
EV80Cl96KB
Evaluation Board
User’s Manual

(bier Number 270738-()O]

EV80C196KB Microcontroller Evaluation Board

Release 001

February 20,1989

Copyright 1989, Intel Corporation

Intel Corporation makes no warranty of any kind with regard to this material, including, but not limited
to, the implied warranties of merchantability and fitness for a particular purpose. Intel Corporation
assumes no responsibitlity for any errors that may appear in this document. Intel Corporation makes
no commitment to update nor to keep current the information contained in this document.

Intel Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied
in an Intel product. No other circuit patents licenses are implied.

Intel software products are copyrighted by and shall remain the property of Intel Corporation. Use,
duplication, or disclosure is subject to restrictions stated in Intel’s Software License Agreement, or in
the case of software delivered to the U.S. government, in accordance with the software license
agreement as defined in FAR 52.227-7013.

No part of this document may be copied or reproduced in any form or by any means without prior
written consent of Intel Corporation.

Intel Corporation retains the right to make changes to these specifications at any time, without notice.
Contact your local sales office to obtain the latest specifications before placing your order.

The following are trademarks of Intel Corporation and its affiliates and may be used only to identify
Intel products:

376, Above, ActionMedia, BITBUS, Code Builder, DeskWare, Digital Studio, DVI, EtherExpress,
ETOX, ExCA, FaxBACK, Grand Challenge, i, i287, i386, i387, i486, i487, i750, i860, i960, ICE,
itBX, Inboard, Intel, lnte1287, lntel386, lntel387, lntel486, lntel487, intel inside., Intellec, iPSC,
iRMX, iSBC, ISBX, iWarp, LANprint, LANSelect, LANShell, LANSight, LANSpace, LANSpool,
MAPNET, Matched, MCS, Media Mail, NetPort, NetSentry, OpenNET, Paragon, PR0750,
ProSolver, READY-LAN, Reference Point, RMX/80, SatisFAXtion, Snapln 386, Storage Broker,
SugarCube, The Computer Inside., TokenExpress, Visual Edge, and WYPIWYF.

and the combinations of CCE, ICS, iRMX, ISBC, ISBX, iSXM, MCS, or UPI and a numerical suffix.

MDS is an ordering code only and is not used as a product name or trademark. MDS is a
registered trademark of Mohawk Data Sciences Corportation.

CHMOS and HMOS are patented processes of Intel Corp.

Intel Corporation and Intel’s FASTPATH are not affiliated with Kinetics, a division of Excelan,
Inc. or its FASTPATH trademark or products.

RBM is a registered trademark and AT is a trademark of International Business Machines, Inc.

Microsoft MS, MS-DOS, and XENIX are registered trademarks and Multiplan is a trademark
of Microsoft Corporation.

Addional copies of this manual or other Intel Literature may be obtained from:

Intel Corporation, Literature Sales
P.O. Box 7641
Mt. Prospect, IL 60056-7641

CONTENTS

SECTION Description . PAGE

INTRODUCTION .. 9
GETTING STARTED WITH THE EV80Cl96KB .. 9

Powering the Board .. 9
Connecting to your PC .. 9
Starting the Host Software .. 9

HARDWARE OVERVIEW OF THE EV80Cl96KB BOARD 10
Block Diagram of the EV80C196KB Board.. 10
Processor .. 30
Memory‘ .. 10
Host Interface .. 1 1
Digital I/O .. 11
Analog Inputs .. 1 1
Decoding .. 12
Configuration Jumper Locations (Figure 3a) 14
Memory Configuration Jumper Locations (Figure 3b) 15
Expansion Ports, Connectors and LEDs Locations (Figure 4) 16
Host Serial Connector (Figure 5) .. 17
8OCl96KB Serial Port Connector (Figure 6) 17
Analog Input Connector (Figure 7) .. 18
I/O Expansion Connector (Figure 8) .. 18
Memory-l/O Expansion Connector (Figure 9) 19
Power Supply Connector (Figure 10) .. 19
25pin to g-pin Adapter (Figure 11) .. 20

INTRODUCTION TO iRISM-iECM96 SOFTWARE.. 21
Features .. 21
Restrictions .. 22

OVERVIEW .. 23
Embedded Controller Monitor.. .. 23

USER INTERFACE .. 24
Background Information .. 24
Initiating and Terminating iECM-96 .. 25
Default Base Commands .. 28

FILE OPERATIONS .. 29
Loading and Saving Object Code .. 29
Other File Operations.. .. 30

PROGRAM CONTROL .. 32
Resetting the Target .. 32
Breakpoints .. 32
Program Execution .. 33
Program Stepping .. 35

DISPLAYING AND MODIFYING PROGRAM VARIABLES 37
Supported Data Types .. 37

. BYTE Commands .. 38
WORD Commands .. 39
DWORD Commands .. 40
REAL Commands .. 41
STACK Commands .. 42
STRING Commands .. 42
Processor Variables .. 43

ASSEMBLY AND DISASSEMBLY .. 44
Single Line Assembly Commands .. 44
Disassembly Commands .. 45

SYMBOL OPERATIONS .. 46
RISM .. 47

RISM Variables 47 ..
RISM Structure ... 48
Receiving Data from the Host .. 48
Sending Data to the Host .. 48
RISM Commands .. 49

Schematics and Parts List ..~.......~..................~...... Appendix A

Specific iRlSM Information -..~.............~................................~..............0.. Appendix B

Listing of IRISM-196KB a.*.e..**..*...........*.. ..-....*.........a Appendix C

Timing Analysis .*-.................*..........e.... ..~........~....~.....~......~ Appendix D

Programmable Logic Equations~...~....~.........~...........~.....~.........~.. Appendix E

Standard Memory-l/O Connector~......~................................~~.......~..~ Appendix F

Sample Session *“o...~~..~.....~..~.......e...~.*~. . ..O.....................*s..*.............eo... Appendix G

-8- EV80C196KB Microcontroller Evaluation Board User’s Manual

Figure 1.

EV8OCl96KB Evaluation Board

EV80C196KB Microcontroller Evaluation Board User’s Manual -90

INTRODUCTION

The EV80C196KB is a next-generation version of the EV80C196KA. The major
changes are the use of a standard memory expansion bus compatible with the
EV80C51 FB and EV80C186 boards, and the removal of the card edge bus. Also,
the HOLD/HLDA feature of the 8OC196KB is supported. The EV80C196KB is de-
signed to be a software evaluation tool for the ROMless 8OC196KB 16-bit microcon-
troller. As such, ports 3 and 4 are not available for use as I/O ports unless offboard
latches/buffers and decoding logic are used. All unreserved functions of the
80C196KB are available to you except for the Non-Maskable Interrupt (NMI), the
TRAP instruction, and 512 bytes of address space. The Chip Configuration Byte is
also used by the monitor, but most of its functions are provided by external logic.

GETTING STARTED WITH THE EV80C396KB

Powering up the Board

Power (+5, +/-12 Volts) must be connected to JP4 as shown on the board’s silk-
screen next to JP4 and in figure 10. Included with the board is a packet containing a
Molex connector and crimp terminals for your convenience.

Power supply requirements for the EV80C196KB board are as follows:

+ 5 VDC +I- 5 % @ 280 mA (150 mA if LED’s are disabled by
removing jumper shunt El 6)

+12VDC+/-20%@ 15mA
-12VDC+/-20%@ 15mA

Upon power-up (or after a reset) the board goes through initializations and a shift-
ing-pattern is displayed on the Port 1 LEDs when initialization has completed prop-
erly.

Connecting to your PC

Once you have applied power to the board, you need to connect Pl to a PC serial
port. Pl is configured to interface pin-to-pin with a standard nine-pin AT@)-type
serial connector (see figure 5 for pinout). Make certain that you use a cable provid-
ing all nine signals, as they are all needed for proper operation of the host interface.
When you have connected the cable, you may observe that the 8OC196KB is held in
reset, and all the LEDs turn on. This is because one of the host signals is used to
reset the part, and the signal’is often in a reset condition prior to invoking the host
software on your PC.

Note: if you have a 25pin serial port it will be necessary to make a 2%pin to 9-
pin adaptor (see figure 11 for details).

Starting the Host Software

After the you have made both connections to the board, you can invoke the host
interface. Install the disk in drive A of your system. At the DOS prompt type
“A:ECM96”eCR>. Your PC should eventually display the iECM-96 monitor screen.
If you have problems please refer to the sub-section “Initiating and Terminating
iECM-96” in the “USER INTERFACE” section of this manual. For further details on
using the monitor, refer to the “USER INTERFACE” section.

-IO- EV80C196KB Microcontroller Evaluation Board User’s Manual

HARDWARE OVERVIEW OF THE EV80C196KB BOARD

The EV80C196KB Microcontroller Evaluation board is delivered with an 8OC196KB,
8 K-words and 8 K-bytes of user code/data memory, a UART for host communica-
tions and analog-input filtering with a precision voltage reference. Also included is
programmable chip-select, bus-width and wait-state-counter logic which allows you
to custom tailor the board to look like your own system. The board’s physical dimen-
sions are 6 l/2” x 7 3/4” with an overall height of 3W. There are six main sections
to the EV80C196KB board: Processor, Memory, Host Interface, Digital I/O, Analog
Inputs and Decoding.

Block Diagram of the 80C196KB Board

Figure 2.
Processor

The Intel@)80C196KB is a 16-bit embedded microcontroller. Being a member of the
MCW-96 family, the 8OC196KB uses the same powerful instruction set and the
same architecture as the existing MCS-96 products. The 8OC196KB is an enhanced
CMOS version of the 8097BH. Its enhancements include up/down and capture
modes on Timer2, multiplyin
nearly twice as fast, Hold/Ho d Acknowledge logic, and power-down and idle modes 9

speeds almost 3 times as fast, overall execution

to save power. For more information, please refer to the 1989 “16-Bit Embedded
Controller Handbook,” Intel Corporation order number 270646-001 and the
8OC196KB Datasheet order number 270634-001.

Memory

There are five 28-pin memory sockets provided on the EV80C196KB board: Ul , U6,
U8, U13 and U14. The sockets are designed to support byte-wide, JEDEC-pinout,
memory devices of various types and sizes, i.e. 8K x 8 SRAM or 16K x 8 EPROM.
Ul and U8, U6 and U13 are connected as two 16-bit memory banks and U14 is
connected as an 8-bit memory bank.

EV80C196KB Microcontroller Evaluation Board User’s Manual -1 I-

See appendix B and appendix C for details on reserved areas of memory.

Bank
No.

Even
Bytes

Odd
Bytes

Enable
Signal

Memory
Type

I.C. I.C.

0 U8 Ul CEO 8K x 16-bit Monitor EPROM
from 0-FFH and 1 DOO-1 DFFH

1 u13 U6 CEi 8K x 16-bit ROMsim/RAM
from 2000H-5FFFH

2 u14 u14 CE2 8K x 8-bit ROMsim/RAM
from 6000H-7FFFH

Host Interface
,

The PC host interface is accomplished with the 82510 UART (U20) connected to Pl
via RS-232 drivers. The UART resides in the address range 1 EOOH - 1 EFFH.
Therefore, register 0 in the UART would be at address 1 EOOH of the 8OC196KB,
reg. 1 would be at 1 EOl H, reg. 2 would be at 1 E02H, etc. up to reg. 7 at 1 E07H.
The registers will repeat again with reg. 0 at 1 E08H due to the limited decoding
granularity of the EPLD. Pin 12 of the UART, OUTl#, is used to tell the PC host
when the 80C196KB is executing user code by a true level on the Ring Indicator
input of the host serial port.

Digital I/O

With the exception of the NMI input, which is used by the Host Interface, all Digital I/
0 functions of the 8OC196KB are available to you. There are eight LEDs on-board
along with buffer/drivers which allow you to quickly observe the state of Port 1,
HSO.0 and Port 2.5/PWM (see figure 4 or the schematics in appendix A for loca-
tion). The TxD and RxD pins of the 80C196KB (Port 2.0 and Port 2.1) are con-
nected to RS-232 buffer/drivers, which are connected to P2. All of the I/O signals
are available on JP2 (see figure 8 or the schematics in appendix A for pinout).

Note: because RxD is connected to an RS-232 receiver (U19 pin 3) any attempt
to use it as a digital input will result in a contention. If you would like to use it
as a digital input, remove jumper shunt El9 to disconnect the receiver.

Analog Inputs

The Port 0 inputs of the 80C196KB double as both digital and analog inputs. The
EV80C196KB board includes circuitry to make the analog inputs easier to use. A
precision voltage source for Vref is provided on board (U3 and U4) which can be
carefully adjusted by trimming RPl . Also, jumper shunt E4 allows Vref to be con-
nected to Vcc instead of the output of U3. By removing E4 entirely, an off board
reference can be connected to JPl . By removing jumper shunt E2, ANGND can be
isolated from Vss. Protective clamping diodes are installed on each channel. RC
networks are provided in sockets (to ailow you to change the input impedance to
match your application) on all of the analog input channels. If Port 0 is to be used

-729 EV80C196KB Microcontroller Evaluation Board User’s Manual

as a digital input, it is recommended that the capacitors be removed, and the resis-
tors replaced with wires. For additional connection information refer to figure 7 or
the schematics in appendix A. The ground and power planes beneath the analog
circuitry (Dl , D2, R3, C2, U3, U4, JPI and the analog connections on the
80Cl96KB) are isolated from the digital power and ground planes of the board to
keep noise from the analog inputs.

Decoding

The decoding logic on the EWOCl96KB board serves three purposes; to provide
Chip-Enable signals to memory and peripheral devices, to select the buswidth for
the device(s) being accessed and to provide wait-states for slow devices. This
section is provided in case you need to modify the memory configuration of the
EV80Cl96KB board. It is not necessary to understand this section for normal usage
of the board.

The heart of the decoding logic is U12, a 24-pin 5AC312 Intel EPLD or a C22VlO
programmable logic array which is socketed to allow easy changes. For the sake of
convenience it will be referred to as “the EPLD” throughout this text. The EPLD
uses latched addresses A8-Al5 along with CLKOUT, HLDA#, RESET# and STALE
(STretched ALE) from the 8OCl96KB as decode inputs.

There are 4 enable outputs from the EPLD, all of which are low-level true, however
only one should be true at a time to avoid bus contention. They are decoded from
the address lines, and an internally-latched signal called MAP. MAP is cleared
when the RESET# input is true, and set when the Monitor EPROMs are accessed in
the address range 1 DOOH-I DFFH. MAP will always be set when the board is in the
USER mode.

pin 21 = CEO Enables memory in Ul and U8
(monitor EPROM as shipped).

CEO = (ADDRESS RANGE 2000H - 27FF and NOT MAP)
or ADDRESS RANGE OH - FFH
or ADDRESS RANGE 1 DOOH - 1 DFFH

pin 22 = CEl Enables memory in U6 and U13
(user 16-bit ROMsim/RAM as shipped).

CEl = (ADDRESS RANGE 2000H - 27FFH and MAP)
or ADDRESS RANGE 2800H - 5FFFH

pin 15-CE2 Enables memory in U14
(user 8-bit ROMsim/RAM as shipped).

CE2 = ADDRESS RANGE 6000H - 7FFFH

pin 14 - CS510 Enables U20, the 82510 UART, which is
used for host communications.

CS510 = ADDRESS RANGE 1 EOOH - 1 EFFH

EV80C196KB Microcontroller Evaluation Board User’s Manual 4 3-

The BUSWIDTH output of the EPLD, pin 16, is fed into the buswidth pin of the
8OC196KB. Therefore, it is driven low for accesses to 8-bit memory and high for
accesses to 16-bit memory. As shipped, it goes low simultaneously with CE2 or
CS510 as these are the only areas of memory mapped as 8-bit.

Programmed into the EPLD is a 3-bit wait-state machine clocked by the rising edge
of CLKOUT from the 8OC196KB. The transition sequence of the wait-state machine
is controlled by the current state of the machine and the inputs to the EPLD (for
further details see appendix E). While the bus of the 80C196KB is idle the wait-state
machine is locked in state 0, which is called async-start. The conditions for leaving
async-start are 1) ALE being asserted, 2) HLDA# not being asserted and 3) a
value on A8 - Al5 requiring wait-states. Because the falling edge of ALE can occur
before the next rising edge of CLKOUT can clock the wait-state machine, a signal
called STALE (for Stretched ALE) is used. STALE does not go low until after the
rising edge of CLKOUT.

During async-start, the output WAIT# from the EPLD is asserted asynchronously
based upon a value on A8-A15 requiring wait-states. If no wait-states are required,
WAIT# will not be asserted and the wait-state machine will remain in async-start.
However, if one or more wait-states are needed WAIT# will be asserted and the
wait-state machine will transition out of async-start on the next rising edge of
CLKOUT. The next state entered depends on how many wait-states are needed. If
only one is required the next state is remove&old, where WAIT# is deasserted
regardless of the inputs to the EPLD. If two watt-states are needed the next state is
hold-2, where WAIT# is always asserted, then the state after that is remove-hold.
The additional states, hold-3 - hold 7, work just like hold-2 with WAIT# always
asserted. The wait-state machine wJI count through from hold-2 to hold-n to
generate n wait-states before jumping to remove-hold to deassert WAIT#. The
maximum number of wait-states is seven.

The previous paragraph described how the signal WAIT# is generated based on the
rising edge of CLKOUT. However, the 8OC196KB needs to have a valid signal on
it’s READY input pin until the falling edge of CLKOUT. Therefore, it was necessary
to clock WAIT# through a negative-edge-triggered-JK flip-flop (U15A) by the falling
edge of CLKOUT to generate a signal called WAITN#. As in the EPLD, WAITN# is
asserted asynchronously while ALE is high and WAIT# is asserted. After ALE goes
low WAITN# will remain asserted until WAIT# is deassetted and the flip-flop is
clocked. Besides the WAIT# signal, the WAITN# signal can be asserted by the
USEREADY signal from the expansion bus. As shipped, the EPLD has the following
configuration:

Memory Wait
Type States

ROMsim/RAM 0

ROMsim/RAM 0

Monitor EPROM 1

82510 UART 2

Unimplemented 0

Unimplemented 1

Enable
Signal

CEl

CE2

CEO

cs510

N/A

N/A

Memory Region
in User Mode

2000H-5FFFH

6000H-7FFFH

0-FFH, 1 DOOH- DFFH

1 EOOH-1 EFFH

1 OOH-1 CFFH, COOOH-FFFFH

8000H - BFFFH

-14 EV8OC196KB Microcontroller Evaluation Board User’s Manual

- E4 Analog Voltage Reference Source
A-B AVref = VCC
B-i: AVref = U3/U4
__- Avref from JPl

E2 Analog Ground Reference
A-B AVss = Vss
--- Avss from JPl

E3 2000H-3FFFH Memory Location
A-B External
B-C Internal

E7 82510 UART Interrupt Signal to 8OC196KB
A-B UART Interrupt = EXTINnP2.2
B-C UART lnterrutp = NMI

El6 LED Driver Enable L E20 Enable RESET signal from host
A-B Enabled

i

1

A-B RESET from P2
__~ Disabled B-C RESET from Pl

-mm Reset circuit insolated

- E6 80C196KB CDE U5 pin 14 El1 HLDA# Input to PLD U12
A-B CDE = Vss A-B HOLD/HLDA feature in use
B-C CDE = Vcc --- HOLD/HLDA not used

El9 8OC196KB RXD signal from P2
A-B RXD driven by U19 pin 3
--- RXD can be used by JP2

Figure 3a.
Configuration Jumper Locations

EV80C196KB Microcontroller Evaluation Board User’s Manual -15

E8 U8 pin 27
A-B Pin 27 = Al 5
B-C Pin 27 = WRL#

E9 UlN8 pin 1
A-B Pin 1 = A15
B-C Pin 1 = Vcc

El0 Ul/U8 pin 26
A-B Pin 26 = Al 4

Pin27=A15
Pin 27 = WRH#

Pin27=A15
Pin 27 = WRH#

R-C Pin 26 = Vcc

El2 U13 pin 27 El7 U14 pin 26

A-B Pin27=A15

L

t

A-B Pin26=A13

B-C Pin 27 = WRL#k B-C Pin 26 = Vcc

El3 U6/U13 pin 1 El8 U14 pin 27

A-B Pin 1 =A15 A-B Pin27=A14

B-C Pin 1 = Vcc B-C Pin 27 = WR#

El4 U6/U13 pin 26 El5 U14 pin 1
A-B Pin26=A14 A-B Pin 1 =A14
B-C Pin 26 = Vcc

Figure 3b.
B-C Pin 1 = Vcc

Memory Configuration Jumper LocationiD
Pin 1 =A15

-16- EV80C196KB Microcontroller Evaluation Board User’s Manual

/

DPl LED Array
1 P1.0
2 PI.1
3 P1.2
4 P1.3
5 P1.4
6 P1.5
7 P1.6

r JP2 input/Output Expansion Connector

/

6 P1.7
9 P2.5/PWM#
10 HSO.O#

Ir JPl Analog Input Connector

/ JP3 Memory-i/O Expansion Connector

L JP4 Power Connector Pl 82510 External UART Port-

P2 8OC196KB Internal UART Port -

Figure 4.
Expansion Ports, Connectors and LEDs

EV80C196KB Microcontroller Evaluation Board User’s Manual -17-

Pl Host Serial Connector
DB-9S RS232

Pin Host RS-232 Connection on
Nos. Signal Name Evaluation Board

5 (AB) SG Signal Ground

4 (CD) DTR Data Terminal Ready

3 @A) TxD Transmit Data

2 WV RxD Receive Data

1 W=) DCD Data Carrier Detect

Digital Ground
INIT thru E20-C
RxD of 82510
TxD of 82510
DTR Pl-pin 4

’

Pin
Nos.

Host M-232
Signal Name

Connection on
Evaluation Board

6 (CC)
7 (CA)
8 W
9 W

DSR Data Set Ready
RTS Request To Send
CTS Clear To Send
RI Ring Indicator

DTR Pl -pin 4
CTS Pl -pin 8
RTS Pl-pin 7
Run Indicator

P2 Serial Port Connector
DB-9S RS232

L

r

L

Figure 5.

Pin
Nos.

5 VW
4 (CD)
3 VW
2 W
1 (CF)

Host W-232
Signal Name

SG Signal Ground
DTR Data Terminal Ready
TxD Transmit Data
RxD Receive Data
DCD Data Carrier Detect

Connection on
Evaluation Board

Digital Ground
INIT thru E20-A
RxD of 8OC196KB
TxD of 8OC196KB
DTR P2-pin 4

Pin
Nos.

Host M-232
Signal Mame

Connection on
Evaluation Board

6 (CC)
7 GA)
8 W
9 W

DSR Data Set Ready
RTS Request To Send
CTS Clear To Send
RI Ring Indicator

DTR P2-pin 4
CTS PBpin 8
RTS PP-pin 7
No connection

Figure 6.

-189 EV80C196KB Microcontroller Evaluation Board User’s Manual

JPI Analog Input Connector
2x13 Pin MOLEX 39-51-2604 or Equiv.

ANGND - 1
VREF ---- 3
ANGND - 5
ANGND - 7
VREF ---- 9
ANGND -11
ANGND -13
VREF --- 15
ANGND -17
ANGND -19
VREF --- 21
ANGND -23
VREF --- 25

Figure 7.

JP2 I/O Expansion Connector
2x25 Pin MOLEX 39-51-5004 or Equiv.

