previous value during this state.

22.2.5.9 Update-DR State

The boundary-scan register is provided with a latched parallel output. This output prevents changes
at the parallel output while data is shifted in response to the extest, sample/preload instructions.
When the boundary-scan register is selected while the TAP controller is in the Update-DR state,
data is latched onto the boundary-scan register’s parallel output from the shift-register path on the
falling edge of TCK. The data held at the latched parallel output does not change unless the
controller is in this state.

While the TAP controller is in this state, all of the test data register’s shift-register bit positions
selected by the current instruction retain their previous values. The instruction register does not
change while the TAP controller is in this state.

When the TAP controller is in this state and TMS is held high on the rising edge of TCK, the
controller re-enters the Select-DR-Scan state. When TMS is held low on the rising edge of TCK,
the controller re-enters the Run-Test/Idle state.

22.2.5.10 Select-IR Scan State

Select-IR is a temporary controller state. The test data registers selected by the current instruction
retain their previous states. In this state, when TMS is held low on the rising edge of TCK, the
controller enters the Capture-IR state and a scan sequence for the instruction register is initiated.
When TMS is held high on the rising edge of TCK, the controller re-enters the Test-Logic-Reset
state. The instruction register does not change in this state.

22.2.5.11 Capture-IR State

When the controller is in the Capture-IR state, the shift register contained in the instruction register
appends the instruction with the fixed value 012 on the rising edge of TCK.

The test data register selected by the current instruction retains its previous value during this state.
The instruction does not change in this state. While in this state, holding TMS high on the rising
edge of TCK causes the controller to enter the Exit1-IR state. When TMS is held low on the rising
edge of TCK, the controller enters the Shift-IR state.

i960® VH Processor Developer’s Manual 22-17

Test Features

22.2.5.12 Shift-IR State

When the controller is in this state, the shift register contained in the instruction register is
connected between TDI and TDO and shifts data one bit position nearer to its serial output on each
rising edge of TCK. The test data register selected by the current instruction retains its previous
value during this state. The instruction register does not change.

When TMS is held high on the rising edge of TCK, the controller enters the Exit1-IR state. When
TMS is held low on the rising edge of TCK, the controller remains in the Shift-IR state.

22.2.5.13 Exit1-IR State

This is a temporary state. When TMS is held high on the rising edge of TCK, the controller enters
the Update-IR state, which terminates the scanning process. When TMS is held low on the rising
edge of TCK, the controller enters the Pause-IR state.

The test data register selected by the current instruction retains its previous value during this state.

The instruction does not change and the instruction register retains its state.

22.2.5.14 Pause-IR State

The Pause-IR state allows the test controller to temporarily halt the shifting of data through the
instruction register. The test data registers selected by the current instruction retain their previous
values during this state. The instruction does not change and the instruction register retains its state.

The controller remains in this state as long as TMS is held low. When TMS is high on the rising
edges of TCK, the controller enters the Exit2-IR state.

22.2.5.15 Exit2-IR State

This is a temporary state. When TMS is held high on the rising edge of TCK, the controller enters
the Update-IR state, which terminates the scanning process. When TMS is held low on the rising
edge of TCK, the controller re-enters the Shift-IR state.

This test data register selected by the current instruction retains its previous value during this state.
The instruction does not change and the instruction register retains its state.

22.2.5.16 Update-IR State

The instruction shifted into the instruction register is latched onto the parallel output from the
shift-register path on the falling edge of TCK. Once latched, the new instruction becomes the
current instruction. Test data registers selected by the current instruction retain their previous
values.

When TMS is held high on the rising edge of TCK, the controller re-enters the Select-DR-Scan
state. When TMS is held low on the rising edge of TCK, the controller re-enters the Run-Test/Idle
state.

22-18 i960® VH Processor Developer’s Manual

Test Features

22.2.6 Boundary-Scan Example

The following example describes two command actions. The example assumes the TAP controller
starts in the Test-Logic-Reset state. The TAP controller then loads and executes a new instruction.
See Figure 22-4 for an illustration of the waveforms involved in this example. The steps are:

1. Load the sample/preload instruction into the instruction register:

a. Use TMS to select the Shift-IR state. While in the Shift-IR state, shift in the new
instruction, least significant byte first.

b. Use the Shift-IR state four times to read the least-significant through most-significant
instruction bits into the instruction register (one does not care what old instruction is being
shifted out of the TDO pin).

c. Enter the Update-IR state to make the instruction take effect.

2. Capture pin data and shift the data out through the TDO pin:

a. Use TMS to select the Select-DR-Scan state.

b. Transition the TAP controller to the Capture-DR state to latch pin data in the
boundary-scan register cells.

c. Enter and stay in the Shift-DR state for 110 TCK cycles. These TDO values are compared
against expected data to determine if component operation and connection are correct.
Record the TDO values after each cycle. New serial data enters the boundary-scan register
through the TDI pin, while old data is scanned out.

d. Pass through the Exit1-DR state to the Update-DR state. Here boundary-scan data to be
driven out of the system output pins is latched and driven.

e. Transition back to the Select-DR state to begin another iteration.

This example does not use Pause states. These states allow software to pause the JTAG state
machine to accommodate slow board-level data paths. The Pause states allow indefinite
interruptions in the shifting while the external tester performs other tasks.

The old instruction was abcd in the example. The original instruction register value becomes the ID
code since the example starts from the reset state. At other times it represents the previous opcode.
The new instruction opcode is 00012 (sample/preload). All pins are captured into the serial
boundary-scan register and the values are output to the TDO pin.

The TCK signal at the top of the diagram shows a continuous pulse train. In many designs,
however, TCK is more irregular. In such cases, software controls TCK by writing to a port bit.
Software writes the TMS and TDI signals and toggles the clock high. Typically, software drives
TCK low quickly. The program monitors the TDO pin values as they are shifted out.

i960® VH Processor Developer’s Manual 22-19

Test Features

Figure 22-4. Example Showing Typical JTAG Operations

1 1 0 1 1 00

TCK

TMS

Don’t Care Don’t Care

New Inst = 00012Old Inst = abcd

Don’t Care

Boundary-Scan Reg. Instruction Register

TDI

Parallel Out

IR Shift Reg

Register

TDO

Selected

DR Shift Reg
 (n bits long)

4 bits long

d c b a
0 1 2 3 4 5 -4 -3 -2
0 0 0 0 0 0 n n n
P P P P P P P P P

-1
n
P

R
E

S
E

T

S
E

LE
C

T
 D

R
 S

C
A

N

S
E

LE
C

T
 IR

 S
C

A
N

C
A

P
T

U
R

E
 IR

S
H

IF
T

 I
R

S
H

IF
T

 I
R

E
X

IT
1

IR
S

H
IF

T
 I

R

S
H

IF
T

 I
R

R
E

S
E

T
R

U
N

 T
E

S
T

/ I
D

LE

0
0
0

1
0
0
1

0
1
0
0

0
0
1
0

0
0
0
0

1

U
P

D
A

T
E

 I
R

S
E

LE
C

T
 D

R
 S

C
A

N

C
A

P
T

U
R

E
 D

R
S

H
IF

T
 D

R
S

H
IF

T
 D

R
S

H
IF

T
 D

R
S

H
IF

T
 D

R
S

H
IF

T
 D

R
S

H
IF

T
 D

R

S
H

IF
T

 D
R

S
H

IF
T

 D
R

S
H

IF
T

 D
R

S
H

IF
T

 D
R

S
H

IF
T

 D
R

U
P

D
A

T
E

 D
R

R
U

N
 T

E
S

T
/I

D
LE

R
U

N
 T

E
S

T
/I

D
LE

R
U

N
 T

E
S

T
/I

D
LE

R
U

N
 T

E
S

T
/I

D
LE

S
H

IF
T

 D
R

E
X

IT
1

D
R

01

0 0 0

1 1 1

1
R

E
S

E
T

R
E

S
E

T

R
E

S
E

T

111

Of IR

∼∼
∼∼

∼∼
∼∼

∼∼
∼∼

∼∼

6
0
P

∼∼
∼∼

∼∼
∼∼

∼∼
∼∼

∼∼
∼∼

Figure 22-5. Timing Diagram Illustrating the Loading of Instruction Register

TCK

TMS

Controller State

TDI

Data input to IR

IR shift-register

Parallel output of IR

Data input to TDR

TDR shift-register

Parallel output of TDR

Register selected

TDO enable

TDO

Test-Logic-R
eset

E
xit1 - IR

S
hift - IR

C
apture - IR

S
elect - IR

 - S
can

S
elect - D

R
 - S

can

R
un - Test / Idle

P
ause - IR

E
xit2 - IR

S
hift - IR

E
xit1 - IR

U
pdate - IR

R
un - R

est / Idle

InactiveActiveInactiveInactive Act

Old Data

= Don’t care or undefined

New InstructionID Code

Instruction Register

i960® VH Processor Developer’s Manual 22-21

Test Features

Figure 22-6. Timing Diagram Illustrating the Loading of Data Register

TCK

TMS

Controller State

TDI

Data input to IR

IR shift-register

Parallel output of IR

Data input to TDR

TDR shift-register

Parallel output of TDR

Register Selected

TDO enable

TDO

Test-Logic-R
eset

E
xit1 - D

R

S
hift - D

R

C
apture - D

R

S
elect - D

R
 - S

can

R
un - Test / Idle

P
ause - D

R

E
xit2 - D

R

S
hift - D

R

E
xit1 - D

R

U
pdate - D

R

R
un - R

est / Idle

INACTIVEACTIVEINACTIVEINACTIVE

NEW DATA

INSTRUCTION ID CODE

TEST DATA REGISTER

= Don’t care or undefined

S
elect - D

R
 - S

can
OLD DATA

ACT.

S
elect - IR

 - S
can

i960® VH Processor Developer’s Manual A-1

Machine-level Instruction Formats A

This appendix describes the encoding format for instructions used by the i960® processors.
Included is a description of the four instruction formats and how the addressing modes relate to
these formats. Refer also to Appendix B, “Opcodes and Execution Times”.

A.1 General Instruction Format

The i960® architecture defines four basic instruction encoding formats: REG, COBR, CTRL and
MEM (see Figure A-1). Each instruction uses one of these formats, which is defined by the
instruction’s opcode field. All instructions are one word long and begin on word boundaries. MEM
format instructions are encoded in one of two sub-formats: MEMA or MEMB. MEMB supports an
optional second word to hold a displacement value. The following sections describe each format’s
instruction word fields.

Figure A-1. Instruction Formats

28 24 20 16 12 8 4 031

 MMMOpcode src/dst src2 Opcode src1

28 24 20 16 12 8 4 031

 SOpcode src2 displacement Tsrc1

28 24 20 16 12 8 4 031

 0Opcode displacement
T

28 24 20 16 12 8 4 031

Opcode src/dst abase Offset

0

REG

COBR

CTRL

MEMA

MODE

MEMB

28 24 20 16 12 8 4 031

 Opcode src/dst abase Index
001

3 2 1

Optional Displacement

M
1

Scale

(5 bits)(5 bits)(5 bits) (4 bits)(8 bits)

(8 bits) (5 bits) (5 bits) (11 bits)

(8 bits) (22 bits)

(8 bits) (5 bits) (5 bits) (12 bits)

(8 bits) (5 bits) (5 bits) (3 bits) (5 bits)

2

S
2

S
1

X

X X X

A-2 i960® VH Processor Developer’s Manual

Machine-level Instruction Formats

When a particular instruction is defined as not using a particular field, the field is ignored.

A.2 REG Format

REG format is used for operations performed on data contained in registers. Most of the i960
processor family’s instructions use this format.

The opcode for the REG instructions is 12 bits long (three hexadecimal digits) and is split between
bits 7 through 10 and bits 24 through 31. For example, the addi opcode is 591H. Here, bits 24
through 31 contain 59H and bits 7 through 10 contain 1H.

src1 and src2 fields specify the instruction’s source operands. Operands can be global or local
registers or literals. Mode bits (M1 for src1 and M2 for src2) and the instruction type determine
what an operand specifies. Table A-3 shows this relationship.

Table A-1. Instruction Field Descriptions

Instruction Field Description

Opcode The opcode of the instruction. Opcode encodings are defined in Section 6.1.8,
“Opcode and Instruction Format” on page 6-4.

src1 An input to the instruction. This field specifies a value or address. In one case of the
COBR format, this field is used to specify a register in which a result is stored.

src2 An input to the instruction. This field specifies a value or address.

src/dst Depending on the instruction, this field can be (1) an input value or address, (2) the
register where the result is stored, or (3) both of the above.

abase A register whose value is used in computing a memory address.

INDEX A register whose value is used in computing a memory address.

displacement A signed two’s complement number.

Offset An unsigned positive number.

Optional
Displacement A signed two’s complement number used in the two-word MEMB format.

MODE
A specification of how a memory address for an operand is computed and, for MEMB,
specifies whether the instruction contains a second word to be used as a
displacement.

SCALE A specification of how a register’s contents are multiplied for certain addressing
modes (i.e., for indexing).

M1, M2, M3 These fields further define the meaning of the src1, src2, and src/dst fields,
respectively as shown in Table A-3.

Table A-2. Encoding of src1 and src2 in REG Format

M1 or M2
Src1 or Src2 Operand

Value
Register Number Literal Value

0
00000 ... 01111 r0 ... r15 NA

10000 ... 11111 g0 ... g15 NA

1 00000 ... 11111 NA 0 ... 31

i960® VH Processor Developer’s Manual A-3

Machine-level Instruction Formats

The src/dst field can specify a source operand, a destination operand or both, depending on the
instruction. Here again, mode bit M3 determines how this field is used. If M3 is clear, then the src/
dst operand is a global or local register that is encoded as shown in Table A-3. If M3 is set, then the
src/dst operand can be used as a source-only operand that is a literal.

When a literal is specified, it is always an unsigned 5-bit value that is zero-extended to a 32-bit
value and used as the operand. When the instruction defines an operand to be larger than 32 bits,
values specified by literals are zero-extended to the operand size.

A.3 COBR Format

The COBR format is used primarily for compare-and-branch instructions. The test-if instructions
also use the COBR format. The COBR opcode field is eight bits (two hexadecimal digits).

The src1 and src2 fields specify source operands for the instruction. The src1 field can specify
either a global or local register or a literal as determined by mode bit M1. The src2 field can only
specify a global or local register. Table A-4 shows the M1, src1 relationship and Table A-5 shows
the S2, src2 relationship.

