
87C196CB Supplement to
8XC196NT User’s Manual

87C196CB Supplement to
8XC196NT User’s Manual

September 1998

Order Number: 272787-002

CB_title.fm5 Page 1 Tuesday, September 15, 1998 9:54 AM

Information in this document is provided in connection with Intel products. No license, express or implied, by estoppel or
otherwise, to any intellectual property rights is granted by this document. Except as provided in Intel’s Terms and Conditions
of Sale for such products, Intel assumes no liability whatsoever, and Intel disclaims any express or implied warranty, relating
to sale and/or use of Intel products including liability or warranties relating to fitness for a particular purpose, merchantability,
or infringement of any patent, copyright or other intellectual property right. Intel products are not intended for use in medical,
life saving, or life sustaining applications.

Intel may make changes to specifications and product descriptions at any time, without notice.

Designers must not rely on the absence or characteristics of any features or instructions marked "reserved" or "undefined."
Intel reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising
from future changes to them.

The 87C196CB and 8XC196NT microprocessors may contain design defects or errors known as errata which may cause the
products to deviate from published specifications. Current characterized errata are available on request.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.

Copies of documents which have an ordering number and are referenced in this document, or other Intel literature may be
obtained by calling 1-800-548-4725 or by visiting Intel’s website at http://www.intel.com.

Copyright © Intel Corporation, 1998

*Third-party brands and names are the property of their respective owners.

CB_legal.fm5 Page 1 Tuesday, September 15, 1998 9:39 AM

CONTENTS
CHAPTER 1
GUIDE TO THIS MANUAL

1.1 MANUAL CONTENTS ... 1-1
1.2 RELATED DOCUMENTS .. 1-2

CHAPTER 2
ARCHITECTURAL OVERVIEW

2.1 DEVICE FEATURES ... 2-1
2.2 BLOCK DIAGRAM... 2-2

2.3 INTERNAL TIMING.. 2-2

CHAPTER 3
MEMORY PARTITIONS

3.1 MEMORY MAP, SPECIAL-FUNCTION REGISTERS, AND WINDOWING 3-1

CHAPTER 4
STANDARD AND PTS INTERRUPTS

4.1 INTERRUPT SOURCES, VECTORS, AND PRIORITIES ... 4-1

CHAPTER 5
I/O PORTS

5.1 PORT 0 AND EPORT.. 5-1

CHAPTER 6
ANALOG-TO-DIGITAL (A/D) CONVERTER

6.1 ADDITIONAL A/D INPUT CHANNELS.. 6-1

CHAPTER 7
CAN SERIAL COMMUNICATIONS CONTROLLER

7.1 CAN FUNCTIONAL OVERVIEW... 7-1
7.2 CAN CONTROLLER SIGNALS AND REGISTERS... 7-3

7.3 CAN CONTROLLER OPERATION.. 7-4
7.3.1 Address Map ...7-5
7.3.2 Message Objects ..7-5

7.3.2.1 Receive and Transmit Priorities ...7-6
7.3.2.2 Message Acceptance Filtering ...7-6

7.3.3 Message Frames ..7-7
7.3.4 Error Detection and Management Logic ...7-9
7.3.5 Bit Timing ..7-10

7.3.5.1 Bit Timing Equations ..7-12
7.4 CONFIGURING THE CAN CONTROLLER... 7-13

7.4.1 Programming the CAN Control (CAN_CON) Register ..7-13
7.4.2 Programming the Bit Timing 0 (CAN_BTIME0) Register ..7-15
7.4.3 Programming the Bit Timing 1 (CAN_BTIME1) Register ..7-16
iii

87C196CB SUPPLEMENT
7.4.4 Programming a Message Acceptance Filter ...7-17
7.5 CONFIGURING MESSAGE OBJECTS... 7-20

7.5.1 Specifying a Message Object’s Configuration ...7-21
7.5.2 Programming the Message Object Identifier ...7-22
7.5.3 Programming the Message Object Control Registers ...7-23

7.5.3.1 Message Object Control Register 0 ...7-23
7.5.3.2 Message Object Control Register 1 ...7-23

7.5.4 Programming the Message Object Data ...7-23
7.6 ENABLING THE CAN INTERRUPTS.. 7-29
7.7 DETERMINING THE CAN CONTROLLER’S INTERRUPT STATUS 7-32

7.8 FLOW DIAGRAMS .. 7-35
7.9 DESIGN CONSIDERATIONS.. 7-41

7.9.1 Hardware Reset ..7-41
7.9.2 Software Initialization ..7-41
7.9.3 Bus-off State ...7-41

CHAPTER 8
SPECIAL OPERATING MODES

8.1 CLOCK CIRCUITRY.. 8-1

CHAPTER 9
INTERFACING WITH EXTERNAL MEMORY

9.1 ADDRESS PINS .. 9-1

9.2 BUS TIMING MODES.. 9-1

CHAPTER 10
PROGRAMMING THE NONVOLATILE MEMORY

10.1 SIGNATURE WORD AND PROGRAMMING VOLTAGES.. 10-1

10.2 MEMORY MAP FOR SLAVE PROGRAMMING MODE.. 10-1
10.3 MEMORY MAP AND CIRCUIT FOR AUTO PROGRAMMING 10-2
10.4 MEMORY MAP FOR SERIAL PORT PROGRAMMING.. 10-3

10.4.1 Selecting Bank 0 (FF2000–FF7FFFH) ..10-4
10.4.2 Selecting Bank 1 (FF8000–FFFFFFH) ..10-4

APPENDIX A
SIGNAL DESCRIPTIONS

A.1 FUNCTIONAL GROUPINGS OF SIGNALS ... A-1
A.2 SIGNAL DESCRIPTIONS... A-3

A.3 DEFAULT CONDITIONS.. A-14

GLOSSARY

INDEX
iv

CONTENTS

FIGURES

Figure Page
2-1 87C196CB Block Diagram..2-2
2-2 Clock Circuitry ..2-3
2-3 Internal Clock Phases ..2-4
2-4 Effect of Clock Mode on CLKOUT Frequency..2-5
4-1 Interrupt Mask 1 (INT_MASK1) Register..4-2
4-2 interrupt Pending 1 (INT_PEND1) Register..4-2
5-1 Port x Pin Input (Px_PIN) Register ...5-1
5-2 Extended Port I/O Direction (EP_DIR) Register ...5-2
5-3 Extended Port Mode (EP_MODE) Register ...5-2
5-4 Extended Port Input (EP_PIN) Register ...5-3
5-5 Extended Port Data Output (EP_REG) Register ..5-3
6-1 A/D Command (AD_COMMAND) Register ..6-2
6-2 A/D Result (AD_RESULT) Register — Read Format...6-3
7-1 A System Using CAN Controllers...7-1
7-2 CAN Controller Block Diagram...7-2
7-3 CAN Message Frames ...7-7
7-4 A Bit Time as Specified by the CAN Protocol...7-10
7-5 A Bit Time as Implemented in the CAN Controller ...7-11
7-6 CAN Control (CAN_CON) Register ..7-13
7-7 CAN Bit Timing 0 (CAN_BTIME0) Register..7-15
7-8 CAN Bit Timing 1 (CAN_BTIME1) Register..7-16
7-9 CAN Standard Global Mask (CAN_SGMSK) Register ...7-18
7-10 CAN Extended Global Mask (CAN_EGMSK) Register ..7-19
7-11 CAN Message 15 Mask (CAN_MSK15) Register...7-20
7-12 CAN Message Object x Configuration (CAN_MSGxCFG) Register...........................7-21
7-13 CAN Message Object x Identifier (CAN_MSGxID0–3) Register7-22
7-14 CAN Message Object x Control 0 (CAN_MSGxCON0) Register7-24
7-15 CAN Message Object x Control 1 (CAN_MSGxCON1) Register7-26
7-16 CAN Message Object Data (CAN_MSGxDATA0–7) Registers..................................7-28
7-17 CAN Control (CAN_CON) Register ..7-29
7-18 CAN Message Object x Control 0 (CAN_MSGxCON0) Register7-31
7-19 CAN Interrupt Pending (CAN_INT) Register ..7-32
7-20 CAN Status (CAN_STAT) Register ..7-33
7-21 CAN Message Object x Control 0 (CAN_MSGxCON0) Register7-34
7-22 Receiving a Message for Message Objects 1–14 — CPU Flow7-36
7-23 Receiving a Message for Message Object 15 — CPU Flow7-37
7-24 Receiving a Message — CAN Controller Flow...7-38
7-25 Transmitting a Message — CPU Flow ...7-39
7-26 Transmitting a Message — CAN Controller Flow...7-40
8-1 Clock Circuitry ..8-1
9-1 Modes 0 and 3 Timings ..9-2
9-2 Chip Configuration 1 (CCR1) Register ...9-3
10-1 Auto Programming Circuit ..10-3
A-1 87C196CB 84-pin PLCC Package .. A-2
v

8XC196CB SUPPLEMENT

FIGURES
Figure Page
A-2 87C196CB 100-pin QFP Package .. A-3
vi

CONTENTS

TABLES
Table Page
1-1 Related Documents..1-2
2-1 Features of the 8XC196NT and 87C196CB...2-1
2-2 State Times at Various Frequencies ..2-4
2-3 Relationships Between Input Frequency, Clock Multiplier, and State Times2-5
3-1 Register File Memory Addresses ...3-1
3-2 87C196CB Memory Map..3-2
3-3 87C196CB Peripheral SFRs...3-3
3-4 CAN Peripheral SFRs...3-4
3-5 Selecting a Window of Peripheral SFRs...3-6
3-6 Selecting a Window of the Upper Register File ..3-7
3-7 Selecting a Window of Upper Register RAM..3-8
3-8 Windows...3-9
3-9 WSR Settings and Direct Addresses for Windowable SFRs......................................3-11
4-1 Interrupt Sources, Vectors, and Priorities...4-1
5-1 87C196CB Input/Output Ports..5-1
6-1 A/D Converter Pins...6-1
7-1 CAN Controller Signals...7-3
7-2 Control and Status Registers ...7-3
7-3 CAN Controller Address Map ...7-5
7-4 Message Object Structure..7-6
7-5 Effect of Masking on Message Identifiers...7-7
7-6 Standard Message Frame..7-8
7-7 Extended Message Frame ...7-8
7-8 CAN Protocol Bit Time Segments ..7-10
7-9 CAN Controller Bit Time Segments..7-11
7-10 Bit Timing Relationships...7-12
7-11 Bit Timing Requirements for Synchronization ..7-17
7-12 Control Register Bit-pair Interpretation...7-23
7-13 Cross-reference for Register Bits Shown in Flowcharts ...7-35
7-14 Register Values Following Reset..7-41
9-1 Modes 0 and 3 Timing Comparisons..9-1
10-1 Signature Word and Programming Voltages..10-1
10-2 Slave Programming Mode Memory Map..10-2
10-3 Auto Programming Memory Map..10-2
10-4 Serial Port Programming Mode Memory Map ..10-4
A-1 87C196CB Signals Arranged by Functional Categories.. A-1
A-2 Description of Columns of Table A-3... A-4
A-3 Signal Descriptions.. A-4
A-4 Definition of Status Symbols ... A-14
A-5 87C196CB Pin Status ... A-14
vii

1
Guide to This Manual

 this

S

chapter,
s of the
 related

 of

 and
bles of

N

pin
0-pin

e

-
tel’s
nd ex-
CHAPTER 1
GUIDE TO THIS MANUAL

This document is a supplement to the 8XC196NT Microcontroller User’s Manual. It describes
the differences between the 87C196CB and the 8XC196NT. For information not found in
supplement, please consult the 8XC196NT Microcontroller User’s Manual (order number
272317) or the 87C196CB datasheet (87C196CA/87C196CB 20 MHz Advanced 16-Bit CHMO
Microcontroller with Integrated CAN 2.0, order number 272405).

1.1 MANUAL CONTENTS

This supplement contains several chapters, an appendix, a glossary, and an index. This
Chapter 1, provides an overview of the supplement. This section summarizes the content
remaining chapters and appendixes. The remainder of this chapter provides references to
documentation.

Chapter 2 — Architectural Overview — compares the features of the 87C196CB with those
the 8XC196NT and describes the 87C196CB’s internal clock circuitry.

Chapter 3 — Memory Partitions — describes the addressable memory space of the 84-pin
100-pin 87C196CB, lists the peripheral special-function registers (SFRs), and provides ta
WSR values for windowing higher memory into the lower register file for direct access.

Chapter 4 — Standard and PTS Interrupts — describes the additional interrupts for the CA
(controller area network) peripheral and the SFRs that support those interrupts.

Chapter 5 — I/O Ports — describes the port 0 and EPORT differences for the 100-
87C196CB. Both port 0 and the EPORT are implemented as eight-bit ports on the 10
87C196CB, but as four-bit ports (like the 8XC196NT) on the 84-pin 87C196CB.

Chapter 6 — Analog-to-digital (A/D) Converter — illustrates the SFRs that are affected by th
implementation of port 0 as an eight-bit port.

Chapter 7 — CAN Serial Communications Controller — describes the 87C196CB’s integrat
ed CAN controller and explains how to configure it. This integrated peripheral is similar to In
standalone 82527 CAN serial communications controller, supporting both the standard a
tended message frames specified by the CAN 2.0 protocol parts A and B.

Chapter 8 — Special Operating Modes — illustrates the clock control circuitry of the
87C196CB.
1-1

87C196CB SUPPLEMENT
Chapter 9 — Interfacing with External Memory — discusses differences in the bus timing
modes supported by the 8XC196NT and the 87C196CB.

Chapter 10 — Programming the Nonvolatile Memory — describes the memory maps and rec-
ommended circuits to support programming of the 87C196CB’s 56 Kbytes of OTPROM.

Appendix A — Signal Descriptions — describes the additional signals implemented on the
87C196CB.

Glossary — defines terms with special meaning used throughout this supplement.

Index — lists key topics with page number references.

1.2 RELATED DOCUMENTS

Table 1-1 lists additional documents that you may find useful in designing systems incorporating
the 87C196CB microcontroller.

Table 1-1. Related Documents

Title and Description Order Number

8XC196NT Microcontroller User’s Manual 272317

Automotive Products handbook 231792

87C196CB 20 MHz Advanced 16-Bit CHMOS Microcontroller with
Integrated CAN 2.0 (datasheet)

272405
1-2

2
Architectural
Overview

96NT.
st I/O.
oint-

ppli-

B, like
ddress
. With
f linear

ents
. The
CHAPTER 2
ARCHITECTURAL OVERVIEW

This chapter describes architectural differences between the 87C196CB and the 8XC1
Both the 8XC196NT and the 87C196CB are designed for high-speed calculations and fa
With the addition of the CAN (controller area network) peripheral, the 87C196CB reduces p
to-point wiring requirements, making it well-suited to automotive and factory automation a
cations.

The 87C196CB is available in either an 84-pin or a 100-pin package. The 84-pin 87C196C
the 8XC196NT, has up to 20 external address lines, enabling access to 1 Mbyte of linear a
space. The 100-pin 87C196CB has four additional pins available for external address lines
all 24 external address lines connected, the 100-pin 87C196CB can access 16 Mbytes o
address space.

2.1 DEVICE FEATURES

Table 2-1 lists the features of the 8XC196NT and the 87C196CB. The 87C196CB implem
more OTPROM, more register RAM, four additional A/D channels, and the CAN peripheral
100-pin 87C196CB also implements four additional EPORT pins.

Table 2-1. Features of the 8XC196NT and 87C196CB

8XC196NT 68 0 or 32 K 1 K 512 56 10 2 4 1 4 0

87C196CB 84 56 K 1.5 K 512 56 10 2 8 1 4 2

87C196CB 100 56 K 1.5 K 512 60 10 2 8 1 8 2

† Register RAM amount includes the 24 bytes allocated to the core SFRs and stack pointer.
2-1

87C196CB SUPPLEMENT

e the
ich is
le net-

mu-
d by the

plier
cy in-
rnal
ither
ulti-
i-
 the
H2.
2.2 BLOCK DIAGRAM

Figure 2-1 shows the major blocks within the device. The 8XC196NT and 87C196CB hav
same peripheral set with the exception of the CAN (controller area network) peripheral, wh
unique to the 87C196CB. The CAN peripheral manages communications between multip
work nodes. This integrated peripheral is similar to Intel’s standalone 82527 CAN serial com
nications controller, supporting both the standard and extended message frames specifie
CAN 2.0 protocol parts A and B.

Figure 2-1. 87C196CB Block Diagram

2.3 INTERNAL TIMING

The 87C196CB’s clock circuitry (Figure 2-2) implements phase-locked loop and clock multi
circuitry, which can substantially increase the CPU clock rate while using a lower-frequen
put clock. The clock circuitry accepts an input clock signal on XTAL1 provided by an exte
crystal or oscillator. Depending on the value of the PLLEN pin, this frequency is routed e
through the phase-locked loop and multiplier or directly to the divide-by-two circuit. The m
plier circuitry can quadruple the input frequency (FXTAL 1) before the frequency (f) reaches the d
vide-by-two circuitry. The clock generators accept the divided input frequency (f/2) from
divide-by-two circuit and produce two nonoverlapping internal timing signals, PH1 and P
These signals are active when high.

NOTE

This manual uses lowercase “f” to represent the internal clock frequency. For
the 87C196CB, f is equal to either FXTAL 1 or 4FXTAL 1, depending on the clock
multiplier mode, which is controlled by the PLLEN input pin.

A3179-01

OTPROMCore

Code/Data
RAM

Clock and
Power Mgmt.

PTS

SSIO EPAI/O A/DSIO

Interrupt
Controller

WDT Slave
Port CAN
2-2

ARCHITECTURAL OVERVIEW

 clock
xibil-

se of
n of
Figure 2-2. Clock Circuitry

The rising edges of PH1 and PH2 generate the internal CLKOUT signal (Figure 2-3). The
circuitry routes separate internal clock signals to the CPU and the peripherals to provide fle
ity in power management. It also outputs the CLKOUT signal on the CLKOUT pin. Becau
the complex logic in the clock circuitry, the signal on the CLKOUT pin is a delayed versio
the internal CLKOUT signal. This delay varies with temperature and voltage.

A3168-01

Clock
Generators

CPU Clocks (PH1, PH2)

Divide-by-two
Circuit

PLLEN

Phase-locked Loop
Clock Multiplier

Phase
Comparator Filter

Phase-
locked

Oscillator

Disable
PLL

(Powerdown)

Peripheral Clocks (PH1, PH2)

CLKOUT

Disable Clocks
(Powerdown)

Disable Clocks
(Idle, Powerdown)

XTAL1

XTAL2

FXTAL1

Disable
Oscillator

(Powerdown)

Disable Clock Input
(Powerdown)

f

F
X

T
A

L1

4F
X

T
A

L1

f
2

2-3

87C196CB SUPPLEMENT

 basic
ies.

e, and

ts (such
ments.

 the
,

Figure 2-3. Internal Clock Phases

The combined period of phase 1 and phase 2 of the internal CLKOUT signal defines the
time unit known as a state time or state. Table 2-2 lists state time durations at various frequenc

The following formulas calculate the frequency of PH1 and PH2, the duration of a state tim
the duration of a clock period (t).

Because the device can operate at many frequencies, this manual defines time requiremen
as instruction execution times) in terms of state times rather than specific measure
Datasheets list AC characteristics in terms of clock periods (t; sometimes called Tosc).

Figure 2-4 illustrates the timing relationships between the input frequency (FXTAL 1), the operating
frequency (f), and the CLKOUT signal with each PLLEN pin configuration. Table 2-3 details
relationships between the input frequency (FXTAL 1), the PLLEN pin, the operating frequency (f)
the clock period (t), and state times.

Table 2-2. State Times at Various Frequencies

f
(Frequency Input to the
Divide-by-two Circuit)

State Time

8 MHz 250 ns

12 MHz 167 ns

16 MHz 125 ns

20 MHz 100 ns

PH1

PH2

CLKOUT

Phase 1 Phase 2

XTAL1

A0805-01

1 State Time

Phase 1 Phase 2

t t

1 State Time

PH1 (in MHz)
f
2
--- PH2= = State Time (in µs)

2
f
---= t

1
f
---=
2-4

ARCHITECTURAL OVERVIEW
Figure 2-4. Effect of Clock Mode on CLKOUT Frequency

Table 2-3. Relationships Between Input Frequency, Clock Multiplier, and State Times

FXTAL1
(Frequency
on XTAL1)

PLLEN Multiplier
f

(Input Frequency to
the Divide-by-two Circuit)

t
(Clock
Period)

State Time

4 MHz 0 1 4 MHz 250 ns 500 ns

5 MHz 0 1 5 MHz 200 ns 400 ns

8 MHz 0 1 8 MHz 125 ns 250 ns

12 MHz 0 1 12 MHz 83.5 ns 167 ns

16 MHz 0 1 16 MHz 62.5 ns 125 ns

20 MHz 0 1 20 MHz 50 ns 100 ns

4 MHz 1 4 16 MHz 62.5 ns 125 ns

5 MHz 1 4 20 MHz 50 ns 100 ns

CLKOUT

t = 80ns

t = 20ns

CLKOUT

XTAL1 (5 MHz)

f

f

A3170-01

TXHCH

TXHCH

XTAL1 (5 MHz)

PLLEN = 0

PLLEN = 1
2-5

Memory Partitions

3

t of the
 (OT-
ional

B, like
ddress
. With
access

-2 is a
re the

que to
igher
CHAPTER 3
MEMORY PARTITIONS

This chapter describes the differences in the address space of the 87C196CB from tha
8XC196NT. The 87C196CB has 56 Kbytes of one-time-programmable read-only memory
PROM), while the 8XC196NT is available with 32 Kbytes. The 87C196CB also has an addit
512 bytes of register RAM.

The 87C196CB is available in either an 84-pin or a 100-pin package. The 84-pin 87C196C
the 8XC196NT, has up to 20 external address lines, enabling access to 1 Mbyte of linear a
space. The 100-pin 87C196CB has four additional pins available for external address lines
all 24 external address lines connected (A23:16 and AD15:0), the 100-pin 87C196CB can
16 Mbytes of linear address space.

3.1 MEMORY MAP, SPECIAL-FUNCTION REGISTERS, AND WINDOWING

Table 3-1 compares the register file addresses of the 8XC196NT and 87C196CB. Table 3
memory map of the 87C196CB. Table 3-3 lists the 87C196CB’s peripheral SFRs (these a
same as those of the 8XC196NT). Table 3-4 lists the CAN peripheral SFRs, which are uni
the 87C196CB. Tables 3-5 through 3-9 provide the information necessary to window h
memory into the lower register file for direct access.

.

.

Table 3-1. Register File Memory Addresses

Device and Hex
Address Range Description Addressing Modes

CB NT

1DFF
1C00 — Register RAM Indirect, indexed, or windowed direct

03FF
0100

03FF
0100 Upper register file (register RAM) Indirect, indexed, or windowed direct

00FF
001A

00FF
001A Lower register file (register RAM) Direct, indirect, or indexed

0019
0018

0019
0018 Lower register file (stack pointer) Direct, indirect, or indexed

0017
0000

0017
0000 Lower register file (CPU SFRs) Direct, indirect, or indexed
3-1

87C196CB SUPPLEMENT
Table 3-2. 87C196CB Memory Map

Hex
Address Description Addressing Modes

FFFFFF
FF2080

Program memory (After a device reset, the first instruction fetch
is from FF2080H) † Indirect, indexed, extended

FF207F
FF2000 Special purpose memory † Indirect, indexed, extended

FF1FFF
FF0600 External device (memory or I/O) connected to address/data bus Indirect, indexed, extended

FF05FF
FF0400

Internal code and data RAM
(mapped identically into pages FFH and 00H) Indirect, indexed, extended

FF03FF
FF0100 External device (memory or I/O) connected to address/data bus Indirect, indexed, extended

FF00FF
FF0000 Reserved †† Indirect, indexed, extended

FEFFFF
0F0000

100-pin 87C196CB : External device (memory or I/O)
84-pin 87C196CB : Overlaid memory †† Indirect, indexed, extended

0EFFFF
010000 External device (memory or I/O) connected to address/data bus Indirect, indexed, extended

00FFFF
002000 External device or remapped OTPROM ††† Indirect, indexed, extended

001FFF
001FE0 Memory-mapped SFRs Indirect, indexed, extended

001FDF
001F00 Peripheral SFRs Indirect, indexed, extended,

windowed direct

001EFF
001E00 CAN SFRs Indirect, indexed, extended

001DFF
001C00 Internal register RAM Indirect, indexed,

windowed direct

001BFF
000600

External device (memory or I/O) connected to address/data bus;
future SFR expansion Indirect, indexed, extended

0005FF
000400

Internal code and data RAM
(mapped identically into pages 00H and FFH) Indirect, indexed, extended

0003FF
000100 Upper register file (register RAM) Indirect, indexed,

windowed direct

0000FF
000000 Lower register file (register RAM, stack pointer, CPU SFRs) Direct, indirect, indexed

† For the 87C196CB, the program and special-purpose memory locations (FF2000-FFFFFFH) can reside
either in external memory or in internal OTPROM.
†† Locations xF0000-xF00FFH are reserved for in-circuit emulators. Do not use these locations except to
initialize them. Except as otherwise noted, initialize unused program memory locations and reserved
memory locations to FFH.
††† These locations can be either external memory (CCB2.2=0) or a copy of the OTPROM (CCB2.2=1).
3-2

MEMORY PARTITIONS
Table 3-3. 87C196CB Peripheral SFRs
Ports 0, 1, 2, and 6 SFRs Timer 1, Timer 2, and EPA SFRs

Address High (Odd) Byte Low (Even) Byte Address High (Odd) Byte Low (Even) Byte

1FDEH Reserved Reserved †1F9EH TIMER2 (H) TIMER2 (L)

1FDCH Reserved Reserved 1F9CH Reserved T2CONTROL

1FDAH Reserved P0_PIN †1F9AH TIMER1 (H) TIMER1 (L)

1FD8H Reserved Reserved 1F98H Reserved T1CONTROL

1FD6H P6_PIN P1_PIN 1F96H Reserved Reserved

1FD4H P6_REG P1_REG 1F94H Reserved Reserved

1FD2H P6_DIR P1_DIR 1F92H Reserved Reserved

1FD0H P6_MODE P1_MODE 1F90H Reserved Reserved

1FCEH P2_PIN Reserved EPA SFRs

1FCCH P2_REG Reserved Address High (Odd) Byte Low (Even) Byte

1FCAH P2_DIR Reserved †1F8EH COMP1_TIME (H) COMP1_TIME (L)

1FC8H P2_MODE Reserved 1F8CH Reserved COMP1_CON

1FC6H Reserved Reserved †1F8AH COMP0_TIME (H) COMP0_TIME (L)

1FC4H Reserved Reserved 1F88H Reserved COMP0_CON

1FC2H Reserved Reserved †1F86H EPA9_TIME (H) EPA9_TIME (L)

1FC0H Reserved Reserved 1F84H Reserved EPA9_CON

SIO and SSIO SFRs †1F82H EPA8_TIME (H) EPA8_TIME (L)

Address High (Odd) Byte Low (Even) Byte 1F80H Reserved EPA8_CON

1FBEH Reserved Reserved †1F7EH EPA7_TIME (H) EPA7_TIME (L)

1FBCH SP_BAUD (H) SP_BAUD (L) 1F7CH Reserved EPA7_CON

1FBAH SP_CON SBUF_TX †1F7AH EPA6_TIME (H) EPA6_TIME (L)

1FB8H SP_STATUS SBUF_RX 1F78H Reserved EPA6_CON

1FB6H Reserved Reserved †1F76H EPA5_TIME (H) EPA5_TIME (L)

1FB4H Reserved SSIO_BAUD 1F74H Reserved EPA5_CON

1FB2H SSIO1_CON SSIO1_BUF †1F72H EPA4_TIME (H) EPA4_TIME (L)

1FB0H SSIO0_CON SSIO0_BUF 1F70H Reserved EPA4_CON

A/D SFRs †1F6EH EPA3_TIME (H) EPA3_TIME (L)

Address High (Odd) Byte Low (Even) Byte †1F6CH EPA3_CON (H) EPA3_CON (L)

1FAEH AD_TIME AD_TEST †1F6AH EPA2_TIME (H) EPA2_TIME (L)

1FACH Reserved AD_COMMAND 1F68H Reserved EPA2_CON

1FAAH AD_RESULT (H) AD_RESULT (L) †1F66H EPA1_TIME (H) EPA1_TIME (L)

EPA Interrupt SFRs †1F64H EPA1_CON (H) EPA1_CON (L)

Address High (Odd) Byte Low (Even) Byte †1F62H EPA0_TIME (H) EPA0_TIME (L)

1FA8H Reserved EPAIPV 1F60H Reserved EPA0_CON

1FA6H Reserved EPA_PEND1

1FA4H Reserved EPA_MASK1
†1FA2H EPA_PEND (H) EPA_PEND (L)
†1FA0H EPA_MASK (H) EPA_MASK (L)
† Must be addressed as a word.
3-3