1 thru 49 - VSS

2 - Analog Channel 0
4 -VREF
6 - Analog Channel 1
8 - Analog Channel 2
10 - VREF
12 - Analog Channel 3
14 - Analog Channel 4
16-VREF
18 - Analog Channel 5
20 - Analog Channel 6
22 - VREF
24 - Analog Channel 7
26 - ANGND

2 - Pl .O Bi-directional
4 - Pl .l Bi-directional
6 - P1.2 Bi-directional
8 - P1.3 Bi-directional
10 - P1.4 Bi-directional
12 - Pl .YBREQ## Bi-directional
14 - Pl .G/HLDA# Bi-directional
16 - P1.7/HOLD# Bi-directional
18 - P2.0/Txd Output
20 - P2.1/Rxd Bi-directional
22 - P22/Extint Input
24 - P2.3fl2CLK Input
26 - P2.4fl2RST Input
28 - P2.5/PWM Output
30 - P2.6!T2UPDN Bi-directional
32 - P2.7/T2Capture Bi-directional
34 - HSO.0 Output
36 - HSO.l Output
38 - HS0.2 Output
40 - HS0.3 Output
42 - HSI.0 Input
44 - HSI.l Input
46 - HSl.2/HS0.4 Bi-directional
48 - HSl.3/HS0.5 Bi-directional
50 - vcc

Figure 8.

EV80C196KB Microcontroller Evaluation Board User’s Manual -19-

JP3 Memory-l/O Expansion Connector
2x30 Pin MOLEX 39-51-6004 or Equiv.

vcc __--------------- - 1

A0 Output ---------- 3
Al Output ---------- 5
A2 Output ---------- 7
A3 Output ---------- 9
A4 Output --------- 11
A5 Output --------- 13
A6 output --------- 15
A7 Output --------- 17
vss _________-__------ 19

A8 output --------- 21
A9 Output --------- 23
Al 0 Output ------- 25
Al 1 Output ------- 27
Al 2 Output ------- 29
Al 3 Output ------- 31
Al 4 Output ------- 33
Al 5 Output ------- 35
vss _______---------- - 37

CLKOUT Output - 39
RD# Output ------- 41
BREQ# Output --- 43
ALE Output ------- 45
NMI Input ---------- 47
RESET# Output - 49
No Connection --- 51
HLD4# Output --- 53
-12VDC ________-_-- 55
vss _____-_--------- -- 57
vcc ___------------ --- 59

r

I
I
I
I
I
I
I

I
I

I
I
I
I
I

I

7cl
70
70
7u
70
30
3u
q u
q u

q u
q u
q u
q u
q u
q u
q u
q u

q u
q u
q n

q u
q u

q u
q u
q u

q u
q u

q u
q u
q u

2 - vcc
4 - DO Bi-directional
6 - Dl Bi-directional
8 - D2 Bi-directional
10, - D3 Bi-directional
12 - D4 Bi--directional
14 - D5 Bi-directional
16 - D6 Bi-directional
18 - D7 Bi-directional
20 - vss
22 - D8 Bi-directional
24 - D9 Bi-directional
26 - DlO Bi-directioal
28 - Dl 1 Bi-directional
30 - D12 Bi-directional
32 - D13 Bi-directional
34 - D14 Bi-directional
36 - D15 Bi-directional
38 - Vss
40 - vss
42 - WR# Output
44 - BHE# Output
46 - UserReady Input
48 - INST Output
50 - P2.2/EXINT Bi-directional
52 - No Connection
54 - HOLD# Input
56 - +12VDC
58 - Vss
60 - Vcc

Figure 9.

JP4 Power Supply Connector
4 Pin MOLEX 26-03-3041 or Equiv.

Figure 10.

-2o- EV80C196KB Microcontroller Evaluation Board User’s Manual

To Evalboard

Note: Signal mneumonics are reference to the host.

To host PC

Figure 11.
25pin-to-g-pin Adapter

EV8OCI 96KB Microcontroller Evaluation Board User’s Manual -211

INTRODUCTION TO iRISM-IECM SOFTWARE

The EV80C196KB board uses an Embedded Controller Monitor (ECM) written for
the MCS-96 family of 16-bit microcontrollers. This monitor supports basic debug
facilities (LOAD, GO, STEP etc.) in the user’s target system. The ECM is broken
into two independent programs, one of these executes in the EV80C196KB (iRISM-
96KB) and the other executes in a IBM PC or BIOS compatible clone(iECM-96).
These two programs communicate via an asynchronous serial channel using a
binary protocol defined specifically for this application.

The partitioning of the ECM into two separate programs supports a number of goals
in the development of this system:

The system is easy to adapt to a new target because the code which runs in
the target is very simple and small.

The feature set of the user interface is not limited by the resources of the
target since the user interface is implemented in the host PC.

Concurrent operation of the ECM and the target system was easily achieved.
This allows you to interrogate and (carefully) modify the state of the target
system while it is running.

This manual section describes the user interface provided by the iECM-96, the
interface between this PC resident software and the target resident software, and
the structure of the software in the target. Appendix B lists the resources of the
80C196KB that are reserved for this RISM implementation. Appendix C is the listing
for the iRlSM software which runs in the 80C196KB on this board. It uses an Intel
82510 UART for host communications.

The iECM-96 was designed and implemented by Intel to support user’s of the MCS-
96 architecture, and is placed in the public domain with no restrictions or warranties
of any kind.

Features

Host system is an IBM PC AT, PC XT, or BIOS-compatible clone. (Interfaces
via COMl or COM2 at 9600 baud.)

Sixteen software execution breakpoints

Concurrent interrogation of target memory and registers

Supports BYTE, CHARACTER, WORD, STRING, DOUBLE-WORD and
FPAL-96 REAL variable types.

Single-Line Assembler/Disassembler

Symbolics compatible with Intel’s OMF debug records

Supports LOAD, SAVE, LIST, LOG, and command INCLUDE files.

EV80C196KB Microcontroller Evaluation Board User’s Manual

Restrictions

Two words of user stack are reserved for use by the iRISM-96 software.Other
memory and/or registers in the target memory will be used by the iRISM-96
software. The exact number and location of this memory is implementation
dependent. See appendix B or C for further information.

An asynchronous serial port capable of operation at 9600 baud must be
available in the target system. The RISM described in this document uses an
Intel 82510 UART. This version also uses the NMI (Non-Maskable Interrupt)
to signal that a received data character is available.

1 The TRAP instruction is reserved.

Breakpoints and program stepping will not operate if the user’s code is in
EPROM or other nonchangeable memory.

EV8OC196KB Microcontroller Evaluation Board User’s Manual -239

OVERVIEW

Embedded Controller Monitor (ECM)

An ECM (Embedded Controller Monitor) provides basic debug capability and is
installed in your target system. Capabilities include loading object files into system
RAM, examining and modifying variables, executing code, and stepping through
code. In the past, most of these monitors have been configured to run with a stan-
dard “dumb” CRT with some form of auxiliary port for loading and saving object code
from a host system. It is now common for a personal computer to act as the host for
program translation and also emulate a dumb CRT during user interaction with the
ECM. The ECM developed for the MCS-96 family makes the assumption that the
user interface will always be a personal computer; no provision is made for interface
to a dumb CRT. By making this assumption it is possible to reduce the size and
complexity of the code that must be installed in the target system. A term’ has been
coined for this code resident in the target -- RISM. The term RISM stands for Re-
duced instruction Set Monitor and is an obvious takeoff of the term RISC (Reduced
Instruction Set Computer) used to describe a class of computer architectures. The
RISM consists of about 300 bytes of MCS-96 code which provide primitive opera-
tions. Software running in the host uses the RISM commands to provide a complete
user interface to the target system. The advantage of this approach is that the ECM
can be readily adapted to different target systems and requires only a small part of
the available target memory space. The disadvantage is that the user interface
must be provided by a personal computer.

The structure of the RISM is a short section of initialization code and an interrupt
service routine (ISR) that processes interrupts from the host system. The RISM ISR
consists of a short prologue and then a case-jump to one of 20 to 25 command
executors. These executors are simple and short; the flow though the entire ISR
(including the prologue) is 15-20 instructions. The serial communication occurs at
9600 baud, which limits the frequency of these interrupts to 1 Khz. In the worst case
the EV80C196KB board will be slowed by the execution of a fairly short RISM ISR
every millisecond while executing user code. It is possible to operate the
EV80C196KB board so that no real-time is lost to the iECM-96 unless the user is
actively interrogating the target. (See the section “Initiating and Terminating the
iECM-96” and the description of the RISM REPORT-STATUS command for details
on this).

-240 EV80C196KB Microcontroller Evaluation Board User’s Manual

USER INTERFACE

The user interface to the iECM-96 supports commands to initiate and configure the
ECM-96, perform I/O operations involving DOS files, execute user programs, and
interrogate variables in the target system. Interrogation can be done in a number of
formats and in most cases can be done concurrently with user code execution. A
single line assembler and disassembler are also provided.

Note: on the disk included with the Ev80C196KB is a file called DEMO.LOG.
DEMO.LOG is a sample iECM-96 session for you to invoke and become more

-familiar with the features of iECM-96. Appendix G is a printout of DEMO.LST
which was created by turning on the list feature and invoking DEMO.LOG by
typing *‘include demo.log”<CR> at the iECM-96 “*‘* prompt.

Background Information

Numeric and Symbolic Input
The command parser used by the iECM-96 software requires that numeric inputs
always start with the digits O-9. If hexadecimal numbers are entered which start with
A-F they must be preceded by a “0”. For example, enter “OAA55” instead of “AA55”.
This requirement is similar to ASM-96. If symbolic information has been downloaded
as part of an object file (see “Loading and Saving Object Code”) then you can enter
a valid symbol name whenever a number is expected. The symbol name must be
preceded by a period (“.“) so that the parser knows to try searching the symbol
table. If the symbol is ambiguous then it will not be accepted by the parser. The
probability of ambiguous references can be reduced by specifying the module name
along with the symbol name. The module name must be preceded with a colon (“:“).
If a variable TEMP is declared both in MODULE1 and in MODULE2, then a refer-
ence to the TEMP declared by MODULE1 would be “:MODULEl .TEMP”. PLM-96
or C-96 line numbers can be called out by a pound sign (“#“) followed by the line
number.

Symbolic Output
The symbolic output routines, in general, deal only with address information. They
will not try to convert data values into symbolic form. When the symbol table is
searched for a symbol name to associate with a given value the routines also per-
form type checking. If one, and only one, symbol matches both the type and value
of the address being displayed then the output routines will display the symbol name
along with the numeric value of the address. If more than one label has been as-
signed to a given address then the symbolic output routines will ignore all of them.
The exception to this rule occurs when the disassembler finds multiple labels as-
signed to a given code address. The disassembler will display all the known sym-
bolic labels attached to a code address.

If the symbols table gets very large the symbolic output routines will become pain-
fully slow, particularly on an 8088 based PC. This problem can be avoided by using
modular programming and translating a subset of the modules in the debug mode.
Another alternative is to use the “SYMBOLS OFF” command to suppress symbolic
output Symbolic input is not affected by this command.

EV80C196KB Microcontroller Evaluation Board User’s Manual -25

Controlling Lengthy Commands
Most of the commands supported by iECM-96 appear to complete without delay.
Some commands (e.g. displaying or filling a large area of memory) take an appre-
ciable length of time to complete. In general these commands can be aborted by
entering a CARRIAGE-RETURN. Those commands which display a large amount
of information can be paused by hitting the SPACE bar. After you have checked the
data currently on the screen you can depress the SPACE bar again to resume the
output.

Aborting from iECM-96
Entering a control-C will cause the iECM-96 to close any open files and return to
DOS.

Initiating and Terminating iECM=96

This section describes the commands for invoking iECM-96 from DOS and exiting
back to DOS.

ECM96
This command, entered at the DOS prompt, loads the iECM-96 software and exe-
cutes it. Several options are available with this command. Option strings always
start with a hyphen (“-‘I) and can be entered in upper or lower case. The operation
of these options is described below. Any or all of these options can be entered in
any order, if the options are contradictory then the actual option accepted is the last
one entered.

-COM2, -COMl
These options tell the iECM-96 software which serial communication port is to be
used. If neither of these options is entered then COMl will be used as a default. If
iECM-96 detects valid CTS (Clear To Send) and DSR (Data Set Ready) signals from
the appropriate COM port it will sign on and display a command prompt. If the target
is stopped the command prompt will be an asterisk (“*“). If the target is already
running the prompt will be a greater-than sign (5”).

-DIAG
If CTS or DSR are not present, iECM-96 will complain about it and ask if you want to
proceed or exit. It is possible, but not likely, that iECM-96 will operate properly even
after compl’aining. It is more likely that there is a problem with the serial port or the
cabling which will prevent proper operation. If the problem is not obvious (e.g.
disconnected cable or no power to the target hardware) then the -DIAG invocation
option can be used to help isolate the problem. The -DIAG option puts the iECM-96
system in a special mode which allows many tests to be used to find interfacing
problems, or target bugs.

The diagnostic mode is intended to support debugging of boards which use the
iECM-96. It can be particularly useful in systems which have multiple address
decoding modes, such as the EV80C196KB. Upon reset this board has EPROM at
location 2080H, the address where the 8OC196KB starts execution. After executing
some initialization code, the board can change the address decoding so that
ROMsim/RAM is available in the partition which contains 2080H and the RISM is
relocated to another area. This allows you to download code which is designed to
operate in the on-chip ROM of MCS-96 family parts (2000H - 3FFFH). The diagnos-
tic mode allows the use of diagnostic routines which disappear from memory space

-269 EV80C196KB Microcontroller Evaluation Board User’s Manual

when the RAM is mapped into the system. It also provides a simple routine to check
the communications interface between the host and the target.

In the EV80C196KB board, there is a serial port loop-back mode which allows de-
bugging the host/board interface. Upon reset the board is in the echo mode. Until it
receives an ASCII slash (I’/“) or reverse-slash (‘7”) it will increment every character it
receives from the host and send the incremented value back to the host. It will also
display the binary code of the character the board received on the Port 1 LED%. If a
reverse slash is received by the RISM it will leave the echo mode (set USER MAP
flag true), remap memory and start normal operation. If a slash is received it-will
stop echoing incremented received data and start responding to RISM commands
with the diagnostic flag set. In this mode there are diagnostic routines resident in
EPROM which are useful for debugging the board. Initially after invoking the diag-
nostic mode, the Program Counter points to the beginning of a RAM test at 2200H.
See the source code listing in appendix C for further details.

Note: The target hardware will have to be reset before using the DIAG com-
mand option.

Note: When executing diagnostic routines from EPROM, certain commands
such as Breakpoints and Stepping will not work as they need to modify the
code to work properly.

When the host software is invoked in the diagnostic mode it will tell you to enter
characters on the keyboard. These characters will be sent to the target and the
response from the target will be displayed on screen. This is a simple confidence
check on the serial communication channel. You are told to enter a slash or re-
verse-slash to terminate this mode and proceed in either the diagnostic mode or the
normal user’s mode. If the user interface is invoked without the -DIAG option it will
immediately transmit a reverse-slash which should put the target in the normal
mode. Systems which do not implement the diagnostic mode will load the reverse-
slash into the RISM-DATA register where it will languish till more useful data is sent
by the host.

-8096, -8096BH, -Cl 96KB
These three options control the single line assembler and the disassembler in the
iECM-96. If the 8096 (8x9x-90) or 8096BH (8x9xBH) options are selected then the
additional instructions in the 8OC196KB will be considered invalid for both the single
line assembler and the disassembler. If none of these options are selected then the
iECM-96 will default to Cl 96KB mode.

-NOTYPES
This option will cause the object file loader to ignore type definition records in the
object module. If this is invoked then the symbolic I/O routines will only recognize
basic data types such as BYTES, WORDS, and LONGS. More complex data types
such as PLM arrays and structures will not be recognized. This option is included
because early versions of the host software got confused while loading certain type
definition records generated by C-96. These problems have been fixed but the
option was left in case similar problems remain.

EV80C196KB Microcontroller Evaluation Board User’s Manual -27-

-POLL, -SIGNAL
These two options control how the host software detects whether or not the user’s
code is running. If poll mode is selected then the host will periodically poll the target
with a REPORT-STATUS command. This takes no additional hardware but forces
the target to waste instruction cycles responding to the poll. The signaling mode
avoids this overhead but requires that the target set the Ring Indicator modem
control line whenever it is running user code. The user interface will then check this
line before it issues a REPORT STATUS command. If neither of these options is
selected then the signal mode isselected as a default. On the EV80C196KB the
OUT1 # pin of the 82510 is used to generate this running signal. Therefore, the
signal mode is recommend.

RESET SYSTEM
RES SYSTEM
RESET
RES
This command and its abbreviations will reset the entire target hardware system if
the target system is implemented to support this operation. On the EV80C196KB
jumper shunt E20 must be installed from B to C for this command to work properly.
This command operates by dropping the DTR modem control line. This comes into
the target as DSR. After dropping DTR the iECM-96 software will wait about 1
second to allow the target to complete its initialization routines. The iECM-96 will
politely warn of this time delay and then ignore the user until it expires. Unless
special precautions are taken in the design of the target system, any data in RAM
(including downloaded object code) may be corrupted by the reset. On the
EV80C196KB, the RAM contents should not be affected by a RESET.

DOS
This command enables you to temporarily leave iECM-96 and return to DOS. Once
you have suspended iECM, you may perform other functions in DOS, including
using other software programs, such as ASM-96, as long as there is sufficient mem-
ory to do so.

To reenter iECM, type exit at the DOS prompt. iECM will return with all conditions in
effect at the time it was suspended.

QUIT
This command will close any files that iECM-96 has opened and exit to DOS. Note
that this command can be used even if the target is running. iECM-96 sets the
selected COM port to 9600 baud, 8 bits, no parity, and one STOP bit. The port will
be left in this state by iECM-96 when control is returned to DOS.

-289 EV80C196KB Microcontroller Evaluation Board User’s Manual

Default Base Commands

These commands are used to set the default base for numeric input and output. The
valid bases are: 16 (hexadecimal) , 10 (decimal), and 8 (octal). The default base is
used to display variables. It is not used to display addresses (which are displayed in
hexadecimal) or breakpoint numbers (which are displayed in decimal). The default
base is also used to enter numbers into the command parser, but it is possible to
override the default base during input by adding a character at the end of the num-
ber which forces the appropriate base to be used. The override characters are H (or
h) for hexadecimal, T (or t) for decimal, and 0 (or o) for octal. The override charac-
ter must appear immediately following the last digit of the number with no interven-
ing space.

BASE
This command will display the current default base.

BASE=cvalid-base>
This command will set the current default base to <valid-base>. When entering this
command it is advisable to use an override character to select the new default base:

BASE=1 00 ; selects octal
BASE=1 OT ; selects decimal
BASE=1 OH ; selects hexadecimal

This avoids confusion when changing bases. As an example of the confusion which
is avoided, consider the following commands entered while the base is hexadecimal.
The command:

BASE=1 0

will leave the default base as hexadecimal and the command:

BASE=1 6

will result in an error because 16H (22T) is not a valid base. The command:

BASE=OA

will select decimal as the default base but it is cleaner and simpler to use the over-
ride character:

BASE=1 OT

This works independently of the current default base and leaves a useful record in
log or list files which may be open.

EV80C196KB Microcontroller Evaluation Board User’s Manual -29-

FILE OPERATIONS

iECM-96 uses files in the host system to load and save object code, enter prede-
fined strings of commands, to keep a log of commands that are entered by the user,
and to keep a record of an entire debug session which includes both the characters
entered by the user and the response generated by iECM-96 on the host screen.
The commands which operate with files are described in the following sections.

Loading and Saving Object Code

iECM-96 accepts object files which are generated by Intel’s development tools.
iECM-96 will not accept files which contain unresolved externals or files which con-
tain relocatable records. These files must be passed through RL-96 in order to
resolve the externals and/or absolutely locate the relocatable segments. iECM-96
will also not accept HEX format files. There is a utility on the disk (HEXOBJ.EXE)
for converting HEX format files to Intel object format files loadable by iECM-96.
While still in DOS type “HEXOBJ <filename>.hex <filename>.obj”cCR> to convert
<filename>.hex to a usable format for iECM-96. HEXOBJ does not attempt to con-
vert any symbolic information contained in the HEX file. The iECM-96 commands
which operate on object files are:

LOAD <filename>
LOADSYM <filename>
SAVE caddr> TO <addr> IN <filename>

The metasymbol <filename> means that a valid MS-DOS file name must be entered
in that position of the command string.

LOAD <filename>
This command loads the content records of the object file <filename> into the target
memory and loads any associated symbolic information into a symbol table main-
tained in the host system’s memory.

LOADSYM <filename>
This command loads the symbolic information from <filename, into the symbol table
maintained in the host system but does not load the content records into the target’s
memory. This command is useful when you have left a debug session with the
target still running a program that has been loaded. At a later time you can re-
invoke iECM-96 and interrogate the running program without stopping it. The
LOADSYM command allows the use of the symbolic information contained in the
object file without reloading the content records. (Content records cannot be loaded
while the target is running).

SAVE caddr> TO caddr> IN <filename>
This command saves a region of memory as an object file which can be reloaded
into the target memory at some latter time. No attempt is made to include any
symbolic information which may have been in the symbol table maintained in the
host system.

-301 EV80C196KB Microcontroller Evaluation Board User‘s Manual

Other File Operations

In addition to object files, the iECM-96 makes use of include files, log files, and list
files. Include files contain commands to be executed by iECM-96, they must contain
the exact sequence of ASCII characters that you would enter from the keyboard to
execute the command. Include files can be tedious to generate with a text editor so
iECM-96 can generate log files in which are stored characters entered by the user.
The intent is that log files be used later as include files to recreate command se-
quences. List files keep a running record of both commands entered by the user
and of the response generated by iECM-96. Comments can be included in list and
log files to make them easier to understand. A comment starts with a semicolon (I;‘)
and ends with a carriage return or ESC. The semicolon is considered to be part of
the comment but not the CR or ESC. The command parser will ignore comments
but will put them in the list and log files.

Note: on the software disk included with the EV80C196KB is a file called
DEMO.LOG. DEMO.LOG is a sample iECM-96 session for you to invoke and
become more familiar with the features of iECM-96. Appendix G is a printout
of DEMO.LST which was created by turning on the list feature and invoking
DEMO.LOG by typing ‘*include demo.log”<CR> at the iECM-96 *‘*” prompt.

The list and log files commands allow for default filenames and allow either overwrit-
ing existing data in the file or appending data at the end of the file. This allows you
to gather list and log data in the default files which avoids the creation and manage-
ment of a large number of separate files. Log and list files are stamped with the
date and time whenever they are opened to make it easier to use this capability and
then go back and sort out the data from several debug sessions with a text editor.

The commands involved in include, log, and list operations are:

INCLUDE <filename>
F’AUSE LIST
LIST <filename>
LOG
~;XY;~~narne>

LISTON
LOGOFF
LOGON

Three of these commands require you to supply a valid file name, the rest use the
appropriate file name that has already been entered.

INCLUDE <filename>
This command will attempt to open <filename> as a read only file. If the file can be
opened then the command parser will take commands from that file until the end of
the file is reached. The include file will then be closed. Only one include file will be
opened at a time.

EV80C196KB Microcontroller Evaluation Board User’s Manual -31-

PAUSE
This command is documented in this section because it is intended to be used as
part of INCLUDE files. It is not really a file oriented command itself. When this
command is entered the iECM-96 will stop parsing commands until a SPACE char-
acter is entered from the keyboard (it can’t come from an INCLUDE file). This pro-
vides a method of pausing in the middle of an INCLUDE file operation until you have
a chance to see what’s going on and acknowledge the pause condition by depress-
ing the SPACE bar.

LIST
This command behaves like the LIST <filename> command described below except
that it uses the last <filename> that was entered as part of a LIST <filename> com-
mand: If no such command has been entered then the default filename “LIST.ECM”
will be used.

LIST <filename>
This command will attempt to open <filename> as a writable file. If a file with cfile-
name> already exists then iECM-96 will ask if the file is to be overwritten or if the
new data should be appended to the end of the existing file. It will then open the file
and stamp it with the current date and time from the system clock. After this, com-
mands entered by the user and the responses generated by iECM-96 will be re-
corded in the file.