The displacement field contains a signed two’s complement number that specifies a word
displacement. The processor uses this value to compute the address of a target instruction to which
the processor branches as a result of the comparison. The displacement field’s value can range
from -210 to 210 -1. To determine the target instruction’s IP, the processor converts the
displacement value to a byte displacement (i.e., multiplies the value by 4). It then adds the resulting
byte displacement to the IP of the current instruction.

Table A-3. Encoding of src/dst in REG Format

M3 src/dst src Only dst Only

0
g0 ... g15
r0 ... r15

g0 ... g15
r0 ... r15

g0 ... g15
r0 ... r15

1 Reserved Reserved reserved

Table A-4. Encoding of src1 in COBR Format

M1 src1

0 g0 ... g15
r0 ... r15

1 Literal

Table A-5. Encoding of src2 in COBR Format

S2 src2

0
g0 ... g15
r0 ... r15

1 reserved

A-4 i960® VH Processor Developer’s Manual

Machine-level Instruction Formats

A.4 CTRL Format

The CTRL format is used for instructions that branch to a new IP, including the BRANCH<cc>, bal
and call instructions. Note that balx, bx and callx do not use this format. ret also uses the CTRL
format. The CTRL opcode field is eight bits (two hexadecimal digits).

A branch target address is specified with the displacement field in the same manner as COBR
format instructions. The displacement field specifies a word displacement as a signed, two’s
complement number in the range -221 to 221-1. The processor ignores the ret instruction’s
displacement field.

A.5 MEM Format

The MEM format is used for instructions that require a memory address to be computed. These
instructions include the LOAD, STORE and lda instructions. Also, the extended versions of the
branch, branch-and-link and call instructions (bx, balx and callx) use this format.

The two MEM-format encodings are MEMA and MEMB. MEMB can optionally add a 32-bit
displacement (contained in a second word) to the instruction. Bit 12 of the instruction’s first word
determines whether MEMA (clear) or MEMB (set) is used.

The opcode field is eight bits long for either encoding. The src/dst field specifies a global or local
register. For load instructions, src/dst specifies the destination register for a word loaded into the
processor from memory or, for operands larger than one word, the first of successive destination
registers. For store instructions, this field specifies the register or group of registers that contain the
source operand to be stored in memory.

The mode field determines the address mode used for the instruction. Table A-6 summarizes the
addressing modes for the two MEM-format encodings. Fields used in these addressing modes are
described in the following sections.

i960® VH Processor Developer’s Manual A-5

Machine-level Instruction Formats

A.5.1 MEMA Format Addressing

The MEMA format provides two addressing modes:

• Absolute offset

• Register indirect with offset

The offset field specifies an unsigned byte offset from 0 to 4096. The abase field specifies a global
or local register that contains an address in memory.

For the absolute-offset addressing mode (MODE = 00), the processor interprets the offset field as
an offset from byte 0 of the current process address space; the abase field is ignored. Using this
addressing mode along with the lda instruction allows a constant in the range 0 to 4096 to be
loaded into a register.

For the register-indirect-with-offset addressing mode (MODE = 10), offset field value is added to
the address in the abase register. Clearing the offset value creates a register indirect addressing
mode; however, this operation can generally be carried out faster by using the MEMB version of
this addressing mode.

A.5.2 MEMB Format Addressing

The MEMB format provides the following seven addressing modes:

Table A-6. Addressing Modes for MEM Format Instructions

Format MODE Addressing Mode Address Computation
of Instr

Words

MEMA
00 Absolute Offset offset 1

10 Register Indirect with Offset (abase) + offset 1

MEMB

0100 Register Indirect (abase) 1

0101 IP with Displacement (IP) + displacement + 8 2

0110 Reserved reserved NA

0111 Register Indirect with Index (abase) + (index) * 2scale 1

1100 Absolute Displacement displacement 2

1101 Register Indirect with
Displacement (abase) + displacement 2

1110 Index with Displacement (index) * 2scale + displacement 2

1111 Register Indirect with Index
and Displacement (abase) + (index) * 2scale + displacement 2

NOTES:
1. In these address computations, a field in parentheses indicates that the value in the specified register is used in the

computation.
2. Usage of a reserved encoding may cause generation of an OPERATION.INVALID_OPCODE fault.

• absolute displacement • register indirect

• register indirect with displacement • register indirect with displacement

• register indirect with index and
displacement

• index with displacement

A-6 i960® VH Processor Developer’s Manual

Machine-level Instruction Formats

The abase and index fields specify local or global registers, the contents of which are used in
address computation. When the index field is used in an addressing mode, the processor
automatically scales the index register value by the amount specified in the SCALE field.
Table A-7 gives the encoding of the scale field. The optional displacement field is contained in the
word following the instruction word. The displacement is a 32-bit signed two’s complement value.

For the IP with displacement mode, the value of the displacement field plus eight is added to the
address of the current instruction.

• IP with displacement

Table A-7. Encoding of Scale Field

Scale Scale Factor (Multiplier)

000 1

001 2

010 4

011 8

100 16

101 to 111 Reserved

NOTE: Usage of a reserved encoding causes an unpredictable result.

i960® VH Processor Developer’s Manual B-1

Opcodes and Execution Times B

B.1 Instruction Reference by Opcode

This section lists the instruction encoding for each i960® VH processor instruction. Instructions are
grouped by instruction format and listed by opcode within each format.

Table B-1. Miscellaneous Instruction Encoding Bits

M3 M2 M1 S2 S1 T Description

REG Format

x x 0 x 0 — src1 is a global or local register

x x 1 x 0 — src1 is a literal

x x 0 x 1 — reserved

x x 1 x 1 — reserved

x 0 x 0 x — src2 is a global or local register

x 1 x 0 x — src2 is a literal

x 0 x 1 x — reserved

x 1 x 1 x — reserved

0 x x x x — src/dst is a global or local register

1 x x x x —
src/dst is a literal when used as a source. M3 may not be 1 when
src/dst is used as a destination only or is used both as a source and
destination in an instruction (atmod, modify, extract, modpc).

COBR Format

— — 0 0 — x src1, src2 and dst are global or local registers

— — 1 0 — x src1 is a literal, src2 and dst are global or local registers

— — 0 1 — x reserved

— — 1 1 — x reserved

Table B-2. REG Format Instruction Encodings (Sheet 1 of 6)

O
pc

od
e

M
n

em
o

n
ic

C
yc

le
s

to
 E

xe
cu

te

O
pc

od
e

 (
11

 -
 4

)

sr
c/

d
st

sr
c2

M
od

e

O
pc

od
e

 (
3-

0)

S
pe

ci
al

 F
la

gs

sr
c1

31 24 2319 18 .14 13 12 11 10 7 6 5 4 0

58:0 notbit 1 0101 1000 dst src M3 M2 M1 0000 S2 S1 bitpos

NOTE: Execution time based on function performed by instruction.

B-2 i960® VH Processor Developer’s Manual

Opcodes and Execution Times

58:1 and 1 0101 1000 dst src2 M3 M2 M1 0001 S2 S1 src1

58:2 andnot 1 0101 1000 dst src2 M3 M2 M1 0010 S2 S1 src1

58:3 setbit 1 0101 1000 dst src M3 M2 M1 0011 S2 S1 bitpos

58:4 notand 1 0101 1000 dst src2 M3 M2 M1 0100 S2 S1 src1

58:6 xor 1 0101 1000 dst src2 M3 M2 M1 0110 S2 S1 src1

58:7 or 1 0101 1000 dst src2 M3 M2 M1 0111 S2 S1 src1

58:8 nor 1 0101 1000 dst src2 M3 M2 M1 1000 S2 S1 src1

58:9 xnor 1 0101 1000 dst src2 M3 M2 M1 1001 S2 S1 src1

58:A not 1 0101 1000 dst M3 M2 M1 1010 S2 S1 src

58:B ornot 1 0101 1000 dst src2 M3 M2 M1 1011 S2 S1 src1

58:C clrbit 1 0101 1000 dst src M3 M2 M1 1100 S2 S1 bitpos

58:D notor 1 0101 1000 dst src2 M3 M2 M1 1101 S2 S1 src1

58:E nand 1 0101 1000 dst src2 M3 M2 M1 1110 S2 S1 src1

58:F alterbit 1 0101 1000 dst src M3 M2 M1 1111 S2 S1 bitpos

59:0 addo 1 0101 1001 dst src2 M3 M2 M1 0000 S2 S1 src1

59:1 addi 1 0101 1001 dst src2 M3 M2 M1 0001 S2 S1 src1

59:2 subo 1 0101 1001 dst src2 M3 M2 M1 0010 S2 S1 src1

59:3 subi 1 0101 1001 dst src2 M3 M2 M1 0011 S2 S1 src1

59:4 cmpob 1 0101 1001 src2 M3 M2 M1 0100 S2 S1 src1

59:5 cmpib 1 0101 1001 src2 M3 M2 M1 0101 S2 S1 src1

59:6 cmpos 1 0101 1001 src2 M3 M2 M1 0110 S2 S1 src1

59:7 cmpis 1 0101 1001 src2 M3 M2 M1 0111 S2 S1 src1

59:8 shro 1 0101 1001 dst src M3 M2 M1 1000 S2 S1 len

59:A shrdi 6 0101 1001 dst src M3 M2 M1 1010 S2 S1 len

59:B shri 1 0101 1001 dst src M3 M2 M1 1011 S2 S1 len

59:C shlo 1 0101 1001 dst src M3 M2 M1 1100 S2 S1 len

59:D rotate 1 0101 1001 dst src M3 M2 M1 1101 S2 S1 len

59:E shli 1 0101 1001 dst src M3 M2 M1 1110 S2 S1 len

5A:0 cmpo 1 0101 1010 src2 M3 M2 M1 0000 S2 S1 src1

Table B-2. REG Format Instruction Encodings (Sheet 2 of 6)

O
pc

od
e

M
n

em
o

ni
c

C
yc

le
s

to
 E

xe
cu

te

O
pc

od
e

 (
11

 -
 4

)

sr
c/

ds
t

sr
c2

M
od

e

O
pc

od
e

 (
3-

0)

S
pe

ci
al

 F
la

gs

sr
c1

31 24 2319 18 .14 13 12 11 10 7 6 5 4 0

NOTE: Execution time based on function performed by instruction.

i960® VH Processor Developer’s Manual B-3

Opcodes and Execution Times

5A:1 cmpi 1 0101 1010 src2 M3 M2 M1 0001 S2 S1 src1

5A:2
concmp

o 1 0101 1010 src2 M3 M2 M1 0010 S2 S1 src1

5A:3 concmpi 1 0101 1010 src2 M3 M2 M1 0011 S2 S1 src1

5A:4 cmpinco 1 0101 1010 dst src2 M3 M2 M1 0100 S2 S1 src1

5A:5 cmpinci 1 0101 1010 dst src2 M3 M2 M1 0101 S2 S1 src1

5A:6
cmpdec

o 1 0101 1010 dst src2 M3 M2 M1 0110 S2 S1 src1

5A:7 cmpdeci 1 0101 1010 dst src2 M3 M2 M1 0111 S2 S1 src1

5A:C
scanbyt

e 1 0101 1010 src2 M3 M2 M1 1100 S2 S1 src1

5A:D bswap 10 0101 1010 dst M3 M2 M1 1101 S2 S1 src1

5A:E chkbit 1 0101 1010 src M3 M2 M1 1110 S2 S1 bitpos

5B:0 addc 1 0101 1011 dst src2 M3 M2 M1 0000 S2 S1 src1

5B:2 subc 1 0101 1011 dst src2 M3 M2 M1 0010 S2 S1 src1

5B:4 intdis 4 0101 1011 M3 M2 M1 0100 S2 S1

5B:5 inten 4 0101 1011 M3 M2 M1 0101 S2 S1

5C:C mov 1 0101 1100 dst M3 M2 M1 1100 S2 S1 src

5D:8 eshro 11 0101 1101 dst src2 M3 M2 M1 1000 S2 S1 src1

5D:C movl 4 0101 1101 dst M3 M2 M1 1100 S2 S1 src

5E:C movt 5 0101 1110 dst M3 M2 M1 1100 S2 S1 src

5F:C movq 6 0101 1111 dst M3 M2 M1 1100 S2 S1 src

61:0 atmod 24 0110 0010 dst src2 M3 M2 M1 0000 S2 S1 src1

61:2 atadd 24 0110 0010 dst src2 M3 M2 M1 0010 S2 S1 src1

64:0 spanbit 6 0110 0100 dst M3 M2 M1 0000 S2 S1 src

64:1 scanbit 5 0110 0100 dst M3 M2 M1 0001 S2 S1 src

64:5 modac 10 0110 0100 mask src M3 M2 M1 0101 S2 S1 dst

65:0 modify 6 0110 0101 src/dst src M3 M2 M1 0000 S2 S1 mask

65:1 extract 7 0110 0101 src/dst len M3 M2 M1 0001 S2 S1 bitpos

65:4 modtc 10 0110 0101 mask src M3 M2 M1 0100 S2 S1 dst

Table B-2. REG Format Instruction Encodings (Sheet 3 of 6)

O
pc

od
e

M
n

em
o

ni
c

C
yc

le
s

to
 E

xe
cu

te

O
pc

od
e

 (
11

 -
 4

)

sr
c/

ds
t

sr
c2

M
od

e

O
pc

od
e

 (
3-

0)

S
pe

ci
al

 F
la

gs

sr
c1

31 24 2319 18 .14 13 12 11 10 7 6 5 4 0

NOTE: Execution time based on function performed by instruction.