87C196CB SUPPLEMENT
Table 3-4. CAN Peripheral SFRs
Message 15 Message 11

Addr High (Odd) Byte Low (Even) Byte Addr High (Odd) Byte Low (Even) Byte

1EFEH Reserved CAN_MSG15DATA7 1EBEH Reserved CAN_MSG11DATA7

1EFCH CAN_MSG15DATA6 CAN_MSG15DATA5 1EBCH CAN_MSG11DATA6 CAN_MSG11DATA5

1EFAH CAN_MSG15DATA4 CAN_MSG15DATA3 1EBAH CAN_MSG11DATA4 CAN_MSG11DATA3

1EF8H CAN_MSG15DATA2 CAN_MSG15DATA1 1EB8H CAN_MSG11DATA2 CAN_MSG11DATA1

1EF6H CAN_MSG15DATA0 CAN_MSG15CFG 1EB6H CAN_MSG11DATA0 CAN_MSG11CFG

1EF4H CAN_MSG15ID3 CAN_MSG15ID2 1EB4H CAN_MSG11ID3 CAN_MSG11ID2

1EF2H CAN_MSG15ID1 CAN_MSG15ID0 1EB2H CAN_MSG11ID1 CAN_MSG11ID0

1EF0H CAN_MSG15CON1 CAN_MSG15CON0 1EB0H CAN_MSG11CON1 CAN_MSG11CON0

Message 14 Message 10

Addr High (Odd) Byte Low (Even) Byte Addr High (Odd) Byte Low (Even) Byte

1EEEH Reserved CAN_MSG14DATA7 1EAEH Reserved CAN_MSG10DATA7

1EECH CAN_MSG14DATA6 CAN_MSG14DATA5 1EACH CAN_MSG10DATA6 CAN_MSG10DATA5

1EEAH CAN_MSG14DATA4 CAN_MSG14DATA3 1EAAH CAN_MSG10DATA4 CAN_MSG10DATA3

1EE8H CAN_MSG14DATA2 CAN_MSG14DATA1 1EA8H CAN_MSG10DATA2 CAN_MSG10DATA1

1EE6H CAN_MSG14DATA0 CAN_MSG14CFG 1EA6H CAN_MSG10DATA0 CAN_MSG10CFG

1EE4H CAN_MSG14ID3 CAN_MSG14ID2 1EA4H CAN_MSG10ID3 CAN_MSG10ID2

1EE2H CAN_MSG14ID1 CAN_MSG14ID0 1EA2H CAN_MSG10ID1 CAN_MSG10ID0

1EE0H CAN_MSG14CON1 CAN_MSG14CON0 1EA0H CAN_MSG10CON1 CAN_MSG10CON0

Message 13 Message 9

Addr High (Odd) Byte Low (Even) Byte Addr High (Odd) Byte Low (Even) Byte

1EDEH Reserved CAN_MSG13DATA7 1E9EH Reserved CAN_MSG9DATA7

1EDCH CAN_MSG13DATA6 CAN_MSG13DATA5 1E9CH CAN_MSG9DATA6 CAN_MSG9DATA5

1EDAH CAN_MSG13DATA4 CAN_MSG13DATA3 1E9AH CAN_MSG9DATA4 CAN_MSG9DATA3

1ED8H CAN_MSG13DATA2 CAN_MSG13DATA1 1E98H CAN_MSG9DATA2 CAN_MSG9DATA1

1ED6H CAN_MSG13DATA0 CAN_MSG13CFG 1E96H CAN_MSG9DATA0 CAN_MSG9CFG

1ED4H CAN_MSG13ID3 CAN_MSG13ID2 1E94H CAN_MSG9ID3 CAN_MSG9ID2

1ED2H CAN_MSG13ID1 CAN_MSG13ID0 1E92H CAN_MSG9ID1 CAN_MSG9ID0

1ED0H CAN_MSG13CON1 CAN_MSG13CON0 1E90H CAN_MSG9CON1 CAN_MSG9CON0

Message 12 Message 8

Addr High (Odd) Byte Low (Even) Byte Addr High (Odd) Byte Low (Even) Byte

1ECEH Reserved CAN_MSG12DATA7 1E8EH Reserved CAN_MSG8DATA7

1ECCH CAN_MSG12DATA6 CAN_MSG12DATA5 1E8CH CAN_MSG8DATA6 CAN_MSG8DATA5

1ECAH CAN_MSG12DATA4 CAN_MSG12DATA3 1E8AH CAN_MSG8DATA4 CAN_MSG8DATA3

1EC8H CAN_MSG12DATA2 CAN_MSG12DATA1 1E88H CAN_MSG8DATA2 CAN_MSG8DATA1

1EC6H CAN_MSG12DATA0 CAN_MSG12CFG 1E86H CAN_MSG8DATA0 CAN_MSG8CFG

1EC4H CAN_MSG12ID3 CAN_MSG12ID2 1E84H CAN_MSG8ID3 CAN_MSG8ID2

1EC2H CAN_MSG12ID1 CAN_MSG12ID0 1E82H CAN_MSG8ID1 CAN_MSG8ID0

1EC0H CAN_MSG12CON1 CAN_MSG12CON0 1E80H CAN_MSG8CON1 CAN_MSG8CON0
3-4

MEMORY PARTITIONS
Message 7 Message 3 and Bit Timing 0

Addr High (Odd) Byte Low (Even) Byte Addr High (Odd) Byte Low (Even) Byte
1E7EH Reserved CAN_MSG7DATA7 1E3EH CAN_BTIME0† CAN_MSG3DATA7

1E7CH CAN_MSG7DATA6 CAN_MSG7DATA5 1E3CH CAN_MSG3DATA6 CAN_MSG3DATA5

1E7AH CAN_MSG7DATA4 CAN_MSG7DATA3 1E3AH CAN_MSG3DATA4 CAN_MSG3DATA3

1E78H CAN_MSG7DATA2 CAN_MSG7DATA1 1E38H CAN_MSG3DATA2 CAN_MSG3DATA1

1E76H CAN_MSG7DATA0 CAN_MSG7CFG 1E36H CAN_MSG3DATA0 CAN_MSG3CFG

1E74H CAN_MSG7ID3 CAN_MSG7ID2 1E34H CAN_MSG3ID3 CAN_MSG3ID2

1E72H CAN_MSG7ID1 CAN_MSG7ID0 1E32H CAN_MSG3ID1 CAN_MSG3ID0

1E70H CAN_MSG7CON1 CAN_MSG7CON0 1E30H CAN_MSG3CON1 CAN_MSG3CON0

Message 6 Message 2

Addr High (Odd) Byte Low (Even) Byte Addr High (Odd) Byte Low (Even) Byte

1E6EH Reserved CAN_MSG6DATA7 1E2EH Reserved CAN_MSG2DATA7

1E6CH CAN_MSG6DATA6 CAN_MSG6DATA5 1E2CH CAN_MSG2DATA6 CAN_MSG2DATA5

1E6AH CAN_MSG6DATA4 CAN_MSG6DATA3 1E2AH CAN_MSG2DATA4 CAN_MSG2DATA3

1E68H CAN_MSG6DATA2 CAN_MSG6DATA1 1E28H CAN_MSG2DATA2 CAN_MSG2DATA1

1E66H CAN_MSG6DATA0 CAN_MSG6CFG 1E26H CAN_MSG2DATA0 CAN_MSG2CFG

1E64H CAN_MSG6ID3 CAN_MSG6ID2 1E24H CAN_MSG2ID3 CAN_MSG2ID2

1E62H CAN_MSG6ID1 CAN_MSG6ID0 1E22H CAN_MSG2ID1 CAN_MSG2ID0

1E60H CAN_MSG6CON1 CAN_MSG6CON0 1E20H CAN_MSG2CON1 CAN_MSG2CON0

Message 5 and Interrupts Message 1

Addr High (Odd) Byte Low (Even) Byte Addr High (Odd) Byte Low (Even) Byte

1E5EH CAN_INT CAN_MSG5DATA7 1E1EH Reserved CAN_MSG1DATA7

1E5CH CAN_MSG5DATA6 CAN_MSG5DATA5 1E1CH CAN_MSG1DATA6 CAN_MSG1DATA5

1E5AH CAN_MSG5DATA4 CAN_MSG5DATA3 1E1AH CAN_MSG1DATA4 CAN_MSG1DATA3

1E58H CAN_MSG5DATA2 CAN_MSG5DATA1 1E18H CAN_MSG1DATA2 CAN_MSG1DATA1

1E56H CAN_MSG5DATA0 CAN_MSG5CFG 1E16H CAN_MSG1DATA0 CAN_MSG1CFG

1E54H CAN_MSG5ID3 CAN_MSG5ID2 1E14H CAN_MSG1ID3 CAN_MSG1ID2

1E52H CAN_MSG5ID1 CAN_MSG5ID0 1E12H CAN_MSG1ID1 CAN_MSG1ID0

1E50H CAN_MSG5CON1 CAN_MSG5CON0 1E10H CAN_MSG1CON1 CAN_MSG1CON0

Message 4 and Bit Timing 1 Mask, Control, and Status

Addr High (Odd) Byte Low (Even) Byte Addr High (Odd) Byte Low (Even) Byte

1E4EH CAN_BTIME1† CAN_MSG4DATA7 1E0EH CAN_MSK15 CAN_MSK15

1E4CH CAN_MSG4DATA6 CAN_MSG4DATA5 1E0CH CAN_MSK15 CAN_MSK15

1E4AH CAN_MSG4DATA4 CAN_MSG4DATA3 1E0AH CAN_EGMSK CAN_EGMSK

1E48H CAN_MSG4DATA2 CAN_MSG4DATA1 1E08H CAN_EGMSK CAN_EGMSK

1E46H CAN_MSG4DATA0 CAN_MSG4CFG 1E06H CAN_SGMSK CAN_SGMSK

1E44H CAN_MSG4ID3 CAN_MSG4ID2 1E04H Reserved Reserved

1E42H CAN_MSG4ID1 CAN_MSG4ID0 1E02H Reserved Reserved

1E40H CAN_MSG4CON1 CAN_MSG4CON0 1E00H CAN_STAT CAN_CON†

† The CCE bit in the control register (CAN_CON) must be set to enable write access to the bit timing registers
(CAN_BTIME0 and CAN_BTIME1).

Table 3-4. CAN Peripheral SFRs (Continued)
3-5

87C196CB SUPPLEMENT
Table 3-5. Selecting a Window of Peripheral SFRs

Peripheral
WSR Value for

32-byte Window
(00E0–00FFH)

WSR Value for
64-byte Window
(00C0–00FFH)

WSR Value for
128-byte Window

(0080–00FFH)

Ports 0, 1, 2, 6 7EH 3FH

1FHA/D converter, EPA interrupts 7DH
3EH

EPA compare 0–1, capture/compare 8–9, timers 7CH

EPA capture/compare 0–7 7BH 3DH 1EH

CAN messages 14–15 77H
3BH

1DH
CAN messages 12–13 76H

CAN messages 10–11 75H
3AH

CAN messages 8–9 74H

CAN messages 6–7 73H
39H

1CH
CAN messages 4–5, bit timing 1, interrupts 72H

CAN messages 2–3, bit timing 0 71H
38H

CAN message 1, control, status, mask 70H
3-6

MEMORY PARTITIONS
Table 3-6. Selecting a Window of the Upper Register File

Register RAM
Locations

WSR Value
for 32-byte Window

(00E0–00FFH)

WSR Value
for 64-byte Window

(00C0–00FFH)

WSR Value
for 128-byte Window

(0080–00FFH)

03E0–03FFH 5FH
2FH

17H
03C0–03DFH 5EH

03A0–03BFH 5DH
2EH

0380–039FH 5CH

0360–037FH 5BH
2DH

16H
0340–035FH 5AH

0320–033FH 59H
2CH

0300–031FH 58H

02E0–02FFH 57H

2BH

15H

02C0–02DFH 56H

02A0–02BFH 55H

2AH0280–029FH 54H

0260–027FH 53H

29H

14H

0240–025FH 52H

0220–023FH 51H

28H0200–021FH 50H

01E0–01FFH 4FH

27H

13H

01C0–01DFH 4EH

01A0–01BFH 4DH

26H0180–019FH 4CH

0160–017FH 4BH

25H

12H

0140–015FH 4AH

0120–013FH 49H

24H0100–011FH 48H
3-7

87C196CB SUPPLEMENT
3-8

MEMORY PARTITIONS
Table 3-7. Selecting a Window of Upper Register RAM

Register RAM
Locations

WSR Value
for 32-byte Window

(00E0–00FFH)

WSR Value
for 64-byte Window

(00C0–00FFH)

WSR Value
for 128-byte Window

(0080–00FFH)

0DE0–0DFFH 6FH
37H

1BH
0DC0–0DDFH 6EH

0DA0–0DBFH 6DH
36H

0D80–0D9FH 6CH

0D60–0D7FH 6BH
35H

1AH
0D40–0D5FH 6AH

0D20–0D3FH 69H
34H

0D00–0D1FH 68H

0CE0–0CFFH 67H
33H

19H
0CC0–0CDFH 66H

0CA0–0CBFH 65H
32H

0C80–0C9FH 64H

0C60–0C7FH 63H
31H

18H
0C40–0C5FH 62H

0C20–0C3FH 61H
30H

0C00–0C1FH 60H
3-9

87C196CB SUPPLEMENT
Table 3-8. Windows

Base Address
WSR Value

for 32-byte Window
(00E0–00FFH)

WSR Value
for 64-byte Window

(00C0–00FFH)

WSR Value for
128-byte Window

(0080–00FFH)

Peripheral SFRs

1FE0H 7FH †

3FH †

1FH †

1FC0H 7EH

1FA0H 7DH

3EH1F80H 7CH

1F60H 7BH

3DH

1EH

1F40H 7AH

1F20H 79H

3CH1F00H 78H

CAN Peripheral SFRs

1EE0H 77H

3BH

1DH

1EC0H 76H

1EA0H 75H

3AH1E80H 74H

1E60H 73H

39H

1CH

1E40H 72H

1E20H 71H

38H1E00H 70H

Register RAM

1DE0H 6FH

37H

1BH

1DC0H 6EH

1DA0H 6DH

36H1D80H 6CH

1D60H 6BH

35H

1AH

1D40H 6AH

1D20H 69H

34H1D00H 68H

1CE0H 67H

33H

19H

1CC0H 66H

1CA0H 65H

32H1C80H 64H

1C60H 63H

31H

18H

1C40H 62H

1C20H 61H

30H1C00H 60H
† Locations 1FE0–1FFFH contain memory-mapped SFRs that cannot be accessed through a window.
Reading these locations through a window returns FFH; writing these locations through a window has no
effect.
3-10

MEMORY PARTITIONS
Upper Register File

03E0H 5FH

2FH

17H

03C0H 5EH

03A0H 5DH

2EH0380H 5CH

0360H 5BH

2DH

16H

0340H 5AH

0320H 59H

2CH0300H 58H

02E0H 57H

2BH

15H

02C0H 56H

02A0H 55H

2AH0280H 54H

0260H 53H

29H

14H

0240H 52H

0220H 51H

28H0200H 50H

01E0H 4FH

27H

13H

01C0H 4EH

01A0H 4DH

26H0180H 4CH

0160H 4BH

25H

12H

0140H 4AH

0120H 49H

24H0100H 48H

Table 3-8. Windows (Continued)

Base Address
WSR Value

for 32-byte Window
(00E0–00FFH)

WSR Value
for 64-byte Window

(00C0–00FFH)

WSR Value for
128-byte Window

(0080–00FFH)

† Locations 1FE0–1FFFH contain memory-mapped SFRs that cannot be accessed through a window.
Reading these locations through a window returns FFH; writing these locations through a window has no
effect.
3-11

87C196CB SUPPLEMENT
Table 3-9. WSR Settings and Direct Addresses for Windowable SFRs

Register Mnemonic Memory
Location

32-byte Windows
(00E0–00FFH)

64-byte Windows
(00C0–00FFH)

128-byte Windows
(0080–00FFH)

WSR Direct
Address WSR Direct

Address WSR Direct
Address

AD_COMMAND 1FACH 7DH 00ECH 3EH 00ECH 1FH 00ACH

AD_RESULT 1FAAH 7DH 00EAH 3EH 00EAH 1FH 00AAH

AD_TEST 1FAEH 7DH 00EEH 3EH 00EEH 1FH 00AEH

AD_TIME 1FAFH 7DH 00EFH 3EH 00EFH 1FH 00AFH

CAN_BTIME0 1E3FH 71H 00FFH 38H 00FFH 1CH 00BFH

CAN_BTIME1 1E4FH 72H 00EFH 39H 00CFH 1CH 00CFH

CAN_CON 1E00H 70H 00E0H 38H 00C0H 1CH 0080H

CAN_EGMSK 1E08H 70H 00E8H 38H 00C8H 1CH 0088H

CAN_INT 1E5FH 72H 00FFH 39H 00DFH 1CH 00DFH

CAN_MSG1CFG 1E16H 70H 00F6H 38H 00D6H 1CH 0096H

CAN_MSG2CFG 1E26H 71H 00E6H 38H 00E6H 1CH 00A6H

CAN_MSG3CFG 1E36H 71H 00F6H 38H 00F6H 1CH 00B6H

CAN_MSG4CFG 1E46H 72H 00E6H 39H 00C6H 1CH 00C6H

CAN_MSG5CFG 1E56H 72H 00F6H 39H 00D6H 1CH 00D6H

CAN_MSG6CFG 1E66H 73H 00E6H 39H 00E6H 1CH 00E6H

CAN_MSG7CFG 1E76H 73H 00F6H 39H 00F6H 1CH 00F6H

CAN_MSG8CFG 1E86H 74H 00E6H 3AH 00C6H 1DH 0086H

CAN_MSG9CFG 1E96H 74H 00F6H 3AH 00D6H 1DH 0096H

CAN_MSG10CFG 1EA6H 75H 00E6H 3AH 00E6H 1DH 00A6H

CAN_MSG11CFG 1EB6H 75H 00F6H 3AH 00F6H 1DH 00B6H

CAN_MSG12CFG 1EC6H 76H 00E6H 3BH 00C6H 1DH 00C6H

CAN_MSG13CFG 1ED6H 76H 00F6H 3BH 00D6H 1DH 00D6H

CAN_MSG14CFG 1EE6H 77H 00E6H 3BH 00E6H 1DH 00E6H

CAN_MSG15CFG 1EF6H 77H 00F6H 3BH 00F6H 1DH 00F6H

CAN_MSG1CON0 1E10H 70H 00F0H 38H 00D0H 1CH 0090H

CAN_MSG2CON0 1E20H 71H 00E0H 38H 00E0H 1CH 00A0H

CAN_MSG3CON0 1E30H 71H 00F0H 38H 00F0H 1CH 00B0H

CAN_MSG4CON0 1E40H 72H 00E0H 39H 00C0H 1CH 00C0H

CAN_MSG5CON0 1E50H 72H 00F0H 39H 00D0H 1CH 00D0H

CAN_MSG6CON0 1E60H 73H 00E0H 39H 00E0H 1CH 00E0H

† Must be addressed as a word.
3-12

MEMORY PARTITIONS
CAN_MSG7CON0 1E70H 73H 00F0H 39H 00F0H 1CH 00F0H

CAN_MSG8CON0 1E80H 74H 00E0H 3AH 00C0H 1DH 0080H

CAN_MSG9CON0 1E90H 74H 00F0H 3AH 00D0H 1DH 0090H

CAN_MSG10CON0 1EA0H 75H 00E0H 3AH 00E0H 1DH 00A0H

CAN_MSG11CON0 1EB0H 75H 00F0H 3AH 00F0H 1DH 00B0H

CAN_MSG12CON0 1EC0H 76H 00E0H 3BH 00C0H 1DH 00C0H

CAN_MSG13CON0 1ED0H 76H 00F0H 3BH 00D0H 1DH 00D0H

CAN_MSG14CON0 1EE0H 77H 00E0H 3BH 00E0H 1DH 00E0H

CAN_MSG15CON0 1EF0H 77H 00F0H 3BH 00F0H 1DH 00F0H

CAN_MSG1CON1 1E11H 70H 00F1H 38H 00D1H 1CH 0091H

CAN_MSG2CON1 1E21H 71H 00E1H 38H 00E1H 1CH 00A1H

CAN_MSG3CON1 1E31H 71H 00F1H 38H 00F1H 1CH 00B1H

CAN_MSG4CON1 1E41H 72H 00E1H 39H 00C1H 1CH 00C1H

CAN_MSG5CON1 1E51H 72H 00F1H 39H 00D1H 1CH 00D1H

CAN_MSG6CON1 1E61H 73H 00E1H 39H 00E1H 1CH 00E1H

CAN_MSG7CON1 1E71H 73H 00F1H 39H 00F1H 1CH 00F1H

CAN_MSG8CON1 1E81H 74H 00E1H 3AH 00C1H 1DH 0081H

CAN_MSG9CON1 1E91H 74H 00F1H 3AH 00D1H 1DH 0091H

CAN_MSG10CON1 1EA1H 75H 00E1H 3AH 00E1H 1DH 00A1H

CAN_MSG11CON1 1EB1H 75H 00F1H 3AH 00F1H 1DH 00B1H

CAN_MSG12CON1 1EC1H 76H 00E1H 3BH 00C1H 1DH 00C1H

CAN_MSG13CON1 1ED1H 76H 00F1H 3BH 00D1H 1DH 00D1H

CAN_MSG14CON1 1EE1H 77H 00E1H 3BH 00E1H 1DH 00E1H

CAN_MSG15CON1 1EF1H 77H 00F1H 3BH 00F1H 1DH 00F1H

CAN_MSG1DATA0 1E17H 70H 00F7H 38H 00D7H 1CH 0097H

CAN_MSG2DATA0 1E27H 71H 00E7H 38H 00E7H 1CH 00A7H

CAN_MSG3DATA0 1E37H 71H 00F7H 38H 00F7H 1CH 00B7H

CAN_MSG4DATA0 1E47H 72H 00E7H 39H 00C7H 1CH 00C7H

CAN_MSG5DATA0 1E57H 72H 00F7H 39H 00D7H 1CH 00D7H

CAN_MSG6DATA0 1E67H 73H 00E7H 39H 00E7H 1CH 00E7H

CAN_MSG7DATA0 1E77H 73H 00F7H 39H 00F7H 1CH 00F7H

CAN_MSG8DATA0 1E87H 74H 00E7H 3AH 00C7H 1DH 0087H

Table 3-9. WSR Settings and Direct Addresses for Windowable SFRs (Continued)

Register Mnemonic Memory
Location

32-byte Windows
(00E0–00FFH)

64-byte Windows
(00C0–00FFH)

128-byte Windows
(0080–00FFH)

WSR Direct
Address WSR Direct

Address WSR Direct
Address

† Must be addressed as a word.
3-13

87C196CB SUPPLEMENT
CAN_MSG9DATA0 1E97H 74H 00F7H 3AH 00D7H 1DH 0097H

CAN_MSG10DATA0 1EA7H 75H 00E7H 3AH 00E7H 1DH 00A7H

CAN_MSG11DATA0 1EB7H 75H 00F7H 3AH 00F7H 1DH 00B7H

CAN_MSG12DATA0 1EC7H 76H 00E7H 3BH 00C7H 1DH 00C7H

CAN_MSG13DATA0 1ED7H 76H 00F7H 3BH 00D7H 1DH 00D7H

CAN_MSG14DATA0 1EE7H 77H 00E7H 3BH 00E7H 1DH 00E7H

CAN_MSG15DATA0 1EF7H 77H 00F7H 3BH 00F7H 1DH 00F7H

CAN_MSG1DATA1 1E18H 70H 00F8H 38H 00D8H 1CH 0098H

CAN_MSG2DATA1 1E28H 71H 00E8H 38H 00E8H 1CH 00A8H

CAN_MSG3DATA1 1E38H 71H 00F8H 38H 00F8H 1CH 00B8H

CAN_MSG4DATA1 1E48H 72H 00E8H 39H 00C8H 1CH 00C8H

CAN_MSG5DATA1 1E58H 72H 00F8H 39H 00D8H 1CH 00D8H

CAN_MSG6DATA1 1E68H 73H 00E8H 39H 00E8H 1CH 00E8H

CAN_MSG7DATA1 1E78H 73H 00F8H 39H 00F8H 1CH 00F8H

CAN_MSG8DATA1 1E88H 74H 00E8H 3AH 00C8H 1DH 0088H

CAN_MSG9DATA1 1E98H 74H 00F8H 3AH 00D8H 1DH 0098H

CAN_MSG10DATA1 1EA8H 75H 00E8H 3AH 00E8H 1DH 00A8H

CAN_MSG11DATA1 1EB8H 75H 00F8H 3AH 00F8H 1DH 00B8H

CAN_MSG12DATA1 1EC8H 76H 00E8H 3BH 00C8H 1DH 00C8H

CAN_MSG13DATA1 1ED8H 76H 00F8H 3BH 00D8H 1DH 00D8H

CAN_MSG14DATA1 1EE8H 77H 00E8H 3BH 00E8H 1DH 00E8H

CAN_MSG15DATA1 1EF8H 77H 00F8H 3BH 00F8H 1DH 00F8H

CAN_MSG1DATA2 1E19H 70H 00F9H 38H 00D9H 1CH 0099H

CAN_MSG2DATA2 1E29H 71H 00E9H 38H 00E9H 1CH 00A9H

CAN_MSG3DATA2 1E39H 71H 00F9H 38H 00F9H 1CH 00B9H

CAN_MSG4DATA2 1E49H 72H 00E9H 39H 00C9H 1CH 00C9H

CAN_MSG5DATA2 1E59H 72H 00F9H 39H 00D9H 1CH 00D9H

CAN_MSG6DATA2 1E69H 73H 00E9H 39H 00E9H 1CH 00E9H

CAN_MSG7DATA2 1E79H 73H 00F9H 39H 00F9H 1CH 00F9H

CAN_MSG8DATA2 1E89H 74H 00E9H 3AH 00C9H 1DH 0089H

CAN_MSG9DATA2 1E99H 74H 00F9H 3AH 00D9H 1DH 0099H

CAN_MSG10DATA2 1EA9H 75H 00E9H 3AH 00E9H 1DH 00A9H

Table 3-9. WSR Settings and Direct Addresses for Windowable SFRs (Continued)

Register Mnemonic Memory
Location

32-byte Windows
(00E0–00FFH)

64-byte Windows
(00C0–00FFH)

128-byte Windows
(0080–00FFH)

WSR Direct
Address WSR Direct

Address WSR Direct
Address

† Must be addressed as a word.
3-14

MEMORY PARTITIONS
CAN_MSG11DATA2 1EB9H 75H 00F9H 3AH 00F9H 1DH 00B9H

CAN_MSG12DATA2 1EC9H 76H 00E9H 3BH 00C9H 1DH 00C9H

CAN_MSG13DATA2 1ED9H 76H 00F9H 3BH 00D9H 1DH 00D9H

CAN_MSG14DATA2 1EE9H 77H 00E9H 3BH 00E9H 1DH 00E9H

CAN_MSG15DATA2 1EF9H 77H 00F9H 3BH 00F9H 1DH 00F9H

CAN_MSG1DATA3 1E1AH 70H 00FAH 38H 00DAH 1CH 009AH

CAN_MSG2DATA3 1E2AH 71H 00EAH 38H 00EAH 1CH 00AAH

CAN_MSG3DATA3 1E3AH 71H 00FAH 38H 00FAH 1CH 00BAH

CAN_MSG4DATA3 1E4AH 72H 00EAH 39H 00CAH 1CH 00CAH

CAN_MSG5DATA3 1E5AH 72H 00FAH 39H 00DAH 1CH 00DAH

CAN_MSG6DATA3 1E6AH 73H 00EAH 39H 00EAH 1CH 00EAH

CAN_MSG7DATA3 1E7AH 73H 00FAH 39H 00FAH 1CH 00FAH

CAN_MSG8DATA3 1E8AH 74H 00EAH 3AH 00CAH 1DH 008AH

CAN_MSG9DATA3 1E9AH 74H 00FAH 3AH 00DAH 1DH 009AH

CAN_MSG10DATA3 1EAAH 75H 00EAH 3AH 00EAH 1DH 00AAH

CAN_MSG11DATA3 1EBAH 75H 00FAH 3AH 00FAH 1DH 00BAH

CAN_MSG12DATA3 1ECAH 76H 00EAH 3BH 00CAH 1DH 00CAH

CAN_MSG13DATA3 1EDAH 76H 00FAH 3BH 00DAH 1DH 00DAH

CAN_MSG14DATA3 1EEAH 77H 00EAH 3BH 00EAH 1DH 00EAH

CAN_MSG15DATA3 1EFAH 77H 00FAH 3BH 00FAH 1DH 00FAH

CAN_MSG1DATA4 1E1BH 70H 00FBH 38H 00DBH 1CH 009BH

CAN_MSG2DATA4 1E2BH 71H 00EBH 38H 00EBH 1CH 00ABH

CAN_MSG3DATA4 1E3BH 71H 00FBH 38H 00FBH 1CH 00BBH

CAN_MSG4DATA4 1E4BH 72H 00EBH 39H 00CBH 1CH 00CBH

CAN_MSG5DATA4 1E5BH 72H 00FBH 39H 00DBH 1CH 00DBH

CAN_MSG6DATA4 1E6BH 73H 00EBH 39H 00EBH 1CH 00EBH

CAN_MSG7DATA4 1E7BH 73H 00FBH 39H 00FBH 1CH 00FBH

CAN_MSG8DATA4 1E8BH 74H 00EBH 3AH 00CBH 1DH 008BH

CAN_MSG9DATA4 1E9BH 74H 00FBH 3AH 00DBH 1DH 009BH

CAN_MSG10DATA4 1EABH 75H 00EBH 3AH 00EBH 1DH 00ABH

CAN_MSG11DATA4 1EBBH 75H 00FBH 3AH 00FBH 1DH 00BBH

CAN_MSG12DATA4 1ECBH 76H 00EBH 3BH 00CBH 1DH 00CBH

Table 3-9. WSR Settings and Direct Addresses for Windowable SFRs (Continued)

Register Mnemonic Memory
Location

32-byte Windows
(00E0–00FFH)

64-byte Windows
(00C0–00FFH)

128-byte Windows
(0080–00FFH)

