An FFT Algorithm For MCS ${ }^{\circledR}-96$ Products Including Supporting Routines and Examples

IRA HORDEN

ECO APPLICATIONS ENGINEER

October 1988

Information in this document is provided in connection with Intel products. Intel assumes no liability whatsoever, including infringement of any patent or copyright, for sale and use of Intel products except as provided in Intel's Terms and Conditions of Sale for such products.

Intel retains the right to make changes to these specifications at any time, without notice. Microcomputer Products may have minor variations to this specification known as errata.
*Other brands and names are the property of their respective owners.
\dagger Since publication of documents referenced in this document, registration of the Pentium, OverDrive and iCOMP trademarks has been issued to Intel Corporation.

Contact your local Intel sales office or your distributor to obtain the latest specifications before placing your product order.

Copies of documents which have an ordering number and are referenced in this document, or other Intel literature, may be obtained from:

Intel Corporation
P.O. Box 7641

Mt. Prospect, IL 60056-7641
or call 1-800-879-4683
COPYRIGHT © INTEL CORPORATION, 1996

AN FFT ALGORITHM FOR MCS ${ }^{\circledR}$-96 PRODUCTS
 INCLUDING SUPPORTING ROUTINES AND
 EXAMPLES

CONTENTS PAGE
1.0 INTRODUCTION 1
2.0 PROGRAM OVERVIEW 1
3.0 FOURIER TRANSFORMS 2
4.0 THE FFT ALGORITHM 6
5.0 USING THE FFT 7
6.0 BASIC PROGRAM FOR FFTS 10
7.0 ASM96 PROGRAM FOR FFTS 14
8.0 BACKGROUND CONTROL PROGRAM 28
9.0 ANALOG TO DIGITAL CONVERTER MODULE 39
10.0 DATA PLOTTING MODULE 50
11.0 USING THE FFT PROGRAM 58 8
12.0 APPENDIX A A-1
13.0 APPENDIX B B-1
BIBLIOGRAPHY B-15ONTENTS1

Figures

1. Timing of the FFT Program 2
2. Rectangular Pulse and its Fourier Transform3
3. Graphical Summation of Sine Waves 3
4. Square Waves from Sinusoids 4
5. Discrete Transform of a Square Wave 5
6. Bin Windows 7
7. Waveform is a Multiple of the Window 8
8. Waveform is Not a Multiple of the Window 8
9. Effect of Hanning Window on FFT Input 9
10. Bin Windows after Using Hanning Input Window 9
11. Flowchart of Basic Program 11
12. Butterflies with $\mathrm{N}=8$ 14
13. FFT Output for a Square Wave Input 39

Listings

1. BASIC FFT Program 12
2. ASM96 FFT Program 15
3. Main Routine . 29
4. A to D Converter Routine 40
5. The Plot Module 51

1.0 INTRODUCTION

Intel's 8096 is a 16-bit microcontroller with processing power sufficient to perform many tasks which were previously done by microprocessors or special building block computers. A new field of applications is opened by having this much power available on a single chip controller.

The 8096 can be used to increase the performance of existing designs based on 8051s or similar 8-bit controllers. In addition, it can be used for Digital Signal Processing (DSP) applications, as well as matrix manipulations and other processing oriented tasks. One of the tasks that can be performed is the calculation of a Fast Fourier Transform (FFT). The algorithm used is similar to that in many DSP and matrix manipulation applications, so while it is directly applicable to a specific set of applications, it is indirectly applicable to many more.

FFTs are most often used in determining what frequencies are present in an analog signal. By providing a tool to identify specific waveforms by their frequency components, FFTs can be used to compare signals to one another or to set patterns. This type of procedure is used in speech detection and engine knock sensors. FFTs also have uses in vision systems where they identify objects by comparing their outlines, and in radar units to detect the dopler shift created by moving objects.

This application note discusses how FFTs can be calculated using Intel's MCS ${ }^{\circledR}$ - 96 microcontrollers. A review of fourier analysis is presented, along with the specific code required for a 64 point real FFT. Throughout this application note, it is assumed that the reader has a working knowledge of the 8096 . For those without this background the following two publications will be helpful:

1986 Microcontroller Handbook
 Using the 8096, AP-248

These books are listed in the bibliography, along with other good sources of information on the MCS-96 product family and on Fast Fourier Transforms.

2.0 PROGRAM OVERVIEW

This application note contains program modules which are combined to create a program which performs an FFT on an analog signal sampled by the on-board ADC (Analog to Digital Converter) of the 8097. The results of the FFT are then provided over the serial
channel to a printer or terminal which displays the results. In the applications listed in the previous section, the data from this FFT program would be used directly by another program instead of being plotted. However, the plotted results are used here to provide an example of what the FFT does. There are four program modules discussed in this application note:
FFTRUN - Runs a 64 point FFT on its data buffer. It produces 32 14-bit complex output values and 32 14-bit output magnitudes. A fast square root routine and \log conversion routine are included.
A2DCON - Fills one of two buffers with analog values at a set sample rate. The sample time can be as fast as 50 microseconds using 8 x 9 xBH components.
PLOTSP - Plots the contents of a buffer to a serially connected printer. Routines are provided for console out and hexadecimal to decimal conversion and printing.
FTMAIN - The main module which controls the other modules.

Each of the modules will be described separately. In order to better understand how the programs work together, a brief tutorial on FFTs will be presented first, followed by descriptions of the programs in the order listed above.

The final program uses 64 real data points, taken from either a table or analog input 1 . Each of the data points is a 16 -bit signed number. The processing takes 12.5 milliseconds when internal RAM is used as the data space. If external RAM is used, 14 milliseconds are required. Larger FFTs can be performed by slightly modifying the programs. A 256 -point FFT would take approximately 65 milliseconds, and a 1024-point version would require about 300 milliseconds.

In the program presented, the analog sampling time is set for 1 sample every 100 microseconds, providing the 64 samples in 6.4 milliseconds. The sampling time can be reduced to around 60 microseconds per point by changing a variable, and less than 50 microseconds by using the $8 \times 9 \times B H$ series of parts, since they have a 22 microsecond A to D conversion time.

The programs are set up to be run in a sequence instead of concurrently. This provides the fastest operation if the sampling speed were reduced to the minimum possible. For the fastest operation above about $80 \mathrm{mi}-$ croseconds a sample, the programs could be run concurrently, but this would require some minor modifications of the program. Figure 1 shows the timing of the program as presented.

(3 ms MINIMUM)

Figure 1. Timing of the FFT Program

These programs have run in the Intel Microcontroller Operation Application's Lab and produced the results presented in this application note. Since the programs have not undergone any further testing, we cannot guarantee them to be bug proof. We, therefore, recommend that they be thoroughly tested before being used for other than demonstration purposes.

3.0 FOURIER TRANSFORMS

A Fourier Transform is a useful analytical tool that is frequently ignored due to its mathematically oriented derivations. This is unfortunate, since Fourier transforms can be used without fully understanding the mathematics behind them. Of course, if one understands the theory behind these transforms, they become much more powerful.

The majority of this application note deals with how a Fast Fourier Transform (FFT) can be used for spectrum analysis. This procedure takes an input signal and separates it into its frequency components. One can almost treat the FFT as a black box, which has as its output, the frequency components and magnitudes of the input signal, much like a spectrum analyzer.

From a mathematical standpoint, Fourier Transforms change information in the time domain into the frequency domain. The theory behind the Fourier transform stems from Fourier analysis, also called frequency analysis.

There are many books on the topic of Fourier analysis, several of which are listed in the bibliography. In this application note, only the pertinent formulas and uses will be presented, not their derivations.

The main idea in Fourier analysis is that a function can be expressed as a summation of sinusoidal functions of different frequencies, phase angles, and magnitudes. This idea is represented by the Fourier Integral:

$$
\begin{equation*}
H(f)=\int_{-\infty}^{\infty} h(t) e^{-j 2 \pi f t} d t \tag{1}
\end{equation*}
$$

Where: $\mathrm{H}(\mathrm{f})$ is a function of frequency $h(t)$ is a function of time

Since

$$
\begin{align*}
& e^{-j \theta}=\operatorname{COS} \theta-j \operatorname{SIN} \theta \tag{2}\\
& H(f)=\int_{-\infty}^{\infty} h(t)(\cos (2 \pi f t)-j \sin (2 \pi f t)) d t \tag{3}
\end{align*}
$$

Figure 2 shows a rectangular pulse and its Fourier transform. Note that the results in the frequency domain are continuous rather than discrete. The horizontal axis in Figure 2a is frequency, while that of Figure 2 b is time.

In a simplified case, the varying phase angles can be removed, and the integral changed to a summation, known as a Fourier Series. All periodic functions can be described in this way. This series, as shown below, can help provide a more graphical understanding of Fourier analysis.

$$
y(t)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty} \begin{gather*}
{\left[a_{n} \cos \left(2 \pi n f_{0} t\right)\right.} \tag{4}\\
\left.b_{n} \sin \left(2 \pi n f_{0} t\right)\right]
\end{gather*}+
$$

for $\mathrm{n}=1$ to ∞
Where $f_{0}=\frac{1}{T_{0}}$, the fundamental frequency.

270189-2

b.
a.

Figure 2. Rectangular Pulse and Its Fourier Transform

This formula can also be represented in complex form as:

$$
\begin{equation*}
\sum_{n=-\infty}^{\infty} \alpha n e^{j 2 \pi n f_{0} t} \tag{5}
\end{equation*}
$$

The Fourier series for a square wave is

$$
\begin{equation*}
\sum_{K=0}^{\infty} \frac{\sin \left((2 k+1) 2 \pi f_{0} t\right)}{(2 k+1)} \tag{6}
\end{equation*}
$$

If these sinusoids are summed, a square wave will be formed. Figure 3 shows the graphical summation of the first 3 terms of the series. Since the higher frequencies contribute to the squareness of the waveform at the corners, it is reasonable to compare only the flatness of the top of the waveform. The sharpness or risetime of the waveform can be determined by the highest fre-
quency term being summed. With rise and fall times of 10% of the period, the waveform generated by the first 3 terms is within 20% of ideal. At 7 terms it is within 10%, and at 20 terms it is within 5%. With a 5% risetime, it is within 20% of ideal after 5 terms, 10% after 13 terms and 5% after 32 terms. Figure 4 shows the resultant waveforms after the summation of 7,15 and 30 terms.

Fourier analysis can be used on equation 4 to find the coefficients a_{n} and b_{n}. To make this process easier to use with a computer, a discrete form, rather than a continuous one, must be used. The discrete Fourier transform, shown in Equation 7, is a good approximation to the continuous version. The closeness of the approximation depends on several conditions which will be discussed later. The input to this transform is a set of N equally spaced samples of a waveform taken over a period of NT. The period NT is frequently referred to as the "Sampling Window".

Figure 3. Graphical Summation of Sinewaves

270189-5

270189-6

30 TERMS $\operatorname{SiN}\left(X \times 2 \pi n f_{0} t\right) / X$

Figure 4. Square Wave from Sinusoids

$$
\begin{align*}
& H\left(\frac{n}{N T}\right)=\sum_{k=0}^{N-1} h(k T) e^{-j 2 \pi n k / N} \\
& n=0,1, \ldots, N-1 \tag{7}
\end{align*}
$$

Where: $H(f)$ is a function of frequency
$h(t)$ is a function of time
T is the time span between samples
N is the number of samples in the window

$$
\mathrm{n}=0,1,2 \ldots \mathrm{~N}-1
$$

This transform is used for many applications, including Fourier Harmonic Analysis. This procedure uses the transform to calculate the coefficients used in Equation 5. In order to do this, the factor T/NT must be added to the transform as follows:

$$
\begin{align*}
& H\left(\frac{n}{N T}\right)=\frac{T}{(N T)} \sum_{k=0}^{N-1} h(k T) e^{-j 2 \pi n k / N} \\
& n=0,1,2,3, \ldots, N-1 \tag{8}
\end{align*}
$$

The factor provides compensation for the number of samples taken. Note that the functions $H(f)$ and $h(t)$ are complex variables, so the simplicity of the equation can be misleading. Once the values of $h(t)$ are known, (ie.
the value of the input at the discrete times (t)), the Fourier Transform can be used to find the magnitude and phase shift of the signal at the frequencies (f).