B-4 i960® VH Processor Developer’s Manual

Opcodes and Execution Times

65:5 modpc 17 0110 0101 src/dst mask M3 M2 M1 0101 S2 S1 src

65:8 intctl 12-
16 0110 0101 dst M3 M2 M1 1000 S2 S1 src1

65:9 sysctl 10-
1001 0110 0101 src/dst src2 M3 M2 M1 1001 S2 S1 src1

65:B icctl 10-
1001 0110 0101 src/dst src2 M3 M2 M1 1011 S2 S1 src1

65:C dcctl 10-
1001 0110 0101 src/dst src2 M3 M2 M1 1100 S2 S1 src1

65:D halt • 0110 0101 M3 M2 M1 1101 S2 S1 src1

66:0 calls 30 0110 0110 M3 M2 M1 0000 S2 S1 src

66:B mark 8 0110 0110 M3 M2 M1 1011 S2 S1

66:C fmark 8 0110 0110 M3 M2 M1 1100 S2 S1

66:D flushreg 15 0110 0110 M3 M2 M1 1101 S2 S1

66:F syncf 4 0110 0110 M3 M2 M1 1111 S2 S1

67:0 emul 7 0110 0111 dst src2 M3 M2 M1 0000 S2 S1 src1

67:1 ediv 40 0110 0111 dst src2 M3 M2 M1 0001 S2 S1 src1

70:1 mulo 2-4 0111 0000 dst src2 M3 M2 M1 0001 S2 S1 src1

70:8 remo 40 0111 0000 dst src2 M3 M2 M1 1000 S2 S1 src1

70:B divo 40 0111 0000 dst src2 M3 M2 M1 1011 S2 S1 src1

74:1 muli 2-4 0111 0100 dst src2 M3 M2 M1 0001 S2 S1 src1

74:8 remi 40 0111 0100 dst src2 M3 M2 M1 1000 S2 S1 src1

74:9 modi 40 0111 0100 dst src2 M3 M2 M1 1001 S2 S1 src1

74:B divi 40 0111 0100 dst src2 M3 M2 M1 1011 S2 S1 src1

78:0 addono 1 0111 1000 dst src2 M3 M2 M1 0000 S2 S1 src1

78:1 addino 1 0111 1000 dst src2 M3 M2 M1 0001 S2 S1 src1

78:2 subono 1 0111 1000 dst src2 M3 M2 M1 0010 S2 S1 src1

78:3 subino 1 0111 1000 dst src2 M3 M2 M1 0011 S2 S1 src1

78:4 selno 1 0111 1000 dst src2 M3 M2 M1 0100 S2 S1 src1

79:0 addog 1 0111 1001 dst src2 M3 M2 M1 0000 S2 S1 src1

79:1 addig 1 0111 1001 dst src2 M3 M2 M1 0001 S2 S1 src1

Table B-2. REG Format Instruction Encodings (Sheet 4 of 6)

O
pc

od
e

M
n

em
o

ni
c

C
yc

le
s

to
 E

xe
cu

te

O
pc

od
e

 (
11

 -
 4

)

sr
c/

ds
t

sr
c2

M
od

e

O
pc

od
e

 (
3-

0)

S
pe

ci
al

 F
la

gs

sr
c1

31 24 2319 18 .14 13 12 11 10 7 6 5 4 0

NOTE: Execution time based on function performed by instruction.

i960® VH Processor Developer’s Manual B-5

Opcodes and Execution Times

79:2 subog 1 0111 1001 dst src2 M3 M2 M1 0010 S2 S1 src1

79:3 subig 1 0111 1001 dst src2 M3 M2 M1 0011 S2 S1 src1

79:4 selg 1 0111 1001 dst src2 M3 M2 M1 0100 S2 S1 src1

7A:0 addoe 1 0111 1010 dst src2 M3 M2 M1 0000 S2 S1 src1

7A:1 addie 1 0111 1010 dst src2 M3 M2 M1 0001 S2 S1 src1

7A:2 suboe 1 0111 1010 dst src2 M3 M2 M1 0010 S2 S1 src1

7A:3 subie 1 0111 1010 dst src2 M3 M2 M1 0011 S2 S1 src1

7A:4 sele 1 0111 1010 dst src2 M3 M2 M1 0100 S2 S1 src1

7B:0 addoge 1 0111 1011 dst src2 M3 M2 M1 0000 S2 S1 src1

7B:1 addige 1 0111 1011 dst src2 M3 M2 M1 0001 S2 S1 src1

7B:2 suboge 1 0111 1011 dst src2 M3 M2 M1 0010 S2 S1 src1

7B:3 subige 1 0111 1011 dst src2 M3 M2 M1 0011 S2 S1 src1

7B:4 selge 1 0111 1011 dst src2 M3 M2 M1 0100 S2 S1 src1

7C:0 addol 1 0111 1100 dst src2 M3 M2 M1 0000 S2 S1 src1

7C:1 addil 1 0111 1100 dst src2 M3 M2 M1 0001 S2 S1 src1

7C:2 subol 1 0111 1100 dst src2 M3 M2 M1 0010 S2 S1 src1

7C:3 subil 1 0111 1100 dst src2 M3 M2 M1 0011 S2 S1 src1

7C:4 sell 1 0111 1100 dst src2 M3 M2 M1 0100 S2 S1 src1

7D:0 addone 1 0111 1101 dst src2 M3 M2 M1 0000 S2 S1 src1

7D:1 addine 1 0111 1101 dst src2 M3 M2 M1 0001 S2 S1 src1

7D:2 subone 1 0111 1101 dst src2 M3 M2 M1 0010 S2 S1 src1

7D:3 subine 1 0111 1101 dst src2 M3 M2 M1 0011 S2 S1 src1

7D:4 selne 1 0111 1101 dst src2 M3 M2 M1 0100 S2 S1 src1

7E:0 addole 1 0111 1110 dst src2 M3 M2 M1 0000 S2 S1 src1

7E:1 addile 1 0111 1110 dst src2 M3 M2 M1 0001 S2 S1 src1

7E:2 subole 1 0111 1110 dst src2 M3 M2 M1 0010 S2 S1 src1

7E:3 subile 1 0111 1110 dst src2 M3 M2 M1 0011 S2 S1 src1

7E:4 selle 1 0111 1110 dst src2 M3 M2 M1 0100 S2 S1 src1

7F:0 addoo 1 0111 1111 dst src2 M3 M2 M1 0000 S2 S1 src1

Table B-2. REG Format Instruction Encodings (Sheet 5 of 6)

O
pc

od
e

M
n

em
o

ni
c

C
yc

le
s

to
 E

xe
cu

te

O
pc

od
e

 (
11

 -
 4

)

sr
c/

ds
t

sr
c2

M
od

e

O
pc

od
e

 (
3-

0)

S
pe

ci
al

 F
la

gs

sr
c1

31 24 2319 18 .14 13 12 11 10 7 6 5 4 0

NOTE: Execution time based on function performed by instruction.

B-6 i960® VH Processor Developer’s Manual

Opcodes and Execution Times

7F:1 addio 1 0111 1111 dst src2 M3 M2 M1 0001 S2 S1 src1

7F:2 suboo 1 0111 1111 dst src2 M3 M2 M1 0010 S2 S1 src1

7F:3 subio 1 0111 1111 dst src2 M3 M2 M1 0011 S2 S1 src1

7F:4 sello 1 0111 1111 dst src2 M3 M2 M1 0100 S2 S1 src1

Table B-3. COBR Format Instruction Encodings (Sheet 1 of 2)

O
p

co
d

e

M
n

em
o

n
ic

C
yc

le
s

to
 E

xe
cu

te

O
p

co
d

e

sr
c1

sr
c2 M

D
is

p
la

ce
m

en
t

T S
2

3124 23 19 1814 13 122 1 0

20 testno 4 0010 0000 dst M1 T S2

21 testg 4 0010 0001 dst M1 T S2

22 teste 4 0010 0010 dst M1 T S2

23 testge 4 0010 0011 dst M1 T S2

24 testl 4 0010 0100 dst M1 T S2

25 testne 4 0010 0101 dst M1 T S2

26 testle 4 0010 0110 dst M1 T S2

27 testo 4 0010 0111 dst M1 T S2

30 bbc 2 + 11
0011 0000 bitpos src M1 targ T S2

31 cmpobg 2 + 1 0011 0001 src1 src2 M1 targ T S2

32 cmpobe 2 + 1 0011 0010 src1 src2 M1 targ T S2

33 cmpobge 2 + 1 0011 0011 src1 src2 M1 targ T S2

34 cmpobl 2 + 1 0011 0100 src1 src2 M1 targ T S2

35 cmpobne 2 + 1 0011 0101 src1 src2 M1 targ T S2

36 cmpoble 2 + 1 0011 0110 src1 src2 M1 targ T S2

37 bbs 2 + 1 0011 0111 bitpos src M1 targ T S2

38 cmpibno 2 + 1 0011 1000 src1 src2 M1 targ T S2

Table B-2. REG Format Instruction Encodings (Sheet 6 of 6)

O
pc

od
e

M
n

em
o

ni
c

C
yc

le
s

to
 E

xe
cu

te

O
pc

od
e

 (
11

 -
 4

)

sr
c/

ds
t

sr
c2

M
od

e

O
pc

od
e

 (
3-

0)

S
pe

ci
al

 F
la

gs

sr
c1

31 24 2319 18 .14 13 12 11 10 7 6 5 4 0

NOTE: Execution time based on function performed by instruction.

i960® VH Processor Developer’s Manual B-7

Opcodes and Execution Times

39 cmpibg 2 + 1 0011 1001 src1 src2 M1 targ T S2

3A cmpibe 2 + 1 0011 1010 src1 src2 M1 targ T S2

3B cmpibge 2 + 1 0011 1011 src1 src2 M1 targ T S2

3C cmpibl 2 + 1 0011 1100 src1 src2 M1 targ T S2

3D cmpibne 2 + 1 0011 1101 src1 src2 M1 targ T S2

3E cmpible 2 + 1 0011 1110 src1 src2 M1 targ T S2

3F cmpibo 2 + 1 0011 1111 src1 src2 M1 targ T S2

NOTE: Indicates that 2 cycles are required to execute the instruction plus an additional cycle to fetch the TA get instruction
when the branch is taken.

Table B-4. CTRL Format Instruction Encodings (Sheet 1 of 2)

O
p

co
d

e

M
n

em
o

n
ic

C
yc

le
s

to

E
xe

cu
te

O
p

co
d

e

di
sp

la
ce

m
en

t

T 0

31............24 23...........2 1 0

08 b 1 + 11
0000 1000 targ T 0

09 call 7 0000 1001 targ T 0

0A ret 6 0000 1010 T 0

0B bal 1 + 1 0000 1011 targ T 0

10 bno 1 + 1 0001 0000 targ T 0

11 bg 1 + 1 0001 0001 targ T 0

12 be 1 + 1 0001 0010 targ T 0

13 bge 1 + 1 0001 0011 targ T 0

14 bl 1 + 1 0001 0100 targ T 0

15 bne 1 + 1 0001 0101 targ T 0

16 ble 1 + 1 0001 0110 targ T 0

17 bo 1 + 1 0001 0111 targ T 0

18 faultno 13 0001 1000 T 0

19 faultg 13 0001 1001 T 0

NOTE: Indicates that 2 cycles are required to execute the instruction plus an additional cycle to fetch the target instruction
when the branch is taken.

Table B-3. COBR Format Instruction Encodings (Sheet 2 of 2)

O
p

co
d

e

M
n

em
o

n
ic

C
yc

le
s

to
 E

xe
cu

te

O
p

co
d

e

sr
c1

sr
c2 M

D
is

p
la

ce
m

en
t

T S
2

3124 23 19 1814 13 122 1 0

B-8 i960® VH Processor Developer’s Manual

Opcodes and Execution Times

1A faulte 13 0001 1010 T 0

1B faultge 13 0001 1011 T 0

1C faultl 13 0001 1100 T 0

1D faultne 13 0001 1101 T 0

1E faultle 13 0001 1110 T 0

1F faulto 13 0001 1111 T 0

Table B-5. Cycle Counts for sysctl Operations

Operation Cycles to Execute

Post Interrupt 20

Purge I-cache 19

Enable I-cache 20

Disable I-cache 22

Software Reset 329+bus

Load Control Register Group 26

Request Breakpoint Resource 21-22

Table B-6. Cycle Counts for icctl Operations

Operation Cycles to Execute

Disable I-cache 18

Enable I-cache 16

Invalidate I-cache 18

Load and Lock I-cache 5193

I-cache Status Request 21

I-cache Locking Status 20

Table B-7. Cycle Counts for dcctl Operations

Operation Cycles to Execute

Disable D-cache 18

Enable D-cache 18

Invalidate D-cache 19

Table B-4. CTRL Format Instruction Encodings (Sheet 2 of 2)

O
p

co
d

e

M
n

em
o

n
ic

C
yc

le
s

to

E
xe

cu
te

O
p

co
d

e

di
sp

la
ce

m
en

t

T 0

NOTE: Indicates that 2 cycles are required to execute the instruction plus an additional cycle to fetch the target instruction
when the branch is taken.

i960® VH Processor Developer’s Manual B-9

Opcodes and Execution Times

Load and Lock D-cache 19

D-cache Status Request 16

Quick Invalidate D-cache 14

Table B-8. Cycle Counts for intctl Operations

Operation Cycles to Execute

Disable Interrupts 13

Enable Interrupts 13

Interrupt Status Request 8

Table B-9. MEM Format Instruction Encodings

3124 23.19 1814 1312 110

Opcode src/dst ABASE Mode Offset

3124 23.19 1814 13121110 97 65 40

Opcode src/dst ABASE Mode Scale 00 Index

Displacement

Effective Address

efa = offset opcode dst 0 0 offset

offset(reg) opcode dst reg 1 0 offset

(reg) opcode dst reg 0 1 0 0 00

disp + 8 (IP) opcode dst 0 1 0 1 00

Displacement

(reg1)[reg2 * scale] opcode dst reg1 0 1 1 1 scale 00 reg2

disp opcode dst 1 1 0 0 00

Displacement

disp(reg) opcode dst reg 1 1 0 1 00

Displacement

Table B-7. Cycle Counts for dcctl Operations

Operation Cycles to Execute

B-10 i960® VH Processor Developer’s Manual

Opcodes and Execution Times

disp[reg * scale] opcode dst 1 1 1 0 scale 00 reg

Displacement

disp(reg1)[reg2*scale] opcode dst reg1 1 1 1 1 scale 00 reg2

Displacement

Opcode Mnemonic Cycles to
Execute Opcode Mnemonic Cycles to

Execute

80 ldob 9A stl

82 stob A0 ldt

84 bx 4-7 A2 stt

85 balx 5-8

86 callx 9-12 B0 ldq

88 ldos B2 stq

8A stos C0 ldib

8C lda C2 stib

90 ld C8 ldis

92 st CA stis

98 ldl

NOTE: The number of cycles required to execute these instructions is based on the addressing mode used (see
Table B-10).