LOG
This command behaves like the LOG <filename> command described below except
that it uses the last <filename> that was entered as part of a LOG <filename> com-
mand. If no such command has been entered then the default filename “LOG.ECM”
will be used.

LOG <filename>
This command will attempt to open <filename> as a writable file. If a file with cfile-
name> already exists then iECM-96 will ask if the file is to be overwritten or if the
new data should be appended to the end of the file. It will then open the file and
stamp it with the current date and time. After this, commands entered by the user
will be recorded in the file. Note that this file may contain nonprintable characters
(e.g. ESC).

LISTOFF and LISTON
The LISTOFF closes a LIST file that has been specified by the LIST command. This
stops new list information from being recorded. The LISTON re-opens the list file in
the append mode so that recording can start again. LISTON also stamps the list file
with the current date and time from the system clock.

LOGOFF and LOGON
The LOGOFF closes a log file that has been specified by the LOG command. This
stops new list information from being recorded. The LOGON re-opens the log file in
the append mode so that recording can start again. LOGON also stamps the list file
with the current date and time from the system clock.

EV80C196KB Microcontroller Evaluation Board User’s Manual

PROGRAM CONTROL

Commands which control program execution allow you to reset the processor, set
execution breakpoints, start execution, stop execution, step, and super step. The
commands will be grouped by their major function for the sake of discussion.

Resetting the Target

The processor can be reset by executing the iECM-96 command:

RESET CHIP
This command physically resets the processor by setting the RISM-DATA register
to OXXXXOOOl and issuing a MONITOR-ESC RISM command which will cause the
target to perform a RST instruction.

Breakpoints

iECM-96 provides sixteen program execution breakpoints. If a given breakpoint is
inactive it is set to zero, if it is active then it is set to the address of the first byte of an
instruction. Breakpoints set to addresses which are not the first byte of an instruction
will cause unpredictable errors in the execution of the user’s code. When execution
is started iECM-96 saves the user code byte at any active breakpoint and substi-
tutes a TRAP instruction for that byte. Executing a TRAP instruction will cause the
iECM-96 to restore the user code bytes where the TRAP instructions were substi-
tuted and then decrement the user’s program counter so that it points at the original
instruction. The user’s program will appear to stop execution immediately before
executing the instruction with a breakpoint set on it. All the TRAPS will be removed
from the user’s code and the original code restored.

Note: Most monitor programs similar to iECM-96 display a message on the
console when a break occurs (e.g. “Program break at 1234H”). This is not
done in iECM-96 because the system supports concurrent interrogation of the
target which the user’s code is running; it is possible (perhaps probable) that
the break will occur while you are in the middle of displaying or modifying the
state of the target. Any special break message would have to interrupt the
execution of the command. Because of this the iECM-96 does not output a
special break message. You have two ways to find out that a break occurred:

I)- The prompt will change from a greater-than 5” to an asterisk (“*“).

2). The status of the processor shown in the “control panel” at the top of the console
screen will change from “running” to “stopped”.

Commands which set the breakpoint array are:

:l[cbp-number>]
BR [cbp-number>] = <code-addr>

The square brackets in the latter two commands are part of the command syntax
and must be entered by the user, the angle brackets are part of the “meta” language
used to describe the syntax. Breakpoints can be displayed while your code is run-
ning but they cannot be modified.

EV80C196KB Microcontroller Evaluation Board User’s Manual -33-

NOTE: BR[O] and BR[l] can also be set by the GO command by using the TILL
clause; all of the breakpoints will be cleared by the GO command if the FOR-
EVER clause is used.

BR
This command will display all of the active breakpoints (i.e. those not set to zero).
You will also be informed if no breakpoints are active.

BR [cbp-number>]
This command will display the setting of the selected breakpoint and wait for input
from you. If you enter a carriage-return the command will terminate. If you enter an
ESC the next sequential breakpoint will be displayed. If you enter a numeric value
then the selected breakpoint will be loaded with the value and the iECM-96 will
again wait for input. At this point you can enter either a CARRIAGE-RETURN or an
ESC. As before, the ESC will cause the iECM-96 to display the next breakpoint and
the CARRIAGE-RETURN will terminate the command. This command will wrap
around from the last breakpoint (1%) to the first breakpoint (0).

BR [cbp-number>] = <code-addr>
This command sets the specific breakpoint specified by cbp-number> to the value
<code-addr>.

Program Execution

These commands start and stop execution of user code. The commands provided
are:

2: FOREVER
GO FROM <code-addr>
GO FROM <code-addr> FOREVER
GO FROM <code addr> TILL <code-addr>
GO FROM ccodezaddr> TILL <code-addr> OR <code-addr>
GO TILL <code-addr>
;AqflLL <code-addr> OR <code-addr>

If a GO with breakpoint command is entered, the user code bytes at the breakpoints
will be saved and TRAPS will be installed. When a breakpoint is reached the user’s
software will stop before the instruction which caused the breakpoint and the IECM-
96 software will restore the original user code. Note that this is different from the
operation of iSBE- (and most ICE modules) which stop just afterthe instruction
executes. A problem associated with stopping before the break instruction executes
is that subsequent GO commands may run into the breakpoint before any user code
is executed. The iECM-96 avoids this problem by skipping the setting of any break-
points set on the instruction that the current PC points to. If this happens to remove
the last breakpoint set then you will be warned but the GO will still execute with no
breakpoints enabled. IF this happens you can use the HALT command to stop the
program a

-34- EV80C196KB Microcontroller Evaluation Board User’s Manual

None of the GO commands can be executed while the user’s code is already run-
ning; the HALT command cannot be executed if the user’s code is not running. The
GO commands which set breakpoints use BP[O] and possibly BP[l]. Any break
value already in one of these breakpoints will be overwritten and destroyed by these
GO commands. If possible the user should reserve the first two breakpoints for use
by the GO commands and set the remaining breakpoints (if required) explicitly with
the BR commands.

GO
This command starts execution of the user’s code using the current value of user’s
PC and the current breakpoint array.

GO FOREVER
This command clears the breakpoint array and starts execution at the current value
of the user’s PC.

GO FROM <code addr>
This command loads the user’s PC with <code-addr> and starts execution of the
user’s code using the current breakpoint array.

GO FROM <code-addr> FOREVER
This command loads the user’s PC with <code-addr>, clears the breakpoint array,
and starts execution of the user’s code.

GO FROM <code addr> TILL <code addr>
This command lo& the user’s PC w%h the <code-addr> which follows the FROM
keyword, sets the first breakpoint (BP[O]) to the <code-addr> which follows the TILL
keyword, and then starts execution of the user’s code.

GO FROM <code-addr> TILL <code-addr> OR <code-addr>
This command acts like the previous command except that it also sets the second
breakpoint (BP[l]) to the ccode_addr> which follows the OR keyword.

GO TILL <code-addr>
This command sets the first breakpoint (BP[O]) to <code-addr> and then starts the
execution of user code using the current setting of the user’s PC and the breakpoint
array 0

GO TILL <code-addr> OR <code addr>
This command acts like the previ&s command except that it also sets the second
breakpoint (BP11 J) to the <code-addr> which follows the OR keyword.

HALT
This command stops execution of user code by forcing the processor to execute a
jump to self instruction in a reserved location.

EV80C196KB Microcontroller Evaluation Board User’s Manual -35,

Program Stepping

These commands allow stepping through programs one instruction at a time. Be-
tween instructions the iECM-96 commands can be used to check the state of the
variables changed by the instruction to ensure that the program is operating prop-
erly. Stepping through code allows a far more detailed look at what is going on in the
program. The price that is paid for this detail is that stepping does not occur in real
time; this makes it difficult or perhaps impossible to use on code that is tied to real
time events.

Stepping while interrupts are enabled would be confusing since interrupt service
routines will be stepped through as well as sequential code. iECM-96 avoids this
problem by artificially locking out interrupts while stepping, ignoring the state of the
interrupt enable (El) or interrupt mask.

Super-Stepping is similar to stepping except that interrupts are not artificially sup-
pressed. Also, an interrupt service routine or a subroutine call (and the body of the
subroutine that is called) is treated as one indivisible instruction by the super-step
command. This allows the user to ignore the details of subroutines and interrupt
service routines while checking out code. Every time an instruction is “super-
stepped” all the service routines associated with enabled pending interrupts will be
executed. This may allow limited stepping through code while operating in a concur-
rent environment but the system will not operate in real time. A better approach is to
use the GO command to execute to a specified breakpoint and then step through
the code being tested looking for proper operation.

iECM-96 implements the step operation by using the TRAP instruction. To step over
a given instruction iECM-96 determines all the possible subsequent instructions and
places TRAPS at these locations. After doing this it allows the user’s program to
execute until it runs into one of these TRAPS and then restores all of the user code
bytes which were overwritten with TRAPS. If iECM-96 is to step over a conditional
branch, two possible subsequent instructions exist in the sequential code of the
program. Any other instruction can only have one “next” instruction. A TRAP is also
set at location 2080H in case the target is reset during the step.

Super-stepping is accomplished by setting TRAPS like the STEP except for CALL
instructions which are treated as a special case. During a STEP the iECM-96 will put
the TRAP at the target address of a call; during a super-step the TRAP will be
placed at the instruction following the CALL. Interrupts are suppressed during STEP
(not SS) operations by saving the user’s El bit, clearing it before the STEP occurs,
and then restoring it. In order to make sure the instruction which is executed does
not modify the El bit, several instructions (PUSHF, POPF, PUSHA, POPA, DI, El)
are simulated by the iECM-96 software rather than being executed by the target
processor. The 80C196KB instruction IDLPD is also simulated during STEP to
prevent the target from locking up. The simulation treats the IDLPD as a two byte
NO-OP. Note that the simulation of instructions only occurs during STEP opera-
tions During a GO or SS command all instructions are executed by the target.

-360 EV80C196KB Microcontroller Evaluation Board User’s Manual

The iECM-96 commands which implement step operations are:

STEP
STEP <count>
STEP FROM <code-addr>
STEP FROM <code-addr> <count>
ss
SS <count>
SS FROM <code-addr>
SS FROM <code-addr> <count>

Aside from the style of the actual step operation, the SS and STEP commands
beha\ie the same. They will be described together and will be called single-step-
ping.

{STEP 1 SS}
This command single-steps one time.

{STEP 1 SS } <count>
This command single-steps <count> times.

{ STEP 1 SS } FROM <code-addr>
This command loads the user’s pc (PC) with <code-addr> and then single-steps
one time.

{ STEP 1 SS } FROM <code-addr> <count>
This command loads the user’s pc (PC) with <code-addr> and then single-steps
<count> times.

EV80C196KB Microcontroller Evaluation Board User’s Manual -37-

DISPLAYING AND MODIFYING PROGRAM VARIABLES

iECM-96 provides commands to display and modify program variables in several
formats. In addition to simple variables such as bytes and words, more complicated
variables such as reals and character strings are supported. iECM-96 commands
allow variables to be displayed or initialized either individually or as regions of mem-
ory which contain variables of the given type.

Supported Data Types

BYTE
A BYTE is an eight-bit variable. No alignment rules are enforced for BYTE variables.

CHAR
A CHAR is a special case of a BYTE. CHAR variables are displayed as ASCII char-
acters.

WORD
A WORD is a 16-bit variable. The address of a WORD is the address of its least
significant byte. A WORD must start at an even byte address.

DWORD
A DWORD is a 32-bit variable. The address of a DWORD is the address of its least
significant byte. A DWORD must always start at an even byte address. If a DWORD
variable is to be accessed as a register by an 8096 instruction then a more restric-
tive alignment rule is enforced: it must start at an address which is evenly divisible
by 4. This more restrictive alignment rule will only apply to iECM-96 commands
when using the single line assembler.

REAL
A REAL is a 32-bit binary floating point number which conforms to the FPAL96
definition. The 32 bits contain a sign bit, an 8-bit exponent field, and a 23-bit fraction
field. iECM-96 commands use standard scientific notation to deal with REAL num-
bers Note that the FPAL96 has special representations for +infinity and for NaN’s
(Not a Number--used to signal error conditions) if iECM-96 detects one of these
special values it will output an appropriate text string instead of trying to display the
value in scientific notation.

STACK
A STACK variable is a 16-bit variable which resides in the system stack. The ad-
dresses of stack variables (cstack7addr> are taken to be relative to the current
stack pointer and must be word alrgned.

STRING
A STRING is a sequence of ASCII characters which are terminated by the NUL
character. The ASCII character NUL has the binary value of zero.

In addition to supporting access to variables of the above types, iECM-96 also
provides commands to access the special program variables PC (program counter),
PSW (program status word) and SP (stack pointer). These commands are dis-
cussed at the end of this section under the heading “Processor Variables”.

-389 EV80Cl96KB Microcontroller Evaluation Board User’s Manual

BYTE Commands

There are four forms for the BYTE commands:

BYTE <byte-address>
BYTE <byte-address> = <byte-value>
BYTE <byte-address> TO <byte-address>
BYTE <byte-address> TO <byte-address> = <byte-value>

All of these commands can be used whether or not the user’s program is running.

BYTE <byte-address>
This form is used to examine and then possibly change one or more sequential
BYTE variables. When this command is invoked iECM-96 will display the
<byte-address> symbolically if a valid symbol exists for that <byte-address>.
Whether or not the symbolic display occurs, iECM-96 will display the
<byte-address> in hexadecimal notation, the value of the BYTE in the default base
and wait for an input from you. You can respond with a CARRIAGE-RETURN
character, an ESC character, or by entering a numeric value. A CARRIAGE-RE-
TURN will terminate the command. An ESC will result in the display of the next
sequential BYTE variable. If a numeric value is entered then the BYTE variable will
be set to this value and the iECM-96 will again wait for input. At this point you can
respond only with an ESC or CARRIAGE-RETURN. As before, the ESC will display
the next sequential BYTE and the CARRIAGE-RETURN will terminate the com-
mand.

BYTE <byte-address> = <byte value>
This form is used to set an indizdual BYTE variable without first checking its current
value. When invoked, this command sets the BYTE variable at <byte-address> to
<byte-value>.

BYTE <byte-address> TO cbyte_address>
This form is used to display a region of memory as a sequence of BYTE variables.
When this command is invoked, iECM-96 will start by displaying the current default
base and then a series of lines showing the contents of the selected memory region.
16 a symbol exists in iECM-96’s symbol table for the next <byte-address> then this
symbol will be displayed. Whether or not the symbolic display happens, the next line
will start with a hexadecimal display of the address of the next BYTE variable to be
displayed followed by the display of up to 16 bytes of memory as BYTE variables in
the default base. A new line will be started whenever 16 bytes of memory have been
displayed on the line or a valid symbol exists in iECM-96’s symbol table for the next
<byte-address> to be displayed. The command terminates when all of the BYTE
variables in the selected range have been displayed. During lengthy displays you
can stop the output to the console by hitting the SPACE bar. Display can be re-
sumed by hitting the SPACE bar a second time. The command can be terminated by
entering a carriage return.

BYTE <byte-address> TO <byte-address> = <byte-value>This form is used to
initialize a region of memory to the given <byte-value>. Note that this command will
take a little over a millisecond (at 9600 baud) for each BYTE loaded. This command
can be terminated by entering a carriage return but this leaves only part of the
memory region initialized.

EV80Cl96KB Microcontroller Evaluation Board User’s Manual -390

WORD Commands

There are four basic forms for the WORD commands:

WORD <word address>
WORD <word-address> = <word value>
WORD <word-address> TO <word address>
WORD <wordaddress> TO cwordIaddress> = <word-value>

All of these commands can be used whether or not the user’s program is running.

WORD <word-address>
This form is used to examine and then possibly change one or more sequential
WORD variables. When this command is invoked iECM-96 will display the
<word-address> symbolically if a valid symbol exists for that <word-address>.
Whether or not the symbolic display occurs, iECM-96 will display the
<word-address> in hexadecimal notation, the value of the WORD in the default
base and wait for an input from you. You can respond with a CARRIAGE-RETURN
character, an ESC character, or by entering a numeric value. A CARRIAGE-RE-
TURN will terminate the command. An ESC will result in the display of the next
sequential WORD variable. If a numeric value is entered then the WORD variable
will be set to this value and the iECM-96 will again wait for input. At this point you
can respond only with an ESC or CARRIAGE-RETURN. As before, the ESC will
display the next sequential WORD and the CARRIAGE-RETURN will terminate the
command.

WORD <word-address> = <word-value>
This form is used to set an individual WORD variable without first checking its cur-
rent value. When invoked, this command sets the WORD variable at
<word-address> to <word-value>.

WORD <word-address> TO <word-address
>This form is used to display a region of memory as a sequence of WORD vari-
ables. When this command is invoked, iECM-96 will start by displaying the current
default base and then a series of lines showing the contents of the selected memory
region. If a symbol exists in iECM-96’s symbol table for the next <word-address>
then this symbol will be displayed. Whether or not the symbolic display happens, the
next line wild start with a hexadecimal display of the address of the next WORD
variable to be displayed followed by the display of up to 16 bytes of memory as
WORD variables in the default base. A new line will be started whenever 16 bytes of
memory have been displayed on the line or a valid symbol exists in iECM-96’s
symbol table for the next cword7address> to be displayed. The command termi-
nates when all of the WORD vanables in the selected range have been displayed.
During lengthy displays you can stop the output to the console by hitting the SPACE
bar, Display can be resumed by hitting the SPACE bar a second time. The com-
mand can be terminated by entering a carriage return.

WORD <word-address> TO <word address> = <word-value>
This form is used to initialize a region of memory to the given <word-value>. Note
that this command will take a little over a millisecond (at 9600 baud) for each WORD
loaded. This command can be terminated by entering a carriage return but this
leaves only part of the memory region initialized.

-409 EV80Cl96KB Microcontroller Evaluation Board User’s Manual

DWORD Commands

There are four basic forms for the DWORD commands:

DWORD cdword-address>
DWORD cdword address> = cdword-value>
DWORD cdwordraddress> TO cdword-address>
DWORD cdword-address> TO <dword_address> = cdword-value>

All of these commands can be used whether or not the user’s program is running.

DWORD cdword-address>
Thisform is used to examine and then possibly change one or more sequential
DWORD variables. When this command is invoked iECM-96 will display the
cdword-address> symbolically if a valid symbol exists for that cdword-address>.
Whether or not the symbolic display occurs, iECM-96 will display the
cdword-address> in hexadecimal notation, the value of the DWORD in the default
base and wait for an input from you. You can respond with a CARRIAGE-RETURN
character, an ESC character, or by enterin a numeric value. A CARRIAGE-RE-
TURN will terminate the command. An ES 8 will result in the display of the next
sequential DWORD variable. If a numeric value is entered then the DWORD vari-
able will be set to this value and the iECM-96 will again wait for input. At this point
you can respond only with an ESC or CARRIAGE-RETURN. As before, the ESC will
z@;i;hde next sequential DWORD and the CARRIAGE-RETURN WIII terminate the

DWORD cdword-address> = cdword-value>
This form is used to set an individual DWORD variable without first checking its
current value. When invoked, this command sets the DWORD variable at
cdword-address> to cdword-value>.

DWORD cdword-address> TO cdword-address>
This form is used to display a region of memory as a sequence of DWORD vari-
ables. When this command is invoked, iECM-96 will start by displaying the current
default base and then a series of lines showing the contents of the selected memory
region. If a symbol exists in iECM-96’s symbol table for the next cdword-address>
then this symbol will be displayed. Whether or not the symbolic display happens, the
next line will start with a hexadecimal display of the address of the next DWORD
variable to be displayed followed by the display of up to 16 bytes of memory as
DWORD variables in the default base. A new line will be started whenever 16 bytes
of memory have been displayed on the line or a valid symbol exists in iECM-96’s
symbol table for the next cdword-address> to be displayed. The command termi-
nates when all of the DWORD vanables in the selected range have been displayed.
During lengthy displays you can stop the output to the console by hitting the SPACE
bar. Display can be resumed by hitting the SPACE bar a second time. The com-
mand can be terminated by entering a carriage return.

DWORD cdword-address> TO cdword-address> = cdword-value>
This form is used to initialize a region of memory to the given cdword-value>. Note
that this command will take a little over a millisecond (at 9600 baud) for each
DWORD loaded. This command can be terminated by entering a carriage return but
this leaves only part of the memory region initialized.

EV80C196KB Microcontroller Evaluation Board User’s Manual -411

REAL Commands

There are four basic forms for the REAL commands:

REAL <real address>
REAL <real-address> = <real value>
REAL <real-address> TO ere&address>
REAL crealIaddress> TO <real-address> = <real-value>

All of these commands can be used whether or not the user’s program is running.

REAL <real-address>
This .form is used to examine and then possibly change one or more sequential
REAL variables. When this command is invoked iECM-96 will display the
<real-address> symbolically if a valid symbol exists for that <real-address>.
Whether or not the symbolic display occurs, iECM-96 will display the
<real address> in hexadecimal notation, the value of the REAL in the default base
and wait for an input from you. You can respond with a CARRIAGE-RETURN
character, an ESC character, or by enterin
TURN will terminate the command. An ES 8

a numeric value. A CARRIAGE-RE-
will result in the display of the next

sequential REAL variable. If a numeric value is entered then the REAL variable will
be set to this value and the iECM-96 will again wait for input. At this point you can
respond only with an ESC or CARRIAGE-RETURN. As before, the ESC will display
thhnTxt sequentral REAL and the CARRIAGE-RETURN WIII termrnate the com-

REAL <real address> = <real value>
This form is-used to set an indkidual REAL variable without first checking its current
value. When invoked, this command sets the REAL variable at <real-address> to
<real-value>.

REAL <real-address> TO <real-address>This form is used to display a region of
memory as a sequence of REAL variables. When this command is invoked, iECM-
96 will display a series of lines showing the contents of the selected memory region.
If a symbol exists in iECM-96’s symbol table for the next <real-address> then this
symbol will be displayed. Whether or not the symbolic display happens, the next line
will start with a hexadecimal display of the address of the next REAL variable to be
displayed followed by the display of up to 16 bytes of memory as REAL variables in
the default base. A new line will be started whenever 16 bytes of memory have been
displayed on the line or a valid symbol exists in iECM-96’s symbol table for the next
<real-address> to be displayed. The command terminates when all of the REAL
variables in the selected range have been displayed. During lengthy displays you
can stop the output to the console by hitting the SPACE bar. Display can be re-
sumed by hitting the SPACE bar a second time. The command can be terminated by
entering a carriage return.

REAL <real-address> TO <real-address> = <real-value>
This form is used to initialize a region of memoryto the given <real-value>. Note
that this command will take a little over a millisecond (at 9600 baud) for each REAL
loaded. This command can be terminated by entering a carriage return but this
leaves only part of the memory region initialized.

-420 EV80C196KB Microcontroller Evaluation Board User‘s Manual

STACK Commands

There are two basic forms for the STACK commands:

STACK <stack address>
STACK cstackIaddress> TO <stack-address>

Both of these commands can be used whether or not the user’s program is running.

STACK <stack address>
This command% useful for accessing a 16-bit variable which is known to be a fixed
offset in the system stack. When this command is invoked, iECM-96 executes a
“WORD <word-address> command where the <word-addr> is formed by adding
<stack-address> to the current value of the system stack pointer.

STACK <stack address> TO <stack-address>
This command% useful for accessing a sequence of 16-bit variables which are
known to start at a fixed offset in the system stack. When this command is invoked,
iECM-96 executes a “WORD <word-address> TO <word-address> command
where both <word-address> fields are formed by adding the corresponding
<stack-address to the current value of the system stack pointer. During lengthy
displays you can stop the output to the console by hitting the SPACE bar. Display
can be resumed by hitting the SPACE bar a second time. The command can be
terminated by entering a carriage return.

STRING commands

There is only one form of the STRING command:

STRING <byte address>
If a symbol exi& for <byte-address> in the iECM-96’s symbol table then this sym-
bol will be displayed. Whether or not the symbolic display happens, the next line will
start with a hexadecimal display of <byte-address> followed by the NUL terminated
ASCII string starting at that address. For long strings only the first 60 characters are
displayed. When trailing characters are stripped, decimal points (“.“) are substituted
for the first three characters stripped.