A spectrum analyzer can provide similar information on an analog input signal by using analog filters to separate the frequency components. Regardless of its source, the information on component frequencies of a signal can be used to detect specific frequencies present in a signal or to compare one signal to another. Many lab experiments and product development tests can make use of this type of information. Using these methods, the purity of signals can be measured, specific harmonics can be detected in mechanical equipment, and noise bursts can be classified. All of this information can be obtained while still treating the FFT process as a black box.

Consider the discrete transform of a square wave as shown in Figure 5. Note that the component magnitudes, as shown in the series of Equation 6, are shown in a mirrored form in the transform. This will happen whenever only real data is used as the FFT input, if both real and imaginary data were used the output would not be guaranteed to be symmetrical. For this reason, there is duplicate information in the transform for many applications. Later in this section a method to make the most of this characteristic is discussed.

Figure 5. Discrete Transform of a Square Wave

If one looks at Equation 8, it can be seen that the calculation of a discrete Fourier transform requires \mathbf{N} squared complex multiplications. If \mathbf{N} is large, the calculation time can easily become unrealistic for real-time applications. For example, if a complex multiplication takes 40 microseconds, at $\mathrm{N}=16,10$ milliseconds would be used for calculation, while at $\mathrm{N}=128$, over half a second would be needed. A Fast Fourier Transform is an algorithm which uses less multiplications, and is therefore faster. To calculate the actual time savings, it is first necessary to understand how a FFT works.

4.0 THE FFT ALGORITHM

The FFT algorithm makes use of the periodic nature of waveforms and some matrix algebra tricks to reduce the number of calculations needed for a transform. A more complete discussion of this is in Appendix A, however, the areas that need to be understood to follow the algorithm are presented here. This information need not be read if the reader's intent is to use the program and not to understand the mathematical process of the algorithm

To simplify notation the following substitutions are made in Equation 8.

$$
\begin{aligned}
& \mathrm{W}=\mathrm{e}^{-\mathrm{j} 2 \pi / \mathrm{N}} \\
& \mathrm{k}=\mathrm{kT} \\
& \mathrm{n}=\frac{\mathrm{n}}{\mathrm{NT}}
\end{aligned}
$$

The resultant equation being

$$
\begin{equation*}
x(n)=\sum_{k=0}^{N-1} n(k) W n k \tag{9}
\end{equation*}
$$

Expressed as a matrix operation

$$
\left[\begin{array}{c}
X(1) \\
X(2) \\
X(3) \\
\vdots \\
X(N-1)
\end{array}\right]=\left[\begin{array}{ccccc}
w^{0} & w^{0} & w^{0} & \ldots & w^{0} \\
w^{0} & W^{1} & W^{2} & \ldots & w^{N} \\
W^{0} & W^{2} & W^{4} & \ldots & W^{2 N} \\
\vdots & \vdots & \vdots & & \vdots \\
W^{0} & W^{(N-1)} & \mathrm{w}^{2}(N-1) & \ldots & W^{(N-1)^{2}}
\end{array}\right]\left[\begin{array}{c}
X_{0}(0) \\
X_{0}(1) \\
X_{0}(2) \\
\vdots \\
X_{0}(N-1)
\end{array}\right]
$$

A brief review of matrix properties can be found in Appendix A. Because of the periodic nature of W the following is true:

$$
\begin{align*}
\text { Wnk MOD N } & =\mathrm{W} \mathrm{nk} \tag{10}\\
& =\operatorname{COS}(2 \pi \mathrm{nk} / \mathrm{N})-\mathrm{j} \operatorname{SIN}(2 \pi n k / N)
\end{align*}
$$

$$
W^{0}=1 \text { therefore, if } n k \text { MOD } N=0, W n k=1
$$

This reduces the calculations as several of the W terms go to 1 and the highest power of W is N . All of W values are complex, so most of the operations will have to be complex operations. We will continue to use only the W, X(n) and X0(k) symbols to represent these complex quantities.

The FFT algorithm we will use requires that N be an integral power of 2. Other FFT algorithms do not have this restriction, but they are more complex to understand and develop. Additionally, for the relatively small values of N we are using this restriction should not provide much of a problem. We will define EXPONENT as \log base 2 of N . Therefore,

$$
\mathrm{N}=2 \mathrm{EXPONENT}
$$

The magic of the FFT, (as detailed in Appendix A), involves factoring the matrix into EXPONENT matrices, each of which has all zeros except for a 1 and a $W^{n k}$ term in each row. When these matrices are multiplied together the result is the same as that of the multiplication indicated in Equation 9, except that the rows are interchanged and there are fewer non-trivial multiplications. To reorder the rows, and thus make the information useful, it is necessary to perform a procedure called "Bit Reversal".

This process requires that N first be converted to a binary number. The least significant bit (lsb) is swapped with the most significant bit (msb). Then the next lsb is swapped with the next msb, and so on until all bits have been swapped once. For $\mathrm{N}=8,3$ bits are used, and the values for N and their bit reversals are shown below:

Number	Binary	Bit Reversal	Decimal BR
0	000	000	0
1	001	100	4
2	010	010	2
3	011	110	6
4	100	001	1
5	101	101	5
6	110	011	3
7	111	111	7

Recall that the FFT of real data provides a mirrored image output, but the FFT algorithm can accept inputs with both real and imaginary components. Since the inputs for harmonic analysis provided by a single A to D are real, the FFT algorithm is doing a lot of calculations with one input term equal to zero. This is obviously not very efficient. More information for a given size transform can be obtained by using a few more tricks.

It is possible to perform the FFT of two real functions at the same time by using the imaginary input values to the FFT for the second real function. There is then a post processing performed on the FFT results which separate the FFTs of the two functions. Using a similar procedure one can perform a transform on 2 N real samples using an N complex sample transform.

The procedure involves alternating the real sample values between the real and imaginary inputs to the FFT. If, as in our example, the input to the FFT is a 2 by 32 array containing the complex values for 32 inputs, the 64 real samples would be loaded into it as follows:

N	00	01	02	03	04	05	06	07	\ldots.	30	31
REAL	00	02	04	06	08	10	12	14	\ldots.	60	62
IMAGINARY	01	03	05	07	09	11	13	15	\ldots.	61	63

This procedure is referred to as a pre-weave. In order to derive the desired results, the FFT is run, and then a post-weave operation is performed. The formula for the post-weave is shown below:

$$
\begin{align*}
X_{r}(n)= & {\left[\frac{R(n)}{2}+\frac{R(N-n)}{2}\right]+\cos \frac{\pi n}{N}\left[\frac{I(N)}{2}+\frac{\mathrm{I}(\mathrm{~N}-\mathrm{n})}{2}\right]-} \\
& \sin \frac{\pi n}{N}\left[\frac{R(n)}{2}-\frac{R(N-n)}{2}\right] \quad n=0,1, \ldots, N-1 \\
X_{i}(n)= & {\left[\frac{I(n)}{2}-\frac{I(N-n)}{2}\right]-\sin \frac{\pi n}{N}\left[\frac{I(n)}{2}+\frac{\mathrm{I}(\mathrm{~N}-\mathrm{n})}{2}\right]-} \\
& \cos \frac{\pi n}{N}\left[\frac{R(n)}{2}-\frac{R(N-n)}{2}\right] \quad n=0,1, \ldots, N-1 \tag{11}
\end{align*}
$$

Where $R(n)$ is the real FFT output value
$\mathrm{I}(\mathrm{n})$ is the imaginary FFT output value
$\mathrm{Xr}(\mathrm{n})$ is the real post-weave output
$\mathrm{Xi}(\mathrm{n})$ is the imaginary post-weave output
Note that the output is now one-sided instead of mirrored around the center frequency as it is in Figure 5. The magnitude of the signal at each frequency is calculated by taking the square root of the sum of the squares. The magnitude can now be plotted against frequency, where the frequency steps are defined as:

$$
\frac{\mathrm{n}}{\mathrm{NT}} \quad \mathrm{n}=0,1,2,3, \ldots, \mathrm{~N}-1
$$

Where \mathbf{N} is the number of complex samples (ie. 32 in this case) T is the time between samples

A value of zero on the frequency scale corresponds to the DC component of the waveform. Most signal analysis is done using Decibels (dB), the conversion is $\mathrm{dB}=$ 10 LOG (Magnitude squared). Decibels are not used as an absolute measure, instead signals are compared by the difference in decibels. If the ratio between two signals is $1: 2$ then there will be a 3 dB difference in their power.

5.0 USING THE FFT

There are several things to be aware of when using FFTs, but with the proper cautions, the FFT output can be used just like that of a spectrum analyzer. The

(a.) Relative Power of Windows (Side Lobes of Side Bins Removed for Clarity).

(b.) 10 Log Relative Power of Windows (Side Lobes of Side Bins Removed for Clarity).

Figure 6. Bin Windows
first precaution is that the FFT is a discrete approximation to a continuous Fourier Transform, so the output will seldom fit the theoretical values exactly, but it will be very close.

Since the programs in this application note generate a one-sided transform with $\mathbf{N}=32$, the frequency granularity is fairly course. Each of the frequency components output from the FFT is actually the sum of all energy within a narrow band centered on that frequency. This band of sensitivity is referred to as a "bin". The reported magnitude is the actual magnitude multiplied by the value of the bin window at the actual frequency. Figure 6 shows several bin windows. Note that these windows overlap, so that a frequency midway between the two center frequencies will be reported as energy split between both windows. Be careful not to
confuse the sampling window NT with bin windows or with the windowing function.

Another area of caution is the relationship of the sampling window to the frequency of the waveform. For the best accuracy, the window should cover an exact multiple of the period of the waveform being analyzed. If it covers less than one period, the results will be invalid. Other variations from ideal will not produce invalid results, just additional noise in the output.

If the sampling window does not cover an exact multiple of all of the frequency components of a waveform, the FFT results will be noisy. The reason for this is the sharp edge that the FFT sees when the edges of the window cut off the input waveform. Figure 7 shows a waveform that is an exact multiple of the window and

270189-10

Figure 7. Waveform is a Multiple of the Window

WAVEFORM THAT FFT OUTPUT REFLECTS

Figure 8. Waveform is Not a Multiple of the Window
the periodic waveform that the FFT output reflects. In Figure 8, the waveform is not a multiple of the window and the waveform that the FFT output reflects has discontinuities. These discontinuities contribute to the noise in an FFT output. This noise is called "spectral leakage", or simply "leakage", since it is leakage between one frequency spectrum and another which is caused by digitization of an analog process.

To reduce this leakage, a process called windowing is used. In this procedure the input data is multiplied by specific values before being used in the FFT. The term "windowing" is used because these values act as a window through which the input data passes. If the input window goes smoothly to zero at both endpoints of
the sampling window, there can be no discontinuities. Figure 9 shows a Hanning window and its effect on the input to an FFT. The Hanning window was named after its creator, Julius Von Hann, and is one of the most commonly used windows. More information on windowing and the types of windows can be found in the paper by Harris listed in the bibliography. As expected, the results of the FFT are changed because of the input windowing, but it is in a very predictable way.

Using the Hanning window results in bin windows which are wider and lower in magnitude than normal, as can be seen by comparing Figure 6 with Figure 10. For an input frequency which is equal to the center frequency of a bin window, the attenuation will be 6 dB on the center frequency. Since the bin windows are

(a). Original Signal and Hanning Window

270189-74
(b). Signal After Hanning Window

Figure 9. Effect of Hanning Window on FFT Input

Figure 10. Bin Windows after Using Hanning Input Window
wider than normal, the input frequency will also have energy which falls into the bins on either side of center. These side bins will show a reading of 6 dB below the center window. The disadvantage of this spreading is far less than the advantage of removing leakage from the FFT output.

A set of FFT output plots are included in the Appendix. These plots show the effect of windowing on various signals. There are examples of all of the cases described above. A brief discussion of the plots is also presented.

Applications which can make use of this frequency magnitude information include a wide range of signal processing and detection tasks. Many of these tasks use digital filtering and signature analysis to match signals to a standard. This technique has been applied to antiknock sensors for automobile engines, object identification for vision systems, cardiac arrhythmia detectors, noise separation and many other applications. The ability to do this on a single-chip computer opens a door to new products which would have not been possible or cost effective previously.