Table B-10. Addressing Mode Performance

Mode Assembler Syntax Memory
Format

Number of
Instruction

words

Cycles to
Execute

Absolute Offset exp MEMA 1 1

Absolute Displacement exp MEMB 2 2

Register Indirect (reg) MEMB 1 1

Register Indirect with Offset exp(reg) MEMA 1 1

Register Indirect with
Displacement exp(reg) MEMB 2 2

Index with Displacement exp[reg*scale] MEMB 2 2

Register Indirect with Index (reg)[reg*scale] MEMB 1 6

Register Indirect with Index +
Displacement exp(reg)[reg*scale] MEMB 2 6

Instruction Pointer with
Displacement exp(IP) MEMB 2 6

Table B-9. MEM Format Instruction Encodings

i960® VH Processor Developer’s Manual C-1

Memory-Mapped Registers C

This chapter describes the memory-mapped registers for the integrated peripherals.

C.1 Overview

The Peripheral Memory-Mapped Register (PMMR) interface gives software the ability to read and
modify internal control registers. Each register is accessed as a memory-mapped 32-bit register
with a unique memory address. Access is accomplished through regular memory-format
instructions from the i960 core processor. These memory-mapped registers are specific to the
i960® VH processor only.

C.2 Supervisor Space Family Registers and Tables

Table C-1. Access Types

Access Type Description

R Read Read (ld instruction) accesses are allowed.

RO Read Only Only Read (ld instruction) accesses are allowed. Write (st instruction)
accesses are ignored.

W Write Write (st instruction) accesses are allowed.

R/W Read/Write ld, st, and sysctl instructions are allowed access.

WwG Write when
Granted

Writing or Modifying (through a st or sysctl instruction) the register is only
allowed when modification-rights to the register have been granted. An
OPERATION.UNIMPLEMENTED fault occurs if an attempt is made to write
the register before rights are granted. Seen Section 10.2.7.2, “Hardware
Breakpoints” on page 10-5 for details about getting modification rights to
breakpoint registers.

Sysctl-RwG
sysctl
Read when
Granted

The value of the register can only be read by executing a sysctl instruction
issued with the modify memory-mapped register message type. Modification
rights to the register must be granted first or an
OPERATION.UNIMPLEMENTED fault occurs when the sysctl is executed.
An ld instruction to the register returns unpredictable results.

AtMod atmod
update

Register can be updated quickly through the atmod instruction. The atmod
ensures correct operation by performing the update of the register in an
atomic manner which provides synchronization with previous and
subsequent operations. This is a faster update mechanism than sysctl and
is optimized for a few special registers.

C-2 i960® VH Processor Developer’s Manual

Memory-Mapped Registers

Table C-2. Supervisor Space Register Addresses (Sheet 1 of 2)

Section Register Name - Acronym Page
80960 Local
Bus Address

Reserved
FF00 8000H

to
FF00 80FFH

13.5.1 Default Logical Memory Configuration Register – DLMCON 13-7 FF00 8100H

Reserved FF00 8104H

13.5.1 Logical Memory Address Registers – LMADR0:1-0 13-6 FF00 8108H

13.5.1 Logical Memory Mask Registers – LMMR0:1-0 13-7 FF00 810CH

13.5.1 Logical Memory Address Registers – LMADR0:1-1 13-6 FF00 8110H

13.5.1 Logical Memory Mask Registers – LMMR0:1-1 13-7 FF00 8114H

Reserved
FF00 8118H

to
FF00 83FFH

10.2.7.6 Instruction Breakpoint Registers – IPBx 10-8
FF00 8400H

to
FF00 8404H

Reserved
FF00 8408H

to
FF00 841FH

10.2.7.5 Data Address Breakpoint Registers – DABx 10-7
FF00 8420H

to
FF00 8424H

Reserved
FF00 8428H

to
FF00 843FH

10.2.7.4 Breakpoint Control Register – BPCON 10-6 FF00 8440H

Reserved
FF00 8444H

to
FF00 84FFH

8.4.4 Interrupt Mask – IMSK and Interrupt Pending Registers – IPND 8-27 FF00 8500H

8.4.4 Interrupt Mask – IMSK and Interrupt Pending Registers – IPND 8-27 FF00 8504H

Reserved
FF00 8508H

to
FF00 850FH

8.4.2 Interrupt Control Register – ICON 8-24 FF00 8510H

Reserved
FF00 8514H

to
FF00 851FH

8.4.3 Interrupt Mapping Registers – IMAP0-IMAP2 8-25 FF00 8520H

8.4.3 Interrupt Mapping Registers – IMAP0-IMAP2 8-25 FF00 8524H

8.4.3 Interrupt Mapping Registers – IMAP0-IMAP2 8-25 FF00 8528H

Reserved
FF00 852CH

through
FF00 85FFH

13.2 Physical Memory Control Register 0 – PMCON0_1 13-3 FF00 8600H

i960® VH Processor Developer’s Manual C-3

Memory-Mapped Registers

Reserved FF00 8604H

13.2 Physical Memory Control Register 1 – PMCON2_3 13-3 FF00 8608H

Reserved FF00 860CH

13.2 Physical Memory Control Register 2 – PMCON4_5 13-3 FF00 8610H

Reserved FF00 8614H

13.2 Physical Memory Control Register 3 – PMCON6_7 13-3 FF00 8618H

Reserved FF00 861CH

13.2 Physical Memory Control Register 4 – PMCON8_9 13-3 FF00 8620H

Reserved FF00 8624H

13.2 Physical Memory Control Register 5 – PMCON10_11 13-3 FF00 8628H

Reserved FF00 862CH

13.2 Physical Memory Control Register 6 – PMCON12_13 13-3 FF00 8630H

Reserved FF00 8634H

12.4.1
13.2

PMCON14_15 Register Bit Description in IBR
Physical Memory Control Register 7 – PMCON14_15

12-15
13-3

FF00 8638H

Reserved
FF00 863CH

through
FF00 86F8H

13.3.1 Bus Control Register – BCON 13-5 FF00 86FCH

12.4.2 Process Control Block – PRCB 12-15 FF00 8700H

8.1.5 Interrupt Stack And Interrupt Record 8-5 FF00 8704H

7.6 User and Supervisor Stacks 7-16 FF00 8708H

Reserved FF00 870CH

12.5 Processor Device ID Register - PDIDR 12-20 FF00 8710H

12.5 i960® Core Processor Device ID Register - DEVICEID 12-20 FF00 8710H

Reserved
FF00 8714H

through
FFFF FFFFH

Table C-2. Supervisor Space Register Addresses (Sheet 2 of 2)

Section Register Name - Acronym Page
80960 Local
Bus Address

Table C-3. Timer Registers (Sheet 1 of 2)

Section Register Name Page
80960 Local
Bus Address

Reserved
FF00 0000H

to
FF00 02FFH

19.1.3 Timer Reload Register – TRR0:1-0 19-6 FF00 0300H

19.1.2 Timer Count Register – TCR0:1-0 19-5 FF00 0304H

19.1.1 Timer Mode Register – TMR0:1-0 19-2 FF00 0308H

C-4 i960® VH Processor Developer’s Manual

Memory-Mapped Registers

C.3 Peripheral Memory-Mapped Register Address
Space

The PMMR address space is divided to support the integrated peripherals on the 80960VH.
Table C-5 provides a summary of all of the PMMR registers.

They support the DMA Controller, Memory Controller, PCI and Peripheral Interrupt Controller,
Messaging Unit, Local Bus Arbitration Unit, PCI Address Translation Unit, and I2C Bus Interface
Unit.

Portions of the 80960 processor core address space are already reserved by the 80960 processor
core. Addresses 0000 0000H through 0000 03FFH are reserved for the processor internal data
RAM. This memory is dedicated to the i960 core processor only and inaccessible from local bus
masters. Addresses FF00 0000H through FFFF FFFFH are reserved for the processor specific
memory-mapped registers. Accesses to this address space do not generate external bus cycles.

The PMMR interface provides full accessibility from the Primary ATU and the i960 core
processor. Addresses 0000 1000H through 0000 17FFH are allocated to the PMMR interface.

Reserved FF00 030CH

19.1.3 Timer Reload Register – TRR0:1-1 19-6 FF00 0310H

19.1.2 Timer Count Register – TCR0:1-1 19-5 FF00 0314H

19.1.1 Timer Mode Register – TMR0:1-1 19-2 FF00 0318H

Reserved
FF00 031CH

to
FF00 7FFFH

Table C-3. Timer Registers (Sheet 2 of 2)

Section Register Name Page
80960 Local
Bus Address

i960® VH Processor Developer’s Manual C-5

Memory-Mapped Registers

C.4 Accessing The Peripheral Memory-Mapped
Registers

The PMMR interface is a slave device connected to the 80960VH local bus. This interface accepts
data transactions which appear on the local bus from the ATU and the 80960 processor core.

The PMMR interface allows these devices to perform read, write, or read-modify-write
transactions. The specific actions taken when modifying any value in the PMMR space is
independently defined within each chapter which describes the functionality of the register.

Note: The PMMR interface does not support multi-word burst accesses from any local bus master.

All PMMR transactions shall be allowed from the 80960 processor core operating in either user
mode or supervisor mode. In addition, the PMMR shall not provide any access fault to the 80960
processor core.

The following PMMR registers have read/write access from the internal bus:

• Vendor ID Register

• Device ID Register

• Revision ID Register

• Class Code Register

• Header Type Register

• Subsystem ID Register

• Subsystem Vendor ID Register

For accesses through PCI configuration cycles, access is specified in the register definition located
in the appropriate chapter.

For PCI Configuration Read transactions, the PMMR shall return a value of zero for registers
declared as “reserved”. For PCI Configuration Write transactions, the PMMR shall discard the
data. For all other types of access, reading or writing a register declared as “reserved” is undefined.

C.5 Architecturally Reserved Memory Space

The i960 VH processor provides 4 Gbytes of address space. Portions of this address space is
architecturally reserved and refrained from use by the customers. Figure C-1 shows the reserved
address space.

Addresses FF00 0000H through FFFF FFFFH are reserved for implementation-specific functions.
This address range is termed “reserved” because future i960 architecture implementations may use
these addresses for special functions such as mapped registers or data structures. Therefore, to ensure
complete object level compatibility, portable code must not access or depend on values in this region.

Addresses 0000 0000H through 0000 03FFH are reserved for the internal data RAM of the 80960
processor core. This internal data RAM contains interrupt vectors plus RAM available to the
application software for variable allocation or data structures. Loads and stores directed to these
addresses access internal memory; instruction fetches from these addresses are not allowed for the
80960VH.

C-6 i960® VH Processor Developer’s Manual

Memory-Mapped Registers

Addresses 0000 0400H through 0000 1FFFH are reserved for i960® VH processor use and should
not be used by the system designer.

Addresses 0000 1000H through 0000 17FFH are allocated to the PMMR interface. These registers
are reserved for i960 VH processor use and should not be written by the system designer.

C.6 Peripheral Memory-Mapped Register Address
Space

The PMMR address space is divided to support the integrated peripherals on the 80960VH.
Table C-5 shows all of the i960® VH processor integrated peripheral memory-mapped registers
and their internal bus addresses.

\

Figure C-1. i960® VH processor Address Space

Code/Data
Architecturally Defined Data Structures

External Memory

0000 0000H
Address

0000 07FFH
0000 1000H

FF00 0000H

FFFF FFFFH

Reserved
Address
Space

FEFF FFFFH
FEFF FF60H
FEFF FF5FH Initialization Boot Record (IBR)

0000 03FFH
0000 0400H

0000 17FFH
0000 1800H

FEFF FF30H
FEFF FF2FH

0000 2000H
0000 1FFFH

ATU Outbound Translation Windows

i960® Core Processor Internal Data RAM

i960® VH Processor Reserved

Peripheral Memory-Mapped Registers

i960® VH Processor Reserved

Reserved

i960® Core Processor
Memory-Mapped Register Space

Table C-4. 80960 Internal Addresses Assigned to Integrated Peripherals (Sheet 1 of 2)

Integrated Peripheral 80960 Address Block

Reserved 0000 1000H through 0000 11FFH

Address Translation Unit 0000 1200H through 0000 12FFH

Core and Peripheral Control Unit See ATU Extended Configuration Space

i960® VH Processor Developer’s Manual C-7

Memory-Mapped Registers

The registers for the Address Translation Unit are accessible via PCI configuration transactions.
The DMA Controllers, Memory Controller, I2C Bus Interface Unit, Messaging Unit, Internal
Arbitration Unit, and the PCI and Peripheral Interrupt Controller must have the address translation
logic configured to translate PCI addresses into the 80960VH address space to access the memory-
mapped registers.

Table C-5 shows all 80960VH integrated peripheral memory-mapped registers and their 80960
local bus addresses.