EV80C196KB Microcontroller Evaluation Board User’s Manual -43-

Processor Variables

Several commands are provided to access variables which are associated with the
processor rather than with the program:

PC
PC = <byte-address>
PSW
PSW = <word-value>

gJ= <word-address>

The processor variables can be modified only while the target is stopped, they can
be read at any time. These commands allow the display and loading of the program
counter (PC), program status word (PSW) and stack pointer (SP). Display is in the
default base.

NOTE: The examination of the SP will be confusing if you don’t understand
the following paragraphs.

The iECM-96 software uses two words in the user’s stack to store the PC and PSW
during a host interface interrupt. When the user displays the SP (or uses the
STACK command) the value shown for SP is adjusted by 4 bytes to compensate for
this overhead so that it becomes more or less invisible to the user (the user must
still allow for the extra stack space used). This is convenient but creates confusion if
you display using the SP command and then use the WORD command to look at
location 18H which is the register address of the stack pointer. Location 18H will be
4 less than “SP”.

An additional consideration is what happens when you attempt to write into the stack
pointer using the SP command. Before returning from the RISM interrupt service
routine (ISR) which actually updates the stackpointer, the RISM places in the stack a
return address and associated PSW for the idle loop it executes while the target is
“‘stopped”. This prevents the target from getting lost upon return from the ISR. You
should not attempt to modify the stack pointer from the console through the use of
its register address (18H); it should only be modified by the SP commands or by
execution of user code in the target. This decreases the possibility of the target
getting confused.

Specific implementations of the RISM may actually prevent the user from writing into
“WORD 18” and thereby force the user to use the “SP” command.

-449 EV80CI 96KB Microcontroller Evaluation Board User’s Manual

ASSEMBLY AND DISASSEMBLY

iECM-96 supports the examination and modification of code memory using the
standard mnemonics for the MCS-96 assembler (ASM-96). Although standard
mnemonics are used, the iECM-96 does not build a symbol table of user symbols as
assembly mnemonics are entered. This makes it a single-line assembler (SLA)
because references are never made to information entered on other lines. No labels
are generated by the SLA, although it canuse labels which are loaded as symbolic
information along with object code when a file translated in the debug mode has
been loaded. The iECM-96 SLA will accept mnemonics for all instructions which can
actually be executed by the target processor. It will not accept “generic” instructions
such as BE or CALL which are processed by ASM-96 into standard MCS-96 instruc-
tions: It will accept JE and SCALL or LCALL which are the specific instructions the
MCS-96 processors understand.

SLA (Single Line Assembly) Commands

The commands which invoke the SLA are:

I44; <code-address>

The SLA is useful for writing short code pieces on-line for testing or patching pro-
rams

9
but is not intended as a replacement for a true assembler such as ASM-96.

he SLA can be invoked whether or not user code is running, but there is an obvi-
ous danger in modifying code that is being executed.

ASM <code-addr>
This command causes the iECM-96 software to enter the SLA mode. The assembly
program counter (APC) will be set to <codeaddr> and lines of “assembly language”
entered by the user will be converted to object code and loaded into the target’s
memory. iECM-96 will complain if erroneous inputs are made but will remain in the
SLA mode. This mode is terminated by entering the only “directive” understood by
the SLA: END.

ASM
This command operates identically to the ASM <code-addr> command except that
the APC is not initialized. If this is the first time that the SLA has been used then
APC will be set to 2080H, if it is not then APC will point at the byte following the last
instruction generated by the SLA.

EV80C196KB Microcontroller Evaluation Board User‘s Manual -45

Disassembly Commands

The disassembler converts binary object code in the target memory to ASM-96
mnemonics. There are several commands which invoke the disassembler:

DASM
DASM <count>
DASM <code-addr>
DASM <code addr>,ccount>
DASM <codeIaddr> TO <code-addr>

These commands are useful for examining a portion of the program for which list-
ings are not available or for checking program patches, and can be used whether or
not user code is running.

DASM
This command disassembles the instruction currently pointed to by the user’s pro-
gram counter (PC).

DASM <count>
This command reads the current value of the user’s program counter (PC) and
disassembles <count> instructions starting at that location. The parameter <count>
must be less than 256T (lOOH) so that the command parser can distinguish this
command from the command “DASM <code addr>. This restriction does not apply
to the DASM ccode_addr>,ccount> instruction. During lengthy displays you can stop
the output to the console by hitting the SPACE bar. Display can be resumed by
hitting the SPACE bar a second time. The command can be terminated by entering
a carriage return.

DASM <code_addr>
This command disassembles the instruction at <code-addr>. The parameter
<code addr> must be greater or equal to 256T (1 OOH) so that the command parser
can distinguish it from the DASM <count> instruction.

DASM <code-addr>,ccount>
This command disassembles <count> instructions starting with the one at
<code-addr>. During lengthy displays you can stop the output to the console by
hitting the SPACE bar. Display can be resumed by hitting the SPACE bar a second
time. The command can be terminated by entering a carriage return.

DASM <code-addr> TO <code-addr>
This command disassembles the region of memory specified. If an instruction
crosses the ending address of the region it will be completely disassembled before
the command terminates. During lengthy displays you can stop the output to the
console by hitting the SPACE bar. Display can be resumed by hitting the SPACE
bar a second time. The command can be terminated by entering a carriage return.

-46- EV80C196KB Microcontroller Evaluation Board User’s Manual

SYMBOL OPERATIONS

iECM-96 supports several commands dealing with symbolic information that can be
loaded along with object code. The commands are:

SYMBOLS
SYMBOLS OFF
;~~I’;LS ON

An additional command, “LOADSYM <filename>” can be used to load iECM-96’s
symbol table without affecting the target’s memory. This command is described in
the section “File Operations”.

SYMBOLS
This command displays the symbols that are currently in iECM-96’s symbol table.

SYMBOLS OFF
This command suppresses searching the symbol table during output. It does not
prevent the use of the symbol table during input. This command is provided be-
cause symbolic output with large symbol tables can be very slow.

SYMBOLS ON
This command reenables symbolic output.

FLUSH
This command deletes all the symbols currently in the symbol table.

EV80C196KB Microcontroller Evaluation Board User’s Manual -479

RISM

This section will describe the elements of the RISM which will be common to all.
implementations. Additional documentation of this implementation is in appendices
B and C.

RISM Variables

RISM DATA
RISM-DATA is a 32-bit register which acts as the primary data interface between
software running in the host and the RISM running in the target.

RISM *ADDR
RISM-ADDR is a 16-bit register which contains the address to be used for reading
and whiting target memory.

RISM STAT
RISMSTAT is an 8-bit register used to store RISM status and state information.
This register contains the following Boolean flags:

DLE FLAG
Thisflag indicates the next character received by the RISM should be treated
as a data byte even if its value corresponds to an implemented command.

RUN FLAG
This flag indicates that the target is running user code.

TRAP FLAG
This flgg indicates that the target was running user code but that a software
TRAP occurred which suspended its execution.

DIAGNOSTIC FLAG
This is an optional flag that indicates that the target is operating in a diagnos-
tic mode. The details of this are implementation dependent.

USER PC
USER-PC is used to save the user’s program counter while the user’s code is not
execukg 0

USER PSW
USER-PSW is used to save the user’s program status word while the user’s code is
not executing.

Other Variables
Specific implementations of RlSMs will require other variables to be used for tempo-
rary storage.

-489 EV80C196KB Microcontroller Evaluation Board User’s Manual

RISM Structure

The RISM resides in the target system and provides the interface between the target
system and the user interface which resides in the host system. A design goal of
the RISM was to keep it compact and simple. This serves two purposes:

1. The RISM can reside in a user’s system with minimal impact on available
memory

2. The RISM is easy to port into the target’s environment.

The goals were met by keeping the internal state structure of the RISM as simple as
possible. There are only three internal flags which can change the way that the
RISM deals with a character sent by the host.

DLE-FLAG: If this flag is set then the next received character is assumed to
be a data byte as opposed to a command byte.

RUN-FLAG: This flag is set if the target is running user code. It can modify
the operation of some of the RISM commands.

TRAP-FLAG: This flag is set if the user code has been halted because it
executed a TRAP instruction. The TRAP-FLAG is cleared whenever the
RISM starts the execution of user code.

Receiving Data from the Host

When the RISM receives a character from the host its first task is to determine if it
represents a command or data. If the character is less than 32 (decimal) then it is
assumed to be a command, if not then it is taken to be data. If the host needs to
send a data byte which has a value less than 32 then it first must issue a SET-DLE
command. If the DLE-FLAG is set then the next character received by the RISM will
be interpreted as data (even if it is less than 32) and then the DLE-FLAG will be
cleared. Once the RISM has determined that the received character is a data byte it
processes it by shifting the 32-bit RISM-DATA register left eight places and then
placing the data byte in the lower byte of the RISfv’l-DATA register. The data shifted
out of the upper byte of the RISM-DATA register IS discarded.

Sending Data to the Host

When the host expects data to be returned from the RISM it sends a TRANSMIT
command byte and waits for a response. The RISM transmits the lower byte of the
32-bit RISM-DATA register and right shifts the RISM-DATA register right by eight
bits. As part of this command the RISM increments Its RISM-ADDR register. The
RISM only transmits data in response to an TRANSMIT command, never on its own
initiative or even in response to other commands from the host.

EV80C196KB Microcontroller Evaluation Board User’s Manual -49-

RISM Commands

This section will detail the operation of each of the commands sent to the RISM.

SET-DLE-FLAG (Code OOH)
This command sets the DLE-FLAG. This will force the next character received by
the RISM to be treated as data even if its value corresponds to a RISM command.
The code which overrides the normal selection of command or data also clears the
DLE-FLAG so that it applies only to the first character received after the
SET-DLE-FLAG command.

TRANSMIT (Code 02H)
This command will transmit the lower eight bits of the RISM-DATA register to the
host, right shift the data register eight places, and increment the RISM-ADDR regis-
ter. Sequential TRANSMIT commands are used to read the RISM-DATA register
and the RISM-ADDR re ister indicates the address that corresponds to the least
significant byte in the RI M-DATA register. ti

READ-BYTE (Code 04H)
This command will read the byte of memory pointed to by the RISM-ADDR register
and place the result in the least significant byte of the RISM-DATA register.

READ-WORD (Code 05H)
This command will read the word of memory pointed to by the RISM-ADDR register
and place the result in the least significant word of the RISM-DATA register.

READ-DOUBLE (Code 06H)
This command will read the double-word of memory pointed to by the address
register and place the result in the RISM-DATA register.

WRITE-BYTE (Code 07H)
This command stores the least significant byte of the RISM_DATA register in the
byte of memory pointed to by the RISM-ADDR register and increments the
RISM-ADDR register (by one) to point at the next memory byte.

WRITE-WORD (Code 08H)
This command stores the least significant word of the RISM-DATA register in the
word of memory pointed to by the RISM-ADDR register and increments the
RISM-ADDR register (by two) to point at the next memory word.

WRITE-DOUBLE (Code 09H)
This command stores the RISM-DATA register in the double-word of memory
pointed to by the RISM-ADDR register and increments the RISM-ADDR register (by
four) to point at the next memory double-word.

LOAD-ADDRESS (Code OAH)
This command loads the RISM-ADDR register with the least significant word in the
RISM-DATA register.

INDIRECT-ADDRESS (Code OBH)
This command reads the memory word pointed to by the RISM-ADDR and stores it
into the RISM-ADDR register. The RISM-DATA register is not modified by this
command.

-5O- EV80C196KB Microcontroller Evaluation Board User’s Manual

READ-PSW (Code OCH)
This command loads the RISM-DATA register with the PSW (Program Status Word)
associated with the user’s code. Most RISM implementations will have to check
RUN-FLAG to determine how to access the user’s PSW.

WRITE-PSW (Code OxOD)
This command loads the PSW (Program Status Word) associated with the user’s
code from the RISM-DATA register. The host software will only invoke this com-
mand while user code is not running.

READ-SP (Code OxOE)
This command loads the RISM-DATA register with the SP (Stack Pointer) associ-
ated+with the user’s code.

WRITESP (Code OxOF)
This command loads the SP (Stack Pointer) from the RISM-DATA register. This
command must also push two values into the newly created stack area. These
values are the PC (first) and PSW (second) associated with the idle loop which
executes while user code is not running. The host software will only invoke this
command while user code is not running.

READ-PC (Code 0x10)
This command loads the RISM-DATA register with the PC (Program Counter)
associated with the user’s code. Most RISM implementations will have to check
RUN-FLAG to determine how to access the user’s PC.

WRITE-PC (Code 0x11)
This command loads the PC (Program Counter) associated with the user’s code
from the RISM DATA register. The host software will only invoke this command
while user code is not running.

START-USER (Code 0x12)
This command is responsible for starting the execution of user code, clearing the
TRAP-FLAG, and setting RUN-FLAG. The action of this command relies on it
being executed as part of an ISR (interrupt service routine). At the start of the ISR
the current PC and PSW are pushed into the stack. If the user code is not running
the PC and PSW which are pushed into the stack will be associated with an idle loop
which the RISM runs while it waits for an interrupt. The START-USER command
deletes the PC and PSW from the stack and replaces them with USER-PC and
USER-PSW. When control returns from the ISR the user’s code will execute rather
than the idle loop. The host software will not issue a GO command if the user code
is already running.

STOP-USER (code 0x13)
This command is responsible for stopping the execution of user code and clearing
the RUN-FLAG. The action of the HALT command mirrors that of the GO com-
mand. In the case of the HALT command the user’s PC and PSW are pushed into
the stack upon entry to the ISR. The STOP-USER command saves this user infor-
mation in USER PC and USER-PSW and replaces it with PC and PSW values
which are asso&ted with the idle loop. When control returns from the ISR the idle
loop will execute rather than the user’s code. The host software will not issue a
HALT command unless the user code is running.

EV80C196KB Microcontroller Evaluation Board User’s Manual -5%

TRAP ISR
This isa pseudo-command. It can not be issued directly by the host software but is
executed when a TRAP instruction is executed. The TRAP instruction is used by
iECM-96 to implement software breakpoints and single stepping. A separate entry
point into the STOP-USER is provided for the TRAP vector. Code at this entry point
sets the TRAP-FLAG and then drops into the code which implements the
STOP-USER command.

REPORT-STATUS (Code 0x14)
This command loads the least significant word of the RISM-DATA register with
status information. Valid status values are:

*O--Indicates that user code is stopped
(RUN-FLAG and TRAP FLAG are both FALSE).

1 --Indicates that user code is running
(RUN-FLAG is TRUE)

2--Indicates that user code executed a TRAP instruction
(TRAP-FLAG is TRUE)

The host software will periodically poll the target system to check on its status and
this polling can rob execution time from the user’s program. This loss of target
processor cycles can be avoided by setting the Ring Indicator modem status line
signal whenever the RUN-FLAG is set. The host software will assume that the
target is running user code whenever it detects the ring indicator and will only issue
REPORT-STATUS commands if the ring indicator is off.

MONITOR-ESCAPE (Code 0x15)
This command provides for the addition of RISM commands for special purposes; it
uses the RISM-DATA register to extend the command set of the RISM. The basic
RISM requires only one of these “extended” commands; if the lower 16-bits of the
RISM-DATA register is one (RISM-DATA = OXXXXOOOl H) then the target proces-
sor should execute either a RST (ReSeT) instruction or a software initialization
routine.

Start Up Commands (‘I/” or ‘7”)
Upon reset the board is in the echo mode. Until it receives an ASCII slash (‘I/“) or
reverse-slash (‘7”) it should increment every character it receives from the host and
send the incremented value back to the host. It will also display the binary code of
the character received on the Port 1 LED’s. If a reverse-slash is received by the
RISM it will leave the echo mode (set USER MAP flag true), remap memory and
start normal operation. If a slash is receivedyt will stop echoing incremented re-
ceived data and start responding to RISM commands with the diagnostic flag set. In
this mode there are diagnostic routine resident in EPROM which are useful for
debugging the board. See the -DIAG option under Initiating and Terminating IECM-
96 in the USER INTERFACE section of this manual for additional information on the
Diagnostics Mode.

Appendix A.

Schematics and Parts List

---Y

“C e

t
t

80C196KB Evaluation Board

CPU Section

Revised: December 27, 1988

Revision: 2.0

EC0 Applications Engineering

Bill Of Materials December 27, 1988 15:53:23 Page 1 Of 2

Item Quantity Reference Part Vendor Manuf. Part#

1 1

2 1

3 2

4 3

5 1

6 1

7 1

8 1

9 1

10 1

11 1

12 2

13 1

14 1

15 1

16 1

17 1

18 2

19 1

20 1

21 1

22 1

23 1

24 5

25 1

26 1

27 1

28 a

29 3

30 11

8OC196-PLCC INTEL INTEL N80Cl96KB12

82510 INTEL INTEL P82510

JEDEC 28PIN INTEL INTEL D27C64

JEDEC 28PIN Sterling Hitachi HM6264P-10

74ACOO Hamilton Fairchild 74ACOOPC

74AC08 Hamilton Fairchild 74AC08PC

74AC14 Hamilton Fairchild 74ACl4PC

74AC32 Hamilton Fairchild 74AC32PC

74AC74 Hamilton Fairchild 74AC74PC

74AC112 Hamilton GE/RCA CD74AC112E

74AC240 Hamilton Fairchild 74AC240PC

74AC373 Hamilton Fairchild 74AC373PC

14C88 Hamilton National DS14C88N

14C89 Hamilton National DS14C89N

22VlO Luscombe Cypress PALC22VlO-3SPC

PMIREF02 Hamilton PM1 PEFOZHP

LM358N Hamilton

diode Hamilton (811N4305

resistor Sterling Dale MDP-1603-271G

cap Hamilton Sprague 926CX7R562KOSOB

12MHz Sterling M-TRON MP-1 12.0000

18.432MHz Sterling M-TRON MP-1 18.4320

RESET Digi-key Panisonic P9950

184305 Hamilton lN4305

HDSP-48XX Sterling Lite-On LTAlOOOG

180 Hamilton Mepco CR25-180

4.7K Hamilton Mepco CR25-4.7K

1OK Hamilton Mepco CR25-1OK

1OOK Hamilton Mepco CR25-100K

1M Hamilton Mepco CR25-1M

31 1

32 1

33 4

34 3

35 23

u5

u20

Ul,U8,

U6,U13,U14

u17

u21

u2

U16

u7

UlS

u9

UlO,Ull

U18

u19

u12

u4

u3

D2,Dl

R3

c2

Xl

x2

Sl

DS,D3,D4,D6,D7

DPl

RlO

R5

R2

Rl,R7,R18

R6,R4,R8,Rg,Rll,R12,Rl3,
R14,R15,R16,R17

RP2

RPl

C4,CS,C36,C38

C12,C6,C18

Cll,C3,C8,C9,ClO,C13,Cl6,
c17,c19,c2o,c21,c22,c23,
C24,C25,C26,C27,C28,C30,
C32,C33,C34,C35

180 ohm SIP Hamilton Bourns 4610X-101-181

10K POT Hamilton Bourns 3009P-l-103

3OpF Hamilton Sprague lClOCOG330J050B

.OluF Hamilton Sprague 1ClOZ5U103M050B

O.luF Hamilton Sprague 1C1025U104M050B

36 4 Cl,C7,C14,C15 l.OuF Hamilton Sprague 15OD105X9015A2

37 2 c31,c37 6.8uF Hamilton Sprague 199D685X9035DAl

80C196KB Evaluation Board

CPU Section

EC0 Applications Engineering

Bill Of Materials December 21, 988 15:53:23 Page 2 of 2

Revised: December 27, 1988

Revision: 2.0

Item Quantity Reference Part Vendor Manuf. Part#

38 1

39 * 2

40 3

41 16

42

43

44

45

46

c29

Pl;P2

E2,E16,E19

E7,El,E3,E4,ES,E6,E8,E9,
E10,Ell,E12,E13,E14,El7~
E18,E20

El5

JP4

JPl

JP2

JP3

22uF

DB9 Female

2PIN JUMPER

3PIN JUMPER

Hamilton Sprague lSOD226X9015B2

Sterling AMP 207084-l

Marshall A P Prod.

Marshall A P Prod.

4PIN JUMPER Marshall A P Prod.

POWER CONNECTOR Hamilton Molex 09-74-1041

CON26 Marshall A P Prod. 929665-01-36

CON50 Marshall A P Prod. 929665-01-36

CON60 Marshall A P Prod. 929665-01-36

Appendix B.

Specific iRlSM Information

APPENDIX B

Specific iRlSM Information

The EV80C196KB is designed to be a software evaluation tool for the ROMless
8OC196KB 16-bit microcontroller. As such, ports 3 and 4 are not available for use
as l/O ports unless offboard latches/buffers and decoding logic are used. All unre-
served functions of the 80C196KB are available to you except for the Non-Maskable
Interrupt (NMI), the TRAP instruction, and 512 bytes of address space. The Chip
Configuration Byte is also used by the monitor, but most of its functions are provided
by external logic.

Reserved Functions

The NMI pin is reserved for use by the Host Interface. In order for the Host Inter-
face to function properly, jumper-shunt E7 must be installed from B-C. However, if
your application demands the use of NMI (available on JP3), you can alter the RISM
source file (96KBRISM.A96, included on your disk) to use EXTINT instead of NMI,
and change jumper-shunt E7 to A-B.

The TRAP instruction is reserved.

On the EV80C196KB jumper shunt E20 must be installed from B to C for the RESET
SYSTEM command to work properly. If you wish to run code in the board while it is
not connected to a host, you should remove jumper shunt E20 prior to disconnecting
the board from the host. If E20 is left installed, the board may reset as the connec-
tion is broken.

Reserved Memory

User ROMsim as shipped is 24K bytes from address 2000H to 7FFFH. The board is
reconfigurable to accept various memory devices. However, breakpoints and pro-
gram stepping will not operate when your code is in EPROM or other nonchange-
able memory. Normally you should write your code to begin at address 2080H and
download it to ROMsim using iECM-96.

Two words of user stack space must be reserved for use by the iRISM-96 software
while the board is processing a host interrupt.Register locations 30H-38H are re-
served for use by the iRlSM monitor code. You must ensure that no registers in this
partition are used by code which is to operate with the RISM. The easiest way of
doing this is to generate an ASM-96 module which declares an RSEG at 30H which
is nine bytes long. This module can then be linked into the final program to prevent
the linker from assigning these registers to some other module.

You must not alter the TRAP vector at 2010H or the NMI vector at 203EH.

Memory from 2014H-202FH is reserved for use by the iRlSM monitor.

Appendix C.

Listing of iRISM-196KB

MCS-96 MACRO ASSEMBLER EV96

DOS 3.20 (038-N) MCS-96 MACRO ASSEMBLER, i/l 2

SOURCE FILE: 96KBRISM.A96

OBJECT FILE: 96KBRISM.OBJ

CONTROLS SPECIFIED IN INVOCATION COMMAND: DEBUG

01/24/89 13:55:41 PAGE 1

ERR LOC OBJECT LINE

1

2

3

4

5
6

I

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23
24

25

26

21
28

29

30

31

32

33

34

35
36

31
38

39

40

SOURCE STATEMENT

EV96 module main

; ================

:

; This file contains a RISM designed to operate the EV80C196KB evaluation

; board. It includes the required RISM features and the optional diagnostic

; mode. The board also supports remapping the memory space after reset.

i This allows the RISM code to gain control on reset and, after the

; initialization routines are complete, remap memory so that user code

; can be loaded into RAM at the reset location (2080H).

;

i The serial link is provided by an external UART (82510) with the received

; data interrupt tied to the NM1 (Non Maskable Interrupt) of the processor.

i The use of the NM1 for this purpose allows the user to maintain control

; of the system even if the running program locks out the interrupts or

; modifies the mask register.