The next four sections of this application note cover the operation of the programs on a line by line basis. Section 6 shows an implementation of the FFT algorithm in BASIC. This code is used as a template to write the ASM96 code in Section 7. Sections 8, 9, and 10 cover the code sections which support the FFT module. After all of the code sections are discussed, an overview of how to use the program is presented in Section 11.

6.0 BASIC PROGRAM FOR FFTS

The algorithm for this FFT is shown in the flowchart in Figure 11 and the BASIC program in Listing 1. There are four sections to this program: initialization, preweaving, transform calculation, and post-weaving. The flowchart is generalized, however, the BASIC program has been optimized for assembly language conversion with 64 real samples.

On the flowchart, the initialization and pre-weaving sections are incorporated as "Read in Data". The data to be read includes the raw data as well as the size of the array and the scaling factor. The details for preweaving have been discussed earlier, and initialization varies from computer to computer. LOOP COUNT keeps track of which of the factored matrices are being multiplied. SHIFT is the shift count which is used to determine the power of W (as defined earlier) which will be used in the loop.

For each loop N calculations are performed in sets of two. Each calculation set is referred to as a butterfly and has the following form:

Also Shown as:

270189-16

OR

$$
\begin{gathered}
\mathrm{X} 1(\mathrm{k})=\mathrm{X}_{0}(\mathrm{k}+\mathrm{N} 2)^{*} \mathrm{Wp} 1+\mathrm{X}_{0}(\mathrm{k}) \\
\mathrm{X} 1(\mathrm{k}+\mathrm{N} 2)=\mathrm{X}_{0}(\mathrm{k})^{*} \mathrm{Wp} 2+\mathrm{X}_{0}(\mathrm{k}+\mathrm{N} 2)
\end{gathered}
$$

In general, the W factors are not the same. However, for the case of this FFT algorithm, Wp1 will always equal (-Wp 2). This is because of the way in which " p " is calculated, and the fact that $\mathrm{W}(\mathrm{x})$ is a sinusoidal function.

The inner loop in the flowchart is performed N 2 times. For $\mathrm{LOOP}=1, \mathrm{~N} 2=\mathrm{N} / 2$ and if $\mathrm{INCNT}=\mathrm{N} 2$ then $\mathrm{k}=\mathrm{N} 2$ and $\mathrm{k}+\mathrm{N} 2=\mathrm{N}$, so the first loop is done and parameters LOOP, N2, and SHIFT are updated. For the first loop, all N/2 sets of calculations are performed contiguously. As LOOP increases, the number of contiguous calculations are cut in half, until LOOP $=$ EXPONENT .

When LOOP $=$ EXPONENT, N2 $=1$, the butterfly is then performed on adjacent variables. Figure 12 shows the butterfly arrangement for a calculation where $\mathrm{N}=8$, so that EXPONENT $=3$.

The BASIC program follows this flowchart, but operations have been grouped to make it easier to convert it to assembly language. Also not shown in the flowchart are several divide by 2 operations. There are five in the main section, one per loop. These provide the T/NT factor in equation 8 for $N=32\left(2^{5}=32\right)$. There is also an extra divide by two in the post-weave section. It is required to prevent overflows when performing the 16 bit signed arithmetic in the ASM96 program. As a result of these operations, the input scale factor is $\pm 1=$ ± 32767 and the output scaling is $\pm 1= \pm 16384$. Note, the maximum input values are ± 0.99997.

Figure 11. Flowchart of Basic Program

```
100
105
110
10
115
120
125,
130
135
140,
145,
150,
155,
160
165 INPUT "NAME OF LIST FILE"; LST$
170 PRINT
75
200
210
,M=MULT. FACTOR FOR SCALING
230 N=32 : N1=31 :N2=N/2 N=NUMBER OF DATA POINTS
240 LOOP=1 : K=0 : EXPONENT=5 : SHIFT=EXPONENT-1 , 2**E=N
250 PI=3.141592654*:TPN=2*PI/N : PIN=PI/N
260
270
20
80
00
300
320 FOR K=0 TO 31 READ IN DATA
330 READ XR(K) : READ XI(K)
350 NEXT K
360
400
410 K=0
420 IF LOOP>EXPONENT THEN 700
4 3 0 ~ I N C N T = 0
4 4 0
445
450
NT=INCNT+1
460 P=BR(INT(K/(2^SHIFT)))
470 WRP=WR(P):WIP=WI(P) : KN2=K+N2 , WRP AND WIP ARE CONSTANTS BASED ON
480 TMPR= (WRP*XR(KN2) - WIP*XI(KN2))/2 , SINES AND COSINES OF BIT REVERSED
490 TMPI= (WRP*XI(KN2) + WIP*XR(KN2))/2 , VALUES OF K SHIFTED RIGHT S TIMES
500 TMPR1=XR(K)/2 : TMPIl=XI (K)/2
510 XR(K+N2) = TMPRI - TMPR , TMPR, TMPI ARE THE REAL AND IMAGINARY
520 XI(K+N2) = TMPI1 - TMPI , RESULTS OF A COMPLEX MULTIPLICATION
530 XR(K) = TMPR1 + TMPR
540 XI(K) = TMPII + TMPI
550
560 K=K+1
570 IF INCNT<N2 THEN GOTO 450
500 K=K+N2
590 IF K<Nl THBN GOTO 430 , ONLY N/2 LOOPS NEED TO BE MADE. ON EACH PASS,
600 LOOP=LOOP+1 : N2=N2/2 , THE VALUE OF N2 CHANGES AND SMALLER CONSECUTIVE
605 SHIFT=SHIFT-1 , SECTIONS ARE PROCESSED.
610 GOTO 400
620
690
6 9 1
692
6 9 3

Listing 1—BASIC FFT Program
```