WSR Direct
Address WSR Direct

Address WSR Direct
Address

† Must be addressed as a word.
3-15

87C196CB SUPPLEMENT
CAN_MSG13DATA4 1EDBH 76H 00FBH 3BH 00DBH 1DH 00DBH

CAN_MSG14DATA4 1EEBH 77H 00EBH 3BH 00EBH 1DH 00EBH

CAN_MSG15DATA4 1EFBH 77H 00FBH 3BH 00FBH 1DH 00FBH

CAN_MSG1DATA5 1E1CH 70H 00FCH 38H 00DCH 1CH 009CH

CAN_MSG2DATA5 1E2CH 71H 00ECH 38H 00ECH 1CH 00ACH

CAN_MSG3DATA5 1E3CH 71H 00FCH 38H 00FCH 1CH 00BCH

CAN_MSG4DATA5 1E4CH 72H 00ECH 39H 00CCH 1CH 00CCH

CAN_MSG5DATA5 1E5CH 72H 00FCH 39H 00DCH 1CH 00DCH

CAN_MSG6DATA5 1E6CH 73H 00ECH 39H 00ECH 1CH 00ECH

CAN_MSG7DATA5 1E7CH 73H 00FCH 39H 00FCH 1CH 00FCH

CAN_MSG8DATA5 1E8CH 74H 00ECH 3AH 00CCH 1DH 008CH

CAN_MSG9DATA5 1E9CH 74H 00FCH 3AH 00DCH 1DH 009CH

CAN_MSG10DATA5 1EACH 75H 00ECH 3AH 00ECH 1DH 00ACH

CAN_MSG11DATA5 1EBCH 75H 00FCH 3AH 00FCH 1DH 00BCH

CAN_MSG12DATA5 1ECCH 76H 00ECH 3BH 00CCH 1DH 00CCH

CAN_MSG13DATA5 1EDCH 76H 00FCH 3BH 00DCH 1DH 00DCH

CAN_MSG14DATA5 1EECH 77H 00ECH 3BH 00ECH 1DH 00ECH

CAN_MSG15DATA5 1EFCH 77H 00FCH 3BH 00FCH 1DH 00FCH

CAN_MSG1DATA6 1E1DH 70H 00FDH 38H 00DDH 1CH 009DH

CAN_MSG2DATA6 1E2DH 71H 00EDH 38H 00EDH 1CH 00ADH

CAN_MSG3DATA6 1E3DH 71H 00FDH 38H 00FDH 1CH 00BDH

CAN_MSG4DATA6 1E4DH 72H 00EDH 39H 00CDH 1CH 00CDH

CAN_MSG5DATA6 1E5DH 72H 00FDH 39H 00DDH 1CH 00DDH

CAN_MSG6DATA6 1E6DH 73H 00EDH 39H 00EDH 1CH 00EDH

CAN_MSG7DATA6 1E7DH 73H 00FDH 39H 00FDH 1CH 00FDH

CAN_MSG8DATA6 1E8DH 74H 00EDH 3AH 00CDH 1DH 008DH

CAN_MSG9DATA6 1E9DH 74H 00FDH 3AH 00DDH 1DH 009DH

CAN_MSG10DATA6 1EADH 75H 00EDH 3AH 00EDH 1DH 00ADH

CAN_MSG11DATA6 1EBDH 75H 00FDH 3AH 00FDH 1DH 00BDH

CAN_MSG12DATA6 1ECDH 76H 00EDH 3BH 00CDH 1DH 00CDH

CAN_MSG13DATA6 1EDDH 76H 00FDH 3BH 00DDH 1DH 00DDH

CAN_MSG14DATA6 1EEDH 77H 00EDH 3BH 00EDH 1DH 00EDH

Table 3-9. WSR Settings and Direct Addresses for Windowable SFRs (Continued)

Register Mnemonic Memory
Location

32-byte Windows
(00E0–00FFH)

64-byte Windows
(00C0–00FFH)

128-byte Windows
(0080–00FFH)

WSR Direct
Address WSR Direct

Address WSR Direct
Address

† Must be addressed as a word.
3-16

MEMORY PARTITIONS
CAN_MSG15DATA6 1EFDH 77H 00FDH 3BH 00FDH 1DH 00FDH

CAN_MSG1DATA7 1E1EH 70H 00FEH 38H 00DEH 1CH 009EH

CAN_MSG2DATA7 1E2EH 71H 00EEH 38H 00EEH 1CH 00AEH

CAN_MSG3DATA7 1E3EH 71H 00FEH 38H 00FEH 1CH 00BEH

CAN_MSG4DATA7 1E4EH 72H 00EEH 39H 00CEH 1CH 00CEH

CAN_MSG5DATA7 1E5EH 72H 00FEH 39H 00DEH 1CH 00DEH

CAN_MSG6DATA7 1E6EH 73H 00EEH 39H 00EEH 1CH 00EEH

CAN_MSG7DATA7 1E7EH 73H 00FEH 39H 00FEH 1CH 00FEH

CAN_MSG8DATA7 1E8EH 74H 00EEH 3AH 00CEH 1DH 008EH

CAN_MSG9DATA7 1E9EH 74H 00FEH 3AH 00DEH 1DH 009EH

CAN_MSG10DATA7 1EAEH 75H 00EEH 3AH 00EEH 1DH 00AEH

CAN_MSG11DATA7 1EBEH 75H 00FEH 3AH 00FEH 1DH 00BEH

CAN_MSG12DATA7 1ECEH 76H 00EEH 3BH 00CEH 1DH 00CEH

CAN_MSG13DATA7 1EDEH 76H 00FEH 3BH 00DEH 1DH 00DEH

CAN_MSG14DATA7 1EEEH 77H 00EEH 3BH 00EEH 1DH 00EEH

CAN_MSG15DATA7 1EFEH 77H 00FEH 3BH 00FEH 1DH 00FEH

CAN_MSG1ID0 1E12H 70H 00F2H 38H 00D2H 1CH 0092H

CAN_MSG2ID0 1E22H 71H 00E2H 38H 00E2H 1CH 00A2H

CAN_MSG3ID0 1E32H 71H 00F2H 38H 00F2H 1CH 00B2H

CAN_MSG4ID0 1E42H 72H 00E2H 39H 00C2H 1CH 00C2H

CAN_MSG5ID0 1E52H 72H 00F2H 39H 00D2H 1CH 00D2H

CAN_MSG6ID0 1E62H 73H 00E2H 39H 00E2H 1CH 00E2H

CAN_MSG7ID0 1E72H 73H 00F2H 39H 00F2H 1CH 00F2H

CAN_MSG8ID0 1E82H 74H 00E2H 3AH 00C2H 1DH 0082H

CAN_MSG9ID0 1E92H 74H 00F2H 3AH 00D2H 1DH 0092H

CAN_MSG10ID0 1EA2H 75H 00E2H 3AH 00E2H 1DH 00A2H

CAN_MSG11ID0 1EB2H 75H 00F2H 3AH 00F2H 1DH 00B2H

CAN_MSG12ID0 1EC2H 76H 00E2H 3BH 00C2H 1DH 00C2H

CAN_MSG13ID0 1ED2H 76H 00F2H 3BH 00D2H 1DH 00D2H

CAN_MSG14ID0 1EE2H 77H 00E2H 3BH 00E2H 1DH 00E2H

CAN_MSG15ID0 1EF2H 77H 00F2H 3BH 00F2H 1DH 00F2H

CAN_MSG1ID1 1E13H 70H 00F3H 38H 00D3H 1CH 0093H

Table 3-9. WSR Settings and Direct Addresses for Windowable SFRs (Continued)

Register Mnemonic Memory
Location

32-byte Windows
(00E0–00FFH)

64-byte Windows
(00C0–00FFH)

128-byte Windows
(0080–00FFH)

WSR Direct
Address WSR Direct

Address WSR Direct
Address

† Must be addressed as a word.
3-17

87C196CB SUPPLEMENT
CAN_MSG2ID1 1E23H 71H 00E3H 38H 00E3H 1CH 00A3H

CAN_MSG3ID1 1E33H 71H 00F3H 38H 00F3H 1CH 00B3H

CAN_MSG4ID1 1E43H 72H 00E3H 39H 00C3H 1CH 00C3H

CAN_MSG5ID1 1E53H 72H 00F3H 39H 00D3H 1CH 00D3H

CAN_MSG6ID1 1E63H 73H 00E3H 39H 00E3H 1CH 00E3H

CAN_MSG7ID1 1E73H 73H 00F3H 39H 00F3H 1CH 00F3H

CAN_MSG8ID1 1E83H 74H 00E3H 3AH 00C3H 1DH 0083H

CAN_MSG9ID1 1E93H 74H 00F3H 3AH 00D3H 1DH 0093H

CAN_MSG10ID1 1EA3H 75H 00E3H 3AH 00E3H 1DH 00A3H

CAN_MSG11ID1 1EB3H 75H 00F3H 3AH 00F3H 1DH 00B3H

CAN_MSG12ID1 1EC3H 76H 00E3H 3BH 00C3H 1DH 00C3H

CAN_MSG13ID1 1ED3H 76H 00F3H 3BH 00D3H 1DH 00D3H

CAN_MSG14ID1 1EE3H 77H 00E3H 3BH 00E3H 1DH 00E3H

CAN_MSG15ID1 1EF3H 77H 00F3H 3BH 00F3H 1DH 00F3H

CAN_MSG1ID2 1E14H 70H 00F4H 38H 00D4H 1CH 0094H

CAN_MSG2ID2 1E24H 71H 00E4H 38H 00E4H 1CH 00A4H

CAN_MSG3ID2 1E34H 71H 00F4H 38H 00F4H 1CH 00B4H

CAN_MSG4ID2 1E44H 72H 00E4H 39H 00C4H 1CH 00C4H

CAN_MSG5ID2 1E54H 72H 00F4H 39H 00D4H 1CH 00D4H

CAN_MSG6ID2 1E64H 73H 00E4H 39H 00E4H 1CH 00E4H

CAN_MSG7ID2 1E74H 73H 00F4H 39H 00F4H 1CH 00F4H

CAN_MSG8ID2 1E84H 74H 00E4H 3AH 00C4H 1DH 0084H

CAN_MSG9ID2 1E94H 74H 00F4H 3AH 00D4H 1DH 0094H

CAN_MSG10ID2 1EA4H 75H 00E4H 3AH 00E4H 1DH 00A4H

CAN_MSG11ID2 1EB4H 75H 00F4H 3AH 00F4H 1DH 00B4H

CAN_MSG12ID2 1EC4H 76H 00E4H 3BH 00C4H 1DH 00C4H

CAN_MSG13ID2 1ED4H 76H 00F4H 3BH 00D4H 1DH 00D4H

CAN_MSG14ID2 1EE4H 77H 00E4H 3BH 00E4H 1DH 00E4H

CAN_MSG15ID2 1EF4H 77H 00F4H 3BH 00F4H 1DH 00F4H

CAN_MSG1ID3 1E15H 70H 00F5H 38H 00D5H 1CH 0095H

CAN_MSG2ID3 1E25H 71H 00E5H 38H 00E5H 1CH 00A5H

CAN_MSG3ID3 1E35H 71H 00F5H 38H 00F5H 1CH 00B5H

Table 3-9. WSR Settings and Direct Addresses for Windowable SFRs (Continued)

Register Mnemonic Memory
Location

32-byte Windows
(00E0–00FFH)

64-byte Windows
(00C0–00FFH)

128-byte Windows
(0080–00FFH)

WSR Direct
Address WSR Direct

Address WSR Direct
Address

† Must be addressed as a word.
3-18

MEMORY PARTITIONS
CAN_MSG4ID3 1E45H 72H 00E5H 39H 00C5H 1CH 00C5H

CAN_MSG5ID3 1E55H 72H 00F5H 39H 00D5H 1CH 00D5H

CAN_MSG6ID3 1E65H 73H 00E5H 39H 00E5H 1CH 00E5H

CAN_MSG7ID3 1E75H 73H 00F5H 39H 00F5H 1CH 00F5H

CAN_MSG8ID3 1E85H 74H 00E5H 3AH 00C5H 1DH 0085H

CAN_MSG9ID3 1E95H 74H 00F5H 3AH 00D5H 1DH 0095H

CAN_MSG10ID3 1EA5H 75H 00E5H 3AH 00E5H 1DH 00A5H

CAN_MSG11ID3 1EB5H 75H 00F5H 3AH 00F5H 1DH 00B5H

CAN_MSG12ID3 1EC5H 76H 00E5H 3BH 00C5H 1DH 00C5H

CAN_MSG13ID3 1ED5H 76H 00F5H 3BH 00D5H 1DH 00D5H

CAN_MSG14ID3 1EE5H 77H 00E5H 3BH 00E5H 1DH 00E5H

CAN_MSG15ID3 1EF5H 77H 00F5H 3BH 00F5H 1DH 00F5H

CAN_MSK15 1E0CH 70H 00ECH 38H 00CCH 1CH 008CH

CAN_SGMSK 1E06H 70H 00E6H 38H 00C6H 1CH 0086H

CAN_STAT 1E01H 70H 00E1H 38H 00C1H 1CH 0081H

COMP0_CON 1F88H 7CH 00E8H 3EH 00C8H 1FH 0088H

COMP1_CON 1F8CH 7CH 00ECH 3EH 00CCH 1FH 008CH

COMP0_TIME† 1F8AH 7CH 00EAH 3EH 00CAH 1FH 008AH

COMP1_TIME† 1F8EH 7CH 00EEH 3EH 00CEH 1FH 008EH

EPA_MASK† 1FA0H 7DH 00E0H 3EH 00E0H 1FH 00A0H

EPA_MASK1 1FA4H 7DH 00E4H 3EH 00E4H 1FH 00A4H

EPA_PEND† 1FA2H 7DH 00E2H 3EH 00E2H 1FH 00A2H

EPA_PEND1 1FA6H 7DH 00E6H 3EH 00E6H 1FH 00A6H

EPA0_CON 1F60H 7BH 00E0H 3DH 00E0H 1EH 00E0H

EPA1_CON† 1F64H 7BH 00E4H 3DH 00E4H 1EH 00E4H

EPA2_CON 1F68H 7BH 00E8H 3DH 00E8H 1EH 00E8H

EPA3_CON† 1F6CH 7BH 00ECH 3DH 00ECH 1EH 00ECH

EPA8_CON 1F80H 7CH 00E0H 3EH 00C0H 1FH 0080H

EPA9_CON 1F84H 7CH 00E4H 3EH 00C4H 1FH 0084H

EPA9_TIME† 1F86H 7CH 00E6H 3EH 00C6H 1FH 0086H

EPA0_TIME† 1F62H 7BH 00E2H 3DH 00E2H 1EH 00E2H

EPA1_TIME† 1F66H 7BH 00E6H 3DH 00E6H 1EH 00E6H

Table 3-9. WSR Settings and Direct Addresses for Windowable SFRs (Continued)

Register Mnemonic Memory
Location

32-byte Windows
(00E0–00FFH)

64-byte Windows
(00C0–00FFH)

128-byte Windows
(0080–00FFH)

WSR Direct
Address WSR Direct

Address WSR Direct
Address

† Must be addressed as a word.
3-19

EPA2_TIME† 1F6AH 7BH 00EAH 3DH 00EAH 1EH 00EAH

EPA3_TIME† 1F6EH 7BH 00EEH 3DH 00EEH 1EH 00EEH

EPA8_TIME† 1F82H 7CH 00E2H 3EH 00C2H 1FH 0082H

EPA9_TIME† 1F86H 7CH 00E6H 3EH 00C6H 1FH 0086H

EPAIPV 1FA8H 7DH 00E8H 3EH 00E8H 1FH 00A8H

P1_DIR 1FD2H 7EH 00F2H 3FH 00D2H 1FH 00D2H

P2_DIR 1FCBH 7EH 00EBH 3FH 00CBH 1FH 00CBH

P6_DIR 1FD3H 7EH 00F3H 3FH 00D3H 1FH 00D3H

P1_MODE 1FD0H 7EH 00F0H 3FH 00D0H 1FH 00D0H

P2_MODE 1FC9H 7EH 00E9H 3FH 00C9H 1FH 00C9H

P6_MODE 1FD1H 7EH 00F1H 3FH 00D1H 1FH 00D1H

P0_PIN 1FDAH 7EH 00FAH 3FH 00DAH 1FH 00DAH

P1_PIN 1FD6H 7EH 00F6H 3FH 00D6H 1FH 00D6H

P2_PIN 1FCFH 7EH 00EFH 3FH 00CFH 1FH 00CFH

P6_PIN 1FD7H 7EH 00F7H 3FH 00D7H 1FH 00D7H

P1_REG 1FD4H 7EH 00F4H 3FH 00D4H 1FH 00D4H

P2_REG 1FCDH 7EH 00EDH 3FH 00CDH 1FH 00CDH

P6_REG 1FD5H 7EH 00F5H 3FH 00D5H 1FH 00D5H

SBUF_RX 1FB8H 7DH 00F8H 3EH 00F8H 1FH 00B8H

SBUF_TX 1FBAH 7DH 00FAH 3EH 00FAH 1FH 00BAH

SP_BAUD† 1FBCH 7DH 00FCH 3EH 00FCH 1FH 00BCH

SP_CON 1FBBH 7DH 00FBH 3EH 00FBH 1FH 00BBH

SP_STATUS 1FB9H 7DH 00F9H 3EH 00F9H 1FH 00B9H

SSIO_BAUD 1FB4H 7DH 00F4H 3EH 00F4H 1FH 00B4H

SSIO0_BUF 1FB0H 7DH 00F0H 3EH 00F0H 1FH 00B0H

SSIO1_BUF 1FB2H 7DH 00F2H 3EH 00F2H 1FH 00B2H

SSIO0_CON 1FB1H 7DH 00F1H 3EH 00F1H 1FH 00B1H

SSIO1_CON 1FB3H 7DH 00F3H 3EH 00F3H 1FH 00B3H

T1CONTROL 1F98H 7CH 00F8H 3EH 00D8H 1FH 0098H

T2CONTROL 1F9CH 7CH 00FCH 3EH 00DCH 1FH 009CH

TIMER1† 1F9AH 7CH 00FAH 3EH 00DAH 1FH 009AH

TIMER2† 1F9EH 7CH 00FEH 3EH 00DEH 1FH 009EH

Table 3-9. WSR Settings and Direct Addresses for Windowable SFRs (Continued)

Register Mnemonic Memory
Location

32-byte Windows
(00E0–00FFH)

64-byte Windows
(00C0–00FFH)

128-byte Windows
(0080–00FFH)

WSR Direct
Address WSR Direct

Address WSR Direct
Address

† Must be addressed as a word.

4
Standard and PTS
Interrupts

iffer-

 low-
gisters.
CHAPTER 4
STANDARD AND PTS INTERRUPTS

4.1 INTERRUPT SOURCES, VECTORS, AND PRIORITIES

The interrupt structure of the 87C196CB is the same as that of the 8XC196NT. The only d
ence is that INT13, which was reserved on the 8XC196NT, supports the CAN peripheral.

Table 4-1 lists the 87C196CB’s interrupts sources, default priorities (30 is highest and 0 is
est), and vector addresses. Figures 4-1 and 4-2 illustrate the interrupt mask and pending re

Table 4-1. Interrupt Sources, Vectors, and Priorities

Interrupt Source Mnemonic

Interrupt Controller
Service PTS Service

Nonmaskable Interrupt NMI INT15 FF203EH 30 — — —

EXTINT Pin EXTINT INT14 FF203CH 14 PTS14 FF205CH 29

CAN CAN INT13 FF203AH 13 PTS13 † FF205AH 28

SIO Receive RI INT12 FF2038H 12 PTS12 FF2058H 27

SIO Transmit TI INT11 FF2036H 11 PTS11 FF2056H 26

SSIO Channel 1 Transfer SSIO1 INT10 FF2034H 10 PTS10 FF2054H 25

SSIO Channel 0 Transfer SSIO0 INT09 FF2032H 09 PTS09 FF2052H 24

Slave Port Command Buff Full CBF INT08 FF2030H 08 PTS08 FF2050H 23

Unimplemented Opcode — — FF2012H — — — —

Software TRAP Instruction — — FF2010H — — — —

Slave Port Input Buff Full IBF INT07 FF200EH 07 PTS07 FF204EH 22

Slave Port Output Buff Empty OBE INT06 FF200CH 06 PTS06 FF204CH 21

A/D Conversion Complete AD_DONE INT05 FF200AH 05 PTS05 FF204AH 20

EPA Capture/Compare 0 EPA0 INT04 FF2008H 04 PTS04 FF2048H 19

EPA Capture/Compare 1 EPA1 INT03 FF2006H 03 PTS03 FF2046H 18

EPA Capture/Compare 2 EPA2 INT02 FF2004H 02 PTS02 FF2044H 17

EPA Capture/Compare 3 EPA3 INT01 FF2002H 01 PTS01 FF2042H 16

EPA Capture/Compare 4–9,
EPA 0–9 Overrun,
EPA Compare 0–1,
Timer 1 Overflow,
Timer 2 Overflow

EPAx INT00 FF2000H 00 PTS00† FF2040H 15

† PTS service is not recommended because the PTS cannot determine the source of shared interrupts.
4-1

87C196CB SUPPLEMENT
INT_MASK1 Address:
Reset State:

0013H
00H

The interrupt mask 1 (INT_MASK1) register enables or disables (masks) individual interrupt requests.
(The EI and DI instructions enable and disable servicing of all maskable interrupts.) INT_MASK1 can
be read from or written to as a byte register. PUSHA saves this register on the stack and POPA
restores it.

7 0

NMI EXTINT CAN RI TI SSIO1 SSIO0 CBF

7:0 Setting a bit enables the corresponding interrupt.

The standard interrupt vector locations are as follows:

Bit Mnemonic Interrupt Standard Vector
NMI† Nonmaskable Interrupt FF203EH
EXTINT EXTINT Pin FF203CH
CAN CAN Peripheral FF203AH
RI SIO Receive FF2038H
TI SIO Transmit FF2036H
SSIO1 SSIO 1 Transfer FF2034H
SSIO0 SSIO 0 Transfer FF2032H
CBF Slave Port Command Buffer Full FF2030H

† NMI is always enabled. This nonfunctional mask bit exists for design symmetry with the
INT_PEND1 register. Always write zero to this bit.

Figure 4-1. Interrupt Mask 1 (INT_MASK1) Register

INT_PEND1 Address:
Reset State:

0012H
00H

When hardware detects a pending interrupt, it sets the corresponding bit in the interrupt pending
(INT_PEND or INT_PEND1) registers. When the vector is taken, the hardware clears the pending bit.
Software can generate an interrupt by setting the corresponding interrupt pending bit.

7 0

NMI EXTINT CAN RI TI SSIO1 SSIO0 CBF

7:0 Any set bit indicates that the corresponding interrupt is pending. The interrupt bit is cleared
when processing transfers to the corresponding interrupt vector.

The standard interrupt vector locations are as follows:

Bit Mnemonic Interrupt Standard Vector
NMI Nonmaskable Interrupt FF203EH
EXTINT EXTINT Pin FF203CH
CAN† CAN Peripheral FF203AH
RI SIO Receive FF2038H
TI SIO Transmit FF2036H
SSIO1 SSIO 1 Transfer FF2034H
SSIO0 SSIO 0 Transfer FF2032H
CBF Slave Port Command Buffer Full FF2030H

Figure 4-2. interrupt Pending 1 (INT_PEND1) Register
4-2

5
I/O Ports

ver,
ents

 corre-
CB’s
strate
CHAPTER 5
I/O PORTS

5.1 PORT 0 AND EPORT

The I/O ports of the 87C196CB are functionally identically to those of the 8XC196NT. Howe
the 87C196CB implements all eight pins of port 0, and the 100-pin 87C196CB also implem
all eight pins of the EPORT. The associated registers have been modified to include bits
sponding to the upper nibble of the ports. Table 5-1 provides an overview of the 8XC196
I/O ports. Figure 5-1 illustrates the port 0 pin state register, and Figures 5-2 through 5-5 illu
the EPORT registers.

Table 5-1. 87C196CB Input/Output Ports

Port Bits Type Direction Associated Peripheral(s)

Port 0 8 Standard Input-only A/D converter

Port 1 8 Standard Bidirectional EPA and timers

Port 2 8 Standard Bidirectional SIO, interrupts, bus control, clock gen.

Port 3 8 Memory-mapped Bidirectional Address/data bus

Port 4 8 Memory-mapped Bidirectional Address/data bus

Port 5 8 Memory-mapped Bidirectional Bus control, slave port

Port 6 8 Standard Bidirectional EPA, SSIO

EPORT 4 (84-pin CB)
8 (100-pin CB) Memory mapped Bidirectional Extended address lines

P0_PIN Address:
Reset State:

1FDAH
XXH

Each bit of the port 0 pin input (P0_PIN) register reflects the current state of the corresponding pin,
regardless of the pin configuration.

7 0

PIN7 PIN6 PIN5 PIN4 PIN3 PIN2 PIN1 PIN0

Bit
Number

Bit
Mnemonic Function

7:0 PIN7:0 Port 0 Pin x Input Value

This bit contains the current state of P0.x.

Figure 5-1. Port x Pin Input (P x_PIN) Register
5-1

87C196CB SUPPLEMENT
EP_DIR Address:
Reset State:

1FE3H
FFH

In I/O mode, each bit of the extended port I/O direction (EP_DIR) register controls the direction of the
corresponding pin. Clearing a bit configures a pin as a complementary output; setting a bit configures
a pin as either an input or an open-drain output. (Open-drain outputs require external pull-ups).

Any pin that is configured for its extended-address function is forced to the complementary output
mode except during reset, hold, idle, and powerdown.

7 0

PIN7 PIN6 PIN5 PIN4 PIN3 PIN2 PIN1 PIN0

Bit
Number

Bit
Mnemonic Function

7:0 PIN7:0 Extended Address Port Pin x Direction

This bit configures EPORT.x as a complementary output or an
input/open-drain output.

0 = complementary output
1 = input or an open-drain output

Figure 5-2. Extended Port I/O Direction (EP_DIR) Register

EP_MODE Address:
Reset State:

1FE1H
FFH

Each bit of the extended port mode (EP_MODE) register controls whether the corresponding pin
functions as a standard I/O port pin or as an extended-address signal. Setting a bit configures a pin as
an extended-address signal; clearing a bit configures a pin as a standard I/O port pin.

7 0

PIN7 PIN6 PIN5 PIN4 PIN3 PIN2 PIN1 PIN0

Bit
Number

Bit
Mnemonic Function

7:0 PIN7:0 Extended Address Port Pin x Mode

This bit determines the mode of EPORT.x:

0 = standard I/O port pin
1 = extended-address signal

Figure 5-3. Extended Port Mode (EP_MODE) Register
5-2

I/O PORTS
EP_PIN Address:
Reset State:

1FE7H
XXH

Each bit of the extended port input (EP_PIN) register reflects the current state of the corresponding
pin, regardless of the pin configuration.

7 0

PIN7 PIN6 PIN5 PIN4 PIN3 PIN2 PIN1 PIN0

Bit
Number

Bit
Mnemonic Function

7:0 PIN7:0 Extended Address Port Pin x Input

This bit contains the current state of EPORT.x.

Figure 5-4. Extended Port Input (EP_PIN) Register

EP_REG Address:
Reset State:

1FE5H
00H

Each bit of the extended port data output (EP_REG) register contains data to be driven out by the
corresponding pin. When a pin is configured as standard I/O (EP_MODE.x = 0), the result of a CPU
write to EP_REG is immediately visible on the pin.

During nonextended data accesses, EP_REG contains the value of the memory page that is to be
accessed. For compatibility with software tools, clear the EP_REG bit for any EPORT pin that is
configured as an extended-address signal (EP_MODE.x set).

7 0

PIN7 PIN6 PIN5 PIN4 PIN3 PIN2 PIN1 PIN0

Bit
Number

Bit
Mnemonic Function

7:0 PIN7:0 Extended Address Port Pin x Output

If EPORT.x is to be used as an output, write the data that it is to drive
out.

If EPORT.x is to be used as an input, set this bit.

If EPORT.x is to be used as an address line, write the correct value for
the memory page to be accessed by nonextended instructions.

Figure 5-5. Extended Port Data Output (EP_REG) Register
5-3

6
Analog-to-digital
(A/D) Converter

has
cribes
CHAPTER 6
ANALOG-TO-DIGITAL (A/D) CONVERTER

6.1 ADDITIONAL A/D INPUT CHANNELS

The 87C196CB’s A/D converter is functionally identical to that of the 8XC196NT, but it
eight analog input channels instead of four. Table 6-1 lists the A/D signals. Figure 6-1 des
the command register and Figure 6-2 describes the result register.

Table 6-1. A/D Converter Pins

Port Pin A/D Signal A/D Signal
Type Description

P0.7:0 ACH7:0 I Analog inputs. See the “Voltage on Analog Input Pin”
specification in the datasheet.

— ANGND GND Reference Ground

Must be connected for A/D converter and port operation.

— VREF PWR Reference Voltage

Must be connected for A/D converter and port operation.
6-1

87C196CB SUPPLEMENT
AD_COMMAND Address:
Reset State:

1FACH
C0H

The A/D command (AD_COMMAND) register selects the A/D channel number to be converted,
controls whether the A/D converter starts immediately or with an EPA command, and selects the
conversion mode.

7 0

— — M1 M0 GO ACH2 ACH1 ACH0

Bit
Number

Bit
Mnemonic Function

7:6 — Reserved; for compatibility with future devices, write zeros to these bits.

5:4 M1:0 A/D Mode†

These bits determine the A/D mode.

M1 M0 Mode

0 0 10-bit conversion
0 1 8-bit conversion
1 0 threshold detect high
1 1 threshold detect low

3 GO A/D Conversion Trigger††

Writing this bit arms the A/D converter. The value that you write to it
determines at what point a conversion is to start.

0 = EPA initiates conversion
1 = start immediately

2:0 ACH2:0 A/D Channel Selection

Write the A/D conversion channel number to these bits. The 87C196CB
has eight A/D channel inputs, numbered 0–7.

† While a threshold-detection mode is selected for an analog input pin, no other conversion can be
started. If another value is loaded into AD_COMMAND, the threshold-detection mode is disabled
and the new command is executed.

†† It is the act of writing to the GO bit, rather than its value, that starts a conversion. Even if the GO bit
has the desired value, you must set it again to start a conversion immediately or clear it again to
arm it for an EPA-initiated conversion.

Figure 6-1. A/D Command (AD_COMMAND) Register
6-2

ANALOG-TO-DIGITAL (A/D) CONVERTER
AD_RESULT (Read) Address:
Reset State:

1FAAH
7F80H

The A/D result (AD_RESULT) register consists of two bytes. The high byte contains the eight most-
significant bits from the A/D converter. The low byte contains the two least-significant bits from a ten-
bit A/D conversion, indicates the A/D channel number that was used for the conversion, and indicates
whether a conversion is currently in progress.

