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1.0 INTRODUCTION

Intel’s 8096 is a 16-bit microcontroller with processing
power sufficient to perform many tasks which were pre-
viously done by microprocessors or special building
block computers. A new field of applications is opened
by having this much power available on a single chip
controller.

The 8096 can be used to increase the performance of
existing designs based on 8051s or similar 8-bit control-
lers. In addition, it can be used for Digital Signal
Processing (DSP) applications, as well as matrix ma-
nipulations and other processing oriented tasks. One of
the tasks that can be performed is the calculation of a
Fast Fourier Transform (FFT). The algorithm used is
similar to that in many DSP and matrix manipulation
applications, so while it is directly applicable to a spe-
cific set of applications, it is indirectly applicable to
many more.

FFTs are most often used in determining what frequen-
cies are present in an analog signal. By providing a tool
to identify specific waveforms by their frequency com-
ponents, FFTs can be used to compare signals to one
another or to set patterns. This type of procedure is
used in speech detection and engine knock sensors.
FFTs also have uses in vision systems where they iden-
tify objects by comparing their outlines, and in radar
units to detect the dopler shift created by moving ob-
jects.

This application note discusses how FFTs can be calcu-
lated using Intel’s MCSÉ-96 microcontrollers. A re-
view of fourier analysis is presented, along with the spe-
cific code required for a 64 point real FFT. Throughout
this application note, it is assumed that the reader has a
working knowledge of the 8096. For those without this
background the following two publications will be help-
ful:

1986 Microcontroller Handbook

Using the 8096, AP-248

These books are listed in the bibliography, along with
other good sources of information on the MCS-96
product family and on Fast Fourier Transforms.

2.0 PROGRAM OVERVIEW

This application note contains program modules which
are combined to create a program which performs an
FFT on an analog signal sampled by the on-board
ADC (Analog to Digital Converter) of the 8097. The
results of the FFT are then provided over the serial

channel to a printer or terminal which displays the re-
sults. In the applications listed in the previous section,
the data from this FFT program would be used directly
by another program instead of being plotted. However,
the plotted results are used here to provide an example
of what the FFT does. There are four program modules
discussed in this application note:

FFTRUN - Runs a 64 point FFT on its data buffer. It
produces 32 14-bit complex output values
and 32 14-bit output magnitudes. A fast
square root routine and log conversion rou-
tine are included.

A2DCON - Fills one of two buffers with analog values
at a set sample rate. The sample time can
be as fast as 50 microseconds using
8x9xBH components.

PLOTSP - Plots the contents of a buffer to a serially
connected printer. Routines are provided
for console out and hexadecimal to decimal
conversion and printing.

FTMAIN - The main module which controls the other
modules.

Each of the modules will be described separately. In
order to better understand how the programs work to-
gether, a brief tutorial on FFTs will be presented first,
followed by descriptions of the programs in the order
listed above.

The final program uses 64 real data points, taken from
either a table or analog input 1. Each of the data points
is a 16-bit signed number. The processing takes 12.5
milliseconds when internal RAM is used as the data
space. If external RAM is used, 14 milliseconds are
required. Larger FFTs can be performed by slightly
modifying the programs. A 256-point FFT would take
approximately 65 milliseconds, and a 1024-point ver-
sion would require about 300 milliseconds.

In the program presented, the analog sampling time is
set for 1 sample every 100 microseconds, providing the
64 samples in 6.4 milliseconds. The sampling time can
be reduced to around 60 microseconds per point by
changing a variable, and less than 50 microseconds by
using the 8x9xBH series of parts, since they have a 22
microsecond A to D conversion time.

The programs are set up to be run in a sequence instead
of concurrently. This provides the fastest operation
if the sampling speed were reduced to the minimum
possible. For the fastest operation above about 80 mi-
croseconds a sample, the programs could be run con-
currently, but this would require some minor modifica-
tions of the program. Figure 1 shows the timing of the
program as presented.

1
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270189–1

Figure 1. Timing of the FFT Program

These programs have run in the Intel Microcontroller
Operation Application’s Lab and produced the results
presented in this application note. Since the programs
have not undergone any further testing, we cannot
guarantee them to be bug proof. We, therefore, recom-
mend that they be thoroughly tested before being used
for other than demonstration purposes.

3.0 FOURIER TRANSFORMS

A Fourier Transform is a useful analytical tool that is
frequently ignored due to its mathematically oriented
derivations. This is unfortunate, since Fourier trans-
forms can be used without fully understanding the
mathematics behind them. Of course, if one under-
stands the theory behind these transforms, they become
much more powerful.

The majority of this application note deals with how a
Fast Fourier Transform (FFT) can be used for spec-
trum analysis. This procedure takes an input signal and
separates it into its frequency components. One can al-
most treat the FFT as a black box, which has as its
output, the frequency components and magnitudes of
the input signal, much like a spectrum analyzer.

From a mathematical standpoint, Fourier Transforms
change information in the time domain into the fre-
quency domain. The theory behind the Fourier trans-
form stems from Fourier analysis, also called frequency
analysis.

There are many books on the topic of Fourier analysis,
several of which are listed in the bibliography. In this
application note, only the pertinent formulas and uses
will be presented, not their derivations.

The main idea in Fourier analysis is that a function can
be expressed as a summation of sinusoidal functions of
different frequencies, phase angles, and magnitudes.
This idea is represented by the Fourier Integral:

H(f) e#%

b%

h(t) e
bj2qft dt (1)

Where: H(f) is a function of frequency
h(t) is a function of time

Since

ebji e COS i b j SINi (2)

H(f) e # %

b%

h(t) (cos (2qft) b j sin (2qft)) dt (3)

Figure 2 shows a rectangular pulse and its Fourier
transform. Note that the results in the frequency do-
main are continuous rather than discrete. The horizon-
tal axis in Figure 2a is frequency, while that of Figure
2b is time.

In a simplified case, the varying phase angles can be
removed, and the integral changed to a summation,
known as a Fourier Series. All periodic functions can
be described in this way. This series, as shown below,
can help provide a more graphical understanding of
Fourier analysis.

y(t) e

a0

2
a &%

n e 1

[an cos (2qnf0t) a

bn sin (2qnf0t)]
(4)

for n e 1 to %

Where f0 e

1

T0
, the fundamental frequency.

2
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H(f) e

sin (2qT0f)

2qT0f

270189–2

a.

270189–3

b.