Messaging Unit 0000 1300H through 0000 13FFH

DMA Controller 0000 1400H through 0000 14FFH

Memory Controller 0000 1500H through 0000 15FFH

Local Bus Arbitration Unit 0000 1600H through 0000 167FH

I2C Bus Interface Unit 0000 1680H through 0000 16FFH

PCI And Peripheral Interrupt Controller 0000 1700H through 0000 177FH

Reserved 0000 1780H through 0000 17FFH

Table C-4. 80960 Internal Addresses Assigned to Integrated Peripherals (Sheet 2 of 2)

Table C-5. Peripheral Memory-Mapped Register Locations (Sheet 1 of 8)

80960VH
Peripheral

Section Register Name - Acronym Page
 Size
(Bits)

80960
Local Bus
Address

PCI
Conf

Address
Offset

Reserved

0000
1000H
through

0000
11FFH

Address
Translation

 Unit

16.7.1 ATU Vendor ID Register - ATUVID 16-21 16
0000

1200H
00H

16.7.2 ATU Device ID Register - ATUDID 16-22 16
0000

1202H
02H

16.7.3 Primary ATU Command Register - PATUCMD 16-22 16
0000

1204H
04H

16.7.4 Primary ATU Status Register - PATUSR 16-23 16
0000

1206H
06H

16.7.5 ATU Revision ID Register - ATURID 16-24 8
0000

1208H
08H

16.7.6 ATU Class Code Register - ATUCCR 16-25 24
0000

1209H
09H

16.7.7 ATU Cacheline Size Register - ATUCLSR 16-25 8
0000

120CH
0CH

16.7.8 ATU Latency Timer Register - ATULT 16-26 8
0000

120DH
0DH

16.7.9 ATU Header Type Register - ATUHTR 16-26 8
0000

120EH
0EH

16.7.10 ATU BIST Register - ATUBISTR 16-27 8
0000

120FH
0FH

C-8 i960® VH Processor Developer’s Manual

Memory-Mapped Registers

Address
Translation

 Unit

16.7.11 Primary Inbound ATU Base Address Register
- PIABAR 16-28 32

0000
1210H

10H

Reserved

0000
1214H
through

0000
122BH

14H
through

2BH

16.7.13 ATU Subsystem Vendor ID Register - ASVIR 16-30 16
0000

122CH
2CH

16.7.14 ATU Subsystem ID Register - ASIR 16-31 16
0000

122EH
2EH

16.7.15 Expansion ROM Base Address Register -
ERBAR 16-31 32

0000
1230H

30H

Reserved

0000
1234H
through

0000
123BH

34H
through

3BH

16.7.16 ATU Interrupt Line Register - ATUILR 16-32 8
0000

123CH
3CH

16.7.17 ATU Interrupt Pin Register - ATUIPR 16-33 8
0000

123DH
3DH

16.7.18 ATU Minimum Grant Register - ATUMGNT 16-34 8
0000

123EH
3EH

16.7.19 ATU Maximum Latency Register - ATUMLAT 16-34 8
0000

123FH
3FH

16.7.20 Primary Inbound ATU Limit Register - PIALR 16-35 32
0000

1240H
40H

16.7.21 Primary Inbound ATU Translate Value
Register - PIATVR 16-36 32

0000
1244H

44H

Reserved

0000
1248H

through

0000
1250H

48H

through

50H

16.7.22 Primary Outbound Memory Window Value
Register - POMWVR 16-36 32

0000
1254H

54H

Reserved
0000

1258H
58H

16.7.23 Primary Outbound I/O Window Value Register
- POIOWVR 16-37 32

0000
125CH

5CH

Table C-5. Peripheral Memory-Mapped Register Locations (Sheet 2 of 8)

80960VH
Peripheral

Section Register Name - Acronym Page
 Size
(Bits)

80960
Local Bus
Address

PCI
Conf

Address
Offset

i960® VH Processor Developer’s Manual C-9

Memory-Mapped Registers

Address
Translation

 Unit

Reserved

0000
1260H

through

0000
1270H

60H

through

70H

16.7.24 Expansion ROM Limit Register - ERLR 16-38 32
0000

1274H
74H

16.7.25 Expansion ROM Translate Value Register -
ERTVR 16-38 32

0000
1278H

78H

Reserved

0000
127CH
through

0000
1287H

7CH
through

87H

16.7.26 ATU Configuration Register - ATUCR 16-39 32
0000

1288H
88H

Reserved
0000

128CH
8CH

16.7.27 Primary ATU Interrupt Status Register -
PATUISR 16-40 32

0000
1290H

90H

Reserved

0000
1294H

through

0000
12A0H

94H

through

A0H

16.7.28 Primary Outbound Configuration Cycle
Address Register - POCCAR 16-41 32

0000
12A4H

A4H

Reserved
0000

12A8H
A8H

16.7.29 Primary Outbound Configuration Cycle Data
Port - POCCDP 16-42 32

0000
12ACH

ACH

Reserved

0000
12B0H

through

0000
12C0H

B0H

through

C0H

16.7.30 Reset/Retry Control Register - RRCR 16-42 32
0000

12C4H
C4H

16.7.31 PCI Interrupt Routing Select Register PIRSR 16-42 32
0000

12C8H
C8H

16.7.32 Core Select Register - CSR 16-43 32
0000

12CCH
CCH

Table C-5. Peripheral Memory-Mapped Register Locations (Sheet 3 of 8)

80960VH
Peripheral

Section Register Name - Acronym Page
 Size
(Bits)

80960
Local Bus
Address

PCI
Conf

Address
Offset

C-10 i960® VH Processor Developer’s Manual

Memory-Mapped Registers

Address
Translation

 Unit
Reserved

0000
12D0H
through

0000
12FFH

D0H
through

FFH

Messaging
 Unit

Reserved

0000
1300H

through

0000
130CH

Available
 through
Primary

ATU
Inbound
Translati

on
Window
or must
translate

PCI
address
to the
80960

Memory-
Mapped
Address

17.4.1 Inbound Message Registers - IMRx - 0 17-5 32
0000

1310H

17.4.1 Inbound Message Registers - IMRx - 1 17-5 32
0000

1314H

17.4.2 Outbound Message Registers - OMRx - 0 17-6 32
0000

1318H

17.4.2 Outbound Message Registers - OMRx - 1 17-6 32
0000

131CH

17.4.3 Inbound Doorbell Register - IDR 17-6 32
0000

1320H

17.4.4 Inbound Interrupt Status Register - IISR 17-7 32
0000

1324H

17.4.5 Inbound Interrupt Mask Register - IIMR 17-8 32
0000

1328H

17.4.6 Outbound Doorbell Register - ODR 17-9 32
0000

132CH

17.4.7 Outbound Interrupt Status Register - OISR 17-10 32
0000

1330H

17.4.8 Outbound Interrupt Mask Register - OIMR 17-11 32
0000

1334H

Reserved

0000
1338H
through

0000
13FFH

DMA
Controller

20.7.1 Channel Control Register - CCRx - 0 20-21 32
0000

1400H
Must

Translate
 PCI

address
to the
80960

Memory-
Mapped
Address

20.7.2 Channel Status Register - CSRx - 0 20-22 32
0000

1404H

Reserved
0000

1408H

20.7.3 Descriptor Address Register - DARx - 0 20-24 32
0000

140CH

Table C-5. Peripheral Memory-Mapped Register Locations (Sheet 4 of 8)

80960VH
Peripheral

Section Register Name - Acronym Page
 Size
(Bits)

80960
Local Bus
Address

PCI
Conf

Address
Offset

i960® VH Processor Developer’s Manual C-11

Memory-Mapped Registers

DMA
Controller

20.7.4 Next Descriptor Address Register - NDARx - 0 20-24 32
0000

1410H

Must
Translate

 PCI
address
to the
80960

Memory-
Mapped
Address

20.7.5 PCI Address Register - PADRx - 0 20-25 32
0000

1414H

20.7.6 PCI Upper Address Register - PUADRx - 0 20-26 32
0000

1418H

20.7.7 80960 Local Address Register - LADRx - 0 20-26 32
0000

141CH

20.7.8 Byte Count Register - BCRx - 0 20-27 32
0000

1420H

20.7.9 Descriptor Control Register - DCRx - 0 20-28 32
0000

1424H

Reserved

0000
1428H
through

0000
143FH

20.7.1 Channel Control Register - CCRx - 1 20-21 32
0000

1440H

20.7.2 Channel Status Register - CSRx - 1 20-22 32
0000

1444H

Reserved
0000

1448H

20.7.3 Descriptor Address Register - DARx - 1 20-24 32
0000

144CH

20.7.4 Next Descriptor Address Register - NDARx - 1 20-24 32
0000

1450H

20.7.5 PCI Address Register - PADRx - 1 20-25 32
0000

1454H

20.7.6 PCI Upper Address Register - PUADRx - 1 20-26 32
0000

1458H

20.7.7 80960 Local Address Register - LADRx - 1 20-26 32
0000

145CH

20.7.8 Byte Count Register - BCRx - 1 20-27 32
0000

1460H

20.7.9 Descriptor Control Register - DCRx - 1 20-28 32
0000

1464H

Table C-5. Peripheral Memory-Mapped Register Locations (Sheet 5 of 8)

80960VH
Peripheral

Section Register Name - Acronym Page
 Size
(Bits)

80960
Local Bus
Address

PCI
Conf

Address
Offset

C-12 i960® VH Processor Developer’s Manual

Memory-Mapped Registers

DMA
Controller

Reserved

0000
1468H
through

0000
14FFH

Must
Translate

 PCI
address
to the
80960

Memory-
Mapped
Address

Memory
Controller

15.5.1 Memory Bank Control Register - MBCR 15-6 32
0000

1500H

15.5.2 Memory Bank Base Address Registers -
MBBAR0:1-0 15-8 32

0000
1504H

15.5.3.1 Memory Bank Read Wait State Registers -
MBRWS0:1-0 15-10 32

0000
1508H

15.5.3.2 Memory Bank Write Wait State Registers -
MBWWS0:1-0 15-11 32

0000
150CH

Memory
Controller

15.5.2 Memory Bank Base Address Registers -
MBBAR0:1-0 15-8 32

0000
1510H

15.5.3.1 Memory Bank Read Wait State Registers -
MBRWS0:1-1 15-10 32

0000
1514H

15.5.3.2 Memory Bank Write Wait State Registers -
MBWWS0:1-1 15-11 32

0000
1518H

15.6.4 DRAM Bank Control Register — DBCR 15-22 32
0000

151CH

15.6.5 DRAM Base Address Register — DBAR 15-23 32
0000

1520H

15.6.6 DRAM Read Wait State Register — DRWS 15-24 32
0000

1524H

15.6.7 DRAM Write Wait State Register — DWWS 15-25 32
0000

1528H

15.6.8 DRAM Refresh Interval Register — DRIR 15-27 32
0000

152CH

15.7.1 DRAM Parity Enable Register — DPER 15-29 32
0000

1530H

15.7.2 Bus Monitor Enable Register — BMER 15-30 32
0000

1534H

Table C-5. Peripheral Memory-Mapped Register Locations (Sheet 6 of 8)

80960VH
Peripheral

Section Register Name - Acronym Page
 Size
(Bits)

80960
Local Bus
Address

PCI
Conf

Address
Offset

i960® VH Processor Developer’s Manual C-13

Memory-Mapped Registers

Memory
Controller

15.7.3 Memory Error Address Register — MEAR 15-31 32
0000

1538H

Must
Translate

 PCI
address
to the
80960

Memory-
Mapped
Address

15.7.4 Local Processor Interrupt Status Register —
LPISR 15-32 32

0000
153CH

Reserved

0000
1504H
through

0000
15FFH

Local Bus
Arbitration

Unit

18.2.1 Local Bus Arbitration Control Register -
LBACR 18-4 32

0000
1600H

18.2.6 Local Bus Arbitration Latency Counter
Register – LBALCR 18-6 32

0000
1604H

Reserved

0000
1608H
through

0000
167FH

I2C Bus
Interface

Unit

21.10.1 I2C Control Register - ICR 21-15 32
0000

1680H

21.10.2 I2C Status Register- ISR 21-18 32
0000

1684H

21.10.3 I2C Slave Address Register – ISAR 21-20 32
0000

1688H

21.10.4 I2C Data Buffer Register – IDBR 21-21 32
0000

168CH

21.10.5 I2C Clock Count Register – ICCR 21-21 32
0000

1690H

Reserved

0000
1694H
through

0000
16FFH

PCI And
Peripheral
Interrupt

Controller

8.4.7 NMI Interrupt Status Register – NISR 8-30 32
0000

1700H

8.4.6 XINT7 Interrupt Status Register – X7ISR 8-29 32
0000

1704H

8.4.5 XINT6 Interrupt Status Register – X6ISR 8-29 32
0000

1708H

Table C-5. Peripheral Memory-Mapped Register Locations (Sheet 7 of 8)

80960VH
Peripheral

Section Register Name - Acronym Page
 Size
(Bits)

80960
Local Bus
Address

PCI
Conf

Address
Offset

C-14 i960® VH Processor Developer’s Manual

Memory-Mapped Registers

PCI And
Peripheral
Interrupt

Controller

8.4.1 PCI Interrupt Routing Select Register (PIRSR) 8-23 32

See ATU
Configu-

ration
Space
(0000

12C8H)

Must
Translate

 PCI
address
to the
80960

Memory-
Mapped
Address

12.5 Processor Device ID Register - PDIDR 12-21 32
0000

1710H

Reserved

0000
1714H
through

0000
17FFH

Table C-5. Peripheral Memory-Mapped Register Locations (Sheet 8 of 8)

80960VH
Peripheral

Section Register Name - Acronym Page
 Size
(Bits)

80960
Local Bus
Address

PCI
Conf

Address
Offset

i960® VH Processor Developer’s Manual Index-1

Index

A
absolute

displacement addressing mode 2-5
memory addressing mode 2-5
offset addressing mode 2-5

AC 3-13
AC register, see Arithmetic Controls (AC) register
access faults 3-6
access types

restrictions 3-6
ADD 6-6
add

conditional instructions 6-6
integer instruction 6-10
ordinal instruction 6-10
ordinal with carry instruction 6-9

addc 6-9
addi 6-10
addie 6-6
addig 6-6
addige 6-6
addil 6-6
addile 6-6
addine 6-6
addino 6-6
addio 6-6
addo 6-10
addoe 6-6
addog 6-6
addoge 6-6
addol 6-6
addole 6-6
addone 6-6
addono 6-6
addoo 6-6
Address Translation Unit

address queues 16-2
data queues 16-3
direct addressing window 16-12
discard timers 16-8
error conditions 16-15
Expansion ROM 16-15
inbound read transaction 16-7
inbound write transaction 16-6
initialization 12-2
outbound address translation 16-8, 16-9
outbound read transaction 16-14
outbound write transaction 16-13
Primary inbound address translation 16-35
queueing mechanism 16-2
register definitions 16-18

Address Translation Unit (ATU)
overview 16-1

addressing mode
examples 2-6
register indirect 2-5

addressing registers and literals 3-4
alignment, registers and literals 3-4
alterbit 6-11
and 6-12
andnot 6-12
argument list 7-11
Arithmetic Controls Register - AC 3-13
Arithmetic Controls (AC) register 3-13

condition code flags 3-14
initialization 3-13
integer overflow flag 3-14
integer overflow mask bit 3-14
no imprecise faults bit 3-15

arithmetic instructions 5-6
add, subtract, multiply or divide 5-6
extended-precision instructions 5-8
remainder and modulo instructions 5-7
shift and rotate instructions 5-7

arithmetic operations and data types 5-6
ASIR 16-31
assert (defined) 1-7
ASVIR 16-31
atadd 3-11, 4-7, 6-13
atmod 3-11, 4-7, 6-14, C-1
atomic access 3-10
atomic add instruction 6-13
atomic instructions 5-15
Atomic instructions (LOCK signal) 14-22
atomic modify instruction 6-14
atomic operations 14-22
atomic-read-modify-write sequence 3-6
ATU