15 8

ADRLT9 ADRLT8 ADRLT7 ADRLT6 ADRLT5 ADRLT4 ADRLT3 ADRLT2

7 0

ADRLT1 ADRLT0 — — STATUS ACH2 ACH1 ACH0

Bit
Number

Bit
Mnemonic Function

15:6 ADRLT9:0 A/D Result

These bits contain the A/D conversion result.

5:4 — Reserved. These bits are undefined.

3 STATUS A/D Status

Indicates the status of the A/D converter. Up to 8 state times are required
to set this bit following a start command. When testing this bit, wait at
least the 8 state times.

0 = A/D is idle
1 = A/D conversion is in progress

2:0 ACH2:0 A/D Channel Number

These bits indicate the A/D channel number that was used for the
conversion. The 87C196CB has eight A/D channel inputs, numbered
0–7

Figure 6-2. A/D Result (AD_RESULT) Register — Read Format
6-3

7
CAN Serial
Communications
Controller

 net-
tween
CAN
 frames
apter
ix A,

e CAN
which
CAN
com-
CHAPTER 7
CAN SERIAL COMMUNICATIONS CONTROLLER

The 87C196CB has a peripheral not found in the 8XC196NT — the CAN (controller area
work) peripheral. The CAN serial communications controller manages communications be
multiple network nodes. This integrated peripheral is similar to Intel’s standalone 82527
serial communications controller. It supports both the standard and the extended message
specified by CAN 2.0 protocol parts A and B developed by Robert Bosch, GmbH. This ch
describes the integrated CAN controller and explains how to configure it. Consult Append
“Signal Descriptions,” for detailed descriptions of the signals discussed in this chapter.

7.1 CAN FUNCTIONAL OVERVIEW

The integrated CAN controller transfers messages between network nodes according to th
protocol. The CAN protocol uses a multiple-master, contention-based bus configuration,
is also called CSMA/CR (carrier sense, multiple access, with collision resolution). Each
controller’s input and output pins are connected to a two-line CAN bus through which all
munication takes place (Figure 7-1).

Figure 7-1. A System Using CAN Controllers

196Cx
 device

Engine

ABS

82527

82527

Transmission

Dashboard

196Cx
 device

196Cx
 device C

A
N

 B
us

A2588-02

Bus
Driver

CPU

CPUTx0

Rx0

Tx0

Rx0

Bus
Driver

TXCAN

RXCAN

TXCAN

RXCAN

TXCAN

RXCAN

Bus
Driver CAN_H

CAN_L

Bus
Driver

Bus
Driver CAN_H

CAN_L

Security System

CAN_H

CAN_L

CAN_H

CAN_L

CAN_H

CAN_L

Bus

Bus
7-1

87C196CB SUPPLEMENT

oller
U of

error

isters,
This bus configuration reduces point-to-point wiring requirements, making the CAN contr
well suited to automotive and factory automation applications. In addition, it relieves the CP
much of the communications burden while providing a high level of data integrity through
management logic.

The CAN controller (Figure 7-2) has one input pin, one output pin, control and status reg
and error detection and management logic.

Figure 7-2. CAN Controller Block Diagram

Bit Timing Registers

Control Register

Status Register

Interrupt Register

Message
Objects 1-14

Message
Object 15

Global
Mask

Registers

Mask 15
Register

RAM

Error
Management

Logic

RXCAN

TXCAN

2

A2590-02

Bus
Driver

Bus
Driver

CAN Bus
7-2

CAN SERIAL COMMUNICATIONS CONTROLLER

us reg-
7.2 CAN CONTROLLER SIGNALS AND REGISTERS

Table 7-1 describes the CAN controller’s pins, and Table 7-2 describes the control and stat
isters.

Table 7-1. CAN Controller Signals

Signal Type Description

RXCAN I Receive

This signal carries messages from other nodes on the CAN bus to the CAN controller.

TXCAN O Transmit

This signal carries messages from the CAN controller to other nodes on the CAN bus.

Table 7-2. Control and Status Registers

Register
Mnemonic ††

Register
Address †† Description

CAN_BTIME0† 1E3FH Bit Timing 0

Program this register to define the length of one time quantum
and the maximum number of time quanta by which a bit time can
be modified for resynchronization.

CAN_BTIME1† 1E4FH Bit Timing 1

Program this register to define the sample time and mode.

CAN_CON† 1E00H Control

Program this register to prevent transfers to and from the CAN
bus, to enable and disable CAN interrupts, and to control write
access to the bit timing registers.

CAN_EGMSK 1E08H, 1E09H,
1E0AH, 1E0BH

Extended Global Mask

Program this register to mask (“don’t care”) specific message
identifier bits for extended message objects.

CAN_INT 1E5FH CAN Interrupt Pending

This read-only register indicates the source of the highest-priority
pending interrupt.

CAN_MSGxCFG 1Ey6H Message Object x Configuration

Program this register to specify a message object’s data length,
transfer direction, and identifier type.

CAN_MSGxCON0 1Ey0H Message Object x Control 0

Program this register to enable or disable the message object’s
successful transmission (TX) and reception (RX) interrupts. Read
this register to determine whether a message object is ready to
transmit and whether an interrupt is pending.

†The CCE bit in CAN_CON must be set to enable write access to the bit timing registers.
††In register names, x = 1–15; in addresses, y = 1–F.
7-3

87C196CB SUPPLEMENT

ain mes-
s and
7.3 CAN CONTROLLER OPERATION

This section describes the address map, message objects, message frames (which cont
sage objects), error detection and management logic, and bit timing for CAN transmission
receptions.

CAN_MSGxCON1 1Ey1H Message Object x Control 1

Program this register to indicate that a message is ready to
transmit or to initiate a transmission. Read this register to
determine whether the message object contains new data,
whether a message has been overwritten, whether software is
updating the message, and whether a transfer is pending.

CAN_MSGxDATA0
CAN_MSGxDATA1
CAN_MSGxDATA2
CAN_MSGxDATA3
CAN_MSGxDATA4
CAN_MSGxDATA5
CAN_MSGxDATA6
CAN_MSGxDATA7

1Ey7H
1Ey8H
1Ey9H
1EyAH
1EyBH
1EyCH
1EyDH
1EyEH

Message Object x Data 0–7

The data registers contain data to be transmitted or data received.

Do not use unused data bytes as scratch-pad memory; the CAN
controller writes random values to these registers during
operation.

CAN_MSGxID0
CAN_MSGxID1
CAN_MSGxID2
CAN_MSGxID3

1Ey2H
1Ey3H
1Ey4H
1Ey5H

Message Object x Identification 0–3

Write the message object’s ID to this register. (This register is the
same as the arbitration register of the 82527.)

CAN_MSK15 1E0CH, 1E0DH,
1E0EH, 1E0FH

Message 15 Mask

Program this register to mask (“don’t care”) specific message
identifier bits for message 15 in addition to those bits masked by a
global mask. The message 15 mask is ANDed with the standard
or extended global mask, so any “don’t care” bits defined in a
global mask are also “don’t care” bits for message 15.

CAN_SGMSK 1E06H, 1E07H Standard Global Mask

Program this register to mask (“don’t care”) specific message
identifier bits for standard message objects.

CAN_STAT 1E01H Status

This register reflects the current status of the CAN controller.

INT_MASK1 0013H Interrupt Mask 1

The CAN bit in this register enables and disables the CAN
interrupt request.

INT_PEND1 0012H Interrupt Pending 1

The CAN bit in this register, when set, indicates a pending CAN
interrupt request.

Table 7-2. Control and Status Registers (Continued)

Register
Mnemonic ††

Register
Address †† Description

†The CCE bit in CAN_CON must be set to enable write access to the bit timing registers.
††In register names, x = 1–15; in addresses, y = 1–F.
7-4

CAN SERIAL COMMUNICATIONS CONTROLLER

 status
ning at a
ed (indi-
 RAM
emory

 (Ta-
, while

e buffer,
rwritten.
the first
rst, the
7.3.1 Address Map

The CAN controller has 256 bytes of RAM, containing 15 message objects and control and
registers at fixed addresses. Each message object occupies 15 consecutive bytes begin
base address that is a multiple of 16 bytes. The byte above each message object is reserv
cated by a dash (—) character) or occupied by a control register. The lowest 16 bytes of
contain the remaining control and status registers (Table 7-3). This 256-byte section of m
can be windowed for register-direct access.

7.3.2 Message Objects

The CAN controller includes 15 message objects, each of which occupies 15 bytes of RAM
ble 7-4). Message objects 1–14 can be configured to either transmit or receive messages
message object 15 can only receive messages. Message objects 1–14 have only a singl
so if a second message is received before the CPU reads the first, the first message is ove
Message object 15 has two alternating buffers, so it can receive a second message while
is being processed. However, if a third message is received while the CPU is reading the fi
second message is overwritten.

Table 7-3. CAN Controller Address Map

Hex Address Description Hex Address Description

1EFF — 1E6F —

1EF0–1EFE Message Object 15 1E60–1E6E Message Object 6

1EEF — 1E5F Interrupt Register

1EE0–1EEE Message Object 14 1E50–1E5E Message Object 5

1EDF — 1E4F Bit Timing Register 1†

1ED0–1EDE Message Object 13 1E40–1E4E Message Object 4

1ECF — 1E3F Bit Timing Register 0†

1EC0–1ECE Message Object 12 1E30–1E3E Message Object 3

1EBF — 1E2F —

1EB0–1EBE Message Object 11 1E20–1E2E Message Object 2

1EAF — 1E1F —

1EA0–1EAE Message Object 10 1E10–1E1E Message Object 1

1E9F — 1E0C–1E0F Message 15 Mask Register

1E90–1E9E Message Object 9 1E08–1E0B Extended Global Mask Register

1E8F — 1E06–1E07 Standard Global Mask Register

1E80–1E8E Message Object 8 1E02–1E05 —

1E7F — 1E01 Status Register

1E70–1E7E Message Object 7 1E00 Control Register†

†The control register’s CCE bit must be set to enable write access to the bit timing registers.
7-5

87C196CB SUPPLEMENT

essage
 mes-
capable
mple, if

pecific
entifier
e ob-
g strat-

hat of
ges with
xtend-
ming
atch ex-
he mes-
ask is

es that
 for data
 object.

asked
7.3.2.1 Receive and Transmit Priorities

The lowest-numbered message object always has the highest priority, regardless of the m
identifier. When multiple messages are ready to transmit, the CAN controller transmits the
sage from the lowest-numbered message object first. When multiple message objects are
of receiving the same message, the lowest-numbered message object receives it. For exa
all identifier bits are masked, message object 1 receives all messages.

7.3.2.2 Message Acceptance Filtering

The mask registers provide a method for developing an acceptance filtering strategy for a s
system. Software can program the mask registers to require an exact match on specific id
bits while masking (“don’t care”) the remaining bits. Without a masking strategy, a messag
ject could accept only those messages with an identical message identifier. With a maskin
egy in place, a message object can accept messages whose identifiers are not identical.

The CAN controller filters messages by comparing an incoming message’s identifier with t
an enabled internal message object. The standard global mask register applies to messa
standard (11-bit) identifiers, while the extended global mask register applies to those with e
ed (29-bit) identifiers. The CAN controller applies the appropriate global mask to each inco
message identifier and checks for an acceptance match in message objects 1–14. If no m
ists, it then applies the message 15 mask and checks for a match on message object 15. T
sage 15 mask is ANDed with the global mask, so any bit that is masked by the global m
automatically masked for message 15.

The CAN controller accepts an incoming data message if the message’s identifier match
of any enabled receive message object. It accepts an incoming remote message (request
transmission) if the message’s identifier matches that of any enabled transmit message
The remote message’s identifier is stored in the transmit message object, overwriting any m
bits. Table 7-5 shows an example.

Table 7-4. Message Object Structure

Hex Address † Contents

1Ex7–1ExE Data Bytes 0–7

1Ex6 Message Configuration

1Ex2–1Ex5 Message Identifier 0–3

1Ex0–1Ex1 Message Control 0–1
† x = message object number, in hexadecimal
7-6

CAN SERIAL COMMUNICATIONS CONTROLLER

ts
om that

ata

escribe
y differ
ement
essive
7.3.3 Message Frames

A message object is contained within a message frame that adds control and error-detection bi
to the content of the message object. The frame for an extended message differs slightly fr
for a standard message, but they contain similar information. A data frame contains a message
object with data to be transmitted; a remote frame is a request for another node to transmit a d
frame, so it contains no data.

Figure 7-3 illustrates standard and extended message frames. Table 7-6 and Table 7-7 d
their contents and summarize the minimum message lengths. Actual message lengths ma
because the CAN controller adds bits during transmission (see “Error Detection and Manag
Logic” on page 7-9). After each message frame, an intermission field consisting of three rec
(1) bits separates messages. This intermission may be followed by a bus idle time.

Figure 7-3. CAN Message Frames

Table 7-5. Effect of Masking on Message Identifiers
Transmit message object ID 1 1 0 0 0 0 0 0 0 0 0

Mask (0 = don’t care; 1 = must match) 0 0 0 0 0 0 0 0 0 1 1

Received remote message object ID 0 0 1 1 1 1 1 1 1 0 0

Resulting message object ID 0 0 1 1 1 1 1 1 1 0 0

18-bit
Identifier

11 bit
 Identifier

S
O
F

S
R
R

I
D
E

R
T
R

r
1

r
0

0–8 Bytes
15-bit
 CRC

DLC

11-bit
 Identifier

S
O
F

R
T
R

I
D
E

r
0

0–8 Bytes
15-bit
 CRC

DLC

End of
Frame

Ack
F.

CRC
Field

Data Field
Control
Field

Arbitration
Field

End of
Frame

Ack
F.

CRC
Field

Data Field
Control
Field

Arbitration
Field

A2599-01

Standard Frame

Extended Frame
7-7

87C196CB SUPPLEMENT

Table 7-6. Standard Message Frame

Field Description Bit Count

SOF Start-of-frame. A dominant (0) bit marks the beginning of a message frame. 1

Arbitration

11-bit message identifier.

12RTR. Remote transmission request. Dominant (0) for data frames; recessive (1)
for remote frames.

Control

IDE. Identifier extension bit; always dominant (0).

6r0. Reserved bit; always dominant (0).

DLC. Data length code. A 4-bit code indicating the number of data bytes (0–8).

Data Data. 1 to 8 bytes for data frames; 0 bytes for remote frames. 0–64

CRC CRC code. A 15-bit CRC code plus a recessive (1) delimiter bit. 16

Ack Acknowledgment. A dominant (0) bit sent by nodes receiving the frame plus a
recessive (1) delimiter bit. 2

End of frame 7 recessive (1) bits mark the end of a frame. 7

Minimum standard message frame length (bits) 44–108

Table 7-7. Extended Message Frame

Field Description Bit Count

SOF Start-of-frame. A dominant (0) bit marks the beginning of a message frame. 1

Arbitration

11 bits of the 29-bit message identifier.

32

SRR. Substitute remote transmission request; always recessive (1).

IDE. Identifier extension bit; always recessive (1).

18 bits of the 29-bit message identifier.

RTR. Remote transmission request; always recessive (1).

Control

r0. Reserved bit; always dominant (0).

6r1. Reserved bit; always dominant (0).

DLC. Data length code. A 4-bit code indicating the number of data bytes (0–8).

Data Data. 1 to 8 bytes for data frames; 0 bytes for remote frames. 0–64

CRC CRC code. A 15-bit CRC code plus a recessive (1) delimiter bit. 16

Ack Acknowledgment. A dominant (0) bit sent by nodes receiving the frame plus a
recessive (1) delimiter bit. 2

End of frame 7 recessive (1) bits mark the end of a frame. 7

Minimum extended message frame length (bits) 64–128
7-8

CAN SERIAL COMMUNICATIONS CONTROLLER

ancy
tes a
he CRC

dded
i-
, and

send an
es and
ted:

ceived

ple,

edged
r 128

of a
CAN

f a
CAN

ch the

on the
e error
ing bit
 either
floats
3) to
7.3.4 Error Detection and Management Logic

The CAN controller has several error detection mechanisms, including cyclical redund
checking (CRC) and bit coding rules (stuffing and destuffing). The CAN controller genera
CRC code for transmitted messages and checks the CRC code of incoming messages. T
polynomial has been optimized for control applications with short messages.

After five consecutive bits of equal value are transmitted, a bit with the opposite polarity is a
to the bit stream. This bit is called a stuff bit; by adding a transition, a stuff bit aids in synchron
zation. All message fields are stuffed except the CRC delimiter, the acknowledgment field
the end-of-frame field.

Receiving nodes reject data from any message that is corrupted during transmission and
error message via the CAN bus. Transmitting nodes monitor the CAN bus for error messag
automatically repeat a transmission if an error occurs. The following error types are detec

• stuff error — more than 5 equal bits in a sequence have occurred in a part of a re
message where this is not allowed

• form error — the fixed-format part of a received frame has the wrong format (for exam
a reserved bit has the wrong value)

• acknowledgment error — this device transmitted a message, but it was not acknowl
by another node on the CAN bus. (The transmit error counter stops incrementing afte
acknowledgment errors, so this error type does not cause a bus-off state.)

• bit 1 error — the CAN controller tried to send a recessive (logic 1) bit as part
transmitted message (with the exception of the arbitration field), but the monitored
bus value was dominant (logic 0)

• bit 0 error — the CAN controller tried to send a dominant (logic 0) bit as part o
transmitted message (with the exception of the arbitration field), but the monitored
bus value was recessive (logic 1)

• CRC error — the CRC checksum received for an incoming message does not mat
CRC value that the CAN controller calculated for the received data

The CAN status register indicates the type of the first transmission error that occurred
CAN bus and whether an abnormal number of errors have occurred. Two counters (a receiv
counter and a transmit error counter) track the number of errors. The status register’s warn
is set when the receive or transmit error counter reaches 96; the bus-off bit is set when
counter reaches 256. If this occurs, the CAN controller isolates itself from the CAN bus (
the TX pin). Software must clear the INIT bit in the control register (Figure 7-6 on page 7-1
begin a bus-off recovery sequence.
7-9

87C196CB SUPPLEMENT

N pro-
nchro-

gure 7-4
ining
is
7.3.5 Bit Timing

A message object consists of a series of bits transmitted in consecutive bit times. The CA
tocol specifies a bit time composed of four separate, nonoverlapping time segments: a sy
nization delay segment, a propagation delay segment, and two phase delay segments (Fi
and Table 7-8). The CAN controller implements a bit time as three segments, comb
PROP_SEG and PHASE_SEG1 into tTSEG1 (Figure 7-5 and Table 7-9). This implementation
identical to that of the 82527 CAN peripheral.

Figure 7-4. A Bit Time as Specified by the CAN Protocol

Table 7-8. CAN Protocol Bit Time Segments

Symbol Definition

SYNC_SEG The synchronization delay segment allows for synchronization of the various nodes on
the bus. An edge is expected to lie within this segment.

PROP_SEG The propagation delay segment compensates for the physical delay times within the
network. It is twice the sum of the signal’s propagation time on the bus line, the input
comparator delay, and the output driver delay. The factor of two accounts for the
requirement that all nodes monitor all bus transmissions for errors.

PHASE_SEG1 This segment compensates for edge phase errors. It can be lengthened or shortened by
resynchronization.

PHASE_SEG2 This segment compensates for edge phase errors. It can be lengthened or shortened by
resynchronization.

SYNC_SEG PROP_SEG PHASE_SEG2PHASE_SEG1

Sample Transmit

Nominal Bit Time

A2603-01
7-10

CAN SERIAL COMMUNICATIONS CONTROLLER
Figure 7-5. A Bit Time as Implemented in the CAN Controller

Table 7-9. CAN Controller Bit Time Segments

Symbol Definition

tSYNC_SEG This time segment is equivalent to SYNC_SEG in the CAN protocol. Its length is one time
quantum.

tTSEG1 This time segment is equivalent to the sum of PROP_SEG and PHASE_SEG1 in the CAN
protocol. Its length is specified by the TSEG1 field in bit timing register 1. To allow for resyn-
chronization, the sample point can be moved (tTSEG1 or tTSEG2 can be shortened and the other
lengthened) by 1 to 4 time quanta, depending on the programmed value of the SJW field in bit
timing register 0.

The CAN controller samples the bus once or three times, depending on the value of the
sampling mode (SPL) bit in bit timing register 0. In three-sample mode, the hardware
lengthens tTSEG1 by 2 time quanta to allow time for the additional two bus samples. In this
case, the “sample point” shown in Figure 7-5 is the time of the third sample; the first and
second samples occur 2 and 1 time quanta earlier, respectively.

tTSEG2 This time segment is equivalent to PHASE_SEG2 in the CAN protocol. Its length is specified
by the TSEG2 field in bit timing register 1. To allow for resynchronization, the sample point
can be moved (tTSEG1 or tTSEG2 can be shortened and the other lengthened) by 1 to 4 time
quanta, depending on the programmed value of the SJW field in bit timing register 0.

TSEG1

Sample Transmit

1 tq

Bit Time

(TSEG1 + 1)tq

t

A2602-01

TSEG2tSYNC
_SEG

t

(TSEG2 + 1)tq
7-11

87C196CB SUPPLEMENT

2527
two).
d the
7.3.5.1 Bit Timing Equations

The bit timing equations of the integrated CAN controller are equivalent to those for the 8
CAN peripheral with the DSC bit in the CPU interface register set (system clock divided by
The following equations show the timing calculations for the integrated CAN controller an
82527 CAN peripheral, respectively.

where:
FOSC = the input clock frequency on the XTAL1 pin, in MHz

BRP = the value of the BRP bit in bit timing register 0

TSEG1 = the value of the TSEG1 field in bit timing register 0

TSEG2 = the value of the TSEG1 field in bit timing register 1

Table 7-10 defines the bit timing relationships of the CAN controller.

Table 7-10. Bit Timing Relationships

Timing
Parameter Definition

tBITTIME tSYNC_SEG + tTSEG1 + tTSEG2

tXTAL1 input clock period on XTAL1 (50 ns at 20 MHz operation)

tq 2tXTAL1 × (BRP + 1), where BRP is a field in bit timing register 0 (valid values are 0–63)

tSYNC_SEG 1tq

tTSEG1 (TSEG1 + 1) × tq, where TSEG1 is a field in bit timing register 1 (valid values are 2–15)

tTSEG2 (TSEG2 + 1) × tq, where TSEG2 is a field in bit timing register 1 (valid values are 1–7)

tSJW (SJW + 1) × tq, where SJW is a field in bit timing register 0 (valid values are 0–3)

tPROP The portion of tTSEG1 that is equivalent to PROP_SEG as defined by the CAN protocol. Twice
the maximum sum of the physical bus delay, input comparator delay, and output driver delay,
rounded up to the nearest multiple of tq.

CAN Controller CAN bus frequency
Fosc

2 BRP + 1()× 3 TSEG1 TSEG2+ +()×
---=

82527 CAN bus frequency
Fosc

DSC 1+() BRP + 1()× 3 TSEG1 TSEG2+ +()×
---=
7-12

CAN SERIAL COMMUNICATIONS CONTROLLER

ontrol
k reg-

ables
ct), and
7.4 CONFIGURING THE CAN CONTROLLER

This section explains how to configure the CAN controller. Several registers combine to c
the configuration: the CAN control register, the two bit timing registers, and the three mas
isters.

7.4.1 Programming the CAN Control (CAN_CON) Register

The CAN control register (Figure 7-6) controls write access to the bit timing registers, en
and disables global interrupt sources (error, status change, and individual message obje
controls access to the CAN bus.

CAN_CON
(87C196CB)

Address:
Reset State:

1E00H
01H

Program the CAN control (CAN_CON) register to control write access to the bit timing registers, to
enable and disable CAN interrupts, and to control access to the CAN bus.

7 0

87C196CB — CCE — — EIE SIE IE INIT

Bit
Number

Bit
Mnemonic Function

7 — Reserved; for compatibility with future devices, write zero to this bit.

6 CCE Change Configuration Enable

This bit controls whether software can write to the bit timing registers.

0 = prohibit write access
1 = allow write access

5:4 — Reserved; for compatibility with future devices, write zeros to these bits.

3 EIE Error Interrupt Enable

This bit enables and disables the bus-off and warn interrupts.

0 = disable bus-off and warn interrupts
1 = enable bus-off and warn interrupts

2 SIE Status-change Interrupt Enable

This bit enables and disables the successful reception (RXOK), successful
transmission (TXOK), and error code change (LEC2:0) interrupts.

0 = disable status-change interrupt
1 = enable status-change interrupt

When the SIE bit is set, the CAN controller generates a successful
reception (RXOK) interrupt request each time it receives a valid message,
even if no message object accepts it.

Figure 7-6. CAN Control (CAN_CON) Register
7-13

87C196CB SUPPLEMENT
1 IE Interrupt Enable

This bit globally enables and disables interrupts (error, status-change, and
message object transmit and receive interrupts).

0 = disable interrupts
1 = enable interrupts

When the IE bit is set, an interrupt is generated only if the corresponding
interrupt source’s enable bit (EIE or SIE in CAN_CON; TXIE or RXIE in
CAN_MSGx_CON0) is also set. If the IE bit is clear, an interrupt request
updates the CAN interrupt pending register, but does not generate an
interrupt.

0 INIT Software Initialization Enable

Setting this bit isolates the CAN bus from the system. (If a transfer is in
progress, it completes, but no additional transfers are allowed.)

0 = software initialization disabled
1 = software initialization enabled

A hardware reset sets this bit, enabling you to configure the RAM without
allowing any CAN bus activity. After a hardware reset or software initial-
ization, clearing this bit completes the initialization. The CAN peripheral
waits for a bus idle state (11 consecutive recessive bits) before partici-
pating in bus activities.

Software can set this bit to stop all receptions and transmissions on the
CAN bus. (To prevent transmission of a specific message object while its
contents are being updated, set the CPUUPD bit in the individual message
object’s control register 1. See “Configuring Message Objects” on page
7-20.)

Entering powerdown mode stops an in-progress CAN transmission
immediately. To avoid stopping a CAN transmission while it is sending a
dominant bit on the CAN bus, set the INIT bit before executing the IDLPD
instruction.

The CAN peripheral also sets this bit to isolate the CAN bus when an error
counter reaches 256. This isolation is called a bus-off condition. After a
bus-off condition, clearing this bit initiates a bus-off recovery sequence,
which clears the error counters. The CAN peripheral waits for 128 bus idle
states (128 packets of 11 consecutive recessive bits), then resumes
normal operation. (See “Bus-off State” on page 7-41.)

CAN_CON (Continued)
(87C196CB)

Address:
Reset State:

1E00H
01H

Program the CAN control (CAN_CON) register to control write access to the bit timing registers, to
enable and disable CAN interrupts, and to control access to the CAN bus.

7 0

87C196CB — CCE — — EIE SIE IE INIT

Bit
Number

Bit
Mnemonic Function

Figure 7-6. CAN Control (CAN_CON) Register (Continued)
7-14

CAN SERIAL COMMUNICATIONS CONTROLLER

mum
r

7.4.2 Programming the Bit Timing 0 (CAN_BTIME0) Register

Bit timing register 0 (Figure 7-7) defines the length of one time quantum and the maxi
amount by which the sample point can be moved (tTSEG1 or tTSEG2 can be shortened and the othe
lengthened) to compensate for resynchronization.

CAN_BTIME0 †

(87C196CB)

Address:
Reset State:

1E3FH
Unchanged

Program the CAN bit timing 0 (CAN_BTIME0) register to define the length of one time quantum and
the maximum number of time quanta by which a bit time can be modified for resynchronization.

7 0

87C196CB SJW1 SJW0 BRP5 BRP4 BRP3 BRP2 BRP1 BRP0

Bit
Number

Bit
Mnemonic Function

7:6 SJW1:0 Synchronization Jump Width

This field defines the maximum number of time quanta by which a resyn-
chronization can modify tTSEG1 and tTSEG2. Valid programmed values are 0–
3. The hardware adds 1 to the programmed value, so a “1” value causes
the CAN peripheral to add or subtract 2 time quanta, for example. This
adjustment has no effect on the total bit time; if tTSEG1 is increased by 2 tq,
tTSEG2 is decreased by 2 tq, and vice versa.

5:0 BRP5:0 Baud-rate Prescaler

This field defines the length of one time quantum (tq), using the following
formula, where tXTAL1 is the input clock period on XTAL1. Valid programmed
values are 0–63.

For example, at 20 MHz operation, the system clock period is 50 ns.
Writing 3 to BRP achieves a time quanta of 400 ns; writing 1 to BRP
achieves a time quanta of 200 ns.

 † The CCE bit (CAN_CON.6) must be set to enable write access to this register.

Figure 7-7. CAN Bit Timing 0 (CAN_BTIME0) Register

tq 2tXTAL1 BRP 1+()×=

tq 2 50×() 3 1+()× 400 ns= =

tq 2 50×() 1 1+()× 200 ns= =
7-15

87C196CB SUPPLEMENT

mber
ample is
the ma-
nsmis-
le mode
 mode,
mples
7.4.3 Programming the Bit Timing 1 (CAN_BTIME1) Register

Bit timing register 1 (Figure 7-8) controls the time at which the bus is sampled and the nu
of samples taken. In single-sample mode, the bus is sampled once and the value of that s
considered valid. In three-sample mode, the bus is sampled three times and the value of
jority of those samples is considered valid. Single-sample mode may achieve a faster tra
sion rate, but it is more susceptible to errors caused by noise on the CAN bus. Three-samp
is less susceptible to noise-related errors, but it may be slower. If you specify three-sample
the hardware adds two time quanta to the TSEG1 value to allow time for two additional sa
during tTSEG1.

CAN_BTIME1 †

(87C196CB)

Address:
Reset State:

1E4FH
Unchanged

Program the CAN bit timing 1 (CAN_BTIME1) register to define the sample time and the sample
mode. The CAN controller samples the bus during the last one (in single-sample mode) or three (in
three-sample mode) time quanta of tTSEG1, and initiates a transmission at the end of tTSEG2.
Therefore, specifying the lengths of tTSEG1 and tTSEG2 defines both the sample point and the trans-
mission point.