Figure 2. Rectangular Pulse and Its Fourier Transform

This formula can also be represented in complex form
as: &%

neb%

an e
j2qnf0t (5)

The Fourier series for a square wave is

&%

Ke0

sin ((2k a 1) 2qf0t)

(2k a 1)
(6)

If these sinusoids are summed, a square wave will be
formed. Figure 3 shows the graphical summation of the
first 3 terms of the series. Since the higher frequencies
contribute to the squareness of the waveform at the
corners, it is reasonable to compare only the flatness of
the top of the waveform. The sharpness or risetime of
the waveform can be determined by the highest fre-

quency term being summed. With rise and fall times of
10% of the period, the waveform generated by the first
3 terms is within 20% of ideal. At 7 terms it is within
10%, and at 20 terms it is within 5%. With a 5%
risetime, it is within 20% of ideal after 5 terms, 10%
after 13 terms and 5% after 32 terms. Figure 4 shows
the resultant waveforms after the summation of 7, 15
and 30 terms.

Fourier analysis can be used on equation 4 to find the
coefficients an and bn. To make this process easier to
use with a computer, a discrete form, rather than a
continuous one, must be used. The discrete Fourier
transform, shown in Equation 7, is a good approxima-
tion to the continuous version. The closeness of the ap-
proximation depends on several conditions which will
be discussed later. The input to this transform is a set of
N equally spaced samples of a waveform taken over a
period of NT. The period NT is frequently referred to
as the ‘‘Sampling Window’’.

270189–4

Figure 3. Graphical Summation of Sinewaves

3



AP-275

270189–5

270189–6

270189–7

Figure 4. Square Wave from Sinusoids

4
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H # n

NTJ e &Nb1

ke0

h(kT)e
bj2qnk/N

n e 0, 1, . . . ,Nb1 (7)

Where: H(f) is a function of frequency

h(t) is a function of time

T is the time span between samples

N is the number of samples in the window

n e0,1,2 ... N-1

This transform is used for many applications, including
Fourier Harmonic Analysis. This procedure uses the
transform to calculate the coefficients used in Equation
5. In order to do this, the factor T/NT must be added
to the transform as follows:

H # n

NTJ e

T

(NT)&Nb1

ke0

h(kT) e
bj2qnk/N

ne0, 1, 2, 3, . . . , Nb1 (8)

The factor provides compensation for the number of
samples taken. Note that the functions H(f) and h(t) are
complex variables, so the simplicity of the equation can
be misleading. Once the values of h(t) are known, (ie.

the value of the input at the discrete times (t)), the
Fourier Transform can be used to find the magnitude
and phase shift of the signal at the frequencies (f).

A spectrum analyzer can provide similar information
on an analog input signal by using analog filters to sep-
arate the frequency components. Regardless of its
source, the information on component frequencies of a
signal can be used to detect specific frequencies present
in a signal or to compare one signal to another. Many
lab experiments and product development tests can
make use of this type of information. Using these meth-
ods, the purity of signals can be measured, specific har-
monics can be detected in mechanical equipment, and
noise bursts can be classified. All of this information
can be obtained while still treating the FFT process as a
black box.

Consider the discrete transform of a square wave as
shown in Figure 5. Note that the component magni-
tudes, as shown in the series of Equation 6, are shown
in a mirrored form in the transform. This will happen
whenever only real data is used as the FFT input, if
both real and imaginary data were used the output
would not be guaranteed to be symmetrical. For this
reason, there is duplicate information in the transform
for many applications. Later in this section a method to
make the most of this characteristic is discussed.

270189–8

Figure 5. Discrete Transform of a Square Wave
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If one looks at Equation 8, it can be seen that the calcu-
lation of a discrete Fourier transform requires N
squared complex multiplications. If N is large, the cal-
culation time can easily become unrealistic for real-time
applications. For example, if a complex multiplication
takes 40 microseconds, at N e 16, 10 milliseconds
would be used for calculation, while at N e 128, over
half a second would be needed. A Fast Fourier Trans-
form is an algorithm which uses less multiplications,
and is therefore faster. To calculate the actual time sav-
ings, it is first necessary to understand how a FFT
works.

4.0 THE FFT ALGORITHM

The FFT algorithm makes use of the periodic nature of
waveforms and some matrix algebra tricks to reduce
the number of calculations needed for a transform. A
more complete discussion of this is in Appendix A,
however, the areas that need to be understood to follow
the algorithm are presented here. This information
need not be read if the reader’s intent is to use the
program and not to understand the mathematical pro-
cess of the algorithm

To simplify notation the following substitutions are
made in Equation 8.

W e e
bj2q/N

k e kT

n e

n

NT

The resultant equation being

x(n) e &Nb1

ke0

n(k)Wnk (9)

Expressed as a matrix operation

X(1) W0 W0 W0 . . . W0 X0(0)

X(2) W0 W1 W2 . . . WN X0(1)

X(3) e W0 W2 W4 . . . W2N X0(2)
... ... ... ... ... ...)X(N-1)* )W0 W(Nb1) W2(Nb1) . . . W(Nb1)2* )X0(Nb1)*

A brief review of matrix properties can be found in
Appendix A. Because of the periodic nature of W the
following is true:

Wnk MOD N e W nk (10)

e COS (2q nk/N) - j SIN (2qnk/N)

W0 e 1 therefore, if nk MOD N e 0 , Wnk e 1

This reduces the calculations as several of the W terms
go to 1 and the highest power of W is N. All of W
values are complex, so most of the operations will have
to be complex operations. We will continue to use only
the W, X(n) and X0(k) symbols to represent these com-
plex quantities.

The FFT algorithm we will use requires that N be an
integral power of 2. Other FFT algorithms do not have
this restriction, but they are more complex to under-
stand and develop. Additionally, for the relatively small
values of N we are using this restriction should not
provide much of a problem. We will define EXPO-
NENT as log base 2 of N. Therefore,

N e 2EXPONENT

The magic of the FFT, (as detailed in Appendix A),
involves factoring the matrix into EXPONENT matri-
ces, each of which has all zeros except for a 1 and a
Wnk term in each row. When these matrices are multi-
plied together the result is the same as that of the multi-
plication indicated in Equation 9, except that the rows
are interchanged and there are fewer non-trivial multi-
plications. To reorder the rows, and thus make the in-
formation useful, it is necessary to perform a procedure
called ‘‘Bit Reversal’’.