;
; In addition to the NM1 and its vector, this RISM uses the following

; resources:

;

, Two words in the system stack

i

; The TRAP instruction and its vector

;

; External memory partitions (OOOOH-OOFFH),

; (lDOOH-lEFFH), and

; (2014H-202FH)

i

; (Note that all of these partitions, (except lDOOH-1EFFH and

; 2018H), are reserved by the MCS-96 architecture.)

;

i Nine bytes of registers in the partition (30H-38H). The

i user must ensure that no registers in this partition are used

; by code which is to operate with the RISM. The easiest way of

; doing this is to generate an ASM-96(tm) module which declares an

; RSEG at 30H which is nine bytes long. This module can then be

; linked into the final program to prevent the linker from assigning

i these registers to some other module.

i

ieject

MCS-96 MACRO ASSEMBLER EV96

ERR LOC OBJECT

0000

0002

0002

0003

0003

0004

0004

0006

0006
0007

0008

0009

0011

0011

OOOA

OOOA

oooc

OOOE

OOOE
OOOF
0010

0015

0015

0016

0016

0017

0018

LINE

4i

42

43
44

45

46

47

48

49
50

51

52

53

54

55

56

57

58

59

60

61

62

63

64
65

66

67

68

69

70
71

12

73

74

75

76
77

78

79

80

81

82

83

84

85

86

87

88

89

90
91

01/24/89 13:55:41 PAGE 2

SOURCE STATEMENT

; Define symbols for the register mapped I/O locations

; --_---

;
zero ew 0OH:word ; R/W

equ 02H:byte i W

w 02H:byte i R

ew 03H:byte i R

equ 03H:byte ; W

ew 04H:word i R

ew 04H:word ; W

equ 06H:byte i R

ew 06H:byte ; W

equ 07H:byte i R/W

equ 08H:byte i R/W

equ 09H:byte i R/W

ew llH:byte ; W

ew llH:byte i R

equ 0AH:byte ; W

equ 0AH:word : R

equ 0CH:word ; R

ew 0EH:byte ; R

equ 0EH:byte ; W

equ 0FH:byte i R/W

ew 10H:byte i R/W

equ 15H:byte i W

equ 15H:byte i R

equ 16H:byte ; w

ew 16H:byte ; R

ew 17H:byte ; W

equ 18H:word i R/W

Zero Register

ad command

ad-result lo

abresult:hi

hsi mode

hsi-time

hso-time

hsi-status

hso:command

sbuf

int mask -
int-pending

spcon

spstat

watchdog

timer1

timer2

port0

baud-reg

ioportl
ioport2

ioc0

ios0

iocl

iosl

pwm-control

sP

A to D command register

Low byte of result and channel

High byte of result

Controls HSI transition detector

HSI time tag

HSO time tag

HSI status register (reads fife)

HSO command tag
Serial port buffer

Interrupt mask register

Interrupt pending register

Serial port control register

Serial port status register

Watchdog timer

Timer1 register

Timer2 register

I/O port 0
Baud rate register

I/O port 1
I/O port 2
I/O control register 0 (HSI/O)

I/O status register 0

I/O control register 1 (Port2)

I/O status register 1

PWM control register

System stack pointer

i This section defines utility macros non-specific to this program
; ----___________-------------~~~--------------------~~~~~~~~~~~~~

&FINE-BIT macro

name

endm

SET-BIT macro

orb

endm

CLR-BIT macro

andb

endm

BL

Seject

macro

bnc

endm

name,bitnum

equ bitnum

regnum,bitnum

regnum,#(1 SHL (bitnum mod 8))

regnum,bitnum

regnum,#not(1 SHL (bitnum mod 8))

label

label

MCS-96 MACRO ASSEMBLER EV96 01/24/89 13:55:41 PAGE 3

ERR LOC OBJECT LINE

92
93

94

95

8000 96

97

98

99

0000 100

101

102

103

104

105

106

107

108

109

110
111

112

113

114

115

116

117

118

119

120

121
122

123

124

125

126
127

SOURCE STATEMENT

; This section contains EQUates which may change with different versions
; _---------------------------------~~~~~~~~~~~--~---~~-~-~--~-~-~~--~-~

offset equ 8000H ; Code offset before REMAP

; Tell the commands what to use for psw while monitor is running

i

rism-psw ew OOOOH ; ko Interrupts enabled

i This section contains several macros generate specifically for this program

; -----_--_--

; ENTER RISM

i -A macro which generates the prologue for the RISM ISR

i EXIT RISM -
; A macro which generates the epilogue for the RISM ISR

;
; SEND DATA BYTE -
i A macro which passes the lower eight bits of RISM-DATA to

; the serial port, it assumes the port is ready for data

;
; BYTE-PROTECT

i A macro which terminates the RISM ISR if the RISM is about

i to write into a byte it should not modify.

;
i WORD PROTECT -
i A macro which terminates the RISM ISR if the RISM is about

; to write into a word it should not modify.

i DWORD PROTECT

; -A macro which terminates the RISM ISR if the RISM is about

; to write into a double-word it should not modify.

;
$eject

MCS-96 MACRO ASSEMBLER EV96

ERR LOC OBJECT LINE

150

151

152

153

154

OOlC 155

156
157

OOlC 158

OOlC 159

OOlD 160

OOlE 161

0020 162

0022 163

164
165

01/24/89 13:55:41 PAGE 5

SOURCE STATEMENT

; These registers are used only by the diagnostic routines.

;

; They are not required for normal execution.

rseg at lch

i --------___

i
ax: dsw 1

al equ ax:byte

ah equ (axtl):byte

dx: dsw 1

bx: dsw 1

cx: dsw 1

ie ject

MCS-96 MACRO ASSEMBLER EV96 01/24/89 13:55:41 PAGE 6

ERR LOC OBJECT

00 30

0030

0034

0036

0036

0036

0038

003A

003c

2020

2020

2022

LINE

<b6

16,

168

169

170

171
172

173

174

175

176

177

178

179

180

181

183

185

187

189

191

192

193

194

195

196

197

198
199

200

201

202

203

204

205

206
207

;OUR(:E STATEMENT

‘These registers MUST be reserved for the RISM

rseg at 30H

;

RISM DATA:

RISM-ADDR: -

dsl 1 ; The RISM data register

dsw 1 ; The RISM address register

tempw: dsw 1 ; Temp for use by monitor

tempb w tempwzbyte

char ew tempw:byte

RISM-STAT: dsb 1 ; Contains rism state flags

DEFINE BIT

DEFINE-BIT

DLE-FLAG,0

DEFINE-BIT

RUN-FLAG,2

TRAP FLAG,1

DEFINE-BIT USER-MAP,3

DEFINEIBIT DIAGNOSTIC FLAG,7 -

; These variables are used by the monitor when in diagnotic mode only.
; --

dUSER_PC: dsw 1 ; Saves user's pc during halt

dUSER-PSW: dsw 1 ; Saves user’s psw during halt

;
dseg at 2020H

i -------------

; These variables are used in the normal (non-diagnostic) mode
; _______-_______--_--____________________--------------------

;SER PC:

USERIPSW:

Seject

dsw 1 ; Saves user's pc during halt

dsw 1 ; Saves user’s psw during halt

01/24/89 13:55:41 PAGE 7

,(~rlHt:k XATEMENT

I’he serial channel is provided by an external 82510 UART which uses the NM1

as an interrupt to the processor. The addresses associated with this

: device are defined below.

MCS- 96 MACRO ASSEMBLER EV96

EOll

EOO

i RUO

lEO0

lEO1
lEO1

lEO2

lE03

lE04

lE05

lE06

lEO7

lEO0

lEO4

Nb
1,”

‘f,q

, I/

'Ii

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228
229
230
231
232

233

234

235

236
237

238
239

240

241

242

243
244

245

246
247

248

249

250

251

252

253

;
dseg at lEOOH

: -------------

uart: dsb

txd rxd

baud a lo --
baud a hi --
gener-enabl

general-int

line-config

modem contr

line status -
modem stats

addr GontrO -
clock-confg

io mode -

1OOH

-7”
eq”
equ
equ

equ
equ

equ

ew

equ
ew

equ

uart :byte ; bank0 (if dlab=O) or bank1

uart :byte ; bank0 (if dlab=l)
uart+l :byte ; bank0 (if dlab=l)
uart+l :byte ; bank0 (if dlab=O)

"art+2 :byte ; bank0

"art+3 :byte ; bank0

uartt4 :byte ; bank0

uartt5 :byte ; bank0

uartt6 :byte ; bank0

uartt7 :byte ; bank0

uart :byte ; bank3

uartt4 :byte ; bank3

; The memory map of the board is changed by reading or writing to an
; address between lOOOH and 1DFFH. In this code, this is accomplished by

; branching to address lOOOH to continue RISM execution. The memory map

; of this board, both before and after RESET, are as follows:

;
; Address

; OOOO-OOFFH as data Internal Reg. file

; OOOO-OOFFH as code RISM Monitor EPROM

; OlOO-1CFFH Unused

; lDOO-1DFFH RISM Monitor EPROM

; lEOO-1EFFH External UART (U20)

; lFOO-1FFFH Unused (Port 3 & 4)

; 2000-2013H RISM Int. Vect. EPROM

; 2014-202FH RISM EPROM

; 2030-203FH RISM Int. Vect. EPROM

; 2040-207FH Unused RISM EPROM

; 2080-27FFH RISM Monitor EPROM

; 2800-5FFFH 16-Bit Code/Data RAM

; 6000-7FFFH a-Bit Code/Data RAM

; 8000-FFFFH Unused

Seject

After RESET After REMAP

Internal Reg. file
RISM Monitor EPROM

Unused--User expansion possible
RISM Monitor EPROM

External UART (U20)

Unused (Port 3 & 4)
User Int. Vect. RAM (NOT TRAP!)

RISM Data RAM

User Int. Vect. RAM (NOT NMI!)

User Data RAM

User 16-Bit Code/Data RAM

User 16-Bit Code/Data RAM

User a-Bit Code/Data RAM

Unused--User expansion possible

MCS--96 MACRO ASSEMBLER EV96

ERR LOC OBJECT

A000

A000 0040

A002 0041

A004 0042

A006 0043
A008 0044

AOOA 0045

AOOC 0046

AOOE 0047

A010 3BlD
A012 0048

A018

A018 FF

A030

A030 0049

A032 004A

A034 0048

A036 004C

A038 004D

A03A 004E

A03C 004F

A03E 0000

LINE

254

255

156

251

258

259

260

261
262

263

264

265

266

267

268

269

270

271

272

213

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

01/24/89 13:55:41 PAGE 8

iOURCE STATEMENT

cseg at (offset + 2000H)
_________----------- -_--

; Interrupt service routine addresses to be used in RiSM EPROM.

; Note:

; Of all these interrupt vectors, only the NM1 and TRAP vectors are required

i for operation of the RISM. The other vectors are provided as fixed entry

; points for routines which may be loaded into RAM in the diagnostic mode.

i In the diagnostic mode memory at the interrupt vectors is mapped to EPROM

i so it is not possible to write into the vector table.

:
; (In the normal (i.e. non-diagnostic mode) the interrupt vector table is

i mapped to RAM so the vectors can be loaded as part of the normal process

; of loading a user's object code.

timer-overflow: dew 4000H

ad done: dew 4100H

h.sT data: dew 4200H

hso-event: dew 4300H

hsilzero: dew 4400H

software-timer: dew 4500H

serial-port: dew 4600H

external-int: dew 4700H

trap: dew (break-offset)

invalid-opcode: dew 4800H

;
cseg at (offset t 2018H)

; ____________--______----
;
chip-config: dcb OFFH ; Enable no CCB modes

cseg at (offset + 2030H)

; _----_______--______----
i
serial-txd:

serial-rxd:

hsi-entry-4:

timerZ_capture:

timer2-overflow:

external-int-pin:

hsi-fife-full:

nmi:

$eject

dew 4900H

dew 4AOOH

dew 4BOOH

dew 4COOH

dew 4DOOH

dew 4EOOH

dew 4FOOH

dew (rism-isr-offset)

-. -.--..-. ..-.. -. --

MCS-96 MACRO ASSEMBLER EV96 01/24/89 13:55:41 PAGE 9

ERR LOC OBJECT

A080

5OUKCE STATEMENT

cseg at (offset + 2080H)
--.

A080

A080 FA

A081 Al000118

A085 3516FD

A088 3516FD

A08B C301002000

A090 3516FD

A093 1138

reset vector: -
di

Id

bbc

bbc

st

bbc

clrb

;
A095 818036

A098 C701031E36

ldb

stb

sp,#lOOH

iosl,5, $

iosl,S, $

zero, 2000H

iosl,5, $

RISM STAT -

tempb, t8OH

tempb, line-config[O]

;
A09D B13C36

AOAO C701001E36

AOAS C701011EOO

ldb

stb

stb

; Initialize stack pointer

; wait for a timer1 overflow

; . . . two times,

; release uart reset, and wait

; . . . till uart is ready

; Initialize rism mode register

; set dlab bit in line-config reg...

; so that baud-a reg's are accessable

; set baud rate to 9600

i
AOAA 810336

AOAD C701031E36

ldb

stb

tempb, #3CH

tempb, baud a lo[O] --
zero, baud a hi[O] --

tempb, t03H

tempb, line-config[O]

;
AOB2 B16036

AOBS C701021E36

ldb tempb, #60H
stb tempb, general-int[O]

; set up uart line config reg for no...

: par, 1 stop, Ebit, and txd rxd access -

; switch to bank3

i
AOBA 815036

AOBD C701001E36

ldb tempb, #50H ; select baud rate gen. a for both...

stb tempb, clock-confg[O] ; rx and tx clock source

;
AOC2 B17F36

AOC5 C701041E36

ldb tempb, X7FH

stb tempb, io-mode[O]

; select OUT1 mode on pin 12

AOCA C701021EOO stb zero, general-int[O] ; switch to bank0

AOCF B10136

AOD2 C701011E36

ldb tempb, #OlH ; enable recieve fifo interrupt...

stb tempb, gener-enabl[Ol ; of the uart

;
AOD7 A1000036

AODB C836

AODD F3

i_ I NL

'98
199

100

(01

302

303

304

305

306

307

308

309

310
311

312

313
314

315

316

317

318

319

320
321

322

323

324
325

326

327

328

329

330

331

332

333

334

335
336

337

338

339

340

341

342

343

Id

push

POPf

tempw, #rism-psw
tempw

; value for rism and initial user value

; Set up psw for the monitor

; load psw with rism value

;
AODE 1136

AOEO 28Fl

AOE2 27FE

clrb char

call flash leds

br $ -

; show life to user

; wait for interrupt

;
Seject

MCS-96 MACRO ASSEMBLER EV96 01/24/89 13:55:41 PAGE 10

ERR LOC OBJECT LINE

144

(45

346
347

348

349

350

351
352

353
354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

374

375

376

377

;OIJRCE STATEMENT

AOE4

AOE4 3F3849

AOE7 C40F36

AOEA 1736

AOEC C701001E36

AOFl 1536

AOF 992F36

AOF DF15

AOF 995C36

AOFB DFO3E713DF

A103 BlFFOF

A106 A1000118

AlOA E7F3FB

This code is entered from the nmi isr if the user memory map is not turned

I on. This is the echo mode and diagnostic mode of the board.

; If the diagnostic flag is clear, the board is in echo mode. Any characters

; received from the host are incremented and sent back to the host. They

; are also tested for the set user command (I\') or the set diagnostics

; command ('/'). If either command was sent it is carried out.

:

; If the diagnostic flag is set, the program branches to the diag. mode code.
; ___----------___-___-----------------~~--~-----------------------~--~~~~~~~

not user: -
bbs

stb

inch

stb

decb

cmpb

be

cmpb
I bne

RISM-STAT, DIAGNOSTIC-FLAG, diag-mode

char, ioportl ; splash received char on leds

char ; send back incremented char

char, txd-rxd[Ol

char

char, #('/'J : '/' marks end of serial test...

set-diag ; and beginning of diagnostic mode

char, #('\'I ; '\I marks end of serial test...

exit ; and beginning of user mode

;
: This code places the board in user mode until the next RESET occurs, or

; until RISM-STAT gets altered somehow. It branches to a location which

; does not get remaped, and there, a remap will be performed.
; _-__-------_____________________________--~~~~~~~----------~~~~~-~~~~~~~~

SET-BIT RISM-STAT, USER-MAP

ldb ioportl, #Offh : reintialize ioportl

Id sp, #lOOH ; clear stack

br user-setup

378 Seject

MCS-96 MACRO ASSEMBLER EV96 01/24/89 13:55:41 PAGE 11

ERR LOC OBJECT i,l NE

(‘9

I 8 0

ia1

(82

i83

384

385

AlOD 386

387

All0 A1000118 389

A114 A1000036 390

Ail8 CO3C36 391

392

AllB A1002236 393

AllF C03A36 394

395

Al22 396

A122 B1550F 397

Al25 398

A125 3516FD 399

A128 3516FD 400

A12B 95FFOF 401

A12E 27F5 402

403

404

>OIIH('h ;TATEMENT

l'his code places the board in diagnostics mode until the next RESET or

RISM STAT gets altered somehow. The user's PC is loaded with the

; address of the memory test and a 55H/OAAH pattern flashes on the

; ioportl LEDs while the monitor is waiting for a command.
; --

set diag: -
SET BIT RISM STAT, DIAGNOSTIC FLAG

Id - sp, ltlOOH
-

; clear stack

Id tempw, trism-psw ; value for rism and initial user value

st tempw, dUSER PSW ; - store rism psw as initial user psw

Id tempw, #(mem-tst-offset) ; Set up user pc

st tempw, dUSER_PC

diag-pause:
ldb ioportl, #55h

diag-pause-loop:
bbc iosl,S, $

bbc iosl,5, $

xorb ioportl, #Offh

br diag-pause-loop

Seject

; wait for a timer1 overflow

; . . . twice

; invert ioportl

MCS-96 MACRO ASSEMBLER EV96 01/24/89 13:55:41 PAGE 12

ERR LOC OBJECT IdINE SOURCE STATEMENT

405
406 , This code is executed to interpret a host command when this RISM is in

A130

A130 303803E7FCDE

Al36 991F36

Al39 D103E7F7DE

A13E
A13E ~C3636
A141 643636

Al44 A3374C2136

Al49 E336

407
408

409

410
411

412

413

414
415
416
417
418

419

420
421

; the diagnostics mode.
; __------------------------------

diag-mode:
0 bbs RISM-STAT, DLE-FLAG, force-load-data

cmpb char, #lFH ; check if byte is a command
I bh load-data ; commands are <= 1FH

diag-command:
ldbze tempw, char ; table lookup

add tempw, tempw

Id tempw, (diag-table-offset) [tempwj

br ltempwl

Se ject

MCS-96 MACRO ASSEMBLER EV96 01/24/89 13:55:41 PAGE 13

ERR LOC OBJECT

A14C

A14C 3DOO

A14E 1300

A150 4200

A152 1300

Al54 5700

Al56 5CO0

Al58 6100
A15A 6AOO

A15C 6FOO
AlSE 7400

A160 7coo

Al62 8100

Al64 B421

Al66 Cl21

Al68 8300

A16A CE21

A16C A621

A16E A121
A170 7821
Al72 8D21
Al74 COO0

Al76 4EOO

L, I NE
II/
4Lj

IL4

425

426

421

428

429

430

431

432

433
434

435

436

437

438

439

440
441

442

443
444

445
446

447

448

449

<OUK(:E jTA'I'EMENT

llaq t.able:

dew

dew

dew

dew

dew

dew

dew

dew

dew

dew

dew

dew

dew

dew

dew

dew

dew

dew
dew
dew
dew

dew

;
Seject

(SET-DLE-FLAG - offset) ; 00

(exit - offset) ; 01

(TRANSMIT - offset) ; 02

(exit - offset) ; 03

(READ-BYTE - offset) ; 04

(READ-WORD - offset) ; 05
(READ-DOUBLE - offset) ; 06
(WRITE-BYTE - offset) ; 07
(WRITE-WORD - offset) ; 08
(WRITE-DOUBLE - offset) ; 09

(LOAD-ADDRESS - offset) ; OA
(INDIRECT-ADDRESS - offset) ; OB

(dREAD_PSW - offset) ; oc

(dWRITE_PSW - offset) ; OD

(READ-SP - offset) ; OE
(dWRITE_SP - offset) ; OF
(dREAD_PC - offset) ; 10

(dWRITE_PC - offset) ; 11
(dSTART_USER - offset) ; 12
(dSTOP_USER - offset) ; 13
(REPORT-STATUS - offset) ; 14

(MONITOR-ESCAPE - offset) ; 15

MCS-96 MACRO ASSEMBLER EV96 01/24/89 13:55:41 PAGE 14

ERR LOC OBJECT i,lNE

450

451

452

453

454

455

456

457

458

459

461

463

464
465

466

467

468
471

472

473
474

475

476
477

478

479

480

481

482
484

485
488

489

5OURCE STATEMENT

Al78

A17E C701041E38

Al83 65040018

Al87 C83A

Al89 C83C

A18D

A18D CC3C

A18F CC3A

A191

A191 C92221

Al94 C90000

A19A C701041E38

, The following routines, all named beginning with a 'd' for diagnostics,

; are special cases of RISM commands used when the board is in diagnostics

; mode.

;
dSTART_USER:
.---------_ ,

; Flush the pause routine off the stack and set up user's context.

SET-BIT RISM-STAT, RUN-FLAG

CLR-BIT RISM-STAT, TRAP-FLAG

stb RISM-STAT, modem-contr[Ol ; update running signal to host

add sp,#4
push dUSER PC

push dUSER:PSW

EXIT RISM -

; reset sp to overwrite RISM pc & psw,

; with user pc &

; user psw values

&TOP-USER:

: ---------
i stops "user" execution by setting up the stack to return to pause with

i all interrupts but serial i/o locked out.

POP dUSER_PSW ; remove users psw & pc from stack

POP dUSER_PC i and save

dset-rism-idle:

push #(diaggause-offset) ; the new program counter & psw

push Irism-psw

CLR-BIT RISM-STAT, RUN-FLAG

stb RISM-STAT, modem-contr[O] ; update running signal to host

EXIT RISM -
;
Seject

MCS-96 MACRO ASSEMBLER EV96 01/24/89 13:55:41 PAGE 15

ERR LOC OBJECT LINE
490

AlAl 491

492

493

494

AlAl C03AJO 495

496
499

500

AlA 501

502

503

504

AlA 3A3805 505

AlA A03A30 506

507

AlAE 510

AlAE A3180230 511

512

515

516

iOURCE STATEMENT

<WRITE PC: -
- -------

; user-pc:=RISM-DATA. (Assumes user code is not running)

St RISM-DATA, dUSER_PC

EXIT-RISM

BREAD PC: -
. ------_
; RISM-DATA:=user-pc

bbs RISM-STAT, RUN-FLAG, drpc-running

Id RISM-DATA, dUS.ER-PC ; If user code is not running

EXIT-RISM

drpc-running:
Id RISM-DATA, 2[spl ; If user code is running

EXIT RISM -

ie ject

MCS-96 MACRO ASSEMBLER EV96

ERR LOC OBJECT

AlB4

A184 3A3805

AlB7 A03C30

AlBC

AlBC A21830

AlCl

AlCl 3A3805

AlC4 CO3C30

AlC9

AlC9 C21830

AlCE

AlCE CO1830

AlDl 27BE

LiNE
i, '

.T 1 8

119

520
521
522
523
524
527
528
529

532
533
534
535
536
537
538
539

542
543
544
541
548
549

550
551

552
553
554
555

01/24/89 13:55:41 PAGE 16

SOURCE STATEMENT

dREAD PSW:

; RISM-DATA:=user-psw

,
bbs RISM-STAT, RUN-FLAG, drpsw-running

Id RISM-DATA, dUSER-PSW ; user is not running

EXIT RISM

drpsw-running:
Id RISM-DATA, [sp] ; user is running

EXIT-RISM

dWRITE_PSW:
._________
i user-psw:=RISM-DATA

bbs RISM-STAT, RUN-FLAG, dwpsw-running

st RISM-DATA, dUSER_PSW ; user is not running

EXIT-RISM

dwpsw-running:
St RISM-DATA, [spl ; user is running

EXIT-RISM

. -------- ,
; user-sp:=RISM-DATA. (Assumes user is not running)

st RISM-DATA, sp

br dset rism idle - -

ieject

MCS-96 MACHO ASSEMBLER EV96

ERR LOC OBJECT

411,'

AlDD

AlDD 090134
AlEO C40F35

AlE3

AlE3 3516FD

AlE6 3516FD

AlE9 88003

AlEC D707

AlEE 880034

AlFl D7EA

AlF3 27DE

AlF5
AlF5 B0360F

AlF8 F0

‘NF

,“i

‘H

,14

, ho

'5 6 1

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581
582
583

584

585

01/24/89 13:55:41 PAGE 17

,is,i leds.