694 ,
6 9 5
696,
697 '
700 , POST-PROCESSING AND REORDERING BEGIN HERE
710 '
720 FOR K = 0 TO 31
730 KPIN=K*PIN
740 XRBRK=XR(BR(K)) : XIBRK=XI(BR(K)) , CONDENSED FOR EASE OF ASM PROGRAMMING
750 XRBRNK=XR(BR(N-K)) : XIBRNK=XI(BR(N-K))
760 TI = (XIBRK+XIBRNK)/2
770 TR = (XRBRK-XRBRNK)}/
780 XRT= (XRBRK+XRBRNK)/4
790 XIT= (XIBRK-XIBRNK)/4
800 OUTR= XRT + TI*COS(KPIN)/2 - TR*SIN(KPIN)/2
810 OUTI= XIT - TI*SIN(KPIN)/2 - TR*COS(KPIN)/2
8 2 0
830 MAGSQ = OUTR*OUTR+OUTI*OUTI , THE ASM-96 PROGRAM USES A TABLE LOOK-UP
840 MAG = SQR(MAGSQ) , ROUTINE TO CALCULATE SQUARE ROOTS
845 IF MAGSQ*M < . 5 THEN DECIBEL=0 : GOTO 900
847 DBFACT=M/2/32767*M ' M^2 / 64K
850 DECIBEL=10*LOG(MAGSQ*DBFACT)
860 DECIBEL=DECIBEL * . 434294481*
900 GOTO 930
910 PRINT \#l, USING "\#\#\#\#\#\# "; K,
920 PRINT \#l, USING "\ \"; HEX$(M*OUTR), HEX$(M*OUTI), HEX$(M*MAG)
930,GOTO 950
942 PRINT #1, USING "## "; K;
943 PRINT #I, USING "##.###### "; OUTR,OUTI,MAG;
945 PRINT #l, USING "###.### "; DECIBEL;
947 PRINT #L, USING "###### "; M*OUTR, M*OUTI, M*MAG
950 NEXT K
960 '
970 IF LST$<>"SCRN:" THEN PRINT \#l, CHR\$(12)
999 END
1000 END
1010 , DATA FOR BR(P) - BIT REVERSAL
1020 data 0,16,8,24,4,20,12,28,2,18,10,26,6,22,14,30
1030 DATA 1,17,9,25,5,21,13,29,3,19,11,27,7,23,15,31
1040 , DATA FOR XR,XI
1050 DATA 2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2
l060 DATA 2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2
1070 DATA -2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2
1080 DATA -2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2,-2

```

Lines 165-175 set up the file for printing the data, this can be SCRN:, LPT1:, or any other file.


Figure 12. Butterflies with \(\mathbf{N}=8\)
Lines 200-310 set up the constants and calculate the Wp terms which are stored in the matrices WR(p) and WI(p), for the real and imaginary component respectively.

Lines 320-350 read in the data, alternately placing it into the real and imaginary arrays. The data is scaled by 2 to make the data table simpler.

Lines 410-430 initialize the loop and test for completion.

Lines 450-620 perform the FFT algorithm. Note that all calculations are complex, with the suffixes " \(R\) " and "I'" indicating real and imaginary components respectively.

The variables on line 470, TMPR1 and TMPI1 would normally not be used in a BASIC program as more than one operation can be performed on each line. However, indirect table lookups always use a separate line of assembly code, so separate lines have been used here.

Lines 700-810 perform the post-weave. This is not in the flowchart, but can be found in Equation 11. Once again, table look-ups are separated and additional variables are used for clarity. The variables BR(x) are the bit reversal values of x .

Line 830 calculates the magnitude of the harmonic components.

Lines 900-950 print the results of the calculations, with line 900 determining if the print-out should be in hex or decimal.

Lines 1000-1080 are the data for the bit reversal values and input datapoints. The input waveform is one cycle of a square-wave.

\subsection*{7.0 ASM96 PROGRAM FOR FFTS}

The BASIC program just presented has been used as an outline for the ASM96 program shown in Listing 2. There are many advantages to using the BASIC program as a model, the main ones being debugging and testing. Since the BASIC program is so similar in program flow to the ASM96 program, it's possible to stop the ASM96 program at almost any point and verify that the results are correct.

\section*{fFT_RUN MODULE STacksize(6) \\ FFT_RUN MODULE STACKSIZE(6)}
; Intel Corporation, January 24, 1
路
\[
\begin{aligned}
& \text { output buckets. The post processing includes a table } \\
& \text { taking the square root of an unsigned } 32 \text {-bit number. }
\end{aligned}
\]

All of the calculations in the main FFT program are done using 16-bit All of the calculations in the main FFT program are done using 16 -bit
signed integers. The maximum value of any frequency component is therefore
\(+/-32 \mathrm{~K}\). (Note that a square wave of \(+/-32 \mathrm{~K}\) has a fundamental component
greater than \(+/-40 \mathrm{~K}\) ). Wherever possible tables are used to increase the speed of math operations. The complete transform, including obtaining the absolute magnitude of each frequency component, executes
milliseconds with internal variables, 14 ms with external.

The program requires two 32 -word input arrays, with the sample values
ternated between the two. These start at XREAL and XIMAG. The resultant alternated between the two. These start at XREAL and XIMAG. The resultant magnitude will be placed in a 32 -word array at FFT_OUT. These are all divide the output when averaging will be used. Since the program averages its output, it is necessary to clear the
calling FFT_CALC to start the program.

The program was originally written in BASIC for testing purposes. The
comments include these BASIC statements to make it easier to follow the
algorithm.
\$EJECT

MCS-96 MACRO ASSEMBLER FFT_RUN
SERIES-III MCS-96 MACRO ASSEMBLER, vi. 0
SOURCE FILE: : F2: FFTRUN. A96
OBJECT FILE: : F2: FFTRUN.OBJ
OBJCCT FILR: : F2:FFTRUN. OBJ
CONTROLS SPECIFIED IN INVOCATION COMMAND: NOSB
LINE SOURCE STATEMENT \$pagelength(50)

LINE
page

02/18/86

ERR LOC OBJECT
MCS-96 MACRO ASSEMBLER FFT_RUN



MCS－96 MACRO ASSEMBLER ERR LOC OBJECT LINE


SOURCE STATEMENT
\(i ;\) Complex multiplication follows


BVT ERRI ；Branch on error in complex multiplications tmprl，xreal \([\mathrm{kptr}]\)
tmprl，\＃1
tmpili，ximag［kptr］
tmpil，\＃1 tmprl，xreal \([\mathrm{kptr}]\)
tmprl，\＃1
tmpili，ximag［kptr］
tmpil，\＃1
 xrtmp，xreal［kn2］；；；

 xitmp，tmpil，tmpi \(+2{ }^{2} ;\)


ERR2 ；Branch on error in complex additions
邹莈会茧喆
含


\(z /((Z N H)\) UX＊dIM \(+(Z N H)\) IX \(* d X M)=I d N L ~ 06 t\) ；；

\(510 \mathrm{XR}(\mathrm{KN} 2)=\mathrm{TMPRI}-\mathrm{TMPR}\)
\(520 \mathrm{XI}(\mathrm{KN} 2)=\mathrm{TMPII}-\mathrm{TMPI}\)
\(530 \mathrm{XR}(\mathrm{K})=\mathrm{TMPRI}+\mathrm{TMPR}\)
\(540 \mathrm{XI}(\mathrm{K})=\mathrm{TMPII}+\mathrm{TMPI}\) ．．．官 FFT．．run 22BE FE4F4F00003C24
22C5
FE4F4F00003E28 － 22CF FE4F4F00003C2C 22D6 FE4FFF00003E28
22DD 642 E 2 A
 22F2 48262 C 34
\({ }_{2} \mathrm{C} 34 \mathrm{~F} 000034\) 22FB 482A3038
22FF
C34F000038
 2300 442A3038
2311 c34D000038 2316 DC23
\(\omega\)
塄





MCS-96 MACRO ASSEMBLER
ERR LOC OBJECT
2318 6502004C
231C 884442
231F
D602277B
2323 64444C

\(\begin{array}{ll}\text { 232E } & 1758 \\ \text { 2330 } & 0 \text { A0144 } \\ 2333 & 1556\end{array}\)

FFT_RUN

MCS-96 MACRO ASSEMBLER

SOURCE STATEMENT
PAGE


．
뭄


\section*{FFT＿RUN}

MCS－96 MACRO ASSEMBLER
ERR loc object
Hi
0
0
0
0



8

2414 A24F40
2417 A24E44
ちも0も89 VLъて

O

OヵDEVOLSLV OZъZ
24412045

MCS－96 MACRO ASSEMBLER
ERR LOC OBJECT
FFT＿RUN

気旨吉莒公家宫
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & & & \begin{tabular}{l}
 \\

\end{tabular} & \begin{tabular}{l}
 \\

\end{tabular} &  &  \\
\hline \multicolumn{3}{|l|}{¢} &  &  &  &  \\
\hline  & &  &  &  &  &  \\
\hline \[
\begin{aligned}
& \text { N } \\
& \text { 另 }
\end{aligned}
\] & &  &  &  &  &  \\
\hline \multirow[t]{2}{*}{} & &  &  &  &  &  \\
\hline & \[
\begin{gathered}
\stackrel{y}{3} \\
\stackrel{y}{5}
\end{gathered}
\] &  &  &  &  &  \\
\hline  & \begin{tabular}{l} 
W \\
0 \\
0 \\
0 \\
0 \\
\hline
\end{tabular} &  &  &  &  &  \\
\hline  & \[
\begin{aligned}
& \text { + } \\
& \stackrel{+}{*} \\
& \stackrel{y}{*}
\end{aligned}
\] & \begin{tabular}{l}
芯 ※ ※＊ \\

\end{tabular} &  &  & \[
\stackrel{5}{0}^{\circ}
\] &  \\
\hline
\end{tabular}
02／18／86

\section*{}
\begin{tabular}{|c|c|}
\hline ERR LOC & OBJECT \\
\hline \multicolumn{2}{|l|}{3800} \\
\hline \multicolumn{2}{|l|}{3800} \\
\hline 3800 & 0000200010003000 \\
\hline 3810 & 0400240014003400 \\
\hline 3820 & 0200220012003200 \\
\hline 3830 & 0600260016003600 \\
\hline \multicolumn{2}{|l|}{3840} \\
\hline 3840 & 00008C0CF9182825 \\
\hline 3850 & 825AF1626D6AE270 \\
\hline 3860 & FF7F617F897D7C7A \\
\hline 3870 & 825A33511C47563C \\
\hline 3880 & 000074F307E7D8DA \\
\hline 3890 & 7EA50F9D93951E8F \\
\hline 38A0 & 01809F8077828485 \\
\hline 3880 & 7EA5CDAEE4B8AAC3 \\
\hline 38C0 & 0000 \\
\hline \multicolumn{2}{|l|}{38 C 2} \\
\hline 38C2 & FF7F617F897D7C7A \\
\hline 38D2 & 825A33511C47563C \\
\hline 38E2 & 000074F307E7D8DA \\
\hline 38F2 & 7EA50F9D93951E8F \\
\hline 3902 & 01809F8077828485 \\
\hline 3912 & 7EA5CDAEE4B8AAC3 \\
\hline 3922 & 00008C0CF9182825 \\
\hline 3932 & 825AF1626D6AE270 \\
\hline 3942 & FF7F \\
\hline \multicolumn{2}{|l|}{3944} \\
\hline 3944 & FF7F897D41766D6A \\
\hline 3954 & 000007E705CFE4B8 \\
\hline 3964 & 01807782BF899395 \\
\hline 3974 & 0000F918FB301C47 \\
\hline 3984 & FF7F \\
\hline \multicolumn{2}{|l|}{3986} \\
\hline 3986 & 000007E705CFE4B8 \\
\hline 3996 & 01807782BF899395 \\
\hline \(39 \mathrm{A6}\) & 0000F918FB301C47 \\
\hline \(39 \mathrm{B6}\) & FF7F897D41766D6A \\
\hline 39C6 & 0000 \\
\hline
\end{tabular}


\section*{\(\exists\) \\ 遂}

 MCS-96 MACRO ASSEMBLER
\begin{tabular}{|c|c|}
\hline ERR LOC & OBJECT \\
\hline \multicolumn{2}{|l|}{3908} \\
\hline 39C8 & FFFF04B50080825A \\
\hline \(39 \mathrm{D8}\) & 0010500B0008A805 \\
\hline 39E8 & 0001850080005B00 \\
\hline 3958 & 1000080008000600 \\
\hline 3 A 08 & \\
\hline 3 A 08 & 05B5BAB56EB62187 \\
\hline \(3 \mathrm{Al8}\) & 97BA46BBF5BBA3BC \\
\hline 3 A 28 & 00C0AAC054ClFDC1 \\
\hline 3 A38 & 43C5E9C58EC633C7 \\
\hline 3 A 48 & 63CA04CBA6CB46CC \\
\hline 3 A 58 & 62CF00D09DD03AD1 \\
\hline 3 A 68 & 44D4DED477D511D6 \\
\hline 3A78 & 09D9A0d936DACCDA \\
\hline 3488 & B4DD47DEDBDE6EDF \\
\hline 3498 & 46E2D7E267E3F7E3 \\
\hline 3AA8 & C1E64FE7DDE76AE8 \\
\hline \(3 \mathrm{AB8}\) & 27EBB2EB3DECC7EC \\
\hline 3AC8 & 77EF00F088F010F1 \\
\hline 3AD8 & B4F33BF4C1F446F5 \\
\hline 3 AE8 & DFF763F8E7F86AF9 \\
\hline 3AF8 & F8FB7AFCFBFC7DFD \\
\hline
\end{tabular}
ヘั
器

LOC
OBJECT
3B08

3B08
OB002A024F047006
3B18 DA10E312E914EA16
3B28
BD20A92292247826
3B38
3B48 ERR

The BASIC program is used as comments in the ASM96 program. Some of the variables in the ASM96 program have slightly different names than their coun-ter-parts in the BASIC program. This was to make the comments fit into the ASM96 code. Highlights in this section of code are a table driven square root routine and \(\log\) conversion routine which can easily be adapted for use by any program.

Both the square root routine and the log conversion routine use the 32 -bit value in the variable TMPR. The square root routine calculates the square root of that value in the variable \(\mathrm{SQRT}+2\), a 16 -bit variable. In this program, the square root value is averaged and stored in a table.

The log conversion routine divides the value in TMPR by 65536 (216) and uses table lookup to provide the common log. The result is a 16 -bit number with the value 512 * \(10 \mathrm{Log}(\mathrm{TMPR} / 65536)\) stored in the variable LOG. This calculation is used to present the results of the FFT in decibels instead of magnitude. With an input of 63095 , the output is \(512^{*} 48 \mathrm{~dB}\). The graph program, (Section 10), prints the output value of the plot as INPUT/512 dB.

The following descriptions of the ASM code point out some of the highlights and not-so-obvious coding:

Lines 1-104 initialize the code and declare variables. The input and output arrays of the program are declared external. Note that many of the registers are
overlayable, use caution when implementing this routine with others with overlayable registers.

Lines 116-124 calculate the power of W to be used. Note that KPTR is always incremented by 2. The multiple right shift followed by the AND mask creates an even address and the indirect look to the BR (Bit Reversal) table quickly calculates the power PWR.

Lines 130-138 perform the complex multiplications Since WIP and WRP range from -32767 to +32767 , the multiplication is easy to handle. The automatic divide by two which occurs when using the upper word only of the 32 -bit result is a feature in this case.

Lines 144-163 use right shifts for a fast divide, then add or subtract the desired variables and store them in the array. Note that the upper word of TMPR and TMPI is used, and the same array is used for both the input and output of the operations.

Lines 165-189 update the loop variables and then check for errors on the complex multiplications and additions. If there are no overflows at this time the data will run smoothly through the rest of the program.

Lines 200-212 load variables with values based on the bit reversed values of pointers.

Lines 214-236 perform additions and subtractions to prepare for the next set of formulas. Note that XITMP and XRTMP are 32-bit values.

Lines 240-260 perform multiplies and summations resulting in 32-bit variables. This saves a bit or two of accuracy. The upper words are then stored as the results.

Lines 263-272 generate the squared magnitude of the harmonic component as a 32 -bit value.

Lines 278-310 calculate 10 Log (TMPR/65536). The 32-bit register TMPR is divided by 65536 so that the output range would be reasonable.

First, the number is normalized. (It is shifted left until a 1 is in the most significant bit, the number of shifts required is placed in SHFT__CNT.) If it had to be shifted more than 15 times the output is set to zero.

Next, the most significant BYTE is used as a reference for the look-up table, providing a 16 -bit result. The next most significant BYTE is then used to perform linear interpolation between the referenced table value and the one above it. The interpolated value is added to the directly referenced one.