This process requires that N first be converted to a
binary number. The least significant bit (lsb) is swapped
with the most significant bit (msb). Then the next lsb is
swapped with the next msb, and so on until all bits have
been swapped once. For Ne8, 3 bits are used, and the
values for N and their bit reversals are shown below:

Number Binary
Bit

Decimal BR
Reversal

0 000 000 0

1 001 100 4

2 010 010 2

3 011 110 6

4 100 001 1

5 101 101 5

6 110 011 3

7 111 111 7

Recall that the FFT of real data provides a mirrored
image output, but the FFT algorithm can accept inputs
with both real and imaginary components. Since the
inputs for harmonic analysis provided by a single A to
D are real, the FFT algorithm is doing a lot of calcula-
tions with one input term equal to zero. This is obvious-
ly not very efficient. More information for a given size
transform can be obtained by using a few more tricks.

6
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It is possible to perform the FFT of two real functions
at the same time by using the imaginary input values to
the FFT for the second real function. There is then a
post processing performed on the FFT results which
separate the FFTs of the two functions. Using a similar
procedure one can perform a transform on 2N real
samples using an N complex sample transform.

The procedure involves alternating the real sample val-
ues between the real and imaginary inputs to the FFT.
If, as in our example, the input to the FFT is a 2 by 32
array containing the complex values for 32 inputs, the
64 real samples would be loaded into it as follows:

N 00 01 02 03 04 05 06 07 ..... 30 31

REAL 00 02 04 06 08 10 12 14 ..... 60 62

IMAGINARY 01 03 05 07 09 11 13 15 ..... 61 63

This procedure is referred to as a pre-weave. In order to
derive the desired results, the FFT is run, and then a
post-weave operation is performed. The formula for the
post-weave is shown below:

Xr(n) e ÐR(n)

2
a

R(Nbn)

2 ( a cos
qn

N Ð I(N)

2
a

I(N b n)

2 ( b

sin
qn

N ÐR(n)

2
b

R(N b n)

2 ( n e 0, 1, . . . , N b 1

Xi(n) e Ð I(n)

2
b

I(N b n)

2 ( b sin
qn

N Ð I(n)

2
a

I(N b n)

2 ( b

cos
qn

N ÐR(n)

2
b

R(N b n)

2 ( n e0, 1, . . . , N b 1
(11)

Where R(n) is the real FFT output value

I(n) is the imaginary FFT output value

Xr(n) is the real post-weave output

Xi(n) is the imaginary post-weave output

Note that the output is now one-sided instead of mir-
rored around the center frequency as it is in Figure 5.
The magnitude of the signal at each frequency is calcu-
lated by taking the square root of the sum of the
squares. The magnitude can now be plotted against fre-
quency, where the frequency steps are defined as:

n

NT
n e 0, 1, 2, 3, . . . , Nb1

Where N is the number of complex samples (ie. 32 in
this case) T is the time between samples

A value of zero on the frequency scale corresponds to
the DC component of the waveform. Most signal analy-
sis is done using Decibels (dB), the conversion is dB e

10 LOG (Magnitude squared). Decibels are not used as
an absolute measure, instead signals are compared by
the difference in decibels. If the ratio between two sig-
nals is 1:2 then there will be a 3 dB difference in their
power.

5.0 USING THE FFT

There are several things to be aware of when using
FFTs, but with the proper cautions, the FFT output
can be used just like that of a spectrum analyzer. The

270189–9

(a.) Relative Power of Windows (Side Lobes of

Side Bins Removed for Clarity).

270189–73

(b.) 10 Log Relative Power of Windows (Side

Lobes of Side Bins Removed for Clarity).

Figure 6. Bin Windows

7
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first precaution is that the FFT is a discrete approxima-
tion to a continuous Fourier Transform, so the output
will seldom fit the theoretical values exactly, but it will
be very close.

Since the programs in this application note generate a
one-sided transform with Ne32, the frequency granu-
larity is fairly course. Each of the frequency compo-
nents output from the FFT is actually the sum of all
energy within a narrow band centered on that frequen-
cy. This band of sensitivity is referred to as a ‘‘bin’’.
The reported magnitude is the actual magnitude multi-
plied by the value of the bin window at the actual fre-
quency. Figure 6 shows several bin windows. Note that
these windows overlap, so that a frequency midway be-
tween the two center frequencies will be reported as
energy split between both windows. Be careful not to

confuse the sampling window NT with bin windows or
with the windowing function.

Another area of caution is the relationship of the sam-
pling window to the frequency of the waveform. For
the best accuracy, the window should cover an exact
multiple of the period of the waveform being analyzed.
If it covers less than one period, the results will be
invalid. Other variations from ideal will not produce
invalid results, just additional noise in the output.

If the sampling window does not cover an exact multi-
ple of all of the frequency components of a waveform,
the FFT results will be noisy. The reason for this is the
sharp edge that the FFT sees when the edges of the
window cut off the input waveform. Figure 7 shows a
waveform that is an exact multiple of the window and

270189–10

Figure 7. Waveform is a Multiple of the Window

270189–11

Figure 8. Waveform is Not a Multiple of the Window

8
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the periodic waveform that the FFT output reflects. In
Figure 8, the waveform is not a multiple of the window
and the waveform that the FFT output reflects has dis-
continuities. These discontinuities contribute to the
noise in an FFT output. This noise is called ‘‘spectral
leakage’’, or simply ‘‘leakage’’, since it is leakage be-
tween one frequency spectrum and another which is
caused by digitization of an analog process.

To reduce this leakage, a process called windowing is
used. In this procedure the input data is multiplied by
specific values before being used in the FFT. The term
‘‘windowing’’ is used because these values act as a win-
dow through which the input data passes. If the input
window goes smoothly to zero at both endpoints of

the sampling window, there can be no discontinuities.
Figure 9 shows a Hanning window and its effect on the
input to an FFT. The Hanning window was named af-
ter its creator, Julius Von Hann, and is one of the most
commonly used windows. More information on win-
dowing and the types of windows can be found in the
paper by Harris listed in the bibliography. As expected,
the results of the FFT are changed because of the input
windowing, but it is in a very predictable way.

Using the Hanning window results in bin windows
which are wider and lower in magnitude than normal,
as can be seen by comparing Figure 6 with Figure 10.
For an input frequency which is equal to the center
frequency of a bin window, the attenuation will be 6 dB
on the center frequency. Since the bin windows are

270189–13

(a). Original Signal and Hanning Window 270189–74

(b). Signal After Hanning Window

Figure 9. Effect of Hanning Window on FFT Input

270189–12

(a.) Relative Power of Hanning Window

270189–75

(b.) 10 Log Power of Hanning Window (Side

Lobes of Side Bin Window Removed)

Figure 10. Bin Windows after Using Hanning Input Window

9
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wider than normal, the input frequency will also have
energy which falls into the bins on either side of center.
These side bins will show a reading of 6 dB below the
center window. The disadvantage of this spreading is
far less than the advantage of removing leakage from
the FFT output.