, On a reset this code flashes the LEDs connected to ioportl if they are

, enabled. This is useful to see if the board is executing code properly.

; If a '/' or '\' is received from the host while this routine is executing,

; it will terminate immediately.

i

;
Id

fl wait0: -
bbc

bbc

;
fl~loopl:

shl

stb

fl waitl: -
bbc

bbc

;

cv
bne

cw
bne

br
quit:

ldb

ret

;
Seiect 586 ~

rism-addr, #OFFH

iosl,5, _ fl wait0

iosl.5, $

: wait for a timer1 overflow

; . . . twice

rism addr, #l ; shift another 1 into or out of

(risk-addrtl), ioportl ; ioportl

iosl,5, fl-wait1

iosl,5, $

; wait for a timer1 overflow

; . . . twice

char, zero

quit

rism addr, zero

fl-loop1

flash-leds

; check if char has been received

; if so exit

; else continue flashing pattern

ioportl, char ; if char was received, restore it

MCS-96 MACRO ASSEMBLER EV96 01/24/89 13:55:41 PAGE 18

ERR LOC OBJECT

A200

A200

A200 910116

A203 OllC

A205 0122

A207 OllE

A209 1lOF

A209 A1002820

A20F

A20F C62OlC

A212 9A211C
A215 D71C

A217 301E04
A21A 151C

AZlC 2002

A21E

A21E 171C

A220

A220 89008020

A224 D7E9

A226 A1002820

A22A 071E

A22C 170F

A22E BOOF17

A231 27DC

A233

A233 AlFFFF22

A237 27FE

:.iNE

78 1

388

589

590

591

592

593

594

595

596
597
598

599

600

601

602

603

604

605

606
607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624
625

626

627

iOURCE STATEMENT

cseg at (offset t 2200H)

mem tst: -

; This is a RAM test for the EV80C196KB board in its 'shipped' configuration.

; The RAM from 2000H to 27FFH is not mapped during diagnostics, and therefore,

; is not tested. The test alternates between incrementing and decrementing

; the test data on even and odd cycles of the test so that a nonrepetitive

; pattern is produced in memory.

; ---
;

loop:

i

here:

ldb

clr

clr

clr

clrb

Id

stb

cmpb

bne

bbc

decb

br

inch

around:

cw
bne

Id
inc

inch

ldb

br

failed:

Id

br

Seject

.-----------_

iocl, #OlH

ax

CX

dx

ioportl

bx, t2800H

al, [bxl
al, [bx]+
failed

dx.0, here

al
around

al

bx, #8000H

loop

bx, t2800H

dx

ioportl

pwm-control,

loop

CX, #OFFFFH
s

.-.

; enable PWM

; clear data register

; clear error register

; clear test count register

: starting address of RAM in diag. mode.

; save test data

; check if it is saved, and point to next byte

; if not, test failed

; check if test count is even or odd

; if it is odd, decrement test data

; if it is even, increment test data

i has end of RAM been reached by pointer?

; is not continue,

; else, return pointer to starting address

; count the test as successful

i show completion to user on LEDs

ioportl ; PWM LED gets brighter as ioportl

; value gets bigger

i go back for another cycle

; set error register

: end test

Mcs-96 mcrw ASSEMBLER EV96 01/24/89 13:55:41 PAGE 19

ERR LOC OBJECT

A280

AL80

A283

A286 C6201C

A28C B2201D
A28F 27F2

A2AO

A2AO

A2A3

A2A6 C22OlC

A2AC A2201E

AZAF 27F2

LINE,
hi’8
hLY

6.30

b \ 1

632

633

634

635

637

638

640

641

643

644

645

646

647

648

649

650

651

652

654

655

657

658

660

661

662

663

iOURLE STATEMENT

cseg at (offset + 22808)

cycle-byte:
.----_--__

; does alternate read and write operation on the byte specified by bx.
; _--__----___--__________________________---------------------------

CLR-BIT IOPORT1,7

cb-loop:
SET-BIT IOPORT1,7

stb ax, [bxl
CLR-BIT IOPORT1,7

ldb (ax+l),tbxl
br cb-loop

cseg at (offset + 22AOH)

; --__----_-----_---------
cycle-word:
.--_----_- ,
; does alternate read and write operation on the word specified by bx.
; -__--_________-__--_---

CLR-BIT IOPORT1,7

cw~loop:
SET-BIT IOPORT1,7

st ax, [bxl
CLR-BIT IOPORT1,7

Id dx, Ibxl
br cw~loop

;
Seject

MCS-96 MACRO ASSEMBLER EV96 01/24/89 13:55:41 PAGE 20

ERR LOC OBJECT

VDOO

VDOO

9DOO A1000036

9D04 C301222036

VDOV ~1802036

9DOD C301202036

VD12 A13BlD36

9D16 C301102036

9DlB C3013E2000

VD20

9D20 27FE

LINE

664

b65
666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

2'0URCE STATEMENT

cseg at (offset t 1DOOH)

;
user setup: -
,-----___-

: This code completes changing the board into user mode. The PLD on the

; board (U12) automatically remaps memory when code from this address

; range is fetched.

Id tempw, Irism-psw ; value for rism and initial user value

st tempw, USER-PSW ; store rism psw as initial user psw

Id tempw, 12080H ; Set up user pc

St tempw, USER PC -

Id tempw, #(break-offset)

st tempw, (trap-offset) [O] ; initialize trap vector

st zero, (nmi-offset) [O] ; initialize nmi vector

monitor-pause:

br monitor-pause ; wait for a command from the host

$eject

WCS-96 MACRO ASSEMBLER

ERR LOC OBJECT

9D2?

9D28 C701041E38

9D2D 65040018

9D31 CB012020

VD35 CB012220

9D3B

9D3F 373803374804

VD45

9D45 CF012220

VD49 CFO12020

VD4D
9D4D C9201D
VDSO C90000

9D56 C701041E38

EV96 01/24/89 13:55:41 PAGE 21

I.iNE

688
689

690

691

692

693
695

697
698

699

700

701

702

705

706

707

708
709

710

711

713

715

716

717

718

719

720

721

722

723

724
725

726
727

729

730

733
734

SOURCE STATEWF,NT

START USER:

; Flush the pause routine off the stack

SET-BIT RISM-STAT, RUN-FLAG
CLR BIT RISM-STAT, TRAP-FLAG

stb- RISM-STAT, modem-contr[O] ; update running signal to host

;
add sp.#4 ; reset sp to overwrite RISM pc 6 psw,

push USER PC

push lJSER:PSW

EXIT-RISH

; with user pc h

; user psw values

break:
. ---- I

; This routine is invoked by a TRAP instruction used for breakpointing,

; it operates somewhat like a STOP-USER instruction.

ENTER-RI%

SET-BIT RISM-STAT, TRAP-FLAG

! bbs RISM-STAT, DIAGNOSTIC-FLAG, dSTOP_user

STOP-USER:
. ---- ,

; Stops "user" execution by setting up the stack to return to pause with

; all interrupts but serial i/o locked out.

POP USER-PSW ; remove users psw 6 pc from stack

POP USER-PC ; and save

set rism idle: -
push #(monitor-pause-offset) ; the new program counter 6 psw

push trismgsw

CLR-BIT RISM-STAT, RUN-FLAG

stb RISM-STAT, modem-contr[Ol ; update running signal to host

EXIT RISM -

Seject

MCS-96 MACRO ASSEMBLER EV96 01/24/89 13:55:41 PAGE 22

ERR LOC OBJECT

9D5E

LINE

I35

'36

737

738

739

740

741

742

743

744

745

746
747

748

749

750

751

752

153
754

755

756

757

750

759

760

761

762

SOURCE STATEMENT

command table: -
.----_-____-_

9D5E 3DOO

9D60 1300

9D62 4200

9D64 1300

9D66 5700

VD68 SC00

9D6A 6100

9D6C 6AOO
9D6E 6FO0

9D70 7400

9D72 7CO0

VD74 8100

9076 9DOO

9D78 AC00

9D7A B300

9D7C BAOO

9D7E 8DOO

9D80 8600
9D82 221D

9D84 451D

9D86 COO0

9D88 4EOO

;
dew

dew

dew

dew

dew

dew

dew

dew
dew

dew

dew
dew

dew

dew

dew

dew

dew

dew

dew

dew

dew

dew

ieject

(SET-DLE-FLAG - offset) ; 00

(exit - offset) i 01

(TRANSMIT - offset) ; 02

(exit - offset) ; 03

(READ-BYTE - offset) ; 04

(READ-WORD - offset) ; 05

(READ-DOUBLE - offset) ; 06

(WRITE-BYTE - offset) ; 07

(WRITE-WORD - offset) ;. 08

(WRITE-DOUBLE - offset) ; 09

(LOAD-ADDRESS - offset) ; OA

(INDIRECT-ADDRESS - offset) ; OB

(READ-PSW - offset) ; oc

(WRITE-PSW - offset) ; OD

(READ-SP - offset) ; OE

(WRITE-SP - offset) ; OF

(READ-PC - offset) ; 10

(WRITE-PC - offset) ; 11

(START-USER - offset) : 12

(STOP-USER - offset) ; 13

(REPORT-STATUS - offset) ; 14

(MONITOR-ESCAPE - offset) ; 15

MCS-96 MACRO ASSEMBLER EV96

ERR LOC OBJECT

8000

8000

8001 B301021E36

8006 950436

8009 DFOA

8008 B10136
800E C701011E36

I3013

8015

8015 AFOlOOlE36

801A 383803E7C420

8020 38380F
8023 991F36

8026 D90D

8028

8028 643636

802B A3375ElD36

8030 E336

,INE

'63

'64

165

‘166
767

768
769

770
771

772

773

715

776
777

778

779

780

781

784

705

786
787

788

789

790

791

792

793

794

795

796

791

01/24/t-19 13:55:41 PAGE 23

SOURCE STATEMENT

cseg at (offset + OOOOH)

; ------------------------

;
; rism interrupt service routine

; ------------------------------

i Control passes to this point when the rism gets a serial i/o interrupt
; from the host system.

;
rism isr: -

ENTER-RISM

ldb tempb, general-int[O] ; read uart interrupt status

xorb tempb, $OOOOOlOOB ; test for receive fifo interrupt

be receive-ready

ldb tempb, XOlH ; enable only recieve fifo interrupt...
stb tempb, gener-enabl[O] ; of the uart, mask all others

exit:
EXIT-RISM

,
receive-ready:

ldbze tempw, txd-rxd[O] . "char" is low byte of tempw
I bbc RISM-STAT,USER-MAP, not-kser

bbs RISM-STAT, DLE-FLAG, force-load data

cmpb char, #lFH i check-if byte is a command

bh load-data ; commands are <= 1FH

process command:

-add tempw, tempw ; convert "char" to word index

Id tempw, (command-table-offset) [tempw]

br [tewwl

ieject

MCS-96 MACRO ASSEMBLER EV96

ERR LOC OBJECT

8032

8035

SO35 OD0830

8038 803630

803D

8042

8047 OCO830

804A 0734

804E

804E 89010030

8052 D7BF

8054 FF

8055 27FE

LINE

'98

199

BOO

I301

803

804

805

806

807

808
809

812

813

814

815

816

817

819

822

823
824

825

826

827

828

829

831

832
833

836

837

838

839

840

841

842

843

844

845
846

01/24/89 13:55:41 PAGE 24

WURCE STATEMENT

force-load-data:
;------ --------

CLR-BIT RISM-STAT, DLE-FLAG

load-data:
. -------- ,

shll RISM-DATA, f8

ldb RISM-DATA, char

EXIT-RISM

;
SET-DLE-FLAG:

;-----------
; RISM-STAT.O:=SET

;
SET-BIT RISM-STAT, DLE-FLAG

EXIT-RISM

TRANSMIT:

; -------
; utxd:=RISM_DATA[7..0]

; RISM-DATA:=RISM-DATA >> 8

; RISM-ADDR:=RISM-ADDR+l

SEND-DATA-BYTE

shrl RISM-DATA, X8

inc RISM-ADDR

EXIT-RISM

;
MONITOR-ESCAPE:

; if RISM-DATA=1 then execute reset

i

cmp RISM-DATA, #Ol

bne exit

rst

br s

:
Seject

; make room for new byte

; Execute a reset instruction

; and loop until reset takes effect

MCS-96 MACRO ASSEMBLER EV96

ERR LOC OBJECT

805 7

805.1 B234_(0

805C

805C A23430

8061

8061 A23430
8064 A3340232

806A

806A C63530

806F

806F C23530

8074

8074 C23530

8077 C23532

.JNE

84'

H48

d49
850

851

852

853

856

857

858

859

860

861
862

865

866

867

868

869

870

871

872

875

876
877

878

879

880

881

882

883

886

887
888
889

890

891

892

893

896

897

898

899
900

901

902

903

904

905

908

909

01/24/89 13:55:41 PAGE 25

SOURCE STATEMENT

READ BYTE: -
-___----

; RISM-DATA:=byte at RISM-ADDR

i
Idb RISM-DATA, [RISM-ADDR]

EXIT RISM -
;
READ-WORD:
. -------- ,
; RISM-DATA:=word at RlSM-ADDR

Id RISM-DATA, [RISM-ADDRI

EXIT-RISM

;
READ DOUBLE: -

; RISM-DATA:=double-word at RISM-ADDR

;
Id RISM-DATA, (RISM-ADDRI

Id (RISM_DATA+2), 2(RISM_ADDR]

EXIT-RISM

WRITE-BYTE:
._--__---_

i byte at RISM-ADDR:=RISM-DATA

; RISM-ADDR:=RISM-ADDR+l

BYTE-PROTECT

stb RISM-DATA, [RISM-ADDR]i

EXIT-RISM

WRITE-WORD:

; ---------
i word at RISM-ADDR:=RISM-DATA

; RISM-ADDR:=RISM-ADDR+Z

WORD-PROTECT

st RISM-DATA, [RISM-ADDR]t

EXIT-RISM

I

WRITE-DOUBLE:
.____-___--- ,
; double-word at RISM-ADDR:=RISM-DATA

; RISM-ADDR:=RISM-ADDR+I

;
DWORD PROTECT -

st RrsM-DATA, [RISM-ADDR]~
St (RISM_DATAt2), [RISM-ADDR]t

EXIT-RISM

ieject

MCS-96 MACRO ASSEMBLER

ERR LOC OBJECT

807C

807C A03034

8081

8081 A23434

8086

8086 ~301202030

808D

808D 3A3807
8090 A301202030

8097
8097 A3180230

EV96

LINE

910

911

912

913

914

915
916

919

920

921

922

923

924

925

926

929

930
931
932
933

934

935

938

939

940

941

942

943

944
945

946

949

950

951

954

955

01/24/89 13:55:41 PAGE 26

SOURCE STATEMENT

LOAD-ADDRESS:

;-----------
; RISM-ADDR:=RISM-DATA

Id RISM-ADDR, RISM-DATA

EXIT-RISM

INDIRECT-ADDRESS:
;---------------

; RISM-ADDR:=[RISM-ADDRI

Id RISM-ADDR, [RISM-ADDRI

EXIT-RISM

WRITE-PC:
. __----- ,
; usergc:=RISM-DATA. (Assumes user is not running)

st RISM-DATA, USER-PC

EXIT-RISM

READ-PC:
. _----- ,
; RISM DATA:=user pc

i
bbs RISM-STAT, RUN-FLAG, rpc-running

Id RISM-DATA, USER-PC ; If user code is not running

EXIT-RISM

rpc-running:

Id RISM-DATA, 2[spl ; If user code is running

EXIT-RISM

Seject

MCS-96 MACRO ASSEMBLER EV96

ERR LOC OBJECT

809D

809D 3A3807
80AO A301222030

80A7

80A7 A21830

80AC

80AC C301222030

80B3

8083 4504001830

80BA

80BA CO1830

80BD E78DlC

8OCO

0000

0001

0002

8OCO A1010030

8OC4 323802274A

8OC9 A1020030

8OcD 3138022741

80D2 A1000030

80D8

LINE

Y56

La5 1
Y58

959

960

961

962

963

966

967

968

971

972
973

974

975

976

977

980

981

982

983

984
985

986

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1012

1013

01/24/89 13:55:41 PAGE 27

SOURCE STATEMENT

READ PSW:

; RISM-DATA:=user-psw

bbs RISM-STAT, RUN-FLAG, rpsw-running

Id RISM-DATA, USER-PSW i user is not running

EXIT-RISM

rpsw-running:

Id RISM-DATA, [spl ;-user is running

EXIT-RISM

WRITE-PSW:

i --------
; user-psw:=RISM-DATA (Assumes user is not running)

;
st RISM-DATA, USER-PSW ; user is not running

EXIT-RISM

READ-sP:
. ------ ,

; RISM-DATA:=user-sp

;
add RISM-DATA, sp, t4

EXIT-RISM

i
WRITE-SP:
. - - - - - - - - ,

; add four to account for PC and PSW...

; on the stack during this interrupt

: user-sp:=RISM-DATA. (Assumes user is not running)

st RISM-DATA, sp

br set-rism-idle

REPORT-STATUS:

; Report user status:

stopped equ 0
running equ 1

trapped equ 2

;
Id RISM DATA, #running

bbs RISM-STAT, RUN FLAG, exit

Id RISM-DATA, #trapped

bbs RISM-STAT, TRAP-FLAG, exit

Id RISMIDATA, #stopped

EXIT-RISM i else report stopped

end

MCS-96 MACRO ASSEMBLER EV96

SYMBOL TABLE LISTING
--- ---- - ----_. --_-- ._

NAME

AD COMMAND.
AD-DONE

AD-RESULT HI.

AD-RESULT-LO.

ADDR CONTRO
AH.:.....

AL.......

AROUND.
AX.......

BAUD A HI . . .

BAUD-A-LO . . .

BAUD-REG. . . .

BL.:.....

BREAK

BX.......

BYTE-PROTECT. .

CB LOOP

CHAR.

CHIP-CONFIG . .

CLOCK-CONFG . .

CLR BIT

CO&ND TABLE .

cw LOOP--. . . .

cx,

CYCLE-BYTE. . .

CYCLE-WORD. . .

DEFINE BIT. . .

DIAG-C&AND. .

DIAG MODE . . .

DIAG-PAUSE. . .

DIAG-PAUSE LOOP

DIAG-TABLE: . .

DIAGiOSTIC-FLAG

DLE-FLAG. . . .

DREAD PC. . . .

.DREAD-PSW . . .

DRPC RUNNING. .

DRPSii-RUNNING .

DSET-RISM-IDLE.
DSTART USER . .
DSTOP-&ER. . .

DUSER PC. . . .

DUSER-PSW . . .

DWORD-PROTECT .

DWPSW-RUNNING .

DWRITE PC . . .

DWRITE-PSW. , . -

~

I.. .

.

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

..... : ..

........

........

........

........

........

........

........

........

........

VALUE ATTRIBUTES

0002H

A002H

0003H

0002H

lE07H

00i~H

OOlCH

A220H

OOlCH

1EOlH

lEOOH

OOOEH

9D3BH

0020H

A283H
0036H

A018H

lEOOH

9D5EH

A2A3H

0022H

A280H

AZAOH

A13EH

A130H
A122H

A125H

Al4CH

0007H

00OOH

AlACH

AlB4H

AlAEH

AlBCH

A191H

A178H
A18DH

003AH

003CH

AlC9H

AlAlH

AlClH

NULL ABS BYTE

CODE ABS WORD

NULL ABS BYTE

NULL ABS BYTE

DATA ABS BYTE

REG ABS BYTE

REG ABS BYTE

CODE ABS ENTRY

REG ABS WORD

DATA ABS BYTE

DATA ABS BYTE

NULL ABS BYTE

MACRO

CODE ABS ENTRY

REG ABS WORD

MACRO

CODE ABS ENTRY

REG ABS BYTE
CODE ABS BYTE

DATA ABS BYTE

MACRO

CODE ABS WORD

CODE ABS ENTRY

REG ABS WORD

CODE ABS ENTRY

CODE ABS ENTRY

MACRO

CODE ABS ENTRY

CODE ABS ENTRY

CODE ABS ENTRY

CODE ABS ENTRY

CODE ABS WORD

NULL ABS

NULL ABS

CODE ABS ENTRY

CODE ABS ENTRY

CODE ABS ENTRY

CODE ABS ENTRY

CODE ABS ENTRY

CODE ABS ENTRY
CODE ABS ENTRY

REG ABS WORD

REG ABS WORD

MACRO

CODE ABS ENTRY

CODE ABS ENTRY

CODE ABS ENTRY

01/24/89 13:55:41 PAGE 28

MCS-96 MACRO ASSEM IDLER EV96 01/24/89 13:55:41 PAGE 29

NAME ‘JALIJE ATTRIBUTES

DWRITE SP

DX.

ENTER RISM

EV96.

EXIT.
EXIT RISM

EXTERNAL INT
EXTERNAL TNT PIN.

FAILED. : -:

FL LOOPl. . . .

FL-WAITO. . . .

FL-WAITl. .

FLASH LEDS. . . .

FORCE-LOAD DATA .

GENER-ENAB: . .

GENERiL INT .

HERE. .-.

HSI DATA.

HSI-ENTRY 4 . . .

HSI-FIFO FULL , .

HSI-MODE:

HSI-STATUS. . . .

HSI-TIME.
HSI-ZERO. . . . _

HSO-COMMAND . . .

HSO-EVENT . . . ,

HSO-TIME.

INDIRECT ADDRESS.

INT-MASK:

INT PENDING . . .
INVALID OPCODE. .

IO MODE-.

IOCO.

IOCl.
IOPORTl

IOPORT2

IOSO.

IOSl.

LINE CONFIG . . .

LINE-STATUS . . .

LOAD-ADDRESS. . .

LOAD-DATA

LOOPT . . . , . .

MEM TST

MODEM CONTR _ . .

MODEM-STATS . . .

MONIToR ESCAPE. .

MONITOR-PAUSE . .

NM1 . .-.

NOT-USER.