Error conditions 16-15
Expansion ROM Translation Unit 16-15
IAQ 16-2
IDQ 16-3
inbound address translation 16-4
initialization 12-2
Messaging Unit interaction 16-15
OAQ 16-2
ODQ 16-3
overview 16-1
transaction queues 16-2
translating in/outbound address 16-3

ATU BIST Register - ATUBISTR 16-27
ATU Cacheline Size Register - ATUCLSR 16-25, 16-26
ATU Class Code Register - ATUCCR 16-25
ATU Configuration Register - ATUCR 16-39
ATU Device ID Register - ATUDID 16-22
ATU Header Type Register - ATUHTR 16-26, 16-27
ATU Interrupt Line Register - ATUILR 16-32, 16-33

Index-2 i960® VH Processor Developer’s Manual

ATU Interrupt Pin Register - ATUIPR 16-33
ATU Latency Timer Register - ATULT 16-26
ATU Maximum Latency Register 16-34
ATU Maximum Latency Register - ATUMLAT 16-35
ATU Minimum Grant Register 16-34
ATU Minimum Grant Register - ATUMGNT 16-34
ATU Revision ID Register - ATURID 16-24, 16-25
ATU Subsystem ID Register - ASIR 16-31
ATU Subsystem Vendor ID Register - ASVIR 16-30, 16-31
ATU Vendor ID Register - ATUVID 16-21, 16-22
ATUBISTR 16-27
ATUCCR 16-25
ATUCLSR 16-26
ATUCR 16-39
ATUDID 16-22
ATUHTR 16-27
ATUILR 16-33
ATUIPR 16-33
ATULT 16-26
ATUMGNT 16-34
ATUMLAT 16-35
ATURID 16-25
ATUVID 16-22

B
b 6-15
backoff unit 18-7
bal 6-16
balx 6-16
basic bus states 14-3
bbc 6-18
bbs 6-18
BCON 13-5
BCON register 13-4
BCRx 20-27
be 6-20
bg 6-20
bge 3-14, 6-20
Big endian 13-9
bit field instructions 5-10
bit instructions 5-9
bits

clear 1-7
set 1-7

bits and bit fields 2-3
bl 6-20
ble 6-20
BMER 15-31
bne 6-20
bno 6-20
bo 6-20
boundary conditions

internal memory locations 13-9
internal memory-mapped locations 13-5
LMT boundaries 13-9
logical data template ranges 13-9

Boundary-Scan Register 22-8
boundary-scan register 22-8
boundary-scan (JTAG) 22-1

architecture 22-3
test logic 22-3

BPCON 10-6
branch

and link extended instruction 6-16
and link instruction 6-16
check bit and branch if clear set instruction 6-18
check bit and branch if set instruction 6-18
conditional instructions 6-20
extended instruction 6-15
instruction 6-15

branch instructions, overview 5-12
compare and branch instructions 5-13
conditional branch instructions 5-12
unconditional branch instructions 5-12

branch-and-link 7-1
returning from 7-18

branch-and-link instruction 7-1
branch-if-greater-or-equal instruction 3-14
breakpoint

resource request message 10-6
Breakpoint Control Register - BPCON 10-6
Breakpoint Control (BPCON) register 10-6

programming 10-7
bswap 6-22
built-in self test 12-6
burst order (liner incrementing) 16-5
bus confidence self test 12-7
Bus Control Register Bit Definitions - BCON 13-5
Bus Control (BCON) register 13-4

BCON.irp bit 4-2
BCON.sirp bit 4-1

Bus Controller
boundary conditions 13-5
logical memory attributes 13-1
memory attributes 13-1
physical memory attributes 13-1

Bus Controller Unit (BCU)
bus width 13-4
PMCON initialization 13-4

bus controller unit (BCU) 14-2
bus master

arbitration timing diagram 14-24
Bus Monitor Enable Register - BMER 15-31
bus signal groups 14-4
bus snooping 4-5, 4-8
bus states with arbitration 14-3
bus transactions

basic read 14-7
basic write 14-9
bus width 14-6

bus width
programming with PMCON register 13-4

bx 6-15
bypass register 22-7
Byte Count Register - BCRx 20-27
byte instructions 5-10
byte swap instruction 6-22

i960® VH Processor Developer’s Manual Index-3

C
cache

data
cache coherency and non-cacheable accesses 4-7
described 4-5
enabling and disabling 4-5
fill policy 4-6
partial-hit multi-word data accesses 4-5
visibility 4-8
write policy 4-6

instruction
enabling and disabling 4-4
loading and locking instruction 4-4
visibility 4-4

load-and-lock mechanism 4-4
local register 4-2
stack frame 4-2

cacheable writes (stores) 4-6
caching of interrupt-handling procedure 8-36
caching of local register sets

frame fills 7-6
frame spills 7-6
mapping to the procedure stack 7-10
updating the register cache 7-10

call
extended instruction 6-26
instruction 6-23
system instruction 6-24

call 6-23, 7-2, 7-5
call and return instructions 5-14
call and return mechanism 7-1, 7-2

explicit calls 7-1
implicit calls 7-1
local register cache 7-2
local registers 7-2
procedure stack 7-2
register and stack management 7-3

frame pointer 7-3
previous frame pointer 7-4
return type field 7-4
stack pointer 7-4

stack frame 7-2
call and return operations 7-5

call operation 7-5
return operation 7-6

calls 3-18, 6-24, 7-2, 7-5
call-trace mode 10-3
callx 6-26, 7-2, 7-5
carry conditions 3-14
CCRx 20-21
Channel Control Register - CCRx 20-21
Channel Status Register - CSRx 20-23
check bit instruction 6-27
chkbit 6-27
clear bit instruction 6-28
clear bits 1-7
CLKMODE1:0# 11-3
Clock Mode Bits 11-3
clrbit 6-28

cmpdeci 6-29
cmpdeco 6-29
cmpi 5-10, 6-31
cmpib 5-10
cmpibe 6-33
cmpibg 6-33
cmpibge 6-33
cmpibl 6-33
cmpible 6-33
cmpibne 6-33
cmpibno 6-33
cmpibo 6-33
cmpinci 6-30
cmpinco 6-30
cmpis 5-10
cmpo 5-10, 6-31
cmpobe 6-33
cmpobg 6-33
cmpobge 6-33
cmpobl 6-33
cmpoble 6-33
cmpobne 6-33
cold reset 12-5
compare

and branch conditional instructions 6-33
and conditional compare instructions 5-10
and decrement integer instruction 6-29
and decrement ordinal instruction 6-29
and increment integer instruction 6-30
and increment ordinal instruction 6-30
integer conditional instruction 6-35
integer instruction 6-31
ordinal conditional instruction 6-35
ordinal instruction 6-31

comparison instructions, overview
compare and increment or decrement instructions 5-11
test condition instructions 5-11

concmpi 6-35
concmpo 6-35
conditional branch instructions 3-14
conditional fault instructions 5-14
control registers 3-1, 3-6

memory-mapped 3-5
control table 3-1, 3-6, 3-9

alignment 3-11
Core Select Register - CSR 11-2
CSRx 20-23

D
DABx 10-8
DARx 20-24
Data Address Breakpoint Register - DABx 10-8
Data Address Breakpoint (DAB) registers 10-7

programming 10-7
data alignment in external memory 3-11
data cache

cache coherency and non-cacheable accesses 4-7
coherency

I/O and bus masters 4-8

Index-4 i960® VH Processor Developer’s Manual

control instruction 6-37
described 4-5
enabling and disabling 4-5
fill policy 4-6
partial-hit multi-word data accesses 4-5
visibility 4-8
write policy 4-6

data movement instructions 5-4
load address instruction 5-5
load instructions 5-4
move instructions 5-5

data register
timing diagram 22-21

data structures
control table 3-1, 3-6, 3-9
fault table 3-1, 3-8
Initialization Boot Record (IBR) 3-1, 3-8
interrupt stack 3-1, 3-8
interrupt table 3-1, 3-8
literals 3-4
local stack 3-1
Process Control Block (PRCB) 3-1, 3-8
supervisor stack 3-1, 3-8
system procedure table 3-1, 3-8
user stack 3-8

data types
bits and bit fields 2-3
integers 2-2
literals 2-4
ordinals 2-2
supported 2-1
triple and quad words 2-3

DBAR 15-23
DBCR 15-22
dcctl 3-17, 4-5, 4-8, 6-37
DCRx 20-28
debug

overview 10-1
debug instructions 5-15
decoupling capacitors 12-25
Default Logical Memory Configuration Register - DLMCON

13-7
Default Logical Memory Configuration (DLMCON) register

13-2
Descriptor Address Register - DARx 20-24
Descriptor Control Register - DCRx 20-28
design considerations

high frequency 12-25
interference 12-27
latchup 12-27
line termination 12-25

Device ID register 22-7
device identification register 22-7
DEVICEID 12-21
DEVICEID register location 3-3
divi 6-43
divide integer instruction 6-43
divide ordinal instruction 6-43
divo 6-43
DLMCON 13-7

DLMCON registers
downstream (defined) 1-7
DPER 15-30
DRAM Bank Control Register - DBCR 15-22
DRAM Bank Read Wait State Register - DRWS 15-25
DRAM Bank Write Wait State Register - DWWS 15-26
DRAM Base Address Register - DBAR 15-23
DRAM Parity Enable Register - DPER 15-30
DRAM Read Wait States Register (DRWS) 15-24
DRAM Refresh Interval Register - DRIR 15-28
DRAM Refresh Interval Register (DRIR) 15-28
DRAM Write Wait States register (DWWS) 15-25
DRIR 15-28
DRWS 15-25
DWORD (defined) 1-7
DWWS 15-26

E
edge-triggered interrupt 8-21
ediv 6-44
8-bit bus width byte enable encodings 14-7
electromagnetic interference (EMI) 12-27
electrostatic interference (ESI) 12-27
emul 6-45
ERBAR 16-32
ERLR 16-38
ERTVR 16-39
eshro 6-46
Expansion ROM 16-15
Expansion ROM Base Address Register - ERBAR 16-31, 16-

32
Expansion ROM Limit Register - ERLR 16-38
Expansion ROM Translate Value Register - ERTVR 16-39
Expansion ROM Translation Unit 16-15
explicit calls 7-1
extended addressing instructions 5-12
extended divide instruction 6-44
extended multiply instruction 6-45
extended shift right ordinal instruction 6-46
external memory requirements 3-10
extract 6-47

F
FAIL# pin 12-7
fault

OPERATION.UNIMPLEMENTED 4-1
fault conditional instructions 6-48
fault conditions 9-1
fault handling

data structures 9-1
fault record 9-2, 9-6
fault table 9-1, 9-4
fault type and subtype numbers 9-2
fault types 9-3
local calls 9-2
multiple fault conditions 9-8
procedure invocation 9-6

i960® VH Processor Developer’s Manual Index-5

return instruction pointer (RIP) 9-13
stack usage 9-6
supervisor stack 9-1
system procedure table 9-1
system-local calls 9-2
system-supervisor calls 9-2
user stack 9-1

fault record 9-6
address-of-faulting-instruction field 9-6
fault subtype field 9-6
location 9-6, 9-7
structure 9-6

fault table 3-1, 3-8, 9-4
alignment 3-11
local-call entry 9-5
location 9-4
system-call entry 9-5

fault type and subtype numbers 9-2
fault types 9-3
faulte 6-48
faultg 6-48
faultge 6-48
faultl 6-48
faultle 6-48
faultne 6-48
faultno 6-48
faulto 6-48
faults

access 3-6
AC.nif bit 9-18
ARITHMETIC.INTEGER_OVERFLOW 6-83
ARITHMETIC.OVERFLOW 6-7, 6-10, 6-43, 6-76, 6-

93, 6-97, 6-102
ARITHMETIC.ZERO_DIVIDE 6-43, 6-44, 6-70, 6-83
CONSTRAINT.RANGE 6-48
controlling precision of (syncf) 9-18
imprecise 5-19
OPERATION.INVALID_OPERAND 6-41
PROTECTION.LENGTH 6-25
TRACE.MARK 6-51, 6-68
TYPE.MISMATCH 6-41, 6-52, 6-59, 6-60, 6-62, 6-63,

6-72
fields

preserved 1-7
read only 1-7
read/clear 1-7
read/set 1-7
reserved 1-7

floating point 3-14
flush local registers instruction 6-50
flushreg 6-50, 7-10
fmark 6-51
force mark instruction 6-51
FP, see Frame Pointer
frame fills 7-6
Frame Pointer (FP) 7-3

location 3-3
frame spills 7-6

G
global registers 3-1, 3-2

H
halt 6-52
halt CPU instruction 6-52
hardware breakpoint resources 10-5

requesting access privilege 10-5
hexadecimal numbering (defined) 1-7
high priority interrupts 4-2
Host processor (defined) 1-7