A set of FFT output plots are included in the Appen-
dix. These plots show the effect of windowing on vari-
ous signals. There are examples of all of the cases de-
scribed above. A brief discussion of the plots is also
presented.

Applications which can make use of this frequency
magnitude information include a wide range of signal
processing and detection tasks. Many of these tasks use
digital filtering and signature analysis to match signals
to a standard. This technique has been applied to anti-
knock sensors for automobile engines, object identifica-
tion for vision systems, cardiac arrhythmia detectors,
noise separation and many other applications. The abil-
ity to do this on a single-chip computer opens a door to
new products which would have not been possible or
cost effective previously.

The next four sections of this application note cover the
operation of the programs on a line by line basis. Sec-
tion 6 shows an implementation of the FFT algorithm
in BASIC. This code is used as a template to write the
ASM96 code in Section 7. Sections 8, 9, and 10 cover
the code sections which support the FFT module. After
all of the code sections are discussed, an overview of
how to use the program is presented in Section 11.

6.0 BASIC PROGRAM FOR FFTS

The algorithm for this FFT is shown in the flowchart in
Figure 11 and the BASIC program in Listing 1. There
are four sections to this program: initialization, pre-
weaving, transform calculation, and post-weaving. The
flowchart is generalized, however, the BASIC program
has been optimized for assembly language conversion
with 64 real samples.

On the flowchart, the initialization and pre-weaving
sections are incorporated as ‘‘Read in Data’’. The data
to be read includes the raw data as well as the size of
the array and the scaling factor. The details for pre-
weaving have been discussed earlier, and initialization
varies from computer to computer. LOOP COUNT
keeps track of which of the factored matrices are being
multiplied. SHIFT is the shift count which is used to
determine the power of W (as defined earlier) which
will be used in the loop.

For each loop N calculations are performed in sets of
two. Each calculation set is referred to as a butterfly
and has the following form:

Matrix L Matrix L a 1

270189–15

Also Shown as:

270189–16

OR

X1(k) e X0 (kaN2)*Wp1 a X0(k)

X1(kaN2) e X0(k)*Wp2 a X0(kaN2)

In general, the W factors are not the same. However,
for the case of this FFT algorithm, Wp1 will always
equal (bWp2). This is because of the way in which ‘‘p’’
is calculated, and the fact that W(x) is a sinusoidal
function.

The inner loop in the flowchart is performed N2 times.
For LOOPe1, N2eN/2 and if INCNTeN2 then
keN2 and kaN2eN, so the first loop is done and
parameters LOOP, N2, and SHIFT are updated. For
the first loop, all N/2 sets of calculations are performed
contiguously. As LOOP increases, the number of con-
tiguous calculations are cut in half, until
LOOPeEXPONENT.

When LOOPeEXPONENT, N2e1, the butterfly is
then performed on adjacent variables. Figure 12 shows
the butterfly arrangement for a calculation where
Ne8, so that EXPONENTe3.

The BASIC program follows this flowchart, but opera-
tions have been grouped to make it easier to convert it
to assembly language. Also not shown in the flowchart
are several divide by 2 operations. There are five in the
main section, one per loop. These provide the T/NT
factor in equation 8 for Ne32 (25e32). There is also
an extra divide by two in the post-weave section. It is
required to prevent overflows when performing the 16-
bit signed arithmetic in the ASM96 program. As a re-
sult of these operations, the input scale factor is g1 e

g32767 and the output scaling is g1 e g16384.
Note, the maximum input values are g0.99997.
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270189–14

Figure 11. Flowchart of Basic Program
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270189–17

Listing 1ÐBASIC FFT Program
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270189–18

Listing 1ÐBASIC FFT Program (Continued)
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Lines 165-175 set up the file for printing the data, this
can be SCRN:, LPT1:, or any other file.

270189–19

Figure 12. Butterflies with Ne8

Lines 200-310 set up the constants and calculate the
Wp terms which are stored in the matrices WR(p) and
WI(p), for the real and imaginary component respec-
tively.

Lines 320-350 read in the data, alternately placing it
into the real and imaginary arrays. The data is scaled
by 2 to make the data table simpler.

Lines 410-430 initialize the loop and test for comple-
tion.

Lines 450-620 perform the FFT algorithm. Note that
all calculations are complex, with the suffixes ‘‘R’’ and
‘‘I’’ indicating real and imaginary components respec-
tively.

The variables on line 470, TMPR1 and TMPI1 would
normally not be used in a BASIC program as more
than one operation can be performed on each line.
However, indirect table lookups always use a separate
line of assembly code, so separate lines have been used
here.

Lines 700-810 perform the post-weave. This is not in
the flowchart, but can be found in Equation 11. Once
again, table look-ups are separated and additional vari-
ables are used for clarity. The variables BR(x) are the
bit reversal values of x.

Line 830 calculates the magnitude of the harmonic
components.

Lines 900-950 print the results of the calculations, with
line 900 determining if the print-out should be in hex or
decimal.

Lines 1000-1080 are the data for the bit reversal values
and input datapoints. The input waveform is one cycle
of a square-wave.

7.0 ASM96 PROGRAM FOR FFTS

The BASIC program just presented has been used as an
outline for the ASM96 program shown in Listing 2.
There are many advantages to using the
BASIC program as a model, the main ones being de-
bugging and testing. Since the BASIC program is so
similar in program flow to the ASM96 program, it’s
possible to stop the ASM96 program at almost any
point and verify that the results are correct.
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Listing 2ÐASM96 FFT Program
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Listing 2ÐASM96 FFT Program (Continued)
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Listing 2ÐASM96 FFT Program (Continued)
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Listing 2ÐASM96 FFT Program (Continued)
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Listing 2ÐASM96 FFT Program (Continued)
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Listing 2ÐASM96 FFT Program (Continued)
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Listing 2ÐASM96 FFT Program (Continued)
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Listing 2ÐASM96 FFT Program (Continued)
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Listing 2ÐASM96 FFT Program (Continued)
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Listing 2ÐASM96 FFT Program (Continued)

2
7
0
1
8
9
–
4
2

24



AP-275

Listing 2ÐASM96 FFT Program (Continued)
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Listing 2ÐASM96 FFT Program (Continued)
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The BASIC program is used as comments in the
ASM96 program. Some of the variables in the ASM96
program have slightly different names than their coun-
ter-parts in the BASIC program. This was to make the
comments fit into the ASM96 code. Highlights in this
section of code are a table driven square root routine
and log conversion routine which can easily be adapted
for use by any program.