AlCEH

OOlEH

8013H
-----

.... AOOEH
....... A03AH

....... A233H

... * ... AlDDH

....... AlD7H

....... AlE3H

....... AlD3H

...... * 8032H

....... 1EOlH

....... lE02H

....... A2lEH

....... A004H

....... A034H

....... A03CH

....... 0003H

....... 0006H

....... 0004H

....... AOOBH

....... 0006H

....... A006H

....... 000411

....... 8081H

....... 0008H

....... 0009H

....... A012H

....... lE04H

....... 0015H

....... 0016H

....... OOOFH

....... OOlOH

....... 0015H

....... 0016H

....... lE03H

....... lE05H

....... 807CH

....... 8035H

....... AZOFH

....... A200H

....... lE04H

....... lE06H

....... 804EH

....... 9D20H

....... A03EH

....... AOE4H

CODE ABS ENTRY

REG ABS WORD

MACRO

MODULE MAIN STACKSIZE

CODE ABS ENTRY

MACRO
CODE ABS WORD

CODE ABS WORD

CODE ABS ENTRY

CODE ABS ENTRY

CODE ABS '?NTRY

CODE ABS ENTRY

CODE ABS ENTRY

CODE ABS ENTRY

DATA ABS BYTE

DATA ABS BYTE

CODE ABS ENTRY

CODE ABS WORD

CODE ABS WORD

CODE ABS WORD

NULL ABS BYTE

NULL ABS BYTE

NULL ABS WORD
CODE ABS WORD

NULL ABS BYTE

CODE ABS WORD

NULL ABS WORD

CODE ABS ENTRY

NULL ABS BYTE

NULL ABS BYTE

CODE ABS WORD

DATA ABS BYTE

NULL ABS BYTE
NULL ABS BYTE

NULL ABS BYTE

NULL ABS BYTE

NULL ABS B"TE I

NULL ABS BYTE

DATA ADS BYTE

DATA ABS BYTE

CODE ABS ENTRY

CODE ABS ENTRY

CODE ABS ENTRY

CODE ABS ENTRY

DATA ABS BYTE

DATA ABS BYTE

CODE ABS ENTRY

CODE ABS ENTRY

CODE ABS WORD

CODE ABS ENTRY

MCS-96 MACRO ASSEMBLER EV96 01/24/89 13:55:41 PAGE 30

NAME

OFFSET

PORT0

PROCESS UX-IMAND

PWM CON'kOI,

QUIT.

READ BYTE

READ.-DOUBLE

READ PC

READDPSW.

READ-SP . r .

READ-WORD .

RECEiVE READY .

uEPouT STATUS .

RESET VECTOR. ,
RISM ADDR .

RISM-DATA . .

RISM-ISR. . . .

RISM-PSW. . . .

RISM-STAT . . .

upc RUNNING . .

UPS6 RUNNING. .

RUN FLAG. . . .

RUNNING

SBUF.

SEND DATA BYTE.

SERIAL PORT . .

SERIAL-RXD. . .

SERIAL-TXD. , .
SET BIT , . . ,

SET-DIAG. . . .

SET-DLE FLAG. .

SET-RISM IDLE .

SOFTWARE-TIMER.

SP...T...

SPCON

S?STAT.

START USER. . .
STOP USER . . .
STOPGED

TEMPB

TEMPW

TIMER-OVERFLOW.

TIMERl.

TIMERZ.

TIMER2-CAPTURE.

TIMER2 OVERFLOW

TRANSMIT. . . .
TRAP.

TRAP-FLAG . . .

TRAPPED

dAL,IJE

HOOOH

UOOEH

8028H
OOllH

AlFSH
8057H

8061H

808DH

809DH

80B3H

805CH

8015H

EOCOH

A08OH

0034H

0030H
EOOOH

OOOOH

0038H

8097H

80A7H

OOOZH

OOOlH

0007H

AOOCH

A032H
A03OH

AlODH

803DH

9D4DH

AOOAH

0018H

OOllH

OOllH

9D22H
9D45H
OOOOH
0036H

0036H

AOOOH

OOOAH

OOOCH

A036H

A038H

80428

AOlOH

OOOlH

0002H

I\TTRIBUTES

NULL ABS

NULL ABS BYTE

CODE ABS ENTRY
NULL ABS BYTE

CODE ABS ENTRY

CODE ABS ENTRY

CODE ABS ENTRY

CODE ABS ENTRY

CODE ABS ENTRY

CODE ABS ENTRY

CODE ABS ENTRY

CODE ABS ENTRY

CODE ABS ENTRY

CODE ABS ENTRY

REG ABS WORD

REG ABS LONG

CODE ABS ENTRY

NULL ABS

REG ABS BYTE

CODE ABS ENTRY

CODE ABS ENTRY

NULL ABS

NULL ABS

NULL ABS BYTE

MACRO

CODE AES WORD

CODE ABS WORD

CODE ABS WORD
MACRO

CODE ABS ENTRY

CODE ABS ENTRY

CODE ABS ENTRY

CODE ABS WORD

NULL ABS WORD

NULL ABS BYTE

NULL ABS BYTE

CODE ABS ENTRY
CODE ABS ENTRY
NULL ABS

REG ABS BYTE

REG ABS WORD

CODE ABS WORD

NULL ABS WORD

NULL ABS WORD

CODE ABS WORD

CODE ABS WORD

CODE ABS ENTRY

CODE ABS WORD

NULL ABS

NULL ABS

MCS-96 MACRO ASSEMBLER

NAME

TXD RXD

UART

USER MAP

USER PC

USER PSW

USER-SETIJP

WATCHDOG.

WORD PROTECT

WRITE BYTE.

WRITE-DOUBLE

WRITE PC. .

WRITE-PSW .

WRITE-SP. .

WRITE-WORD.

ZERO.-. . .

EV96

. . .
. .

. .

JAI.lIb.

IEUOH

LEOOH

0003H

2020H

2022H

9DOOH

OOOAH

806AH

80748

8086H
EOACH

80BAH

806FH

OOOOH

01/24/89 13:55:41 PAGE 31

A'r'l'H L HlJTES

DATA ABS BYTE

DATA ABS BYTE

NULL ABS

DATA ABS WORD

DATA ABS WORD

CODE ABS ENTRY

NULL ABS BYTE

MACRO

CODE ABS ENTRY

CODE ABS ENTRY

CODE ABS ENTRY

CODE ABS ENTRY

CODE ABS ENTRY

CODE ABS ENTRY

NULL ABS WORD

ASSEMBLY COMPLETED, NO ERROR(S) FOUND.

Appendix D.

Timing Analysis

Timing analysis of the EV80C196KB board.

All values used are based on the 8OCl96KB operating at 12MHz. They
are taken from the October 1988 version of the 8OCl96KB data sheet,
Intel order number 270634-001.

8OC196KB AX. Characteristics

Tavyv = 81 ns MAX.
Tavyv(WAIT) = 11 ns (AC373 Dn to On Tplh MAX) + 35 ns (PAUEPLD Tpd MAX)

+ 9 ns (AC08 Tplh MAX) + 12 ns (AC112 RES to Q Tphl MAX)
= 67 ns.

Tllyv is irrelevant in this design.

Tclyx = 53 ns MAX.
Tclyx(WAIT) = 10 ns (AC11 2 CLOCK to Q Tplh MAX).

Tllyx is irrelevant in this design.

Tavgv = 81 ns MAX.
Tclyx(BUSWIDTH) = 11 ns (AC373 Dn to On Tplh MAX) + 35 ns (PAUEPLD Tpd
MAX)

= 46 ns.

Tllgv is irrelevant in this design.

Tclgx is irrelevant in this design.

Tavdv = 183 ns MAX, for zero wait states.
Tavdv(ROMsim) = 11 ns (AC373 Dn to On Tplh MAX) + 35 ns (PAUEPLD Tpd
MAX)

+ 100 ns (RAM Tcol MAX)
= 146 ns.

Tavdv = 349 ns MAX, for one wait state.
Tavdv(EPROM) = 11 ns (AC373 Dn to On Tplh MAX) + 35 ns (PAUEPLD Tpd MAX)

+ 200 ns (EPROM Tee MAX)
= 246 ns.

Tavdv = 516 ns MAX, for two wait states.
Tavdv(UART) = 11 ns (AC373 Dn to On Tplh MAX) + 35 ns (PAUEPLD Tpd MAX)

+ 288 ns (UART Tavrl MIN + Trldv MAX)
= 334 ns.

Trldv = 60 ns MAX, for zero wait states.
Trldv(ROMsim) = 50 ns (RAM Toe MAX).

Trldv = 226 ns MAX, for one wait state.
Trldv(EPROM) = 75 ns (EPROM Toe MAX).

Trldv = 393 ns MAX, for two wait states.
Trldv(UART) = 281 ns (UART Trldv MAX).

Tcldv is ‘irrelevant in this design.

Trhdz = 63 ns MAX.
Trhdz(ROMsim) = 35 ns (RAM Tohz MAX).
Trhdz(EPROM) = 55 ns (EPROM Tdf MAX).
Trhdz(UART) = 40 ns (UART Trhdz MAX).

Trxdx = 0 ns MIN.
Trxdx(ROMsim) = 0 ns (RAM Tohz MIN).
Trxdx(EPROM) = 0 ns (EPROM Toh MIN).
Trxdx(UART) is not specified.

Txhch is irrelevant in this design.

Tclcl = 166 ns.
Tclcl(WAIT) = 55 ns (PAUEPLD Tp MIN).

= 10 ns (AC1 12 l/Fmax MIN).

Tchcl = 73 ns MIN.
Tchcl(WAIT) = 25 ns (PAUEPLD Tco MAX) + 35 ns (PAUEPLD Tpd MAX)

+ 4 ns (AC1 12 Tsu MIN)
= 64 ns.

or = 25 ns (PAUEPLD Tco MAX) + 35 ns (PAUEPLD Tpd MAX)
+ 8 ns (AC08 Tplh MAX) + 2 ns (AC1 12 Trem MIN)
= 70 ns.

Tcllh is irrelevant in this design.

Tllch is irrelevant in this design.

Tlhlh is irrelevant in this design.

Tlhll = 73 ns MIN.
Tlhll(AO-A15) = 5 ns (AC373 Tw MIN).

Tavll = 68 ns MIN.
Tavll(AO-A15) = 5 ns (AC373 Ts MIN).
TavIl(WAIT) = 11 ns (AC373 Dn to On Tplh MAX) + 35 ns (PAUEPLD Tpd MAX)

+ 8 ns (AC00 Tphl MIN) + 5 ns (AC1 12 Tw MIN)
= 59 ns.

TavII(BHE#) = 11 ns (AC14 Tplh MAX) + 4 ns (AC1 12 Tsu MIN)
= 15 ns.

Tllax = 43 ns MIN.
Tllax(A,O-A15) = 0 ns (AC373 Th MIN).
Tllax(BHE#) = 0 ns (AC1 12 Th MIN).

Tllrl = 43 ns MIN.
Tllrl(UART) = 7 ns (UART Tavrl MIN).

Trlcl is irrelevant in this design.

Trlrh = 411 ns MIN, for two wait states.
Trlrh(UART) = 281 ns (UART Trlrh MIN).

Trhlh = 83 ns MIN.
Trhlh(STALE) = 9 ns (74AC08 Tplh MAX) + 3 ns (74AC112 Trem MIN)

=12ns.

Tllwl = 73 ns MIN.
Tllwl(UART) = 7 ns (UART Tavwl MIN).

Tclwl is irrelevant in this design.

Tqvwh = 60 ns MIN, for zero wait states.
Tqvwh(ROMsim) = 40 ns (RAM Tdw MIN).

Tqvwh = 393 ns MIN, for two wait states.
Tqvwh(UART) = 90 ns (UART Tdvwh MIN).

Tchwh is irrelevant in this design.

Twlwh = 53 ns MIN, for zero wait states.
Twlwh(ROMsim) = 50 ns (RAM Twp MIN).

Twlwh = 386 ns MIN, for two wait states.
Twlwh(UART) = 231 ns (UART Twlwh MIN).

Twhqx = 73 ns MIN.
Twhqx(ROMsim) = 9 ns (74AC32 Tplh MAX) + 0 ns (RAM Tdh MIN)

= 9 ns.
Twhqx(U14) = 0 ns (RAM Tdh MIN).
Twhqx(UART) = 12 ns (UART Twhdx MIN).

Twhlh = 73 ns MIN.
Twhlh(ROMsim) = 9 ns (74AC32 Tplh MAX) + 0 ns (RAM Twr MIN)

= 9 ns.
Twhlh(UART) = 0 ns (UART Twhax MIN).
Twtilh(STALE) = 9 ns (74AC08 Tplh MAX) + 3 ns (74AC112 Trem MIN)

= 12 ns.

Twhbx is irrelevant in this design.

Appendix E.

Programmable Logic Equations

Doug Yoder
Intel
January 19, 1989
EV80C196KB 002
5AC312
Generates mapping signals for the target processor on the 80C196KB evalu-
ation board.
OPTIONS: TURBO=ON PART: 5AC312

% Input declarations %

INPUTS: CLOCKOUT, % MCS96 system CLOCKOUT %
STALE@2, % STretched MCS96 Address Latch Enable %
nHLDA@3,
A8@4,
A9@5,
A10@6,
All@7,
A12@8,
A13@9,
A14@10,
A15@11,
nRESET@13

% 80C196KB HOLD Acknowledge
% MCS96 latched A8 - Al5
%
%
9 0
%
%
%
%
% MCS96 RESET pin

% Output declarations %

OUTPUTS: nCS510@14, % QV => enable uart, U20
nCE2@15, % OV => enable U14 memory
nBUSWIDTH@16, % OV => put processor in 8 bit mode
SBO@17, % wait-state counter bit 0
SB1@18, % wait-state counter bit 1
nWAIT@19, % OV => hold MCS96 in wait state
SB2@20, % wait-state counter bit 2-
nCEO@21, % OV => enable Ul and U8 memory
nCE1@22, % OV => enable U6 and U13 memory
MAP@23 % 5V => map RAM as romsim

%

%

3 0

%

%

3 0

%

%

%

%

%

%

%

%

%

%

%

%

%

%

% I,-, Architecture declarations %

NETWORK:
MAP,MAP = RORF(MAPd,CLOCKOUT,RESET,GND,VCC)
nWAIT = CONF(nWAITd,VCC)
nCS510 = COCF(UART,VCC)
nCE2 = COCF(EEPROM,VCC)
nCE1 = CONF(RAM,VCC)
nCE0 = CONF(EPROM,VCC)
nBUSWIDTH = CONF(nBWd,VCC)

% Intermediate variable definitions %

EQUATIONS:

RESET = !nRESET;
HLDA = !nHLDA;

MAPd = MAP + (RANGE3 * !STALE);

EPROM' = (!MAP * RANGE61
+ RANGE1
+ RANGE4;

RAM' = (MAP * RANGE6)
+ RANGE7;

EEPROM' = RANGE8;

UART' = RANGE5;

OPEN0 = RANGE2
+ RANGElO;

OPEN1 = RANGE9;

nBWd' = !EEPROM + !UART;

WAIT 1 = STALE *
WAIT-2 = STALE *
WAIT-3
WAIT-4

= WAIT-4;
= WAIT 5;

WAIT-5
WAIT-6

= WAITIG;

WAIT-7
= WAIT-7;
= GND;

nWAITd = !WAIT;

!HLDA * (WAIT-2 + !EPROM + OPENl);
!HLDA * (WAIT-3 + !UART);

% Address Range Equations %

RANGE1 = !A15 * !A14 * !A13 * !A12 * !A11 * !A10 * !A9 * !A8; % OOOO-OOFF %

RANGE2 = !A15 * !A14 * !A13 * Al2 * !A10 * !A8 % OlOO-1CFF %
+ !A15 * !A14 * !A13 * !A10 * !A9 * A8

+ !A15 * !A14 * !A13 * !A12 * A10
+ !A15 * !A14 * !A13 * All * !A9 * !A8
+ !A15 * !A14 * !A13 * Al2 * !A11
+ !A15 * !A14 * !A13 * !A12 * A9;

RANGE3 = !A15 * !A14 * !A13 * Al2 * !A9 % lOOO-1DFF %
+ !A15 * !A14 * !A13 * Al2 * !A10
+ !A15 * !A14 * !A13 * Al2 * !All;

RANGE4 = !A15 * !A14 * !A13 * Al2 * All * A10 * !A9 * A8; % lDOO-1DFF %

RANGE5 = !A15 * !A14 * !A13 * Al2 * All * A10 * A9 * !A8; % lEOO-1EFF %

!A 11; % 2000-27FF %

% 2800-5FFF %

RANGE6 = !A15 * !A14 * Al3 * !A12 *

RANGE7 = !A15 * !A14 * Al3 * Al2
+ !A15 * !A14 * Al3 * All

+ !A15 * Al4 * !A13;

RANGE8 = !A15 * Al4 * A13;

RANGE9 = Al5 * !A14;

RANGE10 = Al5 * A14;

% 6000-7FFF %

% 8000-BFFF %

% COOO-FFFF %

% State machine %

MACHINE: WAIT-STATE
CLOCK: CLOCKOUT
CLEAR: RESET

STATES:
HOLD-2
HOLD-3
HOLD 4
HOLD-5
HOLD-6
HOLD-7

REMOVE HO:D

ASYNC-START:

HOLD 2: -

HOLD 3: -

HOLD 4: -

HOLD 5: -

HOLD 6: -

HOLD 7’

REMOVE HOLD:

ENDS

[SB2 SBl SBO] ASYNC-START [0 0 0]

10 Q 11
[O 113
[1 111
[1 101
El cl 01
[1 Q 11
[O 101

IF WAIT-1 & !WAIT 2 THEN REMOVE HOLD -
IF WAIT 2 THEN HOLD 2-

ASSERT: IF WAIT 1 THEN WAIT- -

IF WAIT 3 THEN HOLD 3
REMOVE HOLD

-

ASSERT: WAIT

IF WAIT 4 THEN HOLD 4
REMOVE HOLD

-

ASSERT: WAIT

IF WAIT 5 THEN HOLD 5
REMOVE GOLD

-

ASSERT: WAIT

IF WAIT 6 THEN HOLD 6
REMOVE ZOLD

-

ASSERT: WAIT

IF WAIT-7 THEN HOLD 7 -
REMOVE HOLD

ASSERT: WAIT

REMOVE HOLD
ASSERT: WAIT

ASYNC START -

Name KBBUSCON;
Partno EV80C196KB;
Revision 01; Date l/18/89;
Designer Doug Yoder;
Company Intel ECO;
Assembly 80C196KB evaluation board;
Location u12;
Device 22VlO;
/*******************x*******************~*~~~~~~~~~~~*~*~~~~~~~~~~~~~,

/* Generates mapping signals for the target processor on the */
/* 80C196KB evaluation board. */
/*******************x*******************~~**~*~~~~~~~***~~~~~***~~~*~,

/* Allowable Target Device Types: 22VlO */
/***************************************~******~*******************~

/** Inputs **/

PIN 1 = CLOCKOUT; /* MCS96 system CLOCKOUT */
PIN 2 = STALE; /* STreched MCS96 Address Latch Enable */
PIN 3 = !HLDA;
PIN [4..11]=[a8..a15];
PIN 13 = !RESET;

/* 80C196KB HOLD Acknowledge
/* MCS96 latched A8 - Al5
/* MCS96 RESET pin

/** outputs **/

PIN 14 = !CS510;
PIN 15 = !CE2;
PIN 16 = !BUSWIDTH;
PIN 17 = state bit 0;
PIN 18 = state-bitll;
PIN 19 = !WAITT
PIN 20 = state bit-2;
=IN 21 = !CEO;-
‘IN 22 = !CEl;
PIN 23 = MAP;

/* OV=> enable uart, U20
/* OV=> enable U14 memory
/* OV=> put processor in 8 bit mode
/* wait-state counter bit 0
/* wait-state counter bit 1
/* OV=> hold MCS96 in wait-state
/* wait-state counter bit 2
/* OV=> enable Ul and U8 memory
/* OV=> enable U6 and U13 memory
/* 5V=> map ram as romsim

l * Declarations and Intermediate Variable Definitions **/

FIELD memaddr = [a15..8];

eprom = (!MAP & memaddr:[2000..27FF])
memaddr:[O ..FF] # memaddr:[lDOO..lDFF];

ram = (MAP & memaddr:[2000..27FF]) # memaddr:[2800..5FFF];

eeprom = memaddr:[6000..7FFF];

uart = memaddr:[lEOO..lEFF];

*/
*/
“1

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

open0 = memaddr:[lOO.. lCFF] # memaddr:[COOO..FFFF];

open1 = memaddr:[8000..BFFF];

bw = eeprom # uart;

wait 1 = -

wait 2 = -

wait 3 = -

wait 4 = -

wait-5 =

wait 6 = -

wait-l' =

STALE & !HLDA & (wait-2 # eprom # openl);

STALE & !HLDA & (Wait-3 # Uart);

wait-4;

wait-5;

wait-6;

wait-7;

'b'0;

FIELD state-count = [state-bit-0..21;

SDEFINE async-start 'b'000
SDEFINE hold-2 'b'001
SDEFINE hold-3 'b'011

SDEFINE hold-4 'b'lll
SDEFINE hold-5 'b'110
SDEFINE hold-6 'b'100
SDEFINE hold-7 'b'101
SDEFINE remove-hold 'b'010

/** Wait-State Machine **/

SEQUENCE state count

{ -
PRESENT async-start

IF wait 1 OUT WAIT; -

IF wait 1 & !wait 2 NEXT remove hold;
IF wait-2

-
NEXT

DEFAULT -
hold-2;

NEXT async-start;

PRESENT hold-2
OUT WAIT;

IF wait 3
DEFAULT -

PRESENT hold-3
OUT WAIT;

NEXT hold 3;
NEXT remove-hold;

IF wait 4 NEXT
DEFAULT -

hold-4;
NEXT remove-hold;

PRESENT hold-4
OUT WAIT;

IF wait 5
DEFAULT -

PRESENT hold-5
OUT WAIT;

IF wait 6
DEFAULT -

NEXT hold-5;
NEXT remove hold; -

NEXT hold 6;
NEXT remove hold; -

PRESENT hold 6
OUT WAIT;

IF wait 7
DEFAULT -

NEXT hold 7;
NEXT remove hold; -

PRESENT hold 7
OUT WAIT;

NEXT remove hold; -

PRESENT remove-hold
NEXT async start; -

/** Logic Equations **/

MAP-D = (memaddr:[1000..1DFF] & !STALE) # MAP;
MAP-AR = RESET;
MAP.SP = 'b'0;
MAP.OE = 'b'l;

state-bit-O.AR = RESET;
state bit O.SP = 'b'0;
state-bit-O.OE = 'b'l;
state-bit-l.AR = RESET;
state-bit-l.SP = 'b'0;
state-bit-l.OE = 'b'l;
state-bit-2.AR = RESET;
state-bit-2.SP = 'b'0;
stateIbitIZ.OE = 'b'l;

CEO = eprom;
CEl = ram;
CE2 = eeprom;
cs510 = uart;

BUSWIDTH = bw;

Appendix F.

Standard Memory-l/O Connector
for

EvalBoards

General Purpose Memory Expansion Connector
Compatiblity with Other Intel Evaluation Boards
2x30 Pin Molex 39-51-2604 or Equiv.