7 0

87C196CB SPL TSEG2 TSEG1

Bit
Number

Bit
Mnemonic Function

7 SPL Sampling Mode

This bit determines how many samples are taken to determine a valid bit
value.

0 = 1 sample
1 = 3 samples, using majority logic

6:4 TSEG2†† Time Segment 2

This field determines the length of time that follows the sample point within
a bit time. Valid programmed values are 1–7; the hardware adds 1 to this
value.

3:0 TSEG1†† Time Segment 1

This field defines the length of time that precedes the sample point within a
bit time. Valid programmed values are 2–15; the hardware adds 1 to this
value. In three-sample mode, the hardware adds 2 time quanta to allow
time for the two additional samples.

† The CCE bit (CAN_CON.6) must be set to enable write access to this register.
†† For correct operation according to the CAN protocol, the total bit time must be at least 8 time

quanta, so the sum of the programmed values of TSEG1 and TSEG2 must be at least 5. (The
total bit time is the sum of tSYNC_SEG + tTSEG1 + tTSEG2. The length of tSYNC_SEG is 1 time quanta,
and the hardware adds 1 to both TSEG1 and TSEG2. Therefore, if TSEG1 + TSEG2 = 5, the
total bit length will be equal to 8 (1+5+1+1)). Table 7-11 lists additional conditions that must be
met to maintain synchronization.

Figure 7-8. CAN Bit Timing 1 (CAN_BTIME1) Register
7-16

CAN SERIAL COMMUNICATIONS CONTROLLER

hout a
tifiers
oming

t) mes-
es with
itional
n mes-

er and
lies the
7.4.4 Programming a Message Acceptance Filter

The mask registers provide a method for developing an acceptance filtering strategy. Wit
filtering strategy, a message object could accept an incoming message only if their iden
were identical. The mask registers allow a message object to ignore one or more bits of inc
message identifiers, so it can accept a range of message identifiers.

The standard global mask register (Figure 7-9) applies to messages with standard (11-bi
sage identifiers, while the extended global mask register (Figure 7-10) applies to messag
extended (29-bit) identifiers. The message 15 mask register (Figure 7-11) provides an add
filter for message object 15, to allow it to accept a greater range of message identifiers tha
sage objects 1–14 can. Clear a mask bit to accept either a zero or a one in that position.

The CAN controller applies the appropriate global mask to each incoming message identifi
checks for an acceptance match on message objects 1–14. If no match exists, it then app
message 15 mask and checks for a match on message object 15.

Table 7-11. Bit Timing Requirements for Synchronization

Bit Time
Segment Requirement Comments

tTSEG1

≥ 3tq minimum tolerance with 1tq propagation delay allowance

≥ tSJW + tPROP for single-sample mode

≥ tSJW + tPROP + 2tq for three-sample mode

tTSEG2
≥ 2tq minimum tolerance

≥ tSJW if tSJW > tTSEG2 , sampling may occur after the bit time
7-17

87C196CB SUPPLEMENT
CAN_SGMSK
(87C196CB)

Address:
Reset State:

1E07H, 1E06H
Unchanged

Program the CAN standard global mask (CAN_SGMSK) register to mask (“don’t care”) specific
message identifier bits for standard message objects.

15 8

87C196CB MSK20 MSK19 MSK18 — — — — —

7 0

MSK28 MSK27 MSK26 MSK25 MSK24 MSK23 MSK22 MSK21

Bit
Number

Bit
Mnemonic Function

15:13 MSK20:18 ID Mask

These bits individually mask incoming message identifier (ID) bits.

0 = mask the ID bit (accept either “0” or “1”)
1 = accept only an exact match

12:8 — Reserved; for compatibility with future devices, write zeros to these bits.

7:0 MSK28:21 ID Mask

These bits individually mask incoming message identifier (ID) bits.

0 = mask the ID bit (accept either “0” or “1”)
1 = accept only an exact match

Figure 7-9. CAN Standard Global Mask (CAN_SGMSK) Register
7-18

CAN SERIAL COMMUNICATIONS CONTROLLER
CAN_EGMSK
(87C196CB)

Address:

Reset State:

1E0BH, 1E0AH,
1E09H, 1E08H
Unchanged

Program the CAN extended global mask (CAN_EGMSK) register to mask (“don’t care”) specific
message identifier bits for extended message objects.

31 24

87C196CB MSK4 MSK3 MSK2 MSK1 MSK0 — — —

23 16

MSK12 MSK11 MSK10 MSK9 MSK8 MSK7 MSK6 MSK5

15 8

MSK20 MSK19 MSK18 MSK17 MSK16 MSK15 MSK14 MSK13

7 0

MSK28 MSK27 MSK26 MSK25 MSK24 MSK23 MSK22 MSK21

Bit
Number

Bit
Mnemonic Function

31:27 MSK4:0 ID Mask

These bits individually mask incoming message identifier (ID) bits.

0 = mask the ID bit (accept either “0” or “1”)
1 = accept only an exact match

26:24 — Reserved; for compatibility with future devices, write zeros to these bits.

23:16
15:8
7:0

MSK12:5
MSK20:13
MSK28:21

ID Mask

These bits individually mask incoming message identifier (ID) bits.

0 = mask the ID bit (accept either “0” or “1”)
1 = accept only an exact match

Figure 7-10. CAN Extended Global Mask (CAN_EGMSK) Register
7-19

87C196CB SUPPLEMENT

gisters,
e mes-
7.5 CONFIGURING MESSAGE OBJECTS

Each message object consists of a configuration register, a message identifier, control re
and data registers (from zero to eight bytes of data). This section explains how to configur
sage objects and determine their status.

CAN_MSK15 †

(87C196CB)
Address:

Reset State:

1E0FH, 1E0EH,
1E0DH, 1E0CH
Unchanged

Program the CAN message 15 mask (CAN_MSK15) register to mask (“don’t care”) specific message
identifier bits for message 15 in addition to those bits masked by a global mask (CAN_EGMSK or
CAN_SGMSK).

31 24

87C196CB MSK4 MSK3 MSK2 MSK1 MSK0 — — —

23 16

MSK12 MSK11 MSK10 MSK9 MSK8 MSK7 MSK6 MSK5

15 8

MSK20 MSK19 MSK18 MSK17 MSK16 MSK15 MSK14 MSK13

7 0

MSK28 MSK27 MSK26 MSK25 MSK24 MSK23 MSK22 MSK21

Bit
Number Function

31:27 MSK4:0 ID Mask

These bits individually mask incoming message identifier (ID) bits.

0 = mask the ID bit (accept either “0” or “1”)
1 = accept only an exact match

26:24 — Reserved. These bits are undefined; for compatibility with future devices,
do not modify these bits.

23:16
15:8
7:0

MSK12:5
MSK20:13
MSK28:21

ID Mask

These bits individually mask incoming message identifier (ID) bits.

0 = mask the ID bit (accept either “0” or “1”)
1 = accept only an exact match

† Setting a CAN_MSK15 bit in any position that is cleared in the global mask register has no effect.
The message 15 mask is ANDed with the global mask, so any “don’t care” bits defined in a global
mask are also “don’t care” bits for message 15.

Figure 7-11. CAN Message 15 Mask (CAN_MSK15) Register
7-20

CAN SERIAL COMMUNICATIONS CONTROLLER

r type

with a
 iden-

 the
tandard

0–8) to
length
7.5.1 Specifying a Message Object’s Configuration

Each message object configuration register (Figure 7-12) specifies a message identifie
(standard or extended), transfer direction (transmit or receive), and data length (in bytes).

Set the XTD bit for a message object with an extended identifier; clear it for a message
standard identifier. If you accidentally clear the XTD bit for a message that has an extended
tifier, the CAN controller will clear the extended bits in the identification register. If you set
XTD bit for a message object, that message object cannot receive message objects with s
identifiers.

For a transmit message, set the DIR bit and write the number of programmed data bytes (
the DLC field. For a receive message, clear the DIR bit. The CAN controller stores the data
from the received message in the DLC field.

CAN_MSGxCFG
x = 1–15 (87C196CB)

Address:
Reset State:

1Ex6H (x = 1–F)
Unchanged

Program the CAN message object x configuration (CAN_MSGxCFG) register to specify a message
object’s data length, transfer direction, and identifier type.

7 0

87C196CB DLC3 DLC2 DLC1 DLC0 DIR XTD — —

Bit
Number

Bit
Mnemonic Function

7:4 DLC3:0 Data Length Code

Specify the number of data bytes this message object contains. Valid
values are 0–8. The CAN controller updates a receive message object’s
data length code after each reception to reflect the number of data bytes in
the current message.

3 DIR Direction

Specify whether this message object is to be transmitted or is to receive a
message object from a remote node.

0 = receive
1 = transmit

2 XTD Extended Identifier Used

Specify whether this message object’s identification registers contain an
extended (29-bit) or a standard (11-bit) identifier.

0 = standard identifier
1 = extended identifier

1:0 — Reserved; for compatibility with future devices, write zeros to these bits.

Figure 7-12. CAN Message Object x Configuration (CAN_MSGxCFG) Register
7-21

87C196CB SUPPLEMENT

ssages
enti-
per-

nding
ct while
7.5.2 Programming the Message Object Identifier

Each message identifier register (Figure 7-13) specifies the message’s identifier. For me
with extended identifiers, write the identifier to bits ID28:0. For messages with standard id
fiers, write the identifier to bits ID28:18. Software can change the identifier during normal o
ation without requiring a subsequent device reset. Clear the MSGVAL bit in the correspo
message control register 0 to prevent the CAN controller from accessing the message obje
the modification takes place, then set the bit to allow access.

CAN_MSGxID0–3 †

x = 1–15 (87C196CB)
Address:

Reset State:

1Ex5H, 1Ex4H,
1Ex3H, 1Ex2H
(x = 1–F)
Unchanged

Write the message object’s identifier to the CAN message object x identifier (CAN_MSGxID0–3)
register. Software can change the identifier during normal operation. Clear the MSGVAL bit in the
corresponding CAN_MSGxCON0 register to prevent the CPU from accessing the message object,
change the identifier in CAN_MSGxID0–3, then set the MSGVAL bit to allow access.

87C196CB 31 24

CAN_MSGxID3 ID4 ID3 ID2 ID1 ID0 — — —

23 16

CAN_MSGxID2 ID12 ID11 ID10 ID9 ID8 ID7 ID6 ID5

15 8

CAN_MSGxID1 ID20 ID19 ID18 ID17 ID16 ID15 ID14 ID13

7 0

CAN_MSGxID0 ID28 ID27 ID26 ID25 ID24 ID23 ID22 ID21

Bit
Number

Bit
Mnemonic Function

31:27
23:16
12:8

ID4:0
ID12:5
ID17:13

Message Identifier 17:0

These bits hold the 18 least-significant bits of an extended identifier. If
you write an extended identifier to these bits, but specify a standard
identifier (XTD = 0) in the corresponding message object’s configuration
register (CAN_MSGxCFG), the CPU clears these bits (ID17:0).

26:24 — Reserved; for compatibility with future devices, write zeros to these bits.

15:13
7:0

ID20:18
ID28:21

Message Identifier 28:18

These bits hold either an entire standard identifier or the 11 most-
significant bits of an extended identifier.

† This register is the same as the arbitration register in the standalone 82527 CAN peripheral.

Figure 7-13. CAN Message Object x Identifier (CAN_MSG xID0–3) Register
7-22

CAN SERIAL COMMUNICATIONS CONTROLLER

in true
ith a
rpret

ontrols
ether a

ontains
ted, and

 buffer,
rwritten.
the first
rst, the

objects,
he CAN
lues to
ad
7.5.3 Programming the Message Object Control Registers

Each message object control register consists of four bit pairs — one bit of each pair is
form and one is in complement form. This format allows software to set or clear any bit w
single write operation, without affecting the remaining bits. Table 7-12 shows how to inte
the bit-pair values.

7.5.3.1 Message Object Control Register 0

Message object control register 0 (Figure 7-14) indicates whether an interrupt is pending, c
whether a successful transmission or reception generates an interrupt, and indicates wh
message object is ready to transmit.

7.5.3.2 Message Object Control Register 1

Message object control register 1 (Figure 7-15) indicates whether the message object c
new data, whether a message has been overwritten, whether the message is being upda
whether a transmission or reception is pending. Message objects 1–14 have only a single
so if a second message is received before the CPU reads the first, the first message is ove
Message object 15 has two alternating buffers, so it can receive a second message while
is being processed. However, if a third message is received while the CPU is reading the fi
second message is overwritten.

7.5.4 Programming the Message Object Data

Each message object can have from zero to eight bytes of data. For transmit message
write the message data to the data registers (Figure 7-16). For receive message objects, t
controller stores the received data in these registers. The CAN controller writes random va
any unused data bytes during operation, so you should not use unused data bytes as scratch-p
memory.

Table 7-12. Control Register Bit-pair Interpretation

Access Type MSB LSB Definition

Write

0 0 Not allowed (indeterminate)

0 1 Clear (0)

1 0 Set (1)

1 1 No change

Read
0 1 Clear (0)

1 0 Set (1)
7-23

87C196CB SUPPLEMENT
CAN_MSGxCON0
x = 1–15 (87C196CB)

Address:
Reset State:

1Ex0H (x = 1–F)
Unchanged

Program the CAN message object x control 0 (CAN_MSGxCON0) register to indicate whether the
message object is ready to transmit and to control whether a successful transmission or reception
generates an interrupt. The least-significant bit-pair indicates whether an interrupt is pending.

This register consists of four bit-pairs — the most-significant bit of each pair is in true form and the
least-significant bit is in complement form. This format allows software to set or clear any bit with a
single write operation, without affecting the remaining bits.

7 0

87C196CB MSGVAL MSGVAL TXIE TXIE RXIE RXIE INT_PND INT_PND

Bit
Number

Bit
Mnemonic Function

7:6 MSGVAL Message Object Valid

Set this bit-pair to indicate that a message object is valid (configured and
ready for transmission or reception).

bit 7 bit 6
0 1 not ready
1 0 message object is valid

The CAN peripheral will access a message object only if this bit-pair
indicates that the message is valid. If multiple message objects have the
same identifier, only one can be valid at any given time.

During initialization, software should clear this bit for any unused message
objects. Software can clear this bit if a message is no longer needed or if
you need to change a message object’s contents or identifier.

5:4 TXIE Transmit Interrupt Enable

Receive message objects do not use this bit-pair.

For transmit message objects, set this bit-pair to enable the CAN
peripheral to initiate a transmit (TX) interrupt after a successful trans-
mission. You must also set the interrupt enable bit (CAN_CON.1) to enable
the interrupt.

bit 5 bit 4
0 1 no interrupt
1 0 generate an interrupt

Figure 7-14. CAN Message Object x Control 0 (CAN_MSGxCON0) Register
7-24

CAN SERIAL COMMUNICATIONS CONTROLLER
3:2 RXIE Receive Interrupt Enable

Transmit message objects do not use this bit-pair.

For a receive message object, set this bit-pair to enable this message
object to initiate a receive (RX) interrupt after a successful reception. You
must also set the interrupt enable bit (CAN_CON.1) to enable the interrupt.

bit 3 bit 2
0 1 no interrupt
1 0 generate an interrupt

1:0 INT_PND Interrupt Pending

This bit-pair indicates that this message object has initiated a transmit (TX)
or receive (RX) interrupt. Software must clear this bit when it services the
interrupt.

bit 1 bit 0
0 1 no interrupt
1 0 an interrupt was generated

CAN_MSGxCON0 (Continued)
x = 1–15 (87C196CB)

Address:
Reset State:

1Ex0H (x = 1–F)
Unchanged

Program the CAN message object x control 0 (CAN_MSGxCON0) register to indicate whether the
message object is ready to transmit and to control whether a successful transmission or reception
generates an interrupt. The least-significant bit-pair indicates whether an interrupt is pending.

This register consists of four bit-pairs — the most-significant bit of each pair is in true form and the
least-significant bit is in complement form. This format allows software to set or clear any bit with a
single write operation, without affecting the remaining bits.

7 0

87C196CB MSGVAL MSGVAL TXIE TXIE RXIE RXIE INT_PND INT_PND

Bit
Number

Bit
Mnemonic Function

Figure 7-14. CAN Message Object x Control 0 (CAN_MSGxCON0) Register (Continued)
7-25

87C196CB SUPPLEMENT
CAN_MSGxCON1
x = 1–15 (87C196CB)

Address:
Reset State:

1Ex1H (x = 1–F)
Unchanged

The CAN message object x control 1 (CAN_MSGxCON1) register indicates whether a message
object has been updated, whether a message has been overwritten, whether the CPU is updating the
message, and whether a transmission or reception is pending.

This register consists of four bit-pairs — the most-significant bit of each pair is in true form and the
least-significant bit is in complement form. This format allows software to set or clear any bit with a
single write operation, without affecting the remaining bits.

7 0

87C196CB RMTPND RMTPND TX_REQ TX_REQ
MSGLST
CPUUPD

MSGLST
CPUUPD NEWDAT NEWDAT

Bit
Number

Bit
Mnemonic Function

7:6 RMTPND Remote Request Pending

Receive message objects do not use this bit-pair.

The CAN controller sets this bit-pair to indicate that a remote frame has
requested the transmission of a transmit message object. If the CPUUPD
bit-pair is clear, the CAN controller transmits the message object, then
clears RMTPND. Setting RMTPND does not cause a transmission; it only
indicates that a transmission is pending.

bit 7 bit 6
0 1 no pending request
1 0 a remote request is pending

5:4 TX_REQ Transmission Request

Set this bit-pair to cause a receive message object to transmit a remote
frame (a request for transmission) or to cause a transmit object to transmit
a data frame. Read this bit-pair to determine whether a transmission is in
progress.

bit 5 bit 4
0 1 no pending request; no transmission in progress
1 0 transmission request; transmission in progress

Figure 7-15. CAN Message Object x Control 1 (CAN_MSG xCON1) Register
7-26

CAN SERIAL COMMUNICATIONS CONTROLLER
3:2 MSGLST or
CPUUPD

Message Lost (Receive)

For a receive message object, the CAN controller sets this bit-pair to
indicate that it stored a new message while the NEWDAT bit-pair was still
set, overwriting the previous message.

bit 3 bit 2
0 1 no overwrite occurred
1 0 a message was lost (overwritten)

CPU Updating (Transmit)

For a transmit message object, software should set this bit-pair to indicate
that it is in the process of updating the message contents. This prevents a
remote frame from triggering a transmission that would contain invalid
data.

bit 3 bit 2
0 1 the message is valid
1 0 software is updating data

1:0 NEWDAT New Data

This bit-pair indicates whether a message object is valid (configured and
ready for transmission).

bit 1 bit 2
0 1 not ready
1 0 message object is valid

For receive message objects, the CAN peripheral sets this bit-pair when it
stores new data into the message object.

For transmit message objects, set this bit-pair and clear the CPUUPD bit-
pair to indicate that the message contents have been updated. Clearing
CPUUPD prevents a remote frame from triggering a transmission that
would contain invalid data.

During initialization, clear this bit for any unused message objects.

CAN_MSGxCON1 (Continued)
x = 1–15 (87C196CB)

Address:
Reset State:

1Ex1H (x = 1–F)
Unchanged

The CAN message object x control 1 (CAN_MSGxCON1) register indicates whether a message
object has been updated, whether a message has been overwritten, whether the CPU is updating the
message, and whether a transmission or reception is pending.

This register consists of four bit-pairs — the most-significant bit of each pair is in true form and the
least-significant bit is in complement form. This format allows software to set or clear any bit with a
single write operation, without affecting the remaining bits.

7 0

87C196CB RMTPND RMTPND TX_REQ TX_REQ MSGLST
CPUUPD

MSGLST
CPUUPD

NEWDAT NEWDAT

Bit
Number

Bit
Mnemonic Function

Figure 7-15. CAN Message Object x Control 1 (CAN_MSG xCON1) Register (Continued)
7-27

87C196CB SUPPLEMENT
CAN_MSGxDATA0–7
x = 1–15 (87C196CB)

Address:

Reset State:

1ExEH, 1ExDH,
1ExCH, 1ExBH,
1ExAH, 1Ex9H,
1Ex8H, 1Ex7H
(x = 1–F)
Unchanged

The CAN message object data (CAN_MSGxDATA0–7) registers contain data to be transmitted or data
received. Any unused data bytes have random values that change during operation.

87C196CB 7 0

CAN_MSGxDATA7 Data 7

7 0

CAN_MSGxDATA6 Data 6

7 0

CAN_MSGxDATA5 Data 5

7 0

CAN_MSGxDATA4 Data 4

7 0

CAN_MSGxDATA3 Data 3

7 0

CAN_MSGxDATA2 Data 2

7 0

CAN_MSGxDATA1 Data 1

7 0

CAN_MSGxDATA0 Data 0

Bit
Number Function

7:0 Data

Each message object can use from zero to eight data registers to hold data to
be transmitted or data received.

For receive message objects, these registers accept data during a reception.

For transmit message objects, write the data that is to be transmitted to these
registers. The number of data bytes must match the DLC field in the
CAN_MSGxCFG register. (For example, if CAN_MSG1DATA0,
CAN_MSG1DATA1, CAN_MSG1DATA2, and CAN_MSG1DATA3 contain data,
the DLC field in CAN_MSG1CFG must contain 04H.)

Figure 7-16. CAN Message Object Data (CAN_MSG xDATA0–7) Registers
7-28

CAN SERIAL COMMUNICATIONS CONTROLLER

ally,
deter-
ller’s
e Ta-
n). In
ssage
CAN
7.6 ENABLING THE CAN INTERRUPTS

The CAN controller has a single interrupt input (INT13) to the interrupt controller. (Gener
PTS interrupt service is not useful for the CAN controller because the PTS cannot readily
mine the source of the CAN controller’s multiplexed interrupts.) To enable the CAN contro
interrupts, you must enable the interrupt source by setting the CAN bit in INT_MASK1 (se
ble 7-2 on page 7-3) and globally enable interrupt servicing (by executing the EI instructio
addition, you must set bits in the CAN control register (Figure 7-17) and the individual me
objects’ control register 0 (Figure 7-18) to enable the individual interrupt sources within the
controller.

CAN_CON
(87C196CB)

Address:
Reset State:

1E00H
01H

Program the CAN control (CAN_CON) register to control write access to the bit timing registers, to
enable and disable CAN interrupts, and to control access to the CAN bus.

7 0

87C196CB — CCE — — EIE SIE IE INIT

Bit
Number

Bit
Mnemonic Function

7 — Reserved; for compatibility with future devices, write zero to this bit.

6 CCE Change Configuration Enable

5:4 — Reserved; for compatibility with future devices, write zeros to these bits.

3 EIE Error Interrupt Enable

This bit enables and disables the bus-off and warn interrupts.

0 = disable bus-off and warn interrupts
1 = enable bus-off and warn interrupts

2 SIE Status-change Interrupt Enable

This bit enables and disables the successful reception (RXOK), successful
transmission (TXOK), and error code change (LEC2:0) interrupts.

0 = disable status-change interrupt
1 = enable status-change interrupt

When the SIE bit is set, the CAN controller generates a successful
reception (RXOK) interrupt request each time it receives a valid message,
even if no message object accepts it.

Figure 7-17. CAN Control (CAN_CON) Register
7-29

87C196CB SUPPLEMENT
1 IE Interrupt Enable

This bit globally enables and disables interrupts (error, status-change, and
message object transmit and receive interrupts).

0 = disable interrupts
1 = enable interrupts

When the IE bit is set, an interrupt is generated only if the corresponding
interrupt source’s enable bit (EIE or SIE in CAN_CON; TXIE or RXIE in
CAN_MSGx_CON0) is also set. If the IE bit is clear, an interrupt request
updates the CAN interrupt pending register, but does not generate an
interrupt.

0 INIT Software Initialization Enable

CAN_CON (Continued)
(87C196CB)

Address:
Reset State:

1E00H
01H

Program the CAN control (CAN_CON) register to control write access to the bit timing registers, to
enable and disable CAN interrupts, and to control access to the CAN bus.

7 0

87C196CB — CCE — — EIE SIE IE INIT

Bit
Number

Bit
Mnemonic Function

Figure 7-17. CAN Control (CAN_CON) Register (Continued)
7-30

CAN SERIAL COMMUNICATIONS CONTROLLER

essful
age ob-
RXIE
 object
s errors

during
 status
event re-
 the re-
When the SIE bit in the CAN control register is set, the CAN controller generates a succ
reception (RXOK) interrupt request each time it receives a valid message, even if no mess
ject accepts it. If you set both the SIE bit (Figure 7-17) and an individual message object’s
bit (Figure 7-18), the CAN controller generates two interrupt requests each time a message
receives a message. The status change interrupt is useful during development to detect bu
caused by noise or other hardware problems. However, you should disable this interrupt
normal operation in most applications. If the status change interrupt is enabled, each
change generates an interrupt request, placing an unnecessary burden on the CPU. To pr
dundant interrupt requests, enable the error interrupt sources (with the EIE bit) and enable
ceive and transmit interrupts in the individual message objects.

CAN_MSGxCON0
x = 1–15 (87C196CB)

Address:
Reset State:

1Ex0H (x = 1–F)
Unchanged

Program the CAN message object x control 0 (CAN_MSGxCON0) register to indicate whether the
message object is ready to transmit and to control whether a successful transmission or reception
generates an interrupt. The least-significant bit-pair indicates whether an interrupt is pending.

This register consists of four bit-pairs — the most-significant bit of each pair is in true form and the
least-significant bit is in complement form. This format allows software to set or clear any bit with a
single write operation, without affecting the remaining bits.

7 0

87C196CB MSGVAL MSGVAL TXIE TXIE RXIE RXIE INT_PND INT_PND

Bit
Number

Bit
Mnemonic Function

7:6 MSGVAL Message Object Valid

5:4 TXIE Transmit Interrupt Enable

Receive message objects do not use this bit-pair.

For transmit message objects, set this bit-pair to enable the CAN
peripheral to initiate a transmit (TX) interrupt after a successful trans-
mission. You must also set the interrupt enable bit (CAN_CON.1) to enable
the interrupt.

bit 5 bit 4
0 1 no interrupt
1 0 generate an interrupt

3:2 RXIE Receive Interrupt Enable

Transmit message objects do not use this bit-pair.

For receive message objects, set this bit-pair to enable the CAN peripheral
to initiate a receive (RX) interrupt after a successful reception. You must
also set the interrupt enable bit (CAN_CON.1) to enable the interrupt.

bit 3 bit 2
0 1 no interrupt
1 0 generate an interrupt

1:0 INT_PND Interrupt Pending

Figure 7-18. CAN Message Object x Control 0 (CAN_MSGxCON0) Register
7-31

87C196CB SUPPLEMENT

N con-
-3) in-
igure

 object).
al in-

status
7.7 DETERMINING THE CAN CONTROLLER’S INTERRUPT STATUS

A successful reception or transmission or a change in the status register can cause the CA
troller to generate an interrupt request. The INT_PEND1 register (see Table 7-2 on page 7
dicates whether a CAN interrupt request is pending. The CAN interrupt pending register (F
7-19) indicates the source of the request (either the status register or a specific message
Your interrupt service routine should read the CAN_INT register to ensure that no addition
terrupts are pending before executing the return instruction.

If a status change generated the interrupt (CAN_INT = 01H), software can read the CAN
register (Figure 7-20) to determine the source of the interrupt request.

CAN_INT
read-only (87C196CB)

Address:
Reset State:

1E5FH
00H

The CAN interrupt pending (CAN_INT) register indicates the source of the highest priority pending
interrupt. If a status change generated the interrupt request, software can read the status register
(CAN_STAT) to determine whether the interrupt request was caused by an abnormal error rate, a
successful reception, a successful transmission, or a new error. If an individual message object
generated the interrupt request, software can read the associated message object control 0 register
(CAN_MSGxCON0). The INT_PND bit-pair will be set, indicating that a receive or transmit interrupt
request is pending.

7 0

87C196CB Pending Interrupt

Bit
Number Function

7:0 Pending Interrupt

This field indicates the source of the highest priority pending interrupt.

Value Pending Interrupt Priority (15 is highest; 0 is lowest)

00H none —
01H status register 15
02H message object 15 14
03H message object 1 13
04H message object 2 12
05H message object 3 11
06H message object 4 10
07H message object 5 9
08H message object 6 8
09H message object 7 7
0AH message object 8 6
0BH message object 9 5
0CH message object 10 4
0DH message object 11 3
0EH message object 12 2
0FH message object 13 1
10H message object 14 0

Figure 7-19. CAN Interrupt Pending (CAN_INT) Register
7-32

CAN SERIAL COMMUNICATIONS CONTROLLER

e can
ir will
If an individual message object caused the interrupt request (CAN_INT = 02–10H), softwar
read the associated message object control 0 register (Figure 7-21). The INT_PND bit-pa
be set, indicating that a receive or transmit interrupt request is pending

CAN_STAT
(87C196CB)

Address:
Reset State:

1E01H
XXH

The CAN status (CAN_STAT) register reflects the current status of the CAN peripheral.

7 0

87C196CB BUSOFF WARN — RXOK TXOK LEC2 LEC1 LEC0

Bit
Number

Bit
Mnemonic Function

7 BUSOFF Bus-off Status

The CAN peripheral sets this read-only bit to indicate that it has isolated
itself from the CAN bus (floated the TX pin) because an error counter has
reached 256. A bus-off recovery sequence clears this bit and clears the
error counters. (See “Bus-off State” on page 7-41.)

6 WARN Warning Status

The CAN peripheral sets this read-only bit to indicate that an error counter
has reached 96, indicating an abnormal rate of errors on the CAN bus.

5 — Reserved. This bit is undefined.

4 RXOK Reception Successful

The CAN peripheral sets this bit to indicate that a message has been
successfully received (error free, regardless of acknowledgment) since the
bit was last cleared. Software must clear this bit when it services the
interrupt.