Both the square root routine and the log conversion
routine use the 32-bit value in the variable TMPR. The
square root routine calculates the square root of that
value in the variable SQRTa2, a 16-bit variable. In
this program, the square root value is averaged and
stored in a table.

The log conversion routine divides the value in TMPR
by 65536 (216) and uses table lookup to provide the
common log. The result is a 16-bit number with the
value 512 * 10 Log (TMPR/65536) stored in the vari-
able LOG. This calculation is used to present the re-
sults of the FFT in decibels instead of magnitude. With
an input of 63095, the output is 512*48 dB. The graph
program, (Section 10), prints the output value of the
plot as INPUT/512 dB.

The following descriptions of the ASM code point out
some of the highlights and not-so-obvious coding:

Lines 1-104 initialize the code and declare variables.
The input and output arrays of the program are de-
clared external. Note that many of the registers are

overlayable, use caution when implementing this rou-
tine with others with overlayable registers.

Lines 116–124 calculate the power of W to be used.
Note that KPTR is always incremented by 2. The mul-
tiple right shift followed by the AND mask creates an
even address and the indirect look to the BR (Bit Re-
versal) table quickly calculates the power PWR.

Lines 130-138 perform the complex multiplications.
Since WIP and WRP range from b32767 to a32767,
the multiplication is easy to handle. The automatic di-
vide by two which occurs when using the upper word
only of the 32-bit result is a feature in this case.

Lines 144-163 use right shifts for a fast divide, then add
or subtract the desired variables and store them in the
array. Note that the upper word of TMPR and TMPI
is used, and the same array is used for both the input
and output of the operations.

Lines 165-189 update the loop variables and then check
for errors on the complex multiplications and addi-
tions. If there are no overflows at this time the data will
run smoothly through the rest of the program.

Lines 200-212 load variables with values based on the
bit reversed values of pointers.

Lines 214-236 perform additions and subtractions to
prepare for the next set of formulas. Note that XITMP
and XRTMP are 32-bit values.
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Lines 240-260 perform multiplies and summations re-
sulting in 32-bit variables. This saves a bit or two of
accuracy. The upper words are then stored as the re-
sults.

Lines 263-272 generate the squared magnitude of the
harmonic component as a 32-bit value.

Lines 278-310 calculate 10 Log (TMPR/65536). The
32-bit register TMPR is divided by 65536 so that the
output range would be reasonable.

First, the number is normalized. (It is shifted left until a
1 is in the most significant bit, the number of shifts
required is placed in SHFTÐCNT.) If it had to be
shifted more than 15 times the output is set to zero.

Next, the most significant BYTE is used as a reference
for the look-up table, providing a 16-bit result. The next
most significant BYTE is then used to perform linear
interpolation between the referenced table value and
the one above it. The interpolated value is added to the
directly referenced one.

The 16-bit result of this table look-up and interpolation
is then added to the Log of the normalization factor,
which is also stored in a table. This table look-up ap-
proach works fast and only uses 290 bytes of table
space.

Lines 321-357 calculate the square root of the 32-bit
register TMPR using a table look-up approach.

First, the number is normalized. Next, the most signifi-
cant BYTE is used as a reference for the look-up table,
providing a 16-bit result. The next most significant
BYTE is then used to perform linear interpolation be-
tween the referenced table value and the one above it.
The interpolated value is added to the directly refer-
enced one.

The 16-bit result of this table look-up and interpolation
is then divided by the square root of the normalization
factor, which is also stored in a table. This table look-
up approach works fast and only uses 320 bytes of table
space. The results are valid to near 14-bits, more than
enough for the FFT algorithm.

Lines 352-360 average the magnitude value, if multiple
passes are being performed, and then store the value in
the array. The loop-counters are incremented and the
process repeats itself.

This concludes the FFT routine. In order to use it, it
must be called from a main program. The details for
calling this routine are covered in the next section.

8.0 BACKGROUND CONTROL
PROGRAM

The main routine is shown in Listing 3. It begins with
declarations that can be used in almost any program.
Note that these are similar, but not identical, to other
8096 include files that have been published. Comments
on controlling the Analog to Digital converter routine
follow the declarations.
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Listing 3ÐMain Routine
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Listing 3ÐMain Routine (Continued)
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Listing 3ÐMain Routine (Continued)
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Listing 3ÐMain Routine (Continued)
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Listing 3ÐMain Routine (Continued)
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Listing 3ÐMain Routine (Continued)

2
7
0
1
8
9
–
5
0

34



AP-275

Listing 3ÐMain Routine (Continued)
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Listing 3ÐMain Routine (Continued)
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270189–53

Listing 3ÐMain Routine (Continued)
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Several constants are then setup for other routines. The
purpose of centrally locating these constants was the
ease of modifying the operation of the routines. Note
that AVRÐNUM and SCALEÐFACTOR must be
changed at the same time. SCALEÐFACTOR is the
shift count used to divide each FFT output value before
it is added to the output array. AVRÐNUM must be
less than 2**SCALEÐFACTOR or an overflow could
occur. Next, the public variables are declared for the
arrays and a few other parameters.

The program then begins by setting the stack pointer
and waiting for the SBE-96 to finish talking to the ter-
minal. If this is not done, there may be serial port inter-
rupts occurring for the first twenty five milliseconds of
program operation.

Initialization of the plotter is next, followed by setting
the FFTÐMODE byte. This byte controls the graph-
ing, loading and magnitude calculation of the FFT
data. Since FFTÐMODE is declared PUBLIC in this
module, and EXTERNAL in the PLOT module and
FFTRUN module, the extra bits available in this byte
can be used for future enhancements.

The next step is to clear the FFT output array. Since
the FFT program can be set to average its results by
dividing the output before adding it to the magnitude
array, the array must be cleared before beginning the
program.