EV80C51 FB

vcc
Addr 0
Addr 1
Addr 2
Addr 3
Addr 4
Addr 5
Addr 6
Addr 7
vss
Addr a
Addr 9
Addr 10
Addr 11
Addr 12
Addr 13
Addr 14
Addr 15
vss
N.C.
PSENRD
N.C./TPG
ALE
N C./TP7
RESET#

EVIOCl98KB EV80C186 EV80C186 EVBOC196KB

vcc
Addr 0
Addr 1
Addr 2
Addr 3
Addr 4
Addr 5
Addr 6
Addr 7
vss
Addr a
Addr 9
Addr 10
Addr 11
Addr 12
Addr 13
Addr 14
Addr 15
vss
CLKOUT
RD#
BREC?#
ALE
NMI
RESET#

PAL Disable# Note 2
NC HLDA#
12VDC -12VDC

vss vss
vcc vcc

vcc
Addr 0
Addr 1
Addr 2
Addr 3
Addr 4
Addr 5
Addr 6
Addr 7
vss
Addr 8
Addr 9
Addr 10
Addr 11
Addr 12
Addr 13
Addr 14
Addr 15
vss
CLK
RD#
ES#
ALE
lo#
RESET
TOOUT
HLDA
-12v
vss
vcc

1 JLC
3 3:
5 -- 2-
7 3--
g 2;

11 27
13 11
15,SC
17 3r
19 72
21 LC
23 3:

25 --
27 r-
29 .I E
31 111
33 1:
35 :I ‘--
37 -: Li
39 I- :
41 7-
43 1 I-
45 I-
47 -1 L.
49 1 I.
51 --. L:
53 .I :.
55 -_ ~-

57 ~-
59,

2 vcc
4 Addr/Data 0
6 Addr/Data 1
a Addr/Data 2
10 Addr/Data 3
12 Addr/Data 4
14 Addr/Data 5
16 Addr/Data 6
la Addr/Data 7
20 vss
22 Addr/Data 8
24 Addr/Data 9
26 Addr/Data 10
28 Addr/Data 11
30 Addr/Data 12
32 Addr/Data 13
34 Addr/Data 14
36 Addr/Data 15
38 vss
40 vss
42 WR#
44 BHE#
46 SRDY
48 DRQO
50 INTO
52 TOIN
54 HOLD
56 +12VDC
58 vss
60 vcc

vcc
Addr/Data 0
Addr/Data 1
Addr/Data 2
Addr/Data 4
Addr/Data 4
Addr/Data 5
Addr/Data 6
Addr/Data 7
vss
Addr/Data 8
Addr/Data 9
Addr/Data 10
Addr/Data 11
Addr/Data 12
Addr/Data 13
Addr/Data 14
Addr/Data 15
vss
vss
WR#
BHE#
READY
INST
EXTINT/P2.2
N.C.
HOLD#
+12VDC
vss
vcc

EV80C51 FB

vcc
Addr/Data 0
Addr/Data 1
Addr/Data 2
Addr/Data 4
Addr/Data 4
Addr/Data 5
Addr/Data 6
Addr/Data 7

vss
NC.
N.C.
N.C.
N.C.
N.C.
N.C.
NC.
N.C.
vss
vss
WR#

N.C./TP4
N.CJtP5

RD#
INTOiP3.2

PSEN#
N.C.

+12VDC
vss
vcc

Note 1

N.C = No Connect
N.C.TPx = No Connect, but routed to an on-board test point for the user.

Note 2:
Pin 51 of the EV80C196KB will be connected to U12 pin 20 on future revisions of this board.

Appendix G.

Sample Session

This list file was produced by using the command "list demo.lst" before
invoking demo.log with the command "include demo.log" as described below.
This list file can be used to compare to the screen of your own PC while
you are running demo.log.

;===List file opened on 01/24/1989 at 16:43:15
*include demo.log
;---INCLUDE FILE OPEN

*;
*; This is a demo of some of the features of iECM-96 for use with the
*; EV80C196KB board. In order to run the demo, place the software disk in

a
*; drive. Then select that drive by typing "A:" or "B:", whichever core-
sponds
*; to that drive, and a carriage return. Type "ECM96" and carriage re-
turn.
*; At the asterisk prompt type "INCLUDE DEMO.LOG" and carriage return.

*;
*; For additional information, please see the EV80C196KB Microcontroller
*; Evaluation Board USER'S MANUAL.

*;
*pause

; Hit the space bar to continue...

*;
*; This command loads 96KBDEMO.OBJ from disk.

*;
*load 96kbdemo.obj

; mod name is: IDFM096KBI
mod date stamp is: 01/24/89 16:34:47

f.

'pause
Hit the space bar to continue...

t

*dasm 2080,8 ; This disassembles 8 lines of code starting at 2080H
1 RESET-VECTOR:

; 2080: A1000118 I LD 18,#0100
; 2084: OllC I CLR Ax
; 2086: 0120 I CLR cx
; 2088: 0122 I CLR DX
; 208A: B10116 I LDB 16,#01
; 208D: 1lOF I CLRB IOPORTl
; 208F: 1117 I CLRB 17
; 2091: AlBF201E I LD BX,#20BF
*pause
; Hit the space bar to continue...

*;
*pc ; This displays the current value of the Program counter.

; PC=RESET VECTOR -
*.

*; To change the Program Counter use "pc = 2080<cr>".

*;
*pause

; Hit the space bar to continue...

*;
*go from 2080 forever ; This command clears all breakpoints and executes
code.

>;
>; The LED's for I/O Port 1 should be incrementing regularly.

>;
>pause

; Hit the space bar to continue...

';
>dasm .past,8 ; The disassmbler and all other memory read commands can
be....

; I PAST:
; 20A6: 8900801E I CMP BX,#8000
; 20AA: D7E9 I JNE LOOP
; 20AC: AlBF201E I LD BX,#20BF
; ZOBO: 0722 I INC DX
; 20B2: 170F I INCB IOPORTl
; 20B4: BOOF17 I LDB 17,IOPORTl
; 20B7: 27DC I SJMP LOOP

; I FAILED:
; 20B9: AlFFFF20 I LD CX,#OFFFF

>;
>: used while code is running on the board.

>:
>pause

Hit the space bar to continue...
':
>asm 20b2 ; start assembling code at address ZObZH, see disassembly list-
1qg.

Single Line Assembler activated, exit with "end" directive
: 2OB2H: decb .ioportl
: 20B4H: end
‘pause

; Hit the space bar to continue...
':
>; The LED's for I/O Port 1 should now be decrementing.

';
>; Note that not only is there an assembler, it and all other memory modi-
fing
>; commands can be used while the board is executing user code. However,

use
>; caution when modifing code while it is running, the resulting code may
>; cause errors due to variable length instructions.

>;
>pause

; Hit the space bar to continue...

>;
>halt
*dasm .loop,9

; I LOOP:
; 2095: C61ElC I STB AL, [=I
; 2098: 9AlFlC I CMPB AL, [lE]+
; 209B: D71C I JNE FAILED

; I HERE:
; 209D: 382204 I JBS 22,00, BACK
; 20AO: 171C I INCB AL
; iOA2: 2002 I SJMP PAST

; I BACK:
; 20A4: 151C I DECB AL

; 1 PAST:
; 20A6: 8900801E I CMP BX,#8000
; 2OAA: D7E9 I JNE LOOP
*pause

; Hit the space bar to continue...

*;
*go from 2080 till 20a6 ; This go command sets a breakpo
*pause

; Hit the space bar to continue...

*;

int [Ol = 20a6H.

*pc ; Code has stopped at the breakpoint! Note that 20a6 has not executed
yet.

; PC=PAST
*pause
; Hit the space bar to continue...

*;
+br ; This command displays all breakpoints, 20a6 has been set.

BREAKPOINT[O] = PAST
+oause

Hit the space bar to continue...
l .

+br'Cij=O ; This command clears breakpoint[O].
*oause
; Hit the space bar to continue...
*:
*br : As can be shown.

; NC BREAKPOINTS ARE ACTIVE
*pause
; Hit the space bar to continue...
*. I
*br[Of]=20a6 ; This command sets breakpoint[l5] = 20a6.
*pause
; Hit the space bar to continue...

*;
*br ; See?
; BREAKPOINT[15]= PAST
*pause

; Hit the space bar to continue...

*;
*; This concludes the demo, we hope you enjoy using the EV80C196KB board.
*;
*pause

; Hit the space bar to continue...

*;
*; Type "QUIT" and carriage return to exit iECM-96.
*;
*quit

NORTH AMERICAN SALES OFFICES
‘tlntei Corp.
12wO Ford Road
suite 400
Dallas 75234
Tel: (214) 241-8087
FAX: (214) 484-1180

l tlntei Corp.
7322 S.W. Freeway
suite 1490
Houston 77074
Tel: (713) 988-6086
TWX 91 O-881 -2490
FAX: (713) 9663660

tlntel Corp.
5g5: T.$ Lee Blvd.

Orlando 32822
Tel: (407) 240-6000
FAX: (407) 2408097

‘tlntel Corp.
ze Exxss Dr.. South

fslandii 11722
Tel: (516) 231-3300
TWX: 510-227-6236
FAX: (516) 348-7939

tlntel Corp.
gOeWmT Business Center

Fiihkill 12624
Tel: (914) 897-3880
FAX: (914) 897.3125

OHIO

Intel Corp.
600 Boulevard South
suite 104-L
Huntsville 35802
Tel: (205) 883-3507
FAX: (205) 883-3511 GEORGIA

tlntel Corp.
~“~em@slY p=-Y

Norcross 30092
Tel: (404) 449-0541
FAX: (404) 805-9762

ILLINOIS

ARQOUA

tlntel Corp.
410 Norlh 44th Street
Suite 500
Phoenix 85008
Tel: (602) Ml-0388
FAX: (602) 2440448

UTAH
‘tlntel Corp.
3401 Park Center Drive
suite 220
Dayton 45414
Tel: (513) 890-5350
TWX: 61 O-450-2526
FAX: (513) 690.8658

**Intel Corp.
25700 Science Park Dr.
suite 100
Beachwwd 44122
Tel: (216) 464-2736
TWX: 61 O-427-9296
FAX: (604) 262-0673

wltel Corp.
426 Easl6400 South
Suite 104
Murray 84107
Tel: (801) 263-6051
FAX: (801) 266.1457

CALIFORNIA wltel Corp.
Wwdffeld Corp. Center III

WASHINGTON

tlnlel Corp.
21515 Vanowen street
Suite 116
canoga Park 91303
Tel: (818) 704-S500
FAX: (818) 340-l 144

Intel Corp.
1 Sierra Gate Plaza
Suite 280C
Roseville 95578
Tel: (918) 782-8086
FAX: (918) 782-8153

tlntel Corp.
ce gyp- Dr.

San Diego 92123
Tel: (619) 292-8085
FAX: (619) 292-0828

‘tlntel Corp.
4gO~.T&srln Avenue

Santa Ana 92705
Tel: (714) 8359842
TWX: 91 o-595-1 114
FAX: (714) 541.9157

*tImeI Corp.
SanTomas4
;;yFzr has Expr~sway

Santa Clara 95051
Tel: (408) 986-SO66
rwx. 91 o-338-0265
FAX 1408) 7272620

_ _ ._ . .
Schaumbur 60173
Tel: (708) 645-8031
FAX: (706) 708-9762

INDIANA

tlntel Corp.
Fu;z Pgue Road

Indianapolis 46&8
Tel: (317) 875-0823
FAX: (317) 875-8938

NAFwlAND

tlntel Corp.
2800 156th Avenue S.E.
Suite 105
Bellewe 98008
Tel: (206) 843-8086
FAX: (206) 746.4495

OKLAHOMA
Intel Corp.
ru;O8& @IIan Road

Spokane 99206
Tel: (509) 928-8086
FAX: (509) 926-9467

Suite 115
Oklahoma Cii 73182
Tel: (405) 648-8088
FAX: (405) 840-9619

‘tlntel Corp.
10010 Junction Dr.
Suite 200
Annapolis Junction 20701
Tel: (410) 206-2860
FAX: (410) 206-3878 Intel Corp.

$neNkautve Dr.

Brookiield 53005
Tel: (414) 789-2733

MeI cofp.
15254 N.W. Greenbrier Pkwy.
Building B
Beaverton 97008
Tel: (503) 8458051
TWX 910-467-8741
FAX: (503) 6458181

PENNSVLVANIA

‘tlntel Corp.

E?f%- Drive
Blue Bell 19422
Tel: (215) 84%1000
FAX: (215) 641-0785

‘tlntel Co .

ZL%o”
%nter Bled

i%tsbu
P

h 15235
Tel: (41) 8234970
FAX: (412) 829.7578

PUERTO RICO

llntel Corp.
South Industrial Park
P.O. Box 910
Las Piedras CO871
Tel: (809) 733-8616

SOUTH CAROUNA

MASSACHUSEITS

l tlntel Corp.
Westford Corp. Center
;,yFyzr Road

weslford 01888
Tel: (508) 892-0980
TWX 710343-6333
FAX: (508) 692-7867

MICHIGAN

tlntel Corp.
;;?A y&hard Lake Road

West Blwmtield 48322
Tel: (313) 851-8096
FAX: (313) 851-8770

coLcmADo

CANADA

BRITISH COLUMBIA

Intel Semiconductor of
Canada, Ltd.
4585 Canada Way
Suite 202
Bumaby V5G 4L8
Tel: (804) 298-0387
FAX: (604) 298-8234

ONTARIO

tz&eT;yductor of

ge F&mnsview Drive

Ottawa K2B 8H6
Tel: (613) 829-9714
FAX: (613) 820.5936

Intel Corp.
gg ygyh”” Drive

-s%i2x2!-7Tel: (719)
FAX. W31594-0720

‘tIntal carp
gopshe” St

?Zk%f-eoes
TWX: 910.931~228@
FAX: (303) 322-8670

tlntel Corp.

E km” sr.
Bkomin n 55431
Tel: (612 635-6722B”
TWX 9105762887
FAX: (812) 631-6497

NEW JERSEY

‘ t l n t e l Co
Lincroft ok Center
125 Hall Mile Road
Red Bank 07701
Tel: (906) 747-2233
FAX: (908) 7470983

NEW YORK

tlntel Semiconductor of
Canada. Ltd.
1WAttwell Drive
Suite 500
Rexdale M9W 6H8
Tel: (416) 675-2105
FAX: (418) 875-2438

Intel Corp.
100 Exeantive Center
Suite 109
Greenville 29815
Tel: (803) 297-8086
FAX: (803) 297-3401

tlntel Co
301 Lee arm Capcmte ParkP
83WocsterH%ightsRd
Danbwy 08610

t~;er$nductor of

1 Rue Iioliday
Suite 115
Tour East
Pt. Claire ll9R 5N3
Tel: (514) 694-9130
FAX: 514-b%-W64

FLORIDA

*Intel Corp.
850 Crosekeys Office Park

%$jj?52750
TWX: 510-253-7391
FAX: (718) 223-2561

tlntel Corp.
p:, N&pll of Texas Hwy.

Austin 78759
Tel: (512) 794-8088
FAX: (512) 338-9335

DeenlewBeach3344~
Tel: (305) 421-0506
FAX: (305) 421.2444

tSales and Service Dflfce
*FM A&cation Location CG!SALElO21492

NORTH AMERICAN SERVICE OFFICES
MARYLAND NEW YORK PUERTO RICO

Intel Corp.
South lndustdil Park
P.O. Box 910
IAS Piiras 00671
Tel: (609) 7338816

CONNECTlCUTALASKA

Intel Corp.
c/o TransAlaeka Network
1515 Lore Rd.
Anchora e 99507
Tel: (903 522.1778

*Intel Co
;P301 Lee arm Corporate Park

83 Wooster Heights Rd.
Danbury 08611
Tel: (203.) 748-3130

‘*lntel Corp.
10010 Junction Dr., Suite 200
Annapolii Junction 20701
Tel: (361) 208-2860

‘Intel Corp.
Ee ~gy=-w Dr. SOUND

lslandii 11722
Tel: (516) 2313300

FLORIDA
MASBACHUSElTS

**Intel Corp.
800 Fairway Dr., Suite 166
Deeniekl Beach 33441
Tel: (305) 4218506
FAX: (305) 421-2444

*Intel Corp.

**Intel Corp.
Wes6ord Corp. Center
3 Carlisb Rd., 2nd floor
westlord 01868
Tel: (608) 692-0980

Intel Corp.
gseWmage Business Center

Fshkill 12524
Tel: (914) 8973860

Intel Corp.
5858 East Molloy Road
Syracuse 13211
Tel: (315) 4546576

MICHIGAN

TEXAS

“Intel Corp.
Westech 380: Suite 4230
8911 N. Capitol of Texas Hwy.
Austin 78752-1239
Tel : (512) 794-8086

Intel Corp.
c/o TransA!aska Date Systems
do GCI Operations
520 Fkth Ave., Suite 407
Fairbanks 99701
Tel: (907) 4526264

5850 T.G. Lee Blvd., Ste. 340
Orianando 32822
Tel: (407) 2408000

l ~lntel Corp.
12000 Ford Rd., Suite 401
Dallas 75234
Tel: (214) 2418087

**Intel Corp.
7322 SW Freeway, Suite 1490
Houston 77074
Tel: (713) 9888066

*Intel Corp.
41;l15c 44th Street

Phoenix 85008
Tel: (602) 2316386
FAX: (862) 2446446

*Intel Corp.
5SF&;&Bg&uke M-15

Tel: (602) 459-5010

*Intel Corp.
7071 Orchard Lake Rd.. Ste. 100
Weet Bloomfield 46322
Tel: (313) 6518905

NORTH CAROLINA

*Intel Corp.
68W Executl~e Center Drive
Suite 105
Charlotte 28212
Tel: (704) 5888966

**Intel Corp.
5540 Centerview Dr., Suite 215
Raleigh 27666
Tel: (919) 851-9537

*Intel Corp.
~o&~~$~Park. Suite 150

Tel: (404) 4490641

5523 Theresa Street
Columbus 31907

UTAH*Intel Corp.
woo&. 8ot$st.,uite 380

Tel: (612 8358722T

MISSISSIPPI

%E$kare
2w?w~~~rxsd, Suite 205F

Tel: (601) 932-6275

Intel Corp.
g,‘~&- so”m

Murray 84107
Tel: (801) 2638051
FAX: (801) 268-1457HAWAII

1580 West Park Drive
Little Rock 72204

**Intel Corp.
Honolulu 98620
Tel: (868) 8476738 *Intel Corp.

9930 Stow Point Pkwy
suite360’
Richmond 23235
Tel: (804) 3309393

**Intel Corp.
155 106th Avenue N.E.. Ste. 386
Beflevue 98094
Tel: (266) 4538086

“Intel Corp.
3401 Park Center Dr., Ste. 226CALIFORNIA

ILLINOIS

l *TfnteI Corp.
Woodfield Corp. Center Ill
300 N. Martingale Rd., Ste. 400
Schaumburg 60173
Tel: (708) 8058031

INDIANA

*Intel Corp.
21515 Vanowen St.. Ste. 116
canoga Park 91303
Tel: (816) 704-8506

MISSOURI

Fih%celP$ Dr., Ste. 1W

Tel: (218) 4-84-2738

vltel Corp.
3300 Rider Trail South
Suite 170
Earthc’ 6 3 0 4 5
Tel: (314 291-1990“3

lntel Corp.
Route 2, Box 221
Smithville 84089
Tel: (913) 3452727

‘Intel Corp..
3cn&li~nentzd Blvd.

ElTdo90245Tel: (13) MO-6040

‘Intel Corp.

Tel: (916) 3516143

l 1nte(Corp.
8910 Purdue Rd., Ste. 350
lndiinapolii 46288
Tel: (317) 8758823

**Intel Corp.
15254 N.W. Greenbrier Pkwy.
Building B
Beaverton 97008
TeI: (503) 645-8651

CANADA
ONTARIO

**Intel Semiconductor of
Canada, Ltd.
m265&1ug~svi~ Dr.. Ste. 250

Tel: (613) 6299714

**Intel Semiconductor of
Cenada, Ltd.
190 Attwell Dr., Ste. 102
Rexdale (Toronto) h@W 8H8
Tel: (416) 875-2105

KANSAS NEW JERSEY‘Intel Corp.
EDFhesa&e Dr.; Suite 225

Tel. (819‘T2928086

‘*lntel Corp.
$O&ustin Avenue

santaAna92705
Tel. (734) 8359642

‘Intel Corp.
10985 Ccdy, Suite 140
Overland Park 66210
Tel: (913) 345.2727

**Intel Corp.
300 Sylvan Avenue
Englewood CMfs 07632
Tel: (201) 587-0621

PENNSYLVANIA

l Tlntel Corp.
gtieHest Drive

Blue Bell 19422
Teew6”

FAX: (215) 841-0785

KENTUCKY
Z%% C-enter
125 Ha5 ML Road
Red Bank 07701
Tel: (908) 747-2233

NEW YEKICO

Intel Corp.
Rio Ranch0 1
4100 Sam Road
A l Rancim 87124-1025
(near Albuquerque)
Tel: (SOS) BS3-7WO

Intel Corp.
133 Wafton Ave.. Df5ce 1A
Lexington 40508
Tel: (606) 2552957

%lH%%et Road Apt A
mddii 40160 (Lo&sville)

‘%llel cofp
n&z’~~lExp.. 1st Floor

Tef: (408) 9783747

l Ylntel Corp.
400 Penn Center Blvd.. Ste. 610
P&burgh 15235
Tel: (412) 8234970

‘Intel Corp.
1513cedarclffDr.
Camp Hill 17011
Tel: (717) 761-0880

“Intel Semiconductor of
Canada, Ltd.
1 Rue Holiiay
Suite 115
Tour East
Pt. Claire H9R 5N3
Te(:‘“:~

COLORADO

‘Intel carp
Eioo&s.C~ s l suire 700

Tel: (34X) 32r-8066

LOUlslANA

Hammond 70401
(serviced from Jackson, MS)

CUSTOMER TRAINING CENTERS
ARQoNA

2402 W. Bee&My Road
Phoenix 85027
Tel: @X2) @S-4288

1X0-466-3548

SYSTEMS ENGINEERING OFFICES
NEWYORKMINNESOTA

Bkami
Tef (812 aT

S&ylygw Dr.. Sourf~
Tef: (566) 2313300

Carry-ln b+ms
“Carry-in/marl-m locations

cGiSALEl120291

UNITED STATES
Intel Corporation
2200 Mission College Blvd.
P.O. Box 58119
Santa Clara, CA 95052-8119

JAPAN
Intel Japan K.K.
5-6 Tokodai, Tsukuba-shi
lbaraki-ken 300-26

FRANCE
Intel Corporation S.A.R.L.
1, Quai de Grenelle
75015 Paris

UNITED KINGDOM
Intel Corporation (U.K.) Ltd.
Pipers Way, Swindon
Wiltshire, England SN3 1RJ

GERMANY
Intel GmbH
Domacher Strasse 1
85622 FeldkircherVMuenchen

HONG KONG
Intel Semiconductor Ltd.
32/F Two Pacific Place
88 Queensway, Central

CANADA
Intel Semiconductor of Canada Ltd.
190 Attwell Drive, Suite 500
Rexdale, Ontario M9W 6H8

Intel embedded architectures and flash memory are supported by au array of
development tools solutions. Use the World Wide Web, FaxBack, Literature
Centers, and Intel Hotline for comprehensive tools information.

Printed in USA/297 lOO/IL HS

	Contents
	Introduction
	Getting Started With the EV80C196KB
	Powering up the Board
	Connecting to your PC
	Starting the Host Software

	Hardware Overview of the EV80C196KB Board
	Block Diagram of the 80C196KB Board
	Processor
	Memory
	Host Interface
	Digital I/O
	Analog Inputs
	Decoding
	Configuration Jumper Locations (Figure 3a)
	Memory Configuration Jumper Locations (Figure 3b)
	Expansion Ports, Connectors and LEDs (Figure 4)
	Host Serial Connector (Figure 5)
	Serial Port Connector (Figure 6)
	Analog Input Connector (Figure 7)
	I/O Expansion Connector (Figure 8)
	Memory-l/O Expansion Connector (Figure 9)
	Power Supply Connector (Figure 10)
	25-pin-to-9-pin Adapter (Figure 11)

	Introduction to iRISM-iECM96 Software
	Features
	Restrictions

	Overview
	Embedded Controller Monitor (ECM)

	User Interface
	Background Information
	Initiating and Terminating iECM=96
	Default Base Commands

	File Operations
	Loading and Saving Object Code
	Other File Operations

	Program Control
	Resetting the Target
	Breakpoints
	Program Execution
	Program Stepping

	Displaying and Modifying Program Variables
	Supported Data Types
	BYTE Commands
	WORD Commands
	DWORD Commands
	REAL Commands
	STACK Commands
	STRING commands
	Processor Variables

	Assembly and Disassembly
	SLA (Single Line Assembly) Commands
	Disassembly Commands

	Symbol Operations
	RISM
	RISM Variables
	RISM Structure
	Receiving Data from the Host
	Sending Data to the Host
	RISM Commands

	Schematics and Parts List
	Specific iRlSM Information
	Listing of iRISM-196KB
	Timing Analysis
	Programmable Logic Equations
	Standard Memory-l/O Connector for EvalBoards
	Sample Session