The 16-bit result of this table look-up and interpolation is then added to the Log of the normalization factor, which is also stored in a table. This table look-up approach works fast and only uses 290 bytes of table space.

Lines 321-357 calculate the square root of the 32-bit register TMPR using a table look-up approach.

First, the number is normalized. Next, the most significant BYTE is used as a reference for the look-up table, providing a 16 -bit result. The next most significant BYTE is then used to perform linear interpolation between the referenced table value and the one above it. The interpolated value is added to the directly referenced one.

The 16-bit result of this table look-up and interpolation is then divided by the square root of the normalization factor, which is also stored in a table. This table lookup approach works fast and only uses 320 bytes of table space. The results are valid to near 14-bits, more than enough for the FFT algorithm.

Lines 352-360 average the magnitude value, if multiple passes are being performed, and then store the value in the array. The loop-counters are incremented and the process repeats itself.

This concludes the FFT routine. In order to use it, it must be called from a main program. The details for calling this routine are covered in the next section.

\subsection*{8.0 BACKGROUND CONTROL PROGRAM}

The main routine is shown in Listing 3. It begins with declarations that can be used in almost any program. Note that these are similar, but not identical, to other 8096 include files that have been published. Comments on controlling the Analog to Digital converter routine follow the declarations.

MCS-96 MACRO ASSEMBLER FFT_MAIN_APNOTE
SERIES-III MCS-96 MACRO ASSEMBLER, v1.0
SOURCE FILE: \(:\) F2: FTMAIN. A96
OBJECT FILE: \(:\) F2: FTMAIN.OBJ

\section*{CONTROLS SPECIFIED IN INVOCATION COMMAND: NOSB}

Line This program performs an FFT on real data and plots it on a printer.
it uses the program modules A2DCON, PLOTSP, and FFTRUN. The adjustable
; parameters of each of the programs are set by this main module. parameters of each of the programs are set by this main module

\section*{\$INCLUDE (: FO: DEMO96. INC) ;
; \(\$\) nolist ; Turn listing off for include file}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline =1 & 17 & \multicolumn{5}{|l|}{} \\
\hline =1 & 18 & ; & \multicolumn{4}{|l|}{\multirow[t]{2}{*}{Copyright 1985, Intel Corporation}} \\
\hline =1 & 19 & ; & & & & \\
\hline =1 & 20 & ; & \multicolumn{4}{|l|}{October 28,1985} \\
\hline \(=1\) & 21 & ; & \multicolumn{4}{|l|}{by Ira Horden, MCO Applications} \\
\hline =1 & 22 & \multicolumn{5}{|l|}{\multirow[t]{2}{*}{DEMO96.INC - DEFINITION OF SYMBOLIC NAMES FOR THE I/O REGISTERS OF THE 8096}} \\
\hline =1 & 23 & & & & & \\
\hline =1 & 24 & \multicolumn{5}{|l|}{;} \\
\hline =1 & 25 & \multicolumn{5}{|l|}{} \\
\hline =1 & 26 & ; & & & & \\
\hline =1 & 27 & ZERO & EQU & 00h: WORD & ; R/W & Zero Register \\
\hline & 28 & AD_COMMAND & EQU & 02H: BYTE & ; W & A to D command register \\
\hline \(=1\) & 29 & AD_RESULT_LO & EQU & 02H: BYTE & ; R & Low byte of result and channel \\
\hline \(=1\) & 30 & AD_RESULT_HI & EQU & 03H: BYTE & ; R & High byte of result \\
\hline \(=1\) & 31 & HSI_MODE & EQU & 03H: BYTE & W & Controls HSI transition detector \\
\hline =1 & 32 & HSO_TIME & EQU & 04H: WORD & ; W & HSI time tag \\
\hline =1 & 33 & HSI_TIME & EQU & 04H: WORD & ; R & HSO time tag \\
\hline \(=1\) & 34 & HSO_COMMAND & EQU & 06H: BYTE & ; W & HSO command tag \\
\hline \(=1\) & 35 & HSI_STATUS & EQU & 06H: BYTE & ; R & HSI status register (reads fifo) \\
\hline =1 & 36 & SBUF & EQU & 07H: BYTE & ; R/W & Serial port buffer \\
\hline \(=1\) & 37 & INT_MASK & EQU & 08H: BYTE & R/W & Interrupt mask register \\
\hline \(=1\) & 38 & INT_PENDING & EQU & 09H: BYTE & R/W & Interrupt pending register \\
\hline \(=1\) & 39 & SPCON & EQU & 11H: BYTE & & Serial port control register \\
\hline \(=1\) & 40 & SPSTAT & EQU & 11H: BYTE & R & Serial port status register \\
\hline \(=1\) & 41 & WATCHDOG & EQU & OAH: BYTE & W & Watchdog timer \\
\hline
\end{tabular}



\[
+
\]
FFT_MAIN_APNOTE
 ERR LOC OBJECT

\author{
2080 A1000018
}
PAGE

; Branch if real data is not used
; Branch if windowing is not used
PAGE
a
a
\(\approx\)
~
\(\propto\)
ゅ
avr_cnt, \#avr_num
bx
zero, fft_out [bx]
bx,\#2
bx, \#64
CLRRAM
fft_mode, 0, do_tab
LOAD_DATA
C_win
TABLE_LOAD
fft_mode, 1, calc
DO_WINDOW
FFT_CALC
error,zero
errtrp
avr_cnt, LOAD_DATA
DRAW_GRAPH
NEW_TRANSFORM_SET
; repeat for AVR_NUM counts

 \(\ddot{H}\)
3
\(0_{1}\)
CALC:
errtrp: \(\stackrel{\rightharpoonup}{U}\)
\(\stackrel{y}{*}\)
\(\stackrel{y}{*}\)
\(母\)
2080
209A C321000200
(1)
MCS-96 MACRO ASSEMBLER
FFT_MAIN_APNOTE


MCS-96 MACRO ASSEMBLER
ERR LOC obJECT
 Mat math

FFT_MAIN_APNOTE
\(\omega\)


MCS-96 MACRO ASSEMBLER



Listing 3—Main Routine (Continued)
\(\qquad\)

LOC OBJECT
3D00
3D00
3D00 00003351897DE270
3D10 7EA574F31C477C7A
3D20 01800F9D08E7563C
3D30 7EA59F809395D8DA
3D40 0000CDAE77821E8F
3D50 825A8C0CE4B88485
3D60 FF7FF162F818AAC3
3D70 825A617F6D6A2825
3D80
3D80 0000F555617FCF66
3D90 05CF1F2BE270297C


 3DE0 7EA528800F9D38ED
3DF0 05CF4B8C848533BE 3E00 0000C63C0F5AAF48

第
 3E70 5FDD32AE67A97ADI
3 E 80
3E80 0000FD04B40472FF 3E80 0000FD04B40472FF
3E90 00045CFE74FA69FC
3EA0 58FA55FD2403A105





SERIES-III MCS-96 RELOCATOR AND LINKER, V2.0
Copyright 1983 Intel Corporation
INPUT FILES: : F2: FTMAIN.OBJ, :F2:FFTRUN.OBJ, :F2:PLOTSP.OBJ, :F2:A2DCON.OBJ OUTPUT FILE: : F2: FFTOUT
CONTROLS SPECIFIED IN INVOCATION COMMAND:
IX

INPUT MODULES INCLUDED:
F2: FTMAIN. OBJ(FFT MAIN APNOTE) 02/18/86
-F2: FFTRUN.OBJ(FFT RUN) 02/18/86
: F2: PLOTSP.OBJ (PLOT_SERIAL) 02/18/86
: F2: A2DCON.OBJ (A2D_BUFFERING_UTILITY) 02/18/86

SEGMENT MAP FOR : F2: FFTOUT(FFT_MAIN_APNOTE):
\begin{tabular}{|c|c|c|c|c|c|}
\hline & TYPE & BASE & LENGTH & ALIGNMENT & MODULE NAME \\
\hline **RESERVED* & & 0000H & 001AH & & \\
\hline & REG & 001AH & 0001H & BYTE & PLOT_SERIAL \\
\hline *** GAP *** & & 001BH & 0001H & & \\
\hline & REG & 001CH & 0008H & ABSOLUTE & FFT MAIN APNOTE \\
\hline & OVRLY & 0024H & 0035H & ABSOLUTE & FFT_RUN \\
\hline **OVERLAP** & OVRLY & 0024H & 0010H & ABSOLUTE & PLOT_SERIAL \\
\hline **OVERLAP** & OVRLY & 0024H & 000CH & ABSOLUTE & FFT_MAIN_APNOTE \\
\hline *** GAP *** & & 0059H & 0001H & & \\
\hline & OVRLY & 005AH & 0006H & WORD & A2D_BUFFERING_UTILITY \\
\hline & REG & 0060H & 000 CH & WORD & A2D_BUFFERING_UTILITY \\
\hline & REG & 006CH & 0003H & BYTE & FFT_MAIN_APNOTE \\
\hline *** GAP *** & & 006FH & 0011H & & \\
\hline & data & 0080H & 0080H & ABSOLUTE & FFT_MAIN_APNOTE \\
\hline & STACK & 0100 H & 001EH & WORD & \\
\hline & data & 011EH & 0080H & WORD & FFT_RUN \\
\hline *** GAP *** & & 019EH & 0062H & & \\
\hline & data & 0200H & 0140H & ABSOLUTE & FFT_MAIN_APNOTE \\
\hline *** GAP *** & & 0340H & 1-C2H & & \\
\hline & CODE & 2002H & 0002H & ABSOLUTE & A2D_BUFFERING_UTILITY \\
\hline *** GAP *** & & 2004H & 007 CH & & \\
\hline & CODE & 2080H & 01COH & ABSOLUTE & FFT_MAIN_APNOTE \\
\hline *** GAP *** & & 2240H & 0040H & & \\
\hline & CODE & 2280H & 0215H & ABSOLUTE & FFT_RUN \\
\hline *** GAP *** & & 2495H & 006BH & & \\
\hline & CODE & 2500H & 0168H & ABSOLUTE & PLOT_SERTAL \\
\hline & CODE & 2668H & OOECH & BYTE & A2D_BUFFERING_UTILITY \\
\hline *** GAP *** & & 2754H & 10ACH & & \\
\hline & CODE & 3800 H & 042AH & ABSOLUTE & FFT_-RUN \\
\hline *** GAP *** & & 3C2AH & 00D6H & & \\
\hline & CODE & 3D00H & 0280H & ABSOLUTE & FFT_MAIN_APNOTE \\
\hline *** GAP *** & & 3 F 80 H & C080H & & \\
\hline
\end{tabular}

Listing 3-Main Routine (Continued)

Several constants are then setup for other routines. The purpose of centrally locating these constants was the ease of modifying the operation of the routines. Note that AVR__NUM and SCALE__FACTOR must be changed at the same time. SCALE__FACTOR is the shift count used to divide each FFT output value before it is added to the output array. AVR__NUM must be less than \(2^{* *}\) SCALE__FACTOR or an overflow could occur. Next, the public variables are declared for the arrays and a few other parameters.

The program then begins by setting the stack pointer and waiting for the SBE-96 to finish talking to the terminal. If this is not done, there may be serial port interrupts occurring for the first twenty five milliseconds of program operation.

Initialization of the plotter is next, followed by setting the FFT__MODE byte. This byte controls the graphing, loading and magnitude calculation of the FFT data. Since FFT__MODE is declared PUBLIC in this module, and EXTERNAL in the PLOT module and FFTRUN module, the extra bits available in this byte can be used for future enhancements.

The next step is to clear the FFT output array. Since the FFT program can be set to average its results by dividing the output before adding it to the magnitude array, the array must be cleared before beginning the program.

Data is then loaded into into the FFT input array by the code at LOAD__DATA, or the code at TABLE__ LOAD, depending on the value of FFT__MODE bit 0 . The tabled data located at DATA0 is a square wave of magnitude 1. This waveform provides a reasonable test of the FFT algorithm, as many harmonics are generated. The results are also easy to check as the pattern contains half zeros, imaginary values which are always the same, and real values which decrease. Figure 13 shows the output in fractions, hexadecimal and decimal . The hexadecimal and decimal values are based on an output of 16384 being equal to 1.00 .

Note that the magnitude is
SQR (REAL \({ }^{2}+\) IMAG \(\left.^{2}\right)\)
and the dB value is
10 LOG \(\left(\left(\mathrm{REAL}^{2}+\mathrm{IMAG}^{2}\right) / 65536\right)\)

The divide by 65536 is used for the dB scale to provide a reasonable range for calculations. If this was not done, a 32-bit LOG function would have been needed.

After the data is loaded, the data is optionally windowed, based on FFT__MODE bit 1, and the FFT program is called. Once the loop has been performed AVR__CNT times, the graph is drawn by the plot routine.

Appended to the main routine is the FFTOUT.M96 Listing. This is provided by the relocator and linker, RL96. With this listing and the main program, it is possible to determine which sections of code are at which addresses.

Using the modular programming methods employed here, it is reasonably easy to debug code. By emulating the program in a relatively high level language, each routine can be checked for functionality against a known standard. The closer the high level implementation matches the ASM96 version, the more possible checkpoints there are between the two routines.

Once all of the program routines (modules) can be shown to work individually, the main program should work unless there is unwanted interaction between the modules. These interactions can be checked by verifying the inputs and outputs of each module. The assembly language locations to perform the program breaks can be retrieved by absolutely locating the main module. The other modules can be dynamically located by RL96.

The more interactive program modules are, the more difficult the program becomes to debug. This is especially true when multiple interrupts are occurring, and several of the interrupt routines are themselves interruptable. In these cases, it may be necessary to use debugging equipment with trace capability, like the VLSiCE-96. If this type of equipment is not available, then using I/O ports to indicate the entering and leaving of each routine may be useful. In this way it will be possible to watch the action of the program on an oscilloscope or logic analyzer. There are several places within this code that I/O port toggling has been used as an aid to debugging the program. These lines of code are marked "FOR INDICATION ONLY."

AP-275
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{2}{*}{K} & \multicolumn{3}{|c|}{Fractional} & \multirow{2}{*}{dB} & \multicolumn{3}{|c|}{Decimal} & \multicolumn{3}{|c|}{Hexadecimal} \\
\hline & REAL & IMAG & MAG2 & & REAL & IMAG & MAG \({ }^{2}\) & REAL & IMAG & MAG \({ }^{2}\) \\
\hline 0 & 0.0000 & 0.0000 & 0.0000 & 0.000 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 1 & 0.0625 & -1.2722 & 1.2738 & 38.225 & 1024 & -20843 & 20868 & 400 & AE95 & 5184 \\
\hline 2 & 0.0000 & 0.0000 & 0.0000 & 0.000 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 3 & 0.0625 & -0.4213 & 0.4260 & 28.710 & 1024 & -6903 & 6978 & 400 & E509 & \(1 \mathrm{B42}\) \\
\hline 4 & 0.0000 & 0.0000 & 0.0000 & 0.000 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 5 & 0.0625 & -0.2495 & 0.2572 & 24.329 & 1024 & -4088 & 4214 & 400 & F008 & 1076 \\
\hline 6 & 0.0000 & 0.0000 & 0.0000 & 0.000 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 7 & 0.0625 & -0.1747 & 0.1855 & 21.491 & 1024 & -2862 & 3039 & 400 & F4D2 & BDF \\
\hline 8 & 0.0000 & 0.0000 & 0.0000 & 0.000 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 9 & 0.0625 & -0.1321 & 0.1462 & 19.421 & 1024 & -2165 & 2395 & 400 & F78B & 95B \\
\hline 10 & 0.0000 & 0.0000 & 0.0000 & 0.000 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 11 & 0.0625 & -0.1043 & 0.1216 & 17.820 & 1024 & -1708 & 1992 & 400 & F954 & 7 C 8 \\
\hline 12 & 0.0000 & 0.0000 & 0.0000 & 0.000 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 13 & 0.0625 & -0.0843 & 0.1049 & 16.540 & 1024 & -1381 & 1719 & 400 & FA9B & 6B7 \\