Data is then loaded into into the FFT input array by
the code at LOADÐDATA, or the code at TABLEÐ
LOAD, depending on the value of FFTÐMODE bit 0.
The tabled data located at DATA0 is a square wave of
magnitude 1. This waveform provides a reasonable test
of the FFT algorithm, as many harmonics are generat-
ed. The results are also easy to check as the pattern
contains half zeros, imaginary values which are always
the same, and real values which decrease. Figure 13
shows the output in fractions, hexadecimal and deci-
mal. The hexadecimal and decimal values are based on
an output of 16384 being equal to 1.00.

Note that the magnitude is

SQR (REAL2 a IMAG2)

and the dB value is

10 LOG ( (REAL2 a IMAG2)/65536 )

The divide by 65536 is used for the dB scale to provide
a reasonable range for calculations. If this was not
done, a 32-bit LOG function would have been needed.

After the data is loaded, the data is optionally win-
dowed, based on FFTÐMODE bit 1, and the FFT pro-
gram is called. Once the loop has been performed
AVRÐCNT times, the graph is drawn by the plot rou-
tine.

Appended to the main routine is the FFTOUT.M96
Listing. This is provided by the relocator and linker,
RL96. With this listing and the main program, it is
possible to determine which sections of code are at
which addresses.

Using the modular programming methods employed
here, it is reasonably easy to debug code. By emulating
the program in a relatively high level language, each
routine can be checked for functionality against a
known standard. The closer the high level implementa-
tion matches the ASM96 version, the more possible
checkpoints there are between the two routines.

Once all of the program routines (modules) can be
shown to work individually, the main program should
work unless there is unwanted interaction between the
modules. These interactions can be checked by verify-
ing the inputs and outputs of each module. The assem-
bly language locations to perform the program breaks
can be retrieved by absolutely locating the main mod-
ule. The other modules can be dynamically located by
RL96.

The more interactive program modules are, the more
difficult the program becomes to debug. This is espe-
cially true when multiple interrupts are occurring, and
several of the interrupt routines are themselves inter-
ruptable. In these cases, it may be necessary to use de-
bugging equipment with trace capability, like the
VLSiCE-96. If this type of equipment is not available,
then using I/O ports to indicate the entering and leav-
ing of each routine may be useful. In this way it will be
possible to watch the action of the program on an oscil-
loscope or logic analyzer. There are several places with-
in this code that I/O port toggling has been used as an
aid to debugging the program. These lines of code are
marked ‘‘FOR INDICATION ONLY.’’
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K
Fractional

dB
Decimal Hexadecimal

REAL IMAG MAG2 REAL IMAG MAG2 REAL IMAG MAG2

0 0.0000 0.0000 0.0000 0.000 0 0 0 0 0 0

1 0.0625 b1.2722 1.2738 38.225 1024 b20843 20868 400 AE95 5184

2 0.0000 0.0000 0.0000 0.000 0 0 0 0 0 0

3 0.0625 b0.4213 0.4260 28.710 1024 b6903 6978 400 E509 1B42

4 0.0000 0.0000 0.0000 0.000 0 0 0 0 0 0

5 0.0625 b0.2495 0.2572 24.329 1024 b4088 4214 400 F008 1076

6 0.0000 0.0000 0.0000 0.000 0 0 0 0 0 0

7 0.0625 b0.1747 0.1855 21.491 1024 b2862 3039 400 F4D2 BDF

8 0.0000 0.0000 0.0000 0.000 0 0 0 0 0 0

9 0.0625 b0.1321 0.1462 19.421 1024 b2165 2395 400 F78B 95B

10 0.0000 0.0000 0.0000 0.000 0 0 0 0 0 0

11 0.0625 b0.1043 0.1216 17.820 1024 b1708 1992 400 F954 7C8

12 0.0000 0.0000 0.0000 0.000 0 0 0 0 0 0

13 0.0625 b0.0843 0.1049 16.540 1024 b1381 1719 400 FA9B 6B7

14 0.0000 0.0000 0.0000 0.000 0 0 0 0 0 0

15 0.0625 b0.0690 0.0931 15.499 1024 b1130 1525 400 FB96 5F5

16 0.0000 0.0000 0.0000 0.000 0 0 0 0 0 0

17 0.0625 b0.0566 0.0844 14.645 1024 b928 1382 400 FC60 566

18 0.0000 0.0000 0.0000 0.000 0 0 0 0 0 0

19 0.0625 b0.0464 0.0778 13.944 1024 b759 1275 400 FD09 4FB

20 0.0000 0.0000 0.0000 0.000 0 0 0 0 0 0

21 0.0625 b0.0375 0.0729 13.374 1024 b614 1194 400 FD9A 4AA

22 0.0000 0.0000 0.0000 0.000 0 0 0 0 0 0

23 0.0625 b0.0296 0.0691 12.918 1024 b484 1133 400 FE1C 46D

24 0.0000 0.0000 0.0000 0.000 0 0 0 0 0 0

25 0.0625 b0.0224 0.0664 12.564 1024 b366 1088 400 FE92 440

26 0.0000 0.0000 0.0000 0.000 0 0 0 0 0 0

27 0.0625 b0.0157 0.0644 12.305 1024 b256 1056 400 FF00 420

28 0.0000 0.0000 0.0000 0.000 0 0 0 0 0 0

29 0.0625 b0.0093 0.0632 12.135 1024 b152 1035 400 FF68 40B

30 0.0000 0.0000 0.0000 0.000 0 0 0 0 0 0

31 0.0625 b0.0031 0.0626 12.051 1024 b50 1025 400 FFCE 401

Figure 13. FFT Output for a Square Wave Input

9.0 ANALOG TO DIGITAL
CONVERTER MODULE

The module presented in Listing 4 is a general purpose
one which converts analog values under interrupt con-
trol and stores them in one of two buffers. These buffers

can then be downloaded to another buffer, such as the
input buffer to the FFT program. During downloading,
this module can convert the data into signed or un-
signed formats, and fill a linear or a paired array. A
paired array is like the one used in the FFT transform
program. It requires N data points placed alternately in
two arrays, one starting at zero and the other at N/2.
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Listing 4ÐA to D Converter Routine
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Listing 4ÐA to D Converter Routine (Continued)
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Listing 4ÐA to D Converter Routine (Continued)
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Listing 4ÐA to D Converter Routine (Continued)
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Listing 4ÐA to D Converter Routine (Continued)
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Listing 4ÐA to D Converter Routine (Continued)
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Listing 4ÐA to D Converter Routine (Continued)
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Listing 4ÐA to D Converter Routine (Continued)

2
7
0
1
8
9
–
6
1

47



AP-275

Listing 4ÐA to D Converter Routine (Continued)
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Listing 4ÐA to D Converter Routine (Continued)

2
7
0
1
8
9
–
6
3

49



AP-275

The listing contains a fairly complete description of
what the program does. The block by block operations
are shown below:

Lines 1-198 describe the program, declare the variables
and set up equates. Several of these variables are de-
clared as overlayable, so the user needs to be careful if
using this module for other than the FFT program.