3 TXOK Transmission Successful

The CAN peripheral sets this bit to indicate that a message has been
successfully transmitted (error free and acknowledged by at least one
other node) since the bit was last cleared. Software must clear this bit
when it services the interrupt.

2:0 LEC2:0 Last Error Code

This field indicates the error type of the first error that occurs in a message
frame on the CAN bus. (“Error Detection and Management Logic” on page
7-9 describes the error types.)

LEC2 LEC1 LEC0 Error Type
0 0 0 no error
0 0 1 stuff error
0 1 0 form error
0 1 1 acknowledgment error
1 0 0 bit 1 error
1 0 1 bit 0 error
1 1 0 CRC error
1 1 1 unused

Figure 7-20. CAN Status (CAN_STAT) Register
7-33

87C196CB SUPPLEMENT
.

CAN_MSGxCON0
(n = 1–15)

Address: 1Ex0H (x=1–F)
Reset State: Unchanged

Program the CAN message object x control 0 register (CAN_MSGxCON0) to indicate whether the
message object is ready to transmit and to control whether a successful transmission or reception
generates an interrupt. The most-significant bit-pair indicates whether an interrupt is pending.

This register consists of four bit-pairs — the most-significant bit of each pair is in true form and the
least-significant bit is in complement form. This format allows software to set or clear any bit with a
single write operation, without affecting the remaining bits.

7 0

MSGVAL MSGVAL TXIE TXIE RXIE RXIE INT_PND INT_PND

Bit
Number

Bit
Mnemonic Function

7:6 MSGVAL Message Object Valid

5:4 TXIE Transmit Interrupt Enable

3:2 RXIE Receive Interrupt Enable

1:0 INT_PND Interrupt Pending

This bit-pair indicates that the CAN peripheral has initiated a transmit (TX)
or receive (RX) interrupt. Software must clear this bit when it services the
interrupt.

01 = no interrupt
10 = an interrupt was generated

Figure 7-21. CAN Message Object x Control 0 (CAN_MSG xCON0) Register
7-34

CAN SERIAL COMMUNICATIONS CONTROLLER

nd the
 shown
that de-
7.8 FLOW DIAGRAMS

The flow diagrams in this section describe the steps that your software (shown as CPU) a
CAN controller execute to receive and transmit messages. Table 7-13 lists the register bits
in the diagrams along with their associated registers and a cross-reference to the figure
scribes them.

Table 7-13. Cross-reference for Register Bits Shown in Flowcharts

Bit Mnemonic Register Mnemonic Figure and Page

CPUUPD CAN_MSGxCON1 Figure 7-15 on page 7-26

DIR CAN_MSGxCFG Figure 7-12 on page 7-21

DLC CAN_MSGxCFG Figure 7-12 on page 7-21

ID CAN_MSGxID Figure 7-13 on page 7-22

INT_PND CAN_MSGxCON0 Figure 7-14 on page 7-24

MSGLST CAN_MSGxCON1 Figure 7-15 on page 7-26

MSGVAL CAN_MSGxCON0 Figure 7-14 on page 7-24

NEWDAT CAN_MSGxCON1 Figure 7-15 on page 7-26

RMTPND CAN_MSGxCON1 Figure 7-15 on page 7-26

RXIE CAN_MSGxCON0 Figure 7-14 on page 7-24

TXIE CAN_MSGxCON0 Figure 7-14 on page 7-24

TX_REG CAN_MSGxCON1 Figure 7-15 on page 7-26

XTD CAN_MSGxCFG Figure 7-12 on page 7-21
7-35

87C196CB SUPPLEMENT
Figure 7-22. Receiving a Message for Message Objects 1–14 — CPU Flow

(All bits undefined)

NEWDAT := 0

Process message contents.

NEWDAT = 1?

Request update?

TX_REQ := 1

Power Up

Initialization

Process

Yes

No

No

Yes

Restart Process

A2594-01

MSGVAL
INT_PND
TXIE
RXIE

:= 1
:= 0
:= (Application specific)
:= (Application specific)

NEWDAT
RMTPND
TX_REQ
MSGLST

:= 0
:= 0
:= 0
:= 0

DLC
DIR
XTD
ID

:= (don't care)
:= 0 (receive)
:= (Application specific)
:= (Application specific)
7-36

CAN SERIAL COMMUNICATIONS CONTROLLER
Figure 7-23. Receiving a Message for Message Object 15 — CPU Flow

(All bits undefined)

NEWDAT := 0 and RMTPND := 0

Process message contents.

NEWDAT = 1?

Power Up

Initialization

Process

No

Yes

Restart Process

A2597-02

MSGVAL
INT_PND
RXIE

:= 1
:= 0
:= (Application specific)

NEWDAT
RMTPND
MSGLST

:= 0
:= 0
:= 0

DIR
XTD

:= 0 (receive)
:= (Application specific)

ID
MASK

:= (Application specific)
:= (Application specific)

INT_PND := 0
7-37

87C196CB SUPPLEMENT
Figure 7-24. Receiving a Message — CAN Controller Flow

NEWDAT := 0
Load identifer and
control into buffer

Send remote frame

Transmission
successful?

TXIE = 1?

INT_PND := 1

TX_REQ := 0
RMTPND:= 0

TX_REQ=1?
MSGLST=0?

Bus idle?

Received frame with
same identifer as this

message object?

RXIE = 1?

INT_PND := 1

A2598-01

No

No

No

No

No

Yes

Yes

Yes

Yes

Yes

Yes No

NEWDAT = 1?

Store message
NEWDAT := 1
TX_REQ := 0
RMTPND := 0

MSGLST := 1
7-38

CAN SERIAL COMMUNICATIONS CONTROLLER
Figure 7-25. Transmitting a Message — CPU Flow

(All bits undefined)

CPUUPD := 1
NEWDAT := 1

Want to send?

TX_REQ := 1

Power Up

Initialization

Update

Yes

No Yes
Update message?

CPUUPD := 0

Write/calculate message contents.

A2596-01

MSGVAL
INT_PND
TXIE
RXIE

:= 1
:= 0
:= (Application specific)
:= (Application specific)

NEWDAT
RMTPND
TX_REQ
MSGLST

:= 0
:= 0
:= 0
:= 0

DLC
DIR
XTD

:= (Application specific)
:= 1 (transmit)
:= (Application specific)

ID := (Application specific)
7-39

87C196CB SUPPLEMENT
Figure 7-26. Transmitting a Message — CAN Controller Flow

NEWDAT := 0
Load message

into buffer

Send message

Transmission
successful?

NEWDAT = 1?

TXIE = 1?

INT_PND := 1

TX_REQ := 0
RMTPND := 0

TX_REQ= 1?
CPUUPD= 0?

Bus free?

Received remote frame
with same identifer as
this message object?

TX_REQ := 1
RMTPND := 1

RXIE = 1?

INT_PND := 1

A2595-02

No

No

No

No

No

No

Yes

Yes

Yes

Yes

Yes

Yes

Yes No
7-40

CAN SERIAL COMMUNICATIONS CONTROLLER

 the reg-

out
ontrol
are re-
 from
anged.
itial-
 for

ts the
 set,

bit tim-
ry se-
7.9 DESIGN CONSIDERATIONS

This section outlines design considerations for the CAN controller.

7.9.1 Hardware Reset

A hardware reset clears the error management counters and the bus-off state and leaves
isters with the values listed in Table 7-14.

7.9.2 Software Initialization

The software initialization state allows software to configure the CAN controller’s RAM with
risk of messages being received or transmitted during this time. Setting the INIT bit in the c
register causes the CAN controller to enter the software initialization state. Either a hardw
set or a software write can set the INIT bit. While INIT is set, all message transfers to and
the CAN controller are stopped and the error counters and bit timing registers are unch
Your software should clear the INIT bit to cause the CAN controller to exit the software in
ization state. At this time, the CAN controller synchronizes itself to the CAN bus by waiting
a bus idle state (11 consecutive recessive bits) before participating in bus activities.

7.9.3 Bus-off State

If an error counter reaches 256, the CAN controller isolates itself from the CAN bus, se
BUSOFF bit in the status register, and sets the INIT bit in the control register. While INIT is
all message transfers to and from the CAN controller are stopped; the error counters and
ing registers are unchanged. Software must clear the INIT bit to initiate the bus-off recove
quence.

Table 7-14. Register Values Following Reset

Register Hex Address Reset Value

Control 1E00 01H

Status 1E01 undefined

Standard Global Mask 1E06–1E07 unchanged (undefined at power-up)

Extended Global Mask 1E08–1E0B unchanged (undefined at power-up)

Message 15 Mask 1E0C–1E0F unchanged (undefined at power-up)

Bit Timing 0 1E3F unchanged (undefined at power-up)

Bit Timing 1 1E4F unchanged (undefined at power-up)

Interrupt 1E5F 00H

Message Object x 1Ex0–1ExE unchanged (undefined at power-up)
7-41

87C196CB SUPPLEMENT

(128
g this
gister

whether
th the
The CAN controller synchronizes itself to the CAN bus by waiting for 128 bus idle states
occurrences of 11 consecutive recessive bits) before participating in bus activities. Durin
sequence, the CAN controller writes a bit 0 error code to the LEC2:0 bits of the status re
each time it receives a recessive bit. Software can check the status register to determine
the CAN bus is stuck in a dominant state. Once the CAN controller is resynchronized wi
CAN bus, it clears the BUSOFF bit and starts transferring messages again.
7-42

8
Special Operating
Modes

96NT.
igure
CHAPTER 8
SPECIAL OPERATING MODES

8.1 CLOCK CIRCUITRY

The 87C196CB’s idle, powerdown, and ONCE modes are the same as those of the 8XC1
The only difference is in the way that the power saving modes disable the clock circuitry (F
8-1).

Figure 8-1. Clock Circuitry

A3168-01

Clock
Generators

CPU Clocks (PH1, PH2)

Divide-by-two
Circuit

PLLEN

Phase-locked Loop
Clock Multiplier

Phase
Comparator Filter

Phase-
locked

Oscillator

Disable
PLL

(Powerdown)

Peripheral Clocks (PH1, PH2)

CLKOUT

Disable Clocks
(Powerdown)

Disable Clocks
(Idle, Powerdown)

XTAL1

XTAL2

FXTAL1

Disable
Oscillator

(Powerdown)

Disable Clock Input
(Powerdown)

f

F
X

T
A

L1

4F
X

T
A

L1

f
2

8-1

9
Interfacing with
External Memory

, the
0-pin

mings
rives
 the

imings
CHAPTER 9
INTERFACING WITH EXTERNAL MEMORY

The 87C196CB’s external memory interface is similar to that of the 8XC196NT. However
87C196CB supports only two of the bus timing modes, modes 3 and 0. In addition, the 10
87C196CB has four additional address pins (A23:20).

9.1 ADDRESS PINS

The 100-pin 87C196CB has 24 available address pins, A23:16 and AD15:0. The A23:20 ti
are identical to those of A19:16. During the CCB fetch, the 100-pin 87C196CB strongly d
0FFH on A23:16. The 84-pin 87C196CB strongly drives 0FH on A19:16, as does
8XC196NT.

9.2 BUS TIMING MODES

The 87C196CB implements only modes 3 and 0. Table 9-1 and Figure 9-1 compare the t
of these two modes. Figure 9-2 illustrates the CCB1 register, which selects the mode.

Table 9-1. Modes 0 and 3 Timing Comparisons

Mode
Timing Specifications †

TCLLH TAVLL TAVDV TRLRH TRHDZ TRLDV

Mode 3 0 1t 3t 1t 1t 1t

Mode 0 0 1t 5t 3t 1t 3t

† These are ideal timing values for purposes of comparison only. They do not include internal
device delays. Consult the datasheet for current device specifications.
9-1

87C196CB SUPPLEMENT
Figure 9-1. Modes 0 and 3 Timings

A0809-01

t

CLKOUT

ALE

AD15:0	

RD#

ALE

RD#

MODE 3

MODE 0

TRLDV = 1t

TAVDV = 3t

TRLDV = 3t

TAVDV = 5t

TRHDZ = 1t

Data DataAddress Address

Data Data DataAddress Address

Address

TRHDZ = 1t

AD15:0	

Data

Data
9-2

INTERFACING WITH EXTERNAL MEMORY
CCR1 no direct access†

The chip configuration 1 (CCR1) register enables the watchdog timer and selects the bus timing
mode. Two of its bits combine with three bits of CCR0 to control wait states and bus width. Another bit
controls whether CCR2 is loaded.

7 0

MSEL1 MSEL0 0 1 WDE BW1 IRC2 LDCCB2

Bit
Number

Bit
Mnemonic Function

7:6 MSEL1:0 External Access Timing Mode Select

These bits control the bus-timing modes.

MSEL1 MSEL0
0 0 standard mode plus one wait state
0 1 reserved
1 0 reserved
1 1 standard mode

5 0 To guarantee proper operation, write zero to this bit.

4 1 To guarantee proper operation, write one to this bit.

3 WDE Watchdog Timer Enable

Selects whether the watchdog timer is always enabled or enabled the
first time it is cleared.

0 = always enabled
1 = enabled first time it is cleared

2 BW1 Buswidth Control

This bit, along with the BW0 bit (CCR0.1), selects the bus width.

BW1 BW0
0 0 illegal
0 1 16-bit only
1 0 8-bit only
1 1 BUSWIDTH pin controlled

† The CCRs are loaded with the contents of the chip configuration bytes (CCBs) after reset, unless the
microcontroller is entering programming modes, in which case the programming chip configuration
bytes (PCCBs) are used. The CCBs reside in internal nonvolatile memory at addresses FF2018H
(CCB0), FF201AH (CCB1), and FF201CH (CCB2).

Figure 9-2. Chip Configuration 1 (CCR1) Register
9-3

87C196CB SUPPLEMENT
1 IRC2 Ready Control

This bit, along with IRC0 (CCR0.4) and IRC1 (CCR0.5), limits the number
of wait states that can be inserted while the READY pin is held low. Wait
states are inserted into the bus cycle either until the READY pin is pulled
high or until this internal number is reached.

IRC2 IRC1 IRC0
0 0 0 zero wait states
0 X 1 illegal
1 1 X illegal
1 0 0 one wait state
1 0 1 two wait states
1 1 0 three wait states
1 1 1 READY pin controlled

If you choose the READY pin controlled option, you must keep P5.6
configured as a special-function input, and add external hardware to
count wait states and release READY within a specified time.

0 LDCCB2 Load CCB2

Setting this bit causes CCB2 to be read.

CCR1 (Continued) no direct access†

The chip configuration 1 (CCR1) register enables the watchdog timer and selects the bus timing
mode. Two of its bits combine with three bits of CCR0 to control wait states and bus width. Another bit
controls whether CCR2 is loaded.

7 0

MSEL1 MSEL0 0 1 WDE BW1 IRC2 LDCCB2

Bit
Number

Bit
Mnemonic Function

† The CCRs are loaded with the contents of the chip configuration bytes (CCBs) after reset, unless the
microcontroller is entering programming modes, in which case the programming chip configuration
bytes (PCCBs) are used. The CCBs reside in internal nonvolatile memory at addresses FF2018H
(CCB0), FF201AH (CCB1), and FF201CH (CCB2).

Figure 9-2. Chip Configuration 1 (CCR1) Register (Continued)
9-4

10
Programming the
Nonvolatile Memory

 only
roce-
emory

er, the

 10-2)
rrect
CHAPTER 10
PROGRAMMING THE NONVOLATILE MEMORY

The 87C196CB has 56 Kbytes of OTPROM (FF2000–FFFFFFH), while the 8XC196NT has
32 Kbytes (FF2000–FF9FFFH). The 87C196CB’s programming signals, registers, and p
dures are the same as those of the 8XC196NT. This chapter describes the differences in m
mapping and programming circuits for the 87C196CB.

10.1 SIGNATURE WORD AND PROGRAMMING VOLTAGES

The 87C196CB’s programming voltages are the same of those of the 8XC196NT; howev
signature word differs. Table 10-1 lists the signature word and programming voltages.

10.2 MEMORY MAP FOR SLAVE PROGRAMMING MODE

Because the 87C196CB has an additional 24 Kbytes of OTPROM, its memory map (Table
differs from that of the 8XC196NT. The remaining information on slave programming is co
for the 87C196CB.

Table 10-1. Signature Word and Programming Voltages

Device
Signature Word Programming V CC Programming V PP

Location Value Location Value Location Value

87C196CB 0070H 87CBH 0072H 40H 0073H 0A0H
10-1

87C196CB SUPPLEMENT

emory
10.3 MEMORY MAP AND CIRCUIT FOR AUTO PROGRAMMING

Because the 87C196CB has an additional 24 Kbytes of OTPROM, its auto programming m
map (Table 10-3) and circuit (Figure 10-1) differ from those of the 8XC196NT.

Table 10-2. Slave Programming Mode Memory Map

Description Address Comments

OTPROM FF2000–FFFFFFH OTPROM Cells

OFD 0778H OTPROM Cell

DED† 0758H UPROM Cell

DEI† 0718H UPROM Cell

PCCB 0218H Test EPROM

Programming VCC 0072H Read Only

Programming VPP 0073H Read Only

Signature word 0070H Read Only

†These bits program the UPROM cells. Once these bits are programmed, they cannot be erased, and
dynamic failure analysis of the device is impossible.

Table 10-3. Auto Programming Memory Map

Address
Output from
87C196CB

(A15:0)

Internal
OTPROM
Address

Address Using Circuit
in Figure 10-1
(P1.3:1, A13:0)

Description

4014H N/A 00014H Programming pulse width (PPW) LSB.

4015H N/A 00015H Programming pulse width (PPW) MSB.

4020–402FH FF2020–FF202FH 00020–0002FH Security key for verification.

4000–7FFFH FF2000–FF5FFFH 04000–07FFFH First 16 Kbytes of code and data.

4000–7FFFH FF6000–FF9FFFH 08000–0BFFFH Second 16 Kbytes of code and data.

4000–7FFFH FFA000–FFDFFFH 0C000–0FFFFH Third 16 Kbytes of code and data.

4000–5FFFH FFE000–FFFFFFH 10000–11FFFH Last 8 Kbytes of code and data.
10-2

PROGRAMMING THE NONVOLATILE MEMORY

f the
CB.
Figure 10-1. Auto Programming Circuit

10.4 MEMORY MAP FOR SERIAL PORT PROGRAMMING

The 87C196CB’s memory map (Table 10-4) for serial port programming differs from that o
8XC196NT. The remaining information on serial port programming is correct for the 87C196

270kΩ

+5.0V

XTAL1

20 pF20 pF

XTAL2

P2.7/PACT#

P2.5
P2.4
P2.3
P2.2
P2.1

P2.0/PVER

RESET#

+12.50V

100 kΩ

1 kΩ

10µF
74HC14

1.0µF

Reset

EA#

VPP

VREF

P0.7/
PMODE.3

P0.6/
PMODE.2

P0.5/
PMODE.1

P0.4/
PMODE.0

ANGND

READY/P5.6

NMI
BUSWIDTH/P5.7

RD#/P5.3

P1.2
P1.1

AD13:8

87C196CB

A7:0

ALE/P5.0

A13:8

A14

OE# CE#

LE OE#

O
7:

0

A15

74LS373

VCC

VCC

VCC

A3228-01

VCC

VCC

VSS

27(C)512

270kΩ

VCC

74HC14

74HC14

ON = Programming

ON = Error

AD7:0

A16P1.3
10-3

87C196CB SUPPLEMENT

d the
echa-
ise re-
d bank
ation
e 10-4
The lower 24 Kbytes of OTPROM (FF2000–FF7FFFH) are remapped to A000–FFFFH, an
upper 32 Kbytes (FF8000–FFFFFFH) are mapped to 8000–FFFFH. A bank switching m
nism differentiates between the two address ranges. The most-significant bit of an otherw
served byte register (location 1FF9H) selects the bank. Bank 0 is the lower 24 Kbytes, an
1 is the upper 32 Kbytes. To program the lower 24 Kbytes, you must write 00H to loc
1FF9H. To program the upper 32 Kbytes, you must write 80H to location 1FF9H. (See pag
for the required command sequences.)

WARNING

Writing any value other than 00H or 80H to location 1FF9H will cause the
microcontroller to enter an unsupported test mode.

10.4.1 Selecting Bank 0 (FF2000–FF7FFFH)

Send the following RISM command sequence to select bank 0.
Code Description

1F DATA. High byte of address to DATA register.

F9 DATA. Low byte of address to DATA register.

0A DATA_TO_ADDR. Move address from DATA register to ADDR register.

00 SET_DLE_FLAG. The next data byte is <1FH.

00 DATA. Data to clear the most-significant bit.

07 WRITE_BYTE. Move data from the DATA register to memory location 1FF9H.

10.4.2 Selecting Bank 1 (FF8000–FFFFFFH)

Send the following RISM command sequence to select bank 1.
Code Description

1F DATA. High byte of address to DATA register.

F9 DATA. Low byte of address to DATA register.

0A DATA_TO_ADDR. Move address from DATA register to ADDR register.

80 DATA. Data to set the most-significant bit.

07 WRITE_BYTE. Move data from the DATA register to memory location 1FF9H.

Table 10-4. Serial Port Programming Mode Memory Map

Description
Address Range

Normal Operation Serial Port Programming Mode

Internal OTPROM FF2000–FF7FFFH
FF8000–FFFFFFH

A000–FFFFH (bank 0; 1FF9H = 00H)
8000–FFFFH (bank 1; 1FF9H = 80H)

External memory — 4000–7FFFH

Do not address — 2400–3FFFH

Test ROM and RISM — 2000–23FFH
10-4

A
Signal Descriptions

ckage
APPENDIX A
SIGNAL DESCRIPTIONS

A.1 FUNCTIONAL GROUPINGS OF SIGNALS

Table A-1 lists the signals for the 87C196CB, grouped by function. A diagram of each pa
that is currently available shows the pin location of each signal.

NOTE

As new packages are supported, they will be added to the datasheets first. If
your package type is not shown in this appendix, refer to the latest datasheet to
find the pin locations.

Table A-1. 87C196CB Signals Arranged by Functional Categories
Input/Output Processor Control Bus Control & Status

EPORT.7:0 (100-pin CB) EA# ALE/ADV#

EPORT.3:0 (84-pin CB) EXTINT BHE#/WRH#

P0.7:0/ACH7:0 NMI BREQ#

P1.0/EPA0/T2CLK ONCE# BUSWIDTH

P1.1/EPA1 RESET# CLKOUT

P1.2/EPA2/T2DIR SLPINT† HOLD#

P1.7:3/EPA7:3 XTAL1 HLDA#

P2.0/TXD XTAL2 INST

P2.1/RXD PLLEN INTOUT#

P2.7:2 Address & Data READY

P3.7:0 A23:16 (100-pin CB) RD#

P4.7:0 A19:16 (84-pin CB) SLPALE†

P5.7:0 AD15:0 SLPCS#†

P6.0/EPA8/COMP0 SLP7:0† SLPWR#†

P6.1/EPA9/COMP1 Programming Control SLPRD#†

P6.2/T1CLK AINC# Power & Ground

P6.3/T1DIR CPVER ANGND

P6.4/SC0 PACT# VCC

P6.5/SD0 PALE# VPP

P6.6/SC1 PBUS15:0 VREF

P6.7/SD1 PMODE.3:0 VSS, VSS1

RXCAN PROG#

TXCAN PVER
† Slave port signal
A-1

87C196CB Supplement
Figure A-1. 87C196CB 84-pin PLCC Package

PLLEN
P6.3 / T1DIR
P6.2 / T1CLK
P6.1 / EPA9 / COMP1
P6.0 / EPA8 / COMP0
P1.0 / EPA0 / T2CLK
P1.1 / EPA1
P1.2 / EPA2 / T2DIR
P1.3 / EPA3
P1.4 / EPA4
P1.5 / EPA5
P1.6 / EPA6
P1.7 / EPA7
VSS1
VCC
VREF
ANGND
P0.7 / ACH7 / PMODE3
P0.6 / ACH6 / PMODE2
P0.5 / ACH5 / PMODE1
P0.4 / ACH4 / PMODE0

P
5.

2
/ W

R

/ W
R

L#
 /

S
LP

W
R

#
P

5.
5

/ B
H

E

/ W
R

H
#

P
5.

3
/ R

D

/ S
LP

R
D

#
V

P
P

P

5.
0

/ A
D

V

/A
LE

 /
S

LP
A

LE

P
5.

1
/ I

N
S

T
 /

S
LP

C
S

P

5.
6

/ R
E

A
D

Y

P
5.

4
/ S

LP
IN

T

A
19

 /
E

P
O

R
T

.3

V
C

C

V
S

S
1

V
S

S

R
X

C
A

N

T
X

C
A

N

X
T

A
L1

X

T
A

L2

P
6.

7
/ S

D
1

P
6.

6
/ S

C
1

P
6.

5
/ S

D
0

P
6.

4
/ S

C
0

V
C

C

 P5.7 / BUSWIDTH
 A17 / EPORT.1
A16 / EPORT.0

AD15 / P4.7 / PBUS15
AD14 / P4.6 / PBUS14
AD13 / P4.5 / PBUS13

 AD12 / P4.4 / PBUS12
AD11 / P4.3 / PBUS11

 AD10 / P4.2 / PBUS10
AD9 / P4.1 / PBUS9
AD8 / P4.0 / PBUS8

VSS1
VCC

AD7 / P3.7 / SLP7 / PBUS7
AD6 / P3.6 / SLP6 / PBUS6
AD5 / P3.5 / SLP5 / PBUS5
AD4 / P3.4 / SLP4 / PBUS4
AD3 / P3.3 / SLP3 / PBUS3
AD2 / P3.2 / SLP2 / PBUS2
AD1 / P3.1 / SLP1 / PBUS1

A18 / EPORT.2

74
73
72
71
70
69
68
67
66
65
64
63
62
61
60
59
58
57
56
55
54

AN87C196CB

View of component as
mounted on PC board

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

A
D

0
/ P

3.
0

/ S
LP

0
/ P

B
U

S
0

R
E

S
E

T
#

N
M

I
E

A
#

V
S

S
1

V
C

C

V
S

S
1

P
2.

0
/ T

X
D

 /
P

V
E

R

P
2.

1
/ R

X
D

 /
P

A
LE

#
P

2.
2

/ E
X

T
IN

T
 /

P
R

O
G

#
P

2.
3

/ B
R

E
Q

#
P

2.
4

/ I
N

T
O

U
T

/ A

IN
C

#
P

2.
5

/ H
O

LD
#

P
2.

6
/ H

LD
A

/ C

P
V

E
R

 /
O

N
C

E
#

P
2.

7
/ C

LK
O

U
T

 /
P

A
C

T
#

V
C

C

V
S

S
1

P
0.

0
/ A

C
H

0
P

0.
1

/ A
C

H
1

P
0.

2
/ A

C
H

2
P

0.
3

/ A
C

H
3

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

11

10
 9 8 7 6 5 4 3 2 1 84

83

82

81

80

79

78

77

76

75

A2847-01
A-2

SIGNAL DESCRIPTIONS
Figure A-2. 87C196CB 100-pin QFP Package

A.2 SIGNAL DESCRIPTIONS

Table A-2 defines the columns used in Table A-3, which describes the signals.

P5.7 / BUSWIDTH
P5.2 / WR# / WRL# / SLPWR#
P5.5 / BHE# / WRH#
P5.3 / RD# / SLPRD#
A20 / EPORT.4
A21 / EPORT.5
A22 / EPORT.6
VPP
A23 / EPORT.7
P5.0 / ADV# / ALE / SLPALE
P5.1 / INST / SLPCS#
P5.6 / READY
P5.4 / SLPINT
A19 / EPORT.3
NC
VCC
NC
VSS1
VSS
NC
RXCAN
TXCAN
XTAL1
XTAL2
NC
P6.7 / SD1
P6.6 / SC1
P6.5 / SD0
P6.4 / SC0
VCC

A
18

 /
E

P
O

R
T

.2
A

D
1

/ P
3.

1
/ S

LP
1

/ P
B

U
S

1
A

D
2

/ P
3.

2
/ S

LP
2

/ P
B

U
S

2
A

D
3

/ P
3.

3
/ S

LP
3

/ P
B

U
S

3
A

D
4

/ P
3.

4
/ S

LP
4

/ P
B

U
S

4
A

D
5

/ P
3.

5
/ S

LP
5

/ P
B

U
S

5
A

D
6

/ P
3.

6
/ S

LP
6

/ P
B

U
S

6
A

D
7

/ P
3.

7
/ S

LP
7

/ P
B

U
S

7
V

C
C

V
S

S
1

A
D

8
/ P

4.
0

/ P
B

U
S

8
A

D
9

/ P
4.

1
/ P

B
U

S
9

A
D

10
 /

P
4.

2
/ P

B
U

S
10

A
D

11
 /

P
4.

3
/ P

B
U

S
11

A
D

12
 /

P
4.

4
/ P

B
U

S
12

A
D

13
 /

P
4.

5
/ P

B
U

S
13

A
D

14
 /

P
4.

6
/ P

B
U

S
14

A
D

15
 /

P
4.

7
/ P

B
U

S
15

A
16

 /
E

P
O

R
T

.0
A

17
 /

E
P

O
R

T
.1

NC
AD0 / P3.0 / SLP0 / PBUS0

RESET#
NMI
EA#

VSS1
NC

VCC
NC

VSS
NC
NC
NC
NC

P2.0 / TXD / PVER
P2.1 / RXD / PALE#

P2.2 / EXTINT / PROG#
P2.3 / BREQ#

NC
P2.4 / INTOUT# / AINC#

P2.5 / HOLD#
P2.6 / HLDA# / CPVER / ONCE#

P2.7 / CLKOUT / PACT#
VCC

VSS1
P0.0 / ACH0
P0.1 / ACH1
P0.2 / ACH2
P0.3 / ACH3

P0.4 / ACH4 / PMODE.0

80
79
78
77
76
75
74
73
72
71
70
69
68
67
66
65
64
63
62
61
60
59
58
57
56
55
54
53
52
51

AS87C196CB

View of component as
mounted on PC board

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

P
0.