I
IBR 12-15, 15-9
IBR, see initialization boot record
ICCR 21-22
icctl 3-17, 4-3, 4-4, 4-5
ICON 8-25
ICR 21-16
IDBR 21-21
IDR 17-7
IEEE Standard Test Access Port 22-3
IEEE Std. 1149.1 22-3
IIMR 17-8
IISR 17-7
IMAP0 8-26
IMAP1 8-26
IMAP2 8-27
IMI 12-1, 12-10
implicit calls 7-1, 9-2
imprecise faults 5-19
IMRx 17-6
IMSK 8-28
Inbound Address Queue (IAQ) 16-2
inbound address translation 16-4
Inbound Data Queue (IDQ) 16-3
Inbound Delayed Read Address Queue (IDRAQ) 16-2
Inbound Doorbell Register - IDR 17-7
Inbound Interrupt Mask Register - IIMR 17-8
Inbound Interrupt Status Register - IISR 17-7
Inbound Message Register - IMRx 17-6
index with displacement addressing mode 2-5
indivisible access 3-10
inequalities (greater than, equal or less than) conditions 3-14
Initial Memory Image (IMI) 12-1, 12-10
initialization 12-6

hardware requirements 12-23
power and ground 12-24
software 6-104

Initialization Boot Record (IBR) 3-1, 3-8, 12-1, 12-12, 12-
13, 12-15

alignment 3-11
initialization data structures 3-8
initialization requirements

control table 12-20
data structures 12-10
Process Control Block 12-15

Index-6 i960® VH Processor Developer’s Manual

instruction breakpoint modes
programming 10-9

Instruction Breakpoint Register - IPBx 10-9
instruction cache 3-12

coherency 4-5
configuration 3-12
enabling and disabling 4-4, 12-19
locking instructions 4-4
overview 4-3
visibility 4-4

instruction formats 5-2
assembly language format 5-1
instruction encoding format 5-1

instruction optimizations 5-16
Instruction Pointer (IP) register 3-12
Instruction Register (IR) 22-5

timing diagram 22-20
Instruction set

atmod C-1
sysctl C-1

instruction set 6-6
ADD 6-6
addc 6-9
addi 6-10
addie 6-6
addig 6-6
addige 6-6
addil 6-6
addile 6-6
addine 6-6
addino 6-6
addo 6-10
addoe 6-6
addog 6-6
addoge 6-6
addol 6-6
addole 6-6
addone 6-6
addono 6-6
addoo 6-6
alterbit 6-11
and 6-12
andnot 6-12
atadd 3-11, 4-7, 6-13
atmod 3-11, 4-7, 6-14
b 6-15
bal 6-16
balx 6-16
bbc 6-18
bbs 6-18
be 6-20
bg 6-20
bge 3-14, 6-20
bl 6-20
ble 6-20
bne 6-20
bno 6-20
bo 6-20
bswap 6-22
bx 6-15

call 6-23, 7-2, 7-5
calls 3-18, 6-24, 7-2, 7-5
callx 6-26, 7-2, 7-5
chkbit 6-27
clrbit 6-28
cmpdeci 6-29
cmpdeco 6-29
cmpi 5-10, 6-31
cmpib 5-10
cmpibe 6-33
cmpibg 6-33
cmpibge 6-33
cmpibl 6-33
cmpible 6-33
cmpibne 6-33
cmpibno 6-33
cmpibo 6-33
cmpinci 6-30
cmpinco 6-30
cmpis 5-10
cmpo 5-10, 6-31
cmpobe 6-33
cmpobg 6-33
cmpobge 6-33
cmpobl 6-33
cmpoble 6-33
cmpobne 6-33
concmpi 6-35
concmpo 6-35
dcctl 3-17, 4-5, 4-8, 6-37
divi 6-43
divo 6-43
ediv 6-44
emul 6-45
eshro 6-46
extract 6-47
faulte 6-48
faultg 6-48
faultge 6-48
faultl 6-48
faultle 6-48
faultne 6-48
faultno 6-48
faulto 6-48
flushreg 6-50
fmark 6-51
halt 6-52
icctl 3-17, 4-3, 4-4, 4-5
intctl 3-17, 6-60
intdis 3-17, 6-62
inten 3-17, 6-63
ld 2-2, 3-11, 6-64
lda 6-67
ldib 2-2, 6-64
ldis 2-2, 6-64
ldl 3-4, 4-5, 6-64
ldob 2-3, 6-64
ldos 2-3, 6-64
ldq 3-11, 4-5, 6-64
ldt 4-5, 6-64

i960® VH Processor Developer’s Manual Index-7

mark 6-68
modac 3-13, 6-69
modi 6-70
modify 6-71
modpc 3-16, 3-17, 6-72, 10-3
modtc 6-73, 10-2
mov 6-74
movl 6-74
movq 6-74
movt 6-74
muli 6-76
mulo 6-76
nand 6-77
nor 6-78
not 6-79
notand 6-79
notbit 6-80
notor 6-81
or 6-82
ornot 6-82
remi 6-83
remo 6-83
ret 6-84
rotate 6-86
scanbit 6-87
scanbyte 6-88
sele 5-5, 6-89
selg 5-5, 6-89
selge 5-6, 6-89
sell 5-6, 6-89
selle 5-6, 6-89
selne 5-6, 6-89
selno 5-5, 6-89
selo 5-6, 6-89
setbit 6-91
shli 6-92
shlo 6-92
shrdi 6-92
shri 6-92
shro 6-92
spanbit 6-94
st 2-2, 3-11, 6-95
stib 2-2, 6-95
stis 2-2, 6-95
stl 3-11, 4-6, 6-95
stob 2-3, 6-95
stos 2-3
stq 3-11, 4-6, 6-95
stt 4-6, 6-95
subc 6-99
subi 6-102
subie 6-100
subig 6-100
subige 6-100
subil 6-100
subile 6-100
subine 6-100
subino 6-100
subio 6-100
subo 6-102

suboe 6-100
subog 6-100
suboge 6-100
subol 6-100
subole 6-100
subone 6-100
subono 6-100
suboo 6-100
syncf 6-103, 9-17, 9-18
sysctl 3-17, 4-3, 4-4, 4-5, 6-104, 10-5
teste 6-108
testg 6-108
testge 6-108
testl 6-108
testle 6-108
testne 6-108
testno 6-108
testo 6-108
xnor 6-110
xor 6-110

instruction set functional groups 5-3
Instruction Trace Event 6-4
Instructions

TRISTATE 22-7
instructions

conditional branch 3-14
instruction-trace mode 10-3
intctl 3-17, 6-60
intdis 3-17, 6-62
integer flow masking 5-19
integers 2-2

data truncation 2-2
sign extension 2-2

Integrated Memory Controller 1-2
inten 3-17, 6-63
Inter-Integrated Circuit Bus Interface Unit 1-3
internal data RAM 4-1

modification 4-1
size 4-1

internal self test program 12-7
interrupt

timer 8-14
Interrupt Control Register - ICON 8-25
Interrupt Control (ICON) register

memory-mapped addresses 8-22
interrupt controller 8-1

configuration 8-15
overview 8-10
program interface 8-12
programmer interface 8-22
setup 8-15

interrupt handling procedures 8-15
AC and PC registers 8-15
address space 8-16
global registers 8-16
instruction cache 8-16
interrupt stack 8-15
local registers 8-15
location 8-15
supervisor mode 8-15

Index-8 i960® VH Processor Developer’s Manual

Interrupt Mack (IMSK) register
atomic-read-modify-write sequence 3-6

Interrupt Map Register 0 - IMAP0 8-26
Interrupt Map Register 1 - IMAP1 8-26
Interrupt Map Register 2 - IMAP2 8-27
Interrupt Mapping (IMAP0-IMAP2) registers 8-25
interrupt mask

saving 8-10
Interrupt Mask Register - IMSK 8-28
Interrupt Mask (IMSK) register 8-27
Interrupt Pending Register - IPND 8-27
Interrupt Pending (IPND) register 8-27

atomic-read-modify-write sequence 3-6
interrupt performance

caching of interrupt-handling 8-36
interrupt stack 8-36
local register cache 8-36

interrupt posting 8-1
interrupt procedure pointer 8-5
interrupt record 8-6

location 8-6
interrupt requests

sysctl 8-7
interrupt sequencing of operations 8-14
interrupt service latency 8-35
interrupt stack 3-1, 3-8, 8-5, 8-36

alignment 3-11
structure 8-5

interrupt table 3-1, 3-8, 8-3
alignment 3-11, 8-3
caching mechanism 8-5
location 8-3
pending interrupts 8-5
vector entries 8-4

interrupt vectors
caching 4-1

interrupts
dedicated mode posting 8-12
executing-state 8-16
function 8-1
global disable instruction 6-62
global enable and disable instruction 6-60
global enable instruction 6-63
high priority 4-2
internal RAM 8-35
interrupt context switch 8-16
interrupt handling procedures 8-15
interrupt record 8-6
interrupt stack 8-5
interrupt table 8-3
interrupted-state 8-16
masking hardware interrupts 8-10
Non-Maskable Interrupt (NMI) 8-3, 8-14
overview 8-1
physical characteristics 8-19
posting 8-1
priority handling 8-8
priority-31 interrupts 8-3, 8-10
programmable options 8-12
restoring r3 8-10

servicing 8-3
sysctl 8-14
vector caching 8-35

IP register, see Instruction Pointer (IP) register
IP with displacement addressing mode 2-6
IPBx 10-9
IPND 8-27
ISAR 21-20
ISR 21-18
I2C Clock Count Register - ICCR 21-22
I2C Control Register - ICR 21-16
I2C Data Buffer Register - IDBR 21-21
I2C interface unit 21-1
I2C Slave Address Register - ISAR 21-20
I2C Status Register - ISR 21-18
i960 Core Processor Device ID Register - DEVICEID 12-21
i960 core processor (defined) 1-6

J
JTAG (boundary-scan) 22-1

L
LADRx 20-27
LBACR 18-4
LBALCR 18-6
ld 2-2, 3-11, 6-64
lda 6-67
ldib 2-2, 6-64
ldis 2-2, 6-64
ldl 3-4, 4-5, 6-64
ldob 2-3, 6-64
ldos 2-3, 6-64
ldq 3-11, 4-5, 6-64
ldt 4-5, 6-64
leaf procedures 7-1
level-sensitive interrupt 8-20
Linear Incrementing 16-9
Linear Incrementing burst order 16-5
literal addressing and alignment 3-4
literals 2-4, 3-1, 3-4

addressing 3-4
Little endian 13-9
little endian byte order 3-11
LMADR register
LMADR0

1 13-6
LMCON registers
LMMR0

1 13-7
load address instruction 6-67
load instructions 5-4, 6-64
load-and-lock mechanism 4-4
Local Bus Arbitration Control Register - LBACR 18-4
Local Bus Arbitration Latency Count Register - LBALCR 18-

6
local bus (defined) 1-6
local calls 7-1, 7-12, 9-2

i960® VH Processor Developer’s Manual Index-9

call 7-2
callx 7-2

Local memory (defined) 1-7
Local Processor Interrupt Status Register - LPISR 15-32
Local processor (defined) 1-7
local register cache 7-2

overview 4-2
local registers 3-1, 7-2

allocation 3-3, 7-2
management 3-3
usage 7-2

local stack 3-1
logical data templates

effective range 13-8
logical instructions 5-8
Logical Memory Address Registers - LMADR0

1 13-6
Logical Memory Address (LMADR) register 13-2
Logical Memory Address (LMADR) registers

programming 13-6
Logical Memory Configuration (LMCON) registers 13-2
Logical Memory Mask Registers - LMMR0

1 13-7
Logical Memory Mask (LMMR) registers

programming 13-6
Logical Memory Template registers (LMTs)

modifying 13-9
Logical Memory Templates (LMTs)

accesses across boundaries 13-9
boundary conditions 13-9
enabling 13-8
enabling and disabling data caching 13-8
overlapping ranges 13-9
values after reset 13-9

LPISR 15-32

M
mark 6-68
Mark Trace Event 6-4
MBBAR0

1 15-9
MBCR 15-7
MBRWS0

1 15-10
MBWWS0

1 15-11
MEAR 15-32
memory address space 3-1

external memory requirements 3-10
atomic access 3-10
data alignment 3-11
data block sizes 3-11
data block storage 3-11
indivisible access 3-10
instruction alignment in external memory 3-11
little endian byte order 3-11
reserved memory 3-10

location 3-9
management 3-9

memory addressing modes
absolute 2-5
examples 2-6
index with displacement 2-5
IP with displacement 2-6
register indirect 2-5

Memory Bank Base Address Registers - MBBAR0
1 15-9

Memory Bank Control Register - MBCR 15-7
Memory Bank Control Register (MBCR) 15-6
Memory Bank Read Wait States Register - MBRWS0

1 15-10
Memory Bank Write Wait States Register - MBWWS0

1 15-11
Memory Bank 0 Read Wait States Register (MBRWS0) 15-9
Memory Bank 0 Write Wait States Register (MBWWS0) 15-9
Memory Bank 1 Read Wait States Register (MBRWS1) 15-9
Memory Bank 1 Write Wait States Register (MBWWS1) 15-9
memory controller

overview 15-1
theory of operation 15-2

Memory Error Address Register - MEAR 15-32
memory-mapped control registers 3-5
Memory-Mapped Registers (MMR) 3-5, 3-10
MMR, see Memory-Mapped Registers (MMR)
modac 3-13, 6-69
modi 6-70
modify 6-71
modify arithmetic controls instruction 6-69
modify process controls instruction 6-72
modify trace controls instruction 6-73, 10-2
modpc 3-16, 3-17, 6-72, 10-3
modtc 6-73, 10-2
modulo integer instruction 6-70
mov 6-74
move instructions 6-74
movl 6-74
movq 6-74
movt 6-74
MU

how used with ATU 16-15
muli 6-76
mulo 6-76
multiple fault conditions 9-8
multiply integer instruction 6-76
multiply ordinal instruction 6-76

N
nand 6-77
NDARx 20-25
Next Descriptor Address Register - NDARx 20-25
NISR 8-30, 8-31
NMI Interrupt Status Register 8-30, 8-31
NMI Interrupt Status Register - NISR 8-31
NMI# 8-19, 8-20, 8-30
No Imprecise Faults (AC.nif) bit 9-14, 9-18
Non-Maskable Interrupt (NMI) 8-3
nor 6-78
not 6-79

Index-10 i960® VH Processor Developer’s Manual

notand 6-79
notbit 6-80
notor 6-81

O
ODR 17-10
OIMR 17-12
OISR 17-10
OMRx 17-6
On-Circuit Emulation (ONCE) mode 12-1, 12-2, 22-1
OPERATION.UNIMPLEMENTED 4-1
or 6-82
ordinals 2-2

sign and sign extension 2-3
ornot 6-82
Outbound Address Queue (OAQ) 16-2
Outbound Data Queue (ODQ) 16-3
Outbound Doorbell Register - ODR 17-10
Outbound Interrupt Mask Register - OIMR 17-12
Outbound Interrupt Status Register - OISR 17-10
Outbound Message Register - OMRx 17-6
overflow conditions 3-14

P
PADRx 20-26
parameter passing 7-11

argument list 7-11
by reference 7-11
by value 7-11

PATUCMD 16-23
PATUISR 16-41
PATUSR 16-24
PC 3-15
PC register, see Process Controls (PC) register
PCI Address Register - PADRx 20-26
PCI Interrupt Routing Select Register 8-23
PCI Interrupt Routing Select Register - PIRSR 11-2
PCI Interrupt Routing Select Register - PIRSR (80960Rx 33/