Lines 205-210 declare a macro which is used to load the
HSO unit. This will be used repeatedly through the
code.

Lines 212-253 determine whether a conversion or
download has been requested. If a download has been
requested, the data is downloaded to the destination
array as either paired or linear data. Paired data has
been described earlier.

Lines 255-278 contain a subroutine which converts the
destination array to either signed or unsigned numbers.
The numbers are also shifted right to provide the de-
sired full-scale value as requested by SHIFTÐ
COUNT.

Lines 279-334 initialize the conversion routine. HSO.0
is toggled with the start of each routine so that an ex-
ternal sample and hold can be used. The instructions in
lines 308, 316, and 326 have been interweaved with the
LoadÐHSOÐCommands to provide the required 8
state delays between HSO loadings. If this was not
done, NOPs would have been needed. It is easier to
understand the code if these lines are thought of as
being gathered at line 326.

Lines 337-353 are the actual A/D interrupt routine.
The A/D results are placed BYTE by BYTE on the
buffer, the A/D is reloaded, and then the number of
samples taken is compared to the number needed. Note
that the A/D command register needs to be reloaded
even if the channel does not change. INCB on line 348
is used to insure that the DJNZ falls through on the
next pass (if sampleÐcount is not reset).

Lines 355-396 complete the routine. The HSO is set up
to trigger the next conversion and provide the HSO.0
toggle for an external sample and hold. Once again, the
time between consecutive loads of the HSO is 8 states
minimum. Note that this section of code has been opti-
mized for speed by reducing branches to an absolute
minimum and duplicating code where needed.

This concludes the description of the A to D buffer
module. In the FFT program, this module is run, then
the FFT transform module, then the plot module. This
allows variables to be overlaid, saving RAM space. The
time cost for this is not bad, considering the printer is
the limiting factor in these conversions. If more RAM

was provided, and the FFT was run with its data in
external RAM, this module could be run simultaneous-
ly with the other modules.

10.0 DATA PLOTTING MODULE

The plot module is relatively straight-forward, and is
shown in Listing 5. After the declarations, which in-
clude overlayable registers, an initialization routine is
listed. This separately called routine sets up the serial
port on the 8096 to talk to the printer. In this case, the
port has to be set for 300 baud.

A console out routine follows. This routine can also be
called by any program, but it is used only by the plot
routine in this example. The write to port 1 is used to
trace the program flow. The character to be output is
passed to this routine on the stack. This conforms to
PLM-96 requirements.

Since all stack operations on the 8096 are 16-bits wide,
a multiple character feature has been added to the con-
sole out routine. If the high byte it receives is non-zero,
the ASCII character in that byte is printed after the
character in the low byte. If the high byte has a value
between 128 and 255, the character in the low byte is
repeated the number of times indicated by the least sig-
nificant 7 bits of the high byte.

The print decimal number routine is next. It is called
with two words on the stack. The first word is the un-
signed value to be printed. The second byte contains
information on the number of places to be printed and
zero and blank suppression. This routine is not over-
flow-proof. The user must declare a sufficient number
of places to be printed for all possible numbers.

The DRAWÐGRAPH routine provides the plot. It
first sends a series of carriage return, line feeds
(CRLFs) to clear the printer and provides a margin on
the paper. Each row is started with the row number, 2
spaces, and a ‘‘a’’. Asterisks are then plotted until

Number of asterisks l FFT Value / PLOTÐRES

Recall that PLOTÐRES is a variable set by the main
program. When the number of asterisks hits the desired
value, the value of the line is printed. If the Decibel
mode is selected, the line value is divided by 512 and
printed in integer a decimal part form, followed by
‘‘dB’’. If the number of asterisks reaches PLOTÐ
MAX, no value is printed. The next line is then started.
A line with only a ‘‘!’’ is printed before the next plot
line to provide a more aesthetic display on the printer.
If a CRT was used, this extra line would probably not
be wanted.
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Listing 5ÐThe Plot Module
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Listing 5ÐThe Plot Module (Continued)
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Listing 5ÐThe Plot Module (Continued)
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Listing 5ÐThe Plot Module (Continued)
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Listing 5ÐThe Plot Module (Continued)
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Listing 5ÐThe Plot Module (Continued)
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Listing 5ÐThe Plot Module (Continued)
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At the end of the plot, a form feed is given to set the
printer up for the next graph. Our printer would fre-
quently miss the character after a CRLF. To solve this
problem, a null (ASCII 0) is sent after every CRLF to
make sure the printer is ready for the next line. This
has been found to be a problem with many devices run-
ning at close to their maximum capacity, and the nulls
work well to solve it.

With the plot completed, the program begins to run
again by taking another set of A to D samples.

11.0 USING THE FFT PROGRAM

The program can be used with either real or tabled
data. If real data is used, the signal is applied to analog
channel 1. The program as written performs A/D sam-
ples at 100 microsecond intervals, collecting the 64
samples in 6.4 milliseconds. This sets the sampling win-
dow frequency at 156 Hz. If tabled data is used, 64
words of data should be placed in the location pointed
to by DATA0 in the TABLEÐLOAD routine of the
Main Module.

Program control is specified by FFTÐMODE which is
loaded in the main module. Also within the main mod-
ule are settings which control the A to D buffer routine
and the Plot routine. The intention was to have only
one module to change and recompile to vary parame-
ters in the entire program.

The program modules are set up to run one-at-a-time so
that the code would be easy to understand. Additional-
ly, the Plot routine takes so long relative to the other
sections, that it doesn’t pay to try to overlap code sec-
tions. If this code were to be converted to run a process
instead of print a graph, it might be worthwhile to run
the FFT and the A/D routines at the same time.

If the goal of a modified program is to have the highest
frequency sampling possible, it might be desirable to
streamline the A/D section and run it without inter-
ruption. When the A to D routine was complete the
FFT routine could be started. The reasoning behind
this is that at the fastest A/D speeds the processor will
be almost completely tied up processing the A/D infor-
mation and storing it away. Using an interrupt based
A/D routine would slow things down.