5
/ A

C
H

5
/ P

M
O

D
E

.1
P

0.
6

/ A
C

H
6

/ P
M

O
D

E
.2

P
0.

7
/ A

C
H

7
/ P

M
O

D
E

.3
A

N
G

N
D

V
R

E
F

V
C

C
V

S
S

1
P

1.
7

/ E
P

A
7

P
1.

6
/ E

P
A

6
P

1.
5

/ E
P

A
5

P
1.

4
/ E

P
A

4
P

1.
3

/ E
P

A
3

P
1.

2
/ E

P
A

2
/ T

2D
IR

P
1.

1
/ E

P
A

1
P

1.
0

/ E
P

A
0

/ T
2C

LK
P

6.
0

/ E
P

A
8

/ C
O

M
P

0
P

6.
1

/ E
P

A
9

/ C
O

M
P

1
P

6.
2

/ T
1C

LK
P

6.
3

/ T
1D

IR
P

LL
E

N

31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

10
0 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81

A3171-02
A-3

87C196CB Supplement
Table A-2. Description of Columns of Table A-3

Column Heading Description

Name Lists the signals, arranged alphabetically. Many pins have two functions, so
there are more entries in this column than there are pins. Every signal is
listed in this column.

Type Identifies the pin function listed in the Name column as an input (I), output
(O), bidirectional (I/O), power (PWR), or ground (GND).

Note that all inputs except RESET# are sampled inputs. RESET# is a level-
sensitive input. During powerdown mode, the powerdown circuitry uses
EXTINT as a level-sensitive input.

Description Briefly describes the function of the pin for the specific signal listed in the
Name column. Also lists the alternate fuction that are multiplexed with the
signal (if applicable).

Table A-3. Signal Descriptions

Name Type Description

A23:16
(100-pin CB)

I/O Address Lines 16–23

These address lines provide address bits 20–23 during the entire external
memory cycle, supporting extended addressing of the 16-Mbyte address space.

A23:20 are multiplexed with EPORT.7:0.

A19:16
(84-pin CB)

I/O Address Lines 16–19

These address lines provide address bits 16–19 during the entire external
memory cycle, supporting extended addressing of the 1 Mbyte address space.

NOTE: Internally, there are 24 address bits; however, only 20 address lines
(A19:16 and AD15:0) are implemented as external pins on the 84-pin
87C196CB. The internal address space is 16 Mbytes (000000–
FFFFFFH) and the external address space is 1 Mbyte (00000–
FFFFFH). The device resets to FF2080H in internal OTPROM or
F2080H in external memory.

A19:16 are multiplexed with EPORT.3:0.

ACH7:0 I Analog Channels 0–7

These pins are analog inputs to the A/D converter.

These pins may individually be used as analog inputs (ACHx) or digital inputs
(P0.x). While it is possible for the pins to function simultaneously as analog and
digital inputs, this is not recommended because reading port 0 while a
conversion is in process can produce unreliable conversion results.

The ANGND and VREF pins must be connected for the A/D converter and port 0
to function.

ACH7:4 are multiplexed with P0.7:4 and PMODE.3:0. ACH3:0 are multiplexed
with P0.3:0.

AD15:0 I/O Address/Data Lines

These pins provide a multiplexed address and data bus. During the address
phase of the bus cycle, address bits 0–15 are presented on the bus and can be
latched using ALE or ADV#. During the data phase, 8- or 16-bit data is trans-
ferred.

AD7:0 are multiplexed with SLP7:0, P3.7:0, and PBUS.7:0. AD15:8 are
multiplexed with P4.7:0 and PBUS.15:8.
A-4

SIGNAL DESCRIPTIONS
ADV# O Address Valid

This active-low output signal is asserted only during external memory
accesses. ADV# indicates that valid address information is available on the
system address/data bus. The signal remains low while a valid bus cycle is in
progress and is returned high as soon as the bus cycle completes.

An external latch can use this signal to demultiplex the address from the
address/data bus. A decoder can also use this signal to generate chip selects
for external memory.

ADV# is multiplexed with P5.0, SLPALE, and ALE.

AINC# I Auto Increment

During slave programming, this active-low input enables the auto-increment
feature. (Auto increment allows reading or writing of sequential OTPROM
locations, without requiring address transactions across the PBUS for each
read or write.) AINC# is sampled after each location is programmed or dumped.
If AINC# is asserted, the address is incremented and the next data word is
programmed or dumped.

AINC# is multiplexed with P2.4 and INTOUT#.

ALE O Address Latch Enable

This active-high output signal is asserted only during external memory cycles.
ALE signals the start of an external bus cycle and indicates that valid address
information is available on the system address/data bus. ALE differs from ADV#
in that it does not remain active during the entire bus cycle.

An external latch can use this signal to demultiplex address from the
address/data bus.

ALE is multiplexed with P5.0, SLPALE, and ADV#.

ANGND GND Analog Ground

ANGND must be connected for A/D converter and port 0 operation. ANGND
and VSS should be nominally at the same potential.

BHE# O Byte High Enable†

During 16-bit bus cycles, this active-low output signal is asserted for word reads
and writes and high-byte reads and writes to external memory. BHE# indicates
that valid data is being transferred over the upper half of the system data bus.
Use BHE#, in conjunction with AD0, to determine which memory byte is being
transferred over the system bus:

BHE# AD0 Byte(s) Accessed

0 0 both bytes
0 1 high byte only
1 0 low byte only

BHE# is multiplexed with P5.5 and WRH#.
† The chip configuration register 0 (CCR0) determines whether this pin
functions as BHE# or WRH#. CCR0.2 = 1 selects BHE#; CCR0.2 = 0 selects
WRH#.

Table A-3. Signal Descriptions (Continued)

Name Type Description
A-5

87C196CB Supplement
BREQ# O Bus Request

This active-low output signal is asserted during a hold cycle when the bus
controller has a pending external memory cycle.

The device can assert BREQ# at the same time as or after it asserts HLDA#.
Once it is asserted, BREQ# remains asserted until HOLD# is removed.

You must enable the bus-hold protocol before using this signal.

BREQ# is multiplexed with P2.3.

BUSWIDTH I Bus Width

The chip configuration register bits, CCR0.1 and CCR1.2, along with the
BUSWIDTH pin, control the data bus width. When both CCR bits are set, the
BUSWIDTH signal selects the external data bus width. When only one CCR bit
is set, the bus width is fixed at either 16 or 8 bits, and the BUSWIDTH signal
has no effect.

CCR0.1 CCR1.2 BUSWIDTH
0 1 N/A fixed 8-bit data bus
1 0 N/A fixed 16-bit data bus
1 1 high 16-bit data bus
1 1 low 8-bit data bus

BUSWIDTH is multiplexed with P5.7.

CLKOUT O Clock Output

Output of the internal clock generator. The CLKOUT frequency is ½ the
operating frequency (f). CLKOUT has a 50% duty cycle.

CLKOUT is multiplexed with P2.7 and PACT#.

COMP1:0 O Event Processor Array (EPA) Compare Pins

These signals are the output of the EPA compare-only channels. These pins
are multiplexed with other signals and may be configured as standard I/O.

COMP1:0 are multiplexed as follows: COMP0/P6.0/EPA8 and
COMP1/P6.1/EPA9.

CPVER O Cumulative Program Verification

During slave programming, a high signal indicates that all locations
programmed correctly, while a low signal indicates that an error occurred during
one of the programming operations.

CPVER is multiplexed with P2.6 and HLDA#.

Table A-3. Signal Descriptions (Continued)

Name Type Description
A-6

SIGNAL DESCRIPTIONS
EA# I External Access

This input determines whether memory accesses to special-purpose and
program memory partitions (FF2000–FF9FFFH) are directed to internal or
external memory. These accesses are directed to internal memory if EA# is
held high and to external memory if EA# is held low. For an access to any other
memory location, the value of EA# is irrelevant.

EA# also controls entry into programming mode. If EA# is at VPP voltage
(typically +12.5 V) on the rising edge of RESET#, the device enters
programming mode.

NOTE: Systems with EA# tied inactive have idle time between external bus
cycles. When the address/data bus is idle, you can use ports 3 and 4
for I/O. Systems with EA# tied active cannot use ports 3 and 4 as
standard I/O; when EA# is active, these ports will function only as the
address/data bus.

EA# is sampled and latched only on the rising edge of RESET#. Changing the
level of EA# after reset has no effect.

On devices with no internal nonvolatile memory, always connect EA# to VSS.

EPA9:0 I/O Event Processor Array (EPA) Input/Output pins

These are the high-speed input/output pins for the EPA capture/compare
channels. For high-speed PWM applications, the outputs of two EPA channels
(either EPA0 and EPA1 or EPA2 and EPA3) can be remapped to produce a
PWM waveform on a shared output pin.

EPA9:0 are multiplexed as follows: EPA0/P1.0/T2CLK, EPA1/P1.1,
EPA2/P1.2/T2DIR, EPA3/P1.3, EPA4/P1.4, EPA5/P1.5, EPA6/P1.6, EPA7/P1.7,
EPA8/P6.0/COMP0, and EPA9/P6.1/COMP1.

EPORT.7:0
(100-pin CB)

I/O Extended Addressing Port

This is a 4-bit, bidirectional, memory-mapped I/O port.

EPORT.7:0 are multiplexed with A23:16.

EPORT.3:0
(84-pin CB)

I/O Extended Addressing Port

This is a 4-bit, bidirectional, memory-mapped I/O port.

EPORT.3:0 are multiplexed with A19:16.

EXTINT I External Interrupt

In normal operating mode, a rising edge on EXTINT sets the EXTINT interrupt
pending bit. EXTINT is sampled during phase 2 (CLKOUT high). The minimum
high time is one state time.

In powerdown mode, asserting the EXTINT signal for at least 50 ns causes the
device to resume normal operation. The interrupt need not be enabled, but the
pin must be configured as a special-function input. If the EXTINT interrupt is
enabled, the CPU executes the interrupt service routine. Otherwise, the CPU
executes the instruction that immediately follows the command that invoked the
power-saving mode.

In idle mode, asserting any enabled interrupt causes the device to resume
normal operation.

EXTINT is multiplexed with P2.2 and PROG#.

Table A-3. Signal Descriptions (Continued)

Name Type Description
A-7

87C196CB Supplement
HLDA# O Bus Hold Acknowledge

This active-low output indicates that the CPU has released the bus as the result
of an external device asserting HOLD#.

HLDA# is multiplexed with P2.6 and CPVER.

HOLD# I Bus Hold Request

An external device uses this active-low input signal to request control of the
bus. This pin functions as HOLD# only if the pin is configured for its special
function and the bus-hold protocol is enabled. Setting bit 7 of the window
selection register (WSR) enables the bus-hold protocol.

HOLD# is multiplexed with P2.5.

INST O Instruction Fetch

This active-high output signal is valid only during external memory bus cycles.
When high, INST indicates that an instruction is being fetched from external
memory. The signal remains high during the entire bus cycle of an external
instruction fetch. INST is low for data accesses, including interrupt vector
fetches and chip configuration byte reads. INST is low during internal memory
fetches.

INST is multiplexed with P5.1 and SLPCS#.

INTOUT# O Interrupt Output

This active-low output indicates that a pending interrupt requires use of the
external bus. How quickly the microcontroller asserts INTOUT# depends upon
the status of HOLD# and HLDA# and whether the microcontroller is executing
from internal or external program memory. If the microcontroller is executing
from internal memory and receives an interrupt request while in hold, it asserts
INTOUT# immediately. However, if the microcontroller is executing code from
external memory and receives an interrupt request while in hold, it asserts
BREQ# and waits until the external device deasserts HOLD# to assert
INTOUT#. If the microcontroller is executing code from external memory and
receives an interrupt request as it is going into hold (between the time that an
external device asserts HOLD# and the time that the microcontroller responds
with HLDA#), the microcontroller asserts both HLDA# and INTOUT# and keeps
them asserted until the external device deasserts HOLD#.

INTOUT is multiplexed with P2.4 and AINC#.

NMI I Nonmaskable Interrupt

In normal operating mode, a rising edge on NMI generates a nonmaskable
interrupt. NMI has the highest priority of all prioritized interrupts. Assert NMI for
greater than one state time to guarantee that it is recognized.

ONCE# I On-circuit Emulation

Holding ONCE# low during the rising edge of RESET# places the device into
on-circuit emulation (ONCE) mode. This mode puts all pins into a high-
impedance state, thereby isolating the device from other components in the
system. The value of ONCE# is latched when the RESET# pin goes inactive.
While the device is in ONCE mode, you can debug the system using a clip-on
emulator. To exit ONCE mode, reset the device by pulling the RESET# signal
low. To prevent inadvertent entry into ONCE mode, either configure this pin as
an output or hold it high during reset and ensure that your system meets the VIH
specification (see datasheet).

ONCE# is multiplexed with P2.6.

Table A-3. Signal Descriptions (Continued)

Name Type Description
A-8

SIGNAL DESCRIPTIONS
P0.7:0 I Port 0

This is a high-impedance, input-only port. Port 0 pins should not be left floating.

These pins may individually be used as analog inputs (ACHx) or digital inputs
(P0.x). While it is possible for the pins to function simultaneously as analog and
digital inputs, this is not recommended because reading port 0 while a
conversion is in process can produce unreliable conversion results.

ANGND and VREF must be connected for port 0 to function.

P0.7:4 are multiplexed with ACH7:4 and PMODE.3:0. P0.3:0 are multiplexed
with ACH3:0.

P1.7:0 I/O Port 1

This is a standard, bidirectional port that is multiplexed with individually
selectable special-function signals.

Port 1 is multiplexed as follows: P1.0/EPA0, P1.1/EPA1, P1.2/EPA2,
P1.3/EPA3, P1.4/T1CLK, P1.5/T1DIR, P1.6/T2CLK, and P1.7/T2DIR.

P2.7:0 I/O Port 2

This is a standard bidirectional port that is multiplexed with individually
selectable special-function signals.

P2.6 is multiplexed with the ONCE# function. If this pin is held low during reset,
the device will enter ONCE mode, so exercise caution if you use this pin for
input. If you choose to configure this pin as an input, always hold it high during
reset and ensure that your system meets the VIH specification (see datasheet)
to prevent inadvertent entry into a test mode.

Port 2 is multiplexed as follows: P2.0/TXD/PVER, P2.1/RXD/PALE#,
P2.2/EXTINT/PROG#, P2.3/BREQ#, P2.4/INTOUT#/AINC#, P2.5/HOLD#,
P2.6/HLDA#/ONCE#/CPVER, P2.7/CLKOUT/PACT#.

P3.7:0 I/O Port 3

This is an 8-bit, bidirectional, memory-mapped I/O port with open-drain outputs.
The pins are shared with the multiplexed address/data bus, which has comple-
mentary drivers.

P3.7:0 are multiplexed with AD7:0, SLP7:0, and PBUS.7:0.

P4.7:0 I/O Port 4

This is an 8-bit, bidirectional, memory-mapped I/O port with open-drain outputs.
The pins are shared with the multiplexed address/data bus, which has comple-
mentary drivers.

P4.7:0 are multiplexed with AD15:8 and PBUS15:8.

P5.7:0 I/O Port 5

This is an 8-bit, bidirectional, memory-mapped I/O port.

P5.4 is multiplexed with a special test-mode-entry function. If this pin is held low
during reset, the device will enter a reserved test mode, so exercise caution if
you use this pin for input. If you choose to configure this pin as an input, always
hold it high during reset and ensure that your system meets the VIH specification
(see datasheet) to prevent inadvertent entry into a test mode.

Port 5 is multiplexed as follows: P5.0/ALE/ADV#/SLPALE, P5.1/INST/SLPCS#,
P5.2/WR#/WRL#/SLPWR#, P5.3/RD#/SLPRD#, /SLPINT, P5.5/BHE#/WRH#,
P5.6/READY, and P5.7/BUSWIDTH.

Table A-3. Signal Descriptions (Continued)

Name Type Description
A-9

87C196CB Supplement
P6.7:0 I/O Port 6

This is a standard 8-bit bidirectional port.

Port 6 is multiplexed as follows: P6.0/EPA8/COMP0, P6.1/EPA9/COMP1,
P6.2/T1CLK, P6.3/T1DIR, P6.4/SC0, P6.5/SD0, P6.6/SC1, and P6.7/SD1.

PACT# O Programming Active

During auto programming or ROM-dump, a low signal indicates that
programming or dumping is in progress, while a high signal indicates that the
operation is complete.

PACT# is multiplexed with P2.7 and CLKOUT.

PALE# I Programming ALE

During slave programming, a falling edge causes the device to read a
command and address from the PBUS.

PALE# is multiplexed with P2.1 and RXD.

PBUS15:0 I/O Address/Command/Data Bus

During slave programming, ports 3 and 4 serve as a bidirectional port with
open-drain outputs to pass commands, addresses, and data to or from the
device. Slave programming requires external pull-up resistors.

During auto programming and ROM-dump, ports 3 and 4 serve as a regular
system bus to access external memory. P4.6 and P4.7 are left unconnected;
P1.1 and P1.2 serve as the upper address lines.

Slave programming:

PBUS.7:0 are multiplexed with AD7:0, SLP7:0, and P3.7:0.

PBUS.15:8 are multiplexed with AD15:8 and P4.7:0.

Auto programming:

PBUS.7:0 are multiplexed with AD7:0, SLP7:0, and P3.7:0.

PBUS.13:8 are multiplexed with AD13:8 and P4.5:0; PBUS15:14 are
multiplexed with P1.2:1.

PMODE.3:0 I Programming Mode Select

The value on the PMODE pins determines the programming mode:

0H = serial port programming
5H = slave programming
6H = ROM-dump
CH = auto programming

PMODE is sampled after a device reset and must be static while the part is
operating.

PMODE.3:0 are multiplexed with P0.7:4 and ACH7:4.

PLLEN I Phase-locked Loop Enable

This input pin enables and disables the on-chip clock multiplier feature.

0 = standard mode; internal frequency is equal to FXTAL1.
1 = quadruple mode; internal frequency is equal to 4FXTAL1.

Table A-3. Signal Descriptions (Continued)

Name Type Description
A-10

SIGNAL DESCRIPTIONS
PROG# I Programming Start

During programming, a falling edge latches data on the PBUS and begins
programming, while a rising edge ends programming. The current location is
programmed with the same data as long as PROG# remains asserted, so the
data on the PBUS must remain stable while PROG# is active.

During a word dump, a falling edge causes the contents of an OTPROM
location to be output on the PBUS, while a rising edge ends the data transfer.

PROG# is multiplexed with P2.2 and EXTINT.

PVER O Program Verification

During slave or auto programming, PVER is updated after each programming
pulse. A high output signal indicates successful programming of a location,
while a low signal indicates a detected error.

PVER is multiplexed with P2.0 and TXD.

RD# O Read

Read-signal output to external memory. RD# is asserted only during external
memory reads.

RD# is multiplexed with P5.3 and SLPRD#.

READY I Ready Input

This active-high input signal is used to lengthen external memory cycles for
slow memory by generating wait states in addition to the wait states that are
generated internally.

When READY is high, CPU operation continues in a normal manner with wait
states inserted as programmed in the chip configuration registers . READY is
ignored for all internal memory accesses.

READY is multiplexed with P5.6.

RESET# I/O Reset

A level-sensitive reset input to and open-drain system reset output from the
microcontroller. Either a falling edge on RESET# or an internal reset turns on a
pull-down transistor connected to the RESET# pin for 16 state times. In the
powerdown and idle modes, asserting RESET# causes the chip to reset and
return to normal operating mode. After a device reset, the first instruction fetch
is from FF2080H.

RXCAN I Receive

This signal carries messages from other nodes on the CAN bus to the
integrated CAN controller.

RXD I/O Receive Serial Data

In modes 1, 2, and 3, RXD receives serial port input data. In mode 0, it
functions as either an input or an open-drain output for data.

RXD is multiplexed with P2.1 and PALE#.

SC1:0 I/O Clock Pins for SSIO0 and 1

For handshaking mode, configure SC1:0 as open-drain outputs.

This pin carries a signal only during receptions and transmissions. When the
SSIO port is idle, the pin remains either high (with handshaking) or low (without
handshaking).

SC0 is multiplexed with P6.4, and SC1 is multiplexed with P6.6.

Table A-3. Signal Descriptions (Continued)

Name Type Description
A-11

87C196CB Supplement
SD1:0 I/O Data Pins for SSIO0 and 1

SD0 is multiplexed with P6.5, and SD1 is multiplexed with P6.7.

SLP7:0 I/O Slave Port Address/Data bus

Slave port address/data bus in multiplexed mode and slave port data bus in
demultiplexed mode. In multiplexed mode, SLP1 is the source of the internal
control signal, SLP_ADDR.

SLP7:0 are multiplexed with AD7:0, P3.7:0, and PBUS.7:0.

SLPALE I Slave Port Address Latch Enable

Functions as either a latch enable input to latch the value on SLP1 (with a
multiplexed address/data bus) or as the source of the internal control signal,
SLP_ADDR (with a demultiplexed address/data bus).

SLPALE is multiplexed with P5.0, ADV#, and ALE.

SLPCS# I Slave Port Chip Select

SLPCS# must be held low to enable slave port operation.

SLPCS# is multiplexed with P5.1 and INST.

SLPINT O Slave Port Interrupt

This active-high slave port output signal can be used to interrupt the master
processor.

SLPINT is multiplexed with P5.4 and a special test-mode-entry pin . See P5.7:0
for special considerations.

SLPRD# I Slave Port Read Control Input

This active-low signal is an input to the slave. Data from the P3_REG or
SLP_STAT register is valid after the falling edge of SLPRD#.

SLPRD# is multiplexed with P5.3 and RD#.

SLPWR# I Slave Port Write Control Input

This active-low signal is an input to the slave. The rising edge of SLPWR#
latches data on port 3 into the P3_PIN or SLP_CMD register.

SLPWR# is multiplexed with P5.2, WR#, and WRL#.

T1CLK I Timer 1 External Clock

External clock for timer 1. Timer 1 increments (or decrements) on both rising
and falling edges of T1CLK. Also used in conjunction with T1DIR for quadrature
counting mode.

and

External clock for the serial I/O baud-rate generator input (program selectable).

T1CLK is multiplexed with P6.2.

T2CLK I Timer 2 External Clock

External clock for timer 2. Timer 2 increments (or decrements) on both rising
and falling edges of T2CLK. Also used in conjunction with T2DIR for quadrature
counting mode.

T2CLK is multiplexed with P1.0 and EPA0.

T1DIR I Timer 1 External Direction

External direction (up/down) for timer 1. Timer 1 increments when T1DIR is high
and decrements when it is low. Also used in conjunction with T1CLK for
quadrature counting mode.

T1DIR is multiplexed with P6.3.

Table A-3. Signal Descriptions (Continued)

Name Type Description
A-12

SIGNAL DESCRIPTIONS
T2DIR I Timer 2 External Direction

External direction (up/down) for timer 2. Timer 2 increments when T2DIR is high
and decrements when it is low. Also used in conjunction with T2CLK for
quadrature counting mode.

T2DIR is multiplexed with P1.2 and EPA2.

TXCAN O Transmit

This signal carries messages from the integrated CAN controller to other nodes
on the CAN bus.

TXD O Transmit Serial Data

In serial I/O modes 1, 2, and 3, TXD transmits serial port output data. In mode
0, it is the serial clock output.

TXD is multiplexed with P2.0 and PVER.

VCC PWR Digital Supply Voltage

Connect each VCC pin to the digital supply voltage.

VPP PWR Programming Voltage

During programming, the VPP pin is typically at +12.5 V (VPP voltage).
Exceeding the maximum VPP voltage specification can damage the device.

VPP also causes the device to exit powerdown mode when it is driven low for at
least 50 ns. Use this method to exit powerdown only when using an external
clock source because it enables the internal phase clocks, but not the internal
oscillator.

VREF PWR Reference Voltage for the A/D Converter

This pin also supplies operating voltage to both the analog portion of the A/D
converter and the logic used to read port 0.

VSS, VSS1 GND Digital Circuit Ground (Core Ground, Port Ground)

Connect each VSS and VSS1 pin to ground through the lowest possible
impedance path. VSS pins are connected to the core ground region of the micro-
controller, while VSS1 pins are connected to the port ground region. (ANGND is
connected to the analog ground region.) Separating the ground regions
provides noise isolation.

WR# O Write†

This active-low output indicates that an external write is occurring. This signal is
asserted only during external memory writes.

WR# is multiplexed with P5.2, SLPWR#, and WRL#.
† The chip configuration register 0 (CCR0) determines whether this pin
functions as WR# or WRL#. CCR0.2 = 1 selects WR#; CCR0.2 = 0 selects
WRL#.

WRH# O Write High†

During 16-bit bus cycles, this active-low output signal is asserted for high-byte
writes and word writes to external memory. During 8-bit bus cycles, WRH# is
asserted for all write operations.

WRH# is multiplexed with P5.5 and BHE#.
† The chip configuration register 0 (CCR0) determines whether this pin
functions as BHE# or WRH#. CCR0.2 = 1 selects BHE#; CCR0.2 = 0 selects
WRH#.

Table A-3. Signal Descriptions (Continued)

Name Type Description
A-13

87C196CB Supplement

heir
ent the
or V
A.3 DEFAULT CONDITIONS

Table A-5 lists the default functions of the I/O and control pins of the microcontroller with t
values during various operating conditions. Table A-4 defines the symbols used to repres
pin status. Refer to the DC Characteristics table in the datasheet for actual specifications fOL,
VIL, VOH, and VIH.

WRL# O Write Low†

During 16-bit bus cycles, this active-low output signal is asserted for low-byte
writes and word writes. During 8-bit bus cycles, WRL# is asserted for all write
operations.

WRL# is multiplexed with P5.2, SLPWR#, and WR#.
† The chip configuration register 0 (CCR0) determines whether this pin
functions as WR# or WRL#. CCR0.2 = 1 selects WR#; CCR0.2 = 0 selects
WRL#.

XTAL1 I Input Crystal/Resonator or External Clock Input

Input to the on-chip oscillator and the internal clock generators. The internal
clock generators provide the peripheral clocks, CPU clock, and CLKOUT
signal. When using an external clock or crystal instead of the on-chip oscillator,
connect the clock input to XTAL1. The external clock signal must meet the VIH
specification for XTAL1 (see datasheet).

XTAL2 O Inverted Output for the Crystal/Resonator

Output of the on-chip oscillator inverter. Leave XTAL2 floating when the design
uses a external clock source instead of the on-chip oscillator.

Table A-4. Definition of Status Symbols

Symbol Definition Symbol Definition

0 Voltage less than or equal to VOL, VIL MD0 Medium pull-down

1 Voltage greater than or equal to VOH, VIH MD1 Medium pull-up

HiZ High impedance WK0 Weak pull-down

LoZ0 Low impedance; strongly driven low WK1 Weak pull-up

LoZ1 Low impedance; strongly driven high ODIO Open-drain I/O

Table A-5. 87C196CB Pin Status

Port Pins Multiplexed
With

Status During
Reset

Status During
Idle

Status During
Powerdown

P0.7:4 ACH7:4 HiZ HiZ HiZ

P1.7:0 EPA7:0 WK1 (Note 3) (Note 3)

P2.0 TXD WK1 (Note 3) (Note 3)

P2.1 RXD WK1 (Note 3) (Note 3)

Table A-3. Signal Descriptions (Continued)

Name Type Description
A-14

SIGNAL DESCRIPTIONS
P2.2 EXTINT WK1 (Note 3) (Note 3)

P2.3 BREQ# WK1 (Note 3) (Note 3)

P2.4 INTOUT# WK1 (Note 3) (Note 3)

P2.5 HOLD# WK1 (Note 3) (Note 3)

P2.6 HLDA# WK1 (Note 3) (Note 3)

P2.7 CLKOUT CLKOUT active,
LoZ0/1 (Note 3) (Note 4)

P3.7:0 AD7:0 WK1 (Note 6) (Note 6)

P4.7:0 AD15:8 WK1 (Note 6) (Note 6)

EPORT.3:0 AD19:17 WK1 (Note 7) (Note 7)

P5.0 ALE WK1 (Note 1) (Note 1)

P5.1 INST WK0 (Note 1) (Note 1)

P5.2 WR#/WRL# WK1 (Note 3) (Note 3)

P5.3 RD# WK1 (Note 3) (Note 3)

P5.4 SLPINT WK1 (Note 3) (Note 3)

P5.5 BHE#/WRH# WK1 (Note 1) (Note 1)

P5.6 READY WK1 (Note 2) (Note 2)

P5.7 BUSWIDTH WK1 (Note 2) (Note 2)

P6.1:0 EPA9:8 WK1 (Note 3) (Note 3)

P6.2 T1CLK WK1 (Note 3) (Note 3)

P6.3 T1DIR WK1 (Note 3) (Note 3)

P6.4 SC0 WK1 (Note 3) (Note 3)

P6.5 SD0 WK1 (Note 3) (Note 3)

P6.6 SC1 WK1 (Note 3) (Note 3)

P6.7 SD1 WK1 (Note 3) (Note 3)

EA# — HiZ HiZ HiZ

NMI — HiZ HiZ HiZ

RXCAN — WK1 WK1 WK1

TXCAN — LoZ1 LoZ1 LoZ1

VPP — HiZ LoZ1 LoZ1

XTAL1 — Osc input, HiZ Osc input, HiZ Osc input, HiZ

XTAL2 — Osc output, LoZ0/1 Osc output, LoZ0/1 (Note 5)

NOTES:
1. If P5_MODE.y = 0, port is as programmed.

If P5_MODE.y = 1 and HLDA# = 1, P5.0 and P5.1 are LoZ0; P5.5 is LoZ1.
If P5_MODE.y = 1 and HLDA# = 0, port is HiZ.