\hline 14 & 0.0000 & 0.0000 & 0.0000 & 0.000 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 15 & 0.0625 & -0.0690 & 0.0931 & 15.499 & 1024 & -1130 & 1525 & 400 & FB96 & 5F5 \\
\hline 16 & 0.0000 & 0.0000 & 0.0000 & 0.000 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 17 & 0.0625 & -0.0566 & 0.0844 & 14.645 & 1024 & -928 & 1382 & 400 & FC60 & 566 \\
\hline 18 & 0.0000 & 0.0000 & 0.0000 & 0.000 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 19 & 0.0625 & -0.0464 & 0.0778 & 13.944 & 1024 & -759 & 1275 & 400 & FD09 & 4FB \\
\hline 20 & 0.0000 & 0.0000 & 0.0000 & 0.000 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 21 & 0.0625 & -0.0375 & 0.0729 & 13.374 & 1024 & -614 & 1194 & 400 & FD9A & 4AA \\
\hline 22 & 0.0000 & 0.0000 & 0.0000 & 0.000 & 0 & & 0 & 0 & 0 & 0 \\
\hline 23 & 0.0625 & -0.0296 & 0.0691 & 12.918 & 1024 & -484 & 1133 & 400 & FE1C & 46D \\
\hline 24 & 0.0000 & 0.0000 & 0.0000 & 0.000 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 25 & 0.0625 & -0.0224 & 0.0664 & 12.564 & 1024 & -366 & 1088 & 400 & FE92 & 440 \\
\hline 26 & 0.0000 & 0.0000 & 0.0000 & 0.000 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 27 & 0.0625 & -0.0157 & 0.0644 & 12.305 & 1024 & -256 & 1056 & 400 & FF00 & 420 \\
\hline 28 & 0.0000 & 0.0000 & 0.0000 & 0.000 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 29 & 0.0625 & -0.0093 & 0.0632 & 12.135 & 1024 & -152 & 1035 & 400 & FF68 & 40B \\
\hline 30 & 0.0000 & 0.0000 & 0.0000 & 0.000 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 31 & 0.0625 & -0.0031 & 0.0626 & 12.051 & 1024 & -50 & 1025 & 400 & FFCE & 401 \\
\hline
\end{tabular}

Figure 13. FFT Output for a Square Wave Input

\subsection*{9.0 ANALOG TO DIGITAL CONVERTER MODULE}

The module presented in Listing 4 is a general purpose one which converts analog values under interrupt control and stores them in one of two buffers. These buffers
can then be downloaded to another buffer, such as the input buffer to the FFT program. During downloading, this module can convert the data into signed or unsigned formats, and fill a linear or a paired array. A paired array is like the one used in the FFT transform program. It requires N data points placed alternately in two arrays, one starting at zero and the other at \(\mathrm{N} / 2\).

MCS-96 MACRO ASSEMBLER A2D_BUFFERING_UTILITY
SERIES-III MCS-96 MACRO ASSEMBLER, v1.0
SOURCE FILE: : F2: A2DCON. A96
OBJECT FILE: :F2:A2DCON.OBJ
LINE \(\begin{gathered}\text { SOURCE STATEMENT } \\ \text { \$pagelength(50) }\end{gathered}\)
\$pagelength(50)
A2D_Buffering_Ut
A2D_Buffering_Utility module stacksize(12)
Intel Corporation, July 16, 1985
This utility fills a memory buffer with \(A / D\) conversion results. The
Thisversions are done under interrupt control, and are initiated when

This utility provides options for the selection of the buffer lengths, data
has a donwload routine that will load either buffer into a register file
 data can be formatted as signed or unsigned linear or paried arrays.

Rather than use the STACK to pass controls, this utility gets its directions from 2 control words in memory. The utility expects that its control words
are valid at the time A2D BUFF Util is called and remain valid throughout \(A / D\) interrupt executions and downloads. The control words are:
Sample_Period ; WORD ; The time between samples in timer counts
ontrol information for the utility:
BIT\#

Control_A2D

\$EJBCT
\(\begin{array}{lcccc}\text { MCS-96 MACRO ASSEMBLER } & \text { A2d_bUFFERING_UTILITY } & 02 / 18 / 86 & \text { PAGE } & 2 \\ \text { ERR LOC OBJECT } & \text { LINE } & \text { SOURCE STATEMENT } & & \end{array}\)

ICS-96 MACRO ASSEMBLER A2D_BUFFERING_UTILITY
source statement

\section*{ASSEMBLY-TIME OPTIONS}
The base addresses and length of each conversion buffer and the destination of the timer used as a timebase, the length of the buffer, and the effective number of bits in the reported result are set at assembly time through use
of EQUates in this module.
The following parameters need to be provided at assembly or link time. length shift count and HSO commands are EQUated.
 DEST_BUFF_BASE ; The starting address of the download
 position. Setting a shift count greater than 6 will
result in lost bits to the right. Rounding is NOT done.
Specify as either TIMER1 or T2CLK. This is the
timebase used for conversions.
timebase used for conversions.
Samples are stored as words in the buffers. The program stores
conversions linearly in BUFFO and BUFT, and linearly or paired in the
destination buffer as selected. If the download is to be paired, the first
sample is placed in location DEST BUF_BAE, the second sample is placed in
location (DEST_BUFF_BASE + BUFF_LENGTH), the third in (DEST_BUFF_BASE +2 ,
the fourth in (DEST_BUFF_BASE \(+2+\) BUF_LENGTH), etc.


RRR LOC OBJECT
A2D_BuFFERING_UTILITY
02/18/86 PAGE
MCS-96 MACRO ASSEMBLER A2D_BUFFERING_UTILITY
ERR LOC OBJECT



A2D＿buFFERING＿UTILITY

CSEG at
\(\begin{array}{ll}\text { PUBLIC } & \text { A2D＿DONE＿Vector } \\ \text { DCW } & \text { A2D＿DONE＿Vector }\end{array}\)
\(\begin{array}{ll} & \text { CSEG } \\ \text { PUBLIC } & \text { A2D＿BU }\end{array}\)
Macro to load HSO Period
ome over

䍙胥烒
\(\propto\)
MCS－96 MACRO ASSEMBLER
ERR LOC OBJECT
000A

2002
2002 ac00

Listing 4—A to D Converter Routine（Continued）
MCS-96 MACRO ASSEMBLER ERR LOC OBJECT
 A2D_
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{SOURCE STATEMENT} \\
\hline \multicolumn{3}{|l|}{A2D_BUFF_Util:} \\
\hline JBS & Control_A2D, Con_Dwn, Conver & ; Select convert or download \\
\hline \multicolumn{3}{|l|}{Download:} \\
\hline \({ }_{\text {LDBC }}^{\text {LD }}\) & src_ptr, \#BUFFl base & \\
\hline JBC & \multicolumn{2}{|l|}{Control_A2D, B0_B1, Set_Data_Format} \\
\hline \multicolumn{3}{|l|}{\multirow[t]{2}{*}{Download_BUFFO: \({ }_{\text {L }}\) src_ptr,\#BUFFO_BASE}} \\
\hline & & \\
\hline \multicolumn{3}{|l|}{Set_Data Format: ; Choose linear or paired} \\
\hline & dest_ptr, \#DEST_BUFF_BASE & \\
\hline \multicolumn{3}{|l|}{LDB loop_count, \#BUFF_LENGTH} \\
\hline JBS & Control_A2D, Lin_Par, Lin & data_loop \\
\hline \multicolumn{3}{|l|}{\multirow[t]{2}{*}{PAIRED: SHRB loop_count,\#1 \(\quad\)\begin{tabular}{l}
; The paired data routine uses \(1 / 2\) \\
; as many loops as the unpaired
\end{tabular}}} \\
\hline & & \\
\hline \multicolumn{3}{|l|}{LD adudtemp0, [src_ptr]+ ; Move even word} \\
\hline ST & adudtemp0, [dest_ptr] & \\
\hline \multicolumn{3}{|l|}{ADD dest_ptr, *BUFF_LENGTH ; Length \(=\) \# of words \(=1 / 2 \#\) of bytes} \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{ST adudtemp0, [dest_ptr]+ \({ }^{\text {S }}\) + Move odd word}} & ; Move odd word \\
\hline & & \\
\hline \multicolumn{3}{|l|}{\multirow[t]{2}{*}{DJNZ loop_count, Paired_Data_loop ; Loop until done}} \\
\hline & & \\
\hline \multicolumn{3}{|l|}{CALL Convert_Data} \\
\hline \multicolumn{3}{|l|}{RET} \\
\hline \multicolumn{3}{|l|}{Linear_Pata_loop: ; Move data linearly} \\
\hline \multicolumn{3}{|l|}{\(\begin{array}{ll}\text { LD } & \text { adudtemp0, }[\text { src_ptr }]+ \\ \text { ST } & \text { adudtemp0, }[\text { dest_ptr }]+\end{array}\)} \\
\hline DJNZ & loop_count, Linear_Data_loop & ; Loop until done \\
\hline \multicolumn{3}{|l|}{CALL Convert_Data} \\
\hline \$eject \({ }^{\text {RET }}\) & & \\
\hline
\end{tabular}



A2D_BUFFERING_UTILITY
PAGE
の
PAGE

 ; get a copy of the psw
; set hso. 0 high at conversion
; enable a2d interrupts
; start second convertion one
; sample time from the first
; put psw back on stack
; lower hso. 0 for external \(\mathrm{s} / \mathrm{H}\)
IRCE STATEMENT
nversions:
ANDB ad_conmand,Control_A2D,\#0000011lb
ADD aductemp0,CLOCK, Sample_Period
Load_HSO_Command Start_A2D POP temp
Load_HSO_Command HSO_O_high
ADD aductemp0, Sample_Period
Load_HSO_Command Start_A2D
PUSH temp
Load_HSO_Command HSO_O_1ow
POPF
RET


MCS-96 MACRO ASSEMBLER
ERR LOC OBJECT
\(\approx\)
~
A2D_BUFFERING_UTILITTY
9
貦
02/18/86
LINE SOURC

MCS-96 MACRO ASSEMBLER ERR LOC OBJECT

The listing contains a fairly complete description of what the program does. The block by block operations are shown below:

Lines 1-198 describe the program, declare the variables and set up equates. Several of these variables are declared as overlayable, so the user needs to be careful if using this module for other than the FFT program.

Lines 205-210 declare a macro which is used to load the HSO unit. This will be used repeatedly through the code.

Lines 212-253 determine whether a conversion or download has been requested. If a download has been requested, the data is downloaded to the destination array as either paired or linear data. Paired data has been described earlier.

Lines 255-278 contain a subroutine which converts the destination array to either signed or unsigned numbers. The numbers are also shifted right to provide the desired full-scale value as requested by SHIFT_ COUNT.

Lines 279-334 initialize the conversion routine. HSO. 0 is toggled with the start of each routine so that an external sample and hold can be used. The instructions in lines 308,316 , and 326 have been interweaved with the Load__HSO__Commands to provide the required 8 state delays between HSO loadings. If this was not done, NOPs would have been needed. It is easier to understand the code if these lines are thought of as being gathered at line 326 .

Lines 337-353 are the actual A/D interrupt routine. The A/D results are placed BYTE by BYTE on the buffer, the A/D is reloaded, and then the number of samples taken is compared to the number needed. Note that the A/D command register needs to be reloaded even if the channel does not change. INCB on line 348 is used to insure that the DJNZ falls through on the next pass (if sample__count is not reset).

Lines 355-396 complete the routine. The HSO is set up to trigger the next conversion and provide the HSO. 0 toggle for an external sample and hold. Once again, the time between consecutive loads of the HSO is 8 states minimum. Note that this section of code has been optimized for speed by reducing branches to an absolute minimum and duplicating code where needed.

This concludes the description of the \(A\) to \(D\) buffer module. In the FFT program, this module is run, then the FFT transform module, then the plot module. This allows variables to be overlaid, saving RAM space. The time cost for this is not bad, considering the printer is the limiting factor in these conversions. If more RAM
was provided, and the FFT was run with its data in external RAM, this module could be run simultaneously with the other modules.

\subsection*{10.0 DATA PLOTTING MODULE}

The plot module is relatively straight-forward, and is shown in Listing 5. After the declarations, which include overlayable registers, an initialization routine is listed. This separately called routine sets up the serial port on the 8096 to talk to the printer. In this case, the port has to be set for 300 baud.

A console out routine follows. This routine can also be called by any program, but it is used only by the plot routine in this example. The write to port 1 is used to trace the program flow. The character to be output is passed to this routine on the stack. This conforms to PLM-96 requirements.

Since all stack operations on the 8096 are 16-bits wide, a multiple character feature has been added to the console out routine. If the high byte it receives is non-zero, the ASCII character in that byte is printed after the character in the low byte. If the high byte has a value between 128 and 255, the character in the low byte is repeated the number of times indicated by the least significant 7 bits of the high byte.

The print decimal number routine is next. It is called with two words on the stack. The first word is the unsigned value to be printed. The second byte contains information on the number of places to be printed and zero and blank suppression. This routine is not over-flow-proof. The user must declare a sufficient number of places to be printed for all possible numbers.

The DRAW__GRAPH routine provides the plot. It first sends a series of carriage return, line feeds (CRLFs) to clear the printer and provides a margin on the paper. Each row is started with the row number, 2 spaces, and a " + ". Asterisks are then plotted until

Number of asterisks > FFT Value / PLOT__RES
Recall that PLOT__RES is a variable set by the main program. When the number of asterisks hits the desired value, the value of the line is printed. If the Decibel mode is selected, the line value is divided by 512 and printed in integer + decimal part form, followed by "dB". If the number of asterisks reaches PLOT__ MAX, no value is printed. The next line is then started. A line with only a "!" is printed before the next plot line to provide a more aesthetic display on the printer. If a CRT was used, this extra line would probably not be wanted.
MCS-96 MACRO ASSEMBLER PLOT_SERIAL
SERIES-III MCS-96 MACRO ASSEMBLER, v1. 0
SOURCE FILE: : F2: PLOTSP. A96
OBJECT FILE:
: \(\mathrm{F2}:\) PLOTSP. 0 OBJ
CONTROLS SPECIFIED IN INVOCATION COMMAND: NOSB
ERR LOC OBJECT

\[
\begin{aligned}
& \text { 国 } \\
& \text { 2 }
\end{aligned}
\]
MCS-96 MACRO ASSEMBLER

PLOT＿SERIAL

ERR LOC OBJECT

\section*{2500 B12000}

2500

0270

0082
006 F
 2503 B16F00
2506 B18200
 2509 B14900
250 C
 250F fo
\[
\begin{aligned}
& \text { SOURCE STATEMENT } \\
& \text { CSEG at } 2500 \mathrm{H}
\end{aligned}
\]