A set of programs which will perform a FFT has been
presented in this application note. These programs are
available from the INSITE users library as program
CA-26. More importantly, dozens of programing exam-
ples have been made available, making it easier to get
started with the 8096. Examples of how to use the hard-
ware on the 8096 have already appeared in AP-248,
‘‘Using The 8096’’. These two applications notes form a
good base for the understanding of MCS-96 microcon-
troller based design.
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12.0 APPENDIX A - MATRICES

Matrices are a convenient way to express groups of
equations. Consider the complex discrete Fourier
Transform in equation 9, with N e 4.

Yn e &3

k e 0

X(k) Wnk n e 0, 1, 2, 3

This can be expanded to

Y(0) e X(0) W0 a X(1) W0 a X(2) W0 a X(3) W0

Y(1) e X(0) W0 a X(1) W1 a X(2) W2 a X(3) W3

Y(2) e X(0) W0 a X(1) W2 a X(2) W4 a X(3) W6

Y(3) e X(0) W0 a X(1) W3 a X(2) W6 a X(3) W9

In matrix notation, this is shown as

Y(0) W0 W0 W0 W0 X(0)

Y(1)
e

W0 W1 W2 W3 X(1)

Y(2) W0 W2 W4 W6 X(2)) Y(3) * ) W0 W3 W6 W9 * ) X(3) *
The first step to simplifying this is to reduce the center
matrix. Recalling that

WN e WN MOD N and W0 e 1

The matrix can be reduced to have less non-trivial mul-
tiplications.

Y(0) 1 1 1 1 X(0)

Y(1)
e

1 W1 W2 W3 X(1)

Y(2) 1 W2 W0 W2 X(2)) Y(3) * ) 1 W3 W2 W1 * ) X(3) *
The square matrix can be factored into

Y(0) 1 W0 0 0 1 0 W0 0 X(0)

Y(2)
e

1 W2 0 0 0 1 0 W0 X(1)

Y(1) 0 0 1 W1 1 0 W2 0 X(2)) Y(3) * ) 0 0 1 W3 * ) 0 1 0 W2 * ) X(3) *
For this equation to work, the Y(1) and Y(2) terms
need to be swapped, as shown above. This procedure is
a Bit Reversal, as described in the text.

Multiplying the two rightmost matrices results in

X(0) a X(2) W0

X(1) a X(3) W0 requiring 4 complex multiplications
X(0) a X(2) W3 & 4 complex additions
X(1) a X(3) W2

Noting that W0 e bW2, 2 of the complex multiplica-
tions can be eliminated, with the following results

X(0) a X(2) W0

X(1) a X(3) W0 requiring 2 complex multiplications
X(0) b X(2) W0 and 4 complex additions
X(1) b X(3) W0

Since W1 e bW3, a similar result occurs when this
vector is multiplied by the remaining square matrix.
The resulting equations are:

Y(0) e (X(0) a X(2) W0) a W0 (X(0) a X(3) W0)
Y(2) e (X(0) a X(2) W0) b W0 (X(1) a X(3) W0)
Y(1) e (X(0) b X(2) W0) a W1 (X(1) b X(3) W0)
Y(3) e (X(0) b X(2) W0) b W1 (X(1) b X(3) W0)

The number of complex multiplications required is 4, as
compared with 16 for the unfactored matrix.

In general, the FFT requires

N * EXPONENT

2
complex multiplications

and
N * EXPONENT complex additions

where
EXPONENT e Log2 N

A standard Fourier Transform requires

N2 complex multiplications

and
N(Nb1) complex additions
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13.0 APPENDIX B - PLOTS

The following plots are examples of output from the
FFT program. These plots were generated using tabled
data, but very similar plots have also been made using
the analog input module. Typically, a plot made using
the analog input module will not show quite as much
power at each frequency and will show a positive value
for the DC component. This is because it is difficult to
get exactly a full-scale analog input with no DC offset.

Plot 1 is a Magnitude plot of a square wave of period
NT.

Plot 2 is the same data plotted in dB. Note how the dB
plot enhances the difference in the small signal val-
ues at the high frequencies.

Plot 3 shows the windowed version of this data. Note
that the widening of the bins due to windowing
shows energy in the even harmonics that is not
actually present. For data of this type a different
window other than Hanning would normally be
used. Many window types are available, the selec-
tion of which can be determined by the type of
data to be plotted.3

Plot 4 shows a sine wave of period NT/7 or fre-
quency 7/NT.

Plot 5 shows the same input with windowing. Note the
signal shown in bins 6 and 8.

Plot 6 shows a sine wave of period NT/7.5. Note the
noise caused by the discontinuity as discussed ear-
lier.

Plot 7 uses windowing on the data used for plot 6. Note
the cleaner appearance.

Plot 8 shows a sine wave input of magnitude 0.707 and
period NT/7.5.

Plot 9 shows same input with windowing.

Plot 10 shows a sine wave of magnitude 0.707/16 and
period NT/11.

Plot 11 shows the same input with windowing. Note
that there is no power shown in bins 10 and 12.
This is because at 6 dB down from 3 dB they are
nearly equal to zero.

Plot 12 uses the sum of the signals for plots 8 and 10 as
inputs. Note that the component at period NT/11
is almost hidden.

Plot 13 uses the same signal as plot 12 but applies win-
dowing. Now the period component at NT/11 can
easily be seen. The Hanning window works well in
this case to separate the signal from the leakage. If
the signals were closer together the Hanning win-
dow may not have worked and another window
may have been needed.
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270189–20

Plot 1ÐMagnitude Plot of Squarewave
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270189–21

Plot 2ÐDecibel Plot of Squarewave
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270189–22

Plot 3ÐPlot of Squarewave with Window
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270189–23

Plot 4ÐSin (7.0X) without Window
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270189–24

Plot 5ÐSin (7.0X) with Window
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270189–25

Plot 6ÐSin (7.5X) without Window
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270189–26

Plot 7ÐSin (7.5X) with Window
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270189–27

Plot 8Ð0.707 * Sin (7.5X) without Window
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270189–28

Plot 9Ð0.707 * Sin (7.5X) with Window
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270189–29

Plot 10Ð0.707/16 * Sin (11X) without Window
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270189–30

Plot 11Ð0.707/16 * Sin (11X) with Window
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270189–31

Plot 12Ð0.707 (Sin (7.5X) a (/16 Sin (11X)) without Window
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270189–32

Plot 13Ð0.707 (Sin (7.5X) a (/16 Sin (11X)) with Window
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