2. If P5_MODE.y = 0, port is as programmed. If P5_MODE.y = 1, port is HiZ.
3. If Px_MODE.y = 0, port is as programmed.

If Px_MODE.y = 1, pin is as specified by Px_DIR and the associated peripheral.
4. If P2_MODE.7 = 0, pin is as programmed. If P2_MODE.7 = 1, pin is LoZ0.
5. If XTAL1 = 0, pin is LoZ1. If XTAL1 = 1, pin is LoZ0.
6. If EA# = 0, port is HiZ. If EA# = 1, port is open-drain I/O (ODIO).
7. Pins configured as address are high-impedance; pins configured as I/O remain unchanged.

Table A-5. 87C196CB Pin Status (Continued)

Port Pins Multiplexed
With

Status During
Reset

Status During
Idle

Status During
Powerdown
A-15

Glossary

is man-

g

er

of

n

cy

e
.
ol

e

an

t a
 a
ke

0

GLOSSARY

This glossary defines acronyms, abbreviations, and terms that have special meaning in th
ual. (Chapter 1 discusses notational conventions and general terminology.)

absolute error The maximum difference between correspondin
actual and ideal code transitions. Absolute error
accounts for all deviations of an actual A/D convert
from an ideal converter.

accumulator A register or storage location that forms the result
an arithmetic or logical operation.

actual characteristic A graph of output code versus input voltage of a
actual A/D converter. An actual characteristic may
vary with temperature, supply voltage, and frequen
conditions.

A/D converter Analog-to-digital converter.

ALU Arithmetic-logic unit. The part of the RALU that
processes arithmetic and logical operations.

assert The act of making a signal active (enabled). Th
polarity (high or low) is defined by the signal name
Active-low signals are designated by a pound symb
(#) suffix; active-high signals have no suffix. To
assert RD# is to drive it low; to assert ALE is to driv
it high.

attenuation A decrease in amplitude; voltage decay.

bit A binary digit.

BIT A single-bit operand that can take on the Boole
values, “true” and “false.”

break-before-make The property of a multiplexer which guarantees tha
previously selected channel is deselected before
new channel is selected. (That is, break-before-ma
ensures that the A/D converter will not short inputs
together.)

byte Any 8-bit unit of data.

BYTE An unsigned, 8-bit variable with values from
through 28–1.
Glossary-1

87C196CB SUPPLEMENT

d
e
t

n
e
is

he

ify

ed

 in

his

el

e

c

en

-
ge

nt
CAN Controller area network. The 87C196CB’s integrate
networking peripheral, similar to Intel’s standalon
82527 CAN serial communications controller, tha
supports CAN specification 2.0.

CCBs Chip configuration bytes. The chip configuratio
registers (CCRs) are loaded with the contents of th
CCBs after a device reset, unless the device
entering programming modes, in which case t
PCCBs are used.

CCRs Chip configuration registers. Registers that spec
the environment in which the device will be
operating. The chip configuration registers are load
with the contents of the CCBs after a device reset
unless the device is entering programming modes,
which case the PCCBs are used.

channel-to-channel matching error The difference between corresponding code
transitions of actual characteristics taken from
different A/D converter channels under the same
temperature, voltage, and frequency conditions. T
error is caused by differences in DC input leakage and
on-channel resistance from one multiplexer chann
to another.

characteristic A graph of output code versus input voltage; th
transfer function of an A/D converter.

clear The “0” value of a bit or the act of giving it a “0”
value. See also set.

code 1) A set of instructions that perform a specifi
function; a program.
2) The digital value output by the A/D converter.

code center The voltage corresponding to the midpoint betwe
two adjacent code transitions on the A/D converter.

code transition The point at which the A/D converter’s output code
changes from “Q” to “Q+1.” The input voltage corre
sponding to a code transition is defined as the volta
that is equally likely to produce either of two adjace
codes.
Glossary-2

GLOSSARY

ce

.

e
.
ol

to

ve
 the

III
.,

0

at

d

ow
code width The voltage change corresponding to the differen
between two adjacent code transitions. Code width
deviations cause differential nonlinearity and nonlin-
earity errors.

crosstalk See off-isolation.

DC input leakage Leakage current from an analog input pin to ground

deassert The act of making a signal inactive (disabled). Th
polarity (high or low) is defined by the signal name
Active-low signals are designated by a pound symb
(#) suffix; active-high signals have no suffix. To
deassert RD# is to drive it high; to deassert ALE is
drive it low.

differential nonlinearity The difference between the actual code width and the
ideal one-LSB code width of the terminal-based
characteristic of an A/D converter. It provides a
measure of how much the input voltage may ha
changed in order to produce a one-count change in
conversion result. Differential nonlinearity is a
measure of local code-width error; nonlinearity is a
measure of overall code-transition error.

doping The process of introducing a periodic table Group
or Group V element into a Group IV element (e.g
silicon). A Group III impurity (e.g., indium or
gallium) results in a p-type material. A Group V
impurity (e.g., arsenic or antimony) results in an n-
type material.

double-word Any 32-bit unit of data.

DOUBLE-WORD An unsigned, 32-bit variable with values from
through 232–1.

EPA Event processor array. An integrated peripheral th
provides high-speed input/output capability.

EPROM Erasable, programmable read-only-memory.

ESD Electrostatic discharge.

feedthrough The attenuation from an input voltage on the selecte
channel to the A/D output after the sample window
closes. The ability of the A/D converter to reject an
input on its selected channel after the sample wind
closes.
Glossary-3

87C196CB SUPPLEMENT

ts
le
for

ut

#

l)
.5
de
ult

d.

ut

nd

at

 is
the

a

FET Field-effect transistor.

frequency generator The 8XC196MD peripheral that generates outpu
with a fixed 50% duty cycle and a programmab
frequency. The frequency generator can be used
infrared transmission.

full-scale error The difference between the ideal and actual inp
voltage corresponding to the final (full-scale) code
transition of an A/D converter.

hold latency The time it takes the microcontroller to assert HLDA
after an external device asserts HOLD#.

ideal characteristic The characteristic of an ideal A/D converter. An ideal
characteristic is unique: its first code transition occurs
when the input voltage is 0.5 LSB, its full-scale (fina
code transition occurs when the input voltage is 1
LSB less than the full-scale reference, and its co
widths are all exactly 1.0 LSB. These properties res
in a conversion without zero-offset, full-scale, or
linearity errors. Quantizing error is the only error
seen in an ideal A/D converter.

input leakage Current leakage from an input pin to power or groun

input series resistance The effective series resistance from an analog inp
pin to the sample capacitor of an A/D converter.

integer Any member of the set consisting of the positive a
negative whole numbers and zero.

INTEGER A 16-bit, signed variable with values from –215

through +215–1.

interrupt controller The module responsible for handling interrupts th
are to be serviced by interrupt service routines that
you provide. Also called the programmable interrupt
controller (PIC).

interrupt latency The total delay between the time that an interrupt
generated (not acknowledged) and the time that
device begins executing the interrupt service routine
or PTS routine.

interrupt service routine A software routine that you provide to service
standard interrupt. See also PTS routine.

interrupt vector A location in special-purpose memory that holds the
starting address of an interrupt service routine.
Glossary-4

GLOSSARY

t

d
.

12

,
e
e

be
h

es
t
 of
is

put

o

s
ly

ge

ss
ISR See interrupt service routine.

linearity errors See differential nonlinearity and nonlinearity.

LONG-INTEGER A 32-bit, signed variable with values from –231

through +231–1.

LSB 1) Least-significant bit of a byte or least-significan
byte of a word.

2) In an A/D converter, the reference voltage divide
by 2n, where n is the number of bits to be converted
For a 10-bit converter with a reference voltage of 5.
volts, one LSB is equal to 5.0 millivolts (5.12 ÷ 210).

maskable interrupts All interrupts except unimplemented opcode
software trap, and NMI. Maskable interrupts can b
disabled (masked) by the individual mask bits in th
interrupt mask registers, and their servicing can
disabled by the global interrupt enable bit. Eac
maskable interrupt can be assigned to the PTS for
processing.

monotonic The property of successive approximation converters
which guarantees that increasing input voltag
produce adjacent codes of increasing value, and tha
decreasing input voltages produce adjacent codes
decreasing value. (In other words, a converter
monotonic if every code change represents an in
voltage change in the same direction.) Large differ-
ential nonlinearity errors can cause the converter t
exhibit nonmonotonic behavior.

MSB Most-significant bit of a byte or most-significant byte
of a word.

n-channel FET A field-effect transistor with an n-type conducting
path (channel).

n-type material Semiconductor material with introduced impuritie
(doping) causing it to have an excess of negative
charged carriers.

no missing codes An A/D converter has no missing codes if, for every
output code, there is a unique input voltage ran
which produces that code only. Large differential
nonlinearity errors can cause the converter to mi
codes.
Glossary-5

87C196CB SUPPLEMENT

nd
he

de,

en

c

ar
e

s
ly

e

s;

le
e

nonlinearity The maximum deviation of code transitions of the
terminal-based characteristic from the corre-
sponding code transitions of the ideal characteristic.

nonmaskable interrupts Interrupts that cannot be masked (disabled) a
cannot be assigned to the PTS for processing. T
nonmaskable interrupts are unimplemented opco
software trap, and NMI.

nonvolatile memory Read-only memory that retains its contents wh
power is removed. Many MCS® 96 microcontrollers
are available with either masked ROM, EPROM, or
OTPROM. Consult the Automotive Products or
Embedded Microcontrollers databook to determine
which type of memory is available for a specifi
device.

npn transistor A transistor consisting of one part p-type material and
two parts n-type material.

off-isolation The ability of an A/D converter to reject (isolate) the
signal on a deselected (off) output.

OTPROM One-time-programmable read-only memory. Simil
to EPROM, but it comes in an unwindowed packag
and cannot be erased.

p-channel FET A field-effect transistor with a p-type conducting
path.

p-type material Semiconductor material with introduced impuritie
(doping) causing it to have an excess of positive
charged carriers.

PC Program counter.

PCCBs Programming chip configuration bytes, which ar
loaded into the chip configuration registers (CCRs)
when the device is entering programming mode
otherwise, the CCBs are used.

PIC Programmable interrupt controller. The modu
responsible for handling interrupts that are to b
serviced by interrupt service routines that you
provide. Also called simply the interrupt controller.
Glossary-6

GLOSSARY

or

e

g
n
I,

 is
lly
le

he
e
s

ed

de
ck
-

S
by
prioritized interrupt Any maskable interrupt or nonmaskable NMI. Two of
the nonmaskable interrupts (unimplemented opcode
and software trap) are not prioritized; they vect
directly to the interrupt service routine when
executed.

program memory A partition of memory where instructions can b
stored for fetching and execution.

protected instruction An instruction that prevents an interrupt from bein
acknowledged until after the next instructio
executes. The protected instructions are DI, E
DPTS, EPTS, POPA, POPF, PUSHA, and PUSHF.

PSW Processor status word. The high byte of the PSW
the status byte, which contains one bit that globa
enables or disables servicing of all maskab
interrupts, one bit that enables or disables the PTS,
and six Boolean flags that reflect the state of t
current program. The low byte of the PSW is th
INT_MASK register. A push or pop instruction save
or restores both bytes (PSW + INT_MASK).

PTS Peripheral transaction server. The microcod
hardware interrupt processor.

PTSCB See PTS control block.

PTS control block A block of data required for each PTS interrupt. The
microcode executes the proper PTS routine based on
the contents of the PTS control block.

PTS cycle The microcoded response to a single PTS interrupt
request.

PTS interrupt Any maskable interrupt that is assigned to the PTS for
interrupt processing.

PTS mode A microcoded response that enables the PTS to
complete a specific task quickly. These tasks inclu
transferring a single byte or word, transferring a blo
of bytes or words, managing multiple A/D conver
sions, and generating PWM outputs.

PTS routine The entire microcoded response to multiple PT
interrupt requests. The PTS routine is controlled
the contents of the PTS control block.
Glossary-7

87C196CB SUPPLEMENT

e
ry

M
s,

ts
to
is
n

t

.

the
ns.
he
s
 to

or
ry

.
e

d

PTS transfer The movement of a single byte or word from th
source memory location to the destination memo
location.

PTS vector A location in special-purpose memory that holds the
starting address of a PTS control block.

PWM Pulse-width modulated (outputs). The 8XC196Mx
devices have several options for producing PW
outputs: the generic pulse-width modulator module
the waveform generator, and the EPA with or without
the PTS. The 8XC196MD also has a frequency
generator that produces PWM outputs.

quantizing error An unavoidable A/D conversion error that resul
simply from the conversion of a continuous voltage
its integer digital representation. Quantizing error
always ± 0.5 LSB and is the only error present in a
ideal A/D converter.

RALU Register arithmetic-logic unit. A part of the CPU tha
consists of the ALU, the PSW, the master PC, the
microcode engine, a loop counter, and six registers

repeatability error The difference between corresponding code
transitions from different actual characteristics taken
from the same converter on the same channel with
same temperature, voltage, and frequency conditio
The amount of repeatability error depends on t
comparator’s ability to resolve very similar voltage
and the extent to which random noise contributes
the error.

reserved memory A memory location that is reserved for factory use
for future expansion. Do not use a reserved memo
location except to initialize it with FFH.

resolution The number of input voltage levels that an A/D
converter can unambiguously distinguish between
The number of useful bits of information that th
converter can return.

sample capacitor A small (2–3 pF) capacitor used in the A/D converter
circuitry to store the input voltage on the selecte
input channel.
Glossary-8

GLOSSARY

e
d

is

is

e
ate
g

is
es
ot

n
t

y

or
sample delay The time period between the time that A/D converter
receives the “start conversion” signal and the tim
that the sample capacitor is connected to the selecte
channel.

sample delay uncertainty The variation in the sample delay.

sample time The period of time that the sample window is open.
(That is, the length of time that the input channel
actually connected to the sample capacitor.)

sample time uncertainty The variation in the sample time.

sample window The period of time that begins when the sample
capacitor is attached to a selected channel of an A/D
converter and ends when the sample capacitor
disconnected from the selected channel.

sampled inputs All input pins, with the exception of RESET#, ar
sampled inputs. The input pin is sampled one st
time before the read buffer is enabled. Samplin
occurs during PH1 (while CLKOUT is low) and
resolves the value (high or low) of the pin before it
presented to the internal bus. If the pin value chang
during the sample time, the new value may or may n
be recorded during the read.

RESET# is a level-sensitive input. EXTINT is
normally a sampled input; however, the powerdow
circuitry uses EXTINT as a level-sensitive inpu
during powerdown mode.

SAR Successive approximation register. A component of
the A/D converter.

set The “1” value of a bit or the act of giving it a “1”
value. See also clear.

SFR Special-function register.

SHORT-INTEGER An 8-bit, signed variable with values from –27

through +27–1.

sign extension A method for converting data to a larger format b
filling the upper bit positions with the value of the
sign. This conversion preserves the positive
negative value of signed integers.

sink current Current flowing into a device to ground. Always a
positive value.
Glossary-9

87C196CB SUPPLEMENT

d
d
nd
n
d
e
an
me

ch
log

ee

in
by

d

an
source current Current flowing out of a device from VCC. Always a
negative value.

SP Stack pointer.

special interrupt Any of the three nonmaskable interrupts (unimple-
mented opcode, software trap, or NMI).

special-purpose memory A partition of memory used for storing the interrupt
vectors, PTS vectors, chip configuration bytes, and
several reserved locations.

standard interrupt Any maskable interrupt that is assigned to the
interrupt controller for processing by an interrupt
service routine.

state time (or state) The basic time unit of the device; the combine
period of the two internal timing signals, PH1 an
PH2. (The internal clock generator produces PH1 a
PH2 by halving the frequency of the signal o
XTAL1. The rising edges of the active-high PH1 an
PH2 signals generate CLKOUT, the output of th
internal clock generator.) Because the device c
operate at many frequencies, this manual defines ti
requirements in terms of state times rather than in
specific units of time.

successive approximation An A/D conversion method that uses a binary sear
to arrive at the best digital representation of an ana
input.

temperature coefficient Change in the stated variable for each degr
Centigrade of temperature change.

temperature drift The change in a specification due to a change
temperature. Temperature drift can be calculated
using the temperature coefficient for the specification.

terminal-based characteristic An actual characteristic that has been translated an
scaled to remove zero-offset error and full-scale
error. A terminal-based characteristic resembles
actual characteristic with zero-offset error and full-
scale error removed.

transfer function A graph of output code versus input voltage; the
characteristic of the A/D converter.
Glossary-10

GLOSSARY

n

ing

 A

to

e

re

o
e
-
rs,

0

y

is
ut
e

transfer function errors Errors inherent in an analog-to-digital conversio
process: quantizing error, zero-offset error, full-scale
error, differential nonlinearity, and nonlinearity.
Errors that are hardware-dependent, rather than be
inherent in the process itself, include feedthrough,
repeatability, channel-to-channel matching, off-
isolation, and VCC rejection errors.

UART Universal asynchronous receiver and transmitter.
part of the serial I/O port.

VCC rejection The property of an A/D converter that causes it
ignore (reject) changes in VCC so that the actual
characteristic is unaffected by those changes. Th
effectiveness of VCC rejection is measured by the ratio
of the change in VCC to the change in the actual
characteristic.

watchdog timer An internal timer that resets the device if softwa
fails to respond before the timer overflows.

waveform generator One of the 8XC196Mx peripherals that can be used t
produce pulse-width modulated (PWM) outputs. Th
waveform generator is optimized for controlling 3
phase AC induction motors, brushless DC moto
and other devices requiring multiple PWM outputs.

WDT See watchdog timer.

word Any 16-bit unit of data.

WORD An unsigned, 16-bit variable with values from
through 216–1.

zero extension A method for converting data to a larger format b
filling the upper bit positions with zeros.

zero-offset error An ideal A/D converter’s first code transition occurs
when the input voltage is 0.5 LSB. Zero-offset error
the difference between 0.5 LSB and the actual inp
voltage that triggers an A/D converter’s first cod
transition.
Glossary-11

Index

INDEX

A
A/D converter, signals, 6-1
AD_COMMAND register, 6-2
AD_RESULT register, 6-3
Auto programming mode

circuit, 10-3
memory map, 10-2

B
Block diagram

CAN peripheral, 7-2
clock circuitry, 2-2
core and peripherals, 2-2

Bus-timing modes, 9-1–9-2
comparison, 9-1, 9-2

C
CAN serial communications controller, 7-1–7-42

address map, 7-5
bit timing, 7-10–7-12
block diagram, 7-2
bus-off state, 7-41
error detection and management logic, 7-9
message

acceptance filtering, 7-6
frames, 7-7

extended, 7-8
standard, 7-8

identifiers, effect of masking on, 7-7
objects, 7-5–7-6

overview, 7-1–7-2
programming, 7-4–7-31
receive and transmit priorities, 7-6
registers, 7-3–7-4
signals, 7-3

CAN_BTIME0 register, 7-3, 7-15
CAN_BTIME1 register, 7-3, 7-16
CAN_CON register, 7-3, 7-13, 7-29
CAN_EGMSK register, 7-3, 7-19
CAN_INT register, 7-3, 7-32
CAN_MSGxCFG register, 7-3, 7-21
CAN_MSGxCON0 register, 7-3, 7-24, 7-31, 7-34
CAN_MSGxCON1 register, 7-4, 7-26

CAN_MSGxDATA0-7 register, 7-28
CAN_MSGxDATAx register, 7-4
CAN_MSGxID register, 7-4
CAN_MSGxID0-3 register, 7-22
CAN_MSK15 register, 7-4, 7-20
CAN_SGMSK register, 7-4, 7-18
CAN_STAT register, 7-4, 7-33
CCR1 register, 9-3
CLKOUT, and internal timing, 2-2–2-4
Clock circuitry, 2-3
Clock phases, internal, 2-4

D
Documents, related, 1-2

E
EP_DIR register, 5-2
EP_MODE register, 5-2
EPORT, 5-1
EP_PIN register, 5-3
EP_REG register, 5-3

F
Formulas

clock period (t), 2-4
PH1 and PH2 frequency, 2-4
state time, 2-4

Frequency (f), 2-4
FXTAL 1, 2-4

I
Idle mode, pin status, A-14
Interrupts, 4-1
INT_MASK1 register, 4-2
INT_PEND1 register, 4-2

M
Manual contents, summary, 1-1
Memory mapping

auto programming mode, 10-2
serial port programming mode, 10-3
Index-1

87C196CB SUPPLEMENT
P
P0_PIN register, 5-1
Period (t), 2-4
Pin diagrams, A-1
Pins, reset status, A-14–A-15
Port 0, 5-1
Powerdown mode, pin status, A-14

R
Registers

AD_COMMAND, 6-2
AD_RESULT, 6-3
CAN_BTIME0, 7-3, 7-15
CAN_BTIME1, 7-3, 7-16
CAN_CON, 7-3, 7-13, 7-29
CAN_EGMSK, 7-3, 7-19
CAN_INT, 7-3, 7-32
CAN_MSGxCFG, 7-3, 7-21
CAN_MSGxCON0, 7-3, 7-24, 7-31, 7-34
CAN_MSGxCON1, 7-4, 7-26
CAN_MSGxDATA0-7, 7-28
CAN_MSGxDATAx, 7-4
CAN_MSGxID, 7-4
CAN_MSGxID0-3, 7-22
CAN_MSK15, 7-4, 7-20
CAN_SGMSK, 7-4, 7-18
CAN_STAT, 7-4, 7-33
CCR1, 9-3
EP_DIR, 5-2
EP_MODE, 5-2
EP_PIN, 5-3
EP_REG, 5-3
INT_MASK1, 4-2
INT_PEND1, 4-2
P0_PIN, 5-1

Reset status, I/O and control pins, A-14

S
Serial port programming mode, 10-4
SFRs, windowed direct addresses, 3-11
Signal descriptions, A-4–A-14
State time, defined, 2-4

T
Timing

internal, 2-2, 2-4

selectable bus-timing, 8-1

W
Windows

and memory-mapped SFRs, 3-9
locations that cannot be windowed, 3-9
table of, 3-11
WSR values and direct addresses, 3-9
Index-2

	87C196CB Supplement to 8XC196NT User’s Manual
	CONTENTS
	FIGURES
	Figure 2�1. 87C196CB Block Diagram
	Figure 2�2. Clock Circuitry
	Figure 2�3. Internal Clock Phases
	Figure 2�4. Effect of Clock Mode on CLKOUT Frequen...
	Figure 4�1. Interrupt Mask 1 (INT_MASK1) Register ...
	Figure 4�2. interrupt Pending 1 (INT_PEND1) Regist...
	Figure 5�1. Port x Pin Input (Px_PIN) Register �
	Figure 5�2. Extended Port I/O Direction (EP_DIR) R...
	Figure 5�3. Extended Port Mode (EP_MODE) Register ...
	Figure 5�4. Extended Port Input (EP_PIN) Register ...
	Figure 5�5. Extended Port Data Output (EP_REG) Reg...
	Figure 6�1. A/D Command (AD_COMMAND) Register �
	Figure 6�2. A/D Result (AD_RESULT) Register — Read...
	Figure 7�1. A System Using CAN Controllers
	Figure 7�2. CAN Controller Block Diagram
	Figure 7�3. CAN Message Frames
	Figure 7�4. A Bit Time as Specified by the CAN Pro...
	Figure 7�5. A Bit Time as Implemented in the CAN C...
	Figure 7�6. CAN Control (CAN_CON) Register (Contin...
	Figure 7�7. CAN Bit Timing 0 (CAN_BTIME0) Register...
	Figure 7�8. CAN Bit Timing 1 (CAN_BTIME1) Register...
	Figure 7�9. CAN Standard Global Mask (CAN_SGMSK) R...
	Figure 7�10. CAN Extended Global Mask (CAN_EGMSK) ...
	Figure 7�11. CAN Message 15 Mask (CAN_MSK15) Regis...
	Figure 7�12. CAN Message Object x Configuration (C...
	Figure 7�13. CAN Message Object x Identifier (CAN_...
	Figure 7�14. CAN Message Object x Control 0 (CAN_M...
	Figure 7�15. CAN Message Object x Control 1 (CAN_M...
	Figure 7�16. CAN Message Object Data (CAN_MSGxDATA...
	Figure 7�17. CAN Control (CAN_CON) Register (Conti...
	Figure 7�18. CAN Message Object x Control 0 (CAN_M...
	Figure 7�19. CAN Interrupt Pending (CAN_INT) Regis...
	Figure 7�20. CAN Status (CAN_STAT) Register
	Figure 7�21. CAN Message Object x Control 0 (CAN_M...
	Figure 7�22. Receiving a Message for Message Objec...
	Figure 7�23. Receiving a Message for Message Objec...
	Figure 7�24. Receiving a Message — CAN Controller ...
	Figure 7�25. Transmitting a Message — CPU Flow
	Figure 7�26. Transmitting a Message — CAN Controll...
	Figure 8�1. Clock Circuitry
	Figure 9�1. Modes 0 and 3 Timings
	Figure 9�2. Chip Configuration 1 (CCR1) Register (...
	Figure 10�1. Auto Programming Circuit
	Figure A�1. 87C196CB 84-pin PLCC Package
	Figure A�2. 87C196CB 100-pin PLCC Package

	TABLES
	Table 1�1. Related Documents
	Table 2�1. Features of the 8XC196NT and 87C196CB
	Table 2�2. State Times at Various Frequencies
	Table 2�3. Relationships Between Input Frequency, ...
	Table 3�1. Register File Memory Addresses�
	Table 3�2. 87C196CB Memory Map �
	Table 3�3. 87C196CB Peripheral SFRs �
	Table 3�4. CAN Peripheral SFRs (Continued)
	Table 3�5. Selecting a Window of Peripheral SFRs �...
	Table 3�6. Selecting a Window of the Upper Registe...
	Table 3�7. Selecting a Window of Upper Register RA...
	Table 3�8. Windows (Continued)
	Table 3�9. WSR Settings and Direct Addresses for W...
	Table 4�1. Interrupt Sources, Vectors, and Priorit...
	Table 5�1. 87C196CB Input/Output Ports
	Table 6�1. A/D Converter Pins
	Table 7�1. CAN Controller Signals
	Table 7�2. Control and Status Registers (Continued...
	Table 7�3. CAN Controller Address Map �
	Table 7�4. Message Object Structure �
	Table 7�5. Effect of Masking on Message Identifier...
	Table 7�6. Standard Message Frame
	Table 7�7. Extended Message Frame
	Table 7�8. CAN Protocol Bit Time Segments
	Table 7�9. CAN Controller Bit Time Segments
	Table 7�10. Bit Timing Relationships
	Table 7�11. Bit Timing Requirements for Synchroniz...
	Table 7�12. Control Register Bit-pair Interpretati...
	Table 7�13. Cross-reference for Register Bits Show...
	Table 7�14. Register Values Following Reset
	Table 9�1. Modes 0 and 3 Timing Comparisons
	Table 10�1. Signature Word and Programming Voltage...
	Table 10�2. Slave Programming Mode Memory Map
	Table 10�3. Auto Programming Memory Map
	Table 10�4. Serial Port Programming Mode Memory Ma...
	Table A�1. 87C196CB Signals Arranged by Functional...
	Table A�2. Description of Columns of Table A�3
	Table A�3. Signal Descriptions (Continued)
	Table A�4. Definition of Status Symbols �
	Table A�5. 87C196CB Pin Status (Continued)

	CHAPTER 1 Guide to This Manual
	1.1 Manual Contents
	1.2 Related Documents

	CHAPTER 2 Architectural Overview
	2.1 Device Features
	2.2 Block Diagram
	2.3 Internal Timing

	CHAPTER 3 Memory Partitions
	3.1 Memory Map, Special-Function Registers, and Wi...

	CHAPTER 4 Standard and PTS Interrupts
	4.1 Interrupt Sources, Vectors, and Priorities

	CHAPTER 5 I/O Ports
	5.1 Port 0 and EPORT

	CHAPTER 6 Analog-to-digital (A/D) Converter
	6.1 Additional A/D Input Channels

	CHAPTER 7 CAN Serial Communications Controller
	7.1 CAN Functional Overview
	7.2 CAN Controller Signals and Registers
	7.3 CAN Controller Operation
	7.3.1 Address Map
	7.3.2 Message Objects
	7.3.2.1 Receive and Transmit Priorities
	7.3.2.2 Message Acceptance Filtering

	7.3.3 Message Frames
	7.3.4 Error Detection and Management Logic
	7.3.5 Bit Timing
	7.3.5.1 Bit Timing Equations

	7.4 Configuring the CAN Controller
	7.4.1 Programming the CAN Control (CAN_CON) Regist...
	7.4.2 Programming the Bit Timing 0 (CAN_BTIME0) Re...
	7.4.3 Programming the Bit Timing 1 (CAN_BTIME1) Re...
	7.4.4 Programming a Message Acceptance Filter

	7.5 Configuring Message Objects
	7.5.1 Specifying a Message Object’s Configuration
	7.5.2 Programming the Message Object Identifier
	7.5.3 Programming the Message Object Control Regis...
	7.5.3.1 Message Object Control Register 0
	7.5.3.2 Message Object Control Register 1

	7.5.4 Programming the Message Object Data

	7.6 Enabling the CAN Interrupts
	7.7 Determining the CAN Controller’s Interrupt Sta...
	7.8 Flow Diagrams
	7.9 Design Considerations
	7.9.1 Hardware Reset
	7.9.2 Software Initialization
	7.9.3 Bus-off State

	CHAPTER 8 Special Operating Modes
	8.1 Clock Circuitry

	CHAPTER 9 Interfacing with External Memory
	9.1 Address Pins
	9.2 Bus Timing Modes

	CHAPTER 10 Programming the Nonvolatile Memory
	10.1 Signature Word and Programming Voltages
	10.2 Memory Map for Slave Programming Mode
	10.3 Memory Map and Circuit for Auto Programming
	10.4 Memory Map for Serial Port Programming
	10.4.1 Selecting Bank 0 (FF2000–FF7FFFH)
	10.4.2 Selecting Bank 1 (FF8000–FFFFFFH)

	APPENDIX A Signal Descriptions
	A.1 Functional Groupings of Signals
	A.2 Signal Descriptions
	A.3 Default Conditions

	GLOSSARY
	INDEX