3.3 Volt) 8-23
PCI Upper Address Register - PUADRx 20-26
PDIDR 12-21
pending interrupts 8-5

encoding 8-5
interrupt procedure pointer 8-5
pending priorities field 8-5

performance optimization 5-16
Philips Corporation 1-3
Physical Memory Configuration (PMCON) registers 13-1

application modification 13-6
initial values 13-4

Physical Memory Control Registers - PMCON0
15 13-4

PIABAR 16-28
PIALR 16-35
PIATVR 16-36
PIRSR 8-23
PMCON registers

PMCON0
15 13-4

PMCON14_15 Register Bit Description in IBR 12-15
POCCAR 16-42
POCCDP 16-42
POIOWVR 16-37
POMWVR 16-37
power and ground planes 12-24
powerup/reset initialization

timer powerup 19-9
PRCB 12-17
PRCB, see Processor Control Block (PRCB)
prereturn-trace mode 10-4
preserved fields 1-7
Previous Frame Pointer (PFP) 3-1, 7-3, 7-4

location 3-3
Primary ATU Command Register - PATUCMD 16-22, 16-23
Primary ATU Interrupt Status Register - PATUISR 16-41
Primary ATU Status Register - PATUSR 16-23, 16-24
Primary Inbound ATU Base Address Register - PIABAR 16-

28
Primary Inbound ATU Limit Register - PIALR 16-35
Primary Inbound ATU Translate Value Register - PIATVR

16-36
Primary Outbound Configuration Cycle Address Register -

POCCAR 16-42
Primary Outbound Configuration Cycle Data Port - POCCDP

16-42
Primary Outbound I/O Window Value Register - POIOWVR

16-37
Primary Outbound Memory Window Value Register - POM-

WVR 16-37
Primary PCI Bus Reset signal 12-2
Primary PCI buses (defined) 1-6
priority-31 interrupts 8-3, 8-10
procedure calls

branch-and-link 7-1
call and return mechanism 7-1
leaf procedures 7-1

procedure stack 7-2
growth 7-2

Process Control Block AC Register Initial Image 12-17
Process Control Block (PRCB) 3-1, 3-8, 4-4, 12-1, 12-15

alignment 3-11
configuration 12-15
register cache configuration word 12-19

Process Control Register - PC 3-15
Process Controls (PC) register

execution mode flag 3-15
initialization 3-16
modification 3-16
modpc 3-16
priority field 3-15
processor state flag 3-15
trace enable bit 3-16
trace fault pending flag 3-16

Processor Device ID Register - PDIDR 12-21
processor management instructions 5-16
processor state registers 3-1, 3-12

Arithmetic Controls (AC) register 3-13

i960® VH Processor Developer’s Manual Index-11

Instruction Pointer (IP) register 3-12
Process Controls (PC) register 3-15
Trace Controls (TC) register 3-17

programming
logical memory attributes 13-9

PUADRx 20-26
P_INTA# 8-17
P_INTB# 8-17
P_INTC# 8-17
P_INTD# 8-17
P_RST# 12-2, 12-3

R
RAM 3-8

internal data
described 4-1

read only fields 1-7
read/clear fields 1-7
read/set fields 1-7
region boundaries

bus transactions across 13-5
register

addressing 3-4
addressing and alignment 3-4
boundary-scan 22-8
Breakpoint Control (BPCON) 10-6
cache 4-2
control 3-6

memory-mapped 3-5
DEVICEID

memory location 3-3
global 3-2
indirect addressing mode

register-indirect-with-displacement 2-5
register-indirect-with-index 2-5
register-indirect-with-index-and-displacement 2-5
register-indirect-with-offset 2-5

Interrupt Control (ICON) 8-22
Interrupt Mapping (IMAP0-IMAP2) 8-25
Interrupt Mask (IMSK) 8-27
Interrupt Pending (IPND) 8-27
local

allocation 3-3
management 3-3

processor-state 3-12
scoreboarding

example 3-4
TCRx 19-5

Registers
Arithmetic Controls Register - AC 3-13
ATU BIST Register - ATUBISTR 16-27
ATU Cacheline Size Register - ATUCLSR 16-26
ATU Class Code Register - ATUCCR 16-25
ATU Configuration Register - ATUCR 16-39
ATU Device ID Register - ATUDID 16-22
ATU Header Type Register - ATUHTR 16-27
ATU Interrupt Line Register - ATUILR 16-33
ATU Interrupt Pin Register - ATUIPR 16-33
ATU Latency Timer Register - ATULT 16-26

ATU Maximum Latency Register - ATUMLAT 16-35
ATU Minimum Grant Register - ATUMGNT 16-34
ATU Revision ID Register - ATURID 16-25
ATU Subsystem ID Register - ASIR 16-31
ATU Subsystem Vendor ID Register - ASVIR 16-31
ATU Vendor ID Register - ATUVID 16-22
Boundary-Scan 22-8
Breakpoint Control Register - BPCON 10-6
Bus Control Register Bit Definitions - BCON 13-5
Bus Monitor Enable Register - BMER 15-31
bypass 22-7
Byte Count Register - BCRx 20-27
Channel Control Register - CCRx 20-21
Channel Status Register - CSRx 20-23
Data Address Breakpoint Register - DABx 10-8
Default Logical Memory Configuration Register - DLM-

CON 13-7
Descriptor Address Register - DARx 20-24
Descriptor Control Register - DCRx 20-28
DRAM Bank Control Register - DBCR 15-22
DRAM Bank Read Wait State Register - DRWS 15-25
DRAM Bank Write Wait State Register - DWWS 15-26
DRAM Base Address Register - DBAR 15-23
DRAM Parity Enable Register - DPER 15-30
DRAM Refresh Interval Register - DRIR 15-28
Expansion ROM Base Address Register - ERBAR 16-32
Expansion ROM Limit Register - ERLR 16-38
Expansion ROM Translate Value Register - ERTVR 16-

39
Inbound Doorbell Register - IDR 17-7
Inbound Interrupt Mask Register - IIMR 17-8
Inbound Interrupt Status Register - IISR 17-7
Inbound Message Register - IMRx 17-6
Instruction Breakpoint Register - IPBx 10-9
Interrupt Control Register - ICON 8-25
Interrupt Map Register 0 - IMAP0 8-26
Interrupt Map Register 1 - IMAP1 8-26
Interrupt Map Register 2 - IMAP2 8-27
Interrupt Mask Register - IMSK 8-28
Interrupt Pending Register - IPND 8-27
I2C Clock Count Register - ICCR 21-22
I2C Control Register - ICR 21-16
I2C Data Buffer Register - IDBR 21-21
I2C Slave Address Register - ISAR 21-20
I2C Status Register - ISR 21-18
i960 Core Processor Device ID Register - DEVICEID

12-21
Local Bus Arbitration Control Register - LBACR 18-4
Local Bus Arbitration Latency Count Register - LBAL-

CR 18-6
Local Processor Interrupt Status Register - LPISR 15-32
Logical Memory Address Registers - LMADR0

1 13-6
Logical Memory Mask Registers - LMMR0

1 13-7
Memory Bank Base Address Registers - MBBAR0

1 15-9
Memory Bank Control Register - MBCR 15-7
Memory Bank Read Wait States Register - MBRWS0

1 15-10

Index-12 i960® VH Processor Developer’s Manual

Memory Bank Write Wait States Register - MBWWS0
1 15-11

Memory Error Address Register - MEAR 15-32
Next Descriptor Address Register - NDARx 20-25
NMI Interrupt Status Register - NISR 8-31
Outbound Doorbell Register - ODR 17-10
Outbound Interrupt Mask Register - OIMR 17-12
Outbound Interrupt Status Register - OISR 17-10
Outbound Message Register - OMRx 17-6
PCI Address Register - PADRx 20-26
PCI Interrupt Routing Select Register - PIRSR (80960Rx

33/3.3 Volt) 8-23
PCI Upper Address Register - PUADRx 20-26
Physical Memory Control Registers - PMCON0

15 13-4
PMCON14_15 Register Bit Description in IBR 12-15
Primary ATU Command Register - PATUCMD 16-23
Primary ATU Interrupt Status Register - PATUISR 16-

41
Primary ATU Status Register - PATUSR 16-24
Primary Inbound ATU Base Address Register - PIABAR

16-28
Primary Inbound ATU Limit Register - PIALR 16-35
Primary Inbound ATU Translate Value Register - PI-

ATVR 16-36
Primary Outbound Configuration Cycle Address Regis-

ter - POCCAR 16-42
Primary Outbound I/O Window Value Register - POIO-

WVR 16-37
Primary Outbound Memory Window Value Register -

POMWVR 16-37
Process Control Block AC Register Initial Image 12-17
Process Control Register - PC 3-15
Processor Device ID Register - PDIDR 12-21
RUNBIST 22-8
Timer Count Register - TCRx 19-5
Timer Mode Register - TMRx 19-2
Timer Reload Register - TRRx 19-6
XINT6 Interrupt Status Register - X6ISR 8-29
XINT7 Interrupt Status Register - X7ISR 8-30
80960 Local Address Register - LADRx 20-27
80960Jx Trace Controls Register - TC 10-2

registers
Logical Memory Templates (LMTs) 13-9

re-initialization
software 6-104

remainder integer instruction 6-83
remainder ordinal instruction 6-83
remi 6-83
remo 6-83
reserved fields 1-7
reserving frames in the local register cache 8-36
reset state 12-5
Reset/Retry Control Register - RRCR 11-1
ret 6-84
Return Instruction Pointer (RIP) 7-3

location 3-3
return operation 7-6
return type field 7-4
RIP, see Return Instruction Pointer (RIP)

ROM 3-8
ROM Bank Wait States Register 15-9
rotate 6-86
RST_MODE 12-2
Run Built-In Self-Test (RUNBIST) register 22-8
RUNBIST register 22-8

S
scanbit 6-87
scanbyte 6-88
SCL 21-2, 21-6
SDA 21-2
sele 5-5, 6-89
select based on equal instruction 5-5
select based on less or equal instruction 5-6
select based on not equal instruction 5-6
select based on ordered instruction 5-6
Select Based on Unordered 5-5
self test (STEST) pin 12-7
selg 5-5, 6-89
selge 5-6, 6-89
sell 5-6, 6-89
selle 5-6, 6-89
selne 5-6, 6-89
selno 5-5, 6-89
selo 5-6, 6-89
Serial Clock Line (SCL) 21-2
Serial Data/Address (SDA) 21-2
set bits 1-7
setbit 6-91
shift instructions 6-92
shli 6-92
shlo 6-92
shrdi 6-92
shri 6-92
shro 6-92
sign extension

integers 2-2
ordinals 2-3

Signal 1-8
single processor as bus master 14-23
16-bit bus width byte enable encodings 14-7
software re-initialization 6-104
spanbit 6-94
SP, see Stack Pointer
src/dst parameter encodings 10-6
st 2-2, 3-11, 6-95
stack frame

allocation 7-2
stack frame cache 4-2
Stack Pointer (SP) 7-3, 7-4

location 3-3
stacks 3-8
STEST 12-7
stib 2-2, 6-95
stis 2-2, 6-95
stl 3-11, 4-6, 6-95
stob 2-3, 6-95
store instructions 5-4, 6-95

i960® VH Processor Developer’s Manual Index-13

stos 2-3
stq 3-11, 4-6, 6-95
stt 4-6, 6-95
subc 6-99
subi 6-102
subie 6-100
subig 6-100
subige 6-100
subil 6-100
subile 6-100
subine 6-100
subino 6-100
subio 6-100
subo 6-102
suboe 6-100
subog 6-100
suboge 6-100
subol 6-100
subole 6-100
subone 6-100
subono 6-100
suboo 6-100
subtract

conditional instructions 6-100
integer instruction 6-102
ordinal instruction 6-102
ordinal with carry instruction 6-99

supervisor calls 7-1
supervisor mode resources 3-17
supervisor space family registers and tables C-1, C-2
supervisor stack 3-1, 3-8

alignment 3-11
supervisor-trace mode 10-3
syncf 6-103, 9-17, 9-18
synchronize faults instruction 6-103
sysctl 3-17, 4-3, 4-4, 4-5, 6-104, 10-5, C-1
system calls 7-2, 7-13

calls 7-2
system-local 7-2, 9-2
system-supervisor 7-2, 9-2

system control instruction 6-104
system procedure table 3-1, 3-8

alignment 3-11

T
TAP Test Data Registers 22-7
TC 10-2
TCRx 19-5
Test Access Port (TAP) controller 22-13

block diagram 22-4
state diagram 22-14

Test Data Input (TDI) pin 22-5
test features 22-3
test instructions 6-108
Test Mode Select (TMS) line 22-13
teste 6-108
testg 6-108
testge 6-108
testl 6-108

testle 6-108
testne 6-108
testno 6-108
testo 6-108
32-bit bus width byte enable encodings 14-7
timer

interrupts 8-14
memory-mapped addresses 19-2

Timer Count Register - TCRx 19-5
Timer Count Register (TCRx) 19-5
Timer Mode Register

timer mode control bit summary 19-7
Timer Mode Register - TMRx 19-2
Timer Mode Register (TMRx)

terminal count 19-3
timer clock encodings 19-5

Timer Reload Register - TRRx 19-6
TMRx 19-2
Trace Controls (TC) register 3-17, 10-1
trace events 10-1

hardware breakpoint registers 10-1
mark and fmark 10-1
PC and TC registers 10-1

trace-fault-pending flag 10-3
TRISTATE 22-7
TRRx 19-6
true/false conditions 3-14

U
unordered numbers 3-14
Upstream (defined) 1-7
user space family registers and tables C-3
user stack 3-8

alignment 3-11
user supervisor protection model 3-17

supervisor mode resources 3-17
usage 3-18

V
vector entries 8-4

structure 8-5

W
warm reset 12-5
words

triple and quad 2-3
Word/Data Word notation conventions 2-2

X
XINT3:0# 8-23
XINT4# 8-19
XINT5# 8-19
XINT6 Interrupt Status Register 8-29
XINT6 Interrupt Status Register - X6ISR 8-29

Index-14 i960® VH Processor Developer’s Manual

XINT6# 8-19, 8-20
XINT7 Interrupt Status Register 8-29, 8-30
XINT7 Interrupt Status Register - X7ISR 8-30
XINT7# 8-19, 8-20, 8-21, 8-29
xnor 6-110
xor 6-110
X6ISR 8-29
X7ISR 8-29, 8-30

Z
80960 core

initialization 12-2
80960 Local Address Register - LADRx 20-27
80960 processor core operating speed 11-3
80960Jx Trace Controls Register - TC 10-2