\＄eject
\[
\text { m } \quad \text { 以四 以 }
\]

ロ

high
low
ldb
ldb
1 db
ldb
RET
\(\begin{array}{ll}\begin{array}{l}\text { spcon，} \# 01001001 \mathrm{l} \\ \text { sptmp，} \# 0010000 \mathrm{~B}\end{array} & \left.\begin{array}{l}\text { ；enable reciver mode } 1 \\ ;\end{array}\right) \text { set TI－tmp }\end{array}\)
equ（（baud＿val－1）／256）or 80H ；set for
（baud＿val－1）MOD 256 ；
baud＿reg，＊baud＿low
baud＿reg，\＃baud＿high
RET TPUT：
1db

\section*{to txd
\(624=300\)}
xTALl clock

MCS－96 MACRO ASSEMBLER
～


PLOT_SERIAL

MCS-96 MACRO ASSEMBLER
ERR LOC OBJECT
SOURCE STATEMENT
PRINT DECIMAL NUMBER ROUTINE
Call with two words on stack. The first is the value to be printed.
The second has mode information in the low byte.
MODE: \(\begin{aligned} 000 & =\text { supress all zeros } \\ 001 & =\text { print all numbers } \\ 010 & =\text { supress all zeros except rightmost } \\ l x x & =\text { do not print leading blanks }\end{aligned}\)
The high byte of the 2nd word \(=2 x\) the number of places to be printed
\[
\begin{aligned}
& \begin{array}{l}
\text { decimal number to CON_OUT } \\
\text { mode byte, bx+l is divisor } \\
\text {; divide ax,dx by divisor } \\
\text {; print character regardle }
\end{array} \\
& \begin{array}{l}
\text {; divide ax, dx by divisor } \\
\text {; print character regardless of value } \\
\text {; jump if value is non zero }
\end{array} \\
& \text { ab[dx] } \\
& \begin{array}{l}
\text {; Send Decimal number to CON_OUT } \\
\text {; } b x \text { is mode byte, } b x+1 \text { is divisor pointer }
\end{array} \\
& \begin{array}{l}
\text { divisor, divtab[dx] } \\
\text { dalue }
\end{array} \\
& \text { value+2 } \\
& \begin{array}{l}
\text { value }+2 \\
\text { value, divisor } \\
\text { bx, } 0 \text {, chr ok }
\end{array} \\
& \begin{array}{l}
\text { bx, } 0, \text { chr_ok } \\
\text { value, zero }
\end{array} \\
& \text {; Value is zero } \begin{aligned}
& \\
& ; \text { Print space instead of } 0 \\
& ; \text { If in rightmost position print } 0
\end{aligned} \\
& \begin{array}{l}
\text { Do not print space if bit is set } \\
0 \mathrm{~F} 0 \mathrm{~h}+30 \mathrm{~h}=20 \mathrm{H}=\text { space }
\end{array} \\
& \begin{array}{c}
\text {; Set flag so } 0 \text { 's will be printed } \\
\text {; } 30 \mathrm{~h}+\mathrm{n}=0 \text { to } 9 \text { ascii } \\
\text {; send least sig seven bits, clear upper word }
\end{array} \\
& \text { output ascii result (result<9) } \\
& \text {; next lower power of ten } \\
& \begin{array}{l}
\text { Number of places for result } \\
10,100,1000,10000 ; \text { di }
\end{array}
\end{aligned}
\]

PLOT_SERIAL


Win \({ }_{\text {xo }}\)



\(\omega\)
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{2}{|l|}{MCS-96 MACRO ASSEMBLER} & \multicolumn{2}{|l|}{Plot_SERIAL} \\
\hline \multirow[t]{5}{*}{BRR LOC} & obJECT & & Line \\
\hline & & & 154 \\
\hline & & & 155 \\
\hline & & & 156 \\
\hline & & & 157 \\
\hline 25 A 2 & & & 158 \\
\hline 25 A 2 & c90d00 & & 159 \\
\hline 25A5 & \(2 \mathrm{F69}\) & & 160 \\
\hline 2547 & c90a82 & & 161 \\
\hline 25 AA & 2 F 64 & & 162 \\
\hline 25 AC & C90000 & & 163 \\
\hline \multirow[t]{2}{*}{254 F} & 2 F 5 F & & 164 \\
\hline & & & 165 \\
\hline 2581 & 012 C & & 166 \\
\hline 2583 & 0130 & & 167 \\
\hline 25B5 & & & 168 \\
\hline 2585 & c90dOA & & 169 \\
\hline 2588 & 2 F 56 & & 170 \\
\hline \({ }^{258 B}\) & c90000 & & 171 \\
\hline \multirow[t]{2}{*}{25BD} & 2 F 51 & & 172 \\
\hline & & & 173 \\
\hline 258 F & C830 & & 174 \\
\hline \multirow[t]{3}{*}{2554} & C9020A & & 175 \\
\hline & 2 F 86 & & 176 \\
\hline & & & 177 \\
\hline \(25 \mathrm{C6}\) & C92020 & & 178 \\
\hline 25 c 9 & 2 F 45 & & 179 \\
\hline 25 CB & c92800 & & 180 \\
\hline 25 CE & 2 F 40 & & 181 \\
\hline \multirow[t]{3}{*}{25D0} & A100002E & E & 183 \\
\hline & & & 184 \\
\hline & & & 185 \\
\hline 2504 & & & 186 \\
\hline 2501 & 8B2D00002E & E & 187 \\
\hline \(25 \mathrm{D9}\) & D911 & & 188 \\
\hline 25DB & & & 189 \\
\hline 25 DB & C92a00 & & 190 \\
\hline 25 DE & 2 F 30 & & 191 \\
\hline 25 EO & & & 192 \\
\hline 25BO & 6500002E & E & 193 \\
\hline 25 E 4 & 8900002E & E & 194 \\
\hline 25E8 & diea & & 195 \\
\hline 25EA & 204 F & & 196 \\
\hline
\end{tabular}
MCS-96 MACRO ASSEMBLER

\section*{RRR LOC OBJECT}
\[
\begin{aligned}
& \text {; If value is less then minimum needed } \\
& \text {; for a plot, do not print value } \\
& \text {; print } 2 \text { spaces then value }
\end{aligned}
\]
; Decimal point


\section*{}
กํ 9\%
 \begin{tabular}{l}
\(\circ\) \\
\hline 8 \\
\hline 0 \\
0 \\
0
\end{tabular}
 \(\left\{\begin{array}{l}\text { PLOT_IN }=512 * 10 * \text { LOG }(x) \\ \text { yptr }=265 * 10 L O G(x)\end{array}\right.\) yptr=265*10LOG(x)
\(\mathrm{ax}=10 \mathrm{LOG}(\mathrm{x})=\mathrm{yptr} / 256\) ; Print AX ; Decimal point
\[
\begin{aligned}
& \text { PAGE } \\
& \text {; If value is less then minimum needed } \\
& \text { for a plot, do not print value }
\end{aligned}
\]

; supress all zerosSOURCE STATEMENT
 yptr,plot_in[xptr]
yptr, \(\# 1\)
ax, yptr+1
 PRINT_NUM
\[
\text { high byte of } a x=\underset{\operatorname{lractional}}{\text { lolog }(x)} \text { portion of }
\] round value up
 SOURCE STATEMENT.
\[
\text { if ax=FF0OH then ax+2 now }=998 \text { decimal }
\]\(\infty\)(19
\(\infty\)ax, \#3E6H
ax+1,7, no_rnddx
\#(600H or
Print_nu
\#20H
con_out
\#4264H
con_out

\(\omega\)



n
page
Q
잉
잉


Listing 5—The Plot Module (Continued)

At the end of the plot, a form feed is given to set the printer up for the next graph. Our printer would frequently miss the character after a CRLF. To solve this problem, a null (ASCII 0) is sent after every CRLF to make sure the printer is ready for the next line. This has been found to be a problem with many devices running at close to their maximum capacity, and the nulls work well to solve it.

With the plot completed, the program begins to run again by taking another set of A to D samples.

\subsection*{11.0 USING THE FFT PROGRAM}

The program can be used with either real or tabled data. If real data is used, the signal is applied to analog channel 1. The program as written performs A/D samples at 100 microsecond intervals, collecting the 64 samples in 6.4 milliseconds. This sets the sampling window frequency at 156 Hz . If tabled data is used, 64 words of data should be placed in the location pointed to by DATA0 in the TABLE__LOAD routine of the Main Module.

Program control is specified by FFT__MODE which is loaded in the main module. Also within the main module are settings which control the A to D buffer routine and the Plot routine. The intention was to have only one module to change and recompile to vary parameters in the entire program.

The program modules are set up to run one-at-a-time so that the code would be easy to understand. Additionally, the Plot routine takes so long relative to the other sections, that it doesn't pay to try to overlap code sections. If this code were to be converted to run a process instead of print a graph, it might be worthwhile to run the FFT and the A/D routines at the same time.

If the goal of a modified program is to have the highest frequency sampling possible, it might be desirable to streamline the \(A / D\) section and run it without interruption. When the \(A\) to \(D\) routine was complete the FFT routine could be started. The reasoning behind this is that at the fastest \(\mathrm{A} / \mathrm{D}\) speeds the processor will be almost completely tied up processing the A/D information and storing it away. Using an interrupt based \(\mathrm{A} / \mathrm{D}\) routine would slow things down.

A set of programs which will perform a FFT has been presented in this application note. These programs are available from the INSITE users library as program CA-26. More importantly, dozens of programing examples have been made available, making it easier to get started with the 8096. Examples of how to use the hardware on the 8096 have already appeared in AP-248, "Using The 8096". These two applications notes form a good base for the understanding of MCS-96 microcontroller based design.

\subsection*{12.0 APPENDIX A - MATRICES}

Matrices are a convenient way to express groups of equations. Consider the complex discrete Fourier Transform in equation 9 , with \(\mathrm{N}=4\).
\(Y_{n}=\sum_{k=0}^{3} X(k) W^{n k} \quad n=0,1,2,3\)
This can be expanded to
\[
\begin{aligned}
& Y(0)=X(0) W^{0}+X(1) W^{0}+X(2) W^{0}+X(3) W^{0} \\
& Y(1)=X(0) W^{0}+X(1) W^{1}+X(2) W^{2}+X(3) W^{3} \\
& Y(2)=X(0) W^{0}+X(1) W^{2}+X(2) W^{4}+X(3) W^{6} \\
& Y(3)=X(0) W^{0}+X(1) W^{3}+X(2) W^{6}+X(3) W^{9}
\end{aligned}
\]

In matrix notation, this is shown as
\(\left[\begin{array}{l}Y(0) \\ Y(1) \\ Y(2) \\ Y(3)\end{array}\right]=\left[\begin{array}{llll}W^{0} & W^{0} & W^{0} & W^{0} \\ W^{0} & W^{1} & W^{2} & W^{3} \\ W^{0} & W^{2} & W^{4} & W^{6} \\ W^{0} & W^{3} & W^{6} & W^{9}\end{array}\right]\left[\begin{array}{l}X(0) \\ X(1) \\ X(2) \\ X(3)\end{array}\right]\)

The first step to simplifying this is to reduce the center matrix. Recalling that
\[
W^{N}=W^{N} M O D N \text { and } W^{0}=1
\]

The matrix can be reduced to have less non-trivial multiplications.
\[
\left[\begin{array}{l}
Y(0) \\
Y(1) \\
Y(2) \\
Y(3)
\end{array}\right]=\left[\begin{array}{cccc}
1 & 1 & 1 & 1 \\
1 & W^{1} & W^{2} & W^{3} \\
1 & W^{2} & W^{0} & W^{2} \\
1 & W^{3} & W^{2} & W^{1}
\end{array}\right]\left[\begin{array}{l}
X(0) \\
X(1) \\
X(2) \\
X(3)
\end{array}\right]
\]

The square matrix can be factored into
\[
\left[\begin{array}{l}
Y(0) \\
Y(2) \\
Y(1) \\
Y(3)
\end{array}\right]=\left[\begin{array}{cccc}
1 & W^{0} & 0 & 0 \\
1 & W^{2} & 0 & 0 \\
0 & 0 & 1 & W^{1} \\
0 & 0 & 1 & W^{3}
\end{array}\right]\left[\begin{array}{cccc}
1 & 0 & W^{0} & 0 \\
0 & 1 & 0 & W^{0} \\
1 & 0 & W^{2} & 0 \\
0 & 1 & 0 & W^{2}
\end{array}\right]\left[\begin{array}{l}
X(0) \\
X(1) \\
X(2) \\
X(3)
\end{array}\right]
\]

For this equation to work, the \(Y(1)\) and \(Y(2)\) terms need to be swapped, as shown above. This procedure is a Bit Reversal, as described in the text.

Multiplying the two rightmost matrices results in
\(X(0)+X(2) W 0\)
\(X(1)+X(3) W^{0}\) requiring 4 complex multiplications
\(X(0)+X(2) W^{3} \quad \& 4\) complex additions
\(X(1)+X(3) W^{2}\)
Noting that \(\mathrm{W}^{0}=-\mathrm{W}^{2}, 2\) of the complex multiplications can be eliminated, with the following results
\(X(0)+X(2) W^{0}\)
\(X(1)+X(3) W^{0}\) requiring 2 complex multiplications \(X(0)-X(2) W^{0}\) and 4 complex additions
\(X(1)-X(3) W^{0}\)
Since \(W^{1}=-W^{3}\), a similar result occurs when this vector is multiplied by the remaining square matrix. The resulting equations are:
\(Y(0)=\left(X(0)+X(2) W^{0}\right)+W^{0}\left(X(0)+X(3) W^{0}\right)\)
\(Y(2)=\left(X(0)+X(2) W^{0}\right)-W^{0}\left(X(1)+X(3) W^{0}\right)\)
\(Y(1)=\left(X(0)-X(2) W^{0}\right)+W^{1}\left(X(1)-X(3) W^{0}\right)\)
\(Y(3)=\left(X(0)-X(2) W^{0}\right)-W^{1}\left(X(1)-X(3) W^{0}\right)\)
The number of complex multiplications required is 4 , as compared with 16 for the unfactored matrix.

In general, the FFT requires

and
N * EXPONENT complex additions
where
\[
\text { EXPONENT }=\log _{2} N
\]

A standard Fourier Transform requires
\(\mathrm{N}^{2}\) complex multiplications
and
\(N(N-1)\) complex additions

\subsection*{13.0 APPENDIX B - PLOTS}

The following plots are examples of output from the FFT program. These plots were generated using tabled data, but very similar plots have also been made using the analog input module. Typically, a plot made using the analog input module will not show quite as much power at each frequency and will show a positive value for the DC component. This is because it is difficult to get exactly a full-scale analog input with no DC offset.
Plot 1 is a Magnitude plot of a square wave of period NT.
Plot 2 is the same data plotted in dB. Note how the dB plot enhances the difference in the small signal values at the high frequencies.
Plot 3 shows the windowed version of this data. Note that the widening of the bins due to windowing shows energy in the even harmonics that is not actually present. For data of this type a different window other than Hanning would normally be used. Many window types are available, the selection of which can be determined by the type of data to be plotted. \({ }^{3}\)
Plot 4 shows a sine wave of period NT/7 or frequency \(7 / \mathrm{NT}\).
Plot 5 shows the same input with windowing. Note the signal shown in bins 6 and 8 .

Plot 6 shows a sine wave of period NT/7.5. Note the noise caused by the discontinuity as discussed earlier.
Plot 7 uses windowing on the data used for plot 6. Note the cleaner appearance.
Plot 8 shows a sine wave input of magnitude 0.707 and period NT/7.5.
Plot 9 shows same input with windowing.
Plot 10 shows a sine wave of magnitude \(0.707 / 16\) and period NT/11.
Plot 11 shows the same input with windowing. Note that there is no power shown in bins 10 and 12 . This is because at 6 dB down from 3 dB they are nearly equal to zero.

Plot 12 uses the sum of the signals for plots 8 and 10 as inputs. Note that the component at period NT/11 is almost hidden.

Plot 13 uses the same signal as plot 12 but applies windowing. Now the period component at NT/11 can easily be seen. The Hanning window works well in this case to separate the signal from the leakage. If the signals were closer together the Hanning window may not have worked and another window may have been needed.


Plot 1—Magnitude Plot of Squarewave
```

l

```
270189-21

Plot 2—Decibel Plot of Squarewave
```

+************ 6.105 dB
+**)
+**)
+*** 22.690 dB
+***
+** 18.308dB
\dagger*********************************** 16.990 dB
+********************************** 15.460 dB
+****************************** 14.476 dB
+*************************** 13.398 dB
+***************************** 12.620 dB
+************************** 11.795 dB
+*********************** 11.175 dB
+*********************** 10.507 dB
+********************* 10.000 dB
+******************** 9.464 dB
+****************** 9.039 dB
+****************** 8.616 dB
+***************** 8.281 dB
+**************** 7.916 dB
+*************** 7.628 dB
+*************** 7.347 dB
+**************** 7.121 dB
+*************** 6.889 dB
\dagger*************** 6.706 dB
+************** 6.542 dB
+************* 6.409 dB
+************** 6.265 dB
+\star*********** 6.191 dB
+************ 6.094 dB
+************ 6.082 dB
!+************ 6.031 dB

```

Plot 3-Plot of Squarewave with Window


Plot 4-Sin (7.0X) without Window

Plot 5-Sin (7.0X) with Window


Plot 6-Sin (7.5X) without Window


Plot 7-Sin (7.5X) with Window
\(\begin{array}{lr}+* * * * * * * * * * * * * * * * * * * * * * & 11.242 \mathrm{~dB} \\ +* * * * * * * * * * * * * * * * * * * * * * * & 11.417 \mathrm{~dB}\end{array}\)
+************************ 11.936 dB
\(+\star * * * * * * * * * * * * * * * * * * * * * * * * *\) 12.846 dB
+***************************** 14.296 dB
+********************************* ..... 16.561 dB
+***************************************** 20.409 dB

+ ********************************************************** 28.959 dB
\(+* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ~ 18.994 d B\)+**************************** 14.187dB+********************** 10.936 dB
+***************** 8.472 dB
+************* 6.468 dB
+********** \(\quad 4.819 \mathrm{~dB}\)
+******* 3.382 dB
+**** \(\quad 2.152 \mathrm{~dB}\)
+** \(\quad 1.082 \mathrm{~dB}\)

Plot 8-0.707 * Sin (7.5X) without Window


Plot 9—0.707 * Sin (7.5X) with Window


Plot \(10-0.707 / 16\) * \(\operatorname{Sin}(11 X)\) without Window

270189-30
Plot 11-0.707/16 * Sin (11X) with Window

Plot \(12-0.707(\operatorname{Sin}(7.5 X)+1 / 16 \operatorname{Sin}(11 X))\) without Window


Plot 13-0.707 (Sin (7.5X) + 1/16 Sin (11X)) with Window

AP-275

\section*{BIBLIOGRAPHY}
1. Boyet, Howard and Katz, Ron, The 16-Bit 8096: Programming, Interfacing, Applications. 1985, Microprocessor Training Inc., New York, NY.
2. Brigham, E. Oran, The Fast Fourier Transform. 1974, Prentice-Hall, Inc., Englewood Cliffs, New Jersey.
3. Harris, Fredric J., On the use of Windows for Harmonic Analysis with the Discrete Fourier Transform. Proceedings of the IEEE, Vol. 66, No. 1, January 1978.
4. Weaver, H. Joseph, Applications of discrete and continuous Fourier analysis. 1983, John Wiley and Sons, New York.

\section*{INTEL PUBLICATIONS}
1. 1986 Microcontroller Handbook, Order Number 210918-004
2. Using the 8096, AP-248, Order Number 270061-001
3. MCS-96 Macro Assembler User's Guide, Order Number 122048-001
4. MCS-96 Utilities User's Guide, Order Number 122049-001

\section*{intel}

INTEL CORPORATION, 2200 Mission College Blvd., Santa Clara, CA 95052; Tel. (408) 765-8080
INTEL CORPORATION (U.K.) Ltd., Swindon, United Kingdom; Tel. (0793) 696000
INTEL JAPAN k.k., Ibaraki-ken; Tel. 029747-8511```